
DIPLOMARBEIT

Various Optimization Criteria for a Two-Dimensional
Stochastic Control Problem

Ausgeführt am Institut für

Wirtschaftsmathematik
der Technischen Universität Wien

unter der Anleitung von

Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Peter Grandits

durch

Magda-Denise Mirescu, B.Sc.

Wien, 2014
(Unterschrift)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Încheiere
Stinsă liniştirea noastră (şi aleasă),
Isarlâk încinsă, Isarlâk mireasă!
Dovediţii, mie, doisprezece turci
Între poleite pietre să mi-i culci:

Inima - raiaua, osul feţii spân,
Ţeasta, nervii torşi în barbă de stăpân,
Clatină-i la Ciprul Negru, în albeaţă
De sonoră vale într-o dimineaţă!

Vis al Dreptei Simple! Poate, geometria
Săbiilor trase la Alexandria,
Libere, sub ochiul de senin oţel,
În neclătinatul idol El Gahel.

Inegală creastă, suliţată cegă,
Lame limpezi duse-n ţara lui norvegă!
Răcoriţi ca scuţii zonele de aer,
Răsfiraţi cetatea norilor în caier,

Eu, sub piatra turcă, luat de Isarlâk,
La o albă apă intru - bâldâbâc.
Fie să-mi clipească vecinice, abstracte,
Din culoarea minţii, ca din prea vechi acte.
Eptagon cu vârfuri stelelor la fel.
Şapte semne, puse ciclic:

Dr. Ion Barbu, Romanian poet and mathematician

Statutory Declaration

I hereby declare on my honor to have written the present thesis independently, solely with
the support of the listed literature references and to have submitted its content to no other
examination authority.

(place, date) (signature)

Abstract

Stochastic control theory deals with the behaviour of dynamical systems that are subject to
randomness. This thesis presents and meticulously analyzes a two-dimensional model with
two independent Brownian motions assumed to describe the conduct of two distinct compa-
nies in a market as depicted in Aldous (2000) and McKean and Shepp (2006). To influence
their trajectories one can choose between three different policies: one can either push the
bottom or the top company by adding the unit of drift at one’s disposal to one of them or one
can divide that unit of drift randomly amongst them.

It is shown that the optimal control strategy depends on the optimization criterion which
can be to either maximize the probability that both companies survive or to maximize the
expected number of companies that remain solvent. To that purpose both numerical approx-
imations and Monte Carlo simulations are conducted.

Keywords: stochastic control theory, dynamic optimization, Brownian motion, partial differential
equations, stochastic differential equations, finite difference method, Monte Carlo methods

vii

Acknowledgements

Acknowledgements (Part 1)

“What is a teacher? I’ll tell you: it isn’t someone who teaches something, but
someone who inspires the student to give of her best in order to discover what
she already knows.

Paulo Coelho - The Witch of Portobello ”
From a professional point of view, I wish to thank primarily Ao. Univ. Prof. Dipl.-Ing. Dr.
techn. Peter Grandits for presenting me with an interesting topic for my master’s thesis and
for his guidance throughout the entire process having this paper as a result.

Secondly, but of no less importance, I want to give special thanks to all the professors whose
lectures I attended and in whose seminars I took part. I learned a lot from each and every
one of you.

Thank you all for helping me become the mathematician that I am today!

ix

Acknowledgements (Part 2)

“The three great essentials to achieve anything worthwhile are, first, hard work;
second, stick-to-itiveness and third, common sense.

Thomas A. Edison ”
It has been a long journey, during which a lot has happened and changed in my life. However,
some people always stood by my side and offered me their unconditional support whenever
I needed it.

I want to thank these people, who - I am sure - know very well who I am referring to, for
celebrating with me at my best and for getting me out of the darkest holes at my worst. I
appreciate every second of their time that they chose to invest in me and bow to them with
perpetual gratitude.

Thank you!

Contents

Abstract vii

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Basics of Stochastic Analysis 3
2.1 Stochastic Processes . 3
2.2 Brownian Motion . 5
2.3 Martingales . 9
2.4 Itô Calculus . 10
2.5 Stochastic Differential Equations . 13

3 Introduction to Stochastic Control Theory 15
3.1 Introduction . 15
3.2 Controlled Diffusion Processes . 16

3.2.1 The Finite Horizon Problem . 17
3.2.2 The Infinite Horizon Problem . 18

3.3 Dynamic Programming Principle . 18
3.4 Hamilton-Jacobi-Bellman Equation . 19

3.4.1 Derivation of the Hamilton-Jacobi-Bellman Equation 19
3.5 Verification Theorem . 21

4 Examples in Financial and Actuarial Mathematics 25
4.1 Merton’s Problem of Portfolio Allocation . 25
4.2 Minimizing Ruin Probabilities in Insurance Business 28

5 A Theoretical Insight in Some Relevant Methodology 33
5.1 Numerical Approximation . 33

5.1.1 Taylor’s Formula . 33
5.1.2 Finite Difference Method . 34

5.2 Monte Carlo Methods . 38
5.2.1 Euler Scheme . 39

6 A Stochastic Control Model 41
6.1 A Theoretical Overview . 41
6.2 A Specific Two-Dimensional Model . 47

6.2.1 The Real World Setting . 47
6.2.2 The Mathematics Behind the Setting . 47
6.2.3 The Difficulties of the Model . 48
6.2.4 A Guessed Optimal Solution . 49

7 Proposed Solutions 53
7.1 Numerical Approximation . 53
7.2 Monte Carlo Simulation . 57

8 Results 61
8.1 Numerical Approximation . 61

8.1.1 Democratic Policy . 62
8.1.2 Republican Policy . 63
8.1.3 Mixed Policy . 64
8.1.4 Convergence Optimization . 66

8.2 Monte Carlo Simulation . 68

9 Extensions to Higher Dimensionality 79
9.1 The Three-Dimensional Case . 79

10 Conclusions 81

Appendix A Source Codes General 83

Appendix B Source Code Numerical Approximation 87
B.1 Jacobi Iteration . 87
B.2 Successive over Relaxation . 92

Appendix C Source Code Monte Carlo Simulation 99
C.1 Two-Dimensional Case . 99
C.2 Three-Dimensional Case . 103

Bibliography 111

List of Figures

2.1 Sample paths of one-dimensional Brownian motion 6
2.2 Sample paths of two-dimensional Brownian motion 8

6.1 Graph of function f(θ) = (1− e−
2
θ2)θ . 43

6.2 Graph of function f(τ) = N
√

2
π τ
− 1

2 + 2
√
2√
π
τ

1
2 for N = 2 45

6.3 Surface plot of function V , for α = 0 . 50
6.4 3D plot of function V , for α = 0 . 51

7.1 Boundary conditions of the discretized model . 54

8.1 Vx1 − Vx2 for function V1 with α = 1
3 . 62

8.2 Vx1 − Vx2 for function V1 with α = 2
5 . 62

8.3 Vx1 − Vx2 for function V1 with α = 1
2 . 63

8.4 Vx2 − Vx1 for function V2 with α = 1
3 . 63

8.5 Vx2 − Vx1 for function V2 with α = 2
5 . 64

8.6 Vx2 − Vx1 for function V2 with α = 1
2 . 64

8.7 Optimal function V for α = 1
3 . 65

8.8 Optimal function V for α = 2
5 . 65

8.9 Optimal function V for α = 1
2 . 66

8.10 Objective function with x1 = 10−5,x2 = 2,σ1 = σ2 = 1, δ = 0, for α = 0 68
8.11 Objective function with x1 = 10−5,x2 = 2,σ1 = σ2 = 1, δ = 0, for α = 1

3 69
8.12 Objective function with x1 = 10−5,x2 = 2,σ1 = σ2 = 1, δ = 0, for α = 1

2 69
8.13 Excerpt from Figure 8.12 . 70
8.14 Objective function with x1 = 10−7,x2 = 10−10,σ1 = σ2 = 1, δ = 0, for α = 0 . . . 71
8.15 Objective function with x1 = 10−7,x2 = 10−10,σ1 = σ2 = 1, δ = 0, for α = 1

3 . . 72
8.16 Excerpt from Figure 8.15 . 72
8.17 Objective function with x1 = 10−7,x2 = 10−10,σ1 = σ2 = 1, δ = 0, for α = 1

2 . . 73
8.18 Objective function with x1 = 14,x2 = 14,σ1 = σ2 = 1, δ = 0, for α = 0 73
8.19 Objective function with x1 = 10−5,x2 = 2,σ1 = 0.004,σ2 = 0.8, δ = 0, for α = 0 . 74
8.20 Objective function with x1 = 10−5,x2 = 2,σ1 = 0.004,σ2 = 0.8, δ = 0, for α = 1

3 75
8.21 Objective function with x1 = 10−5,x2 = 2,σ1 = 0.004,σ2 = 0.8, δ = 0, for α = 1

2 76
8.22 Excerpt from Figure 8.21 . 76
8.23 Objective function with x1 = 10−5,x2 = 2,σ1 = σ2 = 1, δ = 10, for α = 0 77
8.24 Objective function with x1 = 10−5,x2 = 2,σ1 = σ2 = 1, δ = 10, for α = 1

3 77
8.25 Objective function with x1 = 10−5,x2 = 2,σ1 = σ2 = 1, δ = 10, for α = 1

2 78

9.1 Objective function with x1 = 10−1,x2 = 1,x3 = 2,σ1 = σ2 = σ3 = 1 80
9.2 Objective function with x1 = 10−1,x2 = 1,x3 = 2,σ1 = σ2 = σ3 = 1 80

10.1 Conclusion summary . 81

List of Tables

5.1 Finite Difference Approximations for Partial Derivatives 36

8.1 Number of iterations used to approximate V1, V2 and V 67
8.2 Number of times that a company and both companies survive in the initial

situation . 70

Chapter 1

Introduction

“The sciences do not try to explain, they hardly even try to interpret, they mainly
make models. By a model is meant a mathematical construct which, with the
addition of certain verbal interpretations, describes observed phenomena. The
justification of such a mathematical construct is solely and precisely that it is ex-
pected to work - that is, correctly describe phenomena from a reasonably wide
area. Furthermore, it must satisfy certain aesthetic criteria - that is, in relation to
how much it describes, it must be rather simple.

John von Neumann - Method in the Physical Sciences, 1955 ”
Applied mathematics is a special branch in the vast area of mathematical sciences that mainly
lays emphasis on the formulation, study, solving and interpretation of mathematical models. As
such, it can be viewed as a link between abstract mathematics and a multitude of fields like
engineering, medicine, business, finance etc.

Control theory analyzes the behaviour of dynamical systems reproduced by mathematical
models and submitted to control. When additionally subject to uncertainty, the usual control
theory receives a so-called stochastic component, hence the derivation of the more specific
discipline called stochastic control theory.

This thesis deals with a stochastic control model that represents the borderline between pol-
itics and economics as it evaluates two opposing political, economic and social systems: so-
cialism and capitalism. The difference between them is modelled mathematically through two
distinct optimization criteria, upon which the optimal control policy depends.

The current paper is structured as follows.

Chapter 1 provides a succinct introduction into stochastic control theory and modelling and
offers insight into the mathematical model that lies at the core of this thesis.

Chapter 2 presents fundamental notions in stochastic analysis that are later used in other
chapters. The reader is thus introduced to the meaning and properties of a stochastic process
and to those of a special, widely-used example of such a construct which is the Brownian
motion. Special attention is dedicated to probably the most important concept of stochastic
analysis: the Itô formula. Martingales and stochastic differential equations are also briefly

1

2 CHAPTER 1. INTRODUCTION

mentioned.

Chapter 3 introduces the reader to stochastic optimization by offering a skeleton of the basic
characteristics that define a stochastic optimization problem. These basic notions are then ex-
emplified on diffusion processes for both finite and infinite time horizons. The dynamic pro-
gramming principle (DPP) is stated and used to formally derive this chapter’s highlight, the
Hamilton-Jacobi-Bellman (HJB) equation. Last but not least, a tool for establishing whether a
solution to the HJB-equation is a value function is offered: the verification theorem.

In Chapter 4 examples for the application of stochastic control theory in financial and actu-
arial mathematics are given. It debuts classically with the already world-renowned Merton
model for portfolio allocation and continues with a lesser known model used to minimize
ruin probabilities in insurance business.

Chapter 5 portrays methods for numerically solving partial differential equations (PDEs) as
well as for simulating stochastic differential equations (SDEs). Worth mentioning in this con-
text is the finite difference method for approximating PDEs, whose resulting system of linear
equations is generally solved through iterative mechanisms such as Jacobi Iteration or Succes-
sive over Relaxation, but also Monte Carlo simulation for generating sample paths as given
by a SDE through the Euler Scheme.

This thesis’ underlying model is thoroughly described in Chapter 6. First, a theoretical
overview of a more general model, as originally formulated by David Aldous, is delivered.
Then, we restrict ourselves to a specific, two-dimensional model as formulated by Henry
McKean and Lawrence Shepp that, depending on its optimization criterion, may determine
which of the two systems, socialism or communism, is more advantageous.

The next chapter (Chapter 7) contains proposed solutions for the model presented in the pre-
vious chapter. It offers a detailed explanation of how the methods presented in Chapter 5
are applied on the model depicted in Chapter 6. It also analyzes each possible strategy and
illustrates their immediate consequences.

After much labour, the time has come to reap the fruits in Chapter 8, that contains the results
of the numerical approximations and the Monte Carlo simulations in some cases as tables but
mostly as graphics. Interpretations of the tables and figures are additionally given.

Chapter 9 extends the two-dimensional model to a three-dimensional one and briefly presents
its results.

The last chapter (Chapter 10) draws the obvious conclusions from the results produced in the
previous chapter and formally ends this thesis.

Appendices A, B and C contain the source codes for everything programmed for this paper
including the numerical approximations and Monte Carlo simulations.

Chapter 2

Basics of Stochastic Analysis

2.1 Stochastic Processes

A stochastic process, or more commonly referred to as a random process, is a term frequently
used in probability theory, where it describes a collection of random variables representing
the evolution of a system of aleatoric values over time.

As opposed to its counterpart, the deterministic process, which produces the same output
from a given initial condition, a stochastic process is characterized by indefiniteness in its
future evolution. In other words, even if the starting point is known, there is more than one
possibility the process can have as output, some more probable than others, implying the use
of probability distributions.

Such processes are encountered for example in finance (in stock price fluctuations), in medicine
(in EKGs, EEGs), in engineering (in audio and video signals) etc.

Definition 2.1.1 (Stochastic Process) [2, page 51]

Let (Ω,F ,P) be a probability space, T an index set and (E,B) a measurable set. An (E,B)-valued
stochastic process on (Ω,F ,P) is a family (Xt)t∈T of random variables Xt : (Ω,F)→ (E,B), for
t ∈ T.

In the above definition (E,B) represents the state space. For a fixed value t, the random
variable Xt depicts the state of the process at time t.

Moreover, the index set T stands for a time interval, that may either be finite T =
[
0,T

]
,

0 < T < ∞, or infinite T =
[
0,∞). The time parameter t that varies in T is allowed to be

either discrete or continuous.

Furthermore, the mapping X(.,ω) : t ∈ T→ Xt(w) ∈ E is called the trajectory of the process
that corresponds to the event ω, for each ω ∈ Ω.

3

4 CHAPTER 2. BASICS OF STOCHASTIC ANALYSIS

Definition 2.1.2 (Càd-làg Process) [1, page 1]

A stochastic process (Xt)t∈T is said to be càd-làg (resp. continuous) if for each ω ∈ Ω, the path
X(ω) is right-continuous and admits a left-limit (resp. is continuous).

As time elapses, one has more and more information since the indeterminacy on the events of
Ω becomes less and less uncertain. In stochastic analysis this aspect is referred to as filtration.

Definition 2.1.3 (Filtration) [1, page 2]

A filtration on (Ω,F ,P) is an increasing family F = (Ft)t∈T of σ-fields of F : Fs ⊂ Ft ⊂ F for all
0 ≤ s ≤ t in T.

Thus, Ft contains the information known at time t and Ft increases with the passing of time.

Hereafter, we assume a filtration F = (Ft)t∈T on (Ω,F ,P).

Definition 2.1.4 (Adapted Process) [1, page 2]

A process (Xt)t∈T is adapted (with respect to F) if for all t ∈ T, Xt is Ft-measurable.

Otherwise put, (Xt)t∈T is Ft-adapted if the value of Xt at time t only relies upon the infor-
mation contained in the stochastic process up to time t.

Definition 2.1.5 (Progressively Measurable Process) [1, page 2]

A process (Xt)t∈T is progressively measurable (with respect to F) if for any t ∈ T, the mapping
(s,ω)→ Xs(ω) is measurable on

[
0, t
]
×Ω equipped with the product σ-field B(

[
0, t
]
)⊗Ft.

In the next step, we want to know if the first arrival time of an event, denoted as τ (ω) occurred
before time t, given the information provided by the filtration Ft. Thus, one introduces the
notion of stopping time.

Definition 2.1.6 (Stopping Time) [1, page 3]

1. A random variable τ : Ω→
[
0,∞), i.e. a random time, is a stopping time (with respect to the

filtration F = (Ft)t∈T) if for all t ∈ T

{τ ≤ t} := {ω ∈ Ω : τ (ω) ≤ t} ∈ Ft. (2.1)

2. A stopping time τ is predictable if there exists a sequence of stopping times (τn)n≥1 such that
we have almost surely:

(a) lim
n→∞

τn = τ ;

(b) τn < τ ∀n on {τ > 0}.

We say that (τn)n≥1 announces τ .

2.2. BROWNIAN MOTION 5

Assuming a stochastic process (Xt)t∈T and a stopping time τ , we define the random variable
Xτ on {τ ∈ T} by

Xτ (ω) = Xτ (ω)(ω).

The next proposition provides important insight into stopping times.

Proposition 2.1.1 [1, page 4]

Let X be a càd-làg, adapted process, and Γ an open subset of Rd.

1. If the filtration F = (Ft)t∈T is right-continuous, i.e. if F+
t := ∩s≥tFs = Ft, ∀t ∈ T, then the

hitting time of Γ defined by

σΓ = inf{t ≥ 0 : Xt ∈ Γ}

(with the convention inf ∅ =∞) is a stopping time.

2. If X is continuous, then the exit time of Γ defined by

τΓ = inf{t ≥ 0 : Xt /∈ Γ}

is a predictable stopping time.

Proof:

For a proof the interested reader is referred to [33, page 43f]. �

2.2 Brownian Motion

“The grains of pollen were particles. . . of a figure between cylindrical and oblong,
perhaps slightly flattened. . . While examining the form of these particles immersed
in water, I observed many of them very evidently in motion; their motion consist-
ing not only of a change in place in the fluid manifested by alterations in their
relative positions. . . In a few instances the particle was seen to turn on its longer
axis. These motions were such as to satisfy me, after frequently repeated obser-
vations, that they arose neither from currents in the fluid, nor from its gradual
evaporation, but belonged to the particle itself.

Robert Brown - Miscellaneous Botanical Works Vol. I, 1866 ”
After introducing the notion of a stochastic process, the most natural thing that follows is to
produce a basic example of such a construct and that is the Brownian motion, also referred to
as a Wiener process, since Norbert Wiener (1894-1964) was the first (around 1923) to develop
a rigorous mathematical foundation that describes it.

6 CHAPTER 2. BASICS OF STOCHASTIC ANALYSIS

The Brownian motion is one of the most important continuous stochastic processes because
of its interesting mathematical properties and its broad application range: from biology to
medicine, physics, engineering, and finance. In financial mathematics for example, Brownian
motion is very often used for modelling security prices.

Definition 2.2.1 (Standard one-dimensional Brownian Motion) [4, page 1]

A standard one-dimensional Brownian motion is a continuous-time stochastic process (Wt)t∈T

valued in R with the following properties:

1. W0 = 0 almost surely;

2. the sample trajectories t→Wt are (almost surely) continuous;

3. for any finite sequence of times t0 < t1 < . . . < tn, the increments

Wt1 −Wt0 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1 (2.2)

are independent random variables;

4. for any given times 0 ≤ s < t < ∞, Wt −Ws has the Gaussian distribution N (0, t− s) with
mean zero and variance t− s.

Figure 2.1: Sample paths of one-dimensional Brownian motion

2.2. BROWNIAN MOTION 7

For a proof for the existence of Brownian motion as a stochastic process (Wt)t∈R, satisfying
properties 1.-4., the interested reader is referred to Chapter 1 of [5].

Figure 2.1 portrays three possible trajectories of standard one-dimensional Brownian motion.

Having defined the one-dimensional Brownian motion, the definition of a multi-dimensional
Brownian motion follows.

Definition 2.2.2 (Standard d-dimensional Brownian Motion) [3, page 44]

Consider a continuous process W = (Wt)t∈T, where Wt = (W 1
t , . . . ,W

d
t)t∈T is a d-dimensional

random vector for each t. Let Id be a d symmetric positive definite matrix. The process W is said to be
a d-dimensional standard Brownian motion valued in Rd with variance-covariance matrix Id if
the following conditions are satisfied:

1. W0 = 0 almost surely;

2. the sample trajectories t→Wt are (almost surely) continuous;

3. for any finite sequence of times t0 < t1 < . . . < tn, the increments

Wt1 −Wt0 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1 (2.3)

are independent random vectors;

4. for any given times 0 ≤ s < t < ∞, Wt −Ws follows a centred Gaussian distribution with
variance-covariance matrix (t− s)Id.

Figure 2.2 displays three possible paths for two-dimensional Brownian motion.

Henceforth, all mathematical notions and properties introduced will refer to d-dimensional
Brownian motion.

Definition 2.2.3 (Brownian motion with respect to a filtration) [1, page 5]

A vectorial (d-dimensional) Brownian motion on T with respect to a filtration F = (Ft)t∈T is a
continuous F-adapted process, valued in Rd, (Wt)t∈R = (W 1

t , . . . ,W
d
t)t∈T such that:

1. W0 = 0;

2. for all 0 ≤ s < t in T, the increment Wt −Ws is independent of Fs and follows a centred
Gaussian distribution with variance-covariance matrix (t− s)Id.

8 CHAPTER 2. BASICS OF STOCHASTIC ANALYSIS

Figure 2.2: Sample paths of two-dimensional Brownian motion

As mentioned before, a Brownian motion has some very interesting mathematical properties,
stated in the following

Proposition 2.2.1 [1, page 5]

Let (Wt)t∈T be a Brownian motion with respect to (Ft)t∈T.

1. Symmetry: (−Wt)t∈T is also a Brownian motion;

2. Scaling: for all λ > 0, the process
(
(1/λ)Wλ2t

)
t∈T

is also a Brownian motion;

3. Invariance by translation: for all s > 0, the process (Wt+s−Ws)t∈T is a standard Brownian
motion independent of Fs.

Proof:

For a proof the interested reader is referred to [33, page 20f]. �

Definition 2.2.4 (Brownian Motion with drift) [6, page 153]

A process (Xt), t ≥ 0 is called a (µ,σ2) Brownian motion with drift µ and volatility σ if it can be
written in the form

Xt = X0 + µt+ σWt,

2.3. MARTINGALES 9

where Wt is a standard Brownian motion.

A variation of the Brownian motion with drift that only allows positive values is the next in
line to be defined geometric Brownian motion.

Definition 2.2.5 (Geometric Brownian Motion) [21, page 85]

A process Yt, t ≥ 0 with values in (0,+∞) is called a (µ,σ2) geometric Brownian motion if the
process Xt = log(Yt) is a (µ− σ2

2 ,σ2) Brownian motion with drift.

We now want to provide a definition for a stopping time for Brownian motion.

Definition 2.2.6 (Stopping time for a Brownian motion) [8, page 7]

For a Brownian motion in Rd and a ∈ Rd, define τa = inf{t ≥ 0 : W (t) = a} as the first time Wt

hits a.

Bearing this in mind, in the next step we want to know what the hitting probability is in a
Brownian motion process, i.e. the probability that such a process hits a given value for the
first time. Such probabilities are utterly important in various problems in gambling and the
theory of financial derivatives.

For a Brownian motion process with drift parameter µ and variance parameter σ2, the follow-
ing holds:

P(process hits c before −d) = 1− e−2dµ/σ2

1− e−2(d+c)µ/σ2 , (2.4)

for any c, d > 0, where if µ = 0, the probability should be read as d
d+c .

Finally, it can be easily verified that

P(process ever hits −d) = e−2dµ/σ2
, for any d > 0, (2.5)

when the Brownian motion process has a positive drift parameter µ, and that

P(process ever hits c) = e2cµ/σ2
, for any c > 0, (2.6)

when the process has a negative drift parameter µ. (see [9, page 190])

2.3 Martingales

Martingales play a fundamental role in the theory of stochastic processes and in stochastic
calculus because of their interesting and useful mathematical properties such as constant ex-
pectation, almost sure convergence etc.

A formal mathematical definition, whose main ingredient is the concept of conditional expec-
tation, follows.

10 CHAPTER 2. BASICS OF STOCHASTIC ANALYSIS

Definition 2.3.1 (Martingale) [10, page 183]

A stochastic process Xt (where time t ∈ T), adapted to a filtration F = (Ft)t∈T is a martingale if for
any t, Xt is integrable, that is, E

[
Xt

]
<∞ and for any t and s ∈ T with 0 ≤ s < t,

E
[
Xt|Fs

]
= Xs almost surely. (2.7)

Now that the formal definition of a martingale is stated, it is time to name an example of such
a mathematical construct. A typical one is the already known Brownian motion.

Definition 2.3.2 (Supermartingale / Submartingale) [10, page 183]

A stochastic process Xt, t ∈ T, adapted to a filtration F = (Ft)t∈T is a supermartingale (sub-
martingale) if it is integrable, that is, E

[
Xt

]
<∞ and for any t and s ∈ T with 0 ≤ s < t,

E
[
Xt|Fs

]
≤ Xs (E

[
Xt|Fs

]
≥ Xs) almost surely. (2.8)

If the process (Xt)t∈T is a supermartingale, then −(Xt)t∈T is a submartingale.

As previously stated, the mean of a martingale is constant in t, while the mean of a super-
martingale is non-increasing and the mean of a submartingale is non-decreasing in t.

Theorem 2.3.1 [10, page 184]

A supermartingale (Xt)t∈T, T =
[
0,T

]
is a martingale if and only if E

[
XT

]
= E

[
X0

]
.

Proof:

For a proof the interested reader is referred to [10, page 184]. �

Definition 2.3.3 (Local Martingale) [1, page 7]

Let X be a càd-làg adapted process. We say that X is a local martingale if there exists a sequence
of stopping times (τn)n≥1 such that lim

n→∞
τn = ∞ almost surely and the stopped process Xτn is a

martingale for all n.

2.4 Itô Calculus

The quintessence of stochastic analysis is represented by the so-called Itô calculus, which
gives it a whole new meaning, entirely different from that of classical real-valued analysis.
However, the world-renowned Itô formula is generally known as the stochastic calculus coun-
terpart of the chain rule.

First, a class of functions upon which later definitions and terms depend is being introduced.

2.4. ITÔ CALCULUS 11

Definition 2.4.1 [11, page 25]

Let V = V(S,T) be the class of functions

f(t,ω) :
[
0,∞)×Ω→ R (2.9)

such that

1. (t,ω)→ f(t,ω) is B ×F-measurable, where B denotes the Borel σ-algebra on
[
0,∞);

2. f(t,ω) is Ft-adapted;

3. E
[∫ T

S f(t,ω)2dt
]
<∞.

We are now able to define the Itô integral.

Definition 2.4.2 (One-dimensional Itô Integral) [11, page 29]

Let f ∈ V = V(S,T). Then the Itô integral of f (from S to T) is defined by∫ T

S
f(t,ω)dWt(ω) = lim

n→∞

∫ T

S
φn(t,ω)dWt(ω) (limit in L2(P)), (2.10)

where Wt is a standard Brownian motion and (φn)n∈N is a sequence of elementary functions such that

E

[∫ T

S
(f(t,ω)− φn(t,ω))2dt

]
→ 0 as n→∞. (2.11)

V is just one class of integrands f for which the Itô integral can be defined. In the following,
a larger class of such functions is given.

Definition 2.4.3 [11, page 34f]

W =W(S,T) denotes the class of processes f(t,ω) ∈ R satisfying:

1. (t,ω)→ f(t,ω) is B ×F-measurable, where B denotes the Borel σ-algebra on
[
0,∞);

2. There exists an increasing family of σ-algebras (Ft)t≥0 such that

(a) Wt is a martingale with respect to Ft and

(b) ft is Ft-adapted;

3. P
[∫ T

S f(s,ω)2ds <∞
]
= 1.

The time has come to define the notion of a one-dimensional Itô process.

12 CHAPTER 2. BASICS OF STOCHASTIC ANALYSIS

Definition 2.4.4 (One-dimensional Itô Process) [11, page 43f]

Let (Ω,F ,P) be a probability space and Wt a one-dimensional Brownian motion on (Ω,F ,P). A
one-dimensional Itô process (or stochastic integral) is a stochastic process Xt on (Ω,F ,P) of the
form

Xt = X0 +

∫ t

0
u(s,ω)ds+

∫ t

0
v(s,ω)dWs, (2.12)

where v ∈ W , so that

P

[∫ t

0
v(s,ω)2ds <∞,∀t ≥ 0

]
= 1. (2.13)

We also assume that u is Ft-adapted (see Definition 2.4.3) and

P

[∫ t

0
|u(s,ω)|ds <∞,∀t ≥ 0

]
= 1. (2.14)

An Itô process can also be written in the shorter, differential form

dXt = udt+ vdWt. (2.15)

We are now able to state the famous Itô formula.

Theorem 2.4.1 (The one-dimensional Itô Formula) [11, page 44]

Let Xt be an Itô process given by

dXt = udt+ vdWt.

Let f(t,x) ∈ C2(
[
0,∞) × R) (i.e. f is twice continuously differentiable on

[
0,∞) × R). Then

Yt = f(t,Xt) is again an Itô process, and

dYt =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt) · (dXt)

2, (2.16)

where (dXt)2 = (dXt) · (dXt) is computed according to the rules

dt · dt = dt · dWt = dWt · dt = 0, dWt · dWt = dt.

Proof:

For a proof the interested reader is referred to [11, page 46ff]. �

Not only one-dimensional Itô processes and their corresponding Itô formula are essential in
stochastic analysis, but also their multi-dimensional extension.

Definition 2.4.5 (Multi-dimensional Itô Process) [11, page 48]

Let W (t,ω) = (W1(t,ω), . . . ,Wm(t,ω)) denote m-dimensional Brownian motion. If each of the

2.5. STOCHASTIC DIFFERENTIAL EQUATIONS 13

processes ui(t,ω) and vij(t,ω) satisfies the conditions given in Definition 2.4.4 (1 ≤ i ≤ n, 1 ≤
j ≤ m), then we can form the following n Itô processes

dX1 = u1dt+ v11dW1 + . . .+ v1mdWm
...

dXn = undt+ vn1dW1 + . . .+ vnmdWm.

(2.17)

Or, in matrix notation simply
dX(t) = udt+ vdW (t), (2.18)

where

X(t) =

X1(t)
...

Xn(t)

 ,u =

u1...
un

 , v =

v11 . . . v1m
...

...
vn1 . . . vnm

 , dW (t) =

dW1(t)
...

dWm(t)

 . (2.19)

Such a process X(t) is called a n-dimensional Itô process (or just an Itô process).

Theorem 2.4.2 (The General Itô Formula) [11, page 48f]

Let

dX(t) = udt+ vdW (t)

be a n-dimensional Itô process as above. Let f(t,x) = (f1(t,x), . . . , fp(t,x)) be a C2 map from[
0,∞)×Rn into Rp. Then the process Y (t,ω) = f(t,Xt) is again an Itô process, whose component

number k, Yk, is given by

dYk =
∂fk
∂t

(t,X)dt+
∑
i

∂fk
∂xi

(t,X)dXi +
1

2

∑
i,j

∂2fk
∂xi∂xj

(t,X)dXidXj , (2.20)

where dWi · dWj = δij · dt, dWi · dt = dt · dWi = 0.

Here δij represents Kronecker’s delta, for which holds δij = 1, for i = j and δij = 0, for i 6= j.

The proof for the multi-dimensional Itô formula is quite similar to the one-dimensional ver-
sion. The interested reader is referred to [11] for a proof and a thorough depiction of Itô
calculus.

2.5 Stochastic Differential Equations

First, we want to make a list of assumptions (see [12]), that we will need later on in this
section. Let:

• (Ω,F ,P) be a probability space;

• (Ft)t≥0 be a filtration on that probability space;

14 CHAPTER 2. BASICS OF STOCHASTIC ANALYSIS

• W (t) = (W1(t), . . . ,Wm(t)), t ≥ 0 be an m-dimensional Brownian motion defined on
the probability space;

• 0 ≤ t0 < T <∞;

• X0 = Xt0 be a Ft0-measurable Rd-valued random variable such that E
[
|X0|2

]
<∞;

• f : Rd ×
[
t0,T

]
→ Rd and g : Rd ×

[
t0,T

]
→ Rd×m be Borel measurable.

Second, we consider the d-dimensional stochastic differential equation (SDE) of Itô type:

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) on
[
t0,T

]
, (2.21)

having X(t0) = X0 as initial condition, which is equivalent to the following stochastic integral
equation:

X(t) = X0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dW (s) on
[
t0,T

]
, (2.22)

Seeing these equations, any curious reader would ask himself what is the solution, how does
it look like and what properties does it have.

Definition 2.5.1 (Solution to a Stochastic Differential Equation) [12, page 48]

An Rd-valued process (Xt)t0≤t≤T is called a solution of the stochastic differential equation
(2.21) if it has the following properties:

1. (X(t))t0≤t≤T is continuous and Ft-adapted;

2. (f(X(t), t)) ∈ L1(
[
t0,T

]
;Rd);

3. (g(X(t), t)) ∈ L2(
[
t0,T

]
;Rd×m);

4. equation (2.22) holds true for every t ∈
[
t0,T

]
with probability 1.

A solution (X(t)) is said to be unique if any other solution (X(t)) is indistinguishable from (X(t)),
that is

P
(
X(t) = X(t), ∀t ∈

[
t0,T

])
= 1.

Chapter 3

Introduction to Stochastic Control
Theory

3.1 Introduction

This section is dedicated to sketching the general features that define a continuous-time
stochastic optimization problem.

For a more detailed illustration, the interested reader is referred to [1] and [13].

First, we want to specify the basic mathematical frame for such a problem, i.e. we consider
a dynamic system evolving in an uncertain environment, represented by a probability space
(Ω,F ,P).

When referring to a stochastic optimization problem, the following characteristics are indis-
pensable:

• State process Xt

The state of the system consists of a set of random variables that serve their purpose of
describing the problem. We denote by Xt(ω) the state process at time t, for a trajectory
ω, symbolizing a possible world scenario. Furthermore, the continuous-time dynamics
of the state system, i.e. t 7→ Xt(ω) for all ω, is given by a stochastic differential equation
(SDE) or process, as presented in the previous chapter.

• Control process ut

The dynamics of the system, i.e. the stochastic differential equation, is usually also in-
fluenced by a controllable variable, modelled as a process (ut), whose value at any time
t is given as a function of the available information. U represents the set of admissible
controls.

• Objective function J(X,u)

The aim of any optimization problem is to either maximize or minimize a certain func-
tional, say J(X,u), over all admissible controls u ∈ U . Typically, objective functionals

15

16 CHAPTER 3. INTRODUCTION TO STOCHASTIC CONTROL THEORY

are given by

E
[∫ T

0
f(Xt,ω,ut)dt+ g(XT ,ω)

]
, on a finite time horizon T <∞ (3.1)

and

E
[∫ ∞

0
e−βtf(Xt,ω,ut)dt

]
, on an infinite time horizon, (3.2)

where f is a running profit function, g a terminal reward function and β > 0 a discount
factor.

• Value function V (X)

The maximum value, also referred to as value function, is defined by

V (X) = sup
u∈U

J(X,u). (3.3)

The main goal of stochastic control theory is to find an optimal control u∗ ∈ U , that maximizes
the value function given a certain initial condition.

3.2 Controlled Diffusion Processes

Having already set the preliminaries, in this section we will go further in detail and offer a
thorough mathematical description of stochastic control problems.

In order to proceed, we have to make a series of assumptions that will ease the way. Therefore,
let:

• (Ω,F ,F = (Ft)t≥0,P) be a filtered probability space, where the filtration satisfies the
conditions of continuity and completeness;

• Wt = (W 1
t , . . . ,W

d
t) be a d-dimensional Brownian motion;

• the control model be given by the following stochastic differential equation (SDE) valued
in Rn:

dXt = b(t,Xt,ut)dt+ σ(t,Xt,ut)dWt; (3.4)

• the control u = (ut) be a progressively measurable process with respect to F, with
values in U ⊂ Rm;

• the functions b : R+ ×Rn ×U → Rn and σ : R+ ×Rn ×U → Rn×d be measurable and
satisfy a uniform Lipschitz condition in U : ∃K ≥ 0, ∀X,Y ∈ Rn, ∀u ∈ U ,

|b(t,X,u)− b(t,Y ,u)|+ |σ(t,X,u)− σ(t,Y ,u)| ≤ K|X − Y |. (3.5)

3.2. CONTROLLED DIFFUSION PROCESSES 17

3.2.1 The Finite Horizon Problem

In this subsection we will consider a finite horizon 0 < T < ∞. Let U0 denote the set of
control processes u such that

E
[∫ T

0
|b(t, 0,ut)|2 + |σ(t, 0,ut)|2dt

]
<∞. (3.6)

Conditions (3.5) and (3.6) ensure the existence and uniqueness of a solution to the stochastic
differential equation with random coefficients for all u ∈ U0 and for any initial condition
(t,x) ∈

[
0,T

]
×Rn.

We denote by {Xt,x
s , t ≤ s ≤ T} the solution with almost sure continuous paths starting from

x at s = t.

Functional Objective

Let:

• f :
[
0,T

]
×Rn ×A→ R be a measurable function;

• g : Rn → R be a measurable function that either

1. is lower-bounded;
or

2. satisfies a quadratic growth condition: |g(x)| ≤ C(1+ |x|2), ∀x ∈ Rn, for some
constant C independent of x;

• U(t,x) denote the non-empty subset of controls u ∈ U such that

E
[∫ T

t
|f(s,Xt,x

s ,us)|ds
]
<∞, (t,x) ∈

[
0,T

]
×Rn. (3.7)

We are now able to define the objective function for the finite horizon problem, for all (t,x) ∈[
0,T

]
×Rn and u ∈ U(t,x) as:

J(t,x,u) = E
[∫ T

t
f(s,Xt,x

s ,us)ds+ g(Xt,xT)
]
; (3.8)

Since the goal is to maximize the objective function over all control processes u ∈ U(t,x), the
value function can be written in the following form:

V (t,x) = sup
u∈U(t,x)

J(t,x,u). (3.9)

A control u∗ ∈ U(t,x) is said to be optimal, if

V (t,x) = J(t,x,u∗), (3.10)

given an initial condition (t,x) ∈
[
0,T

]
×Rn.

18 CHAPTER 3. INTRODUCTION TO STOCHASTIC CONTROL THEORY

3.2.2 The Infinite Horizon Problem

In this subsection we will consider an infinite horizon T = ∞. Let U0 denote the set of
control processes u such that

E
[∫ T

0
|b(t, 0,ut)|2 + |σ(t, 0,ut)|2dt

]
<∞, ∀T > 0. (3.11)

We denote by {Xx
s , s ≥ 0} the unique solution to the SDE (3.4) starting from x ∈ Rn at t = 0,

for a given control u ∈ U0.

Functional Objective

Let:

• β > 0;

• f : Rn ×A→ R be a measurable function;

• U(x) ⊂ U0 denote the non-empty subset of controls u ∈ U0 such that

E
[∫ ∞

0
e−βs|f(Xx

s ,us)|ds
]
<∞, x ∈ Rn. (3.12)

Hence, we obtain the following forms:

J(x,u) = E
[∫ ∞

0
e−βsf(Xx

s ,us)ds
]
, ∀x ∈ Rn, u ∈ U(x), (3.13)

for the objective function and
V (x) = sup

u∈U(x)
J(x,u), (3.14)

for the value function.

As previously mentioned, a control u∗ ∈ U(x) is said to be optimal if

V (x) = J(x,u∗). (3.15)

3.3 Dynamic Programming Principle

The dynamic programming principle (DPP) is one of the most important notions in dynamic
optimization and stochastic control theory. It provides support for the solution technique
developed by Richard Bellman in the 1950s.

The interested reader is referred to [14] for Richard Bellman’s most famous work entitled
"Dynamic Programming".

The formulation of the Dynamic Programming Principle for controlled diffusion processes,
for both finite time and infinite time horizon is synthesized in the following

3.4. HAMILTON-JACOBI-BELLMAN EQUATION 19

Theorem 3.3.1 (Dynamic Programming Principle) [1, page 40]

1. Finite Horizon: let (t,x) ∈
[
0,T

]
×Rn. Then we have:

V (t,x) = sup
u∈U(t,x)

sup
z∈Zt,T

E
[∫ z

t
f(s,Xt,x

s ,us)ds+ V (z,Xt,x
z)
]

(3.16)

= sup
u∈U(t,x)

inf
z∈Zt,T

E
[∫ z

t
f(s,Xt,x

s ,us)ds+ V (z,Xt,x
z)
]
. (3.17)

2. Infinite Horizon: let x ∈ Rn. Then we have:

V (x) = sup
u∈U(x)

sup
z∈Z

E
[∫ z

0
e−βsf(Xx

s ,us)ds+ e−βzV (Xx
z)
]

(3.18)

= sup
u∈U(x)

inf
z∈Z

E
[∫ z

0
e−βsf(Xx

s ,us)ds+ e−βzV (Xx
z)
]
, (3.19)

with the convention that e−βz(ω) = 0 when z(ω) =∞.

Here, Zt,T respectively Z denote the sets of stopping times (i.e. the ending time of the controller’s
objective) valued in

[
t,T
]

and
[
0,∞

]
respectively, for 0 ≤ t ≤ T < ∞, t = 0 and T = ∞

respectively.

Proof:

For a proof the interested reader is referred to [1, page 41]. �

3.4 Hamilton-Jacobi-Bellman Equation

The Hamilton-Jacobi-Bellman Equation (HJB), also called the dynamic programming equa-
tion, can be seen as a refinement of the dynamic programming principle, as it goes further
into detail describing the local behaviour of the value function when the stopping time z is
assumed to converge to t.

3.4.1 Derivation of the Hamilton-Jacobi-Bellman Equation

Finite Horizon Problem

As a first step, we want to establish the notation that we will use for the formal derivation of
the HJB equation (see [1]). Therefore let:

• Sn denote the set of symmetric n× n matrices;

• tr(A) be the trace of some n× n matrix A;

20 CHAPTER 3. INTRODUCTION TO STOCHASTIC CONTROL THEORY

• Dx stand for the gradient vector of a function x→ f(t,x) ∈ C2;

• D2
x symbolize the Hessian matrix of function f in Sn;

• σ(x,u)σ(x,u)T denote the diffusion matrix;

• the stopping time be z = t+ h;

• the control process be constant ut = uc, uc ∈ U arbitrary;

• Luc stand for the operator associated with the diffusion (3.4) for the constant control uc,
that is defined as:

Luc = b(x,uc)Dx +
1

2
tr(σ(x,uc)σ(x,uc)

TD2
x). (3.20)

Taking into account the above assumptions, an equivalent representation of the dynamic
programming principle is given by

V (t,x) ≥ E
[∫ t+h

t
f(s,Xt,x

s ,uc)ds+ V (t+ h,Xt,x
t+h)

]
. (3.21)

By applying Itô’s formula between t and t+ h we get

V (t+ h,Xt,x
t+h) = V (t,x) +

∫ t+h

t

(
∂V

∂t
+LucV

)
(s,Xt,x

s)ds+ a (local) martingale with E = 0.

(3.22)
By inserting (3.22) in (3.21) we obtain

0 ≥ E
[∫ t+h

t

(
∂V

∂t
+LucV

)
(s,Xt,x

s) + f(s,Xt,x
s ,uc)ds

]
.

Division by h, letting h converge to 0 together with the application of the mean-value theorem
yield after additionally multiplying both sides with −1:

− ∂V

∂t
(t,x)− sup

uc∈U

[
LucV (t,x) + f(t,x,uc)

]
≥ 0. (3.23)

Approaching the problem from another perspective, let us suppose u∗ ∈ U is an optimal
control. Then, the following holds true:

V (t,x) = E
[∫ t+h

t
f(s,X∗s ,u

∗)ds+ V (t+ h,X∗t+h)
]
,

with X∗ denoting the solution to (3.4) starting from state x at time t, for the optimal control
u∗. Through similar steps as above, we obtain an equation equivalent to (3.23) for the optimal
control uc

− ∂V

∂t
(t,x)−Lu∗t V (t,x) + f(t,x,u∗t) = 0. (3.24)

3.5. VERIFICATION THEOREM 21

From (3.23) and (3.24) it becomes obvious that V should satisfy the following partial differ-
ential equation (PDE), also referred to as the Hamilton-Jacobi-Bellman equation

− ∂V

∂t
(t,x)− sup

uc∈U

[
LucV (t,x) + f(t,x,uc)

]
= 0, ∀(t,x) ∈

[
0,T)×Rn. (3.25)

The literature often writes the above PDE in the following form:

− ∂V

∂t
(t,x)−H(t,x,DxV (t,x),D2

xV (t,x))) = 0, ∀(t,x) ∈
[
0,T)×Rn, (3.26)

with function H being defined as

H(t,x, p,M) = sup
uc∈U

[
b(x,uc)p+

1

2
tr(σσT (x,uc)M) + f(t,x,uc)

]
, (3.27)

for (t,x, p,M) ∈
[
0,T

]
× Rn × Rn × Sn and being called the Hamiltonian of the control

problem.

Finally, let us not forget the terminal condition associated with the above PDE:

V (T ,x) = g(x), ∀x ∈ Rn. (3.28)

Infinite Horizon Problem

The derivation of the HJB equation for the infinite horizon problem is carried out through
similar arguments as in the finite horizon problem. Thus, we obtain an infinite horizon
equivalent to (3.25):

− βV (x)− sup
uc∈U

[
LucV (x) + f(x,uc)

]
= 0, ∀x ∈ Rn, (3.29)

which may also be written in Hamiltonian form as:

− βV (x)−H(x,DxV (x),D2
xV (x)) = 0, ∀x ∈ Rn, (3.30)

with

H(x, p,M) = sup
uc∈U

[
b(x,uc)p+

1

2
tr(σσT (x,uc)M) + f(x,uc)

]
, ∀(x, p,M) ∈ Rn ×Rn ×Sn.

(3.31)

3.5 Verification Theorem

From the previous section, we may draw the conclusion that the Hamilton-Jacobi-Bellman
equation is a necessary condition for the value function V (t,x). Now, the following question
arises: is a solution to the HJB equation automatically a value function?

The answer to this question is the so-called Verification Theorem.

22 CHAPTER 3. INTRODUCTION TO STOCHASTIC CONTROL THEORY

Theorem 3.5.1 (Verification Theorem - Finite Horizon Problem) [1, page 47]

Let W be a function in C1,2(
[
0,T)×Rn), satisfying a quadratic growth condition, i.e. there exists a

constant C such that:
|W (t,x)| ≤ (1+ |x|2), ∀

[
0,T

]
×Rn.

1. Suppose that:

−∂W
∂t

(t,x)− sup
uc∈U

[
LucW (t,x) + f(t,x,uc)

]
≥ 0, (t,x) ∈

[
0,T)×Rn, (3.32)

W (T ,x) ≥ g(x), x ∈ Rn. (3.33)

Then W ≥ V on
[
0,T

]
×Rn.

2. Suppose further that W (T , .) = g and there exists a measurable function û(t,x), (t,x) ∈[
0,T)×Rn, valued in U such that:

−∂W
∂t

(t,x)− sup
uc∈U

[
LucW (t,x) + f(t,x,uc)

]
= −∂W

∂t
(t,x)−Lû(t,x)W (t,x)− f(t,x, û(t,x))

= 0,

the SDE
dXs = b(Xs, û(s,Xs))ds+ σ(Xs, û(s,Xs))dWs

admits a unique solution, denoted by X̂t,x
s , given an initial condition Xt = x, and the process

{û(s, X̂t,x
s), t ≤ s ≤ T} lies in U(t,x).

Then W = V on
[
0,T

]
×Rn and û is an optimal control.

Theorem 3.5.2 (Verification Theorem - Infinite Horizon Problem) [1, page 49]

Let W be a function in C2(Rn), satisfying a quadratic growth condition.

1. Suppose that:

βW (x)− sup
uc∈U

[
LucW (x) + f(x,uc)

]
≥ 0, x ∈ Rn, (3.34)

lim sup
T→∞

e−βTE
[
W (Xx

T)
]
≥ 0, ∀x ∈ Rn, ∀u ∈ U(x). (3.35)

Then W ≥ V on Rn.

2. Suppose further that for all x ∈ Rn, there exists a measurable function û(x), x ∈ Rn, valued in
U such that:

βW (x)− sup
uc∈U

[
LucW (x) + f(x,uc)

]
= βW (x)−Lû(x)W (x)− f(x, û(x))

= 0,

the SDE
dXs = b(Xs, û(Xs))ds+ σ(Xs, û(Xs))dWs

admits a unique solution, denoted by X̂x
s , given an initial condition X0 = x, satisfying

lim inf
T→∞

e−βTE
[
W (Xx

T)
]
≤ 0

3.5. VERIFICATION THEOREM 23

and the process {û(X̂x
s), s ≥ 0} lies in U(x).

Then W = V , ∀x ∈ Rn and û is an optimal control.

Proof:

For proofs for both the finite and infinite horizon cases, the interested reader is referred to
[1, page 47ff] and [1, page 50]. �

24 CHAPTER 3. INTRODUCTION TO STOCHASTIC CONTROL THEORY

Chapter 4

Examples in Financial and Actuarial
Mathematics

4.1 Merton’s Problem of Portfolio Allocation

General Description

In this model the agent has the opportunity to invest in two different types of instruments
that are present in the financial market: a riskless bond and a risky asset.

At any time the agent can choose how much of his wealth is invested in the risky asset,
automatically investing the remaining wealth into the riskfree bond.

The goal of this model, as originally formulated by Robert C. Merton himself in [25], is to
maximize the expected utility of consumption.

Nomenclature

First we want to establish the notation that we will use later on in this section:

T time endpoint
t time varying in

[
0,T

]
τ time of ruin
x0 initial capital at t = 0
X(t) wealth at time t
B0(t) value of riskfree asset at time t
B(t) price of risky asset at time t
W (t) Brownian motion
u1(t) number of shares invested in the risky asset at time t
u2(t) consumption rate
U(u2, t) utility function
ρ,µ,σ,β,α, c constants

25

26 CHAPTER 4. EXAMPLES IN FINANCIAL AND ACTUARIAL MATHEMATICS

Mathematical Assumptions

In order to proceed we want to define the general mathematical tools that we need for this
model according to Merton [25], Pham [1, page 28f, page 51ff] and Schmidli [26, pages 114-
120]:

(Ω,F ,F,P) a filtered probability space such that there exists a unique solu-
tion for the optimal strategy

F = (Ft)t≥0 Brownian filtration, i.e. the smallest right-continuous filtration
that makes W (t) adapted

T =
[
0,T

]
time interval

W =
[
0,+∞

)
wealth interval meaning that the agent is not allowed to have
debts

u(t) = (u1(t),u2(t)) two-dimensional vector representing the control process
U = (−∞,+∞)×

[
0,+∞) set of admissible control processes that are càd-làg adapted

such that they admit a unique solution
U(u2, t) strictly increasing

strictly concave
continuous in both t and u2
continuously differentiable with respect to u2
U(0, t) = 0 for simplicity reasons
lim
u2→∞

U(u2, t) = 0

Dynamics of the Model

The value process B0(t) and the price process B(t) evolve according to the following SDEs

dB0(t) = ρB0(t)dt, (4.1)

dB(t) =
(
µdt+ σdW (t)

)
B(t), (4.2)

where ρ,µ,σ > 0 and ρ < µ.

The dynamics of the self-financed wealth process is described by

dX(t) =
[(
u1(t)µ+ (1− u1(t))ρ

)
X(t)− u2(t)

]
dt+ σu1(t)X(t)dW (t). (4.3)

Optimal Consumption

The value of the strategy u(t) = (u1(t),u2(t)) is represented by the following objective func-
tional:

J(x,u(t), τ) = E

[∫ τ∧T

0
e−βtU(u2(t), t)dt | X(0) = x0

]
, (4.4)

where β > 0 stands for the discount rate and τ := inf{t : X(t) = 0}. For simplicity reasons,
we will henceforth omit the stopping time and convene that u2(t) = 0 for t ≥ τ .

The value function thus becomes

V (x) = sup
u(t)

J(x,u(t)). (4.5)

4.1. MERTON’S PROBLEM OF PORTFOLIO ALLOCATION 27

Lemma 4.1.1 [26, page 115]

The function V (x) is strictly increasing and concave with boundary value V(0)=0.

Proof:

For a proof the interested reader is referred to [26, page 115f]. �

Hamilton-Jacobi-Bellman Equation

For u = (u1,u2) ∈ U , the operator Lu specified in Subsection 3.4.1 has the following form
when applied on function V (x):

−LuV (x) =
[(
u1(t)µ+ (1− u1(t))ρ

)
x− u2(t)

]
Vx +

1

2
σ2u1(t)

2x2Vxx, (4.6)

where Vx and Vxx are continuous, since V is additionally assumed to be twice continuously-
differentiable.

Thus the HJB-equation has the following form

sup
(u1,u2)

([(
u1(t)µ+ (1− u1(t))ρ

)
x− u2(t)

]
Vx +

1

2
σ2u1(t)

2x2Vxx + U(u2)− βV
)
= 0. (4.7)

Since V (x) is concave, we look for a solution x > 0 with Vx > 0, Vxx < 0 and lim
x→0+

Vx =∞.

Optimal Solutions

Through elementary calculations we obtain the following candidates for the optimal strate-
gies:

u∗1 = −
(µ− ρ)Vx
σ2xVxx

, (4.8)

u∗2 = (U ′)−1(Vx). (4.9)

Now, let us consider a specific form of the utility function

U(u2(t)) =
u2(t)α

α
, α ∈ (0, 1), (4.10)

pertaining to the class of functions of type HARA (hyperbolic absolute risk aversion). Karatzas
has considered more than just this one type of utility functions. The interested reader is re-
ferred to [7] for his work.

A solution to the HJB-equation is, in this case, given by

V (x) = cxα, α ∈ (0, 1), (4.11)

where c is a constant, implying that the first and second derivatives have the following forms:

Vx = cαxα−1, (4.12)

Vxx = cα(α− 1)xα−2. (4.13)

28 CHAPTER 4. EXAMPLES IN FINANCIAL AND ACTUARIAL MATHEMATICS

In view of recent information, the optimal strategies may be updated to

u∗1 =
µ− ρ

σ2(1− α)
, (4.14)

u∗2 = (αc)
1

α−1x. (4.15)

By insertion of equations (4.10)-(4.15) into the HJB-equation, we can determine the exact value
of the constant c which is positive if and only if

β >
(µ− ρ)2

2σ2(1− α)
+ ρα. (4.16)

By inserting equations (4.10)-(4.15) into equation (4.3) we get the following SDE:

dX∗(t) =
1

α− 1
X∗(t)

(
(1− α)ρ+ (µ− ρ)2

σ2
− (1− α)c

1
α−1
)
dt+X∗(t)

µ− ρ
σ

dW (t), (4.17)

which through Itô calculus finally gives

X∗(t) = X0 exp

((
(1− µ− ρ

1− α
σ2)r+

(1− 2α)(µ− ρ)2

2σ2(1− α)2
− c

1
α−1
)
dt+

µ− ρ
(1− α)σ

W (t)

)
. (4.18)

The only thing left to do now is to verify if u∗1 and u∗2 are indeed optimal strategies and if
V (x) actually is the maximal discounted utility. We do so by double-checking the validity of
the equality

V (x) = J(x,u∗1,u
∗
2), ∀x > 0. (4.19)

Since u∗1 is constant and u∗2 is linear in x, x∗(t) satisfies the SDE (4.3), which has thus an
explicit solution.

4.2 Minimizing Ruin Probabilities in Insurance Business

General Description

In ruin theory business surplus is mostly defined as follows (see [27]):

Business Surplus = Initial Capital + Income - Outflow.

In insurance business the income process is determined by the total sum of premiums col-
lected from the insurance takers and the originated investment income, while the outflow
process mostly consists of the aroused claims of the insurance takers. Note that both these
processes are subject to risk.

In this model we consider an insurance business that has a fixed amount to offer for invest-
ment purposes. Its investment portfolio consists of a risky and a non-risky asset.

The insurance business has the following investment policy, according to [27]:

• a fixed amount independent of the surplus will be invested at any time;

4.2. MINIMIZING RUIN PROBABILITIES IN INSURANCE BUSINESS 29

• a fraction of this amount will be invested in the risky asset, the remainder in the riskless
one;

• the fraction may change in time depending on the portfolio allocation scheme that best
corresponds to the goal of the model.

The goal of this model is to minimize the ruin probability of the insurance business.

Nomenclature

Like in the previous section, we first want to establish the notation that we will use later on
in this section:

t time variable
s current surplus
S(t) surplus process
C(t) claims process
λ intensity of the claims process
X claim amount
F (x) distribution of the claim amount
f(x) density of the claim amount
I(t) investment return process
R(t) risk process
A fixed amount available for investment
u(t) proportion of A invested in the risky asset
p rate per time unit at which premiums are collected
B0(t) value of the non-risky asset
B(t) price of the risky asset
W (t) Brownian motion
r, ρ,µ,σ constants

Mathematical Assumptions

We again make a series of assumptions that might come in handy later on:

U =
[
0, 1
]

set of admissible controls
φ(s) := P

(
S(t) < 0 for some t ≥ 0

)
infinite time ruin probability

ψ(s) := 1− φ(s) probability of non-ruin or survival
ψ(s) continuous on

[
0,+∞

)
twice continuously-differentiable on (0,+∞)
ψ(s) = 0 for s < 0
ψ′(s) ≥ 0, ψ′′(s) ≤ 0 for s > 0
lim

s→+∞
ψ(s) = 1

30 CHAPTER 4. EXAMPLES IN FINANCIAL AND ACTUARIAL MATHEMATICS

Dynamics of the Model

The value of the non-risky asset follows

dB0(t) = ρB0(t)dt, ρ > 0, (4.20)

while the price of the risky asset evolves according to a geometric Brownian motion

dB(t) =
(
µdt+ σdW (t)

)
B(t), µ,σ ≥ 0. (4.21)

The risk process of the insurance business follows a Cramér-Lundberg process consisting of
the collection rate of premiums and the claims process, thus being determined by

dR(t) = pdt− dC(t), (4.22)
R(0) = r. (4.23)

Worth mentioning at this point is that a claim of amount X may occur with probability
λdt+O(dt) leaving the probability of no claim occurrence to be 1− λdt+O(dt). The amount
pdt+O(dt) constitutes the premium income.

The evolution of the investment return process is governed by the following SDE

dI(t) = A(1− u(t))ρdt+Au(t)µdt+Au(t)σdW (t), (4.24)

where the amount A(1− u(t))ρdt+O(dt) stands for the investment income from the riskless
asset whereas Au(t)µdt + Au(t)σdW (t) represents the amount received as an investment
income from the risky asset. (see [28, page 507])

Concluding, the dynamics of the surplus process of this insurance business is given by

dS(t) = dR(t) + dI(t), t ≥ 0, (4.25)

where S(0) = s.

Optimal Control Problem

The control problem can now be formulated as follows:

min
0≤u(t)≤1

P
(
S(t) < 0 for some t ≥ 0

)
(4.26)

s.t. dS(t) = pdt− dC(t) +A(1− u(t))ρdt+Au(t)µdt+Au(t)σdW (t) (4.27)
S(0) = s. (4.28)

Hamilton-Jacobi-Bellman Equation

We now shift to considering the probability of non-ruin, which we, in turn, have to maximize.

For that purpose, we consider two distinct cases over a time interval
[
0, dt

]
, as suggested by

Castillo and Parrocha in [27], and assume additionally that no premium was received during
this period:

4.2. MINIMIZING RUIN PROBABILITIES IN INSURANCE BUSINESS 31

1. no claim in which case the surplus grows to s+ pdt+ dI(t);

2. exactly one claim in which case the surplus reduces to s+ dI(t)−X .

By taking expectations we are now able to determine the probability of non-ruin as

ψ(s) = λdtE
[
ψ(s−X)

]
+ (1− λdt)ψ(s+ pdt+ dI(t)). (4.29)

By applying Itô’s Formula we get

ψ(s) = ψ(s) +
[1
2
σ2A2u2ψ′′(s) +

(
p+A(1− u)ρ+Auµ

)
ψ′(s) + λE

[
ψ(s−X)−ψ(s)

]]
dt.

For the sake of simplicity we denoted the control variable simply as u, bearing in mind that
it only depends on the current surplus level s.

The last equation finally leads to the HJB-equation of this control problem

sup
0≤u≤1

[1
2
σ2A2u2ψ′′(s) +

(
p+A(1− u)ρ+Auµ

)
ψ′(s) + λE

[
ψ(s−X)−ψ(s)

]]
= 0. (4.30)

Optimal Investment Strategy

Equation (4.30) attains a maximum at

û = − (µ− ρ)ψ
′(s)

Aσ2ψ′′(s)
, (4.31)

implying that the optimal control is only a function of the current surplus.

Inserting (4.31) into equation (4.30) yields the following differential equation, whose solution,
in turn, determines the fraction of the optimal strategy

λE
[
ψ(s−X)−ψ(s)

]
=

1

2

(ρ− µ)2ψ′(s)
σ2ψ′′(s)

− (p+Aµ)ψ′(s). (4.32)

The theorem that follows is the verification theorem for this specific model, thus corroborating
that û is the optimal proportion corresponding to the current surplus s.

Theorem 4.2.1 [28, page 509]

Suppose there exists a solution ψû(s) to the HJB equation (4.30) having maximizer as defined in
equation (4.31) such that ψû(0) > 0, ψ′û(0) > 0, ψû(s) = 0 for s < 0, lim

s→+∞
ψû(s) = 1 and ψû(s) is

twice continuously differentiable on s > 0.

If u(t) is an arbitrary admissible strategy for which the corresponding surplus process S(t) is defined
on 0 ≤ t <∞, then the corresponding non-ruin probability ψu(s) for this process with initial surplus
s satisfies

ψu(s) ≤ ψû(s), s ≥ 0.

Proof:

For a proof the interested reader is referred to Castillo and Parrocha [27]. �

32 CHAPTER 4. EXAMPLES IN FINANCIAL AND ACTUARIAL MATHEMATICS

Remark 4.2.1 The optimal control û, as given in equation (4.31), does not necessarily belong to the
interval

[
0, 1
]
, which is why we want to consider three distinct cases for the optimal control u∗:

u∗ =

0, if û < 0
û, if û ∈

[
0, 1
]

1, if û > 1.
(4.33)

As a next step we want to specify the non-ruin probabilities, denoted as ψ0,ψû,ψ1, for each
of these cases:

1. u∗ = 0

ψ′0(s) =
λ

p+Aρ
E
[
ψ0(s)−ψ(s−X)

]
,

2. u∗ = û

ψ′û(s) =

(
(ρ− µ)2

2σ2

∫ s

0

1

λE
[
ψû(t)−ψû(t−X)

]
− (p+Aρ)ψ′û(t)

dt+
p+Aρ

λψû(0)

)−1
,

3. u∗ = 1

ψ′1(s) =
2

A2σ2

∫ s

s1

(
λE
[
ψ1(t)−ψ1(t−X)

]
− (p+Aµ)ψ′1(t)

)
dt+ ψ1(s1).

For a formal derivation of the above functions as well as for properties of these non-ruin
probabilities and for a proof of whether a solution to the HJB-equation exists, the interested
reader is referred to [27], [28].

Chapter 5

A Theoretical Insight in Some Relevant
Methodology

5.1 Numerical Approximation

In the following we want to devote our attention to partial differential equations (PDEs) in
two independent variables with given initial (IC) or boundary conditions (BC).

Since this type of equations is difficult to solve analytically (i.e. exactly), a numerical proce-
dure seems an agreeable alternative to find an approximate solution.

The interested reader is referred to Causon’s and Mingham’s work [19] on approximating
partial differential equations.

5.1.1 Taylor’s Formula

When considering numerical approximation, the first thing that comes to mind is Taylor
series, for it is always a simple and effective tool to obtain valuable estimations. Let’s recall
the following

Theorem 5.1.1 (Taylor’s Theorem) [19, page 17]

Let V :
[
a, b
]
→ R, V ,V

′
,V
′′
, . . . ,V (n−1) be continuous on

[
a, b
]

and suppose V (n) exists on
(a, b). Then for a < x0 < x0 + h < b it holds:

V (x0 + h) = V (x0) + hV
′
(x0) + h2

V
′′
(x0)

2!
+ . . .+ hn−1

V (n−1)(x0)

(n− 1)!
+O(hn). (5.1)

Proof:

For a proof the interested reader is referred to [20, page 152f]. �

The core of the above theorem refers to the possibility of approximating a function in the

33

34 CHAPTER 5. A THEORETICAL INSIGHT IN SOME RELEVANT METHODOLOGY

neighbourhood x0 + h of a known point x0, for which the value of the function, but also the
values of its derivatives are known.

In the above representation O(hn) is an (unknown) error term of little interest in this thesis.

5.1.2 Finite Difference Method

The finite difference method (FDM) is an important tool in numeric analysis for approximat-
ing partial differential equations (PDE) with certain (given) initial or boundary conditions.

The approximation is achieved through discretization of the independent variables, i.e. by
replacing the definition domain of the independent variables with a finite grid (also referred
to as mesh) of points at which the function, whose dynamics is defined by the PDE, is known.

The FDM approximates all partial derivatives in the PDE at each grid point from values in
its neighbourhood by applying Taylor’s theorem, however, interpreted in a slightly different
manner: in FDM both x0 and x0+h are grid points and both V (x0) and V (x0+h) are known,
thus permitting a rearrangement of equation (5.1) to obtain so-called Finite Difference (FD)
approximations to derivatives with O(hn) error terms.

Now, we want to derive some FD approximations to partial derivatives in a PDE with two
independent variables x and y. In the following we denote by xi, i = 1, . . . ,N the grid of dis-
crete x values and by yj , j = 1, . . . ,M the grid of discrete y values. For the sake of simplicity,
we assume N =M and constant grid spacing ∆x = ∆y, so that xi+1 = xi + ∆x, ∀i = 1, . . . ,N
and yj+1 = yj + ∆x, ∀j = 1, . . . ,N .

We will approximate the partial derivatives of V with respect to x while holding y constant.
Thus, equation (5.1) becomes:

V (x0 + ∆x, y) = V (x0, y) + ∆xVx(x0, y)+
(∆x)2

2!
Vxx(x0, y) + . . .

+
(∆x)n−1

(n− 1)!
V(n−1)(x0, y) +O

(
(∆x)n

)
, (5.2)

where

Vx =
∂V
∂x ,

Vxx =
∂2V
∂x2

,
V(n−1) =

∂n−1V
∂xn−1 .

Cutting the above equation short to O
(
(∆x)2

)
yields

V (x0 + ∆x, y) = V (x0, y) + ∆xVx(x0, y) +O
(
(∆x)2

)
. (5.3)

Rearrangement of equation (5.3) succeeded by division by ∆x gives

Vx(x0, y) =
V (x0 + ∆x, y)− V (x0, y)

∆x
−O(∆x), (5.4)

which after additionally dropping the error term O(∆x) finally becomes the approximation
of the first partial derivative we were looking for:

Vx(x0, y) ≈
V (x0 + ∆x, y)− V (x0, y)

∆x
. (5.5)

5.1. NUMERICAL APPROXIMATION 35

Equation (5.5) is called the first order forward difference approximation to Vx(x0, y) because
of the first power of ∆x in the error term O(∆x) and since we start at point x0 and move
forward to point x0 + ∆x.

We can also step backwards starting from the same point x0, ultimately giving the first order
backward difference approximation

Vx(x0, y) ≈
V (x0, y)− V (x0 − ∆x, y)

∆x
(5.6)

and we can also get a so-called second order central difference approximation by taking
more terms in the Taylor series and thus increasing the accuracy of the approximation

Vx(x0, y) ≈
V (x0 + ∆x, y)− V (x0 − ∆x, y)

2∆x
. (5.7)

So far we have shown how to approximate first order partial derivatives. Since most PDEs
contain second order (or higher) partial derivatives, we want to be able to approximate them
too. In the following we will focus on the approximation of second order unmixed partial
derivatives.

Truncating equation (5.2) to O
(
(∆x)4

)
gives:

V (x0 + ∆x, y) = V (x0, y) + ∆xVx(x0, y) +
(∆x)2

2!
Vxx(x0, y) +

(∆x)3

3!
Vxxx(x0, y) +O

(
(∆x)4

)
(5.8)

Replacement of ∆x by −∆x in the above equation, followed by the addition of both equations
gives

V (x0 + ∆x, y) + V (x0 − ∆x, y) = 2V (x0, y) + (∆x)2Vxx(x0, y) +O
(
(∆x)4

)
, (5.9)

which through rearrangement and by dropping the O
(
(∆x)2

)
error term finally provides us

with the second order symmetric difference approximation to Vxx(x0, y) we were looking
for:

Vxx(x0, y) ≈
V (x0 + ∆x, y)− 2V (x0, y) + V (x0 − ∆x, y)

(∆x)2
. (5.10)

In the following, Vi,j will denote the value of the function V at position xi and position yj , i.e.
V (xi, yj), for i, j = 1, . . . ,N . Thus, the possible approximations for all partial derivatives up
to the order of 2 are given in Table 5.1.

36 CHAPTER 5. A THEORETICAL INSIGHT IN SOME RELEVANT METHODOLOGY

Partial Derivative FD-Approximation Type

Vi,j−Vi−1,j

∆x backward in x

Vx
Vi+1,j−Vi−1,j

2∆x central in x

Vi+1,j−Vi,j
∆x forward in x

Vi,j−Vi,j−1

∆y backward in y

Vy
Vi,j+1−Vi,j−1

2∆y central in y

Vi,j+1−Vi,j
∆y forward in y

Vxx
Vi−1,j−2Vi,j+Vi+1,j

(∆x)2 symmetric in x

Vyy
Vi,j−1−2Vi,j+Vi,j+1

(∆y)2 symmetric in y

Table 5.1: Finite Difference Approximations for Partial Derivatives

By replacing all derivatives in the PDE through their corresponding approximations, we ob-
tain a Finite Difference Scheme (FDS) that produces a so-called five-point formula for each
i, j = 2, . . . ,N − 1:

Vi,j = a1Vi−1,j + a2Vi,j+1 + a3Vi+1,j + a4Vi,j−1, (5.11)

(where a1, a2, a3 and a4 are constants) that can ultimately be reduced to a system of linear
equations of the form

Ax = b, (5.12)

where

A is a (N − 2)(N − 2)× (N − 2)(N − 2) matrix of coefficients,
x is the (N − 2)(N − 2) vector of unknowns Vi,j and
b is a (N − 2)(N − 2) vector of constants,

from which the approximate solution can be attained.

The direct way to obtain such a solution is through the classical Gaussian elimination. How-

5.1. NUMERICAL APPROXIMATION 37

ever, this method is certainly not efficient especially when considering very large systems,
which is why so-called iterative methods are preferred.

Before presenting some efficient iterative methods, we first need to define the distance be-
tween two vectors. Therefore let x = (x1,x2, . . . ,xN)T and y = (y1, y2, . . . , yN)T be two
vectors in RN . The distance, denoted by d(x,y), between x and y is defined by:

d(x,y) = max
i

(|xi − yi|) = ‖x− y‖∞. (5.13)

and is also referred to as "infinity norm".

Jacobi Iteration

In the following the superscript, s, will stand for the iteration index. Thus, the point-Jacobi
formula for each interior grid point (i, j) at the next iteration s+ 1 is given by

V s+1
i,j = a1V

s
i−1,j + a2V

s
i,j+1 + a3V

s
i+1,j + a4V

s
i,j−1. (5.14)

At s = 0 we only know the values of the function at its boundaries, but initiate all interior grid
points to be equal to 0. Once an iteration s has been performed for all (i, j), i, j = 2, . . . ,N − 1,
we save all values in a vector xs of dimension (N − 2)(N − 2) and compute the distance
between xs+1 and xs. If

‖xs+1 −xs‖∞ < TOL, (5.15)

where TOL stands for a tolerance that is pre-defined, the iterative algorithm stops and the
solution is the last computed iterative vector xs+1.

Gauss-Seidel Iteration

In the Jacobi Iteration we wait until the next iteration to use the values that we obtain in the
current one. This may produce a loss of efficiency since some of the values can be already used
during the same iteration. While traversing the grid from left to right starting in the upper
corner, upon reaching position (i, j) we have already updated Vi−1,j and Vi,j+1, therefore we
can use them and formula (5.14) becomes

V s+1
i,j = a1V

s+1
i−1,j + a2V

s+1
i,j+1 + a3V

s
i+1,j + a4V

s
i,j−1, (5.16)

which is referred to as the Gauss-Seidel formula or point-Gauss-Seidel.

The implementation of the Gauss-Seidel Method occurs analogous to that of the Jacobi Itera-
tion.

Successive over Relaxation Method

This method essentially relies on the fact that in an iterative procedure the point value at the
new iteration is defined by the point value at the previous iteration plus some residual (or
error):

V s+1
i,j = V s

i,j +Rsi,j . (5.17)

38 CHAPTER 5. A THEORETICAL INSIGHT IN SOME RELEVANT METHODOLOGY

By weighing the residual with a so-called relaxation parameter w ∈ (0, 2), giving

V s+1
i,j = V s

i,j +wRsi,j , (5.18)

we may speed up the convergence of the iterative scheme. For w ∈ (0, 1) we speak of under-
relaxation whereas for w ∈ (1, 2) of over-relaxation.

The idea is the improvement of the Gauss-Seidel method as stated in [19, 47f]. The point-
Gauss-Seidel iteration formula (5.16) can thus be rewritten as

V s+1
i,j = V s

i,j + a1V
s+1
i−1,j + a2V

s+1
i,j+1 − V

s
i,j + a3V

s
i+1,j + a4V

s
i,j−1, (5.19)

which yields formula (5.17) with

Rsi,j = a1V
s+1
i−1,j + a2V

s+1
i,j+1 − V

s
i,j + a3V

s
i+1,j + a4V

s
i,j−1. (5.20)

By additionally introducing the parameter w, we finally obtain

V s+1
i,j = (1−w)V s

i,j +w(a1V
s+1
i−1,j + a2V

s+1
i,j+1 + a3V

s
i+1,j + a4V

s
i,j−1), (5.21)

which in the literature is referred to as the point Successive over Relaxation (SoR) method.

If w = 1, the SoR method obviously reduces to the Gauss-Seidel procedure.

This algorithm is to be implemented in an analogous way to the previously presented iterative
methods.

5.2 Monte Carlo Methods

The Monte Carlo Methods were invented after World War II by the mathematician Stanislaw
Ulam while working on the construction of the hydrogen bomb at the Los Alamos National
Laboratory. He suggested the generation of random numbers through a computer program.
Nevertheless, it was John von Neumann who in 1947 recognized their potential and carried
out simulations on the ENIAC1 for estimating neutron collisions. (see [21, page 89])

Nicholas Metropolis named this technique Monte Carlo after the city from Monaco, where
Ulam’s uncle gambled in numerous casinos, the place where random numbers can be "natu-
rally" generated for example by playing roulette. Monte Carlo methods are used in various
fields from physics to industrial engineering, computer science, insurances and last but not
least finance. (see [21, page 89], [21, Introduction])

The simulation is nothing but a technique to mathematically model a real, existing system.
The mathematical model is defined by a series of equations and functional connections that
are meant to describe the interactions between the components of the system. The behaviour
of the real system is therefore being virtually imitated by creating and running a computer
program based on numerically generated data. (see [21, Introduction])

The modelling of uncertainty in complex systems, given by the generation of random num-
bers, is provided by probability theory. However, Monte Carlo methods are often considered

1Electronic Numerical Integrator And Computer was the first electronic computer ever built in the United
States of America

5.2. MONTE CARLO METHODS 39

to be the interface between the notion of probability and that of volume (see [22, page 1])
because of measure theory, which associates an event with a set of possible outcomes to a
probability and defines the latter as the volume (or measure) of the respective event relative
to that of an infinite number of possible outcomes. Therefore, Monte Carlo estimates the
volume of a set by understanding it as a probability.

In the following we want to present two fundamental limit theorems in probability theory,
that lie at the core of the Monte Carlo method. The interested reader is referred to [23, page
85] and [24, page 178] for rigorous proofs.

Theorem 5.2.1 (Strong Law of Large Numbers) [3, page 24]

If X1,X2, . . . are independent, identically distributed (iid) random variables with mean µ, then

P

{
X1 +X2 + . . .+Xn

n
→ µ

}
= 1. (5.22)

Theorem 5.2.2 (Central Limit Theorem - Finite Variance) [3, page 24]

If X1,X2, . . . are iid random variables with mean µ and variance σ2, then the distribution of

X1 +X2 + . . .+Xn − nµ
n

(5.23)

converges to the standard normal distribution. That is, for any a ∈ R,

P

{
X1 +X2 + . . .+Xn − nµ

σ
√
n

≤ a
}
→
∫ a

−∞

1√
2π
e−

1
2
x2dx (5.24)

as n→∞.

5.2.1 Euler Scheme

Usually, stochastic differential equations are very difficult if not impossible to solve analyti-
cally, which is why one often resorts to Monte Carlo simulation.

Let us reconsider a stochastic differential equation as presented in Section 2.5 and Section 3.2,
that is, according to [22, page 339f] and [3, page 205f]:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (5.25)

with a fixed value for X(0) and where b(t,x) and σ(t,x) are two continuous functions.

Furthermore, let us suppose we want to generate a sample path of X . This is where the Euler
Scheme or Euler Approximation comes in for in order to do that, we first need to choose a
finite interval

[
0,T

]
and define a time discretization of the sort 0 = t0 < t1 < t2 < . . . < tn =

T .

Next, we recursively obtain an approximation X̂ for process X as follows:

X̂(0) = X(0), (5.26)

X̂(ti+1) = X̂(ti) + b(ti, X̂(ti))(ti+1 − ti) + σ(ti, X̂(ti))(W (ti+1)−W (ti)) (5.27)

= X̂(ti) + b(ti, X̂(ti))(ti+1 − ti) + σ(ti, X̂(ti))
√
ti+1 − tiZi+1, (5.28)

40 CHAPTER 5. A THEORETICAL INSIGHT IN SOME RELEVANT METHODOLOGY

for i = 0, . . . ,n− 1, where Z1,Z2, . . . ,Zn are independent, identically distributed standard
normal random variables.

The Monte Carlo algorithm consists in generating N such sample paths in order to obtain N

iid copies of X (denoted as X̂1, X̂2, . . . , X̂N), its Monte Carlo estimate therefore being:

X̃ =
X̂1 + X̂2 + . . .+ X̂N

N
. (5.29)

See [3, page 73f], [3, page 205f].

Chapter 6

A Stochastic Control Model

This mathematical model was originally formulated by David Aldous (see [29] and [30]).

6.1 A Theoretical Overview

Suppose N particles perform independent Brownian motion on
[
0,∞) starting at initial state

1 at time 0. Furthermore, assume that these particles are killed upon reaching state 0, making
state 0 absorbing. We call this the uncontrolled process and denote it as (Xi(t), 0 ≤ t <
∞, 1 ≤ i ≤ N).

Since we have promised a control model, we want to transform the above problem into a
process that we can control. We achieve this by additionally assuming that we have at our
disposal a unit of positive drift, which we can distribute amongst surviving particles at time
t according to any control policy or strategy we choose.

Let this controlled process be specified by ((Xc
i (t),µi(t)), 0 ≤ t < ∞, 1 ≤ i ≤ N), with drift

terms µi satisfying:

µi(t) ≥ 0, (6.1)∑
i

µi(t) ≤ 1, (6.2)

µi(t) = 0 and Xc
i (t) = 0, if inf

s≤t
Xc
i (s) = 0. (6.3)

Define S as the number of particles that survive forever:

S := #{i : Xc
i (t) > 0,∀t}. (6.4)

As a next step, we want to maximize the expected number of particles that never get absorbed,
i.e. max

strategy
E
[
S
]
. Thus, two major questions arise:

1. Which strategy maximizes E
[
S
]
?

2. What is the resulting value, denoted by V (N), of E
[
S
]
?

41

42 CHAPTER 6. A STOCHASTIC CONTROL MODEL

In this section, we will deal with both these questions, trying to find appropriate and perfectly
justified answers.

Surprisingly enough, we are able to determine the range of V (N) without having to identify
and analyze the optimal strategy, as the following lemma shows.

Lemma 6.1.1 Let N ≥ 1 particles perform independent Brownian motion (Wt)t≥0 as described above.
Then

max
strategy

E
[
S
]
∈
[
c1N

1/2, c2N
1/2] as N →∞, (6.5)

where c1 and c2 are constants.

Proof:

This proof is an extended version of the proof given in [29].

1. Lower Bound

Choose 1 ≤ n ≤ N and consider the following (permitted) strategy: assign drift 1
n to

each particle only after reaching position N
n and if it is one of the first n particles to do

so.

From the literature on Brownian motion we know that:

P
(
(Wt)t≥0, µ = 0, hits

N

n
before hitting 0

)
=

n

N
, (6.6)

P
(
(Wt)t≥0, µ > 0, hits 0 | W0 = x

)
= exp(−2µx). (6.7)

Thus (with µ = 1
n and x = N

n) it follows that:

E
[
S
]
=
(
1− exp

(
− 2N

n2

))
·E
[
min(n,R)

]
, (6.8)

where R denotes a binomial random variable
(
R ∼ bin

(
N , nN

))
.

Letting N →∞ together with the assumption that n ∼ θN
1
2 gives:

E
[
S
]
≈
(
1− exp

(
− 2

θ2

))
θN

1
2 . (6.9)

As Figure 6.1 shows, function θ → (1 − e−
2
θ2)θ takes its maximum value (≈ 0.9) at

θ ≈ 1.25 finally giving the lower bound of the form c1N
1
2 .

2. Upper Bound

Consider an arbitrary strategy and two types of Brownian motion (BM): with and with-
out any drift µ.

Define:

ft(x) := P
(

inf
0≤s≤t

BMs > 0 | BM0 = x
)
, x ≥ 0 and (6.10)

Yt :=
∑
i

fτ−t(Pi(t)), 0 ≤ t ≤ τ , (6.11)

6.1. A THEORETICAL OVERVIEW 43

Figure 6.1: Graph of function f(θ) = (1− e−
2
θ2)θ

for some fix τ > 0, where Pi(t) denotes a (controlled or uncontrolled) process for particle
i at time t.

First, let us consider the uncontrolled process (Xi(t), 0 ≤ t < ∞, 1 ≤ i ≤ N): in this
case, Yt is a martingale.

On the other hand, for the controlled process ((Xc
i (t),µi(t)), 0 ≤ t <∞, 1 ≤ i ≤ N) we

get:

dYt = dMt +
∑
i

µi(t)gτ−t(X
c
i (t)), (6.12)

where M is some martingale and gt(x) := d
dxft(x), since dfτ−t(Wt) = dMt + µgτ−t(Wt)

for a Brownian motion Wt with drift µ.

In the above representation, gt is the density function of the absolute value of a normally
distributed random variable with mean 0 and variance t:

f(x) =
1√
2πt

e−
x2

2t , X ∼ N (0, t) (6.13)

f(x) =

√
2

πt
e−

x2

2t , |X| half normally distributed with µ = 0 and σ2 = t. (6.14)

It is a known fact that the maximum of the latter density function is attained at x = 0,

giving maximum value
√

2
πt and thus implying

dYt ≤ dMt +

√
2

π(τ − t)
. (6.15)

44 CHAPTER 6. A STOCHASTIC CONTROL MODEL

Furthermore, integrating over 0 ≤ t ≤ τ finally gives

Yτ − Y0 ≤Mτ −M0 +

∫ τ

0

√
2

π(τ − t)
dt. (6.16)

Expectation of the above expression yields

E
[
Yτ
]
≤ E

[
Y0
]
+

2
√
2√
π
τ

1
2 . (6.17)

Now we only need an approximation for Y0:

Y0 = Nfτ (1) ≤ N
√

2

πτ
. (6.18)

Finally, consider Yτ to be the number of particles that survive until τ :

Yτ = Sτ := #{i : Xc
i (τ) > 0}. (6.19)

Then we have

E
[
Sτ
]
≤ N

√
2

π
τ−

1
2 +

2
√
2√
π
τ

1
2 . (6.20)

Since
E
[
S
]
≤ E

[
Sτ
]
, (6.21)

we actually have

E
[
S
]
≤ N

√
2

π
τ−

1
2 +

2
√
2√
π
τ

1
2 . (6.22)

As Figure 6.2 shows, the right side of (6.22) attains a minimum at τ = N
2 with value

4√
π
N

1
2 , thus giving an upper bound of the form c2N

1
2 and terminating the proof. �

Having provided an answer for question 2. in the form of an interval, it is now time to
dedicate ourselves to finding a solution to question 1..

As we have seen in Section 2.2, one of the properties of Brownian motion is the so-called
scaling. Thus, for a Brownian motion Wt on (−∞,+∞), we know we can for example rescale
time by N and space by N

1
2 and still get back Brownian motion.

Therefore, in the following replace W (t) by N−
1
2W (tN).

As a result of Lemma 6.1.1, we know that the limit:

lim
N→∞

N−
1
2 E
[
S
]
, (6.23)

should exist.

First, we want to consider the uncontrolled process and afterwards the what we consider to
be optimally controlled process.

6.1. A THEORETICAL OVERVIEW 45

Figure 6.2: Graph of function f(τ) = N
√

2
π τ
− 1

2 + 2
√
2√
π
τ

1
2 for N = 2

The uncontrolled process

Initially, consider the setting without any drift, that is let N independent Brownian particles
start at 1 and kill them upon reaching 0. Moreover, assign "mass" N−

1
2 to each particle.

Under the Brownian scaling mentioned earlier, we are able to deduce the following so-called
"fluid limit" result:

N−
1
2#{i : Xi(tN) ≤ yN

1
2 } →p

∫ y

0
f(t,x)dx, ∀y ≥ 0,∀t > 0 as N →∞, (6.24)

where f(t,x) is a "mass density" at time t, that satisfies the heat equation

d

dt
f =

1

2

d2

dx2
f , (6.25)

with (absorbing) boundary condition

f(t, 0) = 0. (6.26)

The optimally controlled process

Now consider the following control policy: assign drift 1 to the lowest particle.

Intuitively, we assess that the controlled process has a similar behaviour to the uncontrolled

46 CHAPTER 6. A STOCHASTIC CONTROL MODEL

one, i.e. there also exists a fluid limit, however for a different mass density function f c(t,x):

N−
1
2#{i : Xc

i (tN) ≤ yN
1
2 } →p

∫ y

0
f c(t,x)dx, ∀y ≥ 0,∀t > 0 as N →∞, (6.27)

In addition, we also conjecture that this density function f c(t,x) should also solve the heat
equation, however with a different boundary condition and it should also exhibit similar
t-behaviour as the density function of the uncontrolled process:

f(t,x) ∼ f c(t,x) as t→ 0 with x ∼ θt
1
2 , θ > 0. (6.28)

As mentioned before, f c(t,x) satisfies the heat equation but for another boundary condition,
which is obviously the effect of the control policy. Therefore the boundary, denoted by b(t),
changes in the following sense:

b(t) = 0, 0 ≤ t ≤ t0, (6.29)
b(t) > 0, t > t0. (6.30)

leading to the boundary condition

f(t, b(t)) = c, 0 ≤ t <∞. (6.31)

For some t0, b(t) has a unique form given by (6.29) and (6.30), yielding a unique density
function f c(t,x), defined on the domain D := {(t,x) : t ≥ 0, b(t) ≤ x}, such that it satisfies:

• the heat equation on D◦;

• the boundary condition (6.31);

• the extra boundary condition d
dxf

c(t,x)|x=b(t) = 0 for t > t0 and

• the fluid limit of the controlled process.

The above statement implies that for t ≤ t0N , the position of the left-most particle, denoted
by L(t), will be close to 0, (relative to the previously described Brownian scaling), but not
greater than 0, as it previously has been, when choosing an arbitrary control policy (see proof
of Lemma 6.1.1, upper bound).

Thus, instead of the inequality (6.20), we obtain an approximate equality:

E
[
Sτ
]
≈ N

√
2

π
τ−

1
2 +

2
√
2√
π
τ

1
2 , τ ≤ t0N . (6.32)

From the previously asserted behaviour of the boundary b(t), it results moreover that the
number of particles killed after t0N is negligible, thus implying yet another approximation:

E
[
S
]
≈ E

[
St0N

]
. (6.33)

From the proof of Lemma 6.1.1, we know that the right side of (6.32) is minimized at τ = N
2 ,

yielding minimum value 4√
π
N

1
2 . We speculate that t0 = 1

2 for the following 2 reasons:

1. t0 cannot be greater than 1
2 , since E

[
Sτ
]

is a priori decreasing, attains minimum value
at τ = 1

2N and the approximation (6.32) holds;

6.2. A SPECIFIC TWO-DIMENSIONAL MODEL 47

2. t0 cannot be less than 1
2 , because E

[
S
]
≤ E

[
S 1

2
N

]
and (6.33) holds.

To conclude, when choosing policy "apply drift 1 to the lowest particle", we get the maxi-
mum value of the previously defined interval for N →∞:

lim
N→∞

N−
1
2 E
[
S
]
=

4√
π
. (6.34)

6.2 A Specific Two-Dimensional Model

6.2.1 The Real World Setting

As we all know, politics plays a major role in the economy of any country in this world. From
a position of power, such as for example the government’s, one can influence the develop-
ment and evolution of the economy for the better or the worse, through the policies that one
chooses.

Suppose the government of any given country is intent on giving tax breaks to companies.
Furthermore assume that it has two possible policies at its disposal:

1. Democratic Policy: tax breaks to weak companies;

2. Republican Policy: tax breaks to rich companies.

Which strategy is better for the entire economy of that country: to support weak companies
in the hopes of keeping them alive and thus reduce unemployment, or aiding rich companies
in expanding and becoming even richer? What does "better for the entire economy" actually
mean?

Before producing an answer to the above questions, we translate the above problem into a
(corresponding) mathematical model.

6.2.2 The Mathematics Behind the Setting

Suppose the above setting only applies to two companies. The following model was first
formulated by David Aldous (see [29] and [30]).

Let Wi(t), i = 1, 2 be independent Brownian motions, that become controllable by adding drifts
µi(t) with unit sum. Thus the controlled processes satisfy for i = 1, 2 and t ≥ 0:

dXi(t) = µi(t)dt+ dWi(t), Xi(0) = xi, (6.35)

µi(t) ≥ −δ1, µ1 + µ2 = 1, −1

2
≤ δ <∞, (6.36)

where xi and δ are given.

1David Aldous formulated the model with µi ≥ 0. This version, suggested by Oded Palmon, generalizes the
model by assuming that money can be given to the poor after being "stolen" from the rich.

48 CHAPTER 6. A STOCHASTIC CONTROL MODEL

For every t ≥ 0 we are allowed to choose the drifts µi(t) instantaneously, however without any
prior knowledge about the future increments of the independent standard Brownian motions
Wi(t). If Xi(t) hits 0 for some finite value of t, it is assumed that company i goes bankrupt
and disappears from the market.

Let S = {0, 1, 2} denote the set of possible numbers of companies that never go bankrupt, i.e.
that survive forever and s be some element of this set. Having the above processes in mind,
there are two possible optimization criteria that one can take into consideration:

1. maximize the probability that both companies survive forever:

max P(s = 2), (6.37)

2. maximize the expected number of companies that survive forever:

max 1 ·P(s = 1) + 2 ·P(s = 2). (6.38)

Through the insertion of a parameter, denoted by α, one can easily melt these two optimiza-
tion criteria into a single one:

max α ·P(s = 1) + (1− α) ·P(s = 2), α ∈
[
0,

1

2

]
. (6.39)

Thus, when α = 0, the optimization problem reduces to the first optimization criterion, while
for any α 6= 0 in the previously mentioned interval, the problem becomes an equivalent of
the second optimization criterion.

In order to maximize the above problem, the decision-maker has to choose between two
distinct strategies:

1. Push-Bottom Strategy or Democratic Policy: assign drift µ = 1 to the poorer company;

2. Push-Top Strategy or Republican Policy: assign drift µ = 1 to the richer company.

The problem is more difficult for dimensions greater than two and for unequal diffusion
constants of the two Brownian motions.

6.2.3 The Difficulties of the Model

John von Neumann’s and Oskar Morgenstern’s "Theory of Games and Economic Behavior"
(see [15]) is thought to be the foundation of stochastic optimization theory with applications
to finance and economics. It later sparked the debut of the theory of linear programming and
initiated problems of optimal control and optimal stopping times as they are known today.

An early example of such a (one-dimensional) problem, formulated by Paul Samuelson and
solved by Henry McKean is pricing the perpetual American option (see [16]). Through the
principle of smooth fit (see [17, pages 1-6]) solutions to such problems may be guessed, thus
avoiding having to solve various nonlinear differential equations one is inevitably faced with

6.2. A SPECIFIC TWO-DIMENSIONAL MODEL 49

while applying the dynamic programming approach.

After a brief introduction to the evolution of stochastic optimization theory and some alleged
solving techniques, the time has come to present the predicaments of the above model, as
stated by the authors (Henry McKean and Larry Shepp) of [18] themselves:

1. Too much discreteness
One of the problems with the presented model is that it is too discrete and that it does
not involve Itô calculus, which makes it difficult to find an optimal solution.

2. Dimensionality higher than 1
The above model involves two independent Brownian motions, unlike previously solved
problems in finance and economics, that only considered a single Brownian motion.
Whereas the principle of smooth fit allows the solution to be guessed for the latter, the
solution to the former problem breaks new ground.

3. Lack of explicit solution for proof
If the optimal control strategy for the above model can be somehow guessed and the
corresponding value of optimal payoff be found, then proving that the guessed solution
is equivalent to the optimum is trivial.

On the other hand, an existence proof alone, without having found an explicit solution,
is considered to be insufficient and unsatisfactory, since the supermartingale inequalities
can never be verified.

Unfortunately, an explicit solution to the above model could only be guessed for the
exclusive parameters α = 0 and δ = 0.

6.2.4 A Guessed Optimal Solution

"With great luck and also great difficulty", the authors of [18] have guessed the optimal payoff
function V , but only for the case δ = 0 and α = 0 with the democratic policy (also referred to
as "Robin Hood" policy) as optimal control strategy. In the following, we will show that the
push-bottom strategy is optimal.

Let
V (x1,x2) = 1− e−2min(x1,x2) − 2min(x1,x2)e

−(x1+x2) (6.40)

denote the probability that both companies survive forever, π stand for the policy of choice
(either pushing the bottom or the top company) and V π(x1,x2) be the probability that both
companies survive forever under policy π.

Show that:
V π(x1,x2) ≤ V (x1,x2), (6.41)

where V denotes the probability that both companies survive when pushing the bottom
company.

We know that the process P (t) = V (Xπ
1 ,X

π
2) is a supermartingale if and only if its Itô

differential satisfies the following inequation:

E
[
dP (t)

]
= max(Vx1 ,Vx2) +

1

2
(Vx1x1 + Vx2x2) ≤ 0, (6.42)

50 CHAPTER 6. A STOCHASTIC CONTROL MODEL

for all (x1,x2) in the first quadrant, where V ∈ C1 and V ∈ C2 for x1 = x2, i.e on the diagonal.

Process S(t) = V (x1,x2) has drift:

− 2e−2x1 + 2e−(x1+x2) − 2x1e
−(x1+x2) ≤ 0, x1 ≤ x2, (6.43)

thus giving
E
[
S(∞)

]
≤ S(0) = V (x1,x2). (6.44)

However, at t =∞ the following cases can occur:

• both companies have survived, yielding S(∞) = 1;

• only one company has survived and the other one has gone broke, giving S(∞) = 0.

Hence, for any policy π, the supermartingale inequality assures that the probability that both
companies survive is no more than V (x1,x2).

Since V (x1,x2) is per construction bounded, we achieve equality throughout the proof, for
the sole policy "pushing the bottom company", finally showing that V gives the value of the
optimal payoff when de facto choosing the optimal control strategy.

Figure 6.3: Surface plot of function V , for α = 0

6.2. A SPECIFIC TWO-DIMENSIONAL MODEL 51

Figure 6.4: 3D plot of function V , for α = 0

52 CHAPTER 6. A STOCHASTIC CONTROL MODEL

Chapter 7

Proposed Solutions

The authors of [18] suggest a numeric approximation for the solution of the model presented
in the previous chapter.

Suppose we want to maximize the generalized optimization criterion over all nonanticipating
policies π:

max
π

αP(s = 1) + (1− α)P(s = 2). (7.1)

7.1 Numerical Approximation

In the next step we want to obtain an approximate optimal payoff function by numerically
solving the following partial differential equation (PDE) with boundary conditions (BC):

PDE:
1

2
(Vx1x1 + Vx2x2) +max(Vx1 ,Vx2) = 0, (7.2)

BC: along the axes at infinity

V (x1, 0) = α(1− e−2x1), V (x1,∞) = αe−2x1 + (1− α)(1− e−2x1), (7.3)

V (0,x2) = α(1− e−2x2), V (∞,x2) = αe−2x2 + (1− α)(1− e−2x2), (7.4)

resulting from the fact that Brownian motion with µ = 1 and σ = 1 starting at x1 has, as
already known, probability 1− e−2x1 of never hitting 0.

However, since the presence of ∞ is troublsome to say the least, satisfactory results can be
obtained through discretization, i.e. by replacing ∞ with finite values x1max = x2max = const
and using discrete instead of continuous data.

53

54 CHAPTER 7. PROPOSED SOLUTIONS

Thus we obtain the following:

PDE:
1

2
(Vx1x1 + Vx2x2) +max(Vx1 ,Vx2) = 0,

BC: along the axes at x1max = x2max = const

V (x1, 0) = α
1− e−2x1

1− e−2x1max
, V (x1,x2max) = α

(
1− e−2x1

1− e−2x1max

)
+ (1− α)

(e−2x1

1− e−2x1max

)
,

V (0,x2) = α
1− e−2x2

1− e−2x2max
, V (x1max ,x2) = α

(
1− e−2x2

1− e−2x2max

)
+ (1− α)

(e−2x2

1− e−2x2max

)
,

where

s(x1) := P(X1(τ) = x1max) =
1− e−2x1

1− e−2x1max
= V (x1, 0), (7.5)

if
X1(t) = t+W (t) (7.6)

and
τ := inf{t|X1(t) /∈

[
0,x1max

]
}. (7.7)

Figure 7.1 portrays the boundary conditions of the above PDE. Since the function V is sym-

Figure 7.1: Boundary conditions of the discretized model

metric about the second diagonal, it suffices to only consider for example the shaded area, i.e
x1 ≤ x2.

Next, we consider two cases corresponding to the democratic and the republican policy re-
spectively.

7.1. NUMERICAL APPROXIMATION 55

1. Democratic Policy (Push-Bottom Strategy)

In this case, the PDE has the following form:

1

2
(Vx1x1 + Vx2x2) + Vx1 = 0, for x1 ≤ x2 (7.8)

and the BC remain unchanged.

By replacing all partial derivatives with their corresponding Finite Difference Approx-
imations (recall Section 5.1, particularly Table 5.1) and specifically choosing the central
order difference approximation to compute Vx1 and Vx2

1, we obtain the following equa-
tion:

Vi+1,j − Vi−1,j
2∆x1

+
1

2

Vi+1,j − 2Vi,j + Vi−1,j
(∆x1)2

+
Vi,j+1 − 2Vi,j + Vi,j−1

(∆x2)2
= 0, (7.9)

which, after reducing to a common denominator and sorting out the Vi,j terms, yields:

Vi,j =
(1+ ∆x1)(∆x2)2Vi+1,j + (1− ∆x1)(∆x2)2Vi−1,j + (∆x1)2(Vi,j+1 + Vi,j−1)

2
(
(∆x1)2 + (∆x2)2

) . (7.10)

Division of both the nominator and the denominator by (∆x2)2 and insertion of c := ∆x1
∆x2

gives

Vi,j =
(1+ ∆x1)Vi+1,j + (1− ∆x1)Vi−1,j + c2(Vi,j+1 + Vi,j−1)

2(c2 + 1)
. (7.11)

Finally, we consider discrete, equidistant variables, translating into ∆x1 = ∆x2, which is
equivalent to c = 1 and which produces the following Finite Difference Scheme:

Vi,j =
(1+ ∆x1)Vi+1,j + (1− ∆x1)Vi−1,j + Vi,j+1 + Vi,j−1

4
. (7.12)

• Jacobi Iteration

Solving equation (7.12) through Jacobi Iteration implies initializing all values Vi,j
at 0 for all interior grid points for the first iteration at s = 0. The formula then
transforms into

V s+1
i,j =

(1+ ∆x1)V s
i+1,j + (1− ∆x1)V s

i−1,j + V s
i,j+1 + V s

i,j−1
4

.

• Successive over Relaxation

As mentioned before, this method allows us to use in the current iteration already
approximated values in the same iteration, thus modifying equation (7.12) in the
following way:

V s+1
i,j = (1−w)V s

i,j +w
(1+ ∆x1)V s

i+1,j + (1− ∆x1)V s+1
i−1,j + V s+1

i,j+1 + V s
i,j−1

4
.

Setting w = 1 gives the Gauss-Seidel formula for equation (7.12).

1x1 obviously stands for x and x2 for y

56 CHAPTER 7. PROPOSED SOLUTIONS

2. Republican Policy (Push-Top Strategy)

In this case, the PDE has the following form:

1

2
(Vx1x1 + Vx2x2) + Vx2 = 0, for x1 ≤ x2 (7.13)

and the BC remain unchanged.

Through similar calculations, an analogous FDS is obtained for this second case:

Vi,j =
(1+ ∆x2)Vi,j+1 + (1− ∆x2)Vi,j−1 + Vi+1,j + Vi−1,j

4
. (7.14)

• Jacobi Iteration

In this case the formula is:

V s+1
i,j =

(1+ ∆x2)V s
i,j+1 + (1− ∆x2)V s

i,j−1 + V s
i+1,j + V s

i−1,j
4

,

where for s = 0 all inner points of the grid are set to be 0.

• Successive over Relaxation

In this case the formula is:

V s+1
i,j = (1−w)V s

i,j +w
(1+ ∆x2)V s+1

i,j+1 + (1− ∆x2)V s
i,j−1 + V s

i+1,j + V s+1
i−1,j

4
,

again implying that values computed in the current iteration may be used to ap-
proximate other values within the same iteration.

w = 1 again yields the Gauss-Seidel formula for equation (7.13).

3. Mixed Policy (Strategy)

This is the case where we implement the PDE as initially given, i.e. as

1

2
(Vx1x1 + Vx2x2) +max(Vx1 ,Vx2), for x1 ≤ x2, (7.15)

with unchanged boundary conditions.

The FDS for this case has the following form:

Vi,j =
1

4
(Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1)+

+
∆x1
4

max
(
(Vi+1,j − Vi−1,j), (Vi,j+1 − Vi,j−1)

)
. (7.16)

Remark 7.1.1 Since we assumed equality between ∆x1 and ∆x2, it is irrelevant which one of
them we use to obtain the needed finite difference scheme.

7.2. MONTE CARLO SIMULATION 57

• Jacobi Iteration

In this case the formula is:

V s+1
i,j =

1

4
(V s
i+1,j + V s

i−1,j + V s
i,j+1 + V s

i,j−1)+

+
∆x1
4

max
(
(V s
i+1,j − V s

i−1,j), (V
s
i,j+1 − V s

i,j−1)
)
,

where for s = 0 all inner grid points are initialized to be 0.

• Successive over Relaxation

The formula for this this method is:

V s+1
i,j = (1−w)V s

i,j +w
1

4
(V s
i+1,j + V s+1

i−1,j + V s+1
i,j+1 + V s

i,j−1)+

+
∆x1
4

max
(
(V s
i+1,j − V s+1

i−1,j), (V
s+1
i,j+1 − V

s
i,j−1)

)
,

thus permitting the use of some of the values computed in the current iteration
within the same iteration.

The Gauss-Seidel formula for equation (7.16) is again given for w = 1.

Remark 7.1.2 The notation used thus far does not correspond to the notation used later on in the
source codes. In the usual notation Vi,j , i stands for the x1-variable and j for the x2-variable whereas
when coding, the matrix notation is used. Therefore, in V (i, j) i refers to the x2-mesh points and j to
the x1-mesh points.

7.2 Monte Carlo Simulation

1. No Strategy / Policy

First we take a look at the initial situation, i.e. when no policy has been yet applied.

In the initial situation we have two companies modelled as Brownian motions (Wi(t))t≥0,
starting at xi > 0, for i = 1, 2:

Xi(t0) = xi, i = 1, 2, (7.17)

Xi(tj+1) = Xi(tj) + σi
√
tj+1 − tjZi(tj+1), (7.18)

where σ = 1 in the original model and Zi(tj), i = 1, 2, j = 1, . . . ,n are independent,
identically distributed standard normal random variables.

If Xi(tj) ≤ 0, then company i is assumed to have gone bankrupt at time point tj ,
implying that its value and the values of its successors in time is set to be 0:

Xi(tj) ≤ 0 ⇒ Xi(tk) = 0, for k = j, j + 1, . . . ,n. (7.19)

2. Arbitrary Strategy / Policy

In this case we distribute the unit of positive drift amongst the two companies regardless

58 CHAPTER 7. PROPOSED SOLUTIONS

of who needs it the most, i.e. randomly.

Recalling Subsection 6.2.2, we know that the drifts µi, i = 1, 2 should satisfy:

µi(tj) ≥ −δ, −1

2
≤ δ <∞, (7.20)

µ1(tj) + µ2(tj) = 1, ∀j = 1, . . . ,n. (7.21)

Therefore, we assume one of the drifts µi(tj) to be uniformly distributed on the interval(
− δ(tj), 1− (−δ(tj))

)
and compute the other one as follows:

µ1(tj) ∼ U
(
− δ(tj), 1+ δ(tj)

)
⇒ µ2(tj) = 1− µ1(tj) ∀j = 1, . . . ,n. (7.22)

The process described above thus becomes:

Xi(t0) = xi, i = 1, 2, (7.23)

Xi(tj+1) = Xi(tj) + µi(tj+1)(tj+1 − tj) + σi
√
tj+1 − tjZi(tj+1), (7.24)

for j = 0, . . . ,n− 1 and equation (7.19) applies here too.

3. Push-Bottom Strategy / Democratic Policy

This is the case where the unit drift is being entirely given to the poorer company
namely at each time point tj , j = 1, . . . ,n.

After generating data for the 2 companies according to no strategy, their values are
compared at each time point tj , ∀j = 1, . . . ,n:

• min
i=1,2

Xi(tj) = X1(tj)

Assigning drift 1 to the bottom company translates to:

Xi(t0) = xi, i = 1, 2, (7.25)

X1(tj+1) = X1(tj) + 1 · (tj+1 − tj) + σ1
√
tj+1 − tjZ1(tj+1), (7.26)

X2(tj+i) = X2(tj) + σ2
√
tj+1 − tjZ2(tj+1). (7.27)

• min
i=1,2

Xi(tj) = X2(tj)

Applying drift 1 to the poorer company gives:

Xi(t0) = xi, i = 1, 2, (7.28)

X1(tj+i) = X1(tj) + σ1
√
tj+1 − tjZ1(tj+1), (7.29)

X2(tj+1) = X2(tj) + 1 · (tj+1 − tj) + σ2
√
tj+1 − tjZ2(tj+1). (7.30)

Ultimately, if a company goes bankrupt, condition (7.19) holds.

4. Push-Top Strategy / Republican Policy

In this case, the unit drift is distributed to the richer company at each time point tj ,
j = 1, . . . ,n that is after comparing data generated according to no policy.

7.2. MONTE CARLO SIMULATION 59

• max
i=1,2

Xi(tj) = X1(tj)

Applying drift 1 to the richer company translates to:

Xi(t0) = xi, i = 1, 2,

X1(tj+1) = X1(tj) + 1 · (tj+1 − tj) + σ1
√
tj+1 − tjZ1(tj+1),

X2(tj+i) = X2(tj) + σ2
√
tj+1 − tjZ2(tj+1).

• max
i=1,2

Xi(tj) = X2(tj)

Giving the unit drift to the richer company means:

Xi(t0) = xi, i = 1, 2,

X1(tj+i) = X1(tj) + σ1
√
tj+1 − tjZ1(tj+1),

X2(tj+1) = X2(tj) + 1 · (tj+1 − tj) + σ2
√
tj+1 − tjZ2(tj+1).

Ultimately, if a company goes bankrupt, condition (7.19) holds.

Remark 7.2.1 It is assumed that once a company goes bankrupt, the surviving company automatically
receives the full unit of drift until its own potential bankruptcy.

60 CHAPTER 7. PROPOSED SOLUTIONS

Chapter 8

Results

8.1 Numerical Approximation

Three separate numerical approximations have been conducted, one for each policy, their re-
sulting functions being denoted by V1 for the democratic, V2 for the republican and V for the
mixed policy respectively.

To that purpose, we assumed x1max = x2max = 8, N = 200 grid points (excluding 0) and
∆x = ∆y = 0.04 and conducted approximations of the objective function for three values of
the parameter α: α = 1

3 , α = 2
5 and α = 1

2 .

With these parameters, the finite difference scheme depicted in Section 7.1 was successfully
implemented and the approximations of functions V1, V2 and V were found using Jacobian
Iteration and Successive over Relaxation (with parameters w = 1

2 , w = 3
2 and w = 1, the latter

transforming the Successive over Relaxation method into Gauss-Seidel Iteration), all of which
leading to very similar results, the difference between them consisting in diverse iteration
numbers.

Worth mentioning at this point is that the capacity of the computer on which the approxima-
tions were conducted did not allow the use of greater values for N and x1max and x2max since
it ran out of memory.

In the following, plots for the obtained results can be found. In the pictures below, black
means that the bottom company is pushed while white stands for pushing the top company.
On the anti-diagonal, it is irrelevant which company is pushed.

First, let us recall how the partial differential equation describing the dynamics of the objec-
tive function looked like:

1

2
(Vx1x1 + Vx2x2) +max(Vx1 ,Vx2) = 0. (8.1)

61

62 CHAPTER 8. RESULTS

8.1.1 Democratic Policy

As previously mentioned, the democratic policy corresponds to choosing Vx1 as the maximum
in the above equation, for x1 ≤ x2, therefore enabling the support for the bottom company.
Thus we obtain an approximation of function V which we will denote by V1.

Figure 8.1: Vx1 − Vx2 for function V1 with α = 1
3

Figure 8.2: Vx1 − Vx2 for function V1 with α = 2
5

As can be seen in Figures 8.1 and 8.2, in the area near the origin, i.e. where both companies
are in danger of going bankrupt, the top company is being pushed. For α = 2

5 this area gets
larger. When both companies are well off, pushing the top company also appears to be giving
greater values for the objective function. However this area may be the effect of the chosen
values for the numerical approximation. Since the upper and the right boundaries exhibit
greater values than the axes boundaries (particularly the right upper corner takes the greatest
values), the approximation of Vy is more prone to producing greater values than that of Vx.

α = 1
2 is a special case, where it appears to be optimal to only push the top company, as

8.1. NUMERICAL APPROXIMATION 63

Figure 8.3: Vx1 − Vx2 for function V1 with α = 1
2

results from Figure 8.3.

8.1.2 Republican Policy

The republican policy corresponds to choosing Vx2 as the maximum in equation (8.1), for
x1 ≤ x2 (see Section 7.1) i.e. it is thus made sure that the top company is being "pushed".
Consequently we get an approximation of function V which we denote by V2.

Figures 8.4 and 8.5 show yet again that near the origin, it is better to push the top company,
whereby the white area is bigger the greater α is. However, the white area opposed to the
origin is even bigger in this case than in the previous one and is subject to the same effect as
mentioned previously.

Figure 8.6 exhibits the same behaviour for α = 1
2 as Figure 8.3 does (see previous subsection).

Figure 8.4: Vx2 − Vx1 for function V2 with α = 1
3

64 CHAPTER 8. RESULTS

Figure 8.5: Vx2 − Vx1 for function V2 with α = 2
5

Figure 8.6: Vx2 − Vx1 for function V2 with α = 1
2

8.1.3 Mixed Policy

It is now obvious, that no pure democratic or republican policy is the optimal objective func-
tion. Truth be told, for 0 < α < 1

2 the optimal policy is a mixture of both the push-bottom and
the push-top strategies. Nonetheless, for the sole, special case of α = 1

2 , the optimal policy is
the pure republican policy.

The optimal objective functions for α = 1
3 , α = 2

5 and α = 1
2 are given below in Figures 8.7,

8.8 and 8.9.

8.1. NUMERICAL APPROXIMATION 65

Figure 8.7: Optimal function V for α = 1
3

Figure 8.8: Optimal function V for α = 2
5

66 CHAPTER 8. RESULTS

Figure 8.9: Optimal function V for α = 1
2

8.1.4 Convergence Optimization

In this subsection, we want to make a comparison between the efficiency of the implemented
iterative methods. To this end, we have conducted several experiments, varying the number
of grid points. Thus, Jacobi Iteration, Gauss-Seidel Iteration and Successive over Relaxation
(both under- and over-relaxation) were submitted to an efficiency test for N = 200, N = 100
and N = 50 grid points.

The resulting numbers of iterations for V1, V2 and V , for α = 1
3 , α = 2

5 , α = 1
2 , are given in

Table 8.1.

It is evident, that the Successive over Relaxation method with parameter w = 3
2 signifying

over-relaxation, is by far the most efficient iterative method since it needs the smallest number
of iterations to reach the same result as all the other ones.

Noteworthy is that for α = 1
2 , attaining the optimal result requires the same number of

iterations for V2 and V , again suggesting that in this case it is optimal to always choose the
republican policy and push the top company.

8.1. NUMERICAL APPROXIMATION 67

Jacobi Gauss-Seidel SoR (w = 1
2) SoR (w = 3

2)

N = 200 α = 1
3 V1 67.891 35.305 99.411 12.475

V2 29.831 15.426 43.709 5.393

V 58.950 30.782 85.979 10.934

α = 2
5 V1 67.474 35.097 98.786 12.406

V2 29.689 15.354 43.495 5.369

V 57.630 30.121 84.000 10.713

α = 1
2 V1 66.754 34.736 97.705 12.286

V2 29.450 15.234 43.135 5.328

V 29.450 15.234 43.135 5.328

N = 100 α = 1
3 V1 18.346 9.509 26.915 3.336

V2 8.016 4.122 11.761 1.419

V 16.100 8.363 23.533 2.938

α = 2
5 V1 18.242 9.457 26.758 3.318

V2 7.981 4.105 11.707 1.413

V 15.769 8.198 23.036 2.883

α = 1
2 V1 18.062 9.367 26.488 3.289

V2 7.921 4.047 11.617 1.402

V 7.921 4.047 11.617 1.402

N = 50 α = 1
3 V1 4.927 2.545 7.244 880

V2 2.138 1.091 3.144 360

V 4.363 2.253 6.392 775

α = 2
5 V1 4.901 2.532 7.205 876

V2 2.128 1.087 5.130 359

V 4.280 2.212 6.268 761

α = 1
2 V1 4.856 2.510 7.137 868

V2 2.114 1.079 3.108 356

V 2.114 1.079 3.108 356

Table 8.1: Number of iterations used to approximate V1, V2 and V

68 CHAPTER 8. RESULTS

8.2 Monte Carlo Simulation

The Monte Carlo simulation was implemented for n = 100 time points (excluding 0) over the
time interval

[
0,T

]
, with T = 10, thus determining the time step-size to be ∆t = 0.1.

N = 10.000 simulations were conducted and the objective function was calculated depending
on three values for the parameter α: α = 0 (corresponding to the probability that both
companies survive forever), α = 1

3 (corresponding to the expected number of companies that
remain solvent) and α = 1

2 (meaning that the probability that both companies survive and
the probability that only one company survives are equally weighed).

First, an initial situation is being considered. For the initial situation, we have chosen the
following values: x1 = 10−5 and x2 = 2 translating into almost bankruptcy for one company
while the other one is well off, σ1 = σ2 = 1, δ = 0.

Figures 8.10 and 8.11 portray the initial situation, showing for α = 0 and α = 1
3 that pushing

the bottom company is optimal. Figures 8.12 and 8.13 show that pushing the richer company
is slightly better than pushing the weaker one, for α = 1

2 .

Figure 8.10: Objective function with x1 = 10−5,x2 = 2,σ1 = σ2 = 1, δ = 0, for α = 0

8.2. MONTE CARLO SIMULATION 69

Figure 8.11: Objective function with x1 = 10−5,x2 = 2,σ1 = σ2 = 1, δ = 0, for α = 1
3

Figure 8.12: Objective function with x1 = 10−5,x2 = 2,σ1 = σ2 = 1, δ = 0, for α = 1
2

70 CHAPTER 8. RESULTS

Table 8.2 portrays the evolution of the number of companies if no policy, the arbitrary, demo-

Figure 8.13: Excerpt from Figure 8.12

cratic and republican policies are implemented, for the first 10 time points. At t0 it is assumed
that the starting points xi, i = 1, 2 are all greater than 0.

No Policy Arbitrary Policy Democratic Policy Republican Policy

#1 #2 #1 #2 #1 #2 #1 #2

t0 0 10.000 0 10.000 0 10.000 0 10.000

t1 5.029 4.971 4.413 5.587 3.769 6.231 5.029 4.971

t2 6.297 3.703 5.536 4.464 4.764 5.236 6.297 3.703

t3 6.876 3.122 6.074 3.926 5.218 4.781 6.877 3.123

t4 7.237 2.759 6.364 3.634 5.456 4.542 7.239 2.760

t5 7.480 2.501 6.596 3.401 5.623 4.373 7.494 2.503

t6 7.688 2.277 6.760 3.234 5.747 4.247 7.706 2.289

t7 7.842 2.086 6.928 3.062 5.839 4.150 7.885 2.107

t8 7.952 1.941 7.024 2.959 5.935 4.050 8.024 1.965

t9 8.038 1.797 7.113 2.865 5.992 3.986 8.147 1.837

t10 8.070 1.704 7.180 2.792 6.050 3.922 8.233 1.746

Table 8.2: Number of times that a company and both companies survive in the initial situation

8.2. MONTE CARLO SIMULATION 71

The evolution of the number of times that only one company survives and of the number of
times that both companies survive over tj , j = 1, . . . , 10 indicates that the democratic policy
majorly enhances the number of times that both companies survive and that there also exists
a strong correlation between the republican policy and the growing number of times that a
single company survives. As intuited, the arbitrary policy is a more moderate policy than
both the democratic and the republican ones, which do seem rather extreme.

Now, we will continue on by varying the parameters.

First in line are the initial values x1 and x2.

What happens if, for example, both companies have very low starting points, i.e. if they are
both in danger of going bankrupt?

In Figures 8.14, 8.15, 8.16 and 8.17, we keep all parameters intact except the initial values
which we change to x1 = 10−7 and x2 = 10−10.

Obviously, if the criterion is to maximize the probability that both companies survive, α = 0,
the democratic policy is optimal, whereas if the criterion is to maximize the expected number
of companies that remain solvent (α = 1

3) and (α = 1
2), the best policy appears to be the

republican one.

Figure 8.14: Objective function with x1 = 10−7,x2 = 10−10,σ1 = σ2 = 1, δ = 0, for α = 0

72 CHAPTER 8. RESULTS

Figure 8.15: Objective function with x1 = 10−7,x2 = 10−10,σ1 = σ2 = 1, δ = 0, for α = 1
3

Figure 8.16: Excerpt from Figure 8.15

8.2. MONTE CARLO SIMULATION 73

Figure 8.17: Objective function with x1 = 10−7,x2 = 10−10,σ1 = σ2 = 1, δ = 0, for α = 1
2

Figure 8.18: Objective function with x1 = 14,x2 = 14,σ1 = σ2 = 1, δ = 0, for α = 0

74 CHAPTER 8. RESULTS

But what happens if both companies are very well off at the beginning?

By taking for example x1 = 14 and x2 = 14 it is revealed that no company goes bankrupt and
that therefore all policies are optimal as Figure 8.18 shows.

Remark 8.2.1 Figure 8.18 only shows the result of the simulation for α = 0. The behaviour of the
objective function is preserved for α = 1

3 and α = 1
2 , respectively, however, the straight line is located

at 2
3 and 1

2 , respectively.

Figure 8.19: Objective function with x1 = 10−5,x2 = 2,σ1 = 0.004,σ2 = 0.8, δ = 0, for α = 0

8.2. MONTE CARLO SIMULATION 75

We now want to vary the volatilities, which is why we take for the initially near bankrupt
company σ1 = 0.004 and for the better endowed company σ2 = 0.8.

Figures 8.19, 8.20, 8.21 and 8.22 reveal that pushing the bottom company is the optimal strat-
egy for all three values of α.

Figure 8.20: Objective function with x1 = 10−5,x2 = 2,σ1 = 0.004,σ2 = 0.8, δ = 0, for α = 1
3

76 CHAPTER 8. RESULTS

Figure 8.21: Objective function with x1 = 10−5,x2 = 2,σ1 = 0.004,σ2 = 0.8, δ = 0, for α = 1
2

Figure 8.22: Excerpt from Figure 8.21

8.2. MONTE CARLO SIMULATION 77

Figure 8.23: Objective function with x1 = 10−5,x2 = 2,σ1 = σ2 = 1, δ = 10, for α = 0

Finally, what is left to do is to vary the parameter δ.

Figure 8.24: Objective function with x1 = 10−5,x2 = 2,σ1 = σ2 = 1, δ = 10, for α = 1
3

78 CHAPTER 8. RESULTS

In the case of δ = 10, the democratic policy is the best strategy for α = 0 and α = 1
3 as

Figure 8.25: Objective function with x1 = 10−5,x2 = 2,σ1 = σ2 = 1, δ = 10, for α = 1
2

indicated by Figures 8.23 and 8.24, however, for α = 1
2 , Figure 8.25 suggests that the optimal

strategy is the arbitrary one.

Chapter 9

Extensions to Higher Dimensionality

9.1 The Three-Dimensional Case

After analyzing the outcomes of the 2-dimensional model, the time has come to ask the
following question:

What is the optimal policy for higher dimensions?

This thesis also deals with the three-dimensional extension of the model presented in Section
6.2.

We therefore assume three companies on the market governed by Brownian motion, as given
before. Thus, the controlled processes satisfy for i = 1, 2, 3 and t ≥ 0:

dXi(t) = µi(t)dt+ dWi(t), Xi(0) = xi, (9.1)
µi(t) ≥ 0, µ1 + µ2 + µ3 = 1, (9.2)

where xi are given.

Either the probability that all three companies survive or the expected number of companies
that never go bankrupt are yet again the two possible optimization criteria, however, this time
without the scaling effect given by α.

Again, one can either push the bottom or the top company. Which policy is better in the
3-dimensional case?

Figures 9.1 and 9.2 indicate that for x1 = 10−1,x2 = 1,x3 = 2, with σ1 = σ2 = σ3 = 1 the
democratic policy is the optimal one.

For an in-depth analysis, resulting from the variation of this model’s parameters, the inter-
ested reader is referred to the source codes inserted in this thesis’ Appendix.

79

80 CHAPTER 9. EXTENSIONS TO HIGHER DIMENSIONALITY

Figure 9.1: Objective function with x1 = 10−1,x2 = 1,x3 = 2,σ1 = σ2 = σ3 = 1

Figure 9.2: Objective function with x1 = 10−1,x2 = 1,x3 = 2,σ1 = σ2 = σ3 = 1

Chapter 10

Conclusions

Figure 10.1: Conclusion summary

Case α = 0

The case α = 0 corresponds to maximizing the probability that both companies remain sol-
vent.

In [18] McKean and Shepp guessed the optimal function (see Subsection 6.2.4), indicating
that it results from always pushing the bottom company. The results obtained from the many
Monte Carlo simulations conducted fully support this hypothesis.

Therefore, the democratic policy is the optimal policy if the criterion is to maximize the
probability that both companies survive.

Case 0 < α < 1
2

The case 0 < α < 1
2 corresponds to maximizing the expected number of companies that never

go bankrupt weighed with the help of α (see Subsection 6.2.2), whereby the probability that
both companies survive is given more importance through a greater weighing factor.

81

82 CHAPTER 10. CONCLUSIONS

The results of both the numerical approximations and the Monte Carlo simulations suggest
the optimal policy is the democratic one except for the case where both companies are in
danger of going bankrupt. In this particular situation, it is optimal to choose the republican
policy and push the top company.

The Monte Carlo simulation additionally shows that if both companies are well-off, either
policy is optimal.

Hence, if the criterion is to maximize the expected number of companies that survive for-
ever, for 0 < α < 1

2 , the optimal policy is a mixture of the democratic and the republican
policies.

Case α = 1
2

The case α = 1
2 corresponds to maximizing the expected number of companies that never go

bankrupt , whereby the probability that one company survives and the probability that both
companies survive are equally weighed.

The numerical approximations indicate that always pushing the top company is the optimal
policy in this case. This hypothesis is also backed up by the Monte Carlo simulations.

Thus, if the criterion is to maximize the expected number of companies that survive forever,
for α = 1

2 , the optimal policy is the republican policy.

Appendix A

Source Codes General

The appendices are dedicated to posting the source codes of every algorithm implemented
for this thesis. The programming language used to do so is MATLAB1 (Version R2013b).

The source codes were implemented on a Sony Vaio laptop having the following features:

• CPU: Intel Core 2 Duo Processor T7500;

• Memory: 3 GB/Go DDR2 SDRAM;

• HDD: 320 GB/Go;

• Operating system: Windows 7 32-bit

Source code for producing the graph in Figure 2.1

% ==== Generating One-Dimensional Brownian Motion ===

% Method parameters

N=3;

n=1e3;

T=1;

% Setup Mesh

dt=T/n;

sq_dt=sqrt(dt);

t=0:dt:T;

% Creating array for the 1-dimensional Brownian motion

W=zeros(n+1,N);

W(1,:)=0;

% Generation of standard normally distributed random numbers

Z=[zeros(1,N);randn(n,N)];

% Generation of Brownian motions via Euler Scheme

W=cumsum(W+sq_dt*Z);

1
www.mathworks.com

83

www.mathworks.com

84 APPENDIX A. SOURCE CODES GENERAL

% Plot

plot(t,W,'LineWidth',1.5);

xlabel('time');

ylabel('position');

% axis([0 1 -10 10])

Source code for producing the graph in Figure 2.2

% ==== Generating Two-Dimensional Brownian Motion ====

% Model parameters

N=3;

n=1e3;

T=1;

% Setup Mesh

dt=T/n;

sq_dt=sqrt(dt);

t=0:dt:T;

% Creating array for the 2-dimensional Brownian motion

W_x=zeros(n+1,N);

W_x(1,:)=0;

W_y=zeros(n+1,N);

W_y(1,:)=0;

% Generation of standard normally distributed random numbers

Z_x=[zeros(1,N);randn(n,N)];

Z_y=[zeros(1,N);randn(n,N)];

% Generation of Brownian motions via Euler Scheme

W_x=cumsum(W_x+sq_dt*Z_x);

W_y=cumsum(W_y+sq_dt*Z_y);

% Plot

plot(W_x,W_y,'LineWidth',1.5);

xlabel('position abscissa');

ylabel('position ordinate');

Source code for producing the graph in Figure 6.1

x=-5:.01:5;

y=(1-exp(-2./x.^2)).*x;

plot(x,y), hold on

xL = xlim;

yL = ylim;

line([0 0], yL); %x-axis

line(xL, [0 0]); %y-axis

hold off;

xlabel('abscissa axis');

ylabel('ordinate axis');

Source code for producing the graph in Figure 6.2

x=0:.1:5;

y=2*sqrt(2./(pi.*x))+2.*sqrt(2/pi.*x);

plot(x,y);

xlabel('abscissa axis');

ylabel('ordinate axis');

85

Source code for producing the graphs in Figures 6.3 and 6.4

% ==== Guessed Solution ====

% Setup Parameters

N=2*1e2;

x_max=8;

y_max=8;

% Setup Mesh

delta_x=x_max/N;

delta_y=y_max/N;

x_mesh=0:delta_x:x_max;

y_mesh=y_max:-delta_y:0;

[X_mesh,Y_mesh]=meshgrid(x_mesh,y_mesh);

% Guessed Solution for the sole case alpha=0, delta=0

V=1-exp(-2*min(X_mesh,Y_mesh))-2*min(X_mesh,Y_mesh).*exp(-(X_mesh+Y_mesh));

% Plot

surface(X_mesh,Y_mesh,V), shading interp;

rotate3d on;

grid off;

xlabel('x_1');

ylabel('x_2');

title(colorbar,'V(x_1,x_2)');

86 APPENDIX A. SOURCE CODES GENERAL

Appendix B

Source Code Numerical Approximation

B.1 Jacobi Iteration

% ========= Finite Difference Method through Jacobi Iteration ==========

% ======= Parameters =======

% Model parameters

x_max=8;

y_max=8;

alpha=1/3; % other values: 1/2, 2/5

% Finite Difference Method parameters

N=2*1e2; % other coefficients: 1, 1/2, 1/5, 1/10

% ======= Setup Mesh =======

dx=x_max/N;

dy=y_max/N;

x_mesh=0:dx:x_max;

y_mesh=y_max:-dy:0;

% ======= Boundary Conditions =======

% Creating array for the Push-Bottom Strategy (Democratic Policy)

V1=zeros(N+1,N+1);

V1(1,:)=(1-alpha)*(1-exp(-2*x_mesh))/(1-exp(-2*x_max))+alpha*(1-(1-exp(-2*x_mesh))/(1-exp(-2*x_max)));

V1(:,1)=alpha*(1-exp(-2*y_mesh))/(1-exp(-2*y_max));

% Creating array for the Push-Top Strategy (Republican Policy)

V2=V1;

% Creating array for the Mixed Strategy / Policy

V=V1;

% ======= Jacobi Iteration =======

TOL=1e-10; % initialization of the tolerance

% ===== Push-Bottom Strategy (Democratic Policy) =====

% === Approximation of function V1 ===

iterations1=0;

87

88 APPENDIX B. SOURCE CODE NUMERICAL APPROXIMATION

distance1=TOL+1;

V1_new=V1;

while(distance1>TOL)

iterations1=iterations1+1;

c1=0;

for i=2:N-1

c1=c1+1;

for j=2:N-c1

V1_new(i,j)=((1-dx)*V1(i,j-1)+V1(i-1,j)+(1+dx)*V1(i,j+1)+V1(i+1,j))/4;

end

end

for i=2:N

j=N-i+2;

V1_new(i,j)=((2-dx)*V1(i,j-1)+(2+dx)*V1(i-1,j))/4;

end

difference1=V1_new(2:N,2:N)-V1(2:N,2:N);

distance1=max(max(difference1));

V1(2:N,2:N)=V1_new(2:N,2:N);

end

display(iterations1);

V1=V1+fliplr(tril(flipud(V1),-1))';

% === Approximation of functions V1_x and V1_y ===

% = V1_x =

V1_x=zeros(N+1,N+1);

V1_x(1,:)=2*(1-2*alpha)*exp(-2*x_mesh)/(1-exp(-2*x_max));

V1_x(1,1)=0;

% Values of V1_x up to anti-diagonal-1

c1_x=0;

for j=2:N-1

c1_x=c1_x+1;

for i=2:N-c1_x

V1_x(i,j)=(V1(i,j+1)-V1(i,j-1))/(2*dx);

end

end

% Values of V1_x on anti-diagonal

for i=2:N

j=N-i+2;

V1_x(i,j)=(V1(i-1,j)-V1(i,j-1))/(2*dx);

end

V1_x=V1_x+fliplr(tril(flipud(V1_x),-1))';

% = V_y =

V1_y=zeros(N+1,N+1);

V1_y(:,1)=2*alpha*exp(-2*y_mesh)/(1-exp(-2*y_max));

V1_y(N+1,1)=0;

V1_y(1,N+1)=V1_x(1,N+1);

% Values of V1_y up to anti-diagonal-1

c1_y=0;

for j=2:N-1

c1_y=c1_y+1;

for i=2:N-c1_y

V1_y(i,j)=(V1(i-1,j)-V1(i+1,j))/(2*dy);

end

end

% Values of V1_y on anti-diagonal

for i=2:N

j=N-i+2;

V1_y(i,j)=(V1(i-1,j)-V1(i,j-1))/(2*dy);

end

B.1. JACOBI ITERATION 89

V1_y=V1_y+fliplr(tril(flipud(V1_y),-1))';

% Difference between V1_x and V1_y

diff1=V1_x-V1_y;

for i=1:N+1

for j=1:N+1

if (diff1(i,j)<0)

diff1(i,j)=0;

else

diff1(i,j)=1;

end

end

end

% ===== Push-Top Strategy (Republican Policy) =====

% === Approximation of function V2 ===

iterations2=0;

distance2=TOL+1;

V2_new=V2;

while(distance2>TOL)

iterations2=iterations2+1;

c2=0;

for i=2:N-1

c2=c2+1;

for j=2:N-c2

V2_new(i,j)=(V2(i,j-1)+(1+dy)*V2(i-1,j)+V2(i,j+1)+(1-dy)*V2(i+1,j))/4;

end

end

for i=2:N

j=N-i+2;

V2_new(i,j)=((2-dy)*V2(i,j-1)+(2+dy)*V2(i-1,j))/4;

end

difference2=V2_new(2:N,2:N)-V2(2:N,2:N);

distance2=max(max(difference2));

V2(2:N,2:N)=V2_new(2:N,2:N);

end

display(iterations2);

V2=V2+fliplr(tril(flipud(V2),-1))';

% === Approximation of functions V2_x and V2_y ===

% = V2_x =

V2_x=zeros(N+1,N+1);

V2_x(1,:)=2*(1-2*alpha)*exp(-2*x_mesh)/(1-exp(-2*x_max));

V2_x(1,1)=0;

% Values of V2_x up to anti-diagonal-1

c2_x=0;

for j=2:N-1

c2_x=c2_x+1;

for i=2:N-c2_x

V2_x(i,j)=(V2(i,j+1)-V2(i,j-1))/(2*dx);

end

end

% Values of V2_x on anti-diagonal

for i=2:N

j=N-i+2;

V2_x(i,j)=(V2(i-1,j)-V2(i,j-1))/(2*dx);

end

V2_x=V2_x+fliplr(tril(flipud(V2_x),-1))';

% = V2_y =

90 APPENDIX B. SOURCE CODE NUMERICAL APPROXIMATION

V2_y=zeros(N+1,N+1);

V2_y(:,1)=2*alpha*exp(-2*y_mesh)/(1-exp(-2*y_max));

V2_y(N+1,1)=0;

V2_y(1,N+1)=V2_x(1,N+1);

% Values of V2_y up to anti-diagonal-1

c2_y=0;

for j=2:N-1

c2_y=c2_y+1;

for i=2:N-c2_y

V2_y(i,j)=(V2(i-1,j)-V2(i+1,j))/(2*dy);

end

end

% Values of V2_y on anti-diagonal

for i=2:N

j=N-i+2;

V2_y(i,j)=(V2(i-1,j)-V2(i,j-1))/(2*dy);

end

V2_y=V2_y+fliplr(tril(flipud(V2_y),-1))';

diff2=V2_y-V2_x;

for i=1:N+1

for j=1:N+1

if (diff2(i,j)<=0)

diff2(i,j)=1;

else

diff2(i,j)=0;

end

end

end

% ===== Mixed Strategy / Policy =====

% === Approximation of function V ===

iterations=0;

distance=TOL+1;

V_new=V;

while(distance>TOL)

iterations=iterations+1;

c=0;

for i=2:N-1

c=c+1;

for j=2:N-c

V_new(i,j)=(V(i,j+1)+V(i,j-1)+V(i-1,j)+V(i+1,j)+dx*max(V(i,j+1)-V(i,j-1),V(i-1,j)-V(i+1,j)))/4;

end

end

for i=2:N

j=N-i+2;

V_new(i,j)=((2-dx)*V(i,j-1)+(2+dx)*V(i-1,j))/4;

end

difference=V_new(2:N,2:N)-V(2:N,2:N);

distance=max(max(difference));

V(2:N,2:N)=V_new(2:N,2:N);

end

display(iterations);

V=V+fliplr(tril(flipud(V),-1))';

% === Approximation of functions V_x and V_y ===

% = V_x =

V_x=zeros(N+1,N+1);

V_x(1,:)=2*(1-2*alpha)*exp(-2*x_mesh)/(1-exp(-2*x_max));

V_x(1,1)=0;

B.1. JACOBI ITERATION 91

% Values of V_x up to anti-diagonal-1

c_x=0;

for j=2:N-1

c_x=c_x+1;

for i=2:N-c_x

V_x(i,j)=(V(i,j+1)-V(i,j-1))/(2*dx);

end

end

% Values of V_x on anti-diagonal

for i=2:N

j=N-i+2;

V_x(i,j)=(V(i-1,j)-V(i,j-1))/(2*dx);

end

V_x=V_x+fliplr(tril(flipud(V_x),-1))';

% = V_y =

V_y=zeros(N+1,N+1);

V_y(:,1)=2*alpha*exp(-2*y_mesh)/(1-exp(-2*y_max));

V_y(N+1,1)=0;

V_y(1,N+1)=V_x(1,N+1);

% Values of V_y up to anti-diagonal-1

c_y=0;

for j=2:N-1

c_y=c_y+1;

for i=2:N-c_y

V_y(i,j)=(V(i-1,j)-V(i+1,j))/(2*dy);

end

end

% Values of V_y on anti-diagonal

for i=2:N

j=N-i+2;

V_y(i,j)=(V(i-1,j)-V(i,j-1))/(2*dy);

end

V_y=V_y+fliplr(tril(flipud(V_y),-1))';

% Difference between V_x and V_y

diff=V_x-V_y;

for i=1:N+1

for j=1:N+1

if (diff(i,j)<0)

diff(i,j)=0;

else

diff(i,j)=1;

end

end

end

% ======= Plots =======

figure (1)

surface(x_mesh,y_mesh,diff1), shading interp;

rotate3d on;

colormap(jet);

grid off;

xlabel('x_1');

ylabel('x_2');

hold on;

figure(2)

92 APPENDIX B. SOURCE CODE NUMERICAL APPROXIMATION

surface(x_mesh,y_mesh,diff2), shading interp;

rotate3d on;

colormap(jet);

grid off;

xlabel('x_1');

ylabel('x_2');

hold on;

figure(3)

surface(x_mesh,y_mesh,diff), shading interp;

rotate3d on;

colormap(jet);

grid off;

xlabel('x_1');

ylabel('x_2');

hold on;

figure(4)

surface(x_mesh,y_mesh,V1), shading interp;

rotate3d on;

colormap(jet);

grid off;

xlabel('x_1');

ylabel('x_2');

zlabel('V_1(x_1,x_2)');

title(colorbar,'V_1(x_1,x_2)');

hold on;

figure(5)

surface(x_mesh,y_mesh,V2), shading interp;

rotate3d on;

colormap(jet);

grid off;

xlabel('x_1');

ylabel('x_2');

zlabel('V_2(x_1,x_2)');

title(colorbar,'V_2(x_1,x_2)');

hold on;

figure(6)

surface(x_mesh,y_mesh,V), shading interp;

rotate3d on;

colormap(jet);

grid off;

xlabel('x_1');

ylabel('x_2');

zlabel('V(x_1,x_2)');

title(colorbar,'V(x_1,x_2)');

hold off;

B.2 Successive over Relaxation

% ========= Finite Difference Method through Successive over Relaxation ==========

% ======= Parameters =======

% Model parameters

x_max=8;

y_max=8;

alpha=1/3; % other values: 1/2, 2/5

B.2. SUCCESSIVE OVER RELAXATION 93

% Finite Difference Method parameters

N=2*1e2; % other coefficients: 1, 1/2, 1/5, 1/10

w=3/2; % other values: 1/2, 1 (Gauss Seidel)

% ===== Setup Mesh =====

dx=x_max/N;

dy=y_max/N;

x_mesh=0:dx:x_max;

y_mesh=y_max:-dy:0;

% ======= Boundary Conditions =======

% Creating array for the Push-Bottom Strategy (Democratic Policy)

V1=zeros(N+1,N+1);

V1(1,:)=(1-alpha)*(1-exp(-2*x_mesh))/(1-exp(-2*x_max))+alpha*(1-(1-exp(-2*x_mesh))/(1-exp(-2*x_max)));

V1(:,1)=alpha*(1-exp(-2*y_mesh))/(1-exp(-2*y_max));

% Creating array for the Push-Top Strategy (Republican Policy)

V2=V1;

% Creating array for the Mixed Strategy / Policy

V=V1;

% ======= Successive over Relaxation =======

TOL=1e-10; % initialization of the tolerance

% ===== Push-Bottom Strategy (Democratic Policy) =====

% === Approximation of function V ===

iterations1=0;

distance1=TOL+1;

V1_new=V1;

while(distance1>TOL)

iterations1=iterations1+1;

c1=0;

for i=2:N-1

c1=c1+1;

for j=2:N-c1

V1_new(i,j)=(1-w)*V1(i,j)+w*((1-dx)*V1_new(i,j-1)+V1_new(i-1,j)+(1+dx)*V1(i,j+1)+V1(i+1,j))/4;

end

end

for i=2:N

j=N-i+2;

V1_new(i,j)=(1-w)*V1(i,j)+w*((2-dx)*V1_new(i,j-1)+(2+dx)*V1_new(i-1,j))/4;

end

difference1=V1_new(2:N,2:N)-V1(2:N,2:N);

distance1=max(max(difference1));

V1(2:N,2:N)=V1_new(2:N,2:N);

end

display(iterations1);

V1=V1+fliplr(tril(flipud(V1),-1))';

% === Approximation of functions V_x and V_y ===

% = V_x =

V1_x=zeros(N+1,N+1);

V1_x(1,:)=2*(1-2*alpha)*exp(-2*x_mesh)/(1-exp(-2*x_max));

V1_x(1,1)=0;

% Values of V_x up to anti-diagonal-1

c1_x=0;

for j=2:N-1

c1_x=c1_x+1;

94 APPENDIX B. SOURCE CODE NUMERICAL APPROXIMATION

for i=2:N-c1_x

V1_x(i,j)=(V1(i,j+1)-V1(i,j-1))/(2*dx);

end

end

% Values of V_x on anti-diagonal

for i=2:N

j=N-i+2;

V1_x(i,j)=(V1(i-1,j)-V1(i,j-1))/(2*dx);

end

V1_x=V1_x+fliplr(tril(flipud(V1_x),-1))';

% = V_y =

V1_y=zeros(N+1,N+1);

V1_y(:,1)=2*alpha*exp(-2*y_mesh)/(1-exp(-2*y_max));

V1_y(N+1,1)=0;

V1_y(1,N+1)=V1_x(1,N+1);

% Values of V_y up to anti-diagonal-1

c1_y=0;

for j=2:N-1

c1_y=c1_y+1;

for i=2:N-c1_y

V1_y(i,j)=(V1(i-1,j)-V1(i+1,j))/(2*dy);

end

end

% Values of V_y on anti-diagonal

for i=2:N

j=N-i+2;

V1_y(i,j)=(V1(i-1,j)-V1(i,j-1))/(2*dy);

end

V1_y=V1_y+fliplr(tril(flipud(V1_y),-1))';

% Difference between V_x and V_y

diff1=V1_x-V1_y;

for i=1:N+1

for j=1:N+1

if (diff1(i,j)<0)

diff1(i,j)=0;

else

diff1(i,j)=1;

end

end

end

% ===== Push-Top Strategy (Republican Policy) =====

% === Approximation of function V ===

iterations2=0;

distance2=TOL+1;

V2_new=V2;

while(distance2>TOL)

iterations2=iterations2+1;

c2=0;

for i=2:N-1

c2=c2+1;

for j=2:N-c2

V2_new(i,j)=(1-w)*V2(i,j)+w*(V2_new(i,j-1)+(1+dy)*V2_new(i-1,j)+V2(i,j+1)+(1-dy)*V2(i+1,j))/4;

end

end

for i=2:N

j=N-i+2;

V2_new(i,j)=(1-w)*V2(i,j)+w*((2-dy)*V2_new(i,j-1)+(2+dy)*V2_new(i-1,j))/4;

B.2. SUCCESSIVE OVER RELAXATION 95

end

difference2=V2_new(2:N,2:N)-V2(2:N,2:N);

distance2=max(max(difference2));

V2(2:N,2:N)=V2_new(2:N,2:N);

end

display(iterations2);

V2=V2+fliplr(tril(flipud(V2),-1))';

% === Approximation of functions V_x and V_y ===

% = V_x =

V2_x=zeros(N+1,N+1);

V2_x(1,:)=2*(1-2*alpha)*exp(-2*x_mesh)/(1-exp(-2*x_max));

V2_x(1,1)=0;

% Values of V_x up to anti-diagonal-1

c2_x=0;

for j=2:N-1

c2_x=c2_x+1;

for i=2:N-c2_x

V2_x(i,j)=(V2(i,j+1)-V2(i,j-1))/(2*dx);

end

end

% Values of V_x on anti-diagonal

for i=2:N

j=N-i+2;

V2_x(i,j)=(V2(i-1,j)-V2(i,j-1))/(2*dx);

end

V2_x=V2_x+fliplr(tril(flipud(V2_x),-1))';

% = V_y =

V2_y=zeros(N+1,N+1);

V2_y(:,1)=2*exp(-2*y_mesh)/(1-exp(-2*y_max));

V2_y(N+1,1)=0;

V2_y(1,N+1)=V2_x(1,N+1);

% Values of V_y up to anti-diagonal-1

c2_y=0;

for j=2:N-1

c2_y=c2_y+1;

for i=2:N-c2_y

V2_y(i,j)=(V2(i-1,j)-V2(i+1,j))/(2*dy);

end

end

% Values of V_y on anti-diagonal

for i=2:N

j=N-i+2;

V2_y(i,j)=(V2(i-1,j)-V2(i,j-1))/(2*dy);

end

V2_y=V2_y+fliplr(tril(flipud(V2_y),-1))';

diff2=V2_y-V2_x;

for i=1:N+1

for j=1:N+1

if (diff2(i,j)<=0)

diff2(i,j)=1;

else

diff2(i,j)=0;

end

end

end

96 APPENDIX B. SOURCE CODE NUMERICAL APPROXIMATION

% ===== Mixed Strategy / Policy =====

% === Approximation of function V ===

iterations=0;

distance=TOL+1;

V_new=V;

while(distance>TOL)

iterations=iterations+1;

c=0;

for i=2:N-1

c=c+1;

for j=2:N-c

V_new(i,j)=(1-w)*V(i,j)+w*(V(i,j+1)+V_new(i,j-1)+V_new(i-1,j)+V(i+1,j)+dx*max(V(i,j+1)-V_new(i,j-1),V_new(i-1,j)-V(i+1,j)))/4;

end

end

for i=2:N

j=N-i+2;

V_new(i,j)=(1-w)*V(i,j)+w*((2-dx)*V_new(i,j-1)+(2+dx)*V_new(i-1,j))/4;

end

difference=V_new(2:N,2:N)-V(2:N,2:N);

distance=max(max(difference));

V(2:N,2:N)=V_new(2:N,2:N);

end

display(iterations);

V=V+fliplr(tril(flipud(V),-1))';

% === Approximation of functions V_x and V_y ===

% = V_x =

V_x=zeros(N+1,N+1);

V_x(1,:)=2*(1-2*alpha)*exp(-2*x_mesh)/(1-exp(-2*x_max));

V_x(1,1)=0;

% Values of V_x up to anti-diagonal-1

c_x=0;

for j=2:N-1

c_x=c_x+1;

for i=2:N-c_x

V_x(i,j)=(V(i,j+1)-V(i,j-1))/(2*dx);

end

end

% Values of V_x on anti-diagonal

for i=2:N

j=N-i+2;

V_x(i,j)=(V(i-1,j)-V(i,j-1))/(2*dx);

end

V_x=V_x+fliplr(tril(flipud(V_x),-1))';

% = V_y =

V_y=zeros(N+1,N+1);

V_y(:,1)=2*exp(-2*y_mesh)/(1-exp(-2*y_max));

V_y(N+1,1)=0;

V_y(1,N+1)=V_x(1,N+1);

% Values of V_y up to anti-diagonal-1

c_y=0;

for j=2:N-1

c_y=c_y+1;

for i=2:N-c_y

V_y(i,j)=(V(i-1,j)-V(i+1,j))/(2*dy);

end

end

% Values of V_y on anti-diagonal

B.2. SUCCESSIVE OVER RELAXATION 97

for i=2:N

j=N-i+2;

V_y(i,j)=(V(i-1,j)-V(i,j-1))/(2*dy);

end

V_y=V_y+fliplr(tril(flipud(V_y),-1))';

% Difference between V_x and V_y

diff=V_x-V_y;

for i=1:N+1

for j=1:N+1

if (diff(i,j)<0)

diff(i,j)=0;

else

diff(i,j)=1;

end

end

end

% ======= Plots =======

figure (1)

surface(x_mesh,y_mesh,diff1), shading interp;

rotate3d on;

colormap(jet);

grid off;

xlabel('x_1');

ylabel('x_2');

hold on;

figure(2)

surface(x_mesh,y_mesh,diff2), shading interp;

rotate3d on;

colormap(jet);

grid off;

xlabel('x_1');

ylabel('x_2');

hold on;

figure(3)

surface(x_mesh,y_mesh,diff), shading interp;

rotate3d on;

colormap(jet);

grid off;

xlabel('x_1');

ylabel('x_2');

hold on;

figure(4)

surface(x_mesh,y_mesh,V1), shading interp;

rotate3d on;

colormap(jet);

grid off;

xlabel('x_1');

ylabel('x_2');

zlabel('V_1(x_1,x_2)');

title(colorbar,'V_1(x_1,x_2)');

hold on;

figure(5)

surface(x_mesh,y_mesh,V2), shading interp;

rotate3d on;

98 APPENDIX B. SOURCE CODE NUMERICAL APPROXIMATION

colormap(jet);

grid off;

xlabel('x_1');

ylabel('x_2');

zlabel('V_2(x_1,x_2)');

title(colorbar,'V_2(x_1,x_2)');

hold on;

figure(6)

surface(x_mesh,y_mesh,V), shading interp;

rotate3d on;

colormap(jet);

grid off;

xlabel('x_1');

ylabel('x_2');

zlabel('V(x_1,x_2)');

title(colorbar,'V(x_1,x_2)');

hold off;

Appendix C

Source Code Monte Carlo Simulation

C.1 Two-Dimensional Case

% ======= Monte Carlo Simulation for the Two-Dimensional Model =======

% ===== Parameters =====

% Model parameters

sigma1=1; % volatility of the first Brownian Motion process

sigma2=1; % volatility of the second Brownian Motion process

delta=0; % parameter determining range of drifts

alpha_1=0; % parameter within the objective function

alpha_2=1/3; % - '' -

alpha_3=1/2; % - '' -

% Initial values for both companies at t=0

X1_t0=1e-5; % initial value of the first company at t=0

X2_t0=2; % initial value of the second company at t=0

% Monte Carlo Method parameters

n=1e2; % number of discrete time points excluding t=0

N=1e4; % number of Monte Carlo trials

T=1e1; % time endpoint

% ===== Setup Mesh =====

dt=T/n; % distance between equidistant time points

sq_dt=sqrt(dt); % root of the previous distance

t_mesh=0:dt:T; % discrete time points

% ===== Monte Carlo Simulation =====

% Generation of standard normally distributed random numbers

Z1=[zeros(1,N);randn(n,N)];

Z2=[zeros(1,N);randn(n,N)];

% === No Strategy (or Policy) ===

X1=zeros(n+1,N);

X1(1,:)=X1_t0; % preallocation of arrays

X2=zeros(n+1,N);

X2(1,:)=X2_t0;

% Generation of the two Brownian Motion processes via Euler Scheme

99

100 APPENDIX C. SOURCE CODE MONTE CARLO SIMULATION

X1=cumsum(X1+sigma1*sq_dt*Z1);

X2=cumsum(X2+sigma2*sq_dt*Z2);

% Setting values less than 0 and following values to be equal to 0

for j=1:N

for i=2:n+1

if (X1(i,j)<=0)

X1(i:n+1,j)=0;

else

end

if(X2(i,j)<=0)

X2(i:n+1,j)=0;

else

end

end

end

% Number of times (<=N) that company X1 remains solvent while simultaneously

% company X2 goes bankrupt

counter1x=sum(X1>0 & X2==0,2);

% Number of times (<=N) that company X1 goes bankrupt while simultaneously

% company X2 remains solvent

counter1y=sum(X1==0 & X2>0,2);

% Number of times (<=N) that both companies remain solvent

counter2=sum(X1>0 & X2>0,2);

% Objective functions

obj_fun_1=(counter1x+counter1y+2*counter2)/N;

obj_fun_2=(alpha_1*(counter1x+counter1y)+(1-alpha_1)*counter2)/N;

obj_fun_3=(alpha_2*(counter1x+counter1y)+(1-alpha_2)*counter2)/N;

obj_fun_4=(alpha_3*(counter1x+counter1y)+(1-alpha_3)*counter2)/N;

% === Arbitrary Strategy ===

% Generation of random numbers that are drawn from a uniform distribution in

% the interval (-delta , 1-(-delta))

mu1=[zeros(1,N);-delta+(1-2*(-delta))*rand(n,N)];

mu2=ones(n+1,N)-mu1-[ones(1,N);zeros(n,N)];

X1_a=zeros(n+1,N);

X1_a(1,:)=X1_t0; % preallocation of arrays

X2_a=zeros(n+1,N);

X2_a(1,:)=X2_t0;

for j=1:N

for i=2:n+1

if (X1_a(i-1,j)>0) && (X2_a(i-1,j)>0)

X1_a(i,j)=X1_a(i-1,j)+mu1(i,j)*dt+sigma1*sq_dt*Z1(i,j);

X2_a(i,j)=X2_a(i-1,j)+mu2(i,j)*dt+sigma2*sq_dt*Z2(i,j);

if (X1_a(i,j)<0)

X1_a(i,j)=0;

end

if (X2_a(i,j)<0)

X2_a(i,j)=0;

end

elseif (X1_a(i-1,j)==0) && (X2_a(i-1,j)>0)

X1_a(i,j)=0;

X2_a(i,j)=X2_a(i-1,j)+dt+sigma2*sq_dt*Z2(i,j);

if (X2_a(i,j)<0)

X2_a(i,j)=0;

end

elseif (X1_a(i-1,j)>0) && (X2_a(i-1,j)==0)

X1_a(i,j)=X1_a(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

X2_a(i,j)=0;

if (X1_a(i,j)<0)

X1_a(i,j)=0;

C.1. TWO-DIMENSIONAL CASE 101

end

else

X1_a(i,j)=0;

X2_a(i,j)=0;

end

end

end

% Number of times (<=N) that company X1 remains solvent while

% simultaneously company X2 goes bankrupt

counter1x_a=sum(X1_a>0 & X2_a==0,2);

% Number of times (<=N) that company X1 goes bankrupt while simultaneously

% company X2 remains solvent

counter1y_a=sum(X1_a==0 & X2_a>0,2);

% Number of times (<=N) that both companies remain solvent

counter2_a=sum(X1_a>0 & X2_a>0,2);

% Objective functions

obj_fun_a_1=(counter1x_a+counter1y_a+2*counter2_a)/N;

obj_fun_a_2=(alpha_1*(counter1x_a+counter1y_a)+(1-alpha_1)*counter2_a)/N;

obj_fun_a_3=(alpha_2*(counter1x_a+counter1y_a)+(1-alpha_2)*counter2_a)/N;

obj_fun_a_4=(alpha_3*(counter1x_a+counter1y_a)+(1-alpha_3)*counter2_a)/N;

% === Push-Bottom Strategy (Democratic Policy) ===

X1_d=zeros(n+1,N);

X1_d(1,:)=X1_t0; % preallocation of arrays

X2_d=zeros(n+1,N);

X2_d(1,:)=X2_t0;

for j=1:N

for i=2:n+1

if (X1_d(i-1,j)>0) && (X2_d(i-1,j)>0)

X1_d(i,j)=X1_d(i-1,j)+sigma1*sq_dt*Z1(i,j);

X2_d(i,j)=X2_d(i-1,j)+sigma2*sq_dt*Z2(i,j);

if (X1_d(i,j)<=X2_d(i,j))

X1_d(i,j)=X1_d(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

if (X1_d(i,j)<0)

X1_d(i,j)=0;

end

if (X2_d(i,j)<0)

X2_d(i,j)=0;

end

else

X2_d(i,j)=X2_d(i-1,j)+dt+sigma2*sq_dt*Z2(i,j);

if (X1_d(i,j)<0)

X1_d(i,j)=0;

end

if (X2_d(i,j)<0)

X2_d(i,j)=0;

end

end

elseif (X1_d(i-1,j)==0) && (X2_d(i-1,j)>0)

X1_d(i,j)=0;

X2_d(i,j)=X2_d(i-1,j)+dt+sigma2*sq_dt*Z2(i,j);

if (X2_d(i,j)<0)

X2_d(i,j)=0;

end

elseif (X1_d(i-1,j)>0) && (X2_d(i-1,j)==0)

X1_d(i,j)=X1_d(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

X2_d(i,j)=0;

if (X1_d(i,j)<0)

X1_d(i,j)=0;

end

else

X1_d(i,j)=0;

X2_d(i,j)=0;

end

102 APPENDIX C. SOURCE CODE MONTE CARLO SIMULATION

end

end

% Number of times (<=N) that company X1 remains solvent while simultaneously

% company X2 goes bankrupt

counter1x_d=sum(X1_d>0 & X2_d==0,2);

% Number of times (<=N) that company X1 goes bankrupt while simultaneously

% company X2 remains solvent

counter1y_d=sum(X1_d==0 & X2_d>0,2);

% Number of times (<=N) that both companies remain solvent

counter2_d=sum(X1_d>0 & X2_d>0,2);

% Objective functions

obj_fun_d_1=(counter1x_d+counter1y_d+2*counter2_d)/N;

obj_fun_d_2=(alpha_1*(counter1x_d+counter1y_d)+(1-alpha_1)*counter2_d)/N;

obj_fun_d_3=(alpha_2*(counter1x_d+counter1y_d)+(1-alpha_2)*counter2_d)/N;

obj_fun_d_4=(alpha_3*(counter1x_d+counter1y_d)+(1-alpha_3)*counter2_d)/N;

% === Push-Top Strategy (Republican Policy) ===

X1_r=zeros(n+1,N);

X1_r(1,:)=X1_t0; % preallocation of arrays

X2_r=zeros(n+1,N);

X2_r(1,:)=X2_t0;

for j=1:N

for i=2:n+1

if (X1_r(i-1,j)>0) && (X2_r(i-1,j)>0)

X1_r(i,j)=X1_r(i-1,j)+sigma1*sq_dt*Z1(i,j);

X2_r(i,j)=X2_r(i-1,j)+sigma2*sq_dt*Z2(i,j);

if (X1_r(i,j)>X2_r(i,j))

X1_r(i,j)=X1_r(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

if (X1_r(i,j)<0)

X1_r(i,j)=0;

end

if (X2_r(i,j)<0)

X2_r(i,j)=0;

end

else

X2_r(i,j)=X2_r(i-1,j)+dt+sigma2*sq_dt*Z2(i,j);

if (X1_r(i,j)<0)

X1_r(i,j)=0;

end

if (X2_r(i,j)<0)

X2_r(i,j)=0;

end

end

elseif (X1_r(i-1,j)==0) && (X2_r(i-1,j)>0)

X1_r(i,j)=0;

X2_r(i,j)=X2_r(i-1,j)+dt+sigma2*sq_dt*Z2(i,j);

if (X2_r(i,j)<0)

X2_r(i,j)=0;

end

elseif (X1_r(i-1,j)>0) && (X2_r(i-1,j)==0)

X1_r(i,j)=X1_r(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

X2_r(i,j)=0;

if (X1_r(i,j)<0)

X1_r(i,j)=0;

end

else

X1_r(i,j)=0;

X2_r(i,j)=0;

end

end

end

% Number of times (<=N) that company X1 remains solvent while simultaneously

% company X2 goes bankrupt

C.2. THREE-DIMENSIONAL CASE 103

counter1x_r=sum(X1_r>0 & X2_r==0,2);

% Number of times (<=N) that company X1 goes bankrupt while simultaneously

% company X2 remains solvent

counter1y_r=sum(X1_r==0 & X2_r>0,2);

% Number of times (<=N) that both companies remain solvent

counter2_r=sum(X1_r>0 & X2_r>0,2);

% Objective functions

obj_fun_r_1=(counter1x_r+counter1y_r+2*counter2_r)/N;

obj_fun_r_2=(alpha_1*(counter1x_r+counter1y_r)+(1-alpha_1)*counter2_r)/N;

obj_fun_r_3=(alpha_2*(counter1x_r+counter1y_r)+(1-alpha_2)*counter2_r)/N;

obj_fun_r_4=(alpha_3*(counter1x_r+counter1y_r)+(1-alpha_3)*counter2_r)/N;

% ===== Plots =====

figure(1);

subplot(2,2,1);

plot(t_mesh,obj_fun_1,'-k',t_mesh,obj_fun_a_1,'-.g',t_mesh,obj_fun_d_1,':r',t_mesh,obj_fun_r_1,'--b');

legend('no strategy','arbitrary strategy','push-bottom strategy','push-top strategy');

xlabel('time');

ylabel('objective function');

title('Expected number of companies that remain solvent');

subplot(2,2,2);

plot(t_mesh,obj_fun_2,'-k',t_mesh,obj_fun_a_2,'-.g',t_mesh,obj_fun_d_2,':r',t_mesh,obj_fun_r_2,'--b');

legend('no strategy','arbitrary strategy','push-bottom strategy','push-top strategy');

axis([0 T 0 1.5])

xlabel('time');

ylabel('objective function');

title('Probability that both companies survive');

subplot(2,2,3);

plot(t_mesh,obj_fun_3,'-k',t_mesh,obj_fun_a_3,'-.g',t_mesh,obj_fun_d_3,':r',t_mesh,obj_fun_r_3,'--b');

legend('no strategy','arbitrary strategy','push-bottom strategy','push-top strategy');

xlabel('time');

ylabel('objective function');

title('Expected number of companies that remain solvent for alpha=1/3');

subplot(2,2,4);

plot(t_mesh,obj_fun_4,'-k',t_mesh,obj_fun_a_4,'-.g',t_mesh,obj_fun_d_4,':r',t_mesh,obj_fun_r_4,'--b');

legend('no strategy','arbitrary strategy','push-bottom strategy','push-top strategy');

axis([0 T 0.33 0.55]);

xlabel('time');

ylabel('objective function');

title('Expected number that all companies remain solvent for alpha=1/2');

C.2 Three-Dimensional Case

% ======= Monte Carlo Simulation for the Three-Dimensional Model =======

% ===== Parameters =====

% Model parameters

sigma1=1; % volatility of the first Brownian Motion process

sigma2=1; % volatility of the second Brownian Motion process

sigma3=1; % volatility of the third Brownian Motion process

% Initial values for both companies at t=0

X1_t0=1e-1; % initial value of the first company at t=0

X2_t0=1; % initial value of the second company at t=0

X3_t0=2; % initial value of the third company at t=0

104 APPENDIX C. SOURCE CODE MONTE CARLO SIMULATION

% Monte Carlo Method parameters

n=1e2; % number of discrete time points excluding t=0

N=1e4; % number of Monte Carlo trials

T=1e1; % time endpoint

% ===== Setup Mesh =====

dt=T/n; % distance between equidistant time points

sq_dt=sqrt(dt); % root of the previous distance

t_mesh=0:dt:T; % discrete time points

% ===== Monte Carlo Simulation =====

% Generation of standard normally distributed random numbers

Z1=[zeros(1,N);randn(n,N)];

Z2=[zeros(1,N);randn(n,N)];

Z3=[zeros(1,N);randn(n,N)];

% === No Strategy (or Policy) ===

X1=zeros(n+1,N);

X1(1,:)=X1_t0;

X2=zeros(n+1,N); % preallocation of arrays

X2(1,:)=X2_t0;

X3=zeros(n+1,N);

X3(1,:)=X3_t0;

% Generation of the three Brownian Motion processes via Euler Scheme

X1=cumsum(X1+sigma1*sq_dt*Z1);

X2=cumsum(X2+sigma2*sq_dt*Z2);

X3=cumsum(X3+sigma3*sq_dt*Z3);

% Setting values less than 0 and following values to be equal to 0

for j=1:N

for i=2:n+1

if (X1(i,j)<=0)

X1(i:n+1,j)=0;

else

end

if (X2(i,j)<=0)

X2(i:n+1,j)=0;

else

end

if (X3(i,j)<=0)

X3(i:n+1,j)=0;

else

end

end

end

% Number of times (<=N) that company X1 remains solvent while simultaneously

% companies X2 and X3 go bankrupt

counter1x=sum(X1>0 & X2==0 & X3==0,2);

% Number of times (<=N) that company X2 remains solvent while simultaneously

% companies X1 and X3 go bankrupt

counter1y=sum(X1==0 & X2>0 & X3==0,2);

% Number of times (<=N) that company X3 remains solvent while simultaneously

% companies X1 and X2 go bankrupt

counter1z=sum(X1==0 & X2==0 & X3>0,2);

% Number of times (<=N) that companies X1 and X2 remain solvent

% while simultaneously company X3 goes bankrupt

counter2xy=sum(X1>0 & X2>0 & X3==0,2);

C.2. THREE-DIMENSIONAL CASE 105

% Number of times (<=N) that companies X1 and X3 remain solvent

% while simultaneously company X2 goes bankrupt

counter2xz=sum(X1>0 & X2==0 & X3>0,2);

% Number of times (<=N) that companies X2 and X3 remain solvent

% while simultaneously company X1 goes bankrupt

counter2yz=sum(X1==0 & X2>0 & X3>0,2);

% Number of times (<=N) that all companies remain solvent

counter3=sum(X1>0 & X2>0 & X3>0,2);

% Objective functions

obj_fun_1=(counter1x+counter1y+counter1z+2*(counter2xy+counter2xz+counter2yz)+3*counter3)/N;

obj_fun_2=counter3/N;

% === Push-Bottom Strategy (Democratic Policy) ===

X1_d=zeros(n+1,N);

X1_d(1,:)=X1_t0;

X2_d=zeros(n+1,N); % preallocation of arrays

X2_d(1,:)=X2_t0;

X3_d=zeros(n+1,N);

X3_d(1,:)=X3_t0;

for j=1:N

for i=2:n+1

if (X3_d(i-1,j)>0)

if (X1_d(i-1,j)>0) && (X2_d(i-1,j)>0)

X1_d(i,j)=X1_d(i-1,j)+sigma1*sq_dt*Z1(i,j);

X2_d(i,j)=X2_d(i-1,j)+sigma2*sq_dt*Z2(i,j);

X3_d(i,j)=X3_d(i-1,j)+sigma3*sq_dt*Z3(i,j);

if (X1_d(i,j)<=X2_d(i,j)<=X3_d(i,j)) || (X1_d(i,j)<=X3_d(i,j)<=X2_d(i,j))

X1_d(i,j)=X1_d(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

if (X1_d(i,j)<0)

X1_d(i,j)=0;

end

if (X2_d(i,j)<0)

X2_d(i,j)=0;

end

if (X3_d(i,j)<0)

X3_d(i,j)=0;

end

elseif (X2_d(i,j)<=X1_d(i,j)<=X3_d(i,j)) || (X2_d(i,j)<=X3_d(i,j)<=X1_d(i,j))

X2_d(i,j)=X2_d(i-1,j)+dt+sigma2*sq_dt*Z2(i,j);

if (X1_d(i,j)<0)

X1_d(i,j)=0;

end

if (X2_d(i,j)<0)

X2_d(i,j)=0;

end

if (X3_d(i,j)<0)

X3_d(i,j)=0;

end

else

X3_d(i,j)=X3_d(i-1,j)+dt+sigma3*sq_dt*Z3(i,j);

if (X1_d(i,j)<0)

X1_d(i,j)=0;

end

if (X2_d(i,j)<0)

X2_d(i,j)=0;

end

if (X3_d(i,j)<0)

X3_d(i,j)=0;

end

end

elseif (X1_d(i-1,j)==0) && (X2_d(i-1,j)>0)

X1_d(i,j)=0;

X2_d(i,j)=X2_d(i-1,j)+sq_dt*sigma2*Z2(i,j);

X3_d(i,j)=X3_d(i-1,j)+sq_dt*sigma3*Z3(i,j);

if (X2_d(i,j)<=X3_d(i,j))

106 APPENDIX C. SOURCE CODE MONTE CARLO SIMULATION

X2_d(i,j)=X2_d(i-1,j)+dt+sq_dt*sigma2*Z2(i,j);

if (X2_d(i,j)<0)

X2_d(i,j)=0;

end

if (X3_d(i,j)<0)

X3_d(i,j)=0;

end

else

X3_d(i,j)=X3_d(i-1,j)+dt+sq_dt*sigma3*Z3(i,j);

if (X2_d(i,j)<0)

X2_d(i,j)=0;

end

if (X3_d(i,j)<0)

X3_d(i,j)=0;

end

end

elseif (X1_d(i-1,j)>0) && (X2_d(i-1,j)==0)

X1_d(i,j)=X1_d(i-1,j)+sigma1*sq_dt*Z1(i,j);

X2_d(i,j)=0;

X3_d(i,j)=X3_d(i-1,j)+sigma3*sq_dt*Z3(i,j);

if (X1_d(i,j)<=X3_d(i,j))

X1_d(i,j)=X1_d(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

if (X1_d(i,j)<0)

X1_d(i,j)=0;

end

if (X3_d(i,j)<0)

X3_d(i,j)=0;

end

else

X3_d(i,j)=X3_d(i-1,j)+dt+sigma3*sq_dt*Z3(i,j);

if (X1_d(i,j)<0)

X1_d(i,j)=0;

end

if (X3_d(i,j)<0)

X3_d(i,j)=0;

end

end

else

X1_d(i,j)=0;

X2_d(i,j)=0;

X3_d(i,j)=X3_d(i-1,j)+dt+sigma3*sq_dt*Z3(i,j);

if (X3_d(i,j)<0)

X3_d(i,j)=0;

end

end

else

X3_d(i,j)=0;

if (X1_d(i-1,j)>0) && (X2_d(i-1,j)>0)

X1_d(i,j)=X1_d(i-1,j)+sigma1*sq_dt*Z1(i,j);

X2_d(i,j)=X2_d(i-1,j)+sigma2*sq_dt*Z2(i,j);

if (X1_d(i,j)<=X2_d(i,j))

X1_d(i,j)=X1_d(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

if (X1_d(i,j)<0)

X1_d(i,j)=0;

end

if (X2_d(i,j)<0)

X2_d(i,j)=0;

end

else

X2_d(i,j)=X2_d(i-1,j)+dt+sigma2*sq_dt*Z2(i,j);

if (X1_d(i,j)<0)

X1_d(i,j)=0;

end

if (X2_d(i,j)<0)

X2_d(i,j)=0;

end

end

elseif (X1_d(i-1,j)==0) && (X2_d(i-1,j)>0)

X1_d(i,j)=0;

X2_d(i,j)=X2_d(i-1,j)+dt+sigma2*sq_dt*Z2(i,j);

if (X2_d(i,j)<0)

X2_d(i,j)=0;

end

elseif (X1_d(i-1,j)>0) && (X2_d(i-1,j)==0)

C.2. THREE-DIMENSIONAL CASE 107

X1_d(i,j)=X1_d(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

X2_d(i,j)=0;

if (X1_d(i,j)<0)

X1_d(i,j)=0;

end

else

X1_d(i,j)=0;

X2_d(i,j)=0;

end

end

end

end

% Number of times (<=N) that company X1 remains solvent while simultaneously

% companies X2 and X3 go bankrupt

counter1x_d=sum(X1_d>0 & X2_d==0 & X3_d==0,2);

% Number of times (<=N) that company X2 remains solvent while simultaneously

% companies X1 and X3 go bankrupt

counter1y_d=sum(X1_d==0 & X2_d>0 & X3_d==0,2);

% Number of times (<=N) that company X3 remains solvent while simultaneously

% companies X1 and X2 go bankrupt

counter1z_d=sum(X1_d==0 & X2_d==0 & X3_d>0,2);

% Number of times (<=N) that companies X1 and X2 remain solvent while

% simultaneously company X3 goes bankrupt

counter2xy_d=sum(X1_d>0 & X2_d>0 & X3_d==0,2);

% Number of times (<=N) that companies X1 and X3 remain solvent

% while simultaneously company X2 goes bankrupt

counter2xz_d=sum(X1_d>0 & X2_d==0 & X3_d>0,2);

% Number of times (<=N) that companies X2 and X3 remain solvent

% while simultaneously company X1 goes bankrupt

counter2yz_d=sum(X1_d==0 & X2_d>0 & X3_d>0,2);

% Number of times (<=N) that all companies remain solvent

counter3_d=sum(X1_d>0 & X2_d>0 & X3_d>0,2);

% Objective functions

obj_fun_d_1=(counter1x_d+counter1y_d+counter1z_d+2*(counter2xy_d+counter2xz_d+counter2yz_d)+3*counter3_d)/N;

obj_fun_d_2=counter3_d/N;

% === Push-Top Strategy (Republican Policy) ===

X1_r=zeros(n+1,N);

X1_r(1,:)=X1_t0;

X2_r=zeros(n+1,N); % preallocation of arrays

X2_r(1,:)=X2_t0;

X3_r=zeros(n+1,N);

X3_r(1,:)=X3_t0;

for j=1:N

for i=2:n+1

if (X3_r(i-1,j)>0)

if (X1_r(i-1,j)>0) && (X2_r(i-1,j)>0)

X1_r(i,j)=X1_r(i-1,j)+sigma1*sq_dt*Z1(i,j);

X2_r(i,j)=X2_r(i-1,j)+sigma2*sq_dt*Z2(i,j);

X3_r(i,j)=X3_r(i-1,j)+sigma3*sq_dt*Z3(i,j);

if (X1_r(i,j)>=X2_r(i,j)>=X3_r(i,j)) || (X1_r(i,j)>=X3_r(i,j)>=X2_r(i,j))

X1_r(i,j)=X1_r(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

if (X1_r(i,j)<0)

X1_r(i,j)=0;

end

if (X2_r(i,j)<0)

108 APPENDIX C. SOURCE CODE MONTE CARLO SIMULATION

X2_r(i,j)=0;

end

if (X3_r(i,j)<0)

X3_r(i,j)=0;

end

elseif (X2_r(i,j)>=X1_r(i,j)>=X3_r(i,j)) || (X2_r(i,j)>=X3_r(i,j)>=X1_r(i,j))

X2_r(i,j)=X2_r(i-1,j)+dt+sigma2*sq_dt*Z2(i,j);

if (X1_r(i,j)<0)

X1_r(i,j)=0;

end

if (X2_r(i,j)<0)

X2_r(i,j)=0;

end

if (X3_r(i,j)<0)

X3_r(i,j)=0;

end

else

X3_r(i,j)=X3_r(i-1,j)+dt+sigma3*sq_dt*Z3(i,j);

if (X1_r(i,j)<0)

X1_r(i,j)=0;

end

if (X2_r(i,j)<0)

X2_r(i,j)=0;

end

if (X3_r(i,j)<0)

X3_r(i,j)=0;

end

end

elseif (X1_r(i-1,j)==0) && (X2_r(i-1,j)>0)

X1_r(i,j)=0;

X2_r(i,j)=X2_r(i-1,j)+sq_dt*sigma2*Z2(i,j);

X3_r(i,j)=X3_r(i-1,j)+sq_dt*sigma3*Z3(i,j);

if (X2_r(i,j)>=X3_r(i,j))

X2_r(i,j)=X2_r(i-1,j)+dt+sq_dt*sigma2*Z2(i,j);

if (X2_r(i,j)<0)

X2_r(i,j)=0;

end

if (X3_r(i,j)<0)

X3_r(i,j)=0;

end

else

X3_r(i,j)=X3_r(i-1,j)+dt+sq_dt*sigma3*Z3(i,j);

if (X2_r(i,j)<0)

X2_r(i,j)=0;

end

if (X3_r(i,j)<0)

X3_r(i,j)=0;

end

end

elseif (X1_r(i-1,j)>0) && (X2_r(i-1,j)==0)

X1_r(i,j)=X1_r(i-1,j)+sigma1*sq_dt*Z1(i,j);

X2_r(i,j)=0;

X3_r(i,j)=X3_r(i-1,j)+sigma3*sq_dt*Z3(i,j);

if (X1_r(i,j)>=X3_r(i,j))

X1_r(i,j)=X1_r(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

if (X1_r(i,j)<0)

X1_r(i,j)=0;

end

if (X3_r(i,j)<0)

X3_r(i,j)=0;

end

else

X3_r(i,j)=X3_r(i-1,j)+dt+sigma3*sq_dt*Z3(i,j);

if (X1_r(i,j)<0)

X1_r(i,j)=0;

end

if (X3_r(i,j)<0)

X3_r(i,j)=0;

end

end

else

X1_r(i,j)=0;

X2_r(i,j)=0;

X3_r(i,j)=X3_r(i-1,j)+dt+sigma3*sq_dt*Z3(i,j);

C.2. THREE-DIMENSIONAL CASE 109

if (X3_r(i,j)<0)

X3_r(i,j)=0;

end

end

else

X3_r(i,j)=0;

if (X1_r(i-1,j)>0) && (X2_r(i-1,j)>0)

X1_r(i,j)=X1_r(i-1,j)+sigma1*sq_dt*Z1(i,j);

X2_r(i,j)=X2_r(i-1,j)+sigma2*sq_dt*Z2(i,j);

if (X1_r(i,j)>=X2_r(i,j))

X1_r(i,j)=X1_r(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

if (X1_r(i,j)<0)

X1_r(i,j)=0;

end

if (X2_r(i,j)<0)

X2_r(i,j)=0;

end

else

X2_r(i,j)=X2_r(i-1,j)+dt+sigma2*sq_dt*Z2(i,j);

if (X1_r(i,j)<0)

X1_r(i,j)=0;

end

if (X2_r(i,j)<0)

X2_r(i,j)=0;

end

end

elseif (X1_r(i-1,j)==0) && (X2_r(i-1,j)>0)

X1_r(i,j)=0;

X2_r(i,j)=X2_r(i-1,j)+dt+sigma2*sq_dt*Z2(i,j);

if (X2_r(i,j)<0)

X2_r(i,j)=0;

end

elseif (X1_r(i-1,j)>0) && (X2_r(i-1,j)==0)

X1_r(i,j)=X1_r(i-1,j)+dt+sigma1*sq_dt*Z1(i,j);

X2_r(i,j)=0;

if (X1_r(i,j)<0)

X1_r(i,j)=0;

end

else

X1_r(i,j)=0;

X2_r(i,j)=0;

end

end

end

end

% Number of times (<=N) that company X1 remains solvent while simultaneously

% companies X2 and X3 go bankrupt

counter1x_r=sum(X1_r>0 & X2_r==0 & X3_r==0,2);

% Number of times (<=N) that company X2 remains solvent while simultaneously

% companies X1 and X3 go bankrupt

counter1y_r=sum(X1_r==0 & X2_r>0 & X3_r==0,2);

% Number of times (<=N) that company X3 remains solvent while simultaneously

% companies X1 and X2 go bankrupt

counter1z_r=sum(X1_r==0 & X2_r==0 & X3_r>0,2);

% Number of times (<=N) that companies X1 and X2 remain solvent while

% simultaneously company X3 goes bankrupt

counter2xy_r=sum(X1_r>0 & X2_r>0 & X3_r==0,2);

% Number of times (<=N) that companies X1 and X3 remain solvent while

% simultaneously company X2 goes bankrupt

counter2xz_r=sum(X1_r>0 & X2_r==0 & X3_r>0,2);

% Number of times (<=N) that companies X2 and X3 remain solvent while

% simultaneously company X1 goes bankrupt

110 APPENDIX C. SOURCE CODE MONTE CARLO SIMULATION

counter2yz_r=sum(X1_r==0 & X2_r>0 & X3_r>0,2);

% Number of times (<=N) that all companies remain solvent

counter3_r=sum(X1_r>0 & X2_r>0 & X3_r>0,2);

% Objective functions

obj_fun_r_1=(counter1x_r+counter1y_r+counter1z_r+2*(counter2xy_r+counter2xz_r+counter2yz_r)+3*counter3_r)/N;

obj_fun_r_2=counter3_r/N;

% ===== Plots =====

figure(1)

plot(t_mesh,obj_fun_1,'-k',t_mesh,obj_fun_d_1,':r',t_mesh,obj_fun_r_1,'--b');

legend('no strategy','push-bottom strategy','push-top strategy');

xlabel('time');

ylabel('objective function');

title('Expected number of companies that remain solvent');

hold on;

figure(2)

plot(t_mesh,obj_fun_2,'-k',t_mesh,obj_fun_d_2,':r',t_mesh,obj_fun_r_2,'--b');

legend('no strategy','push-bottom strategy','push-top strategy');

xlabel('time');

ylabel('objective function');

title('Probability that all companies remain solvent');

hold off;

Bibliography

[1] Huyên Pham. Continuous-time Stochastic Control and Optimization with Financial Applica-
tions. Springer-Verlag, Paris, 2009. 4, 5, 7, 8, 10, 15, 19, 22, 23, 26

[2] Vincenzo Capasso, David Bakstein. An Introduction to Continuous-Time Stochastic Pro-
cesses. Birkhäuser, Boston Basel Berlin, 2012. 3

[3] Hui Wang. Monte Carlo Simulation with Applications to Finance. Chapman Hall/CRC
Financial Mathematics, 2012. 7, 39, 40

[4] Nicolas Pivault. An Elementary Introduction to Stochastic Interest Rate Modeling (2nd Edi-
tion). World Scientific, 2012. 6

[5] Daniel Revuz, Marc Yor. Continuous Martingales and Brownian Motion. Springer-Verlag,
1994. 7

[6] Joseph Chang. Stochastic Processes. Yale University, 2007. 8

[7] Ioannis Karatzas. Optimization Problems in the Theory of Continuous Trading. Journal of
the Society for Industrial and Applied Mathematics, 6:1221-1259, 1989. 27

[8] Andy Dahl. A Rigorous Introduction to Brownian Motion. University of Chicago, 2010. 9

[9] Henk Tijms. Understanding Probability. Cambridge University Press, 2012. 9

[10] Fima C. Klebaner. Introduction to Stochastic Calculus with Applications. Imperial College
Press, 2005. 10

[11] Bernt Karsten Øksendal. Stochastic Differential Equations. An Introduction with Applica-
tions. Springer-Verlag, Heidelberg New York, 2000. 11, 12, 13

[12] Xuerong Mao. Stochastic Differential Equations and Applications. Woodhead Publishing,
Oxford Cambridge Philadelphia New Delhi, 2007. 13, 14

[13] Wendell Helms Fleming, Halil Mete Soner. Controlled Markov Processes and Viscosity
Solutions. Springer-Verlag USA, 2006. 15

[14] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
1957. 18

[15] John Von Neumann, Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, Princeton, NJ, 1953. 48

112 BIBLIOGRAPHY

[16] Henry McKean. Appendix: A Free Boundary Problem for the Heat Equation Arising from a
Problem in Mathematical Economics. Industrial Management Rev., 6, 32-39, 1965. 48

[17] Goran Peskir. Principle of Smooth Fit and Diffusions with Angles. Stochastics, Vol. 79, No.
3-4, 2007, (293-302). 48

[18] Henry McKean, Lawrence Shepp. The Advantage of Capitalism vs. Socialism depends on
the Criterion. Journal of Mathematical Sciences, Vol. 139, No.3, pages 6589-6594, 2006. 49,
53, 81

[19] Derek Causon, Clive Mingham. Introductory Finite Difference Methods for PDEs. Ventus
Publishing ApS, 2010. 33, 38

[20] Elimhan Mahmudov. Single Variable Differential and Integral Calculus: Mathematical Anal-
ysis. Atlantis Press, 2013. 33

[21] Emilia Petrişor. Simulare Monte Carlo. Editura Politehnica, Timişoara, 2006. 9, 38

[22] Paul Glasserman. Monte Carlo Methods in Financial Engineering. Springer, New York,
2003. 39

[23] Patrick Billingsley. Probability and Measure. John Wiley Sons, New York, 1995. 39

[24] Kai Lai Chung. A Course in Probability Theory. Academic Press, New York, 2000. 39

[25] Robert C. Merton. Optimum Consumption and Portfolio Rules in a Continuous-Time Model.
Journal of Economic Theory, 3:373-413, 1971. 25, 26

[26] Hanspeter Schmidli. Stochastic Control in Insurance. Springer Verlag, Köln, 2007. 26, 27

[27] Martina T. Castillo, Gilbert Parrocha. Stochastic Control Theory for Optimal Invest-
ment. Society of Actuaries ARCH2004.1, 2004.
Download available from: http://library.soa.org/library-pdf/arch04v38n1_17.pdf
28, 30, 31, 32

[28] Martina T. Castillo. Stochastic Control: Alternative Tool in Insurance Risk Management.
International Actuarial Association, 2005.
Download available from: https://www.business.unsw.edu.au/about/schools/

risk-actuarial/research/publications 30, 31, 32

[29] David Aldous. "Up the River" game story. 2000.
Download available from: http://www.stat.berkeley.edu/~aldous/Research/OP/

river.pdf 41, 42, 47

[30] David Aldous. Up the river to self-organized criticality. 2002.
Download available from: http://oz.berkeley.edu/DBconf/packet_3.pdf 41, 47

[31] Peter Mörters, Yuval Peres. Brownian Motion. Cambridge University Press, 2010.

[32] George S. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer Series
in Operations Research, 1997.

[33] Daniel Revuz, Marc Yor. Continuous Martingales and Brownian Motion. Springer Verlag,
1999. 5, 8

http://library.soa.org/library-pdf/arch04v38n1_17.pdf
https://www.business.unsw.edu.au/about/schools/risk-actuarial/research/publications
https://www.business.unsw.edu.au/about/schools/risk-actuarial/research/publications
http://www.stat.berkeley.edu/~aldous/Research/OP/river.pdf
http://www.stat.berkeley.edu/~aldous/Research/OP/river.pdf
http://oz.berkeley.edu/DBconf/packet_3.pdf

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Basics of Stochastic Analysis
	Stochastic Processes
	Brownian Motion
	Martingales
	Itô Calculus
	Stochastic Differential Equations

	Introduction to Stochastic Control Theory
	Introduction
	Controlled Diffusion Processes
	The Finite Horizon Problem
	The Infinite Horizon Problem

	Dynamic Programming Principle
	Hamilton-Jacobi-Bellman Equation
	Derivation of the Hamilton-Jacobi-Bellman Equation

	Verification Theorem

	Examples in Financial and Actuarial Mathematics
	Merton's Problem of Portfolio Allocation
	Minimizing Ruin Probabilities in Insurance Business

	A Theoretical Insight in Some Relevant Methodology
	Numerical Approximation
	Taylor's Formula
	Finite Difference Method

	Monte Carlo Methods
	Euler Scheme

	A Stochastic Control Model
	A Theoretical Overview
	A Specific Two-Dimensional Model
	The Real World Setting
	The Mathematics Behind the Setting
	The Difficulties of the Model
	A Guessed Optimal Solution

	Proposed Solutions
	Numerical Approximation
	Monte Carlo Simulation

	Results
	Numerical Approximation
	Democratic Policy
	Republican Policy
	Mixed Policy
	Convergence Optimization

	Monte Carlo Simulation

	Extensions to Higher Dimensionality
	The Three-Dimensional Case

	Conclusions
	Appendix Source Codes General
	Appendix Source Code Numerical Approximation
	Jacobi Iteration
	Successive over Relaxation

	Appendix Source Code Monte Carlo Simulation
	Two-Dimensional Case
	Three-Dimensional Case

	Bibliography

