
Solving k-Set Agreement in
Dynamic Networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Technische Informatik

eingereicht von

Manfred Schwarz
Matrikelnummer 0725898

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Ulrich Schmid
Mitwirkung: -

Wien, August 28, 2013
(Unterschrift VerfasserIn) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Solving k-Set Agreement in
Dynamic Networks

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Computer Engineering

by

Manfred Schwarz
Registration Number 0725898

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dr. Ulrich Schmid
Assistance: -

Vienna, August 28, 2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Manfred Schwarz
Adalbert-Stifter Straße 22 Tür 37/38, 1200 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

First and foremost I want to thank my parents, Kurt and Maria Schwarz, for their unconditional
support over the last few years.

Then I would like to thank my advisor Univ.Prof. Ulrich Schmid for giving me the opportu-
nity for this thesis and the constant support in every aspect of my work.

Also, I want to thank my fellow student Kyrill Winkler for the enriching talks, which helped
me out in a few tight spots during the creation of my thesis.

I want to thank Peter Robinson and Martin Biely, as they have proof-read the publication,
which was created in parallel to this work and addresses the same topic, thus they also have
indirectly proof-read this master thesis.

Furthermore my girlfriend Tina Pruckermayr for sticking with me the last years and support-
ing my work at the university.

Lastly, the financial support by the Austrian Science Fund (FWF) project RiSE (S11405) is
also gratefully acknowledged.

iii

Abstract

In this Master thesis, we will propose a way to solve k-set agreement in a very relaxed model
of a synchronous distributed system. The model is based on a sequence of directed communica-
tion graphs determined by the adversary, which specify which process receives a message from
which process in a round. k-set agreement describes the problem where distributed process with
possible different initial values have to agree on a smaller set of decision values. In order to make
k-set agreement solvable, the power of the adversary w.r.t. disrupting communication between
processes must be restricted. Essentially, the proposed restrictions ensure that, during every ex-
ecution, certain strongly connected subgraphs (vertex stable root components) are influencing
each other and that, eventually, communication graphs are sufficiently stable for a short time to
ensure termination. We will show that an algorithm exists, which can solve k-set agreement un-
der these weak constraints, and prove its correctness. Basically, the algorithm locally estimates
whether a vertex stable root component has formed and, if so, tries to use its strong connec-
tivity to force all its members to decide on the same value. The algorithm is k-uniform, i.e.,
independent of k, hence automatically adapts the number of different decision values according
to the actual network conditions. The result of this work, which has been supported by Aus-
trian Science Fund (FWF) project RiSE (S11405), have been submitted to the 17th International
Conference on the Principles of Distributed Systems (OPODIS 2013).

v

Kurzfassung

In dieser Diplomarbeit stelle ich eine Lösung des “k-set agreement“-Problems unter einem
schwachen, verteilten, synchronen Berechnungsmodel vor. Das Model basiert auf einer Sequenz
von gerichteten Kommunikationsgraphen, die, vom Adversary bestimmt, vorgibt, welcher Pro-
zess von welchem Prozess pro Runde eine Nachricht erhält. “k-set agreement“ beschreibt das
Problem, in dem Prozesse mit möglicherweise verschiedenen Startwerten sich auf ein kleineres
Set von Entscheidungswerten einigen müssen. Um “k-set agreement“ lösbar zu machen, müssen
die Möglichkeiten des Adversaries zur Unterbindung der Kommunikation zwischen Prozessen
eingeschränkt werden. Diese Restriktionen stellen sicher, dass in jeder Ausführung stark ver-
bundene Strukturen (sogenannte “vertex stable root components“) sich gegenseitig beeinflussen
und irgendwann ausreichend lang stabil sind, um Termination zu garantieren. Wir geben einen
Algorithmus an, der unter diesen Einschränkungen “k-set agreement“ löst und beweisen sei-
ne Korrektheit. Der Algorithmus versucht, lokal “vertex stable root components“ zu erkennen
und diese zu nutzen, um alle darin enthaltenen Prozesse zu einer gemeinsamen Entscheidung
zu bringen. Der Algorithmus ist k-uniform, also unabhängig von k, und passt daher die Anzahl
unterschiedlicher Entscheidungswerte automatisch an die aktuellen Bedingungen im Netzwerk
an. Die Resultate dieser Arbeit, die Unterstützung durch das Projekt RiSE (S11405) des österrei-
chischen Fonds zur Förderung wissenschaftlicher Forschung (FWF) erhielt, wurden bei der 17.
International Conference on the Principles of Distributed Systems (OPODIS 2013) eingereicht.

vii

Contents

1 Dynamic networks 1
1.1 Introduction . 1
1.2 History and classification of dynamic networks 2
1.3 Related work . 9

2 Model 15
2.1 Failure assumption . 16
2.2 Computation . 16
2.3 Communication . 16
2.4 Network properties . 17
2.5 Required connectivity properties . 19
2.6 k-set agreement . 24

3 Algorithm 27
3.1 The local network approximation algorithm 27
3.2 k-set agreement algorithm . 30

4 Impossiblity results 37
4.1 Definitions from [7] . 37
4.2 Impossibility assuming ≤ k simultaneous roots 39
4.3 Eventual stability does not help . 40

5 Conclusions 45
5.1 Summary of accomplishments . 45
5.2 Discussion of our results . 45
5.3 Possibilities for future work . 47

Bibliography 49

ix

CHAPTER 1
Dynamic networks

1.1 Introduction

With the emergence of peer-to-peer (P2P) networks, (wireless) sensor networks, mobile ad-
hoc networks and vehicular area networks, classic computer network properties have changed
drastically. The two main differences to a normal wired network, as mentioned in [10], are
(i) a large set of participants (they will be called processes in the rest of the thesis), which are
unknown and may or may not change over time, and (ii) the lack of a central control instance. As
a consequence, existing models and solutions do not fit a growing number of network settings.

On the other hand, such systems are particularly in need of algorithms which solve dis-
tributed computing problems like consensus or k-set agreement to compensate the missing cen-
tral control. Hence models and algorithms are needed for solving agreement problems in dy-
namic networks.

Especially demanding and very popular examples of dynamic networks are wireless net-
works. In particular, due to the typical broadcast behavior and the possibility of uncontrollable
receiver failures of each process, the network environment is highly dynamic and may even be
unknown in certain areas. Whereas, wireline networks can adequately be modeled by a fixed
pool of participants and bidirectional links in between, this is hence not realistic in wireless
networks: In a wireless setting, interference phenomenon as mentioned in [24] are local effects
that only affect the receiver of a link. The receiver of the reversed link is usually at a different
location and hence affected by different interference scenarios.

A model that is suitable for such systems hence needs the abstraction of a pair of unidirec-
tional links between processes, which are independent of each other. These links can fade and
come into existence arbitrarily due to communication failures of departing and joining processes,
for example.

Obviously, without any restriction of the adversary (who is considered responsible for deter-
mining which processes can communicate with each other), no non trivial distributed computing
problem can be solved: After all, it could just prevent any communication in the system. In

1

addition, more difficult distributed computing problems usually require more restrictions of the
adversary w.r.t. its ability to prevent communication between processes.

For consensus, which is the problem of having all processes agreeing on a common decision
value based on local input values, a suitable model has been proposed in [10]. The model is
synchronous, in the sense that the execution of the processes develops in a sequence of lock-
step rounds. In every round, all processes send (broadcast) a message to each other, receive
a message from all neighbors, and perform a state transition. Although the applicability of a
synchronous model is limited to systems equipped with synchronized clocks, we note that this is
not an unrealistic requirement, neither in wireline [33] nor in wireless [26] networks. The model
of [10] uses a sequence of communication graphs, one per round, determined by the adversary,
to specify which process receives a message from which process in a round. The set of processes
is static, i.e., there is no churn, but its size is possible unknown.

Unfortunately, consensus requires strong guarantees from the adversary: In each round, the
network must at least be weakly connected and may contain at most one root component (a
strongly connected component without incoming links), which eventually must become vertex-
stable (consist of the same processes, with possibly varying internal topology) for a short period
of time. Both assumptions are unlikely to hold in a wireless setting.

In this thesis, we will consider the more general problem of k-set agreement in dynamic
networks. For some integer k ≥ 1 k-set agreement requires that processes agree on at most k
different decision values system-wide. Note that consensus is equivalent to 1-set agreement. Us-
ing the basic model of [10], we will propose some very weak constraints for the adversary which
make k-set agreement possible: We will present a suitable algorithm and prove its correctness.
Moreover, resorting to impossibility results established in collaboration with a complementary
Master thesis [42], we will demonstrate that the constraints underlying our model are very close
to the solvability border.

The work of this thesis has been supported by the Austrian Science Fund (FWF) project
RiSE (S11405); the results haven been submitted to OPODIS’13 [39].

The thesis is divided in five chapters, the first representing an overview of different models
for distributed systems and formulating a framework that allows to compare and classify those.
The second chapter gives an in depth description of the model used in this thesis and a formal
definition of the k-set agreement problem. In the third chapter, an algorithm is presented that
solves the problem under the given model, along with a detailed proof that shows its correctness.
The fourth chapter presents two impossibility results, which show that our model assumptions
are very close to the solvability/unsolvability border. The thesis is concluded in chapter five with
a short summary of our accomplishments and a discussion of our findings.

1.2 History and classification of dynamic networks

As briefly mentioned in the introduction, networked systems underwent a lot of changes. Dif-
ferent network properties where adapted to fit new emerging needs over the years. Naturally
scientists working in the fields of distributed systems invented new models to capture those new
features. This extensive research lead to a lot of interesting insights. Important concepts have

2

been identified and formally defined by different researchers in different ways even though they
are the same.

This inspired the authors of [17] to introduce a categorization of the different models and
concepts used in distributed systems. In the following paragraphs, we will cite large parts of
their work to give an overview of the different categories they identified, and later on make a
connection to our model.

First, [17] distinguishes 3 main categories of existing networks, which are abstracted by
different models in distributed systems.

(a) The study of communication in highly dynamic networks, e.g., broadcasting and routing
in delay-tolerant networks. Such networks are characterized by highly dynamic commu-
nication links between a fixed set of participants.

(b) The exploitation of passive mobility, e.g., the opportunistic use of transportation networks.
Contrary to (a), in such systems, the participants are the dynamic element.

(c) The analysis of complex real-world networks, ranging from neuroscience or biology to
transportation systems or social networks, e.g., the characterization of the interaction pat-
terns emerging in a social network. This category is characterized by special emerging
properties during the execution of a system.

(a) Delay-tolerant networks

Such networks are highly dynamic and have more or less no infrastructure. Their key char-
acteristic is the absence of guaranteed communications routes between two participants at any
time instant. Examples are satellites, pedestrian and vehicular networks. These networks are
often called disruption-tolerant, challenged, or opportunistic networks. Even though connec-
tivity assumptions do not hold in general, different mechanisms are available, for example, to
broadcast information. Indeed a lot of research has been invested to find new techniques to
solve more advanced problems in such networks. This includes pro-active knowledge on the
network schedule, delay-based optimization, encounter-based choices, or even analytical and
probabilistic strategies. In all those models time is of crucial importance, thus most common
graph concepts were extend by a temporal vision.

(b) Opportunistic-mobility networks

Such networks exploit the delay-tolerant network created by mobile carriers equipped with short-
ranged-radio transmitters. These carriers are used for performing tasks possibly external and
extraneous to the carriers. Entities like code or information can move on the carrier network,
using the mobility of the carriers (sometimes called ferries). Examples are, as mentioned in
[17], Cabernet, deployed in taxis in the Boston area, which delivers messages and files to users
in cars, or UMas DieselNet deployed to 40 buses via WIFI nodes in Amherst. In this context,
ferries following deterministic periodic trajectories are of utmost interest. This includes public
transport, low earth orbiting satellites or security guard tours. Even though routing is the central
aspect here, some research has been done on algorithmic network exploration, i.e, for creating a

3

broadcast infrastructure. Again the time parameter plays an important role in the concepts and
the appertaining solutions.

(c) Real world complex networks

As stated in [17], the main problem is to define and formulate mathematical models that properly
abstract properties of real dynamic networks. A fundamental idea is to endow the edges with
some kind of temporal information. Thus, graph properties can be studied when nodes and
edges have temporal constraints. There are many different research papers listed in [17], which
used such a concept and established results in different areas of computer science. To conclude,
as [17] mentions, "As these investigations indicate, temporal concerns are an integral part of
recent research efforts in complex systems. It is also apparent that the emerging concepts are in
essence the same as those from the field of communication networks, involving again temporal
definitions of the notions of paths, distance, and connectivity, as well as many higher concepts
that we identify in this paper."

Time-Varying Graphs

We will use the framework of [17] to formalize a basic, abstract model for real networks. It is
general enough to cover most existing models, which emerged independently in various areas of
computer science.
The time-varying graph TV G = (V,E, T, ρ, ζ) is the core element of this framework and is
defined by the following parameters:

• V is the set of all available nodes in the system

• E is the set of all available unidirectional edges in the system

• T = R and adds a time dimension to the system

• ρ is an indicator function defined on the cross product of E and T

• ζ is a measurement of the delay that different edges may induce

The basic graph, which is also called underlying graph, is defined by G = (V,E). G
can be seen as a footprint of the TV G. G ignores the time dimension, thus T , ρ and ζ are not
relevant for G. Later we will provide a more precise and formal definition. Important to notice
is that neither G nor TV G has to be connected; moreover, even if G is connected, it does not
imply any connectivity properties of TV G.

Naturally one can define a subgraph TV G′, which can be a subset of any part of the original
TV G, be it a graph containing only a node subset V ′ or even the set of all edges labeled by a
time subset T ′, for example T ′ = {1, 5, 7}.

4

Point of View

Until now we introduced a general model that can abstract a broad class of network problems.
Depending on the problem it can be important to analyze the evolution from different angles.
[17] defines 3 major points of view;

• view of a given relation (edges)

• view of an entity (nodes)

• the view of the global system (entire graph)

If one starts from an edge standpoint, the evolution is represented by the availability and latency
of each edge between two different entities. The availability is defined by I(e), which is the
union of all dates at which the edge is available, more precisely I(e) = {t ∈ T : ρ(e, t) = 1}.
The node point of view can be seen as a changing neighborhood per node. Each node thus iden-
tifies the network by neighborhood relations or maybe even transitive neighborhood relations
over time.

The graph-centric evolution or the so called characteristic dates of TV G ([17]) is a sequence
of snapshots of the dynamic network. It primarily corresponds to the appearance or disappear-
ance of edges in the system. Thus the evolution of TV G can be described by a sequence STV G

of graphs Gi = (V,Ei) where Ei is the set of edges with ρ(E, ti) = 1. Note that one can also
give a formal definition of G based on Gi namely, G =

⋃
Gi.

Journey and Distance

A sequence J of couples {(e1, t1), (e2, t2)(e3, t3)...(ek, tk)} such that the edges e1, e2, e3....ek
form a path in G is called a journey in TV G if ρ(ei, ti) = 1 and ti+1 ≥ ti + ζ(ei, ti) for all
i ≤ k. Let us denote the starting and arrival date of J by departure(J) and arrival(J). The
temporal length can by defined by arrival(J)− departure(J). J∗TV G is the set of all journeys
in TV G and J∗u,v are all journeys starting in u and ending in v. If at least one journey in J∗u,v
exists then we say that u can reach v, which is represented by the notation u; v.
The distance between nodes can be measured in two ways. Either by

• the already established temporal distance arrival(J)− departure(J)

• or the topological distance, which simply counts the hops from u to v in G

TV G classes

In this section, which is copied from [17] for the purpose of having a very precise definition of
the different classes, we discuss the impact of properties of TVGs on the feasibility and complex-
ity of distributed computing problems, reviewing and unifying existing work from the literature.
In particular, we identify a hierarchy of classes of TVGs based on temporal properties that are
formalized using the concepts presented in the previous section. These class-defining properties,
organized in an ascending partial order of assumptions (see Figure 1.1), from more specific to
more general, are important in that they imply necessary conditions and impossibility results for

5

distributed computations. Let us start with the simplest Class 1, i.e., the one with the weakest
assumption on the TV G.

Class 1 ∃u ∈ V : ∀v ∈ V, u; v
That is, at least one node can reach all the others. This condition is necessary, for example, for
broadcast to be feasible from at least one node.

Class 2 ∃u ∈ V : ∀v ∈ V, v ; u
That is, at least one node can be reached by all the others. This condition is necessary to be able
to compute a function whose input is spread over all the nodes, with at least one node capable
of generating the output. Any algorithm for which a terminal state may depend on all the nodes
initial states also falls in this category, such as leader election or counting the number of nodes.

Class 3 (Connectivity over time): ∀u, v ∈ V, u; v
That is, every node can reach all the others; in other words, the TV G is connected in T . By the
same discussions as for Class 1 and Class 2, this condition is necessary to enable broadcast from
any node, to compute a function whose output is known by all the nodes, or to ensure that every
node has a chance to be elected.

These three basic classes were used e.g. in [15] to investigate how relations between TV G
properties and feasibility of algorithms could be formally established, based on a combination
of evolving graphs [21] and graph relabellings [31]. Variants of these classes can be found in
recent literature, e.g. in [25], where the assumption that connectivity over time eventually takes
place among a stable subset of the nodes is used to implement failure detectors in dynamic net-
works.

Class 4 (Round connectivity): ∀u, v ∈ V,∃J1 ∈ J∗(u,v), ∃J2 ∈ J∗(v,u) : arrival(J1) ≤
departure(J2)
That is, every node can reach all the others and be reached back afterwards. Such a condition
may be required e.g. for adding explicit termination to broadcast, election, or counting algo-
rithms.

The classes defined so far are in general relevant in the case that the lifetime is finite and a
limited number of topologically changes are considered. When the lifetime is infinite, connec-
tivity over time is generally assumed on a regular basis, and more elaborate assumptions can be
considered.

Class 5 (Recurrent connectivity): ∀u, v ∈ V,∀t ∈ T, ∃J ∈ J∗(u,v) : departure(J) > t
That is, at any point t in time, the temporal subgraph TV G[t,+∞) remains connected over time.
This class is implicitly considered in most works on delay-tolerant networks. It indeed repre-
sents those DTNs where routing can always be achieved over time. This class was referred to
as eventually connected networks by Awerbuch and Even in [5], although the terminology was
also used with different meaning in the recent literature (which we mention in another definition
below). As discussed in Section 4.1, the fact that the underlying graph G = (V,E) is connected

6

does not imply that the TV G is connected in T , but how the snapshots Gi and thus STV G is
formed matters.

Such a condition on the connectivity of the TV G is, however, necessary to allow connectiv-
ity during T and thus to perform any type of global computation. Therefore, the following three
classes explicitly assume that the underlying graph G is connected.

Class 6 (Recurrence of edges): ∀e ∈ E,∀t ∈ T, ∃t′ > t : ρ(e, t′) = 1 and G is connected

That is, if an edge appears once, it appears infinitely often. Since the underlying graph G
is connected, Class 6 is a subclass of Class 5. Indeed, if all the edges of a connected graph
appear infinitely often, then there must exist, by transitivity, a journey between any pairs of
nodes infinitely often. In a context where connectivity is recurrently achieved, it becomes in-
teresting to look at problems where more specific properties of the journeys are involved, e.g.
the possibility to broadcast a piece of information in a shortest, foremost, or fastest manner .
Interestingly, these three declinations of the same problem have different requirements in terms
of TV G properties. It is, for example, possible to broadcast in a foremost fashion in Class 6,
whereas shortest and fastest broadcasts are not possible (for a explanation of the different broad-
cast settings see [16]). Shortest broadcast becomes, however, possible if the recurrence of edges
is bounded in time, and the bound is known to the nodes, a property characterizing the next class:

Class 7 (Time-bounded recurrence of edges): ∀e ∈ E,∀t ∈ T, ∃t′ ∈ [t, t + ∆), ρ(e, t′) = 1,
for some ∆ ∈ T and G is connected
Some implications of this class include a temporal diameter that is bounded by ∆Diam(G), as
well as the possibility for the nodes to wait a period of ∆ to discover all their neighbors (if ∆ is
known). The feasibility of shortest broadcast follows naturally by using a ∆-rounded breadth-
first strategy that minimizes the topological length of journeys.
A particular important type of bounded recurrence is the periodic case:

Class 8 (Periodicity of edges): ∀e ∈ E,∀t ∈ T, ∀k ∈ N, ρ(e, t) = ρ(e, t + kp), for some
p ∈ T and G is connected
The periodicity assumption holds in practice in many cases, including networks whose entities
are mobile with periodic movements (satellites, guards tour, subways, or buses). The periodic
assumption within a delay-tolerant network has been considered, among others, in the contexts
of network exploration and routing (see [17] for additional references). Periodicity enables also
the construction of foremost broadcast trees that can be re-used (modulo p in time) for subse-
quent broadcasts (whereas the more general classes of recurrence requires the use of a different
tree for every foremost broadcast). More generally, the point in exploiting TVG properties is to
rely on invariants that are generated by the dynamics (e.g. recurrent existence of journeys, peri-
odic optimality of a broadcast tree, etc.). In some works, particular assumptions on the network
dynamics are made to obtain invariants of a more classical nature. Below are some examples of
classes, formulated using the graph-centric point of view of (discrete-time) evolving graphs, i.e.,
where TV G = (G,STV G,N).

7

Class 9 (Constant connectivity): ∀Gi ∈ STV G, Gi is connected
Here, the dynamics of the network is not constrained as long as it remains connected in every
time step. Such a class was used, for example, in [34] to enable progression hypotheses on the
broadcast problem. This class was also considered in [29] for the problem of consensus.
Indeed, if the network is always connected, then at every time step there must exist an edge
between an informed node and a non-informed node, which allows to bound broadcast time by
n = |V | time steps (worst case scenario).

Class 10 (T-interval connectivity): ∀i ∈ N, ∃T ∈ N, ∃G′ ⊆ G : VG′ = VG, G
′ is con-

nected, and ∀j ∈ [i, i+ T − 1), G′ ⊆ Gj

This class is a particular case of constant connectivity in which the same spanning connected
subgraph of the underlying graph G is available for any period of T consecutive time steps. It
was introduced in [51] to study problems such as counting, token dissemination, and compu-
tation of functions whose input is spread over all the nodes (considering an adversarial edge
schedule). The authors show that computation could be sped up by a factor of T compared to
the 1-interval connected graphs, that is, graphs of Class 9.
Other classes of TVGs can be found in [35] , based on intermediate properties between constant
connectivity and connectivity over time. They include Class 11 and Class 12 below.

Class 11 (Eventual instant-connectivity): ∀i ∈ N, ∃j ∈ N : j ≥ i, Gj is connected. In
other words, there is always a time from which on the network is connected
This class was simply referred to as eventual connectivity in [62], but since the meaning is differ-
ent than that of Awerbuch and Even (connectivity over time), we renamed it to avoid ambiguities.

Class 12 (Eventual instant-routability): ∀u, v ∈ V,∀i ∈ N, ∃j ∈ N : j ≥ i and a path
from u to v exists in Gj

That is, for any two nodes, there is always a future time step in which a path exists between
them. The difference to Class 11 is that these paths may occur at different times for different
pairs of nodes. Classes 11 and 12 were used in [35] to represent networks where routing proto-
cols for (connected) mobile ad hoc networks eventually succeed if they tolerate transient faults.
Most of the works listed above strove to characterize the impact of various temporal properties
on problems or algorithms. A reverse approach was considered by Angluin et al. in the field
of population protocols [4, 3], where for a given assumption (that any pair of node interacts
infinitely often), they characterized all the problems that could be solved in this context. The
corresponding class is generally referred to as that of (complete) graph of interaction.

Class 13 (Complete graph of interaction): The underlying graph G = (V,E) is complete,
and ∀e ∈ E,∀t ∈ T, ∃t′ > t : ρ(e, t′) = 1
From a time-varying graph perspective, this class is the specific subset of Class 6, in which the
underlying graph G is complete. Various types of schedulers and assumptions have been sub-
sequently considered in the field of population protocols, adding further constraints to Class 13
(e.g. weak fairness, strong fairness, bounded, or k-bounded schedulers) as well as interaction

8

C13

C7C8

C9C10 C11

C6

C12

C5 C4 C3 C2

C1

Figure 1.1: Relations of inclusion between classes (from specific to general). Arrows represent
"stronger as": e.g., C10 is stronger as C9, i.e., C10 includes C9

graphs which might not be complete.

An interesting aspect of unifying these properties within the same formalism is the possibil-
ity to see how they relate to one another, and to compare the associated solutions or algorithms.
An overview can be gained by looking at the classification shown in Figure 1.1, where basic re-
lations of inclusion between the above classes are reported. All inclusions represented by arrows
are strict: for each relation, the parent class (start point of an edge) contains some time-varying
graphs that are not in the child class (end point of an edge). Clearly, one should try to solve a
problem in the most general context possible. The right-most classes are so general that they
offer little properties to be exploited by an algorithm, but some intermediate classes, such as
Class 5, appear quite central in the hierarchy. This class indeed contains all the classes where
significant work was done. A problem solved in this class would therefore apply to virtually all
the contexts considered heretofore in the literature.

Such a classification may also be used to categorize problems themselves. As mentioned above,
shortest broadcast is not generally achievable in Class 6, whereas foremost broadcast is. Sim-
ilarly, it was shown in [14] that fastest broadcast is not feasible in Class 7, whereas shortest
broadcast can be achieved with some knowledge. Since Class7 ⊂ Class6,

foremostBcast � shortestBcast � fastestBcast,
defines a partial order on these problems according to topological requirements, where A �

B means that A is a less demanding problem than B.
Later on, we will use this framework to classify our own model and show that it belongs to

very weak classes in Figure 1.1.

1.3 Related work

We are not aware of any previous work on k-set agreement in a directed and dynamic network
environment with connectivity requirements as weak as ours. Nevertheless, in this section, we

9

will present an overview of existing research that is related to at least one aspect of our solution.
Dynamic networks have been studied intensively in distributed computing. Early publica-

tions on this topic include [1] or [6].
One aspect of dynamic networks that can be used to categorize research in this area is

whether the the set of processes is assumed to be fixed or subject for change. Since it would
even be difficult to give a meaningful definition for k-set agreement in dynamic networks with
churn [27] and node mobility [41], we will only consider static (but possibly unknown) pro-
cesses.

Dynamic network research

[1] introduces a model, where the nodes and communication links of a network form a commu-
nication graph. Each edge represents an undirected link, which in turn consists of a directed pair
of links. Moreover edges have a bounded capacity and the information sent on each link can
be arbitrarily delayed. As it allows unbounded transmission delays, this model can accurately
abstract a dynamic network with a fixed set of processes.

Based on this model, [1] proposes algorithms to solve the end-to-end communication prob-
lem for different criteria. Assuming an upper bound on time a message is being held in the
network, they propose the slide protocol for solving the end-to-end communication problem.
Furthermore they extend the basic slide protocol with a known data dispersal component to op-
timize the message complexity to O(n). Finally, they combine an algorithm designed for static
network structures (fixed processes and fixed communication channels) with the slide protocol
to obtain a protocol that unlike most algorithms for dynamic networks, adequately improves to
performance when being run in a static network.

Especially interesting for this thesis is a property called eventual connectedness. It means
that two nodes are connected at some point during the run (not necessarily direct, but via other
nodes). This assumption is also used in different ways in most recent publications about dy-
namic networks; we will also use it in this thesis to guarantee the termination of our algorithm.

The authors of [6] use a similar model. Again, the set of processes is fixed and the links
can dynamically crash or recover. This feature is realized via a finite but unpredictable travel
time per link in conjunction with a synchronous model. Each message sent at clock tick p has
to arrive before clock tick p+ 1 on the sending node, and each node knows the state of directly
connected links.

The focus of this paper is the exploration of possible combinations of static approaches
with dynamic algorithms. Different approaches are assessed with respect to several complexity
measurs like communication, space and time complexity.

The main result is a poly-log time, space and communication simulation of synchronous,
static protocols on dynamic asynchronous networks. To accomplish this the authors combine
the concept of sparse covers to obtain an improved synchronizer protocol for static networks
and the concept of local resets to implement a local rollback technique. The result is a protocol
that can simulate a static system on a dynamic network.

10

The main points to gain from these papers, besides the already mentioned results, are that
static solutions can be seen as special cases of dynamic ones. Dynamic algorithms often lack
runtime, space or message complexity improvements when employed in networks with near-
static behavior, however. Moreover, one can conclude that assuming synchrony in a dynamic
network is not far fetched, as it can be achieved by some synchronizer algorithm in an asyn-
chronous network.

Round-by-Round models

Rather than considering the possibility of unbounded/infinite delay on the transmission link, [37]
focuses on explicit communication failures and the resulting possibility/impossibility borders.
The basic model is a synchronous system with dynamic transmission failures. The message
sending process is realized via a broadcast from one process to all other processes in the system
via point to point communication over a fully connected network.

The authors distinguish 3 types of failures: omission (message is never delivered), corruption
(message is delivered with different content), and addition (a message is delivered although no
message was sent).

The goal is to achieve agreement among a majority of the processes (i.e., the system consists
of n processes with initial value ∈ {0, 1} and at least k > n

2 processes shall decide on the same
value). They establish conditions on the number of transmission failures that render this problem
solveable/unsolvable.
As we are using a similar model with only omission failures, the result showing that consensus
is impossible under the assumption of n − 1 dynamic omission transmission failures is very
important. It gave us a starting point for the research and supported the additional assumptions
introduced to make k-set agreement possible.

The work on "round-by-round fault detectors" in [23] has some similarity to the "heard-of"
model, which we will discuss subsequently. The main difference is that Gafni focuses on pro-
cess failures instead of transmission failures. An oracle (a round-by-round fault detector) is used
by each process to obtain a set of processes from which it will not be able to receive any data
in the current round. Thus, the oracle abstracts away the actual reason for not receiving mes-
sages. Moreover, the communication means are also abstracted away, in the sense that it does
not matter whether message passing or shared memory is used. Obviously, abstracting away the
failure source locally at the receiver via a set of faulty processes produced by the oracle has the
benefit that the processes do not have to worry about the reason for and the actual source of the
failure. On the down side, dedicated implementations of the oracle have to be provided for every
different network model, which may or may not be possible.

The "heard-of" model (abbrivated HO-model) published in [18] is the basis for the model in-
troduced in [10] and hence for the model used in this thesis. The processes are fixed and assumed
to be fault-free and their execution progresses as a sequence of lock-step synchronous rounds.
It uses a slightly different approach with respect to failures than [23], which also abstracts away
the reason why messages are missing (sender crash, receiver failure, etc.). The only information
describing communication in each round is a set H(p, r), which consists of all process that have

11

successfully sent a message to p in round r. Rounds are communication-closed, so messages
sent in some round r can only be received in the same round r, and are disregarded and hence
not included in any H(p,)̇ if received late. Thus, a run is described by a set H(p, r) for each
node, for every round r ≥ 1, which is determined by the adversary. To make different agreement
problems solvable in the HO-model, different predicates restricting the freedom of the adversary
are usually required [18]. Note that there is also a Byzantine extension of the HO-model [12].
Obviously, the HO-model is a suitable abstraction for wireless communication, because every
participant simply broadcasts its messages but only has knowledge about received information.
It is also a reasonable way to hide the different sources of failures in the communication model
and handle different communication failures via the HO-sets.

An additional related model is the perception-based model by Biely, Schmid and Weiss
([38]). A sequence of perception matrices, the rows of which are the sets of messages received by
some processes, is used to express failures of processes and links. A hybrid failure model, which
supports different types of process an link failures, is used to restrict the possible perception
matrices in a round-by-round fashion. To circumvent the impossibility of transmission failures
established in [37], for example, a restriction to the number of transmission failures per process
for outgoing and incoming links can be applied. Since these failures are tied to each process on
a per round basis, agreement can be achieved in the presence of O(n2) transmission failures per
round.

In [38] the authors discuss a suite of consensus algorithms under this model, ranging from
the oral messages (EIG) algorithm to the Phase Queen and the Phase King algorithms.

The lower bound results established in [38] make it clear that there is no hope to solve
consensus without quite strong connectivity guarantees. In particular, without some eventual
stablity assumptions, the number of link failures per round has to be bounded for every process.

Consensus and k-set Agreement

The k-set agreement problem is a well known problem in distributed computation. Introduced in
[19] it has been studied under many different system models and failure assumptions [2]. Most
of these assumptions imply static models, typically involving a foreknown maximum number f
of faulty processes and bidirectional communication links between processes.

For synchronous systems, where one assumes full connectivity, algorithms for this problem
are rather simple and mostly based on some upper bounds on the required number of rounds,
like bfk + 1c. These upper bounds, which for example depend on the number of faulty processes
in the network, ensure sufficient information flow between correct processes.

Since k-set agreement is a relaxation of consensus, it has primarily been used to explore the
possibility/impossibility border in asynchronous systems. In particular, [36] or [13] establish
impossibility results in the f-resilient, asynchronous model via arguments from algebraic topol-
ogy. They prove that for f ≥ k, where f is the maximum number of crashed processes, k-set
agreement is impossible.

As already established in the introduction, such static properties can not be applied for mod-
eling k-set agreement in dynamic systems. A first step towards a more dynamic setting has
been made in [9], though. It considers k-set agreement on the basis of the HO-model, where

12

the communication predicate guarantees a stable skeleton graph: Each round is represented by
a communication graph Gr, which consists of nodes (processes) and directed edges (p, q) mod-
eling round r communication between process p and g, i.e., when p ∈ H(q, r). The assumption
of a stable skeleton graph guarantees that

⋂
r≥1G

r is non- empty, i.e., that there is a non-empty
set of edges, which are present in every round.

Moreover, [9] assumes that in each possible set of k + 1 nodes of the stable skeleton graph,
two nodes share the same parent node in every round. This "two-source" assumption guarantees
that the stable skeleton consists of at most k root components i.e., strongly connected component
with no incoming edges.

First, an algorithm was proposed that can detect root components via approximating the
stable skeleton; since the approximation eventually stabilizes, so do the roots. To solve k-set
agreement, it is sufficient to guarantee a common decision among all members of a single root.
This is possible, since all members of a root can exchange information (as the root is strongly
connected) and can reach all nodes in the associated weakly connected component.

For consensus, a similar but more dynamic model was established by Biely, Robinsion and
Schmid in [10]. It is also based on the HO-model: the set of processes is assumed to be fixed
and communication is modeled by a sequence of round graphs Gr. Instead of a stable skeleton,
however, it is assumed that each round graph is at least weakly connected and has at most one
root component. Moreover, eventually, the root component needs to be vertex-stable for a certain
number of consecutive rounds to guarantee termination. The model can be placed between class
1 and 3 of the framework established in [17] (note that it is strictly weaker than 3 and stronger
than 1).

An algorithm for solving consensus in this model has been proposed which can detect vertex-
stable root components and determine their stability intervals. The idea is to optimistically
"lock" onD+1-stable root components (D is an upper bound on the information propagation in a
strongly connected component) and to promote the locked on information among all processes in
the weakly connected component. If the vertex-stability of a root component holds for furtherD
rounds, the algorithm can safely decide, because it is guaranteed that the locked on information
has reached every process in the associated weakly connected component. Interestingly, for a
single process to terminate, a much smaller stable root interval is needed than for guaranteeing
global termination. Actually the global termination time interval is twice as long (4D+1). Thus,
it is possible to have some decision in the network without the majority of the processes knowing.
We will see that we have a very similar problem for the k-set case, where some processes that
already made decisions but are "hidden" in different components could try to promote their own
values later, which would violate the agreement part.

Furthermore, [10] shows, via an impossibility result, that in a model with such weak assump-
tions, consensus is impossible if no root is vertex stable for at least D rounds. Thus, building on
D stable intervals, as we are doing in this thesis, seems a reasonable starting point to also solve
k-set agreement.

The model in this thesis is the same as used in [10], except that weaker constraints are used
to make k-set agreement possible. In particular we will relax the assumption of only one root
component per round to at most k.

13

In [8], the authors establish a framework for k-set agreement easy impossibility proofs. It can
be use to show impossibility in different models via the same generic theorem, which reduces
k-set agreement to consensus in certain executions.

Basically, it uses the concept of restricted algorithms for relating executions of the whole
system and executions of disconnected components. The relation is based on indistinguishable
runs for some processes. Essentially, the executions considered assume k disconnected com-
ponents. Since disconnected components never hear from each other during the whole run,
independent decisions can be forced in every component (partitioning argument). Obviously,
to guarantee the k-agreement property, i.e., no more than k different decisions, this requires to
solve consensus within every component. The impossibility of k-set agreement follows from
showing that the restricted algorithm cannot solve consensus in at least one component.

In an joint effort with a fellow student (Kyrill Winkler), this approach has been used to
derive impossibility results for k-set agreement under natural restrictions of the adversary, which
confirm that the constraints under which the presented algorithm operates correctly are very
close to the solvability border.

14

CHAPTER 2
Model

We use the same dynamic network model as in [10], that is, we model a distributed computing
system as an ensemble of processes Π. Each process pi ∈ Π has a unique index i that ranges
between 1 and n = |Π|, the total number of processes in the system. A single process is modeled
as a deterministic state machine, which knows its id i but does not necessarily know n. It has an
unlimited amount of local memory that comprises its current state and can communicate with
other processes by broadcasting messages.

The model is synchronous, i.e., abstracts away time via a sequence of lock step rounds:
Round r, r ≥ 1, comprises the broadcasting of a message, the reception of all these messages
at the receiver, and a computing step that processes the received messages (and also determines
the message to be send in round r + 1). In a synchronous system, all processes take their
computation steps simultaneously, and the delay between consecutive steps is big enough such
that each message sent in step r is received before step r + 1 (r is an element of N and is also
used to enumerate computation steps). A message sent in round r is also labeled with the index
r, hence, round r is defined by all messages and the single computation step with index r.
Conveniently, we use the round numbers as our notion of time.

All communication in the system can hence be interpreted as a sequence of communication
graphsGr, r ≥ 1, whereGr consists of vertices representing processes and directed edges (p, q)
representing the successful transmission of the round r message from p to q. The sequence ofGr

is chosen by the adversary, which must adhere to certain restrictions of the "allowed" message
loss in order to render k-set agreement solvable.

We will only need two restrictions, namely, k-majority influence and stable interval. The
second one has to hold eventually once during an execution, whereas the first one has to hold
perpetually until the second one holds. We will discuss these restrictions (later on called model
properties) in more detail in Section 2.5. But first we will give a formal definition of the model
in the next subsections.

15

2.1 Failure assumption

The failure assumptions in this model are entirely focused on link failures between processes. If
a message is sent by p in round r and not received by q in r, there is no edge (p, q) in Gr even if
the message would arrive later. Whereas the model cannot handle value faulty messages, it also
captures crashed processes.

2.2 Computation

Computation in our system is structured in a sequence of communication-closed rounds, where
processes (conceptually) advance via an infinite number of rounds in lock-step. In every round
r, r > 0, processes can broadcast a round r message of arbitrary content and perform some
local computation based on the received round r messages and their current (local) state. As
the computational model is equivalent to [10], we will take the model definitions from [10]: For
every p ∈ Π and each round r > 0, let Sr

p ∈ Sp be the state of p at the beginning of round r; the
initial state is denoted by S1

p ∈ S1
p ⊂ Sp. The round r computation of process p is determined

by the following two functions that make up the algorithm of p: The message sending function
Mp : Sp → M determines the message mr broadcast by p in round r, based on p’s state Sr

p

at the beginning of round r. We assume that some (possibly empty) message is broadcast in
every round, to all (current!) neighbors of p. The transition function Tp : Sp × 2(Π×M) → Sp
takes p’s state Sr

p at the beginning of round r and a set µr of pairs of process ids and messages,
which uses it to represent the round r messages received by p from other processes in the system
and compute the successor state Sr+1

p . We assume that, for each process q, there is at most one
(q,mr

q) ∈ µp such that mr
q is the message q sent in round r. Note that neither Mp nor Tp need to

involve n, i.e., the algorithms executed by the processes may be uniform w.r.t. the network size
n: Which processes a process actually receives from in round r depends solely on the underlying
communication graph of round r, which we define in section 2.3.

2.3 Communication

Again we use the same model as in [10], resulting in the following definition of our commu-
nication structure: The network topology is modeled as an infinite sequence of simple directed
graphs G1,G2, . . . , which is fixed by an adversary having access to the process states. For each
round r, we denote the round r communication graph by Gr = (V,Er), where each node of the
set V is associated with one process from the set of processes Π, and where Er is the set of di-
rected edges for round r, such that there is an edge from p to q, denoted as (p→ q), iff q receives
p’s round r message (in round r). Figure 2.1 shows a possible sequence of graphs for a network
of 5 processes, for rounds 1 to 4. For any graph G, we will use the notation V (G) and E(G) to
refer to the set of vertices respectively edges of G, i.e., it always holds that G = (V (G), E(G)).
For deterministic algorithms, as considered in this thesis, a run is completely determined by the
input values assigned to the processes and the sequence of communication graphs. Therefore,
the fact that the adversary knows only the initial values does not pose a limitation to its power.
To simplify the presentation, we will denote a process and the associated node in the communi-

16

cation graph by the same symbols and omit the set from which it is taken if there is no ambiguity.
We will henceforth write p ∈ Gr and (p→ q) ∈ Gr instead of p ∈ V (G) resp. (p→ q) ∈ Er.
The neighborhood of p in round r is the set of processes N r

p that p receives messages from in
round r, formally, N r

p = {q|(q → p) ∈ G}.

Configurations

Based on the local states Sr
p we define the a configuration as follows:

Definition 1 (round r configuration). A round r configuration Cr is the vector of states Sr
p for

all p ∈ Π.

An execution or run of an algorithm is an infinite alternating sequence of configurations Ci
and graphsGi starting with the initial configuration C1. Cr+1 is reached from Cr, by determining,
for each p in parallel, ~µ r

p based on p’s incoming edges in Gr and applying Tp to p’s state in Cr
and ~µ r

p .

2.4 Network properties

Similarly to the classic notion of “happened-before” [30], we say that a process p (causally)
influences process q in round r, expressed by (p

r
; q) or just (p ; q) if r is clear from the

context, iff either (i) p ∈ N r
q , i.e., if q has an incoming edge (p → q) from p in Gr , or (ii) if

q = p, i.e., we assume that p always influences itself in a round. We say that there is a (causal)

chain of length k ≥ 1 starting from p in round r to q, graphically denoted by (p
r[k]
; q) or simply

(p ; q), if there exists a sequence of not necessarily distinct processes p = p0, ..., pk = q such
that pi influences pi+1 in round r + i, for all 0 ≤ i < k. If k is irrelevant, we just write (p

r
; q)

or just (p; q) and say that p (in round r) causally influences q.

Causal distance

The causal distance cdr(p, q) at round r from process p to process q is the length of the shortest

causal chain starting in p in round r and ending in q, formally, cdr(p, q) := min{k|(p r[k]
; q)}.

Note that we assume cdr(p, p) = 1. The following Lemma 1 shows that the causal distance in
successive rounds cannot arbitrarily decrease.

Lemma 1 (Causal distance in successive rounds [10, Lemma 1]). For every round r ≥ 1 and
every two processes p, q ∈ Π, it holds that cdr+1(p, q) ≥ cdr(p, q) − 1. As a consequence, if
cdr(p, q) =∞, then also cdr+1(p, q) =∞.

Proof. Since (p ; p) in every round r, the definition of causal distance trivially implies
cdr(p, q) ≤ cdr+1(p, q) + 1.

Note that the causal distance in directed graphs is not necessarily symmetric. Moreover, if
the adversary chooses the graphs Gr such that not all nodes are strongly connected, the causal
distance can even be infinite. In fact, even if Gr is strongly connected for round r (but not for
rounds r′ > r), cdr(p, q) can be infinite.

17

Strongly connected components

As we will not consider the whole communication graph to be strongly connected in this paper,
we make use of the notation of strongly connected components (SCC). We write Cr

p to denote
the (unique) SCC of Gr that contains process p in round r or simply Cr if p is irrelevant. It is
apparent that cdr(p, q) and cdr(q, p) may be infinite even if q ∈ Cr

p . In order to be able to
argue (meaningfully) about the maximal length of causal chains within an SCC, we also need
some “continuity property” over rounds. This leads us to the crucial concept of a I-vertex-
stable strongly connected component, denoted as CI : It requires that the set of vertices of a
strongly connected component C remains stable throughout all rounds in the nonempty interval
I = [r, s], s ≥ r. Note carefully that we assume |I| = s − r + 1, since I ranges from the
beginning of round r to the end of round s; hence, [r, r] is not empty but rather represents round
r. Its topology may undergo changes, but must form an SCC in every round. Formally, CI

being vertex-stable during I requires that ∀p ∈ CI , ∀x ∈ I : V (Cx
p) = V (CI), where V (C)

denotes the set of processes in the SCC C. The important property of CI is that information is
guaranteed to spread to all vertices of CI if the interval I is large enough (cf. Lemma 3).

Let the round r causal diameter φr(CI) of a vertex-stable SCC CI be the largest causal
distance cdr(p, q) for any p, q ∈ CI . The causal diameter φ(CI) of a vertex-stable SCC CI

in I is the largest causal distance cdx(p, q) starting at any round x ∈ I that “ends” in I , i.e.,
x + cdx(p, q) − 1 ∈ I . If there is no such causal distance (because I is too short), φ(CI) is
assumed to be infinite. Formally, for I = [r, s] with s ≥ r,

φ(CI) = min{max{φx(CI)|x ∈ [r, s] and x+ φx(CI)− 1 ≤ s} ∪∞}

.
If CI consists only of one process, then we obviously have φ(CI) = 1. The following Lemma
2 establishes a bound for φ(CI) also for the general case.

Lemma 2 (Bound on causal diameter [10, Lemma 2]). Given some I = [r, s] and a vertex-stable
SCC CI with |CI | ≥ 2 : If s ≥ r + |CI | − 2, then φ(CI) ≤ |CI | − 1.

Proof. Fix some process p ∈ CI and some r′ where r ≤ r′ ≤ s − |CI | + 2. Let P0 = {p},
and define for each i > 0 the set Pi = Pi−1 ∪ {q : ∃q′ ∈ Pi−1 : q′ ∈ N r′+i−1

q }. Pi is

hence the set of processes q such that (p
r′[i]
; q) holds. Using induction, we will show that

|Pk| ≥ min{|CI |, k + 1} for k ≥ 0. Induction start k = 0 : |P0| ≥ min{|CI |, 1} = 1 follows
immediately from P0 = {p}. Induction step k → k + 1, k ≥ 0: First assume that already
|Pk| = |CI | ≥ min{|CI |, k + 1}; since |Pk+1| ≥ |Pk| = |CI | ≥ min{|CI |, k + 1}, we are
done. Otherwise, consider round r′ + k and |Pk| < |CI |: It follows from strong connectivity of
Gr′+k∩CI that there is a set of edges from processes in Pk to some non-empty setLk ⊆ CI\Pk.
Hence, we have Pk+1 = Pk ∪ Lk, which implies |Pk+1| ≥ |Pk| + 1 ≥ k + 1 + 1 = k + 2 =
min{|CI |, k + 2} by the induction hypothesis. Thus, in order to guarantee CI = Pk and thus
|CI | = |Pk|, choosing k such that |CI | = 1 + k and k ≤ s − r′ + 1 is sufficient. Since
s ≥ r′ + |CI | − 2, both conditions can be fulfilled by choosing k = |CI | − 1. Moreover, due to
the definition of Pk , it follows that cdr(p, q) ≤ |CI | − 1 for all q ∈ CI . Since this holds for any

18

p and any r′ ≤ s−|CI |+ 2, we finally obtain |CI |− 1 ≥ φr(CI) and hence |CI |− 1 ≥ φ(CI),
which completes the proof of Lemma 2.

Given this result, it is tempting to assume that, for any vertex-stable SCC CI with finite
causal diameter φ(CI), any information propagation that starts at least φ(CI)− 1 rounds before
the final round, will reach all processes in CI within I . This is not generally true, however, as
the following example for I = [1, 3] and a vertex-stable SCC of four processes shows: If G1 is
the complete graph whereasG2 = G3 is a ring, φ(CI) = 1, but information propagation starting
at round 2 does not finish by the end of round 3. However, the following Lemma 3 gives a bound
on the earliest starting round that guarantees this property.

Lemma 3 (Information propagation [10, Lemma 3]). Suppose that CI is an I-vertex-stable
strongly connected component of size ≥ 2 that has φ(CI) < ∞, for I = [r, s], and let x be the
maximal round where x+ φx(CI)− 1 ≤ s. Then,
(i) for every x′ ∈ [r, x], it holds that x′ + φx

′
(CI)− 1 ≤ s and φx

′
(CI) ≤ φ(CI) as well, and

(ii) x ≥ max{s− |CI |+ 2, r}.

Proof. Since φ(CI) < ∞, the maximal round x always exists. Lemma 1 reveals that for all
p, q ∈ CI , we have x − 1 + cdx−1(p, q) − 1 ≤ x + cdx(p, q) − 1 ≤ s, which implies
x′ + cdx

′
(p, q) − 1 ≤ s for every x′ where r ≤ x′ ≤ x and proves (i). The bound given in (ii)

follows immediately from Lemma 2.

Since we will frequently require a vertex-stable SCC CI that guarantees bounded informa-
tion propagation also for "late" starting rounds and we also want to cover scenarios where the
adversary guarantees better-than-worst-case information propagation in CI , we introduce the
following Definition 2.

Definition 2 (D-bounded I-vertex-stable SCC [10, Definition 1]). An I-vertex-stable SCC CI

with I = [r, s], s ≥ r, is D-bounded for D ≤ |I|, iff ∀x ∈ [r, s−D + 1] : φx(CI) ≤ D.

Note that not every vertex-stable SCC CI with |I| ≥ D needs to be D-bounded, for some
given D. However, we can of course restrict the adversary to obey this requirement. Moreover,
due to Lemma 2, every vertex-stable SCC CI with |I| ≥ D is D-bounded for D ≥ |CI | − 1,
which in turn means |CI | − 1 is an upper bound for D. Note that such vertex-stable SCCs are
necessarily n− 1-bounded.

2.5 Required connectivity properties

The model above gives us a convenient way to describe the communication between processes,
but does not yet restrict communication in any way. Without restrictions of the adversary, how-
ever, the communication graph may perpetually be partitioned into k + 1 (weakly connected)
components, making k-set agreement trivially impossible [9].

Thus, we need some kind of restriction on the number of components that cannot exchange
information between each other during the execution.

19

p1

p2

p3

p4

p5

(a) G1

p1

p2

p3

p4

p5

(b) G2

p1

p2

p3

p4

p5

(c) G3

p1

p2

p3

p4

p5

(d) G4

Figure 2.1: Example of a 4 round execution G1, G2, G3, G4

20

For example, we could require that all communication graphs are split into at most k perpet-
ually stable isolated SCC’s, but this seems overly restrictive. For example two SCCs C and C ′

might be connected (uni-directionally) such that processes in C ′ can observe the computation in
C but not vice versa. Root components, which have already been introduced in the context of
[10], offer a less restrictive way to specify partitioning in a distributed system.

Root Components

A root component is a strongly connected component that has no incomming edges from outside
the component. Again, it is immediate, that if we have k + 1 perpetual root components in
an execution, k-set agreement is not possible. Thus, one has to restrict the number of root
components per round to at most k. It will turn out in Chapter 4, however, that additional
properties will be required in order to make k-set agreement solvable.

But at first we will prove a few facts about root components and the influence of root com-
ponents on the whole graph structure. Each round is defined by Gr, which may also consist
of several disconnected subparts Gr

1(V r
1 , E

r
1), Gr

2(V r
2 , E

r
2), ..., see Figure 2.1 (b) for example.

Obviously, every subgraph Gr
i is at least weakly connected.

Lemma 4 (Minimum amount of roots). Each graph Gi has at least one root component.

Proof. From basic graph theory we know that each weakly connected graph can be abstracted
by a condensed graph (or component graph)GSCC by contracting each strongly connected com-
ponent ofGi to a single vertex. Moreover, this graph is by definition weakly connected and does
not contain any strongly connected components, i.e., is acyclic. If GSCC contains a node with
no incoming edge, which corresponds to a root component by definition, we are done.

Otherwise, pick a random vertex in GSCC . We follow the incoming edge (there has to exist
one, otherwise we already found a root contradicting the assumption) of this node to the next
node, and repeat this step |V (GSCC)| − 1 times. Because GSCC is an acyclic graph with at
most n nodes (every node in Gi could form a strongly connected component itself), we have
visited every node and hence found a cycle. Since GSCC is acyclic, this provides the required
contradiction.

From Lemma 4, we immediately obtain Corollary 1:

Corollary 1 (Relation between roots and weakly connected components). If G has at most k
root components, then it has at most k weakly connected components.

Proof. Assume that k + 1 components exist. We apply Lemma 4 to each subgraph defined by
one of the k+ 1 weakly connected components and obtain thereby k+ 1 root components in G.
A contradiction.

Since every root component is also an SCC, all the related definitions and results can be
carried over:

21

We define a I-vertex-stable root component RI (abbreviated I-VSRC) as an I-vertex-
stable strongly connected component CI that is a root component in every r ∈ I . Obviously,
Lemmas 2 and 3 also apply to RI .

Definition 3 (D-bounded I-vertex-stable root [10, Definition 2]). An I-vertex-stable root com-
ponent RI with I = [r, s], s ≥ r, is D-bounded, for D ≤ |I|, iff ∀x ∈ [r, s−D−1] : φx(RI) ≤
D.

Our next step is to formalize the concept of information propagation from root components
to the rest of the network. This is done by means of a generalization of the network causal
diameter introduced for consensus in [10]. Since it will not matter which root component actu-
ally influences some process q outside any root component, the network causal diameter E is
defined as follows:

Definition 4 (E-bounded network). A network is E-bounded, iff, in every run, there exists
a set S of ` ≥ 1 D-bounded vertex-stable root components R[r1,s]

1 , . . . , R
[r`,s]
` where ∀r′ ∈

{r1, . . . r`} : s− r′ ≥ 3D + E and ∀q ∈ Π : ∃RI
x ∈ S : ∃p ∈ RI

x : cds−E+1(p, q) ≤ E.

The following Lemma 5 proves that the network causal diameter E is bounded by n − 1,
provided there exist ` ≥ 1 I-vertex-stable root components RI

1, . . . , R
I
` with |I| ≥ n − 1,

simultaneously.

Lemma 5 (Bound on network causal diameter). Suppose there is some interval I = [r, s] where
ther ` ≥ 1 I-vertex-stable root components RI

1, . . . , R
I
` . If s ≥ r + n − 2 and n ≥ 2, then

E ≤ n− 1.

Proof. Fix arbitrary processes p1 ∈ RI
1, . . . , p` ∈ RI

` and some r′ where r ≤ r′ ≤ s − n + 2.
Let P0 = {p1, . . . , p`}, and define for each i > 0 the set Pi = Pi−1 ∪ {q : ∃q′ ∈ Pi−1 :

q′ ∈ N r′+i−1
q }. Pi is hence the set of processes q such that (p

r′[i]
; q) holds for at least one

p ∈ P0. Using induction, we will show that |Pk| ≥ min{n, k + 1} for k ≥ 0. Induction start
k = 0 : |P0| ≥ min{n, 1} = 1 follows immediately from P0 = {p1, . . . , p`} with ` ≥ 1.
Induction step k → k + 1, k ≥ 0: First assume that already |Pk| = n ≥ min{n, k + 1};
since |Pk+1| ≥ |Pk| = n ≥ min{n, k + 1}, we are done. Otherwise, consider round r′ + k
and |Pk| < n: Since every node q ∈ Π is in a weakly connected component containing at
least one root in every round, hence also in Gr′+k, there is a set of edges from processes in
Pk to some non-empty set Lk ⊆ Π \ Pk. Hence, we have Pk+1 = Pk ∪ Lk, which implies
|Pk+1| ≥ |Pk| + 1 ≥ k + 1 + 1 = k + 2 = min{n, k + 2} by the induction hypothesis.
Thus, in order to guarantee Π = Pk and thus n = |Pk|, choosing k such that n = 1 + k and
k ≤ s− r′ + 1 is sufficient. Since s ≥ r′ + n− 2, both conditions can be fulfilled by choosing
k = n − 1. Moreover, due to the definition of Pk, it follows that for all q ∈ Π there is some
p ∈ P0 with cdr(p, q) ≤ n−1. Since this holds for any choice p1 ∈ RI

1, . . . , p` ∈ RI
` for P0 and

any r′ ≤ s− n+ 2, we can conclude n− 1 ≥ E, which completes the proof of Lemma 5.

The combination of Lemma 5 and Lemma 2 in conjunction with Definition 4 shows that the
causal diameter D and the network causal diameter E are both n− 1 bounded, provided a set of
I-vertex stable roots with |I| ≥ 4n− 4 exist.

22

Connectivity properties

In this section, we provide two conditions (Assumption 1 and Assumption 2), the conjunction
of which will be sufficient for making k-set agreement solvable. Note that choosing these con-
straints has been guided by avoiding the impossibility results obtained by Theorems 4 and 5 in
Chapter 4, which exploit different weaknesses of the assumption of at most k root components
per round (Assumption 4) only. Although these additional constraints may appear somewhat
contrived at a first glance, we argue below that they are implied by some very natural stronger
assumptions, for which the k-set algorithm described in Chapter 3 hence also works correctly.

To avoid non-terminating (i.e. forever undecided) executions, we add the following stable
interval constraint:

Assumption 1 (Stable interval). In every run, all vertex-stable root components RI with |I| ≥
D + 1 are D-bounded, for some D > 0. Moreover, the network is E-bounded for some E > 0.

Note that the second part of Assumption 1 is implied by the stronger condition ∀r ≥
rGST : Gr = Gr+1, which asserts an eventually stable communication graph with ` ≤ k identical
vertex-stable root components.

Next, in order to also circumvent the executions violating k-agreement constructed in The-
orem 5, we introduce the majority influence constraint (cf. Assumption 2). Informally, it guar-
antees some (minimal) information flow between vertex-stable root components that exist at
different times. More specifically, it ensures that not all VSRCs that are stable long enough such
that some processes could have decided can become isolated later on.

Given some run ρ, we denote by Vd the set of all root components which are vertex stable
for at least d subsequent rounds in ρ.

Let Rcur be vertex stable in [rcur, scur] and Rsuc be vertex stable in [rsuc, ssuc] with rsuc >
scur.

Definition 5 (Influence). We say that some process a ∈ Rcur influences some process b ∈ Rsuc

and write a↪→b with ↪→ ⊆ Π2 iff there exists a process a ∈ Rcur and a process b ∈ Rsuc s.t. the
causal distance cdscur+1(a, b) ≤ rsuc − scur.

The following Definition 6 specifies the set of processes in Rsuc which are influenced by
some process in Rcur.

Definition 6 (Influenced Set). IS(Rcur, Rsuc) := {b ∈ Rsuc | ∃a ∈ Rcur : a↪→b}

The majority influence between Rcur and Rsuc guarantees that Rcur influences a set of pro-
cesses in Rsuc, which is greater than any influenced set of a root that did not influence Rcur

Definition 7 (Majority influence). We say that a VSRC Rcur ∈ V2D+1 exercises a majority
influence on a VSRC Rsuc ∈ V2D+1, denoted Rcur↪→mRsuc with ↪→m ⊆ V2

2D+1, iff
∀R ∈ VD+1 with IS(R,Rcur) = ∅ : IS(Rcur, Rsuc) > IS(R,Rsuc) and
∀R ∈ VD+1 with IS(R,Rcur) 6= ∅ : IS(Rcur, Rsuc) ≥ IS(R,Rsuc).

The following Assumption 2 guarantees that among the set of all (2D+1)-VSRCs, i.e. roots
that possibly lead to a decision, at most k exist, which are not majority influenced by any other
(2D + 1)-VSRC, see Figure 2.2.

23

RI RI RI RI

RI

RI

RI

RI

|I| > 2D

RI RIRI

2D ≥ |I| > D

Figure 2.2: Stable root components influencing other root components, for k = 2. A bold
arrow indicates majority influence. The figure also shows a temporal order between the roots,
meaning the farther left roots precede the roots on the right. Red nodes have an interval length
greater 2D, black nodes have an interval length between 2D and D.

Assumption 2 (k-majority influence). With the exception of k elements of V2D+1, it has to hold
that ∀v ∈ V2D+1∃v′ ∈ V2D+1 : v′↪→mv

In Chapter 3, we will prove that the conjunction of Assumption 1 and Assumption 2 is suf-
ficient for solving k-set agreement, by providing an algorithm and proving its correctness.

2.6 k-set agreement

In this section, we will provide detailed definitions of the k-set agreement problem and related
concepts like k-uniformity, consensus and valence of configurations.

As we have given an informal description of the problem in the first chapter only, we now
define k-set agreement properly.

We assume that the local state Sr
pi [x] of pi (at the beginning of round r) contains a variable

xri , with xi = x1
i ∈ S1

pi defining its initial value, and a (write-only) variable yi, with y1
i =

⊥ initially undefined. All xi are chosen from a finite set V with |V | ≥ n. To solve k-set
agreement, each pi has to eventually assigne a value to yi exactly once, such that the following
three properties (summarized in Definition 8 below) are satisfied:

24

Validity This property states that every value yi picked by pi as its decision value has to be one of
the values x with which at least one process pj started. This prevents trivial solutions, like
the one where every process always sets yi to 0 and terminates.
Validity is normally a simple property to fulfill. Many algorithms only add initial values
to the set of candidate decision values for yi and use a function that assigns the minimum
or the maximum value to yi.

k-Agreement This property is the core of the whole problem. It ensures that every non faulty process
that assigns a value to yi in some round does it in a manner, such that an omniscient
observer never finds more than k different assigned values system wide.

Termination Every correct process has to irrevocably decide on a value yi in some round. This implies
that there is a round r where all processes have assigned a non-⊥ value to yi.

Even if it looks quite simple and easy to implement, termination proved to be very difficult
to gurantee in dynamic networks.

Definition 8 (k-set agreement.). For all processes pi ∈ Π, it has to hold that

• Validity: ∀r ≥ 1, ∀pi ∈ Π : yri 6= ⊥ → yi ∈ {x0, x1, ...xn−1}

• k-Agreement: ∀r ≥ 1,∀pi ∈ Π : |{yri 6= ⊥|0 ≤ i ≤ n− 1}| ≤ k

• Termination: ∀pi ∈ Π : (∃r ≥ 1 : yri 6= ⊥) ∧ (∀r ≥ 1 : yri 6= ⊥ ⇒ yri = yr+1
i).

k-uniformity and adaptivity

Since network connectivity and failures are under the control of the adversary, the quality of
the results of an algorithm is strongly connected to the behavior of the adversary. Normally,
an algorithm is designed such that it can always deliver a certain quality of the results, even
in a worst-case scenario. To accomplish this, some kind of knowledge regarding worst-case
scenarios, like the maximum number of failures f , is encoded in the algorithm. Typically k-set
agreement algorithms also use k somewhere in the code.

However, algorithms can sometimes be designed in a way that they additionally can improve
the results if the adversary provides an average or best case scenario. This design property
is called adaptivity. An algorithm that provides adaptivity must be able to handle failures or
destructive behavior during runtime and provide results according to the actual scenario.

The algorithm introduced in this thesis is k-uniform, which implies adaptivity: k-uniform
means that the algorithm is not aware of k. Thus the quality of the result (i.e., the number of
different decisions) is entirely dependent on the adversary, i.e., the actual network connectivity
in a run. Assumption 1 and Assumption 2 guarantee a worst case result of k different decision
values, for any particular value of k. Hence, in a run where k = 5, the algorithm in Figure 2.2
will provide at most 5 different decision. If the adversary provides a network that adheres to
Assumption 1 and Assumption 2 for k = 1 in a run, then the algorithm will actually solve
consensus in this run.

25

Consensus

Consensus is a special case of k-set agreement, where k is set to 1. This implies that the size
of the set of values on which each process can decide is reduced to 1, thus every process has to
decide on the same value. This special case is interesting for two reasons.

First, it is the optimum regarding system-wide agreement, and hence preferable from an
application perspective.

Second, consensus is the core element of two papers ([7],[10]), which are the basis of this
Master thesis. In [10], consensus is solved under a very similar model of in dynamic networks.
In [7], the ability to solve consensus (or, to be more precise, not to solve consensus) is used to
derive short and easy impossibility results for k-set agreement under different models. In fact,
solving consensus in k isolated components also solves k-set agreement.

Valence of configurations

We have already established the definition of a configuration in Definition 1. The valence of a
configuration is a powerful tool for deriving impossibility results for consensus [22]. We also
will use this concept in the last chapter of this thesis.

A configuration Cr of a binary consensus algorithm (v = {0, 1}) is called

• v-decided, if all processes have yri = v.

• v-valent, if for all configurations reachable from Cr that arew-decided it holds thatw = v.

• univalent, if there is a v such that Cr is v-valent.

• bivalent, if it is not univalent.

26

CHAPTER 3
Algorithm

In this section, we provide a k-set agreement algorithm for the model in Chapter 2 and prove its
correctness. The algorithm consists of two parts:

(i) A network approximation algorithm, which provides every process with local estimates of
the communication graphsGr of all past rounds. It provides a routine called inStableRoot(I),
which uses the local network estimates to determine a posteriori whether the local process
was member of an I-vertex-stable root component.

(ii) The k-set agreement core algorithm, which uses inStableRoot() to find out whether the
local process was part of a D + 1-VSRC R. If so, all members are guaranteed to have
received the input values from each other. The algorithm hence considers this event as a
possible candidate for a decision and locks it. If R finally turns out to have extended to a
2D+1-VSRC, the algorithm decides on the maximum of all known values and broadcasts
its decision in the following rounds.

To simplify the presentation, we will state the two algorithms independently of each other. We
assume that the complete round r computing step of the network approximation algorithm is ex-
ecuted before the round r computing step of the k-set algorithm, and that the round r message of
the former is piggybacked on the round r message of the latter (and hence sent simultaneously).
Note carefully that this implies that the round r computing step of the k-set algorithm can al-
ready access the result of the round r computation of the network approximation algorithm, i.e.,
the state at the beginning of round r + 1.

3.1 The local network approximation algorithm

At the beginning, each process has no information about the graph, and knows its own initial
value only. To successfully solve the problem at hand, it needs to know the values in the network
structure around it. To achieve this, it employs an algorithm that can approximate the network
based on the gathered information accurately enough. Algorithm 1 allows each process to build

27

Algorithm 1 Local network approximation
Provides callable routine inStableRoot().

Variables and Initialization:
1: Ap := 〈Vp, Ep〉 initially ({p}, ∅) {weighted digraph without multi-edges and loops}

send round r message:
2: send 〈Ap〉 to all current neighbors

receive round r message:
3: save all neighbor messages of round r

Round r: computation:
4: for q ∈ N r

p and q sent message 〈Aq〉 in r do
5: if ∃ edge e = (q

T→ p) ∈ Ep then

6: replace e with (q
T ′
→ p) in Ep where T ′ ← T ∪ {r}

7: else
8: add e := (q

{r}→ p) to Ep

9: Vp ← Vp ∪ Vq

10: for every pair of nodes (pi, pj) ∈ Vp × Vp, pi 6= pj do
11: if T ′ =

⋃
{S | ∃q ∈ N r

p : (pi
S→ pj) ∈ Eq} 6= ∅ then

12: replace (pi
T→ pj) in Ep with (pi

T∪T ′
→ pj); add (pi

T ′
→ pj) if no such edge exists

13: predicate Callable routine inStableRoot(I)
14: Let Ap|s = (V s

p , {(pj
T→ pi) ∈ Ep | s ∈ T})

15: Let Cp|s be Ap|s if it is strongly connected, or the empty graph otherwise.
16: return Cp if for all s1, s2 ∈ I : Cp := V (Cp|s1) = V (Cp|s2) 6= ∅, otherwise return ∅

an abstraction in form of a TV G (which fits the model of Section 2.3) of the dynamic network.
Its set of edges consists of entries of the form (pi

T→ pj), where T is the set of all rounds when
pj has received a message from pi.

Initially Ap consist of ({p}, {}) only. At the beginning of each round, each process q broad-
casts Aq to all its neighbors. Thus, p receives a set {Aqi |q ∈ N r

p} in round r. Based on this
information, p updatesAp and adds new nodes and edges accordingly. This update cycle repeats
itself each round.

The routine inStableRoot returns the members R of the root component iff p is part of the
root for the given interval, or else ∅. It is implemented by checking the "projection" Ap|r of Ap

for round r, which is the graph induced by all edges (pi → pj), where (pi
T→ pj) with r ∈ R is

in Ap, is s.c. (strongly connected)).
The algorithm does not guarantee that the real sequence of communication graphsG1, G2, ...

is perfectly abstracted by Ap, more precisely Ap|s = Gs cannot be guaranteed. But it will turn
out that the approximation is accurately enough to solve our problems. In the following section,
we will prove that inStableRoot correctly returns R if p is part of the root R.

28

Proof of Correctness for Algorithm 1

For the rest of this chapter we assume that Assumption 1 and Assumption 2 hold. We start out
with a proof showing a correct under approximation of Gt for every t.

Lemma 6 ([11, Lem. 7]). If Ap|t contains (v → w) at the end of round r, then

(i) (v → w) ∈ Gt, i.e., Ap|t ⊆ Gt,

(ii) Ap|t also contains (v′ → w) for every v′ ∈ N t
w ⊆ Gt.

Proof. We first consider the case where r < t, then at the end of round r Ap|t is empty, i.e.,
there are no edges in Ap|t. As the precondition of the Lemma’s statement is false, the statement
is true.

For the case where r ≥ t, we proceed by induction on r:
Induction base r = t: If Ap|t contains (v → w) at the end of round r = t, it follows from

Aq|t = 〈{q}, ∅〉 at the end of every round r < t, for every q ∈ Π, that w = p, since p is the only
processor that can have added this edge to its graph approximation. Clearly, it did so only when
v ∈ N t

p, i.e., (v → w) ∈ Gt, and included also (v′ → w) for every v′ ∈ N t
p on that occasion.

This confirms (i) and (ii).
Induction step r → r + 1, r ≥ t: Assume, as our induction hypothesis, that (i) and (ii) hold

for any Aq|t at the end of round r, in particular, for every q ∈ N r+1
p . If indeed (v → w) in Ap|t

at the end of round r + 1, it must be contained in the union of round r approximations

U = (Ap|t) ∪

 ⋃
q∈Nr+1

p

Aq|t

and hence in some Ax|t (x = q or x = p) at the end of round r. Note that the edges (labeled
r + 1) added in round r + 1 to Ap are irrelevant for Ap|t here, since t < r + 1.

Consequently, by the induction hypothesis, (v → w) ∈ Gt, thereby confirming (i). As for
(ii), the induction hypothesis also implies that (v′ → w) is also in this Ax|t. Hence, every such
edge must be in U and hence in Ap|t at the end of round r + 1 as asserted.

The Lemma not only proves that Ap|r is an underapproximation of Gr, but also that it is
complete with respect to neighboring edges. It assert that if Ap|r is s.c., then the component is a
root component of Gr.

Lemma 7 ([11, Lem. 8]). If the graph Cp|s (line 15) with s < r is non-empty in round r, then
p ∈ Rs.

Proof. For a contradiction, assume that Cp|s is non-empty (hence Ap|s is an SCC), but p 6∈
Rs. Since p is always included in any Ap by construction and Ap|s underapproximates Gs by
Lemma 6.(i), this implies that Ap|s cannot be the root component of Gs. Rather, Ap|s must
contain some process w that has an in-edge (v → w) in Gs that is not present in Ap|s. As w and
hence some edge (q

s→ w) is contained in Ap|s, because it is an SCC, Lemma 6.(ii) reveals that
this is impossible.

29

From this lemma and the description of inStableRoot(I) in Algorithm 1, we get the follow-
ing Corollary 2. It rests on the fact that Ap|s under approximates Gs (Lemma 6.(i)), but does so
in a way that never omits an in-edge at any process q ∈ Ap|s (Lemma 6.(ii)).

Corollary 2 ([11, Cor. 1]). If the predicate inStableRoot(I) evaluates to true at process p in
round r, then ∀t ∈ I where t < r, it holds that p ∈ Rt.

The following Lemma 8 in conjunction with Corollary 3 reveals that, in a sufficiently long
interval of rounds I = [r, s] with an I-vertex-stable root component RI , every member p of RI

detects its membership in the [r, s − D]-VSRC RI with a latency of at most D rounds (i.e., at
the end of rounds r +D).

Lemma 8 ([11, Lem. 10]). Consider an interval of rounds I = [r, s], such that there is a D-
bounded I-vertex-stable root component RI and assume |I| = s− r + 1 > D ≥ φ(RI). Then,
from round r +D onwards, we have Cp|r = RI , for every process in p ∈ RI .

Proof. Consider any q ∈ RI . At the beginning of round r + 1, q has an edge (q′
T→ q) in its

approximation graph Aq with r ∈ T iff q′ ∈ N r
q . Since processes always merge all graph infor-

mation from other processes into their own graph approximation, it follows from the definition of
aD-bounded I-vertex-stable root component in conjunction with the fact that r+1 ≤ s−D+1
that every p ∈ RI has these in-edges of q in its graph approximation by round r+1+D−1. Since
RI is a vertex-stable root-component, it is strongly connected without in-edges from processes
outsideRI . Hence Cp|r = RI from round r +D on, as asserted.

Corollary 3 ([11, Cor. 2]). Consider an interval of rounds I = [r, s], with |I| = s − r + 1 >
D ≥ D(RI), such that there is a D-bounded vertex-stable root component RI . Then, from the
end of round s on, a call to inStableRoot([r, s−D]) returns RI at every process in RI .

Together, Corollary 2 and Corollary 3 reveal that inStableRoot(.) precisely characterizes the
caller’s actual membership in the [r, s − D]-VSRC RI in the communication graphs from the
end of round s on.

3.2 k-set agreement algorithm

We now explain how to solve k-set agreement based on the network approximation algorithm
introduced in the previous section. The general idea is as follows: When a root component R is
2D + 1-vertex-stable, in some interval [r − 2D, r], all members consistently know in1 round r
that there existed aD+1-VSRC in [r−2D, r−D] (cf. Corollary 3). They can hence lock on this
event, by remembering a tuple (R, l, t, v) consisting of the VSRC members R, the lockround `
(which we choose as ` = r− 2D), the round t = r when the lock was created, and finally some
proposition value v. Every process can obviously hold at most one such tuple, subsequently
referred to as lock, in a round.

1That is, after the round r computing step of the network approximation algorithm, which is still before the end
of round r of the k-set algorithm.

30

If a process holding a lock observes later (at latest D rounds after locking, i.e., 3D after
the lockround r − 2D stored in the current lock-tuple) that R was indeed a 2D + 1-VSRC, it
can decide on the value v in the lock-tuple and flood the network with the decision. This is
feasible, since all members of R have the same lock tuple in this case: D-boundedness (recall
Definition 3) guarantees that they have received all their round r − 2D information from each
other, in particular, their initial values, already by round r −D.

Unfortunately, however, locally, a process cannot know in round r whether the detected
D+1-VSRC will indeed be stable for anotherD rounds. Our algorithm thus locks optimistically,
possibly producing “unsuccessful” locks: In our model, it is not even possible to reliably find
out whether some lock led to a decision at some process or not.

Our algorithm solves this problem by exchanging the full history of locks, both generated
and learned later on, at all processes (described in detail below). In conjunction with the k-
majority influence of Assumption 2, this ensures that if a 2D+1-VSRC occurs, all members have
identical lock histories (if we restrict our attention to locks created/learned by the start round
r − 2D) and can hence agree on (the value of) one lock consistently, in a way that circumvents
Theorem 5 in Chapter 4: (a) For the very first lock, we set the lock-tuple to (R, r−2D, r, vmax),
where vmax is just the maximum among all received initial values. (b) If there are at most k old
locks in the system, we set the lock-tuple to one of those, selected consistently by means of some
deterministic function. (c) If there are > k old locks in the system, Assumption 2 guarantees
that the same lock originating in a previous 2D + 1-VSRC Rcur is chosen at all members in
R = Rsuc.

Algorithm 2 shows the code of the core k-set algorithm at process pi, which uses the fol-
lowing variables: xi denotes pi’s proposal value, r ≥ 1 is the current round, yi returns pi’s
decision (initially ⊥), and ` holds the current lockround (⊥ when no lock is currently set); D is
the network causal diameter, which is in {1, . . . , n− 1}.

A key component of the algorithm is the lock history structure histi, which is an array of
sets of locks histi[j] per process pj in the system, with the following meaning: In round r,

• histi[j] is the set of locks that pi is sure that they are known by pj so far,

• histi[i] is the set of all locks created and learned by pi so far.

In every round r, histi is broadcast and updated according to histj received from neighbors
pj ∈ N r

pi , using the following simple update rules:

(R) Remote process entry: ∀pm ∈ Π\{pi} : histi[m] := histi[m]∪
(⋃

pj∈Nr
pi
histj [m]

)
(L) Local process entry: histi[i] := histi[i]∪redate

(⋃
j∈Π,j 6=i histi[j]\histi[i], r

)
,

where redate(S, r) applied to a set S of locks and round r returns the set of locks ob-
tained by replacing the lock creation time by r, formally, redate(S, r) = {(R, rR, r, v) |
(R, rR, t, v) ∈ S}. Redating the locks, which can apply only to locks created at processes
6= pi, allows pi to remember the time when it learned first about a particular lock.

(N) New lock L created (of course locally): histi[i] := histi[i] ∪ redate({L}, r). Note
that a new lock may have been "derived" from a old lock, so redate({L}, r) stresses the
fact that its learning time is always updated to r.

31

Evidently, the above update rules resemble the ones used for vector clocks [32]: The only process
that can modify the creation/learning round in existing locks and create new locks (in histi[i])
is process pi; any other process pj can only add existing locks (that it hears about to exist in
histi[i]) into histj [i].

Keeping in mind this update history procedure, Algorithm 2 works as follows: After sending
and receiving all round r messages, pi analyzes the gathered information. If a decide message
has been received, the algorithm decides on the received value (line 7–8). Otherwise, pi updates
its lock history histi as described above, and then checks whether it is part of a D+ 1-VSRC.
If this is not the case, the algorithm just goes to the next round. Otherwise, and if ` = ⊥, pi
locks by setting ` := r − 2D in line 17 and determining the lock tuple according to case (a),
(b) and (c) above, in line 30, 28 and 25, respectively; the lock tuple is appended to its local lock
data structure hist[i], which represents (N) above.

If, on the other hand, ` 6= ⊥ and a 2D + 1-VSRC is detected, pi can safely decide on the
proposition value in the current lock tuple and terminate in line 34; in the terminal state, pi does
not further participate in the locking process but simply broadcasts its decision value. Should
the VSRC eventually turn out not to live long enough to become a 2D + 1-VSRC, the lock is
released in line 36.

Correctness proof

In this subsection, we will prove the following Theorem 1:

Theorem 1. There exists an algorithm that solves k-uniform k-set agreement in a dynamic
network that adheres to the conjunction of Assumption 1 and Assumption 2.

The proof consists of a sequence of technical lemmas, which will finally allow us to establish
all the properties of k-set agreement given in Chapter 2. Note that the claimed k-uniformity is
obvious, as the code of the algorithm does not involve k. We start with simple properties related
to generating locks at all members of vertex stable root components.

Lemma 9. Only processes part of a vertex stable root with interval length greater than D (resp.
2D) lock (resp. decide).

Proof. The if in line 12 (resp. line 33) is only true if inStableRoot detects a stable R in some
interval of length D + 1 (resp. of length 2D + 1) or larger, which implies by Corollary 2 that R
is indeed a D + 1-VSRC (resp. 2D + 1-VSRC).

Lemma 10. All processes part of a vertex stable root R[r,s] with interval length greater than
2D, which did not start already before r, lock on (R[r,s], r, r + 2D, ∗) in round r + 2D.

Proof. BecauseR[r,s] isD-bounded by Assumption 1, Corollary 3 guarantees that inStableRoot(r, r+
D) returns R from round r + 2D (of the k-set-algorithm) on, and that it cannot have done so
already in round r + 2D − 1. Hence, ` = ⊥ in round r + 2D, so the algorithm must enter
line 17 and create a lock in line 30, 28 or 25. In all cases, the lock is set to (R[r,s], r, r + 2D, ∗)
as asserted.

32

Lemma 11. All processes part of a vertex stable root R[r,s] with interval length greater than
3D, which did not start already before r, decide by round r + 3D.

Proof. It follows from Lemma 10 that all members of the VSRC R[r,s] lock on (R[r,s], r, r +
2D, ∗). As the VSRC remains stable also in rounds r + 2D, . . . , r + 3D, line 36 will not be
executed in these rounds, thus ` = r remains unchanged. Consequently, due to Corollary 3, the
if-statement in line 33 will evaluate to true at the latest in round ` + 3D = r + 3D, causing all
the processes to decide via line 34 by round r + 3D as asserted.

Although we know already that all members of a VSRC that is vertex stable for at least 3D
rounds will decide, we did not prove anything about their decision values yet. In the sequel, we
will prove that they decide on the same value.

Computing values rests on two sub-histories Si, S′i of histi, which are computed when a
lock is created for a D + 1-VSRC R[r,s] in round r + 2D, at process pi ∈ R[r,s]:

• The bounded history Si, which throws away all locks created/learned after round r (and
all virtual locks). It effectively reconstructs histi in lockround ` = r.

• The majority history S′i, which also throws away all locks in Si from VSRCs that cannot
exercise a majority influence on R[r,s]. It effectively reconstructs histi at the end of the
previous VSRC that exercises a majority influence on R[r,s] (if any).

The following Lemma 12 shows that, for all members of a VSRC Rr,s of length at least
D + 1, all entries in the bounded histories Si[j] (computed in round r + 2D) are identical
to the lock histories histrj [j] in round r. In what follows, we will ignore virtual locks, so
equality of sets of locks like Si[j] = histi[j] has to be interpreted modulo virtual locks, i.e., as
Si[j] = histi[j] \ {(∅, r, t, v) | (∅, r, t, v) ∈ histi[j]}.

Lemma 12. Let R[r,s] be a VSRC with s − r ≥ D that does not start before r. Then, ∀p, q ∈
R[r,s] : Sp[q] = histrq[q]. Therefore, Sp = Sq and also S′p = S′q.

Proof. In round r, histrq[q] ⊇ histrp[q] according to the update rule (R). By Assumption 1

R[r,s] is D-bounded, thus there is a causal chain (q
r[k]
; p) of length at most D, along which p

receives at least histrq[q] and thus provides histr+2D
p [q] ⊇ histrq[q]. No q in R can receive

any messages from a process not in R, and every additional lock (R, rR, t, v) created or learned
(in the history update) at q in some round r′ > r (and hence put into histr

′
q [q], from where it

may reach histr+2D
p [q]) has a creation/learning round t = r′. Since all these additional locks

are thrown away when building Sp[q], Sp[q] = histrq[q] and hence also Sp = Sq and S′p = S′q
follows as asserted.

Lemma 13. All decision values based on the same vertex stable root are equal.

Proof. We have already established in Lemma 10 that each member of a vertex stable root R[r,s]

that leads to a decision according to Lemma 11 locks on the same (R[r,s], r, r + 2D, ∗). Since
Sp = Sq and S′p = S′q by Lemma 12, all members of R[r,s] must set their lock using the same
line 30, 28 or 25, which also implies identical lock and hence decision values v.

We are now ready for proving the properties of k-set agreement.

33

Validity

Validity is straightforward to see as, at the start, the algorithm only considers his initial value
for locking or deciding after a detected stable root (line 2 and 30). Moreover, any change of
xi in some lock involves an update via received locks from neighbors. But each neighbor pj
only sends locks containing its own value xi or some updated value. Thus any lock value must
be some initial value. Since the decision value yi is based on some value in a lock (lines 34),
validity holds.

Termination

Lemma 14. The algorithm eventually terminates at all processes.

Proof. For a contradiction, assume that there is p ∈ Π which has not terminated after the stable
interval guaranteed by Assumption 1. This implies that p is not part of a root component during
this stable interval, because Lemma 11 ensures termination by rGST + 3D at latest for the latter.
Hence, p did not get a decide message either. From Definition 4 of the E-bounded network, it
follows that p must be causally influenced by some VSRC member within E rounds after its
termination. Therefore, it must receive the decide message by rGST + 3D + E at latest.

Agreement

For proving k-Agreement, we will combine the above lemmas with Assumption 2. In what
follows, the last entry l = (R, l, t, v) in a set of locks is a lock where t is maximal; in case of
multiple locks with maximal t, the lexically smallest one, is returned.

Lemma 15. Consider some VSRC R[r,s] with s− r ≥ 2D that does not start before r. In round
r + 2D, the last lock lp in histr+2D

p [p] of every member p ∈ R[r,s] is the same.

Proof. Combining Lemmas 10 and 13, it follows that every member p creates the same lock l
and adds it to histp[p] in round ` + 2D. We claim that l is the last lock lp in histr+2D

p [p].
To see why, consider that Lemma 10 also implies that new locks created at p, i.e., locks which
are not already in histrp[p] in round r, can only be generated before round r +D − 1 (or after
s+ 2D): Such locks are based on a preceding D + 1-VSRC, which must end at round r − 1 at
latest in order not to overlap with R[r,s]; additional locks can only be generated after R[r,s] ends.

Therefore, histr+D
p [p] = histr+2D

p [p], and by the same argument as in Lemma 12, it
follows from the history update rule (R) that in fact even histr+2D

q [p] = histr+2D
p [p] for all

q ∈ R[r,s]. Since no message from a process outsideR[r,s] can arrive at any p, we have confirmed
that l is indeed the latest lock in histr+2D

p [p].

Lemma 16. Rcur↪→mRsuc guarantees that on the influenced processes
p ∈ |M | = IS(Rcur, Rsuc) ⊆ Rsuc, ∃q ∈ Rcur∀q′ ∈ Rcur : histrsucp [q′] = histscurq [q′] ∪ L,
where L are those new locks (created at q′) process p learned about between round scur and
rsuc. For the locks in L originating in VSRCs R that did not influence Rcur already, it holds that
|M ′| = IS(R,Rsuc) < |M |.

34

Proof. For every p ∈ Rsuc influenced by some process q ∈ Rcur, it holds by Definition 7
that ∀q′ ∈ Rcur : histrsucp [q′] = histscurq [q′] ∪ L. This implies that the history of Rcur is
embedded in the history of Rsuc.

If we take a closer look, because of Definition 7, every additional information in L is orig-
inating in a VSRC R ∈ VD+1 that either (a) did not influence Rcur in which case we can drop
it from L as it is already in histscurq [q′], or else (b) did not influence Rcur in which case it can
not overwhelm M as the resulting |M ′| = IS(R,Rsuc) < |M |.

Lemma 17. Rcur↪→mRsuc guarantees that ∀p ∈ Rsuc, for a majority of p′ ∈ Rsuc, ∃q ∈
Rcur : S′p[p

′] = histscurq [q].

Proof. Lemma 16 shows that there exists a set of processes M ⊆ Rsuc such that ∀p′ ∈M∃q ∈
Rcur∀q′ ∈ Rcur : histrsucp′ [q′] = histscurq [q′] ∪ L, which can not be overwhelmed by other
locks. The update rule (L) implies that each p ∈ M has to update hist′p[p

′] in such a way
that hist′p[p

′] contains the information received from histscurq , in particular, histscurq [q].
Applying Lemma 12 yields that ∀p ∈ Rsuc : Sp[p

′] = histscurq [q]∪L. Finally, line 22 computes
S′p[p

′] by removing all minority locks from Sp. Since all these minority locks with respect to
histscurq [q] are in L, it follows that S′p[p

′] = histscurq [q] as asserted.

Lemma 18. Rcur↪→mRsuc guarantees ∀p, q, q′ ∈ Rsuc that the last lock in S′p[q] and S′p[q
′] is

the same.

Proof. Since Lemma 15 proves that all last entries at the end ofRcur are the same, and Lemma 17
shows that ∀p, q ∈ Rsuc∃q′ ∈ Rcur : histp[q] = histq′ [q

′], we are done.

Lemma 19. Majority Influence guarantees that the lock in Rsuc contains the same proposition
value as the lock in Rcur.

Proof. We know from Lemma 18 that the last entry in all entries in S′p is the same ∀p ∈ Rsuc.
Hence the algorithm has to lock via case (C) (all supporter sets are the same and all entries are
the same!) on every p ∈ Rsuc. Thus, by Lemma 17, every p ∈ Rsuc locks on the the proposition
value of the lock set in in Rcur.

Lemma 20. Assumption 2 guarantees a maximum of k different decision values during each
run.

Proof. From Lemma 19 we know that for A,B ∈ V2D+1, where A↪→mB holds, B has to lock
and subsequently decide on the lock of A. Hence if we combine Lemma 19 with Assumption 2
it follows that a maximum of k different decision exist on roots from V2D+1. By Lemma 9, only
roots part of V2D+1 can decide, which concludes our proof.

35

Algorithm 2 k-Set Agreement (Code for Process pi)
Variables and Initialization:

1: hist[∗] := ∅ // hist[j] holds set of locks known by pj
2: hist[i] := {(∅, 1, 1, xi)} // virtual first lock (R = ∅) at pi
3: decide := ⊥, ` := ⊥ // most recent lock round, ⊥ if none

Emit round r messages:
4: send 〈decide,hist〉 to all neighbors

Receive round r messages:
5: for all pj in pi’s neighborhood Nr

pi , receive 〈decidej ,histj〉 from pj
Round r computation:

6: if decide = ⊥ then
7: if received decidej 6= ⊥ from some pj then
8: yi := decidej , decide := yi
9: else

10: Update lock history hist from histj , ∀pj ∈ Nr
pi

// Now get current root component, if any
11: Ci := inStableRoot(r − 2D, r −D)
12: if Ci 6= ∅ then
13: rs := r − 2D // pi is in D + 1-VSRC Ci, determine actual start round rs
14: while inStableRoot(r − 2D, r −D) = inStableRoot(rs− 1, r −D) do
15: rs := rs− 1
16: if ` = ⊥ then
17: ` := rs // Set new lock at pi
18: S[∗] := ∅ // Determine bounded history S (candidate locks)
19: ∀pj ∈ Ci : S[j] := {(R, rR, t, v) | (R, rR, t, v) ∈ hist[j], where t ≤ ` and R 6= ∅}
20: S′[∗] := ∅ // Determine majority history S′ of most frequent locks

// macro #Supt(s) = |Supt(s)| with Supt(s) = {m | redate({s}, ∗) ∈ redate(S[m], ∗)}
21: maj := max{#Supt(R, rR, t, v) | (R, rR, t, v) ∈

⋃
j∈Ci

S[j]}
22: ∀pj ∈ Ci : S

′[j] := {L | (L ∈ S[j]) ∧ (#Supt(L) = maj)}
23: if

⋃
j∈Ci

S′[j] 6= ∅ then
// Check whether all latest locks in S′ are equal
// macro last(X) returns lock (R, rR, t, v) ∈ X with largest t (lexically smallest if several)

24: if for all s, s′ ∈
⋃

j∈Ci
S′[j] : Supt(s) = Supt(s′) = M and ∀p, q ∈ M : last(S′[p]) =

last(S′[q]) = ŝ then
// Case (c): Lock to value of most recently learned common lock

25: lock := (Ci, `, r, ŝ.v)
26: else

// Case (b): Take any lock in S, but choose it consistently
// macro maxID(C) returns largest process identifier of VSRC C

27: ŝ := (R, rR, t, v) ∈
⋃

j∈Ci
S[j] with (maxID(R), rR) lexical max

28: lock := (Ci, `, r, ŝ.v)
29: else

// Case (a): Take value of any (virtual) lock in hist consistently
30: lock :=

(
Ci, `, r,max

{
v | (R, rR, t, v) ∈

⋃
j∈Ci

hist[j]
})

// Locking done, so put newly created lock into lock history
31: histi[i] := histi[i] ∪ {lock}
32: else
33: if inStableRoot(`, `+ 2D) 6= ∅ then
34: yi := lock.v, decide := yi
35: else
36: ` := ⊥

36

CHAPTER 4
Impossiblity results

In this section1 , we provide two impossibility results for solving k-set agreement in our model,
under two strong assumptions constraining the adversary, which are natural generalizations of
the consensus case [10]. They disproved our initial conjecture that these constraints might be
sufficient for solving general k-set agreement. We first show the necessity of at least some
concurrent stability of the k root components (cf. Section 4.2). Essentially, this is achieved by
deriving a violation of the termination condition. Second, we prove that even if, from some
round on, the k root components become static forever, k-set agreement cannot be solved (cf.
Section 4.3). In contrast to the first impossibility, the second one is obtained by constructing an
execution where the k-agreement property is violated.

4.1 Definitions from [7]

We first introduce the detailed definitions needed for the proof technique introduced in [7]:

Definition 9 (Indistinguishable Executions). Two executions of an algorithm α, β are indistin-
guishable for a set of processes D, denoted α D∼ β, if for any p ∈ D it holds that p executes the
same state transitions in α and in β.

Now consider a model of a distributed systemM = 〈Π〉 that consists of the set of processes
Π and a restricted modelM′ = 〈D〉 that is computationally compatible toM (i.e., an algorithm
designed for a process in M can be executed on a process in M′) and consists of the set of
processes D ⊆ Π. The restriction of an algorithm for this setting is defined as follows:

Definition 10 (Restriction of an Algorithm from [7, Definition 1]). Let A be an algorithm that
works in systemM = 〈Π〉 and let D ⊆ Π be a nonempty set of processes. Given any restricted

1The material provided in this section was devised jointly with Kyrill Winkler, hence can also be found in a
slightly different form in his Master thesis [42]

37

systemM′ = 〈D〉, the restricted algorithm A|D for systemM′ is constructed by dropping all
messages sent to processes outside D in the message sending function of A.

We also need the following similarity relation between runs in computationally compatible
systems (cf. [7, Definition 3]):

Definition 11 (Compatibility of runs from [7, Definition 3]). Let R and R′ be sets of runs, and
D be a non-empty set of processes. We say that runsR′ are compatible with runsR for processes
in D, denoted byR′ 4D R, if ∀α ∈ R′ ∃β ∈ R : α

D∼ β.

Theorem 2 (k-Set Agreement Impossibility [7, Thm. 1]). by some fixed algorithm A in M,
where every process starts Let M = 〈Π〉 be a system model and consider the runs MA that
are generated with a distinct input value. Fix some nonempty and pairwise disjoint sets of
processes D1, . . . , Dk−1, and a set of distinct decision values {v1, . . . , vk−1}. Moreover, let
D =

⋃
1≤i<kDi and D = Π \D. Consider the following two properties:

(dec-D) For every set Di, value vi was proposed by some p ∈ D, and there is some q ∈ Di that
decides vi.

(dec-D) If pj ∈ D then pj receives no messages from any process in D until every process in D
has decided.

Let R(D) ⊆ MA and R(D,D) ⊆ MA be the sets of runs of A where (dec-D) respectively both,
(dec-D) and (dec-D), hold.2 Suppose that the following conditions are satisfied:

(A) R(D) is nonempty.

(B) R(D) 4D R(D,D).

In addition, consider a restricted model M′ = 〈D〉 such that the following hold:

(C) There is no algorithm that solves consensus in M′.

(D) M′A|D
4D MA.

Then, A does not solve k-set agreement in M.

Moreover, we will rely on the following consensus impossibility result from [10]:

Assumption 3 (Consensus assumption [10, Assumption 4]). For any round r, there is exactly
one root component Rr in Gr. Moreover, there exists a D and an interval of rounds I =
[rST , rST +D − 2], such that there is an I-vertex stable root component RI , and there exists a
unique q ∈ Π such that ∀p ∈ RI ,∀r ∈ I : cdr(p, q) ≤ D, while for all q′ ∈ Π \ {q} we have
∀p ∈ RI ,∀r ∈ I : cdr(p, q′) ≤ D − 1.

Theorem 3 (Consensus impossibility [10, Thm. 5]). Assume that Assumption 3 is the only re-
quirement for the graph topologies. Then consensus is impossible.

2Note thatR(D) is by definition compatible with the runs of the restricted algorithm A|D .

38

4.2 Impossibility assuming ≤ k simultaneous roots

The first natural attempt to make k-set agreement solvable in our model was to restrict the
maximum number of root components per round to k:

Assumption 4. ∀r > 0, Gr contains at most k root components.

Unfortunately, Assumption 4 is too weak for solving k-set agreement: Theorem 4 shows
that even k root components which are vertex-stable simultaneously for up to n− k − 1 rounds
are not sufficient.

Theorem 4. There exists no algorithm that solves k-set agreement with n > k + 1 nodes under
Assumption 4, for any 1 ≤ k < n, even if there are k − 1 root components R1 to Rk−1 that are
vertex-stable forever and one root component Rk is vertex-stable for at most n− k − 1 rounds.

For k = 1, Theorem 4 is eqivalent to [10, Thm. 4]. The proof for k > 1 is based on
the existence of a forever bivalent consensus run in a suitably chosen restricted system, which
violates the termination condition of k-set agreement.

Proof. Let Di = pi for 0 < i ≤ k − 1. Consequently, D = {pk, pk+1, . . . , pn} and |D| ≥ 2.
Suppose that there is a k-set algorithm A. We will prove that the conditions of Theorem 2
(Theorem 1 of [7]) are satisfied; thus providing a contradiction to the assumption that A exists.

(A) R(D) is nonempty: In order to allow an execution where the processes in D do not receive
any messages from processes not in D, the communication graph cannot have any incoming
links to D from D until every process in D has decided. Clearly such a communication graph
exists and satisfies the assumptions of the theorem.

(B) R(D) 4D R(D,D): LetH be the set of runs where processes have unique input values xi = i,
0 < i ≤ n. Moreover, assume that, in all runs in H, the communication graphs are such
that p1, . . . , pk−1 are disconnected and pk, . . . , pn are weakly connected until every process has
decided.

By definition, any run inR(D) has a communication graph in every round with no links from

the set of processes D =
⋃k−1

i=1 Di to the set of processes D. The additional restriction imposed
on the communication graph of the executions ∈ H is that there are no links from the set of
processes D to the set of processes D until decision. Note that the presence or absence of these
links can have no influence on the state transitions of the processes in D, because the only way
processes in D could learn about the status of such a link would be via an incoming link from
some process ∈ D. Thus, for every ρ ∈ R(D), there exists a ρ′ ∈ H such that the processes in D
make the same state transitions in ρ and in ρ′ until deciding. Moreover, H ⊆ R(D,D), thereby
establishingR(D) 4D R(D,D).

(C) Consensus is impossible inM′ =
〈
D
〉
: Suppose that we have a perpetually changing single

root component, except for at least one interval of rounds I = [rST , rST +D − 2], where D =
n − k, for some fixed rST . During this interval, let the topology of D be a chain with head p
and tail q. This satisfies our initial restriction, with p being the vertex-stable root component that
lasts for n− k − 1 rounds.

39

Since |D| = n − k + 1 ≥ 3, this chain has length D = n − k ≥ 2, which means that
for all rounds r ∈ I , it holds that cdr(p, q) = D and ∀q′ ∈ D \ {q} : cdr(p, q′) < D. Since
our assumptions for D are the same as made in Assumption 3 with D = n − k, by Theorem 3,
consensus is impossible in D.

(D) M′A|D|
4DMA: Fix any run ρ′ ∈ M′ and consider the run ρ ∈ M where every process in

D has the same sequence of states in ρ as in ρ′. By the properties ofM, the processes not in D

can be disconnected in every round of ρ, yielding ρ D∼ ρ′.

4.3 Eventual stability does not help

The result of Theorem 4 suggested that at most k root components per round that are also even-
tually vertex-stable forever might be sufficient for solving k-set agreement. Unfortunately, this
is not the case: Theorem 5 shows that it is possible to construct an execution where the k-
agreement property is violated.

Theorem 5. Suppose that in every run there is a stabilization round rGST such that, for all
r ≥ rGST, it holds that Gr = Gr+1 and there are no other restrictions on the communication
graphs apart from Assumption 4. Then, there is no algorithm that solves k-set agreement for
1 < k < n.

Proof. We start our proof with some notation and technical lemmas. For some modelM and
some algorithm A, we denote by MA the set of runs of algorithm A on M. Let M = 〈Π〉
be our system with |Π| > 2 that is restricted by the assumptions of the theorem, and let D =
{p1, p2} ⊆ Π. We consider the restricted modelM′ = 〈D〉 and the restricted algorithm A|D
of algorithm A on D. Except for the number of processes,M′ has the same properties asM,
except thatM′ guarantees a single root component in every round.

Following the generic impossibility proof of [7], we will argue that if there was a correct k-
set agreement algorithm A forM, then the restriction A|D would solve consensus when being
run on M′: Since the assumption of k root components per round allows Gr to partition into
k isolated root partitions, there are executions in MA where the processes in D receive no
messages from any process outside of D, and decide on a unique value value in every root
partition. On the other hand, when executingA|D onM′, the processes ofD clearly also receive
no messages from any process of Π \D. Thus, the processes of D cannot distinguish whether
they execute A|D onM′ or A onM, and must hence also agree on a single value. Note that,
because n = |D| = 2 inM′, we can re-use classic bivalency arguments since there are at most
two initial values (although we assume |V | > k).

Lemma 21. For every k-set agreement algorithm A forM, there exists a run ρ′ ∈ M′A|D
that

is bivalent for all rounds up to and including rGST.

Proof. Similar to the strategy used in [38] to show the undecidability with lossy links, our proof
proceeds by induction.

For the base case consider the initial configuration C1(x1, x2), where p1 starts with initial
value x1 and p2 starts with x2 and x1 6= x2. Assume that C1(x1, x2) is univalent. By Validity

40

the only possible decision values in runs starting from this initial configuration are x1 and x2.
In order to see that C1(x1, x2) is neither x1-valent nor x2-valent (and hence bivalent) we show
that C1(x1, x2) is not x1-valent (the case of x2-valency follows from the symmetric argument).
Consider a run starting from C1(x1, x2) where ∀r > 0: (p1 → p2) /∈ Gr. This run is indistin-
guishable to p2 from a run with the same communication graphs but starting from C1(x′, x2),
with x′ 6= x1. By Validity, p2 cannot decide x1 in the latter run, showing that C1(x1, x2) cannot
be x1-valent.

For the inductive step, we show that if Cr−1 is bivalent then there is a bivalent successor
configuration Cr of Cr−1 that is bivalent or r− 1 > rGST. If r− 1 > rGST we are done, so we
assume that r−1 ≤ rGST for the remainder of this proof. This allows us to freely choose Gr−1.

Assume that all Cr are univalent. As the successor configurations of Cr−1 are uniquely
determined by the round graph Gr−1 and because of the assumption that there is a single root
component, we need to consider only three successor configurations. Let Cr

01 be the successor
configuration of Cr−1 that is reached by the Gr−1 with Er−1 = {(p1 → p2)}, let Cr

10 be the
successor configuration of Cr−1 that is reached by the Gr−1 with Er−1 = {(p1 ← p2)}, and let
Cr

11 be the successor configuration of Cr−1 that is reached by the Gr−1 with Er−1 = {(p1 →
p2), (p1 ← p2)}. As all Cr are univalent, w.l.o.g. assume that Cr

11 is x1-valent. Because Cr−1 is
bivalent, at least one of Cr

10, C
r
01 must be x2-valent; w.l.o.g. assume that Cr

10 is x2-valent. Note
that the only difference between Cr

11 and Cr
10 is that p2 received p1’s message in the former but

not in the latter. Consider now the executions starting from Cr
10, respectively Cr

11, where it holds
that ∀r′ > r : (p1 ← p2) /∈ Gr′ . Both executions are indistinguishable for p1 because p2 can
never tell p1 whether p2 received p1’s round r′ message. Since p1 must eventually decide the
same in both executions, they cannot have different valences.

Lemma 22. For every algorithm A forM, the set of runs R ⊆ MA where Gr contains arbi-
trary outgoing edges from D but no incoming edges to D satisfiesM′A|D

4D R.

Proof. By the assumptions of R, the processes in D never receive messages from any process
of Π \D. Therefore, in any run of R, the state transitions of the processes in D cannot depend
on the state of any process of Π \D. This establishesM′A|D

4D R.

We are now ready to prove Theorem 5. Our proof relies on an execution, where every k-set
agreement algorithm with n > 2 and 1 < k < n − 1 produces k + 1 decisions The run is
constructed as follows (cf. Figure 4.2): For each pi, we choose a unique proposal value xi such
that x1 and x2 are in accordance with Lemma 21.

For the rounds 1 ≤ r ≤ x, where x is chosen as described below, we use a Gr constructed
as follows (cf. Figure 4.1a):

• p1, p2 are connected to each other as in the bivalent run ρ′ provided by Lemma 21, and
have no incoming edges from any Π \D.

• p3 has an incoming edge only from p1 and no outgoing edges.

• p4, . . . , pk+2 form single-node root components.

• The remaining processes (if any) have an incoming edge from p4 but no outgoing edges.

41

p1 p2

p3

p4 pk+2. . .

pk+3 . . . pn

(a) One (changing) root component among
p1 and p2, single root p4, k − 2 remaining
single-node root components p5, . . . , pk+1

among p5, . . . , pn.

p1 p2

p3

p4 pk+2. . .

pk+3 . . . pn

(b) One root component among p1 and p2,
single root p3, k − 2 remaining single-
node root components p5, . . . , pk+1 among
p5, . . . , pn.

Figure 4.1: Communication graphs used in the proof of Theorem 5: (a) depicts Gr for 0 < r ≤
x, while (b) depicts Gr for x < r ≤ y. The dotted edge indicates an unstable (“moving”) link
between p1 and p2.

1 root
perpetually

bivalent

1 root
perpetually

bivalent

bivalent

1 static
root

bivalent

1 decision

1 decision

1 decision

k-1 static roots k-1 static roots
k-1 decision k-1 decision k-1 decision k-1 decision

time

r0 x y rGST

p1, p2, p3 :

Π \ p1, p2, p3 :

Figure 4.2: Example execution for the withholding argument

Note that this graph contains one root component among p1, p2, p3 and k−1 root components
among p4, . . . , pn, thereby satisfying Assumption 4. A simple indistinguishability argument
shows, that there is some finite round x, s.t. processes p4, . . . , pk+2 have decided on k − 1
distinct values: Just consider the execution where p1 is a perpetual root among p1, p2, p3 and
p4, . . . , pn are as defined above perpetually. Since we assumed a correct algorithm, there must
be an x such that all processes p4, . . . , pk+2 decide on some value before x. To see that there are
k− 1 different decision observe that p4, . . . , pk+2 never learn a value that is not their own initial
value, thus this fact follows from validity.

From round x + 1 on, we use a communication graph Gr that is the same as above, except
that the edge from p1 to p3 is removed and an edge from p3 to p4 is added (cf. Figure 4.1b).
Note carefully that the total number of root components is preserved, and that there are still
no incoming edges to {p1, p2}. Since the resulting execution is admissible inM, by a similar

42

reasoning as above, there must be some round y s.t. p3 decides before y; its decision value must
be in {x1, x2, x3}, since p3 can have heard at most from {p1, p2, p3}. Obviously, p1 and p2 are
still undecided.

Finally, it follows from the bivalent configuration of A|D reached by round y, according to
Lemmas 21 and 22, that there exist communication graphs Γ1 resp. Γ2 for all rounds r > y,
which are the same as the graphs used for rounds x < r ≤ y, except that the links between p1

and p2 are chosen such that they both decide on x1 resp. x2. We now continue our execution
with Γ2 if p3 decided x1, and Γ1 otherwise. Obviously, this guarantees that p1, p2 and p3 reach
at least two different decisions.

As we have now reached a total of k+1 decisions, we have established a contradiction. This
completes the proof of Theorem 5.

43

CHAPTER 5
Conclusions

5.1 Summary of accomplishments

In this Master thesis, we defined a model for solving k-set agreement in dynamic synchronous
networks. Using the concept of vertex stable root components (VSRC), i.e., strongly connected
components without incoming edges, with invariant members but possibly changing intercon-
nections, it assumes two properties, namely, majority influence (causal influence between certain
VSRCs) and an eventually stable interval (concurrently stable VSRCs). According to the classi-
fication in [17], the proposed model is rather weak in comparison to other models (stronger than
class 1, but strictly weaker than class 3).

We also proposed a k-set agreement algorithm for this model, which uses a network approx-
imation for detecting VSRCs and forcing their members to decide if they are stable sufficiently
long. The algorithm is k-uniform, i.e., does not know k, hence the number of decision values is
adjusted automatically to the actual network connectivity in a run. Such a feature is interesting
for systems that can still operate with such a form of graceful degradation. A comprehensive
correctness proof showed that k-set agreement is indeed possible in our model.

On the other hand, we showed that more than k simultaneous VSRCs, as well as at most k
root components that are not sufficiently long vertex-stable, render k-set agreement impossible.
Therefore the properties used in our model are close to the solvability border.

5.2 Discussion of our results

Model

Whereas the model introduced for consensus in [10] adequately captures the behavior of a dy-
namic network with unidirectional links in general, the connectivity assumptions were too re-
strictive to be useful for k-set agreement with k > 1. Therefore, our relaxation to allow several
weakly connected components/roots was necessary to construct a useful basic model for the

45

problem at hand. Note that the model in this thesis has the same difficulty in regard to finding a
suitable causal diameter D and E as the model of [10].

Just using the model and algorithm of [10] with the relaxations of at most k VSRCs, it is
possible for a single process to hop between subgraphs, and thus hiding locks and even decisions
long enough to violate agreement. As Chapter 4 proves, if we want to use the locking principle
to solve k-set agreement, we need two additional assumptions, namely, majority influence and
stable interval.

Compared to [9], the resulting model is far more dynamic, thus connectivity between single
processes is not as restricted. Especially, [9] forces a few edges (at least n−1−k) to be constantly
active throughout the whole run of the system, which has poor coverage, for example, in wireless
systems.

Majority influence: As Theorem 5 proves, the model needs some kind of information prop-
agation with respect to already made decisions. Thus it seems natural to impose a model prop-
erty that makes sure that locks possibly leading to decisions are carried over to future compo-
nents. Moreover, because only unidirectional connections exists between non-root nodes and
root nodes, it is necessary to guarantee some influence between such "important" locks and the
root of a newly formed component.

Although the majority influence property given in Assumption 2 may appear somewhat con-
trived, it is natural w.r.t. the weak guarantees on information propagation that can be given in our
model under Assumption 1. Moreover, one readily figures out more natural stronger assump-
tions that imply Assumption 2:

(i) Replacing majority influence IS(Rcur, Rsuc) in Definition 7 by majority intersection
|Rsuc ∩R| < |Rsuc ∩Rcur|, which is obviously the strongest form of influence.

(ii) We could even require |Rsuc ∩Rcur| > |Rsuc|/2, i.e., a majority intersection with respect
to the number of processes in Rsuc. This could be interpreted as a changing VSRC, in
the sense of “Rsuc is the result of changing a minority of processes in Rcur”. Although
this restricts the rate of growth of VSRCs in a run, it would apply, for example, in case of
random graphs where the giant component has formed [20, 28].

Notice however, that we do not argue that the particular stability intervals used in our model
are the optimum, but rather that the idea of some form of majority influence is needed for every
algorithm to work.

In particular, we cannot argue that connecting 2D + 1-VSRCs is necessary. It may be
possible to use k-majority influence in conjunction with VSRCs with shorter intervals and still
prevent a safety violation. However, preliminary studies of consensus in a similar model suggest
that 2D + 1 may indeed be a lower bound also for k-set agreement.

In any case , the stability intervals used in this thesis are "adjusted" to the algorithm at
hand, but can be modified to fit any other solution with different decision intervals. Assume
that we have an algorithm executed on a node, which can, based on some kind of information
gathering, decide on some value. Because of the dynamic nature of the network, we can never
know how many other nodes are influenced by this decision or some previous proposal of the
deciding node. This shows the fundamental problem that arises when solving k-set agreement,

46

in a dynamic networks. Thus, to ensure that agreement is not violated, we have to somehow
capture the first k decisions and make sure that later decisions are based on the earlier ones,
which is accomplished by the majority influence property in Assumption 2.

Stable interval: We notice that the stable influence property is an enhanced version of the
termination criteria of [10], where a 4D + 1 interval is needed to guarantee termination. For
k-set agreement, it is a reasonable assumption that an interval of similar length with k stable
roots is needed to ensure termination as well. Indeed we already provided a proof that shows
that an interval with k concurrent vertex stable roots of some length X is needed to guarantee
termination. However, we do not know whether X is tight: X has to be long enough such that
all connected nodes can be reached by a deciding node, but it might even be longer.

One could argue that there exist other means to ensure termination of a process. However,
independent of this local termination, it also has to ensure global termination. It seems difficult
to imagine an approach different from the stable interval property, that can guarantee this.

Algorithm

The network approximation algorithm is nearly identical to the one used in [10]. The sole
change is that the information delivered by the inStableRoot is not simply True or False but
the members of the root R itself.

The hist structure used in the agreement algorithm resembles vector clocks: Each pro-
cess tries to gather the latest information from every other process in the network. The main
difference to vector clocks is that each node remembers not only the last entry from its neigh-
bors, but saves the complete history from each participant. Hence, if some process pi sends a
message to pj during the run, pj’s hist contains pi’s hist until the send round. This knowl-
edge, in combination with the k-majority influence property, enables each process to establish a
"happens-before" relation between locks, which is equivalent to the relation between events of a
vector clock.

5.3 Possibilities for future work

An important open question is model coverage, i.e., the question whether the stability conditions
needed to solve k-set agreement can be achieved in existing wireless networks. But this exceeds
the scope of this thesis which takes a purely theoretical approach to the problem. Suitable
simulation experiments and the resulting data may be the topic of another thesis.

Moreover, the border between the majority influence property and the related impossibility
results is not tight. Thus, research is needed to improve either the possibility or the impossibility
or maybe even both.

Lastly, the algorithm was not designed for memory efficiency, thus optimizing memory us-
age to increase its usability in embedded applications is still a goal that needs to be accomplished.

47

Bibliography

[1] Yehuda Afek, Eli Gafni, and Adi Rosen. The slide mechanism with applications in dynamic
networks. In ACM PODC, pages 35–46, 1992.

[2] D. Alistarh, S. Gilbert, R. Guerraoui, and C. Travers. Of choices, failures and asynchrony:
The many faces of set agreement. In ISAAC 2009, pages 943–953. Springer, Heidelberg,
2009.

[3] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power of popula-
tion protocols. Distributed Computing, 20(4):279–304, November 2007.

[4] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. In Proceedings of the twenty-
third annual ACM symposium on Principles of distributed computing, PODC ’04, pages
290–299, New York, NY, USA, 2004. ACM.

[5] Baruch Awerbuch and Shimon Even. Efficient and reliable broadcast is achievable in an
eventually connected network(extended abstract). In Proceedings of the third annual ACM
symposium on Principles of distributed computing, PODC ’84, pages 278–281, New York,
NY, USA, 1984. ACM.

[6] Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Michael E. Saks. Adapting to
asynchronous dynamic networks. In STOC’92, pages 557–570, 1992.

[7] Martin Biely, Peter Robinson, and Ulrich Schmid. Easy impossibility proofs for k-set
agreement in message passing systems. In Proceedings of the 30th annual ACM SIGACT-
SIGOPS symposium on Principles of distributed computing, PODC ’11, pages 227–228,
New York, NY, USA, 2011. ACM.

[8] Martin Biely, Peter Robinson, and Ulrich Schmid. Easy impossibility proofs for k-set
agreement in message passing systems. CoRR, abs/1103.3671, 2011.

[9] Martin Biely, Peter Robinson, and Ulrich Schmid. Solving k-set agreement with stable
skeleton graphs. In IPDPS Workshops, pages 1488–1495, 2011.

[10] Martin Biely, Peter Robinson, and Ulrich Schmid. Agreement in directed dynamic net-
works. In 19th International Colloquium on Structural Information and Communication
Complexity (SIROCCO), LNCS, 2012. (to appear).

49

[11] Martin Biely, Peter Robinson, and Ulrich Schmid. Agreement in directed dynamic net-
works. CoRR, abs/1204.0641, 2012.

[12] Martin Biely, Josef Widder, Bernadette Charron-Bost, Antoine Gaillard, Martin Hutle, and
André Schiper. Tolerating corrupted communication. In Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing, PODC ’07, pages 244–
253, New York, NY, USA, 2007. ACM.

[13] Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient asyn-
chronous computations. In Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, STOC ’93, pages 91–100, New York, NY, USA, 1993. ACM.

[14] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro. Deterministic Computations in Time-
Varying Graphs: Broadcasting under Unstructured Mobility. In Proc. of 5th IFIP Confer-
ence on Theoretical Computer Science (TCS), 2010.

[15] Arnaud Casteigts, Serge Chaumette, and Afonso Ferreira. Characterizing topologi-
cal assumptions of distributed algorithms in dynamic networks. In Proceedings of the
16th international conference on Structural Information and Communication Complexity,
SIROCCO’09, pages 126–140, Berlin, Heidelberg, 2010. Springer-Verlag.

[16] Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro. A strict hierarchy
of dynamic graphs for shortest, fastest, and foremost broadcast. CoRR, abs/1210.3277,
2012.

[17] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-
varying graphs and dynamic networks. CoRR, abs/1012.0009, 2010.

[18] Bernadette Charron-Bost and André Schiper. The heard-of model: Computing in dis-
tributed systems with benign failures. In Distributed Computing, pages 22(1):49—-71,
April 2009.

[19] Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally
asynchronous systems. Information and Control, 105(1):132–158, July 1993.

[20] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Giant strongly connected com-
ponent of directed networks. Phys. Rev. E, 64:025101, Jul 2001.

[21] A. Ferreira. Building a reference combinatorial model for manets. Netwrk. Mag. of Global
Internetwkg., 18(5):24–29, September 2004.

[22] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

[23] Eli Gafni. Round-by-round fault detectors (extended abstract): unifying synchrony and
asynchrony. In Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, pages 143–152. ACM Press, 1998.

50

[24] Alois Goiser, Samar Khattab, Gerhard Fassl, and Ulrich Schmid. A new robust interference
reduction scheme for low complexity direct-sequence spread-spectrum receivers: Perfor-
mance. In Proceedings 3rd International IEEE Conference on Communication Theory,
Reliability, and Quality of Service (CTRQ’10), pages 15–21, June 2010.

[25] Fabíola Greve, Luciana Arantes, and Pierre Sens. What model and what conditions to
implement unreliable failure detectors in dynamic networks? In Proceedings of the 3rd
International Workshop on Theoretical Aspects of Dynamic Distributed Systems, TADDS
’11, pages 13–17, New York, NY, USA, 2011. ACM.

[26] Ted Herman and Chen Zhang. Best paper: stabilizing clock synchronization for wire-
less sensor networks. In Proceedings of the 8th international conference on Stabilization,
safety, and security of distributed systems, SSS’06, pages 335–349, Berlin, Heidelberg,
2006. Springer-Verlag.

[27] Stephan Holzer, Yvonne Anne Pignolet, Jasmin Smula, and Roger Wattenhofer. Monitor-
ing churn in wireless networks. Theor. Comput. Sci., 453:29–43, September 2012.

[28] Svante Janson, Donald E. Knuth, Tomasz Luczak, and Boris Pittel. The birth of the giant
component. Random Struct. Algorithms, 4(3):233–359, 1993.

[29] Fabian Kuhn, Rotem Oshman, and Yoram Moses. Coordinated consensus in dynamic net-
works. In Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles
of distributed computing, PODC ’11, pages 1–10, New York, NY, USA, 2011. ACM.

[30] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978.

[31] Igor Litovsky, Yves Métivier, and Éric Sopena. Handbook of graph grammars and comput-
ing by graph transformation. chapter Graph relabelling systems and distributed algorithms,
pages 1–56. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1999.

[32] Friedemann Mattern. Virtual time and global states of distributed systems. In Parallel and
Distributed Algorithms, pages 215–226. North-Holland, 1989.

[33] D. L. Mills. Network time protocol (ntp), 1985.

[34] Regina O’Dell and Rogert Wattenhofer. Information dissemination in highly dynamic
graphs. In Proceedings of the 2005 joint workshop on Foundations of mobile computing,
DIALM-POMC ’05, pages 104–110, New York, NY, USA, 2005. ACM.

[35] Ram Ramanathan, Prithwish Basu, and Rajesh Krishnan. Towards a formalism for rout-
ing in challenged networks. In Proceedings of the second ACM workshop on Challenged
networks, CHANTS ’07, pages 3–10, New York, NY, USA, 2007. ACM.

[36] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: the topol-
ogy of public knowledge. In Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, STOC ’93, pages 101–110, New York, NY, USA, 1993. ACM.

51

[37] Nicola Santoro and Peter Widmayer. Time is not a healer. In Proceedings of the 6th
Annual Symposium on Theoretical Aspects of Computer Science, STACS ’89, pages 304–
313, London, UK, UK, 1989. Springer-Verlag.

[38] Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility results and lower bounds for
consensus under link failures. SIAM J. Comput., 38(5):1912–1951, January 2009.

[39] M. Schwarz, K. Winkler, M. Biely, P. Robinson, and U. Schmid. k-set agreement in dy-
namic networks. In Proceedings OPODIS,subbmitted, 2013.

[40] M. Schwarz, K. Winkler, M. Biely, P. Robinson, and U. Schmid. k-set agreement in dy-
namic networks. 2013.

[41] William Su, Sung-Ju Lee, and Mario Gerla. Mobility prediction and routing in ad hoc
wireless networks. Int. J. Netw. Manag., 11(1):3–30, January 2001.

[42] Kyrill Winkler. Easy impossibility proofs for k-set agreement. In Master Thesis, 2013.

52

	Dynamic networks
	Introduction
	History and classification of dynamic networks
	Related work

	Model
	Failure assumption
	Computation
	Communication
	Network properties
	Required connectivity properties
	k-set agreement

	Algorithm
	The local network approximation algorithm
	k-set agreement algorithm

	Impossiblity results
	Definitions from BRS11:PODC
	Impossibility assuming k simultaneous roots
	Eventual stability does not help

	Conclusions
	Summary of accomplishments
	Discussion of our results
	Possibilities for future work

	Bibliography

