
Exact Approaches to the Network
Design Problem with Relays

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Martin Riedler
Matrikelnummer 0828221

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Lektorin Mag.rer.nat. Dr.techn. Ivana Ljubić
Mitwirkung: Dipl.-Ing. Dr.techn. Mario Ruthmair

Dipl.-Ing. Dr.techn. Markus Leitner

Wien, 05.08.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Exact Approaches to the Network
Design Problem with Relays

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Martin Riedler
Registration Number 0828221

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Lektorin Mag.rer.nat. Dr.techn. Ivana Ljubić
Assistance: Dipl.-Ing. Dr.techn. Mario Ruthmair

Dipl.-Ing. Dr.techn. Markus Leitner

Vienna, 05.08.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Martin Riedler
Weindlau 30, 4432 Ernsthofen

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I would like to thank my advisor Ivana Ljubić for providing this interesting topic, for helping
me to improve the models and for supporting me with all aspects of the thesis.

I would also like to thank my co-advisors Markus Leitner and Mario Ruthmair for their sugges-
tions for improvements and new models, for their help with implementation issues and for their
comments on the thesis.

I especially want to thank everyone who supported me during the phase of completing the thesis
to finish as fast as possible, to give me the opportunity to continue researching as an assistant at
the Institute of Computer Graphics and Algorithms at the Vienna University of Technology.

Last but not least, I want to thank my family for all their support.

iii

Abstract

In this thesis we develop exact approaches for solving the Network Design Problem with Relays
(NDPR). The NDPR can be motivated as follows. We are given a set K of vertex pairs that
need to communicate with each other in an undirected graph G = (V,E). A signal is sent from
a source to a target from K but after a distance of dmax the signal deteriorates and we need to
install a relay to regenerate it. Alternatively, we may install new edges in an existing graph (that
can also be empty) to shorten the distance. Every edge e ∈ E has cost we and a distance de. The
cost for installing a relay at vertex i ∈ V is ci. The goal of the NDPR is to find a selection of
edges to install and vertices where relays are to be placed enabling communication between the
pairs in K s.t. the sum of relay and edge costs is minimal.

The NDPR arises in the context of network design when distance limits have to be kept due
to signal deterioration. To cover longer distances equipment for signal regeneration is required.
This equipment is expensive and thus minimization is required. Another area of application is
e-mobility. E-cars need to recharge after traveling a certain distance. Recharging stations are
expensive and one only wants to build as few as necessary.

Previous work on the NDPR mainly focuses on heuristic approaches. In the following we
are going to present exact solution approaches based on mixed integer linear programming.
We introduce compact models, models with an exponential number of constraints, models with
an exponential number of variables and models with an exponential number of variables and
constraints. We divide our models w.r.t. the underlying graph transformation. The first set of our
models is based on layered graphs and the second one on communication graphs.

We test our models against modified versions of instances from the previous literature. One
of our algorithms solves the first set of those instances to optimality and also a large amount of
the instances of the second set. Moreover, we present a set of entirely new instances containing
a larger number of commodity pairs. Some of our algorithms solve most of these instances to
optimality but some of the new instances turned out to be very challenging.

v

Kurzfassung

In dieser Arbeit entwickle ich exakte Lösungsansätze für das Network Design Problem with
Relays (NDPR). Das NDPR kann folgendermaßen motiviert werden. Gegeben ist eine Menge
K von Knotenpaaren die in einem ungerichteten Graphen G = (V,E) kommunizieren müssen.
Ein Signal wird vom ersten Knoten des Paares zum anderen gesendet. Nachdem eine Distanz
von dmax zurück gelegt wurde verschlechtert sich das Signal zu sehr und muss durch Platzieren
eines relays aufgefrischt werden. Als Alternative können neue Kanten in ein bestehendes (mög-
licherweise leeres) Netzwerk eingefügt werden, um die zurückgelegte Distanz zu verkleinern.
Jede Kante e ∈ E hat Kosten we und eine Distanz de. Die Kosten um ein relay bei Knoten i ∈ V
zu installieren, betragen ci. Das Ziel des NDPR ist es eine Menge von zu installierenden Kanten
und relays auszuwählen, die Kommunikation zwischen allen Paaren in K ermöglichen, sodass
die Summe aus relay- und Kantenkosten minimal ist.

Das NDPR findet Anwendung im Netzwerkentwurf, wo Distanzbegrenzungen eingehalten
werden müssen, um eine zu starke Signalverschlechterung zu vermeiden. Das Zurücklegen grö-
ßerer Distanzen erfordert Komponenten zur Auffrischung des Signals. Diese Komponenten sind
teuer und daher ist Minimierung notwendig. Ein anderes Anwendungsgebiet ist e-mobility. Elek-
troautos können nur eine bestimmte Distanz zurücklegen, bevor sie wieder aufgeladen werden
müssen. Ladestationen sind teuer, deshalb möchte man nur so wenige wie nötig bauen.

Die verfügbare Literatur zum NDPR umfasst hauptsächlich heuristische Ansätze. Im Fol-
genden werde ich exakte Lösungsansätze vorstellen die auf mixed integer linear programming
basieren. In dieser Arbeit stelle ich kompakte Modelle, Modelle mit einer exponentiellen Anzahl
an Constraints, Modelle mit einer exponentiellen Anzahl an Variablen und Modelle mit einer ex-
ponentiellen Anzahl an Constraints und Variablen vor. Die Modelle werden im Bezug auf die
verwendete Transformation des Graphen unterteilt. Die erste Gruppe von Modellen basiert auf
sogenannten „layered graphs“ und die zweite auf sogenannten „communication graphs“.

Wir testen unsere Modelle mit modifizierten Instanzen aus der Literatur. Ein Algorithmus
löst alle Instanzen der ersten Gruppe optimal und einen Großteil der Instanzen der zweiten Grup-
pe. Darüber hinaus stelle ich neue Instanzen mit einer größeren Anzahl an Knotenpaaren vor.
Einige Algorithmen finden für einen großen Teil dieser Instanzen die optimale Lösung aber ein
kleiner Teil der Instanzen erwies sich als besonders schwierig.

vii

Contents

1 Introduction 1
1.1 Problem Definition and Motivation . 1
1.2 State of the Art . 3
1.3 Aim of the Thesis . 7
1.4 Structure of the Thesis . 7

2 Structural Properties and a Basic MILP Model 9
2.1 Solution Characteristics . 10
2.2 Basic MILP Model . 14

3 Models on Layered Graphs 19
3.1 Model on a Single Layered Graph . 19
3.2 Models on Multiple Layered Graphs . 24

4 Models on Communication Graphs 29
4.1 Definitions . 29
4.2 Model on a Single Communication Graph . 31
4.3 Models on Multiple Communication Graphs 35
4.4 Solving the Pricing Subproblems . 41

5 Acyclic Problem Variant 45
5.1 Solution Properties . 45
5.2 Models on Communication Graphs . 48
5.3 Models on Layered Graphs . 48

6 Computational Results 53
6.1 Preprocessing . 53
6.2 Algorithm Details . 55
6.3 Solver Configuration . 60
6.4 Test Instances . 61
6.5 Test Results . 62

7 Conclusion 81
7.1 Future work . 82

ix

A Acronyms 83

Bibliography 85

x

CHAPTER 1
Introduction

1.1 Problem Definition and Motivation

The Network Design Problem with Relays (NDPR) is defined on an undirected graph G =
(V,E, c, w, d) with relay costs c : V → Q+, edge costs w : E → Q+

0 and edge delays d : E →
Q+. The edge set E is the disjoint union of the set of free edges E0 = {e|w(e) = 0} and the
set of augmenting edges E∗ = {e|w(e) > 0}. Although we allow rational delays here, some
of the models discussed in this thesis require integral delays. Rational delays may, however, be
transformed to integral delays by means of scaling.

Furthermore, we are given a maximum delay dmax ∈ N+ and a set K ⊆ V × V of node
pairs that need to communicate with each other. W.l.o.g. we assume ∀(i, j) ∈ K : i < j. In the
following we will refer to the pairs in K also as commodities. According to K we define two
additional sets:

KS = {u|(u, v) ∈ K} . . . set of sources

K(u) = {v|(u, v) ∈ K} . . . set of targets that have to be reached by source u

We define the delay of a path p as the sum of the delays of its edges, i.e., ∆(p) =
∑

e∈p de.
Now consider a path p = (s, p1, r1, p2, . . . , rk, pk+1, t) for relays {r1, . . . rk} and subpaths
{p1, . . . pk+1}. We refer to the subpaths from source s to the subsequent relay, between every
two consecutive relays and from the last relay to the target t as segments of the path. If the
path contains no relays the only segment of the path is the path itself. We call a path feasible
or feasible connection iff none of its segments has a delay larger than the delay bound.1 Note
that the considered paths do not have to be simple, i.e., they might contain some vertices more
than once which is often referred to as walk. Details on the structure of the paths will be given
in Chapter 2.

1If there is a feasible connection between two vertices we also say that these vertices can communicate and that
they are connected.

1

We define the delay of a vertex v w.r.t. some path p as the delay of the segment between
the relay preceding v (or the source if no such relay exists) and v. The delay of relays and the
source is always zero. As already mentioned vertices might be visited more than once on a path.
Thus, a vertex is assigned different delay values depending its the position in the path. We are
going to discuss this in detail in Chapter 2. The assignment of delay values to the vertices can be
considered as traversing the edges along the path. The current delay starts at zero and whenever
we use an edge we increase the current delay by the delay of this edge. When we reach a relay
we reset the accumulated delay to zero. The path is a feasible connection iff the accumulated
delay never exceeds dmax.

A solution to the NDPR consists of a selection of augmenting edges Ê ⊆ E∗ to install in
the network and a subset of vertices V̂ ⊆ V where relays are to be placed. A solution is feasible
iff all pairs in K can communicate using the edges in Ê ∪ E0 and relays at vertices V̂ . The
aim of the NDPR is to find a feasible solution (V̂ , Ê) that minimized the total costs defined by∑

i∈V̂ ci +
∑

e∈Ê we.

In addition to the problem specific definitions we also use the following common notation.
W.r.t. a graph with vertex set V we define the complement of some subset S ⊆ V as S̄ = V \S.

For an undirected graph G = (V,E) we denote the set of directed arcs according to subset
X of the edges as A(X), i.e. A(X) = {(i, j), (j, i)|{i, j} ∈ X}. For set S we define the set of
incident edges as δ(S) = {{i, j}|i ∈ S, j ∈ S̄, S ⊂ V, {i, j} ∈ E}. If S contains only a single
vertex i ∈ V we define δ(i) := δ({i}).

For a directed graph G = (V,A) we define the set of out-going arcs according to set S as
δ+(S) = {(i, j)|i ∈ S, j ∈ S̄, S ⊂ V, (i, j) ∈ A} and the set of in-coming arcs as δ−(S) =
{(i, j)|i ∈ S̄, j ∈ S, S ⊂ V, (i, j) ∈ A}. We also use these sets w.r.t. undirected graphs
using A = A(E) as arc set. Moreover, if S contains only a single vertex i ∈ V we define
δ+(i) := δ+({i}) and δ−(i) := δ−({i}).

The NDPR arises when commodities need to be transferred between sets of start and target
locations. In addition, the maximum distance that might be covered is restricted. To cover
distances beyond this limit we require special equipment along the path. The distance limit has
to be kept from the start to the first intermediate stop, between consecutive intermediate stops
and the last stop and the target location. The aim is to identify the locations of the intermediate
stops and the required route.

Typical NDPR application arise in the ?? of communication networks. No matter if we are
talking about telecommunication networks or modern optical networks, they have a technical
limitation in common. Signals cannot be transmitted over arbitrary distances. At some point the
signal deteriorates too much and has to be regenerated. Otherwise, the signal might be lost or
the transmitted information might be falsified. However, the regeneration equipment is usually
expensive and therefore the goal is to use as few such devices as possible [6].

In telecommunication networks so called repeaters are used to regenerate signals. In a net-
work design project 422 communities in Alberta had to be connected which required to place a
repeater at least every 70 km [4].

For optical networks, for example, there exist different forms of regeneration with increasing
complexity:

2

• 1R (reamplification)

• 2R (reamplification and reshaping)

• 3R (reamplification, reshaping and retiming)

The first form is relatively cheap but can only be done a limited number of times before
reshaping and probably retiming are required (see [31]). In the following we restrict ourselves
to the placement of 3R relays as has been done for the Regenerator Location Problem (RLP).
This is motivated by the fact that the placement of this type of relays is more common in practice
[6].

A completely different field of application is e-mobility. E-cars can only cover a certain
distance before they need to recharge. Thus, recharge stations are required to travel farther.
Since such stations are expensive the goal is to have as few as possible whilst enabling travels
between arbitrary locations. Furthermore, using certain streets might require a toll. If a company
wants to build recharge stations for their fleet they also have to gauge if such connections are to
be used. Although building costs occur only once and tolls have to be paid consistently they can
be related to each other when considering a longer time span for the tolls.

1.2 State of the Art

The NDPR was originally introduced by Cabral et al. [4] in 2007. They argue that the problem
is NP-hard as it is a generalization of the Weight Constrained Shortest Path Problem (WCSPP)
which is also NP-hard (see [13]). Besides heuristic approaches, intended to solve large instances,
a first exact solution approach is presented. Their approach is reviewed in the following.

The formulation considers a set K′ = K ∪ {(v, u)|(u, v) ∈ K}, i.e., connectivity in both
directions is ensured separately. To obtain the arc set A, two arcs are generated for each edge
with costs w′ij = w′ji =

w{i,j}
2 and delays d′ij = d′ji = d{i,j}, respectively. Furthermore, we

denote the set of paths from u to v by P (u, v) and the set of relay patterns turning path p into a
feasible connection by R(p). W.r.t. the relay patterns r ∈ R(p) we define constants bri that are
set to one if vertex i ∈ V is a relay in the pattern and to zero otherwise.

The model uses variables yi, ∀i ∈ V , to identify relays and variables xij , ∀(i, j) ∈ A, for
the arcs. Furthermore, variables λpruv,∀(u, v) ∈ K′,∀p ∈ P (u, v),∀r ∈ R(p), are set to one if
path p ∈ P (u, v) with relay pattern r ∈ R(p) is used to connect the pair (u, v) ∈ K. Using this
notation the problem can be modeled as follows.

3

min
∑
i∈V

ciyi +
∑

(i,j)∈A

w′ijxij

∑
p∈P (u,v),r∈R(p)

λuvpr = 1 ∀(u, v) ∈ K′ (γuv) (1.1)

∑
p∈P (u,v),r∈R(p):(i,j)∈p

λuvpr ≤ xij ∀(u, v) ∈ K′,∀(i, j) ∈ A (µuvij) (1.2)

∑
p∈P (u,v),r∈R(p)

briλ
uv
pr ≤ yi ∀(u, v) ∈ K′, ∀i ∈ V (αuvi) (1.3)

xij − xji = 0 ∀{i, j} ∈ E (1.4)

yi ∈ {0, 1} ∀i ∈ V (1.5)

xij ∈ {0, 1} ∀(i, j) ∈ A (1.6)

λuvpr ∈ {0, 1} ∀(u, v) ∈ K′,∀p ∈ P (u, v), ∀r ∈ R(p) (1.7)

The first set of constraints ensures that a feasible connection is selected for each commodity.
Constraints (1.2) guarantee that for every selected path all its arcs will be part of the solution.
The next set of inequalities states that the relay variables have to be set according to the chosen
relay patterns. Equations (1.4) ensure that an arc is either selected in both directions or not at
all. This is motivated by the fact that the arcs correspond to edges in the original problem.

The amount of λ-variables is in general exponential. Thus, the model requires column gen-
eration. For references on this topic we refer to Section 1.4.

Pricing Subproblem
To state the pricing subproblem, from [4], we relax the path variables to their continuous

counterparts, i.e., λuvpr ≥ 0. To state the dual constraints for the path variables we use dual
variables γuv for Constraints (1.1), dual variables µuvij for Constraints (1.2) and dual variables
αuvi for Constraints (1.3):

γuv −
∑

(i,j)∈A:(i,j)∈p

µuvij −
∑
i∈V

briα
uv
i ≤ 0 ∀(u, v) ∈ K′, p ∈ P (u, v), r ∈ R(p)

µuvij ≥ 0 ∀(u, v) ∈ K′,∀(i, j) ∈ A
αuvi ≥ 0 ∀(u, v) ∈ K′, ∀i ∈ V

Thus, the pricing subproblem for each (u, v) ∈ K′ looks as follows:

arg min
p∈P (u,v),r∈R(p)

0−

γuv −
 ∑

(i,j)∈A:(i,j)∈p

µuvij +
∑
i∈V

briα
uv
i


This can be solved by the following subproblem:

∀(u, v) ∈ K′, MCPPRuv = arg min
p∈P (u,v),r∈R(p)

 ∑
(i,j)∈A:(i,j)∈p

µuvij +
∑
i∈V

briα
uv
i


4

The problem MCPPRuv that needs to be solved is the Minimum Cost Path Problem with
Relays (MCPPR). The MCPPR is NP-hard but fast pseudo-polynomial algorithms are available
to solve this problem. A detailed description of this problem and efficient solution methods can
be found in [27]. The MCPPR is essentially the path-variant of the NDPR, i.e., if we set |K| = 1
for the NDPR we obtain the MCPPR.

In 2008 Kulturel-Konak and Konak [26] continued to work on the NDPR and presented
a hybrid approach based on local search and a genetic algorithm. In Konak [25] an improved
genetic algorithm is introduced. In this paper Konak also provides a variant of the exact approach
by Cabral et al. [4] based on set covering constraints. In the following we are going to give an
overview of this variant.

The model uses the same set of variables but avoids the duplication of K and as a result
also the transformation of costs and delays. The most important difference, however, is that
relay patterns are replaced by set covering constraints. To state these constraints we denote by
V I(p, j) the maximal set of nodes that can be traversed on path p ∈ P (u, v) starting at node j in
the direction from node u to node v without violating the delay bound, i.e., the sum of the delays
of the corresponding edges must not exceed dmax and adding a further vertex causes a violation.

min
∑
i∈V

ciyi +
∑
e∈E

wexe

∑
p∈P (k)

λuvp = 1 ∀(u, v) ∈ K, ∀p ∈ P (u, v) (1.8)

∑
(u,v)∈K,p∈P (u,v):e∈p

λuvp ≤ |E| · xe ∀e ∈ E (1.9)

∑
i∈V I(p,j)

yi ≥ λuvp ∀(u, v) ∈ K, ∀p ∈ P (u, v), ∀j ∈ p, V I(p, j) 6= p (1.10)

xij − xji = 0 ∀{i, j} ∈ E (1.11)

yi ∈ {0, 1} ∀i ∈ V (1.12)

xij ∈ {0, 1} ∀{i, j} ∈ E (1.13)

λuvp ∈ {0, 1} ∀(u, v) ∈ K, ∀p ∈ P (u, v) (1.14)

The first set of constraint is the same as for the previous model. Inequalities (1.9) differ
since they sum up over all commodities and thus require a Big-M constant on the right-hand
side. Instead of creating extra variables for all the feasible relay arrangements, Constraints
(1.10) are used. These set covering constraints state that one of the vertices in set V I(p, j) has
to be a relay whenever V I(p, j) 6= p since otherwise it is not possible to go on without violating
the delay bound. The rest of the formulation is equivalent to the previous model.

In [25] the observations concerning the set covering constraints introduced in this formula-
tion are used to design a genetic algorithm.

1.2.1 Regenerator Location Problem

The Regenerator Location Problem (RLP) was introduced in 2010 by Chen et al. [6]. The RLP is
closely related to the NDPR but focuses on the placement of regenerators (=relays). The authors

5

do not deal with the selection of edges, i.e., it is assumed that an existing network is given s.t. all
edges have a cost of zero. Furthermore, full connectivity is required, i.e., all node pairs have to
be able to communicate. NP-hardness of the RLP was shown in [6]. The RLP is a special case
of the NDPR for E∗ = ∅ and K = {(i, j)|(i, j) ∈ V × V, i < j}.

Chen et al. [6] provide several Integer Linear Programming (ILP) models for the solution
of the RLP. Unfortunately, these models cannot be directly used to solve the NDPR since they
are not capable of selecting edges. Nevertheless, the authors provide some techniques that are
useful for solving the NDPR. The most interesting technique used, are communication graphs.
We are going to use this graph transformation for solving the NDPR. A detailed description will
be given in Chapter 4.

In 2013, Chen et al. [5] introduced the so called Generalized Regenerator Location Problem
(GRLP), see also [7]. In addition to the standard RLP node sets S ⊆ V and T ⊆ V are defined.
Thereby, S is the set of candidate locations where relays may be installed. Furthermore, T
is the set of terminal nodes which need to be able to communicate in a feasible solution, i.e.,
K = {(i, j)|(i, j) ∈ T × T, i < j}. Since the GRLP reduces to the RLP for S = T = V it is
also NP-hard.

With some slight modifications the NDPR is also able to solve these problems. We just have
to assign infinite costs to the vertices in V \ S. If we obtain a solution with non-infinite costs
we obtained a feasible solution. Otherwise it follows that the respective instance is infeasible.
Alternatively, we can add constraints that prohibit that the vertices in V \S become relays which
is easy for all models that we are going to present in the following.

1.2.2 Maximum Leaf Spanning Tree Problem/Minimum Connected Dominating
Set Problem

The goal of the Maximum Leaf Spanning Tree Problem (MLSTP) is to find a spanning tree
w.r.t. an undirected graph G = (V,E) with a maximum number of leaves. The MLSTP was
shown to be NP-hard by Garey and Johnson [13]. Fujie [12] provided two formulations and
a detailed study of the facial structure of the arising polytopes. In 2010 Lucena et al. [30]
presented additional formulations. Their first formulation is based on directed graphs which is
an improvement of an approach from the previous literature. The second model reformulates the
problem as a Steiner arboresence problem.

A closely related problem is the Minimum Connected Dominating Set Problem (MCDSP).
A set D ⊆ V of a graph G = (V,E) is called a dominating set iff Γ(D) = V for Γ(D) =
D ∪ {j ∈ V |{i, j} ∈ E, i ∈ D}. A dominating set is called connected iff the subgraph
G = (D,E(D)) is connected for E(D) = {{i, j} ∈ E|i ∈ D, j ∈ D}. The goal of the
MCDSP is to find a connected dominating set of minimum cardinality. It is well known that
each solution of the MCDSP can be transformed into a solution of the MLSTP (see, e.g. [14]).
In addition, Gendron et al. [14] provide two new approaches for the solution of the MCDSP
using Benders Decomposition and Branch-and-Cut.

Chen et al. [6] observed that the RLP can be used to solve the MLSTP as well as a variant
in which weights are assigned to the vertices. As a consequence this problem can also be solved
by means of the NDPR.

6

1.2.3 Regenerator Placement Problem

Another closely related problem is the Regenerator Placement Problem (RPP). This problem
does not restrict the maximum distance that might be covered without visiting a relay but the
number of hops. Similar to the RLP it only considers edges of cost zero but the subset of
nodes that need to communicate is an arbitrary subset of node pairs. The goal of the RPP is
to minimize the number of used relays. Sen et al. [36] give an overview of this problem and
present an efficient approximation algorithm. They also point out the importance of considering
more general delay constraints. In fact there are various definitions of the RPP and many later
versions also consider the same delay constraints as for the NDPR and the RLP. Flammini et al.
[10] present complexity results and algorithms for several variants of the RPP.

The RPP with hop constraints can also be solved by NDPR-algorithms. We just have to use
delays of one for the edges and then set the delay bound to the maximum number of allowed
hops. To minimize the number of relays we assign the same cost to all of them. Thus, minimizing
the costs is equivalent to minimizing the number of relays.

1.3 Aim of the Thesis

The NDPR has been solved efficiently using heuristic approaches. The exact solution methods,
however, turned out to not work well in practice and are only able to deal with small or simple
instances. The exact solution methods for the RLP and the GRLP on the other hand work well
in practice but they are not directly applicable to the NDPR.

The aim of this thesis is to develop Mixed Integer Linear Programming (MILP) models
that are also able to solve larger instances to provable optimality. We are going to apply the
concept of communication graphs used in [6] and combine it with column generation. This
will be the first set of solution approaches. Furthermore, we are going to apply layered graphs
for the solution of the NDPR. For the development of the models we will also use common
MILP techniques such as flow models and advanced techniques like Branch-and-Cut, Branch-
and-Price and Branch-Price-and-Cut.

The models are implemented using CPLEX 12.6 (see [23]). In addition we will also use
SCIP 3.1.0 (see [1]) to deal with the column generation approaches since CPLEX only allows
for column generation in the root node. Developed models are going to be tested on a large set
of benchmark instances.

1.4 Structure of the Thesis

We are going to start by developing some structural properties in Chapter 2. We will discuss
the problem itself and explain the aspects that make it difficult. Furthermore, we will prove
some properties about optimal solutions that will help to create tighter models. Then we are
going to present our models for the solution of the NDPR. We start with the models based
on layered graphs in Chapter 3 and then continue in the following chapter with the models
on communication graphs. In Chapter 5 we will discuss some alterations to our models when

7

different solution properties are required. Finally we present the computational results on various
test instances.

Note that we are not going to repeat the theoretical foundations of MILP as there is already a
lot of excellent literature available. There are for example Schrijver [35], Nemhauser and Wolsey
[32] and Bertsimas and Tsitsiklis [3]. In addition to the basic techniques we are also going to
apply column generation which was introduced in Gilmore and Gomory [15, 16]. For additional
literature on column generation and its application in the Branch-and-Bound tree (Branch-and-
Price) we refer to Lübbecke and Desrosiers [29] and to Barnhart et al. [2].

8

CHAPTER 2
Structural Properties and a Basic

MILP Model

In this chapter we are going to show certain structural properties concerning feasible and op-
timal solutions. These properties will be used later on to justify some of the used constraints.
Furthermore, we present a first basic MILP model to discuss aspects that make MILP modeling
of the NDPR difficult.

We start by presenting an exemplary instance to explain the basic structural properties. The
graph shown in Figure 2.1 has three edges, their costs are the numbers in parentheses and the
numbers left to the costs denote their delays. Relay costs are the numbers in parentheses to the
right of the vertex numbers.

We set dmax = 4 and consider K = {(0, 3)}. The unique optimal solution is to select all
edges and to place a relay at node 2 as shown in Figure 2.2. The optimal path connecting 0 and
3 is then (0, 1, 2, 1, 3). Note that this path is not simple as it uses the edge {1, 2} twice and also
visits the node 1 twice forming a cycle. The previous solution approaches for the NDPR allow
such solutions and therefore they will also be considered as valid in the following.

0(5) 1(5)

2(1)

3(5)
2(3)

1(3)

3(3)

Figure 2.1: Example Instance

9

0 1

2

3 0 1

2

3

Undirected Solution Directed path from 0 to 3

Figure 2.2: Cyclic Solution

2.1 Solution Characteristics

With the preceding problem instance in mind we are now going to prove some characteristics of
optimal solutions for NDPR instances. By considering each source-target path as being directed,
we may count the in-degree of each node along that path (see Figure 2.2). We start by studying
the in-degree of relays. In the following we are going to show that it is not necessary to visit a
relay more than once.

Lemma 2.1.1. In an optimal solution there exists for every pair (u, v) ∈ K a path from u to v
visiting each relay at most once.

Proof. By the definition of an optimal solution there has to be a feasible path from u to v for
each (u, v) ∈ K. If the in-degree of all relays in these paths is at most one, we are done.

Now assume there exists a path from u to v for some (u, v) ∈ K visiting a relay r more than
once, i.e., a path of the following shape: (u, p1, r, p2, r, p3, v) for subpaths p1 to p3. W.l.o.g. we
assume that r /∈ p1, r /∈ p3.

Observe that p1 reaches r and r reaches p3. Hence, removing subpath (r, p2, r) preserves
connectivity. Furthermore, note that if we remove an entire segment between two relays this has
no effect on the other segments. Thus, removing the subpath maintains feasibility and we obtain
a modified path with only a single visit to r: (u, p1, r, p3, v).

If the path obtained this way still contains a relay with in-degree greater than one we may
iterate this procedure until all superfluous visits to relays have been removed. Note that we
only remove edges and nodes from the path and never increase the in-degree of any vertex, thus
termination of the procedure is guaranteed.

According to the instance described in the previous section it makes sense to visit a non-
relay vertex a second time. In the following we are going to show that we do not gain anything
by further visits.

Lemma 2.1.2. In an optimal solution there exists for every pair (u, v) ∈ K a path from u to v
visiting each non-relay vertex at most twice.

10

u i v
p0

p1 pn−1

pn

. . .

Figure 2.3: Path from u to v visiting vertex i n times

Proof. By the definition of an optimal solution there has to be a feasible path from u to v for
each (u, v) ∈ K. In the following we are going to show that whenever a non-relay vertex i ∈ V
is visited more than twice on such a path we may reduce it to a feasible path visiting i at most
twice.

Assume that the vertex i is visited n > 2 times. Then there have to be n−1 cycles1 resulting
in path p = (u, p0, i, p1, i, . . . , pn−1, i, pn, v) with subpaths {p0, p1, . . . , pn} as shown in Figure
2.3. Now assume subpath pi contains no relay then the delay of the segment that contains pi will
stay the same or decrease if we remove the cycle. Thus, we can safely remove all such cycles
without affecting feasibility of p. If the in-degree of i is now smaller than or equal to two we are
done. Otherwise we consider the remaining cycles {p1, . . . , pk} that contain at least one relay.
(2 ≤ k ≤ n− 1)

Simply removing a cycle containing relays causes two consecutive segments to merge and
the delay of the emerging segment might be larger than dmax. In the following we are going to
show how to modify the path s.t. only one of the relays in cycles {p1, . . . , pk} is visited and s.t.
the path stays feasible.

Among the remaining cycles we choose the relay r∗ closest to i w.r.t. the delay over all re-
lays in subpaths {p1, . . . , pk}, i.e., either ∆((i, q′, r∗)) or ∆((r∗, q′′, i)) is minimal for subpaths
q′, q′′. Note that since we are dealing with edges we can use this minimal subpath to reach and to
leave r∗. Let q be the subpath used in the minimal connection then we construct a path from u to
v as follows: p′ = (u, p0, i, q, r

∗, q, i, pn, v). Note that this path only uses a subset of the edges
used in the original path and that it connects u and v. Moreover, it fulfills the desired condition
and visits i only twice. However, we still have to show that this path is also feasible.

Let r0 be the last relay in p0 or u if such a relay does not exist, r1 the first relay in p1, rk the
last relay in pk and rn the first relay in pn or v if such a relay does not exist. In the original path
the segments between r0 and r1 and rk and rn are feasible by definition. Note that the subpaths
from r0 to i and from i to rk stay the same in the modified path. We chose r∗ to be the relay
closest to i. Hence, the subpaths from i to r1 and from rk to i both have a delay at least as high
as when using (i, q, r∗) or (r∗, q, i) respectively. Thus, the new path has to be feasible. Note that
if the delay of the subpath between r0 and i is smaller than or equal to the delay of the subpath
(r∗, q, i) we can even remove the cycle (i, q, r∗, q, i).

1Note that these cycles do not have to be simple.

11

We iteratively apply this procedure to all non-relay vertices that are visited more than twice
to finally obtain a path fulfilling the proposed condition.

Note that if either (i, q, r∗) or (r∗, q, i) is not contained in p, adding it increases the in-degree
of the vertices in q. W.l.o.g. we assume that subpath (i, q, r∗) is not used in p. Then, there has
to be a subpath (i, q̂, r∗) s.t. ∆((i, q̂, r∗)) ≥ ∆((i, q, r∗)). Since k ≥ 2 there has to be at least
one further relay rx reached by some path (i, qx, rx) s.t. ∆((i, qx, rx)) ≥ ∆((i, q, r∗)). The only
subpath we add is (i, q, r∗) and we remove at least subpaths (i, q̂, r∗) and (i, qx, rx). Therefore,
∆(p′) < ∆(p) holds, i.e., the delay of the path strictly decreases each time we process a vertex.
Note that we only allow positive delays by definition. Thus, the total delay of the path is bounded
by zero, guaranteeing termination.

From the proof of Lemma 2.1.2 we conclude that the following condition holds:

Corollary 2.1.1. In an optimal solution there exists for every pair (u, v) ∈ K a path from u to
v visiting each non-relay vertex at most twice s.t. the delay of the second visit will be strictly
smaller than the delay of the first visit.

In Lemmas 2.1.1 and 2.1.2 we have shown two properties independently. In the following we
are going to prove that for an optimal solution there exists a path s.t. both hold simultaneously.

Theorem 2.1.1. In an optimal solution there exists for every pair (u, v) ∈ K a path from u to v
visiting each relay at most once and each non-relay vertex at most twice.

Proof. First of all, by the definition of an optimal solution there has to be a feasible path from
u to v for each (u, v) ∈ K. Furthermore, the proofs of Lemmas 2.1.1 and 2.1.2 showed how
an arbitrary connection can be transformed into a connection with the respective properties. We
start with the procedure described in Lemma 2.1.2 and then apply the procedure from Lemma
2.1.1. Note that the latter does not increase the in-degree of any vertex. Thus, the resulting path
fulfills both properties.

Finally, we are going to prove that these properties do not only hold for a single commodity.
They also hold if we consider all commodities with a common source at the same time.

Theorem 2.1.2. In an optimal solution there exists for every source u ∈ KS a directed graph
rooted at u having a feasible connection to every target v ∈ K(u) visiting each relay at most
once and each non-relay vertex at most twice.

Proof. We prove the existence of such a graph Ĝ by construction. Let u be the root of our graph.
Then, from Theorem 2.1.1 it follows that for each target v ∈ K(u) there exists a feasible path
from u to v with the desired properties.

Initially we set graph Ĝ equivalent to a path to one of the targets v ∈ K(u). At this point
the graph has the desired properties according to the definition of our paths. Then, we continue
to iteratively insert paths for the remaining targets. Whenever we add a path there are three
possibilities:

1. the graph already contains the path’s target

In that case, we do not extend Ĝ since we already reach the target in the graph.

12

2. the graph and the path are vertex-independent (except for the source)

In that case we simply insert the path to Ĝ because it does not change the in-degree of any
vertex. Thus, the new graph still has the required properties.

3. the graph and the path are not vertex-independent (except for the source)

The third case is more difficult since simply adding the path would increase the in-degree
for some vertices and thus can destroy some of the properties we need. Thus, we only add parts
of the path ensuring connection to the paths’ target. Let p = (u, p1, z1, . . . , pn, zn, pn+1, v) be
the path to add, having n vertices z1 to zn in common with the graph Ĝ. Let dpi be the delay
of the subpath from the preceding relay (or the source) to zi in p and let dGi be the delay of the
subpath from the preceding relay (or the source) to zi in Ĝ.

We start at the common vertex farthest from the source, i.e., zn. If dĜzn ≤ d
p
zn we can simply

add the sub-path (zn, pn+1, v) to the graph. Since we arrive in Ĝ at zn with smaller delay than
on the path, we know that the new segment will be valid according to dmax. Furthermore we
do not increase the in-degree of any vertex and reach the additional target v. Thus, the graph
still has the desired properties. Note that we can also add this subpath if the emerging segment
remains valid w.r.t. the delay bound.

If dĜzn > dpzn and the new segment has a delay larger than dmax we also add the sub-path
(zn, pn+1, v) to the graph. However, this results in a delay violation. Thus, we have to perform
additional modifications to maintain feasibility. Let x be the closest predecessor of zn in Ĝ
having either an out-degree greater than one or being a target of u. If n = 1 and no predecessor
of the described kind exists we set x = u. We then consider the sub-path (x, q, zn) of Ĝ. Next
we remove (x, q, zn) from Ĝ and add (zn−1, pn, zn) instead. Note that again we do not increase
the in-degree of any vertex and thus, maintain the required properties. However, the graph only
remains valid w.r.t. dmax if dĜzn−1

≤ dpzn−1 . If this condition does not hold we have to iterate the

described procedure until either we arrive at some common vertex zi s.t. dĜzi ≤ dpzi or until we
reach the source (dĜu = dpu = 0).

After we have processed all (u, v)-paths we know that u reaches all its targets in Ĝ. Further-
more, none of our transformations destroyed the required properties. Hence we know that in the
final graph every relay is visited at most once and every other vertex at most twice.

Moreover, we are going to show that in an optimal solution an edge never needs to be tra-
versed more than once in the same direction:

Theorem 2.1.3. In an optimal solution there always exists a path connecting each (u, v) ∈ K
without traversing an edge more than once in the same direction.

Proof. Assume there exists a path p = (u, p1, i, j, p2, i, j, p3, v) with subpaths {p1, p2, p3} con-
necting the pair (u, v) using edge {i, j} twice in the same direction. In the following we are
going to show how this path can be modified to use the edge only once per direction without
affecting optimality and feasibility.

First of all we apply Theorem 2.1.1: In an optimal solution there exists for every (u, v) ∈ K
a feasible connection from u to v visiting every relay vertex at most once and every non-relay

13

vertex at most twice. Therefore, we assume that i and j are contained in none of the subpaths
{p1, p2, p3} and neither of them is a relay.

If the delay of the first visit to j is smaller than or equal to the delay of the second visit
then path (u, p1, i, j, p3, v) also has to be feasible and we are done. Note that we may also use
this path if the second visit to i has larger delay than the first visit. In the following we assume
that the delay of the second visit is strictly smaller. Thus, p2 has to contain at least one relay.
Therefore, we now consider the subpath p2 = (i, j, q1, r1, q2, . . . , rn, qn+1, i, j) for n relays
{r1, rn} and subpaths {q1, . . . , qn+1}.

Assume ∆((j, q1, r1)) ≤ ∆((rn, qn+1, i)) then ∆((j, q1, r1)) < ∆((rn, qn+1, i, j)) and
therefore (u, p1, i, j, q1, r, q1, j, p3, v) has to be feasible. If the opposite holds, i.e., ∆((j, q1, r1)) >
∆((rn, qn+1, i)) then also ∆((i, j, q1, r1)) > ∆((rn, qn+1, i)) holds and path (u, p1, i, qn+1, rn, qn+1, i, j, p3, v)
has to be feasible.

Thus, in either case we obtain a feasible path using edge {i, j} only once per direction.
Furthermore, the new path uses a subset of the edges of the original path preserving optimality.

If there are multiple violations of the this kind we may apply the described procedure re-
peatedly until we obtain the desired path.

Observe that if ∆((j, q1, r1)) ≤ ∆((rn, qn+1, i)) we add subpath (r1, q1, j). This can create
additional violations. Note that we remove at least path (rn, qn+1, i, j) and ∆((j, q1, r1)) <
∆((rn, qn+1, i, j)). The opposite case is symmetric. As a result, the delay of the path strictly
decreases during each iteration. Furthermore, to maintain the condition that each non-relay
vertex is visited at most twice we might have to apply the procedure described in Lemma 2.1.22.
Note that this procedure also guarantees a strict decrease of the paths delay. Since we are only
dealing with positive delays we know that the delay of a path is bounded by zero. Hence,
termination is guaranteed.

2.2 Basic MILP Model

To illustrate some difficulties w.r.t. MILP modeling of the NDPR we are going to start with a
basic model. The model uses only a simple graph transformation and uses only polynomially
many variables. We also tested this model in practice. However, it has only been able to solve
instances of few nodes and edges. We use it here only for illustrative purposes.

To ensure that dmax is not exceeded, we want to keep track of the delay at every node.
According to Corollary 2.1.1, a vertex might be visited twice with different delays. To deal with
this problem we split every vertex v into two copies v1 and v2. We use v1 for the initial visit and
v2 if the vertex is visited again. In addition we need arcs between the vertex copies as shown in
Figure 2.4 to enable all possible connections.

Each of the shown connections corresponds to a certain case. The arcs between the vertex
copies ((u1, u2) and (v1, v2)) are relay arcs, i.e., if one of these arcs is used this means that we
have to place a relay at the corresponding vertex. We arrive at vertex v1 with a certain delay then
we go directly to its copy v2 and the new delay at v2 becomes zero. Connections of the type
(u1, v1) correspond to the most basic case (the first visit of u and v). (u1, v2) has to be used if we

2Note that together with the initial assumption this also guarantees that in the final path every relay vertex is
visited at most once and every non-relay vertex at most twice.

14

u v

u1

u2

v1

v2

Figure 2.4: Transformation of a single edge

continue after the first visit of u but we already visited v before and now need a different delay
value. Note that the delay at v2 always has to be smaller than the delay at v1 since otherwise we
do not get an improvement by visiting the vertex a second time. (u2, v1) means that u has been
visited for the second time but we visit v for the first time. Finally, (u2, v2) corresponds to the
case that u has been visited for the second time and we also visit v a second time. Thus, we get
a new graph G′D = (V ′D, A

′
D):

V ′D ={v1, v2|v ∈ V }
ArD ={(v1, v2)|v ∈ V }
A′D ={(u1, v1), (u1, v2), (u2, v1), (u2, v2), (v1, u1), (v1, u2), (v2, u1), (v2, u2)|{u, v} ∈ E}

∪ArD

Figure 2.5 depicts the graph obtained using the instance shown in Figure 2.1 (relay arcs in
dotted lines).

When stating the model we have to take into account that the delay value at every vertex
depends on its predecessor. Therefore, we require at least one set of variables per source u ∈ KS
to identify the predecessor uniquely. To ensure that all commodities are able to communicate
we use cut constraints. The model uses delay variables dui per source u ∈ KS for every vertex
i ∈ V ′D. Furthermore, we require binary variables yi and xe to represent relays i ∈ V and
augmenting edges e ∈ E∗. Moreover, we use binary arc variables Xu

a per source u ∈ KS for
every arc a ∈ A′D.

15

01

02

11

12

21 22

31

32

Figure 2.5: Graph GD
′ = (VD

′, AD
′) corresponding to the instance in Figure 2.1

min
∑
i∈V

ciyi +
∑
e∈E∗

wexe

∑
a∈δ−(W)

Xu
a ≥ 1

∀u ∈ KS , ∀W ⊂ V ′D,
∃v ∈ K(u) : {v1} ⊆W, {u1, u2} ∩W = ∅

(2.1)

duil + d(i, j) ·Xu
(il,jm) ≤ dujm + dmax · (1−Xu

(il,jm)) ∀u ∈ KS , ∀(il, jm) ∈ A′D : j 6= u (2.2)

duil + d(i, j) ·Xu
(il,jm) ≥ dujm − dmax · (1−X

u
(il,jm)) ∀u ∈ KS , ∀(il, jm) ∈ A′D : j 6= u (2.3)

dui2 ≤ dmax · (1−X
u
(i1,i2)) ∀u ∈ KS , ∀i ∈ V : i 6= u (2.4)

duu1
= 0 ∀u ∈ KS (2.5)∑

a∈δ−(v1)

Xu
a = 1 ∀u ∈ KS , ∀v ∈ K(u) (2.6)

∑
a∈δ−(i1)

Xu
a ≤ 1 ∀u ∈ KS ,∀i /∈ K(u) (2.7)

∑
a∈δ−(i2)

Xu
a ≤ 1 ∀u ∈ KS , ∀i ∈ V (2.8)

Xu
(i1,i2) ≤ yi ∀u ∈ KS , i ∈ V : i 6= u (2.9)∑

l∈{1,2},m∈{1,2}

Xu
(il,jm) ≤ xe ∀u ∈ KS , ∀e ∈ E∗, ∀(i, j) ∈ A(e), (2.10)

xe ∈ {0, 1} ∀e ∈ E∗ (2.11)

Xu
a ∈ {0, 1} ∀u ∈ KS , ∀a ∈ A′D (2.12)

0 ≤ dui ≤ dmax ∀u ∈ KS , ∀i ∈ V ′D (2.13)

16

The first set of constraints are the cut inequalities. Every set W of arc variables containing
a target copy v1 for some v ∈ K(u) requires an in-coming arc. Since {u1, u2} ∩W = ∅ this
ensures that all targets are connected to their corresponding source. Constraints (2.2) to (2.5)
ensure that the delay variables are set correctly. The first two of these constraints set an upper
and a lower bound on the delay w.r.t. the preceding vertex. If an in-coming arc is selected the
upper and lower bound are the same. Otherwise, they have no effect and leave the bound of
0 ≤ dui ≤ dmax unchanged. Constraints (2.4) reset the delay to zero when a relay is placed on
the vertex and the next set of constraints ensures that we start with a delay of zero at the source.
Constraints (2.6) state that each target has exactly one in-coming arc on copy v1, the initial copy
of the other vertices might have at most one in-coming arc (2.7). Furthermore, all vertices might
be visited a second time (2.8). The last two constraints link the arc variables to the relay and
edge variables. Note that Constraints (2.10) also ensure that per directed arc of an edge and per
source, only one of the four variants can be used.

In addition to the required constraints we also use the following optional ones:
dui2 ≤ d

u
i1 ∀u ∈ KS , ∀i ∈ V : i 6= u (2.14)∑

a∈δ−(il)

Xu
a ≥ Xu

(il,j1)
+Xu

(il,j2)

∀u ∈ KS , ∀i ∈ V ′D, ∀l ∈ {1, 2},

∀j ∈ δ+(i1), i 6= u
(2.15)

∑
a∈δ−(i1)

Xu
a ≥

∑
a∈δ−(i2)

Xu
a ∀u ∈ KS , ∀i ∈ V : i 6= u (2.16)

∑
l∈{1,2}

∑
im∈δ−(ul)

Xu
(im,ul)

= 0 ∀u ∈ KS (2.17)

Constraints (2.14) represent the results of Corollary 2.1.1: If a vertex is visited twice then
the delay of the second visit is smaller than the delay of the first visit. Since the delay of the
second visit is even strictly smaller we may add one to the left-hand side if we are dealing with
integral delays. Constraints (2.15) ensure that a node only has out-going arcs if it has in-coming
arcs and that it only targets one of the two vertex copies per original edge. Constraints (2.16)
guarantee that the vertex for the second visit is only used if the initial vertex copy has already
been visited. Constraints (2.17) ensure that the source never has in-coming arcs on any of its
copies. This especially prevents having a relay on the source.

In the following we are going to show an optimal solution in graph GD
′. We consider

K = {(0, 3)} and dmax = 4 for the instance in Figure 2.1. The corresponding optimal solution
is depicted in Figure 2.6. We display the values of the delay-variables at every vertex that is
reached by some arc.

We start at the commodity source 01 with a delay of zero. Then we continue to the initial
copy of vertex 1. At this point we cannot reach target vertex 3 without violating the delay bound
(since edge (1, 3) has a delay of three). Thus, we need to place a relay. To avoid the high cost
for a relay at vertex 1 we instead proceed to vertex 2. Here we use the arc (21, 22) to reset the
delay. Hence, we have to place a relay at vertex 2. Now we return to vertex 1. Since we already
visited this vertex we have to use copy 12. Due to the lower delay we are now able to reach the
target node within the delay bound.

The presented MILP model requires a large number of constraints to set the delay variables.
This is caused by the fact that the delays are recursive, i.e., the delay at some vertex depends
on its predecessor. Unfortunately, the predecessor is chosen dynamically. Naturally, this would

17

d01 = 0 d11 = 2

d12 = 1

d21 = 3 d22 = 0

d31 = 4

Figure 2.6: Optimal solution for K = {(0, 3)}, dmax = 4

require quadratic constraints of the form
∑

(i,j)∈δ−(j)

(
(dui + d(i, j))Xu

ij

)
. The linearization of

these quadratic constraints using Big-M values induces weak Linear Programming (LP) bounds.
With this problem in mind it is desirable to avoid delay variables. The models mentioned in the
previous chapter accomplish this by using variables that represent whole paths. Since the paths
are known, it is possible to state constraints to enforce a relay placement that turns the path
into a feasible connection. The use of path variables implicitly ensures connectivity between
source and target of a commodity. The model above requires additional constraints, i.e., the cut
constraints, to ensure connectivity.

Although formulations with path variables are able to address both issues at once, the over-
head by the required column generation may be high. In the following we are going to deal
with both problems separately. We will use graph transformations to deal with the delay bound
indirectly and then add constraints (like the cut constraints in the model above) to ensure that all
commodities can communicate.

18

CHAPTER 3
Models on Layered Graphs

The models presented in this chapter use extended, so called layered graphs. This type of graph
encodes the delays in its structure which contains only paths that are feasible w.r.t. the delay
bound dmax.

In the following we are assuming integral delays, again we may deal with rational delays by
means of scaling.

Picard and Queyranne [33] were among the first to consider layered graphs in 1978. They
use this technique to solve the time-dependent traveling salesman problem. More recent appli-
cations of layered graphs by Godinho et al. include [17] for the solution of unit demand vehicle
routing problems, [18] for solving the ATSP and in [19] the approach of Picard and Queyranne
is extended. Further applications involve Ljubić and Gollowitzer [28] for the solution of the
hop constrained connected facility location problem and Gouveia et al. [21] for the solution
of hop-constrained and diameter-constrained minimum spanning tree problems. Moreover, the
technique has been applied to various tree problems in Ruthmair [34]. An application dealing
with multiple layered graphs includes Gouveia et al. [22].

3.1 Model on a Single Layered Graph

We start by providing a model that is based on a single layered graph. First we give a formal
definition of the graph and then we discuss the model.

3.1.1 Definitions

Given a graph G = (V,E, d) with delays d : E → N+ the layered digraph GL = (VL, AL) is
defined as follows:

19

V 0
L = {v0|v ∈ V }
V l
L = {vl|um ∈ V l−1

L , v ∈ δ+(u),m+ d(u, v) = l} ∪ V l−1
L

VL = V dmax
L

The set V l
L contains all vertex copies on layers smaller than or equal to l. We define this

set recursively. Layer zero contains copies of all vertices v ∈ V . Set V l
L contains all vertices

that can be reached with a total delay of l starting at existing vertices on lower layers. To avoid
exceeding the delay bound only vertex copies on layers smaller than or equal to the delay bound
are considered. Thus, we define VL = V dmax

L .

ArL = {(il, i0)|il ∈ VL, l > 0}
AaL = {(il, jm)|il ∈ VL, jm ∈ VL, {i, j} ∈ E, d(i, j) = m− l}
AL = AaL ∪ArL

The arcs in ArL target layer zero. They correspond to the case of placing a relay at the
respective node. The arcs inAaL connect vertices on different layers w.r.t. to their delays. Vertices
have to be connected if there is an edge between them in the original graph and its delay matches
the difference between the layers of the vertices. These arcs are always directed from a lower to
a higher layer.

Figure 3.1 shows the layered graph corresponding to the instance given in Figure 2.1 and
the optimal solution w.r.t. K = {(0, 3)}. The arcs in ArL are depicted in dashed lines and the
remaining arcs in solid lines. Note that a path starting at layer zero using only arcs in AaL
corresponds to a segment. As soon as an arc inArL is used we return to layer zero and start a new
segment. Due to the restriction of the allowed vertex copies a segments delay can never exceed
the delay bound.

Different Layer Structure

In the layered graph defined above we use a uniform way to reset the delay at relays, i.e., we use
a separate arc to return to layer zero and continue from here to the next vertex. Instead of using
the arcs in ArL it is also possible to target the next vertex directly. Hence we reach the vertex on
the layer corresponding to the delay of the used arc. The modified set of arcs looks as follows:

ArL
′ = {(il, jm)|il ∈ VL, l > 0, {i, j} ∈ E, d(i, j) = m}

A′L = AaL ∪ArL
′

This gives a different layered graph GL
′ = (VL, A

′
L), see Figure 3.2 for an example. This

layered graph contains more arcs than the previous one. GL requires one relay arc per vertex
copy on a layer greater than zero. However, in GL

′ we require one relay arc per incident edge
for each vertex copy on a layer greater than zero, i.e. the worst case complexity increases from
O(|VL|) to O(|VL| · |E|). We also tested variants of the following models based on this graph,
but they turned out to be less efficient so we decided to stick to the former variant.

20

00 10 20 30

11 21

1202 22

03 13 23 33

04 14 24 34

Layered Graph

00 10 20 30

11 21

1202 22

03 13 23 33

04 14 24 34

Solution for K = {(0, 3)}

Figure 3.1: Layered graph GL = (VL, AL) corresponding to the instance in Figure 2.1 for
dmax = 4

21

00 10 20 30

11 21

1202 22

03 13 23 33

04 14 24 34

Layered Graph

00 10 20 30

11 21

1202 22

03 13 23 33

04 14 24 34

Solution for K = {(0, 3)}

Figure 3.2: Layered graph GL
′ = (VL

′, AL
′) corresponding to the instance in Figure 2.1 for

dmax = 4

22

3.1.2 Cut Model on a Single Layered Graph

In this section we introduce our so called layered cut formulation on a single layered graph to
which we will refer as LCUTS . We use binary arc variables Xa for the layered arcs in a ∈ AL.
In addition we use binary variables xe,∀e ∈ E∗, to map the layered arcs to the original edges.
Furthermore, we require binary variables yi,∀i ∈ V , to identify the relays.

min
∑
i∈V

ciyi +
∑
e∈E∗

wexe

∑
a∈δ−(W)

Xa ≥ 1

∀u ∈ KS , ∀W ⊂ VL,

∃v ∈ K(u) : {vl|vl ∈ VL, l > 0} ⊆W,
W ∩ {ul|ul ∈ VL} = ∅

(3.1)

X(il,i0) ≤ yi ∀(il, i0) ∈ ArL (3.2)

X(il,jm) ≤ x{i,j} ∀(il, jm) ∈ AaL, {i, j} ∈ E∗ (3.3)

Xa ∈ {0, 1} ∀a ∈ AL (3.4)

yi ∈ {0, 1} ∀i ∈ V (3.5)

xe ∈ {0, 1} ∀e ∈ E∗ (3.6)

The first set of constraints are the cut-inequalities, ensuring that all commodities are able
to communicate. Each subset of the vertices containing all copies of some target v ∈ K(u)
has to be connected to the corresponding source u. Note that due to the dependence on subsets
the number of these constraints is in general exponential. Corresponding separation methods
will be discussed in Chapter 6. Constraints (3.2) link the relay arcs to the relay variables and
Constraints (3.3) link the layered arcs to the original augmenting edges. Note that although AaL
contains augmenting and free arcs we only need linking constraints for the augmenting edges
since the free edges have no influence on the objective.

In addition to the required constraints we add the following optional constraints:∑
∀(il,jm)∈Aa

L

X(il,jm) ≤ |δ+(il)| · (1− yi) ∀il ∈ VL, l > 0 (3.7)

∑
a∈δ+(il)

Xa ≤ |δ+(il)| ·
∑

a∈δ−(il)

Xa ∀il ∈ VL, l > 0 (3.8)

Constraints (3.7) are useful to avoid symmetries. They state that whenever we place a relay
on some vertex we always have to use it. This means that we do not use any arcs in AaL starting
at vertex copy of i ∈ V on a layer greater than zero if i is a relay. Constraints (3.8) ensure that a
vertex only has out-going arcs if it has an in-coming arc.

To reduce the number of dynamically generated cuts we add for every source u ∈ K con-
straints corresponding to sets W = {vl|vl ∈ VL, l > 0} for all targets v ∈ K(u) in advance
using the fact that every target has to be reached on some layer greater than zero:∑

vl∈VL:l>0

∑
a∈δ−(vl)

Xa ≥ 1 ∀u ∈ KS ,∀v ∈ K(u)

This model uses only one set of arc variables. As a consequence we have to deal with all
pairs in K at the same time. In the following we are going to develop models that use multiple
graphs and disaggregation of commodities.

23

3.2 Models on Multiple Layered Graphs

We now generate one graph GuL = (V u
L , A

u
L) per unique source u ∈ KS . To define GuL we delete

a subset of vertices and their incident edges from GL.

V u
R = {ul|l > 0} ∀u ∈ KS
V u
L = VL \ V u

R ∀u ∈ KS
AuL = AL \ {(i, j)|(i, j) ∈ AL, i ∈ V u

R ∨ j ∈ V u
R} ∀u ∈ KS

When dealing with a single source we know that this source requires no in-coming arcs.
Since we start with a delay of zero at the source we cannot reach it with a lower delay and thus
it makes no sense to return to it. For the same reason it makes no sense to place a relay at the
source. Thus, we can remove all copies of the source on layers greater than zero (see set V u

R).
In addition, we remove all arcs that start at or target the removed vertices.

The idea followed by the MILP models given in this section is to model feasible paths
between every source u ∈ KS and its targets v ∈ K(u) using layered graphs GuL. To end up
with a feasible solution, these layered graphs are finally joined using variables xe,∀e ∈ E, and
yi, ∀i ∈ V , to obtain a solution on the original graph G = (V,E).

3.2.1 Multi-Commodity Flow Formulation on Multiple Layered Graphs

We start with a completely disaggregated variant. To this end, we utilize one set of variables for
each commodity (u, v) ∈ K in graph GuL. We define a multi-commodity flow for each variable
set.

We will refer to this model as multi-commodity flow formulation on multiple layered graphs
(LMCFM). The formulation utilizes three sets of variables. First we have a set of flow variables
fuva for the arcs a ∈ AuL of each graph GuL, ∀u ∈ KS , and per target v ∈ K(u). Furthermore,
we need variables to link the individual variable sets to. To this end, we use binary variables
xe,∀e ∈ E∗, that are set to one if an augmenting edge e is used in any variable set and to zero
otherwise. Moreover, we require binary variables yi, ∀i ∈ V , that are set to one if vertex i is a
relay and to zero otherwise.

24

min
∑
i∈V

ciyi +
∑
e∈E∗

wexe

∑
a∈δ+(u0)

fuva = 1 ∀(u, v) ∈ K, u0 ∈ V uL (3.9)

∑
a∈δ−(il)

fua −
∑

a∈δ+(il)

fuva = 0 ∀(u, v) ∈ K, ∀il ∈ V uL , i 6= u, i 6= v (3.10)

∑
vl∈V u

L

∑
a∈δ−(vl)

fuva = 1 ∀(u, v) ∈ K (3.11)

∑
vl∈V u

L

∑
a∈δ+(vl)

fuva = 0 ∀(u, v) ∈ K (3.12)

∑
(il,i0)∈Au

L

fuv(il,i0)
≤ yi ∀(u, v) ∈ K,∀i ∈ V, i 6= u (3.13)

∑
(il,jm)∈Au

L

fuv(il,jm) ≤ xe ∀(u, v) ∈ K,∀e ∈ E∗,∀(i, j) ∈ A(e) (3.14)

∑
(il,jm)∈Au

L

fuv(il,jm) ≤ 1 ∀(u, v) ∈ K,∀e ∈ E0,∀(i, j) ∈ A(e) (3.15)

yi ∈ {0, 1} ∀i ∈ V (3.16)

xe ∈ {0, 1} ∀e ∈ E∗ (3.17)

0 ≤ fuva ≤ 1 ∀(u, v) ∈ K,∀a ∈ AuL (3.18)

Inequalities (3.9) state that for each commodity the source sends out one unit of flow on
layer zero. Constraints (3.10) ensure flow conservation per layer for vertices that are neither
source nor target of the commodity. Equations (3.11) guarantee that the target node consumes
one unit of flow on one of its layers. We split the usual flow inequality because we know that
we do not have to continue after we reached the target. This is enforced by Constraints (3.12).
Constraints (3.13) link the relay arcs to the relay variables. From Theorem 2.1.1 it follows that
at most one of the relay arcs per vertex might be selected because every relay is visited at most
once. Constraints (3.14) link the layered arcs to the corresponding augmenting edges. If an
augmenting edge is used on any layer in any variable set then it has to be part of the solution.
Observe that we have to use one constraint per direction of an edge because loops are possible.
Note that although AuL contains augmenting and free arcs we only need linking constraints for
the augmenting edges since the free edges have no influence on the objective. For the free edges
we use Constraints (3.15) to ensure that only one flow arc per direction of an edge is used. These
Constraints are based on Theorem 2.1.3 using the fact that an edge is traversed at most once per
direction.

In addition to the required constraints we add the following optional constraints:∑
(il,jm)∈Au

L:l>0

fuv(il,jm) ≤ 2 · (1− yi) ∀(u, v) ∈ K, ∀i ∈ V, i 6= u (3.19)

Constraints (3.19) are similar to Constraints (3.7) of the previous model. These constraints
ensure that whenever a node i ∈ V is marked as relay for some commodity, all commodities use
it as relay. Thus, we may only use the arcs targeting layer zero. Note that the right-hand side

25

is multiplied by two. This is a consequence of Theorem 2.1.1 and Corollary 2.1.1: A non-relay
vertex might be visited at most twice with different delays and thus there can be out-flow on two
different layers.

When using this model we have to take into account that it requires a huge amount of vari-
ables when K contains many commodity pairs.

3.2.2 Single-Commodity Flow Formulation on Multiple Layered Graphs

To reduce the number of variables needed we may aggregate this multi-commodity flow ap-
proach into a single-commodity flow formulation (per source). To this end, we only use one set
of flow variables per graph GuL = (V u

L , A
u
L).

Note that this greatly reduces the number of variables when dealing with a large amount of
commodities. We might have at most n2−n

2 K-pairs but only a maximum of (n − 1) sources.
However, if we have only few pairs or few targets per source, we do not gain much.

We call this modified version single-commodity flow formulation on multiple layered graphs
(LSCFM). This model also utilizes three sets of variables. First we have a set of flow variables
fua for the arcs a ∈ AuL of each graph GuL, ∀u ∈ KS . In addition, we again use binary variables
xe, ∀e ∈ E∗, to link the augmenting edges and binary variables yi, ∀i ∈ V , for the relays.

min
∑
i∈V

ciyi +
∑
e∈E∗

wexe

∑
a∈δ+(u0)

fua = |K(u)| ∀u ∈ KS , u0 ∈ V uL (3.20)

∑
a∈δ−(il)

fua −
∑

a∈δ+(il)

fua = 0 ∀u ∈ KS , ∀il ∈ V uL , i 6= u, i /∈ K(u) (3.21)

0 ≤
∑

a∈δ−(il)

fua −
∑

a∈δ+(il)

fua ≤ 1 ∀u ∈ KS , ∀il ∈ V uL , i ∈ K(u) (3.22)

∑
il∈V u

L

 ∑
a∈δ−(il)

fua −
∑

a∈δ+(il)

fua

 = 1 ∀u ∈ KS , i ∈ K(u) (3.23)

∑
(il,i0)∈Au

L

fu(il,i0) ≤ |K(u)| · yi ∀u ∈ KS , ∀i ∈ V, i 6= u (3.24)

∑
(il,jm)∈Au

L

fu(il,jm) ≤ |K(u)| · xe ∀u ∈ KS , ∀e ∈ E∗, ∀(i, j) ∈ A(e) (3.25)

yi ∈ {0, 1} ∀i ∈ V (3.26)

xe ∈ {0, 1} ∀e ∈ E∗ (3.27)

0 ≤ fua ≤ |K(u)| ∀u ∈ KS , ∀a ∈ AuL (3.28)

The model is analogous to the previous one. The difference is that the source sends out
flow according to the number of its targets. Consequently, the flow variables might take values
greater than one. To accommodate for this we have to use Big-M values in Constraints (3.24)
and (3.25). Furthermore, it is now possible that we do not stop at some targets but continue to
reach further targets. As a result targets might even be relays. Therefore, we now also have to

26

enforce flow conservation for the targets. Since we do not know the layer at which we reach the
target we have to state these constraints per layer (3.22) and across all layers (3.23). Note that
actually both are required. Omitting (3.22) allows to keep the flow balance by having in-flow
on some layer and out-flow on a different layer and without (3.23) some targets might not be
reached.

We also use an adaption of the optional constraints of the previous model:∑
(il,jm)∈Au

L:l>0

fu(il,jm) ≤ (1− yi) · |K(u)| · 2 ∀u ∈ KS ,∀i ∈ V, i 6= u (3.29)

3.2.3 Cut Model on Multiple Layered Graphs

This model also uses one set of variables per graph GuL = (V u
L , A

u
L). However, we do not send

flow to ensure connectivity. Instead we use connectivity inequalities to ensure that all targets
can communicate.

We will refer to this formulation as cut formulation on multiple layered graphs (LCUTM).
The model uses binary arc variables Xu

a for the arcs a ∈ AuL per source u ∈ KS . In addition,
we again use binary variables xe, ∀e ∈ E∗, for the linking of the augmenting edges and binary
variables yi, ∀i ∈ V , for the relays.

min
∑
i∈V

ciyi +
∑
e∈E∗

wexe

∑
a∈δ−(W)

Xu
a ≥ 1

∀u ∈ KS ,∀v ∈ K(u),

{vl|vl ∈ V uL } ⊆W ⊂ V uL ,
u0 /∈W

(3.30)

∑
il∈V u

L :l>0

∑
a∈δ−(il)

Xu
a ≤ 2− yi ∀u ∈ KS , ∀i ∈ V, i 6= u (3.31)

∑
(il,i0)∈Au

L

Xu
(il,i0)

≤ yi ∀u ∈ KS , ∀i ∈ V (3.32)

∑
(il,jm)∈Au

L

Xu
(il,jm) ≤ xe ∀u ∈ KS , ∀e ∈ E∗, ∀(i, j) ∈ A(e) (3.33)

Xu
a ∈ {0, 1} ∀u ∈ KS , ∀a ∈ AuL (3.34)

yi ∈ {0, 1} ∀i ∈ V (3.35)

xe ∈ {0, 1} ∀e ∈ E∗ (3.36)

The first set of constraints are the cut-inequalities. Each subset of the vertices containing
all copies of some target v ∈ K(u) on all layers requires an in-coming arc. Since u0 /∈ W
we know that each target has to be connected to its corresponding source in graph GuL. Note
that due to the dependence on subsets the number of these constraints is in general exponential.
Corresponding separation methods will be discussed in Chapter 6. Constraints (3.31) state that
every relay is reached at most once and all non-relays are reached at most twice (see Theorem
2.1.2). Constraints (3.13) link the relay arcs to the relay variables. Due to Theorem 2.1.1 we
know that at most one of the relay arcs per vertex might be selected. Constraints (3.33) link the
layered arcs to the augmenting edges. If an augmenting edge is used on any layer in any graph

27

then it has to be part of the solution. Observe that we have to use one constraint per direction of
an edge because loops are possible. Note that although AuL contains augmenting and free arcs
we only need linking constraints for the augmenting edges since the free edges have no influence
on the objective.

In addition to the required constraints we again add some optional constraints:∑
(il,jm)∈Au

L:l>0∧m>0

Xu
(il,jm) ≤ (|K(u)|+ 1) · (1− yi) ∀u ∈ KS ,∀i ∈ V, i 6= u (3.37)

∑
(il,jm)∈Au

L:l>0

Xu
(il,jm) ≤ 2 · (1− yi)

∀u ∈ KS , ∀i ∈ V, ∀{i, j} ∈ E,
i 6= u, j 6= u

(3.38)

∑
a∈δ+(il)

Xu
a ≤ min(|K(u)|, |δ+(il)|) ·

∑
a∈δ−(il)

Xu
a ∀u ∈ KS , ∀il ∈ V uL , i 6= u (3.39)

Constraints (3.37) are similar to Constraints (3.29) of the previous flow model. These con-
straints ensure that whenever a vertex i ∈ V is marked as relay in one variable set, all variable
sets use it as relay. Thus, we may only use the arcs targeting layer zero. Note that here we have
a stronger restriction for the right-hand side than for LSCFM . We use Theorem 2.1.2 and Corol-
lary 2.1.1: A non-relay vertex might be visited at most twice with different delays and thus there
can be out-going arcs on two different layers. Since we are not dealing with flows here we know
that we require at most one arc to visit the relay and at most |K(u)|more arcs to reach all targets,
i.e., |K(u)|+1. Constraints (3.38) are a variant of these constraints that are formulated per edge
instead of over all incident edges. However, this only pays off if |K(u)| is large. Inequalities
(3.39) ensure that a vertex might only have out-going arcs if it has an in-coming arc and the
number of out-going arcs is bounded by the minimum of targets to reach and its out-degree.

To reduce the number of dynamically generated cuts we add for every source u ∈ K con-
straints corresponding to sets W = {vl|vl ∈ V u

L , l > 0} for all targets v ∈ K(u) in advance
using the fact that every target has to be reached on some layer greater than zero:∑

vl∈V uL :l>0

∑
a∈δ−(vl)

Xu
a ≥ 1 ∀u ∈ KS , ∀v ∈ K(u)

28

CHAPTER 4
Models on Communication Graphs

A communication graph is created by adding edges between all vertices that can be connected
with a path having delay smaller than or equal to dmax in the original graphG = (V,E). We will
refer to the edges added this way that are not part of the original graph as communication edges.
This transformation has been used in [6] and [5] to solve the RLP and GRLP, respectively. Both
problems deal with edges of cost zero only. If an arbitrary pair of vertices can be connected
using only free edges then we know that this is the only relevant connection between them. Note
that there might be different feasible paths using only free edges but it is sufficient if at least one
such connection exists. We do not care about the specific path because the costs will stay the
same regardless of the used free edges.

However, if there are only feasible connections containing at least one edge with positive
costs, it is not sufficient to select one of these connections. Using the cheapest connection is
in general not the optimal strategy. An edge might be used in multiple connections. This reuse
can make a connection that is dominated for a certain vertex pair still profitable, concerning the
overall costs. In Figure 4.1 we depict free edges in solid lines and augmenting edges in dotted
lines. The numbers next to the edges denote their delays and the numbers in parentheses their
costs. In this example the cheapest connection between nodes 0 and 2 is the augmenting edge
(0, 2) and the cheapest connection between nodes 0 and 3 is edge (0, 3), both with a cost of two
yielding an overall cost of 4. However, if we use edge (0, 1) with a cost of 3 instead (which
is not optimal for either of the individual connections) we can decrease the overall costs to 3.
As a result, we have to consider all such connections. Unfortunately, the number of possible
connections is in general exponential.

4.1 Definitions

Two nodes can communicate in a given instance without the use of relays if there exists a path
between them whose total delay does not exceed dmax. Let P̂{i,j} be the set of all paths between
i and j in G = (V,E). Note that the original graph is undirected. Thus, there exists for each

29

0

1

2 3

1 1

1(3)

2(2) 2(2)

Figure 4.1: Dominated Connection

path a symmetric path in the opposite direction. For our purposes it is sufficient to consider
one of them. W.l.o.g. we only consider the paths from i to j for i < j. We denote the set
of paths between vertices i and j having a delay smaller than or equal to dmax by P{i,j}, i.e.,
P{i,j} = {p|p ∈ P̂{i,j},∆(p) ≤ dmax}. If there are different paths containing the same set of
augmenting edges having the same delay it is sufficient to select one of them arbitrarily since
the free edges have no effect on the costs of the path.

We use the following functions to determine the minimum delay between two vertices w.r.t.
a certain edge set:

md0(i, j) = min
p∈P̂{i,j}

∆(p) w.r.t. G0 = (V,E0)

md(i, j) = min
p∈P̂{i,j}

∆(p) w.r.t. G = (V,E)

Accordingly, we define sets of node pairs that are able to communicate w.r.t. these edge sets:

C0 = {{i, j}|md0(i, j) ≤ dmax, i ∈ V, j ∈ V, i < j} connected in E0

C = {{i, j}|md(i, j) ≤ dmax, i ∈ V, j ∈ V, i < j} connected in E

C∗ = C \ C0 connected in E but not in E0

In general we transform the original graph G = (V,E) to a communication graph GC =
(VC, EC) as follows:

VC = V

EC = C

30

Figure 4.2 shows the stepwise generation of a communication graph. Figure 4.2 (a) shows
the original graph. Free edges are depicted in solid lines and augmenting edges in dotted lines.
The numbers next to the edges denote their delays and in the following we assume dmax = 6.

To create GC we start by adding all connections that are not yet present but that can be
established by using only free edges and no relays. The edges we have to add correspond to the
set C0 \ E0. In the example we have to add an edge from 0 to 2 (dashed line) according to path
(0, 1, 2) with md0(0, 2) = 6 which does not exceed dmax. Note that this edge overlaps with an
augmenting edge. Although the augmenting edge has smaller delay we consider the free edge as
only relevant option for the connection of 0 and 2 because its cost will never be higher than that
of the augmenting edge. Nevertheless, we still might use the augmenting edge as part of some
other connection. Due to its smaller delay it might enable a connection within dmax that cannot
be established when using the free edge.

In the next step we add connections that are only possible by installing augmenting edges.
The edges we have to add correspond to the set C∗ and are depicted in Figure 4.2 (c) in dot-
dashed lines. Note that these connections overlap with the augmenting edges. The reason for this
is the fact that an augmenting edge is only one possibility of realizing the connection. The edge
between 1 and 3 for example can be established by using the augmenting edge {1, 3} but also
by the paths (1, 0, 3) and (1, 2, 3). It is of central importance that although we do not know the
optimal choice to establish the connection, we still know which connections are possible at all.
To identify these connections we may use well known all-pairs shortest path algorithms (using
the delays as costs) such as the Floyd-Warshall algorithm (see [11]) or Johnson’s algorithm (see
[24]).

Figure 4.2 (d) shows the final communication graph. We display the connections in C0 in
solid lines and the connections in C∗ in dash-dotted lines.

The graph generated this way contains all feasible connections that can be established with-
out the use of relays. Hence, it is admissible to enforce all intermediate vertices on a path in GC

to be relays.

4.2 Model on a Single Communication Graph

Similar as for the layered approach we start with a model that is based on a single graph. To
identify relays we split each vertex i into two copies i1, i2. We then create arcs s.t. for each
vertex i all in-coming arcs target i1 and all out-going arcs start at i2. Moreover, we add arcs
(i1, i2) to connect the vertex copies. We obtain the graph G′C = (V ′C, A

′
C):

V ′C = {i1, i2|i ∈ VC}
ArC = {(i1, i2)|i ∈ VC}
A′C = {(i2, j1), (j2, i1)|{i, j} ∈ EC} ∪ArC

The arcs (i1, i2) ∈ ArC are used to identify relays. If there is an in-coming arc and an
out-going arc but the connection of the vertex copies is not selected then the vertex is target
and source but not part of another connection and thus, needs not to be relay. If, however, the

31

0

1

2

3

3 3

5

2

6

3

0

1

2

3

(a) (b)
Original Graph Adding all Connections in C0

(dashed lines)

0

1

2

3

0

1

2

3

(c) (d)
Adding all Connections in C∗ Final Communication Graph

(dash-dotted lines)

Figure 4.2: Generation of the Communication Graph

32

01

02

11 12

22

21

31 32

Figure 4.3: Communication Graph G′C = (V ′C, A
′
C) according to the instance in Figure 4.2 (a)

connection of the copies is selected we need to place a relay as there has to be a connection
going through this vertex. Figure 4.3 shows the modified version of the graph in Figure 4.2. We
depict free connections in solid lines, connections with augmenting edges in dotted lines and
relay arcs in dashed lines.

4.2.1 Cut Model on a Single Communication Graph

We call this model cut formulation on a single communication graph (CGCUTS). We utilize
binary variables xe for the augmenting edges and binary variables Xa for the arcs of the com-
munication graph. Due to the one-to-one correspondence between the arcs in ArC and the relays
we can use the arc variables directly to identify the relays. Moreover, we use continuous vari-
ables λpb for the paths p that connect the node pairs b ∈ C∗ s.t. ∆(p) ≤ dmax.

33

min
∑
i∈V

ciX(i1,i2) +
∑
e∈E∗

wexe

∑
a∈δ−(W)

Xa ≥ 1
∀u ∈ KS , ∀W ⊂ V ′C

∃v ∈ K(u) : {v1} ⊆W,u2 /∈W
(4.1)

|δ(i)| ·X(i1,i2) ≥
∑

a∈δ+(i2)

Xa ∀i /∈ KS (4.2)

∑
a∈A(b)

Xa ≤ 2 ·
∑
p∈Pb

λpb ∀b ∈ C∗ (µb) (4.3)

∑
p∈Pb:e∈p

λpb ≤ xe ∀e ∈ E∗, ∀b ∈ C∗ (αeb) (4.4)

xe ∈ {0, 1} ∀e ∈ E∗ (4.5)

Xa ∈ {0, 1} ∀a ∈ A′C (4.6)

λpb ≥ 0 ∀b ∈ C∗, p ∈ Pb (4.7)

The first set of constraints are the cut inequalities. Each subset of the vertices containing a
target copy v1 requires an in-coming arc. Since u2 /∈ W this means that every target has to be
connected to its source. Thus, we enforce a connection from source copy u2 to each target copy
v1. Note that due to the dependence on subsets the number of these constraints is in general
exponential. Corresponding separation methods will be discussed in Chapter 6. Constraints
(4.2) ensure that non-source vertices might only have out-going arcs if they are relays. The next
set of constraints ensures that if a connection in b ∈ C∗ is used then at least one path realization
from Pb has to be selected. Due to the presence of multiple sources both arc directions of an
edge might be part of the solution. Thus, we need to multiply the right-hand side by two. The
final set of constraints ensures that all augmenting edges of the selected realizations are part of
the solution.

In addition to the required constraints we add the following optional ones:

X(i1,i2) ≤
∑

a∈δ+(i2)

Xa ∀i /∈ KS (4.8)

X(i1,i2) ≤
∑

a∈δ−(i1)

Xa ∀i ∈ V (4.9)

Constraints (4.8) state that all relays have an out-going arc and Constraints (4.9) state that
all relays require an in-coming arc. Note that sources always have at least one out-going arc.

To reduce the number of dynamically generated cuts we add the following constraints in
advance: ∑

a∈δ−(v1)

Xa ≥ 1 ∀v ∈
⋃
u∈KS

K(u)

∑
a∈δ+(u2)

Xa ≥ 1 ∀u ∈ KS

The first set of these constraints uses the fact that every target requires an in-coming arc,
i.e. we consider sets W = {v1}, ∀u ∈ KS ,∀v ∈ K(u). The second set of constraints depends

34

on the fact that every source has at least one out-going arc. Thus, this corresponds to sets
W = V ′C \ {u2},∀u ∈ KS .

Pricing Subproblem

The presented MILP model contains an exponential number of variables. To solve the LP relax-
ation, we will use column generation. The underlying pricing subproblem is defined as follows.
To state the dual constraints for the path variables we use dual variables µb for Constraints (4.3)
and dual variables αeb for Constraints (4.4):

2 · µb −
∑

e∈E∗∩p
αeb ≤ 0 ∀b ∈ C∗,∀p ∈ Pb

µb ≥ 0 ∀b ∈ C∗

αeb ≥ 0 ∀e ∈ E∗,∀b ∈ C∗

Thus, we obtain the following pricing subproblem for each b ∈ C∗:

arg min
p∈P (b)

0−

2 · µb −
∑

e∈E∗∩p
αeb


This can be solved by the following subproblem (since µb is a constant for a fixed b):

∀b ∈ C∗ Rb = arg min
p∈P (b)

∑
e∈E∗∩p

αeb

The subproblems Rb are Weight Constrained Shortest Path Problems (WCSPPs). The mod-
els in the following section require this subproblem as well. We are going to discuss this problem
in detail in Section 4.4.

Note that the provided model also uses an exponential number of constraints. Thus, we
require Branch-Price-and-Cut to solve it. Details will be given in Chapter 6. Fortunately, we can
separate these parts s.t. column generation can be done independently of cut generation, i.e., the
added cuts do not influence the structure of the pricing subproblem.

4.3 Models on Multiple Communication Graphs

As for the layered graph approaches we present models using one graph per source vertex. We
create graphs GuC = (V u

C , A
u
C) per source u ∈ KS . Again we omit the arcs targeting the source

vertex:

V u
C =VC

AuC ={(i, j), (j, i)|{i, j} ∈ EC} \ {(i, u)|{i, u} ∈ EC}

35

0(5) 1(5)

2(1)

3(5)
2(3)

1(3)

3(3)

Original Instance

0 1

2

3 0 1

2

3

Communication Graph GuC for u = 0 Optimal path from 0 to 3

Figure 4.4: Cyclic Solution

Figure 4.4 shows the optimal solution for dmax = 4 and K = {(0, 3)} in GuC w.r.t. the
previously introduced example. Note that although the path in the communication graph is
acyclic this still corresponds to the cyclic solution shown in Figure 2.2.

Due to the specific structure of the communication graph and the disaggregation per source
u ∈ KS we obtain the following result:

Corollary 4.3.1. In an optimal solution on a communication graph there exists for every u ∈ Ks
an arborescence rooted at u reaching all targets v ∈ K(u).

Proof. From Theorem 2.1.2 it follows that an optimal solution contains for every u ∈ KS a
digraph rooted at u reaching all targets v ∈ K(u) and visiting each relay at most once. In
a communication graph all intermediate nodes are relays and we never need to return to the
source. Hence all vertices have an in-degree of at most one. Thus, the considered digraph is an
arborescence rooted at u.

We conclude that using one graph per source makes it a lot easier to identify relays. Since
the optimal solution per source will be a arborescence all vertices different from the source with
out-going arcs have to be relays (see Figure 4.4).

36

4.3.1 Multi-Commodity Flow Formulation on Multiple Communication Graphs

As for the layered approaches we start with the completely disaggregated variant using one set
of variables per pair in K. Then, we define a multi-commodity flow on each of these variable
sets. Due to the fact that we only deal with a single commodity we obtain a stronger version of
Corollary 4.3.1:

Corollary 4.3.2. In an optimal solution on a communication graph there exists for every (u, v) ∈
K a feasible path visiting each vertex at most once, i.e., a simple path.

Proof. Theorem 2.1.1 implies that an optimal solution contains for every pair in K a connection
visiting each relay at most once. In a communication graph all intermediate nodes are relays,
we never need to return to the source and we do not continue after the target has been reached.
Hence, it follows that in a communication graph there exists for every (u, v) ∈ K a simple
feasible path from u to v.

We will refer to the new formulation as multi-commodity flow formulation on multiple
communication graphs (CGMCFM). We use flow variables fuva for all arcs a of the graphs
GuC, ∀u ∈ KS , and for each target v ∈ K(u). We use variables λpb that correspond to the paths
p that have been identified as possible realizations for the connections b ∈ C∗. The variables yi
are set to one if vertex i is used as relay and to zero otherwise. Finally we use variables xe to
link the augmenting edges to the path variables. The MILP model reads as follows

min
∑
i∈V

ciyi +
∑
e∈E∗

wexe

∑
a∈δ−(i)

fuva −
∑

a∈δ+(i)

fuva =

{
−1 i = u

0 i 6= u, i 6= v
∀(u, v) ∈ K, ∀i ∈ V uC (4.10)

∑
a∈δ−(v)

fuva = 1 ∀(u, v) ∈ K (4.11)

∑
a∈δ+(v)

fuva = 0 ∀(u, v) ∈ K (4.12)

∑
a∈δ+(i)

fuva ≤ yi ∀(u, v) ∈ K, ∀i ∈ V, i 6= u, i 6= v (4.13)

∑
a∈A(b)

fuva ≤
∑
p∈Pb

λpb ∀(u, v) ∈ K, ∀b ∈ C∗ (µuvb) (4.14)

∑
p∈Pb:e∈p

λpb ≤ xe ∀e ∈ E∗, ∀b ∈ C∗ (αeb) (4.15)

yi ∈ {0, 1} ∀i ∈ V (4.16)

xe ∈ {0, 1} ∀e ∈ E∗ (4.17)

λpb ≥ 0 ∀b ∈ C∗, p ∈ Pb (4.18)

0 ≤ fuva ≤ 1 ∀(u, v) ∈ K, ∀a ∈ AuC (4.19)

The first set of constraints ensures flow conservation. The source of each variable set sends
out one unit of flow. For vertices that are neither source nor target, flow conservation has to hold.

37

Since we are only dealing with a single target per variable set, this target consumes the single
unit of flow (4.11) and has no out-going flow (4.12). Inequalities (4.13) enforce that vertices
with out-going flow that are not the source of their corresponding commodity become relays.
Constraints (4.14) ensure that flow among connections b ∈ C∗ is only possible if at least one
of the available realizations has been selected. Due to Corollary 4.3.2, the solution for each
variable set will be a simple path. Hence, we know that only one arc per edge will be selected
in each variable set. The last set of inequalities guarantees that for all selected realizations the
corresponding augmenting edges will be part of the solution.

Pricing Subproblem

The presented MILP model contains an exponential number of λ variables and for solving its
LP relaxation, we will use column generation. The underlying pricing subproblem is defined
as follows. To state the dual constraints for the path variables we use dual variables µuvb for
Constraints (4.14) and dual variables αeb for Constraints (4.15):

∑
(u,v)∈K

µuvb −
∑

e∈E∗∩p
αeb ≤ 0 ∀b ∈ C∗,∀p ∈ Pb

µuvb ≥ 0 ∀(u, v) ∈ K, ∀b ∈ C∗

αeb ≥ 0 ∀e ∈ E∗, ∀b ∈ C∗

Thus, for each b ∈ C∗ the pricing subproblem decomposes into:

arg min
p∈P (b)

0−

 ∑
(u,v)∈K

µuvb −
∑

e∈E∗∩p
αeb


This can be solved by the following subproblem:

∀b ∈ C∗ Rb = arg min
p∈P (b)

∑
e∈E∗∩p

αeb

The problems defined by Rb are WCSPPs. Details on this problem will be given in Section
4.4.

Note that when dealing with a large amount of commodity pairs this model requires a large
number of variables.

4.3.2 Single-Commodity Flow Formulation on Multiple Communication Graphs

To reduce the number of variables we again aggregate the pairs inK as for the layered approach.
We then use one set of variables per graph GuC = (V u

C , A
u
C) for each source u ∈ KS .

We will refer to this formulation as single-commodity flow formulation on multiple commu-
nication graphs (CGSCFM). The formulation we obtain uses the same variables as the previous
model. The only difference is that we only need flow variables fua per source u ∈ KS .

38

min
∑
i∈V

ciyi +
∑
e∈E∗

wexe

∑
a∈δ−(i)

fua −
∑

a∈δ+(i)

fua =


−|K(u)| i = u

1 i ∈ K(u)

0 i 6= u, i /∈ K(u)

∀u ∈ KS , ∀i ∈ V uC (4.20)

∑
a∈δ+(i)

fua ≤ |K(u)| · yi ∀u ∈ KS , ∀i ∈ V, i 6= u (4.21)

∑
a∈A(b)

fua ≤ |K(u)| ·
∑
p∈Pb

λpb ∀u ∈ KS , ∀b ∈ C∗ (µub) (4.22)

∑
p∈Pb:e∈p

λpb ≤ xe ∀e ∈ E∗, ∀b ∈ C∗ (αeb) (4.23)

yi ∈ {0, 1} ∀i ∈ V (4.24)

xe ∈ {0, 1} ∀e ∈ E∗ (4.25)

λpb ≥ 0 ∀b ∈ C∗, p ∈ Pb (4.26)

0 ≤ fua ≤ |K(u)| ∀u ∈ KS , ∀a ∈ AuC (4.27)

The constraints are quite similar to the previous formulation. The difference is that the
source sends out flow w.r.t. the number of its targets |K(u)|. Thus, we have to use Big-Ms
in inequalities (4.21) and (4.22) to accommodate for this. Furthermore, the targets might have
out-flow now. Hence, we use the usual flow-balance constraints (4.20).

Pricing Subproblem

The presented MILP model contains an exponential number of variables. To solve the LP relax-
ation, we will use column generation. The underlying pricing subproblem is defined as follows.
To state the dual constraints for the path variables we use dual variables µub for Constraints (4.22)
and dual variables αeb for Constraints (4.23):

∑
u∈KS

(|K(u)| · µub)−
∑

e∈E∗∩p
αeb ≤ 0 ∀b ∈ C∗, ∀p ∈ Pb

µub ≥ 0 ∀u ∈ KS ,∀b ∈ C∗

αeb ≥ 0 ∀e ∈ E∗,∀b ∈ C∗

Thus, we obtain the following pricing subproblem for each b ∈ C∗:

arg min
p∈P (b)

0−

∑
u∈KS

(|K(u)| · µub)−
∑

e∈E∗∩p
αeb

,
which can be solved by the following subproblem:

∀b ∈ C∗ Rb = arg min
p∈P (b)

∑
e∈E∗∩p

αeb

The problems defined by Rb are WCSPPs (see Section 4.4).

39

4.3.3 Cut Model on Multiple Communication Graphs

For the cut model we also use one set of variables per source vertex. Instead of the flows we
utilize cuts to ensure connectivity.

We call this formulation cut formulation on multiple communication graphs (CGCUTM).
The model uses variables Xu

a for the arcs a of the graphs GuC per source u ∈ Ks. The remaining
variable sets are equivalent to those used in the flow models.

min
∑
i∈V

ciyi +
∑
e∈E∗

wexe

∑
a∈δ−(W)

Xu
a ≥ 1

∀u ∈ KS ,∀W ⊂ V uC ,
W ∩K(u) 6= ∅, u /∈W

(4.28)

∑
a∈δ+(i)

Xu
a ≤ min(|K(u)|, |δ+(i)| − 1) · yi ∀u ∈ KS ,∀i ∈ V, i 6= u (4.29)

∑
a∈A(b)

Xu
a ≤

∑
p∈Pb

λpb ∀u ∈ KS ,∀b ∈ C∗ (µub) (4.30)

∑
p∈Pb:e∈p

λpb ≤ xe ∀e ∈ E∗,∀b ∈ C∗ (αeb) (4.31)

yi ∈ {0, 1} ∀i ∈ V (4.32)

xe ∈ {0, 1} ∀e ∈ E∗ (4.33)

Xu
a ∈ {0, 1} ∀u ∈ KS ,∀a ∈ AuC (4.34)

λpb ≥ 0 ∀b ∈ C∗, p ∈ Pb (4.35)

The first set of constraints are the cut inequalities. For each graphGuC every setW containing
one of the targets v ∈ K(u) has to be connected to the rest of the graph and since u /∈W finally
to the source u. Note that due to the dependence on subsets the number of these constraints
is in general exponential. Corresponding separation methods will be discussed in Chapter 6.
Constraints (4.29) identify the relays. The number of out-going arcs is bounded by the minimum
of the amount of targets that have to be reached and the out-degree of the vertex. The out-degree
is reduced by one since paths in communication graphs are acyclic and thus the arc targeting the
predecessor is never selected. The final two constraints are identical to CGSCFM . They ensure
that arcs in C∗ are only possible if some realization is selected and that all augmenting edges of
the chosen realizations are set to one.

In addition to the required constraints we add the following optional ones:∑
a∈δ−(v)

Xu
a = 1 ∀u ∈ KS , ∀v ∈ K(u) (4.36)

∑
a∈δ+(i)

Xu
a ≤ min(|K(u)|, |δ+(i)| − 1) ·

∑
a∈δ−(i)

Xu
a ∀u ∈ KS , ∀i /∈ K(u), i 6= u (4.37)

Constraints (4.36) ensure that all targets have exactly one in-coming arc (see Corollary
4.3.1). To reduce the number of dynamically generated cuts we add Inequalities (4.37). They
state that a vertex, different from source and target, might only have out-going arcs if it has an
in-coming arc and the number of out-going arcs is bounded by the minimum of the amount tar-
gets that have to be reached and the out-degree of the vertex. The out-degree is reduced by one

40

since paths in communication graphs are acyclic and thus the arc targeting the predecessor is
never selected. We do not impose these constraints on the target because targets always require
an in-coming arc regardless of their out-degree.

To reduce the number of dynamically generated cuts we add the following constraints in
advance using the fact that there is at least one arc leaving the source, i.e., we consider sets
W = V ′C \ {u}, ∀u ∈ KS :∑

a∈δ+(u)

Xu
a ≥ 1 ∀u ∈ KS

Pricing Subproblem

The pricing subproblem associated to this MILP model is defined as follows. To state the dual
constraints for the path variables we use dual variables µub for Constraints (4.30) and dual vari-
ables αeb for Constraints (4.31):

∑
u∈KS

µub −
∑

e∈E∗∩p
αeb ≤ 0 ∀b ∈ C∗,∀p ∈ Pb

µub ≥ 0 ∀u ∈ KS ,∀b ∈ C∗

αeb ≥ 0 ∀e ∈ E∗,∀b ∈ C∗

Thus, we obtain the following pricing subproblem for each b ∈ C∗:

arg min
p∈P (b)

0−

∑
u∈KS

µub −
∑

e∈E∗∩p
αeb

,
which can be solved by the following subproblem:

∀b ∈ C∗ Rb = arg min
p∈P (b)

∑
e∈E∗∩p

αeb

Again we are dealing with the WCSPP (see below).
Note that this model uses an exponential number of constraints and an exponential number

of variables. Thus, we require Branch-Price-and-Cut to solve it. Details will be given in Chapter
6. Fortunately, column generation can be done independently of cut generation, i.e., the added
cuts do not influence the structure of the pricing subproblem.

4.4 Solving the Pricing Subproblems

The subproblems Rb, ∀b ∈ C∗, required by the models presented in this chapter are Weight
Constrained Shortest Path Problems (WCSPPs). The WCSPP is in general NP-hard but fast
pseudo-polynomial exact solution algorithms are available. For the implementation in our mod-
els we use the algorithm presented by Gouveia et al. [20]. Algorithm 4.1 shows the correspond-
ing pseudo code using delays as weights. The algorithm is based on dynamic programming

41

using states (i,h) for i ∈ V and h ∈ {0, . . . , dmax}. The values f(j, h) correspond to the costs
of the cheapest path from source s to vertex j with a delay of at most h and can be computed
recursively as follows:

f(j, h) = min
{j,i}∈E:d{j,i}≤h

(
f(j, h− w{j,i}) + w{j,i}

)
For the source we define f(s, h) = 0, ∀h ∈ {0, . . . , dmax}. Furthermore, MinCost labels

are used to keep track of the minimum cost found so far, to avoid dealing with already dominated
connections. The algorithm runs in time O(|E| ·dmax). However, by using the fact that the edge
costs are non negative and that f(j, h) ≥ f(j, h′) for h′ > h the algorithm achieves better run-
times in practice. In addition, Gouveia et al. note that the algorithm can be further improved by
using a good upper bound on the cost of the shortest path from the given source to the target.
The MILP models presented in this chapter rely on pricing subproblems that only have negative
reduced costs if the cost of the cheapest path is smaller than the sum of the µ value(s). Hence,
we can use this sum as upper bound.

Note that we do not use the communication graph for pricing. Instead we use the original
graph. The reason for this is the fact that we require information on the original augmenting
edges used in the path to state the respective linking constraints.

Furthermore, note that the pairs {i, j} ∈ C∗ are undirected. As already mentioned in the
beginning of this chapter there exists for every path a symmetric one in the opposite direction in
the original undirected graph. As a consequence, it is sufficient to solve the problem in either of
the directions, w.l.o.g. we consider the weight constrained shortest path from i to j for i < j.

42

Input: G = (V,E,), edge costs we, edge delays de
Input: Source s, target t

1 S0 = {s};
2 forall the h ∈ {1, . . . , dmax} do
3 Sh = ∅;
4 end
5 MinCost(s) = 0;
6 forall the h ∈ {0, . . . , dmax} do
7 f(s, h) = 0;
8 end
9 forall the i ∈ V \ {s} do

10 MinCost(i) =∞;
11 forall the h ∈ {0, . . . , dmax} do
12 f(i, h) =∞;
13 end
14 end
15 forall the h ∈ {0, . . . , dmax − 1} do
16 forall the j ∈ Sh with f(j, h) ≤MinCost(t) do
17 MinCost(j) = min(MinCost(j), f(j, h));
18 end
19 forall the j ∈ Sh with f(j, h) ≤MinCost(t) do
20 for {j, i} ∈ E with d{j,i} + h ≤ dmax and

f(j, h) + w{j,i} < min(MinCost(i),MinCost(t), f(i, h+ d{j,i})) do
21 if i /∈ Sh+d{j,i} then
22 Sh+d{j,i} = Sd{j,i}+h ∪ {i};
23 end
24 f(i, h+ d{j,i}) = f(j, h) + w{j,i};
25 if i = t then
26 MinCost(t) = f(i, h+ d{j,i});
27 end
28 end
29 end
30 end

Algorithm 4.1: Weight Constraint Shortest Path Problem

43

CHAPTER 5
Acyclic Problem Variant

As shown before (cf. Chapter 2), optimal solutions to the NDPR may contain cycles. For prac-
tical applications, however, it might be required to enforce acyclic solutions.

5.1 Solution Properties

In terms of the RPP the relevance of acyclic solutions has already been considered by Sen et al.
[36]. They distinguish between three types of connections between the commodities. For the
acyclic case only simple paths between a pair of vertices are allowed, and for the cyclic case
all feasible connections (including cycles) are possible. In addition, they consider a third case
for which only connections that traverse an edge twice in the same direction are prohibited, i.e.,
path (a, b, c, b, d, e) is allowed but (a, b, c, d, b, c, e) is not since edge (b, c) is used twice in the
same direction. According to Theorem 2.1.3 this case is irrelevant for the NDPR.

As a consequence of this result we want to consider acyclic solutions by enforcing that every
pair (i, j) ∈ K has to be connected by a feasible path that is also simple.

In Chapter 2 we presented an instance with a cyclic solution. If we enforce an acyclic
solution we get a different result as shown in Figure 5.1. By enforcing this additional property
we reduce the amount of possible solutions. As a result this might prevent the former optimal
solution and increase the costs significantly.

Observe that enforcing simple paths as connections for the commodities does not mean that
the overall solution is acyclic. Figure 5.2 shows an instance with three commodities that are
connected with simple paths. When considering the union of the individual paths we get a cycle,
which has to be considered when stating MILP models. Note that this is only relevant if we
consider more than one source:

Corollary 5.1.1. In an optimal acyclic solution there exists for every source u ∈ KS a directed
graph rooted at u having a feasible connection to every target v ∈ K(u) visiting each vertex at
most once.

45

0(5) 1(5)

2(1)

3(5)
2(3)

1(3)

3(3)

K = {(0, 3)}, dmax = 4

0 1

2

3 0 1

2

3

cost = 10 cost = 14
(Cyclic Solution) (Acyclic Solution)

Figure 5.1: Different Solutions

Proof. By the definition of an acyclic solution there has to be for every (u, v) ∈ K a simple
feasible path from u to v. In Theorem 2.1.2 we have shown how to merge paths with a com-
mon source into a single graph without increasing the in-degree of any vertex while preserving
feasibility and optimality. If we consider only simple paths we know that each vertex has an
in-degree of at most one in the resulting graph.

Note that Figure 5.2 depicts the only optimal solution for K = {(0, 2), (2, 3), (3, 4)} and
dmax = 6. The numbers next to the edges denote their delay and the numbers in parentheses
their costs. The numbers next to the vertices are the relay costs. This instance shows that a
similar condition as stated in Corollary 5.1.1 cannot be proposed when considering more than
one source at the same time.

In this chapter we are going to present adaptations of some of our models that only allow
simple paths for the connection of the commodities. Note that at this point we focus on the nec-
essary adjustments. For detailed explanations of the underlying models please refer to Chapter
3 (models on layered graphs) and 4 (models on communication graphs).

46

0(1) 1(1)

3(1) 2(1)

4(1)
2 2

4(2) 4(2)

4(2)

K = {(0, 2), (2, 3), (3, 4)}, dmax = 6

0 1

3 2

4 0 1

3 2

4

Simple path connecting (0, 2) ∈ K Simple path connecting (3, 4) ∈ K

0 1

3 2

4 0 1

3 2

4

Simple path connecting (2, 3) ∈ K Union of simple paths
connecting the individual commodities

Figure 5.2: Exemplary Instance

47

5.2 Models on Communication Graphs

Unfortunately, some considerations concerning communication graphs make it difficult to en-
force acyclic solutions. The reason for this is that we do not consider the individual edges of
which a communication edge consists if free edges are involved. Moreover, the original formu-
lation also requires no information on the orientation of the edges. It does not matter which of
the arcs is used, we only need to know if it is used. Even worse we required this information
per source since it is possible that all pairs in K can be connected with simple paths but when
looking at them altogether we might end off with cycles (see Figure 5.2).

The required modifications would destroy the properties that make the MILP models pre-
sented in the previous chapter efficient. Since the necessary adjustments affect the path variables
and the associated linking constraints, none of the models on communications graphs is suited
to enforce acyclic solutions.

5.3 Models on Layered Graphs

The models on layered graphs are in general well suited to enforce acyclic solution. For some
constraints we obtain stronger restrictions due to the required modifications. However, note that
model LCUTS is unsuitable to enforce acyclic solutions since it considers more than one source
per variable set. In the following we present adaptations of our two most promising approaches
based on multiple layered graphs.

5.3.1 Flow Model

We start by presenting a modified version of the layered single-commodity flow formulation on
multiple layered graphs (LSCFM). For a detailed description of the underlying model we refer
to Section 3.2.2.

48

min
∑
i∈V

ciyi +
∑
e∈E∗

wexe

∑
a∈δ+(u0)

fua = |K(u)| ∀u ∈ KS , u0 ∈ V uL (5.1)

0 ≤
∑

a∈δ−(il)

fua −
∑

a∈δ+(il)

fua ≤ 1 ∀u ∈ KS , ∀il ∈ V uL , i ∈ K(u) (5.2)

∑
a∈δ−(il)

fua −
∑

a∈δ+(il)

fua = 0 ∀u ∈ KS , ∀il ∈ V uL , i 6= u, i /∈ K(u) (5.3)

∑
im∈V u

L

∑
a∈δ−(im)

fua −
∑

a∈δ+(il)

fua ≤ 1 ∀u ∈ KS ,∀il ∈ V uL , i ∈ K(u) (5.4)

∑
im∈V u

L

∑
a∈δ−(im)

fua −
∑

a∈δ+(il)

fua = 0 ∀u ∈ KS , ∀il ∈ V uL , i 6= u, i /∈ K(u) (5.5)

∑
il∈V u

L

 ∑
a∈δ−(il)

fua −
∑

a∈δ+(il)

fua

 = 1 ∀u ∈ KS , i ∈ K(u) (5.6)

∑
(il,jm)∈Au

L:l>0∧m>0

fu(il,jm) ≤ |K(u)| · (1− yi) ∀u ∈ KS , ∀i ∈ V, i 6= u (5.7)

∑
(il,i0)∈Au

L

fu(il,i0) ≤ |K(u)| · yi ∀u ∈ KS , ∀i ∈ V, i 6= u (5.8)

∑
(il,jm)∈Au

L

fu(il,jm) +
∑

(jl,im)∈Au
L

fu(jl,im) ≤ |K(u)| · xe ∀u ∈ KS , ∀{i, j} ∈ E∗ (5.9)

yi ∈ {0, 1} ∀i ∈ V (5.10)

xe ∈ {0, 1} ∀e ∈ E∗ (5.11)

0 ≤ fua ≤ |K(u)| ∀u ∈ KS , ∀a ∈ AuL (5.12)

To guarantee that all commodities are connected with simple paths we have to ensure that
across all layers at most one vertex copy has an in-coming arc. To accomplish this we add
Constraints (5.4) and (5.5). They ensure flow balance between the total in-flow on all layers and
the out-flow on each layer. Since these constraints might be difficult to understand we are going
to prove them in the following.

Lemma 5.3.1. Constraints (5.2) to (5.6) ensure that the solution contains no cycles.

Proof. We assume that the constraints still allow cycles and derive a contradiction. W.l.o.g. we
assume there is in-flow on two layers for some vertex i ∈ V . Then, we also require out-flow on
both layers due to Constraints (5.2) and (5.3).

Case 1: Assume we are dealing with a non-target vertex. Furthermore, let g and h be the
amount of in-flows s.t. g ≥ h > 0. Thus, we require out-flows of the same amount. As a result
some Constraints of type (5.5) will be violated since (g+ h)− g 6= 0 and also (g+ h)− h 6= 0.

Case 2: Now we deal with the case of a target vertex. Again we consider in-flows g and h
s.t. g ≥ h > 0. According to Constraints (5.2) and (5.6) we have either out-flows g and (h− 1)
or (g − 1) and h. Thus, Constraints (5.4) supply either of the two lines:

49

1. (g + h)− g ≤ 1 ∧ (g + h)− (h− 1) ≤ 1 , or
2. (g + h)− (g − 1) ≤ 1 ∧ (g + h)− h ≤ 1

After simplification we get:

1. h ≤ 1 ∧ g ≤ 0 , or
2. h ≤ 0 ∧ g ≤ 1

Since g ≥ h > 0 we obtain a contradiction in both cases which concludes the proof.

Constraints (5.7) are the modification of Constraints (3.29) from model LSCFM . We remove
·2 on the right-hand side which accommodates for the fact that without loops the maximum out-
flow per vertex across all layers is limited by |K(u)|. The last modification is to alter the sum of
Constraints (5.9). In the original version we have a sum per arc of an edge. When cycles are not
allowed we know that it is not possible that both arcs are required. Thus, we can combine the
two sums.

5.3.2 Cut Model

The second model we want to adapt is the layered cut formulation on multiple layered graphs
(LCUTM) presented in Section 3.2.3. The corresponding MILP model reads as follows:

min
∑
i∈V

ciyi +
∑
e∈E∗

wexe

∑
a∈δ−(W)

Xu
a ≥ 1

∀u ∈ KS , ∀v ∈ K(u),

{vl|vl ∈ V uL } ⊆W ⊂ V uL ,
u /∈W

(5.13)

∑
il∈V u

L :l>0

∑
a∈δ−(il)

Xu
a ≤ 1 ∀u ∈ KS , ∀i /∈ K(u), i 6= u (5.14)

∑
il∈V u

L :l>0

∑
a∈δ−(il)

Xu
a = 1 ∀u ∈ KS , ∀i ∈ K(u) (5.15)

∑
(il,jm)∈Au

L:l>0∧m>0

Xu
(il,jm) ≤ |K(u)| · (1− yi) ∀u ∈ KS , ∀i ∈ V, i 6= u (5.16)

∑
(il,jm)∈Au

L:l>0∧m>0

Xu
(il,jm) ≤ 1− yi

∀u ∈ KS , ∀i ∈ V, ∀{i, j} ∈ E,
i 6= u, j 6= u

(5.17)

∑
(il,i0)∈Au

L

Xu
(il,i0)

≤ yi ∀u ∈ KS ,∀i ∈ V (5.18)

∑
(il,jm)∈Au

L

Xu
(il,jm) +

∑
(jl,im)∈Au

L

Xu
(jl,im) ≤ xe ∀u ∈ KS , ∀{i, j} ∈ E∗ (5.19)

Xu
a ∈ {0, 1} ∀u ∈ KS , ∀a ∈ AuL (5.20)

yi ∈ {0, 1} ∀i ∈ V (5.21)

xe ∈ {0, 1} ∀e ∈ E∗ (5.22)

50

This model is obtained from the model LCUTM after the following modifications. First of
all we split the constraints∑

il∈V uL :l>0

∑
a∈δ−(il)

Xu
a ≤ 2− yi ∀u ∈ KS ,∀i ∈ V, i 6= u

w.r.t. target and non-target vertices resulting in Constraints (5.14) and (5.15). All non-target
vertices are reached at most once and targets are reached exactly once. Note that this is already
sufficient to prevent cycles. Due to the binary arc variables it is much easier to ensure cycle-
free solutions, compared to the flow formulation. Constraints (5.16) originally had a Big-M of
(|K(u)|+ 1). This can to be reduced to |K(u)| since the additional arc for the loop is no longer
allowed. Constraints (5.17) ensure that an arc leaving node i at some layer greater than zero can
only be used if no relay was installed at i. For Constraints (5.19) we again combine the two
sums as described for the flow model.

51

CHAPTER 6
Computational Results

In this chapter we are going to present the computational results for the presented algorithms. We
start with some remarks on preprocessing that help to reduce the size of the problem instances
for certain cases. Then, we present details for the algorithms that worked well in practice. We
especially give details about the parameters used for computing the results. Furthermore, we
are going to discuss the used sub-algorithms for cutting and pricing. Then, we give details on
the used test instances. Finally, we present the test results of our algorithms w.r.t. these test
instances.

6.1 Preprocessing

The easiest form of preprocessing is to remove all edges from both E0 and E∗ having a delay
larger than dmax. Using one of these edges would result in an immediate violation of the delay
bound. Thus, we do not consider them during the solution process.

After these edges have been removed it makes sense to check if there exists a feasible so-
lution for the given instance. If the graph consists of more than one connected component and
there exists a pair (u, v) ∈ K s.t. u and v belong to different components then there cannot be
a feasible solution. If the start and end point of each commodity are part of the same connected
component the instance has a feasible solution.

The next thing we want to consider are pairs inK that can be connected solely within the free
edges and without the use of relays. To find such pairs we compute the shortest path distance
in G = (V,E0) for all vertex pairs using an all-pairs shortest path algorithm (see [11] and [24])
and then check if the distance is smaller than or equal to the delay bound. Note that these pairs
can be connected without influencing the objective. Therefore, we remove these pairs from K.
Next, we solve the reduced problem and check if the removed pairs are connected in the obtained
solution. If some pair (u, v) is not connected we compute the shortest path between u and v in
G = (V,E0) and add the missing free edges to the solution. Since these edges have no cost this
leaves the overall costs unchanged and thus preserves optimality of the solution.

53

The next preprocessing technique we want to mention has been introduced by Chen et al. [6]
for the RLP but can also be applied to the NDPR with some modifications and extensions. To
this end, we consider vertices i that are leaves in the graph and appear as source or target in K.
Let {j, i} be the edge connecting i to the graph. If all combinations of in-coming edges to j and
the edge {j, i} exceed the delay bound j has to be a relay in any feasible solution. Otherwise it
would not be possible to reach i within the delay bound. Furthermore if {j, i} is an augmenting
edge we also know that this edge is required since it is the only possible way of connecting i to
the graph. If j has degree two, i.e., j is a leaf if we do not consider i, it makes sense to apply
this procedure again at j. In general we iterate this procedure until we arrive at some vertex of
degree greater than two. This leads to Algorithm 6.1.

Input: G = (V,E) (E = E0 ∪ E∗)
Input: Set K of commodities
Input: Delay bound dmax
Result: SetR of required relays
Result: Set E of required augmenting edges

1 S = {i|i ∈ V, δ(i) = 1 ∧ ∃j((i, j) ∈ K ∨ (j, i) ∈ K)};
2 R = ∅;
3 E = ∅;
4 forall the i ∈ S do
5 S = S \ {i};
6 e = {j, i};
7 if ∀{k, j} ∈ δ(j) \ {{j, i}}(d{k,j} + de > dmax) then
8 R = R∪ {j};
9 if δ(j) = 2 then

10 S = S ∪ {j};
11 V = V \ {i};
12 E = E \ {j, i};
13 end
14 end
15 if e ∈ E∗ then
16 E = E ∪ {e};
17 end
18 end

Algorithm 6.1: Preprocessing Algorithm

The first three preprocessing techniques have been used in the sense that we only consider
instances for which they do not apply. Especially, we only consider instances that are connected,
i.e., they consist of a single connected component. Furthermore, we define the set K, s.t. pairs
that can be connected using only free edges are not part of it. We did not use the last preprocess-
ing technique in our implementation.

54

Graph Transformation Model Type Results

Layered Graphs

LCUTS B&C
LMCFM compact
LSCFM compact X
LCUTM B&C X

Communication Graphs

CGCUTS B&P&C X
CGMCFM B&P X
CGSCFM B&P X
CGCUTM B&P&C

Table 6.1: Algorithm Overview

6.2 Algorithm Details

In this section we are going to give an overview on the presented algorithms. We also discuss
important implementation details. Although we have preliminary tested all the algorithms, we
will focus on those with the best performance. Table 6.1 summarizes the presented MILP for-
mulations and associated algorithms. B&C stands for Branch-and-Cut, B&P stands for Branch-
and-Price and B&P&C stands for Branch-Price-and-Cut, respectively. Only the models marked
in the ’Results’ column will be discussed in detail.

Furthermore, we recall that the computational study is only performed for the NDPR in
which cycles are allowed.

6.2.1 Separation

Some of our algorithms use cutting planes to ensure that all commodities can communicate with
each other. The amount of these constraints is in general exponential. Thus, it is not feasible
to add all of them into a black-box MILP solver. They need to be dynamically generated by
separation procedures. In this section we give details on the used separation methods.

Separation on Layered Graphs

We are going to explain the separation procedure w.r.t. the model LCUTM 1. For the layered
graph approaches we generate vertex copies w.r.t. the possible layers. We do not know at which
layer we will reach the target. Thus, we have to consider all copies (on layers greater than zero)
as potential targets. Disconnected source-target pairs can be found by computing the maximum
flow between source and target with arc-capacities set according to the current solution. For
the maximum flow computation we use the implementation by Cherkassy and Goldberg in [8].
To check if a source is connected to its target we need to check if it is connected to one of the
target copies. To avoid multiple maximum flow computations per target we create an artificial
linking vertex that is reached by all target copies. Hence for each target v ∈ K(u) we create a
new vertex vt and arcs Atv = {(vl, vt)|vl ∈ V u

L , l > 0}. The capacities of the arcs in Atv are set

1The approach for LCUTS is almost the same except that we only have a single set of arc values.

55

to two. Then we compute per source-target pair (u, v) ∈ K the maximum flow between u and
vt. If the maximum flow is smaller than one then the pair is not connected and we identified a
violated inequality.

The maximum flow algorithm we use gives us not only the flow value but also two cut sets
Su and Sv. Hence, the maximum flow computation between u and v for current arc values Xu

is defined by fmax = MaxFlow(GuL, X
u, u, v, Su, Sv). Su contains the source u and induces

a minimum cut closest to u. Similarly, Sv contains v and induces a minimum cut closest to
it. Thus, f =

∑
a∈δ+(Su)

Xu
a =

∑
a∈δ−(Sv)X

u
a holds. We can add forward-cuts using set Su,

back-cuts using set Sv, or both. Tests showed that it is most efficient to only use back-cuts.
Algorithm 6.2 illustrates the separation procedure.

Input: Graphs, GuL = (V u
L , A

u
L), ∀u ∈ KS

Input: Current values Xuon arcs of GuL, ∀u ∈ KS
Input: Set of sources KS
Result: Violated cut-inequalities

1 forall the u ∈ KS do
2 X̃u = Xu;
3 forall the v ∈ K(u) do
4 G̃uL = (V u

L ∪ {vt}, AuL ∪Atv);
5 X̃u

a = 2,∀a ∈ Atv;
6 fmax = MaxFlow(G̃uL, X̃

u, u, v, Su, Sv);
7 if fmax < 1 then
8 Add violated cut:

∑
a∈δ−(Sv)X

u
a ≥ 1;

9 forall the a ∈ δ−(Sv) do
10 X̃u

a = 2;
11 end
12 end
13 end
14 end

Algorithm 6.2: Separation Procedure (LCUTM)

Note that we adjust the arc values of the backward cut on line 10. Since we only have one arc
set per source, the added cut for some target might also affect the others. To reduce the amount
of added cuts we only add arc-disjoint cut-inequalities. This is ensured by setting arc capacities
to two, after we added a violated constraint associated to δ−(Sv) (cf. lines 9 to 11).

Due to the numerical instability, we prefer sparse cuts, and enforce them by searching for
violet cut-set inequalities of minimal cardinality.

Separation on Communication Graphs

Model CGCUTS also uses vertex copies. However, we know that we require a connection from
u2 to v1 for all (u, v) ∈ K. Thus, we can compute the maximum flow without any modifications
to the graph as shown in Algorithm 6.3.

56

Input: G2
C = (V 2

C , A
2
C)

Input: Current arc values X
Input: Set of sources KS
Result: Violated cut-inequalities

1 X̃ = X;
2 forall the u ∈ KS do
3 forall the v ∈ K(u) do
4 fmax = MaxFlow(G2

C, X̃, u2, v1, Su, Sv);
5 if fmax < 1 then
6 Add violated cut:

∑
a∈δ−(Sv)X

u
a ≥ 1;

7 forall the a ∈ δ−(Sv) do
8 X̃a = 2;
9 end

10 end
11 end
12 end

Algorithm 6.3: Separation Procedure (CGCUTS)

We again enforce arc-disjoint cut inequalities by the adjustment on line 8 and we also search
for sparse cuts of minimum cardinality.

Implementation Details

Concerning the implementation separation is always performed on integral LP solutions (Lazy-
ConstraintCallbackI). When the LP solution is fractional we only add cuts for which fmax < 0.5
(UserCutCallbackI). However, when computing the quality of LP bounds of the corresponding
models we add cuts for which fmax < 1.

6.2.2 Column Generation

We use column generation to deal with the exponential amount of path variables used in the
communication graph models. We already mentioned that the relevant subproblem for pricing
is a Weight Constrained Shortest Path Problem (WCSPP) which is in our case defined by:

∀b ∈ C∗ Rb = arg min
p∈P (b)

∑
e∈E∗∩p

αeb

We look for the shortest path p connecting the pair b within the delay bound dmax. The arc
lengths of the augmenting edges are given by the dual values of the linking constraints for the
augmenting edges and the lengths of the free edges remain zero. The weights of the edges are set
according to their delays. We already argued that this problem can be solved using the algorithm
by Gouveia et al. [20].

After we have identified the shortest path, we still need to check if this path gives us negative
reduced costs. To this end, we have to consider the dual variables µ for the linking of path and

57

Model B

CGCUTS 2 · µb
CGMCFM

∑
(u,v)∈K

µuvb

CGSCFM
∑
u∈KS

(|K(u)| · µub)

CGCUTM
∑
u∈KS

µub

Table 6.2: Reduced Cost Bounds

arc or flow variables, respectively. The sums of the µ-variables per connection b ∈ C∗ w.r.t. the
individual models are shown in Table 6.2.
Using column B of the table we can state the pricing subproblem in a more general form:

arg min
p∈P (b)

0−

B − ∑
e∈E∗∩p

αeb


Thus, the length of the shortest path has to be smaller than B to give us negative re-

duced costs. Per pricing iteration we might find at most |C∗| columns with negative reduced
costs. Hence, we have the choice to add all of them or only a subset in each iteration. Af-
ter some preliminary tests we decided to only add the first detected column with negative re-
duced costs and then finish the current iteration. Algorithm 6.4 illustrates the pricing procedure.
WCSPP (G, u, v, dmax, p) computes the length of the shortest path p from u to v in G with a
maximum delay of dmax and stores the obtained path in p.

Initial set of Columns

To start with a feasible LP model, we initiate every connection b ∈ C∗ with one possible real-
ization. To this end, we choose a feasible connection having minimal delay. Such a connection
can easily be found with Dijkstra’s algorithm (see [9]) using the edge delays as costs.

Column generation at the Root Node vs. Branch-and-Price

To find an optimal solution we are required to do column generation in the Branch-and-Bound
tree, i.e., to perform Branch-and-Price. Unfortunately, this is not supported by CPLEX and we
are limited to column generation at the root node. Therefore, our CPLEX implementation works
as follows: Complete column generation is performed at the root node. After that, branch-
and-bound is executed on the sub-model with the columns provided at the root node. This is a
heuristic procedure.

Tests showed that for all NDPR instances whenever this approach terminated within the
time limit, the returned solution has been optimal. However, this is not the case for some ARLP
instances. Instances for which the reduced approach cannot find the optimal solution can be
recognized by having a negative optimality gap.

58

Input: G = (V,A(E), d) (E = E0 ∪ E∗)
Input: Dual values α and µ
Input: Set of connections C∗

Result: Column with negative reduced costs
1 forall the {i, j} ∈ E0 do
2 lij = 0;
3 lji = 0;
4 end
5 forall the b ∈ C∗ do
6 forall the e = {i, j} ∈ E∗ do
7 lij = αeb;
8 lji = αeb;
9 end

10 (u, v) = b;
11 L = WCSPP (G, u, v, dmax, p);
12 Set B according to µ ; // cf. Table 6.2
13 if L < B then
14 Add column λpb to the model;
15 Stop iteration;
16 end
17 end

Algorithm 6.4: Column Generation Procedure

To investigate the influence of doing full Branch-and-Price we also implemented the respec-
tive models in SCIP. Details on the results will be given in Section 6.5.

6.2.3 Column-and-Row Generation at the Root Node

Some of our algorithms even require the combination of cutting planes and column generation.
Since CPLEX provides no direct support for column generation we implemented our own loop
to add columns at the root node. In order to remain consistent with the usual approach and the
way SCIP implements this we do pricing until we find no further columns with negative reduced
costs and then check for cutting planes once before we continue with pricing. Algorithm 6.5
shows the resulting Branch-Price-and-Cut loop.

6.2.4 Optional Constraints

In addition to the constraints that make the considered models valid, we also introduced vari-
ous optional ones. All mentioned constraints are implemented and used in our computational
experiments except for Constraints (3.38) from model LCUTM (see Subsection 3.2.3):

59

// addColumns() returns true if it added columns and false
otherwise

// addCuts() returns true if it added cuts and false
otherwise

1 repeat
2 repeat
3 solve_LP();
4 col_added = addColumns();
5 until col_added == false;
6 cut_added = addCuts();
7 until cut_added == false;

Algorithm 6.5: Branch-Price-and-Cut Loop

LP bound compact B&C B&P B&C&P
LP solver dual simplex dual simplex dual simplex dual simplex dual simplex
Threads 1 1 1 1 1
Presolving X X X X
Probing X X X X
Heuristics X X X X
Cuts X

Table 6.3: Solver Settings

∑
(il,jm)∈AuL:l>0∧m>0

Xu
(il,jm) ≤ 2 · (1− yi)

∀u ∈ KS ,∀i ∈ V,∀{i, j} ∈ E,
i 6= u, j 6= u

These constraints are essentially a disaggregated variant of Constraints (3.37):

∑
(il,jm)∈AuL:l>0∧m>0

Xu
(il,jm) ≤ (|K(u)|+ 1) · (1− yi) ∀u ∈ KS ,∀i ∈ V, i 6= u

We tried to implement Constraints (3.38) by adding all of them initially and by adding them
by means of a separation procedure. It turned out that they are almost never violated. Since their
benefits do not compensate for the additionally required runtime we decided to remove them
from the implementation and only keep Constraints (3.37).

6.3 Solver Configuration

In this section we are going to explain the used solver settings. Table 6.3 gives an overview of
the configurations for the respective model types.

60

The first choice regards the used LP solver. For column generation models usually the
primal simplex method is preferred as it maintains primal feasibility after a column has been
added. Another common choice are interior point methods like the barrier method. We made
tests with the available algorithms and figured out that the dual simplex method is the best choice
(even for column generation). We use for all our models only a single thread. Furthermore, we
always use presolving, probing and the solvers heuristics. However, we only allow solver cuts
for compact models. When computing the LP bound solely we disable all additional help from
the solver.

In particular we use CPLEX 12.6 and SCIP 3.1.0. To obtain comparable results we use
CPLEX as LP solver for SCIP. We also tried to use the same settings as far as possible. We use
SCIP only to implement full Branch-and-Price since this is not supported by CPLEX.

6.4 Test Instances

In this section we are going to give details on the used test instances. We use modified versions
of instances introduced in the previous literature and an entirely new set of instances.

6.4.1 NDPR instances

These instances have originally been introduced by Konak [25]. The instances have been ran-
domly generated by placing vertices on a grid and connecting them. The instances use Eu-
clidean distances for the delays. The costs are either set equal to the delays (Type I) or to
c{i,j} = dmax − d{i,j} (Type II). The instances with their parameters are shown in Table 6.4.
For each vertex size the instances with the same delay maximum use the same underlying graph.
Only the number of commodities differs within instances of the same group. The original in-
stances use the Euclidean distances directly and thus have fractional costs and delays. To better
fit into the domain of MILP we decided to round these values up to obtain integral instances.

6.4.2 ARLP instances

These instances are entirely new. We call them augmented RLP (ARLP) instances since all
commodities need to communicate like for the RLP. However, not all edges have a cost of zero.
Thus, it is an augmented variant that can be solved by the NDPR.

The instances have been generated as follows. We start with a 100 × 100-grid on which
we randomly place vertices. Then we add edges between all vertices not farther apart than a
Euclidean distance of 30. We set the delay of an edge equal to its rounded up Euclidean distance.
We decide whether an edge is augmenting or free at random. We generate instances for which
the chance of a free edge is either 20, 50 or 80% (20F, 50F, 80F). For augmenting edges we set
their cost c{i,j} randomly according to a normal distribution with parameters µ = d{i,j}, σ = 5
(rounded up). For the relay costs we first compute the average costs of the augmenting edges c̄.
Then we set the costs of the relays randomly according to the normal distribution µ = 10 · c̄, σ =
20 (rounded up). We set dmax = 50 and enforce connectivity for all pairs except those that can
be connected using solely free edges, i.e., K = {(i, j)|(i, j) ∈ V × V, i < j} \ C0 (see Section
6.1).

61

Instance |V | |E∗| |E0| |K| dmax
40N5K30L 40 198 0 5 30
40N5K35L 40 272 0 5 35
40N10K30L 40 198 0 10 30
40N10K35L 40 272 0 10 35
50N5K30L 50 279 0 5 30
50N5K35L 50 372 0 5 35
50N10K30L 50 279 0 10 30
50N10K35L 50 372 0 10 35
60N5K30L 60 305 0 5 30
60N5K35L 60 412 0 5 35
60N10K30L 60 305 0 10 30
60N10K35L 60 412 0 10 35
80N5K30L 80 641 0 5 30
80N5K35L 80 853 0 5 35
80N10K30L 80 641 0 10 30
80N10K35L 80 853 0 10 35
160N5K30L 160 2773 0 5 30
160N5K35L 160 3624 0 5 35
160N10K30L 160 2773 0 10 30
160N10K35L 160 3624 0 10 35

Table 6.4: NDPR Instances

We generate two instances per combination of the vertex number and the probability of
creating free edges. This first set of instances is shown in Table 6.5. To investigate the influence
of a reduced number of commodities we generated a second set of instances. These instances
have been created by removing ∼ 75% of the commodities of the original ARLP-instance. We
refer to these instances as ’ARLP - p25’. The second set of instances is shown in Table 6.6.

6.5 Test Results

In this section we are going to present the computational results of our algorithms performed on
the introduced instances. The test runs have been executed on a 2x Intel Xeon E5540, 2.53 GHz
Quad Core with 24GB RAM and comparable hardware. The execution time limit has been set
to 7200 seconds.

The column generation approaches have been implemented with column generation only at
the root node followed by branch-and-bound in CPLEX (CG) and also with full branch and
price in SCIP (CGBP). Nevertheless, the LP bound for both implementations has to be the
same. This holds for models CGMCFM and CGSCFM . Unfortunately, we obtained different
LP bounds for model CGCUTS . In the following we provide both results. We believe that both
solvers could uses some additional features that we have not been able to deactivate that cause
the different LP bound. As a reference value, we took those obtained by CPLEX.

62

Instance |V | |E∗| |E0| |K| dmax
40N50L20F_A 40 124 26 724 50
40N50L20F_B 40 123 35 688 50
40N50L50F_A 40 78 89 513 50
40N50L50F_B 40 72 71 586 50
40N50L80F_A 40 32 146 443 50
40N50L80F_B 40 35 154 423 50
50N50L20F_A 50 212 44 1111 50
50N50L20F_B 50 235 59 1022 50
50N50L50F_A 50 157 132 719 50
50N50L50F_B 50 132 117 873 50
50N50L80F_A 50 51 175 788 50
50N50L80F_B 50 58 212 682 50
60N50L20F_A 60 269 72 1549 50
60N50L20F_B 60 268 63 1588 50
60N50L50F_A 60 204 216 1036 50
60N50L50F_B 60 200 197 1103 50
60N50L80F_A 60 85 311 854 50
60N50L80F_B 60 74 283 1041 50
80N50L20F_A 80 557 145 2599 50
80N50L20F_B 80 545 124 2659 50
80N50L50F_A 80 345 313 1922 50
80N50L50F_B 80 375 366 1902 50
80N50L80F_A 80 148 548 1834 50
80N50L80F_B 80 121 536 1709 50

Table 6.5: ARLP Instances

In the following we provide for every set of instances a chart showing the cumulative per-
centage of instances solved w.r.t. the runtime. Furthermore, we present results considering the
quality of the LP bounds. We show the runtime until the LP bound has been found and give the
gap between the LP bound and the best known feasible solution in percent. Furthermore, we
provide a table showing the total computation time and the gap between lower and upper bound
(optimality gap).

We marked in every table row the best value unless too many approaches have the same
results. Due to the problems with the LP bound mentioned above, we do not consider the SCIP
results when marking optimal results in the LP tables. Furthermore, the SCIP implementation
has problems with the memory limit for some instances. The concerned instances have been
marked with ML in the runtime column. Moreover, we encountered a confirmed CPLEX bug2

w.r.t. preprocessing for some instances using model LCUTM . The concerned instances have
been marked with CB in the runtime column.

2For details see https://www.ibm.com/developerworks/community/forums/html/topic?
id=94f6acaa-60cf-48e8-a773-bbb394c04633&ps=25.

63

https://www.ibm.com/developerworks/community/forums/html/topic?id=94f6acaa-60cf-48e8-a773-bbb394c04633&ps=25
https://www.ibm.com/developerworks/community/forums/html/topic?id=94f6acaa-60cf-48e8-a773-bbb394c04633&ps=25

Instance |V | |E∗| |E0| |K| dmax
40N50L20F_A 40 124 26 181 50
40N50L20F_B 40 123 35 172 50
40N50L50F_A 40 78 89 129 50
40N50L50F_B 40 72 71 147 50
40N50L80F_A 40 32 146 111 50
40N50L80F_B 40 35 154 106 50
50N50L20F_A 50 212 44 278 50
50N50L20F_B 50 235 59 256 50
50N50L50F_A 50 157 132 180 50
50N50L50F_B 50 132 117 219 50
50N50L80F_A 50 51 175 197 50
50N50L80F_B 50 58 212 171 50
60N50L20F_A 60 269 72 388 50
60N50L20F_B 60 268 63 397 50
60N50L50F_A 60 204 216 259 50
60N50L50F_B 60 200 197 276 50
60N50L80F_A 60 85 311 214 50
60N50L80F_B 60 74 283 261 50
80N50L20F_A 80 557 145 650 50
80N50L20F_B 80 545 124 665 50
80N50L50F_A 80 345 313 481 50
80N50L50F_B 80 375 366 476 50
80N50L80F_A 80 148 548 459 50
80N50L80F_B 80 121 536 428 50

Table 6.6: ARLP - p25 - Instances

For some instances we were not able to find an optimal solution. Table 6.7 shows the corre-
sponding instances together with the highest lower (LB) and the smallest upper bound (UB) we
obtained. For the respective instances the LP and optimality gaps have been computed using the
upper bounds given in this table.

6.5.1 Results on NDPR Instances

The NDPR instances require only five or ten commodities to be connected. Thus, these instances
are in general easier than the ARLP instances. However, it turned out that the instances with
delays equivalent to the costs (Type I) are significantly more difficult than the instances with
indirectly correlated costs (Type II).

Results for Type I Instances

The performance chart is given in Figure 6.1, and Tables 6.8 and 6.9 provide details on the LP
and MILP computations respectively.

64

Instance Instance set LB UB
60N10K30L 658.59 692
80N5K30L 330.51 361
80N5K35L 283.29 344
80N10K30L 354.58 480
80N10K35L 305.15 502
160N5K30L 223.5 342
160N5K35L 212.08 311
160N10K30L 280.25 492
160N10K35L

NDPR - Type I

0 INF
50N50L20F_A 725.65 820
50N50L20F_B 557.72 656
60N50L20F_A 656.05 932
60N50L20F_B 727.17 9420
80N50L20F_A 561.74 15879
80N50L20F_B

ARLP

345.27 17478
50N50L20F_A 760.34 815
50N50L20F_B 606.13 661
60N50L20F_A 709.77 1098
60N50L20F_B 778.3 1444
80N50L20F_A 596.18 16730
80N50L20F_B

ARLP - p25

374.48 16751

Table 6.7: Instances with unknown optimal solution

The obtained results indicate that the layered single commodity flow formulation worked
best on this set of instances. Unfortunately, even this approach has not been able to solve the
larger instances to optimality. However, many of the smaller instances have been solved fast.
LCUTM is slower but provides the best LP gap whenever the computation terminates within the
time limit.

The models on multiple communication graphs implemented in SCIP solved six of the
smaller instances. The implementations with reduced column generation in CPLEX found the
optimal solution for an additional instance. Model CGCUTS solved only a single instance opti-
mally. We believe that this model is outperformed by the flow models due to the small number
of commodities. Considering all commodity pairs at once weakens the lower bounds, but does
not provide sufficient speed up to compete against the disaggregated flow based models.

Results for Type II Instances

The performance chart for this group of instances is shown in Figure 6.2 Results referring to the
LP and MILP performance are provided in Table 6.10 and 6.11, respectively.

The results obtained on this set of NDPR instances are similar to the ones obtained on Type I
instances. As already mentioned these instances have been easier to solve. The most successful

65

approach is again LSCFM . This approach solves all instances to optimality within the time limit.
The cut variant is again slower but outperformed all communication graph approaches this time.
It has again the smallest LP gaps for all instances for which the LP computation terminated.

The communication graph approaches solved many of the smaller instances to optimal-
ity. Reduced column generation is again faster than the full Branch-and-Price implementation.
Furthermore, the multi-commodity flow approach is faster than the single-commodity flow ap-
proach. The reason for this is that due to the low amount of commodities (we only have few
(1 − 2) targets per source). Hence, we do not gain much by aggregating per source, but loose
on the quality of lower bounds. The communication graph model on a single graph exhibits the
worst performance.

66

CPU−time [s]

C
u
m

u
la

ti
v
e

%
 o

f
in

st
an

ce
s

so
lv

ed
 i
n
 t

im
e

0 1200 3600 7200

0
2
0

40
60

80
10

0

LSCFM

LCUTM

CGMCFM

CGSCFM

CGCUTS

CGMCFM
BP

CGSCFM
BP

CGCUTS
BP

Figure 6.1: Performance Chart - NDPR - Type I instances

67

Instance
t-L

P
[s]

L
P

G
ap

[%
]

L
C
G

C
G
B
P

L
C
G

C
G
B
P

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

4
0
N
5
K
3
0
L

0.25
2.53

6.04
4.41

24.22
4.58

3.61
17.76

12.99
12.99

21.51
21.51

30.87
21.51

21.51
30.87

4
0
N
5
K
3
5
L

0.78
39.89

24.53
22.05

128.83
19.25

22.02
86.43

21.15
21.15

38.47
38.47

51.79
38.47

38.47
52.29

4
0
N
1
0
K
3
0
L

1
455.45

8.01
8.66

26.81
7.7

6.95
23.85

17.61
15.44

26.24
26.9

32.37
26.24

26.9
32.37

4
0
N
1
0
K
3
5
L

2.2
890.09

39.78
45.21

149.99
36.68

30.87
130.48

22.12
21.24

40.12
40.33

48.92
40.12

40.33
50.15

5
0
N
5
K
3
0
L

0.31
5.99

22.12
19.86

114.98
13.42

16.35
97.1

4.45
1.85

8.49
13.53

23.95
8.49

13.53
24.02

5
0
N
5
K
3
5
L

1.66
57.27

99.98
82.14

274.55
99.54

73.72
274.49

2.35
0.56

22.49
25.39

37.5
22.49

25.39
37.5

5
0
N
1
0
K
3
0
L

3.14
2205.63

55.14
54.29

319.74
50.83

55.26
220.25

14.99
12.61

24.62
25.16

31.4
24.62

25.16
33.16

5
0
N
1
0
K
3
5
L

7.03
7200.02

310.01
244.11

1183.28
290.06

295.1
631.72

13.98
11.42

27.61
28.08

37.04
27.61

28.08
41.28

6
0
N
5
K
3
0
L

0.78
38.5

31.14
29.44

233.59
22.1

23.87
199.21

21.37
21.37

28.12
28.12

35.17
28.12

28.12
35.26

6
0
N
5
K
3
5
L

2.67
250.38

123.06
139.29

1272.33
111.89

99.83
1526.43

10.47
10.47

24.34
24.34

39.31
24.34

24.34
39.65

6
0
N
1
0
K
3
0
L

2.77
806.18

62.27
70.71

320.73
59.16

74.8
189.54

24.35
24.35

32.26
32.26

41.26
32.26

32.26
43.12

6
0
N
1
0
K
3
5
L

10.32
4837.53

280.06
277.69

1625.43
297.35

325.2
1131.73

21.21
21.21

33.05
33.05

45.93
33.05

33.05
52.32

8
0
N
5
K
3
0
L

6.07
7200.07

1627.13
1844.29

7200.23
1612.85

1356.81
6351.86

24.72
16.61

43.66
50.16

IN
F

43.66
50.16

60.43
8
0
N
5
K
3
5
L

11.2
7200.01

6662.88
6346.2

7199.88
7201.04

5095.59
7200.98

29.41
26.7

54.01
59.39

IN
F

IN
F

59.39
76.77

8
0
N
1
0
K
3
0
L

33.38
7200.03

2860.39
2747.19

7199.31
3423.07

3091.36
5677.31

32.22
37.47

53.09
56.49

IN
F

53.09
56.49

65.08
8
0
N
1
0
K
3
5
L

72.94
7200.04

7200.13
7199.94

7199.71
7201.02

7201.08
7200.83

43.04
56.94

IN
F

IN
F

IN
F

IN
F

IN
F

82.67
1
6
0
N
5
K
3
0
L

341.58
7200.06

7202.24
7202.46

7201.85
M

L
M

L
M

L
35.96

63.44
IN

F
IN

F
IN

F
IN

F
IN

F
IN

F
1
6
0
N
5
K
3
5
L

3186.92
7200.07

7204.06
7204.13

7202.21
M

L
M

L
M

L
32.48

69.27
IN

F
IN

F
IN

F
IN

F
IN

F
IN

F
1
6
0
N
1
0
K
3
0
L

2777.99
7200.1

7202.47
7204.29

7201.34
M

L
M

L
M

L
43.19

73.4
IN

F
IN

F
IN

F
IN

F
IN

F
IN

F
1
6
0
N
1
0
K
3
5
L

7200.27
7200.16

7207.21
7210.19

7201.5
M

L
M

L
M

L
100

70.87
IN

F
IN

F
IN

F
IN

F
IN

F
IN

F

Table
6.8:

C
om

paring
L

P
relaxations

on
N

D
PR

-Type
Iinstances

68

In
st

an
ce

t[
s]

O
pt

im
al

ity
-G

ap
[%

]
L

C
G

C
G
B
P

L
C
G

C
G
B
P

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

4
0
N
5
K
3
0
L

3.
61

18
4.

74
62

.6
5

95
71

99
.5

74
0.

97
93

3.
39

72
00

.0
2

0
0

0
0

5.
48

0
0

13
.2

1
4
0
N
5
K
3
5
L

11
7.

72
72

00
.0

4
71

99
.2

71
99

.2
5

71
99

.0
8

72
00

.0
8

72
00

.0
8

72
00

.0
5

0
3.

84
10

.9
10

.4
5

36
.7

4
17

.0
1

16
.6

8
38

.8
7

4
0
N
1
0
K
3
0
L

56
.0

4
72

00
.0

1
19

30
.8

24
25

.9
2

71
99

.1
2

72
00

.0
5

72
00

.0
4

72
00

.0
5

0
4.

99
0

0
11

.5
5

4.
9

4.
89

15
.7

6
4
0
N
1
0
K
3
5
L

56
32

.7
8

72
00

.0
2

71
99

.3
5

71
99

.2
5

71
99

.0
9

72
00

.0
5

72
00

.0
8

72
00

.0
7

0
23

.9
8

18
.4

5
18

.8
2

36
.8

7
21

.5
7

22
.1

8
43

.7
7

5
0
N
5
K
3
0
L

0.
75

12
.2

4
39

.3
2

42
.4

1
39

12
.0

2
73

.0
2

12
2.

98
66

53
.1

8
0

0
0

0
0

0
0

0
5
0
N
5
K
3
5
L

1.
29

51
.6

3
19

2.
93

30
5.

97
71

99
.2

6
82

0.
52

10
56

.2
2

72
00

.1
6

0
0

0
0

25
.4

8
0

0
25

.8
5
0
N
1
0
K
3
0
L

26
1.

34
38

17
.0

6
66

45
.6

68
55

.8
1

71
99

.4
5

68
39

.7
56

85
72

00
.0

7
0

0
0

0
23

.0
6

0
0

26
.4

8
5
0
N
1
0
K
3
5
L

87
0.

6
72

00
.0

1
71

99
.2

2
71

99
.7

9
71

99
.2

4
72

00
.1

4
72

00
.1

9
72

00
.1

3
0

5.
93

6.
07

5.
62

32
.1

1
13

.4
7

13
.6

1
37

.8
7

6
0
N
5
K
3
0
L

34
.5

7
96

8.
74

34
8.

46
61

5.
27

71
99

.3
6

84
2.

98
82

9.
41

72
00

.1
1

0
0

0
0

21
.6

0
0

21
.8

6
6
0
N
5
K
3
5
L

69
.7

7
12

32
.4

5
95

0.
76

10
07

.6
3

71
99

.4
3

24
62

.4
6

35
70

.6
72

00
.1

7
0

0
0

0
35

.5
0

0
34

.2
7

6
0
N
1
0
K
3
0
L

72
00

.0
1

72
00

.0
2

71
99

.3
71

99
.1

7
71

99
.0

7
72

00
.1

2
72

00
.1

72
00

.0
8

4.
83

20
.2

1
5.

82
6.

67
32

.0
4

9.
24

9.
75

34
.9

1
6
0
N
1
0
K
3
5
L

57
55

.9
7

72
00

.0
2

71
99

.5
71

99
.8

9
71

99
.9

7
72

00
.2

2
72

00
.2

1
72

00
.2

1
0

26
.7

15
.8

8
14

.4
6

42
.0

5
17

.9
9

16
.0

9
49

.1
8

8
0
N
5
K
3
0
L

72
00

.0
1

72
00

.0
2

72
00

.0
2

71
99

.5
2

71
99

.3
2

72
00

.4
9

72
00

.4
6

72
00

.4
5

8.
45

22
.8

1
37

.3
8

44
.8

7
IN

F
41

.1
8

48
.6

3
64

.7
3

8
0
N
5
K
3
5
L

72
00

.0
2

72
00

.0
5

72
00

.2
4

72
00

.0
2

71
99

.6
6

72
01

.1
6

72
01

.0
8

72
01

.1
4

17
.6

5
28

.9
1

53
.9

4
59

.1
7

IN
F

54
.0

1
59

.3
9

77
.4

5
8
0
N
1
0
K
3
0
L

72
00

.0
3

72
00

.0
3

71
99

.4
71

99
.7

71
99

.9
1

72
00

.5
3

72
00

.4
6

72
00

.4
7

26
.1

3
39

.0
5

52
.9

9
53

.5
6

IN
F

51
.8

6
55

.9
5

67
.9

7
8
0
N
1
0
K
3
5
L

72
00

.0
4

72
00

.0
4

71
99

.4
7

71
99

.6
1

71
99

.7
9

72
01

.1
3

72
01

.1
1

72
01

.1
3

39
.2

1
57

.9
8

IN
F

IN
F

IN
F

IN
F

IN
F

85
.6

3
1
6
0
N
5
K
3
0
L

72
00

.0
7

72
00

.0
6

72
03

.1
9

72
02

.7
1

72
03

.7
4

M
L

M
L

M
L

34
.6

5
63

.7
6

IN
F

IN
F

IN
F

IN
F

IN
F

IN
F

1
6
0
N
5
K
3
5
L

72
00

.1
5

72
00

.0
7

72
10

.8
1

72
03

.3
9

72
06

.5
6

M
L

M
L

M
L

31
.8

1
68

.6
IN

F
IN

F
IN

F
IN

F
IN

F
IN

F
1
6
0
N
1
0
K
3
0
L

72
00

.1
1

72
00

.1
3

72
06

.1
5

72
03

.7
3

72
03

.0
4

M
L

M
L

M
L

43
.0

4
71

.9
7

IN
F

IN
F

IN
F

IN
F

IN
F

IN
F

1
6
0
N
1
0
K
3
5
L

72
00

.2
72

00
.1

6
72

06
.4

8
72

09
.9

6
72

04
.8

8
M

L
M

L
M

L
10

0
69

.8
4

IN
F

IN
F

IN
F

IN
F

IN
F

IN
F

Ta
bl

e
6.

9:
C

om
pa

ri
ng

M
IL

P
m

od
el

s
on

N
D

PR
-T

yp
e

Ii
ns

ta
nc

es

69

CPU−time [s]

C
u
m

u
la

ti
v
e

%
 o

f
in

st
an

ce
s

so
lv

ed
 i
n
 t

im
e

0 1200 3600 7200

0
2
0

40
60

80
10

0

LSCFM

LCUTM

CGMCFM

CGSCFM

CGCUTS

CGMCFM
BP

CGSCFM
BP

CGCUTS
BP

Figure 6.2: Performance Chart - NDPR - Type II instances

70

In
st

an
ce

t-
L

P
[s

]
L

P
G

ap
[%

]
L

C
G

C
G
B
P

L
C
G

C
G
B
P

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

4
0
N
5
K
3
0
L

0.
08

0.
35

3.
62

3.
14

12
.4

8
2.

43
4.

06
10

.5
7

0
0

0.
26

0.
26

12
.4

5
0.

26
0.

26
12

.4
5

4
0
N
5
K
3
5
L

0.
37

0.
48

19
.4

8
16

.8
7

60
.1

7
14

.0
6

18
.0

1
55

.6
1

7.
33

7.
33

7.
76

7.
76

24
.1

4
7.

76
7.

76
24

.1
4

4
0
N
1
0
K
3
0
L

0.
61

6.
82

11
.0

4
8.

25
38

.4
4

7.
81

7.
61

26
.2

8
3.

95
1.

79
6.

63
8

18
.7

8
6.

63
8

19
.7

4
0
N
1
0
K
3
5
L

2.
4

19
.9

3
57

.8
3

39
.8

7
16

8.
91

57
.2

4
34

.0
5

14
6.

07
8.

28
7.

05
10

.0
6

10
.8

9
27

.9
6

10
.0

6
10

.8
9

30
.3

8
5
0
N
5
K
3
0
L

0.
18

0.
39

4.
54

4.
35

31
.3

2
4.

76
4.

22
43

.5
3

6.
5

0
0

6.
5

17
.4

8
0

6.
5

17
.4

8
5
0
N
5
K
3
5
L

0.
39

2.
15

46
.6

4
41

.2
4

77
2.

42
59

.9
38

.1
5

58
0.

56
9.

75
0.

63
1.

89
9.

84
27

.3
6

1.
89

9.
84

27
.3

6
5
0
N
1
0
K
3
0
L

1.
27

12
.7

4
14

.5
8

12
.9

7
15

5.
47

13
.4

2
12

.9
5

14
4.

58
3.

82
0.

35
2.

5
5.

71
17

.6
9

2.
5

5.
71

18
.7

8
5
0
N
1
0
K
3
5
L

2.
7

20
.6

4
15

6.
39

10
8.

73
37

15
.2

9
16

4.
52

12
4.

25
10

77
.2

7
0.

7
0

2.
97

3.
97

20
.6

8
2.

97
3.

97
30

.8
5

6
0
N
5
K
3
0
L

0.
5

5.
3

18
.9

7
19

.9
7

17
2.

08
16

.8
6

16
.5

6
14

9.
84

13
.7

3
13

.7
3

14
.8

9
14

.8
9

21
.9

2
14

.8
9

14
.8

9
22

.0
2

6
0
N
5
K
3
5
L

0.
34

2.
31

53
.6

2
58

.8
3

14
3.

57
44

.5
8

37
.7

6
19

3.
34

0
0

0
0

21
.1

0
0

21
.1

6
0
N
1
0
K
3
0
L

3.
23

12
0.

78
59

.9
5

46
.9

3
55

1.
17

40
.4

1
45

.7
7

31
0.

81
10

.9
7

10
.9

7
13

.7
2

13
.7

2
24

.6
2

13
.7

2
13

.7
2

28
.5

5
6
0
N
1
0
K
3
5
L

4.
22

23
3.

37
14

9.
26

13
3.

54
11

46
.3

6
13

7.
46

96
.6

9
71

0.
11

1.
69

1.
69

6.
94

6.
94

26
.0

3
6.

94
6.

94
40

.5
3

8
0
N
5
K
3
0
L

1.
67

21
.8

1
57

2.
22

43
6.

13
71

99
.7

5
38

1.
64

35
7.

95
34

63
.2

7
13

.8
3

5.
67

7.
85

15
.9

3
IN

F
7.

85
15

.9
3

34
.1

5
8
0
N
5
K
3
5
L

5.
28

14
5.

94
20

42
.6

6
16

61
.4

3
71

99
.6

9
20

74
.1

4
15

45
.1

2
72

01
.1

4
13

.6
4

0.
91

6.
16

16
.1

4
IN

F
6.

16
16

.1
4

42
.1

9
8
0
N
1
0
K
3
0
L

10
.6

4
84

9.
66

99
1.

46
12

10
.3

1
72

00
.2

4
11

65
.5

3
98

5.
78

72
00

.5
8

11
.8

6.
6

12
.1

16
.1

4
IN

F
12

.1
16

.1
4

39
.4

8
0
N
1
0
K
3
5
L

72
.9

6
72

00
.0

4
57

00
.9

4
66

46
.5

1
72

00
.4

58
92

.5
9

64
50

.4
5

72
00

.9
2

9.
56

5.
59

18
.9

2
23

.3
6

IN
F

18
.9

2
23

.3
6

53
.2

5
1
6
0
N
5
K
3
0
L

33
1.

1
40

6.
84

72
01

.3
6

72
02

.7
7

72
03

.1
4

M
L

M
L

M
L

5.
95

5.
95

IN
F

IN
F

IN
F

IN
F

IN
F

IN
F

1
6
0
N
5
K
3
5
L

28
8.

63
59

0.
5

72
01

.0
6

72
01

.2
72

09
.9

4
M

L
M

L
M

L
9.

7
9.

7
IN

F
IN

F
IN

F
IN

F
IN

F
IN

F
1
6
0
N
1
0
K
3
0
L

10
96

.4
7

72
00

.1
72

03
.4

7
72

04
.3

8
72

03
.2

6
M

L
M

L
M

L
4.

73
4.

93
IN

F
IN

F
IN

F
IN

F
IN

F
IN

F
1
6
0
N
1
0
K
3
5
L

66
1.

84
72

00
.1

7
72

10
.8

6
72

08
.3

1
72

06
.5

4
M

L
M

L
M

L
4.

17
15

IN
F

IN
F

IN
F

IN
F

IN
F

IN
F

Ta
bl

e
6.

10
:C

om
pa

ri
ng

L
P

re
la

xa
tio

ns
on

N
D

PR
-T

yp
e

II
in

st
an

ce
s

71

Instance
t[s]

O
ptim

ality-G
ap

[%
]

L
C
G

C
G
B
P

L
C
G

C
G
B
P

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

4
0
N
5
K
3
0
L

0.19
1.28

3.81
3.21

47.36
7.28

6.16
98.61

0
0

0
0

0
0

0
0

4
0
N
5
K
3
5
L

0.99
3.14

23.96
29.63

1047.92
79.69

58.8
2491.84

0
0

0
0

0
0

0
0

4
0
N
1
0
K
3
0
L

2.22
11

15.42
19.7

468.18
58.07

101.93
1825.22

0
0

0
0

0
0

0
0

4
0
N
1
0
K
3
5
L

4.18
19.7

168.31
146.22

5256.59
566.45

715.43
7200.06

0
0

0
0

0
0

0
12.08

5
0
N
5
K
3
0
L

0.38
1.9

6.6
10.66

106.02
6.37

18.98
182.79

0
0

0
0

0
0

0
0

5
0
N
5
K
3
5
L

1.08
6.52

50.04
69.81

5737.47
68.66

188.34
7200.16

0
0

0
0

0
0

0
19.27

5
0
N
1
0
K
3
0
L

1.56
9.61

28.91
27.71

4350.26
35.84

48.87
7200.06

0
0

0
0

0
0

0
7.76

5
0
N
1
0
K
3
5
L

3.17
28.21

261.68
230.62

7199.17
633.58

830.89
7200.16

0
0

0
0

15.21
0

0
19.26

6
0
N
5
K
3
0
L

3.98
24.64

46.84
54.43

2397.31
232.74

186.21
7140.1

0
0

0
0

0
0

0
0

6
0
N
5
K
3
5
L

0.7
11.65

71.92
68.66

1452.69
49

63.35
6148.97

0
0

0
0

0
0

0
0

6
0
N
1
0
K
3
0
L

44.19
620.08

215.94
286.73

7199.46
598.58

805.56
7200.09

0
0

0
0

6.45
0

0
11.81

6
0
N
1
0
K
3
5
L

9.52
518.23

238.36
220.78

7199.82
736.63

591.82
7200.16

0
0

0
0

16.54
0

0
18.12

8
0
N
5
K
3
0
L

6.32
71.39

896.71
1570.59

7200.09
3496.7

7200.47
7200.45

0
0

0
0

IN
F

0
9.55

34.69
8
0
N
5
K
3
5
L

17.65
51.75

3260.86
4103.22

7200.27
7200.8

7200.87
7200.91

0
0

0
0

IN
F

4.07
12.79

44.12
8
0
N
1
0
K
3
0
L

39.36
1563.18

5652.88
7199.93

7199.6
7200.51

7200.51
7200.64

0
0

0
5.26

IN
F

10.75
13.55

36.56
8
0
N
1
0
K
3
5
L

149.99
3697.08

7199.67
7199.7

7200.3
7201.04

7201.18
7201

0
0

18.65
23.33

IN
F

18.92
23.36

55.75
1
6
0
N
5
K
3
0
L

195.42
1832.64

7204.17
7201.84

7202.56
M

L
M

L
M

L
0

0
IN

F
IN

F
IN

F
IN

F
IN

F
IN

F
1
6
0
N
5
K
3
5
L

429.03
1022.72

7202.83
7210.23

7213.09
M

L
M

L
M

L
0

0
IN

F
IN

F
IN

F
IN

F
IN

F
IN

F
1
6
0
N
1
0
K
3
0
L

1197.28
7200.08

7205.21
7204.06

7203.79
M

L
M

L
M

L
0

41.13
IN

F
IN

F
IN

F
IN

F
IN

F
IN

F
1
6
0
N
1
0
K
3
5
L

866.65
7200.14

7207.02
7204.66

7205.61
M

L
M

L
M

L
0

18.92
IN

F
IN

F
IN

F
IN

F
IN

F
IN

F

Table
6.11:

C
om

paring
M

IL
P

m
odels

on
N

D
PR

-Type
IIinstances

72

6.5.2 Results on ARLP Instances

These instances are in general much harder than the NDPR instances since they consider a much
larger number of commodities. On the other hand they also include free edges, s.t. sometimes
they become easier. Therefore, the most difficult instances are those with only 20% of free
edges. We were only able to solve the smallest two instances of this type. The easiest instances
are those containing 80% of free edges.

Approach LCUTM did not solve any of these instances and also the LP computation did not
terminate within the time limit. Thus, we have omitted this algorithm from the performance
charts. The performance chart is given in Figure 6.3, and Tables 6.12 and 6.13 provide details
on the LP and MILP computations respectively.

In contrast to the NDPR instances the models on communication graphs now have a better
performance than the approaches on layered graphs. Furthermore, due to the fact that we have a
larger number of targets per source the single-commodity flow approach on multiple communi-
cation graphs now has the best performance and solves more instances than any other approach.
Moreover, the multi-commodity flow formulation on communication graphs exhibits the worst
performance. This is caused by the high amount of variables induced by the large number of
commodities. The approach on a single communication graph has been ineffective on the NDPR
instances but works well for the ARLP instances. In most cases it is even faster than CGSCFM
but it solves one instance less. The better performance is again a consequence of the large num-
ber of commodities since having only one set of variables helps to reduce the model size in this
case.

Model LSCFM is not able to find the optimal solution in many cases but it has small LP
gaps. This approach especially excels when dealing with instances with a low amount of free
edges. The reason for this is that augmenting edges have less influence on the layered graph
approaches since they only increase the amount of linking constraints. For the communication
approaches however, the larger number of augmenting edges increases the amount of connec-
tions that require column generation, and this also makes column generation itself more difficult.

ARLP - p25

The performance chart for this group of instances is shown in Figure 6.4 Results referring to the
LP and MILP performance are provided in Table 6.14 and 6.15, respectively.

Surprisingly, reducing the amount of commodities by 75% had only a small impact on the
algorithmic performance of our approaches. Those that require a large number of variables
depending on the number of commodity pairs could solve additional instances, but the faster
approaches did not find optimal solutions for further instances. Moreover, in many cases the
optimal solution remains the same as for the original instance.

73

CPU−time [s]

C
u
m

u
la

ti
v
e

%
 o

f
in

st
an

ce
s

so
lv

ed
 i
n
 t

im
e

0 1200 3600 7200

0
2
0

4
0

60
80

10
0

LSCFM

CGMCFM

CGSCFM

CGCUTS

CGMCFM
BP

CGSCFM
BP

CGCUTS
BP

Figure 6.3: Performance Chart - ARLP instances

74

In
st

an
ce

t-
L

P
[s

]
L

P
G

ap
[%

]
L

C
G

C
G
B
P

L
C
G

C
G
B
P

S
C
F
M

C
U
T

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

4
0
N
5
0
L
2
0
F
_
A

29
5.

33
72

00
.3

7
71

99
.8

43
1.

73
51

2.
85

72
01

.5
1

35
3.

41
26

9.
15

23
.2

7
71

.6
6

IN
F

31
.5

4
16

.4
6

IN
F

31
.5

4
22

.9
6

4
0
N
5
0
L
2
0
F
_
B

61
1.

6
72

00
.1

6
71

99
.4

4
24

7.
38

27
0.

21
72

01
.4

5
20

7.
96

38
6.

89
20

.1
5

63
.7

2
IN

F
30

.8
4

20
.5

8
IN

F
30

.8
4

23
.8

9
4
0
N
5
0
L
5
0
F
_
A

63
.7

9
72

00
.1

8
28

3.
77

2.
17

44
08

.7
8

83
.2

3
1.

81
40

.9
4

16
.7

7
61

.1
5

15
.5

9
19

.5
5

15
.5

9
15

.5
9

19
.5

5
26

.1
4
0
N
5
0
L
5
0
F
_
B

81
.1

6
72

00
.1

5
39

94
.7

2
3.

03
42

7.
59

61
8.

35
2.

75
38

1.
58

9.
54

43
.3

4
6.

56
13

.2
4

6.
56

6.
56

13
.2

4
6.

56
4
0
N
5
0
L
8
0
F
_
A

8.
9

72
00

.1
7

2.
22

0.
18

40
.0

8
3.

66
0.

27
65

1.
26

0
35

.1
9

0
0

0
0

0
0

4
0
N
5
0
L
8
0
F
_
B

22
.2

5
72

00
.2

18
.4

5
0.

65
84

5.
73

9.
92

0.
9

57
5.

35
8.

09
49

.0
8

6.
63

8.
73

6.
63

6.
63

8.
73

7.
26

5
0
N
5
0
L
2
0
F
_
A

15
09

.7
9

72
00

.2
3

72
01

.2
5

66
21

.9
6

62
61

.5
5

M
L

50
82

.6
33

49
.4

4
17

.8
9

80
.9

2
IN

F
26

.7
8

11
.6

6
IN

F
26

.7
8

13
.1

3
5
0
N
5
0
L
2
0
F
_
B

17
39

.2
2

72
00

.6
5

72
01

.0
2

59
60

.3
5

71
99

.4
7

M
L

48
03

.0
3

88
4.

62
16

.2
7

10
0

IN
F

26
.0

7
IN

F
IN

F
26

.0
7

32
.9

5
0
N
5
0
L
5
0
F
_
A

20
4.

46
72

00
.2

1
71

99
.5

6
27

.4
1

71
99

.1
9

M
L

28
.5

72
00

.0
4

13
.1

4
90

.7
3

IN
F

14
.6

5
IN

F
IN

F
14

.6
5

29
.5

7
5
0
N
5
0
L
5
0
F
_
B

15
2.

83
72

00
.2

3
71

99
.8

4
20

.4
1

16
88

.2
8

M
L

20
.1

19
2.

69
7.

42
72

.2
1

IN
F

9.
79

6.
13

IN
F

9.
79

24
.3

2
5
0
N
5
0
L
8
0
F
_
A

48
.6

9
72

00
.1

8
7.

75
0.

85
71

99
.1

9
M

L
0.

93
40

6.
32

14
.0

5
82

.5
4

11
.1

1
14

.0
8

IN
F

IN
F

14
.0

8
23

.7
1

5
0
N
5
0
L
8
0
F
_
B

51
.1

3
72

00
.1

8
7.

19
0.

48
17

08
.7

1
M

L
0.

9
72

00
.0

1
0.

35
80

.0
8

0
0.

35
0

IN
F

0.
35

3.
15

6
0
N
5
0
L
2
0
F
_
A

70
36

.0
4

72
00

.3
5

72
02

.2
1

71
99

.6
5

71
99

.4
4

M
L

72
00

.3
8

76
9.

9
29

.6
1

88
.5

1
IN

F
IN

F
IN

F
IN

F
IN

F
54

.8
4

6
0
N
5
0
L
2
0
F
_
B

56
41

.0
7

72
00

.3
5

72
02

.0
8

71
99

.6
7

71
99

.9
5

M
L

72
00

.3
3

65
8.

47
92

.6
7

98
.0

9
IN

F
IN

F
IN

F
IN

F
IN

F
96

.3
6

6
0
N
5
0
L
5
0
F
_
A

16
27

.4
8

72
01

.1
8

71
99

.4
4

76
.6

1
71

99
.4

6
M

L
77

.4
4

37
9.

41
13

.1
9

10
0

IN
F

14
.2

6
IN

F
IN

F
14

.2
6

53
.2

5
6
0
N
5
0
L
5
0
F
_
B

95
7.

36
72

00
.2

5
71

99
.8

3
12

3.
76

71
99

.3
M

L
12

3.
28

13
54

.8
18

.2
8

95
.3

1
IN

F
20

.4
4

IN
F

IN
F

20
.4

4
24

.5
3

6
0
N
5
0
L
8
0
F
_
A

43
8

72
00

.3
6

21
5.

76
4.

31
71

99
.3

2
M

L
4.

84
72

00
.0

8
2.

24
99

.9
3

2.
09

2.
24

IN
F

IN
F

2.
24

35
.7

9
6
0
N
5
0
L
8
0
F
_
B

66
2.

32
72

00
.6

5
91

.5
2

3.
48

71
99

.5
4

M
L

3.
39

72
00

.0
3

12
.0

9
86

.9
5

9.
94

12
.0

9
IN

F
IN

F
12

.0
9

18
.0

7
8
0
N
5
0
L
2
0
F
_
A

72
00

.8
4

72
01

.2
3

72
06

.4
6

71
99

.6
71

99
.3

2
M

L
72

01
.4

1
47

90
.5

1
10

0
10

0
IN

F
IN

F
IN

F
IN

F
IN

F
97

.9
5

8
0
N
5
0
L
2
0
F
_
B

72
00

.6
3

72
00

.6
1

72
06

.7
3

71
99

.5
5

71
99

.4
1

M
L

72
01

.4
4

72
00

.8
1

10
0

99
.6

6
IN

F
IN

F
IN

F
IN

F
IN

F
98

.3
5

8
0
N
5
0
L
5
0
F
_
A

72
00

.7
5

72
01

.4
6

72
00

.2
2

61
3.

03
72

00
.1

6
M

L
57

0.
33

72
00

.6
8

10
0

10
0

IN
F

21
.1

7
IN

F
IN

F
21

.1
7

72
.1

9
8
0
N
5
0
L
5
0
F
_
B

72
00

.8
4

72
00

.5
7

72
00

.6
6

68
3.

1
71

99
.6

6
M

L
70

1.
76

72
00

.3
6

10
0

98
.2

7
IN

F
11

.6
7

IN
F

IN
F

11
.6

7
31

.0
1

8
0
N
5
0
L
8
0
F
_
A

20
42

.4
2

72
00

.5
1

18
93

.3
8

34
.7

71
99

.5
2

M
L

40
.6

8
72

00
.2

1.
86

85
.0

7
2.

56
2.

62
IN

F
IN

F
2.

62
21

.8
8

8
0
N
5
0
L
8
0
F
_
B

72
7.

49
72

00
.5

7
13

69
.1

1
35

.5
6

71
99

.7
2

M
L

44
.1

1
72

00
.0

4
3.

98
97

.3
2

3.
91

4.
15

IN
F

IN
F

4.
15

23
.7

4

Ta
bl

e
6.

12
:C

om
pa

ri
ng

L
P

re
la

xa
tio

ns
on

A
R

L
P

in
st

an
ce

s

75

Instance
t[s]

O
ptim

ality-G
ap

[%
]

L
C
G

C
G
B
P

L
C
G

C
G
B
P

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

4
0
N
5
0
L
2
0
F
_
A

7200.08
7200.16

7199.34
2268.63

1820.83
7202.05

3893.79
2736.41

15.96
38.19

IN
F

0
0.01

IN
F

0
0

4
0
N
5
0
L
2
0
F
_
B

7200.18
C

B
7199.76

885.76
457.55

7201.54
2135.6

1555.45
15.35

IN
F

IN
F

0
0

IN
F

0
0

4
0
N
5
0
L
5
0
F
_
A

5221.32
C

B
2110.84

19.78
10.72

2163.19
55.1

17.86
0

IN
F

0
0

0
0

0
0

4
0
N
5
0
L
5
0
F
_
B

4121.8
C

B
6762.84

13.63
11.63

3372.91
38.56

10.54
0

IN
F

-0.91
0

0
0

0
0

4
0
N
5
0
L
8
0
F
_
A

9.97
7200.15

2.34
0.34

0.16
8.68

0.69
0.24

0
35.36

0
0

0
0

0
0

4
0
N
5
0
L
8
0
F
_
B

226.7
7200.13

64.64
3.24

23.43
84.04

15.9
17.81

0
41.99

-1.42
-1.42

0
0

0
0

5
0
N
5
0
L
2
0
F
_
A

7200.18
7200.21

7202.54
7199.47

7199.47
M

L
7200.24

7200.16
16.61

70.48
IN

F
23.67

11.51
IN

F
26

11.52
5
0
N
5
0
L
2
0
F
_
B

7200.24
C

B
7202.25

7199.94
7199.27

M
L

7200.24
7200.16

14.98
IN

F
IN

F
24.5

IN
F

IN
F

24.08
13.89

5
0
N
5
0
L
5
0
F
_
A

7200.19
7200.27

7199.94
46.38

18.15
M

L
111.11

35.45
8.33

88.56
IN

F
0

0
IN

F
0

0
5
0
N
5
0
L
5
0
F
_
B

7200.16
7200.16

7199.38
107.5

100.71
M

L
280.17

71.65
2.69

72.64
IN

F
0

0
IN

F
0

0
5
0
N
5
0
L
8
0
F
_
A

393.7
7200.14

36.32
5.01

5.14
M

L
10.06

3.31
0

81.03
0

0
0

IN
F

0
0

5
0
N
5
0
L
8
0
F
_
B

37.93
7200.17

8.72
0.9

0.61
M

L
2.81

0.75
0

71.93
0

0
0

IN
F

0
0

6
0
N
5
0
L
2
0
F
_
A

7200.3
7200.36

7204.17
7199.75

7199.4
M

L
7200.42

7200.38
29.61

88.37
IN

F
IN

F
IN

F
IN

F
IN

F
31.01

6
0
N
5
0
L
2
0
F
_
B

7200.25
7200.75

7204.16
7199.51

7199.25
M

L
7200.36

7200.26
92.67

98.48
IN

F
IN

F
IN

F
IN

F
IN

F
92.28

6
0
N
5
0
L
5
0
F
_
A

7200.51
7200.26

7200.24
368.28

172.6
M

L
553.87

74.13
10.03

92.14
IN

F
-3.34

0
IN

F
0

0
6
0
N
5
0
L
5
0
F
_
B

7200.21
7200.27

7200.11
821.28

72.53
M

L
1277.42

74.31
14.95

91.29
IN

F
-1.48

0
IN

F
0

0
6
0
N
5
0
L
8
0
F
_
A

2970.53
7200.23

481.34
20.49

5.59
M

L
41.39

5.37
0

99.54
0

0
0

IN
F

0
0

6
0
N
5
0
L
8
0
F
_
B

2484.6
7200.22

1115.58
21.74

5.4
M

L
30.02

9.61
0

84.46
0

0
0

IN
F

0
0

8
0
N
5
0
L
2
0
F
_
A

7200.59
7200.13

7211.15
7200.11

7199.78
M

L
7201.53

7201.25
100

100
IN

F
IN

F
IN

F
IN

F
IN

F
96.46

8
0
N
5
0
L
2
0
F
_
B

7200.61
7200.13

7215.49
7199.73

7200.81
M

L
7201.47

7201.81
100

100
IN

F
IN

F
IN

F
IN

F
IN

F
98.02

8
0
N
5
0
L
5
0
F
_
A

7200.61
7200.14

7200.11
7199.53

7199.5
M

L
5888.25

7200.59
100

100
IN

F
16.44

IN
F

IN
F

0
20.79

8
0
N
5
0
L
5
0
F
_
B

7200.61
7200.17

7200.56
4668.89

287.24
M

L
1924.26

167.51
100

100
IN

F
0

0
IN

F
0

0
8
0
N
5
0
L
8
0
F
_
A

7200.47
7200.14

7200.11
61.9

20.03
M

L
92.1

47.86
1.82

100
0.43

0
0

IN
F

0
0

8
0
N
5
0
L
8
0
F
_
B

7200.39
7200.15

5973.68
120.72

137.93
M

L
160.33

63.54
3.71

100
0

0
0

IN
F

0
0

Table
6.13:

C
om

paring
M

IL
P

m
odels

on
A

R
L

P
instances

76

CPU−time [s]

C
u
m

u
la

ti
v
e

%
 o

f
in

st
an

ce
s

so
lv

ed
 i
n
 t

im
e

0 1200 3600 7200

0
2
0

40
60

80
10

0

LSCFM

CGMCFM

CGSCFM

CGCUTS

CGMCFM
BP

CGSCFM
BP

CGCUTS
BP

Figure 6.4: Performance Chart - ARLP - p25 instances

77

Instance
t-L

P
[s]

L
P

G
ap

[%
]

L
C
G

C
G
B
P

L
C
G

C
G
B
P

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

4
0
N
5
0
L
2
0
F
_
A

348.09
7200.09

7200.04
383.69

390.89
7200.32

430.53
80.94

13.3
30.95

IN
F

22.55
16.88

IN
F

22.55
38.75

4
0
N
5
0
L
2
0
F
_
B

423.86
7200.15

7199.14
234.68

193.51
7200.26

243.48
33.07

15.31
35.04

IN
F

24.04
20.58

IN
F

24.04
43.9

4
0
N
5
0
L
5
0
F
_
A

27.58
7200.11

5.55
1.33

1032.63
4.8

1.54
282.47

13.5
37.32

15.59
15.59

15.59
15.59

15.59
16.61

4
0
N
5
0
L
5
0
F
_
B

70.96
7200.1

24.07
2.77

106.95
22.46

2.82
17.55

6.53
32.89

6.56
9.07

7.65
6.56

9.07
14.41

4
0
N
5
0
L
8
0
F
_
A

6.78
7200.05

0.23
0.22

10.8
0.7

0.29
488.08

0
13.36

0
0

0
0

0
0

4
0
N
5
0
L
8
0
F
_
B

10.69
7200.11

1.32
0.31

110.31
1.3

0.42
2.98

6.24
19.12

6.63
6.63

6.63
6.63

6.63
21.99

5
0
N
5
0
L
2
0
F
_
A

1198.82
7200.19

7199.26
7199.19

1899.58
7201.17

4773.81
798.01

17.29
77.81

IN
F

IN
F

11.18
IN

F
26.72

13.61
5
0
N
5
0
L
2
0
F
_
B

1592.53
7200.51

7199.42
7200.01

7199.75
7200.79

7200.22
2568.75

8.74
80.37

IN
F

IN
F

IN
F

IN
F

IN
F

28.56
5
0
N
5
0
L
5
0
F
_
A

154.49
7200.2

830.71
14.21

7199.3
148.6

14.46
3677.03

10.12
62.66

9.55
12.42

IN
F

9.55
12.42

25.01
5
0
N
5
0
L
5
0
F
_
B

67.96
7200.12

3642.31
11.11

2661.62
273.86

7.3
62.54

5.03
48.2

6.13
6.46

6.13
6.13

6.46
20.57

5
0
N
5
0
L
8
0
F
_
A

25.58
7200.27

2.66
0.48

7199.33
2.97

0.63
37.73

11.36
65.25

11.11
11.52

IN
F

11.11
11.52

22
5
0
N
5
0
L
8
0
F
_
B

42.77
7200.21

0.95
0.51

509.86
1.96

0.49
7200

0
20.41

0
0

0
0

0
0

6
0
N
5
0
L
2
0
F
_
A

4779.3
7200.17

7200.48
7199.95

7199.69
7198.78

7200.39
6539.86

35.36
84.58

IN
F

IN
F

IN
F

IN
F

IN
F

44.49
6
0
N
5
0
L
2
0
F
_
B

3799.29
7200.53

7200.63
7200.03

7199.11
7201.91

7200.34
163.09

46.1
88.02

IN
F

IN
F

IN
F

IN
F

IN
F

86.41
6
0
N
5
0
L
5
0
F
_
A

1219.92
7200.53

7199.17
69.99

7199.45
1583

62.01
433.85

7.6
79.85

IN
F

8.17
IN

F
8.04

8.17
33.24

6
0
N
5
0
L
5
0
F
_
B

684.12
7200.3

7199.57
52.08

7199.34
1968.79

59.59
495.78

8.03
72.75

IN
F

9.1
IN

F
8.5

9.1
29.33

6
0
N
5
0
L
8
0
F
_
A

225.67
7200.24

14.79
3.56

7199.58
15.72

5.54
4805.19

2.09
66.67

2.09
2.09

IN
F

2.09
2.09

6.33
6
0
N
5
0
L
8
0
F
_
B

331.13
7200.27

14.57
1.96

7199.34
15.95

2.43
112.09

11.32
74.2

9.94
11.32

IN
F

9.94
11.32

40.14
8
0
N
5
0
L
2
0
F
_
A

7200.62
7200.48

7201.15
7200.1

7199.68
M

L
7200.17

2057.28
100

99.53
IN

F
IN

F
IN

F
IN

F
IN

F
98.62

8
0
N
5
0
L
2
0
F
_
B

7200.62
7200.55

7202.02
7199.46

7199.85
M

L
7201.31

6573.59
100

99.61
IN

F
IN

F
IN

F
IN

F
IN

F
97.6

8
0
N
5
0
L
5
0
F
_
A

6490.44
7200.49

7200.24
574.68

7199.34
M

L
638.93

7200.17
18.81

93.11
IN

F
19.29

IN
F

IN
F

19.29
47.06

8
0
N
5
0
L
5
0
F
_
B

7200.6
7200.55

7199.58
386.9

7199.63
M

L
477.02

7200.21
100

92.76
IN

F
8.89

IN
F

IN
F

8.89
30.97

8
0
N
5
0
L
8
0
F
_
A

1424.23
7200.5

148.74
25.6

7199.51
M

L
26.28

7200
1.82

81.89
2.56

2.56
IN

F
IN

F
2.56

30.59
8
0
N
5
0
L
8
0
F
_
B

418.31
7200.44

115.48
11.93

7199.42
M

L
22.35

7200.02
3.91

90.75
3.91

3.91
IN

F
IN

F
3.91

39.88

Table
6.14:

C
om

paring
L

P
relaxations

on
A

R
L

P
-p25

instances

78

In
st

an
ce

t[
s]

O
pt

im
al

ity
-G

ap
[%

]
L

C
G

C
G
B
P

L
C
G

C
G
B
P

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

S
C
F
M

C
U
T
M

M
C
F
M

S
C
F
M

C
U
T
S

M
C
F
M

S
C
F
M

C
U
T
S

4
0
N
5
0
L
2
0
F
_
A

72
00

.0
5

72
00

.0
6

71
99

.3
3

76
7.

79
10

47
.6

5
72

00
.3

8
18

58
.0

2
32

72
.9

4
12

.3
1

27
.6

2
IN

F
-1

.6
0

IN
F

0
0

4
0
N
5
0
L
2
0
F
_
B

72
00

.0
9

C
B

71
99

.4
7

73
8.

16
11

90
.9

4
72

00
.3

12
35

.1
5

12
69

.3
8

7.
42

27
.6

2
IN

F
-0

.1
1

0.
01

IN
F

0
0

4
0
N
5
0
L
5
0
F
_
A

46
2.

92
C

B
10

3.
38

8.
01

5.
61

13
1.

88
33

.9
5

7.
8

0
24

.4
2

0
0

0
0

0
0

4
0
N
5
0
L
5
0
F
_
B

19
5.

89
C

B
11

4.
98

10
.5

8.
33

15
9.

13
31

.7
2

3.
9

0
27

.7
8

0
0

0
0

0
0

4
0
N
5
0
L
8
0
F
_
A

6.
21

72
00

.1
0.

52
0.

3
0.

07
1.

68
0.

62
0.

08
0

12
.7

4
0

0
0

0
0

0
4
0
N
5
0
L
8
0
F
_
B

40
.8

9
72

00
.1

1
6.

77
1.

51
3.

77
16

.2
8.

14
2.

21
0

22
.5

4
-1

.4
2

-1
.4

2
0

0
0

0
5
0
N
5
0
L
2
0
F
_
A

72
00

.2
4

72
00

.1
8

71
99

.6
6

71
99

.4
5

71
99

.8
5

72
01

.1
5

72
00

.2
3

72
00

.0
7

15
.4

3
60

.1
2

IN
F

IN
F

6.
71

IN
F

26
.7

2
9.

6
5
0
N
5
0
L
2
0
F
_
B

72
00

.1
7

72
00

.2
7

71
99

.6
6

71
99

.2
9

71
99

.2
1

72
01

.0
4

72
00

.3
72

00
.1

2
8.

3
74

.6
7

IN
F

IN
F

IN
F

IN
F

IN
F

9.
72

5
0
N
5
0
L
5
0
F
_
A

44
57

.3
2

72
00

.1
5

81
0.

93
30

.7
8

18
.1

7
26

3.
13

41
.5

3
5.

12
0

50
.1

1
0

0
0

0
0

0
5
0
N
5
0
L
5
0
F
_
B

19
89

.4
7

72
00

.1
3

43
59

.4
3

26
.1

2
51

.1
6

26
11

.8
1

10
8.

64
50

.2
2

0
49

.1
0

0
0

0
0

0
5
0
N
5
0
L
8
0
F
_
A

81
.0

2
72

00
.1

6
8.

13
2.

08
2.

02
22

.7
6

6.
37

0.
7

0
52

.7
9

0
0

0
0

0
0

5
0
N
5
0
L
8
0
F
_
B

30
.8

5
72

00
.1

2
1.

84
0.

52
0.

14
4.

09
1.

04
0.

27
0

13
.8

6
0

0
0

0
0

0
6
0
N
5
0
L
2
0
F
_
A

72
00

.2
7

72
00

.2
5

71
99

.5
2

72
00

71
99

.3
72

02
.2

9
72

00
.3

9
72

00
.1

7
35

.3
6

86
.5

9
IN

F
IN

F
IN

F
IN

F
IN

F
42

.4
6
0
N
5
0
L
2
0
F
_
B

72
00

.2
3

72
00

.3
4

72
00

.1
8

71
99

.9
3

71
99

.9
5

72
02

.3
72

00
.3

6
72

00
.1

6
46

.1
86

.0
3

IN
F

IN
F

IN
F

IN
F

IN
F

47
.1

1
6
0
N
5
0
L
5
0
F
_
A

72
00

.2
6

72
00

.4
1

71
99

.7
7

19
0.

87
73

.8
4

37
55

.4
1

22
0.

94
44

.1
5

5.
5

68
.9

5
IN

F
-2

.2
3

0
0

0
0

6
0
N
5
0
L
5
0
F
_
B

72
00

.2
4

72
00

.2
4

71
99

.2
1

17
7.

88
44

.0
7

72
01

.3
8

31
2.

88
58

.1
6

5.
85

70
.9

7
IN

F
-1

.4
8

0
7.

34
0

0
6
0
N
5
0
L
8
0
F
_
A

11
15

.3
2

72
00

.2
1

42
.5

8
19

.8
3

4.
97

71
.1

6
29

.5
5

2.
03

0
45

.4
9

0
0

0
0

0
0

6
0
N
5
0
L
8
0
F
_
B

15
50

.4
6

72
00

.2
1

44
.4

2
13

.2
3.

22
69

.3
9

18
.5

6
1.

68
0

58
.9

2
0

0
0

0
0

0
8
0
N
5
0
L
2
0
F
_
A

72
00

.5
8

72
00

.1
4

72
04

.1
7

71
99

.5
5

72
00

.0
9

M
L

72
01

.4
8

72
00

.7
9

10
0

10
0

IN
F

IN
F

IN
F

IN
F

IN
F

96
.4

4
8
0
N
5
0
L
2
0
F
_
B

72
00

.5
6

72
00

.1
3

72
03

.9
9

71
99

.3
5

71
99

.8
2

M
L

72
01

.6
2

72
01

.0
3

10
0

10
0

IN
F

IN
F

IN
F

IN
F

IN
F

97
.7

6
8
0
N
5
0
L
5
0
F
_
A

72
00

.7
8

72
00

.3
2

71
99

.3
9

71
99

.1
8

71
99

.3
5

M
L

40
10

.5
1

72
00

.1
7

18
.3

1
93

.4
7

IN
F

12
.8

2
IN

F
IN

F
0

10
.4

9
8
0
N
5
0
L
5
0
F
_
B

72
00

.5
9

72
00

.1
5

71
99

.6
17

78
.9

3
27

0.
56

M
L

15
16

.7
3

75
.0

2
10

0
10

0
6.

04
0

0
IN

F
0

0
8
0
N
5
0
L
8
0
F
_
A

27
47

.1
4

72
00

.4
8

39
8.

45
43

.3
8

14
M

L
71

.3
4

18
.8

4
0

10
0

0
0

0
IN

F
0

0
8
0
N
5
0
L
8
0
F
_
B

44
64

.6
4

72
00

.1
2

35
7.

97
54

10
.9

3
M

L
84

.5
4

11
.6

8
0

10
0

0
0

0
IN

F
0

0

Ta
bl

e
6.

15
:C

om
pa

ri
ng

M
IL

P
m

od
el

s
on

A
R

L
P

-p
25

in
st

an
ce

s

79

CHAPTER 7
Conclusion

In this thesis we provided various MILP formulations for the solution of the NDPR. An exten-
sion of the NDPR with zero-cost edges has also been considered. We started by proving several
conditions holding for optimal solutions to help stating the MILP models (cf. Chapter 2).

In Chapter 3 we presented the first set of models based on layered graphs. Our first model
is based on a single graph and uses cut inequalities to ensure connectivity. Then we introduced
further models based on multiple layered graphs, one for each source vertex. Two of these mod-
els are based on flows including a multi-commodity and a single commodity flow formulation.
The third model uses cut-set inequalities.

In Chapter 4 we considered models based on communication graphs. Again we started with
a cut model based on a single graph and then continued with models utilizing multiple graphs. To
this end we stated two models using flow approaches and another model based on connectivity
constraints as for the layered graphs.

In Chapter 5 we investigated required changes when acyclic solutions are required. We first
showed that prohibiting cycles traversing an edge more than once in the same direction imposes
no restriction concerning optimality. Next, we argued that our models on communication graphs
are not well suited to enforce acyclic solutions. Then, we discussed the necessary adjustments
to prevent cycles using selected models on layered graphs.

Finally, in Chapter 6 we provided details on our computational study. We presented the
required cutting plane and column generation algorithms to deal with exponential amounts of
constraints and/or variables. Furthermore, we discussed the settings used for the MILP solvers.
Then, we introduced modified versions of instances from the previous literature and two sets of
entirely new instances. We solved the one set of modified instances to optimality using one of our
layered graph approaches. The other set of modified instances turned out to be more challenging
but we still found optimal solutions for 11 out of 20 instances. Regarding the two sets of new
instances we found in each set optimal solutions for 18 out of 24 instances. It turned out that
for these instances that compose a large number of commodity pairs, models on communication
graphs perform better in practice

81

7.1 Future work

In the first chapter we argued that the NDPR generalizes many other combinatorial optimization
problems, such as the RLP or the MCPPR. In terms of usability of our algorithms this means
that the proposed models and algorithmic techniques can also be applies to all simplifications
of the NDPR. However, there is a trade off between the generality of our models and their
performance in particular cases. We think that considering specific cases for certain parameters
might help to develop faster algorithms. One option would be to consider a rooted case for which
a single node needs to communicate with all other nodes but the remaining nodes do not require
to communicate directly, i.e., we consider set K = {(r, i)|i ∈ V, i 6= r} for some root r ∈ V .
Another case would be to consider only setsK containing all node pairs as has been done for the
RLP. In general a high number of commodities makes the problem difficult but knowing more
about the structure might allow additional modeling approaches.

Finally, note that many of our optional constraints require Big-M constants. Most of them
can be disaggregated to impose stronger bounds. We decided to use aggregated variants since
this helps to reduce the overall number of constraints. Nevertheless, it might be interesting
to also consider disaggregation, either as replacement or as additional constraints. Dynamic
separation would also be an option.

82

APPENDIX A
Acronyms

NDPR Network Design Problem with Relays

MCPPR Minimum Cost Path Problem with Relays

RLP Regenerator Location Problem

GRLP Generalized Regenerator Location Problem

RPP Regenerator Placement Problem

WCSPP Weight Constrained Shortest Path Problem

MLSTP Maximum Leaf Spanning Tree Problem

MCDSP Minimum Connected Dominating Set Problem

LP Linear Programming

ILP Integer Linear Programming

MILP Mixed Integer Linear Programming

83

Bibliography

[1] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

[2] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations Re-
search, 46(3):316–329, 1998.

[3] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, 1st
edition, 1997.

[4] E. A. Cabral, E. Erkut, G. Laporte, and R. A. Patterson. The network design problem with
relays. European Journal of Operational Research, 180(2):834–844, 2007.

[5] S. Chen, I. Ljubić, and S. Raghavan. The generalized regenerator location problem. In
Proceedings of the International Network Optimization Conference (INOC 2009), 2009.

[6] S. Chen, I. Ljubić, and S. Raghavan. The regenerator location problem. Networks, 55(3):
205–220, 2010.

[7] S. Chen, I. Ljubić, and S. Raghavan. The generalized regenerator location problem. IN-
FORMS Journal on Computing, 2014. to appear.

[8] B. V. Cherkassy and A. V. Goldberg. On implementing push-relabel method for the max-
imum flow problem. In Proceedings of the 4th International IPCO Conference on Integer
Programming and Combinatorial Optimization, pages 157–171, London, UK, UK, 1995.
Springer-Verlag.

[9] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

[10] M. Flammini, A. Marchetti-Spaccamela, G. Monaco, L. Moscardelli, and S. Zaks. On the
complexity of the regenerator placement problem in optical networks. IEEE/ACM Trans.
Netw., 19(2):498–511, 2011.

[11] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345–, 1962.

[12] T. Fujie. The maximum-leaf spanning tree problem: Formulations and facets. Networks,
43(4):212–223, 2004.

85

[13] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[14] B. Gendron, A. Lucena, A. S. da Cunha, and L. Simonetti. Benders decomposition, branch-
and-cut, and hybrid algorithms for the minimum connected dominating set problem. Tech-
nical report.

[15] P. C. Gilmore and R. E. Gomory. A Linear Programming Approach to the Cutting-Stock
Problem. Operations Research, 9(6):849–859, 1961.

[16] P. C. Gilmore and R. E. Gomory. A Linear Programming Approach to the Cutting Stock
Problem–Part II. Operations Research, 11(6):863–888, 1963.

[17] M. T. Godinho, L. Gouveia, and Magnanti T. L. Combined route capacity and route length
models for unit demand vehicle routing problems. Discrete Optimization, 5(2):350 – 372,
2008. In Memory of George B. Dantzig.

[18] M. T. Godinho, L. Gouveia, and P. Pesneau. On a Time-Dependent Formulation and an
Updated Classification of ATSP Formulations. In A. R. Mahjoub, editor, Progress in Com-
binatorial Optimization, pages 223–254. ISTE-Wiley, 2011.

[19] M. T. Godinho, L. Gouveia, and P. Pesneau. Natural and extended formulations for the
time-dependent traveling salesman problem. Discrete Applied Mathematics, 164:138–153,
2014.

[20] L. Gouveia, A. Paias, and D. Sharma. Modeling and solving the rooted distance-
constrained minimum spanning tree problem. Computers and Operations Research, 35
(2):600–613, 2008.

[21] L. Gouveia, L. Simonetti, and E. Uchoa. Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as steiner tree problems over layered graphs.
Mathematical Programming, 128(1-2):123–148, 2011.

[22] L. Gouveia, M. Leitner, and I. Ljubić. Hop constrained steiner trees with multiple root
nodes. European Journal of Operational Research, 236(1):100 – 112, 2014.

[23] IBM. IBM ILOG CPLEX: High-performance software for mathematical program-
ming and optimization. http://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/. accessed 2014-06-17.

[24] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the
ACM, 24(1):1–13, 1977.

[25] A. Konak. Network design problem with relays: A genetic algorithm with a path-based
crossover and a set covering formulation. European Journal of Operational Research, 218
(3):829–837, 2012.

86

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

[26] S. Kulturel-Konak and A. Konak. A local search hybrid genetic algorithm approach to the
network design problem with relay stations. In S. Raghavan, B. Golden, and E. Wasil,
editors, Telecommunications Modeling, Policy, and Technology, volume 44 of Operations
Research/Computer Science Interfaces, pages 311–324. Springer US, 2008. ISBN 978-0-
387-77779-5.

[27] G. Laporte and M. M. B. Pascoal. Minimum cost path problems with relays. Computers
& Operations Research, 38(1):165–173, 2011. ISSN 0305-0548.

[28] I. Ljubić and S. Gollowitzer. Layered graph approaches to the hop constrained connected
facility location problem. INFORMS Journal on Computing, 25(2):256–270, 2013.

[29] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations
Research, 53(6):1007–1023, 2005.

[30] A. Lucena, N. Maculan, and L. Simonetti. Reformulations and solution algorithms for
the maximum leaf spanning tree problem. Computational Management Science, 7(3):289–
311, 2010.

[31] B. Mukherjee. WDM optical communication networks: progress and challenges. Selected
Areas in Communications, IEEE Journal on, 18(10):1810–1824, 2000.

[32] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley-
Interscience, New York, NY, USA, 1988.

[33] J. C. Picard and M. Queyranne. The Time-dependent Traveling Salesman Problem and its
Application to the Tardiness Problem in One-machine Scheduling. Operations Research,
26(1):86–110, 1978.

[34] M. Ruthmair. On Solving Constrained Tree Problems and an Adaptive Layers Frame-
work. PhD thesis, Vienna University of Technology, Institute of Computer Graphics and
Algorithms, Vienna, Austria, 2012.

[35] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc., New
York, NY, USA, 1986.

[36] A. Sen, S. Banerjee, P. Ghosh, S. Murthy, and H. Ngo. Brief announcement: On regenerator
placement problems in optical networks. In Proceedings of the Twenty-second Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, pages 178–
180, New York, NY, USA, 2010. ACM.

87

	Introduction
	Problem Definition and Motivation
	State of the Art
	Aim of the Thesis
	Structure of the Thesis

	Structural Properties and a Basic MILP Model
	Solution Characteristics
	Basic MILP Model

	Models on Layered Graphs
	Model on a Single Layered Graph
	Models on Multiple Layered Graphs

	Models on Communication Graphs
	Definitions
	Model on a Single Communication Graph
	Models on Multiple Communication Graphs
	Solving the Pricing Subproblems

	Acyclic Problem Variant
	Solution Properties
	Models on Communication Graphs
	Models on Layered Graphs

	Computational Results
	Preprocessing
	Algorithm Details
	Solver Configuration
	Test Instances
	Test Results

	Conclusion
	Future work

	Acronyms
	Bibliography

