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Abstract

Within this work, a generalized two-dimensional energetic hysteresis model for characterizing
the magnetization process of thin ferromagnetic �lms is presented. Based on the �Energetic
Model of Ferromagnetic Hysteresis� (EM), which has been introduced by H. Hauser in
1994, so called statistical domain classes adapted from the magnetic easy directions of the
material sample are distinguished. With respect to Hauser�s formulation of the EM, two
major extensions are provided in this work. As a �rst generalization, the orientation of
the elementary magnetic dipoles within a statistical domain class is no longer restricted to
the speci�ed easy direction, but is represented by a stochastic circular distribution function
that is characterized by a mean orientation and a certain variance. So local misalignments
of magnetic moments due to imperfections within the material can be modeled on the one
hand, and the temperature dependence of the spontaneous magnetization can be described
from the �rst principles on the other hand. The second key extension is the fully two-
dimensional formulation of the EM. Although, the original model of Hauser is intended
for a certain number of easy directions, most of the investigations are based on a one-
dimensional model setup in consideration of the symmetry properties of the crystalline
axes. In particular, the terms for reversible and irreversible work during the magnetization
process have to be reformulated in order to allow fully two-dimensional modeling. Further,
the magnetocrystalline and induced anisotropy are directly incorporated in the model by
corresponding energy terms. Thereby, the two-dimensional approach allows predicting the
magnetic hysteresis curves of anisotropic thin �lms for all directions of the applied �eld with a
single set of parameters. Besides, the generalized model accounts for coherent magnetization
rotation as well as non-coherent magnetization reversal mechanisms by using a corresponding
parameterization of domain classes.
The evaluation of the presented generalized two-dimensional energetic hysteresis model
is done by the example of Permalloy thin �lms used for anisotropic magneto-resistive
(AMR) sensors. Especially for AMR sensor applications the directional properties of the
magnetization curve are important, particularly the hard-axis characteristics. The model
parameters are identi�ed by a comparison of the simulated hysteresis loops to those obtained
from a magneto-optical Kerr measurement setup in easy axis and hard axis direction. Then,
the magnetization curves can be calculated for any arbitrary direction of the magnetic
�eld with respect to the easy axis. Furthermore, the identi�ed model parameters re�ect
several microstructural properties of the thin �lm, like microscopic misalignments due to
inhomogeneities, for example. Amongst others, these microstructural properties are related
to characteristics of the thin �lm production process, such as the distance between target and
substrate during sputtering. Due to the fact that the magnetic hysteresis model presented
within this work allows an inference from measured magnetization curves to the structural
properties of the �lm, laborious and expensive microscopic analyses can be reduced. Hence,
signi�cantly less e¤ort is needed to improve the technological parameters of the production
process.
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Kurzfassung

In der vorliegenden Arbeit wird ein zweidimensionales energiebasiertes Modell zur Beschrei-
bung der ferromagnetischen Hysterese von dünnen Schichten präsentiert. Die Grundlage
bildet das 1994 von H. Hauser erstmals publizierte �Energetic Model of Ferromagnetic
Hysteresis� (EM), in welchem so genannte statistische Domänenklassen, basierend auf den
magnetisch leichten Richtungen im Material, unterschieden werden. Darauf aufbauend,
werden in dieser Arbeit zwei wesentliche Erweiterungen beschrieben. In einer ersten
Verallgemeinerung wird die Ausrichtung der magnetischen Dipole in einer Domänenklasse
nicht auf die leichte Richtung beschränkt, sondern mittels einer statistischen Verteilungs-
funktion beschrieben. Damit können einerseits lokale Abweichungen von der parallelen
Ausrichtung aufgrund von Material-Inhomogenitäten abgebildet und andererseits die Tem-
peraturabhängigkeit der spontanen Magnetisierung direkt aus dem Modell erklärt werden.
Die zweite Erweiterung besteht in einer vollständigen zweidimensionalen Formulierung des
Modells. Obwohl Hauser bereits Ansätze zur Behandlung mehrerer leichter Richtungen
beschreibt, wurden die meisten Untersuchungen, unter Berücksichtigung der Symmetrie
im Kristallgitter, auf Basis eines eindimensionalen Modellansatzes durchgeführt. Die
zweidimensionale Erweiterung erfordert insbesondere eine Neuformulierung der Ausdrücke
der im Magnetisierungsprozess geleisteten reversiblen und irreversiblen Arbeit. Zusätzlich
werden die aus einer magnetokristallinen oder einer induzierten Anisotropie resultierenden
Energiebeiträge direkt im Modell berücksichtigt. Damit kann der Magnetisierungsprozess
in anisotropen dünnen Schichten für beliebige Richtungen des angelegten Magnetfeldes mit
einem Parametersatz beschrieben werden. Darüber hinaus lassen sich kohärente Rotation
der Magnetisierung und nicht-kohärente Ummagnetisierungsprozesse durch entsprechend
parametrierte Domänenklassen unterscheiden.
Die Evaluierung des zweidimensionalen Hysterese-Modells erfolgt am Beispiel von dünnen
Permalloy-Schichten, die für den Einsatz in anisotropen magneto-resistiven (AMR) Sensoren
hergestellt werden. Insbesondere für AMR-Anwendungen ist die Richtungsabhängigkeit der
Magnetisierungskurve, speziell deren Verlauf in der schweren Richtung, von entscheidender
Bedeutung. Die Identi�zierung des Modells erfolgt durch Abgleich der Simulationsergebnisse
mit den, aus magneto-optischen Kerr-Messungen gewonnenen Hysteresekurven in den
magnetisch leichten und schweren Richtungen. Alle dazwischen liegenden Kurven können
dann direkt aus dem Modell berechnet werden. Ferner spiegeln einige der identi�zierten
Modellparameter mikrostrukturelle Eigenschaften der dünnen Schichten wider, wie etwa
lokale Fehlausrichtungen aufgrund von Inhomogenitäten. Diese Eigenschaften hängen meist
von den technologischen Parametern des Herstellungsprozesses, also beispielsweise vom
Target-Substrat-Abstand beim Sputtern ab. Das im Rahmen dieser Arbeit vorgestellte
Modell erlaubt Rückschlüsse von den gemessenen Hysteresekurven auf die strukturellen
Eigenschaften der dünnen Schichten und kann so dazu beitragen, aufwendige und teuere
mikroskopische Analysen zu reduzieren. Somit kann der Aufwand bei der Optimierung der
technologischen Parameter des Herstellungsprozesses deutlich verringert werden.
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~Hin . . . . . . Magnetic �eld inside the material Am�1

HPin . . . . . Pinning �eld Am�1

~HStray . . . . Magnetic stray �eld Am�1

Hsw . . . . . . Switching �eld Am�1

I0(:) . . . . . Modi�ed Bessel function (1st kind, order 0)

I1(:) . . . . . Modi�ed Bessel function (1st kind, order 1)

IA . . . . . . . Anode current A

IC . . . . . . . Thermionic cathode current A

IF . . . . . . . . Field current A

J . . . . . . . . . Quantum number for total angular momentum of an atom
~J . . . . . . . . Operator of total angular momentum of an atom kgm2 s�1

~J . . . . . . . . Electric current density Am�2

JEx . . . . . . Exchange constant J
~K . . . . . . . . Electric surface current density Am�1

K0; K1; K2 Anisotropy constants Jm�3

KStray . . . . Stray �eld constant Jm�3

kDisp . . . . . Model coe¢ cient for magnetization dispersion Jm�3

kIrrDWM . . Model coe¢ cient for irreversible losses due to domain wall motion Jm�3

kRevAnh . . . Model coe¢ cient for reversible anhysteretic energy Jm�3

kRevDWM . Model coe¢ cient for reversible work due to domain wall motion Jm�3

kRevIrrDisp . Model coe¢ cient for rev. and irrev. work of magnetization disp. Jm�3

L(:) . . . . . . Langevin function
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L . . . . . . . . . Quantum number for total orbital angular momentum of an atom
~L . . . . . . . . Operator of total orbital angular momentum of an atom kgm2 s�1

~L . . . . . . . . Angular momentum kgm2 s�1

�L . . . . . . . Di¤erential work added to a system J

l . . . . . . . . . Angular quantum number
~l . . . . . . . . . Operator of electron orbital angular momentum kgm2 s�1

lBloch . . . . . Bloch wall width m

lEx . . . . . . . Exchange length m

lS . . . . . . . . Characteristic sample length m

lWall . . . . . . Characteristic domain wall width m
~M . . . . . . . Magnetization Am�1

MH . . . . . . Magnetization component in �eld direction Am�1

MR . . . . . . Remanent magnetization or (absolute) remanence Am�1

Ms . . . . . . . Spontaneous or technical saturation magnetization Am�1

Ms,th . . . . . Theoretical saturation magnetization Am�1

~m . . . . . . . . Magnetic moment Am2

~m . . . . . . . . Reduced magnetization ~M=Ms

mH . . . . . . Component of reduced magnetization in �eld direction

~mi . . . . . . . Reduced magnetization of domain class Di
mJ . . . . . . . Abs. value of magn. moment of total angular momentum of an atom Am2

mJ;z . . . . . . Component with respect to quantization axis of mJ Am2

~ml . . . . . . . Magnetic moment due to orbital angular momentum Am2

ml . . . . . . . Abs. value of magn. moment of electron orbital angular momentum Am2

ml . . . . . . . . Magnetic quantum number

ml;z . . . . . . Component with respect to quantization axis of ml Am2

ms . . . . . . . Abs. value of magn. moment of electron spin angular momentum Am2

ms . . . . . . . . Spin quantum number (orientation of spin angular momentum)

ms;z . . . . . . Component with respect to quantization axis of ms Am2

N . . . . . . . . Number of particles per unit volume m�3

Na; Nb; Nc Demagnetizing factor along the principal ellipsoid axes a,b,c
~Nd,2D . . . . Two-dimensional demagnetizing tensor
~Nd . . . . . . . Demagnetizing tensor

ND . . . . . . . Number of statistical domain classes

n . . . . . . . . . Principal quantum number

nDi . . . . . . Number of magnetic entities in domain class Di
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nV . . . . . . . Number of magnetic entities in volume V
P (:) . . . . . . Probability (number of states) for a certain con�guration

PRev(:) . . . Probability for reversible domain wall motion

p . . . . . . . . . Pressure Nm�2

pAr . . . . . . . Argon pressure Pa

�Q . . . . . . . Di¤erential heat added to a system J

�irrQ . . . . . Di¤erential heat created irreversibly inside the system J

q . . . . . . . . . Reduced anisotropy coe¢ cient

qp . . . . . . . . Average number of BHJ per equivalent distance of domain wall motion

~r . . . . . . . . . Position vector m

S . . . . . . . . Macroscopic area section

S . . . . . . . . . Quantum number for total spin angular momentum of an atom
~S . . . . . . . . Operator of total spin angular momentum of an atom kgm2 s�1

SInt . . . . . . Internal entropy JK�1

dS . . . . . . . Di¤erential increase in entropy JK�1

dextS . . . . . Di¤erential entropy added reversibly from outside of the system JK�1

dirrS . . . . . Di¤erential entropy produced irreversibly inside the system JK�1

s . . . . . . . . . Quantum number of spin angular momentum

~s . . . . . . . . . Operator of electron spin angular momentum kgm2 s�1

T . . . . . . . . Absolute temperature K

TC . . . . . . . Curie temperature K

TN . . . . . . . Neel temperature K

TPara . . . . . Characteristic temperature in Curie-Weiss law K

TS . . . . . . . Substrate temperature K

�t . . . . . . . Time (simulation) step s

t . . . . . . . . . Time s

dU . . . . . . . Di¤erential increase in internal energy J

UA . . . . . . . Anode voltage V

US . . . . . . . Substrate voltage V

UT . . . . . . . Target voltage V

V . . . . . . . . Topological volume section (of the magnetic sample)

V . . . . . . . . Volume (of the magnetic sample) m3

�V . . . . . . Elementary volume m3

@V . . . . . . . Surface of volume V
v . . . . . . . . . Volume fraction
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v0;i . . . . . . . Initial volume fraction at demagnetized state for Di
�vi . . . . . . Change of volume fraction of Di during �t
vi . . . . . . . . Volume fraction of domain class Di
�vij . . . . . Change of volume fractions between Di and Dj during �t
�vij;Irr . . . Irreversible part of change in volume fractions �vij
�vij;Rev . . Reversible part of change in volume fractions �vij
vmax;i . . . . Maximum volume fraction (available states) for Di
W . . . . . . . Energy J

WMESelf . . Magnetostrictive self-energy J

WN(�'i; �
2
i ) Wrapped normal distribution with mean �'i and variance �

2
i

WPin . . . . . Pinning energy J

WStray . . . . Stray �eld energy J

w . . . . . . . . Energy per unit volume (averaged) Jm�3

w(~r) . . . . . Energy density at position ~r Jm�3

wAniso(~r) . Anisotropy energy density Jm�3

wAniso;i . . . Anisotropy energy per unit volume for Di Jm�3

wBloch . . . . Bloch wall energy per unit surface Jm�2

wd . . . . . . . Demagnetizing energy (ext. part of stray �eld energy) per unit volume Jm�3

wDisp;i . . . . Magnetization dispersion energy per unit volume for Di Jm�3

wEx(~r) . . . Volume exchange energy density Jm�3

wEx;i . . . . . Exchange energy per unit volume for Di Jm�3

wH(~r) . . . . Zeeman (applied �eld) energy density Jm�3

wH;i . . . . . . Zeeman (applied �eld) energy per unit volume for Di Jm�3

�wIrrDWM Change in irreversible losses per unit volume for domain wall motion Jm�3

�wirr . . . . Irreversible losses per unit volume Jm�3

wLoc . . . . . Total local energy contributions per unit volume Jm�3

wLoc;i . . . . Local energy contributions per unit volume for Di Jm�3

wLoss . . . . . Losses per unit volume and hysteresis cycle Jm�3

wRevAnh . . Reversible anhysteretic energy per unit volume Jm�3

�wRevDWM Change in reversible work per unit volume for domain wall motion Jm�3

�wRevIrrDisp Change in rev. and irrev. work due to magnetization dispersion Jm�3

wStray . . . . Stray �eld energy per unit volume Jm�3

wStress(~r) . Energy density related to non-magnetic stress Jm�3

wStress;i . . . Energy per unit volume related to non-magnetic stress for Di Jm�3

wT;i . . . . . . Energy per unit volume due to thermal excitation for Di Jm�3



Chapter 1

Introduction

1.1 Magnetic Hysteresis Modeling

A general description of the magnetization process in magnetic materials is complex in
nature, because it is a¤ected by the microstructure of the material, the shape of the sample,
external forces such as magnetic �eld or mechanical stress, and environmental conditions,
like temperature. Hence, the atomic magnetic moments are subjected to various interactions
with the surrounding matter and external �elds. Particularly, the concurrence of strong
short-range and long-range interactions e¤ects a collective macroscopic magnetic behavior.
In other words, the magnetization process involves a manifold of phenomena from di¤erent
areas and topics of physical and technical science.

1.1.1 Theoretical Concepts

Due to the variety of contributing �elds of science, there exists no unique theory to explain
magnetism, in general. So quantum-mechanics has nowadays been established as basis to
describe magnetism at the atomic level. If the discrete nature of the atomic structure can be
disregarded, the continuum theory of classical vector �elds together with Maxwell�s equations
might be an appropriate tool to explain magnetic behavior.
In case of ordered magnetism, such as ferromagnetism, anti-ferromagnetism, and ferri-
magnetism, short-range interactions between the magnetic moments and long-range dipole
interactions that result in stray �elds cause the formation of magnetic domains. For such
systems, the framework of statistical mechanics and thermodynamics allows to represent
these interactions by means of internal energies, entropy, and work. So the minimization of
an appropriate thermodynamic potential, corresponding to the estimation of a macroscopic
equilibrium state, should give the magnetic state of the material, in theory.
But when the con�guration of the magnetic domains changes during the magnetization
process, irreversible changes of states are either caused by switching from one local energy
minimum to another one or the consequence of losses. Hence, the concepts of metastability
and non-equilibrium thermodynamics have to be introduced in order to describe the
magnetization process.

1



2 1 Introduction

1.1.2 State of the Art

Within this scienti�c environment, many hysteresis models have been developed with varying
degrees of success, but currently three models become established as state of the art.
Micromagnetic models are based on the minimization of Gibb�s free energy of the total
magnetic sample, so that all model parameters are related to the physical properties of the
material. The magnetization vector is calculated for every point inside the sample by means
of �nite element methods.
In the context of the Preisach model, the magnetic material is represented by a collection of
bistable units, where the shape parameters of these "Hysterons" are described via statistical
distribution functions. The magnetization of the total magnetic sample is calculated as
sum of the Hysteron�s states within a purely mathematical framework. Hence, the relation
between the Preisach distribution functions and physical material properties is not self-
evident.
The Jiles-Atherton hysteresis model distinguishes between anhysteretic, reversible, and
irreversible contributions to the total sample magnetization. Here, the magnetization con-
tributions are formulated on a phenomenological basis, and a small set of model parameters
allows easy identi�cation based on experimental data as well as low computational e¤ort.

1.1.3 Characteristics of Magnetic Hysteresis Models

Basically, the �rst step in magnetic hysteresis modeling is the identi�cation of the
model parameters based on the physical properties of the material sample and measured
magnetization curves. As a general principle, the lower the number of model parameters,
the less e¤ort is necessary for identi�cation. Especially in case where the model parameters
cannot directly assigned to physical material properties, di¤erent parameter sets may result
in nearly the same calculated magnetization curve.
One potential target in hysteresis modeling is to reproduce a set of experimentally measured
magnetization curves with high accuracy. If the calculation procedure is fast enough, such
a model can be used to the describe the magnetic behavior in the context of �nite element
simulations or control applications instead of using lookup tables.
A very basic characteristic of a hysteresis model is the ability to predict the magnetization
process for other than the measured curves used for identi�cation. Here, the quality of
the model prediction is determined by the accuracy of the predicted hysteresis curve with
respect to the measurement results on the one hand, and the variety of useful predictions
when changing the external input variables (e.g. direction of the applied �eld, minor loops,
etc.) or the environmental parameters (e.g. temperature) on the other hand. Clearly, the
predictability of a model can only be assessed on measurement results, but the aim is to
cover many di¤erent phenomena with just a single set of model parameters.
Another property of a hysteresis model is to relate the identi�ed model parameters to
microstructural properties of the material sample. So it might be useful to quantify the
loss mechanisms for di¤erent magnetic samples, based on the measured hysteresis curves.
Further, it can be helpful, if the model can provide at least a qualitative picture of the
underlying magnetization process.
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1.1.4 Philosophical Conclusion

From a general point of view, magnetism seems to elude a general unique scienti�c
description. Instead, di¤erent theories and models have been developed in order to explain
a certain range of magnetic phenomena.
Whenever re�ecting on this topic, the following excerpt of Planck�s discussion about
causality in physics might be helpful to gain a better appreciation of the relation between
theory, modeling, and reality.

Aber allein die einfache Tatsache,
daßwir wenigstens bis zu einem gewissen Grade imstande sind,
künftige Naturereignisse unseren Gedanken zu unterwerfen

und nach unserem Willen zu lenken,
müßte ein völlig unverständliches Rätsel bleiben,

wenn sie nicht zum Mindesten eine gewisse Harmonie ahnen ließe,
die zwischen der Außenwelt und dem menschlichen Geist besteht,

und es ist nur eine Frage von sekundärer Bedeutung,
bis zu welcher Tiefe man sich die Reichweite dieser Harmonie erstreckt denken will.

[Max PLANCK, �Der Kausalbegri¤ in der Physik�, 1941]

But just the simple fact
that we are at least partially able to

subject future natural phenomena to our thoughts
and a¤ect them according to our will

would be a completely unknowable mystery,
if one would not be able to sense a certain harmony

existing between the outside world and the human mind,
and it is only a matter of secondary importance

up to which depth the scope of this harmony will be extended.

loose translation from
[Max PLANCK, �Der Kausalbegri¤ in der Physik�, 1941]
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1.2 Objective of the Thesis

1.2.1 Historical Basis

In 1994, H. Hauser introduced the "Energetic Model of Ferromagnetic Hysteresis".
Although this model was initially intended for the prediction of the anisotropic magnetic
curves of grain oriented FeSi steel, most of the following investigations have been performed
by employing a scalar (one-dimensional) formulation of the energetic model. Even in the
case of three-dimensional crystal structures, the scalar model has been set up for certain
crystalline axes by taking the symmetry properties of the lattice structure into account.
For the scalar model only two statistical domain classes, containing magnetic dipoles that
are either oriented parallel or antiparallel to the applied �eld, are de�ned. In this case,
the solution of the corresponding model equations can be derived analytically, so that the
calculation time can be reduced to a minimum.
But in case of uniaxial anisotropy, the calculation of the magnetization curves requires a
change of the model parameters depending on the direction of the applied �eld with respect
to the easy anisotropy axis. Hence, if the identi�cation of the model parameters is done
for the easy axis and the hard axis, they can be interpolated for any arbitrary direction in
between. In practice, this interpolation is only applicable, when the magnetization process
is mainly driven by domain wall motion. But, whenever coherent magnetization rotation
governs the magnetization process, the scalar model is reaching its limits.

1.2.2 Generalized Model

The �rst objective of this work is the extension of the scalar energetic model such that it
provides a fully two-dimensional framework to describe the magnetization process in thin
�lm materials. In this context, the generalized model must be able to deal with more than
two domain classes in order to account for the various factors driving the magnetization
process. For this purpose, a reformulation of the model equations is required, even though
the basic structure of Hauser�s model partly supports a vectorial formulation. Particularly,
the calculation procedure for the reversal of the domain wall motion has to be substantially
revised. Furthermore, uniaxial anisotropy should be directly incorporated, so that coherent
magnetization rotation can be reproduced by the generalized model.
Second, the idealized perfect parallel alignment of the magnetic dipoles in the statistical
domain classes has to be generalized such that the temperature dependence of the sponta-
neous magnetization can be estimated from the �rst principles. In addition, misalignment of
the magnetic moments due to inhomogeneities in the thin �lm should be describable within
the model.
As third objective, the generalized energetic model should depend on small set of para-
meters, which can related to either physical properties of the material or phenomenological
characteristics of the magnetization process.
Generally speaking, the overall objective of this thesis is to provide a hysteresis model
that allows the simulation, prediction, and interpretation of the magnetization process of
anisotropic thin �lms. In addition, the model structure should be compact and clear,
but �exible enough to handle the various mechanisms leading to the macroscopic magnetic



1.3 Scope of the Thesis 5

behavior. Under these conditions, the generalized energetic model can be a valuable tool for
the investigation of magnetic thin �lm material, starting from the production process up to
speci�c applications.

1.3 Scope of the Thesis

Generally, this work is subdivided into three main parts and an appendix:

Starting with a theoretical part, the basic principles of magnetism are reviewed, beginning
from the magnetic moment of an electron up to macroscopic magnetic phenomena.
Furthermore, the relevant magnetic energy contributions are de�ned, and an overview of
domain theory and the mechanisms of the magnetization process is provided. Although
this theoretical part is not of scienti�c evidence, it ensures a common understanding of the
terminology used in the description of the generalized energetic model afterwards.

As �rst chapter of the modeling part, an overview of the state of the art in magnetic
hysteresis modeling is provided. Here, the basic principles and properties of established
hysteresis models are summarized in order to classify the generalized energetic model in the
scienti�c context published in corresponding literature.
The major contribution to the modeling part is dedicated to the formulation of the
generalized two-dimensional "Energetic Model of Ferromagnetic Hysteresis". Starting from
the de�nition of magnetic entities and statistical domain classes, all relevant model equations
are derived from the �rst principles. After the formal description of the model setup, the
calculation procedure is explained as minimization of energy terms.

In the simulation and evaluation part of this work, the generalized energetic model is
applied to Permalloy thin �lms designed for the use in anisotropic magneto-resistive sensors.
In the beginning, a brief survey of the production process, the measurement setup, and
the magnetic characteristics of Permalloy thin �lms is presented. Then, the evaluation is
done by comparing predicted magnetization curves of the model with experimental data
from magneto-optical Kerr measurements. Particular attention is paid to the relation of the
model parameters to microstructural properties of the thin �lm, which are mainly resulting
from the technological parameters of the production process.

The appendix contains detailed derivations of the model equations, so that elaborate
calculations can be excluded from the main part of the work, for the sake of readability.
But if necessary, all results can be reproduced clearly.
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Part I

Theoretical Framework

In the second chapter an outline of di¤erent descriptive levels as viewpoints for a magnetic
system is presented. Starting from the atomic level the origin of magnetic moments and
the underlying mechanisms are described. Magnetization, magnetic susceptibility, and
permeability are introduced in the framework of a continuum model, which is based on
Maxwell�s equations. Subsequently, the commonly used classi�cation of magnetic materials
is sketched in a macroscopic point of view.
On the one hand this short summary should give an impression of the wide range of topics
in magnetism and provide a relationship of the thesis to the context of scienti�c work. On the
other hand it comes out that many approaches in magnetism are based on the aggregation of
microscopic properties, a fact that is also re�ected in the energetic model when elementary
magnetic entities are grouped into statistical domain classes.

The third chapter deals with the description of a ferromagnetic system beyond atomic
length scales. In the framework of continuous vector �elds the quantum-mechanical
properties of the system are expressed in terms of energy contributions. Due to long-range
interaction mechanisms the formation of magnetic domains is often energetically favorable.
Hence, a short survey of domain theory and the basic domain wall structures is given. For
the description of macroscopic magnetic systems as a whole it is often su¢ cient to focus on
the total sample magnetization and its dependence with respect to an applied magnetic �eld.
Therefore, the characteristic points and properties of the magnetization curve are explained.
Finally, reversible and irreversible magnetization mechanisms are distinguished for domain
wall movement as well as for domain magnetization rotation.
Exactly the extensions of the classical energetic model in order to describe the anisotropic
behavior in thin �lms are based on anisotropic energy contributions and coherent magneti-
zation rotation mechanisms of the magnetization process. Furthermore, the integration of
irreversible losses into the model has to be adapted when changing from a one-dimensional
to a two-dimensional framework. For these reasons chapter 2 provides a theoretical basis on
which the energetic model can be set up.
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Chapter 2

Magnetism Overview

The existence of many di¤erent concepts and theories makes magnetism to appear perhaps
a little bit confusing. One way to classify the variety of approaches is a distinction by the
spatial dimension of point of view (Tab. 2.1). Each level contains a set of fundamental
assumptions, theories and models. Nevertheless, these descriptive levels cannot be seen as
independent as far as results from underlying levels build the basics for the following levels.

Microscopic Mesoscopic Macroscopic
Level of de-
scription

Atomic Level
Micromagnetic
Level

Domain Level Sample Level

Length scale > Å > nm > �m > mm

Typical tech-
niques

Quantum mech.,
statistical
thermodynamics

Continuum
theory of classical
vector �elds

Domain theory
Phenomenological
approach, phase
theory

Explained
phenomena

Origin of mag-
netic moment, in-
teractions, crystal
anisotropy

Internal structure
of domain walls

Domain con�gu-
ration

Magnetization
process, magnetic
hysteresis

Table 2.1: Di¤erent viewpoints in magnetism.

The atomic level deals with elementary magnetic moments, their interactions and their
thermodynamic behavior within a certain crystal structure. Beside classical physics quantum
mechanics is the fundamental basis for nearly all theoretic considerations. When disregarding
the discrete nature of matter, such that a local quantity represents the spatial average over
an elementary volume, one comes to the continuum theory of classical vector �elds. At this
micromagnetic level Maxwell�s equations can be used to describe the magnetic structure in
idealized small regions of magnetic media. In the next level of consideration one concentrates
on magnetic domains that are separated by domain walls, where the internal construction of
these domains and walls is not of particular interest. In many applications, it is necessary to
describe the overall behavior for the whole magnetic sample in form of magnetization curves
or other representative quantities. However, it seems to be clear that magnetic properties
at the sample level cannot be determined from the atomic characteristics without using
stochastic aggregation techniques.

8
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2.1 Origin of Magnetism in a Microscopic Treatment

Within the following sections, emphasis will be placed on the basic concepts that reason
elementary magnetic moments. More details can be found in corresponding literature, like
[10], [21], [56], or [87].

2.1.1 Magnetic Moment of an Electron

Magnetic dipoles coupled on electrons or cores represent the basis of magnetism. Since
magnetic monopoles have not been detected up to now, these fundamental dipoles can be
seen as basic elements of the magnetic structure.
For electrons two di¤erent mechanisms are responsible for magnetism

� magnetic moment due to orbital angular momentum ml, and

� magnetic moment due to spin ms.

Beside electrons also the nucleus shows a magnetic dipole moment, which is about more
than three orders of magnitude smaller than dipole moments resulting from electrons,
because the mass of protons and neutrons is about 2.000 times that of an electron. But the
interaction between electrons and the �eld of the nucleus may cause a splitting of degenerated
energy levels, the so called hyper�ne structure.
As shown in the following pages magnetic moments can be associated with angular
momentum.

Classical Description of Orbital Magnetic Moment

Within a simple model depicted in Fig. 2.1 we consider a single electron with mass me and
electric charge �e moving in a circular orbit of radius r at an angular velocity !e. The
angular momentum is

~L = ~r � (me ~ve) = me~!er
2 (2.1)

and the associated electric current

Ie = �e
!e
2�

(2.2)

delivers a magnetic moment of

ml = Ier
2� = �e

2
!er

2 : (2.3)

The combination of angular momentum (2.1) and magnetic moment (2.3) yields the so
called magneto-mechanical parallelism

~ml = �
e

2me

~L ; (2.4)

which is crucial for all further considerations.
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Figure 2.1: Orbital angular momentum and magnetic moment of an electron.

Quantizing the Angular Momentum

Niels Bohr postulated (about 1913) that the angular momentum L has to be an integer
multiple of Planck�s constant ~. This approach is often referred to as old quantum mechanics.
Using

L = k ~ k 2 N ; (2.5)

the magnetic moment

ml = �k
e ~
2me

= �k �B (2.6)

is a multiple of Bohr�s magneton

�B =
e ~
2me

� 9:27 � 10�24Am2 : (2.7)

So the magnetic moment of the orbital motion can change its value only by multiples of
�B and one Bohr magneton is the smallest possible magnetic moment in this sense.
A brief survey of the historical development of quantum-mechanical theories in magnetism
and related work is given in [84].

Quantum-Mechanical Description of Magnetic Moment

Bohr - van Leeuwen Theorem: In 1911 N. Bohr and in 1919 Ms. van Leeuwen
showed independently that the mean value of the orbital magnetic moment h~mli is always
zero, and therefore magnetic phenomena (dia-, paramagnetism, etc.) cannot be explained in
terms of classical physics. In other words, if classical Boltzman statistics (probability for a
particular state having energy U is proportional to e�U=(kBT )) is applied to a dynamic system
in thermodynamic equilibrium, this has to result in a zero susceptibility.
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Spin: Beside the orbital angular momentummentioned above, an electron provides another
contribution to magnetic moment - the spin angular momentum. In principle, spin is a
pure quantum-mechanical quantity without any classical analogon, nevertheless it is often
interpreted as motion of the electron about its own axis. In quantum mechanics, spin is seen
as intrinsic angular momentum associated with particles like electrons or neutrons. Classical
spinning objects derive their angular momentum from the rotation of their constituent parts,
whereas spin angular momentum is not associated with any rotating internal mass.
Orbital and spin angular momentum can be described by means of an operator of spatial
rotation. So both act as angular momentum, and therefore spin causes like the classical
orbital motion of the electron also a magnetic moment. Using the correspondence principle
between classical and quantum mechanics, we substitute the observables1 (the angular
momentum) by the corresponding quantum-mechanical operators2.

classic orbital angular momentum ~L  ! operator of orbital angular momentum~l
?  ! operator of spin angular momentum ~s

Because the operator�s components do not commutate (i.e. we cannot estimate them at
the same time) the norm and one component (z-component) of the operator is a useful set of
observables. In this sense we get the eigenvalue problem for the orbital angular momentum
operator

~l 2 j l; mli = ~2(l+ 1)l j l; mli (2.8a)

lz j l; mli = ~ ml j l; mli (2.8b)
and for the spin angular momentum operator

~s 2 j s; msi = ~2(s+ 1)s j s; msi (2.9a)

sz j s; msi = ~ ms j s; msi (2.9b)
with the eigenvalues3 of an electron

n 2 f1; 2; 3; : : :g principal quantum number (size and energy of the orbit)
l 2 f0; 1; 2; : : : ; n� 1g angular quantum number (orbital ang. m., shape of the orbit)
ml 2 f�l; : : : ;�1; 0; 1; : : : ; lg magnetic quantum number (orientation of orbital ang. m.)
s = 1

2
spin angular momentum (absolute value)

ms 2
�
�1
2
; 1
2

	
spin quantum number (orientation of spin ang. m.)

In a semi-classical point of view the angular momentum operator ~l is plotted as a vector
with length ~

p
(l+ 1)l, which z-component takes the discrete values ~ ml, whereas x- and

y-components are still undecided (see Fig. 2.2).

1Observables are all measurable properties of a system�s state, like position, momentum, angular
momentum or energy.

2In a quantum-mechanical system all possible states are represent by unit vectors (state vectors) residing
in a complex Hilbert space (state space). Each observable is represented by a linear operator acting on
this state space. Eigenstates of observables correspond to eigenvectors of the operator. The values of the
observable in an eigenstate correspond to the eigenvalues associated to the eigenvector.

3Note, a general solution of the eigenvalue problem (2.8) gives l 2 f0; 1=2; 1; 3=2; 2; :::g and therefore
ml 2 f�l;�l+ 1; :::;�1; 0; 1; :::; l� 1; lg, but it can be shown that for orbital angular momentum of an
electron only integer-valued eigenvalues are allowed.
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Figure 2.2: Semi-classical picture of the orbital angular momentum for l=2.

As mentioned above, we replace the classical angular momentum by the corresponding
quantum-mechanical operator and get the magnetic moments of a single electron as

orbital moment: ~ml = �gl
�B
~
~l spin moment: ~ms = �gs

�B
~
~s; (2.10)

their absolute value

ml = gl�B
p
(l+ 1)l ms = gs�B

p
(s+ 1)s ; (2.11)

and their component in z-direction

ml;z = gl�Bml ms;z = gs�Bms : (2.12)

The parameter g - known as Landé factor or gyromagnetic ratio - is gl = 1 for pure orbital
moments and gs = 2:0023 for spin moments. The latter is a result of the relativistic Dirac
theory and may be seen as quantum-mechanical correction in view of the fact that the spin
does not behave like a classical angular momentum.

2.1.2 Magnetic Moment of an Isolated Atom

In an atom or ion that consists of n electrons one has to consider 2n coupled magnetic
moments (orbital and spin). These n electrons (each can either be in �spin up�ms;i = 1=2
or �spin down�ms;i = �1=2 state) reside in certain electron shells that are characterized by
the quantum numbers n and l. Such a state (electrons in certain shells) is referred to as
con�guration, which is usually degenerated except in full shells.

Russell Saunders Coupling and Hund�s Rules: Electron systems with localized
magnetic moments are described by their total angular momentum. For calculations with
more than one electron we have to consider the Coulomb interaction between electrons as
well as the spin-orbit coupling. For not too heavy elements the latter is smaller than the
Coulomb interaction and leads to the so called Russell Saunders coupling (L-S coupling).
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Let us denote ~li as (operator of) orbital angular momentum and ~si as spin angular
momentum of an individual electron i = 1 : : : n. Assuming that the interaction between
orbital and spin angular momentum is small compared to orbital-orbital and spin-spin
interaction, we obtain the total orbital angular momentum of n electrons

~L =

nX
i=1

~li ; (2.13)

the total spin angular momentum

~S =
nX
i=1

~si ; (2.14)

and the total angular momentum

~J = ~L+ ~S : (2.15)

The corresponding quantum numbers, which de�ne the state of the electron system, are
denoted in capital letters as L, S and J.

L =
nX
i=1

ml;i S =
nX
i=1

ms;i J = jL� Sj (2.16)

For �lled shells we get L = 0 (orbital angular momentum adds up to zero) as well as S = 0
(spin angular momentum adds up to zero), and that is why closed shells do not produce any
permanent magnetic moment. Accordingly, these quantum numbers L, S and J represent
the whole atom and the electronic con�guration of the partially �lled shells, too.
The energy minimizing sequence of occupation used to determine the most stable orbital
and spin con�guration (multiplet structure of a certain atom) is given by the empirical
Hund�s rules:

1. The lowest energy corresponds to a state with a maximum value for the multiplicity
2 jSj + 1. A maximization of S (meaning that as many electrons as possible are �spin
up�) can be seen as minimization of Coulomb energy, because Pauli�s exclusion principle
prevents that electrons of the same spin are in the same (neighboring) state.

2. The state having the largest value of L (angular momentum) for a given multiplicity
is the one with the lowest energy. A maximization of L can also be interpreted as
minimization of Coulomb energy, because electrons in a shell that have the same sign
of ml can be imagined to rotate in the same direction and therefore reducing Coulomb
repulsion.

3. In the case of a less than half �lled shell the total angular momentum is given by
J = jL� Sj, otherwise by J = jL+ Sj.

The union of all (2L+ 1) (2S+ 1) states for given L and S of a certain electronic
con�guration is denoted as term.
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Total Magnetic Moment: In analogy to the magnetic moment of a single electron the
orbital and spin magnetic moment of the electron system

~mL = �gl
�B
~
~L ~mS = �gs

�B
~
~S (2.17)

add up to the total magnetic moment

~m = ~mL + ~mS = �
�B
~

�
gl~L+ gs~S

�
� ��B

~

�
~L+ 2~S

�
: (2.18)

Since we can only measure the component with respect to ~J and due to spin-magnetic
anomaly orbital and spin component cannot simply be added (see Fig. 2.3), we de�ne the
Landé factor

gj = 1 +
J(J+ 1)� L(L+ 1) + S(S+ 1)

2J(J+ 1)
(2.19)

and get the total magnetic moment

~mJ = �gj
�B
~
~J (2.20a)

mJ = gj�B
p
(J+ 1)J (2.20b)

mJ;z = gj�BmJ with mJ 2 f�J; : : : ;�1; 0; 1; : : : ; Jg : (2.20c)

Figure 2.3: Addition of angular and magnetic moments in a semi-classical representation.

Finally, it can be summarized that the �rst two of Hund�s rules are based on the
minimization of Coulomb energy between neighboring electrons. But Hund�s third rule
relates to a minimization of the spin-orbit interaction, assuming that this is the next most
signi�cant energy term after Coulomb energy, a fact that is not always true, when atoms are
placed in a crystal lattice, for example.
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2.1.3 Magnetic Moment of Materials

Magnetic Materials

From a generic point of view a material is said to be magnetic, if it possesses permanent
magnetic moment, at least in some parts of the sample volume. While most of the pure
elements are magnetic in the atomic state (as an isolated atom), only a small fraction carry a
permanent magnetic moment in the solid state (as molecule or crystal), because the electronic
orbits, which are responsible for the magnetic properties, are in�uenced by the formation
of a chemical bond. However, a permanent magnetic moment results from partially �lled
electronic shells that are deep enough (and therefore protected by shells lying further outside)
to remain non-saturated even when they are in a polyatomic ensemble.
Hence, there are two series of elements that are of theoretical interest as well as practical
importance4 (antiferromagnetic elements are in italic):

� 3d elements - iron group of transition metals (Cr, Mn, Fe, Co, Ni)

� 4f elements - rare earths (lanthanides, e.g. Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm)

The magnetic behavior of materials that consist of di¤erent elements (compounds, alloys)
cannot be explained by their constituents in a simple way. For example the ferromagnetic
Heusler alloy (Cu2MnAl) is made of diamagnetic copper, antiferromagnetic manganese, and
paramagnetic aluminium.
When analyzing more than a single isolated atom, one has to consider the electronic
structure and the interaction mechanisms between the particles. In principle one has to
deal with a many body problem that cannot be solved exactly in practice. Thus, the two
approximations of localized magnetic moments and itinerant (delocalized) magnetic moments
are used as simpli�ed models in order to describe magnetic materials.

Localized Magnetic Moments

A major characteristic of such localized systems is the fact, that each individual electron
is assigned to one orbital place within the atom according to Pauli�s principle5. Exchange
within the atoms (intra-atomic spin-orbit interaction) is the major contribution to interac-
tion and therefore magnetic moment results from angular momentum of the electron system.
In other words, the relativistic spin-orbit (Russell Saunders) coupling is much stronger than
crystal �eld e¤ects, so that the magnetic behavior can be estimated as in free atoms and
J together with L and S are good quantum numbers to determine the magnetic moment.
This description can be applied for free atoms, ions in chemical complexes, and rare earth
elements. For the rare earth elements the partially �lled 4f shell, which is responsible for
magnetism, is located deep inside the atom6, shielded by the outlying shells (5s, 5p, ...), and
thus only little a¤ected by bonding mechanisms and crystal �eld.

4The name 3d and 4f elements comes from the partially �lled 3d (n=3, l=2) or 4f (n=4, l=3) shell that
is responsible for magnetism.

5Each electron must occupy a di¤erent orbit (energy state) which is de�ned by the four quantum numbers
n , l , ml, and ms.

6The probability at which distance from the nucleus an electron within a certain shell can be found (radial
distribution function) can be calculated from the corresponding wave-functions.
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Itinerant Magnetic Moments

Opposite to localized systems electrons7 are no longer bound to discrete energy levels, they
can move quasi freely in the crystal�s periodic potential. The e¤ect of the environment is
represented by the electric crystal �eld of the neighboring atoms. In consequence of that, the
quantum numbers are not able to describe the particles�behavior, so the metallic state is seen
as electron gas represented by an electronic band structure instead of discrete momentum
levels. In the simplest case one can consider the valence electrons as particles that can freely
move in a constant potential8. Therefore, the wave vector ~k (which represents a plane wave
as solution of the Schrödinger equation in a constant potential) and the spin direction (spin
up - spin down), or equivalently the energy and the density of states are used to describe
the magnetic moment of such a delocalized (itinerant) system.
The major interaction exists between neighboring atoms or ions (electrostatic interaction)
by an inter-atomic exchange via valence electrons. Due to crystal �eld e¤ects, which are much
stronger than spin-orbit interaction, the spherical symmetry of the free atom is destroyed
and the orbital momentum becomes quenched (L = 0, J = S, and gj = 2). In a semi-classical
picture the net orbital angular momentum averages to zero due to the crystal �eld.
Within the framework of this itinerant electron model one is able to explain magnetism in
metals, such as the 3d transition metals.

2.1.4 Exchange Interactions

In order to describe collective magnetic phenomena, one has to consider long-range
interaction mechanisms between the magnetic moments of a solid. The most intuitive
mechanism is the dipolar interaction between two magnetic dipoles. But this classical type
of interaction is so weak that it just plays a role at very low temperatures. In practice,
the quantum mechanical exchange interactions, which are of electrostatic origin, are the
mechanisms of relevance.

Direct Exchange

When the exchange interaction takes place between electrons on neighboring magnetic atoms
(without intermediary atoms) it is called direct exchange. Unfortunately, this direct exchange
is not a dominant exchange mechanism for most of the materials, because neighboring
orbitals (of the magnetic relevant shells) have only a small overlap.
Electrons are represented by fermions that are de�ned by antisymmetric9 wave functions
for an ensemble of two or more electrons. Since the total wave function is the product
of a spatial and a spin wave function, one of them has to be symmetric and the other
one antisymmetric. For two electrons the spin wave function can either be antisymmetric
(representing the singlet state with S = 0) or symmetric (representing the triplet state with
S = 1). The di¤erence in energies of the singlet and the triplet state de�nes the exchange

7Strictly speaking valence electrons, because electrons of full shells do not contribute to magnetic moment.
8In practice the presence of the ionic atom cores tends to localize the freely moving valence electrons and

leads to a periodic potential.
9Antisymmetric related to the pairwise exchange of particles.
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constant between two electrons as JEx = 1=2 (ESinglet � ETriplet), and the Hamiltonian (that
is related to the energy) in terms of two spins ~s1 and ~s2

HEx = �2 JEx
1

~2
~s1 �~s2 : (2.21)

A generalization to a many-body system can only be done as approximation, such that one
accounts only for interactions between the nearest neighbors that are all characterized by
the same exchange constant JEx. The Hamiltonian of the so called Heisenberg model is then

HEx = �2 JEx
1

~2
X
hi;ji

~si �~sj ; (2.22)

where hi; ji denotes the summation over all nearest neighbor spins in an ensemble of electrons.
Positive exchange constants e¤ect parallel alignment of neighboring spins (triplet ground
state), and negative exchange constants antiparallel alignment (singlet ground state).
Although direct exchange is rather rarely dominant in practice, the form of the Heisenberg
Hamiltonian is a good approximation for more general kinds of exchange mechanisms.

Indirect Exchange

Indirect exchange mechanisms describe concepts of a long-range magnetic order, when no
direct interaction via overlapping orbitals is possible.

Superexchange: For a number of ionic solids10 the exchange interaction between non-
neighboring magnetic ions (transition metal) is mediated by a non-magnetic ion (e.g. O2�).
The energy of the compound can be reduced by a virtual hopping of the corresponding 3d-
and p-electrons, if the 3d-spins between contiguous metal ions are aligned antiparallel.

RKKY Exchange: In rare earth elements the exchange interaction between localized
magnetic electrons (4f) is mediated by conduction electrons (s or d), such that the localized
moment spin-polarizes the conduction electrons and therefore couples to the neighboring
localized moment. This mechanism is named after its discoverers (Ruderman, Kittel, Kasuya,
and Yoshida) and leads either to parallel or to antiparallel alignment of spins11, depending
on the distance between neighboring spins and the �lling of the band.

Double Exchange: If the magnetic ions can exist in more than one oxidation state (e.g.
Mn3+ and Mn4+, Fe2+ and Fe3+) within a compound, one electron can hop between these
ions. Simply spoken, this hopping that reduces energy is only possible when the spins of the
magnetic ions are parallel. One example is the series La1�xSrxMnO3 (with trivalent La3+

and bivalent Sr2+), where x determines the fraction of Mn3+ and Mn4+ ions. In this case the
electron transfer from the Mn3+ to the Mn4+ ion is mediated via the oxygen ion. Another
example is magnetite Fe3O4 that contains Fe2+ as well as Fe3+ ions.
10Most of the magnetic insulators comprise of magnetic transition metal ions and non-magnetic ions (such

as O2�, S2�, Cl�, or F�).
11The localized magnetic moments produce an oscillating magnetization of the electron gas. So it depends

on the distance and on the wavelength of this oscillation, whether the coupling is parallel or antiparallel.
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2.2 Continuous Magnetization and Susceptibility

If one is interested in magnetic modeling, when the relevant length scale is orders larger
than the inter-atomic distance, continuum models are used. Since the individual position
of an atom is no longer of relevance, the discrete nature of the underlying characteristics is
replaced by a local average over an elementary volume �V around the position vector ~r.

2.2.1 Microscopic Description and Continuum Models

The microscopic description is based on a discrete set of charged particles Pi (charge qPi,
magnetic moment ~mPi) moving in vacuummedia. The motion of these particles is represented
by the microscopic current density ~JMicro and their charge by the microscopic charge density
�Micro. Together with the microscopic electric and magnetic �elds ~EMicro and ~BMicro, which
give reasons for the Lorentz force acting on the particles, the microscopic Maxwell equations
can be stated as

~r � ~EMicro =
�Micro
"0

~r� ~EMicro = �
@ ~BMicro
@t

(2.23a)

~r � ~BMicro = 0 ~r� ~BMicro = �0 ~JMicro + �0"0
@ ~EMicro
@t

: (2.23b)

Here we have the permeability of vacuum

�0 = 4 � 10
�7 Vs/Am (2.24)

and the vacuum permittivity

"0 = 8:854 10
�12 As/Vm (2.25)

as universal constants.
The corresponding continuum model is obtained by applying the spatial average h:i over the
microscopic values for the elementary volumes �V around the position vector ~r (see [83]).
Thus, one get the classical electromagnetic �elds as

~E(~r) =
D
~EMicro

E
j~r and ~B(~r) =

D
~BMicro

E
j~r : (2.26)

The spatial average of the microscopic current density can be separated into three
contributionsD

~JMicro

E
j~r = ~J(~r) + ~JP(~r) + ~JM(~r) ; (2.27)

where ~J describes the motion of free charged particles, ~JP the motion of charged particles
bound on electric dipoles, and ~JM the motion of charged particles bound on magnetic dipoles.
The spatial average of the microscopic charge density can also be separated in the free electric
charge density � and the charge density �P bound on electric dipoles

h�Microi j~r = �(~r) + �P(~r) : (2.28)
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2.2.2 Magnetization

In magnetic media the continuous magnetization ~M(~r) is given by the sum of the atomic or
ionic magnetic moments ~mPi per elementary volume �V

~M(~r) =
1

�V

X
i��V

~mPi ; (2.29)

and represents the density of magnetic moment ~mV within a sample volume V

~mV =

Z
V

~M(~r) dV : (2.30)

Orbital as well as spin12 magnetic moments can be seen as elementary magnetic (dipole)
moments, which are represented by the intrinsic bound current density ~JM(~r) in the
framework of the continuum model. Compared to the classical free current density ~J(~r)
the intrinsic current density ~JM(~r) involves no macroscopic �ow of charges

~r � ~JM(~r) = 0 (2.31)

and can be �gured as current loops at the atomic scale. Hence, the surface integral over an
arbitrary cross-section S must vanishZ

S

~JM(~r) �
�!
dS = 0 ; (2.32)

which allows a reformulation as curl of another vector �eld ~M(~r)

~JM(~r) = ~r� ~M(~r) : (2.33)

Elementary current loops that cancel out inside the volume V may cause a bound surface
current density

~KM(~r) = ~M(~r)� ~n(~r) ; (2.34)

where ~n(~r) is the unit vector perpendicular to the surface. Using the generic de�nition of
the magnetic moment ~mV resulting from the current distribution ~JM(~r) inside some region
V and the surface current distribution ~KM(~r) on the corresponding surface @V

~mV =

Z
V

~r � ~JM(~r)
2

dV +
Z
@V

~r � ~KM(~r)

2
dS =

Z
V

~M(~r) dV (2.35)

gives together with (2.33) and (2.34) the well known expression (2.30) for the magnetization.

12Although the spin magnetic moment is explained in a pure quantum-mechanical framework, the
relativistic Dirac equation allows to prove that the expectation value of the spin moment can be represented
by a classical dipole moment and the corresponding current density.
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Applying the spatial averaging13 to the microscopic Maxwell equations (2.23) together with
(2.26)-(2.28), (2.31), (2.33), and the electric polarization ~P (~r)

~JP(~r) =
@ ~P (~r)

@t
~r � ~JP(~r) = �

@�P(~r)

@t
(2.36)

gives rise to the vector �elds of the magnetic �eld strength ~H(~r)

~B(~r) = �0

�
~H(~r) + ~M(~r)

�
(2.37)

and the electric �ux density ~D(~r)

~D(~r) = "0 ~E(~r) + ~P (~r) : (2.38)

Thus, the magnetic �ux density ~B comprises of a vector �eld ~H that is basically determined
by free current ~J and dielectric displacement current @ ~D

@t
= "0

@ ~E
@t
+ ~JP

~r� ~H(~r) = ~J(~r) +
@ ~D(~r)

@t
; (2.39)

and a vector �eld ~M that originates from the intrinsic magnetic dipoles (2.33).
According to Maxwell�s law the magnetic �ux density is globally divergence-free

~r � ~B(~r) = 0 or
Z
@V

~B(~r) � �!dS = 0 (2.40)

and therefore prevents the existence of magnetic monopoles within any arbitrary region V
(having a surface @V).
Concluding, it should be shown that a continuum treatment allows the aggregation of
microscopic quantum-mechanical properties of magnetism into macroscopic quantities by
postulating the existence of elementary magnetic moments. So the ensemble of these
elementary moments can be treated with Maxwell�s equations in a pure classical framework.

2.2.3 Magnetic Susceptibility and Permeability

In this section a survey about the various aspects of magnetic susceptibility is presented.
One of the �rst comprehensive treatment of electric and magnetic susceptibilities has been
provided by Van Vleck [83] in 1932.
For homogeneous materials there is a functional dependence ~M( ~H) or ~B( ~H) that describes
the reaction of the magnetization or induction on an applied �eld ~H. Physicists often denote
this dependence as response function

~M = �( ~H) ; (2.41)

13Formally, the spatial averaging is done by means of quantum-mechanics. But the relation between
atomic properties and continuous ones is quite intricate.



2.2 Continuous Magnetization and Susceptibility 21

where the magnetic system (e.g. a crystal consisting of several thousands of atoms or ions) is
modeled as black box. The function �(:) is called (general) magnetic susceptibility14, which
degenerates in case of linear, homogeneous, isotropic, non-hysteretic media to a scalar value

~M = � ~H : (2.42)

Because material properties cover a wide range of physical phenomena, there is a big variety
of de�nitions for magnetic susceptibility:

� Anisotropic material: In case of linear or linearized homogeneous anisotropic media
one can use a susceptibility tensor in order to describe the response of the material.

� Nonlinear material: For small changes in �eld around an operating point (H0;M0) the
di¤erential susceptibility is de�ned as

�di¤ =
dM
dH

����
H0

: (2.43)

� Hysteretic material: If there are non-reversible processes present, it makes sense to
de�ne several characteristic susceptibilities, which will be explained in the following
chapter.

� Time dependent phenomena: Most of the magnetization processes are time dependent,
so one has to distinguish between static and dynamic susceptibility particularly when
dealing with high frequencies or transient behavior.

� The concept of susceptibility is based on the magnetization as �eld-induced magnetic
moment per unit volume. In practice it might be reasonable to consider magnetic
moment per mass unit or per mole. Thus, mass or molar magnetic susceptibility can
be used instead of the dimensionless volume based susceptibility. The conversion is
de�ned via mass density or molar volume (volume occupied by one mole).

The magnetic permeability � is de�ned via the functional dependence

~B = �( ~H) : (2.44)

In case of linear, homogeneous, isotropic, non-hysteretic media there is a scalar dependence

~B = � ~H = �0 �r ~H ; (2.45)

where the dimensionless relative permeability �r is related to the magnetic susceptibility via
(2.37) and (2.42) as

�r = 1 + � : (2.46)

In analogy to the various de�nitions of the magnetic susceptibility given above, there exist
corresponding concepts for the magnetic permeability, too.
The response of a magnetic material on an applied magnetic �eld can be classi�ed in terms
of �eld- and temperature-dependence, which is the issue of the following section.
14In quantum theory one can also de�ne a generalized susceptibility as response function, based on the

wave-vector and the frequency of the applied �eld.
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2.3 Classi�cation of Magnetic Behavior

2.3.1 Diamagnetism

In general, diamagnetism is characterized by a �eld induced magnetization in substances
of non-magnetic atoms. The resulting susceptibility is very small, negative, and nearly
temperature independent as sketched in Fig. 2.4. For atoms or molecules with full electron
shells the Larmor model is used to describe diamagnetism, whereas in metals (free electron
gas) one has also to consider the Landau diamagnetism.

Figure 2.4: Characteristics of a typical diamagnet: magnetization curve (a), and inverse
susceptibility (b).

Larmor (Langevin15) Diamagnetism

Within a semi-classical treatment electrons are assumed to move around the nucleus with
angular velocity ~!e in the absence of any magnetic �eld. Larmor�s theorem states that the
orbital motion of an electron in an external magnetic �eld ~H is the same as without the �eld
(no-�eld solution) plus an additional rotation with the angular velocity ~!L

~!e( ~H) � ~!e( ~H = ~0) + ~!L( ~H) : (2.47)

The resulting Larmor angular velocity ~!L is obtained from the introduction of the Lorentz
force16 into the electron system as

~!L( ~H) =
e

2me

�0 ~H (2.48)

and assumed to be much lower than the motion of the electron in the central �eld !L � !e.
Thus, the superposition of the angular velocities with no �eld and with an applied �eld

15The diamagnetic susceptibility was �rst calculated by Langevin by means of classical electrodynamics
using Lenz�s rule. Another approach, which leads to identical results, is done by employing Larmor�s theorem.
So Langevin as well as Larmor diamagnetism are terms that describe the same phenomena.
16Assume that in a classical system without an external magnetic �eld, the angular velocity of the electron

is determined from the equilibrium of the Coulomb force (between electron and nucleus) and the centrifugal
force due to rotation. If there is an additional Lorentz force resulting from an external �eld, the angular
velocity has to change in order to ful�ll the equilibrium condition.
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as Larmor�s theorem states, is only valid for weak �elds. However, because the additional
Larmor angular velocity is parallel to ~H for every electron of the atomic system, there is a
net magnetic moment antiparallel to the originating �eld, leading to a negative diamagnetic
susceptibility.
In a pure quantum mechanical treatment one starts with the de�nition of a Hamiltonian
operator, which represents the kinetic energy, the Zeeman (�eld) energy, and the Coulomb
(potential) energy of the electron system with an applied �eld. Assuming that the solution
(eigenvalues and eigenstates) of the problem without �eld is known, one adds the �eld-
dependent energy terms to the original Hamiltonian as (�rst-order) perturbation. Finally,
one ends up in a perturbed Hamilton operator that is the sum of the unperturbed operator
(no-�eld solution), a paramagnetic part (reducing total energy), and a diamagnetic part
(increasing total energy).
Diamagnetic susceptibilities are small in size (in the order of �10�6 to �10�5) and can
only be observed if the other magnetic contributions vanish. Thus, typical diamagnets are
solid inert gases and ionic crystals, having full electron shells.

Landau Diamagnetism

Additionally to the Larmor diamagnetism of full electronic orbitals, there is another
diamagnetic contribution from the free valence electrons in metals. Without an applied �eld
the free electron states are uniformly distributed in the k-space (of wave vectors), whereas
in the presence of a magnetic �eld only certain energies (k-vectors) - the so called Landau
levels - are allowed. This �eld induced breaking up of states into discrete levels leads to a
(�eld dependent) di¤erence in total energy and therefore to a magnetic susceptibility that
depends on the density of states at the fermi energy. Landau diamagnetism is entirely based
on the orbital motion of the electrons.

2.3.2 Paramagnetism

In principle, paramagnetic behavior is observed, when atoms or ions carry permanent
magnetic moment, and the interaction between these magnetic moments is negligible. So,
in the absence of a magnetic �eld the atomic magnetic moments are randomly distributed,
whereas they become oriented with an increasing applied �eld. Hence, the paramagnetic
susceptibility is positive.

Langevin Paramagnetism

In a classical picture the atomic magnetic moments ~m can take any arbitrary direction in
space. The competition between the magnetic �eld energy -�0 ~m� ~H and the thermal agitation
kBT is expressed via classical Boltzman statistics, where kB is the Boltzman factor and T
denotes the temperature. The magnetization M in direction of the applied �eld can be
estimated by the average (expectation value) of the component of magnetic moments in �eld
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direction multiplied with the number of magnetic particles per unit volume N as

M = N

�Z
0

m cos(') exp
�
���0m H cos(')

kBT

�
2� sin(')d'

�Z
0

exp
�
���0mH cos(')

kBT

�
2� sin(')d'

= N mL
�
�0m H

kBT

�
; (2.49)

where L(x) = coth(x)� 1=x is the Langevin function and ' is the angle between ~m and ~H.
In the weak �eld limit one can use the �rst term of the series expansion of L(x) in order to
get an expression for the susceptibility

� =
N �0m

2

3 kBT
; (2.50)

which supports the experimentally determined Curie law (discovered by P.Curie)

� / 1

T
: (2.51)

In the view of quantum mechanics the magnetic moment and its component along the
magnetic �eld are quantized according to (2.20c). Accounting for the discrete nature of the
problem, one obtains the magnetization in �eld direction as

M = N

JX
mJ=�J

gj�BmJ exp
�
���0 gj�BmJ H

kBT

�
JX

mJ=�J
exp

�
���0 gj�BmJ H

kBT

� = N gj �B JBJ
�
�0 gj �B JH

kBT

�
; (2.52)

with the Brillouin function BJ(x). Again, the series expansion of BJ(x) gives an
approximation for the paramagnetic susceptibility in the weak �eld limit

� =
N �0m

2
J

3 kBT
; (2.53)

where mJ de�ned in (2.20b) is referred to as e¤ective magnetic moment me¤.
Depending on the quantum number J we have two limiting cases:

� Spin magnetic moments (J = 1=2; gj = 2; B1=2(x) = tanh(x))

M = N �B tanh

�
�0 �B H

kBT

�
(2.54)

� Classical magnetic moments (J!1; B1(x) = L(x))

M = N mL
�
�0m H

kBT

�
(2.55)

Paramagnetic susceptibilities are about one order larger than diamagnetic ones and range
between 10�5 to 10�3.
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Pauli Paramagnetism

In the free electron gas the magnetic moment is proportional to the number of unpaired spins
(i.e. the di¤erence of spin-up and spin-down electrons). In the presence of a magnetic �eld the
spin-up17 electrons are energetically favored, whereas the spin-down electrons are narrowed.
Hence, the corresponding energy bands are shifted by an energy that is proportional to
the magnetic �eld, meaning that spin-down electrons in the Fermi surface18 switch to spin-
up state. The resulting magnetization increases linearly on the magnetic �eld, leading to
the paramagnetic Pauli susceptibility, which is nearly temperature independent. For non
interacting electrons one has to choose Fermi statistics to describe the energy boundary for
occupied and non-occupied states at �nite temperatures.
In contrast to the Langevin paramagnetism (of insulators), where at least one electron per
atom or ion contributes to the paramagnetic behavior, in metals only the electrons near the
Fermi surface are of importance19. Consequently, the Pauli susceptibility is small compared
to the paramagnetic susceptibility for localized magnetic moments.

Figure 2.5: Characteristics of a typical paramagnet for di¤erent temperatures T1 < T2 < T3:
magnetization curve (a), and inverse susceptibility (b).

2.3.3 Ferromagnetism

In contrast to diamagnetic and paramagnetic materials, ferromagnetica have a spontaneous
magnetization without an applied �eld20, which is founded in the long-range exchange
interaction acting between the atomic magnetic moments. In the ferromagnetic case this
exchange interaction leads to a parallel alignment as long as thermal agitation is comparably
small. Hence, the spontaneous magnetization decreases to zero at the so called Curie
temperature TC. For temperatures above TC the material becomes paramagnetic, and the

17Consider the spin-up electrons as those ones that magnetic moments point parallel to the �eld.
18The Fermi surface separates �lled states (allowed solutions from Schrödinger equation) from non-�lled

states in the phase space of wave vectors (~k-space).
19For the free electron gas that consists of fermions only electrons on the Fermi sphere can be excited,

which causes a proportionality to the density of states at the Fermi energy for those phenomena.
20In many cases this spontaneous magnetization can be found in several regions of the ferromagnetic

sample, which are called magnetic domains.
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corresponding paramagnetic susceptibility is in a �rst-order approximation given by the
Curie-Weiss law (see Fig. 2.6(b))

� / 1

T � TPara
; (2.56)

where TPara � TC. By the way, in this paramagnetic state just the long-range interaction
has broken down, but magnetic moments still exist.

Figure 2.6: Characteristics of a typical ferromagnet for temperatures T1 < T2 < TC < T3:
magnetization curve (a), inverse susceptibility (b), and spontaneous magnetization (c).

Over the years a couple of physical theories have been established in order to explain
ferromagnetic behavior and the spontaneous magnetization in particular. For a detailed
description see [62].

Mean-Field Models

First, there are models that can be grouped into a mean-�eld approach, where it is
postulated that a magnetic moment is in�uenced by a �eld resulting from the average over
all the neighbors�moments. Such mean-�eld models are able to explain phase transitions
between ferromagnetic and paramagnetic behavior qualitatively. But naturally they give
an inappropriate description of the magnetic behavior in the critical region around the
Curie temperature, because local correlations and �uctuations are not incorporated, since
all regions of the sample are treated identically.

� Weiss Molecular Field Model : In 1907 P. Weiss proposed a so called �molecular �eld�
of magnetic origin that a single atomic magnetic moment feels additionally to the
external �eld. This molecular �eld ~Hmf = �mf ~M represents the in�uence of all the
neighbors and is therefore proportional to the magnetization ~M with the molecular
�eld constant �mf. Thus, the ferromagnetic case can be treated in a similar way as the
Langevin paramagnetic case, just by adding the molecular �eld to the applied �eld.
Unfortunately, this �ctive magnetic molecular �eld would be extremely high in order to
get realistic Curie temperatures, because in reality the exchange interaction is entirely
an electrostatic e¤ect.

� Landau Theory of Ferromagnetism: The Landau theory is a generalized approach to
describe phase transitions, which is based on a power series expansion of the free energy
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F with respect to the order parameter M . Under assumption of an internal magnetic
�eld H, this power series can only contain even terms21 (due to symmetry to �M) in
M and a �eld energy term ��0HM

F (T;M) = F0(T ) + a(T )M
2 + bM4 � �0HM (2.57)

with a temperature dependent coe¢ cient a(T ) and a positive valued coe¢ cient b. The
minimization of the free energy with respect to the magnetization M gives

M2 =
�0
4b

H

M
� a(T )

2b
; (2.58)

where the transition from ferromagnetic to paramagnetic behavior is represented by
the sign of the coe¢ cient a(T ).

Quantum-Mechanical Models

With introduction of quantum mechanical theories in science, Heisenberg (1926) repre-
sented exchange interactions between (localized) neighboring spins in terms of a Hamiltonian
(2.22), which can be seen as the quantum mechanical origin of the molecular-�eld. The
corresponding models di¤er in the dimensionality of the order parameter (spin momentum)
and the dimensionality of the considered geometry. Within the basic Heisenberg model spins
are treated in the framework of a 3-dimensional Hilbert (state) space, whereas the Ising
model considers just the z component of the spin as 1-dimensional quantity (either spin-up
or spin-down is allowed). The dimensionality of the geometry determines the characteristics
of the models. Without further reasoning it can be stated that there exists no transition
between paramagnetic and ferromagnetic phases in 1-dimensional spin chains, because there
is no long range order possible for non-zero temperatures.
In a spectral point of view, the Heisenberg Hamiltonian describes collective excitations
of the whole spin system. These collective excitations can also be expressed in terms of
spin-waves or as quantized quasi-particles, called �magnons�.

Band Ferromagnetic Models of Itinerant Electrons

The development of the energy band model enabled the description of magnetic behavior
in itinerant electron systems, whereas the previous models are based on the assumption of
localized electrons.

� Stoner Model (1930�s): In the framework of an itinerant electron system the e¤ects
of exchange are treated within a molecular �eld term, which causes a shift in the
spin-up and spin-down energy band, like an external magnetic �eld in case of Pauli
paramagnetism. The so called Stoner exchange integral describes the interactions
instead of the molecular-�eld constant used in the Weiss model. However, the
Stoner model does not provide a good description of ferromagnetic behavior for �nite
temperatures, because it is based on single particle excitations (from spin-up to spin-
down band). As a consequence, the Curie temperature is reached, when magnetic
moments vanish for each atom individually, which is not true for real materials.

21The mean-�eld enters as energy ��0 ~Hmf ~M that results in energy terms proportional to M2.
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� Spin Fluctuation Model : Here, one assumes the existence of a statistical spin density,
where �uctuations of this spin density are used to describe collective excitations for
itinerant electron systems. The total magnetization comprises of a bulk magnetization
of ordered magnetic moments (that becomes zero above TC) and a spatial average of
the thermally �uctuating magnetic moments.

2.3.4 Antiferromagnetism

As the name suggests, in antiferromagnetic materials the exchange interaction leads to
antiparallel alignment of neighboring atomic magnetic moments. In many cases the
antiferromagnetic structure can be considered as superposition of two equivalent sublattices
having a magnetization of the same amplitude, but antiparallel orientation. Thus, the
net magnetization of antiferromagnetic substances is zero in the absence of an external
magnetic �eld. Comparable with the Curie temperature of ferromagnets, there exists also
an ordering Neel temperature TN for antiferromagnetic materials, where thermal agitation
exceeds exchange interactions. For T > TN one can �nd paramagnetic behavior according
the Curie-Weiss law (2.56) with a (negative) characteristic temperature TPara < 0 that di¤ers
signi�cantly from the ordering temperature TN. Hence, there is a �nite susceptibility for
T = TN. In the ordered antiferromagnetic regime (T < TN) it is intricate to describe
the macroscopic magnetization process as function of an external �eld, because exchange
coupling within the sublattices and between them has to be considered as well as crystalline
anisotropy22. Typical characteristics of antiferromagnetic material are sketched in Fig. 2.7,
where the magnetic �eld is applied parallel k or perpendicular ? to the alignment of the
atomic magnetic moments.

Figure 2.7: Characteristics of a typical antiferromagnet: magnetization curve (a), inverse
susceptibility (b), and spontaneous magnetization (c).

Although antiferromagnetic materials are interesting from the theoretical point of view,
they are relatively uncommon in practical applications. Chromium, manganese, and some
oxides (MnO, CoO, FeO) show antiferromagnetic behavior.

22At least there are several possibilities to arrange the atoms belonging to the sublattices within a given
crystal structure.
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2.3.5 Ferrimagnetism

Similar to antiferromagnetism ferrimagnetic materials comprise of two sublattices, but due
to di¤erent number or di¤erent type of atoms in each sublattice they are magnetically not
identical. Hence, there is a net magnetic moment even in the absence of an external magnetic
�eld. Again the Curie temperature TC is the temperature, where thermal agitation exceeds
exchange coupling. Above TC the paramagnetic behavior can be described by the Curie-Weiss
law (2.56) with TPara < TC. At the ordering temperature TC the paramagnetic susceptibility
becomes in�nite and the spontaneous magnetization is zero. In the ordered regime (T < TC)
the spontaneous magnetization can be derived from the di¤erence of the magnetizations in
the two sublattices (Fig. 2.8). Therefore, one has to account for the temperature dependence
of the spontaneous magnetizations in the sublattices, which can lead to a change in sign of
the net magnetization at the so called compensation temperature TComp in some cases.

Figure 2.8: Characteristics of a typical ferrimagnet: magnetization curve (a), inverse
susceptibility (b), and spontaneous magnetization (c).

Before Neel�s seminal work [66] about antiferromagnetism and ferrimagnetism in 1948,
both were treated as ferromagnetic materials. There are several families of ferrimagnetic
materials, among them ferrites (spinel ferrites, hexagonal ferrites, orthoferrites) and rare
earth garnets. In contrast to ferromagnetic materials, most of the ferrimagnets are insulators
and therefore particularly suitable for operating at high frequencies.

2.3.6 Summary

In conclusion, all these types of magnetic behavior represent a process of order, which is
driven by di¤erent mechanisms leading to certain characteristic response to external magnetic
�elds. Clearly, the classi�cation given in this section is not complete and does not cover the
big variety of magnetic materials. Besides, there exists also other kinds of magnetic behavior,
like helimagnetism, speromagnetism, superparamagnetism, or metamagnetism.



Chapter 3

Magnetic Energies, Domains, and
Hysteresis

Ferromagnetism is characterized by a spontaneous magnetization as result of quantum
mechanical exchange interactions. When dealing with realistic macroscopic samples one
has to take structural as well as geometrical properties of the material in consideration.
In length scales beyond the atomic level it is convenient to describe a magnetic system
in terms of di¤erent energy contributions by means of continuous vector �elds. The sum
of these energy terms would at least in principle allow to calculate the space-dependent
magnetization distribution.
Especially the non-local energy contributions give rise to unique magnetized regions, so
called magnetic domains. Assuming the existence of such domains that are separated by
domain walls, domain theory provides a framework of rules for the formation of the domains.
At the sample level one is interested in the magnetization curve that represents the total
sample magnetization as response of an applied magnetic �eld. Finally, the magnetization
process is associated with dissipation of heat, and the corresponding losses are related
to the hysteretic behavior of the magnetization curve. Although the description of these
macroscopic properties is mainly based on empirically found rules, they can be reasoned by
micromagnetic analysis to some extent.

3.1 Ferromagnetic Energy Contributions

3.1.1 General Considerations

Basic Terms

Using terms of a Cartesian coordinate system with the unit vectors ~ex, ~ey, and ~ez, an arbitrary
orientation ~v is de�ned by the direction vector ~ev as

~ev = �v;x~ex + �v;y~ey + �v;z~ez , (3.1)

where �v;x, �v;y, and �v;z are the corresponding direction cosines with respect to the
coordinate axes.

30
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The symbol V characterizes a structure in 3D space, which is bounded by the surface @V
and contains a volume V measured in the dimension length3.
The magnetization ~M is the magnetic moment ~m per unit volume. Furthermore, ~m
represents the reduced magnetization as

~m =
~M

Ms
(3.2)

with respect to the spontaneous magnetization Ms at constant temperature1.

If not mentioned explicitly ~H denotes the external (applied) magnetic �eld, whereas internal
�elds (inside the magnetic sample) will be identi�ed via subscripts as ~Hin.

In order to analyze the various aspects of the magnetization process in a quantitative
manner, it is useful to express them in terms of energy, which will be denoted as

W : : : Energy assigned to a certain volume V
w(~r) : : : Energy density at an arbitrary point (position vector ~r) in V
w : : : Energy per unit volume (averaged)

and associated via

W =

Z
V

w(~r)dV and w =
W

V
. (3.3)

Classi�cation of Energies

One criterion to distinguish the energies of a ferromagnetic system is the location where they
take e¤ect. Local energy contributions can be assigned to every point ~r in the continuous
framework without considering the rest of the sample. Therefore they can be expressed in
terms of energy densities w(~r). Applied �eld energy, anisotropy energy, and magneto-elastic
interaction energy with non-magnetic stresses depend only on the magnetization ~M(~r) at the
considered point ~r, whereas exchange energy is based on the gradient of the magnetization.
Non-local energy contributions result as interaction of the local magnetization with the rest
of the sample, such as stray �eld energy and magnetostrictive self-energy.
Another criterion is based on the cause of the energy terms. Internal energy contributions
are given by the intrinsic properties of the magnetic system. Exchange energy, (magne-
tocrystalline) anisotropy energy, stray �eld energy, and magnetostrictive self-energy can
be mentioned as internal energy terms. External energy contributions are caused by an
excitation from outside of the magnetic system, like applied �eld energy and magneto-elastic
interaction energy with external stresses.
A third criterion is related to the mechanism that is responsible for the energy.
Magnetostatic energy contributions represent the potential energy of a magnetic system in
a magnetic �eld, such as applied �eld energy and stray �eld energy. Magneto-elastic energy
contributions can be grouped into magnetostrictive self-energy and magneto-elastic energy
with stresses of non-magnetic origin.

1Whenever the temperature dependence of the spontaneous magnetization Ms(T ) is not in the focus of
interest, the magnetic system is described at a constant temperature.
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3.1.2 Exchange Energy

The origin of the quantum mechanical exchange interactions has already been sketched in
section 1.1.4. Although the Heisenberg Hamiltonian (1.22) is derived for direct exchange
of a localized magnetic moment system, it can be used as basis for a (phenomenological)
continuum approximation of exchange interactions for nearly all ferromagnetic materials.
In a continuum framework the discrete nature of the crystal lattice is ignored. Thus, the
volume2 exchange energy density of a ferromagnetic sample (having cubic symmetry) can be
derived by a Taylor expansion of Heisenberg�s Hamiltonian (1.22) for isotropic exchange as

wEx(~r) = AEx

��
~rmx

�2
+
�
~rmy

�2
+
�
~rmz

�2�
: (3.4)

The quantum mechanical spin angular momentum operators are replaced by the continuous
magnetization and the continuum exchange constant for cubic crystal symmetry is

AEx = 2 JExs
2 z

a
; (3.5)

with the nearest neighbor distance (lattice constant) a and the number of sites per crystal
unit cell z (1 for simple cubic, 2 for body centered cubic, and 4 for face centered cubic). One
has to take care that JEx has the dimension of energy, whereas AEx has the dimension of
energy per length.
In a macroscopic point of view quantum mechanical exchange is described phenomenolog-
ically via (3.4) for nearly all kinds of ferromagnetic material.

3.1.3 Stray Field Energy

The stray �eld energy can be seen as potential energy of magnetic dipoles in the �eld created
by themselves and is therefore often called dipole energy. Even though the dipole �eld
decreases with distance proportional to r�3, the number of neighboring magnetic dipoles
increases, so that a long-range interaction results. In another picture the stray �eld energy
corresponds to the work that would be necessary to arrange the magnetic system, when
bringing each of the dipoles from in�nity in space to the �nal position. The energy to build
up each of the (isolated) elementary magnetic dipoles is of quantum mechanical origin and
represents an intrinsic property of the magnetic system, which is not considered explicitly.
In principle, the stray �eld ~HStray results from a summation over the dipole �elds created
by all elementary magnetic moments in their �nal con�guration3. Together with an external
applied �eld ~H the total magnetic �eld ~Hin inside the material is

~Hin = ~H + ~HStray : (3.6)

Because inside the material ~HStray is normally in opposition to the applied �eld, the stray
�eld is often referred to as demagnetizing �eld, if the focus is set on the inner of the sample.

2There is also an interface exchange coupling for multilayer thin �lms that is related to the surface of the
sample.

3But in this point of view one assumes that the distribution of magnetic dipoles (or the magnetization)
in the material is a-priori known.
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Since the stray �eld ~HStray emerges from magnetic dipoles (elementary current loops that
current density vanishes for any macroscopic cross-section)

~r� ~HStray = ~0 (3.7)

is valid. Because of

~BStray = �0

�
~HStray + ~M

�
(3.8)

and

~r � ~BStray = 0 (3.9)

one ends up with

~r � ~HStray = �~r � ~M : (3.10)

Hence, the sources and sinks of the magnetization4 can be interpreted as magnetic charges
causing the stray �eld.
The summation of the potential energies for all magnetic dipoles in the sample volume
VSample gives the stray �eld energy

WStray = �
1

2
�0

Z
VSample

~HStray � ~M dV ; (3.11)

where the factor 1=2 results, because every dipole in the sample acts as source of the stray
�eld as well as magnetic moment within the summation of the potential energies.

Estimation of the Stray Field

General Solution: In principle, the stray �eld energy can be calculated by applying (3.10)
and (3.11). Since (3.7) is valid, a scalar potential � can be de�ned as

~HStray = �~r� (3.12)

that gives together with (3.10) the Poisson equation

4� = ~r � ~M = ��M (3.13)

and de�nes the magnetic (volume) charge density �M . Similarly, one can de�ne a magnetic
surface charge density

�M = ~M � ~n (3.14)

with the surface normal vector ~n. By means of potential theory the scalar potential � can
be calculated via integration of volume and surface charge densities over the sample. The
calculation of the stray �eld energy according to (3.11) needs again an integration over
the sample volume. Because of the computational e¤ort, stray �eld problems are normally
calculated via �nite element methods. But for some simple geometries there exists analytical
solutions for the stray �eld energy.

4In simple cases, the surface of the sample or the interfaces between di¤erent regions in the sample act
as sources or sinks for magnetization.
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Uniformly Magnetized Ellipsoid: Here the stray �eld can be calculated via

~HStray = � ~N � ~M (3.15)

with a symmetrical demagnetizing tensor ~N . The stray �eld energy is proportional to the
volume V of the ellipsoid

WStray =
1

2
�0 ~M

T � ~N � ~M V (3.16a)

=
1

2
�0M

2
s ~m

T � ~N � ~m V ; (3.16b)

where

KStray =
1

2
�0M

2
s (3.17)

is a material parameter that characterizes energy densities associated with stray �elds.
If the ellipsoid is magnetized along one of the principal axes (Fig. 3.1), the demagnetizing
tensor becomes diagonal and the demagnetizing factors along the principal axes (~a;~b;~c) of
the ellipsoid have to sum up to one

Na +Nb +Nc = 1 : (3.18)

Figure 3.1: Ferromagnetic ellipsoid in homogeneous magnetic �eld: magnetic �eld lines (a)
and magnetic �eld inside the ellipsoid (b).

Thus, one can estimate the demagnetizing factors for some special cases:

� Sphere: Na = Nb = Nc = 1=3

� Long rod along the axis c: Na = Nb = 1=2 Nc = 0

� Thin plate in-plane a-b: Na = Nb = 0 Nc = 1

For such a thin plate (in�nitely extended, normal to the plate is given by ~ec) the stray �eld
energy can be expressed as energy density

wStray = KStray (~m � ~ec)2

= KStray cos
2 ('mc)

= KStray �KStray sin
2 ('mc) (3.19)

that is formally equivalent to uniaxial (easy plane) anisotropy.



3.1 Ferromagnetic Energy Contributions 35

3.1.4 Applied Field Energy

The applied �eld energy or Zeeman energy represents the potential energy of the magnetic
dipoles in an external applied �eld ~H. The energy density is

wH(~r) = ��0Ms
~H � ~m(~r) : (3.20)

If the applied �eld is uniform over the sample, the Zeeman energy is proportional to the
component of sample magnetization relative to the �eld direction.
Applied �eld and stray �eld energy together are summarized as magnetostatic energies.

3.1.5 Anisotropy Energy

In general, anisotropy energy accounts for a directional dependence of the magnetization.

Origin of Magnetic Anisotropy

Magnetocrystalline Anisotropy: In crystalline material the orientation of the magne-
tization is in�uenced by the symmetry of the hosting lattice and the crystallographic axes.
The electronic orbitals and hence the orbital angular momentum is coupled with the crystal
(electric) �eld of the neighboring atoms. Furthermore, the spin angular momentum interacts
with the orbital angular momentum via relativistic spin-orbit coupling.
For localized magnetic moments (rare earth metals), where spin-orbit coupling dominates
over crystal �eld e¤ects, the magnetization direction is related to spin and orbital angular
momentum. So the anisotropy energy arises from a change in the coupling of the electronic
orbits with respect to the crystal lattice, leading to large anisotropies in general. For itinerant
magnetic moments (transition metals) the magnetization direction is related to spin angular
momentum. Because of the strong crystal �eld e¤ects, the anisotropy energy arises from a
change in spin-orbit coupling, which gives moderate anisotropy e¤ects.

Induced Anisotropy: Induced anisotropy is related to structural changes in the material
in comparison to the ideal bulk behavior, mostly during production or heat treatment of the
material. Deviations from the ideal structure are caused either by a magnetic �eld or by
mechanical stress. Hence, annealing with magnetic �eld or external stress, �ow casting, or
cold rolling give rise to an induced anisotropy.
Applying a magnetic �eld during the deposition of thin magnetic �lms also causes an
induced anisotropy, which is often a crucial property for the application. Even the deposition
of a �lm on a bulk substrate with di¤erent lattice constants leads to a distortion of the �lm
lattice and via magneto-elastic coupling to anisotropy.
Furthermore, during epitaxial evaporation of a crystalline �lm the symmetry on the surface
is broken, meaning that lattice sites which are equivalent inside the bulk crystal may di¤er on
the surface. So for two di¤erent ions competing on one lattice site there can be a systematic
preference for one of them, leading to anisotropy.
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Shape Anisotropy: Strictly speaking, shape anisotropy is a consequence of magnetostatic
stray �elds and is often not seen as separate anisotropy term. However, it accounts for the
directional dependence of the magnetization caused by the geometrical shape of the magnetic
sample. For some sample geometries (spheroid with two equal axes) the term for the stray
�eld energy takes the form of uniaxial anisotropy as given in 3.19 for example.

Formulation of Magnetic Anisotropy

Whatever mechanism may be responsible for the anisotropy, the quantitative treatment is
done phenomenologically by series expansion in the direction cosines �mci of ~m(~r) with
respect to the characteristic directions ~ci given by the symmetry.
The anisotropy energy can be �gured as energy surface in the 3D space, where every point
on this surface refers to the anisotropy energy that results when the local magnetization is
oriented in the direction of this point. The local minima of this energy surface are referred
to as easy directions, the maxima as hard directions and the saddle-points as medium-hard
directions. If these extrema are restricted to a �nite number of distinct directions, one calls
them easy axes or hard axes. But the terms easy and hard are only in conjunction with the
type of energy well-de�ned.

Anisotropy Field: Sometimes it is convenient to express the anisotropy energy in terms
of a magnetic anisotropy �eld that represents the strength of binding the magnetization to
the easy direction. Hence, the (polar) angle � between the magnetization and the considered
easy axis is assumed to be small (j�j � �=2) in the domain of interest. The behavior around
the minimum � = 0 is given by a Taylor approximation of the energy surface5

wAniso(�)j�=0 � wAniso(0) +
�

1!

@wAniso(�)

@ �

����
�=0

+
�2

2!

@2wAniso(�)

@ �2

����
�=0

� const+
�2

2

@2wAniso(�)

@ �2

����
�=0

; (3.21)

which should be reproduced by a corresponding �eld energy, i.e.
wH(�)j�=0 = ��0MsHAniso cos (�)j�=0

� ��0MsHAniso

�
1� �

2

2!

�
� const+

�2

2
�0MsHAniso : (3.22)

So the anisotropy �eld can be estimated by a comparison of the second-order coe¢ cients as

HAniso =
1

�0Ms

@2wAn(�)

@ �2

����
�=0

: (3.23)

5Under the assumption that the energy surface has a local minimum at � = 0 the �rst derivative
@wA n is o (�)

@ �

���
�=0

= 0 vanishes.
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Uniaxial Anisotropy: In uniaxial systems there is just one characteristic direction in
space that determines the anisotropy energy. Let 'mc(~r) be the angle between the local
magnetization ~m(~r) and the characteristic axis ~c, then

wAniso(~r) = K0 +K1 sin
2('mc(~r)) +K2 sin

4('mc(~r)) + ::: (3.24)

is a generic expression for the anisotropy energy density. The material speci�c anisotropy
constants K0; K1; K2; ::: are temperature dependent in general. Because the uniaxial
anisotropy is invariant to the reversal of ~m the series expansion contains only even powers of
sin('mc(~r)). For most of the practical applications the series expansion (3.24) is truncated
after the second- or fourth-order term. Then the energy minimizing easy directions depend
on the sign of K1 and the ratio K2=K1 as given in Tab. 3.1. Fig. 3.2 shows typical energy
density surfaces for easy axis and easy plane anisotropy.

K1 > 0 K2=K1 > �1 easy axis 'mc = 0
K2=K1 < �1 easy plane 'mc = �=2

K1 < 0 K2=K1 > �1=2 easy plane 'mc = �=2

K2=K1 < �1=2 easy cone 'mc = arcsin
�p
�K1=2K2

�
Table 3.1: Type of easy directions for uniaxial anisotropy depending on the anisotropy
constants.

Figure 3.2: Energy density surface for uniaxial anisotropy of easy axis type (a) and easy
plane type (b).

For the easy axis case the material has one easy axis along ~c (unit vector) and (3.23) gives
with � = 'mc the anisotropy �eld

HAniso =
2K1

�0Ms
; (3.25)

and for the easy plane case with � = 'mc � �=2

HAniso =
�2K1 � 4K2

�0Ms
: (3.26)
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The uniaxial approach is typical for hexagonal and tetragonal crystal structure, many kinds
of induced anisotropy, as well as for shape anisotropy. Just the meaning and interpretation
of the anisotropy constants is di¤erent.

Cubic Anisotropy: In cubic systems there are three characteristic directions, which can
be assumed as c1-, c2-, and c3-axis. When �mc1 , �mc2, and �mc3 denote the direction cosines
of the local magnetization with respect to the cubic axes, the anisotropy energy can be
written as

wAniso(~r) = K0+K1

�
�2mc1�

2
mc2

+ �2mc2�
2
mc3

+ �2mc3�
2
mc1

�
+K2 �

2
mc1
�2mc2�

2
mc3
+ ::: : (3.27)

The energy minimizing easy directions yield from the anisotropy constants K1 and K2

according to Tab. 3.2. Fig. 3.3 depicts the energy density surfaces for the magnetocrystalline
anisotropy of �-Fe (easy h100i-directions) and Ni (easy h111i-directions).

K1 > 0 K2=K1 > �1=9 easy h100i-directions
K2=K1 < �1=9 easy h111i-directions

K1 < 0 K2=K1 > �4=9 easy h111i-directions
K2=K1 < �4=9 easy h110i-directions

Table 3.2: Type of easy directions for cubic anisotropy depending on the anisotropy
constants.

Figure 3.3: Energy density surface for cubic anisotropy having easy h100i-directions (a) and
easy h111i-directions (b).

This approach is characteristic for materials with cubic crystal structure.

3.1.6 Magnetostrictive Self-Energy

In general, magnetostriction is characterized by a variation of interatomic distances with
respect to magnetization. Any elastic deformation of a material sample can be partitioned
into an elastic strain part and a lattice rotation part, where the second one is not of great
signi�cance for many applications. Because a distortion of the crystal lattice changes the
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distance of neighboring magnetic atoms, there is a coupling between magnetization and
elastic strain, represented by the magneto-elastic interaction energy. The elastic energy
acting as counterpart for the magneto-elastic interactions is usually independent of the
magnetization. The minimization of both energy terms at a �xed value of magnetization gives
the tensor of free or spontaneous magnetostrictive strain ~"0. If magneto-elastic and elastic
energies are taken to the lowest possible order with respect to the strain, one operates in the
linear elastic regime, characterized by Hooke�s law.
For cubic crystals the energy related to the spontaneous deformation is equivalent in
structure to the �rst-order cubic anisotropy term. Hence, the magnetostrictive self-energy
for uniformly magnetized samples can be assigned to the anisotropy constants. But in a
magnetic sample with regions of di¤erent magnetization, where spontaneous deformations
do not �t together (domain walls, surface regions), additional magnetostrictive self-energies
emerge. The calculation of these self-energies requires usually a huge e¤ort to solve the
elastic and the magnetic problem together.

3.1.7 Magneto-Elastic Energy with Non-Magnetic Stresses

Stress of non-magnetic origin is either an applied external stress or an internal stress due
to inhomogeneities (dislocations). For a given stress tensor6 ~�Stress(~r) the magneto-elastic
energy density is related to the spontaneous magnetostrictive strain ~"0(~r)

wStress(~r) = �~�Stress(~r) � ~"0(~r) ; (3.28)

in general.
Assume a uniaxial stress �Stress along an axis ~c having an angle 'mc(~r) relative to the local
magnetization ~m(~r). For (elastic) isostropic materials, and cubic crystals along the [100]-
or [111]-axis the magnetization dependent part of the magneto-elastic interaction energy
density can be formulated as

wStress(~r) =
3

2
��Stress sin

2('mc(~r)) ; (3.29)

where � is the corresponding magnetostriction constant (isotropic � = �s, cubic � = �100 or
� = �111). Because (3.29) is formally equal to uniaxial anisotropy, these special cases are
often referred to as stress anisotropy. Depending on the sign of the applied stress and the
magnetostriction constant the magnetization tends to align parallel with or perpendicular
to the stress.

3.1.8 Energy Minimization

In principle, it would be possible to calculate a stationary magnetic con�guration for a certain
ferromagnetic sample by a minimization of the sum of energy contributions described in 3.1.2
to 3.1.7. That concept is employed in the framework of Micromagnetism, which is presented
in section 3.2.

6In the following parts of this work the symbol � is assigned to the variance of statistical distribution
functions, so �Stress is used to indicate for stresses.
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But even when using �nite element techniques, the calculation e¤ort is quite high so
that only samples of small dimension can be treated reasonably within the micromagnetic
framework. For large-scale samples one is often interested in the macroscopic magnetic
behavior rather than in the internal structure of the ferromagnetic system. Thus, the
following section introduces magnetic domains as higher level of abstraction.

3.2 Magnetic Domains

The following paragraphs provide a short overview about the reasoning of magnetic domains.
A detailed treatment including measurement and observation techniques is given in the
textbook [42].

3.2.1 Domain Theory

In the beginning of the 20th century P. Weiss [86] postulated the existence of magnetic
domains, although there were no appropriate observation techniques available. Simply
formulated, a magnetic domain is a closed region within the magnetic sample that is
uniformly magnetized. The interface between two neighboring domains is referred to as
domain wall.
Within the heuristic framework of domain theory the existence of magnetic domains
separated by domain walls is presumed. In this picture, domain walls are taken as
in�nitesimal small, having a certain amount of wall energy per unit of wall area. Based
on this postulation, di¤erent domain patterns can be analyzed by focusing on the relevant
energy terms described in section 3.1 and the corresponding wall energies. So one gets a
good interpretation of the macroscopic domain structure of the ferromagnetic sample.
Dependent on material and geometry of the sample there are di¤erent mechanisms that
are responsible for the setup of the domain structure. In the short-scale range exchange
and anisotropy e¤ects are leading to the uniformly orientated magnetization at preferred
directions. Usually, the non-local energy contributions, mainly the stray �eld energies
determine the building of magnetic domains at large-scale ranges. A reduction of the stray
�eld energy can be achieved, when magnetic volume and surface charges are avoided.
According to (3.16) the stray �eld energy of a uniformly magnetized ellipsoid is proportional
to its volume, whereas the domain wall energy is just proportional to the cross section of
the ellipsoid. Thus, the number of domains in such a sample increases with its size, which
is a universal rule that can be generalized to other shapes, too.
Basically, one distinguishes between primary domains and secondary domains in bulk
materials. The �rst one occupy a large portion of the sample volume in quite simple domain
structures and therefore determine the macroscopic magnetization state. Secondary domains
are relatively complex in structure and are mainly responsible for the reduction of stray �elds
and residual stress at the surface of the material or around defects.
Two neighboring magnetic domains are said to be compatible, if the normal component
of the magnetization is equal on both sides of the domain wall. Thus, compatible domains
exhibit no additional contribution to stray �eld or magnetostrictive self-energy.
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Characteristic Domain Parameters

The reduced anisotropy coe¢ cient is de�ned as dimensionless constant

q =
KAniso

KStray
; (3.30)

where KAniso is the most signi�cant anisotropy constant for the material and KStray is given
in (3.17). High anisotropy materials are characterized by q � 1, whereas low anisotropic
ideal soft magnetic materials ful�ll the relation q � 1.
The competition between exchange and stray �eld energy can be summarized in the so
called exchange length

lEx =

s
AEx
KStray

: (3.31)

For small samples, with a characteristic length less than some multiples of lEx single domain
behavior is favored over a multi-domain state.
A typical measure for the characteristic domain wall width is given by

lWall =

r
AEx
KAniso

(3.32)

with the representative anisotropy constant KAniso.

3.2.2 Domain Walls

In practice, domain walls can be of complex structure, but there are two simple cases that
represent the basic aspects one has to consider.

Bloch Wall

In 1932 Bloch [9] published his concept for the transition of magnetization between two
domains. The idea is that magnetization changes from a certain direction gradually across
a number of atomic planes until it reaches the direction of the second domain. Assuming
that the total rotation in magnetization is shared equally among the atomic planes and that
exchange and anisotropy energy are the dominating parts of the wall energy, one obtains [54]

lBloch = � lWall (3.33)

for the wall width7. The wall energy per unit surface is for uniaxial anisotropy

wBloch = 4
p
AExKAniso (3.34)

7Because the direction of the local magnetic moments change gradually between two domains, there exist
no sharp boundaries for the corresponding domain wall. Thus, the de�nition of the wall width is not unique,
in general. The most commonly used de�nition for the Bloch wall width is related to the slope of the
magnetization angle in the middle of the wall, leading to (3.33).
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and for cubic anisotropy (domain magnetization in [100]-direction)

wBloch = 2
p
AExKAniso : (3.35)

If at least one dimension of the rotation planes becomes small, stray �eld energy from
magnetic poles on the surface has also to be considered. For example, in thin �lms the wall
width decreases and the wall energy increases with decreasing �lm thickness. Hence, Bloch
walls are energetically unfavorable in thin magnetic �lms.

Néel Wall

An approach, where the magnetization changes its direction in the plane of a magnetic thin
�lm has been formulated by Neel 1955 [67]. In Néel walls magnetic volume charges inside
the �lm appear instead of the surface charges that would result from Bloch walls.
In bulk soft-magnetic materials (KAniso < KStray) the wall width of a Néel wall is mainly
determined by stray �elds and proportional to the exchange length lEx.
In thin �lms Néel walls have no sharp boundaries with respect to the adjacent domains, and
one has to distinguish between the kernel region and the tail region. Within the narrow kernel
region the main part of magnetization rotation occurs around a direction perpendicular to
the domain magnetization. Hence, the behavior in this kernel region is governed by stray
�eld (favors a narrower kernel) and anisotropy energy which is counter-balanced by the
exchange energy, so that the kernel width is proportional to

p
AEx=(KAniso +KStray) [42].

In the tail regions magnetization change is driven by a competition between the stray �eld
energy (favors wider tails) and the anisotropy energy leading to tail widths that are multiples
of the kernel width and proportional to KStray=KAniso.
Because of the long-range interaction of the stray �elds in the tails of two neighboring Néel
walls, irreversible state transitions in the magnetization process can result, especially when
the domain between these walls becomes small.

Other Types of Domain Walls

In principle, Bloch as well as Néel walls represent simpli�ed models for the transitional
behavior of magnetization between two neighboring domains. In thin �lms the Bloch wall
energy decreases with thickness, whereas the Néel wall energy increases. Theoretically, there
exists a �lm thickness where Bloch and Néel walls are energetically equivalent, which is
about 50 nm for Permalloy (see [73]). Particularly in this range of thickness several other
types of domain wall structures occur in practice.
One example are cross-tie walls that consists of a periodic arrangement of Néel wall
segments with Bloch lines as sub-structure in between. So a part of the 180� wall energy can
be saved by replacing it with several energetically favorable 90� wall structures resulting in
a reduction of the total wall energy.
In asymmetric domain walls, the change in magnetization is di¤erent inside the �lm
compared to the region near to the surface. This asymmetry in the wall structure allows a
reduction of the stray �eld.
Various domain wall structures are described and illustrated in detail in [42].
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3.3 Magnetization Process

3.3.1 Descriptive Analysis of the Magnetization Process

From a generic point of view, the magnetization process describes the change in sample
magnetization ~M as a reaction of the material to an external magnetic �eld ~H. In general,
a magnetization curve represents the component of sample magnetization in direction of the
applied �eldMH dependent on H. In order to shorten the notation, we write justM instead
of MH .
At constant temperature the sample magnetization can either change by changing the
relative volume fractions of the domains (domain wall motion) or by changing the direction
of domain magnetization (domain magnetization rotation). Each of these processes can be
reversible or irreversible [46].

Demagnetized State

A ferromagnetic sample is called demagnetized, if it has no residual magnetization at zero
�eld, yielding in the necessary macroscopic condition

~M
���
~H=~0

= ~0 : (3.36)

Practically, there are two procedures how to demagnetize a ferromagnetic sample:

� The method of thermal demagnetization consists in heating the magnetic sample up
to the Curie temperature and cooling it down at zero external �eld. This procedure
requires that all parts of the sample (including coating, substrate, etc.) are thermally
stable during the heating.

� Usually, an alternating magnetic �eld with decreasing amplitude is applied to the
sample, which is referred to as AC �eld demagnetization. At the beginning of the
demagnetizing procedure, the alternating �eld amplitude has to be signi�cantly larger
than the coercivity HC.

Although one attempts to erase the magnetic history of the material sample in order to �nd
a magnetic ground state with minimum total energy during the demagnetizing procedure,
the resulting domain patterns can be ambiguous. Especially in magnetic �lms the domain
structure in the resulting demagnetized state is not always reproducible and depends on the
axis of the applied ac �eld, in general. In very thin �lms, where domain wall pinning is big in
comparison with the domain energies, it is extremely di¢ cult to identify unique demagnetized
states. In short, even if the macroscopic condition (3.36) for a demagnetized state is ful�lled,
the microscopic con�gurations need not necessarily be unique or reproducible.

Initial Magnetization Curve

The initial magnetization curve describes the magnetic behavior, when the magnetization
process starts from the demagnetized state.
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A characteristic material parameter is the initial susceptibility

�ini =
dM
dH

����
H=0;M=0

(3.37)

as the slope of the initial magnetization curve in the origin. The corresponding initial
permeability is related via (2.46)

�ini = �0 (1 + �ini) : (3.38)

In domain theory �ini is a measure for the strength of intrinsic restoring forces for small
movements of domain walls. As a structure sensitive property of the material, the
initial permeability can signi�cantly change as a result of small change in composition or
metallurgical treatment.

Rayleigh Law: For weak �elds the permeability can be expressed as

� = �ini + �H ; (3.39)

which leads to an approximation of the magnetization curve around the demagnetized
state (Fig. 3.4(a))

M = �iniH +
�

�0
H2 : (3.40)

This expression is named after its investigator as Rayleigh law with the Rayleigh constant �.
It is often used to extrapolate the initial permeability from measurements.

Saturation

When all magnetic dipoles are perfectly aligned the magnetization has its maximum value,
known as theoretical saturation magnetization Ms,th. There is no further increase in
magnetization possible, so

�jMs,th
= 0 and �jMs,th

= �0 : (3.41)

But as presented in section 1.3.3 the spontaneous magnetization depends on temperature,
meaning that thermal agitation works against the perfect alignment at �nite temperatures.
So it would e¤ort extremely high magnetic �elds to reach the theoretical saturation.
Therefore, one de�nes the technical saturation magnetization Ms as magnetization that is
reached, when all domains of a ferromagnetic sample are merged to a single domain and the
resulting magnetization (as averaged dipole moment) points in the direction of the �eld H.

Law of Approach to Saturation: The magnetization curve near saturation can be
approximated by the law of approach to saturation (Fig. 3.4(b)) as

M

Ms

����
Ms

= 1� a 1
H
� b 1

H2
+ kH : (3.42)
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The coe¢ cient a accounts for non-magnetic inclusions, secondary domains around defects,
and inhomogeneities, where the local magnetization di¤ers from place to place. The
quadratic coe¢ cient b comes from the magnetocrystalline forces that act as counterpart
of the applied �eld. Dependent on the type of anisotropy, b can be derived as function from
the anisotropy constants. The last term kH describes the forced magnetization, which leads
to a further increase of M above the technical saturation magnetization.

Figure 3.4: Initial magnetization curve and approximation by Rayleigh law (a), law of
approach to saturation, theoretical Ms,th and technical saturation magnetization Ms (b).

Anhysteretic Magnetization Curve

Comparable to the ac demagnetizing procedure with a �eld amplitude Ĥ(t) decreasing to
zero, a similar process can be done by the superposition of a constant dc �eld H0 as H(t) =
H0 + Ĥ(t) sin(!t). This ends up in a point (H0;M0) that represents a state of minimum
energy for a certain �eld H0. For di¤erent bias �elds H0 one yields the so called ideal or
anhysteretic magnetization curve.
The anhysteretic magnetization curve is usually interpreted as result if there were no
hindrances to domain wall motion and magnetization rotation that prevent the domain
con�guration from reaching the state of minimal energy. Hence, it describes an ideal
completely reversible magnetization process independent of the magnetic history.

Remanence and Coercivity

When a ferromagnetic material is magnetized up to a point (H0;M0) and the �eld is reduced
to zero, the remanent magnetizationMR(H0;M0) remains. Because the value of the remanent
magnetization depends on the history of the magnetization process, especially on H0, the
(absolute) remanence MR is de�ned as remaining magnetization for H = 0 after the material
has been magnetized to (technical) saturation Ms. As such the remanence MR is used to
characterize the magnetic material.
The coercive �eld HC(H0;M0) is de�ned as magnetic �eld that is necessary to reach a
stable zero magnetization8 state from an arbitrary magnetized state (H0;M0). Again, the

8It is important to distinguish between the (intrinsic) coercive �eld HjM=0 for zero magnetization and
HjB=0 for zero magnetic �ux density.
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(absolute) coercivity HC is the �eld, which is needed to reach zero magnetization from
saturation according to Fig. 3.5(a).
For a stable point of coercivity the di¤erential susceptibility

�C =
dM
dH

����
(HC ;0)

<1 (3.43)

has to be �nite. Otherwise the magnetization reversal is the result of a switching process
and the intersection of the vertical magnetization curve with the �eld axis is referred to as
switching �eld HSw (Fig. 3.5(b)). Such global magnetization switching occurs mainly due to
strong anisotropy energies, when the magnetization jumps from one local energy minimum
to another one.

Figure 3.5: Remanent magnetization MR(H0;M0), (absolute) remanence MR, coercive �eld
HC(H0;M0), and (absolute) coercivity HC (a) versus switching �eld HSw (b).

In general, coercivity determines the area of the hysteresis loop and is therefore related to
the amount of irreversible work involved in the magnetization process. Just as the initial
susceptibility, the coercivity is a structure sensitive material parameter that can change
signi�cantly on small changes in composition or production process.

Minor Hysteresis Loops

Generally, minor loops result by applying a small alternating �eld �H starting from a
magnetized state9 (H0;M0). When the alternating �eld returns to zero, i.e. �H = H0 the
resulting loops are called recoil loops. Depending on the material the minor loops can either
be closed or not, as depicted in Fig. 3.6. If they are closed, all the magnetic history from
the minor loops is erased when the state (H0;M0) is reached again and the magnetic system
exhibits the property of return point memory.
The ratio

�inc =
�M

�H

����
(H0;M0)

(3.44)

9In a narrow sense, minor loops are seen as hysteresis loops that are symmetrical with respect to the
origin, but not magnetized up to saturation. If the hysteresis loops are not symmetrical to the demagnetized
state they are called biased minor loops.
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is referred to as incremental susceptibility �inc. For the limit of small �H the reversible
susceptibility �rev yields as

�rev = lim
�H!0

�M

�H

����
(H0;M0)

; (3.45)

and the di¤erence between di¤erential and reversible susceptibility is de�ned as irreversible
susceptibility

�irr = �di¤� �rev : (3.46)

Figure 3.6: Di¤erent types of minor loops (a), di¤erential, incremental, and reversible
susceptibility (b).

3.3.2 Reversible and Irreversible Magnetization Process

In ferromagnetic materials the magnetization process is intrinsically tied to irreversibility
that results in the dissipation of energy. Within this section the (uniform) applied �eld H
is treated as external control variable and the component of magnetization with respect to
this �eld M (=MH) is considered as state variable for the magnetic system.
When the magnetic �eld changes from H0 ! H1 the transition from state (H0;M0) to
(H1;M1) is called reversible, if the inverse �eld change H1 ! H0 ends up in the original
state (H0;M0), otherwise it is called irreversible. Irreversible processes are mainly related
to a switching from one local energy minimum to another one.

Domain Wall Motion

In practice, the domain wall displacement is strongly in�uenced by inhomogeneities inside
the material.
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At the micromagnetic level several types of inhomogeneities can be distinguished [54]

� Point defects on the atomic level (interstitial sites, vacancies, or impurity atoms)

� Dislocations in the crystal lattice

� Planar defects, like stacking faults, phase-, or grain-boundaries

All these forms of microstructural disorder lead to local changes in anisotropy, exchange
or internal stresses. In a macroscopic point of view, the interaction of the domain wall with
any kind of material inhomogeneity is referred to as pinning. This simpli�cation allows the
treatment of domain wall motion independent of the structure of adjacent domains and the
internal of the wall.
A basic model to explain the domain wall movement in a non-perfect magnetic system goes
back to Neel [63]. Within this model a single rigid domain wall of in�nitesimal thickness
and cross-section A is moving with just one degree of freedom along a coordinate x in a
material that contains pinning sites (Fig. 3.7(a)). For simplicity, assume that the domain
wall separates two domains with anti-parallel magnetization�Ms (180� wall), and the applied
�eld H is oriented in the direction of the domain magnetization. Hence, the total free energy
can be written as sum of the applied �eld energy (3.20), the remaining energy terms W (x)
from section 3.1, and an additional pinning energy WPin(x)

WTot(x) = ��0MsH2xA+W (x) +WPin(x) : (3.47)

In the context of the pinning model, the pinning energyWPin(x) is oscillating with respect to
the wall position x. Each local minimum ofWTot(x) represents a stable equilibrium, yielding
in the condition

�2�0MsHA+
dW
dx

+
dWPin

dx
= 0 or H =

1

2�0MsA

�
dW
dx

+
dWPin

dx

�
: (3.48)

The derivative of the energy terms with respect to x can be interpreted as a force acting on
the domain wall. Equivalently to the pinning energy (per unit area of the wall), one can
de�ne a pinning �eld as

HPin =
1

2�0Ms

d (WPin =A)

dx
: (3.49)

Usually the domain wall interacts with a considerable number of pinning sites, so that the
pinning energy or the pinning �eld is described by means of statistics.
As depicted in Fig. 3.7(b) the domain wall moves reversible from a starting position x0 to
x1 and performs an irreversible discontinuous jump from x1 to x2. These discontinuities in
the magnetization process (Fig. 3.7(c)) have been detected by Barkhausen in 1919 [5] and
are therefore referred to as Barkhausen jumps.
However, in real materials the domain wall movement is more complicated than in the
presented model, but the fact that the displacement of the wall is partly reversible and
partly irreversible due to Barkhausen jumps is still valid.
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Figure 3.7: Simpli�ed model of a moving domain wall in a material containing pinning sites
(a), oscillating pinning energy and wall movement (b), resulting magnetization process (c).

Magnetization Rotation

Here one considers the case, when the magnetic moments rotate coherently in a domain
of constant volume, as in single domain particles for example. Assume that the material�s
behavior is governed by uniaxial anisotropy (3.24) and the applied �eld H is oriented at an
angle 'H with respect to the easy axis. So, the free energy density depends on the angle '
of magnetization relative to the easy axis

wTot(') = ��0MsH cos('� 'H) +K0 +K1 sin
2(') : (3.50)

Fig. 3.8(b) shows the contour of the resulting energy density (3.50) for di¤erent values
of H. Qualitatively, one can see that the magnetization rotates reversibly up to a certain
angle and jumps irreversibly to the new minimum of energy.

Figure 3.8: Single domain particle with uniaxial anisotropy (K0; K1 > 0) (a), energy surface
wTot(') at increasing magnetic �eld 0 < H1 < H2 (b), component of magnetization in �eld
direction MH (c).
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3.3.3 Dissipative Losses

Frequency Dependent Loss Contributions

Hysteresis losses occur even in a quasi-static regime and are related to discontinuities in
the magnetization process. For harmonic excitation, in each period a full hysteresis cycle is
passed, so that hysteresis losses are strictly proportional to the frequency f .
Dependent on the electrical conductivity of the material there are classical eddy current
losses that can be derived from Maxwell�s equations. The induced eddy current is
proportional to the frequency, leading to a f 2 dependence of the eddy current losses.
When a domain wall is moving with a certain velocity, the magnetization in the vicinity of
the moving wall changes. In conducting bulk material eddy currents are induced such that
they generate a magnetic �eld opposite to the applied �eld causing the wall displacement.
Thus, the average wall velocity is reduced (wall damping), and the corresponding losses are
called excess eddy current losses. In general, the domain wall velocity depends on the domain
con�guration, especially on the number of domains (walls). Besides eddy current damping,
domain wall motion can be damped by intrinsic e¤ects that are also relevant in insulators,
but complex in their nature.
In Fig. 3.9 the losses per hysteresis cycle (dissipated power PLoss) and per unit volume

wLoss =
PLoss
f V

(3.51)

are plotted against frequency f for a typical bulk material sample of volume V .

Figure 3.9: Characteristic frequency dependence of various loss contributions.

Static Hysteresis Losses

In a thermodynamical treatment the irreversible Barkhausen jumps due to pinning can be
related to losses. Therefore we assume a simple magnetic system by excluding local relaxation
phenomena and di¤usion processes as well as all kinds of spatial inhomogeneities. So the
magnetic system can be described as whole, having a constant temperature, a homogeneous
distribution of losses, and a uniform entropy distribution.
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According to the �rst law of thermodynamics an increase in internal energy dU is either
due to heat �Q added to the system or due to work �L supplied to the system10

dU = �Q+ �L (3.52)

for transitions between two equilibrium states. If we consider a magnetic system with uniform
applied �eldH and a magnetization componentM in direction of the �eld, the work supplied
to the system is given as the sum of volume work (expansion or compression) and magnetic
work

�L = �pdV + V �0H dM : (3.53)

The second law of thermodynamics states that the heat �Q added to the system is always
smaller or equal than the increase of (total) entropy dS

�Q � T dS ; (3.54)

where equality is valid for reversible state transitions. In case of irreversible processes, the
total change in entropy dS can be separated in the entropy added reversibly from outside the
system dextS and the entropy produced inside the system dirrS due to irreversible mechanisms

dS = dextS + dirrS : (3.55)

Hence, the second law of thermodynamics can be reformulated as
�Q = T dextS

= T dS � TdirrS
= T dS � �irrQ ; (3.56)

where the amount of heat created by the system due to irreversible processes is always
positive �irrQ � 0.
The change in Helmholtz free energy

dFHelm = dU � T dS (3.57)

characterizes the amount of work obtainable from a closed system at constant temperature T .
If we further assume constant pressure p and constant magnetic �eld H, the change in Gibbs
free energy

dFGibbs = dFHelm � �L (3.58a)

= dU � T dS + pdV � V �0H dM (3.58b)
gives the amount of work that can be obtained from the magnetic system. For reversible
transitions between two equilibrium states11 dFGibbs = 0, otherwise dFGibbs < 0. As a matter
of principle, for reversible state transitions the magnetic work added to the system can either

10The operator � accounts for inexact di¤erentials, since heat and work do not represent a state of the
magnetic system. The integral over such inexact di¤erentials is path-dependent, in general.
11Correctly speaking, the classical Gibbs free energy FGibbs(H;T ) assumes an equilibrium state of M

for given H and T , whereas in magnetic systems FGibbs(M ;H;T ) characterizes the free energy at a non-
equilibrium state for given M , H, and T .
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increase the internal energy or decrease the entropy (which is equivalent to an increase of
order)

�L = dU � T dS : (3.59)

For irreversible state transitions a part of the supplied work is transformed into heat

�L = dU � T dS + �irrQ ; (3.60)

yielding in

�dFGibbs = �irrQ : (3.61)

However, in magnetic systems Gibbs free energy is given by the sum of the energy
contributions of section 3.1 and the reversible part of the pinning energy WPin,rev as

FGibbs = WEx +WStray +WH +WAniso +WMEself +WStress +WPin,rev : (3.62)

When magnetostriction, magneto-elastic interactions, and thermal expansion of the
material is disregarded, a constant sample volume V can be assumed. Then magnetic work
is the only one supplied to the system, i.e.

�L = �dWH = V �0H dM (3.63)

and the remaining energy terms give the Helmholtz free energy

FHelm = WEx +WStray +WAniso +WPin,rev : (3.64)

By combining (3.58a), (3.61), and (3.63) an incremental change in state of this simpli�ed
magnetic system can be expressed as

�L = V �0H dM = dFHelm + �irrQ : (3.65)

For a transition from state S1 to S2

V �0

S2Z
S1

H dMH = �FHelm +

S2Z
S1

�irrQ (3.66)

the supplied magnetic work is partly stored in the Helmholtz free energy and irreversibly
transformed into heat. For a complete hysteresis cycle with identical start and end state the
Helmholtz free energy does not change, and (3.66) yields to

�0

I
H dM =

1

V

I
�irrQ : (3.67)

The fact that the area of the hysteresis loop is proportional to the irreversible losses per cycle
has been �rst observed by E. Warburg [85] in 1881 and is therefore known as Warburg�s
law.
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For an adiabatic magnetic system (without exchange of heat with the environment) the
change in temperature is a measure for the entropy contained in the system. Based on
this fact several measurements of the distribution of losses over a hysteresis cycle have been
published in [6], [17], and [79], for example. The change in temperature can be separated
into a reversible part (due to the magneto-caloric e¤ect) and an irreversible part. The latter
is sketched in Fig. 3.10, where the temperature Tirr is representative for the irreversible losses
�wirr per unit volume for a transition between two states S1 and S2

�wirr =
1

V

S2Z
S1

�irrQ � 0 : (3.68)

Figure 3.10: Characteristic results of irreversible heat measurements over a hysteresis
cycle (a), represented by temperature increase Tirr in an adiabatic system (b).

3.4 Summary

Beyond atomic length scales a ferromagnetic system can be described in terms of continuous
vector �elds. The intrinsic quantum-mechanical properties as well as the interactions with
external �eld or stress are captured by di¤erent energy contributions.
When the detailed spatial arrangement of the magnetic moments is not of primary interest,
the ferromagnetic system can be characterized as ensemble of magnetic domains, which are
reasoned by long-range interaction mechanisms.
Focusing on the total sample magnetization and its dependence to an applied magnetic
�eld, the magnetization process can be described in terms of magnetization curves. A change
in sample magnetization can either be due to domain wall motion or due to magnetization
rotation, where each of this two mechanisms are partly reversible and partly irreversible.
Especially the irreversible processes that create losses inside the material are substantial for
hysteresis modeling.
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Part II

Magnetic Modeling

Within the fourth chapter the state of the art in magnetic hysteresis modeling is
summarized. In addition to a brief survey on the basic principles, the major characteristics of
the models published in scienti�c literature are described in chronological order. The models
presented in this chapter are based on either physical, mathematical or phenomenological
principles, so the properties of ferromagnetic hysteresis are derived from di¤erent point of
views. Some of these models have been developed based on a scalar approach and extended
to vector models in the course of time. Exactly this vector generalization of scalar models
can be checked against the two-dimensional extension of the Energetic Model that is also a
part of this thesis.
Furthermore, the e¤ort to identify the model parameters and the expenditure for
calculation have to be related to ability of predicting the magnetization curves with a
su¢ cient accuracy. This synopsis of well established hysteresis models is of vital importance
for the comparison of the generalized Energetic Model with the current state of the art.

The �fth chapter represents the fundamental core of this thesis, since it describes the
generalized two-dimensional "Energetic Model of Ferromagnetic Hysteresis". Starting from
the de�nition of magnetic entities as basic elements of magnetic moment, the aggregation of
these magnetic entities to statistical domain classes provides the topological framework of the
model. In a two-dimensional setup, the orientation of the magnetic entities�magnetization
in such a domain class is characterized by a statistical distribution function of the polar
angle. Hence, local energy contributions that are based on energy densities can be assigned
to the domain classes via statistical expectation value in a quite natural way. In contrast,
non-local energy terms as well as reversible and irreversible work due to domain wall motion
are treated phenomenologically. Whenever applicable, the concepts are substantiated by
physical interpretations and corresponding literature.
After a comprehensive presentation of the generalized Energetic Model, the calculation
process is summarized. In general, the minimization of a total energy term subject to
several constraints determines the model variables and thus allows the simulation of the
magnetization curves. In order to reduce the numerical calculation e¤ort, the setup has to
be chosen adequate to the problem to be modeled.
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Chapter 4

State of the Art in Magnetic
Hysteresis Modeling

In ferromagnetic materials the description of the macroscopic magnetization process is still
quite complex in nature, because it is in�uenced by microstructural properties of the material
as well as by sample geometry, and environmental conditions, like temperature or stress.
Due to the fact that the response of a hysteretic system depends on the history of states,
there is need for a more sophisticated mathematical formalism than just a simple functional
dependence between magnetic �eld and magnetization. Within the di¤erent contexts of
scienti�c approaches and technological requirements several magnetic hysteresis models have
been established in the course of the 20th century. The following sections provide an overview
of the most signi�cant hysteresis models in chronological order.

4.1 Characterization of Magnetic Hysteresis Models

Even though the fact that some hysteresis models are developed, extended, and evaluated
in a broad range, there exists no general uni�ed theory of ferromagnetic hysteresis so far.
However, magnetic hysteresis modeling comprises several topics of science:

� Physical Aspects: Starting point is the fact that magnetic material behavior
originates at the atomic level and is described by means of quantum mechanics.
Nevertheless, the classical approach, where magnetic materials are treated as con-
tinuous media is often an appropriate choice, which makes calculations easier without
loosing accuracy. Intrinsic material properties and in�uences from the environment
(like magnetic �eld or heat) are expressed in terms of energy. Finally, every magnetic
behavior is determined by a competition of di¤erent energy contributions.

� Phenomenological Aspects: In this case one starts at the macroscopic level by
studying various kinds of hysteresis phenomena. Directional dependencies, behavior in
the low and high �eld regimes, accommodation of minor loops, or Barkhausen jumps
are only a few examples representing the wide area of magnetic hysteresis phenomena.
Based on this macroscopic properties one tries to �nd an appropriate "microscopic
picture" (like domain walls moving in an energy landscape) in accordance with the
physical background, which is able to explain the considered hysteresis phenomena.

56



4.1 Characterization of Magnetic Hysteresis Models 57

� Mathematical Aspects: There also exist mathematical techniques to describe
hysteresis behavior independent of any physical or phenomenological background.
Elementary hysteresis operators are mentioned to give an example. If one starts from
a pure mathematical description in order to model magnetic hysteresis, the abstract
elements of the approach have to be related to a physical meaningful reality.

� Stochastic Aspects: Since the "source of magnetism" is located at the atomic level
and magnetic hysteresis analysis is done on a macroscopic level, statistical techniques
can be considered as adequate tool in order to summarize microscopic e¤ects into a
globally describable formalism. Hysteresis phenomena are always accompanied by a
process of order, antagonizing thermal disorder. Like in the classical theory of ideal
(perfect) gases, similar concepts can also be applied to model ferromagnetic behavior.
Last but not least, whenever terms of averaging are used in magnetic models, this
refers to statistics.

Scalar and Vector Hysteresis Models

Most of the presented hysteresis models are based on a scalar approach, so that one is able
to identify the basic mechanisms of the model and study its fundamental properties. In
principle, these scalar models can be applied to describe hysteresis phenomena for many
technical applications, especially when one is interested in the magnetic behavior along a
certain characteristic direction. In order to capture the full directionality of the magnetic
relations, it becomes necessary to extend the scalar models to vector formulations.

Identi�cation of Model Parameters

Especially in the case when models contain many parameters that are hardly to relate to
physical and technological properties of the material, the identi�cation procedure can prevent
from practical usage. So there is always a trade-o¤ between the ability of a model to
describe a given hysteresis behavior with high accuracy and the e¤ort to identify the model
parameters, based on the underlying physics.

Length Scale of the Problem

In the beginning of chapter 1 it is stated that the theoretical framework to describe
magnetic behavior is related to the length scale (number of involved atoms) of the considered
problem. Consequently, the same argument can be applied to magnetic hysteresis models.
So microscopic models are designed to explain the internal structure of domains (and walls),
whereas macroscopic models are focused on the various features of the magnetization process
as a whole.

In the following pages some of the most signi�cant hysteresis models are described
succinctly. Thus, the basic assumption and properties are pointed out at the expense of
the further development, which can be found in detail in corresponding literature. Among
other literature the text books [1], [8], [61], and [78] provide a survey of magnetic hysteresis
modeling under various points of view.
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4.2 Micromagnetic Modeling

In the 1930�s Landau and Lifshitz [57] proposed �rst quantitative approaches for
micromagnetic modeling with a study on the magnetic domain wall structure. Subsequently
in the early 1940�sW. F. Brown [12] developed the fundamental steps to set up a theory he
called Micromagnetism. Within this theory details of magnetic microstructures, neglected
in the classical domain theory, are considered, whereas the discrete atomic nature of matter
is ignored. Consequently, the magnetization can be regarded as continuous vector function
of space.
In short, micromagnetism is the concept of �nding a stationary or dynamic spatial
distribution of magnetization inside a ferromagnetic body so as to minimize the total free
Gibb�s energy assigned to this body. The competition between di¤erent energy contributions
expected in the material determines its magnetic behavior.

4.2.1 Model De�nition

As mentioned above, the aim of micromagnetism is to �nd a magnetization distribution

~M(~r) =Ms ~m(~r) j~m(~r)j = ~m2(~r) = 1 8~r 2 V (4.1)

in a ferromagnetic sample, occupying a volume region V. The unit magnetization vector
function ~m(~r) is derived by a minimization of the (Gibb�s) total free energy dedicated to the
sample volume V when an external �eld ~H is applied. Assuming a rigid crystal (to neglect
magnetostriction) maintained at a uniform temperature below the Curie point, the total
energy functional can be written as

WTot(~m(~r); ~H) =

Z
V

�
wH(~m; ~H) + wStray(~m) + wEx(~m) + wAniso(~m)

�
dV , (4.2)

where wi represent the di¤erent energy contributions described in section 2.1. Here
the magnetization vector ~m(~r) is considered as the only independent variable, and the
optimization problem can be formulated as

WTot(~m(~r); ~H) �!
~m(~r)

MIN . (4.3)

To complete the optimization problem one has to add the magnetostatic equations (2.7)
and (2.10)

~r � ~HStray = �~r � (Ms ~m(~r)) with ~r� ~HStray = ~0 , (4.4)

which describe the dependence of the (demagnetizing) stray �eld on magnetization.
As can be seen, the independent variable of the optimization problem is not just a number,
but is a vector �eld de�ned over the entire body volume. For this reason we have to use
variational calculus to derive a set of partial di¤erential equations, which have to be solved
numerically, in general. This means if ~m(~r) is varied in each sample point ~r by a small
quantity � ~m, the corresponding variation of the total energy �WTot has to be zero and the
second-order variation �2WTot is positive in a local minimum.
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Boundary Conditions

At the surface @V of the considered body one has to introduce boundary conditions yielding
from the variational procedure. In absence of surface anisotropy the boundary conditions
reduce to the simple form (~n is the surface normal)�

~n � ~r
�
~m(~r) = 0 8~r 2 @V . (4.5)

The normal derivatives of all magnetization components must be zero at the surface.

Stationary Solution - Brown�s Equation

The solution of the variational problem (4.3) is expressed in terms of a so called e¤ective
�eld ~He¤ given by the negative functional derivative1 of the total free energy

~He¤(~m(~r)) = �
1

�0Ms

�WTot(~m(~r); ~H)

� ~m(~r)
. (4.6)

For the system to be in a stationary equilibrium the stability condition, known as Brown�s
equation

~m(~r)� ~He¤(~m(~r)) = ~0 8~r 2 V (4.7)

has to be ful�lled at each point inside the sample.
As simple interpretation it can be stated that the torque exerted on any magnetization
vector by the e¤ective �eld must vanish in a stationary equilibrium. So the e¤ective �eld
has to be directed along the magnetization vector at every point in the magnetic body.

Dynamic Solution

For further investigations the magnetization is considered as a function of space and time

~M(~r; t) =Ms ~m(~r; t) , (4.8)

but to simplify the notation the arguments are suppressed, so ~m is written instead of ~m(~r; t),
for example.
If the magnetic system is not in an equilibrium state as described above, the magnetization
vector performs a precession motion under the action of a torque exerted by ~He¤ acting on
~M . The corresponding equation of motion is

@ ~m

@t
= �

�
~m� ~He¤

�
, (4.9)

1Note, that the variational derivative of a functional G(y(x)) =
R
g(y(x); y0(x); x) dx is de�ned as �G

�y =
@g
@y �

d
dx

@g
@y0 (i.e. it is related to the derivative of the integrand g(:)), when dealing with units.
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where  is the gyromagnetic ratio depending on the Landé factor g, mass me, and electric
charge -e of an electron (see section 1.1.1)

 = �0 g
e

2me

. (4.10)

But in realistic cases this free gyromagnetic precession (with frequency ~! =  ~He¤, i.e.
� 28 MHz/mT for free electron spin) is restricted by dissipative processes (losses). The
assumption of such dissipation allows the magnetization to turn towards the e¤ective �eld
into a stationary equilibrium. In their pioneering work Landau and Lifshitz [57] proposed
the introduction of a phenomenological damping term and reformulated the equation of
motion (4.9) as

@ ~m

@t
= � 

1 + �2

�
~m� ~He¤

�
� �

1 + �2

�
~m�

�
~m� ~He¤

��
(4.11)

referred to as Landau-Lifshitz equation with the damping parameter2 �. The second term
signi�es a damping force acting on the precession magnetization in a direction towards the
e¤ective �eld (Fig. 4.1).

Figure 4.1: Magnetization precession with damping.

If we imagine that the damping acts on the resultant motion of the magnetization @ ~m= @t

instead of the pure precession motion �
�
~m� ~He¤

�
, we get an equivalent formulation of

(4.11)

@ ~m

@t
= �

�
~m� ~He¤

�
+ �

�
~m� @ ~m

@t

�
, (4.12)

2Strictly speaking, this is the "Gilbert damping parameter", because it is explicitely adressed to the
damping term of Gilbert�s equation. To avoid confusion by introducing a lot of parameters, it is also used
in the Landau-Lifshitz equation. To allow a coincident transformation between (4.11) and (4.12) the term
(1 + �2) is obtained in the denominator of (4.11).
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which was �rst derived by Gilbert [28] in 1955, and is known as Gilbert equation. The
damping parameter � is used to �t experimental data to the model. Under various conditions
(like magnetization state) � may take di¤erent values, for numerical convenience [22] it is
chosen from the interval [0:1; 1].

4.2.2 Computation Techniques

In the case of static considerations the spatial distribution of the magnetization vector is
obtained from Brown�s equation (4.7), whereas in the case of dynamics either Landau-
Lifshitz equation (4.11) or Gilbert�s equation (4.12) can be used. But these micromagnetic
equations can not be solved analytically, in general. Depending on the scale of the magnetic
problem di¤erent numerical techniques are applied. By means of high-performance computer
technology it has become possible to solve micromagnetic problems numerically without
having to make oversimplifying assumptions or to superimpose a priori arbitrary functions
on the nature of the magnetic system.

Finite Di¤erence Method

For numerical computations the magnetic sample is divided in small cubic elements of volume
�V = �x�y�z in which the magnetization is assumed to be constant in its norm but
varying in its direction. So the continuum is replaced by a discrete number of lattice points
each located in the center of the computational cell i at ~r = ~ri. Within this discretization
process partial derivatives were approximated by �nite di¤erence quotients

~m(~ri +�x~ex; t) = ~m(~ri; t) + �x
@ ~m(~r; t)

@x

����
~r=~ri

+ ::: ; (4.13)

and the partial di¤erential equation changes to a system of algebraic equations. Therefore,
one is able to express the e¤ective �eld (4.6) depending on the magnetization in the lattice
sites. Among other problems a di¢ culty arises from the discretization of the demagnetizing
�eld, which has been successfully captured by di¤erent approaches, described in [1] or [22],
for example. In order to get the dynamic magnetization behavior one has to perform
a time integration of the Landau-Lifshitz (4.11) or the Gilbert (4.12) equation for each
computational cell. This is done by a discretization in time into a regular lattice of time
points.

Finite Element Method

Since the �nite element technique is an appropriate tool for solving partial di¤erential
equations, it becomes essentially as a minimization technique for variational problems.
Starting point of micromagnetic �nite element calculations is a discretization of the total free
energy (4.2). In a so called triangulation process the whole solution domain is divided into
a collection of many �nite elements (usually triangles in 2D or tetrahedra in 3D). Within
these elements the magnetization ~m(~r) is interpolated by piecewise polynomials with respect
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to the magnetization values ~mi = ~m(~ri) at the nodal points i 2 N , where N is the set of all
nodal points within the considered �nite element mesh. So one can write

~m(~r) =
X
i2N

'i(~r) ~mi , (4.14)

using a so called shape function 'i(~r) satisfying the condition

'i(~rj) = �ij =

�
1 for i = j
0 for i 6= j . (4.15)

Thus, if the continuous magnetization is approximated by piecewise polynomial functions,
the energy functional reduces to an energy function with the nodal magnetization values ~mi

as unknowns.

WTot(~m(~r); ~H) =WTot(~mi; ~H) (4.16)

The minimization of this energy function with respect to unknown nodal magnetizations ~mi

subject to j~mij = 1 can be done by a well established gradient method. Thus one de�nes
a volume Vi ("box") around mesh-node i in order to approximate the e¤ective �eld in this
point as

~He¤;i = �
1

�0Ms

�WTot(~m(~r); ~H)

� ~m

�����
~ri

� � 1
Vi

1

�0Ms

@WTot(~mi; ~H)

@ ~mi

. (4.17)

This is often referred to as box method [27].
A problem within this context is the treatment of the demagnetizing �eld, because it
depends on the magnetization distribution over the entire sample and not locally (like
exchange or anisotropy) on the magnetization. Further details is can be found in the
literature to the related topics.

4.2.3 Applications

The investigation of nanoshaped magnetic elements for high-density magnetic storage media
has reached a length scale, where the concepts of micromagnetism lead to reasonable
calculation e¤ort. Therefore, modeling patterned magnetic elements used in magnetic
random access memories (MRAM) is a central objective in micromagnetism. Besides
other aspects, a well de�ned switching characteristic and switching speed behavior is of
interest [88].
As a further application the investigation of microstructure of high energy density
permanent magnets (e.g. Nd-Fe-B magnets) can be mentioned. Especially the in�uence
of di¤erent exchange mechanisms at the grain or subgrain level can be obtained from �nite
element simulations [22].
Generally, new spatially �ne resolving measurement techniques enforce micromagnetic
modeling in order to describe the dynamic behavior or thermal stability of small magnetic
particles in the nanometer regime.
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4.3 Preisach Model

The framework for Preisach modeling has its genesis in 1935 by the idea of Ferenc
Preisach [72] to describe hysteresis in ferromagnetic systems as a superposition of
elementary bistable units, called "Hysterons". Following this approach, the magnetization
process can be interpreted as a sequence of Barkhausen jumps. During the 1970�s an
abstract reformulation of this model has been derived by Krasnoselskii and Pokrovskii
[53], where they encapsulated the ideas of Preisach�s original model into a mathematical
framework using well established operator techniques. Mayergoyz summarized these
methodologies in his book [61] and provided mathematical clarity to the hysteresis theory.
Up to now a large number of literature concerning the Preisach model has been published
with investigations focused either on physical interpretation, mathematical analysis, or on
extensions to a rich variety of applications.

4.3.1 Classical Scalar Preisach Model

Assuming that the magnetic �eld is applied along a �xed direction, one concentrates only on
the component of magnetization with respect to this �eld direction. In principle the setup
of the Preisach model originates from elementary Preisach units, also called "Hysterons".

Elementary Hysterons

The unit volume of the system is imaginarily split into many small abstract regions, which
are characterized by a square-looped hysteresis behavior, as shown in Fig. 4.2. Within the
Preisach model the switching �elds Hup and Hdown or alternatively the local coercive �eld Hc
and the interaction �eld Hi are treated as random variables, whereas the hysteron�s magnetic
moment +m̂ or �m̂ is assumed to be constant, in general. This characterization in terms
of random variables, especially the o¤set in presence of an interaction �eld Hi 6= 0 should
express the fact that each hysteron does not feel only the external magnetic �eld H, but
also an interaction due to adjacent Preisach units. As consequence of the assumption of
bistable Preisach units, each such unit can either be in the state S(+) : m = +m̂ or in the
state S(�) : m = �m̂.

Alternative Hypothesis for the Existence of Preisach Units: Bertotti [8] used
the term Preisach unit to refer to an entity, which is characterized by an energy pro�le, as
depicted in Fig. 4.3. Depending on the characteristic �elds Hi and Hc, FHelm(m) is the free
energy pro�le of the Preisach unit and FGibbs(m; H) = FHelm(m)��0H m is the Gibb�s energy
under the assumption that the Preisach unit is coupled linearly to the applied �eld H.
Within this point of view the magnetization process is interpreted as a sequence of
Barkhausen instabilities and does not necessarily require the introduction of individual
elementary hysteresis loops. However, within this picture the variables Hi and Hc relate
to stored versus dissipated energy terms. Assuming the Preisach unit is in the state S(�),
an increasing �eld causes a Barkhausen jump (at the switching �eld H = Hup), and the
magnetic system leaves the metastable state in order to reach the state S(+) of lower energy.
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Figure 4.2: An elementary hysteron in the classical Preisach model.

Figure 4.3: Free energy pro�le of a hysteron for H = 0 with two metastable states (a), and
for H > Hup = Hi +Hc exhibiting one stable state (b).

Thereby the free energy changes by �FHelm = 2�0Hi m̂ on the one hand, and the Gibb�s
energy decreases by �FGibbs = 2�0Hc m̂ on the other hand. The latter amount of energy is
dissipated as heat.

Mathematical Description of the Hysteron: In a mathematical framework the
hysteron�s behavior is de�ned by a Preisach kernel or Preisach relay mP(H; �), where
� 2 f�1; 1g denotes the state of the hysteron. The initial condition of this relay is given by

[mP(H; �)] (0) =

8<:
�m̂ if H(0) � Hdown
� m̂ if Hdown < H(0) < Hup
+m̂ if H(0) � Hup

(4.18)

and the dependence of the kernel on time t is de�ned as

[mP(H; �)] (t) =

8<:
[mP(H; �)] (0) if �(t) = fg
�m̂ if H(maxf�(t)g) = Hdown
+m̂ if H(maxf�(t)g) = Hup

, (4.19)
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where �(t) is the set of time points at which the thresholds (switching �elds) are reached

�(t) = fts 2 (0; t] j H(ts) = Hdown _H(ts) = Hupg . (4.20)

This is by no means the only formulation of an appropriate kernel, there exists a variety
of modi�cations of the classical Preisach kernel3 with the intention to accommodate certain
material properties. The Krasnoselskii-Pokrovskii kernel [53] can be mentioned as a well
known example.

Preisach Plane

In order to get a graphical representation of the Preisach units, each hysteron is associated
with a point in the so called Preisach plane describing the loop behavior in its width as
well as in its shift along the �eld axis. Depending on the pair of characteristic �eld values
one is able to specify a Preisach plane either by Hup-Hdown-axes or by Hi-Hc-axes, shown in
Fig. 4.4. Nevertheless, the restrictions Hup � Hdown or Hc � 0 have to be ful�lled. Each
hysteron can therefore be identi�ed as a certain point of coordinates in the Preisach plane.

Figure 4.4: Preisach plane in terms of switching �elds Hup-Hdown (a) and Hi-Hc (b).

In the presence of a constant external �eld H the Preisach plane can be subdivided into
three regions:

I H � Hdown = Hi � Hc : Each Preisach unit in this region is certainly in the locally
stable state S(�).

II Hi �Hc = Hdown � H � Hup = Hi +Hc : Depending on the history both states S(�)
and S(+) are locally stable.

III H � Hup = Hi + Hc : Each Preisach unit in this region is certainly in the locally
stable state S(+).

3In practice, the modi�cation of the kernel is bound up with a modi�cation of the hysteresis behavior of
the Preisach units.
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A magnetic system as a whole is represented by a collection of hysterons, which are
randomly distributed in the Preisach plane, switching under the action of an applied �eld.
If the system reaches any metastable state for a certain �eld H as result of the �eld history,
the Preisach plane is partitioned in only one S(+) region and one S(�) region, separated by
a boundary line L(�)(Hc) as depicted in Fig. 4.5. In principle, this boundary line is a chain
of linear segments of alternating slope, depending on the sequence of �eld reversals in the
history4. By applying an oscillating �eld with varying amplitude one can imagine that the
resulting boundary line takes the form of a �ne sawtooth. Thus, from a generic point of
view the boundary line L(�)(Hc) is approximated by a continuous function with a slope in
the interval �1 � dL(�)(Hc)

dHc
� 1.

Figure 4.5: Boundary line (b) generated by the �eld history H(t) (a).

Preisach Distribution

Assuming that the ferromagnetic sample consists of N Preisach units, the average
magnetization M of the entire system is estimated as the sum of the contributions from
each individual hysteron. Further we de�ne the density function p(Hc; Hi) of the Preisach
distribution so that

N p(Hc; Hi) dHi dHc

is the number of Preisach units in the small range [(Hc; Hi) ; (Hc + dHc; Hi + dHi)] of the
Preisach plane and

1Z
0

1Z
�1

p(Hc; Hi) dHi dHc = 1 (4.21)

4It is remarkable that the shape of the boundary line does not depend on the exact time behavior of the
�eld and is therefore characteristic for the rate-independency of the Preisach model.
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is ful�lled as general property of a probability density function. The magnetization of the
system results as

M =Ms

264 1Z
0

L(�)(Hc )Z
�1

p(Hc; Hi) dHi dHc �
1Z
0

1Z
L(�)(Hc )

p(Hc; Hi) dHi dHc

375 . (4.22)

This equation shows that the state of the system is characterized by the boundary line
L(�)(Hc), whereas all microstructural and magnetic hysteresis features are condensed in the
Preisach distribution p(Hc; Hi).
Using the Preisach kernel de�ned in (4.19) we get a similar formulation for the magneti-
zation (V is the sample volume)

M(t) =
1

V

1Z
0

1Z
�1

[mP(H; �)] (t) p(Hc; Hi) dHi dHc , (4.23)

which already incorporates the time dependence.

Symmetry: If f�H(t);�M(t)g is also an admissible history for the given input-output
history fH(t);M(t)g, as it is observed for most of the conventional ferromagnetic materials,
then the Preisach distribution has to be an even function of Hi

p(Hc; Hi) = p(Hc;�Hi) . (4.24)

In consideration of this symmetry the magnetization (4.22) becomes

M = 2Ms

1Z
0

L(�)(Hc )Z
�1

p(Hc; Hi) dHi dHc . (4.25)

Speci�c Choices for the Preisach Distribution: Setting up a Preisach model in terms
of a general density function p(Hc; Hi) has the advantage of high �exibility and accuracy
on the one hand, but the disadvantage in the requirement of a huge number of parameters,
none of which are directly connected to physical properties, on the other hand. So one needs
a su¢ ciently large set of experimental data to identify the density function. Furthermore,
it can happen that these parameters change due to di¤erent environmental conditions (like
temperature), a fact which enforces a re-identi�cation.
However, in most of the applications one is choosing an a-priori density function (i.e.
presuming material properties) in order to get a reduced set of parameters. Applying the
central limit theorem, Della Torre [78] derived that a Gaussian (normal) distribution
is the appropriate one for the interaction �eld Hi, with the mean interaction �eld �Hi = 0.
Taking the positivity of Hc into account, one obtains either a log-normal or again a normal
distribution (with su¢ cient positive mean value �Hc) for the local coercive �eld Hc.
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4.3.2 Model Properties and Extensions

The classical Preisach model has some important properties, which lead to several extensions
of this approach, if magnetic materials do not behave in the sense of these properties. In
the following paragraphs the nature of the extensions developed to overrule the intrinsic
properties of the classical Preisach model are brie�y summarized.

Deletion (Wiping-out) Property Versus Non-closure of Minor Loops

Whenever the external �eld H(t) achieves a local minimum (maximum), all boundary lines
L(�)(Hc) resulted from minima (maxima) greater (smaller) than this are deleted.
As a consequence the deletion property ensures that every biased minor loop has to be
closed. So if we return to the starting point, where the minor loop was initiated, all history
concerning this minor loop is erased. The system is in the same state as it has been before.
But in some cases accommodation phenomena or the after-e¤ect result in a non-closure
behavior of the minor loops. Modifying the hysteron to permit outputs di¤erent from the
constant values �m̂ enables the model to describe such accommodation e¤ects. Further
details can be found in [61] or [78], for example.

Congruency Property Versus Magnetization-dependent Minor Loops

All minor loops generated from �elds in the range between Hmin and Hmax have the same
shape, i.e. they are congruent, regardless of the bias magnetization at which the loop was
initiated.
Unfortunately, most of ferromagnetic materials exhibit magnetization-dependent minor
loops, far away from congruency. One approach to circumvent the congruency problem is
to generalize the Preisach distribution so as to make it �eld-dependent p(Hc; Hi; H) [61].
Alternatively, there is also a magnetization-dependent Preisach distribution p(Hc; Hi;M)
possible, which is motivated by the mean �eld theory in a way that the mean of the interaction
�eld of randomly orientated hysterons is proportional to the magnetization M [8].

Reversible Contributions

The classical Preisach model describes the system behavior as superposition of many bistable
Preisach units with piecewise constant contributions. Thus, if ascending and descending
hysteresis branches merge at a certain �eld H�, the common M -H curve has zero slope

dM(H)
dH

= 0 8 jHj > jH�j , (4.26)

in contrast to the reversibleM -H behavior of many ferromagnetic materials, where the slope
approaches to zero only as the �eld H goes to in�nity

lim
H!�1

dM(H)
dH

= 0 . (4.27)
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Therefore, it was proposed to use generalized hysterons comprised of a reversible and an
irreversible component [78] , as it is shown in Fig. 4.6, for example.

Figure 4.6: Extended hysteron comprised of a reversible and an irreversible component.

Representation Theorem

Mayergoyz [61] formulated the equivalence between the classical Preisach model and the
deletion and congruency property within the so called representation theorem:
The hysteresis of any system can be described by the classical Preisach model if and only
if it obeys deletion and congruency property. Both properties constitute necessary and
su¢ cient conditions for a hysteresis non-linearity to be represented by the classical Preisach
model.

Correspondence between Preisach and Jiles-Atherton Hysteresis Model

It has been shown [71] that the formulation of Preisach and Jiles-Atherton (described in the
next section) models can be brought to an (partial) agreement for a special choice of the
Preisach distribution. This uni�ed model provides quite satisfying results in the medium
and high �eld regime, but there remain still discrepancies of the observed and modelled
ferromagnetic behavior at low magnetization and around the demagnetized state.
The relationship between the model parameters has been identi�ed by Dupre [18] in the
form of implicit relations that describe the impacts of a parameter variation in one model on
the other model. The results were compared with measurements of quasi-static hysteresis
loops of silicon iron alloys.
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4.4 Jiles-Atherton Hysteresis Model

In the 1980�s D.C. Jiles and D.L. Atherton proposed a basic version of their hysteresis
model [48], [49], which uses a macroscopic energy balance in order to describe magnetization
curves and hysteresis loops. This means that the energy supplied to a magnetic body by a
change in applied �eld can either change the magnetostatic energy, or dissipate as hysteresis
loss. Due to the advantages of a small number of physical parameters and reasonable
computational e¤ort, the Jiles-Atherton model makes a substantial contribution to hysteresis
modeling techniques.
In the course of time the original scalar Jiles-Atherton model has been adapted according to
di¤erent requirements with numerous extensions and generalizations published in subsequent
literature.

4.4.1 Scalar Jiles-Atherton Model

In the original formulation of this model [49] the total magnetization is assumed as the sum
of a reversible and an irreversible contribution

M(H) =Mrev(H) +Mirr(H) : (4.28)

Ferromagnetic regimes are characterized by interactions between magnetic moments.
Hence, an e¤ective �eld He is de�ned by adding an interaction �eld Hi = �M to the external
applied �eld H, written as

He = H + �M , (4.29)

following the ideas of Weiss�mean �eld approach [86]. The parameter � quanti�es the
amount of domain or particle interaction and has to be obtained from measurements for a
given system.

Anhysteretic Magnetization Man

Neglecting dissipative processes the nonlinear H-M relation describes the anhysteretic
magnetization curve, which can be calculated through consideration of the material�s
thermodynamic properties. Having regard to classical Boltzmann statistics the anhysteretic
magnetization in the 3D formulation5 is given by the Langevin function L(:) as

Man(He) =Ms L
�
He
a

�
, (4.30)

where the temperature dependent parameter a follows from the classical thermodynamic
derivation as a = N kBT = (�0Ms). Due to the fact that the (pseudo) domain density N
is unknown, a is treated as model parameter determining the shape of the anhysteretic
magnetization curve.

5Depending on the dimensionality of the problem, there are also other anhysteretic functions in use.
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Irreversible Magnetization Mirr

Dislocations and other defects a¤ect the motion of domain walls through magneto-elastic
coupling, and magnetic inclusions reduce the magnetostatic energy (due to impurities)
when intersected by a domain wall. From a general point of view all these phenomena are
summarized in the concept of pinning sites without any further distinction of the underlying
mechanisms. In consideration of this magnetic domain wall pinning on defect sites, a
frictional force opposing the movement of domain walls leads to dissipative losses. Jiles
and Atherton presumed randomly distributed pinning sites, all of which having the same
(average) pinning energy density hwPini depending on the domain wall angle �

hwPini = hw�i
1� cos(�)

2
(4.31)

with the maximum value hw�i in the case of 180� domain walls. For a moving domain wall
(sketched in Fig. 4.7) of area A and an average pinning site density hni, the energy dissipated
against pinning is

dWPin = hni hwPiniA dx , (4.32)

if the wall is moving over an incremental distance dx. Associated with this wall displacement
a net change in irreversible magnetization appears as

dMirr =Ms (1� cos(�))A dx , (4.33)

which allows one to express the pinning energy in terms of magnetization change

dWPin =
hni hw�i
2Ms

dMirr = �0 k dMirr , (4.34)

where the pinning parameter k quanti�es the energy dissipation due to pinning and unpinning
of domain walls.
Equating the supplied work6 during a change in e¤ective �eld from He1 to He2 with the
sum of the magnetostatic energy and the losses due to pinning as

�0

He2Z
He1

Man(He) dHe = �0

He2Z
He1

Mirr(He) dHe + �0 k

He2Z
He1

dMirr(He)

dHe
dHe (4.35)

yields in the local relation

dMirr(He)

dHe
=
Man(He)�Mirr(He)

� k
. (4.36)

The parameter � =sign(dH) ensures that the energy to break pinning sites always opposes
changes in magnetization. In consideration of (4.29) one gets the di¤erential equation for
the irreversible contribution

dMirr(H)

dH
=

Man(H)�Mirr(H)

� k � � (Man(H)�Mirr(H))
(4.37)

to total magnetization with respect to the external applied �eld H.

6Therefore one has to postulate that the work over part of the hysteresis loop can be expressed as
L = �

RHe2

He1
M dHe , derived in [43], for example.
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Figure 4.7: Energy dissipation of a moving 180� domain wall due to pinning e¤ects.

Reversible Magnetization Mrev

To introduce reversible processes in the model, Jiles and Atherton assumed a reversible
magnetization to be proportional to the di¤erence between the anhysteretic magnetization
contribution and the irreversible one.

Mrev(H) = c (Man(H)�Mirr(H)) (4.38)

The reversibility coe¢ cient c quanti�es the degree of reversible mechanisms like domain wall
bending in comparison with the energy necessary to break the pinning sites.

Total Magnetization M

As mentioned in the beginning of this section (4.28), the total magnetization as the sum
of an irreversible and a reversible contribution, de�ned by (4.37) and (4.38) leads to the
di¤erential equation

dM(H)
dH

= �̂
Man(H)�Mirr(H)

� k � � (Man(H)�Mirr(H))
+ c

�
dMan(H)

dH
� dMirr(H)

dH

�
. (4.39)

The parameter �̂ enforces the property that a domain wall exhibits reversible displacements
immediately following the �eld reversal until the anhysteretic curve is achieved and is
therefore de�ned as

�̂ =

8<:
1 if (dH < 0) ^ (M > Man)
1 if (dH > 0) ^ (M < Man)
0 otherwise

. (4.40)
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4.4.2 Implementation and Extensions

The full Jiles-Atherton model quantifying the magnetization M in terms of the applied �eld
H can be summarized in the following algorithm:

(4.6) He = H + �M

(4.30) Man(He) =Ms L
�
He
a

�
(4.37) Mirr(H) :

dMirr (H)
dH = Man (H)�Mirr (H)

� k��(Man (H)�Mirr (H))

(4.38) Mrev(H) = c (Man(H)�Mirr(H))

(4.28) M(H) =Mrev(H) +Mirr(H)

Typically the initial values (H0;M0) are chosen as the demagnetized state (0; 0), saturation,
or remanence points. The �ve model parameters (Ms; �; a; k; c) have to be determined from
experimental data. Details regarding this identi�cation procedure have been developed in [50]
or [58], for example.

A second approach is to combine all model equations to a single ordinary di¤erential
equation7

dM(H)
dH

= G(M(H); H) (4.41)

with the initial condition

M(H0) =M0 . (4.42)

A detailed formulation of G(M(H); H) is shown in [76], which is particularly advantageous
in the case of control applications.

Extensions to the Scalar Jiles-Atherton Model

In principle the Jiles-Atherton model is not able to guarantee closure of biased minor loops,
because the irreversible magnetization Mirr is always driven towards the anhysteretic Man.
So Jiles [47] enforced this closure by using a-priori knowledge of the turning points.
For applications where the applied �eld is parallel to the magnetization, the scalar models
can be used with su¢ cient precision. But whenever the vector relationship between �eld and
magnetization is needed for several predictions of directional dependence, one has to derive
a vector generalization of the original Jiles-Atherton model, as performed by Bergqvist [7],
for example.

7More precisely, this hysteresis model is of the so called Duhem type [82] with a relation between
magnetization and �eld in the form of dM(H)

dH = G(M(H);H; dHjdHj ).
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4.5 Other Approaches in Hysteresis Modeling

4.5.1 Stoner-Wohlfarth Model

In 1948 E.C. Stoner and E.P. Wohlfarth [77] proposed a simple model to analyze the
magnetic behavior of materials consisting of small particles.

Ellipsoidal Particles: Stoner and Wohlfarth assumed ellipsoidal shaped particles
with a uniform magnetization. The magnetocrystalline (uniaxial) easy axis is aligned
with the long axis of the ellipsoid and the magnitude of the magnetization is assumed to
be constant (equal to the saturation magnetization Ms) and parallel aligned even during
rotation. In this case one speaks of coherent magnetization rotation as the dominating
reversal mechanism. Within the following considerations we take only a planar problem into
account, in which 'M denotes the angle between the magnetization and the easy axis, as
shown in Fig. 4.8.

Figure 4.8: Ellipsoidal uniaxial Stoner-Wohlfarth particle with applied �eld ~H.

Energy Considerations: For ellipsoidal single domain particles the exchange energy does
not a¤ect the calculations, and the demagnetizing (stray �eld) energy8 can be treated as
"shape anisotropy" in a generalized anisotropy energy function, which can be written as

wAniso('M) = K0 +K1 sin
2('M) (4.43)

in the simplest case. In the view of this planar model an external �eld ~H is applied with
an angle 'H to the easy axis. Let ~ek be the direction parallel to the easy axis and ~e?
the orthogonal one, then we get the components of the applied �eld with respect to these
directions as

Hk = ~H � ~ek = H cos('H) and H? = ~H � ~e? = H sin('H) . (4.44)

8Maxwell derived for a uniformly magnetized general ellipsoid that the demagnetizing �eld is uniform,
too. Hence, in the case of coincident easy axes, uniaxial magnetocrystalline anisotropy and demagnetizing
�eld have same spatial variations and can therefore be combined into a single energy term.
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So the total energy density assigned to the so called "Stoner-Wohlfarth particle" can be
expressed as a function of the magnetization direction 'M

wTot('M) = ��0Ms

�
Hk cos('M) +H? sin('M)

�
+K0 +K1 sin

2('M) . (4.45)

In a static stable equilibrium of minimum energy density

@wTot('M)

@'M
= 0 and

@2wTot('M)

@'2M
> 0 (4.46)

must be ful�lled. The corresponding stability limit is obviously given by

@2wTot('M)

@'2M
= 0 , (4.47)

which results in the case of the energy function (4.45) to

h�k = � cos3('M) and h�? = sin
3('M) . (4.48)

Here h denotes the reduced �eld h = H �0Ms =K1. The graphical representation of the
switching curve (4.48) is depicted in Fig. 4.9 and is known as Stoner-Wohlfarth astroid.
Within the astroid only reversible coherent magnetization rotation is possible, whereas
outside the astroid irreversible switching occurs.

Figure 4.9: Stoner-Wohlfarth astroid with Slonczewski�s construction of the equilibrium
magnetization direction in the case of one (a) and two stable solutions (b).

Equilibrium Magnetization Orientation: Slonczewski [75] derived a method which
can be used to determine the equilibrium magnetization directions for any applied �eld.
Therefore, the vector of reduced �eld ~h = hk~ek+ h?~e? has to be drawn in the astroid plane.
Then, the tangents from the endpoint of the �eld vector to the astroid line represent the
equilibrium magnetization direction.
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If the �eld vector lies inside the astroid, four tangents can be found, where the two stable
solutions are those with the smaller angle relative to the easy axis. Which of the both stable
solutions is obtained, depends on the history of magnetization.
In the other case, where the �eld vector lies outside the astroid one obtains exactly one
stable solution for the magnetization direction. The second tangent is the direction of the
energy maximum.

Stoner-Wohlfarth Calculations: The method explained above can be used to determine
hysteresis loops of an isolated particle for arbitrary �eld directions. Stoner and
Wohlfarth [77] calculated the hysteresis loop for an ensemble of such particles with
uniaxial anisotropy but with easy axis orientated randomly in space.

4.5.2 Chemical Reaction Hysteresis Model

By comparing electronic transformation of a material�s behavior to a chemical reaction
A. Nourdine et al. [68] developed a static hysteresis model in the year 2000.

Chemical Reaction as Pendant to Spin Behavior: At the thermodynamic balance
the atoms or molecules in a chemical solution react so that the potential energy becomes
minimized. The activity [X] of a component X is de�ned to be proportional to chemical
concentration. Assuming that 1=K is the constant of a chemical acid-base reaction, for
example

base+ proton �! acid ,

the thermodynamic balance is reached, if

K =
[base] [proton]

[acid]
(4.49)

is met. Let fXg denote the quantity of X, then the corresponding equation of quantity
conservation is

fbasegintroduced = facidgformed + fbasegremaining . (4.50)

Magnetic Model: In order to hold the formulation as simple as possible, it is assumed
that the domain structure of the magnetic material is dominated by 180� Bloch walls with
magnetization directions parallel and antiparallel to a prespeci�ed easy axis (see Fig. 4.10).
In analogy to the explained chemical process it is assumed that the magnetic sample
consists of positive spins s+ and negative spins s�. The "activities" assigned to these spins
can be interpreted as relative magnetization of the entire s+ or s� contributions, respectively:�

s+
�
=
M+

Ms
= m+

�
s�
�
=
M�

Ms
= m� : (4.51)



4.5 Other Approaches in Hysteresis Modeling 77

Figure 4.10: Domain wall movement as chemical reaction.

If an increasing external �eld H is applied in direction of the positive oriented spins, a part
h of this external �eld is needed for the "reaction", formulated as

s� + h �! s+ . (4.52)

Furthermore, it is assumed that the "activity" of h varies exponentially with the model
parameter � as

[h] = exp (�h) , (4.53)

yielding in a thermodynamic balance according to (4.49)

K =
[s�] [h]

[s+]
=
m�

m+
exp (�h) . (4.54)

Using another temperature dependent model parameter hT (with the dimension of magnetic
�eld), the quantities of the magnetic �elds are de�ned via exponential functions as

fhg = exp
�
h

hT

�
fHg = exp

�
H

hT

�
(4.55)

and the conservation equation (4.50) in terms of magnetic �elds is

exp

�
h

hT

�
= exp

�
H

hT

�
+ b , (4.56)

where b depends on the history of the applied �eld H. At the �eld reversal points b is
adapted so as to get a continuous hysteresis curve.
One obtains the resultingmagnetization due to spin moment reversal (domain wall motion)
�rst as

Mspr =Ms

�
m+ �m�� , (4.57)

and via the coercive �eld Hc (which is characterized by m+ = m�) in consideration of (4.54)
one can write

K = exp (�Hc) . (4.58)
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Finally, one estimates Mspr(H) in the case of increasing external �elds as

Mspr(H) =Ms tanh

�
� hT
2
ln

�
exp

�
H

hT

�
+ b

�
� � Hc

2

�
. (4.59)

In order to get the total magnetization one has to add a magnetization contribution due
to magnetic moment rotation Mrot(H), which is speci�ed in detail in [68]

M(H) =Mspr(H) +Mrot(H) . (4.60)

Thermodynamic Interpretation: Inspired from the thermodynamical calculations for
ideal gases, the internal energy, the chemical potential, and the thermodynamic balance of
magnetic material is derived in [68] and leads to the same results as mentioned above.

Applications and Extensions: This chemical reaction hysteresis model has been applied
to grain oriented SiFe sheets in rolling direction as well as in the transverse direction [69].
In the latter case Nourdine extended the basic version of the model so that one "molecule"
(group of corresponding spin moments) with di¤erent properties is assigned to each of the
magnetocrystalline easy axes.
In [70] the chemical reaction model has been evaluated on cube textured NiFe sheets, which
also delivers satisfying predictions of the material�s magnetic behavior.
Concluding, the advantage of this unusual kind of magnetic modeling is a small set of
model parameters, which makes identi�cation process easier and the analytical expression of
the magnetization curve allows easy implementation in several algorithms. Unfortunately,
this model provides low �exibility and can therefore only be applied to materials with
"conventional" magnetization behavior.

4.6 Summary

The fact that all particular aspects of hysteresis cannot be comprehended within one model
is re�ected by the number of state of the art models. Even though each of the presented
models is based on a di¤erent scienti�c framework, all of them have the common objective
to explain magnetic hysteresis phenomena. Thus, it depends on the problem to be solved
which approach is considered as the most appropriate one. In conclusion, one may approve
a magnetic hysteresis model, if it is able to describe several phenomena of ferromagnetic
hysteresis with a small but �exible set of parameters. Furthermore, it should be derived in a
consistent mathematical or stochastic framework, and its concepts as well as its parameters
should allow a physically correct interpretation.



Chapter 5

Generalized Two-Dimensional
Energetic Model

This chapter speci�es the generalized two-dimensional "Energetic Model of Ferromagnetic
Hysteresis", which should be referred to as "Energetic Model" (EM) in further discussion.
Whenever a clear di¤erentiation between the existing model formulation and the extensions
discussed within this thesis are essential, the denotation of "Classical EM" and "Generalized
EM" will be used.

Classical Energetic Model: The original approach developed and published by
H. Hauser [34] in 1994 is based on energy considerations and statistic domain behavior.
Inspired by previous work of D.C. Jiles andD.L. Atherton [49] reversible and irreversible
contributions to total energy density are included. During the following years, the research
on this model has been progressing, see e.g. [3,23�26,29,35�39] to get an overview.
Most of these investigations have been done by employing a scalar formulation of the EM,
because the solution of the corresponding model equations can be done analytically. But
even in the case of three-dimensional crystal structures the EM has been set up for certain
crystalline axes in consideration of symmetry properties. The original EM from 1994 and the
following investigations based on that formulation will be referred to as Classical Energetic
Model in order to distinguish from the generalized formulation.

Generalized Energetic Model: In order to describe the anisotropic magnetic behavior
of thin �lm material a fully two-dimensional (2D) framework of the EM is required. For this
reason, a generalization of the Classical Energetic Model is presented within the following
sections. It is exactly this extension of the EM that builds the fundamental core of the
thesis.

79
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5.1 Generalized Formulation of the Model

From a generic point of view the Energetic Model may be categorized as mesoscopic magnetic
model. On the one hand, it describes local microscopic energy terms, such as anisotropy or
applied �eld energy, and macroscopic phenomenological aspects are applied to complete the
model, on the other hand. In this context, the magnetic sample is considered as collection of
elementary magnetic entities, which can be grouped into several statistical domain classes.
These statistical domain classes can be seen as a topological generalization of real magnetic
domains observed by common techniques.

5.1.1 Elementary Magnetic Entities

Since beginning of the investigation of magnetic materials there is evidence to regard
magnetic matter as collection of elementary magnetic entities. In 1820Ampere proposed the
hypothesis that magnetism is caused by circulating electrical currents on a molecular level.
Nowadays the origin of magnetism is treated within the framework of quantum-mechanics.
However, there are several arguments motivating the assumption of magnetic entities:

� Magnetic saturation is achieved, if all entities are oriented in the same direction.

� Interaction between these magnetic entities is used to describe "strong" magnetism,
like ferromagnetism.

� Due to the inability in separating magnetic monopoles there is evidence to suggest
dipole characterized magnetic entities containing an intrinsic magnetic moment.

Within the scope of this work amagnetic entity E is considered as basic element of magnetic
moment of a magnetic sample V, as depicted in Fig. 5.1. In this point of view, the concrete
physical nature of these entities depends on the problem to be modeled. So atomic magnetic
moments resulting from orbital and spin motion of electrons, magnetic inclusions in a non-
magnetic matrix, or crystallites in poly-crystalline materials may act as magnetic entities.

Figure 5.1: Magnetic entity as basic element of magnetic moment.
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By all means, one is able to assign several properties to each magnetic entity (Fig. 5.2):
-) position is space (given by a position vector) ~r[E ] ,
-) volume fraction V [E ] , and
-) magnetic moment ~m[E ] or magnetization ~M [E ] respectively.

Figure 5.2: General properties of a magnetic entity.

Properties of Magnetic Entities in the Context of the EM

Let us consider a representative ferromagnetic sample of total volume V consisting of nV
elementary magnetic entities Ek that are assumed to be all of the same, constant volume

V [Ek] =
V

nV
8 k = 1:::nV , (5.1)

resulting in a volume fraction with respect to the total sample volume V

v[Ek] =
V [Ek]
V

=
1

nV
8 k = 1:::nV . (5.2)

In the framework of the EM magnetic entities are handled by means of statistics, so the
information about the position in space of a single entity ~r[Ek] gets lost. From a topological
point of view, each magnetic entity Ek is considered as an element of the total set of entities
V within the sample

Ek 2 V 8 k = 1:::nV . (5.3)

Each entity�s magnetization has the same amplitude according to the spontaneous
magnetization Ms, but a di¤erent direction ~m[Ek] in space

~M [Ek] =Ms ~m[Ek] 8 k = 1:::nV . (5.4)

Ignoring special cases where Ms varies inside the material, ~m[Ek] can be regarded as vector
�eld of magnetization direction with ~m2[Ek] = 1.
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5.1.2 Aggregation of Magnetic Entities to Statistical Domain
Classes

Generally, it is extremely intricate to describe the behavior of individual magnetic entities
in a ferromagnetic body. So if one is interested in e¤ects taking place on a coarse scale
compared to the size of the magnetic entities, it necessitates a more simpli�ed treatment.
According to requirements di¤erent types of aggregation are used. Before going into detail
the following terms related to this topic should be distinguished.

Magnetic Domains, Statistical Domains, and Statistical Domain Classes

As described in section 3.2, a magnetic domain can be explained as a connected set
(region) of aligned magnetic entities within a ferromagnetic material, which act together
in a coordinated manner.

Fasching [20] extended this classical domain formulation by the proposition of statistical
domains, which he de�ned as �ctive volume-invariant region of uniform (directed) magne-
tization. In principle, these statistical domains are comparable with the magnetic entities
mentioned above, so that the total sample volume is split up into n statistical domains equal
in size. All ni statistical domains having identical magnetization direction ~ei (corresponding
to the material�s easy axes) are combined to the so-called i-th magnetic phase of the sample.
The phrase "statistical" refers to Fasching�s probabilistic approach, which will be discussed
in more detail in section 5.2.1.
In contrast to (real) magnetic domains magnetic phases need not build a connected region
in space. Instead, the latter can be spread over di¤erent regions within the sample, only their
total fraction is of importance. Inspired by the Fasching�s concept of magnetic phases, the
classical formulation of the EM is also based on statistical domains.

But in real materials a perfect alignment of the magnetic moments within a domain is rarely
the case. To be more authentic and more �exible in modeling, so called domain classes are
de�ned. Generally speaking, a domain class is a topological collection of elementary magnetic
entities that share a common set of well-de�ned properties or characteristics. Due to the
fact that the properties of individual entities are aggregated via statistical techniques, the
term statistical domain class is used. The magnetic entities assigned to such a (statistical)
domain class are oriented according to a common statistical distribution function.

Statistical Domain Classes in the EM

Within a ferromagnetic sample the total set of magnetic entities V is subdivided into a �nite
number ND of subsets Di, called statistical domain classes

Di � V with
ND[
i=1

Di = V and Di \ Dj = ; for i 6= j . (5.5)
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Pursuant to the domain classes one can de�ne a set of indices k(i)

k(i) = fk 2 f1; : : : ; nVg jEk 2 Dig or
[
k2k(i)

Ek = Di , (5.6)

which assign magnetic entities to the domain classes. In order to shorten the notation we
write E (i) for a representative1 entity of domain class Di.
Assuming a substantial number of magnetic entities per domain class, we describe the
entities� directional behavior in terms of probability density functions. In the context of
a spherical coordinate system with the azimuth ' and the elevation � the distribution of
magnetization directions in domain class Di is modeled via a bivariate probability density
function fi('; �) for general 3D problems. Thus, fi('; �)d' d� is the probability to �nd
a magnetic entity in the i-th domain class with magnetization orientation in the range
[('; �); ('+ d'; � + d�)].
For thin �lm material and in-plane magnetization2 it is su¢ cient to deal with a 2D
formulation of the model, where the magnetization direction is described by the polar angle
' relative to the x-axis. Therefore, one can use univariate probability density functions fi(')
to de�ne the directional distribution in domain class Di. In the following we restrict our
discussions to these two-dimensional problems, but most of the results can be generalized to
the 3D case without elementary changes.
As depicted in Fig. 5.3, the direction of magnetization in the domain class Di is represented
by the stochastic (continuous) random variable�i, which is dedicated to a circular probability
density function �i � fi('). Consequently, the angle ' is bounded to the interval (��; �]
to ensure unique directions, and the circular probability density functions have to ful�ll the
standardization condition

�Z
��

fi(') d' = 1 . (5.7)

Finally, the directional distribution f(') of all magnetic entities within the ferromagnetic
sample is a weighted sum of the domain class contributions

f(') =

NDX
i=1

vi fi(') , (5.8)

where the weights vi are corresponding to the volume fractions of the domain classes

vi = v(Di) = v(
[
k2k(i)

Ek) =
X
k2k(i)

v(Ek) =
nDi
nV

. (5.9)

nDi denotes the number of magnetic entities belonging to domain class Di. Hence the
boundary conditions result as

NDX
i=1

vi = 1 and
NDX
i=1

nDi = nV . (5.10)

1Since the magnetic entities are assumed to be indistinguishable, it makes sense to focus on "representa-
tive" entities.

2Particularly this applies to thin Permalloy �lms, which are investigated in the following part of this
work.
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Figure 5.3: Concept of statistical domain classes in the EM.

Conclusion

Magnetic entities are de�ned as basic elements of magnetic moment in a ferromagnetic
sample. In principle, all magnetic entities are assumed to have the same absolute value
of the spontaneous magnetization, but they have di¤erent orientation in space. Since this
thesis deals with the characterization of the magnetization process in thin �lm materials with
in-plane anisotropy, a two-dimensional model setup is required. Within this 2D framework,
the orientation of the magnetic entities�magnetization is represented by the polar angle '
with respect to an arbitrary chosen x-axis.
In the framework of the EM, interactions between magnetic entities are considered by
grouping them into statistical domain classes. The precise position of the magnetic entities
is not of relevance in the context of the EM. Instead, only probabilities for the orientation
of the entities�magnetic moments are given. Hence, a statistical domain class Di is de�ned
by its volume fraction vi and the probability distribution for the orientation of its magnetic
entities fi(').
As a next step, an adequate probability distribution has to be chosen in order to describe
the alignment of the magnetic entities in the domain class.
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5.1.3 Basic Distributions of Magnetic Entities within a Domain
Class

According to the results of domain observation techniques and micromagnetic calculations
one is able to deduce basic distributions of the magnetic entities in certain prede�ned domain
classes. For this purpose we de�ne �i as stochastic random variable for the angle of magnetic
moments with respect to the x-axis. The corresponding probability density functions fi(')
are shown in Fig. 5.4 and described in the following paragraphs.

Figure 5.4: Probability density function fi(') for perfect alignment (a), wrapped normal
distribution WN(�'i; �

2
i ) (b), and circular uniform distribution CU(��; �) (c).

Perfect Alignment

In an idealized case all magnetic entities of domain class Di point in a unique direction,
so that the probability distribution degenerates to determinism. For the considered 2D
problems all the magnetic moments belonging to the i-th domain class have an angle

�i = �'i (5.11)

with respect to the x-axis.
This corresponds to the classical formulation of the EM.

Circular Uniform Distribution

Contrary to this unique orientation one may consider a totally random directional distrib-
ution of entities�magnetic moments, resulting in a circular uniform distribution CU(��; �)
of magnetic moments

�i � CU(��; �) or fi(') =
1

2�
for � � < ' � � . (5.12)

Paramagnetic materials in demagnetized state or vortex domains would be practical examples
for this case.
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Wrapped Normal Distribution

For most of the ferromagnetic materials the magnetic entities within a domain class Di are
aligned according to a main direction �'i. But due to boundaries, inhomogeneities, and
thermal agitation some entities�magnetic moments deviate from this common direction. A
simple way to model this behavior is the general assumption of a wrapped normal distribution
WN(�'i; �

2
i ) for the random angle �i

�i �WN(�'i; �2i ) or fi(') =
X
k2Z

f�i (� = '+ 2�k) , (5.13)

by wrapping the linear normal distribution

f�i (�) =
1p
2��i

exp

 
�1
2

(�� �'i)
2

�2i

!
(5.14)

around the circle, as shown in Fig. 5.5. Within this context �'i 2 (��; �] denotes the mean
direction and �i � 0 the standard deviation for the angular distribution of magnetic entities
in domain class Di.

Figure 5.5: Densitiy functions of linear normal distribution (a), and wrapped normal
distribution (b).

In consideration of the limiting values for the variance �2i one obtains convergence to

� perfect alignment as �i = �'i for �2i ! 0, or

� a circular uniform distribution �i �CU(��; �) by approximating �2i !1.

In principle, the circular normal (von Mises) distribution CN(�'i; �i)

�i � CN(�'i; �i) or fi(') =
1

2� I0 (�i)
exp (�i cos ('� �'i)) , (5.15)
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with �i as measure of concentration and the modi�ed Bessel function (of 1
st kind, order 0)

I0 (�i) =
1

2�

�Z
��

exp (�i cos (')) d' (5.16)

as normalization constant, would also provide an applicable description for the angular
distribution of the magnetic entities. Although the circular normal and the wrapped normal
distribution are quite similar in shape, the latter leads to an algebraic formulation.

Interpretation of the Variance

As mentioned before, the variance �2i describes the degree of order within a domain class Di.
It is in�uenced by ordering forces (like magnetic �elds, or interactions leading to exchange
energy) on the one hand, and disordering factors (such as thermal excitations, or material
inhomogeneities) on the other hand.
In the following paragraphs an empirical approach is used to determine an expression for
the variance.
First, we have to assume that the main orientation �'i of the considered domain class Di is
a-priori known, as the result of a macroscopic analysis, for example. Thus, the "mesoscopic
order", which is represented by �2i is always regarded with respect to this main orientation
�'i. So the ordering energy term of a representative magnetic entity E (i) in domain class Di
can be assumed3 as

WOrder[E (i)] = �WOrder;i cos ('� �'i) , (5.17)

where the continuous valued angle ' characterizes the state of E (i). In contrast to the
ordering forces the disordering energy term does not depend on the state of the magnetic
entity

WDisorder[E (i)] =WDisorder;i , (5.18)

like any kind of inhomogeneities within the domain class.
Accordingly, the classical Boltzmann weight can be written as

exp

�
� WOrder[E (i)]
WDisorder[E (i)]

�
= exp

�
WOrder;i

WDisorder;i
cos ('� �'i)

�
(5.19a)

= exp (�i cos ('� �'i)) , (5.19b)
where �i characterizes the ratio between ordering and disordering energies within the domain
class. Now the probability (density) to �nd a magnetic entity oriented in angular interval
[';'+ d'] yields by standardization of (5.19)

fBoltzm(')d' =
exp (�i cos ('� �'i)) d'
�R
��
exp (�i cos ('0 � �'i)) d'0

for ' 2 (��; �] . (5.20)

3Imagine a kind of exchange energy between the magnetic moment of entity E(i) and a "mean �eld"
caused by the remaining entities within the domain.
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Empirical analysis (Fig. 5.6) show that this Boltzmann distribution is compared to the
normal distribution quite similar in shape. Without further reasoning one can �nd a relation
between �i and the variance �

2
i of the normal distribution given by

�2i = ln

�
1 +

2

�i

�
2

1 + 3 exp
�
� 2
�i

� . (5.21)

Figure 5.6: Comparison of probability density functions for wrapped normal and Boltzmann
distribution for �i = 1 (a), and �i = 2 (b).

If we assume a high degree of alignment of the magnetic moments within the domain class,
which is characterized by a small variation from the main direction �'i, the cosine dependence
of the energy contributions can be approximated by the �rst terms of the series expansion

cos ('� �'i) � 1�
('� �'i)

2

2
for '� �'i � 1 .

Hence, the Boltzmann probability density (5.20) approximates the normal distribution

fBoltzm(') / exp
 
��i

('� �'i)
2

2

!
and the variance can be directly assigned as

�2i =
1

�i
=
WDisorder;i

WOrder;i
. (5.22)

The same result can also be obtained by a series expansion of (5.21) at the point �i !1

�2i �
1

2

�
2

�i

�
+
1

8

�
2

�i

�2
+
7

96

�
2

�i

�3
+ : : : . (5.23)

However, depending on the problem and the microstructural properties of the material,
if it is possible to �nd algebraic expressions for the ordering and disordering energies, the
variances �2i can be estimated endogenously in the EM dependent on �eld, temperature, or
other quantities of interest. Alternatively, the variances can be treated as exogenous model
parameters.
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Conclusion

By applying a certain probability density function, the angular distribution of the magneti-
zation of the magnetic entities within a domain class can be quanti�ed in terms of numerical
parameters. In case of the normal distribution we are able to describe the magnetic behavior
within a domain class by only two parameters. The mean orientation �'i can be obtained
by macroscopic (energetic) considerations. In contrast, the variance �2i represents a kind of
mesoscopic order within the domain class. In the limiting cases �2i = 0 and �

2
i ! 1 one is

able to model total alignment on the one hand, and random distribution of magnetic entities�
magnetization on the other hand. But, in general, this mesoscopic order is determined
as a consequence of concurrent ordering (exchange interactions) and disordering (thermal
agitation, material inhomogeneities) energy terms.

5.1.4 Total Macroscopic Magnetization

On assumption (5.4) that each magnetic entity Ek is magnetized with the spontaneous
magnetization Ms, one obtains the components with respect to the x-axis and y-axis

Mx[Ek] = ~M [Ek] � ~ex =Ms cos ('[Ek]) , (5.24)

My[Ek] = ~M [Ek] � ~ey =Ms sin ('[Ek]) . (5.25)
Hence, the respective magnetization components of the entire sample V result as

Mx[V ] =
nVX
k=1

Mx[Ek] =Ms

nVX
k=1

cos ('[Ek]) , (5.26)

My[V ] =
nVX
k=1

My[Ek] =Ms

nVX
k=1

sin ('[Ek]) . (5.27)

The magnetization angle '[Ek] of the magnetic entities is represented by the random variable
� � f('), which is distributed according to the probability density function (5.8). So the
expectation value for the magnetization components can be estimated via

Mx = E (Mx[V ]) (5.28)

= E (Ms cos (�))

=

�Z
��

Ms cos (') f(')d'

= Ms

NDX
i=1

vi

�Z
��

cos (') fi(')d'

= Ms

NDX
i=1

vimi;x , (5.29)

where mi;x is the expected (averaged) magnetization component of domain class Di with
respect to the x-axis. In analogy to (5.29) the corresponding y-component can be derived

My =Ms

NDX
i=1

vimi;y , (5.30)
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with

mi;y =

�Z
��

sin (') fi(')d' . (5.31)

In the case of a wrapped normal distribution fi(') �WN(�'i; �2i ) it can be shown (appendix
A.1) that

mi;x = exp

�
��

2
i

2

�
cos (�'i) and mi;y = exp

�
��

2
i

2

�
sin (�'i) (5.32)

is valid. Table 5.1 summarizes the results for the basic distributions of domain class
magnetization, and Fig. 5.7 illustrates the calculation procedure.

�2i j~mij arg (~mi) mi;x mi;y

aligned 0 1 �'i cos (�'i) sin (�'i)
CU(��; �) 1 0 undef. 0 0

WN(�'i; �
2
i ) 2 (0;1) exp

�
��2i

2

�
�'i exp

�
��2i

2

�
cos (�'i) exp

�
��2i

2

�
sin (�'i)

Table 5.1: Domain class magnetization for di¤erent directional distributions of magnetic
entities.

Figure 5.7: Example for estimating the average magnetization for a certain statistical domain
class Di.

Finally, the total magnetization of the entire sample is (Fig. 5.8)

��� ~M ��� =Ms

vuut NDX
i=1

vimi;x

!2
+

 
NDX
i=1

vimi;y

!2
(5.33)

and

arg
�
~M
�
= arctan

 PND
i=1 vimi;yPND
i=1 vimi;x

!
. (5.34)
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Magnetization in the Direction of the Applied Field

In general, one is interested in the component MH of magnetization in the direction 'H of
the applied �eld ~H, which is analogously given by

MH =Ms

NDX
i=1

vimi;H , (5.35)

with

mi;H =

�Z
��

cos ('� 'H) fi(')d' = exp
�
��

2
i

2

�
cos (�'i � 'H) . (5.36)

Figure 5.8: Total sample magnetization as weighted sum of domain class magnetization.

Conclusion

The relative magnetization ~mi of an individual domain classDi depends on the parameters �'i
and �2i of the corresponding probability distribution. Then, the total sample magnetization
~m results as the volume weighted (vi) sum of the domain class magnetization vectors ~mi.
So the very basic objective of the generalized EM is to determine the volume fractions vi
and directions �'i in order to calculate the magnetization curve MH( ~H) with respect to the
applied �eld ~H. Therefore, a macroscopic energetic framework is needed, which is described
in the following section.
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5.2 Energetic Framework of the Model

5.2.1 General Aspects and Historical Review

Heisenberg�s Fundamental Work (1931)

In his paper [40] Heisenberg presented a description of magnetostriction in ferromagnetic
single crystals with cubic crystal structure. At that time Weiss�theory of ferromagnetism
provided a particularly suitable description for the magnetization process near saturation,
especially for the temperature dependence of magnetization. But for magnetic �elds below
saturation magnetic interaction terms have to be considered. In a two-dimensional context
Heisenberg used the total free energy

F = WeissCorrection(M) +AnisotropyEnergy(M2
y ) +

+FieldEnergy( ~M; ~H) +DemagnetizingEnergy(M2)

to estimate the magnetization ~M =
�
Mx

My

�
by minimization of this expression. Thereby

"WeissCorrection" is a function, which is nearly constant below saturation and increases
signi�cantly when magnetization approaches saturation. Stating that n1 regions are
magnetized along the x-axis (which is the [100]-direction, for example), n3 regions anti-
parallel, and n2 regions are magnetized along the remaining four crystal axes, the probability
for a certain distribution (n1; n2; n3) is de�ned as

P (n1; n2; n3) =
(n1 + n2 + n3)!

n1!n2!n3!

�
1

6

�n1 �4
6

�n2 �1
6

�n3
.

Solving the optimization problem

max
n1;n2;n3

fP (n1; n2; n3)g s.t. n1 + n2 + n3 = n and n1 � n3 = n
M

Ms

delivers the size of the three regions for a given magnetizationM . The total change in length
with respect to the x-axis due to magnetostriction consists of a longitudinal part (determined
by n1 and n3) and a transversal part (n2).
Finally, it is mentioned that the expansion of a preferred region ni increases free energy as
a consequence of an entropy reduction.

Survey of Brown�s Approach (1937)

Based on Heisenberg�s statistical domain theory Brown [11] presented a derivation of
formulas to estimate magnetostriction behavior of both, single crystal and polycrystalline
materials. Provided that the magnetization curve at zero stress is known, he calculated
the magnetization for any arbitrary stress. However, the focus should be set to Brown�s
theoretical approach:
He regarded a ferromagnetic sample as a collection of equally sized domains (comparable
to magnetic entities in the EM) with a certain number n�' of domains per unit volume
(with magnetization in direction4 '). According to the nature of anisotropy, he divided the

4There is only a speci�ed number of discrete directions allowed within a class � . Thus, it makes sense to
count the number of domains having a certain magnetization direction.
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domains into classes � . So a single crystal consists of only one class, whereas polycrystalline
materials contain several classes, distinguished by the direction of the magnetocrystalline
easy axis.
Furthermore, Brown assumed that any thermodynamic potential V (per unit volume)
contributes of ...
... a component V 0 independent of magnetization direction,
... a part V I as contribution from individual domains, and
... a part V II due to interaction between di¤erent domains.

Under the assumption that these domains (magnetic entities) are macroscopically indis-
tinguishable the statistical weight

P (n�') =

NQ
�=1

��P
'

n�'

�
!

�
NQ
�=1

Q
'

�
n�'!
�

is characterizing a certain macroscopic state. If V I as well as V II were known in their
functional form, one would have to solve the optimization problem

min
n�'

�
V I(n�') + V

II(n�')
	

s.t.
X
'

n�' = n
�

in order to get the macroscopic distribution of number of domains n�'. Under the absence
of concrete knowledge of the interaction term�s functional form, the safest way of predicting
n�' is the maximization of the statistical weight

max
n�'

�
P (n�')

	
s.t.

X
'

n�' = n
� and V I(n�') = V

I
const

for a pre-speci�ed value of the localized component V Iconst.

Phase Theory - Neel, Lawton, and Stewart (1944)

The basic aim of phase theory is the description of a reversible, vectorial magnetization
curve, which should approximate the "ideal" anhysteretic magnetization curve. According
to the seminal work of Neel [64] a certain phase i includes all domains, where the magnetic
moments are parallel aligned to a speci�ed direction ~mi. Such a phase is strongly bounded
to the magnetocrystalline easy axes and occupies a volume fraction vi. On principle, there
are some premises to apply the concept of phase theory:

� Interface energies between domains are neglected, which is valid in su¢ ciently extended
samples.

� Internal local stray �elds are not considered explicitly (only in the form of global
demagnetizing �elds5), a fact that is conformable met in soft magnetic materials.

5Assuming that the arrangement of domains is such that there are no magnetic poles on their boundaries
(~r � ~J = 0). Therefore, the only demagnetizing �eld results from the discontinuities at the surface of the
sample.
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� External as well as demagnetizing �elds are supposed to be uniform, like in approxi-
mately ellipsoidal sample geometries.

� Optimal phase volumes can be reached without hindrances, so coercivity and irre-
versible processes are ignored.

So the total energy comprises the following terms

E = AnisotropyEnergy(vi; ~mi) + FieldEnergy(vi; ~mi; ~Hin) +DemagnetizingEnergy(~m)

and a minimization with respect to the volume fractions vi and directions ~mi delivers the
average magnetization ~m =

P
i

vi ~mi as vector. The optimization problem can be solved in

two steps: First, the magnetization directions ~mi are determined depending on the internal
�eld ~Hin. For cubic crystal symmetry phase theory distinguishes four magnetization modes:

Mode I: zero internal �eld; all 6 phases coexist.

Mode II: non-zero internal �eld; 3 phases are energetically equivalent.

Mode III: non-zero internal �eld; 2 phases coexist.

Mode IV: non-zero internal �eld; only 1 phase has minimum (potential) energy.

Second, the phase volumes vi appear in a con�guration that the resulting demagnetizing
�eld ~Hd =Ms ~m� ~Nd ( ~Nd is the demagnetizing tensor) gives in superposition with the external
�eld ~H the internal �eld ~Hin = ~H � ~Hd required for the corresponding magnetization mode.
Finally, phase theory provides good results for materials with nearly undisturbed crystal
structure and dominating6 anisotropy energies (preferring magnetization rotation processes).

Fasching�s Model (1964)

In his original work [20] Fasching demonstrated his model of statistical domains considering
cubic materials as example. Thus, he de�ned six phase volumina corresponding to the
crystalline easy axes, each containing ni statistical domains (per unit volume). Using vi = ni

n

(n =
6P
i=1

ni) the probability for the existence of a certain phase con�guration is derived from

Newton�s probability formula (conforms to a multinomial distribution) by the help of
Stirling approximation as

P (v1; : : : ; v6) = c

 
6Y
i=1

pvii e
vi

vvii

!a
,

where c and a are constant model parameters and the weights pi are designed to favor certain
crystalline directions. Denoting �iH as direction cosines of phase magnetization with respect
to the �eld ~H, the total magnetization (in �eld direction) is

m(vi; �iH) =
6X
i=1

vi �iH .

6So that neglected energy terms are rather small in comparison and can be ignored.
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Fasching�s crucial idea is to assume that the �eld strength �H, which is necessary in
order to move the magnetic system from state

�
v
(1)
i

�
to state

�
v
(2)
i

�
is proportional to the

reciprocal probabilities for these states

�H / 1

P (v
(2)
i )
� 1

P (v
(1)
i )

.

Let the state
�
v
(1)
i

�
be the demagnetized state, where the phase distribution is v(1)i = pi,

then the �eld H to reach the state v(2)i = vi is given by

H(vi) = h

�
1

P (vi)
� 1
�

with the constant model parameter h.
Solving the optimization problem

max
v1;:::;v6

fP (v1; : : : ; v6)g s.t.
6X
i=1

vi = 1 and m(vi; �iH) = m

by means of Lagrange technique one gets

vi = vi(�; �iH) m = m(�; �iH) H = H(�; �iH)

with the Lagrange factor �. The minimization of the total energy

E = AnisotropyEnergy(vi; �ix; �iy; �iz) + FieldEnergy(vi; �iH ; H)

min
�ix;�iy ;�iz

fEg s.t. 1 = �2ix + �
2
iy + �

2
iz

with respect to the direction cosines �ix; �iy; �iz to the coordinate axes results in expressions
for the magnetization directions

�iH = �iH(H; vi) .

In order to simulate the (anhysteretic) magnetization curve, Fasching used an iterative
algorithm:

1. Choose a value for the Lagrange factor � and start with �iH = �iH(H = 0; vi = pi)

2. From maximization of probability we get vi = vi(�; �iH), m = m(�; �iH), and H =
H(�; �iH)

3. From energy minimization correct the directions �iH = �iH(H; vi)

4. Repeat steps 2 and 3 until convergence of �iH

5. The resulting tuple (H(�; �iH);m(�; �iH)) is a point of the magnetization curve

6. Start at step 1 with a di¤erent value of �

Although this model was evaluated on a variety of corn-oriented single crystal materials
with a proven record of success, a treatment of hysteretic magnetic behavior is not intended.
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5.2.2 Energy Contributions Originating from Local Energy Terms

Aggregation of Energy Densities to Domain Classes

Local energy contributions, such as the applied �eld energy, are expressed in terms of energy
densities w(~r) depending on the local vector of magnetization ~m(~r) only. In our two-
dimensional framework, where the absolute value j~m(~r)j = 1 and the direction is given
by arg(~m(~r)) = '(~r) one is able to write the energy density as w('(~r)). Thus, the local
energy densities can be assigned to each of the magnetic entities Ek via

w('(~r)) ! w('(Ek)) . (5.37)

Imagine, the total sample volume V is split into ND volume regions Vi according to the
statistical domain classes Di, then the energy per unit volume

w =
1

V

Z
V

w(~r)dV (5.38)

=

NDX
i=1

Vi
V

1

Vi

Z
Vi

w(~r)dV

=

NDX
i=1

viwi

results as weighted sum over the energy contributions wi from the domain classes. Using the
fact that the magnetization angle ' within a domain class Di is represented by a stochastic
random variable �i following a probability density function fi('), the energy contribution
wi for domain class Di can be derived via statistical expectation value (Fig. 5.9)

wi =
1

Vi

Z
Vi

w('(~r))dV (5.39)

= E [w(�i)]

=

�Z
��

w(') fi(')d' .

Figure 5.9: Aggregation of local energy densities w('(~r)) to energy per unit volume wi via
statistical expectation value for a domain class Di.
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In this work, the wrapped normal distribution �i �WN(�'i; �2i ) as de�ned by (5.13) is used
to calculate the local energy contributions as follows.

Applied Field Energy

For a uniform applied �eld ~H the Zeeman energy density is according to 3.1.4
wH('(~r)) = ��0Ms ~m(~r) � ~H (5.40)

= ��0MsH cos('(~r)� 'H) ,
where 'H is the angle of the �eld ~H with respect to the x-axis (see Fig. 5.10). Applying
(5.39) yields

wH;i = ��0MsH cos(�'i � 'H) exp(�
�2i
2
) (5.41)

for the applied �eld energy of domain classDi. For a detailed derivation please refer appendix
A.1.
In the special case where all magnetic entities within one domain class have the same
direction �'i the probability distribution degenerates to determinism (�2i = 0) and (5.41)
simpli�es to

wH;i = ��0MsH cos(�'i � 'H) . (5.42)

Figure 5.10: Angles for applied �eld energy and anisotropy energy.

Anisotropy Energy

Due to the fact that the EM will be applied to materials with uniaxial anisotropy, other
types of anisotropy are not discussed within this work. So we approximate the uniaxial
anisotropy energy density (3.1.5) as

wAniso('(~r)) = K1 sin
2('(~r)� 'Aniso) , (5.43)

with a temperature dependent anisotropy constant K1 and the angle 'Aniso between the
anisotropy easy axis �!e:a: and the x-axis (see Fig. 5.10). Again the domain class speci�c
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energy contribution can be derived using (5.39)

wAniso;i = K1 sin
2(�'i � 'Aniso) exp(�2�2i ) +

K1

2

�
1� exp(�2�2i )

�
(5.44)

and simpli�es for �2i = 0 to

wAniso;i = K1 sin
2(�'i � 'Aniso) . (5.45)

Magneto-Elastic Energy with Non-Magnetic Stresses

This energy term results either from external stress or from internal stress of non-magnetic
origin (due to temperature inhomogeneities, dislocations, etc.). Only the special case for
isotropic material and uniaxial stress �Stress along the axis ~a (angle 'Stress with respect to
the x-axis) should be mentioned in the framework of this section. As shown in 3.1.7, the
magneto-elastic coupling energy density can be written as

wStress('(~r)) = �3
2
�s�Stress

�
(~m(~r) � ~a)2 � 1

3

�
(5.46)

= �3
2
�s�Stress

�
cos2('(~r)� 'Stress)�

1

3

�
=

3

2
�s�Stress sin

2('(~r)� 'Stress) + const.
with the isotropic magnetostriction constant �s. Because (5.46) has the same functional
form as (5.43), the domain speci�c magneto-elastic energy wStress;i is given by (5.44) when
replacing K1 by 3

2
�s�Stress

wStress;i =
3

2
�s�Stress sin

2(�'i�'Stress) exp(�2�2i ) +
3

4
�s�Stress

�
1� exp(�2�2i )

�
. (5.47)

Thermal Excitations - Internal Entropy

Basically, thermal excitations degrade the alignment of the magnetic entities and thus lead
to a reduced order within a domain class. In our statistical framework, the grade of order
is expressed by the internal entropy that is represented by the di¤erential entropy of the
circular density function

SInt = � kB E [ln (fi('))]

= � kB
�Z

��

fi(') ln (fi(')) d' . (5.48)

The corresponding domain class speci�c energy contribution is

wT;i = �� T SInt , (5.49)

with � = nV=V as the number of magnetic entities per unit volume, the Boltzmann constant
kB, and the absolute temperature T .
As depicted in Fig. 5.11, the energy wT;i that is necessary to overcome the thermal
excitations increases signi�cantly as the domain class magnetization j~mij =exp (��2i =2)
approximates to the value of 1.
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For the wrapped normal distribution WN(�'i; �
2
i ) the following approximation for the

internal entropy

SInt(�
2
i ) � kB

�
ln (2�)� 1

2
ln

�
exp (2) +

2�

exp(1)

1

�2i

�
exp

�
��2i

��
(5.50)

can be derived from numerical calculations. Since the entropy represents the grade of order
in a domain class, it increases with the variance �2i of the angular distribution. In the limiting
case of of small variances the di¤erential entropy becomes kB1=2 ln (2��2i exp(1)) appropriate
to the normal distribution, and in the high variance regime the di¤erential entropy converges
to kB ln (2�) appropriate to the circular uniform distribution.

Figure 5.11: Energy term related to thermal excitations (internal entropy) depending on the
domain class magnetization j~mij.

For the circular normal distribution CN(�'i; �i) the di¤erential entropy is given by

SInt(�i) = kB

�
ln (2� I0 (�i))� �i

I1 (�i)

I0 (�i)

�
(5.51)

with the modi�ed Bessel functions

I0 (�i) =
1

2�

�Z
��

exp (�i cos (')) d'

I1 (�i) =
1

2�

�Z
��

cos (') exp (�i cos (')) d' .
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Exchange Energy within a Domain Class

From a macroscopic point of view, the competition between exchange energy and stray �eld
energy is mainly responsible for the formation of magnetic domains, represented by the
statistical domain classes in the context of the EM. Within the domain classes, the exchange
energy counterbalances disordering energy terms, originating from thermal excitations or
material inhomogeneities.
In a simple case, we consider a magnetic entity aligned at an angle ' with respect to the
x-axis. Assuming that this entity ~mE interacts with a (�ctive) neighboring entity, which is
represented by the direction of the mean magnetic moment ~mi of the remaining entities in
the domain class, the exchange energy is given by JEx ~mE � ~mi = JEx j~mE j j~mij cos ('� �'i).
In contrast to the local energy contributions mentioned before, the exchange energy does
not depend just on the magnetic moment of a single entity. Moreover, it describes the
interaction between neighboring magnetic entities. Hence, we have to include correlation
e¤ects between neighboring magnetic entities in the generalized EM. If ~mi1 and ~mi2 are the
directions of the magnetic moment for two neighboring magnetic entities E1 and E2 of domain
class Di, the respective angles �i1 and �i2 (as random variables) can be represented by a
bivariate wrapped normal distribution

(�i1;�i2) �WN2(�'i; �2i ; �i) or fi('1; '2) =
X
k;l2Z

f�i (�1 = '1+2�k; �2 = '2+2�l) ,

(5.52)

which is based on the linear bivariate normal distribution

f�i (�1; �2) =
1

2��2i
p
1� �2i

�

� exp
 
� 1

2 (1� �2i )

 
(�1 � �'i)

2

�2i
+
(�2 � �'i)

2

�2i
� 2�i (�1 � �'i) (�2 � �'i)

�2i

!!
(5.53)

with the correlation coe¢ cient �i 2 [�1; 1].
The exchange energy within a domain class is given by the summation of JEx ~mi1 � ~mi2 =
JEx cos ('i1 � 'i2) over all neighboring entities, in principle. In our statistical treatment, this
can be written as

wEx;i = ���NN JEx E [cos (�i1 � �i2)] (5.54a)

= ���NN JEx exp(��2i (1� �i)) , (5.54b)

where � = nV=V is the number of magnetic entities per unit volume and �NN is the number of
nearest neighbors. Thus, decreasing variance �2i as well as increasing correlation �i decrease
the exchange energy term. For a detailed derivation of the expectation value, the reader
is referred to appendix A.2. The correlation coe¢ cient �i is treated as model parameter.
Fig. 5.12 illustrates the alignment of magnetic entities inside a domain class for di¤erent
values of �i, leading to identical variance �

2
i .
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Figure 5.12: Alignment of magnetic entities depending on correlation �i = 0:03 (a), �i = 0:35
(b), �i = 0:71 (c), at constant mean direction �'i � 0 and standard deviation �i = 0:25.

Total Local Energy

Finally, all local energy contributions considered within the model can be added up for every
domain class Di separately as

wLoc;i(�'i; �
2
i ) = wH;i(�'i; �

2
i )+wAniso;i(�'i; �

2
i )+wStress;i(�'i; �

2
i )+wT;i(�

2
i )+wEx;i(�

2
i ) . (5.55)

For the sample V the total local energy (per unit volume) is the volume weighted sum

wLoc =

NDX
i=1

viwLoc;i(�'i; �
2
i ) . (5.56)

Conclusion

So far, only energy terms are formulated, which can be directly derived from the local value
of magnetization ~m(~r). The energy (per unit volume) of a domain class can be calculated
by the statistical expectation value in the presented stochastic framework, corresponding to
the summation (integration) over all points of the respective volumina in a geometric point
of view.
Together with the arrangement of magnetic entities in statistical domain classes, these
local energy terms of physical nature describe static short-range interactions of the magnetic
moments mutually, with the crystal lattice, and with external forces (such as applied �eld
or applied stress). But in macroscopic material samples, the domain con�guration is also
driven by non-local energy terms that re�ect long range interaction mechanisms, such as stray
�elds. Furthermore, even in a quasi-static regime, the change of the domain con�guration
during the magnetization process leads to irreversible losses. Both issues are discussed in
the following sections.
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5.2.3 Energy Contributions Originating from Non-Local Energy
Terms

Besides the local energy contributions, macroscopic magnetization behavior is driven by non-
local mechanism that play a fundamental role for the development of magnetic domains. All
above domain wall energy, stray �eld energy, and magnetostrictive energy due to internal
interactions between regions magnetized along di¤erent axes determine the topology of
domain structure. Within the EM the reasoning for speci�c domain con�gurations is treated
by phenomenological energy terms.
All the non-local energy contributions together characterize the large-scale behavior of
the magnetic system. Microscopic properties are described by a directional distribution
of magnetic entities within several domain classes. The macroscopically indistinguishable
magnetic entities together constitute a particular macroscopic state, which is represented by
the relative size of the domain classes.

Stray Field Energy

In the framework of the EM, only the external (global) part of the stray �eld energy that
results from the sample geometry is stated explicitly. By means of the (external) two-
dimensional demagnetizing tensor ~Nd,2D, the demagnetizing energy (per unit volume) is

wd =
1

2
�0M

2
s ~m � ~Nd,2D � ~m (5.57)

for a given total magnetization ~m of the sample. Regarding the components with respect to
the x-axis and y-axis, the demagnetizing energy can also expressed as

wd =
1

2
�0M

2
s

�
m2
xNxx + 2mxmyNxy +m

2
yNyy

�
, (5.58)

provided that

~Nd,2D =

�
Nxx Nxy
Nxy Nyy

�
. (5.59)

The internal (local) contributions to the stray �eld energy, resulting from magnetic poles
inside the sample (grain boundaries or inhomogeneities), are treated by phenomenological
energy terms.

Demagnetized State as Point of Origin

A necessary condition for a demagnetized state described in section 3.3.1 proves that
macroscopic magnetization is zero when the applied �eld is zero

~mj ~H=~0 = ~0 . (5.60)

Unfortunately, in most of the cases there is no unique demagnetized state for a given
ferromagnetic sample (see [74] for a rectangular Permalloy thin �lm element). In fact, the
resulting domain con�guration may depend on the demagnetizing procedure. But, if we
are not interested in microscopic con�gurations, the volume fractions v0;i will represent the
demagnetized state su¢ ciently accurate.
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Levels of Demagnetized States: In 1995 Zhang and Atherton [90] published a
paper, where they assumed that a speci�c demagnetized state can be described as a linear
combination of so called "basic demagnetized states". Such a basic demagnetized state is
proposed as spatial distribution of magnetic dipole moments, having the simplest directional
symmetric con�guration that gives zero magnetization. More precisely, they used probability
density functions of rectangular or cosine shape for their description. The level k of a basic
demagnetized state is de�ned through the angular period 2�=k of the square wave or cosine
function.
This concept is quite similar to the assumption of domain classes with distributed magnetic
entities in the EM and therefore worth mentioning. But Zhang and Atherthon provided
just a formal framework for their description. There is no statement how to estimate the
levels of the basic states and the weighting for their linear combination. They only indicated
that an AC-demagnetization procedure with N turning points restricts the basic states to a
maximum level of 4N + 1.

Demagnetized State in the EM: In the framework of the EM the demagnetized state
resulting from a thermal demagnetization procedure is considered as magnetic "ground
state". The resulting domain structure is mainly caused by anisotropy, wall energy, and
stray �eld energy.
Micromagnetic models - summarized in Section 4.2 - incorporate all these di¤erent energy
terms together with the geometrical con�guration of the sample in order to calculate the
spatial magnetization distribution in the demagnetized state. But as mentioned above,
there may exist more than one state of vanishing total magnetization, representing a local
minimum of total energy.
However, within the EM these competing energy contributions are not considered explicitly.
Instead, the resulting distribution of domain classes is de�ned by an a-priori assumption of
initial volume fractions v0;i for the domain classes Di.

v0;i = vijDemagnetized State
Contrary to the volume fractions, the mean directions �'0;i and variances �20;i in the
demagnetized state are estimated by minimization of the local energy terms. For pre-
determined volume fractions this minimization can be done for each domain class separately

�'0;i; �
2
0;i : wLoc0;i = min

�'i;�
2
i

�
wLoc;i(�'i; �

2
i )
	

s.t. ~H = ~0 and ~�Stress = ~0 . (5.61)

In case where uniaxial anisotropy (anisotropy axis ~ci having an angle 'Aniso;i with respect to
the x-axis) is the only source of directional dependent local energy one obtains

�'0;i = 'Aniso;i or �'0;i = 'Aniso;i � � . (5.62)

According to the zero total magnetization condition (5.60) the expectation value for the
sample magnetization must be zero

~0 =

NDX
i=1

v0;i ~mi . (5.63)
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Anhysteretic Magnetization Curve

As summarized in section 5.2.1, the macroscopic interaction between di¤erent domains
(domain classes) can be described by the assignment of statistical probabilities for certain
domain con�gurations. While Heisenberg and Brown proposed to maximize the
probability in order to predict the domain con�guration, Fasching introduced a (virtual)
magnetic �eld that is inverse proportional to the probability of the domain con�guration.
In the context of the EM, the sample V has been subdivided into a certain number of
domain classes Di that are characterized by their average local energy wLoc;i. On the basis of
Fermi statistics, the number of possibilities to assign nDi indistinguishable magnetic entities
to domain class Di (with a �ctive number of available states aDi) is

P =

NDY
i=1

�
aDi
nDi

�
=

NDY
i=1

aDi !

nDi ! (aDi � nDi)!
for 0 � nDi � aDi � nV . (5.64)

Assuming that the number of magnetic entities is large enough to use Stirling�s approxima-
tion

n! � n
n

en
(5.65)

together with the the volume fractions

vi =
nDi
nV

and vmax;i =
aDi
nV

(5.66)

allows to rewrite the probability function as

P (v) =

"
NDY
i=1

v
vmax;i
max;i

vvii (vmax;i � vi)
vmax;i�vi

#nV
for 0 � vi � vmax;i � 1 . (5.67)

Here, the number of available states aDi or the corresponding maximum volume fraction
vmax;i for domain class Di is treated as model parameter. For example, if Di represents
closure domains, the maximum volume fraction can be limited to a value smaller than 1.
For the anhysteretic magnetization process at temperature T the free energy per unit
volume is stated as

wLoc + wd �
1

V
T S ,

where the entropy S is estimated from Boltzmann�s formula S = kB ln(P ). Hence, the free
energy (per unit volume) becomes

wLoc + wd �
1

V
kBT ln(P ) . (5.68)

In general, the equilibrium state can be calculated by minimizing the free energy (or
maximizing the entropy alternatively)

min
v

�
wLoc + wd �

1

V
kBT ln(P (v))

�
(5.69)

subject to
NDX
i=1

vi = 1 .
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Reversible Anhysteretic Energy

As shown above, the anhysteretic magnetization process can be described by means of
statistics. Due to the fact that the corresponding energy term describes the reversible nature
of the anhysteretic magnetization process, it is referred to as reversible anhysteretic energy.
In the context of the generalized EM, a phenomenological reversible anhysteretic energy is
de�ned according to (5.68) as

wRevAnh = �kRevAnh
1

nV
ln(P ) +

NDX
i=1

viwRevAnh0;i , (5.70)

where kRevAnh is treated as model parameter. The second term in (5.70) ensures that the
minimization of the free energy (5.69) gives the volume fractions v0;i for the demagnetized
state.
Applying Fermi statistics together with Stirling�s approximation, the reversible anhysteretic
energy becomes

wRevAnh = �kRevAnh
NDX
i=1

ln

 
v
vmax;i
max;i

vvii (vmax;i � vi)
vmax;i�vi

!
+

NDX
i=1

viwRevAnh0;i , (5.71)

with

wRevAnh0;i = kRevAnh ln

�
vmax;i
v0;i

� 1
�
� (wLoc0;i � wLoc0) . (5.72)

A detailed derivation is given in appendix A.3.

Conclusion

The reversible anhysteretic energy phenomenologically accounts for the fact that macroscopic
magnetic order, when a single domain class is preferred related to the remaining ones, needs
energy. This process of magnetic order is intrinsically bounded to a magnetic material
sample. So, in [55] it is shown that anhysteretic magnetization curves for various frequencies
can be standardized to a single curve by applying a simple transformation.
In the present work, the classical Fermi statistics is used to represent the anhysteretic
magnetization process with respect to the statistical domain classes and their local energy
contributions. Due to the fact that this energy term is entirely phenomenological, also other
statistics may be applied, depending on the problem to be modeled.
By now, the generalized EM provides a two-dimensional framework to describe nonhys-
teretic (nondissipative) magnetization curves, by minimizing the sum of local, demagnetizing,
and reversible anhysteretic energy terms. Within the next step, expressions for reversible
and irreversible work have to be incorporated.
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5.2.4 Reversible and Irreversible Work during Magnetization
Process

Since the reversible and irreversible issues of magnetization rotation are covered by the local
energy contributions in the domain classes, this section is focused on domain wall motion.

Modeling of Domain Wall Motion

For the following considerations, the quasi-continuous static magnetization process is
described at discrete time steps

t; t+�t; t+ 2�t; ::: ,

so that the rate of change�X=�t for all relevant physical quantitiesX (e.g. applied magnetic
�eld) is su¢ ciently small to neglect dynamic loss mechanisms (e.g. due to eddy currents).
The term quasi-continuous refers to a scale range that allows averaging over small, but highly
dynamic intrinsic e¤ects, such as Barkhausen jumps or thermal �uctuations. Hence, in the
scale of Barkhausen jumps the magnetization curve is considered as continuous, whereas
irreversible jumps due to coherent magnetization rotation are still regarded.
In the framework of the EM domain wall motion can only be estimated in terms of change
in volume fractions of the magnetic domain classes. Magnetic entities that change from
domain class Di to Dj during a time step �t

E (i) 7! E (j) for t 7! t+�t

cause a change in the corresponding volume fractions by �vij

vi(t+�t) = vi(t)�
NDX
j=1

�vij

vj(t+�t) = vj(t) +

NDX
j=1

�vij . (5.73)

More generally, during a time step �t the volume fraction of domain class Di is changing by
�vi as

vi(t+�t) = vi(t) + �vi 8 i = 1:::ND , (5.74)

with contributions from all other domain classes Dj

�vj =

NDX
i=1

�vij , (5.75)

where the sum of all volume changes �vi has to be zero

NDX
i=1

�vi = 0 . (5.76)
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For the sake of completeness, it should be mentioned that

�vji = ��vij and �vii = 0 . (5.77)

Furthermore, for given changes in volume fractions �v1;�v2; :::;�vN the sum of absolute
values is constant

NDX
i=1

NDX
j=1

j�vijj =
NDX
i=1

j�vij = const .

In the EM, the transition matrix

from
domain class

8>>>>>>><>>>>>>>:

D1
...
Di
Dj
...
DN

to domain classz }| {
D1 � � � Di Dj � � � DN0BBBBBBB@

0 � � � �v1i �v1j � � � �v1ND
...

...
...

...
��v1i � � � 0 �vij � � � �viND
��v1j � � � ��vij 0 � � � �vjND
...

...
...

...
��v1ND � � � ��viND ��vjND � � � 0

1CCCCCCCA
(5.78)

represents the change in domain class volume fractions within a time step �t.
If minimum volume changes within a time step are postulated, for an increasing domain
class volume �vj > 0 only positive contributions from other domain classes are allowed

�vj > 0 ) �vij � 0 8 i = 1:::ND
�vj < 0 ) �vij � 0 8 i = 1:::ND . (5.79)

The procedure of estimating the transition matrix �vij from the given volume changes �vi
is described in appendix A.4.

Distance of Domain Wall Movement: Within the 2D framework a ferromagnetic
sample of thickness dS and sample volume V is considered, where the magnetization is
oriented in-plane, in general. The characteristic length lS of the sample is de�ned as

lS =

r
V

dS
� dS . (5.80)

As sketched in Fig. 5.13, the equivalent distance ��ij of wall movement (relative to the
characteristic sample length lS) for a domain wall between domain class Di to Dj is assumed
to be proportional to the relative volume change �vij

��ij = cij �vij . (5.81)

The model-parameter cij accounts for the geometry of the sample as well as for the number
of domain walls. If nDW;ij is the number of domain walls of typical length lDW;ij, the constant
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cij results as

cij =
lS

nDW;ij lDW;ij
, (5.82)

where lS is the characteristic sample length, according to (5.80).

Figure 5.13: Equivalent distance of a representative moving domain wall between domain
classes Di and Dj.

Probability of Reversible Domain Wall Motion

Domain wall motion over an incremental distance d�� can be reversible on the one part
(due to bowing or bending) and irreversible on the other part, as illustrated in Fig. 5.14.
Let PRev(��) be the probability for a reversible domain wall motion as

d��Rev = PRev(��)d��

d��Irr = (1� PRev(��)) d�� , (5.83)

assuming that �� is the distance from the last (domain wall) reversal point.

Figure 5.14: Simpli�ed model of reversible and irreversible part of domain wall motion.
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Poisson Process for Demagnetized State: In the framework of the EM, domain
wall motion is based on a stochastic Poisson process, counting the number of Barkhausen
jumps within a certain distance of domain wall motion. The parameter qp is the average
number of Barkhausen jumps per distance of domain wall motion, or 1=qp is the average
distance between two consecutive pinning sites (Barkhausen jumps). Starting from the
demagnetized state, where all domain walls are assumed to be in an equilibrium position,
the probability that there is no Barkhausen jump for a wall motion of distance �� is
exponentially distributed as

PRev(��) = PPoisson(X = 0;��) = exp(�qp j��j) . (5.84)

So, when the notional rigid wall (within the view of the EM) is moving from the demagnetized
state �0 to a position �1 = �0 +��, a fraction of PRev(��) of the virtual wall segments are
moving reversibly, whereas 1 � PRev(��) perform irreversible Barkhausen jumps. Further,
the area under the probability curve is corresponding to the average reversible distance of
wall motion

��Rev =

��Z
0

PRev(x)dx (5.85)

��Irr = �� ���Rev . (5.86)
Within the Poisson model, the maximum reversible distance of wall motion is limited by

dRev = ��Rev,Max =

1Z
0

PRev(x)dx =
1

qp
. (5.87)

Reversal of Domain Wall Motion: For the domain wall motion process, a distribution
function P (+)Rev(��) for movement in positive direction �� > 0, and P (�)Rev(��) in negative
direction �� < 0 have to be considered. If the motion changes from positive to negative
direction or vice versa, a so called reversal point of domain wall motion has been reached,
and the corresponding probability distribution functions must be recalculated.
When the wall motion is reaching a reversal point (coming from positive direction) at
distance ��R, PR = P

(+)
Rev(��R) wall segments are still in reversible motion (bowing, bending,

etc.) and will be referred to NJ (Not Jumped) segments. After a wall motion reversal, these
NJ segments can move back to their equilibrium position fully reversible ��(+)Rev,NJ and then

move reversible in the opposite direction up to the maximum distance d(�)Rev,NJ as

d
(�)
Rev,NJ,New = ��R � PR| {z }

��
(+)
Rev,NJ

+

1Z
0

min
�
PR; P

(�)
Rev(x)

�
dx

| {z }
d
(�)
Rev,NJ

. (5.88)

The remaining wall segments 1 � P
(+)
Rev(��R) have already performed one or more

Barkhausen jumps during their motion to the reversal distance��, and are therefore referred
to as J (Jumped) segments. After a wall motion reversal, these J segments can move back
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reversible the distance d(+)Rev,J they had moved reversibly up to the reversal point and then

move in the opposite direction up to the maximum distance d(�)Rev,J as

d
(�)
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. (5.89)

However, the total maximum distance in the new direction of movement is

d
(�)
Rev,New = d

(�)
Rev,NJ,New + d

(�)
Rev,J,New �

2

qp
. (5.90)

Figure 5.15: Modi�cation of the probability for reversible domain wall motion at a reversal
point.

In order to distinguish the characteristics of J and NJ segments, the reversible probability
distribution has to be extended

PRev(��) =

8>><>>:
1 for �� = 0

exp
�
� qp
�J
(j��j � xJ)

�
for 0 < j��j � j��NJj

exp
�
� qp
�NJ
(j��j � xNJ)

�
for j��j > j��NJj

. (5.91)

The reversal factors

0 < �J; �NJ � 2 (5.92)

are determined by the maximum reversible distances dRev,J and dRev,NJ. The o¤set values
xJ and xNJ are dedicated to shift the probability curves, in order to guarantee continuity at
j��j = j��NJj

PNJ = PRev(��NJ) = exp

�
� qp
�J
(j��NJj � xJ)

�
= exp

�
� qp
�NJ

(j��j � xNJ)
�

. (5.93)
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Summing up, the probability for a reversible domain wall motion is described by two
generalized exponential distributions according to (5.91) with the parameters

P
(+)
Rev(��) : �

(+)
J ; x

(+)
J ; �

(+)
NJ ; x

(+)
NJ ;��

(+)
NJ (5.94a)
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NJ ;��
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NJ . (5.94b)

Starting at the demagnetized state
�
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(�)
J = 2:0 x

(+)
J = x

(�)
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(+)
NJ = �

(�)
NJ = 1:0 x

(+)
NJ = x

(�)
NJ = 0:0 ��

(+)
NJ = ��

(�)
NJ = 0:0 , (5.95)

the parameters have to be updated at each reversal point of domain wall motion. More
details on the calculation of the parameters is provided in appendix A.5.

Work Contributions due to Domain Wall Motion

Based on Neel�s work [65], the motion of a �exible domain wall in the presence of pinning
sites is represented by an equivalent rigid domain wall, where the distance ��ij of motion
corresponds to the average distance of the �exible wall. Within this context, a domain wall
is conceptually divided into many small sections, that can either move reversible or perform
an irreversible Barkhausen jump.
The distinction between reversible and irreversible parts of the magnetization process is
evident, and thus also treated within the Jiles-Atherton (4.4) hysteresis model, extensions
of the Preisach model (4.3.2), as well as in literature, such as [14] or [4], for example.

Reversible Work: Starting from the demagnetized state or a reversal point, the domain
wall can move reversibly by bowing or bending. Also a part of domain wall creation or
annihilation is reversible in nature.
Assuming that �t(R) are all simulation steps since the last reversal point (R),

�v
(R)
ij;Rev =

X
�t(R )

�vij;Rev(cij �vij) (5.96)

gives the reversible change in volume fraction since the last reversal point.
The reversible work increases disproportionate to the corresponding volume change since
the last reversal point. For example, the reversible work due to domain processes since the
last reversal point can be approximated as
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1� cos(�'i � �'j)

�
, (5.97)

where kRevDWM and�vREV are model parameters and the term 1
2

�
1� cos(�'i � �'j)

�
accounts

for the di¤erence in the orientation of the domain class magnetization. As sketched in
Fig. 5.16, the term for the reversible work is based on the elongation of the �exible domain
wall (surface) due to bowing.
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Figure 5.16: Simpli�ed picture of a reversibly bowing domain wall (a) and the corresponding
equivalent rigid wall (b) between two pinning sites.

Irreversible Losses: In general, domain wall motion is accompanied by local eddy
currents and interactions with the crystal lattice (due to spin-orbit coupling), which both
result in irreversible losses. Because the local eddy current losses induced by domain wall
movement decrease with the �lm thickness (comparable to classical eddy current losses),
the interactions with the crystal lattice become a dominant loss contribution in thin �lm
material.
In a quasi-static treatment, irreversible domain wall losses arise during a Barkhausen jump,
where a part of the wall moves with a �nite velocity from one pinning site to the next one.
Within a simpli�ed picture, the fast local change of the magnetic moment interacts with
the atoms near the pinning site via spin-orbit coupling mechanisms that causes local lattice
oscillations and hence emission of phonons.
The irreversible part �vij;Irr of the domain wall motion �vij in the generalized EM is
modeled as

�vij;Irr = �vij ��vij;Rev(cij �vij) . (5.98)

For a simulation step t 7! t+�t, the increase in irreversible work due to domain wall motion
(DWM) is proportional to the irreversibly changed volume fraction �vij;Irr

�wIrrDWMjt7!t+�t = kIrrDWM
NDX
i=1

NDX
j=1

j�vij;Irrj 12
�
1� cos(�'i � �'j)

�
, (5.99)

where kIrrDWM is a model parameter (loss coe¢ cient) and the term 1
2

�
1� cos(�'i � �'j)

�
accounts for the di¤erence in the orientation of the domain class magnetization. For a 180�

wall between domain class Di and Dj, an irreversible change in volumes �vij;Irr generates
losses of kIrrDWM j�vij;Irrj.

Conclusion

Although, the work due to reversible and irreversible domain wall processes have been derived
based on the picture of a moving �exible domain wall, it should be kept in mind that
the results are of phenomenological nature. The corresponding equations reproduce the
macroscopic magnetization process to a greater or lesser extent, depending on the material.
But nevertheless, the relation to the domain wall motion can be helpful for the interpretation
of the identi�ed model parameters.
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5.3 Calculation Procedure

In the previous sections, the concept of statistical domain classes and the involved energy
terms have been de�ned for the generalized EM. Based on this framework, the practical
model setup and calculation procedure is summarized.
The basic objective of the generalized EM is to calculate the sample magnetization ~M or
the component in �eld direction MH dependent on an applied �eld ~H (or an external stress
~�Stress) within a two-dimensional framework. Currently, the generalized EM is formulated
for a quasi-static magnetization process, in case of dynamic hysteresis, the model has to be
extended in order to account for magnetization lag and additional losses.

5.3.1 Model Setup

As a primary requirement, the number of statistical domain classes ND to be modeled has
to be de�ned. In the majority of cases, this is an even number, because every domain class
has a counterpart with an antiparallel orientation of the magnetization in the demagnetized
ground state. But the more domain classes are de�ned, the higher is the number of model
variables, and the longer is the calculation time. Generally speaking, it is recommended to
start with a small set of domain classes and, if necessary, add further ones in order to re�ne
the results or consider additional issues.

Model Variables

Every statistical domain class Di is described by the following model variables:
� Volume fraction vi of Di

�The volume fractions are calculated by a minimization of all local and non-local
energy terms together. A detailed description of the optimization problem is
provided in the following subsection.

� Mean orientation �'i of magnetic entities within Di

�The mean orientation of the magnetic entities results from a minimization of the
local energy terms, calculated for each domain class individually.

� It is also possible to prede�ne the mean orientation exogenously for some domain
classes. This can be helpful, when modeling closure domains or spike domains
around inclusions or cavities, for example. The share of such domain classes in
total sample magnetization is then controlled via the volume fractions, i.e. the
size of the closure domains.

� Variance �2i of the orientation of the magnetic entities within Di

�The variance of the orientation of the magnetic entities can be a result from a
minimization of local energy terms, calculated for each domain class individually.

� If one is interested in modeling the temperature behavior of the magnetic
material, then the variance will be determined by the competition between
thermal agitation and exchange energy.



114 5 Generalized Two-Dimensional Energetic Model

�When the variance is intended to represent disalignment around inhomogeneities,
an additional local energy term (counterbalanced by the magnetic �eld energy)
can be included or the variance can be provided exogenously to the EM.

Model Parameters

Basically, the following model parameters have to be de�ned, if the corresponding energy
terms are included in the model setup:

� Structural model parameters

�Number of statistical domain classes ND
�Domain classes with �xed (non-calculated) mean orientation �'i
�Domain classes with �xed (non-calculated) angular variances �2i

� Geometrical parameters

� Sample (thin �lm) thickness dS
�Characteristic sample length lS
�Two-dimensional demagnetization tensor ~Nd,2D

� Physical model parameters for local energy terms

� Saturation magnetization �0Ms

�Uniaxial anisotropy constant K1 and angle of easy axis 'Aniso with respect to
x-axis

� Isotropic magnetostriction constant �s
�Number of magnetic entities per unit volume � = nV=V

�Number of nearest neighbors �NN
�Exchange constant JEx

� Phenomenological parameters for non-local energy terms

� Initial volume fractions in the demagnetized state v0;i
�Maximum volume fractions vmax;i
�Coe¢ cient for reversible anhysteretic energy kRevAnh
�Domain wall motion factor cij
�Average number of Barkhausen jumps per distance of domain wall motion qp
�Coe¢ cient for work due to reversible domain wall motion kRevDWM
�Parameter for reversible domain wall motion �vREV
�Coe¢ cient for losses due to irreversible domain wall motion kIrrDWM

Contrary to other hysteresis models, the generalized EM is �exible in its structure. But
therefore some a-priori knowledge of the material sample and a basic idea of the relevant
mechanisms that govern the magnetization process are necessary.
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5.3.2 Calculation of the Model Variables

Energy Terms

In the current formulation of the generalized EM the following energy terms or work terms
are included:

� Local energy wLoc(vi; �'i; �2i j ~H;~�Stress; T ) according to (5.55) and (5.56)

�Applied �eld energy wH;i(�'i; �2i j ~H) (5.41)
�Anisotropy energy wAniso;i(�'i; �2i ) (5.44)

�Magneto-elastic energy with non-magnetic stress wStress;i(�'i; �2i j~�Stress) (5.46)
�Thermal excitations - internal entropy wT;i(�2i jT ) (5.49) and (5.50)
�Exchange energy within a domain class wEx;i(�2i ) (5.54b)

� Non-local energy

�Demagnetizing energy wd(vij�'i; �2i ) (5.58)
�Reversible anhysteretic energy wRevAnh(vi) (5.70)

� Reversible and irreversible work

�Reversible work due to domain wall motion �w(R)RevDWM(�v
(R)
ij;Rev) (5.97)

� Irreversible losses due to domain wall motion �wIrrDWM(�vij;Irr) (5.99)

Calculation of the Mean Orientation and the Variance of Magnetic Entities

In general, the mean orientation �'i and the variance �
2
i of the magnetic entities can be

calculated for each domain class Di individually by minimization of the local energy terms.
As shown in Fig. 5.17, for a given applied �eld ~H, applied stress ~�Stress, and temperature T
the minimization of the local energy wLoc;i of domain class Di yields

�'i; �
2
i : min

�'i;�
2
i

�
wLoc;i(�'i; �

2
i )
	

s.t. �'i 2 (��; �] and �2i � 0 . (5.100)

As stated in 3.3.2, the mean orientation �'i might perform an irreversible jump due to
coherent rotation of domain class magnetization when changing the applied �eld ~H. As a
consequence, the optimizer must be able to handle such jumps.
Due to the fact that the domain class magnetization j~mij is proportional to exp (��2i =2)
(see Tab. 5.1), it makes sense to optimize the variance in a logarithmic scale and limit it by
�2i < (2� rad)

2 for 2:7 10�9 �j~mij � 1:0.

Calculation of the Volume Fractions of the Statistical Domain Classes

First of all, the path-dependency of magnetic hysteresis is represented by reversible and
irreversible work due to domain wall motion. So the history of the magnetization process is
stored at any reversal point (R) of domain wall motion as the probability function P (R)Rev(:)
for reversible domain wall motion.
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Figure 5.17: Calculation of the mean orientation �'i and the variance �
2
i of the directional

distribution of magnetic entities in a domain class Di by minimizing the local energy terms.

Demagnetized State as Starting Point of Calculation: In the demagnetized state
most of the local energy terms are zero, the mean orientation �'i and the variance �

2
i of the

magnetic entities are calculated by minimizing the remaining local energy terms according
to (5.61).
The con�guration of domain classes (i.e. the volume fractions vi) in the demagnetized state
is given as model parameter by an a-priori assumption of the initial volume fractions v0;i.
Further, the demagnetized state is de�ned as the �rst reversal point for all domain wall
motion processes. The parameters of the probability function P (R)Rev(:) for reversible domain
wall motion are chosen according to (5.95).

Energy Minimization: In principle, the volume fractions vi are determined by a
minimization of the total energy as

vi : min
vi

n
wLoc + wd + wRevAnh +�w

(R)
RevDWM +�wIrrDWM

o
(5.101)

s.t. : vi 2 [0; vmax;i] and
NDX
i=1

vi = 1 ,

for given mean orientation �'i and the variance �
2
i of the magnetic entities. Hence, for a

model with ND statistical domain classes, an optimization problem with ND�1 independent
variables result.
The general EM calculation procedure for a certain iterative step is sketched in Fig. 5.18.
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Figure 5.18: Schematic overview of a single EM calculation step.



118 5 Generalized Two-Dimensional Energetic Model

Local Minima on the Energy Surface and Appropriate Solver

Due to the di¤erent nature of the energy terms involved, the resulting energy surface (total
energy dependent in the volume space fv1; v2; :::; vNDg ) consists of many local minima, which
is typical for magnetic hysteresis problems. Even in the quasi-static regime, the magnetic
system is usually in a state corresponding to a local minimum of free energy. This is an
important fact, because the magnetic system, being in a de�ned state, cannot reach the
state of global energy minimum (in a �nite time span), if there is an energy barrier in
between. This has to considered, when calculating the volume fractions. So, the solver must
not calculate the global energy minimum of (5.101). Assuming that for an applied �eld ~H
the domain class con�guration fv1; :::; vNDg has been determined in simulation step t�

~H
fv1; :::; vNDg

�
t

7!
�

~H +
��!
�H

fv1 +�v1; :::; vND +�vNDg

�
t+�t

, (5.102)

then for a change in the applied �eld of
��!
�H, the new metastable domain class con�guration

fv1 +�v1; :::; vND +�vNDg has to be searched starting from the old con�guration by
following the path of minimum energy. Most of the standard solver are not able to perform
this path-search along local minima, so an appropriate search algorithm has been developed
in order to capture this problem.
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5.4 Summary

In this chapter a generalized two-dimensional energetic model of ferromagnetic hysteresis is
presented. Elementary magnetic entities that act as basis source of magnetic moment are
aggregated to statistical domain classes, where their directional orientation is described by
a statistical distribution function. Using a wrapped normal distribution, the magnetization
and the local energy terms for a domain class can be formulated as an algebraic expression.
The parameters of this wrapped normal distribution (mean orientation and variance) are
calculated by minimizing the sum of the local energy terms for each domain class individually.
In order to describe the non-dissipative macroscopic magnetization process, a reversible
anhysteretic energy term has been introduced. It accounts for the fact that (magnetic) order
decreases entropy and thus reduces the free energy. So, it comprises all physical energy
terms, which are not considered explicitly in the model. Starting point of modeling is the
demagnetized state, as the magnetic "ground state", where the con�guration of domain
classes is de�ned as model parameter.
Dissipative processes that give rise to the hysteretic behavior are considered by reversible
and irreversible work due to domain wall motion. Because of the statistical treatment,
the exact information of domain wall motion can only be roughly approximated based on
the volume change of the statistical domain classes. A probability function for reversible
domain wall motion is adapted in every reversal point. Based on this probability, reversible
and irreversible work are calculated. However, even if the process of a moving �exible domain
wall seems to be an appropriate picture for the expressions of reversible and irreversible work,
these terms phenomenologically summarize all reversible and irreversible mechanisms caused
by a change of domain class con�guration during the macroscopic magnetization process.
The presented generalized energetic model is not restricted to the energy terms described
within this work. Depending on the problem to be modeled some energy terms can be omitted
and new energy terms introduced. Similarly, the expression for the reversible anhysteretic
energy can be calculated based on another statistic. But this �exibility requires at least a
qualitative a-priori knowledge of the underlying mechanisms that govern the magnetization
process of the material to be modeled.
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Part III

Simulation and Evaluation

In the sixth chapter the evaluation of the generalized Energetic Model on the example of
Permalloy thin �lm material is presented. After a brief survey of the magnetic properties
and the production process of the Permalloy thin �lms used for anisotropic magneto-resistive
sensors, the magneto-optical Kerr measurement setup is explained.
The major part in this chapter is dedicated to a comparison of measurement data and
simulation results based on magnetization curves. In a �rst step, the hysteresis loops for an
arbitrary direction of the applied �eld with respect to the easy anisotropy axis are evaluated
based on one sample. Second, the relation between model parameters and microstructural
properties of the thin �lm is presented by comparing samples that di¤er in the technological
parameters of the production process. Third, the ability of the generalized Energetic model
to predict the temperature behavior from the �rst principles by the competition of thermal
excitations and exchange mechanisms is evaluated on the example of thin and ultra thin �lm
material based on measurement data from literature.
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Chapter 6

Model Evaluation on Permalloy Thin
Films

After the theoretical introduction of the generalized Energetic Model in chapter 5, the model
is used to describe the magnetization curves of Permalloy thin �lms of 50 nm thickness. The
thin �lm samples presented within this work have been produced and investigated at Vienna
University of Technology by graduate students, and the results have been published in the
diploma theses of [2], [45], [52], and [81]. These �lms are the basis for anisotropic magneto-
resistive (AMR) sensors and therefore designed that the magnetization process in mainly
driven by coherent magnetization rotation.
Within the �rst section, some basic information about the thin �lmmaterial characteristics,
the sputter process and the magneto-optical Kerr measurement is provided. Based on
the material properties, the setup of the generalized EM for thin �lms with coherent
magnetization rotation is de�ned. In a �rst analysis, it is investigated how the magnetization
curves changes, when the measurement is performed several degrees deviating from the hard
axis direction. Second, the in�uence of technological process parameters on the hard axis
magnetization curves is exemplarily demonstrated such that the model con�guration together
with the model parameters allow to qualify the microstructure of the thin �lm. Finally, the
temperature dependence of the spontaneous magnetization is described by the generalized
EM and compared to measurement data of ultrathin Permalloy �lms taken from literature.

6.1 Production, Material Properties, and Measure-
ment

6.1.1 Thin Film Production by Cathodic Sputtering

Vacuum evaporation, electrodeposition, and cathodic sputtering are the most common
techniques for preparing magnetic thin �lms. Since the thin �lm samples used as reference
for the evaluation of the generalized EM have been produced by cathodic sputtering, this
deposition technique is introduced within the following paragraphs.
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Basic Principle of the Triode Sputtering System

The triode sputtering system used for the thin �lm production is sketched in Fig. 6.1, where
the arrangement of the main components can be seen.

Figure 6.1: Principle and main components of a triode sputter system.

Beginning at the thermionic cathode, a water-cooled tungsten �lament is heated up by a
DC current, so that the thermal energy allows the electrons to leave the metallic bond. Thus,
the number of emitted electrons depends on the �lament temperature and is controlled by
the cathode current IC.
If there is a voltage applied between this thermionic cathode and the anode on the opposite
site of the vacuum chamber, the corresponding electric �eld e¤ects a force on the free electrons
and accelerates them towards the positive charged electrode.
After evacuation (10�5 - 10�6 Pa via turbomolecular pump), the sputter chamber is �lled
with an inert gas, such as Argon, up to a certain pressure pAr, so that the electrons from the
thermionic cathode ionize the Ar atoms by bouncing out an electron of the outer electron
shell of the Ar atom. Hence, an Ar plasma with positive charged Ar ions is generated between
cathode and anode. The plasma can be focused (in order to increase the plasma density)
between target and substrate by a magnetic �eld of the surrounding ring coil.
Because the Permalloy target is on a negative electrostatic potential, the Ar ions accelerate
towards this target. When hitting the surface of the target, the kinetic energy of the Ar ions
is partly transferred to inelastic e¤ects (such as emission of photons, X-rays or secondary
electrons) and partly used to knock out particles from the target material. These sputtered
Permalloy particles condense on the substrate opposite (in a distance dTS between target
and substrate) and forming the thin �lm. So, after exceeding a certain energy threshold,
the sputtering yield (= number of sputtered atoms per incident Ar ion) increases with the
energy of the Ar ions that is controlled by the target voltage UT. The target temperature
TT can be increased by so called blind-sputtering before opening the shutter and starting
the actual sputter process.
In general, the substrate is also on a small negative electrostatic potential (substrate voltage
US), so that Ar ions are accelerated towards the substrate, but with a small amount of kinetic
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energy, which is just enough to avoid gas inclusions and impurities on the thin �lm surface.
The substrate temperature TS can be controlled by a heater. For the samples investigated
within this work, passivated silicon (Si-SiO2) is used as substrate material. The magnetic
�eld of the ring coil e¤ects a preferred magnetic orientation of the sputtered Permalloy
particles, leading to an induced anisotropy of the thin �lm.

Technological Process Parameters

Beside the materials for the target and the substrate, the technological parameters given in
Tab. 6.1 in�uence the properties of the produced thin �lms.

Parameter Symbol Typical values
Target-substrate distance dTS 35 - 60 mm
Anode current IA 3 - 4 A
Thermionic cathode current IC 40 - 50 A
Field current IF 3 - 10 A
Argon pressure pAr 1 - 10 Pa
Substrate temperature TS 40 - 300 �C
Anode voltage UA 40 - 60 V
Substrate voltage US -60 - 0 V
Target voltage UT -(900 - 800) V

Table 6.1: Typical parameters of the sputtering process.

6.1.2 Basic Properties of Permalloy Thin Films

Before describing the characteristics of Permalloy thin �lms, some key facts about the bulk
material are summarized.

Properties of Permalloy Bulk Material

Iron-Nickel Alloys: The phase diagram of the binary iron-nickel alloy system has been
investigated for several decades up to present [13]. Particularly, the low temperature phases
are di¢ cult to identify, because of the slow di¤usion process between Fe and Ni a stable
equilibrium state is hard to reach for temperatures below 300�C. For temperatures below
200�C, it has been estimated [89] that it would last some 100 millions of years to reach the
equilibrium.
However, the most important ferromagnetic materials can be found in the range of high
Ni-content. Besides the bcc (A2) solid solutions of �-Fe at low temperatures and �-Fe
at high temperatures, the -(Fe,Ni) solution with fcc (A1) structure dominates the phase
diagram according to Fig. 6.2. For a Ni-content around 75%, an fcc (L12) ordered FeNi3
superstructure (of AuCu3 type) is formed, where the Fe-atoms are located in the corners
and the Ni-atoms are placed in the face center of the unit cube.
Depending on temperature and Ni-content, the lattice constant ranges between 2.86 - 2.88 Å
for the �-phase and 3.52 - 3.60 Å for the -phase.
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Figure 6.2: Phase diagram for the binary iron-nickel alloy system (from [59]).

Origin of the Name Permalloy: At the beginning of the 20th century, Gustav W.
Elmen discovered that heat-treated FeNi alloys with a dominant Ni content have excellent
magnetic properties related to other soft-magnetic materials known at that time. In 1923,
Elmen and Arnold introduced [19] the name "Permalloy" for alloys of approximately 80%
nickel and 20% iron. Since they worked as engineers at the Western Electrical Company (a
part of the Bell Company), Permalloy became a trademark and has been commercially used
in transformers and relays for telephone applications.
Sometimes, the name "Permalloy" (Py) is loosely applied to iron-nickel alloys (e.g. Fe35Ni65
is termed as 65 Permalloy) in a broader sense, whereas it is usually related to iron-nickel
alloys with approximately 80% nickel content in the classical meaning.

The Permalloy Problem: Usually it is expected that magnetic properties of soft-
magnetic alloys become improved after slow cooling or annealing. But in case of Permalloy,
slow cooling and annealing at low temperatures decreases the permeability signi�cantly. Just
quenching from high temperatures gives the desired high permeability. This discrepancy is
addressed as "Permalloy problem" and has been intensively investigated from 1930 up to
1960. The main result [51] is, that the magnetic properties of Permalloy are closely related
to the crystal structure. When quenching from high temperatures (> 600�C), the disordered
state with random occupation of the lattice sites by Fe and Ni atoms retains, whereas
a slow cooling process leads to the formation of the ordered FeNi3 superstructure. The
local directional ordering of the superstructure causes an induced magnetic anisotropy that
lowers the permeability of the material drastically. Chikazumi [15] explained the induced
anisotropy during annealing by ordering of Fe-Fe, Ni-Ni, and Fe-Ni atom pairs that depends
on the di¤erence of bond lenght1 and the pseudo-dipole interaction between the pairs.

1Based on the di¤erent bond lengths, the con�guration of atom-pairs during annealing is chosen such
that the magnetoelastic energy becomes small.
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General Data of Bulk Permalloy: In Tab. 6.2 typical values for some material
parameters of bulk Permalloy (Fe19Ni81) are compared to the values of pure iron and nickel.

Parameter Symbol Fe Fe19Ni81 Ni Unit
Crystal structure A2 bcc A1 fcc A1 fcc

L12 fcc
Lattice constant a 2.866 3.524 3.524 Å
Mass density � 7874 8715 8908 kg/m3

Curie temperature TC 1044 843 628 K
Max. magnetic moment mJ;z 2.22 1.02 0.62 �B/atom

Orbital moment mL;z 0.08 0.06 �B/atom
Spin moment mS;z 2.14 0.56 �B/atom

Saturation polarization (0 K) �0Ms,0 2.15 1.04 0.61 T
Exchange integral JEx 1.50�10�19 1.60�10�19 1.62�10�19 J
Exchange constant AEx 2.1�10�11 1.3�10�11 0.8�10�11 J/m
Anisotropy constant K1 48000 1000 -5000 J/m3

K2 -10000 -2000 J/m3

Magnetostriction constant �s -7�10�6 2�10�6 -35�10�6
�100 15�10�6 -51�10�6
�111 -21�10�6 -24�10�6

Table 6.2: Typical material parameters for bulk Permalloy in comparison to iron and nickel
(from [16]).

Domain Theory of Permalloy Thin Films

The theory of magnetic domains in (polycrystalline) thin �lms is presented in the book of
Hubert and Schaefer [42] in excellent detail, so that in the following paragraphs only the
main issues are summarized.

De�nition of a Thin Film: In general, a magnetic material is termed as �lm, if the
thickness is below or at least comparable to the Bloch wall width. For Permalloy, the
characteristic domain wall width is according to (3.32)

lWall =

r
AEx
KAniso

=

s
1:3 � 10�11J/m
100 J/m3 = 360 nm (6.1)

and the Bloch wall width (3.33) is

lBloch = � lWall = 1100 nm : (6.2)

Magnetic �lms with a thickness below the transition between Néel and Bloch wall

lNeelBloch � 20 lEx = 20
s

AEx
KStray

= 20

s
1:3 � 10�11J/m
4:0 � 105 J/m3 = 114 nm (6.3)
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with the stray �eld energy coe¢ cient (3.17)

KStray =
1
2
�0M

2
s =

1

2�0
(1 T)2 � 4:0 � 105 J/m3 (6.4)

are called thin �lms.

Domain Walls: Further, the analysis is limited to thin �lms with uniaxial in-plane
anisotropy, so that the domain magnetization is aligned parallel to the surface of the �lm.
Basically, in thin �lms the in�uence of the domain walls on the magnetization process is
much stronger than in bulk material. In order to avoid the stray �eld energy caused by the
magnetic poles on the surface of the �lm as a consequence of the magnetic dipole rotation
in a Bloch wall, Néel walls are preferred with decreasing thickness.
In general, the preferred type of domain wall for the hard-axis magnetization process
depends on the �lm thickness and on the applied �eld, as depicted in Fig. 6.3.

Figure 6.3: Preferred domain wall types dependent on the �lm thickness and the hard axis
�eld (from [42]).

When applying a magnetic �eld H? in plane, perpendicular to the easy anisotropy axis,
the magnetization of the domains rotate into the �eld direction according to the Stoner-
Wohlfarth model. Hence, for this reduced �eld

h? = H?
�0Ms

2K1

; (6.5)

the domain magnetization angle according to Stoner-Wohlfarth is

'M1;2 =
�

2
� arccos(h?) ; (6.6)

so that the domain wall angle results as

'Wall = j'M1 � 'M2j = 2arccos(h?) : (6.7)
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Thus, the decreasing wall angle with increasing hard axis �eld leads to transitions between
di¤erent types of domain walls during the hard axis magnetization process.
Beside the classical (symmetric) Néel walls, so called cross-tie walls are formed at low
applied �elds. As shown in Fig. 6.4, a 180� rotation of magnetic dipoles is performed by
a combination of 90� Néel walls in form of a cross. The resulting Bloch lines point into
the direction perpendicular to �lm surface and thus lead to local magnetic poles on the
thin �lm surface. The motion of such a cross-tie wall is impeded by pinning of the Bloch
lines, particularly related to irregularities in the thin �lm surface or in the interface to the
substrate.

Figure 6.4: Schematic distribution of magnetic dipols for a cross-tie wall.

Magnetization Ripple and Dispersion: When describing the magnetization process
of polycrystalline thin �lms, the (irregular) granular nature of the material has to be
considered. So, the anisotropy within the grains can be statistically distributed and the
interactions between individual grains have to be accounted. Further, the long-range stray
�eld interactions due to the tails of the Néel walls and cross-tie walls cause an inter-coupling.
In low anisotropy polycrystalline thin �lms, a so called ripple structure can result, where the
local magnetization is varying along a direction parallel to the total sample magnetization.
This ripple phenomenon is also referred to as magnetization dispersion with respect to the
average magnetization. Hoffmann [41] has derived the ripple structure as a consequence of
anisotropy dispersion by means of variational calculus. However, even for applied magnetic
�elds (along the hard axis) beyond the anisotropy �eld this ripple structure is still present.
The long-range interaction between the domain walls can give rise to metastable blocked
domain states that results in a remanence in the hard axis magnetization curves.
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6.1.3 Magneto-Optical Kerr Measurement

For the determination of the magnetization curves of the thin �lm samples a magneto-optical
Kerr measurement system is used. In case of magnetic thin �lms with in-plane anisotropy
where the domain size is far beyond the �lm thickness, it can be assumed that the local
magnetization near the surface is established throughout the whole thickness of the �lm.
Combined with the high re�ectivity of the sputtered �lms, magneto-optical techniques are a
proper tool for measuring the magnetization curves.

Figure 6.5: Basic principle of the magneto-optical Kerr measurement system.

Magnetic Part of the Measurement System

The magnetic �eld is provided by a split ferrite core with two air gaps of 4 mm, where one
part of the core is equipped with a coil. The thin �lm sample is placed on the air gap,
as sketched in Fig. 6.5, so that the stray �eld can be used for the characterization of the
magnetization process. Due to the small thickness of the wafer (substrate and sputtered �lm
have a thickness of about 0.4 mm in total), the homogeneity of the magnetic �eld in the
center of the air gap is su¢ cient, particularly in the region of the incident laser beam. The
coil is connected to an AC voltage supply, which provides a sinusoidal voltage of 200 Hz.
This frequency is necessary for the operation of the bandpass �lter in the optical detector.
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The calibration of the applied magnetic �eld dependent on the current in the coil can be
done by a Hall probe that is placed in the center of the air gap. For the current con�guration,
the scaling is 4000 A/m per ampere coil current.

Optical Part of the Measurement System

The measurement system utilizes the magneto-optical Kerr e¤ect (MOKE) in order to
determine the magnetization in the thin �lm sample. In general, the term MOKE refers
to phenomena, where the magnetization at the surface of the sample causes a di¤erence (in
polarization or intensity) between incident and re�ected polarized light. The transverse Kerr
e¤ect is sensitive to the component of magnetization that is in-plane and perpendicular to
the plane of incidence. Whereas other types of MOKE (longitudinal and polar Kerr e¤ect)
cause as change in the polarization of the incident light, the transverse Kerr e¤ect a¤ects
the re�ectivity (the intensity of the re�ected light compared to that of the incident light).
A standard laser-diode (of typically 800 nm wavelength) is used as light source. The
emitted light is focused on the center of the thin �lm surface, such that the diameter of the
incident laser beam in about 1 mm. The re�ected light is focused again by a lens so that it
is concentrated on the surface of a silicon photo diode at the detector. Because the relative
change in intensity due to magnetization is rather small compared to the total intensity,
the current signal of the photo diode has a big DC bias, which has to be eliminated by
adequate bandpass �lters2. After low-noise ampli�cation and proper �ltering of the photo
diode signal, the detector unit provides a voltage signal (0 - 5 V) that is proportional to
in-plane magnetization component perpendicular to the plane of incidence. For practical
application, the whole measurement system should be covered so that the environmental
light (from �uorescent lamps for example) does not interfere with the laser light to be
measured.
With the presented measurement system only the relative magnetization can be provided
as signal of the optical detector. For the determination of absolute magnetization values,
other techniques such as vibrating sample magnetometers have to be used. Further, the
measurement results have to be adjusted due to the non-linearity of the ampli�er. The
correction curve has been determined based on a reference sample.
Compared to the domain size of several 10 �m, a signi�cant number of magnetic domains
should be captured by the light beam focused to about 1 mm diameter, so that the
measurement result can be interpreted as average magnetization of the sample. Nevertheless,
there might be some local variations or inhomogeneities over the wafer�s surface. Thus, the
measurement should be done on three di¤erent locations on the �lm at least, in order to get
a signi�cant result about the magnetic properties of the thin �lm.

2In the �rst version of the measurement setup, a part of the light is coupled out by a semi-transparent
mirror and directed to a second detector unit. The desired signal is the di¤erence between measured signals
of the directly incident light and the re�ected light.
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6.2 Model Setup for Thin Films with Dominant Co-
herent Rotation

6.2.1 General Model Parameters

As mentioned in the beginning of this chapter, the polycrystalline Permalloy �lms presented
in the following sections are produced by DC sputtering and are intended for use in
anisotropic magneto-resistive (AMR) sensor applications.

Structural Model Parameters

Transmission electron microscopic analysis [52] of the sputtered polycrystalline �lms yielded
a grain size of 10 - 80 nm depending on the target material and the sputter process. Here,
the grains can be associated with the magnetic entities in the EM. For a typical domain size
of several 10 �m the statistical treatment within the context of the EM is justi�ed.
In the best case, there would be just coherent magnetization rotation expected for the
hard-axis magnetization process. But as described above, the granular structure of the
polycrystalline �lm leads to magnetization dispersion and metastable blocking states due to
the interaction of the domain walls.
Corresponding to this fact, the EM is set up with four domain classes (ND = 4) as follows:

� Coherent rotating domain classes D1 and D2:

�Represent the ideal coherent magnetization process

�Oriented parallel and antiparallel to the easy axis in the demagnetized state
(�'0;1 = 0, �'0;2 = �)

�Mean orientations �'1;2 are calculated by minimizing the local energy terms

� Standard deviations are �xed to �1;2 = 1�

�The initial volume fractions v0;12 = v0;1 = v0;2 depend on the problem to be
modeled, whereas the maximum volume fractions are vmax;1 = vmax;2 = 1:00.

� Incoherent rotating domain classes D3 and D4:

�Represent the parts of the thin �lm sample that show magnetization dispersion

�Oriented parallel and antiparallel to the easy axis in the demagnetized state
(�'0;3 = 0, �'0;4 = �)

�Mean orientations are identical to the coherent rotating domain classes as �'3 = �'1
and �'4 = �'2

� Standard deviations �3;4 calculated by minimizing the local energy terms

�The initial volume fractions v0;34 = v0;3 = v0;4 depend on the problem to be
modeled, whereas the maximum volume fractions are vmax;3 = vmax;4 = 1:00.
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Geometrical Parameters

For the magnetic hysteresis measurement, rectangular probes of 20 x 10 mm (lS = 14 mm)
are prepared. Due to the applied magnetic �eld during sputtering and cooling, these samples
have an induced uniaxial anisotropy with the easy axis parallel to the long edge of the probe.
The presented thin �lms have been sputtered from a sintered Permalloy (Fe19Ni81) target
and have a thickness of dS = 50 nm, if not stated otherwise.
Because of the huge di¤erence between sample size (mm) and �lm thickness (nm), in-plane
demagnetization e¤ects due to the shape of the sample can be neglected

~Nd,2D �
�
0 0
0 0

�
Nxx; Nyy < 5 � 10�6 for a 20 x 10 mm x 50 nm ellipsoid. (6.8)

Physical Model Parameters

The saturation magnetization is the same as in Permalloy bulk material (at room
temperature)

Ms = 800 kA/m �0Ms = 1:00 T . (6.9)

As mentioned above, the easy axis of induced uniaxial anisotropy is aligned parallel to the
long edge of the sample, which is de�ned as x-axis so that

'Aniso = 0 . (6.10)

The anisotropy constant K1 depends on the parameters of the sputter process.
Particular for the Fe19Ni81 alloy, the magnetostriction is nearly zero

�s � 0 , (6.11)

so that the AMR sensor is insensitive to magneto-elastic interactions with mechanical stress.

Phenomenological Model Parameters

The coe¢ cient for the reversible anhysteretic energy kRevAnh is small in the range of several
J/m3 and thus allows signi�cant deviations of the volume fractions vi from their initial values
v0;12 or v0;34 during the magnetization process.
In principle, the magnetization process is divided into a coherent rotating part and a
incoherent rotating part, so that the boundaries between the corresponding domain classes
do not necessarily represent classical domain walls. Hence, the domain wall motion factors
cij are identical and can be combined with qp, the average number of irreversible jumps per
distance of wall motion as

cij qp = 80 , (6.12)

which is the average number of irreversible events per relative volume change �vij. For the
remaining parameters related to domain wall motion, the following values can be used

�vREV = 0:002 (6.13a)

kRevDWM = 2:0 J/m3 (6.13b)

kIrrDWM = 2:0 J/m3 . (6.13c)
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6.2.2 Energy Terms for Magnetization Dispersion

Basically, the magnetization dispersion due to domain wall interactions (e.g. magnetic ripple
structure) is represented by the variances �23;4 of the incoherent rotating domain classes.
Concerning this matter, some local energy terms have to be introduced.

Internal Entropy

Comparable to the thermal excitations, the magnetization dispersion within a domain class
is represented by the internal (di¤erential) entropy according to (5.50) as

wDisp;i = �kDisp sin2('H�'Aniso;i)
�
ln (2�)� 1

2
ln

�
exp (2) +

2�

exp(1)

1

�2i

�
exp

�
��2i

��
.

(6.14)

Depending on the model parameter kDisp the variance �2i can be calculated by a minimization
of the (relevant) local energy contributions

�2i : min
�2i

�
wH;i(�'i; �

2
i ) + wAniso;i(�'i; �

2
i ) + wDisp;i(�

2
i )
	

(6.15)

s.t. given �'i .

So the dispersion is determined by the competition between ordering �eld and anisotropy
energy and disordering internal entropy. The term sin2('H � 'Aniso) accounts for the fact
that magnetization dispersion is characteristic for hard-axis hysteresis curves.

Reversible and Irreversible Processes

So far, changes in domain class volume fractions (representing domain wall motion) are
considered as the only source of irreversible losses. But also the change of magnetization
dispersion within a domain class can be accompanied by losses, due to pinning of wall
structures (e.g. Bloch lines at cross-tie walls) during the transition of di¤erent (metastable)
con�gurations of the magnetization process.
In general, the reversible and irreversible energy contributions depend on the change of the
corresponding volume fractions �vi

�wRevIrrDisp = kRevIrrDisp

NDX
i=1

�vi sin
2('H�'Aniso;i) di

�
exp(�2�2i )� exp(�2�20;i)

�
, (6.16)

where

di = sign (jmi;H(t+�t)j � jmi;H(t)j) (6.17)

accounts for the direction of the magnetization process (dRevIrr;i = 1, if a state of higher
domain class magnetization is reached in time step �t). So the absolute value of change in
reversible and irreversible energy contributions depends on the current value of the variance
�2i compared to the variance in the demagnetized state �

2
0;i.

An explicit distinction between the reversible and irreversible part is not calculated
analytically, because it results from the simulated magnetization curves anyway.
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6.3 Directional Dependence of Magnetization Curves
Near the Hard Axis

When measuring the magnetization curves in the hard axis, it is important that the
positioning of the thin �lm sample is exact with respect to the applied �eld. In this section,
it is investigated how small deviations of the applied �eld with respect to the hard axis
in�uence the magnetization process.

6.3.1 Identi�cation of the Model Parameters

The following investigations are performed on a 50 nm thick sputtered Permalloy �lm, which
is referred to as "Sample S". The measured magnetization curves for the easy axis and hard
axis are shown in Fig. 6.6.

Figure 6.6: Measured easy axis and hard axis magnetization curves of sample S.

According to the measured magnetization curves, the EM parameters additional to the
general parameterization described in 6.2.1 are given in Tab. 6.3.

6.3.2 Simulation Results

Magnetization Curves

In Fig. 6.7 the simulated hysteresis loops are shown. As indicated by the measured
magnetization curves, the easy axis behavior corresponds to an ideal switching process
according to the uniaxial anisotropy.
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Parameter Symbol Sample S
Initial volume fractions of coherent rotation domain cl. v0;12 0.38
Initial volume fractions of incoherent rotation domain cl. v0;34 0.12
Uniaxial anisotropy constant K1 135 J/m3

Coe¢ cient for reversible anhysteretic energy kRevAnh 5.0 J/m3

Dispersion coe¢ cient kDisp 40 J/m3

Coe¢ cient for rev. and irr. dispersion change kRevIrrDisp 58 J/m3

Table 6.3: Identi�ed EM parameters for thin �lm sample S.

Figure 6.7: Simulated easy axis and hard axis magnetization curves of sample S.

Details for the Hard Axis Magnetization Curve

The volume fractions for the upper branch of the hard axis magnetization curve are depicted
in Fig. 6.8. In Fig. 6.9 the mean angle �'3 and the interval of ��3 of domain class D3
that represents the magnetization dispersion is shown for the upper branch of the hard axis
magnetization curve.

Discussion

Starting from positive saturation, the volume fractions v3 and v4 for the incoherent rotating
domain classes increase until the anisotropy �eld is reached. This can be interpreted as
increase in magnetization dispersion and the formation of a ripple structure. When the
applied �eld is further decreased to zero, the fraction of coherent rotating domain classes
increases, so that at zero �eld the initial volume fractions v0;12 and v0;34 are approached.
When the average magnetization rotates back to easy anisotropy axis, the wall angles
increase and make the ripple structure energetically unfavorable. The remaining volume
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Figure 6.8: Volume fractions for the upper branch of the hard axis magnetization curve of
sample S.

Figure 6.9: Angle �'3 and standard deviation �'3 � �3 (dotted line) for the upper branch of
the hard axis magnetization curve of sample S.
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fractions for D3 and D43 account for wall structures and the statistical distribution of easy
anisotropy axis within the grains. In principle, the magnetization process from zero �eld
to negative saturation is just vice versa to the described mechanisms. But quantitative the
ripple structure at the anisotropy �eld is much more developed, when coming from zero �eld.
From the plot of the angular dispersion �'3� �3 of domain class D3 it can be seen that the
standard deviation �3 is about 30�. For the circular normal distribution about 68% of the
magnetic entities are aligned in the interval [�'3 � �3; �'3 + �3]. This angular dispersion is
maximal at the anisotropy �eld and decreases in the high �eld regime, because the applied
�eld energy enforces the alignment of the remaining magnetic moments that may be pinned
around inhomogeneities in the �lm. However, their contribution to the total magnetization
is negligible for �elds beyond 500 A/m.

6.3.3 Measurement and Model Prediction for Small Deviations
from the Hard Axis Direction

In order to study the in�uence of a small misorientation of the applied �eld with respect to
the hard axis of the thin �lm, the magnetization curves for �eld directions of 88� and 84�

related to the easy axis have been measured.

Measurement

The results are depicted in Fig. 6.10.

Figure 6.10: Measured magnetization curves for an applied �eld angle of 88� (a) and 84� (b)
of sample S.
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Figure 6.11: Simulated magnetization curves for an applied �eld angle of 88� (a) and 84� (b)
of sample S (the dotted lines show the ideal rotation according to Stoner-Wohlfahrt theory).

Model Prediction

Without any changes in the parametrization of the EM, the model predicts the magnetization
curves shown in Fig. 6.11. The corresponding predictions of the Stoner-Wohlfarth model
assuming ideal magnetization rotation are included as dotted lines.

Discussion

Basically, there is a good agreement of the EM predictions and the measurement results
within the measuring tolerances.
Particularly, it can be seen that small deviations (of some degrees) of the �eld axis from the
hard axis cause a widening of the hysteresis loop below the anisotropy �eld. This widening is
entirely dedicated to the coherent rotation and to misorientation of the applied �eld. Thus,
it must not be interpreted as hard axis coercivity, which is characteristic for irreversible
losses.
The in�uence of the magnetic ripple structure decreases, the lower the �eld component
in hard axis direction. So for decreasing 'H the magnetization curve approaches the ideal
rotation according to Stoner-Wohlfarth theory.
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6.4 Relation to Parameters of the Sputter Process

On the basis of two di¤erent thin �lm samples, it is investigated how the identi�ed
model parameters can be correlated to the microstructure resulting from the technological
parameters of the production process.

6.4.1 Identi�cation of the Model Parameters

For the following analysis, two Permalloy thin �lm samples of 50 nm thickness are considered.
The production and measurement of these samples has been done by M. Janiba [45]. As
shown in Tab. 6.4, the samples numbered as 219 and 246 di¤er in the target-substrate
distance, the �eld current, and the target voltage.

Parameter Symbol Sample 219 Sample 246
Target-substrate distance dTS 40 mm 42 mm
Anode current IA 3.5 A 3.5 A
Thermionic cathode current IC 43 A 43 A
Field current (deposition / cooling) IF 4 A / 4 A 4 A / 2 A
Argon pressure pAr 10 Pa 10 Pa
Substrate temperature TS 300 �C 300 �C
Substrate voltage US -60 V -60 V
Target voltage UT -900 V -600 V

Table 6.4: Technological parameters of the sputter process for two di¤erent thin �lm samples.

For the magnetization curves measured by Janiba, the non-linearity of the optical detector
unit (ampli�er) is not considered. The measured easy axis and hard axis magnetization
curves including the non-linearity correction are shown in Fig. 6.12.

Parameter Symbol Sample 219 Sample 246
Initial volume fractions of coh. rot. dom. cl. v0;12 0.49 0.40
Initial volume fractions of incoh. rot. dom. cl. v0;34 0.01 0.10
Uniaxial anisotropy constant K1 135 J/m3 112 J/m3

Coe¢ cient for reversible anhysteretic energy kRevAnh 3.0 J/m3 3.0 J/m3

Dispersion coe¢ cient kDisp 25 J/m3 25 J/m3

Coe¢ cient for rev. and irr. dispersion change kRevIrrDisp 18 J/m3 12 J/m3

Table 6.5: Identi�ed EM parameters for thin �lm samples 219 and 246.

Basically, the EM parameter di¤er only in the anisotropy constant and the initial volume
fractions for the di¤erent kind of domain classes.
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Figure 6.12: Measured easy axis and hard axis magnetization curves of sample 219 (a) and
sample 246 (b).

6.4.2 Simulation Results

Magnetization Curves

In Fig. 6.13 the simulated hysteresis loops are shown. As indicated by the measured
magnetization curves, the easy axis behavior corresponds to an ideal switching process
according to the uniaxial anisotropy.

Details for the Hard Axis Magnetization Curve

The volume fractions for the upper branch of the hard axis magnetization curve are depicted
in Fig. 6.14. In Fig. 6.15 the mean angle �'3 and the interval of ��3 of domain class D3
that represents the magnetization dispersion is shown for the upper branch of the hard axis
magnetization curve.

6.4.3 Discussion

Since the simulation results are comparable to the one presented in section 6.3, the following
discussion is focused on the relation between technological process parameters, identi�ed
model parameters, and the consequences on the AMR characteristics.

Change in the Field Current

As a general rule, the induced (average) anisotropy represented by K1 is strongly correlated
to the magnetic �eld during deposition and cooling. So the reduced �eld current IF in the
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Figure 6.13: Simulated easy axis and hard axis magnetization curves of sample 219 (a) and
sample 246 (b).

Figure 6.14: Volume fractions for the upper branch of the hard axis magnetization curve of
sample 219 (a) and 246 (b).



142 6 Model Evaluation on Permalloy Thin Films

Figure 6.15: Angle �'3 and standard deviation �'3 � �3 (dotted line) for the upper branch of
the hard axis magnetization curve of sample 219 (a) and 246 (b).

cooling phase of sample 246 leads to a smaller anisotropy �eld HAniso

Sample 219: IF,Cooling = 4 A ) HAniso = 270 A K1 = 135 J/m
3

Sample 246: IF,Cooling = 2 A ) HAniso = 224 A K1 = 112 J/m
3 :

For AMR sensor applications, a small anisotropy �eld is desirable, because it increases the
sensitivity of the sensor.

Change in the Target-Substrate Distance

The distance from target to substrate dTS is the way that the Permalloy particles have to
pass through the Ar plasma. Together with the Ar pressure this distance determines the
probability of collision between the Permalloy particles and the Ar ions and therefore the
energy with which the target atoms arrive at the substrate. For small dTS the kinetic energy
of the arriving atoms can be too high, so that layers which have already been sputtered
become destructed. For large dTS the energy and thus the mobility of the arriving atoms
can be so small, that impurities or irregularities in the layer stacking may result.
For sample 246, the increase in the target-substrate distance together with the reduced
magnetic �eld in the cooling phase may reason the formation of a magnetic ripple structure,
because of the reduced mobility of the arriving atoms and the lower aligning force due to
the lower �eld.

Sample 219: IF,Cooling = 4 A dTS = 40 mm ) v0;34 = 0.01

Sample 246: IF,Cooling = 2 A dTS = 42 mm ) v0;34 = 0.10 :
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Change in the Target Voltage

The DC target voltage UT is related to the kinetic energy of the Ar-ions shooting particles
out of the target material. Generally, a lower absolute value of the target voltage decreases
the size of the Permalloy particles and increases homogeneity.
This homogeneity is re�ected in a nearly non-hysteretic behavior of the magnetization
curve and is incorporated in the model by a lower value of the dispersion change coe¢ cient
kRevIrrDisp.

Sample 219: UT = -900 V ) kRevIrrDisp = 18

Sample 246: UT = -600 V ) kRevIrrDisp = 12 :

Resistivity and AMR Coe¢ cient

In Tab. 6.6 the measured values [45] for the electrical resistivity and the AMR coe¢ cient for
the investigated samples are shown.

Parameter Symbol Sample 219 Sample 246
Resistivity � 48�10�9 
m 112�10�9 
m
AMR coe¢ cient ��=� 3.72 % 2.96 %

Table 6.6: Electrical resistivity and AMR coe¢ cient for thin �lm samples 219 and 246.

Besides many other factors, the electrical resistance depends on the grain size of the thin
�lm and on the density of non-resistive (gas) inclusions. The lower target voltage of sample
246 may cause a decreasing grain size, therefore an increasing number of grain boundaries,
and so result in a higher resistivity.
Basically, the magnetization dispersion lowers the change in resistance depending on the
magnetic �eld and reduces the AMR coe¢ cient. The increase in magnetization dispersion is
re�ected in the EM by higher initial volume fractions v0;34 of the incoherent rotating domain
classes.

Sample 219 : v0;34 = 0.01 , ��=� = 3.72 %

Sample 246 : v0;34 = 0.10 , ��=� = 2.96 % :
More details about the in�uence of anisotropy dispersion on the AMR e¤ect are summarized
in [80].

6.5 Temperature Dependence of Spontaneous Magne-
tization

So far, the variance of the angular distribution of magnetic entities within a statistical domain
class has been used to model magnetization dispersion in thin Permalloy �lms. Within this
section the variance and the corresponding entropy represent the thermal excitations of the
magnetic dipole moments. So it is possible to describe the temperature dependence of the
spontaneous magnetization by the generalized EM as published in [32].
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6.5.1 Model Setup

When analyzing the thermal excitations of the magnetic dipole moments, these atomic
magnetic dipoles are treated as magnetic entities. The number of magnetic entities per
volume � can be estimated from the atomic magnetic moment mJ;z and the saturation
magnetization (at 0 K) Ms,0 as (see Tab. 6.2)

� =
Ms,0

mJ;z
=

8:28 � 105 A/m
1:02 9:27 � 10�24 Am2 = 8:76 � 10

28 1/m3 : (6.18)

Combined with the thermal energy at the Curie temperature

kBTC = 1:38 � 10�23 J/K 843 K = 1:16 � 10�20 J (6.19)

the corresponding energy coe¢ cient

� kBTC = 1:02 � 109 J/m3 (6.20)

is far beyond the applied �eld energy, the anisotropy energy, and the stray �eld energy.
So it is su¢ cient to restrict the investigation to only one representative domain class Di
and consider only the thermal excitations energy contribution wT;i and the exchange energy
wEx;i within this domain class. Minimizing these energy terms

�2i (T ) : min
�2i

�
wT;i(�

2
i ; T ) + wEx;i(�

2
i )
	

(6.21)

with

(5.49): wT;i(�
2
i ; T ) = �� T kB

�
ln (2�)� 1

2
ln
�
exp (2) + 2�

exp(1)
1
�2i

�
exp (��2i )

�
(5.54): wEx;i(�

2
i ) = ���NN JEx exp(��2i (1� �i))

gives the variance �2i of the magnetic dipole orientation and further the reduced magnetiza-
tion (Tab. 5.1)

mi(T ) = j~mi(T )j =exp
�
��

2
i (T )

2

�
: (6.22)

For bulk material, the coe¢ cient �NN,Bulk proportional to the number of neighbors is
determined by the Curie temperature TC as

�NN,Bulk =
kBTC
1:02 JEx

=
1:16 � 10�20 J

1:02 1:60 � 10�19 J = 0:07 : (6.23)

The individual magnetic moment are only correlated by the exchange energy, so no further
intrinsic correlations are assumed �i = 0.
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6.5.2 Comparison with Classical Mean Field Models

When thermal excitations are treated by classical thermodynamics, like in the Weiss
molecular �eld model, the reduced spontaneous magnetization is described by the Brillouin
function BJ(x) [62]

m = BJ(
3J

J+ 1
m
TC
T
) : (6.24)

If only two states of the magnetic moment (e.g. spin-up and spin-down) are allowed, the
quantum number for the total angular momentum J = 1=2 and

m = B1=2(m
TC
T
) : (6.25)

In the classical limit, where all orientations of the magnetic moments are allowed (J!1),
the Brillouin function degenerates to the Langevin function

m = B1(m
TC
T
) : (6.26)

Since the magnetic moment has more degree of freedom in the classical point of view, where
all orientations are allowed, the spontaneous magnetization is always below the two-state
case.

Model Prediction

Based on the described setup of the generalized EM, the reduced magnetization mi(T ) is
calculated in dependence of the temperature. The simulation results together with the
classical Langevin function and the Brillouin function (for J=1/2) are shown in Fig. 6.16.

Discussion

The generalized EM prediction is between the two-state Brillouin function and the continuos
Langevin function, except for temperatures near the Curie point. Basically, the reason for
this behavior is that the magnetic dipoles are restricted to the 2D directions, whereas in
the classical point of view all directions in the 3D space are possible. But, compared to the
two-state (spin-up and spin-down) solution the degree of freedom is higher.
In principle, the Weiss model is based on the classical Boltzmann distribution, which has
a higher probability in the tails compared to the wrapped normal distribution used in the
EM as shown in Fig. 5.6. This di¤erence can reason the di¤erence near the Curie point.
So, the EM does not predict a second order phase transition from the ordered ferromagnetic
to the paramagnetic state. In practice, thermal �uctuations in the critical region can distort
the energy bands by a modi�cation in the density of states and therefore smear out a sharp
phase transition. Furthermore, in thin �lms interactions at the surface or in the volume can
in�uence the magnetic order in the critical region, too.
If the magnetic entities in the generalized EM be discrete distributed such that p is the
probability to �nd the magnetic entity aligned in a certain direction and (1 � p) is the
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Figure 6.16: Temperature dependence of the spontaneous magnetization predicted by
di¤erent models.

probability to �nd it in antiparallel orientation, the EM prediction would be exactly re�ect
the B1=2 temperature dependence of the spontaneous magnetization.
As stated above, no intrinsic correlations between the magnetic dipoles are considered
(�i = 0). Thus, the assumption of statistically independent magnetic entities is comparable
to single particle excitations, as assumed in the Weiss model. For future research, it can be
investigated how the incorporation of intrinsic correlations in the EM can lead to collective
excitations as described by the Heisenberg model, for example.

6.5.3 Ultrathin Permalloy Films

In the generalized EM the parameter �NN is assumed to be proportional to the number
of neighboring magnetic dipoles that are relevant for exchange interactions. Based on
the measurement results published by Mauri [60], it can be studied how this parameter
�NN changes when �lm thickness is in the range of several monolayers. In his work,
Mauri published the temperature dependence of the spontaneous magnetic polarization
for polycrystalline monolayers of Permalloy on Ta, where the �lm thickness is about 2.6 and
1.6 monolayers.

Model Prediction

Here, the model parameter �NN is chosen such that the simulated temperature curve meets
the measurement results

2.6 monolayer �lm: �NN=�NN,Bulk = 0:585

1.6 monolayer �lm: �NN=�NN,Bulk = 0:405 ;
as shown in Fig. 6.17.
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Figure 6.17: EM prediction of the temperature dependence of the spontaneous magnetization
for bulk material and ultrathin �lms compared to measurement data from [60].

Discussion

Generally, it becomes clear that the number of neighbors decreases with the �lm thickness,
particularly in the ultrathin �lm region. As a rough estimation, it can be assumed that
number of neighbors in the surface layers is half of the value inside the �lm. Then, the
coe¢ cient �NN is

�NN =
1

nLayer

0BB@(nLayer � 2)�NN,Bulk| {z }
inner layer

+ 2
�NN,Bulk
2| {z }

surface layer

1CCA = �NN,Bulk

�
1� 1

nLayer

�
; (6.27)

where nLayer is the number of atomic monolayers of the �lm. The comparison of the values for
�NN=�NN,Bulk between the identi�cation frommeasurement data and the simpli�ed estimation
by (6.27) is provided in Tab. 6.7, which approves the trend qualitatively.

�NN=�NN,Bulk Measurement Estimation
2.6 monolayer �lm 0.585 0.615
1.6 monolayer �lm 0.405 0.375

Table 6.7: Nearest neighbor coe¢ cient for ultrathin Permalloy �lms.

Particularly, when the �lm thickness is in the range of some monolayers, there interactions
between the thin �lm layers and the substrate become important. Together with other
mechanisms that in�uence the magnetic behavior in such ultrathin �lms signi�cantly, a
treatment within a macroscopic model is restricted to some basic considerations. Hence,
the EM predictions of the temperature dependence of the spontaneous magnetization is
su¢ ciently accurate for the problems that this type of model is able to cover.
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6.6 Summary

In this chapter the generalized energetic model is used for the simulation and prediction of
magnetization curves in Permalloy thin �lms. In the polycrystalline �lms local anisotropy
variations of the individual grains cause a magnetic ripple structure, which in�uences the
hard-axis magnetization curve. In the stochastic 2D approach of the EM, such an anisotropy
dispersion can be considered via additional domain classes in a self-consistent way. The
identi�cation of the phenomenological EM parameters is done by easy axis and hard axis
magnetization curves measured with a magneto-optical Kerr system.
For the �rst investigations, the parametrized EM is used to predict the magnetization
curves when the applied �eld is orientated a few degrees di¤erent from the hard axis. It can
be seen that the magnetization curve is widening up for �elds below the anisotropy �eld. But
this phenomenon must not be interpreted as coercive �eld due to irreversible losses, because
it results entirely from the coherent magnetization rotation, if the �eld is not exactly applied
in the hard axis direction. However, the EM predictions are con�rmed by corresponding
measurement data.
Second, two �lms di¤ering in the technological parameters of the sputter process are used
to identify the EM. It can be shown that the EM parameters can be qualitatively related
to the sputter process parameters and the resulting AMR characteristics. The undesired
anisotropy dispersion, which reduces the AMR coe¢ cient can be quanti�ed by the initial
volume fractions of the corresponding domain classes. Even if no elaborate analyses of
the magnetic and crystalline microstructure have been presented, the inference from the
magnetization curves on this local anisotropy dispersion is justi�ed. The physical reasoning of
the in�uence of the technological parameters and the resulting AMR characteristics con�rm
the modeled behavior.
Finally, the variance of the orientation of the magnetic entities in a domain class can be
also related to thermal excitations of magnetic dipole moments. Under this assumption, the
temperature dependence of the spontaneous magnetization can be predicted from the �rst
principles within the generalized EM. Due to the two-dimensional geometry, the resulting
magnetization is between the classical Langevin function, where all orientations of the
magnetic moments are allowed and the two-state (spin-up and spin-down) Brillouin function.
The EM model predictions are compared to measurement data of ultrathin Permalloy �lms
from literature. The in�uence of the EM coe¢ cient that represents the number of nearest
neighbors in the exchange energy term is in good accordance with the measured behavior in
the �lms of several monolayer thickness.



Chapter 7

Conclusion and Outlook

7.1 Conclusion

7.1.1 Limits of the Classical Energetic Model

In principle, the classical Energetic Model of ferromagnetic hysteresis developed by
H. Hauser is a well-proven tool for the description of the magnetization process based on
small set of parameters. It can explain a variety of magnetic phenomena by a manageable
set of analytical model equations that ensure short calculation time. Even though this
classical EM can be applied for material with cubic crystal structure, the component of
magnetization parallel to the applied magnetic �eld is estimated by a scalar model setup
with di¤erent parameters depending on the �eld direction. The model predictions are in
conformity with the measured magnetization curves as long as domain wall motion dominates
the magnetization process. But if magnetization rotation and switching processes become
important, the classical EM is not able to describe this phenomena satisfactorily.
For this reason it became necessary to extend the classical EM to a fully two-dimensional
formulation. Additionally, the orientation of the elemetary magnetic dipoles in a statistical
domain class are allowed to disperse with respect to an average direction, according to a
circular statistical distribution function. Further, the formulation of all energy contributions
is adapted such that more than two statistical domain classes can be handled. Based on
the idea of the classical EM, the two-dimensional formulation, the statistical distribution of
the magnetic moments�orientations within a domain class, and adaption for more than two
domain classes lead to the generalized Energetic Model, which is described within this thesis.

7.1.2 Development of the Generalized Energetic Model

The generalized EM presented in this work is the result of several scienti�c studies that are
published in scienti�c journals and presented on international conferences.
In 2004 [33], an EM based on four domain classes has been applied to describe the hard axis
magnetization curves of Permalloy thin �lms with non-negligible coercivity due to irreversible
losses. This setup allowed to distinguish between domain wall motion and magnetization
rotation as the basic mechanisms of the magnetization process and to quantify the proportion
of these contributions.

149
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In 2005 [30], the statistical distribution of the magnetic moments in a domain class has
been introduced. Here, the reversible anhysteretic energy was related to the di¤erential
entropy of a Dirichlet distribution. But this approach allows to estimate only a limited
range of magnetization curves, so it is no longer present in the generalized EM described in
this thesis.
In 2008 [32], the entropy of the distribution of the magnetic moments has been related
to thermal excitations. Together with an expression for the exchange energy it is possible
to calculate the temperature dependence of the spontaneous magnetization directly within
the generalized EM. The model predictions are con�rmed by measurement of ultrathin �lms
from literature. Besides, the elementary magnetic entities have been introduced at that time.
In 2010 [31], the variance of the statistical distribution of the magnetic entities has been
used as a measure for inhomogeneities within Permalloy thin �lms. It has been shown, how
the EM parameters can be related to the technological parameters of the thin �lm production
process.

7.1.3 Current State of the Generalized Energetic Model

Within this thesis, the current state of the generalized EM is presented. In addition to prior
publications, the phenomenological energy contributions such as the reversible anhysteretic
energy, the reversible and irreversible work due to domain wall motion, and the internal
entropy representing magnetization dispersion are revised in order to get a consistent model
formulation.
Hence, the generalized EM can be used to describe the two-dimensional magnetization
process, including domain wall motion, magnetization rotation, and irreversible switching.
In order to demonstrate these characteristics of the EM, the model is evaluated on Permalloy
thin �lms with dominant coherent magnetization rotation as it is desired for the use in
AMR sensor applications. Basically, the predictions of the model are in good agreement
with practical magnetization curves obtained from a magneto-optical Kerr measurement
setup. Further, the EM parameters can be used to quantify microstructural properties
such as anisotropy dispersion and relate the measured magnetization curve to technological
parameters of the production process. All together, the generalized EM is a useful tool
for predicting and analyzing of magnetization curves of thin �lm materials with in-plane
magnetization.

7.1.4 Limits of the Generalized Energetic Model

Due to the fact, that the energy surface depending on the volume fractions of the domain
classes is complex in nature and consists of many local minima, the calculation process is
intricate and time consuming with an increasing number of domain classes. So, if fast model
predictions are needed as in �nite element simulations for example, other models that are
based on analytical formulas must be preferred.
In principle, the generalized EM is �exible in its structure regarding the setup of domain
classes with di¤erent properties and the extension with further energy terms. But for a
proper setup of the EM, some a-priori information about the magnetization process to be
modeled is needed.



7.2 Outlook 151

7.2 Outlook

7.2.1 Comprehensive Evaluation of the Model Characteristics

Although the formulation of the generalized Energetic Model is derived in a consistent
way, there are still some open issues. So some general properties of the EM need to be
analyzed, such as the characteristics of minor loops, the in�uence of external stress, or the
predictability of dynamic magnetization curves. In addition, a comparison between the
generalized formulation and the scalar setup of the energetic model has to be performed.
As far as practicable, the identi�cation of the model parameters and their in�uence on the
resulting magnetization curves should be described, in general.
Particularly for Permalloy thin �lms, an extensive evaluation of the magnetization curves
for a variety of samples combined with detailed microstructural analysis and magnetic
domain imaging would be helpful to get a better understanding of the relation between
the intrinsic factors governing the magnetization process.

7.2.2 Improvements in Model Formulation and Calculation

Further, there may exist other formulations for the reversible anhysteretic energy that allow
to reproduce and predict a greater variety of hysteresis phenomena. This is one of the major
topics for future investigations.
In order to reduce the calculation time, a solver with an optimization algorithm of higher
performance would be helpful. Thus, the search for a proper solver or the improvement of
the proprietary developed algorithm that is used for the simulations presented within this
thesis is a matter for future work.

7.2.3 Further Applications

In principle, the generalized EM can also be applied to other than Permalloy thin �lm
materials, if the magnetization process can be described in a two-dimensional framework.
So, magnetic steel sheets, magnetic tapes, or nanocrystalline �lms would be promising
candidates for future investigations. Especially the transition from the magnetic ordered
state to superparamagnetism for nano-particulated media would be of scienti�c interest.
Furthermore, the magnetic behavior of multilayer thin �lms, where the interaction between
the di¤erent layers governs the magnetization process is a challenging issue for future studies.

Concluding, it can be stated that the work presented within this thesis provides a generic
basis for two-dimensional Energetic Modeling. Although the generalized EM is successfully
applied to predict and interpret the magnetization curves in Permalloy thin �lms with
dominant magnetization rotation, there is still a wide �eld of magnetic phenomena that
can be described with this model approach, even if the need for modi�cations becomes
evident. But it is precisely this general model setup based on statistical domain classes and
the distinction of local, reversible and irreversible energy contributions, which allows the
EM a prediction of rather complex microscopic behavior with a small set of physical and
phenomenological parameters.
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Appendix A

Detailed Derivations to the
Generalized Energetic Model

This appendix contains some formal derivations for the "Generalized Two-Dimensional
Energetic Model" (EM) presented in chapter 5.
As a technical appendix, the focus is set on a mathematical point of view, rather on
modeling issues, which are described in the main part of this work.

A.1 Expectation Value of Wrapped Circular Distribu-
tions

For a system with statistically distributed orientations related to a speci�ed axis, the
stochastic (continuous) random variable1 �i is represented by a circular probability density
function �i � fi('), where the angle ' is bounded to the interval (��; �]. The circular
probability density function has to ful�ll the standardization condition

�Z
��

fi(') d' = 1 . (A.1)

Circular distributions can be obtained by wrapping a linear distribution f�i (�) de�ned
on the real line � 2 (�1;1] around the unit circle. The probability density function of
the so called wrapped distribution is gained by summarizing the density values of the linear
distribution over all equivalent directions � = '� 2�k with k = 0; 1; 2; ::: as

fi(') =
X
k2Z

f�i (� = '+ 2�k) . (A.2)

For more detailed information on circular statistics, the textbook [44] can be used as
reference, for example.

1In general, a stochastic random variable X represents the results of a random experiment, which are not
a deterministic numbers, but a set of possible values within a de�ned sample space. Each random variable
has an associated probability measure (e.g. probability density function) that characterizes the stochastic
system. Based on this probability measure, statistical operators, such as expectation Value E[X], variance
Var[X], or probability P[X < x] can be applied, for example.
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A.1.1 Expectation Value for 2�-Periodic Functions

For a 2�-periodic function

g(') = g('+ 2�k) k 2 Z (A.3)

the expectation value can be calculated as

E [g(�i)] =
�Z

��

g(') fi(') d'

=

�Z
��

g(')
X
k2Z

f�i ('+ 2�k) d'

=
X
k2Z

�Z
��

g('+ 2�k) f�i ('+ 2�k) d'

=
X
k2Z

2�k+�Z
2�k��

g(�) f�i (�) d�

=

1Z
�1

g(�) f�i (�) d� . (A.4)

Thus, the expectation value of a 2�-periodic function can either be calculated based on the
wrapped circular distribution fi(') or equivalently on the corresponding linear distribution
f�i (�).

A.1.2 Analytical Results for the Wrapped Normal Distribution

The wrapped normal distribution WN(�'i; �
2
i ) is based on the linear normal distribution

N(�'i; �
2
i ) with the probability density function

f�i (�) =
1p
2��i

exp

 
�1
2

(�� �'i)
2

�2i

!
(A.5)

that is described by two parameters, the mean direction �'i and the variance �
2
i .

In the following paragraphs, the expectation value for typical 2�-periodic functions is
calculated on the basis of this wrapped normal distribution WN(�'i; �

2
i ).
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Sine and Cosine

For g(') = cos(a'+ b) (a 2 Z to ensure 2�-periodicity, b 2 R) the expectation value based
on a wrapped normal distribution (A.5) is derived by employing (A.4)

E [cos(a�i + b)] =
1Z

�1

cos(a�+ b)
1p
2��i

exp

 
�1
2

(�� �'i)
2

�2i

!
d�

=
1p
2�

1Z
�1

cos(a(z�i + �'i) + b) exp

�
�1
2
z2
�
dz
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1p
2�

1

2

0@ 1Z
�1
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z2

2
) dz +

+

1Z
�1

exp(�j(a�iz + a�'i + b)�
z2

2
) dz

1A
=
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1
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�1

exp(ja�iz �
z2

2
) dz +

+ exp(�j(a�'i + b))
1Z
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2
) dz
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1
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2�2i
2
)

�
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2
)
1

2
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= exp(�a
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2
) cos(a�'i + b) (A.6)

Thereby, the integral is calculated as
1Z

�1

exp(�ja�iz �
z2

2
) dz = exp(�a

2�2i
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�1
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Because of g(') = sin(a'+ b) = cos(a'+ b� �=2)

E [sin(a�i + b)] = exp(�
a2�2i
2
) sin(a�'i + b) (A.8)

follows immediately.

Sine and Cosine Squared

Using the trigonometric relation g(') = sin2(a'+b) = 1=2(1�cos(2(a'+b))) and the result
from (A.6) yields

E
�
sin2(a�i + b)

�
=

1

2
(1� E [cos(2a�i + 2b)])

=
1

2

 
1� exp(�(2a)

2 �2i
2

) cos(2a�'i + 2b)

!
=

1

2

�
1� exp(�2a2�2i )

�
1� 2 sin2(a�'i + b)

��
=

1� exp(�2a2�2i )
2

+ exp(�2a2�2i ) sin2(a�'i + b) , (A.9)

and for g(') = cos2(a'+ b) = 1� sin2(a'+ b) we get

E
�
cos2(a�i + b)

�
= 1� E

�
sin2(a�i + b)

�
=

1� exp(�2a2�2i )
2

+ exp(�2a2�2i ) cos2(a�'i + b) . (A.10)

A.1.3 Application to Domain Class Magnetization

The x-component of the reduced magnetization vector ~mi = ~Mi=Ms of domain class Di can
be calculated for the wrapped normal distribution by using (A.6) with a = 1 and b = 0 as

mi;x =

�Z
��

cos (') fi(')d'

= E [cos(�i)]

= exp(��
2
i

2
) cos(�'i) . (A.11)

Similarly, the y-component results according to (A.8) as

mi;y =

�Z
��

sin (') fi(')d'

= E [sin(�i)]

= exp(��
2
i

2
) sin(�'i) . (A.12)
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A.1.4 Application to Local Energy Contributions

Applied Field Energy

Assuming a wrapped normal distribution and using (A.6) with a = 1 and b = 'H, the applied
�eld energy yields

wH;i = E [��0MsH cos(�i � 'H)]
= ��0MsH E [cos(�i � 'H)]

= ��0MsH exp(��
2
i

2
) cos(�'i � 'H) . (A.13)

Anisotropy Energy

Applying (A.9) to the anisotropy energy, it can be expressed as

wAniso;i = E
�
K1 sin

2(�i � 'Aniso)
�

= K1 E
�
sin2(�i � 'Aniso)

�
= K1

�
1� exp(�2�2i )

2
+ exp(�2�2i ) sin2(�'i � 'Aniso)

�
. (A.14)

A.2 Expectation Value of Bivariate Wrapped Circular
Distributions

Basically, it is assumed that two random variables �i1 and�i2 are represented by the bivariate
circular probability density function (�i1;�i2) � fi('1; '2), ful�lling the standardization
condition

�Z
��

�Z
��

fi('1; '2) d'2 d'1 = 1 . (A.15)

Similarly to the univariate case, the wrapped circular distribution can be gained by
wrapping of a linear distribution

fi('1; '2) =
X
k2Z

X
l2Z

f�i (�1 = '1 + 2�k; �2 = '2 + 2�l) . (A.16)

A.2.1 Expectation Value for 2�-Periodic Functions

For a 2�-periodic function in two variables '1 and '2

g('1; '2) = g('1 + 2�k; '2 + 2�l) k; l 2 Z (A.17)
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the expectation value can be calculated as

E [g(�i1;�i2)] =
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As for the univariate distribution, the expectation value of a 2�-periodic function can either
be calculated based on the bivariate wrapped circular distribution or equivalently on the
corresponding linear distribution.

A.2.2 Analytical Results for the Wrapped Normal Distribution

The bivariate wrapped normal distribution WN2(�'i1; �'i2; �
2
i1; �

2
i2; �i) is based on the linear

bivariate normal distribution N2(�'i1; �'i2; �
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(A.19)

with mean directions �'i1 and �'i2, the variances �
2
i1and �

2
i2, and the correlation coe¢ cient �i.

Cosine of the Di¤erence

The function g('1; '2) = cos('1 � '2) is 2�-periodic, since
g('1 + 2�k; '2 + 2�l) = cos('1 � '2 + 2�(k � l))

= cos('1 � '2) cos(2�(k � l))� sin('1 � '2) sin(2�(k � l))
= cos('1 � '2) .

So, the expectation value based on a bivariate wrapped normal distribution (A.19) is
derived by employing (A.18)



160 A Detailed Derivations to the Generalized Energetic Model

E [cos(�i1 � �i2)] =
1Z

�1

1Z
�1

cos(�1 � �2) f
�
i (�1; �2) d�2 d�1

=
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sin(�1)
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sin(�2) f
�
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S(�1)

d�1 (A.20)

Next, the following substitution of variables is applied

z1 :=
�1 � �'i1
�i1

and z2 :=
�2 � �'i2
�i2

. (A.21)

Hence, the integrals of (A.20) result as
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and

S(�1) =
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Thereby, the integrals are calculated by using (A.6) and (A.8).
Proceeding with (A.20), the expectation value results as

E [cos(�i1 � �i2)] =
1Z

�1

cos(�1)C(�1) d�1 +
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In case of identical mean values �'i = �'i1 = �'i2 and identical variances �
2
i = �2i1 = �2i2,

(A.24) simpli�es to

E [cos(�i1 � �i2)] = exp
�
��2i (1� �i)

�
. (A.25)

A.3 Reversible Anhysteretic Energy

A.3.1 Fermi Statistics and Stirling�s Approximation

For a large number of indistinguishable particles, Stirling�s approximation

n! � n
n

en
(A.26)

can be applied to Fermi statistics
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1CCA
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. (A.27)

When using volume fractions instead of particles

vi =
nDi
nV

and vmax;i =
aDi
nV

, (A.28)

the number of states is

P (v1; :::; vND) =

 
NDY
i=1

v
vmax;i
max;i

vvii (vmax;i � vi)
vmax;i�vi

!nV
. (A.29)
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A.3.2 Reversible Anhysteretic Energy

Let
wREVANH = �kRevAnh

1

nV
ln(P (v1; :::; vND)) (A.30a)

= �kRevAnh
NDX
i=1

ln

 
v
vmax;i
max;i

vvii (vmax;i � vi)
vmax;i�vi

!
(A.30b)

= �kRevAnh
NDX
i=1

(vmax;i ln(vmax;i)� vi ln(vi)� (vmax;i � vi) ln (vmax;i � vi))

be the (global) part of the reversible anhysteretic energy that phenomenologically describes
the intrinsic order of the domain classes by means of statistics. Then, the derivation with
respect to a certain volume fraction vk is

@wREVANH
@vk

= kRevAnh ((1 + ln(vi))� (1 + ln(vmax;i � vi)))

= kRevAnh ln

�
vi

vmax;i � vi

�
. (A.31)

Minimization

In order to calculate the equilibrium state, the free energy has to be minimized according to

min
v
fwLoc + wd + wRevAnhg s.t.

NDX
i=1

vi = 1 . (A.32)

The optimization problem with constraints can be solved by means of Lagrangian multipliers
�, so the Lagrange function is

L(v1; :::; vND ; �) = wLoc + wd + wRevAnh + �
 
1�

NDX
i=1

vi

!
, (A.33)

and the derivations with respect to vk give the conditions for the optimum

@L(v1; :::; vND ; �)
@vk

=
@wLoc
@vk

+
@wd
@vk

+
@wRevAnh
@vk

+ �
!
= 0 . (A.34)

For the demagnetized state, the speci�ed initial volume fractions v0;i must correspond
to the energy minimum determined by (A.34). Thus, the reversible anhysteretic energy is
de�ned as

wRevAnh = wREVANH +

NDX
i=1

viwRevAnh0;i , (A.35)
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where the local contribution wRevAnh0;i is determined from the demagnetized state. Using
condition (A.34) for the energy minimum in the demagnetized state

@wLoc
@vk

+
@wd
@vk

+
@wRevAnh
@vk

+ �
!
= 0

wLoc0;k +
@wd
@vk

����
v0;k

+
@wREVANH
@vk

����
v0;k

+ wRevAnh0;k + �
!
= 0 , (A.36)

the local part of the reversible anhysteretic energy results as

wRevAnh0;k = �kRevAnh ln
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�
� wLoc0;k � �

= kRevAnh ln

�
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v0;k

�
� wLoc0;k � � . (A.37)

Since the local energy contributions wLoc0;k should not a¤ect the value of the reversible
anhysteretic energy in the demagnetized state

wRevAnh0;k = kRevAnh ln

�
vmax;k � v0;k

v0;k

�
� (wLoc0;k � wLoc0) , (A.38)

so that
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. (A.39)

As a remark, the derivation of the demagnetizing energy wd in the demagnetized state is
zero, because of
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2
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and the fact that for the demagnetized state the sample magnetization ~m = ~0, and hence
the orthogonal projections mx = 0 and my = 0, yielding

@wd
@vk

����
v0;k

= 0 . (A.41)
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A.4 Volume Change due to Domain Wall Motion

In the following section it is demonstrated how to estimate the transition matrix f�vijg
from given volume changes (�vi), based on

�vi = vi(t+�t)� vi(t) = �
NDX
j=1

�vij (A.42a)

�vj = vj(t+�t)� vj(t) =
NDX
i=1

�vij . (A.42b)

As a general rule, it is assumed that the resulting domain wall motion is minimal for a
given change in volume. Hence, it is stated that there is no signi�cant domain wall motion
between two increasing or decreasing domain classes.

For �vi > 0 ^ �vj > 0 ) �vij = 0 (A.43a)

or �vi < 0 ^ �vj < 0 ) �vij = 0 . (A.43b)

Within the subsections below, analytical expressions are derived for the estimation of the
transition matrix in case of 2, 3, and 4 domain classes.

A.4.1 Estimation of the Transition Matrix for 2 Domain Classes

For 2 domain classes, the transition matrix is

from

�
D1
D2

to domain classz }| {
D1 D2�
0 �v12

��v12 0

�
. (A.44)

Here, the volume transition is simply given by

�v12 = ��v1 . (A.45)

A.4.2 Estimation of the Transition Matrix for 3 Domain Classes

In case of 3 domain classes, the transition matrix is

from

8<:
D1
D2
D3

to domain classz }| {
D1 D2 D30@ 0 �v12 �v13
��v12 0 �v23
��v13 ��v23 0

1A . (A.46)
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Case 1: Only One Increasing Domain Class

If only one domain class has increasing volume fraction, re-indexing according to
Increasing domain class: �va > 0

Decreasing domain classes: 0 � �vy � �vz ,
yields the corresponding transition matrix

Dz
Dy
Da

Dz Dy Da0@ 0 0 �vza
0 0 �vya

��vza ��vya 0

1A , (A.47)

when (A.43) is considered. Hence, the volume transitions are

�vya = ��vy (A.48a)

�vza = ��vz . (A.48b)

Case 2: Only One Decreasing Domain Class

Similar to case 1, a re-indexing is done with respect to the decreasing domain class
Increasing domain classes: �va � �vb � 0
Decreasing domain class: 0 > �vz ,

that yields the corresponding transition matrix

Dz
Db
Da

Dz Db Da0@ 0 �vzb �vza
��vzb 0 0
��vza 0 0

1A , (A.49)

when (A.43) is considered. Hence, the volume transitions are

�vzb = �vb (A.50a)

�vza = �va . (A.50b)

A.4.3 Estimation of the Transition Matrix for 4 Domain Classes

In case of 4 domain classes, the transition matrix is

from

8>><>>:
D1
D2
D3
D4

to domain classz }| {
D1 D2 D3 D40BB@
0 �v12 �v13 �v14

��v12 0 �v23 �v24
��v13 ��v23 0 �v34
��v14 ��v24 ��v34 0

1CCA . (A.51)
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Case 1: Only One Increasing Domain Class

First, the re-indexing is done as follows
Increasing domain class : �va > 0

Decreasing domain classes : 0 � �vx � �vy � �vz ,
and gives the transition matrix

Dz
Dy
Dx
Da

Dz Dy Dx Da0BB@
0 0 0 �vza
0 0 0 �vya
0 0 0 �vxa

��vza ��vya ��vxa 0

1CCA . (A.52)

In this case, it is clear that the transition of volumes is from each of the decreasing domain
classes to the increasing domain class

�vxa = ��vx (A.53a)

�vya = ��vy (A.53b)

�vza = ��vz . (A.53c)

Case 2: Only One Decreasing Domain Class

Re-indexing gives
Increasing domain classes: �va � �vb � �vc � 0
Decreasing domain class: 0 > �vz ,

so that the transition matrix is

Dz
Dc
Db
Da

Dz Dc Db Da0BB@
0 �vzc �vzb �vza

��vzc 0 0 0
��vzb 0 0 0
��vza 0 0 0

1CCA . (A.54)

In this case, it is clear that the transition of volumes is from each of the decreasing domain
class to every of the increasing domain classes

�vzc = �vc (A.55a)

�vzb = �vb (A.55b)

�vza = �va . (A.55c)

Case 3: Two Increasing Domain Classes

The re-indexing is done as follows
Increasing domain classes: �va � �vb � 0
Decreasing domain classes: 0 � �vy � �vz ,
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and gives the transition matrix

Dz
Dy
Db
Da

Dz Dy Db Da0BB@
0 0 �vzb �vza
0 0 �vyb �vya

��vzb ��vyb 0 0
��vza ��vya 0 0

1CCA . (A.56)

Here we have 4 unknown variables, which have to be calculated from 3 independent
variables, leading to 3 independent equations

�vzb +�vza = ��vz (A.57a)

�vyb +�vya = ��vy (A.57b)

��vzb ��vyb = ��vb . (A.57c)

In order to solve the problem, an additional criterion has to be stated

� =

NDX
i=1

NDX
j=1

(�vij)
2 �!MIN . (A.58)

From (A.57) all the volume transitions can be expressed in terms of �vzb

�vza = ��vz ��vzb (A.59a)

�vyb = �vb ��vzb (A.59b)

�vya = ��vy ��vb +�vzb (A.59c)

so that sum of squares is

� = (�vzb)
2 + (�vza)

2 + (�vyb)
2 + (�vya)

2

= (�vzb)
2 + (��vz ��vzb)2 + (��vb +�vzb)2 + (��vy ��vb +�vzb)2

= 4(�vzb)
2 + 2�vzb (��vy +�vz � 2�vb) + (�vz)2 + (�vb)2 + (�vb +�vy)2 .

(A.60)
Now the minimum can be calculated on the unknown variable �vzb by setting the �rst
derivative to zero

d�
d�vzb

= 8�vzb + 2 (��vy +�vz � 2�vb)
!
= 0 , (A.61)

and the transition volumes can be estimated from the volume changes as

�vzb = 1
4
(2�vb +�vy ��vz) (A.62a)

�vza = 1
4
(�2�vb ��vy � 3�vz) (A.62b)

�vyb = 1
4
(2�vb ��vy +�vz) (A.62c)

�vya = 1
4
(�2�vb � 3�vy ��vz) . (A.62d)
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Finally, the constraints that volume transitions are still directed from decreasing to
increasing domain classes, have to be checked

�vzb = 1
4
(2�vb +�vy ��vz) � 0 (A.63)

) �vb|{z}
�0

� 1
2
(��vy +�vz| {z }

�vz��vy

)

�vza = 1
4
(�2�vb ��vy � 3�vz) � 0 (A.64)

) �vb � 1
2
(��vy � 3�vz)

) �vb � �1
2
(�vy +�vz)��vz

) �vb � 1
2
(�va +�vb)��vz

) �vz|{z}
�0

� 1
2
(�va ��vb| {z }

�va��vb

)

�vyb = 1
4
(2�vb ��vy +�vz) � 0 (A.65)

) �vb|{z}
�0

� 1
2
(�vy ��vz| {z }

�vz��vy

)

) Not ful�lled, in general

�vya = 1
4
(�2�vb � 3�vy ��vz) � 0 (A.66)

) �vb � 1
2
(�3�vy ��vz)

) �vb � �1
2
(�vy +�vz)��vy

) �vb � 1
2
(�va +�vb)��vy

) �vy|{z}
�0

� 1
2
(�va ��vb| {z }

�va��vb

)

Because of (A.66), the solution (A.62) is only valid, if

�vb � 1
2
(�vy ��vz) . (A.67)

Otherwise, �vyb = 0 resulting in the boundary solution

�vzb = �vb (A.68a)

�vza = ��vb ��vz (A.68b)

�vyb = 0 (A.68c)

�vya = ��vy . (A.68d)
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A.5 Probability of Reversible Domain Wall Motion

Basically, the probability for a reversible domain wall motion PRev(��) is given by the
function

PRev(��) =

8>><>>:
1 for �� = 0

exp
�
� qp
�J
(j��j � xJ)

�
for 0 < j��j � j��NJj

exp
�
� qp
�NJ
(j��j � xNJ)

�
for j��j > j��NJj

, (A.69)

and typical probability curves are depicted in Fig. A.1.

Figure A.1: Probability curves for reversible domain wall motion.

A.5.1 Properties of the Probability Function

Condition of Continuity

The parameters have to be chosen such that the probability curve is smooth at the point
(��NJ; PNJ), i.e.

PNJ = PRev(��NJ) (A.70a)

= exp

�
� qp
�J
(j��NJj � xJ)

�
= exp

�
� qp
�NJ

(j��NJj � xNJ)
�

(A.70b)

) ��NJ

�
1

�J
� 1

�NJ

�
=
xJ
�J
� xNJ
�NJ

. (A.70c)

A.5.2 Distance of Reversible Movement

If the domain wall has been moving over a certain distance ��, the reversible part of
movement dRev corresponds to the area under the probability curve

dRev(��) =

��Z
0

PRev(x)dx . (A.71)

For further calculations, the following derivations are required:
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� Parameter ��NJ from (A.70b)

��NJ = xJ �
�J
qp
ln(PNJ) (A.72a)

= xNJ �
�NJ
qp
ln(PNJ) (A.72b)

� Area between �� � ��NJ and in�nity

1Z
��

PRev(x)dx =

1Z
��
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�
dx

=
�NJ
qp
exp

�
� qp
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�

=
�NJ
qp
PRev(��) (A.73)

and for the special case �� = ��NJ

1Z
��NJ

PRev(x)dx =
�NJ
qp
PNJ (A.74)

� Area between �� � ��NJ and ��NJ

��NJZ
��

PRev(x)dx =

��NJZ
��

exp

�
� qp
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=
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�
� exp

�
� qp
�J
(j��NJj � xJ)

��
=

�J
qp
(PRev(��)� PNJ) (A.75)

and for �� = 0

��NJZ
0

PRev(x)dx =
�J
qp
(PJ � PNJ) (A.76)
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Maximum Distance of Reversible Movement

The maximum distance of reversible movement corresponds to the total area under the
probability curve

dRev,Max =

1Z
0

PRev(x) dx

=

��NJZ
0

PRev(x)dx+

1Z
��NJ

PRev(x)dx

=
�J
qp
(PJ � PNJ) +

�NJ
qp
PNJ

=
1

qp
(�JPJ � (�J � �NJ)PNJ) . (A.77)

Hence, the total area under both parts of the probability curve is constant

dRev,MAX = d
(�)
Rev,Max + d

(+)
Rev,Max =

2

qp
, (A.78)

independent of the domain wall motion reversal.

A.5.3 Reversal Point of Domain Wall Motion

For all further considerations, it is assumed that the (potential) reversal point of domain
wall motion is reached coming from the positive ��-direction, marked as (+). After the
reversal, the domain wall moves in the negative ��-direction, marked as (�).
Hence, at a (potential) reversal point ��R the corresponding probability PR is

PR = P
(+)
Rev(��R) . (A.79)

Whenever the term "New" is used, it indicates that the corresponding parameters are
related to the updated probability curves after the reversal.

Figure A.2: Update of probability curves at a reversal point of domain wall motion.



A.5 Probability of Reversible Domain Wall Motion 173

Residual Distance of Reversible Movement at the Reversal Point

The maximum distance of reversible movement in the new��-direction, after having reached
the equilibrium point is

d
(�)
Rev,New = d

(�)
Rev,NJ,New + d

(�)
Rev,J,New . (A.80)

NJ-Part:

d
(�)
Rev,NJ =

1Z
0

min
�
PR; P

(�)
Rev(x)

�
dx . (A.81)

If PR � P (�)NJ then

d
(�)
Rev,NJ = ��

(�)
R � PR +

1Z
��

(�)
R

P
(�)
Rev(x)dx

=

 
x
(�)
NJ �

�
(�)
NJ

qp
ln(PR)

!
PR +

�
(�)
NJ

qp
PR

=
1

qp
PR

�
qpx

(�)
NJ + �

(�)
NJ (1� ln(PR))

�
. (A.82)

Otherwise, for PR > P
(�)
NJ

d
(�)
Rev,NJ = ��

(�)
R � PR +

��NJZ
��

(�)
R

P
(�)
Rev(x)dx+

1Z
��NJ

P
(�)
Rev(x)dx

=

 
x
(�)
J �

�
(�)
J

qp
ln(PR)

!
PR +

�
(�)
J

qp
(PR � PNJ) +

�
(�)
NJ

qp
PNJ

=
1

qp
PR

�
qpx

(�)
J + �

(�)
J (1� ln(PR))

�
� 1

qp
PNJ

�
�
(�)
J � �

(�)
NJ

�
. (A.83)

The NJ-part of the reversible distance before the domain wall motion is
d
(+)
R,NJ = ��R � PR (A.84)

=

8<:
1
qp
PR

�
qpx

(+)
NJ � �

(+)
NJ ln(PR)

�
for PR � P (+)NJ

1
qp
PR

�
qpx

(+)
J � �

(+)
J ln(PR)

�
for PR > P

(+)
NJ

. (A.85)

Finally, the total reversible NJ-distance after the domain wall motion reversal is :

� in direction of the domain wall motion after the reversal (�)

d
(�)
Rev,NJ,New = d

(+)
R,NJ + d

(�)
Rev,NJ , (A.86)

� in direction of the domain wall motion before the reversal (+)

d
(+)
Rev,NJ,New = d

(+)
Rev,NJ � d

(+)
R,NJ . (A.87)
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J-Part: The J-part can be calculated as di¤erent between the total area (A.77) and the
NJ-part as

d
(�)
Rev,J = d

(�)
Rev,Max � d

(�)
Rev,NJ

=
1

qp

�
�
(�)
J P

(�)
J � (�(�)J � �

(�)
NJ )P

(�)
NJ

�
� d(�)Rev,NJ , (A.88)

and
d
(+)
Rev,J = d

(+)
Rev,Max � d

(+)
Rev,NJ

=
1

qp

�
�
(+)
J P

(+)
J � (�(+)J � �

(+)
NJ )P

(+)
NJ

�
� d(+)Rev,NJ . (A.89)

Finally, the total reversible J-distance after the domain wall motion reversal is :

� in direction of the domain wall motion after the reversal (�)

d
(�)
Rev,J,New = d

(+)
Rev,J + d

(�)
Rev,J , (A.90)

� in direction of the domain wall motion before the reversal (+)

d
(+)
Rev,J,New = 0 . (A.91)

Update of Parameters at the Reversal Point

Demagnetized State: For the demagnetized state, as starting point of the EM calcula-
tions, it is assumed that all domain walls are in equilibrium position and the probability of
reversal motion is exponentially distributed according to the Poisson process. In this case,
the parameters of the probability curves are

�
(+)
J,New = �

(�)
J,New = 2:0 (A.92a)

x
(+)
J,New = x

(�)
J,New = 0:0 (A.92b)

�
(+)
NJ,New = �

(�)
NJ,New = 1:0 (A.92c)

x
(+)
NJ,New = x

(�)
NJ,New = 0:0 (A.92d)

P
(+)
J,New = P

(�)
J,New = 1 (A.92e)

P
(+)
NJ,New = P

(�)
NJ,New = 1 (A.92f)

��
(+)
NJ,New = ��

(�)
NJ,New = 0 . (A.92g)

Probability Curve in the New Direction of Movement: After the domain wall
motion reversal, the parameters

�
(�)
J,New; x

(�)
J,New; �

(�)
NJ,New; x

(�)
NJ,New

P
(�)
J,New; P

(�)
NJ,New;��

(�)
NJ,New

for the probability function P (�)Rev(:) of reversible movement have to be updated based on

PR; d
(�)
Rev,J,New; d

(�)
Rev,NJ,New .
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First, an incremental movement in the new direction is entirely reversible, so that
P
(�)
J,New = 1 (A.93)

) x
(�)
J,New = 0 (A.94)

and the separation between J-part and NJ-part is given by

P
(�)
NJ,New = PR . (A.95)

From the given reversible J-distance d(�)Rev,J,New with (A.76) and (A.72a)

d
(�)
Rev,J,New =

��
(�)
NJZ

0

P
(�)
Rev(x)dx� P

(�)
NJ,New��

(�)
NJ,New

=
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qp

�
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�
� 1
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qp
(1� PR)�

1

qp
PR

�
qp0� �(�)J,New ln(PR)

�
=

�
(�)
J,New

qp
(1� PR (1� ln(PR))) (A.96)

the parameter �(�)J,New can be estimated as

�
(�)
J,New =

qpd
(�)
Rev,J,New

1� PR (1� ln(PR))
� 2 . (A.97)

From the given reversible NJ-distance d(�)Rev,NJ,New with (A.74) and (A.72a)

d
(�)
Rev,NJ,New = P
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NJ,New��

(�)
NJ,New +

1Z
��

(�)
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P
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+
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qp
PR

=
1

qp
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�
�
(�)
NJ,New � �

(�)
J,New ln(PR)

�
(A.98)

the parameter �(�)NJ,New can be estimated as

�
(�)
NJ,New =

qpd
(�)
Rev,NJ,New

PR
+ �

(�)
J,New ln(PR) . (A.99)
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Using

��
(�)
NJ,New =

1

qp

�
qpx

(�)
J,New � �

(�)
J,New ln(P

(�)
NJ,New)

�
=

1

qp

�
qp0� �(�)J,New ln(PR)

�
=

�
(�)
J,New

qp
ln(PR) (A.100)

together with (A.70c), the parameter x(�)NJ,New results as

x
(�)
NJ,New =

1

qp
ln(PR)

�
�
(�)
NJ,New � �

(�)
J,New

�
. (A.101)

In summary, the formulas for the parameter update are

�
(�)
J,New =

qpd
(�)
Rev,J,New

1� PR (1� ln(PR))
(A.102a)

x
(�)
J,New = 0 (A.102b)

�
(�)
NJ,New =

qpd
(�)
Rev,NJ,New

PR
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(�)
J,New ln(PR) (A.102c)

x
(�)
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1

qp
ln(PR)

�
�
(�)
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(�)
J,New

�
(A.102d)

P
(�)
J,New = 1 (A.102e)

P
(�)
NJ,New = PR (A.102f)

��
(�)
NJ,New =

1

qp
�
(�)
J,New ln(PR) . (A.102g)

Probability Curve in the Current Direction of Movement: If there would be no
domain wall motion reversal, the probability function P (+)Rev(:) of reversible movement is just
shifted, so that the corresponding parameters are given by

�
(+)
J,New = �

(+)
J (A.103a)

x
(+)
J,New = x

(+)
J � j��Rj (A.103b)

�
(+)
NJ,New = �

(+)
NJ (A.103c)

x
(+)
NJ,New = x

(+)
NJ � j��Rj (A.103d)

P
(+)
J,New = PR (A.103e)

P
(+)
NJ,New = minfP (+)NJ ; PRg (A.103f)

��
(+)
NJ,New = maxf0; j��(+)NJ j � j��Rjg . (A.103g)

So in principle, the probabilities do not change, if the domain wall motion reversal is not
performed, and the domain wall moves according to the previous direction. Due to this
e¤ect, the probability curves P (+)Rev(:) and P

(�)
Rev(:) can be updated in every calculation step of

the model, independent if the domain wall motion reversal takes places or not.
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