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Abstract

Invariant genereation is a critical problem in proving different properties for
programs with loops, properties including correctnes. The problem becomes
harder with the incresing numbers of quantifiers in the property to be proven.
In this paper we study and combine different methods of invariant generation
in order to obtain stronger properties.
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Kurzfassung

Invariant generiert ist ein kritische Problem für Programmen mit Schleife
zum Beweisen der Eigenschaften, inclusive die Richtigkeit. Die problem wird
schwerer bei hohe Anzhal des Quantoren in die geprüfte Eigenschaft. In diese
arbeit wir studiere diese Problem und versuchen combinieren verschieden
Methoden für schwarer invariants zu beweisen.
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1 Introduction

The complexity of software systems is in a continuous grow. Making sure
that different pieces of the same system will work together properly is a
hard task. The development of software systems imply the work of more
people working at different parts of it, using computer, networks, physical
devices, and over millions of lines of code in various languages. Integrating,
understanding and ensuring the reliability of such a system are necessary
task in order to make it useful.

In this paper we give attention to the task of ensuring reliability. In the
past years a lot of interest was given to this task and there were developed
different methods to do it, but one challenge that was not yet overcome is
the analysis of loops. In particular programs dealing with arrays use loops
to process the elements, and on the strength to the unbounded nature of
this data structures analyzing and inferring properties for elements becomes
a challenging problem on its own.

One way to approach this problem is to bound the loop [BCC+03], un-
folding it just a limited number of times and afterwards analyzing the new
obtained program as if no loop would occur in it. Although this approach is
successfully used in model checking techniques, the limitations of applying
it consist in the loss of completeness of the algorithm. An informal explana-
tion of this fact is that obtaining a proof that a bounded subset of elements
do not have a certain property is a result strong enough to consider that the
property does not hold for the entire loop, but if the property holds for the
first n unrollings of the loop it may be the case that it will be falsified in
one of the following iterations that were cut off by the bound.

Another approach to reason about program loops is to statically analyze
the code and extract loop properties automatically. In this thesis we follow
this approach. We are going to analyze and compare three methods that
automatically extract properties for loops. These methods are the symbol
elimination method of [KV09], the constraint-based invariant generation ap-
proach of [LRCR13], and the postcondition-based method of [FM10]. We
analyze and compare these approaches on series of challenging academic
examples which are considered difficult to reason about.

The symbol elimination technique is an automatically mechanism that
generates invariants based on the static analysis of programs, that does not
require other information from the user about the code analyzed. For this
method we use a saturation theorem prover and we choose Vampire not only
for it’s capability to reason with different theories but also due to the fact
that is one of the fastest provers awarded several times in competitions.

The constraint-based method first analyses the code discovering every
possible path and checking if properties hold in some key points along them.
In the next chapters we are going to explain where and why a point in the
path becomes such a key point. Properties that are checked are constructed
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based on a template following some rules that will also be presented later in
the paper.

The third method is the only one from the three presented that needs
additional input from the user, namely a postcondition in the form of a
formula. The program makes certain changes in the formula, that will be
described later on, in order to find valid invariants for the program.

Using the invariants discovered by the constraint-based and postcondition-
based methods, in this thesis we further extend the power of symbol elim-
ination in order to reason about more complex loops and invariants than
in [KV09]. For doing so, we strengthen the underlining first-order theory
reasoning engine of symbol elimination and add additional mathematical
theorems and axioms to the symbol elimination problem. The symbol elim-
ination problem is then further fed into a saturation theorem prover and
is successfully used to prove the intended loop invariants and properties of
the program. Our results show that theory reasoning in first-order theorem
proving is a very challenging problem and requires a good understanding of
the necessary theory axiomatizations.
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2 Preliminaries

In this section we give a brief overview of SAT solving, SMT solving and
Saturation theorem prover. Also we give insight of the mechanism of Boogie
theorem prover. These are necessary for further understanding the mecha-
nism of the tools we are studying in this paper, and since all of them have
at their core first-order logic we also present its syntax and semantics.

We present all the above in a step wise manner starting with proposi-
tional logic. Based on the syntax and semantic of propositional logic it is
easier to understand the ones of first-order logic, since the latter one ex-
tends the expressive power of the former by introducing new characters and
concepts.

In the same step wise manner we present SAT-solving and SMT-solving.
The first problem is related to propositional logic, while the second one
makes use of the results obtained in SAT-solving as a subroutine in the
algorithm for solving problems encoded in first-order logic.

Also we present the mechanism of a saturation theorem prover, The
understanding of this concept is necessary in order to understand the differ-
ences between the methods of invariant generation and the properties that
make them efficient in different types of problems.

Another point that is touched in this chapter is the higher order logic
theorem prover Boogie, that has more expressive power than the other tools
introduced in this paper and also uses a language specially created for it
that has a syntax harder to understand than the others.

We are going to present how these concept interact to each other and
with the underlying theory, relating their results with the concept of program
verification.

2.1 Propositional logic

Is a part of mathematics important for program verification. The least com-
plex component in the syntax of propositional [DW50] logic is an atom.
Every atom has a truth value, either true or false, and it represents a state-
ment (such as “ Roses are red.”) without taking into account its internal
structure.

In order to get more complex propositions the atoms can be connected
with connectives. The propositional syntax is defined as follows:

1. If p is an atom, then p is a proposition;

2. > and ⊥ are propositions;

3. If p is a proposition, ¬p is a proposition;

4. if p and q are propositions, then p ◦ q is a proposition, where ◦ ∈
{∧,∨,⇒,⇔}
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Given two propositions, p and q, the following statements hold for the
described connectives:

• ¬ (“negation”), if ¬p is true if p is false, and false otherwise;

• ∧(“and”), if p is true and q is true then p ∧ q is true, otherwise p ∧ q
is false;

• ∨ (“or”), if one of the the two propositions are set to true then p ∨ q
is true, otherwise p ∨ q is false;

• ⇒ (“if...then”), if p is true and q is true, or if q is false p⇒ q is true,
otherwise is false;

• ⇔ (“if and only if...then”), if p and q are set to the same truth value
then p⇔ q is true, otherwise is false;

To make the propositions easier to read and write, and to save parenthe-
ses the connectives have priorities as follows: ¬, ∧, ∨, ⇒, ⇔(meaning that
¬ binds stronger than ∧, ∧ binds stronger than ∨, etc.).

The problem of determining if the atoms that form a proposition can be
given truth values in such a way that the proposition would evaluate to true
is called satisfiability problem (abbreviated as SAT).

Example: p, r, q are atoms in propositional logic, and p ∨ q ⇒ r ∨ q
is a syntax correct formula. Choosing the values as follows: p → false,
r → false and q → true will cause the formula to evaluate to true (since
p ∨ q evaluates to true, r ∨ q evaluates to true).

Satisfiability problem is an NP-complete problem[Coo71]. The complex-
ity and nature of this problem makes it useful in modeling different problems
such as digital circuits, constraint satisfaction problems, reasoning about
specifications.

2.2 SAT solvers

These are tools that are constructed to solve SAT problems [ES04]. Despite
the high complexity of the problem, very good results were obtained in
practice with yearly improvements of the solving algorithms and heuristics
for the SAT-solving contest.

In figure 1 we present a scheme on how a SAT solver is used to solve a
problem.

The first step is to abstract the problem into a set of propositions. Usu-
ally the problem can not be abstracted straightforward so some simplifica-
tion is needed. After finding a suitable representation of the problem as a
set of formulae use a SAT solver to find a solution. If a solution is not find
specific improvements are made in order to get a more efficient search.

The SAT solvers take the input formulae in a special form named con-
junctive normal form. Every propositional formula can be transformed in
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Figure 1: SAT solver structure

an equi-satisfiable formula that satisfies the conditions of the CNF [G.S83].
A formula is said to be in conjunctive normal form if it is a conjunction
of clauses, where a clause is a disjunction form from atoms or negation of
atoms.

The next algorithm called boolean constant propagation(BCP) [TH06]
is a part of the algorithm that stays at the basis of a lot of modern SAT
solvers.This is a very short algorithm with three steps that repeat as long
as possible:

1. find clause that contains a single literal (also named unit clause);

2. eliminate all clauses that contain the literal;

3. in all other clauses eliminate the occurrence of the negation of the
literal;

The DPLL[DL62] algorithm was developed in 1962 and still used to this
day in the state of the art SAT solvers. One variant of the algorithm is this:

DPLL(F)
F := BCP(F)
i f F =>

re turn s a t i s f i a b l e
i f ⊥ ∈ F

return u n s a t i s f i a b l e
p ick remaining v a r i a b l e x and l i t e r a l l ∈ {x , ¬ x}
i f DPLL(F ∧ { l }) r e tu rn s s a t i s f i a b l e

re turn s a t i s f i a b l e
re turn DPLL(F ∧ {¬ l })

The idea of the algorithm is simple and efficient. First boolean constant
propagation is applied, if there are no more clauses remaining, the algorithm
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returns satisfiable, if a clause becomes empty after this step the algorithm re-
turns unsatisfiable. Otherwise a literal is selected from the remaining clauses
and DPLL is called on these clauses plus an extra unit clause containing the
selected literal.

The selection of the literal has a great significance in the efficiency of
the SMT solver. A lot of heuristics were developed an studied in order to
get better results. These are a few ideas that were used for the heuristics:

• Dynamic Largest Individual Sum[MSS99]: the literal that appears
most often in the unsatisfied clauses at the current point is chosen;

• Jeroslov-Wang heuristic[Wan95]: the choices are made such that a unit
clause is soon obtained;

• VSIDS[MMZ+11]: is a complex heuristic that takes into account par-
tial assignments that are unsatisfiable, and based on a directed acyclic
graph of the solution it chooses a literal that is part of the unsatisfied
clause;

Although SAT cover a significant range of problems, propositional logic
is not expressive enough to cover other problems of practical interest, this
is why first order logic got attention for this purpose. Since the problem of
satisfiability is harder in this logic there were restrictions made with respect
to some theory. This new problem is referred to as Satisfiability Modulo
Theory (SMT)[dMB11].

The first order logic (FOL) syntax is more complex[And02]. There are
two extra logical symbols to propositional logic: the quantifiers ∀ (universal-
for representing judgments that are true for all objects) and ∃ (existential-
for representing particular judgments). There are also two other types of
symbols: functions and predicates. Function symbols together with the
predicates symbols along with their arity form the signature.

Terms in FOL are defined inductively as follows:

• every variable is a term;

• if t1, t2...tn are terms and f is a function symbol with arity n then
f(t1, t2, ...tn) is a term;

The signature is a countably set of predicate symbols and function sym-
bols together with their arity.

The set of formulas are defined inductively in the following way:

• > and ⊥ are formulae;

• if t1, t2...tn are terms and p is a function symbol with arity n then
p(t1, t2, ...tn) is a formula;

• if φ is a formula then ¬φ is a formula;
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• if φ and ϕ are formulae then also φ◦ϕ is a formula where ◦ ∈ {∧,∨,⇒
,⇔};

• if φ is a formula and x a variable then ∃xφ and ∀xφ are formulae;

A variable is called free if it is not bounded by a quantifier (∃, ∀).
Example: ∀x, p(x) ⇒ p(y), x is bounded by the existential quantifier

while y is a free variable.
The semantics of a first order logic formula is given by an interpretation.

The interpretation consist of an non-empty domain U and an interpretation
function I().

The interpretation function maps in the following way given the domain
U :

• every function symbol of arity 0 (constant symbol) with a element from
the domain;

• every for every function symbol f with arity > 0 I(f) : Un → U
(for every n combination of terms the value of the function for the
combination is a value in the domain);

• for every predicate symbol p with arity n I(p) : Un → {1, 0} (for every
n combination of terms the value of the function for the combination is
a value in the set {1, 0}, 1 representing true and 0 representing false)

The free variables can be interpreted in two ways: either universally
quantify the formula or bound the variable to a constant in the domain.

A theory in first order logic is considered any set of formulae that do
not contain free variables[DP60]. A formula without any free variables is
also called sentence.

A SMT-solver is a tool that takes as input a set of first order formulae
and gives as output the answer satisfiable or unsatisfiable, taking into ac-
count information and methods of some first order theories when needed.
In figure 2 there is the structure of a modern SMT-solver [DdM06]. The
core solver in the figure refers to a solver that can solve the satisfiability
problem for equality and uninterpreted functions theory, while the satellite
solver handles other theories such as arithmetical, arrays, bit vectors, or
data types. Let there be observed that the satellite solver exchanges infor-
mation only with the core solver, the core solver communicates both with
the satellite solver and the SAT-solver, and the SAT solver communicates
only with the core solver.

A general algorithm for SMT solver [AAR09]is presented in the following
lines:

SAT−value SMT solver (T−formula φ){
φ

′
= converttocnf(φ)

7



Figure 2: SMT solver structure

φp=T2P(φ
′
)

whi l e (DPLL(φp ,µp)==SAT){
〈ρ, η〉 = T − solver(P2T (µp ) )

i f (ρ == SAT ) re turn sat
φp = φp ∧ T2P (¬η)
}
re turn unsat

}

The algorithm takes as input a a formula in the theory T an outputs
satisfiable or unsatisfiable. The first step is to convert the formula in it’s
CNF form and store this form in a new variable φ

′
. φ

′
is abstracted into

its propositional form (by the (T2P ) function) and stores the new proposi-
tional formula in φp. The DPLL algorithm takes as input the propositional
formula and either returns unsatisfiable which makes the initial algorithm
to return unsatisfiable, or it returns a satisfying assignment on the literals
of the formula. The T−solver then checks the mapping of the formula back
to the theory (with the assignment proposed by SAT-solver) and either re-
turns satisfiable, which causes the main algorithm to exit with the status
satisfiable, or it returns a set η of literals that caused an inconsistency in the
theory. η is abstractive to propositional logic and its negation is conjuncted
with the rest of the abstractisation of the formula formula, and DPLL is
called again on the new obtained formula.

Given a hypotheses (in this case this is the formula) if we can reach the
empty set (refutation) by using an inference system, this would give us a
refutation proof. An inference system is a set of inference rules. An inference
rule is can be described as being an n-ary relation on formulas, with n ≥ 0.
The elements of such relations are called inferences and usually written as
F1...Fn
F .
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Algorithms were developed in order to obtain interpolants and invariants
from the proofs of unsatisfiability outputted by an SMT-solver.

A theorem prover is a tool used to prove theorems in different logics. A
specific type of theorem provers are the saturation theorem provers. We say
that a set of formulas is saturated with respect to an inference system I if
we can find another set of formulas containing the initial one that is closed
under inference with respect to I[KV09].

The saturation theorem prover.Vampire, used for this study is using a su-
perposition inference system. In order to give a brief description of this sys-
tem first we introduce the notion of simplification ordering on terms[KVar].
If an ordering � has the following properties it is considered a simplification
ordering:

• is well-founded, that is there exists no infinite sequence of terms t0, t1, . . .
such that t0 � t1 � . . .;

• is monotonic: if l � r, then s[l] � s[r] for all terms s, l, r;

• is stable under substitutions: if l � r, then lθ � rθ (where a substitu-
tion θ is considered a simultaneously replacement of all occurrences of
a set of terms with another corresponding set of terms,respectively, in
a formula);

• has the subterm property: if r is a subterm of l and l 6= r, then l � r.

A selection function is a function that selects one or more literals from
a non-empty clause. In what follows, selected literals will be underlined (if
L is a selected literal then it would be written as L). A unifier of two
expression is a substitution that would make the expressions equal. The
inference rules for a superposition inference system are the following:

Resolution:

A ∨ C1 ¬A′ ∨ C2

(C1 ∨ C2)θ

where θ is a mgu of A and A′.
Factoring :

A ∨A′ ∨ C
(A ∨ C)θ

where θ is a mgu of A and A′.
Superposition:

l = r ∨ C1 L[s] ∨ C2

(L[r] ∨ C1 ∨ C2)θ

l = r ∨ C1 t[s] = t′ ∨ C2

(t[r] = t′ ∨ C1 ∨ C2)θ
l = r ∨ C1 t[s] 6= t′ ∨ C2

(t[r] 6= t′ ∨ C1 ∨ C2)θ

9



where the following hold: θ is an mgu for l and s, s is not a variable,
rθ � lθ, in the first rule L[s] is not an quality literal, in the last two rules
t′θ � t[s]θ.

Equality Resolution:

s 6= t ∨ C
Cθ

where θ is the mgu of s and t.
Equality factoring :

s = t ∨ s′ = t′ ∨ C
(s = t ∨ t 6= t′ ∨ C)θ

where θ is an mgu of s and s′, tθ � sθ, t′θ � tθ.
A set S of clauses is saturated with respect to an inference system if for

every possible combination of the clauses and for every rule in the system,
a clause that is already in the system is inferred. A saturation algorithm
is considered fair if all possible combinations of clauses and every rule get
a chance to be applied at one point. In order for such an algorithm to be
useful in practice it needs to besound and complete. A complete saturation
algorithm will eventually derive the empty clause if the set of clauses is
unsatisfiable, and a sound saturation algorithm will correctly conclude that
the set of clauses is unsatisfiable if the empty clause is derivable from it. A
complete and sound saturation algorithm can have the following outputs in
practice:

• unsatisfiable, if the empty clause is generated;

• satisfiable, if the set of clauses is saturated;

• unknown, if the algorithm runs forever (until it runs out of resources)
and the empty clause is not derived.

2.3 Boogie

Is a modular reusable verifier for object-oriented Programs [BCD+05]. This
tool is made from different components: a source programming language, its
usage rules and formal semantics, a logical encoding suitable for automatic
reasoning, abstract domains for program analysis and property inference,
decision procedures for discharging proof obligations, and a user interface
that lets a user understand the results of the verification process[BMSW10].

A representation of how all the components of Boogie interact is repre-
sented in figure 3.

The source programming language, Spec#, is a high-level, strong typed
language. It is a superset of the C# programming language, giving also
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Figure 3: Boogie pipeline

the possibility to write preconditions, postconditions and object invariants.
Apart from the compilers checks for static types, it also creates conditions
for the dynamic types as part of the target code. Boogie tries to checks
statically also the dynamic types properties enforced by the compiler along
with the ones provided by the user and those defined by the virtual machine.
The source code is compiled into CIL language.

The CIL code is obtained from an abstract syntax tree either directly
from the compiler, which enables Boogie to work as part of the compiler and
offer information to the user in a design-time manner, or from an already
compiled .dll or .exe file.

The intermediate language is obtained by translating the CIL code in
BoogiePL code. This process enables the writing of new statements: as-
sert and assume. The assert statements are encode conditions that will be
checked by the program verifier, and the assume statements encode prop-
erties that can be used by the verifier, these properties being enforced by
the source language and the verification process. Also BoogiePL permits
the encoding of theories and mathematical symbols. Since BoogiePL has a
textual representation small changes can be made in this file without dam-
aging the Spec# code. Also the textual representation makes Boogie useful
for other verifier, making the verification conditions reusable. At this point
the code is replaced with the proof task.

The BoogiePL code is transformed into first order logic properties. For
this process loop invariants are needed, and since providing this by hand
is troublesome and sometimes impossible, Boogie offers a framework that
automatically infers loop invariants from BoogiePL code, written in the
form of “assume” statements.

The next step is to get verification condition from every basic block of

11



the program. These are written in first order logic with arithmetic, and since
there are more ways to write the same condition, the chosen form affects
the performance of the theorem prover. Also the encoding of the conditions
are made in such a way that if the verification fails a trace of failure can be
mapped back in the original input language. A failure in verification can
also be only spurious since the theorem prover is incomplete, and also it
might be the case the the theorem prover could not do the task due to the
fact that there were not enough resources.
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3 Overview of Invariant Generation Methods

There is a large variety of invariant generation approaches researched in the
past years. In this chapter we present three of this methods which cover a
large area of invariants that can be inferred and represent the state of the art
in their representative domain. The tools implementing this methods were
made available by their respective researchers. Although other methods were
considered for this thesis the tools implementing them were not available at
the moment from different reasons. The approach suggested has one of the
following starting points for obtaining the result: post-conditions, saturation
theorem proving, use of predefined templates. In what follows we are going
to give an insight of the idea used in each of the three methods.

3.1 GinPink

This method makes use of the postconditions provided by the user in order
to find an invariant for a certain loop in the procedure [FM10].

There are four different heuristics that are used to weaken the postcon-
dition: constant relaxation, variable aging, uncoupling, term dropping.

Constant relaxation replaces a constant in the postcondition with a vari-
able. A constant is considered a variable that is not modified by the loop,
and a variable - in this context- is a variable modified by the loop. An
example were this heuristic is used is:

procedure ArrayInit <tt> ( A: array tt, left: int,

right: int, index: int) returns (i:int)

requires left <= right;

ensures (forall k: int :: k != n ==> A[k] == 0);

{ var i: int;

i:= left; index:= left; A[left]=0;

while(i<= right)

invariant (index <= i);

{

i=i+1;

A[i]:=0;

}

}

In this program all elements of an array are initialized with the value
0. By relaxing the constant n in the postcondition by the variable i an
invariant is obtained.

In some cases just substituting a constant with a variable does not yield
an invariant, depending on the update time of the variable. Variable aging
replaces a constant with an expression involving a variable.

13



procedure ArrayInit <tt> ( A: array tt, left: int,

right: int, index: int) returns (i:int)

requires left <= right;

ensures (forall k: int :: k != n ==> A[k] == 0);

{ var i: int;

i:= left; index:= left;

while(i<= right)

invariant (index <= i);

{

A[i]:=0;

i:= i+1;

}

}

Although the above example is similar to the one given for constant
relaxation heuristic we observe that the same invariant no longer holds,
because of the updating manner of the

When invariants are conjunctions of formulas there might be the case
that substituting a constant with one variable on both sides of the conjunc-
tion does not result in an invariant.Uncoupling is the heuristic that replaces
one constant with different variables at different occurrences in the postcon-
dition resulting in an invariant.

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER

require A.length = n ≤ 1

local low index, high index : INTEGER

do

from low index := 1; high index := n

until low index = high index

loop

from | no loop initialization

until low index = high index ∨ A[low index] > pivot

loop low index := low index + 1 end

from | no loop initialization

until low index = high index ∨ pivot > A[high index]

loop high index := high index 1 end

A.swap (A, low index, high index)

end

if pivot ≤ A[low index] then

low index := low index 1

high index := low index

end

Result := low index

14



ensure ( ∀ k 1 ≤ k ∧ k < Result + 1 = A[k] ≤ pivot )
∧ ( ∀ k Result < k ∧ k ≤ n = A[k] ≥ pivot )

The postcondition is assumed to be in conjunction normal form so ap-
plying term dropping, means removing some terms from the formula in order
to weaken it. An example where this method is applied is if in the function
Partition we would like to ensure only ∀kResult < k∧k ≤ n = A[k] ≥ pivot.
This is still an invariant for the code.

In order to find the invariants for the loop, the algorithm considers first
the postcondition without any weakening, and afterwards apply the four
mentioned heuristics and check if the resulting formulas are invariants for the
loop. The first heuristic applied is constant relaxation. There are to sets of
candidates resulting from this step. The first set of candidates is obtained by
replacing every occurrence of a constant with the same variable. The second
set of candidates are obtained by uncoupled replacement of constants with
variables.

This method relies on the Boogie verification tool to generate and prove
verification conditions of programs. Proving verification conditions is done
by using SMT reasoning.

3.2 Lingva

The idea of this method is to generate invariants of the loop in the form
of first order logic formulae, by statically analyzing the code [CC77], and
afterwards use theorem prover Vampire to eliminate the auxiliary symbols
that occurred.

For this method the guarded assignments were introduce[Dij75, MP92].
These are expressions of the form G → α1;α2; ...αm, where αi is either a
scalar variable assignment or an array variable assignment, and G a formula
(called guard).

The guards must be mutually exclusive but at least one of them true
in every state. There must not be two assignments guarded by the same
expression that can modify the same array term at one point, and the left-
hand side of all assignments should be different.

After the loop is transformed such that it consist only of guarded assign-
ments a static analysis tool is used (Aligator[HHKR10]) to get invariants
over scalar variables. From the invariants obtained loop properties are ex-
tracted.

In order to deal with loop invariants there are introduced two predicates,
named update predicate: updV (i, p) (at iteration i the array V is updated at
position p), updV (i, p, x) (at iteration i the array v is updated at position p
with the value x). These two predicates help us express two key properties
for the arrays:
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• an element in the array V ,V [p], is a constant if V is never updated at
position p;

• if an element V [p] of an array V is last updated at iteration i, then
this is the iteration in which V [p] gets its final value.

Another property that can be extracted from the loop is constant array,
meaning that there is an array that is never updated.In this situation, adding
in V ampire the property (∀i)(A(i) = A0) helps on getting more useful in-
variants.

Monotonicity properties can also be discovered at scalar variables by
using a program analysis tool or a light-weight analysis. Variables can be
strictly increasing/decreasing (∀i, (v(i+1) > v(i))/∀i, (v(i+1) < v(i))), increas-
ing/decreasing, dense increasing/decreasing (meaning that the value of the
variable is changed with at most 1 from the previous iteration).

Another class of properties that can be found are update properties of
monotonic variables. These properties refer to the fact that there is an
iteration i in the loop that modifies a monotonic variable when the value of
this variables can be bounded in an interval.

Also the guarded assignments are transformed in properties that can be
added to V ampire as theorems in order to get useful invariants.

After getting as many properties as possible V ampire is run on them so it
would derive invariants without using the auxiliary functions and predicate
symbols that were introduced in order to get scalar variables properties.

V ampire was chosen for this method because it can reason with linear
integer arithmetic and it has implemented procedures to eliminate symbols.
New axioms were introduced in V ampire in order to be able to deal with
integer arithmetic:

• x ≥ y ⇔ x > y ∨ x = y;

• x > y ⇒ x 6= y;

• x ≥ y ∧ y ≥ z ⇒ x ≥ z;

• s(x) > x;(where s(x) is the successor function);

• x ≥ s(y)⇒ x > y;(where s(x) is the successor function).

These new axioms enable a sound but incomplete reasoning.
Another trick is used to make V ampire deal with symbol elimination.

First there are introduced new axioms for every assignment that has on the
left hand-side a variable v: v(0) = v0, v

(n) = v′, where v(0), v(n) are represent-
ing variable v before the first iteration and after n-th iteration respectively.
The newly introduced symbols are called target symbols. The goal is to
derive only classes that contain only target symbols, interpreted symbols or
skolem functions, but at least one target symbol or skolem function. Giving
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high precedence in the algorithm used by V ampire too the symbols that
are not interesting in deriving the new clauses, vampire will eliminate these
first.

Every clause derived that respects the above conditions and do not con-
tain a skolem function is an invariant.

TPTP is the language used by V ampire so in order to encode problems
and to understand the proofs outputted we give a short table with the corre-
spondence between the first-order logic symbols and mathematical symbols
and TPTP:

first-order logic TPTP
and mathematics

> $true
⊥ $false

F1 ∧ . . . ∧ Fn F1& . . .&Fn
F1 ∨ . . . ∨ Fn F1| . . . |Fn
F1 → F2 F1 => F2

F1 ↔ F1 F1 <=> F2

∀x1 . . . ∀xnF ![X1 . . . Xn] : F
∃x1 . . . ∃xnF ?[X1 . . . Xn] : F

−a $uminus(a)
a ≤ b $lesseq(a, b)
a < b a < b
a+ b $sum(a, b)
a ∗ b $product(a, b)

3.3 CppInv

The basic idea of this method is to use a predefined set of template properties
and check which ones are invariants.

The programs are seen as transition systems of the form P = 〈u,L, l0, T 〉,
where u is a set of variables, L is a set of locations, l0 is the initial location
and T is the set of transitions. A transition is a tuple 〈li, lj , pρt〉, where li, lj
are locations, and ρt is a boolean formula representing the transformation
of the program variables after the transition.

Take for example the following function that initializes an array with the
value 0:

i n t main ( )
{

const i n t N;
assume (N >= 0 ) ;
i n t A[N ] ;

i n t i =0;
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Figure 4: Transition System

whi le ( i < N)
{

A[ i ] = 2∗ i +3;
i ++;

}
}

The corresponding transition system is represented in figure 4 .
A cyclic path is a path that contains a cycle. A cut-set is a set of locations

such that every cyclic path in the graph contains a location that there is
also in the cut-set. The locations in the cut-set are called cutpoints.

For this method there are considered the initiation paths, which are
the paths in the control-flow graph that connects a location from outside a
strongly connected component the a location inside it, and the consecution
paths, that label edges only inside the strongly connected component.

Theorem 3.1 Let lC1 , ..., l
C
p be a cut-set of a strongly connected components.

Let P1, ...Pp be properties over the program variables u such that:

• for all initiation paths πI from l to lCi : ∀u, u′ρφI ⇒ P ′i

• for all consecution paths πC from lCj to lCi : ∀u, u′ρφC ∧ Pj ⇒ P ′i

Then P1, ..., Pp are invariants at lI , ..., l
C
p . We say PI , ..., Pp are inductive

invariants.

The semantics of the above theorem is given as follows: We have a set
of strongly cut-set for a given strongly connected component and a set of
properties over some variables. In order for a property to be considered an
invariant there are two conditions that must be fulfilled: for all initial paths
to one of the cutpoints, for all variables the formula describing the transition
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relation between the initial value of the variable and the value obtained after
the transition must imply the corresponding property. The second condition
is that for consecution paths from one point lCi to lCj , for all variables the
formula describing the transition relation between the values of the variables
from one location to the other in conjunction with the property that holds
at the second location (with respect to the value of the variables at the first
location), implies the property that holds at the firs location with the values
of the variables obtained after the transition.

Using the previous theorem and formalizing the implications as con-
straints containing both program variables and (not yet known) parameters,
invariants can be obtained by finding a solution to the constraints.

For arrays the method generates invariants of the form:
∀α : 0 ≤ α ≤ C(v)−1 :

∑m
i=1

∑k
j=1 αijAi[dijα+ εij(v)] +B(v) + bαα ≤ 0

where:

• C, εijB are polynomials with integer coefficients and variables in v =
(v1, v2, ..., vn)

• aij , dij , bα ∈ Z,∀i ∈ {1, ...,m}, j ∈ {1, ..., k}

• a = (A1, ..., Am) the tuple of array variables

For computational reasons the invariant generation has three steps:

• expressions C are generated in such a way that the domain {0...C−1}
is empty after initial paths, and C is increased with at most one after
consecution paths;

• find expressions diα+ εi for every array and every C found such that
these are valid access points in the array, after executing a consecu-
tion path the already analyzed positions are not changed, and after
consecution paths εi has the same value or the value εi − di;

• for every array choose k εij that either all stay the same or get new
values after consecution paths;

• find αij , bα,B to fulfill the property depending on the which case is εij ;

While theorem 3.1 can be applied in the case of linear scalar properties,
this is not the case for the array properties, that is another theorem was
formulated for this case:

Theorem 3.2 Let C,B, εij be linear polynomials with integer variables over
the scalar variables, and aij , dij , bα ∈ Z for i ∈ {1, ...,m} and j ∈ {1, ...k}.
If

1. Every initiation path πIr with transition relation ρφIr satisfies ρφIr ⇒
C ′ = 0
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2. For all consecution paths πCs with transition relation ρφCs satisfies ρφCs ⇒
C ′ = C ∨ C ′ = C + 1

3. For all consecution paths πCs , all i ∈ {1...m}, j ∈ {1...k}, ρφCs ∧ C
′ >

0⇒ 0 ≤ ε′ij ≤ |Ai| − 1 ∧ 0 ≤ dij(C ′ − 1) + ε′ij ≤ |Ai| − 1

4. For all consecution paths πCs either:

(a) ρφCs ∧ C
′ > 0⇒ ε′ij = εij for all i ∈ {1...m}, j ∈ {1...k}

(b) ρφCs ⇒ C ′ = C + 1 ∧ ε′ij = εij − dij for all i ∈ {1...m}, j ∈ {1...k}

5. For all consecution paths πCs , ρπC
s
⇒ ∀α : 0 ≤ α ≤ C − 1 : A′[dijα +

εij ] = Ai[dijα+ εij ]

6. For all consecution paths πCs

• ρπC
s
∧C ′ = C + 1⇒

∑m
i=1

∑k
j=1 αijA

′
i[dijC + ε′ij ] +B+ bαC ≤ 0)

(case 4a)

• ρπC
s
⇒

∑m
i=1

∑k
j=1 αijA

′
i[ε
′
ij ] + B′ ≤ 0) (case 4b)

7. For all consecution paths πCs

• ρπC
s
∧ 0 ≤ α ≤ C − 1 ∧ x + B + bα ≤ 0 ⇒ x + B′bαα ≤ 0 x is

universally quantified fresh variable, when 4a applies

• ρπC
s
∧ 0 ≤ α ≤ C − 1 ∧ x + B + bα ≤ 0 ⇒ x + B′bα(α + 1) ≤ 0 x

is universally quantified fresh variable, when 4b applies

then ∀α : 0 ≤ α ≤ C − 1 :
∑m

i=1

∑k
j=1 aijAi[dijα + εij ] + B + bαα ≤ 0 is an

invariant.

The theorem above shows the relation between three linear polynomials
C, B, εi,j , with respect to the paths obtained in the transition systems.

The formula expressed by a transition relation from an initial path must
imply that polynomial C with the value of the variables obtained after the
transition equals 0.

The rest of the conditions talk only about consecution paths. The poly-
nomial C can have either the same value or the value increased by one when
evaluated with the new values of the variables and the old values.

There are also integer variables aij , dij , bα that are kept under constraints
following some rules.

For all consecution paths if the formula expressing the transition relation
is true and the polynomial C with the new value of variables (denoted by
C′) is greater than 0 then the value of εij (with the new value of variables
denoted by ε′〉|) is bounded by 0 to the left and by |Ai| − 1 to the right, and

the sum dij(C′ − 1) + ε′ij is bounded by 0 and |Ai| − 1.
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The fifth condition in the theorem expresses the fact that if the formula
expressing the transition relation is true on such a path than also the element
of the array at position dijα + εij has the same value at the start location
and at end location.

There are three more conditions in the theorem (4,6,7) which split the
cases of the consecution paths in 2 categories. Each of the three conditions
express constraints for the polynomials and the variables in the theorem.
The final formula combines all of the above expressing an invariant. For an
extended proof of this theorem please refer to [LRCR13].

The conditions of the theorem are encoded into an SMT problem, and a
SMT solver gives the formula(s) representing the invariants.
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4 Experiments

In this section we present the results obtained by running the three tools
from Section 3 on a set of loops that were selected from different papers
and benchmarks. The experiments reported in this thesis were obatined
using machine with an AMD dual-core processor with 800 Mhz, cache of
size 256MB. The limitations of this machine did not allow us to reach the
full computational power of the tools we tested for some of the loops in
question, giving an inconclusive answer. We treated this cases as negative
results, and in the case of Lingva we used them in the next section where we
try to improve them. Nevertheless these facilities were in most cases enough
in order to get a result showing the capabilities of the tools.

Lingva is independent on the platform on which is run, but we used
Linux, and the same platform was used, as requested, for Cpp− inv. Gin−
pink is bounded to Windows platform.

4.1 Experiments with Gin-Pink and Cpp-Inv

The results for this part are presented in a table in the following form: on
the first column of the table there are the loops of interest together with
the reference to the paper where it can be found. The programs are written
in the C language, and the input for the different differ according to the
input language required by each of them. We chose to present them in this
manner for the clean look and readability.

On the second column of the table on every row there is one or more
invariants that were found by the Cpp-inv tool, ran on the corresponding
loop. The properties are written in the form of first order formula with
mathematics and their characteristics and explanations can be found at the
end of this subsection.

The third column of the table corresponds to the invariants found by
the tool Gin-Pink on the set of loops. These are also written in the form
of first-order formulas and mathematics and occasionally there might be
expressions written in the Boogie language. The results are explained later
at the end of this subsection.
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program Cpp-inv Gin-Pink

Initialization [SS09]
a=0;
whi l e ( a<m)do
aa [ a ]=0; a=a+1;

end do

∀a, 0 ≤ a ≤ i− 1⇒
aa[a] = 0

∀k, k 6= i⇒
aa[k] = 0

Insertion [LRCR13]
x=aa [ i ] ;
j = i −1;

whi l e ( j >= 0 and
aa [ j ] > x ) do

aa [ j +1] = aa [ j ] ;
−−j ;

end do

∀a, a ≤ 0 ≤ i− j − 2⇒
−aa[−a+ i] + x+ 1 ≤ 0

∀k, k 6= i− j − 2⇒
aa[i− k] ≥ x+ 1

Partition [SS09]
a=0;
b=0;
c=0;
whi l e ( a<m) do
i f ( aa [ a]>=0)
then bb [ b]=aa [ a ] ;

b=b+1;
e l s e cc [ c ]=aa [ a ] ;

c=c+1;
end i f ;
a=a+1;

end do

∀x, 0 ≤ x ≤ c− 1⇒
cc[x] + 1 ≤ 0
∀x, 0 ≤ x ≤ b− 1⇒
−bb[x] ≤ 0

∀k, bb[k] == aa[k]

Maximum [FM10]
i n t i =1;
i n t max = aa [ 0 ] ;
whi l e ( i<N)
{

i f (max<aa [ i ] ) {
max = aa [ i ] ;

}
++i ;

}

∀a, 0 ≤ a ≤ i− 1⇒
aa[a]−max ≤ 0

is max(m,A, 1, n)
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HeapProperty [LRCR13]
const i n t m;
//assume (m>=0);
i n t aa [2∗m] ;
i n t i =0;
whi l e (2∗ i+2<2∗m)
{
i f ( aa [ i ]>aa [2∗ i +1] or

aa [ i ]>aa [2∗ i +2])
break ;
++i ;

}

∀a, 0 ≤ a ≤ i− 1⇒
−aa[2 ∗ a+ 1] + aa[a] ≤ 0;
∀a, 0 ≤ a ≤ i− 1⇒
−aa[2 ∗ a+ 2] + aa[a] ≤ 0;
∀a, 0 ≤ a ≤ i− 1⇒
2a− 2 ∗ aa[2a+ 1] + 2 ∗ aa[a]

−2m+ 3 ≤ 0;
−aa[2a+ 1] + aa[a] ≤ 0;
−aa[2 ∗ a+ 2] + aa[a] ≤ 0;

∀a, a 6= i⇒
aa[a] ≤ aa[2a+ 1]
aa[a] ≤ aa[ik + 1]
aa[a] ≤ aa[2k + i]

FirstOccurence [LRCR13]
i n t aa [m] ;
i n t x = readX ( ) ;
i n t l = 0 ;
i n t u = m;

//aa i s so r t ed asscendent
whi l e ( l < u) {

i n t m = ( l+u )/2 ;
i f ( aa [m] < x ) l = m+1;
e l s e u = m;

}

∀a, 0 ≤ a ≤ m− u− 1⇒
x− aa[m− a− 1] ≤ 0;

4u+ x− aa[m− a− 1]−
−2m− 2l ≤ 0;
∀a, 0 ≤ a ≤ l − 1⇒
aa[a]− x+ 1 ≤ 0;
aa[a]− 4l + 2u− x+ 3 ≤ 0;

∀a, a 6= m⇒
aa[a] 6= x

∀a, a 6= l⇒
aa[a] 6= x

∀a, a 6= m⇒
aa[a] 6= l

∀a, a 6= u⇒
aa[a] 6= x

∀a, a 6= m⇒
aa[a] 6= u

Palindrome [LRCR13]
i n t aa [m] ;
i n t i =0;
whi l e ( i<m/2)
{
i f ( aa [ i ] != aa [m−i −1])
{

break ;
}
i++;

}

∀a, 0 ≤ a ≤ i− 1⇒
aa[m− a]− aa[a] ≤ 0

∀a, 0 ≤ a ≤ i− 1⇒
−aa[m− a] + aa[a] ≤ 0

∀a, a 6= i⇒
aa[a] == aa[m− a− 1]
aa[a] == aa[i− a− 1]
aa[a] == aa[m− a− i]

PartitionInit [SS09]
i n t aa [m] , bb [m] , cc [m] ;
i n t i =0, c=0;
whi l e ( i<m)
{

i f ( aa [ i ] == bb [ i ] )
{

cc [ c ] = i ;
c++;

}
i++;

}
}

∀l, 0 ≤ l ≤ c− 1⇒
cc[l]− i+ c− l ≤ 0
l − cc[l] ≤ 0

∀l, l 6= i⇒
cc[l] ≤ l + i− c

Vararg [SS09]
a=0;
aa [m] ;
whi l e ( aa [ a]>0 && a<m){
a=a+1;
}

∀0 ≤ l ≤ i− 1⇒
−aa[l] + 1 ≤ 0

∀k, k 6= i⇒ 0 < aa[k]
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Shift [HKV11]
a=0;
whi l e ( a<m){
aa [ a+1]=aa [ a ] ;
a=a+1;
}

No inva r i a n t s found . ∀k, k 6= i⇒ aa[k] == aa[0]

Sum Of Pairs [LRCR13]
i n t m;
i n t ∗aa ;
i n t x=getX ( ) ,
l =0, u=m−1;

// :$SORTED: aa @ASC
whi le ( l < u) {
i f ( aa [ l ] + aa [ u ] < x )

l = l +1;
e l s e

i f ( aa [ l ] + aa [ u ] > x )
u = u−1;

e l s e break ;
}

∀a, 0 ≤ a ≤ l − 1⇒
aa[a] + aa[u]− x+ 1 ≤ 0

∀k, k 6= i− 2⇒
aa[k] + aa[u] < x

Sequential Initialization [LRCR13]
i n t main ( )
{

i n t m;
i n t ∗aa ;

aa [ 0 ]=7 ;
i n t i =1;
whi l e ( i<m)
{

aa [ i ]=aa [ i −1]+1;
++i ;

}
}

∀x, 0 ≤ x ≤ i− 2⇒
aa[x+ 1]− aa[x]− 1 ≤ 0

∀x, 0 ≤ x ≤ i− 2⇒
−aa[x+ 1] + aa[x] + 1 ≤ 0

∀k, k 6= i− 2⇒
aa[k + 1] == aa[k] + 1

For the program Initialisation we see that both Cpp-inv and Gin-pink
got the desired invariant. Gin-pink had as postcondition the formula ∀k, 0 ≤
k < m ⇒ aa[k] = 0. The semantics of both invariants obtained is straight-
forward, with the observation that in Gin-pinks case k 6= i has the meaning
that for all values of k that were totally/partially processed.

The loop Insertion represents a program that takes a random element
from an array and places it on the right the array of the array in such
a way that all elements starting with the original position of the element
and ending with one less than the new position. The invariant that we are
looking for is the formula expressing that the value of the chosen element is
less than than the values of the element between the original position and
the new position of it. Both tools manage to infer this invariant. The form
which is extracted by Cpp-Inv is as a inequality with one of the terms 0.
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The postcondition we used for Gin-pink (translated in first order logic) is :
∀k, k! = i− j − 2, aa[i− k] ≥ x+ 1.

The loop Partition has as input an array aa which is partitioned in array
bb for the non-negative elements and array cc for the negative elements.
While Cpp-inv was able to find invariants characterizing the elements in
cc as being negative and those in bb as non-negative, Gin-pink could get
the invariant that every element in bb is equal to one in aa, whit the input
postcondition ∀k, k 6= b⇒ 0 ≤ B[k].

The loop Maximum processes an array by comparing systematically the
value of max with the value of every element in the array and assigning the
value of the element in the current step to max if max is smaller. At the end
of the loop the value of max is the largest value in the array. The invariant
inferred by Cpp-inv expresses actually the property that for all elements
that were processed, the difference between them and max is at most 0.
This property is equivalent with the invariant of interest expressing that
max is greater or equal than all elements that were processed. In the case
of Gin-Pink, there was necessary a formula expressing that there is a total
order on the type of the array. There is also an extra function that takes as
input the limits of an array, the array and a variable m and returns true if
m is greater or equal than all elements in the array or false otherwise.The
invariant written in the table above expresses the fact that variable max is
greater or equal to all elements in the array, which is the invariant we are
looking for in this case.

In the case of HeapProperty the loop checks until which position does
the array has the heap property (every element has a value greater than
the value of its parent) with the root in aa[0], and such that the element at
position i (except the leaves) has children at positions 2 ∗ i+ 1 and 2 ∗ i+ 2
(taking into account that the array has 2 ∗m elements). Cpp-Inv infer that
invariant in the form that the difference between the “parent” and each of
the “children” is less than 0. Also it infers a property expressing the fact
that the values of the array grow faster than the value of the indexes. Gin-
pink also managed to infer the property having the postcondition forallk :
int :: k! = i ==> A[k] < A[2 ∗ k + 1]. It also infers that for the value at
position i all values that are past the position 2k are greater.

The loop named FirstOccurence searches in a divide and conquer manner
a value in a sorted array. Cpp-Inv finds finds two important invariants for
understanding the loops: that all elements that are placed before the lower
bound (l) are smaller than the value searched, and all elements that are
laced before the location u is greater or equal with the value searched. From
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this two properties on can infer that the value searched can be only between
the locations l and u. Gin-pink can also infer these properties but the
properties outputted by this tool are harder to understand and less explicit.
The properties inferred by Gin-pink express only the fact that the value was
not found yet through the elements that were already analyzed.

The Palindrome loop checks if an array is a palindrome (i.e. regardless
of the way one reads it, it would be the same word). Cpp-inv is able to
infer the formula expressing the property of a palindrome, by inferring two
invariants in the following manner: restricting the values of a between 0 and
i both the difference between aa[m−a−1]−aa[a] and aa[a]−aa[m−a−1]
are less or equal to 0. Gin-pink inferred the property that all elements in
the array that were already analyzed holds aa[a] = aa[m− a], where a is a
location already processed.

The PartitionInit loop compares the elements of two arrays aa and bb
and keeps in array cc the locations at which the element in aa equals the one
in bb. Cpp-inv infers the invariant ∀l, 0 ≤ l ≤ c−1⇒ l− cc[l] ≤ 0 which can
be interpreted in different ways, either that the size of cc is at most the size of
aa, or that there can be at most elements in cc as there are in aa. The other
invariants that Cpp-inv inferred is ∀l, 0 ≤ l ≤ c − 1 ⇒ cc[l] − i + c − l ≤ 0,
which describes the property that i grows faster than c, much faster than l
with respect to cc[l]. The second property is also inferred by Gin-pink.

The V ararg is a loop that runs as long as the elements in the array aa
are greater than 0. In the loop body there is no modification of the array,
only the index is increased. Cpp-inv manages to infer that all elements
processed are greater than 0. Gin-pink can also infer the invariant having
the postcondition ∀k, 0 ≤ k < i⇒ 0 < A[k].

The loop Shift gives to every element, starting with the second, to take
the value of the previous element. At the end of the loop all elements have
the value of the initial value of the first one. For this loop Cpp-Inv does not
find any invariant for this piece of code. The possible reason for which this
happens is because the invariant does not fall into the template required by
this method in order to infer it. Gin-pink uses the postcondition weakening
successfully in order to prove the invariant that expresses that at all the
processed locations there are values for the elements equal to the value of
the first element.

The loop SumofPairs has as input an increasingly ordered array and
makes sure that the sum between the elements at location l and u is smaller
than same random value x, and either increases l or decreases u, accordingly.
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Cpp-inv infers the formula expressing that the sum between all values at
positions that are between 0 and l and the value in the array at position u
minus the value of x plus 1 is smaller or equal to 0. The same invariant is
inferred by Gin-pink (in a different form) by weakening the postcondition
∀k 6= l⇒ aa[k] + aa[u] < x.

SequantialInitialisation has as input an array with the first element
initialized and processed by initializing the rest of the array with values with
one higher than the value of the previous element. At the end of the loop
the elements of the array represent a series of consecutive numbers. Cpp-inv
manages to infer the invariant expressing this property in the form of two
inequalities. Gin-pink can also infer the invariant with the postcondition
∀k, k 6= i− 2⇒ aa[k + 1] = aa[k] + 1. Although the postcondition is strong
the tool still has to check that the invariant holds for the loop.

4.2 Experiments with Lingva

The table below presents the results obtained by running Lingva on the
same set of loops as the other two tools. On the first column are written the
loops used for this experiment, on the second column there is written one
invariant of interest for the corresponding loop and, on the third column
there is either an invariant obtained by Lingva together with the set of
axioms and theorems that were used to reach to the result, or a different
invariant (than the one on the second column) that could be of interest for
the user. In the third column, the name of a variable followed by 0 represents
the initial value of the variable.

At the end of the subsection we give explanations regarding the proof
obtained and the theorems used in order to obtain the invariants.
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program Invariant of interest Lingva

I n i t i a l i s a t i o n
a=0;
whi l e ( a<m)do
aa [ a ]=0; a=a+1;

end do

∀a, 0 ≤ a ≤ i− 1⇒
aa[a] = 0

Refutat ion found .

∀a, 0 ≤ a ≤ i− 1⇒
aa[a] = 0
Theorems :

6169 . false
535 . aa(sK0) 6= 0
382 . 0 ≤ sK0 ∧ ¬a ≤ sK0 ∧ aa(sK0) 6= 0∧

aa(sK0) 6= aa0(sK0)
381 . ∃X0, ((0 ≤ X0) ∧ ¬(a ≤ X0)∧
aa(X0) 6= 0 ∧ aa(X0) 6= aa0(X0))

380 . ∃X0, (((0 ≤ X0) ∧ ¬(a ≤ X0))∧
(aa(X0) ≤ 0 ∧ aa(X0) 6= aa0(X0)))

379 . ¬∀X0, (((0 ≤ X0) ∧ ¬(a ≤ X0))⇒
(aa(X0) = 0 ∨ aa(X0) = aa0(X0)))

153 . ¬∀X37, (((0 ≤ X37) ∧ ¬(a ≤ X37))⇒
(aa(X37) = 0 ∨ aa(X37) = aa0(X37)))

152 . ¬∀X37, (((0 ≤ X37) ∧ (X37 < a))⇒
(aa(X37) = 0 ∨ aa(X37) = aa0(X37)))

151 . ∀X37, (((0 ≤ X37) ∧ (X37 < a))⇒
(aa(X37) = 0 ∨ aa(X37) = aa0(X37)))

6168 . aa(sK0) = 0
6167 . aa(sK0) 6= aa(sK0) ∨ aa(sK0) = 0
1567 . aa(X0) = aa0(X0) ∨ aa(X0) = 0
1566 . aa(X0) = 0 ∨ aa(X0) = aa0(X0)∨

aa(X0) = aa0(X0)
385 . (a0 + sK0(X0)) = X0 ∨ aa(X0) = aa0(X0)
169 . ∀X0, (aa(X0) = aa0(X0)∨
(a0 + sK0(X0)) = X0)
3 . ∀X2, (aa(X2) = aa0(X2)∨
(a0 + sK0(X2)) = X2)
538 . aa((a0 + sK0(X0))) = 0∨
aa(X0) = aa0(X0)

537 . aa(X0) = aa0(X0) ∨ aa(X1) = 0∨
(a0 + sK0(X0)) 6= X1

388 . aa(X0) = aa0(X0) ∨ aa(X1) = X2∨
0 6= X2 ∨ (a0 + sK0(X0)) 6= X1

172 . ∀X0, X1, X2, ((a0 + sK0(X0)) 6= X1∨
0 6= X2 ∨ aa(X1) = X2 ∨ aa(X0) = aa0(X0))

6 . ∀X2, X0, X1, ((a0 + sK0(X2)) 6= X0∨
0 6= X1 ∨ aa(X0) = X1 ∨ aa(X2) = aa0(X2))

536 . aa(sK0) 6= aa0(sK0)

I n s e r t i o n
x=aa [ i ] ;
j = i −1;

whi l e ( j >= 0 and
aa [ j ] > x ) do

aa [ j +1] = aa [ j ] ;
−−j ;

end do

∀a, a ≤ 0∧
a ≤ i− j − 2⇒
x+ 1 ≤ aa[−a+ i]

Refutat ion not found .

Other i n t e r e s t i n g
p r op e r t i e s found :
∀X0, : (sK0(X0) ≤ (j − j0)∨
aa(X0) = aa0(X0))).
∀X0, X1 : ((1 + j0) 6= X0|
aa0(j0) 6= X1|aa(X0) = X1|
((j − j0) ≤ 0)).
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Par t i t i on
a=0;
b=0;
c=0;
whi l e ( a<m) do
i f ( aa [ a]>=0)
then bb [ b]=aa [ a ] ;

b=b+1;
e l s e cc [ c ]=aa [ a ] ;

c=c+1;
end i f ;
a=a+1;

end do

∀a, 0 ≤ a ≤ c− 1⇒
cc[a] < 0
∀a, 0 ≤ a ≤ b− 1⇒
bb[a] ≥ 0

Refutat ion found

1224 . false ( 1 : 0 )
[ r e s o l u t i o n 314 ,968 ]
968 . ¬(c ≤ X1) ( 0 : 3 )
[ cn f t rans fo rmat ion 661 ]
661 . ∀X1 : (0 ≤ X1) ∧ ¬(c ≤ X1))
∧(0 ≤ bb(sK0)) [ s ko l em i s a t i on 660 ]

660 . ∃X0 : (∀X1 : ((0 ≤ X1)∧
¬(c ≤ X1)) ∧ (0 ≤ bb(X0)))
[ ennf t rans fo rmat ion 659 ]
659 . ¬∀X0 : (∀X1 : ((0 ≤ X1)∧
¬(c ≤ X1))⇒ ¬(0 ≤ bb(X0)))
308 . ¬∀X68 : (∀X68 : ((0 ≤ X68)∧
¬(c ≤ X68))⇒ ¬(0 ≤ bb(X68)))
307 . ¬∀X68 : (∀X68 : ((0 ≤ X68)∧
(X68 < c))⇒ (bb(X68) < 0))
[ negated con j e c tu r e 306 ]
306 . ∀X68 : ((0 ≤ X68) ∧ (X68 < c))⇒
(bb(X68) < 0) [ input imp l i c a t i on ]
314 . (X0 ≤ X0) ( 0 : 3 ) [ theory axiom ]

Maximum
in t i =1;
i n t max = aa [ 0 ] ;
whi l e ( i<m)
{

i f (max<aa [ i ] ) {
max = aa [ i ] ;

}
++i ;

}

∀a, 0 ≤ a < i⇒
aa[a] ≤ max

Refutat ion not found .

Other i n t e r e s t i n g
p r op e r t i e s that were
proven :
∀X∃Y, 0 ≤ X,Y < i⇒ aa[X] ≤ aa[Y ]

Theorems :

904 . false [ r e s o l u t i o n 159 ,529 ]
529 . ¬(i ≤ X0)
[ cn f t rans fo rmat ion 375 ]
375 . ∀X0, ((0 ≤ sK2(X0))∧
¬(i ≤ sK2(X0)) ∧ (0 ≤ X0)∧
¬(i ≤ X0) ∧ ¬(aa(sK2(X0)) ≤ aa(X0)))
[ s ko l em i sa t i on 372 ]

372 . ∀X0,∃X1((0 ≤ X1)∧
¬(i ≤ X1) ∧ (0 ≤ X0)∧
¬(i ≤ X0) ∧ ¬(aa(X1) ≤ aa(X0)))
[ f l a t t e n i n g 371 ]

371 .∀X0, ∃X1(((0 ≤ X1)∧
¬(i ≤ X1) ∧ (0 ≤ X0)∧
¬(i ≤ X0)) ∧ ¬(aa(X1) ≤ aa(X0)))

368 . ¬∃X0, ∀X1((0 ≤ X1)∧
¬(i ≤ X1) ∧ (0 ≤ X0) ∧ ¬(i ≤ X0)⇒
(aa(X1) ≤ aa(X0)))

153 . ¬∃X37, ∀X36((0 ≤ X36)∧
¬(i ≤ X36) ∧ (0 ≤ X37) ∧ ¬(i ≤ X37)⇒

(aa(X36) ≤ aa(X37)))
150 . ¬∃X37, ∀X36((0 ≤ X36)∧

(X36 < i) ∧ (0 ≤ X37) ∧ (X37 < i)⇒
(aa(X36) ≤ aa(X37)))

149 . ∃X37,∀X36((0 ≤ X36)∧
(X36 < i) ∧ (0 ≤ X37) ∧ (X37 < i)⇒

(aa(X36) ≤ aa(X37)))
159 . (X0 ≤ X0) ( 0 : 3 ) [ theory axiom ]
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HeapProperty
const i n t m;
assume (m>=0);
i n t aa [2∗m] ;
i n t i =0;
whi l e (2∗ i+2<2∗m)
{
i f ( aa [ i ]>aa [2∗ i +1] or

aa [ i ]>aa [2∗ i +2])
break ;
++i ;

}

∀0 ≤ a ≤ i− 1
aa[a] ≤ aa[2a]
2a− aa[2a+ 1] + aa[a]

−2m+ 3 ≤ 0
−aa[a+ 2] + aa[a] ≤ 0
2a− aa[a+ 2] + aa[a]

−2m+ 3 ≤ 0

Can not be checked
due to the s t r u c tu r e
o f the program .

FirstOccurence
i n t aa [m] ;
i n t x = readX ( ) ;
i n t l = 0 ;
i n t u = m;

//aa i s so r t ed asscendent
whi l e ( l < u) {

i n t m = ( l+u )/2 ;
i f ( aa [m] < x ) l = m+1;
e l s e u = m;

}

∀a, 0 ≤ a ≤ m− U − 1⇒
x ≤ aa[m− a− 1];

aa[u+ x] ≤ aa[m− a− 1]−
−2m+ 2l;
∀a, 0 ≤ a ≤ l − 1⇒
aa[a] ≤ x− 1;
aa[a] ≤ 4l − 2u+ x− 3;

Can not be checked
due to
the use o f d i v id e .

Palindrome
in t aa [m] ;
i n t i =0;
whi l e ( i<m/2)
{
i f ( aa [ i ] != aa [m−i −1])
{

break ;
}
i++;

}

∀a, 0 ≤ a ≤ i− 1⇒
aa[m− a] = aa[a]

Can not be checked .
The \&\&− l o g i c a l

operator i s
not supported

Pa r t i t i o n I n i t
i n t aa [m] , bb [m] , cc [m] ;
i n t i =0, c=0;
whi l e ( i<m)
{

i f ( aa [ i ] == bb [ i ] )
{

cc [ c ] = i ;
c++;

}
i++;

}
}

∀X, 0 ≤ x ≤ c− 1⇒
aa[cc[x]] = bb[cc[X]]

Refutat ion not found .
Other i n t e r e s t i n g
p r op e r t i e s that
were proved :
∀X3, X4, X5
C0 +X3 = X4∧
a0 +X3 = X5∧
0 ≤ X3⇒
C[X4] = X5∨
c− c0 ≤ X3
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Vararg
a=0;
whi l e ( aa [ a ]>0){
a=a+1;
}

∀x, 0 ≤ x ≤ a− 1⇒
aa[x] > 0

Refutat ion found .
∀x, 0 ≤ x ≤ a− 1⇒
aa[x] > 0

Theorems :
1530 . false ( 2 : 0 )
[ subsumption r e s o l u t i o n 1529 ,574 ]
574 . ¬(a ≤ (a0 + sK0))
[ forward demodulation 491 ,142 ]
142 . (X0 +X1) = (X1 +X0)
[ theory axiom ]
491 . ¬(a ≤ (sK0 + a0))
[ cn f t rans fo rmat ion 350 ]
350 . (0 ≤ sK0) ∧ ¬(0 ≤ aa((a0 + sK0)))∧
¬(a ≤ (sK0 + a0)) [ s ko l em i s a t i on 349 ]
349 . ∃X0, ((0 ≤ X0) ∧ ¬(0 ≤ aa((a0 +X0)))∧
¬(a ≤ (X0 + a0))) [ f l a t t e n i n g 348 ]
348 . ∃X0, (((0 ≤ X0) ∧ ¬(0 ≤ aa((a0 +X0))))∧
¬(a ≤ (X0 + a0)))
[ ennf t rans fo rmat ion 141 ]
141 . ¬∀X0, (((0 ≤ X0)∧
¬(0 ≤ aa((a0 +X0))))⇒ (a ≤ (X0 + a0)))
[ eva lua t i on 140 ]
140 . ¬∀X0, (((0 ≤ X0)∧
(aa((a0 +X0)) < 0))⇒ (a ≤ (X0 + a0)))
[ negated con j e c tu r e 139 ]
139 . ∀X0, (((0 ≤ X0)∧
(aa((a0 +X0)) < 0))⇒ (a ≤ (X0 + a0)))
[ input imp l i c a t i on ]
1529 . (a ≤ (a0 + sK0))
[ forward demodulation 1528 ,142 ]
1528 . (a ≤ (sK0 + a0))
[ subsumption r e s o l u t i o n 1518 ,489 ]
489 . (0 ≤ sK0) [ cn f t rans fo rmat ion 350 ]
1518 . ¬(0 ≤ sK0) ∨ (a ≤ (sK0 + a0))
[ r e s o l u t i o n 355 ,586 ]
586 . (aa((a0 + sK0)) ≤ 0)
[ r e s o l u t i o n 149 ,490 ]
490 . ¬(0 ≤ aa((a0 + sK0)))
[ cn f t rans fo rmat ion 350 ]
149 . (X0 ≤ X1) ∨ (X1 ≤ X0)
[ theory axiom ]
355 . ¬(aa((a0 +X0)) ≤ 0) ∨ ¬(0 ≤ X0)
∨(a ≤ (X0 + a0)) [ cn f t rans fo rmat ion 158 ]
158 . ∀X0, ((a ≤ (X0 + a0))∨
¬(0 ≤ X0) ∨ ¬(aa((a0 +X0)) ≤ 0))
[ f l a t t e n i n g 5 ]
5 . ∀X0, ((a ≤ (X0 + a0))∨
¬(0 ≤ X0) ∨ ¬(aa((a0 +X0)) ≤ 0))
[ input inv4 ]
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Sh i f t
a=0;
whi l e ( a<m){
aa [ a+1]=aa [ a ] ;
a=a+1;
}

∀x, 0 ≤ x < a⇒
aa[x] = aa[0]

Refutat ion found .
∀X, 0 ≤ X ∧X < a⇒

aa[X] = aa[X + 1]
Theorems used :

1247 . false ( 1 : 0 ) [ r e s o l u t i o n 1096 ,530 ]
530 . ¬(a ≤ sK0) ( 0 : 3 ) [ cn f t rans fo rmat ion 379 ]
379 . ∀[X1] : (0 ≤ X1) ∧ ¬(a ≤ sK0)∧
aa(sk0) 6= aa(sk0 + 1) [ s ko l em i sa t i on 378 ]

378 . ∃[X0] : (∀[X1] : (0 ≤ X1)∧
¬(a ≤ X0) ∧ aa(X0) 6= aa(X0 + 1)) [ f l a t t e n i n g 377 ]

377 . ∃[X0] : ((∀[X1] : (0 ≤ X1) ∧ ¬(a ≤ X0))∧
aa(X0) 6= aa(X0 + 1)) [ ennf t rans fo rmat ion 376 ]

376 . ¬∀[X0] : ((∀[X1] : (0 ≤ X1) ∧ ¬(a ≤ X0))⇒
aa(X0) = aa(X0 + 1)) [ r e c t i f y 152 ]

152 . ¬∀[X36] : ((∀[X36] : (0 ≤ X36) ∧ ¬(a ≤ X36))⇒
aa(X36) = aa(X36 + 1)) [ eva lua t i on 151 ]

151 . ¬∀[X36] : ((∀[X36] : (0 ≤ X36) ∧ (X3 < a))⇒
aa(X36) = aa(X36 + 1)) [ negated con j e c tu r e 150 ]

150 . (∀[X36] : (0 ≤ X36) ∧ (X36 < a))⇒
aa(X36) = aa(X36 + 1) [ input imp l i c a t i on ]

1096 . (a ≤ X0) ( 0 : 3 )
[ subsumption r e s o l u t i o n 925 ,878 ]
878 . (X3 ≤ (X3 +X2)) ( 3 : 5 )
[ s up e rpo s i t i on 853 ,153 ]
153 . (X0 +X1) = (X1 +X0) ( 0 : 7 ) [ theory axiom ]
853 . (X11 ≤ (X12 +X11)) ( 2 : 5 )

[ subsumption r e s o l u t i o n 843 ,529 ]
529 . (0 ≤ X1) ( 0 : 3 ) [ cn f t rans fo rmat ion 379 ]
843 . (X11 ≤ (X12 +X11)) ∨ ¬(0 ≤ X12)

( 2 : 8 ) [ s up e rpo s i t i on 161 ,669 ]
669 . (0 +X0) = X0 ( 1 : 5 ) [ s up e rpo s i t i on 153 ,155 ]
155 . (X0 + 0) = X0 ( 0 : 5 ) [ theory axiom ]
161 . ((X0 +X2) ≤ (X1 +X2)) ∨ ¬(X0 ≤ X1)

( 0 : 1 0 ) [ theory axiom ]
925 . ¬(a0 ≤ (a0 + (0 +X0))) ∨ (a ≤ X0)

( 0 : 1 0 ) [ backward demodulation 897 ,491 ]
491 . (a ≤ X0) ∨ ¬(a0 ≤ (a0 + (−a+X0)))

( 0 : 1 1 ) [ cn f t rans fo rmat ion 337 ]
337 . ∀[X0] : (¬(a0 ≤ (a0 + (−(a) +X0))) ∨ (a ≤ X0))

[ f l a t t e n i n g 336 ]
336 . ∀[X0] : (¬(a0 ≤ (a0 + (−(a) +X0))) ∨ (a ≤ X0))

[ r e c t i f y 112 ]
112 . ∀[X1] : (¬(a0 ≤ (a0 + (−(a) +X1))) ∨ (a ≤ X1))

[ input inv111 ]
897 . 0 = −(X0) ( 4 : 4 )

[ subsumption r e s o l u t i o n 895 ,529 ]
895 . ¬(0 ≤ −(X0)) ∨ 0 = −(X0)

( 4 : 8 ) [ r e s o l u t i o n 877 ,164 ]
164 . ¬(X1 ≤ X0) ∨ ¬(X0 ≤ X1) ∨X0 = X1

( 0 : 9 ) [ theory axiom ]
877 . (−(X1) ≤ 0) ( 3 : 4 ) [ s up e rpo s i t i on 853 ,157 ]
157 . (X0 + (−X0)) = 0 ( 0 : 6 ) [ theory axiom ]
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Sum Of Pa i r s
i n t m;

i n t ∗aa ;
i n t x=getX ( ) ,
l =0, u=m−1;

// :$SORTED: A @ASC
whi le ( l < u) {
i f ( aa [ l ] + aa [ u ] < x )

l = l +1;
e l s e

i f ( aa [ l ] + aa [ u ] > x )
u = u−1;

e l s e break ;
}

∀x, 0 ≤ x ≤ m− u− 2⇒
x+ 1 ≤ A[m− x− 1] +A[l]

Refutat ion not found .

Sequent i a l I n i t i a l i s a t i o n
i n t main ( )
{

i n t m;
i n t ∗aa ;

aa [ 0 ]=7 ;
i n t i =1;
whi l e ( i<m)
{

aa [ i ]=aa [ i −1]+1;
++i ;

}
}

∀x, 0 ≤ x ≤ i⇒
aa[x+ 1] = aa[x] + 1

t ime l im i t reached
at 200

Other i n t e r e s t i n g
property that was
proven :

i− i0 < sk0(X0)⇒
aa(X0) = aa0(X0)

m ≤ i0 + sk0(X1)⇒
aa(X1) = aa0(X1)

sk0(X2) ≤ 0⇒
aa(X2) = aa0(X2)

m ≤ i+ i0 ∧ 0 ≤ i⇒
0 ≤ i0

For the loop Initialisation first vampire proves that aa(sk0) = 0(6168)
and afterwards that aa(sk0)! = 0(535). We explain the proof in three steps:

1. the formula representing the invariant of interest being negated and
after a series of transformations, evaluation, rectify, flattening and
skolemisation, the negated formula is put in a standard form

$lesseq(0, sK0)& $lesseq(a, sK0)&aa(sK0)! = 0&aa(sK0)! = aa0(sK0)
(382). From this formula it is easy to see that formula 6168 can be
deduced

2. For the second formula (535) the proof starts with on of the for-
mulas that lingva inferred ![X2, X0, X1] : ($sum(a0, sK0(X2))! =
X0|0! = X1|aa(X0) = X1|aa(X2) = aa0(X2))(6). After cnf trans-
formation and equality resolution the following formula is obtained
aa($sum(a0, sK0(X0))) = 0|aa(X0) = aa0(X0)(538).

3. Using another formula (after processing it) that is automatically de-
duced by Lingva, $sum(a0, sK0(X0)) = X0|aa(X0) = aa0(X0),
V ampire uses superposition that has as result aa(X0) = aa0(X0)|
aa(X0) = 0(1567), after eliminating the duplicate literals. From
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the formula (382) also used in the first step V ampire infers also
aa(sK0)! = aa0(sK0)(536). Using superposition on (536) and (1567)
and after eliminating trivial inequalities aa(sk0) = 0 results.

For the loop Partition two invariants were proved by V ampire, one for-
mulating that for every non-negative element in aa there is an element in bb,
and one formulating that for every negative element in aa there is an element
in cc. We are going to explain only the former proof because of the similari-
ties between the two. From the input implication after processing it vampire
infers the clause $lesseq(0, X1)(982). Vampire use the property obtained by
Lingva that expresses the fact that the iterator c grows as most as fast as
iterator a, ![X66, X67] : ($lesseq(X66, $sum(c,X67))| $lesseq(X66, c0)|

$lesseq(0, $sum(a, $sum($uminus(a0), X67))))(1429). Using resolu-
tion on (1429) and (982) the formula $lesseq(X0, $sum(c,X1))| $lesseq(X0, c)
(1447) is inferred. Using the following three theory axioms $sum(X0, X1) =
$sum(X1, X0), $lesseq($sum(X0, 1), X1)| $lesseq(X1, X0), $lesseq(X0, X0)
and the previous inferred formula and the theory of superposition the follow-
ing formula is inferred $lesseq($sum(1, $sum(0, X4)), 0) (1714). From the
formula tagged with (1714) and the theory axiom $sum(0, X0) = X0 the
following formula is inferred $lesseq($sum(1, X4), 0). The contradiction
is inferred from the las formula and the axiom that every number summed
with its opposite will result to zero. This proof makes use of a large num-
ber of theory axioms together with input axioms discovered by Lingva and
because of this fact its complexity is higher than that of other discussed
proofs. The invariant that expresses the property for array cc has a similar
proof with corresponding differences where these apply.

For the loop Insertion we try to prove the inductive formula represent-
ing the invariant. Since V ampire has not yet a mechanism that deals with
induction this invariant is harder to prove. On the other hand Lingva au-
tomatically infers two properties that are necessary in understanding the
program. The first one expresses the fact that from a certain position the
elements of the array do not modify their value. The second property au-
tomatically inferred shows that the invariant holds for the first value of j.
In the next chapter we show that by adding the right axioms to the ones
already outputted by Lingva the theorem prover can find a proof for the
searched invariant.

For the loop Maximum, although the invariant we were looking for could
not be proven V ampire proved that for every iteration of the loop there
exists an element that was already processed and that is greater or equal
to all other processed elements. V ampire proves this by simply getting a
contradiction with the axiom X ≤ X. In the next chapter we show what
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properties can be added in order to prove the invariant of interest.
For the moment Lingva has some limitation that do not permit the

analysis of loops that have more than one condition. Also the analysis of
statements that use division is impossible. Even if the statements are modi-
fied in such a way that multiplication is used instead of division the analysis
of the statements is still troublesome.For the three loops HeapProperty,
FirstOccurence, Palindrome, the properties automatically inferred do not
offer information about array elements, but rather information about the
iterators that could not be used in order to prove any invariants of interest.
Because of the current limitations in the analysis system of Lingva we con-
sider that these three loops could not be representative for the capabilities
of proving invariants.

For the loop PartitionInit the invariant that we are interested in is also
an inductive invariant. As we specified before, this type of invariant is,
for V ampire, harder to prove. Lingva managed to automatically infer a
different invariant expressing the property that every elements in the array
cc is a valid position in the array aa. There are no properties inferred
regarding the array bb, so in order to infer the invariant of interest there are
other properties that have to be added to the list of formulas outputted by
Lingva.

For the loop vararg the invariant is proved by V ampire only based on the
input obtained from Lingva. With a few transformation from the (fourth)
input invariant the following formula can be obtained:

$lesseq(aa($sum(a0, X0)), 0)| $lesseq(0, X0)|$lesseq(a, $sum(X0, a0))
(355). This property can be rewritten into an implication expressing that if
X0 is positive and the element at position a0 +X0 is also positive then the
position a0 + X0 is smaller than a. After transforming the formula repre-
senting the invariant V ampire inferred three new clauses
¬$lesseq(0, aa($sum(a0, sK0))) (490), $lesseq(0, sK0) (350) and
$lesseq(a, $sum(sK0, a0)) (491). The formula (490) can be transformed in
the formula
$lesseq(aa($sum(a0, X0)), 0) (586) using resolution and a theory axiom.
Using resolution a few times on this formula V ampire infers the following
formula $lesseq(a, $sum(a0, sK0)) (1529). Using forward demodulation on
(491) an the theory axiom
$sum(X0, X1) = $sum(X1, X0) and get the formula ¬$lesseq(a, $sum(a0, sK0))
which is the opposite of formula (1529).

For the loop Shift the proof of refutation for the invariant of interest was
found. We give a sketch of the proof for easier understanding of it. From
the negated conjuncture the clause ¬(a ≤ sk0) (530) can be inferred. This
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clause is in contradiction with clause a ≤ X0 (1096) which is inferred as
follows. From the negated conjunction together with theory axioms one can
infer X11 ≤ X12 + X11 ∨ ¬(0 ≤ X12) (853). From theory axioms and
negate input invariant one can also infer 0 = −X0 (897). From the previous
clause and the input invariant
∀[X1] : (¬(a0 ≤ (a0 + (−(a) + X1))) ∨ (a ≤ X1) the clause ¬(a0 ≤

(a0+(0+X0)))∨(a ≤ X0)(925) can be inferred. From the latter formula and
formula labeled with (853) one can infer the clause labeled (1096) making
the refutation proof complete.

For the loop SumofPairs the invariant that we are trying to prove is
based on a property that is not explicitly expressed in the program. The
fact that the input array is ordered has a great impact in the proving power
of the theorem prover. In the next chapter we show how the addition of this
property makes possible the proof of the invariant of interest.

For the loop SequentialInitialisation the invariant of interest expresses
the property that the elements of the array have consecutive values. Al-
though for this specific loop Lingva discovered many invariants that could
be used in order to get a proof of the invariant of interest, the limitations of
the machine did not make this possible, the computations being too slow.
Nevertheless we introduce new theorems to the already formed set in order
to get faster results. This situation is also discussed in the next chapter.
From the direct output of Lingva we can distinguish a few properties that
give understanding with respect to the loop. More precisely it shows that if
a position was not visited yet, the value of the element did not change.

4.3 Discussions of Experimental Results

From the experiments above we can draw a few conclusions about the invari-
ants that these tools can infer. Cpp− inv has very good results with most
of the experiments. The running time necessary to infer the invariants is
appreciable even when run on a machine with not too many resources. A lot
of invariants studied fell into the template that this tool is using, being able
to automatically find them without any guidance from the user. It can also
analyze more complex loops that have in the body if . . . then . . . else state-
ments and loops with more than one condition which gives better flexibility
and expressibility when writing the code to be analyzed. One important
class of invariants that this tool is able to infer is the induction type. This
type of properties usually indicate a relation between an element of the array
and the element or elements prior to it.

In the benchmark used we found a single loop that could not be analyzed
properly by this tool, Shift. The invariant we were looking for was a relation
between an element at a certain position i and the element at position
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i + 1. Since this property needed reasoning about a position that was not
reached yet, this did not meet the requirements for the template used by
Cpp−inv. For the invariant PartitionInit the invariant that were discovered
did not give insight on the relation between the elements of the three arrays
processed in the loop. All other invariants that were concluded for the
respective loops were the invariant of interest. The tool was able to extract
useful information about the usage of the array in the loop and yield formulas
of great usage in order for the user to understand the task done in the snippet
of code.

What seems to be the drawback of this method is the fact that one can
not independently use it to check a certain property of interest if it is not
already inferred by the tool. One can not add new information that can
not be automatically inferred in order to get a result about the property
of interest. On the other hand if a user decides to check for properties a
piece of code seen for the first time, this tool might give useful information
regarding the elements of the processed array.

In the case of Gin − pink there is a large set of invariants that can be
inferred from the postcondition and proved by Boogie. The advantage of
using postconditions is that the invariants that will be derived from them
are usually useful for understanding the program. Since the program has as
starting point for searching an invariant a property that is of interest for the
user it is natural that the invariant found by weakening the formula would
also be of interesting when the code is analyzed by the user. On the other
hand it might the case that the invariant would contain auxiliary variables
that are not part of the postcondition. In this case the invariant of interest
is not going to be derived by the tool.

Although Gin− pink is not able to infer (without any interference from
the user) an invariant containing auxiliary variables with respect to the
postcondition there are walk-arounds this problems. One variant to work
this problem out is to augment postconditions with one clause that specifies
properties of the auxiliary variable. At this point Gin− pink might have a
chance to derive the wanted invariant by weakening the new postcondition.
One of this loops is the one tagged with Maximum which was modified in
order to see if the tool would successfully infer the invariant we were looking
for.

Another type of invariants that cause problems to this tool is the one
that include product operation. In this case the problem comes from the
theorem prover that is embedded in the tool, namely Z3. This theorem
prover does not have the background theory necessary to handle formulas
that have product of numeric in their composition. Unfortunately for this
case there is no workaround to make the tool infer the invariant since there
is no way to include new theories that could be used for processing such
formulas.

From the experiments seen above we can see that there are a lot of
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useful invariants derived by this tool, and making use of the method that
helps derive invariants with auxiliary variables would give the user better
results.

For the tool Lingva we observe from the experiments that it obtains a lot
of properties from analyzing the code. To get an idea of how precise the code
is analyzed, the number of invariants that are outputted after eliminating
the trivial ones is somewhere around 150, for a piece of code with 10 lines.
Also the invariants that are inferred can also express properties between
different variables and also between initial values and new values of the
variables, feature that was not present for the other two tools.

The drawback of this method is that some loops that contain more that
have more than one condition to be checked can not be analyzed because
the tool has not yet implemented the analysis of && and || operators from
C programming language. This problem can be solved if the loop does not
contain any if . . . then . . . else statements, because at the moment the loop
can be successfully analyzed if it is not nested and does not contain nested
if statements.

An operation from which is hard to infer invariants is the product over
integer. This method is able to infer such invariants from the direct analysis
of the loop. In order to see the efficiency of this feature of the tool we modi-
fied some of the above loops and processed them with Lingva. Although the
invariants obtained were expressing properties that need the multiplication
operation we could not get any interesting invariants (since also the loops
were not have a real purpose in processing an array).

In the set of loops that we studied there was a significant number that
had as invariants of interest invariants that needed induction in order to
be proven. Unfortunately the theory of induction is not yet implemented
in V ampire so even though the invariants inferred by Lingva were enough
to prove them this did not happen. In the next section we show how we
can nevertheless infer this invariants if we study the properties deduced by
Lingva and add the missing properties in order for the induction to be
complete.

This method has the advantage that if the user knows some information
about the analyzed loop, or any theory that might not be implemented in
V ampire yet it can easily encode the formulas representing the rules in
V ampire and run the theorem prover in order to see if a proof of refutation
for the invariant of interest is possible, with the new information. We took
advantage of this fact and use it to prove all the invariants that were not
automatically proved. In the next chapter we show in detail how the proof
of refutation were obtained for each invariant.

The three methods have different strong points, Cpp − inv can infer
induction properties without any supplementary information from the user,
while for Lingva this is not a trivial task, although it is achievable. Gin−
pink can also deduce such invariants as long as the postcondition mentions
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the variable used as an index, otherwise the task is impossible because it
does not have a method to add information about other variables.

Lingva is the only one from the three tools that can infer properties
about the initial values and the modified values of the variables, by intro-
ducing a new variable name for the initial value of the variable. This feature
offers the user a more expressive way to reason about the program. It brings
more information to the output as it can infer that starting with one po-
sition of the array the elements don’t further change, information that can
not be rendered by the other two tools.

Lingva is more flexible in the sens that knowing that some information
can not be inferred from the loop ( such as if the array is sorted) the use can
add this information to the output of lingva in order to obtain a possibly
better result from V ampire. Gin − pink also accepts in the input new
information from the user, in the form of assume statements, but in this
case the type of formula that one can provide is not as expressible as first
order logic.

Gin − pink has a great advantage by being a goal oriented method.
The invariants inferred by this tool are certainly of interest for the user,
since they have as starting point the postcondition that is interesting for the
program. From this point of view Lingva tries to infer as many invariants as
possible, to make sure it covers as many properties that might be of interest
as possible, while Cpp−inv looks for properties that fall in a certain pattern,
between specific point of the program analyzed.
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5 Invariant Specific Theory Extensions to First
Order Theorem Prover

In this chapter we proceed to analyze the programs for which the properties
of interest could not be proven by Lingva/Vampire and try to find additional
properties of the variables in these programs that we could add such that
the computing power of the prover is increased.

5.1 Comparison of invariants strength

The Maximum Example. The first program to be analyzed is the one
with the name “Maximum”. In plain English what this program does is
to put the value of the first element of an array aa into the variable max
and iterate through the rest of the array comparing max with the rest of
elements and changing the current value of max with the greater value of
the elements if it is the case. The followings are the lines in the loop:

int i=1;

int max = aa[0];

while (i<m)

{

if (max<aa[i]) {

max = aa[i];

}

++i;

}

Analyzing the output of Lingva we observe that the properties with
respect to the iterator i are not strong enough so we add one to assure that
the initial value of i is 0:

Property. 1 tff(prop1,axiom, i0=0).

and one to make ensure that i is increasing:

Property. 2 tff(prop2,axiom, $less(i0,i) ).

These two axioms are necessary to ensure that the first part of the im-
plication will not be invalidated by a false positive.

We also add two properties regarding the variable max. The first one
ensures that the initial value for max is equal with the value of the first
element in aa:

Property. 3 tff(prop3, axiom, max0=aa(0) ).

While the second one ensures that max takes its values only from the values
of elements in aa:
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Property. 4 tff(prop4, axiom, ?[Z:$int]: $lesseq(0,Z) & $lesseq(Z,n)
& max=aa(Z)).

Since the properties inferred by Lingva did not show any relation between
the variable max and the elements in the array it is hard to infer such a
property. The two axioms above have the role to make this connection in
order for the reasoning to be possible.

With the above properties added to the output of Lingva the theorem
prover can prove that all elements in the array that were already examined
have the value at most the value of max expressed in the following formula:

Property. 5 tff(implication, conjecture, ![X: $int]: ($lesseq(0,X) & $less(X,i)
=>$lesseq(aa(X),max) )).

The proof of refutation outputted by Vampire is given in the following lines:

Refutation found. Thanks to Tanya!

981. $false (0:0) [subsumption resolution 980,906]

906. sP5 (1:1) [resolution 903,530]

530. $lesseq(X0,i) (0:3) [cnf transformation 374]

374. ! [X0] : ($lesseq(0,i) & $lesseq(0,sK2(X0)) &

$lesseq(sK2(X0),i)& $lesseq(0,X0) & $lesseq(X0,i) &

~$lesseq(aa(sK2(X0)),aa(X0))) [skolemisation 371]

150. ? [X37] : ! [X36] : (($lesseq(0,i) & $lesseq(0,X36) &

$lesseq(X36,i) & $lesseq(0,X37) & $lesseq(X37,i)) =>

$lesseq(aa(X36),aa(X37)))

[input implication]

903. ~$lesseq(1,i) | sP5 (0:4) [splitting component introduction]

980. ~sP5 (0:1) [subsumption resolution 953,529]

529. $lesseq(0,X0) (0:3) [cnf transformation 374]

953. ~$lesseq(0,$uminus(i)) | ~sP5 (0:5)

[backward demodulation 923,904]

904. ~$lesseq(0,$sum(0,$uminus(i))) | ~sP5 (0:7)

[splitting 669,903]

669. ~$lesseq(1,i) | ~$lesseq(0,$sum(0,$uminus(i))) (0:9)

[definition unfolding 512,517,517]

517. i0 = 0 (0:3) [cnf transformation 143]

143. i0 = 0 [input prop1]

512. ~$lesseq(1,i) | ~$lesseq(i0,$sum(i0,$uminus(i))) (0:9)

[cnf transformation 357]

357. ~$lesseq(i0,$sum(i0,$uminus(i))) | ~$lesseq(1,i)

[flattening 138]

138. ~$lesseq(i0,$sum(i0,$uminus(i))) | ~$lesseq(1,i)

[input inv137]

923. $sum(0,X0) = X0 (1:5) [superposition 153,155]
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155. $sum(X0,0) = X0 (0:5) [theory axiom]

153. $sum(X0,X1) = $sum(X1,X0) (0:7) [theory axiom]

From inv137 inferred by Lingva and the property 1 V ampire deduces
that either i is less or equal to 1 or −1 is smaller than 0. At proposition
903 a new splitting component in a disjunction with i smaller than 1. From
this formula and the negation of the invariant V ampire infers sP5. From
the negated conjunction also the fact that X0 is greater than 0 is inferred
and use this to deduce sP5. The refutation can now be completed.

Although Vampire could not automatically find a refutation proof for
the formula representing the property of max, the extra-formulae that were
added by hand was just information about the variables and not new theo-
ries.

The Partial Initialization Example. The second loop we are going to
look at is “ Partial Initialization ”. This program has as input two arrays,
aa and bb, and saves the indexes for which the element in aa equals the one
in bb in the array cc.

int aa[m], bb[m], cc[m];

int i=0, c=0;

while (i<m)

{

if (aa[i] == bb[i])

{

cc[c] = i;

c++;

}

i++;

}

}

We add properties that give information about the initial values of the
iterators a and c:

Property. 6 tff(prop2, axiom, a0=0).

Property. 7 tff(prop4, axiom, c0=0).

The properties inferred by Lingva with respect to these iterators are
too weak and it can not be inferred that all their values start with the same
value, and that the value at which they start is non-negative.

We also limit the the execution of the programs to the situation when
the number of elements in the array aa, m, is greater than 0:

Property. 8 tff(prop5, axiom, $lesseq(0, m))
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This property is necessary because from the static analysis of the program
it can not be inferred that the array has a positive number of elements, but
we know that any other case would not make sense.

We also add a property that expresses the upper and lower limit of
that an element in cc can get, and also a property that establish a relation
between the elements in the array cc and the value of c for the corresponding
element:

Property. 9 tff(prop1, axiom, ![Y:$int]: $lesseq(0,cc(Y))& $less(cc(Y),m)).

Property. 10 tff(prop6, axiom, ![Y0:$int]:($lesseq(0,Y0)& $less(Y0,c)=>
$lesseq(Y0,cc(Y0)))).

With this new axioms added although Vampire can not prove the initial
property: ∀X, 0 ≤ X ∧ X < c ⇒ aa[cc[X]] == bb[cc[X]], it can prove
another formula with one quantifier alternation: ∀X,∃Y, 0 ≤ X ∧ X <
m ∧ 0 ≤ Y ∧ Y < c ∧ aa(X) = bb(X)⇒ cc(Y ) = X.

Here is the proof of refutation that was outputted by Vampire:

Refutation found. Thanks to Tanya!

2064. $false (1:0) [subsumption resolution 2061,2048]

2048. ~$lesseq(c,0) (1:3) [resolution 2019,1058]

1058. $lesseq(X1,c) (0:3) [cnf transformation 746]

746. ! [X1] : ($lesseq(0,X1) & $lesseq(X1,c) & bb(sK0) = aa(sK0)&

cc(X1) != sK0 & cc(X1) != cc0(X1)) [skolemisation 745]

310. ! [X48] : ? [X49] : (($lesseq(0,X49) & $lesseq(X49,c) &

bb(X48) = aa(X48)) => (cc(X49) = X48 | cc(X49) = cc0(X49)))

[input implication]

2019. ~$lesseq(1,c) | ~$lesseq(c,0) (0:6)

[forward demodulation 2018,316]

316. $sum(X0,0) = X0 (0:5) [theory axiom]

2018. ~$lesseq(c,0) | ~$lesseq(1,$sum(c,0)) (0:8)

[forward demodulation 1374,1613]

1613. c = a (0:3) [forward demodulation 1612,316]

1612. a = $sum(c,0) (0:5) [subsumption resolution 1611,1580]

1580. $lesseq(c,a) (0:3) [evaluation 1065]

1065. ~$lesseq(0,0) | $lesseq(c,a) (0:6)

[definition unfolding 751,1053,1054]

1054. a0 = 0 (0:3) [cnf transformation 307]

307. a0 = 0 [input prop4]

1053. c0 = 0 (0:3) [cnf transformation 306]

306. c0 = 0 [input prop2]

751. ~$lesseq(c0,a0) | $lesseq(c,a) (0:6) [cnf transformation 330]

330. $lesseq(c,a) | ~$lesseq(c0,a0) [flattening 5]

5. $lesseq(c,a) | ~$lesseq(c0,a0) [input inv4]
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1611. ~$lesseq(c,a) | a = $sum(c,0) (0:8)

[forward demodulation 1545,316]

1545. ~$lesseq($sum(c,0),a) | a = $sum(c,0) (0:10)

[evaluation 1115]

1115. ~$lesseq(0,0) | ~$lesseq($sum(c,$uminus(0)),a) |

a = $sum(c,$uminus(0))(0:15)

[definition unfolding 801,1054,1053,1053]

801. ~$lesseq(a0,0) | ~$lesseq($sum(c,$uminus(c0)),a) |

a = $sum(c,$uminus(c0)) (0:15) [cnf transformation 381]

381. a = $sum(c,$uminus(c0)) | ~$lesseq($sum(c,$uminus(c0)),a) |

~$lesseq(a0,0) [flattening 55]

55. a = $sum(c,$uminus(c0)) | ~$lesseq($sum(c,$uminus(c0)),a) |

~$lesseq(a0,0) [input inv54]

1374. ~$lesseq(a,0) | ~$lesseq(1,$sum(c,0)) (0:8) [evaluation 1350]

1350. ~$lesseq(a,0) | ~$lesseq(1,$sum(c,$uminus(0))) (0:9)

[definition unfolding 1036,1054,1053]

1036. ~$lesseq(a,a0) | ~$lesseq(1,$sum(c,$uminus(c0))) (0:9)

[cnf transformation 720]

720. ~$lesseq(1,$sum(c,$uminus(c0))) | ~$lesseq(a,a0)

[flattening 290]

290. ~$lesseq(1,$sum(c,$uminus(c0))) | ~$lesseq(a,a0)

[input inv289]

2061. $lesseq(c,0) (1:3) [resolution 1852,1057]

1057. $lesseq(0,X1) (0:3) [cnf transformation 746]

1852. ~$lesseq(0,$uminus(c)) | $lesseq(c,0) (0:7)

[forward demodulation 1256,1732]

1732. $sum(0,X0) = X0 (0:5) [backward demodulation 1731,1648]

1648. $sum(0,X0) = $sum(c,$sum(0,$sum($uminus(c),X0))) (0:12)

[forward demodulation 1129,1613]

1129. $sum(0,X0) = $sum(a,$sum(0,$sum($uminus(c),X0))) (0:12)

[definition unfolding 815,1054,1053]

815. $sum(a0,X0) = $sum(a,$sum(c0,$sum($uminus(c),X0))) (0:12)

[cnf transformation 396]

396. ! [X0] : $sum(a0,X0) = $sum(a,$sum(c0,$sum($uminus(c),X0)))

[rectify 69]

69. ! [X1] : $sum(a0,X1) = $sum(a,$sum(c0,$sum($uminus(c),X1)))

[input inv68]

1731. $sum(c,$sum(0,$sum($uminus(c),X0))) = X0 (0:10)

[forward demodulation 1730,316]

1730. $sum(X0,0) = $sum(c,$sum(0,$sum($uminus(c),X0))) (0:12)

[forward demodulation 1195,1613]

1195. $sum(X0,0) = $sum(a,$sum(0,$sum($uminus(c),X0))) (0:12)

[definition unfolding 881,1054,1053]

881. $sum(X0,a0) = $sum(a,$sum(c0,$sum($uminus(c),X0))) (0:12
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) [cnf transformation 501]

501. ! [X0] : $sum(X0,a0) = $sum(a,$sum(c0,$sum($uminus(c),X0)))

[rectify 135]

135. ! [X28] : $sum(X28,a0) = $sum(a,$sum(c0,$sum($uminus(c),X28)))

[input inv134]

1256. $lesseq(c,0) | ~$lesseq(0,$sum(0,$uminus(c))) (0:9)

[definition unfolding 942,1053,1053]

942. $lesseq(c,0) | ~$lesseq(c0,$sum(c0,$uminus(c))) (0:9)

[cnf transformation 604]

604. ~$lesseq(c0,$sum(c0,$uminus(c))) | $lesseq(c,0)

[flattening 196]

196. ~$lesseq(c0,$sum(c0,$uminus(c))) | $lesseq(c,0)

[input inv195]

Starting from inv54 inferred by Lingva stating that either a is equal to
c − c0 or c is not less or equal to a or the initial value of a is greater than
0 and with the two properties enforcing the initial values of the iterators
V ampire infers formula (1611) stating that either c is grater than a or a
equals c. Due to the fact that a is at least equal to c, property enforced by
formula (1580). From the input inv289 expressing the fact that either c is
greater than c0 or a is greater than a0 and the property stating the equality
between a and c, V ampire infers that either c is equal to 0 or is greater or
equal to 1(2019). From this formula and the negation of the invariant we
are trying to prove 0 ≤ c (2048) is inferred. From input invariants inv195
and inv68 V ampire infers that c is less or equal to 0. Applying resolution
on the two formulas we obtain a refutation.

The Sum of Pairs Example. The next loop we analyze is “Sum of
pairs”.

int m;

int *aa;

int x=getX(),

l=0, u=m-1;

//:$SORTED: A @ASC

while (l < u) {

if (aa[l] + aa[u] < x)

l = l+1;

else

if (aa[l] + aa[u] > x)

u = u-1;
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else break;

% }

This loop is particularly difficult to analyze with this method because it is
constructed with a nested if . . . then . . . else statement, which makes it dif-
ficult for Lingva to extract properties - as specified in the previous chapter,
and the invariant we want to infer is inductive, type of property that can not
be inferred straight forward by V ampire. For this specific loop we introduce
the invariants inferred by Cpp − inv and check if the theorem prover can
deduce the invariant:

Property. 11 aa[l] + aa[u]− x+ 1 ≤ 0

The proof obtained by V ampire is shown as follows:

Refutation found. Thanks to Tanya!

1898. $false (2:0) [subsumption resolution 1897,355]

355. $lesseq(0,l) (2:3) [resolution 208,103]

103. $lesseq(0,sK0) (0:3) [cnf transformation 80]

80. $lesseq(0,sK0) & $lesseq(sK0,l) &

~$lesseq($sum(aa(l),$sum(aa(u),$sum($uminus(x),1))),0)

[skolemisation 79]

79. ? [X0] : ($lesseq(0,X0) & $lesseq(X0,l) &

~$lesseq($sum(aa(l),$sum(aa(u),$sum($uminus(x),1))),0))

[flattening 78]

78. ? [X0] : (($lesseq(0,X0) & $lesseq(X0,l)) &

~$lesseq($sum(aa(l),$sum(aa(u),$sum($uminus(x),1))),0))

[ennf transformation 59]

59. ~! [X0] : (($lesseq(0,X0) & $lesseq(X0,l)) =>

$lesseq($sum(aa(l),$sum(aa(u),$sum($uminus(x),1))),0))

[rectify 24]

24. ~! [X3] : (($lesseq(0,X3) & $lesseq(X3,l)) =>

$lesseq($sum(aa(l),$sum(aa(u),$sum($uminus(x),1))),0))

[negated conjecture 23]

23. ! [X3] : (($lesseq(0,X3) & $lesseq(X3,l)) =>

$lesseq($sum(aa(l),$sum(aa(u),$sum($uminus(x),1))),0))

[input implication]

208. ~$lesseq(X16,sK0) | $lesseq(X16,l) (1:6) [resolution 31,104]

104. $lesseq(sK0,l) (0:3) [cnf transformation 80]

31. ~$lesseq(X1,X2) | ~$lesseq(X0,X1) | $lesseq(X0,X2) (0:9)

[theory axiom]

1897. ~$lesseq(0,l) (2:3) [subsumption resolution 1889,30]

30. $lesseq(X0,X0) (0:3) [theory axiom]

1889. ~$lesseq(l,l) | ~$lesseq(0,l) (2:6) [resolution 390,309]

309. ~$lesseq($sum(1,$sum($uminus(x),$sum(aa(u),aa(l)))),0) (0:12)
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[forward demodulation 308,25]

25. $sum(X0,X1) = $sum(X1,X0) (0:7) [theory axiom]

308. ~$lesseq($sum(1,$sum($uminus(x),$sum(aa(l),aa(u)))),0) (0:12)

[forward demodulation 307,25]

307. ~$lesseq($sum(1,$sum($sum(aa(l),aa(u)),$uminus(x))),0) (0:12)

[forward demodulation 306,279]

279. $sum(X7,$sum(X8,X9)) = $sum(X9,$sum(X7,X8)) (1:11)

[superposition 26,25]

26. $sum(X0,$sum(X1,X2)) = $sum($sum(X0,X1),X2) (0:11)

[theory axiom]

306. ~$lesseq($sum($uminus(x),$sum(1,$sum(aa(l),aa(u)))),0) (0:12)

[forward demodulation 305,279]

305. ~$lesseq($sum($uminus(x),$sum(aa(l),$sum(aa(u),1))),0) (0:12)

[forward demodulation 304,25]

304. ~$lesseq($sum($uminus(x),$sum($sum(aa(u),1),aa(l))),0) (0:12)

[forward demodulation 296,279]

296. ~$lesseq($sum(aa(l),$sum($uminus(x),$sum(aa(u),1))),0) (0:12)

[backward demodulation 279,143]

143. ~$lesseq($sum(aa(l),$sum(aa(u),$sum(1,$uminus(x)))),0) (0:12)

[forward demodulation 105,25]

105. ~$lesseq($sum(aa(l),$sum(aa(u),$sum($uminus(x),1))),0) (0:12)

[cnf transformation 80]

390. $lesseq($sum(1,$sum($uminus(x),$sum(aa(u),aa(X0)))),0) |

~$lesseq(X0,l) | ~$lesseq(0,X0) (1:18) [superposition 314,25]

314. $lesseq($sum(1,$sum($uminus(x),$sum(aa(X0),aa(u)))),0) |

~$lesseq(X0,l) | ~$lesseq(0,X0) (0:18) [forward demodulation 313,25]

313. $lesseq($sum(1,$sum($sum(aa(X0),aa(u)),$uminus(x))),0) |

~$lesseq(X0,l) | ~$lesseq(0,X0) (0:18) [forward demodulation 312,279]

312. $lesseq($sum($uminus(x),$sum(1,$sum(aa(X0),aa(u)))),0) |

~$lesseq(X0,l) | ~$lesseq(0,X0) (0:18) [forward demodulation 311,279]

311. $lesseq($sum($uminus(x),$sum(aa(u),$sum(1,aa(X0)))),0) |

~$lesseq(X0,l) | ~$lesseq(0,X0) (0:18) [forward demodulation 310,26]

310. $lesseq($sum($uminus(x),$sum($sum(aa(u),1),aa(X0))),0) |

~$lesseq(X0,l) | ~$lesseq(0,X0) (0:18) [forward demodulation 297,279]

297. $lesseq($sum(aa(X0),$sum($uminus(x),$sum(aa(u),1))),0) |

~$lesseq(X0,l) | ~$lesseq(0,X0) (0:18) [backward demodulation 279,140]

140. $lesseq($sum(aa(X0),$sum(aa(u),$sum(1,$uminus(x)))),0) |

~$lesseq(X0,l) | ~$lesseq(0,X0) (0:18) [forward demodulation 100,25]

100. $lesseq($sum(aa(X0),$sum(aa(u),$sum($uminus(x),1))),0) |

~$lesseq(X0,l) | ~$lesseq(0,X0) (0:18) [cnf transformation 73]

73. ! [X0] : (~$lesseq(0,X0) | ~$lesseq(X0,l) |

$lesseq($sum(aa(X0),$sum(aa(u),$sum($uminus(x),1))),0))

[flattening 72]

72. ! [X0] : ((~$lesseq(0,X0) | ~$lesseq(X0,l)) |
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$lesseq($sum(aa(X0),$sum(aa(u),$sum($uminus(x),1))),0))

[ennf transformation 56]

56. ! [X0] : (($lesseq(0,X0) & $lesseq(X0,l)) =>

$lesseq($sum(aa(X0),$sum(aa(u),$sum($uminus(x),1))),0))

[rectify 20]

20. ! [X3] : (($lesseq(0,X3) & $lesseq(X3,l)) =>

$lesseq($sum(aa(X3),$sum(aa(u),$sum($uminus(x),1))),0))

[input pro3]

From the input property that represents one of the invariants discovered
by Cpp− inv, ∀X3((0 ≤ X3∧X3 ≤ l⇒ aa(X3) +aa(u) + 1−x ≤ 0)) using
forward demodulation in combination with theory axioms V ampire infers
that $lesseq(0, l). But in the negated conjecture we have the negation of
this clause resulting into a refutation.

This result is not surprising, taking into account that Cpp − inv can
infer most of the invariants that are inductive so the formulas added to
Lingvas result cover the V ampires lack using induction. The great number
of theories that are implemented in the theorem prover makes the inference
of the invariant possible, the formula introduced as an axiom being processed
and modeled by this theorems to take the form we were looking for.

The Sequential Initialization Example. Also in the case of the loop
for the program “Sequential initialization ” proving the property of interest
is not straight forward.

int main()

{

int m;

int *aa;

aa[0]=7;

int i=1;

while (i<m)

{

aa[i]=aa[i-1]+1;

++i;

}

}

Since in the program there are specified initial values for the iterator i and for
the first element in the array aa but Lingva did not infer them automatically
we introduce them by hand in the form of two properties:
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Property. 12 tff(prop1, axiom, i0=1 ).

and

Property. 13 tff(prop3, axiom, aa0(0)=7).

We observe that Lingva managed to infer some very useful invariants
stating that the value of an element in aa that is in a position beyond the
boundaries (less than 0, or greater than i, greater than m) the value of the
element does not change. We introduce a property expressing the fact that
if the element lies between the boundaries of the processed array its value
is changed:

Property. 14 tff(propx, axiom, ![X:$int]:
( ($lesseq($sum(i,$uminus(i0)),sK0(X)) & $sum(i0,sK0(X)) = X
& $lesseq(0,sK0(X)) & $lesseq(m,$sum(i0,sK0(X))))=> ¬aa(X)=aa0(X)
)).

Since there is no property inferred about the way a value is changed by this
loop (although we already have this information from the output of Cpp-inv)
we introduce a new formula stating this relation:

Property. 15 tff(prop10, axiom, ![X:$int]: (aa(X)=aa0(X) |
aa(X)=$sum(aa($sum(X,$uminus(1))),1) )).

With these new formulae added Vampire can prove that: ∀X, (0 ≤ X)∧
(X < i)⇒ aa(X) == aa(X−1)+1. The proof outputted is give as follows:

Refutation found. Thanks to Tanya!

5511. $false (0:0) [subsumption resolution 5508,702]

702. sP2(sK0) (0:2) [inequality splitting 697,701]

701. ~sP2($sum(1,sK0(sK0))) (0:5)

[inequality splitting name introduction]

697. $sum(1,sK0(sK0)) != sK0 (0:6) [definition unfolding 544,539]

539. i0 = 1 (0:3) [cnf transformation 151]

151. i0 = 1 [input prop1]

544. $sum(i0,sK0(sK0)) != sK0 (0:6) [cnf transformation 388]

388. $lesseq($sum(i,$uminus(i0)),sK0(sK0)) & $sum(i0,sK0(sK0))!=

sK0 & ~$lesseq(0,sK0(sK0)) & $lesseq(m,$sum(i0,sK0(sK0))) &

aa(sK0) != $sum(aa($sum(sK0,$uminus(1))),1) [skolemisation 387]

155. ! [X37] : (($lesseq($sum(i,$uminus(i0)),sK0(X37)) &

~$sum(i0,sK0(X37)) = X37 & ~$lesseq(0,sK0(X37)) &

$lesseq(m,$sum(i0,sK0(X37)))) =>

aa(X37) = $sum(aa($sum(X37,$uminus(1))),1))

[input implication]

5508. ~sP2(sK0) (0:2) [backward demodulation 5504,701]

5504. $sum(1,sK0(sK0)) = sK0 (1:6)
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[subsumption resolution 5503,545]

545. ~$lesseq(0,sK0(sK0)) (0:4) [cnf transformation 388]

5503. $lesseq(0,sK0(sK0)) | $sum(1,sK0(sK0)) = sK0 (1:10)

[subsumption resolution 5497,696]

696. $lesseq(m,$sum(1,sK0(sK0))) (0:6)

[definition unfolding 546,539]

546. $lesseq(m,$sum(i0,sK0(sK0))) (0:6) [cnf transformation 388]

5497. ~$lesseq(m,$sum(1,sK0(sK0))) | $lesseq(0,sK0(sK0)) |

$sum(1,sK0(sK0)) = sK0 (1:16) [resolution 909,912]

912. $lesseq($sum(-1,i),sK0(sK0)) (0:6)

[forward demodulation 703,157]

157. $sum(X0,X1) = $sum(X1,X0) (0:7) [theory axiom]

703. $lesseq($sum(i,-1),sK0(sK0)) (0:6) [evaluation 698]

698. $lesseq($sum(i,$uminus(1)),sK0(sK0)) (0:7)

[definition unfolding 543,539]

543. $lesseq($sum(i,$uminus(i0)),sK0(sK0)) (0:7)

[cnf transformation 388]

909. ~$lesseq($sum(-1,i),sK0(X0)) | ~$lesseq(m,$sum(1,sK0(X0))) |

$lesseq(0,sK0(X0)) | $sum(1,sK0(X0)) = X0 (0:22)

[forward demodulation 908,157]

908. ~$lesseq(m,$sum(1,sK0(X0))) | $lesseq(0,sK0(X0)) |

$sum(1,sK0(X0)) = X0 | ~$lesseq($sum(i,-1),sK0(X0)) (0:22)

[subsumption resolution 705,548]

548. ~$lesseq(m,$sum(1,sK0(X0))) | aa(X0) = aa0(X0) (0:11)

[definition unfolding 389,539]

389. ~$lesseq(m,$sum(i0,sK0(X0))) | aa(X0) = aa0(X0) (0:11)

[cnf transformation 170]

170. ! [X0] : (aa(X0) = aa0(X0) | ~$lesseq(m,$sum(i0,sK0(X0))))

[flattening 1]

1. ! [X0] : (aa(X0) = aa0(X0) | ~$lesseq(m,$sum(i0,sK0(X0))))

[input inv0]

705. aa(X0) != aa0(X0) | ~$lesseq(m,$sum(1,sK0(X0))) |

$lesseq(0,sK0(X0)) | $sum(1,sK0(X0)) = X0 |

~$lesseq($sum(i,-1),sK0(X0)) (0:27) [evaluation 695]

154. ! [X37] : (($lesseq($sum(i,$uminus(i0)),sK0(X37)) &

~$sum(i0,sK0(X37)) = X37 & ~$lesseq(0,sK0(X37)) &

$lesseq(m,$sum(i0,sK0(X37)))) => ~aa(X37) = aa0(X37))

[input propx]

V ampire infers from the input negated implication, from the invariant
inv0 deduced by Lingva, stating the connection between the relation be-
tween the values of i and m and not modifying the values in array aa,
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property (5504) $sum(1, sK0(sK0)) = sK0. From this formula and
¬sP2($sum(1, sK0(sK0))) (701), which is an inequality splitting name in-
troduction, formula sP2(sK0)(5508) is inferred. From this formula and the
negated invariant V ampire obtains a refutation.

The Insertion Example. The loop Insertion requires an invariant that
is inductive so V ampire can not prove this invariant without some extra
knowledge added to the invariants inferred by Lingva.

x=aa[i];

j = i-1;

while (j >= 0 and

aa[j] > x) do

aa[j+1] = aa[j];

--j;

end do

We observe a few properties that were already discovered by Lingva : there
are four properties that express the fact that if the position in the array is
out of the bounds (smaller than 0, greater than j) the value of the elements
is not modified. There is also a property communicating the fact that if
j is greater than 0, than for the element at the initial value of j (at j0)
the property that the value is shifted one to the right holds. Based on this
formulas we take the decision of introducing the following property stating
that all elements that are at a position higher than j are greater than the
element at this position.

Property. 16 tff(prop4, axiom, ![X:$int]:( $lesseq(j,X)| $lesseq(X,j0)|
$less(aa(j),aa(X)))).

The proof found by V ampire for the invariant is reproduced in the fol-
lowing lines:

Refutation found. Thanks to Tanya!

1299. $false (1:0) [subsumption resolution 1298,160]

160. $lesseq(X0,X0) (0:3) [theory axiom]

1298. ~$lesseq(j,j) (1:3) [subsumption resolution 1295,856]

856. ~$lesseq(X0,j) | $lesseq(X0,j0) (3:6) [resolution 839,161]

161. ~$lesseq(X1,X2) | ~$lesseq(X0,X1) | $lesseq(X0,X2) (0:9)

[theory axiom]

839. $lesseq(j,j0) (2:3) [resolution 809,639]

639. $lesseq(j,sK0) (1:3) [resolution 162,530]

530. ~$lesseq(sK0,j) (0:3) [cnf transformation 379]

379. ~$lesseq(sK0,j) & $lesseq(sK0,j0) & $lesseq(aa(sK0),x)

[skolemisation 378]
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378. ? [X0] : (~$lesseq(X0,j) & $lesseq(X0,j0) & $lesseq(aa(X0),x))

[ennf transformation 377]

377. ~! [X0] : ($lesseq(X0,j) | ~$lesseq(X0,j0) |

~$lesseq(aa(X0),x)) [flattening 376]

376. ~! [X0] : (~~$lesseq(X0,j) | ~$lesseq(X0,j0) |

~$lesseq(aa(X0),x))[rectify 154]

154. ~! [X36] : (~~$lesseq(X36,j) | ~$lesseq(X36,j0) |

~$lesseq(aa(X36),x)) [evaluation 152]

152. ~! [X36] : (~$less(j,X36) | ~$lesseq(X36,j0) |

~$lesseq(aa(X36),x))[negated conjecture 151]

151. ! [X36] : (~$less(j,X36) | ~$lesseq(X36,j0) |

~$lesseq(aa(X36),x))[input implication]

162. $lesseq(X0,X1) | $lesseq(X1,X0) (0:6) [theory axiom]

809. ~$lesseq(X24,sK0) | $lesseq(X24,j0) (1:6) [resolution 161,531]

531. $lesseq(sK0,j0) (0:3) [cnf transformation 379]

1295. ~$lesseq(j,j0) | ~$lesseq(j,j) (1:6) [resolution 529,160]

529. ~$lesseq(aa(X0),aa(j)) | ~$lesseq(X0,j0) | ~$lesseq(j,X0)

(0:11)[cnf transformation 375]

375. ! [X0] : (~$lesseq(j,X0) | ~$lesseq(X0,j0) |

~$lesseq(aa(X0),aa(j)))[flattening 374]

374. ! [X0] : (~$lesseq(j,X0) | ~$lesseq(X0,j0) |

~$lesseq(aa(X0),aa(j)))[rectify 153]

153. ! [X36] : (~$lesseq(j,X36) | ~$lesseq(X36,j0) |

~$lesseq(aa(X36),aa(j)))[evaluation 150]

150. ! [X36] : (~$lesseq(j,X36) | ~$lesseq(X36,j0) |

$less(aa(j),aa(X36)))[input prop4]

The proof for this invariant is less complex than the other proofs. From
the formula 839 stating that j ≤ j0 V ampire infers that X is either grater
than j or smaller than j0(856). From this and negated invariant j > j is
inferred which is in contradiction with the property introduced above.

5.2 Discussions and Conclusions

We seen that every one of the studied tools has its own advantage regarding
the strength or type of inferred invariant. We observe that we get signifi-
cantly better results when we use the invariant inferred by one tool as input
for the others in order to get even stronger invariants. One remark is in
order at this step and that is that the form of the formula that we try to
infer with V ampire is important with respect to the set of formulas that are
provided as input. Although using human intuition the invariant may be
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found just as hard to infer regardless of the form that it has, for the theorem
prover a decision must be made on how many times should the basic the-
orems (such as commutativity, associativity) be applied on a formula and
in which order. An important step in this field is the automatization of the
inference process and the combination of techniques.
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6 Conclusions

We have provide an extensive evaluation of the state of the art in invariant
generation techniques. Although the techniques are not mutually exclusive,
in the sens that the same invariant can be generated by more than one
technique, we found a pattern of invariants that can or can’t be generated
by a certain method. In order to infer certain properties about programs,
this classification can point to the user the method that is most likely to
infer it.

The set of programs for which we studied the behavior of these tools
were chosen from a series of loops on which either one of the tools had
difficulties analyzing, the loops were representative for the type of invariants
that a certain tool could infer or the invariants of interest for the loop had an
interesting structure. Although this set is not large, the invariants that were
inferred cover a series of patterns that occur often in program verification.

We further studied the disadvantages of Lingva and V ampire and im-
prove their functionality by either combining the result of Lingva with re-
sults of other methods or by adding properties that are easy to observe by
the user. We choose the set of properties to add for each loop depending on
its structure and also on the known functionality of the tool. To this end
we managed to infer invariants of interest for every loop studied only with
the cost of writing theorems hard to infer by this tool.

Invariants of interest for the user are hard to fined since there might be a
large number of properties between two or more variables from the program.
Nevertheless the three tools managed to infer invariants that would help the
user understand the program better. Also the saturation theorem prover
and post-condition weakening methods are goal oriented since both require
input from the user, having an advantage of inferring the invariant the user
is interested in.

Due to program verification undecidability the task of inferring invari-
ants is hard. Selecting a suitable benchmark for an evaluation of techniques
developed for this task is not trivial since the programs come in a large vari-
ety of languages and combination of statements. We seen in our evaluation
that combining such techniques have a positive influence on the result. This
observation take as to the conjecture that a promising path for future work
is to combine methods that have different advantages and evaluate them on
loops that have a more complicated behavior.

We also observed that there is significant amount of cases in which hu-
man interfering with the procedure (such as adding theorems or stating
postconditions) provides a better result from the users point of view. This
information provides the intuition that combining human intuition can play
an important part in solving the invariant generation task. Algorithms used
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in machine learning, that simulate human rationality can be an asset for this
section of program verification. To the best of our knowledge this concept
was not used yet so for future work this is an interesting path that could be
followed.
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