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Kurzfassung

Zelluläre Automaten werden in verschiedensten wissenschaftlichen Gebieten als Me-
thode der mathematischen Modellbildung und Simulation angewandt. Für gewöhn-
lich stellt ein Zellulärer Automat eine mikroskopische Beschreibung oder Abstrakti-
on eines natürlichen Systems dar. Die Werkzeuge für die Herleitung und Validierung
eines Modellbildungsansatzes mit Zellulären Automaten sind jedoch oft auf einen
konkreten Anwendungsfall ausgelegt. Daher existiert weder ein etablierter mathe-
matischer Formalismus für Zelluläre Automaten als Methode der Modellbildung und
Simulation noch allgemeine Methoden für die Analyse und Validierung.

Diese Arbeit betrachtet Zelluläre Automaten als einen eigenständigen mathe-
matischen Modellierungsansatz und beinhaltet eine rigorose und systematische De-
finition von verschiedenen Ausprägungen von Zellulären Automaten. Das Ziel ist
es, Methoden und Ansätze für eine generelle Diskussion und einen Vergleich dieses
Modellierungsansatzes bereitzustellen. Dabei liegt der Fokus weniger auf der Einfüh-
rung einer Klassifikation von Zellulären Automaten, sondern auf der Bereitstellung
und Vereinfachung von Methoden für Analyse, Validierung und Vergleich. Zusätzlich
erleichtert eine systematische Beschreibung von Zellulären Automaten die Vermitt-
lung des gewählten Modellierungsansatzes und legt den Grundstein für weitere und
detailliertere Untersuchungen.

Die mathematische Beschreibung von Zellulären Automaten in dieser Arbeit ba-
siert auf lokal definierten Aktualisierungsfunktionen, die in iterativer Weise auf einem
Graphen oder regelmäßigen Gitter operieren. Ein Schwerpunkt liegt auf der charak-
teristischen topologischen Struktur, welche Zelluläre Automaten auch von anderen
Konzepten wie Agenten-basierten Ansätzen oder allgemeinen Netzwerk Modellen ab-
grenzt.

Weiters wird unter der Bezeichnung Evolutions-Systeme eine Modifikation des
Konzepts Zelluläre Automaten mit kontinuierlicher Zeit und Raum betrachtet. Dies
liefert schlussendlich eine Verbindung zu stark stetigen Halbgruppen, abstrakten
Cauchy Problemen und partiellen Differentialgleichungen.

Schließlich stellt ein stochastischer Formalismus diesen Modellierungsansatz als
eine spezielle Variante eines Markov Prozesses dar und erlaubt aber gleichzeitig eine
effiziente deterministische Methode für die Analyse und Simulation.
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Abstract

Cellular Automata are being applied as a method for mathematical modelling and
simulation in a variety of scientific areas. Usually a cellular automaton constitutes
a microscopic description or abstraction of a natural system. The tools used for a
mathematical derivation and validation of the cellular automaton modelling approach
are however often optimised for specific natural systems. As a consequence there
exists neither a dedicated mathematical formalism for cellular automata as a method
for modelling and simulation nor general methods for model analysis and validation.

This thesis regards cellular automata as a distinct mathematical ansatz for mod-
elling and contains a rigorous and systematic definition of various types of cellular
automata. The aim is to develop methods and approaches for a general discussion
and comparison of this modelling approach. Thereby the focus is less the introduc-
tion of a classification of cellular automata than the deduction and simplification
of methods for analysis, validation and comparison. Additionally a systematic de-
scription of cellular automata can ease the communicability of the chosen modelling
approach and provides a basis for further and more specific investigations.

The mathematical description of cellular automata in this thesis is based on
locally defined update functions that operate in an iterative manner on graphs re-
spectively regular lattices. A strong focus is put on the characteristic topological
structure, which also delineates cellular automata from other concepts like agent-
based modelling approaches and arbitrary network models.

Furthermore a modification of the concept of cellular automata with continu-
ous time and space is introduced under the paradigm of evolution systems, which
ultimately yields a connection to strongly continuous semigroups, abstract Cauchy
problems and parabolic partial differential equations.

A stochastic formalism of cellular automata finally discloses this modelling ap-
proach as a very specific variant of Markov processes and allows efficient deterministic
methods for analysis and simulation.
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Preface

Sometimes mathematical concepts seem unnecessarily complex due to an extensive
formalism. On the contrary, a mathematical description must be complete and sys-
tematic. In fact there is no mathematical benefit in a simplistic formalism which
only allows an incomplete characterisation of an idea. This contradiction between
complexity and completeness also applies to a mathematical formalisation of cellu-
lar automata. The basic principles of cellular automata are very simple and yet a
mathematical definition of such systems is not.

Besides a purely descriptive point of view there may also exist an application
oriented perspective, which imposes further requirements on the completeness of a
mathematical formalism. If cellular automata shall not just exist but also be used
to model natural systems, there must ultimately exist methods to validate such a
modelling approach.

Fruitful investigation and successful application of a modelling approach also rely
on the communicability of the underlying mathematical formalism. It is especially
advantageous to have a common understanding of conceptions within a group of
researchers. Additionally a written and established mathematical definition also
provides a basis for further scientific investigations and teaching.

Sections 1.3 (Ontology and Classification) and 2.1 (Ordinary Cellular Automata)
were written by myself in 2013 not exclusively for this thesis but within the scope of a
combined attempt of the members of our research group ‘Modelling and Simulation’
under the direction of Felix Breitenecker to find a formal mathematical definition of
ordinary cellular automata. Special thanks at this point for their work, constructive
criticism and the allowance to use the results in my diploma thesis goes especially
to Christoph Urach, Florian Miksch and Patrick Einzinger and in particular to Niki
Popper for promoting the fundamental discussion of modelling approaches in general.

An intensive examination of the structural characteristics of a mathematical con-
cept and cellular automata in particular inevitably exposes connections and rela-
tions to other mathematical concepts. Detailed formulation of such connections and
their derivation can imply additional requirements on the mathematical formulation,
which are not intuitive or obvious in the first point.

Consequently it was necessary to devote a certain effort to the reprocessing of
mathematical theories like graph theory, strongly continuous semigroups, stochastic
processes etc. in the context of cellular automata. Indeed an advanced investigation
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on cellular automata with exclusively one specific mathematical theory in background
would not be as interesting in the first point.

As usual, citations are indicated by quotation marks and a reference to literature.
Longer quoted passages are left- and right-indented and offer a reference to literature
at their end. Dots . . . are used to indicate left out content and [square brackets]
indicate modifications.

Definitions and propositions that were not originally made by myself are marked
in their captions with corresponding references to literature. Definitions etc. that
are used in a similar fashion in literature or are modified versions of statements from
other sources are distinguished by the hint to compare with the respective source
and a bibliographic reference. All other definitions, propositions and theorems were
motivated by myself respectively in the relevant sections with the help of the members
of our research group.

The bibliography is separated into literature that provides the required technical
knowledge and literature that is – sometimes only briefly – referred to as application
example.

This document was produced exclusively with open source software and in par-
ticular with LATEX (including a variety of packages). All figures were created with
LibreOffice and GIMP or generated with GNU Octave.
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Chapter 1

Introduction

This diploma thesis investigates cellular automata mainly in the context of mod-
elling and simulation but also – where necessary – as abstract evolution systems or
stochastic processes.

The first aim is to provide a systematic mathematical approach to cellular au-
tomata, which allows us to use cellular automata as a mathematical technique for
simulation (similar to differential equations or discrete network models etc.). Two
important preconditions for allowing such a deployment are a common understand-
ing of modelling and simulation and a consistent mathematical formalism of cellular
automata.

The second main objective is the application of established mathematical meth-
ods and concepts in the context of cellular automata. This can also happen without
any imminent or relevant outcome but may just serve as a basis for further inves-
tigations. This objective required that this thesis includes short introductions to –
or rather basic definitions from – topics like graph theory (Section 3.2) or stochastic
processes (Section 5.1) etc. at one point or another.

The most basic prerequirements of these principal tasks are treated within this
chapter. Besides a very short introduction to modelling and simulation, this chapter
also includes a survey on the history and present perceptions of cellular automata.
Furthermore the basic concepts of cellular automata are discussed and examined
under the paradigm of modelling and simulation in order to clear the way for a
mathematical definition.

In Chapter 2 a mathematical formalisation of cellular automata as usually found
in literature and a more general and abstract definition are presented. Chapter 3 is
devoted to the characteristic topological structure of cellular automata. Chapter 4
presents continuous evolution systems as a super-class of cellular automata. An
extended conception of cellular automata as stochastic processes is formalised and
investigated in Chapter 5. The thesis is concluded with a summary and an outlook
on further possible investigations.

1



2 1. INTRODUCTION

1.1 Modelling and Simulation

Modelling and simulation is the discipline of applied mathematics, which deals with
the abstraction of natural systems1 and the application of any mathematical method
in order to implement the resulting conceptual model [3] of a natural system in
a mathematical fashion. The combination of an abstraction and a mathematical
description is called modelling approach. The aim of simulating the resulting math-
ematical model is either prediction, that is the ability to predict system behaviour
under simulated conditions, or validation of the abstraction and the modelling ap-
proach.

The applied mathematical methods are not bound to a certain area – like for ex-
ample differential equations – but a modelling approach often incorporates methods
from multiple mathematical areas at the same time. The combination, comparison
and variation of methods and model assumptions in alternation with simulations
and a following comparison with experimental data or measurements of the natural
system allows us to improve the validity of a modelling approach. This process is
sometimes simply called modelling or comparative modelling and simulation if mul-
tiple independent modelling approaches are compared. When a model describes the
temporal evolution (not only a predefined temporal behaviour) of a system we talk
of a dynamic model.

A very important subtlety of this discipline is the necessity of a strict differ-
entiation between the natural system, the conceptual model and the mathematical
implementation of the model. Starting from a given natural system, simplifications
and assumptions are made in order to reduce the complexity of the system. This
process yields an artificial system, which is an abstraction or approximation of the
natural system and sometimes also referred to as a model of the natural system. In
a second iteration this conceptual model is formulated in a mathematical fashion,
which is either exact or allows the approximation of the model. The resulting math-
ematical model then is a mathematical implementation of the natural system and
allows us to perform simulations.

There exists however a strong connection between the abstraction of a natural
system and the mathematical technique to be applied. Of course certain mathemat-
ical approaches are suitable for certain types of problems. Furthermore the decision
for a certain modelling technique is made concurrently to the abstraction of the sys-
tem either due to the expertise of the operator or due to the lack of alternatives.
Consequently the choice of a modelling technique always influences the abstraction
of the system. Hence the result of these two steps in the process of modelling and
simulation is called modelling approach.

Sometimes we have to deal with rather large or complex models and accordingly
mathematical implementations that can not be treated or solved analytically. Often

1The term natural system was used by von Neumann [25]. Often simply system is used to denote
the existing real or natural system which is to be modelled. Also the term formulated problem [3]
can be used.
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the mathematical implementation or formulation of a model either incorporates some
kind of approximation like numerical solutions of equations or yields an iterative pro-
cess per definition. The required solution or approximation procedure on a computer
introduces a further iteration in the process of simulation and also a further decline
in niceness.

The final result of a simulation is always compromised by multiple sources of
errors. Starting from deliberate simplifications at the modelling stage and addi-
tional assumptions in the mathematical description, errors may also be introduced
by an approximation method and numerical errors. Consequently, simulations with
a mathematical model of a natural system can only be conducted after a validation
of the modelling approach and an investigation on possible errors.

As this is not an essay on modelling and simulation, the reader is kindly referred
to [3, 5] or similar literature for an extensive introduction.

1.2 History of Cellular Automata

The concept of cellular automata was formalised around 1950 “under the name of
cellular spaces” [33] and is credited to Stanislaw Ulam and John von Neumann.

At that time Ulam was engaged with problems in pattern formation, biomath-
ematics and chess [31]. He also worked on multiplicative processes, mathematical
physics and especially on a numerical approach for solving nonlinear partial differen-
tial equations [10]. Von Neumann was developing a theory of self-reproduction [26];
alongside he published works on quantum mechanics, detonations, operator theory,
artificial automata and other fields.

If one regards the fact that von Neumann and Ulam were deeply involved in
the development of weapons of mass destruction at the same time, the idea of self-
reproducing machines – on which von Neumann was later working in the context of
artificial automata – gets a grotesque and antiquated apocalyptic taste.

However, partially based on a suggestion of Ulam, von Neumann formalised his
ideas on self-reproduction as a formal automaton operating on discrete cells [26].
Accordingly a cellular automaton was originally a formal system which served as a
testing environment for ideas on self-replication [33].

On the other hand, at this point von Neumann already tried to predict application
scenarios for his theory of logical automata and also weakened the account of formal
logic:

In fact, there are numerous indications to make us believe that this new
system of formal logic will move closer to another discipline which has
been little linked in the past with logic. This is thermodynamics, primar-
ily in the form it was received from Boltzmann, and is that part of theo-
retical physics which comes nearest in some of its aspects to manipulating
and measuring information. Its techniques are indeed much more ana-
lytical than combinatorial, which again illustrates the point that I have
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been trying to make above. . . . that a detailed, highly mathematical,
and more specifically analytical, theory of automata and of information
is needed. [25]

This is a very interesting statement especially in the context of this thesis. It
shows that von Neumann recognised the implication of logical automata for simulat-
ing physical phenomena and noticed the accompanying necessity of a mathematical
formalism.

He also made the following structural observation, which can be seen in connec-
tion with microscopic and bottom-up modelling approaches and comes rather close
to what nowadays is understood as cellular automaton:

The natural systems are of enormous complexity, and it is clearly nec-
essary to subdivide the problem that they represent into several parts.
One method of subdivision, which is particularly significant in the present
context, is this: The organisms can be viewed as made up of parts which
to a certain extent are independent, elementary units. We may, there-
fore, to this extent, view as the first part of the problem the structure
and functioning of such elementary units individually. The second part of
the problem consists of understanding how these elements are organized
into a whole, and how the functioning of the whole is expressed in terms
of these elements. [25]

Not only von Neumann was interested in simulating natural systems by dividing
the system into interacting subsystems. A few other and even earlier examples are
sketched below:

• The Ising model as presented in a 1925 paper (which despite its age and impact
is not freely available).

• In 1946, Norbert Wiener and Arturo Rosenblueth published a work on the con-
duction of nervous impulses [47], which sometimes is explicitly not regarded
as a cellular automaton and in other occasions interpreted as the first appli-
cation of von Neumanns cellular automata [32] (despite possible chronological
conflict).

• “A one-dimensional dynamical system of 64 particles with forces between neigh-
bors containing nonlinear terms has been studied on the Los Alamos computer
MANIAC I.” [10] by Ulam in 1955.

The origins of cellular automata are not exclusively in the formal logic domain,
but cellular automata and similar approaches were used to simulate natural systems
even before the connotation of cellular automata was coined. It is even more sur-
prising that in the present perception cellular automata are usually not discussed
as a general approach for modelling and simulating natural systems. Even though
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there exist very prominent cellular automaton approaches like the lattice Boltzmann
method.

The ultimate “rise” of cellular automata in the 1960s and 1970s is clearly linked
to the big advances in computer science of this time. Computers became available
to a broad community of researchers and lots of experiments and implementations
were conducted. Cellular automata inspired new theories (p.e. Konrad Zuse [51])
but also served as benchmarks in computer engineering (John Conway’s game “Life”
or “Game of Life”). In 2002 with “A New Kind of Science” [50] Wolfram delivered a
complete classification of the sub-class of elementary cellular automata.

1.2.1 Present Major Consensus on Cellular Automata

From literature we can conclude that there exist neither a unique nor a formal math-
ematical definition of cellular automata, no clear assignment of cellular automata
to a scientific domain or a classification of cellular automata as a scientific method.
Also the history of cellular automata itself seems to be blurry and prone to varying
interpretations.

Even if the axioms are chosen within the common sense area, it is usually
very difficult to achieve an agreement between two people who have done
this independently. [26]

This section contains some short definitions of cellular automata from various
sources and also serves as a first technical introduction to cellular automata. It is
very clear that the basic concepts (see Section 1.3.1) usually coincide. Differences
appear mostly at a rather high level of detail.

Cellular automata can be viewed as a simple model of a spatially ex-
tended decentralized system made up of a number of individual compo-
nents (cells). The communication between constituent cells is limited to
local interaction. Each individual cell is in a specific state which changes
over time depending on the states of its local neighbors. The overall
structure can be viewed as a parallel processing device. However, this
simple structure when iterated several times produces complex patterns
displaying the potential to simulate different sophisticated natural phe-
nomena. [12]

A cellular automaton consists of a regular grid of cells, each in one of
a finite number of states, such as on and off (in contrast to a coupled
map lattice). The grid can be in any finite number of dimensions. For
each cell, a set of cells called its neighborhood (usually including the
cell itself) is defined relative to the specified cell. An initial state (time
t = 0) is selected by assigning a state for each cell. A new generation
is created (advancing t by 1), according to some fixed rule (generally,
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a mathematical function) that determines the new state of each cell in
terms of the current state of the cell and the states of the cells in its
neighborhood. Typically, the rule for updating the state of cells is the
same for each cell and does not change over time, and is applied to
the whole grid simultaneously, though exceptions are known, such as
the probabilistic cellular automata and asynchronous cellular automaton.
[48]

Cellular automata are mathematical idealizations of physical systems in
which space and time are discrete, and physical quantities take on a finite
set of discrete values. A cellular automaton consists of a regular uniform
lattice (or ‘array’), usually infinite in extent, with a discrete variable at
each site (‘cell’). The state of a cellular automaton is completely specified
by the values of the variables at each site. A cellular automaton evolves
in discrete time steps, with the value of the variable at one site being
affected by the values of variables at sites in its ‘neighborhood’ on the
previous time step. The neighborhood of a site is typically taken to be
the site itself and all immediately adjacent sites. The variables at each
site are updated simultaneously (‘synchronously’), based on the values
of the variables in their neighborhood at the preceding time step, and
according to a definite set of ‘local rules’. [33]

[Cellular automata] can be characterised as follows [compare the defini-
tions of Wolfram and Hedrich]:

• [Cellular automata] are regular arrangements of single cells of the
same kind.

• Each cell holds a finite number of discrete states.

• The states are updated simultaneously (‘synchronously’) at discrete
time levels.

• The update rules are deterministic and uniform in space and time.

• The rules for the evolution of a cell depend only on a local neigh-
borhood of cells around it.

Not all of these criteria are always fulfilled. The cells can be positioned,
for example, at the nodes of a (quasiperiodic) Penrose lattice (Penrose,
1974, 1979) or at random (Markus and Hess, 1990). A random connection
of cells was proposed by Richard Feynman (Hillis, 1989). The update
rules of certain CA include probabilistic elements . . . [32]

In Section 1.3 we will filter out a set of features which for us make up a default
or ordinary cellular automaton.
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1.2.2 Classification of Cellular Automata

None of the definitions in Section 1.2.1 excludes cellular automata from being a
(bottom-up) modelling approach. On the other side there exists no mathematical
framework – like we are used to from differential equations for example – which
renders cellular automata a fully functional mathematical method for describing a
natural system. Moreover cellular automata are often regarded as (natural) systems
themselves. In some occasions these iterative systems are then interpreted as models
of real existing phenomena or – even worse – they are for example entitled as being
thermodynamic models when they feature concepts comparable to conservation of
mass or momentum.

In my opinion – and especially in the context of modelling and simulation – this
inverse approach of modelling is highly critical not only because an existing abstract
system is considered first and a suitable natural system is seeked for “application”
afterwards, but also because the natural bottom-up approach of cellular automata
as a method for modelling is abandoned.

A possible way to avoid this clash of conceptions is to differentiate between cel-
lular automata in formal logic and cellular automata in modelling and simulation.
The first branch mainly deals with pattern formation (self-reproduction, reoccurency,
etc.), Turing completeness, ergodicity, etc. where the second branch aims at mod-
elling of natural systems in a bottom-up fashion.

Of course there exist scenarios in which results from the formal logic branch
(e.g reversibility, ergodicity, etc.) are essential for simulating a system or where
elementary cellular automata are perfectly suitable for simulating a dynamic system.

Further characteristics that can help to differentiate between these two branches:

• A cellular automaton which is merely a computer program and does not serve
as a modelling approach is settled in the formal logic branch.

• Comparisons and classifications based on update rules and cell states happen
in the formal logic branch. This concerns especially the classification of update
rules for one dimensional elementary cellular automata as done by Wolfram
[50].

• Comparison and identification of a cellular automaton with a differential equa-
tion happens in the modelling and simulation branch.

1.3 Ontology and Classification

As mentioned in the preface, this section originated prior to this thesis as an intro-
duction to (ordinary) cellular automata in modelling and simulation and is included
here in a slightly modified version. The discussion and schematic classification of
cellular automata in Section 1.3.2 received a major overhaul.
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1.3.1 Basic Concepts of Cellular Automata

The ontology and basic concepts of cellular automata may seem rather obvious. Nev-
ertheless the conception of cellular automata is subject to experiences and approaches
(compare Section 1.2.1). This section incorporates ideas from [12, 32, 33] and others
and gives an overview of the basic concepts of cellular automata without sticking to
one single or even clear mathematical definition but from a rather philosophic and
conceptual point of view.

It should be mentioned that for a yet outstanding formal mathematical definition
it is even more important to restrict the default case of cellular automata (ordinary
cellular automata, as we will call them) to a well reasoned subset of cellular automata
or entity-based dynamic systems. Deviations from this basic definition can then be
discussed and formalised separately from the default definition.

Cell. The term cell comes from the Latin word cella which means chamber, small
room, compartment [48]. In the context of cellular automata the term cell evolved
from the idea of enclosed entities and is a pure historical notion. Other terms de-
scribing the same idea are:

site. Used by Wolfram for example [50, 33].

node, lattice node. Used especially in connection with lattice gas cellular automata
or the lattice Boltzmann method [32].

discrete coordinate, raster element. In connection with rasterised geographic data
[42].

pixel, dot. Anti-aliasing or image-processing in general.

element, field, entry. Matrix or array notion.

vertex. Compare Section 3.2.

individual. Used as adjective or in the context of sociological or demographic models
[36].

Figure 1.1: Different perceptions of a cell. A cell can represent an entity, a geometric
part of a space like a square or a hexagon or a discrete coordinate.

A very low-level and subordinate term is atom or entity, which emphasise the
consideration of a multitude of basically equal identifiable objects (also called homo-
geneity). A cell in the sense of cellular automata is a passive entity, whose (internal)
properties are accumulated in a so-called state.
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Cell-Space. We usually deal with entities that are arranged in a regular fashion
(often spatial) resulting in a grid or lattice structure. Other terms are cellular space,
tessellation structure, homogeneous structure, cellular structure, iterative array [32],
arrangement or alignment.

Figure 1.2: The alignment of cells among each other yields a so-called cell-space.

The idea of an alignment yields the introduction of a more or less coarse distance
measure on the domain on which the cells are arranged. This motivates the term
space. We usually deal with regularly aligned cells.

Neighbourhood. The concept of neighbourhood-relations between entities is one
of the – if not the – fundamental feature of cellular automata.

We can distinguish between two main approaches. The first and obvious approach
is a geometric or spatial one. The following terms fit into this concept: adjacent,
distance, neighbouring, proximity. These concepts are based on a pre-existing space
or domain which exhibits a distance measure.

A more general approach could be described by peer-group, contact, related, con-
nected. In this case the idea of a cell-space or domain becomes obsolete and the
neighbourhood is not necessarily of spatial character.

Figure 1.3: The neighbourhood of a cell can be based upon the distance between
cells or defined through relative positions.

Anyhow, the placement of a cell and its neighbourhood is not part of the cell-state
but an external feature, which is determined by its alignment among other cells. A
cell itself is generally not aware of its alignment among the other cells.

State-Space. Other words for state are condition or value.
A state-space is a purely mathematical construction which facilitates the formal

description or definition of update rules. The state of a cell is an element (e.g.
integer, vector, real number, etc.) of the state-space. We can distinguish discrete
and continuous states.
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Since all cells are equal, they share the same state-space. Different types of cells
can be distinguished for example by using a measure or an additional dimension in
the state-space.

Update Method. The neighbourhood of a cell or more precisely the states of
the cells in the neighbourhood influence the state of the cell itself. An update rule,
mechanism, algorithm, function, process is applied on the states of the cells in the
neighbourhood and delivers a new state for the cell.

Through update methods interaction between cells is defined.

Global State and Evolution. The collection of the states of all cells forms a
global state or configuration of the cellular automaton. Accordingly we can describe
a cellular automaton by its global evolution, which is composed of an iteration of
global states.

The update rules can be applied in an iterative manner on all cells simultaneously
and accordingly produce discrete “time” steps (synchronicity). It is however not
necessary that the resulting iterative process describes a temporal evolution.

An important requirement is that this process is memoryless in the following
sense: The state of a cell at the i-th iteration level only depends on the states of
other cells in the (i − 1)-th iteration level. This property allows the simultaneous
application of the update method on all cells.

Border. An important topic is the treatment of cells, which compose the border or
which are located at the border of a cell space. Since those cells exhibit an altered or
degraded neighbourhood, there must exist mechanisms in the update rules which catch
these instances and apply an appropriate special update rule. Such mechanisms are
collected under the term boundary conditions.

A so-called border-cell is not a special type of cell. It is only distinguished
by a degraded neighbourhood and the according update rule which depends on the
structure of the neighbourhood. Nevertheless sometimes it may be useful to introduce
a special cell state which indicates that a cell is a certain type of border-cell. For
example lattice gas cellular automata and the lattice Boltzmann method use in- and
outflow cells, whose state is altered in a different way than for ordinary cells. But
these types of cells are not necessarily located at the border of a cell-space.

Common types of boundary conditions are:

periodic boundary conditions. A not occupied slot in the neighbourhood of a cell is
filled with a cell from the opposite side of the lattice.

reflective boundary conditions. A not occupied slot in the neighbourhood of a cell is
filled with a copy of the cell.

null boundary conditions. An empty slot leads to a different update mechanism.
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Figure 1.4: Different types of boundary conditions: Periodic, reflective and arbitrary.

Cellular Automaton. The term automaton originates from the Greek autos
meaning self. Derived concepts include self moving, self willed, acting of one’s own
will, “in form of predefined reactions without interventions or external decisions”,
“a machine or robot designed to follow a precise sequence of instructions”, a formal
system [48].

In the context of history of arts automata are mechanic artwork built by gold-
smiths and/or scientists. Their purpose was to simply just entertain and impress
with their complex mechanics as well as to model phenomena from natural sci-
ences2 (clocks p.e.), which made them important but expensive instruments for daily
life [38].

Automaton theory is a field of theoretic computer science which deals with ab-
stract machines and automata. Some special cellular automata can be interpreted
in this context and resemble to finite state machines [48]. We treat them as cellular
automata in formal logic.

An automaton in the context of cellular automata is accordingly an automaton
operating on cells.

1.3.2 Textual Definition of Ordinary Cellular Automata

The introduction of a mathematically correct formalism inevitably leads to a clas-
sification system – this is true not only for cellular automata. Once a formalism is
created, such mathematical differentiations are usually very precise and clear.

A conceptual classification, which happens before the mathematical definition, on
the other hand is not necessarily unique and exact. As mentioned before, subjective
perceptions play an important role in defining cellular automata. One person may
require that the cells are aligned on a lattice structure, another may prefer cells as
abstract entities without a location.

The task of a formal definition approach is not only to deliver a basic definition
for certain types of cellular automata, an elaborate formal definition also considers
and embraces deviations from the basic definition.

Accordingly ordinary cellular automata are defined as a standard type of cellular
automata which is compatible with (or maybe the average of) definitions found in
literature. Stochastic cellular automata or unaligned cellular automata etc. can be
formalised as extensions of this basic mathematical definition.

2Regard the analogy to the difference between artificial systems like the “Game of Life” and the
use of cellular automata for modelling.
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The first requirement for the definition of ordinary cellular automata was already
mentioned:

Compatibility with Present Perceptions. In Section 1.2.1 an overview of tex-
tual definitions of cellular automata in literature was given. It is obviously not
possible to find a basic definition that is fully compatible with every other definition.

Some features that are usually contained in definitions of cellular automata are

• a set of regularly aligned (lattice) cells as containers for a state,

• a finite state space, assignment of a state to each cell,

• locality of interaction, the concept of regular neighbourhoods,

• an update rule-set (implements boundary conditions if necessary) and

• iteration and synchronicity.

A Method for Modelling and Simulation. As we intend to use cellular au-
tomata as a simulation method or modelling approach it is important to achieve
some kind of universality.

It is not a good idea to exclude continuous states from a default cellular automa-
ton. If we look at lattice Boltzmann models we can see that this prototype of an
advanced “applied” cellular automaton features continuous densities as the state of
a cell. When we model a certain spatial system we should be able to use arbitrary
boundary conditions. Furthermore we may want to observe systems in which some
cells behave differently from others. We may also not exclude any specific type of
update function from a default definition.

Furthermore a good technique for modelling features methods for model vali-
dation, parameter identification, error estimation (errors by applying the modelling
technique as well as errors during simulation) and comparison with other modelling
approaches. For this to be accomplished it is necessary that a formal definition is
mathematically consistent and complete but also extendible at the same time.

Automatisation. We may never forget that cellular automata are automata op-
erating on cells.

An automaton follows a predefined scheme of operations in an iterative manner.
An automaton is also the aggregation of a complete and precisely defined set of rules
[48]. To meet this rough definition, it is necessary that a cellular automaton

• performs the exact same update mechanisms for every cell and iteration and

• uses a neighbourhood of the same structure (coll. the same neighbourhood) for
every cell and iteration.
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• Furthermore the rule set must be compatible with any possible state of the
cellular automaton (no dead locks).

Usually these features are constructed in a rather simple manner following the
paradigm simple individual behaviour leads to complex global dynamics [12, 32, 33].

Nevertheless it can happen that degradations of these specifications are required.
For example, a cellular automaton does usually not allow the modification of update
rules during simulation. On the other hand, a more general entity-based iterative
system could allow external modification of the rule set during simulation. Or it
might be necessary that the update rules depend on the number of the current
iteration or on the progression of a cells state.

Also the complete topology of a cellular automaton is usually constant for all
iterations. Cells can neither change their position nor their neighbours. Theoretically
it would however be possible to define a very complex rule set in order to simulate
varying neighbourhoods by applying different update functions, which neglect certain
neighbours under certain circumstances.

The only true variable of a cellular automaton should be the states of the cells
respectively the state mapping. Accordingly only the state of a cell may change over
iteration i.e. invariance of update rules and topology.

A Bottom-Up Modelling Approach. A cell can be regarded as an identifiable
container for a state without any interior dynamics (lattice gas cellular automata
not necessarily constitute an exception) or knowledge about its location among other
cells.

Cellular automata are used to model dynamic systems in a bottom-up fashion.
The global dynamics arise from simple individual changes of the cells’ states. These
changes are straight forward and individual, which means that there is no intended
feedback from the global dynamics to the behaviour of a single entity.

Usually the typical individual behaviour of a single entity is known and the mod-
elling approach of cellular automata permits to observe the arising global dynamic
behaviour.

It is very important that a cell on its own is not aware of other cells or its
location among other cells. Furthermore a cell is never an active agent, but rather
just a container for a state.

The Concept of Sets is Fundamental. As in mathematics itself also for cellular
automata a set theoretic point of view can be used as a starting point for setting up
a mathematical description.

Rationale: A cellular automaton always deals with a set of cells, a set of states
and sets of neighbouring cells regardless of the way these cells are arranged among
each other or within a domain. Every approach for formulating the concepts of
cellular automata incorporates this fundamental idea but introduces further, more
sophisticated concepts like a lattice of cells or borders and boundary conditions.
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A set-based point of view is also a good starting point for comparing different
specifications of cellular automata with other modelling techniques like agent-based
models or networks.

Alignment of Cells vs. Discretisation of Space (Topology I). From a set-
based point of view the alignment of cells is a secondary feature, which is deployed
on a previously existing set of cells (a posteriori alignment). This might not always
correspond to the idea of a system which is to be modelled using cellular automata. A
very common application scenario of cellular automata features the discretisation or
partitioning of space into cells (a priori alignment). In this case cells can be regarded
a result of discretisation and a spatial interpretation of the cellular automaton is self-
evident.

Usually discretisation is performed in a manner that the resulting discrete entities
are more or less equal. The advantages concerning formulation of functions and
building algorithms (implementation) seems rather obvious. Note that for example
the finite element method uses an irregular discretisation in a very successful manner.
In the case of a regular discretisation the geometry of the individual cells is not
very important. The perception of a discretised space can be replaced by a regular
alignment of cells or entities.

Wherever an alignment originates from, it is a very important characteristic of
the topology of a cellular automaton. It is the first topological feature of the cellular
automaton and in the following also denoted as topology I. Also if the alignment of
cells is not of spatial character, relative proximities between cells are introduced.

In a straight forward mathematical fashion a regular alignment can simply be de-
scribed using indices from an arbitrary dimensional index set I ⊂ Zd. This approach
will be called index-based or lattice approach.

Locality (Topology II). For a model or system it is often a crucial feature that
information travels through space and time. The restriction of interaction (at discrete
iterative steps) to a (local) subset of entities delays the spread of information and
favours an inhomogeneous distribution of information. The set of cells that can be
influenced by the information contained in a cell within a certain amount of time
(usually one time unit) constitutes the concept of neighbourhoods.

From a different point of view, the neighbourhood of a certain cell consists of
those cells for which there exists at least one condition (global state) under which
an altered cell-state yields a different state for the actual cell in the next time step.
Compare this description with the concept of differentiation.

This characteristic will be called the second topological feature of cellular au-
tomata or also simply topology II.

In the case of (regularly) aligned cells the neighbourhood of a cell is often sym-
metric and composed of adjacent cells. In other words, the neighbourhood of a cell
can often be described using a metric on the cell-space i.e. based upon the first
topological feature.
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For regularly aligned cells and especially for an index-based alignment it is also
possible to use the concept of translations to describe the neighbourhoods of the cells.
In the index-based approach the result is a stencil method, which for a given index
delivers through addition and subtraction other indices relative to the first index.
The use of relative indices permits to define neighbourhoods of arbitrary structure
like non-symmetric or even non-local neighbourhoods.

Usually the neighbourhoods of all cells are uniformly structured (number of neigh-
bours, relative positioning of neighbours).

This second topological feature can also exist independently from the first topo-
logical feature. If the cells are not aligned, it is still possible to explicitly define
“neighbours” for every cell.

Update. An update rule takes the states of the neighbours of a cell as input and
delivers a new state for the cell.

This mapping is not necessarily reversible i.e. the states of the cells at time t can
not be concluded from the states of the cells at time t+ 1. Consequently in addition
to deterministic update rules also stochastic methods are possible.

An update rule may be a very complex composition of multiple functions and
mappings or a simple linear function. However usually the ordering of the input argu-
ments influences the result. This means that changing the ordering of the neighbours
of a cell influences the state of the cell in the next iteration.

An update rule must be defined for all occurring sizes of neighbourhoods and all
possible state-configurations of the cells in the neighbourhoods.

Borders and Boundary Conditions (Topology III). When modelling a spa-
tial system or a physical body or continuum there usually exist boundaries of the
observed domain. Accordingly a systematic definition approach for cellular automata
must offer a direct method for formulating boundary conditions. Additionally the
geometry of a cellular automaton must not be restricted to simple cuboid geometric
shapes.

Especially in connection with cell-space and border we must never forget that a
cellular automaton is – at least for us and our basic definition – an approach for mod-
elling a dynamic system and not the implementation thereof. Mathematical models
often introduce infinite domains but the implementation as a cellular automaton
with a computer language must usually use a finite set off cells probably in con-
nection with periodic boundary conditions. Of course a good mathematical model
takes possible artefacts and limitations which arise at the implementation level into
account.

It is possible to implement a cellular automaton with a dynamically growing
cell-space. The size is then limited by the physically available memory.

Using the index-based approach, a border cell can be recognised by a degraded
neighbourhood. That means that the relative indices representing the neighbourhood
point to nonexistent cells. In this case there must either exist a method or rule
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to treat this situation within the update rules or the missing neighbours have to
be replaced with any other existing cell, which yields a distortion of the geometry
of lattice of cells. If there exits such a distortion of a regular alignment, a third
topological feature (also topology III ) is introduced.

Modelling is not equal to Implementation. As mentioned before, cellular au-
tomata are regarded as an approach for modelling a (often spatial) dynamic system.
It is however useful if the mathematical implementation of a modelling approach al-
lows an as straight forward as possible implementation in a programming language.
Since programming languages usually rely on the concept of arrays (indexed sets
of entities) to store information, the index-based approach for describing a cellular
automaton based model seems quite ideal in this context.

The definition approaches in this thesis are however not intended or especially
suitable for describing the arithmetics of the implementation of a cellular automaton
in a programming language. On the other hand this does not exclude the “Game of
Life” for example from being described using the presented definition approaches.

Relation to Differential Equations. The reader may have noticed that cellular
automata as a modelling approach were previously at several locations compared to
differential equations. There are two aspects of this comparison.

In some publications [32, 33] cellular automata are treated or at least discussed as
being an equivalent methodology as differential equations – at least for a certain type
of problem. In order that this is possible in the first place, a systematic formalism
of cellular automata is necessary.

Secondly the resulting algorithmic implementation of the discretisation of differ-
ential equations (finite differences p.e.) or even other more or less discrete approaches
(finite element method) can be interpreted as cellular automata.

Relation to Agent-Based Systems. For an introduction to agent-based mod-
elling see for example [39]. Also agent-based modelling has to be seen as a mod-
elling approach rather than a modelling technique. The analysis, derivation or even
technical implementation of an agent-based model can be based upon a multitude
of different mathematical techniques like graphs, Markovian models [35], statistical
models or differential equations and even cellular automata [36].

A very important difference between an agent-based modelling approach and a
cellular automaton modelling approach are the clear specifications of cellular au-
tomata regarding the topological features (alignment and local interaction) and the
automaton concept (Section 1.3.2), which includes passivity of the cells, memory-
lessness and uniform simple update rules.

Conclusion. Cellular automata in general are iterative entity-based dynamic sys-
tems. According to the previous discussion, the most important characteristics of
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a default type of a cellular automaton in modelling and simulation are summarised
below.

• cells are regarded as discrete, equal and passive entities

• characteristic topological features

– topology I: regular alignment of cells (regardless of a priori or a posteriori),
mathematically realised through an indexing

– topology II: uniform and ordered neighbourhoods, implemented through
index translations

– topology III: possible distortions of the lattice

• an arbitrary set of states is allowed

• update rules

– independent of the cell

– calculate a new state given a tuple of states

– memoryless

– defined for all occurring configurations/states of neighbourhoods

• iteration scheme

– synchronous alteration of states through locally applied update rules

– invariance of topology and update rules

– requirement of an initial condition

This choice of features and properties or ordinary cellular automata is the result
of a discussion among members of our research group. A mathematical formulation
implementing this concept of ordinary cellular automata can be found in Section 2.1.
Of course different definitions of the prototype of cellular automata are possible.
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Chapter 2

Basic Definitions of Cellular
Automata

In this section mathematical definitions and formalisms for cellular automata are
presented.

Due to fact that ordinary cellular automata, as described in Section 1.3.2, are
regarded as the prototype of cellular automata, a straight forward and intuitive
mathematical formalism for this class is presented first. The concept of an alignment
on a lattice structure is implemented through an indexing of the cells. Despite the
fact that the formalism of ordinary cellular automata is a self-contained mathematical
definition, this index-based approach is rather complicated in the end.

In the second section of this chapter a class of cellular automata that lacks an
alignment of the cells – namely unaligned cellular automata – is defined. It is clear
that ordinary cellular automata are unaligned cellular automata with an additional
special alignment – implemented by an indexing of the cells.

An alternative approach for a regular alignment is derived and discussed in Chap-
ter 3 and finally recapitulated in Section 3.4.

2.1 Ordinary Cellular Automata

This mathematical formalism of ordinary cellular automata is based upon the defi-
nition derived in Section 1.3.2 and the results of an extensive reviewing by members
of the research group ‘Modelling and Simulation’.

This mathematical definition of the default type of a cellular automaton should
be perspicuous without studying the derivation of the conceptual definition from
Section 1.3.2.

2.1.1 Formalisation of Concepts

The best way for setting up a mathematical formalism is a bottom-up approach
itself. In a first step the basic concepts of ordinary cellular automata are formalised

19
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then the resulting definitions are used to describe ordinary cellular automata as a
composition thereof.

2.1.1.1 Cells

The very basic requirement for defining cellular automata is a set of abstract entities
called cells.

Definition 2.1.1 (Cell, Set of Cells). Let M denote the set of cells. Consequently
a cell is a – necessarily – unique element m ∈ M . The set of cells is not empty but
countable and most often finite.

There is basically no limitation in the number of cells. However the observation of
only one cell defeats the purpose of cellular automata and we then speak of a trivial
cellular automaton. On the other hand in some occasions infinite or noncountable sets
of cells can be problematic. The cardinality of the set of cells may be characterised
through terms like finite, countable, infinite, etc.

Note that the implementation of infinite cellular automata on a computer system
arises a lot of questions. There exists however the possibility to simulate an infinite
domain by using periodic geometries as discussed in Section 2.1.1.4. The errors
introduced by applying this technique must be taken into account when analysing
the validity of the underlying model.

2.1.1.2 Alignment of Cells (Topology I)

In order to align cells in a regular – not necessarily geometric, despite there obviously
exists a geometric interpretation – fashion, we index the set of cells using a set of
indices, which is subject to certain requirements.

Definition 2.1.2 (Connectivity). A subset I of Zd is called connected if one of the
following conditions is satisfied.

(i) For each two elements a, b ∈ I there exists a series of elements (zα)α∈N ⊂ I for
which ‖zα − zα+1‖2 = 1 ∀α ∈ N and for which ∃αa, αb ∈ N such that a = zαa
and b = zαb .

(ii) Analogously to (i) with the condition ‖zα−zα+1‖2 ≤
√

2 or ‖zα−zα+1‖2 ≤
√
d

etc.

(iii) Each cross-section

I(i1,...,il−1,il+1,...,id) = {j ∈ Z : i = (i1, . . . , il−1, j, il+1, . . . , id) ∈ I} (2.1.1)

where iα ∈ Z, α ∈ {1, . . . , d} \ l is the finite union of intervals of the whole
numbers or the empty set.
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Figure 2.1: Different concepts for connectivity as defined in Definition 2.1.2 (i) to
(iii) are sketched from left to right.

In the context of cellular automata another definition of connected may require
that for an arbitrary cell each other cell can iteratively be reached through the
neighbourhoods of the cells neighbours (see Definition 3.0.15).

Definition 2.1.3 (Index Set, Lattice). We call a connected subset I ⊆ Zd, d ∈ N\{0}
an index set. We also call the index set of a cellular automaton a lattice. In this case
cells correspond to lattice nodes.

In literature there exists a definition of lattices, which can be approached in an
order-theoretic or an algebraic fashion using a join- and meet-operator. A lattice as
defined in Definition 2.1.3 is a special case of this definition.

The idea of a connected index set is used to somehow avert trivial or eccentric
cellular automata with multiple independent cellular automata on one lattice or cel-
lular automata with a scattered or sparsely occupied lattice. All these situations
can be excluded from ordinary cellular automata. In order to describe the character
of the index set – respectively the geometry of a cellular automaton – in an even
more detailed manner we can transfer concepts like symmetric, convex, connected,
etc. from vector spaces respectively topological spaces to index sets. If cells represent
the discretisation of a continuous space, topological concepts like path-connectivity
or simple connectivity can be used directly. However since the index set describes the
geometry of the cellular automaton it is defined at the stage of modelling. Accord-
ingly the previous definition of connected may be obvious in some cases or to weak
in other cases and is more the introduction of a concept than an exact definition.

Example 2.1.4. A typical square lattice is described by the index set I =
(1, . . . , n1)× · · · × (1, . . . , nd). In this case the index set is of course connected.

Definition 2.1.5 (Index Mapping). If M is a set of cells, we call M indexed or
regularly arranged if there exists a bijective mapping I : M → I : m 7→ I(m) =: i
between M and an index set I. We call I an index mapping and also use I for
mapping tuples of cells onto tuples of indices I : Mk → Ik : (m1, . . . ,mk) 7→
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(I(m1), . . . , I(mk)) =: (i1, . . . , ik) where k ∈ N \ {0}. If all cells are arranged or
indexed using an index set I ⊆ Zd, we call d the dimension of the cellular automaton.

Figure 2.2: The index mapping is a bijective mapping between I and M .

The index mapping is the same for all iterations. Thus the arrangement of cells
is constant and a cell does not change its location. The combination of an index set
and an index mapping may be called indexing.

The reason for a differentiation between the actual cell m ∈ M and its unique
index i ∈ I is in the first place purely conceptual. It however allows a more systematic
definition and classification with respect to unaligned cellular automata (Section 2.2).

2.1.1.3 Neighbourhood (Topology II)

The concept of indices and (sorted) tuples can be used to define the neighbourhood
of a cell. Beforehand some operations on indices have to be discussed. Throughout
this section we let k ∈ N \ {0} be the (uniform) number of neighbours.

Definition 2.1.6 (Relative Index Tuple). A tuple J := (j1, . . . , jk) ∈ (Zd)k where
jα 6= jβ for α 6= β is called a relative index tuple.

For i ∈ Zd the addition respectively subtraction J ± i := (j1 ± i, . . . , jk ± i) is
well-defined.

Definition 2.1.7 (Index Translation). Given a relative index tuple J we define the
index translation TJ of an index i from an index set I by TJ : I → (Zd)k : i 7→ i+ J
and call the result an absolute index tuple or just index tuple.

Note that i+ J is not necessarily a subset of I.
The differentiation between absolute and relative index tuples depends on the

application of the tuple of indices. A relative index tuple is used to specify the
indices of other (neighbouring) cells relative to the index of one specific cell. An
absolute index tuple on the other hand just contains the indices of a sorted set of
cells.

Definition 2.1.8 (Neighbourhood). For a cell mi from an indexed set of cells with
index set I and a relative index tuple J , we use the absolute index tuple TJ(i) =
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(i1, . . . , ik) ∈ (Zd)k to define the neighbourhood of mi as the tuple of cells Nmi,J :=
(n1, . . . , nk) ∈ (M ∪ {∅})k where

nα :=

{
miα = I−1(iα) iα ∈ I
∅ iα /∈ I

α ∈ {1, . . . , k} (2.1.2)

Furthermore we call k the size of the neighbourhood.

The mapping I−1 : (Zd)k → (M ∪ {∅})k : (i1, . . . , ik) 7→ (n1, . . . , nk) is the
generalised inversion of I. The nonexistent cell ∅ is required in order to maintain
the original tuple structure of the neighbourhood and to be able to indicate that
indices, which are outside the index set, do not refer to a cell.

Definition 2.1.9 (Characterisation of Neighbourhoods). Neighbourhoods can be
characterised in different ways, among them:

(i) A cell lies in its own neighbourhood if and only if 0 ∈ Zd is part of the relative
index tuple. This kind of neighbourhood is called reflexive.

(ii) The neighbourhood relations are not necessarily symmetric, which means that
if cell m is in the neighbourhood of cell n, cell n is not necessarily part of the
neighbourhood of cell m. Especially for ordinary cellular automata symmetry
is a geometric feature.

(iii) It is not unusual that neighbourhoods are of local character, which means that
the neighbourhood relation is defined by the distance between cells. In this case,
the index translation can be replaced by the corresponding function Tmetric.

Proposition 2.1.10 (Universality of the Relative Index Approach). Given a local
neighbourhood structure defined through a metric on I by Tmetric : I → Ik, it is
possible to find an equivalent relative index tuple J for which the index translation
TJ delivers the same neighbourhood structure.

Definition 2.1.11 (Neighbourhood Mapping). Accordingly for an indexed set of
cells (M ,I,I,I−1) and an index translation T the neighbourhood mapping is defined
by N := I−1 ◦ T ◦ I : M → I → (Zd)k → (M ∪ {∅})k : mi 7→ i 7→ (i1, . . . , ik) 7→
(n1, . . . , nk).

The neighbourhood of a cell is the same for all iterations and theoretically it
could be possible to investigate infinite neighbourhoods. A relative index tuple must
then be replaced by a relative index family etc.

2.1.1.4 Border (Topology III)

The concept of a border is naturally induced by the (eventual) boundedness of the
index set. Two types of special cells can be distinguished:
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Figure 2.3: An index translation assigns an ordered set of neighbours to every cell.

Definition 2.1.12 (Border-Cell). A border-cell is a cell, which is located at the
boundary of the lattice. That is the case when the cell with index i ∈ I misses at
least one of its direct neighbours ]

{
I−1(i+ j) : I−1(i+ j) = ∅, j ∈ {−1, 0, 1}d

}
> 0

or in other words when
{
i+ j : j ∈ {−1, 0, 1}d

}
* I.

The definition of a border-cell is actually neither utterly exact nor of primary
interest for our definition of ordinary cellular automata. It is however necessary
to dismiss the colloquial term “border-cell” in favour of a more precise definition
suitable for describing the irregularities occurring at the boundary of a lattice in a
mathematical fashion.

Definition 2.1.13 (Degraded Neighbourhood). If the absolute index tuple of a cell
mi does not lie completely within the index set TJ(i) = (i + j)j∈J /∈ Ik, we talk of
(a cell with) a degraded neighbourhood.

Under certain conditions, like for some types of metric/local neighbourhoods, the
set of the border-cells is a subset of the cells with degraded neighbourhoods. This
differentiation becomes effective at the latest when the update rules are defined. We
will actually see that an update rule must react on degraded neighbourhoods in order
to implement boundary conditions.

Besides the distinction of cells with degraded neighbourhoods, we can also ma-
nipulate the geometry of a lattice by “gluing” specific cells from the lattice to the
boundary. One possible reason for doing this is to avoid degraded neighbourhoods.
We can describe such situations in a formal and exact manner using indices:

Definition 2.1.14 (Generalised Index Translation). Given a relative index tuple J ,
a generalised index translation is defined by Tτ,J : I → Ik : i 7→ (i1, . . . , ik) where

iα :=

{
i+ jα i+ jα ∈ I
τ(i, jα) i+ jα /∈ I

α ∈ {1, . . . , k} (2.1.3)

and τ : I × Zd → I or sometimes also τ : Zd \ I → I maps the absolute index i and
the relative index j onto an absolute index in I.
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Figure 2.4: A generalised index translation usually replaces indices from Zd \ I with
indices from I.

Example 2.1.15. A toroid geometry for a two-dimensional ordinary cellular au-
tomaton (coll. “periodic boundary condition”) can be achieved by applying the
modulus function on nonexistent elements of the absolute index tuple. In this
case there would no longer exist degraded neighbourhoods!

A possible consequence of a generalised index translation respectively of the map-
ping τ – as mentioned before – can be the elimination of degraded neighbourhoods,
which facilitates the definition of update rules (see further below). The term “bound-
ary conditions” obviously applies to the implementation of special update rules for
cells with degraded neighbourhoods.

A generalised index translation leads to a distortion or manipulation of the natu-
ral geometry of the cellular automaton. In some cases it may be necessary to require
that τ(i, j) /∈ i+J in order to avoid neighbourhoods which contain one cell multiple
times.

Another way to facilitate the definition of update rules or the analysis of the
topology of a cellular automaton is to restrict the area of observation to cells respec-
tively indices with nondegraded neighbourhoods.

Definition 2.1.16 (Cells with a Complete Neighbourhood). The nondegraded part of
an ordinary cellular automaton is composed of the cells with complete neighbourhood
and mathematically defined as M◦ = {m ∈ M : T ◦ I(m) ⊆ I} respectively
I◦ = {i ∈ I : T (i) ⊆ I}.

Using this notation the restriction of the index translation TJ : I → (Zd)k can
be written as TJ : I◦ → Ik.

2.1.1.5 States

Another basic property of (ordinary) cellular automata is that every cell at any given
time/iteration takes exactly one state from a set of possible states.
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Definition 2.1.17 (Set of States). The set of possible states is denoted as as S.

It is neither required that the set of possible states if finite nor that there exists
any special topological or algebraic structure on it. However, a non-trivial cellular
automaton features more than one different element in S. A state mapping assigns
a (current or temporary) state to each cell.

Definition 2.1.18 (State Mapping). A mapping S : M → S is called state mapping.
Accordingly S(m) ∈ S is the current or temporary state of cell m.

For mapping multiple cells, the notation
(∏k

l=1 S
)

: (M ∪ {∅})k → (S ∪ {∅})k :

(m1, . . . ,mk) 7→ (s1, . . . , sk) where

sα :=

{
S(mα) mα ∈M
∅ mα /∈M ⇐⇒ mα = ∅ α ∈ {1, . . . , k} (2.1.4)

can be used. For simplicity we also use S as S : (M ∪ {∅})k → (S ∪ {∅})k. The
nonexistent state ∅ is required to maintain the tuple structure and to indicate a
degraded neighbourhood.

The state mapping is the one and only variable of a cellular automaton. The
state mapping evolves over iteration in the sense that the state mapping at a certain
iterative step will be replaced by another state mapping in the next iterative step.

Definition 2.1.19 (Characterisations of States). By introducing a partitioning on
the set of all possible states, different cell types can be distinguished. The set of all
states can be finite or infinite. Furthermore if S is a vector space, ring, etc. we can
call S state-space.

Example 2.1.20. The set of all possible states can for example be a set of abstract
states S = {red, green,blue} or the vector space S = R3.

2.1.1.6 Update Rule

An update rule can be the explicit definition of a mapping but also a linear function.

Definition 2.1.21 (Update Rule). An update rule (also update rules, update rule
set or update function) is a mapping F : (S ∪ {∅})k → S : (s1, . . . , sk) 7→ s

The update rules do not vary over iterations and stochastic update rules are
explicitly excluded from a basic definition since the necessary introduction of proba-
bility spaces etc. requires additional formalisms and investigations (see Section 5.2).

A new state for a cell is obtained through F ◦ S ◦ N :{
M → (M ∪ {∅})k → (S ∪ {∅})k → S
m 7→ (m1, . . . ,mk) 7→ (s1, . . . , sk) 7→ s

(2.1.5)



2.1. ORDINARY CELLULAR AUTOMATA 27

or in a more detailed fashion by F ◦ S ◦ I−1 ◦ T ◦ I :{
M → I → (Zd)k → (M ∪ {∅})k → (S ∪ {∅})k → S
m 7→ i 7→ (i1, . . . , ik) 7→ (m1, . . . ,mk) 7→ (s1, . . . , sk) 7→ s.

(2.1.6)
Since degraded neighbourhoods contain nonexistent cells respectively states (∅),

an update rule must react on a degraded neighbourhood and implement the desired
“boundary conditions”. An update rule never defines or modifies the geometry of a
lattice!

Definition 2.1.22 (Boundary Condition). A boundary condition describes the reac-
tion of an update rule set on degraded neighbourhoods i.e. the treatment of degraded
neighbourhoods by the update rules.

2.1.1.7 Excursus: Composite Update Rules

It is possible to define boundary conditions for an ordinary cellular automaton in a
more systematic fashion by differentiating different types of degradations and ap-
plying different update functions depending on the type of degradation. Secondly it
is often not necessary or unnecessarily complicated to define the update rule for a
neighbourhood configuration that will never occur.

Example 2.1.23. For an ordinary two-dimensional square lattice of 10 by 10 cells
and the classical von Neumann neighbourhood, a cell will never have more than
two empty neighbours. This excludes all state-tuples containing more than two
empty states. Furthermore a cell will never have two empty neighbours in op-
posing directions and so forth.

Generally in certain situations the update rules can be defined on a much smaller
subset of possible neighbourhood configurations.

Example 2.1.24 (Composite Update Rule). The update rule set F can be inter-
preted or redefined as a mapping

F : (S ∪ {∅})k → {0, 1}k × T(S) → ST(S) × T(S) → S (2.1.7)

where T(S) is the set of S-tuples (with arbitrary number of elements) and ST(S)

is the set of mappings, which map S-tuples onto elements of S and

F : (s1, . . . , sk) 7→
(

(o1, . . . , ok), (sα1 , . . . , sαl)
)
7→

7→
(
f(o1,...,ok), (sα1 , . . . , sαl)

)
7→ f(o1,...,ok)

(
(sα1 , . . . , sαl)

)
=: s (2.1.8)

where
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1. (o1, . . . , ok) indicates occupied positions in the neighbourhood using oi = 1
if and only if si 6= ∅ else oi = 0 for i = 1, . . . , k,

2. l := ]{si : si 6= ∅, i = 1, . . . , k} =
∑k

i=1 oi ≤ k is the number of occupied
slots in the neighbourhood,

3. (sα1 , . . . , sαl) ∈ Sl is the sorted tuple (s1, . . . , sk) without empty states,

4. f(o1,...,ok) are update functions from Sl to S.

Accordingly F2,1 : {0, 1}k → ST(S) assigns an update mapping f : Sl → S to a cell
respectively neighbourhood depending on the degradation of the neighbourhood
(o1, . . . , ok). It is sufficient when F2,1 is defined for all occurring neighbourhood
degradations, which themselves are completely defined through the index set,
the relative index tuple and eventually the generalised index translation.

2.1.1.8 Compatibility of Update Rules.

Since it is sufficient and even advantageous to define the update rules on a subset
of (S ∪ {∅})k as F : (S ∪ {∅})k ⊃ domF → S, compatibility of F with all possibly
occurring state configurations of neighbourhoods has to be assured.

Definition 2.1.25 (Update Rule with Restricted Domain). We redefine the update
rules as a mapping F : (S ∪ {∅})k ⊃ domF → S.

Definition 2.1.26 (Compatibility of Update Rules). If a state tuple for which
(s1, . . . , sk) /∈ domF is encountered, we talk of undefined behaviour. Undefined
behaviour can be avoided if F respectively domF satisfies the following conditions:

• An update rule must be compatible with the topology of the cellular automaton
i.e. all occurring degradations or configurations of neighbourhoods must be
taken into account by the update rules. We call an update rule incompatible
with a state mapping S given N if

∃m ∈M : S ◦ N (m) /∈ domF (2.1.9)

• An update rule must be self-contained. This means that all possible state
configurations of the neighbourhoods, which – apart form the initial condition
– arise from the update rule itself, must lie within the domain of the update
rules. An update rule is self-contained if for the neighbourhood of each cell
m ∈M

S ◦ N (n) ∈ domF ∀n ∈ N (m) =⇒ S̃ ◦ N (m) ∈ domF (2.1.10)

where S̃ := F ◦ S ◦ N is understood as an element-wise operator.
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2.1.1.9 Global Description

The dynamics or behaviour of a cellular automaton can only be observed from a
global perspective. A global state is the collection of the states of all cells.

Definition 2.1.27 (Global State, Phase Space). Because the (current) states of all
cells are accumulated in the state mapping S, S can also be called global state and
interpreted as an element of the set of global states or phase space SM .

S can be interpreted as state mapping (Definition 2.2.6) as well as global state
(Definition 2.1.27).

2.1.1.10 Iterative Process and Evolution

The dynamics of a cellular automaton consists in the iteration of global states.

Definition 2.1.28 (Evolution Operator). Given a neighbourhood mapping N and
an update rule F , the evolution operator is the mapping E : SM → SM : S 7→ S̃ :=
F ◦ S ◦ N .

Definition 2.1.29 (Iteration of Global States). For a given initial state S0, the
iteration of global states is defined by St+1 := E(St) = F ◦ St ◦ N where t ∈ N or
sometimes t ∈ T for a connected subset T ⊂ N. The iteration of global states yields
a mapping T → SM : t 7→ St. We also use the notation S(t) and S(t,m), which
actually renders S a function T → SM respectively T ×M → S.

Usually the implementation of cellular automata only stores the current tempo-
rary global state so that this mapping is not necessarily available once the iteration
of the cellular automaton is completed. This corresponds to the idea that a cellular
automaton operates memoryless.

Again note, that only the states of the cells and accordingly the state mapping
may change during iteration!

It is possible to use update rules that depend on the number of the current
iteration. In this case we would have F : N × (S ∪ {∅})k → S : (t; s1, . . . , sk) 7→ s.
We will however exclude this special case from our default definition.

2.1.2 Final Definition of Ordinary Cellular Automata

Definition 2.1.30 (Ordinary Cellular Automaton). An ordinary cellular automaton
is completely defined by

(i) a set of cells M with indexing (I, I),

(ii) a neighbourhood mappingN , which is composed of a relative index tuple J and,
if the geometry of the cellular automaton shall be manipulated, additionally a
corresponding mapping τ ,

(iii) a set of possible states S and
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(iv) a self-contained update rule F ,

which in a general form can be collected in the 4-tuple ((M, I, I),N , S,F) respec-
tively in a more detailed fashion as ((M, I, I), (J, τ), S,F).

Given a compatible initial global state S0 – such that the update rule is compat-
ible with S0 given N –, an iteration of global states is defined. The resulting series
of state mappings describes the evolution of the cellular automaton.

2.2 Unaligned Cellular Automata

An important key feature of ordinary cellular automata is the alignment of the cells
on a regular grid structure, implemented in the previous section by an index mapping,
which identifies cells with indices form an index set in Zd. Thereupon the translation
of indices and the manipulation/distortion of lattices were defined. Furthermore the
empty cell and the empty state had to be introduced. By omitting the alignment
of cells it is possible/necessary to abandon this detour in favour of a more abstract
characterisation of neighbourhoods.

Many definitions can be inherited from ordinary cellular automata. If a definition
is an exact copy of a definition from Section 2.1, this is mentioned in the caption.
Furthermore in this section some trivialities and basic conclusions which were already
mentioned in Section 2.1 are omitted.

2.2.1 Generalisation and Reformulation of Concepts

The basic definition of a cell as an entity among many equal entities is a fundamental
feature also for unaligned cellular automata.

Definition 2.2.1 (Cell, Set of Cells, compare Definition 2.1.1). Let M denote the
set of cells. Consequently a cell is a – necessarily – unique element m ∈M . The set
of cells is not empty but countable and most often finite.

2.2.1.1 Explicit Neighbourhoods

In the index-based approach the neighbourhood of a distinct cell i.e. the neighbouring
cells respectively their indices were obtained from the index of the actual cell using
a neighbourhood mapping which was composed of the index mapping, an index
translation and the inverse of the index mapping

N := I−1 ◦ T ◦ I :

{
M → I → (Zd)k → (M ∪ {∅})k
mi 7→ i 7→ (i1, . . . , ik) 7→ (n1, . . . , nk)

. (2.2.1)

When the indexing of cells is abandoned there can not exists such an algorithmic
method for assigning a neighbourhood to each cell. Therefore the neighbourhood of
a cell must be defined explicitly as a mapping

N : m 7→ (n1, . . . , nkm) (2.2.2)
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where km might be different for every cell m ∈M .
In order to achieve an universal notation we define T(M) similar to the power

set P(M).

Definition 2.2.2 (Tuples of Cells). The set of tuples of arbitrary length of elements
inM is denoted as T(M). If the ordering of cells is irrelevant the notation 〈n1, . . . , nk〉
shall be used instead of (n1, . . . , nk). 〈 · 〉 can be regarded as a set with possibly
repeating elements.

Since M is countable we can interpret P(M) ⊆ T(M) by simply ignoring any
ordering. Accordingly a neighbourhood mapping can be defined as follows.

Definition 2.2.3 (Neighbourhood Mapping). A neighbourhood mapping is a func-
tion

N : M → T(M) : m 7→ (n1, . . . , nkm), (2.2.3)

where ni 6= nj for i, j ∈ {1, . . . , km} and i 6= j.

Definition 2.2.4 (Characterisation of Neighbourhoods and Neighbourhood Map-
pings). In contrast to ordinary cellular automata the sizes of the neighbourhoods
can now vary.

(i) The neighbourhood of a cell m is called reflexive if m ∈ N (m).

(ii) A neighbourhood mapping is called symmetric if for allm,n ∈M , n ∈ N (m)⇔
m ∈ N (n).

(iii) The neighbourhoods are called ordered if N : m 7→ (n1, . . . , nkm) and unordered
if N : m 7→ 〈n1, . . . , nkm〉.

(iv) Obviously km ∈ N denotes the size of the neighbourhood of m.

(v) The neighbourhoods are called equally sized if km = k for all m ∈ M and a
k ∈ N.

For certain special cases there exist different formulations. For example a neigh-
bourhood mapping with unordered neighbourhoods could be written as

N : M → P(M) : m 7→ N (2.2.4)

(compare with the mathematical concept of correspondences) where a neighbourhood
mapping with equally sized neighbourhoods could be written as

N : M →Mk : m 7→ (n1, . . . , nk). (2.2.5)

The choice for a certain type of neighbourhood mapping is of course made during
the process of modelling.



32 2. BASIC DEFINITIONS OF CELLULAR AUTOMATA

The requirement ni 6= nj for i, j ∈ {1, . . . , km} and i 6= j in Definition 2.2.3 corre-
sponds to the idea that a cell can only be contained once within the same neighbour-
hood. In some situation this requirement cannot be fulfilled. We will however assume
that almost all cells feature a neighbourhood without repeating neighbours and that
repeating neighbours can only occur as a “boundary condition”. Of course for un-
aligned cells the term “boundary” is not perfectly suitable but corresponds to the
concept of distorted lattices for ordinary cellular automata. Furthermore degraded
neighbourhoods can occur if almost all cells have equally sized neighbourhoods but
only some cells have fewer or more neighbours.

2.2.1.2 State Mapping and Global State

The assignment of a (current or temporary) state to each cell happens through state
mappings.

Definition 2.2.5 (Set of States, see also Definition 2.1.17). The set of possible states
is denoted as S.

Definition 2.2.6 (State Mapping, see also Definition 2.1.18). A mapping S : M → S
is called state mapping. Accordingly S(m) ∈ S is the current or temporary state of
cell m.

Also the lazy notation

S : T(M)→ T(S) :


(n1, . . . , nk) 7→ (s1, . . . , sk)
〈n1, . . . , nk〉 7→ 〈s1, . . . , sk〉
{n1, . . . , nk} 7→ 〈s1, . . . , sk〉

(2.2.6)

where S(ni) = si for all i ∈ {1, . . . , k}may be used. However S◦N (m) = S(N (m)) =
(S(n))n∈N (m) must be regarded as an element of T(S) and not SN (m).

Definition 2.2.7 (Characterisations of States, see also Definition 2.1.19). By in-
troducing a partitioning on the set of all possible states, different cell types can be
distinguished. The set of all states can be finite or infinite. Furthermore if S is a
vector space, ring, etc. we can call S state-space.

Definition 2.2.8 (Global State, compare Definition 2.1.27). As an element of the
phase space S := SM or S ⊆ SM , a state mapping can be interpreted as a global
state.

2.2.1.3 Update Rules

An update rule delivers a state given a tuple of states. Usually the argument of an
update function is the collection of states of cells within a certain neighbourhood.

Definition 2.2.9 (Update Rules). An update rule or update function is a mapping
F : T(S)→ S.
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As discussed for ordinary cellular automata, an update function must be com-
patible with all possibly occurring state-configurations of the neighbourhoods also
for unaligned cellular automata. More exactly, an update rule must be compatible
with the topology and self-contained.

Definition 2.2.10 (Compatibility). An update function F : T(S) ⊃ domF → S is
called

(i) compatible with the neighbourhood mapping N : M → T(M) and a global
state S : M → S if for all m ∈M , S ◦ N (m) ∈ domF and

(ii) self-contained if S ◦ N (m) ∈ domF for all m ∈ M leads to the compatibility
of F with respect to the global state S̃ := F ◦S ◦N i.e. S̃ ◦N (m) ∈ domF for
all m ∈M .

In certain special cases – also depending on the neighbourhood mappings – the
update function can be written as a function F : P(S) ⊃ domF → S or F : Sk ⊃
domF → S.

Usually the formulation of update rules for uniformly sized neighbourhoods is
much simpler than for neighbourhoods with varying sizes. Especially for varyingly
sized neighbourhoods it is necessary to restrict the domain of the update rule while
simultaneously keeping the update function fully compatible with all occurring neigh-
bourhood/state configurations. For example the set of all tuples with arbitrary num-
ber of elements T( · ) is per se infinite.

2.2.1.4 Iteration and Evolution Operator

A new state for all cells can be obtained by F ◦ S ◦ N : M → T(M)→ T(S)→ S in
one of the following forms:

m 7→ (n1, . . . , nkm) 7→ (s1, . . . , skm) 7→ s
m 7→ 〈n1, . . . , nkm〉 7→ 〈s1, . . . , skm〉 7→ s
m 7→ {n1, . . . , nkm} 7→ 〈s1, . . . , skm〉 7→ s

. (2.2.7)

Definition 2.2.11 (Evolution Operator, see also Definition 2.1.28). Given a neigh-
bourhood mapping N and an update rule F , the evolution operator is the mapping
E : S→ S : S 7→ S̃ := F ◦ S ◦ N .

Definition 2.2.12 (Iteration of Global States, see also Definition 2.1.29). For a
given initial state S0 ∈ S that is compatible with F given N , the iteration of global
states is defined by St+1 := E(St) = F ◦ St ◦ N where t ∈ N or sometimes t ∈ T
for a connected subset T ⊂ N. The iteration of global states yields a mapping
T → S : t 7→ St where S ⊆ SM . We also use the notation S(t) and S(t,m), which
actually renders S a function T → S respectively T ×M → S.
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2.2.2 Final Definition of Unaligned Cellular Automata

Definition 2.2.13 (Unaligned Cellular Automaton). An unaligned cellular automa-
ton is completely defined by the 4-tuple (M,N , S,F), which contains

(i) a set of cells M ,

(ii) a neighbourhood mapping N ,

(iii) a set of possible states S and

(iv) a self-contained update rule F .

Given a compatible initial global state S0 – such that the update rule is compatible
with S0 given N –, an iteration of global states is defined. The resulting series of
state mappings describes the evolution of the cellular automaton.

Compare the formal definition respectively tuple-representation of ordinary cel-
lular automata ((M, I, I), (J, τ),S,F) with ((M, ∅),N ,S,F). The empty set ∅ indi-
cates that there exists no topology I for unaligned cellular automata.



Chapter 3

Topology of Cellular Automata

As discussed in Section 1.3.1 and Section 1.3.2 the cells of a cellular automaton are
usually embedded in some kind of environment. This is motivated on the level of
modelling by the idea that either cells represent discrete regular compartments of
space (a priori alignment) or that abstract entities are arranged as cells in a regular
grid-like fashion (a posteriori alignment). This concept of arrangement introduces a
more or less natural concept of proximity between cells and is the first topological
feature of a cellular automaton and – in the context of this thesis – also summarised
under the term topology I. For explicitly unaligned cellular automata there exists
no natural structure on the set of all cells. Accordingly the first topological feature
does not exist in this case. A second topological feature is introduced by the concept
of neighbourhoods, denoted topology II. This feature is always available for cellular
automata and constitutes one of the main principles of cellular automata since only
neighbouring cells can influence each other.

However the notation topology is not intended to imply the existence of a topol-
ogy as a mathematical structure in the context of open sets. Nevertheless we will
see in Section 3.3 that both topological features always generate a topology in the
mathematical sense on the set of cells.

The results of this section will be useful to discuss the connectivity between both
structural features and even to combine them if necessary.

Characterisation of Neighbourhoods. In Chapter 2 neighbourhoods were de-
fined in a mathematical fashion either as a composition of index operations (ordinary
cellular automata, Section 2.1) or as explicitly defined mapping (unaligned cellular
automata, Section 2.2).

Some basic characterisations of neighbourhoods respectively neighbourhood map-
pings like symmetry, reflexivity, locality and size were introduced. This paragraph
provides additional characterisations and notations in connection with neighbour-
hoods.

Definition 3.0.14 (Higher Order Neighbourhood). For a given neighbourhood map-
ping N the neighbourhood of order k of a cell m, denoted by N k(m) ⊆M , is a subset

35
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of M defined by: n ∈ N k(m) if and only if one of the following (exclusive) situations
applies.

n = m ∧ k = 0
n ∈ N (m) ∧ k = 1

∃ n1 : n ∈ N (n1), n1 ∈ N (m) ∧ k = 2{
∃ ni, i ∈ {1, . . . , k − 1} :

n ∈ N (n1), n1 ∈ N (n2), . . . , nk−1 ∈ N (m)

}
∧ k ≥ 3

else ∧ k =∞

(3.0.1)

Accordingly also the notations neighbour of order k and k-order neighbourhood map-
ping etc. are justified.

Definition 3.0.15 (Connectivity of Cells). If for any two cells m 6= n there exists
no number k ∈ N such that n ∈ N k(m) or m ∈ N k(n) we talk of a disconnected
neighbourhood structure or disconnected topology II.

Example 3.0.16. For example N : m 7→ {m} delivers a disconnected topology II.

If a neighbourhood mapping delivers a disconnected topology II, there are effec-
tively multiple independent cellular automata in operation.

Definition 3.0.17 (Inverse Neighbourhood). A cell n is called inverse neighbour of
a cell m if m is a neighbour of n i.e. if m ∈ N (n). The set N−1(m) := {n ∈ M :
m ∈ N (n)} is called inverse neighbourhood of m.

In some cases the inverse neighbourhood can be a tuple. This is at least possible
for ordinary cellular automata. A symmetric neighbourhood structure is charac-
terised by N (m) = N−1(m) (probably except for ordering).

The following definitions anticipate an important concept from graph theory
(compare Section 3.2). For a connected topology II and two cells ma,mb ∈M there
exists a k ∈ N and a (k − 2)-tuple of cells (m2, . . . ,mk−1) such that

m1 ∈ N (m2),m2 ∈ N (m3), · · · ,mk−1 ∈ N (mk) (3.0.2)

where either ma = m1 ∧mb = mk or mb = m1 ∧ma = mk.

Definition 3.0.18 (Directed Path). We call a tuple (m1, . . . ,mk) that satisfies Equa-
tion 3.0.2 a directed path from m1 and mk with length k−1. We also call (m) a path
with length 0 even when m /∈ N (m).

Definition 3.0.19 (Undirected Path). A tuple (m1, . . . ,mk) is called undirected
path between m1 and mk of length k − 1 if

m1 ∈ N (m2) ∨m2 ∈ N (m1), . . . ,mk−1 ∈ N (mk) ∨mk ∈ N (mk−1). (3.0.3)
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3.1 Vector Space Interpretation

The aim of this section is to equip the set of cells M with a vector space structure.
It is however obvious to use Z as the scalar “field” (cells are discrete entities), which
actually is a ring and thus renders the resulting structure – in a mathematically
correct notation – a module. For readability modules over Z are called vector spaces.

If the set of cells M is a vector space respectively module, the addition of cells
and the multiplication of cells with scalars as well as a neutral element and inverse
cells are required. This is however not very intuitive in the context of our perception
of cells.

Alternatively M can be interpreted as an affine space, which renders the cells
points of the affine space. Assume an abstract vector space (module) V and define
the difference mapping

· − · : M ×M → V : (m,n) 7→ m− n =: v. (3.1.1)

V := span{m−n : m,n ∈M} = span(M −M) is called difference space. The vector
space structure of V defines a relative position or alignment between each two cells.
If for example m1 − n1 = v1 = v2 = m2 − n2, we would say that m1 is aligned with
respect to n1 the same way as m2 is aligned with respect to n2.

Definition 3.1.1 (Alignment). If for each two cellsm,n ∈M there exists an abstract
element v from a vector space or module V such that the difference m − n can be
represented by v, V is called alignment and the cells are aligned according to V .

Note that the vector v := m − n points from the neighbour towards the cell.
Again this way, the orientation of the vector describes the flow of information. In
order to obtain the neighbour of a cell, the subtraction n = m− v must be used.

Definition 3.1.2 (Basis of an Alignment). Assume there exists a minimal set of
(abstract) elements B ⊂ V such that we can write for all m,n ∈M

m− n =
∑
b∈B

βbb where βb ∈ Z, b ∈ B. (3.1.2)

We then call B a (normal) basis of the vector space or module V over Z. The number
of elements in B is called dimension of V , written dimV .

Since V describes an alignment of the cells (first topological feature) it actually
does not simply exist but must either be defined during the process of modelling
(compare 1.3.1) or constructed in another way (compare Theorem 3.4.5).

Proposition 3.1.3 (Existence of an Alignment). For every cellular automaton with
a finite set of cells |M | <∞ there exists an alignment with dimension

dimV ≤
(
|M |

2

)
=

|M |!
2 · (|M | − 2)!

. (3.1.3)
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Proof. Assume that all vectors m − n are linearly independent. Then there exist(|M |
2

)
basis vectors.

Based on such an alignment of the cells, the neighbourhood structure can be
represented in a vector space notation. This means that the second topological
feature of a cellular automaton can be expressed using the first topological feature
as it was done for ordinary cellular automata.

Proposition 3.1.4 (Vector Representation of Neighbourhoods). Let V = M −M
be an alignment and N : M → T(M) a neighbourhood mapping. The neighbourhood
mapping can be identified with an element fromM×T(V ) respectively with a mapping
M → T(V ).

Proof. Since m− (n1, . . . , nkm) = (m− n1, . . . ,m− nkm) = (v1, . . . , vkm) ∈ T(V ) for
every m ∈M , T(M)×M can be identified with T(V )×M .

3.1.1 Ordinary Cellular Automata

The concept of a difference space respectively of an alignment obviously supersedes
a regular arrangement induced by an indexing as it was used in connection with
ordinary cellular automata.

Proposition 3.1.5 (Universality of the Difference Vector Space Approach). Assume
an indexed (I ⊂ Zd, I) set of cells M . The thereof resulting first topological feature
can be interpreted as an affine vector space with difference space V = M−M ∼= I−I
with dimV = d.

Proof. M is isomorphic to I, I as a subset of Zd can be equipped with a vector space
structure. Accordingly the vector space structure of I − I ⊂ Zd can be transferred
to V = M −M and there exist exactly d basis vectors.

Let N : M → Mk be a (ordered) neighbourhood mapping (for almost all cells)
and let V be an alignment. By observing for all cells m ∈ M the tuple of vectors
m − N (m) = (m − n1, . . . ,m − nk) =

(∑
b βb,1b, . . . ,

∑
b βb,kb

)
∈ V k, where b ∈ B

are basis vectors of V , the idea of uniform neighbourhoods can be generalised from
indexed cellular automata to cellular automata with vector space structure.

Definition 3.1.6 (Uniform Neighbourhood Structure). The neighbourhoods of a
cellular automaton with alignment V are called uniform or uniformly structured if
there exists a tuple (v1, . . . , vk) ∈ V k without repeating elements such that m −
N (m) = (v1, . . . , vk) for all m ∈M or equivalently if M → V k : m 7→ m−N (m) is a
constant mapping. (v1, . . . , vk) then determines the structure of all neighbourhoods.

Note that for a finite set of cells with uniform alignment (v1, . . . , vk) ∈ V k there
inevitably exists a cell m and a i ∈ {1, . . . , k} such that m − vi /∈ M . Hence
the conditions in Definition 3.1.6 can only be satisfied for cells with non-degraded
neighbourhoods.
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An alignment can be interpreted as an indexing or in other words a cellular au-
tomaton with vector space structure and uniform neighbourhoods can be interpreted
as an ordinary cellular automaton. However the geometry of a cellular automaton
with vector space structure can be richer than that of an indexed cellular automaton.

Lemma 3.1.7. Let V be an alignment, and assume a uniform neighbourhood map-
ping m − N (m) = (v1, . . . , vk) yielding a connected topology II (Definition 3.0.15).
Then (v1, . . . , vk) spans V . In other words, for each two cells m and n there exist
coefficients α1, . . . , αk ∈ Z such that m− n =

∑k
i=1 αivi. Accordingly the dimension

of V satisfies dimV ≤ k and it is possible to construct a basis B from (v1, . . . , vk)
such that B ⊆ {v1, . . . , vk}.

Proof. Uniformity: m−N (m) = (v1, . . . , vk) independently of the choice of m ∈M .
Connectivity: for each two m,n ∈M there exists a directed path (Definition 3.0.18)
between m and n. Consequently a representation m−n =

∑k
i=1 αivi ∈ V is possible.

Theorem 3.1.8 (Alternative Formulation of Ordinary Cellular Automata). Aligned
cellular automata with uniform connected neighbourhood correspond to ordinary cel-
lular automata and vice versa.

Proof. It remains to show that for an existing alignment V and a connected uniform
neighbourhood mapping with m−N (m) = (v1, . . . , vk) for all m ∈M , an equivalent
indexing (I, I) with I ⊂ Zd where d ≤ k <∞ and a relative index tuple J such that
I−1(I(m) + J) = (m− v1, . . . ,m− vk) can be found.

According to Lemma 3.1.7 we can find a basis B with d := |B| = dimV ≤ k.
Choose a m ∈ M and define I(m) := 0 ∈ Zd. Identify bi ∈ B with the unit
vector ei ∈ Zd for all i = 1, . . . , d. Since every n ∈ M can be represented as
n = m−

∑d
i=1 βibi, define I(n) :=

∑d
i=1 βiei. Assume vl =

∑d
i=1 αibi for l = 1, . . . , k,

define the elements of the relative index tuple J ∈ (Zd)k as jl :=
∑d

i=1 αiei where
l = 1, . . . , k.

3.1.2 Velocity Models

If the state of a cell contains a tuple of values for which each is associated with one
of the neighbours, we talk of a velocity model.

Example 3.1.9. Assume that every cell has k = 4 neighbours N (m) =
(m1, . . . ,m4) and takes a state in S = R4 such that S(m) = (s1, . . . , s4). Every
element of the state-vector is associated with a vector from m − N (m). For
example s1 describes the velocity (or a scaling thereof) in direction m−m1.

Instead of regarding a k-state-tuple (R4 in Example 3.1.9), it is possible to talk of
k subcells with scalar states (e.g. 4 subcells with state-space R). Then each subcell is
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associated with one of the k neighbours respectively with one of the k lattice velocities
vi := mi −m [32, p. 89]. We will however avoid formulations based on subcells and
use state-tuples instead.

If there exists a norm on the difference space, a so-called single-speed model [32,
p. 89] is characterised by ‖vi‖ = ‖vj‖ for all i, j ∈ {1, . . . , k}. Often the neigh-
bourhood structure respectively the lattice velocities are used for classification. For
example D2Q4, D3Q27, etc. (notation introduced by Quin [32]) describe the dimen-
sion of a regular lattice and the number of neighbours respectively lattice velocities.

Definition 3.1.10 (Lattice Tensor, compare [32, p. 89]). Let d be the dimension of
the difference space V = M −M and let vij denote the j-th coordinate of the i-th
“neighbourhood” vector vi = m − mi (of m) with respect to a certain basis. The
lattice tensor (field) of rank n is defined as L(m) = (l

(m)
α1...αn)α1,...,αn∈{1,...,d} by

l(m)
α1...αn =

k∑
i=1

viα1 · · · viαn . (3.1.4)

Definition 3.1.11 (Isotropy, compare [32, p. 88]). A tensor is called isotropic if
it is invariant with respect to arbitrary orthogonal transformations (rotations and
reflections) i.e. if the components lα1...αn are the same for every orthogonal basis.

Isotropy of lattice tensors plays an important role in multi-scale analysis.

[Usually regular lattices are used such that] [t]hese [lattice] tensors are
[equal for all cells and] invariant with respect to elements of the associ-
ated finite symmetry group but in general not with respect to arbitrary
orthogonal transformations (including continuous rotations). A sufficient
condition for ‘reasonable’ macroscopic equations encloses the isotropy of
lattice tensors . . . of 2nd and 4th rank. The lattice tensors with odd rank
vanish because of the symmetry of the lattices. [32, p. 88]

Hasslacher (1987) has shown that models with several different non-
vanishing lattice speeds may be equivalent to models with a single speed
but larger symmetry group. [32, p. 125]

[G]eneralized lattice tensors

gα1...αn =
k∑
i=1

wiviα1 · · · viαn . (3.1.5)

occur naturally in the multi-scale analysis of multi-speed models. The
weights correspond to different occupation numbers for the different speeds
in the global equilibrium with vanishing macroscopic velocities. [32,
pp. 93-94]
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3.2 Interpretation as Graphs

This section interprets the topology of cellular automata and especially the second
topological feature as graphs. A complete introduction to graph theory can be found
in [22] for example or in any other introductory work on graphs. In literature there
exist however different mathematical descriptions for graphs.

Definition 3.2.1 (Graph [22]). A graph is a triple G = (M,E, p) where M is the
set of vertices and E is the (abstract) set of edges. The mapping p : E →M ×M is
called incidence mapping and indicates the (incident) connections between vertices
of the graph.

To differentiate between directed and undirected edges the notations p : e 7→
(m1,m2) respectively p : e 7→ {m1,m2} could be used. We however regard an
undirected graph as a special case of a directed graph.

Definition 3.2.2 (Simple Graph and Multigraph [22]). A simple graph is a graph
whose incidence mapping is injective. A graph whose incidence mapping is not
injective is called multigraph, because two vertices can be connected multiple times.

For a simple directed graph we can assume that E ⊆M ×M and p = idE, which
is a much more intuitive representation and allows the notation G = (M,E).

Definition 3.2.3 (Weighted Graph, compare [22]). A graph is called weighted if
there exists a mapping w : E → N. This motivates the notation G = (M,E, p, w).

For the investigations in this thesis weights in N are sufficient.
The fundamental substance for the investigations on cellular automata using

graphs is framed in the following theorem.

Theorem 3.2.4 (Graph Representation of Topology II). The neighbourhood struc-
ture of a cellular automaton (second topological feature) can be interpreted as a di-
rected graph.

Proof (Unordered Neighbourhoods). Assume that the neighbourhood structure of a
cellular automaton is defined through a neighbourhood mapping N : M → P(M) :
m 7→ N (m) = {n1, . . . , nkm}. Define E :=

⋃
m∈M{(n,m) : n ∈ N (m)}, which is a

subset of M ×M and thus renders G := (M,E) a simple directed graph.

Proof (Ordered Neighbourhoods). For ordered neighbourhoods on the other hand
N (m) = (n1, . . . , nkm) ∈ T(M). Define E :=

⋃
m∈M{(ni,m, i) : i = 1, . . . , km} and

w : e = (n,m, i) 7→ i. If a cell is contained multiple times within a neighbourhood we
can not identify E with a subset of M ×M . In this case p : e = (n,m, i) 7→ (n,m)
is not injective and we obtain a multigraph.
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In the case of ordered neighbourhoods the edges are weighted with the index
of the corresponding neighbouring cell within the neighbourhood. For example if
N (m) = (n1, . . . , nk), the edge (ni,m) has the weight i where i ∈ {1, . . . , k}.

If it is required that a cell is contained multiple times within a neighbourhood,
but we do not care for ordering, the mapping w can simply be ignored. An undirected
graph corresponds to a cellular automaton with symmetric neighbourhoods.

Note that directed edges point from the neighbours towards the cell! The reason
for this is that the direction represents the flow of information. We can conclude
that the concepts of graphs and neighbourhood mappings are exchangeable.

3.2.1 Adjacency Mappings of Graphs

As mentioned before there exist different mathematical methods for describing the
connections among vertices. This section deals with the concept of adjacency matri-
ces respectively adjacency mappings and introduces adjacency tensors.

Let M be the set of all vertices. The basic idea of an adjacency matrix is the
mapping

A : M ×M → {0, 1} : (m1,m2) 7→ x, (3.2.1)

indicating whether there is a connection from m1 to m2 (x = 1) or not (x = 0). We
make the convention that the first argument is always the source of a connection
and the second argument is the end point. Undirected graphs are characterised by
symmetric adjacency mappings: A(m,n) = A(n,m) for m,n ∈M .

A multigraph can be represented by letting A(m1,m2) be the number of connec-
tions between m1 and m2. For graphs with weighted edges (for our purpose weights
in N are sufficient) the adjacency mapping is also of type

A : M ×M → N : (m1,m2) 7→ x, (3.2.2)

with the difference that x indicates the weight of the connection from m1 to m2.
Consequently an adjacency mapping cannot fully represent a graph which is not
simple and weighted at the same time.

Definition 3.2.5 (Adjacency Mapping). We call A in all forms

A(m1,m2) := IE
(
(m1,m2)

)
(3.2.3)

A(m1,m2) := |{e ∈ E : p(e) = (m1,m2)}| (3.2.4)

A(m1,m2) :=

{
w
(
(m1,m2)

)
(m1,m2) ∈ E

0 (m1,m2) /∈ E (3.2.5)

an adjacency mapping.

3.2.1.1 Matrix Representation

If the vertices are indexed – not to be confused with an indexing in the sense of
ordinary cellular automata – with index set I = {1, . . . , |M |}, we obtain an index
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mapping I : M → I analogously to ordinary cellular automata. Consequently an
alternative version of the adjacency mapping is

A ◦ (I−1, I−1) : I × I →M ×M → N : (i, j) 7→ (mi,mj) 7→ aij . (3.2.6)

Meaning that there is a directed connection from vertex mi to vertex mj if aij > 0.
A vertex with index i respectively the index i itself can be identified with the

basis vector ei of the |M |-dimensional vector space with scalar field {0, 1}. This
yields a matrix representation A = (aij)i,j∈I ∈ N|M |×|M | = NI×I of the mapping A.

A :



M ×M → {0, 1}|M | × {0, 1}|M | → N

(mi,mj) 7→


 δ1,i

...
δ|M |,i

 ,

 δ1,j
...

δ|M |,j


 7→

 δ1,i
...

δ|M |,i


T

A

 δ1,j
...

δ|M |,j

 = aij

(3.2.7)

Definition 3.2.6 (Adjacency Matrix, compare [22]). A is called adjacency matrix.

According to our convention, a row (constant first index i) of the adjacency
matrix A determines the outgoing connections to other vertices.

For an existing indexing I = {1, . . . , |M |} (compare basis) the adjacency mapping
A ∈ NM×M can be identified with the adjacency matrix A ∈ NI×I .

3.2.1.2 Tensor Representation

Since for an ordinary cellular automaton the cells, which can be represented as ver-
tices, feature a multidimensional indexing I ⊂ Zd, it is in our case practical to
describe adjacency mappings using multidimensional arrays. Multidimensional ar-
rays can be interpreted using the formalism of tensors. A tensor per se is independent
of the basis. The representation of a tensor with respect to a certain basis is a multi-
dimensional array. We will however refer to multidimensional arrays as tensors with
respect to a certain basis/indexing.

Definition 3.2.7 (Adjacency Tensor). Assume there exists a d-dimensional indexing
with index set I ⊂ Zd of the vertices m ∈ M of a graph. The tensor representation
A = (aij)i,j∈I ∈ NI×I of A with respect to the indexing I is defined through

A : M ×M → N : (mi,mj) 7→ aij . (3.2.8)

Accordingly for a given indexing I the tensor representation A ∈ NI×I can be
identified with the adjacency mapping A ∈ NM×M . We also call A adjacency tensor
with respect to I and use the notation A(i, j).
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3.2.1.3 Outlook

Usually matrices can be interpreted as linear mappings and tensors can be interpreted
as multilinear mappings. Especially for weighted graphs this perception arises some
questions: How is the underlying vector space defined (compare Section 3.1)? Could
Z be a valid scalar field? What is the linear combination of two indices respectively
vertices? In which sense can – if at all – A be interpreted as a bilinear mapping?
This is also related to the perception of a tensor as either a multidimensional array
or as a multilinear mapping.

If the introduction of dual spaces M∗ respectively I∗ can be motivated, an adja-
cency tensor can be interpreted as being of type (1, 1) and as an element ofM∗⊗M re-
spectively I∗⊗I. The components of the tensor would then be written as aij = ai1...idj1...jd

.

3.2.1.4 Characterisation of Graphs and Adjacency Mappings

Some of the following definitions are motivated by characteristics of matrices or
tensors. If a property depends on the indexing of the vertices the concept of adjacency
tensors together with the indexing must be used in the definition. For properties that
are not influenced by the indexing of the vertices adjacency mappings can be used
in the definition and we can talk of a graph-property, which is of course independent
of the indexing.

Definition 3.2.8 (Composite Adjacency Mappings). The decomposition and addi-
tion of adjacency mappings is defined as A = B + C + D + · · · ∈ NM×M with the
requirement B(m,n) > 0⇒ C(m,n) = 0,D(m,n) = 0, . . . .

Definition 3.2.9 (Symmetric Graph). Let us call a graph or adjacency mapping
symmetric if A(m,n) > 0 ⇔ A(n,m) > 0 for all m,n ∈M .

Symmetric means that if n is a neighbour of m then m is a neighbour of n. For
unordered neighbourhoods respectively nonweighted graphs the greater sign in Defi-
nition 3.2.9 can be replaced with an equal sign. Note that Definition 3.2.9 supersedes
the use of symmetric as a geometric property of a neighbourhood in the context of
indexed cellular automata (compare Definition 2.1.9).

Furthermore a directed graph with symmetric adjacency mapping can be inter-
preted as an undirected graph.

Definition 3.2.10 (Diagonal Structure of Adjacency Tensors). Assume that the
vertices of a graph are indexed with a d-dimensional index set I ⊂ Zd. An adjacency
tensor is called diagonally structured if A(i, j) = A(i+ k, j + k) for all k ∈ Zd such
that i+ k ∈ I and j + k ∈ I where i, j ∈ I.

Definition 3.2.11 (Regularity of Graphs, compare [22]). A weighted (directed)
graph respectively the according adjacency mapping is called {1, . . . , k}-regular, if
(at least) one of the following equal conditions is satisfied:
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(i) Every vertex has an in- and outdegree of k and for every vertex m ∈M the sets
{A(m,n) : A(m,n) > 0, n ∈ M} as well as {A(n,m) : A(n,m) > 0, n ∈ M}
are permutations of respectively equal to the set {1, . . . , k}.

(ii) There exists an indexing such that for every index i ∈ I the tuple (A(i, j) :
A(i, j) > 0, j ∈ I) and for every index j ∈ I the tuple (A(i, j) : A(i, j) > 0, i ∈
I) are permutations of (1, . . . , k).

In the case of an adjacency matrix this structural feature can expressed as: Every
column and every row must contain each of the values {1, . . . , k} exactly once. The
remaining elements of the matrix are zero-valued.

Definition 3.2.12 (Not fully applying Properties of Graphs). (i) For a property
we use the prefix almost to indicate that it is not valid for all vertices M or
indices I but only for a previously defined subset M◦ ⊂M respectively I◦ ⊂ I.

(ii) For a property we use the prefix partially to indicate that it is not valid for
the adjacency mapping A but for a certain part B of the adjacency mapping
A = B+ C + . . . . The same applies to tensors representations A+B+C + . . .

It is important to note that if a property of an adjacency mapping or tensor
is valid partially then there exist additional connections that render the property
unsatisfied. If those additional connections would not exists, the property would
apply.

3.2.1.5 Distance Mappings

Another concept – similar to adjacency mappings – for describing the connections
among the vertices of a graph are distance mappings.

Definition 3.2.13 (Distance Mapping [22]). The distance mapping D : M×M → N
describes the smallest number of edges that connects m to n. If it is not possible to
reach n starting from m we define D(m,n) =∞.

For a cellular automaton with neighbourhood mapping N and distance mapping
D,

D(m,n) = min {k ∈ N \ {0} : n ∈ N k(m)}. (3.2.9)

If n ∈ N (m) then D(m,n) = 1. D(m,n) = ∞ ∧ D(n,m) = ∞ means that the
prevailing neighbourhood structure is disconnected (Definition 3.0.15).

Like adjacency mappings also distance mappings feature a matrix or tensor repre-
sentation given an existing indexing of the vertices. For weighted graphs the distance
mapping is problematic since it gives no information about the weights of the edges.

3.2.2 Further Concepts of Graph Theory

This section mentions further concepts of graph theory which may be useful for
characterising the topology (second topological feature) of cellular automata.
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3.2.2.1 Neighbourhood Concept for Graphs

Since adjacency mappings and also distance mappings feature two input arguments,
the idea of inverse neighbours (Definition 3.0.17) plays an important role for these
techniques.

The term neighbourhood is used in graph theory with a slightly differing meaning.

Definition 3.2.14 (Neighbourhood Subgraph [22]). The neighbourhood of a vertex
is the set of vertices connected to the vertex and the vertex itself. For each vertex the
neighbourhood and the corresponding edges between the vertex and the neighbours
and the edges among the neighbours form a subgraph, the neighbourhood subgraph.

The neighbourhood subgraph corresponds to the graph that is induced by the
original graph on the neighbourhood [22].

It is very important to note that in contrast to a neighbourhood in the sense of
cellular automata, a neighbourhood subgraph also contains information about the
inverse neighbours of a vertex and the connections among the neighbours of the
vertex.

Ordinary cellular automata feature a unique neighbourhood structure for (al-
most) all cells. This feature can be formalised for graphs by requiring that the
neighbourhood subgraphs of (almost) all vertices are isomorphic.

3.2.2.2 Isomorphy

In graph theory the concept of isomorphy is defined as:

Definition 3.2.15 (Graph Isomorphy [22]). Two graphs are called isomorphic to
each other if there exists a bijective mapping between the vertices of both graphs
such that two vertices of the first graph are connected if and only if the corresponding
vertices of the second graph are connected in the same way (weight and direction).

This property can also be formulated using adjacency mappings or tensors:

(i) Two graphs are isomorphic if and only if there exists a bijective mapping
f : M1 → M2 and the adjacency mappings A1 and A2 satisfy A1(m,n) =
A2(f(m), f(n)) for all m,n ∈M1.

(ii) Two graphs are isomorphic if and only if there exist index mappings with a
common index set I and the corresponding adjacency tensor representations
A1 ∈ NI×I and A2 ∈ NI×I are equal.

(iii) Two graphs with index mappings with common index set I are isomorphic if and
only if the adjacency tensor representations (A1, A2 ∈ NI×I) are permutation
similar.

As mentioned before, the concept of isomorphy can also be applied to neigh-
bourhood subgraphs. The following definition formalises the feature of isomorphic
neighbourhood subgraphs.
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Definition 3.2.16 (Local Isomorphy of Graphs [22]). A graph G is called locally
isomorphic to a graph N if the neighbourhood subgraphs of all vertices of G are
isomorphic to N .

Furthermore since the neighbourhood structure of a cellular automaton can be
identified with a graph, the concept of a uniform neighbourhood structure can be
interpreted as isomorphy of all neighbourhood subgraphs.

LetMa andMb be the sets of vertices respectively cells of two nonweighted graphs
respectively cellular automata with unordered neighbourhoods denoted a and b. The
cellular automata have the same second topological feature if and only if there exists
a bijective mapping between Ma and Mb such that

∀m,n ∈Ma : n ∈ Na(m) ⇐⇒ f(n) ∈ Nb(f(m)). (3.2.10)

Especially translations can be regarded as isomorphisms.

3.2.2.3 Cycles and Cliques

Three or more vertices form an undirected cycle when there exists an undirected
path among them such that vertex 1 is connected with vertex 2, vertex 2 is connected
with vertex 3, and so forth and the last vertex is connected with the first vertex [22].
Compare this concept with paths as in Definition 3.0.19.

Definition 3.2.17 (Representation of Graph Cycles). A directed cycle or sometimes
just cycle is characterised by a tuple of vertices (m1, . . . ,mk) together with a tuple
of weights (> 0)

(α12, α23, . . . , α1k) (3.2.11)

where αij describes the weight of the connection from mi to mj . A undirected cycle
can be characterised by a tuple of vertices (m1, . . . ,mk) together with a tuple(

(α12, α21), (α23, α32), . . . , (αk1, α1k)
)

(3.2.12)

describing the weights of the connecting edges with respect to their direction. In this
case at least one of αij and αji is always greater than 0.

According to this definition, undirected cycles are invariant under change of di-
rection and starting point. We only observe simple cycles, which means that a vertex
can only be contained once in a cycle.

Definition 3.2.18 (Acyclic Graph [22]). A graph that does not contain any (di-
rected!) cycle is called acyclic graph.

Definition 3.2.19 (Complete Graph [22]). A graph or subgraph is complete if there
exists a (in the case of a directed graph – bidirectional) direct connection between
each two nodes.

Definition 3.2.20 (Clique [22]). For an undirected graph a maximal complete set
of vertices forms a clique.
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3.2.3 Graph Representation of Ordinary Cellular Automata

According to Theorem 3.2.4 a neighbourhood mapping is equivalent to an adjacency
mapping. Because the neighbourhoods in indexed cellular automata – disregarding
an eventual third topological feature – are described through a relative index tuple
J = (j1, . . . , jk) and the corresponding index translation TJ : I → (Zd)k : i 7→ i+J =
(i+ j1, . . . , i+ jk) the adjacency tensor A : I × I → N (with respect to the indexing
of the cellular automaton I) is defined by

A(i, i+ j) =

{
α where α ∈ {1, . . . , k} ⇐⇒ j = jα
0 ⇐⇒ j /∈ J (3.2.13)

for all i ∈ I and j ∈ Zd such that i+ j ∈ I.
The inverse neighbourhood of a cell is given by i − J = (i − j1, . . . , i − jk).

Consequently for i ∈ I and j ∈ Zd such that i− j ∈ I the following must apply:

A(i− j, i) =

{
α where α ∈ {1, . . . , k} ⇐⇒ j = jα
0 ⇐⇒ j /∈ J (3.2.14)

Definition 3.2.21. For ordinary cellular automata, indices with nondegraded neigh-
bourhoods are summarised as I◦ = {i ∈ I : i+ J ⊆ I} (compare Definition 2.1.16).
Indices with nondegraded inverse neighbourhood are summarised as ◦I = {i ∈ I :
i− J ⊆ I}.

The following proposition characterises the adjacency mapping of an indexed
cellular automaton without distortion of the lattice.

Proposition 3.2.22 (Adjacency Mapping for Indexed Cells without Topology III).
For an indexed cellular automaton with indexing I and J = (j1, . . . , jk) without
distortion of the lattice the adjacency mapping A satisfies the following conditions.

(i) The tensor representation of A with respect to I is diagonally structured.

(ii) A is almost {1, . . . , k}-regular.

Proof. (i) Let (i, j) ∈ I × I and h ∈ Zd such that i + h ∈ I and j + h ∈ I. If
A(i, j) = α for an α ∈ {1, . . . , k}, j can be written as j = i+ jα. Accordingly
A(i+ h, j + h) = A(i+ h, i+ h+ jα) which is equal to α since (i+ h) + jα =
j+h ∈ I. If A(i, j) = 0 then j /∈ i+ J and accordingly j+h /∈ i+h+ J which
means A(i+ h, j + h) = 0.

(ii) The following proof depends on the indexing of the vertices/cells while the
concept of regularity actually does not i.e. is permutation invariant. Let i ∈ I◦.
Since i + jα ∈ I we have α ∈ {A(i, j) : j ∈ I} for all α ∈ {1, . . . , k}. If
A(i, j) /∈ {0, 1, . . . , k} for a j ∈ J , A can not be a valid representation of the
neighbourhood structure. If A(i, j1) = A(i, j2) 6= 0 for j1, j2 ∈ I with j1 6= j2
we would have j1 = i + jα and j2 = i + jβ with jα 6= jβ but α = β. The
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equivalent statements can be made for j ∈ ◦I. According to Definition 3.2.11
(ii) A : I × I → N is almost {1, . . . , k}-regular.

When the lattice is distorted through a generalised index translation Tτ,J : I →
Ik with τ : I × Zd → I, the adjacency mapping can be written as A + B where
B : M ×M → N represents the connections that are not defined by the index tuple
J . We could say that the neighbourhood structure of the cellular automaton is
partially represented by A. In other words B additionally defines the connections
of vertices/cells which would otherwise have degraded neighbourhoods. We can also
say that A represents the second topological feature of the cellular automaton and
B represents the third topological feature.

This notation can only be used under the condition that A(m,n) > 0 ⇒
B(m,n) = 0, which is somehow related to the requirement that a default ordered
neighbourhood can contain a cell only once. This requirement however excludes
some configurations with a combination of reflective boundary conditions and reflex-
ive neighbourhoods. In this case a cell could be contained within a neighbourhood
more than once.

Proposition 3.2.23 (Adjacency Mapping for Indexed Cells with Topology III).
For an indexed cellular automaton with indexing I, index tuple J = (j1, . . . , jk)
and suitable (see discussion above) τ : I × Zd → I the adjacency mapping can be
decomposed as A+ B in a way that the following conditions are satisfied.

(i) The tensor representation of A with respect to I is diagonally structured.

(ii) A+ B is {1, . . . , k}-regular.

Proof. (i) See proof of Proposition 3.2.22.

(ii) Because τ is defined in an appropriate way, every cell has the same number of
(equally indexed) neighbours and inverse neighbours.

In other words the adjacency mapping is {1, . . . , k}-regular and the adjacency
tensor is partially diagonally structured.

3.2.4 A Different Graph Representation

It is also possible to embed the iterative levels of a cellular automaton into a single
graph by observing the nodes T ×M and the edges

E :=
⋃

t∈T,m∈M

⋃
n∈N (m)

{(
(t− 1, n), (t,m)

)}
. (3.2.15)

This graph representation is applied in Section 5.2. A graphical representation can
be found in Figure 5.1. This section only serves the purpose of completeness.



50 3. TOPOLOGY OF CELLULAR AUTOMATA

3.3 Interpretation as Topological Spaces

For cellular automata with indexed cells there exists a natural concept of proxim-
ity (first topological feature). Also a neighbourhood mapping (second topological
feature) introduces a proximity measure. Both concepts can imply a topological
structure in the sense of open sets on the set of cells.

To avoid confusion we will not use the term neighbourhood as a concept from
the field of topology. However a neighbourhood filter on M can be constructed with
the neighbourhoods – induced by a neighbourhood mapping – as subbase. Define
N′ := {N (m) ∪ {m} : m ∈M}.

Definition 3.3.1 (Directed Neighbourhood Topology). For a neighbourhood map-
ping N : M → P(M) the directed neighbourhood topology is defined as the smallest
topology containing N′ as open sets.

Proposition 3.3.2 (Directed Neighbourhood Topology). The directed neighbour-
hood topology O′ is not necessarily the discrete topology on M .

Proof. Assume m is not part of the neighbourhood of any other cell and that N (m)
contains other cells apart from m. Accordingly m is only contained in N (m)∪ {m}.
m can not be obtained as a intersections of elements from N′ and therefore is not an
open set.

Define N := {N (m) ∪ {m} ∪ {n : m ∈ N (n)} : m ∈M}.

Definition 3.3.3 (Neighbourhood Topology). For a neighbourhood mapping N :
M → P(M) the neighbourhood topology O is defined as the unique topology which
is generated by N as subbase.

Proposition 3.3.4 (Neighbourhood Topology). The topology O is not necessarily
the discrete topology.

Proof. Assume m has only one neighbour n and is at most a neighbour of n. For all
sets N in N the following is true: m ∈ N ⇒ n ∈ N . m can not be obtained from
intersections of elements from N.

A measure for proximity based on the second topological feature is self-evident.

Definition 3.3.5 (Coarse Neighbourhood Metric). For a given neighbourhood map-
ping N : M → P(M) the coarse neighbourhood metric is defined as

d′N : (m,n) 7→


0 m = n
1 m ∈ N (n) ∨ n ∈ N (m)
2 m /∈ N (n) ∧ n /∈ N (m)

. (3.3.1)
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It is actually necessary to explicitly define d′N (m,m) := 0, m ∈ M , because for
reflexive neighbourhoods m ∈ N (m) and for nonreflexive neighbourhood mappings
m /∈ N (m). It is however easy to prove that d′N is a metric.

Another possible distance measure describes the number of neighbourhoods that
has to be traversed in order to reach one cell starting from another.

Definition 3.3.6 (Neighbourhood Metric). For a given neighbourhood mapping
N : M → P(M) the neighbourhood metric dN (n,m) is defined as the minimum of
the lengths of all undirected neighbourhood paths between m and n. If there exists
no undirected path between m and n we define dN (n,m) :=∞.

Let (n1, . . . , nk) be the undirected path with minimum length between n and m
with n 6= m then

dN (n,m) =

k−1∑
i=1

d′N (ni, ni+1) = k − 1. (3.3.2)

Furthermore for arbitrary n and m in M

dN (n,m) ≤ min
{
k ∈ N : n ∈ N k(m) ∨m ∈ N k(n)

}
(3.3.3)

and if the neighbourhood structure is disconnected it can happen that dN (n,m) =∞.
In accordance to Definition 3.2.13, for each two cells m,n ∈M

dN (m,n) ≤ D(m,n). (3.3.4)

We have to show that dN is a metric on M : Symmetry follows since undirected
paths are observed. Identity is clear. The triangle inequality follows from the mini-
mality of the lengths of all connecting paths.

Because for 0 < ε < 1 the ε-ball with centre m is equal to {m} for d′N and dN ,
both metrics induce the discrete topology on M .

Another way to introduce a topology based on the second topological feature
is provided by topological graph theory, which embeds the vertices and edges on a
surface.

For indexed cells different metrics can be transferred from I ⊂ Zd to M by
interpreting I : M → I as a continuous mapping.

dI,max(mi,mj) = max
α∈{1,...,d}

|iα − jα| (3.3.5)

dI,sum(mi,mj) =
∑

α∈{1,...,d}

|iα − jα| (3.3.6)

dI,2(mi,mj) =
( ∑
α∈{1,...,d}

|iα − jα|2
) 1

2 (3.3.7)

All these metrics generate the discrete topology on M .
As discussed in Proposition 2.1.10 if the neighbourhood structure of an indexed

cellular automaton (topology II) is described through a metric on I (topology I), there
always exists an index translation that delivers the same neighbourhood structure.
A neighbourhood defined through a metric is always reflexive and symmetric.



52 3. TOPOLOGY OF CELLULAR AUTOMATA

3.4 Implicit Alignment of Unaligned Cellular Automata

For aligned cellular automata with uniform (connected) neighbourhood structure –
i.e. ordinary cellular automata (Theorem 3.1.8) – the neighbourhood mapping can
be formulated using relative neighbourhood relations. In other words, for aligned
cellular automata with uniform connected neighbourhood structure the second topo-
logical feature can be formulated based upon the first topological feature.

Conversely for a given neighbourhood mapping which satisfies some kind of uni-
formity it may be possible to find an alignment, for which the given neighbourhood
structure is uniform and connected such that also in this case the second topological
feature can be formulated using the first topological feature.

Example 3.4.1. Assume an unaligned cellular automaton with a configuration
that makes the new state of a cell dependent on the state of only one other cell
in a way such that every cell is the neighbour of another cell. We could align
the cells on a one dimensional index set I ⊆ Z and use the relative index tuple
(−1) = −1 =: J to indicate that for a cell mi the neighbouring cell has index
i− 1.

This section aims at finding and characterising certain unaligned cellular au-
tomata which can be interpreted as ordinary cellular automata. For an unaligned
cellular automaton to be interpreted as an indexed cellular automaton it is crucial
that the neighbourhoods of all cells are somehow uniformly structured. Some cells
with degraded neighbourhoods may be excepted from this requirement.

3.4.1 Graph Theoretic Approach

In Section 3.2 the necessary tools for interpreting the second topological feature
of cellular automata in the context of graphs were presented. Section 3.2.3 provides
especially a characterisation of ordinary cellular automata using adjacency mappings
and tensors. Based thereon we can find conditions under which an unaligned cellular
automaton can be interpreted as an ordinary cellular automaton.

Theorem 3.4.2 (Characterisation of Ordinary Cellular Automata without Topology
III based on the Adjacency Mapping). If for an unaligned cellular automaton with
ordered neighbourhoods there exists a d-dimensional indexing of the cells with index
set I such that

(i) the adjacency tensor with respect to I is diagonally structured and

(ii) the adjacency mapping is almost {1, . . . , k}-regular

then the cellular automaton can be interpreted as an ordinary cellular automaton with
index set I and relative index tuple J = (j1, . . . , jk) as defined in the proof.
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Proof. Let i ∈ I◦ ⊂ I be the indices for which (A(j, i) : A(j, i) > 0, j ∈ I) is a
permutation of {1, . . . , k}. Almost every index satisfies this requirement. Because
A is diagonally structured J̃ = {j ∈ Zd : i + j ∈ I,A(i + j, i) > 0} is the same for
all i ∈ I◦. Furthermore J̃ can be ordered as J = (j1, . . . , jk) in a way such that
A(i+ jα, i) = α for α ∈ {1, . . . , k} and for all i ∈ I◦.

If the index mapping is denoted I, the original neighbourhood mapping satisfies
N (mi) = I−1 ◦ TJ ◦ I(mi) = (mi+j1 , . . . ,mi+jk). Cells with I(m) /∈ I◦ have a
degraded neighbourhood. For almost all cells the neighbourhood size is k.

Theorem 3.4.3 (Characterisation of Ordinary Cellular Automata with Topology
III based on the Adjacency Mapping). If for an unaligned cellular automaton with
ordered neighbourhoods there exists a d-dimensional indexing with index set I such
that

(i) the adjacency tensor is partially diagonally structured with k diagonals1 and

(ii) the adjacency mapping is {1, . . . , k}-regular

then the cellular automaton can be interpreted as an indexed cellular automaton with
index set I, relative index tuple J = (j1, . . . , jk) as defined in the proof and lattice
distortion τ : I × Zd → I also as defined in the proof.

Proof. Let A be the diagonally structured part of the adjacency tensor and B the
remaining part. We can apply Theorem 3.4.2 on A and obtain a relative index tuple
J = (j1, . . . , jk). Let i ∈ I. For i+ jα /∈ I where jα ∈ J (respectively α ∈ {1, . . . , k})
there exists j ∈ I with B(j, i) = α because A + B is {1, . . . , k}-regular. Define
τ(i, jα) = j.

The index mapping I is again defined through the given indexing I and the
original neighbourhood mapping satisfies N (mi) = I−1 ◦ Tτ,J ◦ I(mi) where Tτ,J :
I → Ik : i 7→ (i1, . . . , ik) with

iα =

{
i+ jα i+ jα ∈ I
τ(i, jα) i+ jα /∈ I

α ∈ {1, . . . , k}.

The existence of an appropriate indexing is a prerequisite in Theorem 3.4.2 and
Theorem 3.4.3. In particular an index mapping of arbitrary dimension is needed such
that the adjacency tensor with respect to this indexing is diagonally structured. Both
theorems can be reformulated in a way that does not explicitly include a distinct
index mapping as precondition. For simplicity only the version without distortion of
the lattice i.e. with degraded neighbourhoods (Theorem 3.4.2) is reformulated here.

Corollary 3.4.4. If for an unaligned cellular automaton with ordered neighbourhoods
1This is necessary to ensure that the remainder of the adjacency mapping does not define an

additional nonregular neighbour for every cell.
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(i) the adjacency mapping has a tensor representation that is permutation similar
to a diagonally structured tensor and

(ii) the adjacency mapping is almost {1, . . . , k}-regular

then the cellular automaton is equivalent to an ordinary cellular automaton.

Proof. This corollary is actually equivalent to Theorem 3.4.2 with the only difference
that the existence of an appropriate indexing is a consequence of the permutation
similarity in (i).

How can an appropriate indexing, which is determined by a dimension d, an
index set I ⊂ Zd and an (bijective) index mapping I : M → I be found? Is
there a method to test if an adjacency tensor is permutation similar to an arbitrary
diagonally structured tensor?

3.4.1.1 Outlook: Technical Implementation

In the most common form, the adjacency mapping is formulated as an adjacency ma-
trix, which corresponds to a one dimensional indexing with I = {1, . . . , |M |}. As we
know, regularity is invariant under permutation (index transformation). Accordingly
the task is to search for an index transformation that yields a diagonally structured
adjacency tensor.

Possible technical approaches:

• minimisation of the difference of the indices of all connected vertices

• graph canonisation, lexicographical ordering

• analysis of the elements of the adjacency matrix separately for every weight,
identification of symmetric part

3.4.1.2 Outlook: Unordered Neighbourhoods

Assume an unaligned cellular automaton with update rules that do not depend on
the ordering of cells within the neighbourhoods and a neighbourhood mapping given
as a function N : M → P(M) where the neighbourhood size is uniform for all cells.
Accordingly the adjacency mapping is given as a function A : M ×M → {0, 1},
which contains much less information than the corresponding adjacency mapping
A : M ×M → {1, . . . , k} from Section 3.4.1.

Nevertheless it should be sufficient to find a diagonally structured tensor repre-
sentation of the k-regular adjacency mapping to show that the cells can be aligned
on a index set and that there exists an index translation that delivers the original
neighbourhood mapping.

Does there exist a simpler approach which is especially suitable for unordered
neighbourhoods?
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3.4.2 Other Graph-Theoretic Identification Approaches

In graph theory there exists further concepts that could be useful for identifying
a regular alignment in unaligned cellular automata such that the neighbourhood
structure is uniform. Instead of observing the adjacency mapping it may be possible
to find requirements for the distance mapping. Spectral graph theory may provide
an alternative approach since especially the spectrum and other features of matri-
ces/tensors are index invariant. Furthermore also the concept of cycle spaces could
be viable. The following paragraph outlines a straight forward approach based on
cycles and isomorphy.

3.4.2.1 Cycles, Formulation as Graph Isomorphism Problem

In a previous section the feature of {1, . . . , k}-regularity of the adjacency mapping
in combination with the diagonal structure of the tensor representation were used
to characterise the adjacency mappings of ordinary cellular automata. Observing
the adjacency mapping gives somehow a global or macroscopic view of the second
topological feature of a cellular automaton. Observing the neighbourhood subgraphs
of individual cells on the other hand gives a microscopic view of the neighbourhood
structure. On a microscopic scale the neighbourhoods of ordinary cellular automata
can be characterised using the concept of graph isomorphy.

As mentioned earlier the neighbourhood subgraphs of an ordinary cellular au-
tomaton are (almost) all isomorphic ta a common graph. We call the vertex that
represents the cell whose neighbourhood is described as the central vertex m and
denote the neighbouring vertices as m1,m2, . . . . The common neighbourhood sub-
graphs features the following properties:

(i) There exist k outgoing edges with weights 1, . . . , k and there exist k incom-
ing edges with weights 1, . . . , k (compare {1, . . . , k}-regularity for the central
vertex).

(ii) Assume there exists a bidirectional connection, then there exists another (in-
verse) bidirectional connection. If a bidirectional connection has the incoming
weight α1 and the outgoing weight α2 then there exists another bidirectional
connection with incoming weight α2 and outgoing weight α1. This forbids the
existence of bidirectional connections with the same weight for incoming and
outgoing direction.

(iii) If there exists an (undirected) cycle (m,m1,m2) with weights(
(α01, α10), (α12, α21), (α20, α02)

)
(3.4.1)

– i.e. a connection between two neighbours – then there exists another cycle
(m,ma, mb) with weights(

(α12, α21), (α20, α02), (α01, α10)
)
. (3.4.2)
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As a consequence there also exists a third cycle with weights(
(α20, α02), (α01, α10), (α12, α21)

)
. (3.4.3)

(iv) The last property must also apply to cycles with four or more vertices.

3.4.3 Vector Space Approach

Assume a cellular automaton with connected ordered neighbourhood mapping N :
M →Mk. For all cells m ∈M we assume that the relative neighbourhood relations
can represented as N (m) − m = (bm,1, . . . , bm,k) where bm,i, i = 1, . . . , k are basis
vectors from an abstract finite dimensional vector space – or more correctly module
– with dimension d ≥ k and basis B.

For each two cells mx,my ∈ M there exists at least one directed path (Defini-
tion 3.0.18) – without loss of generality – from mx to my, (mx = n1, n2, . . . , nlxy+1 =
my) with length lxy. For every pair ni+1−ni where i ∈ {1, . . . , lxy} there exists a vec-
tor representation ni+1−ni =

∑
b∈B αxyibb. Together for every two cellsmx,my ∈M

there exists a path defined by

my −mx :=

lxy∑
i=1

∑
b∈B

αxyibb =
∑
b∈B

( lxy∑
i=1

αxyib

)
b =

∑
b∈B

αxybb (3.4.4)

where αxyb =
∑lxy

i=1 αxyib.
Let us assume that there exist at least k different paths from mx to my and use

the notation

−−−−→mxmy =

{∑
b∈B

αxyb1b,
∑
b∈B

αxyb2b, . . .

}
=


 αxy11

...
αxyd1

 ,

 αxy12
...

αxyd2

 , . . .

 (3.4.5)

to accumulate these paths.
Consequently for every two cells we obtain a matrix representation of their con-

necting paths

−→mn =

 α11 α12 · · · α1k · · ·
...

...
. . .

...
. . .

αd1 αd2 · · · αdk · · ·

 . (3.4.6)

By eliminating linearly dependent rows, the set of basis vectors can be reduced.
This means that for these two cells the connecting paths and the local vector space
structure of the neighbourhoods are compatible. If for each two cells the same new
reduced (actual) basis B̃ ⊆ B i.e. the same linear dependencies are obtained, the
cellular automaton can be regarded as an aligned cellular automaton.

Theorem 3.4.5 (Construction of an Alignment). If for each two m,n ∈ M (with
nondegraded neighbourhoods) the same (reduced) basis B̃ ⊆ B is obtained then B̃
spans the difference space M −M = V = span B̃.
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Proof. If the condition is satisfied, we can construct the same maximal linearly inde-
pendent set of vectors b1, . . . , bd̃ (d̃ ≤ k) from v1, . . . , vk independently of the choice
of m and n. For arbitrary m,n ∈M we accordingly have a unique representation of
n −m =

∑k
i=1 α1ivi =

∑k
i=1 α2ivi = . . . , namely n −m =

∑d̃
i=1 βibi. This renders

{b1, . . . , bd̃} a basis of V .

Corollary 3.4.6 (Characterisation of Ordinary Cellular Automata under the Con-
dition of a Connected Neighbourhood Structure). Since for the resulting alignment
the neighbourhood mapping is uniform by construction, there exists an indexing of
the cells according to Theorem 3.1.8.

3.5 Conclusions and Outlook

This chapter is concluded with some remarks on the previously discussed “topologi-
cal” concepts.

A very interesting aspect is that corresponding to the differentiation between a
priori and a posteriori alignment of cells, we can distinguish concepts that are more
suitable for the former respectively the latter approach (Table 3.1).

alignment in the interpretation
context of modelling of alignment
a priori a posteriori geometric abstract

spatial logical
index based approach • •
vector space approach • •

graph approach • • •

Table 3.1: Classification of different concepts for describing the topological structure
of cellular automata. This classification is however only valid in the most usual cases.

Besides the discussed methods other approaches for describing the topology of
cellular automata are possible: Graph theoretic concepts like hypergraphs or stochas-
tic acyclic graphs with forbidden circular conditional probability could probably be
applied. A graph interpretation also induces a complexity measure on cellular au-
tomata and the bandwidth of an adjacency matrix/tensor could be used as a measure
for “locality” of the neighbourhoods. Furthermore the spatial domain that is discre-
tised into cells could have a representation as a manifold.

3.5.1 Generalised Definition of Cellular Automata

This short section features a generalised definition of cellular automata, which incor-
porates the different concepts of the topological structure of cellular automata which
were discussed until now.
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Definition 3.5.1 (Generalised Definition of Cellular Automaton). A cellular au-
tomaton is completely defined by

(i) a set of cells M with optional alignment defined by either

(a) an indexing (I, I) as defined in Section 2.1,

(b) a difference space V as defined in Section 3.1 or

(c) a graphical structure G as defined in Section 3.2,

(ii) a neighbourhood mapping N , which is either

(a) composed of a relative index tuple J and, if the geometry of the cellular
automaton shall be manipulated, additionally a corresponding mapping τ ,

(b) a tuple of vectors from V ,

(c) composed of the neighbouring vertices in G or

(d) explicitly defined through a mapping N ,

(iii) a set of possible states S and

(iv) a self-contained update rule F .

The tuple ((M, ∗ ),N , S,F) can serve as a short notation.



Chapter 4

Cellular Automata and
Continuous Evolution Systems

Continuous systems suitable for applying cellular automaton modelling or approxi-
mation approaches are in the ideal case comparable to “cellular automata with con-
tinuous cell-space” and of course feature a continuous time. Hence in Section 4.2
evolution systems are defined using the paradigms of cellular automata.

In Section 4.2.3.1 we see that linear evolution equations and parabolic differential
equations can be investigated in this context.

4.1 Alternative Definition of Cellular Automata

This section presents a top-down definition approach, which to a certain extent
contradicts the basic principles of cellular automata but on the other hand proves to
be useful in connection with special types of cellular automata (e.g. Section 4.2 or
Section 5.2) and their analysis.

Since S is not only a mapping but can also be interpreted as an element of SM ,
we can introduce the notation

S =
(
S(m)

)
m∈M =

∏
m∈M

S(m) (4.1.1)

and accordingly

S ◦ N (m) =
(
S(n)

)
n∈N (m)

=
∏

n∈N (m)

S(n). (4.1.2)

S ◦N (m) is a more compact notation but – as mentioned earlier – not completely
correct (S : T(M)→ T(S)).

Definition 4.1.1 (Projection Operator). For S ∈ SM and N ⊆ M define the pro-
jection operator projN : SM → SN as

projN S =
∏
n∈N
S(n). (4.1.3)

59
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If S is a mapping then also projN S can be used as a mapping from N to S. In this
case also the notation S|N can be used.

4.1.1 Scalar Evolution Operators

Let E : S → S (where S ⊆ SM ) be the global evolution operator of a cellular
automaton (M,N , S,F).

Definition 4.1.2 (Scalar Evolution Operator). Because E is defined through an
update function F and a neighbourhood mapping N such that ES = F ◦ S ◦ N , we
can define scalar evolution operators Lm : S→ S{m} such that

LmS = F ◦ S ◦ N (m) (4.1.4)

for all m ∈M and S ∈ S respectively, using the projection operator,

Lm := F ◦ projN (m) . (4.1.5)

The scalar evolution operators incorporate the neighbourhood mapping as well
as the update rule and exist independently of an alignment or indexing of the cells.

We can also use the notation

ES =
∏
m∈M

LmS =
∏
m∈M

F ◦ projN (m) S. (4.1.6)

which indicates that E can be decomposed into its scalar evolution operators and
interpreted as their Cartesian product

E =
∏
m∈M

Lm. (4.1.7)

Under which conditions can we construct N and F from a given collection of
scalar evolution operators respectively from a given global evolution operator?

Definition 4.1.3 (Local Characterisation). Let L : SM → S. L is called locally
characterised if there exists a real subset N ⊂M and

n ∈ N ⇐⇒ ∃ S1,S2 ∈ SM :
((
S1(l) 6= S2(l)⇐⇒ l = n

)
=⇒ LS1 6= LS2,

)
(4.1.8)

or in other words, N is the set of elements n of M for which there exist S1,S2 ∈ S
with

S1(l) 6= S2(l)⇐⇒ l = n, (4.1.9)
LS1 6= LS2, (4.1.10)

or, N is the set of cells that influence the state of the cell in the next iterative step.
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We obviously want to use a local characterisation of Lm to define the neighbour-
hood mapping N (m) := Nm where Nm is the set from the previous definition.

For aligned cells it is necessary that the neighbourhoods can be constructed from
the first topological feature. Hence in this case the sets Nm must be uniformly
structured (Definition 3.1.6).

Furthermore there must exist a mapping F : T(S)→ S such that

Lm = F ◦ projN (m) (4.1.11)

independently of m. Of course F then is compatible with N and self-contained
(Definition 2.1.26).

Proposition 4.1.4 (Scalar Evolution Operators). A collection of scalar evolution
operators Lm can be identified with a neighbourhood mapping N and an update rule
F under the condition that

(i) the Lm are locally characterised,

(ii) if M is aligned, the neighbourhood mapping respectively the sets N (m) – which
arise from the local characterisation – are uniformly structured,

(iii) there exists a mapping F : T(S) → S such that Lm = F ◦ projN (m) for all
m ∈M .

If Lm is locally characterised with the set N (m), then there obviously exists a
mapping Fm : SN (m) → S such that for all S ∈ SM , LmS = Fm ◦ projN (m) S.
Requirement (iii) of the proposition states that this mapping is equal for all m ∈M .

4.1.2 Alternative Definition of Cellular Automata

Definition 4.1.5 (Iteration of Global States, compare Definition 2.2.12). For a
given initial state S0 ∈ S, the iteration of global states is defined by St+1 := E(St) =∏
m∈M LmSt where t ∈ N or sometimes t ∈ T for a connected subset T ⊂ N. The

iteration of global states yields a mapping T → S : t 7→ St where S ⊆ SM . We
also use the notation S(t) and S(t,m), which actually renders S a function T → S
respectively T ×M → S.

Definition 4.1.6 (Alternative Definition of Cellular Automaton). A cellular au-
tomaton is completely defined by the 3-tuple

(
M,S, (Lm)m∈M

)
, which contains

(i) a set of cells M with an optional alignment,

(ii) a set of possible states S and

(iii) a collection of scalar evolution operators whose Cartesian product defines a
global evolution operator E :=

∏
m∈M Lm : S → S and which satisfy the

conditions of Proposition 4.1.4.

Given an initial global state S0 ∈ S, an iteration of global states is defined. The
resulting series of state mappings describes the evolution of the cellular automaton.
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4.2 Evolution Systems

This section introduces a definition of evolution systems that will prove to be com-
patible with what is known as evolution equations or abstract Cauchy problems.

First some properties of operators and collections of operators have to be dis-
cussed. Throughout this section we use a similar notation as for cellular automata
but do not require any of the typical properties for cellular automata, like countabil-
ity of the set M for example.

Definition 4.2.1 (Features of Operators [29, p. 21]). Let S be a Banach space. For
E : S→ S the operator norm is defined as ‖E‖ := sup‖S‖≤1 ‖ES‖. A L(S,S) valued
function T → L(S,S) : t 7→ E(t) is called strongly continuous at t0 if limt→t0 ‖E(t)−
E(t0)‖ = 0.

Definition 4.2.2 (Contraction Semigroup [29, pp. 23-24]). Let S be a Banach space
and T = R+, a one-parameter collection (Et)t∈T of bounded linear operators in
L(S,S) is called a contraction semigroup if

(i) Et+s = EtEs for all s, t ∈ T (semigroup property),

(ii) limt→0 ‖EtS − S‖ = 0 for all S ∈ S (strong continuity) and

(iii) ‖Et‖ ≤ 1 for all t ∈ T (contraction).

Definition 4.2.3 (Infinitesimal Generator [29, p. 24]). Define

D :=
{
S ∈ S : lim

h→0+

(Eh − I)S
h

exists in S
}
. (4.2.1)

The operator A defined on domA = D by

AS := lim
h→0+

(Eh − I)S
h

(4.2.2)

is called infinitesimal generator of (Et)t∈T .

The theory of strongly continuous semigroups provides a lot of interesting results
for generators and their corresponding semigroups. For example, if (Et)t∈T is a
uniformly continuous semigroup there exists an infinitesimal generator A ∈ L(S,S)
and

Et = etA =

∞∑
n=0

tn

n!
An. (4.2.3)

Conversely the Theorem of Hille-Yosida guarantees the existence of a strongly con-
tinuous semigroup for a given infinitesimal generator.

Theorem 4.2.4 (Hille-Yosida [29, pp. 29-34]). Let A ∈ L(S,S). A is the infinites-
imal generator of some contraction semigroup if and only if A is closed1 and its
domain domA is dense in S.

1If for every sequence domA ⊃ xn → x ∈ S with Axn → y, it follows that x ∈ domA and
Ax = y, then A is called closed.
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4.2.1 Definition of Evolution Systems

Evolution systems shall basically consist of a collection of operators with Et ∈
L(S,S) and may feature finite (|M | < ∞) or infinite (|M | = ∞) dimensional vec-
tor spaces S ⊆ SM . The set M itself is equipped with a vectorspace structure
(topology I) and the parameter set T may be discrete or continuous. The following
requirements are used in Definition 4.2.6 to define evolution systems.

(M) Let M be a domain2 in a discrete or continuous topological vector space.

(S) Assume a set of possible states S such that the current (t) state of the system
can be described by a state function3 S(t, · ) ∈ S ⊆ SM such that S is a
Banach space.

(E) Let Edt ∈ L(S,S) be bounded linear evolution operators that evolve the state
of the system by dt ∈ T − T time units where for continuous time, T = R+,
and for discrete iterations, T = N.
(Edt)dt∈T−T shall be a contraction semigroup (Definition 4.2.2).

(i) The evolution operators satisfy the so-called semigroup property EdsEdt =
Eds+dt.

(ii) If T ⊆ R then Edt is strongly continuous (at dt = 0) and E0 = I.
(iii) Edt is a contraction (‖Edt‖ ≤ 1) for all dt ∈ T − T .

As in Section 4.1 we need a scalar decomposition of the evolution operators.
Let the collection (Ldt,m)(dt,m)∈(T−T )×M be defined by Ldt,m := proj{m} ◦Edt
as in Definition 4.1.2.

(iv) The evolution operators can be represented as the Cartesian product of
their scalar decomposition Ldt,m : SM ⊇ S→ S{m},

Edt =
∏
m∈M

Ldt,m, (4.2.4)

which allows the notation (EdtS)(m) = (Ldt,mS).

The second topological feature of cellular automata implies that the functions
Ldt,m only depend on a local configuration of S ∈ SM . In addition to Definition 4.1.3
we define for differentiable mappings:

Definition 4.2.5 (Local Characterisation). Let L : SM → S be differentiable. L is
called locally characterised if there exists a real subset N ⊂M and

n /∈ N =⇒ ∂L
∂sn

(sM ) = 0, sM = (sm)m∈M ∈ SM (4.2.5)

2Compare the definition of connected for index sets I ⊆ Zd in Definition 2.1.2.
3The notation function seems more appropriate than mapping for continuous domains.
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N is again the set of cells that influence the state of the cell in the next iterative
step. Both formulations state that the outcome of applying L on a state function in
SM is independent of the values of the state functions at n /∈ N .

(L) The scalar operators Ldt,m additionally satisfy the following requirements.

(i) The Ldt,m are locally characterised with local sets Ndt(m).

Accordingly they can be decomposed as

Ldt,m = Fdt,m ◦ projNdt(m) (4.2.6)

and the neighbourhood functions Ndt : M → P(M) determine the “coordinates”
that have influence on the result of Ldt,m.

(ii) SinceM is a vector space, we require uniform neighbourhoods respectively
that the neighbourhood functions are linear mappings Ndt : M → P(M) :
m 7→ m+Ndt where Ndt ⊂M −M is a bounded domain for all dt <∞.

Actually Ndt(m) := (m + Ndt) ∩M , which delivers degraded neighbourhoods
for certain points m ∈M .

(iii) The (update) functions Fdt,m : Sm+Ndt → S{m} shall be independent of
m. Accordingly Fdt : SNdt → S.

Fdt,m are obviously linear maps.

Definition 4.2.6 (Evolution System). M,S, T and Edt as defined above form an
evolution system. If additionally (L) is satisfied, the system is called a locally char-
acterised evolution system. Based on the set M a differentiation of continuous-space
and discrete-space evolution systems can be made. The same applies to continuous-
time and discrete-time evolution systems.

Evolution systems are semigroups with specially structured spaces S. Locally
characterised evolution systems additionally satisfy the properties defined in (L).

The definition of a global evolution operator contradicts somehow to the bottom-
up concept of cellular automata. This shows especially for locally characterised
evolution systems in the fact that, if a global evolution operator is defined, the
neighbourhood mapping must be regarded as a result of this definition, which for
cellular automata would not be a comprehensive approach. Actually the neighbour-
hood mappings Ndt are a consequence of the functions Fdt which map functions
M ⊃ Ndt( · ) → S onto S. Compare the concept of local characterisations with the
alternative definition of unaligned cellular automata in Section 4.1 or with the local
kernel of stochastic cellular automata in Section 5.2.

The differentiation between evolution systems and locally characterised evolution
systems is motivated by the second topological feature of cellular automata. The
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evolution (iteration) of the state of an individual location (cell) only depends on a
bounded subset of neighbouring elements in M , the neighbourhood. For not locally
characterised evolution systems on the other hand the change of the state of a location
in M may depend on the global configuration of the system.

In order to discuss regular alignments or regular neighbourhoods it is necessary
that M features a vector space structure. The topological structure of M represents
the first topological feature.

The semigroup property is a logical constraint. If it is not satisfied, the system
would not be well-defined. The strong continuity at dt = 0 states that during a
small time period only small changes happen and that no changes happen if no time
passes.

In the following sections we will see that this generic approach to evolution sys-
tems with arbitrary Banach spaces S can be problematic in some situations. Sec-
tion 4.2.2 provides a special type of integral evolution systems which will prove to be
much easier to handle.

It is also important to note that evolution systems with linear evolution oper-
ators are actually not very useful in the context of cellular automata. We usually
want cellular automata to behave nonlinearly on the microscopic scale at least. On
the other hand linear evolution operators allow a broader range of tools for analysis
(semigroup theory, infinitesimal generators etc.) than nonlinear evolution operators.
A common approach for this kind of problem is to regard nonlinear systems as dis-
tortions of linear systems respectively to approximate nonlinear systems with linear
evolution systems. In Section 4.3 quasilinear evolution systems are defined in a way
such that basic results from semigroup theory can be applied nevertheless.

discrete discrete local linear
time space characterisation evolution operators

cellular automata • • •
LES • •
ES •

Table 4.1: Comparison of cellular automata, locally characterised evolution systems
(LES) and evolution systems (ES).

4.2.1.1 Some Immediate Results and Conclusions

Proposition 4.2.7. For any evolution system it is true that limdt→0 Ldt,m = proj{m}.

Proof. From the definition of the scalar evolution operator (Definition 4.1.2) it follows
that

lim
dt→0

Ldt,m = lim
dt→0

proj{m} ◦ Edt = proj{m} ◦ ISM . (4.2.7)
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Accordingly
lim
dt→0

Ldt,mS = S(m) S ∈ S (4.2.8)

and with the notation from Equation 4.2.5 we can write

lim
dt→0

∂Ldt,m
∂sn

(sM ) = 0 ∀n 6= m. (4.2.9)

Corollary 4.2.8. If the scalar evolution operators Ldt,m are locally characterised
with neighbourhoods Ndt(m) and a common update function Fdt such that Ldt,m =
Fdt ◦ projNdt(m), then

Fdt −→ IS and Ndt(m) −→ {m} (4.2.10)

for dt −→ 0.

Proof. Convergence of a set to a point can for example be formalised by the point
wise limit of the indicator function. Fdt −→ IS actually means that the dimension of
the domain of Fdt, which is SNdt(m), converges towards 1. This is of course implied
by the convergence of the neighbourhoods.

Because of Proposition 4.2.7 we know that limdt→0Fdt ◦ projNdt(m) = proj{m}.
And because the neighbourhood setsNdt(m) are defined to be the minimum set of ele-
ments ofM that influence the outcome of Ldt,m, it is necessary that limdt→0Ndt(m) =
{m}.

Proposition 4.2.9. Let for a locally characterised evolution system Ndt(m) = m+
Ndt, then Nds+dt = Nds +Ndt.

Proof. The semigroup property yields

Eds+dt = Eds ◦ Edt (4.2.11)

Lds+dt,m = Lds,m ◦
∏

n∈m+Nds

Ldt,n (4.2.12)

Fds+dt ◦ projm+Nds+dt
= Fds ◦ projm+Nds

◦
∏

n∈m+Nds

Fdt ◦ projn+Ndt
(4.2.13)

= Fds ◦
∏

n∈m+Nds

Fdt ◦ projn+Ndt
. (4.2.14)

Again from the minimality of the neighbourhoods we can conclude that Nds+dt =
Nds +Ndt.

Corollary 4.2.10. If the neighbourhoods are star-shaped, then Ndt ⊂ Nds for dt <
ds. Without proof.
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Example 4.2.11. A prototype for the neighbourhoods is for example Ndt := dt·N1

where N1 is a star-shaped or convex set containing 0. In this situation also the
limit limdt→0Ndt(m) = {m}, which corresponds to limdt→0Ndt = {0}, can be
motivated more easily.

The properties Nds+dt = Nds + Ndt and N0 = {0} render the collection of all
neighbourhoods a commutative semigroup or monoid.

4.2.1.2 Some Considerations on Generators

Since ISM =
∏
m∈M proj{m}, the infinitesimal generator of the semigroup Edt can be

decomposed as

A = lim
dt→0

Edt − ISM
dt

= lim
dt→0

∏
m∈M Ldt,m −

∏
m∈M proj{m}

dt
(4.2.15)

=
∏
m∈M

lim
dt→0

Ldt,m − proj{m}

dt︸ ︷︷ ︸
=:Am

(4.2.16)

where Am : D → S{m} and D is the domain of A.
For locally characterised evolution systems we can write

Edt =
∏
m∈M

Ldt,m =
∏
m∈M

Fdt ◦ projm+Ndt
(4.2.17)

E0 = ISM =
∏
m∈M

proj{m} =
∏
m∈M

IS{m} ◦ proj{m} (4.2.18)

And the infinitesimal generator of the semigroup Edt can at least formally be written
as

lim
dt→0

Edt − ISM
dt

(4.2.19)

= lim
dt→0

1

dt

( ∏
m∈M

Fdt ◦ projm+Ndt
−
∏
m∈M

IS{m} ◦ proj{m}

)
(4.2.20)

= lim
dt→0

1

dt

∏
m∈M

(
Fdt ◦ projm+Ndt

−proj{m}

)
(4.2.21)

=
∏
m∈M

lim
dt→0

(
Fdt − proj{0}

)
◦ projm+Ndt

dt︸ ︷︷ ︸
=Am

. (4.2.22)
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4.2.1.3 Outlook

For a not locally characterised evolution system we concluded in Proposition 4.2.7
that limdt→0 Ldt,m = proj{m} ◦ ISM . Without changing the result we can prepend a
projection operator such that

lim
dt→0

Ldt,m = proj{m} ◦ IS{m} ◦ proj{m}, (4.2.23)

which, using the concept of neighbourhoods, can be expressed as N0(m) = {m} or
for smooth mappings as

lim
dt→0

∂Ldt,m
∂sn

(sM ) = 0 ∀n 6= m. (4.2.24)

Under the assumption that dt 7→ Ldt,m is somehow a smooth mapping the ques-
tion arises, whether for small dt > 0 there exists a strict bounded “neighbourhood”
subset Ndt ⊂M with

∂Ldt,m
∂sn

(sM ) = 0 ∀n /∈ Ndt (4.2.25)

or at least
∂Ldt,m
∂sn

(sM ) < ε ∀n /∈ Ndt (4.2.26)

for arbitrary small ε > 0.
This would mean that at least for small times, an evolution system can be ap-

proximated by a locally characterised evolution system and hence probably also by
a cellular automaton.

4.2.2 Integral Form of Evolution Systems

This section provides a discussion of a measure theoretic or integral approach for
evolution systems. The characteristics of evolution systems respectively locally char-
acterised evolution systems can be reformulated without hurting the validity of Def-
inition 4.2.6. In contrast to generic evolution systems this special type allows easier
analysis.

(M) Let (M,M, µ) be a finite (µ(M) < ∞) measure space where M is the Borel
σ-algebra4.

For simplicity let S = R throughout this section. It should however also be
possible to use arbitrary Banach spaces.

(S) S : M → S shall (always) be an integrable function such that the integral∫
N
S(n) dµ(n) =

∫
IN (n)S(n) dµ(n), (4.2.27)

4The (unique) smallest σ-algebra containing the open sets is called Borel σ-algebra. [6, p. 18]
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as a limit of the integrals of step-functions [6, p. 129], exists for all N ∈ M
as integration domains. The set of integrable functions on M is denoted by
S := L1(M) and is a Banach space (Lebesgue space respectively Lebesgue-
Bochner space if S shall be an arbitrary Banach space). If M is a discrete
space, all integral expressions are sums for which convergence has to be asserted
instead of integrability.

(E) Edt : S→ S shall define the evolution of the system by

EdtS(m) = Ldt,mS :=

∫
K
(
dt,S(n), n,m

)
dµ(n) (4.2.28)

where K is a suitable mapping T × S×M ×M → S.
In order to be able to draw relevant conclusions for this type of evolution
systems, the mapping K must be assumed to admit a simpler (generic or linear)
form5. Assume that for a given location the function K determines weights for
the influence of the states of the “neighbouring” locations. That is, K is a
function T ×M ×M → K where K is the scalar space of S and

EdtS(m) = Ldt,mS =

∫
K(dt, n,m)S(n) dµ(n). (4.2.29)

(L) There exists a collection of mappingsNdt : M →M such that K : T×M×M →
K is an integrable function with support Ndt(m) in its second argument for all
dt ∈ T . Accordingly,

EdtS(m) = Ldt,mS =

∫
K(dt, n,m)S(n) dµ(n) (4.2.30)

=

∫
Ndt(m)

K(dt, n,m)S(n) dµ(n). (4.2.31)

If the system shall not be locally characterised, defineNdt(m) := M for allm ∈M
or neglect the conditions in (L).

4.2.2.1 Some Measure Theoretic Considerations

This section features a measure theoretic interpretation of evolution systems and
shows under which conditions Edt is actually a bounded linear operator.

For convenience also the notations Kdt,m(n) := K(dt, n,m) and Kdt(n,m) :=
K(dt, n,m) will be used.

Let S = [0,∞]. Since S : M → S is a (non-negative) measurable function, S
defines a measure

µS(N) :=

∫
N
S(n) dµ(n) N ∈M (4.2.32)

5An operator defined by a kernel as in Equation 4.2.28 is also called nonlinear integral operator.
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on (M,M) [6, p. 127].
Conversely the Theorem of Radon-Nikodým (Theorem 5.3.2) states that for two

measures µS and µ, where µ is σ-finite and µS is absolutely continuous6 with respect
to µ, there exists a (quasi-)7 integrable function S : M → S – called density with
respect to µ – such that Equation 4.2.32 holds for all N ∈M.

If K : T ×M ×M → [0,∞] is a (non-negative) measurable function in its second
argument (n) with support Ndt(m), then we can define

νS,dt,m(N) :=

∫
N∩Ndt(m)

Kdt,m(n)S(n) dµ(n) =

∫
N
K(dt, n,m)S(n) dµ(n)

=

∫
N∩Ndt(m)

Kdt,m(n) dµS(n) =

∫
N
K(dt, n,m) dµS(n) (4.2.33)

which is a measure on (M,M) for every m ∈ M with density K(dt, · ,m)S( · ) with
respect to µ and density K(dt, · ,m) with respect to µS .

According to Fubinis Theorem the function S̃ : M → R : m 7→ νS,dt,m(M) =
νS,dt,m(Ndt(m)) is non-negative and measurable ifKdt : M×M → [0,∞] is (product-)
measurable [6, p. 175].

Lemma 4.2.12 (Integral Evolution operators). Assume a measurable space (M,M)
with finite measure µ and the Borel σ-algebra. Set S = R+ and let S be the set
of integrable respectively measurable (since S = R+) functions. Operators Edt on S
defined through a product-measurable function K : T ×M ×M → [0,∞] (also called
kernel) as in Equation 4.2.29 are linear integral operators S→ S.

Proof. By definition.

Proposition 4.2.13 (Integral Evolution operators). With the same preconditions
as in Lemma 4.2.12, Edt are bounded linear operators on S if the kernels Kdt are
bounded on M ×M .

Proof. The Hölder inequality yields8

EdtS(m) =

∫
S(n)Kdt,m(n) dµ(n) = ‖SKdt,m‖L1 ≤ (4.2.34)

≤ ‖Km‖L∞ ‖S‖L1 = sup
n∈M
Km(n) ‖S‖L1 . (4.2.35)

Consequently

‖EdtS‖L1 =

∫
M
EdtS(m) dµ(m) ≤

∫
M

sup
n∈M
Kdt(m,n) dµ(m) ‖S‖L1 (4.2.36)

≤ µ(M) sup
n,m∈M

Kdt(m,n) ‖S‖L1 (4.2.37)

= µ(M) ‖Kdt(m,n)‖L∞(M×M) ‖S‖L1(M). (4.2.38)
6ν � µ if and only if µ(N) = 0⇒ ν(N) = 0 for all N ∈M.
7This prefix is not necessary since S = [0,∞].
8One may replace sup with esssup.
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In [29, pp. 75-76, Theorem 4.2] Taira uses weaker requirements to ensure that
‖EdtS‖Lp ≤ C‖S‖Lp , namely Kdt : M ×M → R is a product measurable function
with

sup
m∈M

∫
M
|Kdt(m,n)| dµ(n) ≤ C, (4.2.39)

sup
n∈M

∫
M
|Kdt(m,n)| dµ(m) ≤ C. (4.2.40)

Since M has a vector space structure (V ), we can require that K(dt, n,m) =
K(dt, n −m), which means that Kdt is independent of the location m respectively
uniform.

Accordingly suppKdt = Ndt(m) − m = Ndt and the evolution operator can be
written as

EdtS(m) = Ldt,mS =

∫
m+Ndt

S(n)K(dt, n−m) dµ(n) (4.2.41)

=

∫
Ndt

S(m+ v)K(dt, v) dµ(v) (4.2.42)

=

∫
S(m+ v)K(dt, v) dµ(v). (4.2.43)

It is rather obvious that this formulation using density kernels features a con-
nection to Markov processes and satisfies a special Chapman-Kolmogorov-type of
equation (see Chapter 5).

Corollary 4.2.14 (Boundedness of Integral Evolution Operators). Again with the
preconditions from Lemma 4.2.12 and uniform kernel, ‖Edt‖ ≤ ‖Kdt‖L1(V ).

Proof. Since Kdt(v) does not depend on the location within M , we can set C :=
‖Kdt‖L1(V ) in Tairas theorem.

4.2.2.2 Approximation of Integral Evolution Systems with Locally Char-
acterised Integral Evolution Systems

The Dirac delta distribution δ0 is often defined in the weak sense by the limit of
functions Kdt under the condition that

lim
dt→0

∫
V
Kdt(v)S(v) dv = S(0). (4.2.44)

These functions can for example be probability density functions like the Gauss
function but also functions with compact support. A typical condition for such a
sequence of functions is that

lim
dt→0

∫
Bε(0)

Kdt(v) dv = 1 ∀ε > 0. (4.2.45)



72 4. CELLULAR AUTOMATA AND CONTINUOUS EVOLUTION SYSTEMS

As a consequence we can find a constant Cdt,ε such that∫
V
Kdt(v) dv −

∫
Bε(0)

Kdt(v) dv ≤ Cdt,ε, (4.2.46)

or if we define K̃(v) := IBε(0)(v)K(v),

‖Kdt − K̃dt‖L1(V ) ≤ Cdt,ε. (4.2.47)

There may however exist better approximations K̃dt with (bounded) support in
Bε(0) of Kdt than the version of Kdt which is cut off and continued by 0 outside of
Bε(0) (compare Section 4.3.3.4).

Proposition 4.2.15 (Approximation of Integral Evolution Systems). For small dt >
0 an integral evolution operator Edt can be approximated by a locally characterised
integral evolution operator Ẽdt.

Proof. The previous considerations (respectively Equation 4.2.47) together with Corol-
lary 4.2.14 deliver the desired inequality.

This result makes it even more interesting whether it is possible to approximate
evolution operators with locally characterised evolution operators even if there exists
no integral representation (compare Section 4.2.1.3).

4.2.2.3 Further Conclusions for Integral Evolution Systems

The identity operator can be formulated as (V := M −M)

ISMS(m) =

∫
V
S(m+ v)δ0(v) dv. (4.2.48)

And accordingly the infinitesimal generator satisfies

AS(m) = lim
dt→0

1

dt

(∫
V
S(m+ v)Kdt(v) dv −

∫
V
S(m+ v)δ0(v) dv

)
(4.2.49)

= lim
dt→0

1

dt

∫
V
S(m+ v)

(
Kdt(v)− δ0(v)

)
dv (4.2.50)

=

∫
V
S(m+ v) lim

dt→0

Kdt(v)− δ0(v)

dt︸ ︷︷ ︸
=:adt(v)

dv. (4.2.51)

adt is the kernel of the infinitesimal generator.

Proposition 4.2.16. The kernels of integral evolution systems satisfy Kds+dt =
Kdt ∗Kds. If the evolution system is locally characterised, then additionally Nds+dt =
Nds +Ndt.
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Proof. By observing the semigroup property Eds+dt = EdsEdt and using a standard
integral transformation (z := x+ y),

Eds+dtS(m) =

∫
Nds+dt

S(m+ z)Kds+dt(z) dz (4.2.52)

EdsEdtS(m) =

∫
Nds

∫
Ndt

S(m+ x+ y)Kdt(x)Kds(y) dx dy (4.2.53)

=

∫
Ndt+Nds

S(m+ z)

∫
Nds

Kdt(z − y)Kds(y) dy︸ ︷︷ ︸
=Kdt∗Kds(z)

dz, (4.2.54)

we can conclude that Kds+dt = Kdt ∗ Kds and Nds+dt = Nds +Ndt.

4.2.3 Evolution Equations

This section presents a short discussion of evolution equations as defined for example
in [1, 7, 13, 14, 18, 30].

Evolution equations can also be seen as an implicit description of (not necessarily
locally characterised) continuous evolution systems. Or conversely, Definition 4.2.6
can be regarded as a “bottom-up” description of evolution equations.

Let Edt be the evolution operator of an evolution system with S(t + dt,m) =
(EdtS)(t,m). The time-derivative of the state function is defined as

∂tS(t,m) := lim
dt→0

S(t+ dt,m)− S(t,m)

dt
= lim

dt→0

(E − I
dt
S
)

(t,m). (4.2.55)

If A is the infinitesimal generator of the semigroup Edt, we obtain a so-called evolution
equation,

∂tS(t,m) = (AS)(t,m). (4.2.56)

Vice versa – under the conditions of the Hille-Yosida theorem (Theorem 4.2.4)
for example –, a formal evolution operator can be derived from an evolution equation
by

S(t+ dt,m) = S(t,m) +

∫ t+dt

t
(AS)(τ,m) dτ ≈ S(t,m) + dt · (AS)(t,m) (4.2.57)

or from an exponential representation.
Accordingly under certain conditions an evolution system can be identified with

an evolution equation.

4.2.3.1 Abstract Cauchy Problems

In literature [1, 7, 13, 14, 18, 30] equations as in Equation 4.2.56 are called evolu-
tion equations, abstract parabolic equations or abstract Cauchy problems and usually
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discussed in the more general form

∂tS = A(t)S +G(t) t ∈ [0, T ]

S(0) = S0 (4.2.58)

where S is a Banach or Hilbert space and S as well as G are functions [0, T ] → S,
A : [0, T ]→ L(S,S) and S0 ∈ S.

The initial value problem in Equation 4.2.58 can be solved in different senses.
Usually it is required that

S ∈ C
(
[0, T ],S

)
S(t) ∈ domA(t) ∀t ∈ [0, T ]

t 7→ A(t)S(t) ∈ C
(
[0, T ],S

)
(4.2.59)

or that there exists an approximation (Sn)n∈N of S such that Sn solves the equation
for approximations Gn of G [1] or if S is a Hilbert space, weak solutions can be
seeked etc.

If a “solution . . . can be expressed in the form”

S(t) = U(0, t)S(0) +

∫ t

0
U(s, t)G(s) ds (4.2.60)

then U(s, t), 0 ≤ s ≤ t ≤ T , is called “evolution operator or fundamental solution”
[18, p. 98]. A typical precondition is that A(t) is the infinitesimal generator of an
analytic semigroup for all t ∈ [0, T ] [1, 18, 30].

In the context of cellular automata it is sufficient to discuss constant (time-
independent) A and G because we required that the update rules do not change
over time (U(s, t) = U(t − s)). This allows to avoid the integral term in Equa-
tion 4.2.60 (by including G in A) and to weaken the preconditions for the existence
and uniqueness of a solution.

4.2.3.2 Parabolic Partial Differential Equations

If M ∼= V ⊆ Rd, S = Rd and if A is a second order elliptic differential operator,
the evolution equation is called parabolic partial differential equation [8, p. 350].
Of course we only observe linear parabolic equations with constant coefficients (in
nondivergence form),

∂S
∂t

(t, v) =
d∑

i,j=1

aij
∂2S
∂vi∂vj

(t, v)−
d∑
i=1

bi
∂S
∂vi

(t, v)− cS(t, v) (4.2.61)

where the ellipticity condition

d∑
i,j=1

aijvivj > ‖v‖ (4.2.62)
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is satisfied.
Classical solutions are characterised by additional requirements on the initial

condition or state (T = [0,∞)), a Sobolev state space S ⊆ H1
0 (V ) (see for example

[8]) and
S( · , · ) ∈ C0

(
[0,∞), L2(V )

)
∩ C1

(
(0,∞), L2(V )

)
. (4.2.63)

Weak solutions of the partial differential equation can be found with S ⊆ H1
0 (V )

and

S( · , · ) ∈ L2
(
0, Tend;H1

0 (V )
)

(4.2.64)

∂tS( · , · ) ∈ L2
(
0, Tend;H−1(V )

)
(4.2.65)

where L2
(
0, Tend;H1

0 (V )
)
imposes additional requirements on measurable functions

(0, Tend)→ H1
0 (V ) [8].

4.2.3.3 Integral Equations

Let (M,M, µ) be a measure space and S := L1(M) the set of integrable functions.
Let A be an integral operator such that the evolution equation has the form

∂tS(t,m) =

∫
M
S(t, n) f(n,m) dµ(n). (4.2.66)

The kernel f is necessarily a (non-negative) function that is measurable in its first
argument.

Assume that f is the derivative of a function K : T ×M ×M → S that satisfies
K(t, n,m) −→ δ(n,m) for t −→ 0. Then

f(n,m) = ∂tK(t = 0;n,m) = lim
dt→0

K(dt, n,m)− δ(n,m)

dt
. (4.2.67)

And the evolution system with the evolution operator Edt defined by the function K,

S(t+ dt,m) = (EdtS)(t,m) =

∫
M
S(t, n)K(dt, n,m) dµ(n) (4.2.68)

is the “antiderivative” of the original evolution equation because

S(t+ dt,m)− S(t,m)

dt︸ ︷︷ ︸
−→ ∂tS(t,m)

=

∫
M

K(dt, n,m)− δ(n,m)

dt︸ ︷︷ ︸
−→ ∂tK(t=0,n,m)=f(n,m)

S(t, n) dµ(n). (4.2.69)

Since the kernels Kdt form a semigroup (Edt), f can be interpreted as the “in-
finitesimal kernel”.
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Example 4.2.17. The function S – if smooth enough – can be approximated using
the Taylor polynomial

S(t,m+ v) ≈ S(t,m) + v · ∇mS(t,m) + (4.2.70)

+
1

2

d∑
j=1

d∑
k=1

∂mj ,mkS(t,m)vjvk + . . . (4.2.71)

This means that Equation 4.2.66 can be approximated for example (first order
polynomial) by

∂tS(t,m) =

∫
V

(
S(t,m) + v · ∇mS(t,m)

)
f(v) dv (4.2.72)

= S(t,m)

∫
V
f(v) dv +∇mS(t,m)

∫
V
vf(v) dv (4.2.73)

if f does not depend on the location. Accordingly an integral equation can under
certain conditions be approximated by a partial differential equation.

4.3 Application Scenarios and Outlook

The last section in this chapter provides some application scenarios and underlines
the main idea behind evolution systems, namely to provide an analytical formalism
for the gap between continuous evolution systems and in particular implicit evolution
equations on the one side and cellular automata on the other.

4.3.1 A Simple Classification of Evolution Systems

Depending on the structure of the topological vector space M there exist different
ways to define a Banach spaceS ⊆ SM which is a necessary precondition for evolution
systems and semigroup theory. The following list categorises different mathematical
approaches as evolution systems based on the structure of the underlying space.

• Trivial case: S is a Banach space.

– abstract Cauchy problems (Section 4.2.3.1)
– one-parameter semigroups in general

• If M is not discrete, then M must be a domain in a compact Hausdorff space.
Let S = R and set S := C(M) which together with ‖S‖∞ := supm∈M |S(m)|
is a Banach space.

– classical solutions of parabolic partial differential equations
(Section 4.2.3.2)
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• Also if S 6= R, C(M ; S) might be a Banach space (compare [8, p. 285]).

• Let S be the Lebesgue space Lp(M) where M is a suitable measure space.

– integral equations (Section 4.2.3.3)

– weak solutions of parabolic partial differential equations (Section 4.2.3.2)

• Assume that (S, ‖ · ‖S) is an arbitrary Banach space. If (M,M, µ) is a mea-
sure space define S as the Bochner-Lebesgue9 space Lp(M ;S) with ‖S‖p :=∫
M ‖S(m)‖pS dµ(m) which is also a Banach space.

• If M is a discrete finite space10 (e.g. ⊂ Zd), let S be the Banach space S|M |.

– (ordinary) cellular automata (Section 2.1)

– method of lines, finite difference method

• Let M be discrete finite set equipped with an arbitrary graphical structure.

– unaligned cellular automata (Section 2.2)

– finite element method

4.3.2 Quasilinear Evolution Systems

Cellular automata are often nonlinear systems or approximate nonlinear equations.
But such an application scenario conflicts with the definition of evolution systems,
which relies on the basic theory of strongly continuous semigroups and hence linear
evolution operators on S.

However under certain conditions we can try to maintain the basic characteristics
of evolution systems even if the evolution operators are not strictly linear maps. We
will therefore require a specific kind of nonlinearity in order to ease formalisation,
which actually might not even be a necessity for nonlinear evolution systems. Such
evolution systems will be called quasilinear or spatially linear evolution systems.

Definition 4.3.1 (Quasilinear Evolution System). We call an evolution system
quasilinear if the scalar evolution operators can be written as

Ldt,mS =
(
Fdt
(
S(m)

)
◦ projNdt(m)︸ ︷︷ ︸

=:LHdt,m(S(m))

)
S + Gdt

(
S(m)

)
(4.3.1)

where Fdt(s) : SNdt → S is a linear map for all s ∈ S and Gdt : S → S. The
homogeneous part LHdt,m(s) is a linear mapping S → S for all s ∈ S. In this case a
future state at location m, St+dt(m) can depend on St(m) in a nonlinear fashion.

9Bochner-Lebesgue spaces are a simple extension of Lebesgue spaces for functions with values
in arbitrary Banach spaces other than R.

10A discrete space is always Hausdorff. A discrete space is compact if and only if it is finite.
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The evolution operators of such a system can also be written as

EdtS =
∏
m∈M

Ldt,mS =
∏
m∈M

LHdt,m(S(m))︸ ︷︷ ︸
=:EHdt(S)

S +
∏
m∈M

Gdt
(
S(m)

)
︸ ︷︷ ︸

=:EIdt(S)

(4.3.2)

where EHdt (sM ) ∈ L(S,S) for all sm ∈ SM and EIdt : S→ S.
Since obviously St+dt(m) depends on St(m), it is necessary that m ∈ N (m) in

order to comply with the definition of neighbourhoods. Additionally if m /∈ N (m),
then it can happen that the Edt are linear.

A quasilinear integral evolution system can be formalised as

EdtS(m) = Ldt,mS =

∫
N (m)

Kdt
(
S(m), n,m

)
S(n) dn+ Gdt

(
S(m)

)
. (4.3.3)

The main drawback in contrast to fully linear evolution systems is that standard
semigroup theory is not applicable because the evolution operators Edt are not linear.
If Gdt = 0, the linear operators EHdt (s) still vary over time, which also does not comply
with the standard concept of semigroups. It is also not clear if and how infinitesimal
generators can be formalised and in which way an infinitesimal generator would
depend on the local state.

Note that this formalisation of quasilinear evolution systems corresponds to the
classification of (parabolic) partial differential equations. Instead of differential op-
erators, we deal with locally characterised evolution operators. Again this leads
to the question whether basic concepts form parabolic partial differential equations
(p.e. weak formulation, Galerkin approximation, maximum principles, etc.) can be
adopted for evolution systems and cellular automata.

4.3.3 Discretisation of Evolution Systems

Throughout Section 4.3.3 continuous state functions (e.g.M ⊂ Rd) are written using
standard capital letters S : M → S and discrete state mappings (e.g. M ⊂ Zd) using
the calligraphic typeface S : M → S. The same is true for all kind of operators.

The straight forward discretisation for evolution systems is time-discretisation.
Under the circumstances that the evolution operators Edt form a contraction semi-
group it is sufficient to choose a dt ∈ T − T , without loss of generality dt := 1, and
to define the iterative system

Stn+1(m) = E1Stn(m). (4.3.4)

The resulting states satisfy Stn(m) = EtnS0(m) and accordingly form an exact time-
discretisation of the original evolution system.

This situation is however only theoretical. Usually evolution systems are

• either given in an implicit form as evolution equations and do not allow an
explicit formulation in terms of evolution operators (analytic solution),
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• or the semigroup property Es+t = EsEt is by design (model) not an exact
equation but only an acceptable approximation for small s and t.

In order to obtain a cellular automaton from an evolution system it is also nec-
essary to have a discrete domain M . Independently of the discretisation approach,
a locally characterised iterative discrete system must be obtained. Local characteri-
sation is

• either given by design (model),

• obtained by approximating a not locally characterised evolution system with a
locally characterised one

• or by choosing a discretisation method that yields spatially restricted neigh-
bourhoods.

The latter two cases can be found in the following linear example.

Example 4.3.2. A very prominent example for a not locally characterised evolu-
tion system is the Gaussian diffusion semigroup (M = Rd, S = R, S = L1(M))

(EdtS)(t,m) =

∫
Rd

(4π dt)−
d
2 e−

‖m−n‖2
4 dt S(t, n) dn. (4.3.5)

The most obvious discretisation (dt = 1) of this system has the form

S(ti+1,m) =
∑
n∈Zd

α(n,m)S(ti, n) (4.3.6)

where α(n,m) describes suitable coefficients (compare Section 4.3.3.4). A locally
characterised approximation can be written as

S(ti+1,m) =
∑

n∈N (m)

β(n,m)S(ti, n). (4.3.7)

Using Fourier transformation it can be shown [8] that a solution of the diffu-
sion or heat equation

∂tS(t,m) = ∆S(t,m) (4.3.8)
with initial condition S(0,m) satisfies

S(t,m) =

∫
Rd

(4π t)−
d
2 e−

‖m−n‖2
4 t S(0, n) dn. (4.3.9)

Obviously Equation 4.3.5 and Equation 4.3.8 describe the same evolution system.
Also for the heat equation there exists a straight forward discretisation (Zd ⊂

Rd) method: the method of finite differences

S(ti+1,m) =
d∑

n=1

(
S(ti,m+ en)− 2S(ti,m) + S(ti,m− en)

)
(4.3.10)

which by definition is a locally characterised discrete evolution system.
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Even for a spatially interpreted domain in Rd there exist different methods to
discretise functions S : Rd → S:

• interpolation approach: S(z) := S(z) for z ∈ Zd

• S(z) :=
(
S(z), S(1)(z), S(2)(z)

)
for z ∈ Zd

• volumetric: S(z) :=
∫

[z1− 1
2
,z1+ 1

2
)×···×[zd− 1

2
,zd+ 1

2
) S(x) dx

• . . .

In general a discretisation of M ⊂ Rd can be interpreted as the approximation of
state functions S by a parametrised set of functions Sp on [z1, z1+1)×· · ·×[zd, zd+1)
such that ‖S − Sp‖ is minimal for a certain norm.

The choice for a specific discretisation method is of course influenced during
the process of modelling. Also the discretisation of the domain M itself must not
necessarily yield a regular lattice (compare the finite element method) despite this
is the most obvious approach.

As indicated before in an ideal situation, the error ‖S(t, x) − S(t, z)‖ should be
minimal independently of t ∈ T .

4.3.3.1 Finite Difference Discretisation of Partial Differential Equations

For parabolic differential equations the method of finite differences is the standard
discretisation method. For example [14] provides advanced finite difference discreti-
sation methods for abstract parabolic differential equations with nonconstant coeffi-
cients and inhomogeneities.

Regard the equation
∂tS = A(t, S)S +G(t, S) (4.3.11)

with differential operator A. Usually the time derivative is replaced by a Euler
forward discretisation scheme, which also implies a linearisation of the right hand
side.

S(t+ dt, x) = S(t, x) + dtA
(
t, S(t, x)

)
S(t, x) + dtG

(
t, S(t, x)

)
(4.3.12)

Differential operators in the right hand side are discretised using finite differences
which finally yields a difference equation.

4.3.3.2 Discretisation of Linear Evolution Operators

Usually a spatial discretisation yields a finite number of cells. If S is one-dimensional,
then SM is a finite-dimensional vector space over S which means that a linear map
E ∈ L(S,S) has a matrix representation and the iteration of global states can be
written as

St+1 = E · St (4.3.13)
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respectively
St+1(m) = Lm · St (4.3.14)

which means that the scalar evolution operators Lm are the row vectors of the evo-
lution matrix E . According to the matrix representation there exists an indexing or
ordering of the cells mi where i ∈ {1, . . . , |M |} such that every cell mi corresponds
to a unit vector ei.

If S is multi-dimensional, then E is a tensor respectively has a tensor representa-
tion but still every cell is associated with a unique index in N.

Let us now for simplicity assume that S is one-dimensional – otherwise we have to
deal with tensors instead of matrices. We can write the vector-vector multiplication
from Equation 4.3.14 as

St+1(mi) = Lmi · St =

|M |∑
j=1

li,j St(mj) =
∑

mj∈N (mi)

li,j St(mj) (4.3.15)

since the scalar components li,j of the evolution matrix are non-zero only if mj ∈
N (mi). Accordingly an evolution matrix is usually sparsely occupied.

Corollary 4.3.3 (Evolution Matrix). The evolution matrix of a cellular automa-
ton (discretised evolution system) with – necessarily – linear evolution operator has
the same shape as the adjacency matrix. For regularly arranged cellular automata
(regular discretisation), “matrix” can be replaced with “tensor”.

Proof. Follows from the definitions in Section 3.2.

Note that for a regular discretisation the resulting evolution matrix features very
specific characteristics (Section 3.2.3).

4.3.3.3 Discretisation of Quasilinear Evolution Operators

At this point at the latest we can recognise that linear evolution systems are not the
main application area for cellular automata. Because usually a cellular automaton
is not a linear system.

For quasilinear systems a discretisation has the form

St+1 = EH(St) · St + EI(St) (4.3.16)

with a matrix EH(sM ) ∈ S|M |×|M | for all sM ∈ S|M | with the same characteristics as
the evolution matrix in the previous section (e.g. Corollary 4.3.3) and a component
wise mapping EI : S|M | → S|M |.

In scalar form,

St+1(m) = LHm
(
S(m)

)
· St + G

(
S(m)

)
(4.3.17)

= F
(
S(m)

)
·
(

projN (m) St
)

+ G
(
S(m)

)
(4.3.18)

where F(s) ∈ S1×k (for equally sized neighbourhoods), LHm(s) ∈ S1×|M | and G : S→
S.
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4.3.3.4 Discretisation of Integral Evolution Operators

Regard the following integral evolution system with M ⊂ Rd,

EdtS(m) = Ldt,mS =

∫
Rd
κdt(v)S(m+ v) dv. (4.3.19)

A discretisation for example minimises ‖S(x)−S(z)‖L1 on cubes x ∈ [z1− 1
2 , z1 +

1
2)× · · · × [zd − 1

2 , zd + 1
2) with volume 1. A possible discretisation of the evolution

operator respectively the integral kernel is given by

αdt(w) :=

∫
w+[− 1

2
, 1
2

)d
κdt(v) dv (4.3.20)

and
EdtS(m) = Ldt,mS =

∑
v∈Zd

αdt(v)S(m+ v) (4.3.21)

for discrete m ∈M ∩ Zd.
For simplicity assume that κ is a probability density on V , ‖κ‖L1(V ) = 1. In

order to maintain this normalisation for a local characterisation of κ we can define

αdt(w) :=

{
C ·
∫
w+[− 1

2
, 1
2

)d κdt(v) dv ‖w‖ ≤ ρ
0 ‖w‖ > ρ

(4.3.22)

where C is the inverse of the integral of κ over the corresponding set of cubes. C
should ideally be as close to 1 as possible. This can for example be achieved by a
good (large) choice of ρ which may depend on dt.

In Example 4.2.17 a polynomial approximation of S was used to obtain a differ-
ential equation from an integral equation. Applying the method of finite differences
on the differential equation yields a locally characterised discrete evolution system
also if the kernel of the original integral formulation is not locally characterised.

If κ is a probability density function, then the coefficients α(v) are composed of
the moments of the corresponding probability distribution. In [44] and Section 4.3.4
it is shown that a symmetric distribution greatly simplifies the resulting discrete
evolution system respectively the coefficients.

4.3.3.5 Outlook: Stochastic Approximation of Integral Evolution Oper-
ators

A further method for discretising an integral evolution system with a probability den-
sity function as kernel relies on a stochastic interpretation of the evolution process.
Let Ndt : (Ω,P)→ V be random variables with densities κdt : V → R+, then

EdtS(m) = Ldt,mS =

∫
V
κdt(v)S(m+ v) dv = E

[
S(m+Ndt)

]
. (4.3.23)
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We can say that Ndt randomly selects an element of V or that Ndt describes a
stochastic neighbourhood.

Let v1, . . . , vk be realisations of Ndt, then for k −→∞

1

k

k∑
i=1

S(m+ vi) −→ E
[
S(m+Ndt)

]
(4.3.24)

according to the law of large numbers.
The same results also apply for discrete random variables Ndt : (Ω,P)→ V ⊂ Zd

and accordingly also for discretised evolution systems. Furthermore for a finite set
of realisations, the support of the density must not necessarily be bounded in order
to obtain a bounded (stochastic) neighbourhood.

This approach was successfully used in [44].
If not a probability density but a function V → [0, 1], κdt can be interpreted as

a membership function [45] of a fuzzy neighbourhood set. However in both cases
further investigations are out of scope for this thesis but could provide interesting
results.

4.3.4 Application Example: Reaction Diffusion System

Regard the following quasilinear parabolic partial differential equation for S : T ×
M → R2 where M is a domain in Rd.

∂tS1(t, x) =
(
D1 · S(t, x)

)
∆S1(t, x) +G1

(
S(t, x)

)
(4.3.25)

∂tS2(t, x) =
(
D2 · S(t, x)

)
∆S2(t, x) +G2

(
S(t, x)

)
. (4.3.26)

The time discretisation of this system (i = 1, 2) is given by

Si(t+ dt, x) = Si(t, x) + dt
(
Di · S(t, x)

)
∆Si(t, x) + dtGi

(
S(t, x)

)
. (4.3.27)

Assume that there exists an integral representation in the form

Si(t+ dt, x) =

∫
κi,dt(v)Si(t, x+ v) dv + dtGi

(
S(t, x)

)
. (4.3.28)

Because we deal with diffusion, we can assume that κi,dt (compare Example 4.3.2)
are Gaussian densities (variance σ2

i = 2D̃idt)

κi,dt(v) = (4D̃idt π)−
d
2 e
− ‖v‖

2

4D̃idt . (4.3.29)

The second order Taylor expansion of Si, i = 1, 2 is

Si(t, x+ v) ≈ Si(t, x) +

d∑
j=1

vj ∂xjSi(t, x) + (4.3.30)

+
1

2

d∑
j=1

v2
j ∂xjxjSi(t, x) +

1

2

∑
j,l∈{1,...,d}

j 6=l

vjvl ∂xjxlSi(t, x) (4.3.31)
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and substituting in Equation 4.3.28 yields

Si(t+ dt, x) = Si(t, x)

∫
κi,dt(v) dv︸ ︷︷ ︸

1©

+

d∑
j=1

∂xjSi(t, x)

∫
vj κi,dt(v) dv︸ ︷︷ ︸

2©

+ (4.3.32)

+
1

2

d∑
j=1

∂xjxjSi(t, x)

∫
v2
j κi,dt(v) dv︸ ︷︷ ︸

3©

+ (4.3.33)

+
1

2

∑
j,l∈{1,...,d}

j 6=l

∂xjxlSi(t, x)

∫
vjvl κi,dt(v) dv︸ ︷︷ ︸

4©

+ dtGi
(
S(t, x)

)
. (4.3.34)

Because κi,dt usually are radial symmetric probability densities we have

1© = 1 (4.3.35)
2© = 4© = 0 (4.3.36)

3© = σ2
i = 2D̃idt (4.3.37)

and accordingly Equation 4.3.28 can be approximated by

Si(t+ dt, x) = Si(t, x) + dt D̃i∆Si(t, x) + dtGi
(
S(t, x)

)
. (4.3.38)

If we finally set D̃i := Di · S(t, x), the original partial differential equation approxi-
mates the integral evolution system. The kernels must then be written as

κi,dt
(
S(t, x), v

)
=
(
4dtπDi · S(t, x)

)− d
2 e
− ‖v‖2

4dtDi·S(t,x) (4.3.39)

which also means that the variance of the diffusion distribution σ2
i = 2dtDi · S(t, x)

depends on the density S at the actual location. This however suits the definition of
quasilinear evolution systems in Definition 4.3.1.

4.3.4.1 Discretisation Approaches – Cellular Automata

The finite difference discretisation of the differential equation yields the following
difference equation:

Si(t+ dt, x) = Si(t, x) + dtGi
(
S(t, x)

)
+ (4.3.40)

+ dtDi · S(t, x)

d∑
j=1

1

(dx)2

(
Si(t, x+ dx ej) + Si(t, x− dx ej)− 2Si(t, x)

)
(4.3.41)

The integral evolution system can be approximated using the following simple cubic
(Ndt = [−ρ, ρ]d) stencil method – neglecting normalisation –

Si(t+ dt, x) = dtGi
(
S(t, x)

)
+ (4.3.42)

+

ρ∑
ld=−ρ

· · ·
ρ∑

l1=−ρ
κi,dt

(
S(t, x),

d∑
j=1

ljdx ej
)
Si(t, x+

d∑
j=1

ljdx ej). (4.3.43)
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A stochastic approximation of the integral evolution system can be obtained using
random variables Ni,dt ∼ κi,dt

(
S(t, x), ·

)
respectively discrete realisations v1, . . . , vk

by

Si(t+ dt, x) =
1

k

k∑
l=1

Si(t, x+ vi) + dtGi
(
S(t, x)

)
−→ (4.3.44)

−→ E
[
Si(t, x+Ni,dt)

]
+ dtGi

(
S(t, x)

)
. (4.3.45)

4.3.4.2 Outlook: A Further Application Example

This approach was also used in [44] on a model for spatial epidemic spread, which
simulates spatially distributed infections on a three compartment population (sus-
ceptible, infected, recovered – also known as SIR-type epidemic models).

S(t+ dt, x) = S(t, x) − S(t, x)

∫
αdt(v)I(t, x+ v), dv (4.3.46)

I(t+ dt, x) = I(t, x) + S(t, x)

∫
αdt(v)I(t, x+ v), dv −βdtI(t, x) (4.3.47)

R(t+ dt, x) = R(t, x) +βdtI(t, x) (4.3.48)
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Chapter 5

Stochastic Cellular Automata

Because in this chapter stochastic cellular automata will be defined as stochastic pro-
cesses, a short compendium on probability theory and stochastic processes precedes
the definition of stochastic cellular automata.

5.1 Formalisms of Probability and Stochastic Processes

This section recapitulates or introduces basic concepts of probability theory and
stochastic processes in a general form.

5.1.1 Basic Definitions

The following definitions serve as an introduction and should clarify notational con-
ventions. Especially the formulation of conditional probability can be rather com-
plicated.

Definition 5.1.1 (Probability Distribution [27, 28, 29]). Given a probability space
(Ω,A,P) and a measurable space (Υ,B), a measurable function X : (Ω,A)→ (Υ,B)
is called random variable. A probability distribution on (Υ,B) is defined through the
push-forward measure PX := P ◦X−1.

Accordingly a probability distribution is always associated with a probability
measure, which can be either discrete P : Υ→ [0, 1] or continuous P : B→ [0, 1].

Definition 5.1.2 (Expectation Value, compare [27]). The expectation value of a
random variable X is defined as

E[X] :=

∫
Ω
X(ω) dP(ω) =

∫
Ω
X(ω)P(dω) =

∫
Ω
X dP. (5.1.1)

Definition 5.1.3 (Stochastic Independence [27]). A countable collection of sub-σ-
algebras AT := (At)t∈T is independent if for each finite subset T ′ ⊆ T

P
( ⋂
t∈T ′

At

)
=
∏
t∈T ′
P(At) ∀ (At)t∈T ′ ∈

∏
t∈T ′

At. (5.1.2)

87
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A countable collection of random variables is independent if the induced collection of
σ-algebras is independent. A countable collection of events (At)t∈T is independent if
Equation 5.1.2 holds for all finite subcollections. For two independent sub-σ-algebras,
random variables respectively events the notation A ⊥⊥ B is used.

5.1.1.1 Conditional Probability

In a direct approach the conditional probability of an event A given another event B
is defined as

P(A|B) =
P(A ∩B)

P(B)
. (5.1.3)

A more abstract approach to conditional probability is based on conditional ex-
pectation.

Definition 5.1.4 (Conditional Expectation [27, 29]). Let X : (Ω,A,P)→ (Υ,B) be
a random variable. The conditional expectation of X given A′ ⊆ A is a A′-measurable
random variable denoted E[X|A′] : (Ω,A′,P)→ (Υ,B) for which equally either

(i) E
[
IA′E[X|A′]

]
= E

[
IA′X

]
for all A′ ∈ A′ or

(ii)
∫
A′ E[X|A′] dP =

∫
A′ X dP for all A′ ∈ A′.

The random variable E[X|A′] is only almost surely1 unique.

If Y is another random variable (Ω,A,P)→ (Υ,B), we define E[X|Y ] : (Υ,B)→
(Υ,B) such that∫

Y −1(B)
X(ω) dP(ω) =

∫
B
E[X|Y ](υ) dPY (υ) B ∈ B. (5.1.4)

It is possible to show that E[X|Y ] ◦ Y is equal to the conditional expectation
E[X|σ(Y )] by regarding the transformation∫

A′

(
E[X|Y ] ◦ Y

)
(ω) dP(ω) =

∫
Y (A′)

E[X|Y ](υ) dP ◦ Y −1(υ) (5.1.5)

where A′ ∈ σ(Y ) and σ(Y ) ⊆ A is the σ-algebra induced by Y on Ω with Y −1(B) ⊆
σ(Y ) ⊆ A. Also the notations E[X|Y = Y (ω)] = E[X|Y ] ◦ Y (ω) and E[X|Y = υ] =
E[X|Y ](υ) shall be used and E[X|Y ] can be called conditional expectation of X given
Y .

Motivated by E[IA] = P(A), conditional probability can also be formalised in the
following way (compared to Equation 5.1.3).

Definition 5.1.5 (Conditional Probability [27, 29]). The conditional probability with
respect to A′ ⊆ A is a function P( · |A′)( · ) : A×Ω→ [0, 1] and equally either defined
as

1An expression holds almost surely (a.s.) or almost everywhere if there exists a zero-measure set
N such that the expression is valid for all elements in the complement Nc [6, p. 140].
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(i) P(A|A′) := E[IA|A′] for all A ∈ A or such that

(ii)
∫
A′ P(A|A′)(ω) dP(ω) = P(A ∩A′) for all A ∈ A and A′ ∈ A′.

According to Definition 5.1.4 the conditional probability of A given A′ is a random
variable P(A|A′) : (Ω,A′) → ([0, 1],B[0,1]) where B[0,1] is the corresponding Borel
σ-algebra and E[P(A|A′)] = E[IA] = P(A).

For a random variable Y : (Ω,A,P) → (Υ,B) we can introduce the notations
P(A|Y ) ◦ Y = P

(
A
∣∣σ(Y )

)
where σ(Y ) = σ

(
Y −1(B)

)
⊆ A as well as P(A|Y = υ) =

P(A|Y )(υ) analogously to the expectation value. In this case P
(
A
∣∣Y = Y (ω)

)
=

P(A|Y ) ◦ Y (ω),

P
(
A ∩ Y −1(B)

)
=

∫
Y −1(B)

P
(
A
∣∣σ(Y )

)
(ω) dP(ω) =

∫
B
P(A|Y )(υ) dPY (υ) (5.1.6)

for B ∈ B and

P(A|Y = υ) = P
(
A
∣∣σ(Y )

)
(ω) ω ∈ Y −1({υ}). (5.1.7)

Definition 5.1.6 (Regular Conditional Probability, compare [23]). If for a condi-
tional probability with respect to A′ ⊂ A the function P( · |A′)(ω) : A → [0, 1] is a
probability measure for all ω ∈ Ω we talk of a regular conditional probability (from
(Ω,A′) to (Ω,A)) with respect to A′.

Given a random variable Y : (Ω,A,P)→ (Υ,B) a regular conditional probability
with respect to Y “from (Υ,B) to (Ω,A)” [23] is a function P( · |Y = · ) : A×Υ→
[0, 1] which

(i) is a measurable function (Υ,B)→ ([0, 1],B[0,1]) for all A ∈ A,

(ii) is a probability measure on (Ω,A) for all υ ∈ Υ (compare Definition 5.1.6) and

(iii) which satisfies

P
(
A ∩ Y −1(B)

)
=

∫
B
P(A|Y = υ) dPY (υ) (5.1.8)

for all A ∈ A and B ∈ B.

If Y : (Ω,A,P)→ (Ω,A), then P ( · |Y = · ) : A× Ω→ [0, 1] with (i), (ii) and

P
(
A ∩ Y −1(A′)

)
=

∫
A′
P(A|Y = ω) dPY (ω) (5.1.9)

for all A ∈ A and A′ ∈ σ(Y ) ⊂ A, is a regular conditional probability from (Ω, σ(Y ))
to (Ω,A).

If ultimately Y = I : A→ A, then the equation

P
(
A ∩A′

)
=

∫
A′
P(A|ω) dP(ω) (5.1.10)
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can be compared to Equation 5.1.3.
In contrast to conditional probability, regular conditional probability allows to

formalise P(A|ω) even if P(ω) = 0 respectively P(A|X = υ) even if P(X = υ) = 0.

Definition 5.1.7 (Conditional Independence [20, 27]). Let A1, . . . ,Ak+1 be sub-σ-
algebras of A. A1, . . . ,Ak are said to be conditionally independent given Ak+1 if

E
[ k∏
i=1

Xi

∣∣∣ Ak+1

]
=

k∏
i=1

E [Xi|Ak+1] a.s. (5.1.11)

for any collection of bounded random variables X1, . . . , Xk where Xi : (Ω,Ai) →
(Υ,B). For two conditionally independent sub-σ-algebras we use the notation A1 ⊥⊥
A2 | A3.

Also conditional independence can be formulated for random variables: X ⊥⊥
Y | Z means X and Y are independent given Z; in signs either

E[IAIB|Z] = E[IA|Z] · E[IB|Z] a.s. (5.1.12)
P(A ∩B|Z) = P(A|Z) · P(B|Z) a.s. (5.1.13)

for all A ∈ σ(X), B ∈ σ(Y ).

5.1.1.2 Disintegration

This section is mainly based on [9, 23], which provide a complete and compact
overview on regular conditional probability and disintegration.

Definition 5.1.8 (Radon Space [6, p. 313]). A Radon space is a separable2 metric
space, for which every probability measure is inner regular, that is, every set can
be approximated by compact subsets from within with respect to this probability
measure.

Theorem 5.1.9 (Radon Space [23, p. 21]). A separable Hausdorff measurable space
(Ω,A) is Radon (a Radon space) if and only if for every measurable function Y from
(Ω,A) into another measurable space (Υ,B) and any probability measure P on (Ω,A)
there exists a regular conditional probability with respect to Y , P( · |Y = · ) : A×Υ→
[0, 1].

Proof. See [23].

In the following quote the mathematical denotations were adapted to the nomen-
clature of this thesis. Furthermore regular conditional probability is abbreviated by
RCP.

2“A topological space is called separable if there exists a countable dense subset.” [6, p. 242]
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Let (Ω,A) be a Radon space with Y : (Ω,A) → (Υ,B) a measurable
function, where (Υ,B) is a separable Hausdorff measurable space. If
P is a probability on (Ω,A), then it follows from [Theorem 5.1.9] that
there exists a RCP P( · |Y = · ) from (Υ,B) to (Ω,A). The added
difficulty in disintegration problem is that of delimiting the support of
the probability P( · |Y = υ). The space Ω is partitioned into the fibers
{Y −1({υ}) : υ ∈ Υ}. Hence the natural question which appears is if
the probability [measure] P( · |Y = υ) is concentrated on Y −1({υ}) for
all υ ∈ Y (Ω). In sequence, we shall establish necessary and sufficient
conditions for the existence of such RCP. [23, p. 22]

From a less technical but specialised point of view:

[Regular conditional probability] rigorously defines the idea of a non-
trivial ‘restriction’ of a measure to a measure zero subset of the measure
space in question. . . . In a sense, ‘disintegration’ is the opposite process
to the construction of a product measure. [48]

B? shall indicate a σ-algebra on Υ that is complete with respect to all measures on
Υ. A function that is measurable with respect to B? is called universally measurable
[23]. We further assume that (Ω,A) is a Radon space and that Υ is separable and
Hausdorff.

Definition 5.1.10 (Universally Measurable Disintegration [23, p. 24]). Given a ran-
dom variable Y : (Ω,A,P) → (Υ,B) a universally measurable disintegration with
respect to Y from (Υ,B) to (Ω,A) is a function P( · |Y = · ) : A×Υ→ [0, 1] which

(i) is a measurable function (Υ,B?)→ ([0, 1],B[0,1]) for all A ∈ A,

(ii) is a probability measure on (Ω,A) for all υ ∈ Υ and

(iii) which satisfies

P
(
A ∩ Y −1(B)

)
=

∫
B
P(A|Y = υ) dPY (υ) (5.1.14)

for all A ∈ A and B ∈ B as well as

(iv) P
(
Y −1({υ})

∣∣Y = υ
)

= 1 for υ ∈ Y (Ω) ⊂ Υ.

A function Υ→ Ω that assigns an arbitrary element from {ω ∈ Ω : Y (ω) = υ} =
Y −1({υ}) to each υ ∈ Y (Ω) ⊂ Υ is called selection function.

Theorem 5.1.11 (Existence of Universally Measurable Disintegrations [23, p. 25]).
Using the preconditions of the previous definition, if there exists a universally mea-
surable selection function Y (Ω) → Ω, then there exists a universally measurable
disintegration for every probability measure on (Ω,A).
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Proof. See [23].

It is possible to show that such a measurable selection functions always exists if
(Ω,A) is a Suslin space3 [23].

5.1.1.3 Markov Kernels

Definition 5.1.12 (Markov or Probability Kernel [23, 28], compare also [4]). Let
(Ω,A) and (Υ,B) be measurable spaces. A Markov kernel from (Ω,A) to (Υ,B) is
a function K : Ω×B→ [0, 1] which satisfies

(i) K(ω, · ) is a probability measure on (Υ,B) for every ω ∈ Ω and

(ii) K( · , B) is a measurable function on (Ω,A) for every B ∈ B.

Accordingly a kernel from (Ω,A′) to (Ω,A) is a function K : Ω × A → [0, 1]
for which K(ω, · ) : A → [0, 1] is a probability measure and K( · , A) : Ω → [0, 1] is
measurable. Compare the requirements with the definition of disintegration (Defini-
tion 5.1.10) and regular conditional probability (Definition 5.1.6).

Proposition 5.1.13 (Regular Conditional Probability Implied by a Markov Ker-
nel, compare [23]). Given a sub-σ-algebra A′ ⊆ A, a Markov kernel from (Ω,A′) to
(Ω,A,P) implies a regular conditional probability with respect to A′ if for all A ∈ A
and A′ ∈ A′

P(A ∩A′) =

∫
A′
K(ω,A) dP(ω). (5.1.15)

Proof. Define P(A|A′)(ω) := K(ω,A). Condition (ii) of Definition 5.1.5 is satisfied
according to Equation 5.1.15 which renders P( · |A′)( · ) a conditional probability.
Together with Definition 5.1.12 (i) we have a regular conditional probability.

Definition 5.1.14 (Composition of Probability Kernels [28]). Let K1 be a proba-
bility kernel from (Ω,A) to (Υ,B) and K2 a probability kernel from (Ω×Υ,A⊗B)
to (Ξ,C) then K1 ⊗K2 defined by

(K1 ⊗K2)(ω,B) =

∫
Υ
K1(ω, dυ)

∫
Ξ
K2(ω, υ, dξ)IB(υ, ξ) =

∫
B
K1(ω, dυ)K2(ω, υ, dξ)

(5.1.16)
for B ⊆ Υ× Ξ is a probability kernel from (Ω,A) to (Υ× Ξ,B⊗ C).

Definition 5.1.15 (Product of Probability Kernels [28]). Let K1 and K2 be two
probability kernels from (Ω,A) to (Ω,A). The product K1K2 defined by

(K1K2)(ω,A) =

∫
K1(ω, dυ)K2(υ,A) (5.1.17)

is also a probability kernel from (Ω,A) to (Ω,A). In a not fully exact notion we can
also write (K1K2)(ω,A) = (K1 ⊗K2)(ω,Ω×A).

3“A Hausdorff space X is called Suslin space if there exists a Polish space Y and a continuous
surjective mapping Y → X.” [6, p. 322]
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Proposition 5.1.16 (Cartesian Product of Probability Kernels). Let Ki be proba-
bility kernels from (Ωi,Ai) to (Υi,Bi) for i = 1, 2. Then the function K : (Ω1 ×
Ω2) × σ(B1 ×B2) → [0, 1] defined as the product measure on σ(B1 ×B2) for fixed
first argument (ω1, ω2) ∈ Ω1 ×Ω2 is a probability kernel from

(
Ω1 ×Ω2, σ(A1 ×A2)

)
to
(
Υ1 ×Υ2, σ(B1 ×B2)

)
.

Proof. K
(
(ω1, ω2), ·

)
is a probability measure for all (ω1, ω2) ∈ Ω1×Ω2 per definition.

It remains to show that K( · , B) is a σ(A1 × A2)-measurable function for all B ∈
σ(B1 ×B2). So far, K( · , B1 × B2) is at least measurable for all B1 × B2 ∈ B1 ×
B2 because the product of measurable functions (K( · , B1)K( · , B2)) is measurable.
A monotone class argument (compare [20, pp. 403-404] and [6, p. 23]) delegates
measurability for sets in σ(B1 ×B2) to measurability for sets in B1 ×B2: The sets
B ∈ σ(B1 ×B2) for which K( · , B) is measurable is a monotone class and the sets
B1 ×B2 are contained in this class. Hence σ(B1 ×B2) is a subset of this class.

5.1.2 Stochastic Processes and Random Fields

A stochastic process describes a collection of random variables and stochastic depen-
dencies among them. Major interests of this theory and also important points of
attack include the discussion of joint distributions, local characterisations by condi-
tional probabilities, limits, prediction, nonlocal influence etc.

For the investigation of stochastic processes in the context of cellular automata
it seemingly suffices to observe discrete-parameter stochastic processes such that the
parameters describe the (discrete) cells and the (discrete) iterations. But on the
one hand because the theory is often discussed either in a discrete-parameter and
discrete-state or continuous-parameter and continuous-state fashion, and secondly
because a cellular automaton may be used to discretise a continuous process/system,
the following sections also deal with continuous-parameter processes.

However the nomenclature in this area is occasionally rather confusing – maybe
due to the diverse historical background. Basically a stochastic process is a collection
of random variables.

Definition 5.1.17 (Random or Stochastic Process [20, 28, 29]). Let (T,<) be a
totally ordered set. A stochastic process X := XT := (Xt)t∈T is a collection of
random variables Xt : (Ω,A,P)→ (Υ,B) with indexing T .

If T is a totally ordered countable set (usually N or Z), X is called discrete-
parameter stochastic process or sometimes also simply chain (compare Markov chains,
Section 5.1.3). If T = R+ we talk of a continuous-parameter stochastic process.

Random fields are understood as a generalisation of random processes with re-
spect to the indexing respectively parameter. The following quotations and Defini-
tion 5.1.18 give a very good impression of the purpose of introducing random fields
in the context of an investigation on cellular automata.

. . . for us a random field is simply a stochastic process . . . defined over
a parameter space of dimensionality at least 1. Although we shall be
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rather loose about exchanging the terms ‘field’ and ‘process’, in general
we shall use ‘field’ when the geometric structure of the parameter space
is important to us . . . [2, p. 7]

Definition 5.1.18 (Random Field [2]). Given (Ω,A,P), (Υ,B) and a topological
space (T,O), a measurable mapping X : Ω→ ΥT is called random field.

. . . T . . . probably stands for ‘time’. While the whole point of this book
is to get away form the totally ordered structure of R, the notation is
too deeply entombed in the collective psyche of probabilists to change it
now. Later on, however, when we move to manifolds as parameter spaces
. . . [2, p. 7]

Compare Definition 5.1.18 also with the concept of random functions (Defini-
tion 5.1.19). The exact approach for defining random fields and also stochastic
processes is a matter of taste.

Definition 5.1.19 (Random Function [28]). Let XT be a stochastic process from
(Ω,A,P) to (Υ,B). For fixed ω the mapping t 7→ Xt(ω) is called random function.

Random function corresponds to trajectory through the phase space.

5.1.3 Markov Processes

This section shall provide a short introduction to the formalisms of Markov processes.
Accordingly (T,<) is a totally ordered set. Some of the following definitions can
either be found as slight modifications or one-to-one copies – except for notation – of
definitions in [4, 20, 28], which provide a detailed discussion of stochastic processes.

Definition 5.1.20 (Filtration [20, 28, 34]). Given a σ-algebra A, a filtration is a
collection of sub-σ-algebras AT := (At)t∈T satisfying As ⊆ At if s ≤ t.

Definition 5.1.21 (Adapted Stochastic Process [20, 28, 34]). A stochastic process
XT from (Ω,A,P) to (Υ,B) is called adapted to a filtration AT ⊆ A if Xt is At-
measurable for all t ∈ T . A stochastic process is always adapted to its natural
filtration

(
σ(Xs : s ≤ t)

)
t∈T .

Definition 5.1.22 (Markov Process [4, 20, 28]). A stochastic process XT : (Ω,A)→
(Υ,B) is called Markov process, if XT is adapted to its natural filtration AT ⊆ A
and the Markov property, which for all s > t is equally either

(i) Xs ⊥⊥ At | Xt,

(ii) P(Xs ∈ B | At) = P(Xs ∈ B | Xt) a.s. for all B ∈ B or

(iii) E[f(Xs)|At] = E[f(Xs)|Xt] a.s. for all bounded measurable f : Υ→ R,

is satisfied.



5.1. PROBABILITY AND STOCHASTIC PROCESSES 95

When T = N or T = Z we talk of a Markov chain. In literature Markov chains
are often assumed to have also a discrete state-space [4, 20]. A good approach
for constructing such a memoryless (compare Section 1.3.1) stochastic chain is by
specifying transition probabilities in the form of Markov kernels.

Since we observe random processes from (Ω,A,P) to (Υ,B) we will use Markov
kernels K : Υ×B→ [0, 1] in a way such that

Ks,t(υ,B) = P(Xt ∈ B | Xs = υ) (5.1.18)

respectively
Ks,t(Xs, B) = P(Xt ∈ B | As) a.s. (5.1.19)

5.1.3.1 Transition Functions

This section introduces the concept of transition functions in order to facilitate the
construction of a connection between Markov processes and collections of Markov
kernels.

For the following investigations it is necessary that (Υ,B) is either a Polish space4

with the σ-algebra of Borel sets [4] or (rather similar) a locally compact separable5

metric space with the Borel σ-algebra [20].

Neben den lokal-kompakten Hausdorff-Räumen sind die polnischen
Räume von besonerer Wichtigkeit. Ein wesentlicher Grund dafür ist, daß
wichtigen Konvergenzsätzen für stochastische Prozesse Maße auf polnis-
chen (aber nicht lokal-kompakten) Räumen zugrundeligen . . . [6, p. 320]

Besides locally compact Hausdorff-spaces, Polish spaces are of particular
importance. A significant reason is that important convergence theorems
for stochastic processes require Polish (but not locally compact) spaces
. . . [6, p. 320]

Definition 5.1.23 (Transition Function [4, 20], compare also [28, 29]). Given an
index set T , if for every (s, t) ∈ T × T with s ≤ t a probability kernel Ks,t from
(Υ,B) to (Υ,B) is defined such that

(i) Kt,t(υ, · ) = δυ for all t ∈ T and

(ii) Ks,uKu,t = Ks,t for all s ≤ u ≤ t ∈ T (Chapman-Kolmogorov equation, product
defined in Definition 5.1.15),

we call the collection of kernels transition function and also write K(s, υ, t, B) :
T ×Υ× T ×B→ [0, 1].

4A topological space X is called Polish if there exists a generating metric d, for which (X, d) is
separable and complete [6, p. 320].

5“A topological space is called separable if there exists a countable dense subset.” [6, p. 242], see
also p. 90.
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Accordingly a transition function is a collection of Markov kernels satisfying a
certain semigroup property.

Proposition 5.1.24 (Transition Function of a Markov Process [4, 28]). Given a
Markov process XT : (Ω,A,P)→ (Υ,B), the function

K : T ×Υ× T ×B→ [0, 1] : (s, υ, t, B) 7→ P(Xt ∈ B | Xs = υ) (5.1.20)

is a transition function i.e.

(i) K(s, · , t, · ) : Υ ×B → [0, 1] is a Markov kernel (Definition 5.1.12) for fixed
s, t with s ≤ t,

(ii) K(s, υ, s, B) = IB(υ) and

(iii) K satisfies the Chapman-Kolmogorov equation

K(s, υ, t, B) =

∫
Υ
K(s, υ, r, dx)K(r, x, t, B) (5.1.21)

for s ≤ r ≤ t and all (υ,B) ∈ Υ×B.

Proof. K(s, υ, t, B) is a probability kernel for every s < t because P(Xt ∈ B|Xs = υ)
is a regular conditional probability. Requirement (ii) respectively Definition 5.1.23
(i) is clear. The proof that the Chapman-Kolmogorov equation – Definition 5.1.23
(ii) respectively (iii) in this proposition – is satisfied is more complicated. Complete
proofs can be found in [4, 28].

Definition 5.1.25 (Initial Measure [4, 20]). If XT is a Markov process (Ω,A,P)→
(Υ,B) and t0 := minT , then the probability measure P0 induced by X0 on (Υ,B)
is called initial measure.

Theorem 5.1.26 (Markov Process Induced by Transition Function [4, 28]). For a
given probability measure P0 on (Υ,B) and a transition function K : T×Υ×T×B→
[0, 1] there exists a unique Markov process.

Proof. This theorem is very prominent in literature on Markov processes [20, 28].

The transition probabilities of the resulting Markov process satisfy [4, 20]

P(Xt ∈ B | Xs = υ) = K(s, υ, t, B). (5.1.22)

The results on Markov processes and their transition functions can be summarised
as follows.

Corollary 5.1.27 (Identification of Markov Processes and Transition Functions). A
Markov process is always uniquely associated with a transition function.
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Theorem 5.1.28 (Chapman-Kolmogorov Equation [4], compare [20]). A collection
of random variables XT is a Markov process with initial measure P0 if and only if
for every integer k and any family f0, . . . , fk of non-negative measurable real-valued
bounded functions and all 0 = t0 < · · · < tk,

E
[ k∏
i=0

fi(Xti)
]

=

∫
Υ
P0(dυ0)f0(υ0)

∫
Υ
K(0, υ0, t1, dυ1)f1(υ1) · · ·

· · ·
∫

Υ
K(tk−1, υk−1, tk, dυk)fk(υk) (5.1.23)

=

∫
Υ
P0(dυ0)f0(υ0)

k∏
i=1

∫
Υ
K(ti−1, υi−1, ti, dυi)fi(υi) (5.1.24)

=E[f0(X0)]

k∏
i=1

E[fti(Xti)|Xti−1 = υi−1] (5.1.25)

where K(s, υ, t, B) := P(Xt ∈ B|Xs = υ).

Proof. This theorem including proofs can be found in most works on Markov pro-
cesses [4, 20].

Note that E[fi(Xti)|Xti−1 = · ] = E[fi(Xti)|Xti−1 ]( · ) is a measurable random
variable (Υ,B, P0)→ ([0, 1],B[0,1]) (compare Equation 5.1.5).

5.1.3.2 Markov Semigroups

This section formalises a commonly used functional analytic approach to transition
functions for continuous-parameter Markov processes, so-called Markov semigroups.
We use the notation L∞(Υ) for all bounded measurable functions Υ→ R [20]. Then
C0(Υ) ⊂ L∞(Υ).

Definition 5.1.29 (Transition Operator [4, 20]). Given a Markov process XT the
transition operators (Es,t)s,t∈T are defined as bounded linear operators L∞(Υ) →
L∞(Υ) such that for any bounded measurable function f : Υ→ R and υ ∈ Υ

(Es,tf)(υ) = E[f(Xt)|Xs = υ] s ≤ t. (5.1.26)

Sometimes [20, 28, 34] the following notation is used for Equation 5.1.26

(Es,tf)(Xs) = E[f(Xt)|As] a.s. (5.1.27)

This equation may be interpreted in the following context

Es,tf(υ) = E[Es,tf(Xs)|Xs = υ] (5.1.28)
= E

[
E[f(Xt)|As]

∣∣Xs = υ
]

(5.1.29)
= E[f(Xt)|Xs = υ]. (5.1.30)
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Proposition 5.1.30 (Markov Semigroup [4, 20]). Given a Markov process respec-
tively its transition function, the collection of transition operators (Es,t)s≤t is a (con-
traction) semigroup of linear operators on L∞(Υ), which means (r ≤ s ≤ t)

(i) Es,t is a linear operator on L∞(Υ),

(ii) Et,t is the identity operator,

(iii) ‖Es,t‖ ≤ 1 ( contraction),

(iv) Er,t = Er,sEs,t ( semigroup property),

(v) f ≥ 0 implies Es,tf ≥ 0 (non-negativity preserving).

The collection (Es,t)s≤t is called Markov semigroup. Properties (ii-iv) are the classical
properties of a contraction semigroup (Definition 4.2.2).

Proof. A formal proof can be found in literature [4, 20, 29].

If K(s, υ, t, B) := P(Xt ∈ B|Xs = υ) is the transition function of the Markov
process XT , we can write

(Es,tf)(υ) = E[f(Xt)|Xs = υ] =

∫
Υ
f(υ̃)K(s, υ, t, dυ̃). (5.1.31)

The transition operators can be identified with this transition function by [4, 20]

K(s, υ, t, B) = (Es,tIB)(υ) υ ∈ Υ, B ∈ B. (5.1.32)

Sometimes also the transition function is regarded as a semigroup (of Markov kernels)
and then called transition semigroup [4, 28].

Theorem 5.1.31 (Markov Process Induced by Semigroup [20, 29]). Given a Markov
semigroup (properties (i-v) in Proposition 5.1.30) and an initial measure it is possible
to construct a Markov process.

Proof. See [20, 29] for a formal proof.

The following corollary recapitulates the results from this section (compare Corol-
lary 5.1.27.

Corollary 5.1.32 (Identification of Continuous-Parameter Markov Processes and
Markov Semigroups). A continuous-parameter Markov process is uniquely associated
with a Markov semigroup.
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5.1.3.3 Further Characterisations of Markov Processes

Definition 5.1.33 (Homogeneous Markov Process, compare [20, 28]). A Markov
process is called homogeneous if the transition function is invariant under translations
(s, t)→ (s+u, t+u). In this case also the corresponding semigroup(s) is (are) called
homogeneous and it is sufficient to define ET := (Et)t∈T := (E0,t)t∈T respectively
KT := (Kt(υ,B))t∈T := (K(0, υ, t, B))t∈T .

Equation 5.1.26 can then be written as

(Edtf)(υ) = E[f(Xs+dt)|Xs = υ] υ ∈ Υ. (5.1.33)

For continuous-parameter Markov processes and especially for T = R+ a lot of
additional concepts can be introduced. Among them the Feller property.

Definition 5.1.34 (Feller Semigroup, Feller Process [20, 29]). A homogeneous Markov
semigroup ET is a Feller semigroup if

(i) Et is a mapping C0(Υ)→ C0(Υ) for all t ∈ T and

(ii) limt→t0+ ‖Etf − f‖∞ = 0 for all f ∈ C0(Υ) (Feller property).

The associated Markov process is called Feller process.

If Υ is compact, resolvents and generators of Feller processes can be introduced
[20, 29].

5.1.4 Multiparameter Markov Processes

Multiparameter stochastic processes can be seen as an extension of one-parameter
processes. Per definition, a multiparameter process is a random field (see Defini-
tion 5.1.18) – either with discrete or continuous parameter. However, in literature
especiallyMarkovian multiparameter processes are often associated with a parameter
set in Rd, which is also the case for [20], which served as a basis for this section.

We can informally interpret . . . a Markov process as a (one-parameter)
process whose ‘future’ values depend on the past only through its current
value. While this is perfectly intuitively clear (due to the well-ordering
of the ‘time axis’), it is far less clear what a multiparameter Markov
process should be. . . . We will also see how this multiparameter theory
can be used to study intersections of ordinary one-parameter processes.
[20, p. 391]

Let Υ be a compact separable metric space6 equipped with the Borel σ-algebra
and let (T,4) be a half-ordered multidimensional set, usually T ⊆ Rd+ together with
s 4 t if and only if si ≤ ti for all i = 1, . . . , d. Let further s f t denote the element
wise minimum.

6or the one-point compactification of a locally compact separable metric space [20]
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Definition 5.1.35 (d-parameter Filtration [19, 20]). A d-parameter collection of
σ-algebras (At)t∈T is called d-parameter filtration if s 4 t implies As ⊆ At.

Definition 5.1.36 (Commutation [19, 20]). A d-parameter filtration AT is called
commuting, if for all s, t ∈ T

As ⊥⊥ At | Asft (5.1.34)

or equivalently if for all bounded At-measurable random variables X,

E[X|As] = E[X|Asft] a.s. (5.1.35)

Definition 5.1.37 (Multiparameter Markov Process [20, p. 392]). A stochastic pro-
cess XT is called multiparameter Markov process if there exists a d-parameter fil-
tration AT and a family of operators ET such that for all υ ∈ Υ, there exists a
probability measure Pυ on (Υ,B) and

(i) XT is adapted to AT ,

(ii) t 7→ Xt is right-continuous7 Pυ-a.s. for all υ ∈ Υ,

(iii) AT is a commutating filtration and At is complete8 with respect to Pυ for all
υ ∈ Υ and all t ∈ T ,

(iv) for all s, t ∈ T , f ∈ C0(Υ) and υ ∈ Υ,

Etf(Xs) = EPυ [f(Xt+s)|As] Pυ-a.s. (5.1.36)

and

(v) Pυ(X0 = υ) = 1 for all υ ∈ Υ.

A multiparameter process is sometimes also called set-indexed process. Also for
multiparameter Markov processes, ET is a (multiparameter) semigroup9 [20].

Furthermore Equation 5.1.36 is equivalent to

Etf(υ) = E[Etf(Xs)|Xs = υ] (5.1.37)
= E

[
E[f(Xt+s)|As]

∣∣Xs = υ
]

(5.1.38)
= E[f(Xt+s)|Xs = υ]. (5.1.39)

Define the parameter helper σ as [20]

σ1(r) = (r, 0, 0, . . . , 0) (5.1.40)
σ2(r) = (0, r, 0, . . . , 0) (5.1.41)

... (5.1.42)
σd(r) = (0, 0, . . . , 0, r). (5.1.43)

7“A function f : Rd+ → R is right-continuous (with respect to the partial order 4) if for all
t ∈ Rd+, lims<t,s→t f(s) = f(t).” [20, p. 236]

8i.e. contains all zero-measure/null sets [6, p. 63]
9For an exact formal definition see for example [17, p. 28].
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Definition 5.1.38 (Marginal Semigroups [20, p. 396]). The marginal semigroups
Ej , j = 1, . . . , d of a d-parameter Markov process (Et)t∈T are defined such that

Ejrf(υ) = Eσj(r)f(υ) = E(...,r,... )f(υ) (5.1.44)

for all f ∈ L∞(Υ) and υ ∈ Υ.

As a direct consequence,
Et = E1

t1 · · · E
d
td

(5.1.45)

if t = (t1, . . . , td).

5.1.5 Markov Random Fields

If the topological space (T,O) of a random field is – or, more correctly and simpler,
is replaced by – a graph G = (M,E, p) and the random field satisfies a certain local
stochastic feature, it is called Markov random field [21]. Surprisingly the notation
Markov random field is only used in connection with graphs as parameter set, which
are discrete parameter sets.

We assume that the neighbourhoods are not ordered respectively that the graph
is not weighted and simple. It is furthermore necessary that the underlying graph
is undirected (respectively symmetric) since stochastic dependence is a symmetric
relation.

For a collection (xn)n∈M the notation xN := (xn)n∈N where N ⊆ M shall de-
scribe the corresponding subcollection.

Definition 5.1.39 (Markov Random Field, compare [15, 21]). Given a simple undi-
rected graph G = (M,E) with/respectively a symmetric neighbourhood mapping
N : M → P(M) and a collection of random variables XM := (Xm)m∈M i.e. a
random field on M, we call X a Markov random field if the local Markov property

Xm ⊥⊥ XM\(N (m)∪{m}) | XN (m)\{m} m ∈M (5.1.46)

is satisfied.

This definition is valid if m ∈ N (m) and if m /∈ N (m). In case of a reflexive
neighbourhood structure i.e. if m ∈ N (m) the local Markov property simplifies to

Xm ⊥⊥ XM\N (m) | XN (m)\{m} m ∈M. (5.1.47)

We also define two further Markov properties for Markov random fields.

Definition 5.1.40 (Pairwise and Global Markov Property [15, 48]). The pairwise
Markov property for m 6= n with m /∈ N (n) – and accordingly n /∈ N (m) – is defined
as

Xm ⊥⊥ Xn | XM\{m,n}. (5.1.48)

The global Markov property for A,B,C ⊆M such that every path between a vertex
in A and a vertex in B contains a vertex in C is defined as

XA ⊥⊥ XB | XC . (5.1.49)
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It is easy to show that the global Markov property implies the local Markov
property and the local Markov property implies the pairwise Markov property [48].

While the preceding definitions are also valid for continuous state spaces Υ, the
following statements as originally proposed in [21] and [16] are not. The reason for
this may be the historical connection to the Ising model [21].

Definition 5.1.41 (Local Characteristic [21]). The local characteristic or also local
conditional of a Markov random field is defined as a function Lm : ΥM → [0, 1] for
every m ∈M ,

Lm(xM ) := P
(
Xm = xm | XN (m)\{m} = xN (m)\{m}

)
= P

(
Xm = xm | XM\{m} = xM\{m}

)
. (5.1.50)

The collection E := (Lm)m∈M is called local specification.

The local specification E may be interpreted as a mapping ΥM → [0, 1]M .
When constructing a Markov random field these conditional probabilities should

be consistent in the sense that they yield a joint probability distribution on ΥM ,
which is a mapping ΥM → [0, 1]. The Hammersley-Clifford theorem provides a
condition for probability distributions to describe a Markov random field. This
theorem is the main result of basic Markov random field theory.

Definition 5.1.42 (Gibbs Distribution, compare [15, 16]). For a given graph denote
the set of all cliques10 as C. A probability mass function P : ΥM → [0, 1] satisfying

P (xM ) =
∏
C∈C

fC(xM ) xM ∈ ΥM (5.1.51)

where fC only depends on the components of xM with index in C is called Gibbs
distribution.

In the original form an exponential notation of Equation 5.1.51 is used.

Theorem 5.1.43 (Hammersley-Clifford [16], compare [15]). Assume XM as a ran-
dom field on an undirected finite graph has a positive joint probability distribution
on ΥM . XM is a Markov random field if and only if the distribution is a Gibbs
distribution.

Proof. This is a prominent theorem. For one of the earliest proofs see [16].

The Gibbs distribution defines the Markov random field as a whole, P (xM ) =
P(XM = xM ).

10The nodes within a clique are connected to each other. In other words a clique is a complete
subgraph. See also Definition 3.2.19 and Definition 3.2.20.
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Application and History of Markov Random Fields. Especially in the con-
text of this work, [21] provides an interesting application of Markov random fields on
cell growth models by Eden [37] (not related to the Garden of Eden cellular automa-
ton), Williams and Bjerknes [49] (simulation of tumour growth using biased voter
model) and Richardson [41]. These works are the basis of many interesting publi-
cations and must also be seen in the context of pattern formation [40] and image
processing.

5.1.6 Bayesian Networks

Bayesian networks are used to represent joint probability distributions
over sets of random variables. A Bayesian network is made up of two
components: a directed acyclic graph, and a set of conditional probability
tables. Each node in the graph represents a random variable and for each
node there is a probability table specifying the conditional distribution of
the variable given (each possible combination of) the values of its parents
in the graph. [11]

We will use the notation of neighbourhood mappings to indicate the “neigh-
bouring” vertices of a vertex (Section 3.2). Note that acyclic implies nonreflexive
(m /∈ N (m)) and that N (m) is the set of vertices that feature a directed connection
towards m.

Definition 5.1.44 (Bayesian Network, compare [11, 15, 24]). A directed acyclic
simple graph G = (M,E) together with a collection of discrete random variables
XM = (Xm)m∈M with states in Υ and conditional probabilities for all m ∈M

P(Xm = xm | Xn1 = x1, . . . , Xnkm
= xkm) {n1, . . . , nkm} = N (m) (5.1.52)

where x∗ ∈ Υ, is called Bayesian network.

In order to allow this short notation, – as in Section 5.1.5 – xN (m) is understood
as the subcollection of xM = (xm)m∈M with indices in N (m).

From the acyclic structure of the graph it is possible to derive the Markov As-
sumption which is a local Markov property for Bayesian networks:

Proposition 5.1.45 (Markov Assumption [11, 24]). Each variable is independent
of its nondescendants, given its parents.

Xm ⊥⊥ XM\N−1(m) | XN (m), (5.1.53)

which also can be written as

P
(
Xm = xm | XM\N−1(m) = xM\N−1(m)

)
= (5.1.54)

= P
(
Xm = xm | XN (m) = xN (m)

)
. (5.1.55)
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Proposition 5.1.46 (Joint Distribution [11, 24]). The joint probability distribution
of a Bayesian network satisfies

P(XM = xM ) =
∏
m∈M

P
(
Xm = xm | XN (m) = xN (m)

)
. (5.1.56)

Proof. Can be found in literature.

For continuous states the preceding notations can not be used. The next section
will introduce a class of stochastic process with continuous states suitable for use
with cellular automata. The following quote describes a method for “simulating”
continuous distributions.

Unlike the case of discrete variables, when the variable Xm and its par-
ents . . . are real valued, there is no representation that can represent all
possible densities. A natural choice for multivariate continuous distribu-
tions is the use of Gaussian distributions. These can be represented in a
Bayesian network by using linear Gaussian conditional densities. In this
representation, the conditional density of Xm given its parents is given
by

P(Xm = υ|XN (m) = ~υ) ∼ Norm(a0 +
∑
i

ai, σ
2) (5.1.57)

That is, Xm is normally distributed around a mean that depends linearly
on the values of its parents. The variance of this normal distribution is
independent of the parents’ values. If all the variables in a network have
linear Gaussian conditional distributions, then the joint distribution is a
multivariate Gaussian (Lauritzen and Wermuth, 1989). [24]

Corollary 5.1.47 (A Bayesian Network is a Markov Random Field). Every Bayesian
network is a Markov random field.

Proof. Since an acyclic graph only has one-vertex cliques, Proposition 5.1.46 delivers
a Gibbs representation of the joint probability distribution.

5.2 Formalism of Stochastic Cellular Automata

This section introduces a class of stochastic processes that is an extension of Bayesian
networks (Section 5.1.6) and at the same time a special case of multiparameter
Markov processes (Section 5.1.4) as well as Markov random fields (Section 5.1.5).
Such a stochastic process will be referred to as stochastic cellular automaton.
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5.2.1 Basic Concepts

Regard a discrete set of nodes M called cells of a graph G2 with neighbourhood
mapping N such that the neighbourhoods are equally sized with k neighbours each.
The neighbourhoods may be ordered N (m) = (n1, . . . , nk) or unordered N (m) =
〈n1, . . . , nk〉 (Definition 2.2.2).

This graph then is k-regular, simple as well as directed and represents the second
topological feature of a stochastic cellular automaton. In case of ordered neighbour-
hoods there exists an additional mapping w : M ×M → N (Theorem 3.2.4). This
however does not hinder the following discussions.

A second (trivial) graph G1 is given by a totally ordered discrete parameter set
(T,≤) like for example (N,≤) such that there exists a directed edge between two
consecutive elements of T . The elements respectively nodes in T are referred to as
iterative steps.

Definition 5.2.1 (Product Graph). Given two graphs G1 = (M,N ) and G2 =
(T,≤) as discussed before, define the directed acyclic simple k-regular graph G =
(T ×M,E) as the graph tensor product G := G1 × G2 such that each node is an
element from {(t,m) : t ∈ T,m ∈M} and

E =
⋃
t∈T

⋃
m∈M

⋃
n∈N (m)

{(
(t, n), (t+ 1,m)

)}
. (5.2.1)

We call this graph the product graph or simple the graph of a stochastic cellular
automaton.

Every node (t,m) can be interpreted as a cell m ∈M at a specific iterative step
t ∈ T . Figure 5.1 shows an illustration of such a product graph. Compare this
graphical structure also with the concept of nets.

On every directed acyclic graph there exists a canonical partial order 4 with
a 4 b if and only if there is a directed path from node a to node b [48]. For the
(product-) graph G this partial order can be decomposed as

(s, n) 4 (t,m) ⇐⇒ s ≤ t ∧ n ∈ N t−s(m) (5.2.2)

which also explicitly causes

(t, n) 64 (t,m) ∀ t ∈ T m, n ∈M m 6= n. (5.2.3)

Define for all (s, n), (t,m) ∈ T ×M , (s, n) f (t,m) as

max{r ∈ T : r ≤ s, r ≤ t,∃l ∈M : l ∈ N s−r(n) ∩N t−r(m)}. (5.2.4)

For a stochastic cellular automaton it is necessary to define an abstract proba-
bility space with certain filtrations.
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Definition 5.2.2 (Probability Space and Filtrations). Define the probability space
respectively the filtrations of a stochastic cellular automaton as follows: Let (Ω,A)
be a Radon space (Definition 5.1.8), P a probability measure on (Ω,A) and (At)t∈T
a filtration such that As ⊆ At if s ≤ t. Let (At,m)(t,m)∈T×M be a second filtration
with At,m ⊆ At for all t ∈ T and m ∈M and As,n ⊆ At,m if (s, n) 4 (t,m).

See Figure 5.2 for an illustration of the inclusion relations among the various
σ-algebras.

Each cell shall take states form the set of states S according to some probability
distribution. Or in other words for every cell there shall exist a random variable
from the common underlying probability space into the state space.

Definition 5.2.3 (Random States). Given a product graph (as in Definition 5.2.1)
as well as a probability space and filtrations (as in Definition 5.2.2), let (S,B) be a
separable Hausdorff measurable space.

Associate each node (t,m) of the product graph with a random variable St,m :
(Ω,A,P)→ (S,B) and let the stochastic process (St,m)(t,m)∈T×M be adapted to the
filtration (At,m)t∈T,m∈M in the sense that St,m is At,m-measurable for all t ∈ T and
m ∈M .

The random variables (St,m)(t,m)∈T×M are then called random states and the
multivariate random variables St := (St,m)m∈M are called global random states.

As a direct consequence of this definition, the stochastic process (St)t∈T is adapted
to the filtration (At)t∈T .

Definition 5.2.4 (Markov Property for Stochastic Cellular Automata). It is required
that the Markov property

St+1,m ⊥⊥ At | St,N (m) (5.2.5)

is satisfied for all t ∈ T and m ∈M .

Since (Ω,A) is a Radon space, there exist for all t,m regular conditional prob-
abilities from

(
Sk, σ(Bk)

)
to (Ω,At+1,m) with respect to St,N (m) (Theorem 5.1.9).

These regular conditional probabilities P( · |St,N (m) = · ) will also be called stochastic
update rules.

As an immediate consequence, St+1,m ⊥⊥ St | St,N (m) as well as St+1,m ⊥⊥
St,M\N (m) | St,N (m) and

P(St+1,m ∈ B|St = sM ) = P(St+1,m ∈ B|St,N (m) = sN (m)) (5.2.6)

for any sM ∈ SM .
For cellular automata in general we declared that the update mechanism is equal

for all cells and iterative steps. In the context of a stochastic (Markov) process this
feature is called homogeneity.

Definition 5.2.5 (Homogeneity of Transition Probabilities). Let

P(St+1,m ∈ B|St,N (m) = ~s) = P(Ss+1,n ∈ B|Ss,N (n) = ~s) (5.2.7)

for all t, s ∈ T and m,n ∈M where B ∈ B and ~s ∈ Sk.
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Figure 5.1: Horizontal layers represent a (directed) graph G2 with nodes M and
edges indicated by dashed lines (compare this graph with the graph representation
of the second topological feature of a cellular automaton Section 3.2). The whole
graph is the tensor product of a trivial graph G1 with nodes T (sketched vertically)
and G2. Arrows represent a selection of directed edges of the product graph. The
product graph can be regarded as a graph representation of a cellular automaton
that depicts cells separately for every iterative step.

Figure 5.2: Filtrations for stochastic cellular automata. Circles indicate σ-algebras
and arrows represent the inclusion relation. The horizontal axis concatenates itera-
tive steps (T ). The positive vertical axis represents elements of M such that circles
above the horizontal axis represent σ-algebras At,m and circles below the horizontal
axis represent σ-algebras At.
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5.2.2 Definition of Stochastic Cellular Automata

The definitions of the previous section can now be used to define stochastic cellular
automata.

Definition 5.2.6 (Stochastic Cellular Automaton). A stochastic cellular automaton
consists of

(i) a set of cells M ,

(ii) a k-regular simple directed graphical structure on the set of cells (N ) which
together with a totally ordered set of iterative steps (T ) forms a product graph,

(iii) a separable Hausdorff measurable state space (S,B), a Radon probability space
(Ω,A,P) with filtrations (At)t∈T and (At,m)(t,m)∈T×M and

(iv) a collection of random variables (St,m)(t,m)∈T×M from Ω to S which is adapted
to (At,m)(t,m)∈T×M and satisfies the homogeneity property as well as the Markov
property for stochastic cellular automata.

Note that in contrast to deterministic cellular automata, which are iterative sys-
tems, a stochastic cellular automaton is a stochastic process. For a given initial global
random state S0, the push-forward measure P ◦ S−1

0 is called initial distribution.
In analogy to the theory of stochastic processes we also call the collection

(St,m)(t,m)∈T×M a stochastic cellular automaton.

5.2.3 Immediate Results and Conclusions

This section elaborates some characteristics and mathematical properties of stochas-
tic cellular automata.

5.2.3.1 Markov Kernels

For this and the following sections a stochastic cellular automaton shall be given, let
all variables be defined as in Definition 5.2.6.

Definition 5.2.7 (Local Kernel). We call a Markov kernel from
(
Sk, σ(Bk)

)
to

(S,B) written K : Sk ×B→ [0, 1] which satisfies

K(~s,B) = P(St+1,m ∈ B|St,N (m) = ~s) ∀ t ∈ T,m ∈M (5.2.8)

a local kernel.

The existence of a local kernel implies homogeneity of the transition probabilities
and vice versa. From the local kernel further probability kernels can be constructed.

Definition 5.2.8 (Local Characteristic). For every m ∈ M we define the local
characteristic as the Markov kernel Lm : SM ×B→ [0, 1] with

Lm(sM , B) := K(projN (m) sM , B) = K(sN (m), B). (5.2.9)
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Lm actually is a probability kernel because projN (m) is a measurable function
an therefore Lm is measurable in its first argument for all B ∈ B. That Lm is a
probability measure in its second argument is clear.

Because St+1,m ⊥⊥ St,M\N (m) | St,N (m) (Definition 5.2.4), we can write

Lm(sM , B) = P
(
St+1,m ∈ B

∣∣St = sM
)

= (5.2.10)
= P

(
St+1,m ∈ B

∣∣St,N (m) = sN (m)

)
= K(sN (m), B) (5.2.11)

Definition 5.2.9 (Global Kernel). The global kernel E : SM × σ(BM ) → [0, 1] of
a stochastic cellular automaton is defined as the Cartesian (“semi”-) product of the
local characterisations Lm,

E(sM , BM ) :=
( ∏
m∈M

Lm(sM , · )
)

(BM ) (5.2.12)

where BM ∈ σ(BM ) and sM ∈ SM .

It is clear that E is a probability measure in its second argument. Also because
of Proposition 5.1.16 the (full) Cartesian product of the probability kernels Lm is a
probability kernel from

(
SM , σ(BM )

)M to
(
SM , σ(BM )

)
, it remains to acknowledge

that the projection
(
SM
)M → SM is a measurable mapping in order to see that E is

a probability kernel.
For every sM ∈ SM , the local characteristics L(sM , · ) are obviously the marginal

measures of the global kernel E(sM , · ).

5.2.3.2 Chapman-Kolmogorov Equation

Theorem 5.2.10 (Chapman-Kolmogorov Equation). A stochastic cellular automa-
ton satisfies the following Chapman-Kolmogorov equations.

P(St+2,m ∈ B|St = sM ) (5.2.13)

=

∫
SM
E(sM , dq) Lm(q,B) =

∫
SM

∏
n∈M
Ln(sM , dqn) Lm(q,B) (5.2.14)

?
=

∫
SN (m)

∏
n∈N (m)

K(sN (n), dpn) K(p,B) (5.2.15)

= P(St+2,m ∈ B|St,N 2(m) = sN 2(m)) (5.2.16)
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Proof. We only prove (
?
=). Replacing L with K in Equation 5.2.14 yields∫

SM

∏
n∈M
K(sN (n), dqn) K(qN (m), B) (5.2.17)

=

∫
SN (m)×SM\N (m)

∏
n∈N (m)

K(sN (n), dqn)
∏

n/∈N (m)

K(sN (n), dqn) K(qN (m), B) (5.2.18)

=

∫
SN (m)

∏
n∈N (m)

K(sN (n), dpn) K(pN (m), B)

∫
SM\N (m)

∏
n/∈N (m)

K(sN (n), dqn).

(5.2.19)

The second integral in Equation 5.2.19 can be written as
∏
n/∈N (m)K(sN (n),S) and

is equal to 1.

Lemma 5.2.11. For n /∈ N (m), m /∈ N (n) and N (m) ∩N (m) 6= ∅,

St,m ⊥⊥ St,n | St−1,N (m)∩N (n). (5.2.20)

Proof. Set X := SN (m)∪N (n)\N (m)∩N (n) and N := N (m) ∩ N (n). Regarding the
equation for conditional independence proves the lemma.

P(St,m ∈ A,St,n ∈ B|St−1,N = sN ) (5.2.21)

=

∫
X
K(pN (m)\N (n) × sN , A) K(pN (n)\N (m) × sN , B) dp (5.2.22)

=

∫
SN (m)\N (n)

K(p× sN , A) dp

∫
SN (n)\N (m)

K(p× sN , B) dp (5.2.23)

= P(St,m ∈ A|St−1,N = sN ) P(St,n ∈ B|St−1,N = sN ) (5.2.24)

As a consequence St,m ⊥⊥ St,n | At−1,N (m)∩N (n). An we can conclude (without
proof) the following:

Corollary 5.2.12 (Local Markov Property). The local Markov property

r ≥ (s, n) f (t,m) =⇒ St,m ⊥⊥ Ss,n | Ar (5.2.25)

is satisfied.

5.2.3.3 Global Markov Process

Furthermore the global evolution of a stochastic cellular automaton is a Markov
process.

Proposition 5.2.13 (Global Markov Process). The global states (St)t∈T form a
homogeneous Markov process.
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Proof. (St)t∈T is of course adapted to the filtration (At)t∈T . The classical Markov
property St+1 ⊥⊥ At | St is satisfied because the Markov property from Definition 5.2.4
implies that St+1,m ⊥⊥ At | St for every m ∈M . Homogeneity of (St)t∈T follows from
Definition 5.2.5 together with Equation 5.2.6.

Proposition 5.2.14 (Global Kernel and Global Markov Process). The global kernel
E of a stochastic cellular automaton is the transition kernel of the global Markov
process (St)t∈T .

Proof. E is associated with the stochastic process (St)t∈T because

E
(
sM ,

∏
m∈M

Bm

)
=
∏
m∈M

Lm(sM , Bm) (5.2.26)

=
∏
m∈M

P
(
S−1
t+1,m(Bm)

∣∣St = sM
)

(5.2.27)

?
= P

( ⋂
m∈M

S−1
t+1,m(Bm)

∣∣∣St = sM

)
(5.2.28)

= P
(
St+1 ∈

∏
m∈M

Bm

∣∣∣St = sM

)
. (5.2.29)

(
?
=) holds because St+1,m ⊥⊥ St+1,n | St for m 6= n (Corollary 5.2.12). Since the
assignment of a probability kernel (transition function) to a Markov process is unique
it follows that

E(sM , BM ) = P(St+1 ∈ BM |St = sM ) (5.2.30)

for all sM ∈ SM and BM ∈ σ(BM ). It may be necessary to use a monotone class
argument as in Proposition 5.1.16.

E also satisfies the classical Chapman-Kolmogorov equation

P(St+2 ∈ BM |St = sM ) =

∫
SM
E(sM , dq) E(q,B). (5.2.31)

The previous considerations raise the question, under which conditions a Markov
process (St)t∈T with states in

(
SM , σ(BM )

)
is also a stochastic cellular automaton?

Lemma 5.2.15 (Local Kernel Induced by Global Kernel). Let (St)t∈T with St =
(St,m)m∈M be a Markov process with states in

(
SM , σ(BM )

)
, filtration (At)t∈T and

kernel E : SM × σ(BM )→ [0, 1]. (St,m)(t,m)∈T×M is a stochastic cellular automaton
with global kernel E if there exists a k ∈ N, a kernel K : Sk × B → [0, 1] and a
neighbourhood mapping N : M →Mk such that

E(sM , B × SM\{m}) = K(sN (m), B) (5.2.32)

for every m ∈M and B ∈ B.
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Proof. (i) We need to prove that there exists a product graph (as defined in Defini-
tion 5.2.1) on T ×M : We can assume that T is totally ordered. Together with the
mapping N this requirement is satisfied.

(ii) There exists an additional filtration (At,m)(t,m)∈T×M as defined in Defini-
tion 5.2.2 and the random variables St,m are adapted to this filtration: Define
(At,m)(t,m)∈T×M as the natural filtration of the stochastic process (St,m)(t,m)∈T×M ,
At,m := σ(St,m). Then At,m ⊆ At for all t ∈ T and m ∈M because∏

m∈M
S−1
t,m(Bm) = S−1

t

( ∏
m∈M

Bm

)
(5.2.33)

for arbitrary Bm ∈ B where m ∈M .
(iii) We have to show that the Markov property (Definition 5.2.4) is satisfied,

St+1,m ⊥⊥ At | St,N (m). (5.2.34)

This can be concluded from

P(St+1,m ∈ B|St = sM ) = P(St+1 ∈ B × SM\{m}|St = sM ) = (5.2.35)

= E(sM , B × SM\{m}) = K(sN (m), B). (5.2.36)

(iv) K is the local kernel and E is the global kernel of this stochastic cellular
automaton: Obviously

K(sN (m), B) = P(St+1,m ∈ B|St,N (m) = sN (m)) (5.2.37)

and

E
(
sM ,

∏
m∈M

Bm

)
= E

(
sM ,

⋂
m∈M

(
Bm × SM\{m}

))
(5.2.38)

=
∏
m∈M

E
(
sM , Bm × SM\{m}

)
(5.2.39)

=
∏
m∈M

K
(
sN (m), Bm

)
(5.2.40)

where Bm ∈ B for all m ∈M shows that E is the global kernel.

There may however exist different conditions – and more elaborate proofs – under
which a (global) Markov process can be identified as a stochastic cellular automaton.
The previous lemma however gives a general idea of how such a situation would look
like. If it is not explicitly known that a global random state St is the product of
random states

∏
m∈M St,m, it might be necessary to require that the transition prob-

abilities of the global Markov process are disintegrations (Definition 5.1.10) rather
than regular conditional probabilities. A detailed investigation is out of the scope of
this thesis.

A primary conclusion from this section is that stochastic cellular automata also
allow an alternative definition (compared to Definition 5.2.6) which only implicitly
features the graphical structure defined in Definition 5.2.1.



5.3. APPLICATION SCENARIOS AND OUTLOOK 113

5.3 Application Scenarios and Outlook

The aim of this section is to demonstrate the application of statistical methods
on stochastic cellular automata and to provide some approaches for reducing the
computational effort by finding deterministic representations of stochastic cellular
automata.

Since stochastic cellular automata are settled between Bayesian networks and
multiparameter Markov processes, obviously results from both areas can be adopted.

Finally an artificial application scenario is discussed in detail.

5.3.1 Introduction

As an introduction this section contains a short discussion of statistical and proba-
bilistic information in stochastic cellular automata and some considerations on the
Monte Carlo method.

5.3.1.1 Statistical Information in Stochastic Cellular Automata

The (stochastic) update rule for a stochastic cellular automaton is defined as a prob-
ability kernel K : Sk ×B → [0, 1]. This function can be thought of as an implicit
representation of an (explicit) function F that maps (a posteriori) information about
the states of neighbouring cells onto (a priori) information about the state of a cell
in the next iterative (time) step.

We characterise different types of information:

• possible (a posteriori) information about states of neighbouring cells:

– actual states of the neighbouring cells

– distribution of the random states of the neighbouring cells

• cases for (a priori) information about the state of a cell:

– actual state of the cell

– distribution of the state of the cell

– weaker information about the distribution of the state of the cell

And we can also distinguish two different ways of how a stochastic update rule
defined through a probability kernel maps information about neighbouring random
states onto information about a new state:

(K1) actual states (realisations of random states) of neighbouring cells 7→ distribu-
tion of a new random state

Sk → (B→ [0, 1]) : (s1, . . . , sk) 7→ P ( · ) := K
(
(s1, . . . , sk), ·

)
(5.3.1)
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(K2) distributions of random states (possibly a posteriori) 7→ a priori information
about the distribution of a new random state (in fact, a conditional probability
distribution)

(B→ [0, 1])k → (B→ [0, 1]) : (P1, . . . , Pk) 7→ P ( · |P1, . . . , Pk) := (5.3.2)

:=

∫
S
· · ·
∫
S
K
(
(s1, . . . , sk), ·

)
dP1(s1) · · · dPk(sk) (5.3.3)

Since integral operators are linear, the abstract mapping F in form of (K2) is
multilinear with the limitation that only convex linear combinations of the form
δPj1 + (1− δ)Pj2 are permitted:

(P1, . . . , δPj1 + (1− δ)Pj2, . . . , Pk) 7→ (5.3.4)
7→ δP ( · |P1, . . . , Pj1, . . . , Pk) + (1− δ)P ( · |P1, . . . , Pj2, . . . , Pk) (5.3.5)

Definition 5.3.1 (Multiconvex mapping). We may call F in form of (K2) a multi-
convex mapping.

This feature is due to the fact that the set of probability measures is closed under
convex combination.

5.3.1.2 Interpretation of Stochastic Cellular Automaton Models

Although stochastic cellular automata are defined as an iteration (or collection)
of random variables through Markov kernels, especially the observation of single
trajectories (realisations of random variables) allows different and more abstract
interpretations of the iteration process (see Figure 5.3).

(U1) Iteration of stochastic states, random variables or their distributions using a
probability kernel. This situation corresponds to the definition of stochastic
cellular automata and is a straight forward application of Markov kernels (K2).

(U2) Iteration of probability distributions, which are chosen randomly depending
on the distributions of the neighbouring cells. Such an iteration represents a
single random trajectory of a stochastic cellular automaton. For calculating a
new stochastic state (distribution), a realisation of the neighbouring random
states is mapped (K1) onto a probability distribution for the new stochastic
state of the actual cell.

(U3) Iteration of states, which are chosen randomly depending on the states of the
neighbouring cells. The corresponding update mechanism consists of applying
the kernel on a deterministic state in order to obtain a probability distribution
(K1) and then choosing a realisation of this distribution as the new state of a
cell.
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Figure 5.3: Different interpretations of the iterative process of stochastic cellular
automata. Iterative steps are indicated by vertical lines. For comparison, at the top
we can see an iteration of deterministic states in S (deterministic cellular automaton).
Below (U1) the iteration of random states (random variables) P is sketched. The
third row (U2) represents a trajectory of a stochastic cellular automaton and the last
row (U3) is a different interpretation of a trajectory. Of course a cellular automaton
features multiple input arguments for an update rule (neighbourhood), for simplicity
multiple states (stochastic or deterministic) are indicated by P respectively S. Arrows
with a positive vertical component indicate an increase in entropy, arrows with a
negative vertical component indicate decrease of entropy.

5.3.1.3 Simulation of Stochastic Cellular Automaton Models

For a cellular automaton with random states, (a posteriori) information about the
state of a cell – if not available directly – can be gathered from realisations of the
random state (p.e. through parameter estimators). In fact the empirical measure
deduced from realisations of a random variable is equal (converges uniformly almost
surely) to its distribution at least for real valued random variables (Glivenko-Cantelli
Theorem, compare [27, p. 353]).

Hence we can say that a very large number of realisations of a random state
contains almost the same information as its probability distribution. The realisation
of random variables destroys the entropy but the observation of a large number of
realisation (at least partially) restores the entropy.

This is of course also the basis for the application of the Monte Carlo method
on which simulations of stochastic cellular automaton models usually rely when the
Markov kernel does not allow an explicit calculation or is not given explicitly at all.

Basically a large number of simulations with one of the methods (U2) or (U3)
is observed and the different outcomes are combined to a probability distribution
for the final state of the stochastic cellular automaton. Two different Monte Carlo
approaches can be distinguished:
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• Multiple runs with the method described in (U3) and using the final empirical
distribution.

• For every step a large number of realisations are mapped onto new states which
are then combined to an empiric distribution. Compare also with (U2).

The application of the Monte Carlo method can be compared to the situation
of a deterministic (evolution) system when no analytic solutions exist and iterative
numerical approximations must be used. Generally it would be favourable if there
exists an “analytic” method to calculate the final global state (i.e. its distribution)
from the initial global state. We will however see that greater “analyticity” often also
means reduced entropy.

Results from the field ofMarkov chain Monte Carlo methods (compare [46]) could
be used also for stochastic cellular automata to analyse the computational effort and
accuracy of such simulation approaches.

Furthermore stochastic cellular automata can also be used to describe implicit
systems like for example the Ising model (compare mean field approach).

5.3.2 Classification of Random States

Instead of observing abstract random variables, different representations of proba-
bility distributions can be used to formulate the iteration of random states in a more
accessible way.

5.3.2.1 Absolutely Continuous Random States

Theorem 5.3.2 (Radon-Nikodým, compare [6, p. 281]). Let Pt,m be the measures
B→ [0, 1] associated with the random states St,m. Assume that there exits a σ-finite
measure µ on (S,B) such that11 Pt,m � µ for all (t,m) ∈ T ×M . Then there exist
probability densities ρt,m( · ) : S→ R+ such that for all B ∈ B

P(St,m ∈ B) = Pt,m(B) =

∫
B
ρt,m(s) dµ(s). (5.3.6)

Proof. Literature.

Let all random states St,m be absolutely continuous with densities ρt,m. The
local kernel implies a mapping (K1)

F̌ : Sk → (S→ R+) : (s1, . . . , sk) 7→ ρ(s|s1, . . . , sk) := K
(
(s1, . . . , sk), s

)
(5.3.7)

and a multiconvex mapping (K2) F̂ from (S→ R+)k to (S→ R+)

(ρ1, . . . , ρk) 7→ ρ(s) :=

∫
S
· · ·
∫
S
ρ(s|s1, . . . , sk)ρ1(s1) · · · ρk(sk) dµ(s1) · · · dµ(sk).

(5.3.8)
ρ( · ) is a marginal density of the joint density of S and Si for all i = 1, . . . , k.

11ν is absolutely continuous with respect to µ, ν � µ, if µ(N) = 0 =⇒ ν(N) = 0 [6, p. 279].
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5.3.2.2 Parametrised Random States

Definition 5.3.3 (Parametrised Random States). The random states of a stochastic
cellular automaton are called parametrised random states if there exists a distribution
or family of distributions Distθ with parameter space Θ and

St,m ∼ Distθt,m (5.3.9)

for all (t,m) ∈ T ×M and some θt,m ∈ Θ.

The family of distributions (Distθ)θ∈Θ is called a stochastic model for the states
of a stochastic cellular automaton. The restriction to parametrised states is always
associated with the introduction of a stochastic model for the random states and
also presents a very strong restriction, comparable to reducing the state space in a
deterministic cellular automaton.

Since a probability kernel maps the distributions of the neighbouring cells onto
a new distribution (K2), there exists a mapping

F̂ : Θk → Θ : (θ1, . . . , θk) 7→ θ, (5.3.10)

which satisfies

St,ni ∼ Distθi ∀ni ∈ N (m) =⇒ St+1,m ∼ DistF̂(θ1,...,θk) . (5.3.11)

Compared to the general form of (K2) we can not assume that F̂ is multiconvex or
multilinear.

Because the kernel can also be used to map actual states onto a new distribution
(K1), there also exists a mapping

F̌ : Sk → Θ : (s1, . . . , sk) 7→ θ (5.3.12)

with

St,ni = si ∀ni ∈ N (m) =⇒ St+1,m ∼ DistF̌(s1,...,sk) . (5.3.13)

Proposition 5.3.4. Let for all i = 1, . . . , k, Pi be the probability measure on (S,B)
of the distribution Distθi associated with the parameter θi. Then∫

S
· · ·
∫
S
F̌(s1, . . . , sk) dP1(s1) · · · dPk(sk) = F̂(θ1, . . . , θk). (5.3.14)

Proof. Without proof.

For the probability measure P : B → [0, 1] associated with the random variable
S ∼ Distθ we also use the notation P ( · |θ) in order to avoid having to explicitly
mention the distribution of the associated random variable.
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5.3.2.3 Discrete Random States and Discretisation of Random States

Besides parametrised stochastic states, a discretisation of the state space S can be
used to obtain a deterministic representation of random states even if there exists
no common family of distributions (i.e. stochastic model).

Definition 5.3.5 (Discretised Random States). Let S be a (bounded) domain, which
can be discretised into r compartments sj ∼= Sj , j = 1, . . . , r. The probability mea-
sure of a random state (Ω,A,P) → (S,B) can then be approximated by a proba-
bility function S := {s1, . . . , sr} ∼=

⋃r
j=1 Sj → [0, 1] respectively {1, . . . , r} → [0, 1]

and consequently also by a vector in [0, 1]r. For such a vector ~p ∈ [0, 1]r, obviously∑r
j=1 pj = 1.

Analogously to the previous section, (K1) can be represented as a mapping

F̌ : Sk → [0, 1]r : (s1, . . . , sk) 7→ ~p (5.3.15)

and (K2) yields
F̂ :

(
[0, 1]r

)k → [0, 1]r : (~p1, . . . , ~pk) 7→ ~p. (5.3.16)

Proposition 5.3.6. Let ~pi = (pi,1, . . . , pi,r) be discrete distributions for i = 1, . . . , k
and assume that S = {s1, . . . , sr}. Then

r∑
j1=1

· · ·
r∑

jk=1

F̌(sj1 , . . . , sjk) p1,j1 · · · pk,jk = F̂(~p1, . . . , ~pk) (5.3.17)

Proof. Without proof.

The configuration of a neighbourhood is determined by the product distribution
of k random variables (probability vectors with dimension r)

pN (m) := ~p1 ⊗ · · · ⊗ ~pk ∈ [0, 1]r ⊗ · · · ⊗ [0, 1]r︸ ︷︷ ︸
k

(5.3.18)

which is a tensor of type (k, 0).
Since an integral transform is a linear operation, it is clear that also for discrete

random states the local kernel (K2) respectively F̂ defines a (convex) linear mapping

F̂ : [0, 1]r ⊗ · · · ⊗ [0, 1]r → [0, 1]r : ~p1 ⊗ · · · ⊗ ~pk 7→ ~p (5.3.19)

of (k, 0)-tensors onto (1, 0)-tensors. Accordingly there exists a multilinear – or more
accurately a multiconvex – mapping [0, 1]r × · · · × [0, 1]r → [0, 1]r which obviously
corresponds to F̂ (see Proposition 5.3.6) such that

F̂ (~p1 ⊗ · · · ⊗ ~pk) = F̂(~p1, · · · , ~pk). (5.3.20)

Definition 5.3.7 (Transition Tensor). In correspondence with Markov chains we
call F̂ and also F̂ transition tensor.
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A transition matrix for ordinary Markov chains is obviously a (multi-) convex
mapping.

Let (sj1 , . . . , sjk) be a realisation of random states of a neighbourhood. This (de-
terministic) state configuration corresponds to the distribution vectors (ej1 , . . . , ejk)
and

F̂ (ej1 ⊗ · · · ⊗ ejk) = F̌ (sj1 , . . . , sjk). (5.3.21)

We can say that the vectors of the form F̌ (sj1 , . . . , sjk) present a basis of [0, 1]r.

5.3.3 Pseudo-Stochastic Cellular Automata

In this section some special cases for which there exist deterministic representations
of stochastic cellular automata are presented. These types of stochastic cellular
automata will henceforth be called pseudo-stochastic cellular automata.

5.3.3.1 Deterministic Iteration of Random States

Given a stochastic cellular automaton with random states St,m : (Ω,A,P)→ (S,B),
assume that there exists a measurable function F :

(
Sk, σ(Bk)

)
→ (S,B) such that

St+1,m = F(St,n1 , . . . , St,nk) ∀ t ∈ T,m ∈M (5.3.22)

where N (m) = (n1, . . . , nk).
In this case the corresponding local kernel satisfies

K(~s,B) = P(St+1,m ∈ B|St,N (m) = ~s) (5.3.23)

= P(St,N (m) ∈ F−1B|St,N (m) = ~s) =

{
1 ~s ∈ F−1B

0 else
(5.3.24)

and accordingly can be written as K(~s,B) = IF−1B(~s). For the iteration of distribu-
tions (K2) this means

P (B|P1, . . . , Pk) =

∫
S
· · ·
∫
S
IF−1B

(
(s1, . . . , sk)

)
dP1(s1) . . . dPk(sk). (5.3.25)

In contrast to the formalisms with deterministic states in S, the update function
F is required to be measurable (with respect to the product-σ-algebra). Since F is
measurable, the distributions of all individual random states St,m for higher times
can be obtained from the given initial condition as push-forward measures.

Example 5.3.8. If S is finite, the associated (pseudo-) stochastic cellular automa-
ton is a Bayesian network,

P
(
St+1 = st+1,M

∣∣St = st,M
)

=
∏
m∈M

P
(
St+1,m = st+1,m

∣∣St,N (m) = st,N (m)

)
(5.3.26)
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and the joint distribution is a product of local kernels (Proposition 5.1.46)

P
(
ST = sT,M

)
=
∏
t∈T
P
(
St+1 = st+1,M

∣∣St = st,M
)
· P
(
S0 = s0,M

)
(5.3.27)

=
∏
t∈T

∏
m∈M

IF−1{st+1,m}(st,N (m)) · P
(
S0 = s0,M

)
. (5.3.28)

As a consequence, P(ST = sT,M ) = P(S0 = s0,M ) if st+1,m = F(st,n1 , . . . , st,nk)
for all t ∈ T and m ∈ M where N (m) = (n1, . . . , nk). ST itself is a random
variable (Ω,A,P)→ (ST×M ,BT×M ).

In the general case, for not necessarily finite state space S, there exists a global
(pseudo-stochastic) evolution operator that maps the distribution of a global random
state onto the distribution of the global random state in the next iterative step. This
global evolution operator is a measurable mapping

E =
∏
m∈M

F ◦ projN (m) : (SM ,BM )→ (SM ,BM ). (5.3.29)

Compare the definition of local and global evolution operators in Section 4.1.

5.3.3.2 Deterministic Iteration of Absolutely Continuous Random States

Let ρt,m be the densities of the random states St,m. Assume that F is a measurable
differentiable mapping Sk → S. The random state St+1,m = F(St,n1 , . . . , St,nk) has
the density function

ρt+1,m(s) =
[
ρt,n1( · ) · · · ρt,nk( · )

](
F−1(s)

)
·
∣∣∣∣dF−1(s)

ds

∣∣∣∣ . (5.3.30)

Bringing this equation in the form

ρt+1,m(s) =

∫
S
· · ·
∫
S

∣∣∣∣dF−1(s)

ds

∣∣∣∣ I{F−1(s)}(s1, . . . , sk)ρ1(s1) · · · ρk(sk) dµ(s1) · · · dµ(sk)

(5.3.31)
and comparing with Equation 5.3.8 shows that

F̌(s1, . . . , sk)(s) = K
(
(s1, . . . , sk), s

)
= (5.3.32)

= ρ(s|s1, . . . , sk) =

∣∣∣∣dF−1(s)

ds

∣∣∣∣ I{F−1(s)}(s1, . . . , sk). (5.3.33)

5.3.3.3 Deterministic Iteration of Parametrised Random States

Assume that in addition to the measurable mapping

F :
(
Sk, σ(Bk)

)
→ (S,B) (5.3.34)
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which also implies a mapping (St,n1 , . . . , St,nk) 7→ St+1,m, there exists a stochastic
model Distθ, θ ∈ Θ for the random states and a mapping

F̂ : Θk → Θ : (θ1, . . . , θk) 7→ θ (5.3.35)

such that St,ni ∼ Distθi for all ni ∈ N (m) leads to St+1,m ∼ Distθ.
Accordingly

Si ∼ Distθi i = 1, . . . , k =⇒ F(S1, . . . , Sk) ∼ DistF̂(θ1,...,θk) (5.3.36)

and

P
(
B
∣∣F̂(θ1, . . . , θk)

)
=

∫
F−1B

k∏
i=1

P (dsi|θi). (5.3.37)

Definition 5.3.9 (Conjugate Update Rules). We call F and F̂ conjugate update
functions.

Again we cannot make any general statements about the (multi-) linearity of F̂ .
The following example (Example 5.3.10) shows a stochastic model (parametrisation)
for which there exists an almost linear conjugate update function, namely the family
of normal distributions.

Example 5.3.10. A good but rather theoretic example for conjugate update rules
is where the random states are normally distributed (Distθ = Normθ) on S = R
and the update function F is a linear map Rk → R. In this case F̂ can directly
be obtained from F or vice versa. Compare the second quote in Section 5.1.6.

Si ∼ Normµi,σ2
i

=⇒
k∑
i=1

αiSi ∼ Norm∑k
i=1 αiµi,

∑k
i=1(αiσi)2

(5.3.38)

There exist two different approaches for simulating such a pseudo-stochastic
cellular automaton model.

• The direct approach is to generate a realisation of the initial global random
state and then iterate the resulting deterministic states using the function
F . Doing this repeatedly for many different realisations of the initial global
states delivers an empiric distribution of the final global random state. See
Figure 5.4 left-hand side for the estimated expectation value.

• Deterministic iteration of meta states. Given a global initial random state
(distribution) with independently distributed random states including pa-
rameters (θt,m)m∈M , it is easy to iteratively calculate the parameters of
the distribution of the global random state at an arbitrary time using the
function F̂ . This scheme itself is also a deterministic cellular automaton.
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From realisations of the obtained final distribution we could again estimate
the expectation value (Figure 5.4 right-hand side) or any other parameter.
For the normal distribution this is obviously not necessary since the expec-
tation value is included in the parameter.

Listing A.1 shows the source code of an implementation in Octave. This im-
plementation was also used to generate the images in Figure 5.4. The distortions
in the right image can be smoothed out by averaging over a larger number of
realisations of the final global state. Even then the computational effort of this
parameter-iteration approach is much lower.
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Figure 5.4: Application example of conjugate update rules (Example 5.3.10). Left:
Iteration of randomly generated initial conditions. Right: iteration of parameters
and estimated expectation value. Estimation of the expectation value is actually not
necessary, since the expectation value is contained in the parameter. The graph-
ical representation of the actual expectation value is equal to the left image. See
Listing A.1 for the Octave source code.

5.4 Example: “Game of Life” – Stochastic Formulation

In this section an example for the application of the stochastic formalism on a deter-
ministic cellular automaton is presented. This particular scenario is however purely
theoretical and rather abstract since the underlying deterministic “model” is the
“Game of Life” cellular automaton. This application example was also published in
[43] whilst this thesis was being written. Several phrases and formulations from [43]
are translated from German without quoting due to their generic character.

5.4.1 Application of the Cellular Automaton Formalism

The “Game of Life” cellular automaton is defined by the following parameters:

(M) The cells are regularly arranged on a rectangular two-dimensional lattice and
we use periodic boundary conditions.
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(N ) The neighbourhood is a Moore-neighbourhood which also contains the actual
cell itself and accordingly consists of 9 cells altogether.

(S) The state of a cell is either “dead” or “alive”, we use the representation S =
{0, 1}.

(F) The local update rule F is given as(
S(t, n)

)
n∈N (m)

7→ S(t,m)fa(Σ) +
(
1− S(t,m)

)
fd(Σ) (5.4.1)

where fa = I{ 2
8
, 3
8
} and fd = I{ 3

8
} and the aggregate Σ is defined as

Σ(t,m) =
1

8

∑
n∈N (m)\{m}

S(t, n) (5.4.2)

which is a sum over the states of the (eight) neighbours excluding the actual
cell.

The following cellular automaton is a continuous version of the “Game of Life”.
Because of our theoretical approach we can say that the previous original formulation
is a discretisation of this virtual model.

(S) Let the state space S be the interval [0, 1].

(F) The local update rule F must be altered with fa = I[ 2
9
, 4
9

) and fd = I[ 3
9
, 4
9

) or
similar. See Table 5.1 for an explanation of the values. A smoothed version of
the functions fa and fd can be achieved for example by using functions

fλ : R→ [0, 1] : x 7→ 1

2

(
tanh

x− x1

λ
− tanh

x− x2

λ

)
. (5.4.3)

See Figure 5.5.

Due to the special choice of the functions fλ,a and fλ,d we can see in the top
centre of Figure 5.6 that the continuous-state cellular automaton with very small λ
respectively fa = I[ 2

9
, 4
9

) delivers the same typical behaviour as the original discrete-
sate “Game of Life” cellular automaton.

Because fλ,a −→ I[ 2
9
, 4
9

) and fλ,d −→ I[ 3
9
, 4
9

) for λ −→ 0, this transition can be
used for identifying the smoothed update method with the original formulation for
which fa = I[ 2

9
, 4
9

) etc. See also Figure 5.6.
For larger λ we can expect different behaviour since the rule set deviates from

the “Game of Life” configuration.
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Figure 5.5: Smoothed update functions for the “Game of Life” cellular automaton.
The figure shows the functions fλ,a (blue/crosses) and fλ,d (red/circles) and their
discretised versions for r = 9 (see Table 5.1). There also exist different ways for
defining the values of a discretisation other than by maximum.

5.4.2 Pseudo-Stochastic Formulation

(S) Let (St,m)(t,m)∈T×M be stochastic variables (Ω,A,P)→ (S,B) where S = [0, 1].

(K) Define the (pseudo-stochastic) local kernel through a measurable function (com-
pare Section 5.3.3.1)

F : (sn)n∈N (m) 7→
(
sm,

1

8

∑
n∈N (m)\{m}

sn︸ ︷︷ ︸
=:Σt,m

)
7→
[
smfa + (1− sm)fd︸ ︷︷ ︸

=:G(sm)

](
Σt,m

)
.

(5.4.4)
Accordingly St+1,m = F

(
(St,n)n∈N (m)

)
and

P
(
St+1,m ∈ B

∣∣∣(St,n)n∈N (m)
= ~s
)

= 1 ⇐⇒ ~s ∈ F−1B. (5.4.5)

If we assume that for every random state St,m there exists a probability density
ρt,m : S→ R+, the transformation of random variables defined in Equation 5.4.4 can
be formulated as a transformation of probability densities.

In this case

σt,m(s) = 8
( ⊕
n∈N (m)\{m}

ρt,n

)
(8s) := 8 · ρt,n1 ∗ · · · ∗ ρt,n8(8s) (5.4.6)

is the density of Σt,m. Since fa,d are piecewise monotonic, the densities γa,d of
fa,d(Σt,m) can also be obtained using the transformation theorem. The density of
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Original Game of Life Continuous States, k=9, lambda = 0.01 Continuous States, k=9, lambda = 0.55

Continuous States, k=9, lambda = 1.5 Continuous States, k=21, lambda = 0.6 Continuous States, k=21, lambda = 1.0

Figure 5.6: This figure shows the lattice of different versions of the “Game of Life”
as defined in Section 5.4.1 after 100 iterations. The initial conditions were generated
randomly with continuous states and rounded to discrete states for the original ver-
sion of the “Game of Life” (top-left). For small λ the behaviour of the continuous
models approaches the behaviour of the discrete original system. For an increased
size of the neighbourhood k = 21 (compared to the default Moore neighbourhood
with k = 9) the patterns are less tight. For values of λ greater than 2 the individual
continuous states begin to jump between very high and very low in every iteration.

the random state in the next time-step ρt+1,m finally (multiplication and convolution)
yields

ρt+1,m(p) =

∫
S

∫
S
γa(s)γd(t)

∫
S
ρt,m

(c
s

)
ρt,m

(
1− p− c

t

)
dc dt ds. (5.4.7)

We obviously achieved a deterministic formulation of the pseudo-stochastic cel-
lular automaton defined in the beginning of this section. Without doubt this for-
mulation is not practical for implementation respectively simulation on a computer
system.

A further approach for obtaining the density ρt+1,m consists in observing a dif-
ferent decomposition of F :

The function G defined in Equation 5.4.4 maps values in S onto linear (convex)
combinations X := {δfa + (1− δ)fd, δ ∈ [0, 1]} in the function-space S→ S,

G : S→ X : δ 7→ δfa + (1− δ)fd =: fδ. (5.4.8)

The inverse of G can be defined as

G−1 : X → S : fδ( · ) 7→
fδ( · )− fd( · )
fa( · )− fd( · )

≡ δ. (5.4.9)
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Accordingly we define the density γt,m of G(St,m) as the formal transformation

γt,m(fδ) = ρt,m
(
G−1(fδ)

)∣∣∣dG−1(fδ)

dfδ

∣∣∣ = ρt,m(δ). (5.4.10)

Using the functional derivative formalism for dG−1(fδ)
dfδ

it might be possible to obtain
more accurate results.

Altogether a future state St+1,m takes a value of the form fδ(s) with probability
ρt,m(δ)σt,m(s). The expectation value of St+1,m can be calculated explicitly as

E[St+1,m] =

∫
S

∫
S
fδ(s)ρt,m(δ)σt,m(s) dδ ds. (5.4.11)

A simplified pseudo-stochastic formulation, which finally allows an explicit for-
mulation of the update rule, can be obtained by combining the functions fa and
fd.

(K) As we see in Figure 5.5, the difference ‖fa−fd‖ is usually rather small. In this
sense we can substitute the random variable respectively function G(St,m) =
St,m · (fa − fd) + fd by E[G(St,m)] = G(E[St,m]) which means that

St+1,m = F
(
(St,n)n∈N (m)

)
= fE[St,m](Σt,m) (5.4.12)

5.4.3 Discretised Stochastic Formulation

(S) Let the continuous state space S = [0, 1] be discretised into r compartments
(Table 5.1) such that the probability densities of random states can be repre-
sented as (stochastic12) column vectors ~ρ, ~σ, . . .

1 2 3 4 . . . r
0
r−1

1
r−1

2
r−1

3
r−1 . . . r−1

r−1

[0
r ,

1
r ) [1

r ,
2
r ) [2

r ,
3
r ) [3

r ,
4
r ) . . . [ r−1

r , rr )

Table 5.1: Discretisation of the state-space of the continuous formulation of the
“Game of Life” into r compartments. Since the original formulation of the “Game of
Life” can be understood as a discretisation with r = 8+1 compartments, the distinct
values 2

8 respectively 3
8 can be used to find corresponding intervals [ jr .

j+1
r ) for the

continuous formulation.

In contrast to the previous section, where Σ = 1
8

∑8
j=1 Snj , we now define

Σ =
∑8

j=1 Snj . Accordingly the discretised density (probability function) ~σ is the
(discrete) convolution of 8 vectors from [0, 1]r and hence a vector in [0, 1]r+7(r−1).

12The term stochastic is sometimes used to indicate that the sum of elements of a vector equals
one.
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The evaluation of fa,d(Σ) respectively the corresponding transformation can be
formulated using the scalar product ~f>a,d·~σ which requires that also ~fa,d ∈ [0, 1]r+7(r−1).
The evaluation ~fa,d(

j
r+7(r−1)−1) then corresponds to the scalar product ~f>a,d · ~ej .

With the simplifications from Equation 5.4.12,

~f := E[G(Sm)] =

r−1∑
j=0

G
( j
r−1

)
ρj (5.4.13)

=
((

0
r−1 , . . . ,

r−1
r−1

)
· ~ρ
)
~fa +

((
r−1
r−1 , . . . ,

0
r−1

)
· ~ρ
)
~fd (5.4.14)

= G(E[Sm]) =: G~ρ (5.4.15)

for a matrix G ∈ [0, 1](r+7(r−1))×r.
Since f is a mixture of fa and fd, we can give the following interpretation of the

evaluation ~f(~σ) = ~f ·~σ: If the mass of ~σ is concentrated in the compartments around
2
8 and 3

8 then the result of ~f ·~σ is near 1. If on the other hand the probability in this
region is small, then ~f · ~σ should be near 0.

Following this observation we define the following (“column-stochastic”) matrix
in [0, 1]r×(r+7(r−1))

F := B +~b · ~f> =

( 1 ··· 1
...

...
0 ··· 0

)
+~b · ~f> =

 (1,...,1)−~f>
...
~f>

 . (5.4.16)

This matrix actually delivers the desired behaviour: ~σ ≈ ‖~f‖−1
1
~f leads to a result

~ρ := F~σ with its mass concentrated in the compartments with higher indices. If ~σ is
orthogonal to ~f , the mass of the resulting vector is concentrated in the compartments
with lower indices.

In other words, the orthogonality of ~σ and ~f determines if the cell is rather “alive”
or “dead” in the next step. The vertical transition of the rows in the matrix F must
not necessarily be linear. For example if z is the row-index, then zλ

−1
(1 − ~f>) +

(1 − z)λ−1 ~f> is also a valid transition. However the matrix F has to be “column-
stochastic”. In the bottom-left corner of Figure 5.8 a visualisation of a typical mass
distribution of F is shown.

This somehow heuristic approach for the matrix F can be proved – or at least
motivated – using a more general transformation theorem for piecewise monotonic
functions (also known as Frobenius-Perron operator) on St+1,m = f(Σt,m).

ρt+1,m(y) =
2∑
i=1

σt,m
(
f−1
i (y)

) ∣∣∣∣df−1
i (y)

dy

∣∣∣∣ (5.4.17)

where fi are the monotonic components of f (see Figure 5.5 and Figure 5.7).
A straight forward discretisation of the functions used in Equation 5.4.17 is given

by fi,j := fi(
j
r−1) yielding a vector representation ~fi. ~f−1

i and |(~f−1
i )′| can be
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Figure 5.7: Transformation of a random variable by a piecewise monotonic function.
The left figure shows a function f of the same type as in Equation 5.4.3 and the
inverse functions f−1

1,2 of its monotonic components f1,2. The figure on the right
depicts the derivatives (f−1

1,2 )′ of the inverse functions.

obtained in the same way. Let furthermore the components of ~f−1
i be rounded to

natural numbers.
The evaluation σ

(
f−1
i (y)

)
and the multiplication with |(f−1

i (y))′| can be repre-
sented as a single matrix-vector multiplication Ai ·~σ. The x-th component of ~ρt+1,m

is the sum of two products ~aix · ~σ =
∑r

j=1 aixjσj where aixj 6= 0 ⇐⇒ f−1
ij = x.

Accordingly a1x has the general form (∗, . . . , ∗, 0, 0, 0, . . . , 0) where elements with
lower index are greater than zero for small x and elements with higher indices (ac-
tually still lower than the half of the index range) are greater than zero if x is large.
a2x has the structure (0, . . . , 0, ∗, ∗, ∗, . . . , ∗) vice versa. The multiplication with the
x-th component of |(~f−1

i )′| implies that rows aix are more weighted for very small
and very large x. Together the matrix F = A1 + A2 has the same structure as in
Equation 5.4.16.

In either case the matrix F can be thought of as a (local) transition matrix of
the stochastic cellular automaton. By multiplication with a diffusion matrix (from
left and right), a smother version of F can be obtained.

We can avoid the use of a transition tensor because Σ aggregates the random
states of the neighbourhood (respectively their multivariate distribution) into a one-
dimensional distribution.

(K) The deterministic update rule F̂ :
(
[0, 1]r

)9 → [0, 1]r is given by

(~ρt,n)n∈N (m) 7→ F (G · ~ρt,m) ·
( ⊕
n∈N (m)\{m}

~ρt,n

)
(5.4.18)

During simulations (see Listing A.2) with this model/system, we can observe the
same patterns as for the continuous-state version. A dynamic visualisation (compare
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Figure 5.8) shows that the variation of the matrix F (G · ~ρt,m) and also its eigen-
vectors is marginal. This corresponds to the conclusions already made in context of
Equation 5.4.12.

Mean Variance

Matrix F at Random Location

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Eigenvector of F at Random Location

Figure 5.8: Iteration of discrete distributions as of Equation 5.4.18. The images
on the top show the mean and variance of the random states on a lattice of 100
by 100 cells after 50 iterations. The discrete distributions of the random states are
represented as vectors in [0, 1]15, which means that the state-space [0, 1] has been
discretised into 15 compartments. The bottom-left depicts a visualisation of (a square
version) of the transition matrix F at a random location on the lattice (brightness
indicates greater weight). The bottom-right figure shows the eigenvector (∈ [0, 1]15)
corresponding to the eigenvalue 1 of the stochastic “transition” matrix F .

Furthermore (compare Figure 5.9) we can observe that the distribution of Σ is –
corresponding to the central limit theorem – bell-shaped and that its only evident
variation consists in different locations of its peak, which is yet always concentrated
around the middle.

For the distribution of random states there exist two characteristic shapes. The
left plot in Figure 5.9 shows the distributions of a large number of randomly chosen
cells – the first type of distribution concentrates its mass in a certain region of lower
indices and the second concentrates is mass in the very high indices (“alive”).

From a comparison of the matrix F and its main eigenvector depicted in Fig-
ure 5.8 and the distribution of Σ in Figure 5.9 we can see that a lower expectation
value E[Σ] yields a higher chance for the cell for “being alive” in the next step etc.
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Figure 5.9: The left plot shows the state-distribution vectors ~ρ of a large number of
randomly chosen cells at different iterations. The right figure shows a large number
of distribution vectors ~σ of Σ.

5.4.3.1 Parametrised Stochastic Formulation

This final section concerns a stochastic formulation with random states in S = {0, 1}.
Accordingly a random state is always Bernoulli-distributed with a parameter θt,m ∈
[0, 1]. Corresponding to the previous section the distribution of a random state can
also be described by a vector ~ρt,m = (1− θt,m, θt,m)> ∈ [0, 1]2.

Since the distribution of Σ is a convolution of k probability vectors from [0, 1]2,
~σ is a vector in [0, 1]N+1.

Analogously to Equation 5.4.16 there exists a “column-stochastic” matrix F ∈
[0, 1]2×(N+1) such that

~ρt+1,m =
(

1−θt+1,m

θt+1,m

)
=

(
(1,...,1)−~f>t

~f>t

)
~σt,m. (5.4.19)

The distribution of Σ is a generalised binomial distribution (also known as Poisson
binomial distribution) with

σt,m,i =
∑

|A|=(i−1)
A⊆N (m)

[∏
n∈A

θt,n
∏
l∈Ac

(
1− θt,l

)]
(5.4.20)

where A are subsets of N (m) containing (i− 1) elements.
Together with ~f = θt,m ~fa + (1− θt,m)~fd we have

θt+1,m =
(
θt,m(~fa − ~fd)

> + ~f>d
)
~σt,m. (5.4.21)

Obviously Equation 5.4.21 can be interpreted as an iteration of deterministic
states. This update function is conjugate to the pseudo-stochastic formulation in
Equation 5.4.4.



Chapter 6

Summary, Conclusions, Outlook

To conclude this thesis, this final chapter provides a summary of the presented and
developed concepts. Additionally a discussion on possible future investigations covers
some ideas that did not make it into the final version or would be very interesting
to work on in the first place.

6.1 Overview of Cellular Automaton Concepts

The basic idea and general perception of cellular automata was analysed in the
introduction. A textual description was set up to summarise the most characteristic
features of a prototype of a cellular automaton.

T topology I topology II S S ⊆ SM

iteration regular
arrangement

based on
alignment

Table 6.1: Textual description of the prototype of cellular automata.

The update rules map the states of a neighbourhood onto a new state indepen-
dently of the location of the neighbourhood and without any restrictions on the type
of mapping. Also the set of states is not restricted in any way. It was solely discussed
that the local update rules must be consistent and defined in a way such that there
cannot arise state configurations for which the update rules are not defined.

6.1.1 Basic Definitions of Cellular Automata

From this starting point the most intuitive (but also complete) definition approach
was developed in a rather straight forward fashion. The most significant charac-
teristic of the approach used in Section 2.1 to define ordinary cellular automata is
clearly the alignment of cells on a regular lattice in Zd and the use of this alignment
in order to implicitly define a regular neighbourhood structure. This index-based
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approach is also the only case for which boundary conditions of cellular automata
were introduced.

The second more abstract definition approach of unaligned cellular automata in
Section 2.2, which from a logical point of view should have come before the index-
based approach, neglects the alignment of cells and features an explicitly defined
neighbourhood mapping.

Based on a clear differentiation between the alignment of cells (first topological
feature) and the construction of neighbourhoods (second topological feature) the
third chapter provides different mathematical concepts for the description of the
topology of cellular automata.

T topology I topology II S S ⊆ SM

N Zd J

N V N

N N

N G

Table 6.2: The two basic concepts for defining cellular automata are distinguished
by the presence of an alignment of cells. The first two rows represent ordinary cel-
lular automata in the index-based approach with a regular arrangement on Zd and
an implicit definition of neighbourhoods through a relative index tuple J as well as
the vectorspace approach with an abstract alignment V = M −M and vectorised
neighbourhoods m + N where N ⊂ V . The third and fourth row shows defini-
tion approaches for unaligned cellular automata by explicitly defined neighbourhood
mappings N respectively a graphical structure G = (M,E).

The update rules can – without any restrictions except compatibility – be arbi-
trary mappings from either a set or a tuple of states onto a new state.

6.1.2 Locally Characterised Evolution Systems

Since cellular automata are often used to model continuous-space and continuous-
time systems, a big question always concerns the formalisation of space discretisations
and the construction of update rules, which approximate the underlying continuous
model in a sufficient manner. A conclusion from Chapter 4 is that cellular automata
are closely related to strongly continuous semigroups on Banach spaces and that
the local characterisation of update rules is a very special characteristic of cellular
automata. Furthermore evolution equations in differential or integral form can often
easily be translated into a cellular automaton formulation.

From a top-down perspective the global evolution operator of cellular automata
E : S→ S can be decomposed into scalar components E =

∏
m∈M Lm. The second

topological feature then implies that the mappings Lm actually only depend on
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certain dimensions of their domain S ⊆ SM namely SN (m). This approach is used
for the definition of locally characterised evolution systems.

T topology I topology II S S ⊆ SM

R+ topological
vectorspace

Ndt Banach space

Table 6.3: Locally characterised evolution systems are basically semigroups on a
Banach space S with a certain local characterisation (Ndt) of the evolution operators
Edt.

The evolution operators Edt form a semigroup and are constructed as a product
of scalar evolution operators with a spatially independent component F in the form
Lm = F◦projN (m). Since this formalism is rather abstract (compare Section 4.3.1), a
special case of integral evolution operators is investigated in a more detailed fashion.

T topology I topology II S S ⊆ SM

R+ (M,A, µ) Kdt Banach space L1(M)

Table 6.4: Locally characterised integral evolution systems evolve measurable func-
tions from a measure space (M,A, µ) into a Banach space S using integral operators
with kernels Kdt.

The scalar evolution operators can explicitly be written as

Ldt,mS =

∫
Ndt(m)

Kdt(m,n)S(n) dµ(n). (6.1.1)

In order for semigroup theory to be applicable and evolution equations to be
a valid alternative formulation it is necessary that the global evolution operator is
linear E ∈ L(S,S), which is a very strong requirement but can be neglected for
discrete time respectively be bypassed by observing quasi-linear systems.

Finally Chapter 4 also discusses discretisation approaches and outlines applica-
tion scenarios for reaction-diffusion systems.

6.1.3 Definition of Stochastic Cellular Automata

Stochastic cellular automata can be formalised as stochastic processes. A formal
approach regards the states of all cells in all iterative steps as random variables
which together form a multiparameter stochastic process.
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T topology I topology II S S ⊆ SM

G1
∼= N G2

∼= N (S,B)
separable
Hausdorff

(Ω,A,P)→
→ (S,B)

Table 6.5: The definition of stochastic cellular automata as multiparameter stochas-
tic processes does not explicitly define an update method but rather relies on the
description of random states as random variables on a product-graph G1 ×G2.

The graphical structure G = G1 × G2 is used to define stochastic dependencies
through a filtration of σ-algebras in the underlying probability space (Ω,A,P) and
through a specialised Markov property.

An equivalent iterative definition approach describes the update mechanism for
random states through probability kernels.

T topology I topology II S S ⊆ SM

N N (S,B)
separable
Hausdorff

(Ω,A,P)→
→ (S,B)

Table 6.6: At every iterative step each cell is associated with a random state.

A local “Markov” kernel K defines transition probabilities from the random states
of a neighbourhood N (m) to a new random state for the actual cell m. With the
help of local characterisations a global transition kernel can be defined as a product
comparable to evolution systems. The resulting global stochastic process is a Markov
process itself.

A complete mathematical formalisation is in both cases much more complicated
than for deterministic cellular automata. Methods for reducing the complexity of the
mathematical description are necessary. A rather theoretical application example
concludes the section on stochastic cellular automata.

6.2 Outlook

Among the many aspects, that seem worth discussing but are out of the scope of
this thesis, some shall be briefly mentioned in form of keywords:

• cellular automata with fuzzy states

• eigenvectors of global evolution operators and equilibrium states for stochastic
cellular automata

Further topics that are not included in a sufficient manner in this thesis, should
be discussed in more detail:
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Nonlinear Evolution Systems. In Chapter 4 evolution systems with linear evolution
operators were discussed. For a more general application scenario quasilinear
evolution systems were introduced in Section 4.3.2. However the basic theory
of semigroups is only applicable for linear evolution operators.

Nonlinear semigroups can for example be targeted using distortions of infinites-
imal generators or fixpoint theorems for nonlinear maps. The theory of non-
linear differential equations also relies on these techniques and also leads back
to abstract Cauchy problems.

Also for locally characterised evolution systems it should be possible to inves-
tigate nonlinear evolution operators. Especially for integral evolution systems
a nonlinear evolution operator has the form (compare Equation 4.2.28)

EdtS(m) = Ldt,mS :=

∫
K
(
dt,S(n), n,m

)
dµ(n). (6.2.1)

Stochastic Neighbourhoods. A basic concept for stochastic neighbourhoods was pre-
sented in Section 4.3.3.5 as a discretisation method for integral evolution sys-
tems with L1-normed kernels.

However, a stochastic neighbourhood may also be intrinsic to a model or sys-
tem. In this case a random neighbour also causes a random input state for
an update rule such that we ultimately deal with random states respectively
stochastic cellular automata. Hence the formalisation of stochastic neighbour-
hoods should be compatible to the formalism of stochastic cellular automata.

Topology. In the context of Markov processes (and especially Markov chains) the
iteration of distributions is a linear process. The local kernel of a discrete-state
stochastic cellular automaton can be interpreted as a multilinear map and as
a tensor.

Since also the second topological feature can be characterised by adjacency
tensors, it would be interesting to find a common tensor representation of the
neighbourhood structure and the update rule.

Lattice Boltzmann Method. The Boltzmann equation describes a distribution of par-
ticles on the space T ×M ×V . Correspondingly, every pair (t,m) is associated
with a density and a probability distribution on V and a stochastic cellular
automaton formulation of the Boltzmann equation is obvious.

A discretisation ofM and V (and also T ) yields a velocity model as described in
Section 3.1.2. During the diffusion process every discrete velocity is associated
with one of the neighbouring cells. The collision process is often modelled
(Bhatnagar–Gross–Krook) as a linear approaching of a so-called equilibrium
distribution.

A detailed formulation of the lattice Boltzmann method using the stochastic
cellular automaton formalism would be a very interesting challenge.
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Appendix A

Code Listings

Listing A.1: Deterministic Iteration of Distributions. Note that the computational
effort in the second approach (iteration of parameters) is significantly lower since the
loops are not nested.

global SIZE = 100;
global ITERATIONS = 100;
global MONTECARLO = 4000;

global p1 = rand;
global p2 = rand;
global p3 = 2*rand;
global p4 = 2*rand;
global p5 = rand;
global p6 = p1 + p2 + p3 + p4 + p5;

% generate normally distributed random values from parameters
function S = Norm(theta)

global SIZE;
S = randn(SIZE).* theta (:,:,2) + theta (:,:,1);

end

% (global) update function
function S = F(S)

global SIZE p1 p2 p3 p4 p5 p6;
S = ( p1*S(:,:) + p2*S([SIZE ,1:SIZE -1] ,:) ...

+ p3*S([2:SIZE ,1],:) + p4*S(:,[SIZE ,1:SIZE -1]) ...
+ p5*S(:,[2:SIZE ,1]) )/p6;

end

% (global) conjugate update function (parameter space)
function theta = Fhat(theta)

global SIZE p1 p2 p3 p4 p5 p6;
theta (:,:,1) = ( p1*theta (:,:,1) + p2*theta ([SIZE ,1:SIZE -1],:,1) ...

+ p3*theta ([2:SIZE ,1],:,1) + p4*theta(:,[SIZE ,1:SIZE -1] ,1) ...
+ p5*theta (:,[2:SIZE ,1],1) )/p6;

theta (:,:,2) = ( p1*theta (:,:,2) + p2*theta ([SIZE ,1:SIZE -1],:,2) ...
+ p3*theta ([2:SIZE ,1],:,2) + p4*theta(:,[SIZE ,1:SIZE -1] ,2) ...
+ p5*theta (:,[2:SIZE ,1],2) )/p6;

end

% initial parameters
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theta0 = cat(3,rand(SIZE)*0.1, rand(SIZE)*0.1);

A = zeros(SIZE);
B = zeros(SIZE);

% iterate multiple times with random initial conditions
for i = 1: MONTECARLO

S = Norm(theta0);
for t = 1: ITERATIONS

S = F(S);
end
A = A + S;

end

% iterate the parameters
% and then generate a random global state multiple times
theta = theta0;
for t = 1: ITERATIONS

theta = Fhat(theta);
end
for i = 1: MONTECARLO *10

B = B + Norm(theta);
end

A = A/MONTECARLO;
B = B/MONTECARLO /10;

Listing A.2: Some excerpts from the discrete random state formulation of the “Game
of Life”. The code makes use of the parallel package for Octave.

% k is the number of neighbours excluding the local cell

alpha_stencil_8 = ...
[ [ 1 1 1 ];

[ 1 0 1 ];
[ 1 1 1 ] ];

alpha_stencil_8 = alpha_stencil_8 / sum(sum(alpha_stencil_8));
[xx ,yy,weight] = find(alpha_stencil_8);
alpha_stencil_8 = [xx,yy ,weight ,2* ones(size(xx ,1) ,1)];

function Sigma = acc_neighbourhood (S, stencil)
% for every cell accumulate (gather) the states
% of neighbouring cells as vector
% the result is a 4d matrix and the input must be a
% 2d matrix for collection of states
% or 3d matrix for collection of distributions
% the stencil weights are ignored
% the third dimension is used to accumulate distributions.
% size of 3rd dimension then is r
% size of 4th dimension is number of neighbours k
Sigma = zeros(size(S,1),size(S,2),size(S,3),size(stencil ,1));
for i = 1:size(stencil ,1)

Sigma (:,:,1:size(S,3),i) = shift (...
shift(S,stencil(i,1)-stencil(i,4) ,1),stencil(i,2)-stencil(i,4) ,2);

end
end

function out = convolute (neighbourhood)
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% helper function to calculate convolution
% first dimension of neighbourhood should have size r
% output size of 3rd dimension is r + k*(r-1)
out = vec(neighbourhood (:,:,:,1));
for i = 2:size(neighbourhood ,4)

out = conv(out ,vec(neighbourhood (:,:,:,i)));
end
out = permute(out ,[3,2,1]);

end

function sigma = convolution_of_neighbouring_distributions (rho , stencil)
% for every cell convolute the discrete distributions of
% all neighbouring cells. the result is a r+(r-1)*(k-1) vector
% where k is the number of neighbours.
% 3rd dimension of result of acc_neighbourhood has size r
% 4th dimension of result of acc_neighbourhood has size k
sigma = acc_neighbourhood (rho , stencil);
cells = mat2cell(sigma ,ones(1,size(sigma ,1)) ,...

ones(1,size(sigma ,2)),size(sigma ,3),size(sigma ,4));
cells = parcellfun (4,@convolute ,cells , ...

"UniformOutput",false ,’Vectorized ’,false ,...
’ChunksPerProc ’,size(sigma ,1),’VerboseLevel ’ ,0);

sigma = cell2mat(cells);
end

function B = transition_matrix_stochastic_linear ...
(f, B1 , b2 , lambda , r, k = 0, r2 = r + (r-1)*(k-1))

f = f/max(f);
B = (B1 + b2*f’) .^(4/ sqrt(lambda));
B = B*diag (1./ sum(B,1));

end

function rho_local = discrete_distribution_to_discrete_distribution ...
(rho_local , sigma_local , transition_matrix , B1 , b2 , G, ...
lambda , kappa1 , kappa2 , r, k = 0, r2 = r + (r-1)*(k-1))

sigma_local = permute(sigma_local ,[3,2,1]);
rho_local = permute(rho_local ,[3,2,1]);
f = G*rho_local;
F = diffusion_matrix(r,-1)^kappa1 * transition_matrix(f,...

B1,b2,lambda ,r,k,r2) * diffusion_matrix(r2 ,1)^kappa2;
F = F*diag (1./ sum(F,1));
rho_local = F * sigma_local;
rho_local = permute(rho_local ,[3,2,1])/sum(rho_local);

end

function S = F (S, sigma , transition_type , transition_matrix , ...
lambda = 1.0, kappa1 = 0, kappa2 = 0, ...
r = 0, k = 0, r2 = r + (r-1)*(k-1))

G = matrix_f_dead_alive(lambda ,r,k,r2);
[transition_matrix , B1 , b2] = transition_matrix_prepare ...

(transition_matrix ,lambda ,r,k,r2);
cells_sigma = mat2cell(sigma ,ones(1,size(sigma ,1)), ...

ones(1,size(sigma ,2)),size(sigma ,3));
cells_S = mat2cell(S,ones(1,size(S,1)),ones(1,size(S,2)),size(S,3));
cells_S = parcellfun (4,transition_type , ...

cells_S ,cells_sigma ,{ transition_matrix },{B1},{b2},{G},...
{lambda},{kappa1},{kappa2},{r},{k},{r2}, ...
"UniformOutput",false ,’Vectorized ’,false ,...
’ChunksPerProc ’,size(S,1),’VerboseLevel ’ ,0);

S = cell2mat(cells_S);
end
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