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Abstract

In this thesis, we introduce blind estimators for several performance metrics of Bayesian detec-

tors, we study rate-information-optimal quantization and introduce algorithms for quantizer

design in the communications context, and we apply our results to a relay-based cooperative

communication scheme.

After a discussion of the background material which serves as a basis for this thesis, we

study blind performance estimation for Bayesian detectors. We consider simple binary and

M -ary hypothesis tests and introduce blind estimators for the conditional and unconditional

error probabilities, the minimum mean-square error (MSE), and the mutual information.

The proposed blind estimators are shown to be unbiased and consistent. Furthermore, we

compare the blind estimators for the error probabilities to the corresponding nonblind esti-

mators and we give conditions under which the blind estimators dominate their respective

nonblind counterpart for arbitrary distributions of the data. In particular, we show that the

blind estimator for the unconditional error probability always dominates the corresponding

nonblind estimator in terms of the MSE. Subsequently, the Cramér-Rao lower bound for bit

error probability estimation under maximum a posteriori detection is derived. Moreover, it

is shown that an efficient estimator does not exist for this problem. Application examples

conclude the discussion of blind performance estimators.

We then introduce an approach to quantization that we call rate-information quantization.

The main idea of rate-information-optimal quantization is to compress data such that its

quantized representation is as informative as possible about another random variable. This

random variable is called the relevance variable and it is correlated with the data. The rate-

information approach is well suited for communication problems, which is in contrast to rate-

distortion (RD) quantization. We focus on the case where the data and the relevance variable

are jointly Gaussian and we derive closed-form expressions for the optimal trade-off between

the compression rate and the preserved information about the relevance variable. It is then

shown that the optimal rate-information trade-off is achieved by suitable linear preprocessing

of the data with subsequent MSE-optimal source coding. This result connects RD theory,

the Gaussian information bottleneck, and minimum MSE estimation. Furthermore, we show
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that the asymptotic rate-information trade-off can be closely approached using optimized

scalar quantizers.

Next, we consider quantization in a communications context and we introduce algorithms

which allow us to design quantizers that maximize the achievable rate. One of our algorithms

operates in a similar manner as the famous Lloyd-Max algorithm, but it maximizes the

mutual information instead of minimizing the average distortion. Moreover, we propose a

greedy algorithm for scalar quantizer design which is conceptually simple and computationally

attractive. Subsequently, the concept of channel-optimized vector quantization, which is a

well known approach to joint source-channel coding, is extended to mutual information as

optimality criterion. The resulting optimization problem is solved using an algorithm that

is based on the information bottleneck method. To conclude the discussion of quantization

for communication problems, we compare the proposed algorithms and provide application

examples.

Finally, we apply our results to a cooperative transmission scheme for the multiple-access

relay channel with two or more sources. In this scheme, the relay quantizes the received

signals and performs network encoding of the quantized data. The quantizers at the relay

are optimized using our Lloyd-Max-like algorithm. The network encoder is designed using a

suitably modified version of the previously introduced algorithm for channel-optimized vector

quantizer design. The relay operations are simple to implement and allow the considered

transmission scheme to scale well with the number of sources. We provide numerical results

that confirm the excellent performance of our scheme and underpin the usefulness of the

proposed blind performance estimators.



Kurzfassung

In dieser Dissertation werden blinde Schätzer für einige Gütekriterien von Bayesschen Detek-

toren beschrieben, es wird rate-information-optimale Quantisierung diskutiert, und es werden

Algorithmen zum Entwurf von Quantisierern im Bereich der Datenübertragung eingeführt.

Die in diesen Bereichen erzielten Ergebnisse werden schließlich auf ein Relais-basiertes ko-

operatives Übertragungsverfahren angewandt.

Nach einer Abhandlung der für diese Dissertation notwendigen Grundlagen behandeln wir

blinde Güteschätzung für Bayessche Detektoren. Wir betrachten binäre sowie M -fache Hypo-

thesentests und stellen blinde Schätzer für die bedingten und unbedingten Fehlerwahrschein-

lichkeiten, für den minimalen mittleren quadratischen Fehler und für die Transinformation

vor. Es wird gezeigt, dass die vorgeschlagenen blinden Schätzer erwartungstreu und konsistent

sind. Weiters vergleichen wir die blinden Schätzer für die Fehlerwahrscheinlichkeiten mit den

entsprechenden nicht-blinden Schätzern. Wir geben Bedingungen an, unter denen die blin-

den Schätzer ihre nicht-blinden Pendants für beliebige Verteilungen der Daten dominieren.

Insbesondere zeigen wir, dass der blinde Schätzer für die unbedingte Fehlerwahrscheinlich-

keit den entsprechenden nicht-blinden Schätzer bezüglich des mittleren quadratischen Fehlers

stets dominiert. Anschließend wird die Cramér-Rao-Schranke für die Schätzung der Bitfeh-

lerwahrscheinlichkeit eines Maximum-a-posteriori-Detektors hergeleitet. Darüber hinaus wird

gezeigt, dass für dieses Schätzproblem kein effizienter Schätzer existiert. Wir beschließen die

Untersuchung von blinden Güteschätzern mit der Diskussion einiger Anwendungsbeispiele.

Danach beschreiben wir einen Ansatz zur Quantisierung, den wir Rate-information-

Quantisierung nennen. Der Grundgedanke von rate-information-optimaler Quantisierung ist,

Daten derart zu komprimieren, dass die quantisierte Darstellung möglichst aussagekräftig

über eine andere Zufallsvariable ist. Diese mit den Daten korrelierte Zufallsvariable bezeichnen

wir als Relevanzvariable. Der Rate-information-Ansatz ist im Gegensatz zum Rate-distortion-

Ansatz für Anwendungen im Bereich der Übertragungstechnik sehr gut geeignet. Wir richten

unser Hauptaugenmerk auf den Fall einer Gaußschen Verbundverteilung von Daten und Re-

levanzvariable. In diesem Fall finden wir geschlossene Ausdrücke für den optimalen Abtausch

zwischen der Quantisierungsrate und der erhalten bleibenden Information über die Relevanz-

variable. Wir nennen diesen Abtausch den Rate-information-Trade-off, und wir beweisen,
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dass der optimale Rate-information-Trade-off durch geeignete lineare Filterung mit anschlie-

ßender, im Sinne des mittleren quadratischen Fehlers optimaler, Quellencodierung erreicht

werden kann. Dieses Ergebnis stellt eine Verbindung zwischen Rate-distortion-Theorie, Gauß-

schem Information-bottleneck und Wiener-Filterung her. Weiters zeigen wir, dass optimierte

skalare Quantisierer den asymptotischen Rate-information-Trade-off beinahe erreichen.

Im Anschluss betrachten wir Quantisierung im Kontext der Übertragungstechnik und

stellen Algorithmen für den Entwurf von Quantisierern vor, welche die erreichbare Datenra-

te maximieren. Einer der vorgestellten Algorithmen funktioniert ähnlich wie der berühmte

Lloyd-Max-Algorithmus, mit dem Unterschied, dass er nicht die Signalverzerrung minimiert

sondern die Transinformation maximiert. Zudem schlagen wir einen Greedy-Algorithmus

für den Entwurf skalarer Quantisierer vor, der konzeptionell einfach ist und geringen Re-

chenaufwand aufweist. Anschließend erweitern wir das Konzept der kanaloptimierten Vek-

torquantisierung, welches ein bekanntes Verfahren zur gemeinsamen Kanal- und Quellen-

codierung darstellt, indem wir die Transinformation als Optimalitätskriterium verwenden.

Das zugehörige Optimierungsproblem wird mit Hilfe eines Algorithmus gelöst, der auf der

information-bottleneck-Methode basiert. Zum Abschluss dieses Teils unserer Arbeit verglei-

chen wir die vorgeschlagenen Algorithmen und diskutieren Anwendungsbeispiele.

Abschließend wenden wir die zuvor gewonnenen Ergebnisse auf ein kooperatives

Übertragungsverfahren für den Mehrfachzugriff-Relais-Kanal mit mindestens zwei Quellen

an. In diesem Übertragungsverfahren quantisiert das Relais die Empfangssignale und wendet

anschließend Netzcodierung auf die quantisierten Daten an. Für die Optimierung der Quan-

tisierer am Relais verwenden wir unseren Lloyd-Max-artigen Algorithmus. Der Entwurf der

Netzcodierung erfolgt mittels einer geeigneten Modifikation des zuvor vorgestellten Algorith-

mus für den Entwurf kanaloptimierter Vektorquantisierer. Die Signalverarbeitung am Relais

ist einfach zu implementieren und gewährleistet, dass das betrachtete Übertragungsverfahren

vorteilhaft mit der Anzahl der Quellen skaliert. Wir geben numerische Ergebnisse an, wel-

che die hervorragende Leistungsfähigkeit unseres Übertragungsverfahrens bestätigen. Zu-

dem untermauern diese Ergebnisse die Nützlichkeit der von uns vorgeschlagenen blinden

Güteschätzer.



Acknowledgements

I have been very much looking forward to writing these lines for quite some time. A four-and-
a-half-year journey is coming to an end and I could not be happier with the outcome of my
PhD-endeavor. This is due to the exceptional and wonderful support I have received, which
made my time as a doctoral student much more successful and also very pleasant. It’s about
time to say “thank you”!

First and foremost, I want to express my gratitude to Gerald. My first encounter with
him was on October 4, 2007, when I was a student in his class on statistical signal processing.
I quickly realized that Gerald is an extremely gifted lecturer. It was a great pleasure to
observe how well he explained very complicated things in a very clear and simple manner.
Unsurprisingly, his office door was the first address when I was looking for an interesting and
challenging master thesis topic. At that time, I did not think about doing a PhD. However,
Gerald’s commitment to high-quality research and the unique spirit in his group made me
rethink my plans. Fast forward to today, I can say that I absolutely don’t regret my choice.
Speaking in statistical decision theory terms: the observations I made have enforced the prior
belief. Gerald, I am extremely grateful for your continuous support, for going above and
beyond the call of duty when it comes to revising our papers (and this thesis!) late at night,
for trusting in me and my capabilities, and for giving me the opportunity to pursue a PhD.
Thank you very much!

I am indebted to Andreas Burg, who kindly agreed to act as referee and examiner. Thank
you for your interest in my work and for your patience. It is a pleasure working with you and
I would be glad to intensify our collaboration in the future.

I am grateful to my colleagues at the Institute of Telecommunications. Our institute
is a very vibrant place, which makes everyday work just so much more pleasant. The flat
hierarchy and the open door culture at our institute are most appreciated. I’d like to thank
all our professors for their great teaching. Special thanks go to Franz Hlawatsch and Norbert
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1
Introduction

Communication systems and especially wireless communication technologies have become an

integral part of our everyday life. Today, many people around the world are so accustomed

to being always “online” that a few days without internet connection is like a nightmare

for them. However, according to estimates of the International Telecommunication Union,

only 40 % of the global population will have internet access by the end of 2014. Therefore,

the importance and the size of wireless communication networks will continue to grow at a

fast pace for the foreseeable future. This is especially true for developing countries where

for every user who is online, there are two users who are not. Connecting the next 4 billion

people to the internet will give rise to tremendous technological and societal challenges in

the next decade. Furthermore, billions of interconnected sensors and embedded computing

devices, forming the internet of things (IoT), are expected to be used in applications such

as intelligent transportation systems, home automation, and energy management. The flood

of data produced by the IoT will pose substantial challenges for future data compression

techniques and data storage systems.

The developments mentioned above provide untold research opportunities in the areas

of communication and information theory, and signal processing. Current research themes

aiming to improve wireless networks in terms of spectral efficiency and energy efficiency in-

clude cooperative communications, interference management, large-scale antenna systems,

cognitive radio, and resource management with cross-layer optimization. These topics are

not purely of academic interest; cooperative transmission techniques have for example found

their way into communication standards. The IEEE 802.16j standard [45] introduced multi-

hop relaying for WiMAX, and IEEE 802.11ah [44] will (presumably in early 2016) introduce

relay access points for WiFi networks operating in unlicensed sub-gigahertz frequency bands.

Another example is the 3GPP Release 10 (also known as LTE-A) which introduces coor-

dinated multipoint transmission and relay nodes [1]. While future networks will have to

1
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go considerably beyond traditional point-to-point communication paradigms to satisfy con-

sumer demands, there are still a lot of relevant open problems concerning the physical layer

of point-to-point links. For example the information-theoretic limits and the optimal de-

sign of receiver front-ends (consisting of everything from the antenna to the analog-to-digital

converter) have not been sufficiently studied to date. However, carefully optimizing, e.g.,

synchronization, sampling, and analog-to-digital conversion in wireless receivers may yield

substantial performance and energy improvements over the current state of the art.

1.1 Motivation and Problem Statement

In this thesis we study blind performance estimation, data compression and quantizer design,

and relay-based cooperative communication. We next give a brief motivation for our work

on each of these topics.

Blind Performance Estimation for Bayesian Detectors. An exact analytical perfor-

mance analysis of Bayesian hypothesis tests is often difficult or even impossible. Alternatively,

performance bounds can be considered which are usually easier to derive and to evaluate. If

bounds do not provide sufficient insight and an exact analysis remains elusive, Monte Carlo

simulations provide a way to estimate the performance of detectors. When soft information

is used at the detector, performance estimation can be carried out in a blind manner [43].

Here, “blind” means that the estimator may only use the data that is available to the hypoth-

esis test, i.e., it does not have access to the true hypothesis or any other side information.

Therefore, blind estimators are not restricted to simulations; they are suitable for online per-

formance analysis of soft-information-based detectors. This is important, e.g., for receivers

in communication systems which employ adaptive modulation and coding techniques. Our

main goal is to find and analyze blind estimators for several performance metrics of simple

Bayesian hypothesis tests.

The Rate-Information Trade-off in the Gaussian Case. In digital communication sys-

tems, the receiver has to employ some form of quantization, e.g., analog-to-digital conversion.

Clearly, there is a trade-off between the quantizer resolution and the amount of information

that can reliably be decoded after quantization. Closed-form expressions for this trade-off

(termed rate-information trade-off ) are available only in a few special cases [112]. The infor-

mation bottleneck (IB) method [97] allows us to numerically compute the rate-information

trade-off for discrete random variables. In this thesis, we study the rate-information trade-off

for Gaussian channels with Gaussian input. Our main goals are to derive closed-form ex-

pressions for the rate-information trade-off and to find connections to rate-distortion (RD)

theory [8]. Although motivated by a communication problem, our work applies to the com-

pression of arbitrary jointly Gaussian data sets.
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Quantizer Design for Communication Problems. Quantizer design is well studied in

the lossy source coding setting. RD theory provides fundamental performance limits and there

exist algorithms, e.g., the Lloyd-Max algorithm [66, 71] and the LBG algorithm [65], which

allow us to find optimized quantizers. However, a lossy source coding perspective is generally

not appropriate in a communications context where we are interested in maximizing the data

rate rather than in representing a signal with small distortion. Hence, we aim for quantizers

which are optimized in the sense of maximum mutual information, i.e., we are interested

in rate-information quantization instead of RD quantization. While the IB method allows

us to numerically compute the fundamental limits for rate-information quantization, it does

not yield deterministic quantizers for finite blocklengths. We note that mutual-information-

based quantizer design is substantially different from distortion-based quantizer design. Our

main goal is to conceive algorithms for the design of low-rate quantizers for communication

problems.

Quantization-Based Network Coding for the Multiple-Access Relay Channel

(MARC). Cooperative communication strategies have been recognized as a promising way

to improve spectral efficiency and to increase reliability in communication networks. When

direct user cooperation [92,93] is not feasible, relay nodes can be employed whose sole purpose

is to facilitate the users’ transmissions. For example in cellular networks, relays can provide

diversity and improve coverage for cell-edge users [114]. In networks with more than one

data stream, network coding [2] enables increased throughput by coding data at intermediate

nodes instead of simple forwarding. Well-known relaying protocols include amplify-and-

forward (AF), decode-and-forward (DF), and compress-and-forward [19]. The AF scheme is

easy to implement, but has the drawback of analog transmission which requires highly linear

and thus inefficient power amplifiers at the relay. DF avoids this drawback and can easily be

combined with network coding, but it has increased complexity and delay due to decoding at

the relay. Our main goal is to devise a compression-based transmission scheme for the MARC

with two or more users which is simple to implement and incorporates network coding at the

physical layer.

1.2 Organization of this Thesis

In the remainder of this chapter, we summarize our major original contributions and we

present the notation we use in this thesis.

Chapter 2 covers the background material which serves as a basis for the subsequent

chapters. The material in this chapter is presented in such a way that the reader can quickly

recall the most important definitions and results without having to browse through the liter-

ature.

In Chapter 3 we first give an example for blind estimation of the bit error probability.

We next consider the binary case and study the properties of log-likelihood ratios (LLRs). We
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then formulate simple blind estimators for a number of performance metrics. Next, we analyze

the mean-square error (MSE) performance of the proposed estimators and compare them to

corresponding nonblind estimators. Moreover, for the case of conditionally Gaussian LLRs,

we derive the Cramér-Rao lower bound (CRLB) [21, 84] for bit error probability estimation.

Finally, we provide application examples to corroborate the usefulness of the proposed blind

estimators. Parts of the material in this chapter have been published in [107].

Chapter 4 studies the rate-information trade-off for jointly Gaussian random vectors.

After formalizing the rate-information trade-off, we review the Gaussian information bottle-

neck (GIB) [17]. Using the GIB, we find closed-form expressions for the rate-information

trade-off in the scalar case and in the vector case. Next, we study connections between the

rate-information trade-off and RD theory and we prove that the GIB can be decomposed into

linear filtering with subsequent MSE-optimal quantization. Finally, we design quantizers and

compare their performance to the asymptotic limit. The material in this chapter has in part

been published in [72,104,110].

In Chapter 5 we consider the design of optimized quantizers in the sense of maximum

mutual information. First, we point out the differences between this problem and distortion-

based quantization, and we review the Lloyd-Max algorithm [66, 71]. Next, we conceive an

algorithm which is strongly reminiscent of the famous Lloyd-Max algorithm but maximizes

mutual information instead of minimizing the MSE. Furthermore, we discuss the design

of scalar quantizers using a greedy algorithm which are simple to implement. We present

an algorithm for channel-optimized vector quantization (COVQ) which is based on the IB

method. This algorithm includes the design of scalar quantizers and vector quantizers as

special cases. Finally, we give application examples and provide a comparison of the proposed

algorithms. Parts of the material in this chapter have been published in [111].

Chapter 6 presents a physical layer network coding scheme for the MARC. After an

introductory discussion of related work, we present the system model and explain the basic

operation of all nodes. Next, we describe the coding strategy at the relay in detail. The

relay essentially performs LLR quantization followed by a network encoding operation. The

network encoder design is based on a suitably modified version of the COVQ algorithm in-

troduced in Chapter 5. We then present an iterative message passing decoder which jointly

decodes all source data at the destination. Finally, we provide simulation results which

demonstrate the effectiveness of the considered transmission scheme. We also consider per-

formance evaluation using the blind estimators introduced in Chapter 3. The material in this

chapter has in part been published in [109].

Conclusions are provided in Chapter 7. We summarize our main findings and discuss

the insights gained in this thesis. Finally, we point out several open problems which may

serve as a basis for further research.

Throughout this thesis, lengthy proofs are relegated to the appendices for better read-

ability. Appendix D provides a collection of formulas for the (raw and central) moments and

absolute moments of the Gaussian distribution [103].
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1.3 Original Contributions

In the following we summarize the major original contributions of this thesis.

Blind Performance Estimation for Bayesian Detectors

• We propose unbiased and consistent blind estimators for several performance metrics of

Bayesian detectors. In particular, we consider (conditional) error probabilities, the min-

imum MSE, and mutual information. We note that our contributions go substantially

beyond previous work in [43,57,58,67,96].

• We analyze and suitably bound the MSE of our blind estimators. For the (conditional)

error probabilities we include a comparison to nonblind estimators. For the uncondi-

tional error probability, we prove that the blind estimator always dominates the corre-

sponding nonblind estimator. For the conditional error probabilities, we give conditions

under which the blind estimators dominate the corresponding nonblind estimators.

• We derive the CRLB for bit error probability estimation in the case of conditionally

Gaussian LLRs. Furthermore, we show that in this case an efficient estimator does not

exist. We numerically evaluate the MSE of our proposed bit error probability estimator

and compare it to the CRLB.

• We study the properties of LLRs. In particular, we find novel relations between con-

ditional and unconditional moments of functions of LLRs. These results prove to be

useful in the derivation of the proposed blind estimators.

• We give application examples for the proposed blind estimators and confirm their use-

fulness using numerical simulation results. We consider suboptimal detectors and model

uncertainty (e.g., imperfect channel state information in the communications context)

and we show that our blind estimators produce useful results in these cases.

The Rate-Information Trade-off in the Gaussian Case

• We derive closed-form expressions for the rate-information trade-off. In particular, we

characterize the information-rate function and the rate-information function, and we

study the properties of these two functions. We show that in the asymptotic limit,

rate-information-optimal quantization can be modeled by additive Gaussian noise.

• We prove that MSE-optimal (noisy) source coding is suboptimal in terms of the rate-

information trade-off. However, we show that suitable linear preprocessing with sub-

sequent MSE-optimal quantization is sufficient to achieve the optimal rate-information

trade-off.

• Our results show that the GIB can be decomposed into linear filtering with subsequent

MSE-optimal source coding. This is important because it relates the lesser-known
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GIB to two much more widely known concepts. Moreover, the RD theorem provides

achievability and converse for the rate-information trade-off.

• We design quantizers for fixed blocklength, and we numerically evaluate their perfor-

mance and compare it to the optimal rate-information trade-off. It turns out that it is

sufficient to consider MSE-optimal quantizers and the information-rate function can be

closely approached with increasing quantization rate.

Quantizer Design for Communication Problems

• We derive a novel algorithm for the design of scalar quantizers that maximize mutual

information. The proposed algorithm performs alternating maximization and allows for

an elegant formulation in the binary case in terms of LLRs. Our algorithm is simple to

implement and can directly quantize continuous random variables which is in contrast

to IB-based algorithms.

• We present a simple yet effective greedy algorithm for the design of mutual-information-

optimal scalar quantizers. This algorithm is attractive because it finds a locally optimal

quantizer with little computational effort. In particular, the proposed greedy algorithm

avoids line search and root-finding methods.

• We propose an algorithm which finds channel-optimized vector quantizers maximizing

mutual information. This is the first algorithm extending the concept of COVQ to

mutual information as optimality criterion. An important advantage of the proposed

algorithm is that it additionally yields optimized labels for the quantizer output.

• We provide a comparison of the proposed quantizer design algorithms. In particu-

lar, we give guidelines for the selection of the appropriate algorithm and we study

the convergence behavior of the proposed algorithms. Moreover, we design mutual-

information-optimal quantizers and compare their performance to the optimal rate-

information trade-off which is computed numerically using the IB method.

Quantization-Based Network Coding for the MARC

• We propose a physical layer network coding scheme for the MARC which supports

two or more sources and is simple to implement. In our scheme, the relay performs

quantization-based network encoding which essentially consists of LLR quantization

and a simple table lookup operation.

• We design the network encoder at the relay as a channel-optimized vector quantizer

which is optimized using a suitably modified version of the COVQ algorithm introduced

in Chapter 5. This approach allows us to effectively combat the noise on the relay-

destination channel and is superior to non-channel-optimized designs.
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• We derive an iterative receiver which jointly decodes the network code and the channel

codes using the sum-product algorithm [54]. We use a factor graph approach to de-

scribe the overall network-channel code and to derive the iterative joint network-channel

decoder.

• We provide numerical results and analyze the performance of the proposed scheme using

practical channel codes. We evaluate the bit and block error rates of our scheme, and

compare its performance to baseline schemes. It is observed that the proposed scheme

yields diversity and coding gains, and scales well beyond two sources.

1.4 Notation

We use boldface lowercase letters for column vectors and boldface uppercase letters for ma-

trices. For random variables, we use upright sans-serif letters. Sets are denoted by calli-

graphic letters. The indicator function 1{·} equals 1 if its argument is a true statement

and it equals 0 otherwise. Markov chains are denoted as x ↔ y ↔ z which implies that

p(x, z|y) = p(x|y)p(z|y). A multivariate Gaussian (normal) distribution with mean vector

µ and covariance matrix C is denoted by N (µ,C). Similarly, CN (µ,C) denotes a com-

plex Gaussian distribution that is circularly symmetric about its mean µ and has covariance

matrix C. Additional frequently used notation is summarized below.

N natural numbers

N0 nonnegative integers

Z integers

R real numbers

R+ nonnegative real numbers

C complex numbers

|A| cardinality of the set A
z∗ complex conjugate of z

R(z) real part of z

[x]+ shorthand notation for max{0, x}
log+ x shorthand notation for log(max{1, x})
Q(x) Gaussian Q-function, Q(x) = 1√

2π

∫∞
x exp(−t2/2)dt

s(x) unit step function

δ(x) Dirac delta function

δi,j Kronecker delta

1 all-ones vector

0 all-zeros vector

vec{A} vector consisting of the stacked columns of the matrix A

‖·‖2 Euclidean norm
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AT transpose of the matrix A

I identity matrix

diag{an}Nn=1 N ×N diagonal matrix with diagonal entries a1, . . . , aN

P{·} probability

E{·} expectation operator

var{·} variance

D(·‖·) relative entropy

H(·) entropy

h(·) differential entropy

h2(p) binary entropy function, h2(p) = −p log2 p− (1− p) log2(1− p)
I(·; ·) mutual information

� element-wise inequality

� element-wise multiplication

⊕ modulo-2 addition

� boxplus operator (cf. [40])



2

Preliminaries

We cover a diverse set of the topics in this thesis. In this chapter, we therefore present the

background material which serves as a basis for Chapters 3 to 6. We first introduce basic

concepts from convex optimization (Section 2.1) and information theory (Section 2.2). Next,

we consider classical parameter estimation in Section 2.3 and Bayesian hypothesis testing

in Section 2.4. We then discuss factor graphs and the sum-product algorithm (Section 2.5)

followed by an introduction to soft information processing and codes on graphs (Section

2.6). Finally, we review the information bottleneck (IB) method and discuss the iterative IB

algorithm in Section 2.7. The main purpose of this chapter is to summarize the well-known

definitions and results we use in this thesis. Thus, we state all results without proofs and

refer to the literature for more details.

9
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2.1 Convex Optimization

The material in this section is taken mostly from Boyd and Vandenberghe [12]. We begin by

discussing convex sets. A set S is convex if for all x1,x2 ∈ S and any θ ∈ [0, 1], we have

θx1 + (1− θ)x2 ∈ S. (2.1)

The statement in (2.1) says that the line segment between any two points x1 and x2 must

lie in S. Important examples of convex sets are hyperplanes, halfspaces, polyhedra, and

Euclidean balls. A set of the form

{x |aTx = b} (2.2)

with a ∈ Rn, a 6= 0, and b ∈ R is called a hyperplane. The hyperplane in (2.2) divides Rn

into two halfspaces. A closed halfspace is a convex set which can be written as

{x |aTx ≤ b}, (2.3)

where a 6= 0. An intersection of a finite number of halfspaces and hyperplanes is called a

polyhedron. More formally, a polyhedron is a convex set of the form

P = {x |aT
i x ≤ bi, i = 1, . . . ,m, cT

j x = dj , j = 1, . . . , p}. (2.4)

The polyhedron in (2.4) is the intersection of m halfspaces and p hyperplanes. An important

special case of a polyhedron in Rn is obtained by letting ai = −ei, bi = 0, i = 1, . . . , n,

c1 = 1n, and d1 = 1 in (2.4), where ei denotes the ith unit vector and 1n is the length-n

all-ones vector. This set is an (n−1)-dimensional probability simplex which can be compactly

written as

PS = {p |p � 0, 1T
np = 1}. (2.5)

In (2.5), “�” denotes element-wise inequality. An element p ∈ PS corresponds to a proba-

bility distribution on n elements. A Euclidean ball is a convex set of the form

B(xc, r) =
{
x
∣∣ ‖x− xc‖22 ≤ r2

}
, (2.6)

where xc is the center of the ball and r > 0 is its radius. Examples of convex and nonconvex

sets are depicted in Figure 2.1.

Next, we consider convex functions and convex optimization problems. A function

f : Rn → R is convex if its domain (denoted by dom f) is a convex set and if for all

x1,x2 ∈ dom f and any θ ∈ [0, 1], we have

f
(
θx1 + (1− θ)x2

)
≤ θf(x1) + (1− θ)f(x2). (2.7)

We call f strictly convex if strict inequality holds in (2.7) for all x1,x2 ∈ dom f where
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Figure 2.1: Some simple examples of convex sets (top row) and nonconvex sets (bottom row).

x1 6= x2 and θ ∈ (0, 1). A function f is (strictly) concave if −f is (strictly) convex. We say

that f is affine if f is convex and concave. If f is differentiable, then the condition in (2.7)

is equivalent to

f(x2) ≥ f(x1) +∇f(x1)T(x2 − x1) (2.8)

for all x1,x2 ∈ dom f . This is probably the most important property of convex functions.

Suppose ∇f(x1) = 0, then (2.8) tells us that f(x2) ≥ f(x1) for all x2 ∈ dom f , i.e., f attains

a global minimum at x1. The α-sublevel set of a function f : Rn → R is

Sα = {x ∈ dom f |f(x) ≤ α}. (2.9)

The sublevel sets of a convex function are convex for any α ∈ R. However, the converse is

not true; a function with convex sublevel sets need not be convex. Similarly to (2.9), the

α-superlevel set of f is

Sα = {x ∈ dom f |f(x) ≥ α}. (2.10)

If f is concave its superlevel sets are convex, but the converse is not true. A function

f : Rn → R is called quasiconvex if its domain and all its sublevel sets Sα for α ∈ R are

convex. We call f quasiconcave if −f is quasiconvex. A quasilinear function is both quasi-

convex and quasiconcave. We note that every convex (concave) function is also quasiconvex

(quasiconcave), but the converse is not true. Figure 2.2 depicts the graph of (a) a convex

function, (b) a quasiconvex function, and (c) a nonconvex function.

An optimization problem of the form

min
x

f0(x) (2.11)

subject to x ∈ X

is a convex optimization problem if the objective function f0 and the feasible set X are
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(a) (b) (c)

Figure 2.2: Graph of (a) a convex function, (b) a quasiconvex function, and (c) a nonconvex
function.

convex. Writing the feasible set in (2.11) in terms of p equality constraints and m inequality

constraints yields a convex optimization problem in standard form:

min
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m, (2.12)

hj(x) = 0, j = 1, . . . , p.

Here, the inequality constraint functions fi, i = 1, . . . ,m, are convex and the equality con-

straint functions hj , j = 1, . . . , p, are affine. In this context we call x ∈ Rn the optimization

variable. We call x? a (globally) optimal point or simply optimal if x? ∈ X , i.e., x? is feasible,

and f0(x) ≥ f0(x?) for all x ∈ X . A point x∗ is locally optimal if there exists an r > 0 such

that f0(x) ≥ f0(x∗) for all x ∈ B(x∗, r). A fundamental property of convex optimization

problems is the fact that every local optimum is also a global optimum [12, Subsection 4.2.2].

We next state important inequalities related to convex functions. Let x be a random

variable and let f be a convex function, then we have [12, Subsection 3.1.8]

f
(
E{x}

)
≤ E

{
f(x)

}
, (2.13)

provided that the expectations exist. The inequality in (2.13) is known as Jensen’s inequality.

An extension of Jensen’s inequality holds for probability distributions which are compactly

supported on an interval [a, b] ⊆ R and real-valued convex functions f : [a, b] → R. In this

case we have

f
(
E{x}

)
≤ E

{
f(x)

}
≤ f(a) +

f(b)− f(a)

b− a
(
E{x} − a

)
. (2.14)

We note that the first inequality in (2.14) becomes an equality if x is constant, i.e., if x ≡ E{x},
and we have equality in the second inequality if x takes the values a and b with probabilities

ε ∈ [0, 1] and 1− ε, respectively. A proof of (2.14) is given in [59, Chapter 3].

Finally, we introduce the concept of extreme points [10, Appendix B.4]. We call a point

x ∈ S an extreme point of a convex set S if x does not lie strictly within a line segment

contained in S. Equivalently, x ∈ S is an extreme point if it cannot be expressed as a convex

combination of vectors in S which are all different from x. It turns out that any compact
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convex set is equal to the convex hull of its extreme points. This result is known as the

Krein-Milman theorem [53]. Furthermore, it can be shown that any nonempty, closed, and

convex set has at least one extreme point if and only if it does not contain a line, i.e., a set

of the form {x+ αb |α ∈ R} with b 6= 0.

2.2 Information Theory

Before we begin our discussion, we first introduce some notation and conventions. For our

purposes it is sufficient to consider random variables which have a probability density function

(pdf) or a probability mass function (pmf). We use px(x) to denote the pdf or pmf of a random

variable x. It will be clear from the context whether px(x) is a pdf or a pmf. With some

abuse of notation we write the pdf of a discrete random variable x ∈ X as

px(x) =
∑
x′∈X

P{x=x′}δ(x− x′), (2.15)

where δ(x) is the Dirac delta function. When there is no possibility for confusion, we simply

write p(x) instead of px(x). We use log to denote the natural logarithm (base e) and log2

denotes the binary logarithm to the base 2. Information-theoretic quantities are in nats if

we use the natural logarithm and in bits if we use binary logarithm. We employ the usual

conventions that 0 log 0 = 0, 0 log 0
0 = 0, 0 log 0

q = 0, and p log p
0 =∞ (for p > 0).

Next, we define basic information-theoretic quantities using the notation of [20]. The

entropy of a discrete random variable x ∈ X is

H(x) , −E{log p(x)} = −
∑
x∈X

p(x) log p(x). (2.16)

We note that H(x) ≥ 0, where we have equality if x is constant, i.e., nonrandom. An

upper bound on the entropy of x is H(x) ≤ log|X |, where we have equality if x is uniformly

distributed over the set X . We note that the entropy H(x) is concave in p(x). Let us consider

the special case of a binary random variable x ∈ {0, 1} with P{x = 1} = p. In this case we

have H(x) = −p log p− (1− p) log(1− p). It is convenient to write this entropy as a function

of p, yielding the binary entropy function (in bits)

h2(p) , −p log2 p− (1− p) log2(1− p). (2.17)

Entropy naturally extends to two random variables x ∈ X and y ∈ Y which can be

considered as one vector-valued random variable. The joint entropy H(x, y) is defined as

H(x, y) , −E{log p(x, y)} = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y). (2.18)
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We note that the joint entropy in (2.18) can be rewritten as follows:

H(x, y) = −E{log p(x)} − E{log p(y|x)} = H(x) +H(y|x). (2.19)

This relation is known as the chain rule for entropy. The last term in (2.19) is the conditional

entropy of y given x:

H(y|x) , −E{log p(y|x)} = −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x). (2.20)

We note that H(x, y) ≤ H(x) +H(y) or, equivalently, H(y|x) ≤ H(y), where we have equality

if and only if x and y are statistically independent.

The relative entropy (or Kullback-Leibler divergence) between two probability distribu-

tions p(x) and q(x) which are defined over the same set X is

D
(
p(x)‖q(x)

)
, Ep

{
log

p(x)

q(x)

}
=
∑
x∈X

p(x) log
p(x)

q(x)
, (2.21)

where Ep denotes expectation with respect to p(x). Relative entropy is nonnegative, i.e., we

have

D
(
p(x)‖q(x)

)
≥ 0, (2.22)

where we have equality in (2.22) if p(x) = q(x). This inequality is known as the information

inequality and its proof is based on Jensen’s inequality (cf. (2.13)). The relative entropy

D
(
p(x)‖q(x)

)
is convex in p(x) and q(x).

The mutual information I(x; y) between the random variables x ∈ X and y ∈ Y is defined

as

I(x; y) , E
{

log
p(x, y)

p(x)p(y)

}
=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.23)

It is not hard to see that I(x; y) = D
(
p(x, y)‖p(x)p(y)

)
. Due to (2.22), we can therefore

conclude that I(x; y) ≥ 0 with equality if and only if x and y are statistically independent.

The mutual information I(x; y) is concave in p(x) for fixed p(y|x). For fixed p(x), I(x; y) is

convex in p(y|x). Rewriting I(x; y) in terms of entropies yields

I(x; y) = H(x)−H(x|y) (2.24a)

= H(y)−H(y|x) (2.24b)

= H(x) +H(y)−H(x, y). (2.24c)

The relations in (2.24) are depicted in Figure 2.3 using a Venn diagram. Furthermore, we note

that I(x; x) = H(x), i.e., entropy is “self-information”. The chain rule of mutual information

reads

I(x1, x2; y) = I(x1; y) + I(x2; y|x1), (2.25)
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I(x; y)

H(x, y)

H(x|y) H(y|x)

H(x) H(y)

Figure 2.3: Relationship between entropy and mutual information.

where the last term in (2.25) is the conditional mutual information of x2 and y given x1:

I(x2; y|x1) , E
{

log
p(x2, y|x1)

p(x2|x1)p(y|x1)

}
= H(x2|x1)−H(x2|x1, y). (2.26)

So far we have only considered discrete random variables. When considering continuous

random variables, the definitions and properties of relative entropy and mutual information

remain unchanged. However, we have to pay particular attention when studying the entropy

of continuous random variables which is called differential entropy. The differential entropy

h(x) of a continuous random variable with pdf p(x) supported on the set X is defined as

h(x) , −
∫
X
p(x) log p(x)dx. (2.27)

It is important to note that the integral in (2.27) may not exist and, if it exists, it need not

be nonnegative. Joint differential entropy and conditional differential entropy are defined

analogously to the discrete case. As an example let us consider an n-dimensional Gaussian

random vector with mean vector µx and covariance matrix Cx, i.e., x ∼ N (µx,Cx). In this

case we have [20, Theorem 8.4.1]

h(x) =
1

2
log
(
(2πe)n detCx

)
. (2.28)

The fact that conditioning reduces entropy holds also for differential entropy, i.e., we have

h(y|x) ≤ h(y). Mutual information can be expressed in terms of differential entropies as in

(2.24) (of course, with H(·) replaced by h(·)) as long as the respective differential entropies

are finite.

Finally, we introduce the notion of Markov chains and discuss the data processing inequal-

ity. The random variables x, y, z are said to form a Markov chain, denoted by x ↔ y ↔ z, if



16 Chapter 2. Preliminaries

x and z are statistically independent given y, i.e., if

p(x, z|y) = p(x|y)p(z|y). (2.29)

We note that (2.29) is equivalent to

p(x, y, z) = p(z|y)p(y|x)p(x) = p(x|y)p(y|z)p(z), (2.30)

and therefore x ↔ y ↔ z implies z ↔ y ↔ x. Given a Markov chain x ↔ y ↔ z, the data

processing inequality states that I(x; y) ≥ I(x; z). This can be seen by writing

I(x; y, z) = I(x; z) + I(x; y|z) = I(x; y) + I(x; z|y) (2.31)

and by noting that I(x; z|y) = 0 due to (2.29). Similarly, (2.31) implies that I(x; y) ≥ I(x; y|z).

For z = g(y) the data processing inequality implies H(x|y) ≤ H(x|g(y)) with equality if the

function g(·) is invertible. Therefore, processing y can only increase the uncertainty about x.

2.3 Parameter Estimation

We consider “classical” estimation (cf., e.g., [50,82,99]) of a scalar parameter θ ∈ Θ ⊆ R from

observed data x = (x1 · · · xn)T ∈ X . In classical estimation, the parameter θ is deterministic

and the data is distributed according to the pdf1 p(x; θ). The estimator θ̂(x) is a function

of the data which is designed to minimize the estimation error θ̂ − θ in some suitable sense.

Throughout, we use the mean-square error (MSE)

MSEθ̂(θ) , E{(θ̂(x)− θ)2} =

∫
X

(θ̂(x)− θ)2p(x; θ)dx (2.32)

as performance metric. It is important to note that the MSE depends on θ (although we

usually do not make this dependence explicit for the sake of notational simplicity). Since the

MSE in (2.32) is the mean power of the estimation error, we have the following decomposition:

MSEθ̂ = var{θ̂ − θ}+
(
E{θ̂(x)− θ}

)2
= var{θ̂}+ bias2{θ̂}, (2.33)

where

var{θ̂} = var{θ̂ − θ} = E
{

(θ̂(x)− E{θ̂(x)})2
}
, (2.34)

and

bias{θ̂} = E{θ̂(x)− θ} = E{θ̂(x)} − θ (2.35)

1The notation p(x; θ) indicates that the distribution of the random vector x is parametrized by θ, i.e., each
value of θ corresponds to one distribution of the data. We note that p(x; θ) should not be confused with a
joint pdf or a conditional pdf (which would not make sense since θ is deterministic).
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denote the variance and the bias of the estimator θ̂, respectively. We say that the estimator

θ̂1 dominates the estimator θ̂2 if and only if MSEθ̂1(θ) ≤ MSEθ̂2(θ) for all θ ∈ Θ. An

estimator is said to be unbiased if E{θ̂(x)} = θ for all θ ∈ Θ. We note that for a given

estimation problem the existence of an unbiased estimator is not guaranteed. An estimator

(more precisely, a sequence of estimators) is called consistent if it converges (in probability)

to the true parameter as the number of data points tends to infinity, i.e., if

lim
n→∞

θ̂n(xn) = θ, ∀θ ∈ Θ. (2.36)

Here, θ̂n denotes the estimator which operates on the length-n data set xn = (x1 · · · xn)T.

In contrast to the unbiasedness of an estimator, consistency is an asymptotic property. Con-

sistency does not imply unbiasedness and vice versa. However, an estimator is consistent if

and only if it converges and it is asymptotically unbiased (i.e., limn→∞ θ̂n is unbiased).

A lower bound on the variance of an unbiased estimator of a parameter θ is given by the

Cramér-Rao lower bound (CRLB) [21, 84]. Under mild regularity conditions on p(x; θ) and

θ̂(x), the CRLB states that

MSEθ̂(θ) = var{θ̂} ≥ J−1(θ), (2.37)

where J(θ) denotes the Fisher information which is defined as

J(θ) , E

{(
∂

∂θ
log p(x; θ)

)2
}
. (2.38)

An important property of the Fisher information is that it is additive for independent data

samples. Therefore, if we have n independent and identically distributed observations, then

the CRLB is 1/n times the CRLB for a single observation. For a parameter ψ which is related

to θ by a continuously differentiable function g(·) such that θ = g(ψ), the Fisher information

can be written as follows:

Jψ(ψ) = Jθ
(
g(ψ)

)( d

dψ
g(ψ)

)2

. (2.39)

Here, Jθ and Jψ denote the Fisher information of θ and ψ, respectively. In terms of ψ, the

CRLB (2.37) for θ(ψ) can thus be written as

MSEθ̂
(
θ(ψ)

)
= var{θ̂} ≥ J−1

ψ (ψ)

(
d

dψ
g(ψ)

)2

. (2.40)

An unbiased estimator is called efficient if its MSE attains the CRLB, i.e., if MSEθ̂(θ) =

1/J(θ) for all θ ∈ Θ. We note the CRLB need not be tight, that is, an efficient estimator

may not exist. In fact, an efficient estimator θ̂eff(x) exists if and only if ∂
∂θ log f(x; θ) can be

written as [50, Section 3.4]

∂

∂θ
log f(x; θ) = J(θ)

(
θ̂eff(x)− θ

)
. (2.41)
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If an efficient estimator exists, it is the minimum-variance unbiased (MVU) estimator.

The MVU estimator is the estimator which uniformly minimizes the variance among all

unbiased estimators for all values of θ. However, an MVU estimator need not exist and, if it

exists, it need not be an efficient estimator. In general it is hard to find an MVU estimator

and the approach using (2.41) can only be used if an efficient estimator exists. In case an

efficient estimator does not exist, we can use the Rao-Blackwell-Lehmann-Scheffé theorem

(cf. [50, Theorem 5.2]) to find an MVU estimator (assuming it exists).

We next introduce the concept of (complete) sufficient statistics. Loosely speaking, a

function T (x) of the data x is called a sufficient statistic if T (x) contains all information

about θ that is contained in x. More precisely, a statistic T (x) is sufficient if and only if

the conditional distribution p(x|T (x); θ) does not depend on θ. While this condition may

be difficult to check in practice, we can alternatively use the Neyman-Fisher factorization

theorem which is usually easier to apply. The Neyman-Fisher factorization theorem provides

the following sufficient and necessary condition for the sufficiency of a statistic T (x).

Theorem 2.1 (cf. [50, Theorem 5.1]). If we can factor p(x; θ) as

p(x; θ) = g(x)h(T (x), θ), (2.42)

where g depends only on x and h depends on x only through T (x), then T (x) is a sufficient

statistic for θ. Conversely, if T (x) is a sufficient statistic for θ, then p(x; θ) can be factored

as in (2.42).

A sufficient statistic is said to be complete if there exists a unique function g such that

g
(
T (x)

)
is unbiased, i.e., E

{
g
(
T (x)

)}
= θ for all θ ∈ Θ. Assuming that there exist two

functions g1 and g2 such that g1

(
T (x)

)
and g2

(
T (x)

)
are unbiased and letting h

(
T (x)

)
=

g2

(
T (x)

)
− g1

(
T (x)

)
yields

E{h
(
T (x)

)
} =

∫
X
h
(
T (x)

)
p(x; θ)dx = 0, ∀θ ∈ Θ. (2.43)

If h ≡ 0 is the only function that fulfills (2.43), then T (x) is a complete sufficient statistic.

Conversely, if T (x) is a complete sufficient statistic, then h ≡ 0 (due to uniqueness) and

(2.43) is satisfied.

2.4 Hypothesis Testing

In this section, we discuss simple binary and m-ary Bayesian hypothesis tests (cf., e.g.,

[51, 82, 99]). Consider a source which produces an output H which is either H0 or H1. The

source output is mapped probabilistically to an observation x ∈ X via the conditional pdfs

p(x|H0) and p(x|H1). In the Bayesian setting, the source output is random and the prior

probabilities P{H=H0} and P{H=H1} are known. We refer to H0 and H1 as hypotheses
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and the task of a hypothesis test is to infer from the observation x which hypothesis is in

force. Depending on the domain, hypothesis testing is also known as signal detection (e.g.,

in radar applications) and, consequently, a hypothesis test is also called a detector. Roughly

speaking, a hypothesis testing problem can be viewed as an estimation problem with a finite

parameter set.

A hypothesis test is called simple if the probability distribution of the observation under

each hypothesis is fully known, i.e., if p(x|H0) and p(x|H1) do not depend on any unknown

parameters. A binary test can be represented by a test function (or decision rule, or detector)

of the form

φ(x) =

{
0, x ∈ X0

1, x ∈ X1

, (2.44)

where the output of the test function corresponds to the index of the accepted hypothesis.

The set X0 is called acceptance region and X1 is the critical region (or rejection region), where

X = X1 ∪ X2 and X1 ∩ X2 = ∅. The test in (2.44) accepts H0 and rejects H1 if x ∈ X0; it

rejects H0 and therefore accepts H1 if x ∈ X1.

The probabilities P{φ(x) = i|H=Hj}, i, j ∈ {0, 1} are important performance measures

for a binary test. In particular, we have the following four probabilities:

1. The acceptance probability, i.e., the probability of correctly accepting H0, is

PA , P{φ(x)=0|H=H0} =

∫
X

(
1− φ(x)

)
p(x|H0)dx = E{1− φ(x)|H=H0}. (2.45)

2. The false alarm probability, i.e., the probability of incorrectly accepting H1, is

PF , P{φ(x)=1|H=H0} =

∫
X
φ(x)p(x|H0)dx = E{φ(x)|H=H0}. (2.46)

The probability PF is sometimes called the size of a test and the corresponding error

event is referred to as type I error or simply false alarm.

3. The detection probability (or power), i.e., the probability of correctly accepting H1, is

PD , P{φ(x)=1|H=H1} =

∫
X
φ(x)p(x|H1)dx = E{φ(x)|H=H1}. (2.47)

4. The miss probability, i.e., the probability of incorrectly accepting H0, is

PM , P{φ(x)=0|H=H1} =

∫
X

(
1− φ(x)

)
p(x|H1)dx = E{1− φ(x)|H=H1}. (2.48)

The error event corresponding to PM is called type II error or simply miss.

The probabilities in (2.45)-(2.48) are not independent of each other since we have PA+PF = 1

and PD + PM = 1. Therefore, we can restrict our attention to, say, PF and PD. Obviously,

we would like to find tests with small PF and large PD. However, changing PF by modifying
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φ(x) will simultaneously change PD. This raises two questions: when is a test optimal and

how can we implement an optimal test?

To this end, we first consider the Bayesian risk. Let Cij ≥ 0 denote the cost of deciding

in favor of Hi when Hj is in force. The cost of a Bayesian test φ can then be written as

C(φ) =


C00, φ(x) = 0, H = H0

C01, φ(x) = 0, H = H1

C10, φ(x) = 1, H = H0

C11, φ(x) = 1, H = H1

. (2.49)

The cost C(φ) in (2.49) is a random variable because x and H are random. The Bayesian

risk R(φ) associated to a test function φ is the expected value of C(φ), i.e., we have

R(φ) , E{C(φ)} =
1∑
j=0

1∑
i=0

CijP{φ(x)= i,H=Hj} =
1∑
j=0

Rj(φ)P{H=Hj}, (2.50)

where Rj(φ) denotes the conditional risk

Rj(φ) , E{C(φ)|H=Hj} =
1∑
i=0

CijP{φ(x)= i|H=Hj}. (2.51)

In the special case Cij = 1− δi,j we have

R(φ) = PFP{H=H0}+ PMP{H=H1}, (2.52)

i.e., in this case the Bayesian risk equals the probability of making a wrong decision. For a

given cost assignment, a test function φ is optimal in the Bayesian sense if it minimizes the

Bayesian risk R(φ) among all test functions. The optimal test φB is thus given by [99, Section

2.2]

φB = arg min
φ

R(φ). (2.53)

To find φB, we rewrite the Bayesian risk in (2.53) as follows:

φB = arg min
φ

1∑
j=0

1∑
i=0

CijP{φ(x)= i|H=Hj}P{H=Hj} (2.54)

= arg min
φ

1∑
j=0

[
C0jP{φ(x)=0|H=Hj}+ C1jP{φ(x)=1|H=Hj}

]
P{H=Hj} (2.55)

= arg min
φ

1∑
j=0

(C1j − C0j)P{φ(x)=1|H=Hj}P{H=Hj} (2.56)

= arg min
φ

∫
X
φ(x)

1∑
j=0

(C1j − C0j)p(x|H=Hj)P{H=Hj}dx. (2.57)
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The integrand in (2.57) can be minimized separately for each x ∈ X since all quantities

except C1j − C0j are nonnegative. To minimize the Bayesian risk we have to set φ(x) = 0 if∑1
j=0(C1j −C0j)p(x|H=Hj)P{H=Hj} is positive and φ(x) = 1 otherwise. Thus, under the

assumption that C10 > C00 and C01 > C11, the optimal test function is given by2

φB(x) =

{
0, L(x) > γ

1, L(x) ≤ γ
, (2.58)

where L(x) is the likelihood ratio3, which is defined as

L(x) ,
p(x|H=H0)

p(x|H=H1)
, (2.59)

and the threshold γ equals

γ =
C01 − C11

C10 − C00

P{H=H1}
P{H=H0}

. (2.60)

This shows that the optimal test is a likelihood ratio test and φB can be implemented by

computing L(x) and comparing it to a threshold. It is important to note that independent

of the number of data samples, the decision is always based on the scalar test statistic L(x).

Since L(x) comprises all information that x carries aboutH, the likelihood ratio is a sufficient

statistic (cf. Theorem 2.1) for H. For the special case Cij = 1− δi,j we have

φB(x) = arg max
i∈{0,1}

P{H=Hi|x=x}. (2.61)

Hence, in this case the optimal detector is a maximum a posteriori (MAP) detector which

minimizes the error probability (2.52). We note that it suffices to compute one posterior

probability in (2.61), since P{H=H1|x=x} = 1− P{H=H0|x=x}.
Next, we discuss the extension to simple m-ary Bayesian hypothesis tests. In this case

we have m hypotheses H0, . . . ,Hm−1 with the associated probabilistic mappings p(x|Hi) and

the prior probabilities P{H=Hi}, i = 0, . . . ,m − 1. There are m events corresponding to

correct decisions and m2 −m error events and therefore the cost assignment consists of m2

values Cij ≥ 0, i, j ∈ {0, . . . ,m− 1}. The test function φ(x) partitions the observation space

X into m disjoint decision regions Xi and we have φ(x) = i if x ∈ Xi, i = 0, . . . ,m − 1. As

before, the value of the test function corresponds to the index of the accepted hypothesis.

The Bayesian risk is defined analogously to (2.50) and the optimal Bayesian test is given by

(2.53). In this case, rewriting the Bayesian risk yields

φB = arg min
φ

m−1∑
i=0

m−1∑
j=0

CijP{φ(x)= i|H=Hj}P{H=Hj} (2.62)

2We note that if L(x) = γ, the value of φB(x) ∈ {0, 1} is immaterial for the Bayesian risk. Therefore, we
do not need to consider randomized test functions.

3We note that some authors define the likelihood ratio as L(x) = p(x|H=H1)/p(x|H=H0). This is an
arbitrary choice without any fundamental consequences. The only difference is that the values of the optimal
test function (2.58) are swapped and γ is replaced by γ−1.
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= arg min
φ

m−1∑
i=0

∫
X
1{φ(x) = i}

m−1∑
j=0

Cijp(x|H=Hj)P{H=Hj}dx (2.63)

= arg min
φ

m−1∑
i=0

∫
X
1{φ(x) = i}

m−1∑
j=0

CijP{H=Hj |x=x}p(x)dx (2.64)

= arg min
φ

m−1∑
i=0

∫
X
1{φ(x) = i}R̃i(x)p(x)dx. (2.65)

Here, 1{·} denotes the indicator function and R̃i(x) =
∑m−1

j=0 CijP{H = Hj |x = x} is the

posterior risk of deciding for Hi given that x was observed. From (2.65) it can be seen that

the Bayesian risk is minimized by setting φ(x) = i if i is the index of the smallest posterior

risk R̃i(x). We thus have

φB(x) = arg min
i∈{0,...,m−1}

R̃i(x) (2.66)

for the optimal Bayesian test function. The special case Cij = 1 − δi,j minimizes the error

probability and again yields a MAP detector. In this case we have

φB(x) = arg max
i∈{0,...,m−1}

P{H=Hj |x=x}. (2.67)

For the special case m = 2, (2.66) and (2.67) simplify to (2.58) and (2.61), respectively.

2.5 Factor Graphs and the Sum-Product Algorithm

Let us consider functions f(x) which (nontrivially) factor as

f(x) =
K∏
k=1

fk(xk), (2.68)

where x = (x1 · · · xn)T. Each individual factor fk depends on a subset of all variables denoted

by xk. Factor graphs [54] are undirected bipartite graphs which allow us to graphically

represent factorizations of the form (2.68). The vertices in a factor graph are called variable

nodes (usually depicted by circles) and factor nodes (or function nodes; usually depicted

by squares). A factor graph contains one vertex for each variable and one for each factor.

Therefore, the factor graph corresponding to the factorization in (2.68) consists of n variable

nodes and K factor nodes. A factor node is connected to a variable node by an undirected

edge if the corresponding factor depends on that variable. As an example, Figure 2.4 depicts

the factor graph corresponding to the factorization

f(x1, x2, x3) = f1(x1)f2(x2)f3(x1, x2, x3). (2.69)

Each assignment of values to the variables is called a configuration and the set of all possible

configurations is the configuration space.
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x3

f3

x1 x2

f1 f2

Figure 2.4: Factor graph corresponding to the factorization in (2.69).

In what follows, we focus on the case where the left-hand side of (2.68) is a probability

distribution. In this case, factor graphs allow us to efficiently compute for example marginal

distributions and maximum probability configurations. A key ingredient in the efficient com-

putation of marginal distributions is the distributive law a(b+ c) = ab+ ac. Let us consider

the computation of

f(x1) =
∑
∼x1

f(x) =
∑
x2

∑
x3

f1(x1)f2(x2)f3(x1, x2, x3) (2.70)

for the f from (2.69). Here,
∑
∼x1 denotes summation over all variables except x1. Assuming

that each variable is binary, direct computation of (2.70) for a particular value of x1 requires

8 multiplications and 3 additions. However, using the distributive law we can rewrite (2.70)

as follows:

f(x1) = f1(x1)
∑
x2

f2(x2)
∑
x3

f3(x1, x2, x3). (2.71)

Computing the expression in (2.71) requires only 3 multiplications and 3 additions, i.e., com-

pared to (2.70) the number of operations is almost halved. The marginalization in (2.71) can

equivalently be computed by performing message passing on the factor graph correspond-

ing to (2.69). To this end, we write the marginal at variable node x1 as the product of all

incoming messages (cf. Figure 2.5), i.e., we have

f(x1) = µf1→x1(x1)µf3→x1(x1). (2.72)

These messages are given by4

µf1→x1(x1) = f1(x1), (2.73a)

µf3→x1(x1) =
∑
x2

µx2→f3(x2)
∑
x3

f3(x1, x2, x3)µx3→f3(x3), (2.73b)

where

µx2→f3(x2) = µf2→x2(x2) = f2(x2), and µx3→f3(x3) = 1. (2.73c)

4We shall presently discuss a systematic way for the computation of the messages in (2.73).
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x3

f3

x1 x2

f1 f2

µf1→x1
(x1) µf3→x1

(x1) µx2→f3(x2) µf2→x2
(x2)

µx3→f3(x3)

Figure 2.5: Message passing for the computation of the marginal f(x1) =
∑
∼x1 f(x).

It is not hard to see that using (2.73) in (2.72) indeed yields (2.71). While for our toy example

the message passing approach might seem rather artificial, it has proven extremely useful in

signal processing and communications [68]. Application examples include channel estimation,

Kalman filtering, iterative (turbo) detection, and channel decoding. In fact, many classical

algorithms (like the BCJR algorithm [4], the Viterbi algorithm [100], etc.) can be viewed as

specific instances of message passing on factor graphs.

We have seen above that in order to obtain a single marginal, we need to pass one

message along every edge of the graph. The computation of more than one marginal follows

the same principle as explained above. However, a key observation is that many of the

intermediate messages from one marginalization can be reused for the computation of other

marginals. Indeed, provided that the factor graph is a tree, passing two messages along

every edge (one message in each direction) allows us to compute all marginals simultaneously.

Therefore, computing all marginals on a tree requires just twice the computational complexity

of computing a single marginal. The corresponding message passing scheme is known as the

sum-product algorithm [54, Section II.C]. We will next summarize the sum-product algorithm

for computing all marginals on a tree.

1. Initialization: Message passing is initialized at the leaf nodes of the tree. All vertices

with degree 1 are leaf nodes, i.e., leaf nodes have exactly one neighbor. In case a

factor node f1 is a leaf node connected to variable node x1, the initial message is

µf1→x1(x1) = f1(x1). For leaf variable nodes the initial message is µx1→f1(x1) = 1.

The initialization at leaf nodes is depicted in Figure 2.6a.

2. Message updates: All internal vertices have at least two neighbors and can compute

an outgoing message as soon as they have received a message from all but one of its

neighbors. The update rule for a factor node f1 with degree L and incoming messages

µxl→f1(xl), l = 2, . . . , L, is

µf1→x1(x1) =
∑
∼x1

f1(x1, . . . , xL)

L∏
l=2

µxl→f1(xl). (2.74)

Hence, the outgoing message µf1→x1(x1) is the product of all incoming messages times
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the local function f1 marginalized with respect to all variables except x1. For a variable

node x1 with degree J and incoming messages µfj→x1(x1), j = 2, . . . , J , the update rule

is

µx1→f1(x1) =

J∏
j=2

µfj→x1(x1). (2.75)

In this case, the outgoing message is simply the product of all incoming messages. The

message update rules (2.74) and (2.75) are depicted in Figure 2.6b.

3. Marginalization: Computing the marginal f(x1) for a variable node x1 with degree J

requires incoming messages on all edges. Given the messages µfj→x1 , j = 1, . . . , J , the

marginal f(x1) is

f(x1) =
J∏
j=1

µfj→x1(x1). (2.76)

The marginalization operation in (2.76) is shown in Figure 2.6c. All marginals can be

computed if the message updates (2.74) and (2.75) are performed until each variable

node has received a message from all its neighbors. The sum-product algorithm thus

terminates after a finite number of steps.

The order in which message are passed on the factor graph is specified by a so-called

message passing schedule and typically there is a large number of possible schedules. In case

the factor graph is a tree, the sum-product algorithm will always yield the exact marginals

irrespective of the schedule. Therefore, we are free to choose any convenient schedule without

changing the result.

Unfortunately, this is no longer true if the factor graph contains cycles which is, e.g., the

case for good channel codes. In this case, we can still run the sum-product algorithm with

some modifications but we no longer obtain the exact marginals. Also, the messages need not

converge and the result will generally depend on the employed schedule in a very intricate

manner. Despite these problems, the sum-product algorithm performs astonishingly well in

many applications where factor graphs contain cycles (e.g., in channel decoding).

The modifications we need to consider for the sum-product algorithm on graphs with

cycles concern the initialization and the termination of the algorithm. A simple way to

initialize message passing is to treat every vertex as if it were a leaf node in a tree. In this

way, every node is able to pass a message along any edge after the initialization. During the

message updates a new message simply replaces the previous message on that edge. Message

passing is performed until some suitable stopping criterion is fulfilled. In the simplest case,

the sum-product algorithm terminates after a fixed number of message updates.

So far we have implicitly assumed that the variables take values from a finite set. This is

motivated by our application of the sum-product algorithm in Chapter 6 where we perform

message passing decoding for binary random variables. In the binary case, each message can

be represented by a scalar value instead of a function. This fact is used in the next section to
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(c) Marginalization.

Figure 2.6: Summary of the sum-product algorithm.
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derive elegant formulations of channel decoding algorithms in terms of log-likelihood ratios

(LLRs). The sum-product algorithm can also be used with continuous random variables. In

this case sums have to be replaced by integrals in (2.74).

The key idea behind the sum-product algorithm is to exploit the distributive law.

Marginals are computed efficiently because multiplication distributes over summation. For

the sum-product algorithm it is required that the codomain of the global function f is a

semiring with two operations “+” and “·” [102, Section 3.6] that satisfy the distributive law

a · (b+ c) = (a · b) + (a · c) (2.77)

for all a, b, c in the codomain of f . In the “max-product” semiring we have the following

distributive law for nonnegative real-valued quantities:

amax{b, c} = max{ab, ac}. (2.78)

Similarly, for real-valued quantities “+” distributes over “min” yielding the “min-sum” semir-

ing with the distributive law

a+ min{b, c} = min{a+ b, a+ c}. (2.79)

The above semirings allow us to formulate modified versions of the sum-product algorithm.

From (2.78) we obtain the “max-product” algorithm which can equivalently be formulated in

the logarithmic domain yielding the “max-sum” algorithm. These algorithms can be used to

find maximum probability configurations in an efficient manner. An application example for

max-product and max-sum is maximum likelihood (ML) sequence detection (e.g., the Viterbi

algorithm). The “min-sum” algorithm can be derived using the distributive law in (2.79).

This algorithm yields an efficient implementation of approximate MAP decoding of binary

codes. Indeed, it can be shown that applying the max-log approximation log
∑

i e
xi ≈ maxi xi

in the sum-product algorithm yields the min-sum algorithm.

2.6 Soft Information and Codes on Graphs

The concept of soft information is instrumental for any advanced receiver design. A com-

mon form of soft information in communication receivers are (approximations of) posterior

probabilities of the transmitted data. For binary data, soft information is most conveniently

expressed in terms of LLRs. In contrast to a hard decision, soft information additionally cap-

tures the reliability of a decision. It is well-known that soft information processing improves

performance compared to hard decisions [36]. As an example, consider coded transmission

of binary data over an additive white Gaussian noise (AWGN) channel. Figure 2.7 shows the

bit error rate (BER) versus the signal-to-noise ratio (SNR) for hard-decision decoding (blue

curve, ‘+’ markers) and for soft-decision decoding (red curve, ‘×’ markers). We observe that
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Figure 2.7: BER versus Eb/N0 of coded transmission over an AWGN channel with hard-input
and soft-input Viterbi decoding. The channel code is a (7, 5)8 convolutional code and the
code bits are transmitted using binary phase-shift keying (BPSK).

soft-decision decoding yields a significant performance improvement. The key idea in mod-

ern receiver designs is to avoid hard decisions whenever possible and rather process reliability

information instead. Iterative “turbo” receivers are based on exchanging soft information

between receiver components. The turbo concept has revolutionized communication theory

after the discovery of turbo codes [9] in 1993. Detailed treatises on coding theory are, e.g.,

given in [64,87,90].

2.6.1 Log-Likelihood Ratios

Throughout this thesis we focus on binary linear codes. Therefore, we next discuss soft

information processing in the binary case formulated in terms of LLRs (which are sometimes

also called “L-values”). Assume we have a binary5 random variable x ∈ {−1, 1} with known

prior probabilities P{x = −1} = 1 − P{x = 1}. Let x be transmitted over a channel with

transition pdf p(y|x) yielding a received vector y. At this point the channel is not assumed

to be memoryless. Given an observation y at the channel output, the posterior LLR for x is

given by6

Lx(y) = log
P{x=1|y=y}
P{x=−1|y=y} . (2.80)

5Here, we use the alphabet {−1, 1} instead of {0, 1} for notational convenience.
6Some authors define LLRs as the negative value of (2.80). Our definition is convenient when we consider

the LLR of a modulo-2 sum of independent binary random variables.
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We note that Lx(y) is a sufficient statistic for x. The posterior probabilities can be recovered

from Lx(y) as follows:

P{x=x|y=y} =
1

1 + e−xLx(y)
, x ∈ {−1, 1}. (2.81)

Applying Bayes’ rule to (2.80), we obtain

Lx(y) = log
p(y|x=1)P{x=1}

p(y|x=−1)P{x=−1} = log
p(y|x=1)

p(y|x=−1)
+ log

P{x=1}
P{x=−1} = Lcx(y) + Lax . (2.82)

Hence, the posterior LLR Lx(y) can be written as the sum of the channel information

Lcx(y) , log
p(y|x=1)

p(y|x=−1)
(2.83)

that depends on the observed channel output y and the channel model p(y|x), and the prior

information

Lax , log
P{x=1}
P{x=−1} (2.84)

that depends on the prior probabilities of x. When P{x=1|y=y} > P{x=−1|y=y} then we

have Lx(y) > 0 and, conversely, P{x=1|y=y} < P{x=−1|y=y} implies Lx(y) < 0. Hence,

the sign of Lx(y) corresponds to the decision x̂(y) of a MAP detector, i.e., the hard decision

corresponding to Lx(y) is x̂(y) = sign
(
Lx(y)

)
. The magnitude |Lx(y)| corresponds to the

reliability of the associated hard decision. We are certain about the value of x if |Lx(y)| =∞
and, on the other hand, we know nothing about the value of x if Lx(y) = 0.

2.6.2 Extrinsic Information

We next turn our attention to soft information processing for channel codes. Consider two

data bits c1, c2 ∈ {0, 1} which are channel-encoded by a single parity bit c3. The coding rule

is

c3 = c1 ⊕ c2, (2.85)

where “⊕” denotes modulo-2 addition. We note that (2.85) is equivalent to c3 = 1{c1 6= c2}
and to c1 ⊕ c2 ⊕ c3 = 0. The code (i.e., the set of codewords) defined by (2.85) is

C = {c ∈ {0, 1}3 : c1 ⊕ c2 ⊕ u3 = 0}, (2.86)

where c = (c1 c2 c3)T ∈ C denotes the vector of code bits. A code of the form (2.86) is called

single parity-check code. We assume that the code bits are transmitted over a memoryless

channel with transition pdf

p(y|c) =
3∏

k=1

p(yk|ck), (2.87)
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where y = (y1 y2 y3)T denotes the vector of channel outputs. The posterior probability of ck

given y is given by

P{ck=b|y=y} =
∑

c∈C:ck=b

P{c=c|y=y}, b ∈ {0, 1}. (2.88)

It is important to note that the posterior probability in (2.88) depends on the whole receive

vector since the code constraint (2.85) connects the individual bits and therefore each receive

value contains information about the bit ck. Using Bayes’ rule we rewrite (2.88) as follows:

P{ck=b|y=y} =
∑

c∈C:ck=b

p(y|c)P{c=c}
p(y)

=
1

p(y)

∑
c∈C:ck=b

3∏
l=1

p(yl|cl = cl)P{cl=cl}. (2.89)

Here we have assumed that the prior probability P{c=c} factors into
∏3
l=1 P{cl=cl}. Writing

out (2.89) for c1 yields

P{c1 =b|y=y} =
1

p(y)
p(y1|c1 =b)P{u1 =b}

[
p(y2|c2 =0)P{c2 =0}p(y3|c3 =b)P{u3 =b}

+ p(y2|c2 =1)P{c2 =1}p(y3|c3 =b)P{c3 =b}
]
, (2.90)

where b , b⊕ 1.

Using (2.90) the posterior LLR for c1 can be written as follows:

Lc1(y) = log
P{ck=0|y=y}
P{ck=1|y=y} (2.91)

= log
p(y1|c1 =0)P{c1 =0}
p(y1|c1 =1)P{c1 =1}

+ log
P{c2 =0|y2 =y2}P{c3 =0|y3 =y3}+ P{c2 =1|y2 =y2}P{c3 =1|y3 =y3}
P{c2 =0|y2 =y2}P{c3 =1|y3 =y3}+ P{c2 =1|y2 =y2}P{c3 =0|y3 =y3}

(2.92)

= Lcc1(y1) + Lac1 + Lec1(y∼1), (2.93)

where y∼1 denotes the vector that is obtained by removing the first element of y, i.e., y∼1 =

(y2 y3)T. The term Lec1(y∼1) in (2.93) is called extrinsic information, i.e., the knowledge

about c1 that other bits of a codeword contribute. The notion of extrinsic information is

fundamental for advanced iterative receivers. To simplify the expression in (2.92) we rewrite

the extrinsic LLR in terms of the posterior LLRs for c2 and c3 as

Lec1(y∼1) = log

1 +
P{c2 =0|y2 =y2}P{c3 =0|y3 =y3}
P{c2 =1|y2 =y2}P{c3 =1|y3 =y3}

P{c2 =0|y2 =y2}
P{c2 =1|y2 =y2}

+
P{c3 =0|y3 =y3}
P{c3 =1|y3 =y3}

= log
1 + exp

(
Lc2(y2) + Lc3(y3)

)
exp
(
Lc2(y2)

)
+ exp

(
Lc3(y3)

) .
(2.94)
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2.6.3 The Boxplus Operator

To simplify notation and to write (2.94) more compactly, we introduce the “boxplus” operator

� which is defined as follows [40]:

a� b ,
1 + ea+b

ea + eb
= 2 atanh

(
tanh(a/2) tanh(b/2)

)
. (2.95)

This allows us to write (2.94) as Lec1(y∼1) = Lc2(y2)� Lc3(y3). It is not hard to see that for

two independent bits c1 and c2, the boxplus operator (2.95) yields the LLR of c1 ⊕ c2, i.e.,

we have Lc1 � Lc2 = Lc1⊕c2 . The boxplus operator has the following properties:

• Closure: For all a, b ∈ R⇒ a� b ∈ R.

• Associativity : For all a, b, c ∈ R⇒ (a� b)� c = a� (b� c).

• Commutativity : For all a, b ∈ R⇒ a� b = b� a.

• Identity element : For any a ∈ R⇒ a�∞ = a.

• We have 0� a = 0 and ±∞� a = ±a.

• An inverse element does not exist since |a� b| ≤ min{|a|, |b|}.

The first four of the properties above imply that the algebraic structure of (R∪ {±∞},�) is

a commutative monoid with ∞ as the identity element.

In the above development we have restricted ourselves to a single parity-check code with

three bits. With the boxplus notation we can easily extend (2.93) to an arbitrary number of

bits. Specifically, let C = {c ∈ {0, 1}n : c1 ⊕ · · · ⊕ cn = 0} be a single parity-check code of

length n. The posterior LLR for the bit ck then is

Lck(y) = Lcck(yk) + Lack +

n∑
j=1

j 6=k

� Lcj (yj), (2.96)

where we have used the shorthand notation

n∑
j=1

� aj , a1 � · · ·� an = 2 atanh

n∏
j=1

tanh(aj/2). (2.97)

The last term in the sum of (2.96) is again the extrinsic information for ck. We note that

(2.96) is the MAP-optimal decoder for a single parity-check code, i.e., ĉk = sign
(
Lck(y)

)
minimizes the bit error probability.

Since the computation of the boxplus sum in (2.96) involves the evaluation of transcen-

dental functions, approximations of the boxplus operator are of interest. To this end we first

rewrite (2.95) as follows:

a� b = 2 sign(a) sign(b) atanh
(
tanh(|a|/2) tanh(|b|/2)

)
. (2.98)
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Noting that atanh
(
tanh(|a|/2) tanh(|b|/2)

)
≤ atanh

(
tanh(min{|a|, |b|}/2)

)
yields the simple

approximation

a �̃ b , sign(a) sign(b) min{|a|, |b|} ≈ a� b (2.99)

which overestimates the reliability of a � b, i.e., min{|a|, |b|} ≥ |a � b|. The approximation

in (2.99) is good if the magnitudes of a and b are far apart. In the worst case, i.e., when

a = b, we have ∆ = a �̃ b − a � b ≤ log(2), where ∆ ≈ log(2) is a good approximation if

|a| = |b| ≥ 3. Another approximation of the boxplus operator can be obtained by applying

the max-log approximation to (2.95). We have

a� b = max{0, a+ b} −max{a, b} − log
1 + e−|a−b|

1 + e−|a+b| (2.100)

≈ max{0, a+ b} −max{a, b} = a �̃ b. (2.101)

We note that (2.101) is equal to (2.99). Applying the max-log approximation to (2.95) is useful

since it provides an additive correction term which can be used to refine the approximate

boxplus �̃. By storing a few values of the last term in (2.100), a very accurate approximation

of the boxplus operation can be implemented using a lookup table. Similarly, we can a find

multiplicative correction by rewriting (2.95) as [106]

a� b = a �̃ b

1− 1

min{|a|, |b|} log
1 + e−

∣∣|a|−|b|∣∣
1 + e−

∣∣|a|+|b|∣∣
 . (2.102)

The multiplicative correction in (2.102) is attractive because the correction factor is bounded

between 0 and 1. Using (2.99), a low-complexity implementation of the MAP-optimal decoder

(2.96) is given by

Lck(y) = Lcck(yk) + Lack +
[ n∏
j=1,j 6=k

sign
(
Lcj (yj)

)]
min

j=1,...,n;j 6=k
|Lcj (yj)|. (2.103)

The decoding rule in (2.103) is widely known as the min-sum decoder which also results

from message passing using the min-sum algorithm as discussed in Section 2.5. The decoders

(2.96) and (2.103) are examples of soft-input soft-output decoders. We note that soft-input

soft-output decoders are the main building blocks of iterative receivers.

2.6.4 Linear Block Codes

A binary code C is linear if and only if for any c1, c2 ∈ C we have c1 ⊕ c2 ∈ C. Linear codes

are conveniently described using matrices. Specifically, a linear block code C of dimension K

and blocklength N can be described by an (N −K)×N parity-check matrix H. The code C
is equal to the nullspace of H, i.e., we have

C = {c ∈ {0, 1}N |Hc = 0}. (2.104)
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Here, all matrix-vector products are in the finite field GF(2). A detailed introduction to the

mathematics of finite fields can be found, e.g., in [63]. Each row of H corresponds to one

parity-check equation. Equivalently, the same linear code C can be described by an N ×K
generator matrix G which satisfies7

HG = 0. (2.105)

Therefore, we have

C =
{
c ∈ {0, 1}N | c = Gu, ∀u ∈ {0, 1}K

}
. (2.106)

Hence, the code C is the column space of G. If (2.105) is fulfilled, then (2.104) and (2.106)

describe the same code, since for any u we then have HGu = Hc = 0. The rate R of a

linear block code C is defined as

R ,
K

N
∈ (0, 1]. (2.107)

The code rate R characterizes the amount of redundancy introduced by the code. A low-rate

code (i.e., R close to zero) introduces a lot of redundancy and can be expected to have strong

error correction capabilities. Conversely, a high-rate code (i.e., R ≈ 1) has little redundancy

and therefore its error correction capabilities are weak.

As an example, let us consider a binary linear code C described by the following parity-

check matrix:

H =


1 1 0 0 1 0 0 0

0 0 1 1 0 1 0 0

1 0 1 0 0 0 1 0

0 1 0 1 0 0 0 1

 . (2.108)

This code has rate R = 1/2 with K = 4 and N = 8. Hence, it consists of 24 = 16 codewords.

An equivalent description of the code C is in terms of the following generator matrix:

G =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1


. (2.109)

From (2.109) it can be seen that the code in our example is a systematic code, i.e., the

codewords are of the form

c = Gu =

(
u

p

)
. (2.110)

7Here, the generator matrix is a tall matrix because we write u and c as column vectors (which is in
contrast to some textbooks).
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Figure 2.8: Tanner graph corresponding to the parity-check matrix in (2.108).

Here, the information bits u and the parity bits p appear separately in the codeword c which

is advantageous in some applications.

Given a noisy codeword y, observed at the output of a channel with transition pdf p(y|c),
an ML decoder finds

ĉ(y) = arg max
c∈C

p(y|c). (2.111)

The ML decoder computes the codeword ĉ ∈ C that most likely caused the observation y

under the channel model p(y|c). Similarly, a MAP decoder computes

ĉl(y) = arg max
cl∈{0,1}

p(cl|y) = arg max
cl∈{0,1}

∑
c∼l

p(c|y), l = 1, . . . , N. (2.112)

The MAP decoder maximizes the posterior probability for each bit separately. Therefore,

the MAP decoder minimizes the bit error probability although c̃ = (ĉ1 · · · ĉN )T may not be

a valid codeword (which is in contrast to the ML decoder). While the decoders in (2.111)

and (2.112) may be feasible for the code in the above example, their computational com-

plexity scales exponentially with the blocklength N . The maximization in (2.111) and the

marginalization in (2.112) have to take all 2NR codewords into account which is prohibitively

complex for codes of practical interest. Therefore, low-complexity decoders with near-optimal

performance are of great interest for decoding channel codes. To this end, we next discuss a

graphical representation of linear block codes.

2.6.5 Iterative Decoding

Linear block codes can be represented by a Tanner graph. Tanner graphs are bipartite graphs

with variable nodes (one per code bit) and check nodes (one per parity-check equation). The

ith check node is connected to the jth variable node by an edge ifH i,j = 1. Figure 2.8 depicts

the Tanner graph corresponding to the parity-check matrix in (2.108). A linear block code

is composed of N −K component codes, where each component code is a single parity-check

code. Therefore, a simple (but suboptimal) decoding strategy is to optimally decode each

component code and exchange extrinsic information between the individual components in

an iterative manner. Since Tanner graphs can be viewed as a particular form of factor graphs,

such an iterative decoder can be derived using the message passing rules of Section 2.5.
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We next describe the process of iterative decoding, and the update rules for variables

nodes and check nodes in terms of LLRs. First, the variable nodes are initialized with the

channel information, i.e., we have8

Lcl,0 = Lccl(yl), l = 1, . . . , N. (2.113)

The check nodes then compute extrinsic LLRs as in (2.96). Specifically, in the kth iteration

a check node connected to the J variable nodes c1, . . . , cJ computes the following boxplus

sums:

Lecl,k =
J∑
j=1

j 6=l

� Lcj ,k, l = 1, . . . , J. (2.114)

These extrinsic LLRs are then used as additional prior information at the variable nodes.

Hence, a variable node cl connected to, say, M check nodes updates its LLR according to

Lcl,k+1 = Lcl,k +
M∑
m=1

Le,mcl,k
. (2.115)

Here, Lcl,k denotes the previous LLR value and Le,mcl,k
is the extrinsic LLR received from the

mth check node in the kth iteration. In the next iteration, the updated LLRs of (2.115) are

used to compute new extrinsic LLRs using (2.114). Decoding is stopped if all parity-check

constraints are fulfilled or if a given number of iterations (or message updates) has been

performed. The hard decisions correspond to the sign of the variable node LLRs in (2.115).

The sum of extrinsic LLRs in (2.115) is due to the assumption that the underlying bits are

statistically independent. If the Tanner graph contains cycles, this independence assumption

is violated and therefore iterative decoding is suboptimal. We are free to update the nodes in

any order, but the choice of the schedule may influence the convergence and the performance

of the decoder. A common approach is the so-called flooding schedule which updates all

messages from the check nodes to the variable nodes in one time instant and in the next time

instant all messages from the variables nodes to the check nodes are updated.

The message update at the check nodes involves the computation of a boxplus sum which

is rather complicated compared to the update at the variable nodes. The min-sum decoder

avoids this problem by approximating the boxplus operation as in (2.99). Hence, the check

node update of the min-sum decoder is

Lecl,k =
[ J∏
j=1

j 6=l

sign
(
Lcj ,k

)]
min

j=1,...,J

j 6=l

|Lcj ,k|, l = 1, . . . , J. (2.116)

We note that the update rule (2.116) is a suboptimal decoder for the single parity-check

component codes which is in contrast to (2.114). The simplification due to the boxplus

8The additional index on the left-hand side of (2.113) corresponds to the iteration number.
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Table 2.1: Initial values of the variable nodes.

Lc1,0 Lc2,0 Lc3,0 Lc4,0 Lc5,0 Lc6,0 Lc7,0 Lc8,0

0.5 1.5 3.5 1.0 1.0 −1.5 2.0 −2.5

Table 2.2: Values of the variable nodes after the first iteration.

Lc1,1 Lc2,1 Lc3,1 Lc4,1 Lc5,1 Lc6,1 Lc7,1 Lc8,1

3.5 1.0 3.0 −2.0 1.5 −0.5 2.5 −1.5

approximation (2.99) causes a performance penalty which can be reduced by appropriately

down-scaling the extrinsic LLRs [61].

We next give an example to illustrate graph-based iterative decoding on the Tanner graph

in Figure 2.8. For simplicity, we assume that a min-sum decoder with flooding schedule is

used. First, we initialize the variable node LLRs with the channel information Lccl(yl). The

initial values Lcl,0, l = 1, . . . , 8, are given in Table 2.1. If the initial variable node LLRs satisfy

all parity-check equations, we may stop at this point. However, this is not the case in our

example. The hard decision of the LLRs in Table 2.1 corresponds to the bits (0 0 0 0 0 1 0 1)T.

These bits do not form a codeword since the second and the fourth parity-check equation are

not satisfied. The nearest valid codeword in terms of Hamming distance is (0 0 0 1 0 1 0 1)T,

i.e., the channel has most probably corrupted the fourth bit of the transmitted codeword.

To start the iterative decoding process, the variable nodes pass their values to the check

nodes. At the check nodes, extrinsic LLRs are computed according to (2.116). These extrinsic

LLRs are then passed to the variable nodes (cf. Figure 2.9) where they are used as new prior

information. The updated variable node LLRs (cf. Table 2.2) are given by the sum of the

values in Table 2.1 and the extrinsic LLRs. This completes the first iteration of the decoding

process. In this iteration, the sign of Lc4,1 has changed compared to Lc4,0. Thus, all parity-

check equations are now satisfied. At this point we may stop decoding since a valid codeword

has been found. It is important to note that the codeword found by the decoder need not be

equal to the transmitted codeword.

+ + + +

c1

0.5

c2 c3 c4 c5 c6 c7 c8

1.5 3.5 1.0 1.0 2.0 −2.5−1.5

0.51.0

0.5 1.0

−1.5
−1.0

2.0
0.5

0.5 1.0
−1.5

−1.0

Figure 2.9: Extrinsic LLRs in the first iteration.
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Figure 2.10: Extrinsic LLRs in the second iteration.

Table 2.3: Values of the variable nodes after the second iteration.

Lc1,2 Lc2,2 Lc3,2 Lc4,2 Lc5,2 Lc6,2 Lc7,2 Lc8,2

7.0 4.0 6.0 −3.5 2.5 −2.5 5.5 −3.5

In some cases the decoder may perform a fixed number of iterations without performing

a parity check after each iteration. In our example, the second iteration proceeds in the same

manner as the first iteration. The extrinsic LLRs are shown in Figure 2.10 and the updated

variable node LLRs are given in Table 2.3. None of the values at the variable nodes have

changed their sign in the second iteration, but all LLRs have increased their magnitude9. This

is an important point because if we kept on iterating, the magnitude of some LLRs may grow

without bound. This shows that iterative decoding is suboptimal and the messages being

passed on the graph are no longer exact LLRs since their magnitude does not correspond to

the reliability of the associated hard decision. From an implementation point of view this

means that the messages have to be “clipped” to avoid numerical problems. The performance

impact of LLR clipping can be mitigated by appropriately up-scaling the clipped values [91].

2.6.6 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes were first introduced by Gallager in the early 1960’s

[29]. At that time it had not been recognized that LDPC codes could closely approach channel

capacity for sufficiently large blocklengths. Gallager’s work on LDPC codes has been largely

ignored until these codes were rediscovered in the 1990’s [69] after the invention of turbo

codes [9].

An LDPC code is a linear block code given by the nullspace of a parity-check matrix

H with a low density of nonzero entries. While there is no precise definition of the term

“low-density”, typical LDPC codes have parity-check matrices with less than 0.1 % nonzero

entries. The sparsity property ofH allows us to efficiently decode LDPC codes using iterative

algorithms with near-optimal performance. In this context, the iterative message passing

decoder described in the previous subsection is often called belief propagation (BP) decoder.

9This is also the case if a sum-product decoder is used instead of the min-sum decoder.
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+ +

c1 c2 c3 c4 c5 c6 c7 c8

+ +

Figure 2.11: A cycle of length 8 (indicated by bold lines) in the Tanner graph of Figure 2.8.

As discussed above, the BP decoder is suboptimal for codes whose Tanner graph contains

cycles. However, it can be shown that codes without cycles cannot perform well since they

suffer from many low-weight codewords which yields a high probability of error [87, Section

2.6]. Hence, cycles are critical for the performance of LDPC codes under BP decoding. We

note that few cycles are bad for the code but good for the BP decoder and, conversely, many

cycles are good for the code but bad for the BP decoder. It turns out that short cycles

deteriorate the performance of the BP algorithm and should therefore be avoided by design

of the parity-check matrix. Figure 2.11 shows a cycle of length 8 in the Tanner graph of

our example from the previous subsection. In this example there are no shorter cycles. The

length of the shortest cycle in a graph is called its girth. Hence, the girth of the Tanner graph

in Figure 2.8 is 8.

The analysis of LDPC codes is usually performed in terms of ensembles which is easier

than characterizing a particular LDPC code. A code ensemble is a class of codes with

common properties. Density evolution [86] allows us to analyze the average behavior of

LDPC ensembles under BP decoding in the limit of large blocklength. This average analysis

is useful because it can be shown that as N → ∞, almost all codes of an ensemble behave

alike. An example is the ensemble of (λ, ρ)-regular LDPC codes. Here, each variable node

has degree λ and each check node has degree ρ, i.e., each code bit participates in λ check

equations and each check equation is the modulo-2 sum of ρ code bits. Equivalently, each

row of the parity-check matrix of a (λ, ρ)-regular LDPC code has ρ nonzero entries and each

column has λ nonzero entries. A generalization of the regular ensemble is the ensemble of(
λ(x), ρ(x)

)
-irregular LDPC codes with variable node degree distribution

λ(x) =
∑
i

λix
i (2.117)

and check node degree distribution

ρ(x) =
∑
i

ρix
i. (2.118)

Here, λi is the fraction of variable nodes of degree i and, similarly, ρi is the fraction of check

nodes of degree i.
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Figure 2.12: BER performance of the rate-1/2 DVB-S2 LDPC code (blocklength 64800 bits).
The code bits are transmitted using BPSK over an AWGN channel. A soft-input BP decoder
has been used to obtain these results.

Results for a particular code, i.e., for a specific member of an ensemble, can be obtained

using Monte Carlo simulations. Figure 2.12 depicts a BER versus SNR plot of the rate-1/2

DVB-S2 code with a blocklength of 64800 bits [23]. We observe that up to approximately

40 decoder iterations large SNR gains can be achieved. A further increase in the number of

iterations yields only a marginal performance improvement. Moreover, we can see that this

code performs within a few tenths of a dB of the theoretical limit at a BER of 10−7. In [18],

a rate-1/2 irregular LDPC code has been constructed whose density evolution threshold is

0.0045 dB away from the Shannon limit. For a blocklength of 107 bits, this code performs

within 0.04 dB of the theoretical limit at a BER of 10−6.

2.6.7 Convolutional Codes and the BCJR Algorithm

Convolutional Codes. In contrast to block codes, convolutional codes are not restricted to

a fixed blocklength. Convolutional codes map a (possibly infinite) stream of information bits

to a stream of code bits. Encoders for convolutional codes process data in small blocks called

frames. The sequence of information bits is split up into data frames vl = (v
(1)
l · · · v(k)

l )T of

length k. Each data frame is mapped to a length-n (n > k) code frame bl = (b
(1)
l · · · b

(n)
l )T

by the encoder. The resulting code rate is R = k/n. Encoding of convolutional codes is not

memoryless; the encoder output at frame time l depends not only on its input but also on

the state Sl of the encoder. We can write the code frames and the evolution of the encoder
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Figure 2.13: Rate-1/2 convolutional encoder with (a) shift register implementation and (b)

state transition diagram. In (b), solid lines correspond to v
(1)
l = 0, dashed lines correspond

to v
(1)
l = 1, and the edges are labeled by the encoder output (b

(1)
l , b

(2)
l ).

state as follows (l = 0, 1, . . .):

bl = χ(vl, Sl), (2.119)

Sl+1 = ψ(vl, Sl). (2.120)

Here, χ denotes the output function, ψ denotes the state transition function, and the initial

state S0 is known. We note that due to (2.120), the sequence of states is a Markov chain.

An efficient way to implement encoders for convolutional codes, i.e., the equations (2.119)

and (2.120), is through linear shift register circuits. Figure 2.13a shows an encoder implemen-

tation for a rate-1/2 convolutional code with k = 1 and n = 2. The encoder state corresponds

to the content of the shift register. In our example, we enumerate the states by the decimal

equivalent of (v
(1)
l−1, v

(1)
l−2), where v

(1)
l−1 is the most significant bit. A state transition diagram

corresponding to the encoder in Figure 2.13a is shown in Figure 2.13b. The edges indicate

transitions between states, where a solid line corresponds to v
(1)
l = 0 and a dashed line corre-

sponds to v
(1)
l = 1. Furthermore, each edge is labeled by the encoder output (b

(1)
l , b

(2)
l ) which

results from that particular state transition and input.

Encoders can be conveniently described using generator polynomials. Generator poly-

nomials are usually given in octal notation and they specify which inputs and which shift

register taps are used in the computation of the code bits. In our example, the first code

bit b
(1)
l is the modulo-2 sum of the input and both shift register taps. These connections

correspond to the binary string 1112 (with the input being the most significant bit) which

is 78 in octal representation. Similarly, the second code bit b
(2)
l is the modulo-2 sum of the

input with the last shift register tap, corresponding to 1012, i.e., 58 in octal representation.

Therefore, we write the generator polynomials of the encoder in Figure 2.13a as (7, 5)8.

The encoder in Figure 2.13a is a feedforward shift register circuit and yields a nonsys-

tematic code. Systematic codes can be generated by shift register circuits with feedback.
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The encoder memory (more precisely, the frame memory order) is the minimum number of

data frames required to force the encoder state from an arbitrary state to the initial state

S0. Equivalently, the encoder memory is the maximum length of all shift registers in the

encoder. The number of states is (at most) two to the power of the number of shift register

taps in the encoder. We note that k and n are small integers (typically k = 1) and therefore

convolutional codes are rather limited regarding their rate. To achieve higher code rates

puncturing is commonly employed.

As mentioned earlier, convolutional codes are not restricted to a particular blocklength.

While this is a favorable property, it is sometimes required to encode data blocks of a fixed

length. Convolutional codes can be used in those cases by transforming them to linear block

codes using truncation or termination. The codeword of a truncated convolutional code

consists of all code bits produced by the data. Hence, the encoder ends in some arbitrary

state which is reset to the initial state S0 before the next block is encoded. In the case

of termination, the data is padded with additional frames to force the encoder state to the

initial state S0. The codeword includes the code bits that are due to the termination and

the next block can be encoded immediately since the encoder is already in state S0. We note

that truncation does not change the code rate, but termination leads to a small rate loss

which is often negligible if the blocklength is sufficiently large. In contrast to block codes, the

performance of convolutional codes mainly depends on the encoder memory instead of the

blocklength. While convolutional codes perform reasonably well also for shorter blocklengths,

they do not approach channel capacity. However, convolutional codes are the building blocks

of turbo codes which indeed perform close to the Shannon limit.

Convolutional codes are usually decoded using the Viterbi algorithm [100], which effi-

ciently performs ML decoding. Sequential decoding techniques like the Fano algorithm [24]

and the stack algorithm [49] are well suited for decoding convolutional codes with large en-

coder memory. Modern receiver concepts often require channel decoders which output soft

information. To this end, the soft-output Viterbi algorithm [39], soft-output stack algo-

rithms, e.g., [15], the so-called LISS algorithm [37], and the BCJR algorithm [4] can be used.

Of these algorithms, only the BCJR algorithm is a MAP-optimal soft-output decoder; the

other algorithms are suboptimal. In the following we describe the BCJR algorithm in more

detail.

The BCJR algorithm. Let u = (u1 · · · uK)T be a length-K vector of information bits

which is encoded and transmitted over a memoryless channel. The length-N codeword cor-

responding to u is c = (c1 · · · cN )T ∈ C. The channel output is used to compute the LLRs

Lc = (Lcc1 · · · LccN )T, i.e., the channel information for the code bits. Additionally, prior in-

formation about the data bits is given by the LLRs La = (Lau1
· · · LauK )T. Using Lc and La,

we want to efficiently compute the posterior distributions

p(cl|Lc,La) =
∑
c∼l

p(c|Lc,La), l = 1, . . . , N, (2.121)
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p(ul|Lc,La) =
∑
u∼l

p(u|Lc,La), l = 1, . . . ,K. (2.122)

From (2.121) and (2.122) we can easily compute the posterior LLRs for the code bits and the

information bits, respectively. The BCJR algorithm provides an efficient way to perform the

marginalizations in (2.121) and (2.122).

Let us consider a rate-k/n convolutional code C with M states and let Sl ∈ S denote the

encoder state at (frame) time l, where S = {0, . . . ,M − 1} is the set of states. Due to the

frame structure of the encoder, the sequence of information bits u is split info T data frames

vl =
(
v

(1)
l · · · v(k)

l

)T
, l = 1, . . . , T , of length k = K/T . Similarly, the codeword c is split

into T code frames bl =
(
b
(1)
l · · · b

(n)
l )T, l = 1, . . . , T , of length n = N/T . To describe the

BCJR algorithm in detail, we first introduce the notion of a trellis. A trellis is a graph which

represents the evolution of the encoder state over time. At each time instant we have M

vertices which represent the encoder states. An edge connects the vertices corresponding to

Sl = m′ and Sl+1 = m if the encoder is such that the state transition m′ → m is possible. We

denote the set of state tuples which correspond to possible state transitions by T ⊆ S × S,

i.e., (m′,m) ∈ T implies that the transition m′ → m is possible. Since the encoder input is

binary, each vertex has 2k outgoing edges. Every state transition is associated to a particular

input frame and a particular output frame.

A simple way to construct one section of the trellis is using the state transition diagram

of the encoder. Figure 2.14a shows a trellis section for the encoder depicted in Figure 2.13a.

The trellis of convolutional codes is time-invariant10 and thus the entire trellis is simply a

concatenation of T trellis sections. Since the initial encoder state S0 is known, the edges leav-

ing other states are removed in the first section of the trellis. For a terminated convolutional

code, edges are also removed from the last few sections of the trellis to ensure termination in

the final state ST . Without loss of generality we may assume that S0 = 0 and, in the case of

a terminated code, ST = 0. A complete trellis description of the encoder in our example is

depicted in Figure 2.14b.

The BCJR algorithm allows us to write the marginalizations in (2.121) and (2.122) as

follows:

P{b(j)
l =c|Lc,La} =

∑
(m′,m)∈A(j)

c

αl−1(m′)γl(m
′,m)βl(m), j = 1, . . . , n, l = 1, . . . , T,

(2.123)

P{v(j)
l =u|Lc,La} =

∑
(m′,m)∈B(j)u

αl−1(m′)γl(m
′,m)βl(m), j = 1, . . . , k, l = 1, . . . , T.

(2.124)

Here, A(j)
c denotes the set of state transitions m′ → m such that the jth bit of the code frame

10The BCJR algorithm can also be applied to block codes with time-varying trellises. However, the construc-
tion of trellises for block codes (discussed, e.g., in [64, Chapter 9]) goes beyond the scope of this discussion.



2.6 Soft Information and Codes on Graphs 43

Sl Sl+1

(0, 0)

(0, 0)

(1, 0
)

(1, 1)

(0
, 1

)

(1, 0)

(1, 1
)

(0, 1)

0

S

1

2

3

(a) Trellis section.

3

2

1

0

S

· · ·

· · ·

· · ·

· · ·

S0 S1 S2 S3 ST−3 ST−2 ST−1 ST

(b) Complete trellis for T frames.

Figure 2.14: Trellis description of the encoder in Figure 2.13a. Solid lines correspond to

v
(1)
l = 0 and dashed lines correspond to v

(1)
l = 1. The edges in (a) are labeled in the same

way as in the state transition diagram (cf. Figure 2.13b).

equals c. Similarly, the set B(j)
u contains all state transitions m′ → m where the jth bit of the

data frame is equal to u. We note that the sets A(j)
c and B(j)

u are time-invariant, i.e., they

do not depend on l. The role of γl(m
′,m) is discussed later in more detail. The key insight

which makes the BCJR algorithm efficient is that the quantities αl and βl can be computed

recursively. In the forward recursion, αl is computed using αl−1 as follows:

αl(m) =

M−1∑
m′=0

αl−1(m′)γl(m
′,m), m = 0, . . . ,M − 1, l = 1, . . . , T. (2.125)

The backward recursion computes βl using βl+1 as follows:

βl(m) =

M−1∑
m′=0

βl+1(m′)γl+1(m,m′), m = 0, . . . ,M − 1, l = T − 1, . . . , 1. (2.126)

The initializations for these recursions are α0(m) = 1{m= 0}, and βT (m) = 1{m= 0} (in

the case of a terminated code) or βT (m) = 1/M (for a truncated code).

The α’s, β’s, and γ’s in the BCJR algorithm are actually probabilities. However, in our

case we compute the state transition probabilities γ(m′,m) such that they are not normalized.

Specifically, we have

γl(m
′,m) = 1{(m′,m) ∈ T }

n∏
i=1

exp
(
−c(i)

m′,mL
c

b
(i)
l

)
1 + exp

(
−Lc

b
(i)
l

) k∏
j=1

exp
(
−u(j)

m′,mL
a

v
(j)
l

)
1 + exp

(
−La

v
(j)
l

) , l = 1, . . . , T,

(2.127)

where c
(i)
m′,m is the ith output bit of the encoder in the state transition m′ → m, u

(j)
m′,m is

the jth input bit of the encoder in the state transition m′ → m, and Lc
b
(i)
l

, La
v
(j)
l

are the

ith channel LLR and the jth prior LLR in the lth code and data frame, respectively. Since

γl(m
′,m) in (2.127) is not normalized, we need to normalize the α’s and β’s after each step.
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It is important to note that due to the trellis structure described by the set T , we have

γl(m
′,m) = 0 for some tuples (m′,m) and therefore the sums in (2.125) and (2.126) actually

contain less than M terms. A compact description of the BCJR algorithm for soft-input

soft-output channel decoding is given in Algorithm 2.1.

Some remarks regarding the BCJR algorithm are in order. The initialization of Algorithm

2.1 assumes a terminated code. For a truncated code the initialization of βT must be changed

to βT (m) = 1/M , m = 0, . . . ,M − 1. We have chosen the initial encoder state S0 and the

terminal encoder state ST to be zero. However, this choice is arbitrary and can be changed

in the initialization of the BCJR algorithm. It is rather simple to extend Algorithm 2.1 to

punctured convolutional codes. Indeed, it is sufficient to insert channel LLRs with value zero

at the positions of the punctured code bits and then run the BCJR algorithm on the trellis

of the unpunctured code. To avoid numerical problems it may be required to clip large LLR

magnitudes to a maximum value of, say, 20. For systematic encoders, the marginalization for

the posterior LLRs for the information bits can be skipped since the codeword contains all

information bits. For encoders with a feedforward shift register structure, the marginalization

for the jth information bit in the lth frame simplifies to
∑

m∈B̃(j)u
αl(m)βl(m), where B̃(j)

u =

{m : (m′,m) ∈ B(j)
u , ∀m′ ∈ S}. Furthermore, it is important to note that Algorithm 2.1 does

not assume any particular channel model. The channel model enters through the LLRs Lc

which are computed before the BCJR algorithm is executed.

A reformulation of Algorithm 2.1 in the logarithmic domain is sometimes convenient

because we work with LLRs. The BCJR algorithm in the logarithmic domain is also known

as the log-MAP decoder. By applying the max-log approximation to the log-MAP decoder we

arrive at the max-log-MAP decoder which reduces complexity since it avoids the evaluation

of transcendental functions. A further complexity reduction can be achieved by retaining

only large values of αl and βl in each step. These simplifications are known as the M -BCJR

(keeps the M largest values) and the T -BCJR (keeps all values above a certain threshold) [28].

Furthermore, windowed decoding can be used to reduce memory requirements for codes with

large blocklength and enables hardware implementation of the BCJR algorithm [7].

We note that the BCJR algorithm can be re-derived in a factor graph framework using

the sum-product algorithm. The min-sum algorithm yields the max-log-MAP version of the

BCJR decoder. The BCJR algorithm is a variant of the forward-backward algorithm which

is used in machine learning to infer the posterior distribution of hidden state variables in

hidden Markov models (HMMs) given a sequence of observations. Similarly, the Baum-

Welch algorithm [5] uses the forward-backward procedure to infer the model parameters of

HMMs with applications in, e.g., speech recognition and modeling of genomic sequences.

2.6.8 Turbo Codes

In 1948, Shannon proved that the channel capacity can be achieved using random codes

when the blocklength tends to infinity [94]. Although a lot of research regarding the design
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Algorithm 2.1 Soft-input soft-output BCJR decoding algorithm.

Input: La, Lc, T , trellis structure (
{
A(i)
c

}n
i=1

,
{
c

(i)
m′,m

}n
i=1

,
{
B(j)
u

}k
j=1

,
{
u

(j)
m′,m

}k
j=1

, S, T )

Initialization: α0(m)← 1{m=0}, βT (m)← 1{m=0}, m = 0, . . . ,M − 1

# compute transition probabilities
1: for l = 1, . . . , T do

2: γl(m
′,m)← 1{(m′,m) ∈ T }

n∏
i=1

exp
(
− c(i)

m′,mL
c

b
(i)
l

)
1 + exp

(
− Lc

b
(i)
l

) k∏
j=1

exp
(
− u(j)

m′,mL
a

v
(j)
l

)
1 + exp

(
− La

v
(j)
l

) , ∀(m′,m)

3: end for

# forward recursion
4: for l = 1, . . . , T do

5: α̃l(m)←
∑M−1

m′=0
αl−1(m′)γl(m

′,m), m = 0, . . . ,M − 1

6: αl(m)← α̃l(m)∑M−1
m′=0 α̃l(m

′)
, m = 0, . . . ,M − 1

7: end for

# backward recursion
8: for l = T − 1, . . . , 1 do

9: β̃l(m)←
∑M−1

m′=0
βl+1(m′)γl+1(m,m′), m = 0, . . . ,M − 1

10: βl(m)← β̃l(m)∑M−1
m′=0 β̃l(m

′)
, m = 0, . . . ,M − 1

11: end for

# marginalization
12: for l = 1, . . . , T do
13: for i = 1, . . . , n do
14: p0 ←

∑
(m′,m)∈A(i)

0

αl−1(m′)γl(m
′,m)βl(m)

15: p1 ←
∑

(m′,m)∈A(i)
1

αl−1(m′)γl(m
′,m)βl(m)

16: Lc(l−1)n+i
← log p0/p1

17: end for

18: for j = 1, . . . , k do
19: p0 ←

∑
(m′,m)∈B(j)0

αl−1(m′)γl(m
′,m)βl(m)

20: p1 ←
∑

(m′,m)∈B(j)1

αl−1(m′)γl(m
′,m)βl(m)

21: Lu(l−1)k+j
← log p0/p1

22: end for
23: end for
Output: Posterior LLRs Lc(l−1)n+i

, Lu(l−1)k+j
, l = 1, . . . , T , i = 1, . . . , n, j = 1, . . . , k, for

code bits c1, . . . , cN and information bits u1, . . . , uK
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Figure 2.15: Block diagram of a turbo encoder with two constituent codes.

of good channel codes has been conducted, the discovery of the first practical codes which

closely approach the Shannon limit took until 1993 [9]. These codes are called turbo codes

and they mark the beginning of the modern era in coding theory. The fundamental idea of

turbo codes is a code design that produces random-like codes with enough structure to enable

efficient decoding. Turbo codes consist of two or more simple constituent codes along with

pseudorandom interleavers. The constituent codes are concatenated in a parallel or serial

manner. In principle, any code could be used as constituent code. However, we consider the

usual case of parallel concatenated convolutional codes in the following.

Encoding of turbo codes is systematic and each constituent encoder produces parity bits

for the data or an interleaved version of it. The constituent encoders are systematic encoders

and the systematic bits are punctured from their output. Each codeword consists of the

systematic part, i.e., the data itself, and the parity bits of the constituent encoders. Usually

the constituent encoders are identical, but this need not be the case. Figure 2.15 shows the

block diagram of a turbo encoder with two parallel concatenated encoders. Here, the first

encoder produces parity bits for the data u and the second encoder computes parity bits

for the interleaved data u′ = Π(u), where Π denotes the interleaver. The input of the first

encoder need not be interleaved and therefore a turbo encoder with M constituent codes will

usually have M − 1 different interleavers. To achieve good performance the encoders need

to have a recursive structure with feedback and the interleaver depth, i.e., the blocklength,

needs to be rather large.

The interleaving is of fundamental importance for the performance of turbo codes. There

are several (partly equivalent) ways to explain why interleaving is vital for the performance

turbo codes.

• Interleaving allows us to create random-like codes. This is important since capacity can

asymptotically be achieved using random coding arguments.

• A vast number of states is needed for a trellis representation of a good turbo code due

to the interleaving. In general, a larger number of states yields a better performance of

the code.
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• As a consequence of interleaving, turbo codes are time-varying which is necessary to

achieve spectral thinning, i.e., to reduce the multiplicities of low-weight codewords.

Codes with fewer low-weight codewords feature a lower probability of error.

• Pseudorandom interleaving avoids short cycles in the factor graph representation of

turbo codes. This is important for the performance of turbo codes when iterative

decoding techniques are employed.

Optimal decoding of turbo codes, e.g., using the Viterbi algorithm or the BCJR algorithm,

is infeasible due to the large number of encoder states. Therefore, suboptimal iterative

decoding techniques are used in practice. The idea behind efficient decoding of turbo codes

is similar to iterative decoding of block codes: optimally decode each constituent code and

iteratively exchange extrinsic information between the individual component decoders. Figure

2.16 shows the block diagram of a turbo decoder corresponding to the encoder in Figure 2.15.

The BCJR algorithm is used to perform MAP-optimal soft-input soft-output decoding of each

constituent code. The first decoder operates on the LLRs Lcu and Lcp which stem from the

channel observation. Initially, there is no prior information about u, i.e., Lau = 0. Subtracting

the prior LLRs Lau from the posterior LLRs Lu at the output of the first decoder yields

extrinsic LLRs Leu. In the next step, these extrinsic LLRs are interleaved and used as new

prior LLRs for the second decoder, i.e., Lau′ = Π(Leu). The second decoder operates on the

LLRs Lcu′ = Π(Lcu) and Lcq from the channel observation together with the prior information

Lau′ . Extrinsic information from the second decoder is then deinterleaved (denoted by Π−1 in

Figure 2.16) and is again used as new prior information for the first decoder. In this manner,

the component decoders exchange extrinsic information for a certain number of iterations.

Eventually, a hard decision is taken at the output of the first decoder11 to obtain the decoded

data û. Depending on the complexity and delay constraints, the number of turbo decoder

iterations is usually between 2 and 10. The block-based processing depicted in Figure 2.16

corresponds to a particular schedule of a message passing decoder on the turbo code’s factor

graph.

Figure 2.17 shows the BER versus SNR performance of a rate-1/2 turbo code with an

interleaver size and data blocklength of 217 bits. The two constituent codes are equal with

generator polynomials (37, 21)8. We observe that the BER performance improves substan-

tially in the first few iterations. The additional performance gain per iteration diminishes

as the iteration count increases. Furthermore, we observe that the performance of this code

is less than 1 dB away from the theoretical limit at a BER of 10−5. The considered turbo

code outperforms a rate-1/2 convolutional code with generator polynomials (37, 21)8 after 2

iterations for BER values of practical interest. In Figure 2.17 we can see that turbo codes

suffer from an error floor which causes the BER curve to flatten out for values below ∼10−5.

Therefore, turbo codes may not be suitable for applications that operate at very low BERs.

11Alternatively, the hard decision can also be taken at the output of the second decoder yielding û′. Dein-
terleaving û′ yields the decoded data û = Π−1(û′).
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Figure 2.16: Block diagram of an iterative turbo decoder.

The error floor is caused by the weight distribution of turbo codes and in particular by their

relatively poor minimum distance.

We have restricted our discussion of turbo codes to parallel concatenated convolutional

codes with two constituent encoders. The extension to more than two constituent encoders

is rather straightforward. For a discussion of turbo codes with serial concatenation of the

constituent codes see, e.g., [6]. The idea of turbo processing has been extended to many

applications beyond pure channel coding. Examples include turbo equalization [98], iterative

detection for bit-interleaved coded modulation [62], and turbo source-channel coding [33].

Finally, we note that extrinsic information transfer charts [95] can be used to analyze and

optimize turbo schemes.

2.7 The Information Bottleneck Method

In [97], Tishby et al. have introduced a novel method for data compression using the notion

of relevance through another variable. The idea of the IB method is to compress the data

y ∈ Y such that its compressed version z ∈ Z contains as much information as possible about

the relevance variable x ∈ X , subject to a constraint on the compression rate. Figuratively

speaking, the compression variable z constitutes a “bottleneck” through which the information

that y provides about x is squeezed, hence the name “information bottleneck”. In the IB

setting, the joint distribution p(x, y) is known and z depends only on y through a probabilistic

mapping p(z|y). Hence, the random variables x, y, and z form the Markov chain x↔ y↔ z.

Furthermore, we assume that x, y, and z are discrete random variables, i.e., the cardinality

of the sets X , Y, and Z is finite.

The advantage of the IB framework over data compression in the rate-distortion (RD)

setting is that the IB method avoids the choice of a distortion measure. In RD theory,
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Figure 2.17: BER performance of a rate-1/2 turbo code with a blocklength of 217 bits. The
code bits are transmitted using BPSK over an AWGN channel. The turbo decoder in Figure
2.16 has been used to obtain these results.

a distortion measure has to be specified in advance and, in turn, the distortion measure

determines which features of the data are relevant. This is problematic because there is no

systematic way to find a suitable distortion measure for a given problem. Therefore, the

distortion measure is often chosen in favor of mathematical tractability instead of perceptual

meaningfulness [35, Section 2.4]. In contrast, the relevant features of the data are determined

directly by the choice of the relevance variable x in the IB setting and, hence, the distortion

measure emerges from the joint distribution p(x, y).

The IB method finds the optimal compression mapping p(z|y) as the solution of the

variational problem

min
p(z|y)

I(y; z)− βI(x; z), (2.128)

where the Lagrange parameter β > 0 controls the trade-off between the compression rate

I(y; z) and the relevant information I(x; z). Large β yields little compression and thus much

relevant information is preserved. Conversely, small β preserves little relevant information

and entails strong compression. We note that in contrast to the RD problem, (2.128) is a non-

convex problem and therefore cannot be solved using standard interior point methods [12,

Chapter 11]. However, an implicit solution for the optimal assignment p(z|y) is given by [97,

Theorem 4]

p(z|y) =
p(z)

ψ(y, β)
exp[−βD(p(x|y)‖p(x|z))] , (2.129)
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where ψ(y, β) is the partition function, i.e., a normalization such that p(z|y) is a valid proba-

bility distribution for each y. The expression in (2.129) is only an implicit solution of (2.128)

since p(z) and p(x|z) depend on p(z|y). We have

p(z) =
∑
y∈Y

p(y)p(z|y), (2.130)

p(x|z) =
1

p(z)

∑
y∈Y

p(x, y)p(z|y), (2.131)

where (2.131) is due to the Markovity of x↔ y↔ z.

We next rewrite the relevant information I(x; z). To this end, we note that (cf. (2.31))

I(x; y, z) = I(x; z) + I(x; y|z) = I(x; y) + I(x; z|y)︸ ︷︷ ︸
=0

. (2.132)

Using (2.132), we can write the relevant information as

I(x; z) = I(x; y)− I(x; y|z). (2.133)

Since the first term on the right-hand side of (2.133) does not depend on p(z|y), we continue

to rewrite I(x; y|z) as follows:

I(x; y|z) =
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z) (2.134)

=
∑
y∈Y

∑
z∈Z

p(y, z)
∑
x∈X

p(x|y) log
p(x|y)

p(x|z) (2.135)

= E
{
D
(
p(x|y)‖p(x|z)

)}
= E{d(y, z)}, (2.136)

where we have defined

d(y, z) , D
(
p(x|y)‖p(x|z)

)
. (2.137)

Hence, we can equivalently write (2.128) as

min
p(z|y)

I(y; z) + βE{d(y, z)}. (2.138)

The equivalence between (2.128) and (2.138) shows that the constraint on the relevant infor-

mation is equivalent to a constraint on the expected relative entropy in (2.136). We note that

(2.138) has the form of a RD problem with Lagrange parameter β. Therefore, it is natural to

view d(y, z) as the correct distortion measure in the IB setting. It is important to note that

the distortion measure d(y, z) depends on p(z|y). This is in contrast to RD theory where the

distortion measure is fixed a priori.

It can be shown that the IB equations (2.129)-(2.131) are satisfied simultaneously at

the minima of the free energy E{− logψ(y, β)}. The minimization of the free energy can
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Algorithm 2.2 Iterative IB algorithm.

Input: X , Y, Z, p(x, y), β > 0, ε > 0, M ∈ N
Initialization: η ←∞, d

(0) ←∞, m← 1, randomly choose p(0)(z|y)
1: while η ≥ ε and m ≤M do

2: p(z)←
∑
y∈Y

p(m−1)(z|y)p(y)

3: p(x|z)← 1

p(z)

∑
y∈Y

p(m−1)(z|y)p(x, y)

4: d(y, z)← D
(
p(x|y)‖p(x|z)

)
5: p(m)(z|y)← p(z) exp

(
−βd(y, z)

)∑
z′∈Z p(z

′) exp
(
−βd(y, z′)

)
6: d

(m) ←
∑
y∈Y

p(y)
∑
z∈Z

p(m)(z|y)d(y, z)

7: η ←
(
d

(m−1) − d(m))
/d

(m)

8: m← m+ 1
9: end while

10: p(z|y)← p(m−1)(z|y)
Output: optimized probabilistic mapping p(z|y)

be carried out by alternatingly iterating (2.129)-(2.131) [97, Theorem 5]. These alternating

iterations are known as the iterative IB algorithm which is summarized in Algorithm 2.2. The

iterative IB algorithm converges to a locally optimal solution of (2.138). Hence, the resulting

mapping p(z|y) depends on the initialization p(0)(z|y). To avoid bad local optima, it may

be necessary to repeatedly run Algorithm 2.2 and retain the best solution. Algorithm 2.2

terminates after M iterations or if the relative decrease of the average distortion d is below

ε. Finally, we note that a coding theorem for the IB problem in (2.128) is given in [31].
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3

Blind Performance Estimation

for Bayesian Detectors

In this chapter, we study soft-information-based blind performance estimation for Bayesian

detectors. The problem setting and relevant background are discussed in Section 3.1. As a

motivating example, we present blind bit error probability estimation for Gaussian channels

in Section 3.2. In Section 3.3, we study the properties of log-likelihood ratios (LLRs) which

we shall use to derive blind estimators in the binary case. However, our approach is neither

limited to the case of binary hypotheses, nor does it make any Gaussian assumptions. In Sec-

tion 3.4, we consider blind estimators for several performance criteria of Bayesian detectors.

The mean-square error (MSE) performance of the proposed estimators is evaluated in Section

3.5. In Section 3.6, we derive the Cramér-Rao lower bound (CRLB) for bit error probability

estimation in the Gaussian case and we prove that an efficient estimator does not exist in

this setting. Application examples for the proposed estimators are discussed in Section 3.7.

We conclude this chapter with a discussion of our results in Section 3.8.

53
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Figure 3.1: M -ary Bayesian hypothesis test with nonblind and blind estimation of some
parameter θ.

3.1 Introduction and Background

Figure 3.1 depicts the setup we consider in this chapter. Let u ∈ U denote the output of an

M -ary source, i.e., |U| = M , with known prior probabilities P{u = u}. The observation x

depends on u via the probabilistic mapping p(x|u) which is known for each u. We identify

each u with one hypothesis, i.e., we consider an M -ary hypothesis test (cf. Section 2.4).

Throughout, we assume that x is a continuous random variable with probability density

function (pdf) p(x). However, our results also hold in case x is a discrete random variable.

In this case, pdfs are replaced by probability mass functions and integrals are replaced by

sums. An optimal Bayesian detector (cf. (2.66)) computes its decision û ∈ U based on the a

posteriori probabilities (APPs) P{u =u|x=x}. In this context, we denote by θ a parameter

that we shall estimate. An example for θ is the error probability of the detector.

We consider two methods for the estimation of θ. The first method uses the output of

the detector together with the true source output u to produce the estimate θ̂. We call

this approach nonblind estimation since it requires the source output u. Clearly, nonblind

estimation can only be performed in computer simulations or when u is available as training

data. The second method is referred to as blind estimation and uses the APPs P{u =u|x=

x}, u ∈ U , to produce the estimate θ̌. A major advantage of blind estimation is that it

does not require the source output u (which justifies its name). We note that performance

estimation is relevant because an analytical performance evaluation is often infeasible and

performance bounds may not always provide sufficient insight. Additionally, blind estimation

is not restricted to Monte Carlo simulations and can thus be used for online performance

evaluation of soft-information-based detectors.

In this context, it is natural to compare the performance of nonblind and blind estimation.

For the error probability of binary convolutional codes, such a comparison is given in [67].

Blind bit error probability estimation in terms of LLRs is considered in [43, 57]. APP-based

quality estimation for source-channel coded transmissions is studied in [96]. Blind estimation

of mutual information with applications to extrinsic information transfer charts is considered

in [58]. We note that the work presented in this chapter goes substantially beyond the

previous work mentioned above.
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Before we begin the discussion of blind estimators, we next present an example which

addresses bit error probability estimation in the Gaussian case.

3.2 A Motivating Example

In this example we consider the model1

x = 1Nu + w, (3.1)

where 1N is the length-N all-ones vector, and u ∈ {−1, 1} is equally likely and independent

of the noise w ∼ N (0, σ2I). In this case, the maximum a posteriori (MAP) detector is

û(x) =

{
1, Lu(x) > 0

−1, Lu(x) ≤ 0
, (3.2)

where

Lu(x) =

N∑
n=1

Lu(xn) =

N∑
n=1

log
P{u=1|xn=xn}
P{u=−1|xn=xn}

=
2

σ2

N∑
n=1

xn =
2

σ2/N
x (3.3)

is the the posterior LLR for u. Here, we use the shorthand notation x , 1
N

∑N
n=1 xn for the

arithmetic mean of x1, . . . , xN . Due to (3.3), the LLR is conditionally Gaussian with

µLu|u = E{Lu|u=u} =
2

σ2/N
u, and σ2

Lu|u = var{Lu|u=u} = 2|µLu|u|, u ∈ {−1, 1}.
(3.4)

We note that σ2
Lu|u does not depend on u and thus we have σ2

Lu
= σ2

Lu|u. For the sake of

notational simplicity, we use σ2
Lu

instead of σ2
Lu|u in what follows.

Next, we compute the error probability conditioned on an observation x which we denote

by Pe(x). We have

Pe(x) , P{u 6= û(x)|x = x}. (3.5)

Rewriting (3.5) using Bayes’ rule yields

Pe(x) =
p
(
x|u 6= û(x)

)
P{u 6= û(x)}

p(x)
(3.6)

=
1
2p
(
x|u=−û(x)

)
1
2p(x|u=1) + 1

2p(x|u=−1)
(3.7)

=
1

1 + exp
(
|Lu(x)|

) . (3.8)

In (3.7), we have used the fact that u 6= û(x) implies u = −û(x) if Lu(x) 6= 0, and

P{u 6= û(x)} = 1/2 since u ∈ {−1, 1} is equally likely. The relation between the conditional

error probability Pe(x) and the LLR Lu(x) in (3.8) justifies and quantifies the reliability

1We note that the scalar model x̃ = u + w̃, with w̃ ∼ N (0, σ2/N) independent of u, is equivalent to (3.1).
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interpretation of LLRs. We note that |Lu(x)| = 0 implies Pe(x) = 1/2 and |Lu(x)| = ∞
yields Pe(x) = 0.

Using (3.4), (3.5), and (3.8), we write the unconditional error probability Pe as follows:

Pe = E
{

1

1 + exp(|Lu(x)|)

}
(3.9)

=

∫ ∞
−∞

p(Lu)

1 + exp(|Lu|)
dLu (3.10)

=
1

2

∫ ∞
−∞

p(Lu|u=1) + p(Lu|u=−1)

1 + exp(|Lu|)
dLu (3.11)

=
1

2
√

2πσ2
Lu

∫ 0

−∞

exp

(
− 1

2σ2
Lu

(Lu − σ2
Lu
/2)2

)
+ exp

(
− 1

2σ2
Lu

(Lu + σ2
Lu
/2)2

)
1 + exp(−Lu)

dLu

+
1

2
√

2πσ2
Lu

∫ ∞
0

exp

(
− 1

2σ2
Lu

(Lu − σ2
Lu
/2)2

)
+ exp

(
− 1

2σ2
Lu

(Lu + σ2
Lu
/2)2

)
1 + exp(Lu)

dLu

(3.12)

=
1

2
√

2πσ2
Lu

[∫ 0

−∞
exp

(
−

(Lu − σ2
Lu
/2)2

2σ2
Lu

)
dLu +

∫ ∞
0

exp

(
−

(Lu + σ2
Lu
/2)2

2σ2
Lu

)
dLu

]
(3.13)

=
1√

2πσ2
Lu

∫ ∞
0

exp

(
− 1

2σ2
Lu

(Lu + σ2
Lu
/2)2

)
dLu. (3.14)

In (3.13), we have used the following result for Gaussian random variables.

Proposition 3.1. Let x1 ∼ N (µ, σ2) and x2 ∼ N (−µ, σ2) be Gaussian random variables

with pdfs px1(x1) and px2(x2), respectively. If and only if |µ| = σ2/2, then

px1(z) + px2(z)

1 + e±z
(3.15)

is the pdf of a Gaussian random variable with mean ∓σ2/2 and variance σ2.

Proof: Proposition 3.1 can be shown by evaluating (3.15) and comparing it to the pdf

of a Gaussian random variable.

Using the Q-function

Q(x) ,
1√
2π

∫ ∞
x

exp(−t2/2)dt, (3.16)

we can rewrite the tail probability in (3.14) as follows:

Pe = Q
(σLu|u

2

)
= Q

(
1√
σ2/N

)
=

1

2
erfc

(
1√

2σ2/N

)
. (3.17)
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We recognize (3.17) as the error probability of uncoded binary phase-shift keying (BPSK)

transmission over an additive white Gaussian noise (AWGN) channel with signal-to-noise

ratio (SNR) (σ2/N)−1/2 (see, e.g., [34, Section 6.1]).

Given K independent and identically distributed (iid) observations x1, . . . ,xK , an unbi-

ased and consistent blind estimator for the unconditional error probability Pe is (cf. (3.9))

P̌e =
1

K

K∑
k=1

1

1 + exp(|Lu(xk)|)
. (3.18)

The corresponding nonblind estimator is given by

P̂e =
1

K

K∑
k=1

1{uk 6= û(xk)}, (3.19)

where uk, k = 1, . . . ,K, are the true source outputs corresponding to the observations xk.

We note that (3.18) is the arithmetic mean of K values in [0, 1/2] and the knowledge of uk,

k = 1, . . . ,K, cannot improve the blind estimator P̌e. In contrast, the nonblind estimator

P̂e averages K numbers which are either 0 or 1 (cf. (3.19)) and can therefore be expected to

perform worse than P̌e (see Section 3.5). Consequently, we have P̌e ∈ [0, 1/2] and P̂e ∈ [0, 1]

(note that Pe ∈ [0, 1/2], cf. (3.92)).

In the model (3.1), the error probability Pe is determined by σ2/N (cf. (3.17)). Therefore,

a blind estimator for Pe could first compute an estimate of σ2 and then use (3.17) to obtain

an estimate for Pe. Specifically, we may want to use the estimator

ˇ̌Pe = Q
((

ˇ̌σ2/N
)−1/2

)
, (3.20)

where

ˇ̌σ2/N =

[
1

K

K∑
k=1

x2
k − 1

]+

. (3.21)

However, ˇ̌Pe is a biased estimator and its MSE performance is poor for small values of Pe.

Before we discuss blind estimators in more detail in Section 3.4, we next study the prop-

erties of LLRs. These properties are essential in the derivation of blind estimators in the

binary case (M = 2).

3.3 Properties of Log-Likelihood Ratios

In this section, we consider the binary case with U = {−1, 1}. As discussed in Section 2.4, the

optimal Bayesian test in the binary case is a likelihood ratio test. Therefore, (log-)likelihood

ratios play a central role in the binary case. We next study the properties of LLRs which we

shall subsequently use to derive blind performance estimators.
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We first recall the definition of the posterior LLR for a binary random variable u ∈ {−1, 1}
from Subsection 2.6.1. We have

Lu(x) = log
P{u=1|x=x}
P{u=−1|x=x} = log

p(x|u=1)

p(x|u=−1)
+ log

P{u=1}
P{u=−1} = Lcu(x) + Lau. (3.22)

Here, Lcu(x) is the LLR due to the observation x and Lau is the prior LLR. The posterior

probability of u can be expressed in terms of Lu(x) as follows:

P{u=u|x=x} =
1

1 + e−uLu(x)
, u ∈ {−1, 1}. (3.23)

A basic property of LLRs is that Lu

(
Lu(x)

)
= Lu(x). We summarize this result in the

following Lemma.

Lemma 3.2. The posterior LLR for u given the observation Lu(x) equals Lu(x). Specifically,

we have

Lu

(
Lu(x)

)
= log

p(Lu(x)|u=1)

p(Lu(x)|u=−1)
+ Lau = Lu(x). (3.24)

Proof: See Appendix A.1.

Rewriting (3.24) yields the following relation between the conditional distributions of the

posterior LLR Lu(x):

p(Lu|u=1) = exp(Lu − Lau)p(Lu|u=−1). (3.25)

This relationship is sometimes referred to as the “consistency condition” (see, e.g., [38]).

LLRs are always consistent in the sense that (3.25) is fulfilled. However, approximate LLRs,

e.g., those computed by an iterative decoder (cf. Subsection 2.6.5), may not be consistent.

The case of approximate LLRs is discussed in Section 3.7 in more detail.

As a consequence of Lemma 3.2, conditioning on the LLR instead of the observation in

(3.23) does not change the result. Therefore, we can write the posterior probability of u as

P{u=u|Lu =Lu} =
1

1 + e−uLu
, u ∈ {−1, 1}. (3.26)

Using Bayes’ rule and (3.26) we write the conditional distribution of Lu as follows:

p(Lu|u=u) = P{u=u|Lu =Lu}
p(Lu)

P{u=u} (3.27)

=
1

1 + e−uLu

p(Lu)

P{u=u} , u ∈ {−1, 1}. (3.28)

We note that (3.28) allows us to express the conditional LLR distributions p(Lu|u = u) in

terms of the unconditional LLR distribution p(Lu). More generally, the three distributions

p(Lu), p(Lu|u=1), and p(Lu|u=−1) are related through (3.28) such that any one of them is

sufficient to express the other two. The following result is a consequence of (3.28).
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Proposition 3.3. The conditional and unconditional expectations of functions of the poste-

rior LLR Lu are related as follows:

E{g(Lu)|u=u} =
1

P{u=u}E
{

g(Lu)

1 + e−uLu

}
, u ∈ {−1, 1} (3.29)

E{g(Lu)} = P{u=u}E
{
g(Lu)(1 + e−uLu)|u=u

}
, u ∈ {−1, 1}. (3.30)

Furthermore, we have

E{ug(Lu)} = E
{

g(Lu)

1 + e−Lu

}
− E

{
g(Lu)

1 + eLu

}
= E{g(Lu) tanh(Lu/2)}. (3.31)

Proof: The relations in (3.29) and (3.30) follow by multiplying (3.28) with g(Lu) and

taking the expectation. Equation (3.31) follows by applying (3.29) to the right-hand side of

the following equation:

E{ug(Lu)} = E{g(Lu)|u=1}P{u=1} − E{g(Lu)|u=−1}P{u=−1}. (3.32)

With g(Lu) = Lku, (3.29) and (3.30) provide relations between the conditional and the

unconditional moments of Lu. The next result considers the special case g(Lu) ≡ 1.

Proposition 3.4. The prior probabilities can be expressed as follows:

P{u=u} = E
{

1

1 + e−uLu

}
=
(
E{1 + e−uLu |u=u}

)−1
, u ∈ {−1, 1}. (3.33)

Hence, we have P{u=1} = P{u=−1} = 1/2 if and only if p(−Lu) = p(Lu).

Proof: If P{u=1} = P{u=−1} = 1/2, then∫ ∞
−∞

p(Lu)

1 + eLu
dLu =

∫ ∞
−∞

p(Lu)

1 + e−Lu
dLu (3.34)

which implies p(−Lu) = p(Lu). Conversely, if p(−Lu) = p(Lu), then (3.34) holds and thus

P{u=1} = P{u=−1} = 1/2.

3.3.1 Uniform Prior Distribution

We next specialize the above results to an even LLR distribution, or, equivalently, to a

uniform prior distribution on u. In this case, the consistency condition reads

p(Lu|u=1) = eLup(Lu|u=−1). (3.35)
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The conditional LLR distributions are given by

p(Lu|u=u) =
2p(Lu)

1 + e−uLu
, u ∈ {−1, 1}. (3.36)

Due to (3.36), the conditional LLR distributions are furthermore related as follows:

p(−Lu|u=u) = e−uLup(Lu|u=u) = p(Lu|u=−u), u ∈ {−1, 1}. (3.37)

As discussed above, (3.33) yields P{u=u} = 1/2, u ∈ {−1, 1}. For an even function g(·), we

have (cf. (3.29))

E{g(Lu)|u=u} = E{g(Lu)}, u ∈ {−1, 1}. (3.38)

An odd function g(·) yields E{g(Lu)} = 0 and

E{g(Lu)|u=u} = uE{g(Lu) tanh(Lu/2)} = uE{g(Lu) tanh(Lu/2)|u=u}, u ∈ {−1, 1}.
(3.39)

We note that the second equality in (3.39) is due to the fact that g(Lu) tanh(Lu/2) is an even

function if g(·) is an odd function. For a general function g(·) we have

E{g(Lu)} =
1

2
E{g(Lu) + g(−Lu)}+

1

2
E{g(Lu)− g(−Lu)}︸ ︷︷ ︸

=0

(3.40)

=
1

2
E{g(Lu) + g(−Lu)} (3.41)

=
1

2
E{g(Lu) + g(−Lu)|u=u}, u ∈ {−1, 1}, (3.42)

where (3.41) is due to the fact that g(Lu) − g(−Lu) is an odd function, and (3.42) follows

from the fact that g(Lu) + g(−Lu) is an even function (cf. (3.38)). For the moments of the

LLR, p(−Lu) = p(Lu) implies that E{Lu} = 0 and E{L2
u} = E{L2

u|u=u}, u ∈ {−1, 1}.

3.3.2 Soft Bits

Let g(·) be an invertible function. The conditional distributions of the transformed random

variable Ψu = g(Lu) are given by

p(Ψu|u=u) =
1

1 + exp
(
−ug−1(Ψu)

) p(Ψu)

P{u=u} , u ∈ {−1, 1}. (3.43)

A particularly important function of Lu is the soft bit Λu which is defined as the minimum

MSE estimate of u given the observation x, i.e., we have2

Λu , E{u|x=x} = P{u=1|Lu =Lu} − P{u=−1|Lu =Lu} = tanh(Lu/2). (3.44)

2Note that the soft bit also appears in the boxplus operation (cf. (2.95) and (2.97)).
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The above results can be translated to the soft bit domain by noting that Lu = g−1(Λu) =

2 atanh(Λu) and thus
(
1+exp(−uLu)

)−1
= (1+uΛu)/2. Hence, we can write the conditional

soft bit distribution as follows (cf. (3.28)):

p(Λu|u=u) =
1 + uΛu

2

p(Λu)

P{u=u} , u ∈ {−1, 1}. (3.45)

For an even soft bit distribution p(Λu), (3.45) simplifies to

p(Λu|u=u) = (1 + uΛu)p(Λu), u ∈ {−1, 1}, (3.46)

since p(−Λu) = p(Λu) implies P{u = 1} = 1/2. In this case, the conditional moments of Λu

are related as follows:

E{Λu|u=u} = uE{Λ2
u}, (3.47)

E{Λ2
u|u=u} = E{Λ2

u}, (3.48)

var{Λu|u=u} = E{Λ2
u}(1− E{Λ2

u}). (3.49)

In the next section, we discuss blind estimation in a more general setting than in our

example in Section 3.2. Specifically, we allow for general M -ary Bayesian detectors with

nonuniform prior probabilities, non-Gaussian p(x|u), and we consider other parameters than

the error probability.

3.4 Blind Estimators

The optimal Bayesian detector for u ∈ U is of the form

û(x) = arg min
ũ

R(ũ), (3.50)

where R(ũ) denotes the Bayesian risk associated to the detector ũ (cf. Section 2.4). In the

binary case with u ∈ {−1, 1}, the optimal detector (3.50) compares the posterior LLR Lu(x)

to a threshold γ, i.e., we have3

û(Lu) =

{
1, Lu > γ

−1, Lu ≤ γ
. (3.51)

In what follows, we propose blind estimators which use K iid observations x1, . . . ,xK to

estimate performance-related parameters of Bayesian detectors. The observations x1, . . . ,xK

correspond to the source outputs u1, . . . , uK . The estimators proposed in this section are

unbiased and consistent. A performance analysis (in terms of MSE) of these blind estimators

is given in Section 3.5.

3In contrast to Section 2.4, we formulate the optimal binary detector (3.51) in terms of the posterior LLR.
Therefore, the threshold γ in (3.51) is different from the threshold in Section 2.4.
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3.4.1 False Alarm Probability

The false alarm probability of a binary Bayesian detector is given by

PF , P{û(Lu)=−1|u=1} (3.52)

= P{Lu≤γ|u=1} (3.53)

=

∫ γ

−∞
p(Lu|u=1)dLu (3.54)

=
1

P{u=1}

∫ γ

−∞

1

1 + e−Lu
p(Lu)dLu (3.55)

=
1

P{u=1}

∫ ∞
−∞

s(γ − Lu)

1 + e−Lu
p(Lu)dLu (3.56)

=
1

P{u=1}E
{
s(γ − Lu)

1 + e−Lu

}
, (3.57)

where s(·) denotes the unit step function. From (3.57) it follows that the false alarm proba-

bility is upper bounded as follows:

PF ≤ min

{
1,

1

P{u=1}(1 + e−γ)

}
. (3.58)

We note that the bound in (3.58) is sharp in the sense that for any choice of P{u = 1} and

γ, there exists at least one distribution of the data such that (3.58) is satisfied with equality.

Due to (3.57), a blind estimator for PF is given by

P̌F =
1

P{u=1}
1

K

K∑
k=1

s
(
γ − Lu(xk)

)
1 + e−Lu(xk)

. (3.59)

A corresponding nonblind estimator for PF is given by

P̂F =
1

|K|
∑
k∈K

1{û
(
Lu(xk)

)
=−1}, (3.60)

where we have defined K , {k |uk = 1}. An important difference between P̌F and P̂F is

that the nonblind estimator requires |K| ≥ 1, which is in contrast to the blind estimator. If

the source outputs u1, . . . , uK are training data, then the best choice for estimating PF is

u1 = . . . = uK = 1.

In a communications setting, the false alarm probability is the conditional bit error prob-

ability given u = 1. For the special case of a MAP detector (i.e., γ = 0) and a uniform prior

distribution, the false alarm probability equals

PF =

∫ 0

−∞

2p(Lu)

1 + e−Lu
dLu =

∫ ∞
0

2p(Lu)

1 + eLu
dLu =

∫ ∞
−∞

p(Lu)

1 + e|Lu|
dLu = E

{
1

1 + e|Lu|

}
. (3.61)
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In this case, we have PF = PM = Pe (cf. (3.91)) and a blind estimator for PF is given by

P̌F =
1

K

K∑
k=1

1

1 + e|Lu(xk)| . (3.62)

3.4.2 Detection Probability

Similar to the false alarm probability, we rewrite the detection probability PD , P{û(Lu) =

−1|u=−1} as

PD =
1

P{u=−1}E
{
s(γ − Lu)

1 + eLu

}
. (3.63)

A sharp lower bound for the detection probability is given by (cf. the upper bound for PM

in (3.70))

PD ≥ max

{
0, 1− 1

P{u=−1}(1 + eγ)

}
. (3.64)

The relation in (3.63) yields the following blind estimator for PD:

P̌D =
1

P{u=−1}
1

K

K∑
k=1

s
(
γ − Lu(xk)

)
1 + eLu(xk)

. (3.65)

A nonblind estimator for PD is given by

P̂D =
1

|K|
∑
k∈K

1{û
(
Lu(xk)

)
=−1}, (3.66)

where we have defined K , {k |uk =−1}. We note that the estimators P̌F and P̌D enable

binary Bayesian detectors to blindly estimate their receiver operating characteristic.

The special case of a MAP detector together with a uniform prior distribution yields

PD = 1− PF = 1− PM = E{(1 + e−|Lu|)−1}. Thus, a blind estimator for PD is given by

P̌D =
1

K

K∑
k=1

1

1 + e−|Lu(xk)| . (3.67)

We note that in this case PD = PA = 1− Pe (cf. (3.91)).

3.4.3 Acceptance Probability and Miss Probability

The acceptance and miss probabilities are related to the false alarm and detection probabil-

ities by PA = 1− PF and PM = 1− PD. Hence, we have

PA =
1

P{u=1}E
{
s(Lu − γ)

1 + e−Lu

}
, (3.68)

PM =
1

P{u=−1}E
{
s(Lu − γ)

1 + eLu

}
. (3.69)
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Using (3.69) we can upper bound PM as follows:

PM ≤ min

{
1,

1

P{u=−1}(1 + eγ)

}
. (3.70)

The bound in (3.64) is obtained using (3.70). Similarly, (3.58) yields the following lower

bound for PA:

PA ≥ max

{
0, 1− 1

P{u=1}(1 + e−γ)

}
. (3.71)

The blind estimators for PA and PM can be derived directly from (3.59) and (3.65). In

particular, we have

P̌A = 1− P̌F =
1

P{u=1}
1

K

K∑
k=1

s
(
Lu(xk)− γ

)
1 + e−Lu(xk)

(3.72)

and

P̌M = 1− P̌D =
1

P{u=−1}
1

K

K∑
k=1

s
(
Lu(xk)− γ

)
1 + eLu(xk)

. (3.73)

Similarly, the corresponding nonblind estimators are P̂A = 1− P̂F and P̂M = 1− P̂D.

In a communications setting, the miss probability is the conditional bit error probability

given u = −1. As mentioned above, for a MAP detector and a uniform prior distribution P̌A

is given by (3.67) and P̌M is given by (3.62).

3.4.4 Conditional Error Probability

In the binary case, the conditional error probabilities are given by PF and PM . In the general

M -ary case, we have

Pe(u) , P{û(x) 6=u|u=u} =

∫
X
1{û(x) 6=u}p(x|u)dx (3.74)

=
1

P{u=u}

∫
X
1{û(x) 6=u}P{u=u|x=x}p(x)dx (3.75)

=
1

P{u=u}E
{
1{û(x) 6=u}P{u=u|x}

}
, u ∈ U . (3.76)

Due to (3.76), a blind estimator for Pe(u) is given by

P̌e(u) =
1

P{u=u}
1

K

K∑
k=1

1{û(xk) 6=u}P{u=u|x=xk}, u ∈ U . (3.77)

The corresponding nonblind estimator for Pe(u) equals

P̂e(u) =
1

|Ku|
∑
k∈Ku

1{û(xk) 6=u}, u ∈ U , (3.78)
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where we have defined Ku , {k |uk =u}. We note that (3.78) requires |Ku| ≥ 1 which is in

contrast to the blind estimator in (3.77). For the special case of a MAP detector we replace

û(x) by arg maxũ∈U p(ũ|x) in (3.74)-(3.78).

3.4.5 Error Probability

The unconditional error probability Pe = E{Pe(u)} can be written as follows:

Pe =
∑
u∈U

E
{
1{û(x) 6=u}P{u=u|x}

}
(3.79)

= 1−
∑
u∈U

E
{
1{û(x)=u}P{u=u|x}

}
(3.80)

= 1− E
{
P{u= û(x)|x}

}
. (3.81)

For the special case of a MAP detector, we have

Pe = 1− E
{

max
u∈U

P{u=u|x}
}
. (3.82)

Using (3.81), a blind estimators for Pe is given by

P̌e = 1− 1

K

K∑
k=1

P{u= û(x)|x=xk}. (3.83)

For a MAP detector, (3.83) can be rewritten as follows:

P̌e = 1− 1

K

K∑
k=1

max
u∈U

P{u=u|x=xk}. (3.84)

A corresponding nonblind estimator simply divides the number of error events by the number

of samples, i.e., we have

P̂e =
1

K

K∑
k=1

1{û(xk) 6=uk}. (3.85)

In the binary case, the error probability equals Pe = PFP{u=1}+PMP{u=−1}. We can

thus rewrite Pe as follows:

Pe = E
{
s(γ − Lu)

1 + e−Lu
+
s(Lu − γ)

1 + eLu

}
. (3.86)

Using (3.30), Pe can be written as

Pe = E{s(γ − Lu) + s(Lu − γ)e−Lu |u=1}P{u=1} (3.87)

= E{s(γ − Lu)eLu + s(Lu − γ)|u=−1}P{u=−1}. (3.88)
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From (3.87) and (3.88) we obtain the following sharp upper bound for Pe:

Pe ≤ min
{
P{u=1}max{1, e−γ},P{u=−1}max{1, eγ}

}
. (3.89)

A weaker upper bound is given by

Pe ≤
1

1 + e−|γ|
, (3.90)

where (3.89) and (3.90) are equivalent if and only if P{u = u} = (1 + e−uγ)−1. Specializing

(3.86) and (3.89) to γ = 0, i.e., to a MAP detector, yields

Pe = E
{

1

1 + e|Lu|

}
=

1

2
(1− E{|Λu|}), (3.91)

and

Pe ≤ min
{
P{u=1},P{u=−1}

}
=

1

1 + e|Lau |
. (3.92)

The blind estimator (3.83) can be written in terms of LLRs as follows:

P̌e =
1

K

K∑
k=1

[
s(γ − Lu(xk))

1 + e−Lu(xk)
+
s(Lu(xk)− γ)

1 + eLu(xk)

]
. (3.93)

For a MAP detector, (3.93) simplifies to

P̌e =
1

K

K∑
k=1

1

1 + e|Lu(xk)| =
1

2
− 1

2K

K∑
k=1

|Λu(xk)|. (3.94)

We note that (3.94) equals the blind estimator for the bit error probability derived in Section

3.2. However, here we neither assumed that p(x|u) =
∏
n p(xn|u) with conditionally Gaussian

xn, nor did we assume a uniform prior.

3.4.6 Block Error Probability

In communication scenarios, the block error probability is sometimes more relevant than the

bit or symbol error probability. For a block of N source outputs u1, . . . , uN and corresponding

data x1, . . . , xN , we define the block error probability Pb as

Pb , P{û(x1) 6=u1 ∪ · · · ∪ û(xN ) 6=uN}. (3.95)

It is important to note that we consider separate detection of u1, . . . , uN , although the source

outputs may not be statistically independent. Hence, the block error probability is differ-

ent from the error probability of (joint) detection of the “super-symbol” u = (u1 . . . uN )T.

Moreover, the prior probabilities and the data model may be different for each source out-

put. However, for the sake of notational simplicity we write û(xn) instead of ûn(xn) for the
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detector of the nth source output. The block error probability (3.95) is bounded as follows:

P−b = max
n∈{1,...,N}

P{û(xn) 6=un} ≤ Pb ≤
N∑
n=1

P{û(xn) 6=un} = P+
b . (3.96)

We note that the bounds in (3.96) are sharp. The upper bound P+
b is satisfied with equality

if all error events û(xn) 6= un, n = 1, . . . , N , are mutually exclusive. Conversely, the lower

bound P−b is satisfied with equality if all error events are equal (i.e., if all decisions are

simultaneously (in)correct) or if at most one error event has positive probability. If all error

events are statistically independent, the block error probability equals

Pb = 1−
N∏
n=1

(1− P{û(xn) 6=un}) = 1−
N∏
n=1

(1− Pe,n). (3.97)

Here, Pe,n denotes the unconditional error probability for the nth source output.

A blind estimator for Pb of the form

P̌b = 1−
N∏
n=1

(1− P̌e,n) (3.98)

converges to (3.97) and is thus unbiased if all error events are statistically independent. Here,

P̌e,n corresponds to the blind estimator for the error probability in (3.83). If the error events

are statistically dependent, then the estimator in (3.98) is biased. However, we always have

P̌−b = max
n∈{1,...,N}

P̌e,n ≤ P̌b ≤
N∑
n=1

P̌e,n = P̌+
b (3.99)

for all sample sizes K ∈ N. We note that P̌+
b is an unbiased estimator for the upper bound

P+
b . Similarly, P̌−b is an asymptotically unbiased estimator for the lower bound P−b . Hence,

the value to which P̌b converges is always bounded as P−b ≤ limK→∞ P̌b ≤ P+
b . A nonblind

estimator for Pb is given by

P̂b = 1− 1

K

K∑
k=1

N∏
n=1

1{û(xn,k)=un}. (3.100)

Here, xn,k denotes the kth observation of the data corresponding to the nth source output.

An alternative blind estimator for Pb is given by

ˇ̌Pb = 1− 1

K

K∑
k=1

N∏
n=1

P{un= û(xn)|xn=xn,k}. (3.101)

If all error events are statistically independent, the estimator in (3.101) is unbiased and
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converges to (3.97). We note that ˇ̌Pb is bounded as follows:

ˇ̌P−b =
1

K

K∑
k=1

max
n∈{1,...,N}

P{un 6= û(xn)|xn=xn,k} ≤ ˇ̌Pb ≤
N∑
n=1

P̌e,n = ˇ̌P+
b . (3.102)

The usefulness of the bounds in (3.99) and (3.102) is confirmed by numerical results in Section

3.7.

3.4.7 Minimum MSE

Let ûMMSE(x) = E{u|x=x} denote the minimum MSE estimate of u given the observation

x. The corresponding minimum MSE equals

εMMSE = E
{(

u− ûMMSE(x)
)2}

(3.103)

= E{u2} − 2E
{

u
∑

u∈U
uP{u=u|x}

}
+ E

{(∑
u∈U

uP{u=u|x}
)2
}

(3.104)

= E{u2} −
∑
u′∈U

∑
u∈U

u′uE
{
P{u=u′|x}P{u=u|x}

}
. (3.105)

It is important to note that the minimum MSE does not depend on the detector û(x).

However, εMMSE is a lower bound for the MSE E
{(

u − û(x)
)2}

, i.e., we have εMMSE ≤
E{
(
u− û(x)

)2}. A blind estimator for εMMSE is given by

ε̌MMSE = E{u2} − 1

K

K∑
k=1

∑
u′∈U

∑
u∈U

u′uP{u=u′|x=xk}P{u=u|x=xk}. (3.106)

In the binary case, we have ûMMSE(x) = Λu(x) = tanh(Lu(x)/2). Hence, the minimum MSE

can be written as follows:

εMMSE = E{
(
u− tanh(Lu/2)

)2} (3.107)

= E{u2} − 2E{u tanh(Lu/2)}+ E{tanh2(Lu/2)} (3.108)

= 1− E{tanh2(Lu/2)} = 1− E{Λ2
u}. (3.109)

In (3.109) we have used u2 = 1 and E{u tanh(Lu/2)} = E{tanh2(Lu/2)} (cf. (3.31)). The

blind estimator (3.106) simplifies as follows:

ε̌MMSE = 1− 1

K

K∑
k=1

Λ2
u(xk). (3.110)

In the binary case, there is a connection between the MSE E
{(

u − û(x)
)2}

and the error

probability Pe. Indeed, we have

E
{(

u− û(x)
)2}

= 4PFP{u=1}+ 4PMP{u=−1} = 4Pe. (3.111)
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Therefore, the minimum MSE lower bounds the error probability as follows:

Pe ≥
1

4
εMMSE =

1

4

(
1− E{Λ2

u}
)
. (3.112)

The MAP detector minimizes the left-hand side of (3.112), where Pe = (1 − E{|Λu|})/2.

Together with (3.112), this yields

E{Λ2
u} ≥ 2E{|Λu|} − 1. (3.113)

Finally, we note that estimating εMMSE requires the APPs P{u=u|x=x}. Hence, there is no

nonblind estimator for the minimum MSE which operates on û(x).

3.4.8 Mutual Information and Conditional Entropy

Let us consider the mutual information I(u; x) and the conditional entropy H(u|x). Since

I(u; x) = H(u)−H(u|x), we focus on the conditional entropy in the following. We have

H(u|x) = −
∑
u∈U

∫
X
p(u,x) log2 P{u=u|x=x}dx (3.114)

= −
∑
u∈U

E
{
P{u=u|x} log2 P{u=u|x}

}
. (3.115)

We note that H(u|x) and I(u; x) do not depend on the detector û(x). A blind estimator for

H(u|x) follows from (3.115) and is given by

Ȟ(u|x) = − 1

K

K∑
k=1

∑
u∈U

P{u=u|x=xk} log2 P{u=u|x=xk}. (3.116)

Hence, Ǐ(u; x) = H(u)− Ȟ(u|x) is a blind estimator for the mutual information I(u; x) (note

that H(u) is known since the source statistic P{u=u}, u ∈ U , is known).

In the binary case, we rewrite (3.115) as follows:

H(u|x) = −E
{
P{u=−1|x} log2 P{u=−1|x}+ P{u=1|x} log2 P{u=1|x}

}
(3.117)

= E
{
h2

(
1

1 + e|Lu|

)}
= E

{
h2

(
1

2
(1− |Λu|)

)}
, (3.118)

where h2(·) denotes the binary entropy function (cf. (2.17)). Since h2(·) is a concave function,

we can bound H(u|x) using the extended Jensen’s inequality (cf. (2.14)) as follows:

2PMAP
e ≤ H(u|x) ≤ h2(PMAP

e ), (3.119)

where PMAP
e is the error probability of a MAP detector (cf. (3.91)). We note that the

inequality H(u|x) ≤ h2(PMAP
e ) can also be obtained using Fano’s inequality [20, Section
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2.10]. The bounds in (3.119) are sharp. Indeed, the lower bound is achieved by

p|Λu|(Λu) = 2PMAP
e δ(Λu) + (1− 2PMAP

e )δ(Λu − 1). (3.120)

Similarly, the upper bound is achieved by

p|Λu|(Λu) = δ(Λu − 1 + 2PMAP
e ). (3.121)

We note that (3.120) corresponds to a binary erasure channel (BEC) and (3.121) corresponds

to a binary symmetric channel (BSC). The bounds in (3.119) are reminiscent of bounds in

the information combining literature [59,60] where the BEC and the BSC are extreme cases,

too.

An unbiased blind estimator for H(u|x) in the binary case is given by

Ȟ(u|x) =
1

K

K∑
k=1

h2

(
1

1 + e|Lu(xk)|

)
=

1

K

K∑
k=1

h2

(
1

2
(1− |Λu(xk)|)

)
. (3.122)

We note that the following inequalities hold for any sample size K ∈ N:

2P̌MAP
e ≤ Ȟ(u|x) ≤ h2(P̌MAP

e ). (3.123)

Therefore, 2P̌MAP
e is an unbiased estimator for the lower bound in (3.119) and h2(P̌MAP

e ) is

an asymptotically unbiased estimator for the upper bound in (3.119). Due to (3.118), we can

write the mutual information as

I(u; x) = H(u)− E
{
h2

(
1

1 + e|Lu|

)}
= H(u)− E

{
h2

(
1

2
(1− |Λu|)

)}
. (3.124)

Hence, Ǐ(u; x) = H(u)−Ȟ(u|x) with the blind estimator for H(u|x) from (3.122). The mutual

information and its blind estimate are bounded as follows:

H(u)− h2(PMAP
e ) ≤ I(u; x) ≤ H(u)− 2PMAP

e , (3.125)

H(u)− h2(P̌MAP
e ) ≤ Ǐ(u; x) ≤ H(u)− 2P̌MAP

e . (3.126)

The bounds in (3.125) are achieved by the distributions in (3.120) and (3.121).

Similarly, we can bound the error probability of the MAP detector by I(u; x) and H(u|x)

as follows:

h−1
2

(
H(u)− I(u; x)

)
= h−1

2

(
H(u|x)

)
≤ PMAP

e ≤ 1

2
H(u|x) =

1

2
H(u)− 1

2
I(u; x), (3.127)

where h−1
2 : [0, 1]→ [0, 1/2] denotes the inverse of the binary entropy function. From (3.127)

we can see that optimal processing in terms of the mutual information I(u; x) minimizes the
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upper and lower bounds for PMAP
e . For an arbitrary detector û(x) we have (here, û = û(x))

H(u|û) = −
∑

û∈{−1,1}

P{û= û}
∑

u∈{−1,1}

P{u=u|û= û} log2 P{u=u|û= û} (3.128)

=
∑

û∈{−1,1}

P{û= û}h2(Pe) (3.129)

= h2(Pe). (3.130)

Thus, H(u|û) equals the upper bound for H(u|x) in (3.119) if and only if Pe = PMAP
e , i.e., if

and only if û(x) is a MAP detector. The inequalities

H(u|x)
(a)

≤ h2(PMAP
e )

(b)

≤ H(u|û) = h2(Pe) (3.131)

are simultaneously satisfied with equality if (a) the data is distributed according to (3.121)

and (b) a MAP detector is used.

3.5 Estimator Performance Analysis

The main goal of this section is to analyze the MSE performance of the blind estimators

introduced in the previous section. Furthermore, where applicable we compare the blind

estimators to the corresponding nonblind estimators and we show that in many cases the

blind estimators are superior in terms of the MSE.

3.5.1 False Alarm Probability

The unbiasedness of the blind estimator

P̌F =
1

KP{u=1}
K∑
k=1

s
(
γ − Lu(xk)

)
1 + e−Lu(xk)

(3.132)

follows directly from (3.57). The MSE of P̌F is given by

MSEP̌F (PF ) = E{(P̌F − PF )2} =
1

K

(
1

P{u=1}

)2

E

{(
s(γ − Lu)

1 + e−Lu

)2
}
− 1

K
P 2
F . (3.133)

The expectation in (3.133) depends on the distribution of the data and in many cases (3.133)

cannot be computed in closed form. However, we can bound the MSE by noting that(
s(γ − Lu)

1 + e−Lu

)2

≤ 1

1 + e−γ
s(γ − Lu)

1 + e−Lu
. (3.134)
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More generally, for any x ∈ [0, α] we have x2 ≤ αx. We use this inequality with α =

(1 + e−γ)−1 to obtain (3.134). Using (3.134) in (3.133) yields

MSEP̌F (PF ) ≤ 1

K

(
1

P{u=1}

)2 1

1 + e−γ
E
{
s(γ − Lu)

1 + e−Lu

}
− 1

K
P 2
F . (3.135)

The expectation in (3.135) equals P{u=1}PF (cf. (3.57)) and we thus have

MSEP̌F (PF ) ≤ PF
K

(
1

P{u=1}(1 + e−γ)
− PF

)
. (3.136)

This upper bound for the MSE is sharp. Indeed, we have equality in (3.136) for any distri-

bution of Lu that takes values only in {−∞} ∪ [γ,∞]. However, for a specific distribution of

the data, the upper bound in (3.136) may be rather loose. We note that the right-hand side

of (3.136) is always nonnegative due to (3.58).

The nonblind estimator

P̂F =
1∑K

k=1 1{uk=1}

K∑
k=1

1{û
(
Lu(xk)

)
=−1}1{uk=1} (3.137)

is unbiased and its MSE equals

MSEP̂F (PF ) =
1

κ

(
E
{

(1{û
(
Lu(x)

)
=−1}1{u=1})2

}
− P 2

F

)
(3.138)

=
1

κ

(
E
{
1{û

(
Lu(x)

)
=−1}

}
1{u=1} − P 2

F

)
=
PF
κ

(1− PF ), (3.139)

where κ =
∑K

k=1 1{uk = 1} denotes the number of source outputs which are equal to 1.

Of course, the MSE in (3.139) is smallest if κ = K which can be achieved by choosing

u1 = . . . = uK = 1 (if the source outputs are training data). The ratio of the MSEs in (3.139)

and (3.133) is lower bounded as

MSEP̂F (PF )

MSEP̌F (PF )
≥ 1− PF(

P{u=1}(1 + e−γ)
)−1 − PF

. (3.140)

The following result is a consequence of the MSE ratio in (3.140).

Proposition 3.5. The blind estimator P̌F dominates the nonblind estimator P̂F for any

distribution of the data if and only if

P{u=1}(1 + e−γ) ≥ 1. (3.141)

For specific distributions of the data, P̌F may dominate P̂F even if (3.141) does not hold.

Proof: The lower bound (3.140) shows that MSEP̌F (PF ) ≤ MSEP̂F (PF ) for all PF if the

inequality (3.141) is satisfied.
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Figure 3.2: MSE versus PF for P{u=1} = 1/2 and γ = 1/2. Comparison of MSEP̂F (PF ) (cf.
(3.139)), upper bound (3.136), and MSEP̌F (PF ) (cf. (3.133)) in the Gaussian case.

In the following example, we consider P{u=1} = 1/2 and γ = 1/2. The data is such that

the LLR Lu is conditionally Gaussian, i.e., we have Lu|u ∼ N (uµ, 2µ) with µ > 0. In this

case, the false alarm probability equals

PF = 1−Q
(
γ − µ√

2µ

)
. (3.142)

In Figure 3.2, we compare the MSE of the nonblind estimator (with κ = K) to the MSE

of the blind estimator and the upper bound (3.136). Here, the upper bound is greater than

(3.139) for all PF since (3.141) does not hold. However, the MSE of the blind estimator is

smaller than the MSE of the nonblind estimator for all PF . 0.92, i.e., the blind estimator

outperforms the nonblind estimator for all PF of practical interest. The MSE ratio and the

corresponding lower bound (3.140) are shown in Figure 3.4a.

Next, we let P{u = 1} = 0.7. Then, Lu|u ∼ N (uµ + Lau, 2µ) with the prior LLR Lau and

µ > 0. In this case, the false alarm probability is given by

PF = 1−Q
(
γ − µ− Lau√

2µ

)
. (3.143)

Due to (3.143), the maximum value of PF is much smaller than 1 and some PF may result from

two different values of µ. Furthermore, the inequality (3.141) is now fulfilled and therefore

the blind estimator dominates the nonblind estimator. A comparison of the MSEs is given in

Figure 3.3. In the Gaussian case, almost every PF corresponds to two different values of µ,
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Figure 3.3: MSE versus PF for P{u=1} = 0.7 and γ = 1/2. Comparison of MSEP̂F (PF ) (cf.
(3.139)), upper bound (3.136), and MSEP̌F (PF ) (cf. (3.133)) in the Gaussian case.

where the larger of the two values yields a smaller MSE. Hence, the blue curve (‘∗’ marker)

in Figure 3.3 is traced out in a clockwise manner for increasing µ. The MSE ratio and the

corresponding lower bound (3.140) are shown in Figure 3.4b.

3.5.2 Miss Probability

The blind estimator

P̌M =
1

KP{u=−1}
K∑
k=1

s
(
Lu(xk)− γ

)
1 + eLu(xk)

(3.144)

is unbiased (cf. (3.69)) and its MSE is given by

MSEP̌M (PM ) = E{(P̌M − PM )2} =
1

K

(
1

P{u=−1}

)2

E

{(
s(Lu − γ)

1 + eLu

)2
}
− 1

K
P 2
M . (3.145)

The expectation in (3.145) depends on the distribution of the data and in many cases (3.145)

cannot be computed in closed form.(
s(Lu − γ)

1 + eLu

)2

≤ 1

1 + eγ
s(Lu − γ)

1 + eLu
. (3.146)

The inequality in (3.146) yields the following sharp upper bound for the MSE:

MSEP̌M (PM ) ≤ PM
K

(
1

P{u=−1}(1 + eγ)
− PM

)
. (3.147)
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(a) P{u=1} = 1/2, γ = 1/2.
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(b) P{u=1} = 0.7, γ = 1/2.

Figure 3.4: MSE ratio versus PF . Comparison of MSEP̂F (PF )/MSEP̌F (PF ) in the Gaussian
case to the lower bound (3.140).

We have equality in (3.147) for any distribution of Lu that takes values only in [−∞, γ]∪{∞}.
However, for a specific distribution of the data, the upper bound in (3.147) may be rather

loose. We note that the right-hand side of (3.147) is always nonnegative due to (3.70).

The nonblind estimator P̂M = 1− P̂D (cf. (3.66)) is unbiased and its MSE equals

MSEP̂M (PM ) =
PM
κ

(1− PM ), (3.148)

where κ =
∑K

k=1 1{uk = 1}. The ratio of the MSEs in (3.148) and (3.145) is lower bounded

as
MSEP̂M (PM )

MSEP̌M (PM )
≥ 1− PM(

P{u=−1}(1 + eγ)
)−1 − PM

. (3.149)

The following result is a consequence of the MSE ratio in (3.149).

Proposition 3.6. The blind estimator P̌M dominates the nonblind estimator P̂M for any

distribution of the data if and only if

P{u=−1}(1 + eγ) ≥ 1. (3.150)

For specific distributions of the data, P̌M may dominate P̂M even if (3.150) does not hold.

Proof: The lower bound (3.149) shows that MSEP̌M (PM ) ≤ MSEP̂M (PM ) for all PM if

the inequality (3.150) is satisfied.

Corollary 3.7. Rewriting (3.150) in terms of P{u=1} yields

P{u=1}(1 + e−γ) ≤ 1. (3.151)
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Figure 3.5: MSE versus PM for P{u = 1} = 1/2 and γ = 1/2. Comparison of MSEP̂M (PM )
(cf. (3.148)), upper bound (3.147), and MSEP̌M (PM ) (cf. (3.145)) in the Gaussian case.

Comparing (3.151) and (3.141) shows that P̌M and P̌F simultaneously dominate P̂M and P̂F ,

respectively, for any distribution of the data if and only if

P{u=1}(1 + e−γ) = 1. (3.152)

Otherwise, either P̌M or P̌F dominates its corresponding nonblind estimator.

We next consider the same example as for the false alarm probability with conditionally

Gaussian LLR, P{u=1} = 1/2, and γ = 1/2. In this case, the miss probability equals

PM = Q

(
γ + µ√

2µ

)
. (3.153)

Here, (3.150) is fulfilled and therefore the blind estimator dominates the nonblind estimator.

In Figure 3.5, we compare the MSE of the nonblind estimator (with κ = K) to the MSE of

the blind estimator and the upper bound (3.147). In the Gaussian case, almost every PM

corresponds to two different values of µ, where the larger of the two values yields a smaller

MSE. Hence, the blue curve (‘∗’ marker) in Figure 3.5 is traced out in a clockwise manner

for increasing µ. The MSE ratio and the corresponding lower bound (3.149) are shown in

Figure 3.7a.
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Figure 3.6: MSE versus PM for P{u = 1} = 0.7 and γ = 1/2. Comparison of MSEP̂M (PM )
(cf. (3.148)), upper bound (3.147), and MSEP̌M (PM ) (cf. (3.145)) in the Gaussian case.

Next, we let P{u=1} = 0.7. The miss probability is then given by

PM = Q

(
γ + µ− Lau√

2µ

)
. (3.154)

In Figure 3.6, we compare the MSE of the nonblind estimator (with κ = K) to the MSE of

the blind estimator and the upper bound (3.147). Here, the upper bound (3.147) is greater

than (3.148) for all PM since (3.150) does not hold. However, the MSE of the blind estimator

is smaller than the MSE of the nonblind estimator for all PM . 0.93, i.e., the blind estimator

outperforms the nonblind estimator for all PM of practical interest. The MSE ratio and the

corresponding lower bound (3.149) are shown in Figure 3.4b.

3.5.3 Detection Probability and Acceptance Probability

The detection probability equals PD = 1 − PM and thus P̌D = 1 − P̌M , P̂D = 1 − P̂M . The

MSE of P̌D is given by

MSEP̌D(PD) = E
{(
P̌M − (1− PD)

)2}
(3.155)

=
1

K

(
1

P{u=−1}

)2

E

{(
s(Lu − γ)

1 + eLu

)2
}
− 1

K
(1− PD)2 (3.156)

≤ 1− PD
K

(
1

P{u=−1}(1 + eγ)
− (1− PD)

)
. (3.157)



78 Chapter 3. Blind Performance Estimation for Bayesian Detectors

 

 

Gaussian case
lower bound

M
S
E

ra
ti
o

PM

0 0.2 0.4 0.6
0

1

2

3

4

(a) P{u=1} = 1/2, γ = 1/2.

 

 

Gaussian case
lower bound

M
S
E

ra
ti
o

PM

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

(b) P{u=1} = 0.7, γ = 1/2.

Figure 3.7: MSE ratio versus PM . Comparison of MSEP̂M (PM )/MSEP̌M (PM ) in the Gaussian
case to the lower bound (3.149).

The MSE of P̂D equals

MSEP̂D(PD) =
PD
κ

(1− PD). (3.158)

The estimators P̂D and P̌D are both unbiased and the ratio of their MSEs is lower bounded

as
MSEP̂D(PD)

MSEP̌D(PD)
≥ PD(

P{u=−1}(1 + eγ)
)−1 − (1− PD)

. (3.159)

Clearly, P̌D dominates P̂D if and only if P̌M dominates P̂M .

Similarly, for the acceptance probability PA we have

MSEP̌A(PA) = E
{(
P̌F − (1− PA)

)2}
(3.160)

=
1

K

(
1

P{u=1}

)2

E

{(
s(γ − Lu)

1 + e−Lu

)2
}
− 1

K
(1− PA)2 (3.161)

≤ 1− PA
K

(
1

P{u=1}(1 + e−γ)
− (1− PA)

)
(3.162)

and

MSEP̂A(PA) =
PA
κ

(1− PA). (3.163)

The estimators P̂A and P̌A are both unbiased and the ratio of their MSEs is lower bounded

as
MSEP̂A(PA)

MSEP̌A(PA)
≥ PA(

P{u=1}(1 + e−γ)
)−1 − (1− PA)

. (3.164)

Again, P̌A dominates P̂A if and only if P̌F dominates P̂F .
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3.5.4 Conditional Error Probability

The blind estimator

P̌e(u) =
1

P{u=u}
1

K

K∑
k=1

1{û(xk) 6=u}P{u=u|x=xk}, u ∈ U , (3.165)

for the conditional error probability given u = u is unbiased (cf. (3.76)) and its MSE equals

MSEP̌e(u)

(
Pe(u)

)
= E

{(
P̌e(u)− Pe(u)

)2}
(3.166)

=
1

K

(
1

P{u=u}

)2

E
{

(1{û(x) 6=u}P{u=u|x})2 }− 1

K
Pe(u)2. (3.167)

Since the term in the expectation in (3.167) is at most equal to 1, we can bound the MSE as

follows:

MSEP̌e(u)

(
Pe(u)

)
≤ Pe(u)

K

(
1

P{u=u} − Pe(u)

)
, u ∈ U . (3.168)

In contrast to (3.167), the upper bound in (3.168) does not depend on the actual distribution

of the data.

The nonblind estimator

P̂e(u) =
1∑K

k=1 1{uk=u}

K∑
k=1

1{û(xk) 6=u}1{uk=u}, u ∈ U , (3.169)

is unbiased and its MSE equals

MSEP̂e(u)

(
Pe(u)

)
=
Pe(u)

κ

(
1− Pe(u)

)
, u ∈ U , (3.170)

where κ =
∑K

k=1 1{uk = u} denotes the number of source outputs which are equal to u.

Of course, the MSE in (3.170) is smallest if κ = K which can be achieved by choosing

u1 = . . . = uK = u (if the source outputs are training data). The ratio of the MSEs in

(3.170) and (3.167) is lower bounded as

MSEP̂e(u)

(
Pe(u)

)
MSEP̌e(u)

(
Pe(u)

) ≥ 1− Pe(u)

(P{u=u})−1 − Pe(u)
. (3.171)

The bound in (3.171) tells us that P̌e(u) dominates P̂e(u) for any distribution of the data

only in the trivial case where P{u=u} = 1. This is in contrast to the binary case, where we

can tighten the upper bound (3.168) for the MSE using the bounds on the conditional error

probabilities PF and PM . For specific distributions of the data, the blind estimator P̌e(u)

may nevertheless dominate P̂e(u) as the following example shows.

We assume U = {−1, 0, 1} and equally likely u ∈ U . Furthermore, let x = u + w with

w ∼ N (0, σ2). We assume that a MAP detector is used, i.e., û(x) = arg minu∈U |x − u|. For
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Figure 3.8: MAP detection of a 3-ary signal in Gaussian noise. (a) Comparison of
MSEP̂e(u)

(
Pe(0)

)
(cf. (3.170)), upper bound (3.168), and MSEP̌e(u)

(
Pe(0)

)
(cf. (3.167)) in

the Gaussian case. (b) Comparison of MSEP̂e(u)

(
Pe(0)

)
/MSEP̌e(u)

(
Pe(0)

)
in the Gaussian

case to the lower bound (3.171).

the conditional error probability Pe(0) we then have

Pe(0) = 2Q

(
1

2σ

)
. (3.172)

In Figure 3.8a, we plot the MSE of the nonblind estimator (for κ = K), the MSE of the blind

estimator, and the upper bound (3.168). We observe that the blind estimator dominates

the nonblind estimator. Furthermore, the upper bound (3.168) is loose in this case. The

MSE ratio in Figure 3.8b shows that for small Pe(0), the blind estimator outperforms the

corresponding nonblind estimator by a factor of approximately 1.4.

3.5.5 Error Probability

The blind estimator

P̌e = 1− 1

K

K∑
k=1

P{u= û(x)|x=xk} (3.173)

for the (unconditional) error probability is unbiased (cf. (3.81)). The MSE of P̌e is given by

MSEP̌e(Pe) = E
{

(P̌e − Pe)2
}

=
1

K
E
{

(1− P{u= û(x)|x})2
}
− 1

K
P 2
e . (3.174)

Depending on the distribution of the data, the expectation in (3.174) may be hard to compute

in closed form. However, we can upper bound the MSE by noting that

E
{

(1− P{u= û(x)|x})2
}
≤ E

{
1− P{u= û(x)|x}

}
= Pe. (3.175)
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Using (3.175) in (3.174) yields

MSEP̌e(Pe) ≤
Pe
K

(1− Pe). (3.176)

The MSE of the unbiased nonblind estimator P̂e = 1
K

∑K
k=1 1{û(xk) 6=uk} equals

MSEP̂e(Pe) =
Pe
K

(1− Pe), (3.177)

and thus the ratio of the MSEs in (3.177) and (3.174) is lower bounded as

MSEP̂e(Pe)

MSEP̌e(Pe)
≥ 1. (3.178)

The inequality (3.178) allows us to state the following result.

Proposition 3.8. The blind estimator P̌e dominates the nonblind estimator P̂e for any dis-

tribution of the data.

Proof: The proposition follows directly from (3.178).

To illustrate these results, we use the same example (3-ary signal in Gaussian noise) as

for the conditional error probability. The error probability of the MAP detector is then given

by

Pe =
4

3
Q

(
1

2σ

)
≤ 2

3
. (3.179)

In Figure 3.9a, we plot the MSE of the nonblind estimator (which equals the upper bound of

the blind estimator’s MSE) and the MSE of the blind estimator. We observe that the blind

estimator significantly outperforms the nonblind estimator for all Pe. Figure 3.9b shows that

the MSE ratio MSEP̂e(Pe)/MSEP̌e(Pe) is greater than 4 for small values of Pe and it tends

to infinity as Pe → 2/3.

In the binary case, the upper bound in (3.176) can be tightened. Specifically, we can

rewrite the MSE (3.174) as follows:

MSEP̌e(Pe) =
1

K
E

{(
s(γ − Lu(x))

1 + e−Lu(x)
+
s(Lu(x)− γ)

1 + eLu(x)

)2
}
− 1

K
P 2
e . (3.180)

We note that
s(γ − Lu(x))

1 + e−Lu(x)
+
s(Lu(x)− γ)

1 + eLu(x)
≤ 1

1 + e−|γ|
, (3.181)

which allows us to upper bound (3.180) as

MSEP̌e(Pe) ≤
Pe
K

(
1

1 + e−|γ|
− Pe

)
. (3.182)
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Figure 3.9: MAP detection of a 3-ary signal in Gaussian noise. (a) Comparison of MSEP̂e(Pe)
(cf. (3.170)), upper bound (3.168), and MSEP̌e(Pe) (cf. (3.167)) in the Gaussian case. (b)
Comparison of MSEP̂e(Pe)/MSEP̌e(Pe) in the Gaussian case to the lower bound (3.171).

Hence, the MSE ratio MSEP̂e(Pe)/MSEP̌e(Pe) is lower bounded as follows:

MSEP̂e(Pe)

MSEP̌e(Pe)
≥ 1− Pe

(1 + e−|γ|)−1 − Pe
. (3.183)

We note that (3.90) ensures that the denominator in (3.183) is nonnegative. Furthermore, the

bounds in (3.182) and (3.183) cannot be tightened, i.e., the inequalities are sharp. Indeed,

any distribution of the data such that Lu(x) ∈ {γ,±∞} achieves equality in (3.182) and

(3.183). The following result is a consequence of (3.183).

Proposition 3.9. In the binary case, the blind estimator P̌e outperforms the nonblind esti-

mator P̂e for any distribution of the data by at least a factor of 1 + e−|γ|, i.e., we have

MSEP̂e(Pe)

MSEP̌e(Pe)
≥ 1 + e−|γ|. (3.184)

Proof: The lower bound (3.183) is minimal when Pe = 0. The minimum value equals

1 + e−|γ| ∈ [1, 2].

Due to Proposition 3.9, P̌e outperforms P̂e at least by a factor of 2 for the special case of

a MAP detector. In this case, the MSE of P̌e is given by

MSEP̌e(Pe) =
1

K
E

{(
1

1 + e|Lu(x)|

)2
}
− 1

K
P 2
e (3.185)

≤ Pe
K

(1/2− Pe). (3.186)

The following results provides a convenient alternative to numerical integration for the eval-

uation of the expectation in (3.185) using the absolute moments of Lu.
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Proposition 3.10. Assuming Lu has finite absolute moments, the mean power of (1+e|Lu|)−1

equals

E

{(
1

1 + e|Lu|

)2
}

=
1

4
+
∞∑
m=1

E
{
|Lu|m

}
m!

m∑
k=1

(−1)k

2k+2
dk,m, (3.187)

where the coefficients dk,m are defined by the recursion

dk,m = (k + 1)dk−1,m−1 + kdk,m−1 for k ≥ 2,m ≥ 2, (3.188a)

d1,m = 2 for m ≥ 1, (3.188b)

dk,1 = 0 for k ≥ 2. (3.188c)

Proof: See Appendix A.2.

The sign of the terms in the series (3.187) can be shown to change after every second

term. Therefore, we can truncate the series after any pair of terms having the same sign and

bound the error by the sum of the following two terms. We can further expand E
{
|Lu|m

}
in

(3.187) as

E{|Lu|m} = E{|Lu|m|u=1}P{u=1}+ E{|Lu|m|u=−1}P{u=−1}. (3.189)

For conditionally Gaussian LLRs with Lu|u ∼ N (uµ, 2µ), µ > 0, we have

E{|Lu|m|u=u} =
2m|µ|m/2√

π
Γ

(
m+ 1

2

)
Φ

(
−m

2
,
1

2
;−|µ|

4

)
, (3.190)

where Γ(·) and Φ(·, ·; ·) respectively denote the gamma function and Kummer’s confluent

hypergeometric function (cf. Appendix D for details). We note that (3.190) does not depend

on u, i.e., we have E{|Lu|m|u = u} = E{|Lu|m}, since |Lu|m is an even function and the

distribution of Lu is even (cf. (3.38)).

A simpler way to compute the MSE of the blind estimator in the binary case with MAP

detection is via the moments of the soft bit Λu. Rewriting (3.185) in terms of Λu yields

MSEP̌e(Pe) =
1

4K
E
{

(1− |Λu|)2
}
− 1

K
P 2
e =

1

K
Pe(1− Pe)−

1

4K
(1− E{Λ2

u}) (3.191)

= MSEP̂e(Pe)−
1

4K
εMMSE. (3.192)

Using (3.191), we only require the mean power of Λu to compute MSEP̌e(Pe). Further rewrit-

ing (3.191) as in (3.192) yields an interesting connection between the MSEs of the blind and

nonblind estimators, and the minimum MSE, respectively. Specifically, εMMSE/(4K) can be

viewed as the penalty for using hard decisions in the estimation of Pe.

For the binary case with MAP detection, Figure 3.10a shows the MSE of the nonblind

estimator as well as the MSE of the blind estimator and the upper bound (3.182). As in
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Figure 3.10: The binary case with MAP detection. (a) Comparison of MSEP̂e(Pe) (cf.
(3.170)), upper bound (3.186), and MSEP̌e(Pe) (cf. (3.185)) in the Gaussian case. (b) Com-
parison of MSEP̂e(Pe)/MSEP̌e(Pe) in the Gaussian case to the lower bound (3.184).

the nonbinary case, the blind estimator significantly outperforms the nonblind estimator for

all Pe. Figure 3.10b shows that the MSE ratio MSEP̂e(Pe)/MSEP̌e(Pe) is greater than 4 for

small values of Pe. Both, the lower bound (3.183) and the true MSE ratio tend to infinity as

Pe → 1/2.

3.5.6 Block Error Probability

To simplify the MSE analysis for the block error probability, we assume that all error events

are statistically independent. In this case, the block error probability for a length-N block

equals

Pb = 1−
N∏
n=1

(1− Pe,n), (3.193)

where Pe,n denotes the error probability of the nth source output in the block. Due to the

independence of the error events, the blind estimator

P̌b = 1−
N∏
n=1

1

K

K∑
k=1

P{un= û(xn)|xn=xn,k} (3.194)

is unbiased. Here, xn,k denotes the kth observation of the data corresponding to the nth

source output. The MSE of P̌b is given by

MSEP̌b(Pb) = E
{

(P̌b − Pb)2
}

(3.195)

= E


(

1−
N∏
n=1

1

K

K∑
k=1

P{un= û(xn)|xn=xn,k}
)2
−

(
1−

N∏
n=1

(1− Pe,n)

)2

(3.196)
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=
N∏
n=1

(
1

K
E
{

(P{un= û(xn)|xn})2
}

+ (1− 1/K)(1− Pe,n)2

)
−

N∏
n=1

(1− Pe,n)2

(3.197)

=

N∏
n=1

(
1

K
E
{

(P{un 6= û(xn)|xn})2
}
− 1

K
P 2
e,n + (1− Pe,n)2

)
−

N∏
n=1

(1− Pe,n)2.

(3.198)

Similarly, the blind estimator

ˇ̌Pb = 1− 1

K

K∑
k=1

N∏
n=1

P{un= û(xn)|xn=xn,k} (3.199)

is unbiased and its MSE equals

MSE ˇ̌Pb
(Pb) = E

{
(P̌b − Pb)2

}
(3.200)

=
1

K

N∏
n=1

E
{

(P{un= û(xn)|xn})2
}
− 1

K

N∏
n=1

(1− Pe,n)2. (3.201)

Note that the blind estimators (3.194) and (3.199) are equal if K = 1. To bound the MSEs

(3.198) and (3.201), we note that

(P{un 6= û(xn)|xn=xn})2 ≤ αnP{un 6= û(xn)|xn=xn}, (3.202)

for all xn ∈ X (n) and some αn ∈ [0, 1) (here, X (n) denotes the observation space corresponding

to the nth source output). More specifically, we choose αn = arg minβn f(βn), where f(βn) =

βnP{un 6= û(xn)|xn=xn} − (P{un 6= û(xn)|xn=xn})2, subject to the constraint f(βn) ≥ 0 for

all xn ∈ X (n) and any distribution of the data. In the binary case, αn is given by the right-

hand side of (3.89). In the nonbinary case, we can not give a general closed-form expression

for αn.

Using (3.202) we upper bound (3.198) and (3.201) as follows:

MSEP̌b(Pb) ≤
N∏
n=1

(
1− (2− αn/K)Pe,n + (1− 1/K)P 2

e,n

)
−

N∏
n=1

(1− Pe,n)2 (3.203)

≤ 1

K

N∏
n=1

(1− (2− αn)Pe,n)− 1

K

N∏
n=1

(1− Pe,n)2, (3.204)

and

MSE ˇ̌Pb
(Pb) ≤

1

K

N∏
n=1

(1− (2− αn)Pe,n)− 1

K

N∏
n=1

(1− Pe,n)2. (3.205)

We note that (3.203) and (3.204) are equal for K = 1 and the weaker upper bound (3.204)

for P̌b equals the upper bound (3.205) for ˇ̌Pb. A proof of (3.204) is given in Appendix A.3.
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In the above expressions, the block error probability Pb is determined by Pe,n, n =

1, . . . , N , according to (3.193). For the special case where the data model is equal for each

source output, we have Pe,n ≡ Pe and αn ≡ α. In turn, this entails Pb = 1 − (1 − Pe)N , or,

equivalently, Pe = 1− (1− Pb)1/N . Letting additionally N →∞ in (3.203)-(3.205) yields

lim
N→∞

MSEP̌b(Pb) ≤ (1− Pb)2−α/K − (1− Pb)2 ≤ 1

K

(
(1− Pb)2−α − (1− Pb)2

)
, (3.206)

lim
N→∞

MSE ˇ̌Pb
(Pb) ≤

1

K

(
(1− Pb)2−α − (1− Pb)2

)
. (3.207)

For finite N and large K we obtain the limit

lim
K→∞

K MSEP̌b(Pb) ≤ lim
K→∞

K
(
1− (2− α/K)Pe + (1− 1/K)P 2

e

)N −K(1− Pe)2N (3.208)

= NPe(α− Pe)(1− Pe)2(N−1) (3.209)

≤ (1− (2− α)Pe)
N − (1− Pe)2N . (3.210)

The asymptotic case where both N and K are large yields

lim
K→∞

lim
N→∞

K MSEP̌b(Pb) ≤ lim
K→∞

K(1− Pb)2−α/K −K(1− Pb)2 (3.211)

= α(1− Pb)2 log
1

1− Pb
(3.212)

≤ (1− Pb)2−α − (1− Pb)2. (3.213)

Clearly, the weaker bounds (3.210) and (3.213) are upper bounds for the corresponding limits

of K MSE ˇ̌Pb
(Pb).

The nonblind estimator

P̂b = 1− 1

K

K∑
k=1

N∏
n=1

1{û(xn,k)=un} (3.214)

is unbiased and its MSE equals

MSEP̂b(Pb) =
Pb
K

(1− Pb) =
1

K

N∏
n=1

(1− Pe,n)− 1

K

N∏
n=1

(1− Pe,n)2. (3.215)

The ratio of the MSEs in (3.215) and (3.195) is lower bounded as

MSEP̂b(Pb)

MSEP̌b(Pb)
≥ 1

K

∏N
n=1(1− Pe,n)−∏N

n=1(1− Pe,n)2∏N
n=1

(
1− (2− αn/K)Pe,n + (1− 1/K)P 2

e,n

)
−∏N

n=1(1− Pe,n)2
(3.216)

≥
∏N
n=1(1− Pe,n)−∏N

n=1(1− Pe,n)2∏N
n=1(1− (2− αn)Pe,n)−∏N

n=1(1− Pe,n)2
. (3.217)
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Similarly, the ratio of the MSEs in (3.215) and (3.200) is lower bounded as

MSEP̂b(Pb)

MSE ˇ̌Pb
(Pb)

≥
∏N
n=1(1− Pe,n)−∏N

n=1(1− Pe,n)2∏N
n=1(1− (2− αn)Pe,n)−∏N

n=1(1− Pe,n)2
. (3.218)

The bounds (3.216)-(3.218) allow us to state the following result.

Proposition 3.11. The blind estimators P̌b and ˇ̌Pb dominate the nonblind estimator P̂b for

any distribution of the data by at least a factor of minn α
−1
n , i.e., we have

MSEP̂b(Pb)

MSEP̌b(Pb)
≥ min

n
α−1
n , (3.219)

and
MSEP̂b(Pb)

MSE ˇ̌Pb
(Pb)

≥ min
n
α−1
n . (3.220)

We have equality in (3.219) and (3.220) if and only if Pe,n = 0, n = 1, . . . , N .

Proof: See Appendix A.4.

Due to Proposition 3.11, P̌b and ˇ̌Pb outperform P̂b in the binary case at least by a factor

of 2 for the special case of a MAP detector (note that in this case αn = 1/2, n = 1, . . . , N).

For the case where Pe,n ≡ Pe, αn ≡ α, and N → ∞, the MSE ratio is lower bounded as

follows:

lim
N→∞

MSEP̂b(Pb)

MSEP̌b(Pb)
≥ 1

K

Pb
(1− Pb)1−α/K − (1− Pb)

≥ Pb
(1− Pb)1−α − (1− Pb)

, (3.221)

lim
N→∞

MSEP̂b(Pb)

MSE ˇ̌Pb
(Pb)

≥ Pb
(1− Pb)1−α − (1− Pb)

. (3.222)

In the limit of large K, the MSE ratio is lower bounded as

lim
K→∞

MSEP̂b(Pb)

MSEP̌b(Pb)
≥ (1− Pe)N − (1− Pe)2N

NPe(α− Pe)(1− Pe)2(N−1)
(3.223)

≥ (1− Pe)N − (1− Pe)2N

(1− (2− α)Pe)N (1− Pe)2N
. (3.224)

The MSE ratio in the limit of large N and K is lower bounded as follows:

lim
K→∞

lim
N→∞

MSEP̂b(Pb)

MSEP̌b(Pb)
≥ Pb

α(1− Pb) log 1
1−Pb

(3.225)

≥ Pb
(1− Pb)1−α − (1− Pb)

. (3.226)

Clearly, the weaker bounds (3.224) and (3.226) are lower bounds for the corresponding limits

of MSEP̂b(Pb)/MSE ˇ̌Pb
(Pb).
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Figure 3.11: Block error probability (N = 100) in the binary case with MAP detection.
Comparison of MSEP̂b(Pb) (cf. (3.215)), upper bound (3.203), and MSEP̌b(Pb) (cf. (3.198))
in the Gaussian case.

As an example, we consider the binary case with MAP detection where Pb = 1−(1−Pe)N
and N = 100. In Figure 3.11, we compare the MSE of the nonblind estimator P̌b to the

MSE of the blind estimator P̂b in the Gaussian case and to the upper bound (3.203) for

K = 1 and K → ∞. We observe that the blind estimator significantly outperforms the

nonblind estimator for all Pb. Furthermore, K MSEP̌b(Pb) and the upper bound (3.203)

show only a weak dependence on the sample size K. Figure 3.12 shows the MSE ratio

MSEP̂b(Pb)/MSEP̌b(Pb) in the Gaussian case and compares it to the lower bound (3.216).

The MSE ratio is at least equal to 2 which is in accordance to Proposition 3.11. In the

Gaussian case, the blind estimator outperforms the corresponding nonblind estimator by a

factor of more than 4 for small values of Pb. Finally, we note that the results for P̌b with

K = 1 are equal to the results for ˇ̌Pb with any K ∈ N.

3.5.7 Minimum MSE

A blind estimator for the minimum MSE is given by

ε̌MMSE = E{u2} − 1

K

K∑
k=1

(∑
u∈U

uP{u=u|x=xk}
)2

. (3.227)
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Figure 3.12: Block error probability (N = 100) in the binary case with MAP detection.
Comparison of MSEP̂b(Pb)/MSEP̌b(Pb) in the Gaussian case to the lower bound (3.216).

This estimator is unbiased (cf. (3.105)) and its MSE equals

MSEε̌MMSE(εMMSE) = E{(ε̌MMSE − εMMSE)2} (3.228)

=
1

K2
E


K∑
k=1

K∑
j=1

(∑
u∈U

uP{u=u|x=xk}
)2(∑

u∈U
uP{u=u|x=xj}

)2


−
(
E
{(∑

u∈U
uP{u=u|x}

)2
})2

(3.229)

=
1

K
E
{(∑

u∈U
uP{u=u|x}

)4
}
− 1

K
(E{u2} − εMMSE)2. (3.230)

Using the inequality
(∑

u∈U uP{u=u|x}
)4 ≤ maxu∈U |u|2

(∑
u∈U uP{u=u|x}

)2
, we upper

bound the MSE as follows:

MSEε̌MMSE(εMMSE) ≤ maxu∈U |u|2
K

E
{(∑

u∈U
uP{u=u|x}

)2
}
− 1

K
(E{u2} − εMMSE)2

(3.231)

=
maxu∈U |u|2

K
(E{u2} − εMMSE)− 1

K
(E{u2} − εMMSE)2. (3.232)

In the binary case with u ∈ {−1, 1}, we have

MSEε̌MMSE(εMMSE) = E{(ε̌MMSE − εMMSE)2} (3.233)
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Figure 3.13: Minimum MSE estimation in the binary case. Comparison of the upper bound
(3.237) to the MSE in the Gaussian case.

=
1

K2

K∑
k=1

K∑
j=1

E
{

Λ2
u(xk)Λ

2
u(xj)

}
−
(
E{Λ2

u(x)}
)2

(3.234)

=
1

K
E
{

Λ4
u(x)

}
− 1

K

(
E
{

Λ2
u(x)

})2
(3.235)

≤ 1

K
E
{

Λ2
u(x)

}
− 1

K

(
E
{

Λ2
u(x)

})2
(3.236)

=
εMMSE

K
(1− εMMSE). (3.237)

The bound (3.236) is due to the fact that |Λu(x)| ≤ 1. In Figure 3.13, we plot the MSE

(3.235) in the binary case with conditionally Gaussian LLRs and compare it to the upper

bound (3.237).

3.5.8 Mutual Information and Conditional Entropy

The blind estimator

Ȟ(u|x) = − 1

K

K∑
k=1

∑
u∈U

P{u=u|x=xk} log2 P{u=u|x=xk}. (3.238)

for the condition entropy H(u|x) is unbiased (cf. (3.115)) and we can write its MSE as follows:

MSEȞ(u|x)

(
H(u|x)

)
= E{

(
Ȟ(u|x)−H(u|x)

)2} (3.239)
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=
1

K
E
{(∑

u∈U
P{u=u|x} log2 P{u=u|x}

)2
}
− 1

K
H2(u|x). (3.240)

We use the inequality(∑
u∈U

P{u=u|x} log2 P{u=u|x}
)2
≤ −H(u)

∑
u∈U

P{u=u|x} log2 P{u=u|x} (3.241)

to obtain the following upper bound for the MSE:

MSEȞ(u|x)

(
H(u|x)

)
≤ −H(u)

K
E
{∑

u∈U
P{u=u|x} log2 P{u=u|x}

}
− 1

K
H2(u|x) (3.242)

=
H(u|x)

K

(
H(u)−H(u|x)

)
. (3.243)

In the binary case with u ∈ {−1, 1}, we have

MSEȞ(u|x)

(
H(u|x)

)
= E{

(
Ȟ(u|x)−H(u|x)

)2} (3.244)

=
1

K
E
{
h2

2

(
1

1 + e|Lu(x)|

)}
− 1

K
H2(u|x) (3.245)

≤ H(u)

K
E
{
h2

(
1

1 + e|Lu(x)|

)}
− 1

K
H2(u|x) (3.246)

=
H(u|x)

K

(
H(u)−H(u|x)

)
. (3.247)

Replacing H(u|x) by H(u) − I(u; x) in the above expressions yields the MSE of the blind

estimator for the mutual information I(u; x). In Figure 3.14, we compare the MSE (3.245)

in the binary case with conditionally Gaussian LLRs to the upper bound (3.247). Here, we

assume a uniform prior, i.e., H(u) = 1.

3.6 Cramér-Rao Lower Bound for Bit Error Probability Estimation

In this section we derive the CRLB for bit error probability estimation under MAP detection

with conditionally Gaussian LLRs. Furthermore, we show that in this case there exists no

efficient estimator. The importance of conditionally Gaussian LLRs has two main reasons:

(i) the binary-input AWGN channel leads to conditionally Gaussian LLRs and (ii) numer-

ous receiver algorithms use Gaussian approximations to reduce computational complexity.

Therefore, we study the Gaussian case in more detail by analyzing the CRLB.

The distribution of the data Lu is given by

p(Lu;µ) = p(Lu|u=1;µ)P{u=1}+ p(Lu|u=−1;µ)P{u=−1} (3.248)

=
1√
4πµ

[
exp

(
− 1

4µ
(Lu − µ)2

)
P{u=1}+ exp

(
− 1

4µ
(Lu + µ)2

)
P{u=−1}

]
,

(3.249)
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Figure 3.14: Estimation of H(u|x). Comparison of the MSE in the Gaussian case to the
upper bound (3.247).

where Lu|u ∼ N (uµ, 2µ) with µ > 0.The parameter µ is related to the bit error probability

Pe of the MAP detector as follows:

µ(Pe) = 2Q−2(Pe), (3.250)

where Q−m(·) is shorthand for
(
Q−1(·)

)m
and Q−1(·) denotes the inverse of the Q-function.

The following theorem states the CRLB in terms of Pe for the estimation problem defined

by (3.249) and (3.250).

Theorem 3.12. The CRLB for bit error probability estimation under MAP detection with

K iid samples of conditionally Gaussian LLRs is given by

MSEP̌e(Pe) = var{P̌e} ≥
1

K

Q−2(Pe)

4π exp
(
Q−2(Pe)

)(
1 + 2Q−2(Pe)

) . (3.251)

Proof: See Appendix A.5.

We note that the prior of u does not enter in the CRLB. In Figure 3.15, we plot the

CRLB (3.251), the MSE of P̌e (cf. (3.185)), and the upper bound (3.186) for MAP detection.

We observe that the MSE of P̌e does not attain the CRLB, i.e., the estimator P̌e is not

efficient. Figure 3.16 depicts the comparison of Figure 3.15 with logarithmically scaled axes.

We observe that the CRLB decays much more rapidly than the MSE of P̌e as Pe → 0. The

following theorem shows that an efficient estimator does not exist in the considered setting.
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Figure 3.15: Comparison between CRLB (3.251), MSE of P̌e (cf. (3.185)) in the Gaussian
case, and upper bound (3.186).
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Theorem 3.13. For the problem of bit error probability estimation under MAP detection

with conditionally Gaussian LLRs there exists no efficient estimator, i.e., the CRLB (3.251)

cannot be attained uniformly.

Proof: See Appendix A.6.

Although there exists no efficient estimator, we have shown in [107] that under certain

conditions the estimator

P̌e =
1

K

K∑
k=1

1

1 + e|Lu(xk)| (3.252)

is the minimum-variance unbiased (MVU) estimator.

3.7 Application Examples and Approximate Log-Likelihood Ratios

We next give application examples in the communications context for some of the blind

estimators proposed above. We include examples with suboptimal detection, approximate

LLR computation, and model uncertainty to show that the proposed estimator are useful

also in these cases.

3.7.1 MAP Detection

We first consider MAP detection of coded binary data which is transmitted over an AWGN

channel. In particular, we assume a length-N block of data u = (u1 . . . uN )T with P{un =

1} = 1/2, n = 1, . . . , N . The data u ∈ {0, 1}N is channel-encoded, yielding a binary length-

M codeword c = (c1 . . . cM )T. The codeword c is then BPSK modulated, i.e., the transmit

signal equals s = 1M − 2c. The output of the AWGN channel is thus given as

x = s + w, (3.253)

where w ∼ CN (0, σ2I) is iid circularly symmetric complex Gaussian noise with variance σ2.

Given the observed channel output x, a MAP detector consists of the LLR computation

Lcm(xm) =
4

σ2
R(xm), m = 1, . . . ,M, (3.254)

followed by soft-input channel decoding based on Lcm , m = 1, . . . ,M . In the following, we

assume that N = 210 and the channel code is a terminated (7, 5)8 convolutional code. In

this setting, the BCJR algorithm (cf. Subsection 2.6.7) allows us to perform MAP-optimal

soft-input detection. To obtain the results shown below, we have simulated K = 106 data

blocks.

Figure 3.17 depicts the bit error rate (BER) versus SNR results obtained using the non-

blind estimator P̂e and the blind estimator P̌e. Here, the BER represents the average of the

N bit error probabilities Pe,n, n = 1, . . . , N . We observe that both BER estimates are essen-
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Figure 3.17: Comparison of nonblind and blind BER estimates under MAP detection.

tially equal which is in accordance with the results from Section 3.5. The blind estimator is

unbiased since the posterior LLRs computed by the BCJR algorithm satisfy the consistency

condition (3.25). Compared to the nonblind estimator, the blind estimator has a better MSE

performance and thus converges faster. This can be used to either speed up simulations or

to obtain more accurate results. Furthermore, the blind estimator is useful beyond computer

simulations since the transmitted data is not required.

In Figure 3.18, we plot the frame error rate (FER), i.e., the block error probability for

the entire block of data, versus the SNR. In this case, the blind estimators P̌b and ˇ̌Pb are

biased since they incorrectly assume independence of the individual bit errors. We observe

that the blind estimators overestimate the FER. At an FER of 0.1, the blind estimates are

approximately 0.2 dB away from the unbiased nonblind estimate and this gap vanishes as the

SNR increases. In terms of the bias, it turns out that ˇ̌Pb has a slightly smaller bias than P̌b.

We note that a cyclic redundancy check code can be used to approximately (i.e., ignoring

undetected errors) implement P̂b in a blind manner. However, the proposed blind estimators

are attractive due to their faster convergence which may in practical applications outweigh

the drawback of their small bias.

Figure 3.19 shows the upper bound ˇ̌P+
b as well as the lower bound ˇ̌P−b (cf. (3.102)) and

compares them to ˇ̌Pb. At an FER of 0.1, the bounds are approximately 0.4 dB apart and

they converge as the SNR increases. This confirms the usefulness of these bounds. We note

that the upper bound is closer to the blind estimate than the lower bound. Furthermore, the

lower bound ˇ̌P−b is significantly tighter than P̌−b (cf. (3.99)).
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Figure 3.18: Comparison of nonblind and blind FER estimates under MAP detection. In
contrast to the blind estimates, the nonblind estimate is unbiased.
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Figure 3.19: Comparison of the blind estimate ˇ̌Pb and the bounds (3.102).
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3.7.2 Approximate MAP Detection

We next consider data transmission over a fading channel using bit-interleaved coded modula-

tion (BICM). As above, the binary data u ∈ {0, 1}N is channel-encoded yielding a length-M

codeword c. The interleaved codeword c′ = Π(c) is then mapped onto a 16-QAM signal

constellation A with Gray labeling. We denote the transmit signal of length J = dM/4e by

s = ϕ(c′) ∈ AJ . The output of the fading channel is given as (here, � denotes element-wise

multiplication)

x = h� s + w, (3.255)

where h denotes the vector of channel coefficients and w ∼ CN (0, σ2I) is iid circularly

symmetric complex Gaussian noise with variance σ2. We assume that the receiver has perfect

channel state information (CSI), i.e., h is known. Given the observed channel output x, the

BICM receiver first computes the LLRs

Lc′
4(j−1)+i

(xj) = log

∑
s∈A0

i
exp
(
−|xj − hjs|2/σ2

)∑
s∈A1

i
exp(−|xj − hjs|2/σ2)

, j = 1, . . . , J, i = 1, . . . , 4, (3.256)

where Abi denotes the set of symbols whose bit label at position i is equal to b (note that

A0
i ∪ A1

i = A and A0
i ∩ A1

i = ∅). The deinterleaved LLRs Lcm = Π−1(Lc′m), m = 1, . . . ,M ,

are then used to decode the data. The BICM receiver is inherently suboptimal because the

channel decoder incorrectly treats the code bits that are mapped to the same symbol as if

they were conditionally independent. In the following, we assume that N = 212 and the

channel code is a terminated (37, 21)8 convolutional code. The realizations of the channel

coefficients are drawn from a circularly symmetric complex Gaussian distribution with unit

variance. The channel remains constant for 10 symbols and the different channel coefficients

are independent. To obtain the results shown below, we have simulated K = 105 data blocks.

Figure 3.20 shows the BER versus SNR results obtained using the nonblind estimator P̂e

and the blind estimator P̌e. Although the BICM receiver is suboptimal, we observe that both

BER estimates are essentially equal. The simplifying independence assumption of the BICM

receiver entails a performance penalty since statistical dependencies are ignored. However,

the LLRs computed by the receiver satisfy the consistency condition (3.25) and thus the blind

BER estimate is unbiased.

A relevant code-independent performance measure for BICM systems is [27]

CBICM =

|A|∑
i=1

I(ci; Lci), (3.257)

which can be viewed as the capacity of an equivalent modulation channel with inputs ci

and outputs Lci , i = 1, . . . , |A|. In Figure 3.21, we compare a nonblind estimate of CBICM

(obtained using histograms of the conditional LLR distributions) to a blind estimate (obtained

using the blind estimator Ǐ(ci; Lci)). We note that both estimates are essentially equal which
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Figure 3.20: Comparison of nonblind and blind BER estimates for BICM transmission over
a block fading channel.

is again due to the consistency of the LLRs. The blind estimator is attractive in this case not

only due to its faster convergence but also since it avoids the estimation of the conditional

LLR densities.

The independence assumption of BICM receivers makes them inherently mismatched. An-

other source of mismatch in practical BICM systems is due to approximate LLR computation

in the demodulator and the channel decoder. Due to these approximations the consistency

condition is violated and the blind estimates become biased. However, this source of mis-

match can be eliminated by performing LLR correction [47] which makes the blind estimates

unbiased. Unfortunately, LLR correction cannot be performed in a blind manner, i.e., some

side information is necessary for LLR correction.

3.7.3 Iterative Detection

In this subsection, we consider channel-coded data transmission with iterative decoding (cf.

Subsection 2.6.5) at the receiver. The difference between iterative channel decoding and the

above BICM example is that an iterative decoder always computes approximate LLRs. This

is due to the feedback of extrinsic LLRs which are in each iteration incorrectly assumed to

be independent. Therefore, we cannot expect the blind estimators to be unbiased. In the

examples below, we consider an AWGN channel with BPSK-modulated input as in Subsection

3.7.1. Using the channel output x, the LLRs Lcm(xm), m = 1, . . . ,M , are computed according

to (3.254). We have simulated K = 105 data blocks to obtain the results shown below.
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Figure 3.21: Comparison of nonblind and blind estimates of CBICM.

Figure 3.22 shows the BER performance of a rate-1/2 irregular low-density parity-check

(LDPC) code4 with a blocklength of 64000 bits. The solid lines depict the performance

estimates for a belief propagation (BP) decoder and the dashed lines correspond to the BER

estimates for a min-sum decoder. Both decoders execute up to 100 iterations with a parity

check after each iteration. We observe that the blind estimate for the BER of the BP decoder

matches the unbiased nonblind estimate very well, except in the error floor regime. The blind

BER estimate for the min-sum decoder overestimates the performance for SNRs below the

threshold and it matches the nonblind estimate in the waterfall regime.

In Figure 3.23, we depict the BER versus SNR results for a rate-1/2 turbo code with

N = 216 information bits and 10 decoder iterations. Here, the iterative decoder uses a

max-log-MAP decoder to decode the constituent (37, 21)8 codes. We observe that the blind

estimate again matches the unbiased nonblind estimate very well in the waterfall regime. In

the error floor regime, the blind estimate again suffers from a significant bias.

An important issue with iterative decoders is LLR clipping. The effect of LLR clipping

on the blind estimates is quite severe, e.g., if the maximum magnitude of all LLRs is 10, then

the minimum blind BER estimate equals approximately 4.5 · 10−5, although the true BER

may be much smaller. Clearly, LLR clipping entails an underestimation of the reliability

which can be accounted for by LLR correction [91]. From the above results we can conclude

that the blind estimator P̌e is useful for iterative decoders in the waterfall regime, i.e., for

4We note that this particular code is optimized for a small decoding threshold which results in a rather
pronounced error floor.
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Figure 3.22: Comparison of nonblind and blind BER estimates for BP decoding (solid lines)
and min-sum decoding (dashed lines) of an irregular LDPC code. The nonblind estimate is
unbiased.

BER values from, say, 10−1 down to 10−5. This corresponds to the BER values of interest in

many applications. We note that the proposed blind estimator is not suitable for estimating

the error floor performance of iterative decoders.

3.7.4 Imperfect Channel State Information

Finally, we consider the case of data detection with imperfect CSI due to channel estimation

errors. We use BICM with a terminated (37, 21)8 convolutional code and a BPSK signal

constellation. The binary data u ∈ {0, 1}N , with N = 212, is channel-encoded yielding

a codeword c of length M = 8200. The interleaved codeword c′ = Π(c) is then BPSK-

modulated, i.e., the transmit signal is given as s = 1M − 2c′. The input-output relation of

the channel is given as

x = h� s + w, (3.258)

where h is the vector of channel coefficients and w ∼ CN (0, σ2I) is iid circularly symmetric

complex Gaussian noise with variance σ2. We assume that the channel remains constant for

10 symbols and the different channel coefficients are independent. Therefore, we can write

the vector of channel coefficients as

h = vec
{

110h̃
T
}
, (3.259)



3.7 Application Examples and Approximate Log-Likelihood Ratios 101

 

 

blind estimate
nonblind estimate

B
E
R

Eb/N0 [dB]

0 0.5 1 1.5 2 2.5 3
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Figure 3.23: Comparison of nonblind and blind BER estimates for max-log-MAP decoding
of a turbo code. The nonblind estimate is unbiased.

where h̃ ∼ CN (0, I) are the independently drawn channel coefficients and the operator vec{·}
concatenates the columns of its argument matrix. The first symbol of each length-10 block is

a pilot symbol. In total we estimate the M/10 channel coefficients h̃k using the pilot symbols

sk, k = 1, . . . ,M/10. The minimum MSE estimate of h̃k equals

ˆ̃
hk(x10(k−1)+1) =

skx10(k−1)+1

1 + σ2
, k = 1, . . . ,M/10. (3.260)

Using (3.260), we can write the vector of estimated channel coefficients as follows:

ĥ = vec

{
110

ˆ̃
h

T
}
. (3.261)

A mismatched detector uses the estimated channel coefficients as if they were the true

channel coefficients. Hence, a mismatched detector computes the LLRs

Lmis
c′m

(xm) =
4

σ2
R
(
xmĥ

∗
m

)
, (3.262)

where ĥ∗m denotes the complex conjugate of ĥm. A matched detector computes the following

LLRs [79]:

Lc′m(xm) = log
p(xm|ĥm, sm=1)

p(xm|ĥm, sm=−1)
, (3.263)
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where

p(xm|ĥm, sm) =

∫ ∞
−∞

p(xm|hm, sm)p(hm|ĥm)dhm. (3.264)

Using the Schur complement we find that hm|ĥm ∼ CN
(
ĥm,

σ2

1+σ2

)
. Furthermore, we have

xm|ĥm, sm ∼ CN (ĥmsm, σ
2). Evaluating the integral in (3.264) yields

xm|ĥm, sm ∼ CN
(
ĥmsm, σ

2 +
σ2

1 + σ2

)
. (3.265)

Using (3.265) in (3.263), we obtain

Lc′m(xm) =
1 + σ2

2 + σ2

4

σ2
R
(
xmĥ

∗
m

)
=

1 + σ2

2 + σ2
Lmis

c′m
(xm). (3.266)

Hence, the LLRs computed by the matched detector are a downscaled version of the mis-

matched detector’s LLRs. In what follows, we compare the BER estimates in the matched

and the mismatched case. To obtain the results shown below, we have simulated K = 105

data blocks.

The red curve (‘M’ markers) in Figure 3.24 corresponds to the unbiased nonblind BER

estimate for the matched detector. We do not plot the BER performance of the mismatched

detector since it is virtually indistinguishable from the performance of the matched detector.

The blind BER estimate for the mismatched detector (dashed blue line with ‘O’ markers in

Figure 3.24) is biased since the consistency condition is violated if ĥm 6= hm in (3.262). Using

the matched detector with the LLRs (3.266) effectively eliminates the bias of the blind BER

estimate (cf. solid blue line with ‘O’ markers in Figure 3.24).

We note that for a BPSK signal constellation the BICM receiver is MAP-optimal, i.e.,

the only source of mismatch is due to channel estimation errors. Furthermore, the LLR

computation (3.266) of the matched detector cannot be viewed as an LLR correction applied

to Lmis
c′m

(xm). In fact, the LLRs in (3.266) do not satisfy the consistency condition in gen-

eral (this is the reason for the very minor bias of the corresponding blind BER estimate).

Moreover, we cannot perform LLR correction in this case since that would require the true

channel coefficients which are not available. However, the results in Figure 3.24 show that

blind estimation can yield accurate results in the presence of channel estimation errors.

3.8 Discussion

In this chapter, we have proposed blind estimators for the (conditional) error probabilities,

the minimum MSE, and the mutual information in the context of Bayesian hypothesis tests.

We have analyzed and suitably bounded the MSE of the blind estimators and we have in-

cluded a comparison to nonblind estimators for the (conditional) error probabilities. For the

unconditional error probability we have proven that the blind estimator always dominates

the nonblind estimator. Furthermore, for the conditional error probabilities, we have given
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Figure 3.24: Comparison of nonblind and blind BER estimates in the presence of channel
estimation errors. The solid lines correspond to the results for the matched detector and the
dashed lines is obtained using the mismatched detector.

conditions under which the blind estimators dominate the corresponding nonblind estimators

for all distributions of the data. However, when we consider specific and relevant distribu-

tions of the data (e.g., the Gaussian case), all blind estimators significantly outperform the

corresponding nonblind estimators for relevant parameter values. For the case of bit error

probability estimation with conditionally Gaussian LLRs, the MSE of the blind estimator is

more than 4 times smaller than the MSE of the nonblind estimator. The blind estimators

can thus be used to obtain more accurate results or to speed-up computer simulations while

maintaining the required accuracy.

In the case of binary hypothesis tests, our results are based on the LLR properties we

have studied in Section 3.3. We have shown that the consistency condition connects the

conditional pdfs p(Lu|u=u), u ∈ {−1, 1}, and the unconditional pdf p(Lu) such that any one

of the three is sufficient to determine the other two. We shall show that this property of LLR

distributions is important also in the context of quantizer design.

We note that further relevant performance metrics can be estimated in a blind manner.

For example, the Bayesian risk associated to the detector û can be written as

R(û) =
∑
u∈U

E
{
Cû(x),uP{u=u|x}

}
, (3.267)

where Cu′,u ≥ 0 is the cost of the decision û = u′ when u = u. Similarly, in the binary
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case (u ∈ {−1, 1}) with uniform prior probabilities we can write the relative entropy between

p(Lu|u=u) and p(Lu|u=−u) as follows:

D
(
p(Lu|u=u)‖p(Lu|u=−u)

)
= 2E{LuΛu}. (3.268)

We note that the right-hand side of (3.268) does not depend on u. Furthermore, in this case

the deflection [99] with the soft bit Λu as test statistic equals

d2
Λu

=
4E{Λ2

u}
1− E{Λ2

u}
. (3.269)

Replacing the expectations in (3.267)-(3.269) by sample means yields blind estimators for

the respective quantities. We thereby obtain unbiased blind estimators for the Bayesian risk

and the relative entropy, and an asymptotically unbiased blind estimator for the deflection.

We have derived the CRLB for bit error probability estimation with conditionally Gaus-

sian LLRs under MAP detection. We find that the proposed blind estimator for the bit error

probability is not efficient. Moreover, we were able to prove that an efficient estimator does

not exist for this estimation problem. Comparing the CRLB to the MSE shows that the gap

to the CRLB increases as the error probability goes to zero. However, we have shown in [107]

that in certain case our blind estimator is the MVU estimator.

Finally, the numerical results in Section 3.7 confirm that the blind estimators proposed in

this chapter are useful also when suboptimal detectors are used and when the data model is

not exact. This is especially important in the communications setting, where channel estima-

tion errors are unavoidable in practice. We conclude that our blind estimators are suitable

for online performance estimation of Bayesian detectors without training data overhead.



4

The Rate-Information

Trade-off in the Gaussian

Case

In this chapter, we discuss the trade-off between quantization rate and relevant information

for jointly Gaussian random variables. We introduce the problem setting and provide the

required background in Section 4.1. In Section 4.2, we formalize the rate-information trade-

off and we define the information-rate function and the rate-information function. A review

of the Gaussian information bottleneck (GIB) is given in Section 4.3. We then use the GIB

to derive closed-form expressions for the rate-information trade-off in the univariate case

(Section 4.4) and in the multivariate case (Section 4.5). Next, we study the connection

between the rate-information trade-off and the rate-distortion (RD) trade-off in Section 4.6.

We show that optimal quantization with respect to the mean-square error (MSE) is rate-

information-optimal if suitable linear preprocessing is performed. In Section 4.7, we design

quantizers and we compare their performance to the optimal rate-information trade-off. We

conclude this chapter with a discussion of our results and we mention possible extensions in

Section 4.8.
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4.1 Introduction and Background

We consider jointly Gaussian random vectors x and y and we are interested in compressing y

such that its compressed version z contains as much information about x as possible. More

specifically, we want to find the optimal trade-off between the compression rate I(y; z) and

the relevant information I(x; z). We term this trade-off the rate-information trade-off (cf.

Section 4.2). Note that in this context, we use the terms quantization and compression

interchangeably.

Our motivation for studying this trade-off stems from communication theory. In a com-

munications setting, it is of great interest to find the largest data rate at which we can reliably

transmit over a channel whose output is quantized with a certain compression rate. How-

ever, we emphasize that our results apply to arbitrary jointly Gaussian data sets and are not

restricted to the communication setting.

Finding the rate-information trade-off basically amounts to solving the information bot-

tleneck (IB) problem (2.128). Unfortunately, in the Gaussian case we cannot determine the

rate-information trade-off using the iterative IB algorithm (cf. Algorithm 2.2) since it is re-

stricted to discrete random variables. However, the GIB (cf. Section 4.3) allows us to find

closed-form expressions for the rate-information trade-off in the Gaussian case. In the follow-

ing we assume that x ∼ N (0,Cx) and y ∼ N (0,Cy) are zero-mean and Cy has full rank1.

We note that any zero-mean and jointly Gaussian x, y can be written as [8, Theorem 4.5.5]

y = Hx + w, (4.1)

with a deterministic matrix H and a Gaussian random vector w ∼ N (0,Cw) which is

independent of x. In the following we work with the linear model (4.1) which can also be

viewed as the input-output relation of a constant multiple-input multiple-output channel.

Next, we recall the definition of the rate-distortion function and the distortion-rate func-

tion [20, Section 10.2].

Definition 4.1. The rate-distortion function for a source y with distortion measure d(y, ŷ)

is defined as

R(D) , min
p(ŷ|y)

I(y; ŷ) subject to E{d(y, ŷ)} ≤ D, (4.2)

and the distortion-rate function is defined as

D(R) , min
p(ŷ|y)

E{d(y, ŷ)} subject to I(y; ŷ) ≤ R. (4.3)

The rate-distortion function R(D) quantifies the minimum rate required to reconstruct

the source y with an average distortion not exceeding D. Similarly, D(R) quantifies the

minimum average distortion incurred for compressing the source y with a rate of at most R.

1These assumptions are not restrictive, since otherwise x and y can be centered and y can be reduced to
the rank(Cy)-dimensional subspace on which its distribution is supported.
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For most RD problems of interest, closed-form expressions for the rate-distortion function or

the distortion-rate function are not available. However, for a Gaussian source y ∼ N (0, σ2)

and squared-error distortion d(y, ŷ) = (y − ŷ)2 we have [20, Section 10.3]

R(D) =
1

2
log+

2

σ2

D
, (4.4)

and

D(R) = 2−2Rσ2. (4.5)

We note that (4.4) and (4.5) establish the fundamental performance limits for MSE-optimal

source coding of Gaussian sources.

In a noisy source coding problem, a noisy version ỹ of the source signal y is quantized.

In this case, when y and ỹ are jointly Gaussian, the MSE-optimal strategy is to estimate y

from ỹ using a Wiener filter whose output y̌ (which is again Gaussian) is then quantized in

an MSE-optimal manner. The corresponding overall MSE is the sum of the MSEs due to the

estimation and the quantization, respectively [8, Subsection 4.5.4].

We next explain MSE-optimal noisy source coding in terms of a simple example. Let the

source y ∼ N (0, σ2) be transmitted over a Gaussian channel such that ỹ = y + w, where

w ∼ N (0, σ2
w) is independent of y. Then we have ỹ ∼ N (0, σ2 + σ2

w) and the minimum MSE

estimate of y given ỹ is given as

y̌ =
σ2

σ2 + σ2
w

ỹ, (4.6)

where y̌ is Gaussian with variance σ2/(1 +σ2
w/σ

2). The MSE of the estimator in (4.6) equals

E{(y − y̌)2} = σ2 − σ2

1 + σ2
w/σ

2
. (4.7)

MSE-optimal quantization of y̌ with rate R yields an MSE distortion of (cf. (4.5))

E{(y̌ − ŷ)2} = 2−2R σ2

1 + σ2
w/σ

2
. (4.8)

The overall MSE is given by

E{(y − ŷ)2} = E{(y − y̌ + y̌ − ŷ)2} (4.9)

= E{(y − y̌)2}+ E{(y̌ − ŷ)2} (4.10)

= σ2 − (1− 2−2R)
σ2

1 + σ2
w/σ

2
. (4.11)

Here, (4.10) is due to the orthogonality principle, i.e., the estimation error y− y̌ is orthogonal

to any function of the observation ỹ. Hence, the overall MSE (4.11) is indeed the sum of the

MSEs in (4.7) and (4.8).
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Finally, we note that the rate-distortion function of a Gaussian vector source y with

squared-error distortion d(y, ŷ) = ‖y − ŷ‖22 can be written as a sum of rate-distortion func-

tions as in (4.4). Here, the appropriate distortion values are found by performing reverse

waterfilling on the eigenvalues of the covariance matrix of y [20, Section 10.3].

4.2 The Rate-Information Trade-off

We next formalize the trade-off between compression rate and relevant information. To this

end, we define the information-rate function I(R) and the rate-information function R(I).

Definition 4.2. Let x↔ y↔ z be a Markov chain. The information-rate function I : R+ →
[0, I(x; y)] is defined as

I(R) , max
p(z|y)

I(x; z) subject to I(y; z) ≤ R, (4.12)

and the rate-information function R : [0, I(x; y)]→ R+ is defined as

R(I) , min
p(z|y)

I(y; z) subject to I(x; z) ≥ I. (4.13)

The information-rate function I(R) allows us to quantify the maximum of the relevant

information that can be preserved when the compression rate is at most R. Conversely, the

rate-information function R(I) quantifies the minimum compression rate required when the

retained relevant information must be at least I. We note that the data processing inequality

implies the following upper bound for I(R):

I(R) ≤ min{R, I(x; y)}. (4.14)

Figure 4.1 illustrates the information-rate function I(R) (solid line) and the upper bound

(4.14) (dashed lines). The shaded region in Figure 4.1 corresponds to the achievable rate-

information pairs and, conversely, the hatched region corresponds to rate-information pairs

that are not achievable. We discuss achievability for the Gaussian case in Section 4.6. An IB

coding theorem for discrete random variables is given in [31].

The definition in (4.12) is structurally similar to the distortion-rate function, with the

difference that the minimization of the distortion is replaced by a maximization of the relevant

information. Analogously, (4.13) is structurally similar to the rate-distortion function, where

the upper bound on the distortion is replaced by a lower bound on the relevant information.

We emphasize that, contrary to RD theory, no distortion is involved in the definition of I(R)

and R(I). Hence, the values of x, y, and z are immaterial (note that mutual information

depends only on the probability distributions).
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achievable

R

I(R)

slope 1 not achievable
I(x; y)

Figure 4.1: Illustration of the information-rate function I(R).

4.3 The Gaussian Information Bottleneck

We briefly review the GIB [17] which we use in Sections 4.4 and 4.5 to derive closed-form

expressions for the information-rate function and the rate-information function. For a Markov

chain x↔ y↔ z with jointly Gaussian x ∈ Rm and y ∈ Rn, the GIB addresses the following

variational problem:

min
p(z|y)

I(y; z)− βI(x; z). (4.15)

Like the IB problem (2.128), the problem in (4.15) considers the trade-off between compres-

sion rate I(y; z) and relevant information I(x; z) via the Lagrange parameter β. Here, the

joint distribution of x and y is assumed to be known. As discussed in Section 4.1, we assume

without loss of generality that x and y are zero-mean with full rank covariance matrices.

In [32] it has been shown that the optimal z solving (4.15) is jointly Gaussian with y and

can therefore be written as

z = Ay + ξ, (4.16)

where A ∈ Rn×n is a deterministic matrix and ξ ∼ N (0,Cξ) is independent of y. Hence, we

can rewrite the problem in (4.15) using (4.16) as

min
A,Cξ

I(y;Ay + ξ)− βI(x;Ay + ξ). (4.17)

Due to (4.16), the optimal p(z|y) and p(z|x) =
∫
Rn p(z|y)p(y|x)dy are Gaussian distribu-

tions, too.

Denote by vT
k and λk, k = 1, . . . , n, the left eigenvectors and associated eigenvalues of

Cy|xC
−1
y , where Cy = E{yyT} and Cy|x = E{yyT|x=x} are, respectively, the unconditional

and the conditional covariance matrix of y. An optimal solution of (4.17) can then be written

as [17, Theorem 3.1]

A = diag{αk}nk=1V
T and Cξ = I, (4.18)
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where V = [v1 · · · vn] and

αk =

√
[β(1−λk)− 1]+

λkv
T
kCyvk

, k = 1, . . . , n. (4.19)

Using (4.18) and (4.19), the rate-information trade-off can implicitly be written as follows [17,

Section 5]:

I(x; z) = I(y; z)− 1

2

n∑
k=1

log+
2 β(1−λk). (4.20)

The trade-off in (4.20) is parametrized by β. We note I(x; z) and I(y; z) are nondecreasing in

β. Next, we shall use the implicit trade-off in (4.20) to derive the information-rate function

and the rate-information function in closed form.

4.4 Scalar Case

In this section, we consider scalar jointly Gaussian random variables x and y. We treat the

(univariate) scalar case and the (multivariate) vector case (cf. Section 4.5) separately, because

the scalar case is easier to analyze and the results play an important role in vector case.

Using the linear model (4.1), we have

y = hx + w, (4.21)

where h ∈ R and w is independent of x. By properly choosing h and the variance of w,

any joint distribution of x and y can be written as in (4.21). Specifically, let ρx,y denote

the correlation coefficient of x and y, then we have h = ρx,y

√
var{x}/ var{y} and var{w} =

var{y}(1 − ρ2
x,y). In the following we let x ∼ N (0, P ) and w ∼ N (0, σ2), yielding y ∼

N (0, h2P + σ2). We define the signal-to-noise ratio (SNR) of x and y as

γ ,
ρ2

x,y

1− ρ2
x,y

=
h2P

σ2
. (4.22)

Furthermore, we define

C(γ) ,
1

2
log2(1 + γ). (4.23)

We note that (4.23) is the capacity of a Gaussian channel with SNR γ under an average

input power constraint [20, Section 9.1]. In the following theorem, we state a closed-form

expression for the information-rate function and discuss its properties.

Theorem 4.3. The information-rate function for jointly Gaussian random variables with

SNR γ is given as

I(R) = R− 1

2
log2

22R + γ

1 + γ
(4.24)

= C(γ)− C(2−2Rγ). (4.25)



4.4 Scalar Case 111

The information-rate function has the following properties:

1. I(R) is strictly concave on R+.

2. I(R) is strictly increasing in R.

3. I(R) ≤ min{R,C(γ)}.

4. I(0) = 0 and limR→∞ I(R) = C(γ).

5. dI(R)
dR = (1 + 22Rγ−1)−1.

Proof: See Appendix B.1.

From (4.24) we conclude that I(R) ≈ R for small R. Similarly, (4.25) implies that I(R) ≈
C(γ) for largeR. We callR < C(γ) the compression-limited regime (since min{R,C(γ)} = R)

and we call R > C(γ) the noise-limited regime (since min{R,C(γ)} = C(γ)). Furthermore,

we note that limγ→∞ I(R) = R. The following corollaries follow from Theorem 4.3.

Corollary 4.4. Rate-information-optimal compression of y can be modeled as z = y + u,

where u is a zero-mean Gaussian random variable which is independent of y and has variance

σ2
u =

var{y}
22R − 1

. (4.26)

We note that σ2
u does not depend on the moments of x.

Corollary 4.5. The SNR of x and z equals

γ̂ =
ρ2

x,z

1− ρ2
x,z

= γ
1− 2−2R

1 + 2−2Rγ
≤ γ, (4.27)

with the correlation coefficient ρx,z =
√

(1− 2−2R)γ/(1 + γ).

Corollary 4.6. The information-rate function can be written as I(R) = C(γ̂), where γ̂ is

the SNR in (4.27).

In a communications setting (where x and y are, respectively, the input and the output of

a Gaussian channel with SNR γ), Theorem 4.3 has the following interpretation: The penalty

(in terms of achievable data rate) for optimal quantization of the channel output y with rate

R is asymptotically equal to C(2−2Rγ). Hence, for any finite dimensional vector quantizer

the achievable rate after quantization with rate R is reduced by at least C(2−2Rγ).

Figure 4.2a depicts I(R) versus R for different values of γ. The individual curves saturate

at C(γ) as R becomes large. For the same values of γ, we plot the SNR penalty ∆γ(R) = γ/γ̂

(in dB) versus R in Figure 4.2b. These curves show the minimum R that is required to ensure

that ∆γ(R) is below a certain value. We observe that for fixed R, the SNR penalty increases

with γ. In the following theorem, we give a closed-form expression for the rate-information

function and discuss its properties.
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Figure 4.2: (a) Information-rate function and (b) SNR penalty (in dB) versus R for different
values of γ.

Theorem 4.7. The rate-information function for jointly Gaussian random variables with

SNR γ is given as

R(I) =
1

2
log2

γ

2−2I(1 + γ)− 1
. (4.28)

The rate-information function has the following properties:

1. R(I) is strictly convex on [0, C(γ)].

2. R(I) is strictly increasing in I.

3. R(I) ≥ I.

4. R(0) = 0 and limI→C(γ)R(I) =∞.

5. dR(I)
dI = (1 + γ)/(1 + γ − 22I).

Proof: Rewriting the information-rate function directly yields (4.28). The proof of the

properties of R(I) is analogous to the proof of the properties of I(R) in Appendix B.1.

Corollary 4.8. The rate-information function (4.28) is the inverse of the information-rate

function (4.24), i.e., for Ĩ ∈ [0, C(γ)] and R̃ ∈ R+ we have

I(R(Ĩ)) = Ĩ and R(I(R̃)) = R̃. (4.29)

Thus, the derivatives of I(R) and R(I) are related as

I ′(R̃) =
1

R′
(
I(R̃)

) and R′(Ĩ) =
1

I ′
(
R(Ĩ)

) . (4.30)
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Figure 4.3: Minimum compression rate required to achieve I(R) ≥ (1− ε)C(γ).

Corollary 4.9. Let ε > 0. The minimum compression rate Rε(γ) required to achieve I(R) ≥
(1− ε)C(γ) equals

Rε(γ) =
1

2
log2

γ

(1 + γ)ε − 1
. (4.31)

In Figure 4.3, we show Rε(γ) versus ε for different values of γ. We note that Rε(γ)

increases exponentially as ε → 0. For fixed ε, i.e., for a fixed gap to C(γ), we observe that

Rε(γ) increases with γ. For asymptotically low SNR, we have limγ→0Rε(γ) = log2(1/ε)/2.

4.5 Vector Case

We consider the linear model

y = Hx + w, (4.32)

with H ∈ Rn×m, x ∼ N (0,Cx), and w ∼ N (0,Cw) independent of x. Due to (4.32), the

covariance matrix of y is given as

Cy = HCxH
T +Cw. (4.33)

Let UΓUT denote the eigendecomposition of the positive semidefinite matrix

C
−1/2
w HCxH

TC
−1/2
w , where U is an orthogonal matrix and Γ = diag{γk}nk=1 is a diag-

onal matrix of nonnegative eigenvalues γk, k = 1, . . . , n. In what follows, we work with the
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whitened and rotated random vector

ỹ = UTC
−1/2
w y = x̃ + w̃ ∼ N (0,Γ + I). (4.34)

The transformation UTC
−1/2
w simultaneously diagonalizes the “signal” covariance Cx and

the “noise” covariance Cw, i.e., we have x̃ ∼ N (0,Γ ) and w̃ ∼ N (0, I). Therefore, the

transformation (4.34) decouples the linear model (4.32) into n independent modes

ỹk = x̃k + w̃k, k = 1, . . . , n, (4.35)

with mode SNRs γk = ρ2
x̃k,ỹk

/(1− ρ2
x̃k,ỹk

). We note that (4.34) is an invertible transformation

and therefore does not affect mutual information. Due to (4.35) we expect the results in the

vector case to be structurally similar to the results in the scalar case.

Without loss of generality we assume in the following that the mode SNRs are sorted in

descending order, i.e., we have γ1 ≥ · · · ≥ γn. The following theorem gives a closed-form

expression for the information-rate function in the vector case and discusses its properties.

Theorem 4.10. The information-rate function for jointly Gaussian random vectors with

sorted mode SNRs γk, k = 1, . . . , n, is given as

I(R) = R− 1

2

n∑
k=1

log2

22Rk(R) + γk
1 + γk

(4.36)

=

n∑
k=1

(
C(γk)− C(2−2Rk(R)γk)

)
, (4.37)

where the compression rate allocated to the kth mode equals

Rk(R) =


[
R

`(R)
+

1

2
log2

γk∏`(R)
i=1 γ

1/`(R)
i

]+

, R > 0

0, R = 0

. (4.38)

Here, `(R) denotes the number of active modes which is given as

`(R) =
n∑
k=1

1{R > Rc,k}, (4.39)

where

Rc,k =
1

2

k∑
i=1

log2

γi
γk
, k = 1, . . . , n, (4.40)

are the critical rates. The information-rate function has the following properties:

1. I(R) is strictly concave on R+.

2. I(R) is strictly increasing in R.
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3. I(R) ≤ min {R,∑n
k=1C(γk)}.

4. I(0) = 0 and limR→∞ I(R) =
∑n

k=1C(γk).

5. d
dRI(R) = 1

`(R)

∑`(R)
k=1 (1 + 22Rk(R)γ−1

k )−1.

Proof: See Appendix B.2.

We note that the information-rate function (4.36) is the sum of n information-rate func-

tions for scalar jointly Gaussian random variables with SNRs γk, k = 1, . . . , n (cf. (4.24)).

The number of active modes, i.e., the number of modes with Rk(R) > 0, increases at the

critical rates. More precisely, for any ε > 0 we have `(Rc,k + ε) > `(Rc,k), k = 1, . . . , n. Note

that Rc,1 = 0 and thus I(R) > 0 for R > 0. In Section 4.6, we shall show that the optimal

rate allocation (4.38) is obtained by performing reverse waterfilling on the mode SNRs. The

following corollaries are consequences of Theorem 4.10.

Corollary 4.11. Rate-information-optimal compression of ỹ can be modeled as z̃ = ỹ + u,

with u ∼ N (0,Cu) independent of ỹ and

Cu = diag

{
1 + γk

22Rk(R) − 1

}n
k=1

. (4.41)

Corollary 4.12. The SNR of x̃k and z̃k, i.e., the SNR of the kth mode after compression,

equals

γ̂k =
ρ2

x̃k ,̃zk

1− ρ2
x̃k ,̃zk

= γk
1− 2−2Rk(R)

1 + 2−2Rk(R)γk
≤ γk, (4.42)

with the correlation coefficient ρx̃k ,̃zk =
√

(1− 2−2Rk(R))γk/(1 + γk).

Corollary 4.13. The information-rate function can be written as I(R) =
∑n

k=1C(γ̂k), where

γ̂k, k = 1, . . . , n, are the SNRs in (4.42).

In the following theorem, we state the rate-information function and its properties.

Theorem 4.14. The rate-information function for jointly Gaussian random vectors with

sorted mode SNRs γk, k = 1, . . . , n, is given as

R(I) =
1

2

n∑
k=1

log2

γk
2−2Ik(I)(1 + γk)− 1

, (4.43)

where the relevant information of the kth mode equals

Ik(I) =


[
I

`(I)
+

1

2
log2

1 + γk∏`(I)
i=1(1 + γi)1/`(I)

]+

, I > 0

0, I = 0

. (4.44)
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Here, `(I) denotes the number of active modes which is given as

`(I) =
n∑
k=1

1{I > Ic,k}, (4.45)

where

Ic,k =
1

2

k∑
i=1

log2

1 + γi
1 + γk

, k = 1, . . . , n, (4.46)

are the critical values of the relevant information. The rate-information function has the

following properties:

1. R(I) is strictly convex on
[
0,
∑n

k=1C(γk)
]
.

2. R(I) is strictly increasing in I.

3. R(I) ≥ I.

4. R(0) = 0 and limI→
∑n
k=1 C(γk)R(I) =∞.

5. d
dIR(I) = 1

`(I)

∑`(I)
k=1(1 + γk)/(1 + γk − 22Ik(I)).

Proof: See Appendix B.3.

The rate-information function (4.43) can be identified as the sum of n rate-information

functions of scalar Gaussian channels with SNRs γk, k = 1, . . . , n, (cf. (4.28)). The number

of active modes increases at the critical values of the relevant information. More precisely,

for any ε > 0 we have `(Ic,k +ε) > `(Ic,k), k = 1, . . . , n. Note that Ic,1 = 0 and thus R(I) > 0

for I > 0. The following corollaries follow from the properties of I(R) and R(I).

Corollary 4.15. The rate-information function (4.43) is the inverse of the information-rate

function (4.36), i.e., for Ĩ ∈
[
0,
∑n

k=1C(γk)
]

and R̃ ∈ R+ we have

I(R(Ĩ)) = Ĩ and R(I(R̃)) = R̃. (4.47)

Thus, the derivatives of I(R) and R(I) are related as

I ′(R̃) =
1

R′
(
I(R̃)

) and R′(Ĩ) =
1

I ′
(
R(Ĩ)

) . (4.48)

Corollary 4.16. Let ε > 0. The minimum compression rate Rε(γ1, . . . , γn) required to

achieve I(R) ≥ Iε, with Iε = (1− ε)∑n
k=1C(γk), equals

Rε(γ1, . . . , γn) =
1

2

`(Iε)∑
k=1

log2

γk
`(Iε)∏
k=1

(1 + γk)
ε

`(Iε)

n∏
k=`(Iε)+1

(1 + γk)
− 1−ε
`(Iε) − 1

. (4.49)
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Figure 4.4: Phase transitions at the critical rates in the rate-information trade-off. In this
example, the mode SNRs are given as γk = 5− k, k = 1, . . . , 4.

We note that the results in the vector case are structurally equivalent to those in the

scalar case. Therefore, we refer to Figures 4.2 and 4.3 for an illustration of our results. The

major difference is the optimal allocation of the compression rate to the individual modes in

the vector case. Figure 4.4 shows the phase transitions in the rate-information trade-off that

occur at the critical ratesRc,k (indicated by ‘+’ markers) for γk = 5−k, k = 1, . . . , 4. The solid

curve shows I(R) and the dashed curves show the information-rate functions corresponding

to subsets of the modes. Specifically, the curve labeled “k mode(s)” is the information-rate

function corresponding to the k strongest modes with SNRs γ1, . . . , γk. Furthermore, this

curve is equal to I(R) for rates below the critical rate Rc,k+1 and bifurcates at Rc,k+1. The

dotted line in Figure 4.4 corresponds to I(x; y) = limR→∞ I(R).

4.6 Connections to Rate-Distortion Theory

In this section, we compare rate-information-optimal compression to RD-optimal compression

with squared-error distortion. We first study the rate-information trade-off achievable using

MSE-optimal quantization. To make our analysis more flexible, we consider compression of

a linearly filtered version of ỹ (cf. (4.34)). Specifically, we let

y̌ = F ỹ = F (x̃ + w̃), (4.50)
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where F = diag{fk}nk=1, and we optimally compress y̌ in the RD sense using the squared-error

distortion measure. We denote the resulting rate-information trade-off by IRD(R,F ). Note

that the optimality of the GIB implies I(R) ≥ IRD(R,F ). The special cases of MSE-optimal

source coding and MSE-optimal noisy source coding correspond to F = I and F = W ,

respectively. Here, W is the Wiener filter for estimating x̃ from ỹ, i.e., we have

W = Γ (I + Γ )−1. (4.51)

We next give a closed-form expression of IRD(R,F ) and discuss its consequences.

Lemma 4.17. The rate-information trade-off achievable by RD-optimal compression of y̌ =

F ỹ with squared-error distortion, where ỹ ∼ N (0, diag{1 + γk}nk=1) and F = diag{fk}nk=1, is

given as

IRD(R,F ) =
1

2

n∑
k=1

log2

1 + γk

1 + 2−2RRD
k (R,F )γk

. (4.52)

With ωk , f2
k (1+γk), k = 1, . . . , n, sorted in descending order, the compression rate allocated

to the kth mode equals

RRD
k (R,F ) =


[

R

l(R,F )
+

1

2
log2

ωk∏l(R,F )
i=1 ω

1/l(R,F )
i

]+

, R > 0

0, R = 0

. (4.53)

Here, l(R,F ) denotes the number of active modes which is given as

l(R,F ) =
n∑
k=1

1
{
R > RRD

c,k (F )
}
, (4.54)

where

RRD
c,k (F ) =

1

2

k∑
i=1

log2

ωi
ωk
, k = 1, . . . , n, (4.55)

are the critical rates.

Proof: See Appendix B.4.

We note that IRD(R,F ) is invariant with respect to scaling of F , i.e., we have IRD(R,F ) =

IRD(R,αF ) for any α 6= 0. Furthermore, the only difference between IRD(R,F ) and I(R) is

the rate allocation. Indeed, we can write I(R) (cf. (4.36)) as

I(R) =
1

2

n∑
k=1

log2

1 + γk
1 + 2−2Rk(R)γk

. (4.56)

Thus, an obvious question is whether there exists an F such that RRD
k (R,F ) = Rk(R) for

all R ∈ R+. The following theorem answers this question in the affirmative.
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Theorem 4.18. The optimal rate-information trade-off for jointly Gaussian random vectors

with mode SNRs γk, k = 1, . . . , n, can be achieved by linear filtering with subsequent MSE-

optimal source coding. Specifically, we have

I(R) = max
F

IRD(R,F ) = IRD(R,F ?), (4.57)

with an optimal linear filter

F ? = arg max
F

IRD(R,F ) = diag

{√
γk

1 + γk

}n
k=1

. (4.58)

The solution of (4.57) is not unique since any F ?
α = αF ? with α 6= 0 is optimal. We identify

F ? as the positive square root of the Wiener filter for a Gaussian signal in noise problem.

Proof: Using Lemma 4.17, it is not hard to see that (4.52)-(4.55) is equal to the optimal

rate-information trade-off (4.36)-(4.40) if fk = α
√
γk/(1 + γk) for any α 6= 0.

As a consequence of Theorem 4.18, RD theory provides achievability and converse results

for the rate-information trade-off. Hence, there exist codes which asymptotically achieve the

optimal trade-off and I(R) is indeed the dividing line between what is achievable and what is

not. Furthermore, Theorem 4.18 implies that the GIB can be decomposed into linear filtering

and MSE-optimal source coding. This is convenient since linear systems and RD theory are

very well understood and more widely known than the GIB.

Since the optimal linear filter F is the square-root Wiener filter F ? = W 1/2, we conclude

that both MSE-optimal source coding (corresponding to F = I) and MSE-optimal noisy

source coding (corresponding to F = W ) are suboptimal in general. For an arbitrary F =

diag{fk}nk=1, we can express and upper bound the gap to the optimal rate-information trade-

off as follows:

δI(R,F ) , I(R)− IRD(R,F ) (4.59)

=
1

2

n∑
k=1

log2

1 + 2−2RRD
k (R,F )γk

1 + 2−2Rk(R)γk
(4.60)

≤
n∑
k=1

C(γk)−
1

2
log2

f2
1 (1 + γ1)2

f2
1 (1 + γ1) + f2

2γ1(1 + γ2)
. (4.61)

Clearly, we have δI(R,F ?) = 0. Moreover, if all nonzero mode SNRs are equal, i.e., if

γk ∈ {γ, 0}, k = 1, . . . , n, then we have δI(R,F ) = 0 for any linear filter with fk = α1{γk 6= 0}
and α 6= 0. In this case, MSE-optimal noisy source coding is rate-information-optimal, i.e.,

we have IRD(R,W ) = I(R). Moreover, if all mode SNRs are nonzero and equal then MSE-

optimal source coding is rate-information-optimal, too. In this case we have IRD(R, I) =

I(R). In particular, MSE-optimal processing is always rate-information-optimal in the scalar

case. We conclude that the gap δI(R,F ) can be expected to be large if the mode SNRs differ

widely.
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Figure 4.5: (a) δI(R, I)/I(R) versus γ1 for different R and n = 16. (b) δI(R, I)/I(R) versus
γ1 for different n and R = 4 bit.

Next, we explicitly analyze the gap δI(R,F ) for F = I and γ1 > 0, γ2 = · · · = γn = 0.

In this case, the RD-optimal approach allocates rate to all modes if R > RRD
c,2 (I) = C(γ1).

Evaluating (4.60) and (4.61) yields

δI(R, I) =


0, R ≤ RRD

c,2

1

2
log2

1 + 2−2R/nγ1(1 + γ1)1/n−1

1 + 2−2Rγ1
, R > RRD

c,2

(4.62)

≤ C
(

γ1

1 + γ1

)
. (4.63)

Figure 4.5a shows (4.62) and (4.63) normalized by I(R) versus γ1 for different rates and

n = 16. We observe that at low SNR δI(R, I)/I(R) decreases with increasing R. Figure 4.5b

shows (4.62) and (4.63) normalized by I(R) versus γ1 for different n and R = 4 bit. Here,

the upper bound (4.63) gets tighter as n increases. In Figure 4.5a and Figure 4.5b, we have

δI(R, I)/I(R) = 0 when γ1 is such that C(γ1) ≥ R.

The proof of Lemma 4.17 shows that IRD(R,F ) admits an implicit reverse waterfilling

representation. Specifically, we have

R(θ,F ) =
1

2

n∑
k=1

log+
2

ωk
θ
, (4.64)

IRD(θ,F ) =
1

2

n∑
k=1

log+
2

1 + γk
1 + θγk/ωk

, (4.65)

where θ > 0 is the waterlevel. A waterfilling formulation of I(R) is obtained by letting

ωk = γk in (4.64) and (4.65). The optimal rate allocation (4.38) therefore corresponds to
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reverse waterfilling on the mode SNRs γk, k = 1, . . . , n, i.e., we have

Rk(θ) =
1

2
log+

2

γk
θ
, (4.66)

where the waterlevel θ is chosen such that
∑n

k=1Rk(θ) = R. Indeed, it can be shown that

(4.66) is the solution of the following convex optimization problem (cf., e.g., [12, Section 5.5]):

max
R1,...,Rn

1

2

n∑
k=1

log2

1 + γk
1 + 2−2Rkγk

(4.67)

subject to

n∑
k=1

Rk = R, Rk ≥ 0, k = 1, . . . , n.

The following Lemma considers properties of IRD(R,F ) and its derivative.

Lemma 4.19. Let the quantities ωk = f2
k (1 + γk), k = 1, . . . , n, be sorted in descending

order. The rate-information trade-off IRD(R,F ) is concave in R for arbitrary mode SNRs

γk, k = 1, . . . , n, if and only if the linear filter F = diag{fk}nk=1 is such that

ωk+1

ωk
≥ γk+1

γk
, k = 1, . . . , n− 1. (4.68)

In particular, for nonnegative ρ, IRD(R,W ρ) is concave in R for arbitrary mode SNRs if and

only if ρ ≤ 1/2. Furthermore, the derivative dIRD(R,F )/dR is continuous, nonincreasing,

and convex in R for arbitrary mode SNRs if and only if F = F ?. Otherwise, i.e., if F 6= F ?,

dIRD(R,F )/dR is discontinuous at the critical rates RRD
c,k (F ) = 1

2

∑k
i=1 log2

ωi
ωk

, k = 2, . . . , n.

Proof: See Appendix B.5.

Since (4.68) is fulfilled when F = F ?, Lemma 4.19 implies that I(R) is strictly increasing

and concave and thus R(I) is strictly increasing and convex. Furthermore, Lemma 4.19 shows

that IRD(R,W ) is not concave in general and must therefore be suboptimal. In the following

result, we state an interesting connection between the optimal critical rates Rc,k and the

critical rates RRD
c,k (F ).

Lemma 4.20. The critical rates RRD
c,k (I), RRD

c,k (F ?), and RRD
c,k (W ) are related as follows:

Rc,k = RRD
c,k (F ?) =

RRD
c,k (I) +RRD

c,k (W )

2
, k = 1, . . . , n. (4.69)

Furthermore, the critical rates are ordered such that

RRD
c,k (I) ≤ Rc,k ≤ RRD

c,k (W ), k = 1, . . . , n, (4.70)

which implies the following ordering of the number of active modes:

l(R, I) ≥ `(R) ≥ l(R,W ). (4.71)
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Proof: See Appendix B.6.

Lemma 4.20 shows that MSE-optimal source coding uses too many modes and allocates

too little rate to the strongest modes. Similarly, MSE-optimal noisy source coding uses too

few modes and allocates too much rate to the strongest modes. Interestingly, the optimal

critical rates Rc,k are equal to the arithmetic mean of RRD
c,k (I) and RRD

c,k (W ).

4.7 Quantizer Design

We next compare the asymptotic limit characterized by I(R) to the relevant information that

can be preserved using finite blocklength quantizers. To this end, we propose to quantize the

modes with an MSE-optimal quantizer. Due to Theorem 4.18, we know that this strategy is

asymptotically rate-information-optimal when suitable linear preprocessing is performed. In

the finite blocklength regime, the rate-information-optimality of MSE-optimal quantization

is not guaranteed. However, the numerical results presented below justify our approach.

An important property of MSE-optimal quantizers is that their quantization regions are

disjoint convex sets (cf. Section 5.2). We note that convex quantization regions are not always

optimal in quantizer design for communication problems (see, e.g., [120] for a counterexam-

ple). The existence of an MSE-optimal partition of the input space implies that randomized

quantization cannot improve upon deterministic quantization. This is because any random-

ized quantizer can be realized by using a set of (possibly suboptimal) deterministic quantizers

in a time-sharing manner.

The fact that we can restrict our attention to MSE-optimal quantizers is very convenient

with respect to quantizer design. Specifically, MSE-optimal quantizers can be designed using

well-known algorithms such as the Lloyd-Max algorithm [66,71] and the LBG algorithm [65].

For the case of a single mode with γ ∈ {0 dB, 5 dB, 10 dB}, Figure 4.6 shows how close we can

get to I(R) using scalar quantizers. The solid lines correspond to the respective information-

rate functions and the ‘×’ markers correspond to the relevant information achievable using

MSE-optimal quantizers with 2 to 32 quantization levels. We note that in this case the

quantization rate equals the entropy of the quantizer output, i.e., R = I(y; z) = H(z), since

the quantizers are deterministic. We observe that the gap to I(R) decreases as R increases

and for fixed R the gap to I(R) grows with increasing SNR. Using a vector quantizer instead

of a scalar quantizer will slightly reduce the gap to I(R). However, the main benefit of vector

quantization (VQ) is the increased flexibility regarding the rate R. We note that time-sharing

can be used to (asymptotically) achieve all points on a line connecting the rate-information

pairs corresponding to two quantizers.

In the vector case with multiple modes we can design MSE-optimal vector quantizers

which jointly quantize all modes. To ensure the correct rate allocation, the input of the

vector quantizer has to be linearly filtered as described in Theorem 4.18. Alternatively, we

may quantize the modes separately with a different MSE-optimal quantizer for each mode.

In this case, linear preprocessing of the modes is not required but the rates of the individual
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Figure 4.6: Comparison of I(R) to the relevant information I(x; z) achievable using scalar
quantizers with 2 to 32 quantization levels for a single mode with γ ∈ {0 dB, 5 dB, 10 dB}.

quantizers must be chosen to closely match the optimal rate allocation. However, using

quantizers with small blocklength it is hardly possible to obtain a good approximation of

the optimal rate allocation. Therefore, the simpler strategy of separate quantization of the

modes can be expected to perform worse than joint VQ of all modes.

Next, we give a numerical justification for the MSE as optimality criterion in the quantizer

design. We again consider the case of a single mode with γ ∈ {0 dB, 5 dB, 10 dB}. Since the

input of the quantizer is a zero-mean Gaussian distribution, the MSE-optimal quantizer is

always symmetric, i.e., if there is a quantizer boundary at y then there also is a quantizer

boundary at −y. Thus, there is only one free parameter (i.e., quantizer boundary) in the

design of quantizers with 3 and 4 quantization levels.

In Figure 4.7, we show how the rate and the relevant information behave as we vary the po-

sition of the quantizer boundaries (solid lines). The ‘×’ markers correspond to the respective

MSE-optimal quantizers and the dashed lines correspond to the respective information-rate

functions. We observe that the MSE-optimal quantizers almost achieve the maximum value

of the relevant information (the difference is less than 1 % in all cases). More importantly,

the gap to I(R) is smaller (both relatively and absolutely) for the MSE-optimal quantizer

than for the quantizer that maximizes the relevant information. This is because the slope

of I(R) is larger than the slope of the respective solid lines. The rate of the quantizers is

maximized when the quantizer outputs are equally likely. This is the case at R = log2(3) and

R = 2, respectively. We note that the MSE-optimal quantizers outperform the corresponding

maximum output entropy quantizers (cf. Section 5.1 and [73]).
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Figure 4.7: Behavior of the rate and the relevant information as the quantizer boundaries
vary. MSE-optimal quantizers are indicated by ‘×’ markers and the dashed lines correspond
to I(R).

4.8 Discussion

In this chapter, we have used the GIB to derive closed-form expressions for the information-

rate function and the rate-information function in the case of jointly Gaussian random vec-

tors. We have shown that the optimal allocation of the compression rate corresponds to

reverse waterfilling on the mode SNRs. Furthermore, MSE-optimal (noisy) source coding is

suboptimal in terms of the rate-information trade-off. However, the only difference between

MSE-optimal processing and rate-information-optimal processing is the rate allocation. We

have proven that MSE-optimal quantization achieves the optimal rate-information trade-off

when suitable linear preprocessing is used. Thereby we have also shown that the GIB is

equivalent to linear filtering with subsequent MSE-optimal compression. This is important

because it relates the GIB to two much more well-known concepts. Moreover, this implies

that the RD theorem provides achievability and converse results for the rate-information

trade-off in the Gaussian case. Finally, we have considered quantizer design and we have

compared the information-rate function to the relevant information that can be preserved

using finite blocklength quantizers. It turns out that it is sufficient to consider MSE-optimal

quantizers. Furthermore, I(R) can be closely approached as the quantization rate increases.

The results presented in this chapter can be extended to the case of complex-valued

jointly Gaussian random vectors x, y by writing the respective covariance matrices in real
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form. That is, a complete statistical description of a complex Gaussian random vector ζ =

ζR +
√
−1ζI ∈ Cn (with ζR, ζI ∈ Rn) is given by the mean vector and the covariance matrix

of ζ̃ =
[
ζT
R ζ

T
I

]T ∈ R2n. An extension of the rate-information trade-off to jointly stationary

Gaussian random processes is given in [72, Section 5]. Furthermore, our results hint at a

relation between the Wiener filter and the GIB which is explored in [72, Section 3].

It is important to note that throughout this chapter, we have optimized the quantizer

mapping p(z|y) for a fixed distribution p(x) of the relevance variable x. In cases where p(x)

can be changed, it may be more interesting to consider the following joint optimization of

p(z|y) and p(x) with the Markov chain x↔ y↔ z:

max
{p(z|y), p(x)}

I(x; z) subject to I(y; z) ≤ R and E{‖x‖22} ≤ P. (4.72)

In a communications context, (4.72) corresponds to the joint optimization of the input distri-

bution and the channel output quantizer. Hence, the solution of (4.72) is the capacity of the

quantized channel subject to a constraint on the quantization rate. The problem in (4.72)

is unsolved and a Gaussian p(x) is not optimal in general. To see this, consider y = x + w

with w ∼ N (0, 1) independent of x and z = sign(y). The blue line (‘O’ marker) in Figure 4.8

shows I(x; z) for an equally likely binary input x ∈ {−√γ,√γ}. Similarly, the red line (‘M’

marker) shows I(x; z) for x ∼ N (0, γ). In both cases we have R = H(z) = 1 bit. We observe

that the binary input significantly outperforms the Gaussian input at high SNR. However,

neither of the two input distributions is optimal for all SNRs. This shows that Gaussian

input distributions do not achieve the capacity of a quantized Gaussian channel for all SNRs.

The joint optimization in (4.72) is hard because it couples p(z|y) and p(x) in very intricate

way. In particular, an alternating optimization of p(z|y) and p(x) need not converge. For

the special case of binary-input discrete memoryless channels, some progress towards solving

(4.72) has been made. In this case, the algorithm proposed in [56] either solves (4.72) or

declares an error. Unfortunately, this algorithm seems to work well only for rather small

alphabet sizes of the channel output and the quantizer output.
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5

Quantizer Design for

Communication Problems

In this chapter, we consider the design of mutual-information-optimal quantizers. We intro-

duce the problem setup and discuss the differences to distortion-based quantizer design in

Section 5.1. Next, we discuss optimal quantization in terms of the mean-square error (MSE)

and we review the Lloyd-Max algorithm [66, 71] in Section 5.2. In Section 5.3, we conceive

an alternating optimization algorithm for the design of scalar quantizers. This algorithm is

strongly reminiscent of the famous Lloyd-Max algorithm but maximizes mutual information

instead of minimizing the MSE. In Section 5.4, we present a greedy algorithm for the design

of mutual-information-optimal scalar quantizers. In Section 5.5, we propose an algorithm for

channel-optimized vector quantization (COVQ) which is based on the information bottleneck

(IB) method and includes the design of scalar quantizers and vector quantizers as special

cases. A comparison of the proposed algorithms and numerical application examples are

given in Section 5.6. The discussion in Section 5.7 concludes this chapter.
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data

source
channel

y ∈ Ykx ∈ X l
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quantizer
z ∈ Z

p(x)

Figure 5.1: System model for quantizer design. The quantizer is designed to maximize the
mutual information I(x; z).

5.1 Introduction and Background

In this chapter, we devise novel algorithms for the design of low-rate quantizers for communi-

cation problems. Low-rate quantization is of interest due to constraints regarding bandwidth,

memory size, power consumption, and chip area. Application examples for quantizers in

digital communication systems include log-likelihood ratio (LLR) quantization for iterative

decoders, quantization for receiver front-ends, and quantization in distributed systems like

relay networks.

Quantization is well studied in the lossy source coding setting, and rate-distortion theory

provides the corresponding fundamental performance limits. However, it is important to

note that a source coding perspective is not appropriate for quantization in a communications

context. Instead of representing a signal with small distortion, we are interested in maximizing

the achievable rate. Hence, our objective in quantizer design is to maximize the mutual

information between the data and the quantizer output.

More specifically, we consider k-dimensional vector quantization (VQ) in the setting de-

picted in Figure 5.1. The length-l data block x ∈ X l is transmitted over a channel with

transition probability density function (pdf) p(y|x), yielding the length-k channel output

y ∈ Yk. The quantizer q : Yk → Z maps y to the quantizer output z = q(y). We denote

the number of quantization levels by n = |Z|. The rate of the quantizer (in bits per sample)

equals log2(n)/k.

Throughout this chapter we assume that |X l| < ∞. Additionally, we assume that the

channel p(y|x) is memoryless and that the outputs of the data source are independent and

identically distributed. Furthermore, the term “channel” is to be understood in a very general

sense. The channel p(y|x) could for example be comprised of a modulator, a waveform

channel, and a demodulator. We also allow for l 6= k which is the case, e.g., when x is a

vector of symbols from a higher-order signal constellation and the channel output y is the

vector of LLRs for the bits corresponding to the symbols x.

The quantizer q(·) is the solution of the following optimization problem (here, p(x) and

p(y|x) are fixed and known):

p?(z|y) = arg max
p(z|y)

I(x; z) subject to |Z| = n. (5.1)

In (5.1), the quantizer is described by the probabilistic mapping p?(z|y). The concatenation
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of the channel p(y|x) and the quantizer q(·) yields an overall channel with transition pdf

p(z|x) =

∫
Yk
p?(z|y)p(y|x)dy. (5.2)

In (5.2), we have used the fact that x↔ y ↔ z is a Markov chain. The maximization of the

mutual information I(x; z) in (5.1) thus corresponds to maximizing the achievable rate for

data transmission over the channel p(z|x).

We emphasize that the quantizer design in (5.1) is substantially different from distortion-

based quantizer design. The main differences are: (a) the optimization problem (5.1) involves

a third random variable in addition to the quantizer input and the quantizer output, (b) the

reproducer values are immaterial since mutual information depends only on the probability

distributions, and (c) the problem in (5.1) is a convex maximization problem.

Due to (b) it suffices to choose Z = {1, . . . , n}. To see that (5.1) is a convex maximization

problem, recall that I(x; z) is convex in p(z|x) for fixed p(x). If additionally p(y|x) is fixed,

then I(x; z) is also convex in p(z|y) due to (5.2). Furthermore, the set of valid (i.e., nonneg-

ative and normalized) probability distributions p(z|y), is a (n − 1)-dimensional probability

simplex and thus convex. Hence, (5.1) is indeed a convex maximization problem. We next

show that the solution of (5.1) is a deterministic quantizer, i.e., we have p?(z|y) ∈ {0, 1}. To

this end, we first introduce the notion of a set that is bounded from below.

Definition 5.1. A set S ⊂ Rm is bounded from below if there exists an a ∈ Rm such that

b � a for all b ∈ S.

For a feasible set S that is closed, convex, and bounded from below, the following propo-

sition relates the solution of a convex maximization problem to the extreme points of its

feasible set.

Proposition 5.2 (cf. [10, Proposition B.19]). Let S be a closed convex set which is bounded

from below and let f : S → R be a convex function. If f attains a maximum over S, then it

attains a maximum at some extreme point of S.

Note that a set which is bounded from below cannot contain a line and, hence, contains at

least one extreme point. Proposition 5.2 applies to (5.1) and thus its solution is an extreme

point of the probability simplex P, i.e., we have p?(z|y) ∈ {0, 1} which corresponds to a

deterministic quantizer.

We next briefly mention quantization for maximum output entropy (MOE). In this case,

the quantizer is the solution of the following optimization problem:

arg max
p(z|y)

H(z) subject to |Z| = n. (5.3)

The optimal quantizer which solves (5.3) is such that p(z) = 1/n, z ∈ Z, and is referred

to as MOE quantizer [73]. We note that the maximization of H(z) is equivalent to the
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maximization of I(y; z) = H(z) − H(z|y), i.e., the MOE quantizer maximizes the mutual

information between the input and output of the quantizer. The problem (5.1) is equivalent

to (5.3) if the channel p(y|x) is a one-to-one function (in this case we have I(x; z) = I(y; z)).

We shall use the MOE quantizer as initialization for the iterative quantizer design algorithms

which we discuss in the sequel.

Quantizer design for communication problems has recently attracted some attention.

In [117], LLR quantizers maximizing mutual information are designed using the iterative

IB algorithm. This approach has been extended in [120] to channel output quantization

for intersymbol interference channels. Maximum mutual information LLR vector quantizer

design based on training data has been proposed in [22]. Quantization of conditionally Gaus-

sian LLRs for maximum mutual information has been studied in [85]. LLR quantization for

bit-interleaved coded modulation systems with soft-output demodulators has been considered

in [78,88]. In [55], LLR quantization for binary-input discrete memoryless channels (DMCs)

has been studied.

5.2 MSE-Optimal Quantization and the Lloyd-Max Algorithm

In this section, we consider MSE-optimal quantization and we review the Lloyd-Max algo-

rithm for designing an MSE-optimal scalar quantizer. We shall later see that the algorithm

proposed in Section 5.3 operates in a manner that is similar to the Lloyd-Max algorithm.

Using the notation introduced in the previous section, we can express the MSE distortion

associated to the quantizer q : Yk → Z as follows:

D = E
{
‖y − q(y)‖22

}
=

∫
Yk
‖y − q(y)‖22 p(y)dy. (5.4)

If we let n = |Z| be the number of quantization levels, then we can further rewrite (5.4) as

D =
n∑
i=1

∫
Yki
‖y − zi‖22 p(y)dy, (5.5)

where Yki and zi, i = 1, . . . , n, are the quantization regions and the reproducer values, re-

spectively1. We note that Yki ∩ Ykj = ∅ if i 6= j and
⋃n
i=1 Yki = Yk. In (5.5), the quantizer is

equivalently specified by {Yki }ni=1 and {zi}ni=1. An MSE-optimal quantizer minimizes D, i.e.,

it solves the optimization problem

min
{Yki }ni=1, {zi}ni=1

n∑
i=1

∫
Yki
‖y − zi‖22 p(y)dy. (5.6)

1The quantization regions are sometimes referred to as boundary points, decision points, decision levels, or
endpoints. Similarly, the reproducer values are also referred to as output levels, output points, or reproduction
values [30, Section 5.1].
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It can be shown that an MSE-optimal quantizer is always deterministic. In contrast to

mutual-information-optimal quantization, the reproducer values affect the objective function

in addition to the quantization regions. Therefore, Z is a set of n vectors of dimension k and

these vectors have to be chosen optimally according to (5.6). Furthermore, the quantization

regions of an MSE-optimal quantizer form a Voronoi tessellation of Yk with convex Voronoi

cells, i.e., the sets Yki , i = 1, . . . , n, are convex sets. This is intuitive since for any given set

of reproducer values {zi}ni=1, the following partition of Yk has smallest MSE:

Yki = {y ∈ Yk | ‖y − zi‖22 ≤ ‖y − zj‖22, j 6= i}, i = 1, . . . , n. (5.7)

Assuming that Yk is a convex set, it is not hard to see that the quantization regions are convex

as well. A tie braking strategy has to be used in (5.7) in case any y ∈ Yk is equidistant to

two or more reproducer values. We note that the quantization regions of mutual-information-

optimal quantizers need not be convex or even connected (see, e.g., [120]).

There exist several algorithms for the design of MSE-optimal quantizers, most notably the

Lloyd-Max [66, 71] algorithm and the LBG algorithm [65]. The Lloyd-Max algorithm finds

an MSE-optimal scalar quantizer and the LBG algorithm is an extension to vector quantizer

design. Both algorithms can be used when the distribution p(y) is known or unknown. In the

latter case, quantizer design is performed using samples (training data) that are distributed

according to p(y). The Lloyd-Max algorithm and the LBG algorithm find a locally optimal

solution of (5.6). In the case of discrete sources, i.e., when p(y) is a probability mass function

(pmf), dynamic programming can be used to find a (globally) MSE-optimal quantizer. We

next describe the Lloyd-Max algorithm in more detail.

We consider MSE-optimal scalar quantization (k = 1) with known pdf p(y) and we assume

Y ⊆ R. In this case, the quantization regions are intervals on the real line. Hence, we can

rewrite (5.5) as

D =

n∑
i=1

∫ gi

gi−1

(y − zi)2p(y)dy, (5.8)

where we set g0 = −∞ and gn =∞. Therefore, to find an MSE-optimal quantizer, we need to

find n reproducer values z1, . . . , zn and n−1 quantizer boundaries g1, . . . , gn−1 that minimize

(5.8). We thus seek a solution of the following optimization problem:

min
{gi}n−1

i=1 , {zi}ni=1

∫ g1

−∞
(y − zi)2p(y)dy +

n−1∑
i=2

∫ gi

gi−1

(y − zi)2p(y)dy +

∫ ∞
gn−1

(y − zi)2p(y)dy. (5.9)

Note that the quantization regions are given as Yi = [gi−1, gi), i = 1, . . . , n.

We cannot minimize the MSE-distortion D directly since the problem in (5.9) is generally

nonconvex. However, an alternating minimization can be used to obtain a locally optimal
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solution of (5.9). A necessary condition for the optimality of the quantizer boundaries is

∂D

∂gj
= (gj − zj)2py(gj)− (gj − zj+1)2py(gj) = 0, j = 1, . . . , n− 1. (5.10)

Assuming py(gj) > 0 in (5.10) and solving for gj yields

gj =
zj+1 + zj

2
, j = 1, . . . , n− 1. (5.11)

Thus, for fixed reproducer values, the optimal quantizer boundaries are given as the arithmetic

mean of their neighboring reproducer values. Next, we compute the partial derivatives with

respect to the reproducer values. We have

∂D

∂zj
= −2

∫ gj

gj−1

(y − zj)p(y)dy, j = 1, . . . , n. (5.12)

Setting the derivatives in (5.12) to zero and solving for zj yields

zj =

∫ gj

gj−1

yp(y)dy∫ gj

gj−1

p(y)dy

, j = 1, . . . , n. (5.13)

Thus, for fixed quantizer boundaries, the optimal reproducer values are the centroids of their

respective quantization region.

The Lloyd-Max algorithm uses the coupled equations (5.11) and (5.13) to iteratively find

a locally optimal quantizer. The algorithm is initialized with a guess for either the reproducer

values or the quantizer boundaries. Next, the quantizer boundaries and the reproducer values

are alternatingly updated using (5.11) and (5.13). The algorithm stops when the largest

change in the reproducer values between two iterations is below a prescribed threshold or if

a certain number of iterations has been performed.

In addition to the number of iterations and the stopping threshold, the result of the

Lloyd-Max algorithm is affected by the initialization. We have found that using the MOE

quantizer [73] as initialization yields good results. Finally, we note that the Lloyd-Max

algorithm can also be used to numerically obtain optimized quantizers for distortion measures

other than the squared-error distortion.

5.3 Scalar Quantizer Design for Maximum Mutual Information

We next devise an algorithm for scalar (k = 1) quantizer design which maximizes the mutual

information I(x; z) and operates in a similar manner as the Lloyd-Max algorithm. A related

approach has been proposed in [85]. However, in contrast to our work, [85] is restricted to

the binary case, i.e., |X l| = 2, and to the quantization of conditionally Gaussian LLRs. In
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what follows, we assume that y is a continuous random variable with Y ⊆ R. Furthermore,

we let Z = {1, . . . , n}, where n is the number of quantization levels.

The objective function in (5.1) can be written explicitly in terms of p(z|y) as follows:

I(x; z) =
∑
x∈X l

p(x)
∑
z∈Z

p(z|x) log
p(z|x)

p(z)
(5.14)

=
∑
x∈X l

p(x)
∑
z∈Z

∫
Y
p(z|y)p(y|x)dy log

∫
Y
p(z|y)p(y|x)dy∫
Y
p(z|y)p(y)dy

(5.15)

=
∑
x∈X l

p(x)
∑
z∈Z

∫
Yz
p(y|x)dy log

∫
Yz
p(y|x)dy∫
Yz
p(y)dy

. (5.16)

In (5.16), we have used the fact that the optimal quantizer is deterministic (i.e., p(z|y) ∈
{0, 1}). We can thus write the quantization regions as

Yz = {y ∈ Y | p(z|y) = 1}, z = 1, . . . , n. (5.17)

Finding an optimal quantizer therefore amounts to finding the quantization regions (5.17)

such that (5.16) is maximized. Hence, we can write the quantizer design problem as follows:

max
Y1,...,Yn

∑
x∈X l

p(x)
∑
z∈Z

∫
Yz
p(y|x)dy log

∫
Yz
p(y|x)dy∫
Yz
p(y)dy

. (5.18)

As we have mentioned in the previous section, the optimal quantization regions need not

be convex sets. However, it can be shown that the quantization regions are convex if y is a

posterior probability for x. This is a sufficient condition for the convexity of the quantization

regions which is a consequence of [14, Theorem 1]. In the sequel, we assume that the optimal

quantization regions are indeed convex sets.

5.3.1 Nonbinary Case

We first consider the nonbinary case, i.e., we have |X l| > 2. Assuming that the optimal

quantization regions are convex sets allows us to rewrite (5.16) as follows:

I(g) = I(g1, . . . , gn−1) =
∑
x∈X l

p(x)
n∑
i=1

∫ gi

gi−1

p(y|x)dy log

∫ gi

gi−1

p(y|x)dy∫ gi

gi−1

p(y)dy

. (5.19)
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Here, we use the notation I(g), with g = (g1 · · · gn−1)T, to emphasize that for fixed p(x) and

p(y|x) the mutual information I(x; z) is determined solely by the quantizer boundaries. We

again set g0 = −∞ and gn =∞. The quantizer design problem (5.18) can thus be rewritten

as follows:

max
g1,...,gn−1

∑
x∈X l

p(x)

n∑
i=1

∫ gi

gi−1

p(y|x)dy log

∫ gi

gi−1

p(x|y)p(y)dy

p(x)

∫ gi

gi−1

p(y)dy

, (5.20)

where we have used Bayes’ rule in the numerator of the logarithm in (5.19). Next, we define

h?i (x) ,

∫ gi

gi−1

p(x|y)p(y)dy∫ gi

gi−1

p(y)dy

, i = 1, . . . , n, (5.21)

which allows us to rewrite the objective function in (5.20) as

I(g) =
∑
x∈X l

p(x)
n∑
i=1

∫ gi

gi−1

p(y|x)dy log
h?i (x)

p(x)
. (5.22)

We note that h?i (x) is the a posteriori probability (APP) P{x=x|z= i}. Next, we let hi(x),

i = 1, . . . , n, be arbitrary probability distributions on X l. We define the modified objective

function

I
(
g,h(x)

)
,
∑
x∈X l

p(x)
n∑
i=1

∫ gi

gi−1

p(y|x)dy log
hi(x)

p(x)
, (5.23)

where h(x) =
(
h1(x) · · · hn(x)

)T
. The following result relates (5.23) to (5.22).

Proposition 5.3. The functions I
(
g,h(x)

)
and I(g) are related as

max
h(x)

I
(
g,h(x)

)
= I(g), (5.24)

where the maximum in (5.24) is achieved by (5.21). Therefore, the quantizer design problem

can be rewritten as follows:

max
g

I(g) = max
g

max
h(x)

I
(
g,h(x)

)
. (5.25)

Proof: See Appendix C.1.

We note that the approach of rewriting the original problem as in (5.25) is similar to

the Blahut-Arimoto algorithm [3, 11]. Proposition 5.3 allows us to approach the quantizer

design problem via alternating maximization. Next, we compute the partial derivatives
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∂I
(
g,h(x)

)
/∂gj , j = 1, . . . , n− 1. We have

∂I
(
g,h(x)

)
∂gj

=
∂

∂gj

∑
x∈X l

p(x)
n∑
i=1

∫ gi

gi−1

p(y|x)dy log
hi(x)

p(x)
(5.26)

=
∑
x∈X l

p(x)

[
py|x(gj |x) log

hj(x)

p(x)
− py|x(gj |x) log

hj+1(x)

p(x)

]
(5.27)

=
∑
x∈X l

p(x)py|x(gj |x) log
hj(x)

hj+1(x)
(5.28)

= py(gj)
∑
x∈X l

px|y(x|gj) log
hj(x)

hj+1(x)
, j = 1, . . . , n− 1. (5.29)

Setting the above derivatives to zero and assuming py(gj) > 0 in (5.29) yields the following

necessary conditions for optimality of the quantizer boundaries:

E
{

log
hj(x)

hj+1(x)

∣∣∣∣ y=gj

}
= 0, j = 1, . . . , n− 1. (5.30)

Any suitable root-finding method (e.g., Brent’s method [13, Chapter 4]) can be used to find

the quantizer boundaries such that (5.30) is fulfilled.

Our algorithm starts with an initialization for g such that py(gj) > 0, j = 1, . . . , n−1. The

quantities h(x) and g are then updated alternatingly using (5.21) and (5.30). The algorithm

stops if the increase in I(x; z) between two iterations is below a prescribed threshold or if a

certain number of iterations has been performed. Algorithm 5.1 summarizes the proposed

algorithm for scalar quantizer design in the nonbinary case. Although we have observed

excellent convergence behavior, we were unable to formally prove the convergence of this

algorithm. The choice of the initialization for g may affect the resulting quantizer. In

principle any initialization with py(gj) > 0, j = 1, . . . , n− 1, is acceptable. However, we have

found that initializing g using the MOE quantizer yields good results.

5.3.2 Binary Case

We next specialize our algorithm to the binary case, i.e., x ∈ X is a binary random variable

(l = 1). Without loss of generality we let X = {−1, 1}. In this case, we can elegantly

reformulate Algorithm 5.1 in terms of LLRs. In particular, we rewrite (5.21) as

h?i (x) =

∫ gi

gi−1

p(y|x)p(x)dy∫ gi

gi−1

p(y|x)p(x)dy +

∫ gi

gi−1

p(y|−x)p(−x)dy

=
1

1 + e−xLi
, i = 1, . . . , n. (5.31)
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Algorithm 5.1 Scalar quantizer design for maximum mutual information (nonbinary case).

Input: X l, Y, Z, p(x, y), ε > 0, M ∈ N
Initialization: η ← ∞, m ← 1, n ← |Z|, choose g(0) such that g

(0)
1 < · · · < g

(0)
n−1 and

py

(
g

(0)
j

)
> 0, j = 1, . . . , n− 1, g

(0)
0 ← −∞, g

(0)
n ←∞

1: h
(0)
j (x)←

∫ g
(0)
j

g
(0)
j−1

p(x, y)dy, j = 1, . . . , n

2: h
(0)
j (x)← h

(0)
j (x)/

∑
x∈X l

h
(0)
j (x), j = 1, . . . , n

3: I(0) ←
∑
x∈X l

p(x)
n∑
j=1

∫ g
(0)
j

g
(0)
j−1

p(y|x)dy log
h

(0)
j (x)

p(x)

4: while η ≥ ε and m ≤M do

5: g
(m)
0 ← −∞, g

(m)
n ←∞

6: g
(m)
j ← root of E

{
log

h
(m−1)
j (x)

h
(m−1)
j+1 (x)

∣∣∣∣ y=y

}
, j = 1, . . . , n− 1

7: h
(m)
j (x)←

∫ g
(m)
j

g
(m)
j−1

p(x, y)dy, j = 1, . . . , n

8: h
(m)
j (x)← h

(m)
j (x)/

∑
x∈X l

h
(m)
j (x), j = 1, . . . , n

9: I(m) ←
∑
x∈X l

p(x)
n∑
j=1

∫ g
(m)
j

g
(m)
j−1

p(y|x)dy log
h

(m)
j (x)

p(x)

10: η ←
(
I(m) − I(m−1)

)
/I(m)

11: m← m+ 1
12: end while
Output: quantizer boundaries g(m−1) and APPs h(m−1)(x)
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The LLR Li in (5.31) equals

Li = log
P{x=1|z= i}
P{x=−1|z= i} = log

P{x=1, z= i}
P{x=−1, z= i} = log

P{x=1}
∫ gi

gi−1

p(y|x=1)dy

P{x=−1}
∫ gi

gi−1

p(y|x=−1)dy

. (5.32)

Hence, Li is the posterior LLR for x when z = i, i.e., we can identify each quantizer output

with its corresponding LLR Lz, z ∈ Z = {1, . . . , n}. Using (5.31), we can rewrite the

necessary optimality condition (5.30) for the quantizer boundaries as follows:

P{x=1|y=gj} log
1 + e−Lj+1

1 + e−Lj
+ P{x=−1|y=gj} log

1 + eLj+1

1 + eLj
= 0, j = 1, . . . , n− 1.

(5.33)

Next, we further rewrite (5.33) in terms of the LLR Lx(gj) = logP{x=1|y=gj}−logP{x=

−1|y=gj}. We have

Lx(gj) = log
log

1 + eLj+1

1 + eLj

log
1 + e−Lj

1 + e−Lj+1

, j = 1, . . . , n− 1. (5.34)

A suitable root-finding method can again be used to find the quantizer boundaries such that

(5.34) is fulfilled. We note that (5.34) has a unique solution if Lx(y) is strictly increasing in

y (cf. Appendix C.2). In the special case of LLR quantization, y is an LLR and we thus have

Lx(gj) = gj (cf. Lemma 3.2). This yields the following closed-form solution for the quantizer

boundaries:

gj = log
log

1 + eLj+1

1 + eLj

log
1 + e−Lj

1 + e−Lj+1

, j = 1, . . . , n− 1. (5.35)

In the binary case, our algorithm starts with an initialization for g such that py(gj) > 0,

j = 1, . . . , n − 1. The quantities {Li}ni=1 and g are then updated alternatingly using (5.32)

and (5.34). The algorithm stops if the increase in I(x; z) between two iterations is below

a prescribed threshold or if a certain number of iterations has been performed. Algorithm

5.2 summarizes the proposed algorithm for scalar quantizer design in the binary case. The

following proposition gives conditions which imply convergence of the proposed algorithm to

a locally optimal quantizer.

Proposition 5.4. In the binary case, the proposed algorithm converges to a locally optimal

solution of (5.20) if the LLR Lx(y) is strictly increasing in y. For the special case of LLR

quantization, the proposed algorithm thus always finds a locally optimal quantizer.

Proof: See Appendix C.2.
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Algorithm 5.2 Scalar quantizer design for maximum mutual information (binary case).

Input: Y, Z, p(x, y), ε > 0, M ∈ N
Initialization: X = {−1, 1}, η ← ∞, m ← 1, n ← |Z|, choose g(0) such that g

(0)
1 < · · · <

g
(0)
n−1 and py

(
g

(0)
j

)
> 0, j = 1, . . . , n− 1, g

(0)
0 ← −∞, g

(0)
n ←∞

1: L
(0)
j ← log

∫ g
(0)
j

g
(0)
j−1

p(y|x=1)P{x=1}dy−log

∫ g
(0)
j

g
(0)
j−1

p(y|x=−1)P{x=−1}dy, j = 1, . . . , n

2: I(0) ←
∑
x∈X

p(x)
n∑
j=1

∫ g
(0)
j

g
(0)
j−1

p(y|x)dy log
1

p(x)
(

1 + e−xL
(0)
j

)
3: while η ≥ ε and m ≤M do

4: g
(m)
0 ← −∞, g

(m)
n ←∞

5: g
(m)
j ← root of Lx(y)+log log

1 + e−L
(m−1)
j

1 + e−L
(m−1)
j+1

− log log
1 + eL

(m−1)
j+1

1 + eL
(m−1)
j

, j = 1, . . . , n−1

6: L
(m)
j ← log

∫ g
(m)
j

g
(m)
j−1

p(y|x=1)P{x=1}dy − log

∫ g
(m)
j

g
(m)
j−1

p(y|x=−1)P{x=−1}dy,

j = 1, . . . , n

7: I(m) ←
∑
x∈X

p(x)
n∑
j=1

∫ g
(m)
j

g
(m)
j−1

p(y|x)dy log
1

p(x)
(

1 + e−xL
(m)
j

)
8: η ←

(
I(m) − I(m−1)

)
/I(m)

9: m← m+ 1
10: end while
Output: quantizer boundaries g(m−1) and posterior LLRs L

(m−1)
j , j = 1, . . . , n



5.4 A Greedy Algorithm for Scalar Quantizer Design 139

5.4 A Greedy Algorithm for Scalar Quantizer Design

In this section, we again consider scalar quantizer design and we assume that the optimal

quantization regions are convex sets. Instead of the alternating optimization approach of

Section 5.3, the algorithm proposed in this section directly optimizes the quantizer bound-

aries g1, . . . , gn−1. Maximizing the mutual information I(x; z) = H(x)−H(x|z) is equivalent

to minimizing the conditional entropy H(x|z). Hence, we want to minimize the following

objective function (here, g0 = −∞, gn =∞, and n is the number of quantization levels):

H(g) = H(g1, . . . , gn−1) =
∑
x∈X l

p(x)
n∑
i=1

∫ gi

gi−1

p(y|x)dy log

∫ gi

gi−1

p(y|x)dy, (5.36)

where we use H(g) to denote the dependence of H(x|z) on the quantizer boundaries. Mini-

mizing (5.36) with respect to g = (g1 · · · gn−1)T is difficult since H(g) is not convex in g. We

thus propose to iteratively optimize one quantizer boundary at a time in a greedy fashion.

This approach allows us to find a locally optimal quantizer up to a desired accuracy.

The proposed algorithm starts with an initialization g for the quantizer boundaries. Next,

a set of candidate quantizer boundaries is generated based on g. These candidates, denoted

by g̃j , j = 1, . . . , 2(n− 1), are given as

g̃2j−1 = (g1 · · · gj−1 g̃−j gj+1 · · · gn−1)T, j = 1, . . . , n− 1, (5.37a)

g̃2j = (g1 · · · gj−1 g̃+
j gj+1 · · · gn−1)T, j = 1, . . . , n− 1, (5.37b)

where g̃−j < gj < g̃+
j . Of course, the modified quantizer boundaries must be such that the

elements of the vector g̃j are still sorted, i.e., we have gj−1 < g̃−j < gj+1 and gj−1 < g̃+
j < gj+1.

Next, (5.36) is evaluated for all candidates and the difference to H(g) is computed. We have

∆j = H(g)−H(g̃j), j = 1, . . . , 2(n− 1), (5.38)

and we let i = arg maxj ∆j be the index of the candidate that yields the largest difference

in the objective function value. If ∆i ≤ 0, then none of the candidates improves over g. In

this case, the generation of the candidates is either refined or the algorithm is terminated.

Otherwise, we have ∆i > 0 and thus among all candidates g̃i yields the largest improvement.

Since the algorithm operates in greedy manner, we use g̃i as updated quantizer boundaries.

The next iteration starts with the generation of new candidates based on g̃i. The algorithm

terminates after a certain number of iterations and refinements of the candidate generation.

We next describe the generation of the candidate quantizer boundaries. For the bound-

aries gj , j = 2, . . . , n− 2, we generate the candidates as follows:

g̃−j = gj −
gj − gj−1

2r
, j = 2, . . . , n− 2, (5.39a)

g̃+
j = gj +

gj+1 − gj
2r

, j = 2, . . . , n− 2, (5.39b)
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where r ≥ 1 is the refinement level. For the boundaries g1 and gn−1 we propose to use the

candidates

g̃−1 = g1 −
g2 − g1

2r
, g̃−n−1 = gn−1 −

gn−1 − gn−2

2r
, (5.40a)

g̃+
1 = g1 +

g2 − g1

2r
, g̃+

n−1 = gn−1 +
gn−1 − gn−2

2r
. (5.40b)

We start the algorithm with r = 1 and we increment r by 1 to refine the candidate generation.

Algorithm 5.3 summarizes the proposed greedy algorithm for scalar quantizer design. The

effectiveness and the convergence behavior of this algorithm is demonstrated in Section 5.6.

We note that the proposed algorithm converges to a locally optimum quantizer as we increase

r. The evaluation of H(g) for all candidates can be carried out in an efficient manner since

for each candidate only two out of n integrals in (5.36) change.

We note that the proposed greedy algorithm is attractive due to its conceptual and com-

putational simplicity. In particular, root-finding is avoided which is in contrast to the alter-

nating optimization algorithms of Section 5.3. Furthermore, a suitably modified version of

our greedy algorithm can be used to find a locally optimal quantizer when y is a discrete

random variable, i.e., when |Y| <∞.

Algorithm 5.3 Greedy algorithm for scalar quantizer design.

Input: X , Y, Z, p(x, y), M,R ∈ N
Initialization: m← 1, r ← 1, n← |Z|, choose g(0) such that g

(0)
1 < · · · < g

(0)
n−1

1: while m ≤M and r ≤ R do
2: g̃j ← candidates based on g(m−1) and r, cf. (5.37), (5.39), (5.40), j = 1, . . . , 2(n− 1)

3: ∆j ← H(g(m−1))−H(g̃j), j = 1, . . . , 2(n− 1)

4: i← arg max
j∈{1,...,2(n−1)}

∆j

5: if ∆i > 0 then
6: g(m) ← g̃i
7: else
8: r ← r + 1

9: g(m) ← g(m−1)

10: end if
11: m← m+ 1
12: end while
Output: quantizer boundaries g(m−1)
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data

source
DMC

y ∈ Ykx ∈ X l

p(y|x) p(z|y)

quantizer
z ∈ Z

p(x)

DMC
z̃ ∈ Z̃

p(z̃|z)

Figure 5.2: System model for COVQ. The quantizer is designed to maximize the mutual
information I(x; z̃).

5.5 Channel-Optimized Vector Quantization for Maximum Mu-
tual Information

We next extend the model depicted in Figure 5.1 to channel-optimized quantization (cf.

Figure 5.2). In this model, the quantizer output is additionally transmitted over a DMC

with transition pmf p(z̃|z). The quantizer is designed to maximize the mutual information

I(x; z̃), i.e., its design incorporates the channel p(z̃|z) and, hence, the quantizer is called

channel-optimized. Example scenarios in which quantizer outputs are corrupted by a subse-

quent channel are distributed systems like relay networks with noisy links (cf. Chapter 6),

distributed inference schemes in sensor networks, and practical receiver implementations with

unreliable memories [80,89].

In what follows, we conceive an algorithm for the design of channel-optimized vector

quantizers that maximize I(x; z̃). COVQ is well-known in the lossy joint source-channel

coding setting [25, 26]. However, we appear to be the first to address and solve the problem

of designing channel-optimized vector quantizers for maximum mutual information. In the

sequel, we shall refer to p(y|x) and p(z̃|z) as the “unquantized channel” and the “forward

channel”, respectively. Furthermore, we assume that these channels are DMCs and hence the

sets X , Y, Z, Z̃ are of finite cardinality. Since VQ is a special case of COVQ, the proposed

algorithm can also be used for the design of conventional (non-channel-optimized) vector

quantizers maximizing the mutual information I(x; z).

Our aim is to find a quantizer that maximizes the achievable rate over the end-to-end

channel p(z̃|x). Hence, the channel-optimized vector quantizer with n quantization levels is

given as

p?(z|y) = arg max
p(z|y)

I(x; z̃) subject to |Z| = n. (5.41)

Since x↔ y↔ z↔ z̃ forms a Markov chain, we have

p(z̃|x) =
∑
z∈Z

p(z̃|z)
∑
y∈Yk

p(z|y)p(y|x). (5.42)

Expanding the mutual information I(x; z̃) using (5.42) allows us to rewrite (5.41) as follows:

p?(z|y) = arg max
p(z|y)

∑
x∈X l

p(x)
∑
z̃∈Z̃

∑
z∈Z

p(z̃|z)
∑
y∈Yk

p(z|y)p(y|x) (5.43)
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· log

∑
z∈Z p(z̃|z)

∑
y∈Yk p(z|y)p(y|x)∑

x′∈X l p(x
′)
∑

z∈Z p(z̃|z)
∑
y∈Yk p(z|y)p(y|x′) subject to |Z| = n.

We note that (5.43) is a convex maximization problem. Hence, the optimal quantizer is

deterministic, i.e., we have p?(z|y) ∈ {0, 1} (cf. Proposition 5.2). Furthermore, the labels

of the quantizer outputs enter in the objective function in (5.43) through p(z̃|z). Therefore,

the solution of (5.43) consists of an optimal partition of Yk together with the corresponding

optimal labels for the n quantizer outputs.

Depending on the forward channel, the channel-optimized vector quantizer may leave

some of the n quantizer outputs unused, i.e., we may have p(z) = 0 for some z ∈ Z. This is

in contrast to conventional VQ where we have p(z) > 0 for all z ∈ Z. We have formulated the

COVQ problem in terms of DMCs. If the unquantized channel is memoryless with continuous

output, the algorithm presented below can still be applied by discretizing y to the required

precision. The extension to continuous-output forward channels is more difficult, since p(z̃|z)
may depend on p(z), e.g., through an average power constraint, but p(z) is not known a

priori. For an error-free forward channel, (5.41) is equivalent to

p?(z|y) = arg max
p(z|y)

I(x; z) subject to |Z| = n, (5.44)

i.e., to vector quantizer design for maximum mutual information. We note that even for the

simpler problem in (5.44), there exists in general no efficient algorithm for finding a globally

optimal solution.

We next develop an algorithm that is based on the IB method (cf. Section 2.7) and yields

a locally optimal solution of (5.43). To this end, we make the following major modifications

compared to the basic IB algorithm (cf. Algorithm 2.2):

• We include the forward channel p(z̃|z) into the quantizer optimization and we adapt

the iterative algorithm accordingly.

• Since we know that the optimal quantizer is deterministic, we ensure that the output

of the algorithm corresponds to a deterministic quantizer.

• We let the trade-off parameter β → ∞ since we are interested in preserving as much

relevant information as possible at a given quantization rate.

We first rewrite the objective function in (5.41) as follows:

I(x; z̃) = I(x; z) + I(x; z̃|z)︸ ︷︷ ︸
=0

−I(x; z|z̃) (5.45)

= I(x; y)− I(x; y|z)− I(x; y|z̃) + I(x; y|z, z̃) (5.46)

= I(x; y)− I(x; y|z̃). (5.47)
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Since the first term in (5.47) does not depend on p(z|y), we can further rewrite (5.41) as

p?(z|y) = arg min
p(z|y)

I(x; y|z̃) = arg min
p(z|y)

E
{
E{C(y, z̃)|y}

}
subject to |Z| = n, (5.48)

where we have defined

C(y, z̃) , D
(
p(x|y)

∥∥p(x|z̃)) . (5.49)

The conditional expectation in (5.48) can be written as follows:

E{C(y, z̃)|y=y} =
∑
z̃∈Z̃

p(z̃|y)C(y, z̃) (5.50)

=
∑
z∈Z

p(z|y)
∑
z̃∈Z̃

p(z̃|z)C(y, z̃). (5.51)

We next choose p(z|y) such that E{C(y, z̃)|y=y} is minimized for each y ∈ Yk. To this end,

we note that the second sum in (5.51) is a constant for fixed z. Hence, we let

p(z|y) = δz,z?(y), (5.52)

where z?(y) is the particular z ∈ Z which minimizes the second sum in (5.51). We thus have

z?(y) = arg min
z∈Z

∑
z̃∈Z̃

p(z̃|z)C(y, z̃). (5.53)

By minimizing (5.51) for each y ∈ Yk separately, we also minimize the objective function of

(5.48) for fixed C(y, z̃). Furthermore, due to (5.52) we have

p(z̃|y) =
∑
z∈Z

p(z̃|z)p(z|y) = p
(
z̃|z?(y)

)
. (5.54)

The above expressions allow us to formulate our algorithm for channel-optimized vector

quantizer design, see Algorithm 5.4. The proposed algorithm terminates if the relative de-

crease in the objective function value between two iterations is below a prescribed threshold

or if a certain number of iterations has been performed. Algorithm 5.4 can be used for the

design of conventional vector quantizers by setting p(z̃|z) = δz̃,z. Furthermore, the design

of scalar quantizers is included as the special case where k = 1. The convergence of the

proposed algorithm to a locally optimal solution of (5.43) is guaranteed by the IB method.

We note that algorithm 5.4 can be run repeatedly with the best solution retained; this helps

to avoid getting stuck in a bad local optimum.

We emphasize that our algorithm finds the optimal quantizer jointly with corresponding

labels for the quantizer output. This is in contrast to distortion-based channel-optimized

vector quantizer design algorithms, which usually require that the labels are fixed in advance.

Hence, in our case the NP-hard label optimization problem is avoided and need not be

considered separately.
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Algorithm 5.4 Channel-optimized vector design algorithm.

Input: X l, Yk, Z, Z̃, p(x,y), p(z̃|z), ε > 0, M ∈ N
Initialization: C

(0) ← ∞, η ← ∞, m ← 1, randomly initialize C(y, z̃) ∈ R+, ∀y ∈ Yk and
∀z̃ ∈ Z̃

1: while η ≥ ε and m ≤M do
2: for all y ∈ Yk do
3: z? ← arg minz∈Z

∑
z̃∈Z̃ p(z̃|z)C(y, z̃)

4: p(m)(z|y)← δz,z? , z ∈ Z
5: p(z̃|y)← p(z̃|z?), z̃ ∈ Z̃
6: end for
7: p(z̃)←∑

y∈Yk p(z̃|y)p(y)

8: p(x|z̃)← 1
p(z̃)

∑
y∈Yk p(x,y)p(z̃|y)

9: C(y, z̃)← D
(
p(x|y)

∥∥p(x|z̃))
10: C

(m) ←∑
y∈Yk p(y)

∑
z̃∈Z̃ p(z̃|y)C(y, z̃)

11: η ← (C
(m−1) − C(m)

)/C
(m)

12: m← m+ 1
13: end while
Output: channel-optimized quantizer p(m−1)(z|y)

5.6 Comparison of Algorithms and Application Examples

In this section, we compare the proposed algorithms and provide application examples. In

particular, we give guidelines for the selection of a quantizer design algorithm, we study

the convergence behavior of the proposed algorithms, we compare scalar quantizers to the

information-theoretic limit, and we compare mutual-information-optimal quantization to

MSE-optimal quantization. Furthermore, we give two numerical examples which respec-

tively consider low-density parity-check (LDPC) decoding with quantized LLRs and channel-

optimized quantization for receivers with unreliable memory.

5.6.1 Algorithm Comparison

We first give some guidelines for the choice of the appropriate quantizer design algorithm. If

channel-optimized quantization or VQ is required, then Algorithm 5.4 may be used. Further-

more, Algorithm 5.4 is suitable in case the optimal quantization regions are nonconvex. If y

is a continuous random variable, the application of Algorithm 5.4 requires discretization of

y to the desired precision. Algorithms 5.1 and 5.2 are well suited for scalar quantizer design

when the optimal quantization regions are intervals. In the special case of LLR quantization,

Algorithm 5.2 does not require root-finding and is guaranteed to converge to a local optimum.

The greedy approach of Algorithm 5.3 is a simple and useful alternative to Algorithms 5.1

and 5.2 when root-finding methods should be avoided.



5.6 Comparison of Algorithms and Application Examples 145

 

 

Algorithm 5.4
Algorithm 5.3
Algorithm 5.2

I
(x
;z
)
[b
it
]

iterations

0 5 10 15 20
0.772

0.774

0.776

0.778

0.78

0.782

0.784

0.786

0.788

Figure 5.3: Convergence behavior of the proposed algorithms for scalar quantization of con-
ditionally Gaussian LLRs.

We next compare the convergence behavior of the proposed algorithms. To this end, we

consider the quantization of conditionally Gaussian LLRs, i.e., we have y|x ∼ N (xµ, 2µ) with

x ∈ {−1, 1} and µ > 0. Figure 5.3 shows the value of the objective function I(x; z) versus

the iteration number for the Algorithms 5.2-5.4. Here, we use n = 8 quantization levels

and we have chosen µ = 5. We have initialized all algorithms using the MOE quantizer.

Algorithms 5.2 (red curve, ‘∗’ markers) and 5.3 (green curve, ‘+’ markers) converge to the

optimal quantizer within 20 iterations. The greedy algorithm has performed one refinement

step after 6 iterations. We have observed that in this setting I(g) is strictly quasiconcave in

g. However, we were unable to formally verify this observation. For a strictly quasiconcave

objective function I(g), the Algorithms 5.2 and 5.3 converge to the globally optimal quantizer.

Furthermore, we observe that Algorithm 5.4 (blue curve, ‘×’ markers) gets stuck in a local

optimum and does not find the globally optimal quantizer.

In Figure 5.4, we show how the convergence of Algorithm 5.4 is influenced by the initial-

ization. The dashed line and the dotted line respectively show the best and the worst result

for 104 random initializations. The solid line corresponds to the MOE initialization as in

Figure 5.3. We observe that the best initialization yields the optimal quantizer within 3 iter-

ations. The gap between the best case and the worst case in terms of I(x; z) is approximately

1.26 %. Similarly, the MOE initialization is 0.2 % away from the optimal quantizer in terms

of mutual information. Hence, although the MOE initialization does not yield the globally

optimal quantizer in this case, it is a suitable choice for the initialization of Algorithm 5.4.
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Figure 5.4: Dependence of the convergence behavior of Algorithm 5.4 on the initialization.

Next, we compare the performance of scalar quantizers to the information-theoretic limit

in the same setting as above (conditionally Gaussian LLRs with µ ∈ {1, 5, 10}). The solid

lines in Figure 5.5 show the optimal rate-information trade-off (cf. Section 4.2 for a formal

definition of the rate-information trade-off) for the different values of µ which we have com-

puted using the IB algorithm (cf. Algorithm 2.2). These curves tend to the respective value

of I(x; y) as the quantization rate R becomes large. We have designed scalar quantizers with

2, . . . , 8 quantization levels using Algorithm 5.2. The rate-information pairs achieved by these

quantizers are indicated by the ‘×’ markers. Note that R = H(z) since the quantizers are

deterministic. We observe that the quantizers closely approach the optimal rate-information

trade-off. In particular, for µ = 5 each quantizer is less than 1 % away from the optimal

rate-information trade-off. Therefore, VQ can only provide a negligible gain in terms of per-

formance over scalar quantization. The main advantage of VQ in this setting is the increased

flexibility regarding the quantization rate. Furthermore, time-sharing can be used to (asymp-

totically) achieve all points on a line connecting the rate-information pairs corresponding to

two quantizers.

Figure 5.5 moreover shows the performance of MSE-optimal quantizers with 2, . . . , 8 quan-

tization levels (‘+’ markers). In contrast to the jointly Gaussian case (cf. Section 4.7), MSE-

optimal quantization is inferior in the setting we consider here. For small µ (corresponding

to low signal-to-noise ratio (SNR)) the difference between MSE-optimal quantization and

mutual-information-optimal quantization is rather small. However, as µ increases the subop-

timality of MSE-optimal quantizers in terms of the rate-information trade-off becomes more

pronounced.
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Figure 5.5: Comparison of scalar quantizers with 2 to 8 quantization levels to the information-
theoretic limit.

In Figure 5.6, we show how the rate and the mutual information I(x; z) depend on the

position of the quantizer boundaries (solid lines) for µ ∈ {5, 10}. In particular, we consider

quantizers with 3 and 4 quantization levels. For reasons of symmetry, the optimal quantizer

is always symmetric in the considered setting. Hence, there is only one free parameter

when we consider 3 and 4 quantization levels. The ‘×’ markers correspond to the respective

mutual-information-optimal quantizers and the dashed lines correspond to the optimal rate-

information trade-off. We observe that Algorithm 5.2 indeed finds the global optimum in these

cases since all markers are at the maximum of the respective solid line. The rate-information

pairs achieved by the quantizers are very close to the optimal rate-information trade-off.

However, in all cases a different quantizer boundary position yields a quantizer which comes

even closer to the optimal trade-off. Unfortunately, it is unclear how to formulate and solve

an optimization problem for quantizer design such that it yields a quantizer which is as close

as possible to the optimal trade-off for a fixed number of quantization levels. Figure 5.6

also shows that the MOE quantizers are substantially worse in this setting than the mutual-

information-optimal quantizers.

In Figure 5.7, we plot p(y) for y > 0 and µ = 5 together with the mutual-information-

optimal quantizer and the MSE-optimal quantizer for 4 quantization levels. In this case the

quantizers are symmetric, i.e., g is of the form (−g 0 g)T. The dashed lines show the posi-

tive quantizer boundary for the mutual-information-optimal quantizer and the MSE-optimal

quantizer, respectively. The ‘×’ and ‘+’ markers show the quantized LLRs corresponding to
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Figure 5.6: Behavior of the rate and the mutual information I(x; z) as the quantizer bound-
aries vary. Mutual-information-optimal quantizers are indicated by ‘×’ markers and the
dashed lines correspond to the optimal rate-information trade-off.

the two quantizers. This shows that there is a substantial difference between the mutual-

information-optimal quantizer and the MSE-optimal quantizer.

5.6.2 Application Examples

LDPC Decoding with Quantized LLRs. We consider channel-coded data transmission

over a binary-input additive white Gaussian noise (AWGN) channel using the rate-1/2 DVB-

S2 LDPC code with a blocklength of 64800 bits. The receiver uses the channel output to

compute LLRs for the code bits which are then quantized. A belief propagation (BP) decoder

with 40 iterations finally decodes the transmitted data based on the quantized LLRs.

Figure 5.8 shows the bit error rate (BER) versus SNR performance for LLR quantization

with 2, . . . , 8 quantization levels and 40 decoder iterations. For comparison, we also plot the

BER performance in the unquantized case (‘+’ marker). The quantizers have been designed

using Algorithm 5.2. We observe that each additional quantization level yields a smaller

performance improvement with increasing resolution of the quantizer. The SNR penalty

compared to the unquantized case is 1.6 dB for 2 quantization levels, 0.4 dB for 4 quantization

levels, and 0.1 dB for 8 quantization levels.

In Figure 5.9, we study the influence of the optimality criterion in the quantizer design

on the BER performance. Specifically, we compare mutual-information-optimal quantization

(solid lines) to MSE-optimal quantization (dashed lines) for 2, 4, and 8 quantization levels.
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Figure 5.9: Influence of the quantizer design on the BER performance of the rate-1/2 DVB-S2
LDPC code (blocklength 64800 bits). Solid lines correspond to mutual-information-optimal
quantizers and dashed lines correspond to MSE-optimal quantizers.

It turns out that MSE-optimal quantization is inferior to mutual-information-optimal quan-

tization by 0.23 dB for 2 quantization levels, 0.34 dB for 4 quantization levels, and 0.1 dB

for 8 quantization levels. We note that this additional SNR penalty due to an inappropriate

quantizer design is significant since the considered LDPC code operates close to capacity.

Receivers with Unreliable Memory and Channel-Optimized LLR quantization.

We next consider the setting depicted in Figure 5.10. Here, binary data x ∈ {−1, 1} is

transmitted over the AWGN channel y′ = x + w, where w ∼ N (0, σ2) is independent of

x. The receiver uses the channel output y′ to calculate the LLR y = 2y′/σ2 which is then

quantized with n quantization levels. Next, the quantizer output z = q(y) is mapped to a

binary label b = φ(z) ∈ {0, 1}dlog2 ne which is stored in unreliable memory. Reading the data

from the memory yields the possibly corrupted label b̃ which corresponds to the quantizer

output z̃ = φ−1(b̃). We use the stuck-at channel (SAC) to model the failure of bit cells in

the unreliable memory [89]. For the SAC with error probability 0 < ε < 1 and equally likely

stuck-at errors, each bit cell is in one of the following three states:

• Ξ = ξ0: error-free bit cell (with probability 1− ε),

• Ξ = ξ+: bit cell is stuck at “1” (with probability ε/2),

• Ξ = ξ−: bit cell is stuck at “0” (with probability ε/2).
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Figure 5.10: Receiver with unreliable LLR memory. The channel-optimized quantizer q(·)
maximizes I(x; z̃).

The capacity of a single bit cell in the SAC model is zero since the content of the bit cell

is independent of the input with positive probability. However, we use the SAC to model

unreliable memory in the following way: we assume that each bit cell fails independently and

data is stored without knowledge about the state of the individual bit cells. This is equivalent

to multiple channel uses of a single bit cell where the state of the bit cell is chosen at random

before each channel use. In this case, the SAC with error probability ε and equally likely

stuck-at errors is equivalent to a binary symmetric channel with crossover probability ε/2.

Indeed, we have

p(b̃|b) =
∑

ξ∈{ξ0,ξ+,ξ−}

p(b̃|b, ξ)p(ξ) (5.55)

= (1− ε)δb̃,b +
ε

2
δb̃,0 +

ε

2
δb̃,1 (5.56)

=

{
1− ε

2 , b = b̃
ε
2 , b 6= b̃

, (5.57)

where b, b̃ ∈ {0, 1}.
In what follows, we assume ε = 0.11003 and we perform channel-optimized scalar quanti-

zation with n = 8 quantization levels. The channel-optimized quantizers are designed using

Algorithm 5.4. In Figure 5.11, we plot the mutual information I(x; z̃) versus the SNR 1/σ2

in dB. The red curve (‘◦’ markers) shows the rates achievable by our channel-optimized

quantizer design. The blue curve (‘+’ markers) constitutes a simple upper bound given by

error-free storage of the quantizer output. The solid (dashed) green curve (‘∗’ markers) shows

the rates achievable by non-channel-optimized quantization maximizing I(x; z) using the best

(worst) mapping φ(·). We note that in this case there are 8! = 40320 different bit mappings

and the performance penalty may be very large if the optimal mapping is not found. This is

in contrast to our approach which outperforms non-channel-optimized quantization without

the need to perform separate optimization of the bit labels.

5.7 Discussion

In this chapter, we have studied mutual-information-optimal quantizer design for commu-

nication problems. We have proposed an alternating optimization algorithm and a greedy

algorithm for the design of scalar quantizers that maximize mutual information. These al-
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Figure 5.11: Comparison of I(x; z̃) for receiver processing with unreliable LLR memory.

gorithms are simple to implement and exhibit excellent convergence behavior. Furthermore,

we have proposed an algorithm for the design of channel-optimized vector quantizers. This

algorithm finds a locally optimal quantizer together with the labels for the quantizer output

and therefore avoids the NP-hard label optimization problem. We have found that the MOE

quantizer is a suitable initialization for the proposed quantizer design algorithms. Our nu-

merical results show that the performance of scalar LLR quantizers closely approaches the

information-theoretic limit. This implies that VQ can only provide a negligibly small perfor-

mance improvement over scalar quantization. Moreover, in contrast to the jointly Gaussian

case (cf. Section 4.7), MSE-optimal quantization is inferior to mutual-information-optimal

quantization in terms of the rate-information trade-off.

In the application examples of Section 5.6 the receiver first computes LLRs with full

resolution and then quantizes the LLRs. This can be avoided by mapping the quantization

regions for the LLRs to the corresponding quantization regions for the channel output. We are

thus able to obtain quantized LLRs directly from the channel output which is of course more

efficient than computing unquantized LLRs first. An extension of the alternating optimization

algorithm of Section 5.3 to quantizer design based on training data may be possible. This

would enable online quantizer design without the need for knowledge of the joint distribution

p(x, y).



6

Quantization-Based Network

Coding for the MARC

In this chapter, we consider relay-based cooperative communication which allows us to apply

results from Chapter 5 and Chapter 3. Specifically, we present a transmission scheme for the

multiple-access relay channel (MARC) which incorporates network coding [2] at the physical

layer and allows for a low-complexity implementation of the processing at the relay. Section

6.1 introduces the basic idea of the proposed transmission scheme and gives background in-

formation on related work. In Section 6.2, the system model for the MARC with n sources

is presented and the considered channel models are described. Next, the basic operation of

all network nodes is discussed in Section 6.3. In Section 6.4, we explain the relay processing,

which essentially consists of log-likelihood ratio (LLR) quantization followed by network en-

coding, in detail. The destination decodes the source data using an iterative turbo-like joint

network-channel decoder which is presented in Section 6.5. We numerically evaluate the per-

formance of the proposed transmission scheme in Section 6.6 using Monte Carlo simulations.

The discussion in Section 6.7 concludes this chapter.

153
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6.1 Introduction and Background

The MARC extends the classical relay channel [19] and models data transmission of multiple

sources to a common destination with the help of one relay (cf. Figure 6.1). In this setting, the

purpose of the relay is to facilitate the transmission of the sources by providing cooperative

diversity [92,93]. Application examples include, but are not limited to, the cooperative uplink

in cellular systems and wireless sensor networks with data transmission to a fusion center.

Network coding [2] allows intermediate network nodes to combine data flows and is well

known for its ability to increase throughput and reliability. These benefits have motivated

the study of transmission schemes for the MARC which incorporate network coding at the

physical layer [16, 41, 42, 46, 74, 101, 108, 109, 113, 115, 118, 119]. Achievable rates and outer

bounds for the capacity region of the MARC have been established in [52]. We note that the

capacity region of the MARC is unknown; in fact, even the capacity of the (nondegraded)

relay channel is unknown.

Decode-and-forward (DF) schemes with network coding for the MARC with two sources

and orthogonal channels have been proposed in [16, 42]. In these schemes, the relay decodes

the source messages individually and forwards a network-coded combination of the data to

the destination. Iterative decoding (cf. Subsection 2.6.5) is used at the destination to jointly

decode the channel codes and the network code. A disadvantage of DF-based schemes is that

the relay is required to fully decode the source messages which in turn requires the relay to be

close to the sources. Furthermore, performing channel decoding at the relay adds complexity

and delay to the system. Extensions of [42] to more than two sources and to the MARC with

simultaneous multiple-access are studied in [46] and [41], respectively.

In contrast to DF-based schemes which perform finite-field network encoding of the de-

coded messages, the analog network coding schemes in [74,101,115] compute a many-to-one

function of the analog signals received at the relay. In the MARC with simultaneous multiple-

access, network encoding is essentially performed by the channel due to the interfering source

transmissions. The idea of exploiting the wireless channel for physical layer network cod-

ing has been proposed independently and concurrently in [75, 83, 121]. While [83, 121] focus

on two-way relaying scenarios, [75] has evolved into the more general compute-and-forward

scheme [76,77] which uses nested lattice codes (cf. the survey paper [116]) to decode a set of

linear combinations of the source messages.

The basic idea we follow in this chapter has been introduced in [113] where the relay

performs “soft combining” and forwards LLRs for the network-coded bits. This approach

is able to exploit the information which is available at the relay without requiring that the

relay (fully) decodes the source messages. Hence, this scheme is well suited for unreliable

source-relay channels and practical channel codes with finite blocklengths. The work in [119]

augments [113] with optimized scalar quantization at the relay and thus avoids analog LLR

forwarding. Two-dimensional vector quantization is used in [118] instead of soft combining

with subsequent scalar quantization, yielding improved performance in asymmetric channel
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Figure 6.1: The MARC with n sources.

conditions. In [118, 119] the information bottleneck method [97] has first been applied in

the communications context for quantizer design. Our previous work [108] studies efficient

encoding for the scheme in [118] which enables the extension to more than two sources [109].

In this chapter, we extend [109] by modeling the relay-destination link as a noisy channel

and by performing channel-optimized quantization at the relay. Furthermore, in contrast

to [108, 109, 118, 119] the transmission scheme proposed in this chapter does not perform

channel decoding at the relay.

6.2 System Model

In this section we introduce the basic model for the MARC and the links between the indi-

vidual nodes.

6.2.1 MARC Model

We consider the time-division MARC with n sources, S1, S2, . . . , Sn, one half-duplex relay R,

and a destination D as depicted in Figure 6.1. The assumptions of orthogonal channels and

half-duplex nodes simplify practical implementation. The sources consecutively broadcast

their independent messages in the first n time slots. In the (n + 1)th time slot, the relay

forwards to the destination a suitably compressed version of the data it has received in

the previous n time slots (cf. Section 6.4). Finally, the destination jointly decodes all signals

received in the n+1 time slots (cf. Section 6.5). We note that in our model the sources do not

overhear each others transmission. In what follows, we assume that the total transmission

time is shared equally among all sources and the relay, i.e., each transmitting node uses

the channel M times per time slot and, hence, there are (n + 1)M channel uses in total

(optimization of the resource allocation is beyond the scope of this work). It is important to

note that the relay’s transmission causes a rate loss which becomes smaller as n increases.

Next, we describe the channel models for the individual links.
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6.2.2 Channel Models

Source-Relay and Source-Destination Channels. We use a quasi-static channel model

with pathloss and additive white Gaussian noise for the source-relay and source-destination

links. The transmissions to the relay and the destination take place on orthogonal channels.

Therefore, we have the following input-output relation (the vectors in (6.1) are of length M):

yi,j = d
−α/2
i,j hi,jxi + wi,j , i ∈ {1, 2, . . . , n}, j ∈ {R,D}, (6.1)

where xi is the signal transmitted by the ith source, yi,j is the corresponding receive signal

at node j (either the relay or the destination), di,j is the distance between nodes i and j, α

is the path-loss exponent, wi,j ∼ CN (0, σ2I) is circularly symmetric white Gaussian noise

with variance σ2, and hi,j denotes the gain of the channel from node i to node j. Throughout

we assume that time-division is used to achieve orthogonal transmissions. This is, however,

not a requirement of the proposed scheme; in fact, any multiple-access scheme yielding an

input-output relation as in (6.1) can be employed, e.g., orthogonal frequency-division multiple

access or code division multiple access.

For the sake of simplicity, we assume single-carrier transmissions over nondispersive chan-

nels. However, the proposed network coding scheme operates on the bit-level and can thus

also be used with multi-carrier modulation formats over frequency-selective channels (the

relay operations are then performed on a per-subcarrier basis). In what follows, we impose

a transmit energy constraint for the sources, i.e., we fix Es , E{‖xi‖22}, i = 1, 2, . . . , n. Such

a constraint is reasonable, especially for mobile devices and battery-powered sensors. The

signal-to-noise ratio (SNR) of the link between node i and node j for the channel realization

hi,j is given by

γi,j = |hi,j |2
d−αi,j Es

Mσ2
, (6.2)

and the average SNR equals

γi,j = E{|hi,j |2}
d−αi,j Es

Mσ2
. (6.3)

We assume that each node has receive channel state information (CSI) only, i.e., the hi,j ’s

are known at node j. This implies in particular that the relay has no CSI about the source-

destination channels. In Section 6.6, we use the channel model (6.1) with hi,j ∼ CN (0, 1)

(corresponding to a frequency-flat Rayleigh fading channel with γi,j = d−αi,j Es/(Mσ2)) and

with hi,j = 1 (corresponding to a constant additive white Gaussian noise (AWGN) channel

with γi,j = γi,j).

Relay-Destination Channel. We model the relay-destination link using a discrete mem-

oryless channel (DMC) with input alphabet ZR and output alphabet ZD. This DMC is

specified by the |ZD| · |ZR| transition probabilities p(zD|zR), zD ∈ ZD, zR ∈ ZR. We assume

that p(zD|zR) is known at the relay. The benefit of modeling the relay-destination link as a
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DMC is twofold. Firstly, it implicitly captures a rate-constraint since log2

(
min{|ZR|, |ZD|}

)
constitutes an upper bound on the number of bits that can be transmitted reliably per chan-

nel use. Secondly, the transition probabilities p(zD|zR) can be used to model residual errors

at the destination after channel decoding, i.e., the destination may not be able to recover

zR without error. We note that using a DMC to model the relay-destination link is not too

restrictive, especially in the case of an operator-deployed relay.

6.3 Basic Node Operation

In this section, we describe the basic operation of all network nodes. The network encoding

at the relay and the iterative decoding at the destination are discussed in more detail in

Sections 6.4 and 6.5, respectively.

6.3.1 Sources

The ith source (i ∈ {1, 2, . . . , n}) generates a length-Ki sequence ui ∈ {0, 1}Ki of independent

and equally likely bits which has to be communicated to the destination. The data ui is

channel encoded using a linear binary code Ci of rate Ri = Ki/Ni, yielding the codeword ci ∈
{0, 1}Ni . Next, the code bits are mapped to a signal constellation Ai of cardinality |Ai| = 2mi

which yields the transmit signal xi ∈ AM . The code rates are chosen as Ri = Ki/(miM)

to ensure that the transmission of each source requires M channel uses. For simplicity of

exposition we let K , Ki and N , Ni, i = 1, . . . , n. Hence, we have Ri = R and mi = m,

i = 1, . . . , n. The sum rate (in bits per channel use) is then given by

Rs =
K

M

n

n+ 1
= mR

n

n+ 1
. (6.4)

If the relay was not present, the sum rate would be equal to R̃s = mR and thus the rate loss

due to the half-duplex relay node equals

∆Rs = R̃s −Rs =
mR

n+ 1
. (6.5)

We note that the sources may use different channel codes and signal constellations. Fur-

thermore, the proposed transmission scheme is not restricted to channel codes of equal di-

mension and blocklength. Figure 6.2 depicts the block diagram of a source.
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6.3.2 Relay

In the proposed scheme, the relay performs LLR quantization with subsequent network en-

coding. This strategy has low computational complexity, which is important for practical

implementations. In particular, the LLRs need not be computed with full resolution before

quantization and the network encoding operation can be implemented using a simple table

lookup operation. Figure 6.3 shows a block diagram of the relay which first computes the

following LLRs for the code bits ci:

LRci,l = log
P
{

ci,l=0
∣∣yRi,dl/me=yRi,dl/me

}
P
{

ci,l=1
∣∣yRi,dl/me=yRi,dl/me

} , l = 1, . . . , N, i = 1, . . . , n. (6.6)

In (6.6), ci,l denotes the lth code bit transmitted by the ith source, yRi,dl/me is the receive value

corresponding to the symbol which carries ci,l, and the superscript “R” in LRci,l indicates that

these LLRs are computed at the relay. In the following, we collect the LLRs for ci in the

vector LRci = (LRci,1 · · · LRci,N )T.

Next, the LLRs LRci are quantized by a scalar quantizer qi : R→ Zi with Qi quantization

levels. We let Zi = {1, . . . , Qi}, i = 1, . . . , n, in what follows. The quantizers qi, i = 1, . . . , n,

are matched to the average SNRs γi,R of the respective source-relay channels. The quantizer

outputs zi,l = qi(L
R
ci,l

), l = 1, . . . , N , are collected in the vector zi = (zi,1 · · · zi,N )T. The

vectors zi, i = 1, . . . , n, are then interleaved, yielding z′i = Πi(zi). Interleaving is performed

to avoid short cycles in the factor graph of the overall network-channel code (cf. Figure

6.5). We note that one of the interleavers Πi, i = 1, . . . , n, can be omitted. The interleaved

quantizer outputs z′i are jointly encoded by the network encoder yielding zR ∈ ZMR . The

network-coded data zR is transmitted over the relay-destination channel. The output of the

network encoder is matched to the transition probabilities p(zD|zR) and the input alphabet

ZR of the relay-destination channel. A detailed description of the quantization and network

coding stages is given in Section 6.4.

We note that in contrast to [108, 109, 118, 119] the relay does not perform soft-output

channel decoding which reduces complexity and delay. Moreover, the relay processing does
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Figure 6.4: Block diagram of the destination.

not depend on the channel codes employed at the sources1 which increases the flexibility of

our scheme. Finally, since all signals are received in consecutive time slots, the processing

chains preceding the network encoder shown in Figure 6.3 need to be implemented only once

in hardware, thereby reducing chip area.

6.3.3 Destination

Figure 6.4 shows a block diagram of the destination which jointly decodes its received signals.

To this end, the destination first computes LLRs for the code bits ci as follows:

LDci,l = log
P
{

ci,l=0
∣∣yDi,dl/me=yDi,dl/me

}
P
{

ci,l=1
∣∣yDi,dl/me=yDi,dl/me

} , l = 1, . . . , N, i = 1, . . . , n. (6.7)

Here, yDi,dl/me denotes the receive value corresponding to the symbol which carries the code bit

ci,l and the superscript “D” in LDci,l indicates that these LLRs are computed at the destination.

In the following, we collect the LLRs in the vectors LDci = (LDci,1 · · · LDci,N )T, i = 1, . . . , n.

The iterative joint network-channel decoder takes zD, i.e., the receive value corresponding to

zR, and the LLRs LDc1 , . . . ,L
D
cn as inputs and outputs the decoded source data û1, . . . , ûn. In

Section 6.5, we derive the iterative decoder using a factor graph representation of the overall

network-channel code (cf. Figure 6.5). With a particular decoding schedule, this decoder

can be viewed as a turbo decoder in which the channel decoders and the network decoder

iteratively exchange extrinsic information (cf. Figure 6.6).

6.4 Quantization and Network Encoding

In this section, we discuss the quantization and network encoding stages at the relay in

more detail. In both stages, quantization for maximum mutual information is performed (cf.

Chapter 5).

1To compute the LLRs (6.6), the relay only needs to be aware of the signal constellations employed by the
sources.
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6.4.1 Quantization

The relay uses one scalar quantizer for each source-relay link to quantize the LLRs LRci .

The design of the LLR quantizers is critical for the performance of the system. We aim

at maximizing the mutual information I(ci,l; zi,l) between the quantizer output zi,l and the

corresponding code bit ci,l for a fixed number of quantization levels Qi, i = 1, . . . , n. To find

the quantizer qi : R→ Zi, we therefore solve the following optimization problem2:

qi = arg max
q

I
(
ci; q(L

R
ci)
)
, subject to |Zi| = Qi. (6.8)

It is not hard to see that the problem in (6.8) is equivalent to the quantizer design problem

studied in Chapter 5. Therefore, we use Algorithm 5.2 to find an LLR quantizer which solves

(6.8). We note that the quantization regions of the optimal quantizers are intervals since we

quantize LLRs. The LLR computation (6.6) can be avoided by mapping the quantization

intervals for the LLRs to the corresponding quantization regions for the receive values. In

this way, quantized LLRs can be obtained directly from the receive values.

We note that quantizer design is performed offline in the proposed scheme. Hence, the

relay stores a set of quantizers for a sufficiently wide range of SNRs and then uses for each

source-relay channel the quantizer that has been optimized for the corresponding average

SNR γi,R. We have observed that choosing Qi = 8 is usually sufficient, i.e., increasing the

number of quantization levels beyond 8 yields at best negligible performance gains (which is

in line with our findings in Section 5.6).

6.4.2 Network Encoding

In the following, we let Z = (z′1 · · · z′n) and C = (c′1 · · · c′n) be matrices whose ith

columns are respectively the interleaved quantizer outputs and the corresponding code bits

transmitted by the ith source, i = 1, . . . , n (note that c′i = Πi(ci)). We denote the rows of

the N × n matrices Z and C by rT
j and dT

j , j = 1, . . . , N , i.e., we have Z = (r1 · · · rN )T

and C = (d1 · · · dN )T. Furthermore, we denote by a∼j the vector obtained by removing

the jth element from the vector a.

The network encoder at the relay maps M of the N rows of Z to an element of ZR, i.e.,

the input alphabet of the relay-destination channel (recall that we have assumed M channel

uses for the relay). Hence, the network encoder is a function g : Z1 × · · · × Zn → ZR, with

zR,k = g(rjk), k = 1, . . . ,M . Here, jk ∈ {1, . . . , N} denotes the index of the row of Z which

is mapped to the kth output of the network encoder. The transmit signal of the relay is given

by zR = (zR,1 · · · zR,M )T and the corresponding receive signal at the destination, zD, is the

output of a DMC with transition probabilities p(zD|zR) =
∏M
k=1 p(zD,k|zR,k).

The design of the network coding function g is motivated by the iterative decoding pro-

cedure at the destination (see Section 6.5 for details). To maximize the information transfer

2For the sake of notational clarity, we suppress the bit position index l in what follows.
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between the individual channel decoders, we seek to maximize I(djk,i; zD,k|djk,∼i) for each

i ∈ {1, . . . , n} (here, djk,i denotes the ith element of the vector djk). Loosely speaking, given

perfect a priori information djk,∼i, zD,k should be as informative about djk,i as possible.

However, since I(djk,i; zD,k|djk,∼i) cannot be maximized for each i independently, we resort

to maximizing a function of these mutual information expressions. Extending the case n = 2

(cf. [108]), we propose to maximize the following objective function3:

1

n

n∑
i=1

I(di; zD|d∼i) = I(d; zD)− 1

n

n∑
i=1

I(d∼i; zD) (6.9)

= I(d; r)− I(d; r|zD)− 1

n

n∑
i=1

(
I(d∼i; r∼i)− I(d∼i; r∼i|zD)

)
. (6.10)

In (6.9) and (6.10), we have used the chain rule of mutual information and the fact that

d↔ r↔ g(r)↔ zD forms a Markov chain. With (6.10), the optimal network encoder can be

written as (note that the terms I(d; r) and I(d∼i; r∼i) in (6.10) do not depend on g)

g? = arg min
g

I(d; r|zD)− 1

n

n∑
i=1

I(d∼i; r∼i|zD). (6.11)

Writing mutual information in terms of relative entropy, we can reformulate (6.11) as

g? = arg min
g

E
{
D
(
p(d|r)‖p(d|zD)

)}
− 1

n

n∑
i=1

E
{
D
(
p(d∼i|r∼i)‖p(d∼i|zD)

)}
. (6.12)

We note that the optimization problem (6.12) is similar to the channel-optimized vector

quantizer design discussed in Section 5.5. In fact, the proposed network encoder performs

channel-optimized vector quantization with a modified objective function compared to Section

5.5. We can therefore solve (6.12) using Algorithm 5.4. To this end, we replace the variables

x↔ y↔ z↔ z̃ of Algorithm 5.4 by d↔ r↔ zR ↔ zD and we use the modified cost function

C(r, zD) = D
(
p(d|r)‖p(d|zD)

)
− 1

n

n∑
i=1

D
(
p(d∼i|r∼i)‖p(d∼i|zD)

)
(6.13)

in line number 9 of Algorithm 5.4.

We note that the proposed network coding strategy is fundamentally different from con-

ventional algebraic network coding [2]. However, the proposed coding strategy at the relay

combines the data of different sources which justifies the use of the term network coding. The

choice of the objective function in (6.9) ensures that the data of the individual sources has

large (little) impact on the network-coded data if the respective source-relay SNR is high

(low). This allows the proposed scheme to perform well in asymmetric channel conditions

(cf. [106]) since it prevents sources with poor SNR from rendering the network-coded data

useless.

3For the sake of notational simplicity, we suppress the indices k and jk in what follows.
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Figure 6.5: Factor graph of the overall network-channel code.

The joint distribution p(d, r) =
∏n
i=1 p(ri|di)p(di) is required for the design of the network

encoder. We note that p(ri|di) is obtained from the design of the scalar LLR quantizers and

p(di) (i.e., the prior distribution of the code bits) is known a priori. The network encoder

g : Z1×· · ·×Zn → ZR can be implemented using an n-dimensional lookup table that is indexed

by the quantizer outputs r. Furthermore, the network encoder can be designed on-the-fly

during data transmission since p(d, r) is known once the relay has chosen the LLR quantizers.

Hence, it is not necessary to optimize the network encoder in advance for sufficiently many

combinations of source-relay SNRs. Finally, we note that the LLR quantizers and the network

encoder may depend on the bit position if the sources use higher order signal constellations.

6.5 Iterative Joint Network-Channel Decoder

The processing at the relay creates an equivalent DMC with input djk , output zD,k, and

transition probability mass function (pmf) p(zD,k|djk) = p(zD,k|c′1,jk , . . . , c′n,jk), k = 1, . . . ,M .

The pmf p(zD,k|djk) corresponds to the network code in our scheme. It couples the code bits of

all sources and thus enables joint decoding of the source codewords. We note that p(zD,k|djk)

is known once the network encoder at the relay is fixed4. The operation of the proposed joint

network-channel decoder is such that the individual channel decoders iteratively exchange

extrinsic LLRs via the network decoder (6.14). Figure 6.5 shows the factor graph of the

overall network-channel code.

The messages that are exchanged between the channel decoders and the network decoder

are the extrinsic LLRs Lei,jk and the prior LLRs Lai,jk , i = 1, . . . , n, k = 1, . . . ,M . The

4Strategies for making the pmf p(zD,k|djk ) available at the destination are discussed at the end of this
section.
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network decoder computes the prior LLR Lai,jk for the ith channel decoder using the n − 1

extrinsic LLRs Lel,jk (l 6= i) and the local function p(zD,k|djk), where the zD,k is the receive

value corresponding to zR,k. The sum-product update rule (cf. Section 2.5) for the prior

LLRs Lai,jk , k = 1, . . . ,M is given by

Lai,jk = log
µp→c′i,jk

(c′i,jk =0)

µp→c′i,jk
(c′i,jk =1)

, i = 1, . . . , n, (6.14a)

where

µp→c′i,jk
(c′i,jk) =

∑
c′1,jk

· · ·
∑
c′i−1,jk

∑
c′i+1,jk

· · ·
∑
c′n,jk

p(zD,k|c′1,jk , . . . , c
′
n,jk

)
∏
l:l 6=i

µc′l,jk→p
(c′l,jk), (6.14b)

and

µc′l,jk→p
(c′l,jk =b) =

exp
(
−bLel,jk

)
1 + exp

(
−Lel,jk

) , b ∈ {0, 1}. (6.14c)

A multitude of message passing schedules may be used with the proposed joint network-

channel decoder, the most common being flooding and serial schedules. In the flooding

schedule, all channel decoders update the extrinsic LLRs and in the next step the network

decoder updates all prior LLRs. In contrast, for the serial schedule only one channel decoder

updates its extrinsic LLRs and then the network decoder updates the prior LLRs only for

the next scheduled channel decoder. The complexity per iteration of the joint network-

channel decoder is the same for both schedules. However, we found that the serial schedule

outperforms the flooding schedule in terms of convergence speed. Therefore, we consider only

the serial schedule described above which corresponds to the turbo-like joint network-channel

decoder depicted in Figure 6.6. Note that in contrast to a turbo decoder, the proposed decoder

exchanges extrinsic LLRs and prior LLRs for the code bits.

Finally, we mention two strategies for making the pmf p(zD,k|djk) available to the destina-

tion. One possibility is to communicate p(zD,k|djk) directly from the relay to the destination.

However, this approach leads to high communication overhead since 2n|ZD| probabilities have

to be transmitted with sufficiently high accuracy. The second strategy is to store the set of

scalar quantizers employed by the relay also at the destination and communicate only the

quantizer choice at the relay (i.e., n integer-valued indices). Then, the destination designs the

network encoder in the same manner as the relay. The pmf p(zD,k|djk) is a by-product of the

network encoder optimization. This strategy is clearly preferable if computational overhead

at the destination is cheaper than communication overhead on the relay-destination link. In

any case, we assume that p(zD,k|djk) is available at the destination and neglect the signaling

overhead.
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6.6 Numerical Results

In this section we assess the performance of the proposed transmission scheme by Monte

Carlo simulations. We analyze the bit error rate (BER) and the frame error rate (FER) for

the transmission over AWGN channels and block-fading channels, respectively.

6.6.1 General Setup

Each source generates K = 210 independent and equally likely information bits. A recursive

convolutional code with generator polynomials (1, 13/15)8 is used to encode the data. The

output of the channel encoder is punctured to achieve a code rate of R = (n + 1)/(2n). A

binary phase-shift keying signal constellation (m = 1) is used to transmit the code bits and

therefore each source uses the channel M = K/R = 2nK/(n + 1) times. We note that the

above choice for R yields Rs = 1/2 and we have R → 1/2 as n → ∞. We set Es = 4K/3

and, hence, Ps = Es/M = 2(n + 1)/(3n), which corresponds to Ps = 1 for n = 2 sources.

Note that N = M (since m = 1) and thus the relay encodes all rows of the matrix Z (cf.

Subsection 6.4.2), i.e., djk = dk, k = 1, . . . ,M .

We assume that the source-relay channels and the source-destination channels are sym-

metric, i.e., we have dR , di,R, dD , di,D and thus γR , γi,R, γD , γi,D. The path-loss expo-

nent in (6.1) is chosen as α = 3.52. We model the relay-destination channel as 3 parallel binary

symmetric channels with bit error probability Pb. Hence, we have ZR = ZD = {0, 1, . . . , 7}
and the transition probabilities are given as

p(zD|zR) = P
dH(bzD ,bzR )

b (1− Pb)3−dH(bzD ,bzR ), (6.15)

where dH(·, ·) denotes the Hamming distance and bzR , bzD are the binary labels corresponding

to zR and zD, respectively. The LLR quantizers at the relay use 8 quantization levels.

The joint network-channel decoder at the destination performs 5 iterations and uses a serial

schedule. We have used random interleavers with depths equal to the block length.

In our setting, the code rate R decreases as n increases and thus the blocklength increases

with n. At the same time, the transmit power decreases with increasing n since the total

transmit energy of each source is fixed to Es. Moreover, the available rate on the relay-

destination channel has to be shared between more sources as n grows. The changes in the

system parameters for varying n are summarized in Table 6.1. We observe that the rate loss

due to the half-duplex relay node can be reduced by a factor of 2/3 when 6 sources share the

relay instead of only 2 sources.

6.6.2 Constant Channels

We first study the performance of the proposed scheme when the source-relay and source-

destination channels are constant. In particular, we let hi,j = 1 and dR = 0.6754 · dD in

(6.1), i.e., we consider AWGN channels. In terms of the source-relay and source-destination
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Table 6.1: Changes in the system parameters for n = 2, . . . , 7. Percentage changes relative
to n = 2 are given in parentheses.

n R ∆Rs Ps

2 0.750 0.250 1.000
3 0.667 (-11.1 %) 0.167 (-33.3 %) 0.889 (-11.1 %)
4 0.625 (-16.7 %) 0.125 (-50.0 %) 0.833 (-16.7 %)
5 0.600 (-20.0 %) 0.100 (-60.0 %) 0.800 (-20.0 %)
6 0.583 (-22.2 %) 0.083 (-66.7 %) 0.778 (-22.2 %)
7 0.571 (-23.8 %) 0.071 (-71.4 %) 0.762 (-23.8 %)

SNRs this corresponds to [γR]dB = [γD]dB + 6 dB. Moreover, we assume an error-free relay-

destination channel, i.e., we have Pb = 0. For this setting, Figure 6.7 shows the BER

performance for 2 to 7 sources. We also plot the performance without relay (at the same sum

rate) and the performance of a scheme which decodes at the relay and forwards the modulo-2

sums
⊕n

l=1 dk,l, k = 1, . . . ,M , in case of successful decoding.

We observe that the performance is significantly improved for BER values of interest when

more sources share the relay. The SNR gain saturates as the number of sources increases

(diminishing returns). At a BER of 10−4 the system with 7 sources gains 1.3 dB over the

system with 2 sources. We note that this behavior is observed for a wide range of sum rates

and geometries. Furthermore, the proposed scheme clearly outperforms the “XOR” scheme

described above, irrespective of the number of sources. Compared to a transmission without

relay, substantial SNR gains of more than 3 dB are obtained.

In Figure 6.8, we study the influence of Pb on the BER for the case of 2 sources. We

compare the network encoders which take the noisy relay-destination channel into account

(solid lines) to network encoders which falsely assume Pb = 0 (dashed lines). The channel-

optimized network encoder design yields a graceful performance degradation as Pb increases

and improves substantially over the non-channel-optimized design. Assuming Pb = 0 when

in fact Pb > 0 quickly deteriorates the BER performance. For Pb as small as 10−2, the BER

saturates at about 10−3 if the relay falsely assumes Pb = 0.

Figure 6.9 shows the influence of Pb for the case of 6 sources. In this case, the difference

between the channel-optimized design and the non-channel-optimized design is still significant

but less pronounced. Specifically, the BER saturates also when the correct values of Pb is

taken into account in the network encoder design. However, e.g., for Pb = 0.1, the channel-

optimized design improves by more than one order of magnitude in terms of BER over the

network encoders which incorrectly assume Pb = 0.



6.6 Numerical Results 167

 

 

7 sources (XOR)
7 sources
6 sources
5 sources
4 sources
3 sources
2 sources (XOR)
2 sources
no relay

B
E
R

γD [dB]

−7 −6 −5 −4 −3 −2 −1 0
10−6

10−5

10−4

10−3

10−2

10−1

100

Figure 6.7: BER performance in the AWGN case for 2 to 7 sources with Pb = 0.
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Figure 6.8: Dependence of the BER on Pb in the AWGN case for 2 sources. Solid lines
correspond to the proposed network encoder design and dashed lines correspond to network
encoders which falsely assume Pb = 0.
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Figure 6.9: Dependence of the BER on Pb in the AWGN case for 6 sources. Solid lines
correspond to the proposed network encoder design and dashed lines correspond to network
encoders which falsely assume Pb = 0.

6.6.3 Block-Fading Channels

We next consider the case where the source-relay and source-destination channels are block-

fading channels with hi,j ∼ CN (0, 1). The geometry of the MARC is chosen such that the

average source-relay and source-destination SNRs are related as [γR]dB = [γD]dB + 3 dB.

Figure 6.10 shows the FER performance of the proposed scheme for 2 and 7 sources when

Pb = 0. We again use a transmission without relay (at the same sum rate) and the “XOR”

coding strategy at the relay as baselines.

We observe that the FER performance degrades only very slightly (by approximately

0.5 dB) when the number of sources is increased from 2 to 7. Moreover, the proposed scheme

simultaneously provides second-order diversity for all sources. An SNR gain of more than

8 dB compared to a transmission without relay is achieved for 7 sources at an FER of 10−2.

Furthermore, the “XOR” transmission scheme is outperformed by about 3 dB.

In Figure 6.11, we study the influence of Pb on the FER for the case of 2 sources. We

again observe a graceful performance degradation as Pb increases. The channel-optimized

network encoder outperforms its non-channel-optimized counterpart by about 1 dB for the

values of Pb shown in 6.11. It is important to note that the diversity order does not decrease

as Pb increases.

Figure 6.12 shows the dependence of the FER on Pb for the case of 6 sources. Compared

to the case of 2 sources, the gap in terms of SNR between the channel-optimized network
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Figure 6.10: FER performance in the block-fading case for 2 and 7 sources with Pb = 0.
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Figure 6.11: Dependence of the FER on Pb in the block-fading case for 2 sources. Solid lines
correspond to the proposed network encoder design and dashed lines correspond to network
encoders which falsely assume Pb = 0.
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Figure 6.12: Dependence of the FER on Pb in the block-fading case for 6 sources. Solid lines
correspond to the proposed network encoder design and dashed lines correspond to network
encoders which falsely assume Pb = 0.

encoder and the non-channel-optimized network encoder is reduced. On the other hand, the

performance deteriorates more quickly as Pb increases. These observations are in accordance

with the observations made in the AWGN case. We note that the proposed scheme provides a

diversity order of two for all 6 sources also when the relay-destination channel is error-prone.

6.6.4 Blind Performance Estimation

Finally, we apply the blind performance estimators proposed in Chapter 3 and compare their

results to the conventional unbiased nonblind BER and FER estimators. In Figure 6.13, we

compare blind BER estimation to nonblind BER estimation in the AWGN case with 2 and 7

sources. We observe that for lower BER values, the blind estimator underestimates the BER

and is about 0.5 dB away in terms of SNR from the result of nonblind estimator. It seems

that the bias of the blind estimator does not significantly depend on the number of sources.

Figure 6.14 shows the result of blind FER estimation in the block-fading case with 2 and 7

sources. In this case, the blind estimate differs only very slightly (0.1 dB to 0.2 dB) from the

unbiased nonblind estimate. It is important to recall that the blind FER estimator is always

biased when coding is used since it assumes independence of the bit errors.

Although the blind estimators are biased (which is expected since we perform suboptimal

iterative decoding), our results show that they are useful also in this cooperative commu-

nications setting. The blind FER estimate is almost equal to the nonblind FER estimate.
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Figure 6.13: Blind BER estimation (dashed lines) in the AWGN case compared to nonblind
BER estimation for 2 and 7 sources.

The blind BER estimate differs from the nonblind BER estimate when the error floor of the

turbo-like decoder comes into play. This behavior is also observed with regular turbo codes

(cf. Figure 3.23).

6.7 Discussion

In this chapter, we have studied relay-based cooperative communication for the MARC with

two or more sources and network coding at the physical layer. The proposed transmission

scheme scales well with the number of sources and is simple to implement. In particular, the

relay performs scalar quantization followed by a network encoding operation which can be

implemented using a lookup table. The design of the quantizers and the network encoder is

performed using algorithms that we have presented in Chapter 5. In contrast to other trans-

mission schemes for the MARC, the relay does not perform (soft-output) channel decoding,

thereby reducing computational complexity and delay. The destination uses an iterative

network-channel decoder to jointly decode the source data. We have derived this decoder

using the update rules of the sum-product algorithm on the factor graph representation of

the overall network-channel code. Our numerical results confirm the excellent performance

of the proposed transmission scheme. The channel-optimized design of the network encoder

effectively combats the noise on the relay-destination channel. In the case of block-fading

channels, a diversity order of two is achieved for all sources simultaneously. Furthermore,
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Figure 6.14: Blind FER estimation (dashed lines) in the block-fading case compared to
nonblind FER estimation for 2 and 7 sources.

we have presented simulation results which underpin the usefulness of the blind performance

estimators presented in Chapter 3.

There are numerous possible extensions of the proposed transmission scheme which, how-

ever, are outside the scope of this thesis. An extension to correlated source data is useful,

e.g., in sensor networks where correlated measurements have to be transmitted to other net-

work nodes. The network code could be optimized subject to constraints on the degrees of

the corresponding factor nodes. This allows us to limit the decoding complexity even for

a large number of sources. Moreover, the relay could adaptively choose between different

network coding strategies depending on the channel conditions. For example, if the relay-

destination channel does not form a bottleneck, then it may be beneficial to forward data

without performing network coding (cf. [105]).



7

Conclusions

In this concluding chapter, we give a concise summary of the main contributions of this thesis

(cf. Section 7.1). In addition, we outline open problems beyond the results presented in this

thesis that may provide directions for further research (cf. Section 7.2).

173
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7.1 Summary of Contributions

Blind Performance Estimation for Bayesian Detectors

• We proposed unbiased and consistent blind estimators for the (conditional) error

probabilities, the minimum mean-square error (MSE), and the mutual information of

Bayesian detectors. We proved that the blind estimator for the unconditional error

probability always dominates the corresponding nonblind estimator in terms of MSE.

For the conditional error probabilities, we gave conditions under which the blind esti-

mators outperform the corresponding nonblind estimators for arbitrary distributions of

the data.

• The proposed blind estimators are based on soft information, i.e., on the posterior

probabilities of the hypotheses or on the log-likelihood ratio (LLR) in the binary case.

Our results show that in almost all cases soft information improves the accuracy of

performance estimation. We therefore conclude that if soft information is available,

then it should be used for performance estimation.

• Our blind estimators compute the sample mean of functions of the a posteriori proba-

bilities (APPs) and are therefore simple to implement. Hence, Bayesian detectors can

compute their performance online as a by-product with little to no extra cost. This may

be useful for a variety of adaptive systems, e.g., systems employing adaptive modulation

and coding in the communications context.

• We derived the Cramér-Rao lower bound for bit error probability estimation with con-

ditionally Gaussian LLRs under maximum a posteriori detection. We showed that in

this case an efficient estimator does not exist.

• We studied the properties of LLRs and we presented novel relations between the con-

ditional and unconditional moments of functions of LLRs. These relations are based

on the so called “consistency property” that connects the conditional and the uncondi-

tional LLR distributions such that any one of the three distributions suffices to express

the other two.

• We presented application examples for the proposed blind estimators. Our numerical

results confirm the usefulness of the blind estimators even in cases with model uncer-

tainty and approximate LLR computation.

The Rate-Information Trade-off in the Gaussian Case

• We derived closed-form expressions for the information-rate function and the rate-

information function. Furthermore, we showed that MSE-optimal (noisy) source coding

is suboptimal in terms of the rate-information trade-off.
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• In the vector case, the rate-information trade-off is determined by the allocation of

the compression rate to the individual modes. The optimal rate-information trade-

off is achieved by performing reverse waterfilling on the mode signal-to-noise ratios.

Hence, suitable linear filtering with subsequent MSE-optimal source coding is sufficient

to achieve the optimal rate-information trade-off.

• Our results show that the Gaussian information bottleneck (GIB) is equivalent to linear

filtering with subsequent MSE-optimal compression. We thus established a connection

between rate-distortion (RD) theory and the GIB. Therefore, the RD theorem pro-

vides achievability and converse for the rate-information trade-off in the Gaussian case.

This entails that the information-rate function is indeed the dividing line between the

achievable and not achievable rate-information pairs.

• We designed scalar quantizers and we compared their performance to the optimal rate-

information trade-off. It turned out that the information-rate function can be closely

approached by MSE-optimal scalar quantizers.

Quantizer Design for Communication Problems

• We presented algorithms for mutual-information-optimal quantizer design. For scalar

quantizer design we derived an algorithm which performs an alternating optimization

and is reminiscent of the Lloyd-Max algorithm. While this algorithm is simple to

implement, we also proposed a greedy algorithm which is even simpler as it avoids

root-finding. Furthermore, we found that the maximum output entropy quantizer is a

suitable initialization for our algorithms.

• We extended the concept of channel-optimized vector quantization to mutual infor-

mation as optimality criterion. To solve the corresponding optimization problem we

proposed an algorithm which is based on the iterative information bottleneck (IB) al-

gorithm. A major advantage of our algorithm is that it finds optimized labels for the

quantizer output and thus avoids the NP-hard label optimization problem.

• We compared the performance of mutual-information-optimal LLR quantizers to the

optimal rate-information trade-off. It turned out that scalar quantizers approach the

information-theoretic limit very closely. This implies that vector quantization (VQ) of

independent LLRs may at best yield a negligible performance improvement.

Quantization-Based Network Coding for the MARC

• We presented a cooperative transmission scheme for the multiple-access relay channel

(MARC) with two or more sources, which performs network coding at the physical layer.

In our scheme, the relay essentially performs LLR quantization followed by a network

coding operation that can be implemented using a table lookup. Hence, the proposed
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scheme allows for a low-complexity implementation of the relay which is important in

practice.

• We designed the network encoder at the relay as a channel-optimized vector quantizer.

Hence, the network encoder takes the noise on the relay-destination channel into ac-

count. We found that it is important to consider channel-optimized network encoders

since otherwise a significant performance penalty is incurred.

• We used a factor graph approach to derive the joint network-channel decoder that is

used at the destination. We analyzed the performance of this iterative decoder using

Monte Carlo simulations and practical channel codes. It turned out that the proposed

scheme yields significant coding gains compared to baseline schemes. Furthermore, for

block fading channels a diversity order of two is achieved for all sources simultaneously.

7.2 Open Problems

Blind Performance Estimation for Bayesian Detectors

• The proposed blind estimators are unbiased if (a) there is no uncertainty in the data

model and (b) the APPs are computed exactly. In many applications these conditions

are not satisfied, e.g., due to errors in the estimation of the data model and due to

limited computational resources which necessitate approximations.

Our numerical results show that the blind estimators produce useful results even if the

above conditions are not met, i.e., their bias is acceptably small in the considered cases.

However, a numerical case-by-case analysis is rather cumbersome. Instead, it would be

desirable to have upper bounds on the bias that depend on the amount of mismatch in

the data model and the APP computation.

• In the binary case, LLR correction can be used to eliminate the bias. Unfortunately,

LLR correction cannot be performed in a blind manner. However, (3.33) seems to offer

a way to perform a blind “consistency check” of the LLRs since (3.33) is based on the

consistency property. Replacing the expectation on the right-hand side of (3.33) by a

sample mean and computing the difference to the prior probability may be a suitable

measure for how inconsistent approximate LLRs are. Having such a measure is an

important step towards approximate blind LLR correction.

The Rate-Information Trade-off in the Gaussian Case

• We considered the optimization of the compression mapping for the case where the data

and the relevance variable are jointly Gaussian. In some situations it may be of interest

to jointly optimize the compression and the distribution of the relevance variable (cf.

(4.72)). In the communications context this joint optimization gives rise to the capacity
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of a quantized channel. Unfortunately, it is unclear how to solve this harder problem

since the variables are coupled in an intricate way.

• The rate-information trade-off is known in closed form only in very few cases, which is

similar to the RD trade-off. It would be desirable to find additional cases which allow for

closed-form expressions of the optimal rate-information trade-off. A case of particular

interest in many communication problems is the Gaussian channel with binary input.

Quantizer Design for Communication Problems

• As mentioned above, the joint optimization of the quantizer and the input distribution of

the channel is an interesting open problem. This applies to the asymptotic information-

theoretic limit as well as to the design of finite blocklength quantizers. In both cases

we have not yet found a viable method for solving the corresponding optimization

problems.

• An extension of our scalar quantizer design algorithms to VQ would be worthwhile.

Furthermore, it may be possible to perform the optimization of the quantizer based on

samples of training data instead of the probability distributions.

• In the channel-optimized case there exists currently no approach for the numerical

computation of the optimal rate-information trade-off. We believe that an extension of

the iterative IB algorithm to the channel-optimized case is possible. This would allow

us to compare the performance of our channel-optimized quantizers to the information-

theoretic limit.

Quantization-Based Network Coding for the MARC

• The structure of the network code in the proposed scheme is very simple. An optimiza-

tion of the network code can be expected to yield further performance improvements.

Furthermore, a network code design which constrains the maximum degree of the ver-

tices in the factor graph allows us to limit the decoding complexity at the relay.

• We assumed independence of the source data which is not always the case, e.g., in sensor

networks. It should feasible to include source correlation in the factor graph of the

overall network-channel code. The proposed iterative decoder then extends naturally

to the correlated case.

• It is desirable to improve the proposed scheme such that the relay may adapt its coding

strategy depending on the channel conditions. For example, in some cases it may be

beneficial if the relay does not perform network coding. Finding a suitable set of coding

strategies together with a practical adaptation policy is an open problem.
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A
Proofs for Chapter 3

A.1 Proof of Lemma 3.2

To prove Lemma 3.2, we have to show that

Lcu(x) = log
p(x|u=1)

p(x|u=−1)
= log

p(Lu(x)|u=1)

p(Lu(x)|u=−1)
. (A.1)

To this end, we note that∫
ekLupLu|u(Lu|u=1)dLu =

∫
ekLu(x)px|u(x|u=1)dx (A.2)

=

∫ [
P{u=1|Lu(x)}
P{u=−1|Lu(x)}

]k
px|u(x|u=1)dx (A.3)

= e−L
a
u

∫ [
P{u=1|Lu(x)}
P{u=−1|Lu(x)}

]k+1

px|u(x|u=−1)dx (A.4)

= e−L
a
u

∫
e(k+1)Lu(x)px|u(x|u=−1)dx (A.5)

= e−L
a
u

∫
e(k+1)LupLu|u(Lu|u=−1)dLu. (A.6)

Since the equality of (A.2) and (A.6) holds for all k ∈ Z we have

ekLupLu|u(Lu|u=1) = e(k+1)Lu−Lau pLu|u(Lu|u=−1). (A.7)

Setting k = 0 in (A.7), dividing by pLu|u(Lu|u=−1), and taking the logarithm finally yields

log
pLu|u(Lu|u=1)

pLu|u(Lu|u=−1)
= Lu − Lau = Lcu(x). (A.8)
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A.2 Proof of Proposition 3.10

The mth derivative of
(
1 + exp(Lu)

)−2
can be shown to equal

dm

dLmu

(
1

1 + exp(Lu)

)2

=
m∑
k=1

(−1)kdk,m
ekLu

(1 + eLu)k+2
, (A.9)

with the coefficients dk,m as in (3.188). Using (A.9) we can write the Taylor series expansion

of
(
1 + exp(|Lu|)

)−2
around Lu = 0 as

(
1

1 + exp(|Lu|)

)2

=
1

4
+
∞∑
m=1

|Lu|m
m!

m∑
k=1

(−1)k

2k+2
dk,m. (A.10)

Taking the expectation of (A.10) with respect to the log-likelihood ratio yields (3.187).

A.3 Proof of (3.204)

We prove the inequality

N∏
n=1

(
1− (2− αn/K)Pe,n + (1− 1/K)P 2

e,n

)
−

N∏
n=1

(1− Pe,n)2

≤ 1

K

N∏
n=1

(1− (2− αn)Pe,n)− 1

K

N∏
n=1

(1− Pe,n)2 (A.11)

by induction. The inequality in (A.11) holds for N = 1. Furthermore, (A.11) is fulfilled with

equality if Pe,n = 0, n = 1, . . . , N , or Pe,n = αn, n = 1, . . . , N . In what follows, we therefore

assume without loss of generality that Pe,N ∈ (0, αN ). We first rewrite (A.11) as

N∏
n=1

(
1− (2− αn/K)Pe,n + (1−1/K)P 2

e,n

)
≤ 1

K

N∏
n=1

(1−(2−αn)Pe,n)+

(
1− 1

K

) N∏
n=1

(1−Pe,n)2.

(A.12)

The inequality in (A.12) is equivalent to

(1− (2− αN/K)Pe,N +(1− 1/K)P 2
e,N

)N−1∏
n=1

(
1− (2− αn/K)Pe,n + (1− 1/K)P 2

e,n

)
≤
(
1− (2− αN/K)Pe,N + (1− 1/K)P 2

e,N

)
×
[

1

K

N−1∏
n=1

(1− (2− αn)Pe,n) +

(
1− 1

K

)N−1∏
n=1

(1− Pe,n)2

]
.

(A.13)
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Using (A.12) in (A.13) yields

(1− (2− αN/K)Pe,N +(1− 1/K)P 2
e,N

)
×
[

1

K

N−1∏
n=1

(1− (2− αn)Pe,n) +

(
1− 1

K

)N−1∏
n=1

(1− Pe,n)2

]

≤ 1

K

N∏
n=1

(1− (2− αn)Pe,n) +

(
1− 1

K

) N∏
n=1

(1− Pe,n)2. (A.14)

To show that (A.11) holds we thus need to show that (A.14) holds. Sorting the terms in

(A.14) yields

(
1− 1

K

)N−1∏
n=1

(1− Pe,n)2 ≤
(

1− 1

K

)N−1∏
n=1

(1− (2− αn)Pe,n) . (A.15)

For K = 1, (A.15) obviously holds with equality. For K > 1, we have

N−1∏
n=1

(1− Pe,n)2 ≤
N−1∏
n=1

(1− (2− αn)Pe,n) . (A.16)

The inequality in (A.16) holds if

(1− Pe,n)2 ≤ 1− (2− αn)Pe,n, n = 1, . . . , N − 1. (A.17)

We note that (A.17) is equivalent to the true statement P 2
e,n ≤ αnPe,n (cf. (3.202)). This

concludes the proof of the weakened mean-square error (MSE) upper bound (3.204).

A.4 Proof of Proposition 3.11

In what follows, we prove that

N∏
n=1

(1− Pe,n)−
N∏
n=1

(1− Pe,n)2 ≥ min
n
α−1
n

[
N∏
n=1

(1− (2− αn)Pe,n)−
N∏
n=1

(1− Pe,n)2

]
, (A.18)

where we have equality in (A.18) if and only if Pe,n ≡ 0. It is not hard to see that (A.18) is

indeed fulfilled with equality if Pe,n ≡ 0. We therefore assume that at least one Pe,n > 0 and

we show that in this case

N∏
n=1

(1− Pe,n)−
N∏
n=1

(1− Pe,n)2 > min
n
α−1
n

[
N∏
n=1

(1− (2− αn)Pe,n)−
N∏
n=1

(1− Pe,n)2

]
. (A.19)
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Without loss of generality we assume that Pe,N > 0. We next rewrite (A.19) as follows:

N∏
n=1

(1− Pe,n) + (min
n
α−1
n − 1)

N∏
n=1

(1− Pe,n)2 > min
n
α−1
n

N∏
n=1

(1− (2− αn)Pe,n) . (A.20)

We note that (A.20) holds for N = 1 if1 αN < 1. Next, we rewrite (A.20) as

min
n
α−1
n (1− (2− αN )Pe,N )

N−1∏
n=1

(1− (2− αn)Pe,n)

< (1− (2− αN )Pe,N )

[
N−1∏
n=1

(1− Pe,n) + (min
n
α−1
n − 1)

N−1∏
n=1

(1− Pe,n)2

]
. (A.21)

To prove (A.19), we show that the following inequality holds:

(1− (2− αN )Pe,N )

[
N−1∏
n=1

(1− Pe,n) + (min
n
α−1
n − 1)

N−1∏
n=1

(1− Pe,n)2

]

<
N∏
n=1

(1− Pe,n) + (min
n
α−1
n − 1)

N∏
n=1

(1− Pe,n)2. (A.22)

By sorting the terms in (A.22), we obtain

Pe,N (1− αN )
N−1∏
n=1

(1− Pe,n) > Pe,N (αN − Pe,N )(min
n
α−1
n − 1)

N−1∏
n=1

(1− Pe,n)2. (A.23)

Cancelling terms in (A.23) yields

1− αN > (αN − Pe,N )(min
n
α−1
n − 1)

N−1∏
n=1

(1− Pe,n). (A.24)

We note that (A.24) holds if

min
n
α−1
n <

1− Pe,N
αN − Pe,N

. (A.25)

The inequality in (A.25) is a true statement since Pe,N > 0. This concludes the proof of

(3.220). Finally, (3.219) follows directly from this proof together with (3.204).

A.5 Proof of Theorem 3.12

We have

p(Lu;µ) =
1√
4πµ

[
exp

(
− 1

4µ
(Lu − µ)2

)
P{u=1}+ exp

(
− 1

4µ
(Lu + µ)2

)
P{u=−1}

]
,

(A.26)

1We note that Pe,n < 1 can always be ensured if the detector simply guesses according to the prior
probabilities of un. Therefore, we can assume without loss of generality that αn < 1, n = 1, . . . , N .
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where the error probability Pe is related to µ via the inverse Q-function as

µ(Pe) = 2Q−2(Pe). (A.27)

The Fisher information in terms of µ equals

J(µ) = −
∫ ∞
−∞

(
∂2

∂µ2
log p(Lu;µ)

)
p(Lu;µ)dLu. (A.28)

To compute (A.28), we first compute ∂2

∂µ2
log p(Lu;µ). For the first-order derivative we have

∂

∂µ
log p(Lu;µ) =

√
4πµ(2

√
µ+ µ3/2 − L2

u/
√
µ)

8µ2
√
π

=
L2

u − µ(2 + µ)

4µ2
(A.29)

and thus the second-order derivative equals

∂2

∂µ2
log p(Lu;µ) = −L

2
u − µ
2µ3

. (A.30)

Using (A.30) in (A.28) and evaluating the integral yields

J(µ) =
1

2µ3
µ(2 + µ)− 1

2µ2
=

1 + µ

2µ2
. (A.31)

Reparametrizing the Fisher information yields (cf. (2.39))

J(Pe) = J
(
µ(Pe)

)( dµ

dPe

)2

. (A.32)

The derivative dµ/dPe equals

d

dPe
2Q−2(Pe) = −8

√
π

2
Q−1(Pe) exp

(
Q−2(Pe)/2

)
. (A.33)

In (A.33), we have used the relation [81, Section IV]

d

dx
Q−1(x) = −

√
2π exp

(
Q−2(x)/2

)
. (A.34)

Using (A.33), (A.31), and (A.27) in (A.32) yields

J(Pe) =
1 + 2Q−2(Pe)

8Q−4(Pe)
32πQ−2(Pe) exp

(
Q−2(Pe)

)
=

4π exp
(
Q−2(Pe)

)(
1 + 2Q−2(Pe)

)
Q−2(Pe)

.

(A.35)

The Cramér-Rao lower bound is thus given as

MSEP̌e(Pe) ≥
Q−2(Pe)

4π exp
(
Q−2(Pe)

)(
1 + 2Q−2(Pe)

) . (A.36)
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For K independent and identically distributed (iid) data samples the right-hand side of (A.36)

is multiplied by 1/K.

A.6 Proof of Theorem 3.13

An efficient estimator P̂ eff
e (Lu) for Pe exists if and only if (cf. (2.41))

∂

∂Pe
log p(Lu;Pe) = J(Pe)

(
P̂ eff
e (Lu)− Pe

)
. (A.37)

Using (A.29) and (A.33), we can write the left-hand side of (A.37) as

∂

∂Pe
log p(Lu;Pe) =

∂

∂µ
log p(Lu;µ)

d

dPe
µ(Pe) =

1 +Q−2(Pe)− L2
u

Q−1(Pe)

√
2π exp

(
Q−2(Pe)/2

)
.

(A.38)

Rewriting (A.37) in terms of P̂ eff
e (Lu) yields

P̂ eff
e (Lu) = Pe +

1

J(Pe)

∂

∂Pe
log p(Lu;Pe). (A.39)

Clearly, P̂ eff
e (Lu) is a valid estimator if it depends solely on the data Lu. Using (A.35) and

(A.38), we further write (A.39) as

P̂ eff
e (Lu) = Pe +

Q−1(Pe)
(
1 +Q−2(Pe)− L2

u

)
2
√

2π exp
(
Q−2(Pe)/2

)
(1 + 2Q−2(Pe))

. (A.40)

However, (A.40) depends not only on Lu but also on the parameter Pe. Therefore, (A.40) is

not a valid estimator. Since ∂ log p(Lu;Pe)/∂Pe cannot be written as in (A.37), there exists

no efficient estimator. This also holds if we consider the case of multiple iid samples.
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B.1 Proof of Theorem 4.3

Due to (4.16) and (4.18), the optimal z equals

z = ay + ξ = ahx + aw + ξ, (B.1)

where ξ ∼ N (0, 1) is independent of y and

a =

√
[β(1 + γ−1)−1 − 1]+

σ2
. (B.2)

With z ∼ N (0, a2(h2P +σ2) + 1) and z|y ∼ N (ay, 1), we can express the compression rate R

in terms of β as

R(β) = I(y; z) = h(z)− h(z|y) =
1

2
log2

(
a2(h2P + σ2) + 1

)
=

1

2
log+

2 γ(β − 1), (B.3)

where we have used (2.28) to compute the differential entropies. Using (B.3), we can express

β in terms of R as follows:

β(R) = 1 +
22R

γ
. (B.4)

From (B.1) it follows that z|x ∼ N (ahx, a2σ2 + 1), and thus the relevant information equals

I(β) = I(x; z) = h(z)− h(z|x) =
1

2
log

a2(h2P + σ2) + 1

a2σ2 + 1
= R(β)− 1

2
log β(1 + γ−1)−1. (B.5)

Finally, using (B.4) in (B.5) yields the information-rate function I(R) as in (4.24).
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Let us next prove the properties of I(R). To this end, we first rewrite I(R) as follows:

I(R) =
1

2
log2

1 + γ

1 + 2−2Rγ
. (B.6)

1. From the definition of strict concavity we have

I(αR1 + (1− α)R2) > αI(R1) + (1− α)I(R2), 0 < α < 1. (B.7)

Without loss of generality we assume that R1 < R2 and define Rα , αR1 + (1− α)R2.

Then the following inequalities hold:

I(Rα) > αI(R1) + (1− α)I(R2), (B.8)

log2

1 + γ

1 + 2−2Rαγ
> α log2

1 + γ

1 + 2−2R1γ
+ (1− α) log2

1 + γ

1 + 2−2R2γ
, (B.9)

log2

1 + 2−2R2γ

1 + 2−2Rαγ
> log2

1 + 2−2R2γ

1 + 2−2R1γ
> α log2

1 + 2−2R2γ

1 + 2−2R1γ
, (B.10)

2−2R1 > 2−2Rα , (B.11)

Rα > R1. (B.12)

Due to our assumption R1 < R2, (B.12) is a true statement and, hence, I(R) is strictly

concave on R+.

2. The argument of the logarithm in (B.6) is strictly increasing in R and, since the log-

arithm is a strictly increasing function of its argument, I(R) is strictly increasing in

R.

3. From (4.24) it is obvious that I(R) ≤ R holds since the second term on the right-hand

side of (4.24) is nonnegative. Similarly, I(R) ≤ C(γ) holds since the second term on

the right-hand side of (4.25) is nonnegative.

4. Due to (4.24), we have I(0) = 0 and (4.25) immediately yields limR→∞ I(R) = C(γ).

5. Taking the derivative of (4.24) with respect to R yields

dI(R)

dR
= 1− 1

2

1 + γ

22R + γ

22R2

1 + γ
= 1− 1

1 + 2−2Rγ
= (1 + 22Rγ−1)−1. (B.13)

B.2 Proof of Theorem 4.10

We first find the matrix A according to (4.18). To this end, we note that

ỹ ∼ N (0, I + Γ ) and ỹ|x ∼ N (UTC
−1/2
w Hx, I). (B.14)
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Hence, we have

C ỹ|xC
−1
ỹ = (I + Γ )−1 = diag{(1 + γk)

−1}nk=1. (B.15)

Due to (B.15) we have A = diag{αk}nk=1, where (cf. (4.19))

αk =

√[
β(1 + γ−1

k )−1 − 1
]+
. (B.16)

Using (4.16), we have z = Aỹ + ξ, where

Cz = A2(I + Γ ) + I = diag
{

[γk(β − 1)− 1]+ + 1
}n
k=1

. (B.17)

Furthermore, we have the following conditional distributions:

z|x ∼ N (AUTC
−1/2
w Hx,A2 + I) and z|ỹ ∼ N (Aỹ, I). (B.18)

Using (B.17) and (B.18), we write the compression rate R in terms of β as

R(β) = I(y; z) = I(ỹ; z) = h(z)− h(z|ỹ) =
1

2

n∑
k=1

log+
2 γk(β − 1). (B.19)

Similarly, for the relevant information we obtain

I(β) = I(x; z) = h(z)− h(z|x) = R(β)− 1

2

n∑
k=1

log+
2 β(1 + γ−1

k )−1. (B.20)

To eliminate β from (B.20) we first observe that only the first

`(β) =

n∑
k=1

1{β > βc,k} (B.21)

terms contribute to the sums in (B.19) and (B.20), where the critical values of β are given as

βc,k = 1 + γ−1
k . (B.22)

Without loss of generality, we assume that the mode signal-to-noise ratios (SNRs) are sorted

in descending order, i.e., we have γ1 ≥ · · · ≥ γn. We note that R(β) = 0 and I(β) = 0 if

β ≤ 1 + γ−1
1 . Assuming that β > 1 + γ−1

1 , we can implicitly express β using (B.21) in (B.19)

as follows:

β = 1 +
22R(β)/`(β)

γ`(β)

. (B.23)

Here, we use an to denote the geometric mean of the n numbers a1, . . . , an, i.e., we have

γ`(β) ,
`(β)∏
i=1

γ
1/`(β)
i . (B.24)
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Using (B.23) in (B.20) yields

I(β) =


R(β)− 1

2

`(β)∑
k=1

log2

[(
1 +

22R(β)/`(β)

γ`(β)

)
(1 + γ−1

k )−1

]
, β > 1 + γ−1

1

0, β ≤ 1 + γ−1
1

. (B.25)

We can equivalently express (B.21) in terms of R as in (4.39) by replacing (B.22) with the

corresponding critical rates

Rc,k =
1

2

k∑
i=1

log2

γi
γk
. (B.26)

This allows us to write the information-rate function I(R) as

I(R) =


R− 1

2

`(R)∑
k=1

log2

22R/`(R)γk/γ`(R) + γk

1 + γk
, R > 0

0, R = 0

(B.27)

= R− 1

2

n∑
k=1

log2

22Rk(R) + γk
1 + γk

, (B.28)

with the rate allocation Rk(R) as in (4.38).

The properties 3 to 5 of I(R) can be verified from (4.36)-(4.39) (see also Appendix B.1).

The properties 1 and 2 follow from the proof of Lemma 4.19.

B.3 Proof of Theorem 4.14

We first use (B.19), (B.20), and (B.21) to write the relevant information as follows:

I(β) =
1

2

`(β)∑
k=1

log2

β − 1

β
(1 + γk). (B.29)

Next, assuming that β > 1 + γ−1
1 (with the mode SNRs sorted in descending order), we use

(B.29) to implicitly express β as

β =

(
1− 22I(β)/`(β)

(1 + γ)`(β)

)−1

. (B.30)

Using (B.30) in (B.20) yields

R(β) =


I(β) +

1

2

`(β)∑
k=1

log2

(1 + γ−1
k )−1

1− 22I(β)/`(β)

(1+γ)`(β)

, β > 1 + γ−1
1

0, β ≤ 1 + γ−1
1

. (B.31)
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We next express (B.21) in terms of I as in (4.45) by replacing (B.22) with the corresponding

critical relevant information

Ic,k =
1

2

k∑
i=1

log2

1 + γi
1 + γk

. (B.32)

This allows us to write the rate-information function as

R(I) =


1

2

`(I)∑
k=1

log2

γk

2−2I/`(I)(1 + γ)`(I) − 1
, I > 0

0, I = 0

(B.33)

=
1

2

n∑
k=1

log2

γk
2−2Ik(I)(1 + γk)− 1

, (B.34)

with the information allocation Ik(I) as in (4.44).

The properties 3 to 5 of R(I) can be verified from (4.36)-(4.39). The properties 1 and

2 follow from the proof of Lemma 4.19 and the fact that R(I) is the inverse of I(R) (cf.

Corollary 4.15).

B.4 Proof of Lemma 4.17

We have y̌ = F ỹ ∼ N (0,C y̌) with F = diag{fk}nk=1, where C y̌ = F (I +Γ )F . mean-square-

error-optimal compression of y̌ is modeled using a “forward channel” (cf. [8, Sec. 4.3]). Hence,

we can write the quantized version of y̌ as

z = By̌ + η, (B.35)

where B = diag{bk}nk=1 and η ∼ N
(
0,diag{bkDk}nk=1

)
is independent of y̌. Here, we have

bk = 1− Dk

ωk
, (B.36)

with ωk = f2
k (1 + γk), k = 1, . . . , n, and the reverse waterfilling rate allocation [20, Sec. 10.3]

R(θ,F ) =
n∑
k=1

Rk(θ,F ), Rk(θ,F ) =
1

2
log+

2

ωk
θ
, (B.37)

D(θ,F ) =
n∑
k=1

Dk(θ,F ), Dk(θ,F ) = min{θ, ωk}, (B.38)

where θ > 0 is the waterlevel. Without loss of generality, we assume that the ωk’s are sorted

in descending order, i.e., we have ω1 ≥ · · · ≥ ωn. Due to (B.35) and (B.36), we have (recall

that ỹ = UTC
−1/2
w (Hx + w))

z ∼ N (0,Cz) and z|x ∼ N
(
BFUTC

−1/2
w Hx,Cz|x), (B.39)
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where

Cz = diag{b2kf2
k (1 + γk) + bkDk}nk=1, (B.40)

Cz|x = diag{b2kf2
k + bkDk}nk=1. (B.41)

Next, we express the relevant information using (B.36), (B.40), and (B.41) as follows:

IRD(θ,F ) = I(x; z) = h(z)− h(z|x) =
1

2

n∑
k=1

log2

1 + γk
1 +Dk(θ,F )γk/ωk

. (B.42)

Using (B.38), we can rewrite (B.42) as

IRD(θ,F ) =
1

2

l(θ,F )∑
k=1

log2

1 + γk
1 + θγk/ωk

, (B.43)

since only the first

l(θ,F ) =
n∑
k=1

1{θ < ωk} (B.44)

terms contribute to the sum in (B.42). We note that IRD(θ,F ) = 0 for θ ≥ ω1. Assuming

that θ < ω1, we can implicitly express the waterlevel θ using (B.44) and (B.37) as follows:

θ = 2−2R(θ,F )/l(θ,F )ωl(θ,F ). (B.45)

With (B.45) we obtain

IRD(θ,F ) =


1

2

l(θ,F )∑
k=1

log2

1 + γk
1 + 2−2R(θ,F )/l(θ,F )γkωl(θ,F )/ωk

, θ < ω1

0, θ ≥ ω1

. (B.46)

Expressing (B.44) in terms of R by replacing ωk with the corresponding critical rates RRD
c,k

(cf. (4.55)) yields

l(R,F ) =

n∑
k=1

1{R > RRD
c,k }. (B.47)

With (B.37), (B.45), and (B.47) we obtain the rate allocation

RRD
k (R,F ) =


[

R

l(R,F )
+

1

2
log2

ωk
ωl(R,F )

]+

, R > 0

0, R = 0

. (B.48)

Using (B.48) in (B.46) yields (4.52).
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B.5 Proof of Lemma 4.19

To prove that IRD(R,F ) is concave in R for arbitrary mode SNRs if and only if (4.68)

holds, we show that IRD(R,F ) is nondecreasing and has a nonincreasing derivative. From

the waterfilling representation (4.64) and (4.65), it is not hard to see that IRD(R,F ) is

nondecreasing in R (since R is nonincreasing in θ). The derivative of IRD(R,F ) equals

dIRD(R,F )

dR
=

dIRD(θ,F )
dθ

dR(θ,F )
dθ

(B.49)

=
1

l(θ,F )

l(θ,F )∑
k=1

θγk/ωk
1 + θγk/ωk

(B.50)

= I
′RD(θ,F ), (B.51)

where θ is chosen such that 1
2

∑n
k=1 log+

2
ωk
θ = R. The derivative of IRD(R,F ) is nonincreasing

in R if (B.51) is nondecreasing in θ. In the following let θ1 ≤ θ2. If l(θ1,F ) = l(θ2,F ), we

have I
′RD(θ1,F ) ≤ I

′RD(θ2,F ), since the term in the sum in (B.50) is increasing in θ. If

l(θ1,F ) > l(θ2,F ), we have I
′RD(θ1,F ) ≤ I

′RD(θ2,F ) if and only if the quantities γk/ωk,

k = 1, . . . , n, are sorted in descending order. This is because (B.50) is an arithmetic mean of

l(θ,F ) terms which is decreasing if and only if additional smaller terms are added. Therefore,

the filter coefficients have to satisfy

f2
k+1

f2
k

≥
γk+1

1+γk+1

γk
1+γk

, k = 1, . . . , n− 1. (B.52)

From (B.52) it is evident that the sign of the filter coefficients is irrelevant. For the ωk’s,

(B.52) entails
ωk+1

ωk
≥ γk+1

γk
, k = 1, . . . , n− 1. (B.53)

The optimal filter satisfies (B.52) and (B.53) with equality since F = F ? entails ωk = γk.

Particularizing (B.52) to F = W ρ for ρ ≥ 0 yields

ξ2ρ−1
k ≥ 1, k = 1, . . . , n− 1, with ξk =

γk+1

1+γk+1

γk
1+γk

, (B.54)

where the mode SNRs γk are sorted in descending order (to ensure that the ωk’s are sorted

in descending order). Hence, we have ξk ≤ 1 and thus ξ2ρ−1
k ≥ 1 if and only if ρ ≤ 1/2. This

concludes the proof of the first part of Lemma 4.19.

For the derivative of IRD(R,F ?), we have (cf. (B.50))

I ′RD(θ,F ?) =
θ

1 + θ
. (B.55)

We note that the derivative in (B.55) is continuous, nondecreasing, and concave in θ and thus
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dIRD(R,F ?)
dR is continuous, nonincreasing, and convex in R (since θ is inversely proportional to

R). Furthermore, IRD(R,F ?) does not depend on the mode SNRs. Next, let

I ′RD
+ (ωl,F ) = lim

θ↓ωl
I ′RD(θ,F ) =

1

l − 1

l−1∑
k=1

γk
ωl
ωk

1 + γk
ωl
ωk

, (B.56)

I ′RD
− (ωl,F ) = lim

θ↑ωl
I ′RD(θ,F ) =

1

l

l∑
k=1

γk
ωl
ωk

1 + γk
ωl
ωk

. (B.57)

We note that I ′RD
+ (ωl,F ) = I ′RD

− (ωl,F ), l = 2, . . . , n, if and only if F = F ? (recall that in

this case ωk = γk). If F 6= F ?, we have

I ′RD
− (ωl,F )

I ′RD
+ (ωl,F )

=
1

l

(
l − 1 +

1

I ′RD
+ (ωl,F )

γl
1 + γl

)
6= 1, l = 2, . . . , n, (B.58)

i.e., dIRD(R,F ?)
dR is discontinuous at the critical rates. This concludes the proof of the second

part of Lemma 4.19.

B.6 Proof of Lemma 4.20

The critical rates are given as

RRD
c,k (I) =

1

2

k∑
i=1

log2

1 + γi
1 + γk

, (B.59)

Rc,k =
1

2

k∑
i=1

log2

γi
γk
, (B.60)

RRD
c,k (W ) =

1

2

k∑
i=1

log2

γ2
i

1 + γi

1 + γk
γ2
k

. (B.61)

Therefore, we have

RRD
c,k (I) +RRD

c,k (W )

2
=

1

4

k∑
i=1

log2

1 + γi
1 + γk

γ2
i

1 + γi

1 + γk
γ2
k

=
1

2

k∑
i=1

log2

γi
γk

= Rc,k. (B.62)

The inequality RRD
c,k (I) ≤ Rc,k holds since each term in (B.59) is smaller than (or equal to)

the corresponding term in (B.60). Specifically,

1 + γi
1 + γk

≤ γi
γk
, i = 1, . . . , k, (B.63)
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yields γi ≥ γk which is a true statement since the mode SNRs are sorted in descending order

and i = 1, . . . , k. Similarly, Rc,k ≤ RRD
c,k (W ) holds since

γi
γk
≤ γ2

i

1 + γi

1 + γk
γ2
k

, i = 1, . . . , k, (B.64)

again yields the true statement γi ≥ γk. Together with (4.39) and (4.54), the inequalities

RRD
c,k (I) ≤ Rc,k ≤ RRD

c,k (W ) for the critical rates yield the inequalities l(R, I) ≥ `(R) ≥
l(R,W ) for the number of active modes.
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C
Proofs for Chapter 5

C.1 Proof of Proposition 5.3

To prove Proposition 5.3, we first rewrite I(g) and I
(
g,h(x)

)
as follows:

I(g) =
∑
x∈X l

∑
z∈Z

p(x|z)p(z) log
p(x|z)
p(x)

, (C.1)

I
(
g,h(x)

)
=
∑
x∈X l

∑
z∈Z

p(x|z)p(z) log
hz(x)

p(x)
, (C.2)

where

p(x|z) =

∫ gz

gz−1

p(x|y)p(y)dy∫ gz

gz−1

p(y)dy

and p(z) =

∫ gz

gz−1

p(y)dy. (C.3)

Next, we compute the difference between (C.1) and (C.2). We have

I(g)− I
(
g,h(x)

)
=
∑
x∈X l

∑
z∈Z

p(x|z)p(z) log
p(x|z)
hz(x)

(C.4)

= D
(
p(x|z)p(z)‖hz(x)p(z)

)
(C.5)

≥ 0. (C.6)

We note that (C.6) is due to the information inequality (2.22). Thus, we have shown that

I(g) ≥ I
(
g,h(x)

)
and due to (C.5) we have I(g) = I

(
g,h(x)

)
if and only if hz(x) = p(x|z).

This concludes the proof since p(x|z) in (C.3) is equal to h?i (x) in (5.21).
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C.2 Proof of Proposition 5.4

To prove the convergence of our algorithm to a locally optimal solution of (5.20), we show that

the updates (5.32) and (5.34) do not decrease the value of the objective function. Specifically,

we establish the following inequalities:

I
(
g(i),h(i)(x)

)
≤ I
(
g(i+1),h(i)(x)

)
≤ I
(
g(i+1),h(i+1)(x)

)
. (C.7)

Since the objective function is upper bounded as I
(
g(i),h(i)(x)

)
≤ H(x), the inequalities in

(C.7) imply convergence to a local optimum as i→∞.

To prove that the first inequality in (C.7) holds, we show that g(i+1) is unique and

corresponds to a local maximum if the log-likelihood ratio (LLR) Lx(y) is strictly increasing

in y. To this end, we note that (cf. (5.33))

∂2

∂gj∂gm
I
(
g,h(x)

)
= 0, j 6= m, (C.8)

and therefore we have to show that

∂2

∂g2
j

I
(
g(i+1),h(i)(x)

)
< 0, j = 1, . . . , n− 1. (C.9)

The inequality in (C.9) is equivalent to the following inequality (we suppress the iteration

index in what follows):

log
1 + e−Lj+1

1 + e−Lj
d

dgj
P{x=1|y=gj}+ log

1 + eLj+1

1 + eLj
d

dgj
P{x=−1|y=gj} < 0. (C.10)

Next, we express the derivative of the posterior probability P{x=x|y=gj} as

d

dgj
px|y(x|gj) =

d

dgj

1

1 + e−xLx(gj)
=
xL′(gj)e

−xLx(gj)(
1 + e−xLx(gj)

)2 . (C.11)

Using (C.11) in (C.10) yields

log
1 + e−Lj+1

1 + e−Lj
< log

1 + eLj+1

1 + eLj
(C.12)

which is in turn equivalent to

Lj < Lj+1. (C.13)

Hence, the stationary point g(i+1) is a local maximum if the LLRs Lj , j = 1, . . . , n, (cf.

(5.32)) are sorted in ascending order. We next show that (C.13) holds if the LLR Lx(y) is
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strictly increasing in y. Writing (C.13) more explicitly yields

∫ g−j

g+j−1

1

1 + e−Lx(y)
p(y)dy

∫ g−j

g+j−1

1

1 + eLx(y)
p(y)dy

<

∫ g−j+1

g+j

1

1 + e−Lx(y)
p(y)dy

∫ g−j+1

g+j

1

1 + eLx(y)
p(y)dy

. (C.14)

Here, the notation
∫ b−
a+ implies integration over the interval [a, b). Next, we lower bound the

right-hand side of (C.14) as follows:

∫ g−j+1

g+j

1

1 + e−Lx(y)
p(y)dy

∫ g−j+1

g+j

1

1 + eLx(y)
p(y)dy

≥

1

1 + e−Lx(g+j )

∫ g−j+1

g+j

p(y)dy

1

1 + eLx(g+j )

∫ g−j+1

g+j

p(y)dy

= eLx(g+j ). (C.15)

Similarly, the left-hand side of (C.14) can be upper bounded as

∫ g−j

g+j−1

1

1 + e−Lx(y)
p(y)dy

∫ g−j

g+j−1

1

1 + eLx(y)
p(y)dy

≤

1

1 + e−Lx(g−j )

∫ g−j

g+j−1

p(y)dy

1

1 + eLx(g−j )

∫ g−j

g+j−1

p(y)dy

= eLx(g−j ). (C.16)

Using (C.15) and (C.16) in (C.14) yields

eLx(g−j ) < eLx(g+j ) (C.17)

which is a true statement if Lx(y) is strictly increasing in y. In this case, g(i+1) is indeed a local

maximum of the objective function. To conclude that I
(
g(i),h(i)(x)

)
≤ I
(
g(i+1),h(i)(x)

)
, we

require that g(i+1) is the only stationary point, i.e., the only solution of (5.34). We note

that Lx(y) is injective since it is strictly increasing and hence there is at most one stationary

point. To see that there must exist at least one solution of (5.34), note that the right-hand

side of (5.34) can be bounded as follows:

Lj ≤ log
log

1 + eLj+1

1 + eLj

log
1 + e−Lj

1 + e−Lj+1

≤ Lj+1, j = 1, . . . , n− 1. (C.18)

Furthermore, we can bound the LLRs L1 and Ln using (5.32) as Lx(g0) ≤ L1 and Lx(gn) ≥ Ln,

respectively. Hence, for each j ∈ {1, . . . , n − 1} there must exist at least one gj such that

Lx(gj) equals the right-hand side of (5.34). We have thus established that I
(
g(i),h(i)(x)

)
≤

I
(
g(i+1),h(i)(x)

)
. The inequality I

(
g(i+1),h(i)(x)

)
≤ I
(
g(i+1),h(i+1)(x)

)
follows immediately

from Proposition 5.3. This concludes the proof of Proposition 5.4.
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D

Moments of the Normal

Distribution

In this appendix, we derive expressions for the (raw) moments, the central moments, the

(raw) absolute moments, and the central absolute moments of a normal (Gaussian) random

variable x ∼ N (µ, σ2) with mean µ = E{x} and variance σ2 = E{x2}−µ2. In Section D.1, we

introduce several special functions which we use to express the moments of x. In Section D.2,

we present the resulting formulas for the moments of x and the corresponding derivations are

given in Section D.3.
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D.1 Preliminaries

In the following we list the definitions of subsequently used special functions (cf., e.g., [70]):

• Gamma function:

Γ(z) ,
∫ ∞

0
tz−1e−tdt. (D.1)

• Rising factorial:

zn ,
Γ(z + n)

Γ(z)
(D.2)

= z(z + 1) · · · (z + n− 1), n ∈ N0. (D.3)

• Double factorial:

z!! ,

√
2z+1

π
Γ
(z

2
+ 1
)

(D.4)

= z · (z − 2) · . . . · 3 · 1, z ∈ N odd. (D.5)

• Kummer’s confluent hypergeometric functions:

Φ(α, γ; z) ,
∞∑
n=0

αn

γn
zn

n!
. (D.6)

• Tricomi’s confluent hypergeometric functions:

Ψ(α, γ; z) ,
Γ(1− γ)

Γ(α− γ + 1)
Φ(α, γ; z) +

Γ(γ − 1)

Γ(α)
z1−γΦ(α− γ + 1, 2− γ; z). (D.7)

• Parabolic cylinder functions:

Dν(z) , 2ν/2e−z
2/4

[ √
π

Γ
(

1−ν
2

)Φ

(
−ν

2
,
1

2
;
z2

2

)
−
√

2πz

Γ
(
−ν

2

)Φ

(
1− ν

2
,
3

2
;
z2

2

)]
. (D.8)

D.2 Results

In this section we summarize formulas for the raw/central (absolute) moments of a normal

random variable x ∼ N (µ, σ2). The formulas for E
{

xν
}

, E
{

(x−µ)ν
}

, E
{
|x|ν
}

, and E
{
|x−µ|ν

}
hold for ν > −1 unless stated otherwise. Note that j =

√
−1 denotes the imaginary unit.

Raw Moments.

E
{

xν
}

= (jσ)ν exp

(
− µ2

4σ2

)
Dν

(
−j µ

σ

)
(D.9)



D.3 Derivations 201

= (jσ)ν2ν/2

[ √
π

Γ
(

1−ν
2

)Φ

(
−ν

2
,
1

2
;− µ2

2σ2

)
+ j

µ

σ

√
2π

Γ
(
−ν

2

)Φ

(
1− ν

2
,
3

2
;− µ2

2σ2

)]
(D.10)

= (jσ)ν2ν/2 ·

 Ψ
(
−ν

2 ,
1
2 ;− µ2

2σ2

)
, µ ≤ 0

Ψ∗
(
−ν

2 ,
1
2 ;− µ2

2σ2

)
, µ > 0

(D.11)

=

 σν2ν/2
Γ( ν+1

2 )√
π

Φ
(
−ν

2 ,
1
2 ;− µ2

2σ2

)
, ν ∈ N0 even

µσν−12(ν+1)/2 Γ( ν2 +1)√
π

Φ
(

1−ν
2 , 3

2 ;− µ2

2σ2

)
, ν ∈ N0 odd

. (D.12)

Central Moments.

E
{

(x− µ)ν
}

= (jσ)ν2ν/2
√
π

Γ
(

1−ν
2

) (D.13)

= (jσ)ν2ν/2 cos(πν/2)
Γ
(
ν+1

2

)
√
π

(D.14)

=
(
1 + (−1)ν

)
σν2ν/2−1 Γ

(
ν+1

2

)
√
π

(D.15)

=

{
σν(ν − 1)!!, ν ∈ N0 even

0, ν ∈ N0 odd
. (D.16)

Raw Absolute Moments.

E
{
|x|ν
}

= σν2ν/2
Γ
(
ν+1

2

)
√
π

Φ

(
−ν

2
,
1

2
;− µ2

2σ2

)
. (D.17)

Central Absolute Moments.

E
{
|x− µ|ν

}
= σν2ν/2

Γ
(
ν+1

2

)
√
π

. (D.18)

D.3 Derivations

In this section we give derivations for the results presented above. We use the following two

identities (which hold for γ ∈ R and ν > −1) to express the moments in terms of special

functions (cf. [48, Sec. 3.462]):∫ ∞
−∞

(−jx)νe−x
2+jγxdx =

√
2−νπe−γ

2/8Dν

(
γ√
2

)
, (D.19)∫ ∞

0
xνe−x

2−γxdx = 2−(ν+1)/2Γ(ν + 1)eγ
2/8D−ν−1

(
γ√
2

)
. (D.20)

Raw Moments. Using (D.19), we obtain (D.9) from the definition of E
{

xν
}

as follows:

E
{

xν
}

=
1√

2πσ2

∫ ∞
−∞

xν exp

(
− 1

2σ2
(x− µ)2

)
dx (D.21)
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=

√
2νσ2ν

π
exp

(
− µ2

2σ2

)∫ ∞
−∞

xν exp
(
−x2 + x

µ

σ

√
2
)

dx (D.22)

(D.19)
= (jσ)ν exp

(
− µ2

4σ2

)
Dν

(
−j µ

σ

)
. (D.23)

Central Moments. Equation (D.13) follows from (D.9) with Φ(α, γ; 0) = 1 and, hence,

Dν(0) = 2ν/2
√
π

Γ
(

1−ν
2

) . (D.24)

To obtain (D.14) from (D.13) we use the identity [48, Sec. 8.334]

Γ

(
1 + ν

2

)
Γ

(
1− ν

2

)
=

π

cos(πν/2)
. (D.25)

Then (D.15) follows from (D.14) by noting that

cos(πν/2) =
1 + exp(jπν)

2 exp(jπν/2)
=

1 + (−1)ν

2jν
. (D.26)

Raw Absolute Moments. Using (D.20), we obtain (D.17) from the definition of E
{
|x|ν
}

as follows:

E
{
|x|ν
}

=
1√

2πσ2

∫ ∞
−∞
|x|ν exp

(
− 1

2σ2
(x− µ)2

)
dx (D.27)

=
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π
exp

(
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2σ2
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0

xν exp
(
−x2 − xµ

σ

√
2
)

dx

+

∫ ∞
0

xν exp
(
−x2 + x

µ

σ
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2
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dx

]
(D.28)

(D.20)
=

√
2νσ2ν

π
exp
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(
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)
(D.29)

=

√
σ2ν

2ν
exp

(
− µ2

2σ2

)
Γ(ν + 1)

Γ(ν/2 + 1)
Φ

(
ν + 1

2
,
1

2
;
µ2

2σ2

)
(D.30)
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exp
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= σν2ν/2
Γ
(
ν+1

2

)
√
π

Φ

(
−ν

2
,
1

2
;− µ2

2σ2

)
, (D.32)

In (D.31), we have used Kummer’s transformation Φ(α, γ; z) = ezΦ(γ − α, γ;−z) [48, Sec.

9.212] to obtain (D.32).

Central Absolute Moments. Equation (D.18) follows from (D.17) with Φ(α, γ; 0) = 1.



List of Abbreviations

3GPP 3rd Generation Partnership Project

AF amplify-and-forward

APP a posteriori probability

AWGN additive white Gaussian noise

BCJR Bahl, Cocke, Jelinek, and Raviv

BEC binary erasure channel

BER bit error rate

BICM bit-interleaved coded modulation

BP belief propagation

BPSK binary phase-shift keying

BSC binary symmetric channel

COVQ channel-optimized vector quantization

CRLB Cramér-Rao lower bound

CSI channel state information

DF decode-and-forward

DMC discrete memoryless channel

DVB digital video broadcasting

FER frame error rate

GIB Gaussian information bottleneck

HMM hidden Markov model

IB information bottleneck

IEEE Institute of Electrical and Electronics Engineers

iid independent and identically distributed

IoT internet of things

LBG Linde, Buzo, and Gray

LDPC low-density parity-check

LLR log-likelihood ratio

LTE-A Long Term Evolution-Advanced

MAP maximum a posteriori
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204 List of Abbreviations

MARC multiple-access relay channel

ML maximum likelihood

MOE maximum output entropy

MSE mean-square error

MVU minimum-variance unbiased

pdf probability density function

pmf probability mass function

QAM quadrature amplitude modulation

RD rate-distortion

SAC stuck-at channel

SNR signal-to-noise ratio

VQ vector quantization
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