
Dependable Event Processing
over High Volume Data Streams

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Andrea Floh
Matrikelnummer 0725144

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.-Prof. Dr. Schahram Dustdar
Mitwirkung: Univ.-Ass. Dr. Waldemar Hummer

Wien, 17.03.2014
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Dependable Event Processing
over High Volume Data Streams

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering & Internet Computing

by

Andrea Floh
Registration Number 0725144

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.-Prof. Dr. Schahram Dustdar
Assistance: Univ.-Ass. Dr. Waldemar Hummer

Vienna, 17.03.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Andrea Floh
Reinpolz 11, 3962 Heinrichs

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i





Abstract

The number of event processing systems is increasing more and more. In contrast to traditional
systems, those event processing systems do not handle persistent data, which is mostly stored
in databases, but instead they have to deal with events, which are received continuously over
various communication channels and should be processed more or less immediately. Complex
computations (e.g., mathematical calculations, or pattern detection) in terms of queries have to
be performed for these events. The frequency of the arriving events is not necessarily steady. In
fact, the system has do deal with ups and downs, which can influence the data volume heavi-
lyload fluctuations, which can heavily influence the requirements concerning processing power.
Especially in times of high data volume the processing systems have to deal with a huge number
of events and should be able to manage these phases.

Different approaches of dealing with high volume data streams have been studied, but their
applicability and efficiency may vary depending on the application scenario. General approaches
or guidelines on how to treat such overload are not available.

This thesis covers strategies to handle phases of high data volume on event streams for a
single event processing node. Currently, there are three established strategies for coping with
loads that are too high, which have been used to treat overload situations caused by high data
volume: load shedding, deferred execution and forwarding. These strategies are discussed and
their applicability for different types of queries is evaluated. To that end, a taxonomy of queries
in event processing systems is elaborated. The taxonomy covers different dimensions like the
type of processing operation and the scope of the query.

Based on the features of the strategies and the different query types, the applicability of
the strategies is analyzed in theory and an evaluation is performed to support the analysis. The
strategies are implemented in a generic way and are integrated into the WS-Aggregation frame-
work for the evaluation. This framework for distributed and event-based aggregation of web
services data has been developed by the Distributed Systems Group at the Vienna University of
Technology. Furthermore, the results of the evaluation are used to determine the strength of the
influence of the different applicability criteria and to formulate problem statements for further
research.
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Kurzfassung

Ereignis-basierte Systeme (event processing systems) haben in letzter Zeit immer mehr an Be-
deutung gewonnen und sind immer häufiger im Einsatz. Im Gegensatz zu traditionellen Syste-
men, welche persistierte Daten verarbeitet haben, die oftmals in eine Datenbank eingefügt und
erst danach verarbeitet wurden, müssen Ereignis-basierte Systeme mit laufend ankommenden
Daten umgehen können und diese meist auch umgehend verarbeiten können. Die Verarbeitung
umfasst dabei komplexe Berechnungen, welche durchaus gewisse Ressourcen benötigen. Die
Ankunftsrate der Ereignisse ist allerdings selten gleichbleibend. Vielmehr müssen die Syste-
me mit starken Schwankungen umgehen und sollten Spitzenfrequenzen verkraften, welche die
Durchschnittsfrequenz um ein Vielfaches übersteigen. Speziell zu solchen Spitzenzeiten, wenn
die Anzahl der ankommenden Ereignisse und deren Größe ein sehr hohes Datenvolumen erge-
ben, sollen diese Systeme trotzdem verlässlich arbeiten.

Verschiedene Ansätze für den Umgang mit solch hohen Datenvolumina wurden in der bishe-
rigen Forschung vorgestellt, allerdings oft nur im Kontext von speziellen Anwendungsgebieten.
Die Anwendbarkeit und Effizienz der Strategien ist aber je nach Einsatzzweck unterschiedlich.
Generelle Richtlinien, welche Strategien in welchen Situationen verwendet werden sollen, sind
derzeit nicht verfügbar.

Diese Arbeit behandelt Vorgehensweisen für den Umgang mit hoher Last auf einem ein-
zelnen Verarbeitungsknoten. Aktuell sind hierfür vor allem drei Strategien populär: Lastabwurf
(load shedding, verzögerte Verarbeitung (deferred execution) und Weiterleitung (forwarding).
Im Rahmen der Arbeit werden diese Strategien vorgestellt und analysiert. Im Speziellen wird
dabei untersucht, für welche Verarbeitungsszenarien diese Praktiken verwendet werden können.
Hierfür wird auch eine Klassifizierung der Abfragen, die zur Verarbeitung verwendet werden,
erstellt. Die Klassifizierung erfolgt dabei nach zwei Dimensionen: dem Operationstyp und dem
Umfang der Abfrage.

Basierend auf den Eigenschaften der verschiedenen Abfragetypen wird die Einsetzbarkeit
der Praktiken theoretisch analysiert und danach mit einer praktischen Evaluierung belegt. Die
Strategien werden hierzu generisch implementiert und in das Framework WS-Aggregation inte-
griert. Dieses Framework für die verteilte, ereignis-basierte Aggregation von Web-Service Da-
ten wurde am Arbeitsbereich für Verteilte Systeme der Technischen Universität Wien entwickelt.
Die Ergebnisse der Evaluierung werden im Speziellen auch genutzt um die verschiedenen Fakto-
ren der Anwendbarkeit der Strategien zu gewichten und um festzustellen, in welchen Bereichen
noch weitere Forschungsarbeit benötigt wird.
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CHAPTER 1
Introduction

The motive of this chapter is to give a basic overview of the area of event processing and to ex-
plain the contributions that will be gained by this thesis. First an introduction to event processing
is given. The focus lies on the context of the thesis as well as the explanation of several terms.
It then leads on to the motivation and the reasoning for the importance of this thesis, followed
by the concrete problem formulation with a reference to the current situation. Afterwards the
concrete objectives of the work and its scope are defined, while other research areas are delin-
eated. According to that, the methodological approach to fulfill the objectives is described. The
chapter is closed up with a description of the structure of the remaining thesis.

1.1 Event processing

Event Processing (EP) is a computing paradigm that uses an event-driven approach [32]. In con-
trast to time-driven or request-driven applications, actions are not initiated because of a request
by a client or a special point in time. Actions are triggered due to received events. Event-Based
System (EBS) [96] are based on the event processing paradigm, which leads to a decoupling
of the components in the system [89]. An Event is an occurrence within the system or the do-
main [47]. It represents a change in the current state of the system. The information on the
occurrence is wrapped in a programming entity and is used for further processing. Based on
the wrapped information, the receiver of the event can take the correct actions. Mostly, both the
occurrence itself and the programming entity are called ’event’.

Events arise over time with different volumes and intervals. The traditional approach has
been to store information and data of interest in a database in general. These persistent data sets
have then been queried using the Database Management System (DBMS) and the results have
been used for further processing or analysis. Nowadays saving those huge amounts of data and
performing the queries later on is not a viable option. Events have to be processed immediately,
sometimes even in real-time.

1



As a new approach, continuous queries are used for the processing. Continuous Queries
[123] are applied once, but they are executed continuously as events are received over the data
stream [13]. Thus events can also be processed in real time.

According to [89], event processing is divided into four different logical layers: in the Event
Generator layer events are generated based on perceived or available information. The next layer
is the Event Channel, which transports the generated events between the components. In the
Event Processing layer events are received and analyzed. According to rules, further actions are
taken: service invocations, invocations of business processes, notifications, publication of events
and so forth. Finally, the Downstream Event-driven Activity layer includes all the activities that
were triggered by the event processing. The physical structure of an event processing system
does not necessarily need to reflect this logical division.

EBSs differ on the communication infrastructure that is used to transport the events between
the components as well as on the specific purpose. The purpose of such an application can vary
from monitoring to information dissemination or to realize ubiquitous systems.

As for the communication infrastructure, data streams are one of the possibilities that can
be used. A Data Stream is an input source, where data, i.e. events, arrive on-line. The stream
is defined as unbounded and the arriving data elements have an internal order. The order of the
elements may not coincide with the order of the arrival, but the system itself cannot affect the
order of arrival in a data stream or across several streams. Data arrives at a very high rate and
after the processing of an element, it cannot be accessed easily anymore unless it is archived. [11,
29, 97]

Even though the size of events most often is relatively small, the high frequency of arriving
events leads to a huge volume of data that has to be processed. Typical examples for event
processing applications can be found in the financial sector. Stock markets or bank accounts
are monitored and each transaction triggers an event. Even more events are generated in Radio-
Frequency Identification (RFID) applications, when each product in a big warehouse is tagged
with a RFID tag to trace all changes and movements. Another area with a huge amount of
incoming events are Massive Multiplayer Online Games (MMOG). As popular games gain more
and more users, the amount of events per second gets extremely high at peak times, for example
after working hours. In Table 1.1 figures for these applications are shown. Whereas the events
in banking and RFID applications show the sum for a whole day (including ups and downs), the
number for MMOG games represents the amount of events per second at a peak.

Table 1.1: Event Data Rates [74]

application type amount of events time scope
banking applications 400 million events per day average
RFID applications 4 trillion events per day average
MMOG games 1 million events per second peak

These input streams, having events arriving with a high frequency, also lead to the impor-
tance of dependability in EBSs. Laprie describes dependability in [76] as following: Computer
system dependability is the quality of the delivered service such that reliance can justifiably be
placed on this service. Therefore, whether an EBSs is dependable or not is determined by the
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viewpoint. The EBS can either be seen from the perspective of an end user or from other sys-
tems that rely on the EBS. The EBS works dependable as long as the Quality of Service (QoS)
criteria of the systems based on it are met. If an EBS is used by different systems, it can be
dependable and undependable at the same time as their QoS criteria may be different. If a sys-
tem is fault-tolerant, the EBS can still be rated as dependable if some errors happen during the
event processing. Whereas for a system that is not fault-tolerant, the EBS is already seen as
undependable. To ensure dependability it is not sufficient to meet the QoS criteria of another
system on average, but the processing result must also comply with the criteria at peak times.

1.2 Motivation

Event processing is a computing paradigm that evolved based on existing technologies and pro-
cedures, and due to changing challenges over time. Currently one can see a trend for event-based
systems. Companies and organizations are growing larger and the number of relevant events that
occur in their systems increases evermore. To cope with the handling and monitoring of all those
events, efficient computer systems are needed. Moreover, the computational processing enables
a company to extract hidden information by using mining techniques.

One main reason why the event-based communication is getting more popular as an architec-
tural style in business applications is, that it matches the real world context of the applications.
Events represent state changes in the environment of the company and companies react to these
events. As events can be perceived automatically in different ways, i.e. through sensor systems
or notification services, an EBS can react to those events immediately and is therefore suited
best.

According to [32], different types of current business pressures lead to the decision to use
event processing as an architectural style for a business application, see Figure 1.1.

The system requirements timeliness, agility and information availability are a consequence
of current pressures like increasing competition, globalization and so forth. Event processing
is well-suited to meet those requirements. Timeliness can be enabled by real-time event pro-
cessing. Agility is achieved as the system can provide various ways to treat occurred events.
As event processing supports the decoupling of components, components can also be changed
easily or additional components for event processing can be added. Information availability can
be guaranteed as components that require notifications on certain events can subscribe for them
and get informed as soon as events are published.

This common trend to use event-based systems makes this area a promising research area
as there is still a lack of generic approaches. Event-based systems are used for a lot of different
purposes [47,96]: monitoring, observation, information dissemination, enterprise application in-
tegration, ubiquitous systems, RFID systems and so forth. Currently several research prototypes
and frameworks are developed, but few systems are used commercially in real business contexts.
The prototypes usually support event processing for different purposes, but there is no general
approach to handle temporary overload during peak times.

In such times of high volume the number of events that have to be processed per second
can be in the range of thousands and up to one million [74, 130]. If an EBSs is designed in a
way so that it can handle such amounts of events occurring during peak times in general, the
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Figure 1.1: Business Pressures Leading to Event Processing. [32]

system will not utilize its resources during the average load times. As such peaks occur only
sometimes, the system would not be busy most of the time, so oversizing the EBS would a waste
of resources. On the other hand, if an EBS is capable to handle the amount of incoming events
only on average, which means only if the events arrive evenly distributed over the time, the
system cannot guarantee the reliable processing of the events at peak times. It will rather lead to
processing errors or a crash of the system in case an overload.

To enable dependable event handling, the systems must be capable of dealing with periods
of high volume data streams, which means a high frequency of incoming events and / or events
having a big size. Strategies use different approaches for this purpose, such as providing more
resources or adopting to a simpler handling of the events, which naturally means that the results
of the EBS are temporarily less accurate. In either case, if the strategy itself or the adaption to
using a strategy has an impact on the accuracy of a service, the dependability is threatened. If
such a strategy is used, the impact it has on the accuracy of the result, must be determined in
advance. Only in that case other systems or users can decide whether the system does satisfy
their standards for dependability or not.
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Currently, most of the used strategies are selected depending on the application and are
specifically customized during development. Sometimes further intervention to handle critical
situation is required during run-time. This means, an additional effort during the development
of an EBS is required, because the load handling strategies have to be selected and customized
for the requirements of the application.

To avoid that this effort in the development arises for every application, a generic approach
should be devised. The desirable solution would be a generic approach that provides different
load handling strategies for certain types of applications, which can be directly integrated. The
automation of the identification of the best strategy would be another improvement, because then
the strategies do not need to be analyzed during the development of the application. The strategy
resulting in the best results would be picked automatically. The best case scenario would be to
provide automated monitoring and analysis and that the strategy as well as the information on the
quality of service is regularly adjusted. Thus, the treatment of high load could be outsourced and
the development of event-based applications could again focus on the needs of the application
itself and not on the general conditions of load handling.

1.3 Problem Formulation

In contrast to usual applications of the past, which processed persistent and mostly static data,
nowadays more and more applications need to handle continuous data over streams [11]. In
a Event Processing System (EPS) data represents events that occurred in the context of the
system. Event Processing Agents (EPAs) are used for the processing of the received events as
they perform continuous queries. As in ordinary systems, one EPA is not sufficient to handle all
events or to calculate complex queries, so several EPAs are assembled in an Event Processing
Network (EPN) and are used to process the events collectively. In this EPN, the processing
nodes may work in parallel mode, or the result for a complex query is calculated by nodes, that
form a directed acyclic graph and calculate partial results for the traversing events successively.

Since events do not occur homogeneously distributed over time, there are peaks that lead to
periods of high load for single EPAs and therefore for the whole EPN. Event processing systems
have to be capable of handling such peaks as well as the caused overload to enable dependable
event processing. One single EPA may become the bottleneck of an EPN, if it cannot deal with
the amount of received events.

Current EBSs are mostly built from scratch or use a simple framework as basis. Those
frameworks usually do not provide sophisticated mechanisms to handle high load. So those
systems have to handle overload by custom tailored solutions, which are usually adapted to the
executed query type or even to the particular query. Therefore, the approaches to handle high
load can hardly be reused in other systems.

The identified problem is, that at the present time providing an EBSs that can handle high
load, causes overhead as no general approach is available. Moreover, the problem is not one-
dimensional but multidimensional. The first dimension is the type of strategy that should be
used, which is certainly related to the application and to the continuous queries. The next di-
mension is the scope of application and where the strategy should be applied. It can either be a
strategy that comprises the whole EPN or one that is applied to a single EPA. In the latter case
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a further decision has to be made, namely which EPA the strategy should be applied on. As the
EPN is an acyclic graph formed by the EPAs, a strategy will be more or less efficient depending
on where is is applied. And the third dimension is the adaptability. Poor adaptability is provided
if the strategies have to be selected and applied during design-time or the deployment. Better
adaptability is given when the strategies can be applied dynamically during run-time.

1.4 Aim of the Work

The field of research is rather wide, so this work will focus on a basic step towards a generally
applicable solution for handling high load in EBSs. The results can then be used for further
studies.

The goal of this work is to provide load handling strategies and to show how the strategies
and their usage can be further improved. This includes presenting a concept on how to integrate
load handling strategies, which can be applied dynamically during run-time, into an existing
framework. To prove the concept, a sample of promising load handling approaches is imple-
mented and integrated into a framework according to the concept. By implementing a simple
EBS with the framework, the strategies can be applied to EPAs of the system. A comprehensive
evaluation of the different strategies is used to gain insights on the applicability of the strategies.

A secondary goal of the thesis is a taxonomy of continuous queries. The taxonomy will
uncover distinguishing characteristics of queries. Therefore, the taxonomy can be used to deter-
mine the different challenges that a generally applicable approach for handling high loads has
to face. Based on the taxonomy, queries are selected that will be used for the comprehensive
evaluation. The results of the evaluation are going to underline the analysis and assessment of
the strategies.

The evaluation itself will provide information for the implementation of further strategies
and decision criteria for algorithms, which determine suitable strategies for EBSs automatically.

Some potential research areas are not covered by this thesis. The thesis just covers strategies
that are applied to one EPA, not to the whole EPN. Further on, it does not analyze on which EPA
the strategy should be applied. The strategies will be applied to an EPA explicitly, so it does
also not cover the monitoring of EPAs. As there are currently no published studies that indicate,
which criteria are relevant to decide on a good load handling strategy, no automated decision
algorithm will be implemented, but the evaluation will provide references for such an algorithm.
As the strategies should be implemented as an extension to an existing framework, only a subset
of known strategies are qualified for the thesis. The framework will not be revised completely,
so the possible integration levels narrow the possible strategies. As already mentioned, the
strategies are rated on their overall quality. This allows a basic assessment of the quality of
service of the EBS during high load, but is not an accurate statement for dependability.

1.5 Methodological Approach

First a solid literature review is conducted. It includes the state of the art in EBSs and approaches
to handle high load in those systems with a special focus on event stream processing. The review
results in an overview of current approaches and leads to a selection of promising approaches.
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The next step is to define a concept for the integration of these strategies into a framework for
EBSs, which follows established designing concepts. The WS-Aggregation framework [60, 62]
including an event-based query engine based on the Open-Source XQuery Engine ’MXQuery’1

is used for the integration. In the conception phase the framework is analyzed to see how it
can be extended properly without touching the MXQuery layer. In the concept, interfaces will
be defined for the framework, that will enable the usage of several strategies. Afterwards the
interface and the strategies are implemented and integrated into the framework. The strategies
will be configurable so that they can be adapted for different load situations. Further on, the
strategies are implemented in a generic way without any internal knowledge of the framework,
so that they can be used in other frameworks too.

Following, the applications found in the review are analyzed to identify different types of
queries in EBSs. Further on, the key features to distinguish query types are determined. The
result of this phase is a query taxonomy including the declaration of the features to distinguish
the queries and their usage in applications. Based on the gained information, sample queries
for the different types are selected to be used for the evaluation. Additionally the key features
of the query types are used to perform an analysis of the strategies and to provide a theoretical
assessment.

To be able to compare and evaluate different strategies, an event processing environment is
needed. A comprehensive experimentation environment is established using the extended WS-
Aggregation framework by implementing a simple EBSs that can be used to simulate different
load situations and which makes use of the implemented strategies.

For the evaluation each approach is used once with each sample query in the same event
processing environment. The results of the executed evaluation scenarios are captured and pro-
cessed. The theoretical analyses will be proved by the results of the evaluation. Using the gained
insights, improvements and application scenarios for the different strategies are provided.

In the final phase, the results of the work will be considered in the context of the holistic
problem formulation. It is judged, which conclusions can be drawn and how the results of the
thesis can be used more extensively in further research.

1.6 Structure of the Work

After this short introduction the work continues with an exposition of the “State of the Art” in
Chapter 2 and an overview of the “Related Work” in Chapter 3. The State of the Art covers
the current state of EBSs with a special focus on Event Stream Processing (ESP) applications,
established technologies and approaches in event processing over data streams. It also includes
proved strategies to handle high load. Current research that is relevant for the topic is discussed
in the Related Work. These two chapters will underline the motivation and the described problem
(see Sections 1.2 and 1.3).

As the work is based on the WS-Aggregation framework, Chapter 4 “Background” will
introduce the framework, its components and further used technologies.

1http://mxquery.org/ (Accessed: 2014-01-22)
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After these theoretical arrangements, the practical part is described in Chapter 5 “Solution
Design and Architecture” and subsequently the concrete solution is presented in Chapter 6 “Im-
plementation”. In Chapter 7 the implemented strategies are evaluated and analyzed. Further on,
opportunities for improving the strategies are revealed and the benefits of the improvements are
outlined.

Finally, in Chapter 8 “Summary and Conclusion” the work is summarized and conclusions
on the performance and the applicability of the developed solutions are drawn. The relevance
for distributed event processing is discussed and the chapter is topped off with an outlook how
further research can use the results of the thesis to provide a general approach for handling
overload.
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CHAPTER 2
State of the Art

This chapter summarizes the state of the art concerning ESP. At first, the chapter enlarges upon
event based systems in general to provide a detailed understanding. Based on the different pur-
poses of such systems, a basic classification including ESP is introduced and used to emphasize
the features of ESP in comparison to other types of event based systems. The second part focuses
on ESP. Starting with a more precise definition of ESP, the section continues with current appli-
cations (commercial and in research areas), which are used or have been proposed in the context
of ESP. Further on, different event query languages, which are used in ESP systems, are shown.
In addition, the capabilities of current systems to handle peaks of high load are discussed.

2.1 Event-based Systems

Event processing has been a main topic in research during the last view years. Moxey et al. [95]
also reason that enterprises behave event-driven and therefore EP is now seen as the best way to
support enterprises.

As already pointed out in the Introduction (see Section 1.1), event-based systems follow
the event-driven approach. Events occur in the system or are received by it, they are processed
and the results are delivered or they trigger further actions in the system. In addition to the
classification of the four logical layers, further models and abstractions can be used to describe
EBSs and their components.

Event-based systems can be seen from two different viewpoints: the logical and the physical
one. The logical viewpoint is an abstraction of the event-based system. It describes the core
value of the system independent from the technical realization. In [95] it is also called the
conceptual model. The physical viewpoint manifests the implementation of the system, it is
the technical realization of the logical perspective. There can be various physical realizations
for a logical description of an event-based system. Depending on the context and purpose, one
physical realisation may be suited better than another one.

9



The logical perspective of an event-based system consists of the following components: data
sources and consumers, events, event processing agents and communication channels (event
channels), see Figure 2.1.

Figure 2.1: Logical Perspective of an Event-based System

Data Sources produce data, which is of relevance for the system, while Data Consumers
consume data, which is of interest for them. Data is represented in form of events. Important
is to note that data sources and data consumers do not need to know anything about each other.
An Event is a data unit in the form of an object or a tuple. Events emitted by a data source are
the input for the event-based systems, whereas the events consumed by a data consumer are the
results of the event processing and therefore the output of the system. The processing of the
events to transform them from input events to output events is done by the EPAs. Depending on
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the complexity of the processing and the system, different amounts of EPAs can be appropriate.
Each EPA processes the incoming events by performing i.e. aggregation or filtering and forwards
the resulting events to next EPA or to a data consumer. Finally, Communication Channels are
used to transport the events from the data sources along the EPAs to the data consumers. The
overall event processing concept is determined by the EPN. The EPN is a directed acyclic graph
describing the logical connections between the components, where EPAs and event consumers
/ producers are the vertices and the communication channels are the edges. This implies that
the EPN defines the flow of events inside the event processing system. The overall processing
of an event is the concatenation of the EPA processing logic along the path, which the event
has passed in the EPN. Normally, the specification of a system defines the overall processing
outcome that should be achieved by the system. Based on the specification a query, which has to
be executed in the system, is constructed. A flexible system must be able to create an appropriate
EPN based on the query. Moreover, as systems usually handle more than one query at a time,
the systems have to optimize the utilization and sharing of resources between the queries. These
are big challenges in the area of event-based systems.

Sharon and Etzion [113] define this conceptual model in a more formal way. An EPN is
a graph G = (V,E), where the vertices are composed of V = C

⋃
P
⋃
A
⋃
EC. C are the

event consumers, P the event producers, A the event processing agents and EC are the event
channels. The edges of the graph are described by ordered pairs of the nodes, which represent
directed edges from the first node to the second one. Events always have to be transported via
event channels, the ordered pairs must fulfill the following term: E = {(u, v) | (u ∈ (P ∨A)→
v ∈ EC) ∧ (u ∈ EC → v ∈ (C ∨ A))} This states that a directed edge can only point from
a producer or an agent to an event channel and an event channel can only point to an event
consumer or an agent. So the event causality is ensured, which means that event producers
only output events and consumers only receive events, which have been completely processed.
As an event channel always needs a source and a target node, further restrictions are given:
∀v ∈ EC,∃ein, eout ∈ E : ein = (u ∈ (P ∨ A), v), eout = (v, u ∈ (C ∨ A)) Additionally,
each node in the EPN has to be connected to another one via event channels, so for each event
producer there has to be an outgoing edge and for each consumer there has to be an ingoing
edge: ∀v ∈ P,∃eout ∈ E : eout = (v, u ∈ EC) and ∀v ∈ C,∃ein ∈ E : ein = (u ∈ EC, v). In
contrast to these endpoints, an event processing agent requires an ingoing and an outgoing edge:
∀v ∈ A,∃ein, eout ∈ E : ein = (u, v), eout = (v, w), withu,w ∈ EC.

Sharon and Etzion [113] further state that a single event type is assigned to each event chan-
nel, whereas [95] explains that the conceptual model is completely abstract regarding the event
and event types transferred via the communication channel. Further on, this formal model does
not restrict the graph to be acyclic as circles can occur in the event processing.

The physical components of an event-based system are the nodes and their environment as
well as the communication infrastructures. Nodes are the hosts of EPAs and are used to execute
the actual event processing. The environment of the nodes is the Processing Platform, which
can be a cloud environment, or a network of interconnected nodes that are handled by a registry.
The Communication Infrastructure realizes the communication channels between the nodes.
Examples of possible infrastructures are data streams or a messaging infrastructure.
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The mapping from the logical to the physical perspective is done during the deployment
of the event processing system. The EPAs are accordingly assigned to nodes and the logical
communication channels are mapped to the physical channels.

Challenges of the mapping are to specify the amount of physical nodes and the assignment
of the EPAs in order to maximize the utilization of the resources. Figure 2.2 shows a mapping
of the logical EBS in Figure 2.1 to a physical deployment, where the five EPAs are mapped to
three physical nodes.

Figure 2.2: Physical Deployment of the Logical Perspective Shown in Figure 2.1

The design of an EBS depends on various aspects. For example, event-based systems can
answer different purpose, so this has to be considered during the design of the logical and the
physical realization of an EBS. There are a lot of non-disjoint fields of applications that are suit-
able for event processing. According to [47] and [96] the following fields can be distinguished:
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Monitoring and Observation As monitoring is more and more becoming an automated pro-
cess, event-based systems become increasingly useful in this area.

A popular area of monitoring applications is network monitoring, which includes the mon-
itoring of network structures as well as the traffic across the network [13], where events
represent a) data that has been sent or b) devices that have joined / left the network. But
there are also other networks to observe like street networks with regard to traffic jams, or
alternative forms of routes (such as for ships, trains or planes). Traffic monitoring often
includes even more monitoring activities, as for example usage monitoring in street traffic
is also relevant for road tolling systems [47].

Another aspect of monitoring applications is security, see also [73]. An intrusion attempt
into a system can be seen as an event or as the correlation of multiple events, and a reaction
to handle the intrusion is required. Further on, failure or fraud detection is also based on
the monitoring and analysis of a system. There is a subgroup of systems, which perform
Predictive Processing [47]. Those systems do not only monitor the occurrence of events,
for example security violations, but they predict the violations so that a real occurrence
can be prevented.

If data is not just collected for statistical reason, the application has further purposes which
can be out of some of the following areas. For example, if it is required to report infor-
mation on an occurred security incident to another system or a person, the monitoring
application is also a kind of an information dissemination system or interacts with such a
system.

Information Dissemination These systems represent notification services, which have to no-
tify one or several persons / systems when defined conditions arise. The observed data
often has to be processed in real time and the amount of notification rules is not necessar-
ily limited. Therefore, the communication flow can become complex.

Examples for this kind of systems are stock trading systems [2] or emergency systems.
Furthermore, each application that sends personalized messages to users also has infor-
mation dissemination characteristics.

Enterprise Application Integration Companies often use different applications to manage their
work. Regardless of whether different applications are present because third-party, custom-
build or legacy systems are used together or because applications were designed to be
decoupled in advance: an event based mediator is needed to join the different business
processes, see also [89]. The communication and coordination between different compo-
nents is handled by a separate component that can take great advantage of the event driven
approach.

Ubiquitous Systems Ubiquitous Systems are large scale systems that are integrated in the phys-
ical environment. Usually, they are implemented in a small area, but the geographical size
of the systems is likely to increase in the future. The system continuously interacts with
the environment and tries to adapt to the perceived events. Like other EBSs it must be able
to detect changes and react to them. One main aspect of ubiquitous systems is the goal to
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be as little intrusive as possible [125]. That means that as much complexity as possible
is hidden: physically, so that it is not unpleasantly conspicuous, and also in regard to hu-
man tasks, which should be simple and at a minimum amount. Schilit et al. [110] explain
that the right combination of automated adaptions and user friendly features is important,
otherwise ubiquitous system can be a distraction for users.

Chen and Kotz [33] describe needs and design issues of ubiquitous systems. A possible
use case for an ubiquitous system is a health monitoring system [100].

Radio-Frequency Identification Systems RFID tags placed on objects make it possible to
identify, locate and track objects in an automated way [127]. Sensors record changes in the
position of objects or subjects and thus trigger events that must be processed by an EBS.
Examples are supply chain management [88,116], product lifecycle management [115] or
luggage systems at airports [136].

Again it is reasonable to combine this type of system with systems for different purposes,
for example information dissemination, so that another system or a person can make use
of the collected information.

Event-Driven Business Process Management Managing the processes of a company by mod-
eling, orchestration and execution, but also monitoring the business activities, managing
the business rules and performing mining to extract valuable business information is also
performed event-driven. It is a combination of Complex Event Processing and Business
Process Management [126].

Logistic providers, for example, are a good use case for a system of that kind. The pro-
cesses of the provided services are known and can be realized in an event-driven way. But
also in others sectors, i.e. financial services, this approach can be useful.

Massively Multiplayer Online Games MMOG have become an important issue in computer
entertainment [45]. A player uses his own computer, but he is connected to all other
players. As lots of players use the same resources, actions of the players have to be
detected and distributed to players who are effected.

For example, according to a statistic published by Activision Blizzard in May 2013 1, the
game ’World of Warcraft’ had 12 million active subscriptions in 2010, so at least some
million players have probably played at the same time. Chen et al. [35] report 370.000
concurrent online users in the game ’Ragnarok Online’ in 2006. Further on, it describes
that the traffic produced by a single client is not that much, but because of the huge amount
of players and their actions and movements, the amount of aggregated client traffic is
enormous and this causes the flash crowd effect, so this high volume of events should not
be unanticipated in MMOGs. The handling of such enormous amount of events is also
discussed in [48].

1http://www.statista.com/statistics/208146/number-of-subscribers-of-world-of-warcraft/ (Accessed: 2014-01-
22)
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The common basis of all EBSs is a publish and subscribe architecture, see also [109]. De-
pending on the purpose of a system, it emphasizes certain features and specialties that are im-
portant. In systems designed for another purpose, these features may also occur, but different
features are focused and enhanced. Hence there is no plain but only a rough classification for
event-based systems.

Hummer et al. [58] present such a classification for EBSs that consists of five sub-areas,
see Figure 2.3. These sub-areas also reflect different purposes and operational scenarios which
result in the different focuses of the areas.

Figure 2.3: Classification of EBSs [58]

In the middle of the figure, the publish / subscriber paradigm is depicted as the basis of
all EBSs. It defines the basic components of an EBS. The five sub-areas of the classification
are shown in the outer part of the figure: event-driven interaction paradigms, event stream pro-
cessing, complex event processing, wireless sensor networks and event-driven business process
management.

Systems following the Event-Driven Interaction Paradigm (EDIP) are usually character-
ized by the information dissemination character based on an event-driven programming model.
Event-Driven Business Process Management (EDBPM) covers EBSs that model the processes
of a business and process events based on the monitoring and mining of the processes. Tasks
of Wireless Sensor Networks (WSNs) are usually the efficient routing and aggregation of data
in the network. Ubiquitous systems and observation, in particular for intrusion detection, also

15



belong to this class of EBSs. The same holds true for RFID systems. Complex Event Pro-
cessing (CEP) is about analyzing and detecting patterns and coherence of events. So the actual
processing of the events is more demanding than it is in other systems. It usually implies that
multiple simple events are processed and the processing logic then generates new events (com-
plex events), which encapsulate aggregated data and conclusions based on the analysis. ESP
systems are systems managing a high throughput. Due to the huge amount of processed events,
the processing results cannot and do not have to be exact all the time. The trade-off between
accuracy and performance for example is done by using approximate queries.

These sub-areas provide a good overview on the different characteristics of EBSs, but the
areas are not disjoint. For example, despite classifying an event-based system as an ESP system,
when it utilizes data streams and manages a high throughput, it can also perform complex event
processing. But even though the systems has characteristics of two different sub-areas, it may
be rather considered as an ESP system, if it puts a stronger focus on the stream processing.
Another reason, why a clear classification of EBSs is rather difficult, is that the terms are used
with different meanings in the literature. While CEP is defined as a sub-area of EBS in this
context, [47] states that CEP is a key principal of event-driven architecture and therefore also
of EBS. In addition, the meaning of the terms ESP and CEP are not always used identically in
literature [18].

But when following the distinction as introduced above, one can also identify to which
category the system belongs by analyzing the terms used to describe it. In the five categories
different terms are used to describe the same conceptual parts of the system. For example, an
event is depending on the category called notification, tuple, datum or invocation, see [58].

As this thesis focuses on event-based systems, which have to cope with event data streams,
the following section will take a closer look on event stream processing and its characteristics.

2.2 Event Stream Processing

The importance of Event Stream Processing, sometimes also referred as (Real-time) Stream
Processing or Data Stream Management System (DSMS) [51], increased over the time espe-
cially because the amounts of data have been steadily increasing. According to [13], data was
traditionally stored in databases and queried afterwards for processing operations. This is not
appropriate for data that is changing very often and it is not required to retrieve the data multiple
times for processing operations. More and more application contexts match these conditions:
financial applications dealing with the stock market, network and traffic monitoring or sensor
applications. Lots of data is added continuously, but it is not needed anymore after the informa-
tion has been processed. ESP is a suitable approach for this emerging field of applications. Data
Streams are adapted for the requirements as they support the continuous dispensing of informa-
tion produced in the context of the applications. The transmitted information tuples represent
events, which have occurred in the context and have to be handled by the application. This leads
to the application of the event-driven approach as it meets all the requirements.

On the one hand event stream processing is related to EBSs in general and on the other hand
it is related to stream processing. Even though the terms Event Stream Processing and Event
Processing in general are used as an alias [47], there is a distinction between ESP and other
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event processing systems. ESP differs from other event-based systems by the usage of data
streams for the transmission of events. Data streams support a high frequency and throughput
of events. As this is not required for all EBSs, other types do not need to use data streams
as a communication infrastructure. As the processing of such huge amounts of data is rather
expensive and time consuming, techniques to reduce the complexity are required, i.e. Load
Shedding. Hummer et al. [58] illustrate the differences in the used terms in ESP in contrast to
the common model for EBSs given in [95], see Table 2.1.

Table 2.1: Comparison of Terms (based on [58])

Conceptual Model Event Stream Processing
event tuple
producer source
consumer sink
event processing operator
channel stream
derived event event pattern

Event stream processing is a sub-area of stream processing, as it only covers applications
with event oriented data streams. Video streaming applications therefore do not belong to event
processing, but belong to the stream processing applications. So the differentiation between
Stream Processing and Event Stream Processing seems to be explicit. Applications that process
normal data streams (i.e. a video stream) by analyzing the content and rising events based on
the analyses do not count as ESP in general. The stream itself is not event oriented, but it is used
as a basis of an event-based system. If the risen events are also transmitted using streams, the
system can be considered as an event stream processing system. Otherwise, it is an event-based
system but rather belongs to another sub-area.

Specific for ESP are the data streams, which have great impact on the design of the systems.
Geisler [51] describes this characteristic in more detail. Data streams continuously provide
event data and are certainly unbounded, which leads to one of the main challenges in event
stream processing: While the resources of an ESP system are limited, the input is not. Therefore
events are not stored, but results and statistics are created incremental. Typically only a small
set of input events, a so called Window, is processed at a time. Input events are processed by
Continuous Queries, which often have a SQL like syntax.

2.3 Event Stream Processing Systems and Research Prototypes

As there is a lot of research on the field of ESP, there are a lot of different implementations for
event stream processing systems. Most of them are only used for research purpose and have not
gained any relevance for the usage in business applications.

The following table shows an overview of event stream processing systems in alphabetical
order. For mentioned query languages, see Section 2.4.
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Table 2.2: Event Stream Processing Systems.

Name Reference Description
Aurora [3, 28] A database management system based on a DBMS-Active,

Human-Passive (DHAP) model for streaming data. Provides
a graph-based imperative query language.

Borealis [2] Extension of Aurora and Medusa. Advanced capabilities for
more flexibility in form of revision of query results, query
modification and scalable optimization.

Cayuga [23, 43] An event stream processing system, which provides pattern
detection for generic purposes on high speed data streams.
Queries are defined in the Cayuga Event Language (CEL).

COUGAR [21] A sensor database system that extends the traditional
PREDATOR system by long running queries and the pro-
cessing of sensor data in form of sequences.

Dryad [65] Dryad is an execution engine, which enables distributed, par-
allel execution. Small programs represent the vertices of the
processing graph. Data is passed through channels along the
edges between the vertices.

Esper [1, 19] A component to process large volumes of input data includ-
ing event pattern matching and event series analysis. It is
available for Java (Esper) and .NET (NEsper).

Medusa [15, 36] It is built upon Aurora, but it enables the collaboration of
nodes in different administrative areas. Medusa is designed
as an agoric system.

Nephele [129] A data processing framework for cloud environments. In
contrast to other system, Nephele does not use queries to an-
alyze and process the input data, instead it executes Jobs that
have been provided as code in advance.

NEXT CEP [111] Implemented in Erlang, this event processing system focuses
on optimizing processing by rewriting queries in a more effi-
cient way.

NiagaraCQ [34] It is a distributed database system to query distributed Exten-
sible Markup Language (XML) data sets.

Nile [56] Nile is a query processing engine that extends a DBMS by
data stream processing.

OpenCQ [79] This is a distributed event-driven continual query system
based on the distributed interoperable information mediation
system DIOM [78].

Oracle Event
Processing

[99] Oracle (Complex) Event Processing is an event processing
engine, which provides the ability to join data over streams
and persistent data.
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Table 2.2: Event Stream Processing Systems (Continued).

Name Reference Description
PIPES [71] PIPES can be used to build DSMS for data-driven query pro-

cessing.
Storm [37] Stream processing in combination with queuing or database

management systems can be realized with Storm. It is a
free and open source system for distributed and fault-tolerant
computing in real time.

STREAM [4] A data stream management system developed at Stanford
University for continuous queries over data streams and per-
sisted data sets.

Stream Mill [124] Stream Mill is also a data stream management system with a
powerful query language that focuses on mining techniques.

InfoSphere
Stream

[20] This is the product name for the System S stream processing
platform, a stream processing system that uses the SPADE
processing engine and the equally called declarative query
language. (Predecessors: SPC, SODA)

S4 [98] Provides stream processing with the following characteris-
tics: distributed, scale-able, continuous queries, partly fault-
tolerant and for generic purposes.

TelegraphCQ [72] A continuous data-flow processing system based on Post-
greSql using shared continuous queries to reduce load and
the aiming to support interactions of continuous and histori-
cal queries.

Tribeca [117] Runs pre-compiled queries on a single data stream source
with user-defined operators.

2.4 Event Query Languages

According to [51], Query Languages are used to define continuous queries, sometimes also
called Standing Queries. Query languages can support a declarative or an imperative syntax.
Imperative query languages provide operators, which are arranged as a graph to specify the
data-flow. Declarative languages are widely used and mostly based on SQL.

For example, assume an event stream with tuples containing stock market data in the form
[timestamp, stockid, sector, value]. A query specifying the calculation of the hourly average
value of stocks for the IT sector using an imperative language is depicted in Figure 2.4. The
same query using a declarative language is shown in Listing 2.1.� �

1 s e l e c t avg ( v a l u e ) as avgValue from StockUpda te ( s e c t o r = ’ IT ’ ) . win : t ime (60 min )� �
Listing 2.1: Example Query using the EQL.
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Figure 2.4: Example Query using Aurora’s SQuAl.

An important feature of event query languages is the Window Operator. The window spec-
ifies which part of the stream is evaluated and therefore limits the amount of input events that
have to be stored. The window operator is needed to enable a continuous query using a Blocking
Query Operator (see [11]), as they require all data to be available. Without the bonds to the
window, the query would not be able to return. Further on, the window operator enables the
system to drop events, once they are not referenced by a window of a query anymore.

Some examples for event query languages are listed in Table 2.3.

Table 2.3: Event Query Languages.

Name Reference Description
CEL [43] Cayuga Event Language based on the Cayuga algebra [42].
CEDR [16, 17] Complex Event Detection and Response. It is a declarative

query language based on three aspects: event pattern expres-
sion, lifetime declaration, selection expression to create new
complex events.

Chimera [87] Query language implemented in Chimera for defining ECA
rules with an extension for composite events.
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Table 2.3: Event Query Languages (Continued).

Name Reference Description
CQL [6] Continuous Query Language. Declarative query language

based on SQL supporting windows. It is used in the
STREAM prototype [4].

ESL [82] Expressive Stream Language. Declarative language like
SQL, supporting user defined aggregates and frequent item
sets.

EQL [122] Esper Query Language. Declarative language providing
event pattern matching and event stream queries.

Oracle CQL [84] The Oracle Continuous Query Language is a declarative lan-
guage based on SQL supporting data streams.

SAMOS [50] Event language of the Swiss Active Mechanism-Based
Object-Oriented Database System.

Snoop [30] Model independent event specification language. In addition
to traditional database events it supports temporal, explicit
and composite events.

SPADE [20] A declarative query language that supports typical operators
of the relational algebra but also user defined operators.

SQuAl [3] Aurora Stream Query Algebra. An imperative query lan-
guage providing nine different operators.

XML-QL [34] Declarative high-level query language for XML data. Used
in NiagaraCQ.

XQuery [22] XQuery is a functional programming and a query language
for XML data sources. Using query engines for data streams,
it can also be used as event query language in ESP, i.e. with
the MXQuery Engine [22].

2.5 Handling of High Load

Stream processing systems regularly have to deal with peaks of incoming data. Peaks can arise
at certain hours of the day, when a lot of people do the same thing or because of a trigger
incident that leads many people to act (i.e. critical changes in the stock market). ESP systems
somehow have to deal with situations, where many times over the average data rate has to be
processed within a short amount of time. Almost every handling is better than a crash of the
system. Nevertheless, strategies provide different result qualities as they normally increase the
number of events that can be processed, but decrease the accuracy of the results. As the degree of
accuracy loss depends not only on the strategy but also on the query that is currently executed, it
is hard to guarantee a certain degree of accuracy for a provided load handling strategy. Anyway,
more and more ESP systems try to provide a better handling of peaks of high load.
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For example, Aurora uses Load Shedding [3]. A central scheduler takes input data from
the storage and handles it to a box for processing. At the same time the QoS data is monitored
by a separate component. The values response time, dropped tuples and produced values are
generally considered QoS data in Aurora. For each of those values, graphs can be adjusted
to specify how they are taken into account in the QoS calculation. But also value-based QoS
information is supported. In case the performance gets too low because of an overload, the
monitor activates a load shedder component. This initiates a load shedding process, which is
repeated until the QoS constraints are satisfied again. The load shedding is either done by
dropping tuples at strategic points in the calculation or by filtering certain tuples. Less important
tuples are identified and removed by a filter box as early as possible. This is also called semantic
load shedding.

Borealis [2] as a predecessor of Aurora also supports the dynamic modification of queries.
This cannot only be used to change the semantic of a query in case of updates, but also to replace
a query by a cheaper query - one that does not require as many resources but also produces less
accurate results. Further on, different strategies for optimization are applied, i.e. to overcome
throughput or latency problems by using distribution and scaling.

Both, Aurora and Borealis, put much effort into the placement of load shedding operators,
which has a great impact on the benefit of the operators.

Query rewriting is also used in NEXT CEP [111]. The system does not rewrite queries in
case of high load, but optimizes and distributes the queries in advance so that the system can
scale properly.

Niagara [34] does not provide special features to handle peaks of high load, but it tries
to prevent overload by scalability in the dimension of supported queries, which is realized by
grouping queries so that different queries share resources like computation time and memory.

TelegraphCQ [72] tries to handle high load with scalability by using parallelization and adap-
tive load-balancing using the Flux operator [112], which repartitions stateful query processing
operators during run-time.

Nephele [114] is the first system that utilizes dynamic allocation and de-allocation of re-
sources in a cloud for optimizing data processing during run-time.
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CHAPTER 3
Related Work

This chapter gives an overview of the related work and research. As this thesis aims to define
a strategy for dependable event processing, research on dependability is discussed first. Since
dependability also deals with faults, the chapter continues with a brief summary of faults in
EBSs. Afterwards, research approaches for load handling that are implemented in other EBS
are presented. In the last part, further approaches in event processing, which may also be useful
in relation to the handling of high loads, are discussed.

3.1 Dependability

Dependability is a general and broad concept, which involves several aspects such as availability,
security and of course faults. Therefore it is hard to define and evaluate the dependability of a
system.

Avizienis et al. [9] define basic terms and concepts for dependable computing: it says that the
original definition of the term dependability is ’the ability to deliver service that can justifiably
be trusted’. That means that another system depending on the service, or a person who uses the
service, can be sure that the output is correct. That requires the existence of a specification for
the service, otherwise it cannot be decided whether dependability is ensured or not. Another
definition for dependability, that is less strict, is ’the ability to avoid service failures that are
more frequent and more severe than is acceptable [9]’. This definition grants the possibility
of deviations of the system from the specification. So according to the second definition it
is acceptable if the system runs in a degraded mode, as long as the result is still acceptable.
Whether the system is still dependable or not depends on the system or the human that consumes
the output.

Figure 3.1 shows the attributes that influence the dependability: availability, reliability,
safety, integrity and maintainability. Further on the figure explains the relation of dependability
to security as they have some attributes in common.

Availability is used to define the accessibility of a system as well as its ability to provide
correct service. This attribute can be seen as the most important one as dependability cannot be
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Figure 3.1: Dependability Attributes. [9]

provided without the system being available. The remaining attributes may have strong influ-
ences on the dependability or not. It depends on the system’s definition and purpose. Reliability
means that a system is not just available for some time, but it is continuously ready for operation.
Safety presupposes that the system works properly and does not cause any problems for users
or dependent systems. Integrity signifies that the system behaves appropriate over time. Finally
Maintainability is relevant to dependability as a system can only continue being dependable, if it
is properly maintained and if no problems occur during the maintenance. In Figure 3.1 another
attribute namely Confidentiality is included. Confidentiality is also of concern for dependability,
but it is rather designated to security.

Independent from the respective definition, dependability is always at risk, if faults occur.
Faults may change the state of a service and can influences the attributes of dependability. Fur-
thermore one can say that there is some kind of interrelationship between dependability and
faults. Whether a fault threatens the dependability of a system or not, depends on the fault
tolerance of a system.

3.2 Faults in Event-Based Systems

Laprie et al. [75] treat common terms and concepts regarding faults. For a beginning the three
terms fault, error and failure have to be distinguished.

A Failure is any misbehavior of a system preventing the output from meeting the require-
ments or expectations. An Error is the trigger of a failure. The error is a change in the system
state that leads from a valid to an invalid state, temporarily or permanently. A Fault is original
cause of a failure that enables the system to produce a failure. A fault can be a weak implemen-
tation of a feature according to the specification or the specification itself, if it does not correlate
with the presumed behavior.

A fault may exist without ever causing a failure. As long as no error occurs because of a
fault, it is called dormant. Once an error occurs, the fault is active. For example, if a feature of
a component is not implemented correctly, the component holds a fault. As long as the feature
is not used by a user or another component, no error will occur and the fault is dormant. The
error occurs for the first time, if the feature is requested. The fault becomes active and produces
an error. The error can either be latent or detected, if there is a mechanism for detecting errors.
An error can cause damage in two different ways: On one side it can propagate by creating
new errors in the component, because if the incorrect implementation leads to an error state,
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other features may be affected. On the other side it may lead to a failure. An error results in a
failure if the error passes the borders of the component and gets observable to users or to other
components, which rely on the erroneous system. If a dependent system has to deal with a failure
of another system, the failure represents a fault for this system, which again can cause an error.

Faults can emerge from different reasons and are therefore classified from different view-
points. Avizienis et al. [9] have identified eight basic viewpoints that lead to 16 elementary fault
classes. Relevant combinations of these classes were considered in the resulting taxonomy. It
includes 31 combinations, which can be assigned to three groups: development faults, physi-
cal fault and interaction faults. Physical faults are overlapping with the other groups, whereas
development and interaction faults are disjoint.

Further research has been done on fault taxonomies for specific domains: [27] presents a
fault taxonomy for Service-Oriented Architecture, [57] introduces a multi-perspective fault tax-
onomy for grid faults that is based on seven basic aspects. The fault taxonomy for web service
composition in [31] is based on [9] and it is therefore easy to compare the matrix representations
of these taxonomies.

Another fault taxonomy based on [9] is the unified taxonomy for EBSs in [58]. The authors
have used 12 out of 16 basic fault classes for the specialized taxonomy. The fault classes be-
longing to the basic viewpoints Objective and Intent have been omitted, as the taxonomy does
not focus on security. Further, two fault classes deduced from the viewpoint Level in Solution
Stack have been added. According to this viewpoint faults are partitioned into Platform Faults,
which originate in the underlying event processing system, and Business Logic Faults, that occur
in applications using the platform. An overview of the viewpoints and fault classes can be seen
in Figure 3.2.

Figure 3.2: Basic Fault Classes for EBSs. (Taken from [58], Based on [9].)

Different faults for the combinations of the fault classes are given in the paper. For EBSs
in general Overloaded Channel is a possible fault. It is classified as follows: operational - the
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fault is not created during the development, it occurs during the operational time; platform - it
does not depend on the business logic, because it can happen with any business logic on top of
the platform; internal - the fault is not caused by any external circumstances; incompetence -
the fault occurs because the limitations are not considered properly. The cause of the fault is the
combination of the input, the system state and the software asset.

More specific faults for Event Stream Processing described in this taxonomy are: Buffer
Overflow, Race Conditions, State Mismatch, Bad Query Substitutions, Cyclic Processing Logic
or Node Failure. The classification of those faults and the overloaded channel fault can be seen
in Figure 3.3. Further faults are not mentioned here, as they are out of scope for this thesis.

Figure 3.3: Classification of Faults in ESP (Based on [58]).

The buffer overflow fault is very relevant to this thesis as this fault occurs if an EPA cannot
allocate the required memory for incoming events. This can happen especially during periods of
high load.

3.3 Approaches to Handle High Load

The research done on strategies to handle high load is increasing. As there are so many different
topics and developments in this field, there are many customized approaches for special topics
or scenarios, but it is hard to find a general approach. The following sections discuss approaches
present in state of the art literature that can be of use to handle high load.

3.3.1 Approaches Dedicated for Burst Handling

Many approaches have been devised to deal with high loads in certain cases. Load shedding, a
technique dropping input events to reduce load, has been used in different applications and have
therefore been adapted to the given circumstances. For example, load shedding approaches often
consider just special types of queries, like in [12]. They present a load shedding approach not
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only addressing load shedding on a single node to prevent overload, but trying to optimize the
placement of load shedders in the whole EPN to maximize throughput and minimize inaccuracy.
But on the other hand they have some limitations: the approach is just working for query trees,
so the query cannot perform join operations on data streams. The algorithms are designed for
sliding window aggregate queries, which can also include some filtering, but no other operators.
As the approach is focused on aggregation queries, it uses this restriction to improve the quality
by adapting the calculated average values based on the past values for each dropped event.
Another approach for window aggregate queries is proposed in [120].

Query rewriting, which can be seen as a more general approach than load shedding, has
already been used in the context relations schemata like databases or also XML schemata (i.e.
in [108, 133]). This approach is also used to increase the performance in EBSs, for example in
Borealis and NEXT CEP.

The Borealis system [2], see Section 2.3, addresses the needs of adapting queries. On the
one hand this includes the adaptation of operator parameters, if the definition of events of in-
terest changes, but on the other hand also the change of operators, if the query itself should be
changed. These changes are handled by automated modifications. The local optimization further
includes a semantic-based load shedder, that drops events of low-priority in phases of high load.
Borealis reuses the boxes-and-arrows model of Aurora, see Section 2.3, where the boxes are the
query operators and the arrows are the data flows. In comparison to Aurora, Borealis does not
only support data input lines for the boxes, but it also supports special control lines, which use
operator parameters or functions to change the box behavior and therefore the operator itself.
In the research prototype NEXT CEP [111] on the other hand, query rewriting is performed be-
fore the deployment. It uses its own high-level event pattern language. Queries stated in this
language are analyzed before the deployment and then transformed into a core language that
consists of six operations according to the query rewriting algorithms. These algorithms se-
lect an efficient deployment plan for new operators by reusing already deployed operators and
transforming queries to more efficient but still equivalent patterns.

Typically, overload can be handled by providing more resources: parallelization or replica-
tion, which means in case of high-load one or more EPAs are added and the load is distributed
among these components. An approach addressing not only this form of parallelization, but the
whole construction of and the distribution in an EPN to maximize the throughput is described
in [74]. First, the structure of the EPN dependency graph is analyzed. The EPN is formed by
creating an EPA for each event processing action. Then parallelization is done on two dimen-
sions: horizontal parallelization is realized by creating several strata. A stratum contains EPAs
of different, independent sub-graphs, that can be executed in parallel. Vertical parallelization
happens within each stratum by providing multiple, homogeneous EPAs that handle the same
types of input events. The distribution of input events to the different nodes of a stratum is done
by a proxy. To support stateful query operations, events cannot be distributed randomly to the
available nodes, as they do not share a common state. The distribution decision is done by the
proxy using a hash function, that analyses the incoming events based on its context values and
determines, which EPA is responsible for the event. The proxy therefore has to decide seman-
tically and the hash function depends on the specific query operation. Further adaptations for
dynamic load distribution during run-time are done by vertical parallelization, as further EPAs

27



can be added to a stratum or superfluous nodes can be removed. This may cause additional
overhead, for example the overhead of substituting the current distribution hash function of the
proxy or the migration of the current state to another node.

3.3.2 Other Approaches Worth Considering

Although many approaches have not been explicitly designed to handle high load, they are still
related to the topic, for example increasing availability or providing better throughput in general
- not only in phases of high load.

One possibility to ease situations of high load or to hide temporary failures, buffer overflows
for example, is deferred execution or delayed processing. This mechanism can hardly be applied
in real-time applications. An approach taking advantage of delays has also been implemented in
Borealis [14]. It is called Delay, Process and Control (DPC) and delivers best-effort results by
observing a maximum delay limit. In case of problems, the time frame gained by the permitted
delay is used to search for a replication that can process the input or to remove the problem.

Most event-based systems act rather static, which means that the EPN can hardly be modified
during run-time. In comparison to that, [83] presents an approach based on the query processing
mechanism Eddy [10], which enables an adaptive processing of events. The approach is called
Continuously Adaptive Continuous Queries (CACQ) and enables modifications in the order of
the query operators. Hence the route of an event is dynamically chosen. Combined with cross-
query sharing the approach increases the performance and could also be used to provide better
handling of high load.

Brito [24] shows an approach for the parallelization of stateful event stream processing com-
ponents. It uses optimistic parallelization to improve the performance of components. For state-
ful computations the correct processing order is important. In case of parallelization the shared
data has to be locked, so that just the actual processor of the next event can manipulate the state.
Optimistic parallelization enables the parallel processing of several events, even if it is not their
turn yet. The execution uses Software Transactional Memory (STM), which leads to the trans-
actional processing of events. Speculative event processing is done in a transaction. If it is the
turn of such a speculatively processed event, the transaction can be committed, if no conflicts
arise. Otherwise the event has to be processed again. The approach uses two kinds of conflict
predicates, a Boolean predicator and a predicate-based predicator, to decide whether an event
should be speculatively processed or not. The predicates are gained through static analysis,
run-time analysis, automated knowledge acquisition during run-time or information provided
by the user. Depending on the quality of the predicators, the optimistic parallelization can lead
to a performance increase or not. But even if the predicators are poor, a correct processing is
guaranteed.

In [104], improvements on performance are gained by a rather different approach, namely
Thread Level Speculation (TLS). TLS is an automatic program parallelization, which is based
on speculative method level parallelization. Normally, a thread executes a method and after re-
turning it goes on with the code after the call statement. With TLS, the method is executed, but
by using a predictive return value, another thread already starts with the calculations following
the method call. After returning, the process is joined. If no errors or discrepancies have oc-
curred, the thread can just continue. Otherwise the speculative calculations have to be discarded
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and the process has to continue as usual after the method call. Before the execution of a pro-
gram, preparation has to be done. This includes a static analysis, attribute parsing and especially
the insertion of fork and join points. The execution can be single- or multi-threaded. By using
multi-threaded execution a program can be sped up by the times of two.

High availability is not only provided by distributing load and improving the capabilities of
the EPAs to avoid overload on the nodes, but also by ensuring availability of the nodes itself.
Hwang et al. [64] present approaches to provide high availability by assigning an equally pre-
pared secondary node to each primary node. Different recovery types can be supported: gap,
rollback or precise recovery. Gap recovery is the fastest recovery type, as events arriving between
the crash of the primary node and the takeover of the secondary node are ignored. Therefore,
information may also be lost. Rollback recovery results in a higher latency, as the secondary
node has to update his state to the state of the primary node and then completes to process the
incoming events instead of the primary node. No information is lost and the output is equal to
the output without a failure as input events a preserved till the processing is finished. In case of
non-deterministic queries the output may not be exactly the same as without a failure. Precise
recovery results in exactly the same output as without a failure, but it has the greatest overhead
and latency.

Brito et al. [25] also propose an approach for fault tolerance in the form of active replication
with low overhead. A speculation mechanism was implemented using STM, enabling nodes
to process events without knowing the final ordering and forwarding speculative output events.
This can reduce the latency significantly. Further on, multi-threaded processing of events is also
realized by STM as final results are just produced after the commit of a transaction and transac-
tions are always performed in the correct order, which is required for stateful query operations.
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CHAPTER 4
Background

This chapter explains the relevant background of the solution, which is presented subsequently.
As the implementation of strategies to handle high loads cannot be evaluated without a suitable
EBS, the strategies have to be integrated into such a system. The framework WS-Aggregation
[60] was chosen as the basis for the solution and implementation. First, as this framework uses
the Vienna RuntimeEnvironment for Service-oriented Computing (VRESCo), Section 4.1 deals
with this topic. Following the framework itself is introduced in Section 4.2. Both VRESCo
and WS-Aggregation were developed as Research Prototypes at the Distributed Systems Group
(DSG) of the Vienna University of Technology 1. The Web Services Aggregation Query Lan-
guage (WAQL), described in Section 4.3 is the used query language in WS-Aggregation. Finally,
Section 4.4 introduces Aspect Oriented Programming (AOP), which will be used to implement
a measurement for the evaluation of the solution.

4.1 Vienna Runtime Environment for Service-oriented Computing

The Service Oriented Architecture (SOA) paradigm is an approach to enable decoupling of
services and to prevent service binding at design time. As service registries in the context of
SOA have not become prevalent [92], VRESCo [61, 90, 91] aims to address the challenges of
Service Oriented Computing (SOC) and to provide a sophisticated run-time environment for
services, including a registry for those services. The challenges of SOC that have been observed
are service meta-data, service querying, quality of service, dynamic binding and invocation,
service versioning and event processing. The architecture of VRESCo is depicted in Figure 4.1.

The VRESCo Runtime Environment can be accessed directly via Simple Object Access Pro-
tocol (SOAP) calls or using the Client Library, which is based on Daios [77]. Services and their
meta-data can be published to the environment using the Publishing/Metadata Service. The
information is stored in the Registry Database. VRESCo does not only store the name and end-
point of a service. Its data model contains a service meta model and a service model. The meta

1DSG, Institute of Information Systems (http://www.infosys.tuwien.ac.at/index.html (Accessed: 2014-01-22))
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Figure 4.1: VresCo Runtime Environment. [90]

model classifies services into different Categories, which represent the purpose of a service.
Each category is described by Features and Concepts, which represent the functions a service
offers. For each concrete service that provides features of a category an entry in the service
model is created. It includes QoS data (static data like features or costs and calculated data for
example response time or latency) and information on the revision (to be able to provide prove-
nance information), and it requires a Mapping Function. This enables the VRESCo Runtime
Environment to act as a mediator for services that fulfill the same purpose but have different
syntactical interfaces.

The lookup of services utilizes the Query engine, which processes queries written in the
VRESCo Query Language (VQL), a declarative query language. The queries are translated into
SQL and executed on the Registry Database. Using the VQL, services with special features and
properties can be discovered based on the abstract features specified in the service meta model.
On invocations the abstract features have to be mapped to the concrete operations. The VRESCo
Mapping Framework (VMF) uses the mapping functions to transform the feature input into the
concrete service parameters and proceeds vice versa with the output.

The Notification Engine is used to inform external and internal services of changes and
updates. External services may be informed of changes in QoS and the binding or invocation
of services. Internal updates concern users, services, versions or meta-data. The Notification
Engine is based on Esper [122] and defines listeners for these events to be able to propagate
the events to subscribers. Internal services can also provide their own listener for Esper. The
Management Service is used to handle user data for the access control as well as to manage QoS
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data. The QoS Monitor reports updated data via this service. Further on the Composition Engine
can be used to compose services according to specified constraint.

In comparison to other registry approaches VRESCo provides does well. It does not provide
versioning of meta-data like ebXML 2 and Mule 3, but supports all other relevant features and
manages the challenges of SOC.

4.2 WS-Aggregation: Distributed and Event-Based Aggregation of
Web Services Data

Due to a lack of generic frameworks the WS-Aggregation framework was designed to be loosely
coupled and to be able to aggregate heterogeneous data from different sources on the web.

The framework basically consists of three different components: the Registry, the Gateway
and several Aggregators, see Figure 4.2. Further on Target Services are used to aggregate data,
but they do not need to be part of the framework. As already mentioned, the VRESCo Runtime
Environment is used as registry.

Figure 4.2: WS-Aggregation Framework. [60]

The aim of WS-Aggregation is to provide a single-site interface for clients to state their
aggregation request while the rest of the system is hidden. This is realized by a gateway. A
client sends its aggregation request to the gateway and retrieves the result. It does neither know
how many aggregators are needed to process the request nor how the data is aggregated using
different data service nodes. To obtain the address of the gateway the client has to use the
registry.

In WS-Aggregation the registry stores the gateway, the aggregator nodes and the target ser-
vices. For that reason they are published to the registry. Clients use the registry to look up the
gateway, from then on the client only communicates with the gateway.

The gateway also utilizes the registry to obtain information on the deployed aggregators.
Different features can be used for describing and looking up nodes. According to the given
topology one or several aggregator nodes are chosen for each request. Normally the selection

2http://docs.oasis-open.org/ebxml-bp/2.0.4/HTML/ebxmlbp-v2.0.4-Spec-cs-en.htm (Accessed: 2014-01-22)
3http://www.mulesoft.org/ (Accessed: 2014-01-22)
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of the aggregator nodes is based on performance criteria to distribute load. But the decision
can also be made location based or in connection with special characteristics and features of an
aggregator node (e.g. specialized nodes for data conversion).

The aggregator nodes that belong to the established topology of a request are responsible
for the aggregation of the data and the completion of the request. In Figure 4.2 one can see the
differentiation of basic aggregation, whereby the aggregation request is processed by a single
aggregator node and distributed aggregation, where several aggregator nodes are arranged in
a tree structure with a root aggregator node that is called master aggregator (Am). Whether
basic or distributed aggregation is used, is determined by the topology. Three different types of
topologies are supported: basic, predefined and ad-hoc.

A basic topology consists of a single node that takes care of the whole request. Distributed
aggregation is realized by a predefined topology. The topology is created on given characteristics
of the desired tree (branching factor, height). The leaves of the tree are responsible for the data
collection and then for passing on the intermediate result to their parent, as do all other nodes.
The root aggregator composes the final result. An ad-hoc topology is instantiated as a basic
topology, therefore only one aggregator node is assigned to the request, but this node is enabled
to delegate parts of the request to other aggregator nodes. So the basic aggregation can switch
to distributed aggregation.

For all three topologies, the master aggregator node or respectively the single node passes
the final result on to the gateway, which returns it to the client.

WS-Aggregation was developed to address the following requirements:
• multi-site query, single-site view: A client uses just a single site to perform its aggre-

gation requests. The aggregation request uses multiple sites (sources) for retrieving the
information for the query and for calculating the results.

• heterogeneity: The different data providers do not need to be of the same type. Different
sources like SOAP Web services, RESTful Web services or web documents can be used.

• variable input data: The input of data services may differ and an input can also be used
for different requests.

• self-adaption: Data providers and aggregators are not defined at deployment time. The
nodes and their number can change during run-time and the system needs to adapt to
these changes.

• performance: Scalability in different dimensions is required for good performance. The
dimensions include the number of data providers and aggregation nodes, the amount of
the transferred data and the number of parallel aggregation requests handled by the aggre-
gation nodes.

The WS-Aggregation framework can be used to implement EBSs that handle web service
event streams. It tries to enhance performance by distributing queries to several aggregator
nodes, executing requests in parallel as well as optimizing queries. The framework automatically
monitors the available resources. Aggregator nodes provide meta-data on their workload, so the
amount of aggregators can be increased if there are too few free resources left, or decreased if
the workload can be handled by less aggregators.

At the moment the framework does not provide features to react to peaks of high load con-
cerning a certain event stream or on the level of queries. Therefore it can be used to implement
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and test further strategies. New strategies can be evaluated by using WS-Aggregation as an
event-based system and the results can also be compared to the performance without applying
load handling strategies.

4.3 Web Services Aggregation Query Language

The Web Services Aggregation Query Language (WAQL) is based on XQuery, see Section 2.4,
and was introduced in [59] and [60]. The query language was designed to state aggregation
queries in a more convenient way, as complex requests get rather complicated using XQuery.
WAQL does not only provide the possibility to use different data sources in a query, but also
supports different types of data sources and different result types by using several data convert-
ers. CSV files, JSON data, non-XML-compliant Hypertext Markup Language (HTML) pages
and BibTex files can be transformed to XML. Converted CSV data can either be displayed as
HTML tables or be again converted back to CSV. As a WAQL input has to be transformed to a
XML input, which can be sent to a target service, WAQL inputs represent rules to generate such
a request.

One element of a WAQL input are request templates, which can be used to create multiple
requests having a similar structure. The requests differ from each other based on the values the
request is using. These values are provided in the form of lists in the request template. The
syntax for a value lists is: $(list), where the list is provided as XQuery Expression. By building
the Cartesian product of the lists, all possible combinations for the request structure are created.
For each combination a request is performed. If not all combinations are desired, lists can also
be correlated by using a numerical identifier after the dollar sign. If two or more lists of equal
length have the same identifier, the values are just combined in pairs based on the ordering, see
Listing 4.1 for an example.

Given a web service that provides a method to retrieve the stock values of companies based
on some filtering attributes specifying a date, a WAQL query can be used to simplify the gener-
ation of aggregation requests.� �

1 < g e t S t o c k V a l u e >
2 < a t t r i b u t e >
3 $1 ( ’ name ’ , ’ i n d u s t r y ’ , ’ c o u n t r y ’ )
4 </ a t t r i b u t e > < va lue >
5 $1 ( ’ companyA ’ , ’ IT ’ , ’AT ’ )
6 < va lue > < da te >
7 $ ( ’ 3 / 3 1 / 2 0 1 2 ’ , ’ 6 / 3 0 / 2 0 1 2 ’ , ’ 9 / 3 0 / 2 0 1 2 ’ , ’ 1 2 / 3 1 / 2 0 1 2 ’ )
8 </ da t e >
9 </ g e t S t o c k V a l u e >� �

Listing 4.1: Exemplary WAQL Query.

The request for the method getStockUpdate contains three lists, see lines 3, 6 and 9. Because
of the numeric identifier 1, the first two lists are linked. Those values are used in pairs. Given the
three correlated pairs (name, companyA), (industry, IT) and (country, AT) and the four values for
date, twelve requests are generated. The resulting XQuery requests retrieving the quarterly stock
value for the company named ’companyA’, for companies in the branch ’IT’ and for companies
from the country with the code ’AT’.
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Another element of WAQL queries are data dependencies, indicated by the syntax ${se-
lector}, where the selector is an XPath selector processed on the input. If no information is
provided, the location is automatically evaluated at run-time. As for request templates, a nu-
merical identifier after the dollar sign can be used to identify the input source of the data. The
selector is then just applied on that input source. For example, $3{//change} parses the node
named change from result event of input source 3. With data dependencies, a WAQL query with
multiple sub-requests can use events resulting from one sub-request as input for another sub-
request. WS-Aggregation optimizes this feature by analyzing the sub-requests and performing
independent sub-requests in parallel, while dependent sub-requests are performed in the correct
order.

As WS-Aggregation uses a third-party XQuery engine to process the aggregation requests,
the WAQL queries have to be transformed into valid XQuery statements. This is done by the
Preprocessor of the WAQL Engine (WAQL-PP)4. The preprocessor detects and resolves data
dependencies in the query. After this step, the query is transformed to a XQuery FLOWR ex-
pression, which can be finally be processed by an XQuery engine.

4.4 Aspect-oriented Programming

AOP has already been proposed as a programming paradigm in 1997 [68] and is categorized
as a Post-object programming (POP) mechanism, see [105]. The purpose of AOP is to gain
a better separation of concerns. Separation of concerns [63] aims for a higher abstraction and
decoupling of components to enable a better understanding and maintainability. Object-oriented
programming, which is the current dominant programming paradigm [46] enables separation
of concerns in one dimension. Normally, a separation of core functionalities (features, busi-
ness rules) is done. Strongly coherent properties and operations are encapsulated in objects.
But many concerns cannot be classified functional, they are rather properties of a system and,
moreover, they are crosscutting across functional components [39]. The concerns result from
aspectual requirements [46]. Such crosscutting may be synchronization, real-time or global
constraints, authentication or logging. (For further example see [39, 46, 105].)

Normally, these crosscutting concerns are tangled into the code of the components or the
components call certain subroutines, which results in duplicated code in several objects. With
AOP, concerns are implemented as so called aspects. According to the description of the rela-
tionship between aspects and components, the aspects are woven into the code of the compo-
nents, see Figure 4.3.

According to [49], aspects are quantified assertions for the behavior of a program. The aspect
defines conditions and actions, which are executed when the conditions arise. Three types of
AOP can be distinguished: static black-box, static clean-box and dynamic AOP. Black-box AOP
treats the components as a black box and the quantification is done on the public interfaces of
the components. Therefore, black-box AOP works without the source code of the components
and may be rather reusable and maintainable as it does not depend on the actual implementation
of the components. In White-box AOP the quantification is performed over the parsed structure.

4http://www.antforge.org/waqlpp (Accessed: 2014-01-22)
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Figure 4.3: Weaving of Aspects. [39]

It is not restricted to the public interface and so it provides more possibilities. On the other hand
white-box AOP is harder to implement and builds dependencies on the actual implementation.
Dynamic AOP quantifies over run-time happenings, for example exceptions, certain calls in a
temporal scope or historical patterns.

Another distinction can be made on the level of weaving [39]. The level defines when the
aspects and the code of the components are combined. Pre-compile weaving mingles the aspects
into the components and then the woven code is compiled. Compile-time weaving performs the
combination during the compilation - the byte code therefore contains the intermingled code.
Run-time weaving makes use of reflective architectures, where the weaving takes place during
the execution. This type of weaving is more complicated, but enables to update and modify
aspects during the execution.

For the evaluation of the solution, events have to be traced inside the EBS. As the routing
and processing of events is spread over many classes, AOP in the form of AspectJ5 is going to be
used to measure the event processing. AspectJ provides the possibility to expand Java programs
by AOP. It therefore provides the following constructs [67]: aspects, join points, point cuts
and advices. An Aspect encapsulates modular units of crosscutting implementation. Aspects
can contain normal Java code and the remaining constructs. Join Points represent points in the
dynamic execution. PointCuts refer to collections of join points and are used to represent the
conditions that have to arise for the execution of an action. Join points can match methods
and constructors, but also fields or exceptions. Finally, Advices are assigned to point cuts and

5http://eclipse.org/aspectj/ (Accessed: 2014-01-22)
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include the actions that should be performed if the condition specified by the point cut arises.
The execution of the advice can either be around, before or after the execution of the join point.
In AspectJ, which implements clear-box AOP, weaving can take place at compile-time, post-
compile time or at load-time. In each case static weaving is performed and the resulting class
files - and therefore the behavior - is the same in all cases.
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CHAPTER 5
Solution Design

In this chapter the design of the solution is described. Crucial for the solution are the strategies
for handling the high loads and the taxonomy of queries, as the strategies should be applicable for
all different types of queries. Therefore this chapter starts with the results of the literature review
concerning query types are presented as the taxonomy explains basic terms that are relevant for
burst handling. Next follows a discussion of possible strategies as solutions for burst handling
and the presentation of promising strategies that are implemented and evaluated in the next steps.
Following the integration into the framework WS-Aggregation is discussed.

5.1 Taxonomy of Queries

Several papers describe theoretical basics of event processing or concrete applications and pro-
totypes that offer certain features for event processing. An excerpt of the literature that was used
to form the taxonomy is given in the Appendix, see Section A.1.

According to the collected data, two different dimensions to classify queries can be identi-
fied: scope and operation.

Scope states on how many and on which events the query is executed, see Figure 5.1. If the
query processes each event separately (and is hence not required to keep the state of previous
events), it is Stateless. Stateful queries process a group of events together. This set of events is
called Window. Stateful queries differ from each other depending on further attributes. One of
these attributes is the Unit, which is used to define the windows. Logical means that the size of
the window is given by a time specification. Therefore, those windows are called time-based.
The second option is Physical. In that case the size of a window is measured in events and is
also called count-based or tuple-based. Another distinctive attribute for windows is how the
borders of the window are defined. In case of a Fixed window, the borders are set by absolute
values (either positions or time stamps) and do not change. Therefore, the set of input events
that are processed is fixed and the events do not change. A Growing window starts at the very
beginning and evaluates at every unit (time or tuple). Landmark windows start or end at a fixed
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Stateless Stateful
(windows)
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Logical Physical

Bounds

Fixed Growing Landmark Tumbling Sliding

Figure 5.1: Query Taxonomy, Dimension Scope.

point. So either the end is now, which means that the size of the window is increasing over
time and more and more elements have to be processed or the end is defined (most likely in the
future) and with each unit a new window is opened. Both of the two remaining bound types,
Tumbling and Sliding window can be time-based or count-based, but the size of the windows
can be varying. The start and the end bound are expressed by conditions. Both bounds move
on with the progress of time. The distinction between these window types is based on whether
those windows are overlapping or not. If there is no intersection of the windows, the query has
a Tumbling window. So a new tumbling window starts after the preceding window ends. If
windows are intersecting, they are called Sliding windows. Because of the intersection, an event
may belong to multiple windows. As a consequence, one event is processed multiple times in
different windows and influences several output events. For both, tumbling and sliding windows,
an offset can be given by the start condition, so that the next window does not start right after the
preceding window or respectively the last input event. Cugola and Margara [40] do not describe
this in terms of an offset, but define tumbling windows as a variant of a sliding window, which
has an offset greater or equal than the window size. Pane windows are sliding windows with an
offset smaller than the window size. So they are still intersecting.

Mokbel et al. [93] also use the term Predicate-based to refer to a generalized window defi-
nition. The input events for a window are not selected based on the unit, but on a predicate that
has to be fulfilled. A similar concept is proposed by [5], called Partitioned windows, and de-
fines a tuple-based window on a subset of the inputs events. So events are only considered for a
window, if they meet certain preconditions. Further concepts are Historical and Suffix windows.

While [7] defines windows ending with the current time (meaning with the last input) as
suffix windows, and windows that end before now as historical, [93] uses the term historical for
windows that make use of earlier events.

The differences of the scopes in processing a set of input events are depicted in Figure 5.2,
where all queries are assumed to be count-based. The arrows along the time dimension define
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Figure 5.2: Query Scopes.

on which events the query is evaluated. Having ten input events, the first column shows that
a stateless query is evaluated ten times - for each event once. Assuming a window size of 4
events and an offset of 0, a stateful query with a tumbling window is evaluated twice, as two
windows of size 4 are already complete (window #1: events 1 to 4, window #2: events 5 to
8). A third window is started (window #3: events 9 and 10), but the query is not evaluated
yet, as two events are still missing. For the same assumption, a query is evaluated more often
with a sliding window than with a tumbling window, as sliding windows support intersections of
input events. Starting at the fourth input element, each further event completes another window.
Therefore such a query is evaluated 7 times for ten input events (for each window completed by
the events #4 to #10). Four more windows stay incomplete and have to wait for further input
events. The lower-bound (start = 2) landmark query in the fourth column is evaluated 9 times
(beginning with the second input event), while the window size is increasing from size 1 to 9.
Another evolved window is going to be processed for each further input event. In contrast, for
the upper-bound (end = 8) landmark window in the next column a new window is started with
each incoming event and all of them are closed at position 8. Therefore such a query would
be evaluated 8 times. The fixed query is evaluated only once when the specified window is
completed.

Stateless and stateful queries with a tumbling or a fixed window consider each incoming
event only once. So each input event just influences one output event. Queries with sliding
windows consider each input event multiple times. On average an event is processed once on
each position in the window. Only the first and last elements that do not form a complete window
are processed less often (events #1 to #3 and #8 to #10 in the example). With landmark
windows, the sooner an event arrives, the more often it is processed.
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The second dimension, Operation, describes how the query actually processes the events.
Most of the literature shows that queries usually combine different operations to accomplish a
purpose. Further on different terms are used for similar operations, so Figure 5.3 illustrates the
common query operations.

Operation

Filtering Grouping Transformation Aggregation Pattern
Matching

Figure 5.3: Query Taxonomy, Dimension Operation.

Filtering means the selection of special events depending on predefined properties. This
operation is often important to reduce the amount of data and therefore, it is often used as a
first step in event processing. Filtering is often referred to as Selection, since some events are
selected and others are not. Grouping [128] is a possibility to group input events based on
defined properties. The further processing steps differ depending on the group. A special form
of grouping is the group by clause in aggregation queries. The group by operator also performs
a type of grouping.

Another query operation is called Transformation, which is used to transform events re-
garding their structure or content. Above all, transformation is important to transform simple
events to complex events, which is a main part of complex event processing systems. The terms
Elaboration [40,121] (through projection or renaming) and Mapping [81] (a given input to a pre-
defined output format) are also used to describe this operation. Further forms of transformation
can also be Sorting and Joining. Aggregation operations can perform data aggregation within
one or several events. Typical operations in aggregations are the calculation of the maximum,
the minimum or the average value. These values can either be calculated overall, or for different
groups in combination with the group by operator. But aggregation does not necessarily mean
calculating statistical values. Input events can also be summarized by other rules. The last op-
eration is Pattern Matching. This term is often connected to CEP. It means that input events
are matched against a specified pattern and an output is triggered, if the pattern is matched. Ba-
sically, this operation can be seen as a mix of filtering, transformation and aggregation and is
thus often used in combination with these terms. The pattern defines how the events have to be
filtered. Using aggregation and transformation, the information of the matched events is used to
create the output event.

Even though the terms for classifying queries are not used consistently throughout the lit-
erature, common features can be identified. The foundation for the taxonomy is the distinction
of the dimension: the scope defines which events are evaluated by the query together and the
operation describes what is done with the events. As a last point, different query languages may
not support all features, but rather a subset of them. Existing event based systems usually sup-
port only one query language and not several, so this should be taken into consideration when
deciding on the system.
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5.2 Approaches to Handle High Loads

Different approaches to cope with high loads can be found in literature. Most of them have
been proposed and implemented in research prototypes of ESP systems. As this thesis tries
to compare strategies, which can be applied on a single node, only strategies that meet this
requirement are proposed. Nevertheless, the presentation of the strategies also approaches the
benefits and problems that arise in the context of using them in the whole EPN.

Resources for these strategies are listed in the Appendix, see Section A.2. The following
section presents the outcome of the literature review and combines the findings of multiple
references.

As a reminder, the underlying problem of high loads: ESP systems cannot be designed to
cope with any amount of data, as the highest amount of data cannot be predicted and this design
would be a waste of resources. Therefore, systems are designed to be capable of the average
data load and some tolerable peaks. But streams tend to be bursty [69] and situations with a
load magnitudes higher than the average load can occur. Another detail of such scenarios is that
such peaks are caused by a certain occurrence in the context of the system, which also leads to
extraordinary values in the incoming events compared to the values during normal processing.
So one can assume that events are more important during such peaks. The following strategies
should be used to manage peaks of high load and to keep on processing the events with as much
accuracy as possible.

5.2.1 Management of Strategies

Strategies for handling load bursts are typically managed in two parts: On the one side, there
must be a controlling component and on the other side, a monitoring component is required to
maintain an information base for controlling decisions.

The management of strategies can either be realized centralized or decentralized. If the man-
agement is done decentralized, each node can maintain itself, but therefore no overall optimiza-
tion for the system can be done. Additionally, the monitoring and controlling also represents
load for a node, so it does not improve the situation in case of overload. In contrast, if the man-
agement is done centralized, this component represents a single point of failure. In return, the
monitoring and controlling does not waste that much resources on nodes, which have to process
events, but still it increases the network traffic to get information from the nodes. Neverthe-
less, the component cannot use too complex algorithms for monitoring and controlling, as in
case of an overload decisions have to be made quickly. A good combination of centralized and
decentralized management approaches might be a good solution.

Monitoring of the System

Monitoring the system is an essential activity in order to reasonably apply load handling strate-
gies. A system has to know whether there is an overload at any node or not. If there is an
overload, more detailed information on the reason is desirable. An overload can have different
causes. For example a tuple input rate that is too high or an inefficient EPN. Detailed knowledge
on the cause may improve the choice of the right strategy.
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A monitoring component is responsible to track the QoS data concerning the system. This
includes the throughput and the workload of all the nodes in the EPN. More detailed monitoring
on individual streams and queries is desirable. Statistics and characteristics of input streams are
in particular of interest, as these values can be used to estimate intermediate results. A synopsis
maintained by a sample or compressed wavelets can be used for this.

Controlling of the Strategies

Every time the load equation [12] (processingrate ≥ inputrate) is not fulfilled, the control-
ling component has to prepare a strategy to reduce the load on the affected node. If the load
equation is not fulfilled for a longer time, the memory is used up and no further memory is avail-
able for incoming events. Before this state is reached, the strategy has to be applied. It is the
responsibility of the controlling component to provide appropriate configuration values for the
strategy. Further on, the success of the strategy has to be supervised. If the strategy could not
firm the system, it has to be modified. Otherwise, the controlling component has to determine,
whether the system can currently only work with the applied strategy, or if the system is back in
a normal state and the strategy can be removed. If a strategy is removed too early, the system is
overloaded again and a new strategy has to be applied. This would cause superfluous overhead.

So the controlling component is a very complex component and has to be well configured
and it needs detailed and up-to-date information from the monitoring component to be able to
provide optimal overload handling.

5.2.2 Load Shedding Strategy

Load Shedding is one of the simplest strategies that can be performed, when a system suffers
from too much load. In short, load shedding just means to drop a certain portion of incoming
events (tuples), so that the remaining processing effort is decreased and therefore, the throughput
is increased. But logically, this dropping leads also to a decreased quality of the results.

Load shedding has not been invented in the context of ESP. It has already been used for a
long time in other areas, like multimedia or networking applications, where it was rather called
package discarding. In ESP, common descriptions for load shedding are also ’gracefully degrade
performance’ or ’graceful degradation’.

The four main questions when using load shedding are:
1. How should the tuples be shed?
2. When should tuples be shed?
3. Where should the shedding be done?
4. How many tuples should be shed?

Types of Load Shedding

Different types of load shedding can be performed. Distinctive features are the algorithm to
identify the tuples to be dropped, the level on which the tuples are dropped and the realization
of the dropping.
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Varieties. The simplest way is naive load shedding, which is also called random load shed-
ding or sampling. The naive approach has one parameter, the sampling rate. This parameter p
(0 < p < 1) defines the probability of a tuple to be processed, whereas (1− p) is the probability
of dropping the tuple without any further processing. So independent of the content of the event,
each one has the same chance to get processed or dropped. By configuring the sampling rate p
the amount of shed events can be controlled. This is relevant or the fourth question. Another
approach is semantic load shedding. In this case only events, which are claimed to be less im-
portant, are shed. The importance can be evaluated based on different criteria: the actual content
or a utility function. Content-based filtering means that the strategy can be configured with cri-
teria data that identifies more or respectively less important tuples. In the other case, a utility
function to calculate the utility of each event is established for the system. Tuples with a higher
utility will be processed, whereas tuples with a low utility are dropped. A certain threshold has
to be set to define which tuples will be dropped.

Realization. The actual load shedding can be implemented in different ways. One way is to
use dynamic query rewriting to modify the query and filter tuples, which are dropped. The same
filtering mechanism can also be implemented by adding filter operators into the EPN. Special
drop operators can be used instead of those filter operators as well. In either case, for load
shedding to work efficiently, the actual effort of shedding a tuple (and deciding whether a tuple
is shed or not) should be minimal in comparison to the processing of the tuple.

Management of Load Shedding

The management deals with the question, when load shedding should be performed. This ques-
tion has already been discussed in Section 5.2.1. Also the remaining two questions have to be
handled by the management component for overload strategies, but as there are peculiarities for
load shedding, they are discussed in the following sections.

Placement of a Load Shedder

The placement of a load shedder is important as it has impact on the efficiency of the strategy
and answers the question, where load should be shed. As tuples are dropped by a load shedder,
no further processing is done for the tuple. Therefore, one could assume that every processing
step of the tuple that has happened before is redundant. This leads to the statement that optimal
load shedding is always performed at the beginning of an EPN, otherwise it is not optimal as
resources might have been wasted.

Nevertheless, it is not suitable to always put load shedders at the beginning of an EPN,
especially if load shedding should not be applied for all queries in the same way. Figure 5.4
illustrates how the placement of a load shedder affects the impacts of the strategy.

If the load shedder s1 is used, the shedding takes place at the very beginning. Therefore, no
processing resources have been used for tuples and no resources have been wasted. But the load
shedder affects two queries: the ones that are consumed by c1 and c2. But in some cases, this
might not be a desirable handling of overload. If the query consumed by c1 has a much higher
priority or the reason for the overload is just the event processing on epa4, then it might be a
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Figure 5.4: Placement of a Load Shedder.

better solution to use the load shedder s2. The optimal placement of a load shedder strongly
depends on the level of the overload handling as well as the priority of streams or queries.

Level of Load Shedding

The load shedding approach can be applied on different levels. The level characterizes in more
detail where the load will be shed. On the one hand tuples can be shed either right after they
have arrived, on the other hand they can also be shed right before the actual processing. Another
possibility to influence the level is whether the load shedding is performed for all queries, which
are currently executed, or only for some queries. So the queries could have priority values and
the higher the priority the smaller is the probability that events of the query will be shed. The
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same distinction can be made for streams. Performing the load shedding just in general without
any regard to streams or queries is a simple approach, but a great benefit of a finer load shedding
is that it is suited better for typical situations. For example, when a node is overloaded, the cause
is probably not a burst on all input streams, but rather on one input stream, while the others have
a normal data rate. Then it might be a good idea, to perform load shedding only on this input
stream. The same situation can occur on query level. In an overload situation it is likely, that one
query is too complex and takes too much processing time and all other queries suffer under this
load. Then it is advisable to perform load shedding only for the complex query, so the workload
is decreased but the results of the simple queries are still correct.

Configuration of Load Shedding

The configuration of the applied load shedders deals with the question, how many tuples should
be shed. This question can be represented as an optimization problem. The goal is to shed as
many tuples as needed so that the load in the system becomes manageable again. But naturally
there are some constraints that limit the amount of tuples that can be shed. These constraints
represent the accuracy of the results. Depending on the query type, the accuracy of the query
results is degraded by a load shedder. Depending on the QoS agreements or the fault tolerance
of upstream activities, a certain accuracy has to be maintained. If the system does not provide
any QoS contracts, the management component can just use load shedding with a high drop-out
rate. Otherwise the component has to find a proper solution for the optimization problem.

5.2.3 Deferred Execution Strategy

Deferred execution is an alternative strategy to handle high load, where the processing load is
temporarily reduced and postponed to a later point in time. Normally, deferment is rather used
during normal processing to favor more important events. Different approaches are used for this
prioritization: either less important events are deferred and the execution is postponed or the
events are reordered in advance.

Deferment can also be used to reduce the current overload by persisting events that cannot
be processed with the available resources at the moment. Those persisted events are processed
after the peak of high load when further system resources are available. But the strategy can
only be used efficiently if the operation of persisting the events is not too expensive. Further on,
if the claim to the accuracy of the results is very high, the strategy cannot work as efficient as
with less strict requirements.

First, if the ordering of results is very important, then the strategy cannot just persist the cur-
rent overload of input events and proceed with the processing of new incoming events. Instead
all incoming events have to be persisted and just the oldest events have to be loaded each time
when processing resources are available. This leads to a lot more write and read operations. In
contrast, if the output order is not that important, a bunch of events can be persisted in case of
an overload but no events have to be loaded for the ongoing processing, so more resources can
be used for the actual processing during the peak of high load.

Secondly, results of stateful queries are affected in a different way than the results of stateless
queries. For stateless queries, the correct results are produced but the ordering might be different.
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In stateful queries, the persisting of events leads to different events per window and therefore the
results of the deferred execution differ from the results of a normal execution, except when the
additional write and read operations to maintain the correct order are accepted like explained in
the last paragraph.

In the following subsections, the deferred execution strategy is explained in more detail using
the same structure as for load shedding. The management of the strategy is discussed separately,
as this topic has already been discussed in Section 5.2.1.

Types of Deferred Execution

Some distinctive features of deferred execution types have already been addressed in the intro-
duction. A closed differentiation is provided here.

Varieties. The variations of deferred execution arise from the approach of event persisting.
The order of events can either be preserved or not. The difference is illustrated with the aid of a
minimalist example in Figure 5.5.

Figure 5.5: Variations of Deferred Execution.

The first part (Order Preserving) shows a deferred execution that preserves the order of
incoming events. In the second part (Order Non-preserving), the order is not preserved as in-
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coming events are only preserved when the overload occurs, but if events that arrive shortly
afterwards can be processed, they are processed immediately without deferment. All tuples,
which are deferred, are depicted in red, so one can see, that in the first approach, all incoming
tuples are deferred and therefore it takes three write and read operations to process the tuples. In
comparison, the second approach only needs one write and load operation. So even in this small
example, the second approach is three times more efficient than the first one. Even though the
second approach may need to defer some additional events if the peak lasts for a longer time, the
amount of write and read operations still remains very small in comparison to the first approach.
In case of stateless queries the results do not differ for the two approaches but the order of the
output events changes with the second approach. For stateful queries, the processed results may
not be correct anymore, if the second approach is used. The windows that are processed are not
filled in the same order as without the deferment, so the calculated results are different. The
errors can be minimized, if the set of deferred tuples is of the same size as the window, but for
sliding windows the errors cannot be removed entirely.

Realization. Different realizations are possible according to the system that uses the de-
ferred execution strategy. Basically, different realizations differ from each other in the way of
how events are persisted and later reloaded. Possible realizations are storing and retrieving using
databases or files. The actual realization should be chosen based on performance criteria. No
available operators can be used to realize the deferment of events, therefore this strategy has to
be integrated in the system in a different way, or a new operator has to be developed.

Placement of Deferred Execution

In contrast to the load shedding strategy, the placement of the deferred execution is not as critical
or complex. As the processing of any event will be completed sooner or later, no previous
processing steps are unnecessary. Therefore, the deferment can be performed at the exact node
that is affected by the overload. So the strategy is also appropriate for dealing with high loads
on a single node.

Level of Deferred Execution

The possibilities on which level the deferment of events can be performed are equal to the
different levels of a load shedding strategy. Depending on the characteristics of the overload
cause, general deferment or a deferment on stream or query level can be appropriate.

Configuration of Deferred Execution

One parameter that is relevant for this strategy is the amount of tuples that should be persisted at
once. Persisting each event individually produces a lot of overhead. But if too many events are
persisted in one operation, it takes more time and in the meanwhile new events that cause more
overload can arrive, which is why a good trade-off is desired.

The same applies to the loading of the persisted events. When the peak of high load is over,
the events have to be loaded and processed. Depending on the workload, more or less events can
be read at the same time without causing an overload again.
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5.2.4 Forwarding Strategy

The forwarding strategy uses additional resources (like additional EPAs or nodes) to cope with
the high load and therefore belongs to the scale up techniques. Strategies that use distribution
and parallelization approaches also belong to this category. In case of an overload, the ESP
system has to provide additional resources for the query processing. These can either be newly
added components or reused components, that are not busy at the moment. The new component
is integrated into the current processing workflow and undertakes a part of the processing effort.

In comparison to other scale up techniques, which are more present in the literature, for-
warding does not modify the whole EPN and redistribute the operators, it just shares the load of
one EPN by outsourcing a part of the processing effort. Other components in the system are not
affected by this strategy.

Forwarding produces additional effort, as the original node has to establish a connection to
the used nodes, to configure the query processing on these nodes and also the forwarding itself
and the returning of the results takes time. This effort has to be traded off against the gained
performance to see whether a forwarding strategy makes sense.

In the following subsections, the forwarding strategy is explained in more detail using the
same structure as for the strategies before. Again, remarks to the management of the strategy
can be found in Section 5.2.1.

Types of Forwarding

Concrete forwarding strategies can vary in the following properties.
Varieties. One distinctive feature is the provision of the additional resources in form of

processing nodes. A system can either use existing nodes, which are not busy, or it can add new
nodes in case of an overload. Ideally, existing nodes are used as long as there are still nodes that
can deal with further event processing tasks, and new nodes are started only if the overload can
not be forwarded to an existing node anymore.

Another property of a forwarding strategy is whether the forwarding is stateless or stateful.
In case of stateless queries, it does not make any difference and stateful forwarding would not
make sense. In case of stateful queries, stateless forwarding cannot preserve the order of the
events and therefore leads to different results than the normal processing. As a simple example,
assume a stateful query with a sliding window of size 2 and eight incoming events. In variant A,
the events are processed without forwarding. The input order of the events is preserved and the
results are computed correctly, see second column in Table 5.1.

Variant B uses stateless forwarding with two nodes. So the processing of the incoming
events is shared by three nodes and each event is distributed among the nodes using a Round-
robin balancing. The third column of Table 5.1 shows which windows are calculated on which
EPA. The results of the processing reveal qualitative and quantitative errors. Caused by the for-
warding, windows are processed on three different nodes. So on each EPA a separate window
is created and the first result is processed, when the first window is filled with input events.
Not until the fourth incoming event, a window is completed and the first result is computed. In
comparison to normal processing without forwarding, the fourth input event results in the third
output event. So we can see, that because of the three windows instead of one, not all combi-

50



nations of input events are processed, which leads to less results and therefore to a quantitative
error. This quantitative error increases with the amount of nodes used for forwarding and the
window size.

Table 5.1: Stateless Forwarding Strategy with a Sliding Window

Variant A Variant B Variant C
without forwarding forwarding (2 nodes,

1 event)
forwarding (2 nodes,
2 events)

epa1 (1, 2), (2, 3), (3, 4) ,
(4, 5) , (5, 6) , (6, 7) ,
(7, 8) , (8, ?)

(1, 4), (4, 7), (7, ?) (1, 2), (2, 7), (7, 8),
(8, ?)

epa2 (2, 5), (5, 8) (8, ?) (3, 4), (4, ?)
epa3 (3, 6), (6, ?) (5, 6), (6, ?)

Further on, the stateless forwarding leads to incorrect combinations of input events in the
processed windows. Consecutive events are never processed by the same node, so none of the
processed windows is equal to a processed window in Variant A. Variant C is a special case.
It also uses two additional nodes for forwarding, but two consecutive events are processed by
the same node. So the Round-robin is performed for sets of incoming events with the size of
2 (equal to the window size). In this case, the strategy also produces results with a quantitative
error, as, like before, three separate windows are started on the nodes. But as the window size
and the amount of collectively forwarded events are equal, some of the processed windows are
all equal to windows, which have been processed in variant A. So there the qualitative error is
smaller than for variant B.

Table 5.2: Stateless Forwarding Strategy with a Tumbling Window

Variant A Variant B Variant C
without forwarding forwarding (2 nodes,

1 event)
forwarding (2 nodes,
2 events)

epa1 (1, 2), (3, 4) , (5, 6) ,
(7, 8)

(1, 4), (7, ?) (1, 2) , (7, 8)

epa2 (2, 5) , (8, ?) (3, 4)
epa3 (3, 6) (5, 6)

In comparison, assume a tumbling window instead of the sliding window. The results for the
different variants are shown in Table 5.2. Variant A obviously processes less windows compared
to the sliding window example, as the windows cannot overlap. For a tumbling window, Variant
B produces almost the correct amount of results. The quantitative errors depend on the amount
of nodes and the window size, but it is smaller in comparison to the sliding window example.
As in the sliding window example, the qualitative errors are based on incorrect combinations of
input events in the processed windows. Variant C on the other hand produces the correct results.
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So if the forwarding is used for a bunch of events with the same size as the window size, stateless
forwarding is an efficient strategy for a tumbling window query.

Stateful forwarding requires a shared memory for the different EPAs. Only one window
is used for the incoming events but the windows are processed by different EPAs. The shared
memory adds a lot of complexity to the event processing. Even though the input order is pre-
served with stateful forwarding, additional coordination is required for the coordination of the
results to be able to guarantee the correct ordering of the results.

Realization. The concrete realization strongly depends on the environment of the ESP. The
environment predetermines how nodes can be added or reused. For the communication between
the original EPA and the EPAs used for forwarding the normal communication infrastructure
can be used or additional channels can be added.

In addition, for this strategy the node has to provide an input channel for the result events
of the nodes used for forwarding. These events have to be received and forwarded like normal
output events.

Placement of Forwarding

As all events are going to be processed with the forwarding strategy, it can be used on every
node. If stateless forwarding is applied on a stateful query, it may produce better results to place
the forwarding strategy near the end of the EPN. Otherwise the processing errors are introduced
in the beginning and may increase during the further processing steps.

Level of the Forwarding

As for the other strategies, forwarding can also be applied on different levels. But for this
strategy it has to be considered that different levels lead to a different amount of additional effort.
This effort adds up by the following parts: in each case, an effort has to be made to request the
additional EPAs and to establish a connection to them. Further on, the queries, which have to be
processed for the forwarded events, have to be configured on the used nodes. This effort depends
on the level on which the strategy is applied. If the forwarding strategy is applied for the whole
node, all queries have to be configured on the used nodes. If the strategy is applied on the query
level, only the affected query has to be configured. A middle way is the event stream level, as
only the queries that process events of this stream have to be configured. Finally, the additional
effort is also increased by the actual forwarding. This effort depends on the level, but also on the
load. If most of the load is caused by one query, then the difference between forwarding on the
query level or for the whole node is not that big. So it is more influenced by the load as by the
level.

Configuration of Forwarding

The most important parameters to configure the forward strategy is the amount of nodes that
should be used for the forwarding. In addition, a flag can be used to indicate whether the original
node should continue to contribute in the processing or a parameter to specify how many of the
events should be processed by the original node can be used. If the node performs no further
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processing but only forwards the events and receives the results, it is called pure forwarding.
Further on, if a set of consecutive events should be forwarded, the size of this set should be
configurable. If the strategy is applied on the query level, it is also possible to use a flag that
indicates whether the size of this set should be retrieved from the window size of the query.

5.3 Integration into the WS-Aggregation Framework

The goal of the thesis is the integration of the approaches presented in Section 5.2 into the WS-
Aggregation framework. The thesis focuses on the integration and evaluation of the strategies
for the different types of queries defined in 5.1. This section discusses the design issues of the
implementation and integration into the framework based on the features that have been used to
describe the strategies: management, placement, level, configuration and type.

As already stated, the thesis covers only the application of load handling strategies on one
node. An automated management of the strategies for monitoring and controlling is therefore
not provided. The strategies are being applied manually to ensure a controlled situation in the
evaluation. As the strategies are evaluated only on one node, the decision on the placement of
the strategy is obsolete. The implementations of the strategies for the WS-Aggregation frame-
work should provide the possibilities for a flexible configuration, as explained in Section 5.2.
The strategies are only applied with predefined configuration values in the scope of this thesis,
but they should be variable for the further usage in the framework, so that a monitoring and
management component can apply strategies with adjusted configuration values.

The integration of the strategies should not be realized on a deep layer of the framework, but
rather on a higher one. So the strategies should not be integrated on the level of the query pro-
cessing engine. This enables three options for the level, on which the strategies can be applied:
on the level of the node, of an event stream or of a query. The node level would be the most gen-
eral solution as all events are treated equally. This would not be very adaptive, therefore only the
other two levels are qualified for the implementation. The stream level enables the prioritization
of different streams, whereas the query level enables to prioritize queries. So both levels offer
more or less equal opportunities as the integration into the WS-Aggregation on the stream level
seems to be the reasonable choice based on a costs-benefits analysis.

Figure 5.6: Escalation Handling State Diagram.
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The term Escalation is introduced to describe an emergency situation, when the load is
too high and the correct processing of events cannot be guaranteed anymore. Therefore, an
escalation must be handled by a proper load strategy. The process of escalation handling is
depicted in Figure 5.6.

When an escalation occurs, the escalation handling can be started. As the handling is per-
formed on the level of event streams, the id of the stream has to be specified along with the strat-
egy that should be used for the handling. A running escalation handling can either be stopped,
if it is assumed that no further handling will be required soon, or paused, if the escalation han-
dling should just be discontinued for a short time. After pausing an escalation handling it can
be resumed, which switches it back to the running state. No explicit possibility to change the
current escalation handling is provided, but the escalation handling for a certain stream can be
modified by starting a new escalation with modified parameters or a different strategy for the
same stream. The old handling will be stopped correctly and the new strategy will take over.

The framework is extended by an aggregator node that provides further capabilities for burst
handling. The original aggregator node of the WS-Aggregation framework is described in [60].
The Aggregation Interface, the Metadata Interface and the Management Interface can be used
to request the node. Internally, the tasks of the aggregator node are performed by the following
components: Request Distribution Engine, Target Service Invoker, Multicast Engine, Configu-
rator, Performance Monitor, WAQL Engine and Registry Proxy.

Figure 5.7: Burst Capable Aggregator Node (Based on [60]).
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The integration of the burst handling is depicted in Figure 5.7 The capabilities are integrated
in a component called Burst Manager, which is controlled by the Escalation Interface.

The burst capable aggregator node extends the original aggregator node and therefore pro-
vides the usual capabilities as well as the features of the burst manager. The burst manager
checks for incoming events whether the event has to be handled by a burst handling strategy or
not. When no escalation handling is configured, the burst capable aggregator performs like a
normal aggregator. If a strategy for burst handling is applied, the strategy decides how the event
is further processed.

Caused by the integration into the framework on this level, a stateful implementation is not
reasonable, so the strategies are implemented in a stateless manner. At first a simple implemen-
tation of the strategies is provided and implemented. Later on, enhancements for the strategies
are investigated in the evaluation and the summary.

55





CHAPTER 6
Implementation

This section describes the implementation of the burst handling strategies and the integration
into the WS-Aggregation framework. As a first step, the integration of the strategies and the
burst manager into the WS-Aggregation framework is explained. Next, the escalation interface
definition is presented and finally, the implementation of the strategies and their variations are
explained.

6.1 Integration of the Escalation Concept into WS-Aggregation

The concept of the integration has been described in Section 5.3. As explained, the original
aggregator node is extended by a burst manager component. A basic class diagram describing
the associations and most important methods for this integration is shown in Figure 6.1.

The diagram contains two main interfaces, one for the escalation and one for the burst man-
ager. By using the interfaces Escalation and BurstManager, the burst handling strategies can be
integrated into a framework. The escalation interface defines the basic attributes for managing
and controlling the escalation handling. The burst manager interface is the interface between the
normal event processing and the burst handling. By these methods, the strategies can request
data from the system or provide inputs and results.

For the integration into WS-Aggregation, an implementation of the burst manager interface
is provided, see BurstManagerWSAggr. To integrate the escalation interface, a new aggregator
node, the BurstCapableAggregatorNode is implemented, which extends the original Aggrega-
torNode and implements the Escalation interface. The burst capable aggregator node overrides
some methods of the original node to integrate the BurstManager component.

The individual components are explained in the following subsection.

6.1.1 Escalation Interface Definition

The Escalation Interface defines the operations to manage the burst handling. The three oper-
ations map the operations used in the state diagram, see Figure 5.6. The method handleOver-
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Figure 6.1: Class Diagram.

loadedQuery is used to start the escalation handling. The names of the other methods are self-
explaining. The parameters are wrapped in request objects, which contain the parameters for
the respective operation. The StartEscalationRequest requires an event stream id and the strat-
egy that should be applied. The StateEscalationRequest contains the event stream id to identify
the escalation handling and a Boolean to identify the state. The StopEscalationRequest only
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requires the event stream id to identify the escalation that has to be stopped. The interface is
shown in Listing 6.1.� �

1 p u b l i c i n t e r f a c e E s c a l a t i o n {
2
3 p u b l i c vo id s t a r t E s c a l a t i o n ( S t a r t E s c a l a t i o n R e q u e s t r e q u e s t )
4 t h ro ws E v e n t B u r s t H a n d l i n g E x c e p t i o n ;
5
6 p u b l i c vo id s e t S t a t e ( S t a t e E s c a l a t i o n R e q u e s t r e q u e s t ) ;
7
8 p u b l i c vo id s t o p E s c a l a t i o n ( S t o p E s c a l a t i o n R e q u e s t r e q u e s t ) ;
9

10 }� �
Listing 6.1: Escalation Interface.

6.1.2 Burst Manager

The Burst Manager component provides an interface and an implementation for the WS-Aggregation
Framework.

Burst Manager Interface

The interface of the burst manager defines methods that are required for the burst handling
strategies to communicate with the framework. The interface is shown in Listing 6.2.� �

1 p u b l i c i n t e r f a c e Burs tManager {
2 p u b l i c b o o l e a n h a n d l e E v e n t ( f i n a l S t r i n g e v e n t S t r e a m I d ,
3 f i n a l B u r s t H a n d l i n g E v e n t e v e n t )
4 t h ro ws E v e n t B u r s t H a n d l i n g E x c e p t i o n ;
5
6 p u b l i c L i s t < S t r i n g > prov ideNodes ( f i n a l S t r i n g e v e n t S t r e a m I d ,
7 f i n a l i n t amount ) t h ro ws E v e n t B u r s t H a n d l i n g E x c e p t i o n ;
8
9 p u b l i c vo id p r e p a r e N o d e s ( f i n a l S t r i n g e v e n t S t r e a m I d , L i s t < S t r i n g >

10 n o d e I d e n t i f i e r s ) t h r ow s E v e n t B u r s t H a n d l i n g E x c e p t i o n ;
11
12 p u b l i c b o o l e a n f o r w a r d E v e n t ( f i n a l S t r i n g e v e n t S t r e a m I d ,
13 f i n a l S t r i n g n o d e I d e n t i f i e r ,
14 f i n a l B u r s t H a n d l i n g E v e n t e v e n t ) ;
15
16 p u b l i c vo id f r e e N o d e s ( f i n a l S t r i n g e v e n t S t r e a m I d ,
17 L i s t < S t r i n g > n o d e I d e n t i f i e r s ) ;
18
19 p u b l i c b o o l e a n s a v e E v e n t s ( f i n a l S t r i n g s t r a t e g y I d e n t i f i e r ,
20 f i n a l S t r i n g e v e n t S t r e a m I d ,
21 f i n a l L i s t < B u r s t H a n d l i n g E v e n t > even t sToSave ) ;
22
23 p u b l i c L i s t < B u r s t H a n d l i n g E v e n t > l o a d E v e n t s ( f i n a l S t r i n g s t r a t e g y I d e n t i f i e r ,
24 f i n a l S t r i n g e v e n t S t r e a m I d )
25 t h ro ws E v e n t B u r s t H a n d l i n g E x c e p t i o n ;
26
27 p u b l i c vo id p r o c e s s E v e n t ( f i n a l B u r s t H a n d l i n g E v e n t e v e n t )
28 t h ro ws E v e n t B u r s t H a n d l i n g E x c e p t i o n ;
29 }� �

Listing 6.2: Burst Manager Interface.
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In general, the burst manager needs to examine each event and decide whether an escalation
handling has to be applied or not. So the method handleEvent is called for each incoming event
and the event is either forwarded to the escalation handling or further processed by the current
node.

To establish a forwarding strategy, further nodes are required. The methods provideNodes
and prepareNodes are used to set up nodes, which are used for forwarding. The method for-
wardEvent actually forwards an event to another node and freeNodes is used during the shut-
down to finalize the event processing of the forwarded events on the used nodes. Depending on
the implementation of the forwarding method, the burst manager also has to take care of a way
to get the results of the forwarded events.

For the deferred execution, the burst manager has to provide methods to persist and retrieve
events, namely saveEvents and loadEvents. Further on, as deferred events have to be passed on
for processing, the method processEvent is needed to pass the event to the processing node.

For load shedding strategies, no special methods are needed for interaction, as events are
simply not further processed.

Burst Manager Implementation

The implementation of the burst manager represents a mediator between the existing framework
and the implemented strategies. It mainly maps the present event stream ids to the escalation
handling.

Deferred events are persisted to the in-memory HSQL database, which is also used by the
WS-Aggregation framework itself. A persistence entity is used, which contains the relevant
information: the event data, a time stamp, the event stream id and an identifier of the escalation
handling. These values are then used to retrieve the deferred events for the escalation handling
in the correct order.

The forwarding of events utilizes the normal communication infrastructure of the WS-Aggregation
framework, but the events get assigned a special event stream id. Therefore, results of forwarded
events arrive at the original aggregator node as incoming event. The special event stream ids are
used to identify results, so that results ca be moved on to the result handling.

6.1.3 Burst Capable Aggregator Node

The new Burst Capable Aggregator Node extends the existing aggregator node and implements
the escalation interface. The methods of the escalation interface are implemented and control
the actual burst handling for the aggregator node.

The main point of the extension is the integration of the Burst Manager component, which
particularly affects the onEvent method of the aggregator. Each time an event arrives, the burst
manager is used to determine whether or not the event has to be processed. Only in case the
burst manager confirms that the event has to be processed, the aggregator node continues with
the event processing as usual.

In general, the burst capable aggregator node could as well just implemented the second
interface, the BurstManager, but for a clearer separation the burst manager was implemented
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separately. The implementation for the WS-Aggregation is the BurstHandlingWSAggr. It im-
plements the BurstManager interface and additionally manages the actual burst handling. That
means that the burst manager implementation manages which burst handling strategy is cur-
rently applied for which event stream. Therefore, although the burst capable aggregator node
(implementing the escalation interfaces) gets the requests concerning the control of strategies,
it forwards it to the burst manager, which is in charge of keeping track of the currently applied
burst handling strategies.

The realization of the escalation handling for the burst capable aggregator node by imple-
menting the two interfaces Escalation and BurstManager is illustrated in the sequence diagram
in Figure 6.2.

Figure 6.2: Sequence Diagram of the Implemented Escalation Handling.

Further details of the management of the strategies and the actual handling of events dur-
ing high load are explained in the next section. Similar diagrams for illustration purposes are
provided in Appendix B.

6.2 Implementation of the Strategies

The burst handling strategies extend the common base class EventBurstHandling. It defines the
essential methods for the burst handling. Three different strategies have been implemented: a
forward, a deferred execution and a load shedding strategy. For the latter one, three different
types have been implemented.

The hierarchy of the implemented strategies is depicted in Figure 6.3. The properties shown
in the classes represent the configuration possibilities for the strategies. The implementation of
the strategies is explained in the following subsections.
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Figure 6.3: Event Burst Handling Hierarchy.

6.2.1 Load Shedding Implementation

The implementation of the load shedding strategies is quite simple. In the initialization phase
only some parameters have to be set according to the configuration. When a strategy receives an
event, it decides based on the parameters, whether the event should be further processed or not
and returns the result. No special actions have to be performed in the shutdown phase.

How the shedding decision is made depends on the concrete implementation of the shedder,
see the subsequent sections. The sequence diagram for the event processing during an escalation
with a load shedder is shown in Figure B.1 in the Appendix B.
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Interval Load Shedder

The interval load shedder can be configured with the following parameters:
interval This parameter defines the duration of one interval in milliseconds.
maxEvents The second parameter states the amount of events that can be processed during

one interval.

As long as the maximum number of events for the current interval is not reached, the events
have to be processed. Afterwards all events are dropped until the next interval starts.

Fixed Load Shedder

The fixed load shedder allows a certain amount of events until one event has to be dropped. It
therefore provides the following configuration parameters:

afterX Defines the amount of events that can be processed before one event has to be shed.

A counter is increased for each event that is received and processed. When the configured
amount of events has been processed, one event is shed and the counter is reset.

Probabilistic Load Shedder

The probabilistic load shedder is the most common implementation of a load shedder. It also
provides only one configuration parameter:

rate This parameter defines the probability of the event to be shed and therefore has to fulfill
the restriction 0 < rate < 1.

For each received event a random number in the range [0, 1] is generated. If the generated
number is smaller than the rate parameter, the event is shed. Otherwise the event has to be
processed by the node.

6.2.2 Forwarding Implementation

The forwarding strategy uses other nodes to forward events to in order to reduce the load of the
current node. The following parameters are provided to configure the strategy:

nodeCount Defines the amount of nodes that should be used for the forwarding.
percentage This percentage value defines the amount of events that should be processed

locally. If it is set to 0.0, the current node does not process any incoming events but only
forwards them. For any other amount, the current node processes that amount of the incoming
events itself and forwards the rest of it.

delayCleanup A delay with the duration of this parameter is used to wait for further result
events before the strategy is stopped.

When the strategy is initialized, the burst manager is used to retrieve available nodes for the
forwarding. Then the burst manager has to configure all queries that are relevant for the event
stream id handled by the escalation on the used nodes. The initialization, when the escalation
handling is started, is illustrated in Figure B.2 in the Appendix B.
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When an event is received from the burst manager, the responsible node is determined. If
the current node is responsible, the event is not forwarded and the burst manager is informed
that the event still has to be processed. If a forwarding node is responsible, the burst manager is
forced to forward the event and no further local event processing is done. The handling of the
results of the forwarded events is not part of the strategy as it depends on the actual forwarding
mechanism. The event handling is depicted in Figure B.3 in the Appendix B.

When the escalation handling is stopped, no more events are forwarded. Depending on the
parameter delayCleanup, the strategy delays the clean up call to the burst manager so that results
of forwarded events can be returned to the original aggregator node. The sequence diagram in
Figure B.4 in the Appendix B illustrates the shutdown.

6.2.3 Deferred Execution Implementation

The deferred execution strategy is used to store incoming events temporarily in a database. The
following parameters are provided to configure the strategy:

bufferSize If the buffer size is equal to zero, no buffering is used. This means that every
incoming event is immediately stored in the database. If the buffer size is greater than zero, a
buffer with the given size is initialized and the events are persisted when the buffer is full.

timeoutBetween This timeout is used to define how often deferred events should be loaded
and processed.

If a buffer should be used, it is initialized during the initialization phase. When an event is
received, it is either saved in the buffer or immediately persisted. No events are processed by
the current node immediately, so the strategy always returns false to the aggregator node. After
the amount of milliseconds specified in timeoutBetween, events are loaded and handled to the
current node for processing. The deferred escalation handling is shown in the sequence diagrams
in the Figures B.5 and B.6 in the Appendix B.

During the shutdown phase, events are not deferred anymore but they have to be processed
by the current node. In addition, the remaining persisted events are loaded and passed to the
node for processing. The timeoutBetween parameter is again used to slow down the forwarding
so that the current node is not overloaded by the deferred events. The shutdown phase of the
deferred strategy is illustrated in Figure B.7 in the Appendix B.
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CHAPTER 7
Evaluation

This chapter documents the evaluation approach and its outcomes. The evaluation is divided
into two parts: first the evaluation of the strategies applied to stateless queries and secondly,
the evaluation in case of stateful queries. This separation is done, as stateless queries are much
simpler to handle than stateful queries in case of load bursts and the outcome cannot be directly
compared.

At first, the used scenarios for the evaluation are generally described in Section 7.1. Then,
in Section 7.2, the implementation of the evaluation and the used scenarios are explained. Af-
terwards the actual evaluation is performed for the two types of queries, see Section 7.3 for the
evaluation of stateless queries and Section7.4 for the stateful queries. First, the strategies are
analyzed and assessed regarding the application scenario and the findings are then verified by
the execution of the evaluation scenarios. Before the overall summary and the conclusions are
documented in Chapter 8, the results are summarized in Section 7.3.3 for stateless evaluation
and in Section 7.4.3 for the stateful evaluation.

7.1 Evaluation Scenario

In this section the evaluation scenario and its characteristics for the different query types will be
described. The choice of queries is influenced by the features of WS-Aggregation and its query
language WAQL as well as by their usefulness in real world applications.

For the evaluation a simple scenario has been chosen. The scenario is an ESP system that
processes updates on the stock market. The updates of several stocks can be bundled in one
update event representing an input event for the system. The system processes the events and
reports the outputs to a specified receiver.

As the evaluation tries to provide results for a comparison of the qualities of the strategies
for different query types, the scenario has been adapted for the query types presented in the
taxonomy in Section 5.1. In addition, a complex scenario including all query operation types
has been defined as in real-world applications a query usually performs more than one operation
type.
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Regarding the scope, stateless and physical stateful queries with sliding windows are used.
Fixed windows will not provide substantial insights and landmark windows have not shown to
be prominent in the literature review. Tumbling windows are a special kind of sliding windows,
so they are not evaluated separately. As the evaluation uses only one query and one node to
test the dependability during high load, there are no further processing steps and thus grouping
is not important, so it will not be used as an exemplary query. This also applies for pattern
matching. As this operation rather belongs to complex event processing than to stream-based
event processing, the example queries for the scenarios will only cover filtering, transformation
and aggregation.

The same queries could be used to analyze the strategies for the different scopes. This
approach is not used in the thesis as stateful queries enable more complex queries than stateless
ones. These more complex queries also have to be taken into account for a good analysis,
therefore different queries are used in the evaluation. For an overall evaluation of the strategies,
a combined query that uses all three operation types is evaluated additionally.

Nevertheless, all queries are based on the same general scenario and are going to process
events of the same input format. So first the general XML schema for the input events of the
queries is defined. The queries themselves consist of two parts: the first part defines the scope
and declares type and size of the window. In case of stateless queries the window size is set
to one. The operation part is the second part and expresses how the events of a window are
processed. Since the query definition for the different scopes is the same for all operations, the
scope definitions follow the input schema. The different operations are introduced and explained
during the analysis of the strategies. As some of the operations do not maintain the format of
the input events, the XML schemata for deviating output formats are going to be defined along
with the query they belong to.

7.1.1 XML Schema for Input Events

The same input format of events is used for all queries. The XML schema is shown in Listing 7.1.
Events that match this schema represent stock updates. An update is compounded of an id and
several records, which contain the relevant data of a stock change. Apart from the current price
and the relative change, the name, the industry, the currency and the time are included in the
data. One stock update contains at least one record and does not further restrict the input. So it
can also contain multiple records for one stock (identified by its name). A payload attribute has
been added to the schema to be able to vary the size of the input events.� �

1 <?xml v e r s i o n =" 1 . 0 " e n c o d i n g =" ISO−8859−1" ?>
2 <xs : schema xmlns : xs=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema"
3 e l e m e n t F o r m D e f a u l t =" q u a l i f i e d ">
4 <xs : e l e m e n t name=" s t o c k u p d a t e ">
5 <xs : complexType >
6 <xs : sequence >
7 <xs : e l e m e n t name=" i d " t y p e =" xs : s t r i n g " maxOccurs=" 1 " minOccurs=" 1 " / >
8 <xs : e l e m e n t name=" r e c o r d " maxOccurs=" unbounded ">
9 <xs : complexType >

10 <xs : sequence >
11 <xs : e l e m e n t name=" i n d u s t r y " t y p e =" xs : s t r i n g " / >
12 <xs : e l e m e n t name=" name " t y p e =" xs : s t r i n g " / >
13 <xs : e l e m e n t name=" change " t y p e =" xs : d e c i m a l " / >
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14 <xs : e l e m e n t name=" p r i c e " t y p e =" xs : d e c i m a l " / >
15 <xs : e l e m e n t name=" c u r r e n c y " t y p e =" xs : s t r i n g " / >
16 <xs : e l e m e n t name=" t ime " t y p e =" xs : da teTime " / >
17 <xs : e l e m e n t name=" p a y l o a d " t y p e =" xs : s t r i n g " / >
18 </ xs : sequence >
19 </ xs : complexType >
20 </ xs : e lement >
21 </ xs : sequence >
22 </ xs : complexType >
23 </ xs : e lement >
24 </ xs : schema >� �

Listing 7.1: XML Schema for Input Events.

In Listing 7.2 a simple exemplary XML input event that conforms to the presented input
schema is shown. The stock update contains two records of different companies.� �

1 < s t o c k u p d a t e >
2 <id >1−123</ id >
3 < r e c o r d >
4 < i n d u s t r y >IT </ i n d u s t r y >
5 <name>Company ABC</ name>
6 <change >2 .9 < / change >
7 < p r i c e >122 .4 </ p r i c e >
8 < c u r r e n c y >USD</ c u r r e n c y >
9 <time >2012−01−01T12 : 1 2 : 1 2 < / t ime >

10 < payload >some a d d i t i o n a l da t a < / pay load >
11 </ r e c o r d >
12 < r e c o r d >
13 < i n d u s t r y >Banking < / i n d u s t r y >
14 <name>Company XYZ</ name>
15 <change >10 .8 </ change >
16 < p r i c e >79 .9 </ p r i c e >
17 < c u r r e n c y >EUR</ c u r r e n c y >
18 <time >2012−01−01T12 : 1 2 : 1 2 < / t ime >
19 < payload >some a d d i t i o n a l da t a < / pay load >
20 </ r e c o r d >
21 </ s t o c k u p d a t e >� �

Listing 7.2: Exemplary XML Input Event.

7.1.2 Scope Definitions

In this thesis, two scopes are considered for the evaluation: stateless and sliding window queries.
The stateful scope is considered to be count-based. Time-based queries are not used here.

For stateless processing, every incoming event is treated separately. As in WS-Aggregation
a query cannot be evaluated without a window definition, the stateless processing is realized by
a tumbling window with a size of 1, see Listing 7.3. The start and the end clauses define the
size of a window. Since both clauses just evaluate to true, a window contains just one event.� �

1 f o r tumbling window $w in $ i n p u t
2 s t a r t a t $spos when t r u e ( )
3 end at $epos when t r u e ( )
4 [ . . . ]� �

Listing 7.3: Stateless Scope.
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The definition of the stateful scope looks similar. Again, the start clause opens a window at
each new event by simply evaluating to true, whereas the end clause now only closes a window
if a certain offset between the start and the end position is reached. The sliding window definition
is shown in Listing 7.4. For the evaluation sliding windows with an offset of one are used, so a
new window is started for each incoming event. This listing uses an exemplary window size of
5000.� �

1 f o r s l i d i n g window $w in $ i n p u t
2 s t a r t $s at $spos when t r u e ( )
3 end $e at $epos when ( $epos − $spos ) >= 4999
4 [ . . . ]� �

Listing 7.4: Stateful Scope (Sliding Window).

7.1.3 Queries

The three query types are shortly explained in the context of the evaluation scenario. The actual
queries are introduced during the evaluation.

Filtering is used to get a relevant subset of the given events. For example, when monitoring
a stock market, certain events may be interesting and should therefore be reported. The output
format of a filtering query is usually the same as the input format. Filtering just omits some
of the events, while the rest is passed on unchanged. Filtering certain elements of input events
and returning modified output events may also be passed for filtering, but as the structure of the
element changes, such queries are classified as transformation queries in this thesis. Thus the
schema for the results of the filtering query is the same as for the input events, but the emitted
events may contain less records.

A Transformation query can have the same output format as the input format, if it just trans-
forms values of events. Like in the stock market example, the currency may be transformed.
Often the transformation of the event structure is desired too. For example, if the resulting event
should be used as input for another processing step, which requires a different format. Espe-
cially if an application collects data from different sources and wants to process them together,
it often needs to convert the inputs into a uniform format. This can be done by transformation
queries. Both types of transformation are considered in the evaluation.

An Aggregation query is used to condense the information of multiple single events, for
example the average value of stock changes. Analogous to descriptive statistics, key figures
are used to describe a huge amount of data. Without further restrictions all data is aggregated
to one result. Using the group by operator, a restriction is added and the aggregation is done
for different sets of events. Even pattern matching can be seen as an aggregation operation, as
multiple records are condensed to the desired information (pattern occurred or not occurred). In
any case, the output schema of an aggregation query can differ from the input schema, so it may
also be classified as transformation query.

The Combined query uses filtering, transformation and aggregation at once. The output
schema of the results is likely to be different from the input schema.
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7.2 Implementation of the Evaluation

One goal of the evaluation is to provide a very simple set up with a basic environment. This
environment is realized as a cloud with the cloud operating system OpenStack1.

As the target of interest is a single burst capable aggregator node, which is stressed by too
much data, this aggregator is deployed on a separate node. Other required components, for
example. The registry and the gateway, are deployed on other nodes. As one node does not
necessarily generate enough load to really stress the aggregator node, several data service nodes
are used.

Figure 7.1: Deployment Diagram for the Evaluation.

If the evaluated strategy needs further aggregator nodes, these nodes are provided with the
same setup as the burst capable aggregator node. The setup is depicted in Figure 7.1.

All nodes used in the cloud have the same system features, see Table7.1:

Table 7.1: Node Capabilities

Property Value
Flavor m1.small
RAM 1GB
VCPUs 1V CPU
Disk 40GB

1http://www.openstack.org/ (Accessed: 2014-01-22)
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First the registry and the gateway have to be deployed successfully. Then all other nodes
can be started and register themselves in the registry. The two additional aggregator nodes are
only needed, if the forwarding strategy is applied. A controller application states the aggrega-
tion request using the gateway, provides the query used for the evaluation and registers the event
producers as inputs and the event receiver as the consumer of the request. If a burst handling
strategy is applied, the controller then starts the escalation on the burst capable aggregator node.
When the event producers start to send events, they send it directly to the burst capable aggre-
gator. The events are handled by the aggregator itself or forwarded to other aggregator nodes.
In either case, the results are sent from the burst capable aggregator to the event receiver. The
simulated overload is caused by a combination of a high event frequency and big sized events
resulting in a high volume of the incoming stream

As these strategies are only applicable if the overload can be treated by reducing the process-
ing time of an event, the input data is chosen in a way that the processing of an event requires
some effort. If the overload is only caused by the input / output operations whereas the effort for
event processing is relatively low, those strategies are of no use. As an example, see Figure 7.2.
With small event sizes and a moderate input frequency, the node manages to respond immedi-
ately (Figure 7.2a). When a higher input frequency is used, the node cannot manage the events
anymore, but as the main effort is caused by receiving and saving the event and finally send-
ing the result (Figure 7.2b) the overload cannot be handled with the presented burst handling
strategies.
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Figure 7.2: Stateless Filtering Query with One Data Service Node.

The evaluation will use similar input data and configurations per query for each strategy, so
that the strategies can be compared. Conclusive, the results are interpreted to define features,
which are relevant for choosing the correct burst handling strategy.

The recording of the evaluation scenario is realized through ApectJ (see Section 4.4. The
recording should not be too complex as it uses resources of the burst capable aggregator node, so
it is designed rather simple. More complex recording can be performed as well, but it influences
the outcome.

See Listing 7.5 for the pointcuts that have been defined to monitor the event processing.
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� �
1 /∗ ∗
2 ∗ S t a r t i n g e v a l u a t i o n . ( Get t e s t run i n f o . )
3 ∗ /
4 @Poin tcu t ( " e x e c u t i o n ( p u b l i c vo id a t . ac . t uw ien . i n f o s y s . h i g h f r e q .
5 b u r s t h a n d l i n g . S t a r t B u r s t C a p a b l e A g g r e g a t o r . main ( . . ) ) " )
6 p u b l i c vo id s t a r t T e s t R u n ( ) {
7 }
8
9 /∗ ∗

10 ∗ B u r s t C a p a b l e A g g r e g a t o r r e c e i v e d e v e n t f o r p r o c e s s i n g .
11 ∗ /
12 @Poin tcu t ( " e x e c u t i o n ( p u b l i c vo id a t . ac . t uw ien . i n f o s y s . agg r . node .
13 B u r s t C a p a b l e A g g r e g a t o r N o d e . onEvent (
14 a t . ac . t uwi en . i n f o s y s . agg r . m o n i t o r . M o d i f i c a t i o n N o t i f i c a t i o n ,
15 a t . ac . t uwi en . i n f o s y s . agg r . m o n i t o r . M o d i f i c a t i o n N o t i f i c a t i o n .
16 EventStreamIdSOAPHeader ) ) " )
17 p u b l i c vo id s t a r t P r o c e s s i n g ( ) {
18 }
19
20 /∗ ∗
21 ∗ A g g r e g a t o r f i n i s h e d e v e n t p r o c e s s i n g .
22 ∗ /
23 @Poin tcu t ( " e x e c u t i o n ( p u b l i c vo id a t . ac . t uw ien . i n f o s y s . agg r . e v e n t s . que ry .
24 E v e n t i n g Q u e r y C o o r d i n a t o r . a d d R e s u l t F r o m I n p u t A n d N o t i f y C l i e n t (
25 S t r i n g , S t r i n g , o rg . w3c . dom . Element ) ) " )
26 p u b l i c vo id e n d P r o c e s s i n g ( ) {
27 }� �

Listing 7.5: Monitoring Pointcuts.

The first pointcut is not used for the actual monitoring, but it extracts information at start-up,
which is used for saving the monitored information. The other two pointcuts are used to observe
the amount of incoming events and the amount of events that have been processed and forwarded
to the receiver. The values are saved each second. Further on, each second runs a timer task,
which queries the current overall CPU load and overall memory consumption. Those values are
also saved for the evaluation. Both, the CPU and memory load, are queried using the Unix top
command. The values are saved using the Generic Test Result provided by the DSG, which can
also be used to create diagrams via gnuplot.

In general, the data service nodes produce and send data for 60 seconds. Afterwards they
stop. The recording of the evaluation lasts for 70 seconds. This enables an estimation of whether
or not the node is able to recover after the end of the high load. To be able to gain more
insights on the results, the event receiver, which does not use any resources of the burst capable
aggregator, logs all received results.

7.3 Evaluation of Stateless Queries

In this section the strategies load shedding, deferring and forwarding are evaluated when applied
to stateless queries.
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7.3.1 Analysis

Based on the theoretical background provided on the strategies, the following assumptions can
be stated:

Table 7.2: Effects of Strategies on Stateless Queries

Stateless Query

Forwarding

• complete results
• incorrect result order likely
• possible delay
• forwarding overhead

Deferring

• complete results
• possible incorrect result order (depends on the implementation)
• intentional delay
• persisting overhead

Shedding
• incomplete results
• correct result order

The forwarding strategy enables a node to provide all results based on the input, but based on
the distributed processing, the order of the results is likely to be incorrect. Moreover, because of
the forwarding overhead, a delay of the results is added. In case of an overload, forwarding can
only be applied successfully, if the processing time is essentially higher than the time needed to
forward the event and return the result. Otherwise, the forwarding strategy needs more resources
to forward the events than to process it and the node stays overloaded despite the burst handling.
In case of forwarding, it must also be considered that the amount of incoming events is even
increasing, as results from the forwarding nodes are received like normal input events.

In contrast, the persisting overhead does not need to be small in comparison to the processing
effort, but the node must be able to persist the events without being too busy to receive further
incoming events. Depending on the capabilities of the node, events can still be processed in
the meantime. If the implementation supports order preservation, the persisting overhead is
greater, but the burst capable aggregator will always provide the complete results in the correct
order. As the present solution supports order preservation, no incorrect result order will affect
the evaluation results. After the overload situation, the node will stay busy until all deferred
events have been processed.

Shedding intentionally drops events and therefore cannot provide complete results. How-
ever, the delivered results are in the correct order. Events get processed faster and without delay.
After the overload, the node is immediately back in the normal state.
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Which strategy is suited best for a query mainly depends on the receiver of the results:
depending on whether missing results, incorrect order or missing results are tolerable, the best
suited strategy can be chosen.

7.3.2 Scenario Execution

The queries are analyzed one after another for the evaluation scenario. The filtering query is
used first to demonstrate the procedure in detail. The evaluation is continued similarly for the
other queries, but the results are presented in a more compact way.

Stateless Filtering Query

The exemplary query filters events of the presented input type and reports those records that are
from the specific industry IT and have a positive change of at least 5.0%. All other records
are considered as unimportant and are not used in the result. The stateless query for filtering is
shown in Listing 7.6.� �

1 f o r tumbling window $w in $ i n p u t
2 s t a r t a t $spos when t r u e ( )
3 end at $epos when t r u e ( )
4 re turn < s t o c k r e s u l t >
5 <id >{$w / d a t a / i d } </ id >
6 { f o r $tmp in $w / d a t a / r e c o r d
7 re turn i f ( $tmp / i n d u s t r y =" IT " and $tmp / change >= 5 . 0 )
8 t h e n $tmp
9 e l s e ( )

10 }
11 </ s t o c k r e s u l t >� �

Listing 7.6: Filtering Query (Stateless).

This stateless query processes each input event once and returns an event containing the
filtered stock update.
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(b) 25 Events / Second.

Figure 7.3: Stateless Filtering Query with One Data Service Node.

By executing the query without a burst handling strategy and different amounts of input
events, the burst capable aggregator node is tested for an overload. Figure 7.3 shows that the
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burst capable aggregator can barely cope with an input frequency of 20 events per second, and
therefore not with 25 events per second.

With 20 events per second the node manages to process all events within the 10 seconds
after the high load. With 25 events per second, this is not possible anymore. The node starts
to recover, but after 70 seconds still more than 300 results are missing. To explore the border
between dependable event processing and an

overload situation more closely, event rates in between have been simulated. In Figure 7.4
the result for 22.33 events per second can be seen on the left side, on the right side the result for
24 events per second is shown. Around 22 events per second can still be handled quite well. 24
events per second also lead to an overload, but at the end less results are missing in comparison
to an input of 25 events per second.
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Figure 7.4: Stateless Filtering Query with Several Data Service Nodes.

The CPU load tends to stick to 100% during the event processing. If no further events arrive
and no overload is there, it immediately decreases to a minimum. If there is an overload, the
node still processes events and the CPU load stays at a high rate. The system has a base memory
utilization of around 40% in the beginning. The memory utilization increases steadily during
the scenario execution. In the most demanding scenarios it settles down at around 75%.

Based on these facts, an input rate of 25 events per second is used for the strategies. Two
data service nodes produce events for one minute to reach a combined frequency of 60 events
per second. This results in 1500 events during the producing time.

Load Shedding The results of the evaluation scenario with probabilistic load shedders using
a different sampling rate can be seen in Figure 7.5. The p-values in the caption indicate the used
sampling rate. None always refers to the evaluation execution without an applied burst handling
strategy.

By simple calculation one could assume, that as the burst manager is capable of 1200 events,
the sampling rate should be around 20%. Using a sample rate of 10% the aggregator manages
as many results as without the strategy. But on average the aggregator has still more than 200
events left, which have to be processed.

Using a sample rate of 20%, the aggregator manages a higher throughput. On average 100
more events than without having the strategy can be processed and no further events wait for
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Figure 7.5: Probabilistic Load Shedding for a Stateless Filter Query (25 Events / Second).

processing. In the depicted result for a sampling rate of 20%, one can see that at the end the
amount of results does not really increase anymore. So the aggregator does not need the 10
additional seconds to recover.

By only shedding 15% of the incoming events, slightly more results can be achieved, but 25
events still wait to be processed after the overload. So if the overload does not take too long, a
sampling rate of 15% would be more appropriate, as the aggregator works in a stable mode and
less events are shed.

Figure 7.6: Benefits of Different Sampling Rates.
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If more than 20% are used as sampling rate, the amount of processed results decreases.
This leads to no additional benefits. The resources of the burst capable aggregate should not be
utilized at a maximum anymore. Figure 7.6 shows the relative results of the different sampling
rates. Important for load shedding is not only the maximum amount of processed events, but
also that no more waiting events are present.

Deferred Execution The results of the evaluation scenario with the deferred execution strategy
can be seen in Figure 7.7. In the caption, the b-values represent the used buffer size, the t-values
define the timeout length.

With regard to the incoming rate of the events, suitable sizes for the buffer and the timeout,
which is the pause between retrieving and processing deferred events, can be calculated. The
results show that the choice of these parameters has a great impact on the results.
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Figure 7.7: Deferred Execution for a Stateless Filter Query (25 Events / Second).

As in comparison to load shedding, all events have to be processed and an additional over-
head of persisting and retrieving the events is introduced, this strategy cannot produce as many
output events, as load shedding or event processing without burst handling can. As a trade-off it
can keep the aggregator in a stable mode and no results are lost.

The results show, that different buffer sizes and timeouts can fit better or worse to the current
situation. Moreover one can see, that events are not necessarily processed all the time, but rather
after each timeout.

Nevertheless, the additional effort leaves its marks in the result counter. It is at least possible
to process more than the half of the incoming events in time. In the first 30 seconds, the node
even performs better with the deferred strategy than without it, but then the output events get
more and more delayed. With deferred execution, the CPU load is similar or slightly decreases,
but the memory utilization increases to 80%.
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By using this strategy, results are delayed, but therefore no results are lost. The delay could
be minimized, by persisting only some events while others are processed immediately. But this
approach was not taken into account as it leads to an incorrect order of the results. Further
improvement might be gained by a different persistence approach, i.e. by a more performant
database or by a less strict consistency model, in example weak consistency [53].

Forwarding The results of the evaluation scenario with the forwarding strategy can be seen
in Figure 7.8. Again, the agenda of the figure describes the configuration values for the strategy.
The n-values name the amount of nodes used for the forwarding, the p-values indicate how many
of the incoming events have already been processed by the original node (percentage). The rest
of the events has been forwarded to the other nodes.

Based on the capability to process 1200 nodes in a minute, one could assume that forward-
ing 20% of the events and processing 80% locally should be sufficient to handle the overload.
Unfortunately, this is not the case, as the forwarding introduces additional effort. The results of
the forwarded events increase the incoming rate of events. Those results have to be identified
and handled separately.
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Figure 7.8: Forwarding for a Stateless Filter Query (25 Events / Second).

The results show, that about half of the events can be processed, when 55% are forwarded to
other nodes. In the case of more or less events being forwarded, the amount of results starts to
decrease. If fewer events are forwarded, the node gets overloaded again due to incoming events.
If more events are forwarded, more effort on sending and receiving the events is needed, which
also leads to a decrease in performance. As the remaining events are not dropped and still have
to be executed, this strategy is not able to cope with the overload.

Based on the results it can be stated, that the forwarding strategy can only be applied suc-
cessfully, if the processing effort of an event is significantly higher than the forwarding effort.
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Compared to simulations with simpler events and event calculation, the strategy already per-
forms better. But the complexity of the processing in this scenario is still not sufficient to achieve
a real good performance.

Comparison The comparison of the strategies for the filtering query can be seen in Figure 7.9.
Load shedding can produce as many results as the overloaded node, but in contrast to the over-
load, no more events are required to be processed. So possible results are lost, but the node is
not overloaded anymore and it is up to date. The deferred execution leads to less output, but all
missing events are still persisted and going to be processed. So no events have been lost, but the
node is not up to date anymore. Nearly half of the events still have to be processed. The forward-
ing strategy manages even less result events. The overhead of the additional communication is
too high in comparison to the event processing time, so it cannot perform optimally.
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Figure 7.9: Comparison of the Strategies for a Stateless Filter Query (25 Events / Second).

Figure 7.10 shows the efficiency of the strategies represented in relative values.
Only the load shedding approach manages as many output events as processing without burst

handling. The second displayed category other represents different event states. In the cases
of no strategy and forward strategy, it represents the overload. For the deferred strategies it
represents the deferred events. They are not an overload now, but they still have to be processed.
For the load shedding strategy events in the category other represent shed events.

Stateless Transformation Query

In this scenario two different transformations for the stock updates are implemented by the query.
First the currency will be transformed (converted) to USD ($) instead of EUR (e)2. Further

2 Based on the exchange ratio on 2013-08-12.
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Figure 7.10: Relative Comparison of the Strategies for a Stateless Filter Query (25 Events /
Second).

on, the structure of the element will be changed. The XML schema of the output events is
shown in Listing 7.7. Instead of the elements name and change, the output contains an element
companyState. This element is a concatenation of the replaced elements where the change
is put between parenthesis. The change of structure is realized by introducing a new element
and using the XQuery string function concat, which concatenates a sequence of strings. The
stateless transformation query is shown in Listing 7.8.� �

1 <?xml v e r s i o n =" 1 . 0 " e n c o d i n g =" ISO−8859−1" ?>
2 <xs : schema xmlns : xs=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema"
3 e l e m e n t F o r m D e f a u l t =" q u a l i f i e d ">
4 <xs : e l e m e n t name=" s t o c k u p d a t e ">
5 <xs : complexType >
6 <xs : sequence >
7 <xs : e l e m e n t name=" r e c o r d " maxOccurs=" unbounded ">
8 <xs : complexType >
9 <xs : sequence >

10 <xs : e l e m e n t name=" i n d u s t r y " t y p e =" xs : s t r i n g " / >
11 <xs : e l e m e n t name=" companySta te " t y p e =" xs : s t r i n g " / >
12 <xs : e l e m e n t name=" p r i c e " t y p e =" xs : d e c i m a l " / >
13 <xs : e l e m e n t name=" c u r r e n c y " t y p e =" xs : s t r i n g " / >
14 <xs : e l e m e n t name=" t ime " t y p e =" xs : da teTime " / >
15 </ xs : sequence >
16 </ xs : complexType >
17 </ xs : e lement >
18 </ xs : sequence >
19 </ xs : complexType >
20 </ xs : e lement >
21 </ xs : schema >� �

Listing 7.7: XML Schema for Output Events of the Stateless Transformation Query.
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� �
1 f o r tumbling window $w in $ i n p u t
2 s t a r t a t $spos when t r u e ( )
3 end at $epos when t r u e ( )
4 re turn < s t o c k r e s u l t >
5 <id >{$w / d a t a / i d } </ id >{
6 f o r $tmp in $w / d a t a / r e c o r d
7 re turn
8 < r e c o r d >
9 { $tmp / i n d u s t r y }

10 <companySta te >{ fn : c o n c a t ( $tmp / name , ’ ( ’ , $tmp / change , ’ ) ’ ) } < / companySta te >
11 { i f ( $tmp / c u r r e n c y = "EUR" )
12 t h e n < p r i c e >{$tmp / p r i c e ∗ 1 .33100} </ p r i c e >
13 e l s e ( < p r i c e >{$tmp / p r i c e / t e x t ( ) } < / p r i c e >) }
14 { i f ( $tmp / c u r r e n c y = "EUR" )
15 t h e n < c u r r e n c y >USD</ c u r r e n c y >
16 e l s e ( < c u r r e n c y >{$tmp / c u r r e n c y / t e x t ( ) } < / c u r r e n c y >) }
17 { $tmp / t ime }
18 </ r e c o r d >
19 } </ s t o c k r e s u l t >� �

Listing 7.8: Transformation Query (Stateless).

For the transformation of the currency, the value is multiplied with the exchange ratio and
the old value is replaced with the new one.

The capability of the aggregator node is the same as for the transformation query. But an
overload has a greater impact on the transformation query than on the filtering query. So even
though the node manages 1200 events in the observation period, it can manage less events than
the filtering query, if 1500 events have to be processed.
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Figure 7.11: Comparison of the Strategies for a Stateless Transformation Query (25 Events /
Second).

The results of the strategies can be seen in Figure 7.11. Compared to the burst situation, the
strategies perform better, especially the load shedder.
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Figure 7.12 shows the efficiency of the strategies in relative values. In this case the shed-
ding strategy as well as the deferred execution outperform the overload situation. The forward
strategy cannot be applied successfully again. If the actual event processing was more complex
and required more effort in comparison to the sending and receiving of the events, the forward
strategy would be suited better.

In comparison to the filtering query, the transformation query usually has bigger result events
which also have to be sent, as information cannot be dropped. As the structural change of the
query does not make a big difference, the output events are more or less of the same size as the
input events except for the payload.

Figure 7.12: Relative Comparison of the Strategies for a Stateless Transformation Query (25
Events / Second).

Stateless Aggregation Query

In case of the stock updates, the output for this scenario should contain aggregated values for
the current price and the relative change per industry. It is not absolutely required that the input
events of an industry use the same currency. If input events contain different currencies per
industry, a record for each currency is created. Further on, the output event does no longer
contain the element time, nor does it contain the element name, as the values do not belong to
a certain industry. The XML output schema is the same as for the input events, excluding the
elements name and time, see Listing 7.9.� �

1 <?xml v e r s i o n =" 1 . 0 " e n c o d i n g =" ISO−8859−1" ?>
2 <xs : schema xmlns : xs=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema"
3 e l e m e n t F o r m D e f a u l t =" q u a l i f i e d ">
4 <xs : e l e m e n t name=" s t o c k u p d a t e ">
5 <xs : complexType >
6 <xs : sequence >
7 <xs : e l e m e n t name=" i d " t y p e =" xs : s t r i n g " / >
8 <xs : e l e m e n t name=" r e c o r d " maxOccurs=" unbounded ">
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9 <xs : complexType >
10 <xs : sequence >
11 <xs : e l e m e n t name=" i n d u s t r y " t y p e =" xs : s t r i n g " / >
12 <xs : e l e m e n t name=" change " t y p e =" xs : s t r i n g " / >
13 <xs : e l e m e n t name=" p r i c e " t y p e =" xs : d e c i m a l " / >
14 <xs : e l e m e n t name=" c u r r e n c y " t y p e =" xs : s t r i n g " / >
15 </ xs : sequence >
16 </ xs : complexType >
17 </ xs : e lement >
18 </ xs : sequence >
19 </ xs : complexType >
20 </ xs : e lement >
21 </ xs : schema >� �

Listing 7.9: XML Schema for Output Events of the Stateless Aggregation Query.

As one can see, omitting these elements is already some form of transformation as well, so
this query can be classified as some kind of transformation query too. To ensure reasonableness
of the query, this transformation is accepted for the exemplary aggregation query.

The stateless aggregation query is shown in Listing 7.10.� �
1 f o r tumbling window $w in $ i n p u t
2 s t a r t a t $spos when t r u e ( )
3 end at $epos when t r u e ( )
4 re turn < s t o c k r e s u l t >
5 <id >{$w / d a t a / i d } </ id >{
6 f o r $tmp in $w / d a t a / r e c o r d
7 l e t $ i n d u s t r y := $tmp / i n d u s t r y
8 l e t $ c u r r e n c y := $tmp / c u r r e n c y
9 group by $ i n d u s t r y , $ c u r r e n c y

10 o r d e r by $ i n d u s t r y , $ c u r r e n c y
11 re turn
12 < r e c o r d >
13 { $ i n d u s t r y }
14 <change >{ avg ( $tmp / change )} < / change >
15 < p r i c e >{ avg ( $tmp / p r i c e )} < / p r i c e >
16 { $ c u r r e n c y }
17 </ r e c o r d >
18 } </ s t o c k r e s u l t >� �

Listing 7.10: Aggregation Query (Stateless).

In contrast to the strategies so far, the size of the output event is definitely decreased as
only a summary of the input is returned without the details and all the payload. Therefore, the
performance of the aggregator is better and it manages up to 1500 events. An overload occurs
when 1800 events are put in, therefore the evaluation was performed at an input rate of 30 events
per second. The result of the strategies can be seen in Figure 7.13.

Again, only the load shedder can really cope with the overload. The forwarding strategy
performs better now that the result events, which have to be returned to the original aggregator
as well as to the receiver, are much smaller. The deferred execution can still store all the input,
but the overhead cannot be compensated.
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Figure 7.13: Comparison of the Strategies for a Stateless Aggregation Query (30 Events / Sec-
ond).

Figure 7.14 shows the efficiency of the strategies in relative values. It does not reveal any
special insights.

Figure 7.14: Relative Comparison of the Strategies for a Stateless Aggregation Query (30 Events
/ Second).
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Combined Query

As a more complex scenario, the calculation of the covariance of two variables and respectively
the correlation coefficient is chosen. It combines filtering, aggregation and transformation op-
erations in one query. Out of all incoming events the covariance of the stock changes of two
specified companies (companyA and companyB) has to be calculated. Only the values of
those companies are used for the calculation, therefore the rest of the reports has to be filtered.
As several records are used to calculate the variance and the covariance, an aggregation is per-
formed. Finally, as the output of the query holds information on the variance and the covariance,
the format of the output is completely different from the input format, so a transformation is
done as well.

Moreover, this calculation is representative for queries in real-word applications, as these
key figures are often used to monitor and analyze share prices and their changes.

Regardless of the scope, the resulting events have to conform to the XML Schema in List-
ing 7.11. The output consists of the variances of the stock changes for both companies as well
as the covariance and correlation coefficient of the stock changes.� �

1 <?xml v e r s i o n =" 1 . 0 " e n c o d i n g =" ISO−8859−1" ?>
2 <xs : schema xmlns : xs=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema"
3 e l e m e n t F o r m D e f a u l t =" q u a l i f i e d ">
4 <xs : e l e m e n t name=" r e s u l t ">
5 <xs : complexType >
6 <xs : sequence >
7 <xs : e l e m e n t name=" v a r i a n c e ">
8 <xs : complexType >
9 <xs : sequence >

10 <xs : e l e m e n t name=" companyA " t y p e =" xs : d e c i m a l " / >
11 <xs : e l e m e n t name=" companyB " t y p e =" xs : d e c i m a l " / >
12 </ xs : sequence >
13 </ xs : complexType >
14 </ xs : e lement >
15 <xs : e l e m e n t name=" c o v a r i a n c e " t y p e =" xs : d e c i m a l " / >
16 <xs : e l e m e n t name=" c o r r e l a t i o n " t y p e =" xs : d e c i m a l " / >
17 </ xs : sequence >
18 </ xs : complexType >
19 </ xs : e lement >
20 </ xs : schema >� �

Listing 7.11: XML Schema for Output Events of the Combined Query.

In Listing 7.12 the stateless combined query is introduced. The calculation of the vari-
ance, covariance and correlation coefficient follows the definitions in [8], see Equations 7.1, 7.2
and 7.3.

var(x) =
1

n

n∑
i=1

(xi − x̄)2 (7.1)

cov(x, y) =
1

n

n∑
i=1

(xi · yi)− x̄ · ȳ (7.2)

r(x, y) =
cov(x, y)√

var(x) ·
√

var(y)
(7.3)
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For calculating the correlation coefficient r, the standard deviation, which is the square root
of the variance, is needed. As XQuery does not provide a method to calculate the square root [26]
two helper methods are declared. These helper functions calculate an approximation of the
square root using the Newton-Raphson method [132].� �

1 d e c l a r e f u n c t i o n l o c a l : s t e p (
2 $n as xs : i n t e g e r , $xn as xs : double , $x as xs : do ub l e
3 ) as xs : do ub l e {
4 l e t $ n e x t := $xn − ( ( $xn ∗ $xn − $x ) d i v (2 ∗ $xn ) )
5 re turn i f ( $n <= 0) t h e n $ n e x t e l s e l o c a l : s t e p ( ( $n − 1 ) , $next , $x )
6 } ;
7
8 d e c l a r e f u n c t i o n l o c a l : s q r t (
9 $x as xs : do ub l e

10 ) as xs : do ub l e {
11 l o c a l : s t e p ( 2 0 , $x ∗ 0 . 5 , $x )
12 } ;
13 ( f o r tumbling window $w in $ i n p u t
14 s t a r t a t $spos when t r u e ( )
15 end at $epos when t r u e ( )
16 l e t $avgA := avg ( $w / d a t a / r e c o r d [ name="CompanyA" ] / change )
17 l e t $avgB := avg ( $w / d a t a / r e c o r d [ name="CompanyB" ] / change )
18 l e t $countA := c o u n t ( $w / d a t a / r e c o r d [ name="CompanyA" ] / change )
19 l e t $countB := c o u n t ( $w / d a t a / r e c o r d [ name="CompanyB" ] / change )
20 l e t $c ou n t := i f ( $countA > $countB ) t h e n $countA e l s e $countB
21 l e t $changeA := f o r $tmpA in $w / d a t a / r e c o r d [ name="CompanyA" ] / change
22 re turn $tmpA
23 l e t $changeB := f o r $tmpB in $w / d a t a / r e c o r d [ name="CompanyB" ] / change
24 re turn $tmpB
25 l e t $sumP := sum ( f o r $ i in (1 to $c ou n t )
26 re turn $changeA [ p o s i t i o n ( ) = $ i ] ∗ $changeB [ p o s i t i o n ( ) = $ i ] )
27 l e t $sumA := sum ( f o r $tmp in $changeA
28 re turn ( ( $tmp − $avgA )∗ ( $tmp − $avgA ) ) )
29 l e t $sumB := sum ( f o r $tmp in $changeB
30 re turn ( ( $tmp − $avgB )∗ ( $tmp − $avgB ) ) )
31 l e t $varA := $sumA d i v $c ou n t
32 l e t $varB := $sumB d i v $c ou n t
33 l e t $ co va r := ( $sumP d i v $c ou n t ) − ( $avgA∗$avgB )
34 re turn < r e s u l t >
35 <id >{$w / d a t a / i d } </ id >
36 < v a r i a n c e >
37 <companyA >{( $varA )} < / companyA>
38 <companyB >{( $varB )} < / companyB>
39 </ v a r i a n c e >
40 < c o v a r i a n c e >{( $c ov a r )} < / c o v a r i a n c e >
41 < c o r r e l a t i o n >
42 { $c ov a r d i v ( l o c a l : s q r t ( $varA ) ∗ l o c a l : s q r t ( $varB ) ) }
43 </ c o r r e l a t i o n >
44 </ r e s u l t >
45 )� �

Listing 7.12: Combined Query (Stateless).

As only the relative changes of the stocks are used for the calculation, the values do not
depend on the currency. Hence, no transformation is needed. The query does not require an
equal amount of records for both companies. If there are more records for one company than for
the other, just the first pairs are used for the calculation. All remaining records do not affect the
calculated values.
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Figure 7.15: Comparison of the Strategies for a Stateless Combination Query (25 Events / Sec-
ond).

For this query, again 1500 events are enough to stress the aggregator node. Even though
the output events are of the same size as for the aggregation query, the processing is more
demanding. The result of the strategies can be seen in Figure 7.15. The load shedder and the
deferred execution outperform the overloaded node. The forwarding strategy still lags behind.
Figure 7.16 shows the efficiency of the strategies in relative values. The load shedder and the
deferred execution produce more results and improve the overload situation.

Figure 7.16: Relative Comparison of the Strategies for a Stateless Combination Query (25
Events / Second).
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7.3.3 Summary for Stateless Queries

The applied evaluation scenario supports the analysis of Section 7.3.1, but provides deeper in-
sights. It shows, that additional features have a great influence on the applicability of the strate-
gies. And how the features are differently weighed.

Additional features which have to be minded are the ratio of effort caused by sending /
receiving events to the effort of the real event processing. It has a huge impact on whether a
strategy can cope with the overload or not. One point that distinguishes the queries in particular
is the format of the output event. If the output is smaller than the input, the query seems to be
more performant.

The forwarding strategy provides indeed an incorrect result order, but this is the smallest
issue. For stateless queries, which are rather simple, the overhead of forwarding the input and
receiving the results is too high to improve the overload situation. The resulting delay is too high
and the node is still overloaded. The implementation of the deferred execution enables a correct
result order, but the persisting overhead is also rather high in comparison to the event processing,
so the intentional delay gets quite big. Especially if the high load continues for a longer time, the
delay is going to increase too much. The only strategy that seems to be applicable for stateless
queries in general is the load shedder. If the correct sampling rate is chosen, at least as many
events as the overloaded node can handle are handled correctly. The others are shed and lead to
missing results.

If missing results are tolerable, the load shedder is recommendable. Otherwise the deferred
execution should be chosen, but a high delay has to be expected.

To assess the strategies based on their memory utilization, a closer investigation of the mem-
ory would be needed. The values of the top command show the rises in the memory consump-
tions, but as the Java Virtual Machine (JVM) does not immediately free the memory that is not
used anymore, the benefits of the forwarding and the deferred execution cannot be seen in the
traced evaluation outcomes.

Another outcome of the evaluation scenario is that, based on all these factors, it is hard to
choose the correct parameters for the burst handling strategies. To automate this part of the burst
handling, a sophisticated monitoring of the system and good algorithms to determine the best
parameters have to be provided.

7.4 Evaluation of Stateful Queries

In this section application of the strategies load shedding, deferring and forwarding on stateful
queries is evaluated.

7.4.1 Analysis

Based on the theoretical background, provided on the strategies, the following assumptions can
be stated:
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Table 7.3: Effects of Strategies on Stateful Queries

Stateful Query

Forwarding

• incomplete results
• incorrect result order likely
• incorrect result values because of different window combina-

tions
• possible delay
• forwarding overhead

Deferring

• complete results
• possible incorrect result order (depends on implementation)
• possible incorrect result values because of different window

combinations (depends on implementation)
• intentional delay
• persisting overhead

Shedding
• incomplete results
• incorrect result values because of different window combina-

tions

As for stateless queries, additional nodes are provided to share the processing load when
using the forward strategy. For stateful queries, the forwarding strategy implicates additional
problems for the quality of the results. Additional to the incorrect result order, the results deliver
incorrect values and are incomplete as the events are distributed and the processed windows
are not filled with the same events. This could be prevented by using a shared memory for the
events or by always forwarding all events of a window to the responsible node. Especially for
sliding windows this would imply that an event has to be forwarded to multiple nodes, as it
is evaluated in different windows. This would lead to an enormous overhead. In the present
solution, incorrect results are accepted due to different window combinations.

Concerning deferred execution and the present implementation there are no differences for
stateless and stateful queries. If order preserving is not supported by the strategy, incorrect result
values would be implied, as different events are evaluated in a window.

The results of the load shedding strategy are again incomplete, but in addition the strategy
provides incorrect result values, as a dropped input event affects several evaluated windows.

7.4.2 Scenario Execution

As for the stateless queries, the three strategies are applied on the different types of queries and
finally on the combined query. Again, first the amount of events the node can take is determined

88



and then the strategies are used in a situation of overload. For stateful queries the overload is
not only caused by the amount of input events and their size, but also by the window size of the
query.

Stateful Filtering Query

The stateful filtering query used for the evaluation filters the fifteen best stock changes. As for
the stateless query, the input and output formats of the events are the same. The filtering query
is shown in Listing 7.13.� �

1 f o r s l i d i n g window $w in $ i n p u t
2 s t a r t $s at $spos when t r u e ( )
3 end $e at $epos when ( $epos − $spos ) >= %windowSize
4 l e t $ o r d e r e d :=
5 f o r $k in d i s t i n c t −v a l u e s ( $w / d a t a / r e c o r d / change / xs : d ou b l e ( . ) )
6 o r d e r by $k d e s c e n d i n g
7 re turn $k
8 re turn
9 < s t o c k r e s u l t >

10 { f o r $tmp in $w / d a t a / r e c o r d [ index−of ( $o rde red , xs : d oub l e ( change ) ) l e 15]
11 o r d e r by $tmp / change / xs : d ou b l e ( . )
12 re turn $tmp }
13 </ s t o c k r e s u l t >� �

Listing 7.13: Filtering Query (Stateful).

Depending on size of the incoming events, the output event of the query can be a lot smaller
than an input event, as less records are contained in the output. As the fifteen best distinct values
are used to determine the best stock records, at least fifteen records should be contained in the
output. If records have the same change value, more records may be outputted.

While 900 events can be managed by the node, an overload occurs for this query when
1200 events per minute are received. The evaluation scenario therefore has been performed with
1200 input events and a window size of 50. The results of the different strategies are shown in
Figure 7.17.

As for the stateless queries, load shedding can provide as many events as the node is able to
handle, but manages the rest of the overhead by dropping the events. The other two strategies
cannot provide as many events in the specified evaluation time, but distribute or defer the load,
so the event processing takes more time.

The quality of the results is heavily influenced by the applied strategy. In case of load
shedding, the quality depends on the events that are shed. If low values are shed, the result is
not influenced at all, but if one of the highest values is shed, the result entry is missing in the
result of every window the event would have belonged to. So for stateful queries, a semantic
load shedder would guarantee much better results than a normal probabilistic load shedder.

The deferred execution only manages to provide about a quarter of the result events in time,
but it does not influence the quality of the results. It takes more time, but all results are correct.

The forward strategy manages more result events, but again the quality suffers because of
the strategy. As the window size is 50, only 1050 instead of 1150 results can be calculated,
as each of the nodes has a separate buffer for the window. As this leads to different input
event combinations in the windows, the results are likely to be erroneous. But as no event is
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Figure 7.17: Comparison of the Strategies for a Stateful Filtering Query (20 Events / Second).

dropped, each one of the fifteen highest changes of the correct results, will also be included
in the erroneous output events. It may occur scarcer, though, and records not occurring in the
correct results are also reported (as so-called unrepresented events).

Figure 7.18: Relative Comparison of the Strategies for a Stateful Filtering Query (20 Events /
Second).

Figure 7.18 shows the relative comparison between the strategies. A common characteristic
of the results for the stateful evaluation is that the so called unrepresented events are always the
same except for the forwarding strategies. In general, those events represent the input events,
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which do not result in an output event as the window is not yet filled. As in case of the forwarding
strategy multiple windows are filled in parallel, more output events get lost.

Stateful Transformation Query

The scenario for the stateful transformation is the calculation of the normalized stock change per
window. For that aim, the best stock change of the window is used as reference and all records
are normalized. The positive changes will therefore be in the range of zero to one. The negative
changes may also be smaller than −1. The output format is quite similar to the input format,
as only the original change value is replaced by the normalized change value. Additionally, the
payload attribute is omitted in the output. The transformation query is shown in Listing 7.14.� �

1 f o r s l i d i n g window $w in $ i n p u t
2 s t a r t $s at $spos when t r u e ( )
3 end $e at $epos when ( $epos − $spos ) >= %windowSize
4 l e t $maxChange := max ( $w / d a t a / r e c o r d / change )
5 re turn < s t o c k r e s u l t >
6 {
7 f o r $tmp in $w / d a t a / r e c o r d
8 re turn
9 < r e c o r d >

10 { $tmp / i n d u s t r y }
11 { $tmp / name}
12 <change >{$tmp / change d i v $maxChange } </ change >
13 { $tmp / c u r r e n c y }
14 { $tmp / t ime }
15 </ r e c o r d >
16 } </ s t o c k r e s u l t >� �

Listing 7.14: Transformation Query (Stateful).

An input of 900 events per minute combined with a window size of 50 is already sufficient
to cause an overload for this query. The results for the evaluation with these parameters can be
seen in Figure 7.19.

The quantitative results are quite similar to the filtering query, but especially the deferred
execution performs better. The relative values for the results can be seen in Figure 7.20.

The quality of the results remains the same for the deferred execution, but strongly depends
on the range of the input data for the load shedding and the forwarding strategy. All records of a
result depend on highest stock change in the current window. For load shedding, if this element
is shed, all records of the result are incorrect. If the range of the input data is quite homogeneous,
the error might not be that significant. If the range of the input data is huge and inhomogeneous,
the error can also be huge. The same applies to forwarding. If the highest value is forwarded to
a different node, it is not present on the other nodes as a reference for the normalization, so it is
only used in some windows, but not in all of the correct ones.

Not all transformation queries are necessarily dependent on one special input event, so re-
sults can be qualitatively better for different queries.
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Figure 7.19: Comparison of the Strategies for a Stateful Transformation Query (15 Events /
Second).

Figure 7.20: Relative Comparison of the Strategies for a Stateful Transformation Query (15
Events / Second).

Stateful Aggregation Query

The stateful aggregation query is the same as the stateless query except for the window defini-
tion. The stateless window definition is replaced by the sliding window as it was used for the
stateful queries before. See Section 7.3.2 for the query and the output schema.
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With the aggregation query defining a window size of 100, the node still manages 1500 input
events per minute. An overload occurs when the window size is set to 200, hence this value is
used for the evaluation.
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Figure 7.21: Comparison of the Strategies for a Stateful Aggregation Query (25 Events / Sec-
ond).

The results of the stateful aggregation query can be seen in Figure 7.21. The corresponding
relative results are shown in Figure 7.22.

Figure 7.22: Relative Comparison of the Strategies for a Stateful Aggregation Query (25 Events
/ Second).
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The relative results show, that the forwarding strategy with the current implementation is not
applicable for high window sizes as more and more result events are unrepresented. The same
applies for using more forwarding nodes for one overloaded node.

The present aggregation query uses the average operation for the processing. Therefore, the
qualitative errors are not so high. Only when the input values have a wide range and the shedding
or forwarding hits the input events one-sided, the error of the results might be significant for
the load shedding and the forwarding strategy. Especially with an increasing window size, the
relative errors for the aggregation operation are reduced. But the errors can be worse for different
queries. If different aggregation operations are used, the errors can be more significant. Above
all, the error grows evermore over the time for the sum operation.

Combined Query

The stateful combined query is also equal to the stateless scenario query except for the window
definition. See Section 7.3.2 for the query and the output schema. An overload of the event
processing node is caused with an input of 1200 events per minute and the combined query
having a window size of 100.
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Figure 7.23: Comparison of the Strategies for a Stateful Combination Query (20 Events / Sec-
ond).

The results for the stateful combination query are shown in Figures 7.23 and 7.24. The num-
bers do not significantly differ from the previous stateful evaluations results. But qualitatively
this query subsumes all the risks of the previous types. Even though the aggregation operation of
the query mitigates the error, the filtering, transformation and the usage of the sum and the count
operation lead to qualitative errors in the results. The size of the errors cannot be generalized, as
it depends not only on the processed query but also on the input data.
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Figure 7.24: Relative Comparison of the Strategies for a Stateful Combined Query (25 Events /
Second).

7.4.3 Summary for Stateful Queries

The quantitative results of the evaluation scenarios support the statements of the analysis in
Section 7.4.1. Again, the results show that some strategies react differently to different scenario
parameters. For example, the load shedding strategy can more or less be applied easily for all
scenarios, whereas the forward strategy is strongly affected by the window size. So in addition
to the features, which have already been identified in the stateless analysis, the window size
is also of importance in the stateful context. As for the stateless queries, the load shedding
approach is easy to use for all stateful queries too. It provides results fast, manages the overload,
but may result in significant qualitative errors for stateful queries if no semantic load shedding
is used. The deferred execution and the forwarding approach cannot provide as many results
in the same time. Especially the deferred execution provides results rather slowly because of
the persisting overhead. In return, it is the only strategy that provides correct results at all the
time. A different implementation would be able to provide more results in the same amount
of time, but then qualitative errors have to be accepted too. The present implementation of
the forwarding strategy is not suitable to handle overload in combination with stateful queries.
Especially the restriction for big window sizes is disqualifying. To be applicable for stateful
queries, a forwarding strategy would have to work with a shared memory, so that the different
nodes share the same window of input events.

The traced memory values are again not significant for providing a closer assessment of the
strategies. Nevertheless, the evaluation results show that the memory consumption increases
less in comparison to the stateless evaluation scenarios. Without a burst handling strategy, the
memory utilization increases by around 5%. The explanation for this is, that the incoming
events for the stateless evaluation are bigger than the events for the stateful evaluation as they
contain more records. Therefore, the size of the input events has a great impact on the memory
utilization.
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CHAPTER 8
Summary

This chapters summarizes the findings of the thesis and draws conclusions regarding the prob-
lem formulation. Additionally, an outlook for future work is presented.

At present, more and more ESP systems try to provide features to handle overload. These
approaches are often specialized for certain use cases and are not generally applicable. In this
thesis, approaches that are used in state-of-the-art applications have been examined. More pre-
cisely, Load Shedding, Deferred Execution and Forwarding have been studied closely. For a
well-founded evaluation of the strategies, the different characteristics of the environment have
to be taken into account. As the scope of the thesis was limited to the application of the strate-
gies on a single node and not on any node in an EPN, the placement of the strategy did not
influence the evaluation. Strategies may perform better or worse, depending on the query that is
processed on the node. Therefore, a basic taxonomy of queries has been defined. The taxonomy
features two dimensions: the scope and the operation. The Scope of a query can either be state-
less or stateful, whereby stateful can further be divided into different window types. The thesis
mainly focuses on Sliding Windows. Tumbling Windows have not been treated separately as the
results of sliding windows can also be used for assessing tumbling windows. The different types
of the dimension Operation, which have been investigated, are Transformation, Filtering and
Aggregation.

The concept of the integration on the burst handling strategies is based on two interfaces.
The Burst Manager interface represents the actual integration, the decoupling of the event burst
handling and the ESP system. The Event Burst Handling interface represents the controlling of
the burst handling strategies. Therefore, the burst handling can be integrated in different systems
and additional burst handling strategies can be added. The strategies implemented in Java have
been integrated into the WS-Aggregation framework. The strategies have been applied on a
rather high level of the application, in concrete terms, the event stream level. The strategies have
been designed in a configurable and simple way, so they admit of improvement, if a more specific
implementation is needed. The interfaces have been used to extend the framework by creating a
Burst Capable Aggregator Node and the implementation of the Burst Manager. The latter one

97



functions as mediator between the framework and the strategies by hiding the implementation
details of the framework from the strategies.

The overload simulations have been evaluated by stressing a deployed EPA while running a
query of the mentioned types with a huge amount of data. Additionally, the events had a rather
big size to enforce an overload. Based on the analyses and the evaluation of the implemented
strategies, the applicability of the strategies for the different query types has been explored. The
next section presents the conclusions that can be drawn based on the evaluation.

8.1 Conclusion

To subsume the results of the evaluation, the applicability of the different strategies strongly
depends on the requirements of the event consumer. If timeliness is important, the only suitable
strategy for the scenario queries considered in this thesis is load shedding. In return, missing
or incorrect results have to be taken into account for both, stateless and stateful queries. If
timeliness is not that important, the forwarding strategy can be used. If all input and output
events have to be forwarded explicitly, the overhead in the evaluated scenarios is quite big, so
the results can have a significant delay. Further on, the order of the results may be incorrect.
For stateful queries, a forwarding strategy without a shared memory is not suitable, as too many
events are not processed due to the window buffers being handled separately, resulting in less
windows being completed. If the quality of the results including the ordering and the correctness
is the most important criterion, the only applicable strategy for the evaluation scenarios is the
deferred execution. In the present implementation it preserves the order of the input events
and therefore guarantees correct results in the right order for both stateless and stateful queries.
Depending on the used solution, persisting the events can be very expensive. So if timeliness is
important in addition to correct results, a fast persistence approach has to be used.

In general, the evaluation shows that the load shedding approach performs equally well for
all different query types. Also the configuration parameter for the shedder is easy to determine.
The deferred execution and the forwarding approach perform much better for stateless queries
than for stateful queries, which is caused by the input events being required to remain in the
memory for a longer period of time. Further on the results show, that the deferred execution
performs worse used on filtering queries in comparison to other queries.

The evaluation results of the memory utilization have not been significant and could not
provide further insights for the assessment. The memory consumptions have to be traced in
more detail and not just on the system level.

Finally, one more observation based on the evaluation results can be drawn. The results
show that the practical effect of the strategies depends on the correct configuration for the par-
ticular scenario. While the sampling rate for the load shedding approach can be calculated quite
easily, the tuning of the other approaches is more complex, which could be an obstacle for the
automation.
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8.2 Future Work

Within this thesis the applicability of known burst handling strategies has been analyzed for
different kinds of queries in order to get a common understanding of the following questions:
• Which strategy is suited for which query type?
• If a strategy can only be applied to a query limitedly, which drawbacks does the strategy

bring along?

Nevertheless, there are further research topics, which are out of the scope of this thesis but
deserve to be treated by future work. The main topic that needs to be investigated more closely
is the Management of Burst Handling Strategies, which has already been briefly discussed in
Section 5.2.1. A management component should be able to recognize overload situations and to
apply the best suited strategy. Therefore, two different fields regarding to the management have
to be studied:

Monitoring & Analyzing: An ESP system has to provide a component that monitors the
EPAs of the deployed EPN. It has to analyze the load information of the nodes and to spot
indications for an overload before the actual overload happens. Such indicators should be studied
in future work in order to provide indicators for detecting overload situations in advance.

Controlling & Decision Making: If an overloaded node is detected, the management com-
ponent has to decide on the suitable strategy and where the strategy should be applied in the EPN.
Further work could provide algorithms to automate these decisions. This thesis provides find-
ings that can be used as a basis for the decision making. But to be able to make the decisions, the
management component has to analyze which queries are processed on the affected node and
which input event streams are related to these queries. Based on that information, a strategy for
one of the event streams (or several strategies for some event streams) can be chosen. Further
research should provide algorithms to choose the placement and clarify whether the choice of
the strategy is independent of the placement in the EPN or not.

Further topics in the area of burst handling in ESP are still unexplored and may also be
content of future work. For example, on which level the burst management is integrated. The
presented strategies may provide better results in case of a deeper integration into the ESP sys-
tem. For example, the forwarding strategy may be improved a lot by using a shared memory
for all the processing nodes. This can only be achieved by integrating the strategy on the level
of the event processing engine. Future work could analyze how great the impact of a deeper
integration level is, and if it compensates the greater implementation effort and the loss of flex-
ibility. Another form of the integration level could also be not to perform the burst handling on
event stream level, but for example on the query level. In that case a different analysis would be
required in the management component as it would not be about identifying high volume input
streams but queries that use a high amount of processing resources. In return, the burst handling
has a different impact on the outcome and may allow more precise results.

Besides, the extension of the strategies can also be part of further research. Strategies can
be designed more configurable to enable the management component to react in a better way by
adapting the strategies according to the findings of the query analysis.

Another topic for further research is the question, which QoS statements can be guaranteed
by an ESP system using such load handling strategies, and how. As the qualitative errors caused
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by the strategies depend on many factors, especially on the meaning of the processed query and
the input data that is rather unknown in advance, this topic is quite complex.

Finally, as shown in the evaluation an overload eventuates when several factors occur to-
gether. Such factors are the size of the input events, the input frequency, the query that is
currently processed and the window size in case of stateful queries. Different combinations of
these factors cause an overload, so the potential relationships of those factors have to be studied
to be able to recognize an overload in advance. An analysis of these coherences is needed as a
basis for an operational monitoring component.
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APPENDIX A
Literature Review

A.1 Query Taxonomy

The following tables (A.1, A.2) show an excerpt of the literature, which the query taxonomy is
based on. The first column refers to the reference in the Bibliography (see Page 124). The second
column gives a brief summary on the topics treated by the reference. Further explanations on
these topics and terms have been given in Section 5.1.

Table A.1: Covered Literature for the Taxonomy Dimension Scope

SCOPE
[121, 138] operators: stateless, stateful
[62] operators: stateless, stateful (changing streams)

window bounds: tumbling, sliding
[40] window types: logical (time-based), physical (count-based)

window bounds: tumbling, sliding, fixed, landmark; single items
[52, 54, 55] sliding window
[7] window types: time-based, tuple-based, historical, suffix
[93] window types: time-based, tuple-based, historical, predicate-

based
[4] window types: time-based, tuple-based, partitioned

window bounds: sliding
[103] window types: time-based, tuple-based

window bounds: tumbling, sliding, landmark
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Table A.2: Covered Literature for the Taxonomy Dimension Operation

OPERATION
[7, 93] aggregation
[80] filtering: important to reduce size, aggregation: especially com-

bined with transformation (simple events to complex events)
[130] transformation: simple events to complex events, pattern match-

ing: correlation of events
[128] filtering, grouping, aggregation, transformation
[40] select (filtering), elaboration (transformation by projection or re-

naming), aggregation
[44] filtering, aggregation, grouping, event patterns
[81] filtering (using event patterns), mapping (aggregation and trans-

formation, also with event patterns)
[55] filtering, correlation for event patterns, transformation, aggrega-

tion
[121] selection, mapping, joining, aggregation, sorting

A.2 Load Handling Strategies

The following tables (A.3, A.4, A.5) show an excerpt of the literature, which has been used to
define the approaches to handle overload situations, see Section 5.2. The first column refers to
the reference in the Bibliography (see Page 124). The second column gives a brief summary on
the topics treated by the reference.

Table A.3: Covered Literature Concerning the Load Shedding Strategy

LOAD SHEDDING
[38, 131] load shedding (respectively packet discarding) in other environ-

ments (multimedia, networking)
[12] for sliding window aggregation queries, placement of shedders,

load shedding as an optimization problem, load equation
[3] load shedding based on QoS data, semantic load shedding
[118] random and semantic (based on a utility function) load shedding,

drop operators, placement
[119] placement, optimization problem, offline load shedding planning,

load monitoring, centralized versus distributed approaches
[107] shadow query plan (result estimation of shed tuples to cope with

special data during burst situations), using query rewriting, syn-
opsis data structures

[41] sliding window join queries, semantic tuple dropping
[94] synopsis compression, sampling - eliminating tuples probabilisti-

cally, load shedding - dropping chunks of tuples
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Table A.3: Covered Literature Concerning the Load Shedding Strategy (Continued)

LOAD SHEDDING
[28] scheduling and load shedding (random, semantic)

Table A.4: Covered Literature Concerning the Forwarding Strategy

FORWARDING
[74] horizontal partitioning considering semantic dependencies using

stratification
[24] optimistic parallelization for stateful operators
[137] performance ratio metric to measure the performance of a query,

dynamic load balancing
[86] intra-operator parallelism
[66] parallel query execution with window split and window distribute

(partition - compute - combine)
[112] parallel processing using adaptive partitioning with load balanc-

ing
[36] dynamic query reconfiguration
[65] partial aggregation, horizontal partitioning

Table A.5: Covered Literature Concerning the Deferred Execution Strategy

DEFERRED EXECUTION
[2, 3] deferred execution of events, which have no great impact on QoS

data
[134, 135] deferred execution in semantic contexts
[101] deferred choice operator
[70] transactional conditions: deferred coupled / decoupled
[102] deferred processing in long term event processing
[139] deferred operation in an escalation phase to find false positives
[85] transactional deferred processing
[106] no explicit deferment, but reordering to satisfy user preferences
[10] no explicit deferment, but reordering for optimization using the

eddy operator
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APPENDIX B
Sequence Diagrams

Figure B.1: Sequence Diagram of the Escalation Handling with Load Shedding.
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Figure B.2: Sequence Diagram of the Initialization of the Forwarding Strategy.
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Figure B.3: Sequence Diagram of the Escalation Handling with a Forwarding Strategy.
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Figure B.4: Sequence Diagram of the Shutdown of the Forwarding Strategy.
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Figure B.5: Sequence Diagram of the Escalation Handling with Deferred Execution (Defer-
ment).
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Figure B.6: Sequence Diagram of the Escalation Handling with Deferred Execution (Process-
ing).
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Figure B.7: Sequence Diagram of the Shutdown of the Deferred Execution.
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