
Conceptualization of Feature
Models for multi-client capable

mobile Applications

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Philip Messlehner
Matrikelnummer 0728061

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: ao.Univ.-Prof. Dr. Christian Huemer
Mitwirkung: Dr. Christian Pichler

Wien, 10.10.2013
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

i

Philip Messlehner, Inzersdorfer Straße 107/8/9, 1100 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10.10.2013
(Unterschrift Verfasser)

ii

Abstract

Nowadays, an increasing amount of data is stored in the cloud. At the same time,
companies start using mobile applications to operate and improve their business processes.
However, mobile applications offered by the cloud-storage providers do not satisfy the
needs of such companies.

The following three problems have been identified which prevent the usage of these ap-
plications. First of all, the feature set of these applications is definite. Therefore, companies
are not able to extend the applications to meet their requirements to handle their business
processes. In addition, the applications do not enable the companies to apply their corpo-
rate identity on the user interface. And, finally, companies want to have control over the
distribution of their applications and decide which users are allowed to download and use
their applications.

The different kinds of variability encountered result from the various requirements of
each company. The solution for these problems is to systematically deal with variability in
such applications. Therefore, this thesis applies concepts from product line engineering to
the domain of mobile applications. Hence, this thesis defines a feature model correspond-
ing to the users requirements. Furthermore, concepts and techniques have been developed
for implementing variability mechanisms in Objective-C. Consequently, a software product
line has been created using these developed tools and the corresponding feature model. This
allows the efficient derivation of customized products based on the software product line.

The resulting approach based on software product lines allows to create a flexible ap-
plication which is extendable with custom modules and components requested by users.
Through this customization and extension the application’s features are adapted to the com-
pany’s business processes.

iii

Kurzfassung

Die Datenspeicherung wird zunehmend in die Cloud verlagert. Gleichzeitig bauen viele
Unternehmen auf mobile Applikationen, um Ihre Geschäftsprozesse abzubilden und abzu-
wickeln. Die bereitgestellten mobilen Applikationen der Cloud-Anbieter erfüllen jedoch
nicht die Anforderungen dieser Unternehmen.

Dabei verhindern folgende drei Probleme den Einsatz bestehender Applikationen. An
erster Stelle sind die Applikationen nicht um die notwendigen Funktionen erweiterbar die
benötigt werden, um diese sinnvoll im Geschäftsumfeld einzusetzen. Des Weiteren gibt es
keine Anpassungsmöglichkeiten, um die Benutzeroberfläche an die Corporate Identity einer
Firma anzupassen. Der Vertrieb dieser Applikationen wird über AppStores abgewickelt, die
Firmen selbst können somit auch nicht steuern, welche BenutzerInnen diese Applikationen
nutzen.

Die Lösung für diese Probleme ist ein systematischer Umgang mit Variabilität in App-
likationen, welche durch die unterschiedlichen Anforderungen der Unternehmen entstehen.
Hierbei sollen Konzepte der Produktlinienentwicklung in die Domäne der mobilen App-
likationen übertragen werden. Aus diesem Grund wird in dieser Arbeit ein Feature Modell
erarbeitet, welches die Anforderungen der Unternehmen widerspiegelt. Des weiteren wer-
den Mechanismen entwickelt, um die unterschiedlichen Arten von Variabilität in Objective-
C abzubilden. Sowohl das Feature Modell als auch die entwickelten Werkzeuge wer-
den verwendet, um eine mobile Software-Produktlinie zu schaffen. Von dieser Software-
Produktlinie sollen die verschiedenen Applikationen für Unternehmen effektiv abgeleitet
werden.

Mit der entwickelten Software-Produktlinie ist es möglich flexible Applikation abzu-
leiten, die um Module und Komponenten je nach Wunsch der KundInnen erweitert werden
können. Somit können die Applikationen auch auf die jeweiligen Geschäftsprozesse perfekt
zugeschnitten werden.

Contents

Abstract ii

Kurzfassung iii

Contents v

1 Introduction and Motivation 1
1.1 Problem Statement . 2
1.2 Outline of this Thesis . 3

2 Requirements Analysis 5
2.1 File Syncing and File Browsing . 5
2.2 Meta Information Synchronization and Manipulation 8
2.3 File Management and File Organization . 9
2.4 Security . 10
2.5 Communication Aspects . 11
2.6 Customizable User Interface . 11
2.7 Custom Modifications . 12
2.8 Analytics Services . 12
2.9 Non-Functional Requirements . 12
2.10 Overview of Requirements . 14

3 Related Work 17
3.1 Software Product Lines . 17
3.2 Variability in Software Product Lines . 23
3.3 Variability Modeling Techniques . 28
3.4 Software Product Lines and Variability Mechanisms in Mobile Context 38

4 Objective-C Principles 41
4.1 Key-Value Coding (KVC) . 41
4.2 Objective-C Runtime . 43
4.3 Class Extension with Categories . 45
4.4 Notifications . 46
4.5 UIAppearance . 49

v

vi CONTENTS

5 Implementing Variability in Objective-C 51
5.1 Inheritance . 51
5.2 Parameters and Configuration . 55
5.3 Interceptors . 57
5.4 UIAppearance Wrapper . 63

6 Variability Model for multi-client capable Mobile Applications 65
6.1 Feature Model of the Mobile Application . 65
6.2 Mapping Features and Variability Mechanisms 70
6.3 Realization of the Mapping . 71
6.4 Configuration Management . 80

7 Evaluation and Discussion 83
7.1 Product Derivation . 84
7.2 AESchreder Austria . 85
7.3 Anonymous Furniture Department Store . 86
7.4 Mercedes Benz Austria - MBÖ App2Date . 89
7.5 Critical Discussion . 92

8 Conclusion and Future Work 95
8.1 General Observations . 96
8.2 Challenge of Mobile Applications . 96
8.3 Future Work . 97

Bibliography 99

CHAPTER 1
Introduction and Motivation

Cloud became one of the most used words in the information technology area in the last couple
of years. More and more people are storing their information and documents in the cloud.

Companies are moving their storage from their own servers to cloud services. For instance,
Box1 mentions on their website that over 180,000 companies are using their service, including
about 97 % of the Fortune 500s2. Reasons for companies to store their data in the cloud include
the following.

Outsourcing. By outsourcing parts of the IT infrastructure to a cloud service provider, costs
can be reduced.

Collaboration. Cloud services often offer additional features besides the simple storage of
files. Having documents that can be edited from multiple people at the same time is one of these
features.

Offline Availability. When using traditional file storage approaches data will only be available
when connected to the server. Cloud-based services offer different client software for multiple
platforms to make documents available offline. These clients keep track of any changes and
therefore the data is consistent all the time.

Mobility. As mentioned before, the offered client software is available on multiple platforms,
including mobile devices. Through the ability of using a mobile client to access the documents
in the cloud entire business processes can be changed and improved. Field workers can access
their files on their tablets or smartphones when talking to new customers or present new products

1https://www.box.com
2Fortune Global 500 is an annual ranking of the top 500 corporations in the world and published by the Fortune

magazine

1

https://www.box.com

2 CHAPTER 1. INTRODUCTION AND MOTIVATION

from within such a client software.

However, the mobile clients offered by the cloud storage providers often do not satisfy the
special needs of the companies. The most important requirements of companies are described
as follows.

Custom User Interface. The user interface should reflect the companies corporate identity.
This should be kept in mind regardless of whether the companies are using the mobile clients
from the sync providers just for internal communication inside the departments of the company,
or if they are actually selling their products with this application by presenting the products from
within their cloud storage applications (i.e. using the application as a sales tool). The application
itself should look like a product offered by the company.

Additional Features. Sometimes companies do want their own features included in cloud
storage applications. The applications built from the cloud storage providers are non-modifiable
and non-extendable standard software. This negative aspect may cause that this application will
not be used by the company, if a mandatory feature is not included in this standard application.

Distribution. Having an application available in an AppStore makes it available for everybody
to download and install it on their device. Companies want to control which people are allowed
to install and use their application for security matters. So even if the user interface and features
of cloud applications would be customizable, companies want to have control over the distribu-
tion of this application.

Due to these facts, the only solution to satisfy a company which is using a cloud service
on mobile devices is a dedicated enterprise application. This means that the application is not
published in the AppStore but distributed from the company itself. The enterprise application
should be designed with respect to the companies corporate identity including all the specific
requirements to fit their business processes. To summarize, since these business processes vary
from company to company, individual requirements are present. Therefore a standard software
cannot be used to satisfy these companies.

1.1 Problem Statement

In this thesis the afore mentioned problems are addressed. In particular, this thesis addresses the
following aims.

1. It will be determined which requirements related to such a product are requested by the
users. These requirements will set up a feature set for such a product. It should be ex-
amined which features of this feature set are mandatory or optional and therefore differ
among the products.

1.2. OUTLINE OF THIS THESIS 3

2. Another research area of this work is to investigate which variability mechanisms ex-
ist in software product line engineering. It should be investigated how these variability
mechanisms can be implemented by using Objective-C. Moreover, useful tools should
be generated on top of this implementation by using design patterns and object-oriented
programming techniques. These tools should be applicable for every product line imple-
mented with Objective-C.

3. The established requirements should be used to create a feature model for a software prod-
uct line. This feature model should contain all necessary requirements from the require-
ments analysis and reflect the variability of such a product line. The established features
should be mapped to the developed implementation concepts for representing variability.

The overall goal of this thesis is to use software product line engineering techniques to derive
products represented as mobile applications with respect to the domain discussed before.

1.2 Outline of this Thesis

This thesis is organized as follows. In Chapter 2, requirements are collected for the chosen
domain and grouped into functional and non-functional ones. The requirements cover aspects
of file synchronization, file browsing, meta information synchronization and manipulation, file
management and file organization, communication aspects, customizable user interface and
other custom modifications. These requirements are collected from customer pitches and in
form of informal interviews with project managers.

The principles of software product lines are discussed in Chapter 3. While examining the
related work the terms and notations of software product line engineering are explained. The
meaning of variability and the different types of variability are described in more detail in this
chapter. Afterwards, modeling techniques are presented to express variability. Different vari-
ability mechanisms are introduced to explain how variability can be implemented in a software
product line. To distinguish this thesis from other research, other papers in the area of software
product lines with a mobile context are analyzed and discussed. In this analyzes it will be exam-
ined which aims this research is trying to satisfy and how this thesis differs.

In Chapter 4, basic concepts of the programming language Objective-C are introduced to
create a knowledge base for the following chapters. The covered topics disucss the Objective-C
runtime and how this tool can be used to collect information about loaded classes and methods.
An overview about Notifications is given, which are providing a loosely coupled alternative to
the well-known observer pattern. The UIAppearance API is presented to show how to configure
the appearance of user interface elements of an iOS application efficiently.

In Chapter 5, variability mechanism examined in Chapter 3 are implemented with Objective-
C by combining them with object-oriented programming techniques and design patterns. This
combination of existing variability mechanisms, object-oriented programming techniques, de-
sign patterns and the ability of Objective-C is used to create new tools to establish variability

4 CHAPTER 1. INTRODUCTION AND MOTIVATION

in a mobile application developed with Objective-C. One of these tools allows to configure the
subclassing variability mechanism for each product to easily exchange classes and parts of the
application. Another tool is created to allow to set up parameters of classes from a configuration
file in a flexible and dynamic way. An UIAppearance wrapper is presented to change the style of
an application with an applied stylesheet. Interceptor implementations are introduced to include
code into the application’s life cycle. These implementation variants will be compared to each
other. All these tools are used to implement the software product line using Objective-C.

The requirements established in Chapter 2 are mapped to features in Chapter 6. With these
features a feature model of the software product line will be built and afterwards a mapping to
variability mechanisms will be given. This mapping is explained in more detail to underline
how the developed variability mechanism tools from Chapter 5 are helping to create products
of the software product line. To show how the user interface of the application can be extended
in a variable way an alternative concept is introduced to load independent modules into the
application.

At the end of this chapter, an introduction to the configuration management is given to de-
scribe how the project was set up to allow derivation of products. This includes an explanation
how the files are split up in the Xcode projects. It will be described which files are responsible
for the configuration and how these configurations affect the products of the software product
line. How to keep track of the different versions of the code base and the different products using
source control management is also introduced in this chapter.

The design decisions made are evaluated in Chapter 7, where scenarios are chosen that
should be implemented to show the weaknesses and strengths of the built architecture. Metrics
are collected during this evaluation, e.g. the number of changes in the code base, the number of
subclassed classes, the number of additional classes for a product, the number of resources for
a product (like configuration files, images, icons, etc.) and the number of lines which had to be
written for the stylesheet. These metrics will be used to state a critical discussion at the end of
this chapter.

In Chapter 8, conclusions are drawn about software product line engineering in the mobile
context as well as the applicability of software product line principles in the above mentioned
domain. An outline of future work is also presented at the end of this chapter.

CHAPTER 2
Requirements Analysis

This chapter will give an overview on the requirements that should be fulfilled from a cloud
storage-based application. These features will later be used in Chapter 6 to build a variability
model for the software product line.

The requirements were collected from requirement specifications from customers who were
requesting an application with cloud storage synchronization. The list of requirements was
refined and complemented throughout informal interviews and meetings with project managers.

To simplify reading, the requirements are grouped into functional (Section 2.1 to Section 2.8)
and non-functional requirements (Section 2.9). At the end of this chapter an overview of all
requirements is provided in Section 2.10.

2.1 File Syncing and File Browsing

This section covers requirements that are related to a file synchronization process from a server
to the application. It describes requirements that include the synchronization process in general
as well as the behavior of this process during the application’s life cycle. Another requirement
that is covered in this section is the type of download mechanism that should be provided from
the application to allow to view files and folders on the mobile device.

2.1.1 File- and Folder-Structure Syncing

The major feature of this application is to sync files from an existing sync service and browse
through them. To view files, the application should be able to download them. The application
should save all relevant information about the files and folders, which can be retrieved through
the service.

Customers are probably already using a service for storing their files and are using this
service to spread information inside the company. Therefore the application should have the
ability to connect to several services and also provide an easy way to integrate new services,
instead of forcing the customer to use a set of predefined ones.

5

6 CHAPTER 2. REQUIREMENTS ANALYSIS

Services for which a sync interface may be implemented are partly typical cloud-storage ser-
vices, but also traditional file-protocols/services or even custom web services. A list of relevant
services is described below:

• Cloud-storage services:

– Box1: Box is an online file sharing and content management service which hosts
the user’s files in the cloud. It focuses on business customers and has its strengths
in the area of security, user roles and rights. It offers collaboration features like
comments on files and folders, different access rights for folders, and tagging to
enhance the organization of the content. Box provides sync clients for different
operating systems, for desktop systems as well as for mobile systems, and offers a
freemium model with 5 GB of free storage. A REST API for syncing is available
together with SDKs for different operating systems, which offer a simpler way to
sync files, but also reduce some capabilities such as controlling how to persist the
retrieved data.

– DropBox2: DropBox focuses on private users instead of enterprise customers and
it seems more intuitive and simpler to use compared to Box. It also offers a way to
share folders but omits ways to comment, tag files or append other meta information
such as file descriptions. It is not possible to give users different access to folders,
like read or write access. They offer two different kinds of APIs, one called Sync
API, a simple way to sync files like their desktop client, and the so-called Core API,
which exploits all features and therefore is more complex and powerful.

– ownCloud3: ownCloud addresses the problems of enterprise customers regarding
the minimal security Dropbox offers. They place their product as a better solution
for enterprise customers compared to Dropbox and also offer hosting for calendars
and contacts. They support two variants of their service, the first hosted with a
monthly subscription fee per user with support and some other goodies. The other
variant is a self hosted service, therefore they offer a install package to setup an own
ownCloud server. To access ownCloud’s data a web-interface, a provided API or a
WebDAV interface can be used.

• Traditional protocols and services

– File protocols: A lot of companies use traditional file protocols to access their files
on a shared volume. Samba4 is a free software implementation of the SMB/CIFS
networking protocol to provide file service for Microsoft Windows clients and runs
on most Unix systems. Unfortunately there is no performant way to sync these files
with an iOS framework. Socket programming has to be used to establish connections

1https://www.box.com
2https://www.dropbox.com
3ownCloud projects website with download link to self-hosted server https://owncloud.org, commercial

project website https://owncloud.com
4http://www.samba.org

https://www.box.com
https://www.dropbox.com
https://owncloud.org
https://owncloud.com
http://www.samba.org

2.1. FILE SYNCING AND FILE BROWSING 7

and data exchange. This socket programming on a mobile application may cause that
the sync is not fast and reliable enough as required.

– Microsoft Sharepoint5: Microsoft’s Sharepoint product offers a lot of functionality.
Besides intranet and extranet sites it also provides a document and content manage-
ment system. It provides an SDK and API for ASP.net and also an undocumented
REST service to retrieve the same information. This lack of documentation makes it
very hard to access Sharepoint from other systems.

– WebDAV6 (Web Distributed Authoring and Versioning): WebDAV is an exten-
sion to HTTP to provide functionality to edit and manage files. It provides eTags for
version control and supports extensions to add additional meta information to files.

• Custom web services: Sometimes users want to provide their own web service to supply
access to their files, e.g those hosted in a proprietary intranet system. Despite of technical
details the application should be able to integrate such custom services.

2.1.2 Sync Behavior

The sync behavior describes how the information about the directory and file tree is synced to the
application. It depends on the directory structure and the amount of files and the type of directory
organization (depth versus breadth) which sync behavior leads to the best experience. Some sync
services may have the ability to support different sync behaviors, therefore the customer should
have the ability to choose one of the following:

• Recursive: A recursive sync is only requesting information about the actual viewed folder.
If accessing a subfolder, the elements of this subfolder have to be requested. Therefore
it is not applicable for offline-browsing and will lead to bad experience, if the directory
organization is slim but deep.

• Full: A complete or full sync will fetch the whole directory tree and is therefore best
applicable for offline-browsing. However if the directory organization is slim but deep
and there is no method to retrieve the whole tree with a single call, this behavior could
lead to a massive amount of requests to retrieve all necessary data.

• Delta: Delta sync services are consuming a timestamp or key, which stores information
about the last successful sync process. The service is responding with a list of files and
folders, which have been changed, created or deleted since the last sync. This sync behav-
ior is therefore only responding with necessary information, which may lead to smaller
response sizes.

5http://sharepoint.microsoft.com/
6http://www.webdav.org

http://sharepoint.microsoft.com/
http://www.webdav.org

8 CHAPTER 2. REQUIREMENTS ANALYSIS

2.1.3 File Download

The different file download behaviors describe how the content of files will be synced to the
application. The usage of the different behaviors depends on the needs of offline availability of
files.

• On demand: On demand behavior will download files when they are explicitly requested,
e.g. in cases where the user tries to open the file inside the application.

• Custom: The custom behavior will allow users to set up rules, which will be applied to all
subitems of a folder or a set of files selected by the user. This collection will be available
offline, therefore the application will download content on the very first sync and after
a file got changed. To manage such a collection a custom way to organize the files and
folders has to be provided (see Section 2.3).

• Replication: This behavior will force the synchronization engine to download all files of
the directory tree.

2.2 Meta Information Synchronization and Manipulation

Regarding the selection of the sync service, the users have additional requirements which cover
meta data manipulation or at least representation. Such meta data may appear as tags, comments
or as file description. Most of them depend on the meta data provided by the service and their
sync engines itself. This meta data may help the user to manage their files inside the application
in an additional way or use the information to collaborate on a file. Well known meta data
concepts are described below.

2.2.1 Tagging

Tagging is a modern way to organize files and folders and offers a different approach than the
hierarchical file browsing everybody is aware of since the introduction of the first graphical user
interfaces for personal computers. A lot of people are using these technique to speed up their
search behavior and include meta information to their files.

Therefore the syncing and the presentation of this meta information is required for a lot
of users. If this feature is included, it should also change the search behavior to retrieve files
matching a tag name.

2.2.2 Comments

Collaboration and working in teams spread over the entire world are essential for internationally
acting companies. One way to encourage files to a subject of collaboration is to link discussions
about the content to the file. Some services already allow comments on files and folders. To
allow collaboration through comments and discussion, this information has to be synced to the
mobile device and included into the graphical user interface. A possibility to add these kind of
meta information from within the application should also be provided.

2.3. FILE MANAGEMENT AND FILE ORGANIZATION 9

2.2.3 Additional meta information

Some services are providing additional meta information like flags, a reference to the creator of
a file, file descriptions, etc. A flexible way to save this additional information should therefore
be provided.

An example for such an additional information is represented by a property which deter-
mines if the file should be only visible in a special mode, such as a private mode. Users want
to switch between a public and private mode to hide or show these marked files. This could be
useful for presentations where people are involved who are not authorized to see these files.

2.3 File Management and File Organization

Users want to have supplementary ways to organize and search for files to improve their work-
flow or to save some time. This group of requirements describes several ways to gain this benefit
by introducing different metaphors and strategies.

2.3.1 Favorites

Favorites became an intuitive way to bookmark content for later consumption or just to advance
retrieval. Therefore users want to be able to mark files and even folders as favorites. It should
be easy to mark or unmark a file as favorite and the special favorite folder should be quickly
accessible in every part of the applications interface.

2.3.2 Custom Collections

Sometimes the favorite technique is insufficient when organizing a large amount of data. It only
flags content, but does not provide any other way to manage the flagged content. A lot of users
require a way to group these flagged items, they want to have different favorite groups, they want
to have custom collections. They are asking for a way to create their own folders and mark files,
which should be accessible within these custom folders but also will not change the actual place
where the flagged files are persisted. This file should remain at its source, the custom collection
should only provide a faster way to access it, like a shortcut or cross-reference. These custom
collections should also be identified by a name and also contain other meta information, such as
notes.

2.3.3 History

Opening a file that has already been opened by the same user before is a very common use case.
Thus a history is a practicable way to find this information more quickly. The files inside this
history should be sorted by its access date and the user should be able to clear the history or
remove specific items from the history log.

10 CHAPTER 2. REQUIREMENTS ANALYSIS

2.3.4 Saved Search

A lot of personal computer operating systems offer a highly configurable and fine-grained search
functionality, but in fact it takes some time to set up a very complex search query. In addition,
it happens very often that users want to execute the same search query in the future - they are
searching for the same kind of files again. Consequently it is useful to provide a possibility to
save these search queries as intelligent folders to fulfill this requirement.

2.4 Security

When saving personal information within an app, security becomes a major fact of interest.
Applications should treat files as properties of the users and therefore implement mechanisms to
protect these properties.

2.4.1 Passcode

Passcode locks became very popular through the high prevalence rate of smart phones and
tablets. This feature offers a low level security mechanism to prevent usage by unauthorized
people. Not only devices (or actual mobile operating systems) itself use this way to raise secu-
rity, but also some mobile applications like Dropbox7 or 1Password8 have introduced passcode
locks to protect sensible data.

2.4.2 Authentication

For some services it is necessary to provide a way to authenticate users. The commonly used
authentication methods in applications can be separated into two groups.

Authentication Redirection. Some of these services are using single sign on, which will in-
terrupt the application workflow, redirect to a browser where the user has to enter his credentials
and will redirect back to the application after success.

In-App Authentication. Some services allow to pass the credentials directly to the service
endpoints (e.g. basic authentication). Hence the necessary information like username and pass-
word can be entered from within the application. This authentication mechanism also allows to
use the same account for each user, like in a product catalog application for customers. Therefore
a silent authentication in the background can be provided for this authentication mechanism.

7https://itunes.apple.com/us/app/dropbox/id327630330?mt=8
8https://itunes.apple.com/us/app/1password/id568903335?mt=8

https://itunes.apple.com/us/app/dropbox/id327630330?mt=8
https://itunes.apple.com/us/app/1password/id568903335?mt=8

2.5. COMMUNICATION ASPECTS 11

2.5 Communication Aspects

“More Collaboration, Less Frustration” – BOX9

Collaboration has become more and more important throughout the last couple of years.
Nearly everybody has to work in teams, for this reason communication is very important to
achieve goals and success. This group of requirements describes ways to support these social
and communication aspects.

2.5.1 Timeline

Since Facebook introduced its timeline10, this way to represent events has become a widely
used metaphor. Some cloud storage services also introduced such a timeline to list the events
involving the files of the users to supply a better overview. This timeline shows new or modified
files, new comments from other users collaborating with your files or other file-related actions.
If requested by the user and supported from the sync service, this feature should be included into
the application as a separate module.

2.5.2 Notifications

Notifications of applications are used to establish a communication channel to the users. They
are used to inform about important news and updates or include other important information.
These notifications could also be used inside an enterprise application to spread company-based
news within this company. An additional requirement is represented by the need of having
an archive to access older notifications. Notifications combined with an archive provide an
alternative way of a blog or news feed within an application and, due to this, improve the internal
communication of a company when used inside an enterprise application.

2.6 Customizable User Interface

It is very important for companies to have their corporate identity on every document and even
on every product they are giving to their customers. The fact that they also want to have their
corporate identity applied on internal documents or information which are only shared within
the company underlines the importance of these design guidelines. Hence applications that are
used from the company should also be designed with respect to their guidelines which implies a
corporate identity-driven design of these applications.

2.6.1 General User Interface Element Customization

Users want to apply themes on the application, i.e. their logo should be shown on every screen
of the application and the controls should be colored with the company colors.

9https://www.box.com/business/project-collaboration/
10https://www.facebook.com/about/timeline

https://www.box.com/business/project-collaboration/
https://www.facebook.com/about/timeline

12 CHAPTER 2. REQUIREMENTS ANALYSIS

2.6.2 Custom User Interface Elements

Sometimes applying a theme is not enough to reach satisfaction regarding the customization of
the user interface and replacements of user interface elements like buttons or other controls have
to be done to reach this goal of user interface customization.

2.7 Custom Modifications

Occasionally users have totally different ideas how to extend an application and meet all their
needs, especially when they are trying to improve their business processes. In these cases, heavy
customization is necessary to satisfy these users.

2.7.1 Custom Modules

There might be circumstances where a user wants to have a complete new module included into
the application, in fact he probably wants an entirely independent module, which acts like a mini
application inside the existing application or a module which uses the data synced and stored
from the original application logic.

2.7.2 Custom Components

It is sometimes necessary or economical to exchange small parts of an application with other
parts, rather than extending or modifying them to meet special needs for a single user. An
example for this problem would be the requirement to show a custom mail dialog instead of the
built-in mail dialog from the iOS operating system.

2.8 Analytics Services

To track the users of an application and analyze the usage of the different features of an applica-
tion, analytics services can be used. The application should have the ability to integrate different
analytics services depending on the needs and preferences of the customer to collect such in-
formation. This information may also be used to improve the application’s user interaction and
may show the usage frequency of certain features.

2.9 Non-Functional Requirements

The following listed requirements are not related to a specific feature and represent non-functional
requirements for the application. Nevertheless, they are as important as the previously mentioned
requirements.

2.9. NON-FUNCTIONAL REQUIREMENTS 13

2.9.1 Data Protection

The application stores business relevant and sensible data. Therefore, the protection of this data
is essential. One aspect is the visibility of the sensible data. No data should be retrievable from
outside, therefore iTunes file sharing should be turned off11.

Another aspect is covered by the encryption of the files, when stored on the mobile device.
A compromise between performance of file reading and encryption-policy of downloaded data
has to be found.

2.9.2 User Experience

Animations and intuitive interaction concepts can help to improve the user experience. Current
concepts used in iOS applications and mentioned in the several guidelines should be considered
during implementation of the user interface and application workflow.

2.9.3 Performance

Bad performance can lead to a negative impact on the users’ experience while using the app,
especially when the interaction with the user interface is not performing well. Furthermore, it is
very important to shift heavy work (like file synchronization and data storage) to the background
to not interrupt the interaction.

2.9.4 Reliability

It is evident that the application should be well tested and should not crash very often during us-
age. In case of a crash, a report should be send to a server and the developer should be informed
to fasten up the bug fixing process. Moreover, a way of giving feedback to the developer should
be provided for future improvements.

2.9.5 Maintainability and Extensibility

The fact that the application is used with different configurations and different modules from var-
ious user groups increases the complexity of the system. It should be taken care of this increase
of complexity during the whole implementation process. It is possible that a new user requests
a totally new feature or wants to include a special module into the application, which does not
exist yet. To allow the usage of custom component parts of the application have to be designed
capsulated. Dependencies between such capsulated parts should be minimized to allow substitu-
tion of these components. This also leads to an improvement in the area of maintainability since
the components should not greatly influence each other.

11iTunes file sharing allows applications to display their content of the Documents directory inside iTunes while
the iOS device is connected. The user can drag files from and to a specific area to copy files into this directory, or
remove files from this directory. For example, it could be used in a video player application to sync movie files to the
application.

14 CHAPTER 2. REQUIREMENTS ANALYSIS

2.9.6 Update Mechanism

To improve the procedure of bug fixing, but also the process of prototyping and beta testing, a
system that allows over-the-air distribution of new versions of the application should be used,
including a mechanism to force the user to update the version (e.g. for critical bug fixes). A
system which provides analytics about the distribution of the different versions is desirable.

2.10 Overview of Requirements

Table 2.1 shows a summary and an overview of all functional and non-functional requirements.
The requirements in this table are structured and regrouped as a list to simplify the creation
of a mapping from requirements to features and to variability mechanisms to implement these
features. This mapping will be established and discussed in Section 6.2.

2.10. OVERVIEW OF REQUIREMENTS 15

Functional Requirements

• File- and folder-structure syncing

• File download on demand, replication
or custom

• Meta information support

– Tags

– Comments

– additional meta information

• Favorites

• Custom collections

• History

• Saved search

• Passcode

• Authentication

• Timeline

• Notifications

• User interface customization

• Custom user interface elements

• Custom modules

• Custom components

• Analytics services

Non-Functional Requirements

• Data protection

• User experience

• Performance

• Reliability

• Maintainability and extensibility

• Update mechanism

Table 2.1: Overview of functional and non-functional requirements.

CHAPTER 3
Related Work

This chapter will cover fundamentals of software product lines to understand the underlying
principles as well as to define the terminology. Subsequently, variability in software product
lines will be examined in more detail, followed by an introduction to different modeling tech-
niques to express variability of a product line. At the end of this chapter, other related papers
will be briefly discussed to give an overview of scientific work in this area and to show the
differences to the work presented in this thesis.

3.1 Software Product Lines

This section examines the ideas and terms behind software product lines and also mentions
risks and benefits which come with them. In addition the processes of software product line
engineering are discovered and described.

3.1.1 Terminology

In [CN02] software product line is defined as follows:

A software product line is a set of software-intensive systems sharing a common
managed set of features that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed
way.

The definition specifies that a software product line is composed of its products which share
a set of features. These products are built upon core assets which represent the foundation of
the software product line. These core assets can vary from product to product in a prescribed
and controlled way. Core assets can be typified as code fragments, architectural specifications,
documentation, domain models, requirement statements, test plans, process descriptions and
other elements which help to develop multiple products. Building products with these core assets

17

18 CHAPTER 3. RELATED WORK

is achieved in a managed way following predefined rules and processes to improve economic
efficiency.

There are different terminologies used in scientific papers and books. This work will use
the terminology of software product lines, core assets and products instead of product families,
platform, or customization.

Taking this definition into mind, every product of the software product line is produced by
taking core assets and optionally modify them in predefined variation mechanisms to match the
use cases. If there is no core asset for a certain use case of the product, new core assets are
added. Consequently, the build process of a product from a software product line can be seen
as assembling and modification, not as creating per se. To make this assembling process more
effective, software product lines should provide a guide that specifies this building approach.

3.1.2 Product Line Activities and Processes

The Software Engineering Institute (SEI, [Nor02]) defines three essential activities of software
product line development. These activities are iterative and can be represented as rotating ar-
rows. At the same time these activities get influenced by each other (see Figure 3.1) [Eic12].

Another way of separating the processes of a software product line can be found in liter-
ature [BKPS04][PBvdL05]. This separation defines two processes that are building the funda-
ment of the software product line engineering paradigm – also mentioned as the software product
line engineering framework. The aim of this separation is to focus on building of a set of reusable
assets, as well as on the building of applications that satisfy the needs of the customers. The two
processes and the influenced subprocesses are discussed below and are illustrated in Figure 3.2.

These two figures are connected as follows. Core Asset Development from Figure 3.1 is
represented as Domain Engineering in Figure 3.2. Product Development from Figure 3.1 is rep-
resented as Application Engineering in Figure 3.2. The Management activity from Figure 3.1
contains sub-activities which can be assigned either to Domain Engineering or Application En-
gineering.

Domain Engineering

In this process, the commonality and variability of the software product line has to be defined.
Therefore this process is responsible for creating the reusable assets consisting of the different
artifacts for testing, requirements analysis, design, and development. Another key goal of this
process is the definition of the scope of the software product line. It defines the set of products
for which the software product line should be designed for. If this scope is too small, the core
assets won’t be built in the necessary generic way and therefore will not be eligible enough for
future growth. Otherwise, if the scope is too large, the core assets will not be applicable for
a huge set of products but instead only used in a few of them. Therefore, a lot of core assets
have to be developed and the benefit of reusability will not be achieved [BKPS04]. Apart from
the core assets and the definition of the scope, guidelines to build products from the software
product line should be extracted.

This process gets influenced by the inputs that are described as follows. Product constraints
define the possible variations between the products and their behavioral features as well as the

3.1. SOFTWARE PRODUCT LINES 19

Figure 3.1: Essential product line activities [Nor02].

information which features will definitely be needed to meet the needs of the market or the
customers in the future. Guidelines (style, patterns) and frameworks that are used to build core
assets and products. Constraints which control the production, like company-specific standards
or legacy restrictions. Such product constraints can also be represented as limitations regarding
the infrastructure for production.

The domain engineering process consists of several subprocesses. The outcomes are sev-
eral domain artifacts. Product Management deals with market strategy and economic aspects.
Domain Requirements Engineering is responsible for documenting commonalities and vari-
ability of the system through requirements. Output of this subprocess is a variability model (see
Chapter 6). Domain Design provides a high level structure for all products as a reference archi-
tecture. Domain Realization covers the detailed design and realization aspects of the reusable
components. Domain Testing is necessary to verify and validate the reusable components.

Application Engineering

Application Engineering represents the second process in the software product line engineering
paradigm and is responsible for deriving a product from the product line, or to be precise, from
the reusable assets. The process is exploiting the software product line’s variability according
to the needs of the product. Another task is the documentation of the application engineering
artifacts. The guideline provided from the domain engineering process must be respected and
satisfied. Similar to the first process, the application engineering process also consists of several
subprocesses:

• Application Requirements Engineering: Focuses on the specification of the application
with all its requirements. Deltas between these two requirement engineering subprocesses

20 CHAPTER 3. RELATED WORK

Figure 3.2: The software product line engineering framework [PBvdL05].

have to be evaluated afterwards to enhance future product developments of the software
product line or to consider new assets for the domain.

• Application Design: Represents a specialization of the reference architecture and uses it
as input. Differences can occur, which should also be examined carefully.

• Application Realization: This subprocess deals with the configuration and development
of software components, components used from the domain engineering process.

• Application Testing: This last subprocess is responsible for the testing of the application
including a validation and verification against the application’s specification.

As mentioned before, the results of the several subprocesses should be evaluated afterwards
to analyze the applicability of the domain assets and, as the case may be, also be reworked or
refined. Therefore this process is acting as a feedback loop for the domain engineering phase to
improve the software product line.

3.1.3 Motivation and Benefits

The definition in Section 3.1.1 describes the products of a software product lines as a software
developed from a common set of core assets in a prescribed way. As mentioned before, this
means that these core assets are reused strategically. This may cause a direct benefit each time

3.1. SOFTWARE PRODUCT LINES 21

a new product of the software product line is built, regarding the reduction of the costs, saving
time, improvements of software quality, and the reuse of resources and knowledge. How these
benefits can be achieved is discussed in more detail below.

Reduction of Costs

Reuse of assets implies cost reduction for each product. Hence reuse has to be planned be-
forehand to provide managed reuse, which requires an up-front investment to create the as-
sets. Therefore the initial cost will be higher, but reduced after deriving more products (see
Figure 3.3). The Break-Even point in this figure is reached after building three different sys-
tems [PBvdL05]. After this number of products, the costs for further systems will be signifi-
cantly cheaper for software product lines than they are for one-at-a-time systems. This number
is described in “It Takes Two” [CN02]. [CN02] also mentions several other papers which con-
firm this proposition. In [WL99] the authors claimed that product line engineering produces a
payoff after about two to three systems. In addition [JGJ97] is analyzing the Break-Even point
of reused components and marks this point with three to five reuses. This paper also reveals
that the initial costs for such reusable components will be 1.5 to 3.0 times as much compared to
similar components for single applications. They also claim that it takes two or three product
cycles to get a significant benefit out of the reuse of these components. Several other cited works
confirm the hypothesis of three produced systems (see [Rei97], [Pou97] and [Tra95]).

This will also lead to reduced costs for the customer who will not have to pay as much as they
would pay for an individual software. Moreover, cost-estimation becomes simpler because the
assets provide a sound basis for calculation. Only adoptions, new assets or extensions to meet
the customers needs have to be calculated separately and developed from scratch. In general
it is evident that the amount of time and costs spent at the beginning of the project will be
much higher than in conventional projects. However, these additional costs will amortize after
building more and more products. These additional costs comprise costs regarding requirements
engineering and architecture design as well as test case planning and training of employees.

Time Saving

Developing a software product line is time consuming, therefore it takes some time to finally
ship such a system to the market. [PBvdL05] assumes, that this time is roughly constant for
individual software products, but much shorter compared to the time the first products of a
software product line will cause to be shipped. Figure 3.4 shows, that the time spent for building
a product from the software product line decreases with the number of previously assembled
products. This positive effect is an outcome of the reuse of artifacts in a software product line.
Apart from that, individual software products will always cause constant time to be shippable.

Software Quality and Maintenance

To test a software product line, generic test plans can be set up and applied to the products [CN02].
Only new components or modified and customized assets have to be tested in a more detailed
way. This can also lead to a positive impact on the quality of the software product line, and

22 CHAPTER 3. RELATED WORK

Figure 3.3: Costs for developing n kinds
of systems as single systems compared to
product line engineering [PBvdL05].

Figure 3.4: Time to ship a system to the
market with and without product line engi-
neering [PBvdL05].

therefore, for each product. Pushing the quality of one product to the next level (regarding
performance, availability and so on) will cause an increase of quality for the whole software
product line. Maintenance for products of a software product line is much easier than for mul-
tiple individual software products. When a problem gets encountered and fixed in a core asset
of one single product of the software product line the same problem will be fixed in every other
problem. This effect comes into being because the problem occurred in a specific asset (which
is used in several products) and not the product itself.

Reuse of Resources and Knowledge

Personnel can be easily transferred through projects covering different products of the software
product line, because of the commonality among these products [CN02]. Their gained experi-
ence from one product can be applied to other products of the software product line as well. This
also reduces the initial training when joining a team developing on a different product dramat-
ically, which implies an increase of productivity. The effort that is necessary to train employes
to use tools and processes has to be made only once, since the learned aspects can be applied to
all products of the software product line.

3.2. VARIABILITY IN SOFTWARE PRODUCT LINES 23

3.2 Variability in Software Product Lines

Variability in software product lines is used to describe commonalities and variation among
assets. This chapter will introduce some terms used in the literature as well as characteristics
and classifications of variability. At the end, common mechanisms to implement variability will
be discussed in more detail.

3.2.1 Terms and Notions

Spoken in a non-technical context, variability refers to the ability to change an object, especially
the attributes of the property which are changeable and which values are valid. The following
definitions are mentioned in [PBvdL05], where some helpful examples are given to support the
understanding of these concepts.

Variability Subject and Variability Object

A variability subject is a variable item of the real world or a variable property of
such an item [PBvdL05].

Derived from this definition a variability subject describes what subject is able to vary and
helps to identify the variable item or property of the real world. The reason why such a sub-
ject is varying can have different reasons, for example different stakeholder or customer needs,
different country regulations, technical reasons, etc.

A variability object is a particular instance of a variability subject [PBvdL05].

The variability object describes how such an subject can vary and numerates the possible
shapes of the variability subject. As an example, a variability subject in the real world could rep-
resent a color property of items, whereas the different colors itself are representing the variability
objects.

Variation Point and Variants

A variation point is a representation of a variability subject within domain artifacts
enriched by contextual information. A variant is a representation of a variability
object within domain artifacts [PBvdL05].

Core assets have to fit in more than one context to establish effective reuse. They are slightly
changed or modified to fit in these contexts. The part of the application that occur in different
shapes is called variation point. The possible values for such a variation point are called variants
and therefore describe the ways an asset can occur in a specific variation point.

A really useful example is shown in Figure 3.5. The variation point in this example is
represented by the color of a car whereas the instances or variants of this variation point are
represented as a red and green car. Another example can be given with an asset which is re-
sponsible to persist data. The persistence type would represent the variation point of the asset,

24 CHAPTER 3. RELATED WORK

Figure 3.5: Relation between variability in real world and in a model of the real
world [PBvdL05].

the possible variants would be represented as specific techniques to implement that persistence
type, like SQLite database, in-memory cache, XML, JSON, flat files and so on.

3.2.2 Dimensions and Types of Variability

Variability in Time versus Variability in Space

In [PBvdL05] two different dimensions of variability can be found. The space dimension is
describing existence of assets with different shapes among products. Therefore, variability in
space describes variability as introduced before.

The existence of different versions of an artifact at different times, is called variability in
time [PBvdL05][BFG+01]. This variability dimension is handling evolution of artifacts over
time, caused by improvements and error treatments. Configuration management is used to record
which version of the artifact is used in which particular product. It may be, that during a design
phase a certain functionality may not occur as a different variant, but may be in the future.
Therefore this functionality should be designed with a variation point, although it would not be
necessary at this moment. As an example, [PBvdL05] mentions a home automation system. This
system has a function to identify the user by a magnetic card. Since the designers of this home
automation system expected a technological progress in the area of identification mechanisms
they defined a variation point for the door lock identification mechanism. Therefore, they can
easily handle evolution in this area, for example if there may be the variant of a fingerprint
scanner identification mechanism in the future.

While the variability in time specifies the change of an artifact over time, variability in space
covers the use of assets with different shapes at the same time. Nevertheless, both variability
dimensions occur simultaneously in most of the software product line projects.

3.2. VARIABILITY IN SOFTWARE PRODUCT LINES 25

3.2.3 Internal vs. External Variability

Another way of categorizing variability is introduced in [PBvdL05], this categorization focuses
on the visibility of variability. External variability contains variation points that are exposed
to the customer, whereas internal variability is containing variation points that are visible for
internal usage. Following use cases for internal and external variability exist [PBvdL05]:

• Internal Variability:

– Complexity hiding: It is not necessary to expose all of the complexity of a system
to the customer. The customer may be overwhelmed by it and probably associating
this complexity with a system that is hard to use.

– Information hiding: Sometimes it may be useful to hide some functionality, technical
details and innovative ideas from the competitors.

– Fine-grained control: Some external variation points may have more fine-grained
options behind and external choice. For example, a person is selecting one painting
that should be placed on his wall in his flat (the variation point would be Painting
on Wall, the variants would be represented as different paintings). The person only
wants to decide which painting should be placed on the wall. He might not be
interested in picking the right screw for the size of the painting and the kind of the
wall. The choice of screw in this example would represent a internal variability.

• External Variability: External variability shows the strengths of a software product line
and explains which variants of the software product line can be assembled. Therefore it
is important to define some variability as external to point out the ability of the system.
External variability may also have an effect on marketing. The external variability gives
the customer of a software product line an overview of the possible features of one product
of this software product line.

3.2.4 Variability Mechanisms for Components

When it comes to developing assets the developer has to decide how to implement the variability
of a component. There are several methods provided and analyzed in the literature, every single
method with different characteristics. The variability mechanisms also differ regarding the time
where a variation of a variation point gets introduced.

In [JGJ97] and [GA01] some variability mechanisms are described. [CN02] summed them
up and extended the list of variability mechanisms. They are categorized regarding their time of
specialization as described below:

• Requirements Time:

– Extension: This mechanism is used to reuse an existing use case of a system/com-
ponent by adding it to another use case and gets applied at requirement time.

– Uses: Another mechanism is represented by the uses-mechanism. In this case, one
use of a system is included into another one, therefore one component uses another
component to achieve its goal.

26 CHAPTER 3. RELATED WORK

• Implementation Time:

– Inheritance: The component gets specialized by class inheritance, therefore meth-
ods can be overwritten, added or extended. This specialization has to be done at
class definition time, however, more sophisticated methods can be applied to get a
more dynamic approach to that method.

– Design Patterns: Design Patterns help to structure code and parts of an application,
for example to provide techniques for separation of concerns. [Sch95] describes how
to use design patterns to develop reusable software, as well as [GHJ+95], repre-
senting one of the most citied works regarding design patterns and their impact on
reusability.

– Parameters: Parameters can be used to configure the behavior of an asset to estab-
lish variability. During development it has to be figured out, which properties of an
object should be exposed or defined to use with this variability mechanism.

– Template Instantiation: Another elegant way to introduce variability is the tem-
plate instantiation, which allows the specification of unbound elements. These ele-
ments get bound when the template gets used. This has to be considered at imple-
mentation time, the binding will happen at runtime.

– Delegation: Delegation is used as an object-oriented technique to forward requests
to other objects (the so-called delegate) which can not be handled by the object
itself. Therefore the object holds a reference to the delegation objects and forwards
the corresponding calls to the delegate. The operations that can be forwarded are
often defined in a protocol and can be marked as optional or required, depending
on the used programming language. To implement variability with this delegation
pattern, standard functionality is implemented in the delegating property, the variant
functionality in the delegate.

– Object Properties: A special kind of delegation can be achieved, when certain func-
tionalities are forwarded to a property of an object which claims to implement a
specific interface.

– Frame Technology: Paul G. Basset invented this technology to manage applica-
tion in so-called frames [Bas96]. Following this approach, a parent frame is used
to copy and/or adapt children frames, whereas these frames can be represented as
source files including preprocessor-like directives. When used later in a software
product line development life cycle, the restructuring of the code can be very dif-
ficult. Therefore, the usage of this method should be evaluated at the beginning of
the life cycle. Various implementations of this frame technology exist, for example
Netron Fusion1, which is specialized in the area of business software, or XVCL2, an
XML-based open-source implementation of frame technology.

1http://www.netron.com
2http://xvcl.comp.nus.edu.sg

http://www.netron.com
http://xvcl.comp.nus.edu.sg

3.2. VARIABILITY IN SOFTWARE PRODUCT LINES 27

• Runtime or Compile Time:

– Configuration: There is also a way to configure assets at runtime with a separate
resource file, like the JavaBeans property file. The component has to know how to
handle this configuration file and how to provide functionality to consume this file.

– Generation: A very common method in scientific researches to introduce variability
to software product lines is the method of generation. With intelligent tool support
the specific fragments get generated at compile time or even during runtime.

– Static Libraries: Static libraries are linked to an application after compilation and
get loaded into the same memory. They contain a set of external functions, which can
be used in the application because of the fact that the signatures of these functions
are known to the compiled application code. The application can select different
libraries and therefore variability can be achieved to a certain degree.

– Dynamic Linked Libraries: In contrast to static libraries, dynamic linked libraries
(DLL‘s) are loaded at runtime when needed, hence a more sophisticated way of
variability can be provided compared to static libraries.

– Dynamic Class Loading: This technique is heavily used in Java, where classes are
loaded into memory at the time they are needed inside the program. This feature can
be used to decide which class to load at runtime.

– Conditional Compilation: Another way to achieve variability is established by the
use of preprocessor directives which are handled at pre-compile time. These direc-
tives mark the variation point in the code and are easy to use in ordinary use cases,
however, complex situations like recursions are hard to manage with this technique.

– Overloading: By overloading existing names are used, but the functionality gets
modified to allow working with different types. This technique can be applied to
functions, procedures or operators and occurs at compile time.

– Reflection: Reflection is a technique to modify the structure and behavior of objects
during runtime, like values, properties and functions. Therefore, meta information
is saved in binary code, to get knowledge about classes, instances or methods.

– Aspect-oriented Programming: Aspect-oriented programming [KLM+97] is a pro-
gramming paradigm to increase the extensibility and modularity of a program by
specifying cross-cutting concerns (e.g. logging). In Aspect-oriented programming
pointcuts are specific points in the execution plan of a program, where additional
code (the so-called advice) can be executed. This combination of advice and point-
cut is called aspect.

28 CHAPTER 3. RELATED WORK

3.3 Variability Modeling Techniques

This chapter describes different of modeling techniques to express variability of a software prod-
uct line. Furthermore, one technique will be chosen to build a variability model (in Chapter 6)
of the examined requirements (see Chapter 2).

The described modeling approaches were found in [IKPJ11], which separates the approaches
into two groups. The first group of models are combining the representation of the assets and
the variability into one model. The second group is working with different models for assets and
variability representation.

3.3.1 Feature Models

Feature models were first introduced in the Feature-Oriented Domain Analysis in the year 1990
and are probably the most used modeling approach for variability models. There also exist a
number of extensions to meet special needs or enhance expressiveness. In FODA (see [KCH+90])
a feature is defined as “prominent or distinctive user-visible aspect, quality, or characteristic of
a software system or system” and is part of a feature model, represented as feature-tree in a
diagram. Such a feature diagram in tree notation is illustrated in Figure 3.6, as well as an expla-
nation of the used notations.

Figure 3.6: A feature model to represent a phone system in tree notation [CGR+12].

A feature diagram starts with a root feature, representing the system domain, and can have
several child-nodes, also represented as features. These can be mandatory or optional. A rela-
tionship from a parent feature to its child can be marked as alternative (xor – exactly one feature
has to be selected), or can be marked as or-relationship (at least one of the features has to be
selected). Additionally, there are textual additions to express cross-tree constrains, like require-
or exclusion-clauses.

Below, the two well-known extensions of FODA feature models, Cardinality-Based Feature
Modeling and Orthogonal Variability Model are discussed, to highlight their characteristics.

3.3. VARIABILITY MODELING TECHNIQUES 29

Cardinality-Based Feature Modeling

The cardinality-based feature modeling combines several extensions of the original Feature-
Oriented Domain Analysis notations [cza]. An example is shown in Figure 3.7. The notation
is shown in Table 3.1, the used extensions in these systems are described in [CK05] and listed
below.

Figure 3.7: Sample of a cardinality-based feature model [CK05].

• Feature Cardinality: Every feature of a cardinality-based feature model has a parameter
which indicates the cardinality of the feature. This cardinality is represented as an interval
where the upper bound has to be greater than or equal to the lower bound of the interval, or
can be represented as an unbound border with the Kleene star *. Therefore, it is possible
to clone features for a certain configuration. In the example shown in Figure 3.7 the
feature PaymentMethod is represented as such a feature with unbound upper border, thus
a configuration of an EShop can have multiple PaymentMethods, e.g. one for credit cards
and one for debit cards. Solitary feature with cardinality [1..1] and [0..1] can also be
expressed by an filled or unfilled circle. In this case, the interval must not to be explicitly
mentioned in the model (see Table 3.1).

• Feature Groups: Cardinality-based feature modeling provides a method to group features
into feature groups with a group cardinality. This group cardinality is an interval of the
form 〈m-n〉. The value m is the lower bound and has to be greater than or equal to zero and
n represents the upper bound and has to be greater than or equal to the lower bound. This
upper bound has also to be lower than or equal to the total number of features within the
group. Therefore the group cardinality specifies how many features of the group can or
must be selected. In the example given in Figure 3.7, Payment Gateways represents a fea-
ture group, where at least one feature has to be selected, whereas PaymentType represents
a feature group where exactly one feature has to be selected.

• Attribute Types for Features: Another useful extension is the ability to have attribute
types for features, which allows to specify their value during configuration. The type of
such an attribute can be a basic one, such as String or Integer, or a reference to another

30 CHAPTER 3. RELATED WORK

Symbol Explanation

Solitary feature with cardinality [1..1], i.e., mandatory feature

Solitary feature with cardinality [0..1], i.e., optional feature

Solitary feature with cardinality [0..m], m > 1, i.e., optional clonable
feature

Solitary feature with cardinality [n..m], n > 0 ∧ m > 1, i.e., mandatory
clonable feature

Grouped feature with cardinality [0..1]

Grouped feature with cardinality [1..1]

Feature F with attribute of type T and value of value

Feature model reference F

Feature group with cardinality 〈1–1〉, i.e., xor-group

Feature group with cardinality 〈1–k〉, where k is the group size, i.e.,
or-group

Feature group with cardinality 〈i–j〉

Table 3.1: Symbols used in cardinality-based feature modeling [CK05].

feature, a so-called feature reference attribute (FRef). In the example shown in Figure 3.7
the feature PaymentMethod has an attribute of type String to specify the names of the
different payment methods. An example of a feature reference attribute is represented
by the feature set SFPayment, which points to another feature, in that case it should be
a payment method feature. Since this feature reference can point to every other feature,
constraints have to be set up to establish a consistent behavior.

• Feature Model References: Feature models can become confusing when they are reach-
ing a certain amount of features. Feature model references allow to reference to another
feature model, therefore parts of the model can be split up to enhance readability. Since
a model can have more than one reference to the same feature model, subscripts are used
when it comes to unfold and copy referenced feature models. In the example in Figure 3.7,
Catalog refers to another feature model.

3.3. VARIABILITY MODELING TECHNIQUES 31

• Constraints: Simple constraints, like the implies or exclude constraint were introduced
very fast as an addition to the tree-based structure of feature models. Through the intro-
duction of cardinalities, attributes and cloning, a more sophisticated way to express con-
straints had to be found. One approach is to add an additional context to the well-known
implies and exclude constraints. A more flexible and powerful way to define constraints
was also determined, therefore the Object Constraint Language (OCL)[Obj13] got ana-
lyzed whether it meets the needs of expressiveness of such constraints in a feature model
in [CK05], as well as XML Path Language (XPath[Wor13]) in [AC04]. An example of an
OCL-based constraint set is given in Listing 3.1, related to the example from Figure 3.7.
The first constraint is checking if a used PaymentMethodRef is indeed in the list of pro-
vided payment methods. Hence this constraints is handling the type check of the feature
reference. The second one describes an upper bound check for a cardinality. Therefore
the example was slightly changed in so far as the constraint restricts the total number
of payment methods of the store front to three, instead of allowing unlimited payment
methods.

Listing 3.1: OCL-based constraints [CK05].

1 context PaymentMethodRef inv:
2 EShop.BackOffice.Payment.PaymentMethod->includes(att)
3

4 context StoreFront inv:
5 SFPayment.PaymentMethodRef->size() <= 3

Orthogonal Variability Model

Another approach to model variability in a software product line is the orthogonal variability
model. In [MHP+07] and [SvGB05] two kinds of variability are discovered, which are not cov-
ered by the mentioned classifications in Chapter 3.2. These two kinds are separating variability
into the following parts:

• Software Variability: “Ability of a Software system or artifact to be efficiently extended,
changed, customized or configured for use in a particular context”[SvGB05]. Hence soft-
ware variability in the sense of the given citation is well known from the development
of single system and is covering object-oriented programming topics, like the usage of
abstract superclasses and its specializations as subclasses, or the usage of interfaces and
their different implementations.

• Product Line Variability: This part of variability in a software product line is specifying
the variation between systems, like features or requirements that are fulfilled.

This separation tries to split up the variability into a lower level variability (i.e. source code
related), which is not that important for orthogonal variability models, and a higher level vari-
ability (i.e. feature or requirement related), which describes the variants of a system. To separate

32 CHAPTER 3. RELATED WORK

Figure 3.8: Graphical notation for orthogonal variability models [PBvdL05].

these two kinds of variability, the usage of orthogonal variability models to describe product line
variability and feature models to document software variability are proposed in [MHP+07]. The
mapping of product line variability to software variability is discovered as a challenging part in
a software product line development process in [MHP+07].

Moreover, another problem is explored regarding the different base models, i.e. component
diagrams, test models, use case diagrams, etc. Variability is immanent in all of these models and
can be documented by extensions to the specific model languages. Another way to link variabil-
ity to these artifacts can be achieved by implemented by links in FORM (feature-oriented reuse
method, [KKL+98]) feature models, which connect the product line variability to the imple-
mentation technique (software variability). Others are using similar approaches like traceability
links or inclusion rules (see [CP06] and [DGR07]).

To summarize, orthogonal variability models can be described as variability models, which
relate the variability to base models, such as use case models, design models, component models,
test models etc. [PBvdL05]. Therefore they are used to represent variability among different
artifacts.

The notion of orthogonal variability models is given in Figure 3.8 and is describing con-
cepts like optional and mandatory variability dependencies, as well as alternative choices and
constraints (requires and excludes constraints). In orthogonal variability modeling constraints
can involve variants and variation points, therefore an existence of a variant can cause the ex-
istence of a certain variation point and vice versa. To track traceability between the variability
model and the corresponding base models, artifact dependencies are used. An example how to
represent such a variability model and the traces to a use case diagram is shown in Figure 3.9.

The artifact including the use case diagram is describing the use case opening the front
door. This may be done by unlocking the door with a keypad, or by fingerprint. The artifact

3.3. VARIABILITY MODELING TECHNIQUES 33

Figure 3.9: Example of orthogonal variability modelling [PBvdL05].

dependency is linking the concrete variant Keypad of the variation point Door Lock to the use
case Unlock Door by Keypad and the concrete variant Fingerprint Scanner to the use case Unlock
Door by Fingerprint. This linking may be useful to understand complex variability diagrams,
but also adds complexity by adding variability in domain artifacts.

3.3.2 Decision Models

Decision models can also be used as variability models and follow a decision-oriented approach
to guide the process of product derivation. In [BFG00] decision models are defined as follows:

A decision model captures variability in a product line in terms of open decisions
and possible resolutions. In a decision model instance, all decisions are resolved.
As variabilities in generic workproducts refer to these decisions, a decision model
instance defines a specific instance of each generic workproduct and thus specifies
a particular product line member. [BFG00]

In [CGR+12] the Synthesis method [Cor93] developed from the Software Productivity Con-
sortium is mentioned as the first approach of decision modeling and is placed as ground work
for all other, later developed decision-based approaches. This method defines decision models
as follows:

Set of decisions that are adequate to distinguish among the members of an applica-
tion engineering product family and to guide adaptation of application engineering
work products. [CGR+12]

This definition shows that decision models focus on the product derivation, whereas feature
models (see 3.3.1) are describing the domain [CGR+12].

While comparing the feature model in Figure 3.6 and the decision model from the same
system (e.g. Table 3.2 or Listing 3.2), one can clearly see that feature models also express the

34 CHAPTER 3. RELATED WORK

Figure 3.10: UML class diagram of common decision model elements [SRG11].

commonalities of a system, whereas decision models are hiding this aspect [CGR+12]. In the
example in Figure 3.6 the mandatory feature playback is such a hidden feature.

In [SRG11] different decision model approaches were analyzed. They tried to derive a
generic structure of a decision model by comparing the different elements of the examined de-
cision models. After this comparison they set up a UML class diagram, which represents the
common parts of a decision model. This diagram is shown in Figure 3.10. The examined ap-
proaches for this generic UML class diagram are the above mentioned Synthesis, an approach
from Schmid & John, DOPLER, VManage and KobrA. All of the discovered approaches build
their models around a set of decisions, which have some attributes, varying through the differ-
ent modeling approaches, but at least have an identifier and a question, representing a manner
understandable by an end-user. The type of answer given to that question can be of a certain
type, most approaches allowing at least an enumeration of answers, but also boolean values for
yes/no-answers or specific answer types.

The thing that differs most, is the way how the different approaches handle dependencies
among decisions [SRG11]. At least some kind of value constraints are given in every of them, but
more sophisticated dependency models are common as well, like constraint handling, boolean
expressions or other condition- or rule-based systems.

There are several notations for decision models, a tabular notation is shown in Table 3.2, a
textual notation for Synthesis is represented in Listing 3.2 [CGR+12].

3.3. VARIABILITY MODELING TECHNIQUES 35

Decision Name Description Type Range
Cardinality
Constraint
Relevant if

GSM_Protocol_1900 Support of GSM
1900 protocol? Boolean true|false

-
-
-

Audio_Formats Which audio formats
shall be supported? Enum WAV|MP3

1:2
-
-

Camera Support for taking
photos? Boolean true|false

-
-
-

Camera_Resolution Which camera reso-
lution is required? Enum

2.1MP|
3.1MP|
5MP

1:1
-
Camera == true

MP3_Recording Support for record-
ing MP3 audio? Boolean true|false

-
Audio_Formats.MP3 = true

-

Table 3.2: Decision model of a phone system in a tabular notation [CGR+12].

Listing 3.2: Decision model of a phone system in the textual notation of Synthesis [CGR+12].

1 GSM_Protocol_1900: one of (GSM_1900, NO_GSM_1900)
2 Audio_Formats: list of (WAV, MP3)
3 Camera: composed of
4 Presence: one of (Camera, NO_Camera)
5 Resolution: one of (2.1MP, 3.1MP, 5MP)
6 MP3_Recording: one of (MP3, NO_MP3)
7

8 Constraints
9 Resolution is available only if Presence has the value Camera

10 MP3_Recording requires that also MP3 Audio is supported

3.3.3 Modeling using UML Extensions

[Cla01b], [CJ01], as well as [KL07] analyzed the possibility to use UML (Unified Modeling
Language) to express the variability of a software product line. UML is designed to model a
single software system, but also provides methods to extend the UML standard. The above
mentioned papers are using UML profiles to extend the UML standard. With this profiles it is
possible to create generic models, which are used in domain engineering to describe the archi-
tecture of a product line and contain modeled variability. For each product of the product line
an instance of this generic model is created.

36 CHAPTER 3. RELATED WORK

Figure 3.11: Example for modeling with UML extensions including multiple variation
points [Cla01c].

Variation points locate a variability and describe several variants, each of them representing
one way to realize that variability. For the UML extension the three parts of the variation point
are used to mode the variation point. These three parts are the location of the variability (the
name of the variation point), the different variants of the variation point and a relationship be-
tween every variant and the variation point, which assigns every variant to exact one variation
point. To distinguish between these parts, stereotypes are used, namely the stereotype «varia-
tionPoint» and «variant». Model elements which contain variability are applied to the stereotype
«variationPoint» instead of introducing another virtual model element and can therefore be di-
rectly used for code generation.

Both stereotypes can be applied on classes, components, packages, collaborations and asso-
ciations. «variationPoint» also implies some tagged values to specify different binding times and
multiplicity of variants. To express interactions between variants and other parts of the model,
dependencies are introduced e.g. for mutual exclusions (“mutex”) and “requires”-statements
and also evolution is kept in mind by the stereotype «evolution». If a component changes, the
«evolution» stereotype describes the interaction between the different versions of the component.
Therefore, the stereotype «evolution» defines whether the relation between different versions of
a core assets has a replacing, extending or decomposing character [Cla01a].

If it comes to multiple variation points, every variation point needs an unique name by spec-
ifying a tagged value in the variant that contains the index of the variation point.

The example shown in Figure 3.11 represents two variation points, one for the algorithm
used for sorting the data and another one to specify the data type of the elements to sort, the
last one including a condition-based on the format of the data. Both of them are specifying
different binding times, which can be set to development time, system build, installation time,
system startup or runtime. In this example, the implementation technique for the first variation

3.3. VARIABILITY MODELING TECHNIQUES 37

Figure 3.12: Example for modeling with UML extensions using generalization technique and
optional attribute [Cla01c].

point is not specified and therefore the variations are connected by dependencies to the variation
point. The second variation point is realized using parameterization and thus the variation point
is modeled as a template class and the variants are assigned by template bindings.

In Figure 3.12 an example is given how to use the implementation technique generalization.
This technique is used to express the different payment methods, as well as an optional variant to
specify a tracking number, if a specific feature is selected. To check if this condition evaluates to
true, the function feature_selected() is used, which checks the existence of a specific feature, in
that example the existence of the feature Package_Tracking_Support. It is also possible to mark
classes or even packages as optional, which leads to a removal of unused parts of the system
during compile time, if the right binding time is selected.

38 CHAPTER 3. RELATED WORK

3.4 Software Product Lines and Variability Mechanisms in Mobile
Context

The before examined research gives an overview in general software product engineering topics.
This section describes some research with context in the mobile area and how variability is used
in this context.

[Jaa02] was written in 2002 and describes the development and thoughts behind mobile
browsers in the product line of Nokia phones. [Jaa02] describes the risks that come with a
product line, as well as the benefits which may be gained from its usage. The focus is set on
the development of an application (in this case a mobile browser) for a software product line.
Therefore, the phone itself is the product line, whereas the mobile browser is just a feature,
which has to be adopted for each product of the software product line, due to their technical
limitations and capabilities.

In contrast, this thesis is focusing on an application as product line, whereas the phone or
tablet is just the environment where this product line is running on. It is not focusing on porting
this product line from a tablet to a phone, from iOS to Android or web to desktop, but on the
variants of the product line as a software product.

How to build a software product line for a mobile device is covered by [You05]. The goal
of this thesis was to show how a software product line can be built using J2ME and AspectJ.
The application is represented as a photo browser with mandatory features like creating a photo
album, view, add, delete and label a photo and optional features like sending a photo via SMS or
email, link photos to address book contacts and so on. The features of the variants were defined
by analyzing the device’s capabilities and restrictions. The software product line was built with
the aspect-oriented programming framework AspectJ and another time with object-oriented pro-
gramming patterns. The results were compared regarding size of the application, heap memory
allocations, source code metrics, scalability, modularity, flexibility and complexity of the imple-
mentation. They figured out that an aspect-oriented approach, as supported by AspectJ, leads to
improvements regarding complexity, when it comes to a lot of optional features. As a negative
side-effect the increase of the application’s size is mentioned, which was a big concern back in
1999, when [You05] was written.

Due to the fact, that mobile devices do not have to struggle with application size nowadays,
and the absence of aspect-oriented approaches (see below) for Objective-C, the results of the
thesis [You05] can not be applied for this thesis.

J2ME and AspectJ were also used in [AMJC+05]. They extracted a product line from dif-
ferent games for mobile devices and built the variants using an aspect-oriented approach. This
work is focusing more on the extraction process and is creating a product line derived from given
products, instead of deriving products from a product line.

3.4. SOFTWARE PRODUCT LINES AND VARIABILITY MECHANISMS IN MOBILE
CONTEXT 39

When searching for aspect-oriented programming approaches for Objective-C, several li-
braries can be found:

• AspectCocoa3: 1 commit, 6 stars, last commit December 2011

• FlexOC4: 22 commits, 2 stars, last commit May 2012

• AOP-for-Objective-C5: 10 commits, 14 stars, last commit May 2012

• AspectObjectiveC6: 54 commits, 27 stars, last commit May 2011

The number of GitHub stars is an indicator for the popularity and the level of awareness of
repositories. All above mentioned libraries had their last commit over one and half year ago.
These two facts let assume that no more work will be put in these libraries. If a documentation
is provided, it generally says that the libraries were built as an experiment only and therefore a
lot of known bugs are still in these libraries.

Additionally, an integration of these libraries seems complex and inscrutable. Therefore the
usage of these projects for this thesis was omitted.

However, the found research papers underline the fact that most papers which are covering
concrete implementations of software product lines in mobile context are using Java-based tech-
nologies and aspect-oriented approaches. All these papers are covering older topics like J2ME,
newer ones which are describing software product lines for smart phones, tablets or multi-touch
devices in general could not be found. In addition, scientific papers analyzing implementation
mechanisms for software product lines in Objective-C could not be found either.

3https://github.com/bracken-dev/AspectCocoa
4https://github.com/pvantrepote/FlexOC
5https://github.com/ndcube/AOP-for-Objective-C
6https://github.com/tomdalling/AspectObjectiveC

https://github.com/bracken-dev/AspectCocoa
https://github.com/pvantrepote/FlexOC
https://github.com/ndcube/AOP-for-Objective-C
https://github.com/tomdalling/AspectObjectiveC

CHAPTER 4
Objective-C Principles

In this Chapter, principles of Objective-C are introduced to create a basic knowledge about the
programming language. This knowledge base will be used later in Chapter 5 to show how to im-
plement variability mechanisms with Objective-C and to develop tools that use these variability
mechanisms in combination with object-oriented programming techniques, design patterns and
the ability of Objective-C.

4.1 Key-Value Coding (KVC)

Key-value coding describes a mechanism allowing applications to access properties of objects
indirectly by name (the so-called key), rather than directly through invocation of their accessor
methods or as instance variables [App13c].

The properties are accessed by using strings to identify the name of the property. Properties
with object values, scalar types and structures are supported by key-value coding. To gain the
support of scalar types and structs, the parameters and return types are detected automatically
and wrapped or unwrapped to an object value. A special type of a key is a key path. A key path
is a string of dot separated keys to specify a sequence of object properties.

An example of such a key path, as well as a general example of the usage of key-value coding
is given in Listing 4.1. In this example, an instance of the class MyClass holds another instance
of the same class in the property linkedInstance. On line 22 a value is set for the property
integerProperty of the property linkedInstance by using the key path linkedInstance.

integerProperty.
Key-value coding can often be used to simplify code. For example it is possible to gener-

alize implementations, provide additional code to validate values for specific properties, handle
special behavior when setting nil values, or to use built-in operators for collections inside a key
path to calculate the maximum, minimum, etc. of the collection. In Listing 4.2, the method
-(BOOL)validateName:error: gets called automatically when setting the name of the object,
which contains this method. In that case, the value will get validated and an error will occur

41

42 CHAPTER 4. OBJECTIVE-C PRINCIPLES

if this value is nil or the length of the string value is smaller than two. The lines 11 to 15 are
showing an example usage of operators with key-value coding. transactions is an NSArray

of transaction objects, which hold a parameter called amount and a parameter representing the
payee of the transaction. On line 11, the average of all amounts of the transaction is calculated,
whereas line 12 is counting all transaction objects. Line 15 is retrieving all distinct payees of all
transactions.

Key-value coding is efficient, but adds a level of indirection and is slightly slower than
direct method invocations. Therefore it should only be used when a benefit from key-value
codings flexibility can be achieved. Another thing to keep in mind is the fact that the method
-(id)valueForKey: is caching Objective-C runtime information and therefore should not be
overridden, otherwise these advantages gained from caching will be lost.

Listing 4.1: Example to illustrate access through accessors and access through key-value coding [App13c].

1 @interface MyClass
2

3 @property NSString *stringProperty;
4 @property NSInteger integerProperty;
5 @property MyClass *linkedInstance;
6

7 @end
8

9 // Somewhere else ...
10 MyClass *myInstance = [[MyClass alloc] init];
11 myInstance.linkedInstance = anotherInstance;
12

13 // ... using Accessors
14 NSString *string = myInstance.stringProperty;
15 myInstance.integerProperty = 2;
16 myInstance.linkedInstance.integerProperty = 5;
17

18 // ... using KVC
19 MyClass *myInstance = [[MyClass alloc] init];
20 NSString *string = [myInstance valueForKey:@"stringProperty"];
21 [myInstance setValue:@2 forKey:@"integerProperty"];
22 [myInstance setValue:@5 forKeyPath:@"linkedInstance.integerProperty"];

4.2. OBJECTIVE-C RUNTIME 43

Listing 4.2: Examples to simplify code with key-value coding [App13c].

1 // Providing validation method for name property. The name must not be nil
, and must be at least two characters long.

2 - (BOOL)validateName:(id)ioValue error:(NSError **)outError {
3 if (*ioValue == nil || [(NSString *)*ioValue length] < 2) {
4 // set outError here
5 return NO;
6 }
7 return YES;
8 }
9

10 // Simple collection operators
11 NSNumber *transactionAverage = [transactions valueForKeyPath:@"@avg.amount

"];
12 NSNumber *numberOfTransactions = [transactions valueForKeyPath:@"@count"];
13

14 // Object operators
15 NSArray *payees = [transactions valueForKeyPath:@"@distinctUnionOfObjects.

payee"];

4.2 Objective-C Runtime

The Objective-C runtime is a library that acts like an operating system for Objective-C and is
built using C and Assembler to add the object-oriented capabilities of the programming lan-
guage. Objective-C is a runtime-oriented language, which means that decisions regarding bind-
ing is shifted to the runtime instead of compile or link time.

Hence it is possible to add methods to classes or exchange implementations of methods.
The redirection of method calls to other classes during runtime is also supported by the runtime.
Another feature of the Objective-C runtime is to retrieve information about classes or methods
an object is implementing. With this technique the application can also determine which classes
are conforming to a particular interface [App13e].

One big difference compared to other languages is the fact, that Objective-C is using mes-
saging. Therefore a developer is not calling a method of an object, but is sending a message to
this object. If the object does not recognize this message, the Objective-C compiler will flag this
line of code with a warning. When executing this code, it will cause a runtime exception. The
compiler will allow to run an application with this warning flags, since the Object-C runtime
allows to extend classes and objects with methods dynamically at runtime.

The runtime is used finding the corresponding message to execute and follows the following
steps1:

1. The class cache and class dispatch table of the class and super-classes of the object the
message was sent to are searched for the specific method.

1Blogpost by Colin Wheeler, 01-20-2010 http://cocoasamurai.blogspot.co.at/2010/01/
understanding-objective-c-runtime.html

http://cocoasamurai.blogspot.co.at/2010/01/understanding-objective-c-runtime.html
http://cocoasamurai.blogspot.co.at/2010/01/understanding-objective-c-runtime.html

44 CHAPTER 4. OBJECTIVE-C PRINCIPLES

2. The runtime will call +(BOOL)resolveInstanceMethod:(SEL)selector of the class of
the object the message was sent to in case the search failed. If this method is implemented,
it could provide a special implementation for the sent message.

3. If the last step returns with NO (so no method has been resolved), the runtime will call
-(id)forwardingTargetSelector:(SEL)selector to ask the object if another object
can be provided to forward the message.

4. If this step also does not lead to a successful method invocation, an unknown message is
sent to the object and the application will crash.

Another functionality of the Objective-C runtime is the ability to add associated objects to
an object. With this feature it is possible to add additional variables to a class, including the
definition of their store behavior. This might be useful if a predefined class should hold an
additional property and subclassing is not intended. Another example is shown in Listing 4.3.
In this example a cell of a UITableView is configured to have an UIButton as a accessory
view on line 6 (that is the view presented on the left border of the cell). When this button gets
triggered the method -(IBAction)cellButtonPressed: gets called. The application will not
be able to determine the button’s enclosing cell, i.e. the index path of the cell where the triggered
button is set as accessory view. One solution is to subclass UIButton to add a property of type
NSIndexPath to store the information about the cell inside the class. This might not be necessary
in most of the use cases and therefore this solution will generate an overhead of work. Instead
the corresponding index path can be attached as associated object during cell creation (see line 7
of Listing 4.3). This associated object is retrieved in the action trigger method on line 13 to get
the index path of the cell.

Listing 4.3: Example usage of associated objects.

1 void * const kNSIndexPathKey = "kNSIndexPathKey";
2

3 - (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

4 UITableViewCell *cell = ...
5 UIButton *button = ...
6 cell.accessoryView = button;
7 objc_setAssociatedObject(button, kNSIndexPathKey, indexPath,

OBJC_ASSOCIATION_ASSIGN);
8 return cell;
9 }

10

11 - (IBAction)cellButtonPressed:(id)sender {
12 UIButton *button = sender;
13 NSIndexPath *indexPath = objc_getAssociatedObject(button,

kNSIndexPathKey);
14 ...
15 }

4.3. CLASS EXTENSION WITH CATEGORIES 45

4.3 Class Extension with Categories

Sometimes it would be beneficially, if existing classes could be modified by adding behavior
which is needed in a special use case. In such cases, it does not make sense to add this behavior
to the original classes, because in other use cases this additional behavior will not be needed or
the extension of this class would mess with a clear class design regarding separation of concerns
or in some other cases, the original class might not be modifiable (i.e. in closed frameworks).
Objective-C provides a technique to add custom methods to existing classes through categories
to accomplish this task (see [App13f]).

The syntax for defining a category is given in Listing 4.4. This category extends a given class
PHMPerson to easily retrieve the full name of a person. The category on UIView in Listing 4.5 is
defining shorthands for the view’s right, left, top and bottom border. For example, this shorthand
allows to retrieve the view’s right border by calling the property phm_frameRight instead of
calculating this border by adding the x-coordinate and the width of the view.

It is also possible to declare a private class extension for properties and methods. This
is necessary, if the developer wants to hide some properties or methods, since Objective-C is
missing access modifiers like public and private. To achieve the effect of a private access
modifier, a category is defined in the implementation file of the class, where private methods and
properties can be defined. It is also possible to use this private category to implement properties
that are readonly from outside but modifiable from inside the class. To implement that effect
the property is set to readonly in the header file and redefined with the scope readwrite inside
the private class extension in the implementation file.

Apple is mentioning in their guidelines [App13f], that category methods on Apple frame-
work classes should have a three letter prefix followed by an underscore to prevent name clashes
with methods, that might be added to their framework in the future. In the given example it is not
necessary to prefix the category on PHMPerson, since it is not a predefined class. But following

Listing 4.4: Example of an Objective-C category to extend a self written classs [App13f].

1 // PHMPerson+PHMPersonNameDisplayAdditions.h
2 @interface PHMPerson (PHMPersonNameDisplayAdditions)
3

4 - (NSString *)lastNameFirstNameString;
5

6 @end
7

8 // PHMPersonPHMPersonNameDisplayAdditions.m
9 @implementation PHMPerson (PHMPersonNameDisplayAdditions)

10

11 - (NSString *)lastNameFirstNameString {
12 return [NSString stringWithFormat:@"%@, %@", self.lastName, self.

firstName];
13 }
14

15 @end

46 CHAPTER 4. OBJECTIVE-C PRINCIPLES

Listing 4.5: Example of an Objective-C category to extend a predefined class [App13f].

1 // UIView+PHMShorthands.h
2 @interface UIView (PHMShorthands)
3

4 @property (nonatomic, readonly) CGFloat frameLeft;
5 @property (nonatomic, readonly) CGFloat frameRight;
6 @property (nonatomic, readonly) CGFloat frameTop;
7 @property (nonatomic, readonly) CGFloat frameBottom;
8

9 @end
10

11 // UIView+PHMShorthands.m
12 @implementation UIView (PHMShorthands)
13

14 - (CGFloat)frameLeft { return self.frame.origin.x; }
15 - (CGFloat)frameRight { return self.frame.origin.x + self.frame.size.width

; }
16 - (CGFloat)frameTop { return self.frame.origin.y; }
17 - (CGFloat)frameBottom { return self.frame.origin.y + self.frame.size.

height; }
18

19 @end

the guideline the categories on the predefined class UIView should have a prefix to prevent future
name clashes if Apple is also providing getters for the views right, left, top and bottom border.

4.4 Notifications

As an additional improvement in decoupling to the well-known Observer Pattern, Objective-
C supports a mechanism called Notifications [App13d]. The NSNotificationCenter is used to
broadcast notifications to inform observers about events and works like a notification dispatch ta-
ble. A subject is posting to the notification center with the method
-(void)postNotificationName:object:userInfo:, specifying the name of the notification,
the object which is causing the event and therefore the notification (in most cases the subject it-
self) and a dictionary representing additional information about the event, like error descriptions
or other relevant information.

The observer is registering at the notification center for a specific notification type (by pass-
ing the notifications name). Optionally, it is possible to define one specific object which the ob-
server is interested in. The observer will then receive only notifications issued by this object, but
not others. To register an observer the method -(void)addObserver:selector:name:object:

of the class NSNotificationCenter has to be called. The method -(void)removeObserver:

name:object: is used to deregister the observer for a specific notification.
An example of this steps is given in Listing 4.6. In this Listing an Observer is registering it-

self as a observer at the notification center for the notification

4.4. NOTIFICATIONS 47

StateChangedNotification. This happens on line 5 in the observer’s initializer. When the
observer gets deallocated, it will be removed as an observer from the notification center (see
line 10). The method -(void)stateChanged: gets called whenever such a
StateChangeNotification is posted to the notification center. On line 23 a subject is post-
ing such a notification.

Compared to the Observer Pattern, Notifications are loosely coupled. This loosely coupling
is achieved because the subject itself does not hold an array of observers, but only informs the
NSNotificationCenter after the occurrence of an event. The notification center is holding the
reference of observers instead and is handling the notification sending. The difference regarding
the activity flow is shown in Figure 4.1 and Figure 4.2.

Listing 4.6: Example of registering as Observer for a notification and sending a notification.

1 @implementation PHMObserver
2

3 - (id)init {
4 ...
5 [[NSNotificationCenter defaultCenter] addObsercer:self name:

StateChangedNotification selector:(stateChanged:) object:nil];
6 ...
7 }
8

9 - (void)dealloc {
10 [[NSNotificationCenter defaultCenter] removeObserver:self name:

StateChangedNotification object:nil];
11 }
12

13 - (void)stateChagned:(NSNotification *)notification {
14 NSLog(@"Current State: %@", [notification.userInfo objectForKey:@"

state"]);
15 }
16

17 @end
18

19 @implementation PHMSubject
20

21 - (void)setState:(PHMState *)state {
22 _state = state;
23 [[NSNotificationCenter defaultCenter] postNotificationName:

StateChangedNotification object:self userInfo:@{@"state": state}];
24 }
25

26 @end

48 CHAPTER 4. OBJECTIVE-C PRINCIPLES

anObserver:Observer anSubject:Subject anObject:Object

attach(this)

setState(state)

notify()
notify()

dettach(this)

Figure 4.1: Sequence diagram of the observer pattern.

anObserver:
PHMObserver

anSubject:
PHMSubject

anObject:
PHMObject

setState:state

default:
NSNotificationCenter

addObserver:self
selector:

name:StateChangedNotification
@selector(stateChanged:)

object:nil

postNotificationName:
StateChangedNotification

object:self
userInfo:@{@"state":sate}

stateChanged:notification

removeObserver:self
name:StateChangeNotification

object:nil

Figure 4.2: Sequence diagram of Objective-C notifications.

4.5. UIAPPEARANCE 49

4.5 UIAppearance

Apple introduced the UIAppearance API with iOS 5 to make it easier to configure the appearance
of views across an application, without handling all the appearance inside the view implementa-
tion itself2,3. This makes it easier to change the appearance or to have a consistent appearance
across the entire application.

All properties of a view which are annotated with the macro UI_APPEARANCE_SELECTOR,
can be configured using this API. To determine which properties are marked with that macro the
header files of the views have to be investigated. To configure these properties, an UIAppearance

proxy for the specific view has to be retrieved from the API. After this step, the properties can be
set like on an instance of that view. An example of the usage of this API is given in Listing 4.7.

To accomplish a more fine-grained control, it is possible to configure views, which are em-
bedded in a specific containment hierarchy, The Listing 4.7 shows an example, how to set the tint
color of all UIButtons in the application to green, except for buttons inside the PHMCustomView,
these are set to yellow.

Without using UIAppearance, the configuration of this views will cause boilerplate code to
style the buttons. For each button in the whole application the tint color had to be set. One
solution is represented by subclassing UIButton, but creating a subclass for each style of a
button might also cause an overhead and a huge amount of subclasses in the project. Listing 4.7
shows a solution based on UIAppearance.

The API also allows to annotate properties of own views with the macro to make this prop-
erty available for configuration through the appearance API. In the given example the property
myBackgroundColor of PHMCustomView is annotated with the macro and therefore it is possible
to set the color with the appearance API to blue.

Sometimes it is annoying to create subclasses for views for the appearance API, just to
expose properties that are already existing. Objective-C categories can be used instead to achieve
the same goal. In Listing 4.8 the existing property backgroundColor of UIView gets exposed
to the API by defining a new property phm_backgroundColor. This new property handles a
forwarding to the existing property backgroundColor. This forwarding is necessary to be safe
regarding API changes when the backgroundColor gets annotated with the macro in a future
release of iOS.

2Blogpost by Mattt Thompson, 03-11-2013 http://nshipster.com/uiappearance/
3Blogpost by Peter Steinberger, 02-12-2013 http://petersteinberger.com/blog/2013/

uiappearance-for-custom-views/

http://nshipster.com/uiappearance/
http://petersteinberger.com/blog/2013/uiappearance-for-custom-views/
http://petersteinberger.com/blog/2013/uiappearance-for-custom-views/

50 CHAPTER 4. OBJECTIVE-C PRINCIPLES

Listing 4.7: Example usage of the UIAppearance API with custom appearance properties.

1 @interface PHMCustomView : UIView
2

3 @property (nonatomic, strong) UIColor *myBackgroundColor
UI_APPERANCE_SELECTOR;

4 ...
5 @end
6

7 @implementation AppDelegate
8 ...
9 - (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
10 ...
11

12 [[UIButton appearance] setTintColor:[UIColor greenColor]];
13 [[UIButton appearanceWhenContainedIn:[PHMCustomView class], nil]

setTintColor:[UIColor yellowColor]];
14 [[PHMCustomView appearance] setMyBackgroundColor:[UIColor blueColor]];
15 }
16 ...
17 @end

Listing 4.8: Exposing a given property of UIView to the apperance API with the usage of categories.

1 // UIView+PHMAppearanceAdditions.h
2 @interface UIView (PHMAppearanceAdditions)
3

4 @property (nonatomic, strong) UIColor *phm_backgroundColor;
5

6 @end
7

8 // UIView+PHMAppearanceAdditions.m
9 @implementation UIView ()

10

11 - (UIColor *)phm_backgroundColor {
12 return self.backgroundColor;
13 }
14

15 - (void)setPhm_backgroundColor:(UIColor *)backgroundColor {
16 self.backgroundColor = backgroundColor;
17 }
18

19 @end

CHAPTER 5
Implementing Variability in

Objective-C

This chapter describes how variability mechanisms can be implemented in Objective-C to allow
variation among products of a software product line.

The mechanisms described in Section 3.2.4 are used to create methods using object-oriented
programming techniques and design patterns with respect to the abilities of Objective-C. The
developed methods are acting as tools to create a software product line with Objective-C. They
are applicable not only to the collected requirements but are valid for each product line which is
implemented with Objective-C.

5.1 Inheritance

Subclassing is a variability mechanism that can be easily applied to establish variation among a
variation point. Each variant of a variation point is represented as a subclass of this object. A
way has to be found to configure which subclass of this object should be used for one specific
product. A dynamic approach for this configuration is desirable. Such an approach is developed
in this section and described as follows.

5.1.1 Instantiating Objects

Most objects are instantiated by calling the class method of +(id)alloc of NSObject to allocate
the needed memory and receive an instance of the needed class, followed by the call of an
initializer (e.g. -(id)initWithNibName:bundle: from PHMViewController). Some classes
offer shorthands to get an instance of the class. In the example given in Listing 5.1 it is assumed
that PHMViewController is providing a method +(id)viewControllerWithNibName:bundle

to create an instance, instead of calling +(id)alloc, followed by -(id)initWithNibName:

bundle:.

51

52 CHAPTER 5. IMPLEMENTING VARIABILITY IN OBJECTIVE-C

Listing 5.1: Example of simple subclassing mechanisms with the usage of a parameter.

1 PHMViewController *viewController = nil;
2 PHMViewController *anotherViewController = nil;
3

4 // Example 1
5 if (shouldNotUseSubclass) {
6 viewController = [[PHMViewController alloc] initWithNibName:nil bundle:

nil];
7 anotherViewController = [PHMViewController viewControllerWithNibName:

nil bundle:nil];
8 } else {
9 viewController = [[PHMSpecialViewController alloc] initWithNibName:nil

bundle:nil];
10 anotherViewController = [PHMSpecialViewController

viewControllerWithNibName:nil bundle:nil];
11 }
12

13 // Example 2
14 Class viewControllerClass = (shouldNotUseSubclass ? [PHMViewController

class] : [PHMSpecialViewController class]);
15 viewController = [[viewControllerClass alloc] initWithNibName:nil bundle:

nil];
16 anotherViewController = [viewControllerClass viewControllerWithNibName:nil

bundle:nil];
17

18 // Example 3
19 Class viewControllerClass = NSClassFromString(classNameOfClassToBeUsed);
20 viewController = [[viewControllerClass alloc] initWithNibName:nil bundle:

nil];
21 anotherViewController = [viewControllerClass viewControllerWithNibName:nil

bundle:nil];

Example 1 in Listing 5.1 shows an approach, where the selection of the right subclass is
handled with a boolean property. If there were more different subclasses involved, an enum
structure should be used instead of the boolean property, to determine which subclass should
be used in case of subclassing. To instantiate a subclass of a given class, the only thing needed
to change in the code is the corresponding class which will receive the message alloc. Hence
alloc will return an instance of the subclass and the initializer message will be sent to this
object.

Example 2 in Listing 5.1 uses this observation to eliminate some boilerplate code. It uses
the boolean property to create a class object, which is later used to initialize the right object.
Capturing more subclasses will lead to a more complex conditional statement, but it is easier to
change the initializer later on, if needed so. Hence it is called on a single spot within the code
fragment.

5.1. INHERITANCE 53

5.1.2 Creating the Class Object dynamically

To implement a more dynamic subclassing approach, the class to which the alloc message is sent,
can be retrieved from a string by calling the function Class NSClassFromString(NSString *

string). The Objective-C runtime will look into the class names of all loaded classes to find a
match, and instantiate a class object out of this class if found.

Example 3 in Listing 5.1 makes use of this function to retrieve the right class from a
NSString parameter, which makes the code more flexible and adds the ability to support more
subclasses.

5.1.3 Custom Class Loader

To create a flexible way of using the above mentioned possibilities of subclassing, a custom
class loader is needed to easily retrieve the right class and also to register a certain subclass to
use instead of another class.

Figure 5.11shows the method declarations of such a class loader. The class loader provides
methods to register a subclass for a specific class to override, methods that allow class objects
as input, as well as NSStrings. In the application’s source code, all classes that are allowed to
subclass with this variability mechanism, should be instantiated retrieving the needed class from
the class loader by calling the method +(Class)loadClassForClass:(Class)class. To make
this process easier, a category on NSObject is provided to create a shorthand for this step (see
the implementation of the category in Listing 5.2).

When the application starts up, all subclasses should be registered using the methods pro-
vided from the class loader. Additionally, it provides a way to initialize subclasses declared
in an external configuration file, represented as plist in dictionary format. The entries of this
dictionary contain the class to override as key and the subclass to use instead of this class as
value.

+ (void)registerClassesFromConfig;
+ (void)registerClass:(Class)classToRegsiter forClass:(Class)class;
+ (void)registerClassAsString:(NSString *)classStringToRegsiter forClass:(NSString *)classString;
+ (Class)loadClassForClass:(Class)class;

CPNClassLoader

Figure 5.1: Custom class loader to retrieve information about subclassing from a configuration
file.

1The UML notation was changed slightly for all following class diagrams to improve reading for Objective-C
developers. The attributes are using the Objective-C datatypes instead of the defined ones from the UML standard.
The visibility of operations was changed to match the notation from Objective-C. + is therefore marking static meth-
ods, - is marking public ones. Private methods will not be present in the UML diagram. The notation of operations
was adjusted to meet the notation of Objective-C methods, therefore the return type is given at the beginning of the
method name, surrounded by brackets. The : character is marking a parameter, the datatype of the parameters is not
written down in the diagram to simplify reading.

54 CHAPTER 5. IMPLEMENTING VARIABILITY IN OBJECTIVE-C

The class loader itself is represented internally as singleton, which will save the information
about the subclasses in a dictionary with the same format as the above described plist. When
registering a subclass, the class loader will check if the provided subclass is indeed a subclass of
the class to override, to prevent conflicts and not resolvable method calls.

The usage of the class loader is explained in Listing 5.3. Through the registration of the class
PHMSpecialViewController as substitute of PHMViewController, instances of
PHMSpecialViewController are created inside the method -(void)doStuff. The only thing
to keep in mind using this approach of subclassing as a variability method is that every class
which should be replaced by this variability mechanism should be instantiated by retrieving
the class method +(Class)classFromLoader from the class loader, before instantiating. If
needed, additional categories for shorthands to create objects could be very useful, for exam-
ple a class method called +(id)viewControllerFromClassLoaderWithNibName:bundle: in
the above given code snippets.

Listing 5.2: Category on NSObject and UIViewController to provide shorthands to retrieve a class
object from the custom class loader.

1 @implementation NSObject (CPNClassLoader)
2

3 + (Class)classFromLoader {
4 return [CPNClassLoader loadClassForClass:[self class]];
5 }
6

7 @end
8

9 @implementation UIViewController (CPNClassLoader)
10

11 + (instancetype)viewControllerFromClassLoaderWithNibName:(NSString *)
nibName bundle:(NSString *)bundle {

12 return [[[self classFromLoader] alloc] initWithNibName:nibName bundle:
bundle];

13 }
14

15 @end

5.2. PARAMETERS AND CONFIGURATION 55

Listing 5.3: Custom class loader in practice.

1 // in AppDelegate
2 - (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
3 [CPNClassLoader registerClassesFromConfig];
4 ...
5 }
6

7 //somewhere else
8 - (void)additionalSetupMethod {
9 [CPNClassLoader registerClass:[PHMSpecialViewController class] forClass

:[PHMViewController class]];
10 ...
11 }
12

13 - (void)doStuff {
14 PHMViewController *viewController = [[[PHMViewController

classFromLoader] alloc] initWithNibName:nil bundle:nil];
15 PHMViewController *anotherViewController = [PHMViewController

viewControllerFromClassLoaderWithNibName:nil bundle:nil];
16 }

Listing 5.4: Setting a bunch of values with a given NSDictionary.

1 NSDictionary *personDictionary = @{@"firstname": @"Philip", @"lastname": @
"Messlehner", age: @(25)};

2

3 PHMPerson *person = [[PHMPerson alloc] init];
4 [person setValuesForKeysWithDictionary:personDictionary];

5.2 Parameters and Configuration

In Chapter 4.1 key-value coding was described and some listings were provided to give some
examples of its usage. In these listings the alternative way of setting a property with key-value
coding is described through the usage of the method -(void)setValue:forKey:. There is
another way to batch-set a group of properties, given in form of a NSDictionary with the method
-(void)setValuesForKeysWithDictionary: (see Listing 5.4).

5.2.1 Configuration Loader

To combine the above mentioned possibility to batch-set several properties, which are served
from a dictionary, the idea of a configuration loader can be derived. Classes, which should be
able to be configured, should implement a specific protocol called CPNConfigurationLoading.
The specification of this protocol is given in Figure 5.2. The class should implement the specific
initializer -(id)initWithConfiguration: to allow to se tup the class with a given configuration

56 CHAPTER 5. IMPLEMENTING VARIABILITY IN OBJECTIVE-C

as dictionary. Key-value coding will fire up the method -(void)setValue:forUndefinedKey:

for each of the provided keys in the dictionary that were not found as property of the object. An
assertion will be thrown and the application will crash in case this method is non existent, hence
an implementation of this method is also required to handle this case of failure.

Retrieving of configuration dictionaries will be handled from a singleton called
CPNConfigurationLoader. It provides methods to register a specific class for configuration
handling or even an automatic way of registering classes. Therefore the method
+(void)registerClasses will search for classes which are conforming to the protocol
CPNConfigurationLoading. This meta information search is done with Objective-C runtime
methods. These searched classes have to implement the method
+(NSString *)configurationName. This name gets used to search for plist files in a specific
directory of the application and will also be used to save this configuration.

To retrieve the configuration (i.e. for the above mentioned initializer) the method
+(NSDictionary *)configurationForClass: can be used. The loader will use the value from
the method +(NSString *)configurationName to search for the right configuration and return
it to the caller.

A possibility of saving values (i.e. from a settings area inside the application) is also pro-
vided by the configuration loader. Therefore the object, whose values should be persisted, has
to implement +(NSArray *)keyPathsToPersist and return all keys (or key paths) of prop-
erties, which should be saved. This key path will be used to retrieve the value of the object
using the key-value coding method -(id)valueForKey:. To actively persist a configuration
the method +(void)saveConfigurationForObject: of the CPNConfigurationLoader can be
called. Automatic persistence can only be offered to singletons, therefore the loader will search
for the initializer +(instancetype)sharedInstance for all registered classes to create the sin-
gleton and retrieve values from it. An example how to use this concept of configuration loading
in real world can be found in Listing 5.5. In this example, the view controller’s properties
viewControllerTitle and colorValue will get persisted on line 25 when the view controller
disappears. After the view controllers creation, all saved properties will get retrieved from the
configuration file in the initializer on line 12. This configuration dictionary gets used on line 17
to set the properties of the class.

+ (void)registerClasses;
+ (void)registerClass:(Class)class;
+ (void)saveConfigurations;
+ (NSDictionary *)configurationForClass:(Class)class;
+ (void)saveConfigurationForObject:
 (id<PHMConfigurationLoading>)object;

CPNConfigurationLoader
- (id)initWithConfiguration:(NSDictionary *)configuration;
- (void)setValue:(id)value forUndefinedKey:(NSString *)key;
+ (NSString *)configurationName;

@optional
+ (NSArray *)keyPathsToPersist;
+ (instancetype)sharedInstance;

<<interface>>
CPNConfigurationLoading

Figure 5.2: Protocol and singleton to implement a configuration loader in Objective-C.

5.3. INTERCEPTORS 57

Listing 5.5: View controller using configuration loader to set properties on creation and persist them, when
disappearing.

1 @interface PhMViewController : UIViewController <CPNConfigurationLoading>
2

3 @property (nonatomic, strong) NSString *viewControllerTitle;
4 @property (nonatomic, strong) NSNumber *colorValue;
5 @property (nonatomic, strong) NSString *nonPersistedStringValue;
6 ...
7 @end
8

9 @implementation PHMViewController
10

11 - (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)nibBundle {
12 return [self initWithConfiguration:[CPNConfigurationLoader

configurationForClass[self class]]];
13 }
14

15 - (id)initWithConfiguration:(NSDictionary *)configuration {
16 if ((self = [super initWithNibName:nil bundle:nil])) {
17 [self setValuesForKeysInDictionary:configuration];
18 }
19 return self;
20 }
21

22 - (void)viewWillDisappear:(BOOL)animated {
23 [super viewWillDisappear:animated];
24 [CPNConfigurationLoader saveConfigurationForObject:self];
25 }
26

27 + (NSString *)configurationName {
28 return @"PHMViewController";
29 }
30

31 + (NSArray *)keyPathsToPersist {
32 return @[@"viewControllerTitle", @"colorValue"];
33 }
34 ...
35 @end

5.3 Interceptors

Interceptors are a concept derived from the aspect-oriented paradigm to allow to intercept the
applications execution plan and introduce code. These points, where such an interruption can
occurre, are called events. Some events, that might be useful to use to introduce code, are
described below. A definition of the characteristics of interceptors is also provided.

58 CHAPTER 5. IMPLEMENTING VARIABILITY IN OBJECTIVE-C

5.3.1 Events

The event itself is defined as entering or leaving specific methods. Some examples of such events
are described in the following list:

• Application Start: Occurs, after the application is started and all initial work is done.
It will not delay the application start itself because the so-called watchdog2will kill the
application and will force a crash. Instead of that, a full screen dialog will show up, that
looks like the application-start-image to mime the startup.

• Application Entering Foreground: This event occurs, after an application is sent to the
background and opened again. To mime the start of the application the same dialog as
mentioned before will be used.

• Synchronization Start: Occurs, when the synchronization of the data will begin, whether
this is caused by a timer or by user interaction (like tapping on a sync button or triggering
a pull-to-refresh-action).

• Synchronization End: Occurs, after the synchronization of the data ended.

These events should also provide additional information for the interceptors. For example, if
the synchronization ended with an error or with a success, how many times the application was
opened or entered the foreground, last time of the application being active etc.

5.3.2 Interceptor-Types

The introduced code (the so-called interceptor) can have different characteristics and behaviors
which require different handling regarding their appearance and execution. The encountered
possible characteristics are the following:

• Concurrency:

– Blocking: Blocking interceptors cause the application-lifecycle to stop, therefore
processes like syncing and other activities should be stopped and continued after
execution of the interceptor.

– Non-Blocking: Non-blocking interceptors do not interrupt the application and are
allowed to run like background-processes.

• Visibility:

– Visual (UI): Visual interceptors represent an user interface element and the ability
to interact with it. They could be represented as modal dialog or as embedded user
interface element.

2Apple introduced the watchdog to force developers to move heavy time and performance consuming actions
away from the application start to improve the user experience. For example: network request, heavy parsing of
large data sets, etc. should be moved to a later point of the application life cycle like the first appearance of a view
controller

5.3. INTERCEPTORS 59

– Hidden: Hidden interceptors are running without any visual feedback in the back-
ground and do not provide any input option.

Every interceptor is specified by the combination of his concurrency, visibility and is at-
tached to at least one event.

5.3.3 Technical Realization

In Java aspect-oriented approaches are used to implement interceptors. Objective-C does not
support such an approach therefore other approaches had to be found to introduce an interceptor
mechanism. Three solutions were developed to implement interceptors, but none of these solu-
tions solved the problem satisfiable. The three different approaches are described as follows and
are compared to each other to show which approach suits best for the encountered interceptor
types.

Delegation Forwarding

Objective-C is heavily using the Delegation Pattern, to inform other objects about occurrences
of events and delegate work. For example each application has a delegate associated, which is
executing code after the occurrence of events of the applications life cycle. This delegate has to
conform to the protocol UIApplicationDelegate, with methods like
-(BOOL)applicationDidFinishLaunching: or -(void)applicationWillTerminate:. Un-
fortunately, it is not flexible enough the extend the applications delegate to introduce additional
code, that should be executed, as well as a mechanisms for multiple delegates are missing.

As a solution a delegation forwarding can be implemented. The delegate itself therefore
holds a reference to one or more additional delegates and forwards the calls to them, after exe-
cuting its own code. If it is possible to extend the class, which is responsible to call the desig-
nated delegate, this forwarding can be implemented in the delegator. The added delegates can
decide on their own, wether to execute their code blocking, or in a separate thread (and therefore
non-blocking).

As a negative side effect, this forwarding has to be implemented for each of the delegates
method, although this method is a very simple one to enable the usage of blocking and non-
blocking, hidden interceptors.

Notifications

Notifications are used to broadcast information about occurrences of events, hence they could
also be used to implement interceptors. Therefore a notification has to be posted on every point
in the applications execution plan, which should be intercepted. With this approach it is easy to
extend the application with interception points with a decoupled mechanism.

Notifications are commonly consumed asynchronously, but there exists a way to consume
them in a synchronously way too. If the queue, where the notification is posted is known,
a blocking interceptor implementation can also be achieved. Therefore the method -(void)

addObserverForName:object:queue:usingBlock: must be used, specifying the queue where
to consume the notification. When trying to achieve a blocking variant with this approach, the

60 CHAPTER 5. IMPLEMENTING VARIABILITY IN OBJECTIVE-C

Listing 5.6: Code fragment to demonstrate a blocking Interceptor using NSNotification.

1 @implementation AppDelegate
2 ...
3 - (void)applicationDidBecomeActive:(UIApplication *)application {
4 ...
5 // Send Notification on Main Queue
6 dispatch_async(dispatch_get_main_queue(), ^{
7 [[NSNotificationCenter defaultCenter] postNotificationName:@"

MyApplicationDidBecomeActive" object:application userInfo:
userInfo];

8 });
9 }

10 ...
11 @end
12

13 @implementation Interceptor
14 ...
15 - (id)init {
16 self = [super init];
17 [[NSNotificationCenter defaultCenter] addObserverForName:@"

MyApplicationDidBecomeActive" object:nil queue:[NSOperationQueue
mainQueue] usingBlock:^(NSNotification *note) {

18 // Place interception execution here
19 }];
20 return self;
21 }
22 ...
23 @end

queue where the notification will get sent has to be used. A small code example of a blocking
interceptor implementation with notifications can be found in Listing 5.6. In this listing a notifi-
cation is posted on line 7. Due to the method call on line 6 it is established that this notification
will be posted on the main thread. The interceptor is registering itself for the notification on
line 17 and specifies the main queue as queue to consume the notification. Since the main queue
is running on the main thread the notification will be sent and received on the main queue. There-
fore the notification is consumed synchronously which represents a blocking implementation of
an interceptor.

Notifications are not meant to use in such a way. The example was only given to demon-
strate the possibility of a blocking implementation of interceptors with notifications. However,
notifications should only be used to be consumed asynchronously and therefore are suitable for
non-blocking interceptor variants.

Objective-C Runtime

The Objective-C runtime [App13e] allows to manipulate the behavior of a method of a class
during execution and provides a large set of functions to change the code during a run. One

5.3. INTERCEPTORS 61

Listing 5.7: Code fragement to extend the method -(BOOL)applicationDidBecomeActive: from
the class AppDelegate with intercepted code during runtime.

1 @implementation AppDelegate
2 ...
3 // standard implementation of applicationDidBecomeActive
4 - (void)applicationDidBecomeActive:(UIApplication *)application {
5 // Something happens here
6 }
7 ...
8 @end
9

10 @implementation AppDelegate(Interceptor)
11

12 + (void)load {
13 Method originalMethod = class_getInstanceMethod(self, @selector(

applicationDidBecomeActive:));
14 Method interceptorMethod = class_getInstanceMethod(self, @selector(

intercepted_applicationDidBecomeActive:));
15 method_exchangeImplementations(originalMethod, interceptorMethod);
16 }
17

18 - (void)intercepted_applicationDidBecomeActive:(UIApplication *)
application {

19 // Place interception execution here
20 [self intercepted_applicationDidBecomeActive:application];
21 }
22

23 @end

way to include interceptor code fragments could be established by the technique called method
swizzling3.

This technique allows to modify the mapping from a selector (that is the method name) to an
implementation (that is the code of the method). As contrast to Objective-C categories, method
swizzling allows not only to replace a method code but also make use of the original method
body. Therefore it is possible to extend a method with specific code. A sample code is shown in
Listing 5.7.

The code in Listing 5.7 shows, how to implement an interceptor with the Objective-C run-
time. Goal of the interception code is to place code fragments at the beginning of the call
-(BOOL)applicationDidBecomeActive:. First of all an Objective-C category on the class
AppDelegate has to be created (line 10-24) to add a new method to this class, in this case the
new method is called intercepted_applicationDidBecomeActive, which includes the code
to include into the original method (line 19).

By overwriting the method +(void)load on line 12 it is possible to handle tasks before even
the first object of this class is generated. Strictly speaking this method is even called on the

3Crowd-sourced documentation http://cocoadev.com/wiki/MethodSwizzling

http://cocoadev.com/wiki/MethodSwizzling

62 CHAPTER 5. IMPLEMENTING VARIABILITY IN OBJECTIVE-C

very first application start, therefore this is the right place to swizzle the methods. Therefore a
reference to the original method is retrieved on line 13 and another reference to the new method
is retrieved on line 14. These references are used on line 15 to exchange both’s implementation.

After this step all calls of -(void)applicationDidBecomeActive: will cause an execution
of the code of the method -(void)intercepted_applicationDidBecomeActive: and vice-
versa. The call on line 20 establishes the following workflow:

1. The method -(void)applicationDidBecomeActive: gets called, but because of the im-
plementation exchanged, the code of
-(void)intercepted_applicationDidBecomeActive: gets executed.

2. The interception code gets therefore executed.

3. The call of -(void)intercepted_applicationDidBecomeActive: will cause an exe-
cution of the original -(void)applicationDidBecomeActive: implementation, because
the implementation of these both methods got exchanged.

Therefore this code snippet represents a code interception of commands before the original
method body. To implement an after-call code interception the only thing to exchange is line 19
and 20. It’s even possible to create interceptors which allow to skip the execution of the original
method body by adding a condition to the recursive call on line 20.

Comparison

Each of the above mentioned implementations has specific characteristics, strengths and weak-
nesses. This comparison summarizes which approach suits best for certain use cases.

Notifications. Since notifications are meant to use for asynchronous communication between
loosely coupled and independent software components they are best to use when implementing
non-blocking interceptors.

Delegation Forwarding. This method causes a tighter coupling compared to notifications.
Delegation forwarding can be used to implement a blocking interceptor mechanism. Most of the
time it might not be necessary to use blocking interceptors, but delegation forwarding seems to
be a good solution when such an interceptor type has to be used.

Objective-C Runtime. The most powerful approach is represented by the technique involving
the Objective-C runtime. However using this technique might cause some problems. Code
introduced with runtime manipulation is hard to debug and to maintain. This technique also
represents a challenging topic in the area of Objective-C programming, hence not all developers
might be skilled enough to fully understand the meaning and benefit of this approach.

5.4. UIAPPEARANCE WRAPPER 63

Listing 5.8: Example style sheet for loading with UISS.

1 {
2 "Variables": {
3 "myTintColor": "green"
4 },
5 "UITabBar": {
6 "tintColor": "$myTintColor",
7 },
8 "UIButton": {
9 "tintColor": "$myTintColmyTintColoror",

10 },
11 "PHMCustomView": {
12 "phm_backgroundColor": "blue",
13 "UIButton": {
14 "tintColor": "yellow"
15 }
16 }
17 }

5.4 UIAppearance Wrapper

In Listing 4.7 an example is shown to configure the appearance of views with the UIAppearance
API. This method allows to sum up all style configurations of views, place it in one method and
is executing at the beginning of the life cycle of the application. These calls can be extracted
into one style loader class, to have all the appearance related code fragments in one place. Sub-
classing this class may help to change the styles for each product of the software product line.

This may cause a stylesheet as code fragments which is hard to read and also compiled into
the application. Robert Wijas built an open source library called UISS (UIKit Style Sheets)4

which acts as an additional layer above the appearance API. It uses style sheets persisted as
JSON files with a particular syntax, which will get translated into UIAppearance code during
loading this style sheet file. Hence the UIAppearance code will be generated using the stylesheet
in JSON format as input. Due to this translation, this approach is using the variability mechanism
called generation.

This library makes it very easy to define styles for an application in a way inspired by CSS.
An example how to accomplish the same configuration as in Listing 4.7 is shown in the JSON
in Listing 5.8. To load such a stylesheet the method +(void)configureWithJSONFilePath:

should be called after the application finished launching.
Another benefit gained by the usage of this library is the ability to create variables for styles,

which can be used at several places inside the JSON. The example got extended by setting the
color of the UITabBar to the same color as the UIButtons, therefore the variable myTintColor

was created, hence it is possible to change this color in a single place inside the JSON, which
lead to an improved maintainability and a single spot to change, if the color should be changed.

4UISS GitHub Repository https://github.com/robertwijas/UISS

https://github.com/robertwijas/UISS

CHAPTER 6
Variability Model for multi-client

capable Mobile Applications

This chapter uses the the results of the requirements analysis presented in Chapter 2 to construct
a feature model. The details of the mapping between these requirements and the features of the
constructed feature model will be discussed and explained.

After creating this mapping, possible variability mechanisms and developed techniques from
Chapter 5 will be used to explain a possible implementation of the variability of the software
product line introduced by the feature model.

At the end of this chapter an insight into the configuration management is given to show how
this variability of the software product line can be managed over derived products. How to keep
track of different products and different versions of core assets will also be shown. Therefore
this part of this chapter will illustrate how to manage variability with respect to the tools used
for developing an iOS application.

6.1 Feature Model of the Mobile Application

In Figures 6.1, 6.2, and 6.3 a feature model covering the functional requirements from Chapter 2
is shown. The non-functional requirements are not represented as features in the feature model,
since most of them are covering overall aspects regarding software quality and maintenance and
therefore will not represented as features in the model.

To enhance readability the feature model was split up and refers to two sub feature models.
Figure 6.1 shows the mandatory feature File Browsing which is described in more detail in
Figure 6.2, the mandatory feature Sync Engine is described in Figure 6.3.

6.1.1 Overall Feature Model

The File Management feature is represented as an optional feature group with its sub-features
Saved Search, History, Favorites and Custom Collections. All these features should help the

65

66
CHAPTER 6. VARIABILITY MODEL FOR MULTI-CLIENT CAPABLE MOBILE

APPLICATIONS

"Companion"

Custom Module
(ModuleRef)

Sync
Engine ➤

File
Management

File
Browsing ➤

Saved
Search History Favorites Custom

Collection

Authentication

In-AppSSO PasscodeStylesheet Custom
Views

[0..m]

Overriden View
(ViewRef)

[0..m] Constraints:
 SSO excludes In-App

Custom
Layout

Analytics

Custom
Components

(ComponentsRef)

[0..m]

Push
Notifications

Figure 6.1: Overall feature model covering requirements after analysis.

user to manage the user’s files in a more flexible way. The user will not have to use the folder
structure given from the file system of the synchronization server but will be able to manage the
files and folder by himself.

The application should allow to change the style by applying an optional stylesheet to allow
to design the application with respect to the user’s needs. If a layout change is necessary that can
not be expressed with a stylesheet the user can use the feature Custom Views to specify views to
substitute given views. Hence this allows heavy user interface customization if necessary. This
feature can be applied to several views, therefore a reference to the substituted view has to be
provided. These layout features are grouped into the feature group named Custom Layout.

To authenticate the user against the used sync service or to another registry service an op-
tional Authentication group is present. Users may be authenticated through an in-app login,
single sign-on, or a simple passcode where the choice of a single sign-on excludes the ability
of an in-app login. This restriction is modeled with a constraint which restricts the choice of an
authentication mode.

To extend the application with customer specific requirements which can not be applied to

6.1. FEATURE MODEL OF THE MOBILE APPLICATION 67

other customers the feature model provides a method to specify additional Custom Modules.
This feature allows to keep the feature model more flexible as well as to introduce features that
may come into being in the future. When such a custom module will be used in more products
later on the feature model will be extended. In such a case this Custom Module will be included
into the core assets.

If a heavy customization of the application is necessary Custom Components can be at-
tached to the application which may act as substitute for other components or as stand alone
components as well. Similar to the above mentioned modules such a custom component can be
introduced to the core assets when used in more products than one. Therefore, the substituted
component will mark a new variation point of the software product line. The substitute (or the
different substitutes) will be present as variants of this variation point.

Custom modules are acting as independent and capsulated modules for the application,
whereas custom components are smaller components that interact with other components. Cus-
tom components can also be used as substitutes of given components, whereas custom modules
are not used for substitution of other modules.

The feature Analytics is represented as optional feature. This feature allows to track the
application’s activity to a tracking service.

To establish a communication channel to the application the optional feature Push Notifica-
tions has to be selected.

6.1.2 Sub-Feature Model “File Browsing”

The feature File Browsing shown in Figure 6.2 supplies different views, i.e. list view, grid view
and presentation mode. At least one View Mode feature has to be selected for file browsing,
otherwise the files could not be presented inside the user interface. The different view modes
are modeled as features of this feature group.

The group File Actions handles the available actions on files, i.e. to control if a file is
allowed to be printed, opened, send via mail, tagged or commented.

Another way of accessing folders is introduced by the feature Shortcuts. This feature allows
the user to quickly jump to a particular folder in the folder hierarchy without browsing throw the
whole folder tree.

6.1.3 Sub-Feature Model “Sync Engine”

Figure 6.3 describes the features of the file sync engine in more detail. The type of sync is
represented by the feature group Sync Type and specifies the technique which should be used
to retrieve data from a sync engine. Therefore the group specifies whether the underlying sync
service is working in a recursive way, provides full list access, or delta sync mechanisms. Exactly
one feature of this group has to be selected to allow the application to synchronize with a sync
provider.

How often the application will synchronize with a provider and therefore update, add or
delete files and folders is handled by the group Sync Frequency. The different features of
this group define the possible moments such a sync will be triggered. At least the sub-feature
Manually has to be selected to allow the user to manually trigger a synchronization process.

68
CHAPTER 6. VARIABILITY MODEL FOR MULTI-CLIENT CAPABLE MOBILE

APPLICATIONS

File
Browsing

View Mode

File Actions

Shortcuts

Shortcut
(Folder)

[0..m]

GridList Presentation

OpenPrint Mail Tag Comment

Figure 6.2: Sub-feature model representing file browsing requirements.

Otherwise the user would have to wait until the application will be reopened, freshly started or
a predefined time interval has succeeded.

Files can be downloaded On Demand or automatically during sync (the so-called Repli-
cation Mode). When downloading all files during the synchronization process the file storage
usage will increase and the synchronization process in general will be slower. When down-
loading files on demand the user will not have all the files available offline which may lead to
some issues in some use cases. Therefore the user should decide which Download Type may
be suitable. Another way of defining the download type is provided by a constraint-based type
(represented as Custom download type). There are two ways to constrain this custom download
type:

1. Whitelisting: When using a whitelist the custom download type is acting like the down-
load type On Demand. The whitelist specifies rules to determine which files should be
downloaded during sync.

2. Blacklisting: When using a blacklist the custom download type is acting like the download
type Replication Mode. The blacklist specifies rules to determine which files should not
be downloaded during sync.

Therefore the rules or constraints describe exceptions when using the download type On
Demand or Replication Mode. The constraints can be presented as a file size limit or a list of file
extensions.

Exactly one feature of the feature group Sync Provider has to be selected. These features
are represented as sync providers and are responsible to establish a connection to a server to

6.1. FEATURE MODEL OF THE MOBILE APPLICATION 69

Sync
Engine

Sync
Provider

Sync
Type

Download
Type

Sync
Frequency

Manual Time
Interval
(Integer)

App Start App did
become Active

On
DemandReplication Custom

(Constraint)FTPBox Custom

FullRecursive Delta

Constraints:
 Box implies Authentication.SSO

The list of sync providers
is not complete and may be extended

as necessary

Additional File Property
(PropertyRef)

[0..m]

Figure 6.3: Sub-feature model representing sync requirements.

allow a synchronization process with the application. The list of sync providers in Figure 6.3
is just an excerpt of all supported sync providers and may be extended as new customers with
new custom service solution are requesting to add their service. The choice of a sync provider
can influence other features. In the given example the sync provider Box implies the choice of
a single sign-on, since the Box API does not allow other authentication methods. The choice of
the sync provider also may influence the choice of sync type depending on the result type of the
API response.

Some sync providers may have additional properties that are not included into the data
model. When a user is requesting these properties to be synced to the application the feature
Additional File Property allows to extend the given data model. A description of the property
has to be given to identify the additional file property.

70
CHAPTER 6. VARIABILITY MODEL FOR MULTI-CLIENT CAPABLE MOBILE

APPLICATIONS

6.2 Mapping Features and Variability Mechanisms

Table 6.1 shows the mapping from requirements to features of the feature model and also a
mapping from that features to variability mechanisms. The mapping is explained in more detail
in Section 6.3 and describes, how the different features get included into the application as well
as how these features can be configured.

Requirement Feature Variability Mechanism
File- and folder-structure
syncing

Sync Engine - Sync Type
Class Loader and Configu-
ration Loading

File download on demand,
replication or custom

Sync Engine - Download
Type

Configuration Loading or
Class Loader

Tags, Comments File Actions Configuration Loading
Additional Meta Informa-
tion

Additional File Property Transformable (Core Data)

Favorites

File Management Module Handling
Custom collections
History
Saved search

Passcode
Authentication

Authentication
Delegation Forwarding,
Configuration Loading,
Interceptor

Timeline Custom Module Module Handling

Notifications Push Notifications
Compiler Directive and
Delegation Forwarding

User interface customiza-
tion

Custom Layout - Stylesheet
UIAppearance-Wrapper
(UISS)

Custom user interface ele-
ments

Custom Layout - Custom
Views

Class Loader

Custom modules Custom modules Module Handling
Custom components Custom components Class Loader
Analytics Service Analytics Interceptor

Table 6.1: Mapping from requirements to features and from features to variability mechanisms.

6.3. REALIZATION OF THE MAPPING 71

6.3 Realization of the Mapping

This section describes the realization of the mapping using Objective-C and the established
methods from Chapter 5. Before creating this mapping, another concept was developed to in-
troduce variability into the user interface to allow to extend this user interface in a flexible way.
This method is described as follows.

Module Concept

The module concept was developed during this thesis to manage variability inside the user in-
terface and to allow to design an application which can be extended with certain independent
functionalities. For these independent functionalities the term module was introduced.

This concept uses an often used user interface paradigm that can be found in several mobile
applications like Facebook, Twitter and several apps from Google. This paradigm is illustrated
in Figure 6.4 and divides the user interface in three different parts.

1. Content Area: The content area is displaying the main user interface of a selected mod-
ule. The user is interacting with the application most of the time in this area and therefore
this screen is using the whole dimension of the screen

2. Left Drawer: The left area can be revealed with a button which is located at the left upper
corner of the screen or with a swipe gesture from the left border of the screen. This area
contains a list of all modules that can be presented in the content area. Triggering one of
these modules will hide the left area and update the content area with the user interface
provided by the selected module. The modules are managed in this area in a table view
which allows to extend the list of modules very easily without disrupt the user interface’s
presentation.

3. Right Drawer: The right drawer can be used for a reduced representation of a module.
For example, Facebook is using this area to present the chat module. This area allows to
quickly access a certain functionality of the app with a single interaction. To reveal this
area a button is provided on the right top corner of the screen or with a swipe gesture
from the right border of the screen. If more than one module should be represented in
this area a way has to be found to easily configure which one of these modules should be
shown. This can be established with a long press gesture on the button which will show a
dialog where the user can pick the module to see. The last picked module will be triggered
afterwards when revealing the right drawer again.

To configure the appearance of different modules a class concept was designed which is
shown in Figure 6.5. The CPNModuleProvider holds a list of modules which can be presented
inside the left drawer and a list of mini modules which can be presented in the right drawer.
At the applications start this provider loads the modules from two different configuration files.
These configuration files contain the names of the modules (to be precise the class names of
the modules). The file Modules.plist is responsible for the entries loaded into the property

72
CHAPTER 6. VARIABILITY MODEL FOR MULTI-CLIENT CAPABLE MOBILE

APPLICATIONS

Figure 6.4: Sketch and interaction description of an user interface handling multiple modules.

modules whereas the file MiniModules.plist is responsible for the entries loaded into the property
miniModules.

A module itself has to subclass the class CPNBaseModule. This base class is offering different
properties which are necessary to retrieve the designated view controllers for the different areas.
The property moduleViewController is used to load the screen from the left drawer to the
content area of the screen. The name which will be displayed inside the left drawer is stored in
the property moduleName.

The miniModuleViewController property is providing the user interface that will be shown
in the right drawer when revealing this area of the user interface.

Another extension to the above introduced concept is the ability to have subitems in a mod-
ule. Lets assume a module is provided that displays the current weather of a city. Therefore a
module can be created with a view controller to display in the content area and the name Weather.
When extending this feature in a way to have more than one city a weather can be displayed for
the entry in the left drawer should be expanded listing all available cities as subentries of this

6.3. REALIZATION OF THE MAPPING 73

+ (instancetype)moduleWithDelegate:;
- (id)initWithDelegate:configuration:;
- (id)initWithDelegate:;
- (NSString *)titleForModuleEntryAtIndex:;
- (void)updateModuleViewControllerWithEntityAtIndex:;

+ moduleName : NSString
+ moduleViewController : UIViewController
+ miniModuleViewController : UIViewController
+ numberOfEntries : NSUInteger

{abstract}
CPNBaseModule

- (void)moduleEntriesDidChange:;

<<interface>>
CPNModuleDelegate

uses

FileModule CustomCollectionModule

FavoritesModule HistoryModule

YourCostumModule

- (NSArray *)modules;
- (NSArray *)miniModules;

CPNModuleProvider

1..*

0..1

provides

Figure 6.5: Class diagram of the Modules concept with several example modules.

module. After tapping on a city the content screen will be loaded with the selected city. There-
fore three more methods are defined inside the CPNBaseModule. The property numberOfEntries

is managing the list ob subentries of the module, the method
-(NSString*)titleForEntryAtIndex: is providing the name of the subentry which should
be displayed in the left drawer. In case another subentry is already displayed in the content area
the method -(void)updateModuleViewControllerWithEntityAtIndex: will update the view
controller with the new selected subentry.

The left drawer also has to be informed that the numbers of subentries had changed to update
the user interface. Therefore a module holds a reference to a delegate (in that case the left drawer)
which will be informed if a change occurs that influences the number of subentries.

To configure a module the CPNBaseModule is designed to be used with the Configuration
Loader mechanism. Therefore the module can be configured using a configuration file, e.g. the
weather module can be loaded with a different set of cities for each derived product of the soft-
ware product line. Therefore the configuration file should hold a list of cities that will be loaded
into the weather module.

74
CHAPTER 6. VARIABILITY MODEL FOR MULTI-CLIENT CAPABLE MOBILE

APPLICATIONS

6.3.1 File Browsing and File Management

When keeping the introduced module concept in mind the features of the feature group File
Management can be presented as modules. The module File Browsing therefore is acting as
mandatory module which every product of the software product line should contain. The mod-
ules Favorites and History are optional ones and could also be presented as mini module in the
right drawer of the user interface. Custom Collection and Saved Search are modules that can be
integrated in the menu inside the left drawer and can also have subentries for each of the custom
collection and each of the saved search query.

6.3.2 Custom Modules

Custom modules can also be handled by the Module Concept described before. Creating a
custom module is handled by creating a new subclass of CPNBaseModule. To integrate this
new module into an application the Modules.plist file and/or MiniModules.plist has to be ex-
tended with the name of the class of the new custom module. If such an entry is present the
CPNModuleProvider will load this new custom module for the derived product of the software
product line.

6.3.3 File Actions

The Configuration Loader can be used to enable specific file actions for the application. These
file actions are represented as flags which are managed by one single subclass of
CPNGlobalConfiguration. This class is also used to store API tokens for the sync provider,
the over-the-air distribution system and the crash reporting tool. These tokens should not be
provided by a configuration file since resources like images, configuration files, icons, etc. can
be extracted from the iOS application’s bundle which may cause a security issue.

The class CPNGlobalConfiguration should be subclassed for each product of the software
product line to set all necessary properties for the application.

6.3.4 Sync Engine

The Sync Engine is split up into several classes to allow configuration and variability. An class
diagram representing the class concept is shown in Figure 6.7, the used mechanisms to establish
variability and to meet the requirements are described below.

Sync Type and Sync Provider

The application is communicating with one concrete subclass of CPNBaseSyncEngine and only
uses the provided methods from this base class. The Class Loader concept is used to select the
accurate subclass, i.e. one of the concrete classes CPNRecursiveSyncEngine,
CPNDeltaSyncEngine or CPNFullSyncEngine. Each of these concrete subclasses represents
one sync type. As described in Figure 6.7, an instance of a CPNBaseSyncEngine is using exactly
one instance of a subclass of CPNBaseSyncService. This services conforms to a sub protocol
of CPNSyncServiceProtocol to ensure that every method required for the selected type of sync

6.3. REALIZATION OF THE MAPPING 75

<<abstract>>
CPNBaseSyncService

BoxSyncService

BigPocketSyncService

CWSSyncService

<<interface>>
CPNSyncServiceProtocol

<<interface>>
CPNRecursiveSyncServiceProtocol

<<interface>>
CPNDeltaSyncServiceProtocol

<<interface>>
CPNFullSyncServiceProtocol

BoxClient

uses

BigPocketClient

uses

CWSClient

uses

Figure 6.6: Class diagram of a completed Sync Engine with concrete subclasses of Sync Service.

mechanism is provided. Each type of sync engine has its own protocol, hence requesting files is
varying from each of them.

The concrete subclasses of CPNBaseSyncService may use a third party library to communi-
cate with the specific server. As an example, a sync service implementing a synchronization to
Box may use the third party library from Box. The selection of the sync services is also handled
by the Class Loader by specifying which concrete subclass of CPNBaseSyncService should be
used as substitute.

To show how the relationship between the protocols and the concrete subclasses with its
clients can look like an example is provided in Figure 6.6. This example complements the be-
fore mentioned class diagram with three sync services. The first service access data from Box,
another service retrieves huge amount of data from a delta sync service. The third service pro-
vides a single call to retrieve a whole list of files and folders with its modification date and other
useful information. The example also illustrates that each of the sync service has its own client
library. This library handles the communication to the server and also shows that corresponding
to the type of sync service the service has to conform to a specific protocol. It is also possi-
ble that a sync service conforms to multiple protocols, therefore this service could be used for
different types of sync engines.

Download Type and Sync Frequency

Variation points which can be expressed with properties of classes, are using the Configuration
Loader concept. At the beginning of the life cycle of a sync engine properties like sync fre-

76
CHAPTER 6. VARIABILITY MODEL FOR MULTI-CLIENT CAPABLE MOBILE

APPLICATIONS

quency and download type are loaded from the corresponding configuration. To simplify the
configuration loading for the used sync service the configuration of the sync engine is passed to
its service (Configuration Forwarding), which consumes its values, like server URL, predefined
username and/or password, and so on. While extending the properties of sync engines and sync
services name clashes have to be kept in mind, otherwise it will end in an unexpected behavior
during the property initialization through the configuration file.

The enumeration object for the Download Type provides values for the On Demand and
Replication Mode download type. The property which determines which download type the
sync engine should use can be set with Configuration Loading. The third download type Custom
from the feature model is missing in that enumeration.

This custom download type is implemented as subtype of the two other download types.
Additional properties are defined to configure these two download types. The approaches to
configure the download types with constraints are the following:

1. Filtering files by file size: By setting the maximumSizeForDownloadMechanismReplicaton
property through the Configuration Loader files will be downloaded automatically, if the
file size is lower than the value of this property. These constraint will only have an effect
when the download type is set to Replication Mode.

2. Filtering files by its file extension: By setting the array fileExtensionConstraintList

a list of file extensions can be provided which will be used to filter the files that should be
downloaded. When using the On Demand download type this array works like a whitelist,
hence all files with a file extension contained in that list will be downloaded. When using
the Replication Mode this array works like a blacklist, hence all files with a file extension
contained in that list will not be downloaded.

3. Filtering files with more complex constraints: To filter files for downloading with more
complex constraints subclassing as variability mechanism should be used. More complex
constrains can be implemented to decide if a file should be downloaded during sync or not
when a sync engine gets subclassed.

Additional File Properties

Various sync services may offer a set of additional meta information, like comments, tags, the file
creators name, a description, notes, etc. To allow a variable data model to save this information
to the file object a schema free or at least schema tolerant way to persist data had to be found.

Apple’s framework CoreData [Zar13] was used to solve this problem. CoreData does not
allow a schema free data model but lets the developer define an attribute of type Transformable
[App13b]. When defining an attribute with this data type the developer also has to specify a

class, which is responsible for transformation of this property from NSData (the actual type of
the property inside the database) to another data type. To implement a schema free addition to
the schema of a file object such a property was defined to transform the data from NSData to
NSDictionary. This additional property in dictionary format can be used to add any number of
additional properties to a file.

6.3. REALIZATION OF THE MAPPING 77

A negative side effect when using this approach is the lack of query possibilities. It is not
possible to setup queries which allow filtering on properties stored in that dictionary.

6.3.5 Authentication

As shown in Figure 6.6 the sync engine provides a method to authenticate a user with an user-
name and password. The user interface can be configured using the Configuration Loader to
switch between a standard login or passcode authentication. Single sign-on on mobile applica-
tion is working with a redirect to the service providers website which handles the authentication.
The user will be redirected to the application with an URL redirect after success. This applica-
tion flow makes it hard to implement the authentication mode with the concept of configuration
loading.

One solution to solve this problem is to use subclassing. The applications delegate has to be
subclassed to handle the URL redirect and therefore the authentication. Since the fact that the
application delegate marks an entry point for the application life cycle, it seems not elegant to
subclass this important class for authentication purposes. Instead Delegation Forwarding will be
used to inform another class about the occurrences of these authentication events in a blocking
way.

6.3.6 Analytics

To support different analytics services an approach with non-blocking interceptors was imple-
mented with notifications. First of all, the events which might be interesting for an analytics ser-
vice had to be examined and specified. On every occurrence of such an event a NSNotification
is posted from the application to the NSNotificationCenter. The notification itself should have
a meaningful name and useful additional information attached. For the event which will occur
on every startup of the application this additional information can be presented as a counter
which determines how often the application has already been launched.

A class called CPNAnalyticsHandler is provided to register itself as observer for all these
notifications. For each notification a method of this handler will be called. To implement a
handler for a analytics service (like Google Analytics1, Localytics2 or Flurry3) a subclass of
this handler should be created. This subclass can react on events by overwriting the provided
methods. With this method it is easy to integrate multiple analytics services, reacting on different
events.

6.3.7 Custom Components

Custom components are handled with the Class Loader concept. For example a class
MySubstitute can be used instead of the class OriginalClass by extending the Class Loader’s
configuration file OverriddenClasses.plist with an entry with the key OriginalClass and the
value MySubstitute.

1http://www.google.com/intl/en/analytics/
2http://www.localytics.com
3http://www.flurry.com

http://www.google.com/intl/en/analytics/
http://www.localytics.com
http://www.flurry.com

78
CHAPTER 6. VARIABILITY MODEL FOR MULTI-CLIENT CAPABLE MOBILE

APPLICATIONS

6.3.8 Layout

Stylesheets are handled with the UIAppearance Wrapper UISS. For each product of the software
product line a new stylesheet can be applied. This stylesheet can change the appearance of views
which properties are exposed for the UIAppearance API. An iOS application usually contains
several images that are used as background images or icons. A disadvantage when using images
comes into being because of the fact that images cannot be tinted and therefore the style of
this images can not be adopted to meet the design requirements. As a solution to this problem
all icons are drawn using CoreGraphics, a Framework from Apple to use the graphics engine
directly. Because of the usage of CoreGraphics the icons are acting like vector-based images
which will reduce the applications memory fingerprint. Due to the drawing a style can be applied
to the icons. To avoid boilerplate code inside the stylesheet UISS introduced variables for colors,
borders, shadows etc. These variables can be used at several places inside the stylesheet. Hence
changing colors that are used from several user interface elements is easier when a variable is
defined for that inside the stylesheet.

Some design requirements can not be fulfilled with styling a view. When heavy customiza-
tion for views of an application is necessary it might be a better solution to create subclasses
for these views. These subclasses can implement the required design and can be registered as
substitutes of the standard user interface elements by using the Class Loader. Hence these views
are acting like Custom Components.

6.3.9 Push Notifications

The feature Notification is used to send out messages to all user of an application. Apple intro-
duced a service called Push Notifications to establish a communication channel to the user. To
integrate this service the application’s delegate has to be modified to register for this service and
to react on incoming notifications. To prevent an overloading of this delegate the mechanism
Delegation Forwarding can be used. Therefore the code snippets which are necessary to inte-
grate Apple’s Push Notifications can be included into the subclass of CPNGlobalConfiguration.
Some code snippets that can not be outsourced to this configuration class can be enabled or dis-
abled using compiler directives. Therefore code will be excluded for products which may not
use this feature.

6.3. REALIZATION OF THE MAPPING 79

+ (instancetype)sharedInstance;
- (void)sync;
- (void)downloadFile:success:failure;
- (void)authenticateUserWithName:password:success:failure:;
- (void)logoutUserWithIdentifier:;
- (void)cancelAllOperations;

+ updateInterval : NSTimeInterval
+ syncFrequency : SyncFrequency
+ downloadMechanism : DownloadMechanism
+ maximumSizeForDownloadMechanismReplicaton: NSInteger
+ fileExtensionsConstraintList : NSArray

{abstract} CPNBaseSyncEngine

CPNRecursiveSyncEngine CPNDeltaSyncEngineCPNFullSyncEngine

+ (instancetype)syncServiceWithConfiguration:;
- (instancetype)initWithConfiguration:;
- (NSArray *)objectIdentifierForResults:;

+ operationQueue : NSOperationQueue
{abstract} CPNBaseSyncService

- (NSOperation *)downloadItem:path:success:error:progress:;
- (NSString *)objectIdentifierForResult:;
- (CPNSyncServiceResultType)typeOfResult:;
- (NSDictionary *)convertResult:;

@optional
- (NSOperation *)authenticateUserWithName:password:success:error:;
- (void)logoutUserWithName:success:error:;
- (NSOperation *)downloadThumbnail:success:error:;

<<interface>>
CPNSyncServiceProtocol

- (NSOperation *)itemsWithParentID:success:error:;
- (BOOL)hasItemChanged:comparedToResult:;
- (BOOL)shouldContinueSyncingWithFolder:result:;

<<interface>>
CPNRecursiveSyncServiceProtocol

- (NSOperation *)itemsWithSuccess:error:;
- (BOOL)hasFileChanged:comparedToResult:;
- (BOOL)hasFolderChanged:comparedToResult:;
- (BOOL)shouldContinueSyncingWithFolder:result:;
- (NSArray *)itemsOfFolderResult:;
- (id)thumbItemForFolderResult:;

<<interface>>
CPNFullSyncServiceProtocol

- (NSOperation *)deltaObjectsWithChangedObjectBlock:
 deletedObjectsBlock:success:error:;
- (void)finishedSync;
- (NSString *)parentObjectIdentifierForResult:;

<<interface>>
CPNDeltaSyncServiceProtocol

ConcreteSyncService

ThirdPartySyncClient

0..*

0..1

<<enum>>
 SyncFrequencyManual
 SyncFrequencyAppStart
 SyncFrequencyAppDidBecomeActive
 SyncFrequencyTimeInterval

<<enumeration>>
CPNSyncFrequency

<<enum>>
 DonwloadMechanismOnDemand
 DownloadMechanismReplication

<<enumeration>>
CPNDownloadMechanism

1

1

CPNBaseSyncServices have to
use the CPNSyncServiceProtocol
matching the CPNSyncEngine (i.e.
when using a CPNFullSyncEngine,
the used CPNSyncService has to

implement the
CPNFullSyncServiceProtocol)

Figure 6.7: Class diagram of the Sync Engine.

80
CHAPTER 6. VARIABILITY MODEL FOR MULTI-CLIENT CAPABLE MOBILE

APPLICATIONS

6.4 Configuration Management

When it comes to multiple products of a software product line configuration management be-
comes a key aspect to maintain the different versions. This chapter describes the configuration
management which was used to implement the software product line using Xcode as a develop-
ment tool and Objective-C as the programming language.

First of all, it will be explained how the individual parts of the software product line are split
up within the Xcode project. Furthermore it will be shown, how this is reflected in the used
source control management GIT.

The individual meanings of the files are described afterwards. It is shown which files are
responsible for the configuration options and how these files work together. This description
will be used later in Section 7.1 to show how a product of the product line is derived.

6.4.1 Project Setup

All files that have to be changed or are only used for one specific product are separated into
an own static library. This library (called CompanionConfiguration) is saved into an own GIT
repository and managed as submodule to have even a better separation to the core assets and
code base.

To keep track of the versions of the code base and the product, Xcodes build number and
version number are used. The build number is used to mark the version of the code base, which
will be incremented on every beta or release build of a product of the software product line. The
version number is part of the configuration submodule and will be increased semi automatically.
If managing a new release, the build number is set (e.g. to 2.0.1). While creating beta releases
of the application for this specific product the version number is created by appending a “b” and
a two digit number which will be increased for every beta release (e.g. 2.0.1b01, 2.0.1b02).

Each application must have its own bundle identifier which is represented as string in reverse
DNS-format [App13a]. This identifier will be automatically extended by the keyword “stage”
for beta releases. Therefore the release and beta version for the application will have different
bundle identifiers, which leads to the ability to have both versions installed on the same device
for testing purposes.

To keep track of different versions and products a GIT branch is created inside the Com-
panionConfiguration submodule for each product of the software product line. Additionally the
commits are tagged after a release with the corresponding branch name and version number to
easily switch back to this version.

6.4.2 File Structure

The file structure in the project navigator is shown in Figure 6.8. The group Companion rep-
resents the code base and core assets with all its standard view controller, views, data models,
etc. The file Info.plist (Figure 6.8, Mark 1) is used in an iOS application to configure the main
aspects of an application, like supported interface orientations, bundle identifier, name of the
application, paths to icon files and URL schemes. This file is also located in the main GIT
repository, the properties to change are outsourced to project configuration files. These files

6.4. CONFIGURATION MANAGEMENT 81

Figure 6.8: Project setup and file structure inside the project navigator.

have the extension xcconfig (Figure 6.8, Mark 2) and contain properties which can be used to
configure the Xcode project.

The configuration files are separated into two groups. Companion.xcconfig stores the build
number and other informations that are common for all products of the software product line and
therefore belong to the core assets. Companion-Release.xcconfig and Companion-Debug.xcconfig
are handling the bundle identifier (which will be derived from the config file ProjectConfigura-
tion.xcconfig) for live and beta versions (with the appended string “stage”).

The blue marked resources are stored in the above mentioned submodule CompanionCon-
figuration to handle all product specific files and sources. The ProjectConfiguration.xcconfig
files are managing the name of the application, the bundle identifier, the URL scheme and other
relevant information. The file path to the icons and default PNGs (which handle the start image
for iOS applications while loading the app from memory) are hardcoded inside the Info.plist,
the images itself vary for each product. Typical resources of the static library are embedded
as a resource bundle called CompanionConfiguration.bundle (Figure 6.8, Mark 3). Inside this
bundle product-specific images, fonts and stylesheets are stored as well as configuration files
in plist format to handle configuration for the Class Loader, Configuration Loader and Module
Provider.

The last part of the submodule is the static library itself (Figure 6.8, Mark 4). It contains
all source code files which are not part of the code base but necessary for the product of the
software product line. This includes custom classes, like custom modules, custom views, etc. as
well as all overridden classes which may be used by the Class Loader.

CHAPTER 7
Evaluation and Discussion

In this chapter, chosen design decisions are evaluated using the descriptive design evaluation
method [HMPR04]. For this evaluation method detailed scenarios are constructed around the
artifacts to demonstrate its utility in combination with the design decisions. The requirements
for the used scenarios for the evaluation were derived from real customer queries. All customer
requirements of the scenarios should be implemented without making monumental changes on
the core assets. The evaluation itself is divided into two parts for each scenario.

• Domain and Requirement Description: Description how the application will be used
from the customer, which persons actually will interact with the application and which
goal they are following by doing it. The customers requirements will be summed up
including a mapping to features of the feature model.

• Customization Details: Detailed description how the features were included and de-
scribed steps which were necessary to become an acceptable output represented as product
of the software product line. Following metrics were collected during implementation

– Changes in Code Base, which were necessary to implement a certain feature

– Number of configuration files, which were created for the Configuration Loader

– The number of overridden classes describe the numbers of classes, which will be
loaded from the Class Loader

– Number of new classes, which were created especially for this product during im-
plementation

– Number of additional resources like images, fonts, etc.

– Number of lines in the stylesheet to meet the design requirements

Prior to this evaluation, the steps that are necessary to create a starting point for the product
derivation are described. These steps are required for each product of the software product line
and are similar for each product.

83

84 CHAPTER 7. EVALUATION AND DISCUSSION

At the end of this chapter a critical analysis is made to identify possible improvements and
problems to improve the design decisions.

7.1 Product Derivation

To derive a product from the software product line the same steps must be performed every time.
This procedure provides a starting point for the product and other adjustments and modifications.
These steps are explained in detail as follows.

1. A new branch of the GIT submodule CompanionConfiguration has to be created for the
product. The name of the branch should represent the name of the new product.

2. Inside the static library of the new branch a new subclass of CPNCompanionConfiguration
has to be created. This is the place to set specific file actions and provide tokens for the
over-the-air distribution system and crash reporting module. This class will also be used
for the Delegation Forwarding pattern. Hence the configuration singleton should react on
events called by the application’s delegate, i.e. to implement push notifications.

3. The configuration singleton class has to be registered in the OverriddenClasses.plist con-
figuration file for the Class Loader.

4. Another subclass to register in this configuration file is the class of the sync engine which
has to be used for this product and the designated sync engine. For instance, if a re-
cursive sync should be provided with the Box sync service the configuration file should
be extended by two entries. One entry with the key CPNBaseSyncEngine and the value
CPNRecursiveSyncEngine. The other entry is represented with the key
CPNBaseSyncService and the value CPNBoxSyncService.

5. Inside the folder ConfigurationLoader of the resource bundle all the configuration files for
the classes have to be provided (i.e. CPNBaseSyncEngine.plist to se tup the sync engine).

6. The file uiss.json of the resource bundle contains the style sheet for the application and
has to be adopted to meet the design requirements of the customer.

7. Inside the folder Images the logo of the company, for which the product will be built, and
other related images should be saved.

8. The start images and icons for the product should be replaced. The can be found inside
the folder where the static library is saved. There is no need to adjust the Info.plist where
the paths for the applicaiton’s icons and start images are saved since the paths remain the
same.

9. The ProjectConfiguration.xcconfig files have to be setup for the right application name
and bundle identifier.

10. The configuration file for the ModuleProvider should be modified to provide the class
names for the modules to integrate. If the configuration file Modules.plist is not present
the modules for file browsing and custom collections will be used automatically.

7.2. AESCHREDER AUSTRIA 85

7.2 AESchreder Austria

7.2.1 Domain and Requirement Description

AESchreder1 is an internationally acting company from Austria with departments in France and
Belgium. The company is selling lightning equipments for streets, public places and shopping
promenades to cities and big companies. AESchreder wanted an iPad application for all em-
ployees to share product information like pictures, advertising movies, product catalogues and
pictures from their equipment used in different cities. This product information presented inside
the application will be used in front of their customers during selling processes and customer
pitches.

Another use case of the application is represented by having all company relevant files loaded
into the application, including financial documents and presentations, as well as technical speci-
fication files for a technical software used by their lightning installer. Not every employee should
be able to see all the files, therefore a login has to be provided which will be used to sync the
files and folders for which the employee is authorized.

The company is not using a file service at the moment and was therefore requesting a server
solution where they can easily upload files that will get synced to the application. The sync
service got implemented within a separate project with a web-based management interface to
create new users and associate user groups. Each user group has files and folders assign to
control the access. A REST API was provided to allow a synchronization with the application.

The application should download all the files on demand to reduce the memory fingerprint
of the application. The user interface should be styled with the companies corporate identity.
Folders should not have the standard folder thumbnail provided by the application but have a
customer designed icon as thumbnail based on the names of the folders. This demand was
another design requirement which should be included into the application.

The above mentioned files used by another application are not meant to be viewed from
inside the application since the iPad itself is able to display these files anyway. Hence it should
be possible to send these files instead of viewing it from within the application. Table 7.1 sums
up the requirements of the customer and maps them to features of the feature model.

Requirement Feature
Custom Sync Engine Sync Engine - Sync Type
File download on demand Sync Engine - Download Type
Restricted open action File Actions (not possible)
User Login Authentication
User interface customization Custom Layout - Stylesheet
Custom placeholder images Custom components

Table 7.1: Overview of requirements and features for AESchreder.

1http://www.aeschreder.at

http://www.aeschreder.at

86 CHAPTER 7. EVALUATION AND DISCUSSION

7.2.2 Customization Details

To implement the product for AESchreder the common steps have been executed to create a new
configuration for this product (see Section 7.1).

First of all a sync service had to be implemented to consume the provided REST API. Since
the REST API is answering with a full list of files and folder which the user is allowed to
view and download, the type of the sync engine was set to “Full”. A sync service which is
using the implemented sync service had to be created by subclassing the CPNFullSyncEngine.
Properties like server URL and login behavior were configured using the Configuration Loading
mechanism. The login process got slightly adopted to react on access right changes. Therefore
a sync will be forced if the user’s groups got changed to prevent the application to display data
which the user is not allowed to see.

A design was created with respect to the corporate identity of the company. Afterwards the
design was implemented with a stylesheet for the application. The folder placeholder which
are based on the name of the folder could not be implemented with the stylesheet. This feature
request was implemented as a custom component and resulted in a heavy customization. The
class CPNPlaceholderProvider is used inside the application to retrieve a placeholder image
for a specific file type. Therefore this provider is also responsible to specify the placeholder for
a folder. A custom component was created to replace this class. This replacement is delivering
the placeholder image by checking not only the file type, but also the name of the file and folder.
Therefore each folder can have its own placeholder image. A list which associates folder names
to placeholder images was created for this new placeholder provider.

The application is providing a property which describes the allowed actions on files, hence
this property specifies if an action is allowed on files or not. AESchreder requested a more fine-
grained control over these actions therefore the mentioned method to just enable or disable a cer-
tain action was not appropriate anymore. Methods were created inside the
CPNGlobalConfiguration class which evaluate to true or false to decide if an action is al-
lowed for one specific files but not all files in general. One of these methods has the signature
-(BOOL)action:allowedForFile:, gets an action and a file object as input parameter and an-
swers with a boolean value. Methods to allow a fine-grained control for actions on files and tags
were also created for future developments. The application is not checking the file action prop-
erty directly anymore but is using this method to check if an action is allowed to execute with a
given file. In case of AESchreder the method evaluates to false for all files that are meant to be
sent instead of viewing for the action open. A summary of the required steps and the resulting
effort is given in Table 7.2.

7.3 Anonymous Furniture Department Store

7.3.1 Domain and Requirement Description

This furniture department store is located in Europe and one of the biggest in the world. Due to
legal issues, it is not allowed to mention the name of the company in this thesis. Its marketing
department decided to buy a product of this software product line to have all the files on their
tablets during their meetings, field work, or at home. Therefore, this product will only be used

7.3. ANONYMOUS FURNITURE DEPARTMENT STORE 87

Category Description / Metric

Changes in Code Base

Small changes regarding instantiating of
CPNPlaceholder to retrieve class from
Class Loader. Additional support for
more fine-grained file actions by extend-
ing the CPNGlobalConfiguration

Number of Configuration Files 4
Number of overridden Classes 2
Number of new Classes 1 (and one Class per Placeholder Image)
Number of additional Resources 4
Number of Lines for Stylesheet 436

Table 7.2: Overview of effort for product for AESchreder.

inside the company from the employees without interacting with the application in front of
a customer. The application will be used as a pure communication tool within the department.
The major requirement and most challenging part was to allow a synchronization of over 600,000
files and folders to the mobile device. A service had to provided to retrieve the files since they
are stored on file servers inside the company’s IT infrastructure.

The company also had specific ideas how the application should look like. Besides the
common adjustments of the user interface to match the corporate identity of the company they
wanted to change the appearance of files and folders in the user interface when using the grid
mode of the browsing feature. Therefore a new cell design should be implemented.

The folder structure this department of the company is using is managed in a very depth
way. Hence the user has to enter a big number of folders and subfolders to get to a specific file.
The company asked for a shortcut feature to allow quick jumps to user defined folders. With
this feature the user of the application can trigger the shortcut to access a folder without entering
all the parent folders. Another requirement was to include favorites. These favorites should
be downloaded automatically and therefore these marked files should always be up to date and
available offline.

The department wanted to decide about the ordering of files and folders within the applica-
tion. They renamed the items in their file systems by appending a prefix. This prefix was used
to bypass the alphabetical ordering of the file system. They wanted the application to use this
prefix to order the results in the user interface but should display the name of the folders without
the defined prefix. The prefixes are defined as two digit numbers followed by a whitespace and
the name of the file or folder. Table 7.3 sums up the requirements of the customer and maps
them to features of the feature model.

88 CHAPTER 7. EVALUATION AND DISCUSSION

Requirement Feature
Custom Sync Engine Sync Engine - Sync Type
Custom Sorting of Files Sync Engine
Custom Download Type (replicated Fa-
vorites)

Sync Engine - Download Type

Custom Cell for Folders / files Custom Component
User Interface Customization Custom Layout - Stylesheet
Shortcuts to Folders File Browsing - Shortcuts
Favorites File Management - Favorites

Table 7.3: Overview of requirements and features for the anonymous furniture department store.

7.3.2 Customization Details

The steps for creating a new product were followed to create a start point for the product deriva-
tion. After that, a sync service had to be implemented to connect to the file servers of the
company’s IT infrastructure. Due to the amount of files a decision was made to use a delta sync
engine to sync all the files to the mobile device. One big problem while developing the sync en-
gine was the size of the server response during the initial sync process. The response JSON was
up to 50 MB, hence it was not possible to use the standard built-in way to load a JSON because
of memory issues of the mobile device. A SAX style parser was used to minimize the memory
usage while parsing the JSON file. To reduce the time spent for the initial sync a method was
implemented which allows parsing of a JSON file while the file is downloading. When using
a fast connection to the file server the application will not be able to persist the parsed file fast
enough. Hence the parsed data will be kept in memory again which also leads to memory is-
sues. Therefore this enhancement got disabled again. The application is now downloading the
response and saving it to the file system of the mobile device and will start with the parsing
process after the download. After successfully persisting all the data into the database the file
will be deleted from the file system.

The data model of the application got extended by the file’s property nameForSorting. The
application will use this property in every screen to sort the files and folders but will display the
actual name of the file which is stored inside the property name. The sync service got adopted
to save the full name of the file including the prefix in this new property while saving the name
without the prefix in the property name.

The module for favorites had to be included into the product. Therefore the Modules.plist
files which is represented as array got extended by the entry CPNFavoriteModule which is the
class name of the subclass of CPNBaseModule. Favorites and custom collections are designed as
tags with a specific name, namely Favorites for favorites and a user chosen name for a custom
collection. These tags have a property in the data model which is called availableOffline. If
set to true all files with this tag are downloaded automatically (replication mode). The property
of the favorites tag has the default value true, hence favorites will get downloaded automatically.

To enable the action to create shortcuts to folders the property folderActions of the class

7.4. MERCEDES BENZ AUSTRIA - MBÖ APP2DATE 89

CPNGlobalConfiguration was extended with this file action.
All requested user interface adjustment were handled with a stylesheet for the anonymous

furniture department store. The custom cell was not manageable with setting properties with
the stylesheet and therefore a new class has to be implemented. The class was implemented by
subclassing CPNCollectionViewCell which is used as default cell representation in the applica-
tion. This new subclass XMLCollectionViewCell adjusts the existing cell to fulfill the required
design changes. To load this substitute cell class the Class Loader configuration file was ad-
justed by adding an entry with the key CPCollectionViewCell and XLMCollectionViewCell

as value. A summary of the required steps and the resulting effort is given in Table 7.4.

Category Description / Metric

Changes in Code Base

Extended data model with property
nameForSorting to allow custom sorting
of files and folders with a separate prop-
erty

Number of Configuration Files 3
Number of overridden Classes 3
Number of new Classes 2
Number of additional Resources 2
Number of Lines for Stylesheet 395

Table 7.4: Overview of effort for product for the anonymous furniture department store.

7.4 Mercedes Benz Austria - MBÖ App2Date

7.4.1 Domain and Requirement Description

The marketing department of Mercedes Benz Austria2 decided to improve their selling process
to communicate a young spirit and a technological progress by using an iPad application. This
iPad application is used during the customer pitch to show videos, images and catalogues of
their cars as well as technical specifications or detailed price information.

For each customer a collection of files which the customer is interested in can be created and
sent to him after the customer pitch.

An iPad has been sent to every Mercedes salesperson in Austria as well as a download link to
the application. The fact that every salesperson has this application installed on the application
opens Mercedes a new way to communicate with their employees which are spread over Austria.
Therefore they wanted Apple’s Push Notification included into the application to inform their
employees about important news.

2http://www.mercedes-benz.at

http://www.mercedes-benz.at

90 CHAPTER 7. EVALUATION AND DISCUSSION

Since every salesperson will have an iPad with this application they wanted to use this appli-
cation not only to share product information but also business relevant information like memos
and other sales related documents. These documents were sent as a letter to all the salespersons.

Due to the fact that the application contains sensitive data containing information about the
sales process it is very important to Mercedes that only people are using this application which
are allowed to. Therefore a person who is getting an iPad with the application should first of
all register within the application with its name, contact information and location. After this
registration step the support team will be checking with the marketing department if the user is
eligible to use this application and if so decide which files the user is allowed to view. After
enabling the users right for the salesperson the application should continue the start up process
and sync the files.

The users of the application may not have a reliable internet connection during field work.
To prevent that a salesperson is not able to show the product information to a future customer all
files should be downloaded automatically during sync.

Mercedes Benz requested a Private Mode to prevent the salesperson from showing sensitive
files to customers like the above mentioned memos. The user should be able to switch to the
private mode by entering an assigned PIN. After successfully entering the pin the user should be
able to see all files, sensitive and nonsensitive ones. When leaving and reopening the application
the application should be in public mode again. The user interface should reflect the current
mode, by applying a blue color to the status bar at the bottom of the user interface elements.

Another customization of the user interface besides the adjustments to match corporate iden-
tity was requested by renaming the root element of the breadcrumb bar. The breadcrumb bar
gets used to quickly navigate to parent folders. The first button of this breadcrumbs is named All
Files per default. Mercedes Benz requested a renaming of this button as additional requirement.
Table 7.5 sums up the requirements of the customer and maps them to features of the feature
model.

Requirement Feature
Custom Sync Engine Sync Engine - Sync Type
Replication Sync Engine - Download Type
Customer Catalogue File Management - Custom Collection
Custom Registration Dialog Custom Component

Private Mode
Custom Component / Additional Behav-
ior and Functionality

Custom Status Bar Custom Component
User Interface Customization Custom Layout - Stylesheet

Table 7.5: Overview of requirements and features for Mercedes Benz Austria.

7.4. MERCEDES BENZ AUSTRIA - MBÖ APP2DATE 91

7.4.2 Customization Details

Mercedes Benz is not accessing these files in an existing file system and therefore asked for a
solution to host the files on a new server. Hence it was possible to provide the same server setup
as for AESchreder which allowed to use the same sync service. The sync engine for AESchreder
therefore got moved from the submodule for this product to the code base of the software product
line, it therefore became one of the core assets. The different server URL was configured using
a configuration file and the Configuration Loader mechanism.

The Custom Collection was used to allow the grouping of files for a customer into a collec-
tion. This module was included into the application by extending the Module.plist with the entry
CPNWorkbookModule which is the class name for this module. The module provider therefore
will load this module into the menu on every application start.

To display a registration dialog new classes and views were created. To override the startup
procedure of the application a subclass of the splash screen was created. This subclass verifies
if the device is already registered and and if the device has any groups associated. When no
such registration was done before a dialog is collecting data to identify the user and will create
a user token which is saved on the device. If a token can be found on the device the user
already has registered on the server. As long as this token has access groups associated the
application will continue launching and will be ready to use. This token which identifies the
user will be used after the registration process to automatically authenticate the device with the
server. To specify this splash screen as substitute of the existing one the configuration file of
the Class Loader got extended with the entry with the key CPNSplashViewController and the
value MBOSplashViewController.

To allow the user to switch between the public and private mode the
CPNMenuViewController3 got subclassed. This new subclass MBOMenuViewController was
extended with a switch to enter or leave the private mode. When enabling this switch a keypad
will be presented to verify the user’s PIN. Another view was created to represent this keypad.
The substitute for the menu screen was registered in the configuration file of the Class Loader.

The status bar also got overridden, to react on a change of the mode (from public to private
or vice versa). When enabling the private mode, the status bar will color itself in a blue color,
when switching back to the public mode, the color will be adjusted to black. The substitute for
the status bar also got registered for the Class Loader.

As an additional change to the code base the text of the first button in the breadcrumb bar
was exposed as additional property. Therefore it is possible to set this property to a custom value
by using the Configuration Loader. All other required design changes were made by creating a
stylesheet for the application. A summary of the required steps and the resulting effort is given
in Table 7.6.

3This class is responsible for displaying all modules in the left drawer as well as displaying a settings area for
the application.

92 CHAPTER 7. EVALUATION AND DISCUSSION

Category Description / Metric

Changes in Code Base
Moved sync engine to code base, since it
was used from several products. Exposed
title of first button of breadcrumb bar.

Number of Configuration Files 3
Number of overridden Classes 9
Number of new Classes 3
Number of additional Resources 6
Number of Lines for Stylesheet 509

Table 7.6: Overview of effort for product for Mercedes Benz Austria.

7.5 Critical Discussion

The evaluation brought up, that customers do have a lot of different requirements that have
to be implemented with custom components and heavy customization. Therefore a way had
to be found to easily exchange whole parts of the application with a substitute or extend the
application with new features that might not be reused from any other customer. The introduced
Module Concept is handling the problem with an extensible interface very well, but a lot of
requirements force changes on a lower abstraction level than a module is offering. In such cases
the Class Loader concept was the right choice to handle these kind of requirements. It is acting
like a tool to extend the base version of the software product line with the customer specific
needs.

This derivation of the original Subclassing variability mechanism does not seem as elegant
as an aspect-oriented approach a lot of scientific papers are analyzing. Since the lack of an
aspect-oriented approaches of Objective-C and the complexity and dependencies that might be
introduced by using such an approach, the chosen variability mechanisms are good alternatives
which are easy to use and understand.

While creating the different products for the evaluation, the time which was necessary to
build the products was a very interesting metric to observe. One negative impact on that factor,
was the presence of different sync engines. Although the class concept behind the sync engine
was very convincing, various SyncClients and SyncServices had to be implemented for the
different customers, due to the different sync services they are using. Nevertheless the concept
of SyncEngines, which are acting with sync services that have to conform to specific protocols,
was accurate.

The variation point, that was the most time-consuming one, was definitely the style sheet
feature (see Table 7.7). Beside the time, that had to be spent to create the timesheet, the chosen
implementation with UISS implies an additional effort in training to be able to use this frame-
work efficiently. The ability to define variables for colors and other properties to reuse them in
the stylesheet, has to be used, to make a modification of stylesheets more flexible. Another way
of creating the stylesheet should be analyzed, to decrease the time to market.

When comparing the three stylesheets generated for the scenarios it can be observed that

7.5. CRITICAL DISCUSSION 93

a lot of parts do not differ between them. The structure of the JSON file is nearly the same,
almost only the values of the entries of that dictionary differ. When heavily using variables to
define colors, shadows and background patterns a stylesheet template can be created to fasten
up the process of stylesheet creation. The creation of the stylesheet could also be handled by
generation. This generation could use definitions like colors as inputs and produce a generated
stylesheet as output. This output could be modified if necessary.

Generation in general is also mentioned a lot in scientific researches, unfortunately no tools
for such code generation exist for Objective-C and Cocoa Touch.

As mentioned in this thesis, configuration management is very important for software prod-
uct lines to track the different versions of core assets among the built products. The solution
developed during this thesis with the product related code and configuration in a separate GIT
submodule was working well during the evaluation. The build number is marking the version of
the code base and therefore also the version of the core assets. The applications version num-
ber is marking the version number of one single product and therefore is persisted inside the
separate submodule. The combination of product identifier (that is the bundle identifier of the
iOS application), the build number and the version number are marking releases of one specific
product. The fact, that for each release a tag is created, makes it easy to track all changes and
to rollback if necessary. In spite of this, tagging and the steps for creating a new product can be
simplified or partly automized to decrease possible failures.

Category Metric
Total Number of Changes in Code Base 5
Total Number of Configuration Files 10
Total Number of overridden Classes 14
Total Number of new Classes 6
Total Number of additional Resources 10
Average Number of Lines for Stylesheet 447

Table 7.7: Total effort for the three derived products.

CHAPTER 8
Conclusion and Future Work

Nowadays, data storage is shifted to the cloud. At the same time, mobile applications are used
within companies to improve their business processes. However, the mobile applications pro-
vided by the cloud-storage providers do not satisfy the needs of these companies because of
reasons such as mentioned in Chapter 1.

Therefore, in this thesis, requirements were analyzed from the domain of cloud storage-
based mobile applications. These requirements were collected from customer pitches and in
form of informal interviews with project managers. The collected requirements were grouped
into topics covering file synchronization, file browsing, meta information synchronization and
manipulation, file management and file organization, communication aspects, customizable user
interface and other custom modifications.

Afterwards, principles of software product lines were discussed in detail. The processes
of software product line engineering was examined and existing modeling techniques to model
variability were introduced. The variability mechanisms to implement variability in a software
product line were listed and explained. Other papers in the area of software product lines with a
mobile context were mentioned to distinguish this thesis from others. It is shown that no papers
exist which are discussing variability in combination with iOS or Objective-C. The papers found
which discuss software product lines in a mobile context are covering older technologies like
J2ME. An analysis including newer techniques which are related to multi-touch devices could
not be found.

This thesis also introduced the basic concepts of Objective-C to create a knowledge base for
the remaining chapters. This knowledge base was used to show how variability mechanisms
can be implemented with Objective-C. These implementations were combined with object-
oriented programming techniques and design patterns to create tools to introduce variability
to a Objective-C-based mobile software product line.

The established requirements were used to derive features for the application. With these
features a feature model for a software product line was constructed. After this, the features
were mapped to the implementation techniques developed before. This mapping showed how
variability can be introduced efficiently in mobile applications. This software product line was

95

96 CHAPTER 8. CONCLUSION AND FUTURE WORK

evaluated by using the descriptive evaluation method [HMPR04]. In particular, three scenarios
were chosen to derive products from the software product line. These products have satisfied the
customer’s requirements, therefore, this evaluation underlines the applicable of the meet design
decisions.

In this chapter, conclusions are drawn about software product line engineering in a mobile
context and an outline is drawn about future work.

8.1 General Observations

The decision to plan and implement a software product line should be well-considered. The ex-
ample given in this thesis shows, that an implementation of such a product line is more complex
than for standard software products, because variation points have to be kept in mind, the choice
of variability mechanism has to be well-chosen and the architecture has to be more flexible,
extensible and maintainable.

Another key aspect is represented by the selection of the scope and the features of the
product line. When making the wrong decisions, core assets might be used only in a couple of
products (in case there are too many of them), or a lot of core assets have to be developed while
implementing new products (in case there are too little of them).

An observation while writing this thesis, talking to customers and selling the product line
was made, that a well-chosen feature model is also acting as marketing tool. Customers rethink
their requirements and tend to add features, that they haven’t planed to integrate in their applica-
tion before. It also seems, that they adjust their needs to match the predefined solutions if they
differ not too much.

Another benefit can be gained of new features customers are requesting. As part of the feed-
back loop of the application engineering, some of them might be very interesting to integrate as
core assets into the product line. Hence the much more fine-grained file action requirement from
AESchreder was integrated as core asset and indeed Mercedes was also requesting a similar
control of allowed actions on files and folders.

8.2 Challenge of Mobile Applications

A lot of challenges were brought up while developing the feature model of the application and
also while implementing the different variability mechanisms. Besides the features of an applica-
tion, the user interface and interaction is the most important part of a mobile application. Most
of the features of such an application are present inside the user interface, therefore variability
which comes with these features also influences the applications look. Creating a concept, how
the user interface should react on extensibility and changes through the introduced variability
was one of the most challenging parts.

Not only the variability introduced passively into the user interface was challenging, but also
the actively introduced, namely the ability to apply different styles to the interface. Customers,
which want to invest in an enterprise application want to have their corporate identity represented
in the application. They do not want a standard interface, but want to have their colors, logos,
fonts, etc. present in the application, the application should look like a product of theirs.

8.3. FUTURE WORK 97

8.3 Future Work

As mentioned in Chapter 7, the stylesheet creation is time-consuming and error-prone, therefore
a method to generate the stylesheet by defining a set of colors will be provided. This might be
extended by an application, which acts like a wizard. This wizard should guide the developer
through different steps, where the developer can choose colors and gradient types for different
areas of the application. At the end of the wizard a stylesheet should be generated, which can be
modified to get a more fine-grained result.

A what-you-see-is-what-you-get (WYSIWYG) editor is desirable, but would lead to a huge
amount of cost, which will only be amortized after a large number of products built from the
software product line. Therefore such an editor will not be economically efficient, but very
conformable for the developer or designer.

The development of new core assets and reevaluating of existing ones after building new
products should always be kept in mind to improve the quality of the software product line.

The benefits, which may come with porting this software product line to the iPhone will be
evaluated. A Web(comp)anion, a web version of the software product line, was also discussed
and may be a step to make in the future.

Bibliography

[AC04] Michal Antkiewicz and Krzysztof Czarnecki. FeaturePlugin: feature modeling
plug-in for Eclipse. In Proceedings of the 2004 OOPSLA workshop on Eclipse
Technology eXchange, ETX 2004, Vancouver, British Columbia, Canada, October
24, pages 67–72, 2004.

[AMJC+05] Vander Alves, Pedro Matos Jr, Leonardo Cole, Paulo Borba, and Geber Ramalho.
Extracting and evolving Mobile Games product Lines. In Software Product Lines,
pages 70–81. Springer, 2005.

[App13a] Apple Inc. App Distribution Guide, 2013. http://developer.
apple.com/library/ios/documentation/Cocoa/Conceptual/
Notifications/Notifications.pdf.

[App13b] Apple Inc. Core Data Programming Guide, September 2013. https:
//developer.apple.com/library/ios/documentation/cocoa/
conceptual/CoreData/CoreData.pdf.

[App13c] Apple Inc. Key-Value Coding Programming Guide, 2013. https:
//developer.apple.com/library/mac/documentation/cocoa/
conceptual/KeyValueCoding/KeyValueCoding.pdf.

[App13d] Apple Inc. Notification Programming Topics, 2013. http://developer.
apple.com/library/ios/documentation/IDEs/Conceptual/
AppDistributionGuide/AppDistributionGuide.pdf.

[App13e] Apple Inc. Objective-C Runtime Programming Guide, 2013. http:
//developer.apple.com/mac/library/documentation/cocoa/
conceptual/ObjCRuntimeGuide/ObjCRuntimeGuide.pdf.

[App13f] Apple Inc. Programming with Objective-C, 2013. http://developer.
apple.com/library/ios/documentation/Cocoa/Conceptual/
ProgrammingWithObjectiveC/ProgrammingWithObjectiveC.
pdf.

[Bas96] Paul G Bassett. Framing Software Reuse: Lessons From the Real World. Prentice-
Hall, Inc., 1996.

99

http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Notifications/Notifications.pdf
http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Notifications/Notifications.pdf
http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Notifications/Notifications.pdf
https://developer.apple.com/library/ios/documentation/cocoa/conceptual/CoreData/CoreData.pdf
https://developer.apple.com/library/ios/documentation/cocoa/conceptual/CoreData/CoreData.pdf
https://developer.apple.com/library/ios/documentation/cocoa/conceptual/CoreData/CoreData.pdf
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/KeyValueCoding/KeyValueCoding.pdf
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/KeyValueCoding/KeyValueCoding.pdf
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/KeyValueCoding/KeyValueCoding.pdf
http://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AppDistributionGuide.pdf
http://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AppDistributionGuide.pdf
http://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AppDistributionGuide.pdf
http://developer.apple.com/mac/library/documentation/cocoa/conceptual/ObjCRuntimeGuide/ObjCRuntimeGuide.pdf
http://developer.apple.com/mac/library/documentation/cocoa/conceptual/ObjCRuntimeGuide/ObjCRuntimeGuide.pdf
http://developer.apple.com/mac/library/documentation/cocoa/conceptual/ObjCRuntimeGuide/ObjCRuntimeGuide.pdf
http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/ProgrammingWithObjectiveC.pdf
http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/ProgrammingWithObjectiveC.pdf
http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/ProgrammingWithObjectiveC.pdf
http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/ProgrammingWithObjectiveC.pdf

100 BIBLIOGRAPHY

[BFG00] Joachim Bayer, Oliver Flege, and Cristina Gacek. Creating Product Line Architec-
tures. In Proceedings of Software Architectures for Product Families, International
Workshop IW-SAPF-3, Las Palmas de Gran Canaria, Spain, March 15-17, pages
210–216. 2000.

[BFG+01] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J. Henk Obbink, and
Klaus Pohl. Variability Issues in Software Product Lines. In Software Product-
Family Engineering, 4th International Workshop, PFE 2001, Bilbao, Spain, Octo-
ber 3-5, Revised Papers, pages 13–21. 2001.

[BKPS04] G Böckle, P Knauber, K Pohl, and K Schmid. Software-Produktlinien: Methoden,
Einführung und Praxis. dpunkt.verlag, 2004.

[CGR+12] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wasowski. Cool features and tough decisions: a comparison of variability mod-
eling approaches. In Proceedings of sixth International Workshop on Variability
Modelling of Software-Intensive Systems, Leipzig, Germany, January 25-27, pages
173–182, 2012.

[CHE04] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Staged Config-
uration Using Feature Models. In Proceedings of Software Product Lines, Third
International Conference, SPLC 2004, Boston, MA, USA, August 30-September 2,
pages 266–283. 2004.

[CJ01] Matthias Clauß and Intershop Jena. Modeling variability with uml. In GCSE 2001
Young Researchers Workshop. Citeseer, 2001.

[CK05] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-based feature mod-
eling and constraints: A progress report. In Proceedings of the 2005 OOPSLA
Workshop on Software Factories, San Diego, California, USA, October 17, 2005,
2005.

[Cla01a] Matthias Clauß. A Proposal for Uniform Abstract Modeling of Feature Interac-
tions in UML. In Proceedings of the ECOOP 2001 Workshop on Feature Inter-
action in Composed Systems (FICS 2001), Budapest, Hungary, June 18-22, 2001,
pages 21–25, 2001.

[Cla01b] Matthias Clauß. Generic Modeling using UML Extensions for Variability. In
Workshop on Domain Specific Visual Languages at OOPSLA, volume 2001, 2001.

[Cla01c] Matthias Clauß. Untersuchung der Modellierung von Variabilität in UML, 2001.

[CN02] Paul Clements and Linda Northrop. Software Product Lines: Practices and Pat-
terns. Addison-Wesley, 2002.

[Cor93] Software Productivity Consortium Services Corporation. Reuse-driven Software
Processes Guidebook: SPC-92019-CMC, Version 02.00. 03. Software Productiv-
ity Consortium Services Corporation, 1993.

BIBLIOGRAPHY 101

[CP06] Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based model
templates against well-formedness OCL constraints. In Proceedings of Gener-
ative Programming and Component Engineering, 5th International Conference,
GPCE 2006, Portland, Oregon, USA, October 22-26, pages 211–220, 2006.

[DGR07] Deepak Dhungana, Paul Grünbacher, and Rick Rabiser. DecisionKing: A Flexible
and Extensible Tool for Integrated Variability Modeling. In Proceedings of First
International Workshop on Variability Modelling of Software-Intensive Systems,
VaMoS 2007, Limerick, Ireland, January 16-18, pages 119–127, 2007.

[Eic12] Michael Eichberg. Enterprise application design. Technische Universität Darm-
stadt, Department of Computer Science, Germany, 2012.

[GA01] Cristina Gacek and Michalis Anastasopoules. Implementing Product Line Vari-
abilities. In Proceedings of the 2001 Symposium on Software Reusability (SSR
’01): Putting Software Reuse in Context, pages 109–117, 2001.

[GHJ+95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, et al. Design Pat-
terns. Elements of Reusable Object-Oriented Software. Addison-Wesley Boston;
MA, 1995.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science
in Information Systems Research. MIS Quarterly, 28(1):75–105, 2004.

[IKPJ11] Paul Istoan, Jacques Klein, Gilles Perouin, and Jean-Marc Jézéquel. A
Metamodel-based Classification of Variability Modeling Approaches. In Proceed-
ings of VARY International Workshop affiliated with ACM/IEEE 14th International
Conference on Model Driven Engineering Languages and Systems (MODELS’11),
pages 23–32, 2011.

[Jaa02] Ari Jaaksi. Developing Mobile Browsers in a Product Line. IEEE Software,
19(4):73–80, 2002.

[JGJ97] Ivar Jacobson, Martin L. Griss, and Patrik Jonsson. Software Reuse - Architecture,
Process and Organization for Business. Addison-Wesley-Longman, 1997.

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical report, Carnegie-Mellon University Software Engineering In-
stitute, Pittsburgh, PA, USA, 1990.

[KKL+98] Kyo Chul Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moon-
hang Huh. Form: A feature-oriented reuse method with domain-specific reference
architectures. Ann. Software Eng., 5:143–168, 1998.

102 BIBLIOGRAPHY

[KL07] Birgit Korherr and Beate List. A UML 2 Profile for Variability Models and their
Dependency to Business Processes. In Proceedings of 18th International Work-
shop on Database and Expert Systems Applications (DEXA 2007), 3-7 September,
Regensburg, Germany, pages 829–834, 2007.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming.
ECOOP’97—Object-Oriented Programming, pages 220–242, 1997.

[MHP+07] Andreas Metzger, Patrick Heymans, Klaus Pohl, Pierre-Yves Schobbens, and Ger-
main Saval. Disambiguating the Documentation of Variability in Software Product
Lines: A Separation of Concerns, Formalization and Automated Analysis. In RE,
pages 243–253, 2007.

[Nor02] Linda M. Northrop. Sei’s software product line tenets. IEEE Software, 19(4):32–
40, 2002.

[Obj13] Object Management Group. Object Constraint Language (OCL) – ISO/IEC 19507,
2013. http://www.omg.org/spec/OCL/ISO/19507/PDF.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank J van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[Pou97] Jeffrey S. Poulin. Measuring software reuse - principles, practices, and economic
models. pages I–XIX, 1–195, 1997.

[Rei97] Donald J Reifer. Practical Software Reuse. John Wiley & Sons, Inc., 1997.

[Sch95] Douglas C. Schmidt. Using Design Patterns to Develop Reusable Object-Oriented
Communication Software. Commun. ACM, 38(10):65–74, 1995.

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A Comparison of Decision
Modeling Approaches in Product Lines. In Proceedings of Fifth International
Workshop on Variability Modelling of Software-Intensive Systems, Namur, Bel-
gium, January 27-29, pages 119–126, 2011.

[SvGB05] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A Taxonomy of Variability
Realization Techniques. Softw., Pract. Exper., 35(8):705–754, 2005.

[Tra95] Will Tracz. Confessions of a Used-Program Salesman: Lessons Learned. 1995.

[WL99] David M Weiss and Chi Tau Robert Lai. Software Product Line Engineering: A
Family based Software Engineering Process. Addison-Wesley, 1999.

[Wor13] World Wide Web Consortium. XML Path Langauge (XPath) 2.0, 2013. http:
//www.w3.org/TR/xpath20/.

[You05] Trevor J Young. Using AspectJ to build a Software Product Line for Mobile De-
vices. PhD thesis, The University of British Columbia, 2005.

http://www.omg.org/spec/OCL/ISO/19507/PDF
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/

BIBLIOGRAPHY 103

[Zar13] Marcus S. Zarra. Core Data: Data Storage and Management for iOS, OS X, and
iCloud, volume 2. Pragmatic Bookshelf, 2013.

	Abstract
	Kurzfassung
	Contents
	1 Introduction and Motivation
	1.1 Problem Statement
	1.2 Outline of this Thesis

	2 Requirements Analysis
	2.1 File Syncing and File Browsing
	2.2 Meta Information Synchronization and Manipulation
	2.3 File Management and File Organization
	2.4 Security
	2.5 Communication Aspects
	2.6 Customizable User Interface
	2.7 Custom Modifications
	2.8 Analytics Services
	2.9 Non-Functional Requirements
	2.10 Overview of Requirements

	3 Related Work
	3.1 Software Product Lines
	3.2 Variability in Software Product Lines
	3.3 Variability Modeling Techniques
	3.4 Software Product Lines and Variability Mechanisms in Mobile Context

	4 Objective-C Principles
	4.1 Key-Value Coding (KVC)
	4.2 Objective-C Runtime
	4.3 Class Extension with Categories
	4.4 Notifications
	4.5 UIAppearance

	5 Implementing Variability in Objective-C
	5.1 Inheritance
	5.2 Parameters and Configuration
	5.3 Interceptors
	5.4 UIAppearance Wrapper

	6 Variability Model for multi-client capable Mobile Applications
	6.1 Feature Model of the Mobile Application
	6.2 Mapping Features and Variability Mechanisms
	6.3 Realization of the Mapping
	6.4 Configuration Management

	7 Evaluation and Discussion
	7.1 Product Derivation
	7.2 AESchreder Austria
	7.3 Anonymous Furniture Department Store
	7.4 Mercedes Benz Austria - MBÖ App2Date
	7.5 Critical Discussion

	8 Conclusion and Future Work
	8.1 General Observations
	8.2 Challenge of Mobile Applications
	8.3 Future Work

	Bibliography

