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Abstract

Answer-set programming (ASP) is a paradigm for declarative problem solving that is popular
amongst researchers in artificial intelligence and knowledge representation. Yet it is rarely used
by software engineers outside academia so far. Arguably, one obstacle preventing developers
from using ASP is a lack of support tools for developing answer-set programs. One particular
problem in the context of programming support is debugging of answer-set programs. Due to
the fully declarative semantics of ASP, it can be quite tedious to detect an error in an answer-set
program. In recent years, some approaches towards debugging in ASP were proposed to tackle
this problem. These previous works are important contributions towards ASP development
support, however current approaches come with limitations to their practical applicability. In
particular, existing approaches do not cover important aspects of ASP solver languages and
often the amount of information a user has to provide or is confronted with during debugging is
high.

This thesis introduces the stepping methodology for ASP, which is a novel technique for de-
bugging answer-set programs that is general enough to deal with current ASP solver languages
and intuitive and easy to use. Our method is similar in spirit to a widespread and effective
debugging strategy in imperative programming, where the idea is to gain insight into the beha-
viour of a program by executing statement by statement, following the program’s control flow.
In our technique, we allow for stepwise constructing interpretations by considering rules of an
answer-set program at hand in a successive manner. A major difference to the imperative set-
ting is that, due to its declarativity, ASP lacks any control flow. Instead, we allow the user to
follow his or her intuition on which rule instances to become active. This way, one can focus
on interesting parts of the debugging search space from the beginning. Bugs can then be detec-
ted quickly, whenever the stepping session reveals differences between the actual semantics of
the answer-set program and the expectations of the user. We explain our approach using two
example scenarios, discuss methodological aspects, and the embedding of stepping in the ASP
development process.

In order to establish a solid formal basis for the stepping technique, we developed a frame-
work of computations for answer-set programs. For fully supporting current solver languages
we were faced with several challenges in doing so. For one, the languages of answer-set solv-
ers differ from each other and from formal ASP languages in various ways. Thus, in order to
develop a method that works for different solvers, we needed an abstract ASP language that is
sufficiently general to capture solver languages. To this end, we make use of abstract constraints
as an established abstraction for language constructs such as aggregates, weight constraints, or
external atoms. However, there was no semantics available for arbitrary abstract-constraint pro-
grams with disjunctions being compatible with the semantics of all the ASP solvers we want to
support, namely, Clasp, DLV, and DLVHEX. Therefore, we introduce such a semantics in this
work that extends the well-known FLP-semantics and show several properties thereof including
complexity results. Moreover, we extend the concept of unfounded sets to our targeted pro-
gram class and present different characterisations of the new semantics that are relevant for the
framework of computations. Another basic problem we address deals with the grounding step
in which variables are removed from answer-set programs before solving. In formal ASP lan-
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guages, the grounding of a program consists of all rules resulting from substitutions of variables
by ground terms. In contrast, actual grounding tools apply many different types of simplific-
ations and pre-evaluations for creating a variable-free program. In order to accommodate this
fact, we use abstractions of the grounding step together with a very abstract notion of non-
ground answer-set programs as the base language for the stepping methodology. This way, the
technique can easily be applied to existing solver languages and it becomes robust to changes to
these languages.

The stepping technique has been implemented in SeaLion, an integrated development en-
vironment for ASP that has been developed in the same context as this thesis, viz. in connection
of a research project on methods and methodologies for developing answer-set programs. We
present SeaLion and discuss how it can be used for stepping answer-set programs written in
the Gringo or the DLV language.

Finally, we compare the concepts developed in this thesis with related approaches and dis-
cuss future work including interesting applications of our results beyond the scope of debugging.
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Kurzfassung

Die Antwortmengenprogrammierung (engl. “answer-set programming” - ASP) ist ein Program-
mierparadigma für deklaratives Problemlösen, das sich im Bereich der künstlichen Intelligenz
und der Wissensrepräsentation hoher Beliebtheit erfreut. Allerdings hat sie bislang außerhalb
des Wissenschaftsbetriebs noch wenig Verbreitung gefunden. Ein Hindernis, welches die Ver-
breitung von ASP erschwert, ist die mangelnde Verfügbarkeit von Entwicklungswerkzeugen
zum Erstellen von Antwortmengenprogrammen. Hier ist Debugging ein Kernbereich bezüglich
der Unterstützung von ASP Entwicklern, das heißt, das Problem des Auffindens von Fehlern
in Antwortmengenprogrammen, welches aufgrund der deklarativen Semantik von ASP sehr
schwierig sein kann. Um diesem Problem zu begegnen wurden in den letzten Jahren einige
Methoden für das Debuggen von Antwortmengenprogrammen vorgeschlagen. Während diese
Arbeiten als wichtige Beiträge zur Programmierunterstützung für ASP anzusehen sind, weisen
existierende Ansätze Einschränkungen bezüglich ihrer praktischen Anwendbarkeit auf. Insbe-
sondere werden darin wichtige Teile des Sprachumfangs von modernen ASP Solvern nicht ab-
gedeckt und oftmals ist die Menge an Informationen sehr hoch, die dem System bereitgestellt
werden muss oder mit der die Benutzerin oder der Benutzer konfrontiert wird.

In dieser Dissertation wird die Stepping Methodologie für ASP eingeführt, eine neue Tech-
nik für das Debuggen von Antwortmengenprogrammen, die allgemein genug ist um auf ver-
schiedene ASP Solver Sprachen angewandt zu werden und intuitiv und einfach zu benutzen ist.
Unsere Methode ähnelt einer weitverbreiteten und erfolgreichen Strategie für das Debuggen von
imperativen Programmiersprachen, die darauf abzielt Einsicht in das Verhalten eines Program-
mes zu erhalten indem, dem Kontrollfluß des Programmes folgend, einzelne Programmbefehle
schrittweise ausgeführt werden. Bei unserer Technik erlauben wir schrittweise Interpretationen
aufzubauen indem immer mehr Regeln eines Antwortmengenprogramms berücksichtigt wer-
den. Ein zentraler Gegensatz zum imperativen Fall ist, dass es in ASP aufgrund des deklarativen
Ansatzes keinen Kontrollfluss gibt. Stattdessen erlauben wir dem Benutzer oder der Benutzerin
der eigenen Intuition zu folgen um zu entscheiden, welche Regel als nächstes betrachtet werden
soll. Auf diese Weise ist es möglich sich von Anfang an auf interessante Bereiche des Debug-
ging Suchraums zu fokussieren. Programmierfehler können so rasch gefunden werden, indem
eine Stepping Sitzung Unterschiede zwischen der tatsächlichen Semantik eines Programms und
der Intuition des Benutzers oder der Benutzerin aufzeigt. Neben einer Erklärung unseres Ansat-
zes am Beispiel zweier Problemstellungen, diskutieren wir methodologische Aspekte und die
Einbettung von Stepping im ASP Entwicklungsprozess.

Um die Stepping Technik auf eine solide theoretische Grundlage zu stellen, haben wir ein
formales Rahmenwerk für Berechnungen von Antwortmengenprogrammen entwickelt. Damit
dieses aktuelle ASP Solver Sprachen tatsächlich vollständig unterstützt, mussten wir mehrere
Herausforderungen bewältigen. Eine wesentliche Schwierigkeit hierbei ist, dass sich die Spra-
chen von ASP Solvern sowohl voneinander als auch von formalen ASP Sprachen unterscheiden.
Um eine Methode zu entwickeln die für mehrere Solver funktioniert, benötigten wir daher eine
abstrakte ASP Sprache die allgemein genug ist um verschiedene Solver Sprachen abzudecken.
Zu diesem Zweck greifen wir auf Abstract Constraints zurück, einer etablierten Abstraktion
von beliebten Sprachkonstrukten wie Aggregaten, Weight Constraints oder externen Atomen.
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Allerdings war keine Semantik für Programme die sowohl Abstract Constraints als auch Dis-
junktionen in Regelköpfen unterstützen verfügbar, die mit den Semantiken der Solver die wir
unterstützen wollen, Clasp, DLV und DLVHEX, kompatibel ist. Aus diesem Grund führen wir
in dieser Arbeit eine solche Semantik ein, welche die bekannte FLP-Semantik erweitert, und
zeigen einige ihrer Eigenschaften. Außerdem erweitern wir den Begriff einer nicht-fundierten
Menge auf die von uns anvisierte Programmklasse und stellen verschiedene Charakterisierungen
der neuen Semantik vor, die für unser Berechnungsmodell wichtig sind. Ein anderes grundle-
gendes Problem, dem wir uns widmen, steht im Zusammenhang mit dem Grundierungsschritt in
dem Variablen in einem Antwortmengenprogramm eliminiert werden bevor seine Antwortmen-
gen berechnet werden. In formalen ASP Sprachen besteht die Grundierung eines Programms
aus allen Regeln die durch Substitution von Variablen durch grundierte Terme erzeugt werden
können. Im Gegensatz dazu erstellen reale Grundierungstools eine optimierte Grundierung, ver-
wenden dafür verschiedene Heuristiken und führen auch diverse Berechnungen aus, wie die
Evaluierung von intepretierten Funktionssymbolen. Um diesem Umstand gerecht zu werden
verwenden wir Abstraktionen des Grundierungsschrittes sowie einen sehr abstrakten Begriff
von nicht-grundierten Programmen als Grundlage für die Stepping Methodologie. Das erlaubt
es uns die Technik in einfacher Weise auf existierende Solver Sprachen anzuwenden und macht
sie robust gegenüber Änderungen dieser Sprachen.

Die Stepping Technik wurde in SeaLion implementiert, einer integrierten Entwicklungs-
umgebung für ASP, die im selben Kontext wie diese Dissertation entstand, nämlich im Rahmen
eines Forschungsprojektes über Methoden und Methodologien zur Enwicklung von Antwort-
mengenprogrammen. Wir stellen SeaLion vor und beschreiben wie Stepping darin für Ant-
wortmengenprogramme in den Sprachen von Gringo und DLV verwendet werden kann.

Darüber hinaus vergleichen wir die Konzepte die in dieser Dissertation entwickelt wurden
mit anderen Ansätzen aus der Literatur und geben einen Ausblick auf zukünftige Forschung,
indem auch interessante Anwendungen unserer Resultate fernab des Debuggens besprochen
werden.
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1 Introduction

In this introductory chapter, we describe the context in which this thesis has been written. The
next section gives motivation for the approach developed in this work. Section 1.2 discusses
goals and achievement of the research project in whose context this thesis has evolved. The
development process of the SeaLion system, in which the main contribution of this work—
the stepping technique—has been implemented, is discussed in Section 1.3.The chapter closes
with an outline of this thesis in which we highlight the most important results of each chapter.

1.1 Motivation

When Ada Lovelace wrote the first computer program for calculating the Bernoulli numbers on
Babbage’s conceptual analytical engine, she came up with a series of instructions that the ma-
chine would execute one after the other. That is, she designed an algorithm targeted at a certain
machine model. In principle, this imperative form of programming—telling a computer what to
do step-by-step to solve a problem—is still the prevalent form of programming today. Neverthe-
less, programming languages become more and more high-level which allows the programmer
to abstract from the hardware and implement complex programs in a concise and clearly struc-
tured way. Going one step further in abstraction, programming languages have evolved in which
it suffices that a programmer simply describes a problem in order to solve it. That is, following
this principle, called declarative programming, it is no longer necessary to give the computer
instructions on how to solve the problem.

One particular instance of declarative programming is the answer-set programming (ASP)
paradigm. Here, the idea is to describe the problem in terms of a logic theory (typically in
form of a so-called logic program) such that dedicated models of the theory are in one-to-one
correspondence with the solutions of the problem. These models, called answer sets, can be au-
tomatically computed by a solver and from each answer set, the solution it represents can be read
off. ASP is relatively young—it has been proposed as a programming paradigm in 1999 (see
Section 3.1)—and has been applied for problems from many areas since then. Nevertheless, it
has mainly been used by people from academia and has not become a mainstream programming
approach yet. One possible explanation for that is that writing an answer-set program is quite
different from what developers are used to. Another obstacle for a wider acceptance of ASP we
identify, is a lack of support tools and methods for developing in ASP. Indeed, developers are
used to tools, methods, and methodologies that ease the programming process, however many
of these techniques cannot be applied to ASP in a straightforward way. In particular, ASP lacks
debugging methods, i.e., techniques that help the programmer to identify and correct program-
ming errors. In fact, errors in ASP can be quite hard to find, e.g., in the frequent scenario when
a program unexpectedly has no answer sets. Then, the programmer has no indication where the
problem could be. And, in general, often small changes in an answer-set program have major
effects on the resulting answer sets.

So far, a few debugging techniques for ASP have been proposed in theoretical works and
also some prototype debuggers have been implemented (for a more detailed discussion see
Chapter 2). However, we identify two shortcomings of current approaches which limit their
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1. INTRODUCTION

potential for practical application. First, most existing techniques and tools only capture a basic
ASP language fragment that does not include many language constructs that are available and
frequently used in modern ASP solver languages. Second, usability aspects are often not con-
sidered in current approaches, in particular, the programmer is required to either provide a lot of
data to a debugging system or he or she is confronted with a huge amount of information from
the system.

The goal of this work is the development of a debugging technique for ASP that overcomes
current limitations. We aim at a technique based on a solid formal basis that is general enough to
deal with current ASP solver languages and intuitive and easy to use. Our target audience is not
restricted to ASP experts but includes also “the programmer from the street”, i.e., developers
who are new to ASP but experienced with development tools in conventional programming
paradigms. To properly address their needs, we want our approach to be conceptually close to
debugging techniques for other programming languages and to be accessible from an integrated
development environment similar to popular debugging tools.

We hope that the targeted debugging technique can contribute to the popularity of ASP in
two ways. On the one hand, we want to offer new users a programming experience that they
already feel familiar with. On the other hand, by allowing the programmer to get insight into
the consequences of their programs, the new technique should allow her or him to understand
the semantics of answer-set programs during debugging sessions in a hands-on fashion.

1.2 A Project on Methods and Methodologies for Developing
Answer-Set Programs

This thesis is written in the context of the project “Methods and Methodologies for Developing
Answer-Set Programs” (MMDASP), conducted at the Knowledge-based Systems Group of the
Institute for Information Systems at the Vienna University of Technology and funded by the
Austrian Science Fund (FWF). The project that lasted four years started in September 2009 and
was led by Hans Tompits. Besides the principal investigator, Johannes Oetsch and the author of
this work were members of the project team.

The aim of the project was to put forth a systematic study into development methods for ASP
to address the need for tools, methods, and methodologies that ease the programming process
that we discussed in Section 1.1. Before the project started there were only few preliminary
works in this direction available. The focus of research in the project was on methodologies for
systematic program development, program testing, and debugging. From the beginning, it was
the goal to develop methods that respect the declarative nature of ASP and, in order to support a
sufficient level of applicability, solutions were searched for that target not only the core language
of ASP but also important extensions thereof that are commonly used and realised in various
answer-set solvers. Furthermore, an important objective of the project was the implementation
of an integrated development environment (IDE) for ASP that incorporates resulting methods
and realises a convenient tool for developing answer-set programs.

The project team succeeded in reaching all the major project goals; most important with
respect to this thesis is the work on debugging and the development of SeaLion (see Chap-
ter 8) which is the first comprehensive integrated development environment that supports all
major ASP language dialects. Project achievements that are not subject to this thesis include
work on testing answer-set programs, including methods for systematic structure-based testing
and random testing for ASP (Janhunen et al., 2010, 2011). Moreover, further testing methods
that have been studied are mutation testing based on a dedicated mutation model for ASP and
bounded-exhaustive testing based on a small-scope hypothesis for ASP (Oetsch et al., 2012a).
Additionally, going beyond testing for ASP, ASP has been used to tackle challenging combina-
torial testing problems related to testing event-driven software (Brain et al., 2012). Regarding
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1.3. On the Development of SeaLion and its Extensions

systematic program development, methods based on model-driven engineering and test-driven
development have been considered for ASP (Oetsch et al., 2011a; Busoniu, 2013).

1.3 On the Development of SeaLion and its Extensions

The foundations of the SeaLion system (which is described in Chapter 8) were laid in the
summer of 2009 when the first code to the repository was committed. Since then, the core
components of SeaLion have grown to about 100 000 source lines of code. The author of this
thesis is the lead developer of the system—but the overall implementation is the joint effort of
several people. Indeed, a number of students were involved in SeaLion related projects and
some of these implementations served as basis of their master’s or bachelor’s theses. In what
follows, we give credit to them in chronological order of the contribution.

• Christian Kloimüllner implemented the Kara plugin for visualising and visual editing
of answer-set programs. The plugin was the subject of his master’s thesis (Kloimüllner,
2012) (which recently appeared as a paperback (Kloimüllner, 2013)) and a workshop
paper (Kloimüllner et al., 2013).

• Michael Prischink has been working on a plugin that deals with testing of answer-set pro-
grams and assertions for ASP. One feature he implemented allows for computing random
answer sets.

• Doğa Gizem Kısa implemented the ASPDOC documentation generator that has been inte-
grated in SeaLion as well as the ASPUNIT testing tool while she was doing an intern-
ship at Vienna University of Technology. The tools are based on the LANA annotation
language and were presented at conferences (De Vos et al., 2012a) and workshops (De Vos
et al., 2012b).

• Based on the stepping framework developed in this thesis, Peter Skočovský implemented
the stepping plugin of SeaLion. The plugin was one focus of a paper on SeaLion (Bu-
soniu et al., 2013) and described in his master’s thesis (Skočovský, 2014) in which he also
gives a formalisation of the Gringo language.

• Paula-Andra Busoniu implemented a plugin for model-driven engineering in ASP which
was subject of her master’s thesis (Busoniu, 2013) and is also described in the latest paper
on SeaLion (Busoniu et al., 2013).

• In her master’s thesis (Frühstück, 2013), Melanie Frühstück describes an extension of a
previous debugging approach for ASP (Oetsch et al., 2010a). She implemented the work
in the Ouroboros plugin of SeaLion. The approach (Polleres et al., 2013) as well as
the plugin (Frühstück et al., 2013) were described in conference papers.

• Peter Eder implemented an explanation feature for searching rules that derive given atoms.
The plugin is described in his bachelor’s thesis (Eder, 2013).

• Min Fang wrote her bachelor’s thesis (Fang, 2013) about an approach for interpreting an-
swer sets using controlled natural language and implemented a corresponding SeaLion
plugin.

1.4 Results and Structure of the Thesis

We now give an overview of the structure of this work and point out the achievements of the
individual chapters. After that we list publications that have emerged from the work on this
thesis.
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1. INTRODUCTION

Chapter 1 provides initial motivation for our work and discusses the context under which
this thesis has been written.

General considerations on debugging in the context of ASP are given in Chapter 2. We
discuss previous debugging approaches for ASP, elaborate on why further work is needed, and
outline important goals for a novel debugging technique.

Important background for the subsequent chapters is provided in Chapter 3. It starts with
a historical account of ASP and introduces notation and the formalisms we use throughout this
thesis. We formally introduce different classes of logic programs under the answer-set semantics
in a uniform way. In doing so, we also give syntax and semantics for language extensions such as
weight constraints, aggregates, or external atoms. We also highlight differences between formal
ASP languages and the languages of several ASP solvers in which users write their programs in
practise. Being aware of these differences, e.g., regarding the grounding of programs, is crucial
for putting a development method such as a debugging technique into practise. Finally, we recall
basic notions of complexity theory that we need.

Chapter 4 is concerned with an abstraction of ground answer-set programs that is based on
abstract-constraint programs (Marek and Remmel, 2004; Marek and Truszczyński, 2004) and
serves as a common formal basis for different solver languages. We recall abstract-constraint
atoms and how they can be used to simulate popular ASP language constructs. Then, we intro-
duce a novel answer-set semantics for disjunctive abstract-constraint programs that is a proper
extension of the FLP-semantics (Faber et al., 2011). Based on the notion of unfounded sets, we
provide different characterisations of this semantics, show different properties, and analyse its
computational complexity. Finally, we study how our semantics is related to existing proposals
and discuss why these were not suitable for our purposes. Besides being the underpinning for
our stepping approach, the semantics can also be helpful for other purposes. For instance it can
serve as a theoretical basis for extensions of solver languages, e.g., for adding choice rules to
the language of the DLV solver. In particular, the characterisation in terms of unfounded sets
can be seen as a practical step towards an implementation in DLV as unfounded sets are central
elements of the evaluation strategy of this solver.

Chapter 5 introduces a framework of computations for the semantics of Chapter 4. Roughly,
in a computation, an answer set is computed by stepwise considering more rules to be active.
Thus, the framework allows breaking the semantics down to the level of individual rules which
allows us to get very focused debugging information. After defining states and computations,
we show several properties of the framework, most importantly soundness and completeness
in the sense that the result of a successful computation is an answer set and that every answer
set can be computed with a computation. Moreover, we study language fragments for which a
simpler form of computation suffices. Finally, we compare our notion of computation with that
of Liu et al. (2010). It turns out that our results solve an open problem stated in their work,
that is, our framework demonstrates that the presence of disjunctions does not require a global
minimality criterion on computations.

For applying the computational framework for real-world solver programs, we introduce
abstractions of the grounding step in Chapter 6 in the form of grounding functions. These
translate given non-ground solver programs—for which we make only very little assumptions
on their syntax—into abstract-constraint programs that serve as abstractions of ground solver
programs. We lift the framework of computations and its properties to abstract non-ground pro-
grams. Besides the use for stepping, our framework of computations can be seen as a calculus
for ASP languages in the joint presence of disjunctions and aggregates. Moreover, the com-
bination of the use of abstract-constraint programs and the abstractions of grounding could be
beneficial for developing further development methods for ASP because techniques that work
for our abstractions could then be applied to the solver languages easily. Moreover, a further ap-
plication area of our framework besides debugging is the development of on-the-fly grounding
answer-set solvers. Indeed, with little effort, the framework could be turned into an algorithm
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1.4. Results and Structure of the Thesis

for computing answer sets where variables are eliminated during solving.
In Chapter 7 we present the stepping technique for debugging answer-set programs based on

the framework developed in Chapters 4 and 5. After discussing the general idea of the approach,
we explain what we understand under steps and jumps as a means to progress in a computation.
We discuss methodological aspects of stepping on different conceptual levels and discuss several
use cases based on two example problems. Furthermore, we provide guidelines for stepping and
discuss general recommendations for ASP development.

Chapter 8 deals with the integrated development environment SeaLion for ASP that comes
with an implementation of the stepping technique. SeaLion has been developed in the realm
of the MMDASP project (cf. Sections 1.2 and 1.3). General information on the implementation
of SeaLion is provided and its architecture and availability are discussed. Furthermore, we
describe important features of the environment, e.g., support for model-driven engineering and
visualisation of answer sets. We then show how the stepping technique is realised in SeaLion.
That is, we explain the user interface of the stepping plugin and how it can be used. Moreover,
we compare SeaLion with related systems.

Finally, Chapter 9 concludes the thesis with a summary and an outlook on possible future
research on the topics of this work.

Parts of this thesis have been presented in different publications. Our new semantics for
abstract-constraint programs has been discussed in a paper at the 28th International Conference
on Logic Programming (Oetsch et al., 2012b). Stepping, as introduced in this work is a gen-
eralisation of earlier versions of the methodology that have appeared in the proceedings of the
24th Workshop on (Constraint) Logic Programming (Oetsch et al., 2010b), the 11th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (Oetsch et al., 2011c),
and and a special collection dedicated to the 65th birthday of Vladimir Lifschitz (Oetsch et al.,
2012c). There have been several publications related to SeaLion and SeaLion plugins. The
IDE itself has been discussed in a Theory and Practice of Logic Programming article (Buso-
niu et al., 2013) presented at the 29th International Conference on Logic Programming and a
paper at the 25th Workshop on Logic Programming (Oetsch et al., 2011b, 2013). Work re-
lated to SeaLion plugins have been presented at the 28th International Conference on Logic
Programming (De Vos et al., 2012a), the 14th International Workshop on Non-Monotonic Rea-
soning (De Vos et al., 2012b), the 12th International Conference on Logic Programming and
Nonmonotonic Reasoning (Frühstück et al., 2013), and the 25th Workshop on Logic Program-
ming (Kloimüllner et al., 2013).

5





2 State of the Art of Debugging
Answer-Set Programs

In this chapter, we give a summary over previous efforts towards debugging support for ASP. We
start with clarifying what we understand as debugging and then discuss the peculiarities of de-
bugging answer-set programs. We proceed with descriptions of previous debugging approaches
for ASP and with an explanation why further work is needed. A comparison of these techniques
with the stepping method introduced in this thesis is given later in Chapter 7.

2.1 What is Debugging (in the Context of ASP)?

A definition of debugging is given in the ANSI/IEEE Standard Glossary of Software Engineer-
ing Terminology (ANSI/IEEE, 1983):

“Debugging is the process of locating, analyzing, and correcting suspected faults.”

Furthermore, a fault is defined as an

“accidental condition that causes a program to fail its required function”.

Thus, software debugging deals with finding and eliminating errors (“bugs”) in computer pro-
grams. The nature of these errors is manifold and reaches from simple misspellings to concep-
tual programming errors. Software tools supporting debugging are referred to as debuggers.

According to a general belief, the first computer bug was a moth which caused a failure
of the famous Mark-II computer in 1945. However, the term had already been used earlier for
errors in technical devices, e.g., by Thomas Edison in 1878 (Hughes, 1989).

Brain and De Vos (2005) discussed the nature of bugs in ASP along the lines of a classifica-
tion scheme for errors, tailored to suit classical imperative programming languages (Aho et al.,
1986; Wertz, 1982). Herein, bugs are distinguished by the level of specification in which they
occur in the program:

• lexical and syntactic errors: the program contains strings or sentences not occurring in
the programming language;

• semantic errors: the program meets the syntactical requirements of the language but the
assembly of its components does not make sense;

• conceptual errors: the program is correct but it does not serve the intended purpose.

The first category includes misspellings of keywords, identifiers or operators, unbalanced paren-
thesis in arithmetic expressions. Examples for semantic errors are “division by zero”, “infinite
loops”, and “index-out-of-bound errors”. They are typically recognised in the first place when
the program is executed. Therefore, these types of errors are also referred to as runtime errors.
Conceptual errors are often first recognised when the program is systematically tested or already
in application (Ruzicka, 1990). Brain and De Vos pointed out that, due to the simple structure

7



2. STATE OF THE ART OF DEBUGGING ANSWER-SET PROGRAMS

of ASP languages, the scope for lexical and syntactic errors is rather small. Indeed, typos in
identifiers for predicates or terms often lead to syntactically correct programs as ASP languages
usually do not enforce prior declaration of identifiers. This may sometimes cause tedious bugs.
The authors also claim that semantic errors do not exist in ASP, i.e., every syntactically correct
program has a well-defined semantics. While one could argue that violations of, e.g., safety or
stratification requirements amount to semantic errors, their argument remains true in essence:
The majority of bugs in ASP are conceptual errors, i.e., mismatches between the actual and the
intended semantics of a program. In terms of ASP, this means that the computed answer sets
do not match our expectations. In conclusion, in this thesis, we are merely concerned with bugs
that are parts of a computer program that cause the program’s actual semantics to differ from
the semantics that is intended.

2.2 General Considerations on Debugging Answer-Set Programs

Usually, when a new programming language is created, it is only a matter of time that a respec-
tive debugging system becomes available, following the approaches of similar tools for related
languages. However, answer-set programming is not yet another programming language but a
programming paradigm that significantly differs from other languages in some aspects that make
it unclear how existing debugging approaches could be applied. In particular, the particularities
of ASP that make debugging a challenge are declarativity and non-determinism.

An answer-set program can be seen as a declarative description of a problem, i.e., the or-
der of the rules that constitute the program is irrelevant and the evaluation of a program does
not follow a particular control flow. For this reason, typical debugging approaches of imperative
programming that follow a program’s execution cannot be applied in a straightforward way. One
theoretical solution for that would be to follow the execution of an answer-set solver. A similar
strategy is for example followed for debugging PROLOG programs, where the user follows the
inference algorithm. However, it has been argued that such an approach would lead to several
disadvantages (Brain and De Vos, 2005). For one, the debugging method would be solver spe-
cific and would require the user to understand the solver algorithm. While this might be feasible
for toy programs and basic solving algorithms, it becomes useless for real-world programs and
modern answer-set solvers that employ more complex algorithms, heuristics, or translations in
other formalisms. Moreover, such an approach would, arguably, impose a procedural view on
answer-set program, ruining the declarative flavour of ASP, i.e., an answer-set program would
be seen as a configuration for a search algorithm rather than a declarative description. Finally, it
would be difficult to focus on information the programmer is interested in when inspecting the
execution of an answer-set solver. Nevertheless, tools for analysing runs of answer-set solvers
exist (Calimeri et al., 2009; König and Schaub, 2013) and are useful for other purposes than
debugging answer-set programs, such as debugging the solver itself or analysing the efficiency
or bottlenecks of an ASP problem encoding.

ASP can be seen as a nondeterministic formalism in the sense that an answer-set program
may have multiple answer sets. This necessarily has an influence on prospective debugging
techniques. On the one hand it is not obvious how a debugging strategy could take multiple
answer sets into consideration. On the other hand, for many sorts of bugs that arise in ASP, it
would be beneficial to have debugging strategies that are local, i.e., can be seen with respect to
an answer set or an answer-set candidate interpretation. In that case in turn, appropriate means
for choosing such an interpretation are required.

An important concept in the light of these considerations is declarative debugging that was
originally introduced as algorithmic debugging by Shapiro (Shapiro, 1982) in 1982. The basic
idea is that a debugging system detects errors guided by information about intended properties
of the program. This information has to be supplied by an oracle, typically the programmer.
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Thus, the user has to supply declarative knowledge about the intended semantics of a program,
but is not required to care about the computational behaviour of the system.

Declarative debugging was initially used for debugging PROLOG programs, but has been
proposed as a general approach towards debugging and also been applied to other paradigms,
such as functional (Naish, 1992) and imperative programming (Fritzson et al., 1991).

2.3 Existing Approaches

Next, we describe existing approaches for debugging answer-set programs. A discussion on
their relation to the method proposed in this thesis is given later in Section 7.8.

The first work devoted to debugging of answer-set programs is a paper by Brain and De Vos
(2005) in which they provide general considerations on the subject, such as the discussion of
error classes in the context of ASP or implications of declarativity on debugging mentioned in
the previous section. They also formulated important debugging questions in ASP, namely, why
is a set of atoms subset of a specific answer set and why is a set of atoms not subset of any answer
set. The authors provided pseudocode for two imperative ad-hoc algorithms for answering these
questions for propositional normal answer-set programs. The algorithm addressing the first
question returns answers in terms of active rules that derive atoms from the given set. The
algorithm for explaining why a set of atoms is not subset of any answer set identifies different
sorts of answers such as atoms with no deriving rules, inactive deriving rules, or supersets of the
given set in which adding further literals would lead to some inconsistency.

The goal of the work by Pontelli et al. (2009) is to explain the truth values of literals with
respect to a given actual answer set of a program. Explanations are provided in terms of justifi-
cations which are labelled graphs whose nodes are truth assignments of possibly default-negated
ground atoms. The edges represent positive and negative support relations between these truth
assignments such that every path ends in an assignment which is either assumed or known to
hold. The authors have also introduced justifications for partial answer sets that emerge during
the solving process (online justifications), being represented by three-valued interpretations.

Syrjänen (2006) aimed at finding explanations why some propositional program has no an-
swer sets. His approach is based on finding minimal sets of constraints such that their removal
yields consistency. Hereby, it is assumed that a program does not involve circular dependencies
between literals through an odd number of negations which might also cause inconsistency. The
author considers only a basic ASP language and hence does not take further sources of inconsis-
tency into account, caused by program constructs of richer ASP languages, such as cardinality
constraints.

Another early approach (Brain et al., 2007b; Pührer, 2007) is based on program rewritings
using some additional control atoms, called tags, that allow, e.g., for switching individual rules
on or off and for analysing the resulting answer sets. Debugging requests can be posed by adding
further rules that can employ tags as well. That is, ASP is used itself for debugging answer-set
programs. The translations needed were implemented in the command-line tool Spock (Brain
et al., 2007a; Gebser et al., 2009b) which also incorporates the translations of another approach
in which also ASP is used for debugging purposes (Gebser et al., 2008; Pührer, 2007). The
technique is based on ASP meta-programming, i.e., a program over a meta-language is used
to manipulate a program over an object language (in this case, both the meta-language and
the object language are instances of ASP). It addresses the question why some interpretation
is not an answer set of the given program. Answers are given in terms of a model-theoretic
characterisation of answer sets due to Lee (2005): An interpretation I is not an answer set of
a program P iff (i) some rule in P is not classically satisfied by I or (ii) I contains some loop
of P that is unfounded by P with respect to I . Intuitively, Item (ii) states that some atoms
in I are not justified by P in the sense that no rules in P can derive them without reference
to I itself. Item (ii) captures also the case that some atoms are in I only because they are
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derived by a set of rules in a circular way—like the Ouroboros, a dragon biting in its own
tail. The approach has later been extended from propositional to disjunctive logic programs
with constraints, integer arithmetic, comparison predicates, and strong negation (Oetsch et al.,
2010a) and also to programs with cardinality constraints (Polleres et al., 2013). It has been
implemented in the Ouroboros plugin of SeaLion (Frühstück et al., 2013).

Caballero et al. (2008) developed a declarative debugging approach for datalog using a clas-
sification of error explanations similar to that of the aforementioned meta-programming tech-
nique (Gebser et al., 2008; Oetsch et al., 2010a). Their approach is tailored towards query
answering and the language is restricted to stratified datalog. However, the authors provide an
implementation that is based on computing a graph that reflects the execution of a query.

Wittocx et al. (2009) show how a calculus can be used for debugging first-order theories
with inductive definitions Denecker (2000); Denecker and Ternovska (2008) in the context of
model expansion problems, i.e., problems of finding models of a given theory that expand some
given interpretation. The idea is to trace the proof of inconsistency of such an unsatisfiable
model expansion problem. The authors provide a system that allows for interactively exploring
the proof tree.

Besides the mentioned approaches which rely on the semantical behaviour of programs,
(Mikitiuk et al., 2007) use a translation from logic-program rules to natural language in order to
detect program errors more easily. This seems to be a potentially useful feature for an IDE as
well, especially for novice and non-expert ASP programmers.

Initial results of the work presented in this thesis have been published at international
workshops and conferences. In particular, we reported on stepping for normal answer-set pro-
grams (Oetsch et al., 2010b, 2011c). Moreover, we devised a variant of our approach (Oetsch
et al., 2012c) for debugging description logic programs, a formalism that combines logic pro-
grams under the answer-set semantics with description logics for semantic web reasoning.

2.4 Shortcomings of Existing Approaches

The different approaches discussed in the previous section are valuable contributions towards
debugging of answer-set programs. In particular they have revealed interesting and highly rel-
evant debugging questions, some of which are very specific to ASP. Nevertheless, their main
common goal has not been reached yet, namely, having a debugging technique that allows for
practical debugging of real-world answer-set programs. We identify two main reasons for that:

1. On the one hand, most of these approaches deal with an idealised mathematical ASP lan-
guage, missing important features that are often used in actual solver languages. Most of
the sketched approaches are applicable only to propositional programs whilst practical ap-
plications call for debugging methods for non-ground programs. Furthermore, typically,
answer-set programmers make use of special language constructs, such as aggregates or
choice rules that are not covered at all by current debugging strategies (except for the
latest work by Polleres et al. (2013)).

2. On the other hand, only little attention has been paid to the usability and the human-
computer interface of the proposed techniques. Some methods require that the user has
some form for providing a considerable amount of information to the debugging system,
while in others the contrary is true, i.e., the debugger overloads the user with too much
output. In general, software developers will only adopt to debugging techniques that are
easy to use and give a clear benefit over a manual search for bugs.

Therefore, we aimed for a debugging approach that

• is general enough to be applied to real-world answer-set programs written in (different)
actual solver languages;

10



2.4. Shortcomings of Existing Approaches

• is intuitive for persons familiar with debugging techniques from other paradigms;

• is based on a simple strategy;

• allows the user to provide information in a comfortable way;

• requires only a reasonable amount of user interaction;

• but respects the peculiarities of ASP as discussed in Section 2.2.
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3 Background

Before proceeding to the technical contributions of this thesis, we give general background for
the methods and techniques introduced in this work. First, we give a brief discussion on the
history of ASP, elucidate its roots in different fields, and highlight important cornerstones until
its identification as a programming paradigm. Moreover, basic notions are introduced that are
used throughout the thesis, including the definition of syntax and semantics for a core fragment
of answer-set programs. Furthermore, we present different extensions thereof, in particular
we formally define weight constraints, aggregates, and external atoms, as examples of special
literals whose truth depends on multiple atoms in an interpretation. Besides setting up basic
concepts, a main goal of the chapter is to underline differences between formal ASP languages
and ASP solver languages that lead to practical difficulties for developing flexible and extensible
programming support techniques. Our strategy to overcome such problems is abstraction, using
abstract-constraint programs to represent ground programs, introduced in Chapter 4, and an
abstraction of non-ground programs and grounding, developed in Chapter 6.

3.1 A Brief History of ASP

The idea of using mathematical logic for programming has been extensively studied for the first
time in the 1960s and early 1970. One of the first and most well-known logic programming
languages is PROLOG that was developed in collaboration of Alain Colmerauer and Phillipe
Roussel from the University of Aix-Marseille and Robert Kowalski at the University of Edin-
burgh. The language followed a philosophy expressed by Kowalski as

Algorithm = logic + control.

That is, to view an algorithm as controlled logical deduction, consisting of two components, a
logic component that expresses the axioms that may be used in the computation and a control
component that determines how deduction is applied to the axioms. In this respect, a PROLOG

program is considered to be the logic component, while the control component is fixed and
based on the inference rule of selective linear definite clause resolution with negation as failure
(SLDNF). A PROLOG program consists of rules that describe relations over terms in a notation
similar to that of first-order logic. PROLOG is query based, i.e., a PROLOG computation is an
evaluation of a query that is provided by the user. This is performed in a top-down manner such
that current subgoals are unified with rule consequences and rule antecedents may become new
subgoals. Solutions to a query are given in the form of instantiations of variables contained in
the query that lead to successful proof branches.

One criticism of PROLOG is that it is not fully declarative, e.g., the order of rules and the
order of atoms within a rule body influences the semantics of the program. As a consequence,
in order to understand the meaning of a PROLOG program, one must bear in mind how it would
be interpreted by PROLOG’s inference algorithm. The aim for a clear declarative semantics of
logic programs has triggered a lot of research resulting in many different proposals for such a
semantics. One central question in many of these works is how to handle negation. The prob-
lem has been addressed in the area of non-monotonic reasoning, among others, by the program
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completion (Clark, 1978), circumscription (McCarthy, 1980), default logic (Reiter, 1980), and
autoepistemic logic (Moore, 1985). All these formalisms had influence on the stable-model
semantics for normal logic programs that was proposed by Gelfond and Lifschitz (1988). The
reading of negation in this semantics can be seen as if it was in the scope of the epistemic op-
erator of autoepistemic logic: the negation of a statement a holds if a is not known to hold.
Alternatively, in the view of default logic, negation in a rule is treated as inverse justification,
i.e., if all prerequisites are true (the atoms in the rule body that are not negated) and it is con-
sistent with our beliefs that all atoms appearing negated in the rule body are false, then we are
allowed to believe the conclusions of the rule. A further similarity of default logic and logic
programming under the stable-model semantics is that both have a multiple solution semantics:
default theories may have zero or more extensions, while logic programs may have zero or more
stable models or answer sets, as they are called in Gelfond and Lifschitz’ 1991 paper (Gelfond
and Lifschitz, 1991). In this work, the authors extended their stable model semantics to ex-
tended disjunctive databases (cf. Section 3.3). Nevertheless, the emphasis at this time was still
on query-oriented reasoning and the presence of multiple or absence of answer sets was consid-
ered unfavourable, e.g., in Gelfond and Lifschitz’ paper, programs with a unique answer set are
considered to be “well-behaved”. A shift in thinking happened eight years later, when, what is
now known as answer-set programming, had been recognised as a programming paradigm for
the first time: Independently of each other, Niemelä (1999) and Marek and Truszczyński (1999)
sketched a declarative programming paradigm based on logic programs under the stable-model
semantics in which problems are encoded in a logic program such that the stable models of
the program corresponds to the problem solutions. In both works the approach was perceived
as a form of solving constraint-satisfaction problems. The term “answer-set programming” for
the new paradigm is credited to Vladimir Lifschitz. ASP became important only due to the
availability of answer-set solvers, i.e., systems that allow for computing the answer sets of a
logic program. The first prominent answer-set solver was Smodels (Niemelä and Simons,
1996; Simons et al., 2002), soon followed by the DLV solver (Citrigno et al., 1997; Leone
et al., 2006). Both reasoning systems were based on modified versions of the Davis-Putnam-
Logemann-Loveland algorithm for solving the Boolean satisfiability problem (SAT). Generally,
ASP systems have benefited a lot from advanced SAT solving techniques. There have been
several proposals to translate answer-set programs to propositional formulas, e.g., Lin and Zhao
showed how computing the answer sets of logic programs can be done by a transformation to
propositional formulas, using Clark’s completion and so-called loop formulas (Lin and Zhao,
2002, 2004). Other translations include that by Ben-Eliyahu and Dechter (1994) and Janhunen
(2006). Consequently, many answer-set solvers have been developed that exploit SAT solvers
in different ways, e.g., ASSAT (Lin and Zhao, 2004), Cmodels (Lierler, 2005), sabe and
pbmodels (Liu and Truszczyński, 2006), LP2SAT (Janhunen, 2006), and SUP (Lierler, 2011).
Moreover, modern SAT techniques have been introduced to native ASP solvers. The solver
Clasp is based on advanced clause learning techniques (Gebser et al., 2007a) and has become
competitive with SAT solvers even in their own discipline: Used as a SAT solver, Clasp has
won tracks of the SAT Challenge 2012 (Balint et al., 2012), and the 2011 and 2009 SAT Com-
petitions (Berre et al., 2009; Järvisalo et al., 2011). Unlike SAT, where a problem has to be
compiled to a propositional formula, ASP comes with a rich yet simple modelling language that
is human readable. The knowledge representation capabilities of ASP and its expressive power
made the formalism an excellent host language for many applications in artificial intelligence
such as argumentation (Egly et al., 2010), data integration (Leone et al., 2005), diagnosis (Eiter
et al., 1999; Balduccini and Gelfond, 2003), learning (Sakama, 2001, 2005; Sakama and Inoue,
2009), planning (Lifschitz, 2002; Dix et al., 2003; Gebser et al., 2012), preferences (Schaub and
Wang, 2001; Brewka, 2007; Brewka et al., 2008), probabilistic reasoning (Baral and Hunsaker,
2007; Baral et al., 2009), multi-agent systems (De Vos et al., 2006; Pontelli et al., 2012), multi-
context systems (Brewka et al., 2011; Dix et al., 2012), natural language processing (Baral
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et al., 2008; Lierler and Schüller, 2012), semantic web reasoning (Eiter et al., 2008; Simkus,
2009; Pührer et al., 2010), and theory update and revision (Osorio and Cuevas, 2007; Eiter and
Wang, 2008; Delgrande, 2010).

But also many applications of ASP in other areas have been reported, including assisted
living (Mileo et al., 2011), automatic music composition (Boenn et al., 2011), bio-informatics
(Tran and Baral, 2004; Dworschak et al., 2008), configuration (Soininen and Niemelä, 1999;
Syrjänen, 2000; Gebser et al., 2011b), decision support systems (Nogueira et al., 2001; Beierle
et al., 2005), game theory (De Vos and Vermeir, 2002), hardware design (Erdem and Wong,
2004), model checking (Heljanko and Niemelä, 2003; Tang and Ternovska, 2007), phylogenet-
ics (Erdem et al., 2006), robotics (Erdem et al., 2012), software testing (Brain et al., 2012),
team building (Ricca et al., 2012), and verification of cryptographic protocols (Delgrande et al.,
2009).

Most of these applications have been conducted by members of the scientific ASP commu-
nity. We hope that software development methods for ASP will help to spread the ideas of the
paradigm to a wider audience of interested developers.

3.2 Basic Notions

In this section we introduce an alphabet that we use as a common base for different logic-
based formalisms. In doing so we sometimes adapt definitions and results from other work such
that they fit the uniform notions and make corresponding notes whenever this affects claims or
results. Furthermore, we define interpretations and truth values of ground atoms.

3.2.1 Alphabet

Throughout this work, we will assume a fixed implicit first-order alphabet, A , which is a triple
A = 〈P,V,F〉 of disjoint sets, where

• P is a set of predicate symbols of form p/n where p is the name and n is the arity of the
predicate with n ≥ 0,

• V is a set of variables, and

• F is a set of function symbols of form f/n where f is the functor and n is the arity of the
function symbol with n ≥ 0.

By convention, variables are denoted by symbol strings starting with capital letters, functors
by strings starting with lower case letters, and predicate names by strings starting with a letter.
Note that p/1 and p/2 are considered two different predicate symbols. We allow for multiple
predicates with the same name because some ASP solver languages also do so.

Based on A , we define basic terminology that is used throughout the thesis.

Definition 1. A term is a variable from V or a function, where a function is an expression
f(t1, . . . , tn) such that f/n ∈ F and every ti is a term for 1 ≤ i ≤ n. An atom is an expression
p(t1, . . . , tn) such that p/n ∈ P and every ti is a term for 1 ≤ i ≤ n. An expression is ground
if it does not contain any variable. ♦

Functions of arity 0 are referred to as constants. The set of constants in F is denoted by C.
It is assumed that C 6= ∅.

Example 1. The predicate of the atom

person(fatherOf (X))
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is person/1 with name person and arity 1. The atom is not ground as its only argument, the
function fatherOf (X), contains the variable X .

An example of a ground atom is

friendOf (authorOf (frankenstein), byron),

where frankenstein and byron are constants. �

Definition 2. Let P ⊆ P be a set of predicates and F ⊆ F a set of function symbols. Then,
the Herbrand base with respect to P and F is the set BF

P of all ground atoms p(t1, . . . , tn) such
that p/n ∈ P and each ti for 1 ≤ i ≤ n contains only function symbols from F .

Furthermore, the set of all ground terms is the Herbrand universe HUA of A and BPHUA
,

the set of all ground atoms, is called the Herbrand base of A . ♦

We will sometimes make use of formalisms that were introduced for languages of propo-
sitional logic. For the aim of having a uniform language and better comparability, we identify
propositional atoms with ground atoms. Consequently, the set of propositional atoms in such a
foreign propositional formalism is given by BPHUA

in the context of this thesis. Often, proposi-
tional atoms are identified with nullary predicates in first-order languages. However, as in our
setting sometimes propositional techniques are applied on ground programs, viewing proposi-
tional variables as ground atoms seems more appropriate for our purposes.

3.2.2 Interpretations

Interpretations are structures that give semantics to expressions. As usual in answer-set pro-
gramming, we use Herbrand interpretations, i.e., subsets of the Herbrand base of A that specify
which ground atoms are considered true.

Definition 3. An interpretation is a set I ⊆ BPHUA
of ground atoms. We say that a ground atom

p(t1, . . . , tn) is true under interpretation I , symbolically I |= p(t1, . . . , tn), if p(t1, . . . , tn) ∈ I ,
otherwise it is false under I . ♦

Note that we will use the symbol 6|= to denote the negation of a relation denoted with the
symbol |= in different contexts.

For better readability we will sometimes make use of the following notation when the reader
may interpret the intersection of two sets I and X of ground atoms as a projection from I to X .

Definition 4. For two sets I and X of ground atoms, I|X = I ∩ X is the projection of I
to X . ♦

3.3 Syntax of Disjunctive Logic Programs

In order to give a first glance at answer-set programming, we introduce disjunctive logic pro-
grams, which can be seen as a basic theoretical fragment of the ASP languages we cover in this
thesis.

The central elements in a logic program are rules that express logical implications. A rule
consists of two components, the rule body, representing the antecedent of the implication, and
the rule head, that represents the consequent of the implication. Intuitively, the presence of a
rule in a logic program guarantees that when its body is considered to be true, also its head must
be true. Traditionally in logic programming, in contrast to typical notation of implications in
logic, the head of a rule appears to the left of the rule body.
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Definition 5. A disjunctive logic program rule, or LP-rule for short, is an expression of the
form

a1 ∨ . . . ∨ ak ← ak+1, . . . , am,not am+1, . . . ,not an , (3.1)

where every ai for 1 ≤ i ≤ n is an atom. The operators ∨ and not denote disjunction and
default negation, respectively, whereas commas represent conjunctions. ♦

Note that by Definition 1, an LP-rule is ground iff all atoms ai are ground for 1 ≤ i ≤ n.
We next formalise the different parts of an LP-rule, using set notation, and introduce some

syntactic properties.

Definition 6. Let r be an LP-rule of form (3.1). The set

H(r) = {a1, . . . , ak}

is the head of r, while

B(r) = {ak+1, . . . , am,not am+1, . . . ,not an}

is the body of r. We also differentiate between the positive and the negative body of r, given by

B+(r) = {ak+1, . . . , am}

and
B−(r) = {am+1, . . . , an},

respectively. We call r normal if k = 1, positive if B−(r) = ∅, and Horn if it is both, normal
and positive. Moreover, r is a constraint if H(r) = ∅ and a fact if it is normal and B(r) = ∅. ♦

Definition 7. A disjunctive logic program, or LP-program for short, is a set of LP-rules. An
LP-program P is ground, normal, positive, or Horn, respectively, if every LP-rule in P is
ground, normal, positive, or Horn, respectively. Finally, the Herbrand universe HUP of P is the
set of all ground functions containing only function-symbols appearing in P . ♦

Note that the Herbrand base of P can be defined as the Herbrand base with respect to PR
and HUP , where PR is the set of predicates appearing in P . As we define grounding using
substitutions (see Definition 9) we do not make direct use of this notion.

3.3.1 A Note on Strong Negation

Gelfond and Lifschitz (1991) introduced their semantics for extended disjunctive databases,
which correspond to LP-programs with strong negation (also called “classical negation” with
some abuse of language), i.e., a second form of negation, besides default negation, that allows
for expressing that some statement is explicitly known to be false. We do not formally intro-
duce strong negation in this thesis, as this would complicate notation and does not affect the
techniques we developed. However, we consider strong negation to be syntactic sugar of solver
languages, give an informal explanation in Section 3.6.1, and cover it in our implementation.

3.3.2 Grounding

Gelfond and Lifschitz originally introduced the stable-model semantics for programs with vari-
ables based on the stable-model semantics for ground programs (Gelfond and Lifschitz, 1988,
1991). They defined answer sets of an LP-program P to be the answer sets of the so-called
grounding of P . The idea is to replace every LP-rule r by a relevant set of ground rules, that
are obtained from r by substituting variables by ground terms. LP-rules obtained in that way
are called ground instances of r.
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Although, direct definitions of answer sets on the first-order level have been introduced and
became a popular research topic, the majority of answer-set solvers (notable exceptions are
ASPeRiX (Lefèvre and Nicolas, 2009) and OMiGA (Dao-Tran et al., 2012)) follow the original
theoretic approach for dealing with variables: they depend on a grounding step in which all
variables are eliminated before solving. However, as we will further elaborate on in Section 6.1,
the choice of ground instances that are considered relevant, i.e., are part of the grounding, differs
among different grounding tools or strategies.

In the following we define a notion of grounding that can be considered to be ideal as it
takes all ground instances with respect to A into account. To distinguish it from the outcome
of more involved grounding techniques that aim at finite small groundings (as used in practise),
we call it naïve grounding.

Definition 8. Let V ⊆ V be a set of variables and F ⊆ HUA be a set of ground terms. A V/F -
substitution is a function θ : V → F . Let e be an expression. By eθ we denote the expression
resulting from e by replacing each variable X ∈ V appearing in e by θ(v). ♦

Definition 9. Let F ⊆ HUA be a set of ground terms. Let r be an LP-rule. The grounding of r
with respect to F , denoted by grF (r), is the set of all rules rθ where θ is some V/F -substitution.

Let P be an LP-program. The grounding of P with respect to F is given by

grF (P ) =
⋃
r∈P

grF (r).

The naïve grounding of P , grn(P ), is the set grHUA
(P ). ♦

In the literature on ASP, including the seminal paper by Gelfond and Lifschitz (1988), it is
often assumed that an alphabet is given implicitly through the expressions used in a logic pro-
gram, and hence typically grHUP

(P ), i.e., the grounding with respect to the Herbrand universe
of P , is considered to be the (naïve) grounding of an LP-program P .

Note that also in the case of an explicit alphabet, logic programs are often required to be safe,
i.e., variables appearing in the head or the negative body of an LP-rule are required to appear
in positive body or r.1 This restriction ensures that the answer sets of grHUP

(P ) coincide with
those of grHUA

(P ). This property is sometimes referred to as domain independence.

Example 2. In order to demonstrate the naïve grounding, we consider program PEx2 for finding
three colourings of a given graph:

P = {edge(a, b)←,
node(X)← edge(X,Y ),
node(Y )← edge(X,Y ),
col(X, red) ∨ col(X, green) ∨ col(X, blue)← node(X),
← edge(X,Y ), col(X,C), col(Y,C)}.

The first rule is a fact that encodes the graph for which we want to find a three colouring. In
this case it is the graph with two nodes, labelled a and b, such that there is an edge from a to b.
The next two rules identify nodes that have in- or outgoing edges. The disjunctive rule of PEx2

guesses for each such node whether it is coloured in red, green, or blue. Finally, the constraint
assures that adjacent nodes are of different colour.

Although the considered graph has only two nodes and one edge, the naïve grounding of
PEx2 is already huge, consisting of 166 rules in total. In fact, grn(PEx2) = P ′Ex2 ∪ P ′′Ex2,
where P ′Ex2 is given below and P ′′Ex2 consists of ground rules that have some of the constants

1The notion of safety has evolved from a similar notion, called allowedness, for deductive databases (Topor and
Sonenberg, 1988; Sonenberg and Topor, 1988).
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for denoting colors, red , green , and blue in some predicate argument other than the second
position in predicate col/2. For example, P ′′Ex2 contains the rule

node(a)← edge(a, blue)

refering to the atom edge(a, blue) that does not represent a meaningful statement about the
problem domain. Due to their large number, we do not list the other rules of P ′′Ex2.

P ′Ex2 = {edge(a, b)←
node(a)← edge(a, a),
node(a)← edge(a, b),
node(b)← edge(b, a),
node(b)← edge(b, b),
col(a, red) ∨ col(a, green) ∨ col(a, blue)← node(a),
col(b, red) ∨ col(b, green) ∨ col(b, blue)← node(b),
← edge(a, a), col(a, a), col(a, a),
← edge(a, a), col(a, b), col(a, b),
← edge(b, a), col(b, a), col(a, a),
← edge(b, a), col(b, b), col(a, b),
← edge(b, b), col(b, a), col(b, a),
← edge(b, b), col(b, b), col(b, b)}

�

3.4 Answer-Set Semantics

In the section, we introduce the answer-set semantics of LP-programs following Gelfond and
Lifschitz (1991). Later, we will switch to an alternative definition of answer sets by Faber et al.
(2004, 2011) that became known as FLP-semantics and coincides with the original notion of
answer-sets in many important classes of logic programs, including LP-programs. A discussion
on why we build on the FLP-semantics (essentially for a high solver compatibility) is given later
in Section 4.7.3. Prior to the definition of semantics, we next clarify how we handle a notional
vagueness in this work.

3.4.1 Answer Sets vs. Stable Models

The terms “answer set” and “stable model” are often used interchangeably in the literature. As
the answer-set programming paradigm can be used also with other semantics than the stable-
model semantics one could see “answer set” as referring to a preferred model in the context
of the ASP paradigm, whereas “stable model” refers to a concrete semantics, the stable-model
semantics for logic programs (and its extensions, respectively).

Within this work we use the term “answer set” for preferred models of ASP languages that
we introduce but we will also use the term “stable model” in the context of semantics introduced
by others whenever it is used in their respective works.

3.4.2 Satisfaction and Models of LP-programs

Definition 10. Let r be a ground LP-rule and I an interpretation. I satisfies the body of r,
symbolically I |= B(r), if

• I |= a for all a ∈ B+(r) and

• I 6|= a for all a ∈ B−(r).
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I satisfies r, symbolically I |= r, if I |= B(r) implies that I |= a for some atom a ∈ H(r).
Whenever I |= B(r), we call r active under I .

I is a model of a ground LP-program P , denoted as I |= P , if I |= r for each r ∈ P .
Moreover, I is a minimal model of P , if

• I |= P and

• there is no I ′ ⊂ I such that I ′ |= P . ♦

3.4.3 Gelfond-Lifschitz Reduct

The stable-model semantics was first defined for normal LP-programs (Gelfond and Lifschitz,
1988), using a transformation, the Gelfond-Lifschitz reduct, that reduces a normal to a Horn
LP-program for a given interpretation. It was later extended (Gelfond and Lifschitz, 1991) to
reduce an LP-program with disjunctions to a positive LP-program as follows.

Definition 11 (Gelfond and Lifschitz, 1991). Let P be a ground LP-program and I an inter-
pretation. Then, the Gelfond-Lifschitz reduct of P with respect to I , denoted by P IGL is obtained
from P by deleting

1. each LP-rule r, where B−(r) ∩ I 6= ∅ and

2. each default negated atom from the bodies of the remaining rules. ♦

3.4.4 Answer Sets

Definition 12 (Gelfond and Lifschitz, 1991). Let P be an LP-program. An interpretation I is
an answer set of P if it is a minimal model of grn(P )IGL. ♦

Example 3. Consider program PEx2 from Example 2. As the program does not involve default
negation we have that grn(PEx2)IGL = grn(PEx2) for every interpretation I . Consequently, the
answer sets of PEx2 are given by the minimal models of grn(PEx2):

I1 ={edge(a, b),node(a),node(b), col(a, blue), col(b, green)},
I2 ={edge(a, b),node(a),node(b), col(a, blue), col(b, red)},
I3 ={edge(a, b),node(a),node(b), col(a, green), col(b, blue)},
I4 ={edge(a, b),node(a),node(b), col(a, green), col(b, red)},
I5 ={edge(a, b),node(a),node(b), col(a, red), col(b, blue)},
I6 ={edge(a, b),node(a),node(b), col(a, red), col(b, green)}.

Now, consider the program

PEx3 = {a← not b,
b← not a}

and interpretation I1 = {a}. Then,

grn(PEx3)I1GL = {a←}

and, as I1 is a minimal model of grn(PEx3)I1GL, we have that I1 is an answer set of PEx3.
For interpretation I2 = {a, b} we have grn(PEx3)I2GL = ∅. I2 is not an answer set of PEx3

as ∅ ⊆ I2 is a model of grn(PEx3)I2GL.
Finally, I3 = ∅ is not an answer set of PEx3 as it is not a model of

grn(PEx3)I3GL = {a←,
b←}. �
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3.5 Extensions of Syntax and Semantics

Much research has been carried out that is devoted to extensions of logic programs under the
stable-model semantics. In what follows, we will describe the mathematical counterparts of
popular features that are often used in the languages of answer-set solvers. These are in partic-
ular weight constraints, aggregates, and external atoms. They all amount to special literals that
can appear in rules of logic programs. In this work, we use the term “literal” informally, for
referring to an expression that may appear in the head or the body of a rule in a logic program-
ming language and that can be either true or false under an interpretation in case it is ground. In
this sense, atoms and default negated atoms are literals. In order to distinguish them from other
literals we call them standard literals. Both aggregates and external atoms were introduced us-
ing the FLP-semantics that we build our work on. Therefore, we introduce program classes with
these constructs and define their semantics in Section 3.5.4. Note that in this section, we do not
consider syntactic restrictions for domain independence.

3.5.1 Weight Constraints, Cardinality Constraints, and Choice Atoms

We next introduce weight constraints and specialisations thereof, following Simons et al. (2002).
Similar to aggregates, weight constraints are special literals whose truth depends on multiple
atoms in an interpretation. Unlike aggregates in the approach of Faber et al. (2011) that we
introduce in the following section, weight constraints may also appear in the head of rules in
the work of Simons et al. Formally, we only define the ground variant of weight constraints as
in the original paper, and discuss weight constraints with variables as used in the language of
Gringo in Section 3.6.2.

Definition 13 (Simons et al., 2002). A weight constraint is an expression of form

l [a1 = w1, . . . , ak = wk,not ak+1 = wk+1, . . . ,not an = wn] u , (3.2)

where each ai is a ground atom and each weight wi is a real number, for 1 ≤ i ≤ n. The lower
bound l and the upper bound u are either a real number,∞, or −∞. ♦

Despite this definition, Simons, Niemelä, and Soininen (2002) effectively require weights
to be non-negative, as in their semantics negative weights are eliminated in a pre-processing
step that has been claimed to lead to unintuitive results in several works (Ferraris and Lifschitz,
2005; Ferraris, 2011).

Intuitively, for a weight constraint of form (3.2) to be true, the sum of weights wi of those
atoms ai, 1 ≤ i ≤ k, that are true and the weights of the atoms ai, k < i ≤ n, that are false
must lie within the lower and the upper bound. More formally, the truth of weight constraints is
defined as follows.

Definition 14 (Simons et al., 2002). A weight constraint of form (3.2) is true under interpreta-
tion I if

l ≤ (
∑

1≤i≤k,ai∈I
wi +

∑
k<i≤n,ai 6∈I

wi) ≤ u ,

otherwise it is false under I . ♦

A special form of a weight constraint is a cardinality constraint where all weights are 1
and all contained atoms are different ground atoms. Intuitively, this has the effect that if the
cardinality constraint is true, its lower and upper bounds define how many of the contained
atoms may be true in an answer set.

A further specialised form of a cardinality constraint is a choice atom that is of the form

0 [a1 = 1, . . . , ak = 1] k ,
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hence upper bound and lower bound are fixed. Clearly, choice atoms are useless when they
appear in rule bodies, as they are always true. However, they are often used in the head of a rule
for non-deterministically guessing a subset of its domain {a1, . . . , ak}.

Example 4. Instead of disjunction as in Example 2, the following rule uses a cardinality con-
straint to express that exactly one of the colours red, green, and blue shoud be assigned to the
node a.

1 [col(a, red) = 1, col(a, green) = 1, col(a, blue) = 1] 1← node(a). �

3.5.2 Aggregates

We next define aggregates following Faber et al. (2004, 2011) with the slight difference that
functions are restricted to constants in the original papers.

Definition 15 (Faber et al., 2011). A symbolic set is a pair 〈V : B〉, where V is a list of
variables and B is a conjunction of atoms. A ground set is a set of pairs of the form 〈T : B〉,
where T is a list of ground terms and B ⊆ BPHUA

is a set of ground atoms. A set term is either
a symbolic set or a ground set.

An aggregate function symbol f represents a mapping εf from multisets of ground terms
to ground terms. An aggregate function is of the form f [ST], where ST is a set term and f is
an aggregate function symbol. An aggregate atom is an expression of form f [ST] ≺ t, where
f [ST] is an aggregate function, t is a term called guard, and ≺ is a comparison operator on
ground terms. ♦

Faber et al. allow aggregates to appear in rule bodies but not in rule heads.

Definition 16 (Faber et al., 2011). A disjunctive logic programming rule with aggregates, or
AG-rule, is an expression of the form

a1 ∨ . . . ∨ ak ← ak+1, . . . , am,not am+1, . . . ,not an, (3.3)

where every ai, for 1 ≤ i ≤ k, is an atom and every aj , for k + 1 ≤ j ≤ n, is either an atom
or an aggregate atom. A variable in an AG-rule r is local with respect to r if it appears only in
some aggregate function of r, otherwise it is global with respect to r.

A disjunctive logic program with aggregates, or AG-program for short, is a set of AG-
rules.2 ♦

Similarly as for atoms, the semantics of aggregates is only defined for aggregate atoms that
are ground. The corresponding grounding step required is a bit more involved than the naïve
grounding of LP-rules. In particular, it differentiates between local and global variables, i.e.,
the grounding of an aggregate-atom can only be determined with respect to an AG-rule.

Definition 17 (Faber et al., 2011). Let r be an AG-rule, G the set of global variables of r, S
a symbolic set, L the set of local variables of r in S, and F ⊆ HUA a set of ground terms.
A G/F -substitution is a global F -substitution for r, whereas an L/F -substitution is a local
F -substitution for S with respect to r.

For a symbolic set S = 〈V : B〉 without global variables, the F -instantiation of S with
respect to r is the ground set

INSTF,r(S) = {〈V : B〉θ | θ is a local F -substitution for S with respect to r}.

A ground instance of an AG-rule r with respect to F is obtained in two steps:

2In the paper of Faber et al., AG-programs are called DLPA programs.
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1. a global F -substitution θ for r is first applied over r and

2. every symbolic set S in rθ is replaced by INSTF,r(S).

The grounding of r with respect to F is the set grF (r) of all ground instances of r with respect
to F .

Let P be an AG-program. The grounding of P with respect to F is given by

grF (P ) =
⋃
r∈P

grF (r).

We call grHUA
(P ) the naïve grounding of P , denoted by grn(P ). ♦

Definition 18 (Faber et al., 2011). Given an interpretation I and a ground set G, I[G] is the
multiset

[t1 | 〈t1, . . . , tn : B〉 ∈ G,B ⊆ I] .

An aggregate atom f [G] ≺ t appearing in the naïve grounding of an AG-rule is true under I if
εf (I[G]) is defined and εf (I[G]) ≺ t, otherwise it is false under I . ♦

Note that a ground aggregate atom could contain a symbolic set with an empty variable
list. Like for aggregate atoms that are not ground, the semantics for these aggregate atoms is
only given indirectly in terms of their grounded versions and is always true or always false,
depending on the aggregate function. We only consider ground AG-rules and AG-programs
that are obtained from the naïve grounding of some AG-program.

The Definitions 6 and 10 (on pages 17 and 19) for defining rule parts of LP-rules and the se-
mantics of LP-rules and LP-programs carry over to AG-rules and AG-programs in the obvious
way.

Example 5 (Faber et al. (2011)). The aggregate atom

max [{〈2 : r(2), a(2, x)〉, 〈2 : r(2), a(2, y)〉}] > 1

could be the result of grounding the non-ground aggregate atom

max [〈Z : r(Z), a(Z, V )〉] > Y. �

The answer-set semantics for AG-programs as defined by Faber et al. (2011) is introduced
in Section 3.5.4. Further examples for aggregates, in the context of the language of DLV, are
given in Section 3.6.3.

3.5.3 External Atoms

In order to integrate external sources of computation to answer-set programs, Eiter et al. (2005)
introduced HEX programs which are logic programs augmented with so-called external and
higher-order atoms. The latter are atoms which allow for variables at the predicate position.
Indeed, the HEX formalism does not differentiate between constants and predicate symbols.
Note that higher-order atoms can be simulated by ordinary atoms with fresh predicates and a
further argument. We do not need higher-order atoms for the purposes of this thesis. However,
we next introduce external atoms.

Definition 19. An external atom is an expression of the form

#g[Y1, . . . , Yn](X1, . . . , Xm), (3.4)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms, called the input, respectively, the
output list of the external atom, and #g is an external predicate name with associated lengths
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n and m. Moreover, it is assumed that every such external predicate name has an associated
(n + m + 1)-ary Boolean function f#g assigning each tuple 〈I, y1, . . . , yn, x1, . . . , xm〉 either
0 or 1, where I is an interpretation, and all yi and xj are ground terms for 1 ≤ i ≤ n and
1 ≤ j ≤ n.

A ground external atom #g[y1, . . . , yn](x1, . . . , xm) is true under interpretation I , symbol-
ically I |= #g[y1, . . . , yn](x1, . . . , xm), if, f#g(I, y1, . . . , yn, x1, . . . , xm) = 1, otherwise it is
false under I . ♦

Intuitively, the function f#g represents some source of computation that is external to an
answer-set solver.

Definition 20 (Eiter et al., 2005). A disjunctive logic programming rule with external atoms,
or EX-rule, is an expression of the form

a1 ∨ . . . ∨ ak ← ak+1, . . . , am,not am+1, . . . ,not an, (3.5)

where every ai for 1 ≤ i ≤ k is an atom and every aj for k + 1 ≤ j ≤ n is either an atom or an
external atom.

A disjunctive logic program with external atoms, or EX-program for short, is a set of EX-
rules. ♦

The grounding of EX-programs is similarly defined as the grounding of LP-programs, i.e.,
the naïve grounding for EX-programs is defined analogous to Definition 9 for LP-programs on
page 18. Moreover, as for instantiated AG-programs, we assume the concepts introduced in
Definitions 6 and 10 (on pages 17 and 19) to be available for EX-rules and EX-programs as
well, using obvious extensions. Furthermore, also as in the case of AG-programs, an answer-
set semantics for EX-programs is given in terms of the FLP-semantics that is introduced in the
following section.

3.5.4 FLP-Semantics

The FLP-semantics has been introduced to provide an intuitive handling of recursive aggregates
in answer-set programming (Faber et al., 2004, 2011). More specifically, it was defined for
AG-programs as defined in Section 3.5.2. Similar to the original definition of answer-sets by
Gelfond and Lifschitz, Faber et al. make use of a program reduct depending on a candidate
interpretation I for determining whether I satisfies a stability criterion, i.e., is considered an
answer set. However, the reduct of Faber, Pfeifer, and Leone differs in spirit from that of Gelfond
and Lifschitz as it does not reduce the program to another syntactic class (cf. Definition 11 on
page 20: the Gelfond-Lifschitz reduct of an LP-program is always positive). Instead, the so-
called FLP-reduct, defined next, keeps the individual rules intact and just ignores all rules that
are not active under the candidate interpretation.

Definition 21 (Faber et al., 2011; Eiter et al., 2005). Let I be an interpretation and P a ground
AG-program, respectively a ground EX-program. The FLP-reduct of P with respect to I is
given by

P I = {r ∈ P | r is active under I} ♦

Based on this notion of a reduct, the FLP-semantics is defined as follows.

Definition 22 (Faber et al., 2011; Eiter et al., 2005). Let I be an interpretation and P an AG-
program, respectively an EX-program. I is an FLP-answer set of P if I is a minimal model of
grn(P )I . ♦
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Notice that both AG-programs and EX-programs are proper syntactic extensions of LP-
programs. It was shown that an interpretation is an answer set of an LP-program P according
to Definition 12 (on page 20) if and only if it is an FLP-answer set of P (Faber et al., 2011).

The FLP-semantics is fully implemented for HEX programs (Eiter et al., 2005) in the solver
DLVHEX (Eiter et al., 2006) that is discussed in Section 3.6.4.

3.6 ASP (Solver) Languages

The different origins of answer-set programming, discussed in the beginning of this chapter, as
well as most efforts to extend and further develop the paradigm are of scientific nature. That is,
up to now, the key driver of the field of ASP is the academic community rather than for example
the demand by software developers or industry. This might change in the future, due to the
availability of efficient answer-set solvers and, as discussed in Chapter 1, hopefully also due to
contributions to software engineering in ASP such as this thesis. Nevertheless, because of the
scientific roots of ASP and the lack of a single core driver there is no canonical ASP program-
ming language. Instead, papers on ASP use different syntaxes and also different answer-set
solvers feature a different input language.3 As motivation for the abstract ASP language we
use for our stepping framework, we want to highlight two aspects of answer-set programming
Babylonia:

1. differences between solver dialects that are discussed in this section on the one hand but
also

2. the gap between mathematical syntax and semantics of answer-set programs as used in
research, opposed to the solver languages that are used in ASP applications, that we also
deal with in the following but also in Section 6.1.

The next section deals with commonalities of solver dialects followed by discussions of the
languages of the ASP systems Gringo, DLV, and DLVHEX.

3.6.1 General Remarks

Although there are differences between languages accepted by answer-set solvers they typically
share a basic structure.4 All the solver languages we consider have a syntax that is similar to that
of many PROLOG dialects. Essentially, a typical program is a list of rules that are separated by
dots (.), the implication operator is denoted by :-, and, similar as in our mathematical notation,
commas (,) are used for conjunction in the body of a rule and default negation is denoted by
not. Typically, the operator :- is dropped for facts. Moreover, single-line comments, i.e., text
that is ignored by the solver until a line break, typically start with the % symbol. In the remainder
of the thesis, we will sometimes present ASP source code, i.e., answer-set programs in the input
language of some solver. In order to distinguish it from answer-set programs in mathematical
notation, source code is displayed in verbatim font and, for longer listings, embedded in a
dedicated bordered environment that also indicates the used solver language and a filename for
referencing the answer-set program.

Example 6. The following listing shows a Gringo program with a single-line comment and
two rules.

3Note, however, that there are endeavours towards a common core input language (Calimeri et al., 2012) in the
realm of the ASP competitions.

4When we speak of solver languages, we usually refer to a human-readable input language, i.e., for solvers that
require external grounding (cf. Section 3.6.2) we mean the input language of the grounder.
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ex6.gr Gringo

% this is some example gringo source code
a :- not b.
b :- not a.

Note that this program would, e.g., also be a valid DLV or DLVHEX program as it contains only
features that these languages share. �

We will sometimes use the + operator as a means for referring to compositions of programs
with explicit filename, e.g., ex6.gr + ex.gr refers to the program obtained from joining
program ex6.gr with another program of filename ex.gr.

While the domain of discourse of our formal ASP language is determined by the Herbrand
universe of A , solver languages typically define a grammar for identifiers, a range of integers,
and quoted strings that act as the constants of the language.

Moreover, some languages allow for uninterpreted function symbols of higher arity. Solvers
(or grounders) usually define an order over all ground terms and allow for special comparison
literals that are true when one term is greater than, less than, equal to, respectively, unequal to
another term with respect to the order. For the integer range of the solver domain, the order
coincides with the natural ordering of the integers. Moreover, integer arithmetics are available
in many solver languages, either using special predicates or interpreted arithmetic functions,
e.g., addition or multiplication. A handy feature available in all popular solver languages is
the anonymous variable, denoted by the underscore (_). Every occurrence stands for a fresh
variable that is not used anywhere else in the program.

As mentioned earlier, ASP solver languages feature strong negation, a second form of nega-
tion that allows for expressing that an atom is known to be false. An atom is negated by using
the unary operator - (sometimes also denoted by ~).

Example 7. The following program is a variant of the bird example that is often used for illus-
trating default logic, expressing that by default birds are assumed to fly.

ex7.dlv DLV

bird(waldo).
bird(tux).
penguin(tux).
flies(X) :- bird(X), not -flies(X).
-flies(X) :- penguin(X).

The first three facts state that there are two birds, Waldo and Tux, where Tux is also known to
be a penguin. The fourth rule expresses that if variable X stands for a bird and it is not known
that X does not fly it is assumed that X flies. Hereby, the strong negated atom -flies(X)
stands for the information that X is known not to fly; with additional default negation, the literal
not -flies(X) means that X is not known not to fly. The final rule expresses that when X
is a penguin then X is known not to fly. The program has one answer set:

{bird(waldo), bird(tux), penguin(tux), flies(waldo),
-flies(tux)}

Besides the information from the facts of the program, the answer set contains flies(waldo)
and -flies(tux), encoding that Waldo flies, but Tux, the penguin, does not. �

As the example shows, strongly negated ground atoms can occur in interpretations and also
answer sets. Indeed, strongly negated atoms can be seen and are often implemented like ordinary
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atoms, with the only difference that a ground atom and its strong negation can never occur in
the same answer set.

Example 8. The following program extends the one from Example 7 by a fact stating that Tux
flies.

ex8.dlv DLV

bird(waldo).
bird(tux).
penguin(tux).
flies(tux).
flies(X) :- bird(X), not -flies(X).
-flies(X) :- penguin(X).

The program has no answer set as the rules would enforce flies(tux) and -flies(tux)
to be true. �

Another commonality of solver languages is that they impose syntactic restrictions on pro-
grams which ideally lead to finite small groudings that are equivalent to the respective program
and can be efficiently computed. Such restrictions include ω-restrictedness(Simons et al., 2002),
λ-restrictedness (Gebser et al., 2007b), stratification(Apt et al., 1988; Van Gelder, 1989; Naqvi,
1986), and safety (cf. Section 3.3.2). Varying syntactic restrictions in different languages are
one source of complication for developing common development support methods for multiple
solvers. Another source are different types of language constructs that we discuss in the sub-
sequent subsections, in particular non-standard literals and different types of statements, i.e.,
elements of a program that are not rules and used, e.g., for optimisation, filtering of answer sets,
or constant assignments. In many cases, the two mentioned sources of complication add up, as,
on the one hand, for each solver-specific language construct it must be clarified under what cir-
cumstances it fulfils a syntactic restriction, and, on the other hand, such constructs often require
restrictions themselves, e.g., they could require that predicates they use have to be stratified.

3.6.2 Gringo

The grounding tool Gringo (Gebser et al., 2007b, 2011a) is developed as the grounding com-
ponent for the Clasp solver (Gebser et al., 2007a) and further tools from the Potsdam Answer
Set Solving Collection (Potassco) (Gebser et al., 2011c).

Gringo is the de-facto successor of the Lparse grounder written by Tommi Syrjänen at
Helsinki University of Technology (which is now part of Aalto University) (Syrjänen, 2002). In
current versions of Gringo, the input language, which is the language in which ASP develop-
ers write their programs, has become a lot richer than that of Lparse. The output language
of Gringo however, is backward compatible to that of Lparse. It is a numerical interchange
format that compactly represents the grounding and symbolic information, i.e., tables of names
of predicates and functions, and is intended to be readable for machines rather than humans.
It is sometimes referred to as the Smodels format, as it is designed as the input language of
the Smodels solver (Simons et al., 2002). Many others solvers, e.g., ASSAT (Lin and Zhao,
2004), Cmodels (Lierler, 2005), SUP (Lierler, 2011), GNT (Janhunen et al., 2006), sabe, and
pbmodels (Liu and Truszczyński, 2006), that depend on external grounding like Smodels
and Clasp have also adopted this intermediate format as their input language. As a conse-
quence, they can also be used in conjunction with Gringo as grounding component.

We consider the language of the Gringo version 3 series. Next, we describe some of its
features.
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Weight Constraints, Cardinality Constraints, and Choice Atoms

For one, Gringo supports weight constraints similar to those defined in Section 3.5.1.

Example 9. The following rule states that if the combined income of Waldo and Tux lies be-
tween 500 and 1000 they can be considered almost poor.

ex9.gr Gringo

income(waldo,300).
income(tux,200).
almostPoor :- 500 [income(waldo,300)=300,

income(tux,200)=200] 1000.

�

Example 10. The following program contains different rules with cardinality constraints in the
head.

ex10a.gr Gringo

0{older(waldo,tux),older(tux,waldo)}1.
1{strongest(waldo),strongest(tux)}2.
0{seasick(waldo),seasick(tux)}2.

The first rule expresses that either Waldo is older than Tux, Tux is older than Waldo, or none of
them is older than the other. The second rule states that either Waldo is the strongest or Tux is
or they both are (in case they are of equal strength). The cardinality constraint in the third rule
is a choice atom, guessing for Waldo and Tux whether they are seasick or not.

Note that bounds can be dropped if they do not impose any effective restrictions, hence the
program can also be written as

ex10b.gr Gringo

{older(waldo,tux),older(tux,waldo)}1.
1{strongest(waldo),strongest(tux)}1.
{seasick(waldo),seasick(tux)}.

Moreover, notice that general weight constraints use square brackets ([]), whereas cardinality
constraints are denoted with braces ({}), indicating a different behaviour when they contain an
atoms more than once. That is, 1[a=1,a=1,b=1]1 and 1{a,a,b}1 are not equivalent. In
particular, due to the multiset-semantics of weight constraints, 1[a=1,a=1,b=1]1 can never
be true when a is true as in that case the overall sum is at least 2, violating the lower bound. The
cardinality constraint 1{a,a,b}1 amounts to 1{a,b}1. �

Note that in the Gringo language, variables may appear in weight constraints.

Example 11. For example, the first rule of ex10b.gr could have been obtained5 from the
non-ground rule

0{older(X,Y),older(Y,X)}1 :- bird(X),bird(Y),X!=Y.

given the facts bird(waldo) and bird(tux). �

5Here, Gringo recognises the rule body to be satisfied and removes it in the grounding.
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However, using variables alone is insufficient if we want to dynamically change the number
of ground atoms contained in a cardinality constraint, e.g., a non-ground version of the second
rule of ex10b.gr expressing that for all birds there is at least one who is the strongest. Like-
wise, we cannot write a rule that has a single rule as instantiation that can guess for every known
bird whether it is seasick or not. For such cases, the language uses so-called conditions that we
present next.

Conditions

The purpose of conditions is to represent a set of ground literals by a literal with variables and a
conjunction of literals that determines variable substitutions. It can be seen as a local grounding
of a literal within a rule. Conditions are mainly used for dynamically determining the atoms
contained in weight and cardinality constraints, however they can also be used directly in rule
heads or bodies. Conditions are added to a literal using the colon symbol (:).

Example 12. We next illustrate how a non-ground literal with conditions is expanded to an
expression with multiple ground literals, depending on whether it occurs in the head or in the
body of a rule.

ex12.gr Gringo

bird(tux).
bird(waldo).
birdClass(ratites).
birdClass(tinamous).
birdClass(neognathae).
happy(tux).
allBirdsAreHappy :- happy(X):bird(X).
ofClass(X,C):birdClass(C) :- bird(X).

Conditions in rule bodies represent conjunctions, e.g., the literal happy(X):bird(X) rule
on line 7 is expanded to the conjunction happy(tux),happy(waldo) as bird(X) is true
when X is substituted by tux or waldo. When conditions are used in the head of a rule they
are expanded to a disjunction, hence, the rule

ofClass(X,C):birdClass(C) :- bird(X).

stands for the ground rules

ofClass(waldo,neognathae) | ofClass(waldo,tinamous) |
ofClass(waldo,ratites) :- bird(waldo).

and

ofClass(tux,neognathae) | ofClass(tux,tinamous) |
ofClass(tux,ratites) :- bird(tux).

Note that Gringo uses | to denote the disjunction operator and that not all solvers that are
based on Gringo groundings support disjunctions. �

The next examples illustrate the use of conditions in weight constraints.

Example 13. The program ex9.gr is the ground version of ex13.gr.
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ex13.gr Gringo

income(waldo,300).
income(tux,200).
almostPoor :- 500 [income(N,I)=I:income(N,I)] 1000.

�

Example 14. The following program is a non-ground variant of ex10b.gr with additional
facts for defining birds.

ex14.gr Gringo

bird(waldo).
bird(tux).
{older(X,Y),older(Y,X)}1 :- bird(X),bird(Y),X!=Y.
1{strongest(X):bird(X)}1.
{seasick(X):bird(X)}.

�

As literals with conditions must be expanded during the grounding phase, Gringo allows
only for stratified predicates to occur in them, as those can be evaluated during grounding.

Pooling

Pooling of arguments are a means for compact representation of rules. Using semicolon (;) and
double semicolon (;;) as operators, alternatives for terms appearing in arguments of functions
and predicates can be given. Depending on where in a rule pooling occurs, a literal containing
the pooled terms will be expanded to multiple literals within the same rule, or to multiple rules
each containing a different version of the literal. In both cases the expanded literals cover
all combinations of alternatives defined by pooling. The ; operator allows for representing
alternative terms for one argument, whereas ;; is used to define alternative lists of arguments.

Example 15. The following program states that two birds are rivals when they are in love with
the same bird.

ex15a.gr Gringo

inLoveWith(tux;waldo,tweety).
rivalOf(X,Y;;Y,X) :- inLoveWith(X;Y,Z),X!=Y.

Program ex15a.gr is a compact representation of the following program.

ex15b.gr Gringo

inLoveWith(tux,tweety).
inLoveWith(waldo,tweety).
rivalOf(X,Y) :- inLoveWith(X,Z),inLoveWith(Y,Z),X!=Y.
rivalOf(Y,X) :- inLoveWith(X,Z),inLoveWith(Y,Z),X!=Y.

As the two original rules contain pooling in their heads, each is expanded to two rules. The
literal inLoveWith(X;Y,Z) is expanded to two literals as it is contained in a rule body. �
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Intervals

Another form of compact representation are interval terms which represent a set of integer con-
stants from a given interval. Similar to pooled arguments, interval terms stand for alternative
arguments, however, unlike pooling, intervals are expanded to different rules independent from
the position of the interval term in the rule.

Example 16. The example program defines a 2x3 grid of cells that can be ok or faulty. If a cell
is ok this is indicated with the predicate cellOK/2.

ex16a.gr Gringo

nrOfCols(2).
nrOfRows(3).
col(1..X) :- nrOfCols(X).
row(1..Y) :- nrOfRows(Y).
cellOK(1..2,1..2).
faultyCellExists :- not cellOK(1..X,1..Y), nrOfCols(X),

nrOfRows(Y).

A ground version of ex16a.gr is given below.

ex16b.gr Gringo

nrOfCols(2).
nrOfRows(3).
col(1) :- nrOfCols(2).
col(2) :- nrOfCols(2).
row(1) :- nrOfRows(3).
row(2) :- nrOfRows(3).
row(3) :- nrOfRows(3).
cellOK(1,1).
cellOK(1,2).
cellOK(2,1).
cellOK(2,2).
faultyCellExists :- not cellOK(1,3), nrOfCols(2),

nrOfRows(3).
faultyCellExists :- not cellOK(2,3), nrOfCols(2),

nrOfRows(3).

Note that the program only contains relevant expanded rules. A naïve expansion would also
contain rules like the following that are not active with respect to the unique answer set.

col(2) :- nrOfCols(3).
col(3) :- nrOfCols(3).
faultyCellExists :- not cellOK(1,1), nrOfCols(2), nrOfRows(3).

�

Lua Functions

Gringo allows for user-defined interpreted functions, i.e., the programmer can write an imper-
ative piece of code which takes a list of ground terms as input and returns a ground term. The
functions are written in the Lua programming language (Ierusalimschy, 2006), a lightweight
interpreted scripting language. Besides computing a single ground term as output, embedded
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Lua code can also be used to create multiple output values, interact with databases, or create
new function-symbols that are not available in the original program’s Herbrand universe.

Example 17. The following program demonstrates string concatenation using Lua in Gringo.

ex17.gr Gringo

#begin_lua

function concatName(a, b)
return a .. " " .. b

end

#end_lua.

firstName(id1,"Ada").
surname(id1,"Lovelace").

firstName(id2,"George").
middleName(id2,"Gordon").
surname(id2,"Byron").

hasMiddleName(ID) :- middleName(ID,_).
fullName(@concatName(F,S)) :- firstName(ID,F),

surname(ID,S), not hasMiddleName(ID).
fullName(@concatName(@concatName(F,M),S)) :-

firstName(ID,F), middleName(ID,M),
surname(ID,S).

Lua functions are defined in a source block enclosed by the #begin_lua and #end_lua
statements. Note that .. is the Lua operator for string concatenation and the purpose of the
Lua function concatName(a, b) is joining two strings with an additional blank space
in between. The facts encode first name and surname for two persons, where for the sec-
ond person also a middle name is given. The following rule defines the auxiliary predicate
hasMiddleName/1 indicating that a middle name is known for the respective person. The
last two rules have references to the Lua function using the @ key symbol. Depending on whether
a middle name is given they use the function to concatenate either first name and surname or
first name, middle name, and surname of each given person. The program has the single answer
set:

{firstName(id1, "Ada"), surname(id1, "Lovelace"),
firstName(id2, "George"), middleName(id2, "Gordon"),
surname(id2, "Byron"), hasMiddleName(id2),
fullName("Ada Lovelace"), fullName("George Gordon Byron")}

�

Gringo has several further language constructs such as optimisation statements or hide
and show statements. For more information the interested reader may consult a comparison
between the input languages of Lparse and Gringo (Gebser et al., 2009a) and the user guide
of Gringo (Gebser et al., 2010).
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3.6.3 DLV

The development of the ASP solver DLV has started as a joint endeavour of the University of
Calabria and Vienna University of Technology (Citrigno et al., 1997; Leone et al., 2006). At
present, DLV is further developed and maintained by DLVSYSTEM S.R.L., a spin-off com-
pany of the University of Calabria. The first version of DLV was available in 1997. DLV is
proprietary but its license allows for academic and non-commercial educational use at no cost.
While many other solvers depend on external grounding, DLV comes with its own grounding
component (Faber et al., 2012). Its original kernel-language is that of function-free disjunctive
logic programs, also called disjunctive datalog. Disjunction plays an important role in the DLV
language, as it is the primary construct for guessing the solution space. This is reflected in the
name of the tool, as the V in DLV stands for the disjunction operator.

DLV is in many aspects influenced by methods from deductive databases, e.g., its developers
put a strong focus on query answering for which it exploits advanced techniques such as magic-
set rewriting. Besides answer-set enumeration, DLV allows for conjunctive queries and offers
two modes of query reasoning, brave reasoning and cautious reasoning. For ground queries,
i.e., a conjunction of ground standard literals, DLV returns a boolean value. In particular, a
ground query is true under brave reasoning if and only if there is at least one answer set under
which the conjunction is true and true under cautious reasoning if and only if the conjunctions
holds in every answer set of the program. For queries with variables, DLV computes variable
substitutions such that the conjunction holds in one answer set in brave reasoning, respectively
all answer sets in the cautious setting. In this thesis, we are not concerned with query answering,
as our focus is the ASP paradigm, where output is given in terms of models rather than by
answers to queries. Another database related feature of DLV is its ODBC interface that allows
for reading and storing information in an external database. Moreover, an extension of DLV,
called DLVDB, allows for a tighter integration with external databases, allowing for exploiting
optimisation techniques of database management systems (Terracina et al., 2008b,a).

Over the years, the syntax of DLV has continuously been extended. We consider the lan-
guage of the December 21, 2011, release of DLV. We next describe some of its features.

Handling of Integers

The DLV language supports the use of non-negative integers. However, the use of integer arith-
metics requires setting an upper integer limit to a concrete number. This can be done in two
ways: either by a command-line argument or by the #maxint statement. The built-in predi-
cate #int/1 holds for all integers in the interval between 0 and the integer limit that was set.
It is often used in conjunction with arithmetic predicates to make variables safe.

Example 18. The following program demonstrates the use of integers in DLV.

ex18.dlv DLV

#maxint=5.
successorOf(X,Y) :- Y=X+1, #int(X).

The program computes successors of integers. The literal Y = X + 1 is an atom of a special
built-in predicate for addition. As arithmetic predicates do not make their input arguments safe,
we need the literal #int(X), stating that X is an integer, as further body literal. The single
answer set of program ex18.dlv, as computed by DLV, is given by

{successorOf(0,1), successorOf(1,2), successorOf(2,3),
successorOf(3,4), successorOf(4,5)}
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Although 5 is within the defined integer range between 0 and 5, its successor is not computed as
6 is outside the range. As a consequence, setting a too small integer range is a potential source
of unexpected program behaviour. �

Unlike in the Gringo language, integer intervals in DLV can only be used in non-disjunctive
facts where the atom is of a unary predicate. That is, DLV handles ranges using dedicated
integer range atoms, whereas Gringo supports intervals in the form of terms that may occur in
arbitrary positions (cf. Example 16).

Aggregate Predicates

Aggregates in DLV are similar to aggregates in AG-programs as defined in Section 3.5.2, i.e.,
it is checked whether the result of an aggregate function applied on a symbolic set is within the
range of given guards. Additionally, DLV allows for another version of aggregates, where the
result of an aggregate function applied on a symbolic set is assigned to a variable. The latter
type of aggregate is always considered to be true. Moreover, as in AG-programs, aggregates
in DLV are restricted to occur in rule bodies. DLV supports the aggregate functions #count,
#sum, #times, #min, and #max.

Example 19. The following program is a DLV variant of ex13.gr.

ex19a.dlv DLV

income(waldo,300).
income(tux,200).
almostPoor :- 500 <= #sum{I:income(_,I)} <= 1000.

The aggregate function #sum is used to add up all values I that are used as second argument of
a true atom of predicate income/2.

The following program illustrates assignment aggregates and counting with DLV aggregates.

ex19b.dlv DLV

bird(tux).
bird(tweety).
bird(roadrunner).
bird(waldo).
inLoveWith(tux,tweety).
inLoveWith(tux,roadrunner).
inLoveWith(woody,tweety).
inLoveWith(woody,roadrunner).
inLoveWith(waldo,tweety).

nrOfRivals(B,NR) :- #count{R:inLoveWith(B,L),
inLoveWith(R,L),B!=R}=NR,bird(B).

nrOfRivalRelationships(B,NR) :-
#count{R,L:inLoveWith(B,L),

inLoveWith(R,L),B!=R}=NR,bird(B).

The aggregate function #count returns the cardinality of the (grounded) symbolic set to which
it is applied. The example illustrates the role of the list of variables in a symbolic set. The bodies
of the defining rules of nrOfRivals/2 and nrOfRivalRelationships/2 only differ in
the additional variable L in the symbolic set of the latter. The unique answer set (without the
atoms from the facts in the program) is given by:
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{nrOfRivals(roadrunner,0),
nrOfRivals(tux,2),
nrOfRivals(tweety,0),
nrOfRivals(waldo,2),
nrOfRivalRelationships(roadrunner,0),
nrOfRivalRelationships(tux,3),
nrOfRivalRelationships(tweety,0),
nrOfRivalRelationships(waldo,2)}

While tux has only two rivals, waldo and woody, he has three rival relationships, as he shares
the loving of both tweety and roadrunner with his rival woody. �

3.6.4 DLVHEX

The ASP solver DLVHEX is developed at Vienna University of Technology and implements
HEX programs (Eiter et al., 2005) (see Section 3.5.3). In the beginning of its development,
DLVHEX used DLV as a backend. However, the current version (we consider version 2.3) allows
for further backends with the combination of Gringo and Clasp as default option. DLVHEX
has a modular architecture in which language features can be added by using plugins. The core
language is similar to that of DLV. External atoms in the language of DLVHEX start with the
ampersand symbol (&) followed by an identifier of the external atom, a list of input symbols
within square brackets ([]), and a list of arguments within brackets (()). The semantics of
every external atom used in a DLVHEX source file has to be determined by some DLVHEX plugin
stored in a pre-defined directory in the filesystem for a successful evaluation. Plugins offered for
the current version of the system include an aggregate plugin that realises aggregate functions,
e.g., for counting, building sums, and a script plugin that can execute bash, python, and perl
scripts. Moreover, there is a plugin for string manipulations (like concatenation, splitting, or
substring checking), one for accessing the WordNet lexical database (Miller et al., 1990), and
there is a plugin for explaining inconsistency in multi-context systems (Bögl et al., 2010).

Example 20. The following program is a DLVHEX program using external atoms of the string
manipulations plugin.

ex20.hex DLVHEX

date("2014-05-01").
year(Y) :- &split[X,"-",0](Y), date(X).
month(M) :- &split[X,"-",1](M), date(X).
day(D) :- &split[X,"-",2](D), date(X).

An external atom with id split is true if its argument is obtained from splitting the first element
of its input list with the second element of the input list as separator and taking the i + 1-th
resulting substring where i is the value of the third input element. Consequently, DLVHEX
returns the following answer set for program ex20.hex:

{day("01"), month("05"), year("2014"), date("2014-05-01")} �

DLVHEX is the only solver we consider that allows for non-convex body literals as used in
the next example (convexity will be discussed later in Section 4.2).

Example 21. The following program uses the external atom for counting from the aggregate
plugin of DLVHEX.
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ex21.hex DLVHEX

p(a) :- not &count[p,mask](1).
p(a) :- p(b).
p(b) :- p(a).

The first input element of the external atom specifies the name of the predicate whose atoms
shall be counted. The second element, the special constant mask determines that the first
(and in this case only) argument of predicate p/1 is unconstrained for counting, i.e., every
p/1 atom is counted. Finally, here, the argument is fixed with constant 1. Hence, the literal
not &count[p,mask](1) is true under interpretations that do not have exactly one p/1
atom as one of its element. The final two rules ensure that p(a) and p(b) mutually support
each other. The resulting single answer set is

{p(a), p(b)}.

This is a DLVHEX variant of the program we will use later in Section 4.7.2 to illustrate the
difference of the FLP-semantics (as implemented in DLVHEX) to other semantics for non-convex
literals. �

3.7 Computational Complexity

We shortly recall the notions of complexity theory (Papadimitriou, 1994) that are used in this
work.

3.7.1 Complexity Classes

A complexity class is a set of computational problems of a given type that can be solved using
a given machine model and a given amount of resources. As machine models we will consider
deterministic and nondeterministic Turing machines (Turing, 1936) and the resources of the
complexity classes we encounter are given in terms of computation time. Moreover, we will
consider decision problems, i.e., problems with a “yes” or “no” answer.

For example, P is the class of decisions problems decidable by a deterministic Turing ma-
chine in a polynomial number of time steps, i.e., polynomial in the size of the encoded problem
instance. The class of problems decidable by a nondeterministic Turing machine in polynomial
time is denoted by NP.

We also make use of oracle computations. An oracle for a complexity class C is a hypothet-
ical procedure that solves problems from C in constant time. By PC or NPC , respectively, we
denote the class of problems that can be solved by a deterministic Turing machine, or a nonde-
terministic Turing machine, respectively, that has access to an oracle for class C in polynomial
time. In particular, we will need the class NPNP, often denoted as ΣP

2 , containing all decision
problems that can be solved in polynomial time by a non-deterministic Turing machine with
access to an NP-oracle.

3.7.2 Reductions, Hardness, and Completeness

A polynomial-time many-one reduction is a transformation that translates every encoded prob-
lem instance of a certain problemA to an encoded problem instance of another fixed problemB
such that solving the instance ofB gives the solution for the instance ofA and the transformation
could be performed by a deterministic Turing machine in polynomial time.

We call a problem hard for some class only if all problems in the class can be reduced to an
instance of the problem, using a polynomial-time many-one reduction.

A problem is complete for a complexity class, if it is hard for this class and element of it.
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Solver Languages

Our goal is to develop a debugging method that works for real-world answer-set programs.
However, actual solver languages differ from each other and are subject to change as the work
on solvers progresses. For this reason, we want our techniques to be as robust as possible
to language differences and hence develop them for an abstract ASP language that is general
enough to capture different solver languages. One important choice for finding such a language
is, which parts of the languages should be abstracted away. Observing how current answer-set
solvers work, one can see that although their input languages differ tremendously, answer-set
programs, once grounded, have a quite similar representation in different solvers. Therefore, we
decided

• to utilise a common abstraction for grounded programs and

• not to abstract grounding away, but make the grounding step part of our abstraction.

The latter point, the abstraction of grounding, is introduced in Chapter 6. In the current chap-
ter, we develop a common abstraction for grounded programs in ASP solver languages. To
this end, we can rely on a formalism that was introduced to study different language exten-
sions in a uniform manner: Abstract-constraint programs (Marek and Remmel, 2004; Marek
and Truszczyński, 2004) are generalised logic programs providing abstractions of commonly
used constructs like aggregates, weight constraints, and external atoms. In essence, abstract
constraints are dedicated literals whose truth value depends on a set of propositional atoms.

Quite a few different semantics have been explored for abstract-constraint programs (Marek
and Remmel, 2004; Marek and Truszczyński, 2004; Son et al., 2007; Shen et al., 2009; Marek
et al., 2008; Liu and Truszczyński, 2006; Liu et al., 2010; Shen and You, 2007; Marek and Rem-
mel, 2012), however none of the existing ones fitted all our requirements, namely that grounded
Clasp, DLV, and DLVHEX programs can be captured, and that the definitions of the semantics
are simple and direct, namely that they operate directly on program rules and that they do not de-
pend on a translation to another formalism. In fact, most of the existing semantics do not cover
disjunctions in rule heads that we need for compatibility with DLV and DLVHEX programs. An
exception is that of Shen et al. (2009), whose semantics also handles disjunctions. However,
their approach depends on an involved program transformation that introduces fresh atoms and
changes rules which make it less attractive for our debugging purposes. Moreover, in the pres-
ence of non-convex literals (see Section 4.2), their semantics differs from that of DLVHEX, the
only solver that currently implements such literals. The only other work on disjunctive abstract-
constraint programs that we are aware of is a recent proposal for a semantics by Marek and
Remmel (2012) which is in turn not able to express choice rules as discussed in Section 4.7.

The remainder of the chapter is organised as follows. We first introduce abstract-constraint
programs and a corresponding satisfiability relation in Sections 4.1 and 4.2. Next, we show how
weight constraints, aggregates, and external atoms can be represented as abstract constraints.
Our new semantics for abstract-constraint programs is introduced in Section 4.4. It is based
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on the FLP-reduct and conservatively extends the FLP-semantics for AG-programs. In the
same section, we also discuss why a different, straightforward extension of the FLP-semantics
to abstract-constraint programs is not suitable for our purposes. In Section 4.5, we provide
three characterisations of our semantics in terms of unfounded sets, unfounded-freeness, and
external supports, respectively, generalising the corresponding standard notions. We report on
the computational complexity of the semantics in Section 4.6. A detailed analysis of the relation
of the semantics introduced in this chapter with previous work is given in Section 4.7. Based
on that, we underpin the decision to build on an extension of the FLP-semantics rather than
other proposals (see Section 4.7.3) by showing that we gain compatibility with all the solver
languages that were discussed in Section 3.6. Thus, we justify that our semantics can be used as
a common abstraction of the semantics of these solver languages.

4.1 Syntax of Abstract-Constraint Programs

Instead of atoms, rule heads and bodies of abstract-constraint programs consist of more complex
literals, so-called abstract-constraint atoms.

Definition 23 (Marek and Remmel, 2004; Marek and Truszczyński, 2004). An abstract con-
straint, abstract-constraint atom, or C-atom, is a pairA = 〈D,C〉, whereD ⊆ BPHUA

is a finite
set called the domain of A, denoted by DA, and C ⊆ 2D is a collection of sets of ground atoms,
called the satisfiers of A, denoted by CA. ♦

We can express atoms also as C-atoms. In particular, for a ground atom a, we identify the
C-atom 〈{a}, {{a}}〉 with a. We call such C-atoms elementary.

As for LP-programs, we will also make use of default negation in abstract-constraint pro-
grams. An abstract-constraint literal, or C-literal, is a C-atom A or a default negated C-atom
not A.

Unlike the original definition, we introduce abstract-constraint programs with disjunctive
rule heads.

Definition 24. An abstract-constraint rule, or simply C-rule, is an expression of the form

A1 ∨ · · · ∨Ak ← Ak+1, . . . , Am,not Am+1, . . . ,not An , (4.1)

where 0 ≤ k ≤ m ≤ n and any Ai, for 1 ≤ i ≤ n, is a C-atom. ♦

As we did for LP-rules, we similarly identify different parts of a C-rule and introduce some
syntactic properties.

Definition 25. For a C-rule r of form (4.1),

B(r) = {Ak+1, . . . , Am,not Am+1, . . . ,not An}

is the body of r,
B+(r) = {Ak+1, . . . , Am}

is the positive body of r,
B−(r) = {Am+1, . . . , An}

is the negative body of r, and
H(r) = {A1, . . . , Ak}

is the head of r. ♦
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If B(r) = ∅ and H(r) 6= ∅, then r is a C-fact. For C-facts, we usually omit the symbol “←”. A
C-rule r of form (4.1) is normal if k = 1 and positive if m = n.

For defining the domain of a C-rule, we first define the domain of a default negated C-atom
not A as Dnot A = DA. Then, the domain DS of a set S of C-literals is given by

DS =
⋃
L∈S

DL.

Finally, the domain of a C-rule r is

Dr =
⋃

X∈H(r)∪B(r)

DX .

Definition 26. An abstract-constraint program, or simply C-program, is a finite set of C-rules.
A C-program is normal, respectively positive, if it contains only normal, respectively positive,
C-rules. A C-program is elementary if it contains only elementary C-atoms. Furthermore, a
C-program is elementary-head if only elementary C-atoms appear in rule heads. ♦

4.2 Satisfaction Relation

Definition 27. An interpretation I satisfies a C-atom 〈D,C〉, symbolically I |= 〈D,C〉, if
I|D ∈ C. Moreover, I |= not 〈D,C〉 iff I 6|= 〈D,C〉. ♦

Important criteria for distinguishing classes of C-atoms are concerned with their semantic
behaviour with respect to growing (or shrinking) interpretations. In this respect, we identify
several monotonicity properties in the following.

Definition 28. A C-literal L is monotone if, for all interpretations I and I ′, if I ⊆ I ′ and I |= L,
then also I ′ |= L. A C-literal L is anti-monotone if, for all interpretations I and I ′, if I ⊆ I ′

and I ′ |= L, then also I |= L. Finally, a C-literal L is convex if, for all interpretations I , I ′,
and I ′′, if I ⊆ I ′ ⊆ I ′′, I |= L, and I ′′ |= L, then also I ′ |= L. Moreover, a C-program P is
monotone (respectively, anti-monotone, convex) if for all r ∈ P all C-literals L ∈ H(r) ∪ B(r)
are monotone (respectively, anti-monotone, convex). ♦

Notice that when a C-literal is monotone or anti-monotone it is also convex. Next, the notion of
satisfaction is extended to C-rules and C-programs in the obvious way.

Definition 29. An interpretation I satisfies a set S of C-literals, symbolically I |= S, if I |= L
for all L ∈ S. For brevity, we will use the notation I |=∃ S to denote that I |= L for some
L ∈ S. Moreover, I satisfies a C-rule r, symbolically I |= r, if I |= B(r) implies I |=∃ H(r).
A C-rule r such that I |= B(r) is called active under I . As well, I satisfies a set P of C-rules,
symbolically I |= P , if I |= r for every r ∈ P . If I |= P , we say that I is a model of P . ♦

Analogous to Definition 21 on page 24, we define the FLP-reduct for C-programs.

Definition 30. Let I be an interpretation and P a C-program. The FLP-reduct of P with respect
to I is given by

P I = {r ∈ P | r is active under I}. ♦

4.3 Viewing ASP Constructs as Abstract Constraints

As we want to use abstract constraints as a uniform means to represent common constructs
in ASP solver languages, we now show how the language constructs presented in Section 3.5,
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namely weight constraints, aggregates, and external atoms, can be expressed by abstract-con-
straint atoms.

As first construct we consider weight constraints. A weight constraint

l [a1 = w1, . . . , ak = wk,not ak+1 = wk+1, . . . ,not an = wn] u

corresponds to the C-atom 〈D,C〉, where D = {a1, . . . , an} and

C = {X ⊆ D | l ≤ (
∑

1≤i≤k,ai∈X
wi +

∑
k<i≤n,ai 6∈X

wi) ≤ u} .

Thus, the domain of the C-atom consists of the atoms appearing in the corresponding weight
constraint.

An aggregate atom f [G] ≺ t appearing in the naïve grounding of an AG-rule can be ex-
pressed as the C-atom

〈D, {X ⊆ D | εf (X[G]) ≺ t}〉,
where

D =
⋃

〈t:B〉∈G

B.

Similar as for weight constraints, the domain of the C-atom consists of the atoms that appear in
the aggregate atom.

Example 22. Consider the aggregate atom #count[G] = 1, where

G = {〈2 : queen_2_1〉, 〈2 : queen_2_2〉, 〈2 : queen_2_3〉, 〈2 : queen_2_4〉},

stemming from an instantiation of an encoding of the n-queens problem with n = 4. Intuitively,
the aggregate atom is true if only one queen is located on row 2 of a chessboard. The aggregate
function symbol #count represents the mapping ε#count which assigns to a multiset of ground
terms its cardinality. Hence, under interpretation I1 = {queen_2_3}, we have I1[G] = [2],
and therefore ε#count(I1[G]) = 1. Consequently, #count[G] = 1 is satisfied by I1. For
I2 = {queen_2_3, queen_2_4}, we have I2[G] = [2, 2], and thus ε#count(I2[G]) = 2. So,
#count[G] = 1 is not satisfied by I2. �

A ground external atom #g[y1, . . . , yn](x1, . . . , xm) can be expressed as a C-atom

〈D, {X ⊆ D | f#g(X, y1, . . . , yn, x1, . . . , xm) = 1}〉,

whose domain is given by

D = {a | a ∈ BPHUA
, I ⊆ BPHUA

,

f#g(I, y1, . . . , yn, x1, . . . , xm) 6= f#g(I ∪ {a}, y1, . . . , yn, x1, . . . , xm)}.
Here, unlike for weight constraints and aggregates, the domain of the C-atom is not already
given in the ground external atom but has to be determined with respect to the Herbrand base of
A . The intuition, however is the same, it consists of the atoms of that may influence the truth
value of the literal.

4.4 Answer-Set Semantics

Before presenting the definition of our semantics for full abstract-constraint programs, we
first restate the FLP-semantics as defined for ground AG-programs and EX-programs in Sec-
tion 3.5.4 in terms of C-programs. Both AG-programs and EX-programs only allow for atoms
in their rule heads, i.e., the corresponding class of C-programs is that of elementary head C-
programs. After this reformulation, we discuss the shortcomings of a straightforward extension
of the definition to full abstract-constraint programs.
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4.4.1 FLP-Semantics for Elementary-Head C-Programs and a Simple Extension

The FLP-semantics for elementary-head C-programs is defined as follows.

Definition 31. Let P be an elementary-head C-program. An interpretation I is an FLP-answer
set of P if it is a minimal model of P I . The set of all FLP-answer sets of P is denoted by
ASFLP (P ). ♦

Note that Definition 22 (on page 24) amounts to Definition 31 when ground AG-programs or
EX-programs are viewed as C-programs, i.e., when aggregates and external atoms are expressed
as abstract constraints as described in Section 4.3.

Complementing the reduct-based definition, Faber (2005) provided a definition of unfound-
ed sets for AG-programs that we generalise to full abstract-constraint programs later on. Next,
we provide the corresponding notion for the fragment of elementary-head C-programs. Note
that whilst Faber considers strong negation and partial interpretations, we do not deal with these
concepts in our formal framework (cf. Section 3.3.1).

Definition 32 (Faber, 2005). Let P be an elementary-head C-program and I an interpretation.
A setX of atoms is unfounded in P with respect to I if, for each C-rule r ∈ P with H(r)∩X 6=
∅, one of the following conditions hold:

• I 6|= B(r),

• I \X 6|= B(r), or

• I |= a, for some a ∈ H(r) \X . ♦

Analogous to a result by Faber (2005) for AG-programs, a model I of a C-program P is an
FLP-answer set of P iff I ∩X = ∅, for each unfounded set X for P with respect to I .

Now, let us call the extended FLP-semantics the one obtained from Definition 31 by allowing
P to be a general abstract-constraint program.

Definition 33. Let P be a C-program. An interpretation I is an eFLP-answer set of P if it is a
minimal model of P I . ♦

This straightforward extension leads to undesired results, however, as we illustrate next.
As stated earlier, it is popular to use choice rules for realising guesses in applied ASP, i.e.,

rules with choice atoms in their heads. Consider the C-program consisting of the single C-fact

〈{a, b}, {∅, {a}, {b}, {a, b}}〉

which corresponds to the choice atom {a, b}. Here, the intended behaviour of a choice atom,
viz. expressing a non-deterministic choice between the sets ∅, {a}, {b}, and {a, b}, can only
be achieved if non-minimal answer sets are permitted. The extended FLP-semantics, however,
allows only for the empty set as an eFLP-answer set of this C-program.

We are interested in a notion of an answer set that prevents minimisation between the dif-
ferent satisfiers of an abstract-constraint atom and thus allows for using choice atoms with their
usual meaning, which will be introduced in the following.

4.4.2 Basic Definition

The notion of answer sets for abstract-constraint programs defined next provides the semantic
foundation for the computation model we use for debugging.

Definition 34. Let P be a C-program and let I be an interpretation. Then, I is an answer set of
P if
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(i) I |= P and

(ii) there is no I ′ ⊂ I such that P , I , and I ′ obey the following relation:

(?) for every r ∈ P I with I ′ |= B(r), there is some A ∈ H(r) with I ′ |= A and
I ′|DA = I|DA .

The set of all answer sets of P is denoted by AS (P ). ♦

In order to discuss the intuition behind the definition and in order to compare it to the FLP-
semantics, we reformulate Definitions 34 and 33 in the following characterisations:

Proposition 1. Let P be a C-program and I an interpretation. Then, I is an eFLP-answer set
of P iff

(i) I |= P I and

(ii) there is no interpretation I ′ ⊂ I such that for every r ∈ P I with I ′ |= B(r), there is
some A ∈ H(r) with I ′ |= A.

Moreover, I is an answer set of P iff

(i) I |= P I and

(ii’) there is no interpretation I ′ ⊂ I such that for every r ∈ P I with I ′ |= B(r), there is
some A ∈ H(r) with I ′ |= A and I ′|DA = I|DA .

Proof. The proposition for eFLP-answer sets is a slight reformulation of Definition 33. The
property of answer sets holds because I |= P iff I |= P I , and if P , I , and I ′ satisfy Condi-
tion (?) of Definition 34, then I ′ |= P I holds.

The reformulation makes explicit that our notion of an answer set differs from that of Defi-
nition 33 only by the additional condition that I ′|DA = I|DA . The purpose of this condition is to
prevent minimisation within C-atoms. In order to illustrate its intuition, observe that the role of
I ′ in Condition (ii) is to prevent I from being an answer set when all rules remain satisfied when
switching from I to I ′. The additional condition on I ′ in Condition (ii’) ensures that, in this
respect, it only counts that a rule remains satisfied when the atoms it derives are unchanged, i.e.,
they come from the same satisfier of the same C-atom as under I . This way, different satisfiers
have equal opportunities for contributing to an answer set. As we detail in our comparison to
related work in Section 4.7, every eFLP-answer set is an answer set and the two notions coincide
for elementary-head C-programs.

Example 23. Consider C-program P1 consisting of the single C-fact

〈{a, b}, {{a}, {b}, {a, b}}〉

that realises a choice of at least one atom from {a, b}. The answer sets of P1 are given by {a},
{b}, and {a, b}. However, under the extended FLP-semantics, we would lose the answer set
{a, b} as, e.g., {a} ⊆ {a, b} and {a} |= P1

{a,b}. �

Opposed to the extended FLP-semantics for C-programs where such a choice cannot be ex-
pressed without introducing auxiliary atoms, we do not enforce subset-minimal answer sets.

The next example illustrates that there are, however, minimisation effects between different
C-atoms in a disjunction.
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Example 24. Consider the C-program

P2 = {〈{a, b}, {{a}, {b}, {a, b}}〉 ∨ 〈{a, c}, {{a, c}}〉}

that, as in the previous example, consists of a single (disjunctive) C-fact. This C-program again
has answer sets {a}, {b}, and {a, b}. Here, the satisfier {a, c} of the second disjunct is not an
answer set as for interpretation {a} ⊂ {a, c} and C-atom

A = 〈{a, b}, {{a}, {b}, {a, b}}〉,

we have {a} |= A and {a}|DA = {a, c}|DA , and thus P2, {a, c}, and {a} constitute an instance
for which (?) holds. �

Note that minimisation as illustrated by this example only emerges between C-atoms with
different domains. A disjunction of different C-atoms having the same domain has the same
meaning as a single C-atom with the union of their satisfiers and vice versa, as shown by the
following result.

Theorem 1. Let A1 = 〈D,C1〉, A2 = 〈D,C2〉, and A = 〈D,C1 ∪ C2〉 be C-atoms. Further-
more, let P be a C-program and consider C-rules r and r′ such that

(i) B(r) = B(r′) and

(ii) H(r) = H ∪ {A1, A2} and H(r′) = H ∪ {A}, for some H .

Then, AS (P ∪ {r}) = AS (P ∪ {r′}).

Proof. We first show that AS (P ∪ {r}) ⊆ AS (P ∪ {r′}) by contraposition. Consider some
interpretation I 6∈ AS (P ∪ {r′}). In view of the latter, we proceed by distinguishing two cases.

First, assume that I 6|= P ∪ {r′}. It must hold that I 6|= r′′ for some r′′ ∈ AS (P ∪ {r′}).
If r′′ ∈ P ∪ {r} we are done as then I 6∈ AS (P ∪ {r}). Consider the other case that r′′ = r′.
Consequently, we have I 6|=∃H(r′) and I |= B(r′), and therefore also I |= B(r) as B(r) = B(r′).
It must hold that I 6|= A and I 6|=∃H . Therefore I|D 6∈ C1 ∪ C2 which leads to I 6|= A1 and
I 6|= A2. As then I 6|=∃H(r) we get I 6∈ AS (P ∪ {r}).

Now consider the case that there is some I ′ ⊂ I such that (?) is satisfied by P ∪{r′}, I , and
I ′, i.e., for every r′′ ∈ (P ∪ {r′})I with I ′ |= B(r′′), there is some A′ ∈ H(r′′) with I ′ |= A′

and I ′|DA′ = I|DA′ . Consider some r′′′ ∈ (P ∪ {r})I with I ′ |= B(r′′′). It suffices to show that
there is some A′ ∈ H(r′′′) such that I ′ |= A′ and I ′|DA′ = I|DA′ as then I 6∈ AS (P ∪ {r}). If
r′′′ ∈ (P ∪ {r′})I , this is clearly the case. In the remaining setting, it must hold that r′′′ = r.
From r ∈ (P ∪ {r})I and I ′ |= B(r), we get r′ ∈ (P ∪ r′)I and I ′ |= B(r′). By (?), we obtain
that there is some A′′ ∈ H(r′) with I ′ |= A′′ and I ′|DA′′ = I|DA′′ . If A′′ ∈ H we are done
as then also A′′ ∈ H(r). It must hold that A′′ = A. From that we get that I ′|D ∈ C1 ∪ C2

and I ′|D = I|D. Then, I ′ |= A1 or I ′ |= A2. In either case we are done as A1 ∈ H(r) and
A2 ∈ H(r).

We now show AS (P ∪ {r′}) ⊆ AS (P ∪ {r}) analogously. Consider some interpretation
I 6∈ AS (P ∪ {r}). As above, I 6∈ AS (P ∪ {r}) yields two cases to consider.

Assume first that I 6|= P ∪ {r}. It must hold that I 6|= r′′ for some r′′ ∈ AS (P ∪ {r}). If
r′′ ∈ P ∪ {r′} we are done as then I 6∈ AS (P ∪ {r′}).

Consider the other case that r′′ = r. Consequently, we have I 6|=∃H(r) and I |= B(r), and
therefore also I |= B(r′). It must hold that I 6|=∃H , I 6|= A1, and I 6|= A2. As a consequence,
I|D 6∈ C1 ∪ C2. Therefore, I 6|= A and hence I 6|=∃H(r′). As then I |= r′ we get I 6∈
AS (P ∪ {r′}).

Now consider the case that there is some I ′ ⊂ I such that (?) is satisfied by P ∪ {r}, I , and
I ′, i.e., for every r′′ ∈ (P ∪ {r})I with I ′ |= B(r′′), there is someA′ ∈ H(r′′) with I ′ |= A′ and
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I ′|DA′ = I|DA′ . Consider some r′′′ ∈ (P ∪ {r′})I with I ′ |= B(r′′′). It suffices to show that
there is some A′ ∈ H(r′′′) such that I ′ |= A′ and I ′|DA′ = I|DA′ as then I 6∈ AS (P ∪ {r′}). If
r′′′ ∈ (P ∪ {r})I , this is clearly the case.

In the remaining setting, it must hold that r′′′ = r′. From r′ ∈ (P ∪ {r})I and I ′ |= B(r′),
we get r ∈ (P ∪ r)I and I ′ |= B(r). By (?), we obtain that there is some A′′ ∈ H(r′) with
I ′ |= A′′ and I ′|DA′′ = I|DA′′ . If A′′ ∈ H we are done as then also A′′ ∈ H(r). It must hold
thatA′′ = A1 orA′′ = A2. From that we get in either case that I ′|D ∈ C1∪C2 and I ′|D = I|D.
Then, we are done as I ′ |= A and A ∈ H(r′).

4.5 Characterisations based on External Support, Unfounded
Sets, and Unfounded-Freeness

In this section, we provide three characterisations of our semantics. The characterisations are not
only interesting as such but are highly relevant to our framework of computations for stepping
that we will introduce in Chapter 5, that is, external support and the complimentary notion of an
unfounded set are integral parts of the computation model.

4.5.1 External Support

Often, answer sets are computed following a two-step strategy: First, a model of the program
is built, and second, it is checked whether this model obeys a foundedness condition ensuring
that it is an answer set. Intuitively, every set of atoms in an answer set must be “supported”
by some active rule that derives one of the atoms. Here, it is important that the reason for this
rule to be active does not depend on the atom it derives. Such rules are referred to as external
support (Lee, 2005). In what follows, we extend this notion to our setting.

Definition 35. Let r be a C-rule,X a set of atoms, and I an interpretation. Then, r is an external
support for X with respect to I if

(i) I |= B(r),

(ii) I \X |= B(r),

(iii) there is some A ∈ H(r) with X|DA 6= ∅ and I|DA ⊆ S, for some S ∈ CA, and

(iv) for all A ∈ H(r) with I |= A, (X ∩ I)|DA 6= ∅ holds. ♦

Conditions (i) and (ii) ensures that r is active and, as we require support to be “external” ofX , r
must also be active when removing the atoms in X from the interpretation. In case I is a model,
Items (iii) and (iv) jointly ensure that there is some C-atom A in the head of r that is satisfied
by I and derives some atom of X . Example 25 below further illustrates the notion of external
support.

We next show how answer sets can be characterised in terms of external supports.

Theorem 2. Let P be a C-program and I an interpretation. Then, I is an answer set of P iff I
is a model of P and for every X with ∅ ⊂ X ⊆ I , there is some r ∈ P such that r is an external
support for X with respect to I .

Proof. (⇒) We show the claim by contraposition. In case I is not a model of P we are done
as then I is not an answer set of P . Assume I |= P but there is some X with ∅ ⊂ X ⊆ I
such that there is no r ∈ P which is an external support for X with respect to I . Consider the
interpretation I ′ = I \X . Clearly, I ′ ⊂ I . It suffices to show that P , I , and I ′ satisfy Condition
(?) of Definition 34 as then I 6∈ AS (P ). Consider some r′ ∈ P I such that I ′ |= B(r′). As
I |= B(r′) and I ′ |= B(r′), it follows that I \X |= B(r′). Moreover, from I |= B(r′), r′ ∈ P ,
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and I |= P , we also have that I |= A, for some A ∈ H(r′). In the case that X|DA = ∅ we
are done as then I ′|DA = I|DA by choice of I ′. Assume that X|DA 6= ∅. Note that r′ satisfies
Condition (iii) of Definition 35 because I|DA ∈ CA follows from I |= A. As r′ is not an external
support forX with respect to I but satisfies Conditions (i), (ii), and (iii) for being one, Condition
(iv) must not hold, i.e., there is some A′ ∈ H(r′) with I |= A′ and X|DA′ = (I \ I ′)|DA′ = ∅.
From that we get I ′|DA′ = I|DA′ and hence also I ′ |= A′, i.e., P , I , and I ′ satisfy (?).

(⇐) Suppose I 6∈ AS (P ). We show that the right-hand side does not hold either. In case
I 6|= P we are done. Consider the case that I |= P but there is some I ′ ⊂ I such that P , I , and
I ′ satisfy Condition (?) of Definition 34. Consider X = I \ I ′ and some r ∈ P . It remains to
show that r is not an external support for X with respect to I . Assume that Conditions (i), (ii),
and (iii) of Definition 35 hold for I , X , and r. From I |= B(r) we get r ∈ P I . As I ′ |= B(r),
there is some A ∈ H(r) with I ′ |= A and I ′|DA = I|DA . Therefore, we have that I |= A as
well and X|DA = ∅. Since then X ∩ I|DA = ∅, r does not satisfy Condition (iv) for being an
external support for X with respect to I .

4.5.2 Unfounded Sets

To complete the picture, we express the absence of an external support in an interpretation
by extending the concept of an unfounded set (Leone et al., 1997; Faber, 2005) to abstract-
constraint programs (for the case of total interpretations). Defining unfounded sets in terms of
external supports is motivated by the duality of these notions as discussed by Lee (Lee, 2005).

Definition 36. Let P be a C-program, X a set of atoms, and I an interpretation. Then, X is
unfounded in P with respect to I if there is no C-rule r ∈ P that is an external support for X
with respect to I . ♦

Note that this is a conservative extension of Definition 32 (on page 41) for elementary-head
C-programs.

Theorem 2 now immediately yields the following result:

Corollary 1. Let P be a C-program and I an interpretation. Then, I is an answer set of P iff I
is a model of P and there is no set X with ∅ ⊂ X ⊆ I that is unfounded in P with respect to I .

Example 25. Consider C-program PEx25, consisting of the C-rules

r1 : c← not a,
r2 : 〈{a, b}, {{a, b}}〉 ← a, and
r3 : b ∨ 〈{a, c}, {{a, c}}〉 ← ,

and model I1 = {a, b} of PEx25. The set X1 = {a} is unfounded in PEx25 with respect to I1 in
view of the following facts:

• r1 is no external support for X1 with respect to I1 because I1 6|= B(r1) (but also because
there is no A ∈ H(r1) with X1|DA 6= ∅ and I1|DA ⊆ S, for some S ∈ CA),

• r2 is no external support for X1 with respect to I1 because I1 \X1 6|= B(r2), and

• r3 is no external support for X1 with respect to I1 because, for b ∈ H(r), we have I1 |= b
and (X1 ∩ I1)|Db = ∅.

In fact, X1 is the only set X with ∅ ⊂ X ⊆ I1 that is unfounded in PEx25 with respect to I1

because r3 is an external support for both {b} and {a, b} with respect to I1. Nevertheless, as X1

is unfounded in PEx25 with respect to I1, by Corollary 1, I1 is not an answer set of PEx25.
Now let us consider I2 = {b, c}. Then, the following holds:

• r1 and r3 are external supports for {b, c} with respect to I2,
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• r3 is an external support for {b} with respect to I2, and

• r1 is an external support for {c} with respect to I2.

As I2 is a model of PEx25 and for every X with ∅ ⊂ X ⊆ I2 there is some external support
with respect to I2 in PEx25, I2 is an answer set of PEx25 by Theorem 2. �

4.5.3 Unfounded-Free Interpretations

Faber (2005) also provides a characterisation of answer sets based on the unfounded-freeness
property for the class of programs he considered. This concept can be lifted to the case of
abstract-constraint programs under our semantics.

Definition 37. Let P be a C-program and I an interpretation. Then, I is unfounded-free in P if
I ∩X = ∅ for each unfounded set X in P with respect to I . ♦

Opposed to Theorems 2 and Corollary 1, the definition of unfounded-freeness does not restrict
the considered unfounded sets to subsets of the interpretation. Therefore, it is important to note
that, due to the definition of external support, the part of an unfounded set contained in the
interpretation is itself an unfounded set.

Theorem 3. LetX be a set of atoms and I an interpretation. If a C-rule r is an external support
for I ∩X with respect to I , then r is an external support for X with respect to I .

Proof. Assume r is an external support for I ∩X . Then, I |= B(r) and, for all A ∈ H(r) with
I |= A, it holds that (X ∩ I)|DA 6= ∅. Moreover, since I \ (I ∩X) |= B(r), also I \X |= B(r).
Furthermore, there is some A′ ∈ H(r) with I ∩X|DA′ 6= ∅ and I|DA′ ⊆ S, for some S ∈ CA′ .
From I ∩X|DA′ 6= ∅ we get X|DA′ 6= ∅. Consequently, r is an external support for X with
respect to I .

From Theorem 3 and the definition of unfounded sets, we immediately obtain the following
corollary:

Corollary 2. Let X be a set of atoms, P a C-program, and I an interpretation. If X is un-
founded in P with respect to I , then I ∩X is unfounded in P with respect to I .

We conclude the section with the result that characterises answer sets in terms of unfounded-
free models, generalising Corollary 3 of Faber (2005).

Theorem 4. Let P be a C-program and I an interpretation. Then, I is an answer set of P iff I
is a model of P and unfounded-free in P .

Proof. (⇒) Suppose that I ∈ AS (P ). By Corollary 1, I is a model of P and it holds that
(*) there is no set X with ∅ ⊂ X ⊆ I that is unfounded in P with respect to I . Assume that I
is not unfounded-free in P . Then, there is some unfounded set X for P with respect to I such
that I ∩ X 6= ∅. Hence, by Corollary 2, I ∩ X is an unfounded set in P with respect to I ,
contradicting (*).
(⇐) Assume that I is not an answer set of P . By Corollary 1, there must be some set X with
∅ ⊂ X ⊆ I that is unfounded in P with respect to I . Hence, as thus I ∩ X 6= ∅, I is not
unfounded-free in P .
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4.6 Complexity

Next, we present some basic complexity results regarding our notion of answer sets.

Theorem 5. Deciding whether a C-program P has an answer set is ΣP
2 -hard.

Proof. Note that for showing ΣP
2 -hardness for general C-programs it suffices to show that the

problem is already ΣP
2 -hard for the restricted setting of elementary C-programs. The latter

follows from the equivalence of our semantics and the FLP-semantics for elementary-head
programs (shown in Theorem 8 on page 48), the equivalence of the FLP-semantics and the
answer-set semantics by Gelfond and Lifschitz (Gelfond and Lifschitz, 1991) for elementary
C-programs, as shown by Faber et al. (2011), and the ΣP

2 -hardness of answer-set existence for
this language fragment (Eiter and Gottlob, 1995).

Note that due to a result by Faber (2005), hardness already holds for normal C-programs
without default negation and only elementary C-atoms in rule heads.

The next result establishes ΣP
2 -membership which also holds if the size of a C-atom is

determined by the size of its domain only. The latter is important to note, since we see C-
atoms only as a theoretical device representing other types of literals, as discussed earlier, whose
representations are typically more compact than C-atoms.

Theorem 6. Provided that I |= A can be decided in time polynomial in |I| + |DA| for any
interpretation I and every C-atom A, deciding whether a C-program P has an answer set is in
ΣP

2 , even if the size of every C-atom A is determined by the size of DA only.

Proof. We can guess an interpretation I from the set of atoms appearing in P in polynomial
time. For every C-rule r ∈ P , we check whether I |= B(r) implies I |=∃ H(r) in polynomial
time. It remains to show that we can check whether there is an interpretation I ′ ⊂ I such that
P , I , and I ′ obey (?) using an NP-oracle. But this can be easily realised by first guessing some
I ′ ⊂ I and then checking (?) for P , I , and I ′ in polynomial time. When the NP-check returns
false, we give a positive answer, indicating that P has an answer set.

4.7 Comparison of our Semantics for Abstract-Constraint
Programs to others

In this section, we shed some light on commonalities and differences of the semantics for C-
programs introduced in Chapter 4 with related proposals. The relation to other FLP-semantics
and related approaches is discussed in Section 4.7.1. At first, it is shown that our semantics
for general C-programs properly extends the FLP-semantics for elementary-head C-programs
(corresponding to the language for which the FLP-semantics was introduced) and how answer
sets of the straightforward extension of the FLP-semantics, the eFLP-semantics discussed in
Section 4.4.1, relate to our notion of answer sets. Then, we analyse the semantics by Marek and
Remmel (2012) for (restricted) C-programs and show that it amounts to the eFLP-semantics. We
conclude the section with showing correspondence to an FLP-style semantics for propositional
theories (Truszczyński, 2010) and discuss its implications on the relation to further semantics.

In Section 4.7.2, we compare our semantics with others that follow the tradition of Simons
et al. (2002). At first, we discuss their semantic differences to FLP-like approaches. Then, we
establish results that relate our notion of answer sets with stable models in the approach by Shen
et al. (2009) and discuss relations to further works based on these results. Based on the relation
to other formalisms, we justify in Section 4.7.3 why the semantics we chose for our framework
is suitable for compatibility with current ASP solvers.
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4.7.1 Semantics in the Style of Faber, Pfeifer, and Leone

The extended FLP-semantics for abstract-constraint programs, as discussed in Section 4.4.1,
and our proposed semantics are interrelated as follows.

Theorem 7. For any C-program P , each eFLP-answer set of P is an answer set of P .

Proof. This is a direct consequence of the respective definitions.

That the converse direction does not hold has already been shown in Example 23 on page 42.
As intended, for the restricted setting of elementary-head programs that was considered by Faber
et al. (2011), our semantics coincides with theirs (and the eFLP-semantics).

Theorem 8. For an elementary-head C-program P , AS (P ) = ASFLP (P ).

Proof. ASFLP (P ) ⊆ AS (P ) holds by Theorem 7. Assume now that I ∈ AS (P ) but I /∈
ASFLP (P ). From I ∈ AS (P ) it follows that I |= P I . Hence, by Definition 31 (on page 41),
there must be some I ′ ⊂ I such that I ′ |= P I . Furthermore, by Definition 34 (on page 41),
there must be some r ∈ P I such that I ′ |= B(r) and

(†) for all a ∈ H(r) with I ′ |= a, I ′|Da 6= I|Da holds.

Since r ∈ P I , we have I ′ |= B(r), and since I ′ |= P I , it follows in turn that I ′ |=∃ H(r). Thus,
there is some a′ ∈ H(r) with I ′ |= a′. Consequently, I ′|Da′ = {a′}. As I ′ ⊂ I and Da′ = {a′},
we get I|Da′ = {a′}, and hence I ′|Da′ = I|Da′ . As this contradicts (†), AS (P ) = ASFLP (P )
must hold.

Marek and Remmel (2012) defined a semantics for disjunctive positive abstract-constraint
programs where C-atoms are required to be monotone if they occur in the head and monotone
or anti-monotone if they appear in a rule body. The authors use a one-step provability operator
for defining so-called selector stable models which are relative to a given selector function.
Intuitively, this function determines for each rule statically which propositional atoms from the
domains of the C-atoms in the head have to be true. Based on this notion, Marek and Remmel
also define minimal selector stable models that are independent of any selector function and
showed that they coincide with the following reduct-based semantics.

Definition 38 (Marek and Remmel, 2012). Let P be a positive C-program such that, for all
r ∈ P , C-atoms in H(r) are monotone, C-atoms in B+(r) are monotone or anti-monotone, and
B−(r) = ∅. Furthermore, let I be an interpretation. The MR-reduct, P IMR, of P is obtained by

1. removing all r ∈ P such that I 6|= A, for some anti-monotone C-atom A ∈ B+(r), and

2. removing all anti-monotone C-atoms from the remaining rules in P .

An interpretation I is an MR-stable model of P if it is a minimal model of P IMR. ♦

It turns out that this semantics is equivalent to the straightforwardly extended FLP-semantics
and is thus not suitable for expressing choice rules as discussed in Section 4.4.1.

Theorem 9. Let P and I be as in Definition 38. An interpretation I is an MR-stable model of
P iff it is an eFLP-answer set of P .

Proof. (⇒) Assume that I is not an eFLP-answer set of P . Consider the case that I is not a
model of P I . There is some rule r ∈ P with I |= B(r) and I 6|=∃H(r). The rule is not removed
in the first step of building the MR-reduct of P . Let r′ ∈ P IMR be the rule obtained from r in
the second step. As I 6|= r′, we have that I is not an MR-stable model of P .
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Now consider the case that there is some I ′ ⊂ I that is a model of P I and let r ∈ P IMR be a
rule with I ′ |= B(r). We will show that I ′ |=∃ H(r). By definition of P IMR, there must be some
r′ ∈ P with B(r) ⊆ B(r′) and H(r) = H(r′). Since B(r) consists only of monotone C-atoms,
it follows from I ′ |= B(r) that I |= B(r). It must hold that, for all A ∈ B(r′) \ B(r), A is an
anti-monotone C-atom such that I |= A. Consequently, I ′ |= B(r′) and I |= B(r′). Hence,
r′ ∈ P I and as I ′ |= P I we have I ′ |=∃ H(r). We showed that I ′ |= P IMR, and consequently I
is not an MR-stable model of P .
(⇐) Assume that I is not an MR-stable model of P . Consider the case that I is not a model of
P IMR. Then, there is some r ∈ P IMR such that I |= B(r) but I 6|=∃H(r). By Definition 38, there
must be some r′ ∈ P with H(r) = H(r′), B(r) ⊆ B(r′), and I |= A, for everyA ∈ B(r′)\B(r).
As I |= B(r), also I |= B(r′) holds. But then I 6|= P , implying that I is not an eFLP-answer
set of P . Now consider the case that there is some I ′ ⊂ I that is a model of P IMR and consider
some rule r ∈ P I with I ′ |= B(r). As I |= B(r), there is some r′ ∈ P IMR with B(r′) ⊆ B(r)
and H(r′) = H(r). By monotonicity of the C-atoms in B(r′), we get from I ′ |= B(r) that
I ′ |= B(r′). As I ′ |= P IMR, it must hold that I ′ |=∃ H(r′), and consequently I ′ |=∃ H(r). We
showed that I ′ |= P I , and consequently I is not an eFLP-answer set of P .

Another approach relevant for our discussion is the work by Truszczyński (2010) who in-
troduced an FLP-style semantics for propositional theories. For comparing his work with ours,
we consider propositional theories over atoms from BPHUA

and the Boolean connectives ⊥, ∧,
∨, and→. Moreover, we use the shorthands > = ⊥ → ⊥ and ¬f = f → ⊥, for any formula
f . Given an interpretation I and a formula f , the relation I |= f , specifying when f is true
under I , is defined as usual. Also, following custom, we identify empty disjunctions with⊥ and
empty conjunctions with >.

Definition 39 (Truszczyński, 2010). Let f be a propositional formula and I an interpretation.
The T-reduct, f I , of f is defined inductively as follows:

1. if f = ⊥, then f I = ⊥;

2. if f = a, where a is an atom, then f I = a if I |= a, and f I = ⊥ otherwise;

3. if f = g ◦h, where g and h are propositional formulas and ◦ ∈ {∧,∨}, then f I = gI ◦hI
if I |= g ◦ h, and f I = ⊥ otherwise;

4. if f = g → h, where g and h are propositional formulas, then

a) f I = g → hI if I |= g and I |= h,

b) f I = > if I 6|= g, and

c) f I = ⊥ otherwise.

For a propositional theory F , F I is defined as {f I | f ∈ F}. ♦

Definition 40 (Truszczyński, 2010). Let F be a propositional theory and I an interpretation.
Then, I is a T-stable model of F iff I is a subset-minimal model of F I . ♦

Note that any T-stable model of F is also a model of F . In order to compare T-stable
models with our semantics, we use a standard translation of abstract-constraint programs to
propositional theories. To this end, we use the following representation of abstract-constraint
atoms in terms of DNF formulas.

Definition 41 (Shen et al., 2009). Let A = 〈D,C〉 be a C-atom. Then,

ϕ(A) =
∨
X∈C

((
∧
a∈X

a) ∧ (
∧

a∈D\X

¬a)) . ♦
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We extend the translation ϕ(·) to rules and abstract-constraint programs as follows.

Definition 42. Let r be a C-rule of form (4.1). Then, ϕ(r) = ϕB(r)→ ϕH(r), where

ϕH(r) = ϕ(A1) ∨ · · · ∨ ϕ(Ak) and

ϕB(r) = ϕ(Ak+1) ∧ · · · ∧ ϕ(Am) ∧ ¬ϕ(Am+1) ∧ · · · ∧ ¬ϕ(An).

Finally, for a C-program P , we define the propositional theory

ϕ(P ) = {ϕ(r) | r ∈ P}. ♦

Obviously, for a rule r and an interpretation I , I 6|=∃H(r) iff I |= ϕH(r), and I |= B(r) iff
I |= ϕB(r). Moreover, for showing the relation between the semantics by Truszczyński and
ours, we make use of the following properties.

Lemma 1 (Truszczyński, 2010, Proposition 1). For any formula f and any set I of atoms,
I |= f iff I |= f I . Moreover, for any theory F and any set I of atoms, I |= F iff I |= F I .

Next, we show that our semantics resembles that of Truszczyński on the level of abstract-
constraint programs.

Theorem 10. Consider a C-program P and let I be an interpretation. Then, I is an answer set
of P iff I is a T-stable model of ϕ(P ).

Proof. (⇒) Suppose I is not a T-stable model of ϕ(P ). We will show that I is not an answer set
of P . Consider the case that I is not a model of ϕ(P )I . Then, there is some formula f ∈ ϕ(P )I

such that I 6|= f . By Definition 42, there is some rule r ∈ P with f = ϕ(r)I . By Lemma 1,
I |= ϕB(r) and I 6|= ϕH(r) and consequently I 6|= r. It follows that I is not an answer set of
P . Now, consider the case that I |= ϕ(P )I but there is some I ′ ⊂ I such that I ′ |= ϕ(P )I .
Consider some r ∈ P I such that I ′ |= B(r). As I |= B(r) it holds that I |= ϕB(r). From
I |= ϕ(P )I we get by Lemma 1 that I |= ϕ(P ). Consequently, since ϕ(r) ∈ ϕ(P ), from
I |= ϕB(r) follows I |= ϕH(r). By Definition 39, ϕ(r)I = ϕB(r)→ ϕH(r)I . As I ′ |= ϕ(P )I

and ϕ(r)I ∈ ϕ(P )I we have I ′ |= ϕB(r)→ ϕH(r)I . From I ′ |= B(r), we get I ′ |= ϕB(r) and
hence by modus ponens I ′ |= ϕH(r)I . As ϕH(r)I is a disjunction, there must be at least one
disjunct ϕ(A)I with I ′ |= ϕ(A)I and A ∈ H(r). As then ϕ(A)I 6= ⊥, we get by Definition 39
that I |= ϕ(A). Therefore, also I |= A. By construction, ϕ(A) is a disjunction with

s = (
∧

a∈I|DA

a) ∧ (
∧

a∈DA\I|DA

¬a)

being the single disjunct that is satisfied by I . Hence, ϕ(A)I is a disjunction whose only disjunct
different from ⊥ is

sI = (
∧

a∈I|DA

a) ∧ (
∧

a∈DA\I|DA

>).

As I ′ |= ϕ(A)I it must hold that I|DA ⊆ I ′. Therefore, it holds that I|DA = I ′|DA and, since
I |= A, also I ′ |= A. By Definition 34 (on page 41), I is not an answer set of P .
(⇐) Assume now that I /∈ AS (P ). We will show that I is not a T-stable model of P . Consider
the case that I 6|= P I . Then, there is a rule r ∈ P I with I |= B(r) and I 6|=∃H(r). Hence, we
get that I |= ϕB(r) and I 6|= ϕH(r). As ϕ(r) ∈ ϕ(P ), I 6|= ϕ(P ). By Lemma 1, I 6|= ϕ(P )I .
Hence, I is not a T-stable model of P . Consider the remaining case that I |= P I but there
is some I ′ ⊂ I with I ′ |= P I and for every r ∈ P I such that I ′ |= B(r), there is some
A ∈ H(r) with I ′ |= A and I ′|DA = I|DA . Consider some formula f ∈ ϕ(P )I . It remains
to show that I ′ |= f . It must hold that f = ϕ(r)I , for some r ∈ P . Hence, f is of the form
(ϕB(r)→ ϕH(r))I . By Definition 39, we can distinguish three cases. Note that it cannot hold
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that f = ⊥ as then I |= ϕB(r) and I 6|= ϕH(r) which would imply that r ∈ P I and I 6|= r, a
contradiction to I |= P I . In case f = > we are done as then I ′ |= f .

In the third case, we have I |= ϕB(r), I |= ϕH(r), and f = ϕB(r) → ϕH(r)I . In case
I ′ 6|= ϕB(r), we have reached our goal I ′ |= f . Assume I ′ |= ϕB(r). Then, I ′ |= B(r). There
is some A ∈ H(r) with I ′ |= A and I ′|DA = I|DA . Note that then also I |= A. The formula
ϕ(A) is a disjunct in ϕH(r) with I |= ϕ(A). It follows that ϕ(A)I is a disjunct in ϕH(r)I .
ϕ(A) is a disjunction where, by construction, only the disjunct

s = (
∧

a∈I|DA

a) ∧ (
∧

a∈DA\I|DA

¬a)

is satisfied by I . From that we know that

sI = (
∧

a∈I|DA

a) ∧ (
∧

a∈DA\I|DA

>)

is a disjunct in ϕ(A)I . As I ′ |= sI , we have I ′ |= ϕ(A)I and therefore I ′ |= ϕH(r)I . We
conclude that I ′ |= f .

As Bartholomew et al. (2011) showed that their semantics for first-order theories with ag-
gregates extends that of Truszczyński, the same relation applies to our approach as well.

A main goal of the paper by Truszczyński is to study the differences between the semantics
of Faber et al. and that of Ferraris (2011). It is worth mentioning that the same differences to the
latter semantics hold for our semantics also. In particular, they differ in the treatment of default
negated C-atoms. As an example, consider the C-program

P = {a← not〈{a}, {∅}〉}

which has only ∅ as answer set under FLP-semantics and our semantics. Under Ferraris’ se-
mantics, ϕ(P ) has two stable models, ∅ and {a}. For further information on the relation be-
tween these families of semantics and on their intuitions, we refer to the work of Faber et al.
(2011), Truszczyński (2010), and Lee and Meng (2009), who reduce AG-programs under the
FLP-semantics to propositional formulas under the semantics of Ferraris.

4.7.2 Semantics in the Tradition of Simons et al.

Next, we discuss relations to semantics that follow the tradition of Simons et al. (2002) that laid
the foundation for the Smodels solver.

A characteristic difference of these and FLP-semantics is the way how non-convex body
literals may give support to atoms in an interpretation.

Consider the C-program consisting of the following C-rules:

a← 〈{a, b}, {∅, {a, b}}〉,
a← b, and
b ← a.

While {a, b} is an answer set under FLP-style semantics, it is not considered stable in, e.g., the
semantics discussed in the following.

Shen et al. (2009) defined a stable-model semantics for abstract-constraint programs in-
volving disjunction—i.e., the language fragment they consider is the same as our setting. For
showing the relation to our semantics, we need to introduce a range of auxiliary definitions and
lemmas taken from their paper. Furthermore, note that Shen et al. distinguish propositional
atoms and C-atoms, while we are treating the former as elementary C-atoms. However, also
in their approach, atoms can be safely replaced by respective C-atoms. Moreover, they treat a
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default negated C-atom not〈D,C〉 as its complement 〈D, 2D \ C〉. Thus, we assume that in
any C-program only elementary C-atoms may be default negated in the remainder. Note that
we can make this restriction without loss of generality, as a negated C-atom is satisfied by an
interpretation iff the complement of the C-atom is. Thus, we can replace all negated c-atoms
that are not elementary in a general C-program without changing the semantics of the program.

Next, we introduce required concepts that stem from Shen et al. (2009). Their work relies
on a representation of sets of atoms in terms of power sets for which they use so-called abstract
prefixed power sets.

Definition 43 (Shen et al., 2009, Definition 3.1). Let W and V be two sets of atoms. The
W -prefixed power set of V , denoted by W ] V , is the collection

{W ∪ V ′ | V ′ ∈ 2V }.

For any set S of atoms, S is covered by W ]V if W ⊆ S and S ⊆W ∪V. For any two abstract
prefixed power sets W ] V and W ′ ] V ′, W ] V is included in W ′ ] V ′ if any set covered by
W ] V is covered by W ′ ] V ′. ♦

We will need the auxiliary notions of W -maximality and redundancy of an abstract prefixed
power set.

Definition 44 (Shen et al., 2009). Consider W ∈ CA and V ⊆ DA \W , for some C-atom A.
W ] V is W -maximal in A if all sets covered by W ] V are in CA and there is no V ′ with
V ⊂ V ′ ⊆ DA \W such that all sets covered by W ] V ′ are in CA.

Furthermore, in a collection containing two abstract prefixed power sets,W]V andW ′]V ′,
W ] V is redundant in this collection if W ′ ] V ′ includes W ] V . ♦

Shen et al. associate C-atoms with sets of abstract prefixed power sets as follows:

Definition 45 (Shen et al., 2009, part of Definition 3.2). Let A be a C-atom and W ∈ CA.
Then,

{W ] V |W ] V is W -maximal in A}
is the collection of abstract W -prefixed power sets of A. ♦

We now have the means to define the representation of C-atoms as used by Shen et al.

Definition 46 (Shen et al., 2009, Definition 3.3). Let A be a C-atom. The abstract represen-
tation of A is a pair 〈DA, C

∗
A〉, where C∗A =

⋃
W∈CA C(W ) such that C(W ) is the collection

of abstract W -prefixed power sets of A, with all redundant abstract prefixed power sets re-
moved. ♦

We also need the concepts of abstract satisfiable sets and satisfiable sets of a C-atom.

Definition 47 (Shen et al., 2009, Definition 4.1). Let A be a C-atom and I an interpretation.
Then, W ] V ∈ C∗A is an abstract satisfiable set of A with respect to I if W ] V covers I|DA .
In this case, W is called a satisfiable set of A with respect to I|DA . ♦

Next, we give the definition of the transformation by Shen et al. that extends the Gelfond-
Lifschitz reduct. The transformation introduces fresh atoms θA and βA for every C-atom A.
The set of these atoms is denoted by Γ.

Definition 48 (Shen et al., 2009, Definition 5.1). Given an abstract-constraint program P and
an interpretation I , the SYY-reduct of P with respect to I , symbolically P ISYY, is obtained from
P by performing the following operations:
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1. Remove from P all C-rules whose bodies contain either a negated atom not a such that
a ∈ I or a C-atom A such that I 6|= A.

2. Remove from the remaining rules all negative atoms.

3. Replace each C-atom A in the body of a C-rule with a fresh atom θA and introduce a new
C-rule θA ← a1, . . . , am for each satisfiable set {a1, . . . , am} of A with respect to I|DA .

4. Remove each C-atom A in the head of a C-rule if I 6|= A, and replace it with a fresh atom
βA and introduce a new C-rule b ← βA, for each b ∈ I|DA , a new C-rule← c, βA, for
each c ∈ DA \ I|DA , and a new C-rule βA ← a1, . . . , am, where {a1, . . . , am} = I|DA ,
if I |= A. ♦

Finally, we give the definition of stable models following Shen et al.

Definition 49 (Shen et al., 2009, Definition 5.2). Let P be a program and I an interpretation.
Then, I is an SYY-stable model of P if I = I ′ \ Γ, where I ′ is a minimal model of P ISYY. ♦

Besides the definitions given above, we will reuse a couple of results of Shen et al. as lemmas
for our upcoming proofs.

Lemma 2 (Shen et al., 2009, Theorem 4.5). Let A be a C-atom and I an interpretation.
Then, I |= A iff, for some abstract satisfiable set W ] V of A with respect to I , I |= W and
I |= {not a | a ∈ DA \ (W ∪ V )}.

Lemma 3 (Shen et al., 2009, Theorem 4.6). Let A be a C-atom and I an interpretation. If S
is a satisfiable set of A with respect to I|DA , then, for every S′ with S ⊆ S′ ⊆ I|DA , S′ ∈ CA.

Lemma 4 (Shen et al., 2009, Observation following Definition 3.3). Let W and V be sets of
atoms, and let A be a C-atom. If {W ∪∆ | ∆ ∈ 2V } ⊆ CA, then there exist W ′, V ′ ⊆ CA such
that W ′ ⊆W , W ∪ V ⊆W ′ ∪ V ′, and W ′ ] V ′ ∈ C∗A.

Lemma 5 (Shen et al., 2009, Theorem 5.1). Any SYY-stable model of an abstract-constraint
program P is a model of P .

Eventually, we can state the first theorem relating our semantics to SYY-stable models.

Theorem 11. Let P be a C-program such that all C-literals appearing in a body of a rule in P
are convex. If I is an answer set of P , then I is an SYY-stable model of P .

Proof. Assume I ∈ AS (P ) and suppose that I is not an SYY-stable model of P . That is, there
is no minimal model M ′ of P ISYY with I = M ′ \ Γ. Consider the interpretation

M = I ∪{θA | r ∈ P ISYY such that r = θA ← l1, . . . , ln and I |= B(r)}∪
{βA | r ∈ P ISYY such that βA ∈ H(r) and I |= A}.

We derive a contradiction by showing that M is a minimal model of P ISYY with I = M \Γ.
Obviously, I = M \ Γ holds. Consider the case that M is no model of P ISYY. Then, there is
a C-rule r ∈ P ISYY with M 6|= r, i.e., M |= B(r) and M 6|= A, for all A ∈ H(r). We now
consecutively consider r to be of one the different rule forms allowed in P ISYY. Consider the
case that r is of the form

βA1 ∨ · · · ∨ βAk ← θB1 , . . . , θBn .

Then, by definition of P ISYY, there is some C-rule

r′ = A1 ∨ · · · ∨Ak ∨Ak+1 ∨ · · · ∨Am ← B1, . . . , Bn
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in P from which r was constructed. Assume I 6|= B(r′). Then, there is some Bj ∈ B(r′)
such that I 6|= Bj . Since M |= B(r), it follows that M |= θBj . From that, by Lemma 2 and
Definition 47, there is some satisfiable set S of Bj with respect to I|DBj such that I |= S.

By definition of P ISYY, there is some r2 ∈ P ISYY where H(r2) = {θBj} and B(r2) = S. By
definition of a satisfiable set, we get that S ] V covers I|DBj , which implies in turn S ⊆ I|DBj .
From that and Lemma 3, it follows that I|DBj ∈ CBj . We have a contradiction since then
I |= Bj .

Next, consider the case that I |= B(r′). Then, as I is an answer set of P , we also have
I |= Ah, for some h ∈ H(r′). By definition of P ISYY, there is some r3 ∈ P ISYY, where
H(r3) = {βAh} and B(r3) = I|DAh . From I |= Ah and r3 ∈ P ISYY, by construction of M , we
get βAh ∈ M . As it must hold that βAh ∈ H(r), we arrive at a contradiction as then M |= r.
The case that r is of the form θA ← l1, . . . , ln is impossible by definition of M .

Now consider the case that r is of the form l ← βA, where l ∈ I|DA . As then l ∈ I , and
thus l ∈M , we obtain M |= l. This is a contradiction to M 6|= r.

Consider that r is of the form← l, βA, where l ∈ DA\I|DA . We get l /∈ I and consequently
I 6|= l. Hence, also M 6|= l, and therefore we arrive at a contradiction to M 6|= r.

Finally, consider the case that r is of the form βA ← I|DA . Then, it follows that βA 6∈ M .
As I |= B(r), we again have I |= A, and therefore a contradiction, as then, by construction of
M , we get βA ∈M . It follows that M |= P ISYY.

By our initial assumption, it must hold that there is some M ′ ⊂ M such that M ′ |= P ISYY.
Without loss of generality, assume M ′ is a minimal set with this property. First, consider the
case that M ′ \ Γ = I . Let l be an atom from M \M ′. Then, either l = θA or l = βA for some
C-atom A. In the former case, by minimality of M ′ and definition of P ISYY, there must be some
C-rule r = θA ← A1, . . . , An in P ISYY such that M ′ |= B(r) as otherwise M ′ \ {θA} is an
even smaller model of P ISYY. But then, M ′ 6|= r holds, being a contradiction to M ′ |= P ISYY.
In the case that l = βA, following the same line of argumentation, there must be some C-rule
r′ = βA ← I|DA in P ISYY. Since I|DA ⊆ I , we have I |= B(r′). As I and M ′ only differ on
Γ, we have that also M ′ |= B(r′). This is in contradiction to M ′ |= P ISYY as then M ′ 6|= r′. It
must hold that M ′ ∩ I ⊂ M ′ ∩ I . Consider the interpretation I ′ = M ′ ∩ I . As I is an answer
set of P , Condition (?) of Definition 34 (on page 41) cannot hold for P , I , and I ′. Hence, there
is some r ∈ P I such that I ′ |= B(r) and, for all A ∈ H(r) with I ′ |= A, I ′|DA 6= I|DA holds. It
follows that I |= A, for some A ∈ H(r). By construction of P ISYY, there must be some C-rule
r′ ∈ P ISYY of the form

r′ = βA1 ∨ · · · ∨ βAk ← θB1 , . . . , θBn

that is constructed from r.
Next, we show that M ′ |= B(r′). If B(r′) = ∅, this trivially holds. Otherwise, consider

some θBj ∈ B(r′). As Bj ∈ B(r) and I |= B(r), it follows that I |= Bj . Likewise, since
I ′ |= B(r), also I ′ |= Bj holds. Therefore, it follows that I ′|DBj ∈ CBj and I|DBj ∈ CBj .
From the convexity of Bj , for all S where I ′|DBj ⊆ S ⊆ I|DBj , it follows that S ∈ CBj .
Hence,

{I ′|DBj ∪∆ | ∆ ∈ 2
I|DBj \I

′|DBj } ⊆ CBj .

By Lemma 4, we get that there is some abstract prefixed power set W ] V in C∗Bj such that
W ⊆ I ′|DBj and I|DBj ⊆ W ∪ V . Then, by Definition 43, W ] V covers I|DBj . From
Definition 47, it follows that W is a satisfiable set of Bj with respect to I|DBj . Therefore,

by definition, P ISYY contains the C-rule θBj ← W . As W ⊆ I ′ and I ′ ⊆ M ′, we get that
M ′ |= W . From M ′ |= P ISYY, it follows that θBj ∈ M ′. Hence, M ′ |= B(r′) holds. There
must be some βAh ∈ H(r′) such that M ′ |= βAh . As Ah ∈ H(r), r ∈ P I , and I ∈ AS (P ),
we get that I |= Ah. By definition, P ISYY contains a C-rule l ← βAh , for every l ∈ I|DAh .
Therefore, since M ′ |= P ISYY, we get I|DAh ⊆ M ′, and consequently I|DAh ⊆ I ′. Since
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I ′ ⊆ I , I|DAh = I ′|DAh follows. Hence, I |= Ah yields I ′ |= Ah. This is a contradiction
that P , I , and I ′ do not satisfy Condition (?) of Definition 34. Thus, I is an SYY-stable model
of P .

Regarding the converse direction, an even stronger result holds:

Theorem 12. Let P be a C-program. If I is an SYY-stable model of P , then I is an answer set
of P .

Proof. Let I be an SYY-stable model of P and assume that I is not an answer set of P . From
Lemma 5, we get that I |= P . Therefore, we also have that I |= P I . There must be some I ′ ⊂ I
such that P , I , and I ′ obey Condition (?) of Definition 34 (on page 41). Let M be the minimal
model of P ISYY that causes I to be an SYY-stable model of P according to Definition 49. It
holds that I = M \ Γ. Define

M ′ = M ∩ (I ′ ∪{θA | I |= A and I ′ |= A}∪
{βA | I ′ |= A and I ′|DA = I|DA}).

We have that M ′ ⊂ M since I ′ ⊂ I , I ⊆ M , and Γ ∩ I = ∅. By definition of an SYY-stable
model, we have that M ′ 6|= P ISYY. Hence, there is a C-rule r ∈ P ISYY such that M ′ 6|= r. We
will now derive a contradiction as we show that such an r cannot exist.

Consider the case that r is of the form

βA1 ∨ · · · ∨ βAk ← θB1 , . . . , θBn ,

where r was constructed from the C-rule

r′ = A1 ∨ · · · ∨Ak ∨Ak+1 ∨ · · · ∨Am ← B1, . . . , Bn

contained in P . As M ′ |= B(r), by construction of M ′, we get that I ′ |= B(r′) and I |= B(r′).
From the latter it follows that r′ ∈ P I . By Condition (?) of Definition 34, there must be
some Aj ∈ H(r′) with I ′ |= Aj and I ′|DAj = I|DAj . Note that since I |= Aj , we have that

βAj ∈ H(r). Moreover, by definition of P ISYY, the C-rule βAj ← I|DAj is contained in P ISYY.

As M |= I|DAj and M |= P ISYY, it follows that βAj ∈ M . From that, together with the facts
that I ′ |= Aj and I ′|DAj = I|DAj both hold, we get, by the definition of M ′, that βAj ∈ M ′,
which is a contradiction to M ′ 6|= r.

Next, consider the case that r is of the form θA ← l1, . . . , ln. From M ′ |= B(r), it follows
that B(r) ⊆ I ′ since B(r) ∩ Γ = ∅. Therefore, also B(r) ⊆ I holds. By definition of P ISYY, we
have that B(r) is a satisfiable set of A with respect to I|DA . By Lemma 3, we get that

(†) for every S with B(r) ⊆ S ⊆ I|DA , S ∈ CA.

From B(r) ⊆ I ′ and B(r) being a satisfiable set of A with respect to I|DA , it follows B(r) ⊆
I|DA , and we get in turn that B(r) ⊆ I ′|DA . Hence, by (†), we obtain I ′|DA ∈ CA. It follows
that I ′ |= A. By definition of P ISYY, we also have that I |= A. Moreover, note that since
B(r) ⊆ I and I ⊆ M , M |= B(r), and, consequently, as M |= P ISYY, we get that θA ∈ M .
Then, by construction of M ′, we have that θA ∈M ′, being a contradiction to M ′ 6|= r.

Consider the case that r is of the form l ← βA, where I |= A and l ∈ I|DA . Since
M ′ |= B(r), by construction of M ′, we get that I ′|DA = I|DA . It follows that l ∈ I ′, and hence
also l ∈M ′, being a contradiction to M ′ 6|= r.

Now assume that r is of the form← l, βA, where l ∈ DA \ I|DA . Hence, l ∈ DA and l 6∈ I .
Since M ′ |= B(r), it follows that l ∈ M ′. Therefore, by construction of M ′, and since l 6∈ Γ,
we have that l ∈ I ′, being a contradiction to I ′ ⊂ I .

55



4. A COMMON FORMAL BASIS FOR DIFFERENT SOLVER LANGUAGES

Consider the final case that r is of the form βA ← I|DA , where I |= A. From M ′ |= B(r)
and B(r) ∩ Γ = ∅, we get I|DA ⊆ I ′. Therefore, as I ′ ⊂ I , we have that I ′|DA = I|DA . Notice
that M |= B(r). Consequently, as M |= P ISYY, we have that βA ∈ M . By construction of M ′,
we get βA ∈ M ′, being again a contradiction to M ′ 6|= r. It follows that I is an answer set
of P .

Due to known results from the literature (Shen et al., 2009; Liu et al., 2010; Son et al.,
2007), Theorems 11 and 12 imply that our semantics is equivalent to a range of semantics
proposed for more restricted classes of abstract-constraint programs including ones for normal
monotone abstract-constraint programs (Marek and Truszczyński, 2004; Marek et al., 2008)
and normal convex abstract-constraint programs (Liu and Truszczyński, 2006) that are based
on a non-deterministic one-step provability operator.

Furthermore, there are semantics defined for normal abstract-constraint programs where
every answer set in the respective approach is an answer set as defined in this thesis and where,
if the considered C-programs are convex, also the converse holds, i.e., an answer set as defined
in this thesis is also an answer set in the respective approach. In particular, these include

(i) the approach by Liu et al. (2010) based on a notion of computation,

(ii) the work of Son et al. (2007) that use the concept of conditional satisfaction of C-atoms
for defining their semantics, and

(iii) the reduct-based semantics by Shen and You (2007).

Liu and Truszczyński (2006) showed that their semantics for normal convex C-programs re-
sembles that of positive normal logic programs with weight constraints (Simons et al., 2002)
with non-negative integer weights. This type of weight constraints can be represented by con-
vex abstract-constraint atoms (cf. Section 4.3). Due to the relation of the semantics by Liu and
Truszczyński and ours, it follows, in turn, that our semantics coincides with that of Simons et al.
for that class of programs.

4.7.3 Solver Compatibility

The results of the last two subsections show that the semantics we have chosen as base for our
framework of computations fits that of the solver languages of Gringo, DLV, and DLVHEX that
were discussed in Section 3.6. We need an FLP-style treatment of non-convex literals for being
compatible with DLVHEX, disjunctions to support DLV and DLVHEX, and we must allow for
weight constraints in rule heads for compatibility with Gringo. As the Gringo language (like
that of DLV) does not support non-convex literals so far, the mismatch between the semantics
discussed in Section 4.7.1 to those of Section 4.7.2 is not relevant for the soundness of practical
debugging as proposed in this work.
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5 A Framework of Computations for
Stepping

When an ASP developer detects that the answer sets of an answer-set program deviate from
the expected semantics, the reason for this misfit can be given in terms of a definition or char-
acterisations of the semantics. Typical definitions of answer sets are declarative and based on
properties that consider whole programs and interpretations at once. Although formally elegant,
when these definitions are used for explaining bugs, answers would then also be in terms of
whole programs and interpretations and contain too much information to be of great value for
locating the bug. Moreover, in practise, one has the problem to provide the entities that are
considered to be given in the respective definition. While this is in most circumstances easy for
the answer-set program, providing a candidate interpretation is often practically infeasible.

In this chapter, we are concerned with breaking the conceptual complexity of the definitions
down to artefacts the programmer is familiar with—the rules the user has written, respectively
their ground instances. To this end we introduce a framework of computations that captures the
semantics we introduced in the previous chapter. In this computation model, an interpretation
is built up step-by-step, by considering an increasing number of rule instances to be active. A
computation in our framework is a sequence of states which are structures that keep information
which rules and atoms have already been considered and what truth values were assigned to
those atoms. Utilising the framework, only a rule and the atoms it contains have to be considered
at once while building up an interpretation until an answer set is reached or a source for the
unexpected behaviour becomes apparent.

In the next two sections we introduce states and computations. In Section 5.3, we will define
and show some properties of computations that we need later on. Section 5.4 is concerned with
the existence of a stable computation, that is a simpler form of computation that suffices for
many popular classes of answer-set programs. In a related work, Liu et al. (2010) introduced a
computation framework for normal C-programs. In order to clarify the relation between their
notion of computation and ours, we give a comparison in Section 5.5.

Later, in Chapter 6, we develop abstractions for non-ground answer-set programs and the
grounding step that allow us to capture the behaviour of practical grounding tools without for-
malising their concrete implementations. We then lift our framework of computations to this
abstract non-ground setting.

5.1 States

Our framework is based on sequences of states, reassembling computations, in which an increas-
ing number of ground rules are considered that build up a monotonically growing interpretation.
Besides that interpretation, states also capture literals which cannot become true in subsequent
steps and sets that currently lack external support in the state’s interpretation.

Definition 50. A state structure S is a tuple 〈P, I, I−,Υ〉, where P is a set of C-rules, I is an
interpretation, I− a set of atoms such that I and I− are disjoint, and Υ is a set of sets of atoms.
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We call DS = I ∪ I− the domain of S and define PS = P , IS = I , I−S = I−, and ΥS = Υ.
A state structure 〈P, I, I−,Υ〉 is a state if

(i) I |= B(r) and I |=∃ H(r) for every r ∈ P ,

(ii) Dr ⊆ DS for every r ∈ P , and

(iii) Υ = {X ⊆ I | X is unfounded in P with respect to I}.

We call 〈∅, ∅, ∅, {∅}〉 the empty state. ♦

Intuitively, we use the first component P of a state to collect C-rules that the user has considered
to be active and satisfied. The interpretation I collects atoms that have been considered true.
Condition (i) ensures thatP and I are compatible in the sense that every C-rule that is considered
active and satisfied is active and satisfied with respect to I . Dual to I , the interpretation I−

collects atoms that the user has considered to be false. We require that all atoms appearing in
a C-rule in P is either in I or in I− which is expressed in Condition (ii). Finally, the set Υ
keeps track of unfounded subsets of I , as stated in Condition (iii). Intuitively, as we will see
later, when building a computation, the aim is to get rid of all unfounded sets (except for the
empty set) in order to compute an answer set of a C-program. If a state does not contain such
unfounded sets then we call it stable:

Definition 51. A state S is stable if IS ∈ AS (PS). ♦

The intuition is that when a state S is stable, no more C-rules need to be added to PS to provide
missing external support for the atoms in the current interpretation IS . Note that a state S is
stable exactly when ΥS = {∅}. For example, the empty state is a stable state.

Example 26. Consider the C-rules

r1 : 〈{a, b}, {∅, {a}, {b}, {a, b}〉 ← not a,
r2 : b← a,

and the state structures
S1 =〈{r1}, ∅, {a, b}, {∅}〉,
S2 =〈{r1}, {b}, {a}, {∅}〉,
S3 =〈{r1}, {a, b}, ∅, {∅}〉,
S4 =〈{r2}, {a, b}, ∅, {∅}〉,
S5 =〈{r2}, {a, b}, ∅, {{b}, {a, b}}〉.

S1 and S2 are stable states. S3 is not a state as IS3 6|= B(r1). S4 is not a state as the sets {b} and
{a, b} are unfounded in PS4 with respect to IS4 but {b} 6∈ ΥS4 and {a, b} 6∈ ΥS4 . S5 is a state
but not stable. �

5.2 Computations

In what follows, we show how we can proceed forward in a computation, i.e., which states might
follow a given state. This is expressed in the successor relation defined next.

Definition 52. For a state S = 〈P, I, I−,Υ〉 a state structure S′ = 〈P ′, I ′, I ′−,Υ′〉, S′ is a
successor of S if there is a C-rule r ∈ P ′ \ P and sets ∆,∆− ⊆ Dr such that

(i) P ′ = P ∪ {r},

(ii) I ′ = I ∪∆, I ′− = I− ∪∆−, and DS ∩ (∆ ∪∆−) = ∅,

(iii) Dr ⊆ DS′ ,
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(iv) I |= B(r),

(v) I ′ |= B(r) and I ′ |=∃ H(r), and

(vi) X ′ ∈ Υ′ iff X ′ = X ∪∆′, where X ∈ Υ, ∆′ ⊆ ∆, and r is not an external support for
X ′ with respect to I ′.

We denote r by rnew (S, S′). ♦

Condition (i) ensures that a successor state considers exactly one rule more to be active. Con-
ditions (ii) and (iii) express that the interpretations I and I− are extended by the so far uncon-
sidered literals in ∆ and ∆− appearing in the new C-rule rnew (S, S′). Note that from S′ being
a state structure we get that ∆ and ∆− are distinct. A requirement for considering rnew (S, S′)
as next C-rule is that it is active under the current interpretation I , expressed by Condition (iv).
Moreover, rnew (S, S′) must be satisfied and still be active under the succeeding interpretation,
as required by Condition (v). The final condition ensures that the unfounded sets of the succes-
sor are extensions of the previously unfounded sets that are not externally supported by the new
rule.

Here, it is interesting that only extended previous unfounded sets can be unfounded sets in
the extended C-program P ′ and that rnew (S, S′) is the only C-rule which could provide external
support for them in P ′ with respect to the new interpretation I ′ as seen next.

Theorem 13. Let S be a state and S′ a successor of S, where ∆ = IS′ \ IS . Moreover, let X ′

be a set of literals with ∅ ⊂ X ′ ⊆ IS′ . Then, the following statements are equivalent:

(i) X ′ is unfounded in PS′ with respect to IS′ .

(ii) X ′ = ∆′ ∪X , where ∆′ ⊆ ∆, X ∈ ΥS , and rnew (S, S′) is not an external support for
X ′ with respect to IS′ .

Proof. ((i)⇒(ii)) It is obvious that rnew (S, S′) is not an external support for X ′ with respect to
IS′ as otherwise X ′ cannot be unfounded in PS′ with respect to IS′ . It remains to be shown
that X ′ = ∆′ ∪ X for some ∆′ ⊆ ∆ and some X ∈ ΥS . Towards a contradiction, assume
X ′ 6= ∆′′ ∪X ′′ for all X ′′ ∈ ΥS and ∆′′ ⊆ ∆. We define X = X ′ ∩ IS .

Consider the case that X ∈ ΥS . As X ′ \ IS ⊆ ∆, and X ′ = (X ′ \ IS) ∪ X , we have a
contradiction to our assumption.

Therefore, it holds that X 6∈ ΥS . Hence, as X ⊆ IS , by definition of a state, X is not
unfounded in PS with respect to IS . Therefore, there is some external support r ∈ PS for X
with respect to IS .

In the following, we show that r is also an external support for X ′ with respect to IS′ . Since
S′ is a successor of S and S is a state, we get that IS and IS′ coincide on Dr. Consequently,
from IS |= B(r) we get that also IS′ |= B(r). Moreover, because of IS \ X |= B(r) it is
also true that IS′ \ X ′ |= B(r). Furthermore, we know that there is some A ∈ H(r) with
X|DA 6= ∅ and IS |DA ⊆ C, for some C ∈ CA. As X|DA = X ′|DA and IS |DA = IS′ |DA
we also have X ′|DA 6= ∅ and IS′ |DA ⊆ C. Finally, note that for all A ∈ H(r) with IS |= A,
we have (X ∩ IS)|DA 6= ∅. Consider some A ∈ H(r) such that IS′ |= A. From the latter
we get that IS |= A and therefore (X ∩ IS)|DA 6= ∅. As X ∩ IS ⊆ X ′ ∩ IS′ , we also have
(X ′ ∩ IS′)|DA 6= ∅. Hence, r fulfils all conditions for being an external support for X ′ with
respect to IS′ , which is a contradiction to X ′ being unfounded in PS′ with respect to IS′ .

((ii)⇒(i)) Towards a contradiction, assume X ′ has some external support r ∈ PS′ with
respect to IS′ . From (ii) we know that r 6= rnew (S, S′) and X ′ = ∆′ ∪ X for some ∆′ ⊆ ∆
and some X ∈ ΥS . As r 6= rnew (S, S′), we have that IS and IS′ coincide on Dr. Therefore,
from IS′ |= B(r) and IS′ \X ′ |= B(r), it follows that IS |= B(r) and IS \X ′ |= B(r). Note
that X = X ′ ∩ IS and hence IS \ X |= B(r). We know that there is some A ∈ H(r) with
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X ′|DA 6= ∅ and IS′ |DA ⊆ C, for some C ∈ CA. As X ′|DA = X|DA we have X|DA 6= ∅.
Moreover, as IS′ |DA = IS |DA , it holds that IS |DA ⊆ C. Finally, notice that for all A ∈ H(r)
with IS′ |= A, we have (X ′ ∩ IS′)|DA 6= ∅. Consider some A ∈ H(r) with IS |= A. As
IS′ |DA = IS |DA , we also have IS′ |= A and hence (X ′ ∩ IS′)|DA 6= ∅. As DA ∩ ∆ = ∅, we
have (X ′ ∩ IS′)|DA = (X ∩ IS)|DA . Consequently, it holds that (X ∩ IS)|DA 6= ∅. We showed
that r is an external support of X in PS with respect to IS . Therefore, we have a contradiction
to X ∈ ΥS because S is a state.

The result shows that determining the unfounded sets in a computation after adding a further
C-rule r can be done locally, i.e., only supersets of previously unfounded sets can be unfounded
sets, and if such a superset has some external support then it is externally supported by r. The
result also implies that the successor relation suffices to “step” from one state to another.

Corollary 3. Let S be a state and S′ a successor of S. Then, S′ is a state.

Proof. We show that the Conditions (i), (ii), and (iii) of Definition 50 hold for S′. Consider
some rule r ∈ PS′ .

In case r = rnew (S, S′), IS′ |= B(r) and IS′ |=∃ H(r) hold because of Item (v) of Defini-
tion 52 and Dr ⊆ DS′ because of Item (iii) of the same definition.

Moreover, in case r 6= rnew (S, S′) we have r ∈ PS . As S is a state we have Dr ⊆ DS .
Hence, since DS ⊆ DS′ also Dr ⊆ DS′ . Note that IS′ |Dr = IS |Dr because of Item (ii) of
Definition 52. Therefore, as IS |= B(r), IS |=∃ H(r) also IS′ |= B(r) and IS′ |=∃ H(r). From
these two cases we see that Conditions (i) and (ii) of Definition 50 hold for S′.

Finally, Condition (iii) follows from Item (vi) of Definition 52 and Theorem 13.

Next, we define computations based on the notion of a state.

Definition 53. A computation is a sequence C = S0, . . . , Sn of states such that Si+1 is a
successor of Si, for all 0 ≤ i < n. We call C rooted if S0 is the empty state and stable if each
Si is stable, for 0 ≤ i ≤ n. ♦

5.3 Properties

We next define when a computation has failed, gets stuck, or is complete. Intuitively, failure
means that the computation reached a point where no answer set of the C-program can be
reached. A computation is stuck when the last state activated rules deriving literals that are
inconsistent with previously chosen active rules. It is considered complete when there are no
more unconsidered active rules.

Definition 54. Let P be a C-program and C = S0, . . . , Sn a computation such that PSn ⊆ P .
Then, C is called a computation for P . Moreover,

• C has failed for P at step i if there is no answer set I of P such that ISi ⊆ I , I−Si∩I = ∅,
and PSi ⊆ P I ;

• is complete for P if for every rule r ∈ P ISn , we have r ∈ PSn ;

• is stuck in P if it is not complete for P but there is no successor Sn+1 of Sn such that
rnew (Sn, Sn+1) ∈ P ;

• succeeded for P if it is complete and Sn is stable. ♦
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Example 27. Let PEx27 be the C-program consisting of the C-rules

r1 : a← 〈{a, b}, {∅, {a, b}}〉,
r2 : b← a,
r3 : a← b,
r4 : 〈{c}, {∅, {c}}〉 ← .
r5 : ← c.

that has {a, b} as its single answer set and consider the sequences

C1 =〈∅, ∅, ∅, {∅}〉,
〈{r4}, {}, {c}, {∅}〉,
〈{r4, r1}, {a, b}, {c}, {{a}, {b}}〉,

C2 =〈∅, ∅, ∅, {∅}〉, 〈{r4}, {}, {c}, {∅}〉, 〈{r4, r1}, {a, b}, {c}, {{a}, {b}}〉,
〈{r4, r1, r2}, {a, b}, {c}, {{a}}〉, 〈{r4, r1, r2, r3}, {a, b}, {c}, {∅}〉,

C3 =〈{r4, r1, r2, r3}, {a, b}, {c}, {∅}〉,
C4 =〈∅, ∅, ∅, {∅}〉, 〈{r4}, {c}, ∅, {∅}〉,
C5 =〈{r4, r1, r2, r3}, {a, b, c}, ∅, {∅}〉,
C6 =〈{r5}, ∅, {c}, {∅}〉, and
C7 =〈∅, ∅, ∅, {∅}〉, 〈{r4, r1}, {a, b}, {c}, {{a}, {b}}〉,

C1, C2, C3, C4, and C5 are computations for PEx27. The sequence C6 is not a computation,
as 〈{r5}, ∅, {c}, {∅}〉 is not a state. C7 is not a computation, as the second state in C7 is not a
successor of the empty state. C1, C2, and C4 are rooted. C3, C4, and C5 are stable. C2 and
C3 are complete and have succeeded for PEx27. C1 is complete for PEx27 \ {r2, r3} but has
failed for PEx27 \ {r2, r3} at step 0 because PEx27 \ {r2, r3} has no answer set. C4 has failed
for PEx27 at step 1. C5 has failed for PEx27 at step 0 and is stuck in PEx27. �

The following result guarantees the soundness of our framework of computations.

Theorem 14. Let P be a C-program and C=S0, . . . , Sn a computation that has succeeded for
P . Then, ISn is an answer set of P .

Proof. As C is complete for P we have P ISn ⊆ PSn . Conversely, we have PSn ⊆ P ISn

because for each r ∈ PSn we have r ∈ P and ISn |= B(r). By stability of Sn we get that
ISn ∈ AS (PSn). As then ISn ∈ AS (P ISn ), the conjecture follows by definition.

The computation model is also complete in the following sense:

Theorem 15. Let S0 be a state, P a C-program with PS0 ⊆ P , and I an answer set of P with
IS0 ⊆ I and I ∩ I−S0 = ∅. Then, there is a computation S0, . . . , Sn that has succeeded for P
such that PSn = P I and ISn = I .

Proof. The proof is by induction on the size of the set P I \ PS0 . Observe that from IS0 ⊆ I ,
I ∩ I−S0 = ∅, and IS0 |= B(r) and Dr ⊆ IS0 ∪ I−S0 , for all r ∈ PS0 , we get that I |= B(r) for
all r ∈ PS0 . Hence, as PS0 ⊆ P , we have PS0 ⊆ P I .

Consider the base case that |P I \ PS0 | = 0. From PS0 ⊆ P I we get PS0 = P I . Consider the
sequence C = 〈PS0 , IS0 , I

−
S0 ,ΥS0〉. Towards a contradiction, assume IS0 6= I . As IS0 ⊆ I

this means IS0 ⊂ I . Hence, there is some a ∈ I \ IS0 . As for all r ∈ PS0 it holds that
Dr ⊆ IS0∪I−S0 , and I∩I−S0 = ∅, we get a 6∈ DPS0

. We have a contradiction to I ∈ AS (PS0)
by Corollary 1 (on page 45), as {a} is unfounded in PS0 with respect to I . Consequently,
IS0 = I must hold. As IS0 is an answer set of PS0 and S0 is a state, we have that ΥS0 = {∅} by
definition of state. It follows that C meets the criteria of the conjectured computation.
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We proceed with the step case. As induction hypothesis, assume that the claim holds when-
ever |P I \ PS0 | ≤ i for an arbitrary but fixed i ≥ 0. Consider some state S0 and some
I ∈ AS (PS0) for which the conditions in the premise hold such that |P I \ PS0 | = i + 1.
Towards a contradiction, assume there is no C-rule r ∈ P I \ PS0 such that IS0 |= B(r). Note
that there is at least one C-rule r′ ∈ P I \ PS0 because |P I \ PS0 | = i + 1. It cannot hold that
I = IS0 since from r′ ∈ P IS0 follows IS0 |= B(r′). Consequently, we have IS0 ⊂ I . Consider
some r′′ ∈ P I with IS0 |= B(r′′). By our assumption, we get that r′′ ∈ PS0 . It follows that
IS0 |= r′′, and consequently there is some C-atom A ∈ H(r′′) with IS0 |= A. As Dr′′ ⊆ DS0 ,
we have DA ⊆ IS0 ∪ I−S0 . From that, since IS0 ⊂ I and I ∩ I−S0 = ∅, we get I|DA = IS0 |DA .
Hence, we have a contradiction to I being an answer set of P by Definition 34 (on page 41).

So, there must be some C-rule r ∈ P I \ PS0 such that IS0 |= B(r). From r ∈ P I we
get I |= B(r) and I |= r. Consider the state structure S1 = 〈P1, I1, I1

−,Υ1〉, where P1 =
PS0 ∪ {r}, I1 = IS0 ∪ (I ∩Dr), I1

− = I−S0 ∪ (Dr \ I), and

Υ1 = {X |X = ∆′ ∪X ′, where ∆′ ⊆ (I1 \ IS0), X ′ ∈ ΥS0 , and
r is not an external support of Xwith respect to I1}.

S1 is a successor of state S0, therefore S1 is also a state by Corollary 3. As P1 ⊆ P , I1 ⊆ I ,
I ∩ I1

− = ∅, and |P I \ P1| = i, by the induction hypothesis we have that S1, . . . , Sn is a
computation, where Sn is a stable state, PSn = P I , and ISn = I . Since S1 is a successor of
state S0, we can conclude that also S0, S1, . . . , Sn is a computation.

As the empty state, 〈∅, ∅, ∅, {∅}〉, is trivially a state, we can make the completeness aspect of the
previous result more apparent in the following corollary:

Corollary 4. Let P be a C-program and I ∈ AS (P ). Then, there is a rooted computation
S0, . . . , Sn that has succeeded for P such that PSn = P I and ISn = I .

Proof. The claim follows immediately from Theorem 15 in case S0 = 〈∅, ∅, ∅, {∅}〉.

Note, that there are states that do not result from rooted computations, e.g., the state

〈{a← b}, {a, b}, ∅, {∅, {a, b}, {b}}〉

is not a successor of any other state. However, for stable states we can guarantee the existence
of such a computation.

Corollary 5. Let S be a stable state. Then, there is a rooted computation S0, . . . , Sn with
Sn = S.

Proof. The result is a direct consequence of Corollary 5 and Definition 51 (on page 58).

The next theorem lays the ground for the jumping technique we will introduce in Chapter 7.
Its purpose is to allow for extending a computation by considering multiple rules of a program
at once and using ASP solving itself for creating this extension.

Theorem 16. Let P be a C-program, C = S0, . . . , Sn a computation for P , P ′ a set of C-rules
with P ′ ⊆ P , and I an answer set of PSn ∪P ′ with ISn ⊆ I and I ∩ I−Sn = ∅. Then, there is a
computation C ′ = S0, . . . , Sn, Sn+1, . . . , Sm for P , such that Sm is stable, PSm = PSn ∪ P ′I
and ISm = I .

Proof. By Theorem 15, as PSn ⊆ PSn ∪P ′, ISn ⊆ I , and I ∩ I−Sn = ∅, there is a computation
Sn, . . . , Sm that has succeeded for PSn ∪P ′ such that PSm = (PSn ∪ P ′)I and ISm = I . Then,
Sm is stable and, as PSn

I = PSn , we have PSm = PSn ∪ P ′I . As PSm ⊆ P we have that
C ′ = S0, . . . , Sn, Sn+1, . . . , Sm is a computation for P .
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The following result illustrates that the direction one chooses for building up a certain inter-
pretation, i.e., the order of the rules considered in a computation, is irrelevant in the sense that
eventually the same state will be reached.

Proposition 2. Let P be a C-program. Furthermore, let and C = S0, . . . , Sn and C ′ =
S′0, . . . , S

′
m be computations complete for P such that S0 = S′0. Then, ISn = IS′m iff Sn = S′m

and n = m.

Proof. The “if” direction is trivial. Let I = ISn = IS′m . Towards a contradiction, assume
PSn 6= PS′m . Without loss of generality we focus on the case that there is some r ∈ PSn such
that r 6∈ PS′m . Then, it holds that I |= r, I |= B(r), and r ∈ P . Consequently, r ∈ P I .
By completeness of C ′, we have r ∈ PS′m which contradicts our assumption. Hence, we have
PSn = PS′m .

By definition of a state, from ISn = IS′m and PSn = PS′m , it follows that ΥSn = ΥS′m .
Towards a contradiction, assume I−Sn 6= I−S′m . Without loss of generality we focus on the
case that there is some a ∈ I−Sn such that a 6∈ I−S′m . Consider the integer i where 0 < i ≤ n
such that a ∈ I−Si but a 6∈ I−Si−1 . Then, by definition of a successor, for r = rnew (Si−1, Si),
we have a ∈ ∆− for some ∆− ⊆ Dr. As then a ∈ Dr and, as PSn = PS′m , we have r ∈ PS′m ,
it must hold that a ∈ DS′m by definition of a state structure. From I ∩ I−Sn = ∅ we know that
a 6∈ I . Therefore, since a ∈ I ∪ I−S′m , we get that a ∈ I−S′m , being a contradiction to our
assumption. As then Sn = S′m, PS0 = PS′0 , and since in every step in a computation exactly
one rule is added it must hold that n = m.

For rooted computations, the domain of each state is determined by the atoms in the C-rules
it contains.

Proposition 3. Let C = S0, . . . , Sn be a rooted computation. Then, ISi = ISn |DPSi and

I−Si = I−Sn |DPSi , for all 0 ≤ i ≤ n.

Proof. The proof is by contradiction. Let j be the smallest index with 0 ≤ j ≤ n such that
ISj 6= ISn |DPSj or I−Sj 6= I−Sn |DPSj . Note that 0 < j as IS0 = I−S0 = DPS0

= ∅.
As Sj is a successor of Sj−1, we have ISj = ISj−1 ∪∆ and I−Sj = I−Sj−1 ∪∆−, where

∆,∆− ⊆ Drnew (Sj−1,Sj), DSj−1 ∩ (∆ ∪ ∆−) = ∅, and Drnew (Sj−1,Sj) ⊆ ISj ∪ I−Sj . As we
have ISj−1 = ISn |DPSj−1

and I−Sj−1 = I−Sn |DPSj−1
, it holds that

ISj−1 ∪ ISn |Dδ = ISn |DPSj−1
∪ ISn |Dδ = ISn |DPSj

and
I−Sj−1 ∪ I−Sn |Dδ = I−Sn |DPSj−1

∪ I−Sn |Dδ = I−Sn |DPSj ,
where Dδ = DPSj

\DPSj−1
.

For establishing the contradiction, it suffices to show that

ISn |Dδ = ∆

and
I−Sn |Dδ = ∆−.

Consider some a ∈ ∆. Then, a ∈ Dδ because a ∈ Drnew (Sj−1,Sj), DSj−1 ∩ (∆ ∪ ∆−) = ∅,
and DPSj−1

⊆ DSj−1 . Moreover, a ∈ ISj implies a ∈ ISn and therefore ∆ ⊆ ISn |Dδ . Now,
consider some b ∈ ISn |Dδ . As Drnew (Sj−1,Sj) ⊆ ISj ∪ I−Sj , we have b ∈ ISj ∪ I−Sj . Consider
the case that b ∈ I−Sj . Then, also b ∈ I−Sn which is a contradiction to b ∈ ISn as Sn is a state
structure. Hence, b ∈ ISj = ISj−1 ∪∆. First, assume b ∈ ISj−1 . This leads to a contradiction
as then b ∈ DPSj−1

since ISj−1 = ISn |DPSj−1
.

It follows that b ∈ ∆ and therefore ∆ = ISn |Dδ . One can show that ∆− = I−Sn |Dδ
analogously.
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5.4 Stable Computations

In this section we are concerned with the existence of stable computations, i.e., computations
that do not involve unfounded sets. We single out an important class of C-programs for which
one can solely rely on this type of computation and also give examples of C-programs that do
not allow for succeeding stable computations.

Intuitively, the ΣP
2 -hardness of our semantics, as shown in Section 4.6, demands for unstable

computations in the general case. This becomes obvious when considering that for a given C-
program, one could guess a candidate sequence C for a stable computation in polynomial time.
Then, a polynomial number of checks whether each state is a successor of the previous one in the
sequence suffices to establish whether C is a computation. Following Definition 52 on page 58,
these checks can be done in polynomial time when we are allowed to omit Condition (vi) for
unfounded sets. Hence, answer-set existence for the class of C-programs for which every answer
set can be built up with stable computations is in NP.

Naturally, it is interesting whether there are syntactic classes of C-programs for which we
can rely on stable computations only. It turns out that many syntactically simple C-programs
already require the use of unfounded sets.

Example 28. Consider C-program PEx28 consisting of the C-rules

r1 : a← b and
r2 : b← 〈{a}, {∅, {a}}〉.

We have that {a, b} is the only answer set of PEx28 and

C =〈∅, ∅, ∅, {∅}〉,
〈{r2}, {a, b}, ∅, {∅, {a}}〉,
〈{r2, r1}, {a, b}, ∅, {∅}〉

is the only computation that succeeds for PEx28. �

As Example 28 shows, unstable computations are already required for a C-program without
disjunction and a single monotone C-atom. Hence, also the use of weaker restrictions, like
convexity of C-atoms or some notion of head-cycle freeness (Ben-Eliyahu and Dechter, 1994),
is not sufficient.

One can observe, that the C-program from the example has cyclic positive dependencies
between atoms a and b. Hence, we next explore whether such dependencies influence the need
for computations that are not stable. To this end, we introduce notions of positive dependency
in a C-program.

Definition 55. Let S be a set of C-literals. Then, the positive normal form of S is given by

S+ = {A | A ∈ S,A is a C-atom} ∪ {Ā | not A ∈ S},

where Ā = 〈DA, 2
DA \ CDA〉 is the complement of A. Furthermore, the set of positive atom

occurences in S is given by posOcc(S) =
⋃
A∈S+ CA.

Let P be a C-program. The positive dependency graph of P is the directed graph

G(P ) = 〈DP , {〈a, b〉 | r ∈ P, a ∈ posOcc(H(r)), b ∈ posOcc(B(r))}〉. ♦

We next introduce the notion of absolute tightness for describing C-programs without cyclic
positive dependencies after recalling basic notions of graph theory. For a (directed) graph G =
〈V,≺〉, the reachability relation of G is the transitive closure of ≺. Let ≺′ be the reachability
relation of G. Then, G is acyclic if there is no v ∈ V such that v ≺′ v.

Definition 56. Let P be a C-program. P is absolutely tight if G(P ) is acyclic. ♦
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One could assume that absolute tightness paired with convexity or monotonicity is suffi-
cient to guarantee stable computations because absolute tightness forbids positive dependencies
among disjuncts and the absence of such dependencies lowers the complexity of LP-programs
(Ben-Eliyahu and Dechter, 1994). However, as the following example illustrates, this is not the
case for C-programs.

Example 29. Consider C-program PEx29 consisting of the C-rules

r1 : a ∨ 〈{a, b}, {{a}, {a, b}}〉 ← and
r2 : b ∨ 〈{a, b}, {{b}, {a, b}}〉 ← .

We have that {a, b} is the only answer set of PEx29 and

C1 =〈∅, ∅, ∅, {∅}〉,
〈{r1}, {a, b}, ∅, {∅, {b}}〉,
〈{r1, r2}, {a, b}, ∅, {∅}〉 and

C2 =〈∅, ∅, ∅, {∅}〉,
〈{r2}, {a, b}, ∅, {∅, {a}}〉,
〈{r1, r2}, {a, b}, ∅, {∅}〉

are the only computations that succeed for PEx29. Clearly, PEx29 is monotone and, as the rule
bodies of r1 and r2 are empty, absolutely tight but C1 and C2 are not stable. �

Nevertheless, we can assure the existence of stable computations for answer sets of normal
C-programs that are absolutely tight and convex. This is good news, as this class corresponds to
a large subset of typical answer-set programs written for solvers like Clasp or Smodels that
do not rely on disjunction as their guessing device.

For establishing our results we make use of the following notion which reflects positive
dependency on the rule level.

Definition 57. The positive rule dependency graph of P is given by

GR(P ) = 〈P, {〈r1, r2〉 | r1, r2 ∈ P, posOcc(B(r1)) ∩ posOcc(H(r2)) 6= ∅}〉. ♦

We can relate the two notions of dependency graph as follows.

Lemma 6. Let P be a C-program. GR(P ) is acyclic iff G(P ) is acyclic.

Proof. Let ≺D denote the edge relation of G(P ) and ≺R that of GR(P ).
(⇒) Assume G(P ) is not acyclic. There must be some path a1, . . . , an of atoms ai such

that for 1 ≤ i < n, we have ai ∈ DP , ai ≺D ai+1, and a1 = an. Hence, by the definition
of G(P ), there must be a sequence r1, . . . , rn−1 such that for each 1 ≤ i ≤ n − 1, ri ∈ P ,
ai ∈ posOcc(H(ri)), and ai+1 ∈ posOcc(B(ri)). Therefore, for each 1 ≤ i < n − 1, we have
ri+1 ≺R ri. Note that a1 ∈ posOcc(H(r1)) and a1 ∈ posOcc(B(rn−1)). Consequently, we
have rn−1 ≺R r1 and thus r1, rn−1, . . . , r1 forms a cycle in GR(P ). It follows that GR(P ) is
not acyclic.

(⇐) Assume now that GR(P ) is not acyclic. There must be some path r1, . . . , rn of C-
rules ri such that for 1 ≤ i < n we have ri ∈ P , r1 = rn, and ri ≺R ri+1. Hence, by the
definition of GR(P ), there must be a sequence a1, . . . , an−1 such that for each 1 ≤ i ≤ n− 1,
ai ∈ posOcc(H(ri+1)), and ai ∈ posOcc(B(ri)). Therefore, for each 1 ≤ i < n − 1 we have
ai+1 ≺D ai. Note that an−1 ∈ posOcc(H(r1)) and a1 ∈ posOcc(B(r1)). Consequently, we
have an−1 ≺D a1 and thus a1, an−1, . . . , a1 forms a cycle in G(P ). We have that GR(P ) is not
acyclic.
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Lemma 7. Let P be an absolutely tight C-program. There is a strict total order ≺ on P that
extends the reachability relation of GR(P ).

Proof. By Definition 56, G(P ) is acyclic. Hence, by Lemma 6, GR(P ) is also acyclic. The
conjecture holds, since every directed acyclic tree has a topological ordering.

We now have the means to show the following result, guaranteeing the existence of stable
computations.

Theorem 17. Let C = S0, . . . , Sn be a computation such that S0 and Sn are stable and
P∆ = PSn \ PS0 is a normal, convex, and absolutely tight C-program. Then, there is a sta-
ble computation C′=S′0, . . . , S

′
n such that S0 = S′0 and Sn = S′n.

Proof. Let ≺ be the strict total order extending the reachability relation of GR(P∆) that is
guaranteed to exist by Lemma 7. Let r(·) : {1, . . . , n} 7→ P∆ denote the one-to-one mapping
from the integer interval {1, . . . , n} to the C-rules from P∆ such that for all i, j in the range of
r(·), we have that i < j implies r(j) ≺ r(i). Consider the sequence C′ = S′0, . . . , S

′
n, where

S′0 = S0, and for all 0 ≤ i < n,

P ′i+1 = P ′i ∪ {r(i+ 1)},

IS′i+1
= IS′i ∪ (ISn ∩Dr(i+1)),

I−S′i+1
= I−S′i ∪ (I−Sn ∩Dr(i+1)), and

ΥS′i+1
= {∅}.

Notice that S′n = Sn and
IS′i+1

|DP
S′
i

= IS′i |DPS′
i

,

for all 0 ≤ i < n. We show that C′ is a computation by induction on the length of a subsequence
of C′.

As base case consider the sequence C′′ = S′0. As S′0 = S0 and S0 is a state, C′′ is a
computation. For the induction hypothesis, assume that for some arbitrary but fixed i with
0 ≤ i < n, the sequence S′0, . . . , S

′
i is a computation.

In the induction step it remains to be shown that S′i+1 is a successor of S′i. Clearly, S′i+1 is
a state structure, and by definition of C′, since C is a computation and

IS′i+1
|DPSi+1

= ISn |DPSi+1
,

Conditions (i), (ii), (iii), and (v) of Definition 52 (on page 58) for being a successor of S′i are
fulfilled by S′i+1. Let ∆ denote IS′i+1

\ IS′i .
Next we show that Condition (iv) holds, i.e., IS′i |= B(r(i+ 1)). Note that since Con-

dition (v) holds, we have IS′i+1
|= B(r(i+ 1)) and hence (iv) holds in the case ∆ = ∅.

Towards a contradiction assume ∆ 6= ∅ and IS′i 6|= B(r(i+ 1)). We define ∆B+ = ∆ ∩
posOcc(B(r(i+ 1))).

First, consider the case that ∆B+ = ∅. As IS′i 6|= B(r(i+ 1)), there must be some C-literal
L ∈ B(r(i+ 1)) such that IS′i 6|= L. We know that IS′i+1

|= L. Consequently, IS′i |DL ⊂
IS′i+1

|DL and therefore ∆|DL 6= ∅. Moreover, from IS′i+1
|= L we have

IS′i+1
|DL ⊆ posOcc(B(r(i+ 1))).

It follows that
∆|DL ∩ posOcc(B(r(i+ 1))) 6= ∅,
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indicating a contradiction to ∆B+ = ∅. It holds that ∆B+ 6= ∅. Note that X ⊆ ISn . From that,
since Sn is a state, there must be some C-rule r∆B+ ∈ PSn such that r∆B+ is an external support
for ∆B+ with respect to ISn . It cannot be the case that r ∈ PS0 , since ∆B+ ∩IS′i = ∅, therefore,
r∆B+ ∈ P∆. As r∆B+ is an external support for ∆B+ with respect to ISn , for {A} = H(r∆B+ ),
we have ISn |= A and ∆B+ |DA 6= ∅.

Consider the case that r∆B+ = r(i + 1). From that we get that posOcc(H(r(i+ 1))) ∩
∆B+ 6= ∅. This, in turn, implies

posOcc(H(r(i+ 1))) ∩ posOcc(B(r(i+ 1))) 6= ∅

which is a contradiction to GR(P∆) being acyclic. Note that the latter is guaranteed by absolute
tightness of P∆ and Lemma 6.

Consider the case that r(i+1) ≺ r∆B+ . Then, by definition of C′ we have that r∆B+ ∈ PS′i .
Hence, from ∆B+ |DA 6= ∅ follows

∆B+ |DP
S′
i

6= ∅

and thus
IS′i+1

\ IS′i |DPS′
i

6= ∅.

The latter is a contradiction to
IS′i+1

|DP
S′
i

= IS′i |DPS′
i

.

Consider the remaining case that r∆B+ ≺ r(i + 1). As ∆B+ |DA 6= ∅, ∆B+ ⊆ ISn , and
ISn |DA ∈ CA, we have that

posOcc(H(r∆B+ )) ∩∆B+ 6= ∅.

Therefore, we have posOcc(H(r∆B+ )) ∩ posOcc(B(r(i+ 1))) 6= ∅. This implies r(i + 1) ≺
r∆B+ , being a contradiction to ≺ being a strict order as we also have r∆B+ ≺ r(i + 1). We
showed that Condition (iv) of Definition 52 (on page 58) for being a successor of S′i holds for
S′i+1.

Towards a contradiction assume Condition (vi) does not hold. Hence, it must hold that there
is some ∆′ ⊆ ∆ such that ∆′ 6= ∅ and r(i + 1) is not an external support for ∆′ with respect
to IS′i+1

. We have IS′i+1
|= B(r(i+ 1)) and since we already know that IS′i |= B(r(i+ 1)),

also IS′i+1
\ ∆′ |= B(r(i+ 1)) holds by convexity of P∆. Moreover, as IS′i+1

|= r(i + 1), it
must hold that IS′i+1

|= A for H(r(i+ 1)) = {A}. Consequently, for r(i + 1) not to be an
external support for ∆′ with respect to IS′i+1

, we have ∆′|DA = ∅. As then ∆′|DH(r(i+1))
= ∅ but

∆′|Dr(i+1)
6= ∅ it must hold that ∆′|DB(r(i+1))

6= ∅. Consider ∆′′ = ∆′ ∩ posOcc(B(r(i+ 1)))
and assume that ∆′′ 6= ∅. Then, as ∆′′ ⊆ ISn , there must be some C-rule r∆′′ that is an
external support for ∆′′ with respect to ISn . Hence, posOcc(H(r∆′′)) ∩∆′′ 6= ∅ and therefore
posOcc(H(r∆′′)) ∩ posOcc(B(r(i+ 1))) 6= ∅. It follows that r(i + 1) ≺ r∆′′ . From that
we get r∆′′ ∈ PS′i . This is a contradiction as we know that posOcc(H(r∆′′)) ∩ ∆′′ 6= ∅,
posOcc(H(r∆′′))∩∆′′ ⊆ IS′i , and ∆′′ ⊆ IS′i+1

\IS′i . Consequently, ∆′∩posOcc(B(r(i+ 1))) =

∅must hold. From ∆′|DB(r(i+1))
6= ∅we get that there is some L ∈ B(r(i+ 1)) with ∆′|DL 6= ∅.

As IS′i+1
|= L, we have that IS′i+1

|DL ∈ C in the case L is a C-atom L = 〈DL, C〉, and
IS′i+1

|DL ∈ 2DL \ C in the case L is a default negated C-atom L = not 〈DL, C〉. In both cases,
as ∆′ ⊆ IS′i+1

and ∆′|DL 6= ∅, we get a contradiction to ∆′ ∩ posOcc(B(r(i+ 1))) = ∅.

As a direct consequence of Theorem 17 and Corollary 4 (on page 62), we get an improved
completeness result for normal convex C-programs that are absolutely tight, i.e., we can find a
computation that consists of stable states only.
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Corollary 6. Let P be a normal C-program that is convex and absolutely tight, and consider
some I ∈ AS (P ). Then, there is a rooted stable computation S0, . . . , Sn such that PSn = P I

and ISn = I .

Proof. From I ∈ AS (P ), we get by Corollary 4 that there is a rooted computation S0, . . . , Sn
such that PSn = P I and ISn = I . Note that S0 is the empty state. S0 and Sn are stable
according to Definition 51 on page 58. From Theorem 17 we can conclude the existence of
another computation C′=S′0, . . . , S

′
n such that S0 = S′0 and Sn = S′n that is stable. Clearly, C′

is also rooted.

5.5 Comparison to Computations by Liu et al.

As mentioned in Section 4.7.2, Liu et al. (2010) also use a notion of computation to characterise
their semantics for normal C-programs. These computations are sequences of evolving inter-
pretations. Unlike the three-valued ones used for online justifications (Pontelli et al., 2009) (cf.
Section 7.8), these carry only information about atoms considered true. Thus, conceptionally,
they correspond to sequences IS0 , IS1 , . . . where S0, S1, . . . is a computation in our sense. The
authors formulate principles for characterising different variants of computations. We will high-
light differences and commonalities between the approaches along the lines of some of these
properties.

One main structural difference between their and our notion of computation is the granu-
larity of steps: In the approach by Liu et al. it might be the case that multiple rules must be
considered at once, as required by their revision property (R’) while in our case computation
proceeds rule instance by rule instance. The purpose of property (R’) is to assure that every
successive interpretation must be supported by the rules active with respect to the previous in-
terpretation. But it also requires that every active rule in the overall program is satisfied after
each step, whereas we allow rule instances that were not considered yet in the computation to be
unsatisfied. For the purpose of debugging, rule-based computation granularity seems favourable
as rules are our primary source code artifacts. Moreover, ignoring parts of the program that were
not considered yet in a computation is essential in the stepping method, as this breaks down the
amount of information that has to be considered by the user at once and allows for getting stuck
and thereby detect discrepancies between his or her understanding of the program and its actual
semantics.

Our computations (when translated as above) meet the persistence principle (P’) of Liu et al.
that ensures that a successor’s interpretation is always a superset of the current one.

Their convergence principle (C’), requiring that a computation stabilises to a supported
model, is not met by our computations, as we do not enforce support in general. However,
when a computation has succeeded (cf. Definition 54 on page 60), it meets this property.

A further difference is that Liu et al. do not allow for non-stable computations as required by
the founded persistence of reasons principle (FPr). This explains why the semantics they char-
acterise treats non-convex atoms, e.g., like in the example in the introduction to Section 4.7.2,
not in the FLP-way. Besides that, the use of non-stable computations allow us to handle dis-
junction. Interestingly, Liu et al. mention the support for disjunction in computations as an open
challenging problem and suspect the necessity of a global minimality requirement on computa-
tions for this purpose. Our framework demonstrates that we can do without such a condition: As
shown in Theorem 13 on page 59, unfounded sets in our semantics can be computed incremen-
tally “on-the-fly” by considering only the rule instance added in a step as potential new external
support.

Finally, the principle of persistence of reasons (Pr’) suggests that the “reason” for the truth
value of an atom must not change in the course of a computation. Liu et al. identify such reasons
by sets of rules that keep providing support in an ongoing computation. We have a similar
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principle of persistence of reasons that is however stricter as theirs as it is operates on the atom
level rather than the rule level: Once a rule instance is considered part of a computation in our
sense, the truth value of the atoms in the rule’s domain is frozen, i.e., it cannot be changed or
forgotten in subsequent steps. Persistence of reasons is also reflected in our definition of answer
sets: The requirement I ′|DA = I|DA in Condition (?) of Definition 34 (on page 41) that the
stability of interpretation I is only spoiled by I ′ if the reason for I ′ |= A is the same satisfier of
C-atom A as for I |= A.
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6 Computations for Non-Ground
Programs

As discussed in the introduction of Chapter 4, we use C-programs as abstraction of real-world
ground answer-set programs as produced by ASP grounding tools. In this chapter, we target
the remaining abstraction step for covering practical ASP languages, i.e., we present an abstrac-
tion of non-ground solver languages, and abstractions of the grounding step that turn abstract
non-ground programs into C-programs. There are several reasons for keeping non-ground pro-
grams abstract for our purposes. For one, we want to support multiple solver languages that
differ in various aspects, as discussed in Section 3.6, that we do not want to formalise. Ex-
amples for such differing features are different types of special literals such as aggregates or
weight constraints, the handling of arithmetics, built-in functions and predicates, the use of in-
terpreted functions, and different syntactic restrictions. Finding a single non-ground language
that is not abstract and captures multiple solver languages and their semantics seems hard to
accomplish and not desirable as it would have to respect a multitude of aspects inherited from
the different languages. Clearly, a complicated language would impede the development of a
debugging methodology. Moreover, even if such a unified non-ground language were available,
the question how to handle grounding remains: using a form of naïve grounding would result in
many irrelevant rules (cf. Example 2 on page 18), finite grounding may be impossible, and the
transformations realised in grounders often cannot be described by a variable replacement. We
next elaborate on these aspects in Section 6.1 that deals with the gap between formal answer-set
programs and real world answer-set programs in solver languages and their respective ground-
ings. We overcome these discrepancies by also making grounding abstract. That is, grounding
can be seen as a black box which can be realised by actual grounding tools. Hence, we can
reuse existing software and exploit the grounders’ capabilities to focus on relevant information.
We introduce an abstraction of non-ground programs in Section 6.2. Then, we will discuss two
different abstractions of groundings. The first one, discussed in Section 6.3.1, is very general,
makes minimal assumptions on the grounding procedure, and treats it as a black box. It leads
to trivial generalisations of our framework of computations to the non-ground case and captures
current solver languages. The other abstraction of grounding, introduced in Section 6.3.2, gives
more insight into the grounding process, and formalises the idea that the grounding is influenced
by a partial evaluation of the program as necessary for features like Gringo conditions. We
also lift the results for computations for C-programs with respect to this form of grounding and
discuss to which extent existing solver languages are compatible with it. The application of our
computation model to stepping, respectively debugging, is discussed later in Chapter 7.

6.1 Gap between Theory and Practise: Non-Ground Programs in
Solver Languages

ASP languages have been proposed as formal languages before the first answer-set solvers be-
came available (cf. Section 3.1 on the history of ASP). While providing a clear mathematical
formulation, these languages may naturally tolerate structures, like huge or infinite programs,
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respectively groundings, or infinite interpretations, that cannot directly be handled by imple-
mentations.

A particular bottleneck in ASP solving is the grounding step. Modern grounding tools try to
reduce the number of rules that remain in the computed grounding as much as possible while at
the same time they already partially evaluate the answer-set program at hand. Thus, the ground
program they produce differ from the naïve grounding as introduced in Section 3.3.2. Further-
more, the resulting grounding is often not just a subset of the naïve grounding, but contains rules
that cannot be obtained from the non-ground program by rule-wise variable substitutions. For
example, literals in rule bodies that are already known to be true during grounding are by default
ommitted.

Example 30. Reconsider program ex7.dlv of Example 7 on page 26.

ex7.dlv DLV

bird(waldo).
bird(tux).
penguin(tux).
flies(X) :- bird(X), not -flies(X).
-flies(X) :- penguin(X).

The grounding step of DLV translates ex7.dlv to the ground program ex30.dlv.

ex30.dlv DLV

bird(waldo).
bird(tux).
penguin(tux).
flies(waldo).
-flies(tux).

By pre-evaluation, the instances of the two non-ground rules were reduced to facts. �

A further example aspect of practical grounding that goes beyond variable substitution is
caused by language features of solver languages that can be considered syntactic sugar and
allow for a more compact representation, e.g., pooling or intervals.

Example 31. The following program does not contain any variables.

ex31a.gr Gringo

myRange(1..3).

Nevertheless, due to the range term, the rule is transformed during grounding with Gringo in
the following way.

ex31b.gr Gringo

myRange(1).
myRange(2).
myRange(3).

�

A more severe difference of the concept of the naïve grounding and grounding perfomed by
grounding tools are language features due to which the semantics of a rule in the grounding is
determined by a partial evaluation of the program. We encounter this phenomenon in particular
when using conditions in Gringo.
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Example 32. Reconsider program ex14.gr of Example 14 on page 30.

ex14.gr Gringo

bird(waldo).
bird(tux).
{older(X,Y),older(Y,X)}1 :- bird(X),bird(Y), X!=Y.
1{strongest(X):bird(X)}1.
{seasick(X):bird(X)}.

Given this program, Gringo produces the following output.

ex32a.gr Gringo

bird(waldo).
bird(tux).
{older(tux,waldo),older(waldo,tux)}1.
1{strongest(tux),strongest(waldo)}1.
{seasick(tux),seasick(waldo)}.

If we add two further rules

penguin(tweety).
bird(X) :- penguin(X).

stating that tweety is a penguin and penguins are birds, we obtain the following Gringo
grounding.

ex32b.gr Gringo

bird(waldo).
bird(tux).
bird(tweety).
penguin(tweety).
{older(tweety,tux),older(tux,tweety)}1.
{older(tweety,waldo),older(waldo,tweety)}1.
{older(tux,waldo),older(waldo,tux)}1.
1{strongest(tux),strongest(tweety),strongest(waldo)}1.
{seasick(tux),seasick(tweety),seasick(waldo)}.

Hence, by adding information to the non-ground program, the grounding of other rules changes
as the rule

1{strongest(tux),strongest(waldo)}1.

was replaced by

1{strongest(strongest(tux),tweety),strongest(waldo)}1.

and

{seasick(tux),seasick(waldo)}.

by

{seasick(tux),seasick(tweety),seasick(waldo)}.

�
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6.2 An Abstraction of Non-Ground Programs

In the abstraction of non-ground programs that is introduced in the following, only little is
assumed about their internal structure, essentially only that they consist of rules.

Definition 58. An abstract non-ground rule, or NG-rule for short, is an arbitrary sequence of
symbols. ♦

Thus, in general, we allow for NG-rules of arbitrary shapes. For the sake of formal clarity, how-
ever, we assume that NG-rules differ from other concepts introduced in this work, in particular
from C-rules. Nevertheless, we allow NG-rules to contain predicate symbols and terms.

In order to allow for C-rules to appear in our non-ground framework, we use a general
notion of rule that combines NG-rules and C-rules.

Definition 59. A general rule, or G-rule, is either an NG-rule or a C-rule. A general program,
or G-program, is a finite set Π of G-rules. The Herbrand Universe HUΠ of a G-program Π
is given by the set of all ground functions containing only function symbols appearing in the
G-rules of Π. The set of predicates appearing in Π is denoted by P(Π). ♦

6.3 Abstractions of Grounding

We present two types of abstract grounding that turn general programs into abstract-constraint
programs. In both, we stick to the principle that a grounding of a program is the union of the
groundings of its rules. However, they differ in the parameters that may influence the ground-
ing of a rule. While the first type takes the whole program into account, the other might be
influenced by a pre-evaluation of the program.

In ASP solver languages, there are some sets of non-ground rules that form a program which
can be grounded with a grounding tool, while others cannot, e.g., due to function symbols that
require infinite grounding or because domain independence properties are not met. Here, it can
be the case that the same rule can be grounded in one context, while it cannot be grounded in
another. In order to account for that, in both abstractions, we make use of groundability relations
for non-ground programs, i.e., relations that determine whether a G-program can be grounded
or not.

Definition 60. A groundability relation is a binary relation γ over the set of G-programs and
2HUA . If 〈Π, F 〉 ∈ γ for a G-program Π and a set F of ground terms, we call Π γ-groundable
with respect to F . Moreover, if Π is γ-groundable with respect to HUΠ, then we say that Π is
γ-groundable. ♦

6.3.1 Black-Box Grounding

The first type of abstraction of grounding we present is black-box grounding. Its main rationale
is a high degree of abstraction in order to capture the behaviour of many current and probably
future grounding tools. While in its original understanding a grounding only replaces variables
in a non-ground rule by ground terms from a given set, the examples in Section 6.1 show that
the grounding of a rule obtained by modern grounding tools is context sensitive. Hence, for
black-box grounding, we propose a grounding function that takes the maximal context, i.e., the
program to ground, as input for grounding a single rule.

Definition 61. Let γ be a groundability relation. An abstract blackbox-grounding function
for γ-groundable G-programs is a mapping grb(·, ·) that assigns every G-rule ρ and every γ-
groundable G-program Π such that ρ ∈ Π a set grb(ρ,Π) = P of C-rules with

(i) DP ⊆ BHUΠ

P(Π) and
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(ii) whenever ρ is a C-rule then grb(ρ,Π) = {ρ}. ♦

Item (i) states that the domain of the grounding of a G-rule consists only of atoms constructible
from predicates and terms in the program. As C-rules represent ground rules, they always
coincide with their grounding, as expressed by Item (ii).

Next, we define a structure that specifies non-ground ASP languages with black-box ground-
ing.

Definition 62. A black-box non-ground semantics configuration is a pair

Sb = 〈γ, grb(·, ·)〉,

where γ is a groundability relation and grb(·, ·) an abstract blackbox-grounding function for
γ-groundable G-programs.

For an γ-groundable G-program Π, we call

grb,Sb (Π) =
⋃
ρ∈Π

grb(ρ,Π)

the grounding of Π (with respect to Sb). ♦

Answer sets are defined via the grounding.

Definition 63. Let Sb = 〈γ, grb(·, ·)〉 be a black-box non-ground semantics configuration and
Π a G-program that is γ-groundable. An interpretation I ⊆ BHUΠ

P(Π) is an answer set of Π (with
respect to Sb) if I ∈ AS (grb,Sb (Π)). ♦

As the answer-sets of a G-program directly correspond to that of its grounding, several
results for computations of C-programs carry over to G-programs as summarised below.

From now on, we assume that Sb = 〈γ, grb(·, ·)〉 is a fixed black-box non-ground semantics
configuration, abbreviate grb,Sc (Π) by grb(Π), and call a G-program black-box groundable if it
is γ-groundable.

We extend the notions of Definition 54 (on page 60) to G-programs under black-box ground-
ing as follows.

Definition 64. Let Π be a black-box groundable G-program andC = S0, . . . , Sn a computation
for grb(Π). Then, C is a black-box computation for Π. Moreover,

• C has black-box failed for Π at step i if it has failed for grb(Π) at step i;

• is black-box complete for Π if it is complete for grb(Π);

• is black-box stuck in Π if it is stuck in grb(Π);

• black-box succeeded for Π if it has succeeded for grb(Π). ♦

The soundness result for non-ground computations using black-box grounding is obtained
as a direct consequence of Theorem 14 (on page 61).

Corollary 7. Let Π be a black-box groundable G-program and C=S0, . . . , Sn a computation
that has black-box succeeded for Π. Then, ISn is an answer set of Π.

Proof. As C has black-box succeeded for Π it has succeeded for grb(Π). Hence, by Theo-
rem 14, ISn is an answer set of grb(Π). Thus, by Definition 63 it is an answer set of Π.

Similarly, we can lift Theorem 15 (on page 61) as follows.
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Corollary 8. Let Π be a black-box groundable G-program and S0 a state such that PS0 ⊆
grb(Π), and I an answer set of Π with IS0 ⊆ I and I ∩ I−S0 = ∅. Then, there is a computation
S0, . . . , Sn that has black-box succeeded for Π such that PSn = grb(Π)I and ISn = I .

Proof. As I is an answer set of Π, by Definition 63, it is an answer set of grb(Π). Thus, the
conjecture follows from Theorem 15.

The following result is the non-ground variant of Corollary 4 (on page 62) under black-box
grounding.

Corollary 9. Let Π be a black-box groundable G-program and I an answer set of Π. Then, there
is a computation S0, . . . , Sn that has black-box succeeded for Π such that PSn = grb(Π)ISn

and ISn = I .

Proof. The claim follows immediately from Corollary 8 in case S0 = 〈∅, ∅, ∅, {∅}〉.

Next, we lift Theorem 16 on page 62 to G-programs under black-box grounding. Remember
that this result provides the formal ground for the jumping technique that is introduced later in
Chapter 7.

Corollary 10. Let Π be a black-box groundable G-program, C = S0, . . . , Sn a black-box com-
putation for Π, P a set of C-rules with P ⊆ grb(Π), and I an answer set of PSn ∪P with ISn ⊆
I and I ∩ I−Sn = ∅. Then, there is a black-box computation C ′ = S0, . . . , Sn, Sn+1, . . . , Sm
for Π, such that Sm is stable, PSm = PSn ∪ P I and ISm = I .

Proof. The result is a direct consequence of Theorem 16.

Note that in this result for jumping under black-box grounding we require that P ⊆ grb(Π).
In the case of conditional grounding, as we also discuss in the context of Theorem 19 on page
82, I can also be an answer set of the union of PSn with a non-ground subset of Π. We cannot
do this here, as it cannot be guaranteed that the respective rules have the same grounding in the
context of this union as in the context of Π.

From Theorem 17 (on page 66) and Corollary 10 we get the following result guaranteeing
the existence of a stable continuation of a computation.

Corollary 11. Let Π be a black-box groundable G-program, C = S0, . . . , Sn a black-box
computation for Π, such that Sn is stable, P a set of C-rules with P ⊆ grb(Π), I an answer
set of PSn ∪ P with ISn ⊆ I and I ∩ I−Sn = ∅ such that P I \ PSn is a normal, convex, and
absolutely tight C-program.

Then, there is a black-box computation C ′ = S0, . . . , Sn, Sn+1, . . . , Sm for Π where the
subsequence Sn, . . . , Sm is a stable computation, PSm = PSn ∪ P I , and ISm = I .

Proof. By Corollary 10 there is a black-box computation C ′ = S0, . . . , Sn, S
′
n+1, . . . , S

′
m for

Π, such that S′m is stable, PS′m = PSn ∪ P I and ISm = I . By Theorem 17, since Sn and
S′m are stable and P∆ = PS′m \ PSn is normal, convex, and absolutely tight, there is a stable
computation C′ = Sn, . . . , S

′
m such that Sm = S′m. Then, C ′′ = S0, . . . , Sn, Sn+1, . . . , Sm is

the desired black-box computation for Π.

For the special case where we start with the empty state, we can formulate the following
result in the spirit of Corollary 9.

Corollary 12. Let Π be a black-box groundable G-program and I an answer set of Π such that
grb(Π)I is a normal, convex, and absolutely tight C-program. Then, there is a rooted stable
computation C ′ = S0, . . . , Sn that has black-box succeeded for Π such that PSn = grb(Π)I ,
and ISn = I .

Proof. The result holds by Corollary 11 for C = 〈∅, ∅, ∅, {∅}〉.
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6.3.2 Conditional Grounding

In our alternative abstraction of grounding that we refer to as conditional grounding, the ground-
ing function does not consider the whole program for grounding each rule. Instead, the ground-
ing of a rule may only be influenced by the set of ground terms with respect to which it is
grounded (similar to how grounding was described in Section 3.3.2) and, additionally, by an
interpretation that is obtained by partial evaluation of the given program. The idea is inspired
by grounding tools that follow a similar principle, e.g., Gringo partially evaluates a program
and expands constructs such as conditions according to what atoms are true in an intermediate
interpretation. Computations using black-box grounding can be considered static in the sense
that when extending a computation by a successor state we can consider an arbitrary rule from
the overall grounding of the program. For conditional grounding we investigate a more dynamic
setting. As mentioned, this type of grounding depends on an interpretation. During the evolu-
tion of a computation, at each state S, we may only add rules that are obtained by grounding a
non-ground rule with respect to the state’s interpretation IS . In this sense, the grounding of a
non-ground rule may change as the computation advances. The framework we introduce guar-
antees that only rules that appear in the overall grounding of the program can be choosen at
each step and that every answer set can be reached by a so-called settled computation which
is, roughly, a computation in which the rule added in each state is obtained as instance of a
non-ground rule whose grounding will not change anymore.

While conditional grounding gives a fine-grained dynamic view on grounding and allows
for exploiting non-ground ASP solving for extending a computation (see Theorem 19 on page
82 and Section 7.4 on jumping), there are a few constructs of solver languages that cannot be
captured by this framework. We will discuss them at the end of the section.

Next we define groundability relations for non-ground programs under conditional ground-
ing. As we aim for a less abstract view than in the black-box case we need to make further
assumptions.

Definition 65. A conditional groundability relation is a groundability relation γc such that

• 〈Π, F 〉 ∈ γc implies 〈Π′, F ′〉 ∈ γc for all G-programs Π and Π′ with Π′ ⊆ Π and all sets
F and F ′ of ground terms with F ′ ⊆ F , and

• for every C-rule r, it holds that 〈{r}, F 〉 ∈ γc . ♦

In the context of conditional grounding, we assume that each G-rule is associated with a set
of ground atoms whose truth may influence the grounding of the rule with respect to a set of
ground terms. In particular, let ρ be a G-rule and F a set of ground terms. Then, there is a set
SBF

ρ of ground atoms called the sensitive base of ρ with respect F such that

• SBF
ρ = ∅ if ρ is a C-rule and

• SBF ′
ρ ⊆ SBF

ρ for every F ′ ⊆ F .

Example 33. Let ρ be an abstract non-ground rule corresponding to the following Gringo rule
from program ex14.gr of Example 14 on page 30:

1{strongest(X):bird(X)}1.

Then, for F1 = {tux} and F2 = {tux ,waldo} we have SBF1
ρ = {bird(tux )} and SBF2

ρ =
{bird(tux ), bird(waldo)}. �

Next we define grounding functions for conditional grounding.
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Definition 66. Let γc be a conditional groundability relation. An abstract conditional ground-
ing function for γc-groundable G-programs is a mapping grc(·, ·, ·) that assigns every G-rule ρ,
interpretation I , and set F of ground terms, for which 〈{ρ}, F}〉 ∈ γc holds, a set grc(ρ, I, F ) =
P of C-rules such that

(i) DP ⊆ B
F∪HU{ρ}
P({ρ}) ,

(ii) whenever ρ is a C-rule then grc(ρ, I, F ) = {ρ}, and

(iii) for every G-rule ρ, interpretations I1, I2, and sets F1, F2 of ground terms with I1|SB
F2
ρ

=

I2|SB
F2
ρ

, F1 ⊆ F2, and 〈{ρ}, F2〉 ∈ γc , we have

– grc(ρ, I1, F1) ⊆ grc(ρ, I2, F2), and

– grc(ρ, I1, F1) = grc(ρ, I2, F2) for F1 = F2.

For a G-program Π such that 〈Π, F 〉 ∈ γc holds, let grc(Π, I, F ) denote
⋃
ρ∈Π grc(ρ, I, F ). ♦

Similar as in Definition 61 (on page 74) for black-box grounding, Item (i) specifies how the
domain of a grounded rule may look like. Here, the domain of the grounding of a G-rule
consists only of atoms constructible from predicates and ground terms in the non-ground rule
and the terms in F . Moreover, also similar to the black-box case, Condition (ii) requires C-rules
to always coincide with their grounding. Item (iii) expresses that only the truth of atoms in the
sensitive base of a G-rule have influence on its grounding. Here, the second parameter of the
grounding function, interpretation I , determines which atoms are considered true. Moreover,
the condition characterises which effects their truth value may have on the grounding.

We assume the availability of a pre-evaluation function for G-programs.

Definition 67. Let γc be a conditional groundability relation. A partial evaluation function for
γc-groundable G-programs is a function I(·) that assigns every γc-groundable G-program Π an
interpretation I(Π). ♦

Intuitively, the result I(Π) of applying a pre-evaluation function on a G-program Π is an inter-
pretation that fully determines the truth of the atoms appearing in the sensitive base of each rule
from Π and hence determines how the program is grounded. We express that the truth values of
the atoms in the sensitive base of a G-rule under some interpretation corresponds to those under
I(Π) in the notion of settledness.

Definition 68. Let γc be a conditional groundability relation, I(·) a partial evaluation function
for γc-groundable G-programs, and Π an γc-groundable G-program.

A G-rule ρ is settled in Π under interpretation I (and I(·)-pre-evaluation) if ρ ∈ Π and
I|

SB
HUΠ
ρ

= I(Π)|
SB

HUΠ
ρ

.

Let grc(·, ·, ·) be an abstract conditional grounding function for γc-groundable G-programs.
Then, we call a rooted computation S0, . . . , Sn for grc(Π, I(Π),HUΠ) settled in Π (under I(·)-
pre-evaluation) if for every 0 ≤ i < n, there is some G-rule ρ that is settled in Π under ISi and
I(·)-pre-evaluation such that rnew (Si, Si+1) ∈ grc(ρ, I(Π),HUΠ). ♦

The intuition of a settled computation is that in each state only rules are added that are
obtained from grounding a non-ground rule ρ that is settled under the previous state’s interpre-
tation. The aim is to ensure that only rules are added in a computation that belong to the overall
grounding of the program. To guarantee that, we need to make further assumptions in the next
definition that characterises non-ground ASP languages with conditional grounding.
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Definition 69. A conditional non-ground semantics configuration is a triple

Sc = 〈γc , grc(·, ·, ·), I(·)〉,

where γc is a conditional groundability relation, grc(·, ·, ·) an abstract conditional grounding
function for γc-groundable G-programs, and I(·) a partial evaluation function for γc-groundable
G-programs such that for every γc-groundable G-program Π

(i) there is no rooted computation S0, . . . , Sn for grc(Π, I(Π),HUΠ) such that for some
ρ ∈ Π it holds that I(Π)|

SB
HUΠ
ρ
⊂ ISn |SB

HUΠ
ρ

and

(ii) there exists a rooted computation S0, . . . , Sn settled in Π with

– ISn = I(Π),

– each C-literal L ∈ B(r) for r ∈ PSn is convex, and

– for every rooted computation S′0, . . . , S
′
m that is complete for grc(Π, I(Π),HUΠ),

there is a computation S0, . . . , Sn, Sn+1, . . . , Sm such that Sm = S′m and for indices
n+1 ≤ i ≤ m, n+1 ≤ j ≤ m, 1 ≤ i′ ≤ m, and 1 ≤ j′ ≤ mwith rnew (Si−1, Si) =
rnew (S′i′−1, S

′
i′) and rnew (Sj−1, Sj) = rnew (S′j′−1, S

′
j′), we have that i < j iff

i′ < j′.

We call grc,Sc (Π) = grc(Π, I(Π),HUΠ) the grounding of Π (with respect to Sc). ♦

Condition (i) ensures that the interpretation I(Π) obtained by pre-evaluation contains all
atoms possibly influencing the grounding that can be derived from the rules in the grounding
of Π. Item (ii) ensures that there is a computation C settled in Π for computing the atoms in
I(Π). The intuition is that C = S0, . . . , Sn represents the pre-evaluation. The final condition
of Item (ii) states that from every complete rooted computation C ′ in the grounding one can
obtain another complete rooted computation C ′ with the same final state by evaluating the rules
in PSn first, i.e., C ′′ has C as prefix and the following states introduce the remaining rules in the
same order as in C ′. Summarising, Item (ii) expresses that I(Π) can always be computed in the
beginning of a computation.

The answer sets of a G-program using conditional grounding are defined via the grounding,
analogously to the case of black-box grounding.

Definition 70. Let Sc = 〈γc , grc(·, ·, ·), I(·)〉 be a conditional non-ground semantics configura-
tion and Π be a G-program that is γc-groundable. An interpretation I ⊆ BHUΠ

P(Π) is an answer set
of Π with respect to Sc if I ∈ AS (grc,Sc (Π)). ♦

For the remainder of the chapter we assume an implicit conditional non-ground semantics
configuration Sc = 〈γc , grc(·, ·, ·), I(·)〉, abbreviate grc,Sc (Π) by grc(Π), call a G-program
conditionally groundable if it is γc-groundable, and denote the set of all answer sets of a G-
program Π with respect to Sc by ASc(Π).

We also define the notions of Definition 54 (on page 60) for G-programs under conditional
grounding. Unlike the case of black-box grounding here we require computations for a G-
program to be settled.

Definition 71. Let Π be a conditionally groundable G-program and C = S0, . . . , Sn a compu-
tation settled in Π. Then, C is a conditional computation for Π. Moreover,

• C has conditionally failed for Π at step i if it has failed for grc(Π) at step i;

• is conditionally complete for Π if it is complete for grc(Π);

• is conditionally stuck in Π if it is stuck in grc(Π);
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• conditionally succeeded for Π if it has succeeded for grc(Π). ♦

The next result makes explicit that the pre-evaluated interpretation is part of every answer
set and determines the truth values for the sensitive bases of the rules of a G-program.

Proposition 4. Let Π be a conditionally groundable G-program and I ∈ ASc(Π). Then,
I(Π) ⊆ I and for each ρ ∈ Π it holds that I(Π)|

SB
HUΠ
ρ

= I|
SB

HUΠ
ρ

.

Proof. As I ∈ AS (grc(Π)), by Corollary 4 (on page 62), there is a rooted computation C ′ =
S′0, . . . , S

′
m that is complete for grc(Π) such that IS′m = I . By Condition (ii) of Definition 69,

there is a rooted computation C = S0, . . . , Sn, Sn+1, . . . , Sm with Sm = S′m such that ISn =
I(Π). As ISn ⊆ ISm , we have I(Π) ⊆ I .

Consider some ρ ∈ Π. It must hold that

I(Π)|
SB

HUΠ
ρ
⊆ I|

SB
HUΠ
ρ

.

By Condition (i) of Definition 69, as C is a rooted computation for grc(Π), it cannot hold that

I(Π)|
SB

HUΠ
ρ
⊂ I|

SB
HUΠ
ρ

.

Consequently,
I(Π)|

SB
HUΠ
ρ

= I|
SB

HUΠ
ρ

.

Also for conditional grounding, a soundness result follows as direct consequence of Theo-
rem 14 (on page 61).

Corollary 13. Let Π be a conditionally groundable G-program and C =S0, . . . , Sn a compu-
tation that has succeeded for grc(Π). Then, ISn is an answer set of Π.

Proof. As C has succeeded for grc(Π), by Theorem 14, ISn is an answer set of grc(Π). Thus,
by Definition 70 it is an answer set of Π.

As we target settled computations, unlike Corollary 8 (on page 76), the result establishing
the existence of a computation for every answer set takes not an arbitrary state of the grounding
as given but a settled computation C. We show that C can be expanded to reach the given
answer set.

Theorem 18. Let Π be a conditionally groundable G-program, C = S0, . . . , Sn a conditional
computation for Π, and I an answer set of Π with ISn ⊆ I and I ∩ I−Sn = ∅. Then, there is
a computation C ′ = S0, . . . , Sn, Sn+1, . . . , Sm that has conditionally succeeded for Π where
PSm = grc(Π)I and ISm = I .

Proof. By Theorem 15 (on page 61), there is a computation C ′′ = S0, . . . , Sn, Sn+1, . . . , Sm
that is complete for grc(Π) such that Sm is stable, PSm = grc(Π)I , and ISm = I . As C ′′ is
rooted, by Item (ii) of Definition 69, there is a computation C ′′′ = S′′′0 , . . . , S

′′′
k , S

′′′
k+1, . . . , S

′′′
m

such that Sm = S′′′m and

(†) for indices 1 ≤ j ≤ m, 1 ≤ e ≤ m, k + 1 ≤ j′ ≤ m, and k + 1 ≤ e′ ≤ m with
rnew (Sj−1, Sj) = rnew (S′′′j′−1, S

′′′
j′ ) and rnew (Se−1, Se) = rnew (S′′′e′−1, S

′′′
e′ ), we have

that j < e iff j′ < e′, where S′′′0 , . . . , S
′′′
k is a rooted computation settled in Π with

IS′′′k = I(Π) and each C-literal L ∈ B(r) for r ∈ PS′′′k is convex.
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Next, we construct a computation C ′ that has C as prefix and continues by adding C-rules
according to the order in C ′′′. Consider the sequence of C-rules

R′′′ = rnew (S′′′0 , S
′′′
1 ), . . . , rnew (S′′′m − 1, S′′′m)

and for simplicity let us write R′′′ = r′′′1 , . . . , r
′′′
m. Moreover, let R′ = r′1, . . . , r

′
m−n denote the

sequence of C-rules obtained from R′′′ by removing all C-rules occurring in PSn . Consider the
sequence C ′ = S′0, . . . , S

′
n, S

′
n+1, . . . , S

′
m of state structures, where S′i = Si for 1 ≤ i ≤ n and,

for n < i ≤ m,

S′i = 〈PS′i−1
∪ {r′i−n}, IS′i−1

∪ (I|Dr′
i−n

), I−S′i−1
∪ ((Dgrc(Π)I \ I)|Dr′

i−n
),Υ〉

where X ′ ∈ Υ iff X ′ = X ∪ ∆′, X ∈ ΥS′i−1
, ∆ ⊆ IS′i \ IS′i−1

, and r′i−n is not an external
support for X ′ with respect to IS′i . We will show that C ′ is the targeted computation.

First, we show that C ′ is a computation. Towards a contradiction, assume that for some
1 ≤ i ≤ m, S′i is not a successor of S′i−1. As S′0, . . . , S

′
n is a computation it must hold that

n < i. Let r denote the C-rule rnew (S′i−1, S
′
i), for which we have r = r′i−n and r = r′′′e′ for

some 1 ≤ e′ ≤ m. By construction of C ′ and since r ∈ PSm , the Conditions (i), (ii), (iii),
(v), and (vi) of Definition 52 on page 58 for being a successor of S′i−1 are fulfilled by S′i. It
must hold that Condition (iv) is violated, hence IS′i−1

6|= B(r). Then, since S′′′e′ is a successor of
S′′′e′−1, we know that IS′′′

e′−1
|= B(r). Hence, there must be some L ∈ B(r) such that

IS′′′
e′−1
|= L and IS′i−1

6|= L.

Note that, as PS′′′
e′−1
⊆ PS′i−1

, by construction of C ′ we have that

IS′′′
e′−1
⊆ IS′i−1

.

Consider the case that r ∈ PS′′′k . Then, L must be convex. Note that I |= L. This is a
contradiction to convexity of L, as we have

IS′′′
e′−1
⊂ IS′i−1

⊆ I.

Now, consider the case that r 6∈ PS′′′k . Then, we have k < e′ ≤ m. Since

IS′i−1
6|= L, IS′′′

e′−1
|= B(r), and IS′′′

e′−1
⊆ IS′i−1

,

there must be some atom
a ∈ IS′i−1

\ IS′′′
e′−1

such that a ∈ DL. Let h be the smallest index 1 ≤ h ≤ i− 1 such that

a ∈ IS′h .

It must hold that a ∈ Dr′ for r′ = rnew (S′h−1, S
′
h). Consider the case that r′ ∈ PS′′′

e′−1
. Then,

we have a contradiction to
a 6∈ IS′′′

e′−1
.

There must be some index j′ such that r′ = r′′′j′ with e′ ≤ j′ ≤ m. Moreover, as

r′ ∈ PS′i−1
\ PS′′′

e′−1
,

it must hold that r′ ∈ PSn . Let j be the index such that r′ = rnew (Sj−1, Sj) with 1 ≤ j ≤ n
and e the index such that r = rnew (Se−1, Se). As r 6∈ PSn , we have n < e and consequently
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j < e. As rnew (Sj−1, Sj) = rnew (S′′′j′−1, S
′′′
j′ ) and rnew (Se−1, Se) = rnew (S′′′e′−1, S

′′′
e′ ), by (†)

we get that j′ < e′, being a contradiction to e′ ≤ j′. It follows that C ′ is a computation.
Towards a contradiction assume C ′ is not settled in Π. Clearly, C ′ is a rooted computation

for grc(Π). Let i be the smallest index with 0 ≤ i < m such that there is no G-rule ρ that is
settled in Π under IS′i such that r = rnew (S′i, S

′
i+1) ∈ grc(ρ, I(Π),HUΠ). Note that, since C is

settled in Π and C is a prefix of C ′, we have that n ≤ i.
Consider the case that r ∈ PS′′′k . Then, we have r = r′′′i′ for some 1 ≤ i′ ≤ k. As

S′′′0 , . . . , S
′′′
k is settled in Π, we know that there is some ρ that is settled in Π under IS′′′

i′−1
such

that r ∈ grc(ρ, I(Π),HUΠ). Consequently, ρ ∈ Π and

IS′′′
i′−1
|
SB

HUΠ
ρ

= I(Π)|
SB

HUΠ
ρ

.

As PS′′′
i′−1
⊆ PS′i and by construction of C ′ we have that IS′′′

i′−1
⊆ IS′i . Therefore,

I(Π)|
SB

HUΠ
ρ
⊆ IS′i |SB

HUΠ
ρ

.

By Definition 69, as S0, . . . , S
′
i is a rooted computation for grc(Π) it cannot hold that

I(Π)|
SB

HUΠ
ρ
⊂ IS′i |SB

HUΠ
ρ

.

It must hold that
I(Π)|

SB
HUΠ
ρ

= IS′i |SB
HUΠ
ρ

.

This is a contradiction to ρ not being settled in Π under IS′i .
Finally, consider the case that r 6∈ PS′′′k . Consequently, we have k ≤ i. As r ∈ grc(Π),

there must be some ρ ∈ Π with r ∈ grc(ρ, I(Π),HUΠ). As ρ must not be settled in Π under
IS′i we get

IS′i |SB
HUΠ
ρ
6= I(Π)|

SB
HUΠ
ρ

.

From that, and since IS′k = I(Π) implies I(Π) ⊆ IS′i , we get

IS′i |SB
HUΠ
ρ
⊂ I(Π)|

SB
HUΠ
ρ

.

As S′0, . . . , S
′
i is a rooted computation for grc(Π), this is a contradiction to Condition (i) of

Definition 69.

Without a given prefix computation we get the following variant of Corollary 4 (on page 62)
for the conditional grounding setting.

Corollary 14. Let Π be a conditionally groundable G-program and I an answer set of Π.
Then, there is a computation S0, . . . , Sn that has conditionally succeeded for Π where PSn =
grc(Π)ISn and ISn = I .

Proof. The conjecture follows from Theorem 18 in case C = 〈∅, ∅, ∅, {∅}〉.

Next, we give our result for the jumping technique under conditional grounding (cf. Sec-
tion 7.4). Unlike in Corollary 10 (on page 76) for black-box grounding, based on this result, one
can join the rules that are already considered in a computation with a non-ground subset of the
overall program and use an ASP solver to obtain an extended computation from that.

Theorem 19. Let Π be a conditionally groundable G-program, C = S0, . . . , Sn a condi-
tional computation for Π, Π′ a set of G-rules settled in Π with respect to ISn , and I ∈
ASc(PSn ∪ Π′) with ISn ⊆ I and I ∩ I−Sn = ∅. Then, there is a conditional computation
C ′ = S0, . . . , Sn, Sn+1, . . . , Sm for Π such that Sm is stable, PSm = grc(PSn ∪Π′)I , and
ISm = I .
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Proof. At first, we show that C is settled in Π′′ = PSn ∪Π′. Towards a contradiction, assume it
is not and let i be the smallest index with 0 ≤ i < n such that there is no G-rule ρ settled in Π′′

under ISi with r ∈ grc(ρ, I(Π′′),HUΠ′′) for r = rnew (Si, Si+1). As r ∈ PSn and r is a C-rule,
we also have r ∈ Π′′ and r ∈ grc(r, I(Π′′),HUΠ′′). Then,

ISi |SB
HUΠ′′
r

6= I(Π′′)|
SB

HUΠ′′
r

because r is not settled in Π′′ under ISi . This is a contradiction, as r being a C-rule implies
SB

HUΠ′′
r = ∅. It follows that C is settled in Π′′. Therefore, by Theorem 18, as Π′′ is a condi-

tionally groundable G-program, there is a computation C ′ = S0, . . . , Sn, Sn+1, . . . , Sm settled
in Π′′ such that Sm is stable, PSm = grc(Π)I , and ISm = I . It remains to be shown that C ′

is settled in Π. Towards a contradiction, assume it is not and let j be the smallest index with
0 ≤ j < m such that there is no G-rule ρ′′ settled in Π under ISj with r′ ∈ grc(ρ′′, I(Π),HUΠ)
for r′ = rnew (Sj , Sj+1). AsC is settled in Π andC is a prefix ofC ′, we have that n ≤ j. There-
fore, it must hold that r′ 6∈ PSn . As C ′ is settled in Π′′, we have that r′ ∈ grc(ρ′, I(Π′′),HUΠ′′)
for some ρ′ ∈ Π′ where ρ′ is settled in Π′′ under ISj and in Π under ISn . We next show that

I(Π)|
SB

HUΠ
ρ′
⊆ ISj |SB

HUΠ
ρ′

.

Consider some a ∈ I(Π)|
SB

HUΠ
ρ′

. As ρ′ is settled in Π under ISn , we have

I(Π)|
SB

HUΠ
ρ′

= ISn |SB
HUΠ
ρ′

.

Therefore, it holds that a ∈ ISn . Then, since C ′ is a computation and n ≤ j we have that
a ∈ ISj . Therefore,

a ∈ ISj |SB
HUΠ
ρ′

and I(Π)|
SB

HUΠ
ρ′
⊆ ISj |SB

HUΠ
ρ′

.

Consider the case that r′ ∈ grc(ρ′, I(Π),HUΠ). Then, ρ′ must not be settled in Π under ISj .
Hence, we have ISj |SB

HUΠ
ρ′
6= I(Π)|

SB
HUΠ
ρ′

and therefore

I(Π)|
SB

HUΠ
ρ′
⊂ ISj |SB

HUΠ
ρ′

.

Now consider the case that r′ 6∈ grc(ρ′, I(Π),HUΠ). By Condition (iii) of Definition 66 (on
page 78), since HUΠ′′ ⊆ HUΠ, we get that r′ 6∈ grc(ρ′, I(Π),HUΠ′′). From that and since
r′ ∈ grc(ρ′, I(Π′′),HUΠ′′), again by Condition (iii), it must hold that

I(Π′′)|
SB

HUΠ′′
ρ′

6= I(Π)|
SB

HUΠ′′
ρ′

.

As I(Π)|
SB

HUΠ
ρ′

= ISn |SB
HUΠ
ρ′

and HUΠ′′ ⊆ HUΠ, by the definition of a sensitive base, also

I(Π)|
SB

HUΠ′′
ρ′

= ISn |SB
HUΠ′′
ρ′

.

It follows that I(Π′′)|
SB

HUΠ′′
ρ′

6= ISn |SB
HUΠ′′
ρ′

. As ρ′ is settled in Π′′ under ISj it holds that

I(Π′′)|
SB

HUΠ′′
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= ISj |SB
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,

which implies ISn |SB
HUΠ′′
ρ′

6= ISj |SB
HUΠ′′
ρ′

. Hence, since ISn ⊆ ISj , we get

ISn |SB
HUΠ′′
ρ′

⊂ ISj |SB
HUΠ′′
ρ′

.
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Consider some b ∈ ISj |SB
HUΠ′′
ρ′

such that b 6∈ ISn |SB
HUΠ′′
ρ′

. As

ISn |SB
HUΠ′′
ρ′

= I(Π)|
SB

HUΠ′′
ρ′

,

we get b 6∈ I(Π). Thus, it holds that b 6∈ I(Π)|
SB

HUΠ
ρ′

. Moreover, from b ∈ ISj |SB
HUΠ′′
ρ′

, we get

b ∈ ISj |SB
HUΠ
ρ′

by the definition of a sensitive base because HUΠ′′ ⊆ HUΠ. Therefore, as

I(Π)|
SB

HUΠ
ρ′
⊆ ISj |SB

HUΠ
ρ′

also in this case we get
I(Π)|

SB
HUΠ
ρ′
⊂ ISj |SB

HUΠ
ρ′

.

This is a contradiction by Condition (i) of Definition 69, as ρ′ ∈ Π and S0, . . . , Sj is a rooted
computation for grc(Π).

We can also extend our results for the existence of stable computations to G-programs under
conditional grounding.

Theorem 20. Let Π be a conditionally groundable G-program, C = S0, . . . , Sn a conditional
computation for Π such that Sn is stable, Π′ a set of G-rules settled in Π with respect to ISn , and
I ∈ ASc(PSn ∪Π′) with ISn ⊆ I and I ∩ I−Sn = ∅ such that P \PSn for P = grc(PSn ∪Π′)I

is a normal, convex, and absolutely tight C-program.
Then, there is a conditional computation C ′ = S0, . . . , Sn, Sn+1, . . . , Sm for Π such that

Si is stable for all n ≤ i ≤ m, PSm = grc(PSn ∪Π′)I , and ISm = I .

Proof. By Theorem 19, there is a computation C ′′ = S0, . . . , Sn, S
′
n+1, . . . , S

′
m settled in Π

such that S′m is stable,
PS′m = grc(Π′′)

I

for Π′′ = PSn ∪ Π′, and IS′m = I . By Theorem 17 (on page 66), there is a computation
C ′ = S0, . . . , Sn, Sn+1, . . . , Sm such that Sm = S′m and Si is stable for all n ≤ i ≤ m. Note
that, since C ′′ is settled in Π, we have PSm ⊆ grc(Π) and consequently C ′ is a computation for
grc(Π). It remains to be shown that C ′ is settled in Π. Let i be the smallest index with 0 ≤ i <
m such that there is no G-rule ρ′ that is settled in Π under ISi such that r = rnew (Si, Si+1) ∈
grc(ρ′, I(Π),HUΠ). Note that, since C is settled in Π and C is a prefix of C ′, we have that
n ≤ i. From that we get that r 6∈ PSn and consequently, since r ∈ grc(Π′′) it must hold that
there is some ρ ∈ Π′ with r ∈ grc(ρ, I(Π′′),HUΠ′′). As ρ is settled in Π under ISn we have
I(Π)|

SB
HUΠ
ρ

= ISn |SB
HUΠ
ρ

. From that and ISn ⊆ ISi we get

I(Π)|
SB

HUΠ
ρ
⊆ ISi |SB

HUΠ
ρ

.

As S0, . . . , Sn, Sn+1, . . . , Si is a rooted computation for grc(Π), we get by Condition (i) of
Definition 69 (on page 79) that

I(Π)|
SB

HUΠ
ρ

= ISi |SB
HUΠ
ρ

.

It follows that ρ is settled in Π under ISi . As a consequence, as noted above, it must hold that r 6∈
grc(ρ, I(Π),HUΠ). Hence, by Condition (iii) of Definition 66 (on page 78), as HUΠ′′ ⊆ HUΠ,
also r 6∈ grc(ρ, I(Π),HUΠ′′). By the same condition and since r ∈ grc(ρ, I(Π′′),HUΠ′′), we
get that I(Π)|

SB
HUΠ′′
ρ

6= I(Π′′)|
SB

HUΠ′′
ρ

.
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Assume there is some
a ∈ I(Π)|

SB
HUΠ′′
ρ

such that a 6∈ I(Π′′). From a ∈ SB
HUΠ′′
ρ we get by the definition of a sensitive base that

a ∈ SBHUΠ
ρ . Therefore, as a ∈ I(Π) and

I(Π)|
SB

HUΠ
ρ

= ISn |SB
HUΠ
ρ

,

we get a ∈ ISn . As ρ ∈ Π′′, a ∈ SB
HUΠ′′
ρ , a 6∈ I(Π′′), and ISm ∈ ASc(Π′′), we get by

Proposition 4 that a 6∈ ISm . This is a contradiction to a ∈ ISn as ISn ⊆ ISm . Consequently,
there must be some b ∈ I(Π′′)|

SB
HUΠ′′
ρ

such that b 6∈ I(Π).

From b ∈ SB
HUΠ′′
ρ we get by the definition of a sensitive base that b ∈ SBHUΠ

ρ . Moreover,
as b ∈ I(Π′′) and IS′m ∈ ASc(Π′′), by Proposition 4 it holds that b ∈ IS′m . As C ′ is a rooted
computation for grc(Π), by Condition (i) of Definition 69, it cannot hold that

I(Π)|
SB

HUΠ
ρ
⊂ IS′m |SB

HUΠ
ρ

.

As ISn ⊆ IS′m and I(Π)|
SB

HUΠ
ρ

= ISn |SB
HUΠ
ρ

, we get

I(Π)|
SB

HUΠ
ρ
⊆ IS′m |SB

HUΠ
ρ

.

It follows that
I(Π)|

SB
HUΠ
ρ

= IS′m |SB
HUΠ
ρ

.

As b ∈ IS′m |SB
HUΠ
ρ

this is a contradiction to b 6∈ I(Π).

Without a given prefix computation we get the following completeness result as a corollary.

Corollary 15. Let Π be a conditionally groundable G-program such that grc(Π)I is a normal,
convex, and absolutely tight C-program and I an answer set of Π. Then, there is a stable compu-
tationC ′ = S0, . . . , Sn that has conditionally succeeded for Π such thatPSm = grc(PSn ∪Π′)I

and ISm = I .

Proof. The result holds by Theorem 20 for C = 〈∅, ∅, ∅, {∅}〉.

Less abstract than black-box grounding, the framework for conditional grounding is still
quite flexible and can be seen as an abstraction for most features of ASP solver languages. Yet,
there exist programs in current solver languages that it cannot capture as illustrated in the next
example. However, in these cases, black-box grounding would be a safe fallback option.

Example 34. Consider the following program that guesses for every bird whether it flies or not
and derives the atom multipleFliers in the case that there are at least two birds that fly.

ex34a.dlv DLV

bird(tux) v bird(tweety).
bird(waldo).
flies(X) v -flies(X) :- bird(X).
multipleFliers :- 2 <= #count{X:flies(X)}.

Grounding by DLV produces the following output.
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ex34b.dlv DLV

bird(tux) v bird(tweety).
bird(waldo).
flies(waldo) v -flies(waldo).
flies(tux) v -flies(tux) :- bird(tux).
flies(tweety) v -flies(tweety) :- bird(tweety).
multipleFliers :- 2 <= #count{<tux:flies(tux)>,

<tweety:flies(tweety)>,
<waldo:flies(waldo)>} <= 2147483647.

The grounding of the aggregate in the rule deriving multipleFliers clearly depends
on the first two rules in the program that define the bird predicate although the rule does not
involve this predicate itself. In fact, DLV has to compute which terms could be relevant for the
local grounding of the rule based on the remainder of the program. Moreover, the grounding of
the rule does not only depend on atoms that must be true in every answer set as there are answer
sets where bird(tux) (or bird(tweety)) is true and answer sets where it is false. Hence,
a G-program that corresponds to ex34a.dlv would not be conditionally groundable.

Also Gringo offers similar functionality. In particular it allows for non-ground atoms
to appear in a weight or cardinality constraint without using conditions. Similar to DLV, a
local grounding is performed, where the ground terms used are computed from the remaining
program. The following program is a Gringo variant of the DLV example.

ex34c.gr Gringo

1{bird(tux),bird(tweety)}1.
bird(waldo).
{flies(X)} :- bird(X).
multipleFliers :- 2{flies(X)}.

The resulting Gringo grounding is the following program.

ex34d.gr Gringo

1{bird(tux),bird(tweety)}1.
bird(waldo).
{flies(tweety)} :- bird(tweety).
{flies(tux)} :- bird(tux).
{flies(waldo)}.
multipleFliers :- 2{flies(waldo),flies(tux),

flies(tweety)}.

The same observations as for DLV apply. Note that the rules

multipleFliers :- 2{flies(X):bird(X)}

or

multipleFliers :- 2{flies(X):flies(X)}

cannot be used as replacement of the final rule in program ex34b.gr as Gringo requires
predicates in conditions to be stratified. This restriction corresponds to the requirement that
atoms that influence grounding can be pre-evaluated deterministically in our conditional ground-
ing framework. �
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7 Stepping Answer-Set Programs

We develop a methodology for stepping answer-set programs based on the computation model
introduced in the previous chapter. Its main application is debugging but it is also beneficial in
other contexts as it may improve the understanding of a given answer-set program and can help
to improve the understanding of the answer-set semantics for beginners.

Step-by-step execution of a program is common practise in procedural programming lan-
guages, where developers can debug and investigate the behaviour of their programs in an in-
cremental way. The stepping technique introduced in this work shows how this popular form of
debugging can be applied to ASP, despite the genuine declarative semantics of answer-set pro-
grams that lacks a control flow. Moreover, it meets the requirements for a debugging approach
as sketched in Section 2.4. Note that we have published previous versions of the stepping tech-
nique for normal logic programs (Oetsch et al., 2010b, 2011c) and DL-programs (Oetsch et al.,
2012c) that are subsumed by the framework of this thesis.

Stepping is intended to be a practical support technique for answer-set programmers rather
than a purely theoretical approach. As a consequence, we assume the availability of a support
environment that assists a user in a stepping session. In this chapter, we sometimes refer to
potential features of such a system. In Chapter 8, we describe the SeaLion IDE that has
been developed in the context of this thesis and implements a prototype of a stepping support
environment.

In the following section, we introduce two example problems that we make use of in the re-
mainder of the thesis. In Section 7.2, we describe the general idea of stepping for ASP. There are
two major ways for navigating in a computation in our framework: performing steps, discussed
in Section 7.3, and jumps that we describe in Section 7.4. Building on these techniques, we
discuss methodological aspects of stepping for debugging purposes in Section 7.5 including de-
velopment guidelines for effective debugging. A number of debugging scenarios are presented
in Section 7.6. Section 7.7 concludes the chapter with general guidelines for ASP development
that also ease the use of stepping-based debugging.

7.1 Example Problems

Next, we introduce two problems related with grid puzzles that serve as running examples in
this and the following chapter. The first problem is maze generation, a problem where deciding
the existence of a solution is in NP. The other problem deals with a task in the setting of the
game minesweeper where the corresponding decision problem is ΣP

2 -hard.

7.1.1 Maze Generation Problem

The maze generation problem that we deal with has been a benchmark problem of the sec-
ond ASP competition (Denecker et al., 2009) to which it was submitted by Martin Brain. The
original problem description is available on the competition’s website:

http://dtai.cs.kuleuven.be/events/ASP-competition/
Benchmarks/MazeGeneration.shtml
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Figure 7.1: Left: A grid visualising an instance of the maze generation where white squares
represent empty cells, whereas grey squares are yet undefined. Right: A solution for the instance
on the left.

As the name of the problem indicates, the task we deal with is to generate a maze, i.e., a
labyrinth structure in a grid that satisfies certain conditions. In particular, we deal with two-
dimensional grids of cells where each cell can be assigned to be either an empty space or a wall.
Moreover, there are two (distinct) empty squares on the edge of the grid, known as the entrance
and the exit. A path is a finite sequence of cells, in which each distinct cell appears at most once
and each cell is horizontally or vertically adjacent to the next cell in the sequence.

Such a grid is a valid maze if it meets the following criteria:

1. Each cell is a wall or is empty.

2. There must be a path from the entrance to every empty cell (including the exit).

3. If a cell is on any of the edges of the grid, and is not an entrance or an exit, it must contain
a wall.

4. There must be no 2x2 blocks of empty cells or walls.

5. No wall can be completely surrounded by empty cells.

6. If two walls are diagonally adjacent then one or other of their common neighbours must
be a wall.

The maze generation problem is the problem of completing a two-dimensional grid in which
some cells are already decided to be empty or walls and the entrance and the exit are pre-
defined to a valid maze. An example of a problem instance and a corresponding solution maze
is depicted in Figure 7.1.

Next we describe the predicate schema that we use for ASP maze generation encodings.
The predicates col/1 and row/1 define the columns and rows in the grid, respectively. They
are represented by a range of consecutive, ascending integers, starting at 1. The positions of the
entrance and the exit are determined by predicates entrance/2 and exit/2, respectively,
where the first argument is a column index and the second argument is a row index. In a sim-
ilar manner, empty/2 and wall/2 determine which cells are empty or contain walls. For
example, the instance of Figure 7.1 can be encoded by the following facts:

exMazeInstance.gr Gringo

col(1..5). row(1..5).
entrance(1,2). exit(5,4). wall(3,3). empty(3,4).

Moreover, the solution in the figure could be represented by the following interpretation:
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Figure 7.2: Minesweeper configurations where the player has to guess.

Figure 7.3: Loosing a tricky Minesweeper game due to bad luck: In the first picture the player
has (correctly) identified all but one mines and marked them with a flag. Only two covered cells
remain - the chances to select the free cell are 1:1. The player chooses to uncover the upper
right cell (highlighted with a red box). The right picture shows the result—unfortunately the
cell contained a mine.

{wall(1,1), empty(1,2), wall(1,3), wall(1,4), wall(1,5),
wall(2,1), empty(2,2), empty(2,3), empty(2,4), wall(2,5),
wall(3,1), wall(3,2), wall(3,3), empty(3,4), wall(3,5),
wall(4,1), empty(4,2), empty(4,3), empty(4,4), wall(4,5),
wall(5,1), wall(5,2), wall(5,3), empty(5,4), wall(5,5)}

7.1.2 Fair Minesweeper

Minesweeper is a well-known computer game where the player has to uncover all cells in a
two-dimensional grid of initially covered cells that do not contain mines. If the user uncovers
a cell with a mine the game is over and the user has lost. The total number of mines is known.
Moreover, each uncovered cell that does not contain mines shows the number of neighbouring
cells that do contain mines, if any. Most implementations of minesweeper randomly create the
grid and determine the positions of the mines before the player uncovers the first cell. A quite
unsatisfying consequence of these implementations is that even if the player follows an optimal
strategy, there are situations in which no cell is guaranteed to be mine free, i.e., the user depends
on luck when uncovering further cells. For example, Figure 7.2 shows such scenarios. In the
first case, the user has uncovered a single cell that has one neighbouring mine. The chances
are 4:1 to select an empty cell among the cell’s neighbours. In the scenario on the right-hand
side chances are 1:1. While in these examples the player will probably just start a new game in
case a mine was picked, Figure 7.3 shows a setting in which the game was almost successfully
completed, however the last decision, offering a 1:1 chance, was wrong.

Our aim is creating a fair game variant, where the player is guaranteed that a cell being
uncovered does not contain a mine whenever this cell is possibly empty and there is no safe cell,
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Figure 7.4: The cell (4, 4) that is highlighted with a red box is a safe cell. The twos in cells
(2, 3) and (3, 2) in combination with the ones require that cells (3, 4) and (4, 3) are mines. As
cell (3, 3) has only two neighbouring mines, (4, 4) cannot contain one.

Figure 7.5: A fair minesweeper instance and its two solutions, indicating the safe cells (2, 1)
and (2, 4) by green boxes.

i.e., a yet covered cell for which it can be derived that it does not contain any mine given the
knowledge available to the player. For instance, the cell marked with a red box in Figure 7.4 is
a safe cell. Hence, we aim for an implementation where the assignment of mines may change
(for yet covered cells).

One particular task for implementing fair minesweeper could be to identify safe cells for a
given game situation. We want to develop an answer-set program for this task, i.e., each answer
set of the program joined with a set of facts that describes a minesweeper situation identifies a
safe cell, and, conversely, for each safe cell there is such a corresponding answer set.

Like in the case of maze generation, we next describe the predicate schema that we use
for encoding the fair minesweeper problem. First, the predicate cell/2 is used to define
the cells in the grid, where the first argument corresponds to the column and the second to
the row of the cell. Also here, columns and rows are represented by a range of consecutive,
ascending integers, starting at 1. The number of neighbouring mines of uncovered cells is
encoded using atoms of the predicate number/3 where the first two arguments determine the
cell and the third one a number between 0 and 8. Uncovered cells are identified by atoms of
the predicate uncovered/2. Moreover, the total number of mines is given as the argument of
nrOfMines/1.

Example 35. For example, the instance of Figure 7.5 can be encoded by the facts of program
ex35.gr:
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ex35.gr Gringo

cell(1..3, 1..4).
covered(2..3, 1..4).
number(1, 1, 1).
number(1, 2, 2).
number(1, 3, 2).
number(1, 4, 1).
nrOfMines(4).

�

An answer set of the targeted encoding should contain exactly one atom of the predicate
safeCell/2, indicating the position of a safe cell, e.g., for the example in Figure 7.5 there
should be two answer sets, one containing safeCell(2,1), the other safeCell(2,4).

7.2 General Idea

We introduce stepping for ASP as a strategy to identify mismatches between the intended se-
mantics of an answer-set program under development and its actual semantics. The general idea
is to monotonically build up an interpretation by, in each step, adding literals derived by a rule
that is active with respect to the interpretation obtained in the previous step. The process is in-
teractive in the sense that at each such step the user chooses the active rule to proceed with and
decides which literals of the rule should be considered true or false in the target interpretation.
Hereby, the user only adds rules he or she thinks are active in an expected or an unintended
actual answer set. The interpretation grows monotonically until it is eventually guaranteed to be
an answer set of the overall program, otherwise the programmer is informed why and at which
step something went wrong. This way, one can in principle without any backtracking direct the
computation towards the interpretation one has in mind. In debugging, having the programmer
in the role of an oracle is a common scenario (Shapiro, 1982). It is reasonable to assume that a
programmer has good intuitions on where to guide the search if there is a mismatch between the
intended and the actual behaviour of a program. We use the computation models of Chapters 5
and 6 to ensure that, if the interpretation specified in this way is indeed an answer set, the pro-
cess of stepping will eventually terminate with the interpretation as its result. Otherwise, it will
get stuck at some step where the user gets insight why the interpretation is not an answer set,
e.g., when a constraint becomes irrevocably active or no further rule is active that could derive
some desired literal.

Due to the declarativity of ASP, once one detects unintended semantics, it can be a tough
problem to manually detect the reason. Stepping is a method for breaking this problem into
smaller parts and structuring the search for an error. At the same time, relying on the user’s
intuition on which rules to proceed with, stepping can be guided such that the search quickly
results in new insights. The approach is inspired by stepping-based debugging for procedural
languages, where the behaviour of a program is analysed by executing statement by statement,
following the program’s control flow, and inspecting variable assignments. As the series of case
studies provided later in Section 7.6 demonstrates, the declarativity in ASP is not in discrepancy
with adapting a method from the imperative paradigm, but fruitful instead. On the one hand,
with stepping the user always has guidance for starting the search for bugs, and, on the other
hand, the interactive choice for the next rule makes stepping in ASP in a sense more flexible than
traditional stepping, where the control flow dictates which statements are to be considered next.
To still allow for fast debugging, procedural language debuggers allow for setting breakpoints,
i.e., marking statements until which execution is done automatically. We also have a similar
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feature in stepping for ASP, called jumping, that allows to jointly consider multiple rules which
are assumed to be correct. Hence, we can speed up stepping by only inspecting suspicious parts
of the program step-by-step.

7.3 Steps

By a step we mean the extention of a computation by a further state. We consider a scenario,
where a programmer has written an answer-set program in a solver language for which a G-
program Π is a groundable abstraction. Moreover, we assume that the programmer has obtained
some (black-box/conditional) computation for Π that is neither stuck in Π nor complete for
Π. For performing a step, one needs to find a successor state Sn+1 for Sn such that C ′ =
S0, . . . , Sn+1 is a (black-box/conditional) computation for Π.

In our stepping methodology we propose a sequence of three user actions to perform a step.
These user actions, described next, can be supported by an interactive debugging environment.
Intuitively, for finding a successor state, we suggest to

1. select a non-ground rule with active ground instances, then

2. choose an active ground rule among the instances of the non-ground rule, and

3. select for yet undefined atoms in the domain of the ground instance whether they are
considered true or false.

The approach allows for quickly finding a successor with the help of a debugging system.
In what follows we give a more detailed description of the three user actions and assume that
G-programs represent non-ground programs in the solver language and C-programs represent
corresponding groundings, following the abstraction approach of the previous chapters.

First, the user selects a non-ground rule ρ ∈ Π. In practise, this can be realised, e.g., by
directly selecting ρ in the editor in which the program was written. In a conditional grounding
setting, we require that ρ is settled in Π under ISn . A potential aid that could be given by a
debugging system for this user action is to automatically determine the subset of G-rules in
Π that have at least one C-rule r in their grounding such that could lead to a successor state,
i.e., r = rnew (Sn, S) for some successor S of Sn. Moreover, under conditional grounding, the
system can indicate which rules of Π are already settled under ISn .

In the second choice, the user selects either a rule r ∈ grb(ρ,Π) in the case of black-
box grounding or r ∈ grc(ρ, ISn , F ) under conditional grounding. As the ground instances
of ρ are not part of the original program Π, picking one requires a different approach as for
choosing ρ. Here, a debugging system can display the ground rules in a dedicated area and,
as before, restrict the choice of rule groundings of ρ to C-rules that could lead to a successor
state. Filtering techniques can be used to restrict the amount of the remaining C-rules, e.g., by
letting the user define partial assignments for the variables in ρ that determine a subset of the
considered instances.

In the third user action for performing a step, the programmer chooses the truth values
for the atoms in Dρ that are neither in ISn nor in I−Sn . This choice must be made in a way
such that there is a successor Sn+1 of Sn with PSn+1 = PSn ∪ {r}, ISn+1 = ISn ∪ ∆, and
I−Sn+1 = I−Sn ∪∆−, where ∆ contains the atoms the user chose to be true and ∆− the atoms
considered false. That is, Sn, ∆, and ∆− must fulfil the conditions of Definition 52 on page 58.
Here, the user needs only to ensure that Condition (v) of Definition 52 holds, i.e., ISn+1 |= B(r)
and ISn+1 |=∃ H(r), as the other conditions automatically hold once all unassigned atoms
have been assigned to ∆ and ∆−. In particular, note that the set of unfounded sets, ΥSn+1

can always be automatically computed following Condition (vi) of Definition 52 and does not
impose restrictions on the choice of ∆ and ∆−. A support system for stepping should check
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whether Condition (v) holds for the truth assignment specified by the user. Additional help can
be given by automatically assigning atoms to ∆ or ∆− whenever their truth values are the same
for all successor states that are based on adding r.

Example 36. As a first step for developing the maze-generation encoding, we want to identify
border cells and guess an assignment of walls and empty cells. Our initial program is ex36.gr,
given next.

ex36.gr Gringo

maxCol(X) :- col(X), not col(X+1).
maxRow(Y) :- row(Y), not row(Y+1).
border(1,Y) :- col(1), row(Y).
border(X,1) :- col(X), row(1).
border(X,Y) :- row(Y), maxCol(X).
border(X,Y) :- col(X), maxRow(Y).

wall(X,Y) :- border(X,Y), not entrance(X,Y),
not exit(X,Y).

{ wall(X,Y) : col(X): row(Y) : not border(X,Y) }.
empty(X,Y) :- col(X), row(Y), not wall(X,Y).

The first two rules extract the numbers of columns and rows of the maze from the input facts of
predicates col/1 and row/1. The next four rules derive border/2 atoms that indicate which
cells form the border of the grid. The final three rules derive wall/2 atoms for border cells
except entrance and exit, guess wall/2 atoms for the remaining cells, and derive empty/2
atoms for non-wall cells, respectively.

We use ex36.gr in conjunction with the facts in program exMazeInstance.gr as
shown on page 88 that determine the problem instance. Recall, that we use the + operator as a
means for referring to compositions of programs with explicit filename, i.e., we deal with the
program exMazeInstance.gr + ex36.gr in this case.

We start a stepping session with the computation C0 = S0 consisting of the empty state
S0 = 〈∅, ∅, ∅, {∅}〉. Following the scheme of user actions described above for performing a
step, we first look for a non-ground rule with instances that are active under IS0 . As IS0 =
∅, only the facts from exMazeInstance.gr have active instances. We choose the rule
entrance(1,2). In this case, the only (active) instance of the rule is (under black-box or
conditional grounding) identical to the rule, i.e., the fact:

entrance(1,2).

The only atom in the domain of the rule instance is entrance(1,2). Therefore, when per-
forming the final user action for a step one has to decide the truth value of this atom. In order to
fulfil Condition (v) of Definition 52 (on page 58), the rule head, i.e., entrance(1,2), must
be true in the successor state. Thus, our first step results in the computation C1 = S0, S1 where

S1 = 〈{entrance(1,2).}, {entrance(1,2)}, ∅, {∅}〉.

For the next step, we choose the rule

col(1..5).

from exMazeInstance.gr. Similar as in Example 31 on page 72, the rule has multiple
instances under Gringo grounding:
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col(1).
col(2).
col(3).
col(4).
col(5).

We select the instance col(5). Since the head of the rule must be true under the succes-
sor state, as before, atom col(5) must be considered true in the successor state of S1. The
resulting computation after the second step is C2 = S0, S1, S2, where

S2 = 〈{entrance(1,2).col(5).}, {entrance(1,2), col(5)}, ∅, {∅}〉.

Under IS2 a further rule in exMazeInstance.gr + ex36.gr has active instances:

maxCol(X) :- col(X), not col(X+1).

That is, it has the active instance

maxCol(5) :- col(5), not col(6).

that we choose for the next step. In order to ensure that Condition (v) of Definition 52 is
satisfied, we need to ensure that head and body are satisfied under the successor state. Hence,
atom maxCol(5) has to be considered true, whereas col(6) must be considered false. We
obtain the computation C3 = S0, S1, S2, S3, where

S3 = 〈{entrance(1,2).col(5).maxCol(5) :- col(5), not col(6).},
{entrance(1,2),col(5),maxCol(5)}, {col(6)}, {∅}〉. �

7.4 Jumps

If one wants to simulate the computation of an answer set I in a stepping session using steps
only, as many steps are necessary as there are active rules in the grounding under I . Although,
typically the number of active ground instances is much less than the total number of rules in
the grounding, still many rules would have to be considered. In order to focus on the parts
of a computation that the user is interested in we introduce a jumping technique for quickly
considering rules that are of minor interest, e.g., for rules that are already considered correct. We
say that we jump through these rules. By performing a jump, we mean to find a state that could
be reached by a computation for the program at hand that extends the current computation by
possibly multiple states. If such a state can be found, one can continue to expand a computation
from that while it is ensured that the same states could be reached by using steps only. Jumps
can be performed exploiting the results of Corollary 10 (on page 76) in the case of black-box
grounding and Theorem 19 (on page 82) for conditional grounding. In essence, jumping can be
done as follows.

1. Select rules that you want to jump through (i.e., the rules you want to be considered in the
state to jump to),

2. an auxiliary answer-set program is created that contains the selected rules and the active
rules of the current computations final state, and

3. a new state is computed from an answer set of the auxiliary program.

Next, we describe the items in more detail. We assume that a (black-box/conditionally)-ground-
able G-program Π and a (black-box/conditional)-computation S0, . . . , Sn for Π are given.
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The first user action essentially differs for the two types of grounding. In the black-box
case, one may only choose a subset P ⊆ grb(Π) of the black-box grounding of Π. Hence, an
implication for a stepping support environment is the necessity of means to select the ground
instances that form P . In order to keep memory resources and the amount of rules that have
to be considered by the user low, the system could split the selection of a C-rule for P in two
phases. First, the user selects a non-ground rule ρ, similar as in the first user action of defining
a step. Then, the system provides so far unconsidered rules of grb(ρ,Π) for selection, where
similar filtering techniques as sketched for the second user action for performing a step can be
applied. Under conditional grounding, we are not restricted to choose rules from the grounding
but can choose non-ground rules (in case they are settled) to be considered in the jump. Hence,
the user can select a set Π′ of G-rules settled in Π with respect to ISn . As Π′ ⊆ Π, this could,
e.g., be done in the editor in which the answer-set program is written.

The auxiliary program of the second item can be automatically computed. For black-box
testing it is a C-program Paux given by Paux = PSn ∪ P ∪ Pcon , where

Pcon ={← not a | a ∈ ISn} ∪
{← a | a ∈ I−Sn}

is a set of constraints that ensure that for every answer set I of Paux we have ISn ⊆ I and
I ∩ I−Sn = ∅. Under conditional testing, the auxiliary program is the G-program Πaux =
PSn ∪Π′ ∪ Pcon , where Pcon is identical to the black-box case.

After computing an answer set I of the auxiliary program, Corollary 10 and Theorem 19
ensure the existence of a (black-box/conditional) computation C ′ = S0, . . . , Sn, Sn+1, . . . , Sm
for Π such that Sm is stable and ISm = I . In the case of black-box grounding, PSm = PSn∪P I ,
and for conditional grounding, PSm = grc(PSn ∪Π′)I . In either case, the user can proceed with
further steps or jumps extending the computation S0, . . . , Sm as if Sm had been reached by steps
only.

Note that non-existence of answer sets of the auxiliary program does not imply that Π has
no answer sets as shown next.

Example 37. Consider the (black-box/conditionally) groundable G-program Π consisting of
the C-rules

a←
and

← not a

that has {a} as its unique answer set. Assume we want to jump through the second rule starting
from the computation C = 〈∅, ∅, ∅, {∅}〉 consisting of the empty state. Then, Paux = {←
not a} has no answer set. �

The example shows that jumping only makes sense when the user is interested in a computation
reaching an answer set of the auxiliary program. In case of multiple answer sets of the aux-
iliary program, the user could pick any or a stepping environment can choose one at random.
For practical reasons, the second option seems more preferable. On the one hand, presenting
multiple answer sets to the user can lead to a large amount of information that has to be stored
and processed by the user. And on the other hand, if the user is not happy with the truth value of
some atoms in an arbitrary answer set of the auxiliary program, he or she can use steps to define
the truth of these atoms before performing the jump.

Example 38. We want to continue computation C3 for program exMazeInstance.gr +
ex36.gr from Example 36. As we are interested in the final three rules of ex36.gr that
derive empty/2 and wall/2 atoms but these rule depend on atoms of predicate border/2,
entrance/2, and exit/2 that are not yet considered in C3, we want to jump through the
facts from exMazeInstance.gr and the rules
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maxCol(X) :- col(X), not col(X+1).
maxRow(Y) :- row(Y), not row(Y+1).
border(1,Y) :- col(1), row(Y).
border(X,1) :- col(X), row(1).
border(X,Y) :- row(Y), maxCol(X).
border(X,Y) :- col(X), maxRow(Y).

of program ex36.gr. Assume we use conditional grounding. Then, Π′ is formed by the
program exMazeInstance.gr and the rules above and the resulting auxiliary program is
given by:

ex38aux.gr Gringo

% P_S3
entrance(1,2).
col(5).
maxCol(5) :- col(5), not col(6).

% Pi’:
maxCol(X) :- col(X), not col(X+1).
maxRow(Y) :- row(Y), not row(Y+1).
border(1,Y) :- col(1), row(Y).
border(X,1) :- col(X), row(1).
border(X,Y) :- row(Y), maxCol(X).
border(X,Y) :- col(X), maxRow(Y).

% P_con
:- not entrance(1,2).
:- not col(5).
:- not maxCol(5).
:- col(6).

The program ex38aux.gr has the single answer set Iaux consisting of the atoms:

col(1), col(2), col(3), col(4), col(5), maxCol(5),
row(1), row(2), row(3), row(4), row(5), maxRow(5),
empty(3,4), wall(3,3), entrance(1,2), exit(5,4),
border(1,1), border(2,1), border(3,1), border(4,1),
border(5,1), border(1,2), border(5,2), border(1,3),
border(5,3), border(1,4), border(5,4), border(1,5),
border(2,5), border(3,5), border(4,5), border(5,5),

We obtain the new state S4 = 〈PS4 , Iaux , DPS4
\ Iaux , {∅}〉, where PS4 consists of the follow-

ing rules:

col(1). col(2). col(3). col(4). col(5).
row(1). row(2). row(3). row(4). row(5).
wall(3,3). empty(3,4). entrance(1,2). exit(5,4).
maxCol(5) :- col(5), not col(6).
maxRow(5) :- row(5), not row(6).
border(1,1) :- col(1), row(1).
border(2,1) :- col(2), row(1).
border(3,1) :- col(3), row(1).
border(4,1) :- col(4), row(1).
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border(5,1) :- col(5), row(1).
border(1,2) :- col(1), row(2).
border(5,2) :- row(2), maxCol(5).
border(1,3) :- col(1), row(3).
border(5,3) :- row(3), maxCol(5).
border(1,4) :- col(1), row(4).
border(5,4) :- row(4), maxCol(5).
border(1,5) :- col(1), row(5).
border(5,1) :- row(1), maxCol(5).
border(5,5) :- row(5), maxCol(5).
border(1,5) :- col(1), maxRow(5).
border(2,5) :- col(2), maxRow(5).
border(3,5) :- col(3), maxRow(5).
border(4,5) :- col(4), maxRow(5).
border(5,5) :- col(5), maxRow(5).

Theorem 19 (on page 82) ensures the existence of a conditional computation C4 = S0, S1, S2,
S3, . . . , S4 for program exMazeInstance.gr + ex36.gr. �

7.5 Methodology

In this section, we describe how the framework we have introduced can be used in a stepping
methodology. We describe stepping on three conceptual levels. Section 7.5.1 identifies the
iterative advancement of a computation as the technical level of our methodology that we refer
to as stepping cycle. In Section 7.5.2, we describe how our technique applies to debugging and
program analysis and the embedding of stepping in the ASP development context is subject of
Section 7.5.3. Finally, in Section 7.5.4, we compile practical guidelines for our methodology in
an illustrative chart. Application scenarios are provided later in Section 7.6.

7.5.1 Stepping Cycle

The iterative extension of a computation in the stepping methodology using steps and jumps can
be described as a stepping cycle that is depicted in Figure 7.6. It summarises how a user may
advance a computation along the lines of Sections 7.3 and 7.4, i.e., it provides a technical level
representation of the stepping methodology. We assume that a stepping session always starts
with the computation consisting of the empty state.

7.5.2 Program Analysis and Debugging Level Methodology

The main purpose for stepping in the context of this thesis is its application for debugging and
analysing answer-set programs. In this section, we describe how insight into a program is gained
using stepping. During stepping, the user follows his or her intuitions on which rule(s) to apply
next and which atoms to consider true or false. In this way, an interpretation is built up that
either is or is not an answer set of the program. In both cases, stepping can be used to analyse
the interplay of rules in the program in the same manner, i.e., one can see which rule instances
become active or inactive after each step or jump. In the case that the targeted interpretation is
an answer set of the program, the computation will never fail (in the sense of Definitions 54, 64,
and 71 on pages 60, 75, respectively 79) or get stuck and will finally succeed. It can, however,
happen that intermediate states in the computation are unstable (cf. Example 28 on page 64). For
debugging, stepping towards an answer set is useful if the answer set is unwanted. In particular,
one can see why a constraint (or a group of rules supposed to have a constraining effect) does
not become active. For instance, stepping reveals other active rules that derive atoms that make

97



7. STEPPING ANSWER-SET PROGRAMS

• black-box grounding

• conditional grounding

Current state S

Choose truth values for atoms in Dr

Compute answer set of auxiliary program

Choose a ground
instance r of ρ

Set P = ∅ if desired.
Add a set of ground
instances of ρ to P

Choose a set of non-ground rules

Choose a non-ground rule ρ

Choose a non-ground rule ρ

Initialise Computation

step

jump

jump

obtain a new state

set S to the empty state

Figure 7.6: Stepping cycle

some literal in the constraint false or rules that fail do derive atoms that activate the constraint.
Stepping towards an actual answer set of a program is illustrated in Example 39 on page 101.

In the case that there is an answer set that the user expects to be different, i.e., certain atoms
are missing or unwanted, it makes sense to follow the approach that we recommend for ex-
pected but missing answer sets, i.e., stepping towards the interpretation that the user wants to
be an answer set. Then, the computation is guaranteed to fail at some point, i.e., there is some
state in the computation from which no more answer set of the program can be reached. If
a stepping support environment automatically computes whether a computation has failed, the
user immediately realises which of his or her decisions for which rule lead to the absence of an-
swer sets that extend the current state’s interpretation. This will in many cases reveal a bug. In
other situations, the computation can already have failed before the bug can be found, e.g., the
computation can have failed from the beginning in case the program has no answer sets at all.
Nevertheless, the error can be found when stepping towards the intended interpretation. In most
cases, there will be either a rule instance that becomes active that the user considered inactive,
or the other way around, i.e., a rule instance never becomes active or is deactivated while the
computation progresses. Eventually, due to our completeness results in the previous chapter, the
computation will either get stuck or ends in an unstable state S such that no active external sup-
port for a non-empty unfounded set from ΥS is available in the program’s grounding. Stepping
towards an interpretation that is not an answer set of the overall program can be seen as a form
of hypothetical reasoning: the user can investigate how rules of a part of the program support
each other before adding a further rule instance would cause an inconsistency. Moreover, in
doing so one can disregard stability of the model that is built up as the stability condition of
the semantics is captured in the unfounded sets component of a state that does not influence the
choices the user has in stepping. Example 40 illustrates stepping towards an intended but non-
existing answer set for finding a bug. Another illustration of hypothetical reasoning is given in
Example 41 where a user tries to understand why an interpretation that is not supposed to be an
answer set is indeed no answer set.

As mentioned in Section 7.2, if one has a clear idea on the interpretation one expects to
be an answer set, stepping allows for building up a computation for this interpretation without
backtracking. In practise, one often lacks a clear vision on the truth value of each and every
atom with respect to a desired answer set. As a consequence, the user may require revising the
decisions he or she has taken on the truth values of atoms as well as on which rules to add to the
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computation. Hence, ideally, a stepping environment allows for retracting a computation to a
previous state, i.e., let the user select one of the states in the computation and continue stepping
from there. This way a tree of states can be built up, where every path from the root node to a
leaf node is a rooted computation.

7.5.3 Top-Level Methodology

Stepping must be understood as embedded in the programming and modelling process, i.e., the
technique has to be recognised in the context of developing answer-set programs. A practical
consequence of viewing stepping in the big picture are several possibilities for exploiting in-
formation obtained during the development of a program for doing stepping faster and more
accurate.

While an answer-set program evolves, the programmer will in many cases compute answer
sets of preliminary versions of the program for testing purposes. If this answer sets are persisted,
they can often be used as a starting point for stepping sessions for later versions of the program.
For instance, in case the grounding P of a previous version of a program is a subset of the current
grounding P ′ it is obvious that a successful computation C for P is also a computation for P ′.
Hence, the user can initiate a stepping session starting from C. Also in case that P 6⊂ P ′,
a stepping support system could often automatically build a computation that uses an answer
set of P (or parts of it) as guidance for deciding on the rules to add and the truth values to
assign in consecutive states. Likewise, (parts of) computations of stepping sessions for previous
versions of a program can be stored and re-used either as a computation of the current program if
applicable or for computing such a computation. The idea is that previous versions of a program
often constitute a part of the current version that one is already familiar with and “trusts” in. By
starting from a computation that already considers a well-known part of the program, the user
can concentrate on new and often more suspicious parts of the program.

7.5.4 The Stepping Guide

We next give advice how users can exploit stepping for analysing and debugging their code.
In particular, Figure 7.7 synthesises practical guidelines for stepping from the methodological
aspects of stepping described so far. It can be seen as a user-oriented view on the stepping
technique. Depending on the goals and the knowledge of the user, this guide gives concise
yet high-level suggestions on how to proceed in a stepping session. The upper area of the
figure is concerned with clarifying the best strategy for a stepping session and for choosing
the computation to start from. The lower area, on the other hand, guides the user through the
stepping process.

The diagram differentiates between four tasks a user may want to perform.

(i) Debugging a program that lacks a particular answer set: in this case, a good strategy
is to step and jump through rules that the user thinks should build up this answer set.
Eventually, the computation will fail and get stuck, indicating the reason for the bug.

(ii) Debugging a program that lacks any answer set: if an intended answer set is known, we
advise using the strategy of Item (i). Otherwise, the user should choose rules and truth
values during stepping that he or she thinks should be consistent, i.e., lead to a successful
computation. Also here, the computation is guaranteed to fail and get stuck, indicating a
reason for the inconsistency of the program.

(iii) Debugging a program with an unintended answer set: In case that the unintended answer
set I is similar to an intended but missing answer set I ′, thus if I is intuitively a wrong
version of I ′, then we recommend stepping towards I ′, following the strategy of Item (i).
Otherwise, the user can step towards I . Unlike in the previous cases, the computation is
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STEPPING
GUIDE
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Figure 7.7: Stepping guide
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guaranteed to eventually succeed. Here, stepping acts as a disciplined way to inspect how
the atoms of I could be derived and why no rule is preventing I from being an answer
set. Moreover, if I is intended to be a model of the program but not stable, then the
stepping process will reveal which rules provide external support for sets of atoms that
are supposed to be unfounded.

(iv) Analysing a program: In case that the user is interested in the behaviour of the program
under a particular interpretation, it is reasonable to step towards this interpretation. Oth-
erwise, rules and truth assignments should be chosen that drive the computation towards
states that the user is interested in.

Note that the procedures suggested above and in Figure 7.7 are meant as rough guidelines for the
inexperienced user. Presumably, good knowledge about the own source code and some practice
in stepping will give the user a good intuition on how to find bugs efficiently.

7.6 Use Cases

In this section we show application scenarios of stepping using our running examples.
The first scenario illustrates stepping towards an interpretation that is an answer set of the

program under consideration.

Example 39. We want to step towards an answer set of our partial encoding of the maze gen-
eration problem, i.e., of the program exMazeInstance.gr + ex36.gr. Therefore, we
continue our stepping session with computation C4, i.e., we start stepping from state S4 that we
obtained in Example 38. In particular, we want to reach an answer set that is compatible with
the maze generation solution depicted in Figure 7.1. To this end, we start with stepping through
the active instances of the rule

{wall(X,Y) : col(X): row(Y) : not border(X,Y)}.

Note that, as we have already considered all rule instances in S4 that may derive atoms of
predicates col/1, row/1, and border/2, the rule is settled in the overall program with
respect to IS4 . The only active instance of the rule is

{wall(2,2), wall(3,2), wall(4,2), wall(2,3), wall(3,3),
wall(4,3), wall(2,4), wall(3,4), wall(4,4)}.

Thus, we next choose a truth assignment for the atoms appearing in the instance’s choice atom.
Note that we do not need to decide for the truth value of wall(3,3) as it is already contained
in IS4 and therefore already considered true. As can be observed in Figure 7.1 on page 88,
among the remaining cells the rule deals with, only the one at position (3, 2) is a wall in our
example. Hence, we obtain a new state S5 from S4 by extending PS4 by our rule instance,
IS4 by wall(3,2), and I−S4 by wall(2,2), wall(4,2), wall(2,3), wall(4,3),
wall(2,4), wall(3,4), wall(4,4). As in S4, the empty set is the only unfounded set
in state S5. It remains to jump through the rules

wall(X,Y) :- border(X,Y), not entrance(X,Y), not exit(X,Y).

and

empty(X,Y) :- col(X), row(Y), not wall(X,Y).

that leads to the addition of instances
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wall(1, 1) :- border(1, 1), not entrance(1, 1), not exit(1, 1).
wall(2, 1) :- border(2, 1), not entrance(2, 1), not exit(2, 1).
wall(3, 1) :- border(3, 1), not entrance(3, 1), not exit(3, 1).
wall(4, 1) :- border(4, 1), not entrance(4, 1), not exit(4, 1).
wall(5, 1) :- border(5, 1), not entrance(5, 1), not exit(5, 1).
wall(5, 2) :- border(5, 2), not entrance(5, 2), not exit(5, 2).
wall(1, 3) :- border(1, 3), not entrance(1, 3), not exit(1, 3).
wall(5, 3) :- border(5, 3), not entrance(5, 3), not exit(5, 3).
wall(1, 4) :- border(1, 4), not entrance(1, 4), not exit(1, 4).
wall(1, 5) :- border(1, 5), not entrance(1, 5), not exit(1, 5).
wall(2, 5) :- border(2, 5), not entrance(2, 5), not exit(2, 5).
wall(3, 5) :- border(3, 5), not entrance(3, 5), not exit(3, 5).
wall(4, 5) :- border(4, 5), not entrance(4, 5), not exit(4, 5).
wall(5, 5) :- border(5, 5), not entrance(5, 5), not exit(5, 5).
empty(1, 2) :- col(1), row(2), not wall(1, 2).
empty(2, 2) :- col(2), row(2), not wall(2, 2).
empty(4, 2) :- col(4), row(2), not wall(4, 2).
empty(2, 3) :- col(2), row(3), not wall(2, 3).
empty(4, 3) :- col(4), row(3), not wall(4, 3).
empty(2, 4) :- col(2), row(4), not wall(2, 4).
empty(3, 4) :- col(3), row(4), not wall(3, 4).
empty(4, 4) :- col(4), row(4), not wall(4, 4).
empty(5, 4) :- col(5), row(4), not wall(5, 4).

to a new state S6. IS6 extends IS5 by the head atoms of these rules that are not yet in IS5 . Like-
wise, I−S6 extends I−S5 by the default negated atoms appearing in the rules that are not yet in
I−S5 . As ΥS6 = {∅} and no rule in exMazeInstance.gr + ex36.gr has further active
instances under IS6 , the computation S0, . . . , S6 has succeeded and hence IS6 is an answer set
of the program. �

In the next example, a bug is revealed by stepping towards an intended answer set.

Example 40. As a next feature, we (incorrectly) implement rules that should express that there
has to be a path from the entrance to every empty cell and that 2 × 2 blocks of empty cells are
forbidden.

ex40.gr Gringo

adjacent(X,Y,X,Y+1) :- col(X), row(Y), row(Y+1).
adjacent(X,Y,X,Y-1) :- col(X), row(Y), row(Y-1).
adjacent(X,Y,X+1,Y) :- col(X), row(Y), col(X+1).
adjacent(X,Y,X-1,Y) :- col(X), row(Y), col(X-1).
reach(X,Y) :- entrance(X,Y), not wall(X,Y).
reach(XX,YY) :- adjacent(X,Y,XX,YY), reach(X,Y),

not wall(XX,YY).

:- empty(X,Y), not reach(X,Y).
:- empty(X,Y), empty(X+1,Y), empty(X,X+1), empty(X+1,Y+1).

The first six rules formalise when an empty cell is reached from the entrance, and the two
constraints should ensure that every empty cell is reached and that no 2 × 2 blocks of empty
cells exist, respectively.

Assume that we did not spot the bug in the second constraint—in the third body literal the
term Y+1 was mistaken for X+1. This could be the result of a typical copy-paste error. It turns
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out that exMazeInstance.gr + ex36.gr + ex40.gr has no answer set. In order to
find a reason, one can start stepping towards an intended answer set. We assume that the user
already trusts the program exMazeInstance.gr + ex36.gr from Example 39. Hence,
he or she can reuse the computation S0, . . . , S6 for exMazeInstance.gr + ex36.gr as
starting point for a stepping session because all rules in PS6 are also ground instances of rules in
the extended program exMazeInstance.gr + ex36.gr + ex40.gr. Then, when the
user asks for rules with active ground instances a stepping support environment would present
the following rules:

adjacent(X,Y,X,Y+1) :- col(X), row(Y), row(Y+1).
adjacent(X,Y,X,Y-1) :- col(X), row(Y), row(Y-1).
adjacent(X,Y,X+1,Y) :- col(X), row(Y), col(X+1).
adjacent(X,Y,X-1,Y) :- col(X), row(Y), col(X-1).
reach(X,Y) :- entrance(X,Y), not wall(X,Y).

:- empty(X,Y), not reach(X,Y).
:- empty(X,Y), empty(X+1,Y), empty(X,X+1), empty(X+1,Y+1).

The attentive observer will immediately notice that two constraints are currently active. There
is no reason to be deeply concerned about

:- empty(X,Y), not reach(X,Y).

being active because the rule defining the reach/2 predicate—that can potentially deactivate
instances of the constraint—has not been considered yet. However, the constraint

:- empty(X,Y), empty(X+1,Y), empty(X,X+1), empty(X+1,Y+1).

contains only atoms of predicate empty/2 that has already been fully evaluated. Even if
empty/2 was only partially evaluated, an active instance of the constraint could not become
inactive in a subsequent computation for the sole ground that it only contains monotonic literals.
When the user inspects the single ground instance

:- empty(1,2), empty(2,2), empty(1,2), empty(2,3).

of the constraint the bug becomes obvious. A less attentive observer would maybe not imme-
diately realise that the constraint will not become inactive again. In this case, he or she would
in the worst case step through all the other rules before the constraint above remains as the last
rule with active instances. Then, at the latest, one comes to the same conclusion that X+1 has
to be replaced by Y+1. Moreover, a stepping environment could give a warning when there
is a constraint instance that is guaranteed to stay active in subsequent states. We refer to the
corrected version of program ex40.gr by ex40b.gr. �

Compared to traditional software, programs in ASP are typically very succinct and often
authored by a single person. Nevertheless, people are sometimes confronted with ASP code
written by another person, e.g., in case of joint program development, software quality inspec-
tion, legacy code maintenance, or evaluation of student assignments in a logic-programming
course. As answer-set programs can model complex problems within a few lines of code, it can
be pretty puzzling to understand someone else’s ASP code, even if the program is short. Here,
stepping can be very helpful to get insight into how a program works that was written by another
programmer, as illustrated by the following example.

Example 41. Imagine the full encoding of the maze generation encoding that is composed by
the programs ex36.gr + ex40b.gr and the constraints in ex41.gr, given next, has been
written by another author.
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Figure 7.8: A valid maze—but not a solution for the instance depicted in Figure 7.1 as that
requires (3, 4) to be an empty cell.

ex41.gr Gringo

:- exit(X,Y), wall(X,Y).
:- wall(X,Y), wall(X+1,Y), wall(X,Y+1), wall(X+1,Y+1).
:- wall(X,Y), empty(X+1;X-1,Y), empty(X,Y+1;Y-1),

col(X+1;X-1), row(Y+1;Y-1).
:- wall(X,Y), wall(X+1,Y+1), not wall(X+1,Y),

not wall(X,Y+1).
:- wall(X+1,Y), wall(X,Y+1), not wall(X,Y),

not wall(X+1,Y+1).

Note that the guess whether a cell is a wall or empty in the program ex36.gr + ex40b.gr
+ ex41.gr is realised by guessing for each non-border cell whether it is a wall or not and
deriving that a cell is empty in case we do not know that it is a wall. Moreover, observe that facts
of predicate empty/2 may be part of a valid encoding of a maze generation problem instance,
i.e., they are a potential input of the program. As a consequence, it seems plausible that the
encoding could guess the existence of a wall for a cell that is already defined to be empty by a
respective fact in the program input. In particular, there is no constraint that explicitly forbids
that a single cell can be empty and contain a wall. The encoding would be incorrect if it would
allow for answer sets with cells that are empty and a wall, as that would be inconsistent with
the maze generation problem specification. However, it turns out that the answer sets of the
program are exactly the intended ones. Let us find out why by means of stepping.

Reconsider the problem instance depicted in Figure 7.1 that is encoded in the program
exMazeInstance.gr. It requires that cell (3, 4) is empty. If it did not, the maze shown
in Figure 7.8 that contains a wall at cell (3, 4) would be a valid solution. We start a stepping ses-
sion for program exMazeInstance.gr + ex36.gr + ex40b.gr + ex41.gr, and
step towards an interpretation encoding the maze of Figure 7.8 to see what is happening if we
consider (3, 4) to be a wall despite the presence of fact empty(3,4). We can reuse the com-
putation C4 obtained in Example 38 whose final state S4 considers already the facts describing
the input instance and the rules needed for deriving border/2 atoms. As in Example 39, we
continue with a step for considering the ground instance of the rule

{wall(X,Y) : col(X): row(Y) : not border(X,Y)}.

that guesses whether non-border cells are walls. This time, instead of choosing wall(3,2)
to be true, we only add wall(3,4) to the atoms considered true. Then, for the resulting state
S′5, both empty(3,4) and wall(3,4) are contained in IS′5 . A visualisation of IS′5 if given
in the centre of Figure 7.9. In order to derive the remaining atoms of predicates empty/2 and
wall/2 we then jump through the rules

104



7.6. Use Cases

Figure 7.9: The stepping session described in Example 41: Starting from the maze generation
instance we step towards an interpretation encoding the wrong solution of Figure 7.8. After
stepping through the guessing rule the resulting interpretation contains atoms empty(3,4)
and wall(3,4) stating that cell (3, 4) is both a wall and empty.

wall(X,Y) :- border(X,Y), not entrance(X,Y), not exit(X,Y).

and

empty(X,Y) :- col(X), row(Y), not wall(X,Y).

to obtain state S′6, where IS′6 is illustrated in the right subfigure of Figure 7.9.
Now, the user sees that constraint

:- empty(X,Y), not reach(X,Y).

has active instances. This comes as no surprise as the rules defining reachability between empty
cells have not been considered yet. We decide to do so now and initiate a jump through the rules

adjacent(X,Y,X,Y+1) :- col(X), row(Y), row(Y+1).
adjacent(X,Y,X,Y-1) :- col(X), row(Y), row(Y-1).
adjacent(X,Y,X+1,Y) :- col(X), row(Y), col(X+1).
adjacent(X,Y,X-1,Y) :- col(X), row(Y), col(X-1).
reach(X,Y) :- entrance(X,Y), not wall(X,Y).
reach(XX,YY) :- adjacent(X,Y,XX,YY), reach(X,Y),

not wall(XX,YY).

We obtain the new state S′7 and observe that under interpretation IS′7 the constraint still has an
active instance, namely

:- empty(3,4), not reach(3,4).

Obviously, the atom reach(3,4) has not been derived in the computation. When inspecting
the rules defining reach/2 it becomes clear why the answer sets of the encoding are correct:
the atom reach(X,Y) is only derived for cells that do not contain walls. Consequently, when-
ever there is an empty cell which was guessed to contain a wall it will be considered as not
reachable from the entrance. As every empty cell has to be reachable, a respective answer-set
candidate will be eliminated by an instance of the constraint

:- empty(X,Y), not reach(X,Y).

Although the encoding of the maze generation problem is correct one could consider it to be
not very well designed. Conceptually, the purpose of the constraint above is forbidding empty
cells to be unreachable from the entrance and not forbidding them to be walls. Moreover, if one
would replace the rules
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reach(X,Y) :- entrance(X,Y), not wall(X,Y).
reach(XX,YY) :- adjacent(X,Y,XX,YY), reach(X,Y),

not wall(XX,YY).

by

reach(X,Y) :- entrance(X,Y), empty(X,Y).
reach(XX,YY) :- adjacent(X,Y,XX,YY), reach(X,Y),

empty(XX,YY).

which seem to be equivalent in the terms of the problem specification, the program would not
work. A more natural encoding would be to explicitly forbid empty cells to contain walls either
by an explicit constraint or a modified guess where non-border cell is guessed to be either empty
or contain a wall but not both. �

Example 42. The program ex42.gr, given in Figure 7.10, provides an encoding for the fair-
minesweeper problem, i.e., it identifies safe cells in a given game situation. The encoding is
based on the saturation technique (Eiter and Gottlob, 1995) which is a strategy for expressing
problems in ΣP

2 using disjunctive logic programs. While the method provides a systematic ap-
proach for encoding complex problems, arguably, this technique results in programs that are
relatively difficult to understand, especially for novices of the stable-model semantics. Con-
fronted with such an encoding, it is helpful have tools to examine its behaviour for learning how
it works. Thus, we explain ex42.gr by means of stepping.

For our examination we will use the game setting depicted in Figure 7.5. Joining ex42.gr
with program ex35.gr consisting of facts that encode the instance (given in Section 7.1.2)
yields two answer sets, one indicating that (2, 1) is a safe cell, while (2, 4) is identified to be
safe by the other answer set. Thus, the results are as intended. We start a stepping session
by jumping through all the facts in ex35.gr. Based on those facts, the first eight rules in
ex42.gr compute which cells are neighbours, the total number of covered cells, the number
of covered neighbours of uncovered cells, and further auxiliary information that is uniquely
defined by the instance facts. Thus, we can safely jump through these rules. The rule

1{safeCell(X,Y):covered(X,Y)}1.

allows for choosing one of the covered cells as a candidate for being a safe cell. As a first case
we will consider the cell (3, 1) to be the candidate cell, despite knowing that (3, 1) is no safe
cell for the given instance, i.e., there is an assignment of the yet covered cells to be either empty
or mines that respects the minesweeper specifications where (3, 1) is assigned a mine. Note that
there is also a valid assignment such that (3, 1) is empty. We perform the respective step and
thereby consider atom safeCell(3,1) to be true. When stepping through the disjunctive
rule

mine(X,Y)|empty(X,Y) :- covered(X,Y).

one can consider a covered cell (X,Y ) to be a mine, empty, or both. While the latter seems
to be counterintuitive from a knowledge representational point of view, indeed every answer
set of the encoding has to contain both a mine/2 and an empty/2 atom, for every cov-
ered cell. This aspect is natural for saturation encodings and one reason why they are not
always easy to understand. But for now, in our stepping session, let us consider an interpre-
tation that contains either a mine/2 and an empty/2 atom for each uncovered cell by step-
ping through every active instance of the disjunctive rule. In doing so, we describe a valid
minesweeper configuration, placing exactly as many mines in neighbouring fields as indicated
by the respective number in a cell and overall exactly 4 mines as required in the chosen prob-
lem instance. In particular, let us choose the candidate cell (3, 1) and cells (2, 2), (2, 3), and
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ex42.gr Gringo

% establish neighbourhood and count covered
neighbour(X,Y,NX,NY) :- cell(X,Y),cell(NX,NY),|NX-X|<=1,

|NY-Y|<=1,|NX-X|+|NY-Y|>=1.
potentialNrOfNeighbours(1..8).
nrCols(X) :- cell(X,Y),not cell(X+1,Y).
nrRows(Y) :- cell(X,Y),not cell(X,Y+1).
nrOfCells(X*Y) :- nrCols(X),nrRows(Y).
cellIndex(1..X) :- nrOfCells(X).

nrOfCovered(N) :- N={covered(X,Y):cell(X,Y)}.
nrOfCoveredNeighbours(X,Y,N) :- number(X,Y,_),

N={covered(NX,NY):neighbour(X,Y,NX,NY)}.

% guess candidate
1{safeCell(X,Y):covered(X,Y)}1.

% guess mines
mine(X,Y) | empty(X,Y) :- covered(X,Y).

atLeastNCoveredNeighboursMines(X,Y,N) :- number(X,Y,_),
potentialNrOfNeighbours(N),

N {mine(NX,NY):neighbour(X,Y,NX,NY):covered(NX,NY)}.
atLeastNCoveredNeighboursFree(X,Y,N) :- number(X,Y,_),

potentialNrOfNeighbours(N),
N {empty(NX,NY):neighbour(X,Y,NX,NY):covered(NX,NY)}.

atLeastNCoveredMines(N) :- cellIndex(N), nrOfCovered(NC),
N<=NC,N{mine(X,Y):covered(X,Y)}.

atLeastNCoveredFree(N) :- cellIndex(N), nrOfCovered(NC),
N<=NC, N{empty(X,Y):covered(X,Y)}.

% spoiling conditions
spoil :- mine(X,Y),empty(X,Y).
spoil :- number(X,Y,N),

atLeastNCoveredNeighboursMines(X,Y,N+1).
spoil :- number(X,Y,N),nrOfCoveredNeighbours(X,Y,NCN),

atLeastNCoveredNeighboursFree(X,Y,(NCN-N)+1).
spoil :- nrOfMines(N),atLeastNCoveredMines(N+1).
spoil :- nrOfMines(N),nrOfCovered(NC),

atLeastNCoveredFree((NC-N)+1).
spoil :- safeCell(X,Y), empty(X,Y).

% spoiling
mine(X,Y) :- covered(X,Y),spoil.
empty(X,Y) :- covered(X,Y),spoil.

:- not spoil.

Figure 7.10: Program ex42.gr encodes the fair-minesweeper problem.
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(3, 2) to contain mines and the remaining covered fields to be empty. We can then step or
jump through the rules defining the predicates atLeastNCoveredNeighboursMines/3,
atLeastNCoveredNeighboursFree/3, atLeastNCoveredMines/1, and the pred-
icate atLeastNCoveredFree/1. In doing so we have no more decisions to take as these
rules only depend on predicates that have already been evaluated in our computation. At this
point, the computation gets stuck in a state, that we later refer to as S1, where the only remaining
active instance is the constraint

:- not spoil.

Inspecting this constraint, one sees that the atom spoilmust be present in any potential answer
set of the encoding. Moreover, the rules

mine(X,Y) :- covered(X,Y),spoil.
empty(X,Y) :- covered(X,Y),spoil.

enforce that if spoil is true then every covered cell has to be considered both as containing a
mine and as being empty. Thus, we restart the stepping session from the point where we added
instances of the rule

mine(X,Y)|empty(X,Y) :- covered(X,Y).

This time, we consider both head atoms to be true for every covered cell. As before, after
deciding truth for mine/2 and empty/2 predicates, there is no choice left when stepping
through the remaining rules. After stepping until no more remaining rule is active, we end up in
a state, S2, with 770 unfounded sets. Hence, the interpretation that was built up, IS2 , is a model
of the program but no answer set. In the light of Definition 34 on page 41, the interpretation that
we reached in the previous stepping session, IS1 , prevents IS2 from being an answer set because
it is a proper subset of IS2 and, IS1 ,IS2 , and the program satisfy Condition (?) of Definition 34
as the constraint

:- not spoil.

is not part of the FLP-reduct of the program with respect to IS2 .
We restart the stepping session for the second time, but now consider (2, 1) as candidate

for a safe cell for which we know that it actually is one. Again, we first try to establish a valid
minesweeper configuration with either a mine/2 or an empty/2 atom true for each covered
cell. Thus, as (2, 1) is a safe cell, we can only choose a configuration in which (2, 1) is empty.
As a consequence, the rule instance

spoil :- safeCell(2,1), empty(2,1).

becomes active and spoil has to be derived. When continuing the computation we will end
up in some stuck state S3, as the rules

mine(X,Y) :- covered(X,Y),spoil.
empty(X,Y) :- covered(X,Y),spoil.

become active for each covered cell (X,Y ) that would derive the atoms empty(X,Y) and
mine(X,Y).

Now we restart again, keeping (2, 1) as safe cell candidate, and try to reach an invalid mine-
sweeper configuration without deriving spoil, i.e., an assignment for the covered cells such
that for none of them both the mine/2 and the empty/2 atom are true but the minesweeper
constraints are violated, i.e., the total number of mines or the given number of neighbouring
mines is violated for some cell. Then, however, some instance of the rules
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spoil :- number(X,Y,N),
atLeastNCoveredNeighboursMines(X,Y,N+1).

spoil :- number(X,Y,N),nrOfCoveredNeighbours(X,Y,NCN),
atLeastNCoveredNeighboursFree(X,Y,(NCN-N)+1).

spoil :- nrOfMines(N),atLeastNCoveredMines(N+1).
spoil :- nrOfMines(N),nrOfCovered(NC),

atLeastNCoveredFree((NC-N)+1).

that detect invalid minesweeper configurations becomes active and forces spoil to be true.
Consequently, we will end up in some stuck state S4 again.

Finally, we step towards the interpretation that is obtained by applying all active rules where
(2, 1) is considered the safe cell candidate and for every covered cell both the mine/2 and
the empty/2 atom are chosen to be true. This time, the computation succeeds, i.e., we arrive
at a state, let us call it S5, where no further rule is active and, unlike S2, we do not have any
non-empty unfounded set left. The explanation why IS5 is an answer set, in contrast to IS2 ,
can be given using our example stepping sessions to the stuck states S3 and S4. We have seen
that for S2 there exists state S1 that corresponds to a valid minesweeper configuration where
the candidate cell is a mine and IS1 prevents IS2 from being an answer set. For S5, there is
no such preventing state like S1 is for S2 because there is no valid minesweeper configuration
where the candidate cell is a mine. Trying to step to a preventing state will result in a stuck
state like S3 where the candidate cell is considered empty or a stuck state like S4 where one of
the minesweeper constraints is violated. In both cases the rule instance that causes the state to
be stuck is part of the FLP-reduct of the program with respect to IS5 . It is the essence of the
saturation technique that for a desired solution like IS5 no state like S1 can be reached in which
the constraint

:- not spoil.

that is not part of the FLP-reduct with respect to IS5 is the only unsatisfied rule.
We do not claim that an ASP novice will learn the saturation technique by himself or her-

self by just applying stepping in an uneducated way. Nevertheless, stepping provides an ASP
instructor with the means to give students insight into partial assignments for a saturation en-
coding. This potentially leads to a better comprehension of its behaviour that is sometimes
perceived as a form of black magic when one just looks at the resulting answer sets. �

7.7 General Guidelines for Development

As a debugging technique, stepping can help in many situations where tracking a bug manually
is cumbersome. It is natural to ask how big an answer-set program can get such that it is
still suitable for stepping. Due to the vague nature of the question, answers cannot be clearly
established. From a complexity theoretic point of view, the problems that need to be solved in a
stepping support environment for and after performing a step or a jump, e.g., computing a new
state from a jump, determining rules with active instances, or checking whether a computation
has failed, are not harder than computing an answer set of the program under development.
Under this observation, our technique appears to be an appropriate approach for debugging ASP.
However, in some applications, solving times of multiple minutes or even hours are acceptable.
Certainly, having waiting times of these lengths for individual debugging steps is undesirable.
On the positive side, often, following a few guidelines during the development of an answer-set
program can significantly reduce the likelihood of introducing bugs, the amount of information
the user has to deal with, and also the computational resources required for stepping. Next,
we summarise some measures in this line, some of which were already discussed in a paper by
Brain et al. (2009) who explored pragmatic methodologies for ASP development.
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Make Encodings Scalable and Start with Small Examples

A developer should aim for a program that can be scaled in the sense that the size of its grounding
and its answer sets depends on parameters like constants or input programs. A very common
setting is to write an answer-set program as a uniform problem-encoding, i.e., the program itself
is fixed and able to solve every instance of a computational problem, where solving a concrete
instance is realised by joining the program with a set of facts that encode the instance as input.
Typically, when using problem instances that can be considered to be small in their respective
domain, also their encoding and the resulting grounding as well as answer sets are small. It
is recommended to continuously test the evolving program with a few small example input
programs or parameters. If the examples represent different corner cases the chances are good
that bugs are detected early on as witnessed by an evaluation of the small-scope hypothesis for
ASP (Oetsch et al., 2012a). The hypothesis states that a high proportion of errors can be found
by testing a program for all test inputs within some small scope. Although making a program
scalable is often a good design choice, the decision to do so should be evaluated on a case-
by-case basis, as it sometimes leads to less natural, respectively, more complicated problem
encodings. As an example, consider programs dealing with Sudoku. This game is based on a
9 × 9 grid of cells. While it is possible to base one’s encodings on some generalisation of the
game that works with n × n grids, it might not be worth the effort if one will in practise only
deal with standard 9× 9 Sudokus.

Visualise Answer Sets and Stepping States

Answer-set solvers provide their output in a textual format, representing answer sets by a list
of its atoms. As this type of representation is often cumbersome for the user to interpret,
tools like Kara (cf. Section 8.2.3) (Kloimüllner et al., 2013), ASPVIZ (Cliffe et al., 2008),
IDPDraw (Wittocx, 2009), or Lonsdaleite (Smith, 2011) were developed that allow for
visualising interpretations. These tools allow for concisely specifying graphical representations
of interpretations. Examples for this type of visualisation include the figures for the maze gener-
ation and fair minesweeper use cases in this thesis that were created using the Kara system that
is part of the SeaLion IDE presented in the next chapter. Such visualisations allow for quickly
understanding which solution is encoded in an interpretation and, consequently, to easily spot
when an answer set differs from what is expected. It is advisably to specify visualisations in a
way that also interpretations that are not supposed to be answer sets have a meaningful graphical
representation. For example consider Figures 7.1 and 7.9 on pages 88 and 105. Cells for which
there is no empty/2 or wall/2 atom are visualised by a grey square although in an expected
answer set every cell has to have either exactly one of these atoms. Likewise, we also visualise
cells that have both an empty/2 and a wall/2 atom, as shown for cell (3, 4) in Figure 7.9.
This ability to visualise partial or wrong solutions can be exploited in stepping sessions for visu-
alising interpretation IS after reaching a new state S following a step or jump. Having a visual
feedback allows a user to easily capture the semantic essence of the current state in a stepping
session.

Test often and Keep Intermediate Information

“Test early, test often” is a piece of advice that is often given in the context of software engi-
neering and arguably applies also for developing answer-set programs. If the program is run for
the first time when it is already supposed to cover much of the intended functionality, the likeli-
hood for having a bug is quite high, there are no parts of the program that the user can already
trust, and one would need to start stepping from scratch, as there is no information available
that allows for generating an initial computation. If the user regularly computes answer sets
after adding some new functionality, he or she will recognise wrong behaviour earlier. As a
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consequence, smaller parts of the program need to be searched for an error, answer sets and
stepping sessions of previous versions of the program can be stored and reused for subsequent
stepping sessions, and already tested parts of the program can be considered as less suspicious
for containing a bug which allows for focusing only on new program parts.

7.8 Comparison to other Debugging Approaches for ASP

Previous approaches for debugging answer-set programs have been discussed in Section 2.3.
Here, we focus on their differences to the stepping method proposed in this work and, for do-
ing so, categorise them with respect to different aspects. In general, stepping can be seen as
orthogonal to the basic ideas of all the other approaches we discussed. That is, it is reasonable
to have a development kit that supports stepping and other debugging methods simultaneously.
Nevertheless, stepping as presented in this work, overcomes current restrictions regarding lan-
guage restriction and practical applicability, as discussed in Section 2.4, that previous methods
still face.

For the comparison, we first examine how different approaches behave with respect to the
particularities of ASP as discussed in Section 2.2. That is, how they are dealing with, one the
one hand, non-determinism in the sense that a program may have multiple answer sets, and,
on the other hand, with the declarative flavour of ASP. Regarding both aspects, stepping has an
exceptional position due to its interactive flavour. Approaches that focus on actual answer sets
of the program to be debugged include the algorithm by Brain and De Vos (2005) that aims at
explaining the presence of atoms in an answer set. Also, justifications (Pontelli et al., 2009) are
targeted towards explanations in a given actual answer set, with the difference that they focus
on a single atom but can not only explain their presence but also their absence. The approach by
Caballero et al. (2008) can also be seen to target a single actual answer set. However, handling
non-determinism is irrelevant in their setting, as they target a language fragment for which every
program is guaranteed to have exactly one answer set. Due to their focus on actual answer sets of
the debugged program, the methods mentioned so far cannot be applied on (erroneous) programs
without any answer set. The previous meta-programming based debugging technique (Gebser
et al., 2008; Pührer, 2007) and follow-up works (Oetsch et al., 2010a; Polleres et al., 2013) deal
with a single intended but non-actual answer set of the debugged program. The question why
a set of atoms does not jointly occur in any answer set, as raised by Brain and De Vos (2005),
is related to the work of Wittocx et al. (2009) on debugging first-order theories with inductive
definitions Denecker (2000); Denecker and Ternovska (2008). In their approach, the user can
specify a class of intended semantic structures which are not preferred models of the theory at
hand (corresponding to actual answer sets of the program to be debugged in ASP terminology).

Syrjänen’s diagnosis technique (Syrjänen, 2006) considers the setting when a program has
no answer set at all but does not consider intentions of the user on how an answer set should
look like. In contrast, stepping does not require actual or intended answer sets as a prerequi-
site, as the user can explore the behaviour of his or her program under different interpretations
that may or may not be extended to answer sets by choosing different rules instances. In the
interactive setting summarised in Figure 7.6 on page 98, where one can retract a computation
to a previous state and continue stepping from there that is also implemented in SeaLion, a
stepping session can thus be seen as an inspection across arbitrary interpretations rather than
an inquiry about a concrete set of actual or non-existent answer sets. Nevertheless, if one has
a concrete interpretation in mind, the user is free to focus on that. The ability to explore rule
applications for partial interpretations that cannot become answer sets amounts to a form of hy-
pothetical reasoning. A related form of this type of debugging is also available in one feature
of the tagging approach (Brain et al., 2007b) that aims at extrapolating non-existent answer sets
by switching off rules and guessing further atoms. Here, the stepping technique can be consid-
ered more focused, as the interpretation under investigation is determined by the choices of the

111



7. STEPPING ANSWER-SET PROGRAMS

user in stepping but is essentially arbitrary in the tagging approach if the user does not employ
explicit restrictions.

Most existing debugging approaches for ASP can be seen as declarative in the sense that
a user can pose a debugging query, and receives answers in terms of different declarative def-
initions of the semantics of answer-set programs, e.g., in terms of active or inactive rules with
respect to some interpretation. In particular, the approaches do not take the execution strategy of
solvers into account for reasons discussed in Section 2.2. This is also the case for the stepping
approach, however stepping as well as online justifications (Pontelli et al., 2009) are exceptional
as both methods involve a generic notion of computation which adds a procedural flavour to de-
bugging. Nonetheless, the computation model we use for stepping can be seen as a declarative
characterisation of the answer-set semantics itself as it does not apply a fix order in which to
apply rules to build up an answer set.

A computation in the sense of Pontelli et al. (2009) is a sequence of three-valued interpre-
tations in which monotonously more atoms are considered true, respectively, false. The infor-
mation carried in these interpretations corresponds to that of the second and third component
of a state in a computation in our framework. The purpose of using computations in the two
approaches differs. While computations in stepping are used for structuring debugging process
in a natural way, where the choices how to proceed remains with the user, the computations
of Pontelli et al. are abstractions of the solving procedure. Their goal is to allow a solver that
is compatible with their computation model to compute justifications for its intermediate re-
sults. Thus, similar to their offline versions, online justifications are non-interactive, i.e., they
are computed automatically and used for post-mortem debugging. As our computation model
is compatible with that for online justifications, it seems very promising to combine the two
approaches in practise. While debugging information in stepping focuses on violation of rules
and unfounded sets, our method leaves the reasons for an atom being true or false as implicit
consequences of a user’s decision. Here, online justifications could keep track of the reasons for
truth values at each state of a stepping session and presented to the user during debugging on
demand.

Besides stepping, also the approach by Wittocx et al. (2009) can be considered interactive.
While in their approach a fixed proof is explored interactively, the interaction in our method
has influence on the direction of the computation. Although not interactive in the sense of
an interleaved communication between system and user, further approaches allow the user to
provide information for filtering the amount of debugging information (Brain et al., 2007b;
Gebser et al., 2008). The approaches mentioned in this paragraph realise declarative debugging
in the sense of Shapiro (1982), where the user serves as an oracle for guiding the search for
errors (cf. Section 2.2).

Finally, we compare the ASP languages supported by different approaches. First, the lan-
guage of theories with inductive definitions used in one of the debugging approaches (Wittocx
et al., 2009) differs from the remaining approaches that are based on logic-programming rules.
Many of these works deal only with the basic ASP setting of debugging ground answer set pro-
grams, supporting only normal rules (Brain and De Vos, 2005; Pontelli et al., 2009), disjunctive
rules (Gebser et al., 2008), or simple choice rules (Syrjänen, 2006). The work on tagging-based
debugging (Brain et al., 2007b) sketches how to apply the approach to programs with variables
by means of function symbols. The approach by Caballero et al. (2008) deals with non-ground
normal programs which have to be stratified. Explicit support for variables is also given in an
extension (Oetsch et al., 2010a) of the meta-programming approach for disjunctive programs.
It was later extended to allow for weight constraints (Polleres et al., 2013) by compiling them
away to normal rules. A commonality of these approaches is that they target ASP languages that
can be considered idealised proper subsets of current solver languages. In this respect, stepping
is the first debugging approach that overcomes these limitations as the use of C-programs and
abstract grounding make the framework generic enough to be applied to ASP solver languages.
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While this does not mean that other approaches cannot be adapted to fit a solver language, it
is no always immediately clear how. For our approach, instantiating our abstractions to the
language constructs and the grounding method of a solver is sufficient to have a ready-to-use
debugging method.
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8 Stepping in the Integrated
Development Environment SeaLion

In this chapter, we describe SeaLion, an integrated development environment (IDE) for ASP.
It was developed as one of the major goals of the MMDASP project (see Section 1.2) and comes
with an implementation of the stepping framework developed in this thesis. The system’s name
SeaLion is composed of “Sea” which stands for Support Environment for ASP and “Lion”
which symbolises the strength and good-naturedness that we aimed to integrate into the envi-
ronment. A preliminary report on SeaLion was given by Oetsch et al. (Oetsch et al., 2011b,
2013), where initial functionality and an outline on features that are planned to be incorporated
are presented. The majority of these plans have been realised in the meanwhile—most impor-
tantly, a debugging system that can cope with real-world answer-set programs based on the
stepping framework. An up-to-date discussion of SeaLion is given in a recent paper (Busoniu
et al., 2013).

The remainder of this chapter is organised as follows. Section 8.1 provides general infor-
mation about the implementation, including design principles, motivation for the chosen infras-
tructure, system architecture, and availability. The main features of SeaLion are described
in Section 8.2 except for the stepping plugin that is illustrated in greater detail in Section 8.3.
Finally, in Section 8.4, we compare the SeaLion system with other integrated development
environments for ASP.

8.1 Design, Architecture, and Availability of SeaLion

A major design principle for SeaLion, in alignment with the objectives of the MMDASP
project, was interoperability with most of the available popular ASP solvers. That is, SeaLion
and its features are not tailored towards a specific ASP solver language but designed generic
enough to allow instantiations for differing dialects of input languages. For most features of the
IDE, including stepping functionality, such instantiations are provided for the languages of the
state-of-the-art solvers Clasp (in conjunction with Gringo) and DLV (compare Sections 3.6.2
and 3.6.3 on the solver languages).

The target audience for SeaLion are software developers new to ASP yet familiar with
support tools as used in procedural and object-oriented programming. As a consequence, it
was our aim to create an environment that is similar to well-established development tools. In
particular, this was one reason why SeaLion is implemented as plugin of the Eclipse plat-
form (Eclipse Project, 2014), which is popular among software engineers and can be considered
the standard environment for Java development. Arguably, people who are familiar with Eclipse
and basic ASP skills will easily adapt to SeaLion. The decision to build on Eclipse rather
than writing a stand-alone application from scratch had further benefits. For one, we profit from
software reuse as SeaLion makes heavy use of existing functionality that we adapted to our
needs. Examples include the text editor framework, source-code highlighting, problem report-
ing, project management, the undo-redo mechanism, the console view, the refactoring and the
navigation frameworks (Outline), and launch configurations. Moreover, much functionality of
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Eclipse can be used without any adaptions, e.g., workspace management, the possibility to de-
fine working sets, i.e., grouping arbitrary files and resources together, software versioning and
revision control (e.g., based on SVN or CVS), and task management.

Regarding the user interface, the aim was to make the usage of SeaLion as smooth as
possible. We paid attention that the methods of the features of SeaLion can be performed
with as few mouse clicks or other user interaction as necessary and followed Eclipse conven-
tions for shortcuts. Moreover, we wanted to give the ASP developer much freedom in how to
use the system. For example, SeaLion avoids functionality that patronises the ASP devel-
oper like imposing a certain coding style, i.e., every valid ASP source file should be usable in
the IDE. Furthermore, we aimed at interoperability, e.g., through the use of standards or the
framework for external tool configurations that allows for using arbitrary external tools, e.g., for
postprocessing computed answer sets.

A key aspect in the design of SeaLion is extensibility. While it is implemented as a plugin
of Eclipse, the SeaLion implementation follows itself a modular principle, where features can
be added by further Eclipse plugins. Moreover, the API framework is tailored to support, on the
one hand, further ASP languages with little effort and, on the other hand, allows for embedding
future features easily. To this end, we defined a hierarchy of classes and interfaces that represent
program elements, i.e., fragments of ASP languages. This is done in a way such that we can
use common interfaces and base classes for representing similar program elements of different
ASP languages. For instance, we have different classes for representing literals of the Gringo
language and literals of the DLV language in order to be able to handle subtle differences. For
example, as DLV is unaware of conditions, an object of class DLVStandardLiteral has
no support for them, whereas a GringoStandardLiteral object keeps a list of condition
literals. Substantial differences in other language features, like aggregates, optimisation, and fil-
tering support, are also reflected by different classes for Gringo and DLV, respectively. How-
ever, whenever possible, these classes are derived from a common base class or share common
interfaces. Therefore, plugins can, for example, use a general interface for aggregate literals to
refer to aggregates of both languages. Hence, current and future feature implementations can
make use of high-level interfaces and stay independent of the concrete ASP language to a large
extent.

Figure 8.1 depicts the technology stack of SeaLion. The main plugin of SeaLion as well
as several plugins implementing different features of the IDE are embedded in Eclipse. Being
a Java application, the system is executed in a virtual machine (Java Runtime Environment).
Currently, there are two plugins implementing the support for concrete ASP languages, the DLV
plugin and the Gringo plugin. They contain language specific functionality such as parsers
for the respective languages that are based on the ANTLR framework (Parr, 2007), means to
translate internal representations back to ASP source code, support for launching solvers, cus-
tomisation of source code editors, and adaptations of the graphical user interface. The plugins
DLV tools and Potassco tools are convenience packages that automatically install and config-
ure solvers and grounders for use with SeaLion. Current plugins realising features are the
following:

• the stepping plugin that is discussed in Section 8.3,

• the Kara plugin that deals with result visualisation (see Section 8.2.3),

• the CNL plugin dealing with a controlled natural language representation of answer sets
based on LANA annotations (the LANA language is discussed in Section 8.2.2) that is
currently not part of the standard SeaLion distributions,

• the explanation plugin and the Ouroboros plugin that implement debugging features
complementary to stepping (see Section 8.2.4), and
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Figure 8.1: Technology Stack of SeaLion.

• multiple plugins that realise the model-driven development approach that is discussed in
Section 8.2.2.

An arrow in Figure 8.1 symbolises the usage relation between components of the system. Note
that the explanation plugin as well as the plugin for model-driven development do not have links
to the DLV plugin. Nevertheless, these modules support the DLV language as their implemen-
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tation is based on the abstract data structures representing ASP programs that are provided in
the main plugin. In fact, these plugins only use the Gringo plugin as they need special treat-
ment for handling Gringo specific language constructs such as conditions that are not already
covered in the main plugin.

SeaLion is free software published under the GNU General Public License version 3.
There are two major options to install SeaLion. Users of Eclipse can obtain it using the
update site

http://sealion.at/update

using Eclipse’s update mechanism. Alternatively, standalone packages of SeaLion are pro-
vided for different operating systems and architectures that only require a Java Runtime Envi-
ronment. Both installation variants support automatic updates and come with pre-configured
ASP solvers. Information on installation instructions and links to the source code can be ob-
tained from the project web site

http://www.sealion.at.

8.2 IDE Features

The central element in SeaLion is the source-code editor for logic programs. Although there
are current endeavours to harmonise solver languages (cf. also Section 3.6), up-to-now the lan-
guages of Gringo and DLV differ in their presentation of aggregates and many other small
details. That is why the SeaLion editor comes in two variants, one for DLV and one for
Gringo. A screenshot of a Gringo source file in SeaLion’s editor is given in Figure 8.2.

The editors provide typical conveniences of IDEs, like context-sensitive syntax highlight-
ing, syntax checking, and problem reporting. Terms and predicates appearing in the program
are proposed for autocompletion. SeaLion also offers functionality for refactoring answer-
set programs. In particular, we implemented functionality for uniform and safe renaming of
predicates, constants, function symbols, and variables throughout a user-defined set of files con-
taining answer-set programs. Once a new name is chosen, the user has the possibility to directly
apply the changes implied by renaming or revise them on a preview page. Here, one can inspect
the effects file by file where the original as well as the new source code are displayed next to
each other and all hypothetical changes are highlighted as depicted in Figure 8.3. An overview
of the edited answer-set program is given in Eclipse’s Outline View in a tree-shaped graphical
representation that can be seen in the bottom-right corner of Figure 8.2. Clicking on a node of
the tree selects the source code corresponding to the represented program element in the editor
such that the programmer can proceed editing there. Another convenient editor feature is the
temporary highlighting of code the programmer might be interested in. For instance, if the cur-
sor is positioned over a literal, the positions of all literals of the same predicate in the overall
document are indicated.

8.2.1 Solver Interaction

In order to interact with solvers, grounders, and other ASP-related tools, SeaLion has a mech-
anism for handling external tools. One can define external tool configurations that specify the
path to an executable as well as default command-line parameters. Arbitrary command-line
tools are supported; however, there are special configuration types for some programs such as
Gringo, Clasp, and DLV. The SeaLion website offers packages that include or automat-
ically install a variety of popular grounders and solvers for which external tool configurations
are pre-defined. In addition to external command-line tools, one can also define tool configura-
tions that represent pipes between external tools. This is needed when grounding and solving
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Figure 8.2: A screenshot of SeaLion’s editor, the program outline, and the interpretation
view.

Figure 8.3: Reviewing file changes implied by renaming predicate col/1 to column/1.

are provided by separate executables. For example, one can define two separate tool configu-
rations for Gringo and Clasp and define a piped tool configuration for using the two tools
in a pipe. Pipes of arbitrary length are supported such that arbitrary pre- and post-processing
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Figure 8.4: Selecting two source files in Eclipse’s launch configuration dialog.

can be done when needed. As arbitrary tools can be piped, this mechanism allows for post-
processing or handling solver output as needed, e.g., opening external visualisation tools like
IDPDraw (Wittocx, 2009) or ASPVIZ (Cliffe et al., 2008) (Note that SeaLion also comes
with its own visualisation component Kara that is described below). Default solvers for differ-
ent solver languages can be set in the preference menu of SeaLion depending on file content
types in the “Content Type Preferences” section.

For executing answer-set solvers and other tools, we make use of Eclipse’s launch config-
uration framework, i.e., the user can create re-usable launch configurations that define which
programs should be executed using particular external-tool configurations, the command-line
arguments to use, and other settings. Figure 8.4 shows the page of the launch configuration edi-
tor on which input files for a solver invocation can be selected. Moreover, a launch configuration
contains information how the output of the solver should be treated. One option is to print the
solver output as it is in Eclipse’s console view. The other option is to parse the resulting answer
sets for further use in SeaLion. In this case, the answer sets obtained from the solvers are
stored in SeaLion’s interpretation view as well as in the interpretation comparison view. In
both, interpretations are visualised as expandable trees, where the literals of each interpretation
are grouped by their predicates. Compared to a standard textual representation, this way of vi-
sualising answer sets provides a well-arranged overview of the individual interpretations. While
the interpretation view lists interpretations in rows, the interpretation comparison view places
them in columns. By horizontally arranging trees for different interpretations next to each other,
it is easy to compare two or more interpretations.

Besides defining launch configurations, SeaLion also offers the possibility to invoke a
solver right away on a selection of files in the workspace using the default settings of an ex-
ternal tool configuration. This is realised using the so-called Launch Shortcuts mechanism of
Eclipse. The user selects the files that should be evaluated in the project explorer and selects the
SeaLion entry of their “Run As” context menu. The entry is available as soon as an external
tool configuration is set as default solver for the selected file content type.

8.2.2 LANA Support, Documentation Generation, and Model-Driven
Engineering

The editors of SeaLion are capable of processing LANA annotations (De Vos et al., 2012a,b).
LANA stands for “Language for ANnotating Answer-set programs” and is, as the name sug-
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Figure 8.5: SeaLion’s interpretation compare view.

gests, a dedicated annotation language for ASP. LANA annotations are specially marked pro-
gram comments augmenting an answer-set program with meta-information. Being program
comments, they are invisible to an ASP solver and therefore not altering the semantics of the
program. However, different tools may interpret and use the annotated information to various
ends like documentation, testing, verification, code completion, or other development support
needs. Moreover, LANA annotations allow for structuring ASP programs by grouping rules into
coherent blocks and for specifying, e.g., language signatures, assertions, as well as unit tests
for such blocks. SeaLion implements different functionality based on LANA. For instance,
blocks are reflected in the outline view of SeaLion and LANA descriptions of terms and pred-
icates appear next to autocompletion proposals. Moreover, SeaLion allows for automatically
generated source-code documentation for answer-set programs, similar as tools like JavaDoc
or Doxygen do for other programming languages, based on LANA annotations. For this pur-
pose, the IDE incorporates the ASPDOC documentation generator that takes LANA-annotated
ASP code as input and produces HTML files as output (De Vos et al., 2012a). The documen-
tation contains descriptions of all (nested) blocks of the answer-set program. Also, a summary
of the block structure of the entire answer-set program is presented at the beginning of the doc-
umentation to provide an overview. For each block, descriptions of the used atoms and types
of involved terms, as well as for assertions, are given. The documentation also includes HTML
versions of the program’s source code, which can be particularly useful for sharing ASP code
online. There are links from the documentation to the source code and vice versa. Likewise,
rules for defining pre- and postconditions can be inspected by using respective links. ASP doc-
umentation generation can be accessed through Eclipse’s export menu.

LANA is also used by SeaLion’s modelling framework that adopts techniques from model-
driven engineering (MDE) (Schmidt, 2006) for supporting the development of answer-set pro-
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Figure 8.6: Modelling in the SeaLion domain diagram editor.

grams. SeaLion’s MDE plugin allows for guiding the ASP development process by graphical
models, starting from modelling the problem domain and ending at the visualisation of problem
solutions. In object-oriented programming, it is common to model the data structures needed
by means of graphical models like UML class diagrams (Fowler, 2004). These domain mod-
els serve as primary development artefacts from which parts of the code can be generated. In
SeaLion, a graphical editing framework for modelling the domain of an answer-set program
in an extended UML class diagram is implemented. That is, there is a graphical editor (cf. Fig-
ure 8.6) in which the user can start the development by creating a UML class diagram that mod-
els the problem domain. In a second step, the model can be translated into an ASP source file
that contains LANA annotations that define an ASP predicate schema for the problem domain.
The translation includes descriptions of the predicates and assertions representing constraints
expressed in the model such as cardinalities of associations or disjointedness and completeness
of generalisations (e.g., that a person is a man or a woman but not both). Moreover, assertions
detecting key violations are generated: we allow for defining key attributes in our UML dia-
grams that are not part of the UML standard as in object-oriented languages class instances are
typically uniquely identified by an implicit key that represents an address in memory. The trans-
lation from the domain model to an ASP predicate schema is similar in spirit to well-known
translations from entity-relationship models to database schemas. That is, adding foreign keys
to predicates for relationships, mapping every class to a set of predicates, and mapping all at-
tributes to terms. To give flexibility to the user, the mapping is configurable, e.g., the user may
choose by how many and by which predicates a class is represented.

After generating the code file, the developer may proceed with completing his or her answer-
set program. In the further course of development, the created domain model can be reused
for visualising answer sets that use the generated predicate schemas by means of UML object
diagrams. That is, based on the UML class diagram and the configuration of the translation,
instances of the classes defined in the model that are encoded in the answer set are detected and
displayed (compare Figure 8.7). Likewise, their relationships are visualised. Furthermore, the
answer set is automatically checked against LANA assertions that were created, and violations
of constraints are highlighted in the UML object diagram (Figure 8.8). To open the diagram,
the user opens a corresponding dialog from the context menu of the answer set that should be
visualised directly in the interpretation view. As answer sets can become very large, it is also
possible to pre-select an interesting subset of the answer set. In this case, only instances are
shown in the diagram whose keys appear in the selected atoms.
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Figure 8.7: A UML object diagram based on the model of Figure 8.6.

Figure 8.8: Another UML object diagram based on the model of Figure 8.6. Concepts and
relations displayed in red indicate different violations of the domain constraints in the visualised
interpretation.

8.2.3 Visualisation and Visual Editing of Answer Sets

Visualisation of answer sets is provided by the Kara plugin of SeaLion that can create user-
defined graphical representations of interpretations (Kloimüllner et al., 2013; Kloimüllner, 2012,
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Figure 8.9: The visualisation of interpretation I from Example 43.

2013). Additionally, Kara offers generic visualisations and allows for graphically manipulating
interpretations.

User-defined visualisation in Kara is based on ASP itself. Indeed, we follow a similar
approach as the tools ASPVIZ (Cliffe et al., 2008) and IDPDraw (Wittocx, 2009). We next
describe this method on an abstract level.

Assume we want to visualise an interpretation I that is defined over a first-order alphabet
A . We join I , interpreted as a set of facts, with a visualisation program V that is defined
over A ′ ⊃ A , where A ′ may contain auxiliary predicates and function symbols, as well as
predicates from a fixed set Pv of reserved visualisation predicates that vary for the three tools.

The rules in V are used to derive different atoms with predicates from Pv, depending on
I , that control the individual graphical elements of the resulting visualisation including their
presence or absence, position, and all other properties. An actual visualisation is obtained by
post-processing an answer set Iv of V ∪ I that is projected to the predicates in Pv. We refer to
Iv as a visualisation answer set for I . Note that since V is an arbitrary answer-set program it
might be non-deterministic in the sense that multiple visualisation answer sets may exist. In the
current implementation only one of them is used for visualisation.

The language allows for high-level graphical specifications, supporting graph structures,
grids, and relative positioning of graphical elements. Next, we give a simple example of a
visualisation program.

Example 43. Assume we deal with a domain program whose answer sets correspond to ar-
rangements of items on two shelves. Consider interpretation I consisting of the atoms

book(s1,1). book(s1,3). book(s2,1). globe(s2,2).

stating that two books are located on shelf s1 in positions 1 and 3 and that there is another book
and a globe on shelf s2 in positions 1 and 2, respectively. The goal is to create a simple graphical
representation of this and similar interpretations, depicting the two shelves as two lines, each
book as a rectangle, and globes as circles. Consider the following visualisation program:

% Rule 1-2: static lines representing shelves
visline(shelf1_line, 10, 40, 80, 40, 0).
visline(shelf2_line, 10, 80, 80, 80, 0).

% Rule 3-5: display books
visrect(f(S,P), 20, 8) :- book(S, P).
visposition(f(s1,P), 20 * P, 20, 0) :- book(s1, P).
visposition(f(s2,P), 20 * P, 60, 0) :- book(s2, P).

% Rule 6-8: display globes
visellipse(f(S,P), 20, 20) :- globe(S, P).
visposition(f(s1,P), 20 * P, 20, 0) :- globe(s1, P).
visposition(f(s2,P), 20 * P, 60, 0) :- globe(s2, P).

124



8.2. IDE Features

Rules 1 and 2 create two lines with the identifiers shelf1_line and shelf2_line, rep-
resenting the top and bottom shelf. The second to fifth arguments of visline/6 represent
the origin and the target coordinates of the line.1 The last argument of visline/6 is a z-
coordinate determining which graphical element is visible in case two or more overlap. Rule 3
generates the rectangles representing books, and Rules 4 and 5 determine their position depend-
ing on the shelf and the position given in the interpretation. Likewise, Rules 6 to 8 generate and
position globes. The resulting visualisation of I is depicted in Figure 8.9. �

Note that the first argument of each visualisation predicate is a unique identifier for the
respective graphical element. By making use of function symbols with variables, like f(S,P)
in Rule 3 above, these labels are not limited to constants in the visualisation program but can
be generated on the fly, depending on the interpretation to visualise. While some visualisation
predicates, like visline/6, visrect/3, and visellipse/3, define graphical elements,
others, e.g., visposition/4, are used to change properties of the elements, referring to them
by their respective identifiers. An exhaustive list of visualisation predicates available in Kara
is given in Appendix A.

Example 44. Kara was also used for creating several visualisations for this thesis, including
those for the maze generation problem introduced in Section 7.1.1 and the fair minesweeper
problem from Section 7.1.2. We used the following visualisation problem for maze generation.
Note that it makes use of external image files.

#const cellSize=60.

% Compute Nr of Cols and Rows
maxCol(X) :- col(X),not col(X+1).
maxRow(Y) :- row(Y),not row(Y+1).

% Draw lines as frame for grid
visline(frame(1),4,4,MAXROW*cellSize+5, 4,2) :- maxRow(MAXROW).
visline(frame(2),

4,MAXCOL*cellSize+5,
MAXROW*cellSize+5,MAXCOL*cellSize+5,
2) :- maxRow(MAXCOL),maxRow(MAXROW).

visline(frame(3),4,4,4,MAXCOL*cellSize+5,2) :- maxCol(MAXCOL).
visline(frame(4),

MAXROW*cellSize+5,4,
MAXROW*cellSize+5,
MAXCOL*cellSize+5,2) :- maxCol(MAXCOL), maxRow(MAXROW).

% Set colour of frame lines
viscolor(frame(1..4), darkgray).

% Set up the grid
visgrid(maze,

MAXROW, MAXCOL,
MAXROW*cellSize+5,
MAXCOL*cellSize+5) :- maxCol(MAXCOL), maxRow(MAXROW).

visposition(maze,0,0,1).

1The origin of the coordinate system is at the top-left corner of the illustration window with the x-axis pointing
to the right and the y-axis pointing downwards.
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% Define image for wall cells
visimage(wall, "img/wall36.png").
visscale(wall, cellSize, cellSize).

% Define rectangle for empty cells
visrect(empty, cellSize, cellSize) :- empty(_,_).
viscolor(empty, darkgray).

% Define images for entrance and exit
visimage(entrance, "img/entrance36.png").
visscale(entrance, cellSize, cellSize).
visimage(exit, "img/exit36.png").
visscale(exit, cellSize, cellSize).

% Define rectangle for undefined cells
visrect(undefined, cellSize, cellSize) :- undefined(_,_).
visbackgroundcolor(undefined, lightgray).
viscolor(undefined, darkgray).

% Define image for cells that are both wall and empty
% (inconsistent configuration)
visimage(halfwall, "img/halfwall36.png").
visscale(halfwall, cellSize, cellSize).

% Compute undefined cells
undefined(X,Y) :- col(X),row(Y),not wall(X,Y),not empty(X,Y),

not entrance(X,Y),not exit(X,Y).

% Fill the cells of the grid
visfillgrid(maze, empty, Y, X) :- empty(X,Y),not wall(X,Y).
visfillgrid(maze, wall, Y, X) :- wall(X,Y),not empty(X,Y).
visfillgrid(maze, halfwall, Y, X) :- empty(X,Y), wall(X,Y).
visfillgrid(maze, entrance, Y, X) :- entrance(X,Y).
visfillgrid(maze, exit, Y, X) :- exit(X,Y).
visfillgrid(maze, undefined, Y, X) :- undefined(X,Y).

As argued in the development guidelines in Section 7.7, during writing an answer-set pro-
gram it often makes sense to have means to visualise also partial or wrong answer sets. Indeed,
the maze generation visualisation program above does not only allow for visualising answer
sets as, e.g., in the right subfigure of Figure 7.1 on page 88, but also partial solutions as in the
left subfigure of Figure 7.1 or interpretations not supposed to be answer sets like the one in
Figure 7.8 on page 104. �

SeaLion displays the resulting visual representation of an interpretation in a graphical ed-
itor that also allows for manipulating the visualisation. That is, properties such as colours can
be manipulated and graphical elements can be re-positioned, deleted, or even created. Such ma-
nipulations are useful for two different purposes. First, for fine-tuning the visualisation before
saving it as a scalable vector graphic (SVG) by means of the SVG export functionality of Kara.
Second, modifying the visualisation can be used to obtain a modified version of the visualised
interpretation by abductive reasoning. In fact, a feature is implemented that allows for abduc-
ing an interpretation that would result in the modified visualisation (Kloimüllner et al., 2013;
Kloimüllner, 2013).
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Figure 8.10: SeaLion’s visual interpretation editor showing a generic visualisation of the
graph colouring interpretation of Example 45 (the layout has been manually optimised).

Kara also offers a generic visualisation that visualises an arbitrary interpretation without
the need for defining a visualisation program. In such a case, the interpretation is represented as
a labelled hypergraph. Its nodes are the individuals appearing in the interpretation and the edges
represent the literals in the interpretation, connecting the individuals appearing in the respective
literal. Integer labels on the endings of the edge are used for expressing the term position of the
individual. To distinguish between different predicates, each edge has an additional label stating
the predicate. Edges of the same predicate are of the same colour.

Example 45. The following atoms form an answer set of an encoding for a graph colouring
problem.

colour(1, lightblue). colour(2, yellow). colour(3, yellow).
colour(4, red). colour(5, lightblue). colour(6, red)
node(1). node(2). node(3). node(4). node(5). node(6).
edge(1, 2). edge(1, 3). edge(1, 4).
edge(2, 4). edge(2, 5). edge(2, 6).
edge(3, 1). edge(3, 4). edge(3, 5).
edge(4, 1). edge(4, 2). edge(5, 3).
edge(5, 4). edge(5, 6).
edge(6, 2). edge(6, 3). edge(6, 5).

The generic visualisation of the interpretation is given in Figure 8.10. �
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Figure 8.11: SeaLion’s stepping view is devided into five areas (a-e).

8.2.4 Debugging Features other than Stepping

Besides stepping, SeaLion implements two further features for debugging purposes. For one,
the SeaLion plugin Ouroboros (Frühstück et al., 2013) is a prototype implementation of
a debugging method (Polleres et al., 2013) that tackles the question why a given interpre-
tation is not an answer set. The approach extends earlier work addressing this question for
propositional (Pührer, 2007; Gebser et al., 2008) and non-ground answer-set programs (Oetsch
et al., 2010a) by additional support for weight constraints. The technique is based on ASP
meta-programming and determines for a given answer-set program P and a given interpretation
I , why I is no answer set of P in terms of unsatisfied rules and unfounded sets. While the
Ouroboros plugin provides additional debugging functionality for SeaLion, it also profits
from the stepping plugin which can help in building up the interpretation in question.

The other simple yet handy debugging feature of SeaLion, that is complementary to step-
ping, is the search for a rule that (potentially) derives a particular atom (Eder, 2013). The plugin
exploits Eclipse’s search framework and supports two settings. First, it can perform a syntactic
search for rules in a given program whose head contains a given literal or predicate. Second, if
the user also specifies an interpretation, e.g., by clicking on a computed answer set in the inter-
pretation view of SeaLion, the search can be restricted to rules with instances that are active
under the given interpretation.

8.3 Practical Stepping in SeaLion

SeaLion implements an environment for stepping as described in Chapter 7 based on the
framework of computations introduced in Chapters 5 and 6 using the conditional grounding
method (cf. Section 6.3). Although black-box grounding is conceptually simpler as conditional
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Figure 8.12: Initiating a stepping session by choosing an existing launch configuration.

grounding, we decided to implement only the latter for technical reasons. In particular, the ex-
ternal grounders we exploit in SeaLion do not provide information about which ground rule
originates from which non-ground rule—information that is required for black-box grounding.
We can do without such a feature for conditional grounding as we only need external grounders
for evaluating the partial evaluation function (see Definition 67 on page 78), whereas the ground-
ing function itself is implemented in SeaLion.

The stepping plugin supports the languages of Gringo and DLV and has been implemented
by Peter Skočovský under the guidance of the author of this thesis (cf. Section 1.3). While it
is the first implementation of the stepping technique for ASP and hence still a prototype, it
is tailored for intuitive and user-friendly usage and able to cope with real-world answer-set
programs. While the methodological aspects of stepping are discussed in the previous chapter,
this section focuses on the user interface of SeaLion’s stepping plugin.

8.3.1 Initiating Stepping

A stepping session in SeaLion can be started in a similar fashion as debugging Java programs
in Eclipse using the launch configuration framework. SeaLion launch configurations that are
used for defining which program files should be run with which solvers (as described in Sec-
tion 8.2.1) can be re-used as debug configurations. That is, the user selects an existing launch
configuration, e.g., that of a run that resulted in undesired answer sets, and choses to start step-
ping the ASP program formed by the input files defined in the configuration. Moreover, as the
stepping plugin depends on external tools for grounding, also the grounder and solver settings
of the launch configuration are needed. As for launching, stepping can also be initiated using
launch shortcuts, i.e., the system tries to automatically generate an appropriate launch configu-
ration when the user selects “Debug As” from the context menu of one or multiple ASP files.
Figure 8.12 shows the selection of a pre-existing launch configuration for initiating stepping.

Like many IDEs, Eclipse comes with a multiple document interface in which inner frames,
in particular Eclipse editors and views, can be arranged freely by the user. Such configura-
tions can be persisted as perspectives. Eclipse plugins often come with default perspectives,
i.e., arrangements of views and editors that are tailored to a specific user task in the context of
the plugin. Also the stepping plugin has a preconfigured perspective that is opened automati-
cally once a stepping session has been initiated. The next subsection gives an overview of the
individual stepping related subframes in this perspective.

129



8. STEPPING IN THE INTEGRATED DEVELOPMENT ENVIRONMENT SEALION

Figure 8.13: Clicking on the “Direct Jump” button for jumping from state S′6 to state S′7 in the
context of Example 41 on page 103.

8.3.2 Stepping Perspective

Figure 8.11 shows SeaLion in the stepping perspective. The illustration distinguishes five
regions (marked by supplementary dashed frames and labelled by letters) for which we give an
overview in what follows.

The source code editor (Figure 8.11a) is the same as used for writing answer-set programs
but extended with additional functionality during stepping mode for the ASP files involved in the
active stepping session. In particular it indicates rules with ground instances that are active under
the interpretation of the current stepping state. Constraints with active instances are highlighted
by a red background (cf. Figure 8.17 on page 134), other rules with active instances have a blue
background (as, e.g., in Figure 8.15). The editor remains functional during stepping, i.e., the
program can be modified while debugging. Note, however, that the system does not guarantee
that the current computation is still a valid computation in case of a modification of the answer-
set program after stepping has been initiated. The source code editor is also the starting point
for performing a step or a jump as it allows for directly selecting the non-ground rule(s) to be
considered in the step or jump in the source code. The choice of non-ground rules corresponds
to the initial step in the stepping cycle (see Section 7.5.1). For selecting a single rule for either
a step or a jump it suffices to click on the rule. Selecting multiple non-ground rules for a jump
comes in two variants. First, if the rules are consecutive in the source code it is sufficient to select
the text area containing the rules in the source code editor. In this case a jump is performed by
clicking on the “Direct Jump” button in the toolbar (Figure 8.13) or via a similar entry in the
“Stepping” menu after the selection of rules. If the rules are non-consecutive, one has to use the
second variant for performing a jump. To this end, the user can collect rules in the jump view
(Figure 8.14) located in area c of Figure 8.11 as the second tab. For adding rules to this view
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Figure 8.14: Adding rules to the jump view for jumping from state S3 to state S4 in the context
of Example 38 on page 95.

one has to select them in the source editor and click the respective button in the view. Clicking
another button in the jump view initiates the actual jump.

Choosing a ground instance for performing a step is done in the active instances view (Fig-
ure 8.11b). It contains a list with all active ground instances (with respect to conditional ground-
ing) of the currently selected rule in the source editor. As these are potentially many, the view
has a textfield for filtering the list of rules. Filters are given as dot-separated list of variable
assignments of the form X=t where X is a variable of the non-ground rule and t is the ground
term that the user considers X to be assigned to. Only ground instances are listed that obey all
variable substitutions of the entered filters.

Once a rule instance is selected in the active instances view the atoms in the rule’s domain
are displayed in three lists of the truth assignment view (Figure 8.11c). The list in the centre
shows atoms whose truth value has not already been determined in the current state. The user
can decide whether they should be true, respectively false, in the next step by putting them into
the list on the left, respectively, on the right. These atoms can be transferred between the lists by
using keyboard cursors or drag-and-drop (Figure 8.15). After the truth value has been decided
for all the atoms of the rule instance and only in case that the truth assignment leads to a valid
successor state (cf. Definition 52 on page 58), a button labelled “Step” appears. Clicking this
button computes the new state.

The state view (Figure 8.11d) shows the current stepping state of the debugging session.
Hence, it is updated after every step or jump. It comprises four areas, corresponding to the
components of the state (cf. Definition 50 on page 57), the list of active rules instances, a tree-
shaped representation of the atoms considered true, a tree-shaped representation of the atoms
considered false, both in a similar graphical representation as that of interpretations in the inter-
pretation view, and an area displaying the unfounded sets in a similar way. The sets of atoms
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Figure 8.15: Deciding to consider atom wall(3,2) to be true by dragging it from the middle
list of atoms in the truth assignment view and dropping it in the left list. The current state of
the stepping session is S4 from Example 39 on page 101 and the step prepared is that to state
S5. Note that atom wall(3,3) is greyed in the list of positive atoms. Greyed atoms in the
positive or negative list cannot be be dragged away from there again because their truth value is
already considered positive, respectively negative, in the current state (here S4). Note that a step
can only be completed once the truth value has been decided for all atoms in the rule instance.

displayed in this view can also be visualised using Kara (via options in the context menu). This
is a handy feature as it allows to easily monitor the evolvement of the interpretation that is build
up during the stepping session, provided the user specified an appropriate visualisation program.

Finally, the computation view (Figure 8.11e) gives an overview of the steps and jumps per-
formed so far. Importantly, the view implements an undo-redo mechanism. That is, by clicking
on one of the nodes displayed in the view, representing a previous step or jump, the computation
can be reset to the state after this step or jump has been performed. Moreover, after performing
an undo operation, the undone computation is not lost but becomes an inactive branch of the
tree-shaped representation of steps and jumps. Thus, one can immediately jump back to any
state that has been reached in the stepping session by clicking on a respective node in the tree
(Figure 8.16).

Mismatches between the users intentions (reflected in the current stepping state) and the
actual semantics of the program can be detected in different parts of the stepping perspective. If
the user thinks a rule instance should be active but it is not, this can already be seen in the source
code editor if the non-ground version of the rule does not have any active instance. Then, the
rule is not highlighted in the editor. If the non-ground version does have active instances but not
the one the user has in mind, this can be detected after clicking on the non-ground rule if they are
missing in the active instances view. The computation is stuck if only rules are highlighted in the
source editor that are constraints (cf. Figure 8.17) or for all of its instances, no truth assignment
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Figure 8.16: In SeaLion, we can retract the computation to a previous state by clicking on
the node in the computation view representing the step or jump that created the target state. The
screenshot shows reverting the last two states in Example 41 on page 103, where we reused a
part of the computation S1, . . . , S6 for exploring an alternative setting starting from S4. The
final state of the alternative computation presented in the example is depicted in Figure 8.17.

can be established such that the “Step” button appears. Finally, if no further rule is highlighted
and there is no non-empty unfounded set visible in the state view, the atoms considered positive
form an answer set of the overall program. If there are further unfounded sets, the user sees
that the constructed interpretation is not stable. The unfounded sets indicate which atoms would
need external support (see Figure 8.18).

8.4 Comparison of SeaLion to other IDEs for ASP

Besides SeaLion, also other systems have been proposed that provide support for writing
answer-set programs. The first two systems in this respect that targeted on ASP languages,
APE (Sureshkumar et al., 2007) and VisualDLV (Perri et al., 2007), have been presented at
the first international workshop on software engineering for answer-set programming (SEA’07)
and offer basic IDE functionality.

To begin with, the tool APE has been developed at the University of Bath as a student
project (Sureshkumar, 2006). It is—like SeaLion—implemented as an Eclipse plugin. APE
supports the language of the grounder Lparse (Syrjänen, 2002) and hence a sub-language of
Gringo (cf. Section 3.6.2). The system offers syntax highlighting, syntax checking, a program
outline, auto completion, and launch configurations. The output of the solver can be displayed
in a console view or piped to an external script. These functionalities are also available in
SeaLion. Additionally, APE has a feature to display the predicate dependency graph of a
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Figure 8.17: The computation is stuck is state S′7 from Example 41 on page 103 as only a
constraint has active instances (highlighted in red in the source editor). The “No entry” symbol
in the truth assignment view indicates that the instance is not satisfied under the current state.
Note that the tree in the computation view has an inactive branch. The current computation
(nodes with yellows background) is an alternative branch for the computation in Figure 8.16.
Clicking on the final greyed branch would set S1, . . . , S6 to be the active computation again.

program.
VisualDLV has been developed at the University of Calabria and is tailored towards the

DLV solver. It is a standalone tool with a source code editor that also has syntax checking and
auto completion for DLV programs. In addition to standard DLV, the tool is compatible with its
two extensions DLVDB and DLVIO that allow for interacting with databases. Here, VisualDLV
provides a limited SQL front-end to display and edit database tables and allows for generating
auxiliary directives that specify the solver’s connection to the database.

A more advanced IDE for DLV is ASPIDE, a recent standalone system (Febbraro et al.,
2011) that builds on previous tools (Febbraro et al., 2010; Calimeri et al., 2009; Gebser et al.,
2009b). Among the IDEs for ASP that we are aware of, ASPIDE is the closest to SeaLion
regarding richness of features. Besides the basic functionalities (syntax highlighting, syntax
checking, and code completion), one nice feature of ASPIDE is the support of customised
code templates (Calimeri and Ianni, 2006). Moreover, ASPIDE provides a framework for unit
tests (Febbraro et al., 2013) that is similar in spirit to unit testing with our annotation language
LANA (De Vos et al., 2012a). Like SeaLion, ASPIDE supports refactoring of predicates and
variables and allows for embedding external scripts for output processing. ASPIDE comes with
a visual program editor, i.e., rules can be generated using a graphical interface. We do not aim
for comprehensive visual source-code editing in SeaLion but consider the use of customisable
program templates that allow for expressing common programming patterns in future releases
of SeaLion. Unfortunately, the profiling component of the IDE (Calimeri et al., 2009), that
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Figure 8.18: In state S2 of Example 42 on page 106, no further rule has active instances.
However, interpretation IS2 is no answer set as there are 770 unfounded sets left. SeaLion only
shows the first 100 unfounded sets that were computed because the respective GUI elements
would draw much working memory.

is closely linked with DLV, is not publicly available. The developers of ASPIDE integrated
the early prototype tool Spock (Brain et al., 2007a; Gebser et al., 2009b) that realises two
debugging approaches for a basic language fragment (cf. Section 2.3).

A further system worth mentioning is iGrom (Koziarkiewicz, 2011) that has been devel-
oped as a student project at Vienna University of Technology independently from SeaLion. It
is based on Eclipse as well and provides basic syntax highlighting and syntax checking for the
languages of both Lparse and DLV. A speciality of iGrom is the support for the front-end
languages for planning and diagnosis of DLV.

SeaLion and iGrom are the only IDEs that support both the Lparse/Gringo and the
DLV language families. All the systems that we discussed provide some form of syntax check-
ing and allow for launching ASP solvers. Built-in visualisation of answer sets, documentation
generation, and support for model-driven engineering is only available in SeaLion. Likewise,
no other IDE integrates a practical debugging approach for non-ground answer-set programs.
Note that the model-based engineering plugin of SeaLion is a refined follow-up project of the
VIDEAS system (Oetsch et al., 2011a) that used ER diagrams to model domains of answer-set
programs.

Finally, we discuss systems that are not targeted towards core ASP but towards related
knowledge representation languages. Among those are two commercial development environ-
ments for ontology reasoning on top of logic programming, OntoStudio (Weiten, 2009) and
OntoDLV (Ricca et al., 2009). OntoStudio allows for modelling ontologies using seman-
tic web languages (OWL,RDF(S),RIF) and the ObjectLogic language, an extension of frame
logic (Kifer et al., 1995). The formalism is based on normal logic programs under the well-
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founded semantics (Van Gelder et al., 1991). OntoStudio is Eclipse-based and has a strong
focus on visual modelling. OntoDLV is an environment for modelling ontologies using On-
toDLP, an extension of the DLV language with ontology features like classes, inheritance, rela-
tions and axioms and also focuses on interoperability with OWL and supports connections to re-
lational databases, similar as other DLV based environments (VisualDLV and ASPIDE). Sev-
eral IDEs for PROLOG have been developed, e.g., PDT (Kniesel et al., 2014), J-Prolog (Bar-
tram, 2004), ProDT (Cancinos, 2012), ProClipse (Bendisposto et al., 2008), and the pro-
prietary Amzi!Prolog (Amzi! inc, 2011). Among those only PDT seems to be under active
development. With the exception of J-Prolog, all this systems are Eclipse plugins. Some
of this environments provide front-ends for the tracing based debugging system of the PROLOG

interpreter.
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9 Summary and Conclusion

This chapter summarises the results of this work and discusses potential topics for future work.

9.1 Summary

In this thesis, we introduced the stepping technique for ASP that can be used for debugging
and analysis of answer-set programs. Like stepping in imperative programming, where the
effects of consecutive statements are watched by the user, our stepping technique allows for
monitoring the effect of rules added in a step-by-step session. In contrast to the imperative
setting, stepping in our sense is interactive in the sense that a user decides in which direction
to branch, by choosing which rule to consider next and which truth values its atoms should
be assigned. On the one hand, this breaks a general problem of debugging in ASP, namely
how to find the cause for an error, into small pieces. On the other hand, this user interaction
allows for focussing on interesting parts of the debugging search space from the beginning. This
is in contrast to the imperative setting, where the order in which statements are considered in
a debugging session is fixed. Nevertheless, also in our setting, the choice of the next rule is
not entirely arbitrary, as we require the rule body to be active first. Stepping-based debuggers
for procedural languages often tackle the problem that many statements need to be considered
before coming to an interesting step by ignoring several steps until pre-defined breakpoints are
reached. We developed an analogous technique in our approach that we refer to as jumping and
that allows the user to consider multiple rules at once.

Besides developing the technical framework for stepping, we also discussed methodological
aspects, thereby giving guidelines for the usage of the technique, and for setting the latter in the
big picture of ASP development.

We have discussed SeaLion, an integrated development environment for ASP, that has
been developed in the context of the same research project as this thesis and comes with an
implementation of the stepping technique. We describe the design and the implementation of
the system, give an overview of its features, and show how stepping can be realised in practise
using SeaLion.

The main goal of this work was the realisation of a ready-to-use debugging approach for
ASP that is compatible with the rich languages of modern ASP solvers. In order to achieve
it, in the form of the stepping technique, several problems had to be solved on the way whose
solutions can be considered interesting in themselves.

For one, it was necessary to overcome the differences between different solver languages.
Here, we could make use of abstract-constraint programs as a well-established formalism for
representing special literals such as aggregates or weight constraints. However, none of the
existing semantics defined for abstract-constraint programs was sufficient to cover the semantics
of all of our three solvers languages of interest, the Gringo language, the DLV language, and
the language of DLVHEX. Therefore, we extended the FLP-semantics to disjunctive abstract-
constraint programs with arbitrary abstract constraints in rule heads. The resulting formalism,
for which we studied several properties, can be seen as an abstraction of ground programs in
our three target solver languages.
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Not only the gap between languages of different solvers but also the differences between
solver languages and formal ASP languages needed to be bridged. In this respect, a key dif-
ference is the grounding step, where in formal ASP languages every rule is replaced with its
instances resulting from naïve grounding, i.e., all combinations of rules obtained by substituting
variables by all available terms. The grounding components of real answer-set solvers however
apply many different forms of simplifications and even create new terms, e.g., by evaluating
interpreted function symbols or accessing external knowledge sources. Also here, we decided
to solve the problem by means of abstraction. That is, we defined a class of abstract non-ground
programs and two types of abstractions of the grounding step that turn abstract non-ground into
abstract-constraint programs. By developing our stepping framework to work for these abstrac-
tions, it can easily be applied to concrete solver languages.

The framework of computations developed in Chapters 5 and 6 provides the formal base for
stepping. From the user perspective, stepping boils down to selecting one active rule instance
at a time and fixing the truth assignment for performing a step or simply selecting a set of rules
in the case of a jump. We showed properties that guarantee that this procedure is semantically
adequate, i.e., computations fully characterise the fixpoint-based definition of answer sets. An
analysis of the computational complexity of our semantics showed that checking answer-set ex-
istence for abstract-constraint programs is ΣP

2 -complete. Due to this fact, unless the polynomial
hierarchy collapses, the problem is not in NP. To capture the full complexity of the semantics,
computations keep track of unfounded sets. In order to eventually reach an answer-set of the
program, each non-empty unfounded set must be eliminated by choosing a respective rule in-
stance providing external support. We singled out a large class of programs in which we can
rely on stable computations only, i.e., computations without non-empty unfounded sets, to reach
every answer set.

Finally, we also compared the stepping technique, the new semantics for abstract-constraint
programs, the framework of computations, as well as the SeaLion system with related ap-
proaches.

9.2 Outlook

In this section we conclude this work with an outlook on possible future work.
While unstable computation are often not needed, they offer great opportunities for further

work. For one, the use of unfounded sets for distinguishing states in unstable computations
is a natural first choice for expressing the lack of stability. Arguably, when a user arrives in
a state with a non-empty unfounded set, he or she only knows that some external support has
to be found for this set but there is no information which atoms of the unfounded sets are
the crucial ones. It might be worthwhile to explore alternative representations for unstability
information such as elementary loops (Gebser et al., 2011d) that would possibly provide more
pinpoint information. This would also require lifting a respective notion to the full language of
C-programs first.

Another issue regarding unstable computations that would deserve further attention is that
in the current approach jumps can only result in stable states. Thus, unstable states in a compu-
tation can only be reached by individual steps at present. Here, it would be interesting to study
methods and properties for computations that allow for jumping to states that are not stable.

Regarding the realisation of stepping, we next discuss functionality that could be helpful
for stepping which are not yet implemented in SeaLion. One such feature would be semi-
automatic stepping, i.e., the user could push a button and then the system searches for potential
steps for which no further user interaction is required and applies them automatically until an
answer set is reached, the computation is stuck, or user interaction is required.

It would also be convenient to have automated checks whether the computation of a debug-
ging session is still a computation for the debugged program after a program update. In this
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respect, when the computation for the old version became incompatible, a feature would be
advantageous that builds up a computation for the new version that resembles the old one as
much as possible. Unlike semi-automatic stepping and compatibility checks for computations
which could be implemented without further studies, the latter point gives also rise to further
theoretical research.

Further convenient features would be functionality that highlights the truth values of atoms
that cause a rule not to be active for a given substitution and methods for predicting whether a
rule can become active in the future, i.e., in some continuation of the computation.

We received positive feedback on the usability of stepping from students involved in the
development of SeaLion. However, these were just a few replies that might be considered
biased. Hence, a task left for future work is to carry out a systematic user study for the stepping
plugin of SeaLion.

We also see potential for future work based on our results beyond stepping. For one, the
semantics introduced in Chapter 4 can serve as a basis for extending current answer-set solvers
to a richer language as today’s solvers do not jointly allow for disjunction and aggregates in the
rule heads. In this respect, the characterisations in terms of unfounded sets could be beneficial,
as, e.g., the algorithms of DLV operates with unfounded sets.

Moreover, our framework of computations for G-programs could be implemented as an
ASP solver that grounds the program on-the-fly. In many ASP programs the rules for guessing
a solution prevent optimisations in the grounding step which leads to huge groundings that can
easily exceed a reasonable amount of resources. These problems could be prevented by solvers
that do grounding while solving and solvers that follow this principle have already been pro-
posed (Lefèvre and Nicolas, 2009; Dao-Tran et al., 2012). However, they use only restricted
core languages, in particular they do not allow for aggregate literals, weight constraints, or ex-
ternal atoms which became very important in practise. Based on our framework of computations
it is in principle easy to develop such a solver in which the choices of the user in the stepping
setting are replaced by choice points in which the solver takes a decision. We see potential that
such a solver could outperform state-of-the art ASP systems if it came with adequate heuristics
and learning techniques.
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A Predefined Visualisation Predicates in
Kara

Atom Intended meaning
visellipse(id , height ,width) Defines an ellipse with specified height and width.
visrect(id ,height ,width) Defines a rectangle with specified height and width.
vispolygon(id ,x,y,ord) Defines a point of a polygon. The ordering defines in which

order the defined points are connected with each other.
visimage(id ,path) Defines an image given in the specified file.
visline(id ,x1,y1,x2,y2,z) Defines a line between the points (x1, y1) and (x2, y2).
visgrid(id ,rows ,cols ,height ,
width)

Defines a grid with the specified number of rows and columns;
height and width determine the grid size.

visgraph(id) Defines a graph.
vistext(id ,text) Defines a text element.
vislabel(idg ,idt) Sets the text element idt as a label for graphical element idg .

Labels are supported for the following elements: visellipse/3,
visrect/3, vispolygon/4, and visconnect/3.

visisnode(idn ,idg) Adds the graphical element idn as a node to a graph idg for
automatic layouting. The following elements are supported as
nodes: visrect/3, visellipse/3, vispolygon/4, visimage/2.

visscale(id ,height ,weight) Scales an image to the specified height and width.
visposition(id ,x,y,z) Puts an element id on the fixed position (x, y, z).
visfontfamily(id ,ff ) Sets the specified font ff for a text element id .
visfontsize(id ,size) Sets the font size size for a text element id .
visfontstyle(id ,style) Sets the font style for a text element id to bold or italics.
viscolor(id ,color) Sets the foreground colour for the element id .
visbackgroundcolor(id ,color) Sets the background colour for the element id .
visfillgrid(idg ,idc ,row ,col) Puts element idc in cell (row , col) of the grid idg .
visconnect(idc ,idg1 ,idg2 ) Connects two elements, idg1 and idg2 , by a line such that idg1

is the source and idg2 is the target of the connection.
vissourcedeco(id ,deco) Sets the source decoration for a connection.
vistargetdeco(id ,deco) Sets the target decoration for a connection.
visleft(idl ,idr ) Ensures that the x-coordinate of idl is less than that of idr .
visright(idr ,idl) Ensures that the x-coordinate of idr is greater than that of idl .
visabove(idt ,idb) Ensures that the y-coordinate of idt is smaller than that of idb .
visbelow(idb ,idt) Ensures that the y-coordinate of idb is greater than that of idt .
visinfrontof (id1 ,id2 ) Ensures that the z-coordinate of id1 is greater than that of id2 .
vishide(id) Hides the element id .
visdeletable(id) Defines that the element id can be deleted in the visual editor.
viscreatable(id) Defines that the element id can be created in the visual editor.
vischangable(id ,prop) Defines that the property prop can be changed for the element

id in the visual editor.
vispossiblegridvalues(id ,ide) Defines that graphical element ide is available as possible grid

value for a grid id in the visual editor.
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