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Kurzfassung

Explosive Kristallisation ist ein Transformationsprozess von einem amorphen in den
kristallinen Zustand. Der selbsterhaltende Prozess wird von der Umwandlung der
Schmelzenthalpie in Wärme angetrieben. In den meisten Anwendungen findet die
Kristallisation in dünnen Schichten statt, die auf Substraten aufgebracht sind.

In dieser Arbeit wird ein Modell für die explosive Kristallisation in dünnen Schich-
ten auf wärmeleitenden Substraten präsentiert. Ein bis vier Ratengleichungen be-
schreiben die Kinetik des Übergangs vom amorphen zum kristallinen Zustand. Für die
dünne Schicht wird die Energiegleichung in einer 1D-Näherung mit einem Wärmever-
lustterm gelöst. Die Wärmeleitung im Substrat wird durch eine kontinuierliche Ver-
teilung von bewegten Wärmequellen an der Grenzfläche zur Schicht beschrieben. Es
ergibt sich ein Integralausdruck für die Temperatur im Substrat in Abhängigkeit von
der unbekannten Verteilung der Wärmequellen. Wenn die Temperaturleitfähigkeit
des Substrates sehr klein ist gegen die Temperaturleitfähigkeit der Schicht, kann der
Integralausdruck invertiert und in die Energiegleichung aufgenommen werden. Der
Integralausdruck deutet auf einen nicht-lokalen Einfluss der Schichttemperatur auf
den Wärmeverlust hin. Der Kontaktwärmewiderstand zwischen Schicht und Substrat
kann wahlweise berücksichtigt werden.

Der gesamte Prozess wird als Welle unveränderlicher Form in einem bewegten
Koordinatensystem betrachtet. Man erhält ein gekoppeltes System aus einer Inte-
grodifferentialgleichung und ein bis vier gewöhnlichen Differentialgleichungen. Das
Gleichungssystem wird numerisch mittels einer Kollokationsmethode gelöst, wobei
sich die Ausbreitungsgeschwindigkeit der Welle als Eigenwert ergibt.

Typische Merkmale des Prozesses werden anhand von repräsentativen Lösungen
gezeigt. Die Kristallisationszone ist sehr kurz, verglichen mit der Vorwärmzone vor
der Welle. Ohne Berücksichtigung des Wärmeverlustes sind lange Kristallisations-
zonen und sogar unvollständige Kristallisation möglich. Wenn der Wärmeverlust
berücksichtigt wird, ist die Abkühlzone hinter der Welle sehr lang im Vergleich mit
der Vorwärmzone. Eine Welle unveränderlicher Form tritt nicht auf, wenn ein dimen-
sionsloser Parameter einen bestimmten kritischen Wert überschreitet. Dieser Wert
kann auch als Mindestdicke für die kristallisierende Schicht interpretiert werden.

Ausbreitungsgeschwindigkeiten der Welle werden mit Werten aus Experimenten
für explosive Kristallisation von Germanium verglichen. Werte von 19 verschiedenen
relevanten Parametern werden aus mehreren Quellen gesammelt. Kristallisationspa-
rameter müssen angepasst werden, um die richtige Größenordnung der Wellenaus-
breitungsgeschwindigkeit zu erreichen. Für Substrattemperaturen bis ca. 700 K er-
gibt sich eine annehmbare Übereinstimmung zwischen Modell und Experiment. Für
höhere Substrattemperaturen bleibt die gemessene Ausbreitungsgeschwindigkeit kon-
stant. Dies wird von unserem Modell nicht erfasst. Bei einer Substrattemperatur von
ca. 775 K ist die gemessene Ausbreitungsgeschwindigkeit in Übereinstimmung mit
unserem Modell nahezu unabhängig von der Schichtdicke. Mögliche Quellen für die
Diskrepanzen zwischen Modell und Experiment werden identifiziert, und mögliche
weitere Bereiche für Verbesserungen werden diskutiert.



Abstract

Driven by the liberation of the latent heat of fusion, a transformation from an amor-
phous state to the crystalline state may take place in a progressing wave. The process
is self-sustaining and is often called “explosive crystallization”. In most applications,
the crystallization process takes place in thin layers that are mounted on a substrate.

In this work, a model for explosive crystallization in a thin amorphous layer on
a heat conducting substrate is presented. One to four rate equations are used to
describe the kinetics of the amorphous-crystalline transition. For the thin layer, the
energy equation is used in a one-dimensional approximation with a heat-loss term.
Heat conduction in the substrate is described by introducing a continuous distribution
of moving heat sources at the interface. This gives an integral representation for the
temperature in the substrate in terms of the unknown source distribution. Provided
the substrate’s thermal diffusivity is much smaller than the thermal diffusivity of
the layer, the integral representation can be inverted and included in the energy
equation of the layer. The integral term implies that there is a non-local influence
of the temperature distribution in the layer on the heat loss. Optionally, a thermal
contact resistance at the interface between layer and substrate is taken into account.

The whole process is examined as a wave of invariant shape in a moving frame
of reference. A coupled system of one integro-differential equation and one to four
ordinary differential equations is obtained. It is solved numerically using a collocation
method. The propagation velocity of the wave is obtained as an eigenvalue of the
system of equations.

Some representative solutions of the system of equations are shown, demonstrating
the key features of the process: Typically, the crystallization zone is short compared
to the thermal preheating zone in front of the wave. Long crystallization zones and
even incomplete crystallization are possible in cases without heat loss. When heat
loss is taken into account, the cooling zone behind the wave is long compared to the
pre-heating zone. Varying a non-dimensional heat loss parameter, a critical value is
found beyond which no crystallization wave of invariant shape is possible. This can
also be interpreted as a certain minimum layer thickness.

Finally, crystallization-wave velocities are compared with experimental values for
explosive crystallization in germanium. Data for 19 different experimental and ma-
terial parameters are collated from a number of sources. It is necessary to adjust
crystallization parameters to achieve a correct magnitude of the wave propagation
velocity. For substrate temperatures up to about 700 K, the agreement between the
analysis and experimental values is reasonable. For larger substrate temperatures,
the wave velocity in the experiment remains approximately constant, which is not
reflected in the model results. Furthermore, in the experiment, the wave velocity
is nearly independent of the layer thickness at a substrate temperature of approxi-
mately 775 K. This is in accord with our model. Possible sources for the discrepancies
between the experimental results and the model are identified and potential areas for
future work are discussed.
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Nomenclature

Symbol Quantity Units See Eq.

Latin Letters

a ratio of thermal diffusivities of substrate

and layer

- (5.2)

C1-C4 crystal growth velocity parameters - (4.21)

C1,G, C2,G crystal growth velocity parameters - (4.23)

C1,I , C2,I crystal nucleation rate parameters - (4.25)

C∞ pre-factor of Θ(η) far behind the wave - (7.1)

cp isobaric specific heat capacity J/kg K (3.1)

E auxiliary activation energy eV (3.17)

E1, E2 kinetic constants K (3.16)

EG, EGm activation energies for GC eV (3.18)

EI , EIm activation energies for IC eV (3.21)

Eτ activation energy for τ eV (3.23)

e auxiliary abbreviation W s1/2/m2 K (4.7)

f , f0 auxiliary quantities m/s (3.17)

G non-dimensional crystal growth velocity - (4.16)

G0 crystal growth velocity prefactor m/s (3.16)

GC crystal growth velocity m/s (3.16)

GC,ref reference crystal growth velocity m/s (4.12)

g auxiliary function - (4.32)

H non-dimensional heat loss parameter - (4.27)

I non-dimensional crystal nucleation rate - (4.17)

I0 crystal nucleation rate prefactor 1/s m3 (3.21)

IC crystal nucleation rate 1/s m3 (3.21)

IC,ref reference crystal nucleation rate 1/s m3 (4.14)
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Symbol Quantity Units See Eq.

K constant for temperature precursor - (6.3)

k thermal conductivity W/m K (3.1)

K0 modified Bessel function of the second kind - (5.1)

kB Boltzmann constant eV/K (3.16)

L perturbation function - (9.1)

l specific latent heat J/kg (3.1)

LC average distance between crystal nuclei m (3.7)

Lref reference length for heat conduction m (4.5)

M non-dimensional crystallization parameter - (4.35)

m dimensionality of crystal growth - (3.5)

N̄ initial number of nuclei per unit volume 1/m3 (3.7)

N auxiliary function - (6.4)

n non-dimensional activation probability of

crystal nuclei

- (4.17)

nC activation probability of crystal nuclei 1/s (3.5)

nC,ref reference activation probability of crystal

nuclei

1/s (4.13)

P kinetic prefactor - (11.6)

P1, P2 constant auxiliary parameters - (11.2)

q̇ non-dimensional interface heat flux - (4.15)

q̇i interface heat flux W/m2 (3.1)

q̇ref reference heat flux W/m2 (4.6)

R dimensionless thermal contact resistance - (5.18)

Ri thermal contact resistance m2 K/W (5.16)

R∗ scaled R - (5.32)

S1, S2, S3 constant auxiliary parameters - (11.4)

T absolute temperature K (3.1)

t time s (3.1)

tC characteristic time of crystallization s (4.8)

tC,ref ref. characteristic time of crystallization s (4.11)

T ∗ temperature of maximum GC K (3.20)

Tref reference temperature K (4.9)

Ttot total end temperature K (4.1)

U wave propagation velocity m/s (4.5)
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Symbol Quantity Units See Eq.

V volume fraction of crystalline phase - (2.1)

V∞ max. volume fraction of crystalline phase - (2.1)

x cartesian coordinate m (3.1)

Y non-dimensional cartesian coordinate - (5.1)

y cartesian coordinate m (3.1)

z stretched non-dimensional wave coordi-

nate

- (8.1)

Greek Letters

α thermal diffusivity m2/s (3.2)

β coordinate stretching parameter - (8.1)

δL layer thickness m (3.1)

η non-dimensional wave coordinate - (4.19)

ηB auxiliary value of η - (7.3)

ηC wave coordinate where (7.1) becomes valid - (7.2)

Θ non-dimensional temperature difference - (4.3)

λ non-dimensional wave eigenvalue - (4.28)

µ non-dimensional crystallization parameter - (4.30)

ξ degree of crystallization - (2.1)

ρ mass density kg/m3 (3.1)

σ crystal growth shape coefficient - (3.7)

ς integration variable - (5.7)

τ crystallization time s (3.23)

τ0 crystallization time prefactor s (3.23)

φi=0..m non-dimensional rate equation quantities,

homogeneous crystallization

- (4.33)

Φ function of degree of heterogeneous crys-

tallization

- (3.11)

ϕi=0..m rate equation quantities, heterogeneous

crystallization

- (3.5)

φC,i=0..m rate equation quantities, homogeneous

crystallization

m−i (3.14)

Ω auxiliary function - (5.38)
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Symbol Quantity Units See Eq.

Superscripts

ˆ functions in z coordinate space (8.1)

Subscripts

a amorphous (10.1)

ad adiabatic (4.2)

C crystal, crystallization (3.5)

c crystalline (10.1)

g glass transition (3.16)

L layer (3.1)

max maximum (11.1)

m melt, melting (3.16)

ref reference quantity (4.5)

S substrate (3.1)
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1. Introduction

1.1. The explosive crystallization phenomenon

Explosive crystallization is a self-sustaining process of transformation of a solid ma-

terial from an amorphous metastable state to the crystalline state. The earliest work

concerned with explosive crystallization found in the literature is from the year 1855,

reporting on experiments with antimony (Gore, 1855).

The process is typically initiated by locally heating the material and is then sus-

tained by the liberation of the latent heat of fusion during the amorphous-crystalline

transition, leading to a crystallization front propagating through the material. The

reaction can sometimes occur in quite a dramatic fashion, exhibiting visible flashes,

audible noises or surface cracking (Clevenger et al., 1990; Floro, 1986; Gore, 1855;

Ma et al., 1990).

Explosive crystallization is typically examined when occuring in a thin film which

is mounted on some substrate, with the crystallization front propagating in a direc-

tion parallel to the film surface. Furthermore, explosive crystallization in a film can

not only proceed in a direction parallel to the film surface, but also normal to it, see

e.g. Polman et al. (1989, 1990); Stolk et al. (1993); Thompson et al. (1984); Vega

et al. (2005). Also, explosive crystallization in films not mounted on a substrate is

examined by some authors (Marine & Marfaing, 1991; Sharma et al., 1984). The

unsupported films are first deposited onto a dissolvable substrate (NaCl), and subse-

quently removed from said substrate. In Marine & Marfaing (1991), “the films were

floated off and transferred onto [electron] microscope grids”.

1.2. Heat loss influence

Heat loss into the substrate influences the process. This influence is examined e.g. in

Geiler et al. (1986); Grigoropoulos et al. (2006); Heinig & Geiler (1985, 1986); Kurtze

(1986); Rogers et al. (2006); Shklovskij & Ostroushko (1996). The heat loss can
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even lead to the explosive crystallization process dying out (Heinig & Geiler, 1986;

Provatas et al., 1996).

As a consequence of the heat loss influence, the occurence of explosive crystal-

lization depends on the thickness of the crystallizing film, among other parameters.

The concept of a minimum necessary layer thickness appears in Coffin & Johnston

(1934); Gilmer & Leamey (1980); Johnson et al. (2008); Kurtze et al. (1984); Pumir

& Barelko (2001); Sharma et al. (1984); Shklovskij & Kuz’menko (1989); Takamori

et al. (1972). An interesting way of experimentally determining this critical thickness

by using a layer of varying thickness is demonstrated in Koba & Wickersham (1982,

1983).

1.3. Materials

Explosive crystallization occurs in a wide variety of materials. There is litera-

ture available on explosive crystallization in antimony (Bostanjoglo & Schlotzhauer,

1981; Coffin, 1935a,b; Coffin & Hubley, 1950; Coffin & Johnston, 1934; Gore, 1855;

Götzberger, 1955; Kurtze et al., 1984; Shklovskij & Kuz’menko, 1989), bismuth

(Kuz’menko et al., 1991; Shklovskij & Kuz’menko, 1989), germanium (Grigoropoulos

et al., 2006; Ohdaira & Matsumura, 2012; Rogers et al., 2006; Sharma et al., 1984;

Vega et al., 2005) and silicon (Andrä et al., 1982; Endo et al., 2010; Geiler et al.,

1986; Geiler & Heinig, 1985; Götz, 1986; Knapp & Picraux, 1981; Kuo, 2009; Ohdaira

et al., 2009, 2011, 2010a,b; Polman et al., 1989, 1990; Smith et al., 2005; Spinella

et al., 1998), among others.

Explosive crystallization can also occur in multi-layers made up of different ma-

terials undergoing chemical reactions (Clevenger et al., 1990; Floro, 1986; Ma et al.,

1990) and in alloys (Okuda et al., 2003; Shklovskij & Kuz’menko, 1989).

1.4. Applications

Areas where explosive crystallization of thin films finds applications are, for exam-

ple, data storage (Okuda et al., 2003; Wickersham, 1983) or solar cell fabrication

(Andrä et al., 1998; Endo et al., 2010; Ohdaira et al., 2009, 2011; Ohdaira & Mat-

sumura, 2012; Ohdaira et al., 2010a,b). Furthermore, advanced crystallization tech-

niques are an area of interest for improved fabrication of thin-film displays (Voutsas,

2003).
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1.5. Motivation of present work

The present work is concerned with the theoretical description of explosive crys-

tallization in thin films mounted on a substrate. Specifically, the influence of heat

loss into the substrate on the explosive crystallization process is examined in de-

tail. Often, inclusion of heat loss is realized semi-empirically using an apparent heat

transfer coefficient (Geiler et al., 1986; Grigoropoulos et al., 2006; Heinig & Geiler,

1985, 1986; Kurtze, 1986; Shklovskij & Ostroushko, 1996). In contrast, the present

work derives the equations governing heat conduction into the substrate from first

principles, avoiding the use of an empirical heat transfer coefficient.

This thesis builds upon, and extends, previous work on explosive crystallization in

polymers done by Schneider and co-workers (Berger, 1988; Köppl, 1990; Schneider

et al., 1992, 1988). Some preliminary results have already been presented previously

(Buchner & Schneider, 2010a,b,c).
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2. Problem formulation

The process of explosive crystallization of a thin film mounted on a substrate is

modeled as a crystallization zone that moves into an initially amorphous layer. Figure

2.1 shows a sketch of the problem.

propagation velocity U

crystallization zone adiabatic surface

amorphous layer

kS, ρS, cpS

T = TS

substrate

kL, ρL, cpL
δL

x

y

crystallized layer

heat flux q̇i

Figure 2.1.: Sketch of the problem.

It is assumed that the process is two-dimensional, i.e. depending only on the carte-

sian space coordinates x and y, and on the time t. This is a reasonable assumption

for explosive crystallization initiated by line-shaped ignition sources, which yields a

linear crystallization zone, see e.g. Ohdaira et al. (2009); Rogers et al. (2006). Ra-

dial explosive crystallization, where the ignition source is a point on the film, is also

reported in the literature, e.g. by Geiler et al. (1986); Takamori et al. (1972), but not

considered here. Additionally, explosive crystallization can be initiated by irradiation

of the whole layer with a flash lamp, cf. the articles by Ohdaira et al.. The explosive

crystallization process is then either of the radial type, if it is first triggered at local
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imperfections (Ohdaira & Matsumura, 2012), or of the linear type, if it is triggered

at the edge of the irradiated wafer (Ohdaira et al., 2011).

A thin layer of initially amorphous material, thickness δL, is mounted on a heat

conducting substrate, which is much thicker in the y-direction than the layer itself.

Thus, the substrate may be considered a semi-infinite body. As y →∞, the temper-

ature of the substrate tends to the initial temperature of the whole domain, TS.

The amorphous material is transformed into crystallized material in a crystalliza-

tion zone travelling with the velocity U . In this crystallization zone most of the

crystallization takes place. Behind the crystallization zone the volume fraction of

the crystalline phase, V , asymptotically approaches a maximum value, V∞, which is

not necessarily 1. Polymers, in particular, are known for their inability to crystallize

totally (van Krevelen, 1990, p. 585). Therefore, due to a suggestion by Mandelkern

(1964), the degree of crystallization ξ is defined as

ξ =
V

V∞
, (2.1)

so that ξ may vary from 0 very far in front of the wave to 1 very far behind the

wave. ξ = 1 means that the crystallization process has been fully completed, even if

V∞ < 1.

In the course of crystallization latent heat is released, heating up the layer. Due to

heat conduction, a heat flux q̇i from the layer into the substrate occurs. Very far from

the crystallization zone thermal equilibrium between the layer and the substrate is

established, i.e. the temperature of the layer approaches TS as x→ ±∞.

The fully developed self-sustaining crystallization process shall be described as a

propagating wave of invariant shape (Kluwick, 2008; Schneider, 1978) in terms of

both absolute temperature, T , and degree of crystallization, ξ. This enables treating

the explosive crystallization process as a steady state problem in a moving coordinate

system. The coordinate system is chosen such that the wave propagates in negative

x-direction with constant velocity U .
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3. Basic equations

3.1. Energy equation

Provided the crystallizing layer is sufficiently thin, the energy balance for the layer

reduces to the equation

ρLcpL
∂T

∂t
= kL

∂2T

∂x2
+ ρLlV∞

∂ξ

∂t
− q̇i
δL
, (3.1)

that is the equation of one-dimensional heat diffusion (Holman, 2010) with a source

term due to the local liberation of the specific latent heat, l, and a heat loss term

due to the interface heat flux q̇i. Convective heat losses at the free surface of the

layer are neglected. Radiative heat losses are neglected, as calculations for typical

experiments, e.g. for explosive crystallization of germanium, show this assumption

to be justified (Sharma et al., 1984).

kL, ρL and cpL are the thermal conductivity, mass density and isobaric specific heat

capacity of the layer, respectively. The same quantities are defined for the substrate,

using the subscript S instead of L. These quantities are assumed to be constant,

i.e. independent of temperature and degree of crystallization.

The source term is proportional to the crystallization rate ∂ξ
∂t

, which is to be deter-

mined from a set of rate equations that follows from the kinetics of crystallization,

cf. section 3.2 below.

The one-dimensional approximation in (3.1) is justified if the heat flux through the

layer-substrate interface q̇i is much smaller than the heat flux along the layer. This

condition is fulfilled if (Buchner & Schneider, 2010b)

ρScpS
ρLcpL

√
αS
αL
� 1, (3.2)
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where αS and αL are the thermal diffusivities of the substrate and the layer, respec-

tively. If ρScpS/ρLcpL is of the order of 1, as is valid for many material combinations,

this simplifies to √
αS
αL
� 1. (3.3)

As will become clear below (see section 11.1), most of the crystallization typically

happens in a small zone. In this zone, the one-dimensional approximation is not

satisfied well. However, the heat flux into the substrate in this small region is small

compared to the overall heat flux, so this influence can be neglected.

As far as the energy balance of the substrate is concerned, the equation to be

solved in the substrate is the classical heat diffusion equation for two-dimensional

unsteady heat conduction,

∂T

∂t
= αS

(
∂2T

∂x2
+
∂2T

∂y2

)
, (3.4)

subject to the heat flux q̇i at the interface as a boundary condition, cf. chapter 5.

3.2. Rate equations

The main result of the crystallization theory developed by Kolmogorov (1937) and,

independently, by Avrami (1939, 1940, 1941) is a multiple-integral representation of

the degree of crystallization for given temperature. If the temperature is not known

a priori, the kinetic equations are coupled with the energy equations, leading to a

system of equations that consists of (partial) differential equations and a multiple-

integral equation. This makes the problem rather intractable. However, it has been

shown in Schneider et al. (1988) that the multiple-integral equation can be trans-

formed into a system of 2, 3 or 4 (depending on the dimension of crystal growth)

first-order differential equations that are of the type of chemical rate equations. This

renders problems of non-isothermal crystallization, like the present one, accessible to

investigation and, furthermore, provides a basis for important generalizations. Nu-

merous applications have been found for these rate equations, see e.g. Burger et al.

(2002, 2004); De Santis et al. (2005); Eder (1997); Eder & Janeschitz-Kriegl (1997);

Hütter (2001, 2004); Janeschitz-Kriegl (2010); Martins & Cruz Pinto (2000, 2002);

Waheed & Rutledge (2005); Zuidema et al. (2001).
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3.2.1. Rate equations for heterogeneous crystallization

Using Avrami’s model of impingement, i.e. the collision of crystals as they grow, the

following system of (m + 1) first order differential equations for the crystallization

quantity ϕ0 is obtained (Schneider et al., 1988):

∂ϕi
∂t

=
GC

LC
ϕi+1 (i = 0 . . .m− 1), (3.5a)

∂ϕm
∂t

= nC (1− ϕm) . (3.5b)

Here, ϕ0 is defined as

ϕ0 = − ln (1− ξ) (3.6)

and m is the dimensionality of crystal growth, with m = 1, 2, 3 for one-, two- and

three-dimensional growth, respectively. ϕ1, ϕ2 and ϕ3 are auxiliary quantities that

can be physically interpreted as being related to the total surface area, sum of the

radii and numbers, respectively, of spherulites if they would grow without impinge-

ment (Eder & Janeschitz-Kriegl, 1997). The subscript C denotes the dimensional

forms of crystallization-related quantities. nC is the probability of formation of

growth nuclei per crystal nucleus and per unit time (henceforth simply called the

“activation probability”). GC is the crystal growth velocity, while LC is the average

distance between neighbouring crystal nuclei (Schneider et al., 1988):

LC =

(
V∞

m!σN̄

)1/m

. (3.7)

σ is a crystal growth shape coefficient, with σ = 1, 2π, 4π/3 for rod-like, cylindrical

and spherical grains, respectively. N̄ is the initial number of nuclei per unit volume.

Initial conditions at t = 0 are

ϕi(0) = 0 (i = 0 . . .m). (3.8)

3.2.2. Simplification to one rate equation

As detailed in Schneider et al. (1988), the system of rate equations reduces to a single

equation for certain limiting cases. Of particular interest is the limiting case that is

obtained if the activation of nuclei takes place at a much faster rate than their growth
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(i.e. nCLC/GC →∞). For isothermal conditions, the system of rate equations (3.5)

then simplifies to

ϕ0 =
1

m!

(
GC

LC

)m
tm. (3.9)

Taking (3.6) into account, this is a form of the famous Avrami equation (Avrami,

1939, 1940, 1941). Under non-isothermal conditions, the limiting case yields (Schnei-

der et al., 1988)

∂Φ

∂t
=
GC

LC
, (3.10)

where

Φ = [m!ϕ0]
1/m = [−m! ln (1− ξ)]1/m , (3.11)

which in case of three-dimensional growth becomes

Φ = [−6 ln (1− ξ)]1/3 . (3.12)

3.2.3. Rate equations for homogeneous crystallization

In contrast to heterogenous crystallization, where pre-existing crystal nuclei are ac-

tivated and begin to grow, there are no nuclei at the beginning of homogeneous

crystallization. Through random fluctuations, nuclei are spontaneously formed in

the amorphous material with a certain nucleation rate IC (see section 3.4), and im-

mediately begin to grow. This process is also sometimes called “random nucleation

and growth” (Olson & Roth, 1988).

Keeping this difference in mind, the derivation of the rate equations is analogous

to the procedure for heterogenous crystallization. The key points are reproduced

here, but a more detailed derivation can be found in appendix A.1.

The symbols ϕ and φ are used to distinguish between heterogeneous and homoge-

neous crystallization, respectively. Using the crystallization variable defined in (3.6)

in an equivalent form

φC,0 = ϕ0 = − ln (1− ξ) , (3.13)

13



one arrives at the system of equations

∂φC,i
∂t

= GCφC,i+1 (i = 0 . . .m− 1) (3.14a)

∂φC,m
∂t

=
m!σ

V∞
IC . (3.14b)

Here, there is no characteristic length scale like LC in case of heterogeneous crys-

tallization. Consequently, the quantities φC,i (i = 1 . . .m) now have the dimension

length−i.

The initial conditions are identical to the initial conditions for heterogeneous crys-

tallisation, i.e.

φC,i(0) = 0 (i = 0 . . .m). (3.15)

3.3. Crystal growth velocity

The crystal growth velocity GC is the direction-averaged linear growth velocity of

crystals. A variety of expressions for the temperature dependence of GC may be

found in the literature. A relationship that is often used, in particular for polymers,

cf. Janeschitz-Kriegl (2010), was derived by Hoffman (1964) on the basis of earlier

work by Williams et al. (1955). It is consistent with thermodynamics for all temper-

atures T , and will be adapted for other materials in what follows. The relationship

reads:

GC(T ) =




G0 exp

[
− E1

kB(T − Tg)

]
exp

[
− E2Tm
kBT (Tm − T )

]
for Tg < T < Tm,

0 for T ≤ Tg; T ≥ Tm,

(3.16)

where G0 is a characteristic value of the crystal growth velocity, E1 and E2 are kinetic

constants that characterize activation energies, and kB = 8.617 332× 10−5 eV/K is

the Boltzmann constant. Tg and Tm denote the glass transition temperature and

the melting temperature of the material, respectively. GC vanishes exponentially as

T → Tg and T → Tm, respectively. In accordance with common practice, the growth

velocity is taken to be zero above the melting temperature as well as below the glass

transition temperature.
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Another formulation for GC is based on using an Arrhenius dependency of the

form

f(T ) = f0 exp

[
− E

kBT

]
(3.17)

in the first exponential term in (3.16), which is dominant at low temperatures. In

this case, GC is defined as

GC(T ) =




G0 exp

[
− EG
kBT

]
exp

[
− EGmTm
kBT (Tm − T )

]
for Tg < T < Tm,

0 for T ≤ Tg; T ≥ Tm,

(3.18)

where EG and EGm are activation energies. Note that with an Arrhenius dependency,

GC 6= 0 at the glass transition temperature. In fact, the glass transition temperature

does not enter the equation at all. To be able to treat the problem as a propagating

wave of invariant shape, it is necessary that GC ≡ 0 below a temperature slightly

above TS. For convenience, this temperature is also designated as Tg. Additionally,

GC ≡ 0 for a temperature above Tm, as in (3.16).

Often, only values for E and f0 from (3.17) can be found in the literature, because

a pure Arrhenius dependency is assumed for the crystal growth velocity (Donovan

et al., 1983; Farjas & Roura, 2006; Götzberger, 1955; Heinig & Geiler, 1985; Johnson

et al., 2008; Knapp & Picraux, 1981; Olson & Roth, 1988; Shklovskij & Kuz’menko,

1989; Sontheimer et al., 2009). This is often used because the higher temperature

regime, where deviations from this dependency become apparent, is either difficult

to measure or not even accessible to experimental measurements, see e.g. Marine &

Marfaing (1991).

When using (3.18), the relations

E = EG + EGm, (3.19a)

f0 = G0 exp

[
− EGm
kBTm

]
, (3.19b)

can be used to obtain values for G0 and EG from a given or assumed EGm and

experimentally available E and f0, such that the crystal growth velocity values at

low temperatures remain essentially unchanged compared to (3.17).

Using (3.18), GC(T ) has a maximum value at a certain temperature T ∗, i.e.

GC(T ∗) = max [GC(T )] . (3.20)
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The relative sizes of EG and EGm decide the location of T ∗ and the temperature

where a deviation from the pure Arrhenius behaviour becomes noticeable. Therefore,

with no other data available, the temperature range where measurements of GC are

available places an upper limit on EGm.

3.4. Crystal nucleation rate

Based on the classical Becker-Volmert nucleation theory, it can be shown (Köster &

Herold, 1981) that for large undercooling, i.e. far away from the melting tempera-

ture, the expression for the homogeneous crystal nucleation rate is dominated by an

Arrhenius-type dependency of the form (3.17).

Taking the full temperature domain into account, this expression is assumed to be

equivalent to (3.18):

IC(T ) =




I0 exp

[
− EI
kBT

]
exp

[
− EImTm
kBT (Tm − T )

]
for Tg < T < Tm,

0 for T ≤ Tg; T ≥ Tm,

(3.21)

where EI and EIm are activation energies for nucleation. Furthermore, it can be

safely assumed that no nucleation takes place below the glass transition temperature

Tg (Köster & Herold, 1981).

Just as is the case for the crystal growth velocity, sometimes only a pure Arrhenius-

style dependency like (3.17) is considered in the literature. This is especially true

for experimental papers, because the higher temperature regime, where deviations

from (3.17) become apparent, is not accessible to experimental measurements (Farjas

& Roura, 2006; Olson & Roth, 1988; Sontheimer et al., 2009). Sometimes, though,

authors try to reconcile both relations, using (3.17) with experimental data, but also

considering bell-shaped curves (Marine & Marfaing, 1991).

Analogously to the crystal growth velocity, values obtained using a pure Arrhenius-

style dependency can be converted for use in (3.21), while maintaining the low-

temperature behaviour. This can be achieved by using (3.19) and replacing the

crystal growth velocity quantities with their equivalent counterparts for the crystal

nucleation rate.
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3.5. Crystallization time

Sometimes, the parameters relevant for determining the crystal nucleation rate are

not directly available for measurement in an experiment. In this case, researchers

often measure the crystallization time, which is more accessible, e.g. by using

calorimetry (e.g. Martins & Cruz Pinto, 2002), electrical resistivity (e.g. Shklovskij &

Kuz’menko, 1989), or optical measurements (Olson & Roth, 1988). The nucleation

and the growth components can be separated through use of kinetic theory as follows

(adapted from Olson & Roth, 1988):

Assuming three-dimensional growth and isothermal conditions, i.e. constant crystal

nucleation rate and constant growth velocity of crystallites, the degree of crystalliza-

tion follows the famous Avrami equation (Avrami, 1939, 1940, 1941)

ξ(t) = 1− exp
[
−(t/τ)4

]
. (3.22)

The crystallization time τ is the time required to reach a degree of crystallization of

1− 1/e. It is often assumed to vary with temperature according to the relation

τ(T ) = τ0 exp

[
Eτ
kBT

]
. (3.23)

This assumption is confirmed by measurements over a wide range of experimentally

accessible temperatures. For purely isotropic, three-dimensional growth, the relation

τ ∝
(
ICG

3
C

)−1/4
(3.24)

is given by (Olson & Roth, 1988). Experiments show that it can be assumed that

crystal growth remains largely isotropic even if the crystallites grow big enough to

touch both film surfaces (Olson & Roth, 1988).

If (A.7) is used with the above assumptions, one arrives at a more precise version

of (3.24), in accordance with the Avrami equation (Janeschitz-Kriegl, 2010):

τ =

(
σ

4V∞
ICG

3
C

)−1/4
. (3.25)

Inserting Arrhenius dependencies, i.e. according to (3.17), for IC and GC in (3.25),

the relationship

4Eτ = EI + 3EG (3.26)
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between the activation energies of crystallisation time, crystal nucleation, and crystal

growth is obtained. This demonstrates that, using (3.25) and (3.26), the crystal nu-

cleation rate IC can be fully characterised even if only the crystal growth velocity GC

and crystallization time τ are known. Fortunately, enough nucleation data were found

for a comparison to experiments, see chapter 11, so using the presented approach was

not necessary. However, this technique might be useful to other researchers, and so

it is included here.
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4. Non-dimensional formulation

4.1. Non-dimensional variables

To arrive at a proper non-dimensional formulation of the problem, first some char-

acteristic quantities have to be identified (Buchner & Schneider, 2010a,b):

The total end temperature Ttot is the temperature that would be attained by

releasing all the latent heat of crystallization of the amorphous material without

considering a possible melting transition at Tm:

Ttot = TS +
V∞l

cpL
. (4.1)

Ttot is not necessarily identical to Tad , the final temperature in the adiabatic case,

which is constrained by encountering the melting transition at Tm, and defined as

Tad = min [Ttot , Tm] . (4.2)

Quantities concerning an adiabatic process are denoted by the subscript ad .

In view of the physical meaning of Ttot , it makes sense to introduce the non-

dimensional temperature difference as

Θ =
T − TS
Ttot − TS

, (4.3)

so that 0 ≤ Θ ≤ 1. Consequently, the non-dimensional glass transition and melting

temperatures, respectively, become

Θg =
Tg − TS
Ttot − TS

; Θm =
Tm − TS
Ttot − TS

. (4.4)
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Using the wave propagation speed U , which is to be determined as part of the so-

lution, as a characteristic velocity, the reference length for heat conduction and the

reference heat flux, respectively, are defined as

Lref =
kL

UρLcpL
, (4.5)

q̇ref = UρLV∞l
eS
eL
. (4.6)

The abbreviation e is defined as

e =
√
kρcP , (4.7)

and is important e.g. when describing the thermal contact of semi-infinite bodies.

A reference time scale for the kinetics of the explosive crystallization process, tC,ref

is also needed. For isothermal crystallization, a characteristic time scale can be

defined as

tC(T ) =
LC

GC(T )
, for heterogeneous crystallization with immediate activation;

(4.8a)

tC(T ) =
[
GC(T )3IC(T )

]−1/4
, for homogeneous crystallization. (4.8b)

Due to the different formulations of the rate equations, the definition of this time scale

is different for heterogeneous and homogeneous crystallization.1 For homogeneous

crystallization, tC(T ) is, except for a multiplicative factor, identical to τ , the time of

crystallization in the Avrami equation (3.25).

For the explosive (and non-isothermal) crystallization process, the physically most

meaningful (i.e. dominant) reference time scale is the time scale of the fastest crystal-

lization occuring in the whole domain. Thus, the appropriate reference temperature

Tref is defined as the temperature where tC(T ) is minimal:

tC(Tref ) = min (tC(T )) , with TS ≤ T ≤ Tad (4.9)

Θref =
Tref − TS
Ttot − TS

(4.10)

1This is to avoid a dual definition of H, λ for heterogeneous and homogeneous crystallization,
respectively, see (4.27) and (4.28).
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In case of a pure Arrhenius dependency, cf. (3.17), or for subcritical waves (see section

4.2), Tref = Tad , and the distinction between the two temperatures seems overly

complicated. In case of supercritical waves, Tref and Tad differ, and using Tref = Tad

would become problematic as it is possible that tC(Tad) → ∞ as Tad → Tm. Thus,

it is preferable to use the slightly more complicated formulation (4.9).

Now that Tref is properly defined, a definition of tC,ref is straightforward:

tC,ref = tC(Tref ). (4.11)

The reference quantities for the crystal growth velocity, activation probability and

crystal nucleation rate, respectively, are defined as:

GC,ref = GC(Tref ), (4.12)

nC,ref = nC(Tref ), (4.13)

IC,ref = IC(Tref ). (4.14)

A non-dimensional interface heat flux, crystal growth velocity, activation probability

and crystal nucleation rate, respectively, are then defined as

q̇ =
q̇i
q̇ref

, (4.15)

G =
GC

GC,ref

, (4.16)

n =
nC
nC,ref

, (4.17)

I =
IC
IC,ref

. (4.18)

Finally, since the aim of the analysis is to find solutions describing propagating

waves of invariant shape, the non-dimensional wave coordinate η is introduced, which

describes a space coordinate in a reference frame moving with velocity U :

η =
x+ Ut

Lref

. (4.19)
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4.2. Classification of crystallization waves

The existence of a maximum in the crystal growth velocity has important conse-

quences for the structure of the crystallization wave. For the adiabatic case it has

been shown previously (Köppl, 1990; Schneider, 1996) that the structure of the crys-

tallization wave depends on whether Tad < T ∗ (“subcritical wave”), Tad ≈ T ∗ (“criti-

cal wave”) or Tad > T ∗ (“supercritical wave”), where Tad is the temperature attained

behind the wave in an adiabatic process, as defined in (4.2).

When using more than one rate equation, this classification is not entirely suffi-

cient. Instead of the temperature of the maximum crystal growth velocity T ∗, it is

more appropriate to use the temperature of a minimum characteristic time of crys-

tallization, Tref , as defined in (4.9). This is because the crystal growth velocity is

not the only kinetic quantity responsible for crystallization any more, which is in

contrast to the assumption of instant activation of nuclei in Köppl (1990); Schneider

(1996).

In addition to Tad , another quantity important for the classification of crystalliza-

tion waves is Ttot ≥ Tad , the temperature attained by releasing all the latent heat of

crystallization of the amorphous material, as defined in (4.1). In case of heat losses

due to conduction of heat into the substrate, Ttot may be above Tm, but the temper-

ature in the non-adiabatic wave remains below Tm and approaches TS far behind the

wave.

Similarly, a wave could be classified as supercritical (i.e. Tad > Tref ), but due to

heat losses the temperature in the wave never reaches Tad and remains effectively

subcritical, cf. section 11.3.3.

4.3. Non-dimensional formulation of the crystal

growth velocity

In non-dimensional form, (3.16) becomes (Buchner & Schneider, 2010b)

G(Θ) =





exp

{
− C1(Θref −Θ)

(Θref −Θg)(Θ−Θg)

}
exp

{
C2 (C3 + Θm)

·
[

1

Θm −Θref

− C4

(C3 + Θ)(Θm −Θ)

]} for Θg < Θ < Θm,

0 for Θ ≤ Θg; Θ ≥ Θm,

(4.20)
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with

C1 =
cpLE1

kBV∞l
, C2 =

E2

kBTref

,

C3 =
cpLTS
V∞l

C4 =
cpLTref

V∞l
.

(4.21)

In the case of low-temperature Arrhenius behaviour, cf. (3.18), the non-dimensional

formulation can be derived from (4.20) and (4.21) by replacing Θg with −C3, E1 with

EG, and E2 with EGm:

G(Θ) =





exp

{
− C1,G(Θref −Θ)

(Θref + C3)(Θ + C3)

}
exp

{
C2,G (C3 + Θm)

·
[

1

Θm −Θref

− C4

(C3 + Θ)(Θm −Θ)

]}
for Θg < Θ < Θm,

0 for Θ ≤ Θg; Θ ≥ Θm,

(4.22)

where C1 and C2 have been replaced by

C1,G =
cpLEG
kBV∞l

, C2,G =
EGm
kBTref

. (4.23)

The functions G(Θ) according to (4.20) and (4.22), respectively, are shown in fig. 4.1,

for parameter values as in Buchner & Schneider (2010b). The value for C1,G in (4.22)

has been adjusted to match the peak location and high-temperature behaviour of

both curves.

4.4. Non-dimensional formulation of the crystal

nucleation rate

The non-dimensional formulation of the crystal nucleation rate (3.21) resembles

(4.22) and (4.23):

I(Θ) =





exp

{
− C1,I(Θref −Θ)

(Θref + C3)(Θ + C3)

}
exp

{
C2,I (C3 + Θm)

·
[

1

Θm −Θref

− C4

(C3 + Θ)(Θm −Θ)

]}
for Θg < Θ < Θm,

0 for Θ ≤ Θg; Θ ≥ Θm,

(4.24)
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Figure 4.1.: Non-dimensional crystal growth velocity according to (4.20) and (4.22).
Parameter values from Buchner & Schneider (2010b): C1 = 13.23, C2 =
0.660, C3 = 1.564, C4 = 2.564, Θg = 0.123, Θm = 1.349. In (4.22),
C1,G = 108.75, and C2,G = C2.

where

C1,I =
cpLEI
kBV∞l

, C2,I =
EIm
kBTref

. (4.25)
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4.5. Crystallization wave of invariant shape

4.5.1. Energy equation and non-dimensional parameters

It is assumed that all non-dimensional dependent variables depend on η only. Using

the non-dimensional variables defined above, the energy equation (3.1) becomes, as

given by Buchner & Schneider (2010b),

dΘ

dη
=

d2Θ

dη2
+

dξ

dη
−Hλq̇, (4.26)

with

H =
ρScp,S
ρLcp,L

1

δL

√
αStC,ref ; (4.27)

λ =
1

U

√
αL
tC,ref

. (4.28)

H is a non-dimensional parameter characterizing the influence of heat loss into the

substrate. Its definition has been generalized from (Buchner & Schneider, 2010b) to

additionally accomodate homogeneous crystallization by using (4.11).

Note that the set of non-dimensional parameters has been defined such that the

unknown propagation velocity U appears only in one parameter, i.e λ, which therefore

plays the role of an eigenvalue. λ2 can be interpreted as a ratio of the characteristic

time of heat conduction to the characteristic time of crystallization, and therefore a

(first) Damköhler number (Köppl, 1990).

Furthermore, note that the definition of tC,ref is different for heterogenous and

homogeneous crystallization, see (4.8a) and (4.8b), respectively.
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4.5.2. Heterogeneous crystallization

The full set of rate equations for heterogeneous crystallization (3.5) becomes:

dξ

dη
= λ2G(Θ)ϕ1(η)(1− ξ) (4.29a)

dϕ1

dη
= λ2G(Θ)ϕ2(η) (4.29b)

dϕ2

dη
= λ2G(Θ)ϕ3(η) (4.29c)

dϕ3

dη
= λ2µn(Θ) [1− ϕ3(η)] , (4.29d)

where the non-dimensional parameter µ is defined as

µ =
nC,refLC
GC,ref

. (4.30)

4.5.3. Single rate equation

The single rate equation in case of immediate activation of nuclei (3.12) becomes

dξ

dη
= λ2G(Θ)g(ξ), (4.31)

with the auxiliary function g(ξ) defined as

g(ξ) = (9/2)1/3 (1− ξ) [− ln (1− ξ)]2/3 . (4.32)

4.5.4. Homogeneous crystallization

The absence of a characteristic length scale for crystallization, and the dimension-

ality of the φC,i, complicates matters in case of homogeneous crystallization. The

crystallization variables φC,i are made non-dimensional using the expression

φi =

(
GC,ref

IC,ref

)i/4
φC,i (i = 0 . . .m). (4.33)
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Consequently, (3.14) becomes

dξ

dη
= λ2G(Θ)φ1(η)(1− ξ) (4.34a)

dφ1

dη
= λ2G(Θ)φ2(η) (4.34b)

dφ2

dη
= λ2G(Θ)φ3(η) (4.34c)

dφ3

dη
= λ2M I(Θ), (4.34d)

with the non-dimensional parameter M defined as

M =
6σ

V∞
. (4.35)

(4.34) is identical to (4.29), except for the last equation, (4.34d). Furthermore, in

contrast to ϕ1–ϕ3, the values of φ1–φ3 do not remain within the range [0, 1], but

reach higher values.
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5. Treatment of substrate

In the substrate, the heat diffusion equation for two-dimensional unsteady heat con-

duction (3.4), subject to the heat flux q̇i at the interface as a boundary condition, is

solved.

5.1. Integral representation of the temperature in the

substrate

Among the particular solutions of the heat diffusion equation there is the well-known

solution for a line heat source moving with constant velocity through an infinite

medium, cf. Grigull & Sandner (1984, p. 131 ff.). Here, the solution is used to

describe the temperature field in the substrate in terms of a continuous distribution

of moving heat sources q̇(η) at the interface. This gives (Buchner & Schneider, 2010b)

the following integral representation for the temperature in the substrate in terms of

the unknown source distribution q̇(η):

Θ(η, Y ) =
1

π
√
a

∫ +∞

−∞
q̇(s) exp

(
η − s

2a

)
K0

(
1

2a

√
(η − s)2 + Y 2

)
ds, (5.1)

where Y = y/Lref , while K0 denotes the modified Bessel function of the second kind

(Olver et al., 2010). The dimensionless parameter a is defined as the ratio of the

thermal diffusivities of substrate and layer, respectively:

a =
αS
αL
. (5.2)

At the interface, i.e. at Y = 0, (5.1) reduces to

Θ(η) =
1

π
√
a

∫ +∞

−∞
q̇(s) exp

(
η − s

2a

)
K0

( |η − s|
2a

)
ds. (5.3)
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Assuming perfect thermal contact between substrate and layer, Θ(η) in (5.3) must

be equal to the temperature appearing in the energy equation and in the rate equa-

tion(s). For a formulation including imperfect thermal contact see section 5.3.

Thus, the complete set of equations consists of the ordinary differential equation

(4.26), the integral equation (5.3), and one or more rate equation(s), i.e. (4.29), (4.31)

or (4.34), for the unknown functions Θ(η), q̇(η), ξ(η), and ϕ1–ϕ3 or φ1–φ3, depending

on the chosen set of rate equations.

The solution has to satisfy the following boundary conditions far ahead of, and far

behind, the wave, respectively:

Θ = 0, ξ = 0 as η → −∞, (5.4)

Θ = 0 as η → +∞, (5.5)

and, if required,

ϕ1 = ϕ2 = ϕ3 = 0 or φ1 = φ2 = φ3 = 0 as η → −∞. (5.6)

Note that in the absence of a substrate, i.e. under adiabatic conditions, the temper-

ature far behind the wave has to satisfy the condition Θ = 1 as η → +∞.

The problem formulated herewith is an eigenvalue problem, i.e. non-trivial so-

lutions for homogeneous boundary conditions are to be found. The eigenvalue λ

determines the propagation speed of the wave, U , cf. (4.28). The (numerical) so-

lution of the above system of differential equations and a coupled integral equation

appears rather cumbersome. However, substantial simplifications are possible, as will

be shown in the next sections.

5.2. Expansion for weakly conducting substrates

5.2.1. Expansion of the integral representation for small values

of a

In many cases of practical interest, e.g. for germanium on quartz (Grigoropoulos

et al., 2006) or for silicon on quartz (Heinig & Geiler, 1985), the thermal diffusivity

of the substrate is much smaller than the thermal diffusivity of the crystallizing layer,

i.e. a� 1 according to (5.2).
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An asymptotic expansion of (5.3) for small values of a is not straightforward,

however. The basic idea is to take q̇ out of the integral of (5.3). To this end, the

integral (5.3) is first transformed with the substitution

ς = −η − s
2a

. (5.7)

This gives

Θ(η) =
2
√
a

π

∫ +∞

−∞
q̇(η + 2aς) exp (−ς) K0 (|ς|) dς. (5.8)

In view of the known asymptotic behavior of K0 (Olver et al., 2010)

K0(ς) =

√
π

2ς
exp(−ς)

(
1− 1

8ς
+ . . .

)
as ς →∞, (5.9)

the integral in (5.8) is then split into three parts:

π

2
√
a

Θ(η) =

∫ 0

−∞
q̇(η + 2aς)

A︷ ︸︸ ︷[
exp (−ς) K0 (|ς|)−

√
π

2 |ς|

]
dς

+

∫ 0

−∞
q̇(η + 2aς)

√
π

2 |ς|dς

+

∫ +∞

0

q̇(η + 2aς) exp (−ς) K0 (|ς|)︸ ︷︷ ︸
B

dς.

(5.10)

According to (5.9), the kernels A and B in the first integral and in the third integral,

respectively, decay quickly as ς → ∓∞. Figure 5.1 shows a plot of A and B and their

asymptotic behaviour for |ς| � 1.

For ς = O(1), the term 2aς in the argument of q̇ may be neglected because a� 1.

For |ς| � 1, on the other hand, the term 2aς may be neglected because the quick

decay of the integral kernels ensures that the resulting error stays small. As a result,

q̇(η+ 2aς) may be replaced by q̇(η) and, therefore, be taken out of the integrals. The

remaining integrals can then be evaluated:

∫ 0

−∞

[
exp (−ς) K0 (|ς|)−

√
π

2 |ς|

]
dς = +1; (5.11)

∫ +∞

0

exp (−ς) K0 (|ς|) dς = −1. (5.12)
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Figure 5.1.: Behaviour of integral kernels A and B.

Hence the first and the third term on the right hand side of (5.10) cancel out as

a → 0. The remaining integral, after another transformation according to (5.7),

gives

Θ(η) =
1√
π

∫ η

−∞

q̇(s)√
η − s ds. (5.13)

(5.13) is a coupling condition between the temperature and the heat flux at the

interface.

5.2.2. Inversion of the interface coupling condition

(5.13) is of the form of Abel’s integral equation (Polyanin & Manzhirov, 1999). It

can be inverted to give

q̇(η) =
1√
π

d

dη

∫ η

−∞

Θ(s)√
η − s ds. (5.14)

Equation (5.14) shows that the local heat transfer rate depends on the temperature

distribution up to infinitely far ahead of the position that is considered. This is in

contrast to any formulation in terms of a local heat transfer coefficient, which is

often found in the literature, e.g. in Geiler et al. (1986); Grigoropoulos et al. (2006);

Heinig & Geiler (1985, 1986); Kurtze (1986); Shklovskij & Ostroushko (1996). It
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is also at odds with a more general polynomial relationship between heat loss and

temperature, as reported in Ma et al. (1990).

5.2.3. Elimination of q̇ in the energy equation

Substituting for q̇ in (4.26) according to (5.14), integrating once, and using the

boundary conditions far ahead of the wave, i.e. (5.4), gives (Buchner & Schneider,

2010b)

dΘ

dη
= Θ− ξ +

1√
π
Hλ

∫ η

−∞

Θ(s)√
η − s ds

︸ ︷︷ ︸
heat loss term

. (5.15)

This integro-differential equation combines with the relevant set of rate equations,

i.e. (4.29), (4.31) or (4.34), to form a set of two to five equations. The eigenvalue λ

has to be determined such that the boundary conditions (5.4) and (5.5) are satisfied.

5.3. Thermal contact resistance at the interface

Often, there is no perfect contact between two solids. As a consequence, when heat

flows between the two bodies, an apparent temperature drop across the interface is

observed (see e.g. Holman (2010)). This temperature drop is related to the heat flux

across the interface by

T+ − T− = Riq̇i, (5.16)

where Ri is the thermal contact resistance of the interface, and the subscripts + and

− denote the temperature directly above the interface (i.e. in the layer) and below

(i.e. in the substrate), respectively. In dimensionless form, this becomes

Θ+ −Θ− = Rq̇, (5.17)

R := RiUρLcpL
eS
eL
, (5.18)

where R is the dimensionless thermal contact resistance.
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When thermal contact resistance is included, some of the previous equations have

to be modified. Equation (5.13) becomes

Θ−(η) =
1√
π

∫ η

−∞

q̇(s)√
η − s ds. (5.19)

With (5.17), it follows that Equation (5.13) becomes

Θ+(η)−Rq̇(η) =
1√
π

∫ η

−∞

q̇(s)√
η − s ds. (5.20)

Here Θ+(η) is the temperature in the layer, so we can drop the subscript for conve-

nience from now on.

Equation (5.20) is an Abel’s integral equation of the second kind. It can be trans-

formed (Polyanin & Manzhirov, 1999) to

q̇(η) = F (η) +
1

R2

∫ η

−∞
exp

[
1

R2
(η − s)

]
F (s) ds, (5.21)

F (η) =
1

R
Θ(η)− 1

R2
√
π

∫ η

−∞

Θ(s)√
η − s ds. (5.22)

Replacing F (η) in (5.21) using (5.22) leads to a double-integral expression which is

very complex to solve numerically. Therefore, expansions for small and large values

of R, respectively, are used to investigate this problem within the existing numerical

framework. Both expansions are presented in the following sections.

5.3.1. Expansion for small thermal contact resistance R

Assuming a small influence of the thermal contact resistance, i.e. R � 1, we can

expand the non-dimensional temperature as follows:

Θ(η) = Θ0(η) +RΘ1(η) + . . . , (5.23)

q̇(η) = q̇0(η) +Rq̇1(η) + . . . . (5.24)
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Inserting into (5.20) and arranging by orders of R gives:

R0 : Θ0(η) =
1√
π

∫ η

−∞

q̇0(s)√
η − s ds; (5.25)

R1 : Θ1(η)− q̇0(η) =
1√
π

∫ η

−∞

q̇1(s)√
η − s ds. (5.26)

Equation (5.25) is equivalent to (5.13), so the inversion gives (Polyanin & Manzhirov,

1999):

q̇0(η) =
1√
π

d

dη

∫ η

−∞

Θ0(s)√
η − s ds =

1√
π

∫ η

−∞

Θ′0(s)√
η − s ds. (5.27)

Inserting into (5.26) and then inverting the resulting integral equation yields

Θ1 =
1√
π

∫ η

−∞

q̇1(s) + Θ′0(s)√
η − s ds, (5.28)

q̇1(η) + Θ′0(η) =
1√
π

d

dη

∫ η

−∞

Θ1(s)√
η − s ds, (5.29)

where ′ denotes the derivative. Inserting (5.27) and (5.29) into (5.24), using Θ′0 =

Θ′ −RΘ′1 − . . . and (5.23), and neglecting terms of O(R2), we arrive at

q̇(η) =
1√
π

d

dη

∫ η

−∞

Θ(s)√
η − s ds−RΘ′(η), (5.30)

which is (5.14) with a correction term accounting for a small thermal contact resis-

tance. Substituting q̇ in (4.26) and integrating once finally yields

dΘ

dη
= (1−RHλ)Θ− ξ +

1√
π
Hλ

∫ η

−∞

Θ(s)√
η − s ds, (5.31)

which is (5.15) with a correction term accounting for a small thermal contact resis-

tance, accurate up to O(R). It is now convenient to define a scaled dimensionless

thermal contact resistance

R∗ := RHλ = Ri
ρScpS
ρLcpL

kS
δL
, (5.32)
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which, in contrast to R, is independent of U and contains only material parameters

and the layer thickness. Furthermore, for H → 0, also R∗ → 0, so that in the

adiabatic case, R∗ ≡ 0. The final result for the energy equation becomes

dΘ

dη
= (1−R∗)Θ− ξ +

1√
π
Hλ

∫ η

−∞

Θ(s)√
η − s ds. (5.33)

5.3.2. Expansion for large thermal contact resistance R

Equation (5.20) can be rewritten as

Θ(η) = Rq̇(η) +
1

R

1√
π

∫ η

−∞

Rq̇(s)√
η − s ds, (5.34)

with the subscript + dropped as indicated above. Assuming a large influence of the

thermal contact resistance, i.e. R � 1, Rq̇(η) must be O(1) like Θ. Therefore, the

second term on the right hand side of (5.34) is O(1/R) � 1. Equation (5.34) can

then be expanded, keeping only leading order terms, to

Θ(η) = Rq̇(η) + . . . . (5.35)

Consequently, (4.26) becomes

dΘ

dη
=

d2Θ

dη2
+

dξ

dη
− Hλ

R
Θ. (5.36)

Integrating once gives,

dΘ

dη
= Θ− ξ +

Hλ

R

∫ η

−∞
Θ(s) ds, (5.37)

which can be split into two differential equations:

dΘ

dη
= Θ− ξ +

H2λ2

R∗
Ω, (5.38a)

dΩ

dη
= Θ. (5.38b)

Here, (5.32) has been used to replace R by R∗. Thus, the integral term is eliminated

at the cost of an additional differential equation. It is also remarkable that the

non-local influence disappears in this limiting case, and the result is equivalent to
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the approach based on a heat transfer coefficient as often used in the literature,

cf. section 5.2.2.
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6. Precursor region

Since the temperature far ahead of the wave TS is assumed to be lower than the glass

transition temperature Tg, there is a precursor region that is characterized by vanish-

ing crystallization rate and, consequently, also vanishing degree of crystallization ξ.

With ξ ≡ 0, and disregarding thermal contact resistance for now, (5.15) reduces to

dΘ

dη
= Θ +

1√
π
Hλ

∫ η

−∞

Θ(s)√
η − s ds. (6.1)

6.1. Temperature distribution for R=0

The solution of (6.1) can be guessed to be an exponential function. Choosing the

origin of the coordinate η such that η = 0 for Θ = Θg, the solution of (6.1) becomes

Θ = Θg exp(Kη) for η ≤ 0, (6.2)

where the positive constant K has to satisfy the equation

(K − 1)
√
K = Hλ. (6.3)

Since Hλ is defined as a positive parameter, (6.3) has only one real solution for K,

which must be larger than 1 (Buchner & Schneider, 2010b):

K =
1

3

(
2 +N +

1

N

)
, (6.4a)

N =

[
27

2
(Hλ)2 − 1 + 3

√
3Hλ

√
27

4
(Hλ)2 − 1

]1/3
. (6.4b)

At first glance it may appear that (6.4) represents a real solution only if

(27/4)(Hλ)2 ≥ 1. But, for (27/4)(Hλ)2 < 1, the imaginary parts cancel out, so
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that (6.4) gives a real solution for all (positive) values of Hλ. This can be under-

stood if (6.4a) is written as

K =
2

3
+

1

3

(
a+ ib+

1

a+ ib

)
, (6.5)

where i is the imaginary symbol, a = Re(N) and b = Im(N). The second term on

the right-hand side of (6.5) is real if a2 + b2 = 1. This is the case for (6.4).

The dependence of K on Hλ is shown in fig. 6.1 on page 40, case R = 0. Of

particular interest is the behavior of the solution for small values of Hλ. Expanding

(6.3) accordingly gives K = 1 +Hλ+ ... in first order.

6.2. Heat loss distribution for R=0

The precursor solution for the temperature distribution (6.2) enables us to partition

(5.15) even more, since now the integral heat loss term can be split at η = 0. This

reduces the integration interval significantly:

1√
π
Hλ

∫ η

−∞

Θ(s)√
η − s ds =

1√
π
Hλ

[∫ 0

−∞

Θg exp(Ks)√
η − s ds+

∫ η

0

Θ(s)√
η − s ds

]

= Hλ

[
Θg√
K

exp(Kη) erfc(
√
Kη) +

1√
π

∫ η

0

Θ(s)√
η − s ds

]
,

(6.6)

where erfc is the complementary error function. Consequently, (5.15) becomes

dΘ

dη
= Θ− ξ +Hλ

[
Θg√
K

exp(Kη) erfc(
√
Kη) +

1√
π

∫ η

0

Θ(s)√
η − s ds

]
(6.7)

and the problem, including the rate equations, has to be solved on the semi-infinite

space, i.e. η > 0.
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6.3. Influence of thermal contact resistance

6.3.1. Small values of R

Including the thermal contact resistance parameter R∗ (see section 5.3) yields a

slightly more complicated formula for K. Starting from (5.33) instead of (5.15)

yields

(K − 1 +R∗)
√
K = Hλ (6.8)

instead of (6.3), and

K =
1

3

[
2 (1−R∗) +N +

(1−R∗)2
N

]
,

N =

[
27

2
(Hλ)2 − (1−R∗)3 + 3

√
3Hλ

√
27

4
(Hλ)2 − (1−R∗)3

]1/3 (6.9)

instead of (6.4). Again, it has been confirmed that K remains real for H,λ,R∗ ≥ 0.

6.3.2. Large values of R

In case of large thermal contact resistance, plugging (6.2) into (5.36) gives

K =
1

2
+

√
1

4
+
H2λ2

R∗
. (6.10)

The boundary condition for the differential equation for Ω(η), i.e. (5.38b), is

Ω(0) =
Θg

K
. (6.11)

Figure 6.1 shows the dependence of K on Hλ for the various approximations. The

curve R� 1 is similar to the behaviour without thermal contact resistance. In case

of R � 1, the value of K increases much more slowly, showing the influence of the

large thermal contact resistance. For Hλ → 0, all three relations give the adiabatic

value, i.e. K = 1.
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Figure 6.1.: Dependence of the precursor exponent K on the parameter Hλ for var-
ious relations: R = 0: (6.4), R = 0.1: (6.9), R = 10: (6.10).
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7. Asymptotic behaviour far behind

the wave

It is desirable to obtain an understanding of the behaviour of Θ(η) far behind the

crystallization zone, i.e. for η → ∞. In most situations, crystallization can safely

assumed to be complete, so ξ ≡ 1. Θ will decrease to the substrate temperature

Θ = 0 as η →∞.

7.1. Case of negligible thermal contact

resistance, R=0

First, the problem formulation without thermal contact resistance is analyzed. Far

behind the crystallization wave, Θ(η) is assumed to be of the form

Θ(η →∞) =
C∞√
η
. (7.1)

To prove that the assumption (7.1) is correct, and to determine C∞, the integral in

the energy equation (5.15) is split into three regions:

dΘ

dη
= Θ− ξ +

1√
π
Hλ

[∫ 0

−∞

Θ(s)√
η − s ds

︸ ︷︷ ︸
A

+

∫ ηC

0

Θ(s)√
η − s ds

︸ ︷︷ ︸
B

+

∫ η

ηC

Θ(s)√
η − s ds

︸ ︷︷ ︸
C

]
, (7.2)

with some ηC � 1 and η � ηC . The term A encompasses the precursor region, so

Θ(s) is analytically known, see (6.2). Using the mean value theorem for integration,

the term B becomes

∫ ηC

0

Θ(s)√
η − s ds = Θ(ηB)

∫ ηC

0

1√
η − s ds, (7.3)

where ηB is unknown, with 0 < ηB < ηC . In term C, Θ(s) is described by (7.1).
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Consequently, considering a point η > ηC , (7.2) becomes

− 1
2
C∞η

−3/2 = C∞η
−1/2 − 1 +Hλ

[
Θg√
π

∫ 0

−∞

exp(Ks)√
η − s ds

+
Θ(ηB)√

π

∫ ηC

0

1√
η − sds+

C∞√
π

∫ η

ηC

1√
s
√
η − sds

]
. (7.4)

After resolving the integrals, this results in

− 1
2
C∞η

−3/2 = C∞η
−1/2 − 1 +Hλ

[
Θg√
K

exp(Kη) erfc(
√
Kη)

+
2Θ(ηB)√

π

(√
η −√η − ηC

)
+

2C∞√
π

arccos

(√
ηC
η

)]
. (7.5)

For η →∞ and η � ηC , the following asymptotic expansions can be used:

exp(Kη) erfc(
√
Kη) =

1√
πKη

+O(η−3/2) as η →∞

arccos

(√
ηC
η

)
=
π

2
−
√
ηC
η

+O

[(
ηC
η

)3/2
]

as
ηC
η
→ 0

√
η −√η − ηC =

√
η

{
1

2

ηC
η

+O

[(
ηC
η

)2
]}

as
ηC
η
→ 0

Inserting these into (7.5) gives, up to O(η−1/2),

C∞η
−1/2−1 +

1√
π
Hλ

[
Θg

K
η−1/2 + Θ(ηB)ηCη

−1/2 + πC∞ − 2C∞
√
ηCη

−1/2
]

+ . . . = 0.

(7.6)

Using only the leading order terms results in

C∞ =
1√
πHλ

. (7.7)

Considering terms of O(η−1/2) yields

1 +
Θg

K
(Hλ)2 + Θ(ηB)(Hλ)2ηC −

2√
π

(Hλ)
√
ηC = 0. (7.8)

With Θg, K and Θ(ηB) being O(1), it is necessary that Hλ = O(1/
√
ηC). Thus, the

previous condition that ηC � 1 implies that the present derivation is only valid for

(Hλ)2 � 1.
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Finally, (7.1) becomes

Θ(η) =
1

Hλ
√
πη

as η → +∞. (7.9)

Thus, the temperature in the fully crystallized layer decays algebraically, i.e. rather

slowly in comparison to the exponential increase in the precursor region. Further-

more, this result will be useful for the numerical solution, cf. chapter 9.

Equation (7.9) may be used to estimate the length of the cooling region behind

the crystallization region. Since the change of Θ is of the order of 1 in the cooling

region, the length of the cooling zone is of the order of η = O
(
[Hλ]−2

)
, i.e. very large

for small values of Hλ (Buchner & Schneider, 2010b).

7.2. Influence of thermal contact resistance

7.2.1. Small values of R

The influence of R∗ on the asymptotic behaviour far behind the wave only appears

in the O(η−1/2) term, i.e. not in the leading order, and does therefore not change the

result of eq. (7.9).

7.2.2. Large values of R

In case of large thermal contact resistance, the lack of the integral term in the energy

equation means we have to choose a different expression for the temperature decay

far behind the wave:

Θ(η →∞) = exp(−C∞η). (7.10)

Then it follows from (5.36) that

C∞ = −1

2
+

√
1

4
+
H2λ2

R∗
. (7.11)

This exponential decay of (7.10) is faster than the previously found algebraic decay

(7.9) as η →∞.

43



8. Stretched coordinate system

For weakly conducting substrates and small values of R the decay of Θ as η → ∞
is rather slow. This makes a numerical solution a bit cumbersome. It is therefore

convenient to transform the semi-infinite η-domain, i.e. η = [0,∞), into a finite

domain z = [0, 1].

8.1. Coordinate transformation

Motivated by the asymptotic behavior of the solution for large values of η, cf. (7.9),

the transformation

z = 1− 1√
1 + βη

, (8.1a)

η =
1

β

[
1

(1− z)2
− 1

]
, (8.1b)

dz

dη
=
β

2
(1− z)3, (8.1c)

f(η) = f̂(z), (8.1d)

was chosen, where β is a stretching parameter, set to the value β = 1, and f stands

for any dependent variable.

As a result of the transformation, the asymptotic behaviour of Θ̂, cf. (7.9), is linear

in z:

Θ̂(z) =

√
β√

πHλ
(1− z) as z → 1. (8.2)

8.2. Transformed system of equations

While the coordinate transformation yields the desired finite calculation domain, it

has an unfortunate side effect: As will be seen in what follows, the equation system

gains a singularity at z = 1.
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8.2.1. Energy equation for R=0

Transforming to the new coordinate system, the energy equation (6.7) becomes

β

2
(1− z)3

dΘ̂

dz
= Θ̂− ξ̂ +Hλ

[
Θg√
K

erfcx

(√
K

β

(
1

(1− z)2
− 1

))
+

2√
πβ

(1− z)

∫ z

0

Θ̂(z̄)
1

(1− z̄)2
√

(1− z̄)2 − (1− z)2
dz̄

]
. (8.3)

Here the scaled complementary error function erfcx(x) = exp(x2) erfc(x) has been

introduced to improve readability. The relevant boundary conditions are

Θ̂(0) = Θg, (8.4a)

Θ̂(1) = 0. (8.4b)

8.2.2. Approximation for small values of R

In case of the approximation for R� 1, (8.3) becomes

β

2
(1− z)3

dΘ̂

dz
= (1−R∗)Θ̂− ξ̂ +Hλ

[
Θg√
K

erfcx

(√
K

β

(
1

(1− z)2
− 1

))
+

2√
πβ

(1− z)

∫ z

0

Θ̂(z̄)
1

(1− z̄)2
√

(1− z̄)2 − (1− z)2
dz̄

]
, (8.5)

with unchanged boundary conditions (8.4).

8.2.3. Approximation for large values of R

In case of the approximation for R� 1, (5.38) becomes

β

2
(1− z)3

dΘ̂

dz
= Θ̂− ξ̂ +

H2λ2

R∗
Ω̂, (8.6a)

β

2
(1− z)3

dΩ̂

dz
= Θ̂, (8.6b)

with unchanged boundary conditions (8.4) and additionally (6.11) for Ω̂.
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8.2.4. Rate equations

In the rate equations, only the derivative term is affected. In case of heterogeneous

crystallization, (4.29) becomes

β

2
(1− z)3

dξ̂

dz
= λ2G(Θ̂)ϕ̂1(z)(1− ξ̂) (8.7a)

β

2
(1− z)3

dϕ̂1

dz
= λ2G(Θ̂)ϕ̂2(z) (8.7b)

β

2
(1− z)3

dϕ̂2

dz
= λ2G(Θ̂)ϕ̂3(z) (8.7c)

β

2
(1− z)3

dϕ̂3

dz
= λ2µn(Θ̂) [1− ϕ̂3(z)] , (8.7d)

with the boundary conditions

ξ̂(0) = ϕ̂1(0) = ϕ̂2(0) = ϕ̂3(0) = 0. (8.8)

If using a single rate equation, (4.31) becomes

β

2
(1− z)3

dξ̂

dz
= λ2G(Θ̂)g(ξ̂), (8.9)

with the boundary condition

ξ̂(0) = 0. (8.10)

In case of homogeneous crystallization, (4.34) becomes

β

2
(1− z)3

dξ̂

dz
= λ2G(Θ̂)φ̂1(z)(1− ξ̂) (8.11a)

β

2
(1− z)3

dφ̂1

dz
= λ2G(Θ̂)φ̂2(z) (8.11b)

β

2
(1− z)3

dφ̂2

dz
= λ2G(Θ̂)φ̂3(z) (8.11c)

β

2
(1− z)3

dφ̂3

dz
= λ2M I(Θ̂), (8.11d)

with the boundary conditions

ξ̂(0) = φ̂1(0) = φ̂2(0) = φ̂3(0) = 0. (8.12)
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9. Numerical method of solution

In this chapter, the employed numerical method of solution is explained. The expo-

sition is based on the homogeneous crystallization model with 4 rate equations, but

the process is comparable for the other crystallization and thermal contact resistance

models presented.

The set of equations solved is the energy equation (8.3) with the boundary condi-

tions (8.4) and the set of rate equations (8.11) with the boundary conditions (8.12).

This problem is solved with bvpsuite (Kitzhofer et al., 2010), a Matlab code

using a collocation method for solving singular boundary value problems in ordinary

differential equations. bvpsuite can solve a singularity of the form 1/(1− z)b, with

b > 1, which occurs at z = 1.

A Matlab program was written to handle the whole computation procedure, from

setting problem parameters and configuration settings, to initialisation, computation,

postprocessing, storage of results and batch computation.

9.1. Overview of solution procedure

A flow chart sketching the solution process is shown in fig. 9.1.

As a first step, all relevant parameters are read from a configuration file. Then, a

mesh is generated on the computation domain. Also, a starting guess for λ, Θ̂(z) and

ξ̂(z) is computed and plotted. Afterwards, the program flow depends on the nature

of the problem:

In the adiabatic case, the process is rather straightforward, and bvpsuite can

be directly used to solve the problem.

When including heat loss, it is necessary to deal with the heat loss term in

(8.3), i.e. the term beginning with H, in an iterative fashion, as detailed in section

9.3. When considering the approximation for R� 1, eq. (8.5) is solved in the same

fashion. In case of R � 1, the solution method is equivalent to the adiabatic case,

with one additional differential equation, cf. (8.6).
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bvpsuiteusing relaxation factor

and calc. statistics

store results

R� 1?

Figure 9.1.: Flowchart showing the program flow in the Matlab code.

After arriving at a solution, it is plotted, and relevant data are stored automatically.

Additionally, it is possible to vary a parameter, and batch-process the computations,

including continuation, i.e. using an available solution as a starting guess for a new

computation.

Computations were done on a regular Linux PC with an Athlon64 X2 6000+ dual-

core processor and 6 GB RAM, using Matlab R2011a. The computation duration

for an adiabatic case was on the order of 90 seconds. For a computation including

heat loss, durations were on the order of 30-60 minutes.

9.2. Mesh generation

bvpsuite offers the option to perform automatic mesh adaptation to improve the

solution accuracy. This is useful in the adiabatic case, and typically results in a mesh
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similar to the one presented in Kitzhofer et al. (2010) for a simplified version of the

problem treated here.

In the case involving heat loss, however, automatic mesh adaptation is impractical.

Due to the iterative nature of the solution process and the non-exact boundary

condition (see section 9.4), an ever-increasing amount of mesh points is allocated near

the downstream domain boundary, and the computation ultimately fails. Therefore,

a manually adapted mesh is used, which is based on a homogeneous mesh, with cell

size refinements around the expected crystallization zone, and near z = zr. Results

obtained from an adiabatic solution have been used as a guide for the shape of the

mesh density distribution, and a resulting cell size distribution can be seen at the

bottom of fig. 11.1, page 64.

9.3. Iteration procedure

9.3.1. Treatment of the integral term

The integral term makes the energy equation an integro-differential equation, which

cannot be solved by bvpsuite. Therefore, the whole integral term is brought into

the equation system as a perturbation function L, defined as

L(z, Θ̂(z), λ) := Hλ




precursor term︷ ︸︸ ︷
Θg√
K

erfcx

(√
K

β

(
1

(1− z)2
− 1

))
+

2√
πβ

(1− z)

∫ z

0

Θ̂(z̄)
1

(1− z̄)2
√

(1− z̄)2 − (1− z)2
dz̄

︸ ︷︷ ︸
integral term


 , (9.1)

where the dependency on fixed problem parameters is not explicitly cited on the

left-hand side.

Then, the values for Θ̂(z) and λ are assumed fixed during one iteration step.

Therefore, the perturbation function becomes a function only of the space coordinate,

L(z). The resulting problem is a system of ordinary differential equations, which can

be solved with bvpsuite.
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To improve stability and avoid oscillating divergence of the iteration procedure, it

turned out to be necessary to use a relaxation factor to combine the results for Θ̂(z),

ξ̂(z) and λ of the previous and current iterations. The iteration starts with a small

relaxation factor, e.g. 0.05, and linearly ramps up to a value < 0.5 after a couple of

iterations.

9.3.2. Iteration methods for integral term

At the beginning of the new iteration, the new values for Θ̂(z) and λ are used to

update L(z, Θ̂(z), λ), yielding an improved L(z). This is the default method for

determining L(z), henceforth called iter1.

Near the critical value for H (cf. section 11.3, fig. 11.9), convergence problems

are observed. The rate of convergence is severely reduced, or the computations fail

to converge at all. A partial solution to this problem is an alternative method of

determining the improved L(z), henceforth denoted iter2. In this method, not only

H, but also λ is held at a fixed value in L(z, Θ̂(z), λ). This has the advantage that

there is no maximum value for Hλ, as there is for H (see fig. 11.8). Convergence

can be achieved in a wider parameter range, enabling a computation beyond the

maximum H value, onto the lower branch of fig. 11.9.

It was confirmed that iter2 gives the same results as iter1. Unfortunately, the

permissible step size when varying a fixed Hλ is much reduced, leading to a greater

number of necessary computations to cover the same parameter range as iter1.

This gets worse the farther the computation progresses on the lower branch, making

further computations unfeasible beyond a certain point. Therefore, it is advisable to

use iter1 as long as possible, and only then switch to iter2.

The numerical computation process for L(z, Θ̂(z), λ) is explained in more detail in

section 9.5.

9.4. Asymptotic boundary condition near z=1

The code bvpsuite is designed to solve differential equation systems including sin-

gularities of the second kind (Kitzhofer et al., 2010), like the one occuring in the

present problem at z = 1.

In the adiabatic case, the problem can therefore typically be solved on the whole

spatial domain z ∈ [0, 1].
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For problems involving heat loss, it was not possible to get converged solutions for

z ∈ [0, 1]. This is presumably due to the simple nature of the iteration procedure,

which does not consider the singular nature of the underlying problem.

An asymptotic expression for Θ̂(z → 1) is available, cf (8.2), so it is possible to

prescribe an approximate value for Θ̂ at a new right boundary zr < 1. Thus, it

is possible to obtain solutions on the domain z ∈ [0, zr], with a typical value of

zr ≈ 0.99.

9.5. Computation of the heat loss term

The precursor term in (9.1) is straightforward to compute. Using the scaled com-

plementary error function erfcx, which is available in Matlab, one avoids numerical

problems when evaluating exp(x2) erfc(x) for very large values of x.

The integral term is a bit more challenging. Initially, the trapezoidal rule was

used to compute the integral term from given Θ̂ values. It was found that this

approach leads to problems near z=1. Therefore, an alternative routine was imple-

mented which uses an adaptive quadrature based on a Gauss-Kronrod pair, utilizing

the Matlab function quadgk.

To assess the accuracy of both methods, the following analytically integrable test

function Θ̂t was chosen, which exhibits the most important characteristics of the ex-

pected temperature distribution, i.e. boundedness on z ∈ [0, zr], and correct asymp-

totic behaviour according to (8.2):

Θ̂t(z) = C∞ arctan
(√

β(1− z)
)
. (9.2)

Figure 9.2 shows a plot of Θ̂t(z). The integral term in (9.1) was evaluated in Math-

ematica with (9.2) as Θ̂(z̄). The analytical result of the integration is quite lengthy,

and not given here. In fig. 9.2, the analytical integration result coincides with the

quadgk curve.

A comparison of numerical integration using the trapezoidal rule and quadgk,

respectively, on a mesh of 100 equidistant points and C∞ = β = 1 is shown in figs. 9.2

and 9.3. Clearly, the trapezoidal method has problems near z = 1, and quadgk is

superior, however both methods fail when zr = 1. The asymptotic behaviour of the

integral, i.e. linear in z, is independent of the actual temperature distribution Θ̂(z̄),

as long as that function’s asymptotic behaviour is identical to (8.2). Therefore, it
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Figure 9.2.: Test of numerical integration methods. Grey: Analytically integrable
test function Θ̂t(z). Blue and green: Results for the trapezoidal and
quadgk methods, respectively. The curve for the analytical integration
coincides with the quadgk curve.
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Figure 9.3.: Absolute deviations from analytical integration result for trapezoidal and
quadgk numerical integration methods, using the temperature distribu-
tion (9.2). quadgk is far more accurate. The spike at z ≈ 0.1 is due to
a sign change in the deviation.
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is feasible to replace the inaccurate value for z = 1 by an extrapolation from the

preceding values.

As an alternative approach to integrating the heat loss term, a numerical integra-

tion technique presented in Scheichl et al. (2008) could possibly be adapted for a

non-equidistant mesh.
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10. Parameter determination

In this chapter, all the necessary parameter values to compute solutions are col-

lected. Often, key parameters necessary for our models are missing or not given in

an experimental paper, and have to be obtained from other sources.

Explosive crystallization in germanium has been selected for experimental com-

parison, because for explosive crystallization in germanium, a direct amorphous-

crystalline transition has been observed experimentally (Grigoropoulos et al., 2006).

When considering explosive crystallization in silicon, the following additional arti-

cles are of relevance, containing data pertaining to the crystallization process (Farjas

& Roura, 2008; Gall et al., 2010; Kokorowski et al., 1982a; Roura et al., 2009; Schoen-

feld et al., 1994; Spaepen & Turnbull, 1982) or thermodynamic properties of silicon

(Donovan et al., 1989; Kumomi & Yonehara, 1994; Poate, 1983; Shanks et al., 1963).

10.1. Germanium

10.1.1. Parameter sets

To facilitate comparisons, and for easier designation, three parameter sets for the

computation of the following results have been defined, as shown in table 10.1. More

detailed information about the respective parameters listed in table 10.1 is given in

the following sections.

Parameter sets A and B are for germanium with homogeneous crystallization,

where A uses a relation according to (3.17) for crystal growth velocity and nucleation

rate, while B uses (3.18) and (3.21), respectively.

The parameter set C is used for comparison with experimental results from Grig-

oropoulos et al. (2006), see section 11.6.
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Table 10.1.: Parameter sets

Parameter A B C Unit

ρL 5300 kg/m3

Tm 1210 K
l 177 189 kJ/kg
cpL 377 396 J/kg K
αL 7.3× 10−6 m2/s
kL 14.6 W/m K
V∞ 1 −
G0 3.05× 107 3.20× 107 1× 1012 m/s
EG 2.16 2.155 2.3 eV
EGm 0 0.005 0.2 eV
I0 8.3× 1040 8.5423× 1040 1.2× 1059 /m3 s
EI 1.8 1.797 3.65 eV
EIm 0 0.003 0.35 eV
ρScpS 2.31× 106 J/m3 K
αS 1.2× 10−6 m2/s
δL 1.8 µm
TS 650 700 K
Tg TS + 10 K

10.1.2. Maximum crystalline volume fraction

Due to the complete crystallization of germanium (in contrast to, e.g., polymers),

V∞ = 1 is assumed for the maximum volume fraction of crystalline phase.

10.1.3. Mass density

The density of amorphous Ge is reported to be 4600–5900 kg/m3 (Koba & Wicker-

sham, 1982; Shklovskij & Kuz’menko, 1989). Because the density of amorphous Ge

is close to the density of the crystalline phase (Donovan et al., 1985), a single density

value of ρL = 5300 kg/m3 is used in the present computations.

For the purposes of conversion between mole-based values and specific values, the

standard atomic weight of 72.64 g/mol is used (Linstrom & Mallard, 2005).

10.1.4. Glass transition temperature

Due to the chosen crystal growth velocity formulation (3.18), the physical glass tran-

sition temperature does not enter the model at all, cf. section 3.3. Tg is only to be
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understood as an artificial cut-off temperature greater than TS, which is necessary to

be able to treat the problem as a propagating wave of invariant shape. This cut-off

temperature is set to Tg = TS + 10 K.

10.1.5. Melting temperature

The melting temperature of the crystalline phase of germanium is given as Tm =

1210 K by many authors, e.g. Donovan et al. (1985, 1983); Grigoropoulos et al. (2006);

Koba & Wickersham (1982); Nikolova et al. (2010); Rogers et al. (2006).

Often, a “melting temperature of the amorphous phase” is given by various au-

thors. The value given for germanium is 960–970 K (Donovan et al., 1985; Grig-

oropoulos et al., 2006; Koba & Wickersham, 1982; Rogers et al., 2006). It is also

often assumed by authors that this melting “transition” from amorphous to liquid

state is endothermic and consequently has an associated latent heat, e.g. in Donovan

et al. (1983); Sharma et al. (1984). This seems to imply that, when creating the

amorphous material, a first-order phase transition from the liquid to the amorphous

state takes place.

This view is not shared by the present author and others, e.g. (Berthier & Biroli,

2011; Kokorowski et al., 1982b; Marfaing & Marine, 1995; Olson & Roth, 1988). In

the present work, neither a “melting temperature of the amorphous phase” nor a

latent heat associated with a transition at this temperature are considered.

10.1.6. Latent heat of melting

The present work is limited to considering a direct transition from the amorphous

to the crystalline phase, with an associated specific latent heat. The latent heat of

the amorphous-crystalline transition l is reported by a variety of sources, and given

in table 10.2 as specific values. Where appropriate, it has been calculated as the dif-

ference between the latent heats given for the melt-crystalline and melt-amorphous

transitions, respectively. The wide spread of the values of Koba & Wickersham (1982)

includes values for sputtered and evaporated germanium, hinting at an influence of

the preparation mechanism on l. Furthermore, relaxation processes in amorphous

materials can also contribute to influencing the latent heat of transformation (Dono-

van et al., 1985; Marfaing & Marine, 1995; Roura & Farjas, 2009).
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Averaging the values in table 10.2, a value of l = 177 kJ/kg is chosen for the

parameter sets A and B. For experimental comparison, the value of 189 kJ/kg from

Grigoropoulos et al. (2006) is chosen (parameter set C).

Table 10.2.: Specific latent heat of germanium.

specific latent heat l [kJ/kg] source
160.0± 9.6 Donovan et al. (1985, 1983)
167 Kurtze et al. (1984)
150–300 Koba & Wickersham (1982)
167 Fan (1981)
155 Sharma et al. (1984)
189 Grigoropoulos et al. (2006)

10.1.7. Isobaric specific heat capacity

Kurtze et al. (1984) give a value for the isobaric specific heat capacity of crystalline

germanium of cpL,c = 377 J/kg K. This falls near the range given in Koba & Wick-

ersham (1982), 290–372 J/kg K. cpL,c = 377 J/kg K was used for parameter sets A

and B.

For the comparison with experiments, data from Grigoropoulos et al. (2006),

cpL,c = 396 J/kg K, was used (parameter set C).

10.1.8. Thermal diffusivity

The thermal diffusivity is given as 6.32× 10−6 m2/s for amorphous Ge and 8.28× 10−6

m2/s for crystalline Ge (Grigoropoulos et al., 2006). Therefore, it is a reasonable ap-

proximation to use the average value for αL = 7.3× 10−6 m2/s.

10.1.9. Thermal conductivity

Grigoropoulos et al. (2006) report the values

ka = 25.15 W/m K, (10.1a)

kc = 17.40 W/m K, (10.1b)

km = 49.43 W/m K (10.1c)
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for germanium. The arithmetic mean of ka and kc is kL = 21.28 W/m K. Calculat-

ing kL instead by using αL from above, and ρLcpL = 2.73× 106 J/m3 K, both from

Grigoropoulos et al. (2006), kL = 19.9 W/m K is obtained, a slightly different value.

For consistency, it makes sense to calculate the thermal conductivity from the

already specified values for αL, ρL and cpL, which results in kL = 14.6 W/m K.

A difficulty in uniting all the values from different publications becomes apparent

here. It can at least partly be attributed to differing preparation methods for the

experiments, as is also illustrated in the wide range of values for l in table 10.2.

10.1.10. Crystal growth velocity

Equation (3.18) is chosen as a suitable crystal growth velocity formulation. As de-

tailed in section 3.3, often experimental measurements for the crystal growth velocity

GC only offer values for EG and G0. Relevant values for germanium are available

from Claverie et al. (2010); Donovan et al. (1985); Johnson et al. (2008).

Claverie et al. observe that values for EG generally agree well, but values for G0

differ by up to two orders of magnitude in the literature! They remark that the

highly variable values for G0 are possibly rooted in slight systematic errors in the

difficult temperature measurements involved in determining EG and G0. Indeed, after

allowing small errors in the temperature measurements, they manage to successfully

align all the growth rate measurements of 7 experiments they consider, arriving at the

values G0 = 3.05× 107 m/s and EG = 2.16 eV. Additionally, EGm = 0 (parameter

set A).

Using eq. (3.19), one can find an alternative set of parameters such that the exper-

imental measurements are reproduced, but the result is still a bell-shaped curve as in

fig. 4.1. Taking into account the maximum temperature of experimental data avail-

able in Claverie et al. (2010), T ≈ 800 K, the parameter set G0 = 3.20× 107 m/s,

EG = 2.155 eV and EGm = 0.005 eV results in less than 10% deviation from the

previous curve at T = 800 K (parameter set B).

An additional set of parameters has been defined which stems from calculations

available for the crystal nucleation rate (cf. parameter set C in the following section).

It preserves the low-temperature behaviour of GC(T ) as above, but makes sure the

temperature of maximal GC is identical to the temperature of maximal IC . This

results in G0 = 1× 1012 m/s, EG = 2.3 eV and EGm = 0.2 eV (parameter set C).

Figure 10.1 shows a comparison of the crystal growth velocity using the above

parameter sets A, B and C.
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Figure 10.1.: Crystal growth velocity for parameter sets A, B and C (Table 10.1).
•: Experimental data from Claverie et al. (2010).

10.1.11. Crystal nucleation rate

Following the chosen formulation for the crystal growth velocity, equation (3.21) is

chosen for the crystal nucleation rate. Data for the solid-state nucleation in amor-

phous germanium is available in (Marine & Marfaing, 1991). As usual in the literature

on experiments, an expression of the form (3.17) is used, so for the parameters in

(3.18) the values I0 = 8.3× 1040/m3 s, EI = 1.8± 0.1 eV and EIm = 0 are obtained

(parameter set A).

In analogy to the crystal growth velocity, one can also find an alternative parameter

set for the crystal nucleation rate. Experimental data up to T ≈ 950 K is available

in Marine & Marfaing (1991). Using a maximum deviation of 10% for IC(T ) at this

temperature, like for GC(T ) in the previous section, one arrives at I0 = 8.5423× 1040

/m3 s, EI = 1.797± 0.100 eV and EIm = 0.003 eV (parameter set B).

In addition to the experimental values, Marine & Marfaing also show a calculated

crystal nucleation rate with a much broader peak than what is obtained using B. This

crystal nucleation rate distribution has been reproduced as accurately as possible

using (3.21), resulting in I0 = 1.2× 1059/m3 s, EI = 3.65± 0.10 eV and EIm = 0.35

eV (parameter set C). The plot exhibits a peak in the crystal nucleation rate which

is shifted to a much lower temperature of approximately 930–950 K. Interestingly,

this temperature is approximately the temperature often cited (Donovan et al., 1985;
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Figure 10.2.: Crystal nucleation rate for parameter sets A, B and C (Table 10.1).
•: Measurements due to Marine & Marfaing (1991).

Grigoropoulos et al., 2006; Marine & Marfaing, 1991) as the “melting temperature

of amorphous Germanium” (see section 10.1.5).

Figure 10.2 shows a comparison of the crystal nucleation rates resulting from the

respective parameters as defined in this section.

10.1.12. Characteristic crystallization time

The characteristic crystallization time tC(T ) as defined in (4.8b) can be obtained

from GC(T ) and IC(T ). For completeness, tC(T ) is shown in fig. 10.3. tC(T ) blends

GC(T ) and IC(T ) together, but because of the higher exponent of GC(T ) in (4.8b),

GC(T ) is weighted more heavily than IC(T ). It is difficult to spot this in fig. 10.3,

because the difference in peak temperature between GC(T ) and IC(T ), where this

would be most readily apparent, is small for parameter set B, not applicable for

parameter set A, and zero for parameter set C.

10.2. Substrate materials

Typically, the substrate material used in explosive crystallization is glass (Götzberger,

1955; Koba & Wickersham, 1982; Shklovskij & Kuz’menko, 1989; Vega et al., 2005) or
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Figure 10.3.: Characteristic time of crystallization for parameter sets A, B and C
(Table 10.1).

quartz (Geiler et al., 1986; Geiler & Heinig, 1985; Grigoropoulos et al., 2006; Ohdaira

et al., 2009; Rogers et al., 2006; Spinella et al., 1998).

For quartz, a value of ρScpS = 2.31× 106 J/m3 K, from Grigoropoulos et al. (2006),

and αS = 1.2× 10−6 m2/s, from Heinig & Geiler (1985), are used.

10.3. Parameters in experiments

To demonstrate the main features of the mathematical model presented so far, ap-

propriate values are chosen on the basis of data available in the literature.

10.3.1. Film thickness

A wide variety of film thickness values is given in the literature, ranging from

δL = 20–50 nm for free-standing films (Marine & Marfaing, 1991), over films with a

spatially varying thickness (Koba & Wickersham, 1982, 1983), to δL => 10 µm. A

value of δL = 1.8 µm, as in Grigoropoulos et al. (2006); Rogers et al. (2006), is chosen

for the main comparison of the presented model with experiments.
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10.3.2. Substrate temperature

The substrate temperatures reported in the literature for explosive crystallization of

germanium vary over a range from room temperature (Shklovskij & Kuz’menko, 1989;

Takamori et al., 1972) to 400–560 K (Koba & Wickersham, 1982) or 615–800 K (Grig-

oropoulos et al., 2006). Grigoropoulos et al. (2006) observe that a direct amorphous-

to-crystalline explosive crystallization process occurs only below a certain critical

value of TS, depending mainly on the film thickness δL. For the presently chosen

film thickness, values of TS = 650 and 700 K have been selected as representative.

Additionally, variations of TS are investigated.

10.3.3. Thermal contact resistance

Values for Ri from equation (5.16) are typically not reported in the available literature

on explosive crystallization experiments. Thus, an estimation for reasonable values

has to be inferred from other sources: Values were found in Zhao et al. (2004) for

sputtered aluminum nitride films on silicon substrates (Ri = 7–8× 10−8 m2 K/W)

and in Rohde (1994) for sputtered titanium nitride on silicon (Ri = 2.5–10× 10−8

m2 K/W) and for electroplated nickel on variously roughened steel substrates (Ri =

2.6–13× 10−7 m2 K/W). Thus, assuming a value of Ri ≈ 1× 10−8–1× 10−6 m2 K/W

seems reasonable, lacking more relevant data.

Based on expected velocities U ≈ 1–10 m/s and the above values for the various

material and experimental parameters, equation (5.18) yields a possible range of R ≈
0.01–10 for the dimensionless thermal contact resistance, and the scaled dimensionless

thermal contact resistance R∗, cf. (5.32), can then be expected to have values of

R∗ ≈ 0.02–2.

10.3.4. Wave propagation velocity

The wave propagation velocity U is not a parameter of an experimental setup, but

a result of the explosive crystallization process. Nevertheless, it is valuable to know

the range of possible values of U . Unfortunately, the values of U achieved in ex-

periments are often not reported in the literature. Shklovskij & Kuz’menko (1989)

report values of 1–1.2 m/s, while Vega et al. (2005) observe 16± 1 m/s in an explo-

sive crystallization process propagating in the direction normal to the film surface.

Grigoropoulos et al. (2006) and Rogers et al. (2006) observe a range of velocities up

to 8.75± 0.15 m/s when varying the substrate temperature TS.
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11. Results

In this chapter, results are presented which show the most important features of the

present explosive crystallization problem. Also, results are compared to experimental

data for explosive crystallization in germanium films.

For germanium, only data for the crystal nucleation rate IC could be obtained. No

data for the nucleation probability nC , which is necessary for considering heteroge-

neous crystallization, could be found. Therefore, only homogeneous crystallization

with the full set of rate equations, i.e. (8.11), is considered.

The superscript ˆ denoting functions using the stretched space coordinate z is

omitted for simplicity.

11.1. Illustrative solutions

Figure 11.1 shows the main features of the explosive crystallization process, using an

illustrative solution for an adiabatic case (i.e. H = 0). Dimensionless temperature Θ

and degree of crystallization ξ are plotted vs. the stretched space coordinate z. To

give an idea of the similarity coordinate η associated with the z-coordinate, values

of η are also given in an upper, non-linear scale.

In fig. 11.1, the crystallization zone is quite small, compared to the pre-heating

zone ahead of the crystallization zone.

At the bottom of fig. 11.1 is a plot of the cell size distribution in the computa-

tion domain. Note the (manually prescribed) cell size refinement in and near the

crystallization zone, as well as near z = 1.

Figure 11.2 shows an illustrative solution for a case including heat loss. Note that

the length of the cooling zone behind the crystallization region is much larger than the

length of the pre-heating region. This is illustrated by (4.19) and (7.9): The length

of the pre-heating zone is O(1), and the length of the cooling zone is O
(
[Hλ]−2

)
.

The dash-dotted line shows the asymptotic relation for Θ as z → 1, equation (8.2).
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Figure 11.1.: Illustrative solution for a case without heat loss. Top left: Distribution
of Θ and ξ in the adiabatic case (i.e. H = 0), using parameter set
A (Table 10.1). Top right: Zoomed view of the crystallization zone.
Bottom: Cell size distribution.

0 0.56 1.8 5.3 24 ∞
η

0.0

0.2

0.4

0.6

0.8

1.0

Θ
,
ξ

0.0 0.2 0.4 0.6 0.8 1.0
z

Θ
ξ
(8.2)

3.16 3.34 3.53 3.73

η

0.51 0.52 0.53 0.54
z

Figure 11.2.: Illustrative solution for a case with heat loss. Left: Distribution of Θ
and ξ. Right: Zoomed view of the crystallization zone. H = 1.9× 10−2,
other parameters using parameter set A (Table 10.1). Dash-dotted line:
Asymptotic relation for Θ(z → 1).
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Figure 11.3.: Variation of l for an adiabatic case, other parameters from parameter set
B (Table 10.1). Symbols: Computed points. Vertical line: Ttot = Tm.
a-c refer to plots shown in fig. 11.4. tC(Ttot) using (4.8b).

The agreement with the solution justifies using (8.2) to prescribe Θ at some z < 1

as a boundary condition, cf. section 9.4.

11.2. Variation of the specific latent heat of melting

The specific latent heat of melting l is varied to examine the influence of a varying

end temperature, while keeping TS constant, on the crystallization process. Both

adiabatic cases and cases including heat loss are considered.

11.2.1. Adiabatic case

Figure 11.3 shows a plot of various relevant quantities when varying l, for an adiabatic

case using the parameter set B. tC(Ttot) tends to infinity as the total temperature

Ttot approaches Tm, but tC,ref does not. Consequently, λ remains of the same order

of magnitude, according to eq. (4.28). This confirms that the appropriate choice of

Tref is using (4.9).

Figure 11.4 shows the wave shapes for two values of l taken from fig. 11.3. While

the top, subcritical, case exhibits full crystallization and a sharp crystallization zone,
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Figure 11.4.: Wave shapes for adiabatic cases, parameters as in fig. 11.3. Left: Whole
z-range. Right: Zoomed view of the crystallization zone. a: l = 177
kJ/kg, b: l = 216.2 kJ/kg, c: l = 245.0 kJ/kg. For b, Θm = 0.98, so the
gray line is near the top of the plot.

in the middle and bottom figures, showing the highly supercritical cases (Tad = Tm),

the incomplete crystallization and a wider crystallization zone can be recognized.

Furthermore, b and c are cases where Ttot > Tad (i.e. Θm < 1).

11.2.2. Case including heat loss

Figure 11.5 shows the same quantities as fig. 11.3, but with heat loss to the substrate

taken into account. Additionally, fig. 11.5 shows a plot of the maximum temperature

Θmax , which is defined as

Θmax = max[Θ(z)]. (11.1)

In the adiabatic case, Θmax = min(1,Θm). The basic shapes of the plots remain

similar to the adiabatic case. Note that the wave propagation velocity U is always

lower for the case with heat loss, as expected from results in Buchner & Schneider

(2010b).
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Figure 11.5.: Variation of l for a case including heat loss. H = 0.019, other parame-
ters from parameter set B (Table 10.1). Notation as in fig. 11.3. Left:
Relevant quantities, analogous to fig. 11.3. Right: Detailed view of Θm,
Θmax . a-c refer to plots shown in fig. 11.6, with l values identical to
fig. 11.3. Vertical line: Ttot = Tm.

The plot of Θmax on the right side of fig. 11.5 shows an interesting behaviour. To

visualize the differences in Θ and ξ, respectively, when varying l, plots for the values

of l indicated by letters on the right side of fig. 11.5 are shown in fig. 11.6. The value

of Θm is indicated by the gray line.

Figure 11.6a shows a subcritical situation at the low end of the l range. From there,

Θmax is slowly growing with l until Θm ≈ 1. This is due to the fact that in this region

Θmax is only slightly above the temperature of fastest crystallization (i.e. minimum

tC), and most of the latent heat get released very quickly, diminishing the influence

of the heat loss on Θmax (fig. 11.6b). With further rising l, Θmax approaches Θm,

so the crystallization at Θmax slows down and the influence of the heat loss is more

pronounced. The slowed crystallization is also responsible for a wider crystallization

region, as in the adiabatic case.

11.2.3. Plateau region of nearly constant temperature

With heat losses taken into account, Θmax never reaches Θm, as opposed to the

adiabatic case. This is, on the one hand, because the heat loss into the substrate

67



0 0.23 0.56 1 1.8 3 5.3 10 24 99 ∞
η

0.0
0.2
0.4
0.6
0.8
1.0

aΘ
ξ
(8.2)

3.34 3.73 4.17

η

0.0
0.2
0.4
0.6
0.8
1.0

bΘ
ξ
(8.2)

0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
z

cΘ
ξ
(8.2)

0.52 0.54 0.56
z

Figure 11.6.: Wave shapes for a-c in fig. 11.5. Top: l = 177.0 kJ/kg, middle: l = 216.2
kJ/kg, bottom: l = 245.0 kJ/kg. Left: Whole z-range, right: Zoomed
view of the crystallization zone. Gray horizontal lines: Θm.

reduces Θ. On the other hand, consider the supercritical region of tC , i.e. where

dtC/dΘ > 0 (cf. fig. 10.3, curve B). There, crystallization, and thus release of latent

heat, slows down with increasing temperature. Θm can never be reached, because

at that point, there’s no release of latent heat due to terminated crystallization

(tC →∞), but heat loss into the substrate is still in effect.

This leads to an interesting effect if l is increased even more, compared to fig. 11.6b,

as can be seen in fig. 11.6c. At z ≈ 0.6, a highly supercritical temperature range with

its very slow crystallization is reached with crystallization still incomplete, i.e. ξ < 1.

A temperature drop due to heat loss would lead to accelerated crystallization and

enthalpy release, which would raise the temperature. This leads to the wave attaining

a temperature where the heat release due to crystallization and the heat loss into

the substrate balance each other. This is in contrast to the subcritical region of Θ,

where dtC/dΘ < 0 (cf. fig. 10.3, curve B).

In fig. 11.6c, for 0.6 / z / 0.75, the temperature stays at a nearly constant level

slightly below Θm until all the residual amorphous material has crystallized and the

balance cannot be maintained anymore, whereupon cooling down to Θ = 0 sets in.
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This can also be seen in fig. 11.7, which shows a detailed view of fig. 11.6c, using the

unstretched space coordinate η.

Θ being nearly constant in this plateau region means that nearly no heat conduc-

tion in longitudinal direction takes place. This is in contrast to the adiabatic case,

where the enthalpy released in the wide post-crystallization zone has to be conducted

solely towards η → −∞, requiring a longitudinal temperature gradient.

11.2.4. Non-local influence on heat loss

Another remarkable detail of the plateau region is shown in fig. 11.7: Due to the

constant Θ, heat loss into the substrate can only be compensated by the release

of latent heat due to crystallization. It is often assumed in the literature – e.g. in

Grigoropoulos et al. (2006); Heinig & Geiler (1985); Kurtze (1986); Shklovskij & Os-

troushko (1996) – that the heat loss into the substrate can be described by a local

heat transfer coefficient (see also section 5.2.2). If that were the case, a constant

temperature would require a constant rate of crystallization, i.e. dξ/dη = const . In

fig. 11.7 it can be seen that dξ/dη is in fact not constant in the plateau region, there-

fore corroborating our finding of a non-local influence of the temperature distribution

on the heat loss, as described by (5.14)!

11.3. Variation of heat loss parameter H

The coefficient Hλ in (9.1) provided a hint at looking at the dependence of the eigen-

value λ on Hλ (Buchner & Schneider, 2010b). This is shown in fig. 11.8. It contains
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Figure 11.8.: λ vs. Hλ, other parameters from parameter set B (Table 10.1). Solid
line: (11.2), with λad = 2.51, P1 = 8.53 and P2 = 2.18. Dash-dotted
line: (11.3), with λad = 2.51, P1 = 4.13.

results obtained from a computation without heat loss as well as from computations

using the two different iteration schemes iter1 and iter2 (see section 9.3.2). To

preserve clarity, data points have been omitted where they are too densely spaced.

Just as in Buchner & Schneider (2010b), the results obtained here can be approx-

imated with a function of the form

λ = λad + P1 [exp (P2Hλ)− 1] , (11.2)

with λad being the value of λ in the adiabatic limit, i.e. for H = 0, and P1, P2 being

constant parameters to be determined with the method of least squares. An analytic

proof of this relationship is not yet available. However, an exponential relationship

has been obtained for heterogeneous crystallization with an asymptotic expansion

for large activation energies (Schneider, 2010). As can be seen in fig. 11.8, a purely

exponential function of the form

λ = λad exp (P1Hλ) (11.3)

is not sufficient to describe the numerical results.

11.3.1. Critical value of H

The results in fig. 11.8 and eq. (11.2) are implicit with regard to the eigenvalue

λ. The explicit relationship between λ and H, using the same data, is shown in
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Figure 11.9.: 1/λ vs. H, other parameters from parameter set B (Table 10.1). 1/λ ∝
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fig. 11.9. As in Buchner & Schneider (2010b), 1/λ is plotted instead of λ, because

1/λ is proportional to the velocity of the crystallization wave U , see (4.28).

Remarkably, for values of H smaller than a certain maximum value, Hcrit , there

exist two solutions, i.e. an upper and a lower solution branch. For H = Hcrit there is

one solution, while for H > Hcrit no steady-state solution exists.

To be able to successfully obtain results near Hcrit , and on the lower branch, it was

necessary to switch to the alternative iteration scheme iter2. This scheme resulted

in a smaller maximum possible step size when varying computation parameters (see

section 9.3.2), which is evident in the dense distribution of points near Hcrit , obtained

using iter2. Additionally, on the lower branch, it was necessary to contract the

computation domain, i.e. slightly reduce zr (cf. section 9.4), to ensure convergence.

This reduction, e.g. from zr = 0.99 to zr = 0.98, was confirmed not to have an

significant impact on the computation results.

According to (4.27), H is inversely proportional to the layer thickness δL, while

all other quantities occuring in (4.27) are material properties or, in the case of tC,ref ,

crystallization quantities depending on material properties and the reference tem-

perature. Therefore, for given materials and a constant reference temperature, the

maximum value Hcrit can be interpreted as a minimum layer thickness δL,crit , below

which explosive crystallization is not possible. This result is in accord with obser-

vations described in the literature (Götzberger, 1955; Koba & Wickersham, 1982;

Shklovskij & Kuz’menko, 1989; Takamori et al., 1972).
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If, on the other hand, the material properties of the layer, including the crystalliza-

tion parameters and the layer thickness, are fixed, Hcrit provides an upper limit for

kSρScpS that must not be exceeded in order to have a solution. This essentially lim-

its the thermal conductivity of the material of the substrate (Buchner & Schneider,

2010b).

11.3.2. Plateau solutions

Increasing the value of l leads to the appearance of a plateau region in Θ, cf. fig. 11.6,

plot c. Varying H with this new l is shown in fig. 11.10. The plateau markedly
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Figure 11.10.: λ vs. Hλ, with l = 245.0 kJ/kg, other parameters from parameter set
B (Table 10.1). Solid line: (11.4). Using only results where Hλ > 0.2,
S1 = 0.70, S2 = 3.09 and S3 = 2.11. Data points omitted where too
densely spaced to preserve clarity.

changes the characteristic of the plot: In the region where a plateau occurs, i.e. for

Hλ / 0.2, the relationship of λ to Hλ is approximately linear instead of exponential.

As the influence of the heat loss increases, the plateau grows shorter in extent, until it

finally disappears and the previously known exponential relationship is re-established.

This is illustrated by employing a slightly modified eq. (11.2) to approximate the

computation results:

λ = S1 + S2 [exp (S3Hλ)− 1] . (11.4)

Only results which don’t exhibit a plateau region, i.e.Hλ > 0.2, are used to determine

the parameters S1, S2 and S3 in (11.4). This shows that the exponential relationship

stays valid outside of the region where Θ plateaus occur.

Figure 11.11 shows the same data using the explicit 1/λ-H relationship. The
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Figure 11.11.: 1/λ vs. H. Solid line: (11.4), parameters as in fig. 11.10. Hcrit =
8.83× 10−2.

difference between the results in the plateau region and (11.4) is even more clear here.

In addition, figure 11.12 shows the variation of the maximum attained temperature

Θmax in relation to the melting temperature Θm and the temperature of fastest

crystallization Θref , for these computations. The plateau region occurs where Θmax /

Θm.
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Figure 11.12.: Θmax in relation to Θm and Θref , vs. Hλ, parameters as in fig. 11.10.
The plateau region is visible on the left side of the plot, where Θmax /
Θm. The transition between effectively super- and subcritical wave is
also recognizable where Θmax ≈ Θref .
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11.3.3. Effective criticality

The classification of explosive crystallization waves so far relies on the relation of Tad

to Tref . Waves are classified as subcritical, critical, and supercritical if Tad < Tref ,

Tad ≈ Tref , and Tad > Tref , respectively, cf. section 4.2.

Alternatively, we can define an effective criticality, where instead of Tad , which

is the maximum attained temperature only in the case without heat loss, Tmax is

used for classification: Waves are classified as subcritical, critical, and supercritical

if Tmax < Tref , Tmax ≈ Tref , and Tmax > Tref , respectively.

Figure 11.12 illustrates the impact of the improved classification scheme: Accord-

ing to the “simple” classification, the explosive crystallization waves are supercritical

everywhere, i.e. Θad = Θm > Θref . A classification according to the new effective

criticality shows a different picture: An initially supercritical (Θmax > Θref ) solu-

tion becomes critical (Θmax ≈ Θref ) with increasing heat loss, and even subcritical

(Θmax < Θref )!

11.4. Variation of thermal contact resistance

In this section, the influence of the thermal contact resistance on λ is examined, using

the same parameters as for the comparison to experiments, cf. section 11.6. Figure

11.13 shows 1/λ for varying R. As R → ∞, 1/λ tends toward the value without

considering heat loss. This is expected because a growing R reduces the influence of

the heat loss into the substrate. As R → 0, 1/λ tends toward the value for R = 0,

i.e. a computation without considering thermal contact resistance. Thus, fig. 11.13

validates the approximations for R� 1, cf. eq. (5.33), and R� 1, cf. eq. (5.38), by

demonstrating that they show the correct behaviour when approaching the limiting

cases of R = 0 and H = 0, respectively.

Interestingly, the results for the R� 1 approximation (solid blue line in fig. 11.13)

are linear in R. This can also be seen in an alternative presentation of λ vs. the

scaled thermal contact resistance R∗, see figure 11.14. The behaviour is accurately

described by

λ = λ0 +R∗λ1. (11.5)

The reason for this linear dependence is not yet clear, and might warrant further

investigation.
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Figure 11.13.: 1/λ for varying R, using parameter set C and a kinetic prefactor
P = 1500. Approximations R � 1 (5.33) and R � 1 (5.38), and
their limiting cases R = 0 and H = 0, respectively. Shaded area: ap-
proximate overlap region 0.5 < R < 2 where neither approximation is
valid.
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Figure 11.14.: Alternative presentation of figure 11.13, λ vs. R∗, using parameter
set C and a kinetic prefactor P = 1500. Red line: linear fit to the
visible portion of data for R � 1; coefficients of (11.5): λ0 = 1.296,
λ1 = −0.774.
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11.5. Length of crystallization zone

Figure 11.15 shows the length of the crystallization zone when varying TS, using the

same parameters as for the comparison to experiments, cf. section 11.6.
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Figure 11.15.: Length of the crystallization zone vs. TS, using parameter set C and a
kinetic prefactor P = 1500. Solid lines: length of zone 0.01 ≤ ξ ≤ 0.99.
Dashed lines: length of zone 0.01 ≤ ξ ≤ 0.5. Dash-dotted line: Layer
thickness δL.

The crystallization zone is (arbitrarily) defined as the region where 0.01 ≤ ξ ≤ 0.99

(solid lines). It can be seen that the crystallization zone for the computations without

heat loss is much longer than for the computations with heat loss. This can be

understood as follows: In the supercritical crystallization regime encountered in these

computations, the crystallization rate decreases exponentially as Θ approaches Θm

(cf. figure 10.3). In the case without heat loss, this means that as Tad approaches

Tm, crystallization slows down as Θ → 1. This leads to an elongated crystallization

zone, the length of which, in the limit of Tad → Tm, becomes infinite.

In the computations including heat loss, the heat loss into the substrate and the

associated temperature decrease accelerates crystallization. The enthalpy release due

to crystallization is balanced by the heat loss into the substrate. This leads to the

appearance of plateau regions in Θ, as detailed in section 11.2.3. The more Tad

approaches Tm, the longer the plateau region becomes.

Figure 11.15 shows that the big differences between computations with and with-

out heat loss primarily arise in the later part of the crystallization process: The
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Figure 11.16.: Nondimensional length of the crystallization zone vs. TS, using param-
eter set C and a kinetic prefactor P = 1500. Same data as fig. 11.15,
but with the length of the crystallization zone referred to Lref . Solid
lines: length of zone 0.01 ≤ ξ ≤ 0.99. Dashed lines: length of zone
0.01 ≤ ξ ≤ 0.5.

dashed lines indicate the length of the region where the first half of crystallization

happens, i.e. 0.01 ≤ ξ ≤ 0.5. This length turns out to be very similar for all shown

computations, and does not vary very much over the substrate temperature range

examined.

Figure 11.15 also indicates δL with a dash-dotted line. It can be seen that the

thickness of the crystallization zone varies from being significantly smaller than δL

for small values of TS to being significantly larger than δL for large values of TS.

Also, it should be noted that Lref is O(1 µm), and therefore comparable to δL.

Figure 11.16 shows the same computations as figure 11.15, but with the length of

the crystallization zone given in nondimensional coordinates, i.e. multiples of Lref .

11.6. Comparison with experiments

To compare the present model to experimental data, results reported in Grigoropou-

los et al. (2006) have been selected. That article reports on explosive crystallization

results in germanium films on a quartz substrate, for which the necessary material

and crystallization data could be obtained elsewhere, see table 10.1. The article
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includes data on the behaviour of the wave propagation velocity U with varying sub-

strate temperature TS. Since U is a central result of our model, those experimental

data are very useful. Very often, values of U are not reported in articles concerning

explosive crystallization experiments.

A steady-state process is reported in Grigoropoulos et al. (2006) after the crystal-

lization front propagated approximately 50 µm, in a square sample with a side length

of 5 mm. Therefore, the velocity results can be assumed to reflect a fully developed,

steady state wave propagation, which the present model requires.

11.6.1. Kinetic prefactor

To achieve wave speeds U comparable with the results in the Grigoropoulos et al.

(2006), it was necessary to adjust the given values for the crystallization parameters

(see parameter set C in table 10.1). Changing the kinetic prefactors, i.e. G0 and I0

in (3.18) and (3.21), respectively, will not change the shape of the non-dimensional

kinetic curves G(Θ) and I(Θ), but will influence tC,ref according to (4.11) and (4.8b).

tC,ref will change U , via the definition of λ given in (4.28), but also the value of H,

cf. (4.27). Both G0 and I0 are multiplied with a (common) prefactor P . In (3.18)

and (3.21), respectively, these quantities are replaced, such that

G0 becomes PG0, (11.6a)

I0 becomes PI0. (11.6b)

It should be noted that a similar adjustment was also carried out in Grigoropoulos

et al. (2006).

A value of P = 1500 gives reasonable results around TS = 700 K, as can be seen in

figure 11.17. It can be seen that introducing a small thermal contact resistance has

an appreciable effect, shifting the U(TS) curve towards lower substrate temperatures.

For these computations, the model employing the approximation for small thermal

contact resistance has been used. The necessary condition R � 1 is fulfilled for the

results shown in figure 11.17.

It should be noted that the behaviour of U(TS) in fig. 11.17 is in qualitative agree-

ment with theoretical results for an “Explosive Solid Phase Nucleation process” in

silicon (Heinig & Geiler, 1985, fig. 6, p. 428).
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Figure 11.17.: Comparison of explosive crystallization wave propagation speed U vs.
TS. Empty circles: experimental values from Grigoropoulos et al.
(2006). Colored lines: computations for the adiabatic case and dif-
ferent values of R∗, using parameter set C and a kinetic prefactor
P = 1500.

A computation with P = 1 does not yield results because the much larger value of

tC,ref yields a value of H which is larger than the critical value necessary for explosive

crystallization in a wave of invariant temperature distribution.

11.6.2. Effect of stopping crystallization below a certain

temperature

To be able to treat the present problem as a wave of invariant shape, it is necessary

to stop the crystallization completely below a certain temperature greater than TS.

This cutoff temperature is, for simplicity, also designated as Tg where no “real” glass

transition temperature is contained in the crystallization kinetics, see (3.18). It is

arbitrarily set as Tg = TS+10 K in the considered parameter sets, cf. Table 10.1. This

approximation is normally well justified. This is because the exponential decrease

of the crystallization rate with decreasing temperature – seen as an exponential

increase in the crystallization time tC (4.8b) – means that crystallization just above

Tg is normally negligibly slow compared to the values at Tref .

However, if TS, and consequently Tg, becomes high enough, crystallization rate

increases. Then it is possible that 1/tC , as a measure of the crystallization rate,
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Figure 11.18.: Effect of choice of cutoff temperature Tg: Empty circles indicate exper-
imental values from Grigoropoulos et al. (2006). Solid lines indicate U
for the R∗ = 0 computation of fig. 11.17 (blue) and for a reduced offset
for Tg (green). Dashed lines show nondimensional 1/tcutoff according
to (11.7).

becomes significant at Tg with respect to its value at Tref . This is also corroborated

by reports in Grigoropoulos et al. (2006) that there is appreciable solid phase crys-

tallization if the samples are kept at elevated temperatures for varying durations

without initiating explosive crystallization. At this point it is convenient to define

the nondimensional quantity

tcutoff :=
limT→Tg+ tC (T )

tC,ref

, (11.7)

which relates the crystallization times at Tg and Tref , respectively.

The effect of cutting off crystallization below Tg on U is shown in fig. 11.18: The

only difference between the blue and green plots is a reduction in the glass transition

temperature, from Tg = TS + 10 K to Tg = TS + 1 K, respectively. On the left hand

side, the values of U for different offsets Tg−TS are identical, while on the right hand

side they start to slowly diverge. However, the difference in U remains below 10%,

indicating that the cutoff temperature approximation is reasonable for the TS values

considered.

Values for 1/tcutoff are shown as dashed lines to illustrate the impact of the cutoff.

On the left hand side, where the U values are identical for both offsets, 1/tcutoff is
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Figure 11.19.: U vs. TS for two values of δL, otherwise using parameter set C, a
kinetic prefactor P = 1500 and R∗ = 0. Circles: experimental results
from Grigoropoulos et al. (2006). Solid lines: computations.

very small, i.e. the crystallization rate is very small at Tg compared to Tref . On

the right hand side, values of 1/tcutoff start to increase, but still stay small. The

crystallization rate at Tg stays below 10% of the value at Tref .

Values of H and R∗ have no influence on this analysis, as it is a purely a matter of

crystallization kinetics. Results of adiabatic computations show identical behavior.

11.6.3. Results for different layer thickness

Grigoropoulos et al. (2006) also contains results for different layer thicknesses δL. It

is reported that a thinner sample with δL = 0.89 µm instead of δL = 1.8 µm would

only explosively crystallize for TS ≈ 750–800 K, with a wave propagation speed U

identical to the thicker sample in that temperature region.

Figure 11.19 shows these experimental results, along with corresponding compu-

tations. It can be seen that for the two computations, the difference between the

U values at TS ≈ 775 K is about as big as the variation in the experimental values,

confirming the reported observation that U is independent of δL in this temperature

region.

Furthermore, for the thinner sample, explosive crystallization becomes impossible

at a much higher TS than for the thicker sample. This is consistent with the experi-

mentally observed limitation of explosive crystallization to higher substrate temper-
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atures for the thinner sample, even if the minimum value of TS ≈ 750 K reported in

Grigoropoulos et al. (2006) for explosive crystallization of the thinner sample is not

reflected in the numerical results.

11.6.4. Potential sources of discrepancies

It was necessary to scale GC and IC with a relatively high prefactor of P = 1500

to obtain values of U comparable to the experimental results. However, it has to

be noted that P is only a multiplicative prefactor. Due to the exponential nature of

(3.18) and (3.21), GC and IC are more sensitive to changes in the respective activation

energies. Therefore, appropriate values of U could also be reached with comparably

small changes to the activation energies. However, this has not been done because

there is a better agreement in the literature concerning the activation energies than

concerning the multiplicative prefactors (Claverie et al., 2010).

The agreement between experimental results and the present model in figure 11.17

leaves room for improvement. For TS less than approximately 700 K, the agreement

seems reasonable.

Allowing for the influence of an unknown thermal contact resistance, the minimum

TS for explosive crystallization in a wave of invariant shape to be possible agrees

reasonably well with the experimentally observed minimum value for TS. The value

of U at that TS is not accurate, though. It should be noted that the large variations

of U at a given TS, e.g. at TS ≈ 695 K, and the small number of experimental data for

low TS, have to be taken into account when evaluating the agreement between model

and experiment. The fact that U ≈ const for TS ' 700 K in the experimental results

of Grigoropoulos et al. (2006) is not reflected in the results from the present model.

The analysis in Köppl (1990) also shows a constant U for supercritical crystallization

waves. However, this is only exact in the asymptotic limit of large activation energies,

which is not well-satisfied in the present problem.

Grigoropoulos et al. note that for TS less than approximately 700 K, a direct

amorphous-crystalline transition governs the observed explosive crystallization pro-

cess, while for TS ' 700 K, where U ≈ 8 m/s stays constant, the process occurs

with a thin layer of amorphous melt between the amorphous and crystalline phases.

Ohdaira & Matsumura (2012) report U ≈ 5–7 m/s, at unknown TS, for mixed solid-

and liquid-phase explosive crystallization of germanium films with δL ≈ 3 µm, using

flash-lamp annealing.
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The theoretical model presented in Grigoropoulos et al. (2006) describes only the

regime where TS ' 700 K. Possibly the model presented here does not capture all

necessary facets of the explosive crystallization process at TS ' 700 K.

The one-dimensional approximation for the layer may not be well justified in re-

gions where the thickness of the crystallization zone is not small compared to the

layer thickness δL, cf. fig. 11.15.

11.7. Future work

The nature of the agreement between experiment and model indicates that there is

room for improvement. Furthermore, there are still areas where the analysis could

be extended. Implementing a crystallization model which includes the “liquid layer”

often mentioned in the literature could possibly reproduce the region at high TS

where U is independent of TS. Also, if data for nC can be obtained, heterogeneous

crystallization could be considered instead of homogeneous crystallization. The in-

fluence of non-constant material parameters, varying with degree of crystallization or

temperature (e.g. thermal diffusivity or density), could be examined. Computations

for a transient process, while computationally more demanding, will be able to repro-

duce more features of the explosive crystallization process, e.g. the initiation process,

or the dying out of crystallization waves due to large heat loss. Furthermore, a

model for a transient process could be used to investigate the case of explosive crys-

tallization ignited by point sources, which has not been considered in the present

work. Further analytical investigations could shed more light on the exponential

behaviour of λ vs. Hλ, on the dependence of Hcrit on various parameters, or on the

linear dependence of λ on R∗. Considering effects of instability on the crystalliza-

tion front could yield different surface morphologies, as observed in the literature,

see e.g. Frankel et al. (2000); Geiler & Heinig (1985); Kurtze et al. (1984); Provatas

et al. (1996); van Saarloos & Weeks (1983); Shklovskij & Ostroushko (1996); Smagin

& Nepomnyashchy (2009). Additional experiments could yield more data to validate

the model against. Experiments should include measurements of U and determine

the crystallization mechanism involved. The comparably small values of U for ex-

plosive crystallization in polymers (Köppl, 1990) could be favorable to experimental

observation of the explosive crystallization wave. However, ensuring that a� 1 will

be more challenging for polymers than for, e.g. germanium. As many of the param-
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eters relevant for the presented model as possible should be determined to reduce

inaccuracies due to collecting parameters from different sources.
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12. Summary

In the present work, a model for explosive crystallization in a thin amorphous layer

on a heat conducting substrate was developed. Up to four rate equations were used

to describe the kinetics of the homogeneous amorphous-crystalline transition. For

the thin layer the energy equation was used in a one-dimensional approximation.

The whole process was described as a wave of invariant shape in a moving frame of

reference. The propagation velocity of the wave U was obtained as an eigenvalue of

the system of equations.

The heat loss into the substrate was derived from first principles, with and without

a thermal contact resistance at the interface between layer and substrate. This was

done to arrive at a more precise description than a semi-empirical heat transfer

coefficient, which is often used in the literature as a simple approximation of the

heat loss. The temperature distribution in the substrate was found as a solution

of the heat diffusion equation and was described in terms of a distribution of heat

fluxes at the layer-substrate interface. It was assumed that the substrate’s thermal

diffusivity is much smaller than the thermal diffusivity of the layer. It was found that

there is a non-local influence of the temperature distribution in the layer on the heat

loss. As a result, the energy equation for the thin layer became an integro-differential

equation.

A coupled system of one integro-differential equation and one to four ordinary

differential equations was solved numerically. A precursor region was identified, where

the system of equations could be solved analytically. A stretched coordinate system

was used to map the semi-infinite range of the space coordinate η in the moving

frame of reference to a finite range in z. Using the stretched coordinate system

introduced a singularity at z = 1. Far behind the wave, the asymptotic behaviour of

the temperature distribution was determined and used as a boundary condition near

z = 1 to avoid the singularity. The system of equations was solved using Matlab.

Data for 19 different experimental and material parameters for explosive crystal-

lization of germanium films on a quartz substrate were collated from a number of
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sources. Where no data were available, values were estimated from data for similar

materials.

Some representative solutions of the system of equations were shown, demonstrat-

ing the key features of the process. The crystallization zone is short compared to

the thermal preheating zone in front of the wave. When heat loss is considered, the

cooling zone behind the wave is long compared to the pre-heating zone.

Systematically varying the enthalpy of fusion revealed more details. In the adi-

abatic case, a longer crystallization zone appears as the adiabatic end temperature

approaches the melting temperature Tm. This is due to slow crystallization near Tm.

Even incomplete crystallization is possible in the adiabatic case. When including

heat loss, a plateau region of constant temperature can appear. In this region, heat

loss into the substrate and liberation of latent heat due to slow crystallization are in

balance until the amorphous phase is fully crystallized. Furthermore, the non-local

influence of the heat loss is apparent in the plateau region.

Varying the non-dimensional heat loss parameter H, a critical value was found

beyond which no crystallization wave of invariant shape is possible. This can also

be interpreted as a certain minimum layer thickness. Additionally, a classification

scheme suitable for explosive crystallization waves including heat loss was developed.

The length of the crystallization zone when varying TS was examined. Further-

more, two approximations, for large and small thermal contact resistance, respec-

tively, were used to examine the influence of the thermal contact resistance on U .

Finally, crystallization wave speeds were compared with experimental values for

explosive crystallization in germanium. It was necessary to adjust kinetic parameters

to achieve a correct magnitude of U .

For TS up to about 700 K, the agreement between model and experimental values is

reasonable. The minimum TS for explosive crystallization in a wave of invariant shape

to be possible agrees reasonably well with the experimentally observed minimum

value for TS. The value of U at that TS is not accurate, though.

For TS larger than about 700 K, the value of U in the experiment remains ap-

proximately constant. This is not reflected in the model results. In the experiment,

this region exhibits a different crystallization mechanism than for lower TS. This

mechanism is not captured in the model, which may account for the discrepancy.

The effects of the kinetic cutoff approximation, which enables treatment as a wave

of invariant shape, were investigated. It was confirmed that the approximation is

reasonable for the TS values considered.
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In the experiment, U is nearly independent of the layer thickness at TS ≈ 775 K.

This is in accord with the model.

Possible sources for the discrepancies between the experimental results and the

model were identified and potential areas for future work were discussed.
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A. Appendix

In this appendix, material presented in the main body of this thesis is supplemented

with additional information useful to the interested reader. Quantities introduced in

the appendix are not reflected in the nomenclature.

A.1. Derivation of rate equations for homogeneous

crystallization

The derivation of the rate equations for homogeneous nucleation is very similar to

the derivation for heterogeneous crystallization, as given in Schneider et al. (1988).

Instead of a probability of formation of growth nuclei from existing dormant nuclei

nC , a spontaneous crystal nucleation rate IC (see section 3.4) is used. Without

taking crystal impingement, i.e. collisions between growing crystals, into account,

the number of crystal nuclei per unit volume N changes over time according to the

relation

∂N

∂t
= IC ; N(0) = N̄ = 0. (A.1)

For heterogenous crystallization, one has to distinguish between the number of ex-

isting nuclei and the number of “activated” (i.e. growing) nuclei. This distinction is

not necessary for homogenous crystallization.

The volume of a single crystal growing from time t′ = z to t′ = t, assuming it does

not encounter another crystal, is

υ(t, z) = σ

[∫ t

z

GCdt′
]m

, (A.2)
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if the volume of the crystal at t = z is neglected. Thus, a “virtual” volume fraction of

the crystalline phase without regarding impingement called the “extended” volume

fraction Ve is

Ve(t) =

∫ t

0

υ(t, z)dN(z) =

∫ t

0

υ(t, z)IC(z)dz. (A.3)

Following Avrami’s model of impingement, with Mandelkern’s correction for incom-

plete crystallization, as outlined in Schneider et al. (1988), it can be assumed that

the rate of change of the crystalline volume fraction V is proportional to the untrans-

formed volume fraction (1− ξ). Therefore, dV = (1− ξ)dVe, which can be combined

with (A.3) and with the definition of the degree of crystallization (2.1) as follows:

∂V

dz
= (1− ξ)dVe

dz
= (1− ξ)υ(t, z)IC(z) (A.4)

dξ

dz
=

1− ξ
V∞

υ(t, z)IC(z) (A.5)

− ln(1− ξ) =
1

V∞

∫ t

0

υ(t, z)IC(z)dz. (A.6)

Using the definition of υ(t, z), eq. (A.2), this becomes an explicit double-integral

expression for ξ. With (3.13), it can be written as

φC,0 =
σ

V∞

∫ t

0

[∫ t

z

GC(t′)dt′
]m

IC(z)dz (A.7)

After a differentiation with respect to time t, this becomes

∂φC,0
∂t

= m
σ

V∞
GC(t)

∫ t

0

[∫ t

z

GC(t′)dt′
]m−1

IC(z)dz. (A.8)

Helper quantities φC,i can be defined as

φi+1 =
1

GC

∂φC,i
∂t

(i = 0 . . .m− 1), (A.9)

and (A.8) can be rewritten as

φC,1 =
mσ

V∞

∫ t

0

[∫ t

z

G(t′)dt′
]m−1

IC(z)dz. (A.10)
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This equation can again be differentiated with respect to time. Using (A.9), this

becomes

φC,2 =
m(m− 1)σ

V∞

∫ t

0

[∫ t

z

G(t′)dt′
]m−2

IC(z)dz. (A.11)

Another differentiation, with subsequent use of (A.9) yields

φC,3 =
m(m− 1)(m− 2)σ

V∞

∫ t

0

IC(z)dz. (A.12)

(A.12) finally becomes, with m = 3,

∂φC,3
∂t

=
6σ

V∞
IC(t). (A.13)

In contrast to heterogeneous crystallization and LC , no characteristic length scale for

crystallization is available for homogeneous crystallization. As a consequence, the

quantities φC,i (i = 1 . . .m) are not dimensionless, but have the dimension Length−i.

The system of rate equation now finally becomes, using the impingement model of

Avrami and three-dimensional crystal growth,

∂φC,i
∂t

= GCφC,i+1 (i = 0, 1, 2), (A.14)

∂φC,3
∂t

=
6σ

V∞
IC . (A.15)

This set of equations is repeated in the main body as (3.14). The relationship between

φC,0 and ξ is given by (3.13).
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Andrä, G., Geiler, H. D., Götz, G., Heinig, K. H. & Woittennek, H. 1982

Explosive liquid-phase crystallization of thin silicon films during pulse heating.

physica status solidi (a) 74 (2), 511–515.

Avrami, M. 1939 Kinetics of phase change I. Journal of Chemical Physics 7 (12),

1103–1112.

Avrami, M. 1940 Kinetics of phase change II. Journal of Chemical Physics 8 (2),

212–224.

Avrami, M. 1941 Kinetics of phase change III. Journal of Chemical Physics 9 (2),

177–184.

Berger, J. 1988 Kristallisation von Kunststoffen unter dem Einfluss von
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schweig: Vieweg.

Schneider, W. 1996 Crystallization waves in glassy materials. In Symposium on

Trends in Applications of Mathematics to Mechanics (STAMM 96). Warsaw: In-

stitute of Fundamental Technological Research.

Schneider, W. 2010 The influence of substrates on the propagation speed of crys-

tallization waves. Personal Communication.

Schneider, W., Berger, J. & Köppl, A. 1992 Non-isothermal crystallization of

polymers: Application of rate equations. In Proceedings of the First International

Conference on Transport Phenomena in Processing (ed. S. I. Guceri), pp. 1043–

1054. Honolulu: Technomic Publ. Co.
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