
Solving Reasoning Problems on
Abstract Dialectical Frameworks
via Quantified Boolean Formulas

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Master of Science (M.Sc.)

im Rahmen des Studiums

Computational Logic

eingereicht von

Martin Diller
Matrikelnummer 1228429

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Assoc. Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Mitwirkung: Dipl.-Ing. Johannes Peter Wallner

Wien, 13.03.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Solving Reasoning Problems on
Abstract Dialectical Frameworks
via Quantified Boolean Formulas

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science (M.Sc.)

in

Computational Logic

by

Martin Diller
Registration Number 1228429

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Assoc. Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Assistance: Dipl.-Ing. Johannes Peter Wallner

Vienna, 13.03.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Martin Diller
Donaufelder Str. 54, 1210 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First of all, I want to thank my advisor, Stefan Woltran, for his extremely good disposition
throughout the work on the thesis as well as his insights and guidance which have been of great
value to me. I also want to thank my co-advisor, Johannes P. Wallner, for his kind and meticulous
hands-on assistance in every aspect of the thesis, from formal to technical.

I also want to acknowledge here the help of Florian Lonsing with many issues having to do
with DepQBF and QSAT, as well as Stefan Ellmauthaler for his support with DIAMOND and
sharing his work with me.

I am grateful to the authorities and team of the European Master of Computational Logic as
well as the Erasmus Mundus Programme for making my studies possible. I am also in profound
debt with all of you back home who have supported and made possible my abrupt switch to
studies in Europe, despite this meaning that I broke several commitments I had in Córdoba.

A very special thank you goes to my mother, Ana, and father, Guillermo, for their uncondi-
tional support, my grandmother, Marcela, and sister, Carolina, for their care, and beloved Marina
for keeping very close. Finally, I also want to express my gratitude to my friends in Vienna and
from the EMCL.

iii

Abstract

“Abstract argumentation” is a subfield of the interdisciplinary area of study “argumentation
theory” that has developed into an increasingly important area of computer science and artifi-
cial intelligence in the last two decades. Starting with the “argumentation frameworks” (AFs)
proposed by P. M. Dung in 1995, several different formalisms for abstract argumentation have
been devised to date with just as many desiderata in mind, the overarching focus of study of this
field though still being to determine when an argument (or set of arguments) can be considered
to remain undefeated or even come out victorious in the context of a dispute.

All formalisms for abstract argumentation include a means of representing arguments and
their relationships (“a framework”), several methods to determine which arguments can be ac-
cepted together based on the structure of the frameworks (the “semantics”), as well as “reasoning
tasks” that are defined in terms of these frameworks and semantics. One of the most general for-
malisms is that of “abstract dialectical frameworks” (ADFs), which is of a relatively recent date
and allows for the direct representation of complex relations of support and attack between ar-
guments through boolean formulas (“acceptance conditions”) associated to the arguments. This
increase in expressive power with respect to AFs has the consequence that many of the reason-
ing tasks that can be defined for ADFs suffer from an even “higher complexity” than the tasks
they generalise in the context of AFs, being complete for up to the third level of the polynomial
hierarchy.

Quantified boolean logic on the other hand is a relatively well established formalism in
computer science, being of special relevance because of its connection with the polynomial
hierarchy of complexity classes. Given the advances in the performance of software systems for
this logic in recent years, it is also increasingly recognized to be a promising formalism in which
to translate computational problems located within the polynomial hierarchy.

In this work we present complexity-sensitive reductions or encodings of some of the main
reasoning tasks defined for ADFs with respect to some of the major semantics into the sat-
isfiability problem of quantified boolean logic (QSAT). In this manner we provide a uniform
axiomatization of these reasoning tasks into quantified boolean logic. Moreover, we pave the
way for implementations of these reasoning tasks via the already mentioned advances in tech-
nologies for QSAT. Finally, we also describe a prototype of such a system we have implemented
and report on preliminary experiments that serve as a first benchmark for implementations of
these tasks via QSAT.

v

Kurzfassung

“Abstrakte Argumentation”, als Teilgebiet des interdisziplinären Forschungsfeld der “Argu-
mentationstheorie”, hat während der letzten beiden Dekaden innerhalb der Computerwissen-
schaften und der Künstlichen Intelligenz immer mehr an Bedeutung gewonnen. Ausgehend vom
Konzept der “Argumentation Frameworks” (AFs), entwickelt von P. M. Dung im Jahre 1995,
wurden viele verschiedene Formalismen für abstrakte Argumentation entworfen. In all diesen
Formalismen gilt es zu entscheiden unter welchen Umständen ein Argument in einer Debatte
“akzeptabel” ist bzw. wann eine Menge von Argumenten in sich “akzeptabel” ist. Alle Formalis-
men für abstrakte Argumentation beinhalten Konzepte für die Repräsentation von Argumenten,
deren Relation untereinander (zusammengenommen also das “Framework”), verschiedene Me-
thoden um anhand der Struktur des Frameworks festzustellen, welche Argumente zu akzeptieren
sind (die “Semantiken”), sowie verschiedene Möglichkeiten von Schlüssen, welche mittels der
Frameworks und deren Semantiken gezogen werden können.

Einer der allgemeinsten Formalismen in diesem Kontext sind die kürzlich entwickelten “Ab-
stract Dialectical Frameworks” (ADFs), welche eine direkte Repräsentation von komplexen Re-
lationen zwischen den Argumenten mittels boolescher Formeln (“acceptance conditions”) er-
möglichen. Diese – im Vergleich zu AFs – erhöhte Ausdruckstärke bedingt, dass verschiedene
Schlussweisen auf ADFs nun eine höhere Komplexität aufweisen, als jene Schlussweisen auf
AFs, welche sie verallgemeinern. Manche Schlussweisen sind sogar vollständig für die dritte
Stufe der polynomiellen Hierarchie.

Quantifizierte boolesche Logik auf der anderen Seite ist ein etablierter Formalismus in den
Computerwissenschaften, welche eine direkte Verbindung mit der polynomiellen Hierarchie der
Komplexitätsklassen hat. Durch den Fortschritt der Software Systeme für diese Logik hat sich
die quantifizierte boolesche Logik als vielversprechender Formalismus, um Probleme innerhalb
der polynomiellen Hierarchie zu lösen, herauskristallisiert.

In dieser Arbeit präsentieren wir Reduktionen, oder Kodierungen, von einigen der Schluss-
weisen in ADFs für die wichtigsten Semantiken auf das Problem der Erfüllbarkeit von quantifi-
zierten booleschen Formeln (QSAT), welche die Komplexität der ursprünglichen Probleme be-
rücksichtigen. Auf diese Art stellen wir eine uniforme Axiomatisierung für diese Schlussweisen
in quantifizierter boolescher Logik bereit. Weiters bahnen wir den Weg für Implementierungen
dieser Schlussweisen, da sie die fortschrittlichen Techniken, welche für QSAT entwickelt wur-
den, nutzen können. Schlussendlich beschreiben wir einen von uns implementierten Prototypen
eines solchen Systems und diskutieren Ergebnisse erster Experimente.

vii

Contents

1 Introduction 1

2 Background 7
2.1 Propositional logic . 7
2.2 Quantified boolean formulas . 13
2.3 Abstract dialectical frameworks . 19
2.4 Complexity . 30

3 Encodings 35
3.1 Encoding statements about three valued valuations for ADFs as QBFs 37
3.2 Encodings for three and two valued models 42
3.3 Encodings for admissible valuations . 47
3.4 Encodings for complete valuations . 52
3.5 Encodings for preferred valuations . 54
3.6 Encodings for the grounded valuation . 56

4 Implementation 61
4.1 Overview of implementation methods and systems for abstract argumentation . 61
4.2 Overview of QSAT solving strategies . 65
4.3 Description of a prototype system for reasoning on ADFs via QBFs 70
4.4 Experiments . 74

5 Conclusion and future work 79

Bibliography 81

ix

CHAPTER 1
Introduction

Broady construed, the “study of argumentation may (...) be considered as concerned with how
assertions are proposed, discussed, and resolved in the context of issues upon which several di-
verging opinions may be held” [Bench-Capon and Dunne, 2007]. From a normative perspective
which is especially relevant for the development of computational applications, the interest can
also be on how such assertions should be proposed, discussed, resolved, etc. in view of some
objective such as obtaining information, persuasion or reaching a decision. Characterized in
this general manner, the study of argumentation has a history as long as that of logic, argumen-
tation theory itself today being viewed as an interdisciplinary field at the intersection between
several disciplines (including, for example, legal theory, economics, linguistics, cognitive sci-
ence, philosophy, and artificial intelligence). Nevertheless, studies initiated around the 1950’s
within philosophy have played a particulary significant role in the establishment of this research
area [Toulmin, 2003, Johnson and Blair, 1994, Pollock, 1987].

In the case of artificial intelligence and computer science, the development into a relatively
distinct and increasing important field has only ocurred in the last two decades. [Chesñevar
et al., 2000] and [Bench-Capon and Dunne, 2007] review the history of this development, giving
an overview of the main research directions as well as the connections between the study of
argumentation from a computational perspective and development in other fields, especially
philosophy. Today several research directions exist, in some cases attending to different phases
of the “argumentation process” as described at the beginning of the previous paragraph as well
as different types of arguments and argumentation contexts. Relatively recent books attempting
to give an overview of this field are, for example, [Besnard and Hunter, 2008] and [Rahwan and
Simari, 2009].

Argumentation has also increasingly received attention in artificial intelligence and com-
puter science because of the connections between argumentation and other well established ar-
eas of computer science and artificial intelligence such as knowledge representation [Prakken
and Sartor, 1997, Amgoud and Cayrol, 2002, Besnard and Hunter, 2005] and the foundations of
multi agent systems [Amgoud et al., 2005, Kakas and Moraitis, 2006, McBurney et al., 2012].
Finally, there are several application domains such as in multi agent systems, decision sup-

1

port systems [Amgoud and Prade, 2009], computational assistance to legal reasoning [Bench-
Capon et al., 2009], electronic governance [Cartwright and Atkinson, 2009], electronic health
tools [Tullio and Grasso, 2011], etc.

The work by Dung [Dung, 1995] on abstract argumentation, in particular, is usually seen
as a significant landmark in the consolidation of the field of argumentation in computer science
and artificial intelligence [Bench-Capon and Dunne, 2007] and this area has, arguably, recieved
the most attention from researchers in these disciplines to the present date. From the perspective
of argumentation, the central concern of abstract argumentation is the evaluation of a set of
arguments and their relations, what is called an “argumentation framework”, to be able to extract
subsets of the arguments that can all be accepted together from some point of view. Particular
arguments can then be deemed to be acceptable if, for example, they form part of one of such
“coherent viewpoints”. Especially interesting for the area of knowledge representation is that
the entailment relation of various important formalisms for non-monotonic reasoning have been
translated into the abstract argumentation framework [Bondarenko et al., 1993, Dung, 1995,
Bondarenko et al., 1997, Chesñevar et al., 2000, Prakken and Vreeswijk, 2002, Strass, 2013], a
fact that is considered in [Dung, 1995] to be evidence for the “correctness” or “appropriateness”
of the proposed model of argumentation.

What makes the approach of abstract argumentation abstract is that acceptance of arguments
is decided based only on the topology of the argumentation framework, i.e. the internal struc-
ture of the arguments is disregarded. The criteria or method used to settle the acceptance of
arguments is called a “semantics”. By now a plethora of semantics motivated by different the-
oretical and practical concerns have been developed for this framework [Baroni et al., 2011a]
and one important direction of research has been to determine properties of these semantics that
also enable providing principles that allow for comparison between them [Baroni and Giacomin,
2007].

In the work of [Dung, 1995], argumentation frameworks are directed graphs where nodes
represent arguments and links correspond to one argument attacking another. Although very
general, this model does not directly support modelling more complex interactions between
arguments as relations of mutual support and more sophisticated relations of attack. For this and
similar issues, several extensions of the AF framework have been proposed to date (e.g. those
presented in [Bench-Capon, 2003, Cayrol and Lagasquie-Schiex, 2005, Coste-Marquis et al.,
2006,Baroni et al., 2011b]), one of the most general being that of abstract dialectical frameworks
(ADFs) [Brewka and Woltran, 2010].

In this last framework, acceptance conditions in the form of arbitrary boolean formulas are
associated to every argument. In [Brewka and Woltran, 2010] the most important semantics
defined for argumentation frameworks as defined by Dung are generalised to ADFs, although
the so called “preferred” and “stable” semantics are restricted to a type of ADFs called bipolar.
In [Brewka et al., 2013] the semantics are extended to cover all ADFs.

Various reasoning tasks can be defined on abstract argumentation frameworks, some of the
central ones being those that evaluate the “acceptability” of an argument with respect to a given
framework and semantics. Already in the scenario of Dung’s argumentation frameworks, most
of the reasoning tasks have been shown to suffer from high computational complexity (e.g. see
[Dunne and Bench-Capon, 2002]), although most remain within what in complexity theory has

2

been identified as the “second level of the polynomial hierarchy” [Stockmeyer, 1976]. For ADFs,
the complexity of many of the main reasoning tasks with respect to the generalised semantics
jump one level of the polynomial hierarchy [Strass and Wallner, 2013,Strass and Wallner, 2014],
resulting in some of the reasoning tasks even being on the third level of the polynomial hierarchy.

Given the situation described in the previous paragraph, the question of how to implement
reasoning with respect to abstract argumenation frameworks becomes significant from a com-
putational perspective and has received considerable attention for Dung’s frameworks. A good
survey of the approaches and advances in this direction is [Charwat et al., 2013] which classifies
the two main approches into “reduction based” and “direct” approaches. Direct approaches are
tailored specifically to reasoning on abstract argumentation systems, some of the main instances
of this approach being so called “labelling-based algorithms” [Doutre and Mengin, 2001, Mod-
gil and Caminada, 2009, Nofal et al., 2012, Verheij, 2007], characterisations via “dialogue-
games” [Modgil and Caminada, 2009, Thang et al., 2009] or “dynamic programming” based
methods [Dvořák et al., 2012a]. “Reduction based approaches” on the other hand aim to translate
the reasoning problems of the field of argumentation to some other formalism for which efficient
systems exist, for example propositional logic [Besnard and Doutre, 2004, Egly and Woltran,
2006, Arieli and Caminada, 2013, Dvořák et al., 2012], answer set programming (see [Toni and
Sergot, 2011] for a survey on this approach) or constraint satisfaction problems [Amgoud and
Devred, 2011, Bistarelli and Santini, 2011].

The two main software systems existing to date for reasoning on ADFs are instances of the
“reduction based” approach and use answer set programming (ASP) as the target formalism,
the first one, ADFSys [Ellmauthaler and Wallner, 2012, Ellmauthaler, 2012] having the seman-
tics of [Brewka and Woltran, 2010] as a basis, while the second one, DIAMOND [Ellmauthaler
and Strass, 2013], implements evaluation of ADFs with respect to the revised and generalised
semantics given in [Brewka et al., 2013]. Although using answer set programming as a tar-
get formalism for implementing abstract argumentation can lead to relatively simple programs
and enables harnessing the power of efficient answer set solvers, reasoning tasks beyond the first
level of the polynomial hierarchy can only be implemented by making use of different fragments
of ASP which allow for higher expressivity but the combination of which can lead to some tech-
nical difficulties. DIAMOND avoids some of these difficulties by assuming a representation of
ADFs where acceptance conditions are represented as boolean functions instead of boolean for-
mulas, but as a consequence the reductions to ASP defined by this system are, strictly speaking,
not efficient since the transformation of boolean formulas to the boolean functions they represent
is exponential in general.

In this work we present translations or reductions of some of the main reasoning tasks de-
fined for ADFs into the problem of the satisfiability of quantified boolean formulas (QBFs) or
QSAT. In this manner we provide a uniform axiomatization of these reasoning tasks into the
relatively well established formalism of quantified boolean logic. Moreover, for the decision
problems we consider, the reductions we present are complexity-sensitive in the sense that the
reductions are efficient (polynomial) and that the complexity of QSAT of the target class of for-
mulas is not “harder” than that of the reasoning task being encoded. In this manner, we also
provide a theoretical foundation for the implementation of reasoning systems for ADFs via the
existence of increasingly efficient solvers that have been developed for QSAT (see, for example,

3

the results presented in [Peschiera et al., 2010, Lonsing and Seidl, 2013]). Finally, we motivate
and present a prototype of such a reasoning system we have implemented using the QSAT solver
DepQBF [Lonsing and Biere, 2010a] as back-end. We also report on preliminary experiments
on this prototype system which serves as an “existence-proof” of the feasibility of this approach,
although further empirical evaluation is necessary to determine more clearly its potential with
respect to other approaches for implementing reasoning on ADFs.

Quantified boolean logic is an extension of propositional logic, allowing for quantification
over propositional atoms. Research in this fomalism in computer science and in particular, in
complexity theory, gained special momentum once Meyer and Stockmeyer [Stockmeyer and
Meyer, 1973] showed that QSAT is complete for the complexity class PSPACE, which consists
of all decision problems that can be solved by deterministic Turing machines in polynomial
space in the size of the problem instance. Another important finding has been that of the exis-
tence of an important link between QSAT restricted to types of QBFs classified according to the
structure of quantification and the hierarchy of complexity classes contained in PSPACE intro-
duced by the same authors (see also [Stockmeyer, 1976]), the so called “polynomial hierarchy”
that we have already referred to above. Specifically it was shown also in this work that each
of these types of QBFs is complete for a corresponding class within the polynomial hierarchy.
These results not only provide a foundation for complexity analysis of computational problems,
by allowing to determine lower bounds for the hardness of a problem by providing reductions of
types of QBFs to the problems in question, but also imply that for problems that are known to
be in PSPACE an efficient reduction to some of the mentioned types of QBFs must exist.

In recent years ever more efficient solvers for QBFs have been presented (apart from
DepQBF, see, for example, those presented in [Giunchiglia et al., 2010a,Klieber et al., 2010,Jan-
ota et al., 2012, Goultiaeva and Bacchus, 2013]), making reductions of problems to QBFs not
only theoretically interesting but also a viable strategy for implementations of solvers for these
problems. Research in QSAT solving strategies has been very influenced by strategies for solv-
ing the analogous problem for propositional formulas, SAT. It started with work by Kleine,
Buening, et al. [Büning et al., 1995] on the generalisation of the resolution principle for SAT
to the QSAT scenario, but especially significant for current day QSAT solvers has been the ex-
tension of the DPLL procedure for propositional logic [Davis et al., 1962] to quantified boolean
logic in [Cadoli et al., 1998] and, to a lesser degree, initial developments in so called “vari-
able elimination approach” approach based solvers (some early examples of this approach are
presented in, for example, [McMillan, 1993, Biere, 2004]).

The increasing number of uses of QSAT solvers for solving computational problems, wit-
nesses to the perceived adequacy of this approach (see [Giunchiglia et al., 2009] for various
examples). Planning [Rintanen, 1999a, Ferraris and Giunchiglia, 2000] and formal methods
for determining correctness of software systems [Bryant et al., 2003, Mneimneh and Sakallah,
2003, Ling et al., 2005, Benedetti and Mangassarian, 2008, Giunchiglia et al., 2007] are notable
examples of areas where QSAT solvers have found their way into practice. Moreover, reductions
of many reasoning problems in different areas including knowledge representation and reasoning
(see, for example, [Egly et al., 2000] for reductions of autoepistemic, default logic, disjunctive
logic programming, and circumscription problems) into QSAT have also been proposed in the
literature.

4

All the above should underpin our reasons for choosing quantified boolean logic as target
formalism in which to translate reasoning for ADFs. In the first place, as has already been
noted above, this provides a uniform axiomatization of reasoning on ADFs into a relatively
well established formalism of formal logic. In the second place, quantified boolean logic also
has just the “right level of expressivity”, given known results about complexity of reasoning
for ADFs and the connections between quantified boolean logic and the polynomial hierarchy
detailed above. Finally, the mentioned advances in the development of QSAT solvers makes this
undertaking worthwile from a practical perspective as well as a theoretical one.

On the theoretical side, our work continues the line of of study that has been initiated for
Dung style argumentation frameworks in [Egly and Woltran, 2006] and [Arieli and Caminada,
2012, Arieli and Caminada, 2013] which we have already made reference to previously. In both
of these works, reductions of the problems of evaluating Dung style argumentation frameworks
into the setting of quantified boolean logic are given. The more recent work by Arieli and Cam-
inada in particular, which is based on a so called “labelling approach” to defining the semantics
of AFs which presents some parallels with the approach followed in [Brewka et al., 2013] to
define the semantics for ADFs, has been particulary influential for the approach we follow in
this work to give encodings for the reasoning problems defined for ADFs.

We briefly summarise the main contributions of our work:

1. We provide complexity-sensitive encodings of some of the main reasoning problems de-
fined for ADFs (evaluation, existence, non-trivial existence, credulous acceptance, skepti-
cal acceptance) with respect to some of the major semantics (three and two valued models,
admissible, complete, preferred, grounded) into two of the most significant problems for
quantified boolean logic (QSAT and model enumeration).

2. As a by-product of the work described in Item 1, we also prove the NP-completeness of
non-trivial existence and credulous acceptance with respect to three valued models for
ADFs.

3. We present a prototype software system for reasoning on ADFs based on the encodings
we provide in this work and report on preliminary experiments.

Regarding the structure of our work, in Chapter 2 we present the background theory on which
it is based, mainly propositional and quantified boolean logic, abstract dialectical frameworks,
as well as relevant concepts and results from complexity theory. In Chapter 3 we present the
encodings of the reasoning tasks we consider in this work with respect to ADFs, together with
proofs of correctness and analysis to determine the adequacy of the encodings with respect
to their complexity. As part of the latter analysis we prove NP-completeness of non-trivial
existence and credulous acceptance with respect to three valued models for ADFs in Section 3.2.
Finally, in Chapter 4 we present the before-mentioned prototype system for reasoning on ADFs
via the QSAT-solver DepQBF and report on preliminary experiments, not before first setting our
system in context by reviewing developments in logic-based reductions and implementations of
abstract argumentation as well as some of the main theoretical and practical advances in QSAT
existing to this date.

5

CHAPTER 2
Background

Throughout this work we assume only familiarity with basic concepts from set theory and
algorithmics, introducing most of the remaining background knowledge required to grasp our
work in this chapter. Regarding the notation for set theory and algorithms, we make use of
standard notation of set theory (e.g. \, ∪,], ∩, × for difference, union, disjoint union, inter-
section, and cartesian product of sets, and |S| for the cardinality of a set S) as well as familiar
pseudo-code notation for presenting algorithms.

In Sections 2.1 and 2.2 we introduce the syntax, semantics, as well as certain useful syn-
tactical normal forms for classical propositional and quantified boolean logic respectively. In
Section 2.3 we introduce ADFs as well as (Dung style) AFs as a special case of ADFs. Most
of this section is devoted to defining the semantics for ADFs (and AFs) that are relevant for this
work. Finally, in Section 2.4 we introduce the main decision problems for which we provide
encodings in this work, give a brief overview of complexity theory, and summarise complexity-
theoretic results that are important for the present work.

2.1 Propositional logic

From the perspective of knowledge representation and reasoning, propositional logic is mainly
a formalism for representing and reasoning about propositions, statements or sentences and com-
binations thereof. Classical (truth valued) propositional logic in particular assumes that proposi-
tions, statements or sentences are atomic and can be either true or false (but not both) and allows
only truth functional combinations of these, i.e. only those combinations whose truth value de-
pends on the truth values of the simpler statements which make them up [Klement, 2013]. In the
rest of this work, we refer to “classical propositional logic” simply as “propositional logic”.

Although we do not delve on this point further here, what makes propositional logic es-
pecially interesting for the purposes of knowledge representation and reasoning is in the first
place that many hard computational problems can be encoded in an efficient manner as reason-
ing problems in this logic (see, for example, [Kautz and Selman, 1992, Biere, 2009, Kroening,
2009, Rintanen, 2009, Zhang, 2009]). In fact, the satisfiability problem for propositional logic

7

that we introduce in this section is significant for complexity theory because of its connection
to the so called “complexity class NP” [Garey and Johnson, 1979]. Thanks to [Cook, 1971] the
satisfiability problem for propositional logic can be considered the “prototypical problem” for
the class NP in the sense that this class can be defined as the set of problems that can be ex-
pressed in terms of the satisfiability problem in an efficient manner. Equally significant is that,
as has been mentioned in the introduction of this work, the recent two decades have given rise
to increasingly efficient automatic reasoning systems for this logic [Järvisalo and Gelder, 2013].
Many of these at their core nevertheless still rely on the DPLL backtracking decision procedure
for this logic introduced in the early 1960s [Davis et al., 1962].

The definitions and results we present here can be found in most textbooks on logic. For a
more detailed introduction to propositional logic from a formal and computational perspective,
we refer to e.g. [Büning and Letterman, 1999, Hölldobler, 2011].

Syntax

In the following we present the syntax of propositional logic. To start, we define the alphabet
underlying this formalism:

Definition 2.1.1. The alphabet of the language of propositional logic consists of the following
symbols:

• A countable set of propositional variables or atoms P = {p1, p2, p3, ...}.

• The logical constants > (truth constant), ⊥ (falsity constant).

• The logical connectives ¬ (negation sign), ∧ (conjunction sign), and ∨ (disjunction sign).

• The auxiliary symbols “(“ and “)”.

In the metalanguage, we will often also use symbols p, q, . . . (each of them possibly with
subscripts, superscripts or primed) to refer to propositional variables. We also consider P to be
suitably large for our purposes. More precisely, for any p ∈ P we will assume that also ptb ∈ P
where b and t are arbitrary (including none) subscripts and superscripts respectively.

Having defined the alphabet of propositional logic, the formulas of propositional logic can
also be defined.

Definition 2.1.2. Given the alphabet as in Definition 2.1.1, the set of formulas of propositional
logic is defined inductively as follows:

• Any propositional variable p ∈ P is a formula.

• Any of the logical constants > and ⊥ is a formula.

• If φ and ψ are formulas, then so is (¬φ), (φ ∧ ψ), and (φ ∨ ψ).

• Nothing else is a formula.

8

Propositional variables and negated propositional variables are often referred to as literals,
the first being called positive and the second negative. For a literal l, we define l̄ = ¬p if l = p
and l̄ = p if l = ¬p for some p ∈ P .

Given a propositional formula φ, the set of subformulas of φ can be extracted based on the
structure of φ:

Definition 2.1.3. The set of subformulas of a formula φ, SUBFORMULAS(φ), is defined as
follows:

• If φ is a propositional variable p ∈ P , > or ⊥ then SUBFORMULAS(φ) = {φ}.

• If φ is a formula of the form (¬ψ) then SUBFORMULAS(φ) = {φ} ∪
SUBFORMULAS(ψ).

• If φ is a formula of the form (ψ ∧ ρ) or (ψ ∨ ρ), then SUBFORMULAS(φ) = {φ} ∪
SUBFORMULAS(ψ) ∪ SUBFORMULAS(ρ).

Finally, a formula ψ is a subformula of a formula φ and, hence, occurs in φ if ψ ∈
SUBFORMULAS(φ).

Clearly, a formula ψ can occur more than once in another formula φ. In this work we assume it
to be clear from context to which occurence we are referring to and do not define this concept
formally. Also, for the case of literals, it is convenient to use the notation |l| to denote the
propositional variable occuring in a literal l.

One can define convenient abbreviations for some of the combinations of propositional for-
mulas that can be constructed using the connectives in the alphabet using new defined connec-
tives such as→ (implication sign),↔ (biconditional sign), ⊕ (exclusive disjunction sign). If φ
and ψ are propositional formulas, the definition of these is as follows:

φ→ ψ := ((¬φ) ∨ ψ)

φ↔ ψ := ((φ→ ψ) ∧ (ψ → φ))

φ⊕ ψ := ((φ ∨ ψ) ∧ (¬(φ ∧ ψ)))

For purposes of clarity, we will in this work at times use “[” and “]” instead of “(“ and “)”
when writing formulas. Also, we will at times omit parentheses, for which we introduce the
following ranking (in increasing order) to the connectives we have introduced above:

¬, ∧, ∨, ⊕,→,↔

When parentheses are omited, parentheses should be read into the formula according to this
ranking (i.e. connectives lower in the ranking “bind stronger”) to avoid ambiguity. We will
further simplify our rendering of formulas by assuming that binary connectives associate to the
left (so, for example, φ1 ∧ φ2 ∧ φ3 should be read as ((φ1 ∧ φ2) ∧ φ3)).

9

Other useful abbreviations we will use in this work to simplify formulas when writing them
out are those of n-ary conjunctions or disjunctions. Given a set F = {φ1, φ2, ..., φn} of formu-
las, these abbreviations are defined as follows:

•
∧
φ∈F =

∧n
i=1 φi := φ1 ∧ φ2 ∧ ... ∧ φn (n-ary conjunction)

•
∨
φ∈F =

∨n
i=1 φi := φ1 ∨ φ2 ∨ ... ∨ φn (n-ary disjunction)

If F = ∅, we stipulate the above abbreviations to simplify to > for the empty conjunction and ⊥
for the empty disjunction.

Semantics

The semantics of propositional formulas are based on the notion of a valuation or assignment:

Definition 2.1.4. A valuation or assignment v (over P) is a function from P to {1, 0}. A
valuation is complete if it is a total function, otherwise it is partial.

Except if explicitly stated otherwise, when we refer to valuations in this work we assume that the
valuation in question is complete. A valuation can be transformed into a new one by changing
the assignment given to some p ∈ P:

Definition 2.1.5. Given a valuation v, v[p/x] where p ∈ P and x ∈ {0, 1} denotes the valuation
v′ defined as:

• v′(p) = x.

• v′(q) = v(q) if q ∈ P and q 6= p.

If P is a sequence of distinct propositional variables {p1, p2, .., pn} and Y a sequence of values
in {0, 1}, {x1, x2, .., xn}, (|P | = |Y |), then v[P/Y] denotes v[p1/x1][p2/x2]...[pn/xn].

A valuation can also be restricted to a given set of propositional variables:

Definition 2.1.6. Let v be a valuation and P a set of propositional variables. v|P denotes the
restriction of v to P which is the partial valuation with domain P and such that v|P(p) = v(p)
for every p ∈ P.

Valuations can be extended to arbitrary propositional formulas as follows:

Definition 2.1.7. The value of a propositional formula under a valuation v, is a mapping v∗ from
propositional formulas to {1, 0} defined inductively as follows:

• v∗(p) = v(p) for p ∈ P .

• v∗(>) = 1.

• v∗(⊥) = 0.

10

• v∗(¬φ) = 1 if v∗(φ) = 0, otherwise v∗(¬φ) = 1 for any formula φ.

• v∗(φ ∧ ψ) = 1 if v∗(φ) = 1 and v∗(ψ) = 1, otherwise v∗(φ ∧ ψ) = 0 for any formulas φ
and ψ.

• v∗(φ ∨ ψ) = 1 if v∗(φ) = 1 or v∗(ψ) = 1 (or both), otherwise v∗(φ ∨ ψ) = 0 for any
formulas φ and ψ.

By abuse of notation, we will omit the ∗when referring to the extension of a valuation to arbitrary
propositional formulas in the rest of this work.

The following proposition is a straightforward consequence of the semantics of propositional
logic:

Proposition 2.1.1. Let φ1, .., φn be arbitrary formulas. Then

• v(
∧n
i=1 φi) = 1 if and only if v(φi) = 1 for each 0 ≤ i ≤ n.

• v(
∨n
i=1 φi) = 1 if and only if v(φi) = 1 for some 0 ≤ i ≤ n.

The notion of valuation allows us to define some of the central semantical concepts of logic
for propositional logic:

Definition 2.1.8. Let φ be a propositional formula.

• A valuation v is a model for φ if v(φ) = 1. This is written as v |= φ.

• φ is satisfiable if there is a model for φ, φ is unsatisfiable otherwise.

• φ is valid (or a tautology) if all valuations are models of φ.

• φ is a logical consequence (or just consequence) of a set of formulas Γ, denoted Γ |= φ,
if all valuations that are a model of each of the formulas in Γ are a model of φ.

Two formulas are equivalent from the perspective of classical propositional logic if their
truth values are identical under all possible valuations to the propositional variables (“principle
of extensionality”):

Definition 2.1.9. Let φ and ψ be propositional formulas. φ and ψ are equivalent if for all
valuations v over P , v(φ) = v(ψ). When two formulas φ and ψ are equivalent, this is denoted
as φ ≡ ψ.

A weaker concept than that of equivalence is that of two formulas being “equisatisfiable”:

Definition 2.1.10. Let φ and ψ be propositional formulas. φ and ψ are equisatisfiable if φ is
satisfiable if and only if ψ is.

As a result of the truth functional nature of classical propositional logic, equivalent formulas
can be substituted in a formula without changing the valuation of the formula in question. This
is captured by the so called “Replacement Theorem”:

11

Theorem 2.1.1. Let φ be a formula in which ψ occurs and ρ be a formula such that ψ ≡ ρ. If
φ′ is the formula that results from the replacement of each occurrance of ψ for ρ, then φ ≡ φ′.

Finally, the following are some important semantic equivalences used in this work:

Theorem 2.1.2. Let φ, ψ, and ρ be arbitrary propositional formulas. Then

• (φ ∧ ψ) ≡ (ψ ∧ φ) and (φ ∨ ψ) ≡ (ψ ∨ φ) (Commutativity laws)

• ¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ and ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ (De Morgan’s laws)

• ¬¬φ ≡ φ (Principle of double negation)

• φ∧ (ψ∨ ρ) ≡ (φ∧ψ)∨ (φ∧ ρ) and φ∨ (ψ∧ ρ) ≡ (φ∨ψ)∧ (φ∨ ρ) (Distributivity laws)

Conjunctive normal form

For computational purposes it is often useful to concentrate on formulas with restricted syn-
tactic structure. Especially useful is if these sets of formulas capture all possible formulas from a
semantic point of view. In this work the so called “conjunctive normal form” which has precisely
this property plays an important role.

Definition 2.1.11. A clause is a disjunction of literals, i.e. a formula of the form C = l1 ∨ l2 ∨
... ∨ ln where each of the lis for 1 ≤ i ≤ n is a literal. A formula is in conjunctive normal form
(CNF) if it is a conjunction of clauses, i.e. a formula of the form C1 ∧C2 ∧ ...∧Cm where each
of the Cis for 1 ≤ i ≤ m is a clause.

Note that checking that a formula in CNF is valid reduces to checking that in every clause of
the formula some variable as well as its negation occur. The following theorem expresses that
no power of expressivity is lost by restricting our attention to formulas in CNF:

Theorem 2.1.3. For each propositional formula φ there exists a formula φ′ in CNF such that
φ ≡ φ′.

The following is a function transforming an arbitrary formula φ into CNF [Huth and Ryan,
2004]. It assumes that the formula φ is in negation normal form, i.e. that no defined connectives
appear in the formula and that negations appear only in front of variables. A formula is easily
transformed into an equivalent formula in negation normal formula in a recursive manner using
the definitions of→,↔, ⊕ as well as De Morgan’s laws and the law of double negation.

function CNF(φ):

if φ is a literal, return φ

if φ is ψ ∧ ρ return CNF(ψ) ∧ CNF(ρ)

if φ is ψ ∨ ρ return DISTRIB(CNF(ψ) ∨ CNF(ρ))

12

The function DISTRIB repeatedly makes use of the second distributivity law (and commutativity
of ∨) to transform the formula:

function DISTRIB(φ ∨ ψ):

if φ is φ1 ∧ φ2 return DISTRIB(φ1, ψ) ∧ DISTRIB(φ2, ψ)

if ψ is ψ1 ∧ ψ2 return DISTRIB(ψ1, φ) ∧ DISTRIB(ψ2, φ)

otherwise (no conjunctions) return φ ∨ ψ

A constructive proof of Theorem 2.1.3 can be given relying on the function CNF as well as the
definitions of the defined connectives, Theorem 2.1.2, and the Replacement Theorem.

Although the function CNF as defined above is correct, the use of the function DISTRIB
(and elimination of↔) can lead to an exponential explosion in the size of the resulting formula.
A linear transformation to CNF form is the so called “Tseitin encoding” first defined in [Tseitin,
1968] which works by replacing subformulas with new variables and then adding clauses to
the original formula specifying the relationship between the newly introduced variables and
the subformulas. This results in an equisatisfiable formula, although when satisfiability of the
original formula is the issue of concern this is obviously not a disadvantage.

2.2 Quantified boolean formulas

In the following we formally introduce quantified boolean formulas, or more accurately, quan-
tified boolean logic as an extension to propositional logic. Existential (∃) and universal (∀) quan-
tification over propositional variables are added to the alphabet of propositional logic and from
a semantic perspective this will, as we show in this section, allow expressing properties about
propositional valuations themselves.

Quantified boolean logic is a conservative extension of propositional logic in the sense that
the satisfiability problem for quantified boolean formulas can be translated into the satisfiability
problem for propositional formulas. On the other hand, this translation may lead to an expo-
nential blow up in the size of the target formula and the power of quantified boolean formulas
lies in their potential to express complex properties that can be specified in propositional logic
in a more succinct manner. Quantification over propositional variables, hence, allows for more
“natural” encodings of some computational problems as well as a potential reduction of memory
space needed to express these.

Just as the satisfiability problem for propositional logic can be considered the prototypical
problem of the class of problems NP, thanks to [Stockmeyer and Meyer, 1973], the satisfiability
problem for QBFs can be considered analogously for the complexity class PSPACE. Assuming
the problems in NP are a proper subset of those in PSPACE, this expresses the space vs. time
trade-off inherent in the choice of use of quantified boolean logic vs. propositional logic for
modelling and reasoning purposes. On the other hand, while problems in PSPACE (like model
checking for linear temporal logic) have, in the past, been translated into propositional satisfia-
bility problems, recent increase in the power of QBF solvers which we refer to with a little more

13

detail in Section 4.2, provides an additional argument in favour of the use of quantified boolean
logic as a modelling framework when dealing with problems in PSPACE.

See the introduction (Chapter 1) of this work for pointers to uses of quantified boolean logic
for solving computational problems. A short but useful overview of the theory of quantified
boolean logic is, for example, provided in [Büning and Bubeck, 2009]. We have also used
[Woltran, 2003] as a basis for this section, which presents quantified boolean logic from the
perspective of the use of this logic to provide encodings of reasoning tasks from the area of
knowledge representation and reasoning.

Syntax

As indicated above, the alphabet of the language of quantified boolean logic consists of the
symbols of the language of propositional logic as in Definition 2.1.1 and the symbols ∀ and ∃.
Quantified boolean formulas can then be defined analogously to the definition of formulas of
propositional logic:

Definition 2.2.1. Given the alphabet of quantified boolean logic, the set of quantified boolean
formulas (QBFs) is defined inductively as follows:

• Any propositional variable p ∈ P is a QBF.

• Any of the logical constants > and ⊥ is a QBF.

• If φ and ψ are QBFs, then so is (¬φ), (φ ∧ ψ), and (φ ∨ ψ).

• If p ∈ P is a propositional variable and φ is a QBF, then (∃pφ) and (∀pφ) are QBFs.

• Nothing else is a QBF.

The definition of subformulas can also be extended to QBFs:

Definition 2.2.2. The set of subformulas of a QBF φ, SUBFORMULAS(φ), is defined as fol-
lows:

• If φ is a propositional variable p ∈ P , > or ⊥ then SUBFORMULAS(φ) = {φ}.

• If φ is a QBF of the form (¬ψ), (∀pψ), or (∃pψ) then SUBFORMULAS(φ) = {φ} ∪
SUBFORMULAS(ψ).

• If φ is a QBF of the form (ψ ∧ ρ) or (ψ ∨ ρ), then SUBFORMULAS(φ) = {φ} ∪
SUBFORMULAS(ψ) ∪ SUBFORMULAS(ρ).

Finally, a QBF ψ is a subformula of a QBF φ and, hence, occurs in φ if ψ ∈
SUBFORMULAS(φ).

When it is clear from the context that we are referring to QBFs and not propositional formulas,
we will often refer to QBFs as formulas in this work.

14

All of the syntactic notions and abbreviations of propositional logic are extended to quanti-
fied boolean logic in a straightforward manner (i.e. by replacing “formulas” for “QBFs” in the
places where we introduced these notions and abbreviations).

In order to simplify QBFs we also stipulate that the quantifiers ∃ and ∀ have the same ranking
as the symbol ¬ when parentheses are to be read into formulas where these are ommited. In
addition to the abbreviations introduced when considering the syntax of propositional logic, we
also introduce syntactic sugar for writing out formulas with repeated occurances of quantifiers
of the same type. Specifically, if P = {p1, p2, ..., pn} is a set of propositional variables and φ
a QBF, then QPφ and Qp1p2...pnφ are to be read as (Qp1(Qp2(...(Qpn(φ))))) for any Q ∈
{∃,∀}. In particular, if P = ∅ then QPφ is to be read as φ. We call successive quantifiers of the
same kind occuring in a certain formula a quantifier block.

Important syntactical notions regarding QBFs are the scope in which a quantifier is applied
and whether a variable appears bound by a quantifier or not in such a formula.

Definition 2.2.3. The scope of a quantifier Q ∈ {∀,∃} in a QBF of the form Qpφ is the QBF φ.
An occurence of a variable p in a QBF φ is free if it does not occur in the scope of a quantifier in
the QBF, otherwise the occurence of p is bound. If a QBF φ contains no free variable occurences,
then φ is closed, otherwise φ is open. FREE(φ) denotes the set of free variables of a QBF φ.

With these notions in hand, substitution of formulas for variables occurring in a QBF can be
defined:

Definition 2.2.4. Let φ be a QBF, {ψ1, ..., ψn} a set of QBFs such that none of the propo-
sitional variables in P = {p1, .., pn} occurs free in any of the ψis for 1 ≤ i ≤ n. Then,
φ[p1/ψ1, ..., pn/ψn] denotes the QBF which results by uniform substitution of all free oc-
curences of the variables pi in φ by the corresponding ψi for 1 ≤ i ≤ n.

Semantics

The semantics of quantified boolean logic is also based on the notion of valuation defined for
propositional logic. Valuations can then be extended to arbitrary quantified boolean formulas as
for propositional logic, but adding conditions for quantified formulas:

Definition 2.2.5. The value of a QBF under a valuation v, is a mapping v∗ from QBFs to {1, 0}
defined inductively as follows:

• v∗(p) = v(p) for p ∈ P .

• v∗(>) = 1.

• v∗(⊥) = 0.

• v∗(¬φ) = 1 if v∗(φ) = 0, otherwise v∗(¬φ) = 1 for any QBF φ.

• v∗(φ ∧ ψ) = 1 if v∗(φ) = 1 and v∗(ψ) = 1, otherwise v∗(φ ∧ ψ) = 0 for any QBFs φ
and ψ.

15

• v∗(φ ∨ ψ) = 1 if v∗(φ) = 1 or v∗(ψ) = 1 (or both), otherwise v∗(φ ∨ ψ) = 0 for any
QBFs φ and ψ.

• v∗(∃pφ) = 1 if v∗(φ[p/>]) = 1 or v∗(φ[p/⊥]) = 1, otherwise v∗(∃pφ) = 0 for any QBF
φ and p ∈ P .

• v∗(∀pφ) = 1 if v∗(φ[p/>]) = 1 and v∗(φ[p/⊥]) = 1, otherwise v∗(∀pφ) = 0 for any
QBF φ and p ∈ P .

As for propositional logic, we will ommit the ∗ when referring to the extension of a valuation to
arbitrary QBFs in the rest of this work.

The notions of model of a QBF, a QBF being satisfiable, unsatisfiable or valid as well as a
QBF being a logical consequence of a set of QBFs are then defined as for propositional logic
but referring to QBFs and using the semantical definitions for QBFs. From the definitions of the
semantics of the quantifiers it can be inferred that for closed QBFs, the concepts of satisfiability
and validity coincide:

Proposition 2.2.1. Let φ be an arbitrary closed QBF. Then φ is satisfiable if and only if φ is
valid.

Hence, a closed QBF can be considered true when satisfiable (or valid) and false otherwise.
With the semantical notions for QBFs in place it can be seen how quantified boolean logic

can be used to express properties about (partial) propositional valuations. For example, the fact
that for all partial valuations to the variable p, there exists a partial valuation to the variable q
which is dual to p, can be expressed as follows:

∀p∃q(p↔ ¬q)

which can be easily seen to be a true formula according to the semantics. On the other hand, a
slight syntactic change in this formula leads to a false formula:

∃p∀q(p↔ ¬q)

Satisfiability and validity of propositional formulas can be expressed via QBFs as follows:

Proposition 2.2.2. Let φ be an arbitrary propositional formula with P being all variables that
appear in φ. Then φ is satisfiable if and only if ∃Pφ is true and φ is valid if and only if ∀Pφ is
true.

In fact, the proposition above continues to hold if φ is a quantified boolean formula and P
are the free variables appearing in φ. On the other hand, as mentioned in the introduction to
this section, the problem of satisfiability of quantified boolean formulas can be translated into
that of satisfiability of propositional formulas. This translation, which is sometimes referred to
as the “Shannon expansion”, is straightforward from the semantics of QBFs and the following
equivalences:

∃pφ ≡ φ[p/⊥] ∨ φ[p/>]

16

∀pφ ≡ φ[p/⊥] ∧ φ[p/>]

Because satisfiability of a QBF with free variables can be expressed via a closed QBF, it
suffices to consider closed QBFs for the translation.

Theorem 2.2.1.

Let φ be a closed QBF and S(φ) its Shannon expansion. Then φ is true if and only if S(φ) is
satisfiable.

On the other hand, it should be clear that this translation can lead to an exponential increase in
the size of the target formula.

Given the truth functional nature of propositional logic, Proposition 2.1.1 continues to hold
when “formula” is considered to refer to QBFs. Also, the notion of semantical equivalence
for QBFs is also defined as for propositional logic. All the semantical equivalences given for
propositional formulas in Theorem 2.1.2 also hold for QBFs and the following are semantic
equivalences specific to quantified boolean logic which will be used in this work:

Theorem 2.2.2. Let φ, ψ be arbitrary QBFs with p ∈ P not occurring free in ψ. Then

• (¬∃pφ) ≡ (∀p¬φ)

• (¬∀pφ) ≡ (∃p¬φ)

• (Qpφ ∧ ψ) ≡ Qp(φ ∧ ψ) for any Q ∈ ∃,∀

• (φ ∧Qpψ) ≡ Qp(φ ∧ ψ) for any Q ∈ ∃,∀

• (Qpφ ∨ ψ) ≡ Qp(φ ∨ ψ) for any Q ∈ ∃,∀

• (φ ∨Qpψ) ≡ Qp(φ ∨ ψ) for any Q ∈ ∃,∀

Prenex conjunctive normal form

Just as in the case of propositional logic, for computational purposes it is often useful to re-
strict ones attention to certain normal forms when writing QBFs. The “prenex conjunctive nor-
mal form” (PCNF) plays an important role in the present work. First we introduce the following
equally useful syntactic restriction to QBFS:

Definition 2.2.6. A QBF φ is standarized apart if the following properties hold:

• No variable ocurring in φ occurs both free and bound.

• For each Q1,Q2 ∈ {∀, ∃}, if Q1p and Q2q are two distinct occurences of quantifiers in φ
then p and q are distinct variables.

• For each subformula Qpψ with Q ∈ {∀,∃} ocurring in φ, p is a free variable in ψ.

17

An arbitrary QBF φ can be transformed in linear time into a φ′ which is equivalent to φ
and standarized apart by renaming variables which do not satisfy the first two conditions in the
definition and removing Qp for Q ∈ {∃,∀} in Qpψ when p does not occur freely in ψ. That the
resulting formula φ′ is equivalent to φ is based on the following observations:

Lemma 2.2.1. For a propositional variable p not occuring freely in a QBF ψ and Q ∈ {∀,∃},

(Qqψ) ≡ (Qpψ[q/p])

(Qpψ) ≡ (ψ)

Now the definition of the prenex conjunctive normal form can be given as follows:

Definition 2.2.7. A QBF φ is in prenex normal form if it is standarized apart and it is of the form

Q1P1Q2P2...QnPnψ

where ψ is a propositional formula, Qi ∈ {∀,∃} for 1 ≤ i ≤ n, and the Pis are (mutually
disjoint) sets of propositional variables. ψ is called the matrix of φ and Q1P1Q2P2...QnPn is
the prefix of φ. Finally, φ is in prenex conjunctive normal form if it is in prenex normal form and
its matrix is in conjunctive normal form.

A standard procedure for transforming a QBF φ into an equivalent formula φ′ in PCNF is
by first standarizing apart. Then, defined connectives are eliminated in terms of their definitions
and subformulas of the form ¬∀pψ are transformed into ∃p¬ψ and ¬∃pψ into ∀p¬ψ in recursive
manner. Subsequently, quantifiers are “pulled out” by using the last four equivalences in Theo-
rem 2.2.2 (from left to right). Finally, the matrix of the resulting formula in prenex normal form
can be transformed into CNF by using the procedure described in the section on propositional
logic. A constructive proof of the following theorem can rely on this procedure, the definitions
of the defined connectives, Theorem 2.2.2 and the Replacement Theorem for QBFs.

Theorem 2.2.3. For any arbitrary QBF φ there exists an equivalent QBF φ′ in PCNF such that
φ ≡ φ′.

The procedure to transform a QBF into PCNF can lead to an exponential explosion because
of the transformation of the matrix into CNF (as well as replacing ↔ for its definition). The
“Tseitin encoding” described in the section on CNF can nevertheless be adapted to QBFs to
achieve a linear transformation resulting in an equivalent (since closed) formula.

For a QBF in PCNF φ, a literal l occuring in φ is existential if ∃|l| belongs to the pre-
fix, and it is universal otherwise. The level of a literal (or variable) l in a QBF in PCNF
Q1P1Q2P2...QnPnψ is 1 + the number of expressions QjPjQj+1Pj+1 in the prefix with j ≥ i
and Qj 6= Qj+1.

Finally, we make note of some equivalence preserving simplifications of QBFs in PCNF and
checks that are useful when determining satisfiability that will be used when we survey some of
the existing approaches for determining satisfiability of QBFs later in this work (Section 4.2).
To ease the presentation of these observations, we first introduce the operation of propagation
on a literal l in φ which we denote φl and will also need in later sections of this work:

18

Definition 2.2.8. If l is a literal with |l| = p, then φl is the QBF resulting from l by removing
all clauses in which l occurs in the matrix of φ, l̄ from all other clauses, and Qp from the prefix
of the QBF. If µ is a sequence of literals l1, l2, ..., lm, then φµ is defined to be (...((φl1)l2 ...)lm .

Now, to the above mentioned simplifications and checks [Büning and Bubeck, 2009]:

Lemma 2.2.2. In all the following, φ is a QBF in PCNF.

1. (Elimination of tautological clauses) A tautological clause in the matrix of a QBF in
PCNF is a clause that contains both p and ¬p for some p ∈ P . If φ is not a tautology, such
clauses can be removed from the matrix of φ preserving equivalence.

2. (Trivial falsity on contradictory clauses) If a contradictory clause, i.e. a non-
tautological clause with no existential literals, is a subformula of φ, then the formula
is false.

3. (Universal reduction) Assume a non-tautological clause C of the form (ψ ∨ l) occurs in
φ, where l is a universal literal and ψ a sub-clause. If there is no existential literal in ψ, or
if the level of every existential literal in ψ is lower than that of l, the literal l can be deleted
from the clause C in φ while preserving equivalence.

4. (Unit propagation) A literal l is unit in φ if l is existential and it occurs in a clause in
which each other literal is universal and has a higher level than l. If l is unit in φ, then
φ ≡ φl.

5. (Pure or monotone literal detection) A literal l is pure or monotone in φ if either l is
existential, l occurs in φ and l̄ does not or l is universal, l̄ occurs in φ and l does not. If l
is pure or monotone in φ, then φ ≡ φl.

2.3 Abstract dialectical frameworks

Abstract dialectical frameworks (ADFs) are a relatively new formalism developed for abstract
argumentation. As has been noted in the introduction to this work (Section 1), from the perspec-
tive of argumentation, the central concern of abstract argumentation is determining the accep-
tance of (sets of) arguments based on an abstract representation of the relationships between
these arguments, i.e. more or less disregarding the “internal structure” of the arguments.

The role of abstract argumentation can be appreciated better by considering its role in a
relatively simple framework for formally modelling what has been called the “argumentation
process” in the introduction to this work, which is relatively influential among researchers in ar-
gumentation from computer science and artificial intelligence [Caminada and Amgoud, 2007].
This model considers the argumentation process to be decomposable into several relatively in-
dependent steps. It pertains especially to “monological argumentation” [Besnard and Hunter,
2008], where a a single agent collates information from possibly heterogeneous sources to con-
struct arguments for and against a particular conclusion and is, therefore, also particularly rel-
evant to modelling non-monotonic reasoning as a form of argumentation. It can, nevertheless,

19

also be of use beyond this scenario as, for example, when used for the reconstruction and analy-
sis of an argumentation between several agents.

In this model one starts with a knowledge base KB, which will usually be a set of formulas
of some logic L, for example, propositional logic. This set may be inconsistent according to
the logic in question. The first step is to construct arguments based on the knowledge base,
where an argument will usually be defined in terms of the logical consequence relation of the
logic being used. For example, in [Besnard and Hunter, 2008] a notion of an argument based
on a KB consisting of propositions of propositional logic is defined as a pair (Φ, α) such that
Φ ⊂ KB is consistent, Φ |= α, and for no Ψ ⊂ Φ, Ψ |= α. Having constructed the arguments,
the relationships between the arguments can be determined based on some notion once again
defined in terms of the logical theory in question. Continuing with our example, a basic type of
conflict between arguments (Φ, α) and (Φ′, α′) is when Φ ∪ α′ |= ⊥. In this case one could see
(Φ′, α′) as “attacking” (Φ, α).

Having identified the relationships among the arguments allows for abstracting away from
the internal structure of the arguments to construct some abstract representation of this relation-
ship. This step is where abstract argumentation comes into play. For example, in the first model
of abstract argumentation proposed by Dung [Dung, 1995], argumentation is modelled as an ab-
stract framework (AF): a directed graph where nodes represent arguments and links correspond
to an argument attacking another.

Evaluation of arguments can be described informally to be to determine whether an argument
has some way of surviving the attacks it receives. Alternatively, it can be of interest to determine
which sets of arguments can “survive together” or are “collectively acceptable” [Baroni and
Giacomin, 2009]. A crucial assumption of abstract argumentation is that this evaluation of
arguments can be done solely on the basis of the abstract representation of the relationship
between arguments obtained in the step described in the previous paragraph. The criteria or
method used to settle the acceptance of arguments is called a “semantics”, by now a plethora of
semantics motivated by different theoretical and practical concerns having been developed for
the framework for abstract represententation defined in [Dung, 1995].

The final step of the framework for formally modelling the process of argumentation (“con-
flict resolution”) can be to derive some conclusion based on the sets of accepted arguments
determined by the (alternatively, some) semantics. Continuing with our example, one could
reach the (possibly not very useful) conclusion that

(Φ1 ∧ α1) ∨ (Φ2 ∧ α2) ∨ ... ∨ (Φn ∧ αn)

where (Φi, αi) for i such that 1 ≤ i ≤ n are all the arguments that are accepted under some
semantics. Several reasoning tasks which we will introduce in detail in Section 2.4 can be
defined for ADFs and with respect to the different semantics that may aid this last step.

As has already been noted in the introduction to this work, although very general, Dung’s
AFs do not directly support modelling more complex interactions between arguments as rela-
tions of mutual support and sophisticated relations of attack. For this and similar issues, several
extensions of AFs have been proposed to date (e.g. those presented in [Bench-Capon, 2003,Cay-
rol and Lagasquie-Schiex, 2005, Coste-Marquis et al., 2006, Baroni et al., 2011b]), one of the

20

most general being that of abstract dialectical frameworks (ADFs) first proposed in [Brewka and
Woltran, 2010].

In [Brewka et al., 2013] ADFs are proposed as a “argumentation middleware”, i.e. a formal-
ism allowing for more straightforward modelling but which can be translated into the framework
of argumentation proposed by Dung. In ADFs arguments are replaced with “statements” as the
main building block of argumentation frameworks, and acceptance conditions in the form of
arbitrary boolean formulas are associated to every statement. The generalisation of the basic
semantics given by Dung to the ADF scenario given in [Brewka and Woltran, 2010] has been
extended to cover all types of ADFs in [Brewka et al., 2013].

Argumentation frameworks

As indicated previously, an abstract dialectical argumentation framework is a set of state-
ments, together with associated acceptance conditions. Formally:

Definition 2.3.1. An abstract dialectical framework (ADF) is a pair D = (S,C = {φs}s∈S)
where S is a set of statments and for each s ∈ S, φs is a propositional formula, the acceptance
condition associated to s. All the variables occurring in the formulas in C = {φs}s∈S represent
statements in S. By abuse of notation, we stipulate this to mean that every variable occurring in
the acceptance conditions is in S.

Although S in Definition 2.3.1 can in principle be infinite, in this work we will restrict our
attention to ADFs where the set of statements is finite.

Example 2.3.1. A very simple example of an ADF is D = (S,C) with S = {a, b, c, d} and
the acceptance conditions (acceptance conditions in square brackets after the statements they
correspond to) 1:

a [a], b [b], c [a ∧ ¬b], d [¬a ∧ b].

Acceptance of statements can now be considered analogously to a propositional valuation v
but interpreting v(s) = 1 to mean “statement s is accepted” and v(s) = 0 to mean “statement
s is not accepted”. With this in mind, the intuition behind Definition 2.3.1 is that “s is accepted

1 This ADF can be seen as instantiated in a (slightly adapted) fragment of the partially contradicting reports
given by various witnesses of the language used by a shrill voice heard at what turned out to be a crime scene in E.A.
Poe’s classic locked room mistery “The Murders in the Rue Morgue” [Poe, 2006]. “a” can be seen as denoting the
statement given by Henri Duval, a Frenchman, who was certain the shrill voice was not French. “b” then denotes
the statment given by Alberto Montani, an Italian, who claims that the shrill voice was definitely not Italian. “c”
denotes the statement, again given by Henri Duval (who does not speak Italian), that the shrill voice was, judging
from the intonation, probably Italian and “d” the statement by Alberto Montani (who does not speak French) that
the words uttered by the shrill voice seemed to him to be French. The ADF given in the example results from, for
example, using some modal logic [Blackburn et al., 2001] to represent the different statements, a := �¬i, b := �¬f ,
c := �f , d := �i (f stands for “French” and i for “Italian”) and considering the attack relation to be: φ “attacks” ψ
if φ |= ¬ψ, and the “support” relation as: φ “supports” ψ if φ |= ψ (where |= is considered taking in account some
background theory from which it follows, in particular, that �¬i |= �f and �¬f |= �i) but disallowing self-support
of statements, except in those cases in which no other statements support or attack them (in these cases self support
indicates that these statements are not a-priori accepted or rejected).

21

if and only if φs is satisfied”, where φs makes explicit, in terms of the valuations that satisfy the
formula, which (combination of) statements can be accepted and which not in order for s to be
accepted.

Abstract dialectical frameworks can also be represented in terms closer to the definition of
abstract frameworks introduced by Dung in [Dung, 1995] by making explicit the dependencies
between statements which are only implicit in the acceptance conditions associated to each state-
ment in Definition 2.3.1 and by using (boolean) functions instead of propositional formulas for
the acceptance conditons. Abstract dialectical frameworks are defined in terms of this “graph
based” representation in [Brewka and Woltran, 2010] and [Brewka et al., 2013] (although the
previous “propositional” representation is also used there).

Definition 2.3.2. A (graph based) abstract dialectical framework is a tupleD = (S,L,C) where

1. S is a set of statements,

2. L ⊆ S × S is a set of links,

3. C = {Cs}s∈S , the acceptance conditions, is a set of total functions Cs : 2parL(s) →
{1, 0}, one for each statement s. Here parL(s) are the parents of s in L, i.e. parL(s) =
{s′ | (s′, s) ∈ L}.

Equivalence betweeen the “graph based” and “propositional” representations can now be defined
as follows [Ellmauthaler, 2012]:

Definition 2.3.3. An ADF D = (S,C) is equivalent to a graph based abstract dialectical frame-
work D′ = (S′, L, C ′) if and only if S′ = S, L = {(s′, s) | s′, s ∈ S and s′ occurs inφs} and for
each s ∈ S and R ⊆ parL(s), C ′s(R) = 1 if and only if v(φs) = 1 for the valuation v defined
as: v(s′) = 1 if and only if s′ ∈ R.

Given an ADF D, this definition gives a way to construct a graph based abstract dialectical
framework equivalent to it. Conversely, a graph based ADF D′ = (S′, L, C ′) can be translated
into a (propositional) ADF D = (S,C = {φs}s∈S) equivalent to it by setting S = S′ and by
defining each φs for each s ∈ S as follows:

φs :=
∨
R⊆parL(s) : C′s(R)=1(

∧
r∈R r ∧

∧
t∈parL(s)\R ¬t)

Note that while there is only one equivalent graph based ADF for each propositional ADF,
there may be more than one propositional ADF equivalent to a given graph based ADF. There-
fore, graph based ADFs provide a kind of “standard representation” for ADFs which can be use-
ful for theoretical purposes, although a similar (yet more idiosyncratic) result can be achieved by
restricting attention to ADFs with acceptance conditions in certain propositional normal forms,
e.g. formulas in CNF.

Example 2.3.2. The graph based ADF corresponding to the ADF in Example 2.3.1 is the
ADF D = (S,L,C) with S = {a, b, c, d}, L = {(a, a), (b, b), (a, c), (b, c), (a, d), (b, d)} and
Ca(∅) = 0, Ca({a}) = 1, Cb(∅) = 0, Cb({b}) = 1, Cc(∅) = 0, Cc({a}) = 1, Cc({b}) = 0,
Cc({a, b}) = 0, Cd(∅) = 0, Cd({a}) = 0, Cd({b}) = 1, Cd({a, b}) = 0.

22

In this work we will mainly stick to the propositional representation of ADFs since we are
especially interested in the connections between ADFs and logic. This representation seems also
to fulfill more clearly the role of ADFs as “argumentation middleware” as described in Section
2.3, although a mix of both graph based and propositional representations, as the “hypergraph”
representation proposed in [Ellmauthaler, 2012] (especially in graphical form) may be even more
useful for modelling purposes.

We now give the definition of argumentation frameworks as defined by Dung in [Dung,
1995] and a translation of “Dung style” argumentation frameworks into ADFs.

Definition 2.3.4. A (Dung style) argumentation framework (AF) is a pair F = (A,R) where A
is a set of arguments and R ⊆ A×A.

Some useful concepts for AFs that are also used in the definition of the semantics are the
following:

Definition 2.3.5. Let F = (A,R) be an AF. Then

• a ∈ A attacks b ∈ A in F if (a, b) ∈ R.

• a ∈ A defends b ∈ A from c ∈ A in F if c attacks b and a attacks c.

• a ∈ A is defended by a set E ⊆ A in F if for each b ∈ A that attacks a, there exists some
c ∈ E that defends a from b.

• The characteristic function FF associated to F is defined as:

FF (E) = {a ∈ A | a is defended by E}

for any E ⊆ A.

AFs can be represented as ADFs as follows [Brewka et al., 2013]:

Definition 2.3.6. For an AF F = (A,R), the ADF associated to F is the ADF DF = (A,C =
{φa}a∈A) with φa =

∧
b∈parR(a) ¬b for each a ∈ A.

The “correctness” of this translation can only be stated in terms of the semantics of AFs and
ADFs reason for which we defer to Section 2.3 for the statement of this fact which is proven
in [Brewka et al., 2013].

Semantics for ADFs: general concept and preliminary notions

A semantics (for argumentation) can be described as in [Baroni and Giacomin, 2009] to be “a
formal definition of a method (either procedural or declarative) ruling the argument evaluation
process” which we have already referred to at the beginning of this section. There are vari-
ous possible ways to define a semantics, the most popular ones for Dung style argumentation
frameworks to date being the so called “extensional” and “labelling-based” approaches.

In the first approach a semantics specifies how to derive from an argumentation framework
F = (A,R) a set of extensions E , where an extension E is simply a subset of A. Intuitively,

23

each extension gives a set of arguments that can be accepted collectively. In the second ap-
proach, a semantics specifies how to derive from an argumentation framework a set of labellings
L, where a labelling L is a mapping from arguments to a set of predefined labels, usually
{in, out, undecided}. The intuition behind these labels is that the set of arguments labelled “in”
under some labelling L are those that can be accepted collectively.

Although the use of more than two labels in the labelling approach in theory allows for
finer grained distinctions when definining the semantics, to date equivalent extension-based for-
mulations of labelling-based semantics are usually available [Baroni and Giacomin, 2009] and,
hence, the choice of one approach over the other is mainly a matter of convenience. In [Cami-
nada and Gabbay, 2009] the major semantics that have been defined for AFs in the extensional
and labelling approach (with three labels) are presented as is the correspondence between both
approaches via functions Ext2Lab and Lab2Ext between extensions and labellings that, for
most of the semantics, turn out to be inverses of each other.

As has already been noted, ADFs were first introduced in [Brewka and Woltran, 2010] where
the standard semantics for Dung’s framework were also generalized to this new formalism, al-
though so called “preferred” and “stable” extensions only to the case of a subclass of ADFs
called “bipolar”. In [Brewka et al., 2013], which is the work we follow in this section to define
the semantics of ADFs, the standard semantics for AFs are extended to arbitrary ADFs. This
generalization avoids examples [Ellmauthaler, 2012, Strass, 2013] where the stable semantics
as defined in [Brewka and Woltran, 2010] leads to unintended results when applied to certain
argumentation scenarios.

Semantics for ADFs are defined in [Brewka et al., 2013] essentially generalizing the “la-
belling based approach” for AFs:

Definition 2.3.7. A semantics for an ADF D = (S,C) is a set of three valued valuations which
are, in turn, mappings from S to {1, 0, 1

2}.

The notion of a “valuation” instead of “labelling” suggests connections between argumentation
semantics and logical semantics which are taken advantage of in the definition of the semantics
in [Brewka et al., 2013], although the semantics of Kleene’s strong three valued logic [Kleene,
1952] is used for this purpose instead of the semantics of classic propositional logic. This is in
order to deal with the third value 1

2 . The extension of a three valued valuation to propositional
formulas in Kleene’s strong three valued logic is defined as follows:

Definition 2.3.8. The value of a propositional formula under a three valued valuation v (in
Kleene’s strong three valued logic), is a mapping v∗ from propositional formulas to {1, 0, 1

2}
defined inductively as follows:

• v∗(p) = v(p) for p ∈ P .

• v∗(>) = 1 and v∗(⊥) = 0.

• For any formula φ, v∗(¬φ) = 1 if v∗(φ) = 0, v∗(¬φ) = 1 if v∗(φ) = 0, and v∗(¬φ) = 1
2

otherwise.

• For any formulas φ and ψ, v∗(φ ∧ ψ) = 1 if v∗(φ) = 1 and v∗(ψ) = 1, v∗(φ ∧ ψ) = 0 if
either v∗(φ) = 0 or v∗(ψ) = 0, and v∗(φ ∧ ψ) = 1

2 otherwise.

24

• For any formulas φ and ψ, v∗(φ∨ψ) = 1 if either v∗(φ) = 1 or v∗(ψ) = 1, v∗(φ∨ψ) = 0
if v∗(φ) = 0 and v∗(ψ) = 0, and v∗(φ ∨ ψ) = 1

2 otherwise.

In the context of the semantics for ADFs, acceptance conditions in ADFs involving defined
connectives are evaluated by first translating these into formulas involving only¬, ∧, and∨ using
the (classical) definitions of the connectives given in Section 2.1. As for classical propositonal
logic, we will ommit the ∗ when referring to an extension of a three valued valuation to an
arbitrary propositional formula in the rest of this work.

In order to define the semantics for ADFs, the values 1, 0, 1
2 are ordered by ≤i according to

their “information content”:

Definition 2.3.9. x <i y (“y has greater information content than x”) if (x, y) ∈ <i where
<i:= {(1

2 , 1), (1
2 , 0)}. x ≤i y (“y has greater or equal information content than x”) if x <i y

or x = y. x <>i y (“x and y are incomparable with respect to their information content”) if
neither x <i y, y <i x nor x = y (i.e. x = 1 and y = 0 or x = 0 and y = 1).

The pair ({1, 0, 1
2},≤i) forms a complete meet-semilatice, i.e. ≤i is reflexive, antisymmetric,

and transitive on {1, 0, 1
2} and every non-empty finite set B ⊆ {1, 0, 1

2} has a greatest lower
bound and every nonempty directed set C ⊆ {1, 0, 1

2} has a least upper bound. A subset is
directed if any two if its elements have an upper bound in the set.

We remind the reader that a lower bound in a partially ordered set Z for a set B ⊆ Z is an
element of Z that is less or equal than any of the elements in B, while an upper bound is greater
or equal than any of the elements in B. The greatest lower bound or meet is the greatest of all
lower bounds of B and is denoted uB, while the least upper bound of a set B is the least of all
upper bounds of B and is denoted tB. The meet for ({1, 0, 1

2},≤i) can be read as “consensus”
and assigns 1 u 1 = 1, 0 u 0 = 0 and returns 1

2 otherwise.
The greatest lower bound of a set B is the least element if it is in B, while the greatest

element of a set B is a least upper bound that is in B. We denote the greatest element by g.e. B
and the least element by l.e. B. Finally, an element is minimal for a set Z if there is no element
in Z that is less than it, while an element is maximal if there is no element in Z that is greater
than it.

In order to define the semantics for ADFs, the information ordering ≤i is extended to valu-
ations v1, v2 over a set of statements S by defining:

v1 ≤i v2 if v1(s) ≤i v2(s)

for all s ∈ S. The set of all three valued valuations over S also forms a complete meet-
semilattice with respect to the information ordering ≤i. The consensus meet operation u of
this semilattice is given by:

(v1 u v2)(s) = v1(s) u v2(s)

for all s ∈ S. The least element of this semilattice is the valuation mapping all statements to 1
2 ,

the two valued valuations being the ≤i maximal elements. The latter are those valuations v for
which it holds that for no s ∈ S, v(s) = 1

2 .

25

A two valued valuation w can be said to extend a three valued valuation v if and only if
v ≤i w. The set of two valued valuations that extend a three valued valuation v can then be
denoted as [v]2. The elements of [v]2 form a ≤i antichain (a subset of a partially ordered set
such that any two elements of the subset are incomparable) with greatest lower bound v = u[v]2.

Finally, in the definitions of most of the semantics for ADFs as we present them in the
following section the operator over three valued interpretations we define next plays an important
role:

Definition 2.3.10. Given an ADF D = (S,C = {φs}s∈S), the characteristic operator ΓD of D
over three valued valuations on S returns, for each three valued valuation v on S, a three valued
valuation ΓD(v) defined as follows:

ΓD(v)(s) := u{w(φs) | w ∈ [v]2}

for each s ∈ S.

For each statement s ∈ S, ΓD(v) returns the “consensus” value for the statment’s acceptance
formula φs, where the “consensus” value is established by taking the meet over the evaluation
of φs by each two valued valuation that extends v.

Definition of major semantics for ADFs

We now turn to the definition of some of the most important semantics that have been de-
fined for ADFs. As indicated before, we here follow the definitions of the semantics as given
in [Brewka et al., 2013]. This is mainly because we are interested in declarative definitions which
can be stated more directly in formal logic, but see [Strass, 2013] for a more recent formulation
of the semantics of ADFs by associating with ADFs “characteristic one-step consequence oper-
ators” and defining the various semantics as different fixpoints of these.

A basic requirement for acceptance of statements seems to be that whenever a statement’s
acceptance status is established (i.e. a statement is mapped to 1 or 0), its acceptance status be
“consistent with the acceptance conditions”. This is captured formally by the notion of a “three
valued model”:

Definition 2.3.11. A three valued model of an ADF D = (S,C = {φs}s∈S) is a three valued
valuation such that for all s ∈ S, if v(s) 6= 1

2 , then v(s) = v(φs).

To give examples of the application of the semantics to ADFs, given an order {s1, s2, ..., sn}
of the statements of an ADF, we use the notation {vs1 , vs2 , .., vsn} to present valuations. Here
each vsi ∈ {1, 0, 1

2} (1 ≤ i ≤ n) presents the assignment given to si by the valuation in question.

Example 2.3.3. The three valued models of the ADF of Example 2.3.1 are: {1, 1, 0, 0},
{1, 1, 1

2 , 0}, {1, 1, 0,
1
2}, {1, 1,

1
2 ,

1
2}, {0, 1, 0, 1}, {0, 1,

1
2 , 1}, {0, 1, 0,

1
2}, {0, 1,

1
2 ,

1
2},

{1
2 , 1, 0,

1
2}, {

1
2 , 1,

1
2 ,

1
2}, {1, 0, 1, 0}, {1, 0, 1,

1
2}, {1, 0,

1
2 , 0}, {1, 0,

1
2 ,

1
2}, {1,

1
2 ,

1
2 , 0},

{1, 1
2 ,

1
2 ,

1
2}, {

1
2 , 0,

1
2 , 0}, {

1
2 , 0,

1
2 ,

1
2}, {0, 0, 0, 0}, {0, 0,

1
2 , 0}, {0, 0, 0,

1
2}, {0, 0,

1
2 ,

1
2},

{1
2 ,

1
2 ,

1
2 ,

1
2}, {0,

1
2 ,

1
2 ,

1
2}, {0,

1
2 , 0,

1
2}.

26

We now introduce semantics for ADFs which are known to generalise some of the most
important semantics that have been defined for AFs. By “generalise” we mean the following:

Definition 2.3.12. Let F be an AF and DF its associated ADF.

• For a valuation v, the setEv := {s ∈ S |v(s) = 1} defines the unique extension associated
with v.

• The notion of a σ-valuation for ADFs generalises that of a ς-extension for AFs, if for
every ADF D and valuation v, v is a σ-valuation for D if and only if Ev is a ς-extension
for DF .

The notion of an “admissible valuation”, generalises in the ADF scenario, the concept of
an “admissible extension” of an AF. The intuition behind this last notion is that an admissible
extension can “stand together” and “on its own”, i.e. no two arguments in the extension should
attack each other and the set should be able to withstand attacks received from other arguments
by “replying” with other attacks [Baroni and Giacomin, 2009]. Formally, the definition of an
“admissible set” for an AF, which in turn depends on the central notion of a “conflict free set”,
is as follows:

Definition 2.3.13. Let F = (A,R) be an AF.

• A conflict free set for F is a set E ⊆ A such that for no two a, b in E, a attacks b.

• An admissible extension for F is a conflict free set E ⊆ A such that each a ∈ E is
defended by E.

• An equivalent definition of an admissible extension is that it is a set E ⊆ A that is conflict
free and such that E ⊆ FF (E).

The definition of an “admissible valuation” for an ADF now is:

Definition 2.3.14. A three valued valuation v for an ADF D = (S,C) is admissible in D if
v ≤i ΓD(v).

More or less intuitively, this means that an admissible valuation v assigns a value from {1, 0, 1
2}

to every statement s ∈ S that is “at most as much commited” with respect to the order ≤i as the
“consensus” among all evaluations of the acceptance condition associated to s by all two valued
valuations that extend v.

Example 2.3.4. For the ADF of Example 2.3.1 the admissible valuations coincide with the three
valued models (Example 2.3.3).

The notion of a “complete valuation”, generalises for ADFs, the concept of a “complete
extension” for an AF. The intuition behind this last notion is that a complete extension is a set
of arguments “which is able to defend itself and includes all arguments it defends” [Baroni and
Giacomin, 2009]. Formally:

Definition 2.3.15. Let F = (A,R) be an AF.

27

• A complete extension for F is a set E ⊆ A that is admissible for F and includes every
a ∈ A that is defended by E.

• An equivalent definition of a complete extension is that it is a set E ⊆ A that is conflict
free and such that E = FF (E).

Mirroring the structure of the latter formulation of the definition of complete extensions for AFs,
the definition of a “complete valuation” for an ADF is:

Definition 2.3.16. A three valued valuation v for an ADF D = (S,C) is complete in D if
v = ΓD(v).

Example 2.3.5. The complete valuations of the ADF of Example 2.3.1 are: {1, 1, 0, 0},
{0, 1, 0, 1}, {1

2 , 1, 0,
1
2},{1, 0, 1, 0},{1,

1
2 ,

1
2 , 0},{

1
2 , 0,

1
2 , 0},{0, 0, 0, 0},{

1
2 ,

1
2 ,

1
2 ,

1
2},{0,

1
2 , 0,

1
2}.

As is to be expected by now, the notion of a “preferred valuation”, generalises for ADFs,
the concept of a “preferred extension” for an AF. The intuition behind this last notion is that a
preferred extension is a set of arguments “which is as large as possible and able to defend itself
from attacks” [Baroni and Giacomin, 2009]. Formally:

Definition 2.3.17. Let F = (A,R) be an AF.

• A preferred extension for F is a setE ⊆ A that is admissible for F and such that if T ⊆ A
is admissible for F , then E 6⊂ T .

• An equivalent definition of a preferred extension is that it is a set E ⊆ A that is maximal
admissible for F .

The definition of a “preferred valuation” for an ADF is:

Definition 2.3.18. A three valued valuation v for an ADF D = (S,C) is preferred in D if it is
≤i-maximal admissible.

Example 2.3.6. The preferred valuations of the ADF of Example 2.3.1 are: {1, 1, 0, 0},
{0, 1, 0, 1}, {1, 0, 1, 0}, {0, 0, 0, 0}.

Two valued models for ADFs generalise stable extensions for AFs which can be understood
intuitively to be a set of arguments “that attacks all arguments not included in it” [Baroni and
Giacomin, 2009] and are particulary notable because they can be put in correspondence with
solutions of cooperative n-person games, the stable marriage problem, extensions of Reiter’s
default logic [Reiter, 1980], as well as stable models of logic programs [Gelfond and Lifschitz,
1988]. The formal definition is:

Definition 2.3.19. Let F = (A,R) be an AF. A stable extension for F is a set E ⊆ A that is
conflict free for F and such that for each b ∈ A \ E there exists a a ∈ E that attacks b.

The definition of a “two valued model” of an ADF is essentially that of a three valued model
where no statement is mapped to 1

2 :

28

Definition 2.3.20. A three valued valuation v for an ADF D = (S,C = {φs}s∈S) is a two
valued model of D if for every s ∈ S, v(s) = v(φs).

Example 2.3.7. The two valued models of the ADF of Example 2.3.1 coincide with the preferred
valuations (Example 2.3.6).

Although two valued models for ADFs in effect generalise stable extensions for AFs, it
should be noted that a new generalisation of this notion has been proposed in [Brewka et al.,
2013] in the light of anomalies that have been found when attempting to apply the notion of two
valued model to some examples. These anomalies run counter-intuitive to what is to be expected
from a “stable” valuation given known properties of “stable” extensions of AFs and, hence, it is
also only the new generalisation of stable extensions to ADFs that is called “stable”.

Finally, grounded valuations for ADFs generalise grounded extensions for AFs. Underlying
the latter is a “procedural” intuition; given an AF F = (A,R) and starting with Z = ∅, the
grounded extension results from following the procedure:

1. put each argument a ∈ A which is not attacked in F into Z; if no such argument exists,
return S;

2. remove from F all (new) arguments in Z and all arguments attacked by them and continue
with step 1.

This turns out to be equivalent to the following definition:

Definition 2.3.21. Let F = (A,R) be an AF. The grounded extension for F is the least fixpoint
of FF .

We remind the reader that a fixpoint of a function F is an argument x such that F (x) = x.
Mirroring the previous definition, a three valued valuation is grounded for an ADF D if it is the
least fixpoint of ΓD and it is guaranteed to exist because ΓD is ≤i-monotone [Brewka et al.,
2013]:

Definition 2.3.22. The grounded valuation v for an ADF D = (S,C = {φs}s∈S) is the least
fixpoint of ΓD.

Example 2.3.8. The grounded valuation of the ADF of Example 2.3.1 is {1
2 ,

1
2 ,

1
2 ,

1
2}. Note that,

if the acceptance condition of statement a is set to >, the grounded valuation is {1, 1
2 ,

1
2 , 0},

while if both the acceptance conditions of a and b are set to > the grounded valuation is
{1, 1, 0, 0} 2.

The following theorem (from [Brewka et al., 2013]) summarises some of the relations that
exists between the semantics we have defined for ADFs and some of the most important seman-
tical notions for AFs:

2The latter corresponds to the conclusion arrived at by the aficionado detective Auguste Dupin in Poe’s story
(see Footnote 1) , who assumes the witnesses are credible when it comes to identifying their own mother tongue and
is able to deduce (using also other evidence in the story) that the source of the shrill voice and also the “murderer” at
the crime scene in the story is a fugitive gorilla.

29

Theorem 2.3.1. Two valued models and admissible, complete, preferred, grounded, valuations
for ADFs generalise stable, admissible, complete, preferred, grounded extensions respectively
for AFs.

Theorem 2.3.1, via the notion of “generalisation” given in Definition 2.3.12, justifies the notion
of an ADF being “associated” to an AF as defined in Definition 2.3.6.

The following theorem [Brewka et al., 2013] summarises the relations that exist between the
different semantics for ADFs, which in fact also reflects the relationship that exist between the
semantics of AFs that the different semantics for ADFs generalise.

Theorem 2.3.2. Let D be an ADF. The following inclusions hold:

2mod(D) ⊆ pref(D) ⊆ comp(D) ⊆ adm(D)

where 2mod(D),pref(D), comp(D), adm(D) denote the sets of two-valued models, and pre-
ferred, complete, admissible valuations respectively.

It should finally also be clear from the definition of grounded and complete valuations that the
following theorem [Brewka et al., 2013] holds:

Theorem 2.3.3. Let D be an ADF. The grounded valuation for D is the ≤i-least complete
valuation for D.

2.4 Complexity

In this section we first of all define the decision problems associated to ADFs on the one hand
and QBFs on the other hand that play an important role in the present work. Then we review the
complexity of these reasoning tasks, not without first giving a very brief overview of complexity
theory.

The material in this section plays a central role in our work for several reasons. In the
first place, a central concern of the present work is in encoding reasoning problems associated to
ADFs into reasoning tasks defined in quantified boolean logic and the notion of an “encoding” is
essentially that of a “reduction” which we introduce here. In the second place, we are interested
in giving encodings of the decision problems defined for ADFs that are “at the right level” of
complexity and the material covered in this section provides the necessary theoretical framework
for doing so. Finally, this section also makes more precise the relationship between propositional
logic and quantified boolean logic that we have hinted at in previous sections.

The focus of Section 2.3 has been what can be called the problem of “evaluating” ADFs
with respect to different semantics or the problem of enumerating the valuations of a given type
for some ADF. An analogous problem exists for quantified boolean formulas: to enumerate the
models of a QBF.

Among other important reasoning tasks that can be defined for ADFs are many decision
problems. These can be characterised informally as a set of problem instances and a yes-no
question regarding these problem instances. Some of the central decision problems that have
been defined for ADFs are the following:

30

• EXISTSσ: Given an ADF D and a valuation type σ, does there exist a σ valuation for D?

• EXISTS¬∅σ : Given an ADF D = (S,C) and a valuation type σ, does there exist a σ
valuation v for D such that for some s ∈ S, v(s) 6= 1

2?

• CREDσ: Given an ADF D = (S,C), a valuation type σ, and a statement s∗ ∈ S, does
there exist a σ valuation for D such that v(s∗) = 1?

• SKEPTσ: Given an ADF D = (S,C), a valuation type σ, and a statement s∗ ∈ S, is it
the case that for all σ valuations for D, v(s∗) = 1?

Analogous decision problems can clearly also be defined for AFs. A central decision problem
for quantified boolean formulas is determining the satisfiability of a QBF:

• QSAT: Given a QBF φ, is φ satisfiable?

SAT is the same problem but restricting attention to propositional formulas.
The traditional concern of complexity theory has been to study decision problems from the

perspective of the resources (running time, memory space) required to solve them. One of the
main objectives has, in particular, been to classify computational problems from this perspective.
More specifically, structural complexity theory which we consider here analyses the difficulty
of problems in terms of the worst-case behavior (in terms of running time, memory space) of
algorithms that solve them.

Worst case behaviour is measured as a function of the input-size. Also, in order to abstract
from hardware specifics, algorithms are specified for Turing Machines, a prominent model of
computation introduced by Turing in [Turing, 1936] to formalise the notion of an “algorithm”.
An important distinction for complexity theory concerns deterministic and non-deterministic
Turing machines. Though equally powerful from the perspective of the algorithms they can
implement, these are relevant when considering the complexity of algorithms since to date no
efficient (polynomial) simulation of non-determinism in a deterministic Turing machine has been
shown to exist and it is widely assumed that it in fact does not.

The central theoretical tool in complexity theory is the notion of reduction. A reduction
from a problem P1 to a problem P2 is a function f from the instances of problem P1 to the
instances of problem P2 which is efficiently computable (for the purposes of this work: requires
polynomial time) and which satisfies the following property: an instance i of P1 has answer
“yes” with respect ot the problem P1 if and only if the intance f(i) of P2 has answer “yes” with
respect to the problem P2.

The notion of reduction allows to order decision problems as follows: P1 ≤R P2 if and
only if there exists a reduction from P1 to P2. The intuition behind this ordering is that if there
exists a reduction f from P1 to P2 then P1 is not more difficult than P2, since one can solve
an instance of i of P1 by solving f(i) in P2. The latter means that in case well developed tools
are available for solving P2, a reduction can have significant practical consequences as well as
being of theoretical interest.

A problem P is now called hard for a complexity class C if every problem in C can be
reduced to P . It is complete for C (this can be written: C-c) if it also belongs to C. This notion

31

makes more precise the notion of a problem being “prototypical” for a complexity class that we
have already used in this work. The complement of a class C is denoted co-C.

Some important complexity classes relevant for the present work are in the first place the
class L of problems that can be answered by a deterministic Turing Machine using logarithmic
space. P, on the other hand, is the class of problems that can be answered by a deterministic
Turing machine in polynomial time. It holds that L ⊆ P. The same definition for P but for
non deterministic Turing machines leads to the class NP. As has been hinted at in a previous
paragraph, it is generally assumed that P ⊂ NP. While problems in class P are tractable,
problems in NP are assumed to be intractable, i.e. they require exponential time in the worst
case. In [Cook, 1971] it is shown that SAT is NP-complete.

The class PSPACE is the set of problems that can be answered by a deterministic Turing ma-
chine using polynomial space. It is an open question but usually assumed that NP ⊂ PSPACE.
In [Stockmeyer and Meyer, 1973] it is shown that QSAT is PSPACE-complete.

The polynomial hierarchy is a family of complexity classes within PSPACE introduced in
[Stockmeyer and Meyer, 1973, Stockmeyer, 1976]. It is defined as follows for k ≥ 0:

∆P
0 := ΣP

0 := ΠP
0 := P

ΣP
k+1 := NPΣP

k , ΠP
k+1 := co−ΣP

k+1, ∆P
k+1 := PΣP

k

∆P
k+1 (respectively, ΣP

k+1) is the class of all problems that can be answered deterministically
(respectively, non deterministically) in polynomial time with the help of an oracle for a problem
in ΣP

k . An oracle is a subroutine which solves a problem in the complexity class ΣP
k in constant

time. In particular, one has that NP = ΣP
1 , co-NP = ΠP

1 and P = ∆P
1 . The polynomial

hierarchy PH is defined as the union ∪∞k=0ΣP
k .

The polynomial hierarchy is relevant for the present work because for each k ≥ 1, proto-
typical problems for ΣP

k and ΠP
k can be found by specialising the QSAT problem to particular

kinds of QBFs in prenex normal form according to their prefix. We first give the definition which
allows for classification of QBFs in prenex normal form according to their prefix:

Definition 2.4.1. (Prefix type of a QBF) Every propositional formula has the prefix type Σ0 =
Π0. Let φ be a QBF with prefix type Σn (respectively, Πn), then the formula ∀x1 . . . ∀xmφ
(respectively ∃y1 . . . ∃ymφ) is of type Πn+1 (respectively Σn+1) for any m > 0.

The result hinted at in the previous paragraph can now be stated formally:

Theorem 2.4.1. For k ≥ 1, the satisfiability problem for QBFs with prefix type Σk is ΣP
k -

complete, and for formulas with prefix type Πk, it is ΠP
k -complete.

Tables 2.1 and 2.2 summarise the complexity of the decision problems for the semantics that
are of interest for the present work. Sources for the results regarding AFs are [Dung, 1995, Di-
mopoulos and Torres, 1996,Dunne and Bench-Capon, 2002,Coste-Marquis et al., 2005,Dvořák
and Woltran, 2011]. Almost all of the results we refer to for ADFs are of a very recent
date [Strass and Wallner, 2013, Strass and Wallner, 2014], except for NP-completeness of exis-
tence (and non-trivial existence) of two valued models which is proven in [Brewka et al., 2013]

32

and the non-trivial complexity results regarding three valued models which we prove in Section
3.2. Note that the complexity of many of the decision problems for ADFs “jump” one level of
the polynomial hierarchy with respect to the problems for AFs they generalise, with skeptical
acceptance for preferred semantics, in particular, being ΠP

3 -complete.

admissible complete preferred grounded stable
EXISTSσ trivial trivial trivial trivial NP-c
EXISTS¬∅σ NP-c NP-c NP-c in L NP-c
CREDσ NP-c NP-c NP-c P-c NP-c
SKEPTσ trivial P-c ΠP

2 -c P-c co-NP-c

Table 2.1: Summary of complexity of reasoning for AFs

3-model admissible complete preferred grounded 2-model
EXISTSσ trivial trivial trivial trivial trivial NP-c
EXISTS¬∅σ NP-c ΣP

2 -c ΣP
2 -c ΣP

2 -c co-NP-c NP-c
CREDσ NP-c ΣP

2 -c ΣP
2 -c ΣP

2 -c co-NP-c NP-c
SKEPTσ trivial trivial co-NP-c ΠP

3 -c co-NP-c co-NP-c

Table 2.2: Summary of complexity of reasoning for ADFs

We have already indicated where the proofs of the results contained in Tables 2.1 and 2.2 can
be found, but as conclusion to this chapter a brief (and informal) elucidation about some of the
more “easy” complexity results regarding ADFs that are relevant for the present work follow. In
these comments we abbreviate “3-model” as “3mod”, “2-model” as “2-mod”, “admissible” as
“adm”, “complete” as “comp”, “preferred” as “pref”, and “grounded” as “ground”.

• EXISTS3mod, SKEPT3mod, EXISTSadm and SKEPTadm are trivial because the valuation
mapping all statements to 1

2 is a three valued model as well as admissible for any ADF.

• As indicated previously, we prove the NP-completeness of EXISTS¬∅3mod and CRED3mod

by reduction from EXISTS2mod and CRED2mod respectively in Section 3.2.

• EXISTS2mod is NP-complete because there is no distinction between trivial and non-
trivial valuations for two-valued models.

• EXISTSground is trivial because the least fixpoint of the characteristic operator is guaran-
teed to exist for any ADF.

• CREDground and SKEPTground have the same complexity because they are equivalent,
given the uniqueness of the grounded valuation for any ADF.

33

• EXISTScomp and EXISTSpref are trivial because of the existence of the grounded val-
uation (which is the ≤i-least complete valuation; see Theorem 2.3.3) and an admissible
valuation (from which, given that the set of admissible valuations is finite, the existence
of a maximal admissible valuation follows) for any ADF respectively.

• SKEPTcomp is co-NP-complete because it is equivalent to SKEPTground given that, since
the grounded valuation ground is the ≤i-complete valuation for any ADF D = (S,C),
it is sufficient to determine that ground(s∗) = 1 in order to conclude that all complete
valuations assign 1 to s∗ ∈ S.

• EXISTS¬∅comp, CREDcomp, EXISTS¬∅pref , CREDpref are ΣP
2 -c because these decision prob-

lems are equivalent to the corresponding problems for admissible valuations. The reason
for this is that any admissible valuation v for which v(s∗) = 1 or v(s∗) = 0 for some
s∗ ∈ S (for an ADF D = (S,C)) can be extended to a complete (given its monotonicity,
via repeated application of the fixpoint operator) or a maximal admissible valuation (given
that the set of admissible valuations is finite) for which the same holds.

34

CHAPTER 3
Encodings

In this chapter we present polynomial-time reductions or encodings of some of the main
reasoning tasks associated to ADFs into some of the main reasoning tasks associated to QBFs.
On the one hand, these encodings enable to solve the problems related to ADFs via solutions to
the corresponding problems in the QBF scenario. On the other hand, these encodings provide a
uniform axiomatization of all the reasoning problems associated to ADFs we consider here into
the relatively simple and well understood setting of quantified boolean logic.

Specifically, in the first place we present encodings of the valuation enumeration problem for
ADFs into the model enumeration problem for QBFs. We recall the definition of both problems
here:

• ENUMσ: Given an ADF D, and a valuation type σ, which are all the σ valuations for D?

• QENUM: Given a QBF φ, which are all the models of φ?

In the second place, we present encodings of various of the main decision problems defined
for ADFs into QSAT. Specifically, we present encodings for the existence, non-trivial existence,
credulous acceptance, and skeptical acceptance problems for three valued (“3mod”) and two
valued (“2mod”) models, as well as admissible (“adm”), complete (“comp”), preferred (“pref”),
and grounded (“ground”) valuations for ADFs. We recall the definition of these problems here:

• EXISTSσ: Given an ADF D and a valuation type σ, does there exist a σ valuation for D?

• EXISTS¬∅σ : Given an ADF D = (S,C) and a valuation type σ, does there exist a σ
valuation v for D such that for some s ∈ S, v(s) 6= 1

2?

• CREDσ: Given an ADF D = (S,C), a valuation type σ, and a statement s∗ ∈ S, does
there exist a σ valuation for D such that v(s∗) = 1?

• SKEPTσ: Given an ADF D = (S,C), a valuation type σ, and a statement s∗ ∈ S, is it
the case that for all σ valuations for D, v(s∗) = 1?

35

We finally also recall the definition of QSAT:

• QSAT: Given a QBF φ, is φ satisfiable?

In the most general terms, and somewhat informally, an encoding from a problem P1 to a
problem P2 is simply a function from the instances of problem P1 to the instances of problem
P2, the notion of “reduction” we introduced in Section 2.4 being a special case of this concept.
Some of the main properties an encoding from a decision problem to QSAT can have and that
we are interested in this work are the following:

Definition 3.0.2. An encoding E from a problem P1 to QSAT is

1. polynomial if for each instance i of P1, E(i) is computable in polynomial time in the size
of i.

2. faithful if for each instance i of P1, E(i) is satisfiable if and only if i is a yes-instance of
P1.

3. indicates complexity if for each instance i of P1, E(i) is a QBF of type Σn or Πn for some
n ≥ 0.

4. reflects complexity if it indicates complexity and QSAT for the prefix type of E(i) for each
instance i of P1, as well as P1 are C-complete for the same complexity class C.

5. adequate if it satisfies 1,2,3, and 4.

All the encodings of decision problems regarding ADFs to QSAT we present in this work
are adequate. It should be noted that to show that an encoding indicates complexity can also be
carried out in two stages, i.e. by showing that the encoding in question yields a QBF which, in
turn, can be translated in polynomial time into a QBF in prenex normal form.

In the case of the encodings from the valuation enumeration problems for ADFs to the model
enumeration problem for QBFs, in this work we only require that the encodings be polynomial
in the same sense as in Definition 3.0.2 and that they be faithful in the following manner:

Definition 3.0.3. Given a QBF φ, let Z|FREE(φ) := {z|FREE(φ) | z is a valuation (on QBFs)}.
An encoding E from ENUMσ to QENUM is faithful if for each instance D of ENUMσ there is
a one to one correspondence f between Z|FREE(E(D)) and the valuations on D such that z is a
model of E(D) if and only if f(z|FREE(E(D))) is a σ valuation for D.

For the different types of valuations we consider, most of the encodings we define in this
work are based on an encoding that, given an ADF D, gives an open QBF Φσ

D such that there
is a one to one correspondence between the σ valuations of D and the (two valued) models of
Φσ
D, modulo the assignments given to the variables that are not free or do not occur in Φσ

D.
For each type of valuation σ, we call this formula Φσ

D the defining formula for σ valuations.
In particular, the defininig formula for a given type of valuation σ allows us to encode the
enumeration problem for σ in a straightforward manner.

36

The semantics for ADFs refer to relatively complex conditions regarding valuations for
ADFs and are defined in terms of Kleene’s strong three valued logic. To be able to express
statements about the semantics as QBFs therefore requires some preliminary work which we
carry out in the next section which serves as technical underpinning of the remaining sections of
this chapter which present the encodings.

Regarding the presentation of the encodings themselves, in each of the sections that present
the various encodings (Sections 3.2 to 3.6), we first give the defining formula for the semantics
in question which allows us to provide the encodings for the enumeration problem as indicated
previously and then proceed to define the encodings of the different decision tasks we consider
in this work (which will often be based on the defining formula). To improve readibility in all
the proofs of the following sections we often make use of basic and relatively intuitive properties
of propositional and quantified boolean logic stated in Sections 2.1 and 2.2 without mentioning
them explicitely.

3.1 Encoding statements about three valued valuations for ADFs
as QBFs

As has already been indicated, most of the semantics defined for ADFs make reference to
relatively complex conditions referring to valuations for ADFs. To be able to express statements
about valuations for ADFs as QBFs we first of all use “signed” variables from as many disjoint
sets of variables S±1 ,S±2 ,..., S±n as valuations we need to refer to, where each such set S±j for
1 ≤ j ≤ n is defined as follows

S±j := {s⊕j | s ∈ S} ∪ {s
	
j | s ∈ S}

Intuitively, here s⊕j stands for “s is accepted” and s	j for “s is rejected” under some valuation vj .
Secondly, since the semantics for ADFS make use of Kleene’s three valued propositional

logic (see Section 2.3) in our encodings we also need to be able to express statements about this
logic as QBFs. There are various ways this can been achieved (see, for example, [Arieli and
Denecker, 2003, Besnard et al., 2005, Arieli, 2007]); we here mainly adapt the procedure used
for encoding statements about three valued labellings on AFs used in [Arieli and Caminada,
2012, Arieli and Caminada, 2013] to our setting.

To distinguish three valued valuation for ADFs from two valued valuations for QBFs, from
now on in this chapter we refer to three valued valuations with a superscript “three” and two
valued valuations with a superscript “two”. There exists a one to one correspondence between
three valued valuations on a set of statments of an ADF S and coherent two valued valuations
on on any set of signed variables S±j , modulo the the assignments given to variables not in S±j ,
where a coherent two valued valuation on S±j is defined as follows:

Definition 3.1.1. A two valued valuation z2 is coherent on a set of (signed) variables S±j (j ≥ 1)
if there is no s ∈ S such that z2(s⊕j) = 1 and z2(s	j) = 1. z2 is inconsistent on S±j if it is not
coherent on S±j .

The mentioned correspondence is now given by the following notion:

37

Definition 3.1.2. A valuation z2 which is coherent on a set of variables S±j (j ≥ 1) is induced
by (or associated with) a valuation v3 on S via the variables S±j and a valuation v3 is, in turn,
induced by (or associated with) z2 via the variables S±j if the following conditions hold for
every s ∈ S:

a) v3(s) = 1 if and only if z2(s⊕j) = 1 and z2(s	j) = 0,

b) v3(s) = 0 if and only if z2(s⊕j) = 0 and z2(s	j) = 1, and

c) v3(s) = 1
2 if and only if z2(s⊕j) = 0 and z2(s	j) = 0.

That z2 and v3 are associated via S±j is written as z2 �
S±j S

v3.

Note that since in Definition 3.1.2 nothing is indicated about the assignments of z2 to the
variables not in S±j there are many coherent valuations on S±j induced by a valuation v3 on S,
while there is only one valuation v3 induced by a given coherent valuation S±j . Note also that
when we write z2 �

S±j S
v3 it is implicit that z2 is coherent on S±j . The content of the following

proposition, which is of use in establishing the correctness of the encodings we present in this
chapter, should be fairly obvious:

Proposition 3.1.1. Let z2
1 , z2

2 , v3
1 , v3

2 , ..., v3
n (n ≥ 1) be arbitrary valuations, S±j1 , S

±
j2
, ..., S±jn

disjoint sets of variables, and Y a set of variables. Then

1. If Y is disjoint with each of S±ji for 1 ≤ i ≤ n, z2
1 is coherent on each of S±ji , and

z2
1 �
S±ji

S
v3
i for each i (1 ≤ i ≤ n), then z2

3 := z2
1 [Y/z2

2(Y)] is also coherent on each of

S±ji , and it also holds that z2
3 �
S±ji

S
v3
i for each i.

2. If S±ji ⊆ Y , z2
2 is coherent on S±ji , and z2

2 �
S±ji

S
v3
i for each i (0 ≤ i ≤ n), then

z2
3 := z2

1 [Y/z2
2(Y)] is also coherent on each S±ji and it also holds that z2

3 �
S±ji

S
v3
i for

each i.

Proof. (sketch) Item one follows from the fact that z2
1 and z2

3 agree on the variables in each of
the S±ji s for 1 ≤ i ≤ n. Item two from the fact that z2

2 and z2
3 agree on the variables in each the

S±ji s.

A seemingly complicated yet, on closer inspection, immediate corollary of this proposition is
the following:

Corollary 3.1.1. Let z2
1 , z2

2 , v3
j1

, v3
j2

, ..., v3
jn

,v3
k1

, v3
k2

, ..., v3
km

(n ≥ 1, m ≥ 1) be arbitrary
valuations, S±j1 , S

±
j2
, ..., S±jn , S±k1 , S

±
k2
, ..., S±km disjoint sets of variables and Y ⊇ S±k1] S

±
k2
]

...] S±km a set of variables that is disjoint with each S±ji for 1 ≤ i ≤ n. Assume also on the
one hand z2

1 is coherent on each of S±ji , and z2
1 �
S±ji

S
v3
ji

for each i such that 1 ≤ i ≤ n.

38

On the other hand assume also that z2
2 is coherent on each of S±ki , and z2

3 �
S±ki

S
v3
ki

for each i

(1 ≤ i ≤ m). Then, in the first place, z2
3 = z2

1 [Y/z2
2(Y)] is coherent on each S±ji for 1 ≤ i ≤ n

and also on each S±ki for 1 ≤ i ≤ m. In the second place, it also holds that z2
3 �
S±ji

S
v3
ji

for

1 ≤ i ≤ n and also z2
3 �
S±ki

S
v3
ki

for 1 ≤ i ≤ m.

Proof. (sketch) Follows directly from Proposition 3.1.1 because the assumptions of both items
of this proposition are satisfied.

A valuation z2 is coherent on some set of variables S±j for some j ≥ 1 if and only if it
satisfies the following formula:

cohj [S] :=
∧
s∈S ¬(s⊕j ∧ s

	
j)

as is stated formally in the following proposition:

Proposition 3.1.2. A valuation z2 is coherent on S±j (j ≥ 1) if and only if z2 |= cohj [S].

Proof. A valuation z2 is coherent on S±j (according to Definition 3.1.1) if and only if for no s ∈
S it is the case that z2(s⊕j) = 1 and z2(s	j) = 1 if and only if for each s ∈ S, z2(¬(s⊕j ∧s

	
j)) = 1

if and only if (by semantics and definition of cohj [S]) z2(
∧
s∈S ¬(s⊕j ∧ s

	
j)) = z2(cohj [S]) =

1.

In the encodings we present in this section, we also need to be able to express via QBFs
that a certain acceptance condition is evaluated to 1, 0 or 1

2 by a three valued valuation on an
ADF in accordance with the semantics of Kleene’s strong three valued logic. We do this by
defining a function valj(φ, x) where φ is a propositional formula and x ∈ {0, 1, 1

2}, such that
for valuations v3

j and z2 such that z2 �
S±j S

v3
j , v3

j (φ) = x if and only if z2(valj(φ, x)) = 1.

The function valj (for any j ≥ 1), in turn, depends on the following functions τ1
j and τ2

j :

Definition 3.1.3. For a propositional variable s and propositional formulas ψ, φ with variables
in a set S, the functions τ1

j and τ2
j (for any j ≥ 1) are defined as follows:

• τ1
j (>) = >; τ2

j (>) = ⊥

• τ1
j (⊥) = ⊥; τ2

j (⊥) = >

• τ1
j (s) = s⊕j ; τ2

j (s) = s	j

• τ1
j (¬ψ) = τ2

j (ψ); τ2
j (¬ψ) = τ1

j (ψ)

• τ1
j (ψ ∧ φ) = τ1

j (ψ) ∧ τ1
j (φ); τ2

j (ψ ∧ φ) = τ2
j (ψ) ∨ τ2

j (φ)

• τ1
j (ψ ∨ φ) = τ1

j (ψ) ∨ τ1
j (φ); τ2

j (ψ ∨ φ) = τ2
j (ψ) ∧ τ2

j (φ)

For these functions τ1
j and τ2

j the following holds:

39

Lemma 3.1.1. For valuations z2 and v3
j such that z2 �

S±j S
v3
j and any propositional formula

φ with variables in S, v3
j (φ) = 1 if and only if z2(τ1

j (φ)) = 1, and v3
j (¬φ) = 1 if and only if

z2(τ2
j (φ)) = 1.

Proof. The proof is by induction on the structure of the formula φ.
Consider first the base case φ = >. For every valuation v3

j , v3
j (>) = 1 is the case and for

every valuation z2, z2(τ1
j (>)) = z2(>) = 1 holds. Also, for no valuation v3

j , v3
j (¬>) = 1 is

the case and for no valuation z2, z2(τ2
j (>)) = z2(⊥) = 1 can hold. So the proposition holds

trivially for φ = >.
The case φ = ⊥ can be proved using the same line of argument as for φ = >.
Consider now the base case φ = s for some s ∈ S. One has v3

j (s) = 1 if and only
if (by Definition 3.1.2) z2(s⊕j) = 1 and z2(s	j) = 0 if and only if (since z2 is coherent on
S±j , z2(s	j) = 1 can not be the case) z2(s⊕j) = 1 if and only if (by the definition of τ1

j)
z2(τ1

j (s)) = 1. Using the same line of argument, it is easy to prove that v3
j (¬s) = 1 if and only

if z2(τ2
j (s)) = 1.

Consider now the inductive step for φ = ¬ψ for some formula ψ.
One has v3

j (¬ψ) = 1 if and only if (by inductive hypothesis) z2(τ2
j (ψ)) = 1 if and only

if (by the definition of τ1
j) z2(τ1

j (¬ψ)) = 1. Also v3
j (¬¬ψ) = 1 if and only if (by semantics)

v3
j (ψ) = 1 if and only if (by inductive hypothesis) z2(τ1

j (ψ)) = 1 if and only if (by the definition
of τ2

j) z2(τ2
j (¬ψ)) = 1. In conclusion, the proposition holds for the case φ = ¬ψ.

The inductive step for the cases φ = ψ ∧ ρ and φ = ψ ∨ ρ for formulas ψ and ρ are proved
in a similar manner as for the case φ = ¬ψ.

We now give the definition of the before mentioned function valj (for each j ≥ 1):

Definition 3.1.4. For a propositional formula φ with variables in S, the function valj(φ, x)
(j ≥ 1) for x ∈ {0, 1, 1

2 ,∞} is defined as follows:

• valj(φ, 1) = τ1
j (φ) ∧ ¬τ2

j (φ)

• valj(φ, 0) = ¬τ1
j (φ) ∧ τ2

j (φ)

• valj(φ, 1
2) = ¬τ1

j (φ) ∧ ¬τ2
j (φ)

• valj(φ,∞) = τ1
j (φ) ∧ τ2

j (φ)

Here valj(φ,∞) expresses the fact that under some valuation v3
j , φ is both “true” and “false”,

which in fact implies that any two valued valuation that satisfies this formula is inconsistent on
S±j . Note, in particular, that now cohj [S] can be expressed as∧

s∈S ¬valj(s,∞).

The above mentioned desired result is stated formally as follows:

40

Proposition 3.1.3. For valuations z2 and v3
j such that z2 �

S±j S
v3 and every propositional

formula φ (with all variables occurring in S), z2(valj(φ, x)) = 1 if and only if v3
j (φ) = x for

x ∈ {1, 0, 1
2}.

Proof. We give the proof of the case for x = 1
2 here, the proof of the other cases are similar. For

this case one has, z2(valj(φ,
1
2)) = 1 if and only if (by Definition 3.1.4) z2(¬τ1

j (φ)∧¬τ2
j (φ)) =

1 if and only if z2(τ1
j (φ)) = 0 and z2(τ2

j (φ)) = 0 if and only if (by Lemma 3.1.1) v3
j does not

satisfy φ nor ¬φ if and only if (by semantics) v3
j (φ) = 1

2 .

We also often make use the proposition we state next when proving the “correctness” of the
encodings we give in this work. It provides some of the reason for which, as we have already
hinted at in Section 2.2, using QBFs for expressing statements about propositional valuations is
a natural choice:

Proposition 3.1.4. Let φ be an arbitrary QBF, ψ a closed QBF, and P = {p1, p2, ..., pn} propo-
sitional variables. Then

1. If φ = ∃Pψ, then z2 |= φ if and only if z2[P/Y] |= ψ for some Y = {x1, .., xn} where
each xi ∈ {0, 1}.

2. If φ = ∀Pψ, then z2 |= φ if and only if z2[P/Y] |= ψ for any Y = {x1, ..., xn} where
each xi ∈ {0, 1}.

Proof. (sketch) For item one, from the semantics of QBFS (see Definition 2.2.5) it is easy to
prove that z2 |= ∃Pψ if and only if z2[Pi/Yi] |= ∃Qiψ for some Yi = {x1, .., xi} (xi ∈ {0, 1})
by induction on i (1 ≤ i ≤ n) where Pi := {p1, ..., pi} and Qi := P \ Pi. From this item 1
follows directly. Item 2 can be proved in a similar fashion.

Finally, a simple corollary of this proposition that we also use in the proofs in the following
sections is the following reformulation of Proposition 2.2.2:

Corollary 3.1.2. Let φ be an arbitrary QBF, ψ a closed QBF, and P a set of propositional
variables. Then

1. If φ = ∃Pψ, then φ is true if and only if for some z2, z2 |= ψ.

2. If φ = ∀Pψ, then φ is true if and only if for all z2, z2 |= ψ.

Proof. (sketch)

1. If φ is true, then for all z2, z2 |= φ from which by Proposition 3.1.2 it holds that for all
z2 and some Y z2[P/Y] |= ψ. Hence, there also exists some z′2 = z2[P/Y] such that
z′2 |= ψ. On the other hand, if for some z2, z2 |= ψ also for any z′2, z′2[P/z2(Y)] |= ψ
holds since z′2 and z2 agree on the free variables of ψ. Hence, by Proposition 3.1.2 for all
z′2, z′2 |= φ.

2. Similar to proof of item 1.

41

3.2 Encodings for three and two valued models

In the following we give the encodings of the reasoning tasks we consider in this work asso-
ciated to three valued and two valued models of ADFs. As explained at the beginning of this
chapter, we do so by first presenting the defining formulas for three and two valued models.

Given an arbitrary ADF D = (S,C = {φs}s∈S), the following formulas encode the condi-
tions under which a three valued model v3

j can assign 1 and 0 respectively to a statement s ∈ S
based on the acceptance condition associated to s in D:

• mod1
j [D](s) := valj(s, 1)→ valj(φs, 1)

• mod0
j [D](s) := valj(s, 0)→ valj(φs, 0)

The following formula then encodes the fact that a three valued model must satisfy the above
conditions for all statements s ∈ S:

m-condj [D] :=
∧
s∈S(mod1

j [D](s) ∧mod0
j [D](s))

Stated more formally:

Lemma 3.2.1. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= m-condj [D] and z2 is coherent on S±j , then v3
j such that z2 �

S±j S
v3
j is a three

valued model of D.

2. If v3
j is a three valued model of D, then for any z2 such that z2 �

S±j S
v3
j it holds that

z2 |= m-condj [D].

Proof.

1. Assume that z2 |= m-condj [D] and z2 is coherent on S±j . Consider now v3
j such

that z2 �
S±j S

v3
j and an arbitrary s ∈ S. If v3

j (s) = 1, then by Proposition 3.1.3

z2(valj(s, 1)) = 1 and, hence, since z2 |= m-condj [D] =
∧
s∈S(mod1

j [D](s) ∧
mod0

j [D](s)), i.e. in particular z2 |= mod1
j [D](s) = valj(s, 1) → valj(φs, 1), then also

z2(valj(φs, 1)) = 1 must be the case. Hence, by Proposition 3.1.3, v3
j (φs) = 1. By the

same line of argument, if v3
j (s) = 0, since z2 |= mod0

j [D](s) = valj(s, 0)→ valj(φs, 0),
v3
j (φs) = 0 must be the case. In conclusion, since s was arbitrary, if v3

j (s) 6= 1
2 , one has

that v3
j (s) = v3

j (φs) for any s ∈ S, i.e. v3
j is a three valued model of D.

2. Assume that v3
j is a three valued model ofD. Consider an arbitrary s ∈ S and assume that

for any z2 such that z2 �
S±j S

v3
j , z2(valj(s, 1)) = 1. By Proposition 3.1.3 this means

that v3
j (s) = 1 and, hence, since v3

j is a three valued model of D, v3
j (φs) = 1 which, by

Proposition 3.1.3 implies that z2(valj(φs, 1)) = 1. In conclusion, z2 |= mod1
j [D](s) =

valj(s, 1)→ valj(φs, 1). By the same line of argument, starting with the assumption that

42

z2(valj(s, 0)) = 1 one reaches the conclusion that z2 |= mod0
j [D](s) = valj(s, 0) →

valj(φs, 0). Since s ∈ S was arbitrary, z2 |= mod1
j [D](s) and z2 |= mod0

j [D](s) for
every s ∈ S and, hence, z2 |=

∧
s∈S(mod1

j [D](s) ∧mod0
j [D](s)) = m-condj [D].

As can be expected from the assumptions of the previous lemma, for an arbitrary ADF
D = (S,C = {φs}s∈S) the following formula now encodes that v3

j is a three valued model for
D:

3modj [D] := cohj [S] ∧m-condj [D]

The following lemma states this fact:

Lemma 3.2.2. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= 3modj [D] then z2 is coherent on S±j and v3
j such that z2 �

S±j S
v3
j is a three

valued model of D.

2. If v3
j is a three valued model of D, then for any z2 such that z2 �

S±j S
v3
j it holds that

z2 |= 3modj [D].

Proof.

1. Assume that z2 |= 3modj [D] = cohj [S] ∧ m-condj [D]. Then z2 |= cohj [S] from
which by Proposition 3.1.2 it follows that z2 is coherent on S±j . Now, since also z2 |=
m-condj [D] by Lemma 3.2.1 v3

j such that z2 �
S±j S

v3
j is a three valued model of D.

2. If v3
j is a three valued model ofD, then any z2 such that z2 �

S±j S
v3
j is by this assumption

coherent and, hence, by Proposition 3.1.2, z2 |= cohj [S]. Now by Lemma 3.2.1 also
z2 |= m-condj [D] and, hence, z2 |= cohj [S] ∧m-condj [D] = 3modj [D].

Two valued models of an ADF D = (S,C = {φs}s∈S) are a special case of three valued
models, since they are three valued models for which no statement is assigned to 1

2 . This can be
encoded via the following formula:

¬1
2 j

[S] :=
∧
s∈S ¬valj(s,

1
2)

as is stated formally in the next lemma:

Lemma 3.2.3. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= ¬1
2 j

[S] and z2 coherent on S±j , then v3
j such that z2 �

S±j S
v3
j is two valued.

43

2. If v3
j is two valued, then for any z2 such that z2 �

S±j S
v3
j it holds that z2 |= ¬1

2 j
[S].

Proof.

1. Assume that z2 |= ¬1
2 j

[S] =
∧
s∈S ¬valj(s,

1
2) and z2 is coherent under S±j . Then

z2 |= ¬valj(s, 1
2) for every s ∈ S, i.e. there exists no s ∈ S for which z2 |= valj(s,

1
2)

which by Proposition 3.1.3 means that there exists no s ∈ S such that v3
j (s) = 1

2 for v3
j

such that z2 �
S±j S

v3
j . This in turn means that v3

j is two valued.

2. Assume that v3
j is two valued, i.e. there exists no s ∈ S such that v3

j (s) = 1
2 . Then,

by Proposition 3.1.3 for any z2 such that z2 �
S±j S

v3
j there exists no s ∈ S such that

z2 |= valj(s,
1
2). Hence, z2 |=

∧
s∈S ¬valj(s,

1
2) = ¬1

2 j
[S].

The following formula now encodes that a valuation v3
j is a two-valued model for D:

2modj [D] := cohj [S] ∧ ¬1
2 j

[S] ∧m-condj [D]

The next lemma, whose proof is similar to the proof of Lemma 3.2.2 (hence we do not include
the proof here) states this formally:

Lemma 3.2.4. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= 2modj [D] then z2 is coherent on S±j and v3
j such that z2 �

S±j S
v3
j is a two

valued model of D.

2. If v3
j is a two valued model of D, then for any z2 such that z2 �

S±j S
v3
j it holds that

z2 |= 2modj [D].

From Lemmas 3.2.2 and 3.2.4 and the correspondence between associated valuations for
QBFs and ADFs, it follows that given an ADF D, the formulas

3mod1[D]

and

2mod1[D]

provide faithful encodings of ENUM3mod and ENUM2mod respectively into QENUM. These
are clearly also polynomial, in fact linear in the size of D.

We finally also give the encodings of the various decision problems with respect to three and
two valued models in the following propositio. We provide encodings only for those tasks which
are non-trivial in regards to their complexity (see Section 2.4). We remind the reader also that
EXISTS2mod and EXISTS¬∅2mod are equivalent.

44

Proposition 3.2.1. Given arbitrary ADF D = (S,C = {φs}s∈S), the following hold:

1. (EXISTS¬∅3mod) D has a three valued model v3 such that v3(s) = 1 for some s ∈ S if and
only if ∃S±1 (3mod1[D] ∧ (

∨
s∈S ¬val1(s, 1

2))) is true.

2. (CRED3mod) For an arbitrary s∗ ∈ S, D has a three valued model v3 such that v3(s∗) = 1
if and only if ∃S±1 (3mod1[D] ∧ val1(s∗, 1)) is true.

3. (EXISTS2mod / EXISTS¬∅2mod) D has a (non-trivial) two valued model if and only if
∃S±1 2mod1[D] is true.

4. (CRED2mod) For an arbitrary s∗ ∈ S, D has a two valued model v3 such that v3(s∗) = 1
if and only if ∃S±1 (2mod1[D] ∧ val1(s∗, 1)) is true.

5. (SKEPT2mod) For an arbitrary s∗ ∈ S, for all two valued models v3 of D v3(s∗) = 1
holds if and only if ∀S±1 (2mod1[D]→ val1(s∗, 1)) is true.

Proof. We only give the proof of item 2 here as an example, the proof of the other items are
similar.

Assume first that CRED3mod(s∗) = ∃S±1 (3mod1[D] ∧ val1(s∗, 1)) is true. By Corollary
3.1.2 this means that there exists a z2 such that z2 |= 3mod1[D] ∧ val1(s∗, 1). Hence, z2 |=
3mod1[D] which, by Lemma 3.2.2 means that v3 such that z2 �

S±1 S
v3 is a three valued model

of D. Also, since z2 |= (val1(s∗, 1)), i.e. z2(val1(s∗, 1)) = 1 by Proposition 3.1.3 v3(s∗) = 1.
In conclusion, D has a three valued model v3 such that v3(s∗) = 1.

Assume now thatD has a three valued model v3 such that v3(s∗) = 1. Then by Lemma 3.2.2
z2 |= 3mod1[D] for some z2 such that z2 �

S±1 S
v3. Now, since v3(s∗) = 1, by Proposition

3.1.3, z2(val1(s∗, 1)) = 1. Hence, z2 |= 3mod1[D] ∧ val1(s∗, 1) and, so, by Corollary 3.1.2,
∃S±1 (3mod1[D] ∧ val1(s∗, 1)) = CRED3mod(s∗) is true.

Proposition 3.2.1 gives faithful encodings of all the decision problems with respect to three
and two valued models of ADFs we consider in this work. It should also be clear that all the
encodings are polynomial in the size of the ADF, in fact they are linear. For all non trivial
decision problems except SKEPT2mod, the encodings give QBFs of prefix type Σ1 indicating
that the complexity of these reasoning tasks is in NP, while the encoding for SKEPT2mod is a
QBF of prefix type Π1, from which it can be concluded that the reasoning task is in co-NP.
Hence, all the encodings indicate complexity. From the results presented in Table 2.2 it can also
be concluded that all the encodings for the decision problems are also adequate.

The encodings given for EXISTS¬∅3mod and CRED3mod in fact deliver part of the proof that
these reasoning problems are, as is the case of EXISTS¬∅2mod and CRED2mod, NP complete,
reason for which the relevant areas in Table 2.2 refer to this section of our work. Specifically,
the encodings indicate, via the correspondece between prefix types of QBFs and the classes of
the polynomial hierarchy presented in Section 2.4, that these reasoning problems are in NP. That
EXISTS2mod (and, hence, EXISTS¬∅2mod) as well as CRED2mod can be reduced to EXISTS¬∅3mod

and CRED3mod gives NP-hardness of the latter problems via the results regarding two valued
models presented in [Strass and Wallner, 2013]. One possible reduction hinges on the following

45

lemma, whose proof, given that complexity analysis is not the main task we have set out to carry
out in this work, we only sketch (in some detail) here:

Lemma 3.2.5. Let D = (S,C = {φs}s∈S) be an ADF. Then v3 is a (non-trivial) two valued
model of D if and only if v3 is a non-trivial three valued model of the ADF D′ = (S, {φ′s}s∈S)
where, given an arbitrary ordering {s1, s2, ..., sn} of all the statements in S (i.e. |S| = n), φ′si
for each si for 1 ≤ i < n is defined as follows:

φ′si := (¬si ∨ (φsi ∧ (si+1 ∨ ¬si+1))) ∧ (si ∨ φsi ∨ ¬(si+1 ∨ ¬si+1))

and

φ′sn := (¬sn ∨ (φsn ∧ (s1 ∨ ¬s1))) ∧ (sn ∨ φsn ∨ ¬(s1 ∨ ¬s1))

Proof. (sketch) Assume first that v3 is a (non-trivial) two valued model of D. Then in the first
place, it is clear it is also non-trivial forD′. Also, since v3 is two valued, for each si (1 ≤ i ≤ n),
v3(si ∨ ¬si) = 1 (FACT A). Also, given an arbitrary si in S, if v3(si) = 1, then clearly also
v3(si ∨ φsi ∨¬(si+1 ∨¬si+1)) = 1. Moreover, since v3(φsi) = 1 (v3 is a model) and FACT A,
also v3(¬si ∨ (φsi ∧ (si+1 ∨ ¬si+1))) = 1. In conclusion, v3(φ′si) = 1. If, on the other hand,
v3(si) = 0, then, since also v3(φsi) = 0 and (because of FACT A) v3(¬(si+1 ∨ ¬si+1)) = 0,
v3(si ∨ φsi ∨ ¬(si+1 ∨ ¬si+1)) = 0 holds and, hence, v3(φ′si) = 0.

Assume now that v3 is a non-trivial three valued model of D′. Then, in the first place,
clearly v3 is also non-trivial for D. In the second place, for any si ∈ S (1 ≤ i < n), if
v3(si) = 1, then because v3(φ′si) = 1, in particular, v3(¬si ∨ (φsi ∧ (si+1 ∨ ¬si+1))) = 1
which, since v3(¬si) = 0 implies that v3(φsi) = 1. On the other hand, if v3(si) = 0, then
since v3(¬si) = 1, v3(¬si ∨ (φsi ∧ (si+1 ∨ ¬si+1))) = 1 holds. Therefore, because v3(φ′si)
= 0 (v3 is a model), v3(si ∨ φsi ∨ ¬(si+1 ∨ ¬si+1)) = 0 must hold from, which, in particular
it can be concluded that v3(φsi) = 0. By the same line of reasoning, also if v3(sn) = x
then v3(φsn) = x for x ∈ {1, 0}. Finally, using essentially the same reasoning by induction
on the position of a statment in an order {sj , sj+1, .., sn, s1, .., sj−1} such that v3(sj) = 1 or
v3(sj) = 0 (1 ≤ j ≤ n) it can be relatively easily be proved that for every si (1 ≤ i ≤ n),
v3(si∨¬si) = 1. From this the fact that v3 is two valued follows immediately via the semantics
of Kleene’s strong three valued logic.

Proposition 3.2.2. EXISTS¬∅3mod and CRED3mod are NP-complete.

Proof. EXISTS¬∅3mod and CRED3mod are in NP because of Proposition 3.2.1 and Theorem 2.4.1.
By Lemma 3.2.5 an arbitrary v3 is a (non-trivial) two valued model of an ADF D = (S,C)
if and only it is a non-trivial three valued model of D′ as defined in the lemma. Hence, in
particular, D has a (non-trivial) two valued model if and only if D′ does. Moreover, since for
any s∗ ∈ S a valuation v3 such that v3(s∗) = 1 is non-trivial, also D has a two valued model
such that v3(s∗) = 1 if and only if D′ does. In conclusionR1 such that

R1(D) = D′

andR2 such that

46

R2(D, s∗) = (D′, s∗)

for an arbitrary ADF D = (S,C) and s∗ ∈ S are reductions from the decision problem
EXISTS2mod to EXISTS¬∅3mod and CRED2mod to CRED3mod respectively. Since D′ can be
constructed in polynomial (in fact linear) time from D, it follows, from the fact that the prob-
lems EXISTS2mod and CRED2mod are NP hard [Strass and Wallner, 2013], EXISTS¬∅3mod and
CRED3mod are NP-complete.

3.3 Encodings for admissible valuations

In the following we present the encodings of the reasoning tasks we consider in this work
associated to admissible valuations for ADFs. For a valuation v3, let

Xv3 := {u3 | u3(s) ≤i w3(φs) for all s ∈ S and for all w3 ∈ [v3]2}

The defining formula for admissible valuations is based on the fact that a valuation v3 is ad-
missible for an ADF D = (S, {φs}s∈S) if and only if v3(s) ≤i w3(φs) for every s ∈ S and
w3 ∈ [v3]2, i.e. v3 ∈ Xv3 . For the proof of this we make use of the following proposition which
we will also make use of for the encodings for complete valuations in Section 3.4:

Proposition 3.3.1. Let D = (S,C = {φs}s∈S) be an ADF and v3 a valuation for D. Then

ΓD(v3) = tXv3 = t{u3 | u3(s) ≤i w3(φs) for all s ∈ S and for all w3 ∈ [v3]2}

Proof. Note first that Xv3 is not empty since the valuation mapping everything to 0 is in Xv3 .
Remember now that for an arbitrary s ∈ S,

(i) u{w3(φs) | w3 ∈ [v3]2} ≤i w′3(φs) for all w′3 ∈ [v3]2 and

(ii) if x ≤i w3(φs) for all w3 ∈ [v3]2, then x ≤i u{w3(φs) | w3 ∈ [v3]2} (x ∈ {1, 0, 1
2}).

Consider now an arbitrary u3 ∈ Xv3 . Then u3(s) ≤i w3(φs) for all s ∈ S and for allw3 ∈ [v3]2.
Hence by (ii), u3(s) ≤i u{w3(φs) |w3 ∈ [v3]2} = ΓD(v3)(s) for all s ∈ S, i.e. u3 ≤i ΓD(v3).
Since u3 is arbitrary, ΓD(v3) is an upper bound for Xv3 .

Now, it is also the case that ΓD(v3) ∈ Xv3 since for all s ∈ S, by (i), ΓD(v3)(s) =
u{w3 | w3 ∈ [v3]2} ≤i w′3(φs) for all w′3 ∈ [v3]2.

In conclusion, since ΓD(v3) is an upper bound for Xv3 and also ΓD(v3) ∈ Xv3 , ΓD(v3) =
tXv3 (In effect, assume that there exists a v′3 that is an upper bound for Xv3 ; then, since
ΓD(v3) ∈ Xv3 , it also holds that ΓD(v3) ≤i v′3, i.e. ΓD(v3) is the least upper bound.).

Now the above mentioned fact is stated formally in the next proposition:

Proposition 3.3.2. Let D = (S,C = {φs}s∈S) be an ADF and v3 a three valued valuation on
S. Then v3 is an admissible valuation for D if and only if v3(s) ≤i w3(φs) for every s ∈ S and
w3 ∈ [v3]2.

47

Proof. Assume first that v3 is an admissible valuation for D. By definition of admissible valua-
tions this means that v3 ≤i ΓD(v3), i.e. by the definition of ≤i on valuations, definition of ΓD,
and the definition of u, v3(s) ≤i ΓD(v3)(s) = u{w′3(φs) | w′3 ∈ [v3]2} ≤i w3(φs) for each
s ∈ S and w3 ∈ [v3]2 as desired.

Assume now that v3(s) ≤i w3(φs) for every s ∈ S and w3 ∈ [v3]2. This means that
v3(s) ∈ Xv3 and, hence, by Proposition 3.3.1, v3 ≤i ΓD(v3), i.e. v3 is admissible.

As for three and two valued models, we construct the defining formula for admissible valua-
tions based on Proposition 3.3.2 in piecemeal fashion. First of all, the following formula encodes
that v3

j (φ) ≤i v3
k(ψ) for propositional formulas φ and ψ, as well as valuations v3

j and v3
k:

≤i (j,k) [φ, ψ] := (valj(φ, 1)→ valk(ψ, 1)) ∧ (valj(φ, 0)→ valk(ψ, 0))

as is stated more formally in the next lemma:

Lemma 3.3.1. Let D = (S,C = {φs}s∈S) be an ADF and φ and ψ propositional formulas.
Then

1. If z2 |=≤i (j,k) [φ, ψ] and z coherent on S±j and S±k , then for v3
j and v3

k such that z2 �
S±j S

v3
j and z2 �

S±k S
v3
k it holds that v3

j (φ) ≤i v3
k(ψ).

2. If v3
j (φ) ≤i v3

k(ψ), then for any z such that z2 �
S±j S

v3
j and z2 �

S±k S
v3
k it holds that

z2 |=≤i (j,k) [φ, ψ].

Proof.

1. Assume that z2 |=≤i (j,k) [φ, ψ] = (valj(φ, 1) → valk(ψ, 1)) ∧ (valj(φ, 0) →
valk(ψ, 0)) and that z2 is coherent on S±j and S±k . Consider now that v3

j (φ) = 1 for
v3
j such that z2 �

S±j S
v3
j . By Proposition 3.1.3 then z2 |= valj(φ, 1). Therefore, since

z2 |= valj(φ, 1) → valk(ψ, 1) also z2 |= valk(ψ, 1) must be the case. Hence, again
by Proposition 3.1.3, v3

k(ψ) = 1 must be the case and so v3
j (φ) ≤i v3

k(ψ). In the same
manner, if v3

j (φ) = 0, since z2 |= valj(φ, 0) → valk(ψ, 0), v3
k(ψ) = 0 must hold and,

hence, also in this case v3
j (φ) ≤i v3

k(ψ). Finally, if v3
j (φ) = 1

2 , then v3
j (φ) ≤i v3

k(ψ)

no matter the value of v3
k(ψ) by definition of ≤i. In conclusion v3

j (φ) ≤i v3
k(ψ) holds in

general as desired.

2. Assume that v3
j (φ) ≤i v3

k(ψ). Now if v3
j (φ) = x with x ∈ {1, 0}, since v3

j (φ) ≤i v3
k(ψ),

v3
k(ψ) = x must hold as well, since 1 and 0 are maximal with respect to ≤i. By Propo-

sition 3.1.3 this means that if z2 |= valj(φ, x), then, z2 |= valk(ψ, x) for x ∈ {0, 1}. In
conclusion, z2 |= (valj(φ, 1)→ valk(ψ, 1))∧(valj(φ, 0)→ valk(ψ, 0)) =≤i (j,k) [φ, ψ]
as desired.

48

The previous formula can be used in a straightforward manner to encode that for two valua-
tions v3

j and v3
k, v3

j (s) ≤i v3
k(s) for all s ∈ S for a set of statements S:

≤
∧
i (j,k) [S] :=

∧
s∈S ≤i (j,k) [s, s]

The next lemma states this fact:

Lemma 3.3.2. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |=≤
∧
i (j,k) [S] and z2 is coherent on S±j and S±k , then for v3

j and v3
k such that z2 �

S±j S

v3
j and z2 �

S±k S
v3
k it holds that v3

j (s) ≤i v3
k(s) for all s ∈ S.

2. If v3
j (s) ≤i v3

k(s) for all s ∈ S, then for any z2 such that z2 �
S±j S

v3
j and z2 �

S±k S
v3
k

it holds that z2 |=≤
∧
i (j,k) [S].

Proof.

1. Assume that z2 |=≤
∧
i (j,k) [S] =

∧
s∈S ≤i (j,k) [s, s] and z2 is coherent on S±j and S±k .

Then z2 |=≤i (j,k) [s, s] for each s ∈ S and so, by Lemma 3.3.1, v3
j (s) ≤i v3

k(s) for each
s ∈ S as desired.

2. Assume that v3
j (s) ≤i v3

k(s) for all s ∈ S. Then, by Lemma 3.3.1, for any z2 such that
z2 �

S±j S
v3
j and z2 �

S±k S
v3
k it holds that z2 |=≤i (j,k) [s, s] for each s ∈ S. Hence, for

any such z2 also z2 |=
∧
s∈S ≤i (j,k) [s, s] =≤

∧
i (j,k) [S] as desired.

The following formula now encodes that a valuation v3
j is an extension of another valuation

v3
k on a set of statements S:

extj,k[S] := cohj [S] ∧ ¬1
2 j

[S]∧ ≤
∧
i (k,j) [S]

as is stated formally in the following lemma:

Lemma 3.3.3. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= extj,k[S] and z2 is coherent on S±k , then z2 is coherent on S±j and for v3
j and v3

k

such that z2 �
S±j S

v3
j and z2 �

S±k S
v3
k it holds that v3

j ∈ [vk
3]2.

2. If v3
j ∈ [vk

3]2, then for any z2 such that z2 �
S±j S

v3
j and z2 �

S±k S
v3
k it holds that

z2 |= extj,k[S].

Proof.

49

1. Assume that z2 |= extj,k[S] = cohj [S] ∧ ¬1
2 j

[S]∧ ≤
∧
i (k,j) [S] and z2 is coherent on

S±k . Then z2 |= cohj [S] and, hence, by Proposition 3.1.2 z2 is coherent on S±j . Since
z2 |= ¬1

2 j
[S], by Lemma 3.2.3 v3

j such that z2 �
S±j S

v3
j is a two valued valuation on

S. Finally, since also z2 |=≤
∧
i (k,j) [S], by Lemma 3.3.2 also v3

k(s) ≤i v3
j (s) for each

s ∈ S and v3
k such that z2 �

S±k S
v3
k. Hence, by definition of an extension, v3

j ∈ [vk
3]2 as

desired.

2. Assume v3
j ∈ [vk

3]2. Any z2 such that z2 �
S±j S

v3
j and z2 �

S±k S
v3
k is coherent on

S±j and S±k . Then, in the first place by Proposition 3.1.2, z2 |= cohj [S]. Also, v3
j is

a two valued valuation and, hence, by Proposition 3.2.3 z2 |= ¬1
2 j

[S]. Now since also

v3
k(s) ≤i v3

j (s) for all s ∈ S, by Lemma 3.3.2 also z2 |=≤
∧
i (k,j) [S]. In conclusion,

z2 |= cohj [S] ∧ ¬1
2 j

[S]∧ ≤
∧
i (k,j) [S] = extj,k[S] as desired.

The next formula then encodes that for an ADF D = (S,C = {φs}s∈S) and valuations v3
j

and v3
k, v3

j (s) ≤i v3
l (φs) for all s ∈ S and v3

l ∈ [vk
3]2:

≤∀exti (j,k,l) [S] := ∀S±l [extl,k[S]→
∧
s∈S ≤i (j,l) [s, φs]]

Stated more formally:

Lemma 3.3.4. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |=≤∀exti (j,k,l) [S] and z2 coherent on S±j and S±k , then for v3
j and v3

k such that z2 �
S±j S

v3
j and z2 �

S±k S
v3
k it holds that v3

j (s) ≤i v3
l (φs) for each s ∈ S and v3

l ∈ [vk
3]2.

2. If v3
j (s) ≤i v3

k(φs) for each s ∈ S and v3
l ∈ [vk

3]2 then for any z2 such that z2 �
S±j S

v3
j

and z2 �
S±k S

v3
k it holds that z2 |=≤∀exti (j,k,l) [S].

Proof.

1. Assume that z2 |=≤∀exti (j,k,l) [S] and z2 coherent on S±j and S±k . Consider now an arbitrary
v3
l such that v3

l ∈ [vk
3]2 and any z2

2 such that z2
2 �
S±l S

v3
l . Since z2 |= ∀S±l [extl,k[S]→∧

s∈S ≤i (k,l) [s, φs]] by Proposition 3.1.4 z2[S±l /Y] |= extl,k[S]→
∧
s∈S ≤i (j,l) [s, φs]

for any Y and, so, in particular, z2
3 |= extl,k[S] →

∧
s∈S ≤i (j,l) [s, φs] for z2

3 =

z2[S±l /z
2
2(Y)]. Now, by Corollary 3.1.1 z2

3 is coherent on S±j , S±k , and S±l . By the same
corollary, it is also the case that z2

3 �
S±j S

v3
j , z2

3 �
S±k S

v3
k and z2

3 �
S±l S

v3
l . Hence, in

the first place, since also v3
l ∈ [vk

3]2 by Lemma 3.3.2 it holds that z2
3 |= extl,k[S]. Now,

since z2
3 |= extl,k[S] →

∧
s∈S ≤i (j,l) [s, φs], also z2

3 |=
∧
s∈S ≤i (j,l) [s, φs] must be the

case. Secondly, by Lemma 3.3.2 then also v3
j (s) ≤i v3

l (φs) for all s ∈ S. Since v3
l was

arbitrary, in conclusion for any v3
l ∈ [vk

3]2, v3
j (s) ≤i v3

l (φs) holds as desired.

50

2. Assume that v3
j ≤i v3

l (φs) for each s ∈ S and v3
l in [vk

3]2. Consider now a z2 such that
z2 �

S±j S
v3
j and z2 �

S±k S
v3
k. Consider also an arbitrary z2

2 and z2
3 = z2[S±l /z

2
2(S±l)].

By Proposition 3.1.1 now also z2
3 �
S±j S

v3
j and z2

3 �
S±k S

v3
k hold. Assume now that

z2
3 |= extl,k[S]. By Lemma 3.3.3 this means that z2

3 is coherent on S±l and for v′l
3 such

that z2
3 �
S±l S

v′l
3 it holds that v′l

3 ∈ [vk
3]2. Hence, v3

j (s) ≤ v′l
3(φs) for each s ∈ S by

assumption and, therefore, by Lemma 3.3.2 also z2
3 |=

∧
s∈S ≤i (j,l) [s, φs]. In conclu-

sion, z2
3 = z[S±l /z

2
2(S±l)] |= extl,k[S] →

∧
s∈S ≤i (j,l) [s, φs]. Since z2

2 was arbitrary
this holds for any such z2

2 and, therefore, by Proposition 3.1.4 z2 |= ∀S±l [extl,k[S] →∧
s∈S ≤i (j,l) [s, φs]] =≤∀exti (j,k,l) [S].

The following formula finally is the defining formula for admissible valuations of an ADF
D = (S,C = {φs}s∈S):

admj,k[D] := cohj [S]∧ ≤∀exti (j,j,k) [S]

This is stated formally in the next lemma:

Lemma 3.3.5. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= admj,k[D] then z2 is coherent on S±j and v3
j such that z2 �

S±j S
v3
j is an

admissible valuation for D.

2. If v3
j is an admissible valuation for D, then for any z2 such that z2 �

S±j S
v3
j it holds that

z2 |= admj,k[D].

Proof.

1. Assume that z2 |= admj,k[D] = cohj [S]∧ ≤∀exti (j,j,k) [S]. Then z2 |= cohj [S] and so by
Proposition 3.1.2 it follows that z2 is coherent on S±j . Now, since also z2 |=≤∀exti (j,j,k) [S]

by Lemma 3.3.4 it follows that v3
j (s) ≤i w3(φs) for each s ∈ S and w3 ∈ [vj

3]2 for v3
j

such that z2 �
S±j S

v3
j . Finally, by Proposition 3.3.2 it follows that v3

j is an admissible

valuation for D.

2. Assume that v3
j is an admissible valuation for D. Then any z2 such that z2 �

S±j S
v3
j

is coherent on S±j and, therefore, by Proposition 3.1.2, z2 |= cohj [S]. Also, since v3
j

is admissible, by Proposition 3.3.2 it follows that v3
j (s) ≤i w3(φs) for each s ∈ S and

w3 ∈ [vj
3]2 and, hence, by Lemma 3.3.4 also z2 |=≤∀exti (j,j,k) [S]. In conclusion, since

z2 |= cohj [S] and z2 |=≤∀exti (j,j,k) [S], also z2 |= admj,k[D] = cohj [S]∧ ≤∀exti (j,j,k) [S].

51

From Lemma 3.3.5 (and the correspondence between associated valuations for QBFs and
ADFs) it follows that

adm1,2[D] := coh1[S]∧ ≤∀exti (1,1,2) [S]

provides a faithful encoding of ENUMadm to QENUM. It is clearly also polynomial, in fact
linear in the size of the ADF D.

The encodings of the non trivial (see Section 2.4) decision problems with respect to admis-
sible valuations are collected in the following proposition. The proofs are similar as those for
Proposition 3.2.1 so we do not include them here.

Proposition 3.3.3. Given arbitrary ADF D = (S,C = {φs}s∈S), the following hold:

1. (EXISTS¬∅adm) D has an admissible valuation v3 such that v3(s) = 1 for some s ∈ S if
and only if ∃S±1 (adm1,2[D] ∧ (

∨
s∈S ¬val1(s, 1

2))) is true.

2. (CREDadm) For an arbitrary s∗ ∈ S, D has an admissible valuation v3 such that v3(s∗) =
1 if and only if ∃S±1 (adm1,2[D] ∧ val1(s∗, 1)) is true.

Proof. (sketch) Proof is similar to proof of Proposition 3.2.1 using Proposition 3.1.3, Corollary
3.1.2, and Lemma 3.3.5.

Proposition 3.3.3 gives faithful encodings of EXISTS¬∅adm and CREDadm. It should also
be clear that all the encodings are polynomial in the size of D, in fact they are linear. The
following are formulas in prenex normal form equivalent to the corresponding encodings given
in Proposition 3.3.3:

1. ∃S±1 ∀S
±
2 (coh1[S] ∧ [ext2,1[S]→

∧
s∈S ≤i (1,2) [s, φs]] ∧

∨
s∈S ¬val1(s, 1

2))

2. ∃S±1 ∀S
±
2 (coh1[S] ∧ [ext2,1[S]→

∧
s∈S ≤i (1,2) [s, φs]] ∧ val1(s∗, 1))

These are both formulas of type Σ2, hence from the results presented in Table 2.2 it can be
concluded that the encodings given for EXISTS¬∅adm and CREDadm are adequate.

3.4 Encodings for complete valuations

In the following we present the encodings of the reasoning tasks we consider in this work
associated to complete valuations for ADFs. A valuation is complete for an ADF D = (S,C =
{φs}s∈S) if v3 = ΓD(v3). The defining formula for complete valuations is based on Proposition
3.3.1 that states that

ΓD(v3) = tXv3 = t{u3|u3(s) ≤i w3(φs) for all w3 ∈ [v3]2}.

52

and, hence, v3 is complete if and only if v3 = tXv3 .
It should be clear from the proof of Proposition 3.3.1 that, in fact, ΓD(v3) is the greatest

element of Xv3 , i.e. ΓD(v3) is an upper bound for Xv3 and ΓD(v3) ∈ Xv3 . That a valuation v3
h

is an upper bound for Xv3j for some valuation v3
j can be encoded via the following formula:

ub-Xh,j,k,l[D] := ∀S±k [(cohk[S]∧ ≤∀exti (k,j,l) [S])→≤
∧
i (k,h) [S]]

as is expressed more precisely in the next lemma:

Lemma 3.4.1. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= ub-Xh,j,k,l[D] and z2 coherent on S±h and S±j , then for v3
h and v3

j such that
z2 �

S±h S
v3
h and z2 �

S±j S
v3
j it holds that v3

h is an upper bound of Xv3j .

2. If v3
h is an upper bound of Xv3j then for any z2 such that z2 �

S±h S
v3
h and z2 �

S±j S
v3
j it

holds that z2 |= ub-Xh,j,k,l[D].

Proof. (sketch) Proof is similar to that of Lemma 3.3.4 using Propositions 3.1.2, 3.1.1, 3.1.4,
and Lemmas 3.3.2 and 3.3.4.

Note also that by Proposition 3.3.2, v3
h ∈ Xv3h is equivalent to v3

h being admissible. In
conclusion, v3

h is complete if and only if v3
h is admissible and an upper bound for Xv3h . This

is encoded in the following formula which is the defining formula we present for complete
valuations:

comph,j,k,l[D] := admh,j [D] ∧ ub-Xh,h,k,l[D]

The following lemma states this fact:

Lemma 3.4.2. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= comph,j,k,l[D] then z2 is coherent on S±h and v3
h such that z2 �

S±h S
v3
h is a

complete valuation for D.

2. If v3
h is a complete valuation for D, then for any z2 such that z2 �

S±h S
v3
h it holds that

z2 |= comph,j,k,l[D].

Proof. (sketch) Proof is similar to that of Lemma 3.3.5 using Lemmas 3.3.5 and 3.4.1 and Propo-
sition 3.3.1.

From Lemma 3.4.2 (and the correspondence between associated valuations for QBFs and
ADFs), it follows that

comp1,2,3,4[D] := adm1,2[D] ∧ ub-X1,1,3,4[D]

53

provides a faithful encoding of ENUMcomp to QENUM. It is clearly also polynomial, in fact
linear in the size of the ADF D.

Regarding the encodings of the decision problems we consider in this work with respect
to complete encodings, we remind the reader first that, as has been explained in Section 2.4,
EXISTScomp is trivial. Also, since EXISTS¬∅comp and CREDcomp are equivalent to the problems
EXISTS¬∅adm and CREDadm respectively, the encodings given for the latter two decision prob-
lems in Propostion 3.3.3 give adequate encodings of EXISTS¬∅pref and CREDpref . Finally, in
Section 3.6 we provide an adequate encoding of SKEPTground and, hence, since, as has also
been explained in Section 2.4, SKEPTcomp is equivalent to SKEPTground, this gives us an ade-
quate encoding of SKEPTcomp as well.

3.5 Encodings for preferred valuations

In the following we present the encodings of the reasoning tasks we consider in this work
associated to preferred valuations for ADFs. The defining formula for preferred valuations is
based on a slight reformulation of the definition of preferred valuations. We remind that a
valuation v3 is preferred for an ADF D if v3 is maximal admissible with respect to ≤i, i.e.

1. v3 is admissible for D, and

2. there exists no v′3 that is admissible for D and v3 <i v
′3 (condition B).

Note that condition B can be reformulated as follows:

“for all v′3 that are admissible for D, if v3 ≤i v′3, then also v′3 ≤i v3” (condition B’).

In effect, there exists no v′3 that is admissible (for D) and v3 <i v
′3 means that for all v′3 that

are admissible, v3 6<i v′3. This in turn is equivalent to for all v′3 that are admissible, v3 ≥i v′3 or
v3 <>i v

′3. This means that for all v′3 that are admissible, if it is not the case that v3 <>i v
′3,

then v3 ≥i v′3 which, in turn, can be reduced to: for all v′3 that are admissible, if it is not the
case that v3 <>i v

′3 nor that v3 >i v
′3, then v3 = v′3. Finally, this can be reformulated as: for

all v′3 that are admissible, if v3 ≤i v′3, then also v′3 ≤i v3.
Condition B’ for a valuation v3

j being preferred can now be encoded via the following for-
mula:

max-admj,k,l[D] := ∀S±k [admk,l[D]→ (≤
∧
i (j,k) [S]→≤

∧
i (k,j) [S])]

as is stated formally in the lemma immediately below.

Lemma 3.5.1. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= max-admj,k,l[D] and z2 is coherent on S±j , then for v3
j such that z2 �

S±j S
v3
j it

holds that v3
j satisfies condition B’ (with respect to D).

54

2. If v3
j satisfies condition B’ (with respect to D), then for any z2 such that z2 �

S±j S
v3
j it

holds that z2 |= max-admj,k,l[D].

Proof. (sketch) Proof is similar to proof of Lemma 3.3.4 using Propositions 3.1.1, 3.1.4, and
Lemmas 3.3.2 and 3.3.5.

The following is, then, the defining formula for preferred valuations:

prefh,j,k,l[D] := admh,j [D] ∧max-admh,k,l[D]

as is stated in a formal manner in the next lemma:

Lemma 3.5.2. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= prefh,j,k,l[D], then z2 is coherent on S±h and v3
h such that z2 �

S±h S
v3
h is a

preferred valuation for D.

2. If v3
h is a preferred valuation for D, then for any z2 such that z2 �

S±h S
v3
h it holds that

z2 |= prefh,j,k,l[D].

Proof. (sketch) Proof is similar to proof of Lemma 3.3.5 using Lemmas 3.3.5, 3.5.1, as well as
the note about the reformulation of the definition of preferred valuations given at the beginning
of this section.

From Lemma 3.5.2 (and the correspondence between associated valuations for QBFs and
ADFs), it then follows that

pref1,2,3,4[D] := adm1,2[D] ∧max-adm1,3,4[D]

provides a faithful encoding of ENUMpref to QENUM. It is clearly also polynomial, in fact
linear in the size of the ADF D.

The encoding of SKEPTpref , which is the only decision problem with respect to preferred
semantics we consider in this work that is not trivial nor can be reduced to corresponding deci-
sion problems of other valuation types (see Section 2.4) is given in the following proposition:

Proposition 3.5.1. Given arbitrary ADF D = (S,C = {φs}s∈S), the following hold:

(SKEPTpref) For an arbitrary s∗ ∈ S, it holds that v3(s∗) = 1 for all preferred valuations
v3 for D if and only if ∀S±1 (pref1,2,3,4[D]→ val1(s∗, 1)) is true.

Proof. (sketch) Proof is similar to proof of Proposition 3.2.1 using Proposition 3.1.3, Corollary
3.1.2, and Lemma 3.5.2.

Proposition 3.5.1 provides a faithful encoding SKEPTpref into QSAT. It should also be clear
that the encoding is polynomial in the size of the ADF D, in fact it is linear. The following is
the formula in prenex normal form equivalent to the encoding given in Proposition 3.5.1:

55

∀S±1 ∃S
±
2 ∪ S

±
3 ∀S

±
4 (

coh1[S] ∧ (ext2,1[S]→
∧
s∈S ≤i (1,2) [s, φs])

∧
[

[coh3[S] ∧ (ext4,3[S]→
∧
s∈S ≤i (3,4) [s, φs])]

→
(≤

∧
i (1,3) [S]→≤

∧
i (3,1) [S])

]
→
val1(s, 1)

)

This formula is of type Π3; hence from the results presented in Table 2.2 it can be concluded
that the encoding is adequate. Finally, note also that since EXISTS¬∅pref and CREDpref can
be reduced to EXISTS¬∅adm and CREDadm respectively, the encodings given for the latter two
decision problems in Propostion 3.3.3 give adequate encodings of EXISTS¬∅pref and CREDpref .

3.6 Encodings for the grounded valuation

A valuation v3 is grounded for an ADFD if it is the least fixpoint of the characteristic operator
for D. A natural choice for the defining formula for grounded valuations is by making use of
the fact that this is equivalent to a valuation being minimal complete (Theorem 2.3.3). That a
valuation v3

g is a lower bound (with respect to ≤i) for all complete valuations of an ADF D can
be encoded via the following formula:

lb-compg,h,j,k,l[D] := ∀S±h [comph,j,k,l[D]→≤
∧
i (g,h) [S]]

as is expressed in the next lemma:

Lemma 3.6.1. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= lb-compg,h,j,k,l[D] and z2 coherent on S±g , then for v3
g such that z2 �

S±g S
v3
g , it

holds that v3
g is a lower bound of the set of all complete valuations for D.

2. If v3
g is a lower bound of the set of all complete valuations for D, then for any z2 such that

z2 �
S±g S

v3
g , it holds that z2 |= lb-compg,h,j,k,l[D].

Proof. (sketch) Proof is similar to that of Lemma 3.3.4 using Propositions 3.1.1, 3.1.4, and
Lemmas 3.3.2 and 3.4.2.

That a valuation v3
d is grounded for an ADF D can then be encoded via the following formula:

groundd,e,f,g.h,j,k,l[D] := compd,e,f,g[D] ∧ lb-compd,h,j,k,l[D]

as is stated in the next lemma:

56

Lemma 3.6.2. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= groundd,e,f,g.h,j,k,l[D], then z2 is coherent on S±d and for v3
d such that z2 �

S±d S

v3
d, it holds that v3

d is the grounded valuation for D.

2. If v3
d is the grounded valuation for D, then for any z2 such that z2 �

S±d S
v3
d, it holds that

z2 |= groundd,e,f,g.h,j,k,l[D].

Proof. (sketch) Proof is similar to the proof of Lemma 3.3.5 using Lemma 3.6.2.

Instantiating the defining formula for grounded valuations leads to a faithful encoding of
ENUMground into QENUM:

ground1,2,3,4.5,6,7,8[D] := comp1,2,3,4[D] ∧ lb-comp1,5,6,7,8[D]

Nevertheless, making straightforward use of the defining formula we have given for grounded
valuations for encoding the non-trivial existence problem as well as credulous and skeptical ac-
ceptance of statements (for grounded valuations) leads to formulas that are not adequate, reason
for which a different approach is in order. One way of arriving at adequate encodings for these
decision problems is by making use of a characterisation of grounded valuations given in [Strass
and Wallner, 2013], for the statement of which we make use of the following definition:

Definition 3.6.1. Let D = (S,C = {φs}s∈S) be an ADF and v3 be a valuation. The following
are some properties v3 can satisfy.

1. For each s ∈ S such that v3(s) = 1 there exists a w3 ∈ [v3]2 and w3(φs) = 1.

2. For each s ∈ S such that v3(s) = 0 there exists a w3 ∈ [v3]2 and w3(φs) = 0.

3. For each s ∈ S such that v3(s) = 1
2 there exist w3

1 ∈ [v3]2 and w3
2 ∈ [v3]2 such that

w3
1(φs) = 1 and w3

2(φs) = 0.

For convenience and reasons that will become clear soon we call any u3 that satisfies prop-
erties one to three in Definition 3.6.1 for an ADF D a candidate for the grounded valuation of
D.

Let

YD := {u3 | u3 is a candidate for the grounded valuation of D}

then the above mentioned characterisation of grounded valuations is expressed in the following
Proposition [Strass and Wallner, 2013]:

Proposition 3.6.1. Let D = (S,C = {φs}s∈S) be an ADF. Then

ground(D) = l.e. YD = l.e. {u3 | u3 is a candidate for the grounded valuation of D}

An immediate corollary of Proposition 3.6.1 is:

57

Corollary 3.6.1. LetD = (S,C = {φs}s∈S) be an ADF, s∗ ∈ S, and g3 the grounded valuation
of D. Then g3(s∗) = x if and only if v3(s∗) = x for every v3 ∈ YD and x ∈ {0, 1}.

Proof. Assume first that g3(s∗) = x for x ∈ {0, 1} and let v3 ∈ YD. Then from Proposition
3.6.1 it follows that g3 ≤i v3 and, hence also v3(s∗) = x since 0 and 1 are the maximal elements
of {1, 0, 1

2}. The converse follows because also g3 ∈ YD.

Encodings of EXISTS¬∅ground, CREDground and SKEPTground into QSAT can be provided
based on Corollary 3.6.1. First, the following formulas encode the conditions that a valuation
v3
j has to satisfy in order for it to be a candidate for the grounded valuation for an ADF D =

(S,C = {φs}s∈S):

• g-cand1
j,k[D](s) := valj(s, 1)→ ∃S±kas (extkas ,j [S] ∧ valkas (φs, 1))

• g-cand0
j,k[D](s) := valj(s, 0)→ ∃S±

kbs
(extkbs,j [S] ∧ valkbs(φs, 0))

• g-cand
1
2
j,k[D](s) := valj(s,

1
2) → ∃S±kcs ∪ S

±
kds

(extkcs,j [S] ∧ valkcs(φs, 1) ∧ extkds ,j [S] ∧
valkds (φs, 0))

The next formula then encodes that a valuation v3
j is a candidate for the grounded valuation for

an ADF D = (S,C):

g-candj,k[D] := cohj [S]∧
∧
s∈S [g-cand1

j,k[D](s)∧ g-cand0
j,k[D](s)∧ g-cand

1
2
j,k[D](s)]

Stated formally:

Lemma 3.6.3. Let D = (S,C = {φs}s∈S) be an ADF. Then

1. If z2 |= g-candj,k[D], then z2 is coherent on S±j and for v3
j such that z2 �

S±j S
v3
j , it

holds that v3
j is a candidate for the grounded valuation for D.

2. If v3
j is the grounded valuation for D, then for any z2 such that z2 �

S±j S
v3
j , it holds that

z2 |= g-candj,k[D].

Proof. (sketch) Proof is similar to that of Lemma 3.2.1 making use of Propositions 3.1.1, 3.1.4,
and Definition 3.6.1.

The encodings for the various non-trivial (see Section 2.4) decision problems with respect
to the grounded valuation we consider in this work can now be given based on Lemma 3.6.3,
Corollary 3.6.1, as well as the fact that CREDground and SKEPTground are equivalent since there
exists only one grounded valuation for any ADF:

Proposition 3.6.2. Given an arbitrary ADF D = (S,C = {φs}s∈S), let g3 be the grounded
valuation of D. Then the following hold:

58

1. (EXISTS¬∅ground) For some s ∈ S it is the case that g3(s) 6= 1
2 if and only if

∀S±1 (g-cand1,2[D]→
∨
s∈S ¬val1(s, 1

2)) is true.

2. (CREDground / SKEPTground) For an arbitrary s∗ ∈ S, g3(s∗) = 1 if and only if
∀S±1 (g-cand1,2[D]→ val1(s∗, 1)) is true.

Proof. (sketch) Proof is similar to that of Proposition 3.2.1 using Proposition 3.1.3, Corollary
3.1.2, Lemma 3.6.3, Corollary 3.6.1, as well as the fact that CREDground and SKEPTground are
equivalent.

Proposition 3.6.2 gives faithful encodings of EXISTS¬∅ground, CREDground and SKEPTground
into QSAT. The encodings are polynomial in the size of the ADF D. The following is a formula
in prenex normal form equivalent to the encoding given in Proposition 3.6.2 for EXISTS¬∅ground
for an ADF D = (S,C = {φs}s∈S) where S = {s1, s2, ..., sn}:

∀S±1 S
±
2as1
S±

2bs1
S±2cs1

S±
2ds1
...S±2asn

S±
2bsn
S±2csn

S±
2dsn

(

[
coh1[S]
∧∧

s∈S(
(val1(s, 1)→ (ext2as ,1[S] ∧ val2as (φs, 1)))
∧

(val1(s, 0)→ (ext2bs,1[S] ∧ val2bs(φs, 0)))
∧

(val1(s, 1
2)→ (ext2cs,1[S] ∧ val2cs(φs, 1) ∧ ext2ds ,1[S] ∧ val2ds (φs, 0)))

)
]
→∨

s∈S ¬val1(s, 1
2)

)

The following formula in prenex normal form corresponds to the encoding for CREDground (and
SKEPTground):

∀S±1 S
±
2as1
S±

2bs1
S±2cs1

S±
2ds1
...S±2asn

S±
2bsn
S±2csn

S±
2dsn

(

[
coh1[S]
∧∧

s∈S(
(val1(s, 1)→ (ext2as ,1[S] ∧ val2as (φs, 1)))
∧

(val1(s, 0)→ (ext2bs,1[S] ∧ val2bs(φs, 0)))
∧

(val1(s, 1
2)→ (ext2cs,1[S] ∧ val2cs(φs, 1) ∧ ext2ds ,1[S] ∧ val2ds (φs, 0)))

)

59

]
→

val1(s∗, 1)
)

Both of the above formulas are of type Π1; hence, based on the results presented in Table 2.2 it
can be concluded that the encodings are adequate.

60

CHAPTER 4
Implementation

In this chapter we carry out first steps in direction of determining the possible benefits of im-
plementing a QBF-based reasoning system for ADFs based on the encodings we have presented
in Chapter 3. Specifically, in Section 4.3 we describe a prototype of such a system that we have
implemented. The purpose of Section 4.4 is then to set a first benchmark for QBF based im-
plementations of reasoning on ADFs by reporting on preliminary experiments determining the
performance of the prototype system. We also compare its performance with that of DIAMOND,
the only other available reasoner for ADFs with respect to the semantics we consider in this
work that is, to the best of our knowledge, currently available.

Section 4.1 puts the work we present in this chapter in context by very briefly surveying im-
plementation methods for abstract argumentation, also covering software systems available for
ADFs. In Section 4.2 we survey the main approaches existing to date for implementing QSAT-
solvers, also introducing the QSAT-solver DepQBF that we use as back-end for the prototype
system we describe in this chapter.

4.1 Overview of implementation methods and systems for abstract
argumentation

An implementation method for abstract argumentation can be considered to be any method
which enables solving the various reasoning tasks (see Section 2.4) defined on abstract argumen-
tation frameworks computationally. To date, several different approaches for developing such
methods exist, especially for Dung style frameworks. There are also various software systems
which implement some of these methods, although an exhaustive empirical evaluation of the
latter has yet to be carried out.

An in-depth and general overview of research into implementation methods for argumen-
tation is out of the scope of this work, so in this section we only point out some of the main
strategies that have been developed for Dung argumentation frameworks. These have, naturally,
also been those argumentation frameworks which have received the most attention to date. We

61

focus in a little more detail on implementation methods that are based on formal logic and also
provide some insight into the main methods and software systems developed to date for abstract
dialectical frameworks.

As has already been indicated in the introduction to this work, a recent survey of the ap-
proaches and advances in implementation methods for argumentation can be found in [Charwat
et al., 2013]. The authors of this work identify two general requirements that are crucial for the
applicability of such methods. In the first place, implementation methods for abstract argumen-
tation must have a certain level of generality so that the various semantics that are defined for
them can be treated; and in the second place they must also have a sufficient level of efficiency to
deal with the inherent complexity of many of the reasoning problems defined for argumentation.

The above mentioned technical report also usefully classifies the two main approches to-
wards the development of implementation methods for abstract argumentation into reduction
based and direct approaches. The first aim to translate the reasoning problems defined on argu-
mentation frameworks to some other formalism for which efficient systems exist, while direct
approaches are tailored specifically to reasoning on abstract argumentation systems.

An important instance of direct approaches for the development of implementation methods
is in the first place the labelling approach in which the idea is to enumerate the labellings of an
AF using various techniques to prune the space of possible labellings that has to be explored.
Instances of the labelling approach are presented in [Doutre and Mengin, 2001, Modgil and
Caminada, 2009, Nofal et al., 2012, Verheij, 2007] and implementations of this approach are
the PyAAL 1 [Podlaszewski et al., 2011] and COMPARG 2 systems. Other direct approaches are
based on characterising the acceptance status of arguments with respect to an AF and semantics
in terms of winning strategies in certain dialogue games on the AF. Algorithms based on this idea
are presented in [Modgil and Caminada, 2009, Thang et al., 2009], Dungine 3 [South et al.,
2008] and Dung-O-Matic 4 being software systems based on this approach. Finally, dynamic
programming approaches use insights from fixed parameter tractability theory to operate on
decompositions of argumentation frameworks [Dvořák et al., 2012a]. dynPARTIX 5 [Dvorák
et al., 2011] is a system implementing this last approach.

Reduction based approaches for implementing abstract argumentation can, themselves, be
classified according to the target formalism into which the reasoning problems defined for ar-
gumentation systems are translated, some of the main ones being propositional logic, answer
set programming, and constraint satisfaction problems. Reductions to constraint satisfiaction
problems are presented in [Amgoud and Devred, 2011, Bistarelli and Santini, 2011] and are im-
plemented in the system ConArg 6. Other options for target formalisms for reducing reasoning
on AFs that have been explored in the literature are sets of equations [Gabbay, 2012a, Gabbay,
2012b] and monadic second order logic [Dvořák et al., 2012b].

[Besnard and Doutre, 2004] seems to be the first work that advocates the use of proposi-
tonal logic for evaluating AFs. The authors of this work use the extensional characterisation of

1http://heen.webfactional.com/
2http://www.ai.rug.nl/~verheij/comparg/
3http://www.argkit.org/
4http://www.arg.dundee.ac.uk/?page_id=279
5http://www.dbai.tuwien.ac.at/proj/argumentation/dynpartix/
6http://www.dmi.unipg.it/francesco.santini/argumentation/conarg.zip

62

http://heen.webfactional.com/
http://www.ai.rug.nl/~verheij/comparg/
http://www.argkit.org/
http://www.arg.dundee.ac.uk/?page_id=279
http://www.dbai.tuwien.ac.at/proj/argumentation/dynpartix/
http://www.dmi.unipg.it/francesco.santini/argumentation/conarg.zip

the semantics for AFs to give encodings into SAT for the verification problem for admissible,
complete and stable extensions. They also present encodings of the problems of enumerating the
stable, admissible, preferred, complete, and grounded extensions of a given AF into the problem
of enumerating different types of models of a propositional formula.

As an example, for a given AF F = (A,R), there is a one to one correspondence between
the models of the formula

adm[F] :=
∧
a∈A((a→

∧
b∈parR(a) ¬b) ∧ (a→

∧
b∈parR(a)(

∨
c∈parR(b) c)))

when projected onto the variables in A and the admissible extensions of F . The preferred
extensions of F can now be characterized as those extensions associated to any subset-maximal
model of adm[F] via this correspondence. A different translation of evaluation of AFs with
respect to the different semantics is carried out in [Gabbay, 2011] via the Peirce-Quine dagger
connective ↓, which is defined as a ↓ b ≡ ¬a ∧ ¬b.

Quantified boolean logic is the target formalism chosen in [Arieli and Caminada, 2012,Arieli
and Caminada, 2013] for translating the reasoning problems associated to AFs and, therefore,
serves as direct inspiration for our work. Specifically, in this work the labelling based defi-
nition of most of the major semantics defined for AFs are used as a basis for reductions of
the enumeration problems for these semantics into the model enumeration problem for quan-
tified boolean logic. Since three labels are considered for the definition of the semantics
({true, false, undefined}), signed variables are used to encode the different labels that can be
assigned to a given argument in an AF and attention is restricted to coherent valuations in very
much the same manner as we have done in Section 3.1 in this work. The possibility to express
maximisation and minimsation directly in quantified boolean logic (versus propositional logic
where this is not possible) plays an important role in the encodings given in [Arieli and Cami-
nada, 2013] for semi-stable, eager, stage, grounded and preferred extensions, the latter of which,
given the similarity between the definitions of this semantics for AFs and ADFs, mirrors the
defining formula of preferred valuations of ADFs presented in Section 3.5.

Contrasting with the “monolithic” reduction methods based on propositional (and quantified
boolean logic) presented until now is the iterative SAT based procedure introduced in [Dvořák
et al., 2012] which is especially well suited for deciding credulous and skeptical acceptance of
arguments in AFs for those semantics for which these problems are complete for the second
level of the polynomial hierarchy (i.e. one call to a SAT solver will not suffice in general). The
basic idea underlying this approach is to iteratively modify propositional queries about some
“less complex” semantics from which the extensions with respect to the semantic of interest can
be derived based on the outcome of these queries when posed to a SAT-solver.

In the case of “preferred” semantics, for example, this procedure amounts to simulating, via
repeated calls of a SAT-solver with queries selecting some subset of the models correspond-
ing to admissible extensions, the search for an example (in the case of credulous acceptance)
or a counterexample (in the case of skeptical acceptance) of a maximal admissible extension
containing, respectively not containing the statement whose acceptance is under scrutiny. This
procedure has been implemented in the form of the system CEGARTIX 7 for acceptance of argu-
ments under preferred, semi-stable and stage semantics. A more recent example of an iterative

7http://www.dbai.tuwien.ac.at/proj/argumentation/cegartix/

63

http://www.dbai.tuwien.ac.at/proj/argumentation/cegartix/

SAT based approach is that presented in [Cerutti et al., 2013], which is tailored to computing
the preferred labellings of AFs. Finally, in [Wallner et al., 2013] algorithms based on extensions
of SAT (computing a backbone or minimal correction sets) are used to implement computing
extensions with respect to semi-stable, ideal, and eager semantics for AFs.

An alternative choice of target formalism for reduction based implentations of abstract ar-
gumentation is the so called “answer set programming” (ASP) paradigm [Brewka et al., 2011],
itself a declarative fragment of logic programming with ever more efficient solvers available
(see, for example, [Gebser et al., 2011, Leone et al., 2006]). A basic kind of logic program,
called a “normal logic program”, is a finite set of rules of the form

a :- b1, ..., bm, not c1, ..., not cn

where “:-” can be likened to the implication symbol of propositional logic (written from right to
left)← and a, b1, ..., bm, c1, ..., cn are “atoms”, i.e. expressions of the form p(t1, ..., tn) with p
being a “predicate name”, each ti (1 ≤ i ≤ n) being either a variable or a constant from a fixed
domain of elements. What is at the right of the symbol “:-” in a rule is called the “body” while
that at the left is the “head”. not stands for “negation as failure” or “default negation”, and “not
a” for some atom a can intuitively be understood as being true unless a is proven.

Answer sets are one of the most prominent approaches devised to define the semantics
of logic programs with default negation and are defined as the subset minimal models of the
so called “Gelfond-Lifschitz reduct” of the program [Gelfond and Lifschitz, 1988]. Deciding
whether a normal propositional (i.e. without variables) program has an answer set is an NP-
complete problem, while higher expressivity is achieved by extending normal logic programs
through further language constructs like disjunction, weight constraints or aggregates [Simons
et al., 2002, Leone et al., 2006].

The most common approach to use answer set programming to evaluate abstract argumenta-
tion frameworks with respect to the different semanticsis by providing a logic program π1 ∪ π2

where π1 are the rules that represent the evaluation of a given framework with respect to the
semantics in question and π2 is a set of rules with empty bodies (the “facts”) that encode the
framework. The answer sets then represent the extensions, labellings or valuations of the AF or
ADF.

A relatively recent survey on the use of answer set programming for the evaluation of Dung
style argumentation frameworks is [Toni and Sergot, 2011] and [Nieves et al., 2008, Wakaki
and Nitta, 2008, Egly et al., 2010] are some of the most important instances of this approach.
Notably, the last of these is also at the base of the ASPARTIX system 8 which, apart from the
semantics for Dung style argumentation frameworks, also implements encodings for preference
based, value based and bipolar frameworks.

Particularly significant for the present work is that the first systems available for reasoning
on abstract dialectical frameworks are also based on the answer set programming paradigm. The
first of these is ADFSys 9 [Ellmauthaler and Wallner, 2012,Ellmauthaler, 2012] which computes
the admissible, model, stable, preferred and well-founded valuations of an ADF as defined in

8http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/
9http://www.dbai.tuwien.ac.at/proj/argumentation/adfsys/

64

http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/
http://www.dbai.tuwien.ac.at/proj/argumentation/adfsys/

the initial work on ADFs [Brewka and Woltran, 2010] based on the propositional representation
of ADFs.

In ADFSys admissible, model and stable semantics are encoded via normal logic programs,
while well-founded and preferred semantics are encoded using disjunctive ASP and optimization
programs respectively for which the problem of deciding whether a program has an answer set
is in ΣP

2 in general. The first allow for disjunction in the head of the rules of a logic program,
while the second include special aggregates which allow to specify subset minimization. Since
some of the semantics as defined in [Brewka and Woltran, 2010] require a distinction between
different link-types of the ADFs, ADFSys also requires that for some of the semantics the link-
type be given as input to the program or otherwise these are determined automatically using
the so called “saturation technique” [Eiter and Gottlob, 1995] which again is achieved using
disjunctive ASP.

DIAMOND [Ellmauthaler and Strass, 2013] is a more recent system for evaluating ADFs
which extends the ASP based approach of ADFSys to the new semantics of ADFs as given
in [Brewka et al., 2013] and builds on the Potsdam Answer Set Solving Collection (Potassco)
[Gebser et al., 2011]. In this case the functional representation of the acceptance conditions is
used, making it possible to implement evaluation of ADFs even with respect to complete and
admissible semantics using normal logic programs via a module which implements the char-
acteristic operator for ADFs. In any case, preferred semantics still requires the use of sub-
set minimization which is implemented via the aggregate for minimization that is also used in
ADFSys. A program that transforms acceptance functions given as propositional formulas into
the functional representation used by DIAMOND completes the software bundle for ADF based
argumentation available at the website dedicated to this system 10.

4.2 Overview of QSAT solving strategies

In the following we give a brief overview of the main approaches that exist to current date for
the development of solvers dedicated to the satisfiability problem of QBFs as well as pointers
to literature on current existing systems. We also introduce the main ideas behind the QSAT
solver used as a reasoner for the system we present here. This section is based on [Woltran,
2003, Kroening and Strichman, 2008, Giunchiglia et al., 2009, Bubeck, 2010, Lonsing, 2012].

Most approaches developed to date for solving the satisfiability problem of QBFs assume the
input formula to be in PCNF, therefore we also focus on these types of formulas here. Also, most
approaches are, quite naturally, motivated by existing approaches in the very well developed
area of (propositional) SAT-solving. Thus, work on this topic got started with the work of
[Büning et al., 1995] where the resolution procedure of propositional logic [Robinson, 1965]
is generalised to the case of quantified boolean logic. This generalisation is referred to as “Q-
resolution” and is defined in terms of the notion of a “Q-resolvent” of two clauses occurring in
a QBF in PCNF:

10https://isysrv.informatik.uni-leipzig.de/diamond

65

https://isysrv.informatik.uni-leipzig.de/diamond

Definition 4.2.1. Let φ be a QBF in PCNF with prefix Q, matrix ψ and c1 and c2 two clauses
in the matrix with c1 containing an existential literal l and c2 containing the literal l̄. Then the
Q-resolvent is obtained from c1 and c2 as follows:

1. Eliminate all occurrences of l and l̄ from c′ := c1 ∨ c2.

2. If c′ is a tautological clause no resolvent exists. Otherwise, the Q-resolvent is obtained
from c′ by removing the universal literals whose level is lower than the level of all the
existential literals in c′.

A resolution proof from a QBF in PCNF φ is a sequence of clauses that are either in the
matrix of φ or obtained via resolution from clauses preceeding them in the sequence. Now,
although naive search for a Q-resolution proof is computationally expensive, it holds that a QBF
in PCNF is false if and only if there exists such a resolution proof ending with a non tautological
clause containing only universal literals. It has also been shown that in some limited scenarios
(mainly evaluating to false) resolution based QSAT solvers can achieve good results compared
to state of the art solvers [Giunchiglia et al., 2001a, Giunchiglia et al., 2001b].

Most existing succesful QSAT solvers to date are based on so called “search” or, alterna-
tively, “variable elimination” approaches. Search based procedures are extensions of the DPLL
method [Davis et al., 1962] which is at the base of most current SAT solvers for propositional
logic. This method follows closely the semantics of QBFs to determine the satisfiability of a
formula.

The following is a formulation of the QDPLL procedure as presented in [Giunchiglia et al.,
2009] based on the specification of this procedure in [Cadoli et al., 1998], which is the first work
to present a QBF-engine based on the DPLL method.

0 function QDPLL(φ, µ):

1 if a contradictory clause is in the matrix of φµ return FALSE

2 if the matrix of φµ is empty return TRUE

3 if l is unit in φµ return QDPLL(φ, µ; l)

4 if l is monotone in φµ return QDPLL(φ, µ; l)

5 l := a literal at the highest level in φµ

6 if l is existential return QDPLL(φ, µ; l) or QDPLL(φ, µ; l̄)

7 else return QDPLL(φ, µ; l) and QDPLL(φ, µ; l̄)

QDPLL’s input is a QBF φ in PCNF and a sequence of literals µ. Initially, φ is the formula
whose satisfiability is under scrutiny and µ is the empty sequence. It is assumed that φ does
not contain any tautological clauses (see Lemma 2.2.2). We remind the reader that φµ denotes
propagation on the sequence of literals µ (see Definition 2.2.8).

66

The core of the algorithm is specified in lines 5-7. Essentially, QDPLL determines the
satisfiability of φ following the recursive definition of the semantics of a QBF as defined in
Definition 2.2.5. Since φ = Q1p1Q2p2...Qnpnψ is in PCNF this boils down to following the
prefix of the formula from left to right considering, for each occurence Qipi (1 ≤ i ≤ n) in
the prenex for Q ∈ {∃,∀}, whether the conditions imposed by the semantics for the formula to
be true hold. In the first call to QDPLL this means checking that Q2p2Q3p3...Qnpnψ[pi/⊥] or
Q2p2Q3p3...Qnpnψ[pi/>] are true if Q1 = ∃. In the case of Q1 = ∀, both of the last formulas
must be shown to be true. This is achieved by calling QDPLL with the result of propagating p1

or (/and) ¬p1 in φ (see Definition 2.2.8). The same process is repeated for successive calls to
Q-DPPL with µ keeping track of the decisions taken when branching out on⊥ or> for variables
occuring in the prenex of φ.

The procedure terminates if this repeated process of branching on ⊥ or > and propagating
accordingly leads to an empty clause (the matrix of φ is not satisfied by µ) or an empty set of
clauses (the matrix of φ is satisfied by µ) in the matrix of φ. These two possibilities are covered
by lines 1 and 2 (the empty clause being a special case of a contradictory clause). Finally, lines
1,3, and 4 of QDPLL are optimizations based on the observations in Lemma 2.2.2. Also, note
that branching out on variables (line 5 in QDPLL) is done according to the order imposed by the
level in which the variables occur in φ. The fact that any variable occurring in the same level can
be considered when branching is due to the fact that quantifiers occurring in the same quantifier
block can be re-ordered while preserving semantical equivalence.

Just as is the case for SAT solvers and DPLL, more recent QSAT solvers differ considerably
from the formulation of QDPLL as given above. One important development is the extension
of clause and cube learning approaches in SAT-solving to the QSAT scenario. Clause learning
approaches, for example, use Q-resolution to add clauses derived from the original formula to the
formula under consideration, aiming at guiding the search process out of regions of the search
space which do not contain solutions [Lonsing, 2012]. Approaches of this sort are presented in
[Giunchiglia et al., 2002,Letz, 2002,Zhang and Malik, 2002a,Zhang and Malik, 2002b]. Another
natural optimization of QDPLL as presented above is to incorporate parallelism. Approaches of
this sort are presented in [Feldmann et al., 2000, Lewis et al., 2009, Klieber et al., 2010, Lewis
et al., 2011].

Non determinism in Q-DPPL as presented above appears in step 5 (as well as when de-
ciding to branch out on QDPLL(φ, µ; l) or QDPLL(φ, µ; l̄) in lines 6 and 7), the order in which
variables are chosen in this step potentially having a great impact on the performance of a QSAT-
solver. According to [Lonsing, 2012] there is to date no comprehensive empirical study of the
effect different branching heuristics may have. On the other hand, [Rintanen, 1999b] presents
ideas based on the inversion of quantifiers to overcome the limitation of QDPLL having to branch
on literals at the highest level. Finally, QDPLL as well as its extensions have been generalised
to QBFs not in PCNF in [Egly et al., 2006, Egly et al., 2009, Goultiaeva et al., 2009, Goultiaeva
and Bacchus, 2010].

The other main family of QSAT-solvers follow what has come to be called the “variable
elimination” approach [Giunchiglia et al., 2009]. The main characteristic of this approach is
that, in order to determine whether a closed QBF φ is true or not, φ is repeatedly transformed
into a semantically equivalent formula ψ where some variable (as well as corresponding quanti-

67

fier) in φ has been eliminated. This procedure continues until the resulting formula can be easily
determined to be true or false. Usually this “variable elimination” procedure increases the size
of the original formula and, hence, the success of algorithms based on this approach is deter-
mined by the amount of that size increase. An important difference between search based and
variable elimination based algorithms in the case of QBFs in PCNF is that, while the first follow
the semantics of QBFs considering variables in the prefix from left to right, the latter usually
consider the variables for elimination from right to left.

The most straightforward variable elimination algorithm for formulas in PCNF repeatedly
applies the equivalences ∃pφ ≡ φ[p/>] ∨ φ[p/⊥] and ∀pφ ≡ φ[p/>] ∧ φ[p/⊥] to quantified
subformulas of the original formula, i.e a formula φ of the form

Q1p1Q2p2...Qnpnψ

with Qi ∈ {∀,∃} for 1 ≤ i ≤ n is expanded into the equivalent QBF φ′

Q1p1Q2p2...Qn−1pn−1(ψ[p/>]⊗ ψ[p/⊥])

where ⊗ is ∧ if Qn = ∀ and ∨ if Qn = ∃. In theory this procedure can be continued until
all variables are eliminated and a SAT solver could then be used on the remaining formula to
determine the satisfiability of φ. In practice this is unfeasible because the number of clauses in
the resulting formula will be m ∗ 2n where m is the number of clauses in the initial formula
φ but various optimisations and generalisations are available which could potentially make this
straightforward approach more efficient. Also, expansion in accordance with the equivalences
∃pφ ≡ φ[p/>] ∨ φ[p/⊥] and ∀pφ ≡ φ[p/>] ∧ φ[p/⊥] can be applied to non PCNF QBFs,
leading to non PCNF solvers. Also data structures which allow for more compact representations
of QBFs can be useful for carrying out these expansions in a more efficient manner [Ayari and
Basin, 2002, Bubeck and Büning, 2007, Lonsing and Biere, 2008, Pigorsch and Scholl, 2009,
Reimer et al., 2011, Janota et al., 2012].

A different technique is to generalise the Davis Putnam (DP) algorithm for the SAT prob-
lem [Davis and Putnam, 1960] to QSAT by eliminating existential variables in a QBF φ in
PCNF via resolution. The basic idea is to consider variables from right to left as they appear
in the prefix of φ, eliminating existentially quantified variables by resolving all clauses in the
matrix of φ in which the variable appears positively with all clauses in which the variable ap-
pears negatively. Variables that are quantified universally can then be eliminated via universal
reduction (see Lemma 2.2.2). Further optimisations are checking for contradictory clauses, and
propagating unit and montone literals as in QDPLL. An algorithm along these lines based on the
presentation in [Giunchiglia et al., 2009] is the following:

0 function QDP(φ):

1 if a contradictory clause is in the matrix of φ return FALSE

2 if the matrix of φ is empty return TRUE

3 if l is unit in φ return QDP(φl)

68

4 if l is monotone in φ return QDP(φl)

5 z := a variable at level 1 in φ

6 if z is existential return QDP(resolve(z, φ))

7 else return QDP(universal − reduction(z, φ))

One of the main drawbacks of QDP as specified above is the exponential explosion of the
size of the input formula that results from resolution. In the worst case, when eliminating a
existential variable p in a formula φ, half of the clauses in the formula contain p and the other
half ¬p in which case m2 −m clauses remain after resolving on p. Therefore, O(m2n) clauses
are generated after resolving n times.

But since there cannot be more than 3n distinct clauses (where n is the number of variables
in the original formula), the above is only true if the creation of duplicate clauses is not pre-
vented. In fact, other redundancies in the clauses generated by resolution can occur and hence
approaches like subsumption removal [Biere, 2004, Zhang, 2005] or methods of preprocess-
ing [Biere et al., 2011, Eén and Biere, 2005, Giunchiglia et al., 2010b] can be applied to reduce
the size of the formula further.

While “search based” and “variable elimination” based QSAT solvers are the main types of
QSAT solvers in existence to date other approaches exist. In particular, it is possible to combine
both approaches as has been proposed in different ways in, for example, [Benedetti, 2005a,
Pulina and Tacchella, 2007]. Alternatively, QSAT can be encoded into a different formalism as
has been done in [Donini et al., 2002] where QBFs are encoded in the language of the model
checker NuSMV.

Finally, other developments worth mentioning are the use of binary decision diagrams for
QBF solving in search based approaches [Audemard and Sais, 2005] as well as variable elimi-
nation approaches [Pan and Vardi, 2004, Jussila et al., 2006, Olivo and Emerson, 2011] and the
use of the technique of skolemisation to eliminate existential variables from a QBF [Benedetti,
2005b, Jussila et al., 2007].

We conclude this section by briefly introducing DepQBF 11 [Lonsing and Biere, 2010a],
which is the QSAT solver we use as back-end of the prototype software sytem we present in
Section 4.3. DepQBF is a search based QSAT solver for QBFs in PCNF based on QDPLL and
incorporating clause and cube learning. The main feature of DepQBF is the integration of so
called “dependency schemes” into QDPLL [Samer and Szeider, 2009]. Informally, dependency
schemes are binary relations on the variables ocurring in a QBF that capture “dependency”
among variables in the sense that ifD is a dependence scheme and x and y two variables ocurring
in a QBF such that (x, y) ∈ D, then the result obtained from choosing y before x in step 5 of
QDPLL as defined in the previous section may not be sound.

QDPLL as defined above is based on the dependency scheme induced on the variables oc-
curring in a QBF by the level in which they appear as defined in Section 2.2. This is reflected by
the fact that variables are selected in step 5 of QDPLL according to their level (from highest to

11http://lonsing.github.io/depqbf/

69

http://lonsing.github.io/depqbf/

lowest). The use of a less restrictive dependency scheme (a dependency schemeD is less restric-
tive than a dependency scheme D′ if and only if |D| ⊆ |D′|) as is the case of DepQBF allows
more freedom in the search of assignments that make a QBF satisfiable. Moreover, in [Lonsing
and Biere, 2010b] the notion of a unit literal as well as clause and cube learning are generalised
to arbitrary dependency schemes and these generalisations are incorporotad into DepQBF. Other
optimisations to QDPLL implemented in DepQBF such as efficient detection of unit and pure
literals, removal of learnt constraints and restarts are described in [Lonsing and Biere, 2010a].

Experiments presented in [Lonsing and Biere, 2010b] show that QDPLL integrated with
the so called “standard dependency scheme” outperforms QDPLL without dependency schemes
based on the prefix of a QBF as well as other dependency schemes such as those based on quan-
tifier trees which are more restrictive. For this reason, DepQBF uses this dependency scheme to
boost QDPLL as its default choice. With this setting, DepQBF was placed first in the main track
of QBFEVAL 2010, the main competition for QSAT solvers, in a score-based ranking.

As a final note about QSAT solvers, it should be observed that a recent trend [Giunchiglia
et al., 2010b, Lonsing and Biere, 2011, Gelder et al., 2012] in the development of QSAT tech-
nology is paying attention to pre-processing techniques on the input to QSAT solvers, which
can lead to an impressive reduction in formula size and solving time in practice. For the proto-
type software system we present in this chapter, in particular, we use Bloqqer 12 [Biere et al.,
2011].

4.3 Description of a prototype system for reasoning on ADFs via
QBFs

In the following we describe the prototype system we have implemented, QADF 13, that en-
ables reasoning on ADFs based on the encodings in quantified boolean logic presented in Section
3. QADF itself can be seen to be somewhat analogous to a compiler which, when given a repre-
sentation of an ADF and a reasoning task of choice, outputs the encoding of the reasoning task
as a QBF. When combined with a QSAT solver of choice, the result is that one has a system
implementing the various reasoning tasks we have considered in this work for ADFs.

At the webpage where QADF is available (see Footnote 13) we also provide a Linux shell
script QADF2Dep that uses the QSAT solver DepQBF described in the previous section as a
backend for a working reasoner for ADFs. Crucial is also that the pre-processing tool Bloqqer
is used to transform the output of QADF before feeding it to DepQBF. More information on
running QADF as well as QADF2Dep is also available on this webpage.

QADF is implemented in the statically typed multi-paradigm programming language Scala
[Odersky et al., 2011], itself implemented in Java. Thus, QADF runs as a Java application,
making it possible to run it on any system where the Java runtime environment is installed. Scala
is especially well suited for writing applications combining the object oriented and functional
programming paradigms. True to the “Scala programming philosophy” in our implementation

12http://fmv.jku.at/bloqqer/
13 http://www.dbai.tuwien.ac.at/proj/adf/qadf

70

http://fmv.jku.at/bloqqer/
http://www.dbai.tuwien.ac.at/proj/adf/qadf

we have also refrained from using constructs of the language that have the potential of generating
side-effects in so far as is reasonable.

Use of the program

QADF is called via command line using the following commands:

qadf [options] semantics inputfile

The parameter “semantics” is required to be one of “-3m” (three valued models), “-2m”
(two valued models), “-adm” (admissible), “-comp” (complete), “-pref” (preferred), “-ground”
(grounded) representing the various semantics defined for ADFs. The optional parameters are
as follows:

-h (print usage information)

-E (generate encoding for existence problem)

-N (generate encoding for non trivial existence problem)

-C s (generate encoding for credulous acceptance of the statement s)

-S s (generate encoding for skeptical acceptance of the statement s)

-o outputfile (output encoding to “outputfile”)

-m (print mapping from integers used as (signed) propositional variables in encoding to

statements they represent in the input ADF)

When called without any of the options for the encodings, QADF generates the encoding for the
enumeration problem. When called without the option “-o outputfile”, QADF prints the encoding
to standard output.

Input: representation of ADFs

For compatibility, for the representation of the ADFs that are given as input to QADF the
propositional representation that is also used in the systems ADFSys and DIAMOND is used.
The input file should contain an expression “statement(s).” and an expression “ac(s,acceptance-
condition).” (note the period at the end of these expressions) for each statement in the ADF,
where “s” is the name of the statement and “acceptance-condition” is the acceptance condition
associated to statement with identifier “s”.

Acceptance conditions, in turn, are constructed out of any of the names of the statements in
the ADF, the primitives “c(v)” denoting > and “c(f)” denoting ⊥ as well as unary and binary
constructors representing the various propositional conectives. This must be in accordance with
the recursive definition of propositional formulas as given in Definition 2.1.2. The symbols for
the connectives used in the input file are “neg” for ¬, “and” for ∧, “or” for ∨, “imp” for→ and
“iff” for↔.

71

Example 4.3.1. The following is the ADF from Example 2.3.1 in the input format of QADF:

statement(a).
statement(b).
statement(c).
statement(d).
ac(a,a).
ac(b,b).
ac(c,and(a,neg(b))).
ac(d,and(neg(a),b)).

Output: Q-DIMACS format

As has already been indicated, QADF outputs the encodings in the Q-DIMACS format, which
is the input format that most currently available QSAT solvers assume. Q-DIMACS is itself
an extension of the DIMACS format for representing propositional formulas in CNF that is
assumed by most SAT solvers in existence to date. Q-DIMACS basically extends DIMACS by
adding lines for each quantifier block in the prefix before the usual DIMACS representation of
the matrix of the QBF being represented.

General structure of the program

We have organised the source code of the project into several packages which group together
related classes:

• main

• parser

• bf

• qbf

• adf

• functions

• encodings

• util

“main” contains the “Main” class (providing entry to the program) and “util” contains miscella-
neous auxilliary classes. The content of the other packages are described in a little more detail
in the following.

72

parser

The package “parser” contains the parser of the input file in the format described in Section
4.3 representing the ADF for which an encoding is to be constructed by QADF. For parsing we
used the “parser combinators” provided by Scala, a library of functions and operators that serve
as building blocks for parsers and have a one to one correspondence to the constructions of a
context free grammar [Odersky et al., 2011].

bf / qbf

These packages contain classes representing propositional (bf) and quantified boolean formu-
las (qbf). They are implemented as Scala “case classes” which allow for easy pattern matching.
This enables to define methods and functions on propositional and quantified boolean formulas
in a recursive manner very much like that which is usual in formal logic.

adf

This pacakge contains a class representing ADFs. ADFs are implemented in a manner very
much reflecting their definition, i.e. as a pair consisting of a Scala Set of boolean or propositional
variables representing the set of statements of an ADF and a Scala Map between propositional
variables and propositional formulas representing the set of acceptance conditions yet allowing
for efficient data access.

functions

The “functions” package contains a singleton object containing various auxilliary functions
useful for the encodings as the functions τ1, τ2, and valj defined in Section 3.1.

encodings

The “encodings” package is obviously the crucial package of the program and contains all
the classes corresponding to the encodings. The various classes corresponding to the different
encodings themselves inherit from general classes for encodings.

The main implementation issue to generate the encodings has been to strike a balance be-
tween modularity and a reasonable degree of efficiency for a prototype system. For the latter
reason the most straightforward approach to implement the encodings which would be to gen-
erate the whole encoding in non PCNF form in memory and do wholesale transformation of the
encodings to (PCNF and) Q-DIMACS has not been the one followed in the implementation we
present. Rather, the encodings are generated more or less directly in PCNF but in a modular
form and transformation to the Q-DIMACS format is also done in a modular fashion. In particu-
lar, transformation functions (for CNF conversion) are only called in the program for conversion
of the acceptance formulas. Slight technical complications then arise because of the need to deal
with labels introduced by the Tseitin procedure described briefly in Sections 2.1 and 2.2 for the
conversion to PCNF as well as the fact that the Q-DIMACS format requires a header (appearing
before the actual formula) stating number of variables and clauses.

73

The use of the Tseitin procedure for transformation into PCNF means the encodings gener-
ated by QADF do not correspond directly to those presented in Chapter 3. Also, although the
Tseitin procedure in principle requires introducing labels for every subformula of the encod-
ing, our implementation is somewhat optimised in order to generate as few labels as possible
while keeping the encodings polynomial in the size of the input ADF; in particular, labels are
introduced for all subformulas only in the case of the acceptance formulas that appear in the
encodings. Finally, “jumping” a level in the polynomial hierarchy (in cases in which, as is the
case of the encoding corresponding to CREDadm, the innermost quantifier block of the original
encoding is quantified universally) because the labels generated by the Tseitin procedure need
to appear quantified existentially in the innermost block of the resulting encoding is avoided by
generating instead a formula that is unsatisfiable if and only if the original encoding is satisfiable.

4.4 Experiments

In this section we finally report on preliminary experiments carried out in order to set a first
benchmark for the performance of QBF-based reasoning systems based on the encodings pre-
sented in this work and as implemented by QADF. We first desribe the experiment set-up and
then proceed to present the results as well as some first conclusions regarding performance that
can be reached based on these experiments.

Experiment setup

Our preliminary experiments focus on the reasoning tasks CREDadm and SKEPTpref , which
are somewhat representative of the different reasoning tasks for ADFs for which we provide
encodings in this work. For comparative purposes, we have also determined the performance of
our system relative to that of DIAMOND described in Section 4.1.

All experiments were carried out on an openSuse (11.4) machine with eight Intel
Xeon processors (2.33 GHz) and 48 GB of memory. Apart from QADF (version 0.1) we use
the latest version of DIAMOND (version 0.9) which, in turn, requires gringo (version 3.0.4),
clasp (version 2.1.5), claspD (version 1.1.4) from the Potassco bundle of answer set pro-
gramming tools. DIAMOND only does valuation enumeration out of the box so we adapted it
(using ASP constraints) in order to carry out credulous and skeptical reasoning. For the ADF
reasoning system based on the QBF encodings presented in this work we use the pre-processing
tool Bloqqer (version 031) and the QSAT solver DepQBF (version 2.0) described in Section
4.2. For simplicity we will call the whole system (i.e. QADF + Bloqqer + DepQBF) just QADF
in the following.

In order to generate random instances of ADFs for our experiments we have used the gen-
erator used to test ADFSys [Ellmauthaler, 2012], which in turn is based on a generator for AFs
used to determine the performance of ASPARTIX and CEGARTIX (see Section 4.1). The basic
idea behind this generator is that a predetermined number of statements are placed on a grid with
directed edges and a certain width, an outgoing edge from one neighbor to the other indicating
that the one neighbor has a certain probability to appear in the acceptance condition of the other.
Apart from this aspect, there are probabilities assigned to the links in the grid governing whether

74

both statements in a link appear in the acceptance condition of each other (“symmetric relation
of attack or support”), whether the statement is mutated into one of c(v) or c(f), and whether
each of the statements (or constant in case the statement has been mutated) in question will ap-
pear negated or not in the relevant acceptance condition. Finally, for constructing the acceptance
conditions there is a probability that determines whether the connective appearing between the
part of the acceptance condition that has already been constructed and a new statement that is
added to the condition is a conjunction or disjunction.

For the experiments we have generated 100 ADF instances, with 20 instances of 10,15,20,25,
and 30 statements. The instances have been generated via the random instance generator de-
scribed in the previous paragraph with the default values of the generator for the parameters
governing the ADF generation process: 7 for the width of the grid, 0.5 for the probability of
symmetry in relation of attack or support, 0.2 for the probability of a variable being changed
into a constant, and 0.5 for the probability of a given connective being a conjunction or disjunc-
tion when constructing the acceptance conditions.

For each ADF instance we also generated reasoning tasks for 3 arbitrarily chosen statements
for each instance (the statements with identifiers 3, 5, and 7 in our instance set). This means that
the total number of instances used in our experiments is 300. Based on first impressions we have
also set a time-out for each computation (each run of QADF or DIAMOND) of 10 minutes (600
seconds). Computation times have been computed via the Unix time utility.

Results

In our experiments, there were no time-outs for either DIAMOND or QADF for CREDadm, all
computations taking below 2.5 seconds to complete. On the other hand, there were a significant
number of time-outs for SKEPTpref for instances with above 20 statements. These are repre-
sented in Table 4.1 with respect to instance sets classified according to the number of statements
the ADFs in them have (note that there are 60 instances per instance set).

Number of statements in ADFs Time-outs DIAMOND Time-outs QADF
10 0 0
15 0 0
20 30 25
25 54 55
30 45 59

Table 4.1: Number of time-outs for SKEPTpref (60 instances per instance set)

Figure 4.1 represents the mean running times of QADF and DIAMOND for CREDadm and
SKEPTpref respectively, where the instances with time-outs (for SKEPTpref) are disregarded
(note in particular that for ADFs with 30 statements there is only one instance for which QADF
does not time-out, while DIAMOND manages to solve 15 instances). The mean running time
is plotted for the instance set of ADFs used for our experiments, partitioned according to the

75

number of statements in the ADFs. The dotted line represents mean running time of QADF and
the continuous line is for DIAMOND.

10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

Number of statements

M
ea

n
ru

nn
in

g
tim

e
(s

ec
)

Computation times for CREDadm

●

●

●

●

●

● QADF
DIAMOND

10 15 20 25 30

0
50

10
0

20
0

Number of statements

M
ea

n
ru

nn
in

g
tim

e
(s

ec
)

●
●

● ●

●

Computation times for SKEPTpref

● QADF
DIAMOND

Figure 4.1: Mean running times of QADF and DIAMOND for CREDadm and SKEPTpref

Finally, Figure 4.2 represents scatter plots for the computation times of QADF vs. DIAMOND
for CREDadm and SKEPTpref respectively. In these graphs each dot corresponds to an instance
in the experiments, the x-axis corresponding to the computation time of DIAMOND and the y-
axis corresponding to the compuation time of QADF for that same instance. In this manner, the
blue diagonal line in the middle of the graphs separates the instances for which DIAMOND has
taken more time to compute (in the area below the line) from those instances for which QADF
has taken more time to compute (area above the line).

76

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

DIAMOND running time (sec)

Q
A

D
F

 r
un

ni
ng

 ti
m

e
(s

ec
)

●●●●●●●●● ●
●●●●● ●●● ●●●●●●

●●●●●●

●●●

●
●●●●●

●

●●
●●●

●
●●●●

● ●
●
●

●●● ●●● ●●●

●●●

●●●●
●● ●●

●
●
●●●●●

●
●● ●●

●
●●●

●●●
●●●

●●●

●
●
●

●

●

●
●●●●●

●
●
●
●●●● ●

●

●●
●●●●●

●●
●

●●●

●●●
●

●●
●●●●
●● ●●●●●

●

●
●●

●●
●●

●
● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●● ●●●●●
●●●●●●●●●●

●●●

●●●●●●●
●
●●●● ●●●●●●

●●●●●●
●●● ●●●

●●●

Computation times for CREDadm

1.5

0 100 200 300 400 500 600

0

100

200

300

400

500

600

DIAMOND running time (sec)

Q
A

D
F

 r
un

ni
ng

 ti
m

e
(s

ec
)

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

● ●
●
●●●

●

●●●

●●● ●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●●●

●●● ●●●●●●●●● ●●● ●●●●●●●●

●

●

●●●●

●

●●●

●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●●

●●●

●●

●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●
●
●●●●●●●●●●
●●

● ●●●●●● ●●●●●●
●
●
● ●●●●●●●●●●●
●
●●●●●● ●●●●●●

●●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

Computation times for SKEPTpref

600

Figure 4.2: Scatter plots of running times of QADF and DIAMOND for CREDadm and SKEPTpref

Discussion

The results presented in Section 4.4 suggest an acceptable performance of QADF for the rea-
soning task CREDadm on instances up to 30 statements, while there are clearly performance is-
sues for SKEPTpref for ADF instances with already above 20 statements. This situation reflects

77

the relative complexity of both tasks as presented in Section 2.4. The difference in complexity
of both reasoning tasks could be considered to at least partially explain the corresponding dif-
ference in computation times, especially taking in account the similar situation for DIAMOND.

The results of the experiments in fact indicate no significant difference between QADF and
DIAMOND (adapted by us to support skeptical and credulous reasoning), except for SKEPTpref
for ADF instances with 30 statements, where QADF “timed-out” on all instances except one,
while DIAMOND managed to solve 15 instances. This could suggest that the answer set pro-
gramming approach (at least for preferred semantics) for solving reasoning problems on ADFs
scales up better than the QBF-based approach (based on the encodings we present in this work),
but given some limits in our experimental set-up and that this difference in performance is quite
specific, more experiments would be necessary to reach a more definite conclusion about this
issue.

In the first place, it should be observed that a limit of the current experimental set up is that
because of the generator used, all the instances in the experiments are of a particular class of
ADFs, the so called “bipolar ADFs” [Ellmauthaler, 2012]. A clearer picture of the performance
of QADF (and DIAMOND) should be reached by dropping this restriction on the experimental
set-up, although it is clearly not expected that the overall performance will improve (given that
bipolar ADFs are a subset of ADFs with relatively “simple” structure).

A second issue is that, as hinted at in Section 4.2, there are quite a few different “flavors” of
QSAT solvers available at the current date and there also various pre-processing techniques that
have the potential of improving performance. Systematic testing of different combinations of
QSAT solvers and pre-processing techniques together with QADF may lead to more insight on
the scope and limits of an implementation of ADF-reasoning based on the encodings presented
in this work. In particular, it may be interesting to try out QSAT solvers that do not require their
input to be in PCNF. As a final note, it should also be observed that QSAT-technology is (also
relative to answer set programming technology) somewhat in its infancy so it is reasonable to
assume that further advances in this area will have a positive impact on QBF-based reasoners
for ADFs.

78

CHAPTER 5
Conclusion and future work

In this work we have presented reductions of some of the main reasoning tasks defined for the
relatively new and powerful formalism for abstract argumentation, ADFs, into important reason-
ing problems of the relatively well established formalism of quantified boolean logic. Specif-
ically, we have given reductions for the valuation enumeration problem with respect to three
valued models and two valued models, as well as admissible, complete, preferred, and grounded
valuations into the problem of enumerating the models of a QBF. We have also provided re-
ductions of the existence, non-trivial existence, and credulous as well as skeptical acceptance
decision problems for ADFs with respect to the same semantics into the satisfiability problem
of QBFs.

An important motivating factor for our work has been the strong link that exists between
quantified boolean logic and the polynomial hierarchy, there being a prototypical QSAT problem
for QBFs restricted to a certain prefix type for each level of the polynomial hierarchy. Given that
the complexity of the decision problems we have considered in this work are complete for up
to the third level of the polynomial hierarchy, this has allowed us to provide not only a uniform
axiomatization of the reasoning tasks for ADFs in quantified boolean logic but also complexity
sensitive encodings in the sense that the encodings have the prefix type corresponding to the
level of the polynomial hierarchy for which the reasoning task they encode is complete. The
fact that all of the encodings we present in this work express, in a relatively direct and “natural”
manner, abstract necessary and sufficient conditions that capture the reasoning tasks we have
investigated confirms the suitability of quantified boolean logic for the task we have set out to
accomplish.

Moreover, we have been able to present the encodings in a modular fashion, also making
repeated use of many of the modules. This suggests also that our encodings could be easily
adapted either to provide encodings of new semantics (in so far as there is some relation be-
tween these and the semantics we consider in this work) for ADFs or restrict our encodings to
certain special types of ADFs. This latter issue would be especially useful to investigate; in par-
ticular, it would be of considerable practical value (given that bipolar ADFs appear frequently
in practical scenarios) to specialize our encodings to provide complexity-sensitive encodings of

79

the reasoning tasks we have considered for bipolar ADFs.
An issue that may also be of some interest is to study the uses (for argumentation) and effect

of extending ADFs by allowing many valued valuations (i.e. ADFs whose graph representation
allows for acceptance conditions mapping parents of statements to more than two values). It is
again plausible to assume that the general encoding strategy we present in this work could be
easily adapted to (extensions of) semantics defined for these kinds of scenarios.

Turning to the more practical contributions of our work, by providing complexity-sensitive
encodings for important reasoning tasks for ADFs we also provide a foundation for the imple-
mentation of reasoning systems for ADFs via QSAT solvers. Further on, we have carried out
some first steps in assessing the convenience of this implementation strategy by having provided
a prototype system based on the encodings presented in this work. We have also carried out
preliminary experiments which show that reasoning on ADFs with up to 30 statments can be
solved by our system within 2.5 seconds for credulous acceptance of statements with respect
to admissible semantics. On the other hand, the results for skeptical reasoning with respect to
preferred semantics, with high mean computation times and large amounts of time-outs for ADF
instaces with more than 20 statments, are more discouraging.

The experiments on which we report on in this work suggest no clear advantage (nor disad-
vantage) of using the implementation approach based on quantified boolean logic (based on our
encodings) to the answer set programming approach underlying the DIAMOND system. Never-
theless, further work would be necessary to assess more accurately the boundaries and scope of
an implementation based on the encodings presented in this work. In particular, the experiments
which we report on in this work are all based on instance sets containing only bipolar ADFs
which are of a “lower complexity” and it would be useful to determine the relative performances
of DIAMOND and QADF for ADFs not restricted to this type. Also, using a different combination
of pre-processing technique and QSAT-solver may also lead to an improvement in performance,
so it certainly would be of value to carry out experiments to determine if this is the case. In
particular, it would be interesting to study if there is an improvement in the performance when
making use of QSAT solvers which admit non-PCNF fromulas as input.

To conclude this work on an optimistic note, it should finally be observed that QSAT-solver
technology is somewhat in its infancy and, hence, further advances in this area, which would
also have a positive impact on implementations based on the encodings we present in this work,
can be expected. In fact, the encodings we provide serve as interesting benchmarks that can
contribute to the development of QSAT solvers.

80

Bibliography

[Amgoud et al., 2005] Amgoud, L., Belabbes, S., and Prade, H. (2005). Towards a Formal
Framework for the Search of a Consensus Between Autonomous Agents. In Parsons, S.,
Maudet, N., Moraitis, P., and Rahwan, I., editors, Proceedings of the Second International
Workshop on Argumentation in Multi-Agent Systems (ArgMAS-2005), volume 4049 of Lec-
ture Notes in Computer Science, pages 264–278. Springer.

[Amgoud and Cayrol, 2002] Amgoud, L. and Cayrol, C. (2002). Inferring from Inconsis-
tency in Preference-Based Argumentation Frameworks. Journal of Automated Reasoning,
29(2):125–169.

[Amgoud and Devred, 2011] Amgoud, L. and Devred, C. (2011). Argumentation Frameworks
as Constraint Satisfaction Problems. In Benferhat, S. and Grant, J., editors, Proceedings of the
Fifth International Conference on Scalable Uncertainty Management (SUM-2011), volume
6929 of Lecture Notes in Computer Science, pages 110–122. Springer.

[Amgoud and Prade, 2009] Amgoud, L. and Prade, H. (2009). Using Arguments for Making
and Explaining Decisions. Artificial Intelligence, 173(3-4):413–436.

[Arieli, 2007] Arieli, O. (2007). Paraconsistent Reasoning and Preferential Entailments by
Signed Quantified Boolean Formulae. ACM Transations on Computuational Logic, 8(3):1–
29.

[Arieli and Caminada, 2012] Arieli, O. and Caminada, M. (2012). A General QBF-Based For-
malization of Abstract Argumentation Theory. In Verheij, B., Szeider, S., and Woltran,
S., editors, Proceedings of the Fourth Conference on Computational Models of Argument
(COMMA-2012), volume 245 of Frontiers in Artificial Intelligence and Applications, pages
105–116. IOS Press.

[Arieli and Caminada, 2013] Arieli, O. and Caminada, M. W. A. (2013). A QBF-Based For-
malization of Abstract Argumentation Semantics. Journal of Applied Logic, 11(2):229–252.

[Arieli and Denecker, 2003] Arieli, O. and Denecker, M. (2003). Reducing Preferential Para-
consistent Reasoning to Classical Entailment. Journal of Logic and Computation, 13(4):557–
580.

81

[Audemard and Sais, 2005] Audemard, G. and Sais, L. (2005). A Symbolic Search Based Ap-
proach for Quantified Boolean Formulas. In Bacchus, F. and Walsh, T., editors, Proceedings
of the Eighth International Conference on the Theory and Applications of Satisfiability Test-
ing (SAT-2005), volume 3569 of Lecture Notes in Computer Science, pages 16–30. Springer.

[Ayari and Basin, 2002] Ayari, A. and Basin, D. A. (2002). QUBOS: Deciding Quantified
Boolean Logic Using Propositional Satisfiability Solvers. In Aagaard, M. and O’Leary,
J. W., editors, Proceedings of the Fourth International Conference on Formal Methods in
Computer-Aided Design (FMCAD-2002), volume 2517 of Lecture Notes in Computer Sci-
ence, pages 187–201. Springer.

[Baroni et al., 2011a] Baroni, P., Caminada, M., and Giacomin, M. (2011a). An Introduction to
Argumentation Semantics. Knowledge Engineering Review, 26(4):365–410.

[Baroni et al., 2011b] Baroni, P., Cerutti, F., Giacomin, M., and Guida, G. (2011b). AFRA:
Argumentation Framework with Recursive Attacks. International Journal of Approximate
Reasoning, 52(1):19–37.

[Baroni and Giacomin, 2007] Baroni, P. and Giacomin, M. (2007). On Principle-Based Evalua-
tion of Extension-Based Argumentation Semantics. Artificial Intelligence, 171(10–15):675–
700.

[Baroni and Giacomin, 2009] Baroni, P. and Giacomin, M. (2009). Semantics of Abstract Argu-
ment Systems. In Simari, G. and Rahwan, I., editors, Argumentation in Artificial Intelligence,
pages 25–44. Springer.

[Bench-Capon et al., 2009] Bench-Capon, T., Prakken, H., and Sartor, G. (2009). Argumenta-
tion in Legal Reasoning. In Simari, G. and Rahwan, I., editors, Argumentation in Artificial
Intelligence, pages 363–382. Springer.

[Bench-Capon, 2003] Bench-Capon, T. J. M. (2003). Persuasion in Practical Argument Using
Value-Based Argumentation Frameworks. Journal of Logic and Computation, 13(3):429–
448.

[Bench-Capon and Dunne, 2007] Bench-Capon, T. J. M. and Dunne, P. E. (2007). Argumenta-
tion in Artificial Intelligence. Artificial Intelligence, 171(10-15):619–641.

[Benedetti, 2005a] Benedetti, M. (2005a). Quantifier Trees for QBFs. In Bacchus, F. and Walsh,
T., editors, Proceedings of the Eighth International Conference on Theory and Applications of
Satisfiability Testing (SAT-2005), volume 3569 of Lecture Notes in Computer Science, pages
378–385. Springer.

[Benedetti, 2005b] Benedetti, M. (2005b). sKizzo: A Suite to Evaluate and Certify QBFs. In
Nieuwenhuis, R., editor, Proceedings of the Twentieth International Conference on Auto-
mated Deduction (CADE-20), volume 3632 of Lecture Notes in Computer Science, pages
369–376. Springer.

82

[Benedetti and Mangassarian, 2008] Benedetti, M. and Mangassarian, H. (2008). QBF-Based
Formal Verification: Experience and Perspectives. Journal on Satisfiability, Boolean Model-
ing and Computation, 5(1-4):133–191.

[Besnard and Doutre, 2004] Besnard, P. and Doutre, S. (2004). Checking the Acceptability of
a Set of Arguments. In Delgrande, J. P. and Schaub, T., editors, Proceedings of the Tenth
International Workshop on Non-Monotonic Reasoning (NMR-2004), pages 59–64.

[Besnard and Hunter, 2005] Besnard, P. and Hunter, A. (2005). Practical First-Order Argumen-
tation. In Veloso, M. M. and Kambhampati, S., editors, Proceedings of the Twentieth National
Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference (AAAI-2005), pages 590–595. AAAI Press / The MIT Press.

[Besnard and Hunter, 2008] Besnard, P. and Hunter, A. (2008). Elements of Argumentation.
MIT Press.

[Besnard et al., 2005] Besnard, P., Schaub, T., Tompits, H., and Woltran, S. (2005). Represent-
ing Paraconsistent Reasoning via Quantified Propositional Logic. In Bertossi, L. E., Hunter,
A., and Schaub, T., editors, Inconsistency Tolerance, volume 3300 of Lecture Notes in Com-
puter Science, pages 84–118. Springer.

[Biere, 2004] Biere, A. (2004). Resolve and Expand. In Hoos, H. H. and Mitchell, D. G.,
editors, Proceedings of the Seventh International Conference on Theory and Applications of
Satisfiability Testing (SAT-2004), volume 3542 of Lecture Notes in Computer Science, pages
59–70. Springer.

[Biere, 2009] Biere, A. (2009). Bounded Model Checking. In Biere, A., Heule, M., van Maaren,
H., and Walsh, T., editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, pages 457–481. IOS Press.

[Biere et al., 2011] Biere, A., Lonsing, F., and Seidl, M. (2011). Blocked Clause Elimination
for QBF. In Bjørner, N. and Sofronie-Stokkermans, V., editors, Proceedings of the Twenty-
Third International Conference on Automated Deduction (CADE-11), volume 6803 of Lec-
ture Notes in Computer Science, pages 101–115. Springer.

[Bistarelli and Santini, 2011] Bistarelli, S. and Santini, F. (2011). ConArg: A Constraint-Based
Computational Framework for Argumentation Systems. In Khoshgoftaar, T. M. and Zhu,
X. H., editors, Proceedings of the Twenty-Third IEEE International Conference on Tools with
Artificial Intelligence (ICTAI-2011), pages 605–612. IEEE Computer Society Press.

[Blackburn et al., 2001] Blackburn, P., de Rijke, M., and Venema, Y. (2001). Modal Logic,
volume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press.

[Bondarenko et al., 1997] Bondarenko, A., Dung, P. M., Kowalski, R. A., and Toni, F. (1997).
An Abstract, Argumentation-Theoretic Approach to Default Reasoning. Artificial Intelli-
gence, 93(1):63–101.

83

[Bondarenko et al., 1993] Bondarenko, A., Toni, F., and Kowalski, R. A. (1993). An
Assumption-Based Framework for Non-Monotonic Reasoning. In Pereira, L. M. and Nerode,
A., editors, Proceedings of the Second International Workshop on Logic Programming and
Non-Monotonic Reasoning (LPNMR-1993), pages 171–189. The MIT Press.

[Brewka et al., 2011] Brewka, G., Eiter, T., and Truszczyński, M. (2011). Answer Set Program-
ming at a Glance. Communications of the ACM, 54(12):92–103.

[Brewka et al., 2013] Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J. P., and Woltran, S.
(2013). Abstract Dialectical Frameworks Revisited. In Rossi, F., editor, Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI-2013), pages
803–809. AAAI Press / IJCAI.

[Brewka and Woltran, 2010] Brewka, G. and Woltran, S. (2010). Abstract Dialectical Frame-
works. In Lin, F., Sattler, U., and Truszczynski, M., editors, Proceedings of the Twelfth In-
ternational Conference on the Principles of Knowledge Representation and Reasoning (KR-
2010). AAAI Press.

[Bryant et al., 2003] Bryant, R. E., Lahiri, S. K., and Seshia, S. A. (2003). Convergence Testing
in Term-Level Bounded Model Checking. In Geist, D. and Tronci, E., editors, Proceedings
of the Twelfth Advanced Research Working Conference on Correct Hardware Design and
Verification Methods (CHARME-2003), volume 2860 of Lecture Notes in Computer Science,
pages 348–362. Springer.

[Bubeck, 2010] Bubeck, U. (2010). Model-Based Transformations for Quantified Boolean For-
mulas. PhD thesis, Universität Paderborn.

[Bubeck and Büning, 2007] Bubeck, U. and Büning, H. K. (2007). Bounded Universal Expan-
sion for Preprocessing QBF. In Marques-Silva, J. and Sakallah, K. A., editors, Procedings
of the Tenth International Conference on the Theory and Applications of Satisfiability Testing
(SAT-2007), volume 4501 of Lecture Notes in Computer Science, pages 244–257. Springer.

[Büning and Bubeck, 2009] Büning, H. K. and Bubeck, U. (2009). Theory of Quantified
Boolean Formulas. In Biere, A., Heule, M., van Maaren, H., and Walsh, T., editors, Hand-
book of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 735–760. IOS Press.

[Büning et al., 1995] Büning, H. K., Karpinski, M., and Flögel, A. (1995). Resolution for Quan-
tified Boolean Formulas. Information and Computation, 117(1):12–18.

[Büning and Letterman, 1999] Büning, H. K. and Letterman, T. (1999). Propositional Logic:
Deduction and Algorithms. Cambridge University Press.

[Cadoli et al., 1998] Cadoli, M., Giovanardi, A., and Schaerf, M. (1998). An Algorithm to
Evaluate Quantified Boolean Formulae. In Mostow, J. and Rich, C., editors, Proceedings
of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), pages 262–267.
AAAI Press/MIT Press.

84

[Caminada and Amgoud, 2007] Caminada, M. and Amgoud, L. (2007). On the Evaluation of
Argumentation Formalisms. Artificial Intelligence, 171(5-6):286–310.

[Caminada and Gabbay, 2009] Caminada, M. W. A. and Gabbay, D. M. (2009). A Logical
Account of Formal Argumentation. Studia Logica, 93(2-3):109–145.

[Cartwright and Atkinson, 2009] Cartwright, D. and Atkinson, K. (2009). Using Computational
Argumentation to Support E-participation. IEEE Intelligent Systems, 24(5):42–52.

[Cayrol and Lagasquie-Schiex, 2005] Cayrol, C. and Lagasquie-Schiex, M. (2005). On the Ac-
ceptability of Arguments in Bipolar Argumentation Frameworks. In Godo, L., editor, Sym-
bolic and Quantitative Approaches to Reasoning with Uncertainty, volume 3571 of Lecture
Notes in Computer Science, pages 378–389. Springer.

[Cerutti et al., 2013] Cerutti, F., Dunne, P. E., Giacomin, M., and Vallati, M. (2013). Comput-
ing Preferred Extensions in Abstract Argumentation: A SAT-Based Approach. In Black, E.,
Modgil, S., and Oren, N., editors, Proceedings of the Second International Workshop of The-
ory and Applications of Formal Argumentation (TAFA-2013), volume 8306 of Lecture Notes
in Computer Science, pages 176–193. Springer.

[Charwat et al., 2013] Charwat, G., Dvořák, W., Gaggl, S. A., Wallner, J. P., and Woltran, S.
(2013). Implementing Abstract Argumentation - A Survey. Technical Report DBAI-TR-
2013-82, Technische Universität Wien.

[Chesñevar et al., 2000] Chesñevar, C. I., Maguitman, A. G., and Loui, R. P. (2000). Logical
Models of Argument. ACM Computing Surveys, 32(4):337–383.

[Cook, 1971] Cook, S. (1971). The Complexity of Theorem-Proving Procedures. In Conference
Record of Third Annual ACM Symposium on Theory of Computing (STOC-71), pages 151–
158.

[Coste-Marquis et al., 2005] Coste-Marquis, S., Devred, C., and Marquis, P. (2005). Symmetric
Argumentation Frameworks. In Godo, L., editor, Proceedings of the Eighth European Confer-
ence on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-
2005), volume 3571 of Lecture Notes in Computer Science, pages 317–328. Springer.

[Coste-Marquis et al., 2006] Coste-Marquis, S., Devred, C., and Marquis, P. (2006). Con-
strained Argumentation Frameworks. In Doherty, P., Mylopoulos, J., and Welty, C. A.,
editors, Proceedings of the Tenth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR-2006), pages 112–122. AAAI Press.

[Davis et al., 1962] Davis, M., Logemann, G., and Loveland, D. (1962). A Machine Program
for Theorem Proving. Communications of the ACM, 5(7):394–397.

[Davis and Putnam, 1960] Davis, M. and Putnam, H. (1960). A Computing Procedure for
Quantification Theory. Journal of the ACM, 7(3):201–215.

85

[Dimopoulos and Torres, 1996] Dimopoulos, Y. and Torres, A. (1996). Graph Theoretical
Structures in Logic Programs and Default Theories. Theoretical Computer Science, 170(1-
2):209–244.

[Donini et al., 2002] Donini, F. M., Liberatore, P., Massacci, F., and Schaerf, M. (2002). Solv-
ing QBF by SMV. In Fensel, D., Giunchiglia, F., McGuinness, D. L., and Williams, M.-A.,
editors, Proceedings of the Eighth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR-02), pages 578–592. Morgan Kaufmann.

[Doutre and Mengin, 2001] Doutre, S. and Mengin, J. (2001). Preferred Extensions of Argu-
mentation Frameworks: Query Answering and Computation. In Goré, R., Leitsch, A., and
Nipkow, T., editors, Proceedings of the First International Joint Conference on Automated
Reasoning (IJCAR-2001), volume 2083 of Lecture Notes in Computer Science, pages 272–
288. Springer.

[Dung, 1995] Dung, P. M. (1995). On the Acceptability of Arguments and its Fundamental
Role in Nonmonotonic Reasoning, Logic Programming and N-person Games. Artificial In-
telligence, 77(2):321–357.

[Dunne and Bench-Capon, 2002] Dunne, P. E. and Bench-Capon, T. J. M. (2002). Coherence
in Finite Argument Systems. Artificial Intelligence, 141(1/2):187–203.

[Dvorák et al., 2011] Dvorák, W., Morak, M., Nopp, C., and Woltran, S. (2011). dynPARTIX
- A Dynamic Programming Reasoner for Abstract Argumentation. In Tompits, H., Abreu,
S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., and Wolf, A., editors, Proceedings of the
Nineteenth International Conference on the Applications of Declarative Programming and
Knowledge Management (INAP-2011) and Twenty-Fifth Workshop on Logic Programming
(WLP-2011), volume 7773 of Lecture Notes in Computer Science, pages 259–268. Springer.

[Dvořák et al., 2012] Dvořák, W., Järvisalo, M., Wallner, J. P., and Woltran, S. (2012).
Complexity-Sensitive Decision Procedures for Abstract Argumentation. In Brewka, G., Eiter,
T., and McIlraith, S. A., editors, Proceedings of the Thirteenth International Conference
on Principles of Knowledge Representation and Reasoning (KR-2012), pages 54–64. AAAI
Press.

[Dvořák et al., 2012a] Dvořák, W., Pichler, R., and Woltran, S. (2012a). Towards Fixed-
Parameter Tractable Algorithms for Abstract Argumentation. Artificial Intelligence, 186:1–
37.

[Dvořák et al., 2012b] Dvořák, W., Szeider, S., and Woltran, S. (2012b). Abstract Argumenta-
tion via Monadic Second Order Logic. In Hüllermeier, E., Link, S., Fober, T., and Seeger,
B., editors, Proceedings of the Sixth International Conference on Scalable Uncertainty Man-
agement (SUM-2012), volume 7520 of Lecture Notes in Computer Science, pages 85–98.
Springer.

[Dvořák and Woltran, 2011] Dvořák, W. and Woltran, S. (2011). On the Intertranslatability of
Argumentation Semantics. Journal of Artificial Intelligence Research, 41:445–475.

86

[Eén and Biere, 2005] Eén, N. and Biere, A. (2005). Effective Preprocessing in SAT Through
Variable and Clause Elimination. In Bacchus, F. and Walsh, T., editors, Proceedings of the
Eighth International Conference on Theory and Applications of Satisfiability Testing (SAT-
2005), volume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer.

[Egly et al., 2000] Egly, U., Eiter, T., Tompits, H., and Woltran, S. (2000). Solving Ad-
vanced Reasoning Tasks Using Quantified Boolean Formulas. In Kautz, H. A. and Porter,
B. W., editors, Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on on Innovative Applications of Artificial Intelligence (AAAI/IAAI-
2000), pages 417–422. AAAI Press / The MIT Press.

[Egly et al., 2010] Egly, U., Gaggl, S. A., and Woltran, S. (2010). Answer-Set Programming
Encodings for Argumentation Frameworks. Argument & Computation, 1(2):147–177.

[Egly et al., 2006] Egly, U., Seidl, M., and Woltran, S. (2006). A Solver for QBFs in Non-
prenex Form. In Brewka, G., Coradeschi, S., Perini, A., and Traverso, P., editors, Proceed-
ings of the Seventeenth European Conference on Artificial Intelligence Including Prestigious
Applications of Intelligent Systems (ECAI/PAIS-2006), volume 141 of Frontiers in Artificial
Intelligence and Applications, pages 477–481. IOS Press.

[Egly et al., 2009] Egly, U., Seidl, M., and Woltran, S. (2009). A Solver for QBFs in Negation
Normal Form. Constraints, 14(1):38–79.

[Egly and Woltran, 2006] Egly, U. and Woltran, S. (2006). Reasoning in Argumentation Frame-
works Using Quantified Boolean Formulas. In Dunne, P. E. and Bench-Capon, T. J. M., edi-
tors, Proceedings of the First Conference on Computational Models of Argument (COMMA-
2006), volume 144 of Frontiers in Artificial Intelligence and Applications, pages 133–144.
IOS Press.

[Eiter and Gottlob, 1995] Eiter, T. and Gottlob, G. (1995). On the Computational Cost of Dis-
junctive Logic Programming: Propositional Case. Annals of Mathematics and Artificial In-
telligence, 15(3-4):289–323.

[Ellmauthaler, 2012] Ellmauthaler, S. (2012). Abstract Dialectical Frameworks: Properties,
Complexity, and Implementation. Master’s thesis, Technische Universität Wien, Institut für
Informationssysteme.

[Ellmauthaler and Strass, 2013] Ellmauthaler, S. and Strass, H. (2013). The DIAMOND Sys-
tem for Argumentation: Preliminary Report. In Fink, M. and Lierler, Y., editors, Proceed-
ings of the Sixth International Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP-2013), pages 97–108.

[Ellmauthaler and Wallner, 2012] Ellmauthaler, S. and Wallner, J. P. (2012). Evaluating Ab-
stract Dialectical Frameworks with ASP. In Verheij, B., Szeider, S., and Woltran, S., editors,
Proceedings of the Fourth International Conference on Computational Models of Argument
(COMMA-2012), volume 245 of Frontiers in Artificial Intelligence and Applications, pages
505–506. IOS Press.

87

[Feldmann et al., 2000] Feldmann, R., Monien, B., and Schamberger, S. (2000). A Distributed
Algorithm to Evaluate Quantified Boolean Formulae. In Kautz, H. A. and Porter, B. W.,
editors, Proceedings of the Seventeenth National Conference on Artificial Intelligence and
Twelfth Conference on on Innovative Applications of Artificial Intelligence (AAAI/IAAI-
2000), pages 285–290. AAAI Press / The MIT Press.

[Ferraris and Giunchiglia, 2000] Ferraris, P. and Giunchiglia, E. (2000). Planning as Satisfia-
bility in Nondeterministic Domains. In Kautz, H. A. and Porter, B. W., editors, Proceedings
of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on
Innovative Applications of Artificial Intelligence (AAAI/IAAI-2000), pages 748–753. AAAI
Press / The MIT Press.

[Gabbay, 2011] Gabbay, D. M. (2011). Dung’s Argumentation is Essentially Equivalent to Clas-
sical Propositional Logic with the Peirce-Quine Dagger. Logica Universalis, 5(2):255–318.

[Gabbay, 2012a] Gabbay, D. M. (2012a). An Equational Approach to Argumentation Networks.
Argument & Computation, 3(2-3):87–142.

[Gabbay, 2012b] Gabbay, D. M. (2012b). The Equational Approach to CF2 Semantics. In
Verheij, B., Szeider, S., and Woltran, S., editors, Proceedings of the Fourth Conference on
Computational Models of Argument (COMMA-2012), volume 245 of Frontiers in Artificial
Intelligence and Applications, pages 141–152. IOS Press.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and Intractabil-
ity. W. H. Freeman.

[Gebser et al., 2011] Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., and
Schneider, M. T. (2011). Potassco: The Potsdam Answer Set Solving Collection. AI Com-
munications, 24(2):107–124.

[Gelder et al., 2012] Gelder, A. V., Wood, S. B., and Lonsing, F. (2012). Extended Failed-
Literal Preprocessing for Quantified Boolean Formulas. In Cimatti, A. and Sebastiani, R.,
editors, Proceedings of the Fifteenth International Conference on Theory and Applications of
Satisfiability Testing (SAT-2012), volume 7317 of Lecture Notes in Computer Science, pages
86–99. Springer.

[Gelfond and Lifschitz, 1988] Gelfond, M. and Lifschitz, V. (1988). The Stable Model Seman-
tics for Logic Programming. In Kowalski, R. A. and Bowen, K. A., editors, Proceedings of
the Fifth International Conference on Logic Programming (ICLP-1988), pages 1070–1080.
MIT Press.

[Giunchiglia et al., 2009] Giunchiglia, E., Marin, P., and Narizzano, M. (2009). Reasoning
with Quantified Boolean Formulas. In Biere, A., Heule, M., van Maaren, H., and Walsh,
T., editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications, pages 761–780. IOS Press.

88

[Giunchiglia et al., 2010a] Giunchiglia, E., Marin, P., and Narizzano, M. (2010a). QuBE7.0.
Journal on Satisfiability, Boolean Modeling and Computation, 7(2-3):83–88.

[Giunchiglia et al., 2010b] Giunchiglia, E., Marin, P., and Narizzano, M. (2010b). sQueezeBF:
An Effective Preprocessor for QBFs Based on Equivalence Reasoning. In Strichman, O. and
Szeider, S., editors, Proceedings of the Thirteenth International Conference on Theory and
Applications of Satisfiability Testing (SAT-2010), volume 6175 of Lecture Notes in Computer
Science, pages 85–98. Springer.

[Giunchiglia et al., 2001a] Giunchiglia, E., Narizzano, M., and Tacchella, A. (2001a). An Anal-
ysis of Backjumping and Trivial Truth in Quantified Boolean Formulas Satisfiability. In Es-
posito, F., editor, Proceedings of the Seventh Congress of the Italian Association for Artificial
Intelligence (AI*IA-2001), volume 2175 of Lecture Notes in Computer Science, pages 111–
122. Springer.

[Giunchiglia et al., 2001b] Giunchiglia, E., Narizzano, M., and Tacchella, A. (2001b). QUBE:
A System for Deciding Quantified Boolean Formulas Satisfiability. In Goré, R., Leitsch, A.,
and Nipkow, T., editors, Proceedings of the First International Joint Conference on Auto-
mated Reasoning (IJCAR-2001), volume 2083 of Lecture Notes in Computer Science, pages
364–369. Springer.

[Giunchiglia et al., 2002] Giunchiglia, E., Narizzano, M., and Tacchella, A. (2002). Learn-
ing for Quantified Boolean Logic Satisfiability. In Dechter, R. and Sutton, R. S., editors,
Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth
Conference on Innovative Applications of Artificial Intelligence (AAAI-2002), pages 649–
654. AAAI Press / The MIT Press.

[Giunchiglia et al., 2007] Giunchiglia, E., Narizzano, M., and Tacchella, A. (2007). Quantifier
Structure in Search-Based Procedures for QBFs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 26(3):497–507.

[Goultiaeva and Bacchus, 2010] Goultiaeva, A. and Bacchus, F. (2010). Exploiting QBF Du-
ality on a Circuit Representation. In Fox, M. and Poole, D., editors, Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-2010). AAAI Press.

[Goultiaeva and Bacchus, 2013] Goultiaeva, A. and Bacchus, F. (2013). Recovering and Uti-
lizing Partial Duality in QBF. In Järvisalo, M. and Gelder, A. V., editors, Proceedings of
the Sixteenth International Conference on Theory and Applications of Satisfiability Testing
(SAT-2013), volume 7962 of Lecture Notes in Computer Science, pages 83–99. Springer.

[Goultiaeva et al., 2009] Goultiaeva, A., Iverson, V., and Bacchus, F. (2009). Beyond CNF: A
Circuit-Based QBF Solver. In Kullmann, O., editor, Proceedings of the Twelfth International
Conference on Theory and Applications of Satisfiability Testing (SAT-2009), volume 5584 of
Lecture Notes in Computer Science, pages 412–426. Springer.

[Hölldobler, 2011] Hölldobler, S. (2011). Logik und Logikprogrammierung: Band 1: Grundla-
gen. Kolleg Synchron. Synchron.

89

[Huth and Ryan, 2004] Huth, M. and Ryan, M. (2004). Logic in Computer Science: Modelling
and Reasoning About Systems. Cambridge University Press.

[Janota et al., 2012] Janota, M., Klieber, W., Marques-Silva, J., and Clarke, E. M. (2012). Solv-
ing QBF with Counterexample Guided Refinement. In Cimatti, A. and Sebastiani, R., editors,
Proceedings of the Fifteenth International Conference on the Theory and Applications of Sat-
isfiability Testing (SAT-2012), volume 7317 of Lecture Notes in Computer Science, pages
114–128. Springer.

[Järvisalo and Gelder, 2013] Järvisalo, M. and Gelder, A. V., editors (2013). Proceedings of the
Sixteenth International Conference on Theory and Applications of Satisfiability Testing (SAT
2013), volume 7962 of Lecture Notes in Computer Science. Springer.

[Johnson and Blair, 1994] Johnson, R. and Blair, J. (1994). Logical Self-Defense. McGraw
Hill-Ryerson.

[Jussila et al., 2007] Jussila, T., Biere, A., Sinz, C., Kröning, D., and Wintersteiger, C. M.
(2007). A First Step Towards a Unified Proof Checker for QBF. In Marques-Silva, J. and
Sakallah, K. A., editors, Proceedings of the Tenth International Conference on Theory and
Applications of Satisfiability Testing (SAT-2007), volume 4501 of Lecture Notes in Computer
Science, pages 201–214. Springer.

[Jussila et al., 2006] Jussila, T., Sinz, C., and Biere, A. (2006). Extended Resolution Proofs for
Symbolic SAT Solving with Quantification. In Biere, A. and Gomes, C. P., editors, Proceed-
ings of the Ninth International Conference on Theory and Applications of Satisfiability Test-
ing (SAT-2006), volume 4121 of Lecture Notes in Computer Science, pages 54–60. Springer.

[Kakas and Moraitis, 2006] Kakas, A. C. and Moraitis, P. (2006). Adaptive Agent Negotiation
via Argumentation. In Nakashima, H., Wellman, M. P., Weiss, G., and Stone, P., editors, Pro-
ceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2006), pages 384–391. ACM.

[Kautz and Selman, 1992] Kautz, H. A. and Selman, B. (1992). Planning as Satisfiability. In
Neumann, B., editor, Proceedings of the Tenth European Conference on Artificial Intelligence
(ECAI-1992), pages 359–363. John Wiley and Sons.

[Kleene, 1952] Kleene, S. (1952). Introduction to Metamathematics. Van Nostrand.

[Klement, 2013] Klement, K. C. (2013). Propositional Logic. http://www.iep.utm.
edu/prop-log/. Accessed: 2013-10-04.

[Klieber et al., 2010] Klieber, W., Sapra, S., Gao, S., and Clarke, E. M. (2010). A Non-prenex,
Non-clausal QBF Solver with Game-State Learning. In Strichman, O. and Szeider, S., edi-
tors, Proceedings of the Thirteenth International Conference on Theory and Applications of
Satisfiability Testing (SAT-2010), volume 6175 of Lecture Notes in Computer Science, pages
128–142. Springer.

90

http://www.iep.utm.edu/prop-log/
http://www.iep.utm.edu/prop-log/

[Kroening, 2009] Kroening, D. (2009). Software Verification. In Biere, A., Heule, M., van
Maaren, H., and Walsh, T., editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 505–532. IOS Press.

[Kroening and Strichman, 2008] Kroening, D. and Strichman, O. (2008). Decision Procedures:
An Algorithmic Point of View. Springer.

[Leone et al., 2006] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scar-
cello, F. (2006). The DLV System for Knowledge Representation and Reasoning. ACM
Transactions on Computational Logic, 7(3):499–562.

[Letz, 2002] Letz, R. (2002). Lemma and Model Caching in Decision Procedures for Quanti-
fied Boolean Formulas. In Egly, U. and Fermüller, C. G., editors, Proceedings of the Inter-
national Conference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX-2002), volume 2381 of Lecture Notes in Computer Science, pages 160–175.
Springer.

[Lewis et al., 2009] Lewis, M. D. T., Marin, P., Schubert, T., Narizzano, M., Becker, B., and
Giunchiglia, E. (2009). PaQuBE: Distributed QBF Solving with Advanced Knowledge Shar-
ing. In Kullmann, O., editor, Proceedings of the Twelfth Conference on Theory and Applica-
tions of Satisfiability Testing (SAT-2009), volume 5584 of Lecture Notes in Computer Science,
pages 509–523. Springer.

[Lewis et al., 2011] Lewis, M. D. T., Schubert, T., Becker, B., Marin, P., Narizzano, M., and
Giunchiglia, E. (2011). Parallel QBF Solving with Advanced Knowledge Sharing. Funda-
menta Informaticae, 107(2-3):139–166.

[Ling et al., 2005] Ling, A. C., Singh, D. P., and Brown, S. D. (2005). FPGA Logic Synthesis
Using Quantified Boolean Satisfiability. In Bacchus, F. and Walsh, T., editors, Proceedings
of the Eighth International Conference on Theory and Applications of Satisfiability Testing
(SAT-2005), volume 3569 of Lecture Notes in Computer Science, pages 444–450. Springer.

[Lonsing, 2012] Lonsing, F. (2012). Dependency Schemes and Search-Based QBF Solving:
Theory and Practice. PhD thesis, Johannes Kepler Universität, Linz.

[Lonsing and Biere, 2008] Lonsing, F. and Biere, A. (2008). Nenofex: Expanding NNF for
QBF Solving. In Büning, H. K. and Zhao, X., editors, Proceedings of the Eleventh Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT-2008), volume
4996 of Lecture Notes in Computer Science, pages 196–210. Springer.

[Lonsing and Biere, 2010a] Lonsing, F. and Biere, A. (2010a). DepQBF: A Dependency-Aware
QBF Solver. Journal on Satisfiability, Boolean Modelling and Computation, 7(2-3):71–76.

[Lonsing and Biere, 2010b] Lonsing, F. and Biere, A. (2010b). Integrating Dependency
Schemes in Search-Based QBF Solvers. In Strichman, O. and Szeider, S., editors, Proceed-
ings of the Thirteenth International Conference on Theory and Applications of Satisfiability
Testing (SAT 2010), volume 6175 of Lecture Notes in Computer Science, pages 158–171.
Springer.

91

[Lonsing and Biere, 2011] Lonsing, F. and Biere, A. (2011). Failed Literal Detection for QBF.
In Sakallah, K. A. and Simon, L., editors, Proceedings of the Fourteenth International Con-
ference on Theory and Applications of Satisfiability Testing (SAT-2011), volume 6695 of Lec-
ture Notes in Computer Science, pages 259–272. Springer.

[Lonsing and Seidl, 2013] Lonsing, F. and Seidl, M., editors (2013). Informal Workshop Report
on the International Workshop on Quantified Boolean Formulas 2013.

[McBurney et al., 2012] McBurney, P., Parsons, S., and Rahwan, I., editors (2012). Proceedings
of the Eighth International Workshop on Argumentation in Multi-Agent Systems (ArgMAS-
2011), volume 7543 of Lecture Notes in Computer Science. Springer.

[McMillan, 1993] McMillan, K. L. (1993). Symbolic model checking. Kluwer.

[Mneimneh and Sakallah, 2003] Mneimneh, M. N. and Sakallah, K. A. (2003). Computing
Vertex Eccentricity in Exponentially Large Graphs: QBF Formulation and Solution. In
Giunchiglia, E. and Tacchella, A., editors, Proceedings of the Sixth International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT-2003), volume 2919 of Lecture
Notes in Computer Science, pages 411–425. Springer.

[Modgil and Caminada, 2009] Modgil, S. and Caminada, M. (2009). Proof Theories and Algo-
rithms for Abstract Argumentation Frameworks. In Rahwan, I. and Simari, G. R., editors,
Argumentation in Artificial Intelligence, pages 105–132. Springer.

[Nieves et al., 2008] Nieves, J. C., Osorio, M., and Cortés, U. (2008). Preferred Extensions as
Stable Models. Theory and Practice of Logic Programming, 8(4):527–543.

[Nofal et al., 2012] Nofal, S., Dunne, P. E., and Atkinson, K. (2012). On Preferred Extension
Enumeration in Abstract Argumentation. In Verheij, B., Szeider, S., and Woltran, S., editors,
Proceedings of the Fourth Conference on Computational Models of Argument (COMMA-
2012), volume 245 of Frontiers in Artificial Intelligence and Applications, pages 205–216.
IOS Press.

[Odersky et al., 2011] Odersky, M., Spoon, L., and Venners, B. (2011). Programming in Scala:
A Comprehensive Step-by-Step Guide, 2nd Edition. Artima Incorporation.

[Olivo and Emerson, 2011] Olivo, O. and Emerson, E. A. (2011). A More Efficient BDD-Based
QBF Solver. In Lee, J. H.-M., editor, Proceedings of the Seventeenth International Confer-
ence on Principles and Practice of Constraint Programming (CP-2011), volume 6876 of
Lecture Notes in Computer Science, pages 675–690. Springer.

[Pan and Vardi, 2004] Pan, G. and Vardi, M. Y. (2004). Symbolic Decision Procedures for QBF.
In Wallace, M., editor, Proceedings of the Tenth International Conference on Principles and
Practice of Constraint Programming (CP-2004), volume 3258 of Lecture Notes in Computer
Science, pages 453–467. Springer.

92

[Peschiera et al., 2010] Peschiera, C., Pulina, L., Tacchella, A., Bubeck, U., Kullmann, O., and
Lynce, I. (2010). The Seventh QBF Solvers Evaluation (QBFEVAL’10). In Strichman, O.
and Szeider, S., editors, Proceedings of the Thirteenth International Conference on the The-
ory and Applications of Satisfiability Testing (SAT-2010), volume 6175 of Lecture Notes in
Computer Science, pages 237–250. Springer.

[Pigorsch and Scholl, 2009] Pigorsch, F. and Scholl, C. (2009). Exploiting Structure in an AIG
Based QBF Solver. In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE-2009), pages 1596–1601. IEEE.

[Podlaszewski et al., 2011] Podlaszewski, M., Caminada, M., and Pigozzi, G. (2011). An Im-
plementation of Basic Argumentation Components. In Sonenberg, L., Stone, P., Tumer, K.,
and Yolum, P., editors, Proceedings of the Tenth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2011), pages 1307–1308. IFAAMAS.

[Poe, 2006] Poe, E. A. (2006). The Murders in the Rue Morgue. Modern Library.

[Pollock, 1987] Pollock, J. L. (1987). Defeasible Reasoning. Cognitive Science, 11(4):481–
518.

[Prakken and Sartor, 1997] Prakken, H. and Sartor, G. (1997). Argument-Based Extended
Logic Programming with Defeasible Priorities. Journal of Applied Non-Classical Logics,
7(1):25–75.

[Prakken and Vreeswijk, 2002] Prakken, H. and Vreeswijk, G. (2002). Logics for Defeasible
Argumentation. In Gabbay, D. and Guenthner, F., editors, Handbook of Philosophical Logic,
Second Edition, Vol. 4, pages 219–318. Dordrecht etc.

[Pulina and Tacchella, 2007] Pulina, L. and Tacchella, A. (2007). A Multi-Engine Solver for
Quantified Boolean Formulas. In Bessiere, C., editor, Proceedings of the Thirteenth Interna-
tional Conference on Principles and Practice of Constraint Programming (CP-2007), volume
4741 of Lecture Notes in Computer Science, pages 574–589. Springer.

[Rahwan and Simari, 2009] Rahwan, I. and Simari, G. R. (2009). Argumentation in Artificial
Intelligence. Springer.

[Reimer et al., 2011] Reimer, S., Pigorsch, F., Scholl, C., and Becker, B. (2011). Integration of
Orthogonal QBF Solving Techniques. In Proceedings of Conference on Design, Automation
and Test in Europe (DATE-2011), pages 149–154. IEEE.

[Reiter, 1980] Reiter, R. (1980). A Logic for Default Reasoning. Artificial Intelligence, 13(1-
2):81–132.

[Rintanen, 1999a] Rintanen, J. (1999a). Constructing Conditional Plans by a Theorem-Prover.
Journal of Artificial Intellegence Research, 10:323–352.

93

[Rintanen, 1999b] Rintanen, J. (1999b). Improvements to the Evaluation of Quantified Boolean
Formulae. In Dean, T., editor, Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence (IJCAI-99), pages 1192–1197. Morgan Kaufmann.

[Rintanen, 2009] Rintanen, J. (2009). Planning and SAT. In Biere, A., Heule, M., van Maaren,
H., and Walsh, T., editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, pages 483–504. IOS Press.

[Robinson, 1965] Robinson, J. A. (1965). A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM, 12(1):23–41.

[Samer and Szeider, 2009] Samer, M. and Szeider, S. (2009). Backdoor Sets of Quantified
Boolean Formulas. Journal of Automated Reasoning, 42(1):77–97.

[Simons et al., 2002] Simons, P., Niemelä, I., and Soininen, T. (2002). Extending and Imple-
menting the Stable Model Semantics. Artificial Intelligence, 138(1-2):181–234.

[South et al., 2008] South, M., Vreeswijk, G., and Fox, J. (2008). Dungine: A Java Dung Rea-
soner. In Besnard, P., Doutre, S., and Hunter, A., editors, Proceedings of the Second Con-
ference on Computational Models of Argument (COMMA-2008), volume 172 of Frontiers in
Artificial Intelligence and Applications, pages 360–368. IOS Press.

[Stockmeyer, 1976] Stockmeyer, L. J. (1976). The Polynomial-Time Hierarchy. Theoretical
Computer Science, 31(1):1–22.

[Stockmeyer and Meyer, 1973] Stockmeyer, L. J. and Meyer, A. R. (1973). Word Problems
Requiring Exponential Time (Preliminary Report). In Aho, A. V., Borodin, A., Constable,
R. L., Floyd, R. W., Harrison, M. A., Karp, R. M., and Strong, H. R., editors, Proceedings of
the Fifth Annual ACM Symposium on Theory of Computing (STOC-1973), pages 1–9. ACM.

[Strass, 2013] Strass, H. (2013). Approximating Operators and Semantics for Abstract Dialec-
tical Frameworks. Artificial Intelligence, 205:39–70.

[Strass and Wallner, 2013] Strass, H. and Wallner, J. P. (2013). Analyzing the Computational
Complexity of Abstract Dialectical Frameworks via Approximation Fixpoint Theory. Tech-
nical report, Universität Leipzig.

[Strass and Wallner, 2014] Strass, H. and Wallner, J. P. (2014). Analyzing the Computational
Complexity of Abstract Dialectical Frameworks via Approximation Fixpoint Theory. In Pro-
ceedings of the Fourteenth International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR-2014).

[Thang et al., 2009] Thang, P. M., Dung, P. M., and Hung, N. D. (2009). Towards a Common
Framework for Dialectical Proof Procedures in Abstract Argumentation. Journal of Logic
and Computation, 19(6):1071–1109.

94

[Toni and Sergot, 2011] Toni, F. and Sergot, M. (2011). Argumentation and Answer Set Pro-
gramming. In Balduccini, M. and Son, T. C., editors, Logic Programming, Knowledge Repre-
sentation, and Nonmonotonic Reasoning: Essays in Honor of Michael Gelfond, volume 6565
of Lecture Notes in Computer Science, pages 164–180. Springer.

[Toulmin, 2003] Toulmin, S. (2003). The Uses of Argument. Cambridge University Press.

[Tseitin, 1968] Tseitin, G. S. (1968). On the Complexity of Derivations in the Propositional
Calculus. Studies in Mathematics and Mathematical Logic, Part II:115–125.

[Tullio and Grasso, 2011] Tullio, E. D. and Grasso, F. (2011). A Model for a Motivational
System Grounded on Value Based Abstract Argumentation Frameworks. In Kostkova, P.,
Szomszor, M., and Fowler, D., editors, Proceedings of the Fourth International Conference
on Electronic Healthcare (eHealth-2011), volume 91, pages 43–50. Springer.

[Turing, 1936] Turing, A. M. (1936). On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230–265.

[Verheij, 2007] Verheij, B. (2007). A Labeling Approach to the Computation of Credulous
Acceptance in Argumentation. In Veloso, M. M., editor, Proceedings of the Twentieth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-2007), pages 623–628.

[Wakaki and Nitta, 2008] Wakaki, T. and Nitta, K. (2008). Computing Argumentation Seman-
tics in Answer Set Programming. In New Frontiers in Artificial Intelligence, JSAI 2008 Con-
ference and Workshops, Revised Selected Papers, volume 5447 of Lecture Notes in Computer
Science, pages 254–269.

[Wallner et al., 2013] Wallner, J. P., Weissenbacher, G., and Woltran, S. (2013). Advanced
SAT Techniques for Abstract Argumentation. In Leite, J., Son, T. C., Torroni, P., van der
Torre, L., and Woltran, S., editors, Proceedings of the Fourteenth International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA-2013), volume 8143 of Lecture Notes
in Computer Science, pages 138–154. Springer.

[Woltran, 2003] Woltran, S. (2003). Quantified Boolean Formulas: Theory and Practice. PhD
thesis, Technische Universität Wien, Institut für Informationssysteme.

[Zhang, 2009] Zhang, H. (2009). Combinatorial Designs by SAT Solvers. In Biere, A., Heule,
M., van Maaren, H., and Walsh, T., editors, Handbook of Satisfiability, volume 185 of Fron-
tiers in Artificial Intelligence and Applications, pages 533–568. IOS Press.

[Zhang, 2005] Zhang, L. (2005). On Subsumption Removal and On-the-Fly CNF Simplifica-
tion. In Bacchus, F. and Walsh, T., editors, Proceedings of the Eighth International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT-2005), volume 3569 of Lecture
Notes in Computer Science, pages 482–489. Springer.

95

[Zhang and Malik, 2002a] Zhang, L. and Malik, S. (2002a). Conflict Driven Learning in a
Quantified Boolean Satisfiability Solver. In Pileggi, L. T. and Kuehlmann, A., editors, Pro-
ceedings of the IEEE/ACM International Conference on Computer-aided Design (ICCAD-
2002), pages 442–449. ACM.

[Zhang and Malik, 2002b] Zhang, L. and Malik, S. (2002b). Towards a Symmetric Treatment of
Satisfaction and Conflicts in Quantified Boolean Formula Evaluation. In Hentenryck, P. V.,
editor, Proceedings of the Eighth International Conference on Principles and Practice of
Constraint Programming - (CP-2002), volume 2470 of Lecture Notes in Computer Science,
pages 200–215. Springer.

96

	Introduction
	Background
	Propositional logic
	Quantified boolean formulas
	Abstract dialectical frameworks
	Complexity

	Encodings
	Encoding statements about three valued valuations for ADFs as QBFs
	Encodings for three and two valued models
	Encodings for admissible valuations
	Encodings for complete valuations
	Encodings for preferred valuations
	Encodings for the grounded valuation

	Implementation
	Overview of implementation methods and systems for abstract argumentation
	Overview of QSAT solving strategies
	Description of a prototype system for reasoning on ADFs via QBFs
	Experiments

	Conclusion and future work
	Bibliography

