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Abstract

With software becoming ubiquitous and increasingly complex, software reliability also becomes
more important. Research on software testing and verification tries to create automated solutions
which exhaustively search for software bugs. One promising example for these research efforts
is concolic testing, a testing technique that combines concrete with symbolic execution and
which is implemented in various recent testing tools.

However, testing of concurrent software still remains a challenge. One of the main diffi-
culties for testing concurrent software is determining the order in which the statements from
different threads have to be executed. The reason for this being a challenge is that the number of
possible executions can be intractably big. Furthermore, weak memory models, which describe
the memory architectures of modern processors, can further increase the number of possible
executions. Weak memory models allow certain deviations from the expected thread-local pro-
gram order. For example, the effects of a write from one thread to a memory location might not
become immediately visible in another thread which reads from this particular memory address.
This results from modern memory hierarchies when computations are distributed over several
computing cores. The consequence of such behaviours can be software bugs that are hard or
even impossible to detect with conventional testing techniques. Most testing tools are based on
the assumption of the Sequential Consistency model, i.e., that these effects cannot occur.

This thesis presents CONCRESTWMM, a concolic testing tool for concurrent software that
is able to simulate the effects of weak memory models during an execution of a program under
test. CONCRESTWMM is implemented as an extension of the tool CONCREST, a testing tool
for concurrent software. As a central component, CONCRESTWMM adds a WMM-Scheduler.
By using WMM-schedules it is possible to select a WMM and to trigger effects of this model
at specific points during the execution of a test case. Thus, the tool CONCRESTWMM offers
the possibility to discover bugs that can occur on real-world processor architectures that do not
adhere to Sequential Consistency but to another WMM.

Two WMMs are implemented as part of this thesis. First, the WMM Sequential Consistency
which can be used to simulate the behaviour of CONCREST and second, the Partial Store Order
(PSO) WMM, a model which allows to delay the effect of a write event. Memory barriers
are a common means to limit the deviation of executions from Sequential Consistency. By
using memory barriers it is possible to force the effect of writes to become visible. Support for
memory barriers is also implemented in CONCRESTWMM. Since many concurrent applications
and data structures make use of a Compare and Swap (CAS) operation, a CAS operation is
also implemented as part of CONCRESTWMM. The CAS operation updates a memory cell
with a new value if the cell contains an expected old value. The built-in operation offers the
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same semantics as the Boolean CAS operation offered by the compiler GCC and is atomic.
Moreover, the built-in CAS operation is equipped with symbolic information. This enables
CONCRESTWMM to search for test cases covering both branches of the CAS-operation, i.e.,
finding test cases where the value at the memory location is changed and test cases where the
value is not changed.

To test the implementation of CONCRESTWMM and to show its capabilities, several exper-
iments were performed. These examples are taken from the literature. The experiments show
that on average CONCRESTWMM is only a constant factor of ∼ 1.15 slower than CONCREST
when comparing both tools.



Kurzfassung

Mit zunehmend komplexerer und gleichzeitig allgegenwärtig werdender Software wird die Ver-
lässlichkeit von Software immer wichtiger. Forschung zu Testen und Verifikation von Software
versucht automatisierte Lösungen zu finden, welche Software gründlich nach Fehlern durchsu-
chen. Ein Beispiel für Forschungserfolge ist Concolic Testing, eine Kombination aus konkretem
und symbolischem Testen, welches in vielen aktuellen Test-Werkzeugen verwendet wird.

Allerdings ist das Testen von nebenläufiger Software nach wie vor ein offenes Problem.
Eine der Hauptschwierigkeiten beim Testen solcher Software ist das Bestimmen der Reihen-
folge in welcher die Befehle der verschiedenen Programmstränge ausgeführt werden sollen.
Der Grund für die Schwierigkeit dahinter liegt in der Zahl der Reihenfolgen der verschiedenen
Reihenfolgen welche unlösbar groß sein kann. Hinzukommen sogenannte Weak Memory Mo-
dels (WMMs), welche Speicherarchitekturen beschreiben und die Zahl der Reihenfolgen weiter
erhöhen können. Weak Memory Models erlauben Abweichungen von dem erwarteten Prozess-
lokalem Programmablauf. Zum Beispiel kann es passieren, dass der Effekt eines Schreibzugriffs
von einem Programmstrang auf eine Speicheradresse in einem anderen Programmstrang, wel-
cher von dieser Adresse liest, nicht sofort für alle andere Threads sichtbar wird. Der Grund für
diese Abweichungen liegt in modernen Speicherhierarchien welche es erlauben, dass Berech-
nungen über mehrere Prozessor-Kerne aufgeteilt werden. Aus diesem abweichenden Verhalten
können Fehler resultieren, welche mit konventionellen Testtechniken nur schwer wenn nicht
sogar unmöglich zu finden sind. Die meisten Test-Werkzeuge basieren auf der Annahme, dass
diese Effekte nicht auftreten können. Dieses Annahme wird auch als sequentielle Konsistenz
bezeichnet

Diese Arbeit präsentiert CONCRESTWMM, ein Programm welches Concolic Testen ver-
wendet um nebenläufige Software zu testen und welches in der Lage ist die Effekte von Weak
Memory Models während der Ausführung von Tests zu simulieren. CONCRESTWMM wurde
als eine Erweiterung von CONCREST, ein Test-Werkzeug für nebenläufige Software, implemen-
tiert. Der WMM-Scheduler bildet eine zentrale Komponente von CONCRESTWMM. Durch die
Verwendung von WMM-Schedules ist es möglich die Effekte eines WMMs auszuwählen und
an einem bestimmten Punkt während der Ausführung eines Testfalls auszuführen. Als Konse-
quenz daraus ist es möglich mit CONCRESTWMM Fehler, welche auf modernen sequentiell
inkonsistenten Prozessoren auftreten können, zu entdecken.

Zwei Weak Memory Models werden als Teil dieser Arbeit präsentiert. Als erstes das WMM
Sequential Consistency, welches verwendet werden kann um das Verhalten von CONCREST zu
simulieren und als zweites das Partial Store Order (PSO) WMM, ein Model, welches es ermög-
licht die Effekte eines Schreib-Events zu verzögern. Speicher-Barrieren sind ein gebräuchliches
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Mittel um Abweichungen von sequentieller Konsistenz zu vermeiden. Durch die Verwendung
von Speicher-Barrieren ist es möglich die Sichtbarkeit der Effekte von Schreib-Events sichtbar
zu machen. Deshalb sind Speicher-Barrieren in CONCRESTWMM unterstützt. Da viele neben-
läufige Programme und Datenstrukturen Compare and Swap (CAS) Operationen verwenden, ist
sie auch in CONCRESTWMM realisiert. Die CAS Operation aktualisiert eine Speicheradresse
mit einem neuen Wert sollte der Wert an der Adresse mit einem erwarteten Wert übereinstim-
men. Die eingebaute Operation bietet die gleiche Semantik wie die vom GCC Compiler ange-
botene Boolsche CAS Operation und ist atomar. Zusätzlich ist die eingebaute CAS Operation
mit symbolischer Information ausgestattet. Das ermöglicht es CONCRESTWMM nach Testfäl-
len zu suchen welche beide Stränge der CAS Operation verwenden, d.h., dass Testfälle gesucht
werden, welche den Wert an der Speicheradresse verändern und Testfälle welche dies nicht tun.

Um die Implementierung von CONCRESTWMM zu Testen und ihre Fähigkeiten zu demons-
trieren werden mehrere Beispiele durchgeführt. Diese Beispiele stammen aus der Literatur. Die
Experimente zeigen, dass im Durchschnitt CONCRESTWMM nur einen konstanten Faktor von
∼ 1.15 langsamer ist als CONCREST wenn die Werkzeuge verglichen werden.



Contents

1 Introduction 1
1.1 Motivation & Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 CONCREST and (Con)2colic Testing 5
2.1 Glossary and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Concolic Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 (Con)2colic Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 CONCREST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 CONCRESTWMM 21
3.1 Architecture of CONCRESTWMM . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Scheduling of Events for Weak Memory Models . . . . . . . . . . . . . . . . . 23
3.3 Implemented Weak Memory Models . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Memory Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Structure of a Program Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Compare and Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Limitations and possible extensions . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 Simulating Possible Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 Limiting Impossible Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Experiments 37
4.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Message Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Relaxer1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Relaxer2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Non-Blocking Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Store-Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 Dekker’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Related Work 51

ix



5.1 CBMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 RELAXER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion & Future Work 57

Bibliography 59

x



CHAPTER 1
Introduction

1.1 Motivation & Problem Statement

Software becomes more and more ubiquitous in our daily and, at the same time, the complexity
of software increases. This poses a major challenge for the reliability of software. To mitigate
this problem, research on software testing and verification tries to create automated solutions
which exhaustively search for software bugs. Although there has been progress in developing
automated testing tools for sequential testing [9], testing concurrent software still remains as
a challenge. Concurrency increases the amount of possibilities for tests exponentially since the
scheduling of statements from different threads adds an additional factor, i.e., it is also necessary
to investigate in which order program statements are executed across different threads.

Weak Memory Models. Most of the test and verification tools for concurrent software rely
on the assumption of sequential consistency. This means that the execution of a concurrent
program is the same as if the statements from different threads had been brought to a sequential
order and executed sequentially while the thread-local order remains unchanged for all threads.
However, unlike sequential consistency, so-called Weak Memory Models (WMMs) allow certain
deviations from a thread-local program order. For example on modern processors a write to a
shared variable might be stored in a local buffer before it is stored in global memory. Thus, the
executing thread can see the new value of this variable while other threads might still see the old
value. We say that a write is committed when all threads see the new value. Another interesting
aspect of modern CPUs is that they have multiple pipelines for commands to be executed. This
stems from the fact that they have different processing units (e.g. for integer operations, for
floating point operations, ...). Whenever an instruction is being processed but has not been
finished yet, it is referred to as being in an in-flight state. As a result of WMMs, an instruction
can remain in an in-flight state while other subsequent instructions have been committed already.
By doing so the processor can save time since it does not have to wait for an instruction - like a
write - to finish until the next instruction can be executed. This can result in a behaviour that for
thread A it seems that another thread B does not respect the thread-local order. One aspect that
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Thread A Thread B
x = 1 r1 = y
y = 1 r2 = x

Initial state: x = 0 ∧ y = 0

Forbidden: r1 = 1 ∧ r2 = 0

Figure 1.1: Message Passing Example from [12]

increases the difficulty of understanding these models of computation is that they are usually not
published in a comprehensible manner but instead hidden in long technical documentations of a
specific processor [12]. One major problem during testing is that testing a software on a machine
with a WMM can lead to unexpected program results which are difficult to explain and are hard
to reproduce since WMMs allow WMM-specific effects, but do not require the computation to
perform the same effects again when running the program anew. In summary, WMMs can make
identifying faults via manual code inspection extremely hard if not impossible.

Figure 1.1 shows an example with two threads. The first thread performs two writes on two
shared variables x and y while the second thread reads the values from these two shared variables
and writes them into two local variables r1 and r2. Moreover, the example defines a state which
is infeasible when considering sequential consistency (denoted as ’forbidden’). In the initial
state both x and y are initialised with the value 0. Under sequential consistency the forbidden
state cannot be reached. However, this state is feasible for ARM and POWER architectures [12].
One possibility to reach this state is as follows: First thread A starts executing the write x = 1 but
does not commit it. Then the second write y = 1 is executed but this time the write is committed
immediately. Next, thread B takes over reading the value of y (1) and writing it to r1. After this,
it executes the second read, thus storing the initial value of x (0) to r2. The forbidden state is
thereby reached. From a technical point of view there are two possibilities for this scenario. The
first possibility is that the compiler or processor performed an instruction reordering on thread A.
As a consequence of this, the write y = 1 is executed as first instruction from thread A. Next,
thread B read the written value and stores it to r1 (r1 = y) and subsequently reads x = 0 and
writes the value to r2 (r2 = x). Thus, a state r1 = 1∧r2 = 0 is reached. The second possibility
is that the executing processor uses a store buffer. While x is buffered for thread A, y is written
directly to the memory. As a consequence of this an execution will write 1 to the cache for x
and 1 to the memory address of y. The cache for x is not cleared immediately, i.e., the memory
still contains 0 as value for x. Thread B will thus read the values 1 for y and 0 for x and reach
the forbidden state.

Concolic Testing. In past years various testing tools have been developed featuring concolic
testing [9], a testing approach that combines the concrete execution of a program with a si-
multaneous symbolic execution. However, only a few of these tools [17] can test concurrent
software. A testing approach derived from concolic testing which can test concurrent software
is (con)2colic testing (concrete and symbolic execution of a concurrent program) [7]. Figure 1.2
illustrates the high-level architecture of (con)2colic testing which can mainly be divided into
two parts: an execution engine and a reasoning engine. The execution engine gathers symbolic

2
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Scenarios

Interference
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Realizability Check

Multi-threaded
Concolic Execution

Symb.
Trace

Yes:
realizable

Schedule &
Inputs

No: not
realizable

Seq. Schedule &
Random Inputs

Execution Engine Reasoning Engine

Figure 1.2: Overview of (Con)2colic Testing [7].

constraints which the reasoning engine then modifies to generate new execution paths. The
reasoning engine explores interference scenarios by combining and modifying gathered con-
straint systems. The (con)2colic algorithm works in the following way: First, the program under
test is executed and (symbolic) information is collected. Based on gathered information alter-
nate program runs are then generated and tested for their realisability. However, there could
be an intractable amount of such alternate program runs. The tool CONCREST [7] implements
(con)2colic testing as an extension of CREST1. However, CONCREST has no means to test pro-
grams with respect to the effects of weak memory models and instead relies on sequential con-
sistency. As a consequence of this, certain aspects of concurrent behaviour remain untested. The
problem to be solved in this thesis was to add support for weak memory models in (con)2colic
testing.

1.2 Results

This thesis implemented the tool CONCRESTWMM which extends the execution platform of
CONCREST with the capability to simulate effects of weak memory models. CONCRESTWMM
provides an interface to enable the precise control of the effects of a WMM. To support exist
different WMMs, CONCRESTWMM is configurable with regard to which WMM is used while
performing program executions. Two WMMs have been implemented: Sequential Consistency
as a default WMM-model which simulates the behaviour of CONCREST and the WMM Par-
tial Store Order (PSO). CONCRESTWMM was designed to preserve CONCREST’s feature to
execute dynamic analysis tools, like Valgrind, in parallel to a test execution.

1.3 Organisation

In Chapter 2 (con)2colic testing and CONCREST an implementation of it are discussed. For
this purpose first concolic testing is introduced in Section 2.2. Next, (Con)2colic is introduced
in Section 2.3. CONCREST as an implementation of (con)2colic testing is then explained in
detail in Section 2.4. Chapter 3 contains implementation details for the implemented simula-

1http://code.google.com/p/crest/
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tor. First the architecture of CONCRESTWMM is described in Section 3.1. After a descrip-
tion of event scheduling in Section 3.2, the implemented memory models are discussed in Sec-
tions 3.3. Section 3.4 introduces memory barriers and discusses how they can be used with
CONCRESTWMM. Next, Section 3.6 describes Compare and Swap and its implementation in
CONCRESTWMM. Subsequently, the limitations and possible extensions of CONCRESTWMM
are outlined in Section 3.7, followed by a discussion of the capabilities of CONCRESTWMM
in Sections 3.8 and 3.9. The conducted experiments are outlined in Chapter 4. Additionally,
benchmarks are presented in the last section of this chapter. In Chapter 5 an overview over re-
lated work is given. It contains a description of partial orders in Section 5.1 and furthermore how
these orders are used within CBMC in order to perform bounded model checking for WMMs.
Next, Section 5.2 presents RELAXER a testing tool which is able to simulate WMM-effects dur-
ing the execution of a program under test. Finally, a conclusion and future work is given in
Chapter 6.

4



CHAPTER 2
CONCREST and (Con)2colic Testing

This chapter describes the testing approach (con)2colic testing and the tool CONCREST which
implements it. In Section 2.1 some basic definitions are introduced which are used throughout
this chapter. In Section 2.3 the testing approach (con)2colic testing is presented. Section 2.4
then presents CONCREST as an implementation of (con)2colic testing.

2.1 Glossary and Definitions

Program under test is computer program which is subject to examined for included bugs.
It can vary between a simple program consisting only of an entry point with some additional
functions contained in a single source code file and a large scale application consisting of several
source files.

Propositional logical formulae are formulae comprised of variables and constants over the
symbols T (true) and F (false) while using (at least) the connectives ∧ and ¬. The evaluation
of any syntactically correct formula results in either true or false. A formula is satisfiable iff
there exists a variable assignment so that the evaluation of the formula under that assignment
evaluates to true.

First-Order Theory First order logical formulas may be quantified by universal and existen-
tial quantifiers and contain functions and predicates. In addition to quantification a formula may
make use of first-order theories extending the expressiveness to, for example, uninterpreted func-
tions. A first-order theory provides a set of predicates and function symbols and additionally,
axioms which hold on these introduced predicates and functions.

Static Single Assignment is used when data-flow in a program has to be modelled. For each
write access to a variable a new variable-symbol is introduced. For example, the initialisation
x = 0 gets transformed into x0 = 0.

5



1 i n t abs ( i n t x ) {
2 i f ( x < 0 )
3 re turn −x ;
4 i f ( x == 1 )
5 re turn −x ;
6 re turn x ;
7 }

Figure 2.1: Faulty implementation of a function returning the absolute value of its parameters.
Adopted from [5].

SAT solver is a program which is able to decide whether a given formula is satisfiable or
unsatisfiable. For satisfiable formulas it is furthermore able to provide evidence via a variable
assignment.

SMT solver (Satisfiable Modulo Theory) is a program which is able to decide whether a given
formula using a set of first-order theories is satisfiable or unsatisfiable modulo the used theories.

2.2 Concolic Testing

Concolic testing is the combination of concrete and symbolic testing. Concolic testing was
independently developed in several papers [5, 9, 20] which propose similar techniques. The
technique has several other names such as directed systematic test generation [9] or execution
generated testing [5].

One of the roots of concolic testing is another automatised approach called random testing
where inputs for a program are guessed in order to generate test cases for the program under
test. However, the approach of random testing has several problems for testing software in a
comprehensive manner. For example for a program fragment like if(x==1) abort(); it is
hard to reach the error state using random testing since there are 232 possible inputs, assuming
x is an 32-bit integer and there are no further constraints on it. As a result of this it is quite
impracticable to generate a test case which will follow a path through a program to this exact
error/problem state. The problem is better illustrated in Figure 2.1 where an example of a faulty
implementation of a function returning the absolute value of the function parameter is shown.
The implementation returns an incorrect value only if the input is 1; for all other possible inputs
the function is correct. While it is hard for random testing to generate a test case exploiting the
bug, concolic testing, however, is able to detect a bug like this easily.

Figure 2.2 shows the concolic execution of the abs function defined in Figure 2.1. Prior
to the first step no constraints are gathered and thus the random value 15 is chosen for x. The
program is then executed visiting the statements in lines 1, 2, 4 and 6 and returning 15 as output
value. During this execution the two path-constraints x < 0 and x = 1 are gathered. In the next
step x = −1 is generated as a solution for the constraint x < 0. Thus, the program execution
visits the lines 1, 2 and 3 returning −1. For the remaining constraint x = 1 is generated as

6



Constraints Input Execution

{} x = 15 1, 2, 4, 6
{{x<0}, {x = 1}} x = −1 1, 2, 3
{{x = 1}} x = 1 1, 2, 4, 5

Figure 2.2: Concolic execution of abs-function in 2.1.

input value. This causes the program execution to traverse lines 1, 2, 4 and 5. As a result of the
outlined concolic testing of the abs function the three test cases x = 15, x = −1 and x = 1 are
generated. When used by a testing tool which verifies the output of the abs function these test
cases will exploit the bug of the function.

However, symbolic testing without using concrete values has limitations for certain classes
of programs as can be observed when testing a simple example as shown in Figure 2.3. The
branch created by the if statement in line 2 has a non-linear constraint, thus causing most
symbolic testing tools to stop the test execution since most solvers are not able to reason about
non-linear arithmetic [9]. Concolic testing tries to overcome the problems of random testing and
symbolic testing by combining concrete and symbolic testing. As a result of this it is possible to
use the concrete values as a fall-back and continue the (symbolic) execution when the symbolic
execution fails to provide the values due to circumstances like limitations of the used solver or
theory. Thus, it is possible for concolic testing to correctly examine the program in Figure 2.3
with the result that the abort statement in line 7 is not reachable but is reachable in line 4. The
statement is not reachable since the x3 <= 0 branch can only be reached if x is negative. Thus
it is not possible to find input values so that x > 0∧ y = 20 is satisfied. However, as mentioned
before, concolic testing will correctly report that the error state in line 4 is reachable.

1 void n o n l i n e a r ( i n t x , i n t y ) {
2 i f ( x∗x∗x > 0){
3 i f ( x>0 && y ==10)
4 a b o r t ( ) ;
5 } e l s e {
6 i f ( x>0 && y ==20)
7 a b o r t ( ) ;
8 }
9 }

Figure 2.3: Non linear path constraints. Taken from [9].

Another example where pure symbolic testing fails to discover the bug can be seen in Fig-
ure 2.4. When assuming that no symbolic information about the hash function is at hand a
symbolic execution has to stop. Concolic testing, however, can just use the concrete value pro-
vided during the execution. Thus, the testing of the function could proceed as follows. The
initial inputs of x = 0 and y = 0 are guessed and used for the next test case of the program.
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1 i n t o b s c u r e ( i n t x , i n t y ) {
2 i f ( x == hash ( y ) )
3 a b o r t ( ) ;
4 re turn 0 ;
5 }

Figure 2.4: Obscure-Function. Taken from [8].

1 i n t o b s c u r e ( i n t x , i n t y ) {
2 LOAD( y ) ;
3 tmp = hash ( y ) ;
4 STORE( tmp ) ;
5 LOAD( x ) ;
6 LOAD( tmp ) ;
7 BRANCH(EQ ) ;
8 i f ( x == tmp )
9 a b o r t ( ) ;

10 re turn 0 ;
11 }

(a) Instrumented Code

Input Symbolic Information
x = 0, y = 0 x = 0 ∧ y = 0

∧(y = 0→ tmp = 42)
∧¬(x = tmp)

x = 42, y = 0 x = 42 ∧ y = 0
∧(y = 0→ tmp = 42)
∧(x = tmp)

(b) Symbolic Informatione

Figure 2.5: Concolic execution of obscure.

During this execution the evaluation of hash(0) delivers the concrete value 42. Thus, the else-
branch is taken. In order to cover the then-branch the algorithm can now select 42 as input value
for x. When executing the function again with the input values x = 42 and y = 0 the execution
will take the then-branch1 and discover the abort statement.

Working Principle

Figure 2.5 illustrates a concolic execution of the obscure function. Most concolic testing
tools (like [5, 20]) work by first instrumenting a program in order to be able to gather symbolic
information during the concrete execution of the program. This means that additional statements
are added to the original source, thus generating a new source file. The instrumented code of
obscure is presented in subfigure 2.5a. Some tools, like CREST, for example, also simplify or
change the program statements (without changing the semantics of the program under test). For
the instrumentation automatic tools like CIL [15] are used [5,17,20]. The instrumented program
under test rather than the original program is then compiled and executed during the performed
tests. During each test run the instrumented code will then gather the symbolic information while
being executed and without changing the behaviour of the program under test. This symbolic
information contains amongst other data constraints as well as path constraints. The gathered

1Assuming a deterministic hash function.
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constraint systems can then be used to generate new test cases. In subfigure 2.5b the gathered
symbolic information for two test cases is illustrated for the obscure function. For each test
case the symbolic information in the second column of the table shows in the first row input data
constraints, in the second row data constraints and in the third path constraints.

Path constraints contain the information about the evaluation of branching conditions within
the program. A path constraint thus can also be seen as an equivalence class for inputs since
it describes exactly which elements will result in the same control flow, i.e., lie in the same
class of inputs. In general, the solution to these constraints is not unique. The path constraints
are usually constructed from branching conditions within the program under test. In order to
cover all branches of the program under test a path constraint can be flipped and then be used for
obtaining new input values. These input values should then guide the execution to the previously
unvisited branch. However, the program run might fail to visit the predicted branch. This can
happen, for example, if the program makes use of non-deterministic functions.

Limitations of concolic testing

One advantage from the developer’s point of view of concolic testing over some other automated
testing approaches, like random testing, is that once a bug is found using concolic testing the
developer can be presented with a test case causing the bug and additionally also with a trace
for this bug. Having a trace and a test case can often reduce the effort needed for analysing the
problem.

A problem concolic testing suffers from is the dependence on deterministic programs. When,
for example, the hash function from the example in Figure 2.4 is non-deterministic, concolic
testing will probably fail to discover the bug. Moreover, an incomplete concolic testing approach
could for other more complex programs claim that no bugs exists.

Another problem of concolic testing are irreversible functions like, for example, the hashing
function MD5. Concolic testing makes always use to overcome this issue. However, the execu-
tion will not always discover new branches. For a simple program like the program in Figure 2.4
the fall-back concrete values can lead to new input values thus guiding the search to successfully
testing the program. However, for other programs the concrete values might not be successful
in triggering a new branch.

Due to the fact that most concolic testing tools rely on SMT solvers for solving path con-
straints and the like, concolic testing is incomplete. Currently there are several undecidable
theories like non-linear arithmetic, integer division and modulo. The fact that they are unde-
cidable affects symbolic testing and thus also concolic testing. However, as mentioned before
concolic testing can try to overcome this problem by falling back on the concrete values recorded
during the execution.

Finally, the design of most concolic testing tools is not yet suited for testing concurrent
software.

9



2.3 (Con)2colic Testing

A testing approach that is able to test concurrent software is (con)2colic testing. The term
(con)2colic testing assembles from the terms concrete, symbolic and concurrent. (Con)2colic
testing is based on concolic executions of concurrent software. Based on the concolic executions
of a program under test it derives inputs and schedules for the program so that its execution space
is explored systematically [7].

Preliminaries

In order to be able to describe (con)2colic testing in more depth some more definitions have to
be explained upfront.

Coverage. One of the main challenges for testing concurrent software is defining coverage
of a concurrent program. While for sequential programs it is straight-forward to define useful
criteria like condition, branch and statement coverage, for concurrent software it remains a hard
problem with no commonly agreed standard solution. A reason for this is that in addition to the
usual criteria mentioned above, interferences between processes have to be taken into account.
This means that for shared variables it has to be taken into account in which order the various
processes access (i.e., read or write) variables within the program under test. A brute force
search to solve this problem would be intractable since the number of all possible program
orders is exponential. (Con)2colic testing provides a coverage guarantee over the space of
program inputs and interleavings [7].

Concurrent Programs. A program usually consists of a finite sequence of program state-
ments which are executed in some order. This order is of course not always from top to bot-
tom since programs usually consist of conditional (e.g. branches and loops) and unconditional
(e.g. function calls) jumps. A concurrent program consists of a countable amount of threads
T = {T1, T2, ...Tn}, where each of these threads consists of a finite amount of program state-
ments.

Schedules. As mentioned before the main challenge of testing concurrent software is to find
the order of statements throughout the different threads causing a bug. On modern systems
several statements can be executed at the same time, i.e., the execution of a program can be
concurrent. However, there exists a total order over the statements. Using this total order the
concurrent execution can be simulated by bringing the statements from the threads of the pro-
gram under test into a sequential order. The way the statements from the different threads are
aligned, i.e., the number of instructions a thread can perform before it has to wait for its next
turn, is called a schedule σ. Hence, a schedule is a sequence of tupels (Tij , nj) where Tij is a
thread and nj is the number of statements from this particular thread to be executed.

Events. In order to be able to track the relevant information of the execution the events tf(Ti),
ac(l), rel(l), br(ψ), rd(x, r) and wt(x, val) are defined. The first event represents the forking of
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1 i n t x , y ;
2 i n t main ( ) {
3 . . .
4 p t h r e a d _ c r e a t e (& t h r e a d 1 , NULL, Thread1 , NULL ) ;
5 . . .
6 }
7
8 i n t Thread1 ( void ∗ param ) {
9 LOAD( x ) ;

10 LOAD( y ) ;
11 BRANCH(EQ ) ;
12 i f ( x == y ) {
13 LOAD( 1 ) ;
14 STORE(X ) ;
15 x = 1 ;
16 } e l s e
17 a b o r t ( ) ;
18
19 re turn 0 ;
20 }

(a) Instrumented Code

Line Event
4 tf(Thread1)
10 rd(x, x0)
11 rd(y, y0)
12 br(x0 = y0)
14 wt(x, 1)

(b) Events

Figure 2.6: A small program which creates a second thread. In this thread the two shared
variables x and y are compared. Depending on the outcome of the compare the program is
aborted or the value of x is set to 1.

a thread. For example, line 4 in Figure 2.6a creates a new thread which is recorded as the event
tf(Thread1). The next two events (ac and rel) are required to be able to deal with locks, i.e.,
acquiring and releasing a lock l. Whenever a program branches using a predicate ψ this infor-
mation is recorded using the br event. The rd event represents a read from a shared variable x
where the result/value of this read is represented by the symbolic value r. In Figure 2.6a the
value of x has to be loaded before the comparison to y this is recorded as the event rd(x, x0).
When a write to x using the symbolic value val is observed during the program execution it is
represented by the write event wt. For example, setting x to 1 in line 15 is recorded as the event
wt(x, 1). Thus, a concurrent program consists of the set of threads T , the set of input variables
IN, the set of shared variables SV, the set of local variables LV, and the set of locks L. To be
semantically correct the information of all events are recorded using a Static Single Assignment
(SSA). Using these events it is possible to track the flow of information between the various
threads Ti of a program.

Symbolic Traces. When a concurrent program is executed concolically it will yield a finite
string π containing the events of the program in their order of occurrence. Furthermore, π|Ti
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Main thread: T
1 tf(T1)
Context switch: T → T1
2 rd(x, x0)
3 rd(y, y0)
4 br(x0 = y0)
5 wt(x, 1)

T
1 T1

2 [x0 = 0]

3 [y0 = 0]

4 br(x0 = y0)

5 wt(x, 1)

Figure 2.7: Symbolic trace

denotes the events involving thread Ti. A symbolic trace for the program in Figure 2.6 is shown
in Figure 2.7. The trace is computed for a program execution where x = 0 and y = 0.

Interferences. The interesting program runs are those where a thread Tj reads a value writ-
ten by another thread Ti, i.e., an interference occurs. To systematically record and examine all
interferences of interest (con)2colic testing defines so-called interference scenarios IS. An in-
terference scenario describes a class of program executions where the same interferences will
happen during the program execution. An IS is a set of thread-local program executions (traces)
extended with the information of interferences between them. The nodes in the IS represent the
events from the program executions. The edges in the IS consist of two disjoint sets EL and EI

where EL is the set of thread local edges and EI is the set of interference edges connecting two
threads. EL can further be subdivided into the disjoint sets ETi of the threads of the program.
Each of these ETi induces a subforest GTi consisting only of nodes of the thread Ti. An inter-
ference scenario I is called a realizable interference scenario iff there exists a feasible partial
program run where the extracted interference scenario from its symbolic trace coincides with
I [7]. If the sink n of an interference scenario C is a branching event, i.e., Ac(n) = br(ψ), then
C is called an interference scenario candidate (ISC) for n.

Constraint Systems

In order to check whether an interference scenario is realisable two constraint systems are used:
Data Constraints DC and Temporal-Consistency Constraints TC . The data constraints DC
for an interference scenario consist of branch, interference and local constraints. The branch
constraints ensure that the program execution will follow the desired path in the program, i.e., so
that the evaluation of control statements, like if -statements within the program will result in the
desired evaluation (true/false). An Interference constraint relates the read from a shared variable
to the symbolic value of a write event. Any solution to the interference constraints will include
the read-write interferences. In addition the local constraints are used to block out interferences
from other threads for a read in a thread which should receive the value from a thread-local write.
Thus, any solution to the data constraints of an interference scenario defines an input vector to
the concurrent program.
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1 Thread1 :
2 vo id t 1 ( ) {
3 a= 1 ;
4 b= 1 ;
5 i f ( a > 0 )
6 a s s e r t ( b > 0 ) ;
7 }
8
9 Thread2 :

10 vo id t 2 ( ) {
11 b= 0 ;
12 }

(a) Program

T2

111[r′1 = 0]
n2,1

T1

23wt(a, 1)
n1,1

34wt(b, 1)
n1,2

45[r0 = 1]
n1,3

55br(r0 > 0)
n1,4

66[r1 = 1]
n1,5

76br(r1 > 0)
n1,6

(b) Symbolic Trace &
Interference Scenario

Data Constraints
Branch: r0 > 0 ∧ r1 > 0
Interfere: DCmatch(n2,1, n1,6)
⇒ r1 = 0
Local: DCmatch(n1,1, n1,3)
⇒ r0 = 1

Temporal Constraints
POT1 : tn1,1 < tn1,2 ∧ tn1,2 < tn1,3 ∧
tn1,3 < tn1,4 ∧ tn1,4 < tn1,5 ∧ tn1,5 <
tn1,6

WRCInf : Coupled(n1,1, n2,1) ⇒
tn2,1 < tn1,5 ∧ ((tn1,2 < tn2,1) ∨
(tn1,5 < tn1,2))
WRCLocal : Coupled(n1,3, n1,1) ⇒
tn1,1 < tn1,3

(c) Constraint System

Figure 2.8: A small program with a concolic execution and a constraint system

Temporal-consistency constraints TC for an interference scenario, on the other hand, can be
used to find schedules for a concurrent program. In order to relate events in a time-concerning
manner a set of integer variables tn is introduced encoding for every event n its index within
the symbolic trace π. The TC constraints can further more be subdivided into four categories of
constraints. The first category defines thread-local program-order consistency. Constraints from
this category ensure that any potential schedule for the program needs to execute the statements
from the various threads according to their order within the threads. The second category, the
thread-fork consistency constraints, ensure that no thread can be scheduled before it has been
created, i.e., forked by another thread. Lock consistency constraints define the third category
of constraints ensuring that for every lock no pair of threads can acquire the lock at the same
time. In order to do so for every lock acquisition event the corresponding lock release event is
identified thus defining a lock block. For every lock it can then be guaranteed that in a potential
schedule no overlapping blocks exist. Furthermore, it is ensured that for a lock which is never
released in a schedule it is only acquired once all other threads have released this particular lock.
The last category of constraints define write-read consistency within a potential schedule. For
a pair of a read and write event a coupled block is defined in the constraints so that no other
write or read event can occur between the events in a potential schedule. The coupled read-write
events are formed from interferences and local read-write events.

Figure 2.8 shows an example for a constraint system. In Subfigure 2.8a a small program
is outlined. It consists of two threads and two shared variables a and b. The first thread sets
both a and b to 1 and then tests whether a > 0. If this is the case then b > 0 is asserted.
The second thread contains a data race since it sets b to 0. Subfigure 2.8b shows a symbolic
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trace of an execution of the program. This execution first executed thread 2 and subsequently
thread 1. Thus, the assertion was not violated. Moreover, an interference scenario containing an
interference from the write to b in thread 2 to the read of b required for verifying the assertion
is shown. Subfigure 2.8c shows the constraint system constructed for the interference scenario.
Note, that since the program does not contain any locks also the constraint system does not
contain constraints for the lock. Moreover, since only a program stub is depicted thread-fork
consistency constraints are also omitted.

Algorithm

In this section a high level description of the (con)2colic testing algorithm is outlined. The exact
algorithm and more information can be found in [7]. The algorithm tries to iteratively increase
branch coverage. During its iteration the number of interferences k is increased up to kmax.

The algorithm uses two list of sets: a list of worklists W i for ISCs having degree i with
0 ≤ i ≤ kmax and a list of ISCs UN i for ISCs which are unrealisable having degree i with
0 ≤ i ≤ kmax. Furthermore, an interference forest forest is used as a central data structure.

The algorithm starts off with an initial concolic execution of each thread of the program
under test thus gathering a symbolic trace for every execution. These initial executions are
performed using the same random values as inputs for all executions. Every execution uses a
schedule where only one of the created threads will perform its operations; once this thread has
finished its execution the program under test is terminated. From each of the gathered traces the
set of ISCs is then extracted. All extracted ISCs form the initial set of W 0, the set of ISCs with
no interferences. As a result of this the exploration can then start off with a set of ISCs for in
depth exploration.

In its main loop the algorithm takes a candidate ISC C from the current worklist W k and a
realisability check is performed. If C is not realisable it is added to UN i for later exploration
since it might become realisable when more interferences have been introduced. However, C
can still be used in this iteration to be extended to a set of ISCs which target the sink of C.
In order to obtain a set of ISCs from C the write nodes of forest are used to introduce new
interferences to read nodes in C. The obtained ISCs might have a degree d different from k and
are thus added to their corresponding worklists W d if d does not exceed kmax. If, on the other
hand, C is realisable, inputs and a schedule are obtained by the realisability-check. The program
under test is then executed concolically using the generated inputs and schedule. The resulting
trace π is once more examined for further ISCs which are then added to the current worklistW i.
Newly discovered write nodes in π are used to analyse previously unrealisable ISCs. For this
matter all ISCs from UN i for 0 ≤ i < k are examined for possible new ISCs. This is done by
probing all read nodes from the ISC C to a newly discovered write node. If a read-write pair can
be used to extend C the a new ISC C ′ is created by extending C with the interference (i.e., the
read-write pair) and C ′ is added to the list of newly discovered ISCs. A newly discovered ISC
isc is then, like for an unrealisable C, analysed for its degree d and added to W d accordingly.

The presented algorithm is capable of achieving full branch coverage for a program P under
the following conditions. First, standard assumptions for concolic testing have to be satisfied,
i.e., P has to be deterministic, does not use non-linear arithmetic, and does not contain calls to
external library functions. In practise concolic testing can, however, fall back to concrete values
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Figure 2.9: Architecture of CONCREST

and thus might successfully test P . Secondly, the number of interferences required to achieve
full branch coverage does not exceed kmax.

2.4 CONCREST

The tool CONCREST [7] implements the (con)2colic testing approach as an extension of CREST.
Figure 2.9 illustrates the high-level architecture of CONCREST. CONCREST can be divided into
two parts: an execution engine and a reasoning engine. The execution engine is responsible for
executing a program with given inputs and schedule. Additionally, it gathers information like
symbolic constraint systems during the execution of the program. This information is then used
to generate alternate program runs. Since there could be an intractable amount of them the pre-
viously mentioned interference scenarios are used to limit the number of possible alternate runs.
Using the realisability checker it is checked whether a schedule for the threads in the program
and inputs to the program exist so that the scenario can be realised.

Assertions are modelled as two branches. This means that in the instrumented program an if -
statement is introduced where one branch models the violation of the assertion and the other one
the affirmation. CONCREST will then try to traverse both branches introduced by the assertion.
In case the assertion is violated this fact is also recorded in the information about the program
execution before it is terminated. In addition to assertions CONCREST introduces assumptions.
Like assertions, assumptions are modelled using two branches and CONCREST will try to cover
both of them. If the assumption does not hold the program is terminated otherwise the program
execution continues. Using assumptions it is possible to guarantee that certain statements are
true when a program execution reaches a specific point. As a result of this the assume can
be used, for example, to model a join of two threads, i.e., a thread waits until another thread
terminates.

Pre-Processing

CONCREST relies mostly on an instrumentation process for the pre-processing. In the first
step the program under test is processed by the CIL tool suite [15]. The C Intermediate Lan-
guage (CIL) is used in order to generate the instrumented program. Non-atomic statements
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1 __Cres tLoad ( 3 , ( unsigned long )(& b ) , ( long long ) b ) ;
2 _ _ c i l _ t m p 6 = b ;
3 _ _ C r e s t S c h e d u l e r A f t e r ( 3 , ( unsigned long )(& b ) ) ;
4 __Cres tLoad ( 4 , ( unsigned long ) 0 , ( long long ) 1 ) ;
5 __Cres tApp ly2 ( 5 , 0 , ( long long ) ( _ _ c i l _ t m p 6 + 1 ) ) ;
6 _ _ C r e s t S c h e d u l e r B e f o r e W r i t e ( 6 , ( unsigned long )(& a ) ) ;
7 _ _ C r e s t S t o r e ( 6 , ( unsigned long )(& a ) ) ;
8 # l i n e 1
9 a = _ _ c i l _ t m p 6 + 1 ;

10 _ _ C r e s t S c h e d u l e r A f t e r ( 6 , ( unsigned long )(& a ) ) ;

(a) Instrumented operation

(b) Empty stack

b

(c) Load b

b

1

(d) Load 1

b+ 1

(e) Apply + (f) Store to a

Figure 2.10: Stack operations

within the program are split up into atomic operations thus modelling an assembler like execu-
tion. This means that, for example, a statement like a = b + 1 is split up into the operations
of loading the value of b and putting the value on the stack, putting 1 on the stack, adding
the two values on the stack and writing the result of the addition to a. Figure 2.10 illustrates
the pre-processing. In Subfigure 2.10a the instrumented version of a = b + 1 is shown. The
execution starts with an empty stack (Subfigure 2.10b). In line 1 b is loaded, i.e., put on the
stack (Subfigure 2.10c) subsequently the current value of b is stored in a temporary variable
(Line 2). The next load is performed in line 4 and puts 1 on the stack (Subfigure 2.10d. Af-
ter that the operator is applied in line 5, thus removing two elements and putting the result
on the stack (Subfigure 2.10e). In line 7 the result of the operation is stored to the symbolic
variable a thus removing the result from the stack (Subfigure 2.10f). Finally, in line 9 the
concrete result is computed and written to the concrete variable a. Additionally, every load
and write operation within the translated program is guarded with the scheduling instructions
__CrestSchedulerBeforeRead/__CrestSchedulerBeforeWrite and
__CrestSchedulerAfter. As mentioned earlier, true concurrency can be simulated by
bringing the statements into a sequential order and executing the statements in this order. Tech-
nically, CONCREST does this by introducing a global lock gl, the token of execution. The
instructions above will enable the execution engine to pass the token of execution between the
threads of the program while keeping track of how many steps a thread has been executing.
Moreover, information about the structure of the program, i.e. how the program can be tra-
versed, is gathered. This means that the control flow graph CFG (written to the file cfg) of
the program is generated using the tool suite. The CFG models precisely where in the program
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branching positions and calls to functions are positioned. During the initial code analysis the
process distinguishes between functions contained within the program under test (i.e. functions
which are also subjected to tests) and built-in functions or external functions which are not tested
explicitly. For built-in and external function no symbolic information is computed. Hence, there
is no information about their branches. The information about the functions within the program
under test is written to cfg_func_map. All computed information about the control flow is
written to cfg.

During the start-up of CONCREST, i.e., before the exploration of the program under test
starts, the CFG is parsed and analysed further. For every branch within the program all branches
directly reachable in one step are computed using a bounded Dijkstra algorithm. The weights on
the edges in the CFG are set to 0 if they do not end in a branching node or to 1 otherwise. As a
result of this reachability computation the information about which branches can be visited next
from a given branch is known. This information is then used during the exploration. The result
of the computation is stored in the binary file cfg_branches containing for every branch the
list of branches reachable with cost 1.

Execution

As mentioned previously, the (con)2colic testing algorithm can be divided into two units, the
execution engine and the exploration/reasoning engine. While the latter is responsible for the
main part of the algorithm described in the previous section, the execution engine is responsible
for executing the program under test with the desired input and schedule while gathering all
relevant symbolic information.

Program Initialisation

In the first step the schedule and inputs generated by the reasoning engine are written to the
files schedule and input. Subsequently, the instrumented program is launched and the
exploration engine waits for the program under test to terminate. Due to its instrumentation the
program will, as a first step, read the configuration (i.e., schedule and inputs) from the files. In
order to achieve this, the instrumenter added a function __globinit_<name> to the code
and a call to this function as the first operation in the main function of the program under
test where this initialisation function itself performs a call to __CrestInit, the initialisation
of CONCREST. This function is responsible for enabling the concolic execution. In order to
do so it first reads the inputs for the current test and passes them to the symbolic interpreter.
Subsequently, a wrapper for the pthread library is enabled. The wrapper enables the execution
engine to keep track of all thread-related events, like the creation of a thread. Furthermore, a
handler for segmentation faults is created. By doing so any problems during the execution can
be captured and no information should be lost. In a last step __CrestAtExit is registered as
an exit-callback.
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Scheduling

One of the main parts of the execution engine is the execution of the program under test ac-
cording to the provided schedule. This is done by the symbolic scheduler which is a central
part of the execution engine of CONCREST. The symbolic scheduler has control over the to-
ken of execution gl. As mentioned previously, the instrumenter adds calls to the commands
__CrestSchedulerBeforeRead, __CrestSchedulerBeforeWrite, and
__CrestSchedulerAfter to the translated program under test surrounding read and write
operations. These commands contain calls to the symbolic scheduler of CONCREST which de-
cides whether the token of execution has to be passed on to the next thread. Thus, the symbolic
scheduler keeps track of the steps each thread has taken. In order to do so the symbolic scheduler
keeps track of the threads the program has created and stores information about the environment
they currently run in.

Gathering Symbolic Information

Another feature of the execution engine is its ability to gather the symbolic information during
the execution. For this sake the following commands are instrumented to the program under test.

__CrestLoad This command pushes a value to the symbolic stack of the current thread
(Subfigures 2.10c and 2.10d). It takes always two parameters: a concrete value and an
address. Doing so the symbolic interpreter is able to gather the information of both the
load from a symbolic variable as well as the load of a concrete value. The latter case
includes loading values from variables which are not examined by CONCREST as well as
loading concrete values for operations like an increment. A __CrestLoad command
records a read event in the symbolic trace.

__CrestStore Is used to record the symbolic information of a write event. The command
takes only one parameter namely the address of the shared variable. In order to record
the information it pops a value from the symbolic stack of the current thread and uses
it as value for the write to the symbolic variable representing the shared variable within
the program under test (Subfigure 2.10f). A __CrestStore command records a write
event in the symbolic trace.

__CrestApply2 Whenever a condition needs to be checked this command is added by the
instrumenter. It takes as parameters an operator which has to be applied and the concrete
value of the condition. The operation pops two values from the symbolic stack and applies
the desired operator on them. Subsequently the result is pushed back to the symbolic stack
(Subfigure 2.10e). The implemented operations include arithmetic operations like addi-
tion, bitvector operations like left shift and compare operations like lower than. When a
compare operation has been performed and both operands have had symbolic information
a symbolic predicate is stored for later use by the symbolic interpreter. Otherwise only an
empty predicate is stored.

__CrestBranch This command is used to gather symbolic information about the branching
behaviour of the program under test. It pops a value from the symbolic stack, thus emp-
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tying the stack. If a symbolic predicate has been recorded this predicate is logged as a
path constraint for the current branch. Otherwise, only the information about entering a
new branch is recorded. A __CrestBranch command records a branching event in the
symbolic trace.

__CrestAssertionFailed As mentioned before CONCREST models assertions using
two branches. On one branch the assertion is violated which is indicated using this com-
mand. The other branch is left empty besides a call to CONCREST’s branching function.
The assertion-failed command indicates the failed assertion by creating a file. Addition-
ally, a debug message stating in which file and line the error has occurred is printed but
no additional information is stored since CONCREST has all required information due to
previous commands such as the branch command. After indicating the violated assertion
by creating the file crest_assertion_violation_found the program under test
is terminated immediately.

Before the program terminates __CrestAtExit is invoked. This function is used to safely
terminate the execution of a test. Thus, it writes the recorded symbolic information about the
execution to the file szd_execution. Furthermore, the log-file for the current execution is
written to concrest_log.

Once the execution of the program under test has terminated the time required for the test
is recorded. Subsequently, the information stored during the termination of the test is read back
from the files and used to update the forest data structure of the algorithm. Moreover, it is
checked whether the execution of the program under test reached the predicted branch. If the
branch was not reached this misbehaviour is recorded.

Exploration

The exploration engine uses the gathered information about previous program executions and
decides about the next step to be performed. It uses a predefined set of strategies in order to
make its decisions.

The algorithm terminates whenever one of the following conditions is met. The timeout fea-
ture was enabled and a timeout has occurred. It is possible to test a program using CONCREST
and limit the total execution time of CONCREST to a fixed amount of time. Whenever a pro-
gram execution has finished CONCREST will check whether the total amount of time spent has
exceeded the maximal value. In case the timeout was reached the exploration will stop. The
second condition to be checked every iteration is the total number of iterations CONCREST has
performed. Like the timeout, the maximum number of iterations can be specified as an option.
The third condition checks whether the exploration strategy has decided to stop the testing. The
exploration strategy will do this for example when all branches are covered and thus no further
tests are necessary.

After checking the conditions for termination the exploration engine checks which opera-
tion has to be performed next. There are three operations the exploration can decide to perform
during one iteration of the algorithm. The basic operation is to test an execution. Once enough
information is gathered the exploration engine will decide to perform another test and hand over
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control to the execution engine. The execution engine will be given exact instructions about
which schedule and inputs have to be used for the execution. The second operation which can
be chosen is to perform a realisability check for a given scenario. To do so the next ISC in the
queue is selected. For this scenario the constraint systems are then generated and checked for
their solutions. If a solution exists the scenario is realisable and a schedule and inputs to the
program exists. Thus, an execution job using the schedule and inputs is created. Otherwise, the
unrealisability is reported. Furthermore, the unrealisable ISC is examined for possible additional
interferences which could make it realisable in a future iteration of the algorithm. In the affirma-
tive case an interference exploration job is added. Otherwise, the failure to generate a schedule
is reported and a counter for unrealisable ISCs is increased. The third operation which can be
performed by the exploration engine is to do an inference exploration. During this interference
exploration every thread in the execution forest is analysed for its possible interferences with
other threads.

In order to check for completion CONCREST also tracks the coverage of the program under
test. This is done using a predefined coverage measurement strategy. As mentioned previously,
the statistics are updated after each (successful) execution of the program under test. For each
branch in the program under test a flag is stored marking whether it has been visited or is still
undiscovered by the test cases. The same is done for all functions within the program under test.
Additionally, the timestamp of the first visit to the branch is recorded for every branch within
the program under test.
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CHAPTER 3
CONCRESTWMM

This Chapter presents CONCRESTWMM, the tool implemented for this thesis. The follow-
ing sections describe the different parts of the implemented tool and how they interact with
CONCREST and also with each other. Section 3.1 describes the architecture of CONCRESTWMM.
Next, in Section 3.2 the scheduling of WMM-events is discussed. The implemented weak mem-
ory models are shown in Section 3.3. Special aspects of these models, i.e., memory barriers and
Compare and Swap are discussed in Sections 3.4 and 3.6. Limitations and possible extensions
of the implementation of CONCRESTWMM are presented and discussed in Section 3.7. An
overview of the capabilities of CONCRESTWMM with respect to its completeness for WMM-
effects is outlined in Section 3.8. Finally, the ability to limit the execution to a desired behaviour
is described Section 3.9.

3.1 Architecture of CONCRESTWMM

The architecture of the WMM-Support is kept simple with only a few ties to CONCREST. Thus,
the WMM-Support can be turned off without changes to the behaviour of CONCREST. The
WMM-Support was added to CONCREST by adding callbacks to certain functions of CONCREST.
These functions are all functions which are instrumented to the program under test during the
instrumentation process of CONCREST. Hence, they are no integral part of the execution or
reasoning engine but rather its tools. Thus, CONCREST’s working principle and its algorithms
remain unchanged. Figure 3.1 illustrates the architecture of CONCRESTWMM.

WMMScheduler

The symbolic scheduler of CONCREST offers, as will be described in Section 2.4, the possibility
to control the execution of the program under test. For this purpose the symbolic scheduler of
CONCREST uses the token of execution gl which is passed to a thread of the program under
test for the amount of steps the thread has to perform. In order to schedule the effects of a weak
memory model a new scheduler, the WMM-Scheduler, was implemented. The WMM-Scheduler
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Figure 3.1: Architecture of CONCRESTWMM

Action Description

Store Record a write event
Commit Make a write effect visible to all threads
Load Read a value
Compare & Swap Perform a compare and swap operation
Memory Barrier Store-Store Perform a Store-Store barrier
Memory Barrier Store-Load Perform a Store-Store barrier
Memory Barrier Load-Load Perform a Store-Store barrier

Table 3.1: Interface of a Weak Memory Model

offers the possibility to schedule an event at a given point of time, i.e., after a given amount of
steps of the symbolic scheduler. This timing relation is realised through callbacks to the WMM-
Scheduler which are embedded into the scheduling functions of CONCREST. Additionally these
callbacks intercept all actions from the program under test. The WMM-Scheduler will then pass
the actions to the desired WMM.

Additionally, the WMM-Scheduler offers the possibility to directly invoke events like com-
pare and swap and memory barriers, as will be explained later. As a result of this, it will be
possible to examine the behaviour of the program under test under different environments by
simulating different systems and compilers through schedules and instrumentation. The instru-
mentation processes of CONCREST can also be seen as a pre-compilation/translation step. For
example, a compiler might add a memory fence like a LWSYNC directive to the compiled pro-
gram due to added constraints and directives in the program under test. Using schedules it is
possible to imitate behaviour like this using CONCRESTWMM.

WMM

In order to handle the effects of a specific WMM a new class is introduced. Using object-
oriented techniques various different models can be implemented. Like CONCREST the WMM
keeps track of all changes to the declared shared variables. A copy of both the concrete and
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symbolic memory is kept within the WMM-class. It is thus possible to analyse which value is
written to which variable at which point of time during the execution of the program.

Table 3.1 shows the interface of a WMM. The three basic operations of a WMM are Store,
Commit and Load. A store operation is performed for every write access to an address which was
declared as shared variable. This operation executed whenever a __CrestStore is performed
in the instrumented program under test. Load operations are performed every time a read access
from a shared variable occurs, i.e., a __CrestLoad operation is performed in the instrumented
program under test. The load operation has to return the value for the executing thread will
observe for the address with respect to the modelled WMM. A commits are used to make the
effect of a write visible to all threads. Hence, there is no corresponding operation in CONCREST.
The Compare and Swap operation is command introduced by CONCRESTWMM which can be
added to the program under test. A detailed description of the operation and its semantics are
in Section 3.6. Memory barriers are inserted in programs in order to guarantee a certain state of
the memory model with respect to uncommitted writes. Memory barriers and their effects are
discussed in more detail in Section 3.4.

WMM-Wrapper

In order to comply with the standards of CONCREST the possibility to invoke functionality of the
WMM-Scheduler directly from non-object oriented C-code had to be added. This was done in a
similar fashion as it is done in CONCREST by creating a wrapper around the WMM-Scheduler.
To do so a single reference to the WMM-Scheduler was introduced which is used over the whole
runtime of CONCREST. However, since CONCREST currently does not use concurrency in its
algorithms no data-races occur. Additionally, the program under test is only executed in a single
threaded manner and all operations of the WMM-Scheduler can be seen as atomic. The reference
is initialised using a created “Init”-function to which a callback was added to __CrestInit.

Building CONCRESTWMM

The build script of new features for CONCRESTWMM was added to the existing build infras-
tructure of CONCREST. Thus, there are no high level changes in the build process.

Since all WMM related code within CONCRESTWMM is guarded using preprocessor di-
rectives the WMM-Support can be ruled out by removing the define of the USE_WMM constant
from the build process. Thus, a version of CONCREST will be built.

3.2 Scheduling of Events for Weak Memory Models

As described previously the WMM-Scheduler allows to schedule events during the execution of
the program under test.

Challenges for WMM-Schedules

An event of the WMM-Scheduler, like a commit, needs in addition to its time-code the vari-
able/address for which it has to be applied. However, one of the main challenges for developing a
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scheduler was creating a way of declaring variables for which the scheduler should be able to ex-
amine WMM-effects and thus, using them in its schedules. The difficulty mainly arises from the
fact that at the moment the generation of schedules for the WMM-Scheduler is not automatic. As
a result of this schedules are written by hand to perform experiments in addition to the schedules
generated by CONCREST. Thus, neither CONCREST nor the WMM-scheduler has information
about the shared variables for which the simulation of effects is of interest. CONCREST already
has a facility to declare shared variables. However, this facility is not enough at the moment.
Shared variables are declared to CONCREST by explicitly stating this fact in the code by adding
a statement like CREST_shared_int(x); for a variable x at the beginning of the program under
test. The problem with this approach is that there is still no information about shared variables
outside the code, i.e., the information is only available during runtime. Thus, at runtime only the
addresses of shared variables were known to CONCREST, while the WMM-schedules needed
some way of stating which variable has to be affected by a particular event in the schedule. The
problem with addresses is of course that they are changing with each program run. Thus, if a
schedule would be created using addresses it would not be applicable for a future re-run of the
test case.

In order to solve this problem the WMM-Scheduler is equipped with the function
NewSharedVariable mapping addresses to an identifier and a type. The identifiers are then
substituted for concrete addresses when a call to the function ReadSchedule is performed.
The function NewSharedVariable takes the parameters address, type, value and name. The
name is a text representation of the variable name which can then be used to address this vari-
able in a schedule for the WMM-Scheduler. However, it is not required that the name of the
variable in the source code coincides with the name handed to the WMM-Scheduler via the dec-
laration function. It has to be mentioned that in the current implementation the type parameter
might seem to be unnecessary as it imitates the behaviour of CONCREST where the declaration
function has to be chosen according to the data type of the variable. Nevertheless, the type pa-
rameter is necessary since the WMM-Support also deals with concrete values and thus needs
to copy them, for which the type of the variable is needed. The value parameter of the func-
tion NewSharedVariable was introduced in order to pass the current value of the variable
to the internal memory of the WMM-Scheduler.

The function ReadSchedule is intended to be invoked once all shared variables are de-
clared. First it will check if there exists a schedule for the WMM-Scheduler. This check was
introduced in order to enable the execution engine to execute tests without WMM-effects. In
case no schedule file exists the WMM-Scheduler will load Sequential Consistency as default
model and turn on the auto-commit functionality. This auto-commit functionality will invoke
the commit operation of the WMM-Scheduler after each store operation. If there exists a sched-
ule then the WMM-Scheduler will create a copy of this schedule and substitute all declared
shared-variables for their addresses using the previously mentioned variable names. After this
substitution the substituted schedule file is read line by line by the scheduler. While the first line
specifies which memory model has to be used the remaining lines specify which effect of the
selected WMM will happen at which point of time. Schedules entries are related to points of
times. As a consequence of this WMM-schedules have to be created with respect to schedule
for CONCREST. The schedule for CONCREST fixes when store and load operations will occur
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Event ID Name Description

1 Commit Commit the effect of a previous write

2 Memory Barrier Store-Store Perform a Store-Store barrier on a given thread

3 Memory Barrier Store-Load Perform a Store-Load barrier on a given thread

4 Memory Barrier Load-Load Perform a Load-Load barrier on a given thread

Table 3.2: WMM Event Types

on the threads of the program. Based on the timings of this schedule the WMM-schedule can
then be fixed.

WMM-Schedules

The scheduling of WMM-effects follows a similar pattern as the scheduling of events in several
threads in CONCREST does. Instead of creating additional functions for the WMM-Scheduler
which then have to be instrumented to the program under test, callbacks to the WMM-Scheduler
were added at the end of the CONCREST functions __CrestSchedulerBeforeRead,
__CrestSchedulerBeforeWrite and __CrestSchedulerAfter. The first two func-
tions are instrumented before every read or write operation within the program under test irre-
spective of whether the read/write concerns a shared variable or not. The after-function is instru-
mented at the end of each of such a store/load operation. This means that CONCREST can decide
whether before or after a store/load a context switch from one process to another can happen. As
a result of this, the schedules for CONCREST are stating which thread can perform how many
operations. This means that each line of the schedule states a thread ID and the number of steps
it has to perform. In contrast to this behaviour, the WMM-Scheduler expects a schedule stating
after how many steps which effect has to occur.

Format

The schedule for the WMM-Scheduler is a plain text file. The first line of the schedule file
contains the memory model which has to be loaded for performing the tests. Every following
line will describe an event marked with a time code, i.e.

<timecode> <event type> <event data>.

The timecode refers to the number of steps the scheduler has performed. While the time cod,
is a single unconstrained number, the event type is limited to be exactly one of the numbers 1 to
4 since each of these numbers represents one of the implemented WMM-effects. The meaning
of the numbers is as follows: 1 denotes a commit, 2 a store-store memory barrier, 3 a store-load
barrier and 4 a load-load barrier. The structure of the event data depends on the type of the
event, as will be described later. It is necessary that the events are ordered by time since the
parser will not sort them. Figure 3.2 shows an example WMM-schedule. Line 1 states that the
WMM-schedule uses the PSO model. Line 2 states that variable y is committed on thread 1
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1 PSO
2 5 1 1 y
3 9 3 2

Figure 3.2: Example Schedule

after 5 steps of the WMM-Scheduler (Timecode: 5, event type: 1/commit, event data: 1 y, i.e.,
commit y on thread 1). Line 3 states that after 9 steps of the WMM-Scheduler a Store-Load
memory barrier is issued on thread 2 (Timecode: 9, event type: 3/Store-Load memory barrier,
event data: 2).

Commit Events

A commit event consists always of a memory address and the thread on which it should occur.
However, not all data is necessary in all cases. For example, for a potential model of the Total
Store Order WMM an address parameter will have no effect since commits affect all addresses
used by a processor. However, it still has to be specified and not left blank. On the other hand,
if SC is loaded, a commit will have no effect since in SC the semantic of a store operation is
defined so that it does not need a commit.

Other than memory barriers, the commit operation is currently not subjected to be directly
invokable. This means that it cannot be instrumented or written manually to the program under
test. The reason for this is that it would not make sense to allow developers to commit writes
manually, since ensuring the global visibility of a write can be done using memory barriers as
will be explained later.

Memory Barriers Events

Memory barrier events (event type 2,3 and 4) require as event data only the ID of the thread
on which it should be applied. The reason that the thread has to be specified is that otherwise
the requirement for synchronisation mechanisms between schedules for the WMM-Scheduler
and CONCREST would arise. The type of the barrier (Store-Store, Load-Load or Store-Load) is
specified by the event type. Memory barriers can also be instrumented to the program under test
or used manually in a program. More details about memory barriers can be found in section 3.4

Introducing New Event Types

The design of the WMM-Scheduler is done in a way so that it is straight-forward to add new
event types. To add a new event type two functions of the WMM-Scheduler have to be changed.
First, the parser in the function ReadSchedule has to be adopted in order to be able parse
events of the new type. Secondly, a callback for the function has to be added to the func-
tion PerformOperations of the WMM-Scheduler. In addition to changing the functions
of the WMM-Scheduler also the models have to be adopted for the new requirements. Every
functionality should be modelled as a member function of the WMM-class. Implementations of a
specific WMM should then overwrite these member functions.
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Action Effect

Store Perform write to main memory
Commit No effect
Load Return value from main memory
Compare & Swap Compare and Swap operation
Memory Barrier Store-Store Not supported
Memory Barrier Store-Load Not supported
Memory Barrier Load-Load Not supported

Table 3.3: Sequential Consistency (SC) model

Action Effect

Store Record write event for requesting thread
Commit Commit write for requested thread-address combination
Load Return value from main memory or thread-local buffer
Compare & Swap Commit all pending writes for address. Then perform CAS
Memory Barrier Store-Store Commit all writes on requesting thread
Memory Barrier Store-Load Commit all writes on requesting thread
Memory Barrier Load-Load Not supported

Table 3.4: Partial Store Order (PSO) model

3.3 Implemented Weak Memory Models

Sequential Consistency

The default behaviour of CONCREST is Sequential Consistency. In order to simulate the same
behaviour in CONCRESTWMM SC can be loaded as memory model. A store operation in SC
will store the value immediately in the main memory. Thus, a commit will have no effect since
its effect is incorporated in the store operation. A load operation will return the value from the
requested memory address irrespective of the thread from which the load was requested. The
Compare and Swap operation will behave exactly like the semantics described in Section 3.6.
Since all writes in SC will become visible immediately no memory barriers are needed and thus,
no memory barriers are supported for SC. A summary of the SC model is shown in Table 3.3.

Partial Store Order

The Partial Store Order (PSO) model, as summarised in Table 3.4 is implemented similarly to
the PSO-model described in [4]. It allows writes on a processor to be reordered past different
writes on the same processor. Thus, for every processor and every memory address PSO uses a
FIFO-Queue to store writes to memory addresses. A store will append the value to the queue for
the address on the requesting thread. Whenever the queue for a processor-address combination
is non-empty the last value of this queue is used by the load operation. Otherwise, the value
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from the global memory is returned. Thus, every process can see its own writes while other
process cannot see them until they are committed. The commit operation removes the first write
of the corresponding processor-address queue and writes the value to the global memory. A CAS
operation with parameters address, expected value and new value will first commit the pending
writes for all thread for the address before determining the result of the actual CAS operation.
Furthermore, the PSO model offers Store-Store and Store-Load memory barriers. Both barriers
commit all pending writes of the thread on which they are performed.

Total Store Order (TSO) is a stricter model as PSO since it allows writes to be reordered
passed a different load but not a later store to the same address [4]. Thus, PSO can be seen as a
generalisation of TSO and PSO can imitate the behaviour of TSO.

3.4 Memory Barriers

Some algorithms require specific guarantees for their writes. Thus, weak memory models need
a mechanism to force effects of writes to become visible. This mechanism is added by so-
called memory barriers or memory fences. One difficulty for providing support for memory
barriers comes from the fact that they vary between the different processor architectures. Thus,
the implementation for the WMM-Support does not use specific names for the implemented
memory barriers which can be found as instruction names in programming manuals provided
by processor manufacturers. However, the naming of the barriers is done in the same way as
proposed by [4].

The current implementation offers three different types of memory barriers:

• Store-Store

• Store-Load

• Load-Load

For the implemented memory model PSO the Store-Store and Store-Load barriers are avail-
able. Both barriers ensure that all writes for a thread are committed. This is done by looping over
all memory addresses for the requesting thread. In this loop all pending writes for an address are
committed. Sequential Consistency, on the other hand, does not include memory barrier in its
model, since the effect of a write becomes globally visible immediately under the assumptions
of this model. Thus, the implementation of SC does not offer any memory barriers.

These memory barriers can be requested to be performed by the WMM-Scheduler in two
ways. The first way is to add a corresponding entry to the wmm-schedule. As mentioned previ-
ously the only parameter for the instruction in the schedule is the thread on which the memory
barrier has to be applied. None of the barriers can be applied only to a specific memory address
which also reflects the behaviour of instructions like ARM’s DMB or POWER’s sync [12]. The
second possibility is to add the corresponding instruction to the (instrumented) program under
test. For each of the barriers a function was added to the WMM-Wrapper. Thus a call to a
memory barrier can be added to the program without any additional constraints using one of the
functions from the wrapper. The commands are named __WMM_membar_xx where xx can
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10 i n t main ( i n t argc , char∗ a rg v [ ] )
11 {
12 . . .
13 CREST_shared_int ( x ) ;
14
15 __WMM_new_shared_int(&x , " x " ) ;
16 __WMM_READ_SCHEDULE ( ) ;
17
18 . . .
19 }

(a) Test program

35 i n t main ( i n t a r g c , char ∗∗ a rgv )
36 {
37 . . .
38 {
39 _ _ g l o b i n i t _ t e s t ( ) ;
40 . . .
41 C r e s t S h a r e d I n t (& x ) ;
42 . . .
43 __WMM_new_shared_int(& x , " x " ) ;
44 . . .
45 __WMM_READ_SCHEDULE ( ) ;
46 . . .
47 }
48 . . .
49 }
50
51 void _ _ g l o b i n i t _ t e s t ( void )
52 {
53
54 {
55 _ _ C r e s t I n i t ( ) ;
56 }
57 }

(b) Instrumented test program

Figure 3.3: Test program

either be ss, sl or ll. These commands can be placed at any position in the program under
test. For neither of the ways the memory model has to be known/specified upfront. However,
not every WMM supports all three memory barriers.

The fact mentioned above, namely that not every WMM offers all three of the above memory
barriers imposes another difficulty for the implementation. This means that the implementation
has to be done in way which prevents (semantic) errors when non-existing memory barriers
are requested. Still, the interface for WMMs defines all three memory barriers. If a specific
implementation of a WMM does not support a specific memory barrier this is not identified by
the WMM-Scheduler. However, if a call to a not supported barrier is requested by the WMM-
Scheduler, then an error message will be printed indicating the wrong request and the execution
of the program under test will be terminated.

3.5 Structure of a Program Run

In the following section the testing of a program run is illustrated. The skeleton of a test program
and its instrumented version are shown in Figure 3.3.

1. The instrumentation process of CONCRESTWMM adds a call to the function glob_init
as the first instruction in the main function to the program under test (Line 39 in Subfig-
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ure 3.3b). In this globinit-function the __CrestInit function is called (Line 55 in
Subfigure 3.3b) which initialises CONCRESTWMM and thus also the WMM-Scheduler.
Additionally, SC is loaded as the default WMM. This pre-loading of SC is done in or-
der to avoid problems when the execution engine of CONCRESTWMM performs calls
to, for example, store-operations which require a WMM to be loaded before the actual
WMM-schedule is read.

2. After this initialisation the shared variables can be declared. The declaration can be seen in
line 15 in Subfigure 3.3a and line 43 in Subfigure 3.3b. The declaration of shared variables
has to be done by the programmer in the source code of the program under test. Since this
declaration is done by calling a function the declaration is also part of the instrumented
program. During the execution of the instrumented program the WMM-Scheduler stores
information like address and type of each of the declared variables.

3. Once all variables are declared the WMM-Scheduler can start scheduling events. This
process also needs to be invoked by the programmer in the original source code by a
call to the function ReadSchedule of the WMM-Scheduler (Line 16 in Subfigure 3.3a
and line 45 in Subfigure 3.3b). The WMM-Scheduler will then substitute the variable-
names in the wmm-schedule file by their current addresses and create a file named
wmm-schedule-sub. After that it will load the events from the substituted schedule.

4. Throughout the program-run the WMM-Scheduler works in the background using the
earlier mentioned callbacks added to scheduling events of CONCRESTWMM in order to
react to certain events:

• Each time a load operation is performed in the instrumented program the WMM-
Scheduler will, like CONCREST, put the value stored currently at the address on an
internal stack. If the address for which the load is performed is a shared variable the
WMM-Scheduler will load the current values of both concrete and symbolic value
for this address on the current thread by using its internal load functions. Thus,
the current values according to the WMM are stored. Otherwise it will create a
symbolic expression using the value handed to the store operation and put it on the
stack together with this value.

• The store operation is performed in a similar way. If the address, for which the
store operation is performed, is a shared variable the WMM-Scheduler takes both
a symbolic and concrete value from the stack. These values are then stored in the
loaded memory model using the store operation of the WMM. Otherwise it will just
remove the values from the stack.

• Every time a call to the CONCREST-Scheduler is performed the call is intercepted
beforehand as the WMM-Scheduler checks if there was a context switch, i.e., if the
current process is different from the process observed during the last check. If the
processes are different the WMM-Scheduler will poll all the current values for the
shared variables in the loaded WMM and write them into the internal memory of
CONCRESTWMM. This is of course done for both concrete and symbolic memory.
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a t om ic CAS( memory , old , v a l u e ) {
i f ( ∗memory == o l d ) {
∗memory= v a l u e ;
re turn 1 ;

}
re turn 0 ;

}

Figure 3.4: Semantics of the implemented Compare and Swap operation

• At the end of each call to the CONCREST-Scheduler the WMM-Scheduler will take
over. It will check for due WMM-events like commits and memory barriers for the
current point of time and issue them.

3.6 Compare and Swap

Compare and Swap (CAS) (also known as Compare and Exchange) is an atomic processor
instruction which checks whether the value of a certain register is equal to another fixed value
and in the affirmative case swaps the value of the register with a new value. In addition to the
possible changing of the register value, the result of the compare operation is stored in a special
purpose register. Other than the name might suggest, the register containing the new value
remains unchanged [11]. The intended semantics of the implemented function can be found in
Figure 3.4. There are various implementations of CAS having different semantics. For example,
GCC uses two built-in atomic operations: a Boolean operation returning true in case the register
was updated and a “value” version where the previous value of the memory cell is returned [10].
Intel’s CMPXCHG instruction, on the other hand, sets the ZF flag if the value was not changed
and clears it otherwise [11].

CAS is widely used in multi-threaded applications where it is used to synchronise different
processes or to implement concurrent data structures where the access to specific elements needs
to be synchronised [13]. Moreover, it can be used in order to avoid spinlocks within applications.
A spinlock is a lock where a process trying to acquire the lock will loop until the process is able to
acquire it. During this loop the process will repeatedly check whether it is possible to acquire the
lock. Spinlocks can decrease the overall performance of a system while increasing the energy
consumption when processes tend to hold the lock for a long time while other processes are
waiting/spinning for this lock. Thus, most modern operating systems make heavy use of the
CAS operation in order to achieve a good performance.

A naïve implementation could just add a pre-written CAS-function to the program under test
in a pre-processing step. This function would then also be instrumented by CONCRESTWMM.
However, this would cause two problems. First of all, the operation would not be atomic. Since
when using shared variables CONCRESTWMM will instrument the function in a way such that
the function will be interrupted and thus cause an unexpected behaviour. To prevent this one
could add a global lock. By using such a lock it can be assured that only one process at a time
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is allowed to change the variable. However, the second problem makes it necessary to add a
built-in support for CAS to CONCRESTWMM: since CAS is an instruction at processor level its
behaviour depends highly on the processor and thus of course on the implemented WMM. As a
consequence of this, CAS is a part of the definition of a WMM-model.

In a first step to add CAS-support to CONCREST a simple test program was written where
a simple CAS-function was used. This function used no lock or instruction for the compiler in
order to be atomic. Therefore, CONCREST immediately found a “bug” within the code since a
thread executing the CAS-function could just be interrupted and control be given to a different
thread, thus causing a faulty behaviour. However, for a correct implementation of CAS such a
behaviour is not possible. Thus, this simple program can also serve as a test case testing whether
CAS is atomic. The instrumented version of the CAS operation was taken as a starting point for a
built-in operation. Therefore, all scheduling functions allowing CONCREST to perform a context
switch were removed. In the next step the instrumented code of the CAS-function was analysed
with respect to created branches and other dependencies created by CONCREST. After this step,
the code was analysed further in order to remove dependencies between the CONCREST-library
and WMM related code. The behaviour of the necessary functions of CONCREST were im-
plemented directly within the new CAS operation, i.e., calls to the symbolic interpreter were
invoked directly from the WMM-related code. As a result of this the only direct connection
between CONCREST and the WMM-Support was created by a reference to the symbolic inter-
preter which is necessary to issue calls to the symbolic interpreter. However, the code is written
in a way such that when the WMM-Support is turned off during the build process of CONCREST
the code is still compiling and CONCREST runs without errors for programs which do not rely
on the WMM-CAS-operation.

In order to implement the CAS-function correctly without the dependence on a handwrit-
ten function in the program under test the corresponding information about the built-in CAS-
function was added to CONCRESTWMM. As described in Section 2.4, the information about
the program under test is created in two phases. First CIL is used to instrument the program and
write information about the control flow graph of the program into several files. In the second
phase these files are read by the process_cfg program and a binary file containing the ad-
jacency list of the reduced control flow graph is written. The reduced CFG is then computed
by computing for every branch all branches reachable in one step. The information generated
in these two phases is then used during the (con)2colic execution in order to gather informa-
tion about coverage and additionally to decide about the execution strategy, i.e., which scenario
should be explored next. Thus, in order to fully embed CAS into CONCREST matching infor-
mation has to be added to the control flow graph after its generation. This is done by adding a
mock function with two branches to the graph. To guarantee minimal interference with existing
functions while not harming the performance of CONCREST too much, the IDs used for creating
the function in the control flow graph are dynamic. This means that the maximal branch ID is
computed using the information written by the instrumenter and a configurable offset is added
to this maximal number. The IDs of the then and else branch of the CAS-function are then
written to the file wmm_cas_branches. The information from the wmm_cas_branches
file is then used by the WMM-Scheduler when a CAS operation is requested by the program
under test. After the branches are read by the exploration engine the control flow graph CFG is
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constructed. Subsequently, the new function is added to the CFG using the previously computed
numbers. As a consequence of this CONCREST will not see a difference between the built-in
CAS function and a handwritten function from the program under test. Thus, CONCREST will
try to cover both branches, i.e., once changing the value and once not changing the value. When
the ReadSchedule method of the WMM-Scheduler is invoked it will read the previously
written branch IDs and will use them every time the CAS function is invoked.

3.7 Limitations and possible extensions

There are several possible solutions for extending CONCRESTWMM so that is able to exam-
ine concurrent programs while identifying WMM related bugs systematically. The first simple
possibility is to let the user decide which schedules for the program under test have to be tested
using WMM-semantics. This means that CONCRESTWMM could be equipped with a search
facility aiming for identifying WMM related bugs for a given schedule. The search for WMM
related bugs could then be done using heuristics similarly to the operational semantics used by
RELAXER [4]1. A possible heuristic could first identify all reads to a written value and try to
delay the commit of the write until all identified reads have been scheduled. Another, more so-
phisticated and thus computationally more expensive heuristic could build on the similar pattern
of searching for WMM-related bugs for a given program run. First it would also have to iden-
tify the read-write relations of the given program run. These relations could be extracted from
the constraint systems generated by CONCRESTWMM. In the next step the heuristic could then
one by one increase the number of reads from a certain address scheduled before the commit
event. For each iteration a new WMM-schedule has to be generated and the program under test
executed again using the obtained WMM-schedule in combination with the fixed schedule.

Another, more complicated, possibility for integrating the full support of WMM-effects
into CONCRESTWMM is to encode semantics of WMM-effects into the constraint systems of
CONCRESTWMM. The semantics could be encoded in a similar fashion as proposed by [2]2.
The modified constraint systems need to be constructed in a way so that a solution to them
can be transformed into schedules for both symbolic scheduler and the WMM-Scheduler of
CONCRESTWMM.

Yet another possibility similarly to the previously described solution is the reformulation of
the constraint systems in a way so that a solution to the constraint systems yields interferences
where a relaxation of the write-consistency can be used in order to violate an assertion in the
program under test. The identified interferences can then be further analysed in order to obtain
the offset from the write-event in the schedule to its corresponding commit-event in the WMM-
schedule.

1A description of RELAXER can be found in section 5.2.
2These encodings are also described in Section 5.1.
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3.8 Simulating Possible Effects

CONCRESTWMM is able to simulate all currently known effects of weak memory models. For
the simulation it relies on WMM-schedules as described in Section 3.2. In these schedules a
write is not committed until stated explicitly in the schedule or forced implicitly by a memory
barrier. As a consequence of this, it is necessary that schedules for the WMM-Scheduler reflect
the actual semantics of the desired WMM.

Currently, the implementation supports the simulation of effects from the PSO model. How-
ever, it is straight-forward to implement other weak memory models such as TSO or PSLO.
The main work for adding support for a different WMM to CONCRESTWMM is to add a new
implementation of the WMM-class which models the effects of the desired WMM. More details
for the purpose of adding additional WMMs can be found in Chapter 3.

Moreover, the tool also supports the possibility of simulating multiple processes running
one processor. The interface of the WMM-Scheduler provides load and store methods which
are used for simulating the memory access during the execution of the program under test. Each
of these methods takes a thread-number as argument. In the current implementation the logical-
thread-ID assigned by CONCRESTWMM is passed along whenever a store or load operation
occurs during the execution. However, this behaviour can be changed in order to add support for
architectures where processes can share caches and thus have access to the same uncommitted
values. In case this option has to be implemented CONCRESTWMM would need to store for
each combination of thread and point of time a “physical” processor ID. This ID then has to be
passed along to the WMM-Scheduler for load and store operation. In addition to these changes
to CONCRESTWMM also the WMM-Support would require the addition of an event capturing
the possibility of reallocating a process from one processor to another.

Another aspect of program executions which are highly dependent on the semantics of the
used WMM are memory barriers. These memory barriers are invoked using manufacturer-
dependent commands such as sync, lwsync or dmb. However, most processor manufactures
implement a single WMM for a series of processors, thus making it easier to examine the effects
of memory barriers. The possibility to examine the effects of memory barriers explicitly was
added through the support of memory barrier instructions by the WMM-Scheduler. Effects of a
memory barrier can be triggered via instrumentations to the program under test or entries in the
WMM-schedule and there is no difference between the effects of a scheduled or instrumented
memory barrier. A correct implementation of a compiler inserts certain memory barriers into
the program under test automatically. Since CONCRESTWMM works on a source- code level it
has no sense of memory barriers inserted by the compiler and treats the program under test as
if there are no memory barriers inserted by the compiler. CONCRESTWMM is able to simulate
the effect of a compiler using two variants: memory barriers which are inserted into the source
code (automatically or manual) or by extending the generator of WMM-schedules so that it adds
memory barriers in the same way as a specific compiler does.
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3.9 Limiting Impossible Effects

One issue when simulating the effects of weak memory models using CONCRESTWMM is
to distinguish between effects possible on real-world processors and effects possible using the
implemented model. A WMM-model consists of the definition of the semantics of the WMM-
operations, i.e., the implementation of the WMM-interface (see Section 3.1) and additionally, the
valid combinations of these operations. However, the WMM-Scheduler performs the enforced
events from the WMM-schedule without checking the validity of the operations with respect to
the defined model. As a consequence of this not every WMM-schedule is valid with respect
to the WMM-model. Therefore, it is the responsibility of the user to create WMM-schedules
reflecting the behaviour of the WMM-model

The first possibility for ensuring a valid (with respect to the desired WMM-model) WMM-
schedule for the program under test is committing the written values. As shown in Section 3.5
variables can be declared as shared variables with WMM-effects explicitly during the start-up
of the program under test. When a memory model other than Sequential Consistency is selected
the effects of writes to these shared variables are delayed until a commit event happens for the
specified memory address. In contrast to memory barriers, commit events can only happen by
enforcing them in the WMM-schedule for the current test case.

Another possibility of ensuring correct behaviour of the program is the use of memory barri-
ers. As mentioned earlier a barrier can be enforced either by adding it explicitly to the program
under test or by enforcing it using the WMM-schedule. A memory barrier event is comprised
of the type of the barrier and the thread on which it has to be applied. For the implemented
PSO-model a store-store and a store-load barrier exist. However, their semantics do not differ.
Both barriers commit all pending writes on the thread it was requested on.

Another step towards achieving semantically correct executions is to include semantic checks
of the WMM-operations into the execution model of CONCRESTWMM. These semantic checks
could be performed in a similar fashion to the presented ideas in the first section of this chapter.
The WMM-Scheduler records all store and load events during the execution. Additionally, it
is equipped with the PerformOperations-function which is invoked after every step of the
symbolic scheduler of CONCREST. This function can be extended to include a semantic check
of the current status of the memory with respect to the selected WMM. An approach like this
can be used to commit writes at the latest possible point of time whereas the WMM-schedule
can be used to commit writes earlier than this latest point of time.

The major challenge is to distinguish between allowed and disallowed executions which
remains open since manufacturers tend not to provide precise information about their memory
models. However, there are research results providing useful information about the behaviour
of modern processors for sets of test cases. In [12], for example, a variety of examples featuring
allowed program executions is outlined. Additionally, [3] describes an approach for constructing
an axiomatic framework modelling the behaviour of certain processor architectures. These tools
can be used to obtain information about the correctness of developed models.
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CHAPTER 4
Experiments

This Chapter presents a series of conducted experiments. In Section 4.1 general remarks on the
performed experiments are given. In particular, the section will cover remarks about schedules
and naming schemes for the test cases. Next, Sections 4.2 - 4.7 will each present a simple
program. Most of these programs are so-called litmus tests. Furthermore, each of these Section
will also present several test cases for the program it presents. Section 4.8 concludes the Chapter
by presenting benchmark results.

4.1 General Remarks

Schedules

As mentioned earlier the additional WMM-Support does not change the default behaviour of
CONCRESTWMM when WMM-effects are not turned on explicitly. The reason for this is that if
no WMM-schedule is present CONCRESTWMM uses SC as the default WMM-model and thus
simulates the behaviour of CONCREST. However, if a wmm-schedule file is present the effects
of the enforced WMM-model are simulated. In order to test and simulate different WMM-
effects several programs have been implemented exploiting different problems for testing when
considering WMM and additionally, demonstrating different features of the WMM-Support in
CONCRESTWMM.

Since the automatic generation of WMM-schedules is not part of this thesis all schedules
for the WMM-Scheduler were created manually. Most of the presented test cases will use a
schedule for the symbolic scheduler which CONCRESTWMM using SC generated during an
examination of the program under test. However, for some test cases CONCRESTWMM using
SC cannot reach the desired state. Therefore, for these test cases a schedule for the symbolic
scheduler was created manually (This fact will be mentioned explicitly).
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Test cases

All experiments in this chapter provide a makefile which is able to run all test cases. These
makefiles rely on the two constants CONCREST_HOME and CONCREST which are required to
run CONCREST and build the test case. As a rule of thumb the test case will try to exploit the
violation of an assertion which could not be found using CONCRESTWMM with SC. The targets
of the makefile will follow the following naming scheme:

• A simple make without any additional parameters will run the test program using
CONCREST without any WMM-effects, i.e., using SC as WMM-model.

• A target <testname>-pso[<number>] will execute a test using the PSO-model by
executing the instrumented version of the test program with supplied predefined schedules
for CONCREST and the WMM-Scheduler. These test cases run a hard copy of the instru-
mented program. This means that changes to the original version of the program under test
will not affect the PSO test cases. In order to update the changes for these test cases the
<testname>-pso.c file has to be replaced by a copy of the <testname>.cil.c
file placed in the temp-concrest directory.

• A target <testname>-membar will run a copy of the instrumented program where a
memory barrier instruction is enforced by either the WMM-schedule or an instrumented
memory barrier in the program under test. Similarly to the PSO test cases also for the
memory barrier test cases there exists a hard copy of the instrumented program named
<testname>-membar.c. Additionally, an instruction invoking the memory barrier is
added to this copy. This has to be kept in mind when replacing the file with an updated
version of the instrumented program.

Thread finishes

The descriptions of program executions and schedules in this chapter will make frequent use
of the phrase “thread finishes”. When testing a concurrent program using CONCREST in some
cases a post-condition has to be checked. For this purpose it has to be ensured that each thread
terminates properly before the post condition is evaluated. Otherwise, the final state cannot
be checked in a semantically correct way. However, usual pthread_join(thread) com-
mands are not supported when testing a program using CONCREST. In order to overcome this
issue each thread is equipped with a flag-variable <tid>_done which is globally initialised
to 0. The flag for the thread is then set to 1 at the end of the corresponding thread. After
declaring the flags as shared variables to CONCRESTWMM the termination of a thread can be
ensured by using concrest_assume(tid_done). As mentioned earlier an assume works
similar like an assert but the violation of an assumption is not considered as an error like an
assertion-violation. In contrast to an assertion, CONCREST tries to find a schedule such that the
assumption is not violated. These flags are declared as shared variables to CONCRESTWMM,
however, they are not declared as shared variables to the WMM-Scheduler. This is done since
the flags only serve to mark a thread to be completed and thus, delaying a write to these flags
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Name Description

mp-concrest Test the program with CONCRESTWMM and SC
mp-pso1 Reach forbidden state using PSO and handwritten schedule
mp-pso2 Reach forbidden state using PSO and generated schedule
mp-membar Forbid state using an instrumented memory barrier
mp-membar-schedule Forbid state with a memory barrier in wmm-schedule

Table 4.1: Overview of test cases for MP

would only result in complications and undesired behaviour of the program under test. Never-
theless, for correctly computing the time codes in the WMM-schedule the operations on these
flags have to be considered, i.e., each thread needs two additional steps in a schedule in order to
terminate which corresponds to setting the value of the flag to 1.

4.2 Message Passing

Message passing (MP) is a simple example already capable of demonstrating some effects of
WMM. Thus, it is used frequently in literature on the effects of WMM.

Thread 1 Thread 2
x = 1 while(y == 0){}
y = 1 r2 = x

Initial state: x = 0 ∧ y = 0

Forbidden: r2 = 0 on Thread 2

Figure 4.1: Base form of Message Passing Example from [12]

Figure 4.1 shows a simple program using two shared variables x and y. While y serves as a
guard or flag for a data variable, x represents exactly this data written by the program. This
means that once y is set to 1 other processes should be able to see a (semantically) “correct”
value for x. Thus, other processes will have to loop/wait until y is set to 1 as can be seen in
Thread 2. However, it is not necessary to always execute the program as a complete program
where Thread 2 loops until Thread 1 has written its data. Instead it is possible to just look at
a single execution of the program by transforming it into a simplified loop-free program and
modifying the post-condition accordingly. Instead of checking that after executing the loop in
Thread 2 x has the correct value, the condition can be reformulated to a check ensuring that when
the write flag has been set then the data in x has to be correct, i.e., non zero. Figure 4.2 shows
the loop-free message passing code in a similar fashion as it is also shown in [12]. Table 4.1 lists
the test cases for MP.

Tests like MP are commonly referred to as Litmus Tests. Litmus tests, like the test pre-
sented in Figure 4.2, are small concurrent programs which have a defined initial state and some
constraints on their final state. This means that a test case can be executed on a particular pro-
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cessor of a certain architecture and the executions of the test case can then be examined whether
forbidden states have been observed [12].

Thread 1 Thread 2
x = 1 r1 = y
y = 1 r2 = x

Initial state: x = 0 ∧ y = 0

Forbidden: r1 = 1 ∧ r2 = 0 at any time

Figure 4.2: Message Passing Example from [12]

For Sequential Consistency the final state r1 = 1∧ r2 = 0 not reachable. In order to violate
the assertion an execution would be required to execute the write to y in Thread 1 before the write
to x, the read of y in Thread 2, the read of x in Thread 2 and finally the write to r2 in Thread 2.
A program order like this, however, would violate the thread-local program order and is thus not
possible in the SC WMM. Thus, CONCRESTWMM using SC cannot to generate inputs such
that the assertion is violated. However, when testing using the PSO-model it is not guaranteed
that the assertion is never violated. While for x86-TSO and SPARC TSO the mentioned state is
forbidden too, architectures like ARM and POWER allow this particular state in their execution
models. However, it has to be pointed out that the likelihood of observing an execution where
the state is observed is relatively low. For example, during 4.9×109 tests the state was observed
107 times on a PowerG5 CPU and during 3.8 × 109 tests it was observed 4 × 107 times on a
Tegra2 CPU in the experiments presented in [12].

Base Case

As standard schedule (test case mp-pso1) the schedules shown in Figure 4.3 are used. Sched-
ules for the symbolic scheduler have the following syntax: on each line the first number denotes
the thread-ID and the second entry is either the number of steps or the sign −, for a unlim-
ited amount of steps. The schedule for the symbolic scheduler was created manually since this
schedule is more intuitive than any schedule generated by CONCRESTWMM for this program.
It first executes Thread 1 and subsequently Thread 2 is executed. Doing so, as will be explained
later, it can be shown that the assertion can be violated when using PSO. Figure 4.5 illustrates
the execution of the test case.

schedule

0 1
1 6
0 1
2 10
0 -

wmm-schedule

PSO
5 1 1 y
14 1 2 r1
14 1 2 r2

Figure 4.3: Schedules for mp-pso1
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schedule

0 1
1 2
0 1
1 2
2 8
1 2
0 2
2 2
0 -

wmm-schedule

PSO
4 1 1 y
14 1 2 r1
14 1 2 r2

Figure 4.4: Schedules for mp-pso2

schedule Thread Execute wmm-schedule WMM-Operation

0 1 main start Thread 1
1 6 Thread 1 x = 1

y = 1 5 1 1 y Commit write to y
set done flag for Thread1

0 1 main start Thread 2
2 10 Thread 2 r1 = x

r2 = y 14 1 2 r1 Commit write to r1
14 1 2 r2 Commit write to r2

set done flag for Thread2
0 - main Test assertion ¬(r1 = 1 ∧ r2 = 0)

Figure 4.5: Scheduled execution of mp-pso1

The second test case (test case mp-pso2) for this example program uses a schedule generated
by CONCRESTWMM during the execution of the generic test case. The schedule is shown in
Figure 4.4 and the contrast to the handwritten schedule can be observed by comparing it to the
schedule in Figure 4.4. The generated schedule contains more context switches and is thus harder
to comprehend. Semantically there is not much difference between the two schedules since the
second schedule (mp-pso2) first executes the first write in Thread 1 to x, then Thread 2 is
created (but none of its statements executed), after this the second write of Thread 1 to y is
executed, now Thread 2 takes over and runs all its statements, after this Thread 1 finishes, then
Thread 2 finishes and control is handed back to the main thread.

When using Sequential Consistency the schedules will result in an execution where Thread 2
will see the value 1 for y and 1 for x. However, under PSO, as shown in Figure 4.4, the two
writes can be delayed causing Thread 2 to see, for example, the value 0 for y and 1 for x, which
would cause the program to terminate in a forbidden state. The test case demonstrates this by
using a wmm-schedule which delays the writes long enough. Thus, the assertion is violated.
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Name Description

concrest Test the program with CONCRESTWMM and SC
relaxer1-pso1 Reach forbidden state using PSO and handwritten schedule
relaxer1-pso2 Reach forbidden state using PSO and generated schedule

Table 4.2: Overview of test cases for Relaxer1

Memory Barriers

The forbidden state can be ruled out by the programmer or compiler by inserting memory bar-
riers in the program. Two variants have been implemented for the current example: one test
case where a store-load barrier has been added to the source code (target mp-membar.c) and
one test case where the corresponding event was added as an event to the wmm-schedule (target
mp-membar-schedule). In both cases the assertion will not be violated.

4.3 Relaxer1

The next example (adopted from [4]), as outlined in 4.6 presents a simple program where two
flags are set using data written by a different process. The program contains two data races.
The first one is the race of the write of x in Thread 1 to the read of x in Thread 2. The second
race concerns the variable y in a similar fashion. Either the write to t1 or to t2 has to be the last
statement to be executed. Thus the statement is supposed to see an earlier write by the respective
other thread. As a result of this the forbidden state can never be reached under the Sequential
Consistency model. However, certain WMM allow the writes to be delayed in a way such that
their effect occurs after the corresponding read was performed, i.e., the writes to t1 and t2 are
performed before the writes to x and y. The consequence of this is that the forbidden state can
be reached [4]. Table 4.2 lists the test cases for this example.

Thread 1 Thread 2
x = 1 y = 1
t1 = y t2 = x

Initial state: x = 0 ∧ y = 0 ∧ t1 = 0 ∧ t2 = 0

Forbidden: t1 6= 1 ∧ t2 6= 1

Figure 4.6: Example 1 from [4]

Similarly to the MP example the first test case (relaxer1-pso1) uses a naïve handwritten
schedule for the symbolic scheduler where first Thread 1 is executed until it finishes and, then,
Thread 2 is executed subsequently. The second test case (relaxer1-pso2) is performed
using the schedule generated by CONCRESTWMM shown in Figure 4.7. This schedule will first
perform the store of 1 to y in Thread 2 and subsequently load the value of x observing 0. Next,
Thread 1 will perform the store of 1 to x. Since x has been read before, the natural behaviour
is that when next Thread 2 performs the store to t2 it will write the value 0. Now Thread 1
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schedule

0 2
2 4
1 2
2 2
1 2
2 2
1 4
0 -

wmm-schedule

PSO
12 1 1 t1
12 1 1 x
14 1 2 t2
14 1 2 y

Figure 4.7: Schedules for relaxer1-pso2

reads the value of y and under the assumption of Sequential Consistency it will observe 1. After
Thread 2 had finished, Thread 1 stores the value in t1 and thus the program will not reach the
forbidden state under the assumption of SC. CONCRESTWMM will not find a schedule where
the assertion can be violated. However, as mentioned before the assertion can be violated when
the write to x and y are delayed to the end of the respective threads. The according schedule for
the WMM-Scheduler shows that the assertion can be violated.

4.4 Relaxer2

Like the previous examples also the next example as outlined in Figure 4.8 contains no error
when examined under Sequential Consistency. Its structure is similar to MP since it also contains
several writes on one thread and reads these values from a different thread. The interesting cases
are when Thread 1 finished as one would expect that done, y and x are indeed 1 which is true
under Sequential Consistency. However, under PSO the effect of the write to x in Thread 1 can
be delayed such that Thread 2 observes done = 1 but x = 0 [4]. Note again that this is not
possible under SC and thus most test and verification tools will fail to correctly output that the
ERROR state is reachable. The test cases for this example are shown in Table 4.3

Thread 1 Thread 2
x = 1 if(done){
y = 1 if(x == 0)
done = 1 ERROR

local = y
}

Initial state: x = 0 ∧ y = 0 ∧ t1 = 0 ∧ t2 = 0

Forbidden: ERROR

Figure 4.8: Example 2 from [4]
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Name Description

concrest Test the program with CONCRESTWMM and SC
relaxer2-pso1 Reach forbidden state using PSO and handwritten schedule
relaxer2-pso2 Reach forbidden state using PSO and generated schedule
relaxer2-membar Forbid state using an instrumented memory barrier

Table 4.3: Overview of test cases for Relaxer2

schedule

0 1
1 4
0 1
1 2
2 -

wmm-schedule

PSO
4 1 1 y
6 1 1 done
10 1 1 x

Figure 4.9: Schedules for relaxer2-pso2

Using the schedules shown in Figure 4.9 it can be shown that when using the PSO-model the
error state can be reached. This execution will proceed in the following way. First Thread 1
is created. Next, the write to x is performed, but the effect does not become visible to other
threads immediately. Subsequently the writes to y and done are performed in Thread 1 and
immediately committed. Thus, Thread 1 sees x = 1, y = 1, done = 1 but Thread 2 sees
x = 0, y = 1, done = 1. Now, Thread 2 is created and loads done observing 1. It will go
to the then-branch of the if statement. There, however, it will load the value 0 for x. Thus,
Thread 2 will follow the then-branch of the second if. Afterwards, Thread 1 can commit the
write-effect for x but the program will still terminate in the ERROR-state.

This example demonstrates once more that WMM-effects can lead to results which are hard
to explain. As outlined above the program can terminate in an error state. When examining
the program and considering Sequential Consistency, however, one will be puzzled how the
ERROR-state could have been reached. Moreover, since the effect of the write to x can become
visible just before the program terminates in the ERROR-state the value of x will be 1 as ex-
pected by SC, rather than 0 which caused the program to reach the error state. A result like this
is hard to explain since the values observed are as expected for SC but the program went to a
branch which differs from the observed values since the write to x became visible only after the
value has been read.

Reaching the ERROR-state in this example can be prevented, even when the PSO-model
is used, by adding a memory-barrier or some other synchronisation mechanism to the program
under test [4]. The test case relaxer2-membar demonstrates this behaviour. It uses the same
schedule for the symbolic scheduler and WMM-schedule as the test case relaxer2-pso but
a store-store memory barrier is added to the block where the write to done happens. This means
that the barrier has to be executed before CONCRESTWMM can perform a context switch to a
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Name Description

non-blocking-counter-nowmm Test non-atomic, lock-free program with
CONCRESTWMM and SC

non-blocking-counter-lock Test program using locks, same settings as above
non-blocking-counter-wmm Test atomic version, same settings as above

Table 4.4: Overview of test cases for non-blocking counter

different thread. Note that “instrumented” memory barriers do not consume additional steps for
the schedulers thus the schedules can remain unchanged.

4.5 Non-Blocking Counter

The next example demonstrates the usage of the newly introduced CAS-operation (see Sec-
tion 3.6 for more details). It demonstrates the implementation of a concurrent counter in a
simple program. The counter only features an increment function but can easily be extended to
feature a decrement function. Additionally, the program can also be extended to feature multi-
ple counters. The pseudo code of the increment function is outlined in Figure 4.10. Unlike a
normal counter the variable is not incremented directly. Instead, the current value is fetched and
written to old_count. The incremented value is then written to new_count. In the next step the
CAS-operation is used in attempt to update the counter. The operation will succeed, i.e., return 0
as result, if the value of count has not been changed since the current thread fetched the value.
Otherwise the operation will return 1 and thus the loop will run again and fetch the new value of
count. Using a CAS-operation will prevent data races and gets rid of the necessity of locks or
other synchronisation mechanisms. The test cases for this example are shown in Table 4.4

1 void i n c r e m e n t ( ) {
2 i n t o l d _ c o u n t ;
3 i n t s u c c e s s ;
4 do {
5 o l d _ c o u n t = c o u n t ;
6 i n t new_count = o l d _ c o u n t +1;
7 / / A t o m i c a l l y i n c r e m e n t t h e c o u n t e r .
8 s u c c e s s = CAS(& count , &o l d _ c o u n t , &new_count ) ;
9 / / I f t h e c o u n t e r was changed by someone e l s e −−> r e s t a r t

10 } whi le ( ! s u c c e s s ) ;
11 }

Figure 4.10: Safe incrementing of a variable using CAS

The test program uses two threads each incrementing the value of the counter. Thus, at the
end of the program the value of the counter is supposed to be 2 (modelled as an assertion).
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Since the test program uses assumptions, CONCREST is required to find a schedule such that
one CAS-operation will fail to update the value. This means that a schedule has to be found
where a context switch is performed after line 5, i.e., after the value of count was fetched. For
testing purposes, each thread counts the loop iterations performed for incrementing the counter.
A first assumption states that both threads have to finish. The next states that either Thread 1 or
Thread 2 is required to have looped twice while the respective other thread is required to have
looped once. Thus, it is clear that the value count has to be 2.

Three test programs have been implemented. The programs only differ in the implementa-
tion of the CAS-operation they use. Each test program is examined using CONCRESTWMM.
The first, test program, which can be tested by building the non-blocking-counter-wmm
target, uses the newly implemented CAS-operation. CONCRESTWMM can find a schedule
where a thread has to perform its loop twice. Moreover, at the end of the program the value of
the counter is correct, i.e., 2.

Test program non-blocking-counter-lock uses a semantically correct implemen-
tation of the CAS-operation using a mutex from the pthread library in order to be atomic. This
version also delivers correct results. However, it turns out that the test cases using the lock runs
roughly a factor 1.3 slower than the test cases using the built-in operation.

The third test program (non-blocking-counter-nowmm) uses a non-atomic CAS-
operation. Running CONCRESTWMM on this test program will result in the finding of a sched-
ule where the assertion of counter = 2 is violated. The violation shows that the implementation
of the non-atomic CAS-operation is not semantically correct.

4.6 Store-Buffering

The next example presents a pattern regularly appearing in mutual exclusion algorithms such as
Dekker’s algorithm which will be presented in the next example. Store-buffering consists like
most of the previous examples of two threads and is similar in its structure to the simplified
versions of MP. Both threads write to a shared variable and write the value written by the other
thread to a register. The example is outlined in Figure 4.11. When examining store-buffering
under the assumption of Sequential Consistency the final state of r1 = 0 ∧ r2 = 0 will be
forbidden since there is no program under which both reads occur before both writes. However,
the final state is allowed for relaxed architectures such as x86 or Sparc [12]. Table 4.5 shows the
test cases for this example.

Thread 1 Thread 2
x = 1 y = 1
r1 = y r2 = x

Initial state: x = 0 ∧ y = 0

Allowed: r1 = 0 ∧ r2 = 0

Figure 4.11: Store-buffering. Adopted from [12]

In order to be able to observe whether the state is reachable its negation is added to the program
under test using an assertion, thus stating that it cannot happen. The test program can be tested
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Name Description

sb-concrest Test the program with CONCRESTWMM and SC
sb-pso1 Show reachability of allowed state using CONCRESTWMM and PSO
sb-membar Forbid state using an instrumented memory barrier

Table 4.5: Overview of test cases for SB

using CONCREST by building the default target or by building the sb-concrest target. As
expected CONCREST will not be able to violate the assertion in the program under test.

As mentioned before, the state is reachable, for example, under PSO but not under SC. The
schedules in Figure 4.12 is used for the test case sb-pso1. The schedule creates both threads
and subsequently executes the write to x in Thread 1 but does not commit it. In the next step it
will similarly execute the write to y in Thread 2, again not committing it. Thus, when next the
value of y is read in Thread 1 and stored to r1 it will still receive 0 as value. Subsequently, the
value of x is read in Thread 2 putting 0 to the stack. After the immediate context-switch used to
mark Thread 1 as finished the loaded value is stored to r2. In the main program the done-flag for
Thread 1 is read before the done-flag is set on Thread 2. After that, the main program continues
until its termination. Due to the observed values it will terminate in an error state, since the
assertion will be violated.

schedule

0 2
1 2
2 2
1 4
2 2
1 2
2 2
0 2
2 2
0 -

wmm-schedule

PSO
5 1 2 y
11 1 1 x
20 1 1 r1
20 1 2 r2

Figure 4.12: Schedules for sb-pso1

However, the state can easily be disallowed by adding memory barriers between the first
and the second statement in each thread. For example, a DMB barrier can be added for an ARM
processor or sync barrier for a Power processor. It has to be pointed out that a Load-Load
barrier for the PSLO model would not forbid the state [4, 12]. In the sub-test case sb-membar
a Store-Load barrier is added between the store and load commands on each thread. Thus, while
using the same schedules1 the assertion is not violated.

1Memory barriers do not consume scheduling steps
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Name Description

dekker-concrest Test the program with CONCRESTWMM and SC
dekker-pso1 Visit both critical sections with CONCRESTWMM and PSO
dekker-membar Forbid visiting both critical sections using a memory barrier

Table 4.6: Overview of test cases for Dekker

4.7 Dekker’s Algorithm

Dekker’s algorithm is an algorithm used for guaranteeing mutual exclusion. The algorithm is
considered to be the first solution to the mutual exclusion problem for two threads. It guarantees
that only one process can enter a critical section while also preventing deadlocks. In this critical
section a shared resource can be modified, for example.

While the algorithm is error-free for sequentially consistent architectures it is unsafe for
architectures with weak memory semantics. A reason for this lies of course in the fact that it
was invented at a time when only sequentially consistent architectures where used. Figure 4.13
shows a simplified version of the algorithm. The simplification was done in a similar fashion
as it was done for the MP-example. The test case consists of two threads each equipped with
a flag indicating its intention to enter its critical section. Each critical section consists of a flag
marking if it was visited during the execution. Table 4.6 shows the test cases for this example.

Thread 1 Thread 2
flag1 = 1 flag2 = 1
if(flag2 == 0) if(flag1 == 0)
c1 = 1 c2 = 1

Initial state: flag1 = 0 ∧ flag2 = 0
∧ c1 = 0 ∧ c2 = 0

Forbidden: c1 = 1 ∧ c2 = 1

Figure 4.13: Example for Dekker’s algorithm, adopted from [1].

The following condition was added as an assertion to the program in order to be able to observe
whether the forbidden-state is reachable.

(c1 = 1 ∧ c2 = 0) ∨ (c1 = 0 ∧ c2 = 1)

The assertion will be checked once both threads have terminated. All variables are declared as
shared variables to CONCRESTWMM but only the flag variables are declared as shared variables
to the WMM-Scheduler. This is done since the flags c1 and c2 only serve to show whether a
critical section has been visited. Thus, delaying a write to these variables would only result in
complications and undesired behaviour of the program under test.

The test program can be examined using CONCRESTWMM by building the default target
or by building the dekker-concrest target. As expected CONCRESTWMM using SC will
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not be able to violate the assertion in the program under test. Still it will be able to cover all
branches.

Using the target dekker-pso1 it can be seen that the assertion can be violated using the
PSO-model. The reason that the assertion can be violated follows immediately from the Store-
buffering example described previously. However, unlike the previous example no generated
schedule can be used since CONCRESTWMM is not able to generate a schedule where on both
threads the then-branch is visited. The schedule for the test case is obtained by increasing the
steps of the thread which did not execute the then-branch in the CONCRESTWMM generated
schedule. Figure 4.14 shows the schedules violating the assertion. After the creation of two
threads in the main program Thread 2 is started and writes 1 to flag2 without committing
the write immediately. Subsequently, the value of flag1 is read which will observe 0 leading
Thread 2 into the then-branch. Next, Thread 1 will write 1 to flag1 also not committing its
write immediately. After that, Thread 2 will enter the critical section setting c2 to 1. The next
scheduling entry hands control to Thread 1 which will read flag2 observing 0 since the write
has not yet been committed. Thus, also Thread 1 enters the critical section where it will set c1
to 1 and will finish afterwards. Subsequently, the main program will observe that Thread 1 has
finished before handing control to Thread 2 which will then finish. Now, the main program will
observe that both threads entered the critical section and thus terminate in an error state.

schedule

0 2
2 4
1 2
2 2
1 6
0 2
2 2
0 -

wmm-schedule

PSO
10 1 2 flag2
11 1 1 flag1

Figure 4.14: Schedules for dekker-pso1

Similarly to previous examples also Dekker’s algorithm can be made safe when using mem-
ory barriers. Target dekker-membar executes the program under test with an added Store-
Load barrier. However, for this test case a schedule different to the schedule of dekker-pso1
has to be used since in this test case only one critical section will be visited.

4.8 Benchmarks

For all examples presented in this chapter the program was tested 100 times and the runtime was
captured. In order to capture the runtime the standard UNIX utility timewas used and user-time
was recorded. The examples were tested using CONCRESTWMM and additionally with a ver-
sion of CONCREST which was built by disabling the WMM-Support during the build-processes.
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Benmark CONCREST CONCRESTWMM δ

MP 0,153 0,176 0,022
SB 0,149 0,171 0,022
Relaxer-Fig1 0,156 0,179 0,023
Relaxer-Fig2 0,131 0,155 0,024
Dekker 0,162 0,186 0,024
aget 0,288 0,309 0,021
apache1 3,563 3,588 0,024
apache2 0,427 0,449 0,022

Table 4.7: Benchmakrs

In order to be able to test the program under test without WMM-Support any dependencies to
the WMM-Support were removed prior to testing for these benchmarks. In addition a similar
benchmark was also performed for aget, apache1 and apache2 from the benchmarks of
CONCREST. For this set no modifications to the program under test were made since they do
not include dependencies to the WMM-Support. The experiments were performed on a quad-
core 64-bit Linux machine with 2.7GHz and 4GB RAM. A summary of the captured data can
be found in Table 4.7. The experiments showed that on average CONCRESTWMM is only a
constant factor of∼ 1.15 slower than CONCREST when comparing both tools. This small factor
gives rise to the assumption that the additional time is spent during the additional parsing of the
control flow graph in CONCRESTWMM.
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CHAPTER 5
Related Work

There are various other tools than CONCREST for testing and verifying software. Table 5.1 sum-
marises the tools mentioned in this chapter and gives information about their availability. Like
CONCREST, SAGE [9] and CUTE [17] implement the DART (Directed Automated Random
Testing) approach but have no support for multi-threading. While the test tool CUTE (Concolic
Unit Testing and Explicit Path Model-Checking) can only test sequential C programs, jCUTE
can test concurrent Java programs for data races, deadlocks, infinite loops and uncaught ex-
ception errors [17]. ConTest [6] takes a different approach: It takes a Java program and a test
for the program and tries to increase the coverage of two concurrency coverage criteria. The
first coverage criteria requires a context switch for each method in the Java program, while the
second coverage criteria requires a context switch for every method to all other methods in the
Java program. ConTest tests a program only on a single core CPU. The tool instruments the
program using sleep, yield and priority to force a context switch from one thread to a different
thread during execution [6]. Similar to ConTest, Poirot [16] also focuses on systematically in-
vestigating context switches. Poirot translates a concurrent program into a sequential program.
This sequential program is forced to contain context switches which are considered to be cru-
cial for possible bugs. The sequential program is then analysed using static analysis techniques.
Chess [14] uses model checking for testing concurrent programs. It tries to enumerate possible
thread schedules giving priority to schedules with fewer preemptions. To apply Chess to a pro-
gram under test one has to provide a test harness. The framework provides wrapper functions for
common concurrency API-functions such as the Win32 API such that the execution of the test
can be instrumented and recorded. Fusion [18, 19] also records a concurrent trace of a program
execution but then transforms this trace into a logical formula that also encodes certain proper-
ties to be checked. If the formula has a solution then a property violation has been determined
or otherwise the trace does not violate the given properties. As an extension, the concept of
interference abstractions, a concept similar to interference scenarios, is introduced [18].

None of the previously mentioned tools is able to test a program under test with respect to
effects of WMM-models. However, there are two tools that are able to test concurrent programs
using WMMs which are discussed in more depth in the following sections. The first tool, CBMC,
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Tool Basic principle WMM support Source code available

CBMC [2] bounded model checking yes yes

CREST 1 concolic testing no no

CONCREST [7] (con)2colic testing no yes

SAGE [9] concolic testing no no

Cute [17] concolic testing no yes

jCute [17] concolic testing no yes

CHESS [14] model checking no yes

Poirot [16] static analysis no no

Fusion [18, 19] model checking no no

ConTest [6] dynamic analysis no no

RELAXER [4] dynamic analysis yes no

Table 5.1: Overview of concurrency testing tools

has an extension which makes bounded model checking with respect to a given WMM possible.
One problem with this approach is that bounded model checking does not scale well for larger
concurrent software [2]. The second tool is RELAXER [4], which facilitates an active random
testing technique and combines it with the search for data races using different WMMs. This
means that the program uses an analysis to predict potential bugs. After this initial analysis the
program tries to trigger these predicted bugs by actively controlling the scheduler.

5.1 CBMC

Alglave et al. [2] propose a method for using bounded model checking to verify concurrent
software under weak memory semantics. The underlying idea is that instead of modelling the
events from the program under test as a total order, thus assuming Sequential Consistency, the
events are ordered using partial orders. This relaxation makes it possible to model architectures
weaker than SC. Their method proposes a symbolic decision procedure for partial orders. In
particular, they implemented their encoding as an extension of the model checker CBMC.

Partial Orders

An event is a tuple consisting of a unique identifier for the event, a direction (read or write),
an identifier for the memory address and a value written to or read from the memory address.
For example the event (e)Wx1 denotes the write event e where 1 is written to x. The event
structure E consists of a set of events E and a program order po which is a total order over
the events for one processor. By dp a subset of po (dp ⊆ po) is denoted which includes all

1http://code.google.com/p/crest/
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dependencies between events in the program under test, for example, whenever the address for
an access is computed using a previous load. This can be seen, for example, when pointer
arithmetic is used. The write serialisation ws is a total order for every address and the writes
to it, i.e., the writes to one address are ordered and only one write to a specific address can
occur at a time. rf is a relation which links write events to read events so that a read r will read
precisely the value written by write w. Then, an execution of a program can be modelled as an
execution witness X which consists of the two relations ws and rf. The relation rf can further
be separated into internal read-from rfi and external read-from rfe events. rfi events are events
where both a write w and a read r happen on the same processor whereas w and r happen on
distinct processors for rfe events. By using rf and ws it can be ensured that a write w0 ordered
before the write w1 when (w0, w1) ∈ ws and for some write r (w0, r) ∈ rf. Furthermore, the
relation from-read fr can be used to express that r happens before w1. A pair (r, w1) ∈ fr is the
equivalent of stating that there exists a w0 such that (w0, r) ∈ rf and (w0, w1) ∈ ws.

The orders described above model Sequential Consistency in case they are total. Weak
Memory Models can be modelled by relaxing sub-relations of po and rf. This means that, for
example, reads from the rf relation are not included in the global happens before relation. The
internal reads rfi can also be relaxed in order to model architectures which feature store buffers.
Moreover, also the fact that some architectures allow processors to communicate privately via
a cache can be modelled by relaxing the external reads rfe. This relaxation of rfe also means
that writes atomicity is relaxed. If a write event e1 is non-atomic then another write event e2 to
the same memory location can happen between the write event e1 and the corresponding read
event from the rf relation. Subsets of the relations which are guaranteed to be in order for an
architecture are called the preserved program order ppo. Another subset of the program order
are fences. A fence is called cumulative if it makes writes atomic, i.e., sequences of rfe cannot be
relaxed. Non-cumulative fences guarantee that certain events pairs surrounding the fence, i.e.,
one event before and one event after the fence, are in order. The union of fences and cumulativity
is denoted as ab.

An architecture is a concrete realisation of the order-relations described above and thus de-
termines which of the relations are safe, i.e., which relations cannot be relaxed. ws and fr are
considered to be always safe whereas read-from is in most cases relaxed. Thus, the subset grf is
introduced which denotes the subset of the read-from relation which is safe on all processors for
this particular architecture.

A candidate for an execution of the modelled program is valid for a specific architecture
when the following three conditions hold. The first condition is that accesses to the same address
are sequentially consistent. This means that the program order for same locations (po-loc) is
compatible with the communication between processors, i.e., ws ∪ rf ∪ fr ∪ po-loc does not
contain a cycle. No causal loop exists for the values, i.e., rf ∪ dp does not contain a cycle.
The third condition is that the events can be linearised in a global happens before structure, i.e.,
ws ∪ grf ∪ fr ∪ ppo ∪ ab does not contain a cycle.

Translation to SAT

The decision procedure as described in the previous section gives the possibility to determine
whether a particular execution witness is valid for a specific architecture. However, the aim of
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the presented work is to reason about properties and possible executions of a program. Thus, a
formula is constructed which is satisfiable iff there exists an execution for the encoded architec-
ture which violates the reachability property also encoded in the formula. The formula consists
of two conjuncts. The first conjunct of the formula, ssa, models the data and control flow for
every thread of the program using static single assignment for capturing writes. For every write
on every thread a fresh new index is introduced.

The second conjunct, pord (partial order constraints), models the communication between
the threads of the program under test. It thus highly depends on the assumptions for the archi-
tecture it is targeted to represent. In order to be able to define the order of events, clock vari-
ables clockx are introduced for all events within the program. Additionally, clock constraints
are defined which can then be used to reason about the time-relation between events. A clock
constraint cxy states that for the events x,y the relation clockx < clocky holds. Furthermore,
variables swr are introduced to represent a read-from relation between a write w and a read r.
Thus, the two conjuncts ssa and pord are modelled as representations for the presented orders.

The constraints for the preserved program order ppo contain a clock constraint ce1,e2 for
every pair of events e1, e2 from the same thread if the following two conditions hold. First, the
pair is safe on the selected architecture A. Secondly, there is a control flow path between e1 and
e2 and it is not in the transitive closure of Cppo

2. The read-from relation is encoded as the sets
Crf and Cgrf . For every (w, r), which is safe for A, a constraint swr → cwr is added to Cgrf .
Additionally, for each such pair in rf a constraint has to be added which ensures that the guard
for the write is true and the read will read the value written by the corresponding write event.
In order to do so, the constraint swr → g(w) ∧ xw = xr is added to Crf . Since ws is a total
order it contains for every pair of writes w,w′ with w 6= w′ a constraint ensuring that either cww′

or cw′w. As mentioned above pairs in fr model an implicit existential quantification of another
element in rf. In order to encode this existential quantification for pairs (r, w) ∈ fr a disjunction
over constraints sw′r∧cw′w → crw is added to Cfr which is equivalent to stating that there exists
a w′ so that (w′, r) ∈ rf and (w′, w) ∈ ws.

Relation to CONCREST

While it is hard to compare a verification tool with a testing tool there are some similarities be-
tween the CBMC extension and CONCREST, respectively the WMM-Support presented in this
thesis. CONCREST uses the notion of temporal consistency constraints which exhibit some sim-
ilarities to the order-structures described above and the relations between the orders. Moreover,
both approaches use the idea of relating read-events to write-events in their encodings.

One of the major differences is that due to its nature CBMC reasons about executions up-
front while CONCREST uses the information gathered through executions for its analysis of the
program under test.

2A constraint ce1,e3 is redundant if there are constraints ce1,e2 and ce2,e3 .
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5.2 RELAXER

The testing tool RELAXER as proposed in [4] is capable of testing concurrent C programs using
weak memory semantics. Burnim et al. propose a method which combines dynamic analysis
with software testing in order to verify concurrent software using introduced weak memory
model semantics. Their approach works in two phases: a generation phase and a check phase as
will be described below.

In the first phase, execution traces of the program under test are examined for potential
happens-before-cycles under SC. Each of the gathered execution traces consists of load and
store events. Each of these events consists of a label for the event, a processor-identifier, a
memory address, a value, an instruction index for the processor and a commit index. RELAXER
also defines a commit index for read events. The commit index for a read just refers to the
index of the value in the series of values written to the memory address. Similar to the cycles
mentioned in [2] a happens-before-cycle is a cycle of self-supporting events. This means that
when arguing about the causality of read/write events a cycle is formed. For defining the cycle
formally the conflict-order relation is introduced. Two events e, e′ are considered to be conflict-
related if both access the same memory address and either e is a store, e′ a load event, where the
commit index of e is lower than the commit index of e′, or e is the load event and has a lower
commit index than e′. The happens-before relation is the union over all events in program-order
relation with all events in conflict-order relation. A trace thus violates sequential consistency if
there exists a cycle in the happens-before relation. In order to obtain a trace the program under
test needs to be executed using a test harness. The program is then executed using this harness
with random schedules. Gathered traces are then analysed for sets of events forming potential
happens-before-cycles. For each of these sets the second phase of RELAXER is executed.

In the second phase RELAXER will try to find a valid execution for a selected WMM for
each of the potential happens-before-cycles from Phase 1. To do so RELAXER executes the
program again while actively controlling the schedule and memory operations of the program
under test. During these executions operational semantics are required for the selected WMM.
RELAXER defines these semantics for Total Store Order (TSO), Partial Store Order (PSO) and
Partial Store Load Order (PSLO). In addition to the modification of the operational semantics,
RELAXER also uses strategies tailored for each of the models. Each of these strategies consists
of functions like before_store. The mentioned function is executed before a store operation
in the program under test is executed and decides whether the effect of a store should become
visible immediately or whether the effect should be delayed. Delays are implemented via a
time-function and a waitUntil-function. While the former is used to obtain time-codes, the
latter is used to pause a thread until the time-code is reached. Common among the strategies
is the existence of a buffer-list and the after_any-function. When a write occurs then the
time-code when it is supposed to become visible and the effect of the write-event are appended
to the buffer-list. The after_any-function is executed after any intercepted operation of the
program under test. Using this function the write-events can then be committed at the desired
point of time.
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Relation to CONCREST

Similarly to CONCREST, RELAXER uses CIL for instrumenting a C program. The instrumen-
tation is used for intercepting loads, stores and synchronisation primitives within the program
under test. However, while CONCREST is able to test a program without the need of test har-
nesses, RELAXER requires the tester to provide a test harness for the program under test. This
test harness is responsible to drive the program through the various paths of the program. More-
over, CONCREST is able to systematically examine the concurrent program while RELAXER
relies on random schedules during its first phase.

Another similarity to the work presented in this thesis is that RELAXER also adds WMM
semantics to its execution model by simulating the WMM-effects using operational models.
However, while RELAXER additionally uses heuristics to test for bugs under WMM-semantics,
the work of this thesis only offers the possibility of executing a program while simulating the
effects of a WMM.
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CHAPTER 6
Conclusion & Future Work

Conclusion. This thesis presented CONCRESTWMM, a concolic testing tool for concur-
rent software that is able to simulate the effects of weak memory models during an execu-
tion of a program under test. CONCRESTWMM was implemented as an extension of the tool
CONCREST. As a central component, CONCRESTWMM adds a WMM-Scheduler. By using
WMM-schedules it is possible to select a WMM and to trigger effects of this model at specific
points during the execution of a test case. Thus, the tool CONCRESTWMM offers the possibil-
ity to discover bugs that can occur on real-world processor architectures that do not adhere to
Sequential Consistency but to another WMM.

As a part of the thesis two WMMs were implemented. First, the WMM Sequential Consis-
tency which can be used to simulate the behaviour of CONCREST. This model does not need
any additional schedules. Secondly, the PSO WMM was implemented. This model allows to
delay the effect of a write event.

Memory barriers are a common means to limit the deviation of executions from Sequential
Consistency. Support for memory barriers was also implemented in CONCRESTWMM. By
using memory barriers it is possible to force the effect of writes to become visible, i.e., memory
barriers can be used to guarantee certain commits to happen. CONCRESTWMM offers three
types of memory barriers which have to implemented by the WMM.

Since many concurrent applications and data structures make use of a Compare and Swap
(CAS) operation, a CAS operation was also implemented as part of CONCRESTWMM. The
CAS operation updates a memory cell with a new value if the cell contains an expected old
value. The built-in operation offers the same semantics as the Boolean CAS operation offered
by the compiler GCC and is atomic. Moreover, the built-in CAS operation is equipped with
symbolic information. This enables CONCRESTWMM to search for test cases covering both
branches of the CAS-operation, i.e., finding test cases where the value at the memory location is
changed and test cases where the value is not changed.

To test the implementation of CONCRESTWMM and to show its capabilities, several exper-
iments were performed. These examples are taken from the literature. The experiments showed

57



that on average CONCRESTWMM is only a constant amount of ∼ 0.02 seconds slower than
CONCREST when comparing both tools.

Future Work. As mentioned in Chapter 3, there are several possibilities for extending
CONCRESTWMM in order to be able to examine concurrent programs while identifying WMM
related bugs systematically. A possibility for solving this problem is to equip CONCRESTWMM
with a search facility identifying WMM related bugs for a given schedule. Another possibility
for integrating the full support of WMM-effects into CONCREST is to encode the semantics
of WMM-effects into the constraint systems of CONCRESTWMM. These modified constraint
systems then produce schedules for both the symbolic scheduler and the WMM-Scheduler of
CONCRESTWMM. Additionally, there is also the possibility of reformulating the constraint
systems of CONCRESTWMM in a way so that solutions for them yield interferences where a
relaxation of the write-consistency would violate an assertion. See also the discussion in Chap-
ter 3.7.

A compiler inserts memory barriers into a program and uses CAS operations at specific
points. However, this is compiler dependent, i.e., the program generated from the same source
code can be different for two compilers. As a result of this two programs generated from the
same source code but with different compilers can behave differently. CONCRESTWMM can
be extended to simulate the behaviour of different compilers. For example, the instrumentation
process can be changed in order to add memory barriers to the instrumented program under test
reflecting the behaviour of the selected compiler. Moreover, the instrumentation process could
be changed in such a way that it adds CAS operations where a compiler would add them. Alter-
natively, memory barriers can also be added to the program under test using WMM-schedules.
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