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Kurzfassung

In der vorliegenden Arbeit werden neue Methoden vorgestellt, mit deren Hilfe Elek-
tronenwellenfunktionen in Festkörpern mittels Transmissionselektronenmikroskopie
(TEM) und Elektronenenergieverlustspektrometrie (EELS) direkt im Realraum vermes-
sen werden können. Zu diesem Zweck wird sowohl die Theorie der elastischen Elektro-
nenbeugung als auch die der inelastischen Elektronenstreuung im Dichtematrixformalis-
mus dargestellt. Dabei werden die zentralen Größen der inelastischen Elektronenstreu-
ung — der gemischte dynamische Formfaktor (MDFF) und der doppelt-differentielle
Streuwirkungsquerschnitt (DDSCS) — verwendet. Zusätzlich zur formalen Theorie
werden verschiedene Näherungen diskutiert und ihre jeweiligen Gültigkeitsbereiche
erläutert. Darüber hinaus wird eine Methode zur Diagonalisierung des MDFFs beschrie-
ben, welche die Simulation von energiegefilterten TEM Bildern mit bisher unerreichter
Genauigkeit ermöglicht.
Nach der Darlegung der Theorie wird diese an Hand realer Beispiele praktisch

erläutert. Einerseits wird anhand des Modellsystems Silizium gezeigt, wie Radial-
wellenfunktionen im Festkörper vermessen werden können. Die Übereinstimmung
zwischen den theoretischen Vorhersagen und den experimentellen Daten erweist sich
dabei als hervorragend. Andererseits wird abgeleitet, wie die Winkelabhängigkeit der
Wellenfunktionen bestimmt werden kann. Es stellt sich heraus, dass die Symmetrie
des untersuchten Systems ausschlaggebend für den Erfolg derartiger Untersuchungen
ist. Mit den hier präsentierten neuen Techniken wird es in Zukunft möglich sein,
elektronische Eigenschaften mit atomarer Auflösung zu vermessen, was technologisch
bedeutend ist — besonders in den Materialwissenschaften.
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Summary

In this work, new methods to study the real space wave functions of electrons in a solid
using transmission electron microscopy (TEM) and electron energy loss spectrometry
(EELS) are presented. To this end, the theory of both elastic and inelastic electron
scattering is treated in a density-matrix formalism. In the process, the central quantities
of inelastic electron scattering — the mixed dynamic form factor (MDFF) and the
double differential scattering cross section (DDSCS) — are introduced. In addition to
the formal theory, several approximations and simplifications, as well as their respective
validities, are discussed. Furthermore, a method for diagonalizing the mixed dynamic
form factor is described, which allows calculating high resolution energy filtered TEM
images with unprecedented accuracy.
Subsequently, several applications of the aforementioned theory to real-world exam-

ples are presented. On the one hand, the example of Silicon serves to demonstrate
how the radial wave functions in the bulk can be measured; the agreement with the
theoretical predictions proves to be very good. On the other hand, the determination
of the wave functions’ azimuthal dependence is derived. It turns out that the symmetry
of the system under investigation is crucial to the success of this endeavor. With the
new techniques presented here, it will be possible to measure electronic properties with
atomic resolution, which can be of great importance, particularly in material science.
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Preface

Beneath many section and chapter headings throughout this thesis, the phrase ”This
section is based on. . . ” can be found. The references cited were vital resources for
writing the section in question, apply to the whole section, and are therefore put in the
beginning to emphasize their role.1 In addition, the cited manuscripts often contain
additional information not presented here (mostly because it would be beyond the
scope of this work).
The organization of this work is the following: chapter 1 gives an introduction and

overview of the formalisms and instruments used. It is followed by a summary of
the description of elastic propagation of electrons in chapter 2, which is essential for
understanding how the probe beam is formed in the condenser system and how it
behaves in the sample. Subsequently, the theoretical description of inelastic scattering
of fast electrons is developed from first principles in chapter 3. This constitutes the
theoretical core of this work. In chapter 4, the whole theoretical framework is applied
to analyze experiments and predict new findings. Finally, chapter 5 completes the
main part of this work with conclusions and an outlook. In the following appendix,
the computer programs, formulas, and some (lengthy) derivations used throughout
this thesis are collected.

1Of course, intentional verbatim citations are marked as such.
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1. Introduction

Dass ich erkenne, was die Welt
Im Innersten zusammenhält.
[So that I may perceive whatever holds
The world together in its inmost folds.]

(Johann Wolfgang von Goethe)

1.1. Motivation

For millennia, people have been wondering and speculating about the nature of the
matter that surrounds us. Many theories were formed and dropped again. Interestingly,
what started as a rather abstract concept in ancient greek — ατομοσ, the indivisible, the
smallest imaginable object, which cannot be cut into smaller pieces — has survived until
(or rather: has been revived in) modern chemistry and physics, albeit only by name,
as sub-atomic particles such as protons, neutrons, and electrons are well-established
nowadays. Among the pioneers of our current quantum mechanical understanding of
the atom were Niels Bohr and Erwin Schrödinger.

This understanding of atoms and, consequently, matter on the nanometer scale is
the foundation for the understanding, interpretation, and prediction of many material
properties, ranging from the stability of chemical compounds, electrical conductivity,
and magnetism to nuclear fission and decay, to name just a few. This work, in
particular, will focus on electron orbitals, i.e., the probability distribution of finding
an electron at a given position in the material. They are the origin of effects such as
bonding, electric conductivity, magnetism, and most optical properties.

In order to investigate orbitals, one needs to be able to design experiments that
interact with the electrons of the material in very defined manner and in a very
confined region (typically of the order of < 1�A). To the best of my knowledge, this has
only been achieved by scanning tunneling microscopy (STM) [1, 2] so far. However,
since STM is inherently a surface-sensitive technique, and the electronic states on
the surface are usually quite different from those inside a bulk sample (owing to
the different boundary conditions), this method is hardly useful for many aspects of
material science.

Thus, it is the aim of this work to pave the way for studying the orbitals in a
material using a transmission electron microscope (TEM) and electron energy loss
spectrometry (EELS). The TEM is particularly suited for the task, as with it, atomic
resolution can be achieved routinely [3]. EELS, in turn, is a versatile method to
investigate the interaction of the probe electrons in the TEM with the electrons in the

1



2 1. Introduction

target [4]. Thus, TEM and EELS are the perfect choice for this endeavor. Moreover,
many other analytical techniques such as high resolution images, electron diffraction
and energy dispersive X-rays (EDX) can be combined with TEM and EELS in-situ,
offering a range of additional possibilities to study the specimen.

1.2. Transmission Electron Microscopy and Electron
Energy Loss Spectrometry

This section is based on [3, 4]

In principle, the TEM, invented by Knoll and Ruska in 1932 [5], works in a very similar
way as an optical transmission microscope. Instead of light, however, it uses electrons
as a probe. These electrons are emitted in the so-called “gun” (for all experiments in
this work, a field emission gun (FEG) was used to ensure that the beam is sufficiently
coherent [3]). This electron beam is then transfered to the sample via the condenser
lens system. After passing through (and interacting with) the sample, the beam is
transfered to a viewing screen, a charge-coupled device (CCD), or other analytical
tools, via the objective and projective lens systems. Since electrons can be described
as waves, the principal properties of optical microscopy still hold (such as diffraction,
propagation, interference, etc.). There are two major differences between photons and
electrons, however: (i) electrons are charged, and (ii) electrons have mass.
The fact that electrons are charged makes them easy to accelerate to very high

kinetic energies, corresponding to very short wave lengths and hence very high spatial
resolution. The fact that they have mass, on the other hand, implies that they
do not travel at the speed of light, and hence can be treated (semi-)classically in
certain situations (see sec. 1.3). At the same time, these properties also have negative
side effects. Because of the long-ranged nature and high strength of the Coulomb
interaction, the probe electrons interact much more strongly with matter than photons
(in a comparable energy range). Therefore, TEM samples must be thin (typically
. 100 nm), a high vacuum chamber must be used, and a profound understanding of
the effect this interaction has on image formation is required. Additionally, not all
achievements of optics (such as aspheric lenses [6]) can be used in a TEM directly.
Nowadays, many of these difficulties have been overcome and a profound understanding
of the image formation in a TEM is available. Thus, it is possible to achieve atomic
resolution routinely. Moreover, it is possible to investigate the crystal structure of the
sample accurately using electron diffraction, owing to the wave nature of the electrons.
Electron energy loss (EEL) spectrometers are analytical tools that can be attached

to a TEM (or, in some cases, installed inside). They use magnetic fields to discriminate
the electrons of the probe beam with respect to their energy. That way, it is possible
to analyze how many electrons have transferred which amount of energy to the sample.
In high-end devices, it is also possible to select electrons with a certain energy and
subsequently record the image formed solely by these electrons.
Energy transfer from the probe beam to the target is usually only possible in a
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quantized way, i.e., by initiating certain transitions of the particles in the target.
Possible excitations include thermal diffuse scattering (TDS), collective excitations
such as plasmons, or single excitations of (typically tightly bound) electrons. This
work will focus on the last type. Since the energy levels in a solid depend crucially
on the nuclei, these single excitations are characteristic of the atomic species present
inside the sample. Consequently, this method can be used routinely to analyze (and
quantize) the chemical composition. Bonding effects and charge transfer also give rise
to changes in the energy levels, by which individual bond states and valence states
can be determined [3].

1.3. Assumptions and simplifications

The description of combined TEM and EELS measurements in general (and of elastic
and inelastic scattering in particular) is very complex. To break it down to a manageable
problem, several assumptions and simplifications have to be made. A list of the general
ones used throughout this work is provided in the following.

Paraxial trajectories In TEMs, the electrons typically have a large kinetic energy
in the range of tens to hundreds of keV. Deflecting such a beam by large angles
would require very strong forces which are technically demanding1. Thus, the electron
velocity’s component orthogonal to the optical axis is small and, consequently, the
electron beam normally travels close to the optical axis (i.e., in the so-called “paraxial
region”). Therefore, normal TEMs can be several meters high while the diameters of
the sample and the inner column are typically of the order of a few millimeters.
In addition, the treatment of magnetic lenses within the framework of ray optics is

only applicable in the paraxial region, i.e., when the distance of the “beam” from the
optical axis is much smaller than the typical extent of and distance between successive
“optical” elements.

Relativistic corrections As is commonly done in the field of EELS, the quantum
mechanical description in this work will be based on the non-relativistic Schrödinger
formalism. The reasons for this approach are manifold:

� For probe electrons accelerated by a potential difference of 200 kV, the kinetic
energy is still smaller than the rest energy by more than a factor of 2.

� Antimatter, the creation or annihilation of matter, and similar relativistic effects
are not the focus of this work.

� The probe beam has no spin-polarization. In addition, the spin–spin interaction
between probe and target is typically negligible due to the very short time a
probe electron needs to pass through the sample [7].

1One instance where strong forces are used is the electron energy loss (EEL) spectrometer, in which
very strong magnetic fields are used to separate the electrons by their kinetic energy [3, 4].
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� The dominant contribution to the interaction between probe and target is the
electric interaction, which is typically orders of magnitude stronger than the
magnetic interaction.

� The external magnetic field produced by the pole pieces can be treated similarly
to optical lenses (except for an image rotation [8]): the lenses can be described
in a contrast transfer function (CTF) approach [3] and beams passing through
them obey the basic lens equations.

Due to the speed of the electron, it is, however, necessary to introduce some
relativistic corrections (sometimes referred to as kinematic corrections [9]). Most
notably, this manifests itself in a change of the electron’s wave length, momentum, and
mass. For example, it is necessary to calculate the wavelength of the electron from the
relativistic momentum given by p =

√
(E0 +m0c2)2 −m2

0c
4/c. This yields [3]

λ =
h

p
=

h√
2m0E0

(
1 + E0

2m0c2

) , (1.1)

where h is the Planck constant, m0 is the rest mass of the electron, c is the speed of
light, and E0 = e · V is the energy gained by an electron of charge e when accelerated
in a homogeneous electrostatic field of potential difference V . Hence, the electron’s
wave vector has the length k := 2π/λ.

Similarly, the (characteristic) momentum transfer associated with an energy loss of
E is (in first order Taylor approximation in E) given by [10, 11]

qE := k|E0 − k|E0−E ≈ k|E0 ·
E

2E0

·
1 + E0

m0c2

1 + E0

2m0c2

. (1.2)

Since the electron’s mass only enters as a constant pre-factor throughout this work,
it’s relativistic correction will not be treated here explicitly.

Periodic single crystals Only ideal, periodic single crystals are considered for the
elastic propagation, unless noted otherwise. This excludes, e.g., amorphous samples
or quasicrystals. In particular, boundary effects are ignored and the specimens are
treated similarly to infinite crystals. This entails that the lattice can be described by
discrete points in momentum space. In addition, defects are generally neglected (or
assumed to not perturb the elastic propagation of the probe electron significantly, e.g.,
in the case of dopant atoms).2

2Note that many of the results found in this work can also be applied to non-ideal systems as well
with reasonable accuracy (in fact, all experimental data presented is inherently measured with
imperfect samples). However, in the theoretical treatment, only the ideal case will be considered
for the sake of clarity and simplicity.
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Single electron approximation Each inelastic scattering event is modeled as an
interaction between exactly two electrons. The fact that only one probe electron
is considered can be justified by estimating the (classical) distance between probe
electrons in the TEM. With a velocity of v ≈ 0.7c, an emission current of I ≈ 1 µA [3],
and the assumption of equidistant electrons, the distance can be estimated to be3

d ≈ ve

I
> 30 µm. (1.3)

Hence, there is at most one probe electron in the sample. This fact can be transferred
to a quantum mechanical description of the probe electron as wave packet.
The single electron approximation for the target electrons is a more severe simplifica-

tion, of course. The number of electrons in the crystal is of the order of 1023. However,
it is a common approximation to describe them in a density functional theory (DFT)
approach as one electron in an effective mean field potential. The fact that this works
well for a wide variety of materials warrants the use of this approximation in itself.
In addition,the electronic transitions treated in this work are core losses. These

depend inherently on the initial state that is located deep inside the potential well of a
nucleus. Hence, the probability density of an electron in the initial state is large only
in close proximity to the nucleus, and the influence of neighboring atoms is negligible.
As will be shown in sec. 3.7, the fact that the initial state is so localized in real space
results in the selection of those parts of the final states that are similarly close to
the nucleus, where the influence of neighboring atoms is small, and in the fact that
scattering events at different atoms are incoherent. As a consequence, many effects in
core losses can even be (and often are) described in an independent atom model (IAM).

1st order Born approximation All inelastic scattering is treated in the 1st order Born
approximation. That is, instead of solving the Lippmann-Schwinger equation

|ψ〉 = |φ〉+ ĜV̂ |ψ〉 , (1.4)

with the incident state |φ〉, the outgoing state |ψ〉, the scattering operator V̂ , and the
(homogeneous) Green’s function Ĝ, the simplification

|ψ〉 = |φ〉+ ĜV̂ |φ〉 , (1.5)

is used.

Single scattering distribution In this work, multiple scattering effects are ignored.
For pure core losses, multiple scattering is irrelevant because of the small scattering
cross sections (corresponding to a large inelastic mean free path) and because of the
large energy loss involved. Assuming the probe would undergo two inelastic core loss
interactions with respective energy losses of E & 100 eV, the resulting peak in the
spectrum at 2E is far from the single scattering peak at E.

3Note that the distance between the electrons is much larger than the extent of an electron’s wave
packet, which can be estimated as ∆z ∼ v~/∆E ≈ 1µm for an energy width of ∆E ≈ 0.8 eV.
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The only relevant contributions to the energy-loss near edge structure (ELNES) can
thus come from low losses such as TDS, intra-band transitions, Cherenkov losses, and
plasmons, which are all in the range of approximately 0 eV to 50 eV. The description
of these (which requires many-body systems, imperfect lattices, etc.) is not necessary
for understanding the fundamentals of core losses and will, thus, not be treated here.
Experimentally, low losses cannot be avoided completely, of course, but their influence

on the core loss regime can be minimized by using very thin samples. In addition,
the remaining contributions can be compensated for by deconvolution methods [4, 12].
Moreover, it is noteworthy that only the ELNES is affected by this. The edge onset of
core losses is not affected by low loss features, as the convolution is given implicitly by

ICL(E) =

∫ ∞

−∞
ICL(E − ε)ILL(ε)dε, (1.6)

where ICL is the core loss (multiple) scattering distribution and ILL is the low loss
scattering distribution. Because of ICL(E − ε < 0) = 0, ILL(ε < 0) = 0, it follows that
E = 0 implies ε = 0.

1.4. The density matrix formalism

This section is based on [13–16].

In quantum mechanics, a system is typically described by a wave function. This wave
function can be interpreted as a vector in a linear vector space. Consequently, all
mathematical concepts known for such vector spaces can immediately be applied to
quantum mechanical states as well. One often-used property is the ability to write
a wave function as a sum (i.e. a coherent superposition) of other wave functions. In
particular, if one chooses a basis of the vector space, any wave function in it can be
described as a superposition of the chosen basis vectors.
Hereby, however, it is assumed that one knows precisely which state the system is

in. If, on the other hand, this is not the case, one has to describe the system as a
statistical mixture of all possible states the system can be in [13]. Such a mixture is
not a coherent superposition, but rather an incoherent sum weighted by statistical
probabilities.
As an example, consider the well known system of a particle in a one-dimensional

box of width 1. The eigenbasis of the Hamiltonian (in real space representation) is
given by

B =
{√

2 sin(nπx) : n ∈ Z, n > 0
}
. (1.7)

First, assume that the system is in the known state

ψ(x) = sin(πx) + sin(2πx). (1.8)

The system is said to be in a “pure state”. ψ is defined essentially by the phase and
amplitude relations between the two basis vectors. The probability density of this
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state is given by

ρ(x) = |ψ(x)|2 = sin(πx)2 + 2 sin(πx) sin(2πx) + sin(2πx)2. (1.9)

On the other hand, if the system were in an unknown state comprised of the two
states

√
2 sin(πx) and

√
2 sin(2πx), it would have to be described by a statistical

mixture of those two states — it is said to be in a “mixed state”. In that case, it is no
longer possible to assign a (single) wave function to the system as was done in eq. 1.8.
The probability density can still be calculated, however, yielding

ρ(x) = w
∣∣∣√2 sin(πx)

∣∣∣2 + (1− w)
∣∣∣√2 sin(2πx)

∣∣∣2
= 2

[
w sin(πx)2 + (1− w) sin(2πx)2

]
, (1.10)

where w and (1 − w) are the statistical weights. Assuming even weights, i.e., w =
1− w = 1/2, gives

ρ(x) = sin(πx)2 + sin(2πx)2. (1.11)

This result is obviously very different from eq. 1.9. It is noteworthy, though, that
the result does not depend on the particular choice of basis — which would be
unphysical. If, in the previous derivations, one performs the substitutions sin(nπx) →
1
2i

(
einπx − e−inπx

)
to describe the system in a

{
einπx

}
basis, the results are the same.

One elegant way to handle both coherent superpositions and incoherent statistical
mixtures properly is the density operator ρ̂ or its matrix elements which comprise
the density matrix ρ. If a system has to be described by a statistical mixture of N
different wave functions |ψi〉 with statistical weights wi, the density operator is given
by

ρ̂ =
N∑
i=1

wi |ψi〉 〈ψi| . (1.12)

Applied to the previous examples, this gives4

ρ̂ =
1

2
(|1〉+ |2〉) (〈1|+ 〈2|)

=
1

2
(|1〉 〈1|+ |2〉 〈2|+ |1〉 〈2|+ |2〉 〈1|) (1.13)

for the pure state and

ρ̂ = w |1〉 〈1|+ (1− w) |2〉 〈2|

=
1

2
(|1〉 〈1|+ |2〉 〈2|) (1.14)

for the mixed state of the previous example. Clearly, the density operators of the pure
and the mixed state differ by the occurrence of “off-diagonal” elements, i.e., elements

4Note that |n〉 is used for the state with real space representation 〈x|n〉 =
√
2 sin(nπx).
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of the form |a〉 〈b| with a 6= b, in the pure state. These off-diagonal elements describe
correlations between the basis vectors — the basis vectors never occur independently.
Note that the off-diagonal elements depend crucially on the basis used — by choosing
a suitable (“physical”) basis, the off-diagonal elements can be eliminated (see sec. 3.6).
If this is done, the distinction between pure states and mixed states is that the former
consists of only one remaining term, whereas the latter consists of several terms.
From the density operator, all quantum mechanical properties can be calculated.

For instance, the probability of finding the system in a state |a〉 is given by 〈a|ρ̂|a〉.5
Applied to the previous examples, the probability of finding a particle described by the
systems at position x — corresponding exactly to the probabilities given in eqs. 1.9
and 1.11 — can be calculated as 〈x|ρ̂|x〉. Using 〈x|n〉 =

√
2 sin(nπx), this yields

〈x|ρ̂|x〉 = 1

2
(〈x|1〉 〈1|x〉+ 〈x|2〉 〈2|x〉+ 〈x|1〉 〈2|x〉+ 〈x|2〉 〈1|x〉)

= sin(πx)2 + sin(2πx)2 + 2 sin(πx) sin(2πx) (1.15)

for the pure state and

〈x|ρ̂|x〉 = (w 〈x|1〉 〈1|x〉+ (1− w) 〈x|2〉 〈2|x〉)
= 2w sin(πx)2 + 2(1− w) sin(2πx)2

= sin(πx)2 + sin(2πx)2 (1.16)

for the mixed state. Obviously, these are the same results as before. Similarly,
properties such as the expectation value of an operator Â are obtained by computing
the trace over the density operator after applying Â:

〈Â〉 = tr (Âρ̂) =
∑
b∈B

〈b|Âρ̂|b〉 . (1.17)

For more information about the density matrix, the interested reader is referred to the
literature, e.g., [13].

5For continuum states, this may only be defined in a distributional sense. For a discussion of the
details of normalization, see chap. B.



2. Elastic propagation of electrons

The simplicities of natural laws arise
through the complexities of the
language we use for their expression.

(Eugene Paul Wigner)

One crucial aspect about understanding EELS and image formation is the elastic
propagation of the wave function of the probe electron. The reason for this is that the
elastic propagation changes the wave function, and with it the probability for certain
excitations. As an example, one can consider the electron beam emanating from
an ideal, point-like source. This beam then propagates elastically through the TEM
column to the specimen. Inside the specimen, the situation becomes even more complex
as the wave function can undergo many elastic scattering processes (diffraction) in the
periodic potential of the crystal. After an inelastic scattering event, the same situation
occurs again: before it can be measured in a detector, the scattered wave again has to
propagate through the rest of the sample, undergoing many elastic scattering processes
on the way, and the rest of the TEM column until it reaches the detector.

In particular, inside a specimen, one has to deal with effects like channeling or the
so-called pendellösung [3]. Channeling can be exploited to enhance (or dampen) the
signal originating from some particular sites inside the specimen, as is used in atom
location by channeling enhanced microanalysis (ALCHEMI) [17, 18] or energy losses by
channeled electrons (ELCE) [19, 20]. In other contexts, however, it would be considered
an artifact. For example, highly localized beams (as in scanning transmission electron
microscopy (STEM), but also directly after a core loss excitation, as its region of
influence is limited by the extent of the target’s initial state, see sec. 3.7) tend to
channel along atomic columns [21]. In the worst case, this can result in a signal from
an inelastic scattering event on one kind of atom at the position of a column that
does not contain any atoms of said kind at all. Moreover, the pendellösung results
in a signal oscillating in a highly complex way with sample thickness [22, 23]. In
addition, elastic scattering typically will lead to interference effects if the probe beam
is sufficiently coherent [24].

Hence, understanding the influence of elastic scattering — both in the vacuum of
the TEM column as well as in a periodic potential — is essential for interpreting any
experiments. In addition, the effects of lens aberrations, defocus, and non-ideal sources
— which can be considered to be boundary conditions for the description of the elastic
propagation — will be treated in this chapter as well.

9
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2.1. The evolution operator

This section is based on [14, 25, 26]

2.1.1. Time evolution

Generally, the propagation of the electron wave function is governed by the time-
dependent Schrödinger equation which is given by

Ĥ |ψ〉 = i~∂t |ψ〉 . (2.1)

In the Schrödinger picture, this can be solved formally by setting

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 (2.2)

with the time evolution operator

Û(t, t0) := T̂ e
− i

~
∫ t
t0
Ĥdt

, (2.3)

where T̂ is the time ordering operator. This section will deal solely with elastic
scattering, i.e., the energy of the electron remains unchanged (for the inelastic case,
see sec. 3.1). Under this assumption, the Hamiltonian Ĥ is time-independent. Hence,
the time evolution operator can be simplified to

Û(t, t0) := e−
i
~ (t−t0)Ĥ . (2.4)

It is important to note that, due to the conservation of the norm of the wave function,
Û must be unitary (which can be seen immediately from eq. 2.4 as Ĥ is hermitian).
This implies that orthonormal states are transformed into orthonormal states and that
the norm of a state is preserved. Additionally, the fact that elastic scattering can be
described in a wave function approach implies that pure state density matrices remain
in a pure state when subjected to elastic scattering. This will become important in
the next chapters.

2.1.2. Depth evolution

For fast electrons in the paraxial approximation, the optical axis (taken to be the
z axis) is distinguished from the axes in any perpendicular plane. This suggests a
separation ansatz1

|ψ〉 = e−
iEt
~ eikz ẑ |α〉 , (2.5)

where kz is a constant (typically chosen as kz = 2π/λ, where λ is the wavelength of
the electron). Because eikz ẑ is time-independent, the Schrödinger equation becomes

Ĥeikz ẑ |α〉 = Eeikz ẑ |α〉 . (2.6)

1Actually, this ansatz can be applied to any problem, not just the paraxial approximation. In the
paraxial case discussed below, however, |α〉 is assumed to vary only slowly with z, which will lead
to significant simplifications.
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Using the identity

Ĥeikz ẑ = eikz ẑ
(
Ĥ + e−ikz ẑ[Ĥ, eikz ẑ]

)
, (2.7)

eq. 2.6 can be rearranged to take the form of an effective Schrödinger equation,

Ĥ |α〉 :=
(
Ĥ + e−ikz ẑ[Ĥ, eikz ẑ]

)
|α〉 = E |α〉 . (2.8)

Assuming that the Hamiltonian can be written as2

Ĥ =
p̂2

2me

+ Ĥ ′ with [Ĥ ′, eikz ẑ] = 0, (2.9)

where me is the mass of the electron and p̂ = p̂⊥ + p̂zez is the momentum operator,
the commutator relations

[p̂⊥, e
ikz ẑ] = 0

[p̂z, e
ikz ẑ] = ~kzeikz ẑ

[p̂2z, e
ikz ẑ] = p̂z[p̂z, e

ikz ẑ] + [p̂z, e
ikz ẑ]p̂z

= ~kz
(
p̂ze

ikz ẑ + eikz ẑp̂z
)

= ~kz
(
eikz ẑp̂z + [p̂z, e

ikz ẑ] + eikz ẑp̂z
)

= ~2k2zeikz ẑ + 2~kzeikz ẑp̂z (2.10)

yield

e−ikz ẑ[Ĥ, eikz ẑ] =
~2k2z + 2~kzp̂z

2me

. (2.11)

Thus, the effective Schrödinger equation takes the form

Ĥ |α〉 =
(
p̂2
⊥ + p̂2z + 2~kzp̂z + ~2k2z

2me

+ Ĥ ′
)
|α〉 = E |α〉 . (2.12)

In the paraxial approximation, it is assumed that the eikz ẑ term accurately describes
the fast oscillations of the wave function in z direction. Consequently, it is assumed
that |α〉 varies only very slowly with z, or (equivalently), that〈

p̂2z
〉
� ~kz 〈p̂z〉 and

〈
p̂2z
〉
� ~2k2z . (2.13)

Therefore, Ĥ can be approximated by

Ĥ ≈ p̂2
⊥ + 2~kzp̂z + ~2k2z

2me

+ Ĥ ′ (2.14)

for the states of interest.

2[Ĥ ′, eikz ẑ] = 0 is the usual case in absence of magnetic fields with components perpendicular to the
optical axis, in which situation Az = 0 holds.
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By rearranging the terms, eq. 2.12 can be transformed to

− p̂z |α〉 =
(

p̂2
⊥

2~kz
+

~kz
2

+
me(Ĥ

′ − E)

~kz

)
|α〉 . (2.15)

Observing that p̂z = −i~∂z, this can again be written in a way reminiscent of a
time-dependent Schrödinger equation in which z plays the role of time:

i~∂z |α〉 =
(

p̂2
⊥

2~kz
+

~kz
2

+
me(Ĥ

′ − E)

~kz

)
|α〉 =: Ĥ⊥ |α〉 . (2.16)

Hence, the formalism of sec. 2.1.1 can be applied analogously, with3

|α(z)〉 = Û(z, z0) |α(z0)〉
i~∂zÛ(z, z0) = Ĥ⊥Û(z, z0)

Û(z, z0) = exp

(
− i

~

∫ z

z0

Ĥ⊥(z
′)dz′

)
. (2.17)

2.2. Propagation of electrons in free space

2.2.1. Eigenfunctions of the Hamiltonian

The Hamiltonian of an electron in free space is given by [14, 27, 28]

Ĥ =
(p̂− eÂ)2

2me

+ eV̂ , (2.18)

where e is the charge of the electron, Â is the vector potential operator of an external
magnetic field, and V̂ is the operator of an external (scalar) potential. In the absence
of external fields4, this simplifies to the well-known form

Ĥ =
p̂2

2me

. (2.19)

In the notation of eq. 2.16, this corresponds to Ĥ ′ = 0. Assuming |α〉 is z-independent
(i.e., ∂z |α〉 = 0)5 and with E = ~2(k2⊥ + k2z)/(2me), eq. 2.16 can be simplified to

p̂2
⊥ |α〉 = ~2k2⊥ |α〉 . (2.20)

In Cartesian coordinates, this can be solved easily by a separation ansatz for x and y,
yielding eikxxeikyy. Together with eq. 2.5, this gives rise to the well-known plane waves6

3Note that it is implied here that Ĥ⊥ is z-independent or that Ĥ⊥ is diagonal in z and
[Ĥ⊥(z), Ĥ⊥(z

′)] = 0 ∀z, z′ [25]. If that is not the case, z ordering is necessary.
4The fields of magnetic lenses can be treated in a CTF approach [3], similar to the an effective lens
in optics [8]. See also sec. 2.2.5.

5The following results can be derived from the original Schrödinger equation (eq. 2.1) in the same
way. Note that ∂z |α〉 = 0 ensures that eq. 2.13 is always fulfilled.

6The normalization constant follows from the continuum normalization [14, 29]. See also chap. B
and sec. C.1.
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ψ(r) = 1
(2π)3/2

eik·r. In momentum space — i.e., after Fourier transform — plane waves

have the simple form
ψ̃(q) = δ(q − k). (2.21)

In cylindrical coordinates, eq. 2.20 becomes [30]

− ~2
(
∂2r⊥ +

∂r⊥
r⊥

+
∂2ϕ
r2⊥

)
α(r⊥, ϕ) = ~2k2⊥α(r⊥, ϕ). (2.22)

With the separation ansatz α(r⊥, ϕ) = R(r⊥)Φ(ϕ), this can be rearranged to read

R′′(r⊥)

R(r⊥)
+

R′(r⊥)

r⊥R(r⊥)
+

Φ′′(ϕ)

r2⊥Φ(ϕ)
+ k2⊥ = 0. (2.23)

The solution for Φ(ϕ) takes the form Φ(ϕ) = eimϕ. Due to the requirement of a
single-valued wave function and the boundary conditions this enforces together with
the coordinate system, m must be an integer. Physically, this form of Φ(ϕ) corresponds
to an azimuthal phase gradient rather than a plane wave (see fig. 2.1). R(r⊥) is defined
by the differential equation

r2⊥R
′′(r⊥) + r⊥R

′(r⊥) +
[
k2⊥r

2
⊥ −m2

]
R(r⊥) = 0. (2.24)

Using the substitutions x := k⊥r and y(x) := R (x/k⊥), this can be transformed into
Bessel’s differential equation [31] of order m

x2y′′(x) + xy′(x) + (x2 −m2)y(x) = 0, (2.25)

provided that k⊥ 6= 0. The solutions of this differential equation are Bessel functions
of first and second kind. Since only the Bessel functions of first kind are regular at
the origin, the physical solutions are therefore y(x) = Jm(x) and correspondingly
R(r⊥) = Jm(k⊥r⊥) [28].
Hence, the complete basis set in cylindrical coordinates (after normalization) is

ψ(r⊥, ϕ, z) =
1

2π
Jm(k⊥r⊥)e

imϕeikzz. (2.26)

These are the so-called Bessel waves or (hollow cone) vortex waves. For low m, they
are shown in fig. 2.1.
It is noteworthy that for m 6= 0, there is a phase singularity at r⊥ = 0 because the

whole phase range [0, 2π) caused by the eimϕ factor is present in this one point. This
would make the wave function ambiguous. Due to a property of the Bessel functions,
namely Jm(0) = 0 for m 6= 0, this phase singularity is “masked out”, however, and an
unambiguous wave function is recovered.
In addition, like plane waves, these states extend to infinitely large r. For large

arguments x� |m2 − 1/4|, the Bessel functions behave as [31]

Jm(x) ≈
√

2

πx
cos
(
x− mπ

2
− π

4

)
, (2.27)
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Figure 2.1.: Azimuthal phase (arg(eimϕ), upper row) and radial part (Jm(k⊥r⊥)) of
Bessel waves as given by eq. 2.26 and m = 0 (left), m = 1 (center), and
m = 2 (right).

i.e., their squared radial norm — which is proportional to x · Jm(x)2 — oscillates with
a constant amplitude. In momentum space, the Bessel waves become7

ψ̃(q) =
1

2π

1

(2π)
3
2

∫
Jm(k⊥r⊥)e

imϕreikzze−iq·rd3r

=
δ(qz − kz)

(2π)
3
2

∫ 2π

0

∫ ∞

0

Jm(k⊥r⊥)e
imϕre−iq⊥r⊥ cos(ϕr−ϕq)r⊥dr⊥dϕr

=
eimϕqδ(qz − kz)

(2π)
3
2

∫ 2π

0

∫ ∞

0

Jm(k⊥r⊥)e
i[mϕ−q⊥r⊥ cos(ϕ)]r⊥dr⊥dϕ

=
(−i)meimϕqδ(qz − kz)√

2π

∫ ∞

0

Jm(k⊥r⊥)Jm(q⊥r⊥)r⊥dr⊥

=
(−i)m

k⊥
√
2π

eimϕqδ(qz − kz)δ(q⊥ − k⊥). (2.28)

From this, it is evident that the azimuthal phase eimϕq is also present in momentum
space. Additionally, the eigenfunctions in eq. 2.26 of the free space Hamiltonian
describe a hollow cone illumination [3, 32] as can be seen from the δ(q⊥ − k⊥) factor.

7The subscripts r and q are used to distinguish between real space and momentum space angles,
respectively.
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2.2.2. Probability current density and orbital angular momentum

The probability current density8 associated with an electron wave function ψ(r) is
defined as9

j(r) :=
~
me

= (ψ(r)∗∇ψ(r)) (2.29)

(see sec. 3.3 for more details). Thus, the probability current density associated with a
plane wave is given by

j(r) =
~

(2π)3me

=
(
e−ik·r (ex∂x + ey∂y + ez∂z) e

ik·r) = ~k
(2π)3me

. (2.30)

Using the probability density

ρ(r) =
1

(2π)3
e−ik·reik·r =

1

(2π)3
, (2.31)

this can be rewritten as

j(r) = ρ(r)
~k
me

. (2.32)

It is no surprise that this resembles the classical picture of particle density times
velocity, where the latter (classically) is given by v = p/me ∼ ~k/me.

The probability current density associated with a Bessel wave in cylindrical coordi-
nates is given by

j(r) =
~

(2π)2me

=
(
Jm(k⊥r⊥)e

−imϕe−ikzz

(
er⊥∂r⊥ +

eϕ∂ϕ
r⊥

+ ez∂z

)
Jm(k⊥r⊥)e

imϕeikzz
)

=
~

(2π)2me

=
(
k⊥Jm(k⊥r⊥)J

′
m(k⊥r⊥)er⊥ +

im

r⊥
J2
m(k⊥r⊥)eϕ + ikzJ

2
m(k⊥r⊥)ez

)
=

~
(2π)2me

(
m

r⊥
eϕ + kzez

)
J2
m(k⊥r⊥)

= ρ(r)
~
me

(
m

r⊥
eϕ + kzez

)
. (2.33)

Eq. 2.33 describes a probability current density flowing predominantly along the z axis,
but with an additional angular velocity. This also explains the name “hollow cone

8In scattering theory, the formulas usually refer to a particle current density, not an electrical current
density. The latter can be calculated simply by multiplying the particle current density with the
electrical charge.

9An equivalent definition is j(r) := ~
me

|ψ(r)|2∇ argψ(r). The equivalency can be seen by inserting

ψ(r) = A(r)eiϕ(r) (where A(r) and ϕ(r) are real-valued functions) into eq. 2.29, yielding

j(r) =
~
me

=
(
A(r)e−iϕ(r)∇A(r)eiϕ(r)

)
=

~
me

=
[
A(r)∇A(r) + iA(r)2∇ϕ(r)

]
=

~
me

A(r)2∇ϕ(r).

As eq. 2.29 is closely related to the definitions of the probability current density in the density
matrix formalism (eq. 3.25), it will be used throughout this section.
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vortex wave” (sometimes simply referred to as “vortex wave”) as its probability density
propagates along spiral trajectories [33].
The orbital angular momentum (OAM) operator is defined as [27, 34]

L̂ := r̂ × p̂ (2.34)

and its z component in real space is given by

L̂z = −i~ (x∂y − y∂x) = −i~∂ϕ. (2.35)

Applying L̂z to plane waves yields

L̂z
eik·r

(2π)3/2
= −i~(xky − ykx)

eik·r

(2π)3/2
. (2.36)

Owing to the position dependence of the prefactor, it is clear that plane waves are no
eigenfunctions of L̂z which implies that their OAM is no good quantum number. The
expectation value 〈L̂z〉 is

〈L̂z〉 =
∫
e−ik·rL̂ze

ik·rd3r∫
e−ik·reik·rd3r

∼ −i~
∫

(xky − ykx)d
2r⊥ = 0 (2.37)

because the integrand is an odd function with respect to both x and y.10 Hence, plane
waves carry no (net) OAM.

On the other hand, applying L̂z to Bessel waves yields

L̂z

[
1

2π
Jm(k⊥r⊥)e

imϕeikzz
]
= m~

[
1

2π
Jm(k⊥r⊥)e

imϕeikzz
]
. (2.38)

Hence, Bessel beams are eigenfunctions of L̂z and carry an OAM of m~ [28].

2.2.3. Propagation

To understand the behavior and the probability density of an electron wave as it
travels through a TEM, it is necessary to study its propagation behavior. According
to Huygens’ principle [35, 36], the propagation of any wave can be described by a
coherent superposition of spherical waves distributed homogeneously over the phase
front of the original wave. For practical purposes, this can be described as Fresnel
diffraction (in the near-field, i.e., for short propagation distances) or the Fraunhofer
diffraction (in the far-field, i.e., large propagation distances) [36].
Fraunhofer diffraction is simply given by the Fourier transform of the original

wave. Its importance to electron microscopy comes from the fact that when using a
focusing lens, the far-field (at infinite distance) is mapped to the focal plane of the
lens. Therefore, the wave function in the focal plane of a lens can easily be computed
by Fourier transforming the wave function that enters the lens.

10The details of the normalization were omitted for the sake of clarity.
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Figure 2.2.: Amplitude and phase of a vortex given by eq. 2.43 in focus (left), after a
propagation of 50 nm (middle), and after a propagation of 100 nm through
free space as calculated using the ixchel program. For the calculation,
the parameters m = 1, q⊥ = (2παr⊥)/(λRap), Rap = 25 µm, λ = 2.507 pm,
and α = 6.9mrad as well as a z step size of 1 nm were used. The phase is
color-coded as in fig. 2.1, while the brightness reflects the wave function
amplitude.

For the near-field propagation, on the other hand, the depth evolution operator
from eq. 2.17 can be used. With eqs. 2.16 and 2.19, it takes the form

Û(z, z0) = exp

(
− i

~

∫ z

z0

(
p̂2
⊥

2~kz
+

~kz
2

− meE

~kz

)
dz′
)
. (2.39)

In momentum space representation and assuming that the incident beam has the
energy E = (~kz)2/(2me), this operator simplifies to

Û(z, z0) = exp

(
i

∫ z

z0

k2⊥
2kz

dz′
)

= e
i(z−z0)

2kz
k2⊥ . (2.40)

This is the well-known Fresnel propagator [37] used to describe Fresnel diffraction.
It can simply be multiplied with a wave function given at z0 (in momentum space
representation) to obtain the wavefunction at z.
The Fresnel propagator plays a central role not only in the multislice approach for

image simulations (see sec. 2.3.2), but also if one introduces a (small) defocus in the
experiment. To calculate a defocused lens, one first has to obtain the wave distribution
in the focal plane of the lens, which can then be transformed to the actual plane of
investigation by the Fresnel propagator.
As expected, a plane wave with k⊥ = 0 is not changed by the propagator. For Bessel

waves in momentum space representation, k⊥ is constant, so the whole wave gets a
constant phase factor. Thus, it changes (in fact, it rotates — see sec. 2.2.2), but its
intensity distribution remains the same for all z. For vortex beams generated by a
finite aperture, the situation is different, however: fig. 2.2 shows the propagation of a
vortex as given by eq. 2.43 from the ideal focus onwards using the Fresnel propagator
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approach. It is clearly evident that even after moderate propagation, the vortex
appears curled. This is easy to understand: the wave functions given by eq. 2.26
rotate at a constant speed which is defined by k⊥ (see above). The vortices given by
eq. 2.43 are created by homogeneously illuminating a (circular) mask aperture. In
momentum space, they can therefore easily be decomposed into hollow-cone states
(eq. 2.26) similar to infinitesimally small onion rings. Each of these rings rotates
at a different speed (owing to different values of k⊥), resulting in a curling effect in
momentum space. This also carries over to real space in the Fourier back-transform,
as can be seen in fig. 2.2.

It must be emphasized, though, that Lz remains constant. This is an immediate
consequence of the fact that the original vortex (eq. 2.43) is a superposition of
eigenstates of L̂z (eq. 2.26) to a single eigenvalue m.

2.2.4. Producing beams

This section is based on [28, 38].

In order to study the wave functions presented in sec. 2.2.1 in more detail, one has to
actually produce them in a TEM. Plane waves are well-known and have been used
for many years in electron microscopy [3]. They are typically produced by placing
a (nearly) point-like emitter in the focal point of a lens which then transforms the
electron wave coming from the emitter to a plane wave.

Vortex waves, on the other hand, have been created on purpose11 in the TEM only
recently [33, 38, 39]. All the experimental vortex beams used throughout this work
were produced by the holographic mask technique [38] with the mask placed in the C2

aperture plane [28, 33, 40, 41].

In holography, an arbitrary “object” wave function can be (re)constructed by sending
a well-defined reference wave through a particularly shaped mask [42, 43]. The mask
shape is given by the overlap of the reference wave and the object wave. In the case of
vortex beams in a TEM, the reference wave is typically assumed to be a plane wave.
Furthermore, a tilt is introduced between the reference wave and the object wave to
ensure a proper separation of the (re)constructed vortex beam from the (unavoidable)
transmitted plane wave. Thus, the mask transmission intensity I — which is naturally
given in a plane perpendicular to the optical axis — can be calculated by

I(r⊥) ∝
∣∣eiφ + eik⊥·r⊥+imϕ

∣∣2 = 2 + ei(k⊥·r⊥+mϕ−φ) + e−i(k⊥·r⊥+mϕ−φ)

= 2 + 2 cos (k⊥ · r⊥ +mϕ− φ) = 4 cos2
[
k⊥ · r⊥ +mϕ− φ

2

]
, (2.41)

where k⊥ is the in-plane component of the deflection vector (which gives rise to the
tilt) and φ is a phase offset between the reference and object waves that can be used
to tune the mask shape. Fig. 2.3 shows two such simulated masks.

11For example, vortex waves can also arise from inelastic scattering — see chap. 3.
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Figure 2.3.: Simulated vortex mask images with k⊥ = 20/Rap. The upper row shows
continuously varying patterns as given by eq. 2.41 while the lower row
shows the corresponding patterns after binarization with a threshold of
50%. The left column shows masks for m = 1, the right column shows
masks for m = 10. The axes are in arbitrary units. White signals full
transmission, black corresponds to full absorption.

Eq. 2.41 describes a continuously varying transmission intensity which is achievable
in optics, but not in electron microscopy.12 Hence, the mask has to be binarized, i.e.,
each point is assigned either full or no transmission, depending on whether the formula
produces a value above or below a chosen threshold. Such a binarized mask produces
higher order vortex beams in addition to the desired ones [33, 40, 41], similar to high
frequencies appearing in the Fourier transform of a sharp edge.
For the production of the holographic mask aperture, a circular condenser aperture

with a hole diameter of 50µm was used. This hole was closed with synthetic resin and
subsequently sputter-coated with several hundred nanometers of Cr. Then, the glue
was removed in Acetone and the binarized, calculated pattern was milled into the Cr
layer by a focused ion beam (FIB). The resulting mask is shown in fig. 2.4. Both the
bars and the spaces between them were approximately 1.3 µm wide.
Fig. 2.5 shows the Fourier transform (which corresponds to the image in the focal

plane of the condenser lens) of the experimental mask under homogeneous illumination

12Partial transmission implies partial absorption, which is usually achieved by sending the beam
through matter. Due to the strong elastic interaction between electrons and matter (see sec. 2.3),
this would significantly alter the beam shape and direction instead of only attenuating it. In
order to avoid such an unwanted effect, only full transmission or complete absorption (which can
be achieved by fabricating the mask from a heavy material with a thickness of several hundred
nanometers or more) should be used.
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Figure 2.4.: In-situ SEM image of the vortex mask aperture after FIB milling. The
diameter of the aperture is 50 µm.

Figure 2.5.: Binarized mask (left) and its Fourier transform (right). In both cases,
only the region of interest is shown. The mask diameter is 50µm, the
distance between adjacent vortices is ≈ 10 nm for a convergence semi-angle
of 2.43mrad. The phase color code is the same as in fig. 2.1.

with a plane wave. As will be shown in sec. 2.2.3, this corresponds exactly to the
wave function in the sample plane. It must be emphasized that this setup does not
correspond to the hollow cone illumination that is an eigenfunction of the free space
Hamiltonian. Such a beam could only be produced approximately by a ring-like
holographic mask and would be extremely weak. Instead, the beams produced here are
coherent superpositions of many such eigenfunctions to fulfill the boundary condition
of homogeneous illumination in the aperture plane [28].
As mentioned before, higher order vortices, which correspond to higher orders of

diffraction of the mask grating, are visible in fig. 2.5. Standard diffraction theory gives
the spacing between the centers of subsequent vortices as

x = L tan θ ≈ L
λ|k⊥|
2π

≈ Rap

δ
· λ
α

= Nap ·
λ

α
. (2.42)
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Pos. |m| = 0 |m| = 1 |m| = 2 |m| = 3 |m| = 4 |m| = 5

max 0.00 1.23 1.96 2.63 3.27 3.88
min 1.92 2.94 3.89 4.89 5.57 6.22

Table 2.1.: List of the f factors in eq. 2.44 for the first maximum and the first minimum
of the intensities of vortex beams.

Here, L is the (effective) focal length of the C2 lens, θ is the diffraction angle, Rap is
the radius of the mask aperture, α is the convergence semi-angle, λ is the wave length
of the electrons, δ is the period length of the grating, and Nap is the number of bars13

in the aperture. In the experiments presented here, Rap = 25 µm, λ = 2.507 pm and
δ = 2.6 µm were used [41]. The convergence semi-angle α varied between modes from
2.43mrad in “micro-probe” mode to 6.9mrad in “nano-probe” mode. This gives a
separation of vortices of about 10 nm and 2.5 nm, respectively.
For comparison, the sizes of the vortices in the focal plane of the condenser system

can be estimated from the Fourier transform of the vortex wave in eq. 2.41, truncated
by the mask of radius Rap:

F̂
[
Θ(r⊥ −Rap)e

imϕ
]
=

1

2π

∫ Rap

0

∫ 2π

0

eimϕr−r⊥q⊥ cos(ϕr−ϕq)r⊥dr⊥dϕr

= (−i)|m|eimϕq
∫ Rap

0

J|m|(r⊥q⊥)r⊥dr⊥

=
(−i)|m|R2

ap

(|m|+ 2)|m|!
eimϕq

(
q⊥Rap

2

)|m|

1F2

(
1 +

|m|
2

; 2 +
|m|
2
, 1 + |m|;−

(
q⊥Rap

2

)2
)
. (2.43)

Here, Θ is the Heaviside step function and pFq(·; ·; ·) is the generalized hypergeometric
function. The prefactor (q⊥Rap/2)

|m| ensures that the singularity at q⊥ = 0 is masked
out for m 6= 0. In fig. 2.6, the radial parts of eq. 2.43 are compared to those of the
hollow cone states in eq. 2.26. Note that — owing to the eimϕq azimuthal dependence
— the OAM of these vortex beams is m~, as for Bessel beams.

With eq. 2.43, the extent of the vortex can be characterized, e.g., by the first
maximum or the first minimum of the intensity.14 This gives

q⊥ =
2f

Rap

⇔ x ≈ Rap

α
· λ
2π

· 2f

Rap

=
λf

πα
, (2.44)

where f is a constant that can be derived numerically from eq. 2.43, possible values of
which are collected in tab. 2.1. For m = 1 and the abovementioned parameter values,

13Branching bars should be counted once.
14The intensity is given by the absolute value squared as usual.
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Figure 2.6.: Radial parts of finite aperture vortex beams (black) as given by eq. 2.43
compared with hollow cone vortex beams (red) as given by eq. 2.26 for
m = 0 (left), |m| = 1 (middle), and |m| = 2 (right).

this gives a vortex radius (distance between the center and the first maximum of the
vortex) of approximately 0.4 nm in micro-probe mode and of approximately 0.14 nm
in nano-probe mode. Similarly, the distance between the center and the first minimum
of the vortex is approximately 1 nm in micro-probe mode or 0.34 nm in nano-probe
mode. This is about an order of magnitude smaller than the distance between adjacent
vortices calculated above, so it is justified to speak of well-separated (independent)
vortices.

2.2.5. The effect of lenses and partial coherence

This section is based on [41].

In order to get radial profiles comparable to those shown in fig. 2.6, azimuthal averages
were taken for several radii15 around the vortices in the recorded images. As can be seen
in fig. 2.7, the theoretical framework presented in the previous sections does not describe
the measurements well: evidently, the width of the m = 0 beam is underestimated and,
contrary to the calculations, the dip in the center of the experimental m = 1 vortex
is far from pronounced. In addition, the side-bands seem smeared out compared to
the theoretical predictions. As will be shown in this section, this can be attributed
primarily to two facts: (i) the real magnetic lenses differ from the ideal imaging system
assumed above and (ii) the electron gun is not an ideal, coherent point-source.

The primary issue with real lenses (and instruments in general) is that they have
a non-uniform CTF. This means that not all spatial frequencies are transmitted in
the same way — a problem that is common, e.g., in high resolution transmission
electron microscopy (HRTEM) [3]. An additional problem arises from lens aberrations
— in particular from the spherical aberration — which typically dampen the CTF at
increasing momentum transfers.

15Care was taken that the maximal radius used for averaging was less than half the distance between
adjacent vortices to avoid artifacts from neighboring vortices.
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Figure 2.7.: Comparison of the experimental vortex profiles (dots) with that of calcu-
lated vortex beams for m = 0 (left) and m = 1 (right). The red curve was
calculated for an ideal lens as predicted by eq. 2.43. The blue curve was
calculated taking into account the spherical aberration as predicted by
eq. 2.45. The green curve was calculated taking into account the spherical
aberration and the source size as predicted by eq. 2.48. The experi-
ment was performed with 200 kV acceleration voltage in nano-probe mode.
For the calculation, the parameters q⊥ = (2παr)/(λRap), Rap = 25 µm,
λ = 2.507 pm, α = 6.9mrad, and αincoh = 21.4 nrad were used. All profiles
are normalized to their maxima.

The transfer of a wave function ψ̃ by a real lens into the focal point is typically
modeled as [3, 41]

ψ(r) = F̂−1
[
eiχ(q)ψ̃(q)

]
(2.45)

with
χ(q) = π∆fλq2 +

π

2
Csλ

3q4. (2.46)

Here, λ is the wavelength of the incident wave, ∆f denotes the defocus of the lens,
and Cs is the spherical aberration coefficient (with a unit of length). It should be
noted that this simplified model (i) assumes that astigmatism has been corrected,
(ii) ignores higher-order aberrations16, and (iii) omits the envelope functions, the effect
of which will be dominated by the aperture cut-off here. The partial coherence of
the electron gun also decreases the influence of the envelope function, which will be
treated separately below.
In fig. 2.7, the result of applying the imaging equation 2.45 to the vortices given by

eq. 2.43 is shown. Due to the spherical aberration, the sharp minima are smeared out
to the point where they are rather shoulders than minima. However, the central dip is
still present, which contradicts the experimental evidence.
What has not been taken into account so far, though, is the finite extent of the

electron gun. Different points of the gun emit incoherent electron waves [3]. In the
condenser plane (which is conjugate, i.e., reciprocal, to the plane the gun is in), this

16In microscopes without Cs correction, higher-order aberrations are typically much smaller than the
spherical aberration.
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corresponds to different incoherent waves arriving at slightly different angles. This tilt,
in turn, leads to slight displacements in the sample plane, corresponding to the different
emissions points in the gun. In a phenomenological model, this can be described by
the convolution of the “ideal” intensity function with a Gaussian broadening function
e−r

2/(2σ2) [3, 41], where σ is the size of the gun projected onto the observation plane.
For a description that is independent of the choice of micro- or nano-probe mode, it

is convenient to use

σ = Rap
αincoh

α
, (2.47)

where αincoh describes the angular range of the incoherent plane waves impinging on
the condenser plane, which is independent of the probe mode. In the TEM used for
this work, αincoh was determined to be 21.4 nrad [41].
Assuming a radially symmetric intensity profile |ψ(r)|2, the intensity after convolu-

tion is given by17

Ψ(r) =

∫
|ψ(r′)|2e−

|r−r′|2

2σ2 d2r′

=

∫ ∞

0

∫ 2π

0

|ψ(r′)|2e−
r2+r′2−2rr′ cos ϕ′

2σ2 dϕ′r′dr′

= 2πe−
r2

2σ2

∫ ∞

0

∫ 2π

0

|ψ(r′)|2e−
r′2
2σ2 I0

(
rr′

σ2

)
r′dr′, (2.48)

where I0(x) is the modified Bessel function of first kind. This intensity is, once
again, radially symmetric, as one would expect.18 Fig. 2.7 shows that using the CTF
approach together with the source size broadening gives excellent agreement between
the theoretical and the experimental curves.
The value of αincoh was obtained by fitting the theoretical curves to the experimental

ones. Hence, it is unclear to this point if the models presented here indeed describe
the complete wave functions or just their behavior in the plane used for fitting. In
particular, since only the waves’ intensities are experimentally accessible, it is still
unclear if the measured waves indeed show the characteristic vortex phase. To confirm
this, a method similar to the wave form reconstruction through a defocus series [44–46]
can be used.
To this end, the defocus series shown in fig. 2.8 was recorded by changing the

excitation of the objective lens.19 In order to improve the spatial resolution and to

17To simplify the integral, the x′ axis is aligned with the direction of r.
18Note that applying this to a constant intensity profile (such as those of a plane wave) does not

alter the image.
19A curious fact is that for the TECNAI TF20 microscope with a SuperTWIN lens used in this

work, the real defocus was about 2.2 times the value indicated by the software. This is attributed
to the fact that the system uses a combined condenser-objective lens system and the defocus
value indicated by the software is (presumably) intended for HRTEM imaging only. In HRTEM
imaging, one typically uses a plane wave incident on the sample. A defocus in the pre-specimen
region has no influence on this plane wave. For a focused beam, on the other hand, a change in
the pre-specimen region changes the plane in which the wave is focused in addition to the changes
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Figure 2.8.: Defocus series of the experimental vortex profiles (dots) and the calculated
vortex beams taking into account the spherical aberration and source
size as predicted by eq. 2.48 for m = 1 (red line). The indicated defocus
values of 175 nm (top left), 350 nm (top right), 525 nm (bottom left),
and 700 nm (bottom right) correspond to real defoci of 200 nm, 545 nm,
890 nm, and 1250 nm, respectively. The experiments were performed with
200 kV acceleration voltage in micro-probe mode. For the calculation,
the parameters q⊥ = (2παr)/(λRap), Rap = 25 µm, λ = 2.507 pm, α =
2.43mrad, and αincoh = 21.4 nrad were used. All profiles are normalized
to their maxima.

decrease the influence of the spherical aberration, the micro-probe mode was used for
these experiments. The excellent agreement between theory and experiments proves
that the electron waves produced in the TEM using the holographic mask technique
are indeed real vortex beams.

in the post-specimen region which shift the plane that is imaged. This behavior was verified by
the following procedure. First, a normal (i.e., non-vortex) beam was focused on a distinct, small
feature on a specimen with zero (objective) defocus. Then, a defocus was applied to the objective
lens. Contrary to the ideal case, in which the illuminated sample area would not change, the
illuminated area was enlarged, indicating a shift of the pre-specimen focal length. Finally, the
additional shift was determined by shifting the specimen in z direction until the illuminated area
was approximately as large as before the procedure. The correction that needed to be applied was
approximately as large as the defocus value indicated by the software.
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2.3. Propagation of electrons in a periodic potential

As soon as the electron enters a crystal (or gets close to it), it interacts with the
partially screened, positively charged nuclei via the Coulomb interaction. Experiments
show that in this electromagnetic interaction, the elastic component dominates over
the inelastic contributions. In an elastic scattering event, the direction of the electron’s
momentum is changed but its energy remains constant. This can be understood from
the fact that the nuclei are much heavier than the electron. In the limit of infinitely
heavy nuclei, energy and momentum conservation result in the fact that momentum
can be transferred between the electron and the nucleus, but energy cannot.20

For plane waves, this can be understood in terms of Bragg’s law: for certain directions,
all partial waves interfere constructively, and hence an intensity maximum is found
there. However, such a diffracted beam can be diffracted again, e.g., back to the
original beam direction. Therefore, the intensity distribution is a complicated function
of the position inside the sample. For two beams, this leads to the Howie-Whelan
equations [3].
For a more rigorous description, one has to solve the Schrödinger equation with

the periodic potential of the crystal. This can be achieved most easily by solving the
effective Schrödinger equation 2.12 with Ĥ ′ = eV̂ , where V̂ is the Coulomb operator.

2.3.1. Bloch wave formalism

This section is based on [3, 24, 26, 47].

Due to its periodicity, the potential can be expanded into a discrete Fourier series as

V̂ = − ~2

2eme

∑
g

Uge
ig·r̂. (2.49)

If one is only interested in small-angle scattering, i.e., scattering into the zero order
Laue zone (ZOLZ), all (relevant) vectors g are perpendicular to the optical axis. Then,
the potential becomes independent of the z coordinate. Using the separation ansatz
|α〉 = |XY 〉 ⊗ |Z〉 and

E =
~2k2

2me

=
~2(k2⊥ + k2z)

2me

(2.50)

yields

~2

2me

(
p̂2
⊥
~2

+
2kzp̂z
~

+ k2z −
∑
g

Uge
ig·r̂

)
|XY 〉 |Z〉 = ~2(k2⊥ + k2z)

2me

|XY 〉 |Z〉(
p̂2
⊥
~2

+
2kzp̂z
~

−
∑
g

Uge
ig·r̂

)
|XY 〉 |Z〉 = k2⊥ |XY 〉 |Z〉

20For nuclei with finite mass, phonons can be excited in a TDS process. Due to the large mass
difference between the electrons and the nuclei, the energy transferred in such excitations is very
low, however.
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1

2kz

(
p̂2
⊥
~2

− k2⊥ −
∑
g

Uge
ig·r̂

)
|XY 〉 |Z〉 = − p̂z

~
|XY 〉 |Z〉 . (2.51)

Obviously, |Z〉 must be an eigenstate of the p̂z operator, namely a plane wave with
wavevector γez.

21 Hence, the equation for |XY 〉 becomes

1

2kz

(
p̂2
⊥
~2

− k2⊥ −
∑
g

Uge
ig·r̂

)
|XY 〉 = −γ |XY 〉 . (2.52)

This is again an eigenstate problem. In {|χ〉} momentum space representation, it
takes the form

(χ2 − k2⊥)

2kz
〈χ|XY 〉 −

∑
g,χ′

Ug

2kz
〈χ|eig·r̂|χ′〉 〈χ′|XY 〉 = −γ 〈χ|XY 〉

(χ2 − k2⊥)

2kz
〈χ|XY 〉 −

∑
g,χ′

Ug

2kz
δ(χ− g − χ′) 〈χ′|XY 〉 = −γ 〈χ|XY 〉

(k2⊥ − χ2)

2kz
〈χ|XY 〉+

∑
g

Ug

2kz
〈χ− g|XY 〉 = γ 〈χ|XY 〉 . (2.53)

This equation is also known as the secular equation.22 It is obvious that only those
plane wave components couple whose wave vectors differ by a reciprocal lattice vector g.
In electron microscopy literature [3, 23, 26], 〈χ− g|XY 〉 is often denoted by Cj

−g

and the state is written as

|XY 〉 =
∑
g

Cj
g |χj + g〉 , (2.54)

where j is an index for distinguishing different eigenvalues γj, and thus

〈r|ψj〉 = ei(kz+γj)z
∑
g

Cj
ge

i(χj+g)·r. (2.55)

In practice, one typically fixes χj (which is usually implied by the boundary condi-
tions, e.g., an incident plane wave) and solves the eigenvalue problem for a limited set
of g. For the coefficients Ug of the potential, one can use parameterized potentials [48],
calculated potentials (e.g., using WIEN2k [49]), or experimental data. Finally, the
boundary conditions at the entrance surface must be met by expanding the incident
wave function in the eigenstate basis {|ψχ,j〉}.
21γez must not be confused with kzez used in eq. 2.5. The latter describes the fast oscillation of

the electron’s wave function due to its large energy which is independent of the crystal. The
former describes the additional oscillation in z caused by the crystal. The total oscillation of the
electron’s wave function is given by the sum of both terms, as is apparent from eq. 2.55.

22Sometimes, the U0 term is taken out of the sum and combined with the k2⊥ term to form an effective
wave vector.
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space group a [nm] Si positions

Si 227 0.54309 x = y = z = 0

Table 2.2.: Crystal structure parameters for Silicon [50].
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Figure 2.9.: Bloch wave intensity maps in Si for different thicknesses and angles of the
incident wave using a systematic row including the G = (4 0 0) diffraction
spot. (a) untilted incident beam, (b) incident beam tilted by G, (c)
incident beam tilted by G/2. The Si atomic columns are marked (see
tab. 2.2 for crystallographic details). The red arrows represent the incident
beam directions. All intensities are relative to the incident beam intensity.
In (c), the famous two-beam case [3] gives rise to very strong variations
composed of mostly two plane wave components.
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It is clear that for different γj , the |ψχ,j〉 have different z dependences. For non-trivial
combinations of two or more such |ψχ,j〉, one therefore needs to take into account
interference effects between different plane wave components. This manifests itself
in different intensities in the diffraction pattern and can be interpreted as multiple
elastic scattering between different plane waves. It also leads to complicated wave
excitations as a function of thickness and of the angle of the incident wave [23, 26].
Some examples are given in fig. 2.9.
The Bloch wave method works well for ideal periodic potentials and incident plane

waves. While this is often the case — mostly when performing diffraction experiments
—, strictly speaking, it does not apply to situations where one wants to study samples
with a potential that is distorted, e.g., by defects or dopant atoms. In addition, it
does not apply to any kind of STEM technique.23 In those situations, other methods
such as the multislice approach are beneficial.

2.3.2. Multislice

This section is based on [37, 52, 53].

In the multislice approach, the whole crystal is split into slices. In each slice, the
potential is assumed to vary only weakly in z direction and thus [Ĥ⊥(z), Ĥ⊥(z

′)] ≈ 0
holds in good approximation for all z, z′ inside the same slice.24 Assuming k⊥ � kz,
the total energy can be approximated by

E =
~2k2z
2me

. (2.56)

Thus, the effective hamiltonian (eq. 2.16) takes the form

Ĥ⊥ =
p̂2
⊥

2~kz
+
mee

~kz
V̂ (2.57)

and the evolution operator in eq. 2.17 in real space representation can be written as25

Û(z, z0) = exp

[
− i

~

∫ z

z0

〈z′|Ĥ⊥|z′〉 dz′
]

= exp

[
− i

~

∫ z

z0

(
−~∆⊥

2kz
+
mee

~kz
V (z′)

)
dz′
]

= exp

[
i(z − z0)

2kz
∆⊥ − i

2kz
vz,z0)

]
, (2.58)

23In principle those can be treated with the Bloch wave approach as well [51], but the number of
different χ vectors to consider and hence the total number of Bloch waves to calculate gets very
large.

24Provided that the potential is smooth and the slice is thin, this is a reasonable approximation.
Alternatively, one could picture the potential as being replaced by an average potential that is
constant along the z direction. In that case, the commutator would be exactly zero.

25As above, it is assumed that Ĥ ′ and thus Ĥ⊥ are diagonal in z.
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with the projected potential

vz,z0 :=
2mee

~2

∫ z

z0

V (z′))dz′. (2.59)

Iteratively solving this in real space is possible [54, 55] but time consuming. Alter-
natively, using the relation [37]

exp(Âε+ B̂ε) = exp(Âε) exp(B̂ε) +
1

2
[B̂, Â]ε2 +O(ε3), (2.60)

one obtains, in first order approximation (i.e., for thin slices),

Û(z, z0) ≈ exp

(
i(z − z0)

2kz
∆⊥

)
exp

(
− i

2kz
vz,z0

)
, (2.61)

for the propagation through a single slice. The first factor is identical to the Fresnel
propagator in free space (eq. 2.40), whereas the second one describes “instantaneous”
(i.e., z-independent) scattering. Hence, in the multislice approach, the crystal can be
pictured as split into a set of slices of vacuum, at the boundaries of which the electron
“experiences” the effect of the potential in the form of “instantaneous” scattering in
the projected potential.
In simulations, the propagator in eq. 2.61 has to be applied separately slice after slice

to propagate a given wave function through the crystal. Similar to the free space case,
the propagation through the slice of vacuum can be sped up considerably by trans-
forming the wave function into momentum space via a fast Fourier transform (FFT)
(see sec. 2.2.3). Still, the propagation remains a rather time- and memory-consuming
process, but it has the advantage that non-uniform potentials as well as non-periodic
wave functions can be used directly.

As an example, fig. 2.10 shows the propagation of focused vortex beams through a
10 nm thick Si specimen in [0 0 1] zone axis. Evidently, the exit wave function depends
crucially on the position of the vortex beam. In particular, the exit wave typically
does not exhibit the characteristic azimuthal phase gradient of a vortex beam, but
rather a corrugated phase structure. This implies that the state is no longer an
OAM eigenstate. The fact that OAM is not conserved in the crystal can easily be
understood by noting that the L̂z operator does not commute with the Hamiltonian
in the presence of a potential that is not cylindrically symmetric around the vortex
axis. Thus, 〈L̂z〉 is not a constant of motion and the electron wave does not remain in
an OAM eigenstate [53, 56].
As a side-note, it should be mentioned that the wave function retains some of its

vortex structure as long as the influence of the neighboring atomic columns (which
are the cause for the breaking of symmetry) remains weak. In particular, this can be
seen quite clearly if the vortex is positioned directly on an atomic column. In this
situation, the gradient of the atomic potential leads to channeling, i.e., the electron
beam remains close to the atomic column and thus retains its vortex structure to a
large degree [56, 57].
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Figure 2.10.: Exit wave after propagating a vortex beam through a 10 nm thick Si
crystal in [0 0 1] zone axis. Each row shows the simulation for a different
position of the incident vortex with respect to the crystal. The left
column shows the position of the incident vortex (a projected unit cell is
superimposed). The middle column shows the amplitude and phase of
the exit wave. The right column shows the intensity of the exit wave. For
the calculations, the parameters m = 1, λ = 2.507 pm, and α = 6.9mrad
were used. In the left and the middle column, the phase is color-coded as
in fig. 2.1, while the brightness reflects the wave function amplitude. In
the right column, the brightness reflects the intensity of the exit wave.





3. Inelastic scattering

Essentially, all models are wrong, but
some are useful.

(George E. P. Box)

3.1. General description

This section is based on the derivations of time-dependent perturbation
theory found, e.g., in [14, 25].

Inelastic scattering (in the context of EELS) is the interaction between the quantum
system of a probe electron and another quantum system (typically the sample or rather
a subsystem thereof) in which energy is transferred from the probe to the target.1

Thus, one needs to model the target system in addition to the probe electron system.
Moreover, since the target system is not observed separately after the interaction — if
that were possible easily, it would not be necessary to use a TEM — one has to apply
the density matrix formalism (see sec. 1.4). To obtain the reduced density matrix of
the probe beam after the inelastic interaction, the target system must be “traced out”.
That is, by the inelastic interaction, the (initially pure) probe state will generally be
scattered into a mixed state.

Throughout this section, it is assumed that the inelastic scattering happens on much
shorter time and length scales than the elastic propagation through the sample. This
holds for core losses, where the extinction length of dynamical diffraction is much
larger than the extension in z direction of the inelastic scattering kernel introduced
below [51]. Thus, limits like limt→−∞ and limt→∞ have to be understood as “before
the inelastic interaction” and “after the inelastic interaction”, respectively, and not as
“at the gun” and “at the detector”. Consequently, elastic scattering (already discussed
in chap. 2) and inelastic scattering can be treated separately and this section will deal
with the inelastic effects only. For the combination of both effects, see sec. 3.8.

For fast electrons, typical excitation energies (. 1 keV) are much smaller than
the kinetic energy (& 100 keV). Thus, the inelastic interaction can be treated in a
perturbation approach:

(Ĥ0 + V̂ ) |ψ〉 = i~∂t |ψ〉 , (3.1)

1In principle, the reverse, i.e., transfer of energy from the target to the electron, would be possible
from an energetic point of view, but entropically this is unfavorable.

33
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where Ĥ0 = 1̂t ⊗ Ĥ0,p + Ĥ0,t ⊗ 1̂p is the (exactly solvable) Hamiltonian that can be
written as a sum of the Hamiltonians of the probe (Ĥ0,p) and of the target (Ĥ0,t), and
V̂ is the perturbation operator that couples the two systems.2 Both Ĥ0 and V̂ are
assumed not to be explicitly time-dependent.
In the interaction picture, the state |ψ(t)〉 at a time t can be described as the time

evolution of the corresponding state |ψ(t0)〉 in the “distant past” t0:

|ψ(t)〉I = Û I(t, t0) |ψ(t0)〉I . (3.2)

This time evolution operator is defined as [14, 25]

i~∂tÛ I(t, t0) = V̂ IÛ I(t, t0) Û I(t0, t0) = 1̂ (3.3)

with
V̂ I := e

i
~ Ĥ0tV̂ e−

i
~ Ĥ0t. (3.4)

Formal integration of eq. 3.3 yields the equivalent formulation

Û I(t, t0) = 1̂− i

~

∫ t

t0

V̂ IÛ I(τ, t0)dτ. (3.5)

In first order Born approximation, the term Û I(τ, t0) in the integral can be replaced
by 1̂, yielding

Û I(t, t0) ≈ 1̂− i

~

∫ t

t0

e
i
~ Ĥ0τ V̂ e−

i
~ Ĥ0τdτ. (3.6)

Applied to an incident density operator3

ρ̂i =
∑∫
ψi

pψi |ψi〉 〈ψi| , (3.7)

the time evolution of the density operator is described by4

ρ̂ =
∑∫
ψi

pψiÛ I(t, t0) |ψi〉 〈ψi| Û †
I(t

′, t′0). (3.8)

2Note that, contrary to the notation in chap. 2, V̂ does not denote the periodic crystal potential
but rather the interaction operator between the probe electron and the sample electron. The
crystal potential can be included in Ĥ0, as can the Hamiltonian of the atomic wave function. The
reason for this relabeling is to facilitate comparison with existing literature on perturbation theory.
Moreover, it can be justified by the fact that typically, V̂ is the Coulomb operator in both cases
— describing the interaction between the probe and the nucleus in one case and the interaction
between the probe and a target electron in the other.

3The
∑∫

sign is used because in the cases discussed here, ψi will typically be a continuum state. It
should also be emphasized that the index i used here is not a summation index, but rather a label
for “initial” or “incident” states.

4Note that, in principle, there can be correlations between the states at different times t, t′ (assuming
t− t′ is smaller than the coherence time). In the following, however, this will not play an important
role as only the asymptotic limit will be of interest.
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Assuming that the {|ψi〉} as well as the states |φ〉 and |ϕ〉 are all eigenstates of Ĥ0

and that 〈ψi|φ〉 = 〈ψi|ϕ〉 = 0 ∀ |ψi〉,5 the density matrix element with respect to |φ〉
and |ϕ〉 reads

〈φ|ρ̂|ϕ〉 =
∑∫
ψi

pψi 〈φ|V̂ |ψi〉 〈ψi|V̂ †|ϕ〉 ·

∫ t

t0

(
e

i
~ (Eφ−Eψi )τ

dτ

~

)∫ t′

t′0

(
e−

i
~ (Eϕ−Eψi )τ

dτ

~

)
. (3.9)

In the asymptotic limit (t, t′ → ∞, t0, t
′
0 → −∞), this yields

〈φ|ρ̂|ϕ〉 =
∑∫
ψi

pψi 〈φ|V̂ |ψi〉 〈ψi|V̂ †|ϕ〉 ·

∫ ∞

−∞

(
e

i
~ (Eφ−Eψi )τ

dτ

~

)∫ ∞

−∞

(
e−

i
~ (Eϕ−Eψi )τ

dτ

~

)
. (3.10)

Using

δ(E) =
1

2π

∫ ∞

−∞
eiEtdt and δ(−E) = δ(E), (3.11)

this gives

〈φ|ρ̂|ϕ〉 = 4π2
∑∫
ψi

pψi 〈φ|V̂ |ψi〉 〈ψi|V̂ †|ϕ〉 δ(Eφ − Eψi)δ(Eϕ − Eψi)

= 4π2
∑∫
ψi

pψi 〈φ|V̂ |ψi〉 〈ψi|V̂ †|ϕ〉 δ(Eφ − Eψi)δ(Eφ − Eϕ), (3.12)

a result that can be derived in a similar way by employing the S matrix formalism [14].
In the particular case of core-loss EELS, one can assume that the asymptotic

states factorize into probe states (hereafter denoted by lower case letters) and target
states (hereafter denoted by upper case letters), i.e., |ψi〉 = |I〉 |i〉, |φ〉 = |F 〉 |f〉,
|ϕ〉 = |F ′〉 |f ′〉. In addition, it is reasonable to assume that the initial state of the
probe beam is a pure state |i〉 〈i| because elastic scattering does not create mixed
states (see sec. 2.1.1). Thus, the incident density operator (eq. 3.7) takes the form

ρ̂i =
∑∫
ψi

pψi |ψi〉 〈ψi| =
∑
I

pI |I〉 |i〉 〈i| 〈I| , (3.13)

where the
∑∫

reduces to a simple sum as the initial states of the target are bound states.
It is noteworthy that this density operator is diagonal in |I〉.
5The assumption that all states |ψi〉, |φ〉, and |ϕ〉 are eigenstates of Ĥ0 is reasonable since only the
asymptotic states far away of the perturbation are of interest here. The assumption that the
states before and after the interaction are orthogonal is justified because one works with energy
eigenstates in core-loss EELS and is only interested in processes that actually change the energy.



36 3. Inelastic scattering

Because the target system is not observed directly, one has to calculate the reduced
density operator of the probe, ρ̂p, by “tracing out” the target’s final states, yielding

〈f |ρ̂p|f ′〉 = 4π2
∑∫
F

∑
I

pI(1− pF ) 〈f | 〈F |V̂ |I〉 |i〉 〈i| 〈I|V̂ †|F 〉 |f ′〉 ·

δ(EF − EI − E)δ(Ef − Ef ′), (3.14)

for the reduced density matrix. Here, pF denotes the occupation probability of the
final state |F 〉 and the measurable “energy loss” of the probe,

E := Ef − Ei, (3.15)

was introduced.

One important result of this is that the reduced density matrix is block diagonal in
the final state energy of the probe. No correlations occur between final states with
different energies. Under these circumstances, δ(Ef − Ef ′) represents the continuum
orthonormalization [14, 29] that vanishes in the end when one integrates over energy
in the detector.6

At this point, it should also be noted that the reduced density matrix formed by the
elements 〈f |ρ̂p|f ′〉 — where |f〉 , |f ′〉 are the states of interest for core-loss EELS — is
not normalized anymore. While the complete reduced density matrix is normalized, of
course, it also contains many scattering channels that are not considered here (e.g.,
TDS, plasmon excitations, etc.). Thus, the fact that the reduced density matrix used
here is not normalized simply reflects the fact that the portion of the outgoing intensity
considered here (i.e., the signal in the detector) is (much) weaker than the incident
intensity.

By using a particular basis {|b〉} for the final states of the probe, inserting unit
operators, and rearranging, one arrives at the equation∫∫

dbdb′ 〈b|f〉∗ 〈b′|f ′〉 ρp(b, b′) = 4π2
∑∫
F

∑
I

pI(1− pF ) ·∫∫
dbdb̃ 〈b|f〉∗ 〈b̃|i〉 〈b| 〈F |V̂ |I〉 |b̃〉 ·∫∫
db′db̃′ 〈b′|f ′〉 〈b̃′|i〉∗ 〈b̃′| 〈I|V̂ †|F 〉 |b′〉 ·

δ(EF − EI − E)δ(Ef − Ef ′), (3.16)

where ρp(b, b
′) := 〈b|ρ̂p|b′〉 is the reduced density matrix in {|b〉} representation. Since

eq. 3.16 must hold for all final states |f〉 , |f ′〉 (which are eigenstates of Ĥ0), it is

6Every detector has a finite energy resolution. Thus, one ultimately has to integrate, e.g., over all
energies that are mapped onto a single pixel.
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straight-forward to deduce the expression7

ρp(b, b
′) =

∫∫
db̃db̃′ 〈b̃|i〉 〈b̃′|i〉∗ ·4π2
∑∫
F

∑
I

pI(1− pF ) 〈b| 〈F |V̂ |I〉 |b̃〉 〈b̃′| 〈I|V̂ †|F 〉 |b′〉 δ(EF − EI − E)


=:

∫∫
db̃db̃′ 〈b̃|i〉 〈i|b̃′〉S(b, b′, b̃, b̃′, E)

=

∫∫
db̃db̃′ρi(b̃, b̃

′)S(b, b′, b̃, b̃′, E). (3.17)

Here, ρi(b̃, b̃
′) is the density matrix of the initial state of the probe (in {|b〉} representa-

tion) and the scattering kernel S(b, b′, b̃, b̃′, E) (in {|b〉} representation) was introduced.
It is noteworthy that the scattering kernel depends explicitly on the energy transfer E
as the {|b〉} states (unlike the {|f〉} states) are not necessarily eigenfunctions of Ĥ0.
Henceforth, the subscript p will be dropped as the remainder of this work deals solely
with the (reduced) density matrix of the probe beam.

3.2. Inelastic scattering in the Coulomb potential and
the mixed dynamic form factor

Of particular practical importance for EELS are the real space and the momentum
space representations of the reduced density matrix in eq. 3.17 for Coulomb scattering.
With

〈r|V̂ |r̃〉 = e2

4πε0

δ(r − r̃)

|r − R̂|
=: V̂ (r)δ(r − r̃) (3.18)

and, after a Fourier transform (see sec. C.3),

〈k|V̂ |k̃〉 = e2

(2π)3ε0

ei(k̃−k)·R̂

|k̃ − k|2
=: V̂ (k̃ − k) =: V̂ (q), (3.19)

the scattering kernels become

S(r, r′, r̃, r̃′, E) = 4π2
∑∫
F

∑
I

pI(1− pF ) 〈F |V̂ (r)|I〉 〈I|V̂ †(r′)|F 〉 ·

δ(EF − EI − E)δ(r − r̃)δ(r′ − r̃′)

=: S(r, r′, E)δ(r − r̃)δ(r′ − r̃′) (3.20)

7The factor δ(Ef −Ef ′) is implied by the proper choice of the final states of the probe on the same
energy shell and is not given explicitly here.
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and

S(k,k′, k̃, k̃
′
, E) = 4π2

∑∫
F

∑
I

pI(1− pF ) 〈F |V̂ (k̃ − k)|I〉 〈I|V̂ †(k̃
′ − k′)|F 〉 ·

δ(EF − EI − E)

=: S(k̃ − k, k̃
′ − k′, E)

=: S(q, q′, E). (3.21)

Note that S(r, r′, r̃, r̃′, E) and S(k,k′, k̃, k̃
′
, E) are two representations (one in real

space, the other in momentum space) derived from the same operator. As such, they
are related to each other by a (quadruple) Fourier transform. Due to the properties of
S and of the Fourier transform, it similarly holds that

S(q, q′, E) = F̂q,−q′ [S(r, r′, E)] and S(r, r′, E) = F̂r,−r′ [S(q, q′, E)]. (3.22)

Consequently, the reduced density matrices read [58]

ρ(r, r′) = S(r, r′, E)ρi(r, r
′)

ρ(k,k′) =

∫∫
dk̃dk̃

′S(k̃ − k, k̃
′ − k′, E)ρi(k̃, k̃

′
)

=

∫∫
dqdq′S(q, q′, E)ρi(k + q,k′ + q′). (3.23)

The scattering kernels are related to the mixed dynamic form factor (MDFF)
S(q, q′, E) [59–61] and to the real space MDFF (rMDFF) S(r, r′, E) [62, 63] via (see
sec. C.4)

S(q, q′, E) =

(
e2

4π2ε0

)2
S(q, q′, E)

q2q′2

S(r, r′, E) =

(
e2

4π2ε0

)2
eiqE(z−z

′)

(2π)3
·

[K0(qEr⊥)K0(qEr
′
⊥)]~⊥

∫∫
dzdz′e−iqE(z−z′)S(r, r′, E), (3.24)

where K0 is the modified Bessel function of second kind and ~⊥ denotes a 2D convolu-
tion.
The MDFF is one of the most important concepts for the simulation of inelastic

scattering and subsequent image formation [61]. Some of its most interesting and
important properties are:

� it is hermitian in the sense that S(q, q′, E)∗ = S(q′, q, E) (this can be derived
directly from eq. 3.21);

� it is related to the conventional dynamic form factor (DFF), which is given by
S(q, q, E) [16, 61, 64];
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� it is closely related to the density–density correlation function of the target, i.e.,
S(q, q′, E) = 1

2π

∫∞
−∞ 〈ρt,q(t)ρt,−q′(0)〉T e

iωtdt, where ω = E/~, E is the energy
transfer in the inelastic interaction (which is implicitly given by the momentum
transfer), ρt,q(t) is the Fourier transformed density operator of the target in the
Heisenberg representation, and 〈 〉T denotes the thermal average [61, 62];

� for targets with an inversion symmetry at the origin, the MDFF obeys the rule
S(q, q′, E) = S(−q,−q′, E) [61];

� for targets that are invariant under time-reversal, the relation S(q, q′, E) =
S(−q′,−q, E) holds [61];

� for crystalline samples, the MDFF must be zero unless q − q′ = g, where g is a
reciprocal lattice vector [61, 62].

3.3. Probability current and the double differential
scattering cross-section

The probability current density operator is defined as [65, 66]8

ĵ(r) :=
1

2me

(
|r〉 〈r| p̂+ p̂† |r〉 〈r|

)
. (3.25)

Therefore, the probability current associated with a density operator can easily be
calculated as

j(r) = tr [ĵ(r)ρ̂] =
∑∫
ψ

〈ψ|ĵ(r)ρ̂|ψ〉 . (3.26)

In momentum space (i.e., {|ψ〉} = {|k′〉}), this can be expanded as

j(r) =
1

2me

∫
dk′ [〈k′|r〉 〈r|p̂ρ̂|k′〉+ 〈k′|p̂†|r〉 〈r|ρ̂|k′〉

]
=

1

2me

∫∫
dkdk′ [〈k′|r〉 〈r|p̂|k〉 〈k|ρ̂|k′〉+ 〈k′|p̂†|r〉 〈r|k〉 〈k|ρ̂|k′〉

]
=

1

2me

∫∫
dkdk′ 〈k′|r〉 〈r|k〉 〈k|ρ̂|k′〉 ~(k + k′)

=
1

16π3me

∫∫
dkdk′ei(k−k′)·rρ(k,k′)~(k + k′). (3.27)

For the recurring case that the density operator is a pure plane wave, i.e.,

ρ̂ = |ki〉 〈ki| and ρ(k,k′) = δ(k − ki)δ(k
′ − ki), (3.28)

8As before, this describes a particle current, not an electrical current. The electrical current can be
calculated simply by multiplying the particle current by the charge.
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this can be evaluated to yield

j(r) =
~ki

(2π)3me

=
~ki
me

|〈r|ki〉|2 . (3.29)

This is the well-known probability current density of plane waves that can also be
derived without the density matrix formalism (see sec. 2.2.2 and, e.g., [64]).
A useful concept in scattering theory related to the probability current density

(or the “particle flux”) is the scattering cross section. It is defined as the total
probability current (i.e., number of particles per unit time) in a particular outgoing
channel, divided by the incident probability current density [67]. In inelastic electron
scattering, the outgoing channels are typically described by the energy (interval)
and the direction (solid angle). This leads to the concept of the double differential
scattering cross-section (DDSCS) by means of the ansatz [64]

dj = dσ(E,Ω) · ji, (3.30)

where dj is the total probability current in an infinitesimal energy range dE and an
infinitesimal solid angle dΩ, dσ is the scattering cross section, and ji is the incident
probability current density.
Assuming the incident wave to be a plane wave, the incident probability current

density is given by the absolute value of eq. 3.29. To calculate the differential total
probability current in the outgoing channel, two steps have to be taken. On the
one hand, the integral over all final states {|k′〉} has to be replaced by that over an
infinitesimal range dkf — which effectively amounts to replacing the integral by a
“multiplication” with dkf — to obtain the differential probability current density. On
the other hand, this differential probability current density has to be integrated over
the whole plane (perpendicular to kf ) to get the differential probability current. This
gives

dσ =
dj

ji
=

dkf
2ki

∫∫
dkdA · (k + kf )e

i(k−kf )·rρ(k,kf ), (3.31)

where dA describes the vector-valued differential plane element with a direction
perpendicular to the plane (i.e., parallel to kf ).
With E = ~2(k2f − k2i )/(2me), the infinitesimal range dkf can be rewritten in terms

of the differentials dE and dΩ using the identity

dkf = k2fdkfdΩ =
mekf
~2

dEdΩ. (3.32)

Thus, the DDSCS can be calculated generally as

∂2σ

∂E∂Ω
=
mekf
2~2ki

∫∫
dkdA · (k + kf )e

i(k−kf )·rρ(k,kf )

=
mekf
2~2ki

∫∫
dkdr⊥(k‖ + kf )e

ik⊥·r⊥ei(k‖−kf )·r‖ρ(k,kf )

=
2π2mekf
~2ki

∫
dkδ(k⊥)(k‖ + kf )e

i(k‖−kf )·r‖ρ(k,kf ), (3.33)
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where the subscripts ‖ and ⊥ are used to label components parallel and perpendicular
to kf , respectively.
In the absence of elastic scattering (e.g., for a single scattering atom), the density

matrix is given by eq. 3.23. Together with an incident density matrix as the one given
in eq. 3.28, the DDSCS takes the form9

∂2σ

∂E∂Ω
=

2π2mekf
~2ki

∫
dkδ(k⊥)δ(Ek − Ekf )(k‖ + kf )e

i(k‖−kf )·r‖ ·∫∫
dqdq′S(q, q′, E)δ(k + q − ki)δ(kf + q′ − ki)

=
2π2mekf
~2ki

∫
dkδ(k⊥)δ(Ek − Ekf )(k‖ + kf )e

i(k‖−kf )·r‖ ·

S(ki − k,ki − kf , E). (3.34)

Using

δ(Ek − Ekf ) = δ

(
~2(k2⊥ + k2‖)

2me

−
~2k2f
2m

)
=

me

~2kf
δ
(√

k2⊥ + k2‖ − kf

)
, (3.35)

the DDSCS can be simplified further, yielding

∂2σ

∂E∂Ω
=

2π2m2
e

~4ki

∫
dkδ(k⊥)δ

(√
k2⊥ + k2‖ − kf

)
·

(k‖ + kf )e
i(k‖−kf )·r‖S(ki − k,ki − kf , E)

=
2π2m2

e

~4ki

∫
dkδ(k − kf )(k‖ + kf )e

i(k‖−kf )·r‖S(ki − k,ki − kf , E)

=

(
2πme

~2

)2

· kf
ki

· S(ki − kf ,ki − kf , E), (3.36)

the well-known equation for the single inelastic scattering of plane waves [62, 64, 68].

3.4. Calculating the mixed dynamic form factor

This section is based on [24, 68].

Up to now, the fundamental concepts of quantum mechanical inelastic scattering have
been introduced. To apply this theoretical framework to simulations and experiments,
the particular properties of the target need to be taken into account. As was outlined

9Note that the factor δ(Ek − Ekf
) derived in sec. 3.1 is included here explicitly. It ensures the

proper orthonormalization of the final states of the probe beam.
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above, the central quantity in inelastic scattering is the MDFF, so this section and the
following ones will concentrate on it. From eqs. 3.24, 3.21, and 3.19, the MDFF reads

S(q, q′, E) :=
∑∫
F

∑
I

pI(1− pF ) 〈F |eiq·R̂|I〉 〈I|e−iq′·R̂|F 〉 δ(EF − EI − E). (3.37)

In principle, the sum over all initial and final states {|I〉 , |F 〉} includes all states of
all atoms. However, the periodicity of the crystal carries over to the MDFF, which is
also periodic. In addition, the tight binding of the target’s electrons contributing to
core-loss EELS causes the initial states {|I〉} to be highly localized in real space. As a
result, the MDFF of a crystal can be written as an (incoherent) sum over individual
MDFFs, each positioned at a different scattering center [62]. Thus, it is sufficient to
concentrate on a single scattering center, as will be done in the following.
To actually use the MDFF, one needs to specify the initial and final states {|I〉 , |F 〉}

of the target. Because, in core-loss EELS, the initial state is typically very localized in
the vicinity of the atomic nucleus, it is advantageous to place the origin in the center
of the atom and to work with spherical harmonics. To that end, the MDFF can be
rewritten using the plane wave expansion (also known as Rayleigh expansion) [65, 67],

eiq·R = 4π
∞∑
λ=0

λ∑
µ=−λ

iλY µ
λ (q/q)

∗Y µ
λ (R/R)jλ(qR), (3.38)

where the Y µ
λ are the spherical harmonics and jλ is the spherical Bessel function of

first kind, to read

S(q, q′, E) = 16π2
∑
λλ′

iλ−λ
′∑
µµ′

∑∫
F

∑
I

pI(1− pF )Y
µ
λ (q/q)

∗Y µ′

λ′ (q
′/q′) ·

〈F |Y µ
λ (R̂/R̂)jλ(qR̂)|I〉 〈F |Y

µ′

λ′ (R̂/R̂)jλ′(q
′R̂)|I〉∗δ(EF − EI − E).

(3.39)

This expression has the advantage that — in spherical coordinates — the individual
matrix elements decompose into separate integrals for the angular and the radial part.

3.4.1. The mixed dynamic form factor for isolated atoms

The simplest case imaginable to actually calculate the MDFF is that of isolated atoms.
Of course, this is somewhat unrealistic, since one usually does not deal with single,
isolated atoms in experiments. As will be discussed in sec. 3.5, however, the MDFF
in crystals often reduces to formulas identical to the ones derived here. Hence, it is
definitely worthwhile to study this simple case before treating the more general and
more complex case of crystals.
For isolated atoms without spin-polarization10, both the initial and the final states

can be considered to be eigenstates of the OAM operators L̂2 and L̂z. Furthermore, it

10This means that there is no preferred spin orientation — spin up and spin down states are degenerate
(in any coordinate system). Therefore, the spin-dependency of the wave functions and, thus, the
spin–orbit coupling are neglected. For the more general case, see the following sections.
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is assumed that (i) only initial states with angular momentum quantum number l and
only final states with angular momentum quantum number L contribute, (ii) states
with the same angular momentum quantum number are independent, and (iii) all
initial states are fully occupied (pI = 1), while all final states are fully unoccupied
(pF = 0). In this case, the initial and final states are statistical mixtures of the wave
functions

〈R|I〉 = ul(R)Y
m
l (R/R)

〈R|F 〉 = uL(R)Y
M
L (R/R) (3.40)

with the weights 1/(2l+ 1) and 1/(2L+ 1), respectively. Thus, the matrix elements in
real space read

〈F |Y µ
λ (R̂/R̂)jλ(qR̂)|I〉 =

(∫ ∞

0

uL(R)
∗jλ(qR)ul(R)R

2dR

)
·∫

4π

Y M
L (Ω)∗Y µ

λ (Ω)Y
m
l (Ω)dΩ

=: (−1)M 〈jλ(q)〉
∫
4π

Y −M
L (Ω)Y µ

λ (Ω)Y
m
l (Ω)dΩ. (3.41)

By virtue of the Wigner 3j symbols (eq. C.29), the matrix elements become

〈F |Y µ
λ (R̂/R̂)jλ(qR̂)|I〉 =

(−1)M
√

(2L+ 1)(2λ+ 1)(2l + 1)

4π

(
L λ l
0 0 0

)(
L λ l

−M µ m

)
〈jλ(q)〉 . (3.42)

Consequently, the MDFF takes the form11

S(q, q′, E) = 16π2
∑
λλ′

iλ−λ
′∑
µµ′

∑
LM

∑
lm

Y µ
λ (q/q)

∗Y µ′

λ′ (q
′/q′)·

〈F |Y µ
λ (R̂/R̂)jλ(qR̂)|I〉 〈F |Y

µ′

λ′ (R̂/R̂)jλ′(q
′R̂)|I〉∗

= 4π(2L+ 1)(2l + 1)
∑
λλ′

iλ−λ
′∑
µµ′

∑
LM

∑
lm

Y µ
λ (q/q)

∗Y µ′

λ′ (q
′/q′)

√
(2λ+ 1)

(
L λ l
0 0 0

)(
L λ l

−M µ m

)
〈jλ(q)〉√

(2λ′ + 1)

(
L λ′ l
0 0 0

)(
L λ′ l

−M µ′ m

)
〈jλ′(q′)〉∗ . (3.43)

By virtue of the permutation relations (eq. C.32) and the orthogonality relation
(eq. C.31), this simplifies to

S(q, q′, E) = 4π(2L+ 1)(2l + 1) ·∑
λµ

∑
Ll

Y µ
λ (q/q)

∗Y µ
λ (q

′/q′)

(
L λ l
0 0 0

)2

〈jλ(q)〉 〈jλ(q′)〉∗ (3.44)

11The final states are assumed to correspond to the correct energy and the integral over energy is
performed such that the Dirac delta yields 1.
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and by the addition theorem (eq. C.34) to

S(q, q′, E) = (2L+ 1)(2l + 1)(2λ+ 1) ·∑
λ

Pλ

(
q · q′

qq′

)∑
Ll

(
L λ l
0 0 0

)2

〈jλ(q)〉 〈jλ(q′)〉∗ . (3.45)

In this case, the magnetic quantum numbers do not influence the MDFF and all
cross-terms λ 6= λ′ vanish.
As the Wigner 3j symbols fulfill similar conditions as those which are well-known

from atomic scattering theory (in fact, they are closely related to Clebsch-Gordan
coefficients; in particular, the triangle inequality |L − l| ≤ λ ≤ L + l applies), λ is
usually referred to as the transition order. As was investigated by Auerhammer and
Rez [69], dipole-allowed transitions (λ = 1) are by far dominant for core-loss EELS
under typical conditions (in particular, momentum transfers q � 6�A−1). Therefore,
many actual calculations are limited to the case λ = λ′ = 1.

3.4.2. The mixed dynamic form factor for crystal wave functions

In experiments, one never has the luxury of dealing with isolated atoms. Instead, the
best one can hope for are crystals. The MDFF for scattering centers inside (periodic)
crystals will be developed in this subsection.
In core-loss EELS, the target’s initial states {|I〉} are tightly bound core states.

They are typically well-localized around the atomic nucleus and thus the overlap
between core states of neighboring atoms is negligibly small. Hence, core states of
different atoms can be considered independent and uncorrelated. Furthermore, due
to the close proximity to the nucleus, the electrostatic potential they experience is
dominated by the atomic potential. In consequence, the influence of the potential of
neighboring atoms is also negligible for these states. What is not negligible, however,
— particularly for heavy atoms — is the spin–orbit coupling. Therefore, the initial
states can be described in very good approximation by eigenstates of the total angular
momentum operators Ĵ2 and Ĵz [68]:

|I〉 = |n, l, 1/2, j, jz〉

=
∑
ms

|n, l,m, 1/2, s〉 〈l,m, 1/2, s|j, jz〉

=
∑
ms

(−1)−l+
1
2
−jz
√
2j + 1

(
l 1

2
j

m s −jz

)
|n, l,m, 1/2, s〉 . (3.46)

The spin quantum number 1/2 will be omitted from the kets henceforth. The energy of
|I〉 is dominated by the quantum numbers n, l, j.12 This energy is directly observable

12jz may give rise to a Zeeman splitting in the magnetic field of the objective lens of a TEM. For
typical fields around 2T, the Zeeman splitting is of the order of less than 1meV and therefore
well below the energy resolution of conventional energy loss spectrometers.



3.4. Calculating the mixed dynamic form factor 45

in EELS by selecting a particular edge. Therefore, the initial states are well-defined
except for jz, which may vary between −j and j. States which differ only in jz can be
considered independent and therefore must be summed over incoherently.
For the final states |F 〉, matters are a little more complicated. Since these states

must be unoccupied, they are typically found in the conduction band and are strongly
influenced by the crystal potential. Obviously, they can be uniquely identified by a
set of quantum numbers, hereafter denoted collectively by ν where the set of all |ν〉
forms an orthonormal basis set. For example, in a band structure formalism, ν would
contain the wave vector and the band index.
For the matrix element 〈F |V̂ |I〉 = 〈ν|V̂ |I〉, only the part of the final states that has

significant overlap with (at least one of) the initial states is of importance. Thus, one
typically considers only the contribution inside a sphere around the scattering atom
(e.g., a muffin-tin sphere in DFT calculations [49]). In this sphere, it is convenient to
expand the final state into angular momentum eigenstates [24, 68]:

|ν〉 =
∑
LMS

Dν
LMS |ν, L,M, 1/2, S〉 , (3.47)

As the {|ν〉} are an orthonormal basis set, states with different ν are independent
and have to be summed over incoherently. As for the initial states, the spin quantum
number 1/2 will be omitted henceforth.
For the sake of simplicity, pI = 1 and pF = 0 are assumed. The former expression

specifies that all initial states are fully occupied, which is a reasonable assumption
given their low energy. The latter expresses that all final states considered here are
fully unoccupied.13

Inserting these assumptions into eq. 3.39 gives the MDFF in the form

S(q, q′, E) = 16π2(2j + 1)
∑
λλ′

iλ−λ
′∑
µµ′

∑
jz

∑∫
ν

Y µ
λ (q/q)

∗Y µ′

λ′ (q
′/q′)δ(EF − EI − E) ·

∑
ms

(−1)
1
2
−jz
(
l 1

2
j

m s −jz

)∑
m′s′

(−1)
1
2
−jz
(
l 1

2
j

m′ s′ −jz

)
·∑

LMS

(Dν
LMS)

∗ 〈ν, L,M, S |Y µ
λ (R̂/R̂)jλ(qR̂) |n, l,m, s〉 ·∑

L′M ′S′

Dν
L′M ′S′

〈
n, l,m′, s′

∣∣∣Y µ′

λ′ (R̂/R̂)jλ′(q
′R̂)
∣∣∣ ν, L′,M ′, S ′

〉
. (3.48)

Note that the sums over s and s′ reduce to δsS and δs′S′ , respectively, as the transition
operator is spin-independent.
In order to evaluate the matrix elements, one can write the initial and final states

in a real space representation. The resulting integrals have already been evaluated

13At a finite temperature, this is not strictly the case, of course. However, measurements are typically
performed at or close to room temperature, which corresponds to thermal energies well below
0.1 eV which are thus below the energy resolution of most instruments.
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when deriving eq. 3.42. Consequently, the MDFF takes the form

S(q, q′, E) = 4π
∑
mm′

∑
λλ′

∑
µµ′

∑
LMS

∑
L′M ′S′

∑
jz

∑∫
ν

iλ−λ
′
(−1)M+M ′+1−2jz ·

(2l + 1)(2j + 1)
√

(2L+ 1)(2L′ + 1)(2λ+ 1)(2λ′ + 1) ·(
l 1

2
j

m S −jz

)(
L λ l
0 0 0

)(
L λ l

−M µ m

)
Y µ
λ (q/q)

∗ 〈jλ(q)〉νnjLS ·(
l 1

2
j

m′ S ′ −jz

)(
L′ λ′ l
0 0 0

)(
L′ λ′ l

−M ′ µ′ m′

)
Y µ′

λ′ (q
′/q′) 〈jλ′(q′)〉νnjL′S′ ·

(Dν
LMS)

∗Dν
L′M ′S′δ(EF − EI − E) (3.49)

with

〈jλ(q)〉νnjLS :=

∫ ∞

0

uνLS(R)
∗jλ(qR)unjS(R)R

2dR. (3.50)

Due to the fact that 2jz = 2m+2s is always an odd integer as 2m is always an even
integer and 2s = ±1 is always odd, one see that (−1)1−2jz = 1 always holds. Thus,
the MDFF can also be written as

S(q, q′, E) =
∑∫
ν

∑
mm′

∑
λλ′

∑
µµ′

∑
LMS

∑
L′M ′S′

iλ−λ
′
4π(2l + 1) ·

√
(2L+ 1)(2L′ + 1)(2λ+ 1)(2λ′ + 1) ·

Y µ
λ (q/q)

∗ 〈jλ(q)〉νnjLS Y
µ′

λ′ (q
′/q′) 〈jλ′(q′)〉νnjL′S′ ·(

L λ l
0 0 0

)(
L′ λ′ l
0 0 0

)(
L λ l

−M µ m

)(
L′ λ′ l

−M ′ µ′ m′

)
·∑

jz

(−1)M+M ′
(2j + 1)

(
l 1

2
j

m S −jz

)(
l 1

2
j

m′ S ′ −jz

)
·

(Dν
LMS)

∗Dν
L′M ′S′δ(EF − EI − E) (3.51)

This is the same as the well-known formula for the MDFF published by Schattschneider
et al. [68] except for an exchange of q and q′ owing to the definition of the complex
conjugate of the MDFF used here.14

In actual applications, it is usually assumed that the radial wave functions do not
depend explicitly on ν, but only on the final state energy EF (which implicitly depends
on ν, of course). In this case, the integral over all states on an energy shell,

XLMS,L′M ′S′(EF ) :=
∑∫
ν

energy shell

(Dν
LMS)

∗Dν
L′M ′S′ (3.52)

is called the cross density of states (XDOS).

14In [68], terms of the form 〈I|eiq·R̂|F 〉 〈F |e−iq′·R̂|I〉 appear in the definition of the MDFF instead
of the terms 〈F |eiq·R̂|I〉 〈I|e−iq′·R̂|F 〉 used here.
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3.5. Dependence of the mixed dynamic form factor on
the cross density of states

In the following, two special cases will be discussed that are of paramount importance
as limiting cases in experiments. In both cases, the MDFF will be simplified under
the assumption of certain properties of the XDOS.

3.5.1. The spin-unpolarized case

In the absence of spin-polarization, the two spin species S = ↑ and S = ↓ behave in
exactly the same manner. Consequently, the radial wave functions (and with them
〈jλ(q)〉) are independent of the spin quantum number S. In addition, states with
different spins are incoherent to one another. This can be modeled by including the
spin direction S̄ in the quantum numbers ν that identify the final states uniquely and
set

Dν
LMS = Dν̄S̄

LMS = Dν̄
LMδSS̄. (3.53)

With this, the sums over S, S ′ can be carried out, yielding

S(q, q′, E) =
∑∫
ν̄

∑
mm′

∑
λλ′

∑
µµ′

∑
LM

∑
L′M ′

iλ−λ
′
4π(2j + 1) ·

(−1)M+M ′√
(2L+ 1)(2L′ + 1)(2λ+ 1)(2λ′ + 1) ·

Y µ
λ (q/q)

∗ 〈jλ(q)〉ν̄njL Y
µ′

λ′ (q
′/q′) 〈jλ′(q′)〉ν̄njL′ ·(

L λ l
0 0 0

)(
L′ λ′ l
0 0 0

)(
L λ l

−M µ m

)(
L′ λ′ l

−M ′ µ′ m′

)
·∑

jzS̄

(2l + 1)

(
l 1

2
j

m S̄ −jz

)(
l 1

2
j

m′ S̄ −jz

)
·

(Dν̄
LM)∗Dν̄

L′M ′δ(EF − EI − E). (3.54)

Now, the sums over S̄ and jz can be carried out as well, giving

S(q, q′, E) =
∑∫
ν̄

∑
m

∑
λλ′

∑
µµ′

∑
LM

∑
L′M ′

iλ−λ
′
4π(2j + 1) ·

(−1)M+M ′√
(2L+ 1)(2L′ + 1)(2λ+ 1)(2λ′ + 1) ·

Y µ
λ (q/q)

∗ 〈jλ(q)〉ν̄njL Y
µ′

λ′ (q
′/q′) 〈jλ′(q′)〉ν̄njL′ ·(

L λ l
0 0 0

)(
L′ λ′ l
0 0 0

)(
L λ l

−M µ m

)(
L′ λ′ l

−M ′ µ′ m

)
·

(Dν̄
LM)∗Dν̄

L′M ′δ(EF − EI − E). (3.55)

In systems for which one can additionally assume that states with different L,M are
independent (e.g., if the potential is isotropic around the scattering center or if all
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off-diagonal terms of the XDOS with M 6=M ′ or L 6= L′ contributing to the transition
orders λ and λ′ in question vanish [24, 70]), this can be simplified further (using the
same method as for the spin) to read

S(q, q′, E) =
∑∫
ν̄

∑
m

∑
λλ′

∑
µµ′

∑
LM

iλ−λ
′
4π(2j + 1)(2L+ 1)

√
(2λ+ 1)(2λ′ + 1) ·

Y µ
λ (q/q)

∗ 〈jλ(q)〉ν̄njL Y
µ′

λ′ (q
′/q′) 〈jλ′(q′)〉ν̄njL ·(

L λ l
0 0 0

)(
L λ′ l
0 0 0

)(
L λ l

−M µ m

)(
L λ′ l

−M µ′ m

)
·

|Dν̄
LM |2δ(EF − EI − E). (3.56)

If, in addition, the final states with the same L are degenerate with respect to M15

(i.e., the XDOS and the density of states (DOS) are independent of M), the sums over
m,M and subsequently those over λ′, µ′ can be carried out, too, resulting in

S(q, q′, E) =
∑∫
ν̄

∑
Lλ

4π(2j + 1)(2L+ 1)

(
L λ l
0 0 0

)2

|Dν̄
L|2δ(EF − EI − E) ·

∑
µ

Y µ
λ (q/q)

∗ 〈jλ(q)〉ν̄njL Y
µ
λ (q

′/q′) 〈jλ(q′)〉ν̄njL . (3.57)

Since µ only appears in the spherical harmonics, this sum can also be carried out,
giving

S(q, q′, E) =
∑
L

∑
λ

(2j + 1)(2L+ 1)(2λ+ 1)

(
L λ l
0 0 0

)2

Pλ

(
q · q′

qq′

)
·∑∫

ν̄

〈jλ(q)〉ν̄njL 〈jλ(q
′)〉ν̄njL |D

ν̄
L|2δ(EF − EI − E), (3.58)

which is the equivalent to eq. 3.45 for the isolated atom.
For the practically important case of dipole-allowed transitions (λ = 1), this expres-

sion for the MDFF simplifies further to

S(q, q′, E) =
∑
L

3(2j + 1)(2L+ 1)

(
L 1 l
0 0 0

)2

P1

(
q · q′

qq′

)
·∑∫

ν̄

〈j1(q)〉ν̄njL 〈j1(q
′)〉ν̄njL |D

ν̄
L|2δ(EF − EI − E)

=:

∑∫
ν̄

∑
L

Aν̄njL(E) · 〈j1(q)〉ν̄njL 〈j1(q
′)〉ν̄njL

 q · q′

qq′
. (3.59)

15In fact, it is sufficient if they are degenerate with respect to all M reachable from any m with
transitions of order λ. For example, in cubic systems, the quantum numbers obey the condition
that (M − M ′)/4 is integer [70]. Since −1 ≤ µ, µ′ ≤ 1 for dipole-allowed transitions and
M = m + µ,M ′ = m + µ′, all accessible states must obey −2 ≤ M −M ′ = µ − µ′ ≤ 2 and
hence only M = M ′ contributes in this case (although there could be, e.g., cross-terms for
M,M ′ ∈ {−2, 2} as in the d-state eg/t2g splitting).
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In conclusion, spin-unpolarized systems with sufficiently high symmetry (such that
the XDOS is diagonal and states with the same L are degenerate with respect to M)
behave in the same way as isolated atoms when it comes to inelastic scattering.

3.5.2. Fully spin-polarized case

In the fully spin-polarized case, one assumes that all final states corresponding to
one spin species (without loss of generality assumed to be the spin down states here)
are occupied.16 Consequently, only transitions to target states with the other spin
quantum number (S = S ′ = ↑ here) are possible. In this case, the MDFF takes the
form

S(q, q′, E) =
∑∫
ν

∑
mm′

∑
λλ′

∑
µµ′

∑
LM

∑
L′M ′

iλ−λ
′
4π(2l + 1) ·

√
(2L+ 1)(2L′ + 1)(2λ+ 1)(2λ′ + 1) ·

Y µ
λ (q/q)

∗ 〈jλ(q)〉νnjL↑ Y
µ′

λ′ (q
′/q′) 〈jλ′(q′)〉νnjL′↑ ·(

L λ l
0 0 0

)(
L′ λ′ l
0 0 0

)(
L λ l

−M µ m

)(
L′ λ′ l

−M ′ µ′ m′

)
·∑

jz

(−1)M+M ′
(2j + 1)

(
l 1

2
j

m 1
2

−jz

)(
l 1

2
j

m′ 1
2

−jz

)
·

(Dν
LM↑)

∗Dν
L′M ′↑δ(EF − EI − E). (3.60)

Due to the unique properties of the Wigner 3j symbols, m + 1
2
= jz = m′ + 1

2
and

hence m = m′ must hold. This leads to

S(q, q′, E) =
∑∫
ν

∑
m

∑
λλ′

∑
µµ′

∑
LM

∑
L′M ′

iλ−λ
′
4π(2l + 1) ·

√
(2L+ 1)(2L′ + 1)(2λ+ 1)(2λ′ + 1) ·

Y µ
λ (q/q)

∗ 〈jλ(q)〉νnjL↑ Y
µ′

λ′ (q
′/q′) 〈jλ′(q′)〉νnjL′↑ ·(

L λ l
0 0 0

)(
L′ λ′ l
0 0 0

)(
L λ l

−M µ m

)(
L′ λ′ l

−M ′ µ′ m

)
·

(−1)M+M ′
(2j + 1)

(
l 1

2
j

m 1
2

−m− 1
2

)2

·

(Dν
LM↑)

∗Dν
L′M ′↑δ(EF − EI − E). (3.61)

Assuming, as above, that the XDOS is (essentially) diagonal with respect to L and M
(e.g., due to symmetry constraints or low transition order), and after dropping the ↑
16An example would be a ferromagnetic target with large band splitting whose magnetization is

saturated in the field of the objective lens of the TEM. For the most common magnetic materials
Fe, Co, and Ni, this is a reasonable assumption for the typical objective lens fields [71]. Then,
the spin is quantized along the direction of the external magnetic field, which is taken as the
z direction.
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index, this simplifies to

S(q, q′, E) =
∑∫
ν

∑
m

∑
λλ′

∑
µµ′

∑
LM

iλ−λ
′
4π(2l + 1)(2L+ 1)

√
(2λ+ 1)(2λ′ + 1) ·

Y µ
λ (q/q)

∗ 〈jλ(q)〉νnjL Y
µ′

λ′ (q
′/q′) 〈jλ′(q′)〉νnjL ·(

L λ l
0 0 0

)(
L λ′ l
0 0 0

)(
L λ l

−M µ m

)(
L λ′ l

−M µ′ m

)
·

(2j + 1)

(
l 1

2
j

m 1
2

−m− 1
2

)2

|Dν
LM |2δ(EF − EI − E), (3.62)

which, in turn, enforces µ = µ′ and M = m+ µ:

S(q, q′, E) =
∑∫
ν

∑
m

∑
λλ′

∑
µ

∑
L

iλ−λ
′
4π(2l + 1)(2L+ 1)

√
(2λ+ 1)(2λ′ + 1) ·

Y µ
λ (q/q)

∗ 〈jλ(q)〉νnjL Y
µ
λ′(q

′/q′) 〈jλ′(q′)〉νnjL ·(
L λ l
0 0 0

)(
L λ′ l
0 0 0

)(
L λ l

−m− µ µ m

)(
L λ′ l

−m− µ µ m

)
·

(2j + 1)

(
l 1

2
j

m 1
2

−m− 1
2

)2

|Dν
L(m+µ)|2δ(EF − EI − E). (3.63)

For the practically important case of dipole-allowed transitions (λ = λ′ = 1), this
expression for the MDFF simplifies to

S(q, q′, E) =
∑∫
ν

∑
m

1∑
µ=−1

∑
L

12π(2l + 1)(2L+ 1)(2j + 1)

(
L 1 l
0 0 0

)2

·

Y µ
1 (q/q)

∗ 〈j1(q)〉νnjL Y
µ
1 (q

′/q′) 〈j1(q′)〉νnjL ·(
L 1 l

−m− µ µ m

)2(
l 1

2
j

m 1
2

−m− 1
2

)2

|Dν
L(m+µ)|2δ(EF − EI − E).

(3.64)

For systems where states with the same L can be considered degenerate with respect
to M ,17 this can be written as [72]

S(q, q′, E) =
∑∫
ν

1∑
µ=−1

∑
L

12π(2l + 1)(2L+ 1)(2j + 1)

(
L 1 l
0 0 0

)2

CµjlL ·

Y µ
1 (q/q)

∗ 〈j1(q)〉νnjL Y
µ
1 (q

′/q′) 〈j1(q′)〉νnjL |D
ν
L|2δ(EF − EI − E)

(3.65)

17Strictly speaking, this degeneracy is lifted by the magnetic field. However, for typical fields, this
energy splitting is well below 1meV, which, in turn, is well below the energy resolution of current
instruments.
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l → L = l + 1

j = l + 1
2

j = l − 1
2

µ = 1 1
6(2l+1)

+ l
12(2l+1)(l+1)

1
6(2l+1)

− 1
12(2l+1)

µ = 0 1
6(2l+1)

1
6(2l+1)

µ = −1 1
6(2l+1)

− l
12(2l+1)(l+1)

1
6(2l+1)

+ 1
12(2l+1)

l → L = l − 1

j = l + 1
2

j = l − 1
2

µ = 1 1
6(2l+1)

− 1
12(2l+1)

1
6(2l+1)

+ l+1
12l(2l+1)

µ = 0 1
6(2l+1)

1
6(2l+1)

µ = −1 1
6(2l+1)

+ 1
12(2l+1)

1
6(2l+1)

− l+1
12l(2l+1)

Table 3.1.: Tables of the coefficients CµjlL (eq. 3.67) for dipole-allowed transitions as
calculated using Mathematica by Wolfram Research. Note that not all
transitions are necessarily possible (e.g., for l = 0, only transitions with
j = l + 1

2
and L = l + 1 are possible).

with

CµjlL :=
∑
m

(
L 1 l

−m− µ µ m

)2(
l 1

2
j

m 1
2

−m− 1
2

)2

. (3.66)

These coefficients can be calculated for all possible combinations of indices (see tab. 3.1).
Interestingly, the values are all linear in µ:

CµjlL =

{
1

6(2l+1)
·
(
1 + µ

2
· CjlL

)
j, l, L ≥ 0, |µ| ≤ 1, L = l ± 1, j = l ± 1

2

0 otherwise
(3.67)

with

CjlL =

{
−
(
− l
l+1

)(L−1)
(
3
2
−|L−j|

)
j, l, L ≥ 0, L = l ± 1, j = l ± 1

2

0 otherwise.
(3.68)

Thus, the expression for the MDFF can be rearranged to read

S(q, q′, E) =
∑∫
ν

∑
L

2π(2L+ 1)(2j + 1)

(
L 1 l
0 0 0

)2

|Dν
L|2δ(EF − EI − E) ·

〈j1(q)〉νnjL 〈j1(q
′)〉νnjL

[(
1∑

µ=−1

Y µ
1 (q/q)

∗Y µ
1 (q

′/q′)

)
+

CjlL
2

(
Y 1
1 (q/q)

∗Y 1
1 (q

′/q′)− Y −1
1 (q/q)∗Y −1

1 (q′/q′)
)]
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=
∑∫
ν

∑
L

2π(2L+ 1)(2j + 1)

(
L 1 l
0 0 0

)2

|Dν
L|2δ(EF − EI − E) ·

〈j1(q)〉νnjL 〈j1(q
′)〉νnjL

(
3

4π
· q · q′

qq′
+ iCjlL=

(
Y 1
1 (q/q)

∗Y 1
1 (q

′/q′)
))

.

(3.69)

With

Y 1
1 (q/q) = −

√
3

8π
· qx + iqy

q
, (3.70)

the last term can be evaluated to

=
(
Y 1
1 (q/q)

∗Y 1
1 (q

′/q′)
)
=

3

8π
· qxqy

′ − qyqx
′

qq′
=

3

8π
· (q × q′)z

qq′
, (3.71)

giving

S(q, q′, E) =
∑∫
ν

∑
L

3

2
(2L+ 1)(2j + 1)

(
L 1 l
0 0 0

)2

|Dν
L|2δ(EF − EI − E) ·

〈j1(q)〉νnjL 〈j1(q
′)〉νnjL

(
q · q′

qq′
+ i

CjlL
2

(q × q′)z
qq′

)
·

=:
∑∫
ν

∑
L

AνnjL(E) · 〈j1(q)〉νnjL 〈j1(q
′)〉νnjL

(
q · q′

qq′
+ i

CjlL
2

(q × q′)z
qq′

)
,

(3.72)

which is the generalization of eq. 3.59 to the spin-polarized case.

3.6. Diagonalization of the mixed dynamic form factor

This section is based on [58, 73]

The MDFF (eq. 3.51) not only looks very complicated, it is generally also quite time-
consuming to calculate and effectively hides the underlying physics of the transitions.
The numerical inefficiency comes from the fact that there are (2λ+ 1)(2λ′ + 1) combi-
nations (µ, µ′) for each combination (λ, λ′), which all need to be taken into account in
the calculation. However, this number of terms can be reduced as will be shown in
this section.
The key observation is that the MDFF can be written in the form

S(q, q′, E) =
∑
λλ′µµ′

∑
LL′SS′

(Y µ
λ (q/q) 〈jλ(q)〉LS)

∗ ΞλµLS,λ′µ′L′S′

(
Y µ′

λ′ (q
′/q′) 〈jλ′(q′)〉L′S′

)
=
∑
αα′

gα(q)
∗ Ξα,α′ gα′(q′)

= g(q)† ·Ξ · g(q′). (3.73)
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Here, it was assumed that the radial wave functions do not depend on ν, but only
on the energies (and hence are identical for all ν considered, which lie on an energy
shell). Moreover, the constant indices n, j, E were omitted for the sake of clarity.
The formulation above makes clear that the MDFF is in fact a hermitian sesquilinear
form18; hereby,

α := (λ, µ, L, S) (3.74)

is a shorthand notation for all appearing indices,

gα(q) := Y µ
λ (q/q) 〈jλ(q)〉LS (3.75)

are the components of the vector-valued function of g(q) which includes the complete
q dependence of the MDFF, and

Ξα,α′ =
∑∫
ν

∑
mm′

∑
MM ′

iλ−λ
′
4π(2l + 1) ·

√
(2L+ 1)(2L′ + 1)(2λ+ 1)(2λ′ + 1) ·(
L λ l
0 0 0

)(
L′ λ′ l
0 0 0

)(
L λ l

−M µ m

)(
L′ λ′ l

−M ′ µ′ m′

)
·∑

jz

(−1)M+M ′
(2j + 1)

(
l 1

2
j

m S −jz

)(
l 1

2
j

m′ S ′ −jz

)
·

(Dν
LMS)

∗Dν
L′M ′S′δ(EF − EI − E) (3.76)

are the components of a matrix. In the following, it is assumed that there are only
finitely many α (which is equivalent to including only transitions and states up to
certain maximum values of λ and L).
It is straight-forward to show that

Ξ∗
α,α′ = Ξα′,α ⇒ Ξ† = Ξ, (3.77)

so Ξ is hermitian. Since all hermitian matrices are normal matrices and all normal
matrices are diagonalizable by a unitary transformation, a unitary matrix U must
exist for which

D = UΞU † (3.78)

is diagonal. Therefore, the MDFF can be written as

S(q, q′, E) = g(q)† ·Ξ · g(q′)

= g(q)† ·U †U ·Ξ ·U †Ug(q′)

= (Ug(q))† ·D · (Ug(q′))

=: g̃(q)† ·D · g̃(q′). (3.79)

18For q = q′, this gives rise to a (real-valued) hermitian form. Hermitian forms are the generalization
of quadratic forms over the real numbers to the complex field. Hence, in literature, the term
“quadratic form” is sometimes used synonymously (albeit somewhat incorrectly).
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This corresponds to a transformation from a spherical harmonics basis to a symmetry-
adapted basis for the transitions. The former is the natural basis for the general
description of the XDOS, while the latter is adapted to the calculation of a specific
system. Numerically, the diagonalization has the advantage that the number of terms
to consider is reduced from at most n2 to at most n, assuming Ξ is an n× n matrix.
Moreover, in practice, most diagonal elements of D will be negligibly small.
Even more, Ξ is not only hermitian, it is also positive-semidefinite. This is most

easy to see by writing Ξ as19

Ξ = ξ† · ξ ⇔ Ξα,α′ =
∑
β

ξ∗α,βξβ,α′ (3.80)

with β = (ν, jz) and

ξβ,α′ =
∑
m′

∑
M ′

(−1)M
′
i−λ

′√
4π(2l + 1)(2L′ + 1)(2λ′ + 1)(2j + 1) ·(

L′ λ′ l
0 0 0

)(
L′ λ′ l

−M ′ µ′ m′

)(
l 1

2
j

m′ S ′ −jz

)
Dν
L′M ′S′ . (3.81)

Since all matrices of the form ξ† ·ξ are positive-semidefinite20, Ξ is positive-semidefinite.
Hence, all its eigenvalues (these are the diagonal elements of D) are non-negative.
Physically, this can be understood from the relation of the MDFF to the density

matrix of the probe electron and to the DDSCS. Since λ, µ, L, S are good quantum
numbers, channels with different α can in principle be separated in experiments. The
corresponding partial DDSCS would then be (c.f. eqs. 3.36 and 3.24)

∂2σ

∂E∂Ω

∣∣∣∣
α

∝ gα(q) ·Ξ · gα(q) ≥ 0, (3.82)

because the DDSCS and the resulting probability current cannot be negative. Hence,
one finds

x ·Ξ · x ≥ 0 ∀x, (3.83)

which is exactly the definition of a positive semi-definite matrix. Alternatively, it can
be argued that the MDFF behaves as a density matrix (in fact, for an incident plane
wave, the reduced density matrix directly after the interaction is ρ(q, q′) ∝ S(q, q′, E)
(eqs. 3.23 and 3.24)). Thus, the diagonal elements of D correspond to probabilities,
which must be non-negative.

As the diagonal elements of D are non-negative, the MDFF can also be written as
a direct product

S(q, q′, E) = ḡ(q)† · ḡ(q′), (3.84)

19Here, it is assumed that there are only finitely many values for ν which all lie on the “correct”
energy shell.

20For a positive-semidefinite matrix Ξ, it must hold that x† · Ξ · x ≥ 0 ∀x. For Ξ = ξ† · ξ, this
is equivalent to x† · ξ† · ξ · x = (ξx)† · (ξx) ≥ 0 ∀x. Since a scalar product always obeys
‖y‖2 = y† · y ≥ 0 ∀y, setting y := ξx proves that Ξ is positive-semidefinite.
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where

ḡα(q) :=
√
Dα,α g̃α(q) (3.85)

is a (not necessarily normalized) vector. This has the practical advantage that all
information is contained in the vector q̄(q) and one does not have to drag the matrix
D through all calculations.
The rMDFF can be computed by a simple Fourier transform of the vector ḡ(q).

Thus, the rMDFF reads

S(r, r′, E) = ḡ(r)† · ḡ(r′). (3.86)

Since the XDOS is a property of the target alone, Ξ is known in advance, and the
transformation U only has to be computed once, which can be done in a pre-processing
step before the rest of the simulation of the probe beam. In practice, this procedure
is helpful if the time required to calculate the inelastic scattering (i.e., the time
required to apply the MDFF to a given density matrix) is small compared to the
total simulation time. This is the case, e.g., in multi-slice calculations, where the
elastic propagation dominates the calculation time. In that case, diagonalizing the
MDFF reduces the number of waves which have to be propagated through the crystal,
thereby significantly reducing the computation time. If, on the other hand, the inelastic
scattering is the dominant factor for the calculation (e.g., because the eigenfunctions of
the elastic Hamiltonian and the decomposition of the probe beam into those functions
are known), the diagonalization method may not be beneficial due to the additional
matrix multiplications necessary to get ḡ(q).

3.6.1. Simple examples

In this section, the diagonalization technique will be applied to two simple toy-models.
For more realistic simulations, see sec. 4.2.2.

3.6.1.1. The spin-unpolarized isolated atom

In the isolated atom model, L, M , and S are good quantum numbers. Hence, states
with different L, M , or S are independent and, by definition, no cross-terms occur.
Following the derivation in sec. 3.5.1, one arrives at a diagonal matrix

Ξαα′ =

4π(2j + 1)(2L+ 1)

(
L λ l
0 0 0

)2∑∫
ν̄

|Dν̄
L|2δ(EF − EI − E)

 δλλ′δµµ′δLL′δSS′ .

(3.87)

This is already in the required form, so no additional transformation is necessary.
What makes this case interesting is the fact that many transformations are possible
without altering the matrix Ξ. Any unitary matrix U that is block-diagonal with
respect to λ and L (i.e., it may mix terms with different M or S within a block,
but never mixes blocks) leaves Ξ unchanged. This can be understood immediately
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by writing the diagonal submatrix which has the diagonal element d as d1 with a
suitably-sized unit matrix and calculating the transformation

U · (d1) ·U † = dU−1U = d1. (3.88)

Prominent examples of such behavior are most transitions commonly occurring in
EELS experiments for systems which can be modeled well using the isolated atom model.
In those systems, dipole-allowed transitions are dominant and only transitions with a
particular L are considered,21 as, for instance, in the case of K edges (l = 0 → L = 1)
or L2,3 edges (l = 1 → L = 2). Under these circumstances, only one block occurs, and
U is trivially block-diagonal for all possible matrices. This implies that any basis is
suitable for describing the EELS experiment. It also means that any basis inevitably
leads to a rotationally invariant MDFF whose q and q′ dependence is given by (see
sec. 3.5.1)

Pλ

(
q · q′

qq′

)
〈jλ(q)〉 〈jλ(q′)〉 . (3.89)

3.6.1.2. The fully spin-polarized case

In the fully spin-polarized case, it is evident from eq. 3.72 that even for dipole-allowed
transitions, the MDFF is not diagonal in a Cartesian basis (qx, qy, qz) as terms of
the form qxq

′
y etc. occur in the cross-product q × q′. Assuming that the system

under investigation has sufficiently high symmetry and the transition order is low
enough, eq. 3.63 shows that the MDFF is in fact diagonal in a µ basis. Therefore, the
diagonalization routine will not alter Ξ. However, a lot can be learned from Ξ, as will
be shown in the following.
For simplicity, only the practically most relevant case of dipole-allowed transitions

(λ = 1) of an L2,3 edge (l = 1 → L = 2) will be considered here. Inserting these values
into eq. 3.65 gives22

Ξj=3/2 = χ

3
4

5

 = χ

4
4

4

+

−1
0

1


Ξj=1/2 = χ

3
2

1

 = χ

2
2

2

+

1
0

−1

 (3.90)

with the abbreviation χ = 4π
3

∑∫
ν
|Dν

2 |2δ(EF − EI − E).
This directly shows several interesting aspects. Both Ξ matrices are composed of two

terms each: a “direct term” that is proportional to the unit matrix and an “OAM term”

21Of course final states with different L exist. However, these are separated in energy by crystal fields
which — in the simple isolated atom model — are not included. What remains from a practical
perspective is the fact that only transitions to one particular L are measurable at a given energy
loss.

22The matrix elements which are zero are suppressed for clarity.
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that is µ-dependent. The direct term exhibits the familiar L2 : L3 branching ratio of
1 : 2. This has its origin in the number of available initial states |I〉 (2 for j = 1/2 vs.
4 for j = 3/2). Additionally, the µ-dependency of the OAM term indicates that the
transfer of certain quanta of OAM is more likely than the transfer of others. This gives
rise to vortex beams and describes the energy-loss magnetic chiral dichroism (EMCD)
effect [38, 47, 68]. Moreover, the EMCD effect of the two edges is equal in magnitude,
but with opposite signs, as is well-known from simulations and experiments (see,
e.g., [47, 68]).
In summary, the theoretical approach presented here implicitly produces an accurate

description of many effects, ranging from common isotropic EEL spectra over the
branching ratio to more complex phenomena such as the EMCD effect.

3.7. Modeling the radial wave function overlap

In the last section, only the properties of the XDOS were considered (e.g., symmetries,
degeneracies, etc.). This section will deal with the weighted radial wave function
overlap and methods to calculate (or approximate) it.

3.7.1. Small angle approximation

The small angle approximation23 is by far the most severe approximation discussed
here, but also yields the simplest formula. Using the Taylor expansion of the spherical
Bessel function (eq. C.19) up to first order,24

jλ(qR) ≈
(qR)λ

(2λ+ 1)!!
, (3.91)

the weighted radial wave function overlap can be written as

〈jλ(q)〉 ≈
qλ

(2λ+ 1)!!

∫ ∞

0

uF (R)
∗Rλ+2uI(R)dR =:

qλ

(2λ+ 1)!!
·MLλl, (3.92)

where M is a q-independent matrix element.
With this formula, the MDFF for spin-unpolarized isolated atoms, eq. 3.45, (or,

similarly, eq. 3.58 for sufficiently symmetric crystals) takes the particularly simple
form

S(q, q′, E) = (2L+ 1)(2l + 1)(2λ+ 1) ·∑
λ

Pλ

(
q · q′

qq′

)
(qq′)λ

((2λ+ 1)!!)2

∑
Ll

(
L λ l
0 0 0

)2

|MLλl|2. (3.93)

23This approximation is often (but in an unfortunate way) referred to as dipole approximation,
although it does not directly have anything to do with the transition order directly.

24The “double factorial” is defined as n!! = n·(n−2)·. . .·3 for odd integers n and as n!! = n·(n−2)·. . .·2
for even integers.
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If one considers only dipole-allowed transitions (λ = 1), this can be simplified further
to read

S(q, q′, E) =
(2L+ 1)(2l + 1)

3
(q · q′)

∑
Ll

(
L 1 l
0 0 0

)2

|ML1l|2 =: c q · q′, (3.94)

similar to eq. 3.89. This is a well-known, often used form of the MDFF [23, 51,
61, 62, 72, 74, 75]. However, by construction, it is only valid for small scattering
angles; for large momentum transfers, it would diverge. This is unphysical, as it
would give rise to a diverging total scattering cross section which would violate the
conservation of intensity. As a “remedy”, a cut-off momentum transfer is sometimes
introduced [51, 62, 76, 77]. This is only reasonable if the imaging process is limited
by a (sufficiently small) objective aperture that limits the scattering angles to the
range where the small angle approximation holds. In particular, this is of no use for
high-resolution imaging, where large scattering angles are required.

3.7.2. Atomic radial wave functions

This section is based on [78].

To alleviate the problems of the small angle approximation, one can calculate the
weighted radial wave function overlap integral analytically for atomic wave functions.
As will become apparent below, this results in formulas that are only slightly more
complex (in a computational sense), but are applicable also to large momentum trans-
fers. This has the advantage of enabling more accurate predictions and interpretations
of experiments without the need for numerical integration of wave function data
obtained from other programs such as DFT-based packages (which often requires a lot
of effort). Moreover, the formulas derived in this section are easily implemented in any
simulation program that already uses the dipole approximation, as it only requires
the replacement of the q · q′ term by a different term composed only of elementary
functions and operations found in all programming languages.

3.7.2.1. Slater-type orbitals

Slater-type orbitals (STOs) are defined as [79, 80]

uI,F (R) := NRnI,F−1e−ζI,FR/aµ , (3.95)

where nI,F is the effective principal quantum number of the initial or final state (which
is not necessarily integer) and aµ is the Bohr radius. ζI,F := (Z − sI,F )/nI,F is the
effective nuclear charge, with the physical nuclear charge Z and a screening factor s.
The subscripts I and F serve to distinguish between initial and final states. The
normalization constant is given by

NI,F =

√
(2ζI,F )2nI,F+1

a
2nI,F+1
µ Γ(2nI,F + 1)

. (3.96)
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It is important to note that the STOs have the simplest form imaginable for solutions of
the Schrödinger equation in a Coulomb potential25. In particular, they are nodeless and
strictly positive, i.e., U(R) > 0 ∀R > 0. As a consequence, STOs of the same angular
momentum quantum number L, but different principal quantum numbers nI , nF
are not orthogonal.26 Hence, STOs naturally give wrong predictions for transitions
that do not change L (e.g., monopole transitions, some quadrupole transitions, etc.).
Nevertheless, for the practically important dipole case (where only transitions l → l±1
are allowed due to the selection rules), STOs are a good approximation.

In the following, both the initial and the final state radial wave functions will be
modeled using STOs. With this approach, the weighted radial wave function overlap
reads

〈jλ(q)〉 = NINF

∫ ∞

0

RnI+nF e−(ζI+ζF )R/aµjλ(qR)dR

=: NINF

∫ ∞

0

Rne−ζRjλ(qR)dR, (3.97)

where the abbreviations n := nI + nF and ζ := (ζI + ζF )/aµ were introduced. With
eq. C.23, this can also be written as

〈jλ(q)〉 = NINF

bλ+1
2

c∑
k=0

∫ ∞

0

[
Akλ sin(qR)

qλ−2k+1
Rn−λ+2k−1e−ζR +

Bk
λ cos(qR)

qλ−2k+2
RnI+nF−λ+2k−2e−ζR

]
dR. (3.98)

To evaluate the integrals, one can use eq. C.25 to find∫ ∞

0

Rae(−ζ+iq)RdR =
Γ(a+ 1)

(ζ − iq)a+1
= Γ(a+ 1)

(
ζ + iq

ζ2 + q2

)a+1

∀a > −1, (3.99)

as well as Euler’s formula [31],

sin(qR) = =
(
eiqR
)

cos(qR) = <
(
eiqR
)
. (3.100)

Observing that

ζ + iq

ζ2 + q2
=

1√
ζ2 + q2

e
i arctan

(
q
ζ

)
, (3.101)

25The exponential term is the (square-integrable) solution of the asymptotic Schrödinger equation.
The polynomial prefactor can be interpreted as the leading term close to the origin in the
Hydrogen-like orbitals (see sec. 3.7.2.2).

26The orthogonality for states with different L is ensured by the properties of the spherical harmonics
which model the angular part of the wave functions and which are not included here.
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it follows that∫ ∞

0

Rae−ζR sin(qR)dR = Γ(a+ 1)
= ((ζ + iq)a+1)

(ζ2 + q2)a+1

= Γ(a+ 1)
sin
(
(a+ 1) arctan

(
q
ζ

))
(ζ2 + q2)

a+1
2∫ ∞

0

Rae−ζR cos(qR)dR = Γ(a+ 1)
< ((ζ + iq)a+1)

(ζ2 + q2)a+1

= Γ(a+ 1)
cos
(
(a+ 1) arctan

(
q
ζ

))
(ζ2 + q2)

a+1
2

. (3.102)

In addition, the identities

cos(arctan(x)) =
1√

sin(arctan(x))2+cos(arctan(x))2

cos(arctan(x))2

=
1√

1 + x2

sin(arctan(x)) =
√

1− cos(arctan(x))2 =
x√

1 + x2

cos(x− arctan(y)) = cos(x) cos(arctan(y)) + sin(x) sin(arctan(y))

=
1√

1 + y2
(cos(x) + y sin(x))

sin(x− arctan(y)) = sin(x) cos(arctan(y))− cos(x) sin(arctan(y))

=
1√

1 + y2
(−y cos(x) + sin(x)) (3.103)

hold for all x, y ≥ 0.
Thus, the weighted radial wave function overlap takes the form

〈jλ(q)〉 = NINF

bλ+1
2

c∑
k=0

AkλΓ(n− λ+ 2k) sin
(
(n− λ+ 2k) arctan

(
q
ζ

))
qλ−2k+1(ζ2 + q2)

n−λ+2k
2

+

Bk
λΓ(n− λ+ 2k − 1) cos

(
(n− λ+ 2k − 1) arctan

(
q
ζ

))
qλ−2k+2(ζ2 + q2)

n−λ+2k−1
2


=

NINF

q(ζ2 + q2)
n
2

bλ+1
2

c∑
k=0

(
ζ2 + q2

q2

)λ
2
−k

·[
AkλΓ(n− λ+ 2k) sin

(
(n− λ+ 2k) arctan

(
q

ζ

))
+√

ζ2 + q2

q2
Bk
λΓ(n− λ+ 2k − 1) cos

(
(n− λ+ 2k − 1) arctan

(
q

ζ

))]
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=
NINF

q2(ζ2 + q2)
n
2

bλ+1
2

c∑
k=0

(
ζ2 + q2

q2

)λ
2
−k

Γ(n− λ+ 2k − 1) ·[
q((n− λ+ 2k − 1)Akλ +Bk

λ) sin

(
(n− λ+ 2k) arctan

(
q

ζ

))
+

ζBk
λ cos

(
(n− λ+ 2k) arctan

(
q

ζ

))]
. (3.104)

This formula looks much more complicated than it is in actual calculations, in which
λ is typically a small number, e.g., λ ≤ 2. Therefore, the sum is reduced to only very
few terms. In particular, for dipole-allowed transitions (λ = 1), the weighted radial
wave function overlap is given by27

〈j1(q)〉 =
NINFΓ(n− 1)

q(ζ2 + q2)
n
2

[√
ζ2 + q2

q2
sin

(
(n− 1) arctan

(
q

ζ

))
−

(n− 1) cos

(
n arctan

(
q

ζ

))]
=
NINFΓ(n− 1)

q2(ζ2 + q2)
n
2

[
ζ sin

(
n arctan

(
q

ζ

))
− nq cos

(
n arctan

(
q

ζ

))]
.

(3.105)

As stated before, this formula only uses elementary functions and simple operations
and is therefore easy to implement in a simulation program. Unlike the small-angle
approximation, it is valid for all q. One minor disadvantage is that, for q → 0,
some terms diverge. In total, the formula still gives the correct, finite results, of
course. However, numerically, it is favorable to use the small angle approximation (see
sec. 3.7.1) for q ≈ 0. For STOs, eq. 3.92 gives

〈jλ(q)〉 ≈
NINF q

λ

(2λ+ 1)!!

∫ ∞

0

Rn+λe−ζRdR =
NINFΓ(n+ λ+ 1)

(2λ+ 1)!!
· qλ

ζn+λ+1
. (3.106)

3.7.2.2. Hydrogen-like orbitals

In the previous section, the weighted radial wave function overlap was calculated in
the STO approximation, which works well for dipole-allowed transitions, but gives
wrong results for some non-dipole transitions because of the lack of nodes. A remedy
for this can be found in Hydrogen-like orbitals (HLOs). These are defined as [65]

uI,F (R) := NI,F e
−ζI,FR/(nI,F aµ)

(
2ζI,FR

nI,Faµ

)lI,F
L
2lI,F+1
nI,F−lI,F−1

(
2ζI,FR

nI,Faµ

)
, (3.107)

where ζI,F is the (possibly screened) nuclear charge, nI,F is the principal quantum
number (contrary to the STOs, it has to be an integer for HLOs), lI,F is the orbital

27More tables for commonly used cases can be found in [78].
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angular momentum quantum number, aµ is the Bohr radius, Lmn (x) is the generalized
Laguerre polynomial, and

NI,F =

√(
2ζI,F
nI,Faµ

)3
(nI,F − lI,F − 1)!

2nI,F (nI,F + lI,F )!
(3.108)

is the normalization constant.
The generalized Laguerre polynomials can be written in the form [31]

Lαn(x) =
n∑
k=0

(−1)k
(
n+ α

n− k

)
xk

k!
. (3.109)

Thus, the product of radial wave functions and the Jacobian determinant R2 takes the
form

NINF e
−ζRR2

(
2ζIR

nIaµ

)lI (2ζFR

nFaµ

)lF
L2lI+1
nI−lI−1

(
2ζIR

nIaµ

)
L2lF+1
nF−lF−1

(
2ζFR

nFaµ

)
= NINF e

−ζR
(

2ζI
nIaµ

)lI ( 2ζF
nFaµ

)lF
RlI+lF+2

nI+nF−lI−lF−2∑
j=0

j∑
k=0

(−1)j

k!(j − k)!
·

(
nI + lI

nI − lI − 1− k

)(
2ζIR

nIaµ

)k (
nF + lF

nF − lF − 1− j + k

)(
2ζFR

nFaµ

)j−k
= NINF e

−ζR
nI+nF−lI−lF−2∑

j=0

RlI+lF+j+2

j∑
k=0

(
2ζI
nIaµ

)k+lI ( 2ζF
nFaµ

)j−k+lF
·

(−1)j

k!(j − k)!

(
nI + lI

nI − lI − 1− k

)(
nF + lF

nF − lF − 1− j + k

)
= NINF e

−ζR
nI+nF∑

b=lI+lF+2

Rb

[
b−lI−lF−2∑

k=0

(
2ζI
nIaµ

)k+lI ( 2ζF
nFaµ

)b−k−lI−2

·

(−1)b+lI+lF

k!(b− lI − lF − k − 2)!

(
nI + lI

nI − lI − 1− k

)(
nF + lF

nF + lI + 1− b+ k

)]
=: NINF e

−ζR
nI+nF∑

b=lI+lF+2

pbR
b, (3.110)

where ζ := ζI/(nIaµ) + ζF/(nFaµ) was introduced and the product of the two sums
was calculated using the Cauchy product formula. Consequently, the weighted radial
wave function overlap reads

〈jλ(q)〉 = NINF

nI+nF∑
b=lI+lF+2

pb

∫ ∞

0

Rbe−ζRjλ(qR)dR. (3.111)

These integrals are all of the same form as those in eq. 3.97. Consequently, the results
can be used directly. In addition, the fact that a is an integer for HLOs allows using
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the expansion28

(ζ + iq)a+1 = ζa+1

(
1 +

iq

ζ

)a+1

= ζa+1

a+1∑
j=0

(
a+ 1

j

)(
iq

ζ

)j

= ζa+1

ba+1
2

c∑
j=0

(
a+ 1

2j

)
(−1)j

(
q

ζ

)2j

+ i

ba+1
2

c∑
j=0

(
a+ 1

2j + 1

)
(−1)j

(
q

ζ

)2j+1
 .

(3.112)

Thus, the weighted radial wave function overlap takes the form

〈jλ(q)〉 = NINF

nI+nF∑
b=lI+lF+2

pb

bλ+1
2

c∑
k=0

[
Akλ ·

Γ(b− λ+ 2k)ζb−λ+2k
∑b b−λ+2k

2
c

j=0

(
b−λ+2k
2j+1

)
(−1)j

(
q
ζ

)2j+1

qλ−2k+1(ζ2 + q2)b−λ+2k
+Bk

λ ·

Γ(b− λ+ 2k − 1)ζb−λ+2k−1
∑b b−λ+2k−1

2
c

j=0

(
b−λ+2k−1

2j

)
(−1)j

(
q
ζ

)2j
qλ−2k+2(ζ2 + q2)b−λ+2k−1


= NINF

nI+nF∑
b=lI+lF+2

pb

bλ+1
2

c∑
k=0

ζb−λ+2k+1Γ(b− λ+ 2k − 1)

qλ−2k+2(ζ2 + q2)b−λ+2k
·Akλ(b− λ+ 2k − 1)

b b−λ+2k
2

c∑
j=0

(
b− λ+ 2k

2j + 1

)
(−1)j

(
q

ζ

)2j+2

+

ζ2 + q2

ζ2
Bk
λ

b b−λ+2k−1
2

c∑
j=0

(
b− λ+ 2k − 1

2j

)
(−1)j

(
q

ζ

)2j
 . (3.113)

Again, this formula looks rather complicated. However, it has the simple structure
P (q)/Q(q), where P and Q are polynomials. This avoids the (computationally time
consuming) trigonometric functions in eq. 3.104 for STOs. In addition, it is more
realistic as states with different n but the same L are orthogonal.

3.7.3. DFT radial wave functions

A third alternative is to use radial wave functions that were calculated ab-initio. In this
work, the DFT code WIEN2k [49] together with the program TELNES.3 [70, 81]

28For odd a, this holds because
(
a+1
a+2

)
= 0.
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was used for that purpose. The obvious advantages of this method are the improved
accuracy over the simple models based on isolated atoms, as well as the proper
inclusion of the energy dependence of the wave function (which is quite weak, though).
The major disadvantage is that the wave functions — and hence the wave function
overlap — cannot be expressed in a closed algebraic form as they are only known on a
(logarithmic) grid.

To obtain the radial wave functions, I wrote a program that uses the TELNES.3
code to extract the (real) large and small components of the spinor (ψlarge, ψsmall)>

and calculates the weighted radial wave function overlap by

〈jλ(q)〉 =
∫ RMT

0

(ψlarge
I (R)ψlarge

F (R) + α2
fψ

small
I (R)ψsmall

F (R))jλ(qR)dR. (3.114)

Here, αf is the fine structure constant and RMT is the muffin-tin radius defined in the
WIEN2k structure file. The integration is performed numerically using a trapezoidal
scheme and a linear interpolation of the wave functions between the sampling points.

3.7.4. Comparison of radial wave function models

Probably the most important observation can be made by looking at transitions of
the form (nI , lI = nI − 1) → (nF = nI + 1, lF = nF − 1). These are of special
importance because for dipole-allowed transitions, both K edges (s → p) and the
(dominant) white-line contributions to L2,3 edges (p→ d) are of this form. Under the
circumstances mentioned above, the Laguerre polynomials take the form

L2lI+1
nI−lI−1(x) = L2nI−1

0 (x) = 1 and L2lF+1
nF−lF−1(x) = L2nI+1

0 (x) = 1. (3.115)

Hence, the wave functions contributing to these transitions are nodeless and, con-
sequently, the results of HLOs and STOs coincide. So, for these transitions, the
main difference between STOs and HLOs lies in the choice of parametrization (quo-
tient of polynomials with integer n versus trigonometric functions with (possibly)
non-integer n). Only for other transition channels (and, particularly, non-dipolar
transitions), HLOs give a significant advantage.
Fig. 3.1 shows a comparison of small angle, STO, HLO, and WIEN2k calculations

for several contributions to the L2,3 edge in Si. Several points are worth mentioning:

� The small angle scattering approximation fails completely for λ = 0. For λ > 0,
it works acceptably well only up to q ≈ 1.5�A−1.

� The STO model fails completely for λ = 0 even for small q. For λ > 0, it works
better, but does not capture the zero-crossings. Both these effects are due to the
lack of orthogonality of the initial and final states involved.

� The HLO model works best compared to the WIEN2k calculations as it properly
captures the zero crossings. For large q, it also shows deviations from the
WIEN2k data due to the absence of crystal field effects in the HLO model.
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Figure 3.1.: Weighted radial wave function overlap 〈jλ(q)〉 for the Si L2,3 edge calculated
using the small angle approximation (dash–dotted line), STOs (dashed
line), HLOs (solid line), and WIEN2k (circles). The screening constants
of STOs and HLOs were determined by fitting the curves to the WIEN2k
data for 0 ≤ q ≤ 5.3�A−1. The amplitude of the small-angle scattering
approximation was fitted to the WIEN2k data for 0 ≤ q ≤ 1�A−1. Note
that for 2p → 3d, λ = 1, the STO and the HLO model give identical
results.
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3.8. Combining elastic and inelastic effects

This section is based on [23, 24, 58].

In order to predict and simulate core-loss EELS measurements, both inelastic and
elastic effects have to be considered. While the inelastic mean free path for core
excitations is very large (& µm, owing to the small cross-section [4]), elastic scattering
effects can be seen even for monolayered materials [82, 83]. Hence, one only has to deal
with single core-excitation events29, but multiple (in fact: countless) elastic scattering
events. In particular, elastic scattering does not only affect the incident beam, but also
the outgoing beams. While the combination of inelastic and elastic scattering opens
the doors to many exciting methods such as ALCHEMI [17, 18, 84] and ELCE [19],
elastic scattering is rather an artifact distorting the scattering profiles when one wants
to study the real space wave functions of the target.

3.8.1. Bloch wave formalism

As described in sec. 2.3.1, one possibility for treating elastic scattering effects in a
crystal is the Bloch wave formalism. Since the beam is described in a plane wave basis
in this approach, it is sensible to use the scattering matrix (or MDFF) in momentum
space representation. Owing to eq. 2.55, the possible (initial and final) probe states
read

|ψj,kz〉 =
∑
g

Cj
g |χj + g, kz + γj〉 . (3.116)

With the abbreviation |kjg〉 := |χj + g, kz + γj〉, the incident density operator thus
takes the form

ρ̂i =
∑
jj′

∑
gg′

εjC
j
g

(
εj′C

j′

g′

)∗
|kjg〉 〈k

j′

g′ | . (3.117)

After the inelastic scattering event, the (reduced) density matrix (eq. 3.23) reads

ρ(k,k′) =
∑
jj′

∑
gg′

S(kjg − k,kj
′

g′ − k′)εjC
j
g

(
εj′C

j′

g′

)∗
. (3.118)

Consequently, the probability that the density matrix collapses into a final state |f〉
(which is directly proportional to the EELS signal one can expect from such a process
when measuring |f〉) is

P = 〈f |ρ̂|f〉 =
∫∫

dkdk′ 〈f |k〉 〈k′|f〉ρ(k,k′). (3.119)

29Not only is the probability for double excitation extremely small, it would also double the energy
loss of the probe beam and hence would no longer be in the energy region under investigation.
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For a final Bloch state

〈k′|f〉 =
∑
l

∑
h

εlC
l
hδ(k

′
⊥ − χl − h)δ(k′z − kz + qE − γl) =:

∑
l

∑
h

εlC
l
hδ(k

′ − klh),

(3.120)

this gives rise to

P =
∑
jj′ll′

∑
gg′hh′

εjC
j
g

(
εj′C

j′

g′

)∗
εl′C

l′

h′
(
εlC

l
h

)∗ S(kjg − klh,k
j′

g′ − kl
′

h′). (3.121)

If one is interested, e.g., in the intensity measured in one particular point in
the diffraction plane, the state |f〉 can be determined by employing the reciprocity
theorem [85, 86]. With it, one can obtain the Bloch state corresponding to a plane
wave coming from the detector and impinging on the bottom crystal surface (also
known as “Kainuma’s reciprocal wave” [87]). One complication here is that in practice,
Bloch waves are typically calculated in such a way that the plane z = 0 is chosen at
the crystal surface. In the present case, this means that the incident wave and the
outgoing wave are calculated with respect to different points of origin and one of them
(typically the outgoing wave) has to be translated accordingly. This gives rise to a
phase factor of

ei(k
l
h−kl

′
h′ )·δz = ei(γl−γl′ )·t, (3.122)

where δz is the offset between the two points of origin and t is the sample thickness.
In addition, if one wants to use the MDFF as described in sec. 3.4 (or one of the

simplifications derived from it in secs. 3.5 and 3.7), one has take into account that the
MDFF is defined with respect to a coordinate system centered on the scattering atom.
This, too, has to be displaced — e.g., by virtue of the Fourier shift theorem (eq. C.5).
For an atom at position x, this results in a phase factor of

ei(k
l
h−kl

′
h′ )·x. (3.123)

Finally, if one has several scattering atoms, the contributions from all of them have
to be summed over incoherently, ultimately leading to30

P =
∑
x

∑
jj′ll′

∑
gg′hh′

εjC
j
g

(
εj′C

j′

g′

)∗
εl′C

l′

h′
(
εlC

l
h

)∗ ·
ei(γl−γl′ )·tei(k

l
h−kl

′
h′ )·xS(kjg − klh,k

j′

g′ − kl
′

h′). (3.124)

This has numerical complexity O(tR2
inR

2
outB

2
inB

2
out), where R denotes the number of

reciprocal vectors to include and B denotes the number of Bloch waves.31 Note that
the scattering kernel only needs to be evaluated at a few points in momentum space,
which can be exploited to speed up calculations (e.g., by caching).

30In eq. 3.124, γl, γl′ ∈ R was assumed, i.e., absorption effects were neglected.
31Note that B ≤ R always holds, as each Bloch wave can be written as linear combination of plane

waves and both the set of plane waves and the set of Bloch waves are linearly independent. Hence,
an upper boundary for the numerical complexity is O(tR4

inR
4
out).
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3.8.2. Multislice formalism

Incorporating inelastic scattering in the multislice approach is even more straight
forward. First, the initial wave function has to be propagated elastically through the
crystal. In each layer, this gives rise to a pure state density matrix (see chap. 2 and
sec. 2.1.1) that can easily be expressed in real space. Therefore, the reduced density
matrix after inelastic scattering is simply given by multiplying the initial density matrix
with the scattering kernel (see eq. 3.23)32. This density matrix has to be propagated
elastically to the end of the crystal. The easiest way to do this is to exploit the unique
properties of the evolution operator (see sec. 2.1.1), to express the density matrix
in some basis, propagate the basis states independently, and reassemble the density
matrix at the exit surface. Obviously, to keep the computational complexity small, it
is beneficial to minimize the number of contributing states, which can be achieved,
e.g., by diagonalizing the scattering kernel first as described in sec. 3.6).
Note that — as in the Bloch wave case — the scattering kernel has to be translated

from the origin to the position of the scattering center. This can be done either directly
or by multiplying the momentum space representation with an appropriate phase
factor before applying the Fourier back transform (see eq. C.5). The former method is
obviously faster, but the latter has the huge advantage that it can properly handle
sub-pixel shifts.
Assuming that the time needed to multiply a density matrix with the scattering

kernel is negligible compared to the multislice propagation (this usually is the case
as the scattering kernels can be calculated beforehand) and that FFTs are used, the
numerical complexity is O(t2BN logN). Here, B denotes the number of non-negligible
basis states needed to describe the scattering kernel and N is the number of pixels
used. Compared to the Bloch wave formalism, the multislice method scales much
better with respect to the number of “expansion states” (in the multislice case, this
number corresponds to the number of pixels and the number of basis states; in the
Bloch wave formalism, it corresponds to the number of reciprocal space vectors and the
number of Bloch waves). However, the multislice approach scales worse with respect
to thickness, rendering it fairly inefficient for thick crystals.

32In principle, the product in eq. 3.23 has to be performed in three dimensions. In the multislice
approach, the state is by definition only expressed in two dimensions. However, as is apparent
from eq. 3.24, the only z dependence of the scattering kernel in real space is a plane wave with
momentum qE . This simply describes the characteristic change of momentum in z direction and
can most easily be taken into account by choosing a suitable basis for propagation after the
inelastic scattering event.



4. Applications
Es ist nicht genug, zu wissen,
man muss auch anwenden.
[Knowing is not enough;
we must apply.]

(Johann Wolfgang von Goethe)

The primary goal of this work is to study the real space wave functions of (thin
crystalline) targets with EELS. According to the previous chapter, direct imaging
of target states is not possible in the TEM. Instead, only transitions between an
initial and a final state influence the probe beam. In particular, after triggering such
a transition, the outgoing beams will have a characteristic energy and momentum
distribution, which can be measured in practice.
Nevertheless, much can be learned about the real space wave functions of the target’s

final states, because the target’s initial state can typically be assumed to be known
(because of the tight binding of the initial state, it behaves atom-like in very good
approximation). Thus, studying the transitions from a (known) initial state to a final
state can actually be used to investigate said final state. In particular, the final states
are sensitive to crystal field effects, dopant atoms, defects, etc. Moreover, they are
decisive for transport properties such as conductivity, but also for optic properties. So,
being able to measure and understand them is the key to understanding the whole
system.
In this chapter, EELS measurements are presented from which conclusions about

the real space wave functions of the target can be drawn. In addition, predictions are
made about future experiments and applications.
In practice, the dominant contribution to an EEL spectrum comes from dipole-

allowed transitions. Therefore, this chapter will use λ = λ′ = 1 unless explicitly stated
otherwise.

4.1. Radial wave functions

This section is based on [88, 89].

From eq. 3.41 as well as eqs. 3.51 and 3.50, it can be deduced that the target’s radial
wave functions only enter into the computation in the 〈jλ(q)〉. In particular, for a
single L = L′ and in the absence of spin-polarization, the MDFF (eq. 3.73) reads

S(q, q′, E) = 〈j1(q)〉∗ 〈j1(q′)〉
∑
µµ′

Y µ
1 (q/q)

∗Ξµ,µ′Y
µ′

1 (q′/q′). (4.1)
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If elastic scattering can be neglected (i.e., for very thin specimens), an EELS measure-
ment in momentum space corresponds to q = q′.1 For such momentum transfers, the
MDFF gives

S(q, q, E) = | 〈j1(q)〉 |2
∑
µµ′

Y µ
1 (q/q)

∗Ξµ,µ′Y
µ′

1 (q/q). (4.2)

Assuming that the system’s symmetry is high enough that Ξ = Ξ1 (see sec. 3.5), this
simplifies further to

S(q, q, E) = | 〈j1(q)〉 |2 Ξ. (4.3)

Likewise, under these circumstances, the scattering matrix S and, with it, the DDSCS
are proportional to

∂2σ

∂E∂Ω
∝ S(q, q, E) ∝ | 〈j1(q)〉 |2

q4
(4.4)

(see sec. 3.3). Thus, the measurement of the DDSCS (which corresponds directly to
the measurement of the intensity distribution in the diffraction pattern) allows drawing
conclusions about the weighted radial wave function overlap 〈j1(q)〉.
From the latter, in turn, information about the radial wave functions can be

determined. In principle, the wave function overlap can be determined exactly by
virtue of the closure relation (eq. C.18):

〈j1(q)〉 =
∫ ∞

0

uI(R)uF (R)j1(qR)R
2dR∫ ∞

0

〈j1(q)〉 j1(qx)q2dq =
∫ ∞

0

∫ ∞

0

uI(R)uF (R)j1(qR)j1(qx)R
2dR q2dq∫ ∞

0

〈j1(q)〉 j1(qx)q2dq =
π

2

∫ ∞

0

uI(R)uF (R)δ(R− x)dR

2

π

∫ ∞

0

〈j1(q)〉 j1(qx)q2dq = uI(x)uF (x). (4.5)

This would require one to determine 〈j1(q)〉 accurately over a large (ideally the whole)
q range. This is challenging in practice for two reasons. First, the DDSCS falls off
roughly like 1/q2, so the intensity falls off rapidly with increasing q. Consequently,
the signal to noise ratio (SNR) quickly becomes very low. Secondly, for large q, the
assumption that dipole-allowed transitions are dominant breaks down as well [69].
Therefore, 〈j1(q)〉 and, e.g., 〈j2(q)〉 can no longer be distinguished easily at large q.

Consequently, it is normally more favorable to use the inverse approach, i.e., verifying
or disproving a model for the radial wave functions in the target by comparing
measurements to simulated intensity profiles. This has the additional benefit that,

1The intensity in a point k in momentum space is given by the probability of finding the reduced
density operator ρ̂ in the state |k〉, i.e., 〈k|ρ̂|k〉 = ρ(k,k). If the incident wave is a plane wave
with wave vector ki and elastic scattering can be neglected, the initial density matrix before the
inelastic interaction reads ρi(k,k

′) = δ(k−ki)δ(k
′−ki) (see eq. 3.28). Hence, the reduced density

matrix after the inelastic interaction (eq. 3.23) reads ρ(k,k′) = S(ki − k,ki − k′, E). Therefore,
the intensity is given by S(ki − k,ki − k, E) = S(q, q, E) ∝ S(q, q, E)/(q2q′2).
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e.g., elastic scattering or non-dipole allowed transitions can be included easily in the
simulation and hence the results become much more accurate.

There are two complementary methods to measure 〈j1(q)〉 — or, relatedly, the
DDSCS. The DDSCS — and with it the measured intensity — depends on the
four-dimensional parameter space (q, E). This is reduced by the fact that qz = qE is
the (energy-dependent) characteristic momentum transfer. Thus, the parameter space
is essentially three-dimensional. The common methods to measure the DDSCS are to
either fix E and measure the momentum distribution in the diffraction plane, or to
fix q and measure the EEL spectrum.2 The former method is called energy-filtered
selected area diffraction (EFSAD) (or energy-filtered diffraction (EFDIF) [93]), the
latter angle resolved electron energy loss spectrometry (AREELS).

In angle resolved electron energy loss spectrometry (AREELS), the primary issue is
the q resolution, which is limited by the aperture used. Since the aperture is finite,
many different q contribute to the spectrum. This significantly hampers the simulation
and interpretation of the results. In EFSAD, on the other hand, the energy resolution
is low due to the use of a finite energy slit. This introduces complications in the
background subtraction, which are manageable, however (see sec. D.2.2). Hence, the
EFSAD method was used in this work.

4.1.1. EFSAD

EFSAD combines the two well-known techniques of selected area diffraction (SAD)
and energy-filtered transmission electron microscopy (EFTEM). By recording an
energy-filtered diffraction pattern, one can obtain very good q resolution (normally at
the cost of energy resolution, defined by the spectrometer slit width). For the purpose of
measuring 〈j1(q)〉, this is ideal. Also, the whole q range is recorded simultaneously, i.e.,
under identical conditions — although several measurements at different energies are
necessary in order to be able to subtract the pre-edge background. The experimental
challenge in EFSAD lies mostly in the TEM alignment. In order to get accurate
energy-filtered measurements, the spectrometer has to be tuned carefully under the
conditions (i.e., magnification/camera length, illumination, etc.) under which it will be
used afterwards for the measurements. To this end, a (more or less) even illumination
of the spectrometer entrance aperture (SEA) is required. This, however, is very difficult
to achieve in diffraction mode where the intensity is naturally peaked at a few very
intense diffraction spots. Moreover, for an easy analysis of the measurements, it is
necessary to reduce the intensities of all but the central spot as much as possible, as
will be outlined below. This can be achieved, e.g., by using very thin samples and/or
tilting into a systematic row condition where the G and −G spots are far away from
the 0 spot.

2A third principal possibility would be to measure in (qy, E) mode [90–92]. This, however, is limited
in q resolution and q range (given by the SEA). Moreover, it requires the precise orientation of
the specimen with respect to the dispersive axis of the spectrometer — a task far from trivial in
practice — and a slit or wedge aperture which was not available for this work.
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After a successful alignment, the measurements can be performed. Note that
it is imperative to have diffraction spots that are as narrow as possible (at the
energy-loss under investigation)3 to be able to interpret the data easily. The background
subtraction can be performed as usual (see sec. D.2.2).4

For the data analysis, one is interested in

Inorm(q⊥) :=
I(q⊥)

I(0)
=

∣∣∣∣∣∣
〈
j1

(√
q2⊥ + q2E

)〉
〈j1 (qE)〉

∣∣∣∣∣∣
2

· q4E
(q2⊥ + q2E)

2
. (4.6)

After some algebraic manipulation, this can be rearranged to read

〈j1 (q)〉 ∝
q2

q2E

√
Inorm

(√
q2 − q2E

)
∀q ≥ qE, (4.7)

where q2 = q2⊥ + q2E was used.
In practice, a relevant issue here is the SNR. The signal and, hence, the SNR5 are

large for small q. However, small q are not particularly interesting, because there, the
small-angle approximation holds. Hence, 〈j1(q)〉 becomes independent of the radial
shape of the orbitals. For the interesting case of larger q, on the other hand, the signal
and SNR become low. Therefore, long exposure times are desirable. However, they
are limited by the necessity of having a point of reference (q⊥ = 0) for normalization,
which implies that the CCD must not be overexposed at the position of the strong
central peak.
To further improve the SNR as well as extend the q range and/or the q resolution,

several images (taken at different q ranges with different exposure times) could be
spliced together. This procedure would lack a fixed reference point, however, and
is therefore not pursued here. Instead, a different approach was used to improve
the SNR. If no diffraction spot would exist, the diffraction pattern would ideally be
rotationally symmetric (since it was assumed above that I(q⊥) only depends on the
magnitude but not on the direction of q⊥). Then, instead of taking just a single line
of pixels, one can average the image over a circle with radius q⊥. Obviously, this
gives a dramatic improvement in the SNR. Unfortunately, the diffraction pattern is
never truly rotationally symmetric. As a compromise, instead of averaging over a
whole circle, the signal was averaged over the circular sector shown in fig. 4.1. This
emphasizes the importance of having weak diffraction spots, which are the main cause
for a breaking of the rotational symmetry and which get stronger with increasing
sample thickness.
Another way of viewing the negative effect (relatively) thick specimens have is the

following: as the specimen thickness increases, the G and -G diffraction spots increase

3This typically involves a parallel incident beam [94] and proper focusing of the energy-filtered
diffraction pattern.

4Interestingly, the exponent r of the E−r background model [4] was found to be independent of the
position in momentum space.

5In the simple case that the shot-noise is dominant, the SNR is
√
N , where N is the signal.
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Figure 4.1.: Contrast-enhanced EFSAD pattern taken at (80.0± 2.5) eV energy loss
with an exposure of 40 s and an ≈ 10 nm thick Si sample in systematic
row condition (including the (1 1 1) spot). The blue area indicates the
area used for the wedge-integration with an opening angle of 15°. The
wedge was not chosen ideally perpendicular to the systematic row due to
aperture artifacts visible in the upper part of the rim of the central spot.

in intensity. At the same time, inelastic scattering from these spots increases as well
and the signal becomes a sum over contributions from all non-negligible diffraction
spots. For small q⊥ � G (i.e., close to the 0 spot), the 1/(q2⊥ + q2E) term naturally
dominates the 1/(q2⊥ +G2 + q2E) term.6 However, for larger q⊥ (i.e., in the interesting
case), the latter becomes comparable in intensity to the former. In that case, the
intensity (normalized to I(0)) would be unnaturally high, owing to the additional
signal coming from the other diffraction spots. Therefore, thin samples and large
G vectors are of paramount importance for the direct interpretability of EFSAD.

A similar (detrimental) effect can originate from convergent illumination or an
unfocused diffraction pattern. Both have the effect of broadening the EFSAD pattern,
with the side-effect of redistributing intensity from high signal areas to low signal areas.
The resulting profile (erroneously) looks as if qE were larger than it actually is.7

Fig. 4.2 shows some experimental data for Si after wedge-integration (as described
above), background subtraction (see sec. D.2.2), and rescaling according to eq. 4.7.
It is clearly evident that 〈j1(q)〉 starts to deviate from the dipole approximation at
q ≈ 10 nm−1. It also shows the inherently low SNR at larger q, owing to the very
low signal intensity in that region. Nevertheless, the deviations from the dipole-
approximation are rather striking and in good agreement with 〈j1(q)〉 as calculated in
the STO approach (see sec. 3.7.2.1). This clearly shows that information about the
radial wave functions in the target can indeed be obtained by the EFSAD method.

6In this simple estimation, G ⊥ q⊥ was assumed.
7qE is fixed by the energy loss. Hence, the accuracy of a measurement can easily be tested by
comparing it to a Lorentzian with half-width at half-maximum (HWHM) of qE .
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Figure 4.2.: 〈j1(q)〉 as determined from eq. 4.7 for the same specimen as in fig. 4.1.
The dipole and STO curves were calculated ab-initio for an energy loss
of 99.2 eV (consistent with the Si L3 edge). For the STOs, a 2p → 3d
transition was used. ζ = 5.26/aµ was taken from [79], ζ = 3.97/aµ was
obtained from a least square fit in the range 10 nm−1 ≤ q ≤ 20 nm−1. For
reference, the G = (1 1 1) diffraction spot in Si has |G| = 20.04 nm−1.

4.2. Azimuthal wave functions
This section is based on [58, 73].

Knowledge about the radial wave functions (see sec. 4.1) sheds light on several
important physical properties such as bond lengths, relativistic corrections in close
proximity to the nucleus, screening effects, or deviations from the isolated atom case.
However, one crucial piece of information is missing: the direction. For example, it
would be possible to determine that there are dopant atoms in the vicinity, but the
radial wave function does not reveal where they are located.

The directional dependence of the MDFF is given by the spherical harmonics Y µ
λ (q)

in eq. 3.51, which are scaled by the XDOS. So it is actually the XDOS that determines
the directional dependence of the MDFF. Thus, by measuring the angular dependence
of the MDFF, one can learn something about the cross density of states and hence
the angular states in the crystal.

Experimentally, the interesting aspects typically are the electronic properties in
the vicinity of, e.g., boundary layers, defects, etc. Hence, a real space resolving
approach such as EFTEM or energy-filtered scanning transmission electron microscopy
(EFSTEM) should be employed. Practically, one obtains a background-subtracted
atomic resolution image at the EELS edge in question (e.g., using the three window
method (sec. D.2.2) in EFTEM, or the power law fit (sec. D.2.1) after acquiring a
data cube). In this image, one would directly see the local angular dependence of the
scattering kernel as will be shown below. From such an image, one could, for example,
deduce bond directions.
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For current microscopes, the spatial resolution is sufficient to record such high
resolution energy-filtered images. Unfortunately, the intensity at the required energy
slit widths is roughly an order of magnitude too low and hence the SNR is too bad to
accomplish such measurements today. Nevertheless, it is an exciting application for
future microscopes in the years to come.

4.2.1. The influence of XDOS symmetries

In this section, a qualitative motivation will be given how symmetries in the XDOS
(which can be derived from symmetries of the crystal [70]) influence high-resolution
EFTEM images. This does not replace a thorough group-theoretical study or numerical
simulations (which will be given in sec. 4.2.2), but should give a general idea of the
image formation in real space and provide some hints under which circumstances more
detailed investigations are necessary (or superfluous).

In order to obtain the real space representation of the scattering kernel (eq. 3.24),
one can start from its momentum space representation

S(q, q′, E) =
∑
λµλ′µ′

Cλµλ′µ′f
µ
λ (q, θq)e

iµϕqfµ
′

λ′ (q
′, θ′q)e

−iµ′ϕ′
q , (4.8)

where Cλµλ′µ′ collects all terms independent of q and q′ and the abbreviation

fµλ (q, θq) := P µ
λ (cos θq)

〈jλ(q)〉
q2

(4.9)

was used. To obtain the real space representation, two Fourier transforms (one with
respect to q and one with respect to −q′) have to be performed. As the two work in
the same manner, only the Fourier transform with respect to q will be discussed here.

The Fourier transform of the q-dependent part reads

1

(2π)3/2

∫ ∞

0

∫ π

0

∫ 2π

0

fµλ (q, θq)e
iµϕqeiq·rr2 sin θrdϕrdθrdr. (4.10)

By virtue of

q · r =

q sin θq cosϕqq sin θq sinϕq
q cos θq

 ·

r sin θr cosϕrr sin θr sinϕr
r cos θr


= qr [sin θq sin θr(cosϕq cosϕr + sinϕq sinϕr) + cos θq cos θr]

= qr [sin θq sin θr cos(ϕq − ϕr) + cos θq cos θr] (4.11)
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and eq. C.14, eq. 4.10 can be rewritten as8

1

(2π)3/2

∫ ∞

0

∫ π

0

∫ 2π

0

fµλ (q, θq)e
iµϕqeiq·rr2 sin θrdϕrdθrdr

=
eiµϕr

(2π)3/2

∫ ∞

0

∫ π

0

∫ 2π

0

fµλ (q, θq)e
iqr cos θq cos θrei(µϕ+qr sin θq sin θr cos ϕ)r2 sin θrdϕdθrdr

=
eiµϕr iµ√

2π

∫ ∞

0

∫ π

0

fµλ (q, θq)e
iqr cos θq cos θrJµ(qr sin θq sin θr)r

2 sin θrdθrdr. (4.12)

Thus, the scattering kernel in real space representation takes the form

S(r, r′, E) =
1

2π

∑
λµλ′µ′

iµ−µ
′
ei(µϕr−µ

′ϕ′
r)Cλµλ′µ′ f̃

µ
λ (r, θr)f̃

µ′

λ′ (r
′, θ′r), (4.13)

where f̃µλ (r, θr) stands for the double-integral in eq. 4.12.
For the sake of simplicity, only a single, isolated atom will be considered in this

section (in particular, no elastic scattering effects will be considered; a more complex
example will be given in sec. 4.2.2). Under these conditions and assuming an incident
plane wave, the exit density matrix is given directly by the scattering kernel S(r, r′).
In this case, EFTEM images are described by the diagonal terms S(r, r, E).
If there are no µ 6= µ′ coupling terms, one has Cλµλ′µ′ = Cλµλ′δµµ′ and hence

S(r, r′, E) =
1

2π

∑
µ

eiµ(ϕr−ϕ
′
r)
∑
λλ′

Cλµλ′ f̃
µ
λ (r, θr)f̃

µ
λ′(r

′, θ′r). (4.14)

Thus, the intensity in an EFTEM image would be described by

S(r, r, E) =
1

2π

∑
µ

∑
λλ′

Cλµλ′ f̃
µ
λ (r, θr)f̃

µ
λ′(r, θr). (4.15)

This is independent of ϕr and, therefore, circularly symmetric.
If, on the other hand, there are µ 6= µ′ cross-terms, there will be contributions of

the form

2<

(
ei(µ−µ

′)ϕr
∑
λλ′

Cλµλ′µ′ f̃
µ
λ (r, θr)f̃

µ′

λ′ (r, θr)

)
(4.16)

which, for µ 6= µ′, vary with ϕr.
In conclusion, the appearance of correlations between µ 6= µ′ in Cλµλ′µ′ is a prerequi-

site for the imaging of the (azimuthal) angular dependence of the inelastic excitation.
In the spin-unpolarized case, for example, Cλµλ′µ′ takes the form

Cλµλ′µ′ =
∑

LL′MM ′m

αλ
′L′M ′

λLM

(
L λ l

−M µ m

)(
L′ λ′ l

−M ′ µ′ m

)
, (4.17)

8Eq. 4.12 shows that an azimuthal phase of eiµϕq becomes eiµϕr in the Fourier transform (up to some
ϕr-independent prefactors). Thus, the azimuthal dependencies in real space (in which HRTEM
measurements are performed) and in real space (in which most calculations are performed) are
identical.



4.2. Azimuthal wave functions 77

where αλ
′L′M ′

λLM stands for all prefactors independent of µ, µ′ (see also eqs. 3.52 and 3.55).
In order for the Wigner 3j symbols not to vanish, the two equations

m+ µ =M and m+ µ′ =M ′ (4.18)

must hold, which implies
µ− µ′ =M −M ′. (4.19)

If the scattering atom has, for example, an n-fold rotation symmetry around the z axis,
this implies that M −M ′ must be an integer multiple of n [70]. In the absence of
λ 6= λ′ cross-terms (e.g., if only dipole-allowed transitions are considered), |µ−µ′| ≤ 2λ
must hold, so the above-mentioned criterion can only be fulfilled for µ 6= µ′ if9

2λ ≥ n. (4.20)

This has far-reaching consequences. For the technically relevant case of dipole-allowed
transitions with λ = λ′ = 1, for example, it implies that 3-fold or higher fold rotational
symmetries10 directly imply that the scattering kernel — and hence the EFTEM
image — will be rotationally symmetric. In particular, this holds for many atomic
positions in cubic and hexagonal systems, especially when using low-indexed zone
axes. For instance, in clean graphene, all atoms have a three-fold rotational symmetry.
Consequently, no directional information is expected to be visible in EFTEM images
of graphene for dipole-allowed transitions (although, e.g., quadrupole transitions could
cause small deviations from the circular form in practice). However, the “ideal” case
of a perfect lattice is usually of little interest anyway. In the interesting cases of, e.g.,
interfaces, defects, dopants, etc., the symmetry is broken by definition, and hence
directional information could be determined from a high-resolution EFTEM image.

4.2.2. Case study: Rutile

As an example system, TiO2 in Rutile position was chosen. It has a tetragonal unit
cell (see fig. 4.3; detailed parameters can be found in tab. 4.1) with sufficiently low
symmetry, in particular of the O atoms. O was chosen because it has a K-edge at
relatively low energy-loss (532 eV [95]) and is also easy to simulate. Note that all
O atoms (and also all Ti atoms) are symmetry-equivalent, i.e., they share the same
properties, XDOS, etc., except for a rotation (and possibly inversion) of the local
coordinate system (see fig. 4.3).
First, ab-initio calculations with WIEN2k were performed. Fig. 4.4 shows the

resulting O pDOS, both for the valence band (below the Fermi energy) and the
conduction band (above the Fermi energy). For core-loss EELS, only the states above
the Fermi energy, which are unoccupied, are of interest.
Although O has no contributing d orbitals, a splitting of the p orbitals into two

“bands” (roughly 2 eV to 4 eV and 5 eV to 7 eV above the Fermi energy, labeled “t2g”

9For µ = µ′, the criterion is always fulfilled trivially.
10Note that the symmetries in question are local point group symmetries of individual atoms, not

symmetries of the unit cell as a whole.
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Figure 4.3.: Sketch of the Rutile unit cell (left) and projections along several low-
indexed zone axes (right). The detailed parameters are given in tab. 4.1.
Ti atoms in gray, O atoms in blue. The colored arrows indicate the lo-
cal, symmetry adapted coordinate system as used by WIEN2k (red: x,
green: y, blue: z).

space group a [nm] c [nm] Ti positions O positions

TiO2 136 0.45929 0.29591 x = y = z = 0 x = y = 0.3056, z = 0

Table 4.1.: Crystal structure parameters for Rutile [50].
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Figure 4.4.: Rutile O pDOS as calculated by WIEN2k. EF denotes the Fermi energy,
the labels “eg” and “t2g” are referenced in the text.
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Figure 4.5.: Simulated EFTEM images for E = EF + 4 eV (left) and E = EF + 7 eV
(right) using a 200 keV incident plane wave, a one unit cell thick crystal,
and ideal imaging conditions. Superimposed are sketches of the (projected)
unit cell with the colored arrows indicating the local coordinate systems
(see fig. 4.3).

and “eg”, respectively) is visible, similar to the eg / t2g splitting of d orbitals. This is
attributed to the eg / t2g splitting of the Ti orbitals due to the tetragonal distortion
of the unit cell [96, 97]. Through the overlap (hybridization) between the O and Ti
orbitals (which form bonding and anti-bonding states), this effect is carried over to
the O states.
From fig. 4.4, it is also obvious that in the “t2g” band, the py orbital is dominant,

whereas in the “eg” band, the px and pz orbitals dominate. Hence, one can expect
different directional dependencies in high resolution EFTEM images obtained from
the “eg” and “t2g” bands, respectively.
Based on the TELNES.3 code [81], the XDOS and the radial wave functions were

extracted from the WIEN2k calculations. Subsequently, the XDOS was transformed
for each atom from the local coordinate systems (indicated by the arrows in fig. 4.4)
to the global coordinate system defined by the imaging conditions [73]. In addition,
the 〈jλ(q)〉 were computed from the radial wave functions.
With all the data in place, the MDFF could be constructed and diagonalized

according to the procedure outlined in sec. 3.6. Then, the scattering kernel S(q, q′, E)
was derived and from it, the real space scattering kernel S(r, r′, E) was obtained by
an FFT.
Once the scattering kernel was calculated, a multislice calculation was performed

using the ixchel program (see sec. A.3). The setup was chosen to correspond to ideal
EFTEM conditions, namely, an incident plane wave with an energy of 200 keV with
the optic axis aligned to the [0 0 1] zone axis of the Rutile crystal. After the multislice
calculation, the effect of the objective lens was included by a CTF approach [3].
Fig. 4.5 shows the resulting images for the ideal case of a one unit cell thick crystal

and ideal imaging conditions (Cs = 0, β = 90mrad, where Cs is the coefficient of
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spherical aberration and β is the collection angle given by the objective aperture).
It is clearly visible that at E = EF + 4 eV, the lobes are pointing in the direction
of the green arrows (corresponding to the direction of the py orbitals), whereas at
E = EF+7 eV, the lobes are pointing in the direction of the blue arrows (corresponding
to the direction of the pz orbitals), in excellent agreement with the predictions.

It is also visible in fig. 4.5 that some of the lobes appear brighter and sharper than
others. This is due to the fact that the scattering kernel is very localized in real
space and, therefore, broad in momentum space. Hence, the outgoing density matrix
is divergent, which has more effect for atoms located farther from the exit surface.
Consequently, atoms located closer to the crystal’s exit surface give sharper lobes.

Note that although fig. 4.5 shows lobe-like structures, one cannot, in general, infer
the type of orbitals involved in the transition directly and solely from the image. What
one can see in the images is in fact the transition probability, which is influenced by
both the initial and the final state. Only if one of those is rotationally symmetric
(i.e., an s state), information about the other orbital involved can be retrieved directly.
This is the case, e.g., for K-edges (as in the present case), which are transitions from
the 1s state to a p state.

Fig. 4.6 shows more realistic simulations for a 10 nm thick crystal including the
effects of a non-ideal imaging system (the parameters, which are given in the figure
caption, correspond to realistic values of modern Cs corrected microscopes). It is
clearly visible that the general lobe-like shape is the same as in the ideal case. The
images appear somewhat blurred, which is a result of the damping of higher frequencies
by the non-ideal lens system. In addition, all lobes have the same intensity, as they
represent an average over atoms in many different depths. On the other hand, new
features begin to emerge between the lobes, an effect that is due to both the divergence
of the outgoing density matrix and channeling effects on the Ti columns.

The bottom row of fig. 4.6 shows the situation assuming a 2 eV energy window. This
was calculated by summing over different energies with a step size of 0.2 eV. Again,
the general shape remains the same, but additional contributions of other orbitals
result in a slight wash-out effect.

4.3. Spin components and magnetism

This section is based on [23, 24, 98]

The radial and azimuthal components of a wave function fully determine its real space
behavior, but they do not fully determine the electronic state. Therefor, additional
information about the electron spin needs to be obtained. Although this is beyond the
scope of this work, a short summary will be given below for the sake of completeness.

Since the spin–spin interaction between the probe beam and the target is negligible
compared to the Coulomb interaction (owing to the high speed of the probe electron
and the thinness of the sample), one cannot measure the spin state of the target
directly in the TEM. Instead, one can measure the influence of the spin-splitting on
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Figure 4.6.: Simulated EFTEM images using a 200 keV incident plane wave, a 10 nm
thick crystal, and realistic imaging conditions (Cs = 0, β = 20mrad).
The top row shows images simulated for single energy losses (top left:
E = EF + 4 eV, top right: E = EF + 7 eV, corresponding to fig. 4.5).
The bottom row shows images integrated over the 2 eV energy windows
EF + 2.6 eV ≤ E ≤ EF + 4.6 eV (bottom left, corresponding to the “t2g”
band) and EF + 5.6 eV ≤ E ≤ EF + 7.6 eV (bottom right, corresponding
to the “eg” band). Superimposed are sketches of the (projected) unit
cell with the colored arrows indicating the local coordinate systems (see
fig. 4.3).
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Figure 4.7.: Schematic drawing of a spin-split DOS in a magnetic field (which is
assumed to act as quantization axis). The arrows indicate spin directions.

the DOS in inelastic scattering.
Fig. 4.7 shows a schematic diagram of a spin-split DOS.11 It visualizes the fact that

states with one spin are more favorable than states with the opposite spin. As a result,
there is an asymmetry of the unoccupied states |F 〉, which are one of the decisive
factors in inelastic scattering and hence EELS (see sec. 3.1).
Due to spin-orbit coupling, this asymmetry in spin translates directly to an asym-

metry of the OAM [47, 99]. As discussed in sec. 3.6.1.2, the MDFF is diagonal in
µ, µ′. Furthermore, sec. 3.5.2 and tab. 3.1 show that different values of µ have different
weights. This means that it is more likely to excite, say, a transition with an azimuthal
characteristic of eiϕ than it is to excite one with e−iϕ. Such a disproportional excitation
gives rise to vortex waves as described in sec. 2.2.

4.3.1. Traditional EMCD

In order to measure this vorticity, one needs to study the azimuthal phase or —
equivalently — the OAM of the outgoing beam. Traditionally, this is achieved by
using the EMCD method [68, 100], which is the TEM analogue to X-ray magnetic
circular dichroism (XMCD) in the synchrotron. In the original variant of EMCD, an
incident plane wave is used and the phase of the outgoing beam is analyzed using an
interferometric setup. In particular, the crystalline specimen itself acts as beam splitter
due to elastic scattering on the lattice planes. At the same time, different diffracted
beams are influenced by different potentials (Ug in eq. 2.53) and thus accumulate a
phase difference which is well understood (see sec. 2.3.1) and can be calculated. Finally,
one records spectra in the diffraction plane. Around each diffraction spot, there is

11It is assumed throughout this section that the spin quantization axis coincides with the optical
axis and that the sample is fully spin-polarized (which corresponds roughly to a saturated
magnetization). This is a reasonable approximation for most common magnetic materials in the
≈ 2T magnetic field of the objective lens of a TEM [71].
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Figure 4.8.: Sketches of the scattering geometry for an EMCD experiment in two-beam
condition. Each diagram depicts a single contribution to the total signal.
The first two are direct terms, whereas the third is a cross-term. Diffraction
spots are depicted as black discs and the detector is depicted as circle.

a (roughly) Lorentzian distribution of the inelastic scattering signal. In between the
diffraction spots — where the scattering distributions overlap — interference occurs.
Typically, the crystal is tilted into a systematic row condition (such as a three

beam case or a two beam case). Then, the intensity is essentially given by eq. 3.124.
Fig. 4.8 shows a sketch of the two beam case situation with the detector positioned
arbitrarily in the interference regime and all possible combinations of momentum
transfers q⊥ := (kjg − klh)⊥. Two distinct contributions can be seen: the direct terms
with q = q′ and the cross-term with q 6= q′.12

Using eq. 3.72 for the MDFF and eq. 3.24 for the scattering kernel, some physical
meaning can be assigned to the different contributions. For the direct terms, q×q′ = 0,
so they manifest themselves as “nonmagnetic background” in the signal. At the same
time, one wants to maximize the magnetic contributions coming from the cross-terms,
i.e., one wants to maximize (q × q′)/(q2q′2).13 This is typically done by choosing
q⊥ ⊥ q′

⊥ and q⊥ = q′⊥, i.e., the detector is positioned on the Thales circle through the
two diffraction spots and on the symmetry axis [68, 98].14

In order to separate the magnetic and nonmagnetic contributions, at least two
measurements must be conducted. To this end, it is advantageous to choose the second
detector position such that the non-magnetic contributions are the same (i.e., the
distance between the diffraction spots and the detector remains the same), but the
magnetic contributions change sign. This can be modeled as (q⊥, q

′
⊥) → (−q′

⊥,−q⊥),
which (approximately) gives rise to a sign change in the cross terms as intended.
Thus, measuring at the two positions shown in fig. 4.9 and subtracting the two signals
removes the non-magnetic contributions and leaves the magnetic ones. This is a direct
measure of, e.g., spin-polarization and magnetic moments [98, 102, 103].15

12Additional terms with the same form, but with q⊥ and q′
⊥ reversed, have been omitted for the

sake of clarity.
13This assumes the small angle approximation (sec. 3.7.1) to hold, i.e., j1(q) ∝ q, which is adequate

for the scattering angles considered.
14While this does neither completely maximize the magnetic contributions nor completely minimize

the nonmagnetic contributions due to the characteristic momentum transfer qE and (to a lesser
extent) the Anpassungsfehler γ, it is still a viable option for EMCD experiments and very easy to
realize in practice. In fact, since the interference effects are present (almost) everywhere in the
diffraction plane, many other detector positions are acceptable in practice [101].

15Note, though, that this signal is also very sensitive to sample thickness, tilt, etc. [23].



84 4. Applications

Figure 4.9.: Sketches of the contributions for the two EMCD detector positions for a
two-beam condition. Each diagram depicts a single contribution to the
total signal. The first two columns are direct terms, whereas the third is a
cross-term. The top and the bottom row show the situations for the two
EMCD detector positions on the Thales circle (dashed gray). Diffraction
spots are depicted as black discs and the detector is depicted as circle.

4.3.2. Future applications of EMCD

With the increasing popularity of electron vortices, other possibilities to measure a
magnetic signal were begun to be explored as well. The most direct approach is using
a fork mask aperture (see sec. 2.2.4) in the objective plane as an OAM analyzer. This
was first reported by Verbeeck et al. [38]. The theoretical description of this approach
is numerically challenging due to the large defocus used, however, and not completely
understood so far.

Another new concept is looking at the experiment the other way round. If one uses
an incident beam carrying OAM (such as a vortex beam, see sec. 2.2), a transfer of
OAM to the target would change the vorticity of the beam. This would change its
radial profile as well, which — in principle — could be measured easily. In practice,
this approach is not without challenges, though. First of all, the detector must be
aligned with the beam precisely, which is a technical problem when displacing the
beam to measure different parts of the sample. Additionally, elastic scattering effects
can significantly change a vortex beam (see sec. 2.3.2) so that the wave incident on the
scattering center is far from the ideal vortex shape. This, in turn, gives rise to severe
complications. In particular, Schattschneider et al. [104] recently concluded that the
EMCD signal will drop below the detection limit for reasonable aperture sizes and an
illuminated area larger than ≈ 3 nm2.

Another approach for high-resolution EMCD is the use of off-axis half-plane objective
apertures [72, 77]. In the objective plane, the magnetic contribution to a diffraction
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spot has a vortex-like azimuthal phase structure. By blocking one half of it, this is
converted to a quasi-linear phase gradient, which gives rise to a small shift of intensity
in the (high-resolution) real space image. It must be noted, however, that this puts
rather extreme conditions on the sample and the instrument, particularly in terms
of stability [105]. Nevertheless, a successful experiment was reported recently by
Schattschneider et al. [91].





5. Conclusion
Dass ich erkenne, was die Welt
Im Innersten zusammenhält.
”So that I may perceive whatever holds
The world together in its inmost
folds.”

(Johann Wolfgang von Goethe)

For millennia, people have been wondering and speculating about the nature of the
matter that surrounds us. Today, it is universally acknowledged that it is made of
atoms, which in turn are composed of a nucleus surrounded by electrons. It is these
electrons that govern almost all the properties that we can see in every day life, ranging
from the hardness of materials over electrical and optical properties to the cohesion
between different materials. Thus, electrons are the decisive factor in material science.
However, except for calculations, little is known about the electrons’ real space wave
functions, as they are not accessible in experiments directly.
In this work, the possibility to investigate the real space wave functions of electrons

in a target using TEM and EELS was studied. It was discussed that both elastic and
inelastic scattering effects of the probe beam are vital for an accurate description of
experiments, and a complete theory based on first principles and the density matrix
formalism was presented (see chaps. 2 and 3). In addition, several approximations —
together with their validity — were discussed, which facilitate computations in many
cases. Moreover, in sec. 3.6, it was shown how the central quantity in inelastic electron
scattering — the MDFF — can be diagonalized and how this enables the simple and
efficient simulation of high resolution energy filtered TEM images with unprecedented
accuracy.
In chap. 4, several applications were presented. First, a method for measuring radial

wave functions was described and applied to bulk silicon, for which experiments and
predictions are in excellent agreement. Subsequently, predictions were made about the
possibility to directly measure the azimuthal dependence of wave functions. It was
found that this is possible if the symmetry of the system under investigation is low
enough, or if sufficiently high multipole orders are used. While the experimental proof
of the presented predictions is not quite possible with current instruments, future
generations of TEMs should be powerful enough to visualize the azimuthal dependence
of wave functions.
It will probably require a few years before such experiments can be performed

routinely and interesting systems such as defects, dopants, or interfaces can be tackled
efficiently. However, the theoretical foundations are laid and the first experimental steps
done, as presented in this thesis, promising a bright future for electron microscopy.
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A. Programs

Throughout this work, simulations are necessary to predict experiments, compare
them to the theory, and gain a better understanding of inelastic scattering, elastic
scattering effects, and the interplay between the two. To this end, several simulation
software packages were used that are briefly described here.

A.1. WIEN2k
This section is based on [49, 106].

WIEN2k is a state of the art DFT simulation package based on the seminal articles
of Hohenberg and Kohn [107] and Kohn and Sham [108]. It works in a reciprocal
space representation and describes the electronic states using the augmented plane
waves with local orbitals (APW+lo) method [109] and the full (i.e. untruncated)
Coulomb potential of the surrounding charges. For the exchange–correlation term
in the Hamiltonian (i.e., the term describing all contributions other than the kinetic
energy and the single-particle Coulomb energy), several approximations can be used,
including the generalized gradient approximation (GGA), local density approximation
with (Hubbard) U (LDA+U), or the modified Becke-Johnson (mBJ) potential [110].

In a nutshell, WIEN2k divides the unit cell of a crystal into spherical, non-
overlapping regions (the so-called “muffin-tin spheres”) surrounding the atoms and an
interstitial region. Inside the spheres, the wave functions are expanded into spherical
harmonics, whereas in the interstitial region, they are expanded into plane waves. At
the boundary of the spheres, those two descriptions must match, of course. Then,
an initial electron density is constructed based on isolated atoms. From this density,
a Hamiltonian is calculated and the (relativistic) eigenvalue problem is solved. The
resulting eigenfunctions give rise to a density, which can again serve as the starting
point for constructing a Hamiltonian. This procedure is repeated until self-consistency
is reached.

WIEN2k is not the main topic of this work. Guidelines how to apply it to different
materials fill hundreds of reports, articles, and text books and will not be repeated
here. In this work, WIEN2k is used only as a tool for calculating material properties
such as the target’s radial wave functions or the XDOS. To this end, a program was
written based on the TELNES.3 code [81] to extract those quantities in a manner
suitable for inclusion in bw and ixchel (see secs. A.2 and A.3).
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A.2. bw
This section is based on [23].

The bw program was written as part of this thesis in order to study the interplay
between elastic and inelastic scattering (see, e.g., sec. 3.8). It is designed primarily for
predicting intensities in the diffraction plane, which is important for applications like
measuring the radial wave function (sec. 4.1) or EMCD (sec. 4.3). For the simulation,
the Bloch waves for both the incident and the outgoing waves are calculated. For the
incident wave, plane wave illumination is assumed (which corresponds to a point-like
cross-over in the focal point of the condenser lens). For the outgoing wave, a reciprocal
Kainuma wave is assumed [87] that — similar to the incident wave — originates from
a single point in the diffraction plane (the position of the detector).1

The advantage of using a Bloch wave approach is that, once the secular equation
(eq. 2.53) is solved, the probe wave is known immediately everywhere inside the sample,
independent of the sample thickness. This is particularly useful when one wants to
predict the optimal sample thickness for particular measurements.

bw is written in an object-oriented way in C++. It uses an extensible markup
language (XML) file as input which is easy to create and edit, either computationally
or by hand. Aside from the Bloch wave functions in the crystal, it can also output
inelastic scattering intensities as a function of the position of the scattering center in
the crystal or as a function of sample thickness. These intensities can also be calculated
as a function of energy loss (corresponding to an EEL spectrum), provided the energy
dependence of the wave functions and the XDOS is known.

A.3. ixchel
This section is based on [37, 73, 111].

ixchel is based on the multislice code for elastic electron scattering by Kirkland [37].
The inelastic scattering was implemented as outlined in sec. 3.8.2. The initial ap-
proach followed the procedure of Verbeeck et al. [51] by implementing XDOS-agnostic
scattering kernels [111]. Since this proved insufficient for simulating the directional
dependence (see sec. 4.2), it was later adapted to calculate the scattering kernel based
on WIEN2k using the diagonalization method described in sec. 3.6 [73].

1In the density matrix formalism, the probe beam is in a mixed state after an inelastic interaction,
of course. It is this mixed state that actually needs to be propagated through the crystal to the
detector. However, measuring with a point-like detector in the diffraction plane ultimately projects
this mixed state density matrix onto a single plane wave state. This is exactly the Kainuma
wave. It’s contribution can be followed backwards through all elastic scattering processes to the
point of the inelastic scattering. Owing to the hermiticity of the evolution operator (see sec. 2.1),
the elastic forward and backward propagation of a single plane wave are equivalent. Thus, the
probability of finding the mixed state density matrix in the state measurable by the detector is
identical to the probability of the inelastic scattering event transforming the incident wave into
the (back-propagated) Kainuma wave.
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For the simulation, the projected scattering potential is calculated for each slice
from atomic scattering factors in the first step. Then, an (arbitrarily choosable) wave
function is sent into and propagated through the crystal. For each layer, the components
of the density matrix after inelastic scattering are computed and propagated through
the rest of the crystal to the exit surface. Finally, an image can be assembled by
employing a CTF approach.





B. Normalization

In quantum mechanics, the absolute value squared of a wave function is conventionally
interpreted as a probability density, e.g.,

P (x) = |ψ(x)|2 = 〈ψ|x〉 〈x|ψ〉 (B.1)

is the probability of finding a particle in an infinitesimal space element surrounding
the point x. Obviously, the probability of finding a given particle anywhere is∫

P (x)dx =

∫
|ψ(x)|2dx = 1. (B.2)

This can also be interpreted using expectation values. The expectation value of an
operator Â, given a state |ψ〉, is defined as

〈Â〉 := 〈ψ|Â|ψ〉 . (B.3)

Using 1̂ =
∫
|x〉 〈x| dx results in∫

P (x)dx =

∫
〈ψ|x〉 〈x|ψ〉 dx = 〈ψ|1̂|ψ〉 = 1, (B.4)

as the unit operator has an expectation value of 1.
This approach to the normalization of wave functions works well as long as the

wave function is L2-integrable, i.e., as long as
∫
|ψ(x)|2dx is finite. This is the case,

e.g., for all states with finite support. For a large class of states, however, it is not
applicable. These states are called continuum states. Most notable representatives are
plane waves, for which |ψ(x)|2 = const. and hence the integral does not converge.
However, it must be emphasized that, by definition, plane waves have infinite spatial

extent, zero energy width, and hence can not be created in finite time. They are
merely idealizations of wave packets with finite spatial extent and finite energy width
which are emitted in a finite time. As such, plane waves do not fall into the L2 Hilbert
space normally used.
In analogy to the orthonormalization of square integrable states using the Kronecker

delta, i.e.,
〈φ|ψ〉 = δφψ, (B.5)

plane waves can be orthonormalized in a distributional sense with the Dirac delta
using the continuum orthonormalization, i.e.,

〈k′|k〉 = δ(k − k′). (B.6)
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This ensures that different plane waves are orthogonal. However, single plane waves
are not normalizable in the conventional sense, i.e., 〈k|k〉 is not a real number. For
wave packets

|ψ〉 =
∫
c(k) |k〉 dk (B.7)

(with square integrable amplitude function c(k)), the squared norm gives

〈ψ|ψ〉 =
∫∫

c(k′)∗c(k) 〈k′|k〉 dk′dk

=

∫∫
c(k′)∗c(k)δ(k − k′)dk′dk

=

∫
|c(k)|2dk, (B.8)

which is finite. Similarly, a pure-state density matrix composed of a wave packet reads

ρ̂ = |ψ〉 〈ψ| =
∫∫

c(k)c(k̃)∗ |k〉 〈k̃| dkdk̃. (B.9)

It’s trace (in momentum space) is given by

tr ρ̂ =

∫∫∫
c(k)c(k̃)∗ 〈k′|k〉 〈k̃|k′〉 dkdk̃dk′

=

∫∫∫
c(k)c(k̃)∗δ(k − k′)δ(k′ − k̃)dkdk̃dk′

=

∫
|c(k)|2dk (B.10)

as before.
A similar approach works for the expectation value of operators. For instance, it

holds that
p̂ |k〉 = ~k |k〉 . (B.11)

Thus, one would expect 〈p̂〉 = 〈k|p̂|k〉 = ~k 〈k|k〉 to yield the same result, which
it only does in a distributional sense. For a wave packet, on the other hand, the
calculation yields

〈ψ|p̂|ψ〉 =
∫∫

c(k′)∗c(k) 〈k′|p̂|k〉 dk′dk

=

∫∫
c(k′)∗c(k)~kδ(k − k′)dk′dk

=

∫
~k|c(k)|2dk, (B.12)

which is the expected weighted average over contributing k vectors. Analogously, the
expectation value in the density matrix formalism can be defined as

〈p̂〉 := tr[p̂ρ̂]. (B.13)



C. Calculations

C.1. Conventions

Real space representation of plane waves:

〈r|k〉 = 1

(2π)3/2
eik·r. (C.1)

Fourier transform in n dimensions:

F̂k[f ] =
1

(2π)n/2

∫
e−ik·rf(r)dr. (C.2)

Fourier back-transform in n dimensions:

F̂−r[f̃ ] =
1

(2π)n/2

∫
eik·rf̃(k)dk. (C.3)

In this convention, the convolution theorem reads:

F̂k[f · g] = 1

(2π)n/2

∫
e−ik·rf(r)g(r)dr

=
1

(2π)n

∫
e−ik·r

∫
eik

′·rf̃(k′)dk′g(r)dr

=
1

(2π)n

∫
f̃(k′)

∫
e−i(k−k′)·rg(r)drdk′

=
1

(2π)n/2

∫
f̃(k′)g̃(k − k′)dk′

=
1

(2π)n/2
F̂k[f ]~ F̂k[g]. (C.4)

Shift theorem:

F̂k[f(r + δ)] =
1

(2π)n/2

∫
e−ik·rf(r + δ)dr

=
1

(2π)n/2

∫
e−ik·(r−δ)f(r)dr

= eik·δF̂k[f(r)]. (C.5)

Orthonormalization of spherical harmonics:∫
Y m
l (Ω)∗Y m′

l′ (Ω)dΩ = δll′δmm′ . (C.6)
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C.2. Useful relations

C.2.1. Relations of the Dirac delta distribution

From a Fourier transform, followed by a Fourier back transform, the following repre-
sentation of the Dirac delta can be derived [112]:

δ(x− χ) =
1

(2π)n

∫
ei(x−χ)·kdk. (C.7)

Representation in cylindrical coordinates [112]:

δ(r1 − r2) =
δ(r1⊥ − r2⊥)δ(θ1 − θ2)δ(z1 − z2)

r1⊥
. (C.8)

C.2.2. Relations of Bessel functions

Series expansion [31, 9.1.10]:

Jn(z) =
∞∑
k=0

(−1)k

k!Γ(n+ k + 1)

(z
2

)n+k
. (C.9)

Generating function [31, 9.1.41]:

e
z
2

(
t− 1

t

)
=

∞∑
k=−∞

tkJk(z) (t 6= 0). (C.10)

Jacobi-Anger expansion (by setting t = ieiϕ in eq. C.10):

eiz cos(ϕ) =
∞∑

k=−∞

ikeikϕJk(z). (C.11)

Orthogonality relation [30]:∫ 1

0

Jα(λα,mx)Jα(λα,nx)xdx =
δm,n
2

[Jα+1(λα,m)]
2 . (C.12)

Closure relation [30]:∫ ∞

0

Jν(qR)Jν(q
′R)RdR =

δ(q − q′)

q
ν >

1

2
. (C.13)

Integral representation [30]:

Jn(x) =
1

2πin

∫ 2π

0

ei(nϕ+x cos ϕ)dϕ. (C.14)
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C.2.3. Relations of modified Bessel functions

Integral representation [30]:

In(x) =
1

π

∫ π

0

ex cos ϕ cos(nϕ)dϕ. (C.15)

Hankel-Nicholson type integral [31, 11.4.44]:

Kν(az) =
2µΓ(µ+ 1)

aµzν

∫ ∞

0

tν+µ+1Jν+µ(at)

(t2 + z2)µ+1
dt a > 0, z > 0,−1− µ < ν < µ+

3

2
.

(C.16)

C.2.4. Relations of spherical Bessel functions

Relation between Bessel functions and spherical Bessel functions [31, 10.1.1]:

jn(z) =

√
π

2z
Jn+ 1

2
(z). (C.17)

Closure relation [30, 113]:

∫ ∞

0

jn(qR)jn(q
′R)R2dR =

π

2
· δ(q − q′)

q2
n ≥ 0. (C.18)

Taylor series [31, 10.1.2]:

jn(z) =
∞∑
k=0

(−1)kz2k+n

2kk!(2n+ 2k + 1)!!
. (C.19)

Representation by a finite sum over trigonometric functions [31, 10.1.8]:

jn(z) =
1

z

 bn
2
c∑

k=0

(−1)k(n+ 2k)! sin(z − nπ
2
)

(2k)!(n− 2k)!(2z)2k
+

bn−1
2

c∑
k=0

(−1)k(n+ 2k + 1)! cos(z − nπ
2
)

(2k + 1)!(n− 2k − 1)!(2z)2k+1

 .
(C.20)

For even n = 2ν, note that sin(z − νπ) = (−1)ν sin(z) as well as cos(z − νπ) =
(−1)ν cos(z). Using these relations, reversing the sum and some algebraic manipulations



98 C. Calculations

yield

jn(z) =
ν∑
k=0

(−1)k+ν(n+ 2k)!

22k(2k)!(n− 2k)!
· sin(z)
z2k+1

+
ν−1∑
k=0

(−1)k+ν(n+ 2k + 1)!

22k+1(2k + 1)!(n− 2k − 1)!
· cos(z)
z2k+2

=
ν∑
k=0

(−1)−k(2n− 2k)!

2n−2k(n− 2k)!(2k)!
· sin(z)

zn−2k+1
+

ν−1∑
k=0

(−1)−1−k(2n− 2k − 1)!

2n−2k−1(n− 2k − 1)!(2k + 1)!
· cos(z)
zn−2k

=
ν∑
k=0

(−1)k(2n− 2k)!

2n−2k(n− 2k)!(2k)!
· sin(z)

zn−2k+1
+

ν∑
k=1

(−1)k(2n− 2k + 1)!

2n−2k+1(n− 2k + 1)!(2k − 1)!
· cos(z)

zn−2k+2

=
ν∑
k=0

(−1)k(2n− 2k)!

2n−2k(n− 2k)!(2k)!
· sin(z)

zn−2k+1
+

ν∑
k=1

k

n− k + 1
· (−1)k(2n− 2k + 2)!

2n−2k+1(n− 2k + 1)!(2k)!
· cos(z)

zn−2k+2

=

bn+1
2

c∑
k=0

[
(−1)k(2n− 2k)!

2n−2k(n− 2k)!(2k)!
· sin(z)

zn−2k+1
+

(−1)kk(2n− 2k + 2)!

2n−2k+1(n− k + 1)(n− 2k + 1)!(2k)!
· cos(z)

zn−2k+2

]
. (C.21)

Likewise, for odd n = 2ν + 1, observing that sin(z − νπ − π/2) = (−1)ν−1 cos(z) as
well as cos(z − νπ − π/2) = (−1)ν sin(z), setting 1/(−1)! = 0,1 reversing the sum and
some algebraic manipulations yield

jn(z) =
ν∑
k=0

(−1)k+ν−1(n+ 2k)!

22k(2k)!(n− 2k)!
· cos(z)
z2k+1

+
ν∑
k=0

(−1)k+ν(n+ 2k + 1)!

22k+1(2k + 1)!(n− 2k − 1)!
· sin(z)
z2k+2

=
ν∑
k=0

(−1)k(2n− 2k)!

2n−2k(n− 2k)!(2k)!
· sin(z)

zn−2k+1
+

ν∑
k=0

(−1)−k−1(2n− 2k − 1)!

2n−2k−1(n− 2k − 1)!(2k + 1)!
· cos(z)
zn−2k

1n! is defined as Γ(n+ 1). Therefore, 1/(−1)! = 1/Γ(0). Since the Γ function has a simple pole at 0,
limz→0 1/Γ(z) = 0 [31, 6.1.7].
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=
ν+1∑
k=0

(−1)k(2n− 2k)!

2n−2k(n− 2k)!(2k)!
· sin(z)

zn−2k+1
+

ν+1∑
k=1

(−1)k(2n− 2k + 1)!

2n−2k+1(n− 2k + 1)!(2k − 1)!
· cos(z)

zn−2k+2

=

bn+1
2

c∑
k=0

[
(−1)k(2n− 2k)!

2n−2k(n− 2k)!(2k)!
· sin(z)

zn−2k+1
+

(−1)kk(2n− 2k + 2)!

2n−2k+1(n− k + 1)(n− 2k + 1)!(2k)!
· cos(z)

zn−2k+2

]
, (C.22)

which is exactly the same expression as for even n. Thus, spherical Bessel functions
can be written as

jn(z) =

bn+1
2

c∑
k=0

[
Akn

sin(z)

zn−2k+1
+Bk

n

cos(z)

zn−2k+2

]
Akn =

(−1)k22k−n(2n− 2k)!

(n− 2k)!(2k)!

Bk
n =

(−1)k22k−n−1k(2n− 2k + 2)!

(n− k + 1)(n− 2k + 1)!(2k)!
. (C.23)

In actual computer implementations, it is beneficial to calculate the coefficients Akn
and Bk

n recursively via

A0
n =

(2n)!

2nn!
= (2n− 1)!!

B0
n = 0

B1
n = −(2n)!

2nn!
= −(2n− 1)!!

Ak+1
n = − (n− 2k)(n− 2k − 1)

(k + 1)(2k + 1)(n− k)(2n− 2k − 1)
Akn

Bk+1
n = − (n− 2k)(n− 2k + 1)

k(2k + 1)(n− k)(2n− 2k + 1)
Bk
n. (C.24)

This also avoids the divergence of (−1)!.

C.2.5. Relations of the Gamma function

Euler’s integral [31, 6.1.1]:

Γ(z + 1) =

∫ ∞

0

tze−tdt = kz+1

∫ ∞

0

tze−kt <(z) > −1,<(k) > 0. (C.25)
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Special values [31, 6.1.8]:

Γ

(
1

2

)
=

√
π. (C.26)

Relationship with the factorial [31, 6.1.5]:

z! = Γ(z + 1). (C.27)

Relationship with the double factorial [31, 6.1.12]:

Γ

(
n+

1

2

)
=

(2n− 1)!!

2n
Γ

(
1

2

)
=

(2n− 1)!!
√
π

2n
. (C.28)

C.2.6. Relations of Wigner 3j symbols

These identities can be found, e.g., in [34].

Relation to the spherical harmonics:∫
4π

Y m1
l1

(Ω)Y m2
l2

(Ω)Y m3
l3

(Ω)dΩ =√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
. (C.29)

Relation to the Clebsch-Gordan coefficients:

〈j1m1j2m2|j3m3〉 = (−1)−j1+j2−m3
√
2j3 + 1

(
j1 j2 j3
m1 m2 −m3

)
. (C.30)

Orthogonality relation:∑
m1m2

(
j1 j2 j
m1 m2 m

)(
j1 j2 j′

m1 m2 m′

)
=
δjj′δmm′

2j + 1
. (C.31)

Permutation relations (for odd and even permutations, respectively):

(−1)j1+j2+j3
(
j1 j2 j3
m1 m2 m3

)
=

(
j2 j1 j3
m2 m1 m3

)
=

(
j1 j3 j2
m1 m3 m2

)
=

(
j3 j2 j1
m3 m2 m1

)
(
j1 j2 j3
m1 m2 m3

)
=

(
j2 j3 j1
m2 m3 m1

)
=

(
j3 j1 j2
m3 m1 m2

)
. (C.32)

C.2.7. Relations of spherical harmonics

These identities can be found, e.g., in [65].

Complex conjugation:
Y m
l (Ω)∗ = (−1)mY −m

l (Ω). (C.33)
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Addition theorem:

∑
m

Y m
l

(x
x

)∗
Y m
l

(
y

y

)
=

2l + 1

4π
Pl

(
x

x
· y
y

)
. (C.34)

Rayleigh expansion:

eiq·R = 4π
∞∑
λ=0

λ∑
µ=−λ

iλY µ
λ (q/q)

∗Y µ
λ (R/R)jλ(qR). (C.35)

C.3. The Coulomb potential in momentum space
A similar derivation can also be found, e.g., in [114].

The real space representation of the Coulomb potential is given by (compare eq. 3.18)

〈r|V̂ |r̃〉 = e2

4πε0

δ(r − r̃)

|r −R|
=: V̂ (r)δ(r − r̃). (C.36)

Hence, the momentum space representation can be expressed as

〈k|V̂ |k̃〉 =
∫∫

drdr̃ 〈k|r〉 〈r|V̂ |r̃〉 〈r̃|k̃〉 . (C.37)

Using

〈r|k〉 = 1

(2π)3/2
eik·r, (C.38)

this yields

〈k|V̂ |k̃〉 = 1

8π3

∫∫
drdr̃e−ik·rV̂ (r)δ(r − r̃)eik̃·r̃

=
1

8π3

∫
drei(k̃−k)·rV̂ (r)

=:
1

8π3

∫
dreiq·rV̂ (r). (C.39)

This describes the Fourier transform of the Coulomb potential, which, unfortunately,
does not converge in the conventional sense. One way around this is to calculate the
momentum space representation of a screened Coulomb potential (Yukawa potential)
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and take the limit of zero screening in the end:

〈k|V̂ |k̃〉 = e2

32π4ε0
lim
σ→0

∫
dreiq·r

e−σ|r−R|

|r −R|

=
e2

32π4ε0
eiq·R lim

σ→0

∫
dr

eiq·(r−R)−σ|r−R|

|r −R|

=
e2

4πε0
eiq·R lim

σ→0

∫
dr

eiq·r−σr

r

=
e2

32π4ε0
eiq·R lim

σ→0

∫ ∞

0

∫ π

0

∫ 2π

0

eiqr cos(θ)−σrr sin(θ)dϕdθdr

=
e2

16π3ε0
eiq·R lim

σ→0

∫ ∞

0

∫ 1

−1

eiqru−σrrdudr

=
e2

16π3ε0iq
eiq·R lim

σ→0

∫ ∞

0

(
e(iq−σ)r − e(−iq−σ)r) dr

=
e2

16π3ε0iq
eiq·R lim

σ→0

(
1

σ − iq
− 1

σ + iq

)
=

e2

16π3ε0iq
eiq·R lim

σ→0

2iq

σ2 + q2

=
e2

(2π)3ε0

eiq·R

q2
. (C.40)

C.4. The Fourier transform of the scattering kernel

This section is based on [62].

The scattering kernel in momentum space (eq. 3.24) is given by

S(q, q′, E) =

(
e2

4π2ε0

)2
S(q, q′, E)

q2q′2
. (C.41)

According to eq. 3.22, the scattering kernel in real space, S(r, r′, E), can be calculated
as the (double) Fourier transform of S(q, q′, E). Enforcing qz = q′z = −qE, one
therefore arrives at

S(r, r′, E) =

(
e2

4π2ε0

)2

F̂q,−q′

[
δ(qz + qE)δ(q

′
z + qE)

S(q, q′, E)

q2q′2

]
=

(
e2

4π2ε0

)2
1

(2π)3
F̂q,−q′

[
δ(qz + qE)δ(q

′
z + qE)

q2q′2

]
~ F̂q,−q′ [S(q, q′, E)]

=

(
e2

4π2ε0

)2
1

(2π)3
F̂q⊥,−q′

⊥

[
eiqE(z−z

′)

(q2⊥ + q2E)((q
′
⊥)

2 + q2E)

]
~ F̂q,−q′ [S(q, q′, E)].

(C.42)
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The 2D Fourier transform of the Lorentzian terms give

F̂q⊥

[
1

q2⊥ + q2E

]
=

1

2π

∫ ∞

0

∫ 2π

0

e−iq⊥r⊥ cos ϕ

q2⊥ + q2E
q⊥dϕdq⊥

=

∫ ∞

0

q⊥
q2⊥ + q2E

J0(q⊥r⊥)dq⊥

= K0(qEr⊥). (C.43)

With
F̂q,−q′ [S(q, q′, E)] = S(r, r′, E), (C.44)

the scattering kernel consequently takes the form

S(r, r′, E) =

(
e2

4π2ε0

)2
1

(2π)3

[
K0(qEr⊥)K0(qEr

′
⊥)e

iqE(z−z′)
]
~ S(r, r′, E). (C.45)

Carrying out the convolution in z direction yields

S(r, r′, E) =

(
e2

4π2ε0

)2
eiqE(z−z

′)

(2π)3
·

[K0(qEr⊥)K0(qEr
′
⊥)]~⊥

∫∫
dzdz′e−iqE(z−z′)S(r, r′, E). (C.46)

It is noteworthy that the z and z′ dependency of the scattering kernel is given solely
by the eiqE(z−z

′) term which describes the effect of the characteristic momentum
transfer qEez. All other terms are independent of z and z′ in analogy to the locality
approximation [51].





D. Uncertainties and Fitting

Measurements are always uncertain to a degree. If a certain event (e.g., a particular
scattering process) occurs with a certain average rate, one would (in theory) have to
measure for an infinitely long time to determine the exact value. For finite measure-
ments, there always remains a finite uncertainty, even in the absence of systematic
errors.
Throughout this work, CCDs are used to record data. Images taken with a CCD

suffer from the well-known shot noise. This noise actually has a (discrete) Poisson
distribution. For a large number of counts (of the order of thousands), this distribution
is virtually indistinguishable from a normal distribution with mean µ and standard
deviation σ :=

√
µ, so the latter will be used for the sake of simplicity.1

Generally, the uncertainty of a vector X = (x1, . . . , xn) is described by its covariance
matrix Σ. The diagonal elements of Σ are the variances (i.e., squared standard
deviations) of the individual elements of X, whereas the off-diagonal elements give
the correlations between the corresponding elements of X. For uncorrelated (i.e.,
statistically independent) variables, Σ is a diagonal matrix.
When applying a (possibly vector-valued) function f : Rn → Rm to the vector X,

the result f(X) has the covariance matrix2

Σf = df(X) ·Σ · (df(X))T , (D.1)

where

df =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 (D.2)

is the Jacobian matrix.
In the particular case of statistically independent (i.e., uncorrelated) arguments and

a scalar function, eq. D.1 simplifies to the well-known expression

∆f(X) ≈

√√√√∑
i,j

(
∂f

∂xi
(X)∆xi

)2

. (D.3)

1In fact, some preprocessing — such as dark reference subtraction and gain correction — is performed
before the data is made available to the user. This is not taken into account in this work.

2Eq. D.1 uses a linearized model following the standard procedure outlined in [115–117]. For a more
rigorous approach, one would have to consider the different distributions of the errors in detail.
For example, if x and y are uncorrelated scalars that are normally distributed, then x/y is not. In
fact, x/y follows a Cauchy distribution, for which such properties as mean or standard deviation
are undefined. Incidentally, however, the confidence interval for the Cauchy-distribution in this
case is very similar to the uncertainty predicted by eq. D.1.
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D.1. Least squares fitting

Least squares fitting is a common approach to estimate model parameters from an
(experimental) dataset. Linear least squares fitting is a text-book example that can be
solved analytically. In general, however, any differentiable function that is sufficiently
well approximated by a linear function can be used, giving rise to the non-linear least
squares method.
Given a dataset ((x1, y1), . . . (xm, ym)) and a model function f(x,p) → R, where

p = (p1, . . . , pn) are the parameters, the residual of a data point (with a given parameter
vector) is

ri(p) := yi − f(xi,p). (D.4)

The least squares method endeavors to find a parameter vector popt that minimizes
the sum of squared residuals,

S(p) =
m∑
i=1

ri(p)
2. (D.5)

A necessary condition for this is

∂S

∂pj
(popt) =

m∑
i=1

2ri(popt)
∂ri
∂pj

(popt) = 2
m∑
i=1

(yi − f(xi,popt))
∂f

∂pj
(xi,popt) = 0. (D.6)

A linear approximation around some fixed parameter guess p0 (and neglecting second
order derivatives) yields

m∑
i=1

(
yi − f(xi,p0)−

n∑
k=1

∂f

∂pk
(xi,p0)δpk

)
∂f

∂pj
(xi,p0) = 0. (D.7)

With the abbreviation

Jij :=
∂f

∂pj
(xi,p0), (D.8)

this takes the form

m∑
i=1

Jij (yi − f(xi,p0)) =
m∑
i=1

n∑
k=1

JijJikδpk, (D.9)

or, as matrix equation,
JTr(p0) = JTJδp. (D.10)

This is a system of linear equations for δp that is solved easily3:

δp = (JTJ)−1JTr(p0). (D.11)

3Provided that the inverse matrix exists. For singular matrices, other procedures such as the singular
value decomposition algorithm can be used.
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Using eq. D.11, the original guess p0 can be improved by p0 7→ p0 + δp. This
procedure can subsequently be repeated until self-consistency is reached and δpopt = 0.
The (asymptotic) covariance matrix of the fitted parameters is typically estimated
by [115, 116]

Σ =
S(popt)

m− n
(JTJ)−1. (D.12)

D.2. Background subtraction

One particularly important application of fitting in core-loss EELS is background
subtraction. Due to, e.g., multiple scattering effects and the post-edge tails of ionization
edges at lower energy-loss, the signal of interest is superimposed on a (possibly quite
large) background. Commonly, this is modeled by a power-low [4], i.e.,

Ibg(E) = AE−r, (D.13)

which is a good approximation over an energy range of some tens of eV.
What is often overlooked, however, is that the original, measured signal Im is noisy,

with the uncertainty typically dominated by shot noise (
√
Im). As a result, the fit

parameters used in background subtraction also have certain confidence intervals, as
does the extrapolated background Ibg. Consequently, the uncertainties of the original
signal and of the background estimation accumulate. Ultimately, the noise of the

final, background-subtracted data Isignal,
√
Im +∆I2bg, will be larger than that of the

original dataset. This is contrary to the common assumption that the data processing
only acts on the background-subtracted signal Isignal := Im − Ibg which, in the absence
of a better approach, is assumed to be subject to shot-noise (this would result in an
uncertainty of

√
Isignal =

√
Im − Ibg).

D.2.1. EELS

In EELS, one typically has data for enough energies to fit the background model
to the measurement in the pre-edge region. For the purpose of this derivation, the
background will be modeled as

Ibg(E) = A

(
E

E

)−r

, (D.14)

where E is a constant. At this point, E is arbitrary (setting E = 1 gives eq. D.13, for
example), but it will be shown below how it can be chosen such that the fit parameters
are uncorrelated. The parameter vector in this case is p = (A, r)T , and eq. D.8 takes
the form

Ji1 =
∂Ibg
∂A

=

(
Ei
E

)−r

Ji2 =
∂Ibg
∂r

= −A
(
Ei
E

)−r

ln

(
Ei
E

)
. (D.15)
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Consequently, one gets

JTJ =

( ∑
i J

2
i1

∑
i Ji1Ji2∑

i Ji1Ji2
∑

i J
2
i1

)
=
∑
i

(
Ei
E

)−2r ( 1 −A ln
(
Ei
E

)
−A ln

(
Ei
E

) [
A ln

(
Ei
E

)]2) . (D.16)

A and r are uncorrelated if Σ is diagonal, which is the case if (JTJ)−1 is diagonal,
which is equivalent to JTJ being diagonal. This, in turn, is the case if

−
∑
i

A

(
Ei
E

)−2r

ln

(
Ei
E

)
= 0∑

i

E−2r
i lnEi = lnE

∑
i

E−2r
i

lnE =

∑
iE

−2r
i lnEi∑
iE

−2r
i

. (D.17)

Note that this constant does not depend on the data values yi. However, in order to
determine E , it is necessary to know r, which is not the case at the beginning of the
procedure. One possibility to remedy this problem is to assume some reasonable value
for r (e.g., from literature, previous calculations, first principle considerations, etc.).
Another possibility well suited for core-loss EELS is the following: assuming that, for
the fit interval [E1, En], En−E1 � E1 holds, one can use in first order approximation
E−2r
i ≈ Ē−2r, yielding

lnE =
lnEi
n

⇒ E =

(∏
i

Ei

) 1
n

. (D.18)

D.2.2. EFTEM / EFSAD

In EFTEM, the common background subtraction method is the three-window method,
in which one records energy-filtered images for two pre-edge energy ranges and one
image in the energy range of interest. From the two pre-edge images, the background
is extrapolated and subsequently subtracted from the edge image.
Ideally, all background parameters are determined separately for each pixel (i.e.,

locally). This is particularly important if the properties of the sample — such as
thickness, composition, etc. — change from pixel to pixel, which has a dramatic
influence on the shape of the background. This is the typical case when recording
EFTEM images in real space. The caveat is that the two parameters of the background
model are determined from only two data values. Hence, a good SNR (or, equivalently,
a low noise level) is required for this procedure.
If, on the other hand, the SNR is low (or, equivalently, the noise level is high), it is

beneficial to determine at least some parameters through fitting to a large data range.
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This is possible, e.g., if the power law exponent r does not change from pixel to pixel
(which is a good approximation if the sample does not change from pixel to pixel, as is
the case, e.g., in EFSAD which works in momentum space and hence always captures
the same area of the sample). In such cases, r can be determined from the whole
image (i.e., globally), whereas A still has to be determined locally (as it reflects the
local intensity variations in the image).

D.2.2.1. Local approach

Because, in EFTEM mode, the spectrometer is set up to integrate over a specific
energy range [E, Ẽ], the background model has to be modified to read

Ibg(E, Ẽ) = A

∫ Ẽ

E

( ε
E

)−r
dε =

AE

1− r

(Ẽ
E

)1−r

−
(
E

E

)1−r


=
AE r

1− r

[
Ẽ1−r − E1−r

]
. (D.19)

Once again, the parameters to determine are p = (A, r), and E is a constant than
can be chosen such that the resulting algorithms (in particular the matrix inversions
appearing below) are not ill-conditioned and, hence, numerically stable.
With the measured values y = (y1, y2), the background model gives rise to the

(nonlinear) system of equations

f(p) = y with fi(p) := Ibg(Ei, Ẽi). (D.20)

Dividing the two equations yields

f1(p)

f2(p)
=
Ẽ1−r

1 − E1−r
1

Ẽ1−r
2 − E1−r

2

=
y1
y2
, (D.21)

from which r can be determined. Once r is known, it is beneficial to define

lnE =
Ẽ1−r

1 ln Ẽ1 − E1−r
1 lnE1

Ẽ1−r
1 − E1−r

1

− 1

1− r
, (D.22)

which fulfills

Ẽ1−r
1

[
1

1− r
− ln

(
Ẽ1

E

)]
= E1−r

1

[
1

1− r
− ln

(
E1

E

)]
. (D.23)

For known r and E , A can be determined easily from either of the two original
equations, owing to the fact that they are both linear in A.
Interpreting the solution p as p(y) and differentiating eq. D.20 yields

df(p(y)) · dp(y) = 1, (D.24)
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with

dp(y) =

(
∂f1
∂A

∂f1
∂r

∂f2
∂A

∂f2
∂r

)
∂fi
∂A

=
E r

1− r

(
Ẽ1−r
i − E1−r

i

)
∂fi
∂r

=
AE r

1− r

[
Ẽ1−r
i

(
1

1− r
− ln

(
Ẽi
E

))
− E1−r

i

(
1

1− r
− ln

(
Ei
E

))]
.

(D.25)

Owing to the definition of E , this simplifies to the lower triangular matrix

dp(y) =

(
∂f1
∂A

0
∂f2
∂A

∂f2
∂r

)
, (D.26)

which, after rearranging, gives

dp(y) = (df(p(y)))−1 =
1

∂f1
∂A

∂f2
∂r

(
∂f2
∂r

0

−∂f2
∂A

∂f1
∂A

)
. (D.27)

Thus, the covariance matrix of p reads

Σp = (df(p))−1 ·Σy ·
(
(df(p))−1

)T
. (D.28)

For the uncertainty of the background prediction in the edge range [E3, Ẽ3], this gives

σ2 = ι · (df(p))−1 ·Σy ·
(
(df(p))−1

)T · ιT (D.29)

with

ιT =
E r

1− r

 (
Ẽ1−r

3 − E1−r
3

)
A
[
Ẽ1−r

3

(
1

1−r − ln
(
Ẽ3

E

))
− E1−r

3

(
1

1−r − ln
(
E3

E

))]
 . (D.30)

D.2.2.2. Global approach

In the global approach, one first uses a weighted sum instead of eq. D.21, i.e., one
determines r from

Ẽ1−r
1 − E1−r

1

Ẽ1−r
2 − E1−r

2

=
1∑m
i=1wi

m∑
i=1

wi
y1,i
y2,i

=:

∑m
i=1wiνi∑m
i=1wi

, (D.31)

where the uncertainties of the νi are calculated using the normal propagation of
uncertainty formalism. The weights wi typically reflect the quality of a data point and
are usually chosen as

wi :=
1

σνi
, (D.32)
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in which case the right hand side has an uncertainty of

σy :=

√
m∑m

i=1wi
=

√
m∑m

i=1
1
σνi

. (D.33)

The uncertainty of r thus takes the form

σr =
(Ẽ1−r

2 − E1−r
2 )2∣∣∣Ẽ1−r

2

[
Ẽ1−r

1 ln
(
Ẽ1

Ẽ2
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1 ln
(
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Ẽ2
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− E1−r

2

[
Ẽ1−r

1 ln
(
Ẽ1

E2

)
− E1−r

1 ln
(
E1

E2

)]∣∣∣σy.
(D.34)

With the knowledge of r, A can be determined easily on a per-pixel basis by fitting

to the two data values (y1, y2) (using, e.g., E =
√
E1Ẽ1)

4. Since the background model
is linear in A, this can be done analytically, yielding

A =
y1f1 + y2f2
f 2
1 + f 2

2

with fi := E r Ẽ
1−r
i − E1−r

i

1− r
. (D.35)

The variance of A reads5

σ2
A =

σ2
y1

f 2
1

+
σ2
y2

f 2
2

+
f ′2
1 [y1 (f

2
2 − f 2

1 )− 2y2f1f2]
2
+ f ′2

2 [y2 (f
2
1 − f 2

2 )− 2y1f1f2]
2

[f 2
1 + f 2

2 ]
4 σ2

r

(D.36)

with

f ′
i =

E r

1− r

[
Ẽ1−r
i

(
1

1− r
− ln

(
Ẽi
E
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− E1−r

i

(
1

1− r
− ln

(
Ei
E

))]
. (D.37)

Finally, the extrapolated background can be calculated, which has the variance

σ2 = E 2r

(
Ẽ1−r

3 − E1−r
3

1− r

)2

σ2
A + A2f ′2

3 σ
2
r . (D.38)

4As above, the choice of E influences the numerical stability and also the statistical error of the fit.
Because of the complex dependence of the fit error on E it is not feasible to look for an analytical
expression for E ; one has to use an approximation instead.

5Note that, due to the approach and the approximations used here, A and r are considered
independent.
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[53] S. Löffler and P. Schattschneider. “Elastic propagation of fast electron
vortices through crystals”. Acta Cryst. A, 68 pp. 443 – 447, 2012.
doi: 10.1107/S0108767312013189.

http://dx.doi.org/10.1016/j.ultramic.2012.01.010
http://dx.doi.org/10.1017/S1431927604040437
http://dx.doi.org/10.1016/0304-3991(82)90228-5
http://dx.doi.org/10.1016/0304-3991(82)90229-7
http://dx.doi.org/10.1107/S0108767395014371
http://www.wien2k.at/
http://dx.doi.org/10.1016/j.ultramic.2009.01.003
http://dx.doi.org/10.1107/S0365110X57002194
http://dx.doi.org/10.1107/S0108767312013189


Bibliography 117

[54] D. van Dyck. “Improved methods for the high speed calculation of electron
microscopic structure images”. Physica Status Solidi (a), 52 (1) pp. 283–292,
1979. doi: 10.1002/pssa.2210520131.

[55] C. Y. Cai, S. J. Zeng, H. R. Liu, and Q. B. Yang. “Computational com-
parison of the conventional multislice method and the real space multislice
method for simulating exit wavefunctions”. Micron, 40 (3) pp. 313–319, 2009.
doi: 10.1016/j.micron.2008.11.003.

[56] A. Lubk, L. Clark, G. Guzzinati, and J. Verbeeck. “Topological analysis of
paraxially scattered electron vortex beams”. Phys. Rev. A, 87 p. 033834, 2013.
doi: 10.1103/PhysRevA.87.033834.

[57] H. L. Xin and H. Zheng. “On-Column 2p Bound State with Topological Charge
1 Excited by an Atomic-Size Vortex Beam in an Aberration-Corrected Scanning
Transmission Electron Microscope”. Microsc. Microanal., 18 pp. 711–719, 2012.
doi: 10.1017/S1431927612000499.
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[82] J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and
A. Zettl. “Direct Imaging of Lattice Atoms and Topological Defects in Graphene
Membranes”. Nano Lett., 8 (11) pp. 3582–3586, 2008. doi: 10.1021/nl801386m.

[83] J. C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, and U. Kaiser. “Selective
Sputtering and Atomic Resolution Imaging of Atomically Thin Boron Nitride
Membranes”. Nano Lett., 9 (7) pp. 2683–2689, 2009. doi: 10.1021/nl9011497.

[84] J. Taftø and Z. Liliental. “Studies of the cation atom distribution in ZnCrxFe2-xO4

spinels using the channeling effect in electron-induced X-ray emission”. J. Appl.
Crystallogr., 15 (3) pp. 260–265, 1982. doi: 10.1107/S0021889882011960.

[85] A. P. Pogany and P. S. Turner. “Reciprocity in electron diffrac-
tion and microscopy”. Acta Cryst. A, 24 (1) pp. 103–109, 1968.
doi: 10.1107/S0567739468000136.

[86] J. M. Cowley. “Image Contrast in a Transmission Scanning Electron Microscope”.
Appl. Phys. Lett., 15 (2) pp. 58–59, 1969. doi: 10.1063/1.1652901.

[87] Y. Kainuma. “The Theory of Kikuchi patterns”. Acta Crystallogr., 8 (5)
pp. 247–257, 1955. doi: 10.1107/S0365110X55000832.
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cross-density of states, 46, 47, 75
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operator, 39
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density matrix
reduced, 36

density operator, 7
dipole approximation, see small angle

approximation, 57
double differential scattering cross sec-
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evolution operator
depth, 12
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Fresnel propagator, 17

Hamiltonian
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interaction picture, 34

mixed dynamic form factor, 38, 42
diagonalization, 53
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in the spin-unpolarized case, 48
real space, 38

momentum transfer
characteristic, 4

multislice, 29, 68

off-diagonal elements, 7
orbitals

Hydrogen-like, 61
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density
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scattering cross section, see double dif-
ferential scattering cross section

scattering kernel, 37
Schrödinger equation, 10

depth dependent in two dimensions,
12

secular equation, 27
Silicon, 73
small angle approximation, 57
state

mixed, 7
pure, 6

trace, 8

wave
Bessel, 13
Bloch, 27, 66
Kainuma, 67, 90
plane, 13
vortex, 21
creation of, see holographic mask
extent of, 21

vortex, hollow cone, 13
wave length, 4
weighted radial wave function overlap,

43, 46, 70, 72
for DFT wave functions, 64
for Hydrogen-like orbitals, 63
for Slater-type orbitals, 60
in small angle approximation, 57

WIEN2k, 63, 79, 89

XDOS, see cross density of states
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