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Abstract

In cloud computing, orchestration languages allow a user to specify the static structure of re-
source compositions in the form of templates. When a user submits the template to the orches-
tration service, the provider creates the specified resource stack on behalf of the user. Despite
their usefulness, existing template languages provide only limited support to specify provider
managed, elastic run-time behavior of cloud computing resources. Usually, this support is lim-
ited to scaling on the resource level and “if-then” rules. A user who needs more fine grained
elasticity (e.g. on the application level) must implement the capabilities on his or her own.

In this thesis we explore the possibilities to extend orchestration template languages so that
a user can specify more fine grained elastic behavior with them. To support the elastic behavior,
we research the question how a provider can offer a managed service that supports the extended
orchestration templates within an existing cloud infrastructure. Finally, we explore the question
if it is possible for the provider to utilize the monitored data from the client applications in order
to derive adaptive decisions.

We implement a prototype of a provider managed cloud computing application adaptation
service based on the open source cloud computing platform OpenStack. The presented prototype
consists of a plug-in for the orchestration service OpenStack Heat, a component that monitors
and manages client stacks by adjusting configurations in an autonomic way, a service that col-
lects observation points from applications and provides the configurations for the application as
well as a client agent that transmits observation points to the service.

We evaluate the prototype both with a simulator and a real world scenario to demonstrate that
it is possible to extend an existing orchestration language in order to support elastic runtime be-
havior. We also show that it is possible to integrate such an extension seamlessly into OpenStack
Heat with resource plug-ins. Finally, our evaluation demonstrates that the autonomic manager
can use the set of collective observation points to derive reasonable configuration results with
respect to user defined application objectives using a distance based algorithm.
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Kurzfassung

Orchestrierungssprachen ermöglichen es Anwenderinnen und Anwendern von Cloud-Computing-
Diensten, die statische Struktur von Ressourcen-Kompositionen in Form von Vorlagen (engl.
Templates) zu spezifizieren. Übermittelt eine Anwenderin oder ein Anwender eine solche Vor-
lage an den Orchestrierungsdienst, erstellt der Anbieter den spezifizierten Stack von Ressourcen
für die Anwenderin oder den Anwender. Trotz ihrer Nützlichkeit verfügen diese Orchestrie-
rungssprachen jedoch nur über eingeschränkte Möglichkeiten, vom Anbieter verwaltetes, elasti-
sches Laufzeitverhalten von Cloud-Computing-Ressourcen festzulegen. In der Regel beschränkt
sich diese Unterstützung auf Skalierung auf Ressourcen-Ebene und “Wenn-Dann”-Regeln. Be-
nötigt eine Anwenderin oder ein Anwender eine detailliertere Kontrolle über das elastische
Laufzeitverhalten (z. B. auf Anwendungsebene), so muss sie oder er diese Fähigkeiten selbst
implementieren.

In dieser Diplomarbeit erkunden wir die Möglichkeiten, Orchestrierungssprachen so zu er-
weitern, dass es einer Anwenderin oder einem Anwender möglich wird, detailliertes elastisches
Verhalten zu spezifizieren. Um das elastische Verhalten zu unterstützen, untersuchen wir die
Frage, wie ein Anbieter innerhalb einer existierenden Cloud-Infrastruktur einen Dienst zur Ver-
fügung stellen kann, der die erweiterten Orchestrierungs-Templates unterstützt. Abschließend
befassen wir uns mit der Frage, ob die gesammelten Daten der Stack-Anwendungen vom An-
bieter verwendet werden können, um daraus adaptive Entscheidungen ableiten zu können.

Wir entwickeln dazu einen Prototyp eines vom Cloudanbieter verwalteten Adaptierungs-
Dienstes auf Basis der quelloffenen Cloud-Computing-Plattform OpenStack. Der Prototyp be-
steht aus einem Plug-In für den Orchestrierungs-Dienst OpenStack Heat; einer Komponente,
welche den Stack überwacht und autonom Konfigurationen anpasst; einem Dienst, welcher Be-
obachtungspunkte der Anwendung sammelt und die Konfigurationen bereitstellt sowie einem
Programm, welches die Beobachtungspunkte an den Dienst übermittelt.

Wir evaluieren den Prototypen sowohl mit einem Simulator als auch einem realen Anwendungs-
Szenario, um zu zeigen, dass es möglich ist, bestehende Orchestrierungssprachen um elasti-
sche Gesichtspunkte zu erweitern. Ebenso zeigen wir, dass sich eine solche Erweiterung mittels
Ressourcen-Plug-Ins nahtlos in OpenStack Heat einfügen lässt. Abschließend demonstriert un-
sere Evaluierung, dass man die gesammelten Beobachtungspunkte dazu nutzen kann, mit einem
distanzbasiertem Algorithmus sinnvolle Konfigurationen abzuleiten, um von der Anwenderin
oder vom Anwender definierte Vorgaben einzuhalten.
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CHAPTER 1
Introduction

The key characteristic of cloud computing is the on-demand, pay-per-use computation model.
This model eliminates the need for upfront investments and long term commitments [5]. Cloud
computing brings a shift in paradigm that views the consumption of computational capacity no
longer as closely tied to the underlying physical entities such as servers or network switches. In-
stead, it abstracts these physical entities away into virtual entities. Consequently, cloud providers
offer the resources in cloud computing as virtually unlimited utilities on demand to cloud users,
following the analogy of other every day utilities such as electricity or water [15]. Binz et al.
subsume the “essence” of cloud computing as the “industrialization of IT” [9]. Although being
no new concepts per se, the cloud computing model fosters the creation of scalable and elastic
systems. In this context, scalability refers to the static property of a system to support growth
by being able to add more resources [35]. Elasticity, on the other hand, is the dynamic property
of a computer system to adapt itself autonomously to external influences, such as the current
demand [26].

After having received an initial “hype” [15], cloud computing has by now become a well
established, multi-billion dollar market [50]. The wealth of commercial cloud providers reflects
this development, as they are able to offer cloud computing capacities as mature, publicly avail-
able products to their users. Examples of such commercial cloud computing platforms are
Amazon Web Services (AWS), Google App Engine and Microsoft Azure. But also in academia
cloud computing has been receiving increased attention in recent years, as the plethora of scien-
tific conferences, journals and published papers on the topic cloud computing demonstrate. For
instance, a search in the DBLP Computer Science Bibliography returns more than 3 000 results
for the term “cloud computing”, with a steadily increasing trend between the years 2009 and
2013 [23].

Two often used classifications in the literature distinguish cloud computing services between
the level of responsibility and the accessibility of the services. Although Armbrust et al. disputes
this classification due to its fuzziness [5] and Hilley et al. claim that “no two experts seem to
agree” on the terms [36], the “XaaS” terminology describes the different levels of responsibility,
with X standing for the particular service layer. In that sense, Infrastructure as a Service (IaaS)
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Figure 1.1: An illustration of the different layers in cloud computing. The overlapping clouds
illustrate the “fuzziness” of the terms. Image based on [85].

describes the bottom layer that provides resources at the (virtual) hardware level. On top of
this layer Platform as a Service (PaaS) offers provider managed system components, such as
database services. Finally, Software as a Service (SaaS) offers ready to use web applications,
where the provider bears most of the responsibility for the operation. Figure 1.1 depicts this
layered architecture. The other classification of cloud computing services describes the level of
access. This classification differentiates between public, private and hybrid clouds [85]. As the
name implies, a public cloud makes its services available to a general audience. On the other
side of the spectrum are private clouds, where an organization operates the cloud for its own
internal use. Finally, the term hybrid cloud describes a deployment that utilizes elements of both
public and private clouds.

1.1 Motivation

In cloud computing, stacks organize individual resources into functional entities. Such stacks
consist of interconnected resources and services. Figure 1.2 illustrates an example of such a
stack that drives a typical web application. The depicted stack comprises a load balancer that
distributes the load to the web servers, which in turn query the data from a master/slave database
back-end. Setting up such a stack out of standardized resources in order to become ready to
serve its intended purpose involves two core tasks: The orchestration of individual resources to
a stack and the configuration of the individual resources, both of which we describe now in more
detail.

In general, the orchestration of services handles the composition of independent services
into larger functional entities [71]. To enable resource orchestration for its users, AWS offers
the CloudFormation service [3]. This service allows to formally specify a stack with the help
of template files. These template files contain lists of resources along with their parameters
and connections in a human readable JavaScript Object Notation (JSON) based configuration

2
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Figure 1.2: A stack contains resources (rectangles) that link together (arrows). The auto scaling
group performs elasticity only on a resource level by launching additional web servers (light
gray) on demand.

language format. We describe this configuration language in more detail in Section 2.2.3. To
launch a new stack, the user submits the template file to the CloudFormation service endpoint.
Besides the possibility to create new stacks, the service also supports to update and to delete
existing stacks. This enables users to manage the entire life-cycle of a stack in a predictable and
repeatable manner. By employing load balancers and auto scaling groups, CloudFormation also
supports the creation of resource elastic web services.

The second step deals with the configuration of the individual resources. This step usually
involves downloading and setting up the required software packages in well defined, tested and
known to work combinations of versions. Although CloudFormation provides some rudimen-
tary support for configuring resources, productive environments require a more sophisticated
approach to configuration management. Two prominent examples of configuration manage-
ment systems are Chef 1 and Puppet2. Like their orchestration counterparts, these configuration
management tools allow specifying the configurations with the help of a Domain Specific Lan-
guage (DSL).

1.2 Problem Statement

Even with the availability of sophisticated orchestration and configuration management services,
setting up and configuring stacks is a non-trivial and error-prone task. Configuration requires
both expertise and in depth knowledge of the employed resources [19]. The complexity further
increases in systems that manage a large number of heterogeneous resources, possibly reaching
hundreds or even thousands of individual resources. As an example, Oppenheimer et al. de-

1http://www.getchef.com/
2http://puppetlabs.com/
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scribe an internet service with more than 2 000 machines in their case study [68]. Along with a
larger number and heterogeneity of components in a stack the probability for misconfigurations
increases as well. Yin et al. show in their empiric study that wrongly configured systems have a
negative impact on availability [83]. This increased complexity also induces a rise in the Total
Cost of Ownership (TCO) of such systems [19]. Therefore, there exists a high incentive in cloud
computing to automate configuration and management tasks.

The responsibility of configuration management tools (such as Puppet or Chef ) usually stops
at the point when the system has been fully deployed [39]. This means that configuration man-
agement tools have no intrinsic support for application elasticity. Existing tools for orchestration
on the other hand possess some rudimentary support for setting up elastic systems. AWS Cloud-
Formation limits this support to setting up auto scaling groups. Such auto scaling groups are
able to react in an Event Condition Action (ECA) style to changes of low level metrics such as
CPU utilization or network latency. The user must manually define the thresholds for these low
level metrics. Once a metric meets the threshold, the auto scaling group performs a high level
scaling task, such as adding or removing instances [39]. However, elasticity in cloud comput-
ing is a multi-dimensional problem that, besides the resource dimension, also includes the cost
and quality dimensions [26]. Another limitation of the auto scaling approach is that in this case
managing and defining thresholds also requires expertise and system knowledge.

Ultimately this implies that if a user wants to build an elastic application on a more fine
grained level than resource elasticity, the adaptation logic has to be implemented by the user on
his or her own. To our best knowledge, existing cloud computing services do no sufficiently
support the automated configuration of user resources on an application level yet.

We therefore envision a system that enables users to specify desired application behavior and
in turn receive the resulting configurations via a well defined service. The provider of the cloud
service is responsible for managing this service. However, in order to create such a service, we
need to address the following questions.

• How can we extend existing cloud orchestration template languages so that a user can
specify elasticity requirements to the application with them?

• How can we integrate a provider managed cloud computing adaptation service into an
existing cloud computing service infrastructure?

• Is it possible to utilize the collected data from all clients in a way that allows the autonomic
manager to derive reasonable specific adaptations with respect to user defined objectives?

The ultimate goal of a cloud computing adaptation service is to offer benefits for both the
cloud user and the cloud provider. First of all such a system relieves the user from the complexity
of setting up, developing and maintaining a custom adaptation logic on his or her own. By
utilizing a centralized service that the cloud provider manages, the user is able to take advantage
of the accumulated global knowledge from all other users that operate the same application.
Overall we assume that such a system a) lowers the TCO by reducing the need for manual
configuration and by providing elasticity on a more fine grained level than resource elasticity
and b) it is able to derive reasonable configuration decisions from the collaboratively collected
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data. The provider on the other hand gets a deeper insight into the states of the applications that
are running at the client side. This enables the provider to better consolidate and manage its
resources. In this thesis, however, we focus on the benefits for the cloud computing user.

1.3 Contribution

Next to giving an overview of the current research in the field of dynamic applications adap-
tation in the context of cloud computing this thesis addresses the problems described above in
Section 1.2 by providing the following contributions.

• We propose a method to specify adaptation points, desired application objectives as well
as the overall optimization strategy within the AWS CloudFormation template format [3].
The method we propose embeds the directives into the existing format description and
therefore adheres to the existing template files specification. To show the feasibility of
the proposed method, we provide a concrete implementation of a plug-in for Heat, the
orchestration service from OpenStack. This plug-in introduces three new resources to the
Heat templates that we use to specify the adaptation points, objectives and strategy. The
plug-in implementation parses the specified templates and invokes the necessary service at
the adaptation service prototype. Using this prototype we present how to describe desired
elastic behavior by means of the existing template format.

• We present an architecture along with a concrete prototype that provides an adaptation
service for cloud computing applications within OpenStack. This prototype collects the
observation points across all users that leverage the adaptation service for a specific ap-
plication. We then use the collectively gathered observation points from all users as the
basis in order to derive specific adaptive decisions for a user’s application depending on
the current context. Independent from the concrete adaptive algorithm presented in this
thesis the prototype also serves as the basis for future research on this topic.

• We propose an algorithm that derives a configuration for an application based on the col-
laboratively collected observation points from all users that run the same stack. The pro-
posed algorithm filters and normalizes the observation points and sorts them into buckets.
Each bucket contains all observation points that share the same adaptation point attribute
values and whose external attribute values are similar to the current observation points.
We then calculate the quality score for each bucket by evaluating how many observation
points in the bucket violate the user objectives and with adaptation point specific quality
functions. Finally, we select the bucket with the best quality.

1.4 Methodological Approach

The research by Inzinger et al. in [39] laid the foundation for this thesis by introducing the
idea of a cloud application configuration service. Figure 1.3 depicts the proposed architecture of
such a service. In this thesis we now build further upon this idea and verify the feasibility of the
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Figure 1.3: The original cloud adaptation architecture envisioned by Inzinger et al. in [39].
This architecture supports other elastic dimensions by creating well defined adaptation points
that allows a third party service to modify the behavior of a resource.

proposed approach by building and experimenting with a prototype for the open source cloud
computing software OpenStack.

In order to achieve this goal, we first review the scientific literature with a focus on adaptive
cloud computing systems, autonomic computing as well as on self configuring systems. Based
on this review and the a priori requirements we then derive the final requirements for a cloud
application adaptation service prototype. These requirements serve as the basis for our proposal
for an architecture for the adaptation service presented above. We also propose a method that
enables cloud users to specify adaptation points for an application which enables the adaptive
service to interact with the applications inside the stack. Finally, the user can specify the desired
target objectives that the application shall obey inside the existing range.

Next we use the prototype’s framework as the basis for implementing a configuration selec-
tion algorithm. We first generate an initial data set that executes the same benchmark workload
with different adaptation point settings. Based on this body of data we iteratively develop a mea-
sure for quality that reflects the configuration option that is best suited for a specific workload.
In order to demonstrate the feasibility of our approach we implement this algorithm in our pro-
totype and perform benchmark tests, in which we compare non-managed stacks to the managed
stacks.

1.5 Organization of the Thesis

We now describe the organization of the remainder of this thesis as follows.

• In Chapter 2 we describe the open source cloud computing platform OpenStack in more
detail. This platform illustrates the technical concepts of a state of the art cloud computing
platform. OpenStack also serves as the technical basis for the prototype implementation.
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• Chapter 3 gives an overview of state of the art scientific work relates to this thesis’ topic.
Although overlapping, we categorize the related work into four major topics, namely
i) autonomic computing, ii) cloud computing and elasticity, iii) Service Level Agree-
ments (SLAs) and iv) misconfiguration detection.

• In Chapter 4 we discuss the requirements for a cloud computing configuration service.
Based on the requirements we describe the architecture of our autonomic adaptation ser-
vice. We conclude the chapter with a description of the prototype’s implementation de-
tails.

• Chapter 5 describes the configuration selection algorithm that we develop based on bench-
mark data. We first provide a formal definition of the configuration selection problem,
followed by a description of the algorithm. We conclude the chapter with a discussion of
the algorithm’s limitations.

• In order to prove the concept of the presented adaptation service and to verify the hypothe-
ses, we provide an evaluation of the prototype’s performance in Chapter 6. First we verify
the claims with a self developed simulator, followed by an evaluation on a real world web
application scenario.

• Finally, we revisit the research questions in Chapter 7 and conclude this chapter with an
outlook on future research topics related to this thesis.
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CHAPTER 2
Background: OpenStack

OpenStack provides a bundle of components to operate an IaaS and markets itself as an “oper-
ating system for the cloud” [65]. Initially founded by the NASA and Rackspace Hosting [65],
today a number of industry partners back the development of OpenStack, such as IBM, AT&T,
Red Hat and others [64,82]. Users from both the private and the public sector use OpenStack to
operate public, hybrid and private cloud setups [66].

In this chapter we describe the OpenStack Icehouse release. This release serves as the tech-
nical platform for our prototype implementation. In addition, OpenStack represents the archi-
tecture and components of a typical IaaS platform. In Section 2.1 we first give an overview
over OpenStack’s architecture. We then present the individual components of OpenStack in
Section 2.2. Because the orchestration service Heat forms an integral building block of our pro-
totype, we conclude this chapter with a working example of a Heat template in Section 2.3 that
illustrates the concepts of this service.

2.1 Architecture

The core of OpenStack consists of individual components that communicate with each other
via well defined Application Programming Interfaces (APIs) [61, p. 3]. All the components
that we will cover in Section 2.2 are written in Python and are licensed under the terms of the
Apache 2.0 license.

Figure 2.1 shows the individual components of OpenStack and their relationship to each
other. The image illustrates that the core of an IaaS such as OpenStack revolves around the
management and execution of Virtual Machines (VMs). OpenStack aims to provide a cloud
software that is agnostic to the underlying hardware and hypervisor [40, ch. 3]. Consequently,
OpenStack does not include the virtualization components (i.e. the hypervisor) on its own.
Instead, OpenStack provides a set of tools that allows the execution management of VMs of
different hypervisor providers, such as Xen, VMware vSphere or KVM [61, p. 57].
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Figure 2.1: Overview of the OpenStack services and their relationship. Image source: [61, p. 2],
Author: OpenStack Foundation, License: CC 2.0 BY SA
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2.2 Services

In this section we now briefly present the nine OpenStack services from Figure 2.1. If not stated
otherwise, we refer to the functionality and properties of OpenStack’s Icehouse release.

2.2.1 Compute (Nova)

Nova controls the execution and the management of VMs in OpenStack. It also provides the
necessary interfaces for the computation service. An instance is a VM that executes inside
OpenStack [62, p. 11]. A user launches new instances from images in different classes of com-
putational capacity, the so called flavors. The main characteristics of a flavor are its RAM, Disk
and VCPU size. Table 2.1 provides an overview of the default flavors in OpenStack. Besides the
default flavors the cloud provider can also specify custom flavors. Other parameters that a user
must specify in order to launch an instance are the availability zone, the network properties and
the key pair that grants a user access to the instance.

Table 2.1: Default flavors in OpenStack

Name Memory (MB) Disk (GB) VCPUs
m1.nano 64 0 1
m1.micro 128 0 1
m1.tiny 512 1 1
m1.small 2,048 20 1
m1.medium 4,096 40 2
m1.large 8,192 80 4
m1.xlarge 16,384 160 8

Nova also provides the metadata service. This HTTP service listens at the address http://169.
254.169.254 and responds to queries from instances with the instance specific metadata. The
service provides two response formats, one that is compatible to the metadata service in AWS
and a proprietary OpenStack metadata format [61, p. 73]. The metadata contains information
about the instance such as the id or the host name. When the user launches an instance, he or
she may also pass arbitrary user data to the instance. To retrieve this user data, applications on
the instance also query the metadata service [61, p. 74].

2.2.2 Image (Glance)

The OpenStack Virtual Machine Image Guide describes virtual machine images as “a single
file which contains a virtual disk that has a bootable operating system on it.” [63, p. 1]. In
the OpenStack ecosystem, Glance is the service that manages the virtual machine images. It
provides interfaces to launch instances from images, create images from instances as well as
to upload and manage images from a range of different image disk and container formats [61,
p. 6f.].
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2.2.3 Orchestration (Heat)

We already introduced the term service orchestration in Chapter 1. Heat is the concrete imple-
mentation of an orchestration service in OpenStack that creates resource compositions out of
template files. Heat consists of the following four services [67].

1. The heat-engine is the core application that runs under the supervision of the cloud
provider. It creates and manages the resources that the user specifies in a template.

2. The heat-api provides a well defined REST API for Heat and communicates with the
engine using Remote Procedure Calls (RPC).

3. The heat-api-cfn service provides an API that is compatible to AWS CloudFormation,
which is a comparable orchestration of AWS. Like the Heat API this service also commu-
nicates with the Heat engine via RPC [61, p. 17].

4. The command line application heat enables a user to submit, modify and delete templates
in Heat and to manage application stacks. This application parses the user input such as
the templates and then submits them to the REST API endpoint of Heat.

Templates

Heat is a one file template orchestration system [61, p. 16]. This means that a user specifies
all resources and properties that are necessary to launch a stack within a single template file.
Heat supports the specification of templates in two different file formats, namely JSON and
YAML Ain’t Markup Language (YAML). The JSON format aims to achieve compatibility with
the AWS CloudFormation templates format, although we have found that on our test system
Heat does not support all constructs. We can express the functionality of our prototype that we
will describe in Chapter 4 in any of the two file formats. Because the AWS template format
version 2010-09-09 provides a sufficient subset of functionalities for our prototype, we will use
this template version throughout the remainder of this thesis, if not specified otherwise.

Each valid Heat template file consists of an unordered set of key/value pairs that specify re-
quired stack resources and their associated properties and relationships. The keys are as follows.

• The Template format key specifies the used format and version of the template. If a user
specifies a stack in the JSON format, this key is either AWSTemplateFormatVersion or
HeatTemplateFormatVersion. The value contains the version of the specification. Heat
supports the versions 2010-09-09 for the AWS template format and 2012-12-12 for the
Heat template format. In the YAML format the template format is heat_template_version
and the only supported template version is 2013-05-23. In Heat templates the template
format key is the only mandatory key.

• Description is for organizational purposes. A user can describe the content or purpose
of a template as the value for this key. The value is a single string that can contain any
arbitrary text. The parser does not process this value.
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• Parameters contain user data that a user can modify each time he or she creates a new
stack, such as passwords and service endpoints. For each parameter the user must specify
the specific parameter type. The type can either be a string, a number or a list of comma
separated values. It is also possible to specify constraints that determine the format and
the expected value of the parameters. Possible constraints are the minimal and maximal
length of a string, as well as the minimal and maximal value of a numeric value. Another
possibility to constrain the input parameters is to specify a regular expression that Heat
validates when the user submits the template. The “AllowedValues” key allows a user to
specify a list of allowed values. To make a parameter optional, a user can provide a default
value for the parameter.

• Mappings contain a two level map (i.e. a key-value pair that contains another map of key-
value pairs as value). In conjunction with the function Fn::FindInMap these mappings
translate input values to output values. For instance, a user can specify a map to launch
instances using different images depending on the availability zone. We show an example
of a mapping in Section 2.3.

• Conditions allow a user to create resources or to output values only if certain constraints
evaluate to true. A user defines these constraints with intrinsic functions such as Fn::And,
Fn::Not and Fn::Or. In the version that we used for testing, this key was not supported
by the OpenStack Heat client. Instead, the client rejected templates with a Conditions
section.

• Resources This section contains the resources that belong to the stack. A resource must be
of a certain type that describes the type of service associated with this resource. Resources
are arbitrary entities that refer to the different services and concepts that OpenStack offers.
Examples or resources are Nova instances, network interfaces or Swift containers. In total,
OpenStack offers 30 resource types1. The specification of AWS CloudFormation states
that this is the only mandatory key [3, p. 8]. In contrast to that the Heat client accepts
templates in the AWSTemplateFormatVersion 2010-09-09 without resources.

Resources can define parameters that contain the necessary information a resource needs
to operate properly. Resource properties may reference to a user defined parameter using
the Ref function. Properties have a fixed schema that Heat validates when it creates a
stack. The concrete implementation in the source code of the resource determines this
fixed schema.

• Outputs In this section the user specifies key/value pairs that contain information about
the stack. Each entry in the Outputs section consists of a key whose value is a map that
contains the required key Value and an optional key Description. A user then can quickly
retrieve certain information about a stack, for instance the host name by specifying the key
name of the output.

1We determined the number of 30 resources by counting the number of class definitions in the Heat resource
source code directory that inherit from resource.Resource.
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Functions

Heat provides a set of functions to support dynamic templates. The user must specify functions
within quotes which the template parser evaluates at runtime. The exact number of functions that
Heat supports depends on the used template type and version. For instance, the Heat template
version 2012-12-12 provides the Fn::Split function that the AWS CloudFormation template
version 2010-09-09 does not contain. The latter template version specifies the following func-
tions.

• Fn::Base64 encodes an input string with Base64. With this function, a user can encode
arbitrary binary data with ASCII characters [41].

• Condition Functions are Fn::If, Fn::Equals, Fn::Not, Fn::Or, Fn::And that the con-
ditions section of a template may contain. The Heat version that we used for evaluation
does not support condition functions.

• Fn::FindInMap selects a specific value from the template’s Mapping section. To retrieve
the value, a user must specify the name of the mapping and the keys for both map levels.
Listing 2.1 gives an usage example for this function.

• Fn::GetAtt retrieves an attribute value from a resource. Each resource optionally has a
set of attributes. The Nova instance resource, as an example, has an attribute that allows a
user to retrieve the public DNS name of that instance. To access these resource attributes
within a template, a user can employ the built in function Fn::GetAtt.

• Fn::GetAZs returns a list of availability zones within a region. This command is useful
for resources that require a list of availability zones upon launch. According to the Heat
developer documentation in [20], availability zones are not fully implemented yet.

• Fn::Join takes a delimiter and a list of strings as parameters. Fn::Join then joins the list
elements with the specified delimiter.

• Fn::Select takes an index i and a list of objects as parameter. The function picks the
element with index i (starting with 0) from the specified list of objects.

• Ref denotes a reference to either a parameter or a resource. For instance the property
myproperty in Listing 2.1 uses a reference to the parameter param1.

2.2.4 Telemetry (Ceilometer)

Ceilometer is the telemetry service in the OpenStack framework. This service has its roots
in a metering component for a billing service in OpenStack, but has since then grown to a
multi purpose telemetry solution [61, p.278]. The project aims to provide a central facility that
handles all concerns that have to do with the collection and processing of system metrics [58].
In Ceilometer it is possible to monitor metric values with alarms. If a user specifies an alarm,
the telemetry service checks whether the metric value is above, below or equal to a specified
threshold value [17]. Each alarm is in either one of the states Ok, Alarm or Insufficient data.
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For each state the user can specify an optional “hook” Uniform Resource Locator (URL) that
Ceilometer calls when the metric enters a new state.

2.2.5 Networking (Neutron)

Neutron is the networking service of OpenStack. The aim is to provide a central and flexible
networking API for all the other services in OpenStack. This abstraction allows OpenStack to
provide concepts such as “floating IPs“, that allow to re-assign an existing IP address to a dif-
ferent instance [61, p. 68]. Apart from the low level networking services, Neutron also contains
support for high level network services, such as the Load-Balancer-as-a-Service (LBaaS) [60]
or Virtual Private Networks (VPNs) [61, p. 182].

2.2.6 Identity (Keystone)

Keystone is the central authentication and authorization service in OpenStack. The three central
concepts in Keystone are users, tenants and roles [61, p. 19f.]. Users are physical persons that
interact with the system and who identify themselves with a user name and a password. Tenants
describe projects and organizations that a user must specify with every request to OpenStack [61,
p. 19]. Finally, as the name implies, Roles assign a certain role to a user for a tenant [61, p. 20].

2.2.7 Object Storage (Swift)

Swift is the cloud storage service that provides a universal, redundant and scalable data storage
[61, p. 127]. Because Swift makes use of advanced replication techniques, the service can
provide reliable storage on commodity hardware [61, p. 127]. The structural elements of Swift
are containers and objects. Each container holds an arbitrary number of objects. An object
consists of a file and the metadata that is associated with it [62, p. 19]. Each object has a URL
and is accessible via the REST API. OpenStack services also utilize Swift internally. Glance,
for instance, stores its images in Swift, as Figure 2.1 shows.

2.2.8 Block Storage (Cinder)

Cinder provides an abstraction layer for block storage devices. A user can attach these storage
devices to Nova instances and mount them as volumes. A user can also detach a volume from
an instance and attach it to another instance. However, OpenStack allows attaching each volume
only to one instance at most [62, p. 23]. Block storage devices therefore are the cloud equivalent
of a “USB flash drive” [40, ch. 7].

2.2.9 Dashboard (Horizon)

Besides the command line client, OpenStack also provides a web based Graphical User Interface
(GUI) that acts as a client to the provided API [62, p. 7]. Horizon offers functionalities for the
cloud users as well as the administrators to manage the OpenStack services. Figure 2.2 shows a
screenshot of Horizon.
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Figure 2.2: A screenshot of the GUI in Horizon with three running Nova instances.

2.3 A Sample Heat Template

We conclude this chapter with a working example of a Heat template. The template in Listing 2.1
contains all the six keys that the Heat client supports for the AWS template format version
2010-09-09. The presented template is not particularly useful in a real world scenario, but it
illustrates the concepts that we described in the previous section.

In the provided example, the first key specifies the template format and version. Next,
the key Description contains an arbitrary value that describes the purpose of the template.
In the Parameters section we declare a parameter named param1 that is of type string and
that rejects all parameter values that are not “value1”. In the Mappings section we define the
InputTransformationMap that maps “value1” to the second level map with the key “trans-
formedValue” and the value “mapped_value1‘”. The next key Resources contains our template’s
only resource. The specified resource type OS:Heat::RandomString is an internal Heat resource
that generates a random string and makes this random string available to the template via a re-
source attribute. Finally, the Outputs section specifies an output named “MappedValue” that
uses the function Fn::FindInMap to transform the value of the template parameter “param1”. In
our example, the output value will always be “mapped_value1”, because the only allowed value
for “param1” is “value1”.
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Listing 2.1: An example Heat template in the AWS CloudFormation format.

{

"AWSTemplateFormatVersion" : "2010-09-09",

"Description" : "An example template",

"Parameters" : {

"param1" : { "Type" : "String", "AllowedValues" : [ "value1" ] }

},

"Mappings" : {

"InputTransformationMap" : {

"value1" : { "transformedValue" : "mapped_value1" }

}

},

"Resources" : {

"RandomStringResource" : { "Type" : "OS::Heat::RandomString" }

},

"Outputs" : {

"MappedValue" : { "Value" : { "Fn::FindInMap" : [

"InputTransformationMap",

{ "Ref" : "param1" },

"transformedValue"

] } }

}

}
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CHAPTER 3
State of the Art

In this chapter we provide an overview of related scientific work to this thesis. Although the
borders between the categories are overlapping and fuzzy, we classify the reviewed state of the
art research into the following four categories: First we present the principles of autonomic
computing in Section 3.1. We put a special focus on the self-configuration and self-organization
aspects, from which we present related work. In Section 3.2 we cover the state of the art in cloud
computing and elastic systems. Next, in Section 3.3, we discuss SLAs and related work from
this area. We conclude this chapter with a review of state of the art scientific work from the field
of misconfiguration detection in Section 3.4.

3.1 Autonomic Computing

The term “autonomic computing” was first coined in a manifesto released by IBM in 2001 [43].
The idea of autonomic computing is inspired by biological autonomic systems that manage
complex systems with the help of feedback loops [37]. Autonomic systems emerge from the in-
creasing complexity that the maintenance of large distributed systems incurs [43]. There are four
self-* aspects that characterize autonomic systems, namely self-configuration, self-optimization,
self-healing and self-protection [30, 43].

IBM also proposed an architectural model that describes the individual components of an
autonomic system and that we show in Figure 3.1. According to this model, an autonomic
system consists of an autonomic manager and a managed element.

The managed element is an element at an arbitrary level of detail, as long it is possible to
manage it [22]. Examples of managed elements are software components, databases or even
hardware [37, 43].

The autonomic manager forms a feedback loop with the managed element via effectors and
sensors. This loop is the so called Monitor, Analyse, Plan, Execute, Knowledge (MAPE-K)
loop, named after the four consecutive phases in the autonomic manager (Figure 3.1). For any
of the four phases the global knowledge is the basis for the actions. As Figure 3.1 shows,
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Figure 3.1: The MAPE-K architecture as proposed by IBM [43]

this global knowledge is a “cross cutting concern” that all the four phases utilize. The IBM
architectural blueprint for autonomic computing classifies the knowledge into information about
the system topology, knowledge about policies and problem determination knowledge such as
the monitored data [22]. We now cover the four phases of the autonomic manager in more detail.

1. Monitor. In this phase the autonomic manager retrieves data from the sensors of the
managed elements. Huebscher and McCann distinguish between passive monitoring with
system utilities such as vmstat (covered in [80]) and active monitoring where the user
modifies the software to retrieve relevant metrics [37].

2. Analyze. Based on the monitored data, this phase analyzes whether the autonomic man-
ager performs an action or not [22]. The basis for this decision is the information whether
the managed system can meet the specified high-level goals now and in the future [22]. To
predict the future behavior, autonomic systems can employ techniques such as time series
forecasting [22].

3. Plan. In this phase, the autonomic manager creates a plan that contain the sequence of
actions to perform on the managed element [22]. Huebscher and McCann emphasize that
the planning should also take the system history into account, as approaches that take only
the current state into account are limited in their usefulness [37].
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4. Execute. In this stage, the autonomic manager translates the plan into real actions by
calling the effectors on the managed element which then execute the necessary actions on
the managed element [22].

As outlined above, one of the four self-* aspects of autonomic computing is the ability for self-
configuration based on high-level goals [30, 43]. Because this self-configuration aspect, along
with the self-optimization aspect, are integral parts of this thesis, we study the related work from
this research area in more detail. In our state-of-the-art review we focus on systems that use
autonomic concepts and that are able to make a configuration decision within a configuration
space in response to some system state. Approaches to self-configuring and self-optimization
systems cover a wide range of techniques such as reinforcement learning, control theory and
others (e.g. game theory and neural networks), all of which we will now describe in more detail.

3.1.1 Control Theory

Some of the work on self-configuring systems proposes control theory as a promising mathe-
matical foundation for autonomic systems, for instance that from Diao et al. in [24], Karamano-
lis et al. in [42] or Padala et al. in [69]. Scientific fields such as mechanical and electrical
engineering have been using control theory since decades [24]. Diao et al. present a work in
which they use the ABLE toolkit (described in [8]) to build a framework for the automatic tuning
and setting of web server parameters. They demonstrate their concept with an AutoTune agent
that manages Apache HTTP Servers by adjusting the values of the MaxClients and KeepAlive

configuration options [19]. Control theory has also received criticism, for instance by Huebscher
and McCann, who argue that control theory is not a “panacea” for all aspects of autonomic sys-
tems [37]. Salehie and Tahvildari point out that in the context of software systems, control
theory involves more complexity than necessary [75].

3.1.2 Reinforcement Learning

Also reinforcement learning has received considerable attention as the basis for autonomic sys-
tem configuration on the application level, for instance in [6, 12, 13, 86].

Essentially, reinforcement learning systems consist of i) a policy that describes the possible
states, ii) a reward function that specifies the “desirability” of a state, iii) a value function that
models the probable “long term reward” of a state and optionally iv) a model of the environment
[77]. That the model is not strictly necessary is a main advantage of reinforcement learning
approaches [37,73]. Another benefit of reinforcement learning is that it allows a user to take the
delay between a configuration change and its effect into account [73].

Bu et al. [12] use a reinforcement learning approach to configure a multi-tier web appli-
cation that is hosted in a VM environment. In their work, the configuration space consists of
four parameters for the Apache HTTP Server and four parameters for the application server.
Bahati et al. also present a reinforcement learning approach to configure Apache HTTP Server
settings [6].

Reinforcement learning has received criticism for not scaling well [37] and that it can only
generate a decision whether to adjust a setting, but cannot assign a concrete value for it [33].
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Guo et al. also suggest that reinforcement learning is not able to deal well with bursty workloads
[33].

3.1.3 Other Methods

Beside approaches to self-configuration that utilize control theory or reinforcement learning,
recent research has brought forth self-configuring systems based on other techniques. Although
a complete survey is out of the scope of this thesis, we present two examples of this category.

García-Galán et al. propose an approach to configure multi-tenant desktop services accord-
ing to the user specified preferences. They represent the configuration space with an Extended
Feature Model (EFM) where a user expresses functional and non-functional preferences with
a semantic ontology [32]. To find a configuration, they formulate the problem as a modified
cooperative game which they solve with the Nash bargaining solution [32].

Guo et al. tune the Apache HTTP Server configuration settings MaxClients, KeepAliveTimeout
as well as MaxSpareServers and MinSpareServers with a method that combines neural net-
works and fuzzy control systems [33]. Compared to a rule based approach, Guo et al. found that
their method is able to deal with bursty workloads better [33].

3.2 Elasticity and Cloud Computing

A number of scientific fields make use of the term elasticity, for instance physics and economics
[26, 35]. Applied to the field of cloud computing, Herbst, Kounev and Reussner propose a
formal definition of elasticity as “the degree to which a system is able to adapt to workload
changes by provisioning and deprovisioning resources in an autonomic manner, such that at
each point in time the available resources match the current demand as closely as possible.” [35].
Although this definition covers the resource facet of elasticity, Dustdar et al. point out in their
work that there are two more dimensions that elastic computing systems must cover, namely the
cost and quality dimension [26]. In order to describe elasticity properties of cloud computing
systems, Dustdar et al. transfer the concept of elasticity from the field of economics to computer
science [26].

As the example from the field of economics that Dustdar et al. present, the price elasticity
of demand puts the change of a price in relation to the change in demand that the price change
induces. Applied to formula 3.1 this means that the two parameters of the function e(Y,X)
are the demand function Y and the price X . The elasticity of the price X then is defined as
e(Y,X) = Y ′(X) ·X/Y (X).

Formula 3.1: Elasticity of Y with respect to X

e(Y,X) = dY
dX ·

X
Y

From the theoretical foundation of elastic processes by Dustdar et al. in [26] we pick up
the idea of viewing elasticity as a multi-dimensional problem. We do this by implementing a
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quality function that can reflect any combination of elasticity dimensions, such as cost or quality.
Because the target is always to maximize the quality, regardless of the quality function’s concrete
definition, our system is able to perform adaptations in this multi-dimensional space.

3.2.1 Specification of Elasticity

The specification of constraints and preferences in order to express the desired behavior of elastic
services is a major research challenge [26].

Researchers have addressed this problem for instance with rule based systems. Moran et al.
researched rule engines for their suitability to define the runtime behavior of cloud applications
[56]. From the evaluated rule languages, the authors identified the rule interchange format (RIF)
as the best suited format because of its interoperability, the object oriented data model and
because its W3C recommendation [56].

Rodero-Merino et al. propose to define elastic behavior with Service Description Files that
are based on the Open Virtual Format (OVF) [18,74]. However, as Copil et al. point out in [21],
the work mentioned above only focuses on the resource aspect of elasticity.

Dustdar et al. propose to transfer the principle of parallel programming languages to separate
“high level” behavior from application logic with directives to the specification of elasticity
behavior [25]. For this they introduce SYBL, the “Simple Yet Beautiful Language”, which is
fully specified in [21]. SYBL allows a user to formulate elastic behavior with directives. A user
can integrate these directives into existing programming languages for instance with annotations
or use them in configuration languages such as TOSCA. Sofokleous et al., for instance, present
an approach that utilizes SYBL constraints and strategies to specify the elasticity behavior of
cloud applications and translate the specification into TOSCA profiles [76].

SYBL itself features three classes of directives, namely Monitoring, Constraint and Strategy.

• Monitoring directives let a user assign system metrics such as the application response
time to variables [21]. SYBL groups the directives into three classes according to the
elasticity dimensions in which they belong.

• Constraints define the conditions that the system must meet for monitoring variable val-
ues. An example for a constraint is the specification that a variable that holds the appli-
cation response time must stay below a certain threshold. Constraints allow a user also to
specify trade-offs between cost and quality [25].

• Strategies let the user specify the desired behavior of the application if some conditions
holds. For example, a user can let the application scale in more resources if a metric
violates a constraint [21].

Although we do not use directives in our prototype, there are similarities to SYBL. Like
SYBL, we also use the monitored data to enable elasticity on the three different dimensions.
The constraints in SYBL are comparable to the objectives in our elasticity specification that we
will present in Chapter 4. However, in our prototype there is no equivalent to SYBL’s strategies,
because the algorithm that we present in Chapter 5 selects a configuration automatically based
on previously observed data.
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3.2.2 Elastic Management of Cloud Services

Besides the specification of elasticity, research effort has also been put into elastically managed
cloud services.

Martin et al. propose an event driven management model to manage elastic cloud ser-
vices [51]. Martin et al. point out the importance of effective service management in elastic
applications and describe the challenges that the management of elastic services involves [51].
These challenges, according to Martin et al., include the inherently dynamic nature of elastic
systems with constantly changing environments and configurations.

Truong et al. present CoMoT, a PaaS that natively supports to control, monitor and test
multi-dimensional elastic services [78]. In their work they use the concept of “Elastic Service
Units”. Characteristics of elastic service units are their function, service model, dependencies
and elastic capabilities [78]. These elastic service units can be either offered by the provider
or specified by the user. To describe the properties of the elastic service units, the authors use
SYBL [21]. Finally, the system outputs a TOSCA description file [78], which is a language to
describe the components of a service and their relationship to each other [9].

The monitoring component of CoMoT utilizes MELA, a framework designed for monitoring
and analyzing the elasticity of cloud services [55]. In this framework, the three dimensions of
elasticity are captured by assigning metrics into either one of the categories. For instance, data
transfer cost belongs to the cost category, response time to quality and network bandwidth to the
resource dimension [55].

In [39], Inzinger et al. argue that models already have found wide spread adoption in cloud
computing in the form of DSLs. For instance, AWS CloudFormation templates such as described
in Chapter 2 contain a model of the cloud application’s structural architecture [39]. Inzinger et al.
propose to use and extend these models so that a user can also specify the desired elastic runtime
behavior with them. For this, a user has to specify the adaptation points, objectives and metrics
within the template [39]. Based on these extended templates, the provider then can offer an au-
tonomic system that is able to control the runtime aspects of the managed cloud application. In
this thesis, we build upon the proposed idea from Inzinger et al. by providing a prototype imple-
mentation and an evaluation of their concept. We will present this prototype and the evaluation
in Chapters 4 and 6, respectively.

3.3 Service Level Agreements (SLA)

SLAs specify the conditions under which a service provider offers a particular computation
service to a user. An SLA consists of Service Level Objectives (SLOs) that introduce a for-
mal agreement about the Quality of Service (QoS) between a provider and a consumer [52].
There are initiatives to standardize the specification of SLAs, for instance with the XML based
Web Services Agreement Specification (WS-Agreement) [4] or the Web service level agreement
(WSLA) language [49].

Leitner et al. provide a formal model that describes SLAs as functions that map the duration
of a specific request to the cost of violation that the issued request incurs [47]. According to
Leitner et al., the following two properties are characteristic for an SLA function [47]:
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1. The SLA function monotonically increases, i.e. the cost for a violation increases with the
degree of violation.

2. There are two function points t1 and t2 that describe the point until no violation occurs
(t1) and until a request is “given up” (t2) and the cost of violation increases no further.

3.3.1 SLA Enforcement

A plethora of research has been conducted regarding the enforcement of agreed SLAs. These
works feature a wide range of aspects such as monitoring SLA parameters or the use of auto-
nomic services to avoid SLA violations.

The “Foundations of Self-governing ICT infrastructure”(FoSII) project implements an au-
tonomic component to manage and enforce SLAs [29]. This framework contains a monitoring
component that maps “low level” system metrics to “high level” SLA parameters with the help
of rules [27].

To enforce the SLAs in within the FoSII project, Maurer et al. evaluates different methods.
First, they present a method that uses Case Based Reasoning (CBR) as the knowledge compo-
nent for the MAPE-K feedback loop [52]. They demonstrate the feasibility of their approach
by utilizing a simulator. Like the approach in this thesis, Maurer et al. use knowledge that is
already stored in the database in order to retrieve new decisions. To determine the similarity
between two individual cases, they calculate the euclidean distance between the min/max nor-
malized attributes of the two cases. In the algorithm that we will present in Chapter 5, we also
use normalized euclidean distances to determine the similarity between two observation points.
Maurer et al. use a utility function that calculates the sum of a violation function and a weighted
utilization function. Again, our method of determining the observation point qualities with a
quality function is similar to the method from Maurer et al. Despite these similarities, our ap-
proach differs from that to Maurer et al. in the following ways: While Maurer et al. focus on the
provider side, we focus on the cloud user’s side. Consequently, our work is not concerned with
efficient resource allocation but rather with tuning a cloud application. Another major difference
is that we output a concrete set of configuration values, while the method from Maurer et al. re-
turns discrete actions, such as “increase value by 10%” [52].

Next, Maurer et al. evaluate the FoSII project with a rule based approach to enact the SLAs
[53]. For this they introduce the concept of “Threat Thresholds” (TT). Based on two TTs TTlow
and TThigh, they classify each parameter value into one of the three regions {−1, 0,+1}, where
−1 denotes a parameter value below the lower bound TTlow, +1 a parameter value above the
upper bound TThigh, and 0 if the parameter value is in the desired range [53]. Compared to the
CBR approach in [52], Maurer et al. found that the rule based method performs better in terms
of avoiding both over- and underutilization of resources [53]. To deal with the question how to
set the threat thresholds autonomously, Maurer et al. proposed two methods, one based on the
cost function and another that is based on the observed range of the parameter values, the so
called “workload volatility” [54].

In [47], Leitner et al. present an approach to schedule requests to resources that takes the
trade off between the time into account that a resource needs to perform a scheduling deci-
sion. Assuming that the duration of all requests is known beforehand (or can be estimated),
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Leitner et al. present a model that take the following two characteristics of cloud computing
environments into account:

1. The billing model found in real world cloud computing environments such as AWS has the
form of a step function that increases by a fixed amount per Billing Time Unit (BTU) [47].

2. When a new resource launches, it is not available immediately, but it takes a certain time
for provisioning. Leitner et al. assume in their model that this time is similar for each
resource and therefore model it as a constant.

Based on this model, Leitner et al. present a procedure that decides whether it is more
economical to place a request onto an existing resource or to launch a new resource. This
procedure is a greedy approach that evaluates the costs for all possible placements decisions [47].
Although the method that we present in this thesis does not consider the scaling duration, we
plan to incorporate a model similar to the one proposed by Leitner et al. in a future version of
our prototype.

Although most of the research on SLA focuses on the provider view and consequently covers
topics such as minimizing the cost of SLA violations or optimizing physical resource placement,
the research work on SLA enforcement still is closely related to the topic of this thesis. In our
thesis, we also are concerned with the enforcement of user specified targets while trying to use
the resources as efficiently as possible. In [46], Leitner et al. present a formal description of
the optimization problem that selects a set of adaptations to perform in order to minimize both
the cost of adaptation and the cost for SLA violation. Although Leitner et al. use a business
process as motivating scenario, the similarity between the problem formulation in [46] and the
problem formulation of our algorithm in Chapter 5 demonstrates the close relation between SLA
enactment and the work in this thesis.

3.4 Detection of Misconfigurations

Erroneous system configurations are a substantial cause for system failures and unavailability, as
the study from Yin et al. shows [83]. Oppenheimer et al. present a case study of three large-scale
internet services in [68]. In all three services that the study presents, the most common mistake
by operators that led to a failure were configuration errors [68]. Therefore, a wealth of research
therefore has been directed both at systems that are able to prevent and detect misconfigurations
which Zhang et al. categorize into the following two classes.

1. “Black box” methods use known configurations in order to derive rules that are known to
work with the help of e.g. statistical methods or data mining.

2. “White box” methods inspect the application in order to detect misconfigurations.

Because in our work we also want to derive configurations from a large set of known con-
figurations with the help of data mining methods, particularly the black box approaches of mis-
configuration detection are of interest for our state-of-the art review. We now describe some of
the methods in more detail.
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Zheng et al. present an architecture that automatically generates server configuration files
with the aim to prevent misconfigurations [86]. For this the authors propose a scripting language
that generates configuration files for servers. Another contribution of the paper is a parameter
dependency graph that they create with an algorithm based on a Classification And Regression
Tree (CART) and dependency tests [86]. With the help of this parameter model, Zheng et al.
prune the search space for configuration. To find the final configuration, the authors use a sim-
plex algorithm [86].

In order to detect wrongly configured system registry settings on desktop Personal Comput-
ers (PCs) running the Windows operating system, Wang et al. present a statistical model based
on the Bayes rule [79]. Kiciman and Wang propose a different method to detect wrongly con-
figured entries in the system registry. In their approach, they cluster similar keys with a distance
measure and infer correctness constraints. Constraints can be of any of the four classes size
constraints, value constraints, reference constraints and equality constraints [44].

Zhang et al. examine the correlation of configuration options in order to detect misconfigura-
tions of Apache HTTP Servers, MySQL databases and PHP settings. They present a framework
that learns “best practice” configuration rules based on correlation to a large body of known
configurations from existing systems [84]. Zhang et al. describe that their work is based on
the observation that configuration entries are semantically tied to the concrete environment and
that usually there is a correlation between configuration entries [84]. Although the work from
Zhang et al. targets at “classic” system configuration, it is interesting for us as it uses data mining
methods.
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CHAPTER 4
Adaptation Service Architecture

In this chapter we describe the architecture of our cloud application adaptation prototype. For
the sake of readability we arrange the sections in this chapter in a consecutive order following the
“waterfall model”. Despite this ordering, we developed the prototype iteratively in accordance
to state-of-the-art methodologies in software development. In Section 4.1 we summarize the
requirements of our prototype. Next we discuss and justify the system’s design decisions in
Section 4.2. In Section 4.3 we then describe the implementation details of the prototype. Finally,
we illustrate the presented concepts with a use-case example in Section 4.4 and provide an
outlook on future directions for further development in Section 4.5.

4.1 Requirement Analysis

In the first step of building the prototype we analyze the requirements. The goals of the re-
quirements analysis phase are a) to identify the relevant actors of the system, b) to define the
necessary terms precisely and c) to specify the functionality that the prototype must provide.
Table 4.1 summarizes the outcome of the requirements specification phase.

To specify the requirements we use the wording that RFC 2119 proposes [11]. Following
this suggestion, we consecutively use the term shall to describe requirements that are absolutely
necessary. With the term should we indicate a recommended, but not strictly necessary require-
ment. Finally, we use the term may if a requirement is “nice to have”, but not essential for the
prototype to serve its purpose [11].

4.1.1 Actors

In Chapter 1 we already identified the cloud provider and the cloud user as the two key actors
of our system. The cloud provider operates the facilities so that the cloud user is able to execute
cloud applications. This distinction does not necessarily mean that the cloud provider and
the cloud user must be different persons or organizations. In a private cloud deployment, for
instance, the same organization is both the provider and the user at the same time.
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4.1.2 Terminology

We will now provide precise definitions of the terms “objective” and “adaptation point” that we
use in the requirements phase and later on throughout this thesis.

• An Objective is a quantifiable goal that the applications shall meet. This quantifiable goal
must be observable from outside the application.

• An Adaptation Point is a well defined interception interface that allows the cloud provider
to take influence on the cloud user’s application at an arbitrary level of granularity. The
cloud provider achieves this by setting a discrete value between a specified minimum and
a maximum.

Finally, we need a name for the prototype. We decided to name the prototype CA4S, because
it realizes our vision of Cloud Application Adaptation as a Service. When we refer to the
prototype as whole, we will use the term CA4S Prototype throughout this thesis.

Table 4.1: CA4S Prototype Requirements Summary

Requirement Description
R1 The CA4S Prototype should allow the cloud user to express the objectives

and adaptation points as a valid AWS template format in version “2010-09-
09”.

R2 In order to operate the CA4S Prototype it should not be required for the
cloud provider to modify the code base of OpenStack Heat.

R3 The CA4S Prototype shall enable a user to express the desired objectives
of an application with the help of well defined expressions that the user
embeds within the stack template file.

R4 The CA4S Prototype shall enable a user to specify the adaptation points of
an application with the help of well defined expressions that the user embeds
within the stack template file.

R5 The CA4S Prototype shall enable a user to define a strategy in case there
are multiple options to perform adaptation point changes.

R6 The CA4S Prototype shall be implemented as an autonomic system in order
to reduce the need for manual intervention for both the cloud provider and
the cloud user.

R7 There shall be a way for the CA4S Prototype to propagate changed adapta-
tion point values to the cloud application.

R8 The CA4S Prototype shall provide an endpoint so that the cloud application
can transmit observation points reflecting the application’s current state to
the CA4S Prototype.

R9 The CA4S Prototype should support multiple dimensions of elasticity,
namely resource, cost and quality elasticity.

R10 The CA4S Prototype shall allow a developer to change the configuration
selection algorithm.
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4.2 Design

We now present a system design that addresses and justifies the requirements from Section 4.1.

4.2.1 R1: Valid CloudFormation Template

In our prototype, the cloud user should be able to express the desired objectives and adaptation
points for his or her cloud application within a valid Heat template that adheres to the specifi-
cation of the AWS CloudFormation template in version 2010-09-09. As we already pointed out
in Section 2.2.3, we chose this template version because it is a minimum subset that allows an
easy transition to later template versions. For our application we define a template to be valid if
the command template-validate [62] reports no errors for the WordPress Application Server
Template in Appendix C.2. Although this method is not a proof that the implementation fully
adheres to the CloudFormation specification, we assume that this method is sufficient to show
the viability of the CA4S Prototype.

If we want to specify the objectives within the Heat template file, we must examine the
maximum number of characters that the Heat engine is able to process. The configuration file
of Heat contains a configuration setting max_template_size which constrains the possible tem-
plate size. In empiric tests that we conducted with our OpenStack installation we found that the
practical limit of a template’s maximum size is at around 1 Megabyte (MB). AWS CloudForma-
tion constraints the template size to 300 KB [2]. We assume that even the smaller of both limits
at 300 KB is a reasonable size for our proposed approach that is sufficient for most use cases.
We back this assumption by the following two observations. a) In case the template size gets
too large then the user still has the option to split the template file into multiple smaller ones.
b) The largest template in the repository of Heat example templates is 13 KB large [57] which
is considerably smaller than the maximum template size.

4.2.2 R2: No modification of Core Code

Research suggests that the development of new software components is more productive than
the modification of existing code [10]. Therefore, our system architecture design follows a
component based design. Our main objective is to present an architecture that does not require
the provider to modify existing code from OpenStack in order to operate the CA4S Prototype.
OpenStack Heat fosters the modular development of components by implementing a plug-in
system. By providing a plug-in for OpenStack Heat we can extend the Heat templates in a way
that allows a cloud user to specify the objectives and adaptation points within the template. We
assume that this approach will promote the acceptance of our prototype. We will describe this
plug-in system in more detail later in this chapter in Section 4.3.

4.2.3 R3: Specification of Objectives

In order to specify the cloud application objectives, we propose a distinct resource that holds the
application objectives. This resource is “virtual” in that sense that it does not create a real re-
source in OpenStack but merely is a container for holding values. Such virtual resources are not
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a new concept as they are already available in Heat. For instance, the OS::Heat::RandomString

resource that we used in Listing 2.1 also is a virtual resource that provides a method for gener-
ating random strings, but does not actually create a resource. Therefore, we argue that the usage
of virtual resources is a viable concept on which we can build our solution as well.

For each objective, the user adds one such “virtual” resource to the stack. Each of these
resources will hold the objective in its properties definition. We argue that this approach has two
advantages.

1. We create a clear semantic distinction between the user parameters in the templates and
the objectives

2. The Heat engine refuses the template if the CA4S Prototype is not available on an Open-
Stack installation. This behavior gives a clear signal to the user that the managed adapta-
tion capabilities are not available instead of failing silently.

We call the resource that we will use to specify the objective CA4S::Objective. This re-
source contains the mandatory properties Objective, Cmp and Value. The comparison operator
Cmp specifies the desired range of acceptable values. Table 4.2 shows a listing of supported com-
parison operators. In order to define ranges it is possible to specify multiple CA4S::Objective

resources that contain the same objective but constrain different ranges. For example, assume
that the objective ResponseTime in an application should be ≥ 400 ms and ≤ 1, 000 ms. List-
ing 4.1 shows how a user can specify such a range with the help of two objectives. Apart from
the mandatory keys that all objectives must contain, some objectives need additional keys. For
example, if an objective specifies the desired response time of a certain endpoint, then the user
must specify the address of this endpoint. It is possible to employ Heat’s template functions (see
Section 2.2.3) as parameter values.

Table 4.2: Supported Comparison Operators

Keyword Symbol Description
lt < Less than
lte ≤ Less than or equal to
gt > Greater than
gte ≥ Greater than or equal to
eq = Equal to
neq 6= Not equal to

4.2.4 R4: Specification of Adaptation Points

In accordance with the single template file design of Heat, the adaptation points are also defined
within the Heat template file. In contrast to the high level objectives which the uses imposes on
the stack, it is not immediately clear where an adaptation point does belong semantically. The
question is whether these configuration values belong to the cloud application as a whole or to
the individual resources. Both variants have arguments that speak for and against them. In a first
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Figure 4.1: A managed stack that contains three resources: The computing instance, the re-
source that holds the adaptation points and the resource that holds the objectives.

revision of the prototype design we specified the adaptation points on a per-resource basis. In
our experiments, the following two observations revealed the difficulties of this design.

• Resources are independent of each other: If in a horizontal scaling scenario there is a large
number of similar resources that perform the same task, then each of the resource must
receive the same configuration. But if we define the adaptation points on a per-resource
basis then the prototype must synchronize the adaptation points, so that each resource of
the same kind receives the same configuration. As an example, consider a web application
like the one shown in Figure 1.2, where n identical web servers deliver the content to the
client and that n ≥ 1. In such a scenario we want that all web servers retrieve the same
adaptation point values.

• Resources are volatile: When there is a load balancer that controls the number of instances,
then each time the load balancer adds a new resource to the stack we must also create a
new adaptation point resource. This is not trivial because we must create a hook that sends
a signal to the CA4S Engine when the load balancer creates a new resource.

Therefore, we decided to move the adaptation point specification from the resource level up
to the stack level, even though this increases the number of possible states. This means that
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Listing 4.1: Specification of a high level objective within the properties of a dedicated
resource type CA4S::Objective. In this case, the HTTP endpoint at localhost should have
a maximum response time of 1, 000 ms.

{

"AWSTemplateFormatVersion": "2010-09-09",

"Description": "Template to demonstrate objective specification",

"Resources": {

"Objective_RT_gt_400": {

"Type": "CA4S::Objective",

"Properties" : {

"Objective" : "ResponseTime",

"Target" : "http://localhost",

"Cmp" : "gte",

"Value" : 400

}

},

"Objective_RT_lte_1000": {

"Type": "CA4S::Objective",

"Properties" : {

"Objective" : "ResponseTime",

"Target" : "http://localhost",

"Cmp" : "lte",

"Value" : 1000

}

}

}

}

the user defines all adaptation points for the cloud application for the stack. Consequently, the
adaptation points are not linked to a particular resource.

Analogously to the objective definition, we propose a second auxiliary resource named
CA4S::AdaptationPoint and that holds the adaptation points for the cloud application. The
properties of this CA4S::AdaptationPoint resource are AdaptationPoint, lte, gte and option-
ally value. The AdaptationPoint property specifies the name of the adaptation point. With the
keys gte (“greater than or equal”) and lte “(less than or equal to)” the user expresses the range
of possible target values for an adaptation point. A user can optionally set the adaptation point’s
initial value. If the user sets no value, then the CA4S Engine determines the initial value when
it creates the stack. We present an example of such a specification in Listing 4.2.

4.2.5 R5: Specification of Strategies

In some cases it happens that multiple adaptation point values fulfill the desired objectives. As
an example consider an application as Figure 1.2 shows it. Now assume that an objective that
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Listing 4.2: Specification of adaptation points. In this example the adaptation point
“QuickCacheTimeout” may have a value that is ≥ 0 and ≤ 20.

{

"AWSTemplateFormatVersion": "2010-09-09",

"Description": "Template to demonstrate adapation point definitions.",

"Resources": {

"AdaptationPoint_QuickCacheTimeout" : {

"Type": "CA4S::AdaptationPoint",

"Properties": {

"AdaptationPoint" : "QuickCacheTimeout",

"gte" : 0,

"lte" : 20

}

}

}

}

requires the application to respond within 300 ms. Let’s further assume that the load balancer
spreads the incoming requests evenly across the web server instances and that already a single
web server instance is able to fulfill this objective. Consequently, also two instances will be able
to fulfill the objective. The cloud user should be able to specify the prototype’s desired behavior
for such cases. For this we created the resource CA4S::Strategy with two properties Objective
and Function. The property Objective refers an objective name (for instance “ResponseTime”)
and Function is either “min” or “max”, depending whether the strategy is to minimize or to
maximize the objective’s value.

4.2.6 R6: Autonomic Component

In our design, the granularity of the autonomic management is on the stack level. This means
that there is an autonomic control loop for each stack that a user creates. Because the control
loop for the stacks are independent of each other the engine can execute them in parallel and on
different machines. Consequently, the architecture allows scaling up with an increasing number
of stacks to manage.

In reference to the MAPE-K model originally presented by IBM [37], we split the autonomic
component into four stages: monitor, analyze, plan and execute. In the monitor phase the CA4S
Prototype collects the black box data in accordance to the objectives. Analyzing and planning
takes part in the concrete implementation that we will describe later. The prototype performs
the execution by adjusting the concrete values of an adaptation point. Figure 4.2 depicts how we
embedded our autonomic system into a MAPE-K autonomic control loop.
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Figure 4.2: The CA4S Prototype implemented with a MAPE-K loop as proposed by IBM in [43]

4.2.7 R7: Configuration Propagation

To support elasticity, the CA4S Prototype must propagate changes in the adaptation point values
to the client. In our prototype the autonomic manager will update the concrete value for the
adaptation point by performing a REST API call to the CA4S Service. After the CA4S Prototype
modifies an adaptation point, the application needs to process the changed values. For this
the application must receive the changed values and then execute the appropriate actions. The
way how the adaptation service transfers the adaptation point changes to the application is a
fundamental design question. We evaluated the following two possibilities to address this issue.

1. Use the existing Metadata service. We described in Section 2.2.1 how instances query
the metadata service to retrieve instance specific information. If we employ this service to
propagate changed adaptation point values, we could utilize already existing infrastructure
from OpenStack. Unfortunately, the metadata service does not allow the cloud operator to
extend its functionality with plug-ins. Adding the functionality directly to the core code
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would violate requirement R2 (No modification of core code). We therefore discard this
option.

2. Create a custom service. This service works like the metadata service provided by Heat.
It listens on a specific endpoint that is accessible from all cloud applications and delivers
the adaptation point values for a specific cloud application on request. Like the Open-
Stack Metadata service, the CA4S configuration service resolves the configuration for a
specific client based on the IP address that issued the query. The cloud application then
processes the retrieved adaptation point values. This solution allows us to tailor the service
exactly to our needs. The drawback of writing a custom service is that it incurs additional
implementation overhead.

The resulting configuration service is a key element in the design of the CA4S Prototype
(Figure 4.2). This service maintains a list of all objectives and adaptation points for which the
model shown in Figure 4.4 is the basis. When the user creates a new stack, the CA4S Prototype
registers the objectives and adaptation points via a REST service. The full specification of the
configuration service is available in Appendix B.

4.2.8 R8: Observation Point Collection

In order for the CA4S Prototype to derive meaningful adaptation point value decisions it must
have an insight into the current state and particular environment of the cloud application and its
resources. Our prototype creates this insight by sending snapshots from the cloud application to
the CA4S Prototype. In the remainder of this thesis we will refer to these application state snap-
shots as observation points. Each observation point contains a set of metrics where each metric
contains a measured value of a certain application aspect. The exact source of an observation
point, the level of granularity, the rate at which the application transmits the observation points
as well as the exact list of captured metrics are dependent on the individual stack that the CA4S
Prototype controls. We partition the set of observation point metrics into the following four dif-
ferent attribute classes: Internal attributes, External attributes, Stack attributes and Adaptation
Point attributes. In Chapter 6 we will give concrete examples of the captured metrics as well as
their classification into one of the four categories for different use cases. We now describe the
four categories of observation point metrics in more detail.

• Internal Attributes reflect the internal state of the application. This may or may not be in
response to external influences, i.e. not all internal attributes are necessarily influenced by
some other attribute. A subset of these influences are the adaptation point attributes and
the external attributes. On a computing resource, examples of metrics that belong to this
category are system load, response time and the amount of active system memory. Not all
collected internal attributes are necessarily needed for performing adaptation decisions.

• External Attributes capture the current demand to a system. In contrast to the other three
attribute types, a cloud user cannot take influence on the external attributes. The only way
to react to external attributes is to change the adaptation point attributes. The goal of
the cloud application is to handle the current demand in the best way possible. In our

37



Internal
Attributes

External
Attributes

Adaptation Point
Attributes

Stack
Attributes

Influence
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system, we define “best way” as the system state that yields the lowest number of violated
objectives with respect to the current demand.

• Stack Attributes Internal and external attributes reflect the state of the cloud application
at an arbitrary level of granularity. Such a level of granularity, for instance, might be
an individual resource. However, the user imposes objectives on “black box”, high-level
cloud application states. Therefore, the observation point must also contain the global
state of the cloud application at the time of the observation. The sum of all individual
resources of a cloud application determine these stack attributes. An example of a stack
attribute is the total cost for the application. The adaptation point attribute that specifies
the number of resources in a stack influences the cost. Figure 4.3 shows that also the other
two attribute types influence the stack attributes.

• Adaptation Point Attributes take influence on the internal attributes and the stack at-
tributes. In contrast to the external attributes, a user can take influence on the adaptation
point attributes by assigning new values to them. As the adaptation point attributes belong
to the stack, they are a special case of stack attributes in the sense that they also reflect
the stack’s global state. Again, the difference to stack attributes is that the cloud user can
set any arbitrary discrete adaptation point attribute value, as long as this value remains
within a specified range. We refer to the concrete set of adaptation point attributes as the
configuration of the cloud application.

Figure 4.3 depicts the relationship between these four categories that we described above.

4.2.9 R9: Supporting Multi-Dimensional Elasticity

The prototype should support multi-dimensional elasticity. The notion of multi-dimensional
elasticity that we use in this thesis is the one that Dustdar et al. propose in their research [26].
We now describe how our prototype design addresses the three elasticity dimensions resource
elasticity, cost elasticity and quality elasticity.
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Listing 4.3: Specification of cost elasticity

{

"AWSTemplateFormatVersion": "2010-09-09",

"Description": "Template to demonstrate cost elasticty specification",

"Resources": {

"Objective_Costs_lte_20": {

"Type": "CA4S::Objective",

"Properties" : {

"Objective" : "Costs",

"Cmp" : "lte",

"Value" : 20

}

}

}

}

Resource Elasticity

In Section 1.1 we described how a user can create resource elastic cloud applications using
Heat templates that contain load balancers, launch configurations and auto scaling groups. The
problem with this approach is that the user must define and set the thresholds for the metrics
on his or her own. To support resource elasticity in our prototype, the cloud user can add an
adaptation point for the load balancer resource that specifies the number of running instances.
We will provide an example of such an adaptation point that controls the number of instances in
a load balancer in Chapter 6.

Cost Elasticity

The cost elasticity dimension covers the placement of instances with respect to their cost. For
example, AWS charges the costs for “Spot Instances” based on the supply and demand of cur-
rently available computing resources [1]. A user sets a maximum amount that he or she is
willing to pay for an instance. In order to model the cost elasticity dimension we propose the
Costs objective that a user can employ. Listing 4.3 shows an example how to employ the Costs

objective in order to express cost elasticity. In this example, the CA4S Prototype observes the
“cost” stack attribute and places the configuration decisions in a way that the cost for running
the cloud application stays below 20 per BTU.

Quality Elasticity

The CA4S Prototype supports the quality elasticity dimension because it is able to influence the
cloud application by adjusting adaptation point attribute values. An example of such a quality
adjustment is to enable a static cache. By enabling a cache, the server does not need to create the
served page dynamically on the fly. This means that in the end the server can handle more users
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Figure 4.4: The stack model as UML class diagram.

without the need to increase the server capacity. On the other hand, enabling the cache incurs
a reduction in the quality for the user, because the content that the web server delivers does not
reflect the real time state, but the one at the time it created the cache.

4.2.10 R10: Change Configuration Selection Method

The cloud provider should be able to switch the implementation of the algorithm that selects the
adaptation point attribute values. We achieve this with an interchangeable configuration selector
class. This allows us to create alternative configuration selection implementations for the CA4S
Prototype in order to perform additional experiments on the topic of adaptive cloud computing
applications.

4.3 Implementation

We now present the components that comprise our prototype and describe concrete aspects of
the implementation that are relevant to address the problem statements of this thesis. The scope
of this section is not to provide a full documentation of every detail of the implementation. Such
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a complete documentation is part of the technical documentation. Instead, we present the core
aspects of the prototype.

We wrote all software components that we implemented for this thesis in Python. We chose
this programming language because the OpenStack framework also is written in Python and
therefore the CA4S Prototype integrates well into the OpenStack ecosystem. Our prototype im-
plementation consists of four major components: a) The CA4S Engine, b) the CA4S Service,
the c) CA4S Heat Plug-in and the d) CA4S Client Agent . All components are self contained
entities that expose their service via openly available interfaces and interact with the other com-
ponents as well as the OpenStack framework through these interfaces. With this design we
follow the paradigm of a service oriented architecture [70] and the architecture of the other
OpenStack components. Consequently, we reduced the dependency to OpenStack to a single
component, namely the Heat Plug-in. The rest of the components have no direct coupling to
OpenStack. Figure 4.2 shows the interaction between the individual components.

4.3.1 CA4S Engine

The CA4S Engine is an application that the cloud provider operates. This application imple-
ments the MAPE-K loop. For this, the CA4S Engine iterates over each running stack in the
system.

For each stack the engine keeps a history of the last ten observation points. From this history
the engine extrapolates the next external attribute value that it then passes to the configuration
selector. We perform the extrapolation with univariate smoothing using a spline with a degree
of one. There are two reasons why such an extrapolation is necessary: a) We can smooth
single outliers and b) we have a simple prediction mechanism so that the CA4S Engine executes
adaptive decisions before the violation occurs.

Based on this extrapolated value the CA4S Engine changes the adaptation point values for
a particular stack or not. The CA4S Engine retrieves the observation points directly from the
database. To change an adaptation point value, the CA4S Engine calls the REST API of the
CA4S Service. Figure 4.5 shows the interaction between the CA4S Service, the database and
the CA4S Engine.

4.3.2 CA4S Service

Figure 4.2 shows that the CA4S Service is the central component of the CA4S Prototype. This
service is the hub that connects the OpenStack resources with the autonomic manager (i.e. the
CA4S Engine). To maintain consistency with OpenStack Heat, we implemented the CA4S
Service in Python. For the concrete implementation of the REST API we use the Pecan web
framework [45]. The Ceilometer API also uses this lightweight framework. Pecan contains
a development server that provides the HTTP endpoints. The server listens at an address on
the internal network that all users from all running resources within an OpenStack installation
can access. Appendix B lists all endpoints that the CA4S Service API supports along with a
description of the concrete functionality.
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For the instance the CA4S Service serves two main purposes: a) It provides the adaptation
point attribute values (i.e. the configuration) to the application and b) it collects the observation
points from the client. We now describe these two aspects in more detail.

Configuration Service

The CA4S Service delivers the configuration (i.e. the adaptation point attributes and their con-
crete values) to the cloud application. We implemented this as a REST service call that does
not take any further parameters from the calling resource. As we already pointed out in Sec-
tion 4.2.7, the OpenStack Metadata is the blueprint for this service. To implement this feature,
we look up the IP address of the incoming request and match it against the registered resources
in the database. The CA4S Service returns the stored adaptation points for the calling instance
and their concrete value in the JSON format.

Observation Point Collection

The endpoint for the data collection receives the measured data from the resources. The CA4S
Service then amends the observation point with the observed stack data and stores it to the
database. In our implementation, we decided to use MySQL for storage. Basically we could
also use Ceilometer for this task by creating custom metrics. Yet we decided to implement our
own storage solution for the prototype implementation because it allows us to tailor it exactly
to our needs. Due to the loose coupling via the REST API we can change the concrete storage
engine implementation at a later point.

4.3.3 CA4S Heat Plug-in

OpenStack Heat provides a plug-in system that allows developers to create new template re-
sources [59]. A developer implements such a resource plug-in for Heat by implementing a
Python class that inherits from the heat.engine.resource.Resource base class. The plug-in
can implement functionality for the life-cycle events create, update, delete, suspend and re-
sume [59]. The implementation of any of these methods is optional. The Heat engine calls the
respective method only if the method is available and the life cycle event occurs. The plug-in file
also contains the registration of the resource name with the Heat engine. For this the plug-in file
implements the method resource_mapping that returns a map which links the resource name
to a concrete plug-in implementation. Listing 4.4 shows a skeleton of such a plug-in. In this
example, the map connects the resource name Sample::HeatPlugin to the class HeatPlugin.
Finally, the developer places the plug-in file inside one of the plug-in directories that the Heat
configuration settings specify.

Resource properties have a fixed schema that a developer must specify inside the plug-in
file. The plug-in contains a static map properties_schema. This map contains the name of
the property as the key and an instance of heat.engine.properties.Schema as value. Among
other properties, this instance specifies the data type, default values, constraints and so on. It
also is possible to nest schemata which allows a developer to create multi-dimensional resource
properties. Listing 4.5 shows an example definition of a property.
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Listing 4.4: Heat Plugin Skeleton

from heat.engine import resource

class HeatPlugin(resource.Resource):

properties_schema = {

# properties schema

}

def handle_create(self):

# called if the stack is created

pass

def handle_delete(self):

# called if the stack is deleted

pass

def handle_update(self):

# called if the stack is updated

pass

def resource_mapping():

return {

’Sample::HeatPlugin’: HeatPlugin

}

When a user submits a template for a new cloud application that contains at least one of the
resources CA4S::Objective and CA4S::AdaptationPoint to Heat, the handle_create method
registers the new stack at the REST endpoint of the CA4S Service. According to the UML
model that Figure 4.4 shows, the prototype first registers the stack, followed by the resources,
objectives and adaptation points.

Adding new Adaptation Points

In the design that we propose in this thesis the cloud provider defines the available adap-
tation points. The reason why only the provider can add new adaptation points is that the
data must be comparable between different users. In order to add a new adaptation point the
provider has to implement a new class and create a new mapping for it. We organize the adap-
tation point class files analogously to the Heat plug-in files. They contain a mapping method
adaptation_point_mapping() that returns a hash with the name of the adaptation point and the
link to the class as value. This explicit mapping has the advantage that it is possible to map a
single implementation to more than one adaptation point identifiers. The class file itself con-
tains a method quality that receives an observation point as parameter. This method returns the
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Listing 4.5: Definition of a property

from heat.engine import properties, resource

class CA4SAdaptationPoints(resource.Resource):

properties_schema = {

’QuickCacheTimeout’: properties.Schema(

properties.Schema.MAP,
_(’QuickCacheTimeout’),

schema={

"gte" : properties.Schema(

properties.Schema.INTEGER,

required=True

),

"lte" : properties.Schema(

properties.Schema.INTEGER,

required=True

)

}

),

}

Listing 4.6: Adaptation Point Definition File Skeleton

class InstancesAdaptationPoint:

def quality(self, op):

return 1.0

def adaptation_point_mapping():

return {

"Instances" : InstancesAdaptationPoint

}

quality score for this adaptation point based on the passed observation point when the CA4S En-
gine performs a configuration selection. We will describe this selection process and the quality
concept in Chapter 5. Listing 4.6 shows the skeleton of an adaptation point definition file.

Adding new Objectives

Adding new supported objectives to the CA4S Prototype happens in the same way as adding new
adaptation points. The CA4S Prototype will parse all implementations that reside in a specific
directory and make them available to the other services. Like the adaptation point definition file,
the objective definition file also contains a mapping method that maps a map key to a concrete
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Listing 4.7: Objective Definition File Skeleton

class CostsObjective:

def amend(self, observationpoint):

# set the stack values

return observationpoint

def filter(self, observationpoint):

# specify an optional filter for this objective

# if the filter returns True then the

# passed observationpoint will not be considered

return False

def objective_mapping():

return {

"Costs" : CostsObjective

}

implementation. The key of the map specifies the name of the objective that the cloud user
then uses in the Heat template file. Listing 4.7 demonstrates how to perform such an imple-
mentation. This example maps the key “Costs” to the instance CostsObjective. This instance
implements two methods, namely amend and filter, both of which receive an observation point
as parameter.

• The CA4S Service calls the amend method when the CA4S Client Agent submits an ob-
servation point. The purpose of this method is to amend the observation point with the
stack data. After that, the method returns the amended observation point which the CA4S
Service consecutively stores to the database.

• The filter method decides whether an observation point is usable in order to derive an
adaptation point value decision for the implemented adaptation point or not. If the method
returns True then the caller of the method will discard the observation point, otherwise the
caller will add it to the list of observation points.

We will provide concrete examples for implementations of the methods amend and filter in
Chapter 6.

4.3.4 CA4S Client Agent

The CA4S Client Agent is an application that runs on each stack instance. As a proof of con-
cept, we created this client agent as a Linux upstart service. As the name suggests, the instance
executes an upstart service once the operating system reaches a certain runlevel [38]. But be-
cause the configuration service is available as a REST service, it is possible to write agents for
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other operating systems as well. This open design enables a developer to retrieve and process
the configuration settings from any native application by accessing the REST service directly.

In our implementation the client agent serves two purposes: Firstly it executes configuration
changes and secondly it submits the data to the CA4S Service, both of which we now describe
in more detail.

Configuration Changes

First the CA4S Client Agent queries the CA4S Service to obtain the current values for the
specified adaptation points. If a value for an adaptation point changes the CA4S Client Agent
performs all necessary actions on the host resource to execute the changes.

The CA4S Client Agent features a modular design that allows a simple extension to add
support for new adaptation points to the CA4S Client Agent. A configuration file specifies a
mapping of adaptation points to handler classes. These handler classes contain methods that the
CA4S Client Agent invokes when the CA4S Service returns a new, updated or deleted adaptation
point. For instance the handler for the Apache HTTP Server adjusts the setting of the respective
Apache configuration file and then reloads the Apache HTTP Server.

Observation Point Collection and Transmission

The second task that the CA4S Client Agent performs on the resource is to collect the obser-
vation point metrics and to transmit the observation points to the CA4S Service. This data
collection is pretty straight forward: It runs in an infinite loop that collects and transmits the
data.

4.4 Example Use Case

To illustrate the concept of the proposed CA4S Prototype in action, we now describe the se-
quence of steps that the prototype executes when a user creates a managed cloud application.
Figure 4.5 depicts this sequence of steps as an UML sequence diagram. The steps in the se-
quence diagram are as follows.

1. First the user creates the template file. Next to the resources, this template file contains
the newly introduced resources for the specification of the objectives and the adaptation
points. The user then submits this template file to the Heat engine.

2. The Heat engine calls the handle_create method in the CA4S plug-in for each CA4S::Objective

and CA4S::AdaptationPoint resource that the cloud user specified in the template.

3. The handle_create methods register the cloud application’s objectives and adaptation
points by calling the API endpoints of the CA4S Service.

4. The Heat engine launches the resources that the cloud user specified in the template file.
When the resource boots up, it starts the CA4S Client Agent.
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Figure 4.5: The autonomic feedback loop as simplified UML sequence diagram

5. The CA4S Client Agent continuously transmits the observation points of the resource it
runs on to the CA4S Service.

6. The CA4S Engine continuously queries the list of all active stacks and calls the configu-
ration selection implementation.

7. If the adaptation values change for a stack, then the CA4S Engine transmits the new values
to the CA4S Service.

8. On the instance, the CA4S Client Agent periodically polls the adaptation point values
from the CA4S Service.

9. If an adaptation point value changes, then the CA4S Client Agent applies the new settings
on its host resource.

4.5 Future Improvements

The prototype that we present in this thesis is not a mature service in the sense that a provider
can use it in productive environments. We left out some components that were not necessary to
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prove the concept of our prototype but that we plan to address in future releases.

4.5.1 KeyStone Integration

The implementation of the presented prototype does not provide any security or authentication
mechanisms. Without a doubt, the presented CA4S Prototype must provide effective measures
to prevent unauthorized usage in a future release. For instance, it must not be possible to extract
any sensitive data from other clients or to modify adaptation point values except for the CA4S
Engine. The most straight forward way to implement an authentication mechanism in a future
release is to employ the authentication and identity service that KeyStone provides.

4.5.2 Ceilometer Integration

The CA4S Prototype stores the observation points that the cloud application submits to the CA4S
Service and that the CA4S Engine uses to derive adaptation decisions directly to a MySQL
database. For the prototype we decided to use this native implementation of a database engine
as it provided a direct and flexible way to provide a proof of concept. In a future release it is
advisable to use Ceilometer as a storage engine to collect and process the cloud application’s
observation points.
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CHAPTER 5
Configuration Selection Algorithm

In Chapter 4 we presented the architecture of the CA4S Prototype. One requirement of this
prototype was that a developer can create custom implementations of the configuration selection
algorithm that selects adaptation point attribute values (i.e., a configuration) for a given observa-
tion point. We now present such a concrete algorithm. The idea that motivates our approach is
the following: For a given state that the external attribute values of an observation point reflect,
we want to find out which concrete values for the adaptation points attributes likely maximize the
quality with respect to a given set of objectives. To find this configuration, we compare the given
observation point to the observation points in the knowledge base and select the configuration
that increases the quality the most.

In the remainder of this chapter we first provide a formal definition of the adaptation point
configuration selection problem in Section 5.1. Building on this definition, we propose an al-
gorithm that solves the adaptation point configuration selection problem in Section 5.2. Finally,
we discuss the properties and limitations of the presented approach in Section 5.3.

5.1 Formal Definition of the Configuration Selection Problem

We already pointed out in Section 4.2 that we categorize the attributes of an observation point
into the four classes internal attributes, external attributes, adaptation point attributes and stack
attributes. For the specification of the algorithm it suffices to define the attributes as arbitrary
elements in a set (Definition 5.1).

Definition 5.1 I Attribute sets

Let I be the set of all internal attributes, E be the set of all external attributes, A be the
set of all adaptation point attributes and S be the set of all stack attributes. The attribute
set AS is the set AS = I ∪ E ∪A ∪ S, where each element that exists in one of the sets
I, E,A, S cannot exist in any of the other sets, i.e. ∀s1, s2 ∈ {I, E,A, S} : s1 6= s2 ⇒
s1 ∩ s2 = ∅.
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The requirement that each element a ∈ AS can only exist in either set I, E,A, S allows us to
define a function that assigns a value to each attribute that belongs to an arbitrary observation
point (Definitions 5.2 and 5.3). To determine to which type an attribute belongs to we can use
intersections. For instance, to select all internal attributes of an arbitrary attribute setASi ⊆ AS,
we create the intersection ASi ∩ I .

Definition 5.2 I Observation Point Attribute Function

Let P be the set of all observation points. The observation point attribute function
oattr : P → P(AS) returns the set of attributes that belong to an observation point
p ∈ P .

Definition 5.3 I Observation Point Value Function

The observation point value function oval : P × AS → R assigns a concrete numerical
value to an observation p ∈ P and an attribute a ∈ oattr(p).

Next, we define a special set of observation points where all members have the same set of
adaptation point attributes and where for each adaptation point attribute the value is the same.
We call this special set an observation point bucket, or in short bucket (Definition 5.4).

Definition 5.4 I Observation Point Bucket

Let Pi ⊆ P be a set of observation points. We call Pi a bucket b ∈ B if the following
property holds: ∀p1, p2 ∈ b : (oattr(p1) ∩ A = oattr(p2) ∩ A ∧ ∀a ∈ oattr(p1) ∩ A :
oval(p1, a) = oval(p2, a)).

Analogous to the observation point attribute function (Definition 5.2) and the observation point
value function (Definition 5.3), we define the functions battr and bval for buckets. In contrast to
the observation point attribute function, the bucket attribute function is only defined for adapta-
tion point attributes, as these are the only attributes where each element in the bucket must have
the same value. The function battr returns the attribute set for a bucket and bval returns the value
of a given adaptation point attribute in a bucket.

Definition 5.5 I Bucket Attribute Function

Let b ∈ B be a bucket. The bucket attribute function battr : B → P(A) returns the set of
adaptation point attributes Ai ⊆ A, s.t. ∀p ∈ b : oattr(p) ∩A = Ai.

Definition 5.6 I Bucket Value Function

The bucket value function bval : B × A → R returns the concrete numerical value of
a bucket b and the adaptation point attribute ai ∈ battr(b) s.t. ∀p ∈ b : oval(p, ai) =
bval(b, ai).

In order to select a configuration later, we must define quality functions on adaptation points
(Definition 5.10) and on buckets (Definition 5.11). But before we introduce these quality func-
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tions, we must define objectives and the objective violation predicate. An objective is an arbi-
trary constraint that a user imposes on the application. For our definition, we define an objective
as an element o from the set of all objectives O. The objective violation predicate allows us to
determine whether an observation point meets a certain objective or not (Definition 5.7). With
this predicate we then define a function that returns all those elements in a bucket that violate
at least one objective (Definition 5.8). With the help of the violated observation points function
we can define a violation ratio function that determines the percentage of the observation points
that violate at least one objective in a bucket (Definition 5.9).

Definition 5.7 I Objective Violation Predicate

Let o ∈ O be an arbitrary objective from the set of all objectives O and let p ∈ P be an
arbitrary observation point. The objective violation predicate OB is a predicate such that
OB(o, p) holds if the observation point p meets the objective o.

Definition 5.8 I Violated Observation Points Function

The violated observation points functions violated : B × P(O) → B takes a bucket
b ∈ B and a set of objectives Oi ⊆ O. The function returns a bucket bv ⊆ b that
contains all the observation points from b that violate at least one objective o ∈ Oi, i.e.
bv = {p ∈ b|∃o ∈ Oi : ¬OB(o, p)}.

Definition 5.9 I Violation Ratio Function

Let b ∈ B be a bucket and let Oi ⊆ O be a set of objectives. We define the violation ratio
function vr : B × P(O)→ R as

vr(b,Oi) =

{ |violated(b,Oi)|
|b| if |b| > 0

0 if |b| = 0

We also need a function that determines the quality of an observation point with respect to
a given adaptation point (Definition 5.10). With this quality function and the violation ratio
function from Definition 5.9 we determine the quality of a bucket. This bucket quality is the
product of the arithmetic means of the observation point qualities for each attribute, multiplied
by one minus the violation ratio of the bucket (Definition 5.11). From this definition it follows
that the bucket quality is 0, if all observation points in the bucket violate the objectives or the
mean adaptation point quality for all observation points is 0.

Definition 5.10 I Adaptation Point Quality Function

The quality function q : A×P → R maps an adaptation point attribute a ∈ oattr(p)∩A
and an observation point p ∈ P to a numerical value in the range [0, 1].
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Definition 5.11 I Bucket Quality Function

The bucket quality function qb : B \ ∅ × P(O) → R maps a bucket b ∈ B and a set of
objectives Oi ⊆ O to a numerical value in the range [0, 1]. We define the function value

as qb(b,Oi) =
∏

a∈battr(b)
(

∑
p∈b

q(a,p)

|b| ) · (1− vr(b,Oi)).

Out of a set of buckets, the goal of our algorithm is to find those buckets with the maximum
quality. Therefore, we must define a function that allows us to select a bucket in case that there
exists more than one bucket with the same maximum quality. We call this function strategy
function (Definition 5.12).

Definition 5.12 I Strategy Function

Out of a set of buckets BS ⊆ B, the strategy function s : P(B) → B selects a single
bucket bsel ∈ BS .

A user defines the concrete function mapping for the strategy function with respect to the overall
goal of the application. In the most simple case, the strategy function returns an arbitrary bucket.
However, if the overall goal of the application is to serve requests as fast as possible, the strategy
function could select the bucket whose observation points minimize the mean value of the stack
attribute “Response Time”.

With Definitions 5.1 to 5.12 in place we now formulate the Adaptation Point Configuration
Selection Problem (Definition 5.13).

Definition 5.13 I Adaptation Point Configuration Selection Problem

Given a set of buckets Bi ⊆ B, a set of objectives Oi ⊆ O, and a given observation
point pϕ ∈ P , find the set of buckets bbest ⊆ Bi with the maximum bucket quality, i.e.
∀b ∈ bbest : ∀bi ∈ Bi : qb(b,Oi) ≥ qb(bi, Oi). If there is more than one element in bbest,
then the strategy function s(bbest) determines the bucket to chose.

5.2 Algorithm Description

Based on the definitions in Section 5.1 we now describe the adaptation point configuration se-
lection algorithm that we have created for the CA4S Prototype. The algorithm consists of four
stages. The first three steps filter and normalize the input, before the final step performs the
configuration selection. Figure 5.1 shows the steps through which the observation points go.

5.2.1 Step 1: Filtering

In the first step of the algorithm we take a set of historical observation points Pi ⊆ P and filter
out all elements of this set that are not relevant for the configuration decision (Algorithm 5.1).
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Figure 5.1: The four steps of the configuration selection algorithm

We consider an historical observation point p ∈ Pi to be relevant to the current observation point
pϕ if it matches the following criteria.

1. The historical observation point p contains the same set of external attributes as the current
observation point pϕ, i.e. oattr(p) ∩ E = oattr(pϕ) ∩ E. The external attributes contain
the values that the user cannot influence, such as the incoming requests per second (see
Section 4.2.8 for a detailed description of the different attribute types). We need the same
set of external attributes so that we can calculate the distance between two observation
points in step 3.

2. The historical observation point p contains the same set of adaptation point attributes as
the current observation point pϕ. We justify this requirement by pointing out the problems
that arise if either observation point contains an adaptation point attribute that the other
observation point does not contain.

a) Let a ∈ A be an adaptation point attribute that p contains but pϕ does not contain,
i.e. a ∈ oattr(p) ∩ A ∧ a 6∈ oattr(pϕ) ∩ A. In this case the attribute a influences
the state of p, but this state is invisible to pϕ. Therefore, we cannot use the historical
observation point p to derive a decision for the current observation point pϕ.
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b) Let a ∈ A be an adaptation point attribute that p does not contain but pϕ contains, i.e.
a 6∈ oattr(p)∩A∧a ∈ oattr(pϕ)∩A . In this case it is not possible to select a concrete
value for the adaptation point a of pϕ because p does not make any statements about
a.

3. We filter out any historical observation point p ∈ Pi that is not suited to derive a decision
about the current observation point pϕ for any particular reason. For this we introduce
the objective filter predicate (Definition 5.14). Despite looking similar to the objective
violation predicate in Definition 5.7, there is an important difference between these two
predicates: If the objective filter predicate does not hold for a particular observation point
p, then the algorithm does not consider p in any of the subsequent steps. The objective
violation predicate on the other hand is used to determine the violation ratio for a bucket.

Definition 5.14 I Objective Filter Predicate

Let o ∈ O be an arbitrary objective from the set of all objectives O and let p ∈ P be
an arbitrary observation point. The objective filter predicate OF is a predicate OF (o, p)
that holds if the configuration decision algorithm cannot use the observation point p to
derive a configuration for the objective o.

input : A set of objectives Oi ⊆ O, a set of observation points Pi ⊆ P and a
given observation point pϕ ∈ P

output: A set of filtered observation points P ∗i ⊆ Pi

1 P ∗i = ∅
2 for each p ∈ Pi do
3 if oattr(pϕ) ∩ E 6= oattr(p) ∩ E then
4 continue ; // The EA sets must be equal

5 end
6 if oattr(pϕ) ∩A 6= oattr(p) ∩A then
7 continue ; // The AP sets must be equal

8 end
9 for each o ∈ Oi do

10 if OF (o, p) then
11 continue 2; // Objective filter

12 end
13 end
14 P ∗i ← P ∗i ∪ {p}
15 end
16 return P ∗i

Algorithm 5.1: Observation Point Filtering
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5.2.2 Step 2: Normalization

In the second step of our algorithm we normalize the external attributes values of the observation
points that passed the filter step as well as the given observation point pϕ (Algorithm 5.2). We
must normalize the observation point attribute values because otherwise the algorithm biases the
euclidean distance calculation towards attributes with larger numerical ranges. As an illustrative
example, consider two external attributes e1, e2 ∈ E. For some given set of observation points
Pi ⊆ P , let the attribute values for e1 be in the range [0, 5], whereas the attribute values for
e2 are in the range [0, 232]. Without normalization, the attribute values of e1 have a negligible
impact on the distance calculation. Min/max scaling normalizes each external attribute value to
the range [0, 1], so that each attribute gets an equal weight in the distance calculation. In order
to perform the Min/max scaling, we define a minimum and a maximum function on a set of
observation points with respect to some given external attribute (Definition 5.15). With these
functions, we construct a “copy” of an observation point p that has the same set of attributes and
values, except that the external attribute values are min/max normalized with respect to a given
set of observation points (Definition 5.16). The subset P̂ ⊆ P is the set of all observation points
where the external attribute values are in the range [0, 1].

Definition 5.15 I Observation Point Set Attribute Minimum and Maximum

The function emin : P(P ) × E → R takes a set of observation points Pi ⊆ P and an
external attribute e ∈ E, where the following property must hold: ∀p ∈ Pi : e ∈ oattr(p).
We define the function value as follows.

emin(Pi, e) = min(
⋃

p∈Pi
{oval(p, e)})

Analogously, we define the bucket maximum function emax : P(P ) × E → R with the
function value as follows.

emax(Pi, e) = max(
⋃

p∈Pi
{oval(p, e)})

Definition 5.16 I Normalized Observation Point

The normalized observation point function nop : P × P(P ) → P takes an observa-
tion point p ∈ P and a set of observation points Pi ⊆ P and returns the normalized
observation point p̂ ∈ P , for which the following properties hold:

1. oattr(p) = oattr(p̂)

2. ∀a ∈ oattr(p) \ E : oval(p̂, a) = oval(p, a)

3. ∀e ∈ oattr(p) ∩ E : oval(p̂, e) =
oval(p,e)−emin(Pi,e)

emax(Pi,e)−emin(Pi,e)
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input : A set of observation points Pi ⊆ P and a given observation point pϕ ∈ P
output: The set of normalized observation points P̂i ⊆ P and the normalized

given observation point p̂ϕ ∈ P
1 Pall ← Pi ∪ {pϕ}
2 P̂i ← ∅
3 for each p ∈ Pi do
4 P̂i ← P̂i ∪ {nop(p, Pall)}
5 end
6 return (P̂i, nop(pϕ, Pall))

Algorithm 5.2: Observation Point Normalization

5.2.3 Step 3: Sorting into Buckets

Next, we sort the data into buckets (Algorithm 5.3). In this step we read the filtered and normal-
ized observation points from the two previous steps and calculate the euclidean distance of the
external attribute values for each observation point p ∈ P̂i to the normalized given observation
point p̂ϕ (Definition 5.17). If the calculated distance is within the user specified range distmax

that the algorithm takes as parameter then we add the observation point to the set of the near
observation points. The reason why we do not perform the distance filtering in the first step is
that for the distance calculation we need the normalized external attribute values of the filtered
observation points.

We then sort the observation points whose distance is within distmax into the set of buckets
BS . To formalize the construction of the bucket set, we define the bucket retrieval function
(Definition 5.18). This function takes an observation point p and a set of buckets Bin, that
initially is the empty set ∅. It then returns the bucket Bi to which p belongs as well as the set
Bout, which is the input set excluding Bi. If Bin does not contain a bucket where p belongs to,
then the bucket retrieval function returns the empty set ∅. Our algorithm then adds p to Bi and
adds Bi to the set of buckets BS . An important property of the bucket set BS is that for each
bucket it contains there must be at least one attribute value that is different from all the other
buckets. With this property we construct a set that partitions the set of observation points into a
set of buckets, in which for each combination of bucket attribute values only one set exists that
contains all the observation points that belong to this bucket.

Definition 5.17 I Observation Point Distance

We define the distance between two normalized observation points p1, p2 ∈ P̂ that have
the same set of external attributes oattr(p1)∩E = oattr(p2)∩E as the function opdist :
P̂×P̂ → R. The function value is the euclidean distance between the observation point’s
external attribute values, i.e.

opdist(p1, p2) =
√ ∑

e∈oattr(p1)∩E
(oval(p1, e)− oval(p2, e))2

56



Definition 5.18 I Bucket Retrieval Function

The bucket retrieval function br : P × P(B) → B × P(B) takes an observation point
p ∈ P and a set of buckets Bin. The function returns a bucket Bi and the set of buckets
Bout with the following properties:

1. Bout = Bin \Bi

2. ∀b1, b2 ∈ Bout : (b1 6= b2 ⇒ ∃a ∈ battr(b1) : bval(b1, a) 6= bval(b2, a))

3. Bi 6= ∅ ⇒ battr(Bi) = oattr(p)

4. ∀a ∈ battr(Bi) : bval(Bi, a) = oval(p, a)

input : A set of observation points Pi ⊆ P , a given observation point pϕ ∈ P and
a maximum distance distmax ∈ R

output: A set of buckets BS

1 Pnear ← ∅
2 for each p ∈ Pi do
3 if opdist(pϕ, p) ≤ distmax then
4 Pnear ← Pnear ∪ {p}
5 end
6 end

7 BS ← ∅
8 for each p ∈ Pnear do
9 (Bi, BS)← br(BS , p)

10 Bi ← Bi ∪ {p}
11 BS ← BS ∪Bi

12 end

13 return BS

Algorithm 5.3: Sorting observation points into buckets

5.2.4 Step 4: Best Bucket Selection

In the final step, we select the bucket which yields the best quality (Algorithm 5.4). For this we
iterate over the set of buckets that the previous step 3 has returned and perform the following
steps.

• Initially, we look for the first bucket that has a quality > 0. The algorithm sets this bucket
as the best.
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• If any of the consecutive buckets yields a better bucket quality (Formula 5.11) than the
current best bucket, we set this bucket as the new best bucket.

• If a bucket has the same quality score as the currently best bucket, then the strategy func-
tion (Definition 5.12) decides which bucket to choose. With the strategy function, the user
can for instance choose to select the bucket that minimizes the cost.

In case that there is no bucket with a quality greater than 0 or there is no bucket at all, the
algorithm returns the empty set. This leaves the decision how to deal with the case that there is
no suitable configuration up to the cloud application.

input : A set of buckets BS ⊆ B and a set of objectives Oi ⊆ O
output: The bucket bbest ∈ BS with the best quality

1 bbest ← ∅
2 for each b ∈ BS do

3 if bbest = ∅ then
4 if qb(b,Oi) > 0 then
5 bbest ← b
6 end
7 continue
8 end

9 if qb(b,Oi) > qb(bbest, Oi) then
10 bbest ← b
11 end

12 if qb(b) = qb(bbest, Oi) then
13 bbest ← s({b, bbest})
14 end
15 end

16 return bbest
Algorithm 5.4: Best bucket selection

5.2.5 The Final Algorithm

We now put the four pieces together and construct the final configuration selection algorithm
(Algorithm 5.5). This algorithm selects the bucket that contains the best configuration with
respect to a set of objectives, a set of historical observation points, a given observation point and
the maximum distance.
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input : A set of objectives Oi ⊆ O, a set of observation points Pi ⊆ P , a given
observation point pϕ ⊆ P and the maximum distance distmax

output: An adaptation point bucket bbest ∈ B
1 P ∗i ← filter(Oi, Pi, pϕ) ; /* Algorithm 5.1 */

2 (P̂i, p̂ϕ)← normalize(P ∗i , pϕ) ; /* Algorithm 5.2 */

3 BS ← sort_into_buckets(P̂i, p̂ϕ, distmax) ; /* Algorithm 5.3 */

4 return select_best_bucket(BS , Oi) ; /* Algorithm 5.4 */

Algorithm 5.5: The algorithm for performing a configuration decision

5.3 Limitations

Before we perform a detailed, practical evaluation of the presented algorithm in Chapter 6, we
conclude this chapter with a discussion of the presented algorithm’s inherent limitations.

5.3.1 Maximum Number of Attributes

A fundamental problem that arises with an increasing number of adaptation point attributes and
adaptation point values in the set of historical observation points is that the number of buckets
increases exponentially. A cloud application with 10 adaptation point attributes where each
adaptation point has 10 possible values potentially yields 1010 buckets that the algorithm must
evaluate, if there are historical observation points for each combination. Moreover, for each
bucket we need observation points that cover each possible combination of external attributes.
Therefore, we have to limit the number of adaptation point attributes, external attributes and
their respective values to a minimum.

5.3.2 The Curse of Dimensionality

Distance based approaches and consequently our algorithm as well suffer of an inherent weak-
ness called the “curse of dimensionality”. Beyer et al. have shown that with an increasing num-
ber of dimensions, the distance to the nearest neighbor converges towards the farthest neighbor’s
distance [7]. For certain distributions of data this effect appears in data sets with 15 dimen-
sions [7]. Applied to our algorithm we conclude that the provider must choose the external
attributes in a way so that they discriminate well between the different states. There is also an
upper bound for the number of external attributes for which the algorithm will return reasonable
results.

5.3.3 Performance

For deriving the proof of concept we use a naïve approach by calculating the euclidean distance
for each entry in the set of historical observation points. This leads to a complexity of each
configuration decision of O(|Pi|) with respect to the number of observation points in the set
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Pi ∈ P . In a production environment with 2, 000 nodes where each node sends a data point every
10 seconds, the knowledge base grows by than 17, 280, 000 entries every day. Consequently, a
naïve approach of iterating through all observation points is not feasible in larger installations.
Therefore, we propose two directions for future research to address the performance problem:

1. Data Reduction. A possible approach is to use prototype selection that k-Nearest Neigh-
bors (k-NN) classifiers to increase the classifcation speed [31]. Another variant of data
reduction is to limit the number of elements that each configuration bucket may contain.

2. Pre-calculate and cache the decisions, e.g. by translating them into rules. We will show
in Chapter 6 that pre-calculation is a feasible approach for observation point sets with a
low number of external attributes. Pre-calculated rules are faster in performing the config-
uration decisions. This approach has also the advantage that a user can acknowledge the
rules before applying them on a productive system. The drawback is that the configuration
selection is less dynamic.
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CHAPTER 6
Evaluation

We chose three evaluation scenarios to evaluate the CA4S Prototype. In Section 6.1 we evaluate
our system with the help of a simulator. In Section 6.2 we test the CA4S Prototype with a real
world application scenario using an Apache HTTP Server and WordPress. Finally, we perform
an end to end test of the autonomic system in Section 6.3. Each of these evaluations covers a
different aspect of the CA4S Prototype, which we summarize in Table 6.1.

Table 6.1: Aspects covered in the evaluation

Simulator WordPress End To End
(Section 6.1) (Section 6.2) (Section 6.3)

CA4S Service
Register Adaptation Points and Objectives 3 3 3

Query Configuration from Service 3 3 3

CA4S Plugin
Register Template Resources 3 3

CA4S Engine
Configuration Selection 3 3 3

Autonomic Configuration Change 3

CA4S Client Agent
Send Observation Points 3 3

Execute Adaptation Point Changes 3

Dimension of Elasticity
Resource Elasticity 3

Cost Elasticity 3

Quality Elasticity 3 3 3
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6.1 Simulator

Testing algorithms on physical resources is time and cost intensive. Although the modeling of a
simulator is a non-trivial task [34], researchers employ simulation engines to test the behavior of
distributed systems, for instance in [52]. With the CloudSIM toolkit there even exists a dedicated
simulation engine for simulating cloud computing environments [16]. Therefore, in addition to
the evaluations on the VMs in Sections 6.2 and 6.3, we also chose to evaluate certain aspects
of the prototype with a simulator (e.g. the support for different dimensions of elasticity) for the
following reasons.

• While the in situ evaluation with WordPress shows slight variations in each test run, the
results of the simulator are exactly reproducible with respect to the given input.

• No OpenStack dependency is necessary in order to evaluate the CA4S Service and the
configuration selection algorithm.

• Compared to an in situ test, the simulator allows us to evaluate the CA4S Prototype in a
fraction of the time, because we do not need to launch any resources in OpenStack.

6.1.1 Setup

Our setup simulates a cloud application that consists of a load balancer resource and a set W
of n simulated web servers resources W = {w1, w2, . . . , wn}. Both resources implement the
two methods request and run. The request method registers a single request to the resource.
To simulate more than one request within a single time unit, we consecutively call the request

method multiple times. To each incoming request the load balancer assigns a unique, strictly
monotonically increasing number rnum and distributes the load to the web server resource wi ∈
W , where i = rnum mod n.

After the simulator has sent all requests to the load balancer resource, the run method in-
creases an internal time counter and sends the observation point to the CA4S Service. We call
such a sequence of registering requests and calling the run method as a cycle. Each time the
simulator calls the run method, a cycle ends and a new one starts.

6.1.2 Observation Points

In the simulator, the observation points that the load balancer resource sends to the CA4S Service
and consist of the following attributes.

• Internal Attributes

– Added Requests: If a web server accepts an incoming request, then we add it to the
list of added requests. On the load balancer the added requests internal attribute is
the sum of all requests that the simulator has added to any of the web server instances
during the past cycle.
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– Rejected Requests: Analogously to the number of added requests, the number of
rejected requests is the sum of requests that the web server resources have rejected
during the past cycle.

• External Attributes

– Incoming Requests: This attribute value is a non-negative integer that counts the
number of calls to the requests method during the past cycle. This attribute reflects
the simulated demand to the application.

• Adaptation Point Attributes

– Instances: This adaptation point attribute describes the number of simulated web
server instances that the stack contains and simulates an adaptation point on the
resource elasticity dimension. The evaluation with the simulator contains attribute
values that are integers between 1 and 3. The number of instances does not influence
the quality score for this adaptation point.

– BounceRate: This adaptation point attribute enables elasticity on the quality dimen-
sion. In our simulation, the value for this adaptation point is either 0, 2, 3 or 4. A
bounce rate of b rejects every bth request, e.g. if the bounce rate b is 2 then the server
drops every second request. The quality for this adaptation point is one minus the
ratio of rejected requests to total requests (i.e. the sum of added requests and rejected
requests).

• Stack Attributes

– The Simulator Response Time. We simulate the response time behavior of a VM
with a modified cumulative distribution function (Formula 6.1). We determined the
constant values µ, σ andm of this formula with empiric tests and set µ to 34, σ to 16
and the multiplier value m to 3 000. This gives us a model that starts at a simulator
response time of approximately 50 for one added request per cycle and monotoni-
cally increases until it reaches a peak of 3 000 at approximately 85 added requests
per cycle. This approximates the response time behavior of an actual VM, for in-
stance the one in Figure 6.2(a). Because the simulator response time is a function of
the arithmetic mean of added requests of all web servers, the configuration selector
can decrease the response time for a given number of incoming requests either by
rejecting requests or adding additional web server resources.

– The Simulator Cost. We calculate the simulated cost with the formula c = (1 +
|W |) · 52. Consequently, this cost model adds for each web server resource and the
load balancer resource a fixed cost of 52 units per BTU.

Formula 6.1: Simulator Response Time

srt(x) =
1+erf( x−µ

σ·
√
2
)

2 ·m
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6.1.3 Test data generation

To generate a corpus of observation points we use the following method: We send requests
to the simulator in such a way that for each possible discrete value of the external attribute
“incoming requests” in the range [1, 100] the simulator sends exactly four observation points
to the CA4S Service. We repeat this for each of the twelve possible value combinations of the
adaptation point attributes “Instances” and “BounceRate”. Therefore, our test data set contains
100 · 4 · 3 · 4 = 4 800 observation points.

6.1.4 Results

We create the simulated stack with a strategy function that minimizes the total costs for the stack.
Because the external attribute “Incoming Requests“ is a discrete value, we set the maximum
distance for the bucket selection algorithm to 0, i.e. the external attribute values must match
exactly to be sorted into the respective bucket. We evaluate the results with the following four
combinations of the objectives “Simulator Response Time” and “Costs”.

1. Simulator Response Time ≤ 500 and Costs ≥ 0: Because the number of instances does
not affect the quality, the strategy function initially selects a single instance to minimize
the costs. When the number of incoming requests increases, the configuration selector
adds additional instances. If we reach the maximum number of three instances and the
number of incoming requests increases further, the bounce rate changes from 0 to 4, i.e.
the simulator rejects every 4th request. After that, the bounce rate drops to 3 and finally
to 2 (Figure 6.1(a)).

2. Simulator Response Time ≤ 500 and Costs ≤ 200: Again, the simulator first increases
the number of instances. But because in this scenario we set an upper bound of 200 for
the costs, the configuration selector cannot launch more than two instances. Instead, the
configuration selector bounces the requests earlier (Figure 6.1(b)). The graph discontinues
at approximately 75 incoming requests, because there are no more known configurations
available that can handle the amount of incoming requests.

3. Simulator Response Time≤ 1 000 and Costs≥ 0: Compared to Figure 6.1(a), we increase
the maximum response time from 500 to 1 000 this time. The behavior of the configuration
selector is the same as in the case with a maximum response time of 500, except that this
time the adaptations happen later on the x-axis (Figure 6.1(c)).

4. Simulator Response Time ≤ 1 000 and Costs ≤ 200: Here the behavior again is the
same as with a lower response time, except that the configuration selector performs the
adaptation point value changes later (Figure 6.1(d)).

This result shows that for the same set of observation points the configuration selector behaves
differently, depending on the provided objectives. The experiment also demonstrates the abil-
ity of the prototype to cover the three different dimensions of elasticity, namely the resource
elasticity, the quality elasticity and the cost elasticity.
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(d) Like in Figure 6.1(c), the configuration se-
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Figure 6.1: The simulator results show how from the same set of observation points the CA4S
Prototype derives configuration decisions based on the objectives.
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6.2 Apache HTTP Server with WordPress

For this evaluation scenario we now launch actual VM instances in OpenStack in order to eval-
uate the specification of Objectives and Adaptation Points in the OpenStack Heat templates as
well as the ability of the CA4S Client Agent to send observation points to the CA4S Service
(Table 6.1).

6.2.1 Setup

We perform this test with a custom OpenStack machine flavor that has a RAM size of 512 MB,
a disk size of 10 GB and one virtual CPU. With this flavor we launch an instance from the
Ubuntu 12.04.4 LTS image and install the Apache HTTP Server on it. As the application for
the web server we install the web blog software WordPress. This software is written in PHP
and uses a MySQL database. According to [14], more than 13 million web sites use WordPress,
which makes it a representative of a “typical” web application for our evaluation. When the
instance launches, we import a data set with 56 blog posts and 15 comments into WordPress.
Finally, we install the CA4S Client Agent on the host instance. We provide the full OpenStack
Heat template listing that we use to provision the evaluation instance in Appendix C.

6.2.2 Observation Points

The CA4S Client Agent periodically collects the observation points on the host instance and
submits them to the CA4S Service.

To determine the number of requests we implemented a parser for the Apache HTTP Server
access log file. We read the file line by line in backward chronological order. For each entry
in the log file we increment a counter for the respective HTTP status code group. If the parser
reaches a log entry that is older than a specified threshold, the parser stops and returns the ag-
gregated results. From this aggregated results we determine the number of requests per seconds
as well as the total number of requests within the past 60 seconds, the past 5 and the past 15
minutes. If the system has been running for less than 1, 5 or 15 minutes, we extrapolate the
corresponding number.

Although we do not need all the attributes that the CA4S Client collects, we still submit
them to the CA4S Service, so that we potentially can use the attributes for new adaptation points
and objectives in the future.

• External Attributes

– The number of requests per second that the application serves. This is the sum of
all requests with the HTTP status codes 2xx (successful) and 5xx (server error) [28].

• Internal Attributes

– The number of running Apache processes and their memory consumption. We
collect this value by parsing and filtering the list of running processes.
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– The number of processes, the information about the current CPU usage, the phys-
ical and virtual memory that is available and used. We collect this data with the
vmstat utility [80].

– The system’s load average as an indicator for the current CPU wait queue length [72].

– Statistical information from the network interfaces from the ifstat utility.

• Stack Attributes

– We amend the observation points with the Response Time of the application. We
do this by sending an HTTP request to the endpoint that the user specifies in the
template and measuring the time it takes for the response to complete.

• Adaptation Point Attributes

– We perform two evaluations with the different adaptation points “BounceRate” and
“QuickCacheTimeout”. We will describe both adaptation points in more detail in
Section 6.2.4 when we discuss the evaluation results.

6.2.3 Test Data Generation

To create the payload on the test instances we use a custom payload generator that takes four
parameters: a) The endpoint, which in our case is the launched OpenStack resource, b) the
desired number or requests per second, c) the duration for which to run the payload generator
and d) the number of threads. The payload generator distributes the load evenly across the
threads that send requests to the endpoint at the given rate. In case the endpoint cannot deliver
the specified number of requests per second we suspend the thread for a random amount of time
between 0 and 15 seconds. In case a thread fails for three times consecutively, we interrupt the
thread altogether.

To create the observation point data set we iterate over all adaptation point attribute values.
For each value we launch a new instance, wait until it is ready and then use the payload generator
to send requests in the range between 0 and 3.5 requests per second with a step size of 0.1. The
CA4S Client Agent on the OpenStack instance sends the observation points to the CA4S Service,
where we then use it for the evaluation.

Objective Filters

To remove unsuitable observation points from the data set we use the following two objective
filters.

1. We filter out all observation points where the number of requests is equal to 0. This is
necessary for the bounce rate adaptation point, because the quality function is not defined
for zero requests per second.

2. In our experiments we found that observation points from an overloaded instance bias the
quality calculation. Therefore, we filter all observation points where the internal attribute
value “CPU idle” is less than 10%.
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6.2.4 Results

For this setup, we present results for two different adaptation points. First we show the result for
an adaptation point with a constant quality function that switches a cache either on or off. We
then extend the experiment to an adaptation point with four possible attribute values and where
the quality function depends on the observation point attributes.

QuickCache Adaptation Point

“Quick Cache” is a plug-in for WordPress that provides a file system based cache for WordPress
installations [81]. For this plug-in we created the adaptation point “QuickCacheTimeout” that
allows us to specify the amount of time for which a cached page is valid. In our evaluation
scenario the setting for QuickCacheTimeout can be either “0” (i.e. we disable the cache) or “60”
(i.e. we cache the content for a period of 60 seconds). The result of the quality function is a fixed
value that depends on the concrete value for the QuickCacheTimeout adaptation point attribute,
as Formula 6.2 shows.

Formula 6.2: Quality for the QuickCacheTimeout Adaptation Point

q =

{
1 if QuickCacheT imeout = 0,

0.8 else.

We used the payload generator to create an observation point data set for this evaluation scenario.
From the generated observation points 2 874 have the cache disabled and 8 068 entries have a
cache timeout setting of 60. This results in a total size of 10 942 observation points. We plot the
results of this evaluation in Figure 6.2. The graph in Figure 6.2(a) shows that for the disabled
cache adaptation point attribute value there are less decision results available as the number of
incoming requests per seconds increases. Simultaneously, the average response time increases
with an increasing number of requests. This leads to a higher violation ratio, because more
and more observation points violate the specified objective of a response time below 500 ms.
Consequently, the total quality score for the disabled cache drops below that of the enabled
cache. In the result that Figure 6.2(d) shows, this happens at a rate of approximately 0.6 requests
per second.

This result also demonstrates how the selection of the quality function influences the de-
cision process: If we would set the quality for the enabled cache to 0.6 instead of 0.8 (as in
Figure 6.2(d)), the configuration selector would enable the cache later, because the quality score
for the disabled cache first had to drop to a total quality of 0.6, before the enabled cache would
yield a higher quality.

6.2.5 Bounce Rate Adaptation Point

To demonstrate that the in situ scenario also works for adaptation points with more than two
options and where the quality depends on the observation point attribute values, we now present
a second evaluation of the WordPress stack. This time we use the “BounceRate” adaptation
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Figure 6.2: The evaluation results for the adaptation point QuickCacheTimeout on the Word-
Press stack.
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point that we already presented in Section 6.1. To enable a request bouncer for the WordPress
blog, we created a script that the application calls before each request. Like in the simulator, we
enumerate each incoming request and respond to every bth request with the HTTP status code
500, where b denotes the bounce rate. For this evaluation we also use the payload generator to
create a test set that contains a total of 17 026 observation points. Table 6.2 shows the distribution
of the observation points.

Table 6.2: BounceRate Adaptation Point Distribution

BounceRate 0 4 3 2 Total
Number of entries 4 072 4 347 4 473 4 134 17 026

We summarize the results of this evaluation in Figure 6.3. The figure shows that at first the
application accepts all incoming requests. At a rate of 1.4 requests per seconds we observe that
the total quality for a bounce rate of 4 yields a higher quality than that for a bounce rate of 0.
This is despite the fact that there are more observation points for a bounce rate of 0 than there
are for a bounce rate of 4. This shows that the number of observation points does not influence
the configuration selector.

6.3 End To End Evaluation

In the previous two sections we evaluated our prototype by visualizing the decision results of
the configuration selector. We now conclude this chapter with an “end to end“ evaluation of the
CA4S Prototype and a Heat stack, where we apply the configuration decision to the instance.

6.3.1 Setup

For this evaluation, we use the WordPress instance with the “BounceRate” adaptation point that
we described in Section 6.2. From this experiment we also use the data set with 17 026 historical
observation points as the initial knowledge base. In the Heat template file we specify a target
response time of≤ 750 ms as the objective and an initial value of 0 for the bounce rate. We then
launch the stack and use the payload generator (see Section 6.2.3) to create an incoming request
curve for the WordPress application that approximates a normal distribution over the course of
elapsed time. The CA4S Client Agent records the number of requests per second that the re-
source actually serves along with the other attribute values and sends the observation points to
the CA4S Service. The CA4S Engine constantly monitors the stack and performs the configura-
tion changes if necessary. If an adaptation point attribute values changes, the CA4S Client Agent
applies the changed configuration settings to the resource (see Figure 4.5). As a control we first
run this test on a system where we disabled the CA4S Engine and then compare it to the results
of the same setup with an enabled CA4S Engine.
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Figure 6.3: Evaluation results for the adaptation point BounceRate on the WordPress stack.
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6.3.2 Result

Figure 6.4 shows the outcome of this evaluation. We show in Figures 6.4(a) and 6.4(b) the
elapsed time on the x axis and put this in relation to the number of incoming requests per second
as well as the served requests per second on the left y axis. The right y axis shows the value
for the “BounceRate” adaptation point. This graph indicates when the CA4S Engine changes
the adaptation point attribute value. Without the CA4S Engine, the WordPress application fails
to deliver the desired amount of requests at a rate of approximately 2 requests per second (Fig-
ure 6.4(a). The staggered graph for the served requests/s indicates a server overload. When
we enable the CA4S Engine, the configuration selector initially leaves the bounce at 0, because
this setting yields the best quality. With an increasing number of incoming requests the CA4S
Engine adjusts the bounce rate so that the application is able to handle the peak demand. When
the number of incoming requests decreases and a different adaptation point value is able to han-
dle the demand with a higher quality, the CA4S Engine adjusts the bounce rate. Eventually the
bounce rate reaches 0 again (Figure 6.4(d)).

Figures 6.4(c) and 6.4(d) show a different aspect of this evaluation. Like in Figure 6.4(b),
the data is in chronological order. This time we show the smoothed average response time on the
left y axis. The right y axis shows the bounce rate. With a disabled CA4S Engine, the response
time peaks at over 3 500 ms, consequently violating the 750 ms objective (Figure 6.4(c)). When
we enable the CA4S Engine, the application continuously meets the specified objective, because
now it adjusts the bounce rate.
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Figure 6.4: The end to end evaluation shows the effect of the CA4S Engine.
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CHAPTER 7
Conclusion

In this chapter we conclude the thesis by revisiting the research questions in Section 7.1 and by
providing an outlook on future research directions in Section 7.2.

7.1 Research Questions Revisited

How can we extend existing cloud orchestration template languages so that a user can specify
elasticity requirements to the application with them? In Chapter 4 we presented three novel
resources for OpenStack Heat. One resource enables a user to specify the desired high-level
objectives for an application. The second resource allows the user to specify the provided adap-
tation points. Finally, the third resource allows a user to specify the overall strategy that the
application should aim for. We have shown that the presented method integrates seamlessly
into the existing OpenStack Heat template structure because a user can specify the elasticity
requirements with a valid CloudFormation template format.

How can we integrate a provider managed cloud computing adaptation service into an exist-
ing cloud computing service infrastructure? By implementing resource plug-ins for OpenStack
Heat we did not need to modify the source code of OpenStack to integrate the new function-
alities. Likewise, we designed our service in a way so that the cloud provider can add support
for new adaptation points and objectives by creating plug-ins. We created a service oriented
architecture with a central REST service that provides a clean interface between the autonomic
adaptation service and the managed OpenStack resources.

Is it possible to utilize the collected data from all clients in a way that allows the autonomic
manager to derive reasonable specific adaptations with respect to user defined objectives? In
Chapter 5 we presented an algorithm that utilizes the collectively gathered data from all clients
that use the same stack template to derive configuration decisions for individual clients. We have
shown in Chapter 6 that this algorithm is able to derive different decisions with respect to the
user formulated objectives from the same set of data.
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7.2 Future Work

In this thesis we provided the basis for a cloud application adaptation service along with a sample
implementation of a configuration selection algorithm. The generic nature of the presented
prototype allows us to conduct future research on a range of topics.

• For our prototype, we assumed that there exists already a body of historical observation
points. In future research, we systematically want to evaluate strategies how to generate
an initial set of observation points. One possible research directions is to use evolutionary
algorithms.

• For cases where no observation points exists, we want to create heuristics that estimate
the quality of a configuration. For this we can use interpolation functions or regression
functions, such as in [12].

• In the state of the art review in Chapter 3 we covered different methods to derive config-
uration decisions in autonomic systems. Future research can apply the presented methods
(e.g. based on control theory, game theory or neural networks) to alternative configuration
selection implementations.

• In a future iteration of the configuration selection algorithm we plan to take the adaptation
time into account. The research of SLA prediction (e.g. [48]) and adaptation cost models
(e.g. [46]) can be the basis for this research. Rao et al. also pointed out the usefulness of
reinforcement learning approaches to model the time between a change and the effect [73].

• We illustrated the feasibility of the configuration selection algorithm with a distance based
algorithm. For this proof of concept, we left aside any performance considerations. To
address this issue in future work, we want to use heuristics to prune the search space for
configurations (e.g. branch and bound as proposed in [46]). Prototype selection can be a
promising approach for a faster distance calculation [31]. Also, the creation of dependency
graphs like in [86] is a promising research direction.

• In this thesis, we focused on the self-optimization and self-configuration aspect of auto-
nomic computing. Future research can address the other two pillars of autonomic com-
puting, namely self-protection and self-healing.

• The work from Inzinger et al. that served as the basis for this thesis makes the hypothesis
that a provider managed adaptation service provides benefits for both the cloud provider
and the cloud user [39]. In this thesis we focused on the benefits for the cloud user. Fu-
ture research can examine the benefits of the collaboratively collected observation points
proposed method from the provider side.
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APPENDIX A
Acronyms

API Application Programming Interface

AWS Amazon Web Services

BTU Billing Time Unit

CA4S Cloud Computing Application Adaptation as a Service

CBR Case Based Reasoning

CFN CloudFormation-compatible format

CPU Central Processing Unit

DNS Domain Name Service

DSL Domain Specific Language

ECA Event Condition Action

GB Gigabyte

GUI Graphical User Interface

HOT Heat Orchestration Template

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IP Internet Protocol

JSON JavaScript Object Notation

KB Kilobyte

k-NN k-Nearest Neighbors

MAPE-K Monitor, Analyse, Plan, Execute, Knowledge

MB Megabyte
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OOP Object Oriented Programming

OS Operating System

PaaS Platform as a Service

PC Personal Computer

QoS Quality of Service

RAM Random Access Memory

REST Representational State Transfer

RPC Remote Procedure Call

SaaS Software as a Service

SLA Service Level Agreement

SLO Service Level Objective

TCO Total Cost of Ownership

UML Unified Modeling Language

URL Uniform Resource Locator

VCPU Virtual Central Processing Unit

VM Virtual Machine

VPN Virtual Private Network

XaaS Everything as a Service

YAML YAML Ain’t Markup Language
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APPENDIX B
CA4S Service Endpoints

This appendix lists the endpoints of the CA4S Service.

B.1 Configuration

Data Structure

The configuration is a set of key/value pairs where the key denotes the adaptation point and the
value the concrete adaptation point value.

{

"key1" : "value1",

"key2" : "value2"

}

Endpoints

GET /v1/config

Retrieve the current configuration for the issuer of the request, based on the client IP address.
For testing purposes it is also possible to add an arbitrary request IP by appending the GET
parameter client_adder. Returns {} if no configuration exists.

B.2 Objectives

Data Structure

{

"id" : "",

"name": "",
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"objective": "",

"target" : "",

"cmp" : "",

"value" : "",

"stack_id" : "",

}

Endpoints

DELETE /v1/objectives/{OBJECTIVE_ID}

Delete the objective with the id {OBJECTIVE_ID}.

DELETE /v1/objectives/stack/{STACK_ID}/{OBJECTIVE NAME}

Delete the objective from stack {STACK_ID} and the objective name {OBJECTIVE NAME}.

GET /v1/objectives

Get a list of all currently registered objectives.

GET /v1/objectives/{OBJECTIVE_ID}

Get objective with id {OBJECTIVE_ID}.

GET /v1/objectives/resource/{RESOURCE_ID}

Get the list of objectives for the resource with id {RESOURCE_ID}.

GET /v1/objectives/stack/{STACK_ID}

Get the list of objectives for the stack with id {STACK_ID}.

POST /v1/objectives

Add a new objective. If the objective already exists, update it.

B.3 Stacks

Data Structure

{

"id": ""

}
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Endpoints

DELETE /v1/stacks/{STACK_ID}

Delete the stack with the id STACK_ID.

GET /v1/stacks

Get a list of all stacks.

GET /v1/stacks/objectives/{STACK_ID}

Get the objectives that belong to the stack with id STACK_ID.

POST /v1/stacks

Add a new stack. If the stack already exists, update it.

B.4 Resources

Data Structure

{

"id": "",

"stack_id": "",

"internal_ip": "",

"resource_type": ""

}

Endpoints

DELETE /v1/resources/{ID}

Delete resource with id ID.

GET /v1/resources

Retrieve a list of all resources.

GET /v1/resources/{ID}

Get resource with id ID.

POST /v1/resources

Add a new resource.
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B.5 Adaptation Points

Data Structure

{

"id" : "",

"name" : "",

"adaptation_point" : "",

"val_from" : "",

"val_to" : "",

"value" : "",

"stack_id" : ""

}

Endpoints

DELETE /v1/aps/{ID}/{NAME}

If NAME is empty, delete the adaptation point with id ID. Otherwise delete the adaptation point
from stack with id ID and the key NAME.

GET /v1/aps

Retrieve a list of all adaptation points.

GET /v1/aps/{ADAPTATION_POINT_ID}

Get adaptation point with id {ADAPTATION_POINT_ID}.

GET /v1/aps/ip/{INTERNAL_IP}

Get adaptation points that belong to the internal IP address INTERNAL_IP.

GET /v1/aps/stack/{STACK_ID}

Get adaptation points that belong to the stack with id STACK_ID.

POST /v1/aps

Register a new adaptation point.

PUT /v1/aps/{ADAPTATION POINT_ID}/{VALUE}

Update the value for adaptation point with id {ADAPTATION POINT_ID} to {VALUE}.
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B.6 Observation Points

Data Structure

{

id : "",

resource_id : "",

resource_type : "",

internal : "",

external : "",

values : "",

stack : "",

created_date : ""

}

Endpoints

POST /v1/data

Add a new observation point.

B.7 Strategy

Data Structure

{

"id" : "",

"name" : "",

"objectives" : "",

"function" : "",

"stack_id" : ""

}

Endpoints

DELETE /v1/strategies/{ID}/{NAME}

If no name is provided, delete the strategy with id {ID}. Otherwise, delete strategy from stack id
{ID} and with the name {NAME}.

GET /v1/strategies

Get the list of all strategies.
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GET /v1/strategies/{ID}

Get the strategy with id {ID}.

POST /v1/strategies

Add a new strategy.
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APPENDIX C
Full Benchmark Template Listing

C.1 Base Server Template� �
{

"AWSTemplateFormatVersion": "2010-09-09",

"Description": "Base server containing wordpress and sample data for image creation",

"Outputs": {

"WebsiteUrl": {

"Value": {

"Fn::Join": [

"",

[

"http://",

{

"Fn::GetAtt": [

"Webserver1",

"PublicDnsName"

]

}

]

]

}

}

},

"Parameters": {

"KeyName": {

"Description": "Name of an existing EC2 KeyPair to enable SSH access to the

instance",

"Type": "String"

}

},

"Resources": {

"Webserver1": {

"Properties": {
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"ImageId": "precise-server-cloudimg-amd64-disk1",

"InstanceType": "m1.tiny",

"KeyName": {

"Ref": "KeyName"

},

"UserData": {

"Fn::Base64": {

"Fn::Join": [

"\n",

[

"#!/bin/bash",

"apt-get update",

"export DEBIAN_FRONTEND=noninteractive",

"export PRIVATE_IP=‘(curl http://169.254.169.254/latest/meta

-data/local-ipv4)‘",

"export HOSTNAME=‘(curl http://169.254.169.254/latest/meta-

data/public-hostname)‘",

"apt-get -y install git apache2 libapache2-mod-php5 php5-

mysql mysql-server python-pip python-mysqldb ifstat

sysstat unzip",

"pip install requests",

"pip install dictalchemy",

"mysqladmin -u root password mypwd",

"curl -L https://raw.github.com/wp-cli/builds/gh-pages/phar/

wp-cli.phar > /usr/bin/wp",

"chmod +x /usr/bin/wp",

"mkdir /var/www/wordpress",

"chown www-data:www-data /var/www/wordpress",

"sudo -u www-data wp core download --path=/var/www/wordpress

",

"sudo -u www-data wp core config --dbname=wp --dbuser=root

--dbpass=mypwd --path=/var/www/wordpress",

"sudo -u www-data wp db create --path=/var/www/wordpress",

{

"Fn::Join" : [

" ",

[

"sudo -u www-data wp core install",

"--path=/var/www/wordpress",

"--url=http://${HOSTNAME}/wordpress",

"--title=’Hello Benchmark’",

"--admin_user=’admin’",

"--admin_password=’nimba’",

"--admin_email=’spam@osl.name’"

]

]

},

"sudo -u www-data wp plugin install quick-cache --path=/var/

www/wordpress",

"sudo -u www-data wp plugin activate quick-cache --path=/var

/www/wordpress",

"sudo -u www-data wp plugin install wordpress-importer --

activate --path=/var/www/wordpress",
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"sudo -u www-data wp option update quick_cache_options ’{\"

version\":\"140104\",\"crons_setup\":\"1396734524\",\"

enable\":\"0\",\"debugging_enable\":\"1\",\"

cache_purge_home_page_enable\":\"1\",\"

cache_purge_posts_page_enable\":\"1\",\"

allow_browser_cache\":\"0\",\"cache_dir\":\"/wp-content/

cache\",\"cache_max_age\":\"7 days\",\"get_requests

\":\"1\",\"feeds_enable\":\"0\",\"

uninstall_on_deactivation\":\"0\"}’ --format=json --path

=/var/www/wordpress",

"sudo -u www-data wp eval \"\\$p=quick_cache\\plugin(); \\$p

->add_advanced_cache();\" --path=/var/www/wordpress",

"wget http://wpcandy.s3.amazonaws.com/resources/postsxml.zip

-O /tmp/postsxml.zip",

"unzip /tmp/postsxml.zip -d /tmp",

"sudo -u www-data wp import /tmp/posts.xml --authors=create

--path=/var/www/wordpress",

"/bin/dd if=/dev/zero of=/var/swap.1 bs=1M count=4096",

"/sbin/mkswap /var/swap.1",

"/sbin/swapon /var/swap.1",

"service apache2 reload"

]

]

}

}

},

"Type": "AWS::EC2::Instance"

}

}

}� �
C.2 Wordpress Application Server Template� �

{

"AWSTemplateFormatVersion": "2010-09-09",

"Description": "Launch a ubuntu precise64 instance with wordpress",

"Outputs": {

"WebsiteUrl": {

"Value": {

"Fn::Join": [

"",

[

"http://",

{

"Fn::GetAtt": [

"Webserver1",

"PublicDnsName"

]

}

]

]
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}

}

},

"Parameters": {

"CA4SClientPassword": {

"Description": "The password for the CA4SClient Repo",

"Type": "String"

},

"KeyName": {

"Description": "Name of an existing EC2 KeyPair to enable SSH access to the

instance",

"Type": "String"

}

},

"Resources": {

"Webserver1": {

"Properties": {

"ImageId": "ca4s-server-base",

"InstanceType": "m1.tiny",

"KeyName": {

"Ref": "KeyName"

},

"UserData": {

"Fn::Base64": {

"Fn::Join": [

"\n",

[

"#!/bin/bash",

"export PRIVATE_IP=‘(curl http://169.254.169.254/latest/meta

-data/local-ipv4)‘",

"export HOSTNAME=‘(curl http://169.254.169.254/latest/meta-

data/public-hostname)‘",

{

"Fn::Join" : [

"",

[

"wget http://stuff.r53.osl.name/ca4s.sh && sh

ca4s.sh ca3sclient ",

{ "Ref" : "CA4SClientPassword" }

]

]

},

"curl https://gist.githubusercontent.com/moee/

ef50e9e5ad4613f050ae/raw/setup.php > /tmp/setup.php",

"php /tmp/setup.php",

"mv /var/www/wordpress/index.php /var/www/wordpress/index2.

php",

"curl https://gist.githubusercontent.com/moee/

ef50e9e5ad4613f050ae/raw/bouncer.php > /var/www/

wordpress/index.php",

"/sbin/swapon /var/swap.1"

]

]

88



}

}

},

"Type": "AWS::EC2::Instance"

},

"Objective_ResponseTime": {

"Type": "CA4S::Objective",

"Properties" : {

"Objective" : "ResponseTime",

"Target" : { "Fn::Join" : ["", ["http://", { "Fn::GetAtt" : [ "Webserver1",

"PrivateIp" ]}, "/wordpress/"]] },

"Cmp" : "lte",

"Value" : 750

}

},

"AP_QuickCacheTimeout" : {

"Type": "CA4S::AdaptationPoint",

"Properties": {

"AdaptationPoint" : "BounceRate",

"gte" : 0,

"lte" : 4,

"value" : %VALUE%

}

},

"Strategy" : {

"Type": "CA4S::Strategy",

"Properties": {

"Objective" : "ResponseTime",

"Function" : "min"

}

}

}

}� �
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