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Abstract

In recent years, low cost, high frame rate 3D or range cameras, which simultaneously provide
distance and intensity information have become commercially available. These cameras have
gained a lot of interest in numerous applications. Indoor mapping and autonomous mobile nav-
igation are two example applications, which have a lot of potential for such cameras. Motion
estimation is an integral part of these applications. Therefore, it is vital to investigate methods
and techniques for motion estimation, which can exploit the simultaneous availability of range
and intensity information provided by these 3D cameras.

This thesis investigates the integration of range and intensity data for the task of motion es-
timation. The motion estimation of a moving camera and motion estimation of independently
moving objects are both investigated. The integration of range and intensity information is real-
ized using range flow and optical flow constraints, which have been used for motion estimation
in range and intensity images respectively. Range flow and optical flow lead to similar math-
ematical formulations, therefore they are well integrated into one estimation problem. Using
these flow algorithms, first a method of estimating relative orientation of a pair of camera frames
is presented. A highly over determined system of equations is solved for estimating the six pa-
rameters of relative orientation between two frames of the range camera. The trajectory of the
moving camera is then computed using sequentially estimated pair wise relative orientations.
The concatenation of sequential pair wise orientations lead to drift and accumulation of errors
which does not give a globally consistent trajectory. To solve this problem, a method utilizing
relative orientations results in bundle adjustment is presented. Matching distinctive features in
images helps to identify loop closures and revisit of an area, which is essential in obtaining a
globally consistent trajectory. However, in indoor environments features may be sparse and due
to similar looking environment robust feature matching can be very challenging. Thus, the solu-
tion proposed in this thesis, utilizes the estimated relative orientations in the bundle adjustment.
So, even when the feature points are low in number and not well distributed across the image,
the orientation can still be accurately estimated by using information from the relative orienta-
tion. The proposed algorithm is evaluated on a publicly available dataset and benchmark, which
shows that the algorithm performs well in comparison to the state of the art algorithm. Fur-
thermore, using variance component analysis in bundle adjustment, it is shown that the original
accuracy estimates of the relative orientation are far too optimistic.

Furthermore, this thesis presents a method for dense 3D motion estimation of independently
moving objects with a static camera, which is also based on the integration of range flow and
optical flow constraints. This method is based on two steps, in the first step the motion is
estimated locally, while in the second step a global regularization is performed, which leads to
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smooth dense flow vectors. The advantage of such an approach is that it leads to a linear equation
system, which is then iteratively solved to remove the outliers.

In the end, an example of motion estimation on a landslide is presented. The motion esti-
mation is realized using range flow constraint, which is applied on raster based digital surface
models generated from the multi-temporal laser scanning data of a landslide surface.

The thesis demonstrates the feasibility and the benefits of integrating range and intensity
data, of combining global and local models, and finally of considering stochastic properties of
the measurements in the parameter estimation.



Kurzfassung

In den letzten Jahren haben 3D-Kameras mit hohen Bildwiederholfrequenzen und günstigem
Anschaffungspreis eine große Verbreitung gefunden. Diese Kameras erlauben gleichzeitig Ent-
fernung und Intensität zu messen und sind deshalb für viele Anwendungen interessant. Die Ver-
messung von Innenräumen und die selbsttätige Auto-Navigation seien als Beispiele genannt.
Die Bestimmung der Bewegung der Kamera bzw. jener der beobachteten Objekte ist eine wich-
tige Teilaufgabe in all diesen möglichen Anwendungen. Deshalb ist es wichtig Methoden zu
untersuchen, die die Bewegung unter Verwendung der simultan erfassten Strecken- und Intensi-
tätsmessungen bestimmen.

Diese Arbeit untersucht diese gemeinsame Verwendung von Strecken- und Intensitätsmes-
sungen für die Bewegungsbestimmung. Dabei wird die Bewegungsbestimmung sowohl von ei-
ner bewegten Kamera als auch von mehreren sich unabhängig bewegenden Objekten untersucht.
Die gemeinsame Verarbeitung der Entfernungs- und Intensitätsmessungen wird über Range-
Flow und Optical-Flow-Bedingungen realisiert. Der in Entfernungsbildern formulierte Range-
Flow und der in Intensitätsbildern formulierte Optical-Flow verwenden sehr ähnliche mathema-
tische Beschreibungen. Daher lassen sich beide sehr gut in einer gemeinsamen Parameterschät-
zung zusammenfassen.

Anhand dieser Flow-Algorithmen wird zuerst die relative Orientierung eines Paars von auf-
einanderfolgenden Bildern bestimmt. Dabei wird ein hochgradig überbestimmtes Gleichungs-
system gelöst um die sechs Parameter der relativen Orientierung zu berechnen. Die Trajektorie
der bewegten Kamera ergibt sich dann aus der Sequenz aller paarweise berechneten relativen
Orientierungen. Diese paarweise Aneinanderreihung führt zu einer Aufsummierung von Feh-
lern, was sich in einem Gangfehler in der berechneten Trajektorie niederschlägt. Um dieses
Problem zu lösen und somit eine global konsistente Trajektorie zu bestimmen, werden die Er-
gebnisse aller relativen Orientierungen in einer gemeinsamen Bündelblockausgleichung einge-
führt.

Für die Schätzung einer global konsistenten Trajektorie ist es wichtig denselben Objektbe-
reich mehrmals zu erfassen und diese so entstehenden Schleifenschlüsse zu identifizieren. Für
Letzteres werden eindeutige Merkmale in den Bildern extrahiert und gematcht. In Innenraum-
bereichen können diese Merkmale selten auftreten wenn die Umgebung entweder einfärbig ist
oder über sich wiederholende Muster verfügt. In solchen Szenarien sind die Extraktion und das
Matching von robusten Merkmalen somit sehr schwierig. In dieser Arbeit wird dieses Problem
durch die geschätzten relativen Orientierungen in der Bündelblockausgleichung gelöst. Somit
kann die Orientierung auch dann noch genau geschätzt werden, wenn die Anzahl der Merkmale
gering oder deren Verteilung ungünstig ist.
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Der vorgestellte Algorithmus wird anhand einer öffentlichen Datenbank an Bildern getestet.
Die Einordnung der Performance des Algorithmus in die dort veröffentlichten Vergleichswerte
(„Benchmark“) zeigt, dass er sich im Vergleich zu anderen aktuellen Methoden sehr gut hält.

Die weitere Analyse anhand der Varianz-Komponenten-Schätzung in der Bündelblockaus-
gleichung hat gezeigt, dass die original geschätzten Genauigkeitswerte der relativen Orientie-
rung viel zu optimistisch ausfallen.

Im letzten Teil der Arbeit wird eine Methode vorgestellt, wie anhand einer statischen Kamera
die Trajektorien von sich unabhängig voneinander bewegenden Objekten bestimmt werden kann.
Auch hier wird wieder auf die gemeinsame Verwendung von Range-Flow und Optical-Flow
zurückgegriffen. Die Bestimmung erfolgt in zwei Schritten. Im ersten Schritt werden lokale
Bewegungsvektoren berechnet. Im zweiten Schritt werden diese einer globalen Optimierung
unterzogen wodurch sich dann ein geglättetes dichtes Feld von Bewegungsvektoren ergibt. Der
Vorteil dieses Zugangs liegt darin, dass es auf ein lineares Gleichungssystem führt, welches
iterativ gelöst wird um grobe Fehler zu entfernen.

Den Abschluss der Arbeit bildet ein praktisches Beispiel, bei dem die Bewegungsvektoren
aufgrund eines Erdrutsches aus multi-temporalen Laserdaten bestimmt werden. Die Berechnung
verwendet den Range-Flow und wendet diesen auf rasterbasierte digitale Oberflächenmodelle
an.

Zusammenfassend wurde in dieser Arbeit gezeigt, dass die gemeinsame Verwendung von
Entfernungs- und Intensitätsmessungen, die Kombination von lokalen und globalen Modellen
und die Berücksichtigung der stochastischen Eigenschaften der Messungen bei der Parameter-
schätzung durchführbar und auch von Vorteil sind.
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CHAPTER 1
Introduction

1.1 Motivation and Objectives

Motion analysis is an important topic in photogrammetry, computer vision, robotics and remote
sensing, which involves motion of a sensor in a static environment and the motion of indepen-
dently moving objects as well as motion relating to dynamics of the natural phenomena like
landslides or glaciers. The knowledge or information of the environment can be acquired by a
sensor like a camera mounted on a platform moving through the surroundings or a camera used
hand held. Subsequently, estimating motion of the camera is an essential task in utilization and
processing of the acquired data. For autonomous navigation as well as for scene reconstruction
its not only important to determine the motion of the platform itself but it may also be of interest
to determine motion of independently moving objects in the surroundings.

In the recent years low cost high frame rate 3D cameras have become widely available.
Commercial availability of these low cost sensors along with ease of use has derived interest in
numerous applications. The goal of this thesis is motion estimation in data from range imaging
sensors like Time of flight (ToF) cameras or structured light based cameras. These type of
cameras are sometime called as RGBD or RGBZ sensors as they can provide RGB color image
along with depth of each pixel. The emphasis in this thesis is on determining motion of the
camera and motion of independently moving objects. The motion of the camera is defined
by its exterior orientation consisting of six parameters: three parameters defining the position
of the camera perspective center and three parameters for defining the angular attitude of the
camera with reference to a superior coordinate system. In case of motion of a camera, terms
like camera pose estimation, camera trajectory, ego-motion estimation and visual odometry all
refer to determination of exterior orientation parameters of a moving camera. The range sensors
typically also provide intensity information along with the distance information. While a lot
of work has been done on determining the orientation of the camera from intensity images,
the optimal fusion of intensity and range information for determining camera orientation still
requires further investigations. The system investigated is based on a single camera, where
the motion is generated by a moving camera or independently moving objects. Furthermore,
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experimental data consists of image sequences or video, which implies the temporal ordering of
images and presumes small motion and high overlap of the scene in consecutive frames.

The technology of range imaging sensors continues to develop, however there are still limi-
tations in the spatial resolution, accuracy of distance measurement, background light subtraction
and maximum measurable distance. Due to these limitations range imaging cameras are mostly
suitable for indoor close range applications. Therefore, mapping and monitoring of the indoor
environment is a key application for these type of cameras. Indoor environment is usually com-
posed of planar objects like walls and ceilings and often image texture on these surfaces is very
low. The state of the art image based techniques for determining the camera orientation make
use of distinctive image features. In an indoor environment the number of distinctive features
may be low and these features may not be well distributed throughout the image, which will
have an adverse effect on the accuracy of estimated camera orientation. Similarly, the accuracy
of methods for point cloud or range image registration will be effected by limited 3D structure
or geometry. Consequently, the complementary intensity and range information as available in
modern day 3D sensors is a valuable asset as it can help to achieve better results in such appli-
cations. Therefore, it is essential to investigate methods which perform optimal integration of
range and intensity information for the task of motion estimation.

The research problem investigated in this thesis is the optimal fusion of the range and in-
tensity information for the task of estimating motion of camera and motion of independently
moving objects with a static camera. An important aspect of estimating camera motion is to
obtain a globally consistent solution of the camera trajectory. On the other hand, while studying
motion of independently moving objects, it is desired to estimate 3D motion vector for each
pixel of the image, which is subsequently useful in segmenting independently moving objects.
Furthermore, it is desired that the derived methods should consider proper stochastic modeling
of the observations, because by stochastic modeling, an estimate of the accuracy of the solution
can be obtained. Furthermore, if the stochastic model is correct, then the least squares is the best
linear unbiased estimator.

1.2 Overview

In this thesis the integration of range and intensity data is realized using optical flow and range
flow constraints, which lead to a similar formulation in terms of motion parameters. As a re-
sult, a joint estimation problem is solved which combines information from both channels in
a single framework. Both camera motion and motion of independently moving object can be
investigated using this strategy. Range flow and optical flow algorithms typically estimate mo-
tion between a pair of images. If more views or images are available then the pairwise motion
is sequentially computed. Using pairwise transformation does not give a globally optimal esti-
mate due to accumulation of errors over longer sequences. A solution based on integration of
relative orientation into bundle adjustment is proposed to obtain globally optimal estimate of
camera trajectory. Bundle adjustment is the state of the art method for obtaining a globally op-
timal solution of camera poses and 3D structure. Therefore, complementing bundle adjustment
with relative orientation is expected to produce better results especially in scenarios with limited
scene texture which is often the case in indoor environments.
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The motion estimation of independently moving objects is also based on integration of range
flow and optical flow constraints. The task of dense motion estimation is realized using a two
step procedure. In the first step, information from the local neighborhood is used for estimating
motion at each pixel and in the second step a global regularization is performed over the whole
image to compute smooth dense motion vectors at each pixel with sharper motion boundaries.

The layout of the thesis is as follows: In Chapter 2 theory and the corresponding related work
in area of motion estimation using range and intensity data is presented, this includes topics of
multiview geometry, point cloud registration, flow algorithms and fusion of range and intensity
data. The inclusion of all these topics is necessary due to the combination of data and methods
utilized in this work for the task of motion estimation. In Chapter 3 a brief introduction of ToF
cameras, active triangulation sensors and laser scanners is given as data from these sensors is
used for evaluation of the methodology. The method of relative orientation using direct methods
and the incorporation of relative orientation in bundle adjustment is presented in Chapter 4. Then
the method of motion estimation of independently moving objects is presented in Chapter 5. A
brief discussion on estimation models used for flow algorithms is included in Chapter 5. The
evaluation of the proposed methods is presented in Chapter 6. Both qualitative and quantitative
evaluation of the methods is presented. Evaluation of relative orientation and bundle adjustment
with relative orientation constraints is performed on publicly available RGB-D dataset [37].
Sequences from ToF camera are also used for the evaluation of the proposed methods. Motion
estimation has several applications in area of remote sensing. In Chapter 6 an application of
range flow to estimate motion of a landslide is presented. Finally, conclusions along with the
future prospects are given in Chapter 7.

1.3 Contributions

The first contribution of this work is to embed the developments in optical flow and range flow
algorithms in to a framework for direct estimation of camera relative orientation or ego motion.
These developments include coarse to fine warping strategy and robust estimation. Although the
application of direct methods for motion estimation using intensity and range data has already
been presented in [67, 76, 78], this work extends these methods to robustly estimate relatively
large motions (Chapter 4).

The second main contribution is the integration of relative orientation constraints from direct
methods into bundle adjustment (Chapter 4). This method combines the advantages of sparse
feature matching and dense image and point cloud registration to estimate globally consistent
solution of camera motion. More specifically, relative orientation constraints along with their
estimated covariance matrices are introduced as observations in the bundle adjustment, which
simultaneously optimizes camera orientations and the 3D point locations.

The third contribution is a global regularization procedure for estimating dense 3D motion
vectors of independently moving objects in an ordinary least squares framework (Chapter 5).
This method extends the work of Spies et al. [177], to include an-isotropic smoothing and robust
estimation in global regularization of the 3D motion vectors. This global regularization proce-
dure solves a linear system of equations using ordinary least squares to obtain dense smooth
motion vectors.
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The fourth contribution is the application of range flow over a landslide to estimate the 3D
displacements. In the discipline of geomorphology, understanding the dynamics of a landslides
is an important task and motion estimation of the landslide is essential part of this task. The
surface of a dynamic landslide exhibits a complex motion pattern, which is analyzed by applying
the range flow constraint on surface models of the landslide generated from laser scanning data
at different instants in time.

Furthermore, the stochastics of the observations are take into account in the motion estima-
tion model and a discussion on least squares model for motion estimation is presented (Chapter
5). The integration of range flow and optical flow is realized using a least squares solution where
the stochastic properties of each distance and intensity measurement can be taken into account.
Furthermore, the results of relative orientation and local motion estimation are used along with
the variances of the estimated parameters, which then performs the weighting of the terms or
observations in the next estimation step.

The papers published during the course of this research are [49–52,96,97,144,157]. In [49]
and [50] the method of estimating motion and segmentation of multiple moving objects us-
ing integration of range flow and optical flow is presented. Chapter 5, contains the method
presented in these papers. The final aim of this work was the segmentation of independently
moving objects in range video sequences. The motion vectors derived using the method pre-
sented in these papers were used to generate trajectories for each pixel of the image and a graph
based segmentation algorithm was used to segment these trajectories into independent moving
objects [49, 50]. The work related to segmentation of trajectories was done by co-author Nicole
Brosch [16, 17, 49, 50] as part of joint research collaboration in context of Doctoral College on
Computational Perception.

Estimation of camera relative orientation using direct methods based on integration of range
and intensity data is presented in [51]. In this work it was shown that due to robust estimation it
is possible to filter out the independently moving objects from the static parts of the scene if the
dominant motion is due to camera motion.

The quantification and modeling of the scattering errors in ToF camera is investigated in
[96,97]. Quantification of this error and calibration and modeling of systematic errors is essential
part of data acquisition and analysis of data from the range sensors. This work was performed
in support of the Tof camera calibration research done by Wilfried Karel [94, 95]. In [97] the
scattering was modeled using a point spread function and a deconvolution procedure was applied
to estimate the image without scattering distortion.

In [52] and [157] the motion estimation of the landslide using range flow is investigated and
compared with the results of point based geodetic measurements. Roncat et al. [157] further
includes a comparison between surface models generated from airborne laser scanning data and
image matching using an unmanned air vehicle.

The work in [144,198] was part of a research work to develop automatic classification tools
for classification of airborne laser scanning data. The geometrical and radiometric features de-
rived for each laser scanning point were used for classifying points into various land cover types.
In [144] the focus of the paper was on the features derived for each point and the management
of the point cloud data.
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CHAPTER 2
Theory and Related Work

In this chapter the theoretical background and state of the art methods for motion estimation with
focus on the orientation of the moving camera and motion of independently moving objects
in data from range sensors is presented. Traditionally there has been a lot of studies done in
motion estimation from images but as the range sensors have become widely available in the
recent years, motion from range data has also become very popular [27]. As both intensity and
range information is available in the range sensors, methods developed for both intensity and
range images are relevant in the scope of this work. Therefore, the theory and related work
can be divided into methods developed for only intensity data or range data or methods based
on fusion of range and intensity data. Furthermore, motion estimation using flow algorithms is
a rather vast topic in itself, therefore, the related work has been further divided to discuss flow
algorithms separately as they form a core component of the methodology proposed in this thesis.
The topics discussed here have been developed and applied in photogrammetry, computer vision
and robotics communities, therefore, the body of literature corresponding to these topics is vast.
However, some of the methods are principally very similar but named differently due to their
development in different disciplines.

2.1 Camera Orientation and Multiple View Geometry

A camera projection model defines the mapping of the 3D object space to the 2D image space.
Throughout this work a pinhole camera model is assumed. Therefore, the distortion is either
deemed to be negligible because the random errors are by far larger than the systematic errors
or it is assumed to be constant and determined beforehand using camera calibration and subse-
quently removed [107, 126]. The imaging geometry is shown in Figure 2.1. All rays from the
scene points intersect at a common point known as camera projection center O. In Figure 2.1
the the coordinates of the projection center are (X0, Y0, Z0) in the global coordinate system
(X,Y, Z). The distance from the projection center to the image plane gives the principal dis-
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tance f 1. The image coordinate of a perpendicular ray from projection center to the image plane
gives the principal point (x0, y0) in the camera coordinate system (x, y, z).

The derivation of the relation between the image and object coordinates given here, closely
follows [108], where a detailed derivation is available. Suppose a coordinate system (X ′, Y ′, Z ′)
parallel to (x, y, z). Due to collinearity of the points OP ′P (Figure 2.1 ), the following relation
can be written.  X −X0

Y − Y0

Z − Z0

 =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 X ′ −X ′0
Y ′ − Y ′0
Z ′ − Z ′0

 (2.1)

where rij are the elements of the rotation matrix, which rotates the coordinate axes of
X,Y, Z to align with X ′, Y ′, Z ′. Further discussion on the rotation matrix is given later in
the thesis (Chapter 4). The relations between the object coordinates and image coordinates of
point P ′ are give as:

x− x0

f
=

X ′ −X ′0
Z ′ − Z ′0

y − y0

f
=

Y ′ − Y ′0
Z ′ − Z ′0

(2.2)

Using the relations in Eqs. (2.2) and (2.1) the so called collinearity equations are written as:

z

x

P' (x,y)

ZZ'

YY'

X

X'

Z'

Z'
(X',Y',Z')
(X,Y,Z)P

M

f
y

0

X'0

Y'0

x 0

y 0

(X' ,Y' ,Z' )
(X  ,Y ,Z  )O  0 0 0

0 0 0

Figure 2.1: Geometry of Image formation. (adapted from [108]). The coordinate system
(X ′, Y ′, Z ′) is parallel to image coordinate system (x, y, z) which is rotated with respect to
coordinate system (X,Y, Z).

1In Photogrammetry, principal distance is usually denoted as c. However, in this thesis c is used to denote speed
of light, therefore, f is used here for principal distance.
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x = x0 − f
r11 (X −X0) + r21 (Y − Y0) + r31 (Z − Z0)

r13 (X −X0) + r23 (Y − Y0) + r33 (Z − Z0)

y = y0 − f
r12 (X −X0) + r22 (Y − Y0) + r32 (Z − Z0)

r13 (X −X0) + r23 (Y − Y0) + r33 (Z − Z0)

(2.3)

The collinearity equations represent the relation between camera exterior orientation (the
position of the projection center (X0, Y0, Z0) and the angular attitude of the camera), interior
orientation (principal point (x0, y0) and principal distance f ) and image observations which are
e.g. image coordinates of feature points. The exterior orientation of the image can be computed
indirectly from control points using the method of space resection. If the interior orientation of
the image is known then a minimum of three points (with known coordinates in (X,Y, Z); the
so called control points) are required to compute the orientation of the image using collinearity
equations (Eq. (2.3)). As collinearity equations are non linear, an approximate solution should
be provided for estimating orientation of the image using this method of space resection. Using
the method Direct Linear Transformation (DLT) [1], orientation of the image can be estimated
by solving a linear system of equations without any need of approximate solution [118]. The
direct orientation of the image can be computed using e.g. GPS and an inertial measurement
unit (IMU) [28, 68, 69, 209].

The range is the distance from the projection center to the object point, which according to
Figure 2.1 can be written as:

DR =

√
(X ′ −X ′0)

2 + (Y ′ − Y ′0)
2 + (Z ′ − Z ′0)

2, (2.4)

In this thesis the range refers to the distance DR, while depth is the Z ′ − Z ′0 coordinate of the
object point. The range flow constraint used in thesis is based on the Z ′−Z ′0 coordinate observa-
tion of each pixel. The range DR is used in the bundle adjustment as the distance measurement
to the object point.

Now, if multiple images from different view points are available (which in this thesis are
assumed to be generated by motion of camera), techniques of multi-view geometry can be ap-
plied to determine relative orientations of these camera positions. Camera relative orientation
from two or more views has been extensively studied in photogrammetry and computer vision
communities. Figure 2.2, shows the geometry of relative orientation from two views. Given a
corresponding point between two images, the so called coplanarity constraint means that the
object point, the corresponding image points in both images and the projection centers all lie on
a single plane [108, 118, 128], which can be written as:

bT
(
p

′
1 × p

′
2

)
=

∣∣∣∣∣∣
bx p1,X p2,X

by p1,Y p2,Y

bz p1,Z p2,Z

∣∣∣∣∣∣ = 0 (2.5)

Here, b is the baseline vector in the coordinate system (X,Y, Z) (also known as model coor-
dinate system), p

′
1 and p

′
2 are the vectors to the point P. The coordinate system as shown in

Figure 2.2 was chosen so that the baseline between two camera positions is along the X-axis.
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Figure 2.2: Relative orientation of two images. (adapted from [108]). The baseline between
two images is along the X axis of the model coordinate system XY Z

Using the coplanarity constraint, the transformation between two images can be written in form
of essential matrix and fundamental matrix for calibrated cameras and uncalibrated cameras
respectively [66, 186]. Several algorithms exists for computing the essential and fundamental
matrices from corresponding points in the two images [66, 126, 140]. The translation and rota-
tion components are then computed from the essential or fundamental matrices. Details of these
procedures can be in found in relevant texts [66,126]. If false corresponding point matches exist
then techniques like RANSAC [41] or M-estimators [84] are used to find a set of inlier points.
Similarly in the case of three views the relative orientations of the three images may be encoded
in the trifocal tensor [66, 73, 151]. These relative transformations are, however, defined up to a
scale factor which means that multiplying them with a scalar value still satisfies the coplanarity
constraint. The position of the corresponding points in 3D space can be computed by triangu-
lation of the image rays from estimated relative orientations. Figure 2.2 shows the geometry
of relative orientation between the two images, if the absolute orientation of the image pair is
desired, then information through control points or GPS should be included.

When relatively large sets of images with different viewpoints are given, the task of deter-
mining camera orientations and sparse 3D structure of the scene is known as structure from
motion [119, 184, 193]. Bundle block adjustment [18, 57, 108, 118, 126, 128] gives the most
accurate solution of the structure from motion problem. Here bundle refers to bundle of rays
from 3D points towards camera perspective center and the bundle block adjustment means the
estimation of position and orientation of bundle of rays [128]. Compared to relative orientation
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using two or three images, bundle adjustment can simultaneously optimize large number of cam-
era orientations, point coordinates and camera calibration parameters [190]. It is a non linear
optimization, which refines the initial estimates of the structure i.e. coordinates of the object
points and camera parameters. The basis for bundle adjustment are the collinearity equations
(Eq. (2.3)) which give the relationship between the observed image coordinates, 3D position of
points and camera interior and exterior orientations. Bundle adjustment is a flexible technique
as different types of observations, like control points, distance observations and constraints can
be included in the estimation procedure. Bundle adjustment is a non linear optimization due
to the non linearity of the observation equations, therefore an approximate solution is required
for initialization of the bundle block adjustment. Relative orientation methods and factorization
methods [66, 181, 189] are commonly used for initial approximations of structure from motion
problem [66]. Structure from motion has been used for many years for mapping and 3D recon-
struction applications [147, 172].

In mobile robotics simultaneous localization and mapping (SLAM) algorithms are used for
tracking robot pose or orientation together with mapping of the robot environment. The goal
is that the robot should be able to autonomously navigate in an unknown environment with an
unknown initial position. In SLAM algorithms there is a high emphasis on fast or real time
computation because the map of the landmarks (e.g. feature points) and the position of the robot
needs to be computed online so that the robot can autonomously navigate and avoid obstacles in
an unknown environment. SLAM methods often use information from inertial measurement unit
and other sensors like wheel encoders on board a moving robot. In addition to visual sensing,
robots may also be equipped with laser-range finder or sonar based sensors. In context of this
thesis, however, the main interest lies in the methods that solely rely on camera based navigation,
such algorithms can be categorized as visual SLAM algorithms. In visual SLAM algorithms
the task of estimating robot pose is in fact the problem of determining exterior orientation of
a moving camera which is the topic discussed in this thesis. The monocular SLAM method
[31, 32], utilizes only visual information from the camera for computing camera trajectory and
mapping of the environment. This method uses matching of image patches between frames to
compute motion in an extended Kalman filtering framework. Many of the SLAM algorithms
use Kalman filtering for estimating the next camera pose and updating the poses at the next time
interval.

The techniques for visual SLAM and structure from motion algorithms are principally sim-
ilar as both of these methods try to estimate both camera orientations and 3D structure. Bundle
adjustment for large number of images can be computationally expensive, therefore, bundle ad-
justment is often applied to a subset of recent images for online SLAM [40, 101]. In structure
from motion, however, the main interest lies in the visual reconstruction and not on the orien-
tation parameters of the camera. Furthermore, most of the structure from motion algorithms
run off line, while in SLAM the emphasis is on online estimation of the positions and the map.
However, this difference is not always true, as some structure from motion algorithms are ca-
pable of running online [141] and often the optimization of SLAM poses is done offline [187].
For large scale mapping problems, the number of map features and robot poses become enor-
mous and it becomes increasingly difficult to optimize such a large equation system. Therefore,
SLAM algorithms often use only the robot poses as variables and optimize over the robot poses
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and pairwise constraints to achieve globally consistent solutions. Many of the SLAM algo-
rithms [58, 59, 104, 116, 143] have build upon the idea of Lu and Milios [116], who used the
robot poses as nodes of the network or graph, pairwise transformation and constraints as links
between the nodes and performed a least squares optimization over the this network to obtain
a global solution (also known as pose graph optimization). The constraints arise from revisit
of certain areas or loop closures which can be identified using feature matching. The sparsity
in this type of network or graph can be used for solving large number of poses and constraints.
In the recent years the emphasis of the graph based SLAM algorithms has been on fast conver-
gence and solution of large number of nodes [59,104,105,143,187]. The pose graph estimation
problem in SLAM is principally the same problem as geodetic network adjustment studied in
geodesy and surveying since long time [4]. In a Geodetic network the observations are the sur-
veyed angular and distance measurements between station points. Both SLAM and geodetic
network adjustment [71] deal with large scale problems with non linear constraints among the
nodes. For example, large scale SLAM problems optimize upto 100,000 robot poses [104] while
the readjustment of North American geodetic network required solving for positions of 200,000
stations [53, 103].

The methods of orientation described here makes use of corresponding feature points in the
images. The procedure of automatically finding corresponding points among different images
comprises of feature detection, feature description, feature matching and optionally a fine mea-
surement of the feature point coordinate using area based matching [108] as is often done in
aerotriangulation [108, 126]. These distinctive feature points should be ideally invariant under
scale, rotation and illumination changes, so that they can be robustly and repeatedly matched in
images with different viewpoints. Feature detectors or interest point operators detect points or
region in images with sufficient gradient information, which can be matched in different images.
Corner detectors [43, 65] and blob detectors [123, 129] are commonly employed interest point
operators. The information of each feature point and its neighborhood is stored in the descrip-
tors like SIFT descriptor [115], GLOH [130] and SURF descriptor [11]. The feature matching
is done by computing distances between the descriptors in the descriptor space and finding the
best match e.g. the nearest neighbor which is below a threshold [115,130]. A detailed survey of
state of the art feature detectors, their evolution and pros and cons is presented in Tuytelaars and
Mikolajczyk [192].

State of the art algorithms in visual SLAM and structure from motion are based on sparse
feature point matching and bundle adjustment. Therefore, these method will have limitations
in case when feature points are low in number and not well distributed over the image. Hence,
it becomes essential to utilize range information for more accurate estimation of motion. The
method proposed in this thesis complements feature matching with dense pixel wise matching
to achieve better results. As compared to pose graph estimation methods of SLAM, the method
presented in this thesis performs a bundle adjustment, which simultaneously optimizes the 3D
structure and camera poses using the pairwise constraints in the adjustment.
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2.2 Point Cloud Registration

Given two sets of 3D points, the goal of registration is to find the optimal transformation between
the two data-sets. The transformation is optimal in the sense that it minimizes some sort of
distance between the corresponding points. These set of points represent the surfaces of the
objects in the scene, and the optimal transformation aligns these two surfaces. So, given two
point sets {di,mi; i = 1, 2, ...., N}, the goal is to find the rotation R and translation T which
minimizes the distance between the corresponding points:

E =
N∑
i=1

(Rdi +T−mi)
2 (2.6)

here, di = (dix, diy, diz)
T and mi = (mix,miy,miz)

T are ith corresponding points of {di} and
{mi}. In above formulation a seven parameter similarity transformation can also be used which
also includes the scale factor between the two point sets. Generally, the point correspondences
between the two data-sets is not known. The Iterative Closest Point (ICP) [12,24,211] algorithm
iteratively establishes the correspondences between the two point sets by using the closest point
as the corresponding point to minimize Eq. (2.6). ICP is the state of the art method used for
registration of two point data sets. ICP algorithm was independently proposed in [12, 24, 211].
Besl and Mckay [12], minimized the point to point distance as in Eq. (2.6), while Chen and
Medioni [24] minimized the point to plane distance as given by:

E =

N∑
i=1

[(Rdi +T−mi) · ni]2 (2.7)

here ni = (nix, niy, niz)
T is the unit normal vector at point mi. Variants of ICP with different

formulations have been proposed. A good comparison can be found in Rusinkiewicz and Levoy
[159]. ICP algorithms require good approximate registration of the two point sets otherwise the
solution can get stuck into local minima. Often a threshold is applied to the distance of closest
point to remove the outliers from the corresponding points. The minimum of the point to point
distance can be computed using the closed form solution based on singular value decomposition
[54, 179](SVD) [7], orthonormal matrices [82], quaternions [79] and dual quaternion [199].
Eggert et al. [36] has compared these four closed form solutions and found no clear differences
in stability and accuracy of these methods. The minimization of point to plane distance metric
is done iteratively in the form of linear least squares estimation. The minimization of Eq. (2.6)
using the SVD [54,179] is briefly described here as it is used for finding approximate orientation
of image pairs later in thesis. Let the centroid of two points sets {di} and {mi} be d and m
respectively. The coordinates of the points with reference to the centroid are:

di = di − d mi = mi −m (2.8)

The points {Rdi} and {mi}, will have the same centroid [83]. Therefore, Eq. (2.6) can be
rewritten as

E =

N∑
i=1

(
Rdi −mi

)2
(2.9)
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Now rotation and translation can be estimated separately. The minimization of Eq. (2.9) is
achieved when Trace(RH) is maximized, where

H =
N∑
i=1

dim
T
i (2.10)

If the SVD of H is USVT , then the optimal R which maximizes Trace(RH) is given as:

R = VUT (2.11)

The translation T is then computed as:

T = Rd−m (2.12)

In case that the points are coplanar, the determinant of R can be -1, which indicates a reflection
instead of a rotation. In such degenerate cases R can be computed as R = V′UT , where V′ is
computed from V by changing the sign of the column of V corresponding to the zero singular
value of H [7, 36]. Using Eqs. (2.11) and (2.12), the rotational and translational parameters
corresponding to the least squares fitting of two point sets with known correspondences can be
computed. In case of image feature matching with known distance to the object point (as is
available in range sensors), this method can be used to find the transformation between the two
images.

When multiple point clouds are available, registration is typically done sequentially using
pairs of point clouds. This results in accumulation of errors and drifts which does not yield a
globally optimal solution. Several techniques have been proposed to find more globally optimal
solution for multiple point clouds. In Chen and Medioni [24] ICP paper, a global solution for
registration of multiple scans based on metaview was given. In this approach each point cloud
was registered to previously registered point clouds, i.e a point cloud formed by registration of
scans was sequentially generated and it was called metaview and the successive neighboring
point clouds were registered to this metaview. Lu and Milios [116] proposed a network based
solution of registering multiple scans by solving all poses as variables and introducing pairwise
transformation as observations. Sharp et al. [167] have also proposed a similar solution by opti-
mizing a graph of spatial relationships of neighboring views. Ressl et al. [153] have performed
simultaneous least squares adjustment of airborne laser scanning strips using the pairwise strips
transformation derived using LSM [152, 153]. Pulli [148] has proposed to incrementally align
each view to a set of consistently aligned views by starting from the view with the most number
of connections. A recently proposed method named kinectfusion [86, 137] also integrates the
depth data into a global surface model and the registration of each camera pose is done by ICP
alignment of surface models with the current depth image of Kinect data.

Least Squares Matching (LSM) [5, 63,110,153] which is principally similar to ICP has also
been used for registration of surfaces. Methods utilizing the distribution of surface normals over
a surface area, such as spin images [88] and extended Gaussian images [81] have been used for
surface matching. These methods can be used for finding approximate solutions for initialization
of the ICP algorithm which then determines fine transformation parameters.
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The point cloud and surface registration methods like ICP which use geometric information
will not be able to uniquely determine all the transformation parameters if the surface under
consideration is e.g. a plane or a cylinder. Therefore, it is vital to utilize the intensity information
as well which may help to uniquely and robustly determine all the transformation parameters
[205]. Furthermore, for the case of registering multiple point clouds several methods have been
proposed but there is no consensus on the standard approach to apply for registering multiple
point clouds. The method presented in this thesis (Chapter 4), addresses both these issues as
it simultaneously uses range and intensity information and makes use of bundle adjustment for
computing a globally optimal solution which is a standard in multi-view image registration.

2.3 Flow Algorithms

In this section, the flow algorithms: optical flow and range flow are described. In contrast to
sparse feature based approaches these method use dense pixel information for estimating mo-
tion. These methods have been used for estimating motion of camera as well as the motion of
the independently moving objects with the larger body of literature concentrated on the latter
problem as the problem of estimating dense motion with sharp boundaries is a difficult task with
many applications requiring fast, accurate and robust motion estimation e.g self driving cars.
Techniques utilizing flow constraints for estimating camera motion parameters are known as
direct methods [76, 78] as they determine the unknown parameters directly from the measured
image quantities such as intensity and depth without computing features or explicitly computing
flow for each pixel [85].

Optical Flow

Optical flow is the problem of estimating 2D image motion in image sequences. The task is
to find corresponding pixels between a pair of images, similar to finding corresponding pixels
in a stereo image pair. The input for optical flow algorithms is typically an ordered image
sequence or video. This means that motion between two consecutive images is typically small
and temporal information can be utilized for enhancing the performance of the algorithms. Horn
and Schunck [80] have pointed out the difference between optical flow and motion fields. Optical
flow is the image motion which transforms one image of the sequence to the next image [80].
While, a motion field as defined by them is a purely geometric concept which is the projection
of the 3D motion onto the 2D image and therefore has no ambiguity. Considering e.g. a simple
example of an image containing only a line over a homogeneous intensity patch. In such an
example only the motion perpendicular to the line can be estimated from the image and the
motion along the direction of the line cannot be estimated unless there is more information
available in the image. Thus, in this scenario optical flow will give motion perpendicular to
the direction of the line. The goal is usually to estimate optical flow as close as possible to the
motion field but this depends on how much information is available in the image [75, 80].

Most of the optical flow problems are based on brightness constancy, which assumes that the
brightness or intensity of the pixel remains constant while moving from one image position to
another in the next frame. Mathematically, the brightness constancy assumption can be written
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as [9]
I(x, y, t) = I(x+ ẋ, y + ẏ, t+ 1), (2.13)

here, ẋ and ẏ are the image motion and t + 1 corresponds to next instant in time. Eq. (2.13)
is also known as brightness constancy constraint equation (BCCE) [162]. The function I is
typically a nonlinear function corresponding to image brightness. The Taylor approximation of
BCCE gives:

I(x, y, t) = I(x, y, t) +
∂I

∂x
ẋ+

∂I

∂y
ẏ +

∂I

∂t
+ ...., (2.14)

neglecting the higher order terms, the well known optical flow constraint is obtained [77]:

Ixẋ+ Iyẏ = −It. (2.15)

Here Ix, Iy, It are the spatial and temporal derivatives of image brightness respectively and
{ẋ, ẏ} is the image motion or optical flow. The spatio-temporal derivatives are computed using
derivative filters in the image space, which are discussed in detail in Chapter 4. Optical flow
techniques based on Eq. (2.15) are known as differential optical flow techniques because they
contain the spatio-temporal derivatives of the image brightness [10]. Differential techniques are
most commonly used for solving optical flow problems [22]. Other techniques used for optical
flow are e.g. region based [170] and phase based [201] techniques. In addition to brightness
constancy assumption, state of the art optical flow algorithms also use gradient constancy as-
sumption [19], normalized cross correlation and census for more robust performance [196].

Intensity of a single pixel is not enough to uniquely define the 2D motion of the pixel.
Eq. (2.15) provides one constraint for each pixel with two unknown velocity components. There-
fore, the optical flow is under-constrained and more information is needed to uniquely determine
optical flow. This also leads to the so called aperture problem [121]. As mentioned earlier, if
an edge is visible in the image, only the velocity component normal to the edge direction can
be estimated while the component along the normal direction is ambiguous. The common way
of solving this under-constrained problem is to embed information from the neighborhood by
using smoothness prior. Differential optical flow techniques can broadly be divided into local
and global methods based on the way this neighborhood information is exploited [22]. Local
methods estimate flow using a window based neighborhood while assuming consistent flow in
this local neighborhood and performing a least squares adjustment over an overdetermined sys-
tems of equations (Eq. (2.15)). A well known local optical flow method is Lucas Kanade optical
flow [117]. Global methods estimate optical flow over the entire image by optimizing an energy
function constituting the brightness constancy and smoothness constraint for each pixel. The
seminal paper of Horn and Schunck [77] is an example of global optical flow method. Horn
and Schunk [77] were the first to pose the optical flow problem a in variational framework [80]
i.e using calculus of variation. The minimization of such a energy function is done by solving
the corresponding Euler Lagrange equations [21]. In presence of strong texture, the brightness
constancy constraint implicitly gets a higher weight and when there is no texture the smoothness
term gets a higher weight.

The classical optical flow methods [77, 117] used quadratic penalizer, which is sensitive to
the outliers. Black and Anandan [13] used robust penalty functions for mitigating violations of
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brightness constancy and smoothness constraints. Zach et al. [210] used a L1 norm [158] for
estimating optical flow. In presence of motion discontinuity, the smoothness constraint needs to
be relaxed and large variations in image intensity are often cues for object boundaries. There-
fore, an anisotropic smoothness term is often used for relaxing smoothness constraint [135,206]
across large variations in image intensity.

Most optical flow algorithms use first order approximation of brightness constancy. The
image intensity is typically a nonlinear function. Therefore, after linearization only small mo-
tions (few pixels) can typically be estimated. For estimating larger motions, a well established
solution is to use a coarse to fine warping strategy. At coarser level, motion is expected to be
small. Therefore, first approximation of the motion is done at the coarse level and the next finer
resolution image is warped according to these flow vectors. This step is repeated until the finest
resolution and the optical flow is the aggregated motion from coarse to fine pyramid levels [19].
The coarse to fine strategy fails for small scale structure whose motion is very different from
motion of larger scale structures. For example in the case of human body, motion of the arms
can be very fast and different from the rest of the body. Brox and Malik [20] propose a solution
based on feature matching with the variational framework to estimate large displacement optical
flow. The introduction of feature matching into dense optical flow estimation is getting more
attention in the recent work [25,207]. Sun et al. [182] argue that bigger gains in the accuracy of
optical flow algorithms will be achieved by incorporating reasoning about surfaces and bound-
aries and their motion over time. Recent top performing algorithms indeed include segmentation
reasoning for separating individual surfaces and defining the boundaries [25, 183].

There have been several attempts for benchmarking optical flow algorithms [9,10,125,145].
The quantitative comparison of Barron et al. [10] received great interest, however the compar-
ison was limited in terms of the complexity of the synthetic images. Middlebury optical flow
database [9] overcomes limitations of the previous benchmarks and has been used as a standard
for comparison and evaluation of optical flow algorithms. However, the recent KITTI vision
benchmark [48] offers more realistic and challenging optical flow sequences with ground truth.

In photogrammetry, the method of least squares image matching [2, 42, 60–62] has been
used to compute transformation of pixels between two images. One popular application of this
method is the generation of digital surface models from aerial imagery. The matching is realized
by minimizing the squared sum of intensity differences in a window or an image patch, this is
principally the same as the Lucas Kanade [117] optical flow. The process of aerotriangulation
and subsequently the generation of digital surface model also makes use of image pyramids like
the coarse to fine resolution in optical flow. In addition to minimization of intensity differences,
geometric constraints like collinearity equations (Eq. 2.3) have also been introduced in the least
squares adjustment. In comparison to optical flow, image matching applications often use images
from larger baselines, and therefore, due to non linearity of the image intensity function an
approximate solution is required. The unknowns in image matching are often the parameters of
an affine transformation as by choosing a small image patch, the mapping between the image
patches can be approximated by an affine transformation. However, image matching is a bit
simpler problem in the sense that the epipolar geometry is computed from aerotriangulation,
while generic optical flow can contain any arbitrary motion.

In optical flow only 2D image motion is estimated. The corresponding 3D motion estimation
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problem from color or gray scale images is known as scene flow estimation [195]. As the depth
of the image point is not known from a single image, scene flow problems often use multiple
cameras. The task is then to perform a joint scene reconstruction using stereo matching [15] and
full 3D motion estimation of each pixel [184, 203]. However, in this thesis the 3D information
is given by the range sensors so multiple cameras are not required and furthermore, only the
motion estimation problem is investigated.

The methods and techniques of optical flow discussed above, are mainly used for estimating
image motion of objects in the scene. When the observed motion in the image is instead caused
by camera motion and it is desired to estimate the camera motion instead of optical flow the so
called direct methods are used. In direct methods of motion estimation the image velocity com-
ponents in optical flow constraint (Eq. (2.15)) are substituted by the camera motion parameters
and the resulting constraints are written for each pixel in the image. This results in a highly
overdetermined system of equations as this constraint can be written for each pixel in the image
while the number of unknown parameters are only five (instead of six as scale is not known). The
derivation of such a method is given in Chapter 4 which forms the basis of the camera motion
estimation algorithm presented in this thesis.

Range Flow

Range flow is the 3D motion from range image sequences. Therefore, as with optical flow, range
flow is typically studied in context of high temporal sampling and it includes the notion of time.
Consider a surface Z = f(X,Y, t), which is a scalar function of the coordinates X and Y .
Similar to the brightness constancy assumption, owing to the local rigidity of the surface, the
following relationship holds:

Z(X,Y, t) = Z(X + Ẋ, Y + Ẏ , t+ 1)− Ż (2.16)

Here, Ẋ, Ẏ and Ż are 3D velocity components, and t + 1 denotes the next time instant. Using
the Taylor series expansion, the following relation is obtained

Z(X,Y, t) + Ż = Z(X,Y, t) +
∂Z

∂X
Ẋ +

∂Z

∂Y
Ẏ +

∂Z

∂t
+ ...., (2.17)

Here, using a linear approximation of surface i.e. approximating the surface as planar patches
and neglecting the higher order terms, the range flow constraint is obtained [174].

Ż =
∂Z

∂X
Ẋ +

∂Z

∂Y
Ẏ +

∂Z

∂t
(2.18)

Ż = ZXẊ + ZY Ẏ + Zt. (2.19)

The term range flow first appeared in the work of Yamamoto et al. [208], where range flow
was computed on deformable surfaces. The range flow constraint in Eq. (2.19) has also been
called Elevation rate constraint equation [76] as the elevation maps of the terrain represented
in the Cartesian coordinate system aligned with local terrain vertical were used to form this
constraint. Harville et al. [67] have called this as depth change constraint equation.
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As with the optical flow constraint, range flow constraint is based on linear approximation
and therefore, it is suitable for small motions. The coarse to fine strategy should be adopted
for estimating larger motions. It is important to mention here, that the surface is defined over
a regular grid, image or raster, which results in 2.5D representation. For estimating spatio-
temporal derivatives of the surface, the derivative filters used in optical flow constraint are also
applied here.

Range flow constraint gives one constraint for each pixel and contains three unknown flow
vector components. Thus, the techniques used for solving optical flow using information from
the neighborhood can also be applied here. Furthermore, the aperture problem is also present in
range flow estimation. In presence of planar and linear structures, only the velocity component
normal to planar and linear structures can be recovered, while components parallel to these
structures are ambiguous [175, 177]. Therefore, to estimate full 3D dense range flow Spies et
al. [177], presented a global regularization scheme to obtain dense smooth flow vectors. In
the first step a Lucas-Kanade [117] type local range flow estimation was implemented and in
the second step a variational framework was used to perform a global regularization using the
estimated flow vectors along with their accuracy added to a smoothness constraint.

The range flow constraint given in Eq. (2.19) contains derivatives in object space and not
in image space as compared to the optical flow constraint given in Eq. (2.15). Computing the
derivatives with derivative filters requires regular spacing of the samples. In case of a raster
of digital terrain model, the samples of the surface are in a regular grid. However, in images
from ToF camera or Kinect the depth observations or samples are unevenly sampled in the
object space [174] because the object points will be farther away from each other as the depth
increases. Spies and Barron [174], have presented a least squares based approach for derivative
estimation of the unevenly sampled data but this approach is computationally expensive. An
alternative approach is to derive the range flow constraint in image coordinates so that the well
known derivative filters can be applied in image space. The surface Z = f(x, y, t) is observed in
the image coordinates (x, y) with a regular sampling over the image grid. Taking the derivative
of Z = f(x, y, t), the following relationship can be written:

dZ

dt
=
∂Z

∂x

dx

dt
+
∂Z

∂y

dy

dt
+
∂Z

∂t
(2.20)

Ż = Zxẋ+ Zyẏ + Zt. (2.21)

Here in Eq. (2.21) the derivatives are in the image space and the unknowns are ẋ, ẏ and Ż.
Therefore, the derivative filters in image space can now be applied to compute Zx and Zy in
Eq. (2.21). It should be noted that (ẋ, ẏ) give the velocity in the image space as compared to the
velocity (Ẋ, Ẏ ) in object space as given in Eq. (2.19). In Chapter 4, Eq. (2.21) has been adapted
to estimate full 3D velocity in object space as most often the interest lies in the 3D motion in
the object space. Horn and Harris [76] also presented a formulation of the range flow constraint
directly in sensor coordinate system and called it as range rate constraint equation.

Range flow has been mainly employed in a 2.5D framework. Where a regular grid of depth
or height above ground are given. A least square solution is computed by minimizing the depth
differences or height differences at each grid location. ICP and LSM on the other hand operate
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on full 3D data and 3D point to point or point to plane distance is minimized. In [153] LSM
is applied to 2.5D raster for laser scanning strip adjustment and the resulting formulation is the
same as the range flow in Eq. (2.19).

2.4 Fusion of Range and Intensity Data

The presence of range and intensity information in laser scanning data and the low cost 3D
sensors like ToF cameras and Microsoft Kinect is especially beneficial for the task of motion
estimation. In case of the known depth of image points the solution of intensity image based
direct methods [78] can be computed directly as it is not required to recover depth. When using
only intensity images, the scale of 3D structure and motion cannot be computed. Therefore,
integrating the rich texture information from intensity images with geometric information from
range images, more robust methods for motion estimation can be derived.

The formulation of optical flow and range flow is principally very similar, therefore they are
well suited for integration into a common framework. The optical flow constraint (Eq. (2.15))
and range flow constraint (Eq. (2.21)) share the same unknown image velocity components ẋ
and ẏ. Therefore, several authors have integrated them into a common estimation framework for
motion estimation [51, 56, 149, 163, 164, 176]. Similarly the direct methods based on intensity
and range images can be integrated to determine both translation and rotation components of
motion. Harville et al. [67] and Jones [89–91] have combined the two constraints for estimating
motion.

When the distance information is available, the image coordinates of the sparse features
points can be represented in 3D in a local coordinate system and the closed form solutions dis-
cussed in Section 2.2 can be used for determining the transformation parameters. Droeschel et
al. [35] and May et al. [124] have used this method to estimate the ego motion of ToF cam-
era by matching features in consecutive frames and using the depth information of these points
to compute the relative pose between the two frames. Henry et al. [72] have also used a sim-
ilar technique for initialization of the ICP algorithm and then performed a joint optimization
of sparse feature correspondences and ICP to estimate the transformation between consecutive
frames of Kinect. The use of range sensors in SLAM methods is also very advantageous as it can
lead to faster and accurate determination of camera pose along with the dense environment map.
The RGBD SLAM algorithm of Endres et al. [37] finds visual feature points in color images and
then using the corresponding depth of these feature points a pairwise transformation is between
two frames is computed. This procedure is performed for a subset of images.

The method of relative orientation presented in this thesis is similar to the work of Harville
[67] but it is extended to estimate large motions and include robust estimation. The method
of estimating motion of independently moving object is closely related to that of Spies et al.
[177], which is extended to include anisotropic smoothing in a linear least squares regularization
scheme.
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CHAPTER 3
Range Measuring Sensors

3.1 Time of Flight Cameras

Time-of-Flight (ToF) cameras or sometimes also known as Range IMaging cameras (RIM) are
based on active optical measuring technology to capture 3D information at each pixel [150].
These cameras indirectly measure the time of flight by computing the phase difference between
an emitted and the received signal. The phase difference is computed by the cross correlation of
the received and the emitted signal. Most ToF cameras illuminate the scene with a continuous
wave sinusoidal or a rectangular signal, modulated over an infrared light source [23, 166]. The
demodulation or cross correlation of the received signal with the emitted signal is performed
simultaneously at each pixel using the so called demodulating or lock in pixels [23, 112]. The
demodulation process for a sinusoidal signal consists of sampling the received signal at 0o,
90o,180o and 270o phases and based on these samples the phase difference φd, amplitude A and
offset B as shown in Figure 3.1 are then computed by [23]:

φd = atan

(
A3 −A1

A0 −A2

)
(3.1)

A =

√
(A3 −A1)2 + (A0 −A2)2

2
(3.2)

B =
A0 +A1 +A2 +A3

4
(3.3)

where A0,A1,A2 and A3 are the measurements of the returned signal at 0o, 90o,180o and
270o phase differences respectively. The sampling of signal at these phases can be achieved by
either 1-tap, 2-tap or 4-tap pixel architectures. A 1-tap pixel will sample the signal only at one
phase at one time, therefore, 4 separate exposures should be performed to compute one distance
measurement, which leads to low frame rate and can cause motion blur for fast moving objects.
In contrast 2-tap and 4-tap pixels require two exposures and a single exposure respectively [98].
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Capturing more samples at the same instant (as in case of 4-tap) pixels comes at cost of low
fill factor and different channel characteristics within the pixel for each sample [23]. From the
measured phase difference φd, range is computed as [23]

Emitted SignalReceived Signal

φ

Time

Am
pl

itu
de

A

B

Figure 3.1: Sinusoidal emitted and received signal in ToF cameras

Figure 3.2: Left and Middle: Intensity and range images from the camera. Right:SR3000 ToF
camera used for experiments in this thesis.

DR =
c · φd

4 · π · fmod
(3.4)

Here c is the speed of light and fmod is the modulation frequency. For a modulation fre-
quency of 20 MHz, the maximum unambiguous range is 7.5 meters. Distances larger than the
maximum unambiguous range are phase wrapped. Typical unambiguous range of the ToF cam-
eras is from 5 to 10 meters. A phase unwrapping procedure [92] can be applied to recover
distances larger than the maximum unambiguous range.

The stochastic properties of the measured range (Eq. (3.4)) mainly depend on amplitude of
the returned signal, photon shot noise and dark current. The standard deviation of the range
measurement can be derived using error propagation rule on Eq. (3.4) [23, 111]:

σd =
c

4
√
2πfmod

.

√
B +A

A
(3.5)

Here, B is the offset, which also contains the background light as shown in Figure 3.1. A more
detailed statistical analysis of measurements in ToF cameras is given in [133]. The accuracy
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(σd) of the estimated range is inversely proportional to the modulation frequency fmod. Thus,
better range accuracy can be achieved using higher modulation frequencies. However, the un-
ambiguous range decreases with increasing fmod. Therefore, better accuracy comes at the cost
of shorter unambiguous range. Amplitude of the received signal is another important factor in
determining the accuracy of the measured distance. A typical scene consists of surfaces at dif-
ferent distances from the camera and having varying light reflecting properties. The strength of
the emitted signal decreases with inverse square law. Therefore, objects which are farther away
from camera and have low light reflecting characteristics, will show a low distance accuracy.
This problem can be partially avoided by increasing the strength of the emitted signal which
will lead to increase in signal to noise ratio. However, the emitted signal should comply to eye
safety regulations, therefore the strength of the signal cannot be increased beyond certain limit.
Another solution for better accuracy is to increase the integration time i.e. averaging the received
signal over longer time to reduce the noise. However, a higher integration time results in lower
frame rate and may also result in motion blur and pixel saturation. Therefore, the amount of
integration time which gives a good comprise between signal to noise ratio, motion blur and
saturation is often empirically selected based on the experimental requirements. As given in
Eq. (3.5), the background signal level also decreases the precision of the depth measurement.
Sunlight can contribute to a large portion of this background signal. The sunlight not only in-
creases the background signal but can also lead to pixel saturation due to limited dynamic range
of the pixels. Therefore, direct sunlight should be avoided, which is one reason why ToF cam-
eras are mainly suited for indoor application. One focus of research in ToF cameras design is
higher background light subtraction [30] and higher dynamic range [33].

The systematic errors in addition to random errors originate from factors like object reflec-
tivity, integration time and object distances. Therefore, a calibration for correction of systematic
errors in the distance measurement is usually applied. More detail of these systematic errors and
the calibration procedures for the compensation of these errors can be found in [94, 96, 113].
Further distortions in the distance measurement may arise from scattering [97, 114] and multi-
path effect [45]. Scattering is caused by internal reflections inside camera body and lens. For
a given camera the magnitude of the distortion highly depends on the depth variations in the
scene. Multipath effect is caused by reflections from corners or intersecting surfaces. Keeping
all these error sources in mind, the experimental setup is designed in a way to reduce the effect
of these errors.

In this thesis SR3000 [127] ToF camera is used, which is based on 2-tap pixel architecture
[23]. It has a resolution of 144× 176 pixels, a maximum frame rate of 25 fps and a field of view
of 39.6× 47.5 degrees . A view of an SR3000 camera along with a sample intensity image and
range image is shown in Figure 3.2.

3.2 Active Triangulation Cameras

Active triangulation cameras or also known as structured light cameras are another type of cam-
eras capable of acquiring 3D information. These cameras measure the distance by triangulating
a pattern projected on the scene. In passive triangulation, depth is estimated by matching image
texture between the two images of a stereo pair. The estimation of the depth depends on the
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amount of texture in the images, therefore, when there is no image texture the corresponding
points in the stereo pair and thus the depth cannot be determined. Active triangulation cameras
avoid this problem by projecting a known pattern on the scene and then match this pattern in
the image to estimate depth at each pixel. In the recent years, low cost, high frame rate active
triangulation cameras like Microsoft Kinect and Asus Xtion [55,99] have become commercially
available.

Figure 3.3: Kinect sensor, RGB and depth image from RGB-D SLAM dataset [180]

The depth estimation in Microsoft Kinect is based on structured light triangulation. Kinect
consists of an RGB camera, an IR camera and an IR projector. The IR projector projects a
speckle pattern on the scene, which is then matched in the IR image to generate the depth map.
In [106, 171] it is stated that a correlation window of 9 × 9 or 9 × 7 is used and after further
refinement, a sub-pixel accuracy of 1/8th is achieved. The disparity image of Kinect has a
resolution of 640 × 480. Calibration of Kinect’s RGB and IR cameras is given in [26, 99, 106],
while a detailed photogrammetric calibration of Kinect cameras is presented in [26]. According
to the accuracy model of [99], the depth accuracy decreases quadratically from a couple of
millimeters at 0.5 m distance to about 4 cm distance at 5 m distance from the camera.

Figure 3.3 shows the Kinect sensor and sample RGB and depth image from Kinect. These
images are from RGB-D SLAM dataset [180]. As compared to ToF cameras, the color or bright-
ness information in Kinect is captured from a different camera. Therefore, the depth and color
images need to be registered to each other. In Figure 3.3 part of the depth image is cut out be-
cause of different camera view points, so part of the RGB and depth images don’t overlap. There
is also missing data in the depth image due to occlusions in the stereo geometry and areas where
the matching of the projector pattern wasn’t successful. Furthermore, the depth of each pixel is
estimated from a matching procedure using a neighborhood window, therefore, the individual
depth observations are not independent of each other.

Asus Xtion also works on the same principal as Kinect and also contains an IR camera, an
RGB camera and an IR projector. The depth image has a resolution of 640 × 480 at 30 fps.
Figure 3.4 shows the Asus Xtion and a sample RGB and depth image from the RGBD SLAM
dataset [180].
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Figure 3.4: Asus Xtion sensor, RGB and depth image from RGB-D SLAM dataset [180]

3.3 Laser Scanning

Laser scanning sometimes also termed as LiDAR (light detection and ranging) is a technology
to measure the distance to the object by measuring the time between an emitted pulse of light
and received echo [108]. A laser beam is deflected at different angles using e.g. a rotating
prism and time of flight for each laser pulse is recorded. Modern day laser scanner are able to
record upto 500,000 echoes per second. Airborne laser scanning and terrestrial laser scanning
are two main platforms for laser scanning systems. In airborne laser scanning (ALS) the laser
beam is deflected at right angles to the flight direction which gives data in across flight direction
and the movement of the airplane itself gives the data in along flight direction. Airborne laser
scanning (ALS) is a popular method for topographic modeling and developing terrain models
of vast areas [46, 109]. Terrestrial laser scanning (TLS) is used in applications requiring detail
acquisition of selective sites and objects. In contrast to ALS the laser beam in TLS is deflected
along two directions to acquire data along both horizontal and vertical directions. In TLS scans
are acquired from different view points which are then co-registered using e.g. the ICP algorithm
[156].

Full-waveform scanners can provide complete digitized recorded waveforms instead of dis-
crete echoes from the returned signals. The full-waveform [197] recorded echo can then be
decomposed to estimate the properties of the individual scatteres in the laser footprint [154].
The amplitude of the recorded pulse gives information about the radiometric properties of the
surface and the reflectivity can be computed using the inclination angle and area of the sur-
face [155,197]. The laser pulse covers a very narrow band in frequency spectrum, therefore, the
amplitude is typically less informative than e.g. a color image. Modern day laser scanners can
work upto ranges of few kilometers and an accuracy of 1 : 10, 000 or better is usually achievable
for the maximum recommended range of the laser scanner.

In comparison to ToF cameras and Kinect, which simultaneously acquire distance informa-
tion over the entire image plane, laser scanner record distance data sequentially and gives a less
structured point cloud instead of data over a regular grid. The spatial resolution of the data can
be estimated using point density measure. The ALS data e.g. is characterized by providing the
number of points over a grid cell e.g. 4 points/m2. The principle of measurement is however,
similar to ToF camera in the sense that the distance is acquired using time of flight of the emitted
signal and the intensity is related to the amplitude of the received signal. Figure 3.5, shows a
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sample TLS scan of the landslide discussed in Chapter 6.

Figure 3.5: TLS scan of the scarp of a landslide area, Left: Gray levels according to the intensity
Right: Color coded according to the height
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CHAPTER 4
Relative Orientation and Bundle

Adjustment

In this chapter, a method for determining the orientation of a moving camera is presented. First
the relative orientation of consecutive image pairs is estimated using range flow and optical
flow constraints and then these relative orientation results are used in bundle adjustment to de-
termine the orientation of a large number of images in a common coordinate system. Follow-
ing up with the theory of image orientation as given in Chapter 2, Figure 4.1 shows a point
P observed from three camera positions. The coordinate systems (X1, Y1, Z1), (X2, Y2, Z2)
and (X3, Y3, Z3) are aligned with the corresponding image coordinate systems (x1, y1, z1),
(x2, y2, z2) and (x3, y3, z3) and placed at the projection centers of these three camera positions.
The transformation between the coordinates of point P as observed in the coordinate systems
(X1, Y1, Z1) and (X2, Y2, Z2) is given as: X2

Y2

Z2

 =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 X1

Y1

Z1

+

 TX
TY
TZ

 ; X2 = R21X1 +T21 (4.1)

The translation T21 and rotation R21 gives the orientation parameters of the first image
relative to the second image. The translation T21 is a vector from origin of (X2, Y2, Z2) to
origin of (X1, Y1, Z1), while the rotation matrix R21 aligns the coordinate system (X1, Y1, Z1)
with (X2, Y2, Z2). Similarly, the relative transformation between the second and third image
can be written as:

X3 = R32X2 +T32 (4.2)

where, T32 and R32 are the orientation parameters of the second image relative to the third im-
age. If more images are available the relative orientations can be written similarly for each pair.
Section 4.1 presents a method to estimate relative orientation parameters as given in Eqs. (4.1)
and (4.2) using range flow and optical flow constraints. The relative orientation as given in
Eqs. (4.1) and (4.2) are in different coordinate systems. However, to estimate the motion or
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trajectory of the camera in a video it is desired to compute the position and orientation of each
camera with respect to one common coordinate system. Transforming all relative orientations
to a common coordinate system does not give a globally optimal solution as it will result in
accumulation of errors. Therefore, to achieve a globally optimal solution of camera motion,
bundle adjustment is performed using sparse feature matching and pairwise relative orientation
constraints, which is presented in Section 4.2.

P

P1

P2 P3

y1

y2

x1

x2

x3

y3

z2

z3
z1

Z1

Z2

Z3

X1

Y2

X2Y1

Y3

X3

Figure 4.1: A point P observed in three images. The coordinate systems (X1, Y1, Z1),
(X2, Y2, Z2) and (X3, Y3, Z3) are placed at the projection centers of the three images and aligned
with the corresponding image coordinate systems (adapted from [108])

As relative orientation is specified between two image-aligned coordinate systems whereas
bundle adjustment relates image coordinates to a superior coordinate system, further considera-
tion of the parameterizations of 3D rotations is required. Any rotation in 3D can be described by
three angles also known as Euler angles, therefore, there are three unknowns corresponding to a
rotation in 3D. Each rotation by an angle can be written in form of a matrix and three rotation
matrices can be written correspondingly to each angle and these matrices can then be multiplied
to obtain a single rotation matrix that can perform any rotation in 3D space. The rotation ma-
trix is a 3 × 3 matrix containing three unknowns and nine elements. This means that the nine
elements of the rotation matrix are not independent and these elements should satisfy several
constraints to form a rotation matrix. The three columns of a rotation matrix are unit vectors
and are orthogonal to each other. Therefore, there are three normalization constraints and three
orthogonality constraints that the elements of a rotation matrix need to satisfy. Due to the fact
that the three columns of a rotation matrix are orthogonal unit vectors its determinant is one. The
rotation matrix R in Eq. (2.1) rotates the coordinate system (X,Y, Z) to align with coordinate
system (X ′, Y ′, Z ′). The selection of axes, around which the three rotations are executed can
also vary, this leads to different parameterization of the rotation matrices. A commonly used
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parameterization of rotation matrix in aerial photogrammetry based on rotation angles omega,
phi and kappa (ω, ϕ, κ) is given as [108].

Rωϕκ =

 cϕcκ −cϕsκ sϕ
cωsκ+ sωsϕcκ cωcκ− sωsϕsκ −sωcϕ
sωsκ− cωsϕcκ sωcκ+ cωsϕsκ cωcϕ

 (4.3)

Here, ω is the primary rotation around X axis, ϕ is the secondary rotation around rotated Y
and κ is the tertiary rotation around rotatedZ axis as in Figure 2.1, c and s are the cosine and sine
of angle respectively. Given a rotation matrix, individual angles (ω, ϕ, κ) of rotation matrix can
be computed from elements of rotation matrix [108]. Alpha, zeta and kappa is a commonly used
rotation matrix parameterization [107] in terrestrial photogrammetry. The parameterization of
3D rotations using rotation matrices can result in singularities the so called gimbal lock problem.
To avoid these singularities different parameterization of 3D rotations can be used like axis-
angle and quaternion representations. The fact that one of the eigenvalue of R is one, means
that the rotation can be represented by a vector and a single rotation around this vector, which
leads to axis-angle representation of the rotation. Quaternions represent rotations using four
parameters and there exist one constraint among the parameters. A more detailed description of
parameterizing rotations in 3D space can be found in following texts [126, 168].

If the linearization of the collinearity equations is performed by directly using the rotation
matrix in Eq. (4.3), then the normalization and orthogonality constraints do not need to be spec-
ified. Furthermore, as in this work the choice of the reference coordinate system is arbitrary, the
reference system can be chosen to avoid singularity. In this work the (ω, ϕ, κ) parameterization
(Eq. (4.3)) is used for representing rotations although in principal any other rotation parameter-
ization could be used.

Now, if the motion between two camera positions is small (as it is typically the case in
videos), the three rotations angles in Rωϕκ are also small. When these angles are small, the
approximations limω→0 cos(ω) = 1 and limω→0 sin(ω) = ω can be used to approximate the
rotation matrix (Eq. (4.3)) as:

RS =

 1 −κ ϕ
κ 1 −ω
−ϕ ω 1

 =

 1 −RZ RY
RZ 1 −RX
−RY RX 1

 (4.4)

Eq. (4.4) gives the small angle approximation of the rotation matrix. The superscript s in RS

has been used to show that its a small angle approximation. The angles RX , RY , RZ represent
the rotations around X , Y and Z axes respectively (as in Figure 2.1) which means that the three
angles can be written directly according to the axis on which the rotation was performed, this
also means that the small angle approximation of rotation matrix is independent of the original
parameterization if the three rotations were performed on three independent axis.

4.1 Relative Orientation using Optical Flow and Range Flow

The method of determining relative orientation used here utilizes optical flow and range flow
constraints. These type of methods are known as direct methods as they determine the unknown
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parameters based on directly measured image quantities such as intensity and depth [78, 85]
without computing flow or finding feature points. The other commonly used method of deter-
mining the relative orientation are based on feature correspondences in the images. Due to the
fact that optical flow constraint and range flow constraint are principally similar, they can be well
integrated in an estimation problem. Utilizing dense range and image information is especially
advantageous for estimating motion in scenes with low geometric structure and radiometric tex-
ture.

Now the method of estimating relative orientation of a moving camera in range and intensity
image sequence is derived. Figure 4.1 shows the point P measured from three camera positions.
The motion between consecutive images of the sequence is assumed to be small but for sake of
clarity Figure 4.1 shows the image positions with relatively large motion. The 3D coordinates
of a point P as measured in the first image (X1, Y1, Z1) and the second image (X2, Y2, Z2) are
related by: X2

Y2

Z2

 =

 1 −RZ RY
RZ 1 −RX
−RY RX 1

X1

Y1

Z1

+

TXTY
TZ

 (4.5)

here, the small angle approximation of the rotation matrix is used, as it is assumed that the
motion between the camera positions is small. (TX , TY , TZ , RX , RY , RZ) are the unknown
parameters of the relative orientation between the two camera positions. Now, the change in the
3D coordinates are given as:ẊẎ

Ż

 =

X2 −X1

Y2 − Y1

Z2 − Z1

 =

 0 −RZ RY
RZ 0 −RX
−RY RX 0

X1

Y1

Z1

+

TXTY
TZ

 (4.6)

The Eq. (4.6) is the differential form of Eq. (4.5) as it gives the change in the 3D coordinates
of the measured point. Let (x1, y1) be the image coordinates of object point (X1, Y1, Z1). As the
coordinate system (X1, Y1, Z1) is chosen to be aligned with (x1, y1, z1), using the perspective
projection model, following relationship exists between the object and the image coordinates:

x1 = f
X1

Z1
y1 = f

Y1

Z1
(4.7)

Similarly, in the inverse form, the 3D object coordinates can be written in terms of image coor-
dinates as

X1 = x1
Z1

f
Y1 = y1

Z1

f
(4.8)

For sake of simplicity the index of the coordinates is removed. Using the inverse mappings
of (X,Y ), the change in the 3D coordinates in Eq. (4.6) can be written as:

Ẋ = −RZY +RY Z + TX = −yRZ
Z

f
+RY Z + TX (4.9)

Ẏ = RZX −RXZ + TY = xRZ
Z

f
−RXZ + TY (4.10)
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Ż = −RYX +RXY + TZ = −xRY
Z

f
+ yRX

Z

f
+ TZ (4.11)

The relation between the 2D image velocity and the 3D object velocity is derived by first
order approximation of Eq. (4.7):

ẋ =
f

Z
Ẋ − fX

Z2
Ż ẏ =

f

Z
Ẏ − fY

Z2
Ż (4.12)

ẋ =
f

Z
Ẋ − x

Z
Ż ẏ =

f

Z
Ẏ − y

Z
Ż (4.13)

It should be noted that Eq. (4.12) is based on first order approximation, therefore, it is valid
for small motions. Finally, by also considering the expressions for the 3D velocities (Eqs. 4.9–
4.11) the 2D velocities become:

ẋ =
fTX
Z
− xTZ

Z
−RX

xy

f
+RY

(
f +

x2

f

)
− yRZ (4.14)

ẏ =
fTY
Z
− yTZ

Z
−RX

(
f +

y2

f

)
+RY

xy

f
+ xRZ (4.15)

Eqs. 4.14 and 4.15 give the relationship between image velocity and camera translation and
rotation assuming that the observed motion is due to motion of the camera. Now that the rela-
tionship between unknown motion parameters and the image velocity is obtained, optical flow
and range flow constraints can be utilized which can determine the image velocity using inten-
sity and depth information. The optical flow constraint and range flow constraints are written
as:

Ixẋ+ Iyẏ = −It (4.16)

Ż = Zxẋ+ Zyẏ + Zt (4.17)

Inserting Ż from Eq. (4.11) in to the range flow constraint gives:

Zxẋ+ Zyẏ − TZ − y
Z

f
RX + x

Z

f
RY = −Zt (4.18)

The image velocities (ẋ, ẏ) from Eqs. (4.14) and (4.15) can be inserted into the optical flow
(Eq. (4.16)) and range flow (Eq. (4.18)) equations to give the relation between the 6D camera
transformation parameters and the observed range and intensity images.
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(4.19)
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Eq. (4.19) gives a linear relationship between camera orientation parameters and the change
in image intensity and depth at each pixel. The only quantities required in this relationship
are the spatio temporal derivatives of intensity and depth. These derivatives can be computed
efficiently using derivatives filters. In Eq. (4.19) most of the coefficients contain intensity and
depth derivatives, however, (TZ , RX , RY ) contains terms which are independent of derivatives,
which means that if e.g. the scene consists of only a plane parallel to the image plane with
homogeneous gray level, motion components (TZ , RX , RY ) can still be determined even though
(Ix, Iy, Zx, Zy) are all zero.

Estimating image derivatives is an essential part of flow estimation, as the spatial and tem-
poral derivatives appear in the optical flow and range flow constraints. In digital image only
discrete samples of the function i.e. intensity and range are observed, therefore, the deriva-
tives are approximated for a discrete case. In Horn and Schunck optical flow [77], eight point
derivatives based on a cube of two images is used for estimating spatial and temporal derivatives
of image intensity. Simoncelli [169] proposed matched filters for computing spatio-temporal
derivatives consisting of low pass pre-filters and derivative filters. The derivatives filters are de-
signed in such a way that they are good approximation of the low pass pre-filter. The 5-point
derivative filter 1

12

[
−1 8 0 −8 1

]
is often used for computing derivatives [10, 182, 204].

In this work, the 5-point Simoncelli spatio temporal filters are used when the motion is small
and continuous i.e. no sudden acceleration. Using these central differences derivatives means
that the derivatives are computed at the subject pixel, whereas in forward or backward difference
filter kernels the derivative is estimated in the middle of pixels like the eight point filter given by
Horn and Schunck [77]. In the 5-point Simoncelli filters, five images are used for computation
of both spatial and temporal derivatives, which assumes that the motion in these five images is
similar. However, if there are abrupt changes in motion or if the data is not continuous in time
(e.g. the landslide case, presented in Chapter 6), then only two images are used for comput-
ing spatial derivatives using the filter 1

12

[
−1 8 0 −8 1

]
filter and temporal derivative is

computed as the difference of corresponding pixels, this means that the temporal derivative is
described as the change between the value of intensity or depth at the corresponding pixel.

To determine the relative orientation of an image pair, two observation equations using
Eq. (4.19) can be written for each image pixel. This leads to a highly over determined equa-
tion system, which can be solved using least squares. To perform least squares adjustment,
Eq. (4.19) for all pixels can be written in the form:

Aβ = l+ e (4.20)

where A contain the coefficients of depth constraint and intensity constraint as in Eq. (4.19)
respectively. The observations l are the time derivatives of depth and intensity respectively as
in Eq. (4.19) and e contains the residuals for each observation equation. If Q is the covariance
matrix of the observation, then Pl = Q−1 is the weight matrix and the least squares solution is
given by:

β = (ATPlA)−1(ATPll) (4.21)

The weight matrix Pl determines the weighting of each observation equation in the adjust-
ment. Here, it is assumed that the observations are independent of each other which implies that
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the matrix Q−1 and Pl are diagonal matrices. In ordinary least square solution as in Eq. (4.21)
it is assumed that only one depth and intensity measurement in each Eq. (4.19) is corrupted by
noise. Therefore, each of these observations can be weighted according to its a priori variance.
The intensity values and range values in the image are in different units, therefore, weighting
them by a priori variances will result in the homogenization of the equations [107]. Some au-
thors have used a relative weighting factor to weight the whole group of intensity and the depth
observations by a single parameter [89, 177]. The variance of the estimated parameters is given
by:

Qβ = σ2
0(A

TQ−1A)−1, (4.22)

σ0 =

√
eTPle

n− 6
, e = Aβ − l, (4.23)

Here, σ0 is the standard deviation of the adjustment and Qβ gives the variances of each
estimated parameters. n is the number of observations and n− 6 is the redundancy as there are
six unknown parameters.

Eq. (4.19) is true for pixels that do not contain any independently moving object. Therefore,
in presence of some independently moving object robust adjustment is necessary to remove the
effect of outliers i.e. pixel belonging to an independently moving object. This is one advantage
of using dense image information, that in presence of the outliers or independently moving
object, robust estimation will converge to the dominant motion or global motion, which in this
work is assumed to be generated due to camera motion [85]. Robust adjustment is performed by
iteratively re-weighted least squares. A robust weighting function like talwar [74] as given in
Eq. (4.24) is used for weighting of each observation based on the corresponding residual from
previous iteration. In the case of Eq. (4.24) the observation equation whose normalized residual
en is greater than some threshold λ, gets a weight of zero for the next iteration. The threshold λ
can be chosen, so that the normalized residual greater than five standard deviations is regarded
as an outlier and assigned a weight of zero.

w =

{
0 if abs(en) > λ
1 if abs(en) ≤ λ

(4.24)

Eq. (4.19) is derived using first order Taylor approximation, therefore, it is suitable for small
motions. For larger motions, coarse to fine strategy is applied. Orientation parameters are first
estimated at a coarser resolution. Intensity image is warped i.e. interpolated using the motion
given by Eqs. 4.14 and 4.15. The depth image is first translated according to Eq. (4.11) and
then interpolated using the motion given by Eqs. 4.14 and 4.15. This step is repeated till the
parameters are computed at the finest resolution. If [L1, L2, L3] are the three image resolutions
with L1 being the coarsest resolution and L3 being the finest resolution, the final transformation
or the relative orientation using all the image resolutions is:

T = TL1 +RL1TL2 +RL1RL2TL3

R = RL1RL2RL3,
(4.25)
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where [TL1, TL2, TL3] and [RL1RL2RL3] are translational and rotational parameters at [L1, L2, L3]
resolutions respectively.

4.2 Bundle Adjustment with Relative Orientation Constraints

In section 4.1, a method for computing relative orientation of an image pair was presented. If a
sequence of images is available and the task is to compute the camera motion during the whole
sequence, then a simple solution is to compute relative orientation of each consecutive image
pair and transform all these orientations into a common coordinate system. The problem in such
a solution is that errors will accumulate from first till the last image. Therefore, it is necessary
to utilize more scene information to achieve a globally consistent solution. In this section a
method using relative orientation constraints in the bundle adjustment is presented, which gives
a globally consistent solution to the camera orientation problem.

Bundle adjustment is used to compute the orientation of block of images along with 3D po-
sition of sparse feature points. Each feature point in one image gives two observation equations,
which are the collinearity equations (Eq. (2.3)) as presented in Chapter 2. SIFT or SURF fea-
tures are used to find corresponding points in the images. Feature matching is an essential step
in obtaining globally optimal solutions and reducing the drift and accumulation of the errors,
as identification of loop closures or revisit (re-capture) of a scene area and matching of corre-
sponding points over longer baselines is achieved using robust feature matching [39, 40, 141].
The feature matching is performed using the keyframes strategy as is often employed in SLAM
algorithms [38, 72]. The keyframes are selected as follows: the first image in the sequence is
always a keyframe and each new image is matched to this keyframe. If an image cannot be
matched to this keyframe it is defined as the new keyframe. So each new image is only matched
to one of the keyframes. This strategy is important in order to avoid matching each frame to
every other frame, as it will be computationally very expensive.

The orientation of each image and the coordinates of each point in bundle adjustment are
typically given in a common reference frame or coordinate system. Figure 4.2 shows a point
measured in three images with each image having its own coordinate system. The coordinate
system (X,Y, Z) can be regarded as a common or global coordinate system and it is desired
to compute the orientation of each image and object point relative to this reference coordinate
system. Determination of this reference system is known as datum definition. Seven constraints
i.e. three translations, three rotations and one scale factor are required to fully define this da-
tum, because without defining this datum, the whole block can be translated, rotated and scaled
while satisfying the observation equations [14, 44, 146]. The datum is commonly defined using
control points. In this thesis, however, no global information in terms of control points or global
positioning system is assumed, so it is convenient to attach the reference coordinate system with
the orientation of the first camera. Therefore, the projection center of the first camera is at lo-
cation (0, 0, 0) and the first image is aligned with the axes of the global coordinates system and
the projection center of each camera frame and the 3D coordinates of features points are com-
puted relative to this reference frame. The scale is determined by the range measurements in
the range cameras, which can be written as an additional observation equation [113] for each
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point. If (XO1 , YO1 , ZO1) are the coordinates of O1 (Figure 4.2) then the range observation can
be written as:

DR =

√
(X −XO1)

2 + (Y − YO1)
2 + (Z − ZO1)

2 (4.26)
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Figure 4.2: A point P observed in the three images and the global coordinate system (X,Y, Z)
(adapted from [108]).

Hence by fixing the origin at the first camera orientation and using depth measurements, the
datum is fully defined. Now, for each feature point in each image, three equations (Eqs. (2.3)
and (4.26)) can be written. These equations are weighted according to their a prior variances in
the adjustment. Both collinearity equations and depth observation equation are nonlinear, they
are first linearized using an approximate solution. The differential coefficients for the linearized
collinearity equations can be found in [108]. The approximate solutions for initializing bundle
adjustment are computed by first matching features in images and then using the 3D location
of the points to compute the transformation between the points using the closed form method
presented in Chapter 2. The relative orientations computed using optical and range flow can also
be transformed into the common coordinate system to serve as the approximate solution for each
camera position and then approximating the 3D position of each point in this coordinate system.

In the above setup, relative orientations estimated using range and optical flow have not been
used in bundle adjustment. If there is good distribution of feature points and the feature match-
ing is robust enough, bundle adjustment with only feature points and depth measurements can
accurately estimate unknown orientations (assuming that the systematic errors have been taken
into account, and distance measurements are correctly modeled). However, if the features points
are sparse and not well distributed in the image, the absolute accuracy can be lower. Therefore,
it becomes essential to integrate further information in the adjustment. The relative orienta-
tion method based on optical flow and range flow implicitly takes into account the matching of
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lines and corners. Therefore, the results of relative orientation can be used to constrain camera
orientations to obtain better estimates.

Now the equations for constraining the relative orientations in bundle adjustment are given.
The relative orientation computed in Eqs. (4.1) and (4.5) is defined to transform the first co-
ordinate system to the coordinate system of the second camera position. In bundle adjustment
the orientation of each frame is given in a common coordinate system. Suppose, two camera
positions, the exterior orientation of these cameras positions as given in (X,Y, Z), which is now
called the global coordinate system is given as:

X = R1X1 +T1 X = R2X2 +T2 (4.27)

where (R1,T1), are the exterior orientation parameters of the first image and (R2,T2), are
the exterior orientation parameters of the second image respectively. The relative orientation
between the two positions using the transformations given in Eq. (4.27) is:

X2 = RT
2 R1X1 +RT

2 (T1 −T2) (4.28)

The relative orientation between the first and the second camera position as given in Eq. (4.5)
is of the form:

X2 = RS
21X1 +T21 (4.29)

Therefore, the rotation and translation of the relative orientation is related to the transforma-
tion in the global coordinate system as [122]:

RS
21 = RT

2 R1 (4.30)

T21 = RT
2 (T1 −T2) (4.31)

Here, RS
21, is a rotation matrix with small angle approximation as in Eq. (4.5), R2 and R1

are full 3D rotation matrices as given in Eq. (4.3). This leads to the following equation:

RS
21 =

 cϕ2cκ2 −cϕ2sκ2 sϕ2

cω2sκ2 + sω2sϕ2cκ2 cω2cκ2 − sω2sϕ2sκ2 −sω2cϕ2

sω2sκ2 − cω2sϕ2cκ2 sω2cκ2 + cω2sϕ2sκ2 cω2cϕ2

T

 cϕ1cκ1 −cϕ1sκ1 sϕ1

cω1sκ1 + sω1sϕ1cκ1 cω1cκ1 − sω1sϕ1sκ1 −sω1cϕ1

sω1sκ1 − cω1sϕ1cκ1 sω1cκ1 + cω1sϕ1sκ1 cω1cϕ1


(4.32)

The matrix RS
21 is skew symmetric (Eq. (4.5)), however in the Eq. (4.30) the multiplication

of the rotation matrices RT
2 R1 does not result in a skew symmetric matrix. For having a skew

symmetric matrix on both sides of Eq. (4.30), subtract the transpose of Eq. (4.30) to itself:

RS
21 −RS

21
T
= R2

TR1 −R1
TR2 (4.33)
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2RS
21 = RT

2 R1 −RT
1 R2 (4.34)

This gives the relationship between angles (RX , RY , RZ) and angles (ω1, ϕ1, κ1, ω2, ϕ2, κ2).
The angles (RX , RY , RZ) are not directly measured, but are estimated using the method given in
Section 4.1 (Eqs. (4.19) and (4.21)). These estimated values along with their estimated variance
can be used as observations in the bundle adjustment. Similarly, the relative translation between
the two images (TX , TY , TZ) is related to the absolute orientation parameters as in Eq. (4.31).
Using Eqs. (4.34) and (4.31) and applying small angle approximations e.g. limω→0 cos(ω) = 1
and limω→0 sin(ω) = ω, following observation equations can be written:

RX = 0.5 ∗ ((cϕ2cκ1 + cϕ1cκ2)(ω2 − ω1) + (ϕ2 − ϕ1)(sκ1 + sκ2))

RY = 0.5 ∗ ((cϕ2sκ1 + cϕ1sκ2)(ω1 − ω2) + (ϕ2 − ϕ1)(cκ1 + cκ2))

RZ = 0.5 ∗ (2(κ2 − κ1) + (ω2 − ω1)(sϕ1 + sϕ2))

(4.35)

TXTY
TZ

 =

 cϕ2cκ2 cω2sκ2 + sω2sϕ2cκ2 sω2sκ2 − cω2sϕ2cκ2

−cϕ2sκ2 cω2cκ2 − sω2sϕ2sκ2 sω2cκ2 + cω2sϕ2sκ2

sϕ2 −sω2cϕ2 cω2cϕ2

T2X − T1X

T2Y − T1Y

T2Z − T1Z

 (4.36)

Eqs. (4.35) and (4.36) shows the relationship between the parameters of exterior orientation
of two frames and relative orientation between these two frames. Hence, given a relative orien-
tation of an image pair, six equations can be written in the 12 unknowns of exterior orientation
of each image in the pair. The weighting of each of these equations is done according to the a
posteriori covariance matrix of the relative orientation result. Here, it should be mentioned that
the coefficients for some of the terms in Eq. (4.19) are similar which may lead to high corre-
lation between the estimated parameters. Therefore, the result of estimated relative orientation
should be interpreted along with the covariance of the estimated parameters. For example, a
small rotation RX , results in a similar motion as the translation TY [3, 29, 142]. Consequently,
the correlation coefficient can be higher among these parameters. This ambiguity in rotation
and translation is more pronounced if the field of view is small [8, 100]. In the least squares
estimation of the relative orientation, the diagonal elements of 6 × 6 covariance matrix gives
the variance of each estimated parameter and the off diagonal elements determines the correla-
tion between the parameters. Therefore, it is important to use the full 6 × 6 covariance matrix
(Eq. (4.22)) for weighting of Eqs. (4.36) and (4.35) in bundle adjustment.

Bundle adjustment used in this work now has three different types of observation equations
i.e. collinearity equations Eq. (2.3), depth observations Eq. (4.26) and estimated relative orien-
tation (Eqs. (4.36) and (4.35)). As they are heterogeneous group of observations, therefore they
are weighted according to their a priori variances. For example, accuracy of feature matching
can be half a pixel and the accuracy of distance measurement can be 1 cm. The weighting of
relative orientation equations is done according to covariance matrix obtained from Eq. (4.22).
Using variance component analysis the a priori variances can be adjusted or refined for weight-
ing of the corresponding observation equations in the next iteration of bundle adjustment. The
procedure of variance component analysis as followed from [139] is briefly described now. The
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Q matrix given in Eq. (4.22) is the covariance matrix of the observations. As there are three
groups of observations, the full covariance matrix QFull can be decomposed into individual
parts:

QFull = σ2
FeatMatchQ1 + σ2

DistObsQ2 + σ2
RelOrientQ3 (4.37)

Here σ2
FeatMatch, σ

2
DistObs, σ

2
RelOrient are the variances of groups of observations compris-

ing feature matching, distance observations and estimated relative orientations respectively.
While Q1,Q2 and Q3 are the non overlapping matrices comprising of cofactors for each group
of observations. The adjustment is started with a priori approximates of the variances of each
group. In the next adjustment the a posteriori variances of each group of observations are used
for weighting of each group of observations. This process is continued until the a priori weights
are equal to the a posteriori weights. More information on this procedure can be found in the
relevant texts [107, 139].

The three groups of equations used here in bundle adjustment are all non linear, therefore,
they are first linearized at the approximate values of the unknown parameters, and then iteratively
updated based on the updated parameter values until the solution converges to a minimum. For a
large number of images the number of observation equations can be very large, and thus resulting
in a large system of equations. However, the coefficient matrix A in bundle adjustment is largely
sparse and this sparsity is utilized in computing efficient solution for bundle adjustment [108,
190]. The covariance matrix for the orientation parameters and the 3D points can be computed
similar to Eq. (4.22) [64].

36



CHAPTER 5
Motion of Independently Moving

Objects

In this chapter, a method of estimating motion of independently moving objects in image se-
quences with a static camera is presented. The goal is to estimate dense 3D motion vectors
for the entire image, which may contain multiple independently moving objects. In 2D this is
a typical optical flow problem. In this work, the focus is on full 3D motion estimation as the
depth information is available along with the intensity images. Therefore, for each pixel, three
components of the motion are estimated. The estimation of these components are realized using
a two step algorithm, where the first step is the local motion estimation and the second step is the
global regularization. The first step is similar to Lucas Kanade [117] type optical flow estimation
which may result in partially dense flow fields as only local information is utilized. In the second
step the flow vectors and the corresponding accuracy estimates are used in a global regulariza-
tion procedure to obtain dense smooth motion vectors. The advantage of this two step procedure
is that it leads to a simpler formulation and the resulting equation systems can be solved by
robust least squares adjustment, in both the steps. Many recent optical flow algorithms optimize
an energy function, which includes brightness constancy assumption, smoothness constraint and
occlusion detection together with robust estimation. However, the optimization of a non convex
energy function of data with higher noise levels (the depth data from range sensors is typically
more noisy then color images), while estimating 3D motion vectors instead of 2D motion, is non
trivial. Furthermore, the quality measures for the least squares adjustment are well defined, using
these measures the accuracy and uncertainty of the flow vectors can be estimated and exploited
accordingly in the smoothness or the regularization procedure as given in the next sections.

5.1 Local Motion Estimation

The proposed local motion estimation algorithm is based on integrating the range flow and opti-
cal flow constraints similar to the method of relative orientation presented in the previous Chap-

37



ter 4. Thus, depth and intensity information are exploited simultaneously. As the motion in
videos is under consideration it is assumed that motion is small due to high temporal sampling.
First the 3D motion constraint based on range flow is derived. The range flow constraint in terms
of derivatives in image space is given as in Eq. (2.21).

Ż = Zxẋ+ Zyẏ + Zt.

Here, again assuming a pinhole perspective projection model and assuming that the global co-
ordinate system is aligned with the sensor coordinate system, the relation between the image
motion and the object motion is given by:

[
ẋ
ẏ

]
=

1

Z

[
f 0 −x
0 f −y

]ẊẎ
Ż

 . (5.1)

Z is the depth, x and y are the image coordinates. f is the principal distance. Substituting the
pixel velocities in Eq. (2.21) by Eq. (5.1) results in:

[
Zx

f
Z Zy

f
Z −Zxx+Zyy

Z − 1
]ẊẎ

Ż

 =
[
−Zt

]
. (5.2)

Eq. (5.2) gives the relation between the 3D velocity (Ẋ, Ẏ , Ż) of the point, and the spatio
temporal derivatives of depth. This 3D velocity is given in the coordinate system attached with
the camera. For each pixel in the image, one such constraint can be written.

Similarly, the optical flow can be used for intensity images to derive a constraint for 3D
motion using intensity and the depth information. As described previously the optical flow
constraint equation (or brightness constancy assumption) is given by:

Ixẋ+ Iyẏ = −It. (5.3)

Here, Ix, Iy and It are the spatial and temporal derivatives of the intensities, respectively. As the
depth of the object point is available, the pixel velocities in Eq. (5.1) are substituted in Eq. (5.3)
to obtain a modified optical flow constraint [78], which contains full 3D motion components:

[
Ix

f
Z Iy

f
Z − Ixx+Iyy

Z

]ẊẎ
Ż

 =
[
−It
]
. (5.4)

The unknowns (Ẋ, Ẏ , Ż) in Eqs. (5.2) and (5.4) are the components of 3D object velocity of
each pixel that are computed using the spatial and temporal derivatives of depth and intensity.
For each pixel, there are two constraints for three unknown velocity components. Now, similar
to Lucas Kanade optical flow it is assumed that motion in the local neighborhood is similar
and a square window is selected around the subject pixel. For a window of n × n pixels, 2n2

constraints or equations are available and this overdetermined system of equations can be solved
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by least squares adjustment. The selection of window size is important as a smaller window
size may not contain enough information (aperture problem) and a larger window size may
contain multiple motions, thus invalidating the homogeneous motion assumption. The system
of equations (Eqs. (5.2) and (5.4)) can be written in the form

Aβ = l+ e. (5.5)

where β are the unknowns (Ẋ, Ẏ , Ż)>. The observations l contain the change in depth and
intensity per pixel and e is the residual vector. In this work, an ordinary least squares (OLS)
solution is used to estimate the parameters. The solution of the system of equations is given by:

β = (ATQ−1A)−1ATQ−1l. (5.6)

Here, Q is a diagonal matrix which contains the a priori variances of the observations [133]. The
inverse of Q acts as weights of observations in the adjustment. The solution in Eq. (5.6) uses an
inverse of ATQ−1A (or ATA if Q is identity matrix), which encodes the texture in intensity
and geometry. The three eigenvalues of the ATA matrix (also known as structure tensor) can
be used to analyze the amount of texture in the pixel neighborhood. If there is enough texture
present in the image or if there is enough variation in the surface normals e.g. as in a corner (three
intersecting planes), then all three eigenvalues are greater than zero and all three components of
the velocity can be determined. In presence of only an edge, one eigenvalue will be close to
zero and the motion normal to the edge can be determined. In case of a planar structure with
homogeneous gray level, two eigenvalues of ATA will be close to zero and only the motion
direction perpendicular to the plane can be estimated [177]. If any eigenvalue of this matrix is
zero then this matrix is singular and cannot be inverted and the solution has to be computed using
matrix pseudo inverse [102]. However, in most cases due to presence of noise, the eigenvalues
are not exactly zero and the matrix is invertible although it may be badly conditioned.

The variance of the estimated unknowns is given by:

Qβ = σ2
0(A

TQ−1A)−1, (5.7)

σ2
0 =

eTQ−1e

n− 3
, e = Aβ − y, (5.8)

where n is the number of observations. The diagonal elements of matrix Qβ give an estimate
of the precision of each parameter (β = [Ẋ, Ẏ , Ż]T ). As written above, the components of Qβ

indicate how accurately the individual motion components can be estimated depending on the
amount of texture available. The σ0 value gives the measure of overall quality of the adjustment.
In presence of multiple motions and occlusions σ0 is large [177]. Consequently, the resulting
values in the diagonal elements of Qβ are also large. Therefore, these quality measures are es-
sential in interpretation of the estimated flow field and indicates the failure of the assumptions
or the functional model. Shadowing, occlusions and scattering can cause optical flow and range
flow constraint to become invalid. Therefore, the pixels with inaccurate flow vectors should be
filtered out. Thus, the diagonal components of Qβ are used as a quality measure for the cor-
responding estimated flow vector components [177]. In particular, the flow vectors that exceed
a fixed threshold σ2

max in the diagonal elements of Qβ are removed. In contrast, components
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or vectors of the flow that were computed with high precision (i.e., that are below the fixed
threshold σ2

max) are kept. Thus, the local motion estimation may result in a partially dense flow
vectors.

5.2 Estimation Models for Optical Flow and Range Flow

As mentioned before, both range flow and optical flow are under-constrained for a single pixel
as there are more unknowns than the flow constraints. The common strategy is to estimate
flow using flow constraints over a neighborhood, this gives an over determined linear system of
equations which can be solved using the least squares method. Different parameter estimation
models for solving this equation system can be used e.g. OLS or Gauss Markov model [102,117,
120] (see Eq. (5.5) above), total least squares [175, 177], constrained total least squares [191]
and Gauss Helmert model [70].

The optical flow constraint Eq. (5.3) and range flow Eq. (2.19) constraint can be written in
matrix form as:

[
Ix Iy

] [ẋ
ẏ

]
= −It. (5.9)

[
ZX ZY 1

] ẊẎ
Ż

 = −Zt, (5.10)

This over-determined system of equations can be written in the form

Aβ = l, (5.11)

here, A is the matrix of coefficients, β is the unknown motion vector components and l are
the observations. If OLS or Gauss Markov model is used for parameter estimation of the form
Eq. (5.11), it is assumed that only observations (l) contains error of stochastic nature and the
coefficients of A are exact. In reality the derivatives of intensity or depth are also computed using
measurements corrupted with noise, so they also contain some error. However, it is expected that
the effect of neglecting these errors is not significant in the Gauss Markov model if the noise in
the two images is uncorrelated and normally distributed [5, 60]. Therefore, in this work, Gauss
Markov model has been used, which has the standard form:

Aβ = l+ e, (5.12)

where e is the error in measurement. The solution of the Gauss Markov model or ordinary least
squares, given earlier in Eq. (5.6) is obtained by minimizing eTe.

In comparison to OLS, the method of Total Least Squares (TotalLS) [161, 194], can model
the errors in the coefficient matrix as well. The general form of TotalLS for equation system of
the form Eq. (5.11) can be written as:

(A−EA)β = l+ e, (5.13)
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where EA contains the stochastic errors in the coefficient matrix and e is the error vector for the
observations l. The TotalLS solution for Eq. 5.14 minimizes the following sum:

eTe+ eA
TeA (5.14)

where, eA = vect(EA) is the columns of EA stacked into one column vector. The solution
of TotalLS (Eq. (5.14)) can be computed using singular value decomposition or eigen decom-
position. A simple example which shows the difference between OLS and TotalLS is 2D line
fitting. An OLS solution minimizes the vertical distances between the points and the estimated
line, while the TotalLS solution minimizes the orthogonal distances between the points and the
estimated line [136, 160].

Spies et al. [175, 177] have used TotalLS for estimating range flow. The range flow con-
straint:

ZXẊ + ZY Ẏ − Ż + Zt = 0, (5.15)

can be written in the form,
Aβ = 0, (5.16)

and solved as an eigenvalue problem. Here, A =
[
ZX ZY −1 Zt

]
and β =

[
Ẋ Ẏ Ż 1

]
.

From the eigenvector corresponding to the smallest eigenvalue of ATA, range flow is computed
as [177]:

β =
1

ev4

ev1

ev2

ev3

 (5.17)

Spies et al. [175, 177] have also presented solutions to compute range flow vectors for cases
with planar and linear geometry using eigenvectors of ATA.

Based on the standard TotalLS formulation given in Eq. (5.14), the matrix EA contains error
value for each term of matrix A. However, the coefficient of Ż is always −1 in Eq. (5.15)
and is thus error free. Therefore, TotalLS solution based on Eq. (5.17), will cause bias in the
estimation of the unknowns as it can add an error (as given in general formulation of TotalLS
in Eq. (5.14)) to coefficient of Ż which is error free. To resolve this issue Garbe et al. [47]
proposed a solution using mixed OLS and TotalLS which doesn’t assign error to exactly known
coefficient of Ż. The general TotalLS solution as also used in [175, 177] makes the assumption
that the errors in the ZX ,ZY and Zt are uncorrelated. This is however, not true because the
derivatives are computed over a pixel neighborhood and this induces correlation between these
terms. Therefore, it is suspected that this may lead to a biased parameter estimation. Therefore
different TotalLS based solution which can take into account correlation between the terms needs
to be investigated [6, 173].

As compared to range flow, there is a larger collection of literature in optical flow, investi-
gating error modeling of the optical flow constraint [134, 138, 191, 202]. In optical flow as well,
TotalLS has been used to model errors in spatial derivatives along with the time derivatives of
intensity [200, 202], similar to TotalLS approach in range flow. As mentioned previously, with-
out taking into account the correlation between the terms of the flow equation, TotalLS may give
a biased solution. As the standard form of TotalLS don’t model this correlation, different solu-
tions have been proposed to estimate flow by modeling the errors and the correlations in both
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spatio-temporal derivatives [134, 138, 191]. The Gauss Helmert model [70] also known as the
general case of least squares adjustment can also be used for modeling errors and correlations in
the spatial and temporal derivatives of the intensity and depth.

5.3 Global Regularization

The goal of the regularization step is to estimate a complete 3D motion for each pixel. In
this section the reference to previously (Section 5.1) estimated flow vectors (β), is made using
the pixels indexes (i, j) (e.g., βi,j). The global regularization step integrates the information
from the set of all flow vectors from the local motion estimation step and smoothness prior by
minimizing the following energy function [77, 177]:

Ereg = Edata + Esm. (5.18)

The term Edata uses the previously estimated flow vectors βi,j at pixel coordinates (i, j) and the
corresponding confidence values Qβ (the pixel’s subscripts (i, j) are not used with Qβ) from
the local motion estimation to minimize the following sum:

Edata =
∑
i,j

{(vi,j − βi,j)
TQ−1

β (vi,j − βi,j)}. (5.19)

Here, vi,j denotes a regularized unknown flow vector. The data term ensures that the difference
v − β is low. This is especially true for flow vectors β that were computed with high accuracy.
The correlation between the neighboring flow vectors, arising due to overlapping area of the
local neighborhood is neglected.

The second term in the regularization scheme, the smoothness term Esm, assumes similar
motion among neighboring pixels. Consequently, it minimizes the sum of differences of neigh-
boring 3D velocities [182]:

Esm =
∑
i,j

(vi,j − vi+1,j)
TPs,∆i(vi,j − vi+1,j) + (vi,j − vi,j+1)

TPs,∆j(vi,j − vi,j+1)

(5.20)
To regularize the previously estimated flow vectors, we perform a global least squares es-

timation that minimizes both terms (i.e., Eqs. (5.19) and (5.20)) over the entire image. In
Eq. (5.18) no relative weighting of the terms Edata and Esm is specified, because the respective
accuracy of the observations provides the weighting. It is given in the matrices Q−1

β and Ps,∆i,
Ps,∆j , respectively, which are defined below. The first set of observation equations, which rep-
resent Eq. (5.19), can be written in the form:

vi,j = βi,j + ei,j,β. (5.21)

As stated above, the precision σ2
βi,j

is derived during the local flow estimation (i.e., Eq. (5.7))
and corresponds to the variance of each estimated velocity component in Qβ . This is equal to a
weight of 1/σ2

βi,j
.
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The observation equations for the smoothness term (i.e., Eq. (5.20)) can be written in the
form:

vi,j − vi+1,j = 0+ ei,j,∆i, (5.22)

vi,j − vi,j+1 = 0+ ei,j,∆j . (5.23)

The weight Ps,∆i for each observation equation in Eq. (5.22) is computed by:

Ps,∆i =

(
1

σ2
s

)
gI(|Ii,j − Ii+1,j |)gZ(|Zi,j − Zi+1,j |), (5.24)

σ2
s = σ2

max −max(σ2
βi,j

, σ2
βi+1,j

). (5.25)

Ps,∆j is defined analogously. In Eq. (5.24), gI and gZ are weighting functions that are based on
intensity and depth differences of the corresponding pixels, respectively. This weighting causes
an anisotropic behavior of the smoothness term by reducing the influence of the smoothness
term across depth or intensity gradients [206]. Here, Gaussian functions are used for gI and gZ
as given in Eq. (5.26), where σZ and σI are empirically chosen.

gZ(Z) = exp(− (Zi,j−Zi+1,j)2

2σZ2 )

gI(I) = exp(− (Ii,j−Ii+1,j)2

2σI2
)

(5.26)

Furthermore, Eq. (5.24) considers the precision of the estimation of each individual flow
vector from the previous step [177]. σ2

max is the threshold that corresponds to the largest vari-
ance allowed in the local motion estimation. If either of the two flow vectors at locations (i, j) or
(i+1, j) was determined with low accuracy in the first motion estimation step, the corresponding
smoothness observation obtains a large weight. Weighting of the remaining smoothness equa-
tions is performed analogously. The regularization step computes an iteratively re-weighted least
squares solution to reduce the influence of outliers.

By approximating Qβ as a diagonal matrix (neglecting the off-diagonal elements), the equa-
tion system (Eq. (5.19)) can be split into Ẋ , Ẏ and Ż components, which are independent of each
other. This allows a faster computation. Furthermore, the equation system (Eqs. (5.21),(5.22)
and (5.23)) is linear, but due to robust outlier detection, iterations still need to be performed.
Furthermore, the equations system is large as three observation equations are written for each
component of velocity at each pixel. However, this equation system is largely sparse which is
utilized to solve this system as a linear least squares estimation problem.
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CHAPTER 6
Experiments

In this chapter, the qualitative and quantitative evaluation of the methods presented in Chapters 4
and 5 is given. Here, data from different types of range sensors presented in Chapter 3 is used.
Evaluating the methods on different types of data sets is important in assessing the applicability
and accuracy of the proposed methods. The experimental results are subdivided into sections
camera motion, motion of independently moving objects and motion estimation over a landslide.
The results are further compared to ground truth (GT) data (when available) for the quantitative
evaluation.

6.1 Camera Motion

Relative Orientation

In this section, the evaluation results of the relative orientation method presented in Chapter 4
are presented. First the results on a ToF camera are presented, which is then followed by results
on the RGB-D SLAM dataset and benchmark. Furthermore, the robustness of the algorithm in
presence of outliers is evaluated by estimating camera motion in presence of an independently
moving object.

To weight the depth and intensity based constraints in Eq. (4.19) of relative orientation
method, two options were analyzed. In the first approach, the depth and the intensity images
were normalized to have same mean spatial derivatives for use in Eq. (4.19), similar to approach
of Spies et al. [178]. While in the second approach, the weighting of the depth and intensity
terms was done by using the noise models for intensity and depth observations. The noise mod-
els for intensity observations of range camera and Kinect were derived empirically. The accuracy
model of Khoshelham and Elberink [99] was used for weighting the depth observations of Kinect
and Eq. (3.5) was used for weighting the range observations from the range camera. However,
during the analysis no significant differences in the results were observed, when weighting the
intensity and depth constraints in Eqs. (4.19) using the two approaches. The results given here
are computed using the first approach, i.e. by normalizing the intensity and depth images.
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Figure 6.1: Three Frames from the video of a static scene with a moving camera. Frame 30
(left), Frame 160 (middle) and Frame 340 (right)

The ToF sequences are captured with an SR3000 camera. The calibration presented in [94]
is applied to remove systematic effects in the range observations. To compare the results of
the algorithm with a reference data, ground control points are included in the scene and the
software package ORPHEUS [93] is used to perform bundle adjustment on the tracked ground
control points in the sequences. The results from ORPHEUS are used as Ground Truth (GT) for
quantitative analyses of the algorithm.

In the first type of experiments, the camera moves in a static environment. Figure 6.1 shows
three intensity and range images from one of the sequence (involving only camera motion).
Figure 6.2 shows the estimated camera trajectory in X − Z plane of the camera coordinate
system relative to the first frame in the video sequence consisting of approx. 350 frames. The
magnitude of the translation corresponds well with the GT, however the accumulation of errors
results in the drift and the estimated motion deviates more with time. In a second example of a
static scene, the focus was set on a dominant rotational component of the camera motion (a φ
rotation around the Y-axis of the camera). Similar results to the first scene are observed and the
accumulation of the error in the φ rotation are visualized in Figure 6.3.

In the second type of experiments, the scene includes an independently moving object, there-
fore the observed motion has two contributions, one from the camera motion and the other from
the independently moving object. For dealing with independently moving object, the pixels oc-
cupied by the object need to be excluded in the computation of the camera’s motion. This can be
achieved by using robust adjustment, during which a weighting function is applied to iteratively
reduce the weight of the outliers (i.e. pixels of the independently moving object). Figure 6.4
shows the weighting of the optical flow and range flow based terms for each pixel (black cor-
responds to low weight). The dominant motion is due to the camera movement. Therefore, the
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Figure 6.2: First static scene: Comparison of the trajectory from the GT

Figure 6.3: Second static scene: Camera rotation and comparison with the GT
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Figure 6.4: Camera motion and an independently moving object. Darker gray tone represents
lower weights

static parts of the scene receive high weight in the robust adjustment, while the pixels belonging
to the independently moving object get a low weight. However, the robust estimation is sensitive
to the number of outliers. Therefore, in the presence of large number of outliers (multiple inde-
pendent moving objects or moving object covering large parts of the scene) the breakdown point
of the robust estimators can be reached. In this experiment, reference camera motion was mea-
sured with a linear scale bar and the motion has a magnitude of 95cm. The difference between
the estimated and the referenced camera motion is around 5cm.

The relative orientation method is further tested on the RGB-D SLAM data set and bench-
mark [180], which contains numerous videos of indoor environment captured with Microsoft
Kinect and Asus Xtion RGB-D cameras. The dataset contains a variety of scenes, some of them
are recorded with hand held camera motion while some scenes are captured by a camera attached
to a moving robot. The ground truth camera trajectory was obtained using a high accuracy mo-
tion capture system consisting of eight high speed tracking cameras. From the calibration of the
motion capture system, it was concluded that the relative error on consecutive frames is lower
than 1 mm and 0.5 degrees. Additionally, the absolute error over the entire motion capture area
is lower than 10 mm and 0.5 degrees.

In addition to the ground truth trajectory the results from the RGB-D SLAM algorithm [39]
are also available. This RGBD-SLAM algorithm [39] consists of the following steps. First
distinctive feature are extracted and matched in the color images, which gives the 3D point cor-
respondences between two frames as depth of these points are available in the depth images.
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Based on these point correspondences the relative transformation between two frames is esti-
mated using RANSAC strategy. These relative poses are then refined using a modified ICP
algorithm [165]. The globally consistent poses are then estimated using the HOGMAN pose
graph optimization [58].

In this dataset most of the sequences contain relatively large motion (observed image mo-
tion is up to about 20 pixels) between consecutive frames. The rotational movement is upto 50
deg/sec. As a result motion blur is quite significant when the camera undergoes fast motion.
Furthermore, Kinect selects the exposure time automatically, as a consequence significant illu-
mination changes are also present in between the consecutive frames. Hence, motion blur and
illumination changes along with limited texture and geometry as is common in a typical indoor
environment, poses a challenging task for camera motion estimation and makes this dataset a
suitable platform for evaluation of methods presented in this thesis for estimation of camera
motion.

The evaluation of the estimated camera motion is performed by computing the following
two measures: The Relative Pose Error (RPE) and the Absolute Trajectory Error (ATE). RPE
is a suitable measure for evaluation of the local accuracy of camera motion. Therefore, the rel-
ative orientation method presented in Section 4.1 is evaluated using RPE. On the other hand
ATE is suited for measuring the overall accuracy or the global consistency of the camera tra-
jectory. Therefore, the bundle adjustment with relative orientation (Section 4.2) is evaluated
using ATE. If {Q1,Q2, .......Qn} is the set of estimated camera poses or camera trajectory and
{G1,G2, .......Gn} is the ground truth trajectory consisting of n camera poses then RPE for
time instant i is computed as:

RPEi = (Q−1
i Qi+1)

−1(G−1
i Gi+1) (6.1)

The poses Qi and Gi are represented as 4× 4 matrices:

Qi =

[
Ri Ti

0 1

]
(6.2)

where, Ri is a 3 × 3 rotation matrix representing the angular attitude of the camera and Ti

is a three dimensional vector representing the position of the projection center of the ith frame
with reference to the common coordinate system. If there are n camera poses, then the root
mean squared error (RMSE) for the translational components is computed as:

RMSE(RPE1:n−1) =

(
1

n− 1

n−1∑
i=1

‖trans(RPE)i‖2
) 1

2

(6.3)

where, trans(RPE)i contains the translational components of the ith relative pose error. The
RMSE error for the rotational components is computed similarly.

As the camera trajectories can be given in any arbitrary coordinate system, to compute ATE,
the trajectories are first aligned using closed form solution of Horn [79]. If S is the transforma-
tion that aligns estimated trajectory to the ground truth trajectory then ATE at time instant i is
computed as:
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Table 6.1: Translational (millimeters) part of RPE between consecutive frames on several se-
quences of the RGB-D Dataset [180].

Relative Orientation RGBD SLAM
Translational Error (mm) Translational Error (mm)

Sequence Frames RMSE Mean Median RMSE Mean Median
FR1 xyz 798 4.9 4.0 3.2 5.7 4.8 4.1
FR1 rpy 722 6.8 5.2 3.9 12.1 8.4 5.6
FR1 desk 595 6.8 5.4 4.2 11.7 8.3 5.9
FR1 desk2 639 7.0 5.6 4.6 17.5 9.9 6.4

FR2 xyz 3665 2.1 1.7 1.4 2.0 1.7 1.5

Table 6.2: Rotational (degrees) part of RPE between consecutive frames on several sequences
of the RGB-D Dataset [180].

Relative Orientation RGBD SLAM
Rotational Error (deg) Rotational Error (deg)

Sequence Frames RMSE Mean Median RMSE Mean Median
FR1 xyz 798 0.39 0.32 0.25 0.35 0.30 0.23
FR1 rpy 722 0.82 0.70 0.65 0.91 0.64 0.47
FR1 desk 595 0.76 0.64 0.56 0.73 0.49 0.34
FR1 desk2 639 0.75 0.65 0.58 1.0 0.61 0.39

FR2 xyz 3665 0.23 0.19 0.16 0.21 0.17 0.11

ATEi = G−1
i SQi (6.4)

RMSE(ATEi:n) =

(
1

n

n∑
i=1

‖trans(ATE)i‖2
) 1

2

(6.5)

where, trans(ATE)i contains the translational components of the ith absolute trajectory error.
In the RGB-D SLAM database and benchmark [180], an online tool and script is provided

for computation of RPE and ATE, which also performs the alignment of the trajectories for
computation of ATE. It also provides the error statistics of the whole trajectory.

The RPE (Eq. (6.1)) is computed for each consecutive pair of frames for several sequences
in this dataset which is given in Tables 6.1 and 6.2. The RMSE, mean and median translational
errors of relative orientation parameters between consecutive frames of the sequences are in
Table 6.1, while the errors for the rotational terms are given in Table 6.2. These results were
computing using the relative orientation method within a coarse to fine framework due to pres-
ence of large motion. The color images were converted to gray scale. The missing data values
in the depth images were interpolated and an iterative re-weighted adjustment was performed to
remove the outliers. All the relative orientations are transformed into the coordinate system of
the first camera frame, this gives all camera poses with reference to the first camera position.

50



FR
1 

rp
y

FR
1 

de
sk

FR
1 

de
sk

2
FR

2 
 x

yz

Figure 6.5: RGB-D SLAM dataset [180] sample images from several sequences
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Figure 6.6: Top: Two frames from FR1 desk sequence. 2nd Row Left: Original difference
between the two frames. 2nd Row Right: Difference between two images after transforming
the 2nd image using relative orientation parameters. The darker gray levels on homogeneous
areas of the bottom right image indicates illumination changes. Images are normalized to [0-1].
Motion blur and changes in illumination is quite evident.

The sequence FR1 xyz and FR 2 xyz contains mainly translational motions, FR1 rpy contains
rotation along the 3 axes, FR1 desk and FR1 desk2 contains both rotational and translational
movements in a typical office environment (Figure 6.5). The evaluation results on these different
sequences show good accuracy compared to the RGB-D SLAM algorithm [39]. The rotational
error is less than 1 degree for all the five sequences and the median translational error is in
the order of few millimeters. Thus, the good performance of the algorithm on these variety of
scenes shows the validity of the proposed method. These sequences contains fast translational
and rotational movements involving different types of indoor scenes. The accuracy of the results
show that even image motion greater than 20 pixels per frame is not a problem as the coarse to
fine strategy is able to handle motions of such a magnitude. Furthermore, due to high redundancy
and robust estimation, the relative orientation is accurately estimated even with motion blur and
illumination changes as shown in Figure 6.6.

Bundle Adjustment with Relative Orientation

As discussed before, the relative orientation method doesn’t produce a globally consistent so-
lution as the errors accumulate along the trajectory. The RPE presented in Tables 6.1 and 6.2
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Table 6.3: Absolute Trajectory Error (ATE) for relative orientations method compared to the
RGB-D SLAM [39].

Relative Orientation Trajectory RGB-D SLAM Trajectory
ATE (cm) ATE (cm)

Sequence RMSE Mean Median RMSE Mean Median
FR1 xyz 2.75 2.57 2.47 1.34 1.20 1.11
FR1 rpy 10.1 9.7 9.24 2.87 2.45 2.15
FR1 desk 5.70 5.41 5.34 2.58 2.31 2.13
FR1 desk2 11.7 10.5 10.1 4.2 3.5 3.1

FR2 xyz 6.4 5.6 4.9 2.6 2.2 2.0

evaluates only the relative accuracy of the camera poses. The global consistency of the trajectory
is measured by computing the ATE. In Table 6.3 the ATE of the trajectory computed from the rel-
ative orientation is given along with the trajectory from RGB-D SLAM [39] algorithm. Clearly
the ATE error from relative orientation is much higher compared to the RGB-D SLAM [39].
The accumulation of the error is also visible in Figure 6.7, which shows the trajectories from
relative orientation and RGB-D SLAM along with the ground truth for sequences FR1 xyz, FR1
rpy, FR1 desk, FR1 desk2, FR2 xyz in the X,Y plane of the motion capture system.

To obtain globally consistent camera trajectory, bundle adjustment using the relative orien-
tation constraints is performed over these sequences. First the SURF features are extracted and
matched among images to find corresponding points in images. As there are usually false point
matches, RANSAC is used to find a set of inlier points. Here, a minimum of 15 inlier points sat-
isfying a projective transformation are used for a successful matching of an image pair. At this
point, it is essential to point out that due to high motion blur combined with low texture, enough
image features could not be matched for some of the frames. Therefore, for some frames no
features points are used in the bundle adjustment. However, as the relative orientation parame-
ters of these frames are available, the exterior orientation of these frames is still optimized in the
bundle adjustment. This fact also emphasizes the reason behind using the relative orientations
as observations in the bundle adjustment.

As the bundle adjustment is a non linear optimization, it requires an approximate solution.
The approximate solution can be computed by estimating the transformation between 3D points
(as depth is also available for matched features points) using e.g. the closed form solution as
given in Chapter 2. Another option is to use the relative orientations transformed into a common
coordinate system for the approximate solution. During the analysis, it is observed that the rela-
tive orientation solution provided a better approximation for initialization of bundle adjustment
for these sequences, which is also evident from Figure 6.7, as the trajectories correspond well to
the ground truth. Having good approximate values of the unknowns can lead to faster conver-
gence and therefore, less number of iterations needs to be performed in bundle adjustment.

The bundle adjustment used here, consists of three different types of observations, it is es-
sential to assign correct weights for each group of observations, which is done by choosing a
priori variances for each group of observations. The accuracy of the feature matching is typi-
cally in sub pixel range [0.5 − 1] pixel, therefore the accuracy of feature matching is selected
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Figure 6.7: Camera trajectories estimated using relative orientation (left) and RGB-D SLAM
(right)
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Table 6.4: Variance factors of the three observation groups

Sequence FR1 xyz FR1 rpy FR1 desk FR1 desk2 FR2 xyz
σ2

0,F eatMatch 0.62 0.82 0.86 0.58 0.3
σ2

0,DepthObs 8.83 13.5 15 19 8.4
σ2

0,RelOrient 3.9e5 2.1e6 5.0e5 6.6e5 3.4e5

as 0.9 (pixel). For the accuracy of depth measurements, the model given in Khoshelham and
Elberink [99] can be used, which says that the standard deviation of the depth error increases
quadratically from a couple of millimeters at 0.5 m depth to around 4 cm at 5 m depth. Khoshel-
ham and Elberink [99] verified the model by experimentally observing the residuals of plane
fitting at different depths from the camera. The weighting of the observations corresponding to
the estimated relative orientations deserves some attention. The a posteriori covariance matrix
Qβ of the unknowns in Eq. (4.22) gives an estimate of the accuracy of the relative orientation
parameters. This covariance matrix can be used for weighting of the observation equations cor-
responding to the estimated relative orientations. As an example, the Qβ matrix computed from
relative orientation estimation of an image pair shown in Figure 6.8 is:

Qβ = 1e−10



0.1567 −0.0111 −0.0229 0.0034 0.1158 −0.0127
−0.0111 0.0867 0.0136 −0.0646 −0.0074 0.0028
−0.0229 0.0136 0.0843 −0.0062 −0.0224 0.0110
0.0034 −0.0646 −0.0062 0.0530 0.0009 −0.0032
0.1158 −0.0074 −0.0224 0.0009 0.0926 −0.0088
−0.0127 0.0028 0.0110 −0.0032 −0.0088 0.0343

 (6.6)

The standard deviation of the three components of translation is 1e−6[3.9, 2.9, 2.9] (meters).
This estimate of the accuracy of relative orientation parameters is highly optimistic. One reason
for this highly optimistic estimate is the redundancy number which is used for computing σ0

(Eq. (4.23)) and subsequently Qβ (Eq. (4.22)). If all the pixels in the depth and intensity image
are used for estimation of relative orientation (Eq. (4.19)) then the redundancy is (2 × 640 ×
480) − 6 = 614, 394. In reality however, a number of observation equations corresponding to
diminishing intensity and depth gradients provide little or weak constraints in determining the
unknown parameters, but these observation equations still add up to the redundancy number.
Furthermore, as discussed in Section 5.2, while using ordinary least squares it is assumed that
the coefficients are free of error but this is an assumption, which also leads to an optimistic
estimate of the accuracy of the unknowns. Therefore, the covariance estimates from relative
orientation may only give a biased accuracy estimates of the relative orientation observations.

To obtain better estimates of accuracy of each group of observations, variance component
analysis is performed [139]. In this procedure the a posteriori variance of each group of obser-
vations is computed after each adjustment and then these estimates are used as a priori variance
estimates for the next iteration of bundle adjustment. Table 6.4 shows the variance factors for
the three observations groups after few iterations. The cofactor matrix in Eq. (4.37) for feature
points is an identity matrix, while the cofactor matrix for depth observations comprises the depth
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accuracy model from Khoshelham and Elberink [99] and the cofactor matrix for the relative ori-
entation comprises of covariance matrices (Eq. (4.22)) obtained from the relative orientation
estimation.

Now using the σ2
0,RelOrient of the FR1 desk as the variance estimate for the observations

equations of relative orientation group, the co-variance matrix given in Eq. (6.6) multiplied by
σ2

0,RelOrient gives the following estimate of variance of the relative orientation parameters of
image pair shown in Figure 6.8:

Qβ = 1e−5



0.7835 −0.0555 −0.1145 0.0170 0.5790 −0.0635
−0.0555 0.4335 0.0680 −0.3230 −0.0370 0.0140
−0.1145 0.0680 0.4215 −0.0310 −0.1120 0.0550
0.0170 −0.3230 −0.0310 0.2650 0.0045 −0.0160
0.5790 −0.0370 −0.1120 0.0045 0.4630 −0.0440
−0.0635 0.0140 0.0550 −0.0160 −0.0440 0.1715

 (6.7)

Thus, [0.0028, 0.0021, 0.0021] (meters) is the estimated standard deviation of the three trans-
lational components of the relative orientation for the image pair shown in Figure 6.8, after us-
ing variance factors given in Table 6.4. These accuracy estimates corresponds well to the RPE
given in Table 6.1. This shows that the accuracy estimates from the a posteriori covariance
matrix of relative orientation are indeed too optimistic. Figure 6.9 shows the difference in the
trajectories when using the original covariance matrix from relative orientation and when using
the revised covariance estimate from variance component analysis. It is clear that in the latter
case the estimated trajectory corresponds better to the ground truth trajectory. Furthermore, the
trajectories from relative orientation and bundle adjustment with relative orientation using orig-
inal covariance matrix are quite similar. This is due to the fact that the covariance matrix as give
in Eq. (6.6) leads to very high weights for the relative orientation observations and therefore, the
bundle adjustment solution will tend to correspond to these observations as it will assign less
error to these observation equations due to their higher weighting.

The variance factor for depth observations in Table 6.4 shows that the accuracy model of
Khoshelham and Elberink [99] is also optimistic. This may be due to the fact that the evaluation
of the model was done in a controlled environment, while, the sequences from the RGB-D
dataset are more complex in terms of the scene structure and the camera motion. In fact, it is
observed that assigning all the depth observations an equal weight instead of using the model
of [99] improves the accuracy of the trajectories.

The result of bundle adjustment with relative orientation is shown in Figure 6.10 and in
Table 6.5. The accuracy of the estimated trajectory is even better than RGB-D SLAM [39]
algorithm for several sequences. This shows that the proposed algorithm performs well on chal-
lenging sequences. The Table 6.6, shows the mean standard deviation of the estimated projection
centers from the bundle adjustment solution. In comparison to the ATE given in Table 6.5, these
accuracy estimates are optimistic. One reason for the optimistic estimate is that the estimated
accuracy of the unknowns in the bundle adjustment, shows how well the observations fit to each
other and this estimated may not be well representative of the absolute trajectory of the camera.

The computational aspects of the method are now briefly discussed. The method of rela-
tive orientation is computationally inexpensive, the coefficients of A matrix in Eq. (4.19) only
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Figure 6.8: Top: Two frames from FR1 desk sequence. 2nd Row Left: Original difference
between the two frames. 2nd Row Right: Difference between two images after transforming the
2nd image using relative orientation parameters. Images are normalized to [0-1].

Table 6.5: Absolute Trajectory Error (ATE) for bundle adjustment with relative orientation
compared to the RGB-D SLAM [39].

Bundle Adjustment with RGB-D SLAM Trajectory
Relative Orientation

ATE (cm) ATE (cm)
Sequence RMSE Mean Median RMSE Mean Median
FR1 xyz 1.34 1.19 1.05 1.34 1.20 1.11
FR1 rpy 1.9 1.75 1.6 2.87 2.45 2.15
FR1 desk 2.8 2.33 2.0 2.58 2.31 2.13
FR1 desk2 4.0 3.3 2.9 4.2 3.5 3.1
FR2 xyz 1.5 1.3 1.2 2.6 2.2 2.0
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Figure 6.9: Comparison of the trajectory of FR1 desk sequence, computed using a) Only relative
orientation b) Bundle adjustment with relative orientation constraints using the original covari-
ance matrix from relative orientation for weighting of the relative orientation observations. c)
Bundle adjustment with relative orientation constraints but using weighting of the relative ori-
entation terms using variance component analysis d) Trajectory from RGB-D SLAM [39]

Table 6.6: Mean standard deviation (in cm) of the projection center of each frame from bundle
adjustment

Sequence FR1 xyz FR1 rpy FR1 desk FR1 desk2 FR2 xyz
Projection centers 0.26 0.44 0.8 0.9 0.15
(mean std. dev).
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Figure 6.10: Camera trajectories estimated using bundle adjustment with relative orientation
(left) and RGB-D SLAM (right)
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requires computation of the intensity and range derivatives, which can be computed very ef-
ficiently. The least squares adjustment involves only six unknowns, therefore, the adjustment
computation is also inexpensive. The bundle adjustment and variance component analysis on
the other hand can become computationally expensive as the number of images and number of
features increase. The state of the art SLAM algorithms for large scale mapping, focus on opti-
mizing only large number of poses without performing bundle adjustment using feature match-
ing. Therefore, if a large scale mapping is desired, then the number of features points should
be kept limited, or only the relative orientations between frames should be optimized. Another
strategy, which is often adopted is to perform a local bundle adjustment i.e. to optimize the
orientations and 3D point locations using a subset of images, and repeat this procedure for all
images of the sequence.

6.2 Motion of Independently Moving Objects

In this section, the method for motion estimation of independently moving object is evaluated.
Three sequences: one synthetic scene cubes (Figure 6.11) and two real world scenes trains
(Figure 6.15) and people (Figure 6.16) are used to evaluate the proposed method. The real world
scenes are captured using the an SR3000 ToF camera and to compensate for the systematic
distortions, calibration presented in [94] has been applied. Another real world test scene not
presented here is given in [49].

The quantitative analysis of first two sequences (cubes and trains) is performed by comput-
ing Angular Error (AE) and the Endpoint Error (EE). The AE measures the difference in the
direction of the motion vectors and is computed as:

AE = cos−1

 Ẋ × ẊGT + Ẏ × ẎGT + Ż × ŻGT√
Ẋ2 + Ẏ 2 + Ż2

√
Ẋ2
GT + Ẏ 2

GT + Ż2
GT

 (6.8)

where, (ẊGT , ẎGT , ŻGT ) is the ground truth motion vector and (Ẋ, Ẏ , Ż) is the estimated 3D
motion vector. The EE measures the difference in the end points of the estimated motion vector
and the ground truth motion vector.

EE =

√
(Ẋ − ẊGT )2 + (Ẏ − ẎGT )2 + (Ż − ŻGT )2 (6.9)

The AE and EE are commonly used error measures for evaluation of optical flow algorithms
[9,10]. For the third sequence people, no ground truth is available so only qualitative analysis is
performed.

Synthetic Scene

In the synthetic scene (cubes) two cubes are moving on a ground plane in front of a wall (Fig-
ure 6.11). It has a resolution of 201×161 pixels. The scene’s lateral extent is 18 meters. The
depth ranges from 5 to 18 meters. The GT flow vector for the cube in the front is [0.07, 0, 0.01],
while for cube in the back the GT motion is [−0.14, 0, 0] (meters per frame).
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Figure 6.11: 1st Row: Depth images for five frames of the sequence. 2nd Row Corresponding
intensity images. 3rd Row: (Ẋ, Ẏ ) components of estimated motion vectors. 4th Row: Ż
component of the estimated motion vectors. The motion vectors are color coded (color wheel)
as: Hue encodes orientation and saturation encodes magnitude. Ż is represented by only vertical
axis of the color wheel.

The results of the proposed motion estimation on cubes are shown in Figure 6.11. It can
be seen that the estimated flow vectors are visually accurate, even when more than 60 percent
of the background cube is occluded (e.g., background cube in the middle frame, Figure 6.11).
Furthermore, the boundaries of the objects are well determined. Figure 6.11 also demonstrates
that the global regularization scheme (i.e., the weighting of the smoothness term based on depth
and intensity differences) effectively avoids over-smoothing. Even object boundaries at critical
locations, such as at low incidence angles (e.g., top surface of cube) and similar depths (e.g.,
contact points of ground plane and cube) are well identified. The visual quality of the results
(Figure 6.11) are confirmed by the quantitative error measures. The average EE and the average
AE for this entire sequence are 0.1 millimeters and 0.1 degrees, respectively.

The steps of the algorithms are illustrated in Figure 6.12. The results of the local motion
estimation are shown in the left column. It can be seen that towards the borders of the moving
cubes, the flow vectors are erroneous as the local neighborhood contains both moving and static
objects. This is depicted in the standard deviation of the estimated flow vectors, shown in the
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Figure 6.12: Illustration of the steps of motion estimation algorithm. 1st Row: A frame from the
cubes sequence. 2nd and 3rd Row: (Ẋ, Ẏ ) and Ż components of the motion vectors respectively.
The left column shows the results of the local motion estimation step. In 4th Row the standard
deviation (in meters) of the three components of the estimated flow vector is given. Using a
threshold on these values, less accurate flow vectors are filtered out as shown in the middle
column. In the right column the regularized flow vectors are shown.

bottom row of Figure 6.12. Using a threshold, which is empirically chosen, these inaccurate
flow vectors are filtered out. To achieve dense regularized flow vectors, the global regularization
step is applied which gives the final 3D flow vectors. As the smoothing constraint was relaxed
at intensity and depth discontinuity, the motion boundaries are sharp and consistent with the
boundary of the moving cubes.

To further evaluate the algorithm’s robustness to noise, we add Gaussian noise to the depth
and intensity images of the synthetic scene. To add the noise, the depth and the intensity images
are normalized to [0, 1] using the maximum depth and maximum intensity, respectively. The
resulting depth and intensity images have a common range of values. Subsequently, the flow
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Figure 6.13: Endpoint Error (blue) and An-
gular Error (green) against the noise.

Figure 6.14: Endpoint Error for U , V andW
of the flow vectors against the noise.

vectors are estimated and evaluated. Figure 6.13 shows the change in average EE and AE with
increasing noise σ. Figure 6.14 shows the EE for each component of the flow vector separately,
against the increasing noise values. In Figure 6.13 and 6.14, σ is the standard deviation of the
additive Gaussian noise. As shown in Figure 6.14, the EE for Ż is larger than the EE for Ẋ and
Ẏ for increasing σ, which is due to the fact that the motion along the viewing axis is harder to
estimate, while looking at an image patch or local neighborhood.

Real World Scenes

The algorithm for estimating motion of independently moving objects is now evaluated on two
real world scenes from ToF cameras: trains (Figure 6.15) and people (Figure 6.16). The frame
rate of the videos is approximately 10 frames per second (fps) for trains and 5 fps for people.
Trains consists of two toy trains moving on two rail tracks. The lateral extent of the scene is one
meter. The depth ranges from 40 centimeters to one meter. The first train is on an elevated track
and moves approximately diagonally from left to right in the image while the second train moves
from top towards bottom of the image. People consists of three people, two of them walking
approximately parallel to the image plane while a third person walks towards the camera in the
later half of the video.

The GT motion for trains is computed by measuring the distance between two target pairs
that are mounted on the rail tracks in the coordinate system attached to the camera. When as-
suming a constant linear velocity and rigid object motion, the GT flow vector of each train can be
obtained by the time (i.e., number of frames) and the trains’ traveling distances between the tar-
gets. The GT flow vectors for the train on the top and the train on the bottom are [5.4, 4.4,−5.4]
and [0.6, 6.8,−7.2] (mm per frame), respectively. Due to complexity and inconsistency of the
human motion, no GT is available for people.

In the local motion estimation step, the motion is only computed over pixels which change
in time, by observing the change in depth and intensity in frames before and after the current
frame. Furthermore, in the local motion step flow vectors on the background pixels of a depth
discontinuities are removed as it is assumed that the background pixels will get occluded or dis-
occluded due to foreground motion. This is done by using a Laplacian of Gaussian filter which
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Table 6.7: Quantitative evaluation of estimated motion vectors for calibrated (calib.) and uncal-
ibrated (uncalib.) trains. Average Angular Error (AE) and Endpoint Error (EE).

trains calib. uncalib.
AE (deg.) 12.2 39
EE (mm) 3.05 6.9
EE in [U,V,W] [1.4,1.3,2.4] [2.1,2.2,6.2]

detect edges and indicates the the foreground and background pixels in the local neighboorhood
of the depth image. Figure 6.15 shows the motion estimation result for five frames of the trains
sequence along with the GT motion. The estimated flow vectors correspond well to the GT
motion of the train. The boundaries of the trains appear sharp with little smoothing effects along
some parts of the boundary.

To analyze the influence of calibration, the accuracy of the estimated motion is compared
for the calibrated and uncalibrated train scene. The comparison of the estimated motion vectors
with the GT motion vectors indicates a significantly higher EE in Ż (Table 6.7) for uncalibrated
data. The error values correspond to non stationary parts of the scene. Schmidt et al. [163]
observed a similar behavior for Ż and suspect systematic errors to be the reason for it. In fact,
when investigating the results obtained from the calibrated [94] test scene, the EE of Ż im-
proves significantly. Moreover, Table 6.7 shows the overall AEs, the overall EEs and the EEs for
the individual components of the estimated flow vectors for the uncalibrated and the calibrated
test scene. When comparing the results of the calibrated train scene with the synthetic scene,
the magnitudes of the errors are similar to errors resulting from higher levels of added noise.
The applied calibration [94] does not completely remove the systematic effects that are caus-
ing distortions in distance observations. Furthermore, shadowing of the active illumination by
foreground object and illumination fall off in intensity images violate the brightness constancy
assumption and hence might introduce errors.

Figure 6.16 shows the motion estimation results for people. Considering the complexity of
the scene, the motion estimation results appear well in correspondence with the actual motion.
The direction of movement is estimated correctly and persons are delineated correctly. However,
it can also be seen that fast, non-rigid motion of small structures that are different from the mo-
tion at similar depths (e.g., legs with different motion of body) is especially difficult to estimate.
In this context, the low resolution and the high noise levels of ToF videos are challenging for
motion estimation. Especially, the motion in depth Ż is ill-determined. However, the results
show that the regularization scheme performs well in determining dense and smooth flow fields
over major parts of the independently moving objects. The advantage of simultaneous utilization
of intensity and depth information is also evident in Figure 6.16, as in some areas of the scene,
intensity gradients are higher while in some areas the depth gradients provide more information
in estimation of the 3D motion vectors.
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Figure 6.15: 1st Row: Depth images from five frames of the Train sequence. 2nd Row Cor-
responding intensity images. 3rd Row: (Ẋ, Ẏ ) components of estimated motion vectors. 4th
Row: Ż component of the estimated motion vectors. 5th Row: (Ẋ, Ẏ ) components of GT mo-
tion vectors. 6th Row: Ż component of the GT motion vectors. GT motion vectors are generated
from manual segmentation and using the GT motion. The motion vectors are color coded (color
wheel) as: Hue encodes orientation and saturation encodes magnitude. Ż is represented by only
vertical axis of the color wheel.
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Figure 6.16: 1st Row: Depth images for five frames of the People sequence. 2nd Row Cor-
responding intensity images. 3rd Row: (Ẋ, Ẏ ) components of estimated motion vectors. 4th
Row: Ż component of the estimated motion vectors. The motion vectors are color coded (color
wheel) as: Hue encodes orientation and saturation encodes magnitude. Ż is represented by only
vertical axis of the color wheel.
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Figure 6.17: Shaded DTMs from ALS 2003–2007.

Figure 6.18: Shaded DTMs from TLS 2008–2012.

6.3 Motion Estimation of a Landslide

Motion as a result of natural phenomena like landslides and glacier movements is a very im-
portant topic due to its impact on environment and human life. Studying the changes in the
surfaces requires acquisition of multi-temporal data of the subject area. The dynamics of the
process defines the temporal resolution of the data acquisition. For studying the motion of slow
moving landslides or glaciers, data can be acquired with the time difference of several months.
The surface modeling for analysis of these natural processes is often based on remotely sensed
data. Typical remote sensing techniques are based on photographs/images [157], airborne and
terrestrial laser scanning [52, 157] and radar [188].

The subject study case is a landslide in Doren, Vorarlberg , Austria. This landslide has al-
ready been sketched in the historical maps of 19th century [52, 157]. In the recent years there
were major movements in year 2005 and 2007 and since then the landslide is continuously
evolving. Due to its proximity to human settlement, its a concern for the safety of local com-
munity. The landslide area has been measured on several epochs. Airborne LiDAR acquisitions
were carried out from 2003 to 2007 while and TLS campaigns were carried out annually on the
landslide site from 2008 to 2013.

LiDAR has often been used for investigation and characterization of landslides. The tempo-
ral data acquired from LiDAR sensor is used for detection and estimation of motion, suscepti-
bility mapping and monitoring of landslides [87,132,185]. In current application, the interest is
to estimate motion over the landslide, which is realized by applying range flow over the multi-
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Figure 6.19: Orthophotos of the landslide area from year 2006 (left), 2007 (middle) and 2009
(right). Especially in the southern part of the landslide, efforts for an artificial drainage can
be clearly recognised. Images by courtesy of Landesamt für Vermessung und Geoinformation
Vorarlberg [34]

temporal surface models generated from LiDAR data. These surface models are generated by
filtering out laser echoes from vegetation and artificial objects and computing the height at each
grid point by fitting a plane to the points in the neighborhood [109]. The resulting height values
over a regularly sampled grid or a raster gives the digital surface models of the landslide area.
More details on the generation of the digital surface models from the laser scanning data can be
found in [109, 156]

Range flow constraint is used to estimate motion on the landslide surface, which provides a
quantitative measure of the movements in the landslide area .The available ALS and TLS data
sets of the area don’t provide a regular temporal sampling of the surface. Therefore, motion
is estimated between each consecutive data sets only and no displacements rate over time are
given because the landslide motion is inhomogeneous both in space and time. The motion pat-
terns over a landslide are quite complex and result in varying motion on different parts of the
landslide surface. Therefore, the global and temporal motion constraints are not suitable in such
a scenario. The method for estimating motion is based on Lucas/Kanade type optical flow algo-
rithms (Eq. (5.3)). A window of size 11× 11 meters is chosen and a over determined systems of
equations is solved using robust least squares estimator. In some areas of the landslides, motion
is more than 10 m, therefore its necessary to use a coarse to fine warping scheme for motion
estimation. Robust estimation is necessary due to presence of non uniform motion patterns e.g.
at the scarp of the landslide there are large movements while the surface at the border remains
quite stable.

To this end, it is essential to point out that the motion vectors computed using range flow
do not necessarily represent motion of the mass or material. These motion vectors reflect sur-
face changes which are results of geomorphic processes like debris flow, erosion, incision and
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Figure 6.20: Motion vectors from 2003 to 2012. W . . . elevation change, U . . . east-west motion,
V . . . north-south motion. Numbers in the form NN-MM, indicate change from year 20NN to
year 20MM. U = up (towards zenith), D = down (towards nadir).

the changes due to anthropogenic influence especially the construction of water drainage in
landslide area. Furthermore, constraints like conservation of material have not been taken into
consideration during this analysis. Loss of material may appear as a downward movement in the
motion vectors and the accumulation of the material may result in apparent upward movement
of the surface. This type of motion is apparent in the scarp area of the landslide where loss of
material appears as downward motion.

Figure 6.20 shows the motion of the landslide from year 2003 to 2012. In the current con-
text motion (Ẋ, Ẏ , Ż) = (U̇ , V̇ , Ẇ ) corresponds to motion along west-east, south-north and
the zenith direction. It can be seen that there were large movements (> 10 meters) during
years 2003-2007, while since then the magnitude of the motion is relatively small, however the
landslide still continues to evolve. Figure 6.21, gives a more detail look on the motion over
the scarp of the landslide, where large movements occurred especially between the laser scan-
ning campaigns of 2006 and 2007. On a qualitative basis, the motion vectors were manually
compared by analyzing changes in the multi-temporal surface models and they appear well in
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Figure 6.21: Motion vectors from 2003 to 2012 overlaid over the respective digital terrain
models (DTMs) in the area of the scarp of the landslide

accordance with the visual analysis of the changes of the surface. However, in areas with high
anthropogenic influence i.e. the area where the development of an artificial drainage system took
place (see Figure 6.19), the motion vectors are not reliable as the surface is heavily altered due
to human influence. Since March 2010, geodetic measurement campaigns have been undertaken
by the local surveying authority (Landesamt für Vermessung und Geoinformation) to measure
the locations of points (prisms) place on selected areas of the landslide [131]. Figure 6.22 shows
the comparison of the estimated motion with the geodetic measurements of the points for two
time intervals. In general the motion patterns from the estimated from range flow and geodetic
points corresponds well to each other and the mean difference between the two vectors is around
few decimeters. The prisms, which have been used as the target point, have been mounted on
the steel rods or in some cases on tree trunks as shown in Figure 6.23. This creates a lever arm
between the point position and the land surface. Due to movements in the surface these rods and
tree trunks incline (as visible in Figure 6.23), which leads to a different point/prisms motion as
compared to motion of the surface. Furthermore, the changes in the surface caused by processes
like erosion may not show up in the observed movements of the points. From the on field expe-
rience, it appears that this may be the reason for the differences that are observed in the single
point based motion estimation and motion estimation from range flow which uses a local surface
patch.
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Figure 6.22: Motion vectors of the target points from reference data [131] and range flow
overlaid over 2010 DTM

Figure 6.23: Reference target points of the Surveying Office of Vorarlberg, Austria [131]

Pts. Range Flow Ref. Vector Difference Range Flow Ref. Vector Difference
10–11 (m) 10–11 (m) 10–11 (m) 11–12 (m) 11–12 (m) 11–12 (m)

#11 0.15, −0.16, 0.46 0.05, −0.32, −0.16 0.10, 0.17, 0.62 0.05, −0.38, −0.07 0.06, −0.35, −0.15 −0.01, −0.03, 0.08
#22 −0.20, −0.58, −0.01 2.41, −3.32, −0.21 −2.61, 2.74, 0.20 0.41, −0.84, −0.25 1.76, −2.56, 0.05 −1.34, 1.72, −0.31
#21 −0.14, −1.15, −0.35 0.31, −1.10, −0.27 −0.44, −0.05, −0.08 0.55, −0.69, −0.46 0.35, −1.20, −0.21 0.21, 0.50, −0.25
#10 −0.15, −0.11, −0.10 0.10, −0.49, −0.02 −0.26, 0.38, −0.08 0.28, −0.59, −0.14 0.11, −0.56, 0.00 0.17, −0.02, −0.14
#32 0.07, 0.07, 0.21 0.01, −0.03, −0.00 0.06, 0.10, 0.22 −0.01, −0.29, −0.13 0.01, −0.03, 0.00 −0.02, −0.26, −0.13
#20 0.22, −0.86, −0.32 0.38, −1.31, −0.32 −0.16, 0.46, 0.01 0.64, −1.26, −0.46 0.48, −1.41, −0.33 0.16, 0.15, −0.13
#31 0.23, 0.23, 0.14 −0.00, −0.03, −0.00 0.24, 0.26, 0.14 −0.08, −0.36, −0.07 −0.01, −0.03, 0.00 −0.07, −0.33, −0.08

Table 6.8: Comparison between the estimated motion (U,V,W) and the reference data.
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CHAPTER 7
Conclusions

This thesis presented new methods to estimate motion from the integration of range and intensity
data using image sequences from different types of 3D sensors. Common to these sensors is the
simultaneous, synchronous frame wise acquisition of gray-scale or color information and depth
information at video frame rates (typically 30 Hz). These sensors are available only since a few
years and neither their resolution nor their accuracy can be compared to professional, e.g. aerial
photogrammetric, cameras or laser scanners.

Motion of a camera and motion of independently moving objects are both discussed in the
thesis. At the core of the proposed methods is the optical flow and range flow constraints, which
defines the transformation of the pixels from one frame to another. Due to similarity of the two
constraints, they can be well integrated to solve an adjustment problem which simultaneously
utilizes the range and intensity information as available in the state of the art 3D sensors. The
range and optical flow constraints can be written for each pixel, thus dense pixel wise informa-
tion have been exploited.

In Chapter 4, first a method for relative orientation of images from a moving camera based
on integration of optical flow and range flow constraints was presented. Using dense pixel wise
information, image features like corners, edges and geometrical features like intersecting planes
are all implicitly taken into consideration, while estimating motion. Therefore, the algorithm is
able to automatically and robustly estimate motion of the camera in scenes with varying amount
of texture and varying geometry in presence of motion blur and illumination changes. This was
shown in the evaluation results on the sequences from RGB-D SLAM dataset and sequences
from ToF cameras. It was also shown, that if an independent moving object is present in the
data and the dominant motion is due to moving camera, the pixels belonging to the independent
moving object are correctly detected as outliers in the robust adjustment. Furthermore, the
coarse to fine strategy was applied for estimating relatively large motions. In the sequences
from RGB-D dataset there are rotations upto 50 deg/sec, which results in image motion of more
than 20 pixels in between consecutive frames. The results showed that these large motion were
accurately estimated using the coarse to fine strategy.
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In order to compute the trajectory of the camera the relative orientations are transformed to a
common coordinate system. But as the relative transformations do not utilize global information
the concatenation of relative orientations accumulates error due to the drift. To obtain a globally
consistent trajectory a method utilizing relative orientation constraints obtained from range flow
and optical flow in bundle adjustment is proposed. Bundle adjustment is performed using three
groups of observations: Point correspondences, depth observations of these corresponding points
and estimated relative orientations between consecutive frames. The SURF features are used for
finding the corresponding or tie points between images. The feature matching is performed
using the keyframe strategy, which helps to identify the same features points over a number
of images and also helps to detect loop closures. The unknowns in the bundle adjustment are
the camera orientations and the 3D positions of the feature points. As the bundle adjustment
is a non linear optimization, approximate values of the unknown are required for initialization
of bundle adjustment. The analysis showed that the relative orientations concatenated into a
common coordinate system provides a good initial estimates of the camera orientation.

The weighting of the three observations groups in the adjustment is an important task. It is
shown that the covariance estimates from the least squares solution of relative orientation are
orders of magnitude too optimistic. Using variance component analysis in bundle adjustment,
better estimates of the accuracy of the observations can be obtained. The results of variance
component estimation showed that the original accuracy estimates of the camera relative orien-
tation were highly optimistic and the revised accuracy estimates show the standard deviation of
camera translation parameters to be in mm range. It was also observed that the accuracy model
used for depth observations of the Kinect sensor also gives an optimistic accuracy estimate for
the evaluation sequences used in this thesis. The weighting of these individual observations is
essential for obtaining accurate estimates of the unknown motion and its accuracy estimates.

The quantitative results in the form of relative pose error and absolute trajectory error on the
RGB-D SLAM dataset showed that the accuracy of the relative orientation method and bundle
adjustment is comparable to the accuracy of the state of the art SLAM algorithm. In fact for sev-
eral sequences the proposed method achieves better accuracy than the RGB-D SLAM algorithm.
The proposed method provides estimates of the accuracy of the trajectory, which using the law
of error propagation can be brought forward to the points observed in object space, which can
be considered in modeling the scene.

In Chapter 5 3D motion estimation of independently moving objects using range and optical
flow was presented. Similar, to the method of relative orientation, range flow and optical flow
constraints for each pixel is used to estimate 3D motion. This method consisted of two steps,
in the first step only local information was used to estimate flow at each pixel, while in the
second step a global regularization was performed to obtain smooth dense motion vectors. One
advantage of the two steps approach is that it leads to a linear system of equations and the outliers
are removed by performing robust adjustment. The results showed that using this strategy, dense
3D flow vectors with sharp motion boundaries are achievable.

For future work, the weighting of the relative orientation terms in the bundle adjustment can
be further investigated. In this work, the translational and rotational parameters of relative ori-
entation were placed together in one group of observation equations. It can be investigated, how
the variance factors for translation and rotational groups behave if they are placed in separate
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groups. To achieve robustness against illumination changes, some optical flow algorithms use
gradient constancy assumption in addition to brightness constancy assumption. Therefore, the
use of gradient constancy assumption in relative orientation method can be investigated as well.
As the range cameras continue to develop, the resolution and the accuracy of these cameras is
expected to increase in the future. Due to increase in resolution, its essential to take into account
the computational aspects of the algorithm. Therefore, in the global regularization method and
in bundle adjustment and subsequently variance component analysis, special handling of large
amount of data needs to be implemented.

Overall, the thesis demonstrated the advantages of proper stochastic modeling of the obser-
vations and feasibility (and advantages) of simultaneous consideration of intensity and range
measurements.

75





Bibliography

[1] Y. Abdel-Aziz and H. M. Karara. Direct linear transformation from comparator coordi-
nates in close-range photogrammetry. In ASP Symposium on Close-Range Photogram-
metry, 1971.

[2] F. Ackermann. Digital image correlation: performance and potential application in pho-
togrammetry. The Photogrammetric Record, 11(64):429–439, 1984.

[3] G. Adiv. Inherent ambiguities in recovering 3-D motion and structure from a noisy flow
field. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(5):477–489,
1989.

[4] P. Agarwal, W. Burgard, and C. Stachniss. Helmert’s and bowie’s geodetic mapping
methods and their relation to graph-based slam. In Proceedings of the IEEE International
Conference on Robotics and Automation, 2014.

[5] D. Akca. Least squares 3D surface matching. PhD thesis, Eidgenössische Technische
Hochschule ETH Zürich, No. 17136, 2007.

[6] A. Amiri-Simkooei and S. Jazaeri. Weighted total least squares formulated by standard
least squares theory. Journal of Geodetic Science, 2(2):113–124, 2012.

[7] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-D point sets.
IEEE Transactions on Pattern Analysis and Machine Intelligence, (5):698–700, 1987.

[8] P. Baker, C. Fermuller, Y. Aloimonos, and R. Pless. A spherical eye from multiple cam-
eras (makes better models of the world). In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2001.

[9] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski. A database and eval-
uation methodology for optical flow. International Journal of Computer Vision, 92(1):1–
31, 2011.

[10] J. Barron, D. Fleet, and S. Beauchemin. Performance of optical flow techniques. Inter-
national Journal of Computer Vision, 12(1):43–77, 1994.

[11] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In Proceedings
of the European Conference on Computer Vision, pages 404–417. Springer, 2006.

77



[12] P. Besl and N. McKay. A method for registration of 3D shapes. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

[13] M. J. Black and P. Anandan. A framework for the robust estimation of optical flow. In
Proceedings of the International Conference on Computer Vision, pages 231–236, 1993.

[14] G. Blaha. Inner adjustment constraints with emphasis on range observations, depart.
Technical Report No. 148, Department Of Geodetic Science, Ohio State University, 1971.

[15] M. Bleyer and M. Gelautz. Graph-cut-based stereo matching using image segmentation
with symmetrical treatment of occlusions. Signal Processing: Image Communication,
22(2):127–143, 2007.

[16] N. Brosch, A. Hosni, C. Rhemann, and M. Gelautz. Spatio-temporally coherent inter-
active video object segmentation via efficient filtering. In Proceedings of the Joint 34th
DAGM and 36th OAGM Symposium, pages 418–427, 2012.

[17] N. Brosch, C. Rhemann, and M. Gelautz. Segmentation-based depth propagation in
videos. In Proceedings of the ÖAGM/AAPR Workshop, volume 2011, pages 1–8, 2011.

[18] D. C. Brown. The bundle adjustment—progress and prospects. International Archives
Photogrammetry, 21(3):1–1, 1976.

[19] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation
based on a theory for warping. In Proceedings of the European Conference on Computer
Vision, pages 25–36, 2004.

[20] T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational
motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(3):500–513, 2011.

[21] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnorr. Variational optical
flow computation in real time. IEEE Transactions on Image Processing, 14(5):608–615,
2005.

[22] A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: Combin-
ing local and global optic flow methods. International Journal of Computer Vision,
61(3):211–231, 2005.

[23] B. Büttgen and P. Seitz. Robust optical Time-of-Flight range imaging based on smart
pixel structures. IEEE Transactions on Circuits and Systems, 55(6):1512–1525, 2008.

[24] Y. Chen and G. Medioni. Object modeling by registration of multiple range images. In
Proceedings - IEEE International Conference on Robotics and Automation, volume 3,
pages 2724–2729, 1991.

[25] Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from
nearest neighbor fields. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2443–2450, 2013.

78



[26] J. Chow and D. Lichti. Photogrammetric bundle adjustment with self-calibration of the
primesense 3D camera technology: Microsoft kinect. IEEE Access, 1:465–474, 2013.

[27] F. Coleca, T. Martinetz, and E. Barth. Gesture interfaces with depth sensors. In Time-
of-Flight and Depth Imaging. Sensors, Algorithms, and Applications, pages 207–227.
Springer, 2013.

[28] M. Cramer, D. Stallmann, and N. Haala. Direct georeferencing using gps/inertial exterior
orientations for photogrammetric applications. International Archives of Photogrammetry
and Remote Sensing, 33(B3/1; PART 3):198–205, 2000.

[29] K. Dannilidis and H.-H. Nagel. The coupling of rotation and translation in motion esti-
mation of planar surfaces. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 188–193. IEEE, 1993.

[30] M. Davidovic, J. Seiter, M. Hofbauer, W. Gaberl, and H. Zimmermann. A background
light resistant tof range finder with integrated pin photodiode in 0.35um cmos. In Pro-
ceedings SPIE 8791, Videometrics, Range Imaging, and Applications XII; and Automated
Visual Inspection, pages 87910R–87910R–6, 2013.

[31] A. J. Davison. Real-time simultaneous localisation and mapping with a single camera.
In Proceedings of the IEEE International Conference on Computer Vision, pages 1403–
1410. IEEE, 2003.

[32] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. MonoSLAM: Real-time sin-
gle camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(6):1052–1067, 2007.

[33] B. Drayton, D. Carnegie, and A. Dorrington. Variable frame time imaging for indirect
time of flight range imaging cameras. In Proceedings of the IEEE International Confer-
ence on Instrumentation and Measurement Technology, pages 609–613, 2013.

[34] P. Drexel and M. Seebacher. Einmal ist keinmal – die Anwendung von Luftbild-
/Laserscanning-/Geodatenzeitreihen in der Vorarlberger Landesverwaltung. In K. Hanke
and T. Weinold, editors, 17. Internationale Geodätische Woche Obergurgl, pages 50–55,
Berlin, Offenbach, 2013. Wichmann Verlag.

[35] D. Droeschel, S. May, D. Holz, P. Ploeger, and S. Behnke. Robust ego-motion estimation
with tof cameras. In European Conference on Mobile Robots, 2009.

[36] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-D rigid body transformations: a
comparison of four major algorithms. Machine Vision and Applications, 9(5-6):272–290,
1997.

[37] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An evaluation
of the RGB-D SLAM system. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1691–1696, 2012.

79



[38] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3-D mapping with an RGB-D
camera. IEEE Transactions on Robotics, 30(1):177–187, Feb 2014.

[39] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard. Real-time 3D visual SLAM
with a hand-held RGB-D camera. In Proceedings of the RGB-D Workshop on 3D Percep-
tion in Robotics at the European Robotics Forum, 2011.

[40] C. Engels, H. Stewénius, and D. Nistér. Bundle adjustment rules. Photogrammetric
Computer Vision, 2, 2006.

[41] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the
ACM, 24(6):381–395, 1981.

[42] W. Förstner. On the geometric precision of digital correlation. International Archives
Photogrammetry & Remote Sensing, 24(3):176–189, 1982.

[43] W. Förstner and E. Gülch. A fast operator for detection and precise location of distinct
points, corners and centres of circular features. In Proceedings of the ISPRS Intercom-
mission Conference on Fast Processing of Photogrammetric Data, pages 281–305, 1987.

[44] D. Fritsch. Photogrammetry as a tool for detecting recent crustal movements. Tectono-
physics, 130(1):407–420, 1986.

[45] S. Fuchs. Multipath interference compensation in Time-of-Flight camera images. In
Proceedings of the International Conference on Pattern Recognition, pages 3583–3586,
2010.

[46] G. V. G. Sithole. Experimental comparison of filter algorithms for bare-earth extraction
from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote
Sensing, 59:85–101, 2004.

[47] C. Garbe, H. Spies, and B. Jähne. Mixed OLS-TLS for the estimation of dynamic pro-
cesses with a linear source term. In L. Gool, editor, Pattern Recognition, volume 2449 of
Lecture Notes in Computer Science, pages 463–471. Springer Berlin Heidelberg, 2002.

[48] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the KITTI
vision benchmark suite. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3354–3361, 2012.

[49] S. Ghuffar, N. Brosch, N. Pfeifer, and M. Gelautz. Motion segmentation in videos from
time of flight cameras. In Proceedings of the International Conference on Systems, Sig-
nals and Image Processing, pages 328–332, 2012.

[50] S. Ghuffar, N. Brosch, N. Pfeifer, and M. Gelautz. Motion estimation and segmentation
in depth and intensity videos. Integrated Computer-Aided Engineering, 21(3):203–218,
2014.

80



[51] S. Ghuffar, C. Ressl, and N. Pfeifer. Relative orientation of videos from range imaging
cameras. In Proceedings of the SPIE 8791, Videometrics, Range Imaging, and Applica-
tions XII; and Automated Visual Inspection, page 879114, 2013.

[52] S. Ghuffar, B. Székely, A. Roncat, and N. Pfeifer. Landslide displacement monitoring
using 3D range flow on airborne and terrestrial lidar data. Remote Sensing, 5(6):2720–
2745, 2013.

[53] G. H. Golub and R. J. Plemmons. Large-scale geodetic least-squares adjustment by dis-
section and orthogonal decomposition. Linear Algebra and Its Applications, 34:3–28,
1980.

[54] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU Press, 2012.

[55] H. Gonzalez-Jorge, B. Riveiro, E. Vazquez-Fernandez, J. Martínez-Sánchez, and P. Arias.
Metrological evaluation of microsoft kinect and asus xtion sensors. Measurement,
46(6):1800 – 1806, 2013.

[56] J. Gottfried, J. Fehr, and C. Garbe. Computing range flow from multi-modal Kinect data.
In Advances in Visual Computing, volume 6938 of Lecture Notes in Computer Science,
pages 758–767. Springer, 2011.

[57] S. Granshaw. Bundle adjustment methods in engineering photogrammetry. The Pho-
togrammetric Record, 10(56):181–207, 1980.

[58] G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg. Hierarchical op-
timization on manifolds for online 2D and 3D mapping. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 273–278, 2010.

[59] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree parameterization for effi-
ciently computing maximum likelihood maps using gradient descent. In Robotics: Sci-
ence and Systems, 2007.

[60] A. Gruen. Adaptive least squares correlation: a powerful image matching technique.
South African Journal of Photogrammetry, Remote Sensing and Cartography, 14(3):175–
187, 1985.

[61] A. Gruen. Development and status of image matching in photogrammetry. The Pho-
togrammetric Record, 27(137):36–57, 2012.

[62] A. W. Gruen and E. P. Baltsavias. Geometrically constrained multiphoto matching. Pho-
togrammetric Engineering and Remote Sensing, 54(5):633–641, 1988.

[63] A. Grün and D. Akca. Least squares 3D surface and curve matching. ISPRS Journal of
Photogrammetry and Remote Sensing, 59(3):151–174, 2005.

[64] M. Gsandtner and H. Kager. An out-of-core solution of normal equations providing also
accuracy and reliability data. In Proceedings of the XVI th ISPRS Congress, volume 27,
pages 52–59, 1988.

81



[65] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey Vision Con-
ference, pages 147–151, 1988.

[66] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, Cambridge, UK, 2001.

[67] M. Harville, A. Rahimi, T. Darrell, G. Gordon, and J. Woodfill. 3D pose tracking with
linear depth and brightness constraints. In Proceedings of the IEEE International Confer-
ence on Computer Vision, volume 1, pages 206–213, 1999.

[68] C. Heipke, K. Jacobsen, and H. Wegmann. Analysis of the results of the OEEPE test
‘integrated sensor orientation’. OEEPE Official Publication, 43:31–49, 2002.

[69] C. Heipke, K. Jacobsen, H. Wegmann, Ø. Andersen, and B. Nilsen. Integrated sensor
orientation-an OEEPE test. International Archives of Photogrammetry and Remote Sens-
ing, 33(B3/1; PART 3):373–380, 2000.

[70] F. R. Helmert. Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate:
mit Anwendungen auf die Geodäsie und die Theorie der Messinstrumente. BG Teubner,
1872.

[71] F. R. Helmert. Die mathematischen und physikalischen Theorieen der höheren Geodäsie.
Leipzig, BG Teubner, 1880-94., 1, 1880.

[72] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping: Using kinect-
style depth cameras for dense 3D modeling of indoor environments. The International
Journal of Robotics Research, 31(5):647–663, 2012.

[73] A. Heyden. A common framework for multiple view tensors. In Proceedings of the
European Conference on Computer Vision-Volume I, pages 3–19, 1998.

[74] M. J. Hinich and P. P. Talwar. A simple method for robust regression. Journal of the
American Statistical Association, 70(349):113–119, 1975.

[75] B. Horn. Robot Vision. MIT electrical engineering and computer science series. MIT
Press, 1986.

[76] B. Horn and J. Harris. Rigid body motion from range image sequences. Computer Vision,
Graphics and Image Processing: Image Understanding, 53(1):1–13, 1991.

[77] B. Horn and B. Schunck. Determining optical flow. Artificial Intelligence, 17(1):185–203,
1981.

[78] B. Horn and E. Weldon. Direct methods for recovering motion. International Journal of
Computer Vision, 2(1):51–76, 1988.

[79] B. K. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal
of the Opical Society of America A, 4:629–642, 1987.

82



[80] B. K. Horn. Determining optical flow: a retrospective. Artificial Intelligence, 59:81–87,
1993.

[81] B. K. P. Horn. Extended gaussian images. Proceedings of the IEEE, 72(12):1671–1686,
1984.

[82] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. Closed-form solution of absolute
orientation using orthonormal matrices. Journal of the Optical Society of Amercia A,
5(7):1127–1135, 1988.

[83] T. Huang, S. Blostein, and E. Margerum. Least-squares estimation of motion parameters
from 3-D point correspondences. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, volume 10, pages 112–115, 1986.

[84] P. J. Huber. Robust estimation of a location parameter. The Annals of Mathematical
Statistics, 35(1):73–101, 1964.

[85] M. Irani and P. Anandan. About direct methods. Vision Algorithms: Theory and Practice,
pages 267–277, 2000.

[86] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison, et al. Kinectfusion: real-time 3D reconstruction
and interaction using a moving depth camera. In Proceedings of the ACM Symposium on
User Interface Software and Technology, pages 559–568, 2011.

[87] M. Jaboyedoff, T. Oppikofer, A. Abellán, M. Derron, A. Loye, R. Metzger, and A. Pe-
drazzini. Use of LIDAR in landslide investigations: A review. Natural Hazards, 61(1):5–
28, 2012.

[88] A. E. Johnson and M. Hebert. Surface matching for object recognition in complex three-
dimensional scenes. Image and Vision Computing, 16(9-10):635–651, 1998.

[89] G. Jones. Accurate and computationally-inexpensive recovery of ego-motion using op-
tical flow and range flow with extended temporal support. In Proceedings of the British
Machine Vision Conference, 2013.

[90] G. Jones. Combining optical flow and range flow to recover RGBD sensor ego-motion.
In RGB-D: Advanced Reasoning with Depth Cameras, Berlin, Germany, 2013.

[91] G. A. Jones and G. Hunter. Spatio-temporal support for range flow based ego-motion
estimators. In Computer Analysis of Images and Patterns, pages 531–538. Springer, 2013.

[92] B. Jutzi. Investigations on ambiguity unwrapping of range images. International Archives
of Photogrammetry and Remote Sensing, 38,Part 3/W8:265–270, 2009.

[93] H. Kager, F. Rottensteiner, M. Kerschner, and P. Stadler. ORPHEUS 3.2.1 User Man-
ual. Institute of Photogrammetry and Remote Sensing, Vienna University of Technology,
Austria, 2002.

83



[94] W. Karel. Integrated range camera calibration using image sequences from hand-held
operation. In International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences 37 (Part B5), pages 945–952, Beijing, China, 2008. ISPRS.

[95] W. Karel, P. Dorninger, and N. Pfeifer. In situ determination of range camera quality
parameters by segmentation. In Proceedings of the International Conference on Optical
3-D Measurement Techniques, pages 109–116, 2007.

[96] W. Karel, S. Ghuffar, and N. Pfeifer. Quantifying the distortion of distance observations
caused by scattering in Time-of-Flight range cameras. International Archives of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, 38(Part 5), 2010.

[97] W. Karel, S. Ghuffar, and N. Pfeifer. Modelling and compensating internal light scattering
in time of flight range cameras. The Photogrammetric Record, 27(138):155–174, 2012.

[98] R. Kaufmann, M. Lehmann, M. Schweizer, M. Richter, P. Metzler, G. Lang, T. Oggier,
N. Blanc, P. Seitz, G. Gruener, et al. A Time-of-Flight line sensor: development and
application. In Proceedings SPIE, volume 5459, pages 192–199. International Society for
Optics and Photonics, 2004.

[99] K. Khoshelham and S. O. Elberink. Accuracy and resolution of kinect depth data for
indoor mapping applications. Sensors, 12(2):1437–1454, 2012.

[100] J.-S. Kim, M. Hwangbo, and T. Kanade. Motion estimation using multiple non-
overlapping cameras for small unmanned aerial vehicles. In IEEE International Con-
ference on Robotics and Automation, pages 3076–3081. IEEE, 2008.

[101] G. Klein and D. Murray. Parallel tracking and mapping for small ar workspaces. In IEEE
and ACM International Symposium on Mixed and Augmented Reality, pages 225–234,
2007.

[102] K.-R. Koch. Parameter Estimation and Hypothesis Testing in Linear Models. Springer,
1999.

[103] G. B. Kolata. Geodesy: dealing with an enormous computer task. Science,
200(4340):421–466, 1978.

[104] K. Konolige. Large-scale map-making. In Proceedings of the National Conference on
Artificial Intelligence, pages 457–463, 2004.

[105] K. Konolige and M. Agrawal. FrameSLAM: From bundle adjustment to real-time visual
mapping. IEEE Transactions on Robotics, 24(5):1066–1077, 2008.

[106] K. Konolige and P. Mihelich. Technical description of kinect calibration, 2011. accessed
on 4th Feb. 2014.

[107] K. Kraus. Photogrammetrie – Verfeinerte Methoden und Anwendungen, volume 2.
Dümmler-Verlag, Bonn, 3 edition, 1996.

84



[108] K. Kraus. Photogrammetry – Geometry from Images and Laser Scans. De Gruyter, 2
edition, 2007.

[109] K. Kraus and N. Pfeifer. Determination of terrain models in wooded areas with airborne
laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53:193–203,
1998.

[110] K. Kraus, C. Ressl, and A. Roncat. Least squares matching for airborne laser scanner data.
In 5th International Symposium Turkish-German Joint Geodetic Days, Berlin, March,
pages 29–31, 2006.

[111] R. Lange. 3D Time-of-Flight distance measurement with custom solid-state image sensors
in CMOS/CCD-technology. PhD thesis, University of Siegen, 2000.

[112] R. Lange, P. Seitz, A. Biber, and S. C. Lauxtermann. Demodulation pixels in ccd and
cmos technologies for Time-of-Flight ranging. In Electronic Imaging, pages 177–188.
International Society for Optics and Photonics, 2000.

[113] D. D. Lichti, C. Kim, and S. Jamtsho. An integrated bundle adjustment approach to
range camera geometric self-calibration. ISPRS Journal of Photogrammetry and Remote
Sensing, 65(4):360 – 368, 2010.

[114] D. D. Lichti, X. Qi, and T. Ahmed. Range camera self-calibration with scattering com-
pensation. ISPRS Journal of Photogrammetry and Remote Sensing, 74(0):101 – 109,
2012.

[115] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, 2004.

[116] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.
Autonomous Robots, 4(4):333–349, 1997.

[117] B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelli-
gence, pages 674–679, 1981.

[118] T. Luhmann, S. Robson, S. Kyle, and I. Harley. Close Range Photogrammetry: Princi-
ples, Methods and Applications. Whittles, 2006.

[119] Y. Ma, S. Soatto, J. Koseck, and S. S. Sastry. An Invitation to 3-D Vision: From Images
to Geometric Models. Springer, 2010.

[120] A. A. Markov. Wahrscheinlichkeitsrechnung. BG Teubner, 1912.

[121] D. Marr and S. Ullman. Directional selectivity and its use in early visual processing. Pro-
ceedings of the Royal Society of London. Series B. Biological Sciences, 211(1183):151–
180, 1981.

85



[122] D. Martinec and T. Pajdla. Robust rotation and translation estimation in multiview re-
construction. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8, 2007.

[123] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from maximally
stable extremal regions. Image and Vision Computing, 22(10):761–767, 2004.

[124] S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nüchter, and J. Hertzberg. Three-
dimensional mapping with Time-of-Flight cameras. Journal of Field Robotics, 26(11-
12):934–965, 2009.

[125] B. McCane, K. Novins, D. Crannitch, and B. Galvin. On benchmarking optical flow.
Computer Vision and Image Understanding, 84(1):126 – 143, 2001.

[126] J. McGlone, E. Mikhail, J. Bethel, and Mullen. Manual of Photogrammetry. American
Society for Photogrammetry and Remote Sensing, fifth edition, 2004.

[127] MESA Imaging AG. http://www.mesa-imaging.ch/. Accessed: 2014-02-27.

[128] E. M. Mikhail, J. S. Bethel, and J. C. McGlone. Introduction to Modern Photogrammetry,
volume 1. John Wiley & Sons Inc, 2001.

[129] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. Interna-
tional Journal of Computer Vision, 60(1):63–86, 2004.

[130] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–1630, 2005.

[131] M. Mittelberger. Vom Nutzen bewegter Festpunkte und verrückter Grenzen. In A. Grimm-
Pitzinger and T. Weinold, editors, 16. Internationale Geodätische Woche Obergurgl,
pages 85–89, Berlin, Offenbach, 2011. Wichmann Verlag.

[132] O. Monserrat and M. Crosetto. Deformation measurement using terrestrial laser scan-
ning data and least squares 3D surface matching. ISPRS Journal of Photogrammetry and
Remote Sensing, 63(1):142 – 154, 2008.

[133] F. Mufti and R. Mahony. Statistical analysis of signal measurement in Time-of-Flight
cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5):720–731, 2011.

[134] H.-H. Nagel. Optical flow estimation and the interaction between measurement errors at
adjacent pixel positions. International Journal of Computer Vision, 15(3):271–288, 1995.

[135] H.-H. Nagel and W. Enkelmann. An investigation of smoothness constraints for the es-
timation of displacement vector fields from image sequences. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-8(5):565–593, Sept 1986.

[136] F. Neitzel and S. Petrovic. Total least squares (TLS) im kontext der ausgleichung nach
kleinsten quadraten am beispiel der ausgleichenden geraden. Zeitschrift für Geodäsie,
Geoinformation und Landmanagement, 133:141–148, 2008.

86



[137] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux,
S. Hodges, D. Kim, and A. Fitzgibbon. Kinectfusion: Real-time dense surface mapping
and tracking. In IEEE international Symposium on Mixed and Augmented Reality, pages
127–136, 2011.

[138] L. Ng and V. Solo. Errors-in-variables modeling in optical flow estimation. IEEE Trans-
actions on Image Processing, 10(10):1528–1540, 2001.

[139] W. Niemeier. Ausgleichsrechnung, Statistische Auswertemethoden. de Gruyter Textbook,
2008.

[140] D. Nistér. An efficient solution to the five-point relative pose problem. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(6):756–770, 2004.

[141] D. Nistér. Preemptive ransac for live structure and motion estimation. Machine Vision
and Applications, 16(5):321–329, 2005.

[142] J. Oliensis. A linear solution for multiframe structure from motion. In Proceedings of the
Image Understanding Workshop, pages 1225–1231, 1994.

[143] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose graphs with poor
initial estimates. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 2262–2269, 2006.

[144] J. Otepka, S. Ghuffar, C. Waldhauser, R. Hochreiter, and N. Pfeifer. Georeferenced point
clouds: A survey of features and point cloud management. ISPRS International Journal
of Geo-Information, 2(4):1038–1065, 2013.

[145] M. Otte and H.-H. Nagel. Optical flow estimation: Advances and comparisons. In Pro-
ceedings of the European Conference on Computer Vision, pages 49–60, 1994.

[146] H. Papo and A. Perelmuter. Free net analysis in close-range photogrammetry. Photogram-
metric Engineering and Remote Sensing, 48(4):571–576, 1982.

[147] M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp, C. Engels,
D. Gallup, S.-J. Kim, P. Merrell, et al. Detailed real-time urban 3D reconstruction from
video. International Journal of Computer Vision, 78(2-3):143–167, 2008.

[148] K. Pulli. Multiview registration for large data sets. In Proceedings of the International
Conference on 3-D Digital Imaging and Modeling, pages 160–168, 1999.

[149] J. Quiroga, F. Devernay, and J. Crowley. Scene flow by tracking in intensity and depth
data. In IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages
50–57, 2012.

[150] F. Remondino and D. Stoppa. ToF Range-Imaging Cameras. Springer, 2012.

[151] C. Ressl. Geometry, Constraints and Computation of the Trifocal Tensor. PhD thesis,
Vienna University of Technology, 2003.

87



[152] C. Ressl, H. Kager, and G. Mandlburger. Quality Checking Of ALS Projects Using Statis-
tics Of Strip Differences. In International Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences 37 (Part B3b), pages 253–260, 2008.

[153] C. Ressl, N. Pfeifer, and G. Mandlburger. Appyling 3D affine transformation and least
squares matching for airborne laser scanning strips adjustment without GNSS/INS trajec-
tory data. In International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences 38 (Part 5/W12), Calgary, Canada, 2011.

[154] A. Roncat, G. Bergauer, and N. Pfeifer. B-spline deconvolution for differential target
cross-section determination in full-waveform laser scanning data. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 66(4):418–428, 2011.

[155] A. Roncat, C. Briese, J. Jansa, and N. Pfeifer. Radiometrically calibrated features of full-
waveform lidar point clouds based on statistical moments. IEEE Geoscience and Remote
Sensing Letters, 11(2):549–553, Feb 2014.

[156] A. Roncat, P. Dorninger, G. Molnár, B. Székely, A. Zámolyi, T. Melzer, N. Pfeifer, and
P. Drexel. Influences of the Acquisition Geometry of different Lidar Techniques in High-
Resolution Outlining of microtopographic Landforms. In Fachtagung Computerorien-
tierte Geologie – COGeo 2010, 2010.

[157] A. Roncat, S. Ghuffar, B. Székely, P. Dorninger, S. Rasztovits, M. Mittelberger, Z. Koma,
D. Krawczyk, and N. Pfeifer. A natural laboratory - terrestrial laser scanning and auxiliary
measurements for studying an active landslide. In Proceedings, 2013. invited; talk: 2nd
Joint International Symposium on Deformation Monitoring (JISDM), Nottingham, UK;
2013-09-09 – 2013-09-10.

[158] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algo-
rithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

[159] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Proceedings
of the International Conference on 3-D Digital Imaging and Modeling, pages 145–152,
2001.

[160] B. Schaffrin and A. Wieser. On weighted total least-squares adjustment for linear regres-
sion. Journal of Geodesy, 82(7):415–421, 2008.

[161] B. Schaffrin and A. Wieser. Total least-squares adjustment of condition equations. Studia
Geophysica et Geodaetica, 55(3):529–536, 2011.

[162] H. Scharr and H. Spies. Accurate optical flow in noisy image sequences using flow
adapted anisotropic diffusion. Signal Processing: Image Communication, 20(6):537–
553, 2005.

[163] M. Schmidt, M. Jehle, and B. Jahne. Range flow estimation based on photonic mixing
device data. International Journal of Intelligent Systems Technologies and Applications,
5(3):380–392, 2008.

88



[164] T. Schuchert, T. Aach, and H. Scharr. Range flow for varying illumination. In Proceedings
of the European Conference on Computer Vision: Part I, pages 509–522, 2008.

[165] A. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. In Robotics: Science and Systems,
volume 2, page 4, 2009.

[166] J. Seiter, M. Hofbauer, M. Davidovic, S. Schidl, and H. Zimmermann. Correction of
the temperature induced error of the illumination source in a Time-of-Flight distance
measurement setup. In IEEE Sensors Applications Symposium, pages 84–87, 2013.

[167] G. C. Sharp, S. W. Lee, and D. K. Wehe. Multiview registration of 3D scenes by min-
imizing error between coordinate frames. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(8):1037–1050, 2004.

[168] M. Sidi. Spacecraft Dynamics and Control: A Practical Engineering Approach. Cam-
bridge Aerospace Series. Cambridge University Press, 1997.

[169] E. Simoncelli. Design of multi-dimensional derivative filters. In Proceedings of the IEEE
International Conference Image Processing, volume 1, pages 790–794 vol.1, Nov 1994.

[170] A. Singh. An estimation-theoretic framework for image-flow computation. In Proceed-
ings, Third International Conference on Computer Vision., pages 168–177, 1990.

[171] J. Smisek, M. Jancosek, and T. Pajdla. 3D with kinect. In Consumer Depth Cameras for
Computer Vision, pages 3–25. Springer, 2013.

[172] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from internet photo collec-
tions. International Journal of Computer Vision, 80(2):189–210, 2008.

[173] K. Snow. Topics in Total Least-Squares Adjustment within the Errors-In-Variables Model:
Singular Cofactor Matrices and Prior Information. PhD thesis, Geodetic Science Pro-
gram, School of Earth Sciences, The Ohio State University, Columbus, 2012.

[174] H. Spies and J. Barron. Evaluating the range flow motion constraint. In Proceedings of
the International Conference on Pattern Recognition, volume 3, pages 517–520, 2002.

[175] H. Spies, H. Haußecker, B. Jähne, and J. Barron. Differential range flow estimation. In
Proceedings of the Annual Symposium of the German Association for Pattern Recognition
(DAGM), pages 309–316, 1999.

[176] H. Spies, B. Jahne, and J. Barron. Regularized range flow. In Proceedings of the European
Conference on Computer Vision: Part II, pages 785–799, 2000.

[177] H. Spies, B. Jahne, and J. Barron. Range flow estimation. Computer Vision and Image
Understanding, 85:209–231, 2002.

[178] H. Spies, B. Jahne, and J. L. Barron. Dense range flow from depth and intensity data.
In Proceedings of the International Conference on Pattern Recognition, volume 1, pages
131–134, 2000.

89



[179] G. Strang. Introduction to Linear Algebra. SIAM, 2003.

[180] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the
evaluation of RGB-D SLAM systems. In Proceedings of the International Conference on
Intelligent Robot Systems, Oct. 2012.

[181] P. Sturm, W. Triggs, et al. A factorization based algorithm for multi-image projective
structure and motion. In Proceedings of the European Conference on Computer Vision,
volume 1065, pages 709–720, 1996.

[182] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow estimation and their principles.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2432–2439, 2010.

[183] D. Sun, E. B. Sudderth, and M. J. Black. Layered segmentation and optical flow estima-
tion over time. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1768–1775, 2012.

[184] R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

[185] G. Teza, A. Galgaro, N. Zaltron, and R. Genevois. Terrestrial laser scanner to detect
landslide displacement fields: A new approach. International Journal of Remote Sensing,
28(16):3425–3446, 2007.

[186] E. Thompson. A rational algebraic formulation of the problem of relative orientation. The
Photogrammetric Record, 3(14):152–157, 1959.

[187] S. Thrun and M. Montemerlo. The graph SLAM algorithm with applications to large-
scale mapping of urban structures. The International Journal of Robotics Research, 25(5-
6):403–429, 2006.

[188] V. Tofani, F. Raspini, F. Catani, and N. Casagli. Persistent scatterer interferometry (psi)
technique for landslide characterization and monitoring. Remote Sensing, 5(3):1045–
1065, 2013.

[189] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: a
factorization method. International Journal of Computer Vision, 9(2):137–154, 1992.

[190] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle adjustment—a
modern synthesis. In Vision Algorithms: Theory and Practice, pages 298–372. Springer,
2000.

[191] C.-J. Tsai, N. P. Galatsanos, and A. K. Katsaggelos. Optical flow estimation from noisy
data using differential techniques. In Proceedings of the IEEE Conference on Interna-
tional Acoustics, Speech, and Signal Processing, volume 6, pages 3393–3396, 1999.

[192] T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: A survey. Foundation
and Trends in Computer Graphics and Vision, 3(3):177–280, July 2008.

90



[193] S. Ullman. The interpretation of structure from motion. Proceedings of the Royal Society
of London. Series B. Biological Sciences, 203(1153):405–426, 1979.

[194] S. Van Huffel and J. J. Vandewalle. The Total Least Squares Problem : Computational
Aspects and Analysis. Society for Industrial and Applied Mathematics, Philadelphia,
1991.

[195] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade. Three-dimensional scene flow.
In Proceedings of the IEEE International Conference on Computer Vision, volume 2,
pages 722–729, 1999.

[196] C. Vogel, S. Roth, and K. Schindler. An evaluation of data costs for optical flow. In
J. Weickert, M. Hein, and B. Schiele, editors, Pattern Recognition, volume 8142 of Lec-
ture Notes in Computer Science, pages 343–353. Springer Berlin Heidelberg, 2013.

[197] W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka. Gaussian decomposition
and calibration of a novel small-footprint full-waveform digitising airborne laser scanner.
ISPRS Journal of Photogrammetry and Remote Sensing, 60(2):100–112, 2006.

[198] C. Waldhauser, R. Hochreiter, J. Otepka, N. Pfeifer, S. Ghuffar, K. Korzeniowska, and
G. Wagner. Automated classification of airborne laser scanning point clouds. In S. Koziel,
L. Leifsson, and X.-S. Yang, editors, Solving Computationally Extensive Engineering
Problems: Methods and Applications. Springer, 2014.

[199] M. W. Walker, L. Shao, and R. A. Volz. Estimating 3-D location parameters using dual
number quaternions. CVGIP: Image Understanding, 54(3):358–367, 1991.

[200] S. Wang, V. Markandey, and A. Reid. Total least squares fitting spatiotemporal derivatives
to smooth optical flow fields. In Proceedings SPIE, volume 1698, pages 42–55, 1992.

[201] A. Waxman, J. Wu, and F. Bergholm. Convected activation profiles and the measurement
of visual motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 717–723, 1988.

[202] J. Weber and J. Malik. Robust computation of optical flow in a multi-scale differential
framework. International Journal of Computer Vision, 14(1):67–81, 1995.

[203] A. Wedel, T. Brox, T. Vaudrey, C. Rabe, U. Franke, and D. Cremers. Stereoscopic scene
flow computation for 3D motion understanding. International Journal of Computer Vi-
sion, 95(1):29–51, 2011.

[204] A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for
tv-l 1 optical flow. In Statistical and Geometrical Approaches to Visual Motion Analysis,
pages 23–45. Springer, 2009.

[205] T. Weise, B. Leibe, and L. Van Gool. Accurate and robust registration for in-hand model-
ing. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2008.

91



[206] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic
huber-l1 optical flow. In Proceedings of the British Machine Vision Conference, vol-
ume 34, pages 1–11, 2009.

[207] L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34(9):1744–1757, 2012.

[208] M. Yamamoto, P. Boulanger, J. Beraldin, and M. Rioux. Direct estimation of range flow
on deformable shape from a video rate range camera. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(1):82–89, 1993.

[209] N. Yastikli and K. Jacobsen. Direct sensor orientation for large scale mapping—potential,
problems, solutions. The Photogrammetric Record, 20(111):274–284, 2005.

[210] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime tv-l 1 optical
flow. In Pattern Recognition, pages 214–223. Springer, 2007.

[211] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces. In-
ternational Journal of Computer Vision, 13(2):119–152, 1994.

92


	Introduction
	Motivation and Objectives
	Overview
	Contributions

	Theory and Related Work
	Camera Orientation and Multiple View Geometry
	Point Cloud Registration
	Flow Algorithms
	Fusion of Range and Intensity Data

	Range Measuring Sensors
	Time of Flight Cameras
	Active Triangulation Cameras
	Laser Scanning

	Relative Orientation and Bundle Adjustment
	Relative Orientation using Optical Flow and Range Flow
	Bundle Adjustment with Relative Orientation Constraints

	Motion of Independently Moving Objects
	Local Motion Estimation
	Estimation Models for Optical Flow and Range Flow
	Global Regularization

	Experiments
	Camera Motion
	Motion of Independently Moving Objects
	Motion Estimation of a Landslide

	Conclusions
	Bibliography

