
Smoke and Fire Detection using
2D and 3D Multi-Sensor Fusion

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Informatik

eingereicht von

Herbert Moldan

Matrikelnummer 0728098

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: Privatdoz. Dipl.-Ing. Dr.techn. Martin Kampel

Mitwirkung: Mag. Dipl.-Ing. Rainer Planinc

Wien, 11.08.2014

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Smoke and Fire Detection using
2D and 3D Multi-Sensor Fusion

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Informatics

by

Herbert Moldan

Registration Number 0728098

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Privatdoz. Dipl.-Ing. Dr.techn. Martin Kampel

Assistance: Mag. Dipl.-Ing. Rainer Planinc

Vienna, 11.08.2014

(Signature of Author) (Signature of Advisor)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Herbert Moldan
Am Kalten Gang 15, 2483 Ebreichsdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i





Acknowledgements

First and foremost, I would like to thank Tina for
enduring all my moods over the last couple years

Also, I would like to take this opportunity to thank
Mike for all his unending support on this way we have
walked together

In addition, I would also like to thank my family,
especially my Mum and Dad, for their perpetual endorsement

And to all of my friends, in particular Alex and Flo,
without you I would have graduated two years earlier

iii





Abstract

The outbreak of an uncontrolled fire is one of the most endangerments known to human beings.
Recent approaches for contactless fire- and smoke detection rely widely on evaluating the con-
tent of video-streams, provided by for example video-cameras monitoring a scene. Different
features for fire and smoke are calculated using information extracted from the video-stream.
The final decision - if smoke or fire is represented in a video frame or not - is then made by
merging the result of each single feature to an overall decision. In this thesis a novel approach
to detect fire and a novel approach to detect smoke by using two different sensors is proposed.
The first sensor is a RGB camera, providing a colored video-stream, while the second sensor
is a 3D-sensor which calculates the distance between the sensor itself an objects located in a
scene. Hardware, like the Microsoft Kinect or the ASUS Xtion Pro, already combine both sen-
sors. Results show that fire itself leads to significant changes in the depth-image provided by the
3D sensor, while the presence of smoke leads to changes in the color-stream only. Therefore, a
method is presented, where the information of the RGB color-sensor is continuously analyzed if
specific features like the color of moving pixels and their statistical analysis indicate a presence
of fire in a scene. By examining the result-values extracted by the different features, the area
where a possible fire-incident is located is calculated. In addition, the information provided by
the 3D depth-sensor is used to identify possible fire regions. If a potential fire-region is recog-
nized by the color-sensor, the implemented method for the depth-sensor verifies the potential
fire-area (detected by the RGB sensor only) regarding its plausibility. This combined approach,
by fusing RGB and depth information, leads to a decrease of the false-positive rate (fire is falsely
detected in a frame) of 97.46%, compared to the detection rates by using the information of the
color-sensor only.
Due to the fact that smoke does not lead to a significant change in the stream provided by the
depth-sensor, for smoke-detection a method using the RGB sensor only is implemented. The
results show that fire-detection using e.g. a ASUS Xtion Pro enhances the detection of real-fire
events significantly, due to the fact that false-positives are effectively reduced. Even a recorded
fire replayed on a monitor is correctly dismissed by this method. However, due to the fact that
only the color-stream is used for smoke detection (without the additional information provided
by the depth-sensor), and the video-stream captured by the ASUS Xtion Pro is rather in low-
quality - compared to e.g. videos recorded by smartphones - for the detection of smoke other
hardware (like a high-quality webcam) is more useful.

v





Kurzfassung

Der unkontrollierte Ausbruch eines Feuers stellt eine große Gefahr für jeden Menschen dar. In
jüngster Zeit wurden viele Ansätze entwickelt um Feuer und Rauch kontaktlos zu erkennen -
zumeist realisiert durch statische Kameras welche einen entsprechenden Bereich überwachen.
Hierzu werden typische Merkmale von Feuer aus den Video-Daten extrahiert, um danach - an-
hand der erhalten Werte - zu bestimmen ob ein Feuer erkannt worden ist oder nicht. In dieser Di-
plomarbeit wird ein neuartiger Ansatz zur Feuer- und Raucherkennung vorgestellt. Hierzu wer-
den die Daten von zwei Sensortypen kombiniert verwendet: eine Kamera welche ein Farbvideo
erfasst und ein 3D Tiefensensor welcher die Entfernungen von Objekten zum Sensor bestimmt.
Beide Sensoren sind bereits in Geräten wie der Microsoft Kinect oder einer ASUS Xtion Pro
vorhanden. Tests zeigen, dass Feuer zu einer sichtbaren Veränderung im Tiefenbild führt, wäh-
rend Rauch keine signifikante Änderung hervorruft und deshalb nur im Video-Stream erkennbar
bleibt. Im Zuge der Diplomarbeit wird eine Methode vorgestellt, wo die Informationen aus dem
Videostream verwendet werden um Feuer an Hand unterschiedlicher Merkmale in Videos zu
detektieren und zu lokalisieren. Zusätzlich werden die Daten des Tiefensensors verwendet um
potentielle Feuer-Bereiche zu errechnen. Wird nun ein mögliches Feuer durch die RGB Kamera
entdeckt, wird die Information des Tiefensensors dazu verwendet um den Bereich auf seine Plau-
sibilität hin zu überprüfen. Dieser kombinierte Ansatz vermindert die erkannten Falsch-Positiven

(Feuer wurde erkannt obwohl kein wirkliches Feuer in der Szene vorhanden ist) um 97, 46%,
verglichen mit den Entscheidungen die alleine durch die Auswertung der Informationen des
Farbsensors getroffen wurden. Die Analyse von Testvideos und die anschließende Auswertung
der Ergebnisse zeigt, dass das kombinierte Verwenden von beiden Sensoren die Erkennungsrate
von echtem Feuer deutlich verbessert und die Falsch-Positiven effektiv reduziert. Selbst Aufnah-
men von Feuer, welche über einen Bildschirm abgespielt wurden, wurden als Korrekt-Negativ

erkannt. Eine z.B. ASUS Xtion Pro eignet sich jedoch nicht für die Raucherkennung, da der
Farbsensor Videos nur in relativ schlechter Qualität aufzeichnen kann.
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CHAPTER 1
Introduction

1.1 Motivation

An uncontrolled fire is one of the greatest endangerments known to every human being [10].
Fire is so dangerous that - even in a place completely surrounded by water (like on a ship) - it is
generally the most dangerous thread to the life and safety of the people that reside in that area1.
Even in a case where no one was injured, the damage to property can be big enough for someone
to lose his livelihood [21]. Most houses are not equipped with smoke detectors, because they e.g.
do not fit into the design of the room or the owner thinks the chance of a fire incident is fairly
small. Moreover, back fitting an existing building could be very cost-expensive or complex when
you try to install wired detectors [25] [44]. Nevertheless, if a house is equipped with fire and
smoke detectors, the alarm is limited to the range where the alarm-sound can be heard. If no-one
is within the range of audibility, a fire is not detected until flames or smoke is noticed by e.g. a
neighbor. If the smoke-alarm system is linked to e.g. the nearest fire department, a false alarm
could also lead to a penalty payment. So it would be a great advantage, to receive a notification
that a fire detector was triggered, to get an efficient human-in-the-loop validation [12] to make it
possible to monitor the scene before calling the fire brigade. Also, in an Ambient Assisted Living

environment, where elderly people is given the possibility to stay at their own house instead of
going into a retirement home, it would be a great advantage if a caregiver could supervise a fire-
alarm event to distinguish between a cooking attempt that went wrong and a real fire event [36].
The sooner a fire is detected the better the chances of saving life and property [17]. Fire detection
by Computer Vision allows the contactless and fast detection of fire and smoke events [52].

1Ten Years of Cruise Ship Fires, http://www.cruiselawnews.com/2010/03/articles/

fires-1/ten-years-of-cruise-ship-fires-has-the-cruise-industry-learned-anything/,
Accessed: 26.05.2014

1

http://www.cruiselawnews.com/2010/03/articles/fires-1/ten-years-of-cruise-ship-fires-has-the-cruise-industry-learned-anything/
http://www.cruiselawnews.com/2010/03/articles/fires-1/ten-years-of-cruise-ship-fires-has-the-cruise-industry-learned-anything/


1.2 Problem Statement

A fire detector is implemented as either a smoke sensor, a gas sensor or a temperature sensor [49].
The detection of smoke is the most common approach, because the sensor itself is relatively low-
cost, but provides a good detection rate. A disadvantage is that the number of triggered false
alarms is high. The temperature sensor is more reliable than the smoke detector, but with a
slower response time [49]. Another problem is that the fire detectors need to be placed on areas,
where they are able to measure the temperature/gas concentration and the visibility changes in
their environment as soon as possible [50]. Due to the fact that warm air, smoke or gas tends
to ascend, fire detectors are placed on the ceiling of rooms [31]. Although for safety concerns
this would represent the best location, regarding aesthetics it is not. As a matter of fact, these
detectors can only detect an fire-incident, if the e.g. smoke or heat directly reaches the sensor
itself [44]. To equip a house with fire-detectors that just trigger an (local) acoustic alarm, there
is also a power supply needed, which means either a visible cable to the detector, or you need to
force open your walls and/or ceiling to provide flush-mounted power supply. One solution could
be the use of a battery-operated detector, but they have the great disadvantage that the alarm
(usually acoustic) can only be heard if someone is near the room where the alarm went off. A
communication from the sensors to an centralized system is useful e.g. as demonstrated in [25].
These Systems are capable of processing the information where a fire took place to calculate
alternative escape-routes on safe paths only. But also a communication from the centralized
system (that receives the alarm) to the detector itself is useful, e.g. to reset the alarm to see if
the fire event is detected again to decrease the likelihood of a false detection. Another problem
of battery-operated systems is that the lifetime of batteries are limited and therefore have to be
regularly replaced. In [4], a wireless gas and fire detection system is introduced that informs
its host station about incidents via wireless ZigBee communication. However, a Li-Ion battery
is defined as a backup power-supply - its main-power-supply is realized by a solar panel with
super-capacitors, which is ill-suited for indoor use. [44] describes a battery-operated, wireless
and long-lasting sensor for indoor use like museums, ancient buildings or temples. But this
method also measures the gas concentration (CO), the temperature and the smoke intensity and
has therefore be placed on strategic positions that are usually good visible for the owners or
visitors of such buildings. Another advantage of early fire detection through video analysis
is that its relatively low cost when e.g. using CCTV cameras that are already installed for
surveillance purposes [27]. In addition, large, open areas - such as tunnels or forests - can be
monitored by vision-based fire detection, as shown in in [39] where an automated forest-fire
detection is introduced.

1.3 Aim of the Work

In this work, the ability for the combination of a 2D sensor (RGB camera) with a 3D sensor
(depth sensor calculating the distance to objects in a scene via the Structured Light Method) to
detect fire and smoke incidents indoors is proposed and evaluated. Since fire detection using
RGB cameras is already well-established (e.g. [12], [27], [39],...), the focus of this work is the
detection of fire and smoke using a 3D sensor and the fusion of 2D and 3D information. In ad-
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dition, the effect that such events have on the sensor used and possibilities how this information
can be used to detect smoke and fire incidents is shown. The outcome is a reliable, contactless
indoor smoke and fire detector that enables a detection in real-time by using a low-cost sensor.

1.4 Methodological Approach and Own Contribution

First, existing methods and the features used are described, showing the common ground that the
methods have as well as how different the approaches can be when extracting the same features.
In addition, the behavior of selected features is analyzed by using example videos showing
real fire and fire-like events (like someone moving through the scene while wearing an orange
shirt). Also, the effect that recorded fire has on e.g different motion-estimation techniques or
on calculated statistical data like the variance of the pixel-color is analyzed further. Due to
the fact that smoke and fire detection using a 3D sensor like e.g. an ASUS Xtion Pro is a
novel approach, the impact of smoke and fire incidents onto the outcome of the 3D sensor is
analyzed to gain information if or how the detection of the depth of a scene is influenced by
such events. Furthermore, characteristics of the sensor used - like the image synchronization
between the sensors - is analyzed after extracting statistical data such as the difference between
the timestamps of frames recorded by both sensors or the behavior of each sensor when assigning
a number to a frame. For specific features (like the fire color) the corresponding values when
using this 3D sensor are extracted. Therefore, a software was developed to save all frames
provided by the RGB and the depth-sensor to analyze them regarding the recorded fire-color, for
example. Moreover, the behavior of the sensor used is analyzed further when recording a non-

changing (and therefore static) scene, to receive information of the reliability and consistency
of the estimated depth. In the end, this gained information is used to develop a reliable software
to detect smoke and fire incidents in real time using the ASUS Xtion Pro. In addition, the
performance of the software is analyzed using different example events like real fire events or
events with a fire-like appearance, such as a recorded fire replayed on a monitor. It is further
examined how the several detection rates are influenced by using the proposed multi-sensor
fusion, compared to the rates achieved by using the information provided by the RGB-sensor
only.

1.5 Structure of the Work

Due to the fact that smoke does not lead to a significant change in the 3D depth sensor, this
work mainly focuses on the detection of fire, using a multi-sensor fusion of a 2D RGB and a
3D depth sensor. Section 2 of this work is called ’State of the Art’ and provides an overview of
existing approaches and the features used. Additionally, selected methods are described in detail
with a subsequent highlighting of commonalities and the contrasting of differences when e.g.
extracting a specific feature. In Section 3, called ’Methodology’, the quality of the sensor and
the characteristic of selected features are analyzed. In addition, this section introduces the smoke
and fire detecting method implemented for this work and its different features used. Section 4,
namely ’Evaluation’, explains the performance and the behavior of smoke and fire detection
using the ASUS Xtion Pro as well as possible problems. In addition, the proposed method is

3



compared to other methods used. Finally, the performance achieved by both methods and the
impact on the detection rates using the Multi-Sensor Fusion is described. The last Section, called
’Summary and Future Work’ explains issues not covered by this software/work and reflects on
parts that could be solved in a different way.

4



CHAPTER 2
State of the Art

2.1 Literature Studies

The basic approach of fire detection using static cameras is firstly restricting the areas in a video
frame to e.g. pixels that are considered as moving with specific color values. For the remaining
pixels different features like their changing behavior or their color distribution are calculated.
There are basically two different types of features: Static features [21] can be used on each frame
individually - they do not need information from preceding frames. The second class is called
Dynamic features [21] - these features use preceding frames to calculate corresponding values,
so they can not be used for static fire representations like pictures, for example. Every feature
that needs at least two different frames to generate the decision if fire is detected is considered to
be a dynamic feature (therefore, it can be concluded that dynamic features need time as an input
dimension). After that, the outcome of these features is merged to the decision, if fire/smoke is
detected in a video frame or not [16] [21] [45]. Figure 2.1 represents this basic workflow of fire
detection in video-streams. In this chapter, firstly ways to detect motion in videos are described.
Secondly, different features for fire and smoke detection are explained. After that, the workflow
of already existing methods for fire and smoke detection (using these features) are shown.

2.1.1 Moving Pixel Detection

Both, fire and smoke cause motion in videos. Therefore, most of the features described in this
part can be used to detect smoke and/or fire. However, the motion detection algorithm do not
distinguish between motion caused from real fire or smoke, and motion provoked for example
by people that move through the scene. A precondition for all presented motion-estimation
techniques is the use of static cameras [3].

Background Subtraction

Background subtraction is a possibility to estimate moving objects inside a video stream. It
is divided in two different approaches, first the non-adaptive method, where a once calculated

5



Figure 2.1: Basic workflow of fire detection in video-streams using static cameras.

background image is used to identify differences to subsequent frames [3]. Second, the adaptive
method that frequently updates its estimated background, which helps to reduce its sensitivity
to noise [3]. However, one requirement of the basic background subtraction algorithms is that
the camera is stationary. In [39], a RGB video stream is first converted to the YUV color space,
where the channel Y represents the luminance part of the video. The conversion from RGB to
YUV is made through three formulas with three multiplications and additions:





Y
U
V



 =





0.3 0.59 0.11
−0.15 −0.29 0.44
0.51 −0.52 −0.095









R
G
B



 , (2.1)

so for example the Y channel (brightness) is calculated by

Y = 0.3R+ 0.59G+ 0.11B, (2.2)

where R, G and B are the values of the associated red, green and blue channel respectively.
An advantage from switching to the YUV space is that the color channels for chrominance
(U , V ) are separated from the channel for the brightness Y , so it is possible to process each
characteristic separately - reducing the amount of calculation needed [46]. To detect motion,
first of all a background image has to be estimated. To do this, the first frame is converted to a Y
image (see Equation 2.2) and then set as the background image imBG(t,x,y). After that, every
consecutive frame is read and saved as the current image, namely imIn(t,x,y). imIn(t,x,y) is
also converted from the RBG to the YUV color space. Now the absolute difference between the
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image and the estimated background is calculated by

imDFt,x,y = |imBG(t,x,y) − imIn(t,x,y)|, (2.3)

helping to recognize motion in the scene by comparing the calculated difference-values from the
difference image imDFt,x,y (calculated for each pixel) with a chosen threshold λY . However,
it is also possible to use the mean [8] or median [33] value of the first n frames to calculate the
background image. This method is used to reduce the sensibility to noise, for example a false
movement detection caused by as a single brightness peak leading to high brightness values for
different pixels. The for example mean value for each pixel is calculated by

Mean(x,y) =
1

N

N
∑

i=1

I(x,y,t−i), (2.4)

where N stands for the number of frames used and I(x,y) is the pixel of the Image I , at position
x, y at the time t.

Frame Differencing

As the name frame differencing suggests, this method estimates moving pixels through build-
ing the difference between the current framet and its preceding frame framet−1. The main
difference to the approach described in Section ’Background Subtraction’ is that the frames are
compared among themselves, and not with a generated, static background image. Therefore,
slow changes, as for example illumination changes due sunlight or clouds moving, do not have
the same high impact on the difference picture as when using a background-image, because
the recognized differences are only relative to the previous frame, and not absolute as when
comparing pixels with the values stored at the beginning of recording [26].

Combined Motion Estimation

The approach suggested in [27] combines the frame-differencing and the background-image
methods. Here, the pixel values of two considered consecutive frames are linearly combined
after the decision - if a pixel p(x,y) is moving or not - is made. So, a hybrid background image
Bt is produced, where each pixel It(x,y) represents the intensity value of a pixel in the current
frame. A new hybrid background image is generated by

Bt+1(x,y) =























if |Bt(x,y) − It(x,y) | < λFD1

αBt(x,y) + (1− α)It(x,y)
else

It(x,y)

, (2.5)

where the if part represents a pixel detected as non-moving, and the else part is executed if the
pixel is considered moving. α is a positive real number between 0 and 1. In practice a value close
to 1 is chosen [16]. So, if the difference between the two intensity values Bt(x,y) and It(x,y) is
smaller than a threshold λFD1, the new value for the background pixel is the linear combination
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of the intensity value of the current pixel and the value for the last valid background pixel. If the
difference is bigger than the threshold, this pixel is considered as moving. In this case, the value
for the next background image Bt+1 is just the intensity value of the current frame It(x,y) . On
the beginning, the background image Bt+1 is set to the first frame I0.

In [16], the used method differs from that one used in [27]. In [16], in a first step moving
regions are determined through direct comparison of two consecutive frames. In the second
step, the pixel value is compared to the estimated background image to identify pixel that differ
significant from the background. So, first the formula to estimate the background (Equation:
2.5) is adapted to

Bt+1(x,y) =























if |It+1(x,y) − It(x,y) | ≤ λFD2

αBt(x,y) + (1− α)It(x,y)
else

Bt(x,y)

. (2.6)

The if branch represents a non-moving and the else part represents a pixel detected as moving.
So, a pixel is considered as moving, if |It+1(x,y) −It(x,y) | > λFD2 is true, where I(x,y) represents
the brightness value of a pixel. The second possibility (that a pixel is considered as moving)
is that its brightness value differs significantly from the estimated background image - in other
words, all pixel that fulfill the equation |It(x,y) − Bt(x,y) | > λFD2, where Bt(x,y) represents the
background-value estimated through Equation 2.6.

Movement Detection using Motion Vectors

Motion information is automatically generated when a video is compressed with a MPEG-x
codec [48]. The extracted motion-information is, as a vector, stored separately inside the MPEG
data format. These vectors are accessible as read-only, even if the video file is not fully decoded
[48]. There are different methods to detect motion inside a video - however, they all have in
common that they produce an encoded motion vector MV as a result. This represents the motion
of a so called Macro-Block (MB), the dimension of the movement of such a MB is defined as

MVMB =
√

(MVx)2 + (MVy)2, (2.7)

where MVx and MVy represent the x- and y-values of the motion vector of this MB, and x, y
defines which MB is currently processed. To determine if this region is considered as moving, it
is compared to a chosen threshold λMB , leading to the Moving Region Decision (MRD)

MRD =

{

1, if (MVMB > λMB)

0, otherwise.
(2.8)

This leads to the knowledge, which regions of this image (or frame) are considered as moving
regions [23]. Figure 2.2 shows a frame captured from a video. The bottom image shows the
image after processing, where the detected moving macro blocks have been colored in blue. In
this case, the motion estimation for calculating the motion vectors for the macro blocks inside
the video is executed through the Simple and Efficient Three-Step Search (SETSS) [24].
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Figure 2.2: The original frame on top, below the processed frame with all blocks considered as
moving colored in blue [23].

2.1.2 Features for Fire Detection in Videos

Fire detection through video surveillance leads to a big advantage: the detection speed of clas-
sical detectors, such as gas, heat or smoke detectors, depends on their distance between the fire
and the position of the sensor. An approach based on video processing leads to a very fast re-
sponse in case of a fire event [7]. The basic idea is to copy the detection ability and speed of the
human eye [7]. In this section, a selection of features is presented which are used to identify fire
and smoke regions.

Colorhistogram

As mentioned in [5], color is the most powerful single feature to detect fire regions in images
or videos. The typical flame seen in nature belongs to the red-yellow color range, and is called
a hydrocarbon flame. Koerich Borges and Ebroul Izquierdo [5] also observed a special feature
regarding a fire region: if the values of the red, green and blue parts of a fire pixel is analyzed,
the value of the red channel is bigger than the value of the green channel. In addition, the value
of the green channel is bigger than the value of the blue part of that pixel. Figure 2.3 shows this
typical characteristic of fire pixels. In [40], the criteria R > G and G > B, which leads to a
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Figure 2.3: Histogram for the red, green and blue channels of the fire region inside the black
square [5].

combined condition of R > G > B, are further restricted with an threshold λR, where the value
for the red channel has to bigger than λR to detect fire. The last refinement is that the saturation
value of a pixel has to be over a threshold λSat, leading to the combined fire detection

FireColored(x,y) = (R > G > B) ∧ (R > λR) ∧ (Sat > λSat) (2.9)

where, R, G, B are the values for the red/green/blue channel, respectively. λR is the threshold
for the red channel, Sat is the saturation value of the pixel and λSat is the threshold for the
saturation. If Equation 2.9 is true, a observed pixel is considered to be a fire pixel [40].

Color Range

Due to the unique color range of fire, it plays a important role in fire detection in videos. Video-
shots taken are mostly represented in the RGB color space, where every pixel is a three di-
mensional vector of the three color parts represented in this part of the video, namely Red (R),
Green (G) and Blue (B). The human characteristic of seeing colors is better represented due the
HSV/HSI color model, where the pixel is represented by its values of Hue (H), Saturation (S),
Value (V) / Intensity (I). Hue represents the color that is perceived, for example red, orange,
and so on. Saturation is the value of how much white is mixed with the color, where a smaller
number means a less amount of white. Value measures the brightness of that particular color.
In [7], ten different frames from five video shots containing fire were taken. After analyzing all
50 frames, the range of each color part (R, G, B) was identified (see Table 2.1 for details). If

Table 2.1: RGB color range of fire [7]

Red Green Blue

Range 190 to 255 113 to 255 0 to 80

only RGB values are used, the results of the generated threshold image is quite satisfying. How-
ever, the image presented in Figure 2.4 does not contain any non-fire objects with a color near
the color range of a fire (for example an orange-colored object). A conversion from RGB to the
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Figure 2.4: The image of a burning car before and after thresholding with RGB values [7].

HSV/HSI color space is performed as follows: Before, all RGB values have to be normalized to
a range between 0 and 1 [7]. The formulas for the conversion are,

H =

{

Θ if B ≤ G

360−Θ if B > G
(2.10)

where,

Θ = cos−1

(

1
2((R−G) + (R−B))

((R−G)2 + (R−B)(G−B))
1
2

)

(2.11)

S = 1−
3

(R+G+B)
[min(R,G,B] (2.12)

I =
1

3
(R+G+B) (2.13)

V = max(R,G,B) (2.14)

After calculating the values with the Equations (2.10), (2.11), (2.12), (2.13) and (2.14), all values
have to be rescaled to a range from 0 to 255. Table 2.2 shows the corresponding HSV values to
the measured RGB values from Table 2.1.

Table 2.2: HSV color range of fire [7]

Hue Saturation Value

Range 0 to 43 128 to 255 190 to 255
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Color Based Detection Metric

As presented in [5], another method to decide if the color of a pixel is a possible fire candidate
is using the Gaussian distribution of the three color channels. A given pixel f(m,n), is defined
as

f(m,n) =





fR(m,n)
fG(m,n)
fB(m,n)



 , (2.15)

where fR, fG and fB are the values of the three color channels red, green and blue. To determine
the values of f̄R, f̄G and f̄B the mean value of the channels extracted from pixels inside the fire
region is used. After the standard deviation is calculated a Gaussian Model is applied for every
channel, so every color channel fColor ∼ N(µf̄Color

, σ2
f̄Color

). The basic idea is, to define a

function that represents the probability that an observed region fobserved is a part of a fire region.
So three different values DCR

, DCG
and DCB

are calculated by equation

DColor =
pf̄Color

(f̄Colorobserved)

pf̄Color
(µf̄Color

)
. (2.16)

This function has its max, when the average color value of the observed region is the same
value as defined before, namely when f̄Colorobserved = µf̄Color

. In this particular case the value
of DColor would be 1. Using the three values calculated in Equation 2.16, the detection metric
is defined as

DC = DCR
+DCG

+DCB
− (DCR

DCG
+DCR

DCB
+

+DCG
DCB

) +DCR
DCB

DCG
. (2.17)

As mentioned in [5], DC provides meaningful results. To get an image that shows fire regions
only, a binary function is defined as

FireImage(m,n) =

{

0, if Dc(m,n) < λC

1, otherwise
, (2.18)

where λC is a chosen threshold level. The false-positive rate (assumes that there is a fire but
in fact there is none) was, using this method only, 9.37%, the false-negative rate (assumes that
there is no fire but in fact there is one) performed better with 0.033% [5].

Color by Gaussian Mixture Model

In [16], the color restriction is executed differently. A Gaussian Mixture Model (GMM) using
ten different Gaussian distributions is used to evaluate whether the color value of a given pixel fits
the requirements for fire or not. The values for the GMM are calculated by analyzing training
images containing fire events. If the color value of this pixel lies inside the double standard
deviation of at least one of the Gaussian distributions it is assumed as fire-colored [16]. Figure
2.5 shows these restrictions illustrated by a 3D space, with each color value (R,G,B) representing
a different dimension.
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Figure 2.5: Left: Pixel values extracted from sample images containing fire. Right: Valid pixel
values considered as fire-colored are shown as spheres in the 3D space, represented by one
dimension for each color R, G and B [16]

Skewness

The skewness is a measurement degree for distributions [28]. If the distribution itself is perfectly
symmetric about its mean value, the skewness factor is 0 [28]. If the center of the distribution
is shifted to the left, the skewness value is positive, if it is shifted to the right it is negative [5].
Figure 2.6 illustrates this effect. As mentioned in Section ’Colorhistogram’ and illustrated in

Figure 2.6: Distribution with a positive and a negative skewness [5]

Figure 2.3, a fire region has high values for the green channel and even higher values for the red
channel. If analyzing the red channel of a fire region alone, it can be observed that this channel
has a high degree of saturation [5]. Figure 2.7 shows the histogram of the red color-channel,
calculated from a fire region. A distribution, as shown in Figure 2.7, leads to a skewness with a
negative value. The skewness γR is calculated by

γR =
1

n

n
∑

i=1

(

xi − x̄

s

)3

, (2.19)

where xi represents the red value of each pixel inside the observed region and x̄ presents the
mean value of the red channel of all pixels. The value s is the calculated standard deviation [5].
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Figure 2.7: Histogram of the fire region inside the blue border. This leads to a high amount of
red pixels with the value 255, which is called the saturation effect [5].

An observed region is a potential fire region, if

γRi
< λγR , (2.20)

where λγR is a chosen threshold. Experiments in [5] shows that fire regions usually have a
skewness value λγR < −1.

Surface Coarseness

Another feature that can distinguish for example between a fire or a person wearing a fire-colored
shirt is called surface coarseness [5]. Inside fire regions, there is a huge amount of pixels within
the fire color range, but their color values are widely spread, while in typical false alarm regions
the color does not vary that much [5]. Although, there a several tools to recognize texture, fire
itself has a huge randomness in its behavior and can therefore vary a lot in its appearance [5]. So
in [5] this coarseness in the region is measured by the standard-deviation σ of the color values
of pixel inside its border. As described in [28], the standard-deviation is calculated by

σ =

√

√

√

√

1

n− 1

n
∑

i=1

(xi − x̄)2, (2.21)

where x describes a pixel color and x̄ presents the mean color value of all pixels within the
region. If σ > λσ is true, it is assumed that the observed area is a fire area, where λσ represents a
chosen threshold. Figure 2.8 shows the principle for a detected region using a threshold λσ = 50.
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Figure 2.8: Determination if a detected region is a potential fire region through analysis of its
variance σ [5].

Temporal Wavelet Analysis

If the video capture rate is high enough (at least 20 frames per second), fire can be estimated
through continuously measuring pixels inside fire colored regions by analyzing their history of
change. Therefore, a filter bank with two stages is used. A pixel xn(x,y)

, represented by its frame
number n and its position (x, y) is fed into the filter bank, using either the luminance value Y
from the Y UV color model (see Section ’Background Subtraction’ for details), or the R value
from the RGB model. The filter bank consist of half-band high pass and half-band low pass
filters as shown in Figure 2.9. The outcome of this filter are two wavelet (sub-)signals, namely
dn(x,y)

and en(x,y)
. If the values of an input pixel xn(x,y)

do not alternate much, the values for
both wavelet sub-signals are equal or very close to zero. However, if there is a high frequency
activity they get non-zero values. So, the zero crossings rate of dn(x,y)

and en(x,y)
can help do

discriminate between a pixel that represents a real fire pixel and a pixel from an ordinary, fire
colored object moving through the scene. Due to the down-sampling behavior caused by each
number of wavelet stages, for example when using the filter-bank shown in Figure 2.9, only
oscillations between 1

8 and 1
2 of the original frame-rate can be detected, which means that - if

the input video is captured at a frame rate of 10Hz - only fluctuations between 1.25Hz and 5Hz
are detected [16].
Figure 2.10 shows the behavior of dn(x,y)

and en(x,y)
when the input pixel xn(x,y)

is part of a real
flame (using a video from [16], a pixel at the position (111, 34) is evaluated, which was part of a
real flame in the frames n = 1, 2, 3, 19, 23, 24, 41 and part of the background in n = 12, ..., 17, 20,
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Figure 2.9: Two stage filter bank, using high-pass filters (HPF) and low-pass filters (LPF),
producing the two wavelet (sub-)signals dn(x,y)

and en(x,y)
[16].

Figure 2.10: Outcome of the filter bank proposed in Figure 2.9. On top, the values of the red
channel for pixel xn(111,34)

can be seen. This pixel is part of a flame for the frames n = 1, 2, 3,

19, 23, 24, 41, and for n = 12, ..., 17, 20, 21, 26, 27, 31, ..., 39, 45, 52, ..., 60 it is part of the
background. The oscillating behavior of dn(111,34)

and en(111,34)
can be clearly seen. Please note

that each wavelet sub-signal is down-sampled by half, respectively [16].
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Figure 2.11: Temporal history of pixel xn(18,34)
, which is part of a fire-colored object moving

through the scene in frames n = 4, 5, 6, 7, 8. For every other frame it is part of the background.
It can be recognized that, after the transition from background to object and the subsequent
transition between object and background no oscillating behavior appears [16].
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21, 26, 27, 31, ..., 39, 45, 52, ..., 60). Because of the down-sampling by half, it can be recognized
that the initial 60 frames are respectively down-sampled by 50%, leading to 30 frames for dn and
15 frames for en. This leads to the fact that the value for the sub-signal d5(111,34) , for example,
belongs to the same pixel located in two frames, namely x10(111,34) and x11(111,34) . This means
that the value for e.g. e4(111,34) corresponds to the pixel values of four frames, namely x12(111,34) ,
x13(111,34) , x14(111,34) and x15(111,34) [16]. For a better comparison, Figure 2.11 shows the same
procedure, but in this case only a fire colored object moves through the scene. In this case, the
pixel xn(18,34)

is evaluated, which is part of the (white) background for the frames n = 1, 2, 3,
and part of a fire colored object for n = 4, 5, 6, 7, 8. After that, it is part of the background
again. It can be noticed that the transition between object and background (and vice versa) leads
in each case to a single peak in the two wavelet sub-signals. After both peaks occurred, nearly
no oscillating behavior can be recognized. Those small variations, mainly caused through noise,
can be eliminated by using a threshold [16].

Spatial Wavelet Analysis for Fire

A fire colored object differs from fire due the lesser amount of spatial variation in color [16].
Figure 2.12 shows such a fire colored object on the left side, showing that the color located
within the rectangle does not show much variation. On the other hand, at the left side of Figure
2.13, the significant amount of spatial variations inside the marked area - containing real fire
- is visible. The difference in the spatial variation, comparing the spatial wavelet analysis

Figure 2.12: Left: a child with a fire colored shirt. Right: the wavelet image containing the
accumulated, absolute values of the low-high, high-low and high-high wavelet transformations
|LH(x,y)|+ |HL(x,y)|+ |HH(x,y)| from pixels inside the rectangle [16].

shown on the right side in Figure 2.12 and Figure 2.13, is a discriminant for real fire [16]. The
wavelet sub-image itself contains edge information about the computed scene, because edges in
the original image are causing local extrema in the wavelet images. So, the wavelet image low-
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Figure 2.13: Left: an image of a real fire. Right: the wavelet image containing the accumulated,
absolute values of the low-high, high-low and high-high wavelet transformations |LH(x,y)| +
|HL(x,y)|+ |HH(x,y)| from pixels inside the rectangle [16].

high (LH) is using a low-pass filter for the horizontal scan and a high-pass filter for the vertical
scan. Due to the fact that a high pass-filter shows the high-frequency parts of an image (caused
by edges, for example), the image after the LH pass contains the horizontal edges of the original
image. Furthermore, a high-low pass (HL) contains the vertical edges from the input-image. In
conclusion, the high-high pass (HH) contains all diagonal edges [13]. High-pass and low-pass
are dividing the frequencies in half, resulting in scaled images with 50% height and 50% width
from the original image.
In the case of detecting fire, it is sufficient enough to use the red channel of the RGB image.
To measure the amount of disorder, a decision parameter Efire is used. The absolute values of
the LH, HL and HH pass are added to compute the resulting image. The decision parameter is
calculated by

Efire =
1

M ×N

∑

x,y

|LH(x,y)|
2 + |HL(x,y)|

2 + |HH(x,y)|
2, (2.22)

where LH(x,y) is the low-high sub-image, HL(x,y) is the high-low sub-image and HH(x,y) is
the high-high sub-image of the wavelet transform. M ×N calculates the number of considered
pixel inside the region.
After that, the decision parameter is compared to a threshold λWaveletfire . If Efire > λWaveletfire

holds true, the spatial disorder is high enough to be considered as a possible fire region [16]. It
is noteworthy that the wavelet analysis is also used in Section ’Spatial Wavelet Analysis for
Smoke’.

Randomness of Area Size

When comparing a fire area from a video at the time-stamp t and the same fire area from the
same video at the time-stamp t + 1 it can be recognized that the size of the area changes [5].
Wrongly detected fire areas usually do not trigger as large changing areas as a real fire does.
Therefore, this feature can help to distinguish between a true-positive (fire correctly detected)
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and a false-positive (fire detected but there is no real fire in the scene). The degree of change can
be measured by

∆Ai =
|Ai −Ai−1|

Ai
. (2.23)

The result is a normalized value for the amount of change that happened between frame(i-1),
where an possible fire area with the size Ai−1 (counting the fire-pixel candidates) is detected,
and frame(i) where an area with the size Ai is identified as a fire region. If the degree of change
∆A is above the decision threshold λA, the area is marked as a potential fire region [5]. Figure
2.14 shows the change of the fire area between frame(i-1) and frame(i). In this case, the size
changes from Ai−1 = 1692 pixels to Ai = 2473 pixels, which results in a ∆A = 0.316.

Figure 2.14: The difference of the area size between frame(i-1) and frame(i), leading to a change
from Ai−1 = 1692 pixels to Ai = 2473 pixels [5].

Boundary Roughness

Because the shape of fire changes randomly [5], another feature of interest is the roughness
or randomness of the shape of a fire region. Therefore, in [5] a roughness descriptor BR is
defined as the ratio between the perimeter of the potential fire region and the smallest convex
hull surrounding this area. If BR exceeds a decision threshold the examined region is considered
to be a fire region. Figure 2.15 shows a fire region marked in green with its smallest surrounding
convex hull.

Fire Growth Rate

As mentioned in [45], the growing rate of fire is dominated by the airflow around it and its
fuel type. Generally, the size of the fire region changes randomly but with an overall growing
behavior over time. Let mi be the amount of detected fire pixels for the current frame, and mi+1

the quantity of fire pixels from the next frame. If the statement mi+1 > mi is true for more than
g times (in an interval t) the detected region can be considered as growing and therefore as a real
fire region. The parameters g and t are evaluated by statistical data provided by experiments.

20



Figure 2.15: Due to the random shape of fire, a shape descriptor is calculated by using the ratio
between the perimeter of the potential fire region and its smallest convex hull surrounding this
area [5].

Spatial Distribution of Fire

Fire in human recorded videos (for example newscast-videos) is usually the most significant part
that want to be captured in a shot. Therefore, the fire region itself is usually close to the center
of the video-frame when using handheld cameras. In [5], fire regions were manually segmented
from 120 frames. After that, a 3D representation s was generated showing the distribution of
the fire color pixel by equation s =

∑120
i=1 framei. Figure 2.16 shows the generated 3D image.

It can be observed that the probability for a fire (in videos recorded manually) is higher if the
detected fire area is in the center of the video-frame. Therefore, the position of potential fire-
candidate pixels is used as a feature. However, this statement holds not true for videos from for
example surveillance cameras as mentioned in [5]. Therefore, this feature is not useful for an
automatic detection of an fire incident through static cameras.

Combined Features

All features can be combined or executed consecutively in a pipeline. A simple form could be

• Generate a binary image of each frame through the pre-condition ’Color’ as described in
Section ’Color Range’

• Refine this binary image through using the restrictions known from Section ’Skewness’

• Refine the outcome through ’Randomness of Area Size’

• Finally refine that outcome with the restrictions described in Section ’Surface Coarseness’

Borges and Izquierdo [5] are proposing a consecutive execution of features with hard decision
rule for each value V < λfeature [5], where possible fire candidates are estimated for each
feature. The final fire region is the intersecting set of a frame thresholded by all features. The
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Figure 2.16: A 3D representation of the spatial distribution of fire in human recorded videos
such as used for newscast. It can be clearly seen that the fire itself is usually the most important
part of the video an therefore placed near the center of the video [5].

pipelining method leads to a speed advantage, because only potential fire pixels estimated from
the previous feature are used for the next stage (instead of defining them with each feature again
and again for each pixel). A disadvantage is that it is sufficient that only one feature has a false-
negative detection to dismiss this part as a fire region. However, Borges and Izquierda are using
a Bayes classifier in the end in [5].

2.1.3 Fire Feature Extraction using Time-of-Flight Cameras

In this section, Time of Flight (TOF) cameras are introduced to allow a deeper understanding of
the features already used by Verstockt and De Potter in [29] for fire-detection using a TOF 3D
sensor. A TOF camera tries to estimate a depth map of a monitored scene using Infrared Light

(IR). It is noticeable that the working principle is different than the structured light method -
where a defined light pattern is projected by the sensor and the depth is calculated by detecting
parts of the pattern with additional triangulation - used by sensors like the Microsoft Kinect or
the ASUS Xtion Pro. In this section, the working-principle of TOF cameras is described. After
that, a method for detecting fire is examined. The TOF camera uses its IR-light to illuminate
the scene, so the camera itself is surrounded by IR-Light-Emitting Diodes (LEDs) as shown in
Figure 2.17. Based on frequency modulation, all IR-LEDs are flashing. The distance d to an
object in front of the camera is calculated to through the time difference ∆t and the speed of the
used signal, in this case the speed of light c ≈ 3 ∗ 108m/s, leading to equation d = c ∗∆t/2.
This principle can also be seen in Figure 2.17. The second image (besides the depth-image) a
TOF camera generates is the so called amplitude image. It represents the strength of the received
IR signal. The third image is a common RGB image of the scene [29].
Some of the advantages of TOF cameras are [29]:

• Due to the fact that TOF cameras are using their own invisible IR light, they are not sen-
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Figure 2.17: The working principle of a time-of-flight camera. Infrared light is emitted by
LEDs surrounding the camera. The time difference between sending the IR light and receiving
its reflection is measured. The distance (depth d) (to the object that had reflected the light) is
calculated by d = c ∗∆t/2 [29].

sitive to shadows or light changing conditions. This helps a lot when using TOF cameras
for example for motion detection [29]

• There is not much post-processing needed, so TOF cameras can be used for real time
applications [29]

• The depth map can help do separate objects that overlap or occlude each other [29]

• Low price compared to other IR sensors [29]

But there are disadvantages, too [29]:

• Low resolution. An average TOF camera has a resolution of about 176×144 pixels. How-
ever, it is quite certain that the resolution will increase the next years, as it has happened
in digital imaging [29]

• Measurement artifacts: An object far away from the camera can not be illuminated enough
by the IR LEDs, so it leads to poor measuring results [29]

• Fast motion in a scene can also lead to measuring artifacts [29]

• If an object is far away, artifacts can occur, because they lie out of the non-ambiguity range
of the sensor leading to a out-of-phase signal an therefore to unreliable depth maps [29]

• TOF cameras have a high power consumption, because they use active illumination [29]

However, fire itself emits infrared light, which leads to a lot of measuring artifacts. Usually,
this influence is greater for the depth map than for the amplitude image. So if a TOF camera
provides both, depth map and amplitude image, it is recommended to use the amplitude image
only, as mentioned in [29].
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Time-of-Flight Detectors - Amplitude Image

The Time of Flight (TOF) camera emits infrared (IR) light and measures the time it takes to
receive the reflection of it again to calculate a corresponding depth map. The amplitude image
(also called intensity image) on the other hand, does not represent the elapsed time - it represents
the intensity of the IR light received. The basic idea is that the intensity of the received IR
light decreases with the distance of the object that had reflected it. Figure 2.18 shows such an
amplitude image and the resulting ranges calculated from it.

Figure 2.18: Left: a RGB frame, Middle: an amplitude image from the similar scene, showing
the intensity of the received infrared light, Right: the calculated depth for the scene [32].

Amplitude Disorder Detection

Fire itself emits IR light and causes therefore artifacts in the amplitude image [29]. Those
artifacts show a high amount of disorder, as shown in Figure 2.19. To detect this disorder, the so

Figure 2.19: Fire that causes a high amount of disorder in the corresponding amplitude/intensity
image [29].

called Accumulated Amplitude Difference AFDamp
n [29] is calculated by equation

AFDamp
n = ⌊|F amp

n − F amp
n+1 |+ |F amp

n − F amp
n−1 |⌉ (2.24)
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It is a measurement for the difference between the amplitude image of the current frame F amp
n ,

and the amplitude image of the previous frame F amp
n+1 and the next amplitude frame F amp

n+1 respec-
tively. Through rounding the two absolute differences, this method is able to distinguish between
(fast moving) fire and (slow moving) non-fire objects [29]. However, a problem arises with slow
moving objects close to the TOF sensors, because a high amount of disorder is received at the
boundaries of these objects [29].

Discrete Wavelet Transformation of Amplitude Images

The discrete wavelet transform helps to identify areas with high contrast (e.g. boundaries),
through scanning an image horizontal, vertical and diagonal. This conversion to the wavelet-
domain can be used to eliminate the problem with the disorder generated by ordinary (non-fire)
objects, as mentioned in Section ’Amplitude Disorder Detection’. Figure 2.20 shows the high
values caused by fire in the discrete wavelet transformation of the amplitude frame. This high

Figure 2.20: A captured amplitude image frame. The discrete wavelet transformation shows a
high amount of disorder in the horizontal, vertical and diagonal analyzed sub-images, respec-
tively [29].

values in each wavelet transformed sub-image are unique for regions with fire. Ordinary moving
objects close to the TOF sensor do not generate such a behavior. Hence, fire is detected, if

DWTR =

{

1, if max(HR)×max(VR)×max(DR) = 1

0, otherwise.
(2.25)

where HR, VR and DR are the values for the horizontal, vertical and diagonal discrete wavelet
transformations of Region R and is set to e.g. 1 if there are high values represented in all three
discrete wavelet transformations. DWTR generates a binary image where flame candidate pixel
have the value true [29]. In [29] it is mentioned that the depth map of a TOF camera is no
reliable source for fire detection. The decision to use the depth-map for the method proposed
in this thesis, regardless the previous results provided by [29], was made, because peripheral
devices like the ASUS Xtion Pro use a different method to estimate the depth-map, namely the
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Structured Light Imaging. However, this method provides useful information for e.g. a multi-
sensor fusion.

Multi-Sensor Fusion

When using multiple sensors, e.g. a RGB sensor and a depth-sensor, and therefore usually
multiple different approaches to detect fire, it is necessary that these sensors have to be aligned
and (if necessary) correctly rectified. Supposed, fire has been detected with two different sensors
in two different ways respectively, for example Sensor 1 called FireRGB

n for the fire detection
using a RGB camera and calculating corresponding features, and Sensor 2 called FireAMP

n for
the fire detection through an amplitude image approach. Each binary image consists of pixel
considered as fire marked by 1, and pixel considered as no-fire represented by 0 values. The
fusion of the aligned (!) images takes place through using a logical AND operator, which leads
in this case to equation

FireALL
n = FireRGB

n ∧ FireAMP
n , (2.26)

where FireALL
n represents the final output frame of detected fire pixel [29]. Figure 2.21 shows

such an overlap detection by combining the binary-images provided by two different sensors.

Figure 2.21: Left, the output (candidate region) of the fire detection algorithm using a RGB
camera. The illustration in the middle visualizes the binary image, resulting from analyzing
the amplitude image provided by the detection algorithm of sensor 2. The right side shows the
resulting frame, in this case the combination by a logical AND operator [29].

2.1.4 Features for Smoke Detection in Videos

Smoke can be used as an early detector, for indoor purposes or for large area outdoor purposes,
like in a forest fire detection through video analysis, as shown in [42]. In this section, different
smoke features are described.

Smoke Color

Smoke is composed of small particles from the completely burned charcoal on the one hand
and not completely burned dust on the other [21]. The appearance of the smoke depends on
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different factors, like the amount of oxygen in the air, the heat of the fire, and so on. The smoke
color ranges from white-blueish to white when the smoke temperature itself is low. The color
range is more black-grayish to black, when the temperature increases until the material catches
fire. Therefore, two color ranges are used as a smoke-feature [21]. Figure 2.22 shows the two
different types of smoke - light and dark smoke.

Figure 2.22: Two possible colors of smoke - light gray smoke (left) and dark-gray smoke (right)
[21].

Static Analysis - Chroma

The most common smoke shows a wide range of grayish colors, as shown in Figure 2.22. It is
mostly light gray or dark gray [21]. In the RGB color space, a gray color means an equal amount
of each color, which means that the values of all three color channels (red, green and blue) have
to be equal. If the values of each color channel would be perfectly equal that would result in
HSI values with H = 0 and S = 0, so only resulting in different values for I (see Equations
(2.10), (2.11), (2.12) and (2.13) for details). In fact, smoke colors extracted from videos are not
exactly equal in all three color channels, with an allowed small difference ǫ [21]. So smoke is
recognizable through the I channel only, given different thresholds for light or dark gray smoke.
As mentioned above, the distribution in the color channels is just nearly perfect, and also a small
variation in only one of the three color-channels is sufficient to lead to big changes in the H
or the I channel. This means that three rules are necessary to define if a pixel is either smoke
colored or not - one rule for each channel. The first rule defines that the three color values
are nearly equally distributed, which leads to the constraint that R ± α = G ± α = B ± α,
where α defines a range of tolerance [45]. The second restriction is that the intensity-value I
(from the HSI color space) has to be within two ranges, either inside the light gray range or the
dark gray range as defined in [21]. This leads to two more decision functions λLightGray1 ≤
I ≤ λLightGray2 and λDarkGray1 ≤ I ≤ λDarkGray2, where λLightGray1 and λLDarkGray1

are the lower thresholds for the two intensity ranges and λLightGray2 and λLDarkGray2 define
both upper boundaries. In [21], values for the tolerance α and all four thresholds are estimated
through evaluating the statistical data provided by their experiments, leading to a value α =
[15; 20] and values for the dark gray range from 31%(=λDarkGray1) to 59%(=λDarkGray2) and
a light gray range from 59%(=λLightGray1) to 86%(=λLightGray2), finally leading to the two
intensity ranges as shown in Figure 2.23.
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Figure 2.23: The two HSI intensity ranges for light and dark smoke as estimated in [21].

Disorder Measurement

The movement of smoke is called smoke dynamics [45]. The main factor for the movement of
smoke is simply controlled by the condition of airflows nearby [45]. So the shape of smoke is
often changing rapidly over time. The disorder of growth can be used, to distinguish between
smoke and smoke colored objects. This disorder can be described as the change of the pixel
quantity through time. Using two (through color constrains restricted) smoke images, the differ-
ence between those two consecutive frames can be used to measure the degree of change. So if
the value

∆S =
|SDt−1 − SDt|

SDt
(2.27)

is over a threshold λSD it is considered to be real smoke. SDt is calculated by the amount of
smoke colored pixels from frame t and frame t − 1, leading to SDt = St(x, y) − St−1(x, y).
It is noticeable that St(x, y) and St−1(x, y) are the smoke images itself, while SDt and SDt−1

are the particular measurements of the differences between two frames. The value for λSD has
to be estimated through experimental results [45].

Adapted Disorder Measurement

The in Section ’Disorder Measurement’ described feature is further improved in [21]. Smoke
changes its shape in a nearly random way, so the detection of e.g. a specific shape would not
make sense. Hence, a improved disorder measurement in comparison to [45] is used. Instead of
measuring the quantity of smoke pixels the authors of [21] measure the enlargement of the area
for an extracted smoke region. The proposed decision rule is

∆S2 =

∑n
1 CIRn

|SMP |
, (2.28)

where CIRn defines the circumference of the detected smoke region n, and |SMP | is the
cardinality of smoke pixels detected (the amount of smoke pixels detected). The value of ∆S2

can be compared to a disorder threshold λSD2. If ∆S2 ≤ λSD2 = true, then it is considered
as a real smoke. However, the variable λSD2 depends on various criteria and should also be
estimated though statistical data from experiments [21].
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Smoke Growth Rate

The growth rate of smoke is usually larger than the growth rate of the fire itself [21]. If an amount
of ni potential smoke pixels is calculated for the frame t and ni+1 potential smoke pixels are
counted in frame t + 1, a simple form (to see if the smoke-region is growing) is provided by
counting and comparing these quantities for h times. So if

nt+1 > nt + α, (2.29)

where α is a chosen tolerance, is satisfied for h times, a growing behavior of the detected region
can be assumed. The value of h can be estimated through experimental results [45].

Adapted Smoke Growth Rate

A simple measurement for the growth rate is proposed in Section ’Smoke Growth Rate’ by
Equation 2.29. In [21], further improvements to the decision rules and equations are made and
the increment of the smoke area is measured by

∆Ai =
dA

dt
=

Ai+k −Ai

ti+k − ti
, (2.30)

where Ai is the size of the smoke area at time ti. If this feature is used in computer vision, the
frame number can be used instead of the timestamps ti and the amount of pixel can be used
instead of the area Ai. So Equation 2.30 can be rewritten as

∆Ai =
dP

dt
=

Pi+k − Pi

(i+ k)− i
, (2.31)

where Pi is the cardinality of smoke colored pixel for frame i and therefore ∆A measures the
ratio of change for the time interval between frame i and frame i+ k. To get meaningful results,
the average smoke rate is calculated through

∆Ā =
1

n

n
∑

i=1

∆Ai, (2.32)

where n is the number of considered growth rates. In [21] it is mentioned that exceeding the
threshold only once is an insufficient constraint to give reliable results. Therefore, the smoke
detection rule λAlow

< ∆Ā < λAhigh
has to be true for Nd times to be regarded as real smoke,

where λAlow
and λAhigh

are the low-bound and high-bound thresholds of the growth rate.

Upward Characteristics

In most cases, smoke is continuously ascending through the hot airflow beneath it [23]. Using
a motion vector, which is automatically calculated in for example MPEG-x compression (for
details the reader is referred to [24]), the direction in which this considered Macro Block (MB)
is moving can be identified. This direction is calculated through

ϕMB = arctan

(

MVy

MVx

)

, (2.33)
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where MVx and MVy define the horizontal and vertical parts of the movement. If the calculated
angle ϕMB is above a decision threshold λϕMB

, the motion of this block is considered as upward

and therefore marked as a possible smoke region [23].

Spatial Wavelet Analysis for Smoke

Smoke, contrary to fire, does not generate high spatial disorder inside its region. So, due to
the fact that smoke continuously covers areas in the background - and therefore smooths out
for example edges [13], the spatial wavelet analysis for smoke measures the decreasing amount
of disorder (other than proposed in Section ’Spatial Wavelet Analysis for Fire’, where only a
high amount of disorder is used as an indicator for fire). Figure 2.24 shows a frame with its
corresponding sub-images, each generated by a single-level wavelet transformation. Please note
that the contrast of the three sub-images from high-low pass (HL), low-high pass (LH) and high-
high pass (HH) have been artificially enhanced to allow a better visual distinction.
All three sub-images (HL, LH and HH) are combined in a single sub-image, using the equation
wn(x,y) = |LHn(x,y)|

2 + |HLn(x,y)|
2 + |HHn(x,y)|

2 to generate a single value for each pixel
for the composite image. In this case, sub-images are computed either from the luminance (Y)
image of the video, or considering all three color-channels red, green and blue in the RGB color
space (in contrast to the detection of fire, where only the red color-channel is used). After that,
the generated sub-image wn, which contains the detected high frequency information, is divided
into blocks of the size K1,K2. The energy en(l1,l2) of each block is calculated by

en(l1,l2) =
∑

(x,y)∈Ri

wn(x+ l1K1, y + l2K2), (2.34)

where Ri represents all pixels inside the block of the wavelet sub-image within its size (K1,K2).
In [13], the block size 8× 8 is considered as sufficient.
At the beginning, all local energy values en(l1,l2) are calculated to receive values for the back-
ground image, which can be compared to the subsequent frames later on. If the value of en(l1,l2)
decreases, compared to the estimated background value eB(l1,l2), the edges represented in this
region do not appear as sharp as in the background image. This could mean that there is smoke
covering those details in the (l1, l2)

th block.
But if an local extrema in the sub-image appears or disappears instantaneous, this behavior could
be due to the existence of a moving object in the scene. In case of smoke inside a block, the
composite wavelet value wn(x,y) would decrease in a slowly manner. So for this case, estimating
a slow decreasing behavior can be done with two thresholds, where condition 1 > T1 > T2 > 0
must be true. To recognize smoke, the equation

1 > T1wBn(x,y) > wn(x, y) > T2wBn(x,y) > 0 (2.35)

holds true, where wBn(x,y) is the composite wavelet value of the estimated background image
and wn(x, y) is the composite image of the current frame [13].
Figure 2.25 shows a frame that includes smoke, with its corresponding sub-images, each gen-

erated by a single-level wavelet transformation. The decrease of the detected edges can be seen,
by comparing these three wavelet-transformed sub-images with the wavelet-transformed sub-
images from Figure 2.24.
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Figure 2.24: Left: the original frame. Right: the sub-images from the wavelet transformations,
namely the high-low pass (HL), low-high pass (LH) and high-high pass (HH). (After applying a
subsequent contrast enhancement) [13].

Figure 2.25: Left: the original frame. Right: the sub-images from the wavelet transformations,
after a subsequent contrast enhancement. By comparing it to Figure 2.24, the decreasing variety
of pixel-values in each sub-image can be recognized [13].
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2.1.5 Decision Fusion

Decision Fusion is the part of fire and smoke detection called that merges the outcome of the
fire and smoke features to the overall decision if an event (for example a fire) is considered as
detected or not detected. In this section, different decision methods are described.

Decision Tree

A decision-tree covers all possibilities and events that can occur [9]. It is the logical repre-
sentation of all possible decisions for a given choice. Therefore, decision-nodes are followed
until a leave-node is reached. A simple query would lead to for example either true or false as
an answer [9]. Figure 2.26 shows a simple one-sided decision tree, which evaluates if fire is
represented by examining three different features.

Figure 2.26: A simple decision tree that decides, if fire is represented by using the information
provided by three different features. The left arrow of each decision represents true while the
right arrow represents false.

Voting Based

Typical voting systems can be: unanimity voting, majority voting or m-out-of-n voting [16]. In
an unanimity voting based system, every feature has to detect e.g. fire for a given pixel leading
to pixelfeature(x,y,n) = 1. If every feature recognizes fire at the same pixel, the vote for fire or not is
unanimous and therefore a fire alarm is given. In majority voting based systems, more than half
of the features have to detect fire for a given pixel to raise a fire alarm. In a m-out-of-n voting
algorithm a choice is accepted if at least m-features (out of n used features) decide that a fire is
detected. An variant of the m-out-of-n algorithm is the T-out-of-v voting method [16]. Here, the
output is considered as accepted, if

H =
∑

i

wivi > T, (2.36)
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where every wi is a user defined weight, every vi is the result of the feature i and T is a user
defined threshold. The results of each feature can have the binary values 0 and 1, set accordingly
if a fire was detected or not. For example if one used feature is moving, a pixel p(x,y) is marked
as 1 if a motion at this pixel was detected. The next feature could be the color. If the color of
this pixel is within the fire range, as proposed in Section ’Color Range’, the value for this feature
and this pixel would also be 1, represented by pixelColor

(x,y,n) = 1. The advantage of this method
is that the influence of more unreliable features can be decreased. In a unanimity based voting
system, just one single feature that does not detect fire leads to a false negative [16].

Bayes Classifier

A Bayes-Classifier can be used to separate two different classes [5]. Regarding smoke or fire
detection, different features are combined to a vector. After that, the Bayes Classifier calculates
the variance and the mean of each class. To achieve this, sample images (containing images
representing fire - called positives - and images that do not contain fire - called negatives) are
used to train the classifier accordingly [5]. Figure 2.27 shows how a trained decision function
separates fire images from non-fire images. Here, the features Boundary Roughness, Normalized

Area Change (Randomness of Area Size) and the Variance (Surface Coarseness) are used as
features.

Figure 2.27: Illustration of a decision function to separate images containing fire from images
that do not contain fire, calculated by using the three different features Boundary Roughness,
Normalized Area Change (Randomness of Area Size) and the Variance (Surface Coarseness) [5].
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2.2 Related Work

In this section, selected methods for fire and smoke detection are explained in detail, including
the method using the Time-of-Flight (TOF) cameras for the detection of fire incidents. This
shows how the presence of fire and smoke is detected by different approaches using the features
explained before.

2.2.1 Real-Time Fire and Flame Detection

In [16], moving pixels are estimated, using the (adapted) motion estimation method described
in Section ’Frame Differencing’, where a pixel is considered as moving, either if its brightness
differs from the brightness of the previous frame, or if its brightness differs from an estimated
background (see Equation 2.6 for details). Regions of moving pixels are extracted using a con-
nected component labeling algorithm, as proposed in for example [22]. After that, fire colored
pixels are detected. However, in this case a Gaussian Mixture Model is used instead of static
thresholds for each color-value. (For details see Section ’Color by Gaussian Mixture Model’). In
addition, the temporal variation is calculated using the method described in Section ’Temporal
Wavelet Analysis’. If the two estimated wavelet sub-signals show an oscillating behavior, this
pixel is further processed. The fourth and last step - to recognize if fire is represented - is de-
scribed in Section ’Spatial Wavelet Analysis for Fire’. Here, the spatial variation of the detected
region is measured. If the pixel-value disorder is high enough, this region is considered as a
potential fire region. Note that this last part is a 2D analysis using the height and width of the
analyzed region as dimension, while the method described before (in Section ’Temporal Wavelet
Analysis’) is the analysis of each pixel separately over time. The final decision if a fire is detected
is made by the T-out-of-v voting method, described in Section ’Voting Based’. Each described
feature estimates for each pixel p(x,y,n) if there is a fire detected or not. This means for example

for the third feature - called the zero crossings rate - a resulting value pixelZeroCrossings
(x,y,n) = 1,

if the amount of zero crossings of both sub-signals dn(x,y) and en(x,y) are above a threshold,
and 0 otherwise. The proposed method was tested with 61 different videos, containing a total of
83.745 frames. In 19 of the scenes fire occurs. The method was able to detect fire in all scenes,
leading to a scene-detection-rate of 1.0. Only 9 frames of one sequence have been wrongly de-
tected as frames containing fire, leading to a false-positive rate of 0.001 [16]. Figure 2.28 shows
the result extracted out of two frames from different scenes. On the top, each considered frame
can be seen, on the bottom, the same frame is shown, with possible fire regions marked in green.

The proposed method provides good results, but works in real-time only when using videos
with 10fps. The detection of fire-colored object works well - in a video containing a person
dancing with a fire-colored T-Shirt, only 9 frames have been wrongly detected as fire, while
comparable methods were leading to 107 and 86 wrong detected frames [16]. However, the
used videos had only a frame size of 320 × 240 pixel captured at 10 frames per second.
The average processing time per frame was 16.5ms. With higher resolutions or frame-rates the
processing time would probably increase to a non real-time amount.

34



Figure 2.28: On the top: sample frames from two different movies. Bottom: the same frames
processed with the proposed method, where all detected fire pixel have been highlighted in
green [16].

2.2.2 Fire Detection in Newscast Videos

The method proposed in [5] aims on the automated classification of newscast content. One
special characteristic of this technique is that it does not try to identify single fire pixels in a
given video frame, just if a fire is represented in the overall frame or not. Another one is that -
due to the fact that newscast-videos often rely on handheld cameras [5] - the field of view of the
camera can change during a video-shot (when the camera is rotated, for example). The essential
features of fire recognition in [5] are color, motion and the geometry of the fire. The color of fire
is considered to be the strongest single feature to detect a fire incident in video frames or pictures
[5]. The color range for hydrocarbon flames, which are the most common types of flames, reach
from red to yellow. Color ranges for other flame-types, like blue petroleum gas flames, are
not considered in [5], because the content analysis in newscast-videos aims on detecting fire
catastrophes, for example. The first color-restriction is the same as described in Section ’Color
Based Detection Metric’, where the values of the red, green and blue-color channel are compared
to each other. The second color-feature is calculated by sample pictures to obtain useful values.
For a fire region, as marked in Figure 2.3, the average values and the variances for the red, green
and blue channels are calculated. With these values three Probability Density Functions (PDFs)
are created - one for each channel. An observed pixel is then considered to be a potential fire
pixel, if the combined values of each PDF are exceeding a given threshold. (Note: The PDF is
a Gaussian Model for each color-channel, created by using sample fire pixels from images [5]
and has its maximum value if the value of an analyzed pixel has the same value as the average
value calculated from these sample pictures.) Those two color characteristics are applied on each
frame - every pixel that fulfills these requirements is saved to the Potential Fire Mask (PFM).
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The pixels marked in the PFM are then analyzed further with the other fire features. Due to
the flickering behavior of fire, its size changes over time. Therefore, the normalized change
rate of the fire size is calculated as the second feature, as described in Section ’Randomness
of Area Size’. Because the shape of fire changes randomly, another feature of interest is the
roughness or randomness of the shape of a fire region. Therefore, in [5] a roughness descriptor
BR is defined as the ratio between the perimeter of the fire region in the PFM and the smallest
convex hull surrounding this region, as described in Section ’Boundary Roughness’. Yellow
or orange objects, like traffic signs for example, can produce wrong detected fire candidate
areas. Because fire has a significant amount of different pixel color values, the variability of
the pixel values inside fire-regions can be used as a discriminant. Therefore, the variance is
calculated for potential fire regions, as described in Section ’Surface Coarseness’. Fire regions
in frames show a high saturation in the red color channel. Therefore, calculating the skewness
of the pixels in a fire-area leads to a negative value. As a feature, fire is considered detected
if the value for the skewness in the red channel of the examined pixels is below a decision
threshold, as described in Section ’Skewness’ [5]. In human recorded newscast-videos, fire is
the most important part of the scene. Therefore, the fire area is centered in the video shot, as
described in Section ’Spatial Distribution of Fire’. With this knowledge, a weighting function
for the horizontal and vertical position of a pixel is defined. If the result of this function is
below a decision threshold for a given pixel, this pixel is set to 0 (in the PFM created by the
feature ’Color Based Detection Metric’) and therefore no longer considered as potential a fire-
pixel in [5]. For each frame a PFM is created by the rules described in Section ’Color Based
Detection Metric’ and refined by the rules described in Section ’Spatial Distribution of Fire’.
In addition, a vector d is provided by the remaining features, namely ’Randomness of Area
Size’, ’Boundary Roughness’, ’Surface Coarseness’ and ’Skewness’. With these values a Bayes
classifier is trained, using manually selected frames containing fire (positives) or not containing
fire (negatives), as described in Section ’Bayes Classifier’. If this trained Bayes classifier is used
- to determine if fire is represented in a video frame or not - the naive thresholds from each feature
are not applied as a decision rule anymore, only the overall outcome of the Bayes classifier [5].
To evaluate the proposed method, a database containing different newscast-videos has been used
in [5]. It contains shots with wild-land and residential fire and burning buildings. Also, records
of objects that have a likewise appearance as fire (like sunsets) were used to evaluate this fire
detection method. The final database for testing contains 798, 000 frames and each frame has
been classified as contains fire or does not contain fire. The overall method, using all features
combined, achieves an average false-positive rate (fire is wrongly detected in a frame) of 0.68%
and a false-negative rate (fire is not detected in a frame) of 0.028% [5].

This method provides useful features. The detection rate achieves useful values, even due to
the fact that camera motion is allowed in this method.

2.2.3 Fire Detection through Time-of-Flight Imaging

The method proposed in [29] is of special interest, because the basic idea is to merge fire
detection from two different branches; from the two-dimensional video signal and the three-
dimensional image received from a Time-of-Flight (TOF) camera (see Section ’Fire Feature
Extraction using Time-of-Flight Cameras’ for details). The proposed method uses the amplitude

36



image and the RGB video signal only - the additional available 3D depth map is considered as
unreliable in [29] and therefore not used. Figure 2.29 shows the depth map, the amplitude image
and the RGB image captured by a TOF-camera. The idea behind using two different sensors

Figure 2.29: From right to left: depth map, amplitude image and RGB video frame of the same
scene. The pictures on top are showing an indoor situation, the middle row shows a indoor
situation where smoke has already begun to arise. The bottom row shows a outdoor situation.
Explanatory notes are made on the left side of each row [29].

is that mis-detections in the video analysis can be corrected through the additional analysis of
the amplitude image (and vice-versa). The analysis of the visual information and the amplitude
image happens parallel, as shown in Figure 2.30.
The visual part is implemented as a fire detector with low computational costs [29]. First, mov-

ing regions are estimated through ’Background Subtraction’. Then, a morphological opening
is performed to remove detected noise. After that, the used features are Spatial Flame Color

Disorder (similar to the approach described in Section ’Color Range’), Principal Orientation

Disorder (as described in [18]) and Bounding Box Disorder (similar to the method from Sec-
tion ’Randomness of Area Size’). The result is a binary image, where detected fire regions are
labeled by Flamesvisualn = 1, where n represents the frame-number. The amplitude image
on the other hand uses other features to detect possible fire candidates. Fire itself leads to fast
changing parts in the amplitude image. So, the amount of disorder is measured over three frames
consecutively, as described in Section ’Amplitude Disorder Detection’. Through rounding the
calculated value, as shown in Equation 2.24, it ensures that areas with fast changing amplitude
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Figure 2.30: General scheme of the parallel fire detection, executed on the visual image and the
amplitude image [29].

images get a value < 0 for their corresponding pixel. The feature used next is described in
Section ’Discrete Wavelet Transformation of Amplitude Images’. Here, areas that lead to a high
contrast in the image (caused through for example borders from an object) lead to a peak inside
the horizontal, vertical or diagonal Discrete Wavelet Transformed (DWT) sub-image. As de-
scribed before, fire leads to a high disordered region inside the amplitude image, and this can be
seen in the transformed sub-image. A binary image, showing possible fire candidates recognized
through wavelet analysis, is created using Equation 2.25 [29]. The final binary image, for the
fire detection through amplitude image, is build by the decision rule

Flamesamplitude
n =

{

1, if AFDamp
n > 0 AND DWT = 1

0, otherwise.
(2.37)

Here, AFDamp
n is the accumulated amplitude-difference, calculated out of three frames, while

DWT = 1 if the horizontal, vertical and diagonal discrete wavelet transformed values exceed
a decision-threshold. For the last part, regions containing both, a detected fire in the visual and
in the amplitude image, have to be calculated. As described in Section ’Image Registration’,
both binary images have to be registered to do this. The visual detector provides a binary map
Flamesvisualn , where all fire candidate pixel are marked as 1. In addition there is the binary
image called Flamesamplitude

n for the amplitude-image detection algorithm. To detect the region
overlap, a logical AND operation is performed. If this merged image contains one or more pixel
with the value 1, a fire alarm is given (details for the fusion are described in Section ’Multi-
Sensor Fusion’). The experimental results show a fire detection rate between 89% and 95%,
using the evaluation metric

DetectionRate =
#DetectedFrames−#FalseDetectedFrames

#GTFireFrames
, (2.38)
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where the number of ground-truth frames (#GTFireFrames) has been manually counted.
One relevant fact of the experimental results is that there is no false-positive detection in any
of the four analyzed videos. One explanation for missed frames that are containing fire is that
the resolution of the used TOF camera is rather small, leading to miss for example a fire at the
beginning because it’s simply to small to be recognized [29].

This method uses the amplitude image only, which shows the intensity of a received infrared
light. Fire itself emits IR light, so it is possible to detect flames even outside of the operating
range of the TOF camera. However, therefore the depth map is not used. Because of the IR
emitting behavior of flames, it would also be interesting to turn of the active IR illumination
of the TOF camera to see if fire could be detected this way. This would eliminate the problem
with artifacts on the boundaries of fast moving (non-flame) objects and decrease the power
consumption.

2.2.4 Early Smoke Detection Algorithm

The first step done for smoke detection in [21] is a segmentation that extracts all moving re-
gions through frame-differencing, as described in Section ’Moving Pixel Detection’. After that,
smoke-colored pixel are extracted through chromatic feature analysis, as described in Section
’Static Analysis - Chroma’. After checking two dynamic features, the disorder as proposed in
Section ’Adapted Disorder Measurement’ and the growth rate from Section ’Adapted Smoke
Growth Rate’, a smoke alarm is given or not. Figure 2.31 shows a the masked frame showing
only pixels that fulfill these restrictions. The source frames contain different fuel types, the fire
on the upper picture shows the light grayish smoke generated by burning papers, the lower pic-
ture shows the dark grayish smoke from burning wood. Figure 2.32 shows the flow chart for
this form of smoke detection. The decision if smoke is detected is made by evaluating the two
dynamic features: the growth rate and the disorder. The experimental results in [21] are ob-
tained by using a single video. A person with grayish-colored clothes moves through the scene.
After using the features motion detection and chromatic features (see Figure 2.32) this person is
detected as a potential smoke region. After the dynamic analysis these false classification dis-
appears. Figure 2.33 shows the single stages of this method; the top row shows three different
frames from the original video, the middle row shows the same frame after the motion detection

and static color analysis. The bottom row shows the revealed smoke regions, after executing
the whole algorithm. On the bottom the number of recognized smoke pixels per frame is vi-
sualized, showing quite well the typical expanding behavior the smoke. This approach shows
a useful way to detect smoke. Because non-fire-candidate pixels are reduced early in the stage
(only moving pixels with a gray color are considered for further analysis) it is also useful for a
real-time analysis.
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Figure 2.31: Top, left: Smoke generated by burning papers. Right: the same frame masked
by the corresponding binary image. Bottom: Smoke generated by burning wood and its corre-
sponding masked frame [21].

Image sequences

Segment moving regions by frame difference

Extract smoke-pixel by chromatic features

Real smoke?

Give smoke alarm !

yes

no

Figure 2.32: Flow chart of the smoke detection as described in [21]. Real smoke? is checked
by the two dynamic features.
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Figure 2.33: Top row: original frames from the video. Middle row: the same images after the
static analysis. Bottom row: the final result of the smoke detection algorithm. Bottom picture: a
histogram showing the amount of detected smoke pixels per frame. The blue arrows indicate the
position of the sample images shown. The overall picture shows the typical expanding behavior
the smoke [21].
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2.2.5 Vision Based Smoke Detection Algorithm

In [23], fire is only indirectly detected through recognizing smoke incidents. The proposed
method of detection is only suitable for videos, which have been coded in MPEG-x or H.264/AVC
format. The reason for that is that this algorithm needs an calculated Motion Vector (MV) for
each Macro Block (MB), which is intrinsic for both codecs [23]. First of all, all regions with
a MV smaller than a threshold are discarded, leaving only areas where motion was detected as
described in Section ’Movement Detection using Motion Vectors’. Second, there are chromatic
restrictions, as in Section ’Static Analysis - Chroma’, to limit these valid areas further. Least
of all, a MB is only considered as containing smoke, if the last rule, as described in Section
’Upward Characteristics’, holds true. Figure 2.34 shows corresponding flow chart for smoke de-
tection using the method from [23]. Each decision step of this pipeline is shown in Figure 2.35,

Image sequences

Evaluate moving blocks through MPEG motion vector

Chromatic and intensity decisions

Motion direction of valid blocks

Frame with detected smoke regions !

Figure 2.34: Flow chart of the smoke detection as described in [23].

the first picture shows the frame that is evaluated. After applying the constrains - regarding the
length of the MV from the corresponding block - the second picture is constructed. It can be
clearly seen that also non smoke blocks, for example calculated for the trash bin, are marked as
valid. The third picture includes the chroma-decision, where only blocks within a specific color
range are further evaluated. The last picture shows the final output of this method, including the
last decision parameter that evaluates the direction of the movement of each valid block.

This paper proposes an innovative and fast method to estimate moving regions and their
direction in videos. Problems occur if the smoke direction is affected by airflow, leading to
moving directions other than upward.

2.2.6 Forest Fire Smoke Detection in Video

In [39], a method to detect smoke in large areas is proposed. The ambition is to detect forest fires
automatically through stationary and static cameras, placed on elevated areas such as artificial
watch-posts. Firstly, when the camera is turned on, a background image is saved, representing
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Figure 2.35: From left to right: Original frame, frame after motion detection, frame after
chroma decision, final frame after motion direction estimation [21].

the scenery without smoke. After that, moving areas are extracted using the approach described
in Section ’Background Subtraction’. To get Regions of Interest (ROIs), first erode and dilate
are used to get rid of image noise and to build larger clusters of smoke. In [39], for a video
resolution of 640x480 a filter size of 8 × 8 is used. Next, the number of segments are esti-
mated, using a connected component algorithm such as the one proposed in [22]. After that, the
changing regions are estimated by their minimal rectangle area, using the maximum values of
each detected pixel max(x) to estimate the position of the right border and max(y) to estimate
the value for the upper border of the rectangle. Respectively, the values for the left and bottom
border are calculated using the min(x) and min(y) values of all pixel that have been detected
as moving. Also, a convex hull algorithm (like the gift wrapping algorithm [1]) is used, which
usually defines the area of change more exactly than a rectangle could. After that, the frame
is divided in N subregions, called ROIs. In [39] a 4 × 4 grid is used. A ROI is considered as
changed, if at least 25% of its area consist of gray pixels, estimated through a color estimation
technique similar as the one described in Section ’Static Analysis - Chroma’, and each changed
ROI is marked as a moving region. If one of the N regions is marked as changed for at least 30
frames in a row, a fire alarm is given. If a region was marked as changed, but the counter has not
reached 30, it is reset to 0 again. Figure 2.36 shows this process as a flow chart. In addition, Fig-
ure 2.37 shows an experimental result where smoke was detected. Even smoke that existed from
the beginning (=frame 0) was detected. The images are showing four different timestamps with
the calculated smoke areas, where the first frame 0 was used as the background-image imBG.

One problem is that the background image is only estimated at the beginning of the recording
- it is not adapted over time. So, after some time, even clouds lead to a false alarm regions.
Another characteristic (that leads to problems when using this approach in for example a 24/7
application) is that smoke is not detected without sunlight. Also, the detection of the size of the
minimum bounding rectangle and the convex hull of each moving segment (as shown in Section
’Experimental Results’ in [39]) lacks meaningful results, because even the static feature, namely
if the moving region has a grayish color, is applied afterward. So every tree that is e.g. moving
in the wind, is counted as a detection. However, dividing the image in different regions and
applying the constraint that a smoke alarm is only given, after smoke has been detected for at
least 30 consecutive frames (= 1 second) is a good approach to limit the rate of false-positives.
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Image sequences

Evaluate moving blocks through ’Background Subtraction’

Erode & Dilate
Segmentation

Minimum Bounding Rectangle & Convex Hull Algorithm

Analyze all ROIs Counter for each ROI

counter ≥ 30?

Give smoke alarm !

yes

no

Figure 2.36: Flow chart of the smoke detection as described in [39].

2.2.7 Summary

The basic approach of all fire and smoke detection methods is the same: first, the complexity
is reduced by executing restrictions like color or movement. After that, features are calculated.
With these results, the final decision is made. It is noteworthy that the same type of feature
can be extracted in different ways: e.g. the variety (inherit of fire regions) can be measured
by calculating the variance (called Surface Coarseness [5]) or by transferring the image to the
wavelet domain and executing the Spatial Wavelet Analysis [16]. Another case in point are the
different types of color restrictions [5] [7] [16] or the different ways to detect the flickering
behavior of fire, e.g. through the Temporal Wavelet Analysis [16], the Randomness of Area

Size [5] or the Bounding Box Disorder [29].
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Figure 2.37: Clockwise, starting with the top-left picture: the results of the smoke-detection
after one second, after 20 seconds, after 50 seconds and after 90 seconds [39].
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CHAPTER 3
Methodology

3.1 Hardware Requirements

In this section, the 3D sensor used - namely the ASUS Xtion Pro - is described. After that, the
behavior of this sensor regarding e.g. its image registration, its frame synchronization or the
impact of recording fire and smoke is analyzed further. Firstly, the working principle how depth
is estimated by the ASUS Xtion Pro is explained.

Both, the ASUS Xtion Pro and the Microsoft Kinect are containing two different sensors:
A combination of a RGB and a depth-sensor. The depth estimation method of both sensors is
identical [15] and therefore the working principle of the ASUS Xtion is the same as the principle
for the Microsoft Kinect and vice versa. The Microsoft Kinect was initially developed as an
contactless input-device for the XBOX game console, but was soon used for other areas like
computer-vision and motion-detection, for example. Figure 3.1 shows the Microsoft Kinect and
its components unfolded when removing the cover. The Infrared (IR)-Sensor sends out IR-dots

Figure 3.1: Left: the Microsoft Kinect Sensor. Right: the same sensor without its cover, re-
vealing the emitting IR-projector and the two transceiving sensors: one for the RGB color-
information and one receiving the infrared-light / the emitted pattern [51].
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with a known dot pattern. Due to the fact that the IR-pattern and the geometry between the
IR emitter and the IR transceiver is known, the depths of the illuminated scene are calculated
by searching and matching local dot patterns with subsequent triangulation [51]. This form of
depth-estimation of a scene is called the Structured-Light Technique [47]. Figure 3.2 shows the
emitted IR-pattern of a Kinect, recorded by a IR-sensitive camera. In Figure 3.3 the principle

Figure 3.2: The emitted infrared-pattern of a Microsoft Kinect. The red boxed-area is magnified
and shown on the left side [51].

of the depth-calculation by triangulation and the change of the size of the pattern - depending
on the distance to the sensor - is shown. The distance of the detected local pattern influences
the position of its projection on the Imaging plane and allows therefore the calculation of the
distance between the object that reflects the emitted (local) pattern and the sensor. Figure 3.4
shows the corresponding 3D image to Figure 3.2. The brighter a gray value appears the nearer
a pixel is located to the camera. For pixels that are black, no valid depth could be calculated.
This can happen through e.g. objects that are positioned outside the range-limit of the Kinect
(the recommended range-limit for the depth sensor is 0.8m−3.5m distance [47]) or they do not
reflect an appropriate amount of IR-light [51].

3.1.1 Image Registration

Image registration is used to align two or more images of the same scene [2]. Reasons why
pictures from the same scene differ can be manifold, they could have been taken to different
times, under changing lighting conditions, from different sensors or from different positions.
The registration itself is the determination of an image transformation to align one image (ref-
erence image) with one or more other images (object images). If points (pixels) from view
(called space X) should be mapped to the points of an other view (called space Y ), we need a
transformation T for each point x from X .

x′ = T (x) (3.1)
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Figure 3.3: The change in the patter-size depends on the distance to the emitter. The distance
to the object is calculated by triangulation. The influence of the different depths on the Imaging
plane is illustrated by blue rays [47].

Figure 3.4: The corresponding depth image to Figure 3.2. The depth of the scene is calculated
by using the Structured-Light Technique [51].
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So, the transformation T of a point x generates the transformed point x′. The registration is
successful if x′ is equal to the corresponding point y from space Y . An unbalanced displacement
leads to a nonzero value for T (x)−y. This nonzero value is called registration error [38]. If the
same object is represented in two different images, but on different positions inside each image,
a rigid image registration can be used. Here, the matching of those two images is achieved by
minimizing or maximizing a mutual function for both images to determine the corresponding
rotation and translation parameters. As an example, the sum of squared differences can be used
as a weighting function. A match is found if this function is at its minimum [2]. This method
works well, when images are used that are provided by the same sensor (for example the same
scanner) and is called intra-modality- or simply modality-registration. The alignment of images
from different sources is called multi-modality- or inter-modality-registration. If the matching
by the sum of squared differences does not work, manual identified landmarks can be used to
calculate the needed parameters [2].

So, if two or more sensors are used to detect an event, all sensors must be aligned to the same
area or objects. In this case, both sensors are recording frames, so overlapping these frames
would lead to the effect that the event from sensor 1 ESens1(x,y) should also be triggered on the
same position at sensor 2, as event ESens2(x,y) . When both sensors are aligned, it is possible
to detect events through for example logical operations, as described in Section ’Multi-Sensor
Fusion’. Figure 3.5 shows two alligned frames recorded by each sensor of the ASUS Xtion Pro
as an superimposed image.

3.1.2 Time Difference between RGB and Depth Frames

When comparing or merging the results from multiple sensors, it is important that the time
difference between the measurements of each sensor is as small as possible. In a worst case
scenario, one sensor could recognize an specific event at frame n. If there is a time-shift between
both sensors, looking at for example the same frame number of another sensor could lead to a
non-detection of this event, because this frame was captured after or even before the other frame.
So in this case, the same event already happened for example on a frame that was recorded
before. Here, it should be evaluated how big the time gap between a recorded color frame and
the depth frame is. About 60 seconds have been recorded using an ASUS Xtion Pro. After that,
the time differences between the frame numbers - provided by ASUS Xtion Pro - and the time
differences between the manually counted frames are analyzed - first thing that was recognized
during this analysis is that when comparing a frame that got its frame number assigned by the
Xtion (for example a depth-frame with the assigned frame-number 1816) with the manually
counted frame-numbers only 1809 frames can be found. So, the ASUS Xtion Pro drops frames
itself when the time-difference exceeds a decision threshold (for example a depth frame with
the number 1599 can not be found). Table 3.1 shows selected depth-frames from the analyzed
video. In this case, frame drops only occurred at the depth sensor, meaning that no frame of
the color sensor has been dropped. So for using color frames the equation frame[assigned] =
frame[counted] holds true. This leads to the behavior that when comparing a depth frame
with the frame-number n and a color frame with the same frame-number there can be a bigger
time gap than between the same depth frame and a color frame with a different value (meaning
that the frames with the same number do not necessarily need to be the best match for each
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Figure 3.5: Two frames captured with the ASUS Xtion Pro. Image-registration was enabled
while recording. Top-row, left: The captured RGB-frame. Top-row, right: The captured Depth-
frame. Bottom-row: The superimposed image of RGB- and depth-camera. It can be seen that
for example all edges are correctly arranged on top of each other.

other). This behavior can be seen in Table 3.2, where selected frames are represented. If we
now compare the timestamps of the (assigned) frame-number 1816 for depth and color frames
(leading to a counted frame number of 1809 and 1816, respectively), the resulting time difference
would be |60, 565, 189µs − 60, 831, 540µs| = 0.266351s, which is a gap of nearly one-third
of a second or 8frames, respectively (when recording with 30fps). But comparing the two
(counted) frame-numbers 1816 - for the depth frame (with the assigned number 1823) - and 1816
for the color frame (with the assigned number 1816), the resulting value of the time difference
is |60, 798, 773µs − 60, 831, 540µs| = 0.032767s, which is significantly smaller than the time
difference between two frames with the same assigned number (and less than 1frame using
30fps). Table 3.3 shows the results of both comparisons. To evaluate why and when such a
frame drop occurs, the time differences of all frames used in the record (with a duration of 60
seconds) are analyzed. Here, depth and color frames with the same (manually counted) frame
number are compared. The difference between the two frames (depth and color) over time can be
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Table 3.1: Analysis of depth-frames provided by the ASUS Xtion PRO (including the drop of
frame number 1599). Column Nr[assigned] represents the frame-number given by the ASUS
Xtion Pro. Nr[counted] represents the real frame-number, without gaps resulting from frame-
drops. The timestamp represents the time when this frame was captured.

Type Nr[assigned] Nr[counted] Timestamp[µs])

DEPTH 1597 1591 53,257,323
DEPTH 1598 1592 53,290,692
DEPTH 1600 1593 53,357,431
DEPTH 1601 1594 53,390,800

Table 3.2: Selected frames to analyze the behavior of the ASUS Xtion PRO. Frame-type de-
scribes if this frame was captured by the RGB camera or the depth camera. Nr[assigned] repre-
sents the frame-number given by the ASUS Xtion Pro. Nr[counted] represents the real frame-
number, without gaps resulting from frame-drops. The timestamp represents the time when this
frame was captured. It can be seen that frames from provided by the color-sensor and frames
provided by the depth-sensor with the same frame-number, do not necessarily match best when
compared to the timestamps when they have been recorded.

Frame Type Nr[assigned] Nr[counted] Timestamp[µs])

COLOR 1809 1809 60,596,928
DEPTH 1816 1809 60,565,189

... ... ... ...
COLOR 1816 1816 60,831,540
DEPTH 1823 1816 60,798,773

Table 3.3: Resulting time gaps using either the same frame numbers as assigned by the ASUS
Xtion PRO, or the manually counted frame numbers that compensate dropped frames.

Difference: Seconds Frames

assigned by ASUS Xtion 0.266351s ≈ 1 frame
manually counted 0.032767s ≈ 8 frames

seen in Figure 3.6. As a conclusion, it can be seen that comparing frames with the same frame-
number (assigned by the device itself) can lead to inaccurate measurements. In fact, the time
difference between a depth frame and a color frame (with the same assigned frame numbers)
is linear increasing over time, from 0ms at frame number 0 to approximately 300 ms at frame
2000 using a shutter speed of 30fps. Comparing frames with the same manually counted frame
numbers lead to a better result. But also here, the time difference between two consecutive pairs
of depth and color frames is increasing over time - until a drop of a depth frame occurs, as shown
in Figure 3.6. But here the maximum gap is limited to approximately 1 frame.
It is noteworthy that triggering a frame drop - if the time difference reaches half the frame
rate (≈ 16, 5ms) - would lead to a more precise result, because the maximum value for the time
difference between a pair of depth and color frame would be reduced from +33ms to ±16, 5ms.
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Figure 3.6: Time difference of color and depth frames from a record with a duration of 60
seconds. It can be seen that the time-difference between the frames from the two sensors is
growing over time. Here, the depth frames are captured faster than the color frames - leading to
this increasing time difference. Whenever the time-difference is near the time difference between
two consecutive frames (this would be ≈ 33ms using a capture rate of 30fps, indicated by the
red line) one of the faster depth frames is dropped to reduce the gap between the frames of
the two sensors. These drops can be seen by the vertical lines in the graph, leading to a time-
difference value around 0ms.

3.1.3 Fire Color Range

The color restrictions used for most videos, as described in Section ’Colorhistogram’ and Section
’Color Range’, do not apply for the ASUS Xtion Pro. In fact, fire is recorded as nearly white

pixel. Figure 3.7 shows a frame captured by the ASUS Xtion Pro and a picture from the same
scene taken with a Samsung Galaxy S3. It can be seen that the ASUS Xtion Pro captures fire
with less spatial variability than the Samsung Galaxy S3, for example. Even when disabling the
Auto-White-Balance from the ASUS Xtion Pro, the spatial variation of the fire pixel colors still
remains very low. Figure 3.8 shows the image of a fire taken with disabled Auto-White-Balance.
Due to this reason, the color-values as described in Section ’Color Range’ have to be adapted
to detect fire using the RGB camera of the ASUS Xtion Pro. The color restrictions presented in
Table 3.4 have been identified to represent fire recorded by an ASUS Xtion Pro. (To get more
comparable results it is recommended to set the AutoWhiteBalance()-function to false)

3.1.4 Smoke Color Range

As shown in Figure 3.9, gray pixel have the same values in every color-channel - namely Red (R),
Green (G) and Blue (B) - leading to the condition R = G = B for gray pixel. When observing
smoke recorded by the RGB-Sensor of the ASUS Xtion Pro, a small difference ǫ is allowed
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Figure 3.7: Two images from the same scene, left taken by the RGB camera of the ASUS Xtion
Pro, right taken by the camera of a Samsung Galaxy S3. It can be observed that the ASUS Xtion
Pro records fire as nearly white pixel

Figure 3.8: The image of a fire captured by an ASUS Xtion Pro with disabled Auto-White-
Balance. It can be seen that the color-variation in the fire region is still very low.

between the color-channels. As further described in Section ’Static Analysis - Chroma’ and
paper [21], smoke can be divided into two different color-ranges; Light smoke and dark smoke.
Therefore, smoke recorded by the ASUS Xtion Pro leads to pixel-intensity-values between 230
and 255 when observing light-smoke and between 165 and 192 when observing dark-smoke,
considering the intensity-values (V) from a frame that is converted to the HSV-color space. The
final restrictions for smoke colored pixel recorded by an ASUS Xtion Pro are shown in Table
3.5. Figure 3.10 shows a frame containing smoke recorded by the ASUS Xtion Pro.
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Table 3.4: All five restrictions to extract fire-colored pixel from a frame recorded by an ASUS
Xtion Pro.

Channel Min. Value Max. Value

RED 245 255
GREEN 240 255
BLUE 240 255
HUE 0 18
VALUE 250 255

Figure 3.9: Verification that the color gray consist of an equal amount of red, green and blue.
RGB values (f.l.t.r.): [70/70/70], [120/120/120], [175/175/175], [220/220/220]

Table 3.5: All three restrictions to extract smoke-colored pixel from a frame recorded by an
ASUS Xtion Pro.

Channel Min. Value Max. Value

COLOR (R± ǫ) = (G± ǫ) = (B ± ǫ)
HUE Light Smoke 230 255
HUE Dark Smoke 165 192

Figure 3.10: Smoke recorded by the RGB-sensor of the ASUS Xtion Pro.
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3.1.5 Depth Camera and Fire

In this section, the change that the presence of a fire causes in the stream of the depth-sensor is
evaluated. The ASUS Xtion Pro uses infrared-light (IR) to calculate the depth of objects in a
scene. Due to the fact that fire emits IR light, this leads to the effect that the depth can not be
estimated in areas containing fire. Figure 3.11 shows the change in the depth-video when fire is
represented. (If the depth of a pixel/object can not be calculated it is represented as a black pixel
in the depth-video) Figure 3.12 shows the superimposed image of a RGB- and a depth frame.

Figure 3.11: Two frames recorded by the ASUS Xtion Pro depth camera. Top row: frame824
recorded by the RGB and Depth camera, showing a scene without fire. Bottom row: frame11779
from the same scene. It can be seen that inside the fire-area the depth of the scene can not be
calculated (illustrated by black pixel occurring in the depth-image).

The black areas of the depth image are removed, visualizing that the area - where no depth could
be calculated - is in the same spot as the fire itself (Depth-image and RGB-image are rectified).

3.1.6 Flickering Depth Image

Fire itself leads to areas where the depth of these regions can not be estimated, but also when
using a non-moving camera monitoring a static scene, regions where the depth could not be
estimated occur. This happens so often that - when watching the video-stream from the depth-
sensor - these black areas occur in a flickering behavior. Figure 3.13 shows two consecutive
depth-frames, recorded by a non-moving camera monitoring a static scene. Although there is no
movement in the scene there are changes in the areas where the depth of an object can not be
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Figure 3.12: The superimposed image of RGB- and depth-camera from frame11779, where
black-pixels inside the frame of the depth-camera have been removed. It can be seen that the
fire is located at the same area where the depth-camera is not able to calculate the depth of the
scene.

Figure 3.13: Two consecutive frames recorded by the ASUS Xtion Pro depth camera. Although
there is no movement in the scene there are changes in the areas where the depth of an object can
not be estimated (represented in black). Top row: Two consecutive frames frame1 and frame2
from a non-changing scene. Bottom row: Areas where the depth could be estimated in frame1
- but not in frame2 - are marked red. This leads to a flickering behavior of the depth stream.
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estimated (represented in black). Due to this fact, the appearance of a new region - where the
depth of the scene can not be estimated - is not sufficient enough to detect the presence of fire.

3.1.7 Depth Camera and Smoke

Here, it is analyzed how smoke changes the depth-image calculated by the depth-sensor. Even
heavy smoke does not lead to an significant change in the depth-images of the ASUS Xtion Pro.
Figure 3.14 shows two different frames, recorded by the RGB sensor and the depth sensor. It
can be seen that in frame13 (top row) the structure of the elements behind the fire-source is
clearly visible in the RGB-image as well as the depth-image. In the RGB image of frame329
(bottom-row, left) heavy smoke covers these elements. However, these elements are still visible
in the depth-image. Therefore, the video-stream provided by the depth-camera of the ASUS
Xtion Pro is not suitable for smoke detection.

Figure 3.14: Two frames recorded by the ASUS Xtion Pro depth camera. Top row: frame13
recorded by the RGB and Depth camera. Bottom row: frame329 from the same scene. It can
be seen that smoke does not lead to a significant change in the depth-image. For example: The
wooden log is covered with smoke and for this reason it can not be seen in the RGB frame, while
it is still visible in the depth-frame.

3.1.8 Depth Camera and Sunlight

Sunlight interferes with the light-pattern emitted by sensors like the Microsoft Kinect or the
ASUS Xtion Pro [30]. Therefore, the depth-information provided by theses sensors is only
usable indoors [20]. Here, the influence of sunlight on the depth-estimation is analyzed further,
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to show why the method proposed in this Thesis is limited for indoor-use only. Figure 3.15
shows a frame captured by the ASUS Xtion Pro and its corresponding depth-image, recorded in
direct sunlight. It can be seen that direct sunlight in a scene prevents the sensor from calculating
valid depths for these regions.

Figure 3.15: Top row, left: a frame recorded by the ASUS Xtion Pro in direct sunlight. Right:
The estimated depth-map of the same scene. Bottom: the superimposed image, where areas -
were a valid depth could be calculated - are highlighted in green. It can be seen that the depth-
map does not provide useful results when the ASUS Xtion is used for example outdoor in direct
sunlight.

3.1.9 Framework

Here, the software-framework OpenNI2 and the computer-vision library OpenCV are presented.
Both are used in the proposed method for this thesis. OpenNI stands for Open Natural Inter-

action. The OpenNI framework is an open-source Software Development Kit (SDK), useful to
develop 3D sensing applications and middleware1that supports Windows, Mac and Linux as a
platform [37]. The idea is to standardize the interoperability of Natural Interaction (NI) devices,
as the ASUS Xtion Pro or the Microsoft Kinect and it was partially developed by Primesense,

1OpenNI. The standard framework for 3D sensing, http://openni.org/, Accessed: 06.01.2014
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one of the creators of the Microsoft Kinect. OpenNI provides Application Programming Inter-

faces (APIs) that allow programmers to access the NI-devices1. Figure 3.16 shows the archi-
tecture of OpenNI SDK and how NI-hardware interacts with developed applications. OpenCV

Figure 3.16: Left: The architecture of the Open Natural Interaction (OpenNI) Software De-
velopment Kit1. Right: The interaction of (different) hardware via OpenNI with developed
applications [37].

stands for Open Source Computer Vision Library. The big advantage of OpenCV is that it con-
tains more than 2500 optimized computer-vision algorithms and is available for free. OpenCV
provides methods to store, save, manipulate, access, a.s.o. images. Widely methods used, like
morphological operations, color transformations, face and object recognition, histogram calcu-
lation, a.s.o. are also provided by the OpenCV framework [11]. The current version OpenCV
2.0 includes main changes to the C++ interface and can be found on the official website2.

3.2 Methods

In this Section methods used, like Integral-Images or Morphological Operations, are introduced
and briefly explained.

3.2.1 Otsus Method

Otsus idea was that two regions - representing for example two classes - that should be sepa-
rated are more homogeneous considering pixel belonging to each region than using pixel from
different regions [6]. This is useful when e.g. a grayscale image is converted in a binary image.
One measurement of this region homogeneity is its variance σ. Regions containing quite sim-

ilar pixel have a lower variance than regions with lots of different pixel (e.g. noise). So, this
method iterates all possible intensity values 1...Imax and divides the difference image in two
classes, one for pixels with a lower value than the threshold and one for pixels with a similar or
higher value. After that, the variance for both individual classes, namely σclass1 and σclass2, is

2Open Source Computer Vision Library, http://opencv.org/, Accessed: 21.05.2014
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estimated. The intensity value where the combined variance of both classes is minimal is then
used for thresholding [6].

3.2.2 Morphological Operations

Morphological operations are used for image processing [35]. Here, the two basic approaches
erode, dilate and their combinations opening and closing are explained further. Due to the
fact that the approach proposed in this thesis uses morphological operations only on binary
images, other approaches (for example suitable for color-images) are not explained further.
Morphological-operations can be used to reduce noise or to fill small gaps between extracted
structures or objects [35]. Dilation adds pixels to the boundaries of regions. It is used to close
small gaps, but is also enlarges the structures [35]. Erosion is the opposite of dilation. Here,
boundaries are made smaller. Erosion is usually used to eliminate noise, because structures
smaller than the filter-size disappear after an erode is performed [35]. Opening is the operation
called, when an erosion is performed followed by dilation. Opening smooths the boundaries
of regions and it opens narrow connections [35]. Closing is when a dilation is followed by an
erosion. Here, small gaps and holes inside the region are filled without increasing the size of the
remaining structure [35].

3.2.3 Integral Images

Areas in images can be calculated very fast using integral-images as introduced by Viola and
Jones in [43]. Here, the sum of values in a region can be calculated in O(n), by using only the
values defined by the four corners of the rectangle [19]. This is done by first calculating the
sum of all pixel-values that lie above and left of each pixel p(x,y). This Integral-Image can be
calculated with only one pass over the original-image. After that, the sum of the pixel-values
that lie within a rectangle R can be calculated by using the four corners, as shown in Figure
3.17. In this figure, Corner C1 covers the summed-up values for every pixel that lies above and
left of it, visualized by rectangle A. Corner C2 also represents the values above and left of it,
visualized by combining the rectangles A + B. Corner C3 consists of all values combining
rectangle A+C while corner C4 includes all values of the rectangles A+B+C+R. The final
value for a Region R can be calculated by C4− C2− C3 + C1 [43].

3.3 Analysis of Movement Detection

When using static cameras, motion is widely used as a feature of fire and smoke, as in [16]
and [39], for example. In this section, the quality as well as advantages and disadvantages of
selected movement detections methods are examined in detail using MATLAB3. This leads to
an deeper understanding on the behavior of movement detection when examining recorded fire.

3MATLAB - The Language of Technical Computing, http://www.mathworks.com/products/

matlab/, Accessed: 27.06.2014
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Figure 3.17: The sum of all pixel within the Rectangle R can be calculated by using its corner-
values (C1, C2, C3, C4) provided by the initially calculated integral image. The value for R is
then calculated by C4− C2− C3 + C1 [43].

Figure 3.18: Frame from video4, where the effect that the region inside the flame itself is
considered as non changing can be seen. Clockwise starting with the top left image: frame(800),
frame(800+1), the difference image and the difference image converted to a binary image by
using an intensity threshold of 17, where the region inside the fire (which is wrongly detected as
non moving) is marked by a red rectangle
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Figure 3.19: Difference image and binary image from video4. The left side shows the difference
images, the right side the corresponding binary images. The frames used at the top row are
frame(800) and frame(800+1) while for the bottom row frame(800) and frame(800+5) are
used to estimate the difference- and the binary-image. It can be seen, that using a step-size of 5
frames provides better results.
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3.3.1 Frame Differencing

Six different videos showing fire were evaluated to find out, if frame differencing could be a
useful method to detect movement in fire videos. Firstly, two frames are selected and converted
to grayscale frames. After that, the absolute difference between the two frames is calculated.
Also a threshold is estimated to convert the resulting difference image into a binary image (for
further details see Section ’Frame Differencing’ in Chapter ’State of the Art’).
First a threshold is estimated. Therefore, MATLAB R2010a3 is used. MATLAB provides the
graythresh method, which calculates a value that is able to distinguish between two assumed
classes represented in a image. This automated thresholding is done by Otsu’s Method [34]. Six
videos are analyzed with this method. The fire intensity in these videos spreads from just started

burning to a fully developed fire. The detected thresholds varied from intensity difference 1 to
an intensity difference of 45 (out of 255). However, there were only those two values as an
extrema (far from the median value), all other thresholds are near the intensity value 22. Figure
3.18 shows the main problem of frame differencing: when a fire is already very large, the region
inside the flame appear as a single bright area, leading to no big differences between consecutive
frames. For these frames, the - through Ostu’s method - estimated threshold of 17 was used for
these frames. The red rectangle shows that the area inside the flame was not detected as moving.
An attempt to improve the binary image was made by increasing the step-size between the frames
from 1 to 5, which leads to a time-difference ∆t = 5

30sec = 0.167sec. The new resulting binary
image, showing the detected moving pixel, seems better usable than that resulting from the
smaller step-size 1. Figure 3.19 shows the direct comparison of the difference images to the left
and the binary images to the right. The step size of 1 can be seen in the top row, the step size of
5 in the bottom row.

3.3.2 Background Subtraction

The first approach was taking the first frame as the background image. However, due to the noise
existing in videos, noisy pixel could be seen as a single peak in the intensity image. To overcome
this problem, generating the background image is adapted. Therefore, the median value of three
consecutive frames is calculated and used as the background image. The video5used shows the
comparison between a burning moist tree and a dry one. Around frame(180) the initial flame is
started. Although the fire region on the left side is only about 5×5 pixel in total, it is recognized
quite well. Figure 3.20 shows magnified parts of frame(180) on top, and an overlay of this frame
in its original size with pixel detected as moving highlighted in green on the bottom. The used
threshold is the same as estimated in Section ’Frame Differencing’, resulting in intensity values
bigger than 22 considered as moving. Another problem that occurs is that - due to for example
changing lighting conditions or slight camera movement - a background image estimated just
at the beginning of the recording can get very unreliable. Figure 3.21 shows the comparison
of the same background image as before, but this time compared to a frame captured about 20

4Dry tree fire in non-sprinklered room (camera view-couch), http://fire.nist.gov/tree_fire.htm,
Accessed: 26.11.2013

5Comparison of dry tree and properly maintained (high moisture) tree fires, http://fire.nist.gov/
tree_fire.htm, Accessed: 26.11.2013
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Figure 3.20: Frames from video5. The initial flame can be seen at frame(180) at the top row
(magnified), the bottom row shows an overlay of the same frame in original size, with pixel
detected as moving highlighted.

seconds later, at frame(690). Therefore, it is tried to dynamical adapt the background image
over time. So, the MATLAB code is adapted to estimate the median value over time, in this case,
the median of three pictures within a time interval of 5 frames is used. Figure 3.22 shows the
adaptive generated background image, the binary image where movement was detected and an
overlay of the binary map and the analyzed frame(690). Comparing Figure 3.22 to Figure 3.21
it can be seen that this new adaptive method is more reliable than using the background image
only. In this case, noise is reduced so well that the intensity threshold can be reduced to 11 and
still provides useful results.
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Figure 3.21: frame(690) from video5 shown on the left side. Due to the time difference of about
22 seconds to the time when the background image was generated, the calculated difference
image (shown on the right side) is not very reliable anymore.

Figure 3.22: frame(690) from video5 is analyzed. The picture on the left shows the new adap-
tive background image, calculated out of the median of three frames with time-gaps of 5 frames
each. In the middle, the pixel detected as moving can be seen. The right picture shows an over-
lap of the analyzed frame and the binary image. Compared to Figure 3.21, this method seems
less fragile to light changing conditions or slight camera movement.

3.4 Analysis of Fire-Features

In this section, RGB features for fire are analyzed further, to clarify the advantages and disad-
vantages the selected features have.

3.4.1 Color Range

Frames from video4 and video5 have been analyzed, using the color restrictions proposed in
Section ’Color Range’. The condition for the value of the blue color channel (B) with B <
80 is to restrictive when using video5 as an example video. Raising the limit to 100 delivers
better results. Figure 3.23 shows one of the analyzed frames from video5 on the left side, and a
comparison of the thresholded frame with the values proposed in ’Color Range’ in the middle,
and the same image with the adapted threshold B < 100 for the blue color channel on the right
side.
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Figure 3.23: The analyzed frame(1380) from video5 on the left side. In the middle the image
after restricting the color values as described in the section ’Color Range’. On the right side, the
restriction of the blue color channel was relaxed from B < 80 to B < 100.

3.4.2 Color Histogram

The adapted version of the color histogram restriction, as described in Section ’Colorhistogram’,
is evaluated here. Therefore, three rules need to be applied for each pixel:

• The values for the color channels have to satisfy the condition R > G > B

• The value for the R channel needs to be above a threshold λR. In this case, the threshold
value described in Section ’Color Range’ was used for the red channel.

• The saturation has to be above a threshold λSat.

The value chosen for λR is 190, the value for λSat is 50%. Figure 3.24 shows a frame containing
fire and the resulting frames after applying each rule.

3.4.3 Comparison of Color Range and Color Histogram

Both methods are applied on the same frame. For the color range, the adapted version was used,
where the value of the blue channel was limited to B < 100 instead of B < 80 as described in
Section ’Color Range’. For the color histogram, all three rules with the estimated thresholds have
been applied, as described in Section ’Color Histogram’. The result of both methods, applied
on frame(1380) can be seen in Figure 3.25. It can be seen that ’Colorhistogram’ estimates fire
colored pixel better than the proposed method from ’Color Range’.

3.4.4 Surface Coarseness

The surface coarseness is a measurement for the degree of disorder inside a Region R. In Section
’Surface Coarseness’, the standard deviation σ was used to measure if an area has a high amount
of disarray. In this case, the variance var is used, because it spreads the values better than σ.
The calculation of var is fairly simple: var = σ2.
Different images have been analyzed regarding their surface coarseness / variance. First, all
images have been thresholded using the values described in Section ’Comparison of Color Range
and Color Histogram’. After that, the mean value and the variance of all remaining regions have
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Figure 3.24: Top-row, left: the analyzed frame(1380) from video5. Right: The same frame with
restriction 1 applied, namely R > G > B. Bottom row, left: the same image using restriction 1
& 2, leading to (R > G > B)∧ (R > λR). Right: frame(1380) again, with all three restrictions
(R > G > B) ∧ (R > λR) ∧ (Saturation > λSat) applied.

been calculated. Example images that have been used are shown in Figure 3.26. They show a
person wearing an orange shirt, an image of an office burning, an artificial image where lots of
pixel have the value R = max for their red channel and an image of an burning tree. The results
for the variance and the mean values are shown in Table 3.6 It can be seen that the variance of

Table 3.6: The mean and variance values from the images shown in Figure 3.26.

mean variance

Orange Shirt 217.37 250.8
Burning Office 237.39 479.82
Artificial Image with Rmax 254.08 3.29
Burning Tree 239.49 390.54

fire regions is much higher than the variance of for example the regions considered in the orange

shirt image. However, the artificial generated image seems to have a high amount of disorder,
but the value for the variance is very small.

6Your office fire, http://www.youtube.com/watch?v=G6lLbDQcJyA, Accessed: 01.12.2013
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Figure 3.25: The analyzed frame(1380) from video5. Pixel evaluated as fire are marked in
green. On the left side, the resulting image after using the color restriction from Section ’Color
Range’ can be seen, the right side shows the resulting frame using all three restrictions from
Section ’Color Histogram’.

Figure 3.26: An image of a person wearing an orange shirt, an office burning6, an artificial
image where most pixel have the maximum value for their red color channel, and a burning
tree5. Regions that have been analyzed are marked by a green border.

3.4.5 Skewness

The skewness is a value that describes the distribution of measured values. Here, only the red
channel of selected areas is considered. Flame regions tend to have lots of pixel with high values
for the R channel, as described in Section ’Skewness’. Figure 3.27 shows the histograms of the
four images shown in Figure 3.26. Note: all histograms are limited to the values 180 ≤ R ≤
255. It can be seen that real fire regions have a high amount of pixel with a red channel value
r ≈ Max(=255), while for example an orange shirt has a significant lesser amount of pixel with
the highest possible value for R. This leads to the following values for the skewness (calculated
from possible fire regions values for the red color channel R ≥ 180), as shown in Table 3.7. It
can be seen that fire regions have a negative skewness, and therefore are more distributed to the
right side, as for example regions extracted from a fire colored shirt.
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Figure 3.27: Histograms from possible fire candidate regions as shown before in Figure 3.26.
Top left: histogram from the red color channel, calculated from orange shirt. Top right: his-
togram office fire6. Bottom left: histogram is from the artificial image. Bottom right: histogram
belongs of the burning tree video5. Note: all histograms are limited to the range 180 ≤ R ≤ 255.

Table 3.7: The mean and variance values from the images shown in Figure 3.26.

mean variance skewness

Orange Shirt 217.37 250.8 0.072
Burning Office 237.39 479.82 -0.85
Artificial Image with Rmax 254.08 3.29 -3.76
Burning Tree 239.49 390.54 -1.18

3.4.6 Comparison between Surface Coarseness and Skewness

It can be seen that the variance alone could be insufficient to determine fire regions from ordinary
fire-colored regions. In fact, during testing some images showing e.g. an orange shirt, lead to
variances up to var = 374.46. However, these images had a positive skewness, in this case a
skewness = 0.47. So, both features should be used to discriminate real fire from fire colored
objects. It is noteworthy that, to calculate the skewness of a distribution, the standard deviation
has to be calculated anyway - this can be seen in Equation 2.19. So, if the skewness should be
used as a feature, the surface coarseness can be used as an additional feature with low additional
computational costs.
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3.4.7 Randomness of Area Size

Here, the feature describing the spatial and temporal variation of fire, as described in Section
’Randomness of Area Size’, is analyzed. Therefore, the video6 was analyzed from frame(3075)
to frame(3299) (from the beginning of a fire to the frame where this fire-scene ends), leading
to a duration of 9 seconds. Figure 3.28 shows the amount of pixel declared as fire pixel per
frame on the left side, and the corresponding value for ∆Ai on the right side. Fire pixel have
been identified using the method described in Section ’Comparison of Color Range and Color
Histogram’. It is noteworthy that, to receive a better overview, in this case only every second
frame was used to calculate size and difference between frames in Figure 3.28. It can be seen

Figure 3.28: Left side, red: The amount of pixel recognized as fire pixel per frame in video6,
starting with frame(3075). Right side, green: The corresponding values for ∆Ai, describing
how much the amount of pixel is changing from frame to frame.

that the size of the fire-area is fluctuating. In fact, the minimal area size recognized in this time
slot is 8204 pixel, while the maximum size is 14630 pixel. The mean value for ∆Āi = 0.094.
In Figure 3.28, it can be seen that the area size itself is varying significantly. The rate of change

between frames ∆Ai is also fluctuating too much and seems therefore not stable enough to be a
useful feature for e.g. thresholding with a value.
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3.4.8 Fire Growth Rate

However, considering the red graph in Figure 3.28, it can be seen that the fire area itself is
growing over time. So the mean value of the last 25 frames (= 1 second) is generated for every
frame (this method is called moving average). Figure 3.29 shows the amount of detected fire
pixel on the left side, and the mean value consecutively calculated for the last 25 frames on
the right side. This behavior was further estimated, using a 32 seconds timeslot, namely from

Figure 3.29: Left side, red: The amount of pixel recognized as fire pixel per frame from Figure
3.28. Right side, blue: The consecutive mean value for the last 25 analyzed frames (= 1 second)
from video6.

frame(3425) to frame(4225) extracted from video6. The different times are used because of
the longer timeslot for a developing fire. It can be seen that the moving average of fire region
is growing from approximately 5600 pixel to approximately 10200 pixel. Figure 3.30 shows
the moving average for the last 25 analyzed frames on the left side, and the moving average of
the last 50 frames on the right side. Figure 3.31 shows the 50-frames moving average with two
example frames and their position inside the graph. Other than when using the growth rate of
smoke as mentioned in Sections ’Smoke Growth Rate’ and ’Adapted Smoke Growth Rate’, the
graph of the size of a fire has to be smoothed by for example the moving average of the last 50
frames to deliver reliable results. This procedure is needed, because of the fluctuating behavior
of fire, as described in Section ’Randomness of Area Size’ and visible in Figure 3.29 (red graph).
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Figure 3.30: Analyzed timeslot from the video6, starting at 2:17 and ending at 2:49. On the left
side, a plot of the moving average of the last 25 frames can be seen, on the right the smoother
moving average of the last 50 frames. For the first 200 frames, the growing behavior of the fire
area can be seen.

Figure 3.31: frame(3425) and frame(3855) from the video6. The moving average of the last 50
frames is rising from approximately 5600 pixel to approximately 10200 pixel.
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3.5 Implemented Method for Fire Detection

The basic approach for this proposed method for fire detection (using the first sensor - namely
an RGB camera - only) is similar to other methods, as for example in [5] [16] and [29]. Firstly,
motion is detected. Secondly, values from different features are calculated. After that, a decision
if fire is represented in the current frame is made by considering all results provided by the
features used. One additional step is the final estimation if fire is detected in the overall video
stream - the idea behind this additional decision is that a single false positive frame can not lead
to a (wrongly) raised fire alarm. The additional depth sensor is used to verify if the potential fire
region - detected by the RGB sensor - is a valid fire region. Therefore, this additional sensor is
used to decrease the false-positive rate. Figure 3.32 shows the corresponding flow chart for fire
detection using the proposed method, including the multi-sensor fusion.

Figure 3.32: Flow-chart for the proposed fire detection algorithm, using the 2D and 3D multi-
sensor fusion. Left side (blue) shows the detection algorithm using the RGB color sensor, right
side (blue) shows the detection method for the 3D depth sensor. Blocks in red visualize the
stages needed for a useful multi-sensor fusion.
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3.5.1 RGB Camera

In this section the fire detection via RGB camera is described. Firstly, motion is estimated using
frame-differencing. Secondly, every moving pixel is analyzed if it fulfills the color-restrictions
for fire pixel. Thirdly, other features like the mean-value and the skewness are extracted. After
that, the decision if fire is represented in the overall RGB frame is made by an adapted version
of the T-out-of-v voting [16]. It is noteworthy that the final decision if a fire-alarm is raised is
not made until the information of both sensors is merged.

Motion Estimation by the RGB Sensor

First, the current frame(n) and its preceding frame(n−1) are converted to grayscale images.
After that, a matrix is calculated containing the absolute-differences between every correspond-
ing pixel pn(x,y)

from frame(n) and pn−1(x,y) from frame(n−1). A decision threshold is esti-
mated using ’Otsus Method’, dividing the matrix in two different classes: pixel with an absolute-
difference above this threshold are considered as moving and therefore labeled as 1 in a binary-
matrix, and pixel with a difference below the same threshold considered as not-moving - labeled
by 0 in the same matrix. This binary-matrix is called a Potential Fire Mask (PFM) [5]. This
motion estimation is a feature with the power of veto - pixel that are considered as not-moving

- and therefore labeled as 0 in the PFM - can not be fire pixel. To eliminate artifacts resulting
from noise, this PFM is smoothed by an erode-filter with a 2 × 2-kernel. To close small gaps
between the remaining regions of moving pixel, an operation for image-closing is performed by
a dilation followed by an erosion (in this case both methods are executed with a 6 × 6-kernel).
The remaining PFM is called PFMMovement. Figure 3.33 shows an RGB-frame containing fire
with its corresponding binary-mask PFMMovement.

Color Restriction

The Section ’Fire Color Range’ describes the values for the Red (R), Green (G), Blue (B), Hue
(H) and Saturation (S)-channel when examining fire-pixel recorded with an ASUS Xtion Pro.
To get the final PFM for the color-restriction, namely PFMColor, the current frame(n) that is
analyzed is split into three different matrices containing the values of the R, G and B-channel,
respectively. Every matrix (containing one color channel of the whole frame) is analyzed using
the upper- and lower-threshold of each color channel, leading to three different binary-arrays
BR, BG and BB , where a pixel p(x,y) is set to 1 if the pixel fulfills the restrictions made in
this channel and 0 if it does not. Frame(n) is further converted to the HSV color-space. The
resulting image is divided again, leading to three sub-images, containing the values for the H, S
and V-channel. In this case, only the arrays with the H- and S-values are analyzed further. By
applying the restrictions from Section ’Fire Color Range’, two more binary-arrays are generated:
BH and BV . The final binary-mask PFMColor is then calculated by AND-combining all five
binary sub-arrays, leading to

PFMColor = BR ∩BG ∩BB ∩BH ∩BV . (3.2)

After that, an image-closing operation is performed on the PFMColor, using a 2 × 2-kernel
for the dilation and a 3 × 3-kernel for the following erosion. Figure 3.34 shows the resulting
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Figure 3.33: A frame recorded by the ASUS Xtion Pro RGB-camera and its corresponding
binary-mask PFMMovement (after noise-reduction with the morphological operations erode fol-
lowed by an image-closing).

binary-array PFMColor after noise-reduction. The color-restriction is the second feature with
the power of veto - every pixel that is marked as 0 in the PFMColor is not further considered as
a potential fire-pixel. The final PFMRGB that is further analyzed is then calculated by AND-
combining the PFMs from the movement- and color-restrictions, leading to the binary-array

PFMRGB = PFMMovement ∧ PFMColor. (3.3)

Feature: Mean

Due to the fact that recorded fire leads to very bright pixel in the video-stream of the ASUS
Xtion Pro, those pixel have high-values for their R, G and B channel, respectively. To extract
this information, the proposed method uses the grayscaled frame(n) (already converted by the
feature ’Motion Estimation by the RGB Sensor’). Here, the values of the R, G and B channels
are merged to one value, representing the brightness of the corresponding pixel. After that, this
grayscaled frame(n) is masked by PFMMovement, leaving only those pixel that are considered
as moving. Within the resulting pixel array, the mean-value x̄ is calculated by

x̄ =
1

n

n
∑

i=1

xi =
x1 + x2 + · · ·+ x3

n
, (3.4)

where xi represents the grayscale-value of the corresponding pixel and n is the number of mov-
ing pixel detected. In this case, the result of this equation is a real number and not a boolean
value.
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Figure 3.34: A frame recorded by the ASUS Xtion Pro RGB-camera and its corresponding
binary-mask PFMColor (after noise-reduction with the morphological operations erode fol-
lowed by an image-closing).

Feature: Skewness

Here, the skewness of the red-color channel of pixel - considered as potential fire-pixel - is
analyzed further. Therefore, the current frame(n) is first reduced to an image containing its red
color-channel only. This sub-image is then masked with the binary-mask PFMRGB calculated
by the feature described in Section ’Color Restriction’. For the remaining red pixel-values the
skewness is calculated by Equation 2.19. Unlike to the values from the features calculated in the
Sections ’Motion Estimation by the RGB Sensor’ and ’Color Restriction’, the resulting value is
a real-number and not a boolean-value. This value has no power-of-veto and is further used for
the decision fusion. Due to the fact that fire-pixel have a high saturation in the red color-channel,
fire is leading to a negative value for the skewness [5].

Feature: Surface Coarseness

As shown in the analysis of the feature ’Surface Coarseness’ on page 67, there is a high spatial-
variation inside fire-regions recorded in a video-frame, compared to for example a fire-colored
object moving through a scene. This variation leads to an high value for the standard-deviation σ
of the region. Sigma is calculated by Equation 2.21. As described in Section ’Fire Color Range’,
fire appears as very bright (actually nearly white) pixels, especially inside the center of the fire,
when recorded by an ASUS Xtion Pro. Therefore, the standard-deviation in fire-regions recorded
by the Xtion is as low as the standard-deviation for fire-colored objects, for example. Examining
Figure 3.8 it can be recognized that fire-pixel on the edge of the fire region are still more orange-

77



colored than white and therefore there is more variation within the pixel at the outline than within
the pixel located inside the fire-area itself. The analysis of ’Frame Differencing’ shows that pixel
located in the core of a fire region are considered as non-moving due to the fact that the center
of the fire is leading to recorded pixel with high brightness-values and therefore the difference
between the pixel of the current frame(n) and its preceding frame(n−1) is not high enough
to be marked as moving. Due to these facts, the calculation of the standard-deviation is done
by eliminating the disadvantage of the low spatial-variation inside the fire-region by using only
the pixel on the edge of the fire. This is done by masking the grayscale-converted frame(n)
by the Potential Fire Mask PFMMovement. After that, the standard-deviation is calculated by
Equation 2.21. Here, the result of this equation is a real number again (and not a boolean value).

Decision Fusion (Color-Sensor)

Here, the decision if fire is detected in the current frame is made by considering all extracted
features from the RGB stream of the ASUS Xtion Pro. Two out of five features - namely ’Motion
Estimation by the RGB Sensor’ (DMov) and ’Color Restriction’ (DCol) - have the power of veto,
meaning that if the equation

[(∀pixelDMov
= 0) ∨ (∀pixelDCol

= 0)] = true, (3.5)

is fulfilled there is no fire detected in this frame. More strict, there has to be at least one pixel
that complies both restrictions at the same location (x, y), leading to Equation

∃pixel(x,y), where (pixelDMov(x,y) = 1) ∧ (pixelDCol(x,y) = 1). (3.6)

This means, that if there is at least one pixel that is considered as fire-colored and moving, the
frame is evaluated further. The remaining three out of five features - namely ’Feature: Mean’
(DMean), ’Feature: Skewness’ (DSkew) and ’Feature: Surface Coarseness’ (DDev) have real-
numbers as an outcome. With these values, an adapted version of the T-out-of-v voting [16] - as
described in Section ’Voting Based’ - is used to decide if fire is detected in the overall frame or
not. Firstly, every feature is adapted by an adjustment-value (gained by experiments) represent-
ing the zero-point for the corresponding feature. This allows a faster recognition, how strong
each feature has detected fire (leading to a positive value) for the evaluation. For this reason, the
value 154 is subtracted from the calculated value by DMean. This zero-point adjustment leads
to the behavior that areas with a higher mean-value (which are more likely to be fire regions)
have an higher impact on the overall decision than regions with a lower value. The feature DDev

is adapted by the value 50, the feature DSkew does not need to be adapted, because it is already
symmetric to 0. So the resulting behavior for all calculated values of the features are that the
more negative a resulting value for a feature is, the more it is unlikely that this feature was cal-
culated inside a real fire region. On the other hand, the larger the number the more likely it is
a fire region. Please note that it is actually the other way round when examining the feature
DSkew, because in this case a negative Skewness is a characteristic for fire-regions. Secondly,
every decision parameter is weighted by a factor, for DMean this factor is 1.0, for DSkew it is
20.0 and for DDev this factor is 1.0. The larger factor for the skewness is reasonable, because of
the small outcome values of this feature which lies in between −3 and +3 while the values for
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the standard deviation and the mean are much higher - even after subtracting adjustment values
- lying within ranges between −154 and +101. The final-decision if there is a fire detected by
the RGB sensor is made by adding up all values, leading to

DFinal = DMean · 1.0−DSkew · 20.0 +DDev · 1.0 (3.7)

if the resulting value lies above a decision threshold λRGB = 0, the current frame is marked as
a frame containing fire.

3.5.2 Depth Camera

In this section the novel approach for fire detection including the depth-sensor is described.
Firstly, a background-image is created merging the first three frames from the depth-sensor
video-stream. Secondly, changes in the depth-frames are estimated by the background-subtraction
method, therefore the background-image is updated every 30 frames. Regions with a valid depth-
value in the background image but no valid value for the current frame are considered as potential
fire-regions. There is no fire-detection made by the depth-sensor itself, it is used to decrease the
false-positive rate compared to the fire-recognition by the RGB sensor only.

Hybrid Background Estimation

One precondition for this implemented plausibility-check is that the ASUS Xtion Pro is used
as a stationary camera - meaning that the camera itself must not be moved. Due to this fact,
a background image can be calculated and used to determine significant changes between the
background-image and the current depth-frame Dframe(n). The initial background-image is
calculated by a more time consuming method (than calculating the updated background images),
using the first three depth-frames and merging them using the median-values of every pixel by
using

DinitBG(x,y) = Med(Dframe1(x,y), Dframe2(x,y), Dframe3(x,y)), (3.8)

where Med is calculating the median of the three values, Dframe1, Dframe2 and Dframe3
are the first three frames recorded by the depth-sensor and DinitBG is the resulting initial
background-image. Due to the flickering behavior of the depth-sensor images - as described in
Section ’Flickering Depth Image’ - using the first image only could lead to false depth-values
for those flickering pixel. Therefore a background-image pixel is set to for example 0 (= depth
could not be determined), only if at least two out of the first three frames have a value of 0 on
the same position. Due to the fact that this method is very slow (approx. 50 frames of the stream
are not analyzed while calculating the initial background image) it is only used to calculate the
first background image during the set-up stage of the proposed algorithm. Figure 3.35 shows a
frame recorded by the RGB sensor and its corresponding initial background-image, calculated
by the median-values of the first three frames received from the depth-sensor.

Fast Background Update

The initial background estimation technique using the median value provides very stable results,
however this calculation is also very slow. Due to the real-time constraints for this method a

79



Figure 3.35: A frame recorded by the ASUS Xtion Pro RGB-camera and its corresponding
initial background-image DinitBG, calculated by using the median values of the first three
depth-frames Dframe1, Dframe2 and Dframe3. For regions visualized as black, no valid
depth could be estimated.

different approach is needed for continuously updating this background image. If a pixel of the
current depth-frame Dframen(x,y) has a valid value for its depth, it is linear combined with the
corresponding pixel of the current background-image DinitBGadaptn(x,y) by

DinitBGadaptn(x,y) =
Dframen(x,y) +DinitBGadaptn−30(x,y)

2
, (3.9)

where DinitBGadaptn(x,y) is the new calculated background pixel value on position (x, y) and
Dframen(x,y) is the corresponding pixel from the current depth image. DinitBGadaptn−30(x,y)

is the preceding background image. The index (n−30) is caused by the fact that the background-
image is adapted every 30 frames by this method. If the value for a pixel from the current
depth-frame Dframen(x,y) could not be calculated - leading to the value 0 - this linear com-
bination is executed including a weighting function. This reduces the impact that a flickering
depth-pixel - as described in Section ’Flickering Depth Image’ - has on the adapted background
image DinitBGadaptn, leading to

DinitBGadaptn(x,y) =
Dframen(x,y) · 1 +DinitBGadaptn−30(x,y) · 3

4
, (3.10)

where the current depth-pixel Dframen(x,y) is weighted by the factor 1, and the value of the
corresponding pixel of the preceding background-image DinitBGadaptn−30(x,y) is weighted
by the factor 3. This leads to a fast and stable method to continuously adapt the background
image. Figure 3.36 shows framen of the RGB video-stream and the corresponding background-
image DinitBGadaptn, which has been updated for 40 times since the detection began.
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Figure 3.36: A frame recorded by the ASUS Xtion Pro RGB-camera and its corresponding
background-image DinitBGadaptn, calculated by using the linear combination of the preced-
ing background-image DinitBGadaptn−30 and current depth-frame Dframen. As the index
(n− 30) suggests this linear combination continuously takes place every 30 frames.

81



Motion Estimation by the Depth-Sensor

Motion can be detected in depth-frames similar as in RGB-frames, as described in Section
’Background Subtraction’. For this method, the difference between the calculated and adapted
background-image DinitBGadaptn and the current depth-frame Dframen is made by sub-
tracting every pixel from the adapted background image from the current depth image. If the
value is above a decision threshold, this pixel is labeled as moving. To improve the result, noise
is reduced by using an erode-filter with a 2 × 2-kernel. After that, an image-closing operation
is performed using a 5× 5 filter-kernel, leading to the Potential Fire Mask (PFM) of the move-
ment detected by the depth sensor, called PFMDepth(Mov). Figure 3.37 shows a video-frame
recorded by the RGB sensor and the corresponding PFMDepth(Mov), where detected motion is
visualized by white pixel.

Figure 3.37: A frame recorded by the ASUS Xtion Pro RGB-camera and the corresponding
binary-image PFMDepth(Mov) for this feature, calculated by subtracting the adapted back-
ground image DinitBGadaptn (calculated by the informations provided by the 3D sensor only)
from the current depth-frame Dframen. By thresholding and using morphological-operations
the final array PFMDepth(Mov) is calculated.

New Areas with invalid Depth-Values

As described in Section ’Depth Camera and Fire’, fire leads to areas where the depth of the
region can not be determined by the depth-sensor of the ASUS Xtion Pro. Therefore, the
current depth-frame Dframen is compared to the determined (adapted) background-image
DinitBGadaptn. If a pixel has the value 0 (=no depth calculated) in Dframen, but a value
6= 0 in DinitBGadaptn it is marked as a potential fire pixel in the Potential Fire Mask (PFM)
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PFMDepth(Black). Figure 3.38 shows the current RGB-frame framen, the determined, adapted
background-image DinitBGadaptn, the current depth-image Dframen and the binary-image
representing the potential fire-regions PFMDepth(Black) for this feature. It can be clearly seen
that the flickering behavior of the depth image (as described in Section ’Flickering Depth Im-
age’) results in false regions of potential fire in the PFMDepth(Black).

Figure 3.38: A frame recorded by the ASUS Xtion Pro RGB-camera and its correspond-
ing background-image DinitBGadaptn, the current depth-frame Dframen and the resulting
binary-image PFMDepth(Black) for this feature. The flickering behavior of the depth-image (as
described in Section ’Flickering Depth Image’) leads to false areas in PFMDepth(Black).

Decision Fusion (Depth-Sensor)

For the final detection by the depth-camera, the features explained in the Sections ’New Areas
with invalid Depth-Values’ and ’Motion Estimation by the Depth-Sensor’ are combined. The
final Potential Fire Mask (PFM) is created by

PFMDepth = PFMDepth(Mov) ∧ PFMDepth(Black), (3.11)

where PFMDepth(Mov) is the resulting binary-image from the movement detection of the depth-
camera, PFMDepth(Black) is the resulting binary-image from the detection of new areas with
invalid depth-determination and PFMDepth is the resulting binary image. When used alone, the
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proposed method for the depth-sensor is not able to detect fire-events in a meaningful way. The
main reason for this is the flickering behavior of the depth-sensor, generating regions where no
valid depth-values can be determined - which results in the same behavior as when recording
fire incidents (see Sections ’Depth Camera and Fire’ and ’Flickering Depth Image’ for details).
Therefore the occurrence of a new region - where the depth of a scene can not be determined -
is not alone sufficient to conclude that there is fire in the scene, so the results provided by the
depth-sensor analysis are combined with the results from the RGB-Sensor. The idea is that the
information provided by the depth-analysis should decrease the false-positive-rate of the overall
method. Figure 3.39 shows a RGB-frame provided by the ASUS Xtion Pro and the resulting
binary-image, calculated by combining the results provided by the 3D features described in the
Sections ’New Areas with invalid Depth-Values’ and ’Motion Estimation by the Depth-Sensor’.
Falsely detected regions can be seen on the right border of the binary image (highlighted by the
red ellipse).

Figure 3.39: A frame recorded by the ASUS Xtion Pro RGB-camera and the final PFMDepth,
calculated by combining the binary-images PFMDepth(Mov) and PFMDepth(Black). Falsely
detected fire-regions are marked in red.

3.5.3 Decision made by Sensor Fusion

The final decision - if fire is represented in the overall frame - is made by combining the dif-
ferent results of both sensors, the RGB color-sensor and the depth-sensor. To achieve this, two
preconditions have to be made; First, the video-streams provided by both sensors have to be
synchronized. In fact, the time difference between the frames should not be bigger than 1/30
seconds. Second, both video-streams have to be rectified, so that a pixel framen(x,y)

from the
RGB-stream and the pixel Dframen(x,y)

from the stream of the depth-sensor are referring to
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the same point - for example an object - in the scene (for further details for synchronization
see Section ’Time Difference between RGB and Depth Frames’ and for additional information
for image-registration see Section ’Image Registration’). For the final decision, if fire is rec-
ognized in this frame, firstly the Potential Fire Masks PFMColor (provided by analyzing the
RGB-sensor) and PFMDepth (provided by analyzing the depth-sensor) are combined, leading
to the final binary-image PFMFinal, calculated by

PFMFinal = PFMColor ∧ PFMDepth. (3.12)

So, if both sensors have detected potential fire-regions in the same area, pixel from the binary-
image PFMFinal are set to true. Figure 3.40 shows an frame recorded by the RGB-camera
and the corresponding final Potential Fire Mask PFMFinal, which is made by combining the
informations of both sensors. Secondly, for the overall decision, the information calculated in

Figure 3.40: A frame recorded by the RGB-camera and the final PFMFinal, calculated by
combining the information provided by the RGB color-sensor and the depth-sensor of the ASUS
Xtion Pro.

Equation 3.7 is analyzed: If the result for the value DFinal is above the decision value λRGB =
0, and the binary-mask PFMFinal contains at least one true-value, the existence of fire in the
overall frame is assumed, leading to the final decision described by the equation

(DFinal > λRGB) AND (PFMColor ∩ PFMDepth) 6= ∅. (3.13)

3.5.4 Final Decision

To reduce the number of false alarms, the final fire-alarm is not raised until at least 75% out of
the last 30 analyzed (consecutive) frames are recognized as containing fire. Figure 3.41 shows
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the implemented method for fire-detection using the sensor fusion of the 2D RGB-sensor and
the 3D depth-sensor of the ASUS Xtion Pro.

Figure 3.41: The implemented method for fire-detection, using the 2D RGB- and the 3D depth-
sensor of the ASUS Xtion Pro. The analyzed regions are labeled as red (surrounded by a green
rectangle).

3.6 Implemented Method for Smoke Detection

Here, the implemented method for smoke detection is described. The basic approach stays the
same as for other smoke detection methods as described in [21] [23] and [39], with preceding
movement-detection and color-restrictions. After that, this method divides the color-frame in 8×
6 subregions (resulting in 48 different regions Reg(x,y)), where different features are calculated,
as shown in Figure 3.42. The final decision - if smoke is detected inside a region - is then made
by a decision tree. Due to the fact that smoke does not lead to significant changes in the depth
image - as described in Section ’Depth Camera and Smoke’ - the information provided by the
depth-sensor is not included in the smoke-detection part of this implemented method (in contrast
to the fire-detection method, where the information of the depth-sensor is used to decrease the
false-positive rate). Figure 3.43 shows the flowchart for the smoke detection, with steps that are
not needed for this approach faded to gray.

3.6.1 Motion Estimation

Motion is estimated by using frame-differencing. Due to the fact that the motion estimation
for the RGB-stream of the fire-detection is also using frame-differencing there is no additional
computation time needed (see Section ’Motion Estimation by the RGB Sensor’ for details). For
the smoke-detection the size of the filter-kernel used afterward is different. To reduce noise the
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Figure 3.42: A video-frame recorded with the ASUS Xtion Pro. The frame is subdivided into
regions where different features are calculated. This regions are visualized by a green grid.

same 2 × 2 filter is used, but the image-closing operation uses a 15 × 15 filter. The resulting
binary-image of this operation is called Potential Smoke Mask PSMMov.

3.6.2 Color Restriction

The Section ’Smoke Color Range’ describes the typical color-values that are recorded, when
observing smoke with the RGB-sensor of the ASUS Xtion Pro. Those three restrictions, regard-
ing the distribution of the color-values on the RGB-channels and the Intensity-value from the
HSV-model, are combined to calculate the resulting PSMColor. The first restriction to detect
smoke-colored pixel is that the values for the Red (R), Green (G) and Blue (B) channels have
to be nearly the same, only a small difference ǫ is allowed. This method restricts the maximal
difference between the color-channels to ǫ = 8, resulting in the binary-image PSMR=G=B .
The second restriction is that smoke is either dark or light. Therefore the intensity-value of a
pixel (converted to the HSV color-model) is restricted to the values described in Section ’Smoke
Color Range’, leading to two Potential Smoke Masks PSMLight and PSMDark. Due to the
fact that smoke is either light or dark, the final binary-image PSMColor is created by

PSMColor = PSMR=G=B ∧ (PSMLight ∨ PSMDark). (3.14)

The resulting binary-mask is first eroded by a 2 × 2-filter to reduce false-detections caused by
noise, and second smoothed by an imclosing-operation realized by a 6× 6-filter.

3.6.3 Movement and Color

By using the information provided by the Potential Smoke Mask PSMMov, which is the result
of the movement-estimation described in Section ’Motion Estimation’, and PSMColor, which is
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Figure 3.43: Flow-chart for the proposed smoke-detection algorithm, using the 2D color-sensor
only. Blocks in gray are not needed, because in this case no multi-sensor fusion takes place.

the result of the color-restriction described in Section ’Color Restriction’, the final binary-mask
PSMRGB is constructed by

PSMRGB = PSMMov ∧ PSMColor. (3.15)

This binary-image is then converted to an Integral-Image. For each Region Reg(x,y) the amount
of pixel that fulfill the requirements movement and color is calculated. If the amount of those
pixel inside a region is above 20% the Decision (D) for this region is labeled as 1, resulting in
DCol(Reg(x,y)) = 1 for a potential smoke-detection in this region (regarding only the restrictions
made by the features movement and color).

3.6.4 Average Grayscale Value

As described in Section ’Smoke Color Range’, smoke has a typical color range. Du to this
fact, the average value of the pixels inside a smoke region lies above a threshold. To calculate
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this feature, the current framen, recorded by the RGB-camera, is converted to to a grayscale-
image. Using this image, an Integral Image is calculated. By dividing the value calculated within
a Region Reg(x,y) by the amount of pixel inside this region the average value is calculated. If
this value is above a decision threshold λGrey = 140 the decision for this region is labeled as
DGrey(Reg(x,y)) = 1 for a potential-smoke detection by this feature. Figure 3.44 shows a color-
frame recorded by the ASUS Xtion Pro divided in its subregions. In the command-window the
mean-values of the grayscale pixel inside each region are shown. It can be seen that regions
covered by smoke have a higher value than regions not covered by smoke.

Figure 3.44: A video-frame recorded with the ASUS Xtion Pro subdivided into regions, where
the average grayscale value of the pixel inside every region is calculated. The command-window
shows every mean value calculated in every Region Reg(x,y). It can be seen that regions covered
in smoke have a higher mean value than regions without smoke (values highlighted in red).

3.6.5 Regional Grayscale Difference

This feature is used, when a the average grayscale value of a Region Reg(x,y) - calculated at the
beginning of the detection - is below a decision threshold. This means that this region contains
a lot of dark colors. Due to the fact that smoke has a specific color, as described in Section
’Smoke Color Range’, an increasing value (when comparing the average grayscale value of the
background image with the average grayscale value of the current image) is an indicator for
smoke covering the background. Therefore, if the difference of the average grayscale values is
above a decision threshold, this region is marked as DGreyDiff(Reg(x,y)) = 1.
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3.6.6 Decreased Amount of Edges

Smoke covers objects and structures located behind it. Due to this fact, for every Region
Reg(x,y) the decreasing amount of edges is calculated [13]. Therefore, an initial background
image is reduced to the binary representation of its edges by using the Canny edge detector.
So for every Region the initial amount of pixel representing edges is stored. For every frame,
the current amount of edges inside a region is calculated using the same Canny-operator as
used for the background image. If the amount of edges inside a region is decreased by more
than 70% the examined region is considered to be a smoke-region and therefore marked with
DEdgeDiff(Reg(x,y)) = 1. If the calculated amount of edges for a Region Reg(x,y) is below a de-
cision threshold this feature is not used for the specific region. Figure 3.45 shows a RGB frame
containing smoke and its corresponding images containing the edges calculated initially and the
edges of the current frame. It can be seen that, due to the covering characteristics of smoke, the
amount of detected edges decreases inside the smoke region.

Figure 3.45: On the right side a RGB frame recorded by the ASUS Xtion Pro is shown. On the
left side on top, the initially generated background image containing edges only is shown. The
image below shows the edge-detection done by the same Canny-algorithm for the current frame.
The region where smoke covers a significant amount of edges is marked in red.
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3.6.7 Decision Fusion per Frame

The naive thresholds (as described in the Sections ’Movement and Color’, ’Average Grayscale
Value’, ’Regional Grayscale Difference’ and ’Decreased Amount of Edges’) are used for the
decision, if smoke is considered detected in the current frame or not. Therefore, the final decision
is made by a voting-based approach where the decision - if smoke is detected or not - is made
by an unanimous vote, considering all three features, leading to the decision

DFinal(Reg) = DCol(Reg) ∧DGrey(Reg) ∧DGreyDiff(Reg) ∧DEdgeDiff(Reg), (3.16)

for every region. If the decision for at least one Region DFinal(Reg(x,y)) is set to 1 the current
frame is considered as containing smoke.

3.6.8 Final Decision

The history of the last 45frames for every Region Reg(x,y) is stored in an array. If the amount
of smoke detections per region exceeds the decision threshold of 50%, meaning that the analysis
of at least 23frames out of the last 45frames must have led to the detection of smoke in the
corresponding region, this region is labeled as a final smoke-region. If at least three different
regions fulfill this requirement at the same time the overall fire-alarm is raised.
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CHAPTER 4
Evaluation

4.1 Experimental Results

In this section, the performances of the proposed methods are analyzed. Firstly, the detec-
tion rates (false-positives, false-negatives, true-positives and true-negatives) are explained. Sec-
ondly, these detection rates are evaluated. After that, the relevance of the results is measured by
calculating Precision, Recall and the F1-Score. In addition, impacts on the detection-rates by
using the depth-sensor also for fire recognition are examined in detail.

4.1.1 Precision, Recall and F1-Score

The values Precision and Recall measure the relevance of the results achieved by an algorithm
[14]. The results provided have to be binary - in this case for example frame contains fire or
frame does not contain fire. Therefore, every single result can be (manually) classified as one
out of four classes:

• True Positives (TP) - A fire inside a frame was correctly detected [41].

• True Negatives (TN) - The absence of fire inside a frame was correctly detected [41].

• False Positives (FP) - A fire inside a frame was wrongly detected [41].

• False Negatives (FN) - The absence of fire inside a frame was wrongly detected [41].

With these classes, the values Precision and Recall can be calculated by [14]

Precision =
#TruePositives

#TruePositives+#FalsePositives
(4.1)

and [14]

Recall =
#TruePositives

#TruePositives+#FalseNegatives
. (4.2)
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The resulting value of Equations 4.1 and 4.2 lies within the range of 0.0 to 1.0, where a (per-
fect) precision-score of 1.0 means that each fire-incident detected was a real fire event while a
(perfect) recall-score of 1.0 means that all fire-incidents have been detected [14]. Both values
can be combined to a resulting (single) value that represents the quality of the retrieval, called
F1-Score [14]. Here, the values for precision and recall are merged to their weighted average by

F1 = 2 ∗
Precision ∗Recall

Precision+Recall
, (4.3)

resulting again in a value between 0.0 and 1.0, where the optimal F1-Score is 1.0 [14].

4.1.2 Detecting Fire

In this section, the performance of the proposed method for fire-detection, using an ASUS Xtion
Pro, is evaluated and the experimental results are given. 24 videos with 10.536 frames have been
analyzed, with 3 videos containing real fire events. Due to the fact that this methods aims on
detecting fire in the home-environment, the non-fire videos are containing for example people
moving, sitting or dancing. Also, events with a fire-like appearance are evaluated - like someone
dancing in a fire-colored shirt or a television showing the recorded video of a fireplace. Figure
4.1 shows sample frames from four selected videos. All videos have been manually analyzed
and all frames have been labeled if they are containing fire or not. After that, the results of the
fire-detection of the color-sensor is used to calculate the True-Positive rate (TP, fire is correctly
assumed in a frame), the True-Negative rate (TN, the absence of fire is correctly assumed in a
frame), the False-Positive rate (FP, fire is wrongly assumed in a frame) and the False-Negative

rate (FN, the absence of fire is wrongly assumed in a frame).

RGB Detection

In this section, the detection rate using the information provided by the color-sensor only is
analyzed. Therefore, only the features described in Section ’RGB Camera’ are used to analyze
the video-frames and to decide if fire is represented in the overall frame or not. Table 4.1 shows
the results of the fire detection using the RGB sensor only. Here, especially video 1 and video 6
lead to a high amount of false-positives, because video 1 is the record of a TV-screen showing
a fireplace while video 6 shows someone dancing in a fire-colored T-Shirt. The retrieval-scores
Precision, Recall and the F1-Score that the approach achieves are listed in Table 4.2. These
scores result in using the RGB-sensor only, without additional validation by the depth-sensor
analysis.

Combined Detection

It this section, the information provided by the depth-sensor is merged with the information
provided by the RGB sensor leading to a multi-sensor fusion. The primary detection of fire is
made by the RGB-Sensor, the final validation if the detected fire is in a plausible area, is made by
the depth-sensor. The idea is that this approach decreases the overall false-positive rate. Table
4.3 shows the detection-rates when using both implemented methods combined. An significant
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Figure 4.1: The top row shows frames from two videos that include motion and objects with
a fire-like appearance. The image on the top-left shows the video of a fireplace replayed on
a television. The image on the top-right shows someone dancing while wearing a fire-colored
shirt. Both sample images on the bottom show real fire events. All videos have been recorded
by the ASUS Xtion Pro.

decrease of the FP-rate is achieved. The retrieval-scores Precision, Recall and the F1-Score in
Table 4.4 are the result of using the combined multi-sensor fusion by using the RGB-sensor to
detect fire-events with an additional plausibility-check by the depth-sensor.
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Table 4.1: The results of the fire-detection algorithm using the information extracted by the
RGB sensor only. The left part of the table shows the number of detected frames, the right side
the detection-rates in percent.

RGB Sensor

TN TP FN FP TN TP FN FP
Fire-Television 177 0 0 574 23.57% 0.00 % 76.43%
Ext.d-Fire Closeup 757 0 0 0 100.00% 0.00% 0.00%
Fire-BBQ 202 665 17 1 99.51% 97.51% 1.92% 0.11%
Fire-Bowl 752 1772 125 34 95.67% 93.41% 4.66% 1.27%
Fire-Bowl II 0 348 9 0 97.48% 2.52% 0.00%
Fire-Colored Dance 585 0 0 269 68.50% 0.00% 31.50%
Ambient-Env. I 114 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. II 60 0 0 5 92.31% 0.00% 7.69%
Ambient-Env. III 104 0 0 1 99.05% 0.00% 0.95%
Ambient-Env. IV 114 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. V 123 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. VI 127 0 0 2 98.45% 0.00% 1.55%
Ambient-Env. VII 139 0 0 1 99.29% 0.00% 0.71%
Ambient-Env. VIII 93 0 0 7 93.00% 0.00% 7.00%
Ambient-Env. IX 39 0 0 0 100.00% 0.00% 0.00%
Breakfast Preparing 362 0 0 37 90.73% 0.00% 9.27%
Working with refl. Mat. 404 0 0 32 92.66% 0.00% 7.34%
Physiotherapy I 323 0 0 36 89.79% 0.00% 10.03%
Physiotherapy II 402 0 0 21 95.04% 0.00% 4.96%
Living Room 1175 0 0 5 99.58% 0.00% 0.42%
Skeleton Test 39 0 0 0 100.00% 0.00% 0.00%
Home Env. I 89 0 0 0 100.00% 0.00% 0.00%
Home Env. II 10 0 0 0 100.00% 0.00% 0.00%
Dark-Colored Dance 385 0 0 0 100.00% 0.00% 0.00%

Average 91.29% 96.13% 0.57% 7.95%

Table 4.2: The achieved values for precision, recall and the F1-score for all videos, using only
the information provided by the RGB-Sensor of the ASUS Xtion Pro, without additional valida-
tion by the depth-sensor.

Name Score

Precision 0.73097
Recall 0.94857
F1-Score 0.82567
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Table 4.3: The results of the fire-detection algorithm using the information extracted by the
RGB sensor with additional validation by the depth-sensor. Left part of the table shows the
number of detected frames, the right side the detection-rates in percent.

Combined Sensors (RGB+Depth)

TN TP FN FP TN TP FN FP
Fire-Television 749 0 0 2 99.73% 0.00 % 0.27%
Ext.-Fire Closeup 757 0 0 0 100.00% 0.00% 0.00%
Fire-BBQ 202 641 41 1 99.51% 93.99% 4.63% 0.11%
Fire-Bowl 781 1695 205 2 99.74% 89.21% 7.64% 0.07%
Fire-Bowl II 0 293 64 0 82.07% 17.93% 0.00%
Fire-Colored Dance 854 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. I 114 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. II 65 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. III 105 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. IV 114 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. V 123 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. VI 129 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. VII 140 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. VIII 100 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. IX 39 0 0 0 100.00% 0.00% 0.00%
Breakfast Preparing 393 0 0 6 98.50% 0.00% 1.50%
Working with refl. Mat. 436 0 0 0 100.00% 0.00% 0%
Physiotherapy I 356 0 0 3 99.16% 0.00% 0.84%
Physiotherapy II 416 0 0 7 98.35% 0.00% 1.65%
Living Room 1175 0 0 5 99.58% 0.00% 0.42%
Skeleton Test 39 0 0 0 100.00% 0.00% 0.00%
Home Env. I 89 0 0 0 100.00% 0.00% 0.00%
Home Env. II 10 0 0 0 100.00% 0.00% 0.00%
Dark-Colored Dance 385 0 0 0 100.00% 0.00% 0.00%

Average 99.76% 88.42% 1.26 % 0.20%

Table 4.4: The achieved values for precision, recall and the F1-score - using both sensors of the
ASUS Xtion PRO. The combination of the fire-detection using the depth-sensor in addition to
the color-sensor leads to the Multi-Sensor Fusion.

Name Score

Precision 0.99021
Recall 0.89452
F1-Score 0.93994
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Comparison of Rates: RGB and Multi-Sensor Detection

In this section, the detection-rates of both methods are compared. After that, the impact of using
test-videos providing special events, like an already burning-fire before the fire-detection was
started or someone walking within the minimum distance-limit from the ASUS Xtion Pro, are
described further. Table 4.5 shows the detection rates, as described in Section ’RGB Detection’
and Section ’Combined Detection’, side-by-side for a better comparison, it shows the correct
dismissed FPs as well as the decreasing TP-rate.

Table 4.5: The results of the fire-detection algorithm using the information extracted by the
RGB sensor only is compared to the detection-rates when using the Multi-Sensor Approach

(Using the results calculated by the RGB sensor with additional validation by the depth-sensor).

RGB only RGB and Depth

TN TP FN FP TN TP FN FP
Fire-TV 23.57% 0.00 % 76.43% 99.73% 0.00 % 0.27%
Ext-Fire Close. 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
Fire-BBQ 99.51% 97.51% 1.92% 0.11% 99.51% 93.99% 4.63% 0.11%
Fire-Bowl 95.67% 93.41% 4.66% 1.27% 99.74% 89.21% 7.64% 0.07%
Fire-Bowl II 97.48% 2.52% 0.00% 82.07% 17.93% 0.00%
Fire-Col. Dance 68.50% 0.00% 31.50% 100.00% 0.00% 0.00%
Amb.-Env. I 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
Amb.-Env. II 92.31% 0.00% 7.69% 100.00% 0.00% 0.00%
Amb.-Env. III 99.05% 0.00% 0.95% 100.00% 0.00% 0.00%
Amb.-Env. IV 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
Amb.-Env. V 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
Amb.-Env. VI 98.45% 0.00% 1.55% 100.00% 0.00% 0.00%
Amb.-Env. VII 99.29% 0.00% 0.71% 100.00% 0.00% 0.00%
Amb.-Env. VIII 93.00% 0.00% 7.00% 100.00% 0.00% 0.00%
Amb.-Env. IX 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
Breakf. Prep. 90.73% 0.00% 9.27% 98.50% 0.00% 1.50%
W. w. refl. Mat. 92.66% 0.00% 7.34% 100.00% 0.00% 0%
Physioth. I 89.79% 0.00% 10.03% 99.16% 0.00% 0.84%
Physioth. II 95.04% 0.00% 4.96% 98.35% 0.00% 1.65%
Living Room 99.58% 0.00% 0.42% 99.58% 0.00% 0.42%
Skeleton Test 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
Home Env. I 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
Home Env. II 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
Dark-Col. Dance 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%

Average 91.29% 96.13% 0.57% 7.95% 99.76% 88.42% 1.26 % 0.20%
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Special Videos and Events Here, interesting events and significant values of for example
false-positives are described further. The following enumeration explains selected videos:

• Fire-Television - Here, a recorded fire was played back on a television-screen, to test the
behavior of both sensors when examining recorded (and therefore artificial) fire. This
leads to a very high false-positive rate of 76.43% when using the RGB-sensor only.

• Fire-Bowl II - Here, the fire was already burning before the ASUS Xtion PRO was acti-
vated. This leads to an area in the depth-image where no depth could be calculated for
the initial background-image. If the initial depth can not be calculated for a region (like in
this case), fire inside this region can not be validated by the depth-sensor.

• Fire-Colored Dance - A person dancing in a fire-colored T-Shirt in front of a bright surface
reflecting artificial light. This leads to a high-rate of false-positives detected by the RGB
sensor.

• Working with reflective Material - Here, the light of an artificial light-source is reflected
into the camera, generating false positives.

• Physiotherapy I+II, Living Room - Here, the person moving in the scene passes by the
ASUS Xtion PRO inside its minimum-detection limit, generating large areas where no
valid depth can be estimated.

Figure 4.2 shows four screenshots out of the described videos, where the impact of the special
events in the RGB or Depth-Image can be seen side-by-side.

Decrease of the False-Positive Rate

A false-positive event is a detected fire-incident by the method, when there is no real-fire pre-
sented in the scene. In this case, a robust approach should be developed meaning that the
false-positive rate should be near 0.00%. The basic approach proposed in this thesis is the
fire-detection via analyzing the information provided by a RGB-Sensor. In addition, the depth-
sensor is used to validate the fire-detection for the corresponding region. The idea is that this
should lead to a decrease of the false-positive rate, while there should not be a significant de-
crease of the true-positive rate. Table 4.6 shows detected false-positives from the videos by
using the color-sensor only and the detection-rate when using the combined approach. The FP-
rate is significantly decreasing by a total of 97.46%, when using the multi-sensor fusion. In fact,
in 14 videos false-positives occurred when considering only the information provided by the
color-sensor. Only in two videos the FP-rate stayed the same (in video Living-Room the person
moving through the scene passes the depth-sensor inside its minimal detection-distance, creating
large areas where no depth could be calculated. Exactly in this moment the false-positives were
triggered - see Figure 4.2 for an example image of the behavior of the depth-sensor when an
object passes within its minimum distance). An increasing FP-rate could not be observed in any
of the test-videos.
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Table 4.6: The number of detected false-positives (FP) - using the color-sensor only - compared
to the FP rate when using the multi-sensor fusion combining color- and depth-sensor. The corre-
sponding decrease-rate is shown in the right column. It can be seen that the additional validation
by the depth-sensor leads to a significant decrease of the false-positive rate, with an total of
97.46%.

RGB only Combined

FP (#frames) FP (#frames) Decrease-Rate(%)
Fire-TV 574 2 99.65%
Fire-BBQ 1 1 0.00%
Fire-Bowl 34 2 94.12%
Fire-Col. Dance 269 0 100.00%
Amb.-Env. II 5 0 100.00%
Amb.-Env. III 1 0 100.00%
Amb.-Env. VI 2 0 100.00%
Amb.-Env. VII 1 0 100.00%
Amb.-Env. VIII 7 0 100.00%
Breakf. Prep. 37 6 83.78%
W. w. refl. Mat. 32 0 100.00%
Physioth. I 36 3 91.67%
Physioth. II 21 7 66,67%
Living Room 5 5 0.00%

Sum 1025 26 97.46%

Decrease of the True-Positive Rate

When a method tries to decrease the false-positive rate, in the best case the true-positive rate
stays the same. Here, the impact of the decreasing false-positive rate, as analyzed in Section
’Decrease of the False-Positive Rate’, on the true-positive rate is analyzed. Table 4.7 shows how
the detection-rate of real fire events (TP) is decreased also, when using the multi-sensor fusion.
The overall decrease-rate of 5.60% is justifiable when comparing it to the achieved decrease-rate
of 97.46% of false-positives using the multi-sensor approach.

Table 4.7: The number of correct identified fire-events when using the RGB-sensor only is
compared to the multi-sensor approach. The overall decrease-rate is 5.60%.

RGB only Combined

TP (#frames) TP (#frames) Decrease-Rate(%)
Fire-BBQ 665 641 3.61%
Fire-Bowl 1772 1695 4.35%
Fire-Bowl II 348 293 15.80%

Sum 2785 2629 5.60%
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Rates of Final Fire-Alarms Triggered

As mentioned in Section ’Final Decision’, the overall fire-alarm is not triggered when a single
fire event in one frame is recognized. This approach should reduce the possibility of false trig-
gered fire-alarms. Therefore, only when 75% out of the last 30frames are marked as frames
containing fire the overall alarm is triggered. By using this final decision-threshold the detection
rate of fire is 100%, evaluated by using the 24 videos from Table 4.1, while the rate of falsely
triggered fire-alarms is 0.0%.

4.1.3 Detecting Smoke

In this section, the performance of the proposed method for smoke-detection, using an ASUS
Xtion Pro, is evaluated and the experimental results are given. 18 videos have been analyzed,
with 3 videos containing smoke events.

RGB Detection

In this section, the smoke detection rates - using the RGB sensor only - are evaluated further.
The method, to detect smoke in the video-stream provided by the ASUS Xtion Pro, is described
in Section ’Implemented Method for Smoke Detection’ in detail. Table 4.8 shows the results
of the smoke-detection using the RGB sensor only, leading to an overall score of 99.52% TNs.
Only video Fire-Bowl II leads to a high amount of FP, because in this video a fire starts burning.
Due to the typical growth rate of fire, as described in Section ’Fire Growth Rate’, in the end of
this video the fire is big enough to cover details from objects in the background. Due to the fact
that fire is recorded as nearly white pixels by an ASUS Xtion Pro, as described in Section ’Fire
Color Range’, this leads to some false smoke detections at the end of the video. The retrieval-
scores Precision, Recall and the F1-Score are calculated using the RGB-sensor only, because
when detecting smoke the (additional) usage of the 3D depth-sensor does not provide useful
results. Table 4.9 shows the retrieval-scores achieved by the proposed algorithm.

Combined Detection

Due to the fact that smoke does not lead to significant changes considering the 3D depth-sensor
of the ASUS Xtion Pro, smoke is detected using the RGB camera only - without the multi-sensor
approach. (see Section ’Depth Camera and Smoke’ for details).

Rates of Final Smoke-Alarms Triggered

As described in Section ’Final Decision’, the overall-smoke alarm is not triggered when a smoke
event in a single frame is detected. Therefore, smoke has to be detected in three different regions
(or more) for at least 23 out of the last 45frames. With this additional condition, the overall
smoke-detection rate is 100%, using the all videos included in Table 4.8.
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Table 4.8: The results of analyzing the smoke-detection algorithm proposed in this Thesis, using
the RGB sensor only. The left part of the table shows the number of detected frames, the right
side the detection-rates in percent.

RGB Sensor

TN TP FN FP TN TP FN FP
Fire-Television 549 0 0 0 100.00% 0.00 % 00.00%
Fire-Bowl 1863 0 0 97 95.05% 0.00% 4.95%
Fire-Bowl II 265 0 0 3 98.88% 0.00% 1.12%
Fire-Colored Dance 606 0 0 3 99.51% 0.00% 0.49%
Ambient-Env. I 114 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. II 69 0 0 0 100.00% 0.00% 0.00%
Ambient-Env. III 98 0 0 0 100.00% 0.00% 0.00%
Breakfast Preparing 364 0 0 1 99.73% 0.00% 0.27%
Working with refl. Mat. 392 0 0 1 99.75% 0.00% 0.25%
Living Room 886 0 0 14 98.44% 0.00% 1.56%
Skeleton Test 57 0 0 0 100.00% 0.00% 0.00%
Home Env. I 98 0 0 0 100.00% 0.00% 0.00%
Home Env. II 28 0 0 0 100.00% 0.00% 0.00%
Smoke I 64 484 6 0 100.00% 98.78% 1.08% 0.00%
Smoke II 24 0 0 0 100.00% 58.51% 30.95% 0.00%
Smoke III 7 345 52 0 100.00% 86.90% 12.87% 0.00%
Sitting 24 0 0 0 100.00% 0.00% 0.00%
Dark-Colored Dance 276 0 0 0 100.00% 0.00% 0.00%

Average 99.52% 81.40% 2.49% 0.48%

Table 4.9: The achieved values for precision, recall and the F1-score for smoke-detection, using
the color-sensor of the ASUS Xtion PRO only.

Name Score

Precision 0.88136
Recall 0.90112
F1-Score 0.89113
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Figure 4.2: Left side: RGB-image. Right-side: Depth-image. The top row shows the impact
of recorded fire to the color-sensor, while the depth-sensor is able to calculate a depth for the
scene and therefore dismisses the fire-decision of the RGB-sensor. The second row shows the
depth-image of the calculated background-image (not the current depth-frame as in row 1 and
3). Here, the missing region estimation can be clearly seen, because the recording of the fire was
started after the fire was already burning. The last row shows the impact of a close-passing leg
to the RGB-camera and the resulting problem estimating the depth in the depth frame.
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4.2 Comparison with Related Work

In this section, the proposed methods for fire- and smoke detection are compared to already
existing approaches. Due to the fact that using the depth map of the ASUS Xtion Pro for fire
detection is a novel approach - and that the smoke detection algorithm does not include the 3D
depth sensor - the comparison focus mainly on the different detection methods using the RGB
sensor.

4.2.1 Fire Detection

For the proposed fire detection method, firstly motion is estimated by using frame differencing
(similar as in for example [16], [21] and [27]). After that, fire colored pixel are extracted using a
color restriction method (as in [5], [16] or [40]) with the difference that - due to the fact that the
color camera of the ASUS Xtion Pro provides low quality RGB-images only - the color restric-
tions of those existing approaches can not be used for providing meaningful results. Therefore, a
tailor-made color restrictions was created using sample-images extracted from videos containing
fire incidents. The features calculated are the mean-value, the standard-deviation and the skew-

ness, as for example in [5], but with the difference that only pixels located on the edge of the fire
area are taken in consideration. This is necessary due to the fact that the areas inside fire regions
(recorded by an ASUS Xtion Pro) contain nearly none spatial variation. The mean value and
the standard deviation are calculated, after merging all three color channels to one (by reducing
the evaluated pixels to grayscale), while the skewness is calculated using the values provided
by the red color channel only. The decision - if fire is detected using the RGB sensor only -
is calculated using all features. While the features movement and color have the power of veto
the remaining features mean, deviation and skewness are merged to a final decision by using an
adapted version of the T-out-of-v method [16]. In this case, the values taken in consideration are
not binary values (weighted by a user defined value), here every feature provides a numeric result
finally weighted and merged to the decision value. If this value lies above a decision threshold
a frame is marked as a fire frame. Due to the fact that there was no method found using a depth
image calculated by the structured-light approach, the detection of fire candidate areas by the
3D sensor is a novel approach. The multi sensor fusion itself is done similar as in [29], but in
this case the RGB and the depth-image are merged (and not the RGB and the intensity-image).
The rectification and alignment constraints are the same as in [29]. The technique that, when the
color sensor detects fire in a specific area that the depth sensor checks this region regarding its
plausibility, has also no equivalent in existing methods.

4.2.2 Smoke Detection

Here, motion is also the first feature extracted. Due to the fact that this is already calculated
for the fire detection method, the computational effort is not increased. The next restriction is
also color. As mentioned before the RGB camera of the ASUS Xtion Pro provides low quality
images only, leading to the fact that existing smoke color ranges, as proposed in for example [21]
or [39], can not be used for this method. Due to this reason, an own restriction is modeled by
analyzing frames extracted from videos containing smoke recorded by the ASUS Xtion Pro.
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Each frame is divided into sub-regions, as in [39], and for each region different features are
calculated using integral images. Instead of converting the frames to the wavelet domain, as
in [13], the feature for the typical smoothing behavior of smoke is calculated by spliting it into
two separate features: firstly, the average pixel value of each region is calculated and compared
to the initial generated value. Secondly, an edge detection algorithm is used to store the amount
of initially detected edges of each region, which is compared to the current amount of edges
detected for each frame later on. If the average pixel value is the same as for smoke covered
regions and the amount of edges is additionally decreased, these features consider the presence
of smoke inside the corresponding region. The final decision, if smoke is detected in a frame or
not, is made by using a decision tree as proposed in [9].
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CHAPTER 5
Summary and Future Work

5.1 Summary

In this section, the method for fire-detection and the method for smoke detection implemented
for this thesis are summarized. After that, a conclusion, regarding how suitable it is using two
sensors to detect fire, is given.

5.1.1 Fire-Detection

In this section, the approach to detect fire, using the multi-sensor approach by combining a
2D RGB-sensor and a 3D depth-sensor, is proposed. Both sensors are already combined in a
Microsoft Kinect or the ASUS Xtion Pro. For this method, the ASUS Xtion Pro is used as the
(stationary) hardware monitoring a scene. Due to the fact that this sensor estimates the depth of
e.g. objects by using the structured-light approach, the proposed method is suitable for indoor
fire-detection only, because direct sunlight interferes with the pattern emitted by the infrared
sensor. For this method, fire is recognized using the RGB color sensor. When a potential fire
area is located, the second sensor (namely the 3D depth sensor) is used to evaluate if a fire-
detection at this location is plausible or not. To achieve this, firstly the information provided by
the RGB sensor is restricted to areas that are considered as moving and fulfill a certain color-

restriction. Secondly, different features are calculated and their outcome is merged to the overall
decision, if and where fire is located in a video frame. The depth sensor also extracts regions with
possible fire candidate areas, by detecting motion and areas with potential new fire incidents. By
comparing the potential fire area, detected by the RGB sensor, with plausible fire areas calculated
by the depth sensor algorithm, it is evaluated, if fire is represented in this frame. To achieve that,
the frames of both sensors have to be synchronized, rectified and aligned accordingly to allow
a useful multi-sensor fusion. The idea is that using this multi-sensor approach decreases the
number of false-positives (FPs). In fact, the number of FPs have been reduced from 6.64% to
0.20% while the fire-detection itself (shown by the true-positive rate - TP) still provides reliable
results. So, 97.46% of the FPs could be dismissed, while only 5.60% of the initial valid TPs -
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detected by the RGB sensor - were (falsely) detected as false-negatives afterward by the multi-
sensor approach. By adding the final restriction, that fire has to be detected for multiple frames
to raise the overall fire alarm, every fire incident inside the test videos was recognized.

5.1.2 Smoke-Detection

Due to the fact that smoke does not lead to significant changes in the 3D depth-map, the smoke
detection is implemented by using a single sensor only, namely the RGB-sensor. The RGB-
camera used by the ASUS Xtion Pro provides only low-quality videos, therefore - when im-
plementing a method for smoke detection only - using for example a high quality webcam is
more recommended instead. To detect smoke, a frame is divided in an 8 × 6 grid, resulting
in 48 different sub-regions. For each region restrictions like motion, color or the decrease of

edges are calculated. If each feature calculated for a region lies above a decision threshold, the
region is considered as a smoke region. Because of the restriction using one sensor only, the
flow chart for smoke detection differs from the chart for fire detection, because steps like the
image rectification or a synchronization of both sensors are not necessary here. By adding the
final restriction that at least three different regions have to detect smoke over a given timeslot,
every smoke incident was detected using the test videos.

5.1.3 Conclusion

Using sensors like the ASUS Xtion Pro to detect fire events provides useful results. Due to
the fact that a false-triggered alarm can lead to high fines and penalties (when a fire-brigade is
called, for example) it is preferable that the number of false-positives (FPs) stays low, while
the TP-detection still provides useful results. This approach shows that the number of false-
detected fire events can be significantly decreased by using the multi-sensor fusion. Evaluation
showed that the ASUS Xtion Pro is very suitable for fire detection inside buildings. However,
it suffers from restrictions like that sunlight interferes with the infrared light needed to estimate
the depth map or the restrictions for the maximum and minimum distance of the depth-sensor,
which prevents a usage for large covered areas (like tunnels). Smoke detection on the other hand
can be achieved better by using a high quality webcam (mainly because the depth-sensor does
not provide useful results and is therefore not used).

5.2 Discussion of Open Issues

Although the fire-detection using this multi-sensor approach works quite well, there are still
areas for potential improvement. A better quality for the RGB camera would lead to more sta-
ble results, because it will be more simple to distinguish between real fire and for example fire
colored objects. This happens due to the fact that e.g. the variety inside fire regions will be
recorded better compared to using the currently available ASUS Xtion Pro. The recently an-
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nounced Microsoft Kinect 21 - that will be available as a public beta in July 20142 - has the
potential to overcome this problem. However, due to the fact that the Kinect 2 will be a TOF-
sensor, a different approach to detect fire via a multi-sensor fusion is needed. Another field of
improvement is that the proposed method does not detect objects that are passing the sensor
within its minimum working distance. So an additional consideration if wide areas of the depth
image became suddenly undetectable (regarding their depth) would prevent false raised alarms,
because such a close pass generates areas where fire incidents are considered as plausible by
the depth sensor analysis. On the other hand, the ASUS Xtion PRO provides only poor results
for smoke detection, due to the fact that the depth sensor can not be used for meaningful smoke
detection and the RGB camera itself does not provide high quality images. However, the pro-
posed smoke detection method still contains areas for improvement. Firstly, the edge detection
feature proposed provides only useful results in well structured scenes. Therefore, converting
a frame to the wavelet domain (measuring the high-frequency areas of images, as generated by
edges) and comparing the sub-regions regarding their wavelet energy could provide more useful
results. This is caused by the fact that in this case not only hard edges would be considered in
this comparison. In addition, the horizontal, vertical and diagonal wavelet transformed frames
could still be calculated using the proposed integral image approach. Secondly, the regional
grayscale difference does not provide useful information, when the RGB camera is facing for
example a single gray-colored area. Therefore, a weakness of the provided smoke detection
algorithm (using the RGB color sensor only) could occur, when a lot of the sub-regions (where
features are calculated) are located on for example gray surfaces with less variation inside.

1Microsoft Developer Network - KINECT for Windows, http://blogs.msdn.com/b/

kinectforwindows/archive/2014/03/27/revealing-kinect-for-windows-v2-hardware.

aspx, Accessed: 29.06.2014
2Microsoft.com - KINECT for Windows, http://www.microsoft.com/en-us/

kinectforwindows/, Accessed: 29.06.2014
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