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Abstract

The process of synthetically producing an image illustrating merged parts of multiple source
images is usually known as image morphing. In this Master’s thesis a system is developed
which morphs more than two source images to one output image. Although the system accepts
arbitrary image content, the focus is on using ancient coin images belonging to a common coin
type. In ancient times each die was individual in its appearance and had to be renewed manually
after several iterations of minting. Nowadays, the coins can be worn or damaged. The goal
of the presented morphing framework is the automatic finding and summarization of visual
data of common regions by which outliers like wear marks of coins are removed. Since image
registration forms the basis of the morphing system, Scale Invariant Feature Transform flow’s
functionalities are included. The selection of possible region-candidates is decided by exploiting
a Markov Random Field in order to find the best combination of visual content. Finally, solving
the Poisson equation smooths the morphed image such that any boundaries or disturbing seams
become invisible. A twofold evaluation is carried out by firstly applying the system on three
different data sets in order to demonstrate visually aesthetic images. Since the aesthetics of an
image can be subjective, a second evaluation is done by investigating a classification task of
ancient coin images using Scale Invariant Feature Transform flow’s energy as similarity metric
of visual content. It is shown that substituting a morphed image as training image improves the
representation of a coin type compared to a single image. Finally, the thesis is concluded by
presenting an analysis about classifying ancient coins with the help of a morphed image.
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Kurzfassung

Morphing beschreibt die Verschmelzung von Bildregionen, die von mehreren Eingabebildern
stammen können. In dieser Arbeit wurde ein System entwickelt, das die Fähigkeit besitzt, mehr
als zwei Eingabebilder zu einem Ausgabebild zu morphen. Obwohl beliebige Bilder akzeptiert
werden, liegt der Fokus auf altertümlichen Münzbildern, die alle einen gemeinsamen Typ auf-
weisen. Zur Zeit der Entstehung dieser Münzen, stellte jeder Münzprägestempel ein Unikat dar
und musste nach einer gewissen Anzahl von Prägeiterationen manuell erneuert werden. Heutzu-
tage können altertümliche Münzen abgenützt und beschädigt sein. Das Ziel dieser Arbeit liegt
darin, automatisch Münzregionen zu finden, die in allen Eingabebildern vorkommen und diese in
einem Ausgabebild zusammenzufassen. Somit werden Ausreißer, wie zum Beispiel Kratzer oder
Abnützungen, automatisch aussortiert. Die zugrundeliegende Bildregistrierung erfolgt durch den
Scale Invariant Feature Transform Flow Algorithmus. Der Einsatz eines Markov Random Fields
trifft eine optimierte Kombination aller möglichen Bildregionen und störende beziehungswei-
se auffällige Übergänge entfernt die Anwendung eines Poisson-Gleichungs-Algorithmus. Die
Evaluierung setzt sich aus zwei Teilgebieten zusammen, wobei im ersten die Flexibilität des
Systems demonstriert wird, indem mehrere Datensätze zur Generierung eines gemorphten Bil-
des verwendet und dessen Ergebnisse präsentiert werden. Im Rahmen des zweiten Teilgebiets
wird eine Klassifizierungsmethode vorgestellt, die die Frage beantwortet, wie gut das gemorph-
te Bild eine Klasse eines Bilddatensatzes repräsentieren kann. Die Energie des Scale Invariant
Feature Transform Flow Algorithmus dient dabei als Ähnlichkeitsmaß zweier Bildinhalte. Es
wird gezeigt, dass ein gemorphtes Bild dessen Klasse besser repräsentiert als ein einfaches Bild.
Den Abschluss dieser Arbeit bildet eine detailierte Analyse der Klassifizierung altertümlicher
Münzen mithilfe eines gemorphten Bildes.
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CHAPTER 1
Introduction

Almost parallel to the emergence of this Master’s thesis, on an Irish farm a very special
animal called geep was born. A geep is a rare hybrid animal resulted by crossing a goat with a
sheep1. Very similar to that kind of result in nature, in the field of computer vision the task of
’crossing’ differing image contents is called morphing. The morphing process can be expressed
in two possible ways.
Firstly, morphing is applied to video sequences where a smooth transformation from one ob-
ject to another is expressed by multiple generated consecutive video frames as demonstrated in
Figure 1.1. With the help of this approach e.g. the Azadi tower of Teheran can be smoothly con-
verted to the notorious Arc de Triomphe of Paris. Some of the first movies which were using this
way of morphing as a special effect were Willow and Indiana Jones and the Last Crusade [62].
Secondly, from several sources a single new image is generated. An example is given in Figure
1.2 where a portrait of the famous scientist Albert Einstein is morphed with a tiger’s face. For
both ways image morphing comprises some sophisticated approaches where the images’ con-
tents are not simply blended but rather their appearance gets aligned to each other by distorting
their geometries. As can be seen in Figure 1.2 the eyes of the tiger lie further apart than those
of Albert Einstein do. Therefore, a geometric distortion a.k.a. a warp of the image is useful to
match the eye’s horizontal distance of Einstein and the tiger.

(h) (i)

Figure 1.1: A fully morphed transition starting at the source image at the far left to right (figure
taken from [15]).

1http://www.bbc.com/news/world-europe-26870598 (accessed on 24.04.2014)
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(a) (b) (c)

Figure 1.2: A portrait of Albert Einstein (a) and a tiger (b) morphed to a single image (c) (figures
available online2).

This Master’s thesis is about morphing multiple images to one. The majority of the images used
show coins originating from the museum of Fine Arts in Vienna. It holds one of the world’s five
largest numismatic collections where about 700.000 objects are numbered originating from three
millenniums. Paper money, medallions, orders and especially coins can be found among these
objects3. Some of the exhibited coins date from the Roman Republican period, starting around
500 BC, from which overall 550 different coin types arose.
Scientists have made it their responsibility to acquire digital information of the Roman Repub-
lican coins by taking photographs of each single coin. Through this work computer aided (and
thus automatic) processes like image morphing can be applied to coin images which leads to
entirely new insights into the field of ancient coins.

1.1 Motivation

In the years around 500 BC where the Roman Republican period began, the process of mint-
ing coins was an individual, manual procedure. Each hand-made coin die was individual in its
appearance and had to be renewed due to wear marks after several iterations of minting (about
10.000 iterations) [21]. Dies for the coin’s front and back surface (called obverse and reverse)
might wear off in varying rates which means that the dies are not only substituted as a pair but
rather be replaced individually. Consequently, coins of the same type can have varying combi-
nations of obverse and reverse. Nowadays the coins might be worn or damaged but the degree
of preservation can change between individual specimens of a coin type and even locally on
a single coin [21]. Figure 1.3 demonstrates how the appearance of the coins differ within the
same types. The high variability is demonstrated when considering the writing VICTRIX of the
illustrated coins. While on the coin at the far left the legend is well preserved, at the far right it is
hardly visible. Moreover, the imprint of the second coin (from left) is not exactly centered on the
blank leading to incomplete illustrations. Given multiple similar coin images, this work is about
automatically finding and summarizing visual data of the coins to a single coin image. Coins are

2http://www.morphthing.com/ (accessed on 25.04.2014)
3http://www.khm.at/en/visit/collections/coin-collection/ (accessed on 20.04.2014)
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Figure 1.3: Four ancient Roman coins are from the same type. However, the appearance differs
from coin to coin.

called similar to each other if they belong to one common coin type. Considering the resulting
morphed image the objective is to summarize relevant visual data from each source image. For
this thesis visual data of a source image is relevant if it has something in common with other
source images. Visual regions which match to several other images are considered as valuable
and have to be preserved while non-matchable regions have to be eliminated. With the help of
this morphing procedure one single image of a class is obtained which is more representative
than any single image of that class.
Morphing has been researched extensively for nearly three decades. Wolberg explains in [63]
morphing and its approaches like blending which is the step of interpolating pixel color values.
Warping is described as the process of registering the source images to each other in order to ge-
ometrically align features of the images. Features are aligned by firstly finding correspondences
in image pairs. The correspondences are found either manually by an animator or in an auto-
matic way. Approaches for the manual determination are presented in [5], [35], [34], [36]. For
fully-automatic morphing, local image features have to be extracted in order to fulfill a matching
of two images. A possible approach is the Generalized PatchMatch algorithm [3], an extension
of the initial PatchMatch algorithm [4]. The algorithm is used for determining similar patches in
two related image scenes. The most similar patch is called nearest-neighbor and is determined by
a dense approximate correspondence search. In [54] and [15] new morphing approaches for two
source images are proposed. The morphed image is regenerated from small patches which match
patches in the source images. In [15] Darabi et al. show convincing morph results by means of
the Generalized PatchMatch algorithm [4]. Another way for finding correspondences is provided
by the Scale Invariant Feature Transform (SIFT) flow algorithm, presented in [38]. SIFT flow
is based on optical flow methods which are developed to estimate the transitional change of the
image’s content by comparing intensity values. In other words a dense sampling in time is done
which enables tracking of a moving object. SIFT flow uses SIFT features and provides dense
sampling in the space of natural images which enables the alignment of images [38]. SIFT flow
uses SIFT descriptors [39] to describe extracted features which are compared and rated. Finally,
the most similar features form a pixel correspondence.
In this work computed correspondences are exploited for a warping process where the resulting
images show one uniform alignment. The objective of outsourcing unitary regions and retaining
common regions is fulfilled by introducing a central image whose content can be generated by

3



calculating the mean of multiple source images. Improvements of the resulting visually summa-
rized image are realized by exploiting a Markov Random Field (MRF) which computes the best
combination of selected regions. Finally, solving the Poisson equation serves for correcting and
smoothing intensity values.

1.2 Contribution

Arranging and acquiring knowledge about ancient coins is a field of research on numismat-
ics. The research area of computer vision aims to interpret and disclose information from image
contents. The idea of connecting numismatics with computer vision is realized within the Image-
based Classification of Ancient Coins (ILAC) project, supported by Austrian Science Fund
(FWF)4. Numismatics clearly benefits from computer vision applications [14, 72]. Using the
example of the ILAC project, the objective lies in the automatic classification of ancient coins.
This can be described as the automatic determination of the coin type seen on the image, based
on a number of different types in a database. In total, the contributions of the thesis can be
summarized as follows:

• Firstly, the main contribution of this work is to generate a morphed image from more
than two images with the help of state-of-the-art methods and applications. Considering
coin images, the resulting image acts as a denominator: while wear marks or untypical
appearances of coins are neglected, typical visual regions representing the type of the coin
are added. In other words the finally morphed image is a representation of a coin type.
This thesis is the first work in which several ancient coin images are morphed to a single
one.

• Secondly, in order to measure how well the morphed image represents a coin class, a
comparison of a traditional classification task and an improved classification of ancient
coin images with the inclusion of a morphed image is given. A traditional classification
task consists of automatically determining the class of 200 query images. By using the
SIFT flow energy it is possible to measure the similarity of two images [72]. All images
are classified by determining the similarity for the query image and one training image of
each class. The pair showing the lowest energy determines the assignment to the class.
In the improved classification process instead of using one single coin image as training
image a morphed image of each class is compared to the query image. As a contribution
to the ILAC project the automatic classification of the provided ancient coin images is
improved by using the morphed image as training image.

• The third contribution is seen from a more general point of view: the morphing framework
can not only be applied to ancient coin images but also to arbitrary images. This means,
that the proposed method creates a single visual class representation from an arbitrary set
of source images.

4ILAC (FWF:TRP 140-N23), available online at http://www.caa.tuwien.ac.at/cvl/research/
ilac/ (accessed on 03.03.2014)
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1.3 Scope Of Discussion

This thesis focuses on the generation of a morphed image from Roman Republican coin image
data with more than two source images per class. Thus, the scientific question is: With the help
of computer vision state-of-the-art methods, is it possible to generate a morphed image which
represents one class of coins? This question is of interest for improving an existing exemplar-
based classification method using a single image as class reference. Therefore, the morphed
image serves as reference image in the classification process.
Additionally, as a part of this work it is shown that the morphing process can be generalized
to different image sets. Examples of morphed images generated from different image sets are
shown in Figure 1.4.

1.4 Results

Resulting images produced by the proposed system are evaluated in two steps. Firstly, in order
to present the system’s flexibility according to the image content qualitative experiments are
performed on three different data sets: a data set showing airplanes photographed sideways, a
human face data set where each face is portrayed with different appearances and a coin data set
comprising images of the Roman Republican coinage. For this experiments the output is gener-
ated by empirically evaluating the algorithm’s parameters in order to obtain a visually coherent
and complete image content. In other words it is tried that as much as possible common regions
of all source images are summarized and at the same time the morphed image should appear
aesthetically without exhibiting any disturbing artifacts. Resulting images of the three data sets
are illustrated in Figure 1.4. Image regions which are considered as outliers are outsourced. This
behavior is clarified by considering the coin example in Figure 1.4: the first input coin image
shows residuals of an old coin design which are consequently removed by the algorithm.
Since the aesthetics of an image can be subjective a second, quantitative evaluation is done. All
input images of the morphing framework originate from one common class. This evaluation
is based on the principle: „The better the morphed image, the better is the representation of a
common class“. Therefore, a classification task of ancient coin images using SIFT flow’s energy
as similarity metric of visual content is combined with the proposed morphing method. In order
to classify a query image, for each class a training image is selected. Subsequently, the energies
between the query image and the set of training images are determined in order to assign the
query image to the class where the energy is at a minimum. With this procedure the suitability
of the morphed image for representing the underlying class can be assessed. Using the mor-
phed image as training image raises the question of how to choose the parameter configuration
in order to produce an image which performs best for the classification task. For this purpose,
parameters are selected according to best performing Receiver Operating Characteristic (ROC)
curves.
As a result, the parameter configuration of highly aesthetically morphed images is different to
those which perform best in the classification task. Due to these quantitative experiments it can
be stated that the representation of a coin class is better by using a morphed image instead of
a single image. Using a morphed image, a classification rate of 92.5 % can be reached which

5



Source Output

Figure 1.4: Morphed images computed from different data sets.

is an absolute increase of 3 % compared to the usage of a single training image. Moreover,
not only the classification rate is increased but also the runtime is reduced by half compared to
classification tasks where two training images are used as proposed in [72].

1.5 Structure of the Work

Summarizing visual data from multiple input images requires to examine the relationship of the
image’s content. Computer vision approaches such as image morphing, view morphing, image
completion, image fusion or image stitching share the requirement of registering images to each
other. Thus, in Chapter 2 these related approaches of image morphing are investigated. The
chapter continues by giving an overview of numismatics, the study of monetary and its underly-
ing medals, coins and related objects.
In order to give a detailed explanation of the implemented morphing framework Chapter 3 intro-
duces the theoretical background, ideas and methodologies on which the morphing framework
is based. Thus, the functionalities of optical flow, the SIFT algorithm and the Generalized Patch-
Match algorithm are described. Furthermore, this chapter presents the core element of this work
- the morphing framework.
All experimental results of this thesis are presented in Chapter 4 which is divided into qualita-
tive experiments and quantitative experiments. Finally, a conclusion comprising a discussion,
findings and generalizations of this topic is given in Chapter 5.

6



CHAPTER 2
Related Work

The topic of this thesis is based on summarization methods of visual information and numis-
matics in combination with computer vision. This chapter is therefore split into summarization
methods of visual data in Section 2.1 and numismatics in Section 2.2. Both of them present
related ideas to image morphing, state-of-the-art methods and their applications.

2.1 Summarization of Visual Data

One of the first attempts of image morphing were done by Burt and Adelson in 1983 [11].
They developed an algorithm which summarizes visual data from two or more source images.
The algorithm dealt with copy/paste applications which were able to merge different parts of
different source images into one plausible and naturally looking target image. Other exam-
ples are Szeliski and Shum in [57] who have succeeded in stitching together single images to
one panoramic view and Masnou and Morel who introduced in [43] a new algorithm for filling
occluded areas in an image with pixels from their neighborhood. The beginnings of these com-
puter vision applications have been further developed. The following research areas deal with
approaches for merging different image regions as smooth as possible, making visible and nasty
borders between the regions disappear: image morphing blends multiple images into a single
one, view morphing produces a synthetic image viewpoint from different views of a scene, im-
age completion fills unknown (a.k.a. holes) or occluded areas of an image with a natural looking
content, image fusion contracts information retrieved from the same scene from similar or mul-
tiple sensors and image stitching indicates the composition of multiple images (e.g. generating
panoramic views). In the following sections, all methods are related to the morphing approach
of this thesis, since an image registration process is necessary. Image registration means that
correspondences in different images are identified. Finding correspondences can be either done
in a manual, semi-automatic or automatic way. As a result of the morphing process as well as
all other methods new visual information is generated leading to altered or even new insights.
The generation of new insights by summarizing visual data is also applied in the research field

7



of computer graphics. 3 Dimensional (3D) models can be morphed by applying warping and
blending computations as described in [17, 47]. Furthermore, Carranza et al. in [12] show a
free-viewpoint rendering approach of human motions by combining multiple video views and
Finistauri and Xi present in [18] an aircraft wing morphing approach in order to simulate opti-
mal flight performances of an aircraft. Since the content of [12, 17, 18, 47] is beyond the scope,
in Sections 2.1.1 to 2.1.6 a detailed description is only given of the mentioned computer vision
algorithms.

2.1.1 Image Morphing

The process of synthetically producing one or more intermediate frames which illustrate blended
parts of two or more source images is usually known as image morphing which is derived from
image metamorphosis [5]. Due to compelling research results which will be discussed in the
following sections, image morphing is applied in the commercial market as well. Some of the
first movies which were using these special effects are Willow and Indiana Jones and the Last
Crusade [62].
Traditional methods described in [5], [35] or [62] propose image morphing as a method having
two steps, one step for warping, which applies 2D geometric transformation to align features of
the source images and one for blending, meaning the interpolation of colors. This can be done
to, e.g., merge two faces in a visually aesthetically way. Approaches which are able to handle
the morphing task with two or more source images are described in [36] and [29]. The following
paragraphs are explaining 2D image morphing in detail and are grouped by the number of source
images.

Morphing of Two Images

In [5] Beier and Neely explain an image morphing procedure for computing intermediate frames
which illustrate a smooth transition from the first source image to the second. According to [5]
the main concept behind image morphing using two images is as follows:

• Find correspondences in two source images S1 and S2.

• Based on these correspondences geometrical transformations are applied to S1 and S2
which is called warping.

• Corresponding pixel intensity values of S1 and S2 are controlled by assigning intensity
weights. This step is called image blending. Considering, e.g., the „image in the middle“
the weights of the respective pixels have to be 0.5.

This thesis deals with algorithms finding pixel correspondences in a fully automatic way. In
contrast, in early times of developing morphing algorithms exact correspondences are found in
a manual or semi-automatic way. The determination of correspondences has to be carried out
carefully because incorrect correspondences or even missing correspondences lead to a lack of
alignment a.k.a. ghosting [5]. Figure 2.1 depicts a case of ghosting caused by a weighted blend-
ing without warping the images before. Parts of the dogs, like tail or snout are not on top of each
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Figure 2.1: The images of two dogs without doing the warping step before blending. Since the
features of the two source images are not aligned the resulting image contains regions where
ghosting artifacts are visible (figure taken from [49]).

Figure 2.2: The initial images of two dogs (in the top-left and top-right corner) are warped before
the blending step (in the lower left and lower right corner). The result shows aligned features
in the images. Additionally, no ghosting artifacts are visible in the morphed image (figure taken
from [49]).

other. The difference to a morphed image where all parts of the dogs are aligned is illustrated in
Figure 2.2. Manually determined pixel correspondences are used e.g. by Beier and Neely who
describe a feature-based approach in [5]. They distinguish between two methods of warping
where line segments are considered as features:
The transformation builds on the principle that if two corresponding lines of S1 and S2 are
known, each corresponding relative position to the line can be determined. An example is given
where for position x in S2 a corresponding position x’ in S1 should be determined. A transfor-
mation with one pair of lines means that line pq in S2 has a corresponding line p’q’ in S1. A
straight perpendicular line to pq which crosses x produces the intersection point c. Furthermore,
vector a represents the distance from p to c and b from c to x. The two resulting vectors are used
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Figure 2.3: Rotation of the letter „T“ with one pair of lines: (a) source image S2 where line pq is
manually determined. The intersection point c is computed by finding the perpendicular line to
pq which crosses x. Consequently, a is the length from p to c and b denotes the distance from c
to x. (b) x’ in the source image S1 is determined by using the computed values a and b from S2.
Transformation with multiple pairs of lines: (c) destination image where multiple line segments
piqi are determined. (d) Point x’ is computed by taking ui and vi from S2 and by interpolating
the distance from x to xi’ (adapted from [5]).

to determine x’ in S1 [5]. For a better understanding, a rotation of the letter „T“ is illustrated in
Figures 2.3a and 2.3b, respectively. Applying not only warps which include simple transforma-
tions like scale, rotation or translation a more complex warp method is proposed.
When using complex transformations e.g. non-affine transformations on images, multiple line
segments piqi need to be determined in image S2 which have their corresponding lines in S1.
The first step consists of computing ui and vi of S2 for each line segment in relation to the given
point x. Based on vi and ui for each line segment pi’qi’ in S1, xi’ is calculated. The resulting
point x’ is a weighted average of all displacements from x to xi’. The idea of using multiple lines
is to have a higher influence on points lying nearer to a line. Conversely follows, the greater the
distance between line and point the less the influence on the point’s shift. The intention of as-
signing a weight is to have additional visual control of the resulting image [5]. Using multiple
pair of lines is depicted in Figures 2.3c and 2.3d, respectively.
A smooth transition between two source images S1 and S2 can be realized by interpolating the
center position and orientation of each line. Subsequently, corresponding frames are blended by
assigning a weight to the pixel’s intensity values. The result is a morphed in-between image T .
An approach for generating a morphing transition comprising a semi-automatic image registra-
tion process is explained in [35]. Lee et al. show the generation of warping functions by using
a Free Form Deformation (FFD). The tedious work of extracting features manually is supported
by the snake algorithm [35]. Therefore, it is sufficient to give a position in a coarse manner
around the feature. For generating the warping function the FFD requires to put a lattice over
the object which has to be distorted and drag the control points of the lattice. The deformation
is calculated by using a 2D uniform cubic B-spline surface where the lattice acts as parameter
space.
As it is realized in this thesis, Darabi et al. [15] and Shechtman et al. [54] present approaches
which execute the registration process in a fully automatic way. These similar approaches are
able to morph different textures and structures. Darabi et al. propose an image morphing ap-
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Figure 2.4: A fully morphed transition between S1 and S2 with intermediate frames T1 − T3
implemented with the Generalized PatchMatch algorithm (figure taken from [15]).

proach which is called image melding and uses similar approaches for multiple image editing
tasks. The simplest one fills missing pixels of a hole by comparing neighboring pixels. Let T
be the target region (hole) and S the source region (neighboring area), Darabi et al. [15] use the
Generalized PatchMatch algorithm [4] to find best matching image patches for T from S. This
algorithm is described in Section 3.1.1. It helps to minimize an energy function E(S, T ) which
compares patch distances from T to S. Each patch consists of three color channels and addi-
tionally two gradient channels per pixel which is a significant difference to [54]. The gradient
channels are weighted and as distance metric the Sum of Squared Distances (SSD) is used. In T
best matching patches to S are overlapping [15]. Hence, blending the values of these patches is
necessary and called voting. The searching of nearest neighbor patches and the voting step are
alternated starting at the coarsest level of a Gaussian pyramid.
Based on the hole filling approach, the image morphing task can be expressed as an optimization
of:

Emorph(T 1...K , S1, S2) =

K∑
k=1

{µ1EBDS(Tk, S1) + µ2EBDS(Tk, S2)+

µ3EBDS(Tk, Tk−1) + µ4EBDS(Tk, Tk+1)},

(2.1)

In Equation 2.1 T denotes the intermediate frames of S1 and S2 where K is the number of in-
between frames. Each in-between frame has to be similar to S1 and S2 and to its neighboring in-
between frames. To ensure similarity in the images of the transition the Bidirectional Similarity
(BDS), described in Section 2.1.6, is used. Therefore, BDS minimizes the energy E(S, T ) by
alternating S and T as input images which can be described as EBDS(S, T ) = E(S, T ) +
E(T, S). Hence completeness and similarity are given in T . The achievement of completeness
and similarity is described in Section 2.1.6. The gradients and colors of Tk are blended by using
the given weights, denoted as µ in the optimization term. For smoothing and further optimizing
Tk, the Poisson equation, which is explained in Section 3.1.2, is solved [15]. An example of a
resulting smooth transition comprising three intermediate frames is illustrated in Figure 2.4.

The content of [17, 33, 47, 55, 66] is beyond the scope of this thesis but it should point out
that image morphing is executable in a 3D image space as well. In [66] Xu et al. propose a
method for shape interpolation with the support of Poisson editing. By linear interpolation new
vertices are computed to form a triangular mesh. Further 3D morphing approaches are described
in [17, 33, 47, 55]. 3D morphing can be applied in industrial design research areas where new
product shapes are obtained from existing ones or in computer animation and computer graphics
[33].
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Morphing of Multiple Images

As this thesis pursues the objective of extending the range of source images to more than two,
this section presents morphing approaches coping with at least three source images. This can be
useful for completion tasks or image collages, where regions of several images are selected and
merged to one seamless image.
Lee et al. use the multilevel free-form algorithm, described in [34] to generate warping func-
tions from the manually arranged correspondences in the images. For minimizing the work of
an animator to mark features for k(k − 1)/2, image pairs warping functions are propagated.
Let G = (V, E) be a connected Graph, where V = (v1, v2, ..., vK) denotes K (the number of
source images) vertices and E the connecting edges in-between. An edge from vk to vj exists,
if a warping function Wkj is already derived. The initial graph is connected and owns (k − 1)
edges. Wij can be propagated if a vertex vk is found where edges from vk to vi and from vk to
vj exist.
In [36] Lee et al. present a morphing method called polymorph. Firstly, correspondences are
computed semi-automatically by using thin-plate splines and multi-level free-form deforma-
tions. For each pair of source images Si, a warping function Wij exists which maps each point
in Si to its corresponding one in Sj . If K denotes the number of source images each node of
a (K − 1) - dimensional simplex represents a source image and each edge a warping function,
as illustrated in Figure 2.5a. If all points in this simplex are given in barycentric coordinates a
blending vector determines the position of the intermediate image and thus the influence of Si
on the finally morphed image. To compute a target image T , Wi is derived by linearly interpo-
lating Wij . By linearly interpolate the resulting images Ti the image’s color values leads to the
target image T [36]. Blending Ti by treating each pixel value equally (uniform) is not enough if
only few regions of each Ti are selected. This case is illustrated in Figure 2.6 where hair, nose
and eyes are selected from different source images. Thus, a blending function Bi is introduced
containing weights for each pixel value in order to achieve an individual treatment of every pixel
(nonuniform). Due to a significant memory overhead when computing K2 in-between frames
the framework is optimized by establishing a central image TC , where for each source image two
warping functionsWiC andWCi, are calculated. The introduced blending vectorBC determines
the relative influence from Si on T at a given position and has to be established by the user [36].
Selected regions Ri of Si are mapped on TC by using the warping function WiC . By linearly
interpolating WCi with the weights of BC the warping function WC is derived. Figure 2.5b
depicts the morphing approach with the optimization of adding a central image and a blending
vector determining for a selected region the influence of a source image.
In order to avoid unnatural looking in-between images pre-processing and postprocessing meth-
ods are applied to Si and T . The pre-processing step contains distortions of feature shapes and
positions for an enhanced alignment, whereas the postprocessing step is used for local refine-
ments and global manipulations [36].
Finally, an approach where correspondences are found automatically is presented in [29]. Jones
et al. introduce a technique to represent an image-class of objects with the help of a multidi-
mensional morphable model to finally classify novel images by minimizing an error function. A
reference image of a data set containing one class of objects is determined. For each prototype
image (= source image) pixel-wise correspondences to the reference image are computed auto-
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Figure 2.5: (a) Target image T is computed by firstly finding warping functions Wij for each
pair of images, which are afterwards linearly interpolated for each i to get Wi. Applying Wi on
Si leads to the distorted image Ti. Finally, all Ti’s color values are interpolated (specified by
the blending function BC) to get T . (b) The optimized Framework provides a central image TC
to save storage. TC is placed in the centroid of the simplex and the warping functions Wij are
not saved anymore. Instead the warping function to the central image WCi / WiC is determined.
The warping functionWC (from TC to the target image T ) is calculated by linearly interpolating
WCi with the weights of the blending function BC (adapted from [36]).
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Figure 2.6: (a) A result of the polymorph algorithm where three source images are used. Manu-
ally marked image parts (within the green border) are selected for the computation of (b) (figures
taken from [36]).

matically with the help of a bootstrap algorithm, described in [60]. An image is represented by
a shape vector determining the relative displacement of each pixel to its source pixel of the ref-
erence image and a texture vector containing the difference of pixel intensities to corresponding
positions. Once the warping process is done the shape of the prototype image matches the one
of the reference image. Each image which gets warped to a reference is added to a pool where
correspondences from every image to each other exist. As a consequence, this approach enables
to represent images of one class by a linear combination of vectorized prototype images [29].
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2.1.2 View Morphing

The term view morphing is used in this work to describe the computation of a new viewpoint
for a virtual camera focusing an object. The viewpoint is obtained by interpolating the data of
two source images illustrating the given object from different viewpoints. View morphing can
be seen as a subtopic of image morphing concentrating on morphing different perspectives of a
scene. In contrast, traditional image morphing as it is used in this thesis is for instance not con-
sidering different viewpoints of a scene or any extractions of geometric peculiarities. However,
view and traditional morphing presented in this work have in common that a registration process
of the source images is necessary. Especially Pérez et al. describe the image registration process
(finding correspondences) as a challenging task of the algorithm. In their work view morphing is
defined as a shape-preserving extension of image morphing [53]. To prevent ghosting and shape
distortions in the transition process image registration is accompanied by manual inputs. Due
to the necessity of establishing exact correspondences the influence of an animator is required
in view morphing approaches, such as [42,53,65]. Algorithms which compute correspondences
automatically can use additional informations like position and orientation from calibrated cam-
eras [13]. For an interpolation of the object’s shape either projection matrices are computed to
realize object transformations or e.g. common morphing tasks (as presented in [5,53]) are used.
Chen and Williams describe in [13] their interpolation as „an approximation to the transforma-
tion of the pixel coordinates by a perspective viewing matrix“. Since background and foreground
have different epipolar geometries they are morphed separately. Splitting into two layers is per-
formed manually in [42,64,65]. Chen and Williams refer to overlapping areas caused by images
containing common scenes as a potential source of error during the morphing process which is
prevented by using a Z-buffer algorithm to maintain the pixel nearest to the lens.
View morphing results are applied in applications like virtual holograms or walkthroughs in
virtual environments, image-based primitives or incremental rendering [13]. A benefit of this
method is that the knowledge about 3D shapes is not required and thus computing in-between
images is independent of the scene complexity [13, 42, 51, 53, 64].

2.1.3 Image Fusion

Having two or more single images which contain informations retrieved from similar or multiple
sensors, the merging of the images is commonly called image fusion. When multisensor data
is fused the scene of the image remains the same which is a considerable difference to tradi-
tional image morphing methods like [54] in which the morphing of different objects or scenes
is focused. However, both methods have to register the source images. A resulting fused image
enhances the human or mechanic „readability“ of the image [1]. The measurement of an image’s
information content is indicated as entropy rate [1]. The maximum information can be reached
if each of the images’ gray levels have the same frequency [1]. Consequently, the higher the
information content of the fused image the higher the entropy rate. Similarly to image morph-
ing the method requires an image registration process, which determines correspondences in the
images. To obtain a final image, single pixel values have to be selected from possible candidates
of source images. Trivial methods are the maximum selection method which selects the pixel
value with the highest intensity, the simple average method which averages the pixel values, or
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the minimum selection method which takes the pixel value with the lowest intensity. Further
methods to determine the pixel value for the merged image are the Laplacian pyramid method
where Laplacian pyramids of the source images are computed to get the resulting fused image
and the Principal Component Analysis (PCA) method which helps to decrease multidimensional
data sets to lower dimensions [1]. In the research area of Medical Imaging a common approach
is to merge relevant informations obtained from Computer Tomography (CT) and Magnetic Res-
onance (MR). Furthermore, image fusion can be applied to various types, e.g. multispectral and
panchromatic images of satellite images [67] or in the scope of Robotics, where different track-
ers provide different informations and image fusion serves for a improvement of navigation [41].

2.1.4 Image Stitching

Image stitching is the process of seamlessly merging two images within a common overlapping
boundary region. In contrast to image morphing where the whole dimensions of two images
get registered to each other stitching requires to find common regions only in overlapping areas.
This approach can be used for generating a panoramic view of several single images, virtual
reality, super resolution or texture synthesis [52]. Two main problems have to be handled:

• Finding a best common boundary of adjacent images.

• Adapting the color intensities of the images to obtain a seamless transition.

To find the optimal seam, in [52] Sadeghi et al. use an approach where pixel intensity values
are compared within overlapping regions. By employing a minimization weight function, which
computes the Sum of Absolute Difference (SAD) (l1-norm) of the pixels, an optimum with the
slightest intensity difference is found. To adapt the intensities to each other a color correction
based on the Poisson equation, which is described in Section 3.1.2, is used [52]. In [26] Jia et
al. use dynamic programming and graph cut for minimizing intensity and gradient values in two
images to find the optimal seam. The method of Jia et al. [27] is robust against motion blur
and occlusions by using a tensor voting method. According to investigations of Jia et al. [28]
it is not enough to produce a seamless transition and subsequently adapt the intensities of the
images. There are two more requirements which have to be followed in an image stitching
process. Firstly, the computed seam must not break through a salient object since disturbing
artifacts (ghosting) could be produced. Second the form of an object should stay consistent and
not be deformed by attaching a foreign object of the other image (considering a tree trunk which
appears thicker because of an incorrect computed boundary). The proposed algorithm in [28]
determines the quality of the computed features in the overlapping area. For this measurement
either the Single Optimal Partitions (SOP) or the Double Optimal Partitions (DOP) technique
is applied. Along the computed partitions 1 Dimensional (1D) features are computed to which
deformation vectors are associated for the matching process. Finally, the deformation vectors
are propagated toward all other pixels.
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2.1.5 Image Completion

Image completion is a image editing method to fill unknown or occluded areas of an image
with a natural looking content. Applying image completion on an image requires only one
source image. This means that the content filling occluded or unknown areas has to be found in
neighbored regions of the affected area. In state-of-the-art image completion methods missing
informations of a hole are substituted by surrounding nearest neighbor patches. In [15] Darabi
et al. describe the image completion task as a minimization of the SSD of two related patches.
For initialization pixel values at the hole boundary are interpolated. Establishing a Gaussian
pyramid from coarse to fine patches of the hole are substituted with nearest neighbor patches
from known regions with the help of the PatchMatch algorithm (described in Section 3.1.1).
Optimizations are done by additionally considering the orientation of given patches and solving
the discrete Poisson equation, described in Section 3.1.2. In [61] Wexler et al. present a similar
image completion method for images and video editing. Possible applications are the elimination
of unwanted objects in video sections, the visual enhancement of old damaged video frames or
modifying an undesired behavior of an actor in a video sequence. Based on the algorithm of [61]
Kopf et al. propose an application where the quality of the upcoming completion task can be
predicted to select a region that can be successfully completed [32].

2.1.6 Bi-Directional Similarity

Simakov et al. describe in [56] a method for summarizing visual information which can be used
for image scaling or the summarization of videos in a temporal manner. Image scaling explains
either the process of decreasing (re-targeting) or increasing (image synthesis) the image’s size.
To concentrate on images the main goal for image re-targeting is on the one hand to preserve as
much information of the input data (e.g. objects like buildings, trees, persons, etc.) as possible
(completeness) and on the other hand to render a „naturally looking“ image (coherent) which
avoids incomplete rendering of objects (considering a building where roof and windows are
missing). BDS is used in the morphing process presented in [15]. Considering a morphed
transition from one source image to the other then BDS ensures for each in-between frame the
completeness and coherence to its consecutive frames.
These constraints are reached by firstly defining patches in both the source image S and target
image T . The completeness term states that T should contain as much patches as possible
from S. In contrast the coherent term states that as much patches as possible from T should be
contained in S. If R denotes a patch of the source image S and Q a patch of the target image
T then Q is a corresponding patch or nearest neighbor of R if the SSD between Q and R is at a
minimum and vice versa. Patches are defined for each pixel and in a Gaussian pyramid for each
level. The Gaussian pyramid contains multiple scales of the images and is introduced to capture
a bi-directional similarity locally and globally. For initialization a good initial guess of the target
image T is required. The better the initial guess of target image T the better the results of the bi-
directional similarity algorithm [56]. It would be a bad guess if T is simply cropped, since it may
happen that important patches of S are lost. If T is smaller than 95 percent of S then resizing
T is a bad option as well [56]. Thus, a gradual resizing process is implemented. Intermediate
frames are produced by decreasing the size of S. For each in-between frame and its source
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image the bi-directional similarity measure and relevant refinements are executed iteratively.

2.2 Numismatics

Since this thesis is specialized in morphing ancient coin images this section provides back-
ground information about the coin’s genesis starting at the manufacturing up to computer vision
applications on ancient coin images. According to [21] the term numismatics is not uniform
throughout different kind of scholars. The term originates from the sixteenth and seventeenth
centuries where collectors tried arranging and acquiring knowledge about certain kind of pieces
which they called medals. Each small object consisting of metal was countered as medal but no
account was taken about the function of these medals but rather the design and outer appearance.
Scholars of the later centuries extended the domain of definition for numismatics with the result
that all portable objects which might be used as a mean of exchange are numbered among due
to the fact that the main function of medals from former centuries was economic [21].

2.2.1 Making of Ancient Coins

The production of ancient coins was realized either by striking or casting. The earliest bronze
coins from the Roman Republicans were e.g. cast because of their large diameter [21].
The making of dies was executed by specially qualified moneyers. A mint consisted of an
obverse die, a blank and a reverse die. The designs were cut freehand (die-cutting) and fixed at
the upper face of the anvil and the lower face of the punch. With iterative blows of a hammer
on the upper side of the punch the blank got struck simultaneously its head and tail. Figure 2.7
depicts a mint where blanks become coins. Due to the manual production of the coins, problems
could arise in the process of striking. The blank might have cracked under the pressure of the
hammer blow. Coins could get pierced producing a hole in the coin or an existent coin was
used as a blank leading to possible residuals of the old design in the newly struck coin. Every
hand-made coin die was individual in its appearance and had to be renewed due to wear marks
after several iterations of minting (about 10.000 iterations) [21]. The dies of obverse and reverse
die might wear off in varying rates which means that the dies are not only substituted as a pair

Hammer

Punch

Blank

Anvil

Obverse Die

Reverse Die

Figure 2.7: A mint where blanks become coins by blowing the hammer on the upper end of the
punch. Finally, obverse die and reverse die form the coin (figure taken from [74]).
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but rather be replaced individually. Thus, coins are struck by various combinations of obverse
and reverse die. In order to still determine coins of common types numismatics is investigating
coin linkage, which is described in [16].

2.2.2 Numismatics in Combination with Computer Vision

The research area of computer vision tries to interpret information from image contents. Arrang-
ing and acquiring knowledge about ancient coins is a field of research on numismatics. Initially,
to connect numismatics with computer vision, the coins have to be photographed and converted
to digital images. The digitization process of coins requires to ensure that as less as possible of
the visual information gets lost. To get an understanding concerning the way digital high-quality
images are produced from coins Goodman guides in his work [20] through several steps of coin
photography. Once coin images exist several tasks in the field of computer vision have emerged.
Potential research fields for the future are given in [74]. For this work only existing applications
are mentioned.

Coin Classification

The problem of coin classification is to categorize coins according to a predefined criterion.
A criterion could be e.g. the type or the reference number(s) of a coin, which can be taken
from reference numismatics literature (e.g. [14]). The coin is classified correctly if the assigned
criterion equals the ground truth. Doing coin classification automatically on digital coin images
shows to be a challenging task. One reason is the large number of given coins (e.g. 550 types for
the Roman Republican period [14]). Furthermore, on the one hand the difference between coin
types is low and on the other hand the intra-class variability (which indicates the difference of the
visual appearance within one class) is high [75]. In Figure 2.8 an example is given where coin
types are different but simultaneously highlighting a high intra-class variability. Van der Maaten
[59] describes that differences exist between classification tasks of present and ancient coinages.
In [69] Zaharieva and Kampel explain that for classification systems of modern coins a rotational
symmetry of coins, which means that their diameter is known, is assumed. This pre-condition
distinguishes them from classification systems of ancient coins. In contrast, the shape (and thus
the diameter) of ancient coins appears almost arbitrary which makes the task more complex.
Classification methods based on data sets of modern coins are given in [23, 45, 58]. One of the
first encouraging approaches attempting to recognize ancient coins is presented in [68] which
makes use of local SIFT descriptors [9]. An average classification rate of 84.24% is obtained by
using a small data set of 350 images with three different types of coins. The focus of [31] lies
on new combinations and extensions of local image descriptors obtained from located interest
points of ancient coins in order to ensure a basis for the classification task. The recognition of
coins is then performed by feature matching. With the usage of Shape Context [7] combined with
a Hessian Laplace detector the best classification rate is located at 92.57% and uses the same
image data set as [68]. In [71] Zambanini and Kampel use the energy resulting from the SIFT
flow approach in order to determine the image similarity of ancient coins on a Roman Republican
coin data set with 24 classes where each one comprises three images. As a result 74% of the
coins are classified correctly. With a common evaluation procedure the method outperforms [31]
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Figure 2.8: A selection of Roman Republican coins showing a high intra-class variability
(columns) and a high similarity of the coins among the classes (rows).

with more than 40% where both are applied on the same (and new) data set. An extension of the
SIFT flow method is proposed in [72]. The data set for this evaluation comprises 60 classes and
achieves a result of 83.3% of correctly classified Roman Republican coins. Besides, a further
improvement lies in the performance of the classification task by introducing a coarse-to-fine
classification procedure. Furthermore, the classification rate in [75] passes the 90% mark by
combining exemplar-based and lexicon-based legend recognition. In [2] Anwar et al. use the
Bag Of Visual Words (BoW) technique to classify ancient coins. They establish a dense grid to
extract SIFT descriptors and match them against a vocabulary by using the Eucledian distance.
Each descriptor represents a visual word which is then registered in a histogram. Considering the
spatial location of the visual words as well, rectangular tiling, log-polar tiling and circular tiling
are employed. In the part of evaluation the circular tiling outperformed all other methods due to
the rotational invariance. The published work of Quraishi et al. presents a classification method
of ancient coins with the help of a neural network. A classification rate of 75% is reached on a
data set with only 20 images [50].

Further Applications

To get a better idea concerning the way computer vision interacts with the research field of nu-
mismatics further applications are explained which have emerged in the past ten years:
As a pre-processing step to computer vision tasks performed on ancient coin images (e.g. coin
classification or coin identification) an image has to be segmented into foreground regions rep-
resenting the coin and background regions. Segmentation tasks are proposed in [70] where [70]
can be executed fully automatically thus providing the benefit of handling a large variety of
coin image styles. The identification of a numismatic object requires to localize unique features
which enable the differentiation of the object from all other ones belonging to the same class.
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Interesting features can be computed e.g. by considering scratches, wearing, shape or varying
production processes [30]. The shape of an ancient coin is not exactly circular which means that
it can be a helpful attribute for the identification process. Deviation from circular shape matching
(DCSM) is the name of a method presented in [24] where the algorithm is based on the descrip-
tion of a coin’s shape border as the deviation from a circular shape. DCSM measures the polar
distance from the sampled points of a coin’s shape border to a circle and stores it in a vector. The
result is a 1D descriptor representing the border of a coin. With this application Huber-Moerk
et al. reach an identification rate of 95.16% [24]. An extension of this approach is given in [25]
where the identification rate is increased to 99%. Furthermore, an application is demonstrated
in [76] where Zambanini et al. use a state-of-the-art scanning device to generate 3D models of
ancient coins. The acquisition of 3D models from ancient coins can be useful e.g. to examine for
changes on the coin’s surface like cuts or to get a better insight to the coin’s features by simply
changing the viewpoint [76]. Mudge et al. acquire 3D geometries from 2D images containing
ancient coins by applying Polynomial Texture Mapping (PTM). With the help of a low cost sys-
tem fifty identically aligned images with different illuminations per image are taken to achieve
the PTM light direction images and the 3D geometry. The usage of this procedure leads to more
accurate 3D virtual coins and enables to create a ’virtual exhibition’ [44].

2.3 Summary & Implications for the Proposed Methodology

Summarization methods provide a possibility to bring given images’ content into relationship
with each other by applying an image registration process. While the registration process is part
of all presented methods the output is different. Image morphing blends multiple images to a
single one, the view morphing produces a synthetic viewpoint from two images with different
views of a scene, image completion fills unknown or occluded areas of an image with a natural
looking content, image fusion contracts information retrieved from similar or multiple sensors
of the same scene and image stitching treats the composition of multiple images (e.g. to generate
panoramic views). For this thesis, the SIFT flow algorithm is used in order to register images due
to the high flexibility of the algorithm: the SIFT features used are invariant to scale and partially
invariant to changes of illumination and 3D viewpoints [39]. Moreover, a dense correspondence
search is done which enables to warp/align images [37] and a classification of ancient coins
can be realized by exploiting the energy term as similarity metric which is presented in [72].
The extraction of image patches during the morphing process is inspired by the PatchMatch
algorithm, however, the idea of selecting more than two source images for the morphing process
is transferred into this work. The term numismatics originates from the attempt of collectors
to acquire and arrange knowledge about coins which were used as a mean of exchange. Coin
classification aims to categorize coins according to a predefined criterion like the type of a coin.
In contrast, the identification of a coin requires to localize unique features which enables the
differentiation of the coin from all the other ones belonging to the same class. Shape matching,
which presupposes the segmentation in foreground and background, represents a possibility for
identifying coins. Furthermore, the acquisition of 3D models from ancient coins helps to get a
better insight to the coins’ features by means of a ’a virtual exhibition’.
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CHAPTER 3
Methodology

In this chapter a new approach for image morphing is presented. The theoretical background of
already existing algorithms is expounded in Section 3.1. Based on these foundations, a system
is described which morphs images originating from a common class in order to receive a class
representation. The system handles two or more source images and delivers as output one image
containing a visual summarization of similar image regions. A detailed explanation of this
work’s core element, the multi-image morphing framework, is given in Section 3.2.

3.1 Background

For a better understanding, this section comprises a theoretical background to the multi-image
morphing approach. The approaches presented in the following are used to register images to
each other and subsequently execute optimization operations on images.

3.1.1 Image Registration

Zitová and Flusser describe image registration as „a process of overlaying two or more im-
ages of the same scene taken at different times, from different viewpoints, and/or by different
sensors“ [77]. Several years after the publication of [77] two image registration algorithms
were developed. Firstly, in 2004 SIFT [39] was introduced and six years later Barnes et al. [4]
presented the Generalized PatchMatch algorithm. Both allow a registration process of scenes
deviating slightly from each other.
At this point image registration can be described more generally as the process of finding cor-
respondences in related image contents. Correspondences might be found as matching points,
lines or segments. Optical flow methods are developed to estimate the transitional change of the
image’s content by comparing pixel intensities [38]. In other words a dense sampling in time is
done which enables tracking of a moving object. By comparing the images a movement vector
is assigned to each pixel of the scene. Optical flow techniques can be divided into local and
global methods whereby the first category comprises the approach of Lucas and Kanade [40]
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Figure 3.1: Through the circular window a movement of the bars is perceived but not the exact
direction. Possible movement directions of the whole object behind the window are up-left, left
or up leading to the same result namely the movements of the bars from bottom right to top left.

and the latter one Horn and Schunk’s method [22]. A possibility for combining a global and a
local method is presented in [10]. Local methods provide higher robustness under noise than
global do, although global approaches return a dense flow field [10]. A problem which can
not be solved by optical flow estimates is the aperture problem. Considering a small window
through which movements of an object can be perceived, the direction of the object’s movement
can not precisely be determined. Figure 3.1 illustrates the problem where the exact movement
direction of the whole object can not be determined when only considering the circular window.
SIFT flow is based on optical flow methods but uses SIFT features and provides dense sampling
in the space of natural images which enables the alignment of images [38]. The Generalized
PatchMatch algorithm also aligns images but different to SIFT flow by comparing image re-
gions called patches [4].

Scale Invariant Feature Transform

This section explains the SIFT algorithm since this forms the basis of SIFT flow which is ex-
plained in Section 3.1.1. SIFT is able to extract distinctive invariant features of images [39].
The extracted features are invariant to image rotation, scale and partially invariant to changes
of illumination and 3D viewpoints. Due to its robustness the features are usable for matching
similar scenes in two images. The computation of SIFT features can be divided into four steps
which are explained in the following.

Scale-space extrema detection The first step intends to find potential pixel candidates which
can be recovered independently to scale and orientation of differing scenes. To find scale invari-
ant points it is necessary to search for these features in all possible scales of the given image.
Therefore, a Gaussian function G serves as kernel and convolving it with the given image I
leads to a scale space. An octave of the scale space consists of Gaussian images, resulting from
the convolution of G and I , and the Difference-of-Gaussian (DOG) which results from the dif-
ference of adjacent Gaussian images. Figure 3.2 illustrates the first and second octave of a scale
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Figure 3.2: A scale space for detecting scale invariant features consists of octaves where each
one is composed of Gaussian images (left) and the DOG (right). Gaussian images result from the
convolution of a Gaussian kernel and the source image. The difference in two adjacent Gaussian
images leads to a DOG image. For each following octave, the size of the image is divided by 2
(figure taken from [39]).

space. The size of the Gaussian images remains the same within one octave and is reduced
afterwards by the factor of 2. Furthermore, only the DOG images are considered to spot local
minima and maxima. Figure 3.3a depicts the selection of the pixel neighborhood. Each pixel
in the image is compared with its eight-neighborhood in the same level and with each adjacent
pixel of the 3x3 matrix in the level above and below. If the value of the selected pixel is the
lowest or highest of all compared pixels it is marked as a local minima or maxima, respectively.

Keypoint localization Due to inaccuracies the initial detection of a pixel position as maxima
or minima is improved. With the help of the 3D quadratic Taylor expansion an interpolated
location of the extrema is found. The interpolation is performed using the sample point as
origin. If the computed offset from the point is larger than 0.5, the sample point changes and
gets the new origin of the interpolation.
Not all of the gained keypoints are stable enough to be used for further approaches. Firstly,
extrema with low contrast are eliminated by using again the Taylor expansion for calculating an
intensity value. If the result is below a threshold, the extremum gets rejected.
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DOG images may depict keypoints along edges having a weak stability due to small amounts
of noise [39]. For eliminating these keypoints a Hessian matrix is used in order to compute a
principal curvature [39]. The curvature is large when crossing the edge and small when pointing
in the perpendicular direction. Due to the proportionality between eigenvalues and curvatures,
eigenvalues can be computed instead. It is even sufficient to determine the ratio of the eigenvalue
with the largest magnitude and the smaller one [39]. Consequently, keypoints holding a ratio
higher than a certain threshold are eliminated. In metaphorical terms this means that keypoints
located on edges and smooth regions are rejected and those located on corners are preserved.

Orientation assignment Rotational invariant features means that keypoints are still match-
ing despite rotating one of the source images. Transforming keypoints into rotational invariant
features requires the assignment of an orientation. The Gaussian image which is closest to the
keypoint’s scale is used for computing the gradient magnitude and orientation around a key-
point. The values are registered in an orientation histogram divided into 36 bins (every bin
contains 10 of 360 degrees) where every added sample is weighted by its gradient magnitude
and by a Gaussian-weighted circular window [39].
In order to assign the orientation to the keypoint, the highest peak of the histogram indicating
the dominant gradient direction and all local peaks, which are within 80% of the highest peak,
are selected. In case of finding multiple peaks for every orientation multiple keypoints with the
same scale and location are generated [39].

Description of keypoints For all generated keypoints a robust description is necessary pro-
viding as much invariance as possible to scale, rotation, illumination, change of 3D viewpoints
and small amounts of noise.
Firstly, the used image is blurred by the factor of the keypoint’s scale and the gradient magni-
tudes and directions are computed, as illustrated in the left part of Figure 3.3b. The blue circle
represents a Gaussian function with a standard deviation of 1.5 times the descriptor’s width and
intends to weight the gradients magnitude. The greater the distance from the center the less
influence of the magnitude. Furthermore, the usage of a Gaussian function reaches a certain
stability against small displacements of the descriptor’s window [39]. The right part of Figure
3.3b depicts established orientation histograms over 4× 4 sample regions where every gradient
is classified by its direction to one out of the 8 bins. Depending on the magnitude and the dis-
tance from the center the gradients have more or less influence to the assigned bin. Due to the
generation of 8 bins for all 16 (4 × 4) sample regions the resulting descriptor is a normalized
feature vector containing 16× 8 = 128 elements [39].
The descriptor is not invariant to non-linear illumination changes [39]. These changes can effect
the length of gradients. In order to reduce this effect, all magnitudes which have a value larger
than 0.2 are decreased to 0.2 and the descriptor is again normalized to unit length [39].
Rotation invariance is reached by using relative gradient directions to the keypoint’s orienta-
tion [39].
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Figure 3.3: (a) All marked pixels (3× 3 matrix in current and adjacent levels) in the illustration
are compared with the selected pixel for detecting minima and maxima values. (b) Left: com-
puted gradient magnitudes and directions in a squared 16×16 matrix. A Gaussian function (blue
circle) weights the magnitudes and ensures a stability of small displacements of the descriptor’s
window. Right: all gradients of a 4× 4 region are accumulated in a 8 bin orientation histogram.
The assignment of the 8 bins depends on the gradient direction. Each bin represents one element
in the final keypoint descriptor (adapted from [39]).

Scale Invariant Feature Transform Flow

In [38] Liu et al. describe the SIFT flow algorithm which is based on the optical flow principle.
In the process of finding SIFT flow correspondences the algorithm uses SIFT descriptors. For
every pixel of the source image a descriptor is computed, where the sample region has 4×4 cells
and hence leads to a feature vector containing 128 elements. All descriptors of one image form
a SIFT image [38]. Once the SIFT images are computed, an energy function is defined, where p
is the image position and w(p) = (u,v) denotes the flow vector consisting of a horizontal and a
vertical flow element. Let si be the SIFT image then

E(w) =
∑
p

min
(∣∣∣∣s1(p)− s2(p+ w(p))

∣∣∣∣
1
, ω
)

+ (3.1)

∑
p

η
(
|u(p)|+ |v(p)|

)
+ (3.2)

∑
(p,q)∈ε

min
(
α|u(p)− u(q)|, ψ

)
+min

(
α|v(p)− v(q)|, ψ

)
. (3.3)

In the matching process Equation 3.1 penalizes excessive deviation from the flow vector, Equa-
tion 3.2 tries to keep the vector small and Equation 3.3 is responsible to keep adjacent pixels’
flow vector similar [38]. The variables ω and ψ are denoting a threshold splitting outliers from
non-outliers and ε stands for all pixels in the 4-connected neighborhood of p.
Any pixel in the source image can possibly match with any pixel in the target image which
causes performance problems in the algorithm [38]. Consequently, a SIFT pyramid is estab-
lished for each SIFT image where for each pixel the flow vectors are estimated in the highest
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Figure 3.4: The SIFT pyramid generated for coarse-to-fine SIFT flow matching to increase the
performance of the algorithm. The searching space is reduced to the size of the green window
and decreases the complexity of the algorithm from O(h4) to O(h2 log h). Finding the flow
vector with starting point p is done by reducing the energy function composed by Equations 3.1,
3.2 and 3.3 (adapted from [38]).

level (the coarsest resolution of the image). The nearest neighbor pixel has to be found within a
searching window. For an easier understanding in Figure 3.4 one SIFT pyramid is illustrated for
two SIFT images: one containing a given pixel p and the second a searching window to which
the flow vector is pointing. If the flow vector is calculated by minimizing the energy function,
subsequently the vector is propagated to the next finer level. This procedure is repeated for each
level in the pyramid until the finest one is reached [38]. Due to the features’ robustness they are
usable for matching similar local structures which, e.g., enables to query a large database and
find the nearest neighbor of an image. In other words, SIFT flow performs dense sampling in the
space of all images which enables scene alignment [38]. Liu et al. show compelling results by
finding similar frame scenes tested on overall 731 videos where each one provides one frame as
query image and subsequently the nearest neighbors are found. Figure 3.5 illustrates the results
of the query. Figure 3.5a shows the query image and 3.5b the most similar image, determined
by the SIFT flow algorithm.

PatchMatch and Generalized PatchMatch

PatchMatch is an algorithm for determining similar patches in two images [3]. The most similar
patch compared to a source patch is called nearest-neighbor and is found by a dense approximate
correspondence search. PatchMatch is useful for image editing tasks such as texture synthesis
and completion, image re-targeting or image reshuffling. In order to measure the distance from
one patch to another, SSD is used and in the correspondence search only translations are consid-
ered. Thus, Barnes et al. extended the algorithm in [4]. The Generalized PatchMatch algorithm
shows clear benefits compared to PatchMatch:
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(a) (b) (c)

Figure 3.5: SIFT flow experiments: one frame from each of 731 videos was used as query image
where the most similar was determined by the SIFT flow algorithm. (a): Query image. (b): Most
similar image. (c) Warped onto (a) (figure taken from [38]).

• Instead of one, the number of detected nearest-neighbor patches is increased to k.

• The process of determining nearest-neighbors is extended by taking into consideration
rotations and scales as well.

• For matching not only the distance metric SSD is used but also arbitrary descriptors and
distances [4].

For a better understanding of the Generalized PatchMatch, PatchMatch is described in the fol-
lowing.
Let R be a patch in image S1 and f(R) the nearest-neighbor patch in image S2. Then f denotes
the Nearest-Neighbor Field (NNF) with dimensions of S1 containing values called offsets. One
possibility of filling the NNF is to choose randomly patches from S2. Subsequently, the nearest-
neighbor patch is optimized by executing propagation and random search.
In the propagation step for all patches it is assumed, that if the position of patches in S1 is close
to each other then neighbor patches in S2 are likely close to each other as well. Considering a
patch R and its left shifted patch Rshift. Then in the propagation step it is attempted to improve
the nearest-neighbor of R by substituting the patch one pixel to the right of f(Rshift). If the
mentioned patch offers a lower SSD to R it is registered as new nearest neighbor. Moreover,
propagations are executed in iterations where even iterations use patches below and to the right
and odd iterations neighbor patches above and to the left of R. Executing propagation without
random search would end up in a local minimum. Thus, in order to further reduce the distance to
the nearest-neighbor patch a region around f(R) is chosen where the minimal distance should be
extracted in several iterations. This is called random search. Due to investigations of Barnes et
al. the number of iterations are limited to a constant size [3]. Figure 3.6 illustrates the explained
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Figure 3.6: Three steps of PatchMatch: (a) Initializing the NNF by choosing randomly nearest
neighbor patches. (b) If the patch positions of image S1 are close to each other the nearest
neighbor patches should be close to each other as well. Thus, a possible new nearest neighbor
for the blue patch is the red nearest neighbor, shifted one pixel to the right, and the green nearest
neighbor shifted one pixel downwards. (c) Random search by searching a nearest neighbor in a
fixed window size (figure taken from [3]).

steps of initialization, propagation and random search.
In Generalized PatchMatch the number of nearest-neighbors is extended to k. Therefore, the
NNF, where heretofore for each pixel position one nearest-neighbor was stored, becomes a k-
NNF. Now propagating patch R means testing k neighbors of Rshift which is shifted left, right,
up and down. If one of the candidates is closer than the most distant patch associated to f(R)
the closer candidate is admitted to the field of k nearest neighbors.
In order to determine nearest-neighbors even though the patches are rotated or scaled around its
center the search space is extended by these two dimensions. Hence the NNF is initialized by
randomly choosing scale, orientation and positions in the given ranges. In the propagation step
the transformation T(f(R)), needs to be taken in consideration. T is determined over position,
scale and orientations of the patches.
For the third improvement of using different distance metrics and descriptors the already men-
tioned hypothesis „if the position of patches in S1 is close to each other then neighbor patches
in S2 are likely close to each other as well“ is true as well [4]. Instead of using SSD as distance
metric approaches are given in [4] where for symmetry detection a modified SSD metric per
patch and in a label transferring application SIFT descriptors per pixel are used.

3.1.2 Optimization

One characteristic of optimization algorithms is the goal of minimizing errors and finding best
solutions to a given problem. At the global minimum of so called energy functions the best
solution is delivered and the returned error is at its lowest. An example of an energy function
is the euclidean distance of two image patches’ intensity values. To find the patch pair with
the lowest euclidean distance of two images a naive method would be to compare one patch
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of image S1 with each possible patch of image S2. In case of additionally determining how
well boundaries of adjacent patches fit together, it would end up in performance problems when
iterating through each possibility of patch combination. For this optimization problem statistical
approaches are introduced: a MRF delivers the best combination of image patches when more
than one patch are available for a given part of an image which means that a joint probability
distribution is found. Furthermore, the solution of a Poisson equation helps to find the best
way of interpolating image regions. In this section the theory concerning the way a MRF and a
Poisson equation can be solved is described in detail.

Markov Random Field

A discrete MRF belongs to the statistical family of graphical models. A graph is used to specify
a family of probability distributions and gives the possibility to retrieve a joint probability dis-
tribution over all possible solutions [46]. An image can be partitioned in single segments (e.g.
objects, regions or pixels) which are assigned to a label (e.g. color, depth or object class). Sub-
sequently, a solution is found for the globally best combination of possible labels per segment
and their conditional dependencies to each other (e.g. common boundaries).
A MRF is an undirected graphical model where G = (V, E) denotes the graph consisting of
nodes v ∈ V , representing image segments, and the connecting edges E in-between [46]. An
undirected graph means that E(vi, vj) = E(vj , vi). Two nodes vi, vj ∈ V are neighbors if they
share a common edge E which in addition means that the neighborhoodN of vi covers all nodes
vj ∈ V that share an edge E(vi, vj) where i 6= j. The set of cliques originating from G is de-
noted as C. A clique c ∈ C is a subset of nodes from G forming a complete graph which means
that there exists a connection between each possible pair of nodes. A maximal clique denotes
the maximum number of nodes originating from the subset. An image with K segments holds
K random variables X (one random variable per segment/node). All random variables together
form a random field which contains the best combination (a.k.a. configuration and denoted by
χ = {χ0, χ1, ..., χK}) of predefined labels assigned to image segments. The joint probability is
written as ρ(χ) indicating the probability of a possible configuration [46]. A graph is a MRF if:

• The probability that a random variable Xi takes a given label is larger than zero.

• Local Markovianity: dependencies exist only in the local neighborhood of a random vari-
able. A local neighborhood in a graph is given only by directly connected nodes [46].

Equation 3.4 expresses these statements:

ρ(χi) > 0

ρ(χi|χV\{i}) = ρ(χi|χN (i)). (3.4)

In the subset V\{i} all nodes except i are included. In case of a local Markovianity the term ρ(χ)
can be expressed as a Gibbs distribution to obtain the global joint distribution (and consequently
the best configuration):

ρ(χ) =
1

Z
exp

{
− 1

T

∑
C∈C

VC(χC)

}
. (3.5)
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Figure 3.7: Sketch of pasting snippet S1 on S2. A seamless boundary of T and S2 can be
computed by solving the Poisson equation (adapted from [48]).

Z is a normalizing constant ensuring the sum to one and T a constant called temperature. A
found clique in the graph is denoted by C. VC stands for a local function (a.k.a. clique potential)
assigned to each maximal clique of the graph. In other words the global joint distribution is
obtained by factorizing several local functions [46]. The MRF can also be seen as a minimization
problem of the energy function E(χ):

E(χ) =
∑
C∈C

VC(χC)

=
∑
{i}∈C1

V1(χi) +
∑
{i,j}∈C2

V2(χi, χj) +
∑

{i,j,h}∈C3

V3(χi, χj , χh) + ... (3.6)

Equation 3.6 is the energy function E(χ) for the clique potentials of pairs of neighboring pixels.
For each clique an energy function exists which has to be minimized. In contrast, the global
joint distribution has to be maximized to find the best configuration [46].

Poisson Equation

In [48] Pérez et al. present an approach for seamlessly stitching together different image con-
tents. For image editing tasks - ranging from slight distortions of image regions over seamlessly
stitching single images to panoramic views up to replacements of image regions - the Poisson
equation can be used. The goal is to produce a smooth transition from one image content to the
other by interpolating pixel intensities or colors originating from both the original and the new
content.

Considering Figure 3.7, let S2 be an image to paste on, T a closed subset of S2 and target
region and its boundary ∂T , f an unknown scalar function over the interior of T , f∗ a known
scalar function over the difference of S2 and the interior of T , S1 the snippet to paste and g a
guidance field (a.k.a. vector field) of S1. The goal is to interpolate S1 and place it on S2 with-
out observing any boundaries or disturbing seams between those regions. The basic idea behind
solving the Poisson equation is to define the function f over T which gets constrained by forcing
the function to take the values of f∗ at the common boundary ∂T .
To avoid blurred interpolants Pérez et al. propose a guidance field g which is part of the mini-
mization problem:

minf

∫∫
T
|∆f − g|2 with f |∂T = f∗|∂T , (3.7)
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where ∆ is the Laplacian operator. The guidance field g is the gradient field of S1. The process
of minimization has to satisfy the Poisson equation

∆f = divg over T, with f |∂T = f∗|∂T (3.8)

which means that divg is valid over the region defined by T [48]. The term div denotes the
divergence of g. Additionally, a Dirichlet boundary condition is valid giving the information of
what the values of f should be at given positions. In this case the given positions are (f |∂T =
f∗|∂T ) saying that on ∂T the values of f equals the values of f∗. In other words, the main
problem for solving the Poisson equation is to find a correction function f̂ on T such that f =
f̂ + S1 [48].

3.2 Morphing Framework

This section describes the technical workflow of morphing multiple images. For a better un-
derstanding, this workflow is visualized in Figure 3.8. Initially, the source images have to be
registered to each other. Therefore, the SIFT flow algorithm is used to find correspondences in
images1. For each pair of images a displacement field is computed. A so called best reference
image is chosen by finding the minimum of displacements summed over all related displacement
fields where ’related’ means images where correspondences exist. The images are aligned by a
warping process, by shifting pixels of images according to its displacement field which points to
the best reference image. Visually common regions are valuable and have to be preserved. These
regions are represented as rectangular patches and included in a synthetically produced central
image. According to this template the morphing process reproduces a visually similar output by
using two optimization frameworks. Firstly, a MRF finds the best combination of similar patches
compared to the central image and the smallest visual difference between patch boundaries of
the output image. Secondly, the solution of a Poisson equation smooths the morphed image such
that any boundaries or disturbing seams become invisible.

3.2.1 Image Registration

The first step of the morphing framework consists of examining the relationship of the source
image’s content where S = {S1, S2, ..., SK} and K > 2. Based on these relationships, subse-
quently the images are warped which means that the image’s content gets aligned to each other.
The task of finding correspondences is realized by the SIFT flow algorithm which is described in
detail in Section 3.1.1. The extracted SIFT features are invariant to scale and partially invariant
to changes of illumination and 3D viewpoints [39]. Concentrating on the recognition of coin
images, the evaluation of Kampel and Zaharieva shows outstanding performances of SIFT fea-
tures [31]. SIFT flow computes a dense correspondence field where correspondences are found
by optimizing the energy function comprising the data term (Equation 3.1), small displacement
term (Equation 3.2) and the smoothness term (Equation 3.3).

1The implementation of SIFT flow is supported by using the SIFT flow library, available at http://people.
csail.mit.edu/celiu/SIFTflow/ (accessed on 03.10.2013)
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Figure 3.8: Workflow of the multi-image morphing framework from upper left to bottom right.
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Figure 3.9: (a) S1, S2 are the given source images. The arrows in-between represent displace-
ment fields D containing flow vectors for each pixel. (b) An example of a displacement field.
The red arrows indicate the flow vectors w(p) which are calculated for each pixel position p and
point to one corresponding position in Sj .

For each pair of source images a pixel displacement field D is computed. In the following p
defines a pixel in Si. Let w(p) be the flow vector determining the corresponding pixel of p then
D holds for each pixel a flow vector. Consequently, K · (K − 1) displacement fields are gener-
ated where each field originates from one reference image serving as basis for the calculation of
the flow vectors. Figure 3.9a gives an example of the relationship among source images. Each
source image can take the role of a reference image. Stored flow vectors for each pixel form the
displacement field DSiSj from Si to Sj . Figure 3.9b shows an example of a displacement field
where Si and Sj are the source images.
Since for further computations only one image serves as reference image a decision has to be
made which image should be selected. Once all displacement fields are calculated, the reference
image is chosen by finding the minimum of displacements over all related displacement fields.
In Figure 3.9a e.g. a related displacement field of S1 is DS1S2 and DS1S3 . If the displacements
originating from S1 are smaller than those of S2 and S3 then S1 is selected as IBestRef. For a
better understanding in Figure 3.10 an example of the selection is given. For simplicity, it is
assumed that all images are put on top of each other. The red pixel is chosen to be from IBestRef
and the other pixels are from Si and Sj . In 3.10a it can be seen that a correct selection of IBestRef
is done, since the total distance to all shifted pixels is at a minimum. In contrast, in 3.10b an
example is shown where the distance is increased by choosing a wrong IBestRef. Since IBestRef
is defined by selecting the minimum of displacements over all related displacement fields, the
content of the reference image is the closest to an „average content“.

3.2.2 Warping

In [38] Liu et al. use the pixel displacement field as a warping function to investigate the quality
of the function. Matched images of the database are warped onto the query image. Examples
are given in Figure 3.5c which are warped onto the images in Figure 3.5a.
For this work the displacement field is also seen as a warping function. Let q be a pixel of
Sj at position (x, y) and w(q) =

(
u(q), v(q)

)
the flow vector split in displacements in x- and
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...Pixel of IBestRef

...Pixels of Si and Sj

(a) (b)

Figure 3.10: (a) A correct selection of IBestRef with a minimum distance to Si and Sj . (b) An
example of a wrong selection of IBestRef, since the total distance is higher than in (a).

(a) (b) (c)

Figure 3.11: (a) Query image. (b) A coin image from the same class is used. (c) Warping image
of Figure (b) onto (a) (figure taken from [72]).

y-direction. If a displacement field exists of IBestRef and Sj then pixel q is shifted by u(q) in x-
direction and v(q) in y-direction to finally obtain the warped images I ′1, I

′
2, ..., I

′
K . In Figure 3.11

the displacement field of two coins belonging to the same class is computed to subsequently warp
the image in Figure 3.11b onto the query image of Figure 3.11a. The warped image is shown
in 3.11c. For a better understanding, Figure 3.12 compares two different cases where on the
one hand the given images are not aligned (Figure 3.12a) and on the other hand they are aligned
(which means that one image is warped onto the other; Figure 3.12b). This example indicates
why the alignment of image contents is needed as a fundamental step for image morphing.

3.2.3 Computation and Usage of a Central Image

Considering the resulting morphed image, the objective is to summarize relevant visual data
from all source images. For this work visual data of a source image is relevant if it has visual
similarities to other source images. Visual regions which match to several other images are
considered as valuable and have to be preserved while non-matchable regions have to be elimi-
nated. These constraints are realized by introducing a central image with the purpose of having
a template which comprises common regions of images. The more images exhibit a common
region the clearer the illustration of the region appears. Let IC be the central image, then the
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(a) (b)

Figure 3.12: (a) Two images which are not aligned and put on top of each other. (b) The same
two images aligned.

computation can be realized by determining the mean of the pixel values at each pixel position
of all warped images. This can be written as:

IC(p) =
1

K

K∑
i=1

I ′i(p). (3.9)

Another option is to calculate the median of a sorted set of pixel values, having the advantage of
being less sensitive to outliers:

IC(p) =

I
′
(K+1)

2

(p) K odd

1

2
{I ′K

2

(p) + I ′K
2
+1

(p)} K even
(3.10)

Figure 3.13 illustrates these two possibilities of computing a central image. In 3.13b the image
is generated by using Equation 3.9 and outliers are still visible. On the contrary, in Figure 3.13c
Equation 3.10 is employed in order to compute IC with four source images. This method clearly
outsources artifacts illustrated within the red ellipses.
Since the contours and structures of IC can be blurred or hardly visible, the target image T
is visually approximated in order to obtain a sharp output. Therefore, I ′i and IC are divided
into patches where each one represents a rectangular region of pixels and can be controlled
separately. Let R be a patch of image I ′i and Q denotes a patch of I ′C then patch R is compared
to Q. This is done for all patches. It should be emphasized that a comparison of the patches
is only done if both share a the patch position in the image. This process serves to determine
the similarity of each patch originating from I ′i and IC , respectively. The result of the similarity
measure is distance dP for each patch.
For the measurement of dP two implementations exist:

• Firstly, SIFT flow offers an energy function (consisting of the terms, described in Equa-
tions 3.1, 3.2 and 3.3) which can be exploited to estimate the visual similarity of the
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(a)

(b) (c)

Figure 3.13: (a) Source images I ′1, I
′
2, I
′
3, I
′
4. (b) Mean of all input images. (c) Median of all

input images.

patches. Zambanini et al. present this procedure in [72] to obtain the visual similarity of
two given coin images.

• Secondly, for each patch a SIFT descriptor can be computed where its width equals the
with of a patch. Let D1 denote a descriptor of patch R and D2 the descriptor of patch Q
then dP is received by calculating the l2-norm.

Since for this work the usage of the energy computed by SIFT flow causes a lack of performance
the descriptor method is used. Finally, for each patch position of target image T a patch is
selected where the distance to Q is at a minimum.

3.2.4 Optimization

As described in Section 3.1.2, an important characteristic of optimization methods is the ob-
jective of improving already existing solutions. The visual appearance of the target image T
can be optimized by using probability functions for the selection process of an image patch and
finding the best combination of patches by exploiting a MRF. The combination of patches is
computed by selecting the patch holding the shortest distance to the patch of the central image.
In other words the selection of a patch is restricted to one local similarity criteria. In order to
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visually improve the result such that the number of abrupt boundaries between patches is re-
duced neighbors of the patch are included in the selection process. This means that not only the
patch with the highest similarity is chosen but also a transition as smooth as possible between
patches is a decisive factor. In order to find the solution with the maximum likelihood for the
combination of patches where the similarity to the central image is as high as possible and the
transition to its neighbor patches is as smooth as possible a MRF is exploited. Additionally, still
disruptive boundaries between selected patches are smoothed by solving the Poisson equation.
Therefore, intensity differences of the selected patches are corrected by interpolating pixel in-
tensities according to values of its adjacent patches to reach a homogenous appearance of the
image.

Find Best Patch Combination Using Markov Random Field

Given are K images where each one consists of L x M patches. The target image T can be
improved by additionally minimizing the visual difference of adjacent patch boundaries. Thus,
the selection of each patch is dependent on two conditions, namely the similarity to the central
images’ patch and to its connected neighbors. Firstly, values of the patch-based similarity mea-
surement have to be transformed to probabilities. For each patch R, a distance dP to patch Q
is calculated where both patches share a patch position. Similar to [75], dP is transformed to a
pseudo probability ρ(dP ) where the shortest distance is mapped to the highest probability and
vice versa. Consequently,

∑K
i=1 ρ(dPi) = 1. To regulate the ratio of the highest and the lowest

probability, the parameter θ is introduced: the probability of the lowest distance is θ times higher
than the probability with the highest distance. Consequently, it follows

d̃P =
dP −min(l,m)(dP )

max(l,m)(dP )−min(l,m)(dP )
(θ − 1) + 1. (3.11)

Finally, the similarity probability is given by

ρ(dPi) =
1

d̃P ·
∑

1/d̃P
(3.12)

Once the probabilities of the patch similarity measurement are computed, the optimization con-
tinues by introducing the Adjacent Patch-Boundary Disparity (APBD). APBD denotes the qual-
ity of a transition between adjacent patches. Considering Figure 3.14a, an adjacent patch can
either be in the 4-connected neighborhood of the same level (same image) or in the 4-connected
neighborhood of different levels, as can be seen in Figure 3.14b.
For simplicity two adjacent patches are denoted as R and Q. For the case of considering two
vertically adjacent patches with height H and width W the calculation of distance dE is started
by choosing two rows per patch at the border of R and Q. Measuring the quality of transition
between patches is done by setting up a Sobel operator [19]. The top row R(H) and the row
nearest to the bottom Q(1) are selected. In order to compare the gradients of both rows, as a
pre-processing step the convolution kernel

[
−1 0 1

]
is applied to each of them. Finally,
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Figure 3.14: All patches originating from a common image are colored unitary. (a) Concept,
seen along the z-axis where I ′1 is divided into 3× 3 patches. (b) Concept, seen along the y-axis
where I ′1, I ′2 and I ′3 arranged on top of each other. (c) A possible MAP configuration found by
a MRF where each member of the configuration x = {x1, x2, ..., xL×M} holds one label per
patch position.

the searched distance dE is defined by

dE =
∣∣∣∣ [−1 −2 −1

]
∗R(H) +

[
1 2 1

]
∗Q(1)

∣∣∣∣
1
+ (3.13)∣∣∣∣ [−1 −2 −1

]
∗R(H − 1) +

[
1 2 1

]
∗Q(2)

∣∣∣∣
1

where ∗ stands for convolution and || · ||1 denotes the l1-norm. The objective of this equation
is to highlight well fitting structures and in the same it is invariant to offsets or in other words
color differences of the given patch boundaries are neglected.
To obtain the probability of dE Equations 3.11 and 3.12 can be used. A visual concept of the
arrangement of the patches is illustrated in Figure 3.14. Each layer represents one image consist-
ing of L x M patches. Each patch holds one probability ρ. In the interests of simplification, the
whole concept is represented from two different points of view. All patches originating from a
common image are colored unitary. Edges stand for direct dependencies between patches hold-
ing the probability resulting from the APBD approach. For each patch position of the target
image one patch of either I ′1, I

′
2, ..., I

′
K is selected. To find the best combination of patches for

the target image where the global probability is at a maximum, a MRF is used2. The best com-
bination of patches is called Maximum a-posteriori (MAP) configuration.
For a MRF, V represents L×M patch positions. The variable E holds all edges of the graph and
determines the neighborhood of the vertices. The set of labels is given by L = {I ′1, I ′2, ..., I ′K}.
To each patch position one random variable Xi ∈ L is assigned. The best configuration χ con-
sists of L ×M labels. The energy term of the MRF is defined by a combination of unary and

2The implementation of the MRF is supported by using the Undirected Graphical Models (UGM) library, available
online: http://www.di.ens.fr/~mschmidt/Software/UGM.html (accessed on 16.12.2013)
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(a) Simply patches with the shortest distance to
central image patches are selected.

(b) A MRF optimization is used for patch selec-
tion.

Figure 3.15: Example of a MRF optimization. The red and blue rectangles are highlighting
regions where the transition between image patches is improved.

pairwise potentials
E(χ) =

∑
i∈V

φi(χi) +
∑

i∈V,j∈N (i)

φi,j(χi, χj), (3.14)

The pairwise potential includes all neighbors (4-connected neighborhood) of node i and is de-
fined by

φi,j(χi, χj) = ρ(dE). (3.15)

The unary potential is defined by
φi(χi) = ρ(dP ) (3.16)

and the MAP configuration χ̂ is computed by

χ̂ = argmin
χ

E(χ). (3.17)

Figure 3.14c shows a possible target image where for each position of the image one patch is
selected and is as a member of the final configuration set χ with the highest probability. Figure
3.15 illustrates the improvement of the image patch selection. In Figure 3.15a patches holding
the shortest distance to the central image’s descriptor are selected. In contrast, in Figure 3.15b
the patches are selected by using Equation 3.14 and applying the MRF optimization. In order
to demonstrate a possible result after applying the MRF, in Figure 3.16 the source images I ′1,
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I’1 I’2 I’3

Image After MRF Optimization

Figure 3.16: The patch configuration after applying a MRF is colored according to its originating
images.

I ′2 and I ′3 are colored green, red and blue, respectively. The resulting image located at the right
comprises patches from each input image. Each patch is colored according to its originating
image.

Smoothing Disruptive Patch-Boundaries by Solving the Poisson Equation

In Section 3.1.2, the theoretical background of solving the Poisson equation is explained. This
subsection describes a discrete Poisson solver and additionally explains the use of the solver in
the implementation of this thesis. For this purpose S2 and T are a set (or a subset) of pixels.
Additionally, Np is introduced as the 4-connected neighborhood of pixel p where |Np| can be
smaller than 4 at borders of the pixel grid. If q is an element of the neighborhood of p then the
minimization problem can be written as

min
f |T

∑
(p,q)∩T 6=∅

(fp − fq − gpq), with fp = f∗p , for all p ∈ ∂T , (3.18)

where gpq are the gradients of pq. The solution has to satisfy the equation

for all p ∈ T, |Np|fp −
∑

q∈Np∩T
fq =

∑
q∈Np∩∂T

fq
∗ +

∑
q∈Np

gpq. (3.19)

where the contribution of the first term on the right hand side is constrained to pixels at the
boundary of T [48].
For the implementation an adaption of the seamless tiling approach in [48] is made. The inten-
tion of this task is to stitch together the selected patches such that any boundaries or disturbing
seams in-between become invisible. Initially, the problem can be considered as illustrated on the
left hand side of Figure 3.17 where two adjacent patches R and Q share a common boundary. In
order to get a smooth transition from R to Q, first Q is considered. The region of Q is compared
to „the snippet to paste“ and becomes S1. Region S2, where the patch should get pasted onto,
is illustrated at the right hand side of Figure 3.17. It can be seen that T has the size of S2 and
∂T is divided into ∂TC and ∂TB , whereby conditions for ∂TC are defined by taking the mean
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Figure 3.17: Solving the Poisson equation of adjacent patches R and Q. While T is the region
to interpolate ∂TC and ∂TB denotes the boundary of the patch which is well known. ∂TC
is calculated by the shared boundary pixel values of R and Q whereas ∂TB comprises only
boundary pixel values of Q.

Figure 3.18: The Poisson optimization is applied to the image on the left hand side. On the right
hand side the result of removed boundaries between the image patches is illustrated.

pixel values of the rows at the shared boundary of R and Q. For ∂TB the values at the boundary
of Q are used. The known function f∗ is given at ∂T and f is defined over T . The vector field
g is calculated by the convolution on the Laplacian operator and Q over the interior of T . The
same process has to be done for patch R. The result of removing disturbing seams is shown in
Figure 3.18 where on the right hand side the patch colors are interpolated by using the Poisson
equation approach.

3.2.5 Demonstration on a Synthetic Data Set

In order to communicate the two basic ideas of the morphing framework, it is applied to synthetic
images. The first example illustrates the intention of preserving visually common regions of the
source images. Three squares serve as source images (illustrated in Figure 3.19). Their visual
appearance is slightly different: while the contour of S3 is preserved completely, the images
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S1 S2 S3 T

+ + =

Figure 3.19: Applying the morphing framework on three slightly different looking squares: the
clipped corners are eliminated due to the fact that they appear only once. In contrast, all black
regions appear multiple times.

S2 and S1 show clipped corners. Morphing all three squares results in a completely preserved
square T . This example illustrates the elimination of invaluable data (in this case the clipped
corners of S2 and S1) by only preserving regions which appear multiple times in different images
(all black regions of S1, S2 and S3). Conducted on coin images, this technique helps to eliminate
unique appearances of coins like damages which are not valuable for representing a class of a
coin. The second example is based on hand-written signatures (one per source image). Figure
3.20 depicts six signature images S1, S2, ..., S6 which are warped onto IBestRef. Image T at the
bottom shows the result after going through the morphing pipeline. Due to natural conditions
all signatures are slightly different in their appearance. In consequence of the image simplicity,
after warping onto the reference images, the contour of the warped images are close to IBestRef.
Nevertheless, since IBestRef is defined by selecting the minimum of displacements over all related
displacement fields, the contours of the reference image is the closest to an ’average contour’.

3.3 Summary

In this chapter a multi-image morphing approach is presented where the SIFT flow algorithm
acts as core element. Further image registration methods such as PatchMatch or optical flow
methods are discussed in detail as well as the functionality of SIFT flow and its underlying SIFT
algorithm. SIFT flow uses SIFT descriptors to describe extracted features which are compared
and rated. The most similar features form a pixel correspondence. The computed pixel corre-
spondences are exploited within a warping process where the resulting images show one uniform
alignment. The objective of outsourcing unitary regions and retaining common regions is ful-
filled by introducing a central image whose content can be generated by calculating the mean of
multiple source images. Improvements of the resulting visually summarized image are achieved
by exploiting a MRF and finally solving the Poisson equation for intensity corrections.
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Figure 3.20: Six different signature styles used as source images for the morphing framework.
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CHAPTER 4
Experiments

In this chapter the algorithm introduced is evaluated. This is done by dividing the evaluation
in two main parts. Firstly, in the context of qualitative experiments the morphing results are
examined according to visual appearance. The output is generated by empirically evaluating the
algorithm’s parameters. In order to show that an aesthetically morphed image can not only be
achieved on ancient coin images the morphing framework is applied on two more data sets: a
data set containing images of airplanes and a data set of gray scale images illustrating different
appearances of human faces.
The second part of this chapter comprises the quantitative experiments and deals with the exam-
ination of the morphing results according to its possible applications in computer vision. This
evaluation is executed by means of a classification approach of ancient coins. In the process
of assigning classes to coin images the morphed image serves as training image. An optimized
parameter configuration of a morphed image is found by using the ROC analysis. Finally, it is
shown that using a morphed image instead of a single image as training image leads to a higher
classification rate.
As an introduction, Section 4.1 presents all data sets used for the evaluations. Subsequently,
qualitative experiments described in Section 4.2 show the strengths and drawbacks of the mor-
phing algorithm conducted on all proposed data sets. Quantitative Experiments, which describe
the usage of a morphed image in a classification task, and the parameter optimization using a
ROC curve are presented in Section 4.3. A brief discussion with a comparison of qualitative
and quantitative results is given in Section 4.4. Finally, a summary in Section 4.5 concludes the
chapter.

4.1 Data Sets

This section presents the data sets used for the proposed algorithm of this Master’s thesis. In or-
der to demonstrate the adaptability of the morphing framework it is not only conducted on a coin
data set but also on other data sets. Two more data sets are selected to present the adaptability:
a data set of airplanes in side view and the Yale Face data set.
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Figure 4.1: An example of obverse side and reverse side listed with reference number 153/1a
in [14].

Coin Data Set The coin data set comprises coin images of the Roman Republican coinage.
The coins are made available by the Coin Cabinet of the Museum of Fine Arts in Vienna, Aus-
tria [72]. All classes of the data set hold a reference number defined by Crawford’s standard
reference book [14]. In Figure 4.1 an example is given of the obverse and reverse side belonging
to the coin with the reference number 153/1a listed in Crawford’s catalogue. The illustrated coin
was minted in Rome about 85 BC and weighs 3.9 grams. The image on the obverse side shows
the letters MN FONTEI C F. The description in the catalogue reads: „A laureate head of Vejovis
(or Apollo) wearing hair in loose locks on the right. Below a thunderbolt and a Roma mono-
gram is illustrated. On the right hand side the reverse side shows two infant winged Genius (or
Cupid) seated on a goat. Caps of the Dioscuri are above. A thyrsus with fillet in the exergue
and all is located within a laurel wreath“ [14]. With the help of a description of that kind coins
can be classified manually. In Figure 4.2 the data set used is shown which comprises 50 classes
of ancient coins. Class 37 and 38 depicts different classes but similar scenes. This can be also
shown in class 29 and 30. The coins might be worn or damaged but the degree of preservation
can change between individual specimens of a coin type and even locally on a single coin as can
be seen in class 41 where the coin comprises a hole.

Airplane Data Set The second data set, composed by the California Institute of Technology,
consists of 1074 color images illustrating airplanes which are all photographed sideways. As an
example in Figure 4.3, 24 images with varying resolution are presented. The data set is available
online1.

Yale Face Data Set The third data set used for this Master’s thesis comprises 164 gray scale
images of human faces with a size of 300 x 300 pixels. 11 different persons are portrayed

1http://www.vision.caltech.edu/archive.html (accessed on 02.04.2014)
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Figure 4.2: 50 reverse side classes of the ancient coin data set.

with different appearances which are: „left-light“, „center-light“, „right-light“, „with glasses“,
„without glasses“, „happy“, „normal“, „sad“, „sleepy“, „surprised“ and „wink“. The background
of all images is almost white. Figure 4.4 shows an excerpt of eight persons each one presenting
„without glasses“, „happy“ and „with glasses“. This data set is described in [6] and is available
online2.

2http://vision.ucsd.edu/content/yale-face-database (accessed on 02.04.2014)
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Figure 4.3: An excerpt of the airplane data set.

Figure 4.4: An excerpt of the Yale Face data set.
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4.2 Qualitative Experiments

Qualitative experiments are conducted on all three data sets described in Section 4.1. The ob-
jective of this section is to generate an image T using three source images S1, S2, S3 which are
assumed to have similar orientations. Results of the qualitative experiments demonstrate the
capabilities of the framework concerning solely the visual appearance of T . Resulting images
should be visually complete and coherent which means that as much as possible common re-
gions of Si are summarized in one image and at the same time T should appear aesthetically
without exhibiting any disturbing artifacts. The parameters used for the algorithm remain the
same for all data sets. In order to find a middle course between runtime performance and image
quality the resolution of an (input- and output-) image is chosen to be 300 x 300 pixels where
each one is composed of 12 x 12 patches. In case the original image has no square dimensions
it is cropped such that the central object of the image is fully preserved. Central image IC is
computed by using the median (expressed by Equation 3.10) in order to ignore outliers. Distance
dP is calculated by using the descriptor-method, described in Section 3.2.3. Finally, parameter
θ of Equation 3.11 is chosen to be 6 for the probability mapping of APBD and 6 for mapping the
probabilities of the patch similarity measurement. Moreover, in Equation 3.11 dP is calculated
by choosing a minimum dP of 0 and a maximum dP of 6 800 000. Distance dE is calculated
by choosing a minimum dE of 0 and a maximum dE of 750. These values are oriented on
the lowest and highest energy values of the distance measurements. A fixed range guarantees a
correct ratio among all computed probabilities. For the morphing process the default SIFT flow
parameters proposed in [37] are used except γ is set to 0 (as it is done in [72]) such that large
vector lengths are not penalized anymore. The parameters used are summarized in Table 4.1.
Figures 4.5, 4.6, 4.8, 4.9, 4.11 and 4.12 present morphed images produced by using 3, 4 and 6
source images where a set of source images originates from one common class. While all source
images are grouped at the left hand side, the morphed output is located at the right hand side.
The image next to the morphed image has been selected as IBestRef by the algorithm. As can
be seen in the given examples, the framework computed examples which are widely aesthetic
and coherent. Regions which are considered as outliers (like row 5 / coin image 1 in Figure
4.5 where residuals of an old coin design are visible) are outsourced by the algorithm. In row
1 of Figure 4.12 the glasses and the open mouth of the person is outsourced. Since all images
are aligned to IBestRef it can be seen that the morphed image’s contours are similar to IBestRef. In
contrast, the texture is composed from all source images. Figures 4.7 and 4.10 show arbitrary se-
lected source images meaning that each one originates from a different class. By comparing the
morphed images of the different data sets it can be seen that the usage of coin and face images
leads to the expected results. Especially the morphed face images represent a neutral expression
which forms the best representation of a class. In contrast, morphing images of airplanes does
not work as properly as expected.

Image Resolution IC Distance Metric to IC θ-Unary θ-Pairwise γ

300 x 300 pixels ’median’ descriptor 6 6 0

Table 4.1: Parameters used to obtain T in the qualitative experiments.
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Figure 4.5: A set of morphed coin images using three source images of common classes.

50



Source OutputIBestRef

IBestRef

IBestRef

Figure 4.6: A set of morphed coin images using 4 and 6 source images of common classes.
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Figure 4.7: A set of morphed airplane images using 3 source images of different classes.
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Figure 4.8: A set of morphed airplane images using 3 and 4 source images of common classes.
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Figure 4.9: A set of morphed airplane images using 6 source images of common classes.
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Figure 4.10: A set of morphed face images using 3 source images of different classes.
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Figure 4.11: A set of morphed face images using 3 and 4 source images of common classes.
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Figure 4.12: A set of morphed face images using 6 source images of common classes.

On the airplane data set artifacts (inappropriated colored regions) are in the background
which originate from different background colors of the source images. However, this point of
criticism is beyond the scope of this thesis as an uniform background in the input image series
is assumed. Figure 4.13 illustrates examples where the algorithm does not work as well as in
the previous demonstrations. Artifacts produced by unsatisfactory image registrations fill the
background of the morphed images (see rows 3, 4, 5 and 6 in Figure 4.13). In the first row it is
shown that the algorithm can not cope with rotated images which is discussed in detail in Section
5. The red squares illustrated in the second row emphasize regions where the image registration
was unsatisfactory.
The morphing process is done on a workstation with a quad-core 2.8 GHz Intel Xeon CPU and
8 GB memory. Morphing with 3 source images takes ~7 minutes, 4 source images ~11 minutes
and 6 source images ~18 minutes.
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Figure 4.13: A set of morphed coin, face and airplane images where the algorithm does not work
properly and artifacts are in the background
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4.3 Quantitative Experiments

The quantitative experiments deal with possible applications of the morphed images. They an-
swer the question of how a morphed image can contribute in further computer vision tasks in
order to obtain a scientific added value. Since this thesis is realized within the ILAC project3,
the quantitative evaluation is executed by introducing a classification approach of ancient coins
which is addressed in several scientific papers such as [2,31,68,69,72]. In detail, this evaluation
is an analysis of how well a morphed image represents one common class of given ancient coin
images. This method is inspired by [72]. Coin images are obtained from the coin data set de-
scribed in Section 4.1 which is used as well in a modified form in [72]. All coins depicted in the
images are assumed to have similar orientations. In Section 4.3.1 all classification methodolo-
gies used in this work are explained. Since the parameters used for the morphing process have
to be adjusted in order to deliver the highest classification rate a ROC analysis is done in Section
4.3.2. Finally, the results of the classification task are presented in Section 4.3.3.

4.3.1 Classification Evaluation Schemes

In [72] Zambanini and Kampel exploit the energy term of the SIFT flow algorithm as a similarity
metric of images. The energy term is composed of Equations 3.1, 3.2 and 3.3. Once reduced to
a minimum, the terms state the visual similarity of two given images. For the coin classification
the similarity metric is applied to the coin data set which is divided into different classes. In
order to classify one query image among K classes, K training images (one per class) are
selected. Subsequently, the energies between the query image and the set of training images are
determined in order to assign the query image to the class where the energy is at a minimum.
The classification scenario specifies that each image of the data set serves once as query image.
This requires the procedure to run through several iterations depending on the number of classes
and source images.
The training image is considered as a representation of a class. Depending on typical class
features, unified in the training image, the energy term is reduced or increased. This evaluation
strategy enables a comparison of several classification tasks where for each task a training image
can have different meanings (For a better understanding the different roles of the training image
are illustrated in Figure 4.14. All red circles denote the query image and all blue circles the
training image(s). The dotted frame indicates the finally selected training image(s)):

• A single coin image serves as training image.

• The morphed image serves as training image. Denoting M as the number of coin images
per class then the morphed image is composed of M − 1 images. It has to be ensured that
the query image is not used as part of the morphed image.

• Two coin images where the energy is calculated by taking the average of two comparisons
per class.

• Two coin images where the lower energy of the comparisons is used.

3http://www.caa.tuwien.ac.at/cvl/research/ilac/ (accessed on 03.03.2014)
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Figure 4.14: Illustration of different classification schemes. Red circles denote the query image,
blue circles the training image(s). Dotted frames indicates the finally selected training image(s).
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The central points of this evaluation are the cases where a single image and a morphed image
act as training image. In case of showing a higher classification rate with the latter option the
statement can be made that the representation of a coin class is better by using a morphed image
instead of a single image. In case of using the morphed image as training image, it is necessary
to evaluate the best performing parameters on the classification task which help to generate a
morphed image.

4.3.2 Parameter Evaluation by Receiver Operating Characteristic Analysis

Since the parameters used for the morphing process have to be adjusted in order to deliver the
highest classification rate a ROC curve is calculated [8]. Subsequently, the Area Under Curve
(AUC) serves as a performance metric. The greater the AUC the better the performance of the
evaluated parameter. In order to prove the independence between the morphing framework and
the data set used, for the evaluation of the parameters a different ancient coin data set than for the
classification task has to be used. The selection of optimal parameters is based on the assumption
of [8] which is also used in [73]:
The better a feature of an image

• the lower the distance between images showing the same scene.

• the higher the distance between images showing different scenes.

Hence, K image pairs showing the same scene, referred to as True Pair (TP) and K image pairs
showing different scenes, referred to as False Pair (FP), are compared for a given parameter. An
example showing common classes and different classes is given in Figure 4.15. For each query
image of a given class obtained from the coin data set one morphed image of the same class and
one selected randomly of a different class is used. As similarity metric the energy of SIFT flow
is used. The calculated energies are accumulated in a histogram which ranges from the smallest
to the highest energy value. The number of bins of the histogram equals K. With the help of
the histogram the FP rate and TP rate are confronted to each other by introducing a threshold t

Morphed ImageImage of Coin Data Set
True Pair

Morphed ImageImage of Coin Data Set
False Pair

Figure 4.15: Examples of common and different classes.
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running from [0−K]. The rates of TP and FP are defined as

TP rate =
TP[0, t]

total TP
(4.1)

FP rate =
FP[0, t]

total FP
(4.2)

where TP[0, t] and FP[0, t] denotes the sum of all histogram-values included in the interval [0, t].
Due to the assumption of [8] to obtain small distances for TP images and high distances for FP
images, for this work a ROC curve is a representation of how well images showing the same
scene and images showing different scenes can be classified into these two classes. Consider a
ROC curve point (0, 0) represents a TP rate as well as a FP rate of 0. At point (0, 1) the TP rate
is 1 and the FP rate is 0 which means in other words that all TP (and thus all FP as well) are
classified correctly. Point (1, 1) represents a worst case scenario saying that all images are in the
same class. Finally, a greater AUC indicates a clearer separation of two classes [8].
The ROC curve evaluates the following parameters of the morphing algorithm:

• The central image IC can be generated by computing the ’mean’ (see Equation 3.9) or the
’median’ of all input images (see Equation 3.10). To obtain a decision which parameter to
choose two ROC curves are established and their AUC are compared.

• Parameter θ-Pairwise of Equation 3.11 is responsible for the probability mapping of dE
(which indicates the distance of a transition between adjacent patches) and θ-Unary for the
probability mapping of the patch similarity distance dP . In order to obtain an optimized
probability mapping, overall 12 ROC curves are established where each parameter takes
the values 1, 3, 6, 9, 12 and 15. Moreover, in Equation 3.11 dP is calculated by choosing
a minimum dP of 0 and a maximum dP of 6 800 000. Distance dE is calculated by
choosing a minimum dE of 0 and a maximum dE of 750. These values are oriented
on the lowest and highest energy values of the distance measurements. A fixed range
guarantees a correct ratio among all computed probabilities.

The ROC curves for the parameters ’mean’ and ’median’ are illustrated in Figure 4.16a. The
AUC of 0.8652 generated by the ’mean’ parameter is slightly larger than 0.8643 generated by
the ’median’ parameter. The AUC values w.r.t. θ-Unary and θ-Pairwise are summarized in
Figure 4.16b. The generation of e.g. θ-Unary’s AUC is done by setting θ-Pairwise to a fixed
size 6 and vice versa. Thus, θ-Unary and θ-Pairwise can be selected independently from each
other. Considering the progression of both parameters from 1 to 15 it can be noticed that the
selection of θ-Unary and θ-Pairwise does not have a great effect on the classification process.
Nevertheless, the configuration with the largest AUC is used for the classification. In this case
θ-Unary is set to 1 and θ-Pairwise takes the value 6. Since the number of classes provided
by the data set is limited, values of the parameter evaluation only differ slightly from each
other. This means that a higher number of input classes would lead to clearer differentiations.
A comparison of the morphed images resulting from quantitative experiments and qualitative
experiments show clear differences in their appearances, as can be seen in Figure 4.17. The
left column shows resulting images as described in Section 4.2 where the parameter θ-Unary
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(b) The evaluation of θ-Unary is done by setting θ-
Pairwise to the fixed size 6 and vice versa. As can
be seen the best performing value is 1 for θ-Unary
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Figure 4.16: ROC evaluation of the parameters ’mean’, ’med’, θ-Unary and θ-Pairwise.

Results of Qualitative Evaluation Results of Quantitative Evaluation

Figure 4.17: Comparison of visually (obtained from qualitative experiments) and experimentally
(obtained from quantitative experiments) best results.
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is set to 6 and ’median’ is used. The right column shows morphed images with an optimized
parameter configuration for the coin classification where θ-Unary is set to 1 and the ’mean’
parameter is used. Setting θ-Unary to 1 implies that only the probability computed for APBD
determines if a patch originating from I ′i is added to the finally morphed image or not. Since
these probabilities are high within one image the majority of selected patches originate from
one image. Parameters used for calculating the SIFT flow as well as calculating distance dP
are not included in the parameter evaluation. As proved in [72] the small displacement term
is negligible which can be expressed by setting the SIFT flow parameter γ to 0 such that large
vector lengths are not penalized anymore [72]. The controlling parameters for the smoothness
term are set to α = 12 and ψ = 1200, the number of pyramid levels to 4 and SIFT features are
calculated in a local neighborhood of 12 x 12 pixels [72]. In order to measure dP the descriptor-
method is used. A usage of the energy computed by SIFT flow causes a lack of performance.
The matching between two 25 x 25 patches takes 27 seconds on a workstation with a quad-core
2.8 GHz Intel Xeon CPU and 8 GB memory.

4.3.3 Classification

For the classification task the coin data set provided consists of 50 classes where each one holds
4 images. In order to select each image once as query image (as the classification scenario
specifies), 4 iterations are necessary. Finally, this leads to 200 classified coins. The results of
comparing all classification schemes are presented in Table 4.2.

ES CC CR IC θ-U θ-P
1: Single image. 179/200 89.5 % - - -
2: Morphed image. 182/200 91.0 % md 6 1
3: Morphed image. 183/200 91.5 % mn 6 6
4: Optimized morphed image. 185/200 92.5 % mn 6 1
5: Lower energy of two selected images. 192/200 96.0 % - - -
6: Average energy of two images. 195/200 97.5 % - - -

Table 4.2: Classification results. Column description from left to right: Evaluation Scheme,
Correct Classified, Classification Rate, Central Image IC , θ-Unary and θ-Pairwise.

The classification is done on a workstation with a quad-core 2.8 GHz Intel Xeon CPU and 8 GB
memory and calculating the energy of one image pair takes ~45 seconds. From overall 200 clas-
sified coins the evaluation scheme 1 which uses a single coin image as training image reaches
a classification rate of 89.5 %. This rate is clearly outperformed by using morphed images as
training image. However, the evaluation scheme using morphed images can be furthermore dis-
tinguished depending on the parameter configuration for a morphed image. Evaluation scheme
2 and 3 use a visually aesthetic morphed image as training image and reach a classification rate
of 91 % and 91.5 %, respectively. The difference between these visually aesthetic morphed im-
ages is that in evaluation scheme 2 θ-Pairwise is set to 1 and ’median’ is used and in evaluation
scheme 3 θ-Pairwise is set to 6 and ’mean’ is used. A morphed image optimized for classification
by its parameters (evaluation scheme 3) reaches a classification rate of 92.5 % which means that
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Figure 4.18: Classification rate on y-axis and the class ranking on the x-axis to which a coin
image has to be assigned at least in order to be classified correctly.

185 of 200 images are classified correctly. Thus, the hypothesis that the representation of a coin
class is better by using a morphed image instead of a single image presented in Section 4.3.1
can be regarded as fulfilled. Nevertheless, a classification rate higher than 92.5 % is reached by
using two training images where the energy is calculated by either taking the lower (evaluation
scheme 5) or the average energy (evaluation scheme 6) of two comparisons per class. However,
in contrast to evaluation schemes 2, 3 and 4 (where it is assumed that a morphed image already
exists) the runtime is doubled as two comparisons are performed per coin class.
Since Table 4.2 only visualizes the results obtained by using a binary classifier which determines
if the coin belongs to a certain class or not in the following a detailed examination of evaluation
scheme 4 is presented. In Figure 4.18 not only the first class to which a coin is assigned is
considered but the first four classes. The better the ranking of a class the higher the probability
that a coin image is assigned to this class. Considering a coin image as correctly classified if
the query image belongs either to the first or to the second class, then the classification rate is
96 %. Furthermore, it can be noticed that for evaluation scheme 4 198 classified coin images are
ranked within the first four classes.
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4.4 Discussion

The results of this work show that it is possible to summarize visual information from multi-
ple ancient coin images. However, it has to be distinguished if a coin is morphed in order to
obtain an aesthetic image or to achieve an optimized classification. As shown in Section 4.2,
the proposed algorithm generates morphed images in a complete and coherent way resulting in
an aesthetic coin image. Using the morphed coin image as a training image, in the morphing
process the probability if a patch is added or not remains the same for all patches since θ-Unary
is set to 1. Therefore, it is not necessary anymore to compute the joint probability of the patch
similarity measurement and the APBD. The only remaining probability computed for APBD
determines if a patch originating from I ′i is added to the finally morphed image or not. Since
these probabilities are high within one image the majority of selected patches originate from one
image. In summary, in order to improve a classification of ancient coins it is not necessary to
summarize visual information in form of patches from multiple ancient coins, but rather to find
an existing coin image which exhibits the common contours of a class (represented as IBestRef).

4.5 Summary

In this chapter the evaluation of the system is presented which is divided into qualitative and
quantitative experiments. Qualitative experiments are focusing on the visual appearance of the
morphed image. In order to demonstrate the flexibility of the morphing framework it is applied to
three different data sets: coin images of the Roman Republican coinage, airplane images which
are all photographed sideways and a gray scale image data set illustrating different appearances
of human faces. In order to show applications using the morphing framework, quantitative
experiments are carried out. For this experiments the coin data set is used. Furthermore, a
classification task is described where a morphed image serves as training image in order to
decide to which class a coin image has to be assigned. The energy term of the SIFT flow
algorithm is employed as similarity metric of images. In order to obtain an optimized training
image the best parameter configuration of the morphing framework is found by generating ROC
curves for a given parameter. The data set comprises 50 classes, each one holding 4 images.
If each image of the data set is classified once, 200 class assignments have to be done. This
procedure answers the question of how well a morphed image is able to represent an image
class. With a classification rate of 92.5 % it can be said that using a morphed image clearly
outperforms the case of a single training image. The rate is increased by 3 %. However, the best
classification rate of 97.5 % is obtained by taking the average energy of two training images but
this method implies a higher runtime.
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CHAPTER 5
Conclusion

The thesis is concerned with the summarization of visual content from multiple source images.
Visual regions which match to several other images are considered as valuable and have to be
preserved while non-matchable regions have to be eliminated. As output the algorithm com-
putes a single morphed image where the content is composed in a coherent and complete way.
This means that as much as possible common regions of all source images are summarized in
one image and at the same time the generated image appears aesthetic without exhibiting any
disturbing artifacts.
In this work this procedure is called multi-image morphing. Initially, image registration methods
are investigated, since this step forms the basis of the morphing system. Registration provides
a possibility to bring given images into a relationship to each other. Image registration meth-
ods are used for several computer vision tasks such as view morphing, image fusion, image
stitching or image completion. For this work SIFT flow is used in order to register images to
each other. SIFT flow is based on the SIFT algorithm and allows a dense approximate corre-
spondence search. The result is a displacement field holding concrete displacements for each
pixel. Subsequently, a so called best reference image is chosen by finding the minimum of
pixel displacements over all corresponding images. A central image is considered as a container
holding visually valuable regions. This is realized by calculating the mean or the median of all
corresponding pixel values. According to the central image, the morphing process reproduces a
visually similar, sharp output by comparing image patches to the central image. An optimization
is done by firstly exploiting a MRF whose objective is to find the best combination of similar
patches compared to the central image and the slightest visual difference between patches of the
output image. Secondly, the solution of a Poisson equation smooths the morphed image such
that any boundaries or disturbing seams become invisible.
The evaluation of the algorithm is divided into qualitative and quantitative experiments: firstly,
the qualitative experiments show examinations of the morphing results according to their visual
appearance. The objective is to select a parameter configuration in order to obtain visually aes-
thetic images. All images used are obtained from three different data sets: coin images of the
Roman Republican coinage, airplanes which are all photographed sideways and gray scale im-
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ages showing different appearances of human faces. It is shown that the proposed framework is
not only applicable to ancient coin images but also on the two further mentioned data sets. Im-
ages are morphed from each data set where 3, 4 and 6 source images are used, originating from
both common and different classes. Since the term „aesthetic“ is a subjective quality measure-
ment, secondly quantitative experiments are introduced. These experiments are dealing with a
possible application of the morphed images. They answer the question of how a morphed image
can contribute in further computer vision tasks. For this purpose, a morphed image is used as
training image in order to decide to which class a coin image has to be assigned. The classifi-
cation scheme uses the energy term of the SIFT flow algorithm as similarity metric of images.
Once reduced to a minimum the terms state the visual similarity of two given images. The sim-
ilarity metric is conducted on the coin data set which is divided into 50 different classes where
each one holds 4 images. In order to classify one query image among those classes, 50 training
images (one per class) are selected. Subsequently the energies between the query image and
the set of training images are determined in order to assign the query image to the class where
the energy is at a minimum. In this context the term ’training image’ can take different mean-
ings: a training image represents either a single coin image, a morphed image, two coin images
where the energy is calculated by taking the average of two comparisons per class, or two coin
images where the lower energy of the comparisons is used. In case of using the morphed image
as training image in the classification process, an optimized parameter configuration has to be
found. This is realized by considering ROC curves established by confronting TP (images of
the same class) and FP (images of different classes). With an optimized parameter configuration
it is shown that the hypothesis: the representation of a coin class is better by using a morphed
image instead of a single image, can be confirmed. The classification rate is increased by 3 %
compared to the usage of a single image as training image. However, using a morphed image
as training image is outperformed by taking either the lower energy or the average energy as
classification scheme.
The results of this work show that it is possible to summarize visual information from multiple
ancient coins in one image but it has to be distinguished if a coin is morphed in order to obtain
an aesthetic coin image or to generate an optimized classifier. The parameter configuration of
the morphing framework changes according to its purposes. In case of using it as classifier the
probability of all patches (which are candidates to get added to the morphed image) has to be
set to 1. Thus, joint probabilities do not have to be computed anymore by a MRF. Only the
probabilities of the APBD determines if a patch is selected or not. From this follows that the
majority of patches originating from a common source image are selected. In order to improve
a classification of ancient coins it is not necessary to summarize visual information in form of
patches from multiple ancient coins, but rather to find an existing coin image which exhibits
common contours of a class.
This work shows a completely new approach of morphing multiple images. Strengths of this
system are that no restrictions regarding the number of source images exist which is a difference
compared to related approaches. Furthermore, arbitrary types of objects illustrated in the images
can be morphed by the system. The more source images used for the morphing task the better
the representation of a class. However, with an increasing number of source images the runtime
is increased exponentially.
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Limitations

A drawback of the system is that it can not cope with different orientations of source images.
This case is not considered in the registration process of the morphing framework and implies
that all source images are assumed to be oriented in a similar direction. Furthermore, artifacts
can be produced by an unsatisfactory image registration of the source images. They can appear
for instance as unsolicited regions located at the background of a morphed image. The focus
of this system is on morphing coin images which exhibit homogeneous background colors and
structures. A possible reason for artifacts is a inhomogeneous background (e.g. clouds behind
airplanes or shadows behind faces). Moreover, the patches used are rectangular with straight
boundaries and they are arranged in a static way which might clip important image content in
course of the patch selection.

Future Work

In order to extend and improve the system three concrete suggestions could be made. Firstly,
once the images are aligned to each other rectangular image patches could be substituted by
super-pixels. In this scope super-pixels are image regions defined by irregular borders. As pro-
posed in [28] an optimal seam between these borders could be calculated in order to improve the
transitions between neighboring regions. In contrast to the current system, super-pixels’ bound-
aries can be adapted more precisely to the images’ content which leads to smoother transitions.
Since the focus of the system is on morphing coin images where a homogeneous background
is assumed a segmentation in foreground and background can be realized in order to achieve an
improvement in image registration. Moreover, the SIFT flow algorithm allows to use rotational
invariant features. By including that kind of SIFT features into the morphing framework correct
pixel correspondences could be found even though the images’ content show different orienta-
tions. Finally, the evaluation of the parameter configuration would be improved by including
more than 200 coin classes in order to compute a ROC curve. The increase of input classes
would deliver better distinguishable AUC values.
The proposed system can be used for any computer vision task where a summarized represen-
tation of one class is necessary. This might for instance be the case when one image is listed
instead of a whole image set due to cost or space limitations. Furthermore, this might be the case
when the runtime of a classification task should stagnate but in the same time the quality of the
class representation is increased in the training image. The morphing framework can be used for
computer vision tasks where only one image is unstable and the summarization of multiple data
leads to a more stable representation. This might be used in digital satellite images comprising
images where clouds occlude land areas. By morphing multiple images containing common
scenes of the land area disturbing clouds can be outsourced automatically.
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Nomenclature

1D 1 Dimensional.

3D 3 Dimensional.

APBD Adjacent Patch-Boundary Disparity.

AUC Area Under Curve.

BDS Bidirectional Similarity.

BoW Bag Of Visual Words.

CT Computer Tomography.

DCSM Deviation from circular shape matching.

DOG Difference-of-Gaussian.

DOP Double Optimal Partitions.

FFD Free Form Deformation.

FP False Pair.

FWF Austrian Science Fund.

ILAC Image-based Classification of Ancient Coins.

MAP Maximum a-posteriori.

MR Magnetic Resonance.
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MRF Markov Random Field.

NNF Nearest-Neighbor Field.

PCA Principal Component Analysis.

PTM Polynomial Texture Mapping.

ROC Receiver Operating Characteristic.

SAD Sum of Absolute Difference.

SIFT Scale Invariant Feature Transform.

SOP Single Optimal Partitions.

SSD Sum of Squared Distances.

TP True Pair.

UGM Undirected Graphical Models.
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