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Any fool can have an opinion;
to know what one needs to know
to have an opinion is wisdom;
which is another way of saying
that wisdom means knowing what
questions to ask about knowledge.

— Neil Postman
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Abstract

Answer-set programming is a logic-programming formalism which has proven to be exception-
ally well-suited for knowledge representation, reasoning, and solving complex search problems.
Its fully declarative nature together with its simple and clear syntax allow for the formulation
of compact problem specifications. While many answer-set programs may be relatively easy to
understand for a programmer, their meaning may be rather hard to grasp for persons without
a background in logic programming. Since many real world problems from various domains
can be formulated within answer-set programming, it would be useful to translate answer-set
programs into a form which is easier to understand and closer to natural language.

In this thesis, we introduce some results which should help making such a translation pos-
sible. First, we analyse the structure of a given program: Most answer-set programs follow the
so-called generate-define-test paradigm. Within this paradigm, a program is seen to consist of
three different parts, called generate, define, and test. We introduce a formal definition of these
three parts and develop an algorithm which classifies the rules of a given program accordingly.
For the implementation of this algorithm, we make use of techniques from meta-programming,
meaning that we write a logic program which operates on other logic programs. Following this,
we also discuss how the rules of a program should be ordered before they are translated into
some form of natural language.

A straightforward translation of program rules into a form of natural language may yield
rather clumsy results in general. One reason for this is that many real-world programs use more
than one rule to define something which a human would explain within a single sentence. We
thus introduce a generalisation of the well-known partial evaluation transformation which helps
us to transform a given program into another program that is easier to translate. An impor-
tant requirement for such a transformation is that it preserves equivalence, i.e., that it does not
change the meaning of the original program. To this end, we use a notion of equivalence called
relativised uniform equivalence which is stronger than ordinary equivalence but weaker than
uniform equivalence. As a key result, we prove that our transformation preserves relativised
uniform equivalence, which yields the straightforward corollary that it preserves ordinary equiv-
alence over the answer-set semantics too.
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Kurzfassung

Die Antwortmengenprogrammierung ist eine Form der logischen Programmierung, welche sich
als besonders geeignet für die Repräsentation und Verarbeitung von Wissen sowie für die Lösung
komplexer Suchprobleme erwiesen hat. Eine einfache Syntax in Verbindung mit vollständiger
Deklarativität ermöglichen die kompakte Formalisierung von Problemspezifikationen. Doch ob-
wohl viele Antwortmengenprogramme für Programmiererinnen und Programmierer recht leicht
verständlich sein mögen, kann es für Personen ohne ein entsprechendes Hintergrundwissen
durchaus Probleme bereiten, deren Bedeutung zu erfassen. Es erscheint uns daher nützlich, diese
Programme in eine einfacher verständliche Form zu übersetzen, die sich näher an der natürlichen
Sprache orientiert.

Wir präsentieren deshalb in dieser Arbeit eine Reihe von Ergebnissen, welche die Umset-
zung einer derartigen Übersetzung ermöglichen sollen. Zuallererst werden wir ein Verfahren
zur Analyse von Programmen entwickeln: Die Struktur der meisten Antwortmengenprogram-
me entspricht dem sogenannten Generate-Define-Test-Modell. Entsprechend dieses Modells be-
steht ein Programm aus drei verschiedenen Teilen, welche als Generate-, Define- und Test-Teil
bezeichnet werden. Wir werden eine formale Definition dieser drei Teile einführen und einen
Algorithmus entwickeln, der die Regeln eines gegebenen Programms entsprechend dieser Defi-
nition klassifiziert. Für die anschließende Implementierung dieses Algorithmus werden wir von
Methoden der Metaprogrammierung Gebrauch machen, da die größten Teile des Algorithmus
durchaus elegant als Antwortmengenprogramm formuliert werden können. Danach werden wir
noch eine Reihenfolge zur Beschreibung von Programmregeln vorschlagen, welche eine mög-
lichst verständliche Erläuterung zur Folge haben soll.

Die naive Übersetzung einzelner Programmregeln in eine natürlichsprachliche Form kann
zu unbefriedigenden Resultaten führen. Ein Grund dafür ist die Tatsache, dass viele praktische
Programme mehrere verschiedene Regeln verwenden, um Dinge zu beschreiben, die man in na-
türlicher Sprache durch einen einzelnen Satz ausdrücken würde. Wir werden deshalb eine Verall-
gemeinerung der sogenannten Partial-Evaluation-Transformation einführen, welche uns dabei
helfen kann, Programme in eine verständlicher übersetzbare Form zu transformieren. Es ist für
eine derartige Transformation entscheidend, dass sie äquivalenzerhaltend ist, dass sie also die
ursprüngliche Bedeutung eines Programms nicht verändert. Wir werden deshalb die sogenannte
relativierte uniforme Äquivalenz, welche stärker als der konventionelle Äquivalenzbegriff, aber
schwächer als die uniforme Äquivalenz ist, verwenden und beweisen, dass unsere Transformati-
on diese Form der Äquivalenz präserviert. Dieses Ergebnis liefert dann das Korollar, dass unsere
Transformation auch die schwächere Form der konventionellen Äquivalenz präserviert.
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CHAPTER 1
Introduction

One of the major problems within computer science is the search for programming languages
which allow for an adequate specification of problems so that computers can be used for deter-
mining their solutions. This search lead to the development of imperative programming: In this
kind of programming, a programmer specifies how a certain problem is to be solved by writing
a sequence of statements which describes the according computation process. While impera-
tive programs can be efficiently applied to various tasks, there exist many interesting real-world
problems for which imperative programs tend to be rather large and hard to understand.

Because of this, several declarative programming languages where suggested in the past [56].
In contrast to imperative programs, declarative programs are meant to state what is computed
rather than how it is to be computed, involving that the actual solution computation is delegated
to an underlying computational formalism which is transparent to the programmer [43]. One im-
portant approach developed within this context is the theory of logic programming which aims
for using methods from mathematical logic to specify and solve computational problems and
which led to the development of answer-set programming, a logic-programming paradigm that
attracts a lot of attention nowadays.

A wide range of problems from areas such as artificial intelligence or combinatorial opti-
misation can be elegantly solved within answer-set programming, and its close relation to non-
monotonic logics allows for the compact representation of knowledge and real-world-reasoning
tasks. But, although many answer-set programs may be relatively easy to understand for pro-
grammers, people without a background in logic programming may find it hard to grasp their
meaning.

1.1 Aim of the Work

We consider it thus useful to transform answer-set programs into a form which is easier to un-
derstand and closer to natural language. This could benefit many people such as domain experts
who are involved in the creation of knowledge-based systems or users of a system who could
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obtain a comprehensible explanation of its behaviour. But programmers themselves could also
profit from it, as it could help them to quicker gain an understanding of a given program. In this
thesis we thus want to develop some results which should help making such a transformation,
which is obviously far from trivial, possible.

Most answer-set programs follow the so-called generate-define-test paradigm. Within this
paradigm, a program – which is, roughly speaking, nothing else than a set of logical rules – is
seen to consist of three different parts, called generate, define, and test part, respectively. The
generate part non-deterministically generates a set of candidate solutions from which the test
part eliminates those candidates which are not the desired solutions of the specified problem.
In order to do so, both the generate and the test part may use concepts which are specified in
the define part. Classifying the rules of a given program into this trichotomy is thus crucial for
obtaining a reasonable explanation of the whole program.

Once the rules of a program are successfully classified, we want to preprocess them in order
to simplify a translation to some form of natural language. This is necessary, since a simple
rule-by-rule translation of a given program may yield rather clumsy results in general. Consider
as an example the following rules of a program which can be found in a textbook [2]:

a_row_is_not_filled ← row(X), not row_is_filled(X),

← a_row_is_not_filled .

If we tried to directly translate these two rules into some form of natural language, we could end
up with the following explanation: “It may not be the case that a row is not filled. A row is not
filled if there exists a row which is not filled.” One may agree that this translation sounds rather
unnatural. The problem here is, that the program uses more than one rule to define something
which a human speaker would explain in one sentence. If we could transform the above two rules
into one single rule which has the same meaning, we could possibly obtain a better translation.
Consider therefore the following rule:

← row(X),not row_is_filled(X).

This rule could be explained by the following, arguably clearer, sentence: “It may not be the case
that there exists a row which is not filled.” The transformation we applied here is commonly
known as partial evaluation and it is crucial that this transformation preserves equivalence, i.e.,
that it does not change the meaning of the original program.

There already exist formulations of the partial-evaluation rule in answer-set programming
but they have some shortcomings: First, they only preserve the weak notion of ordinary equiva-
lence which does not suffice for our purposes. Second, they are only defined on restricted classes
of programs or are defined in a way which does not really cover the idea behind partial evalua-
tion. We will thus use a notion of equivalence which is stronger than ordinary equivalence and
propose a partial-evaluation transformation which preserves this kind of equivalence.

1.2 Results

• Since we do not know of any existing formal definitions which exactly state when a rule
is contained in the generate, define, or test part of a program, we will introduce such
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definitions and argue for their usefulness by applying them to real-world programs. In the
course of this, we will also review different notions of stratification.

• Based on the mentioned definitions, we will implement an algorithm which automatically
classifies the rules of a given program into a generate, define, and test part. For this
implementation we will make use of techniques from meta programming, meaning that we
will implement the main part of the classification algorithm as an answer-set program. Our
work is thus another contribution to existing meta-programming approaches in answer-set
programming. We will give a detailed explanation of the implementation and illustrate its
behaviour by providing example classifications of real-world programs.

• When translating a program into a form which is closer to natural language, the order in
which the rules of the program are explained is very important. We will thus introduce an
algorithm which computes such an order that should lead to meaningful explanations.

• We will introduce a propositional partial-evaluation transformation and its generalisation
to the non-ground case. We will then prove that our transformations preserve relativised
uniform equivalence [49, 70]. This yields the straightforward corollary that they preserve
ordinary equivalence over the answer-set semantics too.

1.3 Structure of the Thesis

Chapter 2 contains preliminaries which are important for the rest of the thesis. It contains a
short introduction into the development of logic programming and the answer-set-programming
paradigm in particular. Graph representations of logic programs are covered as well as an in-
troduction into the generate-define-test paradigm. Finally, some syntactic extensions of logic
programs which are used in practice are presented.

In Chapter 3 we develop a formal definition of the generate, define, and test part of an
answer-set program as well as discuss the implementation of the corresponding classification
algorithm. Since the search for an accurate definition of the generate part is strongly related to
notions of stratification, we will introduce some of these notions too. A small part of the chapter
is also used for suggesting an order in which the rules of a program can be reasonably explained.

Our results regarding equivalence-preserving transformations are contained in Chapter 4. It
starts with a short overview over propositional program transformations and a motivation why
the partial-evaluation transformation is important for us. We review well-known notions of
equivalence, most importantly (non-ground) relativised uniform equivalence, which we will, for
the ease of notation, denote as input equivalence.

After this, we introduce a propositional partial-evaluation transformation for which we show
equivalence preservation with respect to input equivalence. We then present a generalisation of
this transformation to the non-ground case and mention some of the difficulties that the non-
ground case brings with it. A large part of the chapter covers the proof that our transformation
preserves input equivalence and following this we show how our results can be used together
to help transforming answer-set programs into a form which is closer to natural language. Fi-
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nally, Chapter 5 concludes with an overview over related approaches in the field of answer-set
programming, an outlook on future work, and a summary of the thesis.
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CHAPTER 2
Preliminaries

Answer-set programming (ASP) is a fully declarative logic-programming paradigm which was
developed in the 1990s. The basic idea is to encode a problem specification as a logic program
which is passed to a so-called solver. The solver then evaluates the program and returns the
solution of the problem as a result [21]. Historically, a normal logic program is a finite set of
rules in the form

A0 ← A1, . . . , Am,not Am+1, . . . ,not An,

where A0, . . . An are atoms of a given first-order language.
One of the main challenges in the study of semantics of logic programming is to assign to

such a program a “reasonable” semantics [38]. Consider as an example the problem of finding
the root node of a given tree. The root node of a tree is that node which has no parent node. We
can encode the problem as a logic program containing the following rules:

root(X)← not has_parent(X),

has_parent(X)← node(X),node(Y ), edge(Y,X).

If we add to this program for every node v of a given tree the rule

node(v)←,

and for every edge (u, v) the rule

edge(u, v)←,

then under many known semantics, the atom root(w) would be considered true if and only if w
is the actual root node of the given tree.

One of the most popular logic-programming languages is Prolog, whose semantics is based
on Kowalskis highly efficient SLD-resolution (selective linear definite clause resolution) [34].
For a given Prolog program, one can ask so-called queries in the form of atoms. For the above
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program, one could for example ask the query root(X). If there exists an SLD-refutation of the
program conjuncted with the negated query, then a substitution X = c is returned, meaning that
c is a constant such that root(c) is considered to be true. But Prolog is not fully declarative:
The order of atoms in rule bodies as well as the order of rules within a program can influence
termination.
In contrast, various fully declarative semantics have been suggested in the past, with the perfect-
model semantics [54] being an approach which is not only considered to be intuitive, but also
shown to be equivalent to suitable forms of the major formalisations of non-monotonic reason-
ing. However, the perfect-model semantics has the drawback that it is only defined on a relatively
narrow class of programs, the so called locally stratified programs (a definition of this class will
be given later) [55]. Consider as an example the program Π1 which consists of the following
rules [7]:

open ← not closed ,

closed ← not open.

This program is not locally stratified and its intuitive meaning is apparently not so clear. For a
time it was thought that programs which are not locally stratified do not really make sense. They
were considered faulty and thus it was not seen as a flaw of the perfect-model semantics that
it is not defined on these programs. But experience cast doubt on this view and thus different
generalisations of the perfect-model semantics were proposed [67].

Some of those proposed semantics, most notably the weakly-perfect-model semantics [53]
and the well-founded semantics [67], assign to a program exactly one model. This approach
is referred to as the canonical-model approach [67]. In contrast to this, the stable-model se-
mantics [29] assigns various (possibly no) stable models to a logic program, although it should
be noted that Gelfond and Lifschitz considered the stable-model semantics of a program to be
defined only if the program has exactly one stable model.

There was a long-lasting dispute over the question which approach should be preferred [21],
but despite all the differences, the three mentioned semantics all agree with the perfect-model
semantics on locally stratified programs [53] and it was the introduction of the stable-model
semantics which laid the foundations for the fruitful development of answer-set programming.

We will thus in the following first introduce a broader definition of logic programs which
generalises the already mentioned normal logic programs. After this, we will give a definition
of the answer-set semantics on extended disjunctive logic programs and show how it is related
to the stable-model semantics. We conclude this chapter with an overview over the so-called
generate-define-test paradigm as well as over some syntactic extensions of answer-set programs
which are useful in answer-set-programming practice.

2.1 Logic Programs

In general, a logic program is a finite set of rules in the form

L0 ∨ · · · ∨ Lk ← Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln

6



where L0, . . . Ln are literals, i.e., atoms from some first-order language L, possibly preceded
by the strong-negation symbol “¬”. If not mentioned otherwise, we will assume that L does
not contain function symbols. We call the literals L0, . . . , Lk the head and Lk+1, . . . , Ln the
body of the rule. Furthermore, the literals Lk+1, . . . , Lm are called the positive body while
Lm+1, . . . , Ln are called the negative body of the rule. Literals which are possibly preceded by
the not-symbol will be referred to as naf-literals (for negation as failure).

By head(r) and body(r) we denote the sets of literals occurring in the head and body, re-
spectively. We write body+(r) for the set of positive body literals and body−(r) for that of the
negative body literals. By at(r) and lit(r) we will respectively denote the set of all atoms and
literals of a rule. We furthermore write at(Π) and lit(Π) for the set of all atoms and literals of a
program, respectively.

Let A = {A0, . . . , Ak}, B = {B0, . . . , Bl}, and C = {C0, . . . , Cm} be sets of literals.
Then,

A← B ∪ not C

represents the rule

A0 ∨ · · · ∨Ak ← B0, . . . , Bl, not C0, . . . ,not Cm.

When saying that some rule r is equal to or has the form A ← B ∪ not C, we mean that r
contains exactly the literals of A, B, and C in head(r), body+(r), and body−(r), respectively.

If a rule contains exactly one head literal, we say that it is definite. If it contains more than
one head literal, we say that it is disjunctive and if it contains no head atoms at all, we call
it a constraint. A program which does not contain strong negation and for which all rules are
definite is called a normal logic program. A program which contains disjunctive rules but no
strong negation is called a disjunctive logic program. A program without disjunctive rules but
with strong negation is called an extended logic program and if a program contains both strong
negation and disjunctive rules it is called an extended disjunctive logic program. A definite rule
r with an empty body, such as L ←, is called a fact and can be written as L. For a program
without default-negated literals we say that it is positive.

We will use strings starting with lower-case letters as predicate symbols and constant sym-
bols, respectively. Variable symbols are denoted by strings starting with an upper-case letter. A
rule which does not contain any variable symbols is called ground whereas rules with variable
symbols are called non-ground. A program is ground iff all of its rules are ground. Programs
which contain only predicates of arity 0 are called propositional logic programs. If we replace
every atom of a ground program by an according 0-ary predicate, we obtain a corresponding
propositional program. Hence, we will sometimes use the terms ground and propositional inter-
changeably.

If not mentioned otherwise, we will use the term predicate for predicate symbols as well
as their strong negation (i.e., the predicate symbol preceded by the strong-negation symbol).
If a literal is preceded by the not-symbol, we say that it is default negated. Let L be a naf-
literal which is not default negated. By L̄ we denote the default-negated naf-literal not L. For
a default-negated naf-literal L of the form not C we denote by L̄ the literal C. Let S be a set.
Then, we denote the power set of S by 2S .
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The answer-set semantics of non-ground programs is defined in terms of the ground instantiation
of a logic program which we will define in the following.

2.2 Substitutions

Let Π be a logic program. Then, by V (Π) we denote the set of variables occurring in Π. The set
of all constants occurring in Π is denoted by HU (Π), called the Herbrand universe of Π. The
following definition of a substitution is a slight modification of the one given by Leitsch [36].

Definition 2.2.1 (Substitution). Let V be a set of variables and C a set of constants. A substi-
tution is a mapping λ : V → V ∪ C such that λ(X) 6= X only for finitely many X ∈ V . ♦

If λ is a substitution, the set {X | λ(X) 6= X} is called the domain of λ, written as dom(λ).
The set {λ(X) | X ∈ dom(X)} is called the range of λ, written as rg(λ).

Let Π a logic program. Then, a substitution λ is called ground iff V = V (Π) and rg(λ) ⊆
HU (Π).

We use the following post-fix notation:

λµ = µ ◦ λ for substitutions µ, λ,

Xλ = λ(X) for X ∈ V ,

cλ = c for c ∈ HU (Π),

a(T1, . . . , Tn)λ = a(T1λ, . . . , Tnλ) for a ∈ at(Π) and T1, . . . , Tn ∈ V ∪HU (Π),

(¬A)λ = ¬(Aλ) for A ∈ at(Π),

(not L)λ = not (Lλ) for L ∈ lit(Π).

Let furthermore r be a rule of form

L1 ∨ · · · ∨ Lk ← Lk+1, . . . , Li, . . . , Lm, not Lm+1, . . . ,not Ln.

Then, we write rλ for

L1λ ∨ · · · ∨ Lkλ← Lk+1λ, . . . , Lmλ,not Lm+1λ, . . . ,not Lnλ.

By an expression we mean either a rule, a naf-literal, a literal, a variable, or a constant. For an
expression E, we denote by V (E) the set of variables occurring in E. For a set of expressions
C, we write Cλ for

⋃
x∈C{xλ}. Finally, for substitutions λ we use the notation

λ = {X 7→ T | (X,T ) ∈ λ and Xλ 6= X}.

For example, {X 7→ A, Y 7→ B} denotes the substitution {(X,A), (Y,B)}∪{(Z,Z) | Z ∈ V }.
Note that the Herbrand universe is always finite and thus, for every logic program Π, there

exists only a finite number of possible ground substitutions. For any rule, naf-literal, or literal
E, and a ground substitution λ with V (E) ⊆ dom(λ), we call Eλ a ground instance of E. For
a logic program Π, we call the set⋃

r∈Π

{rλ | λ is a ground substitution with V (r) ⊆ dom(λ)}
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the ground instantiation or grounding of Π, written as grd(Π). The set of all atoms which can
be formed from predicate symbols in Π and terms of HU (Π) is called the Herbrand base of Π,
written as HB(Π).

2.3 Answer Sets

The notion of an answer set was originally defined by Gelfond and Lifschitz [30]. To define
the answer sets of a program we need the notion of the so-called reduct, also referred to as
Gelfond-Lifschitz reduct.

Definition 2.3.1 (Gelfond-Lifschitz Reduct [29]). Let Π be a ground extended disjunctive logic
program. For any setM of atoms from Π, the Gelfond-Lifschitz reduct ΠM is obtained from Π
by deleting

(i) each rule that has a default-negated naf-literal not B in its body with B ∈M, and

(ii) all default-negated naf-literals in the bodies of the remaining rules.

♦

An answer set of a program Π which contains default-negated literals is defined in terms of the
reduct ΠM which does not contain default-negated literals. We will thus first define answer sets
of positive programs.

Definition 2.3.2 (Answer Set of a Positive Program [30]). Let Π be an extended disjunctive
logic program without default-negated literals and M a set of literals. We say that M is an
answer set of Π if it is a minimal set of literals such that

(i) for each rule r ∈ grd(Π), if body(r) ⊆M, then head(r) ∩M 6= ∅;

(ii) ifM contains a pair of complementary literals, thenM = lit(grd(Π)).

♦

Condition (ii) expresses the inconsistency of an answer set which contains both an atom and its
strong negation.

Definition 2.3.3 (Answer Set [30]). Let Π be an extended disjunctive logic program andM a
set of literals. We say thatM is an answer set of Π if it is an answer set of grd(Π)M. ♦

The answer sets of a program without strong negation are exactly its stable models. In the ab-
sence of strong negation we will thus use the terms answer set and stable model interchangeably.
As already mentioned in the introduction of this chapter, Gelfond and Lifschitz stated that the
stable-model semantics is defined for a logic program Π if Π has exactly one stable model. One
can consider this restriction as somewhat arbitrary and in modern answer-set-programming prac-
tice, the semantics of an answer-set program is defined as the collection of its answer sets [26].
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Example 2.3.4. Consider again the rules of program Π1 from above:

open ← not closed , (2.1)

closed ← not open. (2.2)

LetM = {open}. Then, ΠM1 is obtained by removing the body atom closed from Rule (2.1),
as well as deleting the whole Rule (2.2). Hence, ΠM1 = {open ←} and since M is an an-
swer set of ΠM1 , it is an answer set of Π1. Similarly, {closed} is also an answer set of Π1.
The set {open, closed} is not an answer set of Π1, since it leads to an empty reduct, of which
{open, closed} is not an answer set. For the empty set ∅, we get the reduct

Π∅1 = {open ←,
closed ←}.

Since Π∅1 has {open, closed} as its (unique) answer set, the empty set is not an answer set of
Π1. We conclude that {open} and {closed} are the only answer sets of Π1. ♦

According to Gelfond and Lifschitz, the intuition behind stable models – and thus of answer sets
– of a program Π can, like the intuition behind stable expansions in autoepistemic logic [48],
be described as possible sets of beliefs that a rational agent might hold, given Π as his pre-
misses [29]. For the above example, if we assume that open and closed are referring to the state
of a door, an agent can believe that the door is closed. He can also believe that the door is open,
but he cannot believe that the door is both open and closed, as well as he cannot believe that
neither is the case. The program Π1 can be equivalently expressed by the disjunctive program

Π′1 = {open ∨ closed ←}.

Here, again only one of open and closed can be true in a stable model of Π′1. This is because of
the minimality condition of answer sets.

There are two notions of falsity within answer-set programming, namely falsity in the sense
that an atom cannot be derived, expressed by default negation, and falsity in the sense that its
negation can be derived, expressed by strong negation [30]. The following example is due to
John McCarthy and was used by Gelfond and Lifschitz to illustrate the difference between strong
and default negation [30]:

Example 2.3.5. Suppose we want to express the knowledge that a school bus should cross
railway tracks under the condition that there is no approaching train. Consider

Πd = {cross ← not train}.

Here, if the information about the presence of a train is not available – for example, if the vision
of the bus driver is blocked – the school bus will cross railway tracks. Under program

Πc = {cross ← ¬train}

this is not the case. Here, the school bus only crosses railway tracks if there is definitive knowl-
edge that no train is approaching. ♦
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2.4 Graph Representations of Logic Programs

There exist various different graph representations of logic programs. In the following we in-
troduce three of them. We start with the so-called dependency graph. To this end, we need the
notion of a labelled graph as well as the notion of direct dependency.

Definition 2.4.1 (Labelled graph). A labelled graph is a triple (V,E, ξ), where V is the set
of vertices, E is the set of edges (i.e., a binary relation on V ), and ξ : E → X is a labelling
function which assigns to each edge a label from some set X . ♦

Definition 2.4.2 (Direct Dependency). Let Π be a logic program. For any two predicates u and
v we say that u depends directly positive (negative) on v iff there exists some rule r ∈ Π such
that u occurs in the head of r and v occurs in the positive (negative) body of r.

For any two ground literals u and v we say that u depends directly positive (negative) on v
iff there exists some rule r ∈ grd(Π) such that u occurs in the head of r and v occurs in the
positive (negative) body of r. ♦

Definition 2.4.3 (Dependency Graph). Let Π be a logic program. The dependency graph,
DG(Π), of Π is the labelled graph (V,E, ξ), where

1. V is the set of all predicates occurring in Π,

2. (u, v) ∈ E iff there exists some rule r ∈ Π such that u occurs in body(r) and v occurs in
head(r),

3. ξ : E → 2{+,−},

4. ξ(u, v) = {+,−} iff v depends directly positive and directly negative on u,

5. ξ(u, v) = {+} iff v depends directly positive but not directly negative on u, and

6. ξ(u, v) = {−} iff v depends directly negative but not directly positive on u.
♦

For an edge e we say that e is positive iff “+” ∈ ξ(e) and negative iff “−” ∈ ξ(e). When
visualising a dependency graph, we will draw positive edges as solid lines and negative edges
as dashed lines. Furthermore, if an edge is positive and negative we will draw both a solid and a
dashed line.

Example 2.4.4. Consider the program Π2, consisting of the following rules:

symmetric_difference(X)← union(X), not intersection(X),

union(X)← a(X),

union(X)← b(X),

intersection(X)← a(X), b(X).

The dependency graph of Π2 is given in Figure 2.1.

11



symmetric_difference

union intersection
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Figure 2.1: Dependency graph of Π2.

The program Π3, consisting of the following rules, is different from Π2 but has the same depen-
dency graph:

symmetric_difference(X)← union(X),not intersection(X),

union(X)← a(x), b(X),

intersection(X)← a(X),

intersection(X)← b(X).

This demonstrates that the dependency graph does not uniquely determine a corresponding logic
program. ♦

Definition 2.4.5 (Ground Dependency Graph). Let Π be a logic program. Then, the ground
dependency graph, GDG(Π), of Π is the dependency graph obtained from grd(Π), but with the
vertex set V = lit(grd(Π)). ♦

Definition 2.4.6 (Dependency of Predicates). Let Π be a logic program with dependency graph
DG(Π) and A,B predicates occurring in Π. Then, A depends positively on B iff DG(Π)
contains a directed path from B to A consisting only of positive edges. A depends negatively on
B, denoted B < A, iff DG(Π) contains a directed path from B to A passing trough a negative
edge. Furthermore, A depends on B, denoted B ≤ A, iff it depends negatively or positively on
B. ♦

The dependency notions for ground literals (instead of predicates) are defined analogously by
considering the ground dependency graph instead of the dependency graph in Definition 2.4.6.
With the notion of dependency, we can define the so-called head-cycle free rules and programs
which will be important later on.

Definition 2.4.7 (Head-Cycle Free [3, 20]). Let Π be a propositional logic program and r ∈ Π
a rule. Then, r is head-cycle free in Π iff the dependency graph of Π does not contain a positive
directed cycle which goes through two distinct head atoms of r. Π is head-cycle free iff all of its
rules are head-cycle free. ♦
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Figure 2.2: Extended dependency graphs of Π2 (left) and Π3 (right).

Brignoli, Costantini, D’ Antona, and Provetti [8] introduced the so called extended dependency
graph (EDG). In the extended dependency graph the following holds: If a literal L occurs in the
head of n different rules, then the EDG contains n different vertices L(1), . . . , L(n).

Definition 2.4.8 (Extended Dependency Graph [8]). Let Π be a ground normal logic program.
The extended dependency graph, EDG(Π), is the labelled graph (V,E, ξ), where

1. for each rule r in Π, V contains a vertex a(k)
i , where ai is the name of the head of r and k

is the index of r in the definition of ai (i.e., r is the k-th rule having ai as head, for some
(arbitrary) order on the rules defining ai),

2. for each atom u never appearing in a head, V contains a vertex labelled u,

3. ξ : E → 2{+,−},

4. for each c(l)
j ∈ V , there is a positive edge (c

(l)
j , a

(k)
i ) iff cj occurs in the positive body of

the k-th rule defining ai, and

5. for each c(l)
j ∈ V , there is a negative edge (c

(l)
j , a

(k)
i ) iff cj occurs in the negative body of

the k-th rule defining ai.
♦

For programs where every literal is defined by at most one rule, the EDG coincides with the
conventional dependency graph. But in contrast to the conventional dependency graph, the EDG
uniquely determines its corresponding program [10].

Example 2.4.9. Consider again the programs Π2 and Π3 from Example 2.4.4. Although they
have the same dependency graphs, their – distinct – extended dependency graphs are given in
Figure 2.2. ♦

The last graph representation is called the rule graph of a logic program and was introduced
by Dimopoulus and Torres [14] for programs without positive body literals. Our definition is a
slight modification which takes positive body literals and unifiability into account.
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symmetric_difference ← union(X),not intersection(X)

union(X) ← a(X) union(X) ← b(X) intersection(X) ← a(X), b(X)

Figure 2.3: Rule graph of program Π2.

Definition 2.4.10 (Rule Graph). Let Π be a logic program. The rule graph, RG(Π), of Π is
the graph (V,E), where

1. V is the set of all rules occurring in Π,

2. (u, v) ∈ E iff u contains a head literal A and v contains a body literal B such that A and
B are unifiable.

♦

Example 2.4.11. Consider again program Π2 from above. Its rule graph is given in Figure 2.3.
♦

2.5 The Generate-Define-Test Paradigm

In answer-set programming, problems can be encoded following the so called guess and check
paradigm. An introduction into the usage of this paradigm was given by Eiter, Faber, Leone,
and Pfeifer [17]. It was further refined by Lifschitz [37] who divided example programs into a
generate, define, and test part, leading to the so called generate-define-test paradigm.

Within this paradigm, the generate part normally creates multiple candidate answer sets from
which the test part eliminates those answer sets which are not the desired solutions of a problem.
Both the generate and the test part may use predicates which are defined in the define part.

Example 2.5.1. Consider the problem of finding a Hamiltonian path from some start node v
within a directed graph. A Hamiltonian path is a path which visits all nodes exactly once. The
following encoding Π4 is a slight modification of an encoding by Eiter et al. [21]. which has
as answer sets the valid Hamiltonian paths starting from v. It is assumed that an input instance
contains the atom start_node(v):

in_path(X,Y ) ∨ not_in_path(X,Y )← edge(X,Y ),

reached(X)← start_node(X),

reached(X)← reached(Y ), in_path(Y,X),

a_node_is_not_reached ← node(X), not reached(X),
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← a_node_is_not_reached ,

← in_path(X,Y ), in_path(X,Z), Y 6= Z,

← in_path(Y,X), in_path(Z,X), Y 6= Z.

The first rule plays the role of the generate part: It generates answer sets in which arbitrary edges
are contained in the path. The next three rules can be considered the define part: They define
the auxiliary predicates reached and a_node_is_not_reached which are then used in the test
part (last three rules) to eliminate answer sets which do not correspond to valid Hamiltonian
paths. ♦

2.6 Syntactic Extensions of Programs

To simplify programming, several syntactic shortcuts were incorporated into the ASP-Core-2
language standard [26]. We will introduce some of them in the following.

Anonymous Variables

An anonymous variable in a rule is denoted by “_” (character underscore). Each occurrence of
“_” stands for a fresh variable in the respective context (i.e., different occurrences of anonymous
variables represent distinct variables). Consider as an example the following rule:

has_parents(X)← father(Y,X),mother(Z,X).

Since the actual values of Y and Z can be considered irrelevant in such a rule, anonymous
variables allow us to write it as follows:

has_parents(X)← father(_, X),mother(_, X).

Built-In Atoms

A built-in atom has the form t ≺ u for terms t and u with ≺ ∈ {<,≤,=, 6=, >,≥}. They are
evaluated according to a well-defined order which is defined in the ASP-Core-2 standard. For
example, in the following rule the built-in atom “>” is used:

older_sister_of (X,Y )← sister_of (X,Y ), has_age(X,U), has_age(Y, V ), U > V.

Arithmetic Terms

An arithmetic term has the form−(t) or t◦u for terms t and uwith ◦ ∈ {+,−, ∗, /}. Parentheses
can be omitted in cases where the standard operator precedences apply. Arithmetic terms require
that the corresponding arithmetic-operations are well-defined for the terms to which they apply.
They are evaluated after grounding [26]. The usage of arithmetic terms is illustrated by the
following rules:

state(X,T + 1)← state(X,T ),not ¬state(X,T + 1),

state(a, 1)← .
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Choice Rules

A choice rule has the form

{e1; . . . ; em} ≺ u← B1, . . . , Bn,

whereB1, . . . , Bn are naf-literals for n ≥ 0, u is a term,≺∈ {<,≤,=, 6=, >,≥} and e1, . . . , em
are so-called choice elements for m ≥ 0. A choice element is of the form

A : L1, . . . , Lk,

where A is a literal and L1, . . . , Lk are naf-literals for k ≥ 0.
The idea of a choice rule is that if the body B1, . . . , Bn is true in an answer set, then some

subset S of {e1, . . . , em}must be chosen as true, meaning that theA literal of the corresponding
choice element ei is set to true if all the L1, . . . , Lk of ei are true. The size of S is restricted by
“≺ u”. For the complete formal definition we refer to the ASP-Core 2 standard. For example,
the following rule expresses that if a is a vegan pizza, then at least two of the toppings cheese,
pepperoni, and olives must be chosen. Furthermore, cheese can only be chosen if it is explicitly
vegan:

{top(a, cheese) : vegan(cheese); top(a, pepperoni); top(a, olives)} ≥ 2← veg_pizza(a).
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CHAPTER 3
Analysing the Structure of Programs

The goal of this section is to introduce methods that help to analyse the overall structure of
programs. We will develop an algorithm which takes an answer set program and automatically
classifies its rules into the three parts generate, define, and test. To this end, we will first develop
formal definitions of these three parts. The classification algorithm will then be based on these
definitions and for its implementation we will make use of meta-programming techniques. We
conclude the chapter by suggesting a reasonable order in which the rules of a program can be
explained.

3.1 Definition of the Generate Part

Intuitively, we would want the generate part to contain those rules which cause non-determinism.
Our goal is thus to identify those rules of a program which can lead to the generation of more
than one answer set, and classify them as generating rules. Disjunctive heads and aggregates are
obvious sources of non-determinism. Apart from them, default negation can cause the creation
of more than one answer set, but there, things are a little more involved.

Stratification

To identify a possibly very large class of non-deterministic programs, we will use some con-
cepts of stratification. Several notions of stratification were introduced in the past, with the
most well-known being (ordinary) stratification [1] and the stronger concept of local stratifica-
tion [54]. Gelfond and Lifschitz [29] showed that every locally-stratified normal logic program
has a unique answer set. Furthermore, most semantics for normal logic programs agree on
locally-stratified programs and we already mentioned earlier that for some time it was thought
that programs which are not locally stratified do not really make sense [67]. However, we will
show that there are programs with unique answer sets which are not locally stratified and it can
also be argued that they are quite intuitive.
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Definition 3.1.1 (Stratification [40]). An extended logic program Π is stratified if there exists a
mapping f from predicate symbols to ordinals such that, for every rule r ∈ Π and any predicates
P1, P2,

• if P1 and P2 occur in head(r) then f(P1) = f(P2),

• if P1 occurs in head(r) and P2 occurs in body+(r) then f(P1) ≥ f(P2),

• if P1 occurs in head(r) and P2 occurs in body−(r) then f(P1) > f(P2).
♦

The function f is also referred to as a level mapping.

Definition 3.1.2 (Local Stratification). Let Π be a logic program and Π′ the program obtained
by replacing every literal in grd(Π) by a corresponding propositional predicate symbol. Then,
Π is locally stratified if Π′ is stratified. ♦

Note that every stratified program is locally stratified and that the empty program ∅ is trivially
stratified by a level mapping with an empty domain.

Example 3.1.3. Consider the program Π5 which consists of the following rules:

c(X)← not b(X), (3.1)

b(X)← a(X), (3.2)

a(2)← not a(1). (3.3)

Π5 is locally stratified by the following level mapping f :

c(2) 7→ 3,

a(2), b(2), c(1) 7→ 2,

a(1), b(1) 7→ 1.

However, it is not stratified, since the predicate a is contained both in the head and the negative
body of Rule (3.3) which would require f(a) > f(a). ♦

Weak Stratification

We already mentioned that there are classes of programs which have a unique answer set despite
not being locally stratified. One such example is the class of weakly stratified programs [53].
We will in the following give some preliminary definitions and examples from Przymusinki and
Przymusinska [53] which lead to the notion of weak stratification. After this, we develop our
definition of the generate part based on the ideas behind weak stratification.

We start with the notion of a partial interpretation. Let Π be a normal logic program. By a
partial interpretation of Π we mean a signed subset of the Herbrand base HB(Π), i.e., a subset
of HB(Π), some of whose elements may be default negated and thus considered false. An
interpretation M of Π is a partial interpretation such that for all A ∈ HB(Π) we have either
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A ∈ M or Ā ∈ M. An interpretationM is a Herbrand model of a program Π if for each rule
r ∈ grd(Π) it holds that if body+(r) ⊆ M and body−(r) ∩M = ∅, then head(r) ∩M 6= ∅.
M is the (unique) least Herbrand model of Π if there is no other model of Π containing less
positive atoms.

Definition 3.1.4. Let ∼ be the equivalence relation between ground atoms of Π defined as fol-
lows:

A ∼ B iff A = B, or A < B and B < A.

We call its equivalence classes components of the ground dependency graph GDG(Π). A com-
ponent is trivial if it consists of a single element A such that A 6< A. ♦

The following order relation over components is transitive and asymmetric.

Definition 3.1.5. Let C1 and C2 be two components of GDG(Π). We define:

C1 ≺ C2 iff C1 6= C2 and there exist L1 ∈ C1 and L2 ∈ C2 such that L1 < L2.

We call a component C1 minimal if there is no component C2 such that C2 ≺ C1. ♦

Definition 3.1.6. By the bottom stratum, S(Π), of Π we mean the union of all minimal compo-
nents of Π, i.e.,

S(Π) = {C | C is a minimal component of GDG(Π)}.

By the bottom layer L(Π) of Π we mean the corresponding subprogram of Π, i.e.,

L(Π) =
⋃
{r ∈ Πg | head(r) ⊆ S(Π)}.

Herbrand modelsM of the subprogram L(Π) will be identified with signed subsets of the bot-
tom stratum S(Π). ♦

Example 3.1.7. Consider the following program Π6 which consists of the following rules:

q(X)← p(X,Y ),not q(Y ),

p(1, 2)← .

The grounding grd(Π) consists of the following rules:

q(1)← p(1, 1), not q(1),

q(1)← p(1, 2), not q(2),

q(2)← p(2, 1), not q(1),

q(2)← p(2, 2), not q(2),

p(1, 2)← .

Because of the negative dependency relations q(1) < q(2) and q(2) < q(1) we have the follow-
ing components: {q(1), q(2)}, {p(1, 1)}, {p(1, 2)}, {p(2, 1)}, and {p(2, 2)}. The component
{q(1), q(2)} is the only non-minimal component, hence we get the bottom stratum S(Π) =
{p(1, 1), p(1, 2), p(2, 1), p(2, 2)} and the corresponding bottom layer L(Π) = {p(1, 2)}. ♦
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In the following, for a ground naf-literal L and a partial interpretation M, we will say that
M |= L if L is inM andM |= L̄ if L̄ is inM

Definition 3.1.8. Let Π be a logic program and M a set of naf-literals. By a reduction of
Π modulo M we mean a new program Π

M obtained from Π by performing the following two
reductions:

• removing from Π all rules which contain a body naf-literal L such thatM |= L̄ or whose
head belongs toM (in other words, removing all rules true inM);

• removing from all the remaining rules those body naf-literals L which are satisfied inM,
i.e., such thatM |= L.

Finally, we also remove from the resulting program all non-facts whose heads appear as facts in
the program. This step ensures that the set of literals appearing in facts, also called extensional
literals, is disjoint from the set of literals appearing in heads of non-facts, also called intensional
literals. ♦

Definition 3.1.9. Suppose that Π is a normal logic program and let Π0 = Π and M0 = ∅.
Suppose that α > 0 is a countable ordinal such that programs Πδ and partial interpretationsMδ

have been already defined for all δ < α. Let

Nα =
⋃

0<δ<α

Mδ,

Πα =
Π

Nα
, Sα = S(Πα), and Lα = L(Πα).

• If the program Πα is empty, then the construction stops and MΠ = Nα is the weakly
perfect model of Π.

• Otherwise, if the bottom stratum Sα = S(Πα) of Πα is empty or if the least Herbrand
model of the bottom layer Lα = L(Πα) of Πα does not exist, then the construction also
stops andMΠ = Nα is the partial weakly perfect model of Π.

• Otherwise, the partial interpretation Mα is defined as the least Herbrand model of the
bottom layer Lα = L(Πα) of Πα and the construction continues.

In the first two cases, α is called the breadth of Π and is denoted by δ(Π). For 0 < α < δ(Π),
the set Sα is called the α-th stratum of Π and the program Lα is called the α-th layer of Π.

In the process of constructing the strata Sα, some ground atoms may be eliminated by the
reduction and not fall into any stratum. Such atoms should be added to an arbitrary stratum, e.g.
the first, and assumed false inMΠ. ♦

Note that the construction always stops after countably many steps and therefore the (partial)
weakly perfect modelMΠ of a program is always defined and unique.

Now, the class of weakly stratified programs is defined as those programs with a weakly
perfect model, for which all the strata Sα consist only of trivial components.
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Definition 3.1.10 (Weak Stratification). We say that a normal logic program Π is weakly strat-
ified if it has a weakly perfect model and if all of its strata Sα consist only of trivial components
or – equivalently – when all of its layers Lα are positive logic programs. In this case, we call the
set of program’s strata {Sα | 0 < α < δ(Π)} the weak stratification of Π. ♦

Example 3.1.11. Consider again program Π from Example 3.1.7. It is weakly stratified and has
thus a unique answer set but it is not locally stratified. We already identified the bottom stratum
S(Π) and the bottom layer L(Π), so we obtain:

Π1 = Π,

S1 = S(Π) = {p(1, 1), p(1, 2), p(2, 1), p(2, 2)},
L1 = L(Π) = {p(1, 2)},

and therefore

M1 = {p(1, 2), p(1, 1), p(2, 1), p(2, 2)}.

Consequently, Π2 = Π1
M1

= {q(1) ← not q(2)} is the union of the minimal components of
Π2 and L2 = L(Π2) = ∅ is the set of rules from Π2 whose heads belong to S2. Therefore,
M2 = {q(2)}. As a result,

Π3 =
Π2

M1 ∪M2
= {q(1)},

S3 = {q(1)},
L3 = Π3, and

M3 = S3 = {q(1)}.

Since Π4 = Π3
M1∪M2∪M3

= ∅, the construction is completed, Π is weakly stratified, {S1, S2, S3}
is its weak stratification, and

MΠ =M1 ∪M2 ∪M3 = {p(1, 2), q(1), p(1, 1), p(2, 1), p(2, 2), q(2)}

is its unique weakly perfect model. ♦

We have seen that there exist weakly-stratified programs which are not locally stratified. With
the following theorem we get that the weakly-stratified programs are a strict superclass of the
locally-stratified programs.

Theorem 3.1.12 ([53]). Every (locally) stratified program is weakly stratified.

Analysis of Weak Stratification

In the above example the things are pretty clear: We can identify the whole program as determin-
istic and thus the generate part would be empty, but even after a slight modification, the situation
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becomes much more complicated. Consider the program Π′, a modification of the program Π
from Example 3.1.11 which consists of the following rules:

q(X)← r(1), p(X,Y ),not q(Y ),

p(1, 2)←,
r(1)← not r(2),

r(2)← not r(1).

Its grounding grd(Π′) consists of the following rules:

q(1)← p(1, 1), r(1), not q(1), (3.4)

q(1)← p(1, 2), r(1), not q(2), (3.5)

q(2)← p(2, 1), r(1), not q(1), (3.6)

q(2)← p(2, 2), r(1),not q(2), (3.7)

p(1, 2)←, (3.8)

r(1)← not r(2), (3.9)

r(2)← not r(1). (3.10)

Here, as in Example 3.1.11 above, the Rules (3.4)-(3.8) do still not lead to the creation of more
than one answer set. Because of (3.9) and (3.10), we can choose whether r(1) or r(2) should
be contained in an answer set, but independently from our choice, the Rules (3.4)-(3.8) do not
create any more answer sets. It seems thus reasonable to not include the Rules (3.4)-(3.8) in the
generate part.
We will now try to use the notion of weak stratification to identify the Rules (3.4)-(3.8) as a
deterministic part of the program. If we ask the question, whether the program consisting of
exactly those rules is weakly stratified, the answer is affirmative. This comes from the fact that
in the process of constructing a weakly perfect model, {r(1)} would be a minimal component
and since it does not occur in a head, it would be considered false in M1. Hence, the Rules
(3.4)-(3.7) are removed in the next reduction step, resulting in an empty program.

But, in some cases, the assumption that literals which do not occur in the heads of the
examined rule set are false can lead to wrong conclusions. Consider for example the following
rules:

a(1)← r(1),not b(1), (3.11)

b(1)← r(1),not a(1), (3.12)

r(1)← not r(2), (3.13)

r(2)← not r(1). (3.14)

If we ask whether the program consisting exactly of the Rules (3.11) and (3.12) is weakly strat-
ified, the answer would again be affirmative, because r(1) is assumed to be false. But if we
consider all four rules, there can be answer sets in which r(1) is true and in this case the Rules
(3.11) and (3.12) obviously lead to the creation of two different answer sets.

22



So, if we examine some set of rules Πx and ask the question whether this set is weakly stratified,
we should also add all rules r for which it holds, that a head literal contained in Πx depends on
some literal in head(r). For the program Π′g given above, this would mean to ask whether the
whole program Π′g is weakly stratified.

It is easily seen that Π′g is not weakly stratified since the minimal component {r(1), r(2)}
is not trivial. We can thus observe the following problem: If, in the process of constructing the
strata Sα, some non-trivial component is minimal (and hence contained in the bottom stratum),
the property of being weakly stratified is violated. Nevertheless, it may be the case that the
actual rules under consideration form a program which does never lead to the creation of more
than one answer set, like (3.4)-(3.8) in program Π′g above.

The Bottom Reduct

Since the straightforward use of weak stratification leads to the mentioned problem, we will
in the following adapt the original definitions by Przymusinski and Przymusinska to develop
an approach which takes a program and calculates its so-called bottom reduct. We can then
use the bottom reduct to check whether some set of rules is contained in the generate part of the
program. This approach covers examples like the one from Π′g. Furthermore, it is also applicable
to disjunctive programs and, with a slight adaption which we will introduce later, even programs
with aggregates in the head.

The idea of the layer-by-layer computation of a model will in the following be used. We
will, nevertheless, not compute a model of the whole program but instead modify the existing
program. The main idea is, to identify that part of the program which, intuitively spoken, con-
tains the program’s deterministic portion. We will then compute the unique answer set of this
deterministic portion and use this answer set to modify the original program. The resulting pro-
gram can then later be checked for the occurrence of unstratified negation to see whether it is
deterministic.

Because of the problems with non-trivial components, we will drop the notion of compo-
nents. Instead, we will just talk about literals and the order defined by the negative dependency
relation. This gives rise to the notion of weak minimality of literals given in Definition 3.1.13.

Definition 3.1.13 (Weak Minimality). We say that a literal L ∈ grd(Π) is weakly minimal if
the following holds:

• there is no literal L′ ∈ lit(grd(Π)) such that L′ < L, and

• there is no literal L′ ∈ lit(grd(Π)) which occurs in the head of a disjunctive rule such that
L′ ≤ L.

♦

Definition 3.1.6 is in the following adapted according to the notion of weak minimality. The new
bottom stratum, which we call deterministic-bottom stratum, is then not the union of the minimal
components but the union of the weakly-minimal literals. The non-trivial minimal components
are thus ignored since their literals are non-minimal by definition.
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Definition 3.1.14. By the deterministic-bottom stratum, S(Π), of Π we mean the set of weakly-
minimal literals which do not occur in the heads of disjunctive rules, i.e.,

S(Π) = {L ∈ lit(grd(Π)) | L is weakly minimal and does not

occur in the head of a disjunctive rule in Π}.

By the deterministic-bottom layer L(Π) of Π we mean the corresponding subprogram of Π, i.e.

L(Π) =
⋃
{r ∈ grd(Π) | head(r) ⊆ S(Π)}.

♦
Clearly, the deterministic-bottom layer L(Π) is always a positive logic program since none of
the head literals of L(Π) depend negatively on other literals. It thus has a unique answer set.

Furthermore, if some literal L is not contained in the answer set of L(Π), we can safely
assume it to be false in any answer set of Π. This is due to the following (inductive) argument:
By Definition 3.1.14, every literal in S(Π) depends only on weakly-minimal literals which are
thus also in S(Π). But, since L(Π) contains all rules whose heads are in S(Π), every literal
from S(Π) is fully defined by L(Π).

The following operator Φ is based on the reduction from Definition 3.1.8 (the only difference
is that we do not require Π to be a normal logic program anymore, but the transformation itself
stays exactly the same). It computes the unique answer setM of the bottom layer L(Π) and then
modifies grd(Π) accordingly to obtain a new program Φ(Π). The operator Φ will be applied
until a fixed point is reached.

Definition 3.1.15 (Operator Φ). Let Π be a ground logic program with bottom stratum S(Π)
and bottom layer L(Π). Let furthermore M be the unique answer set of L(Π) and M′ =
M∪ {L̄ | L ∈ S(Π) and L /∈ M}. Then, Φ(Π) = Π

M′ . We furthermore define Φ(0)(Π) = Π

and Φ(i)(Π) = Φ(Φ(i−1)(Π)). ♦

Definition 3.1.16 (Bottom Reduct). Let Π be a logic program and n the smallest natural num-
ber such that Φ(n)(grd(Π)) = Φ(n+1)(grd(Π)). Then, Φ(n)(grd(Π)) is called the bottom reduct
of Π. ♦

Example 3.1.17. Consider the program Π7 which consists of the following rules:

in(X)← succ(Y,X), dis(Y ),not moving(Y ),

moving(X)← in(X),

dis(1) ∨ ¬dis(1)←,
succ(1, 2)← .
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Its grounding consists of the following rules:

in(1)← succ(1, 1), dis(1),not moving(1), (3.15)

in(1)← succ(2, 1), dis(2),not moving(2), (3.16)

in(2)← succ(1, 2), dis(1),not moving(1), (3.17)

in(2)← succ(2, 2), dis(2),not moving(2), (3.18)

moving(1)← in(1), (3.19)

moving(2)← in(2), (3.20)

dis(1) ∨ ¬dis(1)←, (3.21)

succ(1, 2)← . (3.22)

For Π7 we obtain as deterministic-bottom stratum the set S(Π7) = {succ(1, 1), succ(1, 2),
succ(2, 1), succ(2, 2)}. Note that dis(1) and ¬dis(1) are weakly minimal but since they ap-
pear in the head of a disjunctive rule, they are not in the deterministic-bottom stratum. The
deterministic-bottom layer of the program is thus L(Π7) = {succ(1, 2)}, having the unique
answerM = {succ(1, 2)} and so S(Π7) \M = {succ(1, 1), succ(2, 1), succ(2, 2)}.

For computing Φ(1)(Π7), we will first remove all rules which contain a naf-literal N such
that M |= N̄ . In the above case these are (3.15), (3.16), and (3.18). Furthermore, (3.22) is
removed and succ(1, 2) is removed from (3.17), sinceM |= succ(1, 2). There is no non-fact
whose head appears as a fact. We obtain Φ(1)(Π7) which consists of the following rules:

in(2)← dis(1), not moving(1), (3.23)

moving(1)← in(1), (3.24)

moving(2)← in(2), (3.25)

dis(1) ∨ ¬dis(1)← . (3.26)

Now we compute again the deterministic-bottom stratum. The literals moving(1) and in(1)
are the weakly-minimal literals which do not occur in the head of a disjunctive rule, hence
S(Φ(Π7)) = {moving(1), in(1)} and L(Φ(Π7)) = {moving(1) ← in(1)} with the unique
answer setM′ = ∅. SinceM′ |= not moving(1), we can remove not moving(1) from (3.23).
Furthermore, (3.24) is removed sinceM′ |= not in(1). We get Φ(2)(Π7) as follows:

in(2)← dis(1), (3.27)

moving(2)← in(2), (3.28)

dis(1) ∨ ¬dis(1)← . (3.29)

For Φ(2)(Π7) the deterministic-bottom stratum is empty, hence Φ(3)(Π7) = Φ(2)(Π7) and thus
Φ(2)(Π7) is the bottom reduct of Π7. ♦

Theorem 3.1.18. The bottom reduct of a weakly stratified program is empty.

Proof. Let Π be a weakly stratified logic program. By the definition of weak stratification, Π has
a weakly perfect model and thus there exists an n such that Πn, which was constructed according
to Definition 3.1.9, is empty. We will thus show that for any n, Πn = Φ(n)(Π).
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First, since Π is weakly stratified, all of its strata Sα consist only of trivial components. Since the
bottom stratum is defined as the union of the minimal components and the deterministic-bottom
stratum is defined as the union of all weakly-minimal literals, the deterministic-bottom stratum
is identical to the the bottom stratum. The same holds for the respective bottom layers.

Furthermore, for positive normal logic programs, the notions of the least Herbrand model and
the unique signed set M′ used in the definition of the operator Φ coincide. For a program Π
we will thus in the following use L(Π) to denote both its bottom stratum and its deterministic-
bottom stratum. We will also use LHM(Π) to denote both the unique signed setM′ and the
least Herbrand model of Π.

We proceed by induction on n.

INDUCTION BASE (n = 0): By definition, Φ(0)(Π) = Π0 = Π.

INDUCTION STEP (n > 0): We assume that the statement holds for all 0 < i ≤ n. By definition
we have that

Φ(n+1)(Π) = Φ(Φ(n)(Π)) =
Φn(Π)

LHM (L(Φ(n)(Π)))
,

and

Πn+1 =
Π⋃

0<i<n+1
LHM (L(Πi))

.

But this is the same as
Π⋃

0<i<n
LHM (L(Πi))

LHM (L(Πn))
.

Now, by the definition of Πn and the induction hypothesis it follows that

Π⋃
0<i<n

LHM (L(Πi))
= Πn = Φ(n)(Π).

But then,

Πn+1 =
Πn

LHM (L(Πn))
=

Φn(Π)

LHM (L(Φ(n)(Π)))
= Φ(n+1)(Π).

�

Since every (locally) stratified program is weakly stratified, we get the following corollary:

Corollary 3.1.19. The bottom reduct of a (locally) stratified program is empty.

The following proposition tells us that there is no constant upper bound for the number of itera-
tions of Φ.
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Proposition 3.1.20. For every n ∈ N+ there exists a program Πn such that the computation of
its bottom reduct requires n applications of the Φ-operator.

Proof. Let Πn be the program consisting of the following rules:

step1(a)←,
step2(a)← step1(a), not step1(b),

step2(b)← not step1(a),

step3(a)← step2(a), not step2(b),

step3(b)← not step2(a),

...

stepn(a)← stepn−1(a),not stepn−1(b),

stepn(b)← not stepn−1(a).

Πn has the deterministic-bottom stratum S(Πn) = {step1(a), step1(b)} and thus the determi-
nistic-bottom layer L(Πn) = {step1(a)}. The unique answer set of the deterministic-bottom
layer is {step1(a)}, hence Φ(1)(Πn) is as follows:

step2(a)←,
step3(a)← step2(a), not step2(b),

step3(b)← not step2(a),

...

stepn(a)← stepn−1(a),not stepn−1(b),

stepn(b)← not stepn−1(a).

Now we get the deterministic-bottom stratum S(Φ(1)(Πn)) = {step2(a), step2(b)} and the
bottom layer L(Φ(1)(Πn)) = {step2(a)}. We can observe that the computation of Φ(2)(Πn) is
similar to that of Φ(1)(Πn) and that this is also the case for all Φ(i)(Πn) with i < n. We thus
end up with Φ(n−1)(Πn), consisting of the single fact:

stepn(a)← .

Now, after applying the Φ-operator once more, we obtain Φ(n)(Πn) = ∅, hence Φ(n)(Πn) is the
bottom reduct of Πn. Its computation required n applications of the Φ-operator. �

We can now give a definition for the generate part of a logic program Π.

Definition 3.1.21 (Generate Part). A rule r belongs to the generate part if and only if r is dis-
junctive or a ground instance of r is involved in a negative cycle within the extended dependency
graph of the bottom reduct of Π. Such a rule is referred to as a generating rule. ♦
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By Theorem 3.1.18 we immediately get the following result:

Corollary 3.1.22. The generate part of every weakly stratified and thus of every (locally) strat-
ified program is empty.

For programs which require an explicit input in the form of facts, the bottom reduct of a program
should be formed by including some input instance to make sure that naf-literals which are true in
the actual computation of the program are not wrongly considered false. Consider for example
the following encoding Π8 of the graph-3-colouring problem which consists of the following
rules:

red(X)← vertex (X),not green(X), not blue(X), (3.30)

green(X)← vertex (X),not red(X),not blue(X), (3.31)

blue(X)← vertex (X),not red(X),not green(X), (3.32)

← edge(X,Y ), red(X), red(Y ), (3.33)

← edge(X,Y ), green(X), green(Y ), (3.34)

← edge(X,Y ), blue(X), blue(Y ). (3.35)

Here, for a graph (V,E), an encoded problem instance should contain the facts {vertex (u) |
u ∈ V } and {edge(u, v) | (u, v) ∈ E}. If we do not add these facts, then all ground instances
of vertex (X) and edge(X,Y ) in the bodies of the instances of (3.30)-(3.35) are contained in
the deterministic-bottom stratum but are not true in the unique answer set of the bottom layer.
Hence, they are considered false and thus the bottom reduct does not contain any rules. But
this would mean that the first three rules are, by Definition 3.1.21, not rules of the generate part
which would not be intuitive.

3.2 Definitions of Test and Define

The definitions for the define and test part are easier and are given below.

Definition 3.2.1 (Test Part). A rule belongs to the test part if and only if it is a constraint. ♦

Definition 3.2.2 (Define Part). A rule belongs to the define part if and only if it does neither
belong to the generate nor to the test part. Such a rule is referred to as a defining rule. ♦

Example 3.2.3. Consider the program Π9, consisting of the following rules:

q(3)← not q(1), not q(4), (3.36)

q(4)← not q(1), not q(3), (3.37)

q(1)← p(1, 2),not q(2), (3.38)

q(2)← p(2, 1),not q(1), (3.39)

p(1, 2)← . (3.40)

Here we have the two negative cycles, {q(1), q(2)} and {q(3), q(4)}. Nevertheless, since p(2, 1)
is not contained in a rule head, it cannot be in an answer set. Hence, the Rule (3.39) is removed
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during the computation of the bottom reduct. It follows then that q(1) must be contained in an
answer set, since p(1, 2) in the body of Rule (3.38) is true by (3.40) and q(2) cannot be true. But
then, the Rules (3.36) and (3.37) are removed during the computation of the bottom reduct.

It follows that the bottom reduct of Π9 does not contain a negative cycle and hence all the
above rules are classified as defining rules. This should match our intuition since the program
has the unique answer set {p(1, 2), q(1)}. In contrast, if we replace the fact p(1, 2) in Π9 by the
fact p(2, 1), we obtain the program Π′9 which consists of the following rules:

q(3)← not q(1), not q(4), (3.41)

q(4)← not q(1), not q(3), (3.42)

q(1)← p(1, 2),not q(2), (3.43)

q(2)← p(2, 1),not q(1), (3.44)

p(2, 1)← . (3.45)

Here, q(1) cannot be in an answer set and thus the Rules (3.41) and (3.42) are not removed during
the computation of the bottom reduct. But, because of the negative cycle {q(3), q(4)}, they are
generating rules. The other rules are still considered defining rules. This should again match our
intuition, since Π′9 has the two answer sets {p(2, 1), q(2), q(3)} and {p(2, 1), q(2), q(4)}. ♦

3.3 Implementation of the Classification Algorithm

In this section we introduce an implementation of an algorithm which takes as input a logic
program and outputs a classification of the program rules into the generate, define, and test
parts. Some parts of the algorithm (overall control of the data flow, parsing of an input program,
etc.) are implemented in a procedural programming-language (Java), but the most complex part,
namely the computation of the bottom reduct and the identification of rules which are involved
in negative cycles within the bottom reduct, is done by a meta logic program on which we will
lay the main focus here.

To be able to apply a meta logic program to some input program, it is necessary to transform
the input program into a set of atoms. For this transformation, to which we will refer in the
following as reification, we make use of the functionality reify which is provided by the
well-known grounder gringo (version 3.0.5) and is explained in detail in a paper by Gebser,
Kaminski and Schaub [28]. This implies that our implementation can cope with exactly those
programs which are in the gringo input format. The solution step (i.e., the application of
the meta program to the reified input program) is handled by the solver clasp (version 3.1.0).
Before we go into further detail, we first give a sketch of the implementation of the whole
classification algorithm as follows:

1. Read the input program Π, ground it, and transform it into a set SΠ of atoms (reification).

2. Compute the bottom reduct of Π by applying a meta logic program to SΠ.

3. Identify the set C of rules whose ground instances are involved in negative cycles within
the extended dependency graph of the bottom reduct.
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4. Classify rules from C and rules with disjunction or aggregates in the head as generat-
ing rules. Classify rules with empty heads as constraints (test part) and all the others as
defining rules.

Steps 2 and 3 are fully handled by the meta logic program which we will later explain in detail.
Step 1 is partly handled by it and the rest is handled by gringo, clasp, and our imperative
program. Note that in Step 4 we also take aggregates into account which is not the case in the
definitions of the preceding chapter.

We incorporated aggregates mainly because of practical considerations. They are a part of
the gringo syntax and many programs from practice use aggregates as syntactical extensions
which allow for the introduction of non-determinism. From a formal standpoint, this leads to
a slight modification of Definitions 3.1.13, 3.1.14, and 3.1.21, instead of which we use the
following Definitions 3.3.1, 3.3.2, and 3.3.3, respectively.

Definition 3.3.1 (Weak Minimality, gringo Syntax). We say that a literal L ∈ lit(Πg) is
weakly minimal if the following holds.

• There is no literal L′ ∈ lit(Πg) such that L′ < L, and

• there is no literal L′ ∈ lit(Πg) which occurs in the head of a disjunctive rule or in an
aggregate within a rule head such that L′ ≤ L.

♦

The dependency notions and thus the relations < and ≤ generalise naturally to literals in aggre-
gates.

Definition 3.3.2 (Deterministic-Bottom Stratum/Layer, gringo Syntax). By the determi-
nistic-bottom stratum S(Π) of Π we mean the set of weakly-minimal literals which do not occur
in the heads of disjunctive rules or within aggregates in rule heads.

By the deterministic-bottom layer we mean the set of rules from Π whose head atoms are
contained in the deterministic-bottom stratum. ♦

Definition 3.3.3 (Generate Part, gringo Syntax). A rule r belongs to the generate part if and
only if it fulfils at least one of the following criteria:

1. r is disjunctive.

2. r contains an aggregate in the head.

3. A ground instance of r is involved in a negative cycle within the extended dependency
graph of the bottom reduct of Π.

♦

Note that we do not adapt the operator Φ. Next, we will first describe the reification which takes
place before the meta program is called. After this we will give a detailed explanation of the
meta program.
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Reifiying the Input for the Meta Program

The whole reification is done in three main steps of which the first two are handled outside
the meta program. In the first step, we add to every (non-fact) rule of an input program Π a
positive body atom rule_number(n), where n is a natural number which uniquely identifies the
corresponding rule. For the predicate rule_number we then add the statement “#external
rule_number/1” to the program. This statement tells gringo that the respective atoms are
not part of the input and can thus not be removed during the grounding process [27]. With this
little “trick” we can later, for any ground rule rg, obtain the corresponding non-ground rule r of
which rg is an instance. To illustrate this, consider the following example:

Example 3.3.4. Let Π10 be the program which consists of the following rules:

d←, (3.46)

← e, (3.47)

a← not c, (3.48)

f ∨ g ← ¬h, (3.49)

{b, c} ← e. (3.50)

By adding to every non-fact rule a corresponding body atom with the predicate rule_number ,
we get the program Π′10, consisting of the following rules:

d←, (3.51)

← e, rule_number(1), (3.52)

a← rule_number(2), not c, (3.53)

f ∨ g ← ¬h, rule_number(3), (3.54)

{b, c} ← e, rule_number(4). (3.55)

♦

In the second step, the resulting program is passed to gringowhich is called with the command
“gringo --reify input_filename”. This command tells gringo, that it should en-
code the grounding of the program as a set of facts. The most important predicate symbols for
this encoding are rule/2, set/2, and wlist/4. Before we go into further detail, we give the
following example:

Example 3.3.5. Consider program Π′10 from Example 3.3.4. It could be represented by gringo
in the following way:

1 rule(pos(atom(d)),pos(conjunction(0))).
2 rule(pos(false),pos(conjunction(1))).
3 set(1,pos(atom(e))).
4 set(1,pos(rule_number(1))).
5 rule(pos(atom(a)),pos(conjunction(2))).
6 set(2,pos(rule_number(2))).
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7 set(2,neg(atom(c))).
8 rule(pos(disjunction(3)),pos(conjunction(4)).
9 set(3,pos(atom(f))).

10 set(3,pos(atom(g))).
11 set(4,pos(atom(-h))).
12 set(4,pos(rule_number(3))).
13 rule(pos(sum(0,5,2)),pos(conjunction(6))).
14 wlist(5,0,pos(atom(b)),1).
15 wlist(5,1,pos(atom(c)),1).
16 set(6,pos(atom(e))).
17 set(6,pos(atom(rule_number(4)))).

♦

The predicate rule represents a rule as a pair, where the first and the second element represent
the head and the body, respectively. Sets of literals, which can be interpreted as conjunctions
or disjunctions, are represented by the predicate set , whose first element specifies an index of
the set and the second element is a literal which is contained in the set. The elements within
an aggregate are represented by the predicate wlist . The first element denotes the index of the
aggregate, the second one denotes the index of a literal within the aggregate, the third element
is the literal itself and the fourth one denotes the weight associated to the literal.

To encode literals, conjunctions, disjunctions and aggregate functions, function symbols
are used. The function symbols neg and pos denote default negation or its absence. Liter-
als are specified by the function symbol atom . Disjunction and conjunction are specified by
the function symbols disjunction and conjunction , respectively, and an index of a set which
contains the corresponding literals. Aggregate functions can be encoded by the function sym-
bols sum,min,max , even , and odd . Furthermore, note that empty rule bodies are encoded by
conjunction(n) where n is an index for which no set was specified.

The Meta Program for the Classification

The whole meta program, which we will denote as Πclassify , consists of nearly 100 rules, hence
we will in the following not explain all of them but give an overview instead. The whole program
can be found in Appendix A.

The program Πclassify consists of the following modules:

(i) Πreify which reifies the input,

(ii) Πdependency which defines the dependency notions,

(iii) Πbottomlayer which identifies the deterministic-bottom stratum and the corresponding de-
terministic-bottom layer,

(iv) Πbottomreduct which encodes the operator Φ and applies it successively to compute the
bottom reduct,

(v) Πgenerate which finally identifies the rules which are involved in negative cycles within the
extended dependency graph.
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In the following, we outline these modules. For this, we use the gringo syntax in which “:-”
is used for the symbol “←”.

Module Πreify – Reification of the Input

Module Πreify rewrites the rule- and set-facts obtained from gringo into atoms with the pred-
icate symbols irule/4 and iset/3, respectively. The irule and iset predicates contain as a first
parameter, additionally to the parameters of rule and set , the index of the iteration in the compu-
tation of the bottom reduct, i.e., the index i for operator Φ(i). This way, we can in every iteration
refer to the program to which we apply the operator Φ. Furthermore, the atoms with the pred-
icate symbol rule_number are thrown out of the corresponding sets and their parameters are
used to encode the rule number as the second parameter of the irule predicate. The following
example demonstrates the last reification step.

Example 3.3.6. Consider the gringo output from Example 3.3.5. It is rewritten to the follow-
ing program.

1 irule(0,-1,pos(atom(d)),pos(conjunction(0))).
2 irule(0,1,pos(false),pos(conjunction(1))).
3 iset(0,1,pos(atom(e))).
4 irule(0,2,pos(atom(a)),pos(conjunction(2))).
5 iset(0,2,neg(atom(c))).
6 irule(0,3,pos(disjunction(3)),pos(conjunction(4)).
7 iset(0,3,pos(atom(f))).
8 iset(0,3,pos(atom(g))).
9 iset(0,4,pos(atom(-h))).

10 irule(0,6,pos(sum(0,5,2)),pos(conjunction(6))).
11 wlist(5,0,pos(atom(b)),1).
12 wlist(5,1,pos(atom(c)),1).
13 iset(0,6,pos(atom(e))).

♦

Note that the wlist atoms are not indexed since they are not affected by the computation of
the bottom reduct and thus stay the same over all iterations. The rewriting for the rules is
straightforward. One of the rules which define the irule predicate is given below:

1 irule(0,R,pos(atom(X)),pos(conjunction(Y))) :-
2 rule(pos(atom(X)),pos(conjunction(Y))),
3 set(Y,pos(atom(rule_number(R)))).

For the definition of the iset predicate we must, apart from the straightforward rewriting, throw
away the rule_number atoms from the bodies which is handled by the following two rules:

1 is_rule_numbering(S,pos(atom(rule_number(R)))) :-
2 set(S,pos(atom(rule_number(R)))).
3
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4 iset(0,S,pos(atom(X))) :-
5 set(S,pos(atom(X))),
6 not is_rule_numbering(S,pos(atom(X))).

Finally, Πreify also defines the predicates disjunctive_head_literal , aggr_head_literal and
literal to identify the literals within disjunctions, heads of aggregates and all literals within
the program, respectively. Based on the predicates defined in Πreify , we can later identify the
bottom layer and the bottom stratum as well as those rules which are involved within negative
cycles in the bottom reduct.

Module Πdependency – Definition of the Dependency Notions

The definitions of the dependency notions are straightforward and thus we do not list the respec-
tive rules here. It is only important to note that we use the following predicate symbols:

• depends_directly_positive and depends_positively for direct positive and positive de-
pendency, respectively,

• depends_directly_negative and depends_negatively for direct negative and and negative
dependency, respectively, and

• depends for dependency in the common sense, no matter if negative or positive.

The predicates depends_directly_positive and depends_directly_negative contain four param-
eters: The first parameter specifies, similarly to iset and irule , the index of the iteration in the
computation of the bottom reduct, the third (head) and the fourth parameter (body) specify the
involved literals and the second parameter provides the information, via which rule the direct
dependency of the two literals is established. Hence, depends_directly_positive(I,R,H,B)
encodes that in the I-th iteration the literal H depends directly positive on the literal B via the
rule R. Similarly for depends_directly_negative(I,R,H,B).

The predicates depends_positively and depends_negatively do naturally not have a param-
eter for the rule index, thus depends_positively(I, A,B) encodes that in iteration I , the literal
A depends positively on B. Similarly for depends_negatively and depends . Finally, note that
depends_positively and depends_negatively represent ≤ and <, respectively.

Module Πbottomlayer – Identification of the Deterministic Bottom Layer and Stratum

In module Πbottomlayer , we define the weakly minimal literals, the deterministic-bottom stratum,
and the deterministic-bottom layer. For this, we use the predicates weakly_minimal_literal ,
bottom_stratum , and bottom_layer_rule, respectively. The first four rules identify the weakly
minimal literals:

1 -weakly_minimal_literal(I,L) :- literal(I,L),
2 depends_negatively(I,L,_).
3 -weakly_minimal_literal(I,L) :- literal(I,L),
4 disjunctive_head_literal(I,_,Y), depends(I,L,Y).
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5 -weakly_minimal_literal(I,L) :- literal(I,L),
6 aggr_head_literal(I,_,Y), depends(I,L,Y).
7
8 weakly_minimal_literal(I,L) :- literal(I,L),
9 not -weakly_minimal_literal(I,L).

Note that the weakly_minimal_literal predicate has also the index of the iteration as first param-
eter. The deterministic-bottom stratum and the deterministic-bottom layer can then, according
to Definition 3.3.2, be specified by the following four rules:

1 -bottom_stratum(I,L) :- disjunctive_head_literal(I,_,L).
2 -bottom_stratum(I,L) :- aggr_head_literal(I,_,L).
3
4 bottom_stratum(I,L) :- weakly_minimal_literal(I,L),
5 not -bottom_stratum(I,L).
6 bottom_layer_rule(I,pos(atom(H)),B) :-
7 irule(I,_,pos(atom(H)),B),
8 bottom_stratum(I,H).

Both predicates contain again as a first parameter the index of the iteration in the computation.

Module Πbottomreduct – Computation of the Bottom Reduct

Once we have the bottom layer, we have to compute its unique answer set to reduce the given
program of index i according to the definition of the operator Φ in order to obtain the program
of the next iteration (index i+ 1). This reduction step is repeatedly applied until a fixed point is
reached. For the details of the answer-set computation and the corresponding reduction, we refer
to the full program in the appendix. Roughly speaking, we define which rules and sets should
explicitly not be contained in the program for the next iteration by using the classical negation of
irule and iset . Based on this definition, we then define the program for the following iteration
as follows:

1 irule(I+1,R,H,B) :- check(I),
2 irule(I,R,H,B), not -irule(I+1,R,H,B).
3 iset(I+1,S,L) :- check(I),
4 iset(I,S,L), not -iset(I+1,S,L).

The predicate check is true for an integer i if the program should terminate at iteration i,
based on the fixed-point condition (predicate layer_changed ) of the operator Φ and a constant
(max_iterations) which defines the maximum number of iterations. The definitions of check
and layer_changed are as follows:

1 layer_changed(I+1) :- irule(I,R,B,H), -irule(I+1,R,B,H).
2 layer_changed(I+1) :- iset(I,S,L), -iset(I+1,S,L).
3
4 check(I) :- layer_changed(I), I < max_iterations.
5 check(0).
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When the fixed-point of the operator Φ is reached, i.e., when the program was not changed
during the last iteration, we can define the bottom reduct (identified by the iteration index
bottom_reduct):

1 irule(bottom_reduct,R,X,Y) :- irule(I,R,X,Y),
2 layer_changed(I), not layer_changed(I+1).
3 iset(bottom_reduct,X,Y) :- iset(I,X,Y),
4 layer_changed(I), not layer_changed(I+1).

Module Πgenerate – Identification of Generating Rules

In the last module Πgenerate , we first identify those rules which are involved in a negative cycle
within the extended dependency graph of the bottom reduct as generating rules:

1 in_negative_cycle(R) :-
2 depends_directly_positive(bottom_reduct,R,X,Y),
3 depends_negatively(bottom_reduct,Y,X).
4 in_negative_cycle(R) :-
5 depends_directly_negative(bottom_reduct,R,X,Y),
6 depends(bottom_reduct,Y,X).

Finally, all rules which involved in a negative cycle are identified as generating rules by the
predicate generating_rule which encodes the actual output of the program:

1 generating_rule(R) :- in_negative_cycle(R).

3.4 Example Programs

In the following, we give example classifications of two programs from logic programming
practice to illustrate the usefulness of our approach.

Stable Marriage

The stable marriage problem is defined as follows [32, 47]: Given two distinct sets M and W
(commonly referred to as men and women) where each element of M has assigned a score to
every element of W and vice versa, find a perfect stable matching between the elements of M
andW . A perfect stable matching is a bijection f fromM toW such that there exist no elements
m ∈M and w ∈W which are not related to each other by f but which assign a higher score to
each other than to the elements to which they are related by f .
Consider the following classification of an encoding for the stable marriage problem.1 The input
is encoded by atoms with the predicate symbols manAssignsScore and womanAssignsScore.

1Encoding by Francesco Ricca, Mario Alviano and Marco Manna. Retrieved from http://asparagus.
cs.uni-potsdam.de/encoding/show/id/14319.
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Generate

match(M,W )← manAssignsScore(M,Fv1, Fv2),

womanAssignsScore(W,Fv3, Fv4),

not nonMatch(M,W ),

nonMatch(M,W )← manAssignsScore(M,Fv1, Fv2),

womanAssignsScore(W,Fv3, Fv4),

not match(M,W ),

Define

jailed(M)← match(M,Fv1).

Test

← manAssignsScore(M,Fv1, Fv2),not jailed(M),

← match(M,W ),match(M,W1),W 6= W1,

← match(M1,W ),match(M,W ),M 6= M1,

← match(M,W1),manAssignsScore(M,W,Smw),W1 6= W,

manAssignsScore(M,W1, Smw1), Smw > Smw1,

match(M1,W ),womanAssignsScore(W,M,Swm),

womanAssignsScore(W,M1, Swm1), Swm ≥ Swm1,

The classification was obtained by computing the bottom reduct of the program combined with
an input instance. Since the first two rules are involved in a negative cycle, they are classified as
generating rules.

15-Puzzle

The following variant of the 15-puzzle problem is considered: Let a 4 × 4 grid be given where
each cell is identified by its coordinates (x, y) with 1 ≤ x, y ≤ 4. Out of the 16 cells, 15 contain
a tile and each tile is numbered with a distinct number 1 ≤ i ≤ 15. The task is to find a sequence
of tile moves such that all tiles are in their goal position (see Figure 3.1). A tile at (x, y) can
only be moved to (x′, y′) if (x′, y′) is empty and |x− x′|+ |y − y′| = 1.

In the following encoding Π11 of the 15-puzzle,2 we have also choice atoms. The initial po-
sitions are encoded by atoms with the predicate symbol in0. Facts are omitted for the sake of
compactness.

2Slight modification of an encoding by Martin Gebser and Roland Kaminski which was retrieved from http:
//asparagus.cs.uni-potsdam.de/encoding/show/id/5307
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10 9 14 6

15 5 3 8

7 1 13

12 11 2 4

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 3.1: A possible input configuration of the 15-puzzle (left) and the goal configuration (right).

Generate

1{move(T,X, Y ) : pos(X) : pos(Y )}1← time(T ),maxtime(M), (3.56)

T < M,not goal(T ).

Define

goal(S)← goal(T ), time(T ),maxtime(M), (3.57)

succ(S, T ), T < M,

goal(T )← in(T,X, Y,A) : in_t(X,Y,A), time(T ), (3.58)

in(0, X, Y,A)← in0(X,Y,A), (3.59)

in(S,X, Y, 0)← move(T,X, Y ), succ(S, T ), (3.60)

in(S,X1, Y1, A)← in(T,X1, Y1, 0), in(T,X2, Y2, A), (3.61)

move(T,X2, Y2),neighbour(X1, Y1, X2, Y2),

entry(A), succ(S, T ), A > 0,

in(S,X, Y,A)← in(T,X, Y,A), pos(X), pos(Y ), entry(A), (3.62)

A > 0, time(T ),maxtime(M), T < M,

succ(S, T ),not move(T,X, Y ), not goal(T ),

neighbour(X,Y,X + 1, Y )← pos(X), pos(Y ), pos(X + 1), (3.63)

neighbour(X,Y,X, Y + 1)← pos(X), pos(Y ), pos(Y + 1), (3.64)

neighbour(X,Y,X, Y − 1)← pos(X), pos(Y ), pos(Y − 1), (3.65)

neighbour(X,Y,X − 1, Y )← pos(X), pos(Y ), pos(X − 1). (3.66)

Test

← not goal(M),maxtime(M), (3.67)

← move(T,X1, Y1), {in(T,X2, Y2, 0) : neighbour(X2, Y2, X1, Y1)}0. (3.68)

Note that the Rules (3.56), (3.58), and (3.68) contain aggregate constructs with so-called condi-
tional atoms. These are syntactical constructs allowed by gringo whose formal semantics are
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not really important for this example. The only crucial thing is, that the aggregate in the head of
Rule (3.56) causes non-determinism in the sense, that exactly one instance of move(T,X, Y ),
for whose instantiation of X and Y the atoms pos(X) and pos(Y ) are true, has to be contained
in an answer set of Π11. For further details, we refer to the user’s guide of gringo, clasp,
clingo, and iclingo [27].

Program Π11 should illustrate why the computation of the bottom reduct can make a differ-
ence. Consider for example the Rules (3.56), (3.58), and (3.60):

1{move(T,X, Y ) : pos(X) : pos(Y )}1← time(T ),maxtime(M), T < M,not goal(T ),

goal(T )← in(T,X, Y,A) : in_t(X,Y,A), time(T ),

in(S,X, Y, 0)← move(T,X, Y ), succ(S, T ).

Because of the cycle including the predicates goal , move , and in , there are ground literals which
depend negatively on themselves within the ground instantiation of Π11. But this is not the case
in the bottom reduct of Π11.

In the last rule, the atom succ(S, T ), whose ground instances are all contained in the bottom
stratum, is only true if S is instantiated to the successor of T . Hence, only rules in which S is
instantiated to the successor element of T , are contained in the bottom reduct of Π11. But a cycle
can only be closed if in all rules the variables S and T are mapped to the same constant. The
same holds for the other rules which are involved in negative cycles and thus none of these rules
are generating rules. The only generating rule is (3.56) because its head contains an aggregate.

3.5 An Explanation Order for Rules

If we want to obtain an understandable explanation of a program, the order in which the rules
are explained is very important. One way to obtain a relatively useful explanation is to start
with generating rules and their predicates (which may be defined in the define part) and then
continue by explaining how the predicates of the generate part are constrained by rules from the
test and possibly the define part. We will in the following develop a formalisation of this main
idea which also takes some subtleties with respect to the rule order into account. Consider as an
example the disjunctive program Π12 for the graph 3-colouring problem which consists of the
following rules:

red(X) ∨ green(X) ∨ blue(X)← vertex (X), (3.69)

← edge(X,Y ), red(X), red(Y ), (3.70)

← edge(X,Y ), green(X), green(Y ), (3.71)

← edge(X,Y ), blue(X), blue(Y ). (3.72)

Here, Rule (3.69) is the only generating rule and we would, according to the things stated above,
start with this rule and then continue with the other three rules from the test part. A natural-
language explanation with that order could be of the following form:

For any vertex, choose whether it is red, green, or blue, according to the following constraints:
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• There must not be an edge (x, y) such that both x and y are red.

• There must not be an edge (x, y) such that both x and y are green.

• There must not be an edge (x, y) such that both x and y are blue.

This explanation is arguably clear, but things get a little more complicated if several generating
rules, which may even be constrained via distinct constraints, are involved. Assume we want
to colour the vertices of a graph in the colours red and blue but with the additional constraint
that some of the vertices cannot be red or blue, expressed by the predicates cannot_be_red and
cannot_be_blue . A possible encoding is the program Π13 which consists of the following rules:

red(X) ∨ ¬red(X)← vertex (X), (3.73)

blue(X) ∨ ¬blue(X)← vertex (X), (3.74)

← vertex (X), red(X), cannot_be_red(X), (3.75)

← vertex (X), blue(X), cannot_be_blue(X), (3.76)

← vertex (X), red(X), blue(X). (3.77)

Here, we have the two generating rules, (3.73) and (3.74), which assign red or blue to a vertex.
We then have three constraints of which (3.75) is only related to the atoms generated by (3.73)
and (3.76) is only related to those generated by (3.74) while the last Rule (3.77) is related to
atoms which are generated by both generating rules. We think that it leads to a useful explana-
tion if we start by explaining the generating rule (3.73) together with the constraint (3.75). After
this we would then explain (3.74) together with Rule (3.76) and at the end we would mention
Rule (3.77) which is related to both generating rules. A natural language explanation with this
order could be as follows:

For any vertex, choose whether it is red or not such that no vertex which cannot be red is red.
For any vertex, choose whether it is blue or not such that no vertex which cannot be blue is blue.
Additionally, it must not be the case that there is a vertex which is both blue and red.

In order to formalise the intuition behind all this, we make use of the rule graph of a program.
We also need the notion of a strongly-connected component, which is defined as follows:

Definition 3.5.1 (Strongly-connected Component). Let G be a graph with vertex set U and
edge set E. A strongly-connected component is a maximal subset of V such that for every two
vertices u, v ∈ V , G contains a directed path from u to v and vice versa. ♦

Definition 3.5.2 (Reduction Graph). Let G be a graph, then the reduction graph GR of G is
defined as the pair (V ′, E′), where V ′ is the set of all strongly-connected components of G, and
(S, T ) ∈ E′ iff G contains an edge (s, t) with s ∈ S and t ∈ T . ♦

For a strongly-connected component S of a graph G, we say that S is maximal iff it does not
have an outgoing edge within the reduction graph of G. For a vertex v which is contained in
a maximal component, we say that v is maximal. Let Π be a logic program with rule graph
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red(X) ∨ ¬red(X) ← vertex (X) blue(X) ∨ ¬blue(X) ← vertex (X)

← vertex (X), red(X), cannot_be_red(X) ← vertex (X), blue(X), cannot_be_blue(X)

← vertex (X), red(X), blue(X)

Figure 3.2: The rule graph of Π13.

RG(Π) and rG a generating rule which is contained in the strongly-connected component S of
RG(Π). We say that rG is a maximal generating rule iff there is no generating rule r′G in a
strongly-connected component T 6= S such that RG(G) contains a directed path from rG to r′G
and rG contains the most outgoing edges of all generating rules in S. Program Π13 showed that
there can be constraints which are associated to certain generating rules. This is formalised by
the following definition:

Definition 3.5.3. Let Π be a logic program with rule graph RG(Π). Let furthermore rC be a
constraint in Π. For a rule r, we say that r is constrained by rC iff RG(Π) contains a directed
path from r to rC . ♦

Note that constraints are trivially constrained by themselves.

Example 3.5.4. Consider again program Π13. The rule graph of Π13 is given in Figure 3.2.
Here, for the constraint (3.75), we have that (3.73) is the only generating rule which it constrains.
For (3.76), Rule (3.74) is the only generating rule it constrains. Furthermore, (3.77) constrains
both (3.73) and (3.74). ♦

Algorithm 1 on page 42 assigns to every rule a natural number which defines the order in which
the rules are explained. The intuition behind the algorithm is that we explain rules in the order
in which they are visited during a depth-first traversal of the rule graph. During the depth-
first traversal, rules which are in the same strongly-connected component are preferred and,
additionally, as soon as all the rules from which a generating rule rG is reachable have been
visited, the constraints which constrain rG are explained. If there are unconstrained rules, we
start with a maximal one (this is for example the case in programs without constraints, but also
when concepts are defined in terms of other concepts from the generate part). If there is no such
rule, we start with a maximal generating rule. Otherwise, we choose an arbitrary rule which has
not yet been visited.

The following example illustrates the behaviour of Algorithm 1.

Example 3.5.5. Consider again program Π13. Since Π13 does not contain an unconstrained
rule, we start with one of the two generating rules, say (3.73). It has no ingoing edges but after
it is labelled, we get that all rules which are constrained by (3.75) are labelled, hence (3.75) is
visited next. After this, we continue with the next maximal unlabelled generating rule (3.74).
Again, it has no ingoing edges but after it has been labelled, (3.76) is visited since all rules which
are constrained by (3.76) are labelled. After this, the Rule (3.77) is visited, since now all two
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input : rule graph G
output: order in which the rules are explained, defined by order
let sameSCC and otherSCC be stacks
let i=1
while G contains unlabelled rules do

if there is an unlabelled unconstrained rule then
let r be a maximal unlabelled unconstrained rule

else if there is an unlabelled generating rule then
let r be a maximal unlabelled generating rule

else
let r be an arbitrary maximal unlabelled rule

push(sameSCC , r)
while sameSCC and otherSCC are not both empty do

if sameSCC is not empty then
set r = pop(sameSCC )

else
set r = pop(otherSCC )

if r is not labelled then
label r as visited and set order(r) = i
set i = i+ 1
// Iterate over the r′ in the order in which
// they appear in the body of r.
for all edges (r′, r) in G do

if r′ is in the same SCC as r then
push(sameSCC , r′)

else
push(otherSCC , r′)

Let l be the list of all unlabelled constraints, ordered by the number of rules which they
constrain, in descending order
// Start with the rule c which constrains the most rules.
for all rules c in l do

if all rules which are constrained by c are labelled then
push(otherSCC , c)

Algorithm 1: Computes the order in which rules are explained.

42



(3.78)

(3.79) (3.80)

(3.81)

(3.82) (3.83)

Figure 3.3: The rule graph of Π8.

rules which it constrains have been labelled. Note that (3.77) is visited after (3.76) because of
the fact that (3.77) constrains more rules than (3.76). We get the following order:

red(X) ∨ ¬red(X)← vertex (X), 1

blue(X) ∨ ¬blue(X)← vertex (X), 2

← vertex (X), red(X), cannot_be_red(X), 3

← vertex (X), blue(X), cannot_be_blue(X), 4

← vertex (X), red(X), blue(X). 5

This is exactly the order we wanted to obtain at the beginning of this section. ♦

Example 3.5.6. Finally, consider again the graph-3-colouring program Π8 with the following
rules:

red(X)← vertex (X),not green(X), not blue(X), (3.78)

green(X)← vertex (X),not red(X),not blue(X), (3.79)

blue(X)← vertex (X),not red(X),not green(X), (3.80)

← edge(X,Y ), red(X), red(Y ), (3.81)

← edge(X,Y ), green(X), green(Y ), (3.82)

← edge(X,Y ), blue(X), blue(Y ). (3.83)

The rule graph of Π8 is given in Figure 3.3. Here, first the three generating rules (3.78)-(3.80),
which are in the same strongly-connected component, are visited. After this, the three remaining
constraints are visited, again leading to the desired order. ♦
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Example 3.5.7. Consider the stable-marriage encoding from page 36. There again, the gener-
ating rules are explained before the corresponding constraints. The generate part consists of the
following two rules:

match(M,W )← manAssignsScore(M,Fv1, Fv2) (3.84)

womanAssignsScore(W,Fv3, Fv4),

not nonMatch(M,W ),

nonMatch(M,W )← manAssignsScore(M,Fv1, Fv2), (3.85)

womanAssignsScore(W,Fv3, Fv4),

not match(M,W ).

All the constraints refer to the predicate match while the predicate nonMatch is not constrained.
Because of this, Rule (3.84) has more outgoing edges than (3.85) and thus (3.84) is by definition
maximal while (3.85) is not. Hence, (3.84) is explained before (3.85) which matches again our
intuition. ♦

The examples should show that our approach leads to intuitive explanation orders. Additionally,
it is flexible, since one could easily switch from a depth-first traversal to a breadth-first traversal
of the rule graph. One would just have to use queues instead of stacks in Algorithm 1 and
introduce a queue for constraints and their ingoing nodes, which has to be separately managed
in order to make sure that constraints are explained immediately after all the generating rules
they constrain.
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CHAPTER 4
Equivalence-Preserving Program

Transformations

In this chapter, we deal with equivalence-preserving transformations both on propositional and
non-ground programs without strong negation. Various transformations have been developed in
the past [5,19,20,50] and they can serve different purposes such as optimisation, simplification,
etc. Our goal is to use program transformations to (i) simplify programs and (ii) preprocess
programs for a translation into (controlled) natural language.

We will start by introducing the most common notions of equivalence in logic programming
and listing a table of propositional transformations which was originally presented by Eiter,
Fink, Tompits and Woltran [20]. We will shortly discuss those transformations before we take a
closer look on partial evaluation (GPPE), the most interesting rule for our purposes, also known
as partial deduction or unfolding.

Partial evaluation was introduced into logic programming by Komorowski in 1981 [33, 44].
In its most simple form of application, it allows to replace a positive body atom of a rule r with
its defining body. Consider for example the following program:

a← b

b← c,not d

GPPE transforms this program into the following program:

a← c,not d

b← c,not d

As we will see later, for body atoms which are defined by various rules, GPPE adds more than
one new rule. In the presence of disjunction, things get a little more involved too.

Unfortunately, GPPE does only preserve ordinary equivalence, which restricts its range of
applicability. Because of this, we use a notion of equivalence – originally called (non-ground)
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relativised uniform equivalence [49, 70] but in the following, for the ease of notation, denoted
as input equivalence – which is stronger than ordinary equivalence but weaker than uniform
equivalence. We then introduce a generalisation of GPPE, called GPPEI , that – as we show –
preserves input equivalence, which allows us to apply GPPEI to a wide range of programs from
logic programming practice.

In many cases we have to deal with non-ground programs since most of the practical pro-
grams are non-ground. To this end, we define an intuitive generalisation of GPPEI to the non-
ground case and, as the main result of the chapter, prove that it preserves input equivalence. An
easy corollary of this is that it preserves ordinary equivalence too.

Consider as a motivating example again the following two rules which we already presented
in the introduction of this thesis:

a_row_is_not_filled ← row(X),not row_is_filled(X),

← a_row_is_not_filled .

We already argued in the introductory chapter that the transformation of these two rules into a
single rule could lead to a much clearer translation into natural language. GPPEI allows us to
do exactly this, as long as some restrictions, which we will discuss later, are met. Hence, we can
transform the above two rules into the following rule:

← row(X), not row_is_filled(X).

But not only a natural-language translation of the resulting rule would be clearer, also the pro-
gram itself may be easier to understand after the application of this transformation. Although
there already exist generalisations of GPPE to the non-ground case, they all have some draw-
backs, most notably none of them preserves a stronger notion than ordinary equivalence. It will
also be seen in the this chapter, that in the non-ground case the disjunction in rule heads leads to
several issues which do not occur in the propositional setting.

4.1 Propositional Program Transformations

Various notions of equivalence between logic programs have been studied in the past: Apart from
(ordinary) equivalence, which requires that two programs have the answer sets, strong equiva-
lence [12, 39, 42, 52, 65, 66] and uniform equivalence [18, 46] are probably the most important
ones.

Definition 4.1.1 ([20]). Let Πa and Πb be two logic programs. Then,

(i) Πa and Πb are (ordinarily) equivalent, denoted Πa ≡o Πb, iff they have the same answer
sets.

(ii) Πa and Πb are uniformly equivalent, denoted Πa ≡u Πb, iff, for any set of facts Πf , the
programs Πa ∪Πf and Πb ∪Πf are equivalent.

(iii) Πa and Πb are strongly equivalent, denoted Πa ≡s Πb, iff, for any program Π, the pro-
grams Πa ∪Π and Πb ∪Π are equivalent. ♦
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Name Condition Transformation
TAUT head(r) ∩ body+(r) 6= ∅ Π′ = Π \ {r}
RED+ A ∈ body−(r1),@r2 ∈ Π: A ∈ head(r2) Π′ = Π\{r1}∪{r′}†
RED− head(r2) ⊆ body−(r1), body(r2) = ∅ Π′ = Π \ {r1}
CONTRA body+(r) ∩ body−(r) 6= ∅ Π′ = Π \ {r}
NONMIN head(r2) ⊆ head(r1), body+(r2) ⊆ body+(r1),

body−(r2) ⊆ body−(r1)
Π′ = Π \ {r1}

S-IMP r, r′ ∈ Π, r C r′ (see Definition 4.1.3) Π′ = Π \ {r′}
LSH r ∈ Π is head-cycle free in Π, head(r) contains at least

two distinct atoms
Π′ = Π \ {r} ∪ r→††

GPPE A ∈ body+(r1), GA 6= ∅, for GA = {r2 ∈ Π | A ∈
head(r2)}

Π′ = Π \ {r1} ∪G′A‡

WGPPE same condition as for GPPE Π′ = Π ∪G′A

†r′ : head(r1)← body+(r1) ∪ not (body−(r1) \ {A}).
‡G′A = {head(r1) ∪ (head(r2) \ {A})← (body+(r1) \ {A}) ∪ not body−(r1) ∪ body(r2) | r2 ∈ GA}.
††r→ = {A← body(r),not (head(r) \ {A}) | A ∈ head(r)}

Table 4.1: Local syntactic transformation rules

We say that a binary relation ρ is stronger than a binary relation ρ′, iff ρ ⊆ ρ′, likewise we say
that ρ is strictly stronger than ρ′, iff ρ ⊂ ρ′. For the above mentioned equivalence relations we
have that ≡s is strictly stronger than ≡u, and ≡u is strictly stronger than ≡o which is easily
demonstrated: If we restrict the set of context programs Π in the definition of strong equivalence
from arbitrary programs to sets of facts, we obtain uniform equivalence. If we further restrict
the context programs by only allowing the empty program as a context program, we arrive at
ordinary equivalence.

The programs Πa = {a ← not b, a ← b} and Πb = {a ← not c, a ← c}, taken from Eiter
and Fink [18], demonstrate that strong equivalence is strictly stronger than uniform equivalence.
Let Π = {b ← a}, then Πa ∪ Π has no answer set while Πb ∪ Π has the answer set {a, b}.
However, one can easily check that for any set of facts Πf , Πa∪Πf and Πb∪Πf are equivalent.

To show that uniform equivalence is strictly stronger than ordinary equivalence, consider the
programs Πa = {a← not b} and Πb = {a}. They both have (only) the answer set {a}, but for
Πf = {b} we get that Πa ∪ Πf has only the answer set {b} while Πb ∪ Πf has only the answer
set {a, b}.

Table 4.1, originally presented by Eiter et al. [20], gives an overview over some local trans-
formation rules considered in the following. Next to the name of a transformation we state the
kind of equivalence preserved by the transformation. If not mentioned otherwise, the equiva-
lence results are taken from Eiter et al. [20]

TAUT (elimination of tautologies, preserves strong equivalence). This rule allows to remove
tautological rules, i.e., rules which contain one and the same atom both in the head and the
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positive body. Consider as an example the following rules which can be removed by TAUT:

a← a, (4.1)

a ∨ b← b, c, (4.2)

a ∨ b ∨ c← b, c, d, e. (4.3)

RED+ (positive reduction, preserves only ordinary equivalence [6]). If the body of a rule r
contains a default-negated atom A which does not occur in the head of any other rule, then A is
removed from the negative body of r. Consider for example the program Π14 which consists of
the following rules:

a ∨ b← c, d,not e,not f, (4.4)

c←, (4.5)

f ← . (4.6)

Applying RED+ to Rule (4.4) gives program Π′14, consisting of the following rules:

a ∨ b← c, d,not f, (4.7)

c←, (4.8)

f ← . (4.9)

In Π′14, the Rule (4.7) was obtained from (4.4) by removing the negative body atom e, which
was not contained in a head of a rule.

RED− (negative reduction, preserves strong equivalence). If all the head atoms of a fact r2

are contained in the negative body of a rule r1, then r1 is removed. Consider program Π15 which
consists of the following rules:

a← not b, (4.10)

b←, (4.11)

c← not d,not e,not f, (4.12)

d ∨ e ∨ f ← . (4.13)

Here, the application of RED− allows to remove (4.10) and (4.12).

CONTRA (elimination of contradictions, preserves strong equivalence). If the body of a
rule r contains both an atom and its default negation, then the rule is removed. Examples of
such rules are (4.14) and (4.15) below:

a← b,not b, (4.14)

a ∨ b← c, d, e, not d. (4.15)

NONMIN (elimination of non-minimal rules, preserves strong equivalence). A rule r which
is implied by some other rule r′ (and thus non-minimal) is removed.
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Definition 4.1.2 (Implication [5]). A rule r implies a rule r′ iff head(r) ⊆ head(r′), body+(r) ⊆
body+(r′) and body−(r) ⊆ body−(r′). ♦

Consider as an example the program Π16, consisting of the following rules:

a ∨ b ∨ c← d, e,not f, (4.16)

a ∨ b← d, e,not f. (4.17)

Rule (4.16) is implied by (4.17), hence we can apply NONMIN and remove (4.16). Another
example is the program Π17 which consists of the rules:

a ∨ b ∨ c← d, e,not f, (4.18)

b ∨ c← e,not f. (4.19)

Here we can apply NONMIN to remove (4.18). Note that in the propositional case, implication is
the same as subsumption, a concept well-known in the field of automated theorem proving [45].

S-IMP (s-implication, preserves strong equivalence). S-IMP was originally introduced by
Wang and Zhou [68] with the goal of strengthening the notion of implication, which may explain
the name. We will first give the definition of s-implication.

Definition 4.1.3 (s-implication). A rule r′ is an s-implication of a rule r 6= r′, symbolically
r C r′, iff there exists a set A ⊆ body−(r′) such that

(i) head(r) ⊆ head(r′) ∪A,

(ii) body−(r) ⊆ body−(r′) \A, and

(iii) body+(r) ⊆ body+(r′).
♦

In other words, a rule r s-implies a rule r′ if, by shifting some set of negative body atoms of r′

to its head, we can obtain a rule which is implied by r. The following example is by Wang and
Zhou [68]. Consider the program Π18 which consists of the following rules:

a ∨ b← not c, (4.20)

b← not c. (4.21)

Here we can conclude that a is not in an answer set. In the presence of the Rule (4.21), the Rule
(4.20) does not contain any further information and since it is implied by (4.21), we can remove
it by an application of NONMIN. Consider now in contrast the program Π′18, consisting of the
following rules:

a ∨ b← not c, (4.22)

b ∨ c← . (4.23)
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Again, we can conclude that a is not in an answer set and that in the presence of the Rule (4.23),
the Rule (4.22) does not contain any further information. However, Rule (4.23) does not imply
(4.22), but it s-implies (4.20), hence (4.20) can be removed by one application of S-IMP.

LSH (local shifting, preserves uniform but not strong equivalence). Local shifting allows to
replace a head-cycle free disjunctive rule by a set of definite rules. As an example consider the
program Π19 whose rules are given below:

a ∨ b← e, (4.24)

c ∨ d← f, (4.25)

c← d, (4.26)

d← c. (4.27)

Let r be the Rule (4.24), then r→ = {a ← e,not b, b ← e,not a}. We thus get the modified
program Π′19, consisting of the following rules:

a← e,not b, (4.28)

b← e,not a, (4.29)

c ∨ d← f, (4.30)

c← d, (4.31)

d← c. (4.32)

Note that the Rule (4.25) is not head-cycle free in Π19 since c and d mutually depend on each
other, hence LSH cannot be applied to this rule.

GPPE (partial evaluation, preserves only ordinary equivalence [5]). Partial evaluation re-
places an atom A in the body of a rule by its defining bodies, thereby creating a new rule for
each rule which defines A. If A is contained in the head of a disjunctive rule, the head atoms
which are distinct from A are added to the resulting rule. Consider for example program Π20

which consists of the following rules:

a← b,not c, (4.33)

b← d,not e. (4.34)

Let r1 = (4.33) and r2 = (4.34), then Gb = {r2}. We get G′b = {a← d,not e,not c} and thus:

a← d,not e,not c, (4.35)

b← d,not e. (4.36)

Suppose we add the fact b to both Π20 and Π′20. Then, Π20 ∪{b} has the answer set {a, b} while
Π′20 ∪ {b} has the answer set {b}, hence GPPE does not preserve uniform equivalence. Another
more complex example is program Π21, whose rules are as follows:

a ∨ f ← b,not c, (4.37)

b ∨ g ← d,not e, (4.38)

b ∨ h← i,not j. (4.39)
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Let r1 be the Rule (4.44), r2 the Rule (4.38), and r3 the Rule (4.39). Then, Gb = {r2, r3}. We
get

G′b = {a ∨ f ← d,not e,not c,

a ∨ g ← h,not i,not c}.

Hence, the reduced program Π′21 consists of the following rules:

a ∨ f ∨ g ← d,not e,not c, (4.40)

a ∨ f ∨ h← i,not j,not c, (4.41)

b ∨ g ← d,not e, (4.42)

b ∨ h← i,not j. (4.43)

Again, one can easily see that the addition of the fact b leads to different answer sets for Π21∪{b}
and Π′21 ∪ {b}. While Π21 ∪ {b} has the answer sets {b, a} and {b, f}, Π′21 ∪ {b} has only the
answer set {b}.

WGPPE (weak partial evaluation, preserves strong equivalence). This transformation is
similar to GPPE, with the only difference that r1 is not removed. For program Π21, this yields
the program Π′′21, consisting of the following rules:

a ∨ f ← b,not c, (4.44)

a ∨ f ∨ g ← d,not e,not c, (4.45)

a ∨ f ∨ h← i,not j,not c, (4.46)

b ∨ g ← d,not e, (4.47)

b ∨ h← i,not j. (4.48)

Here, Π21 ∪ {b} and Π′′21 ∪ {b} have the same answer sets. This is because the fact b makes the
body of r1 true and thus one of a and f has to be contained in an answer set of Π′′21 ∪{b}. In the
program Π′21 ∪ {b} from the GPPE example above this is not the case, since r1 was removed by
the transformation.

4.2 Input Equivalence

We have already seen that there exist transformations, most prominently GPPE, that preserve
ordinary equivalence but not uniform equivalence, which restricts their applicability. In logic
programming practice many programs require a set of facts as so-called input instances – e.g.,
a graph for the graph-colouring problem. In such cases, a program which is passed to a solver
is of the form Π ∪ Πf , where Π is the actual encoding of a specific problem and Πf is an
input instance. Hence, transformations which do not preserve uniform equivalence cannot be
carelessly applied to Π.

In order to be able to safely apply transformations like GPPE to such programs, we will
use a kind of equivalence that we denote as input equivalence. Our goal is then, to introduce a
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generalised version of GPPE and show that it preserves input equivalence. In the counterexample
which showed that GPPE does not preserve uniform equivalence (program Π20), a fact that is
derived in the head of a rule which is involved in the transformation is added. For a similar
example consider the program Π22 which consists of the following rules:

a← b, (4.49)

b← c. (4.50)

Here, the application of GPPE yields the program Π′22, consisting of the following rules:

a← c, (4.51)

b← c. (4.52)

The two programs are ordinarily equivalent but not uniformly equivalent since the program
Π22 ∪ {b} has the answer set {a, b} while the program Π′22 ∪ {b} has the answer set {b}. But if
we restrict the context of possible facts which may be added to Π and Π′, to all sets of facts I
with b /∈ I , then it is easily seen that the two programs are uniformly equivalent in this restricted
sense.

In many cases, one knows the set of possible input atoms of a program. The idea of input
equivalence is thus to consider equivalence with respect to the addition of facts from some fixed
set of (input) atoms.

Definition 4.2.1 (Input Equivalence). Let Πa, Πb be logic programs and I a set of (input)
predicate symbols. Then, Πa and Πb are input equivalent with respect to I , denoted Πa ≡I Πb,
iff for any set of facts Πf constructed over atoms with a predicate symbol from I , the programs
Πa ∪Πf and Πb ∪Πf are (ordinarily) equivalent. ♦

As already noted, input equivalence is originally called (non-ground) relativised uniform equiv-
alence [49, 70]. For I = ∅, input equivalence ≡I is equal to ordinary equivalence. If we define
I as the set of all predicate symbols of our language, then ≡I is equal to uniform equivalence.
This shows that any form of input equivalence is at least as strong as ordinary equivalence and
at most as strong as uniform equivalence.

The following programs Πa = {a ← b} and Πb = {a ← c} demonstrate that there exist
sets of input predicates I such that ≡I is strictly stronger than ≡o, and ≡u is strictly stronger
than ≡I . It easily seen that Πa and Πb are ordinarily equivalent – they both have as only answer
set the empty set.

Now, let I = {a} and Πf = {a←}. Then, Πa ∪ Πf and Πb ∪ Πf both have the answer set
{a}, hence Πa ≡I Πb. But, for the set of facts {c ←} we get that Πa ∪ {c ←} has as its only
answer set the empty set, while Πa ∪ {c ←} has the answer set {a, c} and thus Πa and Πb are
not uniformly equivalent.

4.3 Extended Propositional Transformations

We already mentioned that Brass and Dix [5] proved the following lemma for programs without
strong negation:
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Lemma 4.3.1 ([5]). GPPE preserves ordinary equivalence under the answer-set semantics.

It remains to define a version of GPPE that preserves input equivalence. We therefore introduce
GPPEI , which is basically GPPE with the additional requirement that A /∈ I for some set of
(input) atoms I .

Definition 4.3.2 (Propositional GPPEI ). Let Π be a propositional logic program, I a set of
atoms and r a rule of Π having the form

head(r)← body+(r) ∪ not body−(r),

withA ∈ body+(r) andA /∈ I . Let furthermoreGA the set of all rules containingA in the head.
The transformation GPPEI is then defined as Π′ = Π \ {r} ∪G′A where

G′A = {head(r) ∪ (head(r′) \ {A})←
(body+(r) \ {A}) ∪ not (body−(r) ∪ body(r′)) | r′ ∈ GA}.

♦

Note that GPPEI is a generalisation of GPPE, since GPPE∅ is GPPE. The following lemma is
also a generalisation of Lemma 4.3.1, since input equivalence with respect to the empty set is
ordinary equivalence.

Lemma 4.3.3. Let Π be a (propositional) logic program and Π′ obtained from Π by one appli-
cation of GPPEI . Then, Π and Π′ are input equivalent with respect to I .

Proof. Let Π be a propositional logic program, Πf an arbitrary set of facts over I , and Π′ ob-
tained from Π by one application of GPPEI to some rule r ∈ Π and its body atom A /∈ I . Let
furthermore Π′′ be obtained from Π∪Πf by applying GPPEI to r andA. FromA /∈ I it follows
that for both Π and Π ∪Πf , the sets G′A are the same and thus we have

Π′ ∪Πf = Π \ {r} ∪G′A ∪Πf

Π′′ = (Π ∪Πf ) \ {r} ∪G′A.

Furthermore, by Lemma 4.3.1, Π′′ is equivalent to Π∪Πf . It remains to show that Π′′ = Π′∪Πf .

Since set difference is right distributive over union we get (Π∪Πf )\{r} = (Π\{r})∪(Πf \{r})
and thus

Π′′ = (Π \ {r}) ∪ (Πf \ {r}) ∪G′A.

From A ∈ body+(r) it follows that r is not a fact, hence r /∈ Πf and thus Πf \ {r} = Πf , but
then

Π′′ = Π \ {r} ∪Πf ∪G′A = Π′ ∪Πf

and since Π′′ is equivalent to Π ∪Πf , we get that Π ∪Πf and Π′ ∪Πf are equivalent. �
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4.4 Extended Non-ground Transformations

In the following, our goal is to define a non-ground version of GPPEI which preserves input
equivalence. Consider therefore as an example the program Π23 which consists of the following
rules:

a(X)← b(X), (4.53)

b(Y )← c(Y ). (4.54)

From this we want to obtain the program Π′23, consisting of the following rules:

a(X)← c(X), (4.55)

b(Y )← c(Y ). (4.56)

Π23 is equivalent to Π′23 and for every set of facts Πf which does not contain the predicate b we
even have that Π23 ∪ Πf and Π′23 ∪ Πf are equivalent. Before we can define the non-ground
version of GPPEI we will need some preliminary definitions.

When transforming Π23 to Π′23 we substituted the variable Y in Rule (4.54) to X in order to
add c(X) to the body of (4.55). Such substitutions will be necessary in the non-ground case and
we will thus first give formal definitions of (most general) unification and permutations which
are (sometimes slight modifications of the definitions) from Leitsch [36].

Definition 4.4.1 (Permutation). A substitution λ is called a permutation if λ is one-one and
rg(λ) ⊆ V . ♦

Definition 4.4.2 (Variant). A rule r is called a variant of a rule r′ if there exists a permutation
η such that rη = r′. ♦

Definition 4.4.3 (Unifier). Let C be a non-empty set of expressions. A substitution σ is called
unifier of C if |Cσ| = 1. Furthermore, C is called unifiable iff there exists a unifier of C. ♦

Definition 4.4.4 (Most General Unifier). Let C be a non-empty set of expressions. Let µ, σ be
unifiers of C, then µ is more general than σ (denoted by µ ≤s σ) if there exists a substitution λ
such that µλ = σ. A unifier µ of C is called most general unifier (mgu) of C if for any unifier λ
of C it holds that µ ≤s λ. ♦

It can be shown that any two most general unifiers σ1 and σ2 of a set C are equivalent modulo
permutation, i.e., there exists a permutation λ such that σ1λ = σ2 and σ2λ

−1 = σ1 [41].
In the following, when we say that some expressions E1, . . . , En are unifiable, we mean

that the set {E1, . . . , En} is unifiable. It is also important to note that if a set of expressions
is unifiable by some unifier σ, then it is also unifiable by a most general unifier µ [36]. The
following example illustrates why we need most general unification.
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Example 4.4.5. Consider the program Π24, consisting of the following rules:

a← b(X), (4.57)

b(Y )← c(Y ), (4.58)

c(1)←, (4.59)

c(2)← . (4.60)

The body atom b(x) of (4.57) and the head atom b(Y ) of (4.58) are easily seen to be unifiable.
If we think of applying GPPEI to Π24 we would expect to obtain a program which consists of
the following rules:

a← c(X), (4.61)

b(Y )← c(Y ), (4.62)

c(1)←, (4.63)

c(2)← . (4.64)

This is obtained by using the unifier µ = {Y 7→ X} on the Rules (4.57) and (4.58) to get that
the head b(Y )µ of (4.58) equals the body b(X) of (4.57). We can then replace b(X) in the
body of (4.57) by C(X) (= C(Y )µ) to obtain Rule (4.65). We could have also used the unifier
ρ = {Y 7→ 1, X 7→ 1} but then the resulting program, consisting of the following rules:

a← c(1), (4.65)

b(Y )← c(Y ), (4.66)

c(1)←, (4.67)

c(2)←, (4.68)

would not meet our expectations since we would expect the rule a← c(2) to be contained in the
grounding of the transformed program which is not the case here. ♦

Note that in the above example, µ{X 7→ 1} = ρ and thus µ is more general than ρ according to
Definition 4.4.4. Since we want to avoid unifiers like ρ when unifying a head atom of one rule
with a body atom of another rule, we will need the most general unifiers.

We will now give a first naive definition of the non-ground version of GPPEI . This version
is only sound for a restricted class of programs. It helps to demonstrate the issues that need to
be considered when trying to develop a sound version of non-ground GPPEI whose application
is not restricted to a strict subclass of disjunctive logic programs. We assume without loss of
generality, that for any two rules r, r′ ∈ G, V (r) ∩ V (r′) = ∅.

Definition 4.4.6 (GPPEI (Naive Non-ground Version)). Let Π be a logic program, I a set of
predicate symbols and r a rule of Π having the form

head(r)← body+(r) ∪ not body−(r),

where A ∈ body+(r) and A does not have a predicate symbol from I . Let furthermore GA be
the set of all rules containing a head atom B such that A and B are unifiable.

55



The transformation GPPEI is then defined as Π′ = Π \ {r} ∪ G′A where G′A is obtained from
GA as follows:

For any rule r′ ∈ GA and any head atom B of r′ which is unifiable with A: Let σ be an mgu of
A and B and add to G′A the rule r′′σ where

r′′ = head(r) ∪ (head(r′) \ {B})← (body+(r) \ {A}) ∪ body+(r′)∪
not (body−(r) ∪ body−(r′)).

♦

The assumption that no two distinct rules share variables is necessary to avoid cases like the
following. Consider program Π25 which consists of the following rules:

a(X)← b(X), c(Y ), (4.69)

b(X)← d(X,Y ). (4.70)

Assume that we would apply GPPEI to atom b(X) in the body of Rule (4.69) with mgu µ = ∅.
We would get the program Π′25, consisting of the following rules:

a(X)← d(X,Y ), c(Y ), (4.71)

b(X)← d(X,Y ). (4.72)

But this is not what we want since a “sound” transformation should lead to the program Π′′25

whose rules are as follows:

a(X)← d(X,Y ), c(Z), (4.73)

b(X)← d(X,Y ). (4.74)

The problem occurs because the Rules (4.69) and (4.70) both contain the variable Y . The as-
sumption that no two distinct rules share variables can easily be justified, since we could –
without changing the meaning of the program – rename Y in (4.70) to some new variable not
occurring in (4.69) before applying the transformation.

Unifiable Head Atoms

The main reason why GPPEI cannot be naively applied to non-ground programs is, that some
of the rules may contain unifiable head atoms, as illustrated by the following example.

Example 4.4.7. Consider program Π26, consisting of the following rules:

a← b(V ), (4.75)

b(X) ∨ b(Y )← c(X,Y ), (4.76)

c(1, 2)← . (4.77)
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If we apply the naive version of GPPEI here, we obtain program Π′26 which consists of the
following rules:

a ∨ b(Y )← c(V, Y ), (4.78)

a ∨ b(X)← c(X,V ), (4.79)

b(X) ∨ b(Y )← c(X,Y ), (4.80)

c(1, 2)← . (4.81)

Every answer set of Π26 must contain a, since the fact c(1, 2) implies that the head of (4.76)
must be satisfied, hence b(1) or b(2) must be contained in an answer set. But then the Rule
(4.75) requires that a is contained in an answer set. However, in Π′26 it is not required that a
is contained in an answer set: One can easily check that {c(1, 2), b(1), b(2)} is an answer set
of Π′26. ♦

In the above example, we would want the grounding of Π′26 to contain a rule like a ← c(1, 2),
since by Rule (4.76), any ground instance of c(X,Y ) leads to the derivation of an atom which
makes the body of (a ground instance of) Rule (4.75) true.

This also shows that it is not sufficient to additionally use an mgu which unifies both b(X)
and b(Y ) in the head of (4.76) with b(V ) in the body of (4.75). In this case we would generate the
additional rule a(V ) ← c(V, V ), but this would still not imply that an answer set must contain
a. As we have seen, the naive version of GPPEI does not preserve equivalence. However, we
can show equivalence under some additional constraints. After this, we will later then provide
an improved version of GPPEI which preserves equivalence for all disjunctive programs.

Theorem 4.4.8. Let Π be a logic program and I a set of predicates. Let furthermore Π′ be
obtained from Π by one application of naive GPPEI on the body atom A and assume the fol-
lowing:

• Π does not contain rules for which two ore more distinct head atoms B,C are both unifi-
able with A, and

• the head of r does not contain an atom which is unifiable with A.

Then, Π and Π′ are input equivalent with respect to I , i.e., for any set of facts Πf , containing
only facts with predicate symbols from I , Π ∪Πf and Π′ ∪Πf are (ordinarily) equivalent.

Proof. Let Π be a logic program. We assume without loss of generality that for any two distinct
rules ri, rj ∈ Π the variables appearing in ri and rj are different, i.e. V (ri) ∩ V (rj) = ∅.

Now, let Π′ obtained from Π by one application of naive GPPEI , i.e., by replacing some rule
r ∈ Π of the form

head(r)← body+(r) ∪ not body−(r) (4.82)

with A ∈ body+(r) (and A not a predicate over a symbol from I) by the set G′A of Defini-
tion 4.4.6.
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Our aim is to show that the grounding of Π′ can be obtained from the grounding of Π by repeated
application of propositional (ground) GPPEI . We thus make the following observation: Since
every rule r′ ∈ Π contains at most one head atom which is unifiable with A and since r does not
contain head atoms which are unifiable with A, we have that no ground instance of a rule from
G′A contains a head atom which is unifiable with A.

Thus, one application of propositional GPPEI on a ground instance rλ with Aλ ∈ body+(rλ)
does not create any new rules which have to be taken into account when applying GPPEI to
another ground instance rµ with rµ 6= rλ and Aµ ∈ body+(rµ). The repeated application of
GPPEI to all ground instances of r is thus equivalent to the parallel application of GPPEI in the
following sense:

Let rλ be a ground instance of r and Π′g be obtained from Πg by one application of propositional
GPPEI to some ground instance rρ of r. Then, the set G′A (of propositional GPPEI ) is the same
both when applying GPPEI to rλ in Πg and in Π′g. Since r and G′A are the only rules in which
Π and Π′ differ, it suffices thus to show the following:

(i) For any ground instance rλ of r, the ground instantiation Π′g of Π′ contains the rules GAλ
corresponding to an application of propositional GPPEIG on rλ with IG being the set of
all possible ground instantiations of predicates from I .

(ii) Any rule r′λ ∈ Π′g which is not contained in the ground instantiation Πg of Π is obtained
from Πg by an application of propositional GPPEIG on some ground rule rρ ∈ Πg.

PROOF OF (i): Let λ an arbitrary ground substitution and rλ a ground instance of r. Let further-
more r′g an arbitrary rule of Πg which contains Aλ in its head. Since r′g is ground, there exists
a rule r′ ∈ Π and some (possibly empty) substitution µ such that r′µ = r′g. Furthermore, r′

contains a head atom B such that Bµ = Aλ. Now, since r and r′ have no variables in common,
it follows that A and B are unifiable by λµ.

Since A andB are unifiable it follows by the definition of GPPEI that Π′ contains for some mgu
σ of A and B the rule r′′σ, where

r′′ = head(r) ∪ (head(r′) \ {B})← (body+(r) \ {A}) ∪ body+(r′)∪
not (body−(r) ∪ body−(r′)).

Now, since σ is an mgu it follows that there exists some (ground) substitution ρ such that σρ =
λµ, hence r′′σρ (= r′′λµ) which is obtained by applying propositional GPPEIG to rλ and r′µ
is contained in Π′g.

PROOF OF (ii): Let r′g a rule from Π′g which is not contained in Πg. Since r′g is not contained
in Πg there must be some rule r′′σ ∈ Π′ such that r′g = r′′σλ for some ground substitution λ.
Furthermore, rule r′′σ is obtained from rules r, r′ ∈ Π with A ∈ body+(r), B ∈ head(r′) and
Aσ = Bσ by one application of GPPEI with σ being an mgu of A and B.
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Since λ maps all variables in r′′σ to ground terms, λ maps all variables in rσ and r′σ, except
for those in Aσ = Bσ but not in r′′σ, to ground terms. Now let S be the set of variables in
Aσ = Bσ but not in r′′σ and define µ = {X 7→ c | X ∈ S} for some arbitrary constant
c ∈ HU (Π). Then, λµ maps all variables in rσ and r′σ to ground terms, but then σλµ maps all
variables in r and r′ to ground terms with Aσλµ = Bσλµ, hence r′g = r′′σλ can be obtained
from rσλµ and r′σλµ by one application of propositional GPPEIG . �

A Sound Definition of Non-ground GPPEI

The previous considerations lead us the following definition of non-ground GPPEI . Again, we
assume without loss of generality, that for any two rules r, r′ ∈ G, V (r) ∩ V (r′) = ∅.

Definition 4.4.9 (Operator ΓA,r). Let r a rule with A ∈ body+(r) and G a set of rules. Then,
ΓA,r(G) is obtained as follows:

1. Let ΓA,r(G) the set of all rules r′′σ with

r′′ = head(r) ∪ (head(r′) \ {B})← (body+(r) \ {A}) ∪ body+(r′)∪
not (body−(r) ∪ body−(r′)),

where r′ is a rule from G which contains a set of atoms B ⊆ head(r′) which is unifiable
with A and σ is an mgu of {A} ∪B.

2. If ΓA,r(G) contains for some rule r ∈ G the variants r1, . . . , rn of r, with ri 6= r (1 ≤
i ≤ n), remove from ΓA,r(G) all r1, . . . , rn.

Finally, we define Γ
(1)
A,r(G) = ΓA,r(G) and Γ

(n+1)
A,r (G) = ΓA,r(Γ

(n)
A,r(G)). ♦

Definition 4.4.10 (GPPEI , Non-ground Version). Let Π be a logic program, I a set of predi-
cate symbols and r a rule of Π having the form

head(r)← body+(r) ∪ not body−(r),

where A ∈ body+(r) and A does not have a predicate symbol from I . Let furthermore GA the
set of all rules containing a head atom B such that A and B are unifiable. We then define

G′A =
∞⋃
i=1

Γ(i)
a,r(GA).

Now, the transformed program is defined as Π′ = Π \ {r} ∪G′A. ♦

Without further restrictions it is not guaranteed that the seriesG′A converges, i.e., thatG′A is finite.
But, assuming a finite Herbrand universe, even if the series G′A does not converge, there exists
some n such that the grounding of

⋃n
i=1 Γ

(i)
a,r(GA) equals the grounding of

⋃∞
i=1 Γ

(i)
a,r(GA) in the

sense, that for every rule r in the grounding of
⋃∞
i=1 Γ

(i)
a,r(GA) there is a rule s in the grounding

of
⋃n
i=1 Γ

(i)
a,r(GA) such that head(s) = head(r), body+(s) = body+(r), and body−(s) =
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body−(r). This is due to the observation, that over a finite Herbrand universe, the Herbrand base
is also finite and thus, when we ignore multiple occurrences of atoms, there can only be a finite
number of different rules.

But also with an infinite Herbrand universe, we can observe that one criterion for conver-
gence is that r does not contain a head atom which is unifiable with A. This is easily seen since
every rule r′′σ, which is computed by Γa,r(GA), contains less head atoms that are unifiable with
A than the rules r and r′ from which it was obtained, hence we get Proposition 4.4.11. In the
following, for a rule r, we denote by uA(r) the number of head atoms in r which are unifiable
with A.

Proposition 4.4.11. Let A be an atom and r a rule for which uA(r) = 0. Let furthermore GA
a set of rules r′ for which uA(r′) 6= 0. Then, for n = max{uA(r′) | r′ ∈ GA} it holds that⋃n
i=1 Γ

(i)
a,r(GA) =

⋃∞
i=1 Γ

(i)
a,r(GA).

The following examples should demonstrate the application of non-ground GPPEI .

Example 4.4.12. The following program Π27 is actually part of a program from practice which
finds a Hamiltonian cycle within a graph. It consists of the following rules:

reached(Y )← in_hm(X,Y ), (4.83)

in_hm(X,Y ) ∨ out_hm(X,Y )← bound(X), arc(X,Y ), (4.84)

in_hm(X,Y ) ∨ out_hm(X,Y )← reached(X), arc(X,Y ). (4.85)

Here we can apply non-ground GPPEI to the atom in_hm(X,Y ) in the body of Rule (4.83).
This yields the program with the following rules:

reached(Y ) ∨ out_hm(X,Y )← bound(X), arc(X,Y ), (4.86)

reached(Y ) ∨ out_hm(X,Y )← reached(X), arc(X,Y ), (4.87)

in_hm(X,Y ) ∨ out_hm(X,Y )← bound(X), arc(X,Y ), (4.88)

in_hm(X,Y ) ∨ out_hm(X,Y )← reached(X), arc(X,Y ). (4.89)

Here, reached is directly derived from bound , in and out without using in_hm . ♦

In the next example we deal with unifiable head atoms:

Example 4.4.13. Consider the program Π28, consisting of the following rules:

coloured(X)← chosen(X), (4.90)

chosen(X) ∨ chosen(Y )← vertex (X), not edge(X,Y ). (4.91)
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Applying non-ground GPPEI to chosen(X) in (4.90) yields the program Π′28 as follows:

coloured(X) ∨ chosen(Y )← vertex (X),not edge(X,Y ), (4.92)

coloured(X) ∨ chosen(Y )← vertex (Y ),not edge(Y,X), (4.93)

chosen(X)← vertex (X),not edge(X,X), (4.94)

coloured(X) ∨ coloured(Y )← vertex (Y ),not edge(Y,X), (4.95)

coloured(Y ) ∨ coloured(X)← vertex (X),not edge(X,Y ), (4.96)

chosen(X) ∨ chosen(Y )← vertex (X),not edge(X,Y ). (4.97)

Note that for A = chosen(X), the set GA (the set of rules containing a head atom which is
unifiable with A) contains Rule (4.91), hence Γ

(1)
A,r(GA) contains the Rules (4.92), (4.93), and

(4.94). The Rules (4.95) and (4.96) are then contained in Γ
(2)
A,r(GA). The transformation would

not be sound if the rules from Γ
(2)
A,r(GA) were not contained in Π′28. ♦

The following example should illustrate that the application of GPPEI to a rule r and its body
atom A can lead to interesting results if uA(r) 6= 0, i.e., if r contains one or more head atoms
which are unifiable with A.

Example 4.4.14. Consider program Π29 which consists of the following rules:

b(Y,X)← b(X,Y ), (4.98)

b(X,Y ) ∨ b(Y,X)← c(X,Y ), (4.99)

c(1, 2)← . (4.100)

When we apply non-ground GPPEI to Rule 4.98 and its body atom b(X,Y, Z), we obtain the
program Π′29, consisting of the following rules:

b(Y,X)← b(Y,X), (4.101)

b(Y,X)← c(X,Y ), (4.102)

b(Y,X)← b(X,Y ), (4.103)

b(Y,X)← c(Y,X), (4.104)

b(X,Y ) ∨ b(Y,X)← c(X,Y ), (4.105)

c(1, 2)← . (4.106)

Here, for A = b(X,Y ), the set GA contains the Rules (4.98) and (4.99). The Rules (4.101) and
(4.102) are contained in Γ

(1)
A,r(GA), and (4.103) as well as (4.104) are contained in Γ

(2)
A,r(GA).

♦

Note that in the above example, the program obtained by the transformation is a superset of
the original program. In the case of recursive predicates one should thus be careful when using
non-ground GPPEI .

The next proposition shows that on propositional programs, our non-ground definition of
GPPEI agrees with propositional GPPEI . This should support the claim that we introduced an
intuitive generalisation to the non-ground case.
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Proposition 4.4.15. Let Πp and Πng be obtained from a propositional program Π by one appli-
cation of propositional GPPEI and non-ground GPPEI , respectively. Then, Πp = Πng.

Proof. Let Π be a propositional program. The transformations of both propositional and non-
ground GPPEI are defined as Π′ = Π\{r}∪G′A for r ∈ Π, A ∈ body+(r) andA /∈ I (note that
on the propositional case, the set of all atoms with predicates from I is exactly I). In both cases,
G′A is defined relative to the set GA of all rules containing A in the head. The only difference
is, how G′A is defined in terms of GA. To make a distinction, we denote the propositional G′A as
G′P while we denote the non-ground G′A as G′N . We will thus show, that G′P = G′N .

Since G′N =
⋃∞
i=1 Γ

(i)
a,r(GA), we will show that Γ

(1)
a,r(GA) = G′P and that for all i ≥ 1

Γ
(i+1)
a,r (GA) ⊆ Γ

(i)
a,r(GA). To show that Γ

(1)
a,r(GA) = G′P , consider the definitions of r′′ in

Γ
(i)
a,r(GA) and G′N and observe first that a set B of propositional atoms is unifiable with an atom
A (with the empty unifier) iff B = {A}.

Hence, removing a set B of atoms which are unifiable with A from head(r′) (as it’s the case in
the definition of r′′ for Γa,r(GA)) is the same as removing just {A} (as in the propositional ver-
sion). It follows that the definitions of r′′ are the same in both Γ

(1)
a,r(GA) and G′P . Furthermore,

variants of rules don’t play a role in the propositional case and thus Γ
(1)
a,r(GA) = G′N .

It remains to show that Γ
(i+1)
a,r (GA) ⊆ Γ

(i)
a,r(GA) for all i ≥ 1: All rules in Γ

(i)
a,r(GA) are of the

form

r′′ = head(r) ∪ (head(r′) \B)← (body+(r) \ {A}) ∪ body+(r′)∪
not (body−(r) ∪ body−(r′)).

Now, when computing Γ
(i+1)
a,r (GA), all these rules are resolved with r. But, the head of a newly

created rule r′′′ is then defined as

head(r) ∪ (head(r) ∪ (head(r′) \B)) = head(r′′).

The same argument holds for the body of r′′′. Hence, Γ
(i+1)
a,r (GA) contains only rules which

were already contained in Γ
(i)
a,r(GA). �

Note that the proof shows, that in the propositional case, one application of Γa,r(GA) is suffi-
cient. Our goal is now to show that non-ground GPPEI preserves input equivalence with respect
to I , as formulated by the result in the following section.

4.5 Input-Equivalence Preservation

Theorem 4.5.1. Let Π be a logic program and I a set of predicates. Let furthermore Π′ be
obtained from Π by one application of GPPEI . Then, Π and Π′ are input equivalent with respect
to I , i.e., for any set of facts Πf , containing only facts with predicate symbols from I , Π ∪ Πf

and Π′ ∪Πf are (ordinarily) equivalent.
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The proof is non-trivial and requires some preparatory work. Our strategy is as follows: We take
some program Π, ground it and apply a series of equivalence-preserving propositional transfor-
mations to obtain a program Π′′. We then show, that Π′′ equals the grounding of the program
Π′, which was obtained from Π by one application of non-ground GPPEI .

An important issue, which has to be dealt with when lifting the propositional version of
GPPEI to the non-ground case, is illustrated by the following example.

Example 4.5.2. Consider the program Π30 which consists of the following rules:

a(X)← b(X), b(Y ), (4.107)

b(1)← d(2). (4.108)

When applying GPPEI to the body atom b(X) in Rule (4.107), we obtain the program Π′30,
consisting of the following rules:

a(1)← d(2), b(Y ), (4.109)

b(1)← d(2). (4.110)

When grounding Π′30, we obtain the following rules:

a(1)← d(2), b(1), (4.111)

a(1)← d(2), b(2), (4.112)

b(1)← d(2). (4.113)

Consider in contrast the grounding of Π30:

a(1)← b(1), b(1), (4.114)

a(1)← b(1), b(2), (4.115)

a(2)← b(2), b(1), (4.116)

a(2)← b(2), b(2), (4.117)

b(1)← d(2). (4.118)

When we apply propositional GPPEI to the ground instances of b(X) from Π30 in Rule (4.107)
(i.e., b(1) in (4.114) and (4.115), and b(2) in (4.116) and (4.117)) we end up with the program
Π′′30, consisting of the following rules:

a(1)← d(2), (4.119)

a(1)← d(2), b(2), (4.120)

b(1)← d(2). (4.121)

Π′′30 differs from the grounding of Π′30 in the Rule (4.119). This is because in Rule (4.107) in
Π30, the atoms b(X) and b(Y ) are unified by the ground substitution {X 7→ 1, Y 7→ 1}, hence
Rule (4.114) contains two occurrences of b(1). When applying (ground or non-ground) GPPEI ,
we add the Rule (4.119) which is defined as

head(r) ∪ (head(r′) \ {A})← (body+(r) \ {A})∪
not (body−(r) ∪ body(r′),

where r is Rule (4.114) and r′ is Rule (4.118). ♦
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The crucial thing in Example 4.5.2 is that we have body+(r) \ {A} in the body of r′′. Hence, in
the propositional (ground) case, every occurrence of A = b(1) is removed from body+(r) while
in the non-ground case, only the atom A = b(X) is removed from the positive body of r, but
not the atom b(Y ).

The problem occurs always then, when in the course of grounding some non-ground rule r,
two distinct atoms in r unify to the same ground atom. Consider again the rule r = a(1) ←
b(X), b(Y ) from the above example. Clearly, a(1)← b(1), b(1) is a ground instance of r. Under
the answer-set semantics, r is equivalent to r′ = a(1) ← b(1), and both r and r′ have the same
set of body atoms. But when applying syntactic transformations, differentiating between r and
r′ can be important, as we will see later. To avoid this, we will now change our notion from
ordinary sets to multisets and keep with this notion until the end of the proof of Theorem 4.5.1.
Based on multisets, we will then define according propositional (ground) transformations which
will be used in the proof of Theorem 4.5.1.

We thus shortly recall the notion of multisets which, in contrast to ordinary sets, allow mul-
tiple occurrences of one and the same element. Formally, a multiset over a set S is a tuple (S, f)
where f is a function f : S → N. Let M = (S, f) be a multiset over S = {a, b, c}, with
f(a) = 2, f(b) = 1, f(c) = 0. For such a set, we use the notion M = {a, a, b}. We say that
a ∈ S iff f(a) > 0. If f(a) = 0 for all a ∈ S, then we write M = ∅. An ordinary set A is
actually a multiset (A,χA), where χA is its characteristic function [63].

The support supp(M) of a multiset M = (A, f) is defined as the set of all elements a ∈ A
for which f(a) > 0. Assume that M = (A, f) and N = (A, g) are two multisets. We say that
M is a sub-multiset of N , denoted M v N if for all a ∈ A we have f(a) ≤ g(a). We use the
v-symbol instead of the more common ⊆-symbol here. This is because we will mainly use the
following subset relation.

Definition 4.5.3. Assume that M = (A, f) and N = (A, g) are two multisets. We say that M
is a subset of N , denoted M ⊆ N iff supp(M) ⊆ supp(N). ♦

Suppose that M = (A, f) and N = (A, g) are two multisets. Their union, denoted M ∪ N ,
is the multiset Q = (A, h) where h(a) = max (f(a), g(a)) for all a ∈ A. Likewise, for the
intersection M ∩N , h(a) = min(f(a), g(a)) for all a ∈ A.

Example 4.5.4. Let M = {a, a, b, c} and N = {a, b, b} two multisets. Then, N ⊆ M , but not
N vM or M ⊆ N . Furthermore, M ∪N = {a, a, b, b, c} and M ∩N = {a, b}. ♦

The following two notions of set difference will be particularly important to us.

Definition 4.5.5. Assume that M = (A, f) and N = (A, g) are two multisets. Then, M \N =
(A, h) with

h(a) =

{
0, if g(a) > 0;
f(a), otherwise.

♦
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Definition 4.5.6. Assume that M = (A, f) and N = (A, g) are two multisets. Then, M −N =
(A, h) with

h(a) =

{
0, if g(a) > f(a);
f(a)− g(a), otherwise.

♦

Example 4.5.7. LetM = {a, a, b} andN = {a}, thenM \N = {b} andM−N = {a, b}. ♦

Now, let r be a rule, then r is identified by the multisets head(r), body+(r), and body−(r).
Consider for example the rule

a ∨ a ∨ b← c, d, d, not e,not c,not e.

Then, head(r) = {a, a, b}, body+(r) = {c, d, d}, and body−(r) = {e, e, c}. One can eas-
ily check that the equivalence results of Table 4.1 also hold with the multiset notion instead
of ordinary sets. This is due to the fact that we use the ⊆-symbol for the subset-relation of
Definition 4.5.3 and not, as it is common, for the multisubset-relation.

We can now introduce the propositional transformations necessary for the proof of The-
orem 4.5.1. The transformations differ from GPPEI and WGPPE by using body+(r) − {A}
instead of body+(r) \ {A} in the body of the newly added rules. This way, only one occurrence
of A in body+(r) is removed from body+(r) and not all of them.

Definition 4.5.8 (Extended WGPPE (EWGPPE)/Extended GPPEI (EGPPEI )). Let Π be a
propositional logic program, I a set of atoms, and r a rule of Π having the form

head(r)← body+(r) ∪ not body−(r),

with A ∈ body+(r). Let furthermore GA the set of all rules containing A in the head and

G′A = {head(r) ∪ (head(r′) \ {A})← (body+(r)− {A})∪
not (body−(r) ∪ body(r′)) | r′ ∈ GA}.

Then, the transformation EWGPPE is defined as Π′ = Π ∪G′A. The transformation EGPPEI is
defined as Π′ = Π \ {r} ∪G′A with the precondition A /∈ I . ♦

Example 4.5.9. Consider program Π31 which consists of the following rules:

a← b, b, (4.122)

b← c. (4.123)

Applying EGPPEI to Rule (4.122) and one of its body atoms b yields Π′31, consisting of the
following rules:

a← b, c, (4.124)

b← c. (4.125)
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This is different from GPPEI where we would get Π′′31 whose rules are as follows:

a← c, (4.126)

b← c. (4.127)

Here, b does not occur in the body of Rule (4.126) anymore. ♦

We will in the following develop equivalence-preservation results for EGPPEI and EWGPPE.
Therefore we define the term G-implication (from GPPE-implication).

Definition 4.5.10 (G-implication). Let Π be a propositional program, r some arbitrary rule (not
necessarily contained in Π) and r′, r′′ ∈ Π, where A ∈ head(r′) and r′′ is of the form

head(r) ∪ (head(r′) \ {A})← body+(r) ∪ body+(r′) ∪ not (body−(r) ∪ body−(r′)).

Then, we say that the rule rG of the form

head(r) ∪ (head(r′) \ {A})← (body+(r) \ {A}) ∪ body+(r′) ∪ not (body−(r) ∪ body−(r′))

is G-implied by r′′ in Π. ♦

Note that, if A is not contained in body+(r), r′′ = rG. Due to this, we do not require A to be
contained in body+(r).

Lemma 4.5.11. Let Π be a propositional logic program containing a rule rG which is G-implied
by some other rule r′′ ∈ Π and let Π′ = Π \ {rG}. Then, Π and Π′ are strongly equivalent.

Before we prove this lemma, we give an example to illustrate G-implication.

Example 4.5.12. Consider program Π32, given as follows:

a← b, b, (4.128)

b← c. (4.129)

By applying EWGPPE to (4.128) in Π32 we obtain Π′32:

a← b, b, (4.130)

a← c, b, (4.131)

b← c. (4.132)

Now we apply GPPEI to (4.130) in Π′32 and get Π′′32 as follows:

a← c, (4.133)

a← c, b, (4.134)

b← c. (4.135)

Let r be the Rule (4.128), r′ the Rule (4.135) and r′′ the Rule (4.134). Then, the Rule (4.133)
which is of the form

head(r) ∪ (head(r′) \ {b})← (body+(r) \ {b}) ∪ body+(r′) ∪ not (body−(r) ∪ body−(r′)),

is G-implied by (4.134) in Π′32. ♦
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The example should demonstrate that rules which are obtained by using GPPEI are G-implied
by rules which are obtained using EGPPEI (the same holds for WGPPE and EWGPPE). By
Lemma 4.5.11, we can remove them, even though they imply the rules obtained via EGPPEI .

In order to prove Lemma 4.5.11, we use the same strategy that Brass and Dix [5] used to
prove Lemma 4.3.1. Note first that a minimal model of a program Π is a minimal set of ground
atomsM such that for every rule r, whenever the positive body atoms of r are contained inM
and the negative body atoms of r are not contained inM, then a head atom of r is contained in
M. It follows that for positive programs without strong negation, the notion of a minimal model
coincides with the notion of an answer set. We will first prove the following lemma:

Lemma 4.5.13. Let Π be a propositional logic program containing a rule rG which is G-implied
by some other rule r′′ ∈ Π and let Π′ = Π \ {rG}. Then, for any program Πx, Π ∪ Πx and
Π′ ∪Πx have the same minimal models.

Proof. We first show that ifM is a minimal model of Π ∪ Πx (Π′ ∪ Πx) then it is a model of
Π′ ∪Πx (Π ∪Πx, respectively).

Suppose thatM is a minimal model of Π∪Πx but not a model of Π′ ∪Πx. It follows that there
exists a rule s ∈ Π′ ∪Πx which is not satisfied byM, but since Π′ ∪Πx ⊆ Π ∪Πx we get that
s ∈ Π ∪Πx and thusM is not a model of Π ∪Πx, a contradiction.

Now, assume thatM is a minimal model of Π′ ∪Πx but not a model of Π∪Πx. Since rG is the
only rule which is contained in Π but not in Π′ it follows that rG is not satisfied byM and thus
body(rG) is satisfied by M but head(rG) (= head(r′′)) is not. Since M satisfies the body of
rG, it satisfies the body of r′ and since it also satisfies r′ but not head(r′) \ {A} it follows that
M satisfies A. But then,M satisfies the body of r′′ but not its head and thusM is not a model
of Π′ ∪Πx, a contradiction.

It remains to show that a minimal modelM of Π ∪ Πx (Π′ ∪ Πx, respectively) is also minimal
of Π′ ∪Πx (Π∪Πx, respectively). LetM be a minimal model of Π∪Πx, thenM is a model of
Π′ ∪Πx. Now assume thatM is not a minimal model of Π′ ∪Πx, i.e., there exists some model
M′ ⊂ M which is a minimal model of Π′ ∪ Πx. It follows thatM′ is a model of Π ∪ Πx and
thusM is not a minimal model of Π∪Πx, a contradiction. The argument for the other direction
is analogous. �

We continue with the proof of Lemma 4.5.11.

Proof. Let Πx be an arbitrary logic program. We have to show thatM is an answer set of Π∪Πx

if and only ifM is an answer set of Π′ ∪Πx. We proceed by a case distinction.

1. (body−(r) ∪ body−(r′)) ∩M 6= ∅: In this case (the reduced) rG is not contained in the
reduct of Π∪Πx and thus the reducts of Π∪Πx and Π′ ∪Πx are the same. It follows that
M is a minimal model of the reduct (and thus an answer set) of Π∪Πx if and only if it is
a minimal model of the reduct of Π′ ∪Πx.

2. (body−(r) ∪ body−(r′)) ∩ M = ∅: Let rR = head(r) ← body+(r). The reducts of
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Π ∪ Πx and Π′ ∪ Πx both contain the reduced rules r′R and r′′R of r′ and r′′, respectively,
with

r′R = head(r′)← body+(r′), and

r′′R = head(r) ∪ (head(r′) \ {A})← body+(r) ∪ body+(r′).

The only rule in which the two reducts can differ is the rule

rGR
= head(r) ∪ (head(r′) \ {A})← (body+(r) \ {A}) ∪ body+(r′)

= head(rR) ∪ (head(r′R) \ {A})← (body+(rR) \ {A}) ∪ body+(r′R)

for which it may be the case that it is only contained in the reduct of Π ∪ Πx but not in
the reduct of Π′ ∪Πx. But then, we have an arbitrary rule rR, two rules r′R, r

′′
R which are

contained in the reduct of Π ∪Πx with A ∈ head(r′R) and r′′R is of the form

head(rR) ∪ (head(r′R) \ {A})← body+(rR) ∪ body+(r′R).

Hence, rGR
is G-implied by r′′R in the reduct of Π ∪Πx. By Lemma 4.5.13 it follows that

M is a minimal model of the reduct (and thus an answer set) of Π∪Πx if and only if it is
a minimal model of the reduct of Π′ ∪Πx.

�

Proposition 4.5.14. Let Π be a propositional logic program and Π′ obtained from Π by one
application of EGPPEI . Then, Π and Π′ are input equivalent with respect to I .

Proof. Let Π be a propositional logic program and ΠG obtained from Π by one application of
GPPEI on a rule r with body atom A, i.e. ΠG = Π \ {r} ∪G′A. By Lemma 4.3.3 it follows that
for any set of facts Πf ∈ CU\I , Π ∪Πf and ΠG ∪Πf are equivalent.

If body(r) contains only one occurrence of A, then ΠG = Π′ and thus the statement holds.
Suppose now that A occurs more than once in body(r). The set G′A contains for every rule r′

with A ∈ head(r′) a rule r′′ of the form

head(r) ∪ (head(r′) \ {A})← (body+(r) \ {A}) ∪ body+(r′) ∪ not (body−(r) ∪ body(r′)).

Now let ΠI obtained from ΠG by adding for every rule r′′ ∈ G′A a rule s′′ of the form

head(r) ∪ (head(r′) \ {A})← (body+(r)− {A}) ∪ body+(r′) ∪ not (body−(r) ∪ body(r′)).

Since for every rule s′′ there is a rule r′′ ∈ G′A such that s′′ and r′′ only differ in body+(r)−{A}
and body+(r) \ {A} and body+(r) \ {A} ⊆ body+(r) − {A}, we get that every s′′ is implied
by some r′′, hence ΠG and ΠI are strongly equivalent.

Finally, let ΠR obtained from ΠI by removing every rule r′′ ∈ G′A. Let s = head(r) ←
(body+(r)− {A}) ∪ not body−(r). We then have an arbitrary rule s, and for every rule r′ ∈ Π
with A ∈ head(r′) a rule r′′ of the form

head(r) ∪ (head(r′) \ {A})← (body+(r) \ {A}) ∪ body+(r′) ∪ not (body−(r) ∪ body(r′)),
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which is identical to

head(s) ∪ (head(r′) \ {A})← (body+(s) \ {A}) ∪ body+(r′) ∪ not (body−(s) ∪ body(r′)).

But then, every r′′ is G-implied by the corresponding s′′ of the form

head(s) ∪ (head(r′) \ {A})← body+(s) ∪ body+(r′) ∪ not (body−(s) ∪ body(r′)).

Hence, removing every r′′ preserves strong equivalence. But now ΠR = Π′ and thus, for every
set of facts Πf ∈ CU\I , Π ∪Πf and Π′ ∪Πf are equivalent. �

Proposition 4.5.15. Let Π be a propositional logic program and Π′ obtained from Π by one
application of EWGPPE. Then, Π and Π′ are strongly equivalent.

Proof. The proof is analogous to the one of Proposition 4.5.14. The only difference is that we
obtain ΠG from Π by an application of WGPPE and not GPPEI . Since WGPPE preserves strong
equivalence, Π and Π′ are strongly equivalent. �

We will now introduce the notion of G-depth which we will use for our induction argument in the
proof of Theorem 4.5.1. Recall that the transformations of propositional and non-ground GPPEI
are defined as Π′ = Π \ {r} ∪G′A for some G′A. Furthermore, for WGPPE the transformation is
defined as Π′ = Π ∪G′A.

Definition 4.5.16 (G-depth). Let Π′ obtained from Π by a series of applications of (either
propositional or non-ground) GPPEI or WGPPE. Then, if a rule r′ is contained in Π and it was
not contained in any of the sets G′A which are defined by the respective transformations, it has
G-depth 0. If a rule r′′ is contained in Π′ and it was obtained by resolving a rule r ∈ Π (with a
body atom A) with a rule r′, having G-depth n, r′′ has G-depth n+ 1. ♦

Note that this assigns a G-depth to every rule r ∈ Π′. This is, because every rule r ∈ Π′ was
either already contained in Π, and if not, it was obtained by an application of GPPEI , WGPPE,
or non-ground GPPEI .

Example 4.5.17. Consider the program Π33 which consists of the following rules:

a(X)← b(X), (4.136)

b(X) ∨ b(Y )← c(X,Y ). (4.137)

If we apply GPPEI to Rule (4.136), we obtain the program Π′33, consisting of the following
rules:

a(X) ∨ b(Y )← c(X,Y ), (4.138)

a(X) ∨ b(X)← c(X,X), (4.139)

a(X)← c(X,X), (4.140)

a(X) ∨ a(Y )← c(Y,X), (4.141)

b(X) ∨ b(Y )← c(X,Y ). (4.142)
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The first three rules are obtained by resolving Rule (4.137) with (4.137), hence they have G-
depth 1. Rule (4.141) was obtained by resolving the new Rule (4.138) with (4.136), hence it has
G-depth 2. Finally, the last rule was already obtained in Π and thus it has G-depth 0. ♦

Note that the G-depth of a rule r′′ may not be unique, since it may be the case that r′′ was
obtained in various different ways, e.g., by resolving a rule of G-depth i with a rule r ∈ Π but
also by resolving a rule of G-depth j 6= i with a rule r ∈ Π. For the proof of Theorem 4.5.1
we need to assign to each rule a unique G-depth, therefore we will use the minimal G-depth of
a rule. With the minimal G-depth it still holds that a rule r′′ of minimal G-depth n was obtained
by resolving a rule r with some rule r′ of minimal G-depth < n.
We are now finally in the position to give a proof of Theorem 4.5.1, which states that non-ground
GPPEI preserves input equivalence with respect to I . In the proof, when saying that Π and Π′

are equivalent, we actually mean that Π and Π′ are input equivalent with respect to I .

Proof of Theorem 4.5.1

Proof. Let Π be a logic program and Π′ obtained from Π by an application of GPPEI to a rule r
and its body atom A. For the rest of the proof, we assume that A does not occur more than once
in the positive body of r. We will show that Π and Π′ are equivalent by proving the following
statement:

There exists a program Π′′ which can be obtained from the grounding grd(Π) of Π by a series
of applications of propositional EWGPPE and EGPPEI , such that the following holds

(i) Every rule s which is contained in Π′′ is also contained in grd(Π′).

(ii) For every rule s ∈ grd(Π′), Π′′ contains a rule which implies s.

Since Π′′ was obtained from grd(Π) by successively applying EWGPPE and EGPPEI it is equiv-
alent to grd(Π). Furthermore, we can add to Π′′ every rule s ∈ grd(Π′) which is not contained
in Π′′, since Π′′ contains at least a rule s′ which implies s and adding a rule which is implied by
some other rule preserves (even strong) equivalence. Hence, we can obtain grd(Π′) from grd(Π)
by a series of equivalence preserving transformations which proves that grd(Π) and grd(Π′) are
equivalent.

Intuitively, we want Π′′ to be obtained from grd(Π) by successively applying propositional
EWGPPE and EGPPEI to all ground instances of r until no new rules are created. So let Π′′ be
computed by Algorithm 2.

If the Herbrand universe is finite, Algorithm 2 will always terminate. An argument for this goes
as follows: Since we only have a finite number of predicate symbols of finite arity and the Her-
brand universe is finite, the Herbrand base is also finite. Furthermore, the rules inG′A are defined
by existing rules via union and difference of multisets defining existing rules (head(r),body+(r),
etc.).
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1. Let Π′′0 = grd(Π).

2. Order all ground instances of r and denote them as r1, . . . , rn.

3. Let j = 1.

4. Let Π′′j = Π′′j−1 and i = 1.

5. Apply EWGPPE to ri ∈ Π′′j and its according ground instance of A in body+(ri) and
denote the resulting program as Π′′j .

6. If i < n set i = i+ 1 and go to Step 5, else go to the next step.

7. If Π′′j 6= Π′′j−1, set j = j + 1 and go to Step 4, else go the next step.

8. Apply EGPPEI to every rule ri which is not contained in grd(Π′), and denote the
resulting program as Π′′. (This does actually nothing else than removing ground instances
of r, since no new rules are added. We do this since it helps us to prove the statement.)

Algorithm 2: An algorithm which computes Π′′.

Let ◦ ∈ {∪, \,−}, M = (A, f) and N = (A, g) multisets and Q = (A, h) = M ◦ N . Then,
for any a ∈ A, we have that h(a) ≤ max (f(a), g(a)), and thus the number of occurrences
of an atom in head(r), body+(r), or body−(r) of a newly added rule is not increased by the
transformation. Therefore, the number of occurrences of a single atom is also bounded and
hence there is only a finite number of different rules which can be created.

Note also that we used EWGPPE first and EGPPEI only at the end. This is because EWGPPE
adds exactly the same rules as EGPPEI but it does not remove any of the ri. Furthermore,
EWGPPE preserves also equivalence (in fact even strong equivalence). We proceed by proving
statement (i).

PROOF OF (i): By induction on the minimal G-depth n of s.

INDUCTION BASE (n = 0): Assume that s ∈ Π′′ but s /∈ grd(Π′). Since s has minimal G-depth
0, it follows that s is contained in grd(Π) but was not contained in any of the setsG′A. Apart from
ground instances of r, all rules of grd(Π) are contained in grd(Π′), hence s is a ground instance
of r. But then, since in Step 8 in the creation of Π′′, EGPPEI is applied to all ground instances
of r which are not contained in grd(Π′), and EGPPEI takes a program Π and transforms it to
(Π \ {r}) ∪G′A, it follows that s was removed in Step 8 and is thus not in Π′′, a contradiction.

INDUCTION STEP (n < 0): Assume that the statement holds for all k ≤ n with k > 0, we will
show that it then also holds for n+ 1. Suppose therefore that s has minimal G-depth n+ 1. This
means that s was obtained by resolving a ground instance rλ of r (with Aλ ∈ body+(rλ)) and
some rule s′ (with Aλ ∈ head(s′)) having minimal G-depth k ≤ n.

By the induction hypothesis, s′ is contained in grd(Π′), hence there exists some rule r′ ∈ Π′ and
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a ground substitution µ such that s′ = r′µ. Furthermore, since Aλ ∈ head(r′µ), there exists a
set of atoms B ∈ head(r′) such that Bµ = {Aλ}, and thus s is of the form

head(rλ) ∪ (head(r′µ) \Bµ)←(body+(rλ)−Aλ) ∪ body+(r′µ)∪
not (body−(rλ) ∪ body−(r′µ)).

Now, since Bµ = {Aλ} we have that {A} and B are unified by λµ (note that r and r′ contain
no common variables). But then, Π′ contains the rule r′′σ where r′′ is of the form

head(r) ∪ (head(r′) \B)← (body+(r) \ {A}) ∪ body+(r′) ∪ not (body−(r) ∪ body−(r′))

and σ is an mgu of {A} ∪ B. Hence, σ is more general than λµ and thus there exists a ground
substitution ρ such that σρ = λµ and so r′′σρ ∈ grd(Π′). But then we can observe the follow-
ing:

• head(r)σρ = head(rλµ) = head(rλ);

• since B is the set of atoms which unify with {Aλ} under λµ (and thus under σρ), we get
(head(r′) \B)σρ = head(r′λµ) \Bλµ = head(r′µ) \ {Aλ};
• since Aσρ = Aλµ = Aλ and A occurs only once in body+(r), we get (body+(r) \
{A})σρ = body+(rλµ)− {Aλµ} = body+(rλ)− {Aλ};
• body+(r′)σρ = body+(r′λµ) = body+(r′µ);

• body−(r)σρ = body−(rλµ) = body−(rλ);

• body−(r′)σρ = body−(r′λµ) = body−(r′µ).

It follows that s = r′′σρ and thus s is contained in grd(Π′).

PROOF OF (ii): Every rule s in grd(Π′) is a ground instance rsµ of some rule rs ∈ Π′. We thus
proceed by induction on the minimal G-depth n of the rule rs from which s was obtained by
ground instantiation.

INDUCTION BASE (n = 0): Assume that s ∈ grd(Π′) but s 6∈ Π′′. Since rs has minimal G-
depth 0, it is contained in Π but not in any of the G′A. From Π′ = Π \ {r} ∪G′A it follows, that
rs ∈ Π. Now, the only rules in grd(Π) for which it may be the case that they are not contained in
Π′′ are (rules that are equal to) ground instances of r which are removed in Step 8 of the creation
of Π′′. Hence, s was removed in Step 8, but then s /∈ grd(Π), for otherwise it would not have
been removed, a contradiction.

INDUCTION STEP (n < 0): Assume that the statement holds for all rules in grd(Π′) which are
ground instances of rules with minimal G-depth k ≤ n with k > 0. We will show that it then
also holds for all ground instances of rules with minimal G-depth n+ 1. So suppose that rs has
G-depth n + 1. It follows that rs was obtained from an application of GPPEI to r and a rule r′

having minimal G-depth k < n and thus rs is of the form r′′σ with

r′′ = head(r) ∪ (head(r′) \B)←(body+(r) \ {A}) ∪ body+(r′)

∪ not (body−(r) ∪ body−(r′)),
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where σ is an mgu of {A} ∪B. We then get that

s = rsµ = r′′σµ.

Furthermore, σρ maps all variables contained in r′′ to ground terms. It thus maps all variables
in r and r′ to ground terms, except those which are contained in B or A but not in r′′. So let
ρ be a substitution which assigns to each variable X that is contained in B or A but not in r′′

some constant c ∈ HU (Π). Then, σµρ is a unifier of {A} ∪ B and the rules rσµρ and r′σµρ
are ground rules contained in grd(Π′).

Since r′ has minimal G-depth ≤ n we get by the induction hypothesis, that Π′′ contains a rule
s′ which implies r′σµρ, i.e., head(s′) ⊆ r′σµρ, body+(s′) ⊆ body+(r′σµρ) and body−(s′) ⊆
body+(r′σµρ). We proceed by a case distinction.

1. Aσµρ /∈ head(s′): We can observe the following:

• since Bσµρ = {Aσµρ} and head(s′) ⊆ head(r′σµρ), it follows that
head(s′) ⊆ (head(r′) \B)σµρ = (head(r′) \B)σµ;

• body+(s′) ⊆ body+(r′σµρ) = body+(r′)σµ;

• body−(s′) ⊆ body−(r′σµρ) = body−(r′)σµ.

But then s′ implies r′′σµ = s.

2. Aσµρ ∈ head(s′): Since we have Aσµρ ∈ body+(rσµρ), in the course of constructing
Π′′, the rules s′ and rσµρ are resolved with each other, leading to the rule s′′ which is of
the form

head(rσµρ) ∪ (head(s′) \ {Aσµρ})← (body+(rσµρ)− {Aσµρ}) ∪ body+(s′)∪
not (body−(rσµρ) ∪ body−(s′)).

But then we can observe the following:

• head(rσµρ) = head(r)σµ;

• since s′ ⊆ r′σµρ and under σµρ we have that {Aσµρ} = Bσµρ, head(s′) \
{Aσµρ} ⊆ head(r′σµρ) \ {Aσµρ} ⊆ (head(r′) \B)σµρ = (head(r′) \B)σµ;

• since A is only contained once in body+(r),
body+(rσµρ)− {Aσµρ} = (body+(r) \ {A})σµ;

• body+(s′) ⊆ body+(r′σµρ) = body+(r′)σµ;

• body−(rσµρ) = body−(r)σµ;

• body−(s′) ⊆ body−(r′σµρ) = body−(r′)σµ.

It follows that s′′ implies r′′σρ = s.

Hence, in both cases Π′′ contains a rule which implies s. �

Corollary 4.5.18. Non-ground GPPE preserves ordinary equivalence.
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4.6 A Final Example

To conclude this chapter, we give an example which demonstrates how our methods can be used
together in order to preprocess a program for a translation which is closer to natural language.
Consider therefore again the program Π4 from Chapter 2 which encodes the Hamiltonian path
problem. It is given by the following rules:

in_path(X,Y ) ∨ not_in_path(X,Y )← edge(X,Y ), (4.143)

reached(X)← start_node(X), (4.144)

reached(X)← reached(Y ), in_path(Y,X), (4.145)

a_node_is_not_reached ← node(X),not reached(X), (4.146)

← a_node_is_not_reached , (4.147)

← in_path(X,Y ), in_path(X,Z), Y 6= Z, (4.148)

← in_path(Y,X), in_path(Z,X), Y 6= Z. (4.149)

Here, we can first observe that a translation of the Rules (4.146) and (4.147) could lead to a
clumsy translation like the following:

It must not be the case that a node is not reached. A node is not reached if there exists a node x
such that x is not reached.

Since the predicate a_node_is_not_reached is not part of an input instance, we can safely apply
GPPEI to replace Rule (4.147) by the rule:

← node(X),not reached(X). (4.150)

This can lead to the arguably clearer translation:

It must not be the case that there exists a node x such that x is not reached.

For explaining the program, we will in the following ignore the original Rule (4.148) since it
only defined an auxiliary predicate for the test part which is of no use anymore. Now we can
classify the rules of the transformed program Π′4 into the generate, define, and test parts:

Generate

in_path(X,Y ) ∨ not_in_path(X,Y )← edge(X,Y ), (4.151)

Define

reached(X)← start_node(X), (4.152)

reached(X)← reached(Y ), in_path(Y,X), (4.153)
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Figure 4.1: The rule graph of Π′4.

Test

← node(X),not reached(X), (4.154)

← in_path(X,Y ), in_path(X,Z), Y 6= Z, (4.155)

← in_path(Y,X), in_path(Z,X), Y 6= Z. (4.156)

Note that if we replace for example Rule (4.151) by the following two non-disjunctive rules

in_path(X,Y )← edge(X,Y ),not not_in_path(X,Y ), (4.157)

not_in_path(X,Y )← edge(X,Y ),not in_path(X,Y ), (4.158)

we get the the result that both rules are in the generate part since they are involved in a negative
cycle which is also the case in a bottom reduct. Having identified the generate, define and test
parts of the program, it remains to compute an explanation order for the rules. Consider therefore
the rule graph of Π′4 which is given in Figure 4.1.

Since Rule (4.151) is the only generating rule, it is, according to Algorithm 1, explained
first. After this, all rules which are constrained by the constraints (4.155) and (4.156) have been
explained, so they are the next ones. We then continue with Rule (4.154) since it is the only
remaining maximal unlabelled rule. Finally, in a depth-first manner, Rules (4.152) and (4.153)
are explained. This leads to the following order:

in_path(X,Y ) ∨ not_in_path(X,Y )← edge(X,Y ), 1

← in_path(X,Y ), in_path(X,Z), Y 6= Z, 2

← in_path(Y,X), in_path(Z,X), Y 6= Z, 3

← node(X),not reached(X), 4

reached(X)← start_node(X), 5

reached(X)← reached(Y ), in_path(Y,X). 6

We finish the chapter by giving a natural-language explanation of these rules which is based on
the obtained explanation order:

For any edge (x, y) choose whether (x, y) is in the path or not according to the following con-
straints: It must not be the case that the path contains (x, y) and (x, z) for y 6= z. It must not
be the case that the path contains (y, x) and (z, x) for y 6= z. It must not be the case that there
exists a node x such that x is not reached. x is reached if it is a start node or if there exists an y
which is reached and (y, x) is in the path.
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CHAPTER 5
Conclusion

To conclude this thesis, we first review related approaches and then give an outlook on some
possible future work. Finally, we summarise our main results.

5.1 Related Work

Answer-Set Programming and (Controlled) Natural Language. Although we do not know
of any existing translations of answer-set programs into a form of natural language, there ex-
ist approaches which translate into the opposite direction by using controlled-natural-language
(CNL) specifications. Furthermore, CNL is also used for the interpretation of answer sets.

Schwitter [59] defined a translation from different classes of sentences formulated in the
language PENG Light [69] to rules of an answer-set program. He demonstrated his results by
first translating an arguably clear CNL-specification of the marathon puzzle – a well-known
logic puzzle – into an answer-set program and then solving it. He also provided a solution of the
so-called jobs puzzle via a CNL specification [60] and showed how defaults can be handled in
CNL [61], both via translations into answer-set programs.

Erdem and Yeniterzi [24] defined a CNL called BIOQUERYCNL which can be used for
formulating queries over biomedical ontologies. They defined a translation of such queries into
answer-set-programs and illustrated their results on some example queries which are very easily
readable. Later, even a mechanism which provides natural-language-explanations of the query-
answers was developed [23].

Fang [25] developed methods for interpreting the answer sets of a given program in a CNL
which she specified. The approach is based on meta information which can be added to answer-
set programs via the annotation language LANA [13]. A programmer can thus use LANA to spec-
ify the intended meaning of predicates. One could for example add to an atom hasSkill(E,S)
the annotation “Employee E has skill S”, thereby telling the translation mechanism how cer-
tain atoms can be meaningfully explained. The whole functionality was also implemented as a
plug-in for the answer-set programming IDE SeaLion [9].
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Generate-Define-Test and Meta Programming. A compact introduction into the guess and
check paradigm, which is strongly connected to the generate-define-test paradigm, was given by
Eiter, Faber, Leone and Pfeifer [17]. They stated an informal definition of the guess and check
parts of a program and provided many examples which demonstrate how complex problems can
be elegantly specified by means of guess and check.

Lifschitz [37] was the first who divided example programs into a generate, define, and test
part. He listed various answer-set programs together with the comments GENERATE, DEFINE,
and TEST to get a clear separation of the three program parts. He also used the comment
DISPLAY, to identify the part of his program that tells the solver which elements of an answer
set should be included in the output.

Eiter and Polleres [22] developed a sophisticated approach for automatically integrating sep-
arate programs for guessing and checking into one single program. They started from the obser-
vation that most ΣP

2 -complete1 problems can be solved with answer-set-programming methods
by using the following two-step approach:

1. Use a program Πguess to generate a candidate solution S.

2. Check the solution by running a program Πcheck on S which has no answer set if and only
if S is a valid solution.

Now, since all problems in ΣP
2 can be solved with extended disjunctive-logic-programs [11], it

must be possible to write a single program which has the same input-output behaviour as the
described two-step approach.

But such a single program may be hard to find. In the naive union of Πguess and Πcheck

the check part would eliminate valid solutions of the guess part which does not lead to a
desired solution. To overcome these problems, they developed a meta logic-program which
takes separate Πguess and Πcheck programs as input and combines them to a single program
Πsolve = Πguess ∪Π′check , where Π′check is obtained from Πcheck by means of rewriting.

Gebser, Kaminski, and Schaub [28] implemented a meta interpreter for logic programs that
computes answer sets which are optimal with respect to complex optimisation statements based
on criteria like inclusion-, cardinality- or preference minimality. For the implementation they
made use of the reification capabilities provided by the grounder gringo, whose output format
they described in a detailed fashion.

Partial-Evaluation Transformations. As already mentioned in Chapter 4, GPPE was intro-
duced into logic programming by Komorowski in 1981 [33, 44]. For propositional disjunctive
programs, partial evaluation transformations and the according equivalence results over the sta-
ble model semantics were independently introduced by Brass and Dix [4, 5] and Sakama and
Seki [57].

Lloyd and Shepherdson [44] introduced partial evaluation for non-ground normal programs
and gave conditions under which it preserves equivalence with respect to Clark’s completion se-
mantics [58]. Tamaki and Sato [64] introduced an unfold/fold framework on definite programs

1ΣP
2 is the class of all problems which can be solved in polynomial time by a non-deterministic Turing-machine

which has access to an NP-oracle [51].
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and showed that the unfolding preserves equivalence with respect to the minimal model seman-
tics. The framework and the equivalence results were extended to the stable model semantics by
Seki [62].

Gergatsoulis [31] took an approach similar to ours: He used the idea of successively applying
most general unification to define an unfold transformation on non-ground disjunctive programs
containing only positive atoms. He could then show that the transformed program implies (in
the classical sense) the same set of positive clauses as the original program.

For folding on a body atom A of a clause r, Gergatsoulis collects all clauses which contain
head atoms that are unifiable with A (compare to GA) and marks all these atoms. Similarly to
the successive application of our ΓA,r-operator, in a loop he then resolves step by step those
clauses with r by unifying single marked atoms with A. In this setting, he could then argue that
his procedure always terminates after n iterations, where n is the maximum number of marked
atoms in the head of a rule.

Another unfolding transformation for non-ground disjunctive programs was introduced by
Sakama and Seki [58]. They went around the problem of unifiable head atoms by keeping
the transformed rule r in the program if there is a rule r′ which contains more than one head
atoms which are unifiable with the atom which was unfolded in the body of r. In such cases
their transformation can thus be seen as a generalisation of WGPPE to the non-ground case.
However, preservation of stable models as well as minimal models was shown for it.

Dix and Stolzenburg also mentioned that in combination with unifiable head atoms, GPPE
can lead to problems. They handled those problems by defining a non-ground version of GPPE
using methods from constraint logic programming to transform program rules into rules with
equational constraints, thereby extending the formalism of logic programming [15,16]. Without
going into too much detail, the following example should illustrate the intuition behind their
approach [15]:

Example 5.1.1. Consider program Π26, consisting of the following rules:

p(X)← q(X), (5.1)

q(X) ∨ q(a)← . (5.2)

Here the rule (5.2) is split into two new rules using equational constraints (which are written at
the right of a rule with a “/”-symbol):

p(X)← q(X), (5.3)

q(X) ∨ q(a)← /X 6= a, (5.4)

q(a)← . (5.5)

After this, GPPE can be applied to q(X) in the body of (5.3), and the equational constraints are
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incorporated into the newly added rules. This yields the following transformed program:

p(X) ∨ q(a)← /X 6= a, (5.6)

p(a) ∨ q(X)← /X 6= a, (5.7)

p(a)←, (5.8)

q(X) ∨ q(a)← /X 6= a, (5.9)

q(a)← . (5.10)

♦

This way, the problem with unifiable head atoms can be solved, since the equational constraints
restrict the domain of certain rules. Note that an equational constraint can be more complex than
just a single inequality. More complex constraints can be formed from equalities and inequalities
via conjunction, disjunction and even quantifiers.

5.2 Future Work

Building on the results of this thesis, we can develop further results that bring us closer to-
wards our ultimate goal: A procedure which translates an answer-set program into an easy-to-
understand explanation which is closer to natural language. But our work raised also questions
which are interesting for other purposes.

• Our classification algorithm from Chapter 3 helps us to isolate the generate part of a
program from the rest. Now, although answer-set programming is fully declarative, the
choice of a suitable encoding can strongly influence the efficiency of the solution process.
It is thus often helpful to prune the search space of a given program by incorporating
concepts of the test or define part into the generate part [2]. A question that arises in
this context is whether such optimisations can be automatised, which would improve the
runtime of many existing encodings.

• Although we argued why the application of partial-evaluation transformations is useful
in order to obtain clearer natural language explanations, it would still be interesting to
further examine when such transformations should be applied and when not. This should
optimally lead to a formal criterion which is based on the properties of a given program
and whose usefulness is evaluated against a wide range of real-world programs.

• When it comes to translating the rules of a program, the first important task is to find
an adequate form of (controlled) natural language which serves as the target language.
There already exist a lot of controlled natural languages [35] and so we believe that it is
not necessary to develop a completely new one. Once a language is found, defining and
implementing an actual translation mechanism is a challenging task for the future.

• Regarding our non-ground partial-evaluation transformation, the following is an interest-
ing open question: Let Π be a logic program and r a rule with a body atom A to which we
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apply GPPEI . Let furthermore n be the maximal number of head atoms within a single
rule which can be unified with A. Can it be shown (possibly by modifying the trans-
formation) that the number of steps of the ΓA,r-operator can be limited to n while still
preserving input equivalence of the original program and the transformed program?

5.3 Summary

In this thesis, we developed various results which should help to transform answer-set programs
into a form which is closer to natural language and easier to understand. We introduced a method
which helps to automatically analyse the structure of a given program by classifying its rules into
the three parts generate, define, and test. In order to do so, we first introduced formal definitions
of these three parts, where the definition of the generate part emerged as the most involved
one. The generate part can intuitively be seen as the non-deterministic portion of a program but
isolating it from the rest is nontrivial. Syntactical constructs like disjunction or aggregates are
obvious sources of non-determinism but a certain use of default-negation can also lead to the
creation of multiple answer-sets.

We thus introduced the so called bottom reduct, a transformation on programs which elimi-
nates certain rules. Based on the bottom reduct one can then check for negative cycles to obtain
a strong indication of non-deterministic behaviour. To implement our classification method
we implemented a meta answer-set-program for which the reification method of the grounder
gringo proved to be very useful. Our implementation was also tested on real-world problems
where it led to intuitive classifications. Since the clarity of a program translation strongly de-
pends on the order in which the rules are explained, we proposed such an order which is based
on the generate-define-test classification as well as the dependency relation of the predicates.

A straightforward translation of program rules into a form of natural language can lead to
rather unnatural results in general. We thus identified partial-evaluation transformations as a
helpful tool for preprocessing a program. The problem with these transformation is, that they
do only preserve the weak notion of ordinary equivalence and so they cannot be thoughtlessly
applied to programs which operate on separate program instances in the form of facts. Be-
cause of this, we used the notion of non-ground relativised uniform equivalence [49, 70], which
we denoted as input equivalence. We then developed partial-evaluation transformations, called
GPPEI , which preserve input equivalence.

In the propositional case, the definition of an adequate transformation was rather unprob-
lematic and equivalence-preservation could be easily shown, but in the non-ground case things
turn out to be rather complicated. The main reason for this is the fact that rules may contain
multiple unifiable head atoms. To cope with this problem, we invented the operator ΓA,r which
is successively applied to the body atom of a rule until a fixed-point criterion is met. The proof
that our non-ground transformation preserves equivalence is then based on a sophisticated lift-
ing of the propositional version. Overall, our thesis can be seen as a solid theoretical basis for
further work on making a translation of answer-set programs into an easily understandable form
of natural language possible.
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APPENDIX A
Answer-Set Program for

Generate-Define-Test Classification

1 #const max_iterations = 10.
2 #const bottom_reduct = -1.
3 #const fact_nr = -1.
4 #hide.
5 #show generate_rule/1.
6 #show layer_changed/1.
7
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 % Reification and definitions of literals (disjunctive, aggregate, ect.)%

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11
12 % irule(I,R,H,B) - denotes a ground rule
13 % I - Index of iteration in the computation of the bottom-reduct.
14 % R - Index of non-ground rule from which the ground rule was obtained.
15 % H - Head of the rule
16 % B - Body of the rule
17
18 % iset(I,S,L) - denotes that a certain literal is contained within a set
19 % I - Index of iteration in the computation of the bottom-reduct.
20 % S - Index of the set of literals
21 % L - Literal
22
23 irule(0,R,pos(atom(X)),pos(conjunction(Y))) :-
24 rule(pos(atom(X)),pos(conjunction(Y))),
25 set(Y,pos(atom(rule_number(R)))).
26 irule(0,R,pos(disjunction(X)),pos(conjunction(Y))) :-
27 rule(pos(disjunction(X)),pos(conjunction(Y))),
28 set(Y,pos(atom(rule_number(R)))).
29 irule(0,R,pos(aggr(sum,L,X,O)),pos(conjunction(Y))) :-
30 rule(pos(sum(L,X,O)),pos(conjunction(Y))),
31 set(Y,pos(atom(rule_number(R)))).
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32 irule(0,R,pos(aggr(max,L,X,O)),pos(conjunction(Y))) :-
33 rule(pos(max(L,X,O)),pos(conjunction(Y))),
34 set(Y,pos(atom(rule_number(R)))).
35 irule(0,R,pos(aggr(min,L,X,O)),pos(conjunction(Y))) :-
36 rule(pos(min(L,X,O)),pos(conjunction(Y))),
37 set(Y,pos(atom(rule_number(R)))).
38 irule(0,R,pos(aggr(even,1,X,1)),pos(conjunction(Y))) :-
39 rule(pos(even(X)),pos(conjunction(Y))),
40 set(Y,pos(atom(rule_number(R)))).
41 irule(0,R,pos(aggr(odd,1,X,1)),pos(conjunction(Y))) :-
42 rule(pos(odd(X)),pos(conjunction(Y))),
43 set(Y,pos(atom(rule_number(R)))).
44
45 irule(0,fact_nr,X,pos(conjunction(0))) :- rule(X,pos(conjunction(0))).
46 irule(0,fact_nr,pos(atom(X)),pos(conjunction(0))) :-
47 rule(pos(atom(X)),pos(conjunction(0))).
48 irule(0,fact_nr,pos(disjunction(X)),pos(conjunction(0))) :-
49 rule(pos(disjunction(X)),pos(conjunction(0))).
50 irule(0,fact_nr,pos(aggr(sum,L,X,O)),pos(conjunction(0))) :-
51 rule(pos(sum(L,X,O)),pos(conjunction(0))).
52 irule(0,fact_nr,pos(aggr(max,L,X,O)),pos(conjunction(0))) :-
53 rule(pos(max(L,X,O)),pos(conjunction(0))).
54 irule(0,fact_nr,pos(aggr(min,L,X,O)),pos(conjunction(0))) :-
55 rule(pos(min(L,X,O)),pos(conjunction(0))).
56 irule(0,fact_nr,pos(aggr(even,1,X,1)),pos(conjunction(0))) :-
57 rule(pos(even(X)),pos(conjunction(0))).
58 irule(0,fact_nr,pos(aggr(odd,1,X,1)),pos(conjunction(0))) :-
59 rule(pos(odd(X)),pos(conjunction(0))).
60
61 % Rule numberings are body atoms of the predicate ’rule_number’ which specify
62 % the non-ground rule from which a ground rule was obtained. They are not
63 % part of the original program and are thus removed at the beginning.
64
65 is_rule_numbering(S,pos(atom(rule_number(R)))) :-
66 set(S,pos(atom(rule_number(R)))).
67
68 iset(0,S,pos(atom(X))) :- set(S,pos(atom(X))),
69 not is_rule_numbering(S,pos(atom(X))).
70 iset(0,S,neg(atom(X))) :- set(S,neg(atom(X))).
71 iset(0,S,pos(aggr(sum,L,X,O))) :- set(S,pos(sum(L,X,O))).
72 iset(0,S,neg(aggr(sum,L,X,O))) :- set(S,neg(sum(L,X,O))).
73 iset(0,S,pos(aggr(max,L,X,O))) :- set(S,pos(max(L,X,O))).
74 iset(0,S,neg(aggr(max,L,X,O))) :- set(S,neg(max(L,X,O))).
75 iset(0,S,pos(aggr(min,L,X,O))) :- set(S,pos(min(L,X,O))).
76 iset(0,S,neg(aggr(min,L,X,O))) :- set(S,neg(min(L,X,O))).
77 iset(0,S,pos(aggr(even,1,X,1))) :- set(S,pos(even(X))).
78 iset(0,S,neg(aggr(even,1,X,1))) :- set(S,neg(even(X))).
79 iset(0,S,pos(aggr(odd,1,X,1))) :- set(S,pos(odd(X))).
80 iset(0,S,neg(aggr(odd,1,X,1))) :- set(S,neg(odd(X))).
81
82 disjunctive_head_literal(I,R,X) :- irule(I,R,pos(disjunction(Y)),_),
83 iset(I,Y,pos(atom(X))).
84
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85 aggr_head_literal(I,R,L) :- irule(I,R,pos(aggr(_,_,S,_)),_),
86 wlist(S,_,pos(atom(L)),_).
87 aggr_head_literal(I,R,L) :- irule(I,R,pos(aggr(_,_,S,_)),_),
88 wlist(S,_,neg(atom(L)),_).
89
90 aggr_body_literal(I,R,L) :- irule(I,R,H,pos(conjunction(S))),
91 iset(I,S,pos(aggr(_,_,W,_))),
92 wlist(W,_,pos(atom(L)),_).
93 aggr_body_literal(I,R,L) :- irule(I,R,H,pos(conjunction(S))),
94 iset(I,S,neg(aggr(_,_,W,_))),
95 wlist(W,_,pos(atom(L)),_).
96 aggr_body_literal(I,R,L) :- irule(I,R,H,pos(conjunction(S))),
97 iset(I,S,pos(aggr(_,_,W,_))),
98 wlist(W,_,neg(atom(L)),_).
99 aggr_body_literal(I,R,L) :- irule(I,R,H,pos(conjunction(S))),

100 iset(I,S,neg(aggr(_,_,W,_))),
101 wlist(W,_,neg(atom(L)),_).
102
103 literal(I,L) :- irule(I,_,pos(atom(L)),_).
104 literal(I,L) :- irule(I,_,_,pos(conjunction(S))), iset(I,S,pos(atom(L))).
105 literal(I,L) :- irule(I,_,_,pos(conjunction(S))), iset(I,S,neg(atom(L))).
106 literal(I,L) :- disjunctive_head_literal(I,_,L).
107 literal(I,L) :- aggr_head_literal(I,_,L).
108 literal(I,L) :- aggr_body_literal(I,_,L).
109
110 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
111 % Definitions of dependency notions %
112 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
113
114 depends_directly_positive(I,R,X,Y) :-
115 irule(I,R,pos(atom(X)),pos(conjunction(B))), iset(I,B,pos(atom(Y))).
116 depends_directly_positive(I,R,X,Y) :-
117 irule(I,R,pos(disjunction(H)),pos(conjunction(B))),
118 iset(I,H,pos(atom(X))), iset(I,B,pos(atom(Y))).
119 depends_directly_positive(I,R,X,Y) :-
120 irule(I,R,pos(aggr(_,_,H,_)),pos(conjunction(B))),
121 wlist(H,_,pos(atom(X)),_), iset(I,B,pos(atom(Y))).
122 depends_directly_positive(I,R,X,Y) :-
123 irule(I,R,pos(aggr(_,_,H,_)),pos(conjunction(B))),
124 wlist(H,_,neg(atom(X)),_), iset(I,B,pos(atom(Y))).
125 depends_directly_positive(I,R,X,Y) :-
126 irule(I,R,pos(aggr(_,_,H,_)),pos(conjunction(B))),
127 wlist(H,_,pos(atom(X)),_),
128 iset(I,B,pos(aggr(_,_,W,_))), wlist(W,_,pos(atom(Y)),_).
129 depends_directly_positive(I,R,X,Y) :-
130 irule(I,R,pos(aggr(_,_,H,_)),pos(conjunction(B))),
131 wlist(H,_,neg(atom(X)),_),
132 iset(I,B,pos(aggr(_,_,W,_))), wlist(W,_,neg(atom(Y)),_).
133
134 depends_directly_negative(I,R,X,Y) :-
135 irule(I,R,pos(atom(X)),pos(conjunction(B))), iset(I,B,neg(atom(Y))).
136 depends_directly_negative(I,R,X,Y) :-
137 irule(I,R,pos(disjunction(H)),pos(conjunction(B))),
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138 iset(I,H,pos(atom(X))), iset(I,B,neg(atom(Y))).
139 depends_directly_negative(I,R,X,Y) :-
140 irule(I,R,pos(aggr(_,_,H,_)),pos(conjunction(B))),
141 wlist(H,_,pos(atom(X)),_), iset(I,B,neg(atom(Y))).
142 depends_directly_negative(I,R,X,Y) :-
143 irule(I,R,pos(aggr(_,_,H,_)),pos(conjunction(B))),
144 wlist(H,_,neg(atom(X)),_), iset(I,B,neg(atom(Y))).
145 depends_directly_negative(I,R,X,Y) :-
146 irule(I,R,pos(aggr(_,_,H,_)),pos(conjunction(B))),
147 wlist(H,_,pos(atom(X)),_),
148 iset(I,B,pos(aggr(_,_,W,_))), wlist(W,_,neg(atom(Y)),_).
149 depends_directly_negative(I,R,X,Y) :-
150 irule(I,R,pos(aggr(_,_,H,_)),pos(conjunction(B))),
151 wlist(H,_,neg(atom(X)),_),
152 iset(I,B,pos(aggr(_,_,W,_))), wlist(W,_,pos(atom(Y)),_).
153
154 depends_positively(I,X,Y) :- depends_directly_positive(I,_,X,Y).
155 depends_positively(I,X,Z) :- depends_positively(I,X,Y),
156 depends_directly_positive(I,_,Y,Z).
157
158 depends_negatively(I,X,Y) :- depends_directly_negative(I,_,X,Y).
159 depends_negatively(I,X,Z) :- depends_negatively(I,X,Y),
160 depends_directly_negative(I,_,Y,Z).
161 depends_negatively(I,X,Z) :- depends_positively(I,X,Y),
162 depends_negatively(I,Y,Z).
163 depends_negatively(I,X,Z) :- depends_negatively(I,X,Y),
164 depends_positively(I,Y,Z).
165
166 depends(I,X,Y) :- depends_positively(I,X,Y).
167 depends(I,X,Y) :- depends_negatively(I,X,Y).
168
169 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
170 % Definitions of weakly minimal literals and bottom stratum/layer %
171 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
172
173 -weakly_minimal_literal(I,L) :- literal(I,L), depends_negatively(I,L,_).
174 -weakly_minimal_literal(I,L) :- literal(I,L),
175 disjunctive_head_literal(I,_,Y), depends(I,L,Y).
176 -weakly_minimal_literal(I,L) :- literal(I,L),
177 aggr_head_literal(I,_,Y), depends(I,L,Y).
178 weakly_minimal_literal(I,L) :- literal(I,L),
179 not -weakly_minimal_literal(I,L).
180
181 -bottom_stratum(I,L) :- disjunctive_head_literal(I,_,L).
182 -bottom_stratum(I,L) :- aggr_head_literal(I,_,L).
183 bottom_stratum(I,L) :- weakly_minimal_literal(I,L), not -bottom_stratum(I,L).
184 bottom_layer_rule(I,pos(atom(H)),B) :- irule(I,_,pos(atom(H)),B),
185 bottom_stratum(I,H).
186
187 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
188 % Definition of operator phi and bottom reduct %
189 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
190
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191 % Empty sets of literals are vacuously true
192 set_contains_an_element(I,S) :- iset(I,S,_).
193 set_holds_in_bottom_layer(I,S) :- irule(I,_,_,pos(conjunction(S))),
194 not set_contains_an_element(I,S).
195
196 % A set is true if it does not contain a literal which is not true
197
198 -set_holds_in_bottom_layer(I,S) :- iset(I,S,pos(atom(L))),
199 not lit_holds_in_bl(I,L).
200 set_holds_in_bottom_layer(I,S) :- iset(I,S,_),
201 not -set_holds_in_bottom_layer(I,S).
202
203 % Literals of the bottom stratum are true if they are head atoms of
204 % a rule in the bottom layer whose body is true. Literals of the
205 % bottom stratum which are not true in the bottom layer are false.
206
207 lit_holds_in_bl(I,L) :-
208 bottom_layer_rule(I,pos(atom(L)),pos(conjunction(S))),
209 set_holds_in_bottom_layer(I,S).
210 -lit_holds_in_bl(I,L) :- bottom_stratum(I,L), not lit_holds_in_bl(I,L).
211
212 % A rule is not contained in the next iteration of the computation if
213 % one of its naf-literals in the body is false or if it is a fact.
214 % Otherwise it is contained in the next iteration
215
216 -irule(I+1,R,H,pos(conjunction(B))) :- check(I),
217 irule(I,R,H,pos(conjunction(B))),
218 iset(I,B,pos(atom(L))),
219 -lit_holds_in_bl(I,L).
220 -irule(I+1,R,H,pos(conjunction(B))) :- check(I),
221 irule(I,R,H,pos(conjunction(B))),
222 iset(I,B,neg(atom(L))),
223 lit_holds_in_bl(I,L).
224 -irule(I+1,R,pos(atom(L)),B) :- check(I),
225 irule(I,R,pos(atom(L)),B),
226 lit_holds_in_bl(I,L).
227 irule(I+1,R,H,B) :- check(I), irule(I,R,H,B), not -irule(I+1,R,H,B).
228
229 % A set of literals is false if one of its naf-literals is false.
230
231 set_is_false(I+1,S) :- check(I), iset(I,S,pos(atom(L))),
232 -lit_holds_in_bl(I,L).
233 set_is_false(I+1,S) :- check(I), iset(I,S,neg(atom(L))),
234 lit_holds_in_bl(I,L).
235
236 % If a set is false then it is not contained in the next iteration
237
238 -iset(I+1,S,N) :- check(I), iset(I,S,N), set_is_false(I+1,S).
239
240 % If a naf-literal of a set is true in the bottom layer, we remove
241 % it from the set.
242
243 -iset(I+1,S,pos(atom(L))) :- check(I),
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244 iset(I,S,pos(atom(L))), lit_holds_in_bl(I,L).
245 -iset(I+1,S,neg(atom(L))) :- check(I),
246 iset(I,S,neg(atom(L))), -lit_holds_in_bl(I,L).
247
248 iset(I+1,S,L) :- check(I), iset(I,S,L), not -iset(I+1,S,L).
249
250 % Check if an iteration leads to a change (if not, the fixed point
251 % of the operator phi is reached and the computation stops).
252
253 layer_changed(I+1) :- irule(I,R,B,H), -irule(I+1,R,B,H).
254 layer_changed(I+1) :- iset(I,S,L), -iset(I+1,S,L).
255
256 check(I) :- layer_changed(I), I < max_iterations.
257 check(0).
258
259 irule(bottom_reduct,R,X,Y) :- irule(I,R,X,Y),
260 layer_changed(I), not layer_changed(I+1).
261 iset(bottom_reduct,X,Y) :- iset(I,X,Y),
262 layer_changed(I), not layer_changed(I+1).
263
264 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
265 % Definition of generating rules %
266 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
267
268 % Define those rules which are involved in a negative cycle within
269 % the extended dependency graph of the bottom reduct as ’generating rules’.
270
271 in_negative_cycle(R) :- depends_directly_positive(bottom_reduct,R,X,Y),
272 depends_negatively(bottom_reduct,Y,X).
273 in_negative_cycle(R) :- depends_directly_negative(bottom_reduct,R,X,Y),
274 depends(bottom_reduct,Y,X).
275
276 generating_rule(R) :- in_negative_cycle(R).
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