
 
 

 

 

 

 

 

 

Dissertation 

 

Motion Creating System Design and Implementation for a 

Biped Humanoid Robot 

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der 

technischen Wissenschaften unter der Leitung von 

 

Em.o.Univ.Prof. Dipl.-Ing. Dr.tech. Dr.h.c.mult. Peter Kopacek 

E325/A6 

Institut für Mechanik und Mechatronik 

eingereicht an der Technischen Universität Wien 

Fakultät für Maschinenwesen und Betriebswissenschaften 

Von 

MSc. Siavash Dezfouli 

Matrikelnummer 1028312 

 

Wien, November 2013

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 



I 
 

Kurzfassung 

Ziel der vorliegenden Arbeit ist es einen zweibeinigen Humanoiden Roboter, hinsichtlich des 

Gehens zu verbessern. Bei Beginn der Arbeit war der Unterkörper vorhanden.  

Die erste Aufgabe bestand darin diese Hardware Struktur zu verbessern. Es wurden neue 

Fußgelenke sowie neue Fußplatten entwickelt, gefertigt und implementiert. Seitens der 

Elektrotechnik wurden neue, bürstenlose Motoren mit zeitgemäßen Zahnriemen 

implementiert und die Energieversorgung verbessert.  

Von der IT Seite fanden neue USB/CAN Konverter Verwendung. Weiters wurde das 

Datenübertragungsnetzwerk neu gestaltet. Schließlich wurde eine neue Software zur 

Bewegungssteuerung einschließlich einer grafischen Benutzeroberfläche entwickelt.  

 

Die entwickelte Bewegungssteuerung basiert auf einem Positions-Zeit (PT) System mit dem 

die Bewegungen der Gelenke koordiniert warden können. Bei dieser Methode warden die 

entsprechenden PT Daten au seiner Quelldatei in einen Pufferspeicher geladen, die Motoren 

zu diesen Positionen bewegt und die Daten entsprechend dem “Control Area Netwerk - CAN” 

formatiert. Durch Interpolation dieser Daten erfolgt die Berechnung der gewünschten 

Positionen und Geschwindigkeiten der Gelenke. 

 

Durch diese Neuentwidklungen ist es möglich, verschiedene Arten des Gehens unter 

Anpassung an die Bodenbeschaffenheit realisiert warden. Mit dieser Methode ist es möglich 

mit dem derzeit vorhandenen Unterteil Schritte mit einer Länge von 50 cm und einer Höhe 

von 12 cm zu realisieren. Abschließende Tests ergaben, dass unter diesen Bedingungen der 

Roboter eine gerade Strecke von 10 m mit einer Geschwindigkeit von ungefähr 0,08 km/h 

zurücklegen konnte. 

 

 

 

 

 

 

 

 

 

 

 

 



II 
 

Abstract 

This work effort, aims to develop the biped humanoid robot Archie, and present a simple but 

reliable motion creating system for stable bipedal walking. This new system for robot included 

developing the hardware structure (i.e., new frontal ankle joints, new brushless motors, new 

timing belts, USB to CAN converter, new power supply and new foot plates), designing a 

distributed communication network, new motion controller program with new graphical user 

interface and software implementation approaches to perform the stable walking. 

Although various humanoid robots have successfully demonstrated their capabilities, but 

stable bipedal walking methods are still one of the main technical challenges that robotics 

researchers are attempting to solve it. If we consider this problem from a different 

standpoint, the development of a biped humanoid robot can be simplified as long as the 

bipedal walking method is easily formulated. Therefore, this thesis focuses on design and 

implementation of a motion control system based on the Position-Time (PT) mode and 

formulating the constraints of the hip and foot motion parameters.  

In this method the PT data pulled from its source table into the buffer, therefore drive gets 

the PT position points and transmitted data according to the designed CAN (Control Area 

Network) format massage. On the other hand, the motor drive interpolates the motion 

specification in order to calculate the desired position and speed at the sampling instances, 

when it needs the information.   

In PT motion method the drive manages a read pointer for the position points vectors (QP[N]), 

when the read pointer is N, the active motion segment starts at position QP[N] and ends at 

QP[N+1], and after control sampling times (MP[4]), the drive increments the read pointer to 

N+1, and reads QP[N+2] to calculate the parameters of the next motion segment. PT data 

transferred to motor drive online, by using the designed distributed CAN communication 

network.  

Therefore in the proposed system by varying the values of the constraints of the hip and foot 

motion parameters (Xsd, Xed: distances along the x-axis from the hip to ankle of support foot at 

the start and end of single-support phase respectively) we can achieve different types of foot 

motion to adapt the ground conditions and run the stable walking. To validate the designed 

system, forward stable walking test performed on an ordinary room floor based on the 

obtained optimised values of the walking pattern (max. step height=12cm, max. step 

length=50cm, min. hip height=54cm, max. hip height=57cm). Finally Archie could walk forward 

for 10 meters and keeping balance along the entire sequence with the speed of ~0.08 km/h. 



III 
 

Acknowledgment 

My father said, whenever you achieve a success you should not forget, those who supported 

you along the journey, therefore I give true gratitude to Prof. Peter Kopacek for his 

supervision, advice and guidance from the starting day of my PhD study in Vienna University 

of Technology. His passion and broad knowledge in robotics nourished my growth during 

these years. I'm indebted to him more than he knows. 

I would like to say thanks to my amazing colleagues and friends: Paul Zinniel, Prof. Jacky 

Baltes, Dr. Chi Tai Cheng, Andrew Winton, Dr. Ahmad Byagowi, Peter Unterkreuter and 

Mohsen Mohamadi Daniali for all their help, and supports. 

My deepest thanks to my Mom "Minoo Sodagar" and Dad "Saied Dezfouli" who have always 

dedicated their support and passion in every stage of my life and special sense of gratitude to 

my soul mate "Sepideh Mostofi" for her unconditional love.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV 
 

Table of Contents 

Kurzfassung ............................................................................................................................................. I 

Abstract .................................................................................................................................................. II 

Acknowledgment .................................................................................................................................. III 

Table of Contents .................................................................................................................................. IV 

List of Figures ........................................................................................................................................ IX 

List of Tables ........................................................................................................................................ XII 

Chapter 1 Problem Formulation .......................................................................................... 1 

1.1. Problem Statement ......................................................................................................................... 1 

Chapter 2 Introduction ........................................................................................................ 3 

2.1 Humanoid Robot Research .............................................................................................................. 3 

2.2 Biped Walking (Basic Functions) ...................................................................................................... 6 

2.2.1 Bipedal Motion System ............................................................................................................. 7 

2.2.2 Static Stability in Humanoid Robot ........................................................................................... 8 

2.3 Thesis Approach ............................................................................................................................... 9 

2.4 Chapter Organization ....................................................................................................................... 9 

Chapter 3 Hardware Design and Developments of the Biped Humanoid Robot Archie ........11 

3.1 Introduction ................................................................................................................................... 11 

3.2 Hardware Description .................................................................................................................... 11 

3.2.1 Mechanical Design of Robot ................................................................................................... 14 

3.3 Performance Management in Archie Design ................................................................................. 16 

3.3.1 Degrees of Freedom (DOF) Selection ...................................................................................... 17 

3.3.2 Actuator/Sensor Selection ...................................................................................................... 18 

3.3.3 Joint Actuator Mechanism ...................................................................................................... 18 

a) Transmissions ........................................................................................................................... 18 

b) Harmonic Drive ........................................................................................................................ 18 

c) Power Amplifiers ...................................................................................................................... 19 

d) Low Power Hall Effect Switch .................................................................................................. 19 

e) Power Supply ........................................................................................................................... 20 

f) Motor Performance Management ........................................................................................... 20 

3.4 Motor Drive Controller .................................................................................................................. 21 

3.4.1 Digital Servo Drive ................................................................................................................... 21 

3.5 New Hardware Improvements....................................................................................................... 22 

3.5.1 New Ankle Joint Design and Manufacturing ........................................................................... 22 

3.5.2 Motor Type Selection for New Ankle Joint ............................................................................. 25 



V 
 

3.5.3 New Timing Belts .................................................................................................................... 27 

3.5.4 New Encoder (PCB mounted) ................................................................................................. 28 

a) Encoder Protection .................................................................................................................. 29 

3.5.5 Old Hardware Malfunction/Problems .................................................................................... 29 

Chapter 4 Design and Establishment of a Distributed Communication/Control Network .....31 

4.1 Introduction ................................................................................................................................... 31 

4.2 Designed Real-Time Message Frame ............................................................................................. 31 

4.2.1 Designed CAN Message Architecture ..................................................................................... 32 

4.3 Communication Channels Establishment Approach ...................................................................... 33 

4.4 Designed Message Transmit Planning Approach ........................................................................... 34 

4.4.1 Designed Data Source Mechanism ......................................................................................... 34 

4.4.2 Client-Server Interactions in Deigned Network ...................................................................... 34 

4.4.3 Process Design of Message Transmitting ............................................................................... 35 

4.4.4 Code Priority Transmission Scheduling ................................................................................... 35 

4.4.5 Inhibit Times............................................................................................................................ 36 

4.5 Process Data Objects (PDOs) Design .............................................................................................. 37 

4.5.1 Receive PDOs Method ............................................................................................................ 37 

a) Message Error Detection Approach ......................................................................................... 37 

4.5.2 PDOs Transmission Approach ................................................................................................. 38 

4.5.3 Proposed PDO Mapping in  Communication Network ........................................................... 38 

4.5.4 Synchronous Trigger in Motion Controller Program............................................................... 38 

4.6 Network Management Message Structure (NMT) ........................................................................ 38 

4.6.1 SYNC and Time Stamp ............................................................................................................. 39 

4.6.2 Set and Query Commands in Network Controller .................................................................. 40 

a) Binary Interpreter Commands ................................................................................................. 40 

b) TPDO2 Structure in Controller Program .................................................................................. 41 

4.7 I-converter (USB to CAN) ............................................................................................................... 42 

4.7.1 Data Communication Bus via CAN-Bus Converter .................................................................. 43 

Chapter 5 Motion Creating System Design based on PT and PVT Method ............................47 

5.1 Introduction ................................................................................................................................... 47 

5.2 Biped Robot Walking Problem ....................................................................................................... 47 

5.3 Gait Planning Method in Archie ..................................................................................................... 49 

5.3.1 Trajectory Planning Approach in Archie ................................................................................. 49 

5.3.2 Calculated Foot Trajectory ...................................................................................................... 51 

5.3.3 Calculated Hip Trajectory ........................................................................................................ 53 

5.4 Drive Motion Design Method ........................................................................................................ 57 



VI 
 

5.4.1 Servo Drive .............................................................................................................................. 57 

5.4.2 Drive Reference Signal Generation Method ........................................................................... 57 

a) Drive Motion Reference Generator Approach ........................................................................ 58 

5.5 New Designed Drive Motion Command/Program Structure ......................................................... 58 

5.5.1 Single Joint Motion Program (Pattern Design) ....................................................................... 58 

a) Communication Control Command Structure ......................................................................... 59 

b) Motor Drive Command Structure ............................................................................................ 59 

c) Absolute Position Command Structure .................................................................................... 59 

d) Relative Position Command Structure ..................................................................................... 59 

e) Begin Motion Command Structure .......................................................................................... 60 

5.5.2 Multiple Joints Motion Program (Pattern Design) .................................................................. 61 

5.5.3 Point-to-Point Method ............................................................................................................ 61 

5.6 New Motion Command Library...................................................................................................... 63 

5.6.1 Motion Modes Changing Method ........................................................................................... 64 

5.6.2 Position - Time (PT) Method ................................................................................................... 64 

5.6.3 PT Table Design (QP Vector) ................................................................................................... 65 

5.6.4 Position-Time Motion Scope ................................................................................................... 65 

5.7 Stop Command Mechanism ........................................................................................................... 68 

5.7.1 Stop Manager Structure (Internal Elements) .......................................................................... 68 

5.8 Motor Fault Diagnosis and Error Detection Approach .................................................................. 70 

5.8.1 Motor Failure Protection Mechanism ..................................................................................... 71 

5.8.2 MF Command/Message Structure .......................................................................................... 71 

Chapter 6 New Motion Control Program and New Software Architecture Design ................73 

6.1 Introduction ................................................................................................................................... 73 

6.2 Motion Controller Program/Software (ver. 1.1 & 1.2) .................................................................. 73 

6.2.1 Program/Software Architecture ............................................................................................. 74 

a) Creating Program (Project ) ..................................................................................................... 74 

b) GUI Design ............................................................................................................................... 75 

c) Code editing ............................................................................................................................. 76 

d) Building-qmake ........................................................................................................................ 76 

e) Testing ...................................................................................................................................... 76 

f) Debugging ................................................................................................................................. 76 

6.2.2 Class Creating (in C++)............................................................................................................. 77 

6.3 Developed Program Structure Description (ver. 1.2) .................................................................... 78 

6.3.1 Motion Controller Program GUI (ver. 1.1) .............................................................................. 82 

6.3.2 Scheme of the Motion Controller Program (ver. 1.2) ............................................................. 82 



VII 
 

a) Motion Controller .................................................................................................................... 82 

b) Main Menu .............................................................................................................................. 82 

c) Walking Direction ..................................................................................................................... 83 

d) Communication Network + Motion Start and Stop ................................................................. 83 

e) Walking Parameters ................................................................................................................. 84 

6.3.3 GUI Improvements in Motion Controller Program (ver. 1.2).................................................. 87 

6.4 New Motion Controller Program (ver. 2.1) .................................................................................... 90 

6.4.1 Walking Control System in Program (ver. 2.1) ........................................................................ 91 

6.4.2 Program Communication/Graphical User Interface Design ................................................... 92 

6.4.3 PT and PVT Mechanism in Software ....................................................................................... 94 

6.4.4 Motion Management in PVT Method ..................................................................................... 95 

6.4.5 PVT Motion Programming Message ....................................................................................... 98 

Chapter 7 New Software Implementation and Forward Walking Test Results ................... 101 

7.1 Introduction ................................................................................................................................. 101 

7.2 Software Implementation and Joint Motion Test ........................................................................ 101 

7.2.1 New Proposed CANbus Viewer Module Structure ............................................................... 102 

7.2.2 Proposed Implemented Data Layers ..................................................................................... 103 

7.2.3 Error Mechanism Implementation Approach ....................................................................... 104 

7.2.4 Proposed Message Controller Module ................................................................................. 105 

7.2.5 Real-Time Message Setting Approach .................................................................................. 107 

7.3 Joint Motion Test ......................................................................................................................... 108 

7.3.1 Single Joint Motion Test ........................................................................................................ 108 

7.3.2 Continuous/Multiple Joints Motion Approach ..................................................................... 110 

7.3.3 Synchronized Joints Motion Approach ................................................................................. 111 

7.3 Preliminary Test ........................................................................................................................... 115 

7.3.1 Half Gait Test ......................................................................................................................... 115 

a) Several Tests (with different input parameters) .................................................................... 117 

7.4 Static Walking Test ....................................................................................................................... 118 

7.4.1 Walking Simulation Results ................................................................................................... 120 

7.4.2 Stable Walking Realization Test ............................................................................................ 121 

7.4.3 Forward Walking Test Results (10 m) ................................................................................... 125 

7.4.4 Optimized Wm Value (Test Result) ........................................................................................ 127 

Chapter 8 Summary, Outlook and Proposed Future Works ............................................... 130 

8.1 Summary and Outlook ................................................................................................................. 130 

8.2 Proposed Future Works ............................................................................................................... 132 

8.3 New Proposed Approaches and Requirements for Dynamic Walking ........................................ 133 



VIII 
 

8.3.1 How to Improve the Stability Problem ? (Proposed Algorithm Method) ............................. 133 

8.3.2 Absorbing Impact and Adapting to a Surface Problem ......................................................... 135 

8.3.3 Attitude Problem .................................................................................................................. 135 

8.3.4 Proposed Upper Body Motion for Dynamic Walking ............................................................ 136 

a) Slope Angel of the Upper Body .............................................................................................. 136 

References ......................................................................................................................................... 137 

Appendix A ............................................................................................................................. 141 

Appendix B ............................................................................................................................. 148 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



IX 
 

List of Figures  

Fig. 2.1 WL-1 vs. W-2R robot ..................................................................................................................... 3 

Fig. 2.2 Developed humanoid robots ......................................................................................................... 4 

Fig. 2.3 a) Surena II vs. b) ASIMO standing on one leg (Guizzo, 2010) ...................................................... 8 

Fig. 3.1 Archie hardware (updated structure from (Byagowi, 2010)) ...................................................... 13 

Fig. 3.2 CAD model of Archie ................................................................................................................... 14 

Fig. 3.3 Improved biped humanoid robot Archie ..................................................................................... 16 

Fig. 3.4 Designed Archie lower body ........................................................................................................ 17 

Fig. 3.5 Operating characteristics of hall sensor/switch (www.diods.com, 2013) .................................. 19 

Fig. 3.6 Drive motion controller connected to modular joint (Dezfouli & Mohamadi Daniali, 2012) ..... 22 

Fig. 3.7 New designed ankle joint parts ................................................................................................... 23 

Fig. 3.8 New ankle joint parts and components (assembled to new foot plate and leg) ........................ 24 

Fig. 3.9 Manufactured and assembled parts of new ankle joint + new PCB connections ....................... 24 

Fig. 3.10 Assembled harmonic drive to new joint components .............................................................. 25 

Fig. 3.11 Motor type selection criteria (www.maxonmotor.ch, 2013) .................................................... 25 

Fig. 3.12 Designed PCB for brushless motor and connections description ............................................. 27 

Fig. 3.13 New timing belts for hip transversal joints ............................................................................... 27 

Fig. 3.14 Encoder pins connections on new designed PCB ...................................................................... 28 

Fig. 3.15 Archie standing on one leg ........................................................................................................ 30 

Fig. 4.1 Various fields in the designed CAN message frame for Archie ................................................... 31 

Fig. 4.2 Designed CAN bus line system for Archie ................................................................................... 32 

Fig. 4.3 Priority queue description ........................................................................................................... 33 

Fig. 4.4 Active/Passive error frame format in Designed CAN messages for Archie ................................. 37 

Fig. 4.5 NMT message mapping ............................................................................................................... 39 

Fig. 4.6 Necessary USB to CAN converter features used in motion controller program ......................... 42 

Fig. 4.7 USB to CAN converter connection establishment ....................................................................... 44 

Fig. 4.8 Code converting-setting mode .................................................................................................... 45 

Fig. 4.9 CAN message structure design in test mode .............................................................................. 46 

Fig. 4.10 CAN message-receive signal format .......................................................................................... 46 

Fig. 5.1 Biped walking phases .................................................................................................................. 48 

Fig. 5.2 Archie leg parameters ................................................................................................................. 50 

Fig. 5.3 Swing foot trajectory phases-time .............................................................................................. 51 

Fig. 5.4 Archie stride ................................................................................................................................ 52 

Fig. 5.5 Archie foot and hip trajectory calculation parameters ............................................................... 52 

Fig. 5.6 Calculated leg and hip motion in x-axis ....................................................................................... 54 

Fig. 5.7 Calculated ankle and hip trajectory of Archie ............................................................................. 55 

Fig. 5.8 Calculated left vs. right ankle frontal joint-angle trajectory ....................................................... 55 

Fig. 5.9 Calculated left vs. right ankle lateral joint-angle trajectory ........................................................ 56 

Fig. 5.10 Calculated left vs. right knee joint- angle trajectory ................................................................. 56 

Fig. 5.11 Calculated left vs. right hip lateral joint-angle trajectory ......................................................... 57 

Fig. 5.12 Single joint motion pattern ....................................................................................................... 58 

Fig. 5.13 Multiple joints motion commands order structure .................................................................. 61 

Fig. 5.14 PTP motion decision flowchart  (www.elmomc.com, 2013) ..................................................... 62 

Fig. 5.15 Motor drive command (designed pattern) ............................................................................... 63 

Fig. 5.16 PT motion flowchart .................................................................................................................. 66 

Fig. 5.17 PT auto increment mode flowchart .......................................................................................... 67 



X 
 

Fig. 5.18 Stop manager internal elements ............................................................................................... 69 

Fig. 6.1 Necessary QT creator tools for motion controller program ....................................................... 75 

Fig. 6.2 Qt creator platform ..................................................................................................................... 77 

Fig. 6.3 Different created classes in motion controller program ............................................................. 78 

Fig. 6.4 Data stream between modules in motion controller .................................................................. 80 

Fig. 6.5 Motion controller GUI design (ver. 1.1) ...................................................................................... 82 

Fig. 6.6 Scheme of the motion controller interface (ver. 1.2) ................................................................. 83 

Fig. 6.7 Arm motion window .................................................................................................................... 85 

Fig. 6.8 Step parameters menu ................................................................................................................ 85 

Fig. 6.9 New GUI for motion controller program (ver. 1.2) ..................................................................... 86 

Fig. 6.10 Simulation of the humanoid robot Archie (including upper body motion) .............................. 87 

Fig. 6.11 Different desired step path ....................................................................................................... 88 

Fig. 6.12 How interface in motion controller software works ................................................................. 89 

Fig. 6.13 Main problems of old motion controller program .................................................................... 91 

Fig. 6.14 Motion controller program flowchart (Dezfouli & Mohamadi Danial, 2012) ........................... 92 

Fig. 6.15 Walking parameters (first stage) ............................................................................................... 92 

Fig. 6.16 Designing the new GUI .............................................................................................................. 93 

Fig. 6.17 Designed GUI for new motion controller program (ver. 2.1) .................................................... 93 

Fig. 6.18 Designed PVT decision flowchart .............................................................................................. 97 

Fig. 6.19 Auto increment PVT mode design ............................................................................................. 99 

Fig. 7.1 Functions implemented in proposed CANbus Viewer module ................................................. 102 

Fig. 7.2 Proposed CANbus Viewer module implementation chart ........................................................ 104 

Fig. 7.3 Normal transmission with ACK (Marais, 2008) ......................................................................... 105 

Fig. 7.4 Measured CANL normal transmission with ACK in Archie ........................................................ 105 

Fig. 7.5 New joint message controller implementation approach ........................................................ 106 

Fig. 7.6 Joint ID and message baudrate defining approach (1 Mbit/s) .................................................. 107 

Fig. 7.7 Implemented zero position command's structure for lower body joints ................................. 108 

Fig. 7.8 Single joint motion implementation ......................................................................................... 109 

Fig. 7.9 Proposed implementation method for multiple joints motion ................................................ 111 

Fig. 7.10 Implemented cycle time for synchronized joint motion ......................................................... 112 

Fig. 7.11 Input parameters for half gait test .......................................................................................... 115 

Fig. 7.12 Desired vs. actual toe trajectory ............................................................................................. 115 

Fig. 7.13 Calculated hip, knee and ankle lateral-joints angle trajectories (step length=30 cm) ............ 116 

Fig. 7.14 Half gait simulation model (based on the elliptical trajectory) ............................................... 116 

Fig. 7.15 Archie half gait performance ................................................................................................... 117 

Fig. 7.16 Actual obtained trajectories of Archie (full gait motion test) ................................................. 118 

Fig. 7.17 Right and left leg phases during static walking test ................................................................ 118 

Fig. 7.18 Proposed software implementation approach for Archie walking ......................................... 119 

Fig. 7.19 New motion controller program  implementation method to perform stable walking ......... 120 

Fig. 7.20 Simulation of Archie left leg motion in forward static walking cycle ...................................... 120 

Fig. 7.21 Simulation of Archie right leg motion in forward static walking cycle .................................... 121 

Fig. 7.22 Front view - sequence of stable forward walking of Archie (Frames A1-9) ............................ 123 

Fig. 7.23 Side view - sequence of stable forward walking of Archie (Frames B1-9) .............................. 124 

Fig. 7.24 Archie stable forward walking performance in 10 meters ...................................................... 126 

Fig. 7.25 Archie posture based on the different Wm (find an optimised value) .................................... 127 

Fig. 7.26 Ankle frontal joint-angle trajectory with Wm(optimised)=2cm, Wm(min.)=0, Wm (max.)=5cm

 ............................................................................................................................................................... 128 



XI 
 

Fig. 7.27 Ankle lateral joint-angle trajectory with Wm(optimised)=2cm, Wm(min.)=0, Wm (max.)=5cm 128 

Fig. 7.28 Knee joint-angle trajectory with Wm(optimised)=2cm, Wm(min.)=0, Wm(max.)=5cm ............ 129 

Fig. 7.29 Hip lateral joint-angle trajectory with Wm(optimised)=2cm, Wm(min.)=0, Wm (max.)=5cm .. 129 

Fig. 8.1 Proposed dynamic walking algorithm for enhancing the stability margin based on the online 

ZMP calculation from force/torque sensor ........................................................................................... 134 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XII 
 

List of Tables 

Table 3.1 Archie mechanical and electrical components (legend) .......................................................... 12 

Table 3.2 Location and arrangements of Archie lower body joints ......................................................... 14 

Table 3.3 Main characteristics of Archie .................................................................................................. 15 

Table 3.4 Joint angle (Archie vs. Human) ................................................................................................. 17 

Table 3.5 Harmonic drive characteristics ................................................................................................. 19 

Table 3.6 Selected hall switch characteristics .......................................................................................... 20 

Table 3.7 Brushed servo motors specifications ....................................................................................... 26 

Table 3.8 Brushless servo motor specifications ....................................................................................... 26 

Table 3.9 New Polyurethane transmission belt specifications ................................................................ 27 

Table 3.10 Designed encoder PCB mounted pin description .................................................................. 29 

Table 3.11 Electrical characteristics of selected encoder (Min-Max rating) ........................................... 29 

Table 4.1 Communication types (services) used in motor drive ............................................................. 36 

Table 4.2 Network Management States .................................................................................................. 39 

Table 4.3 Comparison of ASCII vs. Binary interpreter commands ........................................................... 40 

Table 4.4 DLC4 values frame .................................................................................................................... 41 

Table 4.5 Execute command reply frame (Success/Failure) .................................................................... 41 

Table 4.6 General USB to CAN device specifications ............................................................................... 43 

Table 5.1 Archie parametric model values .............................................................................................. 50 

Table 5.2 Archie trajectory parameters values (with stride=50 cm) ....................................................... 53 

Table 5.3 Walking parameters values ...................................................................................................... 53 

Table 5.4 Time boundary condition value ............................................................................................... 54 

Table 5.5 NMT command structure ......................................................................................................... 59 

Table 5.6 MO command structure ........................................................................................................... 59 

Table 5.7 PA/PR command format .......................................................................................................... 60 

Table 5.8 BG command specifications ..................................................................................................... 60 

Table 5.9 BG command format (for ID no. 3) .......................................................................................... 60 

Table 5.10 PT motion parameters ........................................................................................................... 65 

Table 6.1 Legend of the Fig. 6.4 ............................................................................................................... 81 

Table 6.2 Final optimised value of main parameters in motion controller program (ver. 1.2) ............... 86 

Table 6.3 Final optimised joints angle in motion controller program (ver. 1.2) ...................................... 87 

Table 6.4 PVT table .................................................................................................................................. 95 

Table 6.5 PVT mode definition ................................................................................................................. 96 

Table 6.6 PDO mapping for PVT mode before using ............................................................................... 98 

Table 7.1 Desired step length, height and hip height to perform full gait ............................................ 117 

Table 7.2 Module A and B (selected parameters) ................................................................................. 121 

Table 7.3 Sequence of stable forward walking test (frames specification) ........................................... 121 

Table 7.4 Calculated QP vector elements for each joint in static walking test (Module D) .................. 125 

Table 7.5 Different Wm value ................................................................................................................. 127 

 

 



1 
 

Chapter 1 Problem Formulation 

1.1. Problem Statement 

The biped robot Archie has been constructed in Vienna University of Technology under 

supervision of Prof. Peter Kopacek (Byagowi, 2010). But Archie could not perform the 

autonomous stable walking and suffered from the motion control software that could support 

synchronized motion of all robot joints.     

Therefore this PhD thesis presents the new motion creating system and implementation 

approach for a biped humanoid robot Archie, both in hardware and software levels. Biped 

robots need systems that control joint motions, cycle the use of legs and generate smooth 

desired trajectories. It is embedded with flexible communication network to transmit data 

between main control system and robot joint for stable walking. Additionally the software 

including simple graphical user interface to adjust the inputs and control parameters for 

desired stable walking is a must. 

In this work the new motion control approach including new motion controller software is 

presented and tested on the robot to perform the synchronized motion between motor drives 

(joints) based on the desired walking patterns. By varying the values of the constraint 

parameters, different types of foot motion are generated to adapt to ground conditions and 

achieve the smooth stable walking. The walking pattern concept for proposed new motion 

creating system (implemented on biped humanoid robot Archie) is based on the paper (Huang 

et al., 2006).  

The new tasks and principle goals (in hardware and software) of the proposed motion control 

system are listed as follows: 

 Improving the hardware system based on the new designed mechanical and electrical 

components to perform autonomous stable walking, 

 Design and establishment of the distributed communication/control network to make 

the real time communication between high level control system and robot hardware. 

It calls nodes to wait until a bus idle period is detected before attempting to transmit. 

If two or more nodes start to transmit at the same time, then by monitoring each bit 

on the bus, each node can determine if it is transmitting the highest priority message 

(with a numerically lower identifier) and should continue or if it should stop 

transmitting and wait for the next bus idle period before trying again. In this approach 

a simple and robust broadcast bus capable of operating at speeds of up to 1 Mbit/s is 

designed. The duration of each bit must be sufficient for the signal to propagate the 

length of the network. 

 New approach to formulate the torso and ankle motion, in order to achieve the 

smooth stable walking by adjusting the distances along the x-axis from the hip to the 

ankle of the support foot at the start and end of the single-support phase, it is 

necessary for the robot to adapt to the ground conditions with a foot motion and 

maintain its stability with torso motion. If both hip trajectories and the foot trajectory 

are known, all joint trajectories of the biped robot will be determined by kinematic 



2 
 

constraints. The walking pattern can therefore be denoted uniquely by both foot 

trajectories and the hip trajectory. 

 Design a motion mechanism based on the Position-Time (PT) approach, and specifying 

a sequence of absolute position with equal sampling time. In this method the PT data 

pulled from its source table into the buffer, therefore drive gets the PT position points 

and transmitted data according to the required CAN (Control Area Network) format 

massage. In PT motion mode the drive manages a read pointer for the position points 

vectors (QP[N]), when the read pointer is N, the active motion segment starts at 

position QP[N] and ends at QP[N+1], and after control sampling times (MP[4]), the 

drive increments the read pointer to N+1, and reads QP[N+2] to calculate the 

parameters of the next motion segment. PT data transferred to motor drive online, by 

using the proposed CAN communication network.   

 Design and create a new software for proposed motion creating system with a new 

graphical user interface (GUI), new library motion commands and data/command 

monitoring system to realize the errors types and location in the robot joint. The new 

program (ver. 2.1) is released based on the improvement the proposed 

communication network, CAN data distributing, new walking pattern. The new task in 

developed motion control software is organised by a hierarchical control structure, in 

which control loops that require accurate execution cycles are implemented as real-

time kernel modules, such as the motor driver loop and the walking control system. 

Programs and processes that operate over longer control cycles, such as speed control 

loop and new walking planning method, are implemented as new features in this 

program. 

 New software implementation including the real-time message frame module, 

controller module and proposed walking pattern algorithm. Accordingly the new C++ 

source codes are implemented on the robot hardware, and the optimal forward 

walking trajectory calculated by adjusting the walking parameters of desired trajectory 

through the dozens of walking tests. 

 

 

 

 

 

 

 

 



3 
 

Chapter 2 Introduction  

2.1 Humanoid Robot Research 

The research in humanoid robots is now tending to diverge into various categories. It 

incorporates a wide range of areas, across different fields of study. The research on such areas 

as artificial intelligence, hardware and software development, realization of biped locomotion, 

implementation methods and interaction with the human are gaining a rapid phase of 

development across the rapid growth of technology. Hence, there are many theoretical and 

experimental studies on the biped robots.  

It took 10 years of research by Honda Motors to develop P2 and more to produce ASIMO. Also 

they have almost certainly invested billions of US dollars in these projects (Chen et al., 2011). 

The research is not finished yet, only a small step has been taken along the road to the 

creation of a real artificial human.  

There are several distinct research areas in the development of the humanoid robot. One of 

the major research areas today are bipedal locomotion and motion controller system. In order 

to simplify the control, bipedal walking robots were made without taking into account the 

whole body dynamics. A bipedal robot has the same bottom part (legs) but does not have 

body, arms and head. Also a lot of research centres started to design arms and heads 

separately in order to add them later to a humanoid robot.  

The Japan University of Waseda has played a fundamental role in the evolution of humanoid 

robots. As a result, since 1967, the series of WL robots has appeared. The WL-1 robot as the 

first one in this series, culminated in the WABIAN-2R (Fig. 2.1) bipedal robot in 2009 (Omer & 

Ghorbani, 2009).  

                       

Fig. 2.1 WL-1 vs. W-2R robot 

 

WABIAN-2R is among the most successful bipedal walking humanoid robots. In spite of the 

extensive research on humanoid robots, the actions of walking, running, jumping and 

manipulation are still difficult for robots. 



4 
 

In the following some of the developed humanoid robots are introduced (Fig. 2.2). Humanoids 

don't yet have some features of the human body. They include structures with variable 

flexibility, which provide safety, and redundancy of movements, i.e. more degrees of freedom 

and therefore wide task availability. Although these characteristics are desirable to humanoid 

robots, they will bring more complexity and new problems to planning and control. 

 

 

 

          

 

Fig. 2.2 Developed humanoid robots   

 

 

ASIMO  

The name is an acronym for "Advanced Step in Innovative MObility". ASIMO is a humanoid 

robot created by Honda. Standing at 130 centimetres and weighing 54 kilograms, the robot 

             ASIMO                                ReeM-B                               Justin                                  Surena-II 

       Charli-II                                      Romeo                           COMAN                            ATLAS 

http://en.wikipedia.org/wiki/Degrees_of_freedom_%28engineering%29
http://en.wikipedia.org/wiki/Humanoid_robot
http://en.wikipedia.org/wiki/Humanoid_robot
http://en.wikipedia.org/wiki/Honda


5 
 

resembles a small astronaut wearing a backpack and can walk or run on two feet at speeds up 

to 6 km/h. The robot has 7 DOF (Degrees of freedom) in each arm — two joints of 3 DOF, 

shoulder and wrist, giving "Six degrees of freedom" and 1 DOF at the elbow; 6 DOF in each leg 

— 3 DOF at the crotch, 2 DOF at the ankle and 1 DOF at the knee; and 3 DOF in the neck joint. 

The hands have 2 DOF — 1 DOF in each thumb and 1 in each finger. This gives a total of 34 

DOF in all joints (www.hondau3-x.net, 2013). 

 

Reem-B  

The 1.47-meter-high robot can walk at a relatively slow speed of 1.5 kilometers per hour, but 

thanks to powerful actuators in its legs and arms, Reem-B "is probably the one of the most 

strongest humanoid in the world since the robot can carry a 12-kilogram payload (www.pal-

robotics.com, 2013). 

 

JUSTIN  

It is currently a four-wheeled robot with a head and two dexterous arms, but researchers have 

demonstrated a pair of legs [right] that may become its lower body. The legs use powerful yet 

lightweight motors to explore joint torque-based control concepts for biped balancing and 

walking (Guizzo, 2010). 

 

CHARLI  

Virginia Tech's Robotics & Mechanisms Laboratory- CHARLI (Cognitive Humanoid Autonomous 

Robot with Learning Intelligence) is the first untethered, autonomous, full-size walking 

humanoid robot built in the United States, according to Virginia Tech robotic Dennis Hong. He 

and his team are now upgrading it with custom-made linear actuators that help mimic how 

human limbs move. In a soccer match against Asimo, Hong's team is confident that CHARLI 

would prevail (Guizzo, 2010). 

 

Surena 2  

It has 45 kilograms weight and is 1.45 meter tall, has a total of 22 degrees of freedom: each 

leg has 6 DOF, each arm 4 DOF, and the head 2 DOF. An operator uses a remote control to 

make the robot walk and move its arms and head. The robot can stand on one leg and bow 

like ASIMO (Guizzo, 2010). 

 

Romeo 

France is set to join the select club of countries that have developed advanced adult-size 

humanoid robots. Paris-based Aldebaran Robotics, famed for its small humanoid robot Nao, is 

building a larger and more capable humanoid called Romeo. Romeo is designed to assist 

elderly and disabled individuals in their daily activities. The 1.4 meter-tall robot with 40 Kg 

weight will be able to walk through a home, fetching food from the kitchen, taking out the 

garbage, and acting as a loyal companion who helps entertain its owners and keep tabs on 

their health (Guizzo, 2010). 

 

 

http://en.wikipedia.org/wiki/Astronaut
http://en.wikipedia.org/wiki/Biped
http://en.wikipedia.org/wiki/Degrees_of_freedom_%28mechanics%29
http://en.wikipedia.org/wiki/Six_degrees_of_freedom
http://spectrum.ieee.org/automaton/robotics/humanoids/042810-virginia-tech-humanoid-robot-charli-walks-tall
http://www.romela.org/main/Dr._Dennis_Hong


6 
 

COMAN  

The COMAN robot is 95cm tall, has 31 kg weight and has 25 DOF. Its mechanical components 

are made from titanium alloy, stainless steel and aluminium alloy, giving it good physical 

robustness. Its modular joint design uses brushless, frameless DC motors, harmonic drive 

gears and series elastic elements. Leg, waist and shoulder joints have a peak torque capability 

of 55 Nm. Custom torque sensors are integrated into every joint to enable active stiffness 

control and 6-DOF sensors are included at the ankle to measure ground reaction forces. 

COMAN can walk and balance using inertial sensors in the pelvis and chest, and its series 

elastic joint design makes it robust against impacts and external disturbances. From the 

kinematic perspective the new lower body includes the lower torso (housing the 3 DOF waist 

module), and the two leg assemblies with 6 DOF each. The height of the COMAN lower body, 

from the foot to the waist, is 671 mm, with a maximum width and depth (at the hips) of 176 

mm and 110 mm, respectively. The total lower body weight is 17.3 kg, with each leg weighing 

approximately 5.9 kg, and the waist section, including the hip flexion motors, weighing 5.5 kg 

(Dallali et al., 2013). 

 

ATLAS  

Atlas is based on Boston Dynamics' earlier PETMAN humanoid robot, and has four 

hydraulically-actuated limbs. Constructed of aircraft-grade aluminium and titanium, it stands 

approximately 1.8 m tall and weighs 150 kg, and is illuminated with blue LEDs. Atlas is 

equipped with two vision systems – a laser rangefinder and stereo cameras, both controlled 

by an onboard computer and has hands with fine motor skill capabilities. Its limbs possess a 

total of 28 degrees of freedom. Atlas can navigate rough terrain and climb independently 

using its arms and legs, although the 2013 prototype version was tethered to an outside 

power supply to maintain stability. In October 2013 Boston Dynamics uploaded a video 

showing Atlas could withstand being hit by projectiles and balance on one leg 

(www.news.cnet.com, 2013). 

 

2.2 Biped Walking (Basic Functions)  

In order to provide the basic functions required for walking, each stride involves an ever-

changing alignment between the body and the supporting foot during stance and selective 

advancement of the limb segments in swing. These reactions result in a series of motion 

patterns performed by the hip, knee and ankle. Early in the development of gait analysis the 

investigators recognized that each pattern of motion related to a different functional demand 

and designated them as the phases of gait. Further experience in correlating the data has 

progressively expanded the number of gait phases identified. It now is evident that each stride 

contains eight functional patterns. Technically these are sub phases, as the basic divisions of 

the gait cycle are stance and swing, but common practice also calls the functional intervals 

phases (Vaughan, 2003). 

In the past it has been the custom to use normal events as the critical actions separating the 

phases. While this practice proved appropriate for the amputee, it often failed to 

accommodate the gait deviations of patients impaired by paralysis or arthritis. For example, 

http://en.wikipedia.org/wiki/PETMAN
http://en.wikipedia.org/wiki/Hydraulics
http://en.wikipedia.org/wiki/Aluminum
http://en.wikipedia.org/wiki/Titanium
http://en.wikipedia.org/wiki/LED
http://en.wikipedia.org/wiki/Rangefinder
http://en.wikipedia.org/wiki/Stereo_camera
http://en.wikipedia.org/wiki/Fine_motor_skill
http://en.wikipedia.org/wiki/Degrees_of_freedom


7 
 

the onset of stance never contact the ground or do so much later in the gait cycle. Similarly 

initial floor contact may be by the whole foot (foot flat), rather than having forefoot contact 

occur later, after a period of heel-only support. To avoid these difficulties and other areas of 

confusion, the Rancho Los Amigos gait analysis committee developed a generic terminology 

for the functional phases of gait (Vukobratovic, 1969).  

Analysis of a person's walking pattern by phases more directly identifies the functional 

significance of the different motions occurring at the individual joints. The phases of gait also 

provide a means for correlating the simultaneous actions of the individual joints into patterns 

of total limb function. This is a particularly important approach for interpreting the functional 

effects of disability. The relative significance of one joint's motion compared to the other's 

varies among the gait phases. Also, a posture that is appropriate in one gait phase would 

signify dysfunction at another point in the stride, because the functional need has changed. As 

a result, both timing and joint angle are very significant. This latter fact adds to the 

complexities of gait analysis (Goswami, 1999). 

Each of the eight gait phases has a functional objective and a critical pattern of selective 

synergistic motion to accomplish this goal. The sequential combination of the phases also 

enables the limb to accomplish three basic tasks. These are weight acceptance (WA), single 

limb support (SLS) and limb advancement (LA). Weight acceptance begins the stance period 

and uses the first two gait phases (initial contact and loading response). Single limb support 

continues stance with the next two phases of gait (mid stance and terminal stance). Limb 

advancement begins in the final phase of stance (pre-swing) and then continues through the 

three phases of swing (initial swing, mid swing and terminal swing).  

 

2.2.1 Bipedal Motion System   

Biped robots have potential ability to elevate mobility of robotic system and they attract 

general attention in the last decade. Due to their form, it is easy to introduce them into our 

living space without preparing special infrastructure. Recently, several autonomous biped 

humanoid robots have been developed. In 1996, the first autonomous bipedal humanoid 

robot with battery power supply was developed by Honda Motor Co., Ltd. (Hirai et al., 1998). 

Takanishi and his co-workers at Waseda University built a human-size bipedal humanoid robot 

and proposed a basic control method of whole body cooperative dynamic biped walking 

(Yamaguchi et al., 1999). Kaneko and his colleagues at the National Institute of Advanced 

Industrial Science and Technology (AIST) also developed a bipedal humanoid robot of 1.54 m 

height and 58 kg weight mainly for the purpose of investigating fundamental techniques and 

applications (Harada et al., 2004). Same group also proposed a method of a biped walking 

pattern generation by using a preview control of the zero moment point (ZMP) (Kajita et al., 

2003). The ZMP and its extension (FRI; foot-rotation indicator) are basic stability criteria for 

biped robots walking (Vukobratovic & Borovac, 2001). Nishiwaki and his co-researchers at 

University of Tokyo studied a humanoid walking control system that generates body 

trajectories to follow a given desired motion online (Xiao et al., 2006). Loffler and his 

colleagues at Technical University of Munich also designed a biped robot to achieve a 

dynamically stable gait pattern (Loffler et al., 2003). 



8 
 

Biped robot have better mobility than the conventional wheeled robots, but they tend to tip 

over easily. To be able to walk stably in various environments, such as on rough terrain, up 

and down sloped, or in regions containing obstacles, it is necessary for the robot to adapt to 

the ground conditions with a foot motion and maintain it s stability with a torso motion. The 

Huang and Kajita in 2001 introduced a method for planning walking pattern for a biped robot 

and in 2006 they confirmed the effectiveness of their proposed method by simulation and 

experiments with their developed robot BHR-02 with 32 DOF.  

 

2.2.2 Static Stability in Humanoid Robot  

A statically stable robot is well balanced and does not fall over when standing. This means 

that the center of gravity of a robot is within its ground contact base. Let us take an example 

of a robot with three legs arranged in the form of a triangle. This robot does not require any 

kind of movement to stand stable (Fig. 2.3) and can stand balanced as long as the center of 

mass is within the triangle. This triangle is called the "support polygon" which is a horizontal 

region over which the center of mass lies to achieve static stability.  

 

 
        a)         b) 

Fig. 2.3 a) Surena II vs. b) ASIMO standing on one leg (Guizzo, 2010) 

 

If the previous statement is confusing, just understand that support polygon is a projection 

between all the support points of a robot onto the surface it is standing. The minimum 

number of ground contact points required for a statically stable robot is three. However, 

achieving static stability with two legs is not an easy task. Humans although may seem, are 

not statically stable. Our muscles and nerves control our balance and make it seem an 

effortless stability. This is the same reason why a baby takes a year or two to learn how to 

stand.  

Since bipedal robots took their first steps, the majority has been designed with the same basic 

joint/actuator configuration in their legs. This design, based on a simplified human leg, uses 



9 
 

just six motors (three for the hip, one for the knee, and two for the ankle), and though it 

proved successful, it has also shown several limitations over the last 25 years 

(www.spectrum.ieee.org, 2013).  

 

2.3 Thesis Approach 

The work presented in this PhD thesis has been conducted in 4 parts. The first part involved 

developing the hardware structure that could potentially influence on the stable walking 

performance of the robot. This step was accomplished by adding 2 new joints, parts and 

components. The second part involved design a new motion creating system in order to 

control the robot joint motion by trajectory constraint formulation, and new pattern 

generation calculation. In the third step the new created motion controller software, 

programmed the new ideas and proposed strategies which already described in second part. 

In the last part the new motion controller software, proposed walking method and new 

motion creating system are implemented and dozens times tested on actual robot to achieve 

the optimised input values for stable walking.   

 

2.4 Chapter Organization 

In chapter 3 we introduced the hardware structure (mechanical, electrical), and latest 

developed parts such as new designed and manufactured ankle joint including new joint, 

connector parts, harmonic drive, ball bearing, magnetic rotary encoder (PCB mounted), new 

brushless motor, hall switch, Elmo motor drive, new foot plates, new powerful timing belts in 

hip and new power supply source. In order to let robot move properly and avoid any damages 

the joint limit angle are calculated and compared to human. 

In chapter 4 the proposed distributed communication/control network for fast calculation, 

fast communication and real-time data exchange is well described.   

Chapter 5 discussed about the new walking pattern generation method for Archie. In this 

method the new approach to formulate the constraint trajectories for torso and ankle of 

Archie are presented. On the other hand we designed new motion creating system 

mechanism based on the Position-Time (PT) and Position-Velocity-Time (PVT) motion. They 

specifies the PT, PVT tabulated motion and define the starting index in the QP[N] arrays. In PT 

motion, a new position reference value is selected from the QP[N] array once per MP[4] 

position controller sampling times. But in PVT motion new position and speed reference 

values are picked from the QP[N] and QV[N] arrays at the time specified by the elements of 

the QT[N] array. The QP[N], QV[N] and QT[N] arrays store and define the position, speed and 

any single time instance.   

In chapter 6 the new motion controller program (software) is introduced. The advantages and 

capabilities are presented and compared to previous programs. The new software allows to 

manage the motion for fully synchronized joints movement, containing the new motion 

command library and new graphical interface.  



10 
 

The new software implementation method and static walking test results of proposed motion 

creating system are presented in chapter7. The implementation structure and relative 

modules to perform a stable static walking of Archie are carefully described. 

Chapter 8 discussed about the conclusion, summary and proposed future works. 

 

Appendix A: a) Hip and Foot trajectory calculation, b) Foot motion in x and z axis, c) Drive 

commands 

Appendix B: Developed and New Software source codes summary  

a) Joint creation (Archie.cpp file), b) Inverse kinematic calculation codes (foot-trajectory.cpp), 

c) optimised value defined in module A and B, d) All joints angle for stable static walking of 

robot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

Chapter 3 Hardware Design and Developments of the Biped Humanoid Robot 

Archie  

3.1 Introduction 

The mode of locomotion for humanoids is biped dynamic walk that is inherently unstable 

(Shivaraj & Lasitha, 2012). In order to make the biped locomotion stable and perform human-

like activities, robot hardware, software (motion controller program) and walking control 

strategies are fundamentally important. For example, all and more of the following factors 

need to be considered in designing a humanoid body: limited torque of actuators at joints in 

the robot, rigidity of hardware such as main frames, hip, arm and legs, impulsive loading at 

landing of legs that can damage hardware, interference among links, weight and ease of 

handling.  

On the other hand, the motion controller/program must have the following characteristics: 

stability in the sense of continued smooth walk, practicability with starting, stopping, low-

energy consumption, versatility in choosing landing position of the swinging leg which is one 

of most notable advantages of biped locomotion. 

In IHRT we established and developed hardware design concept, new motion creating system 

(software, hardware), and control strategies for our biped humanoid robots Archie that can 

solve these problems and could truly perform human-like walking. This chapter presents 

important physical considerations and hardware improvements in design and manufacturing 

to finally achieve the smooth walking of a robot.   

3.2 Hardware Description 

Biped robot design is different from conventional robots since, there are restrictions and 

differences in the amount, type and size, response time of the actuators, sensors, parts-

weight and even configuration, position, and distribution of the biped's robot structure.  Thus, 

the robot's hardware design has a huge influence in order to obtain a reliable biped robot. For 

that reason, mass distributions, COM (Center of Mass) location and the actuators selection are 

important stage on the mechanical structure design and have a direct impact on the robot's 

performance (Bachar, 2004).  

A biped robot design also requires to withstand the mechanical stress imposed during 

experimentation. The electronic design must mainly assure be fast enough to perform the 

control algorithms, handle encoders and sensors, and  high intercommunication to a PC (Kim 

et al., 2005).  

This section describes and highlights hardware structure and the improvements of the biped 

humanoid robot Archie. The goal of the project is to create a humanoid robot that is able to 

support human in a broad variety of different tasks alone or in cooperation with human. 

 

 

 

 



12 
 

In general, the basic design concepts and characteristics of the Archie biped humanoid are 

considered as follows: 

 

 The robot's hardware design add less weight as possible, therefore high rigidity and 

lightweight have been realized by aluminium alloy (EN AW 5083), as the major 

structural material in biped robot Archie.   

 Having sufficient joints (Degree of Freedom) and range of joint motion, torque, speed 

in order to achieve smooth walking.  

 Low power consumption, low cost of production. 

 Main controller (PC), Power switch, CAN converter, battery and servo 

controllers/drivers for hip are located in torso and chest (Fig. 3.1, Table 3.1). The mass 

except actuators is concentrated on torso, since we need to reduce the load which is 

inflicted to the actuators in frequently moving parts.  

 

 

Table 3.1 Archie mechanical and electrical components (legend) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Motion Control Program

Designed upper body joint

Lower body joint drive (including 

drive, PCB and harmonic drive)

Motor + magnetic encoder

CAN Cable

Power supply (36V-28A)



13 
 

Motor Enc

. 

R-hip frontal 

joint  drive 
 

CAN 

USB to CAN 

Converter 

Motion Control Program 

L-shoulder 

joint drive 

 

Motor Encoder 

R-shoulder 

joint drive 

 

Motor Encoder 

Head & Neck 

Joints Drive 

 

  Servo Motor 

Power Switch  

Right elbow 
joint drive 

Drive 
 

Motor Encoder 

Left elbow  
joint drive 

 

Motor Encoder 

Left Ankle lateral 

joint drive 

 

Right Ankle lateral 

joint drive 

 

Motor Enc. Motor Enc. 

Right Ankle frontal 

joint drive 

 

Motor Enc. 

Left Ankle frontal 

joint drive 

Joint 

Motor Enc. 

Motor Enc. 

L-hip frontal 

joint drive 

 L-wrist    joint 

drive 

 

Motor Encoder 

R-wrist  joint 

drive 

 

Motor Encoder 

Left Knee 

joint drive 

 

Motor Enc. 

Right Knee 

joint drive 

 

Motor Enc

. 

L-hip transversal 

joint drive 

 

  Servo Motor 

R-hip transversal 

joint drive 

 

  Servo Motor 

Motor Enc. 

L-hip lateral 

joint  drive 

 

Motor Enc. 

R-hip lateral 

joint  drive 

 

Power 

Supply 

 

 

 

   

 

  

  

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

Fig. 3.1 Archie hardware (updated structure from (Byagowi, 2010)) 



14 
 

The designed upper body consists of the following modules: head and neck joint, two arms 

with shoulder, elbow, forearm and wrist, thorax and torso joint. Humanoid robot Archie is 

designed in CATIA (Fig. 3.2). 

 

          
Fig. 3.2 CAD model of Archie 

 

3.2.1 Mechanical Design of Robot 

Besides providing the general support to the main passive and active subsystems of the 

humanoid, imitating the role of the human skeleton, it comprises a set of simple kinematics 

joints mimicking the most important degrees of freedom of the human body. On the other 

hand robot must show good motion performance relative to its height to weight ratio or body 

mass index. 

 

 Table 3.2 Location and arrangements of Archie lower body joints 

Location No. of joints (DOF) 

Hip 3 

Knee 1 

Ankle 2 

Total/Leg 6 

 



15 
 

Archie is designed to have 31 degrees of freedom in total but at the moment only the lower 

body is realized with 12 DOF, it has 6 degrees of freedom for each leg that includes 3 DOF in 

hip and 1 DOF in knee, and 2 DOF in ankle (Table 3.2). The platform is thought to be of human 

size, modular and to perform a natural looking straight gait.  

Table 3.3 gives the main characteristics of the Archie biped humanoid. The hardware structure 

of the robot with a careful and well discipline between form, function, power, weight, cost 

and manufacturability is designed (Dezfouli et al., 2011).  

 

Table 3.3 Main characteristics of Archie 

Designed Degree of Freedom 31

Realized Body Lower Body (12 DOF)

Height 125 cm

Weight  ~ 20 kg

Sensor Magnetic Rotary Encoder

Actuator
Brushless and Brushed DC 

motor + Harmonic drive gear

Control Program
Motion Controller Program 

(ver. 2.1) 

Power (Battery) 2x 24V (Li-ion) / 6.1 Ah

Main Power Supply (External)
36V/28A  (COSEL ADA1000F-

36)

Operating Section Laptop/PC, PC ARTIGO 1000

Operating System (OS) Linux

Communication Unit
CAN bus protocol, USB to 

CAN converter  
 

According to above concepts, teen sized humanoid robot Archie is developed so which 

resembles a human shape and has sufficient joints to imitate a human motion such as walking 

as illustrated in Fig. 3.3. 



16 
 

                            
Fig. 3.3 Improved biped humanoid robot Archie 

3.3 Performance Management in Archie Design 

The actuator’s size and weight are restricted in developing a biped humanoid robot. 

Therefore, the power of actuators, maximum rotation angle because of the hardware design, 

the pick-torque, and pick-velocity of joints are limited. When the stability constraint and the 

ground conditions are satisfied, it is additionally desirable to select a walking pattern that 

requires small torque and velocity of the joint actuators. To reach this goal, it is necessary to 

clarify the relationship between the actuator specifications and the walking patterns.  

This relationship is also important to select suitable actuators and speed reduction devices 

such as gears and pulley-belts when designing the actual biped robot (Takanishi et al., 2007).  

The design of a biped robot is very important for the achievable performance of the robot, 

especially the weight of the system imposes physical limits.  

Additional weight deteriorates the walking performance, as a higher mass has to be 

accelerated; the maximum achievable joint acceleration decreases with rising weight. Hence 

motor-harmonic drive (joint) should be chosen as light as possible, thus just about fulfilling 

the requirements on possible torque, acceleration and velocity. Besides the increased weight 

of more powerful motors, they usually also consume more power and therefore require larger 

and more batteries. Furthermore, the electronics to handle higher currents become heavier 

and bulkier.  

Human body mechanism basically comprises bones as rigid links, cartilages as joints, muscles 

and tendons that actuate each part of the body. It is impossible to replace all of this muscular-

skeletal system by current mechanical components. Therefore, the primary goal of the 

mechanical design in Archie is considered as development of a robot that can imitate 

equivalent human motion. To generate a joint with more DOF the necessary number of 

motor/gear combination are combined. There are various design considerations and factors 

when Archie is designed and developed which briefly are described in the following. 

 



17 
 

3.3.1 Degrees of Freedom (DOF) Selection  

It is specified that the robot be able to move in 3 dimensions (3D). That means that the robot 

must be physically capable of changing walking directions, walking up stairs, and others 

similar tasks. To be able to do these tasks, the robot needs  to have sufficient DOFs. Assume if 

the robot should only move legs forwards and backwards (no sideway movements), in this 

case it would not be able to change walking direction. Fig. 3.4 shows the location and the 

arrangements of the joints on the robot.  

 
Fig. 3.4 Designed Archie lower body 

 

The range of joint motion of the robot is significantly less than that commonly seen in human 

motion. Therefore, scaling the motion appropriately to bring it within the joint angle limits of 

the robot is particularly important for preserving the style of the motion.  

 

Table 3.4 Joint angle (Archie vs. Human) 

 Biped Archie Human 

Joints 
Min. Angle 

(degree) 

Max. Angle 

(degree) 

Min. Angle 

(degree) 

Max. Angle 

(degree) 

Hip (Pitch) -11 45 -10 135 

Hip (Roll) -20 35 -25 40 

Hip (Yaw) -25 70 -20 65 

Knee -70 0 -135 5 

Ankle (Pitch) -50 50 -50 30 

Ankle (Roll) -50 50 -60 30 



18 
 

Each joint trajectory of the motion should lie within the joint limits angle of the robot while 

performing the simple motion. Each joint motion limitation in Archie versus the human is 

presented in Table 3.4. 

3.3.2 Actuator/Sensor Selection 

 Perhaps the most significant decision to be made when constructing a biped robot, is the 

choice of actuator. Giving the robot its freedom of movement, the role of the actuator is to 

mimic the functionality of muscles and tendons. Many widely varying devices and techniques 

can be employed to produce controllable motion. The selection of a suitable type, or types, of 

actuator will depend on a design constraints, including such issues as size, weight, 

performance, strength, accuracy of control, and of course cost. In this section, two basic robot 

joint components are discussed: actuators and sensors. In the following, the features of Archie 

actuating system are presented in terms of the power supply, power amplifier, servomotor 

(brushed and brushless) and transmission (harmonic drive).  

 

3.3.3 Joint Actuator Mechanism 

Joint actuator must be strong enough to carry out the robot's weight and maintain a good 

relationship between its weight and torque. The motion imposed to Archie joint is realized by 

an actuating system which in general consists of: 

a) Transmissions 

The execution of joint motions of a manipulator demands low speeds with high torques. In 

general, such requirements do not allow an effective use of the mechanical features of 

servomotors, which typically provide high speeds with low torques in optimal operating 

conditions. It is then necessary to interpose a transmission (gear) to optimize the transfer of 

mechanical power from the motor to the joint. During this transfer, the power is dissipated as 

a result of friction. 

 

b) Harmonic Drive  

Gear selection as one of the main part of joint design involved with major importance, since 

the selected DC motors operate at high speeds and low torques. This suitable gear for Archie 

posses the following qualities: 

 

 High gear ratio 

 High efficiency 

 Zero backlash (or low) 

 Low weight 

 

The develop gears that fulfils the specific requirements for the robot harmonic drive is a 

special type of mechanical gear system that can improve certain characteristics compared to 

traditional gearing systems (such as helical gears or planetary gears). The strain wave gearing 

http://en.wikipedia.org/wiki/Gear


19 
 

(harmonic drive) is based on elastic dynamics and utilizes the flexibility of metal. The Archie 

harmonic drive gear is an assembly of three main parts; an outer ring named circular spline, a 

metal cup named flexspline and an elliptic steel disk named the wave generator, which is 

nearly a very difficult task to assemble them (Table 3.5). 

 

Table 3.5 Harmonic drive characteristics 

Series Size Ratio Version Flexspline 

CSD 20 mm 160 2A-GR 
•Standard 

•Flexspline with enlarged central bore diameter 

 

c) Power Amplifiers 

The current and voltage of motors supplied with batteries are very limited. The power 

amplifier has the task of modulating, under the action of a control signal, the power flow 

which is provided by the primary supply and has to be delivered to the motor drive of Archie 

for the execution of the desired motion. In other words, the amplifier takes a fraction of the 

power available at the source which is proportional to the control signal; then it transmits this 

power to the motor in terms of suitable force and flow quantities. The value of voltage for 

permanent-magnet DC servomotors or the values of voltage and frequency for brushless DC 

servomotors are determined by the control signal of the amplifier, so as to make the motor 

executes the desired motion. 

d) Low Power Hall Effect Switch 

A three-terminal Hall effect sensor device with an output driver, mainly designed for battery 

operation hand-held equipment, and total operation power is down to 15µW in the 2.75 V 

supply. The south pole of sufficient strength will turn the output on in SIP-3L but the north 

pole of sufficient strength will turn output on. The output will be turned off under no 

magnetic field.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Operating characteristics of hall sensor/switch (www.diods.com, 2013) 

S 

N 

marking side 

(SIP-3L) 

Vdd 

Turn on  
Turn 

off 

On-state 

Off-state 

   0          Brp       Bop 

V sat 

Output 

Voltage 

Magnetic flux density (B) 



20 
 

While the magnetic flux density (B) is larger than operation point (Bop), the output will be 

turned on (low), the output is held until B is lower than the release point (Brp), then turned off 

(Fig. 3.5 and Table 3.6). 

 

Table 3.6 Selected hall switch characteristics 

Symbol Parameter Rating Unit 

Vdd Supply Voltage 7 V 

B Magnetic Flux Density Unlimited 

I out Output current 10 mA 

PD Power Description 550 mW 

TJ(MAX) Maximum Junction Temperature 150 °C 

TST Storage Temperature Range -65 to 150 °C 

 

e) Power Supply 

The task of the power supply is to supply the primary power to the amplifier which is needed 

for operation of the actuating system. In the case of electric servomotors, the power supply 

consists of a transformer and a typically uncontrolled bridge rectifier. These allow the 

alternating voltage available from the distribution to be converted into a direct voltage of 

suitable magnitude which is required to feed the power amplifier. 

 

f) Motor Performance Management  

Actuation of joint motion is entrusted to motors which allow the realization of a desired 

motion for the mechanical system. A portion of the input power is converted to output as 

mechanical power, and the rest is dissipated because of mechanical, electric loss. For the 

typical performance required, Archie motors have the following requirements with respect to 

those employed in conventional applications: 

 

 low inertia and high power-to-weight ratio, 

 possibility of overload and delivery of impulse torques, 

 capability to develop high accelerations, 

 wide velocity range (from 1 to 1000 revolutes/min), 

 high positioning accuracy, 

 low torque ripple so as to guarantee continuous rotation even at low speed. 

 

These requirements are enhanced by the good trajectory tracking and positioning accuracy 

demanded for an actuating system for Archie, and thus the motor must play the role of a 

servomotor. The most employed motors in robotics applications are electric servomotors, 

therefore brushed and brushless servomotors are considered as actuators in Archie joints. 

The main reason for using a brushless DC motor in Archie is to eliminate the problems due to 

mechanical commutation of the brushes in a permanent-magnet DC motor (Dezfouli & 

Kopacek, 2011). In fact, the presence of the commutator limits the performance of a 



21 
 

permanent-magnet DC motor, since this provokes electric loss due to voltage drops at the 

contact between the brushes and plates, and mechanical loss due to friction and arcing during 

commutation from one plate to the next one caused by the inductance of the winding. The 

elimination of the causes provoking such inconveniences, i.e., the brushes and plates, allows 

an improvement of motor performance in terms of higher speeds and less material wear.  

The inversion between the functions of stator and rotor leads to further advantages. The 

presence of a winding on the stator instead of the rotor facilitates heat disposal. The absence 

of a rotor winding, together with the possibility of using rare-earth permanent magnets, 

allows construction of more compact rotors which are, in turn, characterized by a low 

moment of inertia. Therefore, the size of a brushless DC motor is smaller than that of a 

permanent-magnet DC motor of the same power; an improvement of dynamic performance 

can also be obtained by using a brushless DC motor. For the choice of the most suitable 

servomotor for a specific application, the cost factor plays a relevant role. Not uncommon are 

also stepper motors. These actuators are controlled by suitable excitation sequences and their 

operating principle does not require measurement of motor shaft angular position. The 

dynamic behaviour of stepper motors is greatly influenced by payload, though. Also, they 

induce vibration of the mechanical structure of the manipulator. Such inconveniences confine 

the use of stepper motors to the field of micromanipulators, for which low-cost 

implementation prevails over the need for high dynamic performance. In this respect, electric 

servomotors present the following advantages: 

 

 widespread availability of power supply, 

 low cost and wide range of products, 

 high power conversion efficiency, 

 easy maintenance, 

 no pollution of working environment. 

 

3.4 Motor Drive Controller  

The designed motion controller is a PCB (printed circuit board) mounted device that enables 

efficient and cost saving implementation (Fig. 3.6). Each drive controller is mounted on a PCB 

board which allows the connection of each driver controller with the others elements of the 

joint motion system. These other elements include: a hall sensor, magnetic rotary encoder, 

CAN bus connections, power supply and a DC motor (Dezfouli & Mohamadi Daniali, 2012). 

3.4.1 Digital Servo Drive 

The digital servo driver operates from a DC power source in current, velocity and position 

modes, and also in conjunction with a permanent-magnet synchronous brushless motor or DC 

brushed motor, depending the type of joint, therefore all the motor drives include fully digital 

motion controller (hardware/software) that features current, velocity and position loops and 

a wide range of commutation types and position feedback (chapter 5). 

 



22 
 

 
Fig. 3.6 Drive motion controller connected to modular joint (Dezfouli & Mohamadi Daniali, 

2012) 

  

The kind of Elmo motion controller which is used in Archie is Whistle. The Whistle is a series of 

intelligent miniature digital servo drives for the current DC and brushless motors of Archie. 

The matchbox‐sized servo drive weights only 50 g and supports up to 20 amps continuous 

current. Its high density allows the drive to deliver a peak of 3200 W of power and 1600 W of 

continuous power (www.elmomc.com, 2013).  

 

3.5 New Hardware Improvements   

it is necessary and significant to improve hardware structure to prepare the qualified platform 

for software implementation and perform the robot walking (chapter 7). Hence, the lack of 

existing frontal ankle joint which lets robot to stand on one leg and improve the swing phase 

of walking, and on the other hand week timing belts in hip, absence of powerful motor in foot 

joints, deficiency of the high quality PCB and cables caused to design and produce new parts 

and components to tackle these problems.  

     

3.5.1 New Ankle Joint Design and Manufacturing 

One of the main challenges in the development of Archie biped humanoid robot is designing 

joints for the ankle joint which can produce sufficient torque to handle the required static and 

dynamic loads (Fig. 3.7). This is due on the one hand to the fact that the ankle is the joint that 

needs the most torque in the locomotive apparatus and, on the other hand, because of the 

constraints of size and weight. 



23 
 

 
Fig. 3.7 New designed ankle joint parts  

 

The load carrying construction of the ankles consists of 2 plates bracket bolted together and a 

joint set connected to the foot plate and 2 front and back holder which are attached to the 

upper part of foot (lateral-ankle joint). The ankles comprise of two actuated axes; roll and 

pitch, which runs by distance. The front and rear U plates are mounted by screws in the 

connection to the bottom plate and joint casing holes. In this manner when assembling, it can 

be positioned to negate potential effects of misalignment relative to the joint holes.  

Two front and rear connectors are designed to attach the frontal joint to upper lateral joint. 

The encoder (PCB mounted) is embedded in frontal connector. Although, mirrored right/left 

ankles are made from identical components, which is possible since the rear connector is 

reversible and thereby allows mounting of the motor on both sides of the bracket. All above 

components are screwed to a foot plate which is shaped similar to a human foot (Fig. 3.8). 



24 
 

 

Fig. 3.8 New ankle joint parts and components (assembled to new foot plate and leg) 

 

 

The manufactured parts of the new ankle joints, assembled component such as harmonic 

drive and attached new designed PCB are presented in following pictures (Fig. 3.9 and 3.10): 

 

 
Fig. 3.9 Manufactured and assembled parts of new ankle joint + new PCB connections 



25 
 

       

            
Fig. 3.10 Assembled harmonic drive to new joint components 

 

3.5.2 Motor Type Selection for New Ankle Joint 

The main requirements that must be considered before proceeding to Archie motor selection 

is listed as follows: 

• Rated torque (continuous torque) 

• Combination with selected gearhead 

• max. permissible speed 

• maximum torque 

 

Mostly the drive is indirect, this means that there is a mechanical transformation of the motor 

output power using belts, gears and screws like the servo DC brushed motor selected in hip 

transversal joint. The drive parameters, therefore, are to be calculated to the motor shaft. 

Furthermore, the power supply requirements need to be checked. 

The possible motor types are selected using the required torque (Fig. 3.11). On the one hand, 

the peak torque (Mmax), is to be taken into consideration and on the other, the effective 

torque (MRMS). Continuous operation is characterized by a single operating point (MB, nB).  

    

 

 

 

 

 

Fig. 3.11 Motor type selection criteria (www.maxonmotor.ch, 2013) 

Sp
ee

d
 (

n
) 

Mn M 

nmax 
 MRMS <Mn 

Short term 

operation 

Cont. 

operation 



26 
 

The motor types must have a nominal torque (=max. continuous torque) MN that is greater 

than operating torque MB (MB<Mn). In work cycles, such as start/stop operation, the motor‘s 

nominal torque must be greater than the effective load torque (quadratically averaged). This 

prevents the motor from overheating (MRMS<Mn). The stall torque of the selected motor 

should usually exceed the emerging load peak torque (Mmax<MH). Therefore accordingly the 

main characteristics of the selected brushed and brushless DC servomotor for joint motion in 

Archie are presented in table 3.7 and table 3.8. 

 

Table 3.7 Brushed servo motors specifications 

Brushed servo motor 24CR unit 

Nominal voltage 24 V 

Efficiency, max. 83 % 

No-load speed 5900 rpm 

No-load current 129 mA 

Stall torque 539 mNm 

Speed constant 253 rpm/V 

Torque constant 37.7 mNm/A 

Current constant 0.027 A/mNm 

Speed up to 5000 rpm 

Torque up to 70 mNm 

 

Table 3.8 Brushless servo motor specifications 

Brushless servo motor (50Watt) EC45flat Unit 

Nominal voltage 24 V 

Max. Efficiency  82 % 

No-load speed 6700 rpm 

No-load current 201 mA 

Nominal speed 5260 rpm 

Nominal torque (Max. Cont. Torque) 84.3 mNm 

Nominal current 2.36 A 

Stall torque 822 mNm 

Starting current 24.5 A 

Speed up to 5000 rpm 

Torque up to 70 mNm 

 

In order to improve the motor connections to drive controller the new PCB is designed and 

embedded in brushless motor. This new attached PCB connections are described in Fig. 3.12.  



27 
 

 
Fig. 3.12 Designed PCB for brushless motor and connections description 

 

3.5.3 New Timing Belts 

They are a positive transfer belt that can track relative movement. These belts have teeth that 

fit into a matching toothed pulley. When correctly tensioned, they have no slippage, run at 

constant speed, and are often used to transfer direct motion for indexing or timing purposes. 

Since the previous belts in Archie were not strong enough, hence the stronger belts 

(Polyurethane material) and thicker toothed pulleys with following specifications are replaced 

(Fig 3.13 and Table 3.9.). 

 

        
Fig. 3.13 New timing belts for hip transversal joints 

 

Table 3.9 New Polyurethane transmission belt specifications 

Profile t(mm) ht (mm) Hs (mm) s (mm) Pitch length (mm) No. of teeth 

T2.5 2.5 0.70 1.3 1.5 245 98 

 

t 

ht 

s 

hs 



28 
 

3.5.4 New Encoder (PCB mounted) 

There are two types of encoders: absolute and incremental. The absolute encoder consists of 

an optical-glass disk on which concentric circles (tracks) are disposed; each track has an 

alternating sequence of transparent sectors and matte sectors obtained by deposit of a 

metallic film. A light beam is emitted in correspondence of each track which is intercepted by 

a photodiode or a phototransistor located on the opposite side of the disk. With a suitable 

arrangement of the transparent and matte sectors, it is possible to convert a finite number of 

angular positions into corresponding digital data. The number of tracks determines the length 

of the word, and thus the resolution of the encoder. 

Like the absolute one, the incremental encoder consists of an optical disk on which two tracks 

are disposed, whose transparent and matte sectors (in equal number on the two tracks) are 

mutually in quadrature. The presence of two tracks also allows, besides the number of 

transitions associated with any angular rotation, the detection of the sign of rotation. Often a 

third track is presented with one single matte sector which allows the definition of an 

absolute mechanical zero as a reference for angular position. The use of an incremental 

encoder for a joint actuating system clearly demands the evaluation of absolute positions.  

 

 
Fig. 3.14 Encoder pins connections on new designed PCB 

 

This is performed by means of suitable counting and storing electronic circuits. To this end, it 

is worth noticing that the position information is available on volatile memories, and thus it 

can be corrupted due to the effect of disturbances acting on the electronic circuit, or else 

fluctuations in the supply voltage. Such limitation obviously does not occur for absolute 

encoders, since the angular position information is coded directly on the optical disk.  

The selected encoder is a contactless magnetic rotary encoder for accurate angular 

measurement over a full turn of 360°. It is a system-on-chip, combining integrated Hall 

elements, analog front-end and digital signal processing in a single device. 

To measure the angle, only a simple two-pole magnet, rotating over the center of the chip is 

required. The absolute angle measurement provides instant indication of the magnet’s 

angular position with a resolution of 8.5 bit = 360 positions per revolution (Encoder, 2010). 

New embedded PCB and encoder pin assignment are presented in Fig. 3.14 and accordingly 

the pin description is mentioned in Table 3.10.  



29 
 

In order to run the motor smoothly with maximum efficiency the exact position of the rotor 

should be realized at any time and the encoders do that with high accuracy, high speed and 

high resolution. The rotor position constantly feed back to the motor drive controller which 

then calculates the most efficient signals for state of the coils. The encoders allows to move 

the rotors to where exactly is needed. 

 

Table 3.10 Designed encoder PCB mounted pin description 

Pin Name Description 

Prog. Programming voltage input, must be left open in normal operation. 

Maximum load = 20pF (except during programming) 

VSS Supply ground 

CS Chip select input for 3-wire mode 

VDD Positive supply voltage (double bond to VDD_A and VDD_D) 

DIO Data I/O for serial interface. Command and data information over one single 

line. The first bit of the command defines a read or write access. 

DCLK Clock source for the communication over the digital interface. The maximum 

and minimum frequency depends on the mode.  

A Incremental output 

B Incremental output 

Index Incremental output 

 

a) Encoder Protection 

Stresses beyond those listed in Table 3.11 may cause permanent damage to the device. These 

are stress ratings only, and functional operation of the device at these or any other conditions 

beyond those which are indicated in electrical characteristics is not implied. Exposure to 

absolute maximum rating conditions for extended periods may affect device reliability. 

 

Table 3.11 Electrical characteristics of selected encoder (Min-Max rating) 

Parameter Min Max Unit Comments 

Supply voltage (VDD) 4.5 5.5 V Except during OTP programming 

Input Pin Voltage (VIN) VSS-0.5 VDD V  

Input Current (latch up 

immunity) 

-100 100 mA  

 

3.5.5 Old Hardware Malfunction/Problems 

The hardware structure of robot suffered from some mechanical and electrical parts, that are 

fixed by the following replacements. 

 Lack of enough power 

One of the major problem was that all joints could not move simultaneously. As a result at 

higher power, the current could not develop fully during the correspondingly short 



30 
 

commutation intervals. Therefore, the apparent torque produced is lower. Current is also fed 

back into the controller‘s power stage. Hence the more power was needed to satisfy this 

malfunctioning during the synchronized joints motion hence, new power supply source 

(36V,28A) was replaced with the old batteries.  

 

 CAN communication interruption  

The low quality of cables and loos connections in connectors caused interruption in data 

transferring, which is improved by new cables and the monitoring approach used in new 

motion controller software (ver. 2.1). 

 Foot shape 

Flat foot shape of previous biped robots Archie foot is another reason why it could not  

achieve human-like walk. A new prototype foot shape for adult human-like walk is designed 

and manufactured to overcome this problem. 

 

Summary 

In order to enhance the robot stability, improvements such as design and manufacturing of 

new ankle joint, new foot plate, using strong and high quality timing belt, new power supply 

and new designed PCBs are considered: for instance the new ankle joint (frontal) is designed 

and manufactured to increase DOF and allowing robot to stand on one leg that can cause 

much more stable robot during the stable walking performance (Fig. 3.15).  

 

 
Fig. 3.15 Archie standing on one leg 



31 
 

Arbitration field     Control field     Data field     CRC field 

Bits exposed to bit-stuffing (34 control bits and 0-8 bytes of data        34-98bits) 

0 0 0 0 1           0 1  1 1 1 1 1 1 1   1 1 1 

bit-values (data frame) 

Chapter 4 Design and Establishment of a Distributed Communication/Control 

Network 

4.1 Introduction 

In this chapter a distributed communication control system which is designed to establish and 

transfer commands/orders via proposed Control Area Network (CAN) is presented. Since the 

system needs efficient control method, fast calculation, fast communication and real-time 

data exchange the new real-time communication/control system for a biped robot Archie is 

designed and implemented. 

 

4.2 Designed Real-Time Message Frame  

The proposed control network must carry real-time messages to robot joints, as well as non-

real-time messages. Therefore these messages must be properly scheduled on the network so 

that real-time messages meet their deadlines while coexisting with non real-time messages.   

The Archie communication network is an asynchronous multi-master serial data bus that uses 

Carrier Sense Multiple Access/Collision Resolution (CSMA/CR) to determine access. In this 

protocol, just two lines are needed for data transmission therefore, it is very simple to extend 

it to other sub controllers.  

 
   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Various fields in the designed CAN message frame for Archie 

 

 

The designed real-time message transfer is controlled by 4 different types of frame: Data 

frames, Remote Transmit Request (RTR) frames, Overload frames and Error frames. The 

layout of each CAN frame has seven fields, as shown in Fig. 4.1, but in a proposed 

communication bus line for Archie, it is concerned only with the data length (DL) and the 

identifier (ID) fields. The DL field is 4 bits wide and specifies the number of data bytes in the 

data field, from 0 to 8. The ID field can be of two lengths. Each data frame is required to have 

a unique identifier.   

S
O
F 

 
11-bit 

identifier 

R
T 
R 

I 
D 
E 

r 
0 

DLC4 
bit 

 
0-8 bytes 

 
15 bit CRC 

A
C
K 

End of 
Frame 

 
IFS 

CRC 
delimiter 

bit 



32 
 

The identifier serves two purposes beyond simply identifying the message. First, the identifier 

is used as a priority to determine which message, among those contending for the bus, will be 

transmitted next. Second, the identifier may be used by receivers to filter out messages they 

are not interested in, and so reduce the load on the receiver’s host microprocessor. This is the 

designed plan which is considered in motion controller program design (chapter 6). 
 

4.2.1 Designed CAN Message Architecture  

In this part the priority of transmitting commands (CAN messages) to specific driver/joint in 

Archie is described carefully, since it is the starting point of designing the fast and reliable 

communication network. The created messages are queued in the stations before being 

transmitted to the CAN bus. In the proposed CAN protocol for Archie, stations wait until the 

bus idle period is detected before attempting to transmit (Fig. 4.2). 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Designed CAN bus line system for Archie 

 

 

When two or more stations start transmitting at the same instant, they can monitor each bit 

on the bus to determine who should transmit the message with highest priority to Archie 

joint. Data is transmitted in messages containing between 0 and 8 bytes of data. An 11 bit 

number is associated with each message. The identifier is required to be unique, in the sense 

that two simultaneously active messages originating from different sources must have distinct 

identifiers. Typically, an identifier corresponds to a particular type of message from a specific 

source. The identifier serves two purposes: (1) assigning a priority to the message, and (2) 

enabling receivers to filter messages.  

A station, filters messages by only receiving messages with particular bit patterns (typically 

using comparators and mask registers). Thus designed messages have no explicit destination, 

since any station with an appropriate filter may receive a message. 

The use of the identifier as priority is the most important part of message design with respect 

to real-time performance (Fig. 4.3). These messages are a collision-detect broadcast bus, but 

takes much more systematic approach to contention. The identifier field of a desired message 

is used to control access to the bus after collisions by taking advantage of certain electrical 

characteristics of a CAN bus.  

 

HOST HOST 

CAN 

controller 

Station1 Station2 

CAN 

controller 

CAN bus 



33 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Priority queue description 

 

In fact, the proposed communication bus line acts like a large AND gate, with each station able 

to see the output of the gate. This behaviour is used to resolve collisions in Archie 

communication network design, which means that each station waits until seeing bus idle. 

When silence is detected, each station begins to transmit the highest priority message held in 

its output queue whilst monitoring the bus. The identifier is the first part of the message to be 

transmitted; the identifier is transmitted from most-significant to least significant bit.  

 

4.3 Communication Channels Establishment Approach 

In general, the purpose of establishing any bus line is to decrease the number of pathways 

necessary for communication between joints. A bus allows communication between several 

joints over one data channel and is characterized by how much information it can transmit at 

once. The amount of data is expressed in bits and corresponds to the number of physical lines 

over which the information is sent. In proposed designed network approach for Archie, the 

communication channels are established among all the processes before the application starts 

to communicate. The advantage of this approach is that, there is just a one-time effort 

involved in setting up of the communication channels. Since all the processes call the init() 

method, the message passing layer gets control in all the processes to perform any protocol 

specific activity that needs synchronization between the processes.  

The proposed communication protocol, efficiently supports distributed real-time control with 

a very high level of security. It provides the error process mechanisms and message priority 

concepts.  

 

Attempt to transmit   

ID:3 message CAN bus 

Host 

                                               queue message  

                                                                                             

 

                                         

                                                                                          

CAN controller 

 

                                                                      

queue message  

Queue                                                                 

                                                             ID:3     ID:1      ID:2 

            



34 
 

4.4 Designed Message Transmit Planning Approach   

In this section the data source usage and created CAN message time/transmit plan in the 

proposed network will be explained. Each node (joint) in robot is able to send and receive 

messages. A message consists primarily of an id, which represents the priority of the message, 

and up to eight data bytes. It is transmitted serially in to the bus line. This signal pattern is 

encoded in non-return-to-zero and is sensed by all nodes. The actuators and sensors are not 

connected directly to the bus line, but through a host processor and a CAN controller. If the 

bus is free, any node may begin to transmit. If two or more nodes begin sending messages at 

the same time, the message with the more dominant id (which has more dominant bits, i.e., 

zeroes) will overwrite other nodes less dominant id's, so that eventually (after this arbitration 

on the id.) only the dominant message remains and is received by all nodes. This mechanism is 

referred to as priority based bus arbitration. Messages with numerically smaller values of id. 

have higher priority and are transmitted first. 

 

4.4.1 Designed Data Source Mechanism 

A data source is transmitted as a message, consisting of between 1 and 8 bytes (‘octets’). A 

data source may be transmitted periodically, randomly, or on demand. The identifier servers 

two purposes: filtering messages upon reception, and assigning a priority to the message. A 

station on a CAN bus is able to receive a message based on the message identifier: if a 

particular host processor needs to obtain the road speed (for example) then it indicates the 

identifier to the interface processor. In this design only messages with desired identifiers are 

received and presented to the host processor. Thus in designed command a message has no 

destination. The use of the identifier as priority is the most important part of CAN regarding 

real-time performance in motion control program which has been explained in chapter 6. In 

designed communication network for Archie any station waits for silence and then starts 

transmitting. If more than one station tries to transmit together then they all detect this, wait 

for a randomly determined time period. It is an example of a carrier sense broadcast bus, 

since each station waits until the bus is idle (i.e. no carrier is sensed), and monitors its own  

traffic for collisions. The identifier field of a designed message is used to control access to the 

bus after collisions by taking advantage of certain electrical characteristics.  

In the motion controller program ver. 2.1 this procedure is implemented to resolve collisions: 

each station waits until bus idle. When silence is detected each station begins to transmit the 

highest priority message held in its queue whilst monitoring the bus. The full description of 

this method implementation is described in chapter 6 and 7.  

 

4.4.2 Client-Server Interactions in Deigned Network  

A client in Archie is a controller that makes requests to nodes to respond to its commands. In 

this design the robot joint is assumed a single-master network arrangement, in which the 

servo drives are the slaves and the PC/main motion controller is the master. Every servo drive 

has a unique ID. The network master does not require an ID. As a slave, the servo drive never 

http://en.wikipedia.org/wiki/Non-return-to-zero
http://en.wikipedia.org/wiki/Central_processing_unit


35 
 

sends an unrequested message, other than emergencies. The drive responds only to messages 

addressed to its ID or to broadcast messages, which have an ID of 0. All messages sent by a 

servo drive in joints are marked with its own ID. 

 

4.4.3 Process Design of Message Transmitting  

The message is coded so that the most significant bit of the identifier field is transmitted first. 

If a station transmits a recessive bit of the message identifier, but monitors the bus and sees a 

dominant bus then a collision is detected. The station knows that the message it is 

transmitting is not the highest priority message in the system, stops transmitting, and waits 

for the bus to become idle. If the station transmits a recessive bit and sees a recessive bit on 

the bus then it may be transmitting the highest priority message, and proceeds to transmit 

the next bit of the identifier field. Because each message requires identifiers to be unique 

within the system, a station transmitting the last bit (least significant bit) of the identifier 

without detecting a collision must be transmitting the highest priority queued message, and 

hence can start transmitting the body of the message (if identifiers were not unique then two 

stations attempting to transmit different messages with the same identifier would cause a 

collision after the arbitration  process has finished, and an error would occur). There are some 

general observations to make on this arbitration protocol. Firstly, a message with a smaller 

identifier value is a higher priority message. Secondly, the highest priority message undergoes 

the arbitration process without disturbance (since all other stations will have backed-off and 

ceased transmission until the bus is next idle). The whole message is transmitted without 

interruption. 

 

4.4.4 Code Priority Transmission Scheduling 

If two or more  messages are transmitting at the same time and at least one of them transmits 

a ‘0’ then the value on the bus will be a ‘0’. This mechanism is used to control access to the 

bus and also to signal errors. The designed protocol calls for nodes to wait until a bus idle 

period is detected before attempting to transmit. If two or more nodes start to transmit at the 

same time, then by monitoring each bit on the bus, each node can determine if it is 

transmitting the highest priority message (with a numerically lower identifier) and should 

continue or if it should stop transmitting and wait for the next bus idle period before trying 

again. As the message identifiers are unique, a node transmitting the last bit of the identifier 

field, without detecting a ‘0’ bit that it did not transmit, must be transmitting the message 

with the lowest numerical value and hence the highest priority that was ready at the start of 

arbitration. This node then continues to transmit the remainder of its message, all other 

nodes having backed off.  

Normally, the network nodes are only allowed to start transmitting when the bus is idle (Davis 

et al., 2007). Thus, when the bus is idle beyond the 3-bit inter-frame space and a node starts 

to transmit a message beginning with the dominant start of frame bit, then all the other 

nodes synchronise on the leading edge of this bit and become receivers – i.e. they are not 

permitted to transmit until the bus next becomes idle. In this case any message that becomes 



36 
 

ready for transmission after the leading edge of the start of frame bit has to wait for the next 

bus idle period before it can enter into arbitration.  

However, to avoid problems due to clock drift, the CAN protocol also specifies that, if a CAN 

node has a message ready for transmission and detects a dominant bit at the 3rd bit of the 

inter-frame space, it will interpret this as a start of frame bit, and, with the next bit, start 

transmitting its own message with the first bit of the identifier without first transmitting a 

start of frame bit and without becoming a receiver. Again the leading edge of the start of 

frame bit causes a synchronisation.  

The above high level description is a simplified view of the timing behaviour of proposed 

control network. Specifically, every node must synchronise to the leading edge of the start of 

frame bit caused by whichever node starts to transmit first. The proposed mechanism means 

that messages are sent as if all the nodes on the network shared a single global priority based 

queue. In fact, messages are sent on the bus according to fixed priority scheduling.  

 

4.4.5 Inhibit Times 

The inhibit time for a given message type is the minimum time that must elapse from the time 

the message is first transmitted until the time that it may be transmitted again. The purpose 

of inhibit times is to ensure that high-priority messages do not flood the bus and thereby 

prevent service messages of lower priority from being transmitted. The inhibit times of drives 

are defined only for asynchronous transmit process data objects (TPDOs). 

The resolution of the inhibit time is 100 microseconds, with an accuracy of 2 milliseconds 

Communication Objects (COB). The data-byte units transported through a control network are 

called communication objects. Servo drive uses the following COB types (Table 4.1): 

 

Table 4.1 Communication types (services) used in motor drive 

 COB type Description  

Service data 

object (SDO) 

SDO messages are used to manipulate OD objects according to their IDs. 

The server receives the SDO, which specifies in its message which object is 

to be dealt with.SDO messages can be chained to form a "domain 

transfer," which is useful for sending large data items such as long strings 

Domain transfers are time-consuming, because the CAN bus is half-duplex. 

Each time a data segment is downloaded, a full-sized data segment is 

uploaded for verification, and vice versa. 

Process data 

object (PDO) 

PDO messages are used to manipulate OD objects without explicit 

reference to the object identifier, which is possible if there is an a-priori 

convention concerning the OD item referenced. Such conventions are 

called "PDO mapping", these are actually OD objects themselves, and may 

be defined and manipulated using SDO. 

Network 

Management 

(NMT) 

NMT objects are used by CAN clients to initialize a servo drive s a server. 



37 
 

4.5 Process Data Objects (PDOs) Design 

4.5.1 Receive PDOs Method 

A Receive Process Data Objects (RPDO) is used to receive predefined and unconfirmed 

messages. An RPDO is received through use of an event, which may be asynchronous (such as 

“Message Received”) or synchronous with the reception of a SYNC. Four receive PDOs are 

used with the Elmo drive. In the following, the main characteristics  of this method are listed: 

 Objects that can be mapped and have write access can be mapped to each RPDO. 

 Execution of the mapped objects begins in the lower index of the relevant mapping 

object. 

 High-priority objects, used for high-speed motion modes, can be mapped to an RPDO 

to avoid the overhead in using the standard interpreter.  

 Data of RPDOs is queued and it is passed for interpretation and execution at the next 

available background loop (Idle Loop) and according to the transmission type. 

 RPDOs cannot be retrieved by a remote transmitting (RTR). 

 

a) Message Error Detection Approach  

Proposed CAN messages (commands) are designed as a robust and reliable form of 

communication for short messages. Each data frame carries between 0 and 8 bytes of payload 

data and has a 15-bit Cyclic Redundancy Check (CRC). The CRC is used by receiving nodes to 

check for errors in the transmitted message. A failure is consider when the received data 

could not be interpreted or executed (Fig. 4.4). 

 

Active Error Frame 

 

 

 

 

 

 

Passive Error Frame 

 

 

 

 

 

 

 

Fig. 4.4 Active/Passive error frame format in Designed CAN messages for Archie  

6 bits 0...6 bits 8 bits 3 bits Re-transit Incomplete 
Frame 

 Error 

Error Flag Superposed 
Error Flag 

Error 
Delimiter 

Interframe 
Speed 

6 bits 0...6 bits 8 bits 8 bits 3 bits Re-transit Incomplete 
Frame 

 Error 

Error Flag Superposed 
Error Flag 

Error 
Delimiter 

Suspend 
Transmission 

Interframe
Speed 



38 
 

4.5.2 PDOs Transmission Approach  

Four transmit PDOs can be used in Elmo drives. TPDOs are used to retrieve an object (data) 

from the drive. Objects that have read access can be mapped to each one of the TPDOs. The 

transmitted data inside the TPDO is ordered according to the mapping order. The data starting 

from the LSB data is mapped first - in the lower index of the relevant mapping object. 

 

4.5.3 Proposed PDO Mapping in  Communication Network 

PDO mapping is a convention that assigns (maps) an object from the object dictionary (data 

payload) to a PDO. Once mapped, the PDO can carry the assigned data items without explicit 

reference to the object dictionary, thereby saving on communication and CPU overhead. Only 

a subset of the objects in the object dictionary can be mapped to a PDO, which can either 

receive (RPDO) or transmit (TPDO).  

The mapping of an RPDO enables reception of commands and variables, for instance, efficient 

transmission of high-speed online motion commands to the drive, whereas the mapping of a 

TPDO enables the drive to send a predefined message in response to an event.  

 

4.5.4 Synchronous Trigger in Motion Controller Program 

Synchronous triggers are always related to the previous SYNC reception. The received 

message is buffered but actually transmitted for execution at the next SYNC message. Only 

one RPDO can be buffered for synchronous trigger. If another RPDO arrives before the SYNC, 

it overrides the previous RPDO without any notification.  

This method enables the simultaneous synchronization of executing commands in several 

drives. When a SYNC arrives, the buffered message is performed in the next available 

background cycle (Idle loop). 

  

4.6 Network Management Message Structure (NMT) 

NMT commands are used to control the communication state of the servo drive and to 

broadcast messages to all other connected servo drives. When the servo drive is powered on, 

it enters the initialization state. 

After completing the boot sequence, it automatically enters the pre-operational state. The 

transition between pre-operational, operational and prepared states is carried out according 

to Network Management messages. In the following, the servo drive status in different NMT 

message states is described (Table 4.2).  

 

 

 

 

 

 



39 
 

1 

2 

3 

4 5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Table 4.2 Network Management States  

State Description 

Unpowered/Initialization 
Servo drive is not ready, or it is booting. Drive will not respond 

to communication and will not transmit anything. 

Pre-operational 

Servo drive boot sequence is complete, but no command has 

been received to enter operational mode. The servo drive will 

respond to SDO and NMT message, but not to PDO's 

Operational 
Servo drive is fully operational, responding to PDO, SDO and 

NMT message 

Stopped Servo drive can be respond only to NMT objects  

 

An NMT message is always two bytes long: the first byte is the command specifier and the 

second byte is the ID of the units that are to respond to the message. If the ID is 0, the NMT 

message will be executed by the entire set of connected servo drives. The NMT mapping 

design and form of the negotiation (from 1 to 14) is depicted in Fig. 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 NMT message mapping 

 

4.6.1 SYNC and Time Stamp 

The Archie drives are synchronized by the transmission of a SYNC message, whose arrival time 

is captured by the drive. Upon reception of the SYNC, the drive latches its internal timer. The 

Time Stamp causes a clock synchronization cycle to be executed. The Elmo drive uses the Time 

 
Initialization 

Pre-operational 

Stopped 

Power on or Hardware reset 

Operational 



40 
 

Stamp as an absolute timer and adjusts its internal time in relation to the time latched in the 

last SYNC. To synchronize the master and drive clocks to full precision, the synchronization 

process is filtered in order to ensure that the timing jitter of the time stamping process does 

not adversely affect motion smoothness (www.elmomc.com, 2013).  

4.6.2 Set and Query Commands in Network Controller 

The client sends commands (RPDO2) for setting variables in eight bytes (DLC=8). The drive 

transmits the reply (TPDO2) as an asynchronous event of the received object. 

a) Binary Interpreter Commands 

With CAN bus cable, the interpreter commands are sent in binary form and are used for 

setting and retrieving all numerical data of the servo drives setup. The commands used by the 

binary interpreter for CAN communication are very similar to commands of ASCII interpreter 

used for RS-232 communication. The following table (Table 4.3) summarizes the main 

differences between the binary interpreter used for CAN communication and the ASCII 

interpreter used for RS-232 in Archie motion controller program. 

 

Table 4.3 Comparison of ASCII vs. Binary interpreter commands 

Feature ASCII Interpreter Binary Interpreter 

Command Length Depends on data Fixed: 8 Bytes for set commands; 

4 Bytes for Get commands. 

Delimiter ;or<CR> for commands and 

servo drive responses. 

None 

Servo Drive responses 

to Set commands 

Always Drive does not respond to Set 

commands. An emergency object 

is sent if commands execution 

fails. 

Long response strings Returned by certain 

commands, such as LS and 

BH 

No support for returned long 

strings, which are read via SDO’s. 

 

TPDO2 is mapped by default to the Transmit binary interpreter object. The binary interpreter 

supports three types of commands: 

 

 Set value 

These commands can be four or eight bytes in length. The transmitted message includes 

either the reflection of the Set command or an error code, if failure has occurred. 

 

 Get value 

These commands can be found for or eight bytes in length. An 8 bytes response includes the 

reflection of the command and the resulting numerical value, and an error if a fault has 

occurred. 



41 
 

 Execute command 

This command can be four or eight bytes in length. An 8-bytes response includes the 

reflection of the command and the resulting numerical value, and an error if fault has 

occurred. If an interpreter command cannot be serviced for any reason, bit 6 in byte 3 of 

TDO2 is set on, and byte 4 of the response contains the Elmo error code. 

These commands are used to instruct the drive to perform a sequence. The reply to these 

commands is only an acknowledgement or an error code; there is no value for executing 

command. Execute commands are a unique case of RPDO2, which can be used with a DLC of 

either 4 or 8 (Table 4.4). 

 

Table 4.4 DLC4 values frame 

DLC4 

Byte 0 1 2 3 

Hex value 42 47 0 0 

 

The reply message (Table 4.5) is always eight bytes long and indicates either success or failure 

(error). 

 

Table 4.5 Execute command reply frame (Success/Failure) 

Success 

Byte 0 1 2 3 4 5 6 7 

Hex value 42 47 0 0 0 0 0 0 

 

Failure (error code 58 (3Ah) for a "Motor must be on" 

Byte 0 1 2 3 4 5 6 7 

Hex value 42 47 0 40 3A 0 0 0 

 

 

b) TPDO2 Structure in Controller Program 

The drive controller replies (TPDO2) to query and set requests in eight bytes (DLC=8): 

 Bytes 0 to 3 are the header, which includes the responding command, command index 

(when needed) and data type (float or integer). It also indicates whether the response 

data is true data or an error code. 

 Bytes 4 to 7 are data, which is either a reflection of the host Set command or an error 

 code according to the EC command. 

 

 

 



42 
 

4.7 I-converter (USB to CAN) 

In this stage the commands are ready to be transmitted to robot joints. The solution is a cost-

effective device for integrating the CAN bus to the PC by using the standard USB interface 

which is called USB to CAN converter. So when the connection between the I-7565 and the PC 

during the runtime of the computer would be established, then the PC automatically loads the 

relevant device driver. 

By installing the I-7565 converter in robot, the PC can be access/control the CAN devices by 

the utility tool and be the CAN host, network monitor or CAN-interface. It can handle both an 

11-bit and 29-bit ID format according to whether it is a CAN 2.0A or 2.0B. In order to provide 

high performance when converting data, the converter has built in software FIFO queues, 

which include 1000 CAN data frames (see chapter 7). In the following most important features 

of the I-converter which are considered in motion controller program ver. 2.1 are presented 

(Fig. 4.6). In table 4.6 the general hardware specifications of the I-7565 converter are listed. 

 

 

Fig. 4.6 Necessary USB to CAN converter features used in motion controller program 

 

 

 

 

 

Transmission 
speed up to 
1M bps for 

CAN 
Power, data flow 

and error 
indicator for CAN 

and USB 

Error code 
response 
selection 

Utility tool to 
transmitting / 
receiving CAN 

messages 

Support both 
CAN 2.0A and 

CAN 2.0B 

Support ing 
Linux OS (since 
the software is 

operated in 
Linux) 

CAN bus Baud 
rate 

configuration 

Fully compliant 
with USB (Full 

Speed) 



43 
 

Table 4.6 General USB to CAN device specifications 

CAN Interface 

Controller Microprocessor inside with 20 MHz 

Connector 9-pin male D-Sub (CAN_L, CAN_SHLD, CAN_H, N/A for others) 

Baud Rate 10 k, 20 k, 50 k, 100 k, 125 k, 250 k, 500 k, 800 k and 1Mbps 

Receive Buffer 1000 data frames 

Max Data Flow 250 fps 

Power 

Power Consumption 1.5W 

LED 

Round LED ON LED: Power and Data Flow; ERR LED: Error 

Mechanism 

Installation  DIN-Rail 

Dimensions  108mm x 72mm x 33mm 

Environment  

Operating Temp. -25°C  to 75℃ 

Humidity 5~95% non-condensing 

 

4.7.1 Data Communication Bus via CAN-Bus Converter 

In this part the methods used to implement the I-7565 module into their applications in a 

quick and easy way will be described. USB to CAN bus converter has a utility features and 

software as depicted in Fig. 4.8 which should be installed and connected (step1) for 

communication from the PC to the converter via the USB cable into the i-7565 module and in 

the next step send the message to the Elmo controller. PC’s USB connection should be set 

(step2) by choosing the proper port. The green light on the converter will turn on while the 

USB port is connected to the converter (step3). 



44 
 

 

Fig. 4.7 USB to CAN converter connection establishment 

 

In the I-7565 software there are two tabs, one for setting the USB parameters, and one for 

CAN bus parameters. The setting procedure is as follows: first should set the Init/Normal 

switches on the back of the I-7565 A to the “Init” position. Then, connect to the USB port of 

PC. The ON LED of the I-7565 a will be flash approximately once per second. That means that 

the I-7565 is in the configuration mode. If this process is successful, the I-7565 Utility shows 

connection settings as presented in Fig. 4.7.  

USB parameters in setting mode are included in Add Checksum and Error Response, In order 

to match these parameters on the PC; they should be configured as follows: 

 

 Add Checksum: No 

 Error Response: No 

 

The CAN bus parameters are included in CAN specification and CAN bus Baud rate. These 

magnitudes should be defined as depicted in the follow: 

 CAN specification: 2.0A 

 CAN bus baud rate: 1000K bit/sec. 

 



45 
 

 

Fig. 4.8 Code converting-setting mode 

 

On the other hand there is another tab so called test (Fig. 4.8). It is used while the series of 

message send to the Archie for joints movement and monitoring stream of command 

message transferring. The most important attributes of this software converter is that user 

can utilize it to check each motor individually for rotation or changing the each joint from 

initial position to the desired position manually.  

In next step “Use CAN Message” is checked and then input value to the “CAN Message” frame 

on Utility A. can be executed and sent (Fig. 4.9). Thereafter, the utility will automatically 

transfer these CAN messages to the command string with ASCII 0x0d, and send it out through 

the USB to CAN cable, meanwhile converter sends back the receive signal command (Fig. 

4.10). Afterward the commands can be real-time transferred to join drives via presented 

communication bus line.  



46 
 

 

Fig. 4.9 CAN message structure design in test mode 

 

Fig. 4.10 CAN message-receive signal format 

 



47 
 

Chapter 5 Motion Creating System Design based on PT and PVT Method 

5.1 Introduction 

Since humanoid robots are designed to interact closely with humans, it is important that their 

motion look natural. One reason is that we have no clear idea what “natural” actually means. 

Intuitively, we might want the robot to minimize erratic arm and leg movements or to move 

with a consistent style, but it is difficult to quantify this intuition.  

In first part of this chapter the goal is to generate “natural-looking” motion primitives for a 

biped humanoid robot Archie. The focus is on creating realistic, adaptable and synchronized 

walking motion. The robot is moved according to the joint angle trajectories. The trajectories 

are generated based on the paper "Planning Walking Patterns for a Biped Robot" (Huang et 

al., 2001). The provided process for joint motions are different. Joint angles are mainly 

calculated by inverse kinematics and joint angles are mainly generated as patterns from step 

primitives. To realize smooth walking, one reasonable approach is to create an initial motion 

and to transform it to keep balance. This process should preserve the characteristics of the 

original motion particularly for walking. For this, the important factors of the characteristics in 

the walking motions must be clarified. It is necessary to avoid the problems of the mechanical 

structure and adding the missing joint drives to enhance walking stability. It would be 

required to attach the new joint mechanism and actuator because of the lack of stability on 

ankle frontal joint. This hardware  improvement is already presented in chapter 3.  

 

5.2 Biped Robot Walking Problem  

Even though there has been much research and certainly some interesting progress in biped 

locomotion, there is certainly no single solution that provides robots with the same 

capabilities as humans (Xiao et al., 2006). What seems to be especially lacking is a quantitative 

method for comparing different solutions. By definition, walking is a form of locomotion in 

which the body's center of gravity moves alternately on the right side and the left side. All 

these phenomena observed during the foot-ground contact have to be introduced into the 

model to make it realistic. A biped locomotion phase can be classified into a contact, a single 

and a double supporting phase to generate a leg motion (Jo & Jayamani, 2009). During the 

single supporting phase, one foot is not constrained to the ground but the other foot is on the 

ground. As soon as the heel of the swinging foot reaches the ground, the single supporting 

phase is changed to the contact phase. If the toe and heel of the swinging foot contacts on the 

ground, the phase becomes a double supporting phase. Fig. 5.1 shows a locomotion phase for 

a leg pattern generation. 

 

 

 

 

 

 



48 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Biped walking phases 

 

Biped walking is a periodic phenomenon. Leg motion is generated under the assume that all 

the area of a foot sole contacts with the floor when it is supporting the body. In other words, a 

sole does not rotate during that time. In terms of dynamics, this assume is satisfied when the 

point at which the moment to the robot body is zero exists in the area of the sole surface. In 

this time, the sole does not rotate. As already described the point is called ZMP and the area is 

called supporting area. Therefore if a robot is supported by both feet, supporting area 

corresponds to the convex area which consists of both soles. 

Many studies on gait planning have assumed that the double-support phase is instantaneous. 

But in such a case, the related hip has to move too fast (Ha & Choi, 2007). In order to maintain 

its stability, the robot’s center of gravity, in the case of static stability or the ZMP in the case of 

dynamic stability, must be transferred from the rear foot to the front foot during the short 

double-support phase. On the other hand, if the interval of the double-support phase is too 

long, it is difficult for the biped robot to walk at high speed. The interval of the double-support 

phase in human locomotion is about 20% so this value is used as the basis for Archie joint 

trajectory calculation (Huang et al., 1999). To make the robot walk, a gait trajectory is 

designed offline.  

In the biped robotics research field, the gait trajectory, known as the walking pattern, 

generates the relative position trajectories of two feet with respect to the pelvis center (Kim 

and Park, 2007). The stable walking of biped robots can be characterized by some criteria. 

Static walking is characterized by maintaining the COG inside of the support region (the 

interior perimeter formed by the foot or the feet in contact with the floor).  

This section is focused on two problems: the first one is how to generate a complete foot 

trajectory; the second one is how to derive a smooth hip motion with high stability. If both 

foot trajectories and the hip trajectory are known, all joint trajectories of the biped robot will 

be determined by kinematic constraints. The walking pattern can therefore be denoted 

uniquely by both foot trajectories and the hip trajectory. When the robot moves 

straightforward, the lateral positions of both feet are constant. The lateral hip motion can be 

Phase 1 Phase 2 Phase 3  Phase4 

Support  Carry  Push Swing 

Push  Swing Support Carry 



49 
 

obtained similarly as the sagittal hip motion and swing ankle’s trajectory in the sagittal plane. 

Some of the restrictions for designing the swing ankle’s trajectory are considered as follows: 

• When the swing foot touches the ground and becomes stance foot, its speed should 

be zero or very small. 

• When the stance foot becomes swing foot and leaves the ground, its speed should be 

zero or very small. 

• The swing foot should be above the ground with a small distance when swinging. 

• The trajectory should be smooth enough. 

In chapter 7 the correlation between the actuator specifications and walking patterns is 

presented with experimental tests and results on the robot. 

5.3 Gait Planning Method in Archie  

Foot–support interactions and load-regulating mechanisms play a crucial role during stepping. 

In order to achieve the natural gait of biped robot like human, human’s gait has to be 

modelled precisely. However, since the human’s gait is composed of dynamic motions on the 

sagittal, frontal and transverse plane, the complete gait of the biped robot can be achieved 

only if the gait is analyzed on two more planes.  

The humanoid motion on the frontal plane aims to move the ZMP of the biped robot from one 

foot to the other. To control the robot on the frontal plane each leg of the Archie has two 

DOFs, one at the hip joint and the other at the ankle joint. To simplify the gait planning, it is 

assumed that the biped robot always keep two legs parallel. 

The foundation of Archie walking concept is based on the implementation of planning walking 

patterns that has following major principles: 

 Formulation of the constraints including ground conditions, foot and hip trajectory. 

Various foot motion can be provided by adjusting the values of the foot constraint 

parameters. 

 A formulated hip motion, makes it possible to derive a highly stable, smooth hip 

motion without first designing the desired ZMP trajectory. 

 A mutual relation between the driver specifications and walking patterns were 

clarified. Therefore, it is possible to select a walking pattern with small torque and 

velocity of the joint actuators after the ground conditions and the stability constraint 

are satisfied. 

5.3.1 Trajectory Planning Approach in Archie  

Trajectory planning techniques in Archie allow the generation of the reference inputs to the 

motion creating system. The problem of controlling a joint can be formulated (as that to 

determine the time history of the generalized torques) to be developed by the joint actuators, 

so as to guarantee execution of the commanded task while satisfying given transient and 

steady-state requirements. In order to construct realizable trajectory, limitation of parameters 

before trajectory generation and validation of trajectory after generation are carried out. In 

Fig. 5.2 and Table 5.1 the main parametric model values of Archie and their values to generate 

the smooth walking trajectory are presented. 



50 
 

2a6 

d3 

d6 a3 

a2 

qf 

a1 

lan 

lab laf 

 

Table 5.1 Archie parametric model values 

a1 a2 a3 a6 d3 d6 

8cm 26cm 30cm 5.6cm 7.4cm 4cm 

 

a1: distance between center of frontal-lateral joints in ankle 

a2: shin length 

a3: thigh length 

a6: distance between center of transversal joint in hip and COG 

d3: distance between center of lateral & frontal joints in hip 

d6: distance between center of frontal & transversal joints in hip 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Fig. 5.2 Archie leg parameters 

 



51 
 

5.3.2 Calculated Foot Trajectory  

When there are various constraints such as ground conditions and various foot motions, the 

order of the polynomial is too high and its computation is difficult, and the trajectory may 

oscillate. Hence the boundary conditions of the joint are selected based on the designed 

walking gait. There are three different categories of strides that form a full walking cycle, i.e. 

starting stride, full stride and ending stride. Furthermore, trajectories of the swing foot can be 

divided into 3 stages (Fig. 5.3). At the initial stage of swing phase, the heel of the foot is lifted 

with the toe used as a pivot. When a sufficient rotational motion is done, the foot is to be 

completely off the ground and swings in the air, which is the second stage. As the swing foot 

lands on the ground, the heel initially contacts with the ground. As soon as the heel hits the 

ground, the toe is lowered by the foot rotational motion with the heel as a pivot. The foot 

rotational motion continues until the entire sole of the foot becomes in contact with the 

ground. This is the end of the third stage of swing foot motion. During this phase, the other 

foot, that is the supporting foot, does not change its position and orientation, and the whole 

part of its sole is in contact with the ground. As soon as the third phase of the swing foot ends, 

the foot of the supporting leg goes into its own first stage of the swing motion, i.e., heel-lifting 

motion stage (Huang et al., 2001). 

 
 

 

 

 

 

Fig. 5.3 Swing foot trajectory phases-time 

  

One foot is in front of the other by distance 50 cm, which is the stride (Fig. 5.4). After a single 

step, the posture of the legs becomes identical except that the front and rear feet are 

reversed. Taking a single step takes time Tc, which is one half of the stride period.  

   kTc (k+1)Tc kTc +Td 

Time 



52 
 

 

 

 

 

 

 

 

 

Fig. 5.4 Archie stride 

 

 

The time of the kth step is from kTc to (k+1)Tc, k=1,2,3,... is the number of steps. To simplify the 

analysis, the kth walking step is defined to begin with the heel of the right foot leaving the 

ground at t=kTc, and to end with the heel of the right foot making first contact with the 

ground at t= (k+1)Tc (Fig. 5.3). The left foot trajectory is same as the right foot trajectory 

except for a Tc delay. qb and qf are the designated angles of the right foot as it leaves and 

lands on the ground, respectively. Assuming that the entire sole surface of the right foot is in 

contact with the ground at t= kTc and t=(k+1)Tc+Td. where Td is the interval of the double-

support phase.  

 

 

  

 

 

 

 

 

 

Fig. 5.5 Archie foot and hip trajectory calculation parameters 

 

 

Lao and Hao are the position of the highest point of the swing foot, and 2Ds is the length of one 

step, kTc+To is the time when the right foot is at its highest point, lao is the height of the foot, 

laf is the length from the ankle frontal joint to the toe, lab is the length from the ankle frontal 

joint to the heel (Fig. 5.5 and Table 5.2). The foot trajectory calculation is presented in 

Appendix A. 

 

Hip Trajectory:  xh,zh,Θh 

Hao 

Foot Trajectory: 

xa,za,Θa 

Lao 
Ds 



53 
 

Table 5.2 Archie trajectory parameters values (with stride=50 cm) 

lan  lab laf lao  Hao Ds 

5.6 cm 6.5 cm 12.5 cm Ds 12 cm 25 cm 

                                 

                        

5.3.3 Calculated Hip Trajectory  

Joint angles of each leg are calculated from position and orientation of the hip and the feet 

using inverse kinematics (Mohamadi Daniali, 2013). The design of pelvis movement is 

accomplished by editing the position and the orientation trajectories of the pelvis according to 

the time sequence determined by the gait pattern. The trajectory of the leg joints is calculated 

from the gait pattern and pelvis movement. Hip movement is edited by control points and 

finding interpolation functions.  

Walking cycle that considered for Archie walking is composed of three phases: a starting 

phase in which the walking speed varies from zero to a desired constant velocity, a steady 

phase with a desired constant velocity, and an ending phase in which the walking speed varies 

from a desired constant velocity to zero. First, the hip motion (xh(t)) of the steady phase is 

obtained as follows: 

One-step cycle, can be described by two functions: one for the double-support phase and one 

for the single support phase. xed and xsd denote distances along the axis from the hip to the 

ankle of the support foot at the start and end of the single-support phase, respectively (see 

Appendix A). 

The hip trajectories are slightly modified such that the upper body motion is steered naturally, 

meaning that it requires practically no actuation. This has the advantage that the upper body 

actuation hardly influences the position of the ZMP. Validation after trajectory generation is 

carried out for the following points; 

 Range limitation of leg joint angle, 

 Limitation of leg joint angle velocity, 

 Collision between leg links 

Walking parameters values for Archie walking (stride=50 cm) are given in Table 5.3. The 

optimized chosen values are obtained based on the various experimental tests and actual 

desired walking data in xa(t), xh(t), za(t) and zh(t) graphs (see Appendix A).   

 

Table 5.3 Walking parameters values 

qb qf xed xsd Hmin Hmax 

0 deg. 0 deg. 6.5 cm -3.5 cm 56 cm 59 cm 

 

Considered time boundary condition value for Archie walking (stride= 50 cm) are as given in 

Table 5.4. Accordingly the leg and hip motion trajectory in x-axis is depicted in Fig. 5.6. 

 



54 
 

X(a)Right Leg 

X(a)Left Leg 

X(h) Hip 

Table 5.4 Time boundary condition value 

Double support time 

interval 40%(Tc) 
Step time 

Time for the maximum height of ankle 

joint in Z direction 

Td Tc To 

0.4(Tc) 2 sec. (Td+Tc)/2 

 

 
Fig. 5.6 Calculated leg and hip motion in x-axis 

 

During the first interval, the supporting leg rotates slightly to push the robot forward, this 

motion being made mainly, by the ankle and hip joints. The balance leg starts raising and 

hence the hip and ankle joints in the supporting leg must counteract the tendency for the 

robot to tip over. During this period the knee motion is limited to a slight bend.  

In this limited motion, the ankle joint moves almost like the hip joint and hence there is 

similarity between their motion. The raise of the hip by the balance leg is followed by the 

bending of the balance knee, so that there is enough space for the robot to account for the 

forward motion due to gravity.  

In the air, the balance foot is not influenced by any external forces/torques and therefore the 

motion of the hip joint is similar to that of the knee joint leading to similar patterns for the 

joint angle. The main difference in the sign (angle value) being due to the opposite rotations 

performed by each of them. 

Afterward, the supporting leg effectively pushes forward the whole body, whereas the 

balance leg moves forward, extending its knee (previously bended) and preparing for the 

impact with the ground. During this period, the hip joint in the balance leg moves forwards 

and backwards to compensate the gravity motion. In the third interval, the supporting leg 

extends itself slightly further whereas the hip joint in the balance leg pushes the whole leg 

0 

10 

20 

30 

40 

50 

60 

70 

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 

xa
(t

) 
, x

h
(t

) 
[c

m
] 

time (sec.) 



55 
 

down. Therefore the designed hip and ankle joint trajectory are derived and depicted in Fig. 

5.7.  

 

 
Fig. 5.7 Calculated ankle and hip trajectory of Archie 

 

In addition the above explanation it is important to mention the ground impact leads to the 

large torques for the supporting leg mainly because: it occurs earlier than expected and at 

that time the leg was still pushing forward opposing to the ground reaction forces. To help the 

waist recovering the original height, the knee in the balance leg slightly bends from its landing 

position while the ankle compensates by slightly extending its foot. 

Calculated leg joints-angle trajectory (ankle frontal and lateral, knee, hip lateral) based on the 

above selected values and walking parameters (stride=50 cm) which lead to avoid falling of 

Archie are depicted in Fig. 5.8, 5.9, 5.10 and 5.11.   

 
Fig. 5.8 Calculated left vs. right ankle frontal joint-angle trajectory 

0 

10 

20 

30 

40 

50 

60 

70 

0 10 20 30 40 50 60 

A
n

kl
e 

an
d

 h
ip

 m
o

ti
o

n
 in

 z
-a

xi
s 

(c
m

) 
 

Ankle and hip motion in x-axis direction (cm) 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

20 

0 1 2 3 4 5 6 7 8 

θ
LA

F(
t)

 &
 θ

R
A

F(
t)

 [
d

eg
] 

Time (sec.) 

Left ankle frontal 

Right ankle frontal 



56 
 

 

 
Fig. 5.9 Calculated left vs. right ankle lateral joint-angle trajectory 

 

 

 
Fig. 5.10 Calculated left vs. right knee joint- angle trajectory 

-60 

-40 

-20 

0 

20 

40 

60 

0 1 2 3 4 5 6 7 8 

θ
LA

L(
t)

 &
 θ

R
A

L(
t)

 [
d

eg
] 

 

Time (sec.) 

Left ankle lateral 

Right ankle lateral 

-80 

-60 

-40 

-20 

0 

20 

40 

60 

80 

0 1 2 3 4 5 6 7 8 

θ
LK

(t
) 

&
 θ

R
K

(t
) 

[d
eg

] 

Time (sec.) 

Left knee  

Right knee 



57 
 

 
Fig. 5.11 Calculated left vs. right hip lateral joint-angle trajectory 

 

 5.4 Drive Motion Design Method 

The motion control of biped humanoid robot Archie is combined offline gait programming and 

online movement modification. The data file of key parameters are generated by offline gait 

programming and obtain the final trajectory by movement modification. The position control 

system of Archie includes: central control computer (motion control program), servo motors 

(brushless motors), drive controller (Elmo), sensor system (encoder). 

5.4.1 Servo Drive   

The term servo can be applied to systems other than a servo motor; systems that use a 

feedback mechanism such as an encoder or other feedback device to control the motion 

parameters. Typically when the term servo is used it applies to a 'Servo Motor' but is also used 

as a general control term, meaning that a feedback loop is used to position an item. 

The type of the servo drive used in Archie's joint is series of digital servo drives that are 

designed to deliver “the highest magnitude of power and intelligence”. While it is light and 

highly compact package and the drive operates on DC power. It is a PCB mounted device that 

enables efficient and cost saving implementation. 

5.4.2 Drive Reference Signal Generation Method 

The position reference signal is generated by the following components: 

 Drive reference generator  

 External position reference generator  

 Stop manager 

-50 

-40 

-30 

-20 

-10 

0 

10 

20 

30 

40 

50 

0 1 2 3 4 5 6 7 8 9 

θ
LH

L(
t)

 &
 θ

R
H

L(
t)

 [
d

eg
] 

Time (sec.) 

Left hip lateral 

Right hip lateral 



58 
 

NMT MO=0/1 PA/PR BG 
Single Joint          

/ Point to Point 
Motion 

a) Drive Motion Reference Generator Approach 

The position reference generator are sent in a configurable number of consecutive sub 

frames, which could be just one sub frame or as many as 12 sub frames. Utilization of more 

time-frequency resources within a sub frame by the position reference generator can improve 

the quality of measurements compared to the use of only the basic cell-specific reference 

signals. 

In this part, the set/get commands which are categorized into groups of related orders will be 

discussed. Each group is presented in table and commands/signal are listed with basic 

description. The motor driver of Archie joints supports following modes of references: 

 PTP (Point-To-Point): This mode specifies the position in which the motor is to stand, 

and the limits subject to which the trajectory to the target should be designed. 

 PT (Position/Time): This mode specifies a set of points to be visited at fixed points of 

time. The driver interpolates a third-order polynomial between the user’s points. The 

speeds at the user points are selected in order to form a smooth motion trajectory. 

Using PT, complex motions are easily designed. PT data may be transferred to the 

drive online using an efficient CAN message network, so that infinite PT motions are 

possible. 

 PVT (Position/Velocity/Time): It specifies a set of motion points, each of them includes 

a position, speed and time at which the position should be visited. PVT mode allows 

absolute time specification so that several drives may compose a fully-synchronized 

motion. PVT data can be transferred to the drive online using an efficient CAN message 

network, so that infinite PVT motions are possible.  

5.5 New Designed Drive Motion Command/Program Structure  

The commands are used to instruct the drive to perform a sequence. Each command has its 

own value to be executed and affect the joint.  The Archie’s joints (motor, encoder & motor 

driver) reply to these commands according to their specifications, which is tuned already.  

5.5.1 Single Joint Motion Program (Pattern Design) 

There is a set of commands that leads to a single joint motion (Fig. 5.12). The primary set of 

messages for single joint motion are respectively as follows:  

 NMT, 

 MO (=0/1), 

 PA/PR , 

 BG, 

                            

 

 

 

 

Fig. 5.12 Single joint motion pattern 



59 
 

a) Communication Control Command Structure  

NMT command is used to control the communication state of the servo drive and to 

broadcast messages to all other connected joints (Table 5.5). 

 

Table 5.5 NMT command structure 

ID (HEX) Mode RTR DLC 

0 0 0 8 

D1 D2 D3 D4 D5 D6 D7 D8 

1 0 0 0 0 0 0 0 

b) Motor Drive Command Structure 

The MO command enable and disable the motor power.  

 MO=0 

This is the default state of the drive. In this mode, No current flows in the motor and the joint 

drive can run the several demands that are impossible when the motor is on such as : 

 Download the new firmware and programs 

 Save the parameters in the memory 

 Boot on power up 

 Modify setup data that cannot be modified like unit mode 

 MO=1 

When the motor is enables, the drive reinitializes the internal parameters and motion drive. 

Basically the MO=1 is the operative state of the joint drive. Therefore drive is ready to driving 

the motor and activating and executing the designed programmed motion. In table 5.6  the 

MO command structure is described. 

 

Table 5.6 MO command structure 

 

 

 

 

c) Absolute Position Command Structure 

Absolute position command designate clearly that the next command will be a PTP (point to 

point) and defines the target position for the next PTP motion (Table 5.7).  

d) Relative Position Command Structure 

Relative position may be applied in any active motion mode; it is activated and applies 

changes to the PA setting only after the next BG executed.  

 If PTP motion is already active, PA will be increased by PR value and become the new 

position target. 

ID (HEX) Mode RTR DLC 

303 0 0 8 

D1 D2 D3 D4 D5 D6 D7 D8 

4D 4F 0 0 1 0 0 0 



60 
 

 If the PTP motion is not active and now is activated by PR, PA will be set to new value, 

(PA= position command + PR). 

 

Table 5.7 PA/PR command format 

 

 

 

 

The new PA value causes PR to become 0. In order to make sequential PTP movements of the 

same size, the PR command is utilized. Subsequent PR settings may cause the PA value to be 

changed. 

e) Begin Motion Command Structure 
Each single joint motion is initiated by BG. This command immediately starts the next 

programmed motion.  

 In software speed mode, BG activates the latest jogging motion (JV), and also the new 

smooth factor (SF), acceleration (AC) and deceleration (DC). 

 In stepper or position mode (UM=3, 4 or 5), BG starts the latest position mode 

programmed: a point-to-point motion (PA), a jogging motion or any type of tabulated 

motion (PVT or PT). 

Each motion mode starts with its entire set of parameters. For example, starting a point to-

point motion activates the present of acceleration (AC), deceleration (DC), smooth factor (SF) 

and speed (SP). The BG command may be used to modify the parameters of the present 

mode, and not only to program new modes (Table 5.8). For example, a BG command in point-

to-point mode modifies the active AC parameters (and all other active motion parameters) 

with its last programmed value.  

Table 5.8 BG command specifications 

Type Command, no values 

Source CAN open 

Restriction MO=1 

Activation Immediate 

Unit modes 2,3,4,5 

 

BG command format which is used to start joint motion in Archie presented in Table 5.9: 

Table 5.9 BG command format (for ID no. 3) 

ID (HEX) Mode RTR DLC 

303 0 0 8 

D1 D2 D3 D4 D5 D6 D7 D8 

42 47 0 0 1 0 0 0 

ID (HEX) Mode RTR DLC 

303 0 0 8 

D1 D2 D3 D4 D5 D6 D7 D8 

50 52 0 0 1 0 0 0 



61 
 

 

ID number refers to Joint ID which is already assigned to each joint. D1,D2, and D5 are input 

values for starting the next program motion. 

5.5.2 Multiple Joints Motion Program (Pattern Design) 

The most important issue in walking process is how to synchronize motion of all joints such 

that end-effector (Ankle frontal joint) can track desired trajectory properly, hence the 

problem of multiple joints motion is formulated (Dezfouli & Mohamadi Danilai, 2012). The set 

of commands are designed and collected to let the robot moves all joints together. These 

messages ordered as follows (Fig. 5.13):  

 NMT, 

 MP[1], 

 MP[2], 

 MP[3], 

 MP[4], 

 QP[X], 

 PT=1, 

 MO=1, 

 BG 

                   

 
Fig. 5.13 Multiple joints motion commands order structure 

5.5.3 Point-to-Point Method 

This method is used in motion controller program (ver. 1.1). In PTP motion mode, the motor 

moves from its present position to a final point at zero speed, and stays there. The trajectory 

to the final point is calculated based on speed, acceleration and deceleration limits, as set by 

NMT 

MP[1]=1 

MP[2]= 
no. of 
points 

MP[3]=0 

MP[4]= 
time 

interval 

QP[no. of 
points]= 
degree 

PT=1 

MO=1 

BG 

Joints 
motion 



62 
 

the SP, AC, DC and parameters respectively (www.elmomc.com, 2013). The PA command 

plays more than one role. PA=n specifies that the next BG will start a PTP motion. In addition, 

it specifies the target of the next PTP move. In PTP mode, a BG command performs the 

following:  

PA=PA+PR, 

Go to PA where: 

PA is the absolute position target. PR is the relative position target, enabling the specification 

of an incremental move or a series of incremental moves. PR is reset to zero by the PA=n 

command. Therefore, PA=n; BG initiates a motion towards n. The value of PA is incremented 

automatically with PR every time a new motion is initiated. For example:  

PA=0;  

BG;  

while(MS==0); PR=1000; 

BG;  

while(MS==0);  

BG;  

while(MS==0);  

BG  

initiates four consecutive PTP motions, targeted at 0, 1000, 2000 and 3000 counts 

respectively. PTP motions may be initiated any time, using the PA command, but not 

necessarily from a stationary state. The PTP decision flowchart, which made every position 

control cycle, is depicted in Fig. 5.14. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.14 PTP motion decision flowchart  (www.elmomc.com, 2013) 

Start 

Speed > SP? 

Will steady 

deceleration at DC stop 

motion before target? 

Speed = SP? 

Apply 

AC 

Maintain 

SP 

Apply 

DC 

Apply 

DC 
Yes 

No 

Yes 



63 
 

5.6 New Motion Command Library 

The communication network in the program lets the drive using the object dictionary (OD) 

method, which is the native CAN method. The motion library produces trajectories based on 

the PT or PVT mechanism. It implements a set of functions that calculate trajectories as PT or 

PVT table for vector motion. As a result the output (P,V,T) for requested desired trajectories 

that supports 2D or 3D vector motion will be generated. The PVT table is presenting 2 or 3 

dimensional sequence of PVT points. Each PVT point is including: 

 Position value, 

 Velocity for this position, 

 Time interval that is necessary to arrive from the current position to the position 

that defined by the next PVT point. 

Single shape trajectories can be executed in one of the three modes that predefined by the 

value of the input parameter:  

 max velocity,  

 fixed time,  

 fixed velocity. 

The above designed pattern for single and multiple joints motion are embedded and 

implemented in new motion control program. The main difference is on the type of motion, 

which old motion control program (ver. 1.1 & 1.2) is based on the PTP motion and the new 

version (ver. 2.1) is based on the PT and PVT motion. The classes and/or objects which are 

participating in this designed pattern are described as follows (Fig. 5.15):  

 Command/Signal : declares an interface for executing an operation 

 Concrete Command  (Calculator Command): defines a binding between a Receiver 

object and an action and implements Execute by invoking the corresponding 

operation(s) on Receiver 

 Client  (Command App.): creates a Concrete Command object and sets its receiver 

 Invoker (User): asks the command to carry out the request 

 Receiver (Calculator): knows how to perform the operations associated with carrying 

out the request. 

 

 

 

 

 

 

 

Fig. 5.15 Motor drive command (designed pattern) 

Invoker (User) Client 

Receiver 

+action() 

Command 

+execute() 

ConcreteCommand 

+execute() 

 

 



64 
 

Motion drive command in Archie decouples the object that invokes the operation from the 

one that knows how to perform it. To achieve this separation, the abstract base class is 

designed that maps a receiver (an object) with an action (a pointer to a member function). 

The base class contains an execute() method that simply calls the action on the receiver. 

Encapsulate a request as an object, thereby letting to parameterize clients with different 

requests, queue or log requests, and support undoable operation.  

Sequences of Command objects can be assembled into composite (or macro) commands. A 

Command class holds some subset of the following: an object, a method to be applied to the 

object, and the arguments to be passed when the method is applied. The Command’s 

“execute” method then causes the pieces to come together. The proposed motion commands 

implementation in C++ is presented in chapter 7. 

 

5.6.1 Motion Modes Changing Method 

The ST command can be used for stopping at any time. The drive will decelerate the position 

or velocity reference until it reaches a full stop. The drive will calculate the path to be 

followed so that the desired speed or position is reached, subject to the acceleration limits. 

PTP motion can even be initiated during PVT or PT motion. Upon switching from interpolated 

motion to PTP, the PTP will start unsmoothed, with smoothing gradually building up, until 

after milliseconds, the motion is fully smoothed. 

Care is also required when switching to tabulated (PT and PVT) motion modes. These modes 

should be started only when the motor is at a complete stop (MS=0 or MS=1), at the exact 

position specified as the first point for the PT or PVT. If the motor is not totally stopped at the 

correct start position, the software reference will jump.  

5.6.2 Position - Time (PT) Method 

In a PT motion, the user specifies a sequence of absolute positions with equal time spaces to 

be visited by the drive. The time space must be an integer multiple of the drive sampling time. 

Between the user-specified positions, the drive interpolates smooth motion. The position 

specifications are absolute. PT implements a third-order interpolation between the position 

data points provided by the user. 

Let T = m * Ts 

where: 

Ts is the sampling time of the position controller. T is the sampling time of the PT trajectory. m 

(system parameter MP[4]) is the integer parameter that relates Ts and T. For m=1, no 

interpolation is required. For m>1, there are certain sampling instances of the position 

controller for which the path command must be interpolated, using a third order polynomial 

interpolation. For each motion interval, four requirements must be satisfied: 

 Start position 

 End position 

 Start speed 

 End speed 

These four requirements exactly suffice for solving the third-order interpolating polynomial.  



65 
 

5.6.3 PT Table Design (QP Vector) 

The vector QP[N] defines the position points for PT motion. Each element of the vector 

defines the position at a given time. The QP vector has 1024 elements, and can therefore 

specify up to 1023 consecutive PT motion segments, or 1024 PT motion segments in cyclical 

mode. 

5.6.4 Position-Time Motion Scope 

In PT mode, the drive manages a “read pointer” for the QP[N] vector. When the read pointer 

is N, the present motion segment starts at position QP[N] and ends at QP(N+1). After MP[4] 

control sampling times, the drive increments the read pointer to N+1, and reads QP[N+2] to 

calculate the parameters of the next motion segment. The entire PT table need not be used 

for a given motion. The parameters of a PT motion are summarized in table 5.10. 

 

Table 5.10 PT motion parameters 

Parameters Use Comment 

MP[1] Lowest valid element for QP vector  

MP[2] Highest valid row of QP vector  

MP[3] 

0: motion stops if read pointer reaches MP[2]. 

1: motion continues when read pointer reaches 

MP[2]. The next row of the table is MP[1]. 

Cyclical 

behaviour 

definition 

MP[4] 
Number of controller sampling times in each PT 

motion segment. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.16 PT motion flowchart 

 

 

The PT table allows for the performance of both pre-designed and online motion plans by 

writing the QP vector while PT motion is executing. The online motion design ability is limited 

by the speed of the communication interface.  

 

 

 

 

 

Initial conditions: 
PT read  pointers 

equals N 

Motion 

segment 

completed 

N>= MP[2]-1 

Yes 

No 
Exit PT mode: 

Set stop motion  
Using the SD 
deceleration 

MP[3]=1 Yes 

Increment read 
pointer 

Set the read 
pointer to MP[1] 

Yes 

Read the N+1 element of  the QP 
vector and calculate the parameters of 

next motion segment 

Interpolate 
position command 

No 

Go to position 

controller 



67 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.17 PT auto increment mode flowchart  

 

The proposed implemented communication network allows much faster PT programming, by 

packing two position points into one PDO communication packet. For easy synchronization 

with the host, the drive may be programmed to send the PT read and write pointers 

Yes 

Initial conditions: 
PT read  pointers 

equals N 

Motion 

segment 

completed 

Read pointer, 
write pointer 

Exit PT mode: 
Set stop motion  

Using the SD 
deceleration 

Yes 

No 

No 

Yes N>= MP[2]-1 

Increment read 
pointer 

Set the read 
pointer to 

MP[1] 
 

Read the read pointer to the QP vector and calculate 
the parameters of the next motion segment  

MP[4] > 0 and write 

pointer N+1 

Or left time < MP[4] 

Yes 
Emergency 

queue low 

Interpolate 
position command 

Go to position 

controller 

No 

Emergency 

queue under 

flow 



68 
 

continuously to the host as a synchronous PDO, or to send an emergency object whenever the 

number of yet unexecuted motion segments falls below a given threshold. The PT motion 

algorithm (basic logic) and PT auto increment mode are depicted in  Fig. 5.16, and Fig. 5.17. 

 

The PT motion terminates when one of the following occurs: 

 The motor is shut down, either by programming MO=0 or by an exception. 

 Another mode of motion is set active; by programming PA=x; BG, for example. In 

this case, the new motion command executes immediately, without having to 

explicitly terminate the PT mode. 

 The PT motion manager runs out of data. This occurs when the read pointer 

reaches MP[2] and MP[3] is zero. This may also occur in auto-increment mode 

(CAN communications only) if the read pointer reaches the write pointer. In that 

case, the PT motion is stopped immediately, using the SD deceleration. Note that if 

the last programmed PT speed is zero, the PT motion terminates tidily.  

 

5.7 Stop Command Mechanism 

In order to protect the motor under the operation there is need to design the stop 

manager command. It helps to avoid the damage or malfunction of the motor. The stop 

command manager performs the following functions: 

 Brings the motor to a stop upon a software or hardware ST command 

 Brings the motor to a stop when the speed demand is positive and FLS (Forward 

Limit Switch) is active 

 Brings the motor to a stop when the speed demand is negative and RLS (Reverse 

Limit Switch) is active 

 Prevents acceleration or deceleration beyond the motor torque limits 

 

On the other hand stop manager prevents the speed controller command from changing 

suddenly by limiting the rate of reference change to SD (Maximum motor 

acceleration/deceleration) counts/second. When the stop manager stops the motor due to a 

switch action, the reference generator is replaced by a zero command at the input to the stop 

manager.  

The stop manager uses the SD parameter to decelerate the motor command from the output 

of the reference generator to a complete stop. When the switch action terminates (a Stop 

switch is released, for example), the stop manager uses the SD acceleration to recover the 

speed command to the output of the reference generator. 

 

5.7.1 Stop Manager Structure (Internal Elements) 

The stop manager plays an important role to avoid any damages, the embedded stop 

command in designed motion creating system is depicted in Fig. 5.18.  

 



69 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.18 Stop manager internal elements 

 

Each segment which is signed by number in Fig. 5.18 is described in the following: 

 Position Command Clipping (No. 1) 

The position command is clipped to the following values: 

The clipping is necessary because, in some circumstances (explained previously), the sum of 

the software command and the external command, or even the software command alone, 

may exceed the command limits.  

 Hard Stop (No. 2) 

This block stops the desired position reference to its present position if a Hard Stop switch is 

sensed. 

 Reverse Limit Switch (No. 3) 

1 

Clip position 

command to range 

Position 

Command 

 

Select Zero if Hard stop occurs 

Select direction 

limit if RLS 

Select direction 

limit if FLS 

Prevent Backward Motion 
Prevent Forward Motion 

Position Command to 

Motion Controller  
Rate & 

acceleration 

limiter 

3 
2 

4 

5 



70 
 

This block stops the desired position reference to its present position if an RLS switch is 

sensed, and if the output of the position reference generator is less than the controller 

position command. 

 Forward Limit Switch (No. 4) 

It stops the desired position reference to its present position if an FLS switch is sensed, and if 

the output of the position reference generator is greater than the controller position 

command. Rate and Acceleration (No. 5) This block limits the speed and acceleration of the 

controller position command. The block limits both the acceleration and the deceleration to 

the SD parameter, and the speed command (the derivative of the position command) is 

limited. 

The rate and acceleration limiter block intervenes in the following situations: 

 The position command to the controller experiences an abrupt change; for example, 

when a Hard Stop switch is sensed or when a Hard Stop switch is released. 

 The reference generator tries to control the motor in the permitted position range, but 

at too great a speed. 

 The position command moves towards its permitted boundary at a speed greater than 

can be braked until the boundary with SD acceleration.  

 

The stop manager block has the following functions: 

 Stops the motion upon sensing a Stop switch, or upon sensing an RLS or FLS limit 

switch. 

 Protects against discontinuity in the controller command. A discontinuity may occur 

due to: 

 A switch that abruptly stops the motion. 

 An application error (an absolute motion mode such as PVT is started with 

unacceptable initial conditions). 

 Limits the magnitude of the controller command to the maximum allowed range. 

 

This is necessary because even if the software command is generated within the permitted 

limits and the external command is also within the permitted limits, their total value may 

exceed the permitted limits. The stop manager prevents the position reference generator 

from driving the motor to undesired positions. It does not affect the reference generator.  

 

5.8 Motor Fault Diagnosis and Error Detection Approach  

The motor failure protection is designed since it happens that Archie motor sometimes cannot 

rotate well, therefore motor is unable to complete a command to move, and the reasons may 

be because of: 

 The motion sensor is faulty: The motor moves but motion is not detected. In this case, 

AC motors will generally stop, because the stator field will remain stationary. 

 The motor is faulty or another mechanical failure is preventing the motor from 

moving. 



71 
 

 The controller filter is poorly tuned. In this case, the motor torque may oscillate wildly 

at high frequency, but the motor will barely move. 

  

5.8.1 Motor Failure Protection Mechanism 

According to the facts, it is estimated that most of the electric motor failures occur at the start 

up. Hence following physical conditions are recommended to be checked before voltage is 

applied to the Archie motor: 

 Power supply under-voltage 

 Power supply over-voltage 

 Drive temperature too high 

 Motor not connected to servo drive 

 An active limit switch is programmed to shut down the servo drive 

 

Archie motor drive (motion creating system) is designed in order to avoid starting if the 

voltage of the power supply is not within range, if the servo drive temperature is too high, or 

if an active switch prevents motor on. The MO command returns error code or the user can 

send MF command to detect the problem. If the voltage is in range and the temperature is 

not excessive, the drive will attempt to start the motor. 

 

5.8.2 MF Command/Message Structure 

As mentioned above it can be summarized that error conditions may cause the drive to 

automatically shut down the motor, at which time: 

 The MO variable is set to zero. 

 The MF variable is set to reflect the reason for shutdown. 

 A flag in the status register (SR command) indicates that the motion has been aborted. 

 The next “Motor enable” (MO=1) is permitted after 150 sample times (TS). 

 

The MF variable may reveal the reason for motor shutdown even if the reason no longer 

exists.  For example, if the power supply has too large an impedance, its voltage may drop in 

full load and the servo drive will be automatically shut down due to under-voltage 

(www.elmomc.com, 2013). 

When the motor is shut down, the under-voltage disappears. On the other hand, if an over-

voltage is generated due to an insufficient shunt, the over-voltage will disappear when the 

motor is shut down. 

The over- or under-voltage conditions that caused the fault are captured in the MF variable. 

Notes: 

 MF is reset automatically every “Motor enable” (MO=1) when the fault is no longer 

valid. 

 When the drive shuts down by exception, the motor continues to run on its own 

inertia unless brakes are used. 



72 
 

 

Summary  

This chapter is organized in the first part to shortly describes:  

 New walking pattern principle of Archie 

 New approach to formulate constraints of a foot and torso trajectory and generating 

the foot and hip trajectory by third spline interpolation. 

 Problem of smooth hip motion formulation with the largest stability margin using xed 

and xsd, and derive the hip trajectory by iterative computation. 

 

In the second part the unique principle PT and PVT motion design and implementation for 

Archie locomotion is discussed and compared to the old method point to point (PTP) method 

which is utilized already.  

New drive motion library command is considered for single or multiple joints motion. It is 

responsible to generate trajectories based on the PT or PVT motion. It implements a set of 

functions that calculate trajectories as PT or PVT table for vector motion. Hence, Archie new 

motion creating system is designed in order to perform the PT or PVT mode individually. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

Chapter 6 New Motion Control Program and New Software Architecture 

Design  

6.1 Introduction 

This chapter aims to provide a comprehensive description of developments and 

improvements in motion controller program/software and relatively the new architecture 

design will be discussed. There are two different developed software for Archie locomotion. 

The version 1.2 is a latest developed form of version 1.1., in the case of graphical simulation 

which the upper body elements are added. The version 1.1. is designed by Stela H. Seol under 

the supervision of Prof. J. Baltes in University of Manitoba in 2010. We designed and created 

the latest version (ver. 2.1.) in order to improve motion control of robot by based on the PT 

motion by embedding new walking planning (as presented in chapter 5), and minimizing the 

computational efforts which devoted for generating smooth walking motion. Hence it is 

adopted a centralized system in order to construct a platform where user can easily develop 

and debug perception–action coupling control schemes. All of the sensor data, such as 

actuator encoder values, are directly available to the PC. Control commands are sent from the 

PC to the motor drivers directly. This requires an operating system in which many different 

cycle control loops can be executed concurrently (from 1 ms servo loop to higher level 

trajectory generation and motion planning loop, which have cycle times of several seconds). 

Accordingly first part of this chapter is organized to explain and present the development in 

program ver. 1.2, and in the second part, the reasons, requirements for designing the new 

motion control program, basic architecture and the performance mode of the new software 

(ver. 2.1) are discussed. 

The motion controller is the brain of the control system in robot. It is programmed to 

accomplish specific tasks such as walking. It plays the main control system role and provides 

the orders (commands) for synchronized motion of motors (joints). 

6.2 Motion Controller Program/Software (ver. 1.1 & 1.2) 

In this section, features of the modules, data flow and interaction between classes will be 

provided for motion control program (ver. 1.1 and 2.1). Information needed to configure the 

shell for an application (walking) and code's structure have been designed modularly, which 

means that there are several different compartments or “modules” which hold files that 

perform a specific function for the system. Examples of these files are robot joint, CAN bus 

communication, position, settings and so on. Each of these modules and their relationships to 

one another will be explained in the following. 

The program architecture of a robot can be defined as the structures of the motion system 

which are comprised of software components; the externally visible properties of those 

components and the relationships between them. This structure illuminates the top level 

design decisions; including such things as how the system's interacting parts are composed, 

indicating where the main pathways of interaction are, and what the key properties of the 



74 
 

parts are. Moreover an architectural description includes sufficient information to allow high-

level analysis and critical appraisal. Accordingly the developed software structure and internal 

interaction between modules are designed. Software interface will be described in order to 

answer possible questions of users or system software developers. The goal is to enable 

future users to develop different and complex simulations to achieve various results using 

graphs before implementing commands on the robot. Therefore the new embedded parts 

(upper body components) in GUI are presented. 

  

6.2.1 Program/Software Architecture 

Motion controller program is developed with Qt creator, a cross-platform integrated 

development environment (IDE). This section first justifies the use of the Qt platform for the 

development of the software and graphical user interface. Additionally a complete description 

of the different elements that constitute the graphical user interface in motion controller 

program (which is used to control and simulate Archie humanoid robot walking) will be 

provided.  

Qt Creator is an integrated development environment that provides tools to design and 

develop applications with the Qt application framework (www.qt.digia.com, 2012). it is 

designed for developing applications and user interfaces once and deploying them across 

several desktop and mobile operating systems. Qt Creator is provided with tools for 

accomplishing new tasks throughout the whole application development life-cycle, from 

creating a project to deploying the application on the target platforms (Fig. 6.1). The motion 

controller program ver. 1.2 platform and tools are presented as follows: 

 

a) Creating Program (Project ) 

The first step in writing motion controller program is to create the project. The capabilities 

that lead to create a project are: 

 Group files together 

 Add custom build steps 

 Include forms and resource files 

 Specify settings for running applications 

 To generate project with required headers, source files, user interface descriptions and 

project files, as defined by the wizard. 



75 
 

 

Fig. 6.1 Necessary QT creator tools for motion controller program   

 

b) GUI Design   

A motion graphical user interface is developed to provide a communication link and command 

interface between off-board computations to generate the retargeted joint commands and 

the on-board real time control. It provides a comprehensive way to give motion commands to 

the robot, without having the user to care about issues such as delays, synchronization, or on-

board control for maintaining balance, and collapse avoidance. Such an interface is desirable 

since the real-time implementation requires synchronization between critical control 

processes that may not be satisfied dependably with a network connection. For safe, effective 

and rapid control of the robot, the robot must operate as an embodiment and extension of 

the operator. In other words, the operator must cognitively place themselves in the same 

position as the robot. But two barriers exist in achieving this goal. 

The first barrier comes from designing a suitable mapping between what a human considers 

as intuitive movement and translating it to sensible movements in the robot.  

The second barrier is quality level of sensing and perception. The operator is not in the same 

place as the robot and the sensors on the robot may not match those that a human is used to. 

In order to overcome this barrier, familiar sensors must be presented in a way that provides 

the operator with good situational awareness and allows them to form a good mental model 

of the environment.  

Teleoperation remains an important part of interaction with robot. Various degrees of 

autonomy are starting to become possible however, some form of direct operating interface 

will be required and even when it becomes possible, alternative forms of user interfaces will 

QT 

Deploy 

Create 

Design 

Code 

Build 
(qmake) 

Test 



76 
 

be needed for human-robot cooperation. The design of professional user interfaces for robot 

awareness and control, are critical to the success of Archie smooth walking. 

Designing tool consists of a rich set of user interface elements, a declarative language for 

describing user interfaces, and a language runtime. Large high-resolution screens, complete 

input, and significant graphics power are main elements considered in design of the new 

developed program GUI. 

c) Code editing 

Code editor in QT (ver. 1.2. platform) is different from text editor, it understands C++ 

language not just as plain text (www.qt-project.org, 2013), It allows to : 

 Write well formatted code 

 Anticipate writing and complete the code 

 Display inline error and warning messages 

 Semantically navigate to classes, functions, and symbols 

 Use provided context-sensitive help on classes, functions, and symbols 

 Rename symbols in an intelligent way, so that other symbols with the same name that 

belong to other scopes are not renamed 

 Present the locations in code where a function is declared or called 

d) Building-qmake 

Build settings cause to quickly switch between build targets. It is integrated with cross-

platform systems for build automation: qmake. In addition, it is possible to import generic 

projects that do not use qmake. 

e) Testing 

One of the advantages is that there are code analysis tools to detect memory leaks, profile 

cache usage, and profile applications. There is a platform to test applications that are 

intended for special mobile devices in the simulator, but it is necessary to test the applications 

on real devices. The mobile device should be connected to PC and then start debugging 

processes running on the devices. 

f) Debugging  

In the Debugging mode there is a possibility to inspect the state of application while 

debugging.  Interacting with the debugger is in several ways, including the following 

processes: 

 Going through a program, line-by-line or instruction-by-instruction 

 Interrupt running programs, setting breakpoints  

 Examine the contents of the call stack 

 Examine and modify registers and memory contents of the debugged program 

 Examine and modify registers and memory contents of local and global variables 

 Examine the list of loaded shared libraries 

 Create snapshots of the current state of the debugged program and re-examine them 

later 



77 
 

It provides high level functions to create and customize a graphical user interface as well as all 

of the basic components that one could want to use for a graphical interface.  Powerful tools 

to create our own components from low level functions (painting, events) are also provided. 

The proposed library has the advantage of providing this concept of communication using 

signals and slots. This library is used to simply connect or disconnect classes together through 

very clear interfaces. This allows a flexibility in the code and between the classes. Everything 

can be built independently and then linked at run time. This notion has been particularly used 

to link the variables to the graphical user interface (Fig. 6.2).  

 

Fig. 6.2 Qt creator platform 

 

The main advantages of this platform which makes it different from others are: 

 It has rich libraries for graphical user interfaces. 

 It is possible to program in C++ language and the software runs on Linux System 

operative. 

 It uses Object Oriented Programming. It allows flexibility between classes. 

 It is based on the concept of Widgets, Signals, Slots and Events. 

 The developer can easily add, remove and update the modules (scalability). 

6.2.2 Class Creating (in C++) 

The C++ class wizard creates a C++ header and source file for a new class that can add to a C++ 

project. Class name, base class, and header and source files for the class are specified. In Fig. 

6.3. created classes in motion controller program are presented. Up to now the main platform 

and tools to prepare the infrastructure for developing the program are described. From now 

on the developed version of motion controller program structure will be discussed and 

compared  to realize the new capabilities of the developed program. 



78 
 

 

Fig. 6.3 Different created classes in motion controller program  

 

6.3 Developed Program Structure Description (ver. 1.2)  

In this part the structure and new interaction forms including GUI improvements and 

implementations alongside the edited codes are described. The program uses multiple files-

.cpp/.h- to group functions and classes into modules. The structure of program has been 

modified and redesigned to be reasonably competitive with the old version. These 

modification features are listed as follows:  

 The motion controller codes are modified in facile format to be easy understandable 

and accordingly they can be located, modified or replaced with functions so easy.  

 Compilation time sharply reduced because only the changed modules need to get 

recompiled.  

 The modules could work independently but they are related to each other; if one 

changes the interface of one module, the other modules will need to get recompiled. 

In this case the error ratio of program compilation is decreased. 

 The next module needs to know the functions or classes provided by previous modules 

(this is included in the headers files). Every classes, functions or objects are only 

defined once. Redundancy is removed and it is expedited the performance of the 

program. 

The program structure is very important to be well arranged in individual modules. Each 

module consists of two files: a .cpp file (source code file) and a.h file where functions and 

classes are declared. Moreover it is strongly needed to define a common interface between all 

the modules. In order to have scrutiny view of the actual process between improved modules 

and their functions, the main code features are listed as follows: 

 Setting: 

 This module is used to load and save controller settings in text file (.txt). 

 

 



79 
 

 Defs: 

This file defines different structures such as kinematic_option or joint_type which will be used 

in the following modules. Moreover, within the defs. file the different parameters used in the 

graphical user interface are assigned to predetermined values and names. 

 Robot:  

One of the most effective module in version 1.2, is robot class, since it collects many functions 

related to the kinematics of the robot and the motion controller graphs, which will be used in 

the simulation. The applied parameters and elements are listed as follows: 

 Inverse kinematics. These variables are used to calculate and modify (update) angles 

for each movement.  

 Collecting robot information for Motion Editor. These provide the robot name and the 

background image.  

 Drawing components. These display the yellow point on frontal, lateral and step graph. 

 Display the items in Motion Editor. 

 

 Main window: 

This module is a modern action-based class including window, toolbar, menu, and docking 

architecture. It can be called as one of the main changed and edited module for motion 

controller program. 

 

 Serial: 

This class is related to adjusting the baud rate for communication and choosing type of 

terminal that will be connected to the PC. It gives the permission to open the modem device 

for reading and writing as well as check the communication in case of an error. When the 

communication is interrupted, the program advises to change the port. Different range of 

baud rates are embedded to let the user transfer data in different speed rate.  

 

 Utility:  

The functions of this module do not perform specific tasks, but instead support other 

modules; these functions are used in different modules. For example it makes a variable in 

bound of range, converts radians to degree and vice versa.  

 

 Robotjoint: 

The variables and functions related with the position and angle of the robot humanoid joints 

are used in this module. They are listed below: 

 D.H. representation:  these four variables: length, offset, twist, and angle - are used to 

build the matrix 4x4 for D.H. Kinematics. 



80 
 

 Declaring to the actual position of the servo. It declares the variables: initial degree, 

maximum and minimum degree, one tick of a turn is one degree. It also checks if the 

motion of each joint occurs within the range allowed. On the other hand the user can 

limit the rotation angle of the join to avoid any damages on the hardware of the robot 

via this module. 

 Each joint type. For example name of joint defining, and selecting the Id of driver. 

 The motion editor. X and Y co-ordinates, as well as width and height of steps. 

These variables and calculation are applied to: 

 Collect, modify and set joint angles 

 Set exact driver positions 

 Prepare information regarding various joints before starting motion 

 Collect variables for the DH representation matrix 

 Collect motion editor inputs 

 
 

Fig. 6.4 Data stream between modules in motion controller 

 

 Canbus: 

This module task is to establish the communication network which is specifically devoted to 

communication between the PC and USB to CAN converter.  

 



81 
 

 Position: 

This class runs functions and assists to reduce the calculation of the joint position. It can set 

and reset the initial joints position to let robot standing in the proper form. 

 

 Movement: 

In this module, a specific variable for kinematic movement, is defined. Pointers-Qvector3D- 

are used to locate the position of the end effectors – left/right fingers and left/right toes – and 

to calculate the motion path. Also pointers – QpointF – are used to get the trajectory of the 

yellow point in the graphical windows. In this file the new developments such as adding upper 

body joints and relatively their functions and calculation are embedded. 

 

Table 6.1 Legend of the Fig. 6.4 

Symbols & colours  Block description 

 Parameters setting for graphical view in motion controller 

 

 Kinematic & joint model option + presentation (Set &Get) 

 

 Calculation & control (Transform. Matrix, Set Parameter) 

 

 

Communication network (serial port, CAN message) 

 

 

 

Mainwindow class contains all widgets and all classes 

where there is an  access to all widgets placed in graphical 

and simulation interface (Update Scenes) 

 

Main is a specific widget that has things like a menu bar, 
tool bar and status bar built-in. This class is useful for the 
main application window to fit around the desired main UI 

 

 

Execution commands are situated in this class to let the 

robot play or stop 

 

 Archie: 

This is the main module because all functions from the last modules cooperate together to 

support and run this module to send final execution commands to robot. 

Data streaming between these modules are depicted in Fig. 6.4. Accordingly the blocks 

definition and their functionality are classified in Table 6.1. It is noticeable that the main focus 

in development of old-version is on removing the internal errors, expediting the performance 

and adding the upper body joints simulator in internal structure and GUI.  

Main 

window 

Drive    

controller 



82 
 

6.3.1 Motion Controller Program GUI (ver. 1.1)   

Graphical user interface in old motion controller program is divided in 3 main parts which can 

be presented in Fig. 6.5.  

 

Fig. 6.5 Motion controller GUI design (ver. 1.1) 

 

Incorporated walking types of motion (❶) include forward, backward, leftward, and 

rightward walking. Communication establishment (❷ ) and movement options (❸) can be 

adjusted through the graphical user interface. This version (ver. 1.1) provides facilities for 

controlling 2 types of humanoid robots (Bioloid and Archie) in combination with graphical 

simulations. 

6.3.2 Scheme of the Motion Controller Program (ver. 1.2) 

In the following, different tasks of each frame in graphical user interface are described in 

more detail (Fig. 6.6).  

a) Motion Controller 

In this context, the title of software is displayed as well as basic functions such as close and 

minimizing the main window. 

b) Main Menu 

The motion controller menu contains three different possible actions: file, control and help 

menu. The file menu consists of the commands new, open, save, print to XML and exit. The  

new button opens a new file while the open button allows the user to start the program with 

predefined parameters which have been saved previously in XML or text file. The save button 

is used to save the options chosen in frame c and e or any changes made by user. All of the 

3 

1 

2 



83 
 

data can be saved for each type of walking in XML, or text file. The print to XML button saves 

data about the robots definition, joint type, joint id, joint position as well as the step 

parameters. 

 

  

 

 

 

 

 

 

 

 

 

Fig. 6.6 Scheme of the motion controller interface (ver. 1.2) 

 

c) Walking Direction 

This frame presents motion experiments for a biped robot that the user can chose for walking. 

This part presents some basic motions of a humanoid robot, namely walking forward and 

backward, left or right ward  motion. 

d) Communication Network + Motion Start and Stop 

This window lets the user to check and adjust different features related to the connection 

between the software (PC) and hardware (robot). These controls are listed below: 

 Robot Type:  

The software architecture allows the user to use the same program with two different 

robots. Bioloid or Archie robot can be selected. 

 Device Name:  

It enables the user to select the type of terminal to connect the PC with the CAN 

converter. The Archie robot will use. 

 Baudrate:  

This sets the bit per second rate. The baud rate chosen for the Archie robot 

communication will be 1 Mbit/s. At 1 Mbit/s one bit will take 1*10-6 sec. and one CAN 

a) Motion controller  ver.1.2 (Close menu + minimize window) 

b) Main Menu (File + Control + Help) 

f) Frontal View  

(Walking Simulation) 

h) Frontal Graph  

(including hip 

height ) 

i) Lateral Graph 

(including hip 

height ) 

j) Step Lateral 

Graph 

(Step curve 

including step 

height) 
g) Side View  

(Right view of 

walking) 
c) Walking Types 

1)Forward 

2)Backward 

3)Side wards d) Communication 

Network 

Establishment + 

Play & Stop motion 

e) Walking Parameters 

1. Main parameters in motion                

(frequency-phase-hip height)   

2. Arms motion  

(activation-width-height- length)  

3. Step Parameters (step height-length) 

4. Initial angle of each joint 

5. Angle modification 

 



84 
 

message frame takes 64*10-6 sec. If the baud rate is changed, then the interval will be 

longer. 

 Play Motion/Stop Motion:  

Start/Stop the Archie robot simulation in interface. 

 Serial Open/Serial Close:  

this opens the modem device for reading and writing, it is based on the baudrate and 

terminal that will be connected to the PC. 

 Play Robot / Stop Robot:  

Start/Stop motion of the robot. The robot should perform the same movements as shown 

in interface within motion controller software. 

 

e) Walking Parameters 

Within the Walk-forward Options menu there are five sub-menus: Walk Direction Options, 

Motion Arms, Step Options, initial angle and modifier angles. These sub-menus are presented 

as follows: 

 e.1. Walk Direction Options 

Different features of the robot gait can be modified if the parameters within the walk 

direction option menu are changed. These parameters and how they affect the robot gait are 

described below: 

 Frequency: This relates to the walking step. If the value is increased the walking of the 

humanoid robot will be faster. 

 Phase: The walking cycle has different phases. This value depicts the origin where the 

walking is to begin. 

 Hip Height: the lowest point of the robot´s hip on the hip graph. The value is in 

millimetres. 

 Hip Amplitude: The vertical amplitude that the hip uses to walk. The value is in 

millimetres. 

 Hip Sway Range: The frontal swing of the centre of gravity. This value is in degrees but 

the range is measured in millimetres 

 

 e.2. Arms motion 

The arms motion simulation during the walking is also considered in this window. First of all, 

the arm width (the distance between end effectors) can be modified. Secondly the height of 

the end-effectors can be selected. The last and final parameter indicates the lateral length 

between the end-effectors when the humanoid robot is walking as well as while swinging its 

arms. The motion arm menu is shown in the Fig. 6.7. 

 



85 
 

 
Fig. 6.7 Arm motion window 

 

 e.3. Step Parameters  

The step parameters can be adjusted via this window, it allows the user to select the type of 

path, either trapezoidal curve or Ellipse curve, which ankle joint should follow as a path or 

trajectory. All the main parameters considered to control walking step such as height, length, 

rise and fall angle are depicted in Fig.6.8. Any changes in features of walking are presented on 

real time graphs and simulation in GUI.  

 

 
Fig. 6.8 Step parameters menu 

 

 e.4. Initial angle and angle modification 

In the last and final frame, the user can modify the initial angle before start walking, and also 

angle during the walking (in degrees) for each joint of robot. 

The motion controller program is developed in order to minimize the communication bugs, 

errors and miscalculation of smooth walking. Additionally GUI-simulation window for all joints 

including upper body as depicted in Fig. 6.9 are added.  In order to improve Archie walking via 

motion controller program (ver. 1.2), following items are implemented: 

 Internal codes are in necessary classes to improve the running performance. 

 Walking parameters modification such as hip height, step length and height and so on 

(Table 6.2.). 

 Joint angle values for smooth synchronised motion are optimised after so many 

different tests and the final values are presented in Table 6.3. 

 Data Communication network and command distribution bugs and errors are 

removed.  



86 
 

 

Fig. 6.9 New GUI for motion controller program (ver. 1.2) 

 

Table 6.2 Final optimised value of main parameters in motion controller program (ver. 1.2) 

Forward Walking (Parameters) Optimized value (result) 

Hip height (mm) 520 

Step Curve  Elliptical 

Step length (mm) 60 

Step height (mm) 15 

Rise angle (deg) 30 

Fall angle (deg) 30 

 

 

 

 



87 
 

Table 6.3 Final optimised joints angle in motion controller program (ver. 1.2) 

Initial joint angle Optimized value (result) 

Right Hip lateral (deg) -30 

Right Knee lateral (deg) 28 

Right Ankle lateral (deg) 10 

Left Hip lateral (deg) -14 

Left Knee lateral (deg) 22 

Left Ankle lateral (deg) 10 

6.3.3 GUI Improvements in Motion Controller Program (ver. 1.2) 

The interface presents two simulations window from two different points of view, side right 

view and front view. Fig. 6.10 depicts a screen shot of developed Archie simulation window. 

When the simulation of the Archie robot begins, a yellow point covers the trajectory of each 

of the three graphs at the same time. This allows the user to gain a comprehensive monitoring 

of the data flow, in the different phases of the gait cycle. 

 

Fig. 6.10 Simulation of the humanoid robot Archie (including upper body motion) 



88 
 

Motion controller simulation has a key role in robot motion creating system. It includes 

kinematic models of robot, meanwhile being able to simulate a wide range of motion options. 

Besides the kinematic information in motion controller program of Archie there are graphs 

and motion simulator for designing a model of an actual and physical behaviour of robot, to 

execute the movement commands, and test and analyze the execution output. 

In this program two different paths such as elliptical and trapezoidal path are defined for end-

effector (toe joint). In this window (Fig. 6.11) the robot is in initial position before starts any 

motion, therefore the yellow point is in the start point of the path (first position point). During 

robot walking this yellow point follows the desired trajectory which is adjusted already by the 

main values.  

The main goals of using simulation and graph are to provide the platform for the user to play 

robot in a virtual world and: 

 visualize the robot model and movement (walking) in a simulated environment,  

 provide a testbed for the development and evaluation of robot control and software 

behaviours to avoid injuries and damages and necessary or unnecessary changes in 

robot,  

 serve as an interactive, task-level user interface for real time controlling of the robot. 

 

    

Fig. 6.11 Different desired step path 

 

 

Different windows (graphs) are considered to simulate and evaluate the robot motion in 

program. In frontal and lateral view of simulation the robot motion according to parameters 

which are set already is presented. 

It is remarkable that the developed software calculates the angle of each joint using the basic 

functions supplied by internal modules. As result of this process, the system generates the 

humanoid robot path. These calculations also provide data to generate the output (Archie 

simulation and hip motion & step-trajectory graphs). Interface functionality due to classes and 

codes which already explained is depicted in Fig. 6.12.  

From now on the new format of motion controller which is based on the PVT table array for 

synchronized motion will be explained. This new version is different in path generation 

algorithm, foot and hip trajectory from the other versions (ver. 1.1 & 1.2). Archie could walk 

for more than 10 meters for the first time by implementing and running of this version.  



89 
 

It is noticeable that in the following part of this chapter the mechanism and program 

architecture design of this new software will be discussed, but the actual tests and results are 

presented in the chapter 7. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.12 How interface in motion controller software works 

 

 

 

 

 

 

 

 

 

 

 

 

 

Walking parameters for the 

desired trajectory 

 Step length 

 Step height 

 Hip height 

... 

 

Motion Controller Interface 

Calculation (basic functions) 

 Initial angle modification  

 Setting joint angle  

 Desired trajectory generation 

Walking type selection 

 

 Forward 

 Backward 

 Sideward 

 

Network Communication 

establishment 

 Set and Get 

commands 

 Baud rate  

 Serial port 

 

Simulation + Graphs 

 Archie walking  

 Step path 

 Hip motion 

 



90 
 

6.4 New Motion Controller Program (ver. 2.1) 

The latest motion controller program (ver. 2.1.) is created in Linux, and written in C++ codes. 

Since it is based on a Linux core, it is highly suitable as a research platform owing to the wide 

availability of high-quality, open-source development tools and libraries. All basic operating 

system functions (file system, networking, etc.) become standard, and it is relatively easy to 

add new hardware support by writing a custom device driver. 

The system consists of CAN message frame, walking planning and calculation modules. 

Control loops that require accurate execution cycles are implemented as real-time kernel 

modules, such as the motor driver loop and the walking control system. Programs and 

processes that operate over longer control cycles, such as new motion library command, 

speed control loop and new walking planning method, are embedded. 

The main purpose of this part of chapter 5 is to present the design, implementation, and 

development of a method and principle which differs from those already implemented for 

walking of Archie. But before starting discussing about any modifications and improvements, 

the old program/software is analysed based on: 

 Interaction style and command generation  

 Code design, and expediting the running performance 

 Real time communication establishment, fast command distribution 

 Walking pattern generation and motion control logic 

 Test design, debugging and source code maintenance  

The aim of this part is to present the unique way to modify and improve the communication 

network, data distributing, walking pattern and motion logic that implemented already in 

older version (1.2). In this manner the new version (2.1) is designed and implemented based 

on the new hardware improvements (2 new frontal ankle joints and etc.). In this program the 

new principle is inspired from the paper "Planning Walking Patterns for a Biped Robot" and 

also adopted from the book called Gait Analysis (Perry, 1992).   

It is remarkable that two important specifications which are being user friendly and unify are 

considered in the interior design. On the other hand, from programming perspective there are 

several reasons for designing new software and motion controller program (Fig. 6.13). 

The new motion controller software is designed based on PT motion for the forward walking 

of Archie. The command lists and real-time messages are monitored in the graphical interface. 

It helps the user to find out the location and type of errors easily, and on the other side shows 

the real time data distribution to joints. This control panel provides the facilities for the user 

to activate or deactivate any joint just by selecting/unselecting them in GUI, and letting the 

user to set the walking parameters for the desired path. The initial joint angle value for 

starting the walking can be loaded and run individually in the command line window. 



91 
 

 

Fig. 6.13 Main problems of old motion controller program 

 

6.4.1 Walking Control System in Program (ver. 2.1) 

This section provides an overview of Archie walking control system in motion controller 

program that generates joints trajectories to follow a given desired motion. A layered 

software and control architecture is used to aggregate system components and provides a 

framework for high-level autonomous locomotion behaviours. Walking characteristics such as 

desired hip movements, upper body posture and step cycles, can be specified and used to 

generate stable whole-body walking trajectories. 

 The basic architecture consists of four layers: footstep decision; trajectory generation; 

trajectory modification; and joint driver control. In order to accommodate these design 

constraints, a hierarchical architecture that consists of layers of different control cycles is 

developed. The block diagram of the designed motion controller program for locomotion of 

the robot is depicted in Fig. 6.14.  

 

Motion controller 
program/software 

problems (ver. 1.1.) 

CAN Communication establishments errors and problems 

Limited abilities to adjust certain motions 

Limited monitoring of commands (send and receive) 

Lack of velocity control and managing the joints speed 

No documentations about internal software structures  

Impossibility of joint activation/deactivation in GUI 

Technical probelems in debugging, testing and 
maintenance of source codes 



92 
 

                                               

Fig. 6.14 Motion controller program flowchart (Dezfouli & Mohamadi Danial, 2012) 

 

At the first stage, user has to set several walking parameters such as step length (mm), step 

height (mm), hip height (mm), number of interval, sample time (ms), body center position and 

USB connection port (Fig. 6.15), and afterwards the desired joints which will be involved for 

walking and so on. At the second stage, user chooses the walking types such as forward or 

backward walking, right/left side walking and clockwise/counter clockwise turning of motors.  

 

 

Fig. 6.15 Walking parameters (first stage) 

 

In the third stage, proper walking pattern is generated according to the walking parameters 

and walking types. At the fourth stage, all joints angles are derived by inverse kinematics and 

control algorithm. Finally, the main computer sends the reference position data to all joint 

drivers. 

6.4.2 Program Communication/Graphical User Interface Design 

Since each joint is basically connected to motion controller program via the proposed 

communication network for an individual motion, the interface should provide appropriate 

setting ability for position and velocity profile of each joint of robot to manage the proper 

movement (Fig. 6.16 and 6.17). 

Walking 
parameters setting 

Walking type 
selection 

Walking pattern 
generation 

Inverse Kinematic 
 (Position Ref.) 

PI controller (drive 
motion controller) 

Biped Robot P
o

si
ti

o
n

  f
e

e
d

b
ac

k 



93 
 

  

Fig. 6.16 Designing the new GUI 

 

 

Fig. 6.17 Designed GUI for new motion controller program (ver. 2.1) 



94 
 

6.4.3 PT and PVT Mechanism in Software 

One of the main distinction of new designed program (ver. 2.1) is using PT and PVT table in 

controlling the joints for a stable walking. It is mentioned that the PT motion is embedded in 

new software but for much more accurate joint control the PVT motion is also embedded. The 

large majority of motion trajectories are either trapezoidal or S-curve profiles.  

In the case of trapezoidal profiles, the velocity is ramped linearly,  and in the case of S-curve 

profiles, the  acceleration is ramped linearly. The resulting position profile is 2nd and 3rd order 

respectively. Although these standard profiles suffice for point to point moves, they are not 

useful for more complex position profiles or distributed coordinated multiple axis motion. PVT 

paths are third order (cubic) rather than first order (ex: PT paths). The position and velocity 

are continuous, the acceleration and jerk are not.  

PVT paths tend to be much smoother than PT paths, but the velocity of each axis needs to be 

provided at each of the supplied points. This can increase the complexity of the application 

since the velocity at each point is often difficult to determine. The time is defined in 

milliseconds, not in drive sampling times.  

The motor drive interpolates the motion specification in order to calculate the desired 

position and speed at the sampling instances, when it needs the information. PVT implements 

a third-order interpolation between the position, speed data provided by the user. For each 

motion interval, the user specifies the boundary of positions and speeds. Mathematically, the 

user provides the following data: 

 Starting position and speed, denoted by P0 and V0, respectively 

 End position and speed, denoted by PT and VT, respectively 

The PVT method is an easy to implement algorithm for arbitrary position trajectory 

generation. Segment times can be relatively large, without much loss of precision. The PVT 

points can either be stored in a table locally or can be parsed over a communication network 

to various axes. This allows implementation of a distributed multi axis system without the 

need for a very high speed deterministic network infrastructure.  

A three-column table (Table 6.4) is used to define PVT motion. Each row of the table defines 

the position and speed at a single time instance. The table has 64 rows, enabling the 

specification of up to 63 consecutive PVT motion segments (64 segments if the table is used 

cyclically). The cells of the table may be accessed using the QP, QV and QT commands: 

 The QP[N] command sets/reads the nth row of the P column. 

 The QV[N] command sets/reads the nth row of the V column. 

 The QT[N] command sets/reads the nth row of the T column. 

 

 

 



95 
 

Table 6.4 PVT table 

Index P (32 Bits) V (24 Bits) T (8 Bits) 

1 QP[1] QV[1] QT[1] 

2 QP[2] QV[2] QT[2] 

3 QP[3] QV[3] QT[3] 

... QP... QV... QT... 

64 QP[64] QV[64] QV[64] 

 

 

The first PVT point must be within the range XM[1]…XM[2]. the remaining PVT points need 

not be within modulo range; but the difference between consecutive PVT position points 

must be less than(XM[2] - XM[1])/2. For example, suppose that XM[1] = 0 and XM[2] = 1000. If 

the PVT describes a trajectory beginning at 0 and ending at 10,000, the motor will travel 

10,000 counts, fully completing its position range 10 times. In a PVT motion, the desired 

position and speed are provided at selected time instances. Between these specified times, 

the motion controller interpolates to obtain smooth motion. The position and speed 

specifications are absolute, while the time specification is relative.  

A PVT motion can be referenced in absolute time by requiring it to start at a specified time. 

The BT (Begin on Time) command is used to start a PVT motion exactly at a given time, using a 

microsecond resolution. The ability to relate PVT motions to absolute time makes them ideal 

for tightly-synchronized multiple axis motions. PT or PVT motion is programmed as a 

sequence of points that are visited at programmed times. The QP[N], QV[N] and QT[N] arrays 

may be referred to as cyclical buffers. In cyclical mode, periodic motions can be set to run 

forever. The MP[N] array defines how the QP[N], QV[N] and QT[N] tables are used for PVT and 

PT motions, as mentioned in the Table 6.5 (www.elmomc.com, 2013). 

6.4.4 Motion Management in PVT Method 

In PVT mode, the drive manages a “read pointer” for the PVT table. When the read pointer is 

N, the present motion segment starts at the coordinates written on the Nth row of the table, 

and ends at the coordinates of the (N+1) row2. When the time period specified by QT[N] 

elapses, the N segment is complete, the drive increments the read pointer to N+1, and then 

reads the N+2 PVT table row in order to calculate the parameters of the next motion segment 

(Fig. 6.18). 

The entire PVT table need not be used for a given motion. The different PVT mode to be used 

in motion controller program is defined by the following parameters (Table 6.5): 

 

 

 



96 
 

 

 

Table 6.5 PVT mode definition 

Parameter Use 

MP[1] Lowest valid row of the PVT table 

MP[2] Highest valid row of the PVT table 

MP[3] 

A bit field: 

Bit 0 is: 

0: Stop motion if read pointer reaches MP[2] 

1: Continue motion when read pointer reaches MP[2]. The 

next row of the table is MP[1]. 

Bit 1 is : 

0: PVT motion not expected to terminate. Issue an exception 

if it does. 

1: PVT motion expected to terminate. When all data in PVT 

table has been used, exit PVT mode to Idle mode without 

issuing an emergency object. 

 

 

The PVT table may be written online while PVT motion is being carried out. An infinite non-

periodic motion can be generated in cyclical mode (MP[3]=1) by programming the PVT table 

on-the-fly. The host must know how much free place is available in the PVT table in order to 

continue programming and executing PVT motion. This is achieved most efficiently by tracking 

the table read and write pointers. The host is aware of the write table status, because it 

controls writing to the table. If there is a doubt, the host can query MP[6]. The PV command is 

used to query the read pointer. 

The read and write pointers can be mapped to a synchronous PDO, so that a CAN master can 

efficiently and continuously stay informed about the status of multiple drives running PVT in 

parallel in a network. Rather than polling the status of the PVT motion continuously, the host 

can use the queue underflow CAN emergency object as a request to refill the PVT table. An 

unused part of the PVT table may be programmed for the next motion while the present 

motion is executing. An attempt to modify the data of an executing motion segment 

generates an error. 

 

 

 

 

 



97 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.18 Designed PVT decision flowchart 

 

 

 

 

 

 

 

 

Initial conditions: 
PVT read  pointers 

equals N 

Motion 

segment 

completed 

N>= MP[2]-1 

Yes 

No 

Exit PVT mode: 
Set stop motion  

Using the SD 
deceleration 

MP[3]=1 Yes 

Increment read 
pointer 

Set the read 
pointer to MP[1] 

Yes 

Read the N+1 of row of PVT table and 
calculate the parameters of next 

motion segment 

Interpolate 
position command 

No 

Go to position 

controller 



98 
 

6.4.5 PVT Motion Programming Message 

An entire row of the PVT table may be programmed by a single PDO — 0x200+ID — where ID 

is the node ID of the drive. Note that before using this PDO, it must be mapped to the object 

0x2001. The PDO is mapped for the PVT mode in mentioned in Table 6.6. 

 

Table 6.6 PDO mapping for PVT mode before using 

  

PDO mapping for PVT mode before using 

 

Object dictionary index  0x2001 

Type Record, three elements 

Access Write only 

Structure Signed 32 position, signed 24 speed, unsigned 8 time 

PDO mapping Yes 

Value limits No 

Default value Not applicable 

 

 

The PDO does not specify the PVT table row to be programmed; instead, a write pointer 

specifies the row. The parameter MP[6] initially sets the write pointer. A new PVT CANopen 

message (object 0x2001) write the data to the table row indicated by MP[6] and then 

automatically increments MP[6].  

The PVT command auto-increment mode is described in the following flowchart (Fig. 6.19). To 

stay informed about how the PVT motion is advancing, the read and write PVT table pointers 

can be received continuously, mapped to a synchronous PDO, or the “Queue low” emergency 

signal can be used to indicate the need for more data. The “Queue low” emergency message 

includes the present location of the read pointer and the write pointer. The host is well aware 

of the location of the write pointer, because it can count its own messages. 

However, a data message may be rejected because the queue is full, or because a message 

has been lost. In such a case, the drive issues an emergency object to the host. Accurate 

timing with respect to the host is the essence of multiple-axis synchronized motion. Such 

timing can be achieved by using the CAN SYNC signal and the CAN synchronized BG service, as 

described already. Finally the desired joint trajectories are generated to let robot smoothly 

walk.   

 

 

 



99 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.19 Auto increment PVT mode design 

 

 

Initial conditions: 
PVT read  pointers 

equals N 

Motion 

segment 

completed 

Read pointer, 
write pointer 

Yes 

Yes 

Exit PVT mode: 
Set stop motion  

Using the SD 
deceleration 

N>= MP[2]-1 

Yes 

Increment read 
pointer 

Set the read 
pointer to 

MP[1] 
 

Read the read pointer row of PVT table and 
calculate the parameters of the next motion 
segment  

MP[4] > 0 and write 

pointer N+1 

Or left time < MP[4] 
Yes 

Emergency 

queue low 

Interpolate 
position command 

Go to position 

controller 

No 

No 

Emergency 

queue  

under flow 

No 



100 
 

Summary  

When a new software project begins, it is necessary to define the tools to be used all along 

the process. How will a design be described? How will the development and old version of the 

project be maintained? A motion planning software is not a small application; it really is a big 

software project where many libraries are working together. For this reason, it is important to 

begin with a good task plan covering all the development steps. Hence in this chapter the 

different motion controller program (software), old version (ver. 1.1), the developed one (ver. 

1.2) and the latest new version (2.1) for Archie locomotion is described. 

The latest version (ver. 2.1) is designed to improve motion planning, stable walking and 

minimize the computational efforts which devoted for generating smooth walking motion. It is 

adopted a centralized system in order to construct a platform where user can easily develop 

and debug perception–action coupling control schemes. All of the sensor data, such as 

actuator encoder values, are directly available to the PC. Control commands are sent from the 

PC to the motor drivers directly. This requires an operating system in which many different 

cycle control loops can be executed concurrently (from 1 ms servo loop to higher level 

trajectory generation and motion planning loop, which have cycle times of several seconds). 

In order to achieve a smooth walking of biped humanoid robot Archie, the new motion 

controller is designed including : 

 

 New joint trajectory generation to follow a given desired motion 

 New motion library command to be used for joints motion based on the PT,PVT 

motion method 

 New motion management mechanism (easy switching between modes) 

 Developed synchronization mechanism 

 Code priority message transmission based on the arbitration 

 PDO mapping and planning mechanism 

 New simple GUI including data flow monitoring to detect the errors in transmitted or 

received commands, easy joint activation/selection for single, multiple or synchronized 

motion 

 

 

 

 

 

 

 

 

 

 

 



101 
 

Chapter 7 New Software Implementation and Forward Walking Test Results  

7.1 Introduction 

In previous chapters the hardware and software development including the new structure, 

new creating motion design and program for a biped humanoid robot Archie are presented. 

The main contribution of this PhD thesis is implementation approach and testing the new 

proposed motion creating system (chapter 3,4,5, and 6) which is including: 

 Hardware design and new developments (chapter3), 

 New approach to design a CAN network protocol for Archie (chapter4), 

 New approach of data transmit planning (new Mechanism) including error detection 

system (chapter 4), 

 New PDO mapping approach for a synchronized joint motion (chapter4), 

 Management approach of data transmission via proposed network to send/receive 

CAN commands (chapter4), 

 New trajectory planning principle for Archie walking (chapter5), 

 New drive motion management approach (chapter5), 

 New drive motion reference generator (chapter5), 

 New approach of motion command structure based on the PT and PVT modes 

(chapter5), 

 Fault diagnose and motor protection mechanism (cahpter5), 

 New motion controller software including real time motion control system, 

data/command monitoring, CANbus module, synch module, data link and control 

modules (chapter6), 

 New GUI with easy joint activation/deactivation (chapter6). 

 

This chapter describes carefully the implementation stages based on the above 

improvements, including software implementation (CANbus Viewer module, message 

controller module, message setting module) and joint motion tests (single joint, multiple 

joints and synchronized joints motion). At the end the walking performance (half gait test, full 

gait test, static walking test) is presented to proof the effectiveness of the new implemented 

motion creating system. 

 

7.2 Software Implementation and Joint Motion Test 

In early test stage, it is significant to investigate the performance of the designed 

communication network (chapter 4) and new designed motion control software (chapter 6). 

The software implementation test consists of single, multiple and synchronized joint motion 

tests and examine the monitoring method which is described in chapter 6. The designed CAN 



102 
 

monitoring system assists to find the errors (trouble shooting) in designed communication 

network and check the accuracy of the transferred designed command signal in the system. 

7.2.1 New Proposed CANbus Viewer Module Structure 

It is the unique designed module, embedded in new motion control software to configure and 

control the proposed CAN network implemented with the following functions. (Fig. 7.1). 

 CAN_Init: function for CAN setting such CAN clock, CAN baud rate (1 Mbit/s) and CAN 

mode (Basic CAN),  

 CAN_GetMessage: when a new message is completely received it will be copied using 

this function from the CAN internal buffer.  

 CAN_SendMessage: function to send a message to the master via the CAN bus 

 CAN_Task: one of the cyclic processes. This function checks whether new messages 

exists in the receive buffer and if so - they are removed (consumed) from the buffer 

and processed further.  

 

 

 

 

 

 

Fig. 7.1 Functions implemented in proposed CANbus Viewer module 

 

The CANbus Viewer module ((CanbusViewer::sendCommand(std::string command, int id)) is 

responsible for constructing the commands which should be sent to the CANbus controller 

module. There are two options when invoking this method: simulation only (when button 

Simulate is pushed; or actually sending the commands (button Play robot was pressed). 

The called function CanbusViewer::sendCommandToController (c, id, msg, objectid)  

implements the real command sending functionality. Every simulated or send command is 

displayed in the text field shown in Listing. 7.1 (lines 20-23). Finally, if the fast execution mode 

is disabled, the GUI is made responsive after every send command (lines 24-26). 

 

1 int 

2 CanbusViewer::sendCommand(std::string command, int id) { 

3 std::string c = command; 

4 if (c == "NMT") { 

5 c = hCommand[0].message.toStdString(); //t00080100000000000000 

6 objectid = 0; 

7 } else { 

CAN_Init 

CANbus Viewer 

Module 

CAN_GetMessage CAN_SendMessage CAN_Task 



103 
 

8 objectid = 6; 

9 } 

10 struct CanbusMessage msg; 

11 initCanbusMessage( & msg ); 

12 int ret; 

13 if (simulate == false) { 

14 //sends the actual command to the controller 

15 ret = CanbusViewer::sendCommandToController(c, id, msg, objectid); 

16 } else { 

17 //only simulation, no command is sent to controller 

18 std::cout << "Sending command " << c << " to " << id << "/" << objectid <<std::endl; 

19 } 

20 //append to textedit 

21 std::stringstream ec; 

22 ec << id << "," << command; 

23 ui> exec_commands> append(ec.str().c_str()); 

24 //make GUI responsive 

25 if (ui> fast_exec> isChecked() == false) 

26 QCoreApplication::processEvents(); 

27 return ret; 

28 } 

Listing. 7.1 CANbus Viewer module structure 

 

7.2.2 Proposed Implemented Data Layers  

The implementation block diagram of the CANbus Viewer module is depicted in Fig. 7.2. CAN 

transceivers provide the differential physical layer interface between the data link layer, the 

CAN controller module and the physical wiring of the CAN bus. 

Implementation of main layers are based on the: 

1) Physical layer transceiver to translate the CAN messages to/from differential signals across 

a physical medium such as a twisted pair cable,  

2) CAN controller module embedded in drive motion controller that implements the data link 

layer and finally  

3) CANbus Viewer application, implementing the application layer protocol (translating the 

software application data to/from CAN messages).  

 

 

 

 



104 
 

Node Operations 

Node Data, 

Node States, 

 

Node Addressing, 

Manage Network 

Status, Error handling, 

CSMA/ACK, Message 

Framing, 

Filtering 

Bus Characteristics, 

timing, 

Driving/Receiving 

differential signal 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 7.2 Proposed CANbus Viewer module implementation chart 

 

7.2.3 Error Mechanism Implementation Approach 

Designed CAN node implements two error counters; a transmit error counter and a receive 

error counter. These are incremented on the basis of transmit or receive errors and 

decremented on the basis of successful transmission or receiving of messages. An error frame 

is distinguished by having six consecutive bits. This sequence is dominant or recessive 

depending on the state of the node transmitting the error. This sequence violates the normal 

transmission rules and so is detectable by other nodes. Any node transmits error frames 

immediately when it detects an error. As an error frame itself highlights an error, other nodes 

transmit their own error frames, resulting in a superposition of multiple error frames.  

The sequence of six consecutive bits is the error flag. The proposed error frame also 

comprises an error delimiter to allow for the error flags from other nodes overrunning the 

initial six bit periods. An example of transmission implementation of a created CAN message 

Elmo Drive with embedded 

CAN controller 

Data Link/ 

Converting, 

Message Query  

Module Features 

Application 

Presentation 

Session 

Transport 
(Send) 

Network 

 

 

Physical  

Main Layers 

 

 

 

CAN Protocol-

CAN Network, 

Open modem 

device 

  R 
  T 

CANL CANH 

Components 



105 
 

with an error and a subsequent CAN active error frame is shown in Fig. 7.3. compared with 

obtained CAN message frame in Archie from oscillator (Fig. 7.4).  

 

Fig. 7.3 Normal transmission with ACK (Marais, 2008) 

 

 

Fig. 7.4 Measured CANL normal transmission with ACK in Archie 

 

Any node transmitting an error flag subsequently sends recessive bits until the bus is detected 

as being in the recessive state, after which, an additional seven recessive bits are transmitted. 

The node can then attempt transmission of regular real-time frames.  

 

7.2.4 Proposed Message Controller Module 

The structure of the embedded CAN message controller module in motion controller software 

is fundamental to the schemes used for achieving robust communication through error 



106 
 

detection, as well as inherent prioritization of message and multiple drivers capability based 

on bit-wise arbitration. Hence the CAN controller module detects and handles errors and 

supports the error detection by framing real-time messages. 

As presented in chapter 4. signalling for real-time message at the physical layer comprises 

leaving the bus in a high impedance recessive state for a transmission of 1 and transmitting a 

different high/low dominant state for a transmission of 0. On the other hand, the message 

identifier form part of the designed message frame, in conjunction of flag bits (Corrigan, 

2002). This section of the real-time message frame is termed the arbitration field, with the ID 

and flags denoting the message type, dictating arbitration and as a result, message priority.  

Accordingly message controller unit with configurable data FIFO is implemented (Fig. 7.5). In 

this new proposed approach the transmitted CAN frames are filtered and stored in the FIFO, 

and will be received with a different identifier. The implemented module is running with 

1Mbit/s baudrate, the message controller implemented to independent bus timing logic. To 

avoid data corruption or loss of data a FIFO structure is a reliable solution. 

 

 

 

 

 

 

Fig. 7.5 New joint message controller implementation approach 

 

Modules spend a lot of time to poll each other and some will have to wait until its partner is 

ready for communication.  Therefore the more complicated approach based on message 

passing and queues was chosen. Every single described module in above has a queue behind 

its input. A module can put a message in an input queue at any time, without having to wait 

for the receiver to be ready for it.  

The receiving module reads the message when it is ready with processing the previous 

message from the queue. Each module implements a so called "message loop" which will get 

a message from the queue, process it, get the next message, process it and so on. Processing 

can take as long as it needs. When the input queue is empty, the execution of the message 

loop thread will be suspended until a message becomes available. Each proposed module 

should have only one message loop, so all messages are guaranteed to be processed in the 

same way.  

The single message loop requirement makes it difficult to handle answers as normal messages 

(orders and allocation). The second example is a message loop which handles all messages in a 

ID Data 

FIFO 1 

FIFO 2 

FIFO 3 

FIFO n-1 

FIFO n 

ID Data 

Transmit Receive 

With acceptance filter New identifier assignment 



107 
 

single thread. This is convenient for operations which take little time, or for operations which 

have to be executed sequentially anyway. The program uses functions to process the 

messages, so the difference with the  multi-threaded implementation will be more clear. All 

handler functions have the same parameter, the address of the pointer to the buffer. All 

typecasting, parameter extraction etc. is done in the handler function and the message loop 

stays clean and short. The pointer is also used to return the answer buffer for question 

handlers, so the message loop can reuse the buffer.  

 7.2.5 Real-Time Message Setting Approach 

In order to perform a synchronized motion, real-time messages should be assigned to specific 

joint, since each message has its own command and value. One of the most important thing 

before starting walking or any joint motion is to initialize the primary joints position or 

posture of the robot. In the following the proposed setting to get the joint zero position for 

Archie is described: 

 ID and baudrate setting (Fig. 7.6): the first step is to assign an ID and baudrate (based 

on the designed communication network) to each single joint, to prepare joints for 

receiving their own messages. A joint will only receive a command if its corresponding 

check box is activated. Therefore, it is possible to activate or deactivate only the joints 

needed for the specific motion. 

Joint ID 

MO=1

PP[13]= ID

PP [14] = 0

SV

BG

Define the joint ID

Define the CAN baudrate (1Mb/s)

 

Fig. 7.6 Joint ID and message baudrate defining approach (1 Mbit/s) 

  

 PX command: Defining the fixed initial angle for lower body joints is a must. In this 

manner there is no need to set initial joint angle after motor operation. It means that 

upon power on, the main position is set to zero. PX accumulates the main feedback 

pulses, and it can count cyclically. When the motor is off, PX may be used to set a value 

for the position counter by typing PX=n. The implemented code structure for setting 

the joint position to zero is mentioned in the following (Fig. 7.7). 



108 
 

 
Fig. 7.7 Implemented zero position command's structure for lower body joints 

 

7.3 Joint Motion Test 

7.3.1 Single Joint Motion Test 

The simplest task is to move one single joint to a certain degree. The single joint motion test 

assists to realize effectiveness of the software implementation and on the other hand lets to 

find out the joint angle limitation. The designed codes structure in C++, implementation 

process and test result are presented in the following.  

In the first step the desired joint for motion is selected and afterward the commands (initial 

position + motion) are executed. Finally the designed CAN messages are generated and 

transferred to joint. At the end the motion is created and the joint starts to move according to 

different angle values. The number of the transferred CAN messages depends on the number 

of interval which is considered already in the desired trajectory of motion. In order to have 

much more smooth motion it is necessary to increase this number.  

To read and write messages from and to the CANbus controller, the methods readI7565 (int 

fd,uint8_t * buffer, unsigned int msgLength, struct timeval * timeOut ) and writeI7565( int fd, 

uint8_t *buffer, int ilength ) in file i7565.cpp are used. Of course, a connection must be 

established first, to write a command, such as MO=1, to the CAN-Bus controller, it must be 

translated in a hexadecimal representation. The transformation to hex code is done in method 

convertStrToCanbusMessage (char const * out, struct CanbusMessage * msg ). Translating a 

hex code back to a string is done by calling convertCanbusMessageToStr(struct 

CanbusMessage const * msg, int checkSum, char * out, int length). 

 

 



109 
 

Exe. Command CAN Message

-1,NMT >>> t00080100000000000000

9,MP[1]=1 >>> t30284D50010001000000

9,MP[2]=255 >>> t30284D5002003C000000

Command 9,MP[3]=0 >>> t30284D50030000000000

1, NMT 9,MP[4]=220 >>> t30284D500400DC000000

9, MO=1 9,QP[1]=2502 >>> t3028515001805C631C45

9, PA=2502 ... ...

9, BG 9,QP[N]=2502 >>> t3028515001805C631C45

9,PT=1 >>> t30285054000001000000

9,MO=1 >>> t30284D4F000001000000

9,BG >>> t302442470040

1 2 43

 

                                  

5

                       

 

Fig. 7.8 Single joint motion implementation 

 

While CANbus controller module is connected to network an initial NMT command must be 

sent for establishing the network management, hence the NMT command is translated to the 

hex code message t00080100000000000000. The CANbus Viewer module (Listing 7.2) is 

invoked for every position per joint. Therein, the servo motor is switched on (line 4), the angle 

degrees are calculated to radian (line 6), the absolute position command is constructed (line 

6) and send (line 7), as well as the begin motion command (line 8).  

If a motion of a joint is still in progress while the next BG command is received from the CAN-

Bus controller, the former movement is aborted and the joint tries to reach the new position 

issued with the newest PA command. Therefore, line 12-14 define a pause in which the 

execution of the program (i.e., sending of new commands) is halted for a defined time period. 

In order to get feedback while a joint reached its position, the motion status of the servo 

motor can be realized (lines 18-22). If the MS command returns 2, the joint is still moving. 

Return value 1 indicates that the joint reached its position or the motor is off (either way, the 



110 
 

servo is stationary). The servo status per joint, query every 500 microseconds and wait with 

the execution of the next command until the joint reached its desired position. Therefore, the 

returned hex message of the CAN-Bus controller module can be checked, while it matches a 

specific pattern it means that the joint is still in motion (line 19). This implemented method 

helped to improve the correctness of the intended (desired) motion (Fig. 7.8). 

1 void 

2 CanbusViewer::move(int id, int j, int i) { 

3 if (joint_nr[id]) { 

4 CanbusViewer::sendCommand("MO=1", id); 

5 stringstream pa; 

6 pa << "PA=" << CanbusViewer::deg2rad(test_pos[j][i]); 

7 CanbusViewer::sendCommand(pa.str(), id); 

8 CanbusViewer::sendCommand("BG", id); 

9 // sleep necessary, next BG overrides former command! 

10 // caution: usleep(microsec); 1000000 = 1sec 

11 // caution: sleep/usleep not platform independent! 

12 if (ui> pause> text() != "" && ui>pause> text().toInt() > 0) { 

13 usleep(ui>pause>text().toInt()); 

14 } 

15 } 

16 /* 

17 // MS = 2 > moving; MS = 1 > stationary  

18 CanbusViewer::sendCommand("MS", id); 

19 while (reply_msg.compare("M(0) Id:28a DLC:8 4d530000 00000002") == 0) { 

20 qDebug() << ":::::" << reply_msg.c_str() << reply_msg.compare("M(0) Id:28a DLC:8 

4d530000 00000002"); 

21 usleep(500); 

22 CanbusViewer::sendCommand("MS", id); 

23 }*/ 

Listing 7.2 CANbus controller module code structure 

 

7.3.2 Continuous/Multiple Joints Motion Approach  

The main difference between the single joint motion and multiple joints motion is to directing 

and delivering different commands to different joints at once (Fig. 7.9). This capability assists 

to build a platform for synchronizing the different joints motion at the same time.  



111 
 

Exe. Command

-1,NMT

3,MP[1]=1

3,MP[3]=255

3,MP[3]=0

3,MP[4]=220

3,QP[1]=6954

...

3,QP[N]=6954

3,PT=1

3,MO=1

3,BG

Exe. Command

-1,NMT

4,MP[1]=1

4,MP[2]=255

4,MP[3]=0

4,MP[4]=220

4,QP[1]=-10522

...

4,QP[N]=-10522

4,PT=1

4,MO=1

4,BG

Exe. Command

-1,NMT

5,MP[1]=1

5,MP[2]=255

5,MP[3]=0

5,MP[4]=220

5,QP[1]=3568

...

5,QP[N]=3568

5,PT=1

5,MO=1

5,BG

>>> t30285054000001000000

>>> t30284D4F000001000000

>>> t302442470040

>>> t3028515001805C631C45

...

>>> t3028515001805C631C45

>>> t30284D5002003C000000

>>> t30284D50030000000000

>>> t30284D500400DC000000

CAN Message

>>> t00080100000000000000

>>> t30284D50010001000000

>>> t00080100000000000000

CAN Message

>>> t302442470040

>>> t3028515001805C631C45

>>> t30285054000001000000

>>> t30284D4F000001000000

>>> t30284D500400DC000000

>>> t3028515001805C631C45

...

>>> t30284D50010001000000

>>> t30284D5002003C000000

>>> t30284D50030000000000

>>> t302442470040

>>> t3028515001805C631C45

>>> t30285054000001000000

>>> t30284D4F000001000000

>>> t30284D500400DC000000

>>> t3028515001805C631C45

...

>>> t30284D50010001000000

>>> t30284D5002003C000000

>>> t30284D50030000000000

CAN Message

>>> t00080100000000000000

1

3

2

4 5

 

Fig. 7.9 Proposed implementation method for multiple joints motion 

7.3.3 Synchronized Joints Motion Approach 

Producing the coordinated movement of the Archie legs is the elementary step of the robot 

walking implementation. In order to synchronise the activities of all CAN nodes (joints) within 

a proposed network, a common time reference is needed. Time allocation and motion 



112 
 

scheduling are the main difference with the other above implementation (single and 

multiple). Each node has its own local time, which is a counter that is incremented each 

network time unit (NTU). The system wide NTU is derived from the node’s local clock and local 

time unit ratio (TUR). This reference message (transmitted by a time master) restarts the cycle 

time in each node. The cycle time is derived from the node’s local time.  

Fig. 7.10 describes the synchronisation of the cycle time, performed in the same manner by all 

CAN nodes, including the time master (Milushev, 2010). 

 

                     Network Time Unit (NTU) 

 

 

 

                    Frame Synchronization 

 

 

 

 

                      Reference Message Valid  

 

 

 

 

 

 

 

Fig. 7.10 Implemented cycle time for synchronized joint motion 

   

Any received or transmitted message invokes a capture of the local time taken at the 

message’s frame synchronisation (Hartwich et al., 2000). This frame synchronisation event 

occurs at the sample point of each start of frame (SOF) bit and causes the local time to be 

loaded into the Sync_Mark register. Whenever a valid reference message is transmitted or 

received, the contents of the Sync_Mark register is loaded into the Ref_ Mark register. The 

difference between the actual value of the Ref_Mark and the local time is the cycle time 

(Cycle Time = Local Time – Ref_Mark). 

The IDs of all messages have to be updated at every start of epoch (SOE). In previous 

synchronization method, priority inversion occurred so often since joint ID updated on 

different nodes and could not coincide exactly, and the ID of a low priority message is updated 

before that of a high-priority one. Then, for a small window of time, the low-priority message 

had a higher priority ID than the high-priority message. To overcome this problem an 

agreement protocol is used in new version to trigger the ID update on all nodes. The CAN 

clock synchronization algorithm synchronizes clocks to within 20µs. A simple agreement 

protocol can be that one node is designated to broadcast a message on the CAN bus. This 

Ref_Mark 

 

Synch_Mark 

 

Local Time 

 

Cycle Time 

 

- 
+ 



113 
 

message will be received by all nodes at the same time and, upon receiving this special 

message, all nodes will update the IDs of their local messages. Instead of the older method, 

the following test protocol, which is not only robust, but also consumes less bandwidth is 

implemented. Each node has a periodic timer which fires every x seconds, at which time the 

node takes the following actions: 

 

1. Set a flag to inform the CAN device driver that the ID update protocol has begun. 

2. Configure the CAN network adapter (NA) to receive all messages  

3. Increment the data length (DL) field of the highest-priority ready message on that node. 

 

The first incremented-DL message to be sent on the CANbus will serve as a signal to all nodes 

to update the IDs of their messages. If the original DL of the message is less than 8, then 

incrementing the DL will result in transmission of one extra data byte. If the DL is already 8, 

CAN adapters allow the 4-bit DL field to be set to 9 (or higher), but only 8 data bytes are 

transmitted. Now, each node starts receiving all messages transmitted on the bus line.  

The CAN device driver on each node has a table listing the IDs of all message streams in the 

system along with their data lengths. As messages arrive, the CAN device driver compares 

their DL field to the values in this table until it finds a message with an incremented DL field. 

All nodes receive this message at the same time and they all take the following actions: 

 

1. Restore the receive filter to reenable message filtering in the NA. 

2. If the local message whose DL field was incremented by the periodic timer has not been 

transmitted yet, then decrement the DL field back to its original value. 

3. Update message IDs to reflect the new SOE.  

 

Each node receives the incremented-DL message at the same time, so the ID update on each 

node starts at the same time. After the first incremented-DL message completes, the next-

highest priority message begins transmission. As long as all nodes complete their ID updates 

before this message completes, all messages will have updated IDs by the time the next bus 

arbitration round begins and no priority inversion will occur. In case one or more nodes are 

slow and cannot complete the ID update within this time, all nodes can be configured to do 

the update while the nth message after the first incremented-DL message is in transmission, 

where n is a small number, large enough to allow the slowest node to calculate all new IDs, 

and then just write these to the NA while the nth message is in transmission. Reception of the 

first incremented-DL message causes the CAN device drivers to set the DL fields of their local 

messages back to their original values, but, before this can complete, the next transmission 

(also with an incremented DL field) has already started.  

In this case each basic data transmitting cycle starts with a reference message that is used for 

synchronization purposes (Zuberi and Shin, 2000). When the nodes are synchronised, any 

message can be transmitted at a specific time slot, without competing with other messages 

for the bus. Thus the loss of arbitration is avoided, the latency time becomes predictable. 

 



114 
 

Synchronized joints motion structure, embedded in Archie motor drives: 

CanbusViewer::checkForCheckedCB(); 

CanbusViewer::sendCommand("NMT"); 

        stringstream ss; 

        for (unsigned int id=1; id<=sizeof(joint_nr)/sizeof(*joint_nr); id++) { 

            if (joint_nr[id]) { 

                CanbusViewer::sendCommand("MP[1]=1", id); 

                 ss.str(""); 

                ss << "MP[2]=" << numPoints_ ; 

 CanbusViewer::sendCommand(ss.str(), id); 

                if (ui->loop->isChecked()) { 

 CanbusViewer::sendCommand("MP[3]=1", id); 

                } else { 

CanbusViewer::sendCommand("MP[3]=0", id); 

                } 

                ss.str(""); 

                double st = ui->sample_time->text().toDouble(); 

                ss << "MP[4]=" << st; 

                 

CanbusViewer::sendCommand(ss.str(), id); 

for (unsigned int j=0; j<numPoints_; j++){ 

                ss.str(""); 

                ss << "QP[" << j+1 << "]=" << joint[id][j][0]; 

CanbusViewer::sendCommand(ss.str(), id); 

                           } 

CanbusViewer::sendCommand("PT=1", id); 

CanbusViewer::sendCommand("MO=1", id); 

            } 

        } 

for (unsigned int id=1; id<=sizeof(joint_nr)/sizeof(*joint_nr); id++) { 

            if (joint_nr[id]) { 

                CanbusViewer::sendCommand("BG", id); 

            } 

        } 

    } 

 

 

 

 

 

 

 

 

 

 

 

 



115 
 

7.3 Preliminary Test  

7.3.1 Half Gait Test 

Based on the motion control structure which is already described and presented in chapter 6. 

(Fig. 6.14), this section presents the preliminary experiment performed on Archie. In this test 

the desired elliptical path (half gait) is generated according to defined step height and length. 

The desired values are presented in Fig. 7.11.  

 

Fig. 7.11 Input parameters for half gait test 

 

The PT parameters are provided by reference command generator using this desired toe 

trajectory. Then these parameters are inputs to each drive controller. In order to show the 

performance of motion controller, actual trajectory of toe (end-effector) is needed. Therefore 

in each sample time, the position of toe is calculated using angle measured by encoder and 

forward kinematics of robot. The good performance of the designed creating  motion system 

to track the desired elliptical trajectory of toe is depicted in Fig. 7.12. The lateral joint angle-

trajectories are compared in Fig. 7.13. 

 

Fig. 7.12 Desired vs. actual toe trajectory 

 



116 
 

 

Fig. 7.13 Calculated hip, knee and ankle lateral-joints angle trajectories (step length=30 cm) 

 

Accordingly in the following the simulation model, and half gait of this preliminary test on 

Archie are presented (Fig. 7.14) 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.14 Half gait simulation model (based on the elliptical trajectory) 

 



117 
 

1 2 3 4 5

6 7 8 9 10

 

Fig. 7.15 Archie half gait performance 

 

Frames 1 to 5 in Fig. 7.15 depict the left leg rising up, to max. step height, frame 6 presents 

the max. step height position (6 cm), and frames 7 till 10 present the moving down of the left 

leg to complete the half gait test.   

a) Several Tests (with different input parameters) 

The actual end-effector motion to provide different trajectories is tested (By attaching the 

marker to end-effector joint of Archie to provide trajectories on the board, and using different 

input parameters, Table 7.1) to realize the performance of the proposed motion creating 

system (Fig. 7.16).  

 

Table 7.1 Desired step length, height and hip height to perform full gait 

 

No. of trial Step length Step height Hip height 

1 30 cm 3 cm 53 cm 

2 24 cm 3 cm 53 cm 

3 20 cm 3 cm 53 cm 

4 20cm 4 cm 51 cm 



118 
 

    

Fig. 7.16 Actual obtained trajectories of Archie (full gait motion test) 

7.4 Static Walking Test 

When the walking motion is done at a slow speed, the gait is called " static gait". In this 

approach Archie walking is involved static walking with a very low walking speed. From the 

definition of walking, at least one foot is always on the ground. While the center of mass in 

Archie is above the foot area, then if the robot is moving slowly enough (hence the name 

static), it is always stable. If the joints receives their own messages to move periodically such 

that the rear foot is lifted, moved forward, and put down, then a stable walking motion is 

obtainable: the robot walks without falling over (Fig. 7.17).  

 

 

 

 

 

 

 

 

 

Fig. 7.17 Right and left leg phases during static walking test 

Double support phase 

Heel strike 

Toe off 

Swing phase 

Double support phase 

Toe off 

Swing phase 

Heel strike 

Right leg Left leg 



119 
 

 

Constraint formulation, pattern generation 

In
ve

rs
e 

ki
n

em
at

ic
 

D
is

cr
et

e
  

PT table 

Module D 

 

a1=8 cm

a2=26 cm

a3=30 cm

a6= 5.6 cm

d3= 7.4 cm

d6= 4 cm   

laf= 12.5 cm

lan=5.6 cm

lab=6.5 cm   

qb=0

qf=0   

Ds= 25 cm

Lao=Ds

Hao=12 cm     

Tc=2 

Td= 0.4 Tc

To=  (Tc+Td)/2

T1= 0.2 Tc

T2= Tc-0.1

T3= T1+Tc+ 0.3

T8=Tmax

T9= T wp   

ws

wm

wp  

xed

xsd  

h min.

h max.  

  

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

                                   QP[1] QP[2] QP[3] . . . QP[N=255]  

 

Fig. 7.18 Proposed software implementation approach for Archie walking 

In this experiment approach, gait development is not directly based upon dynamic principles, 

rather it is more a method of building one step of the gait at a time. This is achieved by 

experimental modification of the gait by examining the performance of the gait on the robot. 

This approach, has no previously known data to compare the performance of the robot 

Constant Parameters Variable Parameters 

Module A 
Module B 

Ankle joint position (xa,ya,za)   

Torso (hip) joint position (xh,yh,zh) 

Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ7 Θ8 Θ12 

Module C 

Joints angle trajectory 

Joints angles 

Matrix TCL 

MP[4]=220 



120 
 

Module D 

              

Module D 

CANbus Viewer Module 

Message controller Module 

against, and therefore we cannot generate a performance measure for the gait. Without such 

a quantitative measure we can only observe the robot while it is enacting the gait to 

determine the stability of the gait. Through many trials and examinations of the behaviour of 

the robot, the final optimised values are obtained. The MATLAB simulation results and robot 

posture based on the following parameters in module A, module B for stable forward walking 

are presented in Mohamadi Daniali M., 2013. The different stages which are implemented in 

motion controller software to perform synchronised motion and walking are described 

carefully in Fig. 7.18. The proposed implemented method are embedded in motion controller 

software (see Appendix B for source codes). The summarized description is depicted in Fig. 

7.19.  

 

  

 

 

 

 
Fig. 7.19 New motion controller program  implementation method to perform stable walking 

7.4.1 Walking Simulation Results 

In order to achieve the better understanding of the Archie walking phases and behavior, the 
simulation test is done. Each phase of the walking consists of a group of motions that need to 
be planned individually for each specific joint. For instance, within the single support phase, 
the planning of the hip, floating leg and supporting leg are required to allow the robot to 
move forward. The motion controller software allows the robot to perform forward static 
walking (Fig. 7.20 and 7.21).  

 Left Step 

 

Fig. 7.20 Simulation of Archie left leg motion in forward static walking cycle 

Module A 

Module B 

Module C 

Motion Controller Program (ver.2.1) 



121 
 

 Right Step 

 
Fig. 7.21 Simulation of Archie right leg motion in forward static walking cycle 

 

7.4.2 Stable Walking Realization Test  

In the following the different sequences of stable walking test results with the selected input 

values (Table 7.2 and 7.3) and obtained QP vectors value  (Table 7.4) are presented in Fig. 

7.22, 7.23 (frame A1-9, frame B1-9). Based on the described implementation method in 

above, the modules are tuned and selected. In order to obtain the best performance and 

optimised values the Ds and Hao parameters from module A and ws, wp, wm, xed, xsd, hmin. and 

hmax. from module B are modified and tuned through the different experimental tests.  

 

Table 7.2 Module A and B (selected parameters) 

Module B

a1=8 cm laf= 12.5 cm Ds= 25 cm ws= 17 cm

a2=26 cm lan=5.6 cm Lao=Ds wm= 2 cm

a3=30 cm lab=6.5 cm Hao=12 cm wp= 5cm

a6= 5.6 cm qb=0 xed= 6.5 cm

d3= 7.4 cm qf=0 xsd= -3.5 cm

d6= 4 cm h min.= 54 cm

h max.=57 cm

Module A

 
Table 7.3 Sequence of stable forward walking test (frames specification) 

Frame No. Time Point No. 

A1,B1 t=0 0

A2,B2 t= (Td)/2 27

A3,B3 t=Td 52

A4,B4 t=(Td+Tc)/2 90

A5,B5 t=Tc 128

A6,B6 t=Tc+(Td)/2 154

A7,B7 t= Tc+Td 179

A8,B8 t= Tc+(Tc+Td)/2 217

A9,B9 t=2Tc 256  
 



122 
 

 

 

 
 

 

 

 
 

 

Frame A1 Frame A2 Frame A3 

Frame A4 Frame A5 Frame A6 



123 
 

 

 

 
 

Fig. 7.22 Front view - sequence of stable forward walking of Archie (Frames A1-9) 

 

 

 
 

 

 

 

 

Frame B1 Frame B2 Frame B3 

Frame A7 Frame A8 Frame A9 



124 
 

 

 

 
 

 

 

 
 

Fig. 7.23 Side view - sequence of stable forward walking of Archie (Frames B1-9) 

 

 

Frame B4 Frame B5 Frame B6 

Frame B7 Frame B8 Frame B9 



125 
 

Table 7.4 Calculated QP vector elements for each joint in static walking test (Module D) 

 

Joint

R-Ankle frontal 2,QP[0]= 2596 2,QP[0]= 742 2,QP[0]= -1016

R-Ankle lateral 3,QP[0]= 7644 3,QP[0]= 8968 3,QP[0]= 6766

R-Knee lateral 4,QP[0]= -11669 4,QP[0]= -10108 4,QP[0]= -3320

R-Hip lateral 5,QP[0]= 4025 5,QP[0]= 1140 5,QP[0]= -3446

R-Hip frontal 6,QP[0]= 2596 6,QP[0]= 742 6,QP[0]= -1016

R-Jip transversal 7,QP[0]= 0 7,QP[0]= 0 7,QP[0]= 0

L-Ankle frontal 9,QP[0]= 1033 9,QP[0]= -829 9,QP[0]= -2530

L-Ankle lateral 10,QP[0]= 1349 10,QP[0]= 4930 10,QP[0]= 6687

L-Knee lateral 11,QP[0]= -9037 11,QP[0]= -11814 11,QP[0]= -11076

L-Hip lateral 12,QP[0]= -7688 12,QP[0]= -6885 12,QP[0]= -4389

L-Hip frontal 13,QP[0]= 1033 13,QP[0]= -829 13,QP[0]= -2530

L-Hip transversal 14,QP[0]= 0 14,QP[0]= 0 14,QP[0]= 0

Joint

R-Ankle frontal 2,QP[0]= -1993 2,QP[0]= -1033 2,QP[0]= 829

R-Ankle lateral 3,QP[0]= 7643 3,QP[0]= 1349 3,QP[0]= 4930

R-Knee lateral 4,QP[0]= -12219 4,QP[0]= -9037 4,QP[0]= -11814

R-Hip lateral 5,QP[0]= 4575 5,QP[0]= 7688 5,QP[0]= 6885

R-Hip frontal 6,QP[0]= -1993 6,QP[0]= -1033 6,QP[0]= 829

R-Jip transversal 7,QP[0]= 0 7,QP[0]= 0 7,QP[0]= 0

L-Ankle frontal 9,QP[0]= -2467 9,QP[0]= -2596 9,QP[0]= -742

L-Ankle lateral 10,QP[0]= 6440 10,QP[0]= 7644 10,QP[0]= 8968

L-Knee lateral 11,QP[0]= -10145 11,QP[0]= -11669 11,QP[0]= -10108

L-Hip lateral 12,QP[0]= -3705 12,QP[0]= -4025 12,QP[0]= -1140

L-Hip frontal 13,QP[0]= -2467 13,QP[0]= -2596 13,QP[0]= -742

L-Hip transversal 14,QP[0]= 0 14,QP[0]= 0 14,QP[0]= 0

Joint

R-Ankle frontal 2,QP[0]= 2530 2,QP[0]= 2467 2,QP[0]= 2596

R-Ankle lateral 3,QP[0]= 6687 3,QP[0]= 6440 3,QP[0]= 7644

R-Knee lateral 4,QP[0]= -11076 4,QP[0]= -10145 4,QP[0]= -11669

R-Hip lateral 5,QP[0]= 4389 5,QP[0]= 3705 5,QP[0]= 4025

R-Hip frontal 6,QP[0]= 2530 6,QP[0]= 2467 6,QP[0]= 2596

R-Jip transversal 7,QP[0]= 0 7,QP[0]= 0 7,QP[0]= 0

L-Ankle frontal 9,QP[0]= 1016 9,QP[0]= 1993 9,QP[0]= 1033

L-Ankle lateral 10,QP[0]= 6766 10,QP[0]= 7643 10,QP[0]= 1349

L-Knee lateral 11,QP[0]= -3320 11,QP[0]= -12219 11,QP[0]= -9037

L-Hip lateral 12,QP[0]= 3446 12,QP[0]= -4575 12,QP[0]= -7688

L-Hip frontal 13,QP[0]= 1016 13,QP[0]= 1993 13,QP[0]= 1033

L-Hip transversal 14,QP[0]= 0 14,QP[0]= 0 14,QP[0]= 0

Frame A,B-7 Frame A,B-8 Frame A,B-9

Module D
Frame A,B-1 Frame A,B-2 Frame A,B-3

Frame A,B-4 Frame A,B-5 Frame A,B-6

 
     

7.4.3 Forward Walking Test Results (10 m) 

Based on the selected parameters of the walking pattern (defined in Table 7.4) the forward 

stable walking experiments were performed on an ordinary room floor, and Archie walked 



126 
 

forward for 10 meters. Robot could perform the motion keeping balance along the entire 

sequence (Fig. 7.24). 

 

 

 

 

 
 

Fig. 7.24 Archie stable forward walking performance in 10 meters 

  

 



127 
 

7.4.4 Optimized Wm Value (Test Result) 

In order to achieve the proper value of the Wm during stable walking in the proposed motion 

creating system, several tests with different Wm value are done (Table 7.5). The results are 

depicted in Fig. 7.25, as it realized in the frame C4, in this position Archie is on the border of 

the stable feasible region, since it is a threshold point of falling, it means by increasing the last 

Wm value (Wm= 5cm) Archie will fall down during the static walking. 

 

Table 7.5 Different Wm value 

                                                   

Frame No. Wm

C1 0

C2 1 cm

C3 2 cm

C4 5 cm  
 

 

 

 
 

Fig. 7.25 Archie posture based on the different Wm (find an optimised value) 

 

Based on the min., max. and optimised value of Wm the calculated angle for different joints 

during stable walking of the robot are compared and depicted in Fig. 7.26, 7.27, 7.28 and 

7.29). 

 

 

 

 

 

 

 

Frame C1 Frame C2 Frame C3 Frame C4 



128 
 

-20

-15

-10

-5

0

5

10

15

20

25

0

0
,1

0
,3

0
,4

0
,6

0
,7

0
,8

1
,0

1
,1

1
,2

1
,4

1
,5

1
,7

1
,8

1
,9

2
,1

2
,2

2
,3

2
,5

2
,6

2
,8

2
,9

3
,0

3
,2

3
,3

3
,4

3
,6

3
,7

3
,9 4

A
n

g
le

 (d
e

g
re

e
)

Time  (seconds)

wm=2 wm=5 wm=0

   
Fig. 7.26 Ankle frontal joint-angle trajectory with Wm(optimised)=2cm, Wm(min.)=0, Wm 

(max.)=5cm 

 

 

 

0

10

20

30

40

50

60

0

0
,1

0
,3

0
,4

0
,6

0
,7

0
,8

1
,0

1
,1

1
,2

1
,4

1
,5

1
,7

1
,8

1
,9

2
,1

2
,2

2
,3

2
,5

2
,6

2
,8

2
,9

3
,0

3
,2

3
,3

3
,4

3
,6

3
,7

3
,9 4

A
n

g
le

 (d
e

g
re

e
)

Time (seconds)

wm=2 wm=5 wm=0

 
 

Fig. 7.27 Ankle lateral joint-angle trajectory with Wm(optimised)=2cm, Wm(min.)=0, Wm 

(max.)=5cm 

 



129 
 

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0

0
,1

0
,3

0
,4

0
,6

0
,7

0
,8

1
,0

1
,1

1
,2

1
,4

1
,5

1
,7

1
,8

1
,9

2
,1

2
,2

2
,3

2
,5

2
,6

2
,8

2
,9

3
,0

3
,2

3
,3

3
,4

3
,6

3
,7

3
,9 4

A
n

g
le

 (d
e

g
re

e
)

Time (seconds)

wm=2 wm=5 wm=0

 

Fig. 7.28 Knee joint-angle trajectory with Wm(optimised)=2cm, Wm(min.)=0, Wm(max.)=5cm 

 

 

-20

-10

0

10

20

30

40

50

60

0

0
,1

0
,3

0
,4

0
,6

0
,7

0
,8

1
,0

1
,1

1
,2

1
,4

1
,5

1
,7

1
,8

1
,9

2
,1

2
,2

2
,3

2
,5

2
,6

2
,8

2
,9

3
,0

3
,2

3
,3

3
,4

3
,6

3
,7

3
,9 4

A
n

g
le

 (d
e

g
re

e
)

Time (seconds)

wm=2 wm=5 wm=0

 
 

Fig. 7.29 Hip lateral joint-angle trajectory with Wm(optimised)=2cm, Wm(min.)=0, Wm 

(max.)=5cm 

 

 

 

 

 

 



130 
 

Chapter 8 Summary, Outlook and Proposed Future Works 

8.1 Summary and Outlook 

This thesis presented the new design concept for motion creating system (both in hardware 

and software) including a method to formulate the torso and ankle motion, a method to 

manage the robot joint motion based on the Position-Time (PT), and specifying a sequence of 

absolute position with equal sampling time and fully described implementation approach for 

static walking of biped humanoid robot Archie. The developed robot comprises a set of simple 

kinematics joints mimicking the most important degrees of freedom of the human body (with 

the realized 12 DOF on lower body). 

Archie biped robot is designed with 125 cm height, light weight (~20 kg), brushless and 

brushed motor as actuators, magnetic rotary encoder as sensors, CAN communication 

protocol as a communication network unit,  and COSEL ADA1000F (36V,28A) as a main power 

supply. Motor drive, harmonic drive and hall sensor/switch, PCB mounted drive controller 

(Elmo) are the main components of its joint. 

Since the autonomous characteristic needs the high performance of the communication 

network, the proposed CAN communication protocol is utilized as a distributed control 

network. Therefore fast calculation, fast communication and real-time data exchange via new 

proposed communication/control system for a biped robot Archie is developed and 

implemented.  

A designed real-time message/command consists primarily of an id, which represents the 

priority of the message, and up to eight data bytes which is transmitted serially onto the bus. 

The messages are queued in the stations before being transmitted to the CAN bus. In the 

implemented proposed CAN protocol, stations wait until the bus idle period is detected 

before attempting to transmit. The use of the identifier as priority is the most important part 

of CAN message design with respect to real-time performance. Therefore the proposed 

communication protocol, efficiently supports distributed real-time control with a very high 

level of security. It provides the error process mechanisms and message priority concepts. 

In implemented real-time system two wires in its cable are used, one for a dominant state and 

one for a recessive state. With CAN bus cable, the interpreter commands are sent in binary 

form and are used for setting and retrieving all numerical data of the simple drives motion 

setup. The commands are used to instruct the drive to perform a sequence and synchronized 

motion. 

Thereafter motion control architecture was explained. In this controller there are different 

sections; static walking pattern planning, trajectory calculation algorithm (reference command 

generator) using inverse kinematics, distributed control drive for each joint using three 

cascaded loops as position, velocity and current to control individual joints precisely and 

central control program using PT, PVT table and CAN communication capability. 



131 
 

In PT mode a set of points are generated to be visited at certain time. The driver interpolates 

a third-order polynomial between the defined position points. PT data are transferred to the 

drive online using an efficient real-time message network, so that infinite PT motions are 

possible. The PT table allows for the performance of both pre-designed and online motion 

plans by writing the QP vector while PT motion is executing. The CAN communication protocol 

allows much faster PT programming, by packing two position points into one PDO 

communication packet. For easy synchronization with the joints, the drive may be 

programmed to send the PT read and write pointers continuously to the robot joint as a 

synchronous PDO.  

PVT motion design is independent of controller sampling time. A PVT motion can be 

referenced in absolute time by requiring it to start at a specified time. It allows absolute time 

specification so that several drives may compose a fully-synchronized motion.  

By embedding the PT and PVT method in motion creating system, single, multiple and 

synchronized joints motions of robot are achievable. In order to implement these modes, we 

designed and created a motion library command. Therefore the motion control program 

(software) is designed (ver. 2.1) based on the proposed controller system to improve motion 

planning, stable walking and minimize the computational efforts which devoted for generating 

smooth walking motion. It is a centralized motion program (software) in order to construct a 

platform where user can easily develop and debug perception–action coupling control 

schemes. Motion commands are transmitted from the PC/Laptop to the motor drivers directly 

via distributed CAN network. Motion control program (ver. 2.1) includes new GUI, that the 

executed commands are online monitored. Execution monitoring is needed in implementation 

in order to handle problems caused by uncertainties, both in the robot hardware itself and in 

the generated designed CAN messages. Uncertainties that could be solved in this program can 

be classified as : 

 Missing complete information (lack of enough data for generating the joints trajectory 

comparing to older software version (1.1), 

 Unreliable resources such as broken driver, cable loos connection, 

 Fault or error codes based on the Elmo drive  

 

On the other hand constraints of a complete foot trajectory are formulated and the foot 

trajectory by third spline interpolation are generated in new proposed motion control 

program (ver. 2.1). In this manner by adjusting the values of the constraint parameters, 

different types of foot motion are provided in order to adapt to ground conditions. Smooth 

torso motion with the largest stability margin are formulated. While both foot trajectories and 

the torso trajectory are known, all joint trajectories of the biped robot will be determined by 

kinematic constraints. In this case the designed motion creating system is ready to be 

implemented and tested on the robot. The new developed biped humanoid robot Archie 

(both in hardware and software) allows testing and evaluation of new ideas and concepts for 

stable static walking. Based on designed motion creating system dozens time, different 



132 
 

experiments such as single, multiple, synchronized joints motion, right and left leg motion, 

standing on one leg (to find a feasible region of stability) and finally static walking test are 

done to support our aim and experimentally confirmed its effectiveness. Currently Archie 

walks stable for 10 meters with the maximum step length of 50 cm, max. step height of 12 cm 

and  speed of ~0.08 km/h based on the proposed motion creating system.  

 

 8.2 Proposed Future Works 

This section suggests and lists several approaches that should be considered as the future 

works and ongoing strategies to make Archie as an advanced autonomous biped robot.   

In the first primary stage completing the Archie hardware structure (construction of the upper 

body) is a must to enhance  performing of stable walking. On the other hand adding vision 

sensors that can passively detect wide areas of an environment are necessary for autonomous 

locomotion.  

The robot should be equipped with a stereo camera that helps to build a map reference 

relative to its surroundings. Since the ability to build real-time maps for autonomous robot 

navigation is essential.  

Stereo vision is currently one of the reasonable solutions for this kind of sensor. Its wide-

spread acceptance motivates effort in a difficult and expensive but compelling discipline: the 

building of human-like robots. The cognition system (vision based) for Archie could include the 

following features to complete Archie human-like motion and behaviour: 

 Humanoid robot vision 

 Imitation learning 

 Recognition of human activities (objects recognition) 

 Learning new skills and concepts from interaction with an environment and user 

Future studies could be aimed at developing the motion control program's GUI. Developing 

the more accurate simulation model and adding features such as: 

 Adding 3D vision, by adding camera in virtual environment, the robot motion could be 

simulated in 3D space, hence the walking performance could be evaluated from 

different perspective, 

 Improving the real time data communication between PC/operator and robot by 

installing wireless connection and establishing online data transmission to robot 

(remote control system via wireless connection), 

 Integrating 3 different interfaces for Archie locomotion; robot control interface 

(including graphical walking trajectory generation), environment interface (in order to 

remotely control the robot motion) and human interaction interface (including face 

recognition, voice recognition), 

http://www.vision-systems.com/topics/stereo-camera.htm


133 
 

will increase real time performance, reliability, efficiency and safety, but on the other hand 

these improvements increase the cost and complexity of the system.  

 

8.3 New Proposed Approaches and Requirements for Dynamic Walking  

This section presents the proposed suggestions to improve and enhance the dynamic walking 

performance in Archie based on adding force/torque sensor and upper body construction. 

The main control problems with a biped robot control system are the stability to avoid falling 

down in any posture, the capacity of the mechanism to absorb the impact during foot landing 

and the adaption to any surface and the attitude for maintaining the reference biped 

orientation.  

Adequate sensors and control algorithm should be employed to obtain real stable walking 

motion from the reference patterns. The combination of inertial (such accelerometers and 

gyroscopes) and force sensors should be used to feed back external disturbances, due to 

terrain irregularities, structure imperfections, inertial and gravity effects by measuring the 

actual attitude and forces on each foot (and designed upper body) during the double support 

phase, walking motion or cooperation tasks. Otherwise, structural compliances should be 

mounted in order to mechanically reduce the impact effects (due to working precision, design 

and terrain imperfections), normally in the soles of the feet. 

Furthermore, suitable reference walking patterns in order to distribute the biped mass during 

walking motion to maintain stability (by taking into account the dynamics effects) and reduce 

the impacts are required. These developed walking patterns based on dynamic behaviour of 

Archie are the starting point of the improvements based on the current proposed (designed) 

hardware, software  and the control system of Archie. 

 

8.3.1 How to Improve the Stability Problem ? (Proposed Algorithm Method) 

The ZMP criteria affirms that the biped robot does not fall down if the ZMP is maintained 

inside of the convex hull during the walking motion. Therefore, it is necessary to add a control 

loop of ZMP to obtain real stable walking motion. To compute the ZMP online, force/torque 

sensors should be used and this information feedback to the respective control loop (Yang, 

2006). The ZMP calculation equation for Archie based on the dynamic walking pattern is 

proposed as follows: 

 

xzmp = 
   

 
                                    

 
   

 
   

          
   

             (8.1) 

yzmp = 
   

 
                                    

 
   

 
   

          
   

             (8.2) 



134 
 

In
cr

ea
se

  x
ed

 a
n

d
 x

sd
 

 

where the mi is the mass of link i, and Iix and Iiy are the inertial components,   
   and   

   are 

the absolute angular velocity components around x-axis and y-axis at the center of the gravity 

of link i, g is the gravitational acceleration, (xzmp, yzmp, 0) is the coordinate of the ZMP, xi,yi,zi is 

the coordinate of the link i on an absolute Cartesian coordinate system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.1 Proposed dynamic walking algorithm for enhancing the stability margin based on the 

online ZMP calculation from force/torque sensor 

 

The proposed dynamic walking algorithm for enhancing the stability is presented in Fig. 8.1. If 

the ZMP is within the convex hull of all contact points (the stable region), the biped robot is 

able to walk. If the minimum distance between the ZMP and the boundary of the stable 

region is large, the moment preventing the biped robot from tipping over is large. The 

Specify dynamic walking speed,  

Max. step length and height 

Specify foot parameters constraints  and 

generate foot trajectory (qb=0, qf=0) 

Initial Values of torso and foot parameters 

Xed=0 , Xsd=0 

Generate torso  trajectory by 

spline functions 

Compute ZMP and stability 

margin based on the force/torque 

sensor 

Xed ≥ 0.5 Ds 

Xsd ≥ 0.5 Ds 

Select the torso trajectory with 

largest stability margin 



135 
 

minimum distance dzmp between the ZMP and the boundary of the stable region is called the 

stability margin. The advantage of this method is that the stability margin can be large enough 

if the desired ZMP is designed near the center of the stable region. However, since the change 

of the ZMP due to torso motion is limited, not all desired ZMP trajectories can be achieved. 

Furthermore, to achieve a desired ZMP trajectory, the torso acceleration may need to be 

large. In this case, since the torso is relatively massive, energy consumption increases, and 

control for task execution of the upper limbs becomes much more difficult. 

In order to maintain its stability, the robot’s center of gravity (in the case of static stability) or 

the ZMP (in the case of dynamic stability), must be transferred from the rear foot to the front 

foot during the short double-support phase. On the other hand, if the interval of the double-

support phase is too long, it is difficult for the biped robot to walk at high speed. It is 

concluded that the dynamic stable "biped gait" should take into account the whole body 

dynamics to make any motion on any surface.  

 

8.3.2 Absorbing Impact and Adapting to a Surface Problem 

Imperfections in the walking surface and changing the support foot while walking drastically 

cause force variations on the landing foot of Archie. The compliance control loop should be 

implemented to adapt Archie to these changes. Furthermore, the compliance structural 

design should be developed in order to cushion the impacts. The force/torque sensor should 

be embedded to feedback the external reaction on lower (or designed upper body). 

 

8.3.3 Attitude Problem 

During fast walking motion, the dynamics and gravitational effects cause tipping torques 

which cause the Archie fall down. Furthermore, structural imperfections cause important 

flexion on some joints such as ankle and hip (during fast walking test). As the reference 

patterns include the attitude because the biped should walk straight forward, all the time the 

control attitude loop should be implemented to obtain real stable human walking.  

The suitable Inertia Measurement Unit-IMU (to allow the biped robot to return to its desired 

posture (position)), gyros and accelerometers should be used to compute the actual robot 

attitude and it is feedback to the biped current control system. Real waking requires high 

stability to provide antigravity support of body weight, mobility of body segments and motor 

control to sequence multiple segments while transferring body weight from one limb to an 

another.  

 

 



136 
 

8.3.4 Proposed Upper Body Motion for Dynamic Walking 

Since upper body is massive, the changes of the upper body motions greatly affect the 

stability. In this section, the upper body motion affects and its relationship with hip motions 

both is discussed.  

a) Slope Angel of the Upper Body  

While the Archie upper body construction is completed, as the upper body sways during 

human walking, the upper body can also swings for Archie walking. In the current proposed 

static walking pattern generation for Archie (chapter 5) the torso motion parameter Θh(t) is 

constant (Θh(t)=0). In that case, since the massive size of upper body, at the beginning or the 

end of the double-support phase, the center of gravity will move to the front foot in a very 

short period particularly for high speed walking (Yang et al., 2006). The impact force between 

the robot and the ground may become very large, and the biped robot easily becomes 

unstable. From the viewpoint of harmonious real dynamic human locomotion, it is 

undesirable that the torso slope always be constant. Therefore, it is suggested that Θh(t) 

should be variable for dynamic walking. In this case, it is possible for the center of gravity to 

move smoothly, and the impact force should become less. Hence based on the proposed gait 

planning principle in Archie (presented chapter 5), the proposed slope angle of the 

constructed upper body could be calculated based on the following equations:  

New Θh(t) = (Current Θh(t)) -  Aslope cos ((t - kTc )/Td)        kTc < t < kTc + Td     (8.3) 

New Θh(t)= (Current Θh(t))  - Aslope cos ((t-(k+I)Tc )/(Tc -Td))                  kTc +Td < t< (k+1)Tc   (8.4) 

where Aslope is a constant value and denotes the slope amplitude in sagittal plane. The position 

of upper body, both the changes of the hip motions xh(t) and yh(t) which are the main factors 

that affect the stability, because of the massive size of the upper body.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



137 
 

References 

Bachar, Y. (2004). Developing controllers for biped humanoid locomotion. School of 
Informatics, University of Edinburg. 

Byagowi, A. (2010). Control System for a Humanoid Robot. TU Wien. 

Chen, X., Huang, Q., Yu, Z., & Xu, W. (2011). Biped walking planning using Extended Linear 
Inverted Pendulum Mode with a continuous moving ZMP. In IEEE International 
Conference on Mechatronics and Automation (ICMA) (pp. 1280–1285), Beijing, China. 

Corrigan, S. (2002). Introduction to the Controller Area Network (CAN), 1–17. 

Dallali, H., Mosadeghzad, M., Medrano-Cerda, G. a., Docquier, N., Kormushev, P., Tsagarakis, 
N., & Caldwell, D. (2013). Development of a dynamic simulator for a compliant humanoid 
robot based on a symbolic multibody approach. In IEEE International Conference on 
Mechatronics (ICM) (pp. 598–603). Takamatsu, Japan. 

Davis, R., Burns, A., Bril, R., & Lukkien, J. (2007). Controller Area Network (CAN) schedulability 
analysis: Refuted, revisited and revised. The International Journal of Real-Time Systems, 
1–18.  

Davis, R. I., Burns, A., Bril, R. J., & Lukkien, J. J. (2007). Controller Area Network (CAN) 
schedulability analysis. The International Journal of Real-Time Systems, 35(3), 239–272. 

Dezfouli, S., & Kopacek, P. (2011). Mechatronic Design of a Humanoid Robot. In Proceedings of 
the RAAD, 20th International Workshop on Robotics in Alpe-Adria-Danube Region (pp. 1–
6). Brno, Czech Republic. 

Dezfouli, S., Kopacek, P., & Mohamadi Daniali, M., (2011). cost oriented humanoid robot 
archie. International journal automation austria, 19(2), 62-70. 

Dezfouli, S., & Mohamadi Daniali, M. (2012). motion controller design for a biped humanoid 
robot. In Proceedings of the ASME 2012 International Design Engineering Technical 
Conferences & Computers and Information in Engineering Conference  IDETC/CIE) (pp. 1–
7). Chicago, USA. 

Encoder. (2010). Datasheet 360 Step Programmable High Speed Magnetic Rotary Encoder. 
austriamicrosystem (pp. 1-31). 

Goswami, A. (1999). Foot rotation indicator (FRI) point: A new gait planning tool to evaluate 
postural stability of biped robots. In Proceedings of the IEEE International Conference on 
Robotics and Automation (pp. 47–52). Detroit, USA. 

Guizzo, E., (2010). Huamnaoid Robot Rise, Now Can they Walk?. IEEE Spectrum Magazine, 
47(10), pp. 20-22. 

Ha, T., & Choi, C.-H. (2007). An effective trajectory generation method for bipedal walking. 
Jounral of  Robotics and Autonomous Systems, 55(10), 795–810.  



138 
 

Harada, K., Kajita, S., Kaneko, K., & Hirukawa, H. (2004). An analytical method on real-time gait 
planning for a humanoid robot. In Proceedings of 4th IEEE/RAS International Conference 
on Humanoid Robots (pp. 640–655). Santa Monica, California.  

Hartwich, F., Müller, B., Führer, T., & Hugel, R. (2000). CAN network with time triggered 
communication. In the 7th international conference on CAN Network System (pp. 1–7). 
Amsterdam, Netherlands. 

Hirai, K., Hirose, M., & Haikawa, Y. (1998). The development of Honda humanoid robot. In 
Proceedings of the IEEE-International Conference on Robotics & Automation (pp. 1321–
1326). Leuven, Belgium. 

Huang, Q., Kajita, S., & Koyachi, N. (1999). A high stability, smooth walking pattern for a biped 
robot. In Proceedings of the IEEE- International Conference on Robotics & Automation 
(pp. 65–71). Detriot, USA. 

Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., & Tanie, K. (2001). Planning 
walking patterns for a biped robot. In Proceedings of the IEEE Transactions on Robotics 
and Automation, 17(3), 280–289. 

 Jo, H. S., & Jayamani, E. (2009). Design and Trajectory Planning of Bipedal Walking Robot with 
Minimum Sufficient Actuation System. World Academy of Science, Engineering and 
Technology, (35) 160–166. 

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). 
Biped walking pattern generation by using preview control of zero-moment point. In 
Proceedings of the IEEE International Conference on Robotics and Automation (pp. 1620–
1626). Taipei, Taiwan. 

Kim, J., Park, I., Lee, J., & Kim, M. (2005). System design and dynamic walking of humanoid 
robot KHR-2. In Proceedings of the IEEE-International Conference on Robotics & 
Automation (pp. 1431–1436). Barcelona, Spain.  

Kim, J. Y., Park, I. W., & Oh, J. H. (2007). Walking control algorithm of biped humanoid robot 
on uneven and inclined floor. The International Journal of Intelligent & Robotic Systems, 
48(4), 457–484.  

Loffler, K., Gienger, M., & Pfeiffer, F. (2003). Sensors and Control Concept of Walking 
“Johnnie.” The International Journal of Robotics Research, 22(3-4), 229–239.  

Milushev, M. (2010). Design of an Open Software Architecture for Leg Control of a Walking 
Robot. Electronics, 14(2), 110-120. 

Mohamadi Daniali, M. (2013). Walking Control of a Humanoid Robot. Vienna University of 
Technology.  

Omer, A. M. M., & Ghorbani, R. (2009). Semi-passive dynamic walking for biped walking robot 
using controllable joint stiffness based on dynamic simulation. In Proceedings of the 
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (pp. 1600–
1605). Singapore. 



139 
 

Perry, J. (1992). Gait Analysis Normal and Pathological Function. SLACK Incorporated. 

Shivaraj, D., P, C. P. R., & Lasitha, M. (2012). Design and Development of a Biped Humanoid 
Robot, In 6th IEEE International Conference on humanoids Robots, (pp. 67–78). 

Takanishi, A., Ogura, Y., & Itoh, K. (2007). Some Issues in Humanoid Bipedal Humanoid Robot 
WABIAN-2, Robotics Research in Springer tracts in Advanced Robotics, (28) 357-372. 

Tindell, K., Burns, a., & Wellings, a. J. (1995). Calculating controller area network (CAN) 
message response times. The International Journal of Control Engineering, 3(8), 1163–
1169.  

Tindell, KW. (1994). Analysing real-time communications: controller area network (CAN). Real-
Time Systems Symposium.  

Vaughan, C. (2003). Theories of bipedal walking: an odyssey. The International Journal of 
Biomechanics, 36(4), 513–523. 

Vukobratovic, M. (1969). Contribution to the synthesis of biped gait. IEEE Transctions on Bio-
medical Engineering, (1), 2–7. 

Vukobratovic, M., & Borovac, B. (2001). zero-moment point - proper interpretation and new 
application. In Proceedings of the 2nd IEEE/RAS International Conference on Humanoid 
Robots (pp. 237-243). Tokyo, Japan. 

Www.diods.com, last visit May 2013.  

Www.elmomc.com, last visit June 2013. 

Www.hondau3-x.net/asimo, last visit October 2013. 

Www.maxonmotor.ch, last visit May 2012. 

Www.news.cnet.com/8301-17938_105-57593396-1/be-afraid-darpa-unveils-terminator-like-
atlas-robot/, last visit Ocotber 2013. 

Www.pal-robotics.com/robots/reem-b, last visit October 2013. 

Www.qt.digia.com/Product/Developer-Tools, last visit August 2012. 

Www.spectrum.ieee.org/, last visit October 2013. 

Xiao, T., Huang, Q., Li, J., Zhang, W., & Li, K. (2006). Trajectory Calculation and Gait Change On-
line for Humanoid Teleoperation. In Proceedings of the International Conference on 
Mechatronics and Automation (pp. 1614–1619). Chengdu, China. 

Yamaguchi, J., Soga, E., Inoue, S., & Takanishi, A. (1999). Development of a bipedal humanoid 
robot-control method of whole body cooperative dynamic biped walking. IEEE Robotics 
and Automation, (Vol. 1, 368–374).  



140 
 

Yang, J., Huang, Q., Li, J., Li, C., & Li, K. (2006). Walking pattern generation for humanoid robot 
considering upper body motion. In Proceedings of the IEEE/RAS International Conference 
on Humanoid Robots (pp. 41–46). Genova, Italy.  

Zuberi, K., & Shin, K. (2000). Design and implementation of efficient message scheduling for 
controller area network. IEEE Transactions on Computers, 49(2), 182–188. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 
 

Appendix A 

 

a) Foot and Hip trajectory Calculation 

 Foot trajectory equation (xa(t)) 

 

 

 

 

 

 

 

 

 

 

 

 

 Hip motion (Upward-zh(t)) 

Hip trajectory (zh(t)) constraint at its highest position at the middle of the single-support 

phase (hmax), and at its lowest position (hmin) at the middle of the double-support phase 

during one walking step are:  

 

 

 

 

 

 

 

 

 Hip motion (Forward-xh(t)) 

 

 

 

 

 

 

 

 

 

The change of xh(t) is the main factor that affects the stability of a biped robot walking in a 

sagittal plane. To obtain a smooth xh(t), the following derivative constraint must be satisfied: 

xa(t)= 

kDs ,                   t=kTc                             

kDs + lan sin (qb) + laf (1-cos (qb)) ,   t=kTc + Td 

   

kDs + Lao ,       t=kTc + To 

(k+2)Ds - lan (sin (qf )) - lab (1-cos (qf)) ,    t=(k+1)Tc 

(k+2)Ds ,      t=(k+1)Tc + Td 

zh(t)= 

hmin,                      t=kTc + 0.5Td                             

hmax ,           t=kTc + 0.5(Tc -Td) 

   

hmin ,            t=(k+1)Tc + 0.5Td 

xh(t)= 

kDs + xed ,                      t=kTc                             

(k+1)Ds -xsd ,           t=kTc + Td 

   

(k+1)Ds + xed ,            t=(k+1)Tc 



142 
 

ẋh(kTc) = ẋh (kTc+Tc) 

ẍh(kTc) = ẍh (kTc+Tc)  

 

and the second derivative continuity conditions is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

By setting different values for xsd and xed in above condition the various series of smooth xh(t) 

are obtained. Up to here the general characteristics of pattern generation and trajectory 

calculation are presented, but the complete process description, calculation and different 

robot posture pictures are discussed in Mohamadi Daniali , 2013.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xh(t)= 

     
            

  
        

                     
    

         

     
          

   

  
            

       

  
        ,         0≤t<Td 

 

 

 

 

 

 

 

 

 

 

                    ,                      t=kTc                             

   
            

  
        

                     
     

           

   
         

   

  
           

       

  
         ,        Tc≤t<Tc+Td 

    

 



143 
 

b) Foot Motion in x & z axis: 

 

 
 

 

 
 

 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 

xa
 (

t)
 [

cm
] 

time (sec.) 

Calculated Right Foot Motion in x-axis 

0 

10 

20 

30 

40 

50 

60 

70 

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 

xa
_s

 (
t)

 

time (sec.) 

Calculated Left Foot Motion in x-axis 



144 
 

 
 

 
 

 

 

0 

2 

4 

6 

8 

10 

12 

14 

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 

za
(t

) 
 

time (sec.) 

Calculated Right Foot Motion in z-axis 

0 

10 

20 

30 

40 

50 

60 

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 

xh
 (

t)
 [c

m
] 

time (sec.) 

Calculated Right Hip Motion in x-axis 



145 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56 

56 

57 

57 

58 

58 

59 

59 

60 

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 

zh
(t

) 

time (sec.) 

Calculated Right Hip Motion in z-axis 



146 
 

c) Drive Commands: 

The summarize of the driver functional commands are listed as follows: 

 I/O commands description: 

AN[N] read analogue inputs 

IB[N] Bit-wise digital input 

IF[N] Digital input filter 

IP Read all digital inputs 

OB[N] Bit-wise digital output 

OC[N] Output compare 

OL[N] Output logic 

OP Set all digital outputs 

 

 Communication commands: 

PP[N] Define the parameters of CAN or RS-232 

 

 Motion Commands: 

AC Acceleration 

BG Begin motion 

IL[N] defining how dedicated inputs behave 

MO Motor on/off 

PA Absolute position reference for point to point motion 

PR Relative position reference for point to point motion 

SD Stop deceleration 

SF Smooth factor for motion command 

 

 Protection commands 

HL[N] Over speed and position range limit 

LL[N] Low actual feedback limit 

PL[N] Peak current 

 

 Configuration commands 

MP[N] Motion (PV/PVT) parameters 

PT position-time  

PV position-velocity  

QP Position 

QV Velocity 

UM Unit mode 

 

 Feedback commands 

PX Main encoder position 

XM Specifies the counting range for the main feedback 

 
 



147 
 

 CAN message frame fields 
 
SOF: the single dominant start of frame (SOF) bit marks the start of a message, and is used to 
synchronize the nodes on a bus after being idle.  

Identifier: the Standard CAN 11-bit identifier establishes the priority of the message. The 
lower the binary value, the higher its priority.  

IDE: a dominant single identifier extension (IDE) bit means that a standard CAN identifier with 
no extension is being transmitted.  

RTR: the single remote transmission request (RTR) bit is dominant when information is 
required from another node. All nodes receive the request, but the identifier determines the 
specified node. The responding data is also received by all nodes and used by any node interested. 
In this way all data being used in a system is uniform.  

r0: reserved bit (for possible use by future standard amendment).  

DLC: the 4-bit data length code (DLC) contains the number of bytes of data being transmitted.  

Data: up to 64 bits of application data may be transmitted. 
CRC: the 16-bit (15 bits plus delimiter) cyclic redundancy check (CRC) contains the checksum 
(number of bits transmitted) of the preceding application data for error detection.  
ACK: every node receiving an accurate message overwrites this recessive bit in the original 
message with a dominate bit, indicating an error-free message has been sent. Should a receiving 
node detect an error and leave this bit recessive, it discards the message and the sending node 
repeats the message after rearbitration. In this way each node acknowledges (ACK) the integrity of 
its data. ACK is 2 bits, one is the acknowledgement bit and the second is a delimiter.  

EOF: this end-of-frame (EOF) 7-bit field marks the end of a CAN frame (message) and disables 
bit–stuffing, indicating a stuffing error when dominant. When 5 bits of the same logic level occur 
in succession during normal operation, a bit of the opposite logic level is stuffed into the data.  

IFS: this 7-bit inter-frame space (IFS) contains the amount of time required by the controller to 
move a correctly received frame to its proper position in a message buffer area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



148 
 

Appendix B 

In the file archie.cpp, all available joints of Archie are created and set to initial values (see 

Listing 7.3). The four parameters are: distance of z-axis (length), distance of x-axis (offset), 

rotation around x-axis (twist), and rotation around z-axis (angle) (motion controller ver.1.2). 

The degrees are transformed to radian values because the absolute position movement is 

done in radians (PA command). 

1 _joints[CENTERAL_POINT] = new RobotJoint( 0.0, 0.0, toRadians( 0.0 ), toRadians( 0.0 ) ); 

2 _joints[LEFT_HIP_TRANSVERSAL] = new RobotJoint( 45.0, 0.0, toRadians( 0.0 ), toRadians(0.0 ) ); 

3 _joints[LEFT_HIP_FRONTAL] = new RobotJoint( 0.0, 50.0, toRadians( 90.0 ), toRadians( 0.0) ); 

4 _joints[LEFT_HIP_LATERAL] = new RobotJoint( 70.0, 0.0, toRadians( 0.0 ), toRadians( 0.0 )); 

5 _joints[LEFT_KNEE_LATERAL] = new RobotJoint( 310.0, 0.0, toRadians( 0.0 ), toRadians(0.0 ) ); 

6 _joints[LEFT_ANKLE_LATERAL] = new RobotJoint( 260.0, 0.0, toRadians( 0.0 ), toRadians(0.0 ) ); 

7 _joints[LEFT_ANKLE_FRONTAL] = new RobotJoint( 55.0, 0.0, toRadians( 90.0), toRadians(0.0 ) ); 

8 _joints[LEFT_FOOT_LATERAL] = new RobotJoint( 0.0, 84.0, toRadians( 90.0 ), toRadians( 0.0) ); 

9 _joints[LEFT_TOE] = new RobotJoint( 30.0, 0.0, toRadians( 0.0 ), toRadians( 0.0 ) ); 

10 _joints[RIGHT_HIP_TRANSVERSAL] = new RobotJoint( 45.0,0.0, toRadians( 0.0 ), toRadians( 0.0 ) ); 

11 _joints[RIGHT_HIP_FRONTAL] = new RobotJoint( 0.0, 50.0, toRadians( 90.0 ), toRadians( 0.0) ); 

12 _joints[RIGHT_HIP_LATERAL] = new RobotJoint( 70.0,0.0, toRadians( 0.0 ), toRadians( 0.0) ); 

13 _joints[RIGHT_KNEE_LATERAL] = new RobotJoint( 310.0,0.0, toRadians( 0.0 ), toRadians(0.0 ) ); 

14 _joints[RIGHT_ANKLE_LATERAL] = new RobotJoint( 260.0,0.0, toRadians( 0.0 ), toRadians(0.0 ) ); 

15 _joints[RIGHT_ANKLE_FRONTAL] = new RobotJoint( 55.0,0.0, toRadians( 90.0), toRadians(0.0 ) ); 

16 _joints[RIGHT_FOOT_LATERAL] = new RobotJoint( 0.0, 84.0, toRadians( 90.0 ), toRadians(0.0 ) ); 

17 _joints[RIGHT_TOE] = new RobotJoint( 30.0,0.0, toRadians( 0.0 ), toRadians( 0.0 ) ); 

Listing 7.3 Archie creation of joints 

additional joint and servo information is initialized as well as GUI parameters (see Listing 7.4). 

The third parameter of the method setServoInfo represents the joint id. If it is set to -1 the 

joint is deactivated. Listing 4 shows only joint, servo, and GUI information for Archie's left 

side. The right side information is defined equally and we omit the source code due to space 

limitations. 

1 _joints[_typeTable[LEFT_HIP_TRANSVERSAL]]> setServoInfo( "I7565 Canbus SimplIq Motor", 

"LeftHipTransversal", /*14*/1, 0, 0, 0, 0, true, DESIRED_SPEED ); 

2 _joints[_typeTable[LEFT_HIP_TRANSVERSAL]]> setUIInfo( 338, 242, 68, 22, "ServoSpinner" ); 

3 _joints[_typeTable[LEFT_HIP_FRONTAL]]> setServoInfo( "I7565 Canbus SimplIq Motor", "LeftHipFrontal", 

/*13*/1,0, 20, 20,161, true, DESIRED_SPEED ); 

4 _joints[_typeTable[LEFT_HIP_FRONTAL]]> setUIInfo( 338, 220, 68, 22, "ServoSpinner" ); 

5 _joints[_typeTable[LEFT_HIP_LATERAL]]> setServoInfo( "I7565 Canbus SimplIq Motor","LeftHipLateral", 12 , 0, 

20, 75, 161, true, DESIRED_SPEED + 100000); 

6 _joints[_typeTable[LEFT_HIP_LATERAL]]> setUIInfo( 406, 220, 68, 22, "ServoSpinner" ); 

7 _joints[_typeTable[LEFT_KNEE_LATERAL]]> setServoInfo( "I7565 Canbus SimplIq Motor", "LeftKneeLateral", 

11, 0, 37, 84, 161, false, DESIRED_SPEED 200000); 

8 _joints[_typeTable[LEFT_KNEE_LATERAL]]>setUIInfo( 406, 290, 68, 22, "ServoSpinner" ); 

9 _joints[_typeTable[LEFT_ANKLE_LATERAL]]>setServoInfo( "I7565 Canbus SimplIq Motor", "LeftAnkleLateral", 

10, 0, 45, 30,161, false, DESIRED_SPEED 400000); 10 _joints[_typeTable[LEFT_ANKLE_LATERAL]]> setUIInfo( 

406, 356, 68, 22, "ServoSpinner" ); 

11 _joints[_typeTable[LEFT_ANKLE_FRONTAL]]>setServoInfo( "I7565 Canbus SimplIq Motor", "LeftAnkleFrontal", 

9, 0, 27, 27, 500, true, DESIRED_SPEED ); 

12 _joints[_typeTable[LEFT_ANKLE_FRONTAL]]> setServoInfo( "I7565 Canbus SimplIq Motor", "LeftAnkleFrontal", 

/*9*/1, 0, 0, 0, 0, true, DESIRED_SPEED ); 

13 _joints[_typeTable[LEFT_ANKLE_FRONTAL]]>setUIInfo( 396, 378, 68, 22, "ServoSpinner" ); 

14 _joints[_typeTable[LEFT_FOOT_LATERAL]]>setServoInfo( "I7565 Canbus SimplIq Motor","LeftToeLateral", 

/*8*/1,0, 0, 0, 0, true, DESIRED_SPEED ); 

15 _joints[_typeTable[LEFT_FOOT_LATERAL]]>setUIInfo( 464, 378, 68, 22, "ServoSpinner" ); 

Listing 7.4. SetservoInfo method 



149 
 

In the following inverse kinematic calculation for the joints of Archie in new motion controller 

software (ver.2.1) is presented.  

//----------------------------------Inverse Kinematic calculation--------------------------------------------- 

        //-------swing leg----------------------------------------------------------- 

    //----new calculation (6DOF)---- 

double matrixRR0Elements[] = {-sin(theta_),      0,         cos(theta_), 

                            0,                 -1,               0, 

                            cos(theta_),        0,         sin(theta_)}; 

 

double matrixRR0TElements[] = {-sin(theta_),      0,        cos(theta_), 

                            0,                  -1,               0, 

                            cos(theta_),         0,        sin(theta_)}; 

 

double matrixRR6Elements[] = {-sin(alpha_),      -cos(alpha_),         0, 

                             -cos(alpha_),       sin(alpha_),         0, 

                             0,                     0,               -1}; 

 

double matrixpR6Elements[] = {xh_,yh_,zh_}; 

double matrixpR0Elements[] = {xa_,ya_,za_}; 

double matrixpRcElements[] = {a6_,0,-d6_}; 

 

RR0_ = QSharedPointer<Matrix>(new Matrix(3,3,matrixRR0Elements)); 

RR0T_= QSharedPointer<Matrix>(new Matrix(3,3,matrixRR0TElements)); 

RR05_= QSharedPointer<Matrix>(new Matrix(3,1)); 

 

RR6_ = QSharedPointer<Matrix>(new Matrix(3,3,matrixRR6Elements)); 

RR62_= QSharedPointer<Matrix>(new Matrix(3,1)); 

RR63_= QSharedPointer<Matrix>(new Matrix(3,1)); 

 

pR6_ = QSharedPointer<Matrix>(new Matrix(3,1,matrixpR6Elements)); 

pR62_= QSharedPointer<Matrix>(new Matrix(3,1)); 

 

pR0_ = QSharedPointer<Matrix>(new Matrix(3,1,matrixpR0Elements)); 

pRc_ = QSharedPointer<Matrix>(new Matrix(3,1,matrixpRcElements)); 

pR5_ = QSharedPointer<Matrix>(new Matrix(3,1)); 

 

//pR5 calculation; 

 

(*pR6_.data())-=(*pR0_.data()); 

(*pR62_.data())=(*pR6_.data()); 

 (*RR6_.data())*=(*pRc_.data()); 

(*RR62_.data())=(*RR6_.data()); 

 

(*RR62_.data())+=(*pR62_.data()); 

                    (*RR63_.data())=(*RR62_.data()); 

                    (*RR0T_.data())*=(*RR63_.data()); 



150 
 

                    (*RR05_.data())=(*RR0T_.data()); 

 

                    //pR5 

                    (*pR5_.data())=(*RR05_.data()); 

 

                    //pR5(1,2,3) 

                    pR5_1 = (*RR05_.data())[0][0]; 

                    pR5_2 = (*RR05_.data())[1][0]; 

                    pR5_3 = (*RR05_.data())[2][0]; 

 

th1_ = atan2 (pR5_2,pR5_1) + asin (d3_/sqrt(pow(pR5_1,2) + pow(pR5_2,2))) ; 

 

c3_ = ( pow(pR5_3,2) + pow (pR5_1 - d3_ * sin(th1_) - a1_ *cos(th1_),2) + pow (pR5_2 + d3_ * 

cos(th1_) - a1_ * sin(th1_),2) 

                            - pow(a2_,2) - pow (a3_,2))/ (2*a2_*a3_); 

 

 

th3_ = atan2 (sqrt(1-pow(c3_,2)),c3_); 

th2_ = atan2 (-pR5_3,sqrt(pow(pR5_1 - d3_ * sin (th1_) - a1_ * cos (th1_),2) + pow (pR5_2 + d3_ * cos 

(th1_) - a1_ * sin (th1_),2))) 

                            - atan2 (a3_ * sin (th3_), a3_ * cos (th3_) + a2_) ; 

 

RR6_= QSharedPointer<Matrix>(new Matrix(3,3,matrixRR6Elements)); 

RR0_= QSharedPointer<Matrix>(new Matrix(3,3,matrixRR0Elements)); 

RR_ = QSharedPointer<Matrix>(new Matrix(3,3)); 

 

(*RR0_.data())*=(*RR6_.data()); 

(*RR_.data())=(*RR0_.data()); 

 

double matrixRRP0TElements[] = {cos (th1_) * cos (th2_+ th3_),   sin (th1_) * cos (th2_+th3_),      -sin 

(th2_ + th3_), 

                               -cos( th1_) * sin (th2_+th3_),   -sin (th1_) * sin (th2_ + th3_),    -cos (th2_+ th3_), 

                                            -sin (th1_),                          cos (th1_),                     0 }; 

 

RRP_  = QSharedPointer<Matrix>(new Matrix(3,3)); 

RRP0T_= QSharedPointer<Matrix>(new Matrix(3,3,matrixRRP0TElements)); 

 

(*RRP0T_.data())*=(*RR_.data()); 

 

 (*RRP_.data())=(*RRP0T_.data()); 

 

RRP_11 = (*RRP_.data())[0][0]; 

RRP_13 = (*RRP_.data())[0][2]; 

RRP_21 = (*RRP_.data())[1][0]; 

RRP_23 = (*RRP_.data())[1][2]; 

RRP_31 = (*RRP_.data())[2][0]; 

RRP_32 = (*RRP_.data())[2][1]; 



151 
 

RRP_33 = (*RRP_.data())[2][2]; 

 

if      ((RRP_13 == 0) && 

        (RRP_23 == 0 )) { 

 

th5_ = 0 ; 

th6_ = 0 ; 

th4_ = atan2(RRP_21,RRP_11) - th6_ ; 

            } 

else 

            { 

th5_ = atan2 (sqrt(1-(pow(-RRP_33,2))),RRP_33); 

th4_ = atan2 (-RRP_23,-RRP_13); 

th6_ = atan2 (-RRP_32,RRP_31); 

            } 

 

tRight_Ankle_frontal_ = th1_* 160 * 180/M_PI; 

tRight_Ankle_lateral_ = th2_* 160 * 180/M_PI; 

tRight_Knee_ = th3_ * 160 * 180/M_PI; 

tRight_Hip_lateral_ = th4_* 160 * 180/M_PI; 

tRight_Hip_frontal_ = (th5_ - ((M_PI)/2)) * 160 * 180/M_PI; 

tRight_Hip_transversal_ = th6_ * 2360 * 180/M_PI; 

 

tRAfList_.append(tRight_Ankle_frontal_); 

tRAlList_.append(tRight_Ankle_lateral_); 

tRKList_.append(tRight_Knee_); 

tRHlList_.append(tRight_Hip_lateral_) ; 

tRHfList_.append(tRight_Hip_frontal_) ; 

tRHtList_.append(tRight_Hip_transversal_) ; 

 

        //----------------------stance leg------------LEFT leg -------------------------------------------- 

 

//   ----new calculation (6DOF) 

        double matrixRL0Elements[] = {-sin(theta_s),      0,         cos(theta_s), 

                                     0,                 -1,               0, 

                                     cos(theta_s),       0,         sin(theta_s)}; 

 

        double matrixRL0TElements[] = {-sin(theta_s),      0,        cos(theta_s), 

                                     0,                  -1,               0, 

                                     cos(theta_s),        0,        sin(theta_s)}; 

 

 

        double matrixRL6Elements[] = {-sin(alpha_),      -cos(alpha_),         0, 

                                     -cos(alpha_),       sin(alpha_),         0, 

                                     0,                     0,               -1}; 

 

        double matrixpL6Elements[] = {xh_,yh_,zh_}; 



152 
 

 

        double matrixpL0Elements[] = {xa_s,ya_s,za_s}; 

        double matrixpLcElements[] = {-a6_,0,-d6_}; 

 

        RL0_ = QSharedPointer<Matrix>(new Matrix(3,3,matrixRL0Elements)); 

        RL0T_ = QSharedPointer<Matrix>(new Matrix(3,3,matrixRL0TElements)); 

        RL05_ = QSharedPointer<Matrix>(new Matrix(3,1)); 

 

        RL6_ = QSharedPointer<Matrix>(new Matrix(3,3,matrixRL6Elements)); 

        RL62_ = QSharedPointer<Matrix>(new Matrix(3,1)); 

        RL63_ = QSharedPointer<Matrix>(new Matrix(3,1)); 

 

        pL6_ = QSharedPointer<Matrix>(new Matrix(3,1,matrixpL6Elements)); 

        pL62_ = QSharedPointer<Matrix>(new Matrix(3,1)); 

 

        pL0_ = QSharedPointer<Matrix>(new Matrix(3,1,matrixpL0Elements)); 

        pLc_ = QSharedPointer<Matrix>(new Matrix(3,1,matrixpLcElements)); 

        pL5_ = QSharedPointer<Matrix>(new Matrix(3,1)); 

 

        //pL5 calculation; 

 

        (*pL6_.data())-=(*pL0_.data()); 

        (*pL62_.data())=(*pL6_.data()); 

        (*RL6_.data())*=(*pLc_.data()); 

        (*RL62_.data())=(*RL6_.data()); 

 

        (*RL62_.data())+=(*pL62_.data()); 

        (*RL63_.data())=(*RL62_.data()); 

        (*RL0T_.data())*=(*RL63_.data()); 

        (*RL05_.data())=(*RL0T_.data()); 

 

        //pL5 

        (*pL5_.data())=(*RL05_.data()); 

 

        //pL5(1,2,3) 

        pL5_1 = (*RL05_.data())[0][0]; 

        pL5_2 = (*RL05_.data())[1][0]; 

        pL5_3 = (*RL05_.data())[2][0]; 

 

        th1_ = atan2 (pL5_2,pL5_1) - asin (d3_/sqrt(pow(pL5_1,2)+ pow(pL5_2,2))) ; 

        c3_ = ( pow(pL5_3,2) + pow (pL5_1 + d3_ * sin(th1_) - a1_ *cos(th1_),2) + pow (pL5_2 - d3_ * 

cos(th1_)- a1_ * sin(th1_),2) 

                - pow(a2_,2) - pow (a3_,2))/ (2*a2_*a3_); 

        th3_ = atan2 (-sqrt(1-pow(c3_,2)),c3_); 

        th2_ = atan2 (pL5_3,sqrt(pow(pL5_1 + d3_ * sin (th1_)- a1_ * cos (th1_),2) + pow (pL5_2 - d3_ * 

cos (th1_) - a1_ * sin (th1_),2))) 

                - atan2 (a3_ * sin (th3_), a3_ * cos (th3_) + a2_) ; 



153 
 

 

        RL6_ = QSharedPointer<Matrix>(new Matrix(3,3,matrixRL6Elements)); 

        RL0_ = QSharedPointer<Matrix>(new Matrix(3,3,matrixRL0Elements)); 

        RL_ = QSharedPointer<Matrix>(new Matrix(3,3)); 

 

        (*RL0_.data())*=(*RL6_.data()); 

        (*RL_.data())=(*RL0_.data()); 

 

        double matrixRLP0TElements[] = {cos (th1_) * cos (th2_+ th3_),     sin (th1_) * cos (th2_+th3_),       

sin (th2_ + th3_),   -cos( th1_) * sin (th2_+th3_),   -sin (th1_) * sin (th2_ + th3_),   cos (th2_+ th3_), sin 

(th1_),  -cos (th1_),   0 }; 

 

        RLP_ = QSharedPointer<Matrix>(new Matrix(3,3)); 

        RLP0T_ = QSharedPointer<Matrix>(new Matrix(3,3,matrixRLP0TElements)); 

 

       (*RLP0T_.data())*=(*RL_.data()); 

       (*RLP_.data())=(*RLP0T_.data()); 

 

RLP_11 = (*RLP_.data())[0][0]; 

RLP_13 = (*RLP_.data())[0][2]; 

RLP_21 = (*RLP_.data())[1][0]; 

RLP_23 = (*RLP_.data())[1][2]; 

RLP_31 = (*RLP_.data())[2][0]; 

RLP_32 = (*RLP_.data())[2][1]; 

RLP_33 = (*RLP_.data())[2][2]; 

 

if      ((RLP_13 == 0) && 

        (RLP_23 == 0 )) { 

 

        th5_ = 0 ; 

        th6_ = 0 ; 

        th4_ = atan2(RLP_21,RLP_11)+ th6_ ; 

} 

    else 

    { 

        th5_ = atan2 (sqrt(1-(pow(-RLP_33,2))),-RLP_33); 

        th4_ = atan2 (-RLP_23,-RLP_13); 

        th6_ = atan2 (RLP_32,-RLP_31); 

} 

        tLeft_Ankle_frontal_ = th1_* 160 * 180/M_PI; 

        tLeft_Ankle_lateral_ = th2_* 160 * 180/M_PI; 

        tLeft_Knee_ = th3_ * 160 * 180/M_PI; 

        tLeft_Hip_lateral_ = th4_* 160 * 180/M_PI; 

        tLeft_Hip_frontal_ = (th5_ - ((M_PI)/2)) * 160 * 180/M_PI; 

        tLeft_Hip_transversal_ = th6_ * 2360* 180/M_PI; 

 

 



154 
 

        tLAfList_.append(tLeft_Ankle_frontal_); 

        tLAlList_.append(tLeft_Ankle_lateral_); 

        tLKList_.append(tLeft_Knee_); 

        tLHlList_.append(tLeft_Hip_lateral_) ; 

        tLHfList_.append(tLeft_Hip_frontal_) ; 

        tLHtList_.append(tLeft_Hip_transversal_) ; 

           } 

} 

Listing 7.5  Inverse Kinematic calculation (source code) 

 

The method shown in Listing 7.6 (excerpt) from robot.cpp invokes the defined motion path for 

a robot. It specifies an infinite loop (line 1) that the defined motion will be executed until the 

stop button is pressed. The moveRobot method call (line 18) passes the position of the joint to 

be moved to. The joint position is retrieved at line 16. The implementation of the method 

moveRobot is then specialized for the different robot types in their corresponding classes. 

1 while( _thrun ) 

2 { 

3 _mutex.unlock( ); 

4 _mutex.lock( ); 

5 if( _playing ) 

6 { 

7 _moves[_ktype].increment( ); 

8 setJointAngles( _moves[_ktype].angles( ), _modAngles[_ktype] ); 

9 _mutex.unlock( ); 

10 _mutex.lock( ); 

11 _playing = _moves[_ktype].isPlaying( ); 

12 if( _sending ) 

13 { 

14 _sending = _playing; 

15 _mutex.unlock( ); 

16 _pos.setPosition( _joints ); 

17 _mutex.lock( ); 

18 moveRobot( _pos, motionDuration( ) ); 

19 if( _sending ) 

20 { 

21 time = motionDuration( ); 

22 } 

23 else 

24 { 

25 time = UPDATE_INTERVAL; 

26 } 

27 } 

28 else 

29 { 

30 updateGraphics( ); 

31 } 

32 _mutex.unlock( ); 

33 } 

34 _mutex.unlock( ); 

35 msleep( time ); 

36 _mutex.lock( ); 

37 } 

 

Listing 7.6: Excerpt of method void Robot::run( void ) 



155 
 

Parameters used in new motion controller program (ver.2.1-source code) 

 a1_ = 8;                 //distance between frontal-lateral joint in ankle 

 a2_ = 26;             //leg length 

 a3_ = 30;                //thigh length 

 a6_ = 5.6;            //distance between transversal joint in hip and CoG 

 d3_ = 7.4;             //distance between lateral-frontal joint in hip 

 d6_ = 4;                //distance between frontal-transversal joint in hip 

 double laf = 12.5;      //distance between ankle frontal to toe 

 double lan = 5.6;       //distance between ankle lateral to ground 

 double lab = 6.5;       //distance between ankle frontal to heel 

 

theta, theta_s 

 double qb = 0   ;        //ankle angle when t=Td (pre-swing angle) 

 double qf = 0   ;        //ankle angle when t=Tc (post-swing angle) 

xa, za, xa_s, za_s 

 double Ds  = 25;          //Step Length 

 double lao = Ds;          //x position of maximum height of ankle 

 double Hao = 12;        //(y direction)ankle maximum height to pass obstacle 

ya,ya_s,yh 

     ws_  = 17;                //Step width 

     wm_ = 2 ;               //Max. side movement of CoG from ankle position 

     wp_  = 5 ;                //Max. side movement of ankle 

 Hip Parameters  

xh 

     double xed = 6.5 ;      //forward position of CG from back foot at T=K*Tc 

     double xsd = -3.5 ;     //forward position of CG from front foot at T=K*Tc+Td 

zh 

     double hmin = 56;       //min height of CG 

     double hmax = 59;      //max height of CG (max=65.6) 

     h0_ = hmin + 0.2; 

 

 

Zero Setting 

 alpha_= 0; //angle rotation difference between main coordinate and CoG in Z direction 

     xa_ = 0.0; 

     xh_ = 0.0; 

     ya_ = 0.0; 

     za_ = 0.0; 

     zh_ = 0.0; 

 x_ = 0.0; 

 y_ = 0.0; 

 x_s  = 0.0; 



156 
 

 y_s = 0.0; 

 xa_s = 0.0; 

 ya_s = 0.0; 

 za_s = 0.0; 

 

Time Inputs 

Basic time parameters 

     Tc_ = 2   ;                             //step time if time : t=kTc+Tc+Td then xa = (k+2)* Ds 

     Td_ = 0.4 * Tc_;                  //Td: double support time interval 40%Tc 

xa,za 

     double To = (Td_+Tc_)/2;           

//time for maximum height of ankle in z direction (time of Lao,Hao) 

 

theta, theta_s 

     T1_ = 0.2 * Td_;                        //time of leaving stance foot from ground 

     T4_ = 0.4; 

     T3_ = Tc_ + T1_ + T4_;               

// time of landing swing leg completely in ground T1+T4 < Td 

theta, theta_s, xa, xa_s, za, za_s 

     T2_ = Tc_ - 0.1;                       //only for curve fitting 

zh 

     T7_ = T1_;                              //time of hmin 

     T8_ = (Tc_+Td_)/2;                //time of hmax 

ya,ya_s 

     T9_ = (Tc_+Td_)/2;                //time of wp (wp=max side movement) 

 

 

 

 

 

 

 

 

 

 

 

 



157 
 

 Joint angles (QP) 

All joints angle value for stable forward walking test (10m) based on the new designed motion 

creating system (chapter 5) and new motion controller software (chapter 6):  

2,QP[1]=2596.06 2,QP[21]=1184.84 2,QP[41]=-252.116 2,QP[61]=-1362.96

2,QP[2]=2528.85 2,QP[22]=1112.28 2,QP[42]=-322.162 2,QP[62]=-1399.49

2,QP[3]=2461.15 2,QP[23]=1039.69 2,QP[43]=-391.953 2,QP[63]=-1435.35

2,QP[4]=2392.98 2,QP[24]=967.099 2,QP[44]=-461.479 2,QP[64]=-1470.53

2,QP[5]=2324.37 2,QP[25]=894.514 2,QP[45]=-530.734 2,QP[65]=-1504.99

2,QP[6]=2255.32 2,QP[26]=821.958 2,QP[46]=-599.711 2,QP[66]=-1538.68

2,QP[7]=2185.87 2,QP[27]=749.448 2,QP[47]=-668.403 2,QP[67]=-1571.56

2,QP[8]=2116.03 2,QP[28]=677.002 2,QP[48]=-736.804 2,QP[68]=-1603.6

2,QP[9]=2045.83 2,QP[29]=604.637 2,QP[49]=-804.91 2,QP[69]=-1634.74

2,QP[10]=1975.29 2,QP[30]=532.368 2,QP[50]=-872.715 2,QP[70]=-1664.93

2,QP[11]=1904.42 2,QP[31]=460.212 2,QP[51]=-940.215 2,QP[71]=-1694.12

2,QP[12]=1833.28 2,QP[32]=388.183 2,QP[52]=-1007.41 2,QP[72]=-1722.26

2,QP[13]=1761.89 2,QP[33]=316.297 2,QP[53]=-1049.27 2,QP[73]=-1749.3

2,QP[14]=1690.29 2,QP[34]=244.566 2,QP[54]=-1090.52 2,QP[74]=-1775.18

2,QP[15]=1618.49 2,QP[35]=173.006 2,QP[55]=-1131.18 2,QP[75]=-1799.84

2,QP[16]=1546.52 2,QP[36]=101.628 2,QP[56]=-1171.26 2,QP[76]=-1823.24

2,QP[17]=1474.4 2,QP[37]=30.4446 2,QP[57]=-1210.76 2,QP[77]=-1845.31

2,QP[18]=1402.15 2,QP[38]=-40.5322 2,QP[58]=-1249.69 2,QP[78]=-1866.02

2,QP[19]=1329.8 2,QP[39]=-111.291 2,QP[59]=-1288.05 2,QP[79]=-1885.31

2,QP[20]=1257.35 2,QP[40]=-181.823 2,QP[60]=-1325.81 2,QP[80]=-1903.13

Right Ankle frontal joint angle value  (2,QP[256])

 

2,QP[81]=-1919.43 2,QP[101]=-1896.91 2,QP[121]=-1326.17 2,QP[141]=-149.016

2,QP[82]=-1934.19 2,QP[102]=-1878.86 2,QP[122]=-1289.07 2,QP[142]=-77.1133

2,QP[83]=-1947.35 2,QP[103]=-1859.42 2,QP[123]=-1251.37 2,QP[143]=-5.14283

2,QP[84]=-1958.88 2,QP[104]=-1838.63 2,QP[124]=-1213.07 2,QP[144]=66.8762

2,QP[85]=-1968.76 2,QP[105]=-1816.54 2,QP[125]=-1174.17 2,QP[145]=138.925

2,QP[86]=-1976.96 2,QP[106]=-1793.19 2,QP[126]=-1134.66 2,QP[146]=210.983

2,QP[87]=-1983.45 2,QP[107]=-1768.65 2,QP[127]=-1094.52 2,QP[147]=283.034

2,QP[88]=-1988.22 2,QP[108]=-1742.96 2,QP[128]=-1053.73 2,QP[148]=355.059

2,QP[89]=-1991.27 2,QP[109]=-1716.18 2,QP[129]=-998.529 2,QP[149]=427.04

2,QP[90]=-1992.57 2,QP[110]=-1688.35 2,QP[130]=-929.174 2,QP[150]=498.96

2,QP[91]=-1992.14 2,QP[111]=-1659.52 2,QP[131]=-859.486 2,QP[151]=570.802

2,QP[92]=-1990.02 2,QP[112]=-1629.75 2,QP[132]=-789.485 2,QP[152]=642.549

2,QP[93]=-1986.2 2,QP[113]=-1599.08 2,QP[133]=-719.191 2,QP[153]=714.186

2,QP[94]=-1980.69 2,QP[114]=-1567.56 2,QP[134]=-648.627 2,QP[154]=785.696

2,QP[95]=-1973.52 2,QP[115]=-1535.22 2,QP[135]=-577.815 2,QP[155]=857.066

2,QP[96]=-1964.7 2,QP[116]=-1502.12 2,QP[136]=-506.777 2,QP[156]=928.281

2,QP[97]=-1954.26 2,QP[117]=-1468.28 2,QP[137]=-435.536 2,QP[157]=999.327

2,QP[98]=-1942.23 2,QP[118]=-1433.73 2,QP[138]=-364.115 2,QP[158]=1070.19

2,QP[99]=-1928.63 2,QP[119]=-1398.52 2,QP[139]=-292.537 2,QP[159]=1140.86

2,QP[100]=-1913.51 2,QP[120]=-1362.66 2,QP[140]=-220.83 2,QP[160]=1211.32  

 



158 
 

2,QP[161]=1281.56 2,QP[181]=2526.98 2,QP[201]=2481.88 2,QP[221]=2467.42

2,QP[162]=1351.57 2,QP[182]=2524.38 2,QP[202]=2480.23 2,QP[222]=2468.05

2,QP[163]=1421.34 2,QP[183]=2521.79 2,QP[203]=2478.65 2,QP[223]=2468.85

2,QP[164]=1490.86 2,QP[184]=2519.23 2,QP[204]=2477.16 2,QP[224]=2469.82

2,QP[165]=1560.12 2,QP[185]=2516.68 2,QP[205]=2475.75 2,QP[225]=2470.96

2,QP[166]=1629.11 2,QP[186]=2514.17 2,QP[206]=2474.43 2,QP[226]=2472.27

2,QP[167]=1697.82 2,QP[187]=2511.69 2,QP[207]=2473.21 2,QP[227]=2473.75

2,QP[168]=1766.25 2,QP[188]=2509.24 2,QP[208]=2472.07 2,QP[228]=2475.4

2,QP[169]=1834.39 2,QP[189]=2506.83 2,QP[209]=2471.03 2,QP[229]=2477.23

2,QP[170]=1902.22 2,QP[190]=2504.45 2,QP[210]=2470.09 2,QP[230]=2479.22

2,QP[171]=1969.76 2,QP[191]=2502.12 2,QP[211]=2469.26 2,QP[231]=2481.39

2,QP[172]=2036.98 2,QP[192]=2499.84 2,QP[212]=2468.53 2,QP[232]=2483.74

2,QP[173]=2103.89 2,QP[193]=2497.61 2,QP[213]=2467.91 2,QP[233]=2486.26

2,QP[174]=2170.49 2,QP[194]=2495.43 2,QP[214]=2467.4 2,QP[234]=2488.95

2,QP[175]=2236.76 2,QP[195]=2493.3 2,QP[215]=2467 2,QP[235]=2491.83

2,QP[176]=2302.7 2,QP[196]=2491.24 2,QP[216]=2466.72 2,QP[236]=2494.88

2,QP[177]=2368.32 2,QP[197]=2489.23 2,QP[217]=2466.57 2,QP[237]=2498.11

2,QP[178]=2433.61 2,QP[198]=2487.29 2,QP[218]=2466.54 2,QP[238]=2501.52

2,QP[179]=2498.57 2,QP[199]=2485.42 2,QP[219]=2466.66 2,QP[239]=2505.12

2,QP[180]=2529.6 2,QP[200]=2483.61 2,QP[220]=2466.96 2,QP[240]=2508.9  

2,QP[241]=2512.87 2,QP[249]=2551.51

2,QP[242]=2517.02 2,QP[250]=2557.24

2,QP[243]=2521.36 2,QP[251]=2563.18

2,QP[244]=2525.9 2,QP[252]=2569.32

2,QP[245]=2530.63 2,QP[253]=2575.68

2,QP[246]=2535.55 2,QP[254]=2582.25

2,QP[247]=2540.67 2,QP[255]=2589.04

2,QP[248]=2545.99 2,QP[256]=2596.06  

3,QP[1]=7643.63 3,QP[21]=8735.03 3,QP[41]=8483.9 3,QP[61]=7611.8

3,QP[2]=7697.08 3,QP[22]=8769.59 3,QP[42]=8414.27 3,QP[62]=7698.27

3,QP[3]=7752.47 3,QP[23]=8800.14 3,QP[43]=8339.4 3,QP[63]=7789.41

3,QP[4]=7809.52 3,QP[24]=8826.44 3,QP[44]=8259.43 3,QP[64]=7883.07

3,QP[5]=7867.96 3,QP[25]=8848.28 3,QP[45]=8174.52 3,QP[65]=7977.34

3,QP[6]=7927.48 3,QP[26]=8865.46 3,QP[46]=8084.86 3,QP[66]=8070.51

3,QP[7]=7987.75 3,QP[27]=8877.79 3,QP[47]=7990.68 3,QP[67]=8161.09

3,QP[8]=8048.45 3,QP[28]=8885.11 3,QP[48]=7892.24 3,QP[68]=8247.76

3,QP[9]=8109.24 3,QP[29]=8887.28 3,QP[49]=7789.84 3,QP[69]=8329.34

3,QP[10]=8169.75 3,QP[30]=8884.17 3,QP[50]=7683.82 3,QP[70]=8404.78

3,QP[11]=8229.62 3,QP[31]=8875.68 3,QP[51]=7574.58 3,QP[71]=8473.13

3,QP[12]=8288.62 3,QP[32]=8861.71 3,QP[52]=7462.57 3,QP[72]=8533.56

3,QP[13]=8346.59 3,QP[33]=8842.2 3,QP[53]=7395.9 3,QP[73]=8585.3

3,QP[14]=8403.23 3,QP[34]=8817.09 3,QP[54]=7353.63 3,QP[74]=8627.65

3,QP[15]=8458.19 3,QP[35]=8786.34 3,QP[55]=7335.09 3,QP[75]=8659.99

3,QP[16]=8511.15 3,QP[36]=8749.95 3,QP[56]=7338.91 3,QP[76]=8681.76

3,QP[17]=8561.78 3,QP[37]=8707.9 3,QP[57]=7363.12 3,QP[77]=8692.43

3,QP[18]=8609.79 3,QP[38]=8660.23 3,QP[58]=7405.26 3,QP[78]=8691.56

3,QP[19]=8654.85 3,QP[39]=8606.96 3,QP[59]=7462.61 3,QP[79]=8678.76

3,QP[20]=8696.69 3,QP[40]=8548.16 3,QP[60]=7532.38 3,QP[80]=8653.69

Right Ankle lateral joint angle value  (3,QP[256])

 

 

 



159 
 

2,QP[81]=-1919.43 3,QP[101]=5456.98 3,QP[121]=2002.36 3,QP[141]=3573.18

2,QP[82]=-1934.19 3,QP[102]=5222.22 3,QP[122]=2000.25 3,QP[142]=3699.17

2,QP[83]=-1947.35 3,QP[103]=4986.59 3,QP[123]=2018.01 3,QP[143]=3826.59

2,QP[84]=-1958.88 3,QP[104]=4751.19 3,QP[124]=2043.19 3,QP[144]=3955.07

2,QP[85]=-1968.76 3,QP[105]=4517.11 3,QP[125]=2076.2 3,QP[145]=4084.23

2,QP[86]=-1976.96 3,QP[106]=4285.48 3,QP[126]=2117.59 3,QP[146]=4213.71

2,QP[87]=-1983.45 3,QP[107]=4057.45 3,QP[127]=2167.84 3,QP[147]=4343.13

2,QP[88]=-1988.22 3,QP[108]=3834.21 3,QP[128]=2227.38 3,QP[148]=4472.13

2,QP[89]=-1991.27 3,QP[109]=3616.98 3,QP[129]=2299.27 3,QP[149]=4600.35

2,QP[90]=-1992.57 3,QP[110]=3407.05 3,QP[130]=2380.8 3,QP[150]=4727.43

2,QP[91]=-1992.14 3,QP[111]=3205.72 3,QP[131]=2468.04 3,QP[151]=4853.02

2,QP[92]=-1990.02 3,QP[112]=3014.38 3,QP[132]=2560.62 3,QP[152]=4976.77

2,QP[93]=-1986.2 3,QP[113]=2834.48 3,QP[133]=2658.18 3,QP[153]=5098.35

2,QP[94]=-1980.69 3,QP[114]=2667.54 3,QP[134]=2760.34 3,QP[154]=5217.43

2,QP[95]=-1973.52 3,QP[115]=2515.15 3,QP[135]=2866.74 3,QP[155]=5333.7

2,QP[96]=-1964.7 3,QP[116]=2378.97 3,QP[136]=2976.99 3,QP[156]=5446.84

2,QP[97]=-1954.26 3,QP[117]=2260.7 3,QP[137]=3090.7 3,QP[157]=5556.57

2,QP[98]=-1942.23 3,QP[118]=2162.12 3,QP[138]=3207.5 3,QP[158]=5662.6

2,QP[99]=-1928.63 3,QP[119]=2085.02 3,QP[139]=3327 3,QP[159]=5764.67

2,QP[100]=-1913.51 3,QP[120]=2031.18 3,QP[140]=3449 3,QP[160]=5862.51  

3,QP[161]=5955.9 3,QP[181]=6671.05 3,QP[201]=6459.71 3,QP[221]=6466.74

3,QP[162]=6044.62 3,QP[182]=6658.82 3,QP[202]=6452.9 3,QP[222]=6477.98

3,QP[163]=6128.45 3,QP[183]=6646.6 3,QP[203]=6446.66 3,QP[223]=6490.6

3,QP[164]=6207.22 3,QP[184]=6634.43 3,QP[204]=6441.01 3,QP[224]=6504.6

3,QP[165]=6280.74 3,QP[185]=6622.33 3,QP[205]=6435.99 3,QP[225]=6519.97

3,QP[166]=6348.86 3,QP[186]=6610.32 3,QP[206]=6431.62 3,QP[226]=6536.72

3,QP[167]=6411.44 3,QP[187]=6598.44 3,QP[207]=6427.94 3,QP[227]=6554.83

3,QP[168]=6468.36 3,QP[188]=6586.7 3,QP[208]=6424.98 3,QP[228]=6574.31

3,QP[169]=6519.51 3,QP[189]=6575.13 3,QP[209]=6422.76 3,QP[229]=6595.14

3,QP[170]=6564.78 3,QP[190]=6563.76 3,QP[210]=6421.32 3,QP[230]=6617.34

3,QP[171]=6604.09 3,QP[191]=6552.62 3,QP[211]=6420.68 3,QP[231]=6640.88

3,QP[172]=6637.38 3,QP[192]=6541.73 3,QP[212]=6420.88 3,QP[232]=6665.76

3,QP[173]=6664.57 3,QP[193]=6531.12 3,QP[213]=6421.94 3,QP[233]=6691.99

3,QP[174]=6685.61 3,QP[194]=6520.82 3,QP[214]=6423.9 3,QP[234]=6719.54

3,QP[175]=6700.46 3,QP[195]=6510.85 3,QP[215]=6426.78 3,QP[235]=6748.41

3,QP[176]=6709.06 3,QP[196]=6501.25 3,QP[216]=6430.62 3,QP[236]=6778.6

3,QP[177]=6711.38 3,QP[197]=6492.04 3,QP[217]=6435.43 3,QP[237]=6810.09

3,QP[178]=6707.37 3,QP[198]=6483.26 3,QP[218]=6441.27 3,QP[238]=6842.88

3,QP[179]=6696.98 3,QP[199]=6474.92 3,QP[219]=6448.38 3,QP[239]=6876.95

3,QP[180]=6683.28 3,QP[200]=6467.06 3,QP[220]=6456.87 3,QP[240]=6912.3  

3,QP[241]=6948.93 3,QP[249]=7286.36

3,QP[242]=6986.81 3,QP[250]=7333.95

3,QP[243]=7025.94 3,QP[251]=7382.7

3,QP[244]=7066.3 3,QP[252]=7432.61

3,QP[245]=7107.9 3,QP[253]=7483.66

3,QP[246]=7150.71 3,QP[254]=7535.86

3,QP[247]=7194.74 3,QP[255]=7589.18

3,QP[248]=7239.96 3,QP[256]=7643.63  

 

 



160 
 

4,QP[1]=-11668.6 4,QP[21]=-11175.4 4,QP[41]=-7918.46 4,QP[61]=-5989.28

4,QP[2]=-11709.6 4,QP[22]=-11075.3 4,QP[42]=-7699.61 4,QP[62]=-6214.57

4,QP[3]=-11744 4,QP[23]=-10968.1 4,QP[43]=-7477.61 4,QP[63]=-6456.58

4,QP[4]=-11771.9 4,QP[24]=-10853.5 4,QP[44]=-7252.91 4,QP[64]=-6711.68

4,QP[5]=-11793.1 4,QP[25]=-10731.8 4,QP[45]=-7026 4,QP[65]=-6976.67

4,QP[6]=-11807.6 4,QP[26]=-10603 4,QP[46]=-6797.45 4,QP[66]=-7248.76

4,QP[7]=-11815.4 4,QP[27]=-10467.2 4,QP[47]=-6567.84 4,QP[67]=-7525.53

4,QP[8]=-11816.1 4,QP[28]=-10324.5 4,QP[48]=-6337.84 4,QP[68]=-7804.86

4,QP[9]=-11809.9 4,QP[29]=-10175 4,QP[49]=-6108.21 4,QP[69]=-8084.9

4,QP[10]=-11796.5 4,QP[30]=-10018.8 4,QP[50]=-5879.77 4,QP[70]=-8364.02

4,QP[11]=-11775.8 4,QP[31]=-9856.14 4,QP[51]=-5653.44 4,QP[71]=-8640.77

4,QP[12]=-11747.9 4,QP[32]=-9687.16 4,QP[52]=-5430.29 4,QP[72]=-8913.87

4,QP[13]=-11713 4,QP[33]=-9512.03 4,QP[53]=-5315.81 4,QP[73]=-9182.15

4,QP[14]=-11671.1 4,QP[34]=-9330.97 4,QP[54]=-5251.16 4,QP[74]=-9444.54

4,QP[15]=-11622 4,QP[35]=-9144.19 4,QP[55]=-5235.54 4,QP[75]=-9700.07

4,QP[16]=-11565.7 4,QP[36]=-8951.95 4,QP[56]=-5266.84 4,QP[76]=-9947.82

4,QP[17]=-11502.3 4,QP[37]=-8754.49 4,QP[57]=-5341.78 4,QP[77]=-10186.9

4,QP[18]=-11431.5 4,QP[38]=-8552.09 4,QP[58]=-5456.23 4,QP[78]=-10416.6

4,QP[19]=-11353.4 4,QP[39]=-8345.07 4,QP[59]=-5605.51 4,QP[79]=-10636.1

4,QP[20]=-11268.1 4,QP[40]=-8133.74 4,QP[60]=-5784.77 4,QP[80]=-10844.7

Right Knee lateral joint angle value  (4,QP[256])

 

 

4,QP[81]=-11041.7 4,QP[101]=-11914.6 4,QP[121]=-9275.75 4,QP[141]=-11082.8

4,QP[82]=-11226.4 4,QP[102]=-11802.8 4,QP[122]=-9273.69 4,QP[142]=-11174.1

4,QP[83]=-11398.3 4,QP[103]=-11679.5 4,QP[123]=-9296.04 4,QP[143]=-11261.7

4,QP[84]=-11556.7 4,QP[104]=-11545.6 4,QP[124]=-9334.5 4,QP[144]=-11345.3

4,QP[85]=-11701.1 4,QP[105]=-11402.2 4,QP[125]=-9390.27 4,QP[145]=-11424.6

4,QP[86]=-11831.1 4,QP[106]=-11250.8 4,QP[126]=-9464.58 4,QP[146]=-11499.3

4,QP[87]=-11946.1 4,QP[107]=-11092.5 4,QP[127]=-9558.61 4,QP[147]=-11569.3

4,QP[88]=-12045.7 4,QP[108]=-10929 4,QP[128]=-9673.42 4,QP[148]=-11634.4

4,QP[89]=-12129.7 4,QP[109]=-10761.9 4,QP[129]=-9795.37 4,QP[149]=-11694.3

4,QP[90]=-12197.8 4,QP[110]=-10593 4,QP[130]=-9908.68 4,QP[150]=-11748.9

4,QP[91]=-12249.8 4,QP[111]=-10424.3 4,QP[131]=-10022.2 4,QP[151]=-11798

4,QP[92]=-12286 4,QP[112]=-10257.8 4,QP[132]=-10135.6 4,QP[152]=-11841.6

4,QP[93]=-12306.3 4,QP[113]=-10095.8 4,QP[133]=-10248.3 4,QP[153]=-11879.6

4,QP[94]=-12310.6 4,QP[114]=-9940.78 4,QP[134]=-10360.1 4,QP[154]=-11911.8

4,QP[95]=-12299.2 4,QP[115]=-9795.24 4,QP[135]=-10470.5 4,QP[155]=-11938.2

4,QP[96]=-12272 4,QP[116]=-9661.88 4,QP[136]=-10579.1 4,QP[156]=-11958.9

4,QP[97]=-12229.5 4,QP[117]=-9543.47 4,QP[137]=-10685.5 4,QP[157]=-11973.8

4,QP[98]=-12171.9 4,QP[118]=-9442.85 4,QP[138]=-10789.3 4,QP[158]=-11983

4,QP[99]=-12099.9 4,QP[119]=-9362.86 4,QP[139]=-10890.1 4,QP[159]=-11986.5

4,QP[100]=-12013.9 4,QP[120]=-9306.28 4,QP[140]=-10988 4,QP[160]=-11984.3  

 



161 
 

4,QP[161]=-11976.7 4,QP[181]=-11030.7 4,QP[201]=-10399.2 4,QP[221]=-10149.3

4,QP[162]=-11963.7 4,QP[182]=-10996.1 4,QP[202]=-10374.2 4,QP[222]=-10155.6

4,QP[163]=-11945.4 4,QP[183]=-10961.5 4,QP[203]=-10350.3 4,QP[223]=-10164.2

4,QP[164]=-11922 4,QP[184]=-10927.1 4,QP[204]=-10327.4 4,QP[224]=-10175.2

4,QP[165]=-11893.7 4,QP[185]=-10892.7 4,QP[205]=-10305.6 4,QP[225]=-10188.5

4,QP[166]=-11860.8 4,QP[186]=-10858.6 4,QP[206]=-10284.9 4,QP[226]=-10204.2

4,QP[167]=-11823.3 4,QP[187]=-10824.6 4,QP[207]=-10265.5 4,QP[227]=-10222.1

4,QP[168]=-11781.6 4,QP[188]=-10791 4,QP[208]=-10247.2 4,QP[228]=-10242.4

4,QP[169]=-11735.9 4,QP[189]=-10757.7 4,QP[209]=-10230.3 4,QP[229]=-10265

4,QP[170]=-11686.5 4,QP[190]=-10724.7 4,QP[210]=-10214.7 4,QP[230]=-10289.9

4,QP[171]=-11633.6 4,QP[191]=-10692.1 4,QP[211]=-10200.5 4,QP[231]=-10317

4,QP[172]=-11577.4 4,QP[192]=-10660 4,QP[212]=-10187.8 4,QP[232]=-10346.4

4,QP[173]=-11518.4 4,QP[193]=-10628.4 4,QP[213]=-10176.6 4,QP[233]=-10378.1

4,QP[174]=-11456.7 4,QP[194]=-10597.3 4,QP[214]=-10166.9 4,QP[234]=-10411.9

4,QP[175]=-11392.7 4,QP[195]=-10566.8 4,QP[215]=-10158.8 4,QP[235]=-10447.9

4,QP[176]=-11326.5 4,QP[196]=-10537 4,QP[216]=-10152.4 4,QP[236]=-10486.1

4,QP[177]=-11258.6 4,QP[197]=-10507.8 4,QP[217]=-10147.6 4,QP[237]=-10526.5

4,QP[178]=-11189.1 4,QP[198]=-10479.4 4,QP[218]=-10144.6 4,QP[238]=-10569

4,QP[179]=-11118.4 4,QP[199]=-10451.8 4,QP[219]=-10143.8 4,QP[239]=-10613.6

4,QP[180]=-11065.3 4,QP[200]=-10425.1 4,QP[220]=-10145.4 4,QP[240]=-10660.3  

4,QP[241]=-10709 4,QP[249]=-11169.7

4,QP[242]=-10759.8 4,QP[250]=-11235.8

4,QP[243]=-10812.5 4,QP[251]=-11303.6

4,QP[244]=-10867.3 4,QP[252]=-11373.2

4,QP[245]=-10924 4,QP[253]=-11444.5

4,QP[246]=-10982.6 4,QP[254]=-11517.6

4,QP[247]=-11043.1 4,QP[255]=-11592.3

4,QP[248]=-11105.5 4,QP[256]=-11668.6  

5,QP[1]=4024.98 5,QP[21]=2440.33 5,QP[41]=-565.439 5,QP[61]=-1622.52

5,QP[2]=4012.48 5,QP[22]=2305.76 5,QP[42]=-714.665 5,QP[62]=-1483.7

5,QP[3]=3991.53 5,QP[23]=2167.92 5,QP[43]=-861.797 5,QP[63]=-1332.83

5,QP[4]=3962.34 5,QP[24]=2027.1 5,QP[44]=-1006.52 5,QP[64]=-1171.4

5,QP[5]=3925.15 5,QP[25]=1883.56 5,QP[45]=-1148.51 5,QP[65]=-1000.67

5,QP[6]=3880.16 5,QP[26]=1737.58 5,QP[46]=-1287.41 5,QP[66]=-821.745

5,QP[7]=3827.6 5,QP[27]=1589.43 5,QP[47]=-1422.84 5,QP[67]=-635.557

5,QP[8]=3767.69 5,QP[28]=1439.38 5,QP[48]=-1554.39 5,QP[68]=-442.896

5,QP[9]=3700.67 5,QP[29]=1287.69 5,QP[49]=-1681.63 5,QP[69]=-244.436

5,QP[10]=3626.76 5,QP[30]=1134.63 5,QP[50]=-1804.05 5,QP[70]=-40.7568

5,QP[11]=3546.2 5,QP[31]=980.464 5,QP[51]=-1921.13 5,QP[71]=167.639

5,QP[12]=3459.29 5,QP[32]=825.443 5,QP[52]=-2032.27 5,QP[72]=380.308

5,QP[13]=3366.42 5,QP[33]=669.83 5,QP[53]=-2080.09 5,QP[73]=596.847

5,QP[14]=3267.83 5,QP[34]=513.881 5,QP[54]=-2102.48 5,QP[74]=816.885

5,QP[15]=3163.8 5,QP[35]=357.853 5,QP[55]=-2099.56 5,QP[75]=1040.07

5,QP[16]=3054.59 5,QP[36]=202.002 5,QP[56]=-2072.08 5,QP[76]=1266.06

5,QP[17]=2940.47 5,QP[37]=46.5862 5,QP[57]=-2021.33 5,QP[77]=1494.51

5,QP[18]=2821.71 5,QP[38]=-108.133 5,QP[58]=-1949.03 5,QP[78]=1725.07

5,QP[19]=2698.58 5,QP[39]=-261.892 5,QP[59]=-1857.11 5,QP[79]=1957.37

5,QP[20]=2571.36 5,QP[40]=-414.419 5,QP[60]=-1747.61 5,QP[80]=2191.03

Right Hip lateral joint angle value  (5,QP[256])

 



162 
 

5,QP[81]=2425.63 5,QP[101]=6457.58 5,QP[121]=7273.39 5,QP[141]=7509.6

5,QP[82]=2660.74 5,QP[102]=6580.57 5,QP[122]=7273.44 5,QP[142]=7474.95

5,QP[83]=2895.88 5,QP[103]=6692.86 5,QP[123]=7278.02 5,QP[143]=7435.13

5,QP[84]=3130.55 5,QP[104]=6794.37 5,QP[124]=7291.31 5,QP[144]=7390.23

5,QP[85]=3364.22 5,QP[105]=6885.14 5,QP[125]=7314.06 5,QP[145]=7340.35

5,QP[86]=3596.3 5,QP[106]=6965.3 5,QP[126]=7346.99 5,QP[146]=7285.64

5,QP[87]=3826.19 5,QP[107]=7035.08 5,QP[127]=7390.77 5,QP[147]=7226.22

5,QP[88]=4053.27 5,QP[108]=7094.82 5,QP[128]=7446.04 5,QP[148]=7162.26

5,QP[89]=4276.87 5,QP[109]=7144.94 5,QP[129]=7496.11 5,QP[149]=7093.94

5,QP[90]=4496.31 5,QP[110]=7185.97 5,QP[130]=7527.88 5,QP[150]=7021.46

5,QP[91]=4710.97 5,QP[111]=7218.55 5,QP[131]=7554.17 5,QP[151]=6945.02

5,QP[92]=4920.26 5,QP[112]=7243.4 5,QP[132]=7574.95 5,QP[152]=6864.85

5,QP[93]=5123.52 5,QP[113]=7261.33 5,QP[133]=7590.16 5,QP[153]=6781.21

5,QP[94]=5320.05 5,QP[114]=7273.24 5,QP[134]=7599.78 5,QP[154]=6694.35

5,QP[95]=5509.19 5,QP[115]=7280.09 5,QP[135]=7603.77 5,QP[155]=6604.55

5,QP[96]=5690.34 5,QP[116]=7282.91 5,QP[136]=7602.11 5,QP[156]=6512.09

5,QP[97]=5862.89 5,QP[117]=7282.77 5,QP[137]=7594.78 5,QP[157]=6417.27

5,QP[98]=6026.33 5,QP[118]=7280.73 5,QP[138]=7581.77 5,QP[158]=6320.41

5,QP[99]=6180.17 5,QP[119]=7277.84 5,QP[139]=7563.1 5,QP[159]=6221.82

5,QP[100]=6324.03 5,QP[120]=7275.1 5,QP[140]=7539.01 5,QP[160]=6121.83  

5,QP[161]=6020.79 5,QP[181]=4359.63 5,QP[201]=3939.46 5,QP[221]=3682.54

5,QP[162]=5919.04 5,QP[182]=4337.26 5,QP[202]=3921.34 5,QP[222]=3677.58

5,QP[163]=5816.92 5,QP[183]=4314.92 5,QP[203]=3903.64 5,QP[223]=3673.59

5,QP[164]=5714.78 5,QP[184]=4292.62 5,QP[204]=3886.39 5,QP[224]=3670.58

5,QP[165]=5612.99 5,QP[185]=4270.39 5,QP[205]=3869.6 5,QP[225]=3668.53

5,QP[166]=5511.9 5,QP[186]=4248.25 5,QP[206]=3853.31 5,QP[226]=3667.45

5,QP[167]=5411.87 5,QP[187]=4226.21 5,QP[207]=3837.52 5,QP[227]=3667.32

5,QP[168]=5313.25 5,QP[188]=4204.3 5,QP[208]=3822.26 5,QP[228]=3668.13

5,QP[169]=5216.41 5,QP[189]=4182.52 5,QP[209]=3807.55 5,QP[229]=3669.89

5,QP[170]=5121.7 5,QP[190]=4160.91 5,QP[210]=3793.41 5,QP[230]=3672.57

5,QP[171]=5029.46 5,QP[191]=4139.48 5,QP[211]=3779.87 5,QP[231]=3676.16

5,QP[172]=4940.05 5,QP[192]=4118.25 5,QP[212]=3766.94 5,QP[232]=3680.67

5,QP[173]=4853.81 5,QP[193]=4097.24 5,QP[213]=3754.64 5,QP[233]=3686.07

5,QP[174]=4771.08 5,QP[194]=4076.46 5,QP[214]=3742.99 5,QP[234]=3692.36

5,QP[175]=4692.19 5,QP[195]=4055.95 5,QP[215]=3732.02 5,QP[235]=3699.52

5,QP[176]=4617.47 5,QP[196]=4035.72 5,QP[216]=3721.73 5,QP[236]=3707.54

5,QP[177]=4547.22 5,QP[197]=4015.78 5,QP[217]=3712.16 5,QP[237]=3716.41

5,QP[178]=4481.77 5,QP[198]=3996.17 5,QP[218]=3703.33 5,QP[238]=3726.11

5,QP[179]=4421.4 5,QP[199]=3976.9 5,QP[219]=3695.41 5,QP[239]=3736.63

5,QP[180]=4382.02 5,QP[200]=3957.99 5,QP[220]=3688.48 5,QP[240]=3747.95  

 

5,QP[241]=3760.06 5,QP[249]=3883.39

5,QP[242]=3772.95 5,QP[250]=3901.85

5,QP[243]=3786.59 5,QP[251]=3920.93

5,QP[244]=3800.97 5,QP[252]=3940.62

5,QP[245]=3816.07 5,QP[253]=3960.88

5,QP[246]=3831.88 5,QP[254]=3981.71

5,QP[247]=3848.38 5,QP[255]=4003.08

5,QP[248]=3865.56 5,QP[256]=4024.98  



163 
 

6,QP[1]=2596.06 6,QP[21]=1184.84 6,QP[41]=-252.116 6,QP[61]=-1362.96

6,QP[2]=2528.85 6,QP[22]=1112.28 6,QP[42]=-322.162 6,QP[62]=-1399.49

6,QP[3]=2461.15 6,QP[23]=1039.69 6,QP[43]=-391.953 6,QP[63]=-1435.35

6,QP[4]=2392.98 6,QP[24]=967.099 6,QP[44]=-461.479 6,QP[64]=-1470.53

6,QP[5]=2324.37 6,QP[25]=894.514 6,QP[45]=-530.734 6,QP[65]=-1504.99

6,QP[6]=2255.32 6,QP[26]=821.958 6,QP[46]=-599.711 6,QP[66]=-1538.68

6,QP[7]=2185.87 6,QP[27]=749.448 6,QP[47]=-668.403 6,QP[67]=-1571.56

6,QP[8]=2116.03 6,QP[28]=677.002 6,QP[48]=-736.804 6,QP[68]=-1603.6

6,QP[9]=2045.83 6,QP[29]=604.637 6,QP[49]=-804.91 6,QP[69]=-1634.74

6,QP[10]=1975.29 6,QP[30]=532.368 6,QP[50]=-872.715 6,QP[70]=-1664.93

6,QP[11]=1904.42 6,QP[31]=460.212 6,QP[51]=-940.215 6,QP[71]=-1694.12

6,QP[12]=1833.28 6,QP[32]=388.183 6,QP[52]=-1007.41 6,QP[72]=-1722.26

6,QP[13]=1761.89 6,QP[33]=316.297 6,QP[53]=-1049.27 6,QP[73]=-1749.3

6,QP[14]=1690.29 6,QP[34]=244.566 6,QP[54]=-1090.52 6,QP[74]=-1775.18

6,QP[15]=1618.49 6,QP[35]=173.006 6,QP[55]=-1131.18 6,QP[75]=-1799.84

6,QP[16]=1546.52 6,QP[36]=101.628 6,QP[56]=-1171.26 6,QP[76]=-1823.24

6,QP[17]=1474.4 6,QP[37]=30.4446 6,QP[57]=-1210.76 6,QP[77]=-1845.31

6,QP[18]=1402.15 6,QP[38]=-40.5322 6,QP[58]=-1249.69 6,QP[78]=-1866.02

6,QP[19]=1329.8 6,QP[39]=-111.291 6,QP[59]=-1288.05 6,QP[79]=-1885.31

6,QP[20]=1257.35 6,QP[40]=-181.823 6,QP[60]=-1325.81 6,QP[80]=-1903.13

Right Hip frontal joint angle value  (6,QP[256])

 

6,QP[81]=-1919.43 6,QP[101]=-1896.91 6,QP[121]=-1326.17 6,QP[141]=-149.016

6,QP[82]=-1934.19 6,QP[102]=-1878.86 6,QP[122]=-1289.07 6,QP[142]=-77.1133

6,QP[83]=-1947.35 6,QP[103]=-1859.42 6,QP[123]=-1251.37 6,QP[143]=-5.14283

6,QP[84]=-1958.88 6,QP[104]=-1838.63 6,QP[124]=-1213.07 6,QP[144]=66.8762

6,QP[85]=-1968.76 6,QP[105]=-1816.54 6,QP[125]=-1174.17 6,QP[145]=138.925

6,QP[86]=-1976.96 6,QP[106]=-1793.19 6,QP[126]=-1134.66 6,QP[146]=210.983

6,QP[87]=-1983.45 6,QP[107]=-1768.65 6,QP[127]=-1094.52 6,QP[147]=283.034

6,QP[88]=-1988.22 6,QP[108]=-1742.96 6,QP[128]=-1053.73 6,QP[148]=355.059

6,QP[89]=-1991.27 6,QP[109]=-1716.18 6,QP[129]=-998.529 6,QP[149]=427.04

6,QP[90]=-1992.57 6,QP[110]=-1688.35 6,QP[130]=-929.174 6,QP[150]=498.96

6,QP[91]=-1992.14 6,QP[111]=-1659.52 6,QP[131]=-859.486 6,QP[151]=570.802

6,QP[92]=-1990.02 6,QP[112]=-1629.75 6,QP[132]=-789.485 6,QP[152]=642.549

6,QP[93]=-1986.2 6,QP[113]=-1599.08 6,QP[133]=-719.191 6,QP[153]=714.186

6,QP[94]=-1980.69 6,QP[114]=-1567.56 6,QP[134]=-648.627 6,QP[154]=785.696

6,QP[95]=-1973.52 6,QP[115]=-1535.22 6,QP[135]=-577.815 6,QP[155]=857.066

6,QP[96]=-1964.7 6,QP[116]=-1502.12 6,QP[136]=-506.777 6,QP[156]=928.281

6,QP[97]=-1954.26 6,QP[117]=-1468.28 6,QP[137]=-435.536 6,QP[157]=999.327

6,QP[98]=-1942.23 6,QP[118]=-1433.73 6,QP[138]=-364.115 6,QP[158]=1070.19

6,QP[99]=-1928.63 6,QP[119]=-1398.52 6,QP[139]=-292.537 6,QP[159]=1140.86

6,QP[100]=-1913.51 6,QP[120]=-1362.66 6,QP[140]=-220.83 6,QP[160]=1211.32  

 

 

 



164 
 

6,QP[161]=1281.56 6,QP[181]=2526.98 6,QP[201]=2481.88 6,QP[221]=2467.42

6,QP[162]=1351.57 6,QP[182]=2524.38 6,QP[202]=2480.23 6,QP[222]=2468.05

6,QP[163]=1421.34 6,QP[183]=2521.79 6,QP[203]=2478.65 6,QP[223]=2468.85

6,QP[164]=1490.86 6,QP[184]=2519.23 6,QP[204]=2477.16 6,QP[224]=2469.82

6,QP[165]=1560.12 6,QP[185]=2516.68 6,QP[205]=2475.75 6,QP[225]=2470.96

6,QP[166]=1629.11 6,QP[186]=2514.17 6,QP[206]=2474.43 6,QP[226]=2472.27

6,QP[167]=1697.82 6,QP[187]=2511.69 6,QP[207]=2473.21 6,QP[227]=2473.75

6,QP[168]=1766.25 6,QP[188]=2509.24 6,QP[208]=2472.07 6,QP[228]=2475.4

6,QP[169]=1834.39 6,QP[189]=2506.83 6,QP[209]=2471.03 6,QP[229]=2477.23

6,QP[170]=1902.22 6,QP[190]=2504.45 6,QP[210]=2470.09 6,QP[230]=2479.22

6,QP[171]=1969.76 6,QP[191]=2502.12 6,QP[211]=2469.26 6,QP[231]=2481.39

6,QP[172]=2036.98 6,QP[192]=2499.84 6,QP[212]=2468.53 6,QP[232]=2483.74

6,QP[173]=2103.89 6,QP[193]=2497.61 6,QP[213]=2467.91 6,QP[233]=2486.26

6,QP[174]=2170.49 6,QP[194]=2495.43 6,QP[214]=2467.4 6,QP[234]=2488.95

6,QP[175]=2236.76 6,QP[195]=2493.3 6,QP[215]=2467 6,QP[235]=2491.83

6,QP[176]=2302.7 6,QP[196]=2491.24 6,QP[216]=2466.72 6,QP[236]=2494.88

6,QP[177]=2368.32 6,QP[197]=2489.23 6,QP[217]=2466.57 6,QP[237]=2498.11

6,QP[178]=2433.61 6,QP[198]=2487.29 6,QP[218]=2466.54 6,QP[238]=2501.52

6,QP[179]=2498.57 6,QP[199]=2485.42 6,QP[219]=2466.66 6,QP[239]=2505.12

6,QP[180]=2529.6 6,QP[200]=2483.61 6,QP[220]=2466.96 6,QP[240]=2508.9  

6,QP[241]=2512.87 6,QP[249]=2551.51

6,QP[242]=2517.02 6,QP[250]=2557.24

6,QP[243]=2521.36 6,QP[251]=2563.18

6,QP[244]=2525.9 6,QP[252]=2569.32

6,QP[245]=2530.63 6,QP[253]=2575.68

6,QP[246]=2535.55 6,QP[254]=2582.25

6,QP[247]=2540.67 6,QP[255]=2589.04

6,QP[248]=2545.99 6,QP[256]=2596.06  

9,QP[1]=1033.07 9,QP[21]=-391.056 9,QP[41]=-1800.35 9,QP[61]=-2508.03

9,QP[2]=963.895 9,QP[22]=-463.009 9,QP[42]=-1868.34 9,QP[62]=-2505.63

9,QP[3]=894.371 9,QP[23]=-534.892 9,QP[43]=-1936.03 9,QP[63]=-2503.28

9,QP[4]=824.523 9,QP[24]=-606.688 9,QP[44]=-2003.41 9,QP[64]=-2500.98

9,QP[5]=754.373 9,QP[25]=-678.382 9,QP[45]=-2070.48 9,QP[65]=-2498.72

9,QP[6]=683.942 9,QP[26]=-749.958 9,QP[46]=-2137.23 9,QP[66]=-2496.51

9,QP[7]=613.251 9,QP[27]=-821.4 9,QP[47]=-2203.66 9,QP[67]=-2494.36

9,QP[8]=542.323 9,QP[28]=-892.694 9,QP[48]=-2269.77 9,QP[68]=-2492.26

9,QP[9]=471.18 9,QP[29]=-963.826 9,QP[49]=-2335.55 9,QP[69]=-2490.23

9,QP[10]=399.846 9,QP[30]=-1034.78 9,QP[50]=-2401.01 9,QP[70]=-2488.25

9,QP[11]=328.344 9,QP[31]=-1105.55 9,QP[51]=-2466.13 9,QP[71]=-2486.35

9,QP[12]=256.699 9,QP[32]=-1176.11 9,QP[52]=-2530.92 9,QP[72]=-2484.51

9,QP[13]=184.935 9,QP[33]=-1246.47 9,QP[53]=-2528.29 9,QP[73]=-2482.74

9,QP[14]=113.074 9,QP[34]=-1316.59 9,QP[54]=-2525.68 9,QP[74]=-2481.05

9,QP[15]=41.1353 9,QP[35]=-1386.49 9,QP[55]=-2523.08 9,QP[75]=-2479.43

9,QP[16]=-30.8618 9,QP[36]=-1456.13 9,QP[56]=-2520.51 9,QP[76]=-2477.9

9,QP[17]=-102.898 9,QP[37]=-1525.52 9,QP[57]=-2517.95 9,QP[77]=-2476.45

9,QP[18]=-174.954 9,QP[38]=-1594.65 9,QP[58]=-2515.42 9,QP[78]=-2475.08

9,QP[19]=-247.011 9,QP[39]=-1663.5 9,QP[59]=-2512.92 9,QP[79]=-2473.81

9,QP[20]=-319.051 9,QP[40]=-1732.07 9,QP[60]=-2510.46 9,QP[80]=-2472.63

Left Ankle frontal joint angle value  (9,QP[256])

 



165 
 

9,QP[81]=-2471.54 9,QP[101]=-2476.29 9,QP[121]=-2548.73 9,QP[141]=-1726.11

9,QP[82]=-2470.55 9,QP[102]=-2478.2 9,QP[122]=-2554.35 9,QP[142]=-1654.41

9,QP[83]=-2469.66 9,QP[103]=-2480.29 9,QP[123]=-2560.18 9,QP[143]=-1582.53

9,QP[84]=-2468.88 9,QP[104]=-2482.54 9,QP[124]=-2566.22 9,QP[144]=-1510.48

9,QP[85]=-2468.2 9,QP[105]=-2484.98 9,QP[125]=-2572.47 9,QP[145]=-1438.29

9,QP[86]=-2467.64 9,QP[106]=-2487.58 9,QP[126]=-2578.94 9,QP[146]=-1365.99

9,QP[87]=-2467.18 9,QP[107]=-2490.37 9,QP[127]=-2585.62 9,QP[147]=-1293.58

9,QP[88]=-2466.85 9,QP[108]=-2493.33 9,QP[128]=-2592.52 9,QP[148]=-1221.1

9,QP[89]=-2466.63 9,QP[109]=-2496.47 9,QP[129]=-2562.52 9,QP[149]=-1148.57

9,QP[90]=-2466.54 9,QP[110]=-2499.79 9,QP[130]=-2495.06 9,QP[150]=-1075.99

9,QP[91]=-2466.58 9,QP[111]=-2503.3 9,QP[131]=-2427.12 9,QP[151]=-1003.4

9,QP[92]=-2466.79 9,QP[112]=-2506.99 9,QP[132]=-2358.73 9,QP[152]=-930.804

9,QP[93]=-2467.17 9,QP[113]=-2510.86 9,QP[133]=-2289.9 9,QP[153]=-858.232

9,QP[94]=-2467.72 9,QP[114]=-2514.92 9,QP[134]=-2220.65 9,QP[154]=-785.696

9,QP[95]=-2468.43 9,QP[115]=-2519.17 9,QP[135]=-2151 9,QP[155]=-713.216

9,QP[96]=-2469.32 9,QP[116]=-2523.61 9,QP[136]=-2080.98 9,QP[156]=-640.809

9,QP[97]=-2470.37 9,QP[117]=-2528.24 9,QP[137]=-2010.6 9,QP[157]=-568.489

9,QP[98]=-2471.6 9,QP[118]=-2533.06 9,QP[138]=-1939.89 9,QP[158]=-496.275

9,QP[99]=-2472.99 9,QP[119]=-2538.09 9,QP[139]=-1868.88 9,QP[159]=-424.181

9,QP[100]=-2474.56 9,QP[120]=-2543.31 9,QP[140]=-1797.61 9,QP[160]=-352.221  

9,QP[161]=-280.411 9,QP[181]=1069.97 9,QP[201]=1762.39 9,QP[221]=1983.66

9,QP[162]=-208.764 9,QP[182]=1110.93 9,QP[202]=1787.66 9,QP[222]=1977.32

9,QP[163]=-137.293 9,QP[183]=1151.29 9,QP[203]=1811.7 9,QP[223]=1969.32

9,QP[164]=-66.0111 9,QP[184]=1191.08 9,QP[204]=1834.44 9,QP[224]=1959.68

9,QP[165]=5.07034 9,QP[185]=1230.3 9,QP[205]=1855.84 9,QP[225]=1948.44

9,QP[166]=75.9397 9,QP[186]=1268.94 9,QP[206]=1875.84 9,QP[226]=1935.62

9,QP[167]=146.586 9,QP[187]=1307 9,QP[207]=1894.4 9,QP[227]=1921.26

9,QP[168]=217 9,QP[188]=1344.46 9,QP[208]=1911.47 9,QP[228]=1905.39

9,QP[169]=287.171 9,QP[189]=1381.3 9,QP[209]=1927.01 9,QP[229]=1888.06

9,QP[170]=357.09 9,QP[190]=1417.5 9,QP[210]=1940.97 9,QP[230]=1869.31

9,QP[171]=426.75 9,QP[191]=1453.03 9,QP[211]=1953.32 9,QP[231]=1849.19

9,QP[172]=496.141 9,QP[192]=1487.85 9,QP[212]=1964.03 9,QP[232]=1827.74

9,QP[173]=565.258 9,QP[193]=1521.93 9,QP[213]=1973.07 9,QP[233]=1805.02

9,QP[174]=634.093 9,QP[194]=1555.22 9,QP[214]=1980.42 9,QP[234]=1781.07

9,QP[175]=702.64 9,QP[195]=1587.69 9,QP[215]=1986.05 9,QP[235]=1755.95

9,QP[176]=770.894 9,QP[196]=1619.28 9,QP[216]=1989.96 9,QP[236]=1729.7

9,QP[177]=838.85 9,QP[197]=1649.96 9,QP[217]=1992.13 9,QP[237]=1702.39

9,QP[178]=906.503 9,QP[198]=1679.65 9,QP[218]=1992.57 9,QP[238]=1674.06

9,QP[179]=973.85 9,QP[199]=1708.33 9,QP[219]=1991.29 9,QP[239]=1644.75

9,QP[180]=1028.42 9,QP[200]=1735.92 9,QP[220]=1988.32 9,QP[240]=1614.52  

9,QP[241]=1583.42 9,QP[249]=1307.7

9,QP[242]=1551.49 9,QP[250]=1270.3

9,QP[243]=1518.76 9,QP[251]=1232.3

9,QP[244]=1485.29 9,QP[252]=1193.7

9,QP[245]=1451.09 9,QP[253]=1154.49

9,QP[246]=1416.21 9,QP[254]=1114.67

9,QP[247]=1380.67 9,QP[255]=1074.21

9,QP[248]=1344.49 9,QP[256]=1033.07  

 



166 
 

10,QP[1]=2260.74 10,QP[21]=4536.36 10,QP[41]=6494.66 10,QP[61]=6580.89

10,QP[2]=2339.3 10,QP[22]=4664.05 10,QP[42]=6542.88 10,QP[62]=6569.42

10,QP[3]=2423.73 10,QP[23]=4790.43 10,QP[43]=6585.18 10,QP[63]=6558.16

10,QP[4]=2513.69 10,QP[24]=4915.14 10,QP[44]=6621.49 10,QP[64]=6547.14

10,QP[5]=2608.8 10,QP[25]=5037.85 10,QP[45]=6651.74 10,QP[65]=6536.39

10,QP[6]=2708.71 10,QP[26]=5158.23 10,QP[46]=6675.86 10,QP[66]=6525.93

10,QP[7]=2813.04 10,QP[27]=5275.94 10,QP[47]=6693.81 10,QP[67]=6515.79

10,QP[8]=2921.4 10,QP[28]=5390.68 10,QP[48]=6705.54 10,QP[68]=6506.01

10,QP[9]=3033.43 10,QP[29]=5502.15 10,QP[49]=6711.01 10,QP[69]=6496.6

10,QP[10]=3148.74 10,QP[30]=5610.07 10,QP[50]=6710.17 10,QP[70]=6487.6

10,QP[11]=3266.93 10,QP[31]=5714.15 10,QP[51]=6702.97 10,QP[71]=6479.03

10,QP[12]=3387.7 10,QP[32]=5814.13 10,QP[52]=6689.38 10,QP[72]=6470.93

10,QP[13]=3510.84 10,QP[33]=5909.78 10,QP[53]=6677.16 10,QP[73]=6463.32

10,QP[14]=3635.97 10,QP[34]=6000.86 10,QP[54]=6664.93 10,QP[74]=6456.24

10,QP[15]=3762.72 10,QP[35]=6087.16 10,QP[55]=6652.71 10,QP[75]=6449.71

10,QP[16]=3890.72 10,QP[36]=6168.48 10,QP[56]=6640.51 10,QP[76]=6443.76

10,QP[17]=4019.59 10,QP[37]=6244.64 10,QP[57]=6628.37 10,QP[77]=6438.42

10,QP[18]=4148.95 10,QP[38]=6315.48 10,QP[58]=6616.31 10,QP[78]=6433.72

10,QP[19]=4278.45 10,QP[39]=6380.85 10,QP[59]=6604.36 10,QP[79]=6429.69

10,QP[20]=4407.71 10,QP[40]=6440.62 10,QP[60]=6592.55 10,QP[80]=6426.37

Left Ankle lateral joint angle value  (10,QP[256])

 

10,QP[81]=6423.77 10,QP[101]=6584.56 10,QP[121]=7263.01 10,QP[141]=8375.1

10,QP[82]=6421.94 10,QP[102]=6606.07 10,QP[122]=7310.01 10,QP[142]=8430.94

10,QP[83]=6420.9 10,QP[103]=6628.94 10,QP[123]=7358.18 10,QP[143]=8484.94

10,QP[84]=6420.67 10,QP[104]=6653.15 10,QP[124]=7407.51 10,QP[144]=8536.78

10,QP[85]=6421.3 10,QP[105]=6678.71 10,QP[125]=7457.99 10,QP[145]=8586.13

10,QP[86]=6422.81 10,QP[106]=6705.6 10,QP[126]=7509.62 10,QP[146]=8632.7

10,QP[87]=6425.22 10,QP[107]=6733.81 10,QP[127]=7562.38 10,QP[147]=8676.19

10,QP[88]=6428.58 10,QP[108]=6763.34 10,QP[128]=7616.27 10,QP[148]=8716.31

10,QP[89]=6432.9 10,QP[109]=6794.18 10,QP[129]=7670.1 10,QP[149]=8752.8

10,QP[90]=6438.22 10,QP[110]=6826.32 10,QP[130]=7724.55 10,QP[150]=8785.38

10,QP[91]=6444.65 10,QP[111]=6859.75 10,QP[131]=7780.81 10,QP[151]=8813.84

10,QP[92]=6452.45 10,QP[112]=6894.47 10,QP[132]=7838.59 10,QP[152]=8837.93

10,QP[93]=6461.63 10,QP[113]=6930.46 10,QP[133]=7897.6 10,QP[153]=8857.46

10,QP[94]=6472.19 10,QP[114]=6967.71 10,QP[134]=7957.54 10,QP[154]=8872.24

10,QP[95]=6484.12 10,QP[115]=7006.22 10,QP[135]=8018.07 10,QP[155]=8882.08

10,QP[96]=6497.43 10,QP[116]=7045.97 10,QP[136]=8078.86 10,QP[156]=8886.85

10,QP[97]=6512.12 10,QP[117]=7086.95 10,QP[137]=8139.55 10,QP[157]=8886.39

10,QP[98]=6528.17 10,QP[118]=7129.16 10,QP[138]=8199.79 10,QP[158]=8880.61

10,QP[99]=6545.6 10,QP[119]=7172.57 10,QP[139]=8259.23 10,QP[159]=8869.39

10,QP[100]=6564.4 10,QP[120]=7217.2 10,QP[140]=8317.75 10,QP[160]=8852.65  

 

 

 

 

 

 



167 
 

10,QP[161]=8830.35 10,QP[181]=7371.74 10,QP[201]=8607.69 10,QP[221]=7087.8

10,QP[162]=8802.42 10,QP[182]=7341.47 10,QP[202]=8645.11 10,QP[222]=6891.29

10,QP[163]=8768.85 10,QP[183]=7334.32 10,QP[203]=8672.23 10,QP[223]=6686.73

10,QP[164]=8729.63 10,QP[184]=7348.61 10,QP[204]=8688.51 10,QP[224]=6474.93

10,QP[165]=8684.77 10,QP[185]=7382.11 10,QP[205]=8693.47 10,QP[225]=6256.79

10,QP[166]=8634.29 10,QP[186]=7432.21 10,QP[206]=8686.68 10,QP[226]=6033.22

10,QP[167]=8578.25 10,QP[187]=7496.12 10,QP[207]=8667.78 10,QP[227]=5805.19

10,QP[168]=8516.7 10,QP[188]=7571.05 10,QP[208]=8636.47 10,QP[228]=5573.7

10,QP[169]=8449.75 10,QP[189]=7654.31 10,QP[209]=8592.49 10,QP[229]=5339.77

10,QP[170]=8377.49 10,QP[190]=7743.4 10,QP[210]=8535.67 10,QP[230]=5104.45

10,QP[171]=8300.04 10,QP[191]=7836.05 10,QP[211]=8465.9 10,QP[231]=4868.8

10,QP[172]=8217.58 10,QP[192]=7930.24 10,QP[212]=8383.15 10,QP[232]=4633.92

10,QP[173]=8130.27 10,QP[193]=8024.16 10,QP[213]=8287.44 10,QP[233]=4400.92

10,QP[174]=8038.32 10,QP[194]=8116.21 10,QP[214]=8178.89 10,QP[234]=4170.94

10,QP[175]=7941.97 10,QP[195]=8204.99 10,QP[215]=8057.71 10,QP[235]=3945.15

10,QP[176]=7841.51 10,QP[196]=8289.25 10,QP[216]=7924.16 10,QP[236]=3724.77

10,QP[177]=7737.26 10,QP[197]=8367.89 10,QP[217]=7778.61 10,QP[237]=3511.02

10,QP[178]=7629.57 10,QP[198]=8439.89 10,QP[218]=7621.52 10,QP[238]=3305.22

10,QP[179]=7518.89 10,QP[199]=8504.39 10,QP[219]=7453.59 10,QP[239]=3108.71

10,QP[180]=7426.17 10,QP[200]=8560.56 10,QP[220]=7275.47 10,QP[240]=2922.91  

10,QP[241]=2749.29 10,QP[249]=1997.87

10,QP[242]=2589.43 10,QP[250]=2008.18

10,QP[243]=2444.93 10,QP[251]=2029.66

10,QP[244]=2317.48 10,QP[252]=2058.68

10,QP[245]=2208.84 10,QP[253]=2095.82

10,QP[246]=2120.77 10,QP[254]=2141.58

10,QP[247]=2055.08 10,QP[255]=2196.43

10,QP[248]=2013.53 10,QP[256]=2260.74  

 

11,QP[1]=-9738.92 11,QP[21]=-11665 11,QP[41]=-11759.3 11,QP[61]=-10774.3

11,QP[2]=-9851.98 11,QP[22]=-11722.3 11,QP[42]=-11711.6 11,QP[62]=-10741.1

11,QP[3]=-9965.45 11,QP[23]=-11774.1 11,QP[43]=-11660.4 11,QP[63]=-10708.3

11,QP[4]=-10078.9 11,QP[24]=-11820.5 11,QP[44]=-11605.9 11,QP[64]=-10676

11,QP[5]=-10192.1 11,QP[25]=-11861.3 11,QP[45]=-11548.3 11,QP[65]=-10644.1

11,QP[6]=-10304.4 11,QP[26]=-11896.4 11,QP[46]=-11487.9 11,QP[66]=-10612.7

11,QP[7]=-10415.5 11,QP[27]=-11925.7 11,QP[47]=-11425 11,QP[67]=-10582

11,QP[8]=-10525.1 11,QP[28]=-11949.3 11,QP[48]=-11359.8 11,QP[68]=-10551.8

11,QP[9]=-10632.6 11,QP[29]=-11967.1 11,QP[49]=-11292.8 11,QP[69]=-10522.3

11,QP[10]=-10737.7 11,QP[30]=-11979.1 11,QP[50]=-11224 11,QP[70]=-10493.5

11,QP[11]=-10840.1 11,QP[31]=-11985.5 11,QP[51]=-11153.9 11,QP[71]=-10465.5

11,QP[12]=-10939.4 11,QP[32]=-11986.1 11,QP[52]=-11082.6 11,QP[72]=-10438.3

11,QP[13]=-11035.8 11,QP[33]=-11981.2 11,QP[53]=-11048 11,QP[73]=-10412

11,QP[14]=-11128.9 11,QP[34]=-11970.8 11,QP[54]=-11013.4 11,QP[74]=-10386.6

11,QP[15]=-11218.4 11,QP[35]=-11955.2 11,QP[55]=-10978.8 11,QP[75]=-10362.1

11,QP[16]=-11304 11,QP[36]=-11934.3 11,QP[56]=-10944.3 11,QP[76]=-10338.7

11,QP[17]=-11385.5 11,QP[37]=-11908.5 11,QP[57]=-10909.9 11,QP[77]=-10316.4

11,QP[18]=-11462.5 11,QP[38]=-11877.8 11,QP[58]=-10875.6 11,QP[78]=-10295.1

11,QP[19]=-11535 11,QP[39]=-11842.6 11,QP[59]=-10841.6 11,QP[79]=-10275

11,QP[20]=-11602.5 11,QP[40]=-11803 11,QP[60]=-10807.8 11,QP[80]=-10256.2

Left Knee lateral joint angle value  (11,QP[256])

 



168 
 

11,QP[81]=-10238.6 11,QP[101]=-10253.4 11,QP[121]=-11137.4 11,QP[141]=-11692.9

11,QP[82]=-10222.3 11,QP[102]=-10277.2 11,QP[122]=-11202.5 11,QP[142]=-11647.4

11,QP[83]=-10207.5 11,QP[103]=-10303.2 11,QP[123]=-11269.5 11,QP[143]=-11594.8

11,QP[84]=-10194 11,QP[104]=-10331.5 11,QP[124]=-11338.2 11,QP[144]=-11534.9

11,QP[85]=-10182 11,QP[105]=-10362 11,QP[125]=-11408.7 11,QP[145]=-11467.8

11,QP[86]=-10171.5 11,QP[106]=-10394.7 11,QP[126]=-11480.8 11,QP[146]=-11393.4

11,QP[87]=-10162.6 11,QP[107]=-10429.6 11,QP[127]=-11554.7 11,QP[147]=-11311.7

11,QP[88]=-10155.4 11,QP[108]=-10466.8 11,QP[128]=-11630.2 11,QP[148]=-11222.6

11,QP[89]=-10149.8 11,QP[109]=-10506.1 11,QP[129]=-11689.9 11,QP[149]=-11126.3

11,QP[90]=-10145.9 11,QP[110]=-10547.5 11,QP[130]=-11727.6 11,QP[150]=-11022.6

11,QP[91]=-10143.9 11,QP[111]=-10591 11,QP[131]=-11758.8 11,QP[151]=-10911.7

11,QP[92]=-10144.3 11,QP[112]=-10636.7 11,QP[132]=-11783.3 11,QP[152]=-10793.6

11,QP[93]=-10147 11,QP[113]=-10684.4 11,QP[133]=-11801.2 11,QP[153]=-10668.3

11,QP[94]=-10152.1 11,QP[114]=-10734.1 11,QP[134]=-11812.4 11,QP[154]=-10536

11,QP[95]=-10159.6 11,QP[115]=-10785.9 11,QP[135]=-11816.6 11,QP[155]=-10396.7

11,QP[96]=-10169.4 11,QP[116]=-10839.7 11,QP[136]=-11813.9 11,QP[156]=-10250.6

11,QP[97]=-10181.6 11,QP[117]=-10895.4 11,QP[137]=-11804.1 11,QP[157]=-10097.7

11,QP[98]=-10196 11,QP[118]=-10953 11,QP[138]=-11787.1 11,QP[158]=-9938.28

11,QP[99]=-10212.9 11,QP[119]=-11012.6 11,QP[139]=-11762.7 11,QP[159]=-9772.43

11,QP[100]=-10232 11,QP[120]=-11074.1 11,QP[140]=-11731.3 11,QP[160]=-9600.35 

11,QP[161]=-9422.23 11,QP[181]=-5277.27 11,QP[201]=-9314.14 11,QP[221]=-12310.5

11,QP[162]=-9238.28 11,QP[182]=-5237.32 11,QP[202]=-9573.22 11,QP[222]=-12306.9

11,QP[163]=-9048.74 11,QP[183]=-5245.5 11,QP[203]=-9824.97 11,QP[223]=-12287.5

11,QP[164]=-8853.85 11,QP[184]=-5299.1 11,QP[204]=-10068.5 11,QP[224]=-12252.7

11,QP[165]=-8653.89 11,QP[185]=-5394.35 11,QP[205]=-10303 11,QP[225]=-12202.6

11,QP[166]=-8449.14 11,QP[186]=-5526.81 11,QP[206]=-10527.7 11,QP[226]=-12137.7

11,QP[167]=-8239.92 11,QP[187]=-5691.69 11,QP[207]=-10741.8 11,QP[227]=-12058.6

11,QP[168]=-8026.57 11,QP[188]=-5884.16 11,QP[208]=-10944.7 11,QP[228]=-11965.8

11,QP[169]=-7809.45 11,QP[189]=-6099.59 11,QP[209]=-11135.6 11,QP[229]=-11860.2

11,QP[170]=-7588.97 11,QP[190]=-6333.72 11,QP[210]=-11314 11,QP[230]=-11742.5

11,QP[171]=-7365.56 11,QP[191]=-6582.7 11,QP[211]=-11479.2 11,QP[231]=-11613.8

11,QP[172]=-7139.7 11,QP[192]=-6843.12 11,QP[212]=-11630.7 11,QP[232]=-11475

11,QP[173]=-6911.9 11,QP[193]=-7111.99 11,QP[213]=-11767.9 11,QP[233]=-11327.4

11,QP[174]=-6682.73 11,QP[194]=-7386.7 11,QP[214]=-11890.4 11,QP[234]=-11172.4

11,QP[175]=-6452.84 11,QP[195]=-7665 11,QP[215]=-11997.8 11,QP[235]=-11011.3

11,QP[176]=-6222.93 11,QP[196]=-7944.9 11,QP[216]=-12089.7 11,QP[236]=-10845.8

11,QP[177]=-5993.78 11,QP[197]=-8224.67 11,QP[217]=-12165.8 11,QP[237]=-10677.6

11,QP[178]=-5766.28 11,QP[198]=-8502.77 11,QP[218]=-12225.8 11,QP[238]=-10508.5

11,QP[179]=-5541.4 11,QP[199]=-8777.85 11,QP[219]=-12269.9 11,QP[239]=-10340.6

11,QP[180]=-5366.83 11,QP[200]=-9048.68 11,QP[220]=-12298.2 11,QP[240]=-10176.1 

11,QP[241]=-10017.3 11,QP[249]=-9271.02

11,QP[242]=-9866.66 11,QP[250]=-9282.89

11,QP[243]=-9726.87 11,QP[251]=-9313.19

11,QP[244]=-9600.63 11,QP[252]=-9360.14

11,QP[245]=-9490.76 11,QP[253]=-9425.03

11,QP[246]=-9400.1 11,QP[254]=-9509.07

11,QP[247]=-9331.47 11,QP[255]=-9613.36

11,QP[248]=-9287.6 11,QP[256]=-9738.92 

 



169 
 

12,QP[1]=-7478.18 12,QP[21]=-7128.63 12,QP[41]=-5264.59 12,QP[61]=-4193.39

12,QP[2]=-7512.68 12,QP[22]=-7058.21 12,QP[42]=-5168.77 12,QP[62]=-4171.7

12,QP[3]=-7541.71 12,QP[23]=-6983.72 12,QP[43]=-5075.25 12,QP[63]=-4150.17

12,QP[4]=-7565.25 12,QP[24]=-6905.39 12,QP[44]=-4984.38 12,QP[64]=-4128.84

12,QP[5]=-7583.25 12,QP[25]=-6823.45 12,QP[45]=-4896.52 12,QP[65]=-4107.71

12,QP[6]=-7595.67 12,QP[26]=-6738.17 12,QP[46]=-4811.99 12,QP[66]=-4086.82

12,QP[7]=-7602.48 12,QP[27]=-6649.8 12,QP[47]=-4731.14 12,QP[67]=-4066.17

12,QP[8]=-7603.65 12,QP[28]=-6558.63 12,QP[48]=-4654.29 12,QP[68]=-4045.8

12,QP[9]=-7599.15 12,QP[29]=-6464.95 12,QP[49]=-4581.77 12,QP[69]=-4025.71

12,QP[10]=-7588.98 12,QP[30]=-6369.07 12,QP[50]=-4513.88 12,QP[70]=-4005.93

12,QP[11]=-7573.14 12,QP[31]=-6271.31 12,QP[51]=-4450.93 12,QP[71]=-3986.49

12,QP[12]=-7551.72 12,QP[32]=-6171.98 12,QP[52]=-4393.21 12,QP[72]=-3967.4

12,QP[13]=-7524.97 12,QP[33]=-6071.42 12,QP[53]=-4370.83 12,QP[73]=-3948.68

12,QP[14]=-7492.93 12,QP[34]=-5969.98 12,QP[54]=-4348.44 12,QP[74]=-3930.35

12,QP[15]=-7455.68 12,QP[35]=-5868 12,QP[55]=-4326.08 12,QP[75]=-3912.43

12,QP[16]=-7413.31 12,QP[36]=-5765.83 12,QP[56]=-4303.76 12,QP[76]=-3894.96

12,QP[17]=-7365.9 12,QP[37]=-5663.82 12,QP[57]=-4281.5 12,QP[77]=-3877.94

12,QP[18]=-7313.59 12,QP[38]=-5562.34 12,QP[58]=-4259.31 12,QP[78]=-3861.39

12,QP[19]=-7256.51 12,QP[39]=-5461.73 12,QP[59]=-4237.22 12,QP[79]=-3845.35

12,QP[20]=-7194.8 12,QP[40]=-5362.36 12,QP[60]=-4215.24 12,QP[80]=-3829.82

Left Hip lateral joint angle value  (12,QP[256])

 

 

12,QP[81]=-3814.83 12,QP[101]=-3668.89 12,QP[121]=-3874.39 12,QP[141]=-3317.82

12,QP[82]=-3800.41 12,QP[102]=-3671.11 12,QP[122]=-3892.54 12,QP[142]=-3216.48

12,QP[83]=-3786.57 12,QP[103]=-3674.25 12,QP[123]=-3911.32 12,QP[143]=-3109.82

12,QP[84]=-3773.33 12,QP[104]=-3678.31 12,QP[124]=-3930.7 12,QP[144]=-2998.13

12,QP[85]=-3760.71 12,QP[105]=-3683.26 12,QP[125]=-3950.68 12,QP[145]=-2881.65

12,QP[86]=-3748.73 12,QP[106]=-3689.11 12,QP[126]=-3971.23 12,QP[146]=-2760.67

12,QP[87]=-3737.42 12,QP[107]=-3695.84 12,QP[127]=-3992.33 12,QP[147]=-2635.47

12,QP[88]=-3726.79 12,QP[108]=-3703.43 12,QP[128]=-4013.97 12,QP[148]=-2506.3

12,QP[89]=-3716.86 12,QP[109]=-3711.87 12,QP[129]=-4019.8 12,QP[149]=-2373.47

12,QP[90]=-3707.65 12,QP[110]=-3721.16 12,QP[130]=-4003.05 12,QP[150]=-2237.23

12,QP[91]=-3699.24 12,QP[111]=-3731.27 12,QP[131]=-3977.95 12,QP[151]=-2097.86

12,QP[92]=-3691.82 12,QP[112]=-3742.19 12,QP[132]=-3944.73 12,QP[152]=-1955.65

12,QP[93]=-3685.39 12,QP[113]=-3753.91 12,QP[133]=-3903.61 12,QP[153]=-1810.86

12,QP[94]=-3679.93 12,QP[114]=-3766.41 12,QP[134]=-3854.81 12,QP[154]=-1663.76

12,QP[95]=-3675.46 12,QP[115]=-3779.67 12,QP[135]=-3798.55 12,QP[155]=-1514.63

12,QP[96]=-3671.96 12,QP[116]=-3793.68 12,QP[136]=-3735.06 12,QP[156]=-1363.72

12,QP[97]=-3669.44 12,QP[117]=-3808.43 12,QP[137]=-3664.56 12,QP[157]=-1211.32

12,QP[98]=-3667.87 12,QP[118]=-3823.89 12,QP[138]=-3587.3 12,QP[158]=-1057.67

12,QP[99]=-3667.26 12,QP[119]=-3840.05 12,QP[139]=-3503.51 12,QP[159]=-903.044

12,QP[100]=-3667.61 12,QP[120]=-3856.89 12,QP[140]=-3413.58 12,QP[160]=-747.695 

 

 

 

 



170 
 

12,QP[161]=-591.882 12,QP[181]=2094.47 12,QP[201]=-706.451 12,QP[221]=-5222.66

12,QP[162]=-435.861 12,QP[182]=2104.15 12,QP[202]=-928.107 12,QP[222]=-5415.58

12,QP[163]=-279.889 12,QP[183]=2088.82 12,QP[203]=-1152.74 12,QP[223]=-5600.8

12,QP[164]=-124.223 12,QP[184]=2049.52 12,QP[204]=-1380 12,QP[224]=-5777.72

12,QP[165]=30.8769 12,QP[185]=1987.76 12,QP[205]=-1609.55 12,QP[225]=-5945.78

12,QP[166]=185.149 12,QP[186]=1905.39 12,QP[206]=-1841.03 12,QP[226]=-6104.48

12,QP[167]=338.327 12,QP[187]=1804.43 12,QP[207]=-2074.06 12,QP[227]=-6253.38

12,QP[168]=490.136 12,QP[188]=1686.89 12,QP[208]=-2308.24 12,QP[228]=-6392.11

12,QP[169]=640.295 12,QP[189]=1554.72 12,QP[209]=-2543.15 12,QP[229]=-6520.41

12,QP[170]=788.511 12,QP[190]=1409.68 12,QP[210]=-2778.34 12,QP[230]=-6638.06

12,QP[171]=934.48 12,QP[191]=1253.35 12,QP[211]=-3013.31 12,QP[231]=-6744.96

12,QP[172]=1077.88 12,QP[192]=1087.12 12,QP[212]=-3247.55 12,QP[232]=-6841.09

12,QP[173]=1218.37 12,QP[193]=912.17 12,QP[213]=-3480.49 12,QP[233]=-6926.53

12,QP[174]=1355.58 12,QP[194]=729.507 12,QP[214]=-3711.56 12,QP[234]=-7001.47

12,QP[175]=1489.13 12,QP[195]=539.991 12,QP[215]=-3940.12 12,QP[235]=-7066.18

12,QP[176]=1618.58 12,QP[196]=344.353 12,QP[216]=-4165.54 12,QP[236]=-7121.05

12,QP[177]=1743.47 12,QP[197]=143.216 12,QP[217]=-4387.15 12,QP[237]=-7166.55

12,QP[178]=1863.3 12,QP[198]=-62.8807 12,QP[218]=-4604.27 12,QP[238]=-7203.28

12,QP[179]=1977.49 12,QP[199]=-273.465 12,QP[219]=-4816.33 12,QP[239]=-7231.89

12,QP[180]=2059.34 12,QP[200]=-488.117 12,QP[220]=-5022.69 12,QP[240]=-7253.18 

12,QP[241]=-7267.98 12,QP[249]=-7273.16

12,QP[242]=-7277.23 12,QP[250]=-7274.71

12,QP[243]=-7281.94 12,QP[251]=-7283.53

12,QP[244]=-7283.15 12,QP[252]=-7301.46

12,QP[245]=-7281.92 12,QP[253]=-7329.21

12,QP[246]=-7279.33 12,QP[254]=-7367.48

12,QP[247]=-7276.39 12,QP[255]=-7416.93

12,QP[248]=-7274.07 12,QP[256]=-7478.18 

13,QP[1]=1033.07 13,QP[21]=-391.056 13,QP[41]=-1800.35 13,QP[61]=-2508.03

13,QP[2]=963.895 13,QP[22]=-463.009 13,QP[42]=-1868.34 13,QP[62]=-2505.63

13,QP[3]=894.371 13,QP[23]=-534.892 13,QP[43]=-1936.03 13,QP[63]=-2503.28

13,QP[4]=824.523 13,QP[24]=-606.688 13,QP[44]=-2003.41 13,QP[64]=-2500.98

13,QP[5]=754.373 13,QP[25]=-678.382 13,QP[45]=-2070.48 13,QP[65]=-2498.72

13,QP[6]=683.942 13,QP[26]=-749.958 13,QP[46]=-2137.23 13,QP[66]=-2496.51

13,QP[7]=613.251 13,QP[27]=-821.4 13,QP[47]=-2203.66 13,QP[67]=-2494.36

13,QP[8]=542.323 13,QP[28]=-892.694 13,QP[48]=-2269.77 13,QP[68]=-2492.26

13,QP[9]=471.18 13,QP[29]=-963.826 13,QP[49]=-2335.55 13,QP[69]=-2490.23

13,QP[10]=399.846 13,QP[30]=-1034.78 13,QP[50]=-2401.01 13,QP[70]=-2488.25

13,QP[11]=328.344 13,QP[31]=-1105.55 13,QP[51]=-2466.13 13,QP[71]=-2486.35

13,QP[12]=256.699 13,QP[32]=-1176.11 13,QP[52]=-2530.92 13,QP[72]=-2484.51

13,QP[13]=184.935 13,QP[33]=-1246.47 13,QP[53]=-2528.29 13,QP[73]=-2482.74

13,QP[14]=113.074 13,QP[34]=-1316.59 13,QP[54]=-2525.68 13,QP[74]=-2481.05

13,QP[15]=41.1353 13,QP[35]=-1386.49 13,QP[55]=-2523.08 13,QP[75]=-2479.43

13,QP[16]=-30.8618 13,QP[36]=-1456.13 13,QP[56]=-2520.51 13,QP[76]=-2477.9

13,QP[17]=-102.898 13,QP[37]=-1525.52 13,QP[57]=-2517.95 13,QP[77]=-2476.45

13,QP[18]=-174.954 13,QP[38]=-1594.65 13,QP[58]=-2515.42 13,QP[78]=-2475.08

13,QP[19]=-247.011 13,QP[39]=-1663.5 13,QP[59]=-2512.92 13,QP[79]=-2473.81

13,QP[20]=-319.051 13,QP[40]=-1732.07 13,QP[60]=-2510.46 13,QP[80]=-2472.63

Left Hip frontal joint angle value  (13,QP[256])

 



171 
 

13,QP[81]=-2471.54 13,QP[101]=-2476.29 13,QP[121]=-2548.73 13,QP[141]=-1726.11

13,QP[82]=-2470.55 13,QP[102]=-2478.2 13,QP[122]=-2554.35 13,QP[142]=-1654.41

13,QP[83]=-2469.66 13,QP[103]=-2480.29 13,QP[123]=-2560.18 13,QP[143]=-1582.53

13,QP[84]=-2468.88 13,QP[104]=-2482.54 13,QP[124]=-2566.22 13,QP[144]=-1510.48

13,QP[85]=-2468.2 13,QP[105]=-2484.98 13,QP[125]=-2572.47 13,QP[145]=-1438.29

13,QP[86]=-2467.64 13,QP[106]=-2487.58 13,QP[126]=-2578.94 13,QP[146]=-1365.99

13,QP[87]=-2467.18 13,QP[107]=-2490.37 13,QP[127]=-2585.62 13,QP[147]=-1293.58

13,QP[88]=-2466.85 13,QP[108]=-2493.33 13,QP[128]=-2592.52 13,QP[148]=-1221.1

13,QP[89]=-2466.63 13,QP[109]=-2496.47 13,QP[129]=-2562.52 13,QP[149]=-1148.57

13,QP[90]=-2466.54 13,QP[110]=-2499.79 13,QP[130]=-2495.06 13,QP[150]=-1075.99

13,QP[91]=-2466.58 13,QP[111]=-2503.3 13,QP[131]=-2427.12 13,QP[151]=-1003.4

13,QP[92]=-2466.79 13,QP[112]=-2506.99 13,QP[132]=-2358.73 13,QP[152]=-930.804

13,QP[93]=-2467.17 13,QP[113]=-2510.86 13,QP[133]=-2289.9 13,QP[153]=-858.232

13,QP[94]=-2467.72 13,QP[114]=-2514.92 13,QP[134]=-2220.65 13,QP[154]=-785.696

13,QP[95]=-2468.43 13,QP[115]=-2519.17 13,QP[135]=-2151 13,QP[155]=-713.216

13,QP[96]=-2469.32 13,QP[116]=-2523.61 13,QP[136]=-2080.98 13,QP[156]=-640.809

13,QP[97]=-2470.37 13,QP[117]=-2528.24 13,QP[137]=-2010.6 13,QP[157]=-568.489

13,QP[98]=-2471.6 13,QP[118]=-2533.06 13,QP[138]=-1939.89 13,QP[158]=-496.275

13,QP[99]=-2472.99 13,QP[119]=-2538.09 13,QP[139]=-1868.88 13,QP[159]=-424.181

13,QP[100]=-2474.56 13,QP[120]=-2543.31 13,QP[140]=-1797.61 13,QP[160]=-352.221 

13,QP[161]=-280.411 13,QP[181]=1069.97 13,QP[201]=1762.39 13,QP[221]=1983.66

13,QP[162]=-208.764 13,QP[182]=1110.93 13,QP[202]=1787.66 13,QP[222]=1977.32

13,QP[163]=-137.293 13,QP[183]=1151.29 13,QP[203]=1811.7 13,QP[223]=1969.32

13,QP[164]=-66.0111 13,QP[184]=1191.08 13,QP[204]=1834.44 13,QP[224]=1959.68

13,QP[165]=5.07034 13,QP[185]=1230.3 13,QP[205]=1855.84 13,QP[225]=1948.44

13,QP[166]=75.9397 13,QP[186]=1268.94 13,QP[206]=1875.84 13,QP[226]=1935.62

13,QP[167]=146.586 13,QP[187]=1307 13,QP[207]=1894.4 13,QP[227]=1921.26

13,QP[168]=217 13,QP[188]=1344.46 13,QP[208]=1911.47 13,QP[228]=1905.39

13,QP[169]=287.171 13,QP[189]=1381.3 13,QP[209]=1927.01 13,QP[229]=1888.06

13,QP[170]=357.09 13,QP[190]=1417.5 13,QP[210]=1940.97 13,QP[230]=1869.31

13,QP[171]=426.75 13,QP[191]=1453.03 13,QP[211]=1953.32 13,QP[231]=1849.19

13,QP[172]=496.141 13,QP[192]=1487.85 13,QP[212]=1964.03 13,QP[232]=1827.74

13,QP[173]=565.258 13,QP[193]=1521.93 13,QP[213]=1973.07 13,QP[233]=1805.02

13,QP[174]=634.093 13,QP[194]=1555.22 13,QP[214]=1980.42 13,QP[234]=1781.07

13,QP[175]=702.64 13,QP[195]=1587.69 13,QP[215]=1986.05 13,QP[235]=1755.95

13,QP[176]=770.894 13,QP[196]=1619.28 13,QP[216]=1989.96 13,QP[236]=1729.7

13,QP[177]=838.85 13,QP[197]=1649.96 13,QP[217]=1992.13 13,QP[237]=1702.39

13,QP[178]=906.503 13,QP[198]=1679.65 13,QP[218]=1992.57 13,QP[238]=1674.06

13,QP[179]=973.85 13,QP[199]=1708.33 13,QP[219]=1991.29 13,QP[239]=1644.75

13,QP[180]=1028.42 13,QP[200]=1735.92 13,QP[220]=1988.32 13,QP[240]=1614.52  

13,QP[241]=1583.42 13,QP[249]=1307.7

13,QP[242]=1551.49 13,QP[250]=1270.3

13,QP[243]=1518.76 13,QP[251]=1232.3

13,QP[244]=1485.29 13,QP[252]=1193.7

13,QP[245]=1451.09 13,QP[253]=1154.49

13,QP[246]=1416.21 13,QP[254]=1114.67

13,QP[247]=1380.67 13,QP[255]=1074.21

13,QP[248]=1344.49 13,QP[256]=1033.07  

 

 



Curriculum Vitae 

: Personal data  

Marital status Gender Nationality Date of Birth Surname Name 

Married Male Iranian 02/1983/21 Dezfouli Siavash 

 

Home Address 

Sechshauser Straße 31, 1150 Wien, Top 548  
 

E-mail Mobile: Telephon 

siavash.dezfouli@gmail.com +43-6764287020 +43- 1 2313714 

 

Educational Background: (Last one first) 

Graduated 
date 

Name of Institution attended Field of Specialization 
Certificate 
Degree 

05.12.2013 

Vienna University of 
Technology (Institute of 
Mechanics and 
Mechatronics,  Intelligent 
Handling Robotics and 
Devices, IHRT) 

Mechanical 
Engineering/ 
Mechatronics 

PhD. 
candidate 

05.12.2011 
Vienna University of 
Technology (CEC) 

Engineering 
Management 

M.Sc. 

29.09.2009 

Sharif University of 
Technology (International 
Campus Kish Island) 

Mechanical 
Engineering/ 
Mechatronics 

M.Sc. 

22.07.2006 Karaj Azad University 
Mechanical Engineering 
(Heat & Fluid) 

B.Sc. 



Title of –PhD. Thesis: 

Motion Creating System Design and Implementation for a Biped Humanoid Robot 

 

Title of –Graduate Thesis: 

Mechatronics M.Sc.: 

Structural Health Monitoring of Buried Pipelines using Piezoelectric Sensors 

 

 Experiences:Job  

Activity 
Date 

City Place of Work 
To From 

co-supervisor in phase#2 in 
installation & commissioning 
of gas turbine Siemens V-94 
  

Summer 2004 Tehran Damavand Power Plant 

Cooperation in design, 
manufacturing, installation 
and commissioning 4000 
m3/day Multi-Effect 
Desalination plant 

June. 
2010 

May. 
2008 

Tehran/Kish 
Island 

FARAZARAB Co. 
(www.farazarab.co) 

Cooperation in design and 
manufacturing 2x2400 m3/day 
Multi-Effect Desalination plant 

 

Tehran/Kish 
Island 

FARAZARAB Co. 

Cooperation as documentation 
responsible engineer  

Tehran/Kish 
Island 

FARAZARAB Co. 

Cooperation in project control 
management  

Tehran/Kish 
Island 

FARAZARAB Co. 

 

:Technical Skills 

 CATIA V5R20,  
 ANSYS, 
 MATLAB,  
 SolidWorks, 
 Auto CAD 
 MS Project 
 MS Office  

 
 



Area of  Interests: 

 Gas/Oil industry (Process/Control Engineering) 
 Water/Power industry (Process/Control Engineering) 
 Smart Systems & Structures-Advanced Materials (Structural Health Monitoring) 
 Advance Control-Mathematics Modeling & Finite Element Modeling 
 MEMS-micro mechanic & processing 
 Project Planning/Management  

 

Language skills: 

Name of Institution Date Grade/level Title 

English LamguageTesting Center Tehran 2006 6 IELTS 

Teheran Goethe Institute 2006 ZD (Zertefikat Deutsch) German 

WIFI (Vienna) 2012 A1.1-A1.2-B1.1-B1.2 German 

 

Persoanl Characterisitic: 

 Strong team collaboration skills. Work closely with team members to achieve 
engineering goals. 

 Willingness of travelling 
 

Publications: 

Dezfouli, S., & Mohamadi Daniali, M. (2012). motion controller design for a biped humanoid 
robot. In Proceedings of the ASME 2012 International Design Engineering Technical 
Conferences & Computers and Information in Engineering Conference  IDETC/CIE) (pp. 
1–7). Chicago, USA. 

Dezfouli, S., & Kopacek, P. (2011). Mechatronic Design of a Humanoid Robot. In Proceedings 
of the RAAD, 20th International Workshop on Robotics in Alpe-Adria-Danube Region 
(pp. 1–6). Brno, Czech Republic. 

Dezfouli, S., Kopacek, P., & Mohamadi Daniali, M., (2011). cost oriented humanoid robot 
archie. International journal automation austria, 19(2), 62-70. 

Dezfouli S., Zabiholah A., (2010). Structural health monitoring of buried pipelines under 
static dislocation and vibration, In 6th ASME/IEEE International Conference on 
Mechatronics & Embedded Systems & Applications (pp. 325-329). QingDao, China.  

 

 



PhD Graduated Courses: 

 Mechatronic system 
 Autonomous, Mobile Robots 
 Robot systems and handling devices 
 Robot systems and handling devices (seminar course) 
 Advanced Business Management and Culture 
 Resource Efficiency 

 

Mechatronics Master Graduated Courses: 

 Optimum Design 
 Micro-Nano Fluids Flow 
 Neural Network Control 
 Mechatronic Systems 
 Advanced Mathematics 
 Fuzzy Logic Control 
 Robotics 
 Electronics 
 Advanced Modern Control 
 Seminar Presentation  
 Technical Writing 

 

Reference: 

Em. o.Univ.Prof. Dr.techn.Dr.hc.mult. Peter Kopacek 

Technische Universität Wien, IHRT 

Favoritenstrasse 9-11/E325A6 

A - 1040 Wien  

Tel: +43 1 58801 31800 

FAX: +43 1 58801 31899 

E-mail: peter.kopacek@tuwien.ac.at 

 

 

 

https://tiss.tuwien.ac.at/course/educationDetails.xhtml?windowId=a32&semester=2011S&courseNr=318001
https://tiss.tuwien.ac.at/course/educationDetails.xhtml?windowId=a32&semester=2010W&courseNr=318000
https://tiss.tuwien.ac.at/course/educationDetails.xhtml?windowId=a32&semester=2010W&courseNr=318000
https://tiss.tuwien.ac.at/course/educationDetails.xhtml?windowId=a32&semester=2011S&courseNr=325037
https://tiss.tuwien.ac.at/course/educationDetails.xhtml?windowId=a32&semester=2011S&courseNr=325036
tel:%2B%2B43%201%2058801%2031800
tel:%2B%2B43%201%2058801%2031899

	Diss-Dezfouli.pdf
	C.V. (Siavash Dezfouli)

