
Detecting Structure in
Permutations and Preferences

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Martin Lackner
Registration Number 0525019

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Prof. Dr. Reinhard Pichler
Co-Advisor: Prof. Dr. Stefan Szeider

The dissertation has been reviewed by:

(Prof. Dr. Reinhard Pichler) (Prof. Dr. Gabór Erdélyi)

Vienna, 14th May 2014
(Martin Lackner)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit

Martin Lackner
1080 Vienna

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Martin Lackner)

i

Dedicated to my parents and family

Acknowledgements

Science is a joint venture. So, first and foremost, I would like to thank my coauthors for the
productive and enjoyable collaboration with them, the reviewers for their valuable comments,
the conference organizers for great experiences all around the world, the many scientists I have
met and talked to during my doctoral studies and, of course, the proverbial giants on whose
shoulders I stand.

In particular, I would like to thank my advisor Reinhard Pichler for his tremendous sup-
port and for giving me the freedom to pursue my own goals, my colleagues Andreas Pfandler,
Emanuel Sallinger, Martin Kronegger, Sebastian Skritek, Stefan Rümmele and Vadim Savenkov
for their help and for making DBAI such a fun place to work at, my international collabora-
tors Edith Elkind and Gabór Erdélyi for inviting me and for our successful collaboration, my
co-advisor Stefan Szeider for helpful discussions and feedback, my colleagues from the doc-
toral program for the enjoyable student retreat in Payerbach, Katherine Tiede for her inspiring
seminars on scientific writing, Johann Wruß for sparking my interest in mathematics and Marie-
Louise Bruner for more than would fit on this page.

Finally, let me especially thank those who proofread parts of this thesis: Marie-Louise
Bruner, Michael Gerstenecker, Andreas Pfandler, Reinhard Pichler and Sebastian Skritek.

This thesis was supported by the Austrian Science Fund (FWF): P25518-N23 and P20704-
N18 and by the Vienna Science and Technology Fund (WWTF) project ICT12-15.

iii

Abstract

The detection and subsequent utilization of structure in data is a major theme in algorithm de-
sign. While many algorithmic problems are computationally hard on arbitrary data, real-world
data often possesses characteristics – structure – that allow to speed up computation. A neces-
sary first step is to identify structure; for this task efficient algorithms are required. This thesis
considers structure detection in two particular forms of data: permutations and preferences. Al-
gorithmic, complexity theoretic and combinatorial methods are used with the aim of establishing
tools for efficiently detecting structure.

Structure in permutations is studied in the form of permutation patterns. Detecting classi-
cal permutation patterns is NP-complete in general but requires only linear time for patterns
of constant size. In this thesis, we explore the possibilities of detecting more general types of
permutation patterns and show that these are considerably harder to detect than classical permu-
tation patterns. For classical permutation patterns, we present a fast detection algorithm; the first
to improve upon the exponential runtime of O∗(2n), which is required by brute-force search.

Structure in preferences is studied in the form of domain restrictions. In computational social
choice, domain restrictions are studied intensively as they often allow for efficient algorithms for
otherwise intractable voting problems. Here, the detection of domain restrictions is a necessary
precondition for their subsequent algorithmic utilization. This thesis considers the detection
of structure in preferences from several viewpoints: First, we consider notions of distance to
domain restrictions, which allow for more robust and flexible notions of structure. Although
our results show that it is computationally hard to detect preferences which are only close to a
domain restriction, we find efficient approximation and fixed-parameter algorithms solving this
task. Second, we study single-peaked preferences (a particular form of domain restriction) in
incomplete preferences. Here, depending on the exact notion of incompleteness, we find both
intractable problems and fast algorithms.

Finally, we mathematically connect permutation patterns with domain restrictions and thus
establish a link between the two main concepts in this thesis. This link allows us to use methods
from permutation patterns to identify combinatorial properties of domain restrictions. These
results are the first to make precise statements about the likelihood of domain restrictions in
random preferences. Also, we use this link to establish limits for the efficient detection of
domain restrictions.

v

Kurzfassung

Die Erkennung und anschließende Nutzung von Struktur in Daten ist ein Kerngebiet des Algo-
rithmenentwicklung. Während viele algorithmische Probleme im Allgemeinen rechenaufwän-
dig sind, erlaubt die Strukturiertheit von Daten aus der realen Welt eine Beschleunigung der
Rechenvorgänge. Ein notwendiger erster Schritt ist die Erkennung von Struktur, wofür effizi-
ente Algorithmen erforderlich sind. Diese Dissertation beschäftigt sich mit der Erkennung von
Struktur in zwei besonderen Arten von Daten: Permutationen und Präferenzen. Es werden Al-
gorithmen, komplexitätstheoretische und kombinatorische Methoden verwendet mit dem Ziel,
effiziente Mittel zur Strukturerkennung zur Verfügung zu stellen.

Struktur in Permutationen wird in Form von Permutationsmustern untersucht. Das Erkennen
von klassischen Permutationsmustern ist im Allgemeinen NP-vollständig, braucht aber nur li-
neare Zeit für Muster konstanter Länge. In dieser Arbeit erforschen wir die Möglichkeiten, noch
allgemeinere Permutationsmuster zu erkennen, und zeigen, dass diese bedeutend schwieriger zu
entdecken sind als klassische Muster. Für klassische Permutationsmuster präsentieren wir einen
schnellen Erkennungsalgorithmus. Dies ist der erste Algorithmus, der die exponentielle Laufzeit
von O∗(2n) unterbietet, die bei einer Brute-Force-Suche benötigt wird.

Struktur in Präferenzen wird in Form von Domain-Restrictions untersucht. In Computa-
tional Social Choice werden Domain-Restrictions intensiv untersucht, da sie oft Algorithmen
für Wahlprobleme ermöglichen, die andernfalls sehr aufwändig zu berechnen wären. Hier ist
die Erkennung von Domain-Restrictions ein notwendiger erster Schritt für ihre darauffolgende
algorithmische Nutzung. Diese Dissertation untersucht Struktur in Präferenzen aus verschiede-
nen Blickrichtungen: Erstens werden verschiedene Arten von Distanz zu Domain-Restrictions
untersucht. Die Distanzmaße erlauben robustere und flexiblere Definitionen von Struktur in Prä-
ferenzen. Obwohl unsere Resultate zeigen, dass es sehr rechenintensiv ist zu überprüfen, ob
Präferenzen nahe einer Domain-Restriction sind, finden wir effiziente Approximations- und pa-
rametrisierte Algorithmen, die diese Aufgaben lösen. Zweitens untersuchen wir single-peaked
Präferenzen (dies ist eine bestimmte Form von Domain-Restriction) in unvollständigen Präfe-
renzen. Hier finden wir, abhängig von der genauen Definition von Unvollständigkeit, sowohl
schwer zu berechnende Probleme als auch effiziente Algorithmen.

Abschließend verbinden wir Permutationsmuster mit Domain-Restrictions und schaffen hier-
mit eine Brücke zwischen den beiden großen Themenkomplexen dieser Dissertation. Diese Ver-
bindung erlaubt, Methoden aus dem Gebiet der Permutationsmuster zu verwenden, um kom-
binatorische Eigenschaften von Domain-Restrictions zu finden. Diese Resultate erlauben, dass
erstmals präzise Aussagen über die Häufigkeit von Domain-Restrictions in vollständig zufälligen

vii

Präferenzen getroffen werden. Darüber hinaus verwenden wir diese Verbindung, um auszuloten,
bis zu welchem Grad eine effiziente Erkennung von Domain-Restrictions möglich ist.

Contents

1 Introduction 1
1.1 Detection of Structure . 1
1.2 Goal and Main Results . 3
1.3 Methodology . 5
1.4 Publications . 6

2 Preliminaries 9
2.1 Sets, Orders, Permutations . 9
2.2 Preferences and Social Choice . 11
2.3 Algorithms and Computational Complexity 12

3 Related Work 15
3.1 Permutation Pattern Matching . 15
3.2 Structure in Preferences . 16

I Permutation Patterns 21

4 Permutation Pattern Matching for Generalized Patterns 23
4.1 Types of Patterns . 24
4.2 The Possibility of Polynomial-Time Algorithms 28
4.3 The Impact of the Pattern Length . 30
4.4 Summary . 36

5 Fast Permutation Pattern Matching 39
5.1 The Alternating Run Algorithm . 39
5.2 The Parameter run(P) . 63
5.3 Summary . 66

II Structure in Preferences 69

6 Nearly Structured Preferences: Complexity Results 71
6.1 Nearly Single-peaked Preferences . 71

ix

6.2 Basic Results about Single-Peaked Profiles 76
6.3 Relations between Notions of Nearly Single-Peakedness 77
6.4 Complexity of Nearly Single-Peaked Consistency 82
6.5 Complexity of Nearly Single-Peaked Evaluation 91
6.6 Summary . 94

7 Nearly Structured Preferences: Efficient Detection 95
7.1 Configurations . 96
7.2 A Simple Conversion to Hitting Set . 99
7.3 An Improved Conversion to Hitting Set . 99
7.4 Approximation Algorithms . 104
7.5 Fixed-Parameter Algorithms . 105
7.6 Deleting Almost All Votes . 105
7.7 Summary . 107

8 Structure in Incomplete Preferences 109
8.1 Incomplete Preferences . 110
8.2 Single-peaked Profiles . 112
8.3 Hardness Results . 114
8.4 The Guided Algorithm . 115
8.5 A 2-SAT Based Algorithm . 122
8.6 The Unguided Algorithm . 123
8.7 Scoring Protocols . 127
8.8 Summary . 128

9 Connections between Structure in Permutation Patterns and in Preferences 129
9.1 Applying the Marcus–Tardos Theorem to Domain Restrictions 130
9.2 Computational Results . 132
9.3 Summary . 135

10 Conclusions and Directions for Future Research 137

Bibliography 141

x

CHAPTER 1
Introduction

1.1 Detection of Structure

Making large quantities of information accessible is a central goal of computer science. This
goal is at the core of many disciplines of computer science such as data visualization, knowledge
representation, database architecture. For both humans and machines it is challenging to handle
large amounts of data. Interestingly, both humans and computers can handle large quantities of
data with the same basic strategy: by detecting and utilizing its structure.

This thesis deals with structure detection in two particular forms of data: permutations, i.e.,
orderings of natural numbers, and preferences, i.e., rankings of options. Both permutations
and preferences are two very general forms of data and appear in a wide range of applications.
Permutations are a fundamental object in mathematics and appear in almost any mathematical
area. Permutations also appear in applications such as error detection codes or mathematical
biology. Preferences appear in a wide range of sciences and applications ranging from artificial
intelligence and (computational) social choice to economy. While these two topics, permutations
and preferences, are seemingly unrelated, this thesis establishes a close connection between
structure in permutations and in preferences.

In this thesis, we consider a particular form of structure in permutations: permutation pat-
terns. A permutation T contains a permutation P as a pattern if there exists a subsequence of
T that has the same relative order of elements as P . For example 53142 contains 231 as shown
by the subsequence 342 (cf. Figure 1.1). On the other hand 53142 avoids 123 since it does not
contain an increasing subsequence of length 3. Permutation patterns are an extensively studied
topic with applications in areas such as bioinformatics (genome rearrangement) [36, 38, 50] and
sorting algorithms [31,141]. This concept of (classical) permutation patterns has been expanded
to generalized permutation patterns, where additional constraints have to be satisfied by pattern
occurrences. (For an overview of generalizations of permutation patterns, the reader is referred
to Chapter 4.1.)

1

2

3

1

5

3

1

4

2

Figure 1.1: The pattern 231 (left-hand side) is contained in the permutation 53142 (right-hand
side).

While both classical and generalized permutation patterns have been studied extensively
from a combinatorial point of view, far less is known about the computational aspects of detect-
ing permutation patterns. In particular, the following questions have not yet been answered.

Generalized Patterns. The problem of detecting permutation patterns with variable length
is known to be NP-complete in general [34]. However, Guillemot and Marx [92] showed that
patterns of constant length can be found in linear time. It is not clear whether this result can
be extended to generalized permutation patterns. More generally, what is the complexity of
detecting generalized permutation patterns and is it possible to find short patterns efficiently?

Fast Detection. Is there a fast algorithm for finding classical permutation patterns if one
cannot assume the pattern to be short? More specifically, the trivial brute-force algorithm has a
runtime of O(2n · n). So far, no algorithm has been discovered that improves the exponential
runtime to cn for some constant c < 2. Is this possible?

Structure in preferences has been studied mainly in the form of domain restrictions, for
example the single-peaked restriction. For an intuitive understanding of single-peakedness con-
sider the following situation. A group of coworkers wants to decide upon the temperature in a
work space. The options are 18, 19, 20, 21 and 22 degrees Celsius. The preferences of each
worker correspond to a ranking of these options. Some possible rankings do not seem to be
plausible in this scenario. For example if a worker prefers 19 degrees, her second ranked option
will not be 22 degrees but rather 20 or 18 degrees. In general one can assume that if each worker
has a preferred option (the peak), the options left and right on the temperature axis will be ranked
in a decreasing order. See Figure 1.2 for an example of two single-peaked preferences.

Domain restrictions are of particular interest for algorithmic purposes: computationally hard
problems concerned with preference data are often solvable by fast algorithms if a domain re-
striction can be assumed. It is therefore of considerable interest to design algorithms that detect
domain restrictions. Such algorithms are usually a necessary prerequisite to apply algorithms
tailored to a specific restricted domain.

In this thesis we explore domain restrictions and more generally the structure of preferences.
Several algorithmic problems regarding the detection of structure in preferences have not been
tackled so far:

2

18◦ 19◦ 20◦ 21◦ 22◦

5

2

1

3

44

3

2

1

5

Figure 1.2: Two preferences that are single-peaked with respect to the temperature axis

Nearly Structured Preferences. Preferences often do possess some kind of structure.
However, as experiments have shown, domain restrictions such as the single-peaked restriction
are too restrictive for real data. As a remedy, some notions of distance to single-peakedness have
been proposed to be able to speak about “closeness” to a domain restriction. What is the relation
of these notions of distance and is it possible to efficiently verify whether preferences are close
to a domain restriction?

Incomplete Preferences. A common assumption in social choice theory is that preferences
are given as total orders. Does the computational complexity of structure detection vary if one
assumes more realistic models for preference data? So far, structure in incomplete preferences
has not been considered in the literature.

Connections. The main difference between preferences and permutations is that natural
numbers have an underlying order whereas arbitrary options do not have such an order. As soon
as an order is established on the options – as it is the case for single-peaked preferences – a visual
similarity between preferences and permutations appears (cf. the up-and-down visualization in
Figure 1.1 and Figure 1.2). Is there a deeper connection between structure in permutations (per-
mutation patterns) and structure in preferences (domain restrictions)? If so, can this connection
be used to transfer results from one domain to the other?

1.2 Goal and Main Results

The overarching aim of this thesis is to provide means to detect structure in permutations and
preferences. Towards this aim, we use algorithmic, complexity theoretic and combinatorial
methods.

Part I of this thesis deals with permutation patterns. The results of this part can be summa-
rized as follows:

Generalized Patterns. We show for generalizations of classical permutation patterns that
no fixed-parameter algorithm exists under the common complexity theoretic assumption FPT 6=

3

W[1]. However, for two types of patterns that are restricted forms of generalized patterns, we
find polynomial-time algorithms. These results can be found in Chapter 4.

Fast Detection. For classical patterns, we present a fixed-parameter algorithm for permu-
tation pattern matching with a worst-case runtime ofO(1.79run(T) ·n ·k), where run(T) denotes
the number of alternating runs of T . Alternating runs describe the up-and-down structure of
permutations; for example, the permutation 53142 consists of three runs (cf. Figure 1.1). Since
run(T) < n, this yields a O(1.79n · n · k) algorithm. Thus, this is the first algorithm that im-
proves upon the O∗(2n) runtime required by brute-force search without imposing restrictions
on P and T . Furthermore we prove that – under standard complexity theoretic assumptions –
such a fixed-parameter tractability result is not possible for run(P). These results can be found
in Chapter 5.

Part II of this thesis deals with structure in preferences:

Nearly Structured Preferences. We introduce several new distance measures regarding
single-peakedness. We prove that determining whether a given profile is nearly single-peaked is
NP-complete in many cases. For one case (deleting options to achieve single-peakedness) we
present a polynomial-time algorithm. We also explore the relations between these notions of
nearly single-peakedness. These results can be found in Chapter 6.

For those problems that turn out to be NP-hard, we develop efficient approximation algo-
rithms. Our algorithms are not only applicable to the single-peaked restriction but to all domains
that can be characterized in terms of forbidden configurations. For a large range of scenarios,
our approximation results are optimal under a plausible complexity-theoretic assumption. We
also provide parameterized complexity results for this class of problems. All these results can
be found in Chapter 7.

Incomplete Preferences. While checking single-peakedness for complete preferences can
be done in linear time, this problem is NP-complete for incomplete preferences. Despite this
computational hardness result, we find four polynomial-time algorithms for reasonably restricted
settings. These results can be found in Chapter 8.

Connections. We establish a close connection between the two main objects that are
studied in this thesis: permutation patterns and domain restrictions. This connection is used
to apply results from permutation patterns to the field of domain restrictions. Two main tasks
are accomplished due to this connection. First, we perform a combinatorial analysis of domain
restrictions. Our results indicate that it is very unlikely that random preference profiles belong
to a restricted domain. Second, we analyze the computational complexity of detecting domain
restrictions. These complexity results are obtained through reduction from permutation pattern
detection problems. This connection and the corresponding results can be found in Chapter 9.

For a more detailed account of the results obtained in this thesis, we refer the reader to the
summaries at the end of each chapter.

4

I. Complexity analysis III. Fixed-parameter algorithms

II. Polynomial-time solvable fragments

IV. Approximation algorithms

Figure 1.3: The sequence of methods used in our algorithmic analysis

1.3 Methodology

This thesis takes mostly an algorithmic point of view. The aim is to find efficient algorithms
for precisely defined computational problems. This algorithmic approach is complemented by
a computational complexity analysis wherein complexity results allow us to prove impossibil-
ity results for efficient algorithms, usually under some complexity theoretic assumption. We
distinguish four main parts in our algorithmic analysis (cf. Figure 1.3).

I. First, we perform a complexity analysis of the problem at hand. This might be a clas-
sical complexity analysis or a parameterized complexity analysis. A classical complex-
ity analysis allows ruling out polynomial-time algorithms (assuming P 6= NP). A pa-
rameterized complexity analysis permits ruling out fixed-parameter algorithms (assuming
FPT 6= W[1]). The complexity classes P,NP,FPT,W[1] and others are explained in
Chapter 2. In this thesis, this first step generally yields intractability results, in particular
NP-completeness results. Thus, further algorithmic techniques are required to achieve
our aim of efficient algorithms. The following three techniques used in our algorithmic
analysis are applicable to computationally hard problems.

II. NP-hardness does not rule out the possibility of polynomial-time algorithms for a smaller
problem domain, that is, obtaining polynomial-time algorithms by restricting the set of
allowable instances. A classical example of this approach is the linear-time algorithm
for 2-SAT [11], restricting the SATISFIABILITY problem to instances with clauses of size
2. For instances of size 3, i.e., 3-SAT, the problem remains NP-hard. Similar to this
example, we try to meaningfully restrict our problems so that they become polynomial-
time solvable.

III. Another approach to deal with computational hardness is to identify parameters that make
a problem instance computationally demanding. As a typical example let us consider
the NP-complete VERTEX COVER problem. This problem asks, given a graph, for a
minimum subset of vertices such that every edge has an endpoint in that subset. A possible
parameter is the size of the solution, i.e, a value k such that a vertex cover of size k exists.
VERTEX COVER can be solved in time O(2k · n). The runtime of this algorithm thus
depends exponentially on k but only polynomially (even linearly) on the input size. Such
an algorithm is called fixed-parameter tractable with respect to the parameter k. Fixed-
parameter (tractable) algorithms can be applied to arbitrary problem instances (in contrast

5

I. II. III. IV.

Permutation patterns
Chapter 4 X X

NA
Chapter 5 X

Preferences

Chapter 6 X X
Chapter 7 X X
Chapter 8 X X
Chapter 9 X

Figure 1.4: Which techniques (cf. Figure 1.3) are used in which chapter

to the previous approach) but are only fast if the corresponding parameter is small. Since
real-world instances usually possess some kind of structure, it is reasonable to assume
that usually some parameter is small. The search for useful parameters and corresponding
fast fixed-parameter algorithms is thus a viable approach to dealing with computational
hardness.

IV. In contrast to exact fixed-parameter algorithms, approximation algorithms are sometimes
acceptable although they only yield approximate solutions. Approximation algorithms –
with guaranteed approximation accuracy – may require only polynomial time even for NP-
hard problems. A classical example is VERTEX COVER: computing a vertex cover that is
at most twice as large as the optimal solution can be done in linear time [72]. Analogously,
we want to find approximation algorithms for otherwise hard structure detection problems.
In Chapter 7 we will see that approximation algorithms are very well suited for efficiently
detecting nearly structured preferences.

We refer the reader to Figure 1.4 that indicates which technique has been applied in which
chapter of this thesis. Chapter 9, in addition to complexity results, also uses combinatorial
methods to make statements about the likelihood of structure. We would like to remark that the
framework of approximation algorithms is not applicable (NA) to decision problems. Finding
permutation patterns is a typical example for such a problem, since either there is a matching or
not – there is no intermediate outcome possible. Thus, Chapter 4 and 5, the chapters concerning
permutation patterns, do not deal with approximation algorithms. To make approximation algo-
rithms applicable, one would first have to define a corresponding optimization problem, e.g., to
ask what is the largest subsequence of the pattern such that this subsequence can be matched.
However, generalizations of that sort are not considered in this thesis.

Finally, we would like to state that this thesis is a theoretical treatment of the questions at
hand. While the algorithms presented here are applicable to real-life data sets, experiments are
not part of the thesis. In Chapter 10 we discuss implementations and experiments as a future
research direction.

1.4 Publications

This thesis is based on the following publications:

6

• Marie-Louise Bruner and Martin Lackner. A fast algorithm for permutation pattern match-
ing based on alternating runs. In Proceedings of the 13th Scandinavian Workshop on Al-
gorithm Theory (SWAT 2012), volume 7357 of Lecture Notes in Computer Science, pages
261–270. Springer, 2012.

• Marie-Louise Bruner and Martin Lackner. The computational landscape of permutation
patterns. Pure and Applied Mathematics, 2014. Accepted for publication.

• Gabór Erdélyi, Martin Lackner, and Andreas Pfandler. Computational aspects of nearly
single-peaked electorates. In Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI 2013), 2013.

• Martin Lackner. Incomplete preferences in single-peaked electorates. In Proceedings
of the 27th AAAI Conference on Artificial Intelligence (AAAI 2014), 2014. Accepted for
publication.

• Edith Elkind and Martin Lackner. On detecting nearly structured preference profiles. In
Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 2014), 2014.
Accepted for publication.

• Marie-Louise Bruner and Martin Lackner. The likelihood of structure in preference pro-
files. In Proceedings of the 8th Multidisciplinary Workshop on Advances in Preference
Handling (MPref 2014), 2014. Accepted for publication.

The following publications have been obtained by the thesis author during his doctoral stud-
ies but are not part of this thesis:

• Martin Kronegger, Martin Lackner, Andreas Pfandler and Reinhard Pichler. A param-
eterized complexity analysis of generalized CP-nets. In Proceedings of the 27th AAAI
Conference on Artificial Intelligence (AAAI 2014), 2014. Accepted for publication.

• Martin Lackner and Andreas Pfandler. Fixed-parameter algorithms for finding minimal
models. In Proceedings of the 13th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2012), pages 85–95. AAAI Press, 2012.

• Martin Lackner and Andreas Pfandler. Fixed-parameter algorithms for closed world rea-
soning. In Proceedings of the 20th European Conference on Artificial Intelligence (ECAI
2012), pages 492–497. IOS Press, 2012.

• Martin Lackner, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. Multicut on
graphs of bounded clique-width. In Proceedings of the 6th Annual International Confer-
ence on Combinatorial Optimization and Applications (COCOA 2012), volume 7402 of
Lecture Notes in Computer Science, pages 115–126. Springer, 2012.

7

CHAPTER 2
Preliminaries

The aim of this chapter is to introduce the basic concepts and notations that are used throughout
this thesis.

2.1 Sets, Orders, Permutations

For any m,n ∈ N with m ≤ n, let [m,n] denote the set {m,m + 1, . . . , n} and [n] the set
{1, 2, . . . , n}.

2.1.1 Orders

Let S be a finite set. A partial order of S is a binary relation that is reflexive, antisymmetric
and transitive. A total order of S is a partial order that is total, i.e., for every a, b ∈ S, either
the pair (a, b) or (b, a) is contained in the relation. Let P be a partial order of S. Instead of
writing (a, b) ∈ P , we write a ≤P b or b ≥P a. We write a <P b or b >P a to state that
a ≤P b and a 6= b. Sometimes, if the considered order is clear from the context, we omit the
index of >,≥, <,≤, etc. Given two subsets A and B of S, we write A >P B to denote that
every element in A is larger than every element in B with respect to P .

Let T be a total order on S. We write T (i) to denote the i-th largest element with respect
to T . A total order T is a linearization of a partial order P if dom(T) = dom(P) and for all
a, b ∈ dom(P), a <P b implies a <T b.

2.1.2 Permutations

A permutation is a bijective function from a finite set onto itself. An m-permutation is a permu-
tation from [m] to [m]. An m-permutation π can be seen as the sequence π(1), π(2), . . . , π(m).
Viewing permutations as sequences allows us to speak of subsequences of a permutation. We
speak of a contiguous subsequence of π if the sequence consists of contiguous elements in the

9

sequence corresponding to π. Given a set S ⊆ [m], we write π|S to denote the subsequence of
π consisting exactly of the elements of S.

We denote by π−1 the inverse of the permutation π, by πr := π(n)π(n − 1) . . . π(1) its
reverse and by πc := (n− π(1) + 1)(n− π(2) + 1) . . . (n− π(n) + 1) its complement.

Every [m]-permutation π defines a total order ≺π on [m]. We write i ≺π j if π−1(i) <
π−1(j), i.e., the value i stands to the left of the value j in π. We say i is left (right) of j if either
i ≺π j (j ≺π i) or i = j. We say i is strictly left (right) of j if i is left (right) of j and i 6= j.

2.1.3 Valleys, Peaks and Runs in Permutations

We discern two types of local extrema in permutations: valleys and peaks. A valley of a per-
mutation π is an element π(i) for which it holds that π(i − 1) > π(i) and π(i) < π(i + 1). If
π(i−1) or π(i+1) is not defined, we still speak of valleys. Similarly, a peak denotes an element
π(i) for which it holds that π(i− 1) < π(i) and π(i) > π(i+ 1).

Valleys and peaks partition a permutation into contiguous monotone subsequences, so-called
(alternating) runs. The first run of a given permutation starts with its first element (which is also
the first local extremum) and ends with the second local extremum. The second run starts with
the following element and ends with the third local extremum. Continuing in this way, every
element of the permutation belongs to exactly one alternating run. Observe that every alternating
run is either increasing or decreasing. We therefore distinguish between runs up and runs down.
Note that runs up always end with peaks and runs down always end with valleys. The parameter
run(π) counts the number of alternating runs in π. Hence, run(π)+1 equals the number of local
extrema in π. These definitions can be analogously extended to subsequences of permutations.

Example 2.1. In the permutation 1 8 12 4 7 11 6 3 2 9 5 10 the valleys are 1, 4, 2 and 5 and the
peaks are 12, 11, 9 and 10. A decomposition into alternating runs is given by:

1 8 12|4|7 11|6 3 2|9|5|10.
For a graphical representation of this permutation the reader is referred to Figure 2.1. a

2.1.4 Permutation Patterns

Definition 2.1. Let P (the pattern) be a k-permutation. We say that an n-permutation T (the
text) contains P as a pattern or that P can be matched into T if we can find a subsequence of
T that is order-isomorphic to P . Matching P into T thus consists in finding a monotonically
increasing function M : [k]→ [n] so that the sequence M(P), defined as(

M(P (1)),M(P (2)), . . . ,M(P (k))
)
,

is a subsequence of T . Such a function M is called a matching.

Example 2.2. Let us consider the text permutation 1 8 12 4 7 11 6 3 2 9 5 10 and the pattern per-
mutation 2 3 1 4. A graphical representation can be found in Figure 2.1. Observe that the pattern
can be matched into the text as witnessed by the subsequence 4 6 2 9. a

For an extensive mathematical treatment of permutation patterns the reader is referred to
Bóna’s Combinatorics of permutations [32].

10

2

3

1

4

1

8

12

4

7

11

6

3
2

9

5

10

Figure 2.1: The pattern 2 3 1 4 (left-hand side) is contained in the text permutation
1 8 12 4 7 11 6 3 2 9 5 10 (right-hand side).

2.2 Preferences and Social Choice

2.2.1 Preferences and Elections

An election E is described by a set of candidates C = {c1, . . . , cm} and an ordered list of votes
P = (V1, . . . , Vn). Each vote Vi, i ∈ [n], is a total order over C. We refer to Vi as the vote,
or preferences, of voter i, and write E = (C,P). The list of votes P is called the preference
profile, or profile for short.

For a vote Vi, we use x �i y to denote that x is larger than y with respect to the total order
Vi, i.e., (yVix) ∧ (x 6= y). As a shorthand notation we sometimes write Vi : abc to denote that
vote Vi is the total order a �i b �i c. If there is only one vote under consideration, usually
denoted by V , we omit the index and write x � y. To easier distinguish between votes and
other orders, we use the symbol � to compare candidates with respect to a vote and > for other
orders.

Given a profile P ′, we write P ′ ⊆ P if P ′ can be obtained from P by deleting some of the
votes. Further, given P ′ ⊆ P , we write P \P ′ to denote the profile that can be obtained from P
by removing the votes in P ′.

Given a vote V and a set of candidates C ′ ⊆ C, we define V [C ′] to be the vote V restricted
to candidates in C ′. More generally, given a total order T with domain S and S′ ⊆ S, we use
T [S′] to denote the total order T restricted to elements in S′. Analogously, given a preference
profile P = (V1, . . . , Vn), we define P[C ′] to be the restricted profile (V1[C ′], . . . , Vn[C ′]).

Unless explicitly stated otherwise, we denote the number of candidates with m and the
number of votes with n.

Given a vote Vi : c1c2 . . . cm, let the vote Vi : cmcm−1 . . . c1 denote the reverse vote of Vi.
More generally, the reverse of a total order T is denoted by T .

2.2.2 Domain Restrictions

In what follows, we discuss restricted preference domains, i.e., sets of elections that satisfy cer-
tain properties. The single-peaked restriction [30] is the most widely used restriction. It assumes

11

that the candidates can be ordered linearly on the so-called axis and voters prefer candidates
close to their ideal point over candidates that are further away. For an example of single-peaked
preferences, the reader is referred to the introduction and in particular to Figure 1.2. Throughout
this thesis, let (C,P) be an election.

Definition 2.2. Let A be a total order of C, the so-called axis. A vote V ∈ P contains a valley
with respect to an axis A on the candidates c1, c2, c3 ∈ C if c1 <A c2 <A c3, c2 ≺V c1 and
c2 ≺V c3 holds. The profile P is single-peaked with respect to A if for every V ∈ P and for
all candidates c1, c2, c3 ∈ C, V does not contain a valley with respect to A on c1, c2, c3. The
profile P is single-peaked consistent (or simply, single-peaked) if there exists a total order A of
C such that P is single-peaked with respect to A.

The single-peaked restriction can be relaxed to a two-dimensional setting [17], in which
valleys are less likely to arise. The intuition behind 2D single-peaked preferences is that there
is an ideal point in the two-dimensional space and, again, candidates that are closer to this point
are more preferred.

Definition 2.3. Let A and B be total orders of C, the so-called axes. A vote V ∈ P contains
a 2D-valley with respect to (A,B) on the candidates c1, c2, c3 ∈ C if V contains a (1D) valley
with respect to A on c1, c2, c3 as well as a valley with respect to B on c1, c2, c3. The profile
P is 2D single-peaked with respect to (A,B) if for every vote V ∈ P and for all candidates
c1, c2, c3 ∈ C, V does not contain a 2D-valley with respect to (A,B) on c1, c2, c3. The profile
P is 2D single-peaked if there exist two total orders A,B of C such that P is 2D single-peaked
with respect to (A,B).

We continue with the single-crossing restriction [125], where the votes and not the candi-
dates are ordered along a linear axis.

Definition 2.4. Let A be a total order of [n]. The profile P = (V1, . . . , Vn) is single-crossing
with respect to A if for every pair of candidates c1, c2 ∈ C the set {i ∈ [n] | c1 ≺i c2} is an
interval with respect to A. The profile P is single-crossing if there exists a total order A of [n]
such that P is single-crossing with respect to A.

Note that both {i ∈ [n] | c1 ≺i c2} and {i ∈ [n] | c2 ≺i c1} have to form an interval with
respect to the total order A. Thus, the (indices of) voters that prefer c1 over c2 precede the
(indices of) voters that prefer c2 over c1 on A – or vice versa.

Further domain restrictions, such as the worst-/best-/medium-/value-restricted, single-caved
and group-separable restriction, are defined in Section 7.1.

2.3 Algorithms and Computational Complexity

2.3.1 Classical Complexity Theory

We give a brief reminder of the two fundamental classes P and NP. The class P contains all prob-
lems that can be solved in polynomial time on a deterministic Turing machine. It is important
to note that polynomial time means polynomial in the size of the input. The class NP contains

12

all problems that can be solved in polynomial time on a non-deterministic Turing machine. A
problem is NP-hard if every problem in NP can be reduced to it by a polynomial time reduction.
Furthermore, a problem is NP-complete if it is contained in NP and NP-hard. For a detailed in-
troduction to complexity theory the reader is referred to the monographs by Papadimitriou [122],
Goldreich [90], and Arora and Barak [6].

2.3.2 Parameterized Complexity Theory

We give the relevant definitions of parameterized complexity theory. In contrast to classical
complexity theory, a parameterized complexity analysis studies the runtime of an algorithm with
respect to an additional parameter and not just the input size |I|. Therefore, every parameterized
problem is considered as a subset of Σ∗ × N, where Σ is the input alphabet. An instance of a
parameterized problem consequently consists of an input string together with a positive integer
p, the parameter.

Definition 2.5. A parameterized problem is fixed-parameter tractable (or in FPT) if there is a
computable function f such that there exists an algorithm solving an instance (I, k) in time
O(f(k) · |I|O(1)).

The algorithm itself is also called fixed-parameter tractable (fpt). When discussing fpt al-
gorithms, we use the standard notation of parameterized complexity and write O∗(f(k)) as a
shorthand for O(f(k) · |I|O(1)), i.e., the O∗ notation ignores polynomial factors.

A central concept in parameterized complexity theory are fixed-parameter tractable reduc-
tions, which allow for a parameterized hardness theory.

Definition 2.6. Let L1, L2 ⊆ Σ∗×N be two parameterized problems. An fpt-reduction from L1

to L2 is a mapping R : Σ∗ × N→ Σ∗ × N such that

• (I, k) ∈ L1 if and only if R(I, k) ∈ L2.

• R is computable by an fpt-algorithm.

• There is a computable function g such that for R(I, k) = (I ′, k′), k′ ≤ g(k) holds.

Besides the class FPT, other important complexity classes in the framework of parameter-
ized complexity are W[1] ⊆ W[2] ⊆ . . ., building the so-called W-hierarchy. For our pur-
pose, only the class W[1] is relevant. It is conjectured (and widely believed) that W[1] 6= FPT.
Therefore, showing W[1]-hardness can be considered as evidence that the problem is not fixed-
parameter tractable.

Definition 2.7. The class W[1] is defined as the class of all problems that are fpt-reducible to
the following problem.

TURING MACHINE ACCEPTANCE

Instance: A nondeterministic Turing machine with its transition table, an in-
put word x and a positive integer k.

Parameter: k
Question: Does the Turing machine accept the input x in at most k steps?

13

Definition 2.8. A parameterized problem is in XP if it can be solved in time O(|I|f(k)) where f
is a computable function.

All the aforementioned classes are closed under fpt-reductions. The following relations between
these complexity classes are known:

FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP

FPT ⊂ XP.

Further details can be found, for example, in the monographs by Downey and Fellows [63,
64], Niedermeier [120] and Flum and Grohe [80].

2.3.3 Approximation algorithms

In this thesis, we require only informal definitions of approximation algorithms; in particular,
we only consider minimization problems. Given an instance I of an optimization problem, let
opt(I) denote the size of a minimum (optimal) solution of I . In this thesis, only a specific type
of approximation algorithm appears: constant-factor approximation. Let c > 1 be a constant.
A c-approximation algorithm is a polynomial-time algorithm that solves an instance I of an
optimization problem by returning a solution of size at most c · opt(I).

14

CHAPTER 3
Related Work

3.1 Permutation Pattern Matching

The concept of pattern matching in permutations arose in the late 1960ies. It was in an exercise
of his Fundamental algorithms [109] that Knuth asked which permutations could be sorted using
a single stack. The answer is simple: These are exactly the permutations that do not contain
the pattern 231. Since 1985, when the first systematic study was published by Simion and
Schmidt [131], the area of permutation patterns has become a rapidly growing field of discrete
mathematics, more specifically of combinatorics, as witnessed by monographs of Bóna [32] and
Kitaev [105]. Many applications of permutation patterns have been discovered: their relation to
stack and deque sorting, genome sequences in computational biology, statistical mechanics and
in general their numerous connections to other combinatorial objects [105].

One of the most prominent examples of results concerning permutation patterns is the well-
known Marcus–Tardos theorem (also known as the Stanley–Wilf conjecture). It states that the
number of permutations that avoid a given pattern grows only single-exponentially. This is
in stark contrast to the total number of permutations which grows super-exponentially. This
theorem was proven by Marcus and Tardos [115] by proving a different conjecture by Füredi
and Hajnal [84], which was shown to imply the Stanley–Wilf conjecture by Klazar [106].

While permutation patterns have been studied extensively from a combinatorial point of
view, less is known about algorithmic aspects. The fundamental computational problem is the
following: given an n-permutation T and a k-permutation P (the pattern), is P contained in
T ? We call this problem PERMUTATION PATTERN MATCHING, short PPM. PPM is known to
NP-complete, as shown by Bose, Buss and Lubiw [34].

The most relevant algorithmic paper is the recent break-through result by Guillemot and
Marx [92] showing that PPM is fpt with respect to the length of the pattern k. Their algorithm
has a runtime of 2O(k2·logk) · n. This fpt result is anteceeded by XP-algorithms with a runtime
of O(n1+2k/3 · log n) [2] (Albert et al.) and O(n0.47k+o(k)) [1] (Ahal and Rabinovich).

Even though PPM is NP-complete in the general case, there are special cases of input in-
stances for which the problem can be solved efficiently, i.e., in polynomial time. In the following,

15

we list the cases for which it is known that PPM can be solved in polynomial time.

• In case the pattern is a separable permutation, i.e., a permutation avoiding both 3142
and 2413, PPM can be solved in O(k · n6), as shown by Bose, Buss and Lubiw [34].
This runtime has been improved to O(k · n4) by Ibarra [99]. For separable permutation
patterns, also a polynomial-time, parallel algorithm has been designed by Saxena and
Yugandhar [128].

• In case P is the identity 12 . . . k, PPM consists of looking for an increasing subsequence
of length k in the text – this is a special case of the LONGEST INCREASING SUBSE-
QUENCE problem. This problem can be solved in O(n log n)-time for sequences in gen-
eral, as proven by Schensted [129], and inO(n log log n)-time for permutations, as shown
by Chang and Wang [49] and Mäkinen [114].

• A O(k2n6)-time algorithm is presented by Guillemot and Vialette [93] for the case that
both the text and the pattern are 321-avoiding.

• PPM can also be restricted by requiring that the pattern has to be matched to consecutive
elements in the text. For this restriction, a O(n+ k) algorithm has been found by Kubica
et al. [110]. A similar result has been found independently by Kim et al. [104]. This work
has been extended to the cases where some mismatches are tolerated, by Gawrychchowski
and Uznanski [87]. Also an analogon of suffix trees has recently been developed for
consecutive patterns by Crochemore et al. [58].

The related LONGEST COMMON PATTERN problem is to find a longest common pattern
between two permutations T1 and T2, i.e., a pattern P of maximal length that can be matched
both into T1 and T2. This problem is a generalization of PPM since determining whether the
longest common pattern between T1 and T2 is T1 is equivalent to PPM. Bouvel and Rossin [37]
found a polynomial time algorithm for the LONGEST COMMON PATTERN problem for the case
that one of the two permutations T1 and T2 is separable. A generalization of this problem,
the so-called LONGEST COMMON C-PATTERN problem was introduced by Bouvel, Rossin and
Vialette [39]. This problem consists of finding the longest common pattern that belongs to
a class of permutations C. For the case that C is the class of all separable permutations and
that the number of input permutations is fixed, the problem was shown to be polynomial-time
solvable [39].

For a class of permutations X , the LONGEST X -SUBSEQUENCE (LXS) problem is to iden-
tify in a given permutation T its longest subsequence that is isomorphic to a permutation of X .
Polynomial time algorithms for many classes X exist, but in general LXS is NP-complete, as
shown by Albert et al. [3].

3.2 Structure in Preferences

Preferences appear throughout artificial intelligence in diverse applications. Consequently, pref-
erences are the topic of many monographs [83, 126] and survey articles [53, 62, 91]. Our work

16

on structure in preferences is mostly situated in social choice theory, more specifically in com-
putational social choice. The aim of social choice is to develop a formal theory of joint decision
making and voting. Computational social choice deals with the computational aspects of joint
decision making. In these fields, preferences naturally arise since each participant (voter) has to
specify their preferences in order to impact the decision.

While voting has been studied for centuries (notably Condorcet in the 18th century), mod-
ern social choice theory was established by the work of Arrow, in particular his impossibility
theorem [7,8], published in 1950. Arrow’s impossibility theorem states that every voting system
that is based on cardinal preferences, i.e., preferences given as total orders, and yields a ranking
of candidates cannot satisfy the following four properties:

• It has an unrestricted domain, i.e., every preference may occur as a vote.

• It satisfies the “independence of irrelevant alternatives” property, i.e., the relative ranking
of two candidates is not influenced by a third candidate.

• It satisfies “Pareto efficiency”, i.e., if every voter prefers candidate a over candidate b,
then a has to be ranked above b.

• It satisfies “non-dictatorship”, i.e., there is not a single voter (a dictator) that decides the
outcome of any election.

This negative result was then extended to voting systems that only yield a single winner by
Gibbard [89] and Satterthwaite [127]. The corresponding theorem, the so-called Gibbard–
Satterthwaite theorem, shows that every voting system choosing a single winner cannot satisfies
the following three properties:

• It is possible for every candidate to win.

• The voting system is immune to tactical voting, i.e., the voters never have an incentive to
misreport their true preferences.

• There is no dictator.

These two fundamental results establish boundaries of any voting system and thus force us to
find different voting systems for different scenarios; a perfect voting system cannot exist.

While social choice is a well-established field of research with an extensive amount of litera-
ture (as witnessed by a wealth of monographs [4,8–10,33,85,118]), computational social choice
is a rather new field [42]. One of the founding research publications was Voting schemes for
which it can be difficult to tell who won the election by Bartholdi, Tovey and Trick in 1989 [21].
In this work, the authors analyze the computational complexity of a voting rule where it is NP-
hard to determine a winner. Another foundational work is The computational difficulty of manip-
ulating an election [20] from the same authors, also published 1989. Here, the authors study the
computational complexity of manipulating an election, that is, strategic voting. This paper was
the first to propose computational complexity as a shield against dishonest voting behavior and

17

thus can be seen as a positive answer to the problems raised by the Gibbard-Satterthwaite the-
orem: if manipulation is possible, it might be computationally infeasible to compute a strategy
that manipulates the outcome of an election.

Computational social choice has identified voting as a very general and useful method of
collective decision-making and preference aggregation. Voting applications have been found in
many settings ranging from politics to artificial intelligence (in particular multi-agent systems)
and other topics in computer science such as rank aggregation on the web [65], planning [69],
database systems [133] or recommender systems [88,123]. We would now like to highlight pub-
lications in computational social choice that are related to the topic of structure in preferences.

Single-peaked preferences. The single-peaked restriction [30] was introduced by Black in
1948. Escoffier, Lang, and Ötztürk [71] presented a linear-time algorithm for deciding whether
a given profile is single-peaked, improving upon previous work by Bartholdi and Trick [23].
Ballester and Haeringer [16] combinatorially characterize single-peaked elections by the means
of forbidden configurations; this characterization will play an important role in Chapter 7.

Computationally hard problems often become easier for single-peaked preferences, for ex-
ample winner determination problems, proportional representation, manipulation and control
[29, 41, 75, 76]. Conitzer [52] considers single-peaked preferences also in the context of pref-
erence elicitation. Single-peaked preferences have also been extended to a multi-dimensional
setting by Barberà et al. [17]. Practical and algorithmic aspects of this extension have been
studied by Sui, Francois-Nienaber and Boutilier [135].

Other domain restrictions. Other well-known examples of domain restrictions are single-
caved preferences (Inada [100]), single-crossing preferences (Mirrlees [119]), value-restricted
preferences (Sen [130]), and group-separable preferences (Inada [100, 101]). Many of these do-
mains enjoy desirable social choice-theoretic properties, such as transitivity of the majority rela-
tion and existence of a strategyproof social choice rule, as shown by Barberá and Moreno [18].
All these domain restrictions can be characterized by forbidden configurations: the characteri-
zation of the single-peaked, single-caved and group-separable domain was shown by Ballester
and Haeringer [16], the characterization of the single-crossing domain by Bredereck, Chen and
Woeginger [45]. A characterization by forbidden configurations immediately yields a detection
algorithm requiring only polynomial time (cf. Proposition 7.1). Even faster algorithms exist
for single-crossing electorates, designed by Elkind, Faliszewski and Slinko [67] and Bredereck,
Chen and Woeginger [45].

While the single-peaked domain has received most attention, also single-crossing elections
have proven to be an algorithmically advantageous structure. For example, single-crossing pref-
erences have been studied in the context of proportional representation by Skowron, Faliszewski
and Elkind [132].

Another domain restriction is single-peakedness on trees [60, 136, 143], where preferences,
in contrast to single-peaked preferences, are not ordered on a linear axis but on a tree. Also, top
monotonicity has been recently introduced which is a relaxation of several domain restrictions
such as the single-crossing and single-peaked domain [13, 18, 19].

18

Nearly structured preferences. Domain restrictions are often too restrictive for real-world
data. Thus, notions of distance have been considered recently. Faliszewski, Hemaspaandra,
and Hemaspaandra [75] analyzed the complexity of bribery, control, and manipulation in nearly
single-peaked elections. Single-peaked width has been been studied by Cornaz, Galand, and
Spanjaard in the context of Kemeny winner determination [57] and proportional representa-
tion [56]. Elkind, Faliszewski, and Slinko [67] define the decloning measure which describes
the number of adjacent candidates (adjacent in every vote) that are merged into one candidate
in order to obtain single-peakedness. Bredereck, Chen, and Woeginger [44] study two distance
measures (maverick and candidate deletion) for several domain restrictions.

Incomplete preferences. If only incomplete preferences are available, it might be impossible
to determine the winner of an election. In such a scenario it makes sense to distinguish possible
and necessary winners. Computational questions of determining possible and necessary win-
ners were first studied by Konczak and Lang [71]. Further work by Baumeister and Rothe [26],
Baumeister et al. [25], Lang et al. [112], Xia and Conitzer [142], Pini et al. [124] and Betzler and
Dorn [27] has shown that possible and necessary winner computation given incomplete prefer-
ences is NP-hard for many voting systems that allow for polynomial-time winner computation
in case of complete information. Betzler et al. [28] employ the framework of parameterized
complexity to find fast parameterized algorithms.

Another question in the context of incomplete preferences is preference elicitation which
has been studied by Conitzer and Sandholm [54] and Walsh [138–140].

19

Part I

Permutation Patterns

21

CHAPTER 4
Permutation Pattern Matching for

Generalized Patterns

This chapter is based on the publication The computational landscape of permutation pat-
terns [47], a joint work with Marie-Louise Bruner.

In recent years, several types of generalized permutation patterns have received increased
interest, such as vincular [14], bivincular [35], mesh [40], boxed mesh [12] and consecutive
patterns [66] (all of which are introduced in Section 4.1). Every type of permutation pattern
naturally defines a corresponding computational problem. Let C denote any type of permutation
pattern, i.e., let C ∈ {classical, vincular, bivincular, mesh, boxed mesh, consecutive}.

C PERMUTATION PATTERN MATCHING (C PPM)
Instance: A permutation T (the text) and a C pattern P .
Question: Does the C pattern P occur in T ?

In this chapter we study the classical, vincular, bivincular, mesh, boxed mesh and consecutive
pattern matching problem. Often we abbreviate CLASSICAL PERMUTATION PATTERN MATCH-
ING with PPM and the other problems with C PPM, where C is the corresponding pattern type.

This chapter draws a map of the computational landscape of permutation patterns and thus
aims at paving the way for a detailed computational analysis. Its contents are the following:

• We survey different types of permutation patterns (Section 4.1), focusing on classical,
vincular, bivincular, mesh, boxed mesh and consecutive patterns. The hierarchy of these
patterns with the most general one at the top is displayed in Figure 4.1.

• We study the computational complexity of each corresponding permutation pattern match-
ing problem. It is known that CLASSICAL PERMUTATION PATTERN MATCHING is NP-
complete [34] and consequently VINCULAR, BIVINCULAR and MESH PPM are NP-hard
as well. We strengthen this result and also show that pattern matching with boxed mesh
and consecutive patterns can be performed in polynomial time (Section 4.2).

23

mesh

boxed mesh bivincular

vincular

consecutive classical

Figure 4.1: Hierarchy of pattern types

• We offer a more fine-grained complexity analysis by employing the framework of param-
eterized complexity. For most NP-complete problems we provide a more detailed com-
plexity classification by showing W[1]-completeness with respect to the parameter length
of P (Section 4.3). Both the classical as well as the parameterized complexity results are
summarized in Table 4.1 (page 25) and Table 4.2 (page 26).

4.1 Types of Patterns

In this section we give an overview of several different types of permutation patterns that have
been introduced in the last years and that will be of interest in this chapter. These are classical,
vincular, bivincular, mesh, boxed mesh and consecutive patterns. A schematic representation
of their hierarchy can be found in Figure 4.1. For details, we refer the reader to the Chapters 1
and 5-7 in Kitaev’s monograph Patterns in Permutations and Words [105]. Before we introduce
different types of patterns, we precisely define matchings in the context of permutation patterns.

Definition 4.1. Let C ∈ {classical, vincular, bivincular, mesh, boxed mesh, consecutive}. A
matching of a C pattern P of length k into a permutation T of length n is an increasing mapping
M : [k] → [n] such that the sequence M(P (1)),M(P (2)), . . . ,M(P (k)) is an occurrence of
the C pattern P in T .

4.1.1 Classical Patterns

Classical permutation patterns, or simply permutation patterns, have implicitly been studied in
different contexts for more than a hundred years. The first mentioning of a (classical) permuta-
tion pattern is attributed to Knuth and an exercise of his Fundamental algorithms [109] in 1968.
It was however only in 1985 that Simion and Schmidt performed the first systematic study of
patterns in permutations in [131]. To put the definition of pattern containment with classical
patterns in relation to pattern containment of other types of patterns, we repeat the definition of
pattern containment (Definition 2.1) in a slightly different formulation.

Definition 4.2. Let P be a k-permutation and T = T (1) . . . T (n) an n-permutation. An occur-
rence of the classical permutation pattern P is a subsequence T (i1)T (i2) . . . T (ik) of T that is

24

Classical Vincular Bivincular

Pattern P = 132 =
P = 132 =

cols(P) = 1

P =
1
1
2
3
3
2 =

cols(P) = 1 rows(P) = 2

Text

Classical
complexity

NP-complete [34]
NP-complete Corollary

4.3
NP-complete Corollary 4.3

Parameterized
complexity

FPT [92]
W[1]-complete Theorem

4.6
W[1]-complete Theorem 4.7

Table 4.1: Examples of classical, vincular and bivincular permutation patterns

order-isomorphic to P , i.e., a subsequence in which the letters appear in the same relative order
as in P . If such a subsequence exists, one says that T contains P or that there is a matching of
P into T . If there is no such function one says that T avoids the (classical) pattern P .

Example 4.1. The classical pattern P = 132 is contained several times in the text T = 164253
as for instance shown by the subsequence 142. A matchingM is given byM(1) = 1,M(3) = 4
and M(2) = 2. The pattern P = 1234 is however not contained in T since no increasing
subsequence of length four can be found in T . a

Graphically, a permutation π on [n] can be represented with the help of a [0, n+1]×[0, n+1]-
grid in which elements marked by black circles are placed at the position (i, j) whenever π(i) =
j. This representation thus corresponds to the function graph of π when viewing permutations
as bijective maps. Representing permutations with the help of grids allows for a simple inter-
pretation of classical pattern containment respectively avoidance in permutations. Indeed, the
pattern P is contained in the permutation T if and only if the grid corresponding to P can be
obtained from the one corresponding to T by deleting some columns and rows. For the example
given above, see the left column in Table 4.1, in which the elements involved in the matching
have been marked by circled elements.

It is easy to see that P can be matched into T if and only if P c can be matched into T c, if
and only if P r can be matched into T r and if and only if P−1 can be matched into T−1.

4.1.2 Vincular Patterns

Let T (i1)T (i2) . . . T (ik) be an occurrence of the classical pattern P in the text T . Then there are
no requirements on the elements in T lying in between T (ij) and T (ij+1). It is however natural
to ask for occurrences of patterns in which certain elements are forced to be adjacent in the text,
i.e., T (ij+1) = T (ij + 1). Vincular patterns are a generalization of classical patterns capturing
these requirements on adjacency in the text. They were introduced under the name of generalized

25

Mesh Boxed mesh Consecutive

Pattern P = (π,R) =

cells(P) = 5

P = 132 = P = 132 =

Text

Classical
complexity

NP-complete Corollary 4.3 in P; Theorem 4.4 in P; Theorem 4.5

Parameterized
Complexity

W[1]-complete Theorem 4.8 trivially FPT trivially FPT

Table 4.2: Examples of mesh, boxed mesh and consecutive permutation patterns

patterns in 2000 by Babson and Steingrímsson in [14], where it was shown that essentially all
Mahonian permutation statistics in the literature can be written as linear combinations of vincular
patterns. For a survey of this topic, see [134].

Here we use the name of vincular patterns as it was introduced by Kitaev in [105]. We also
use the notation introduced there, since it is consistent with the notation for classical patterns.

Definition 4.3. A vincular pattern P is a permutation in which certain consecutive entries may
be underlined. An occurrence of P in a permutation T is then an occurrence of the correspond-
ing classical pattern for which underlined elements are matched to adjacent elements. To be
more formal: An occurrence of P in T corresponds to a subsequence T (i1)T (i2) . . . T (ik) of
T that is order-isomorphic to P and for which T (ij+1) = T (ij + 1) whenever P contains
P (j)P (j + 1). Furthermore, if P starts with P(1) an occurrence of P in T must start with
the first entry in T , i.e., T (i1) = T (1). Similarly, if P ends with P(k) it must hold that
T (ik) = T (n).

When representing permutations by grids, adjacency of positions clearly corresponds to ad-
jacency of columns. In order to represent the underlined elements in vincular patterns in the
corresponding grids, one shades the columns which may not contain any elements in a match-
ing. For an example, see the middle column of Table 4.1. Matching the pattern 132 into the
permutation T , means that no elements may lie in the columns between M(1) and M(3) in T .

In order to specify how many adjacency restrictions are made in the vincular pattern P , we
define cols(P) to be the number of shaded columns in the grid corresponding to P .

Note that the operations complement and reverse may be performed on vincular patterns,
leading to some (other) vincular pattern. Similarly as for classical patterns it then holds that P
can be matched into T if and only if P c can be matched into T c and if and only if P r can be
matched into T r. The inverse of a vincular pattern is however not clearly defined. This leads to
a larger class of patterns which is introduced below.

26

4.1.3 Bivincular Patterns

Bivincular patterns generalize classical patterns even further than vincular patterns. Indeed,
in bivincular patterns, not only positions but also values of elements involved in a matching
may be forced to be adjacent. When Bousquet-Mélou, Claesson, Dukes and Kitaev introduced
bivincular patterns in 2010 [35], the main motivation was to find a minimal superset of vincular
patterns that is closed under the inverse operation. As mentioned in Section 4.1.2, the inverse of
a vincular pattern is not well-defined - it is a bivincular, but not a vincular pattern.

Definition 4.4. A bivincular pattern P is a permutation written in two-line notation, where some
elements in the top row may be overlined and the bottom row is a vincular pattern as defined in
Definition 4.3. An occurrence T (i1)T (i2) . . . T (ik) of P in a permutation T is an occurrence of
the corresponding vincular pattern where additionally the following holds: T (ij+1) = T (ij)+1

whenever the top row of P contains j(j + 1). Furthermore, if the top row starts with 1, an
occurrence of P in T must start with the smallest entry in T , i.e., T (i1) = 1. Similarly, if the
top row ends with k , it must hold that T (ik) = n.

This definition gets a lot less cumbersome when representing permutations with the help of
grids: As remarked earlier, underlined elements in the bottom row are translated into forbidden
columns in which no elements may occur in a matching. Similarly, overlined elements in the
top row are translated into forbidden rows. For an example, see the right column in Table 4.1.

Again, in order to specify how many adjacency restrictions are made in the bivincular pattern
P , we define - in addition to cols(P) - rows(P) to be the number of shaded rows in the grid
corresponding to P .

4.1.4 Mesh Patterns

A further generalization of bivincular patterns was given by Brändén and Claesson who intro-
duced mesh patterns in [40] in 2011. Mesh patterns allow further restrictions on the relative
positions of the entries in an occurrence of a pattern. Several permutation statistics can be for-
mulated as the number of occurences of certain mesh patterns [40].

Definition 4.5. A mesh pattern is a pair P = (π,R) where π is a permutation of length k and
R ⊂ [0, k] × [0, k] is a relation. An occurrence of P in a permutation T is an occurrence of
the classical pattern π fulfilling additional restrictions defined by R. That is to say there is a
subsequence T (i1)T (i2) . . . T (ik) of T that is order-isomorphic to π and the following property
holds:

(x, y) ∈ R =⇒ @i ∈ [n] : ix < i < ix+1 ∧ T
(
iπ−1(y)

)
< T (i) < T

(
iπ−1(y+1)

)
.

This definition is again a lot easier to capture when representing permutations as grids. In-
deed, the relationR can be translated very easily into the graphical representation of P = (π,R),
by shading the unit square with bottom left corner (x, y) for every (x, y) ∈ R. An occurrence

27

of P in a permutation T is then a classical occurrence of π in T such that no elements of T lie
in the shaded regions of the grid.

Again, in order to specify how many adjacency restrictions are made in the mesh pat-
tern P , we define cells(P) to be the number of shaded cells in the corresponding grid. Thus
cells(π,R) := |R|. For an example consider the mesh pattern P = (π,R) with π = 132 and
R = {(1, 0), (1, 2), (2, 3), (3, 0), (3, 1)} which is displayed in the left column of Table 4.2.

4.1.5 Boxed Mesh Patterns

A special case of mesh patterns, so called boxed mesh patterns, was very recently introduced by
Avgustinovich, Kitaev and Valyuzhenich in [12].

Definition 4.6. A boxed mesh pattern, or simply boxed pattern, is a mesh pattern P = (π,R)
where π is a permutation of length k and R = [1, k − 1]× [1, k − 1]. P is then denoted by π .

In the grid representing a boxed pattern all but the boundary squares are shaded. For an
example, see the middle column of Table 4.2.

It is straightforward to see that the set of boxed patterns is closed under taking complements,
reverses and inverses and that these operations are compatible with pattern containment. Inter-
estingly, it was shown [12] that the statement “π can be matched into T if and only if π can be
matched into T ” is only true if π is one of the following permutations: 1, 12, 21, 132, 213, 231,
312.

4.1.6 Consecutive Patterns

Consecutive patterns are a special case of vincular patterns, namely those where all entries
are underlined. In an occurrence of a consecutive pattern it is thus necessary that all entries
are adjacent. Finding an occurrence of a consecutive pattern therefore consists in finding a
contiguous subsequence of T that is order-isomorphic to P . For an example, see the right
column of Table 4.2.

Several well-known enumeration problems for permutations can be formulated in terms of
forbidden consecutive patterns; Elizalde and Noy [66] provide examples. Chapter 5 in [105] is
devoted to and gives an overview of different methods employed in the literature for the study
of consecutive patterns.

4.2 The Possibility of Polynomial-Time Algorithms

4.2.1 NP-completeness

At the 1992 SIAM Discrete Mathematics meeting Herbert Wilf asked whether it is possible to
solve the permutation pattern matching problem in polynomial time. The answer is no unless
P=NP, as shown by the NP-completeness result of Bose, Buss and Lubiw [34]. This result im-
mediately yields NP-hardness for all generalizations of classical permutation pattern matching.
In this section we are going to show that NP-hardness holds for these problems even in a more
restricted case: with all runs having length at most two.

28

Definition 4.7. A run in a permutation is a maximal monotone contiguous subsequence. Let
lrun(π) denote the length of the longest run in the permutation π.

Note that for any permutation π with length at least two it holds that lrun(π) ≥ 2.

Theorem 4.1. Every MESH PERMUTATION PATTERN MATCHING instance (P, T) with P =
(π,R) can be transformed into an instance (P ′, T ′) with P ′ = (π′, R) and the following prop-
erties: (P ′, T ′) is a yes-instance if and only if (P, T) is yes-instance, |π′| = 2|π|, |T ′| = 2|T |
and lrun(π′) = lrun(T ′) = 2. This transformation can be done in polynomial time.

Proof. Let π = p1 . . . pk and T = t1 . . . tn. We define

π′ = (k + 1) p1 (k + 2) p2 (k + 3) . . . (2k) pk

T ′ = (n+ 1) t1 (n+ 2) t2 (n+ 3) . . . (2n) tn.

Clearly, |π′| = 2|π|, |T ′| = 2|T | and lrun(π′) = lrun(T ′) = 2. We are now going to show that
there is a matching from P into T if and only if there is a matching from P ′ into T ′. Assume
that M is a matching from P into T , i.e., a function from [k] to [n]. We extend this function to
a function M ′ from [2k + 1] to [2n+ 1] in the following way:

M ′(i) =

{
M(i), if i ∈ [k],

T (j), where M(i− k) = T (j + 1) if i > k.

In other words, M ′ maps (i + k) to the element in T left of M(i). For example if M(p3) = t5
then p3 ∈ π′ is matched to t5 ∈ T ′ and (k + 3) ∈ π′ is matched to n + 5 ∈ T ′ (which is the
element in T lying directly to the left of t5). Observe that the function M ′ is a matching from
P ′ into T ′.

Now let us assume that M ′ is a matching from P ′ into T ′. If we restrict the domain of M ′

to [k] then we obtain a matching from P into T .

Theorem 4.2. PERMUTATION PATTERN MATCHING is NP-complete even on permutations P
and T with lrun(P ′) = lrun(T ′) = 2.

Proof. We apply the transformation in Theorem 4.1 to show NP-hardness. NP-membership
holds for this restricted class of input instances as well.

Corollary 4.3. VINCULAR, BIVINCULAR and MESH PPM are NP-complete even if lrun(P ′) =
lrun(T ′) = 2.

Proof. NP-hardness follows from Theorem 4.1 as well as from Theorem 4.2. NP-membership
holds since checking whether the additional restrictions imposed by the vincular, bivincular or
mesh pattern are fulfilled can clearly be done in polynomial time.

29

4.2.2 Polynomial time algorithms

We have seen that polynomial time algorithms are unlikely to exist for PPM and its generaliza-
tions. However, this is not the case for the special cases of boxed mesh and consecutive pattern
matching.

Theorem 4.4. BOXED MESH PERMUTATION PATTERN MATCHING can be solved in O(n3)
time.

Proof. Let P be a boxed pattern of length k and T a permutation of length n. For every pair
(i, j) where i ∈ [n] and i + k ≤ j ≤ n check whether there is a matching M of the boxed
pattern P into T where the smallest element in P is matched to i and the largest one to j, i.e.,
M(1) = i and M(k) = j.

Checking whether such a matching exists can be done in the following way: From the per-
mutation T , construct the permutation T̃ by deleting all elements that are smaller than i and
larger than j. Clearly, the matching that we are looking for must be contained in T̃ , it could
otherwise not be an occurrence of a boxed pattern. Moreover, it has to consist of k consecutive
elements in T̃ . Since the positions of the smallest and the largest element are fixed, the positions
for all other elements of P are equally determined. Thus there is only one subsequence of T that
could possibly be a matching of P into T with M(1) = i and M(k) = j. Deleting the elements
that are too small or too large and checking whether this subsequence actually corresponds to an
occurrence of P in T , i.e., whether it is order-isomorphic to P , can be done in at most n steps.
Note that this subsequence might consist of less than k elements in which case it clearly does
not correspond to an occurrence.

In total, there are (n− k + 1) · (n− k + 2)/2 = O(n2) pairs (i, j) that have to be checked
which leads to the runtime bound O(n3).

Theorem 4.5. CONSECUTIVE PERMUTATION PATTERN MATCHING can be solved in O((n−
k) · k) time.

Proof. Let P be a consecutive pattern of length k and T a permutation of length n. For every
i ∈ [n − k + 1] check whether there is a matching of P into T where the first element of
P is mapped to i. Since we are looking for an occurrence of a consecutive pattern, the only
possible subsequence of T then consists of the element i and the following (k − 1) elements of
T . Whether this sequence is order-isomorphic to P can be checked in k steps which leads to the
runtime bound O((n− k) · k).

As has recently been shown by Kubica et.al. in [110], this simple result can be improved by
an algorithm with runtime O(n+ k).

4.3 The Impact of the Pattern Length

PPM can be solved in O(nk) time by exhaustive search, where k is the length of P . This
trivial upper bound has been improved first by Albert et al. to O(n1+2k/3 · log n) [2] and then
to O(n0.47k+o(k)) by Ahal and Rabinovich [1]. In a recent breakthrough result, Guillemot and

30

Marx have shown that PPM can be solved by an FPT algorithm [92]. Its runtime is 2O(k2·log k)·n.
In this section we are going to show that such a result is likely not to be achievable for VIN-
CULAR, BIVINCULAR and MESH PPM. This is done by showing W[1]-hardness with respect
to the parameter k. First, we show that MESH PPM and therefore all other problems studied in
this chapter are contained in W[1].

All results in this section are summarized in Figure 4.4 on page 37.

Theorem 4.6. MESH PERMUTATION PATTERN MATCHING is contained in W[1].

Proof. For showing membership we encode MESH PPM as a model checking problem of an
existential first order formula. W[1]-membership is then a consequence of the fact that the fol-
lowing problem is W[1]-complete [79].

EXISTENTIAL FIRST-ORDER MODEL CHECKING

Instance: A structure A and an existential first-order formula ϕ
Parameter: |ϕ|

Question: Is A a model for ϕ?

Let ((P,R), T) be a MESH PPM instance. We compute a structure A = (A,<,≺T , E), where
the domain set A = {1, . . . , n} represents indices in the text. The binary relation ≺T is defined
by x ≺T y holds if and only if T (x) < T (y). E is a quaternary relation where E(w, x, y, z)
is true if and only if there are no elements in T that are left of w, right of x, larger than y and
smaller than z. Intuitively, w, x, y and z describe a forbidden rectangle in the permutation grid
of T which may not contain any elements of T . T<, E and < can be computed in polynomial
time. The formula ϕ we want to check is

ϕ = ∃x1 . . . ∃xk x1 < x2 ∧ x2 < x3 ∧ . . . ∧ xk−1 < xk ∧∧
P (i)<P (j)
for i,j∈[k]

xi ≺T xj

︸ ︷︷ ︸
ϕ1

∧
∧

P (i)>P (j)
for i,j∈[k]

¬(xi ≺T xj)

︸ ︷︷ ︸
ϕ2

∧
∧

i,j∈[k] and
R(i,j) is true.

E(xi, xi+1, xj , xj+1)

︸ ︷︷ ︸
ϕ3

.

Observe that the length of ϕ is in O(k2). The two sub-formulas ϕ1 and ϕ2 are exactly then
true when a subsequence T (x1)T (x2) . . . T (xk) of T can be found such that T (xi) < T (xj)
if and only if P (i) < P (j). Thus ϕ1 ∧ ϕ2 is true if and only if there is a matching of the
classical pattern P into T . The sub-formula ϕ3 encodes the relation R and is true if and only if
no elements lie in the forbidden regions of T , as can be seen by recalling Definition 4.5. Thus ϕ
is true if and only if ((P,R), T) is a yes-instance of MESH PPM.

We now want to prove W[1]-hardness for vincular, bivincular and mesh pattern matching.
For this purpose, we introduce here SEGREGATED PERMUTATION PATTERN MATCHING, a
generalization of PPM. All subsequent hardness theorems use reductions from this problem.

31

SEGREGATED PERMUTATION PATTERN MATCHING (SPPM)
Instance: A permutation T (the text) of length n, a permutation P (the pat-

tern) of length k ≤ n and two positive integers p ∈ [k], t ∈ [n].
Parameter: k

Question: Is there a matching M of P into T such that M(i) ≤ t if and only
if i ≤ p?

Example 4.2. Consider the pattern P = 132 and the text T = 53142. As shown by the matching
M(2) = 3, M(1) = 1 and M(3) = 4, the instance (P, T, 2, 3) is a yes-instance of the SPPM
problem. However, (P, T, 2, 4) is a NO-instance, since no matching of P into T can be found
where M(3) > 4. a

Theorem 4.7. SEGREGATED PERMUTATION PATTERN MATCHING is W[1]-hard with respect
to the parameter k.

Proof. We show W[1]-hardness by giving an fpt-reduction from the W[1]-complete CLIQUE

problem [63] to SPPM:

CLIQUE

Instance: A graph G = (V,E) and a positive integer k.
Parameter: k

Question: Is there a subset of vertices S ⊆ V of size k such that S forms a
clique, i.e., the induced subgraph G[S] is complete?

The reduction has three parts. First, we will show that we are able to reduce a CLIQUE

instance to a pair (P ′, T ′), where P ′ and T ′ are two permutations on multisets, i.e., permuta-
tions in which elements may occur more than once. Applying Definition 4.2 to permutations
on multisets means that in a matching repeated elements in the pattern have to be mapped to
repeated elements in the text. In addition to repeated elements, P ′ and T ′ contain so-called
guard elements. Their function is explained below. Second, we will show how to get rid of
repetitions. The method used in this step has already been used in the NP-completeness proof
of PPM provided by Bose, Buss and Lubiw in [34]. Third, we implement the guards by using
the segregation property and have thus reduced CLIQUE to SPPM.

Let (G, k) be a CLIQUE instance, where V = {v1, v2, . . . , vl} is the set of vertices and
E = {e1, e2, . . . , em} the set of edges. Both the pattern and the text consist of a single sub-
string coding vertices (Ṗ resp. Ṫ) and substrings coding edges (P̄i resp. T̄i for the i-th sub-
string). These substrings are listed one after the other, with guard elements placed in between
them. These guard elements have the function of separating substrings in a matching: guard
elements will have to be mapped to guard elements and substrings embraced by two consecutive
guard-elements will also have to be mapped to substrings embraced by two consecutive guard-
elements. For the moment, we will simply write brackets to indicate where guard elements are
placed. The meaning of these brackets is then the following: a block of elements enclosed by a 〈
to the left and a 〉 to the right has to be matched into another block of elements between two such
brackets. How the guard-elements are implemented as elements of a permutation is explained at
the end of the proof after Claim 2.

32

v1v6

v4

v2v5

v3

Pattern: 1 2 3 12 13 23

Text: 1 4 6 12 16 24 45 462 3 5 23 25 35

Figure 4.2: An example for the reduction of an INDEPENDENT SET instance to a PPM instance

We define the pattern to be

P ′ := 〈Ṗ 〉〈P̄1〉〈P̄2〉〈. . .〉〈P̄k(k−1)/2〉
= 〈123 . . . k〉〈12〉〈13〉〈. . .〉〈1k〉〈23〉〈. . .〉〈2k〉〈. . .〉〈(k − 1)k〉.

Ṗ corresponds to a list of (indices of) k vertices. The P̄i’s represent all possible edges between
the k vertices (in lexicographic order).

For the text
T ′ := 〈Ṫ 〉〈T̄1〉〈T̄2〉〈. . .〉〈T̄m〉

we proceed similarly. Ṫ is a list of the (indices of the) l vertices of G. The T̄i’s represent all
edges in G (again in lexicographic order). Let us give an example:

Example 4.3. Let l = 6 and k = 3. Then the pattern permutation is given by

P ′ = 〈123〉〈12〉〈13〉〈23〉.

Consider for instance the graph G with six vertices v1, . . . , v6 and edge-set

{{1, 2} , {1, 6} , {2, 3} , {2, 4} , {2, 5} , {3, 5} , {4, 5} , {4, 6}} .

represented in Figure 4.2 (we write {i, j} instead of {vi, vj}).
Then the text permutation is given by:

T ′ = 〈123456〉〈12〉〈16〉〈23〉〈24〉〈25〉〈35〉〈45〉〈46〉.

a
Claim 1. A clique of size k can be found in G if and only if there is a simultaneous matching of
Ṗ into Ṫ and of every P̄i into some T̄j .

Example 4.4 (continuation). In our example {v2, v3, v5} is a clique of size three. Indeed, the
pattern P ′ can be matched into T ′ as can be seen by matching the elements 1, 2 and 3 onto
2, 3 and 5 respectively. See again Figure 4.2 where the involved vertices respectively elements
of the text permutation have been marked in gray. a

33

Proof of Claim 1. A matching of Ṗ into Ṫ corresponds to a selection of k vertices amongst
the l vertices of G. If it is possible to additionally match every one of the P̄ ’s into a T̄ this
means that all possible edges between the selected vertices appear in G. This is because T ′ only
contains pairs of indices that correspond to edges appearing in the graph. The selected k vertices
thus form a clique in G. Conversely, if for every possible matching of Ṗ into Ṫ defined by a
monotone function M : [k] → [l] some P̄i = xy cannot be matched into T ′, this means that
{M(x),M(y)} does not appear as an edge in G. Thus, for every selection of k vertices there
will always be at least one pair of vertices that are not connected by an edge and therefore there
is no clique of size k in G.

In order to get rid of repeated elements, we identify every variable with a real interval: 1
corresponds to the interval [1, 1.9], 2 to [2, 2.9] and so on until finally k corresponds to [k, k+0.9]
(resp. l to [l, l + 0.9]). In Ṗ and Ṫ we shall therefore replace every element j by the pair of
elements (j + 0.9, j) (in this order). The occurrences of j in the P̄i’s (resp. T̄i’s) shall then
successively be replaced by real numbers in the interval [j, j+0.9]. For every j, these values are
chosen one after the other (from left to right), always picking a real number that is larger than
all the previously chosen ones in the interval [j, j + 0.9].

Observe the following: The obtained sequence is not a permutation in the classical sense
since it consists of real numbers. However, by replacing the smallest number by 1, the second
smallest by 2 and so on, we do obtain an ordinary permutation. This defines P and T (except
for the guard elements).

Example 4.5 (continuation). Getting rid of repetitions in the pattern of the above example could
for instance be done in the following way:

P = 〈1.9 1 2.9 2 3.9 3〉〈1.1 2.1〉〈1.2 3.1〉〈2.2 3.2〉

This permutation of real numbers is order-isomorphic to the following ordinary permutation:

P = 〈4 1 8 5 12 9〉〈2 6〉〈3 10〉〈7 11〉.

a
Claim 2. P can be matched into T if and only if P ′ can be matched into T ′.

Proof of Claim 2. Suppose that P ′ can be matched into T ′. When matching P into T , we have
to make sure that elements in P that were copies of some repeated element in P ′ may still be
mapped to elements in T that were copies themselves in T ′. Indeed this is possible since we
have chosen the real numbers replacing repeated elements in increasing order. If i in P ′ was
matched to j in T ′, then the pair (i + 0.9, i) in P may be matched to the pair (j + 0.9, j) in
T and the increasing sequence of elements in the interval [i, i + 0.9] may be matched into the
increasing sequence of elements in the interval [j, j + 0.9].

Now suppose that P can be matched into T . In order to prove that this implies that P ′ can be
matched into T ′, we merely need to show that elements in P that were copies of some repeated
element in P ′ have to be mapped to elements in T that were copies themselves in T ′. Then
returning to repeated elements clearly preserves the matching. Firstly, it is clear that a pair of

34

consecutive elements i+ 0.9 and i in Ṗ has to be matched to some pair of consecutive elements
j + 0.9 and j in Ṫ , since j is the only element smaller than j + 0.9 and appearing to its right.
Thus intervals are matched to intervals. Secondly, an element x in P for which it holds that
i < x < i+ 0.9 must be matched to an element y in T for which it holds that j < y < j + 0.9.
Thus copies of an element are still matched to copies of some other element.

Finally, replacing real numbers by integers does not change the permutations in any relevant
way.

It remains to implement the guards in order to ensure that substrings are matched to cor-
responding substrings. Let Pmax and Tmax denote the largest integer that is contained in P
respectively T at this point. We now replace all guards with integers larger than Pmax respec-
tively Tmax and will choose the segregating elements p and t such that guards and “original”
pattern/text elements are separated. We insert the guard elements in the designated positions
(previously marked by 〈 and 〉) in the following order: Pmax + 2 (instead of the first 〈), Pmax +
1 (instead of the first 〉), Pmax + 4 (instead of the second 〈), Pmax + 3 (instead of the second
〉), . . . , Pmax +2i (instead of the i-th 〈), Pmax +2i−1 (instead of the i-th 〉), . . ., and so on until
we reach the last guard-position. The guard elements are inserted in this specific order to ensure
that two neighboring guard elements 〈 and 〉 in P have to be mapped to two neighboring guard
elements 〈 and 〉 in T . We proceed analogously in T . To ensure that guards in P are matched to
guards in T and pattern elements of P are matched to text elements in T , we set p to Pmax and
t to Tmax.

This finally yields that (G, k) is a yes-instance of CLIQUE if and only if (P, T) is a yes-
instance of SPPM. It can easily be verified that this reduction can be done in fpt-time.

As can easily be seen, the reduction performed in the proof of Theorem 4.7 can be done in
polynomial time. Thus this proof immediately yields NP-hardness for SPPM.

Now, that we have obtained this result, we are able to show W[1]-hardness for PPM with
vincular, bivincular and mesh patterns. As before, the parameter is the length of the pattern.

Theorem 4.6. VINCULAR PERMUTATION PATTERN MATCHING is W[1]-complete with respect
to k. This holds even when restricting the problem to instances (P, T) with cols(P) = 1.

Proof. We reduce from SEGREGATED PPM. Let (P, T, p, t) be an SPPM instance. The VIN-
CULAR PPM instance (P ′, T ′) constructed from (P, T) will have have an additional element
in P ′ and an additional element in T ′. The new element in P , denoted by p′, is p + 0.5, i.e.,
p′ is larger than p but smaller than p + 1. Analogously, t′ = t + 0.5 is the new element in T .
We define P ′ = p ′P and T ′ = t′ T . In order to obtain a permutation P on [k + 1] and T
on [n + 1], we simply need to relabel the respective elements order-isomorphically. In every
matching of P ′ into T ′ the element p′ has to be mapped to t′. Consequently, all elements larger
than p′ in P ′ have to be mapped to elements larger than t′ in T ′ and all elements smaller than p′

have to be mapped to elements smaller than t′. This implies that (P, T, p, t) is a SEGREGATED

PPM yes-instance if and only if (P ′, T ′) is a VINCULAR PPM yes-instance. This reduction is
done in linear time which proves W[1]-hardness of VINCULAR PPM. Membership follows from
Theorem 4.6.

35

Theorem 4.7. BIVINCULAR PERMUTATION PATTERN MATCHING is W[1]-complete with re-
spect to k. This holds even when restricting the problem to instances (P, T) with rows(P) = 1.

Proof. As in the previous proof we reduce from SEGREGATED PPM. Let (P, T, p, t) be an
SPPM instance. Identically to the previous proof, we define p′ = p+ 0.5 and t′ = t+ 0.5. The
BIVINCULAR PPM instance consists of a permutation P ′ with elements in [k + 1] ∪ {p′} and
T ′, a permutation on [n+ 1] ∪ {p′}. We define

P ′ =
1 2 3 . . . p′ . . . (k+1)

p′ (k + 1) P (1) . . . P (k)

and T ′ = t′(n + 1)T . In order to obtain permutations on [k + 2] respectively [n + 2] we again
relabel the elements order-isomorphically.

In any matching of P ′ into T ′ the element (k+ 1) has to be mapped to (n+ 1) and therefore
p′ has to be mapped to t′. Thus all elements larger than p′ in P ′ have to be mapped to elements
larger than t′ in T ′ and all elements smaller than p′ have to be mapped to elements smaller than
t′. This implies that (P, T, p, t) is a SEGREGATED PPM yes-instance if and only if (P ′, T ′)
is a BIVINCULAR PPM yes-instance. Since this reduction can again be done in linear time,
BIVINCULAR PPM is W[1]-hard. Membership follows again from Theorem 4.6.

Theorem 4.8. MESH PERMUTATION PATTERN MATCHING is W[1]-complete with respect to
k. This holds even if cells(P) = 1.

Proof. Let (P, T, p, t) be a SEGREGATED PPM instance. As before, we define p′ = p+ 0.5 and
t′ = t+ 0.5. The MESH PPM instance consists of a permutation P ′ with elements in [k] ∪ {p′}
and T ′, a permutation on [n + 1] ∪ {p′}. Again, permutations on [k + 1] respectively [n + 2]
can be obtained by relabelling the elements order-isomorphically. We define P ′ = p′ P and
T ′ = t′ (n + 1) T . Furthermore, let R = {(0, (k + 1))}. This means that for every matching
M of P ′ into T ′ the following must hold: to the left of M(p′) in T ′, there are no elements larger
than M(k). However, it surely holds that M(k) ≤ (n+ 1). Consequently, p′ has to be mapped
to t′. This implies that (P, T, p, t) is a SEGREGATED PPM yes-instance if and only if (P ′, T ′) is
a MESH PPM yes-instance. Since this reduction can again be done in linear time, MESH PPM
is W[1]-hard. Membership follows from Theorem 4.6.

These hardness results show that we cannot hope for a fixed-parameter tractable algorithm
for VINCULAR/BIVINCULAR/MESH PERMUTATION PATTERN MATCHING.

4.4 Summary

In this chapter, we have strengthened the previously known NP-hardness result for PPM and
proved NP-completeness for its generalizations. We have also found polynomial time algorithms
for boxed mesh and consecutive PPM. See Figure 4.3 for an overview of the classical complexity
of PPM with generalized patterns. Furthermore, we have performed a parameterized complexity
analysis for the parameter k, the pattern length. We showed that for vincular, bivincular and

36

mesh

boxed mesh bivincular

vincular

consecutive classical

NP-complete

in P

Figure 4.3: Classical complexity of permutation pattern matching with different pattern types

mesh

boxed mesh bivincular

vincular

consecutive classical

FPT
W[1]-co

mpletein P

Figure 4.4: The influence of the pattern length on the computational hardness: parameterized
complexity of permutation pattern matching

mesh PPM a fixed-parameter tractable algorithm is unlikely to exist. This is in contrast to the
case of classical PPM, which is fpt with respect to k [92]. Refer to Figure 4.4 for an overview
of these parameterized results.

37

CHAPTER 5
Fast Permutation Pattern Matching

This chapter is based on the publication A fast algorithm for permutation pattern matching based
on alternating runs [46], a joint work with Marie-Louise Bruner. Here, our focus is on classical
permutation patterns. The corresponding pattern matching problem is defined as follows:

PERMUTATION PATTERN MATCHING (PPM)
Instance: A permutation T (the text) of length n and a permutation P (the pat-

tern) of length k ≤ n.
Question: Is there a matching of P into T ?

Bose, Buss and Lubiw [34] showed that PPM is in general NP-complete. The trivial brute-force
algorithm checking every subsequence of length k of T has a runtime of O(2n · n). So far, no
algorithm has been discovered that improves the exponential runtime to cn for some constant
c < 2. Yet, improving exponential time algorithms is a major topic in algorithmics, as witnessed
by the monograph of Fomin and Kratsch [81].

In this chapter we tackle the problem of solving PPM faster than O(2n · n) for arbitrary
P and T . Our algorithm has a runtime of O(1.79n · n · k). We achieve this by exploiting the
decomposition of permutations into alternating runs. As an example, the permutation π = 53142
has three alternating runs: 531 (down), 4 (up) and 2 (down). We denote this number of ups and
downs in a permutation π by run(π). Alternating runs are a fundamental permutation statistic
and were studied already in the late 19th century by André [5]. Despite the importance of
alternating runs within the study of permutations, the connection to PPM has so far not been
explored. For a detailed summary of results, the reader is referred to Section 5.3.

5.1 The Alternating Run Algorithm

We start with an outline of the alternating run algorithm. Its description consists of two parts. In
Part 1 we introduce so-called matching functions. These functions map runs in P to sequences
of adjacent runs in T . The intention behind matching functions is to restrict the search space to

39

certain subsequences of length k, namely to those where all elements in a run in P are mapped
to elements in the corresponding sequences of runs in T . In Part 2 a dynamic programming
algorithm is described. It checks for every matching function whether it is possible to find a
compatible matching. This is done by finding a small set of representative elements to which the
element 1 can be mapped to, then – for a given choice for 1 – finding representative values for
2, and so on.

Theorem 5.1. The alternating run algorithm solves PPM in timeO(1.79run(T) ·n·k). Therefore,
PPM parameterized by run(T) is in FPT.

Since run(T) < n, we obtain as an immediate consequence:

Corollary 5.2. The alternating run algorithm solves PPM in time O(1.79n · n · k).

Before we start with the description of the alternating run algorithm, we introduce two func-
tions which play an important role.

Definition 5.1. Let i ∈ [k]. The run predecessor pre(i) denotes the largest element smaller than
i that is contained in the same run as i in P (if such an element exists). Moreover, the run index
function ri is defined as follows: ri(i) = j if i is contained in the j-th run in P .

Note that both functions concern only the pattern P .

5.1.1 Matching Functions

We introduce the concept of matching functions. These are functions from the interval [run(P)]
to sequences of adjacent runs in T . For a given matching function F the search space in T
is restricted to matchings where an element j contained in the i-th run in P is matched to an
element in F (i). As we will see later on in Lemma 5.3, this restriction of the search space does
not influence whether a matching can be found or not: if a matching exists, a corresponding
matching function can be found. In addition, Lemma 5.11 will show that it is possible to iterate
over all matching functions in fpt time. Thus, our algorithm verifies for all matching functions
whether a compatible matching exists.

Let us now give a formal definition of matching functions.

Definition 5.2. A matching function F maps an element of [run(P)] to a subsequence of T . It
has to satisfy the following properties for all i ∈ [run(P)].

(P1) F (i) is a contiguous subsequence of T .

(P2) If the i-th run in P is a run up (down), F (i) starts with an element following a valley
(peak) or the first element in T and ends with a valley (peak) or the last element in T .

(P3) F (1) starts with the first and F (run(P)) ends with the last element in T .

(P4) F (i) and F (i+ 1) have one run in common: F (i+ 1) starts with the leftmost element in
the last run in F (i).

40

P :

T :

F

= F (1)
= F (2)

= F (3)
= F (4)

Figure 5.1: A sketch of a matching function and its M- and W-shaped subsequences

Property (P2) implies that every run up is matched into an M-shaped sequence of runs of
the form up–down–up–...–up–down (if the run up is the first or the last run in P the sequence
might start or end differently) and every run down is matched into a W-shaped sequence of runs
of the form down–up–down–...–down–up (again, if the run down is the first or the last run in P ,
the sequence might start or end differently). These M- and W-shaped sequences are sketched in
Figure 5.1.

Property (P4) implies that two adjacent runs in P are mapped to sequences of runs that
overlap with exactly one run, as is also sketched in Figure 5.1. This overlap is necessary since
elements in different runs in P may be matched to elements in the same run in T . More precisely,
valleys and peaks in P might be matched to the same run in T as their successors (see the
following example).

Example 5.1. Throughout this chapter we will use the text permutation

Tex = 1 8 12 4 7 11 6 3 2 9 5 10

and the pattern permutation Pex = 2 3 1 4 as a running example. In Figure 5.2, Pex (left-hand
side) and Tex (right-hand side) are depicted together with a matching function F . A matching
compatible with F is given by 4 6 2 9. We can see that the elements 6 and 2 lie in the same run
in Tex even though 3 (a peak) and 1 (its successor) lie in different runs in Pex . a

Note that there are no matching functions if run(P) > run(T). This corresponds to the fact
that in such a case no matching from P into T exists either. The properties (P1)-(P4) guarantee
that the number of functions we have to consider is less than (

√
2)

run(T)
, as will be proven in

Section 5.1.4, Lemma 5.11. This allows us to iterate over all matching functions in fpt time.
Let us formalize what we mean by compatible matchings.

Definition 5.3. A matching M is compatible with a matching function F if M(κ) ∈ F (ri(κ))
for every κ ∈ [k], i.e., M matches each element contained in the i-th run in P to an element in
F (i).

Lemma 5.3. For every matching M of P into T there exists a matching function F such that M
is compatible with F .

41

2

3

1

4

1

8

12

4

7

11

6

3
2

9

5

10

= F (ri(2)) = F (ri(3)) = F (1)

= F (ri(1)) = F (2)

= F (ri(4)) = F (3)

Figure 5.2: Pex and Tex together with a matching function F and the compatible matching
witnessed by the subsequence 4 6 2 9

The proof of this lemma can be found in Section 5.1.3. We continue with the observa-
tion that, when searching for a compatible matching by looking for the possible values that
M(1),M(2) and so on can take, we do not have to remember all the previous choices we made.
Let us have a look at an example first:

Example 5.2. In Figure 5.2, assume that we already have a partial matching: M(1) = 2 and
M(2) = 4. We now have to decide where to map 3. There are two constraints that have to be
satisfied: First, M(3) > M(2). Second, M(3) has to be to the right of M(2), since 2 ≺P 3.
Since our choices for M(3) are limited to F (3), we do not have to check whether M(3) is left
of M(1) but only whether M(3) > M(2). Later, when deciding where to map 4, we will only
have to verify that M(4) > M(3).

In more generality, we observe that given a matching function and a partial matching M
defined on [κ − 1], deciding where to map κ only requires the knowledge of M(κ − 1) and of
M(κ′), where κ′ is the previous element in the same run as κ. a

Let us now make this observation more precise:

Lemma 5.4. Let F be a matching function. A function M :[k] → [n] is a matching of P into T
compatible with F if and only if for every κ ∈ [k]:

1. M(κ) ∈ F (ri(κ)),

2. M(κ) > M(κ− 1) and

3. if pre(κ) exists, then pre(κ) ≺P κ if and only if M(pre(κ)) ≺T M(κ), i.e., if κ is con-
tained in a run up (down), then M(κ) is right (left) of M(pre(κ)).

42

As we will see soon, this lemma is essential for our algorithm. Its proof can be found in
Section 5.1.3.

5.1.2 Algorithm Description

Before we start explaining the actual fpt algorithm, let us consider a simple algorithm based on
alternating runs. This simple algorithm (Algorithm 1) does not have fpt runtime but has the same
basic structure as the fpt algorithm. In particular, this simple algorithm will already demonstrate
the importance of Lemma 5.4.

Algorithm 1: A Simple Alternating Run Algorithm

1 XF
0 ← {(0, . . . , 0)} // The tuple (0, . . . , 0) has run(P) elements.

2 foreach matching function F do
3 for κ← 1 . . . k do // κ is the element to be matched.
4 XF

κ ← ∅
5 foreach ~x ∈ XF

κ−1 do
6 R← {ν ∈ [n] : ν ∈ F (ri(κ)) ∧ ν > xri(κ−1) ∧ (pre(κ) ≺P κ↔

xri(pre(κ)) ≺T ν)} // Conditions according to Lemma 5.4

7 foreach ν ∈ R do
8 XF

κ ← XF
κ ∪ {(x1, . . . , xri(κ)−1, ν, xri(κ)+1, . . . , xrun(P))}

9 if XF
k 6= ∅ then

10 return “P can be matched into T .”
11 return “P cannot be matched into T .”

From Lemma 5.3 we know that when checking whether T contains P as a pattern, it is
sufficient to test for all matching functions whether there exists a compatible matching. Let
us fix a matching function F . We first find suitable elements to which 1 can be mapped, then
suitable elements for 2, and so on. Observe that we can use Lemma 5.4 to verify what suitable
elements are. In addition, Lemma 5.4 tells us that when finding suitable elements for κ ∈ [k],
we only require the values of M(κ − 1) and M(pre(κ)). This means in particular that we
do not have to store all values of a possible partial matching (M(1), . . . ,M(κ)) but only the
values of M for the largest element ≤ κ in each run in P . For example, when trying to match
P = 2 3 5 7 4 1 6 into some text and looking for the possible values for κ = 4, we only have to
consider possibilities for M(3) and M(pre(4)) = M(1).

In this simple algorithm, we want to keep track of all possible partial matchings (M(1), . . . ,
M(κ)) for every κ ∈ [k]. Since such partial matchings can be described by storing a single
value per run in P , every one of them can be stored as a tuple ~x of length run(P). The first
element of ~x contains a possible choice for the largest element ≤ κ in the first run of P , the
second element of ~x contains a possible choice for the largest element ≤ κ in the second run of
P , etc. We formalize this notion of “tuples encoding partial matchings” as (κ, F)-matchings:

Definition 5.4. Let κ be an integer in [k]. A tuple ~x = (x1, x2, . . . , xrun(P)) with xi ∈ [0, n]
for all i ∈ [run(P)] is called a (κ, F)-matching of P into T if the following holds: There exists

43

a function M : [κ] → [n] that is a matching of P |[κ] into T that is compatible with F and for
which it additionally holds that for every xi 6= 0, M(max{κ′ ≤ κ : ri(κ′) = i}) = xi, i.e., M
maps the largest element ≤ κ in the i-th run of P to the i-th element of ~x.

The following lemma states thatXF
κ – as constructed by Algorithm 1 – indeed contains only

tuples that are (κ, F)-matchings:

Lemma 5.5. Let XF
κ be the set of tuples as constructed by Algorithm 1. Then every ~x ∈ XF

κ is
a (κ, F)-matching.

The proof can be found in Section 5.1.3. As an immediate consequence of this lemma, we
know that if XF

k 6= ∅ then there exists a matching from P into T that is compatible with F .
Observe that XF

k is always empty if a previous XF
κ was empty. If for every F the set XF

k = ∅,
we know from Lemma 5.3 that P cannot be matched into T .

Example 5.3. For our running example (Pex, Tex) and κ = 1 the data structure is given as
follows: XF

1 = {(0, 6, 0), (0, 3, 0), (0, 2, 0), (0, 9, 0)}. Given the choice M(1) = 3, we obtain 6
(2, F)-matchings, namely: (8, 3, 0), (12, 3, 0), (4, 3, 0), (7, 3, 0), (11, 3, 0) and (6, 3, 0). In total
XF

2 contains 19 elements. a

As seen in this small example, the set R and consequently the set XF
κ can get very large. In

particular, it is not possible to bound the size of XF
κ by a function depending only on run(T)

and not on n – which is necessary for obtaining our fpt result. Thus, we have to further refine
our algorithm.

We proceed by explaining how this simple algorithm can be improved in order to obtain an
fpt algorithm based on alternating runs (Algorithm 2). This is the main algorithm described in
this chapter. In the following description we fix F to be the current matching function under
consideration. There are two modifications that have to be made in order to obtain fpt runtime.
First, we have to restrict the set R to fewer, representative choices. Second, we have to change
the data structure of XF

κ from a set to an array of fixed size. In the array XF
κ , every (κ, F)-

matching has a predetermined position. Observe that if there are two (κ, F)-matchings ~x, ~y
where ~x leading to a matching implies that ~y leads to a matching as well, the algorithm only has
to remember ~y. The position of a (κ, F)-matching will thus be assigned in such a way that one
of two (κ, F)-matching sharing the same position is preferable in the above sense. We will now
explain both modifications in detail.

Concerning the first modification, i.e., restricting the set R, we introduce the procedure
Rep(~x, κ, F). This procedure returns a set of representative elements to which κ can be mapped.
These choices have to be compatible with previously chosen elements (x1, x2, . . . , xrun(P)) and
the matching function F .

An element ν ∈ [n] is contained in Rep(~x, κ, F) if the following conditions are met:

(C1) [Line 1] It has to hold that ν ∈ F (ri(κ)) (cf. Condition 1 in Lemma 5.4).

(C2) [Line 2] It has to hold that ν > xri(κ−1) (cf. Condition 2 in Lemma 5.4).

44

Algorithm 2: The Alternating Run Algorithm

1 XF
0 ← [(0, . . . , 0)] // (0, . . . , 0) has run(P) elements.

2 foreach matching function F do
3 for κ← 1 . . . k do // κ is the element to be matched.
4 XF

κ ← [ε, . . . , ε] // XF
κ is a fixed-size array.

5 foreach ~x ∈ XF
κ−1 with ~x 6= ε do

6 R← Rep(~x, κ, F)
7 foreach ν ∈ R do
8 i← Index(x1, . . . , xri(κ)−1, ν, xri(κ)+1, . . . , xrun(P))

9 ~y ← XF
κ (i)

10 if ~y = ε or yri(κ) > ν then
11 XF

κ (i)← (x1, . . . , xri(κ)−1, ν, xri(κ)+1, . . . , xrun(P))

12 if XF
k 6= [ε, . . . , ε] then // Is XF

k non-empty?
13 return “Matching found: GetMatching(XF

1 , . . . , X
F
k)”

14 return “P cannot be matched into T .”

(C3) [Line 3] It is always preferable to choose elements that are as small as possible. To be
more precise: If we consider the subsequence of T containing all elements in the set R,
we merely need to consider the valleys of this subsequence. The function Valleys(T |R)
returns exactly these valleys.

(C4) [Lines 6 and 13] It has to hold that if κ is contained in a run up (down), then ν has to
be right (left) of xri(κ), i.e., the element to which the run predecessor of κ is mapped (cf.
Condition 3 in Lemma 5.4).

(C5) [Lines 8 and 15] If κ is the largest element in its run, the optimal choice is the smallest
possible element.

(C6) [Lines 10 and 17] If κ is not the largest element in its run, the choice of ν must not prevent
finding elements for the next elements in its run. Thus, if κ is contained in a run up (down),
then there has to be a larger element to its right (left) that is contained in F (ri(κ)).

Since this smaller set R is a subset of the set R in the simple algorithm (Algorithm 1), we
immediately obtain the following corollary of Lemma 5.5:

Corollary 5.6. Let XF
κ be the set of tuples as constructed by Algorithm 2. Then every ~x ∈ XF

κ

is a (κ, F)-matching.

Example 5.4. Let us explain how the elements in Rep((4, 2, 0), 3, F) are determined in our
running example. The elements fulfilling Condition (C1) are: 1, 8, 12, 4, 7, 6, 3 and 2 (listed
in the order they appear in T). Among these, the elements larger than xri(2) = x1 = 4 are:
8, 12, 7, 11, 6 (cf. (C2)). If we consider this subsequence, its valleys are: 8, 7, and 6 (these
are the elements fulfilling Condition (C3)). The element 3 is contained in a run up in T , thus
the element it is mapped to has to lie to the right of xri(pre(3) = xri(2) = 4. The elements also

45

Procedure Rep(~x, κ, F)
input : a (κ, F)-matching ~x = (x1, x2, . . . , xrun(P)), κ ∈ [k], a matching function F
output: R, the set of representative elements for M(κ)

1 R← F (ri(κ))
2 R← R ∩ [xri(κ−1) + 1, n]

3 R← Valleys(T |R)
4 if κ is in a run up in P then
5 if xri(κ)6=0 then
6 R←

{
ν ∈ R : xri(κ) ≺T ν

}
7 if κ is the largest element in its run then
8 R← {minR}
9 else

10 R← {ν ∈ R : ∃ν ′ with ν ′ ∈ F (ri(κ)) ∧ ν ′ > ν ∧ ν ≺T ν ′}
11 else
12 if xri(κ) 6=0 then
13 R←

{
ν ∈ R : ν ≺T xri(κ)

}
14 if κ is the largest element in its run then
15 R← {minR}
16 else
17 R← {ν ∈ R : ∃ν ′ with ν ′ ∈ F (ri(κ)) ∧ ν ′ > ν ∧ ν ′ ≺T ν}
18 return R

fulfilling (C4) thus are 7 and 6. Since 3 is the largest element in its run in P , we only need to
store the smallest possibility which is 6 (cf. (C5)). Condition (C6) does not apply here. If there
were another, larger element in the same run as 3 in P , we would have to choose the element 7,
since there are no larger elements in F (ri(3)) to the right of 6. a

If any matching of P into T can be found that is compatible with F , it is also possible to find
a matching that only involves representative elements. This statement is formalized and proven
in Section 5.1.3 (Definition 5.6 and Lemma 5.7). For the time being, let us convey the intuition
behind this:

Example 5.5. In Figure 5.2, 4 6 3 10 is a matching of Pex into Tex where the elements 3 and
10 are not representative: 3 /∈ Rep((0, 0, 0), 1, F) and 10 /∈ Rep((6, 3, 0), 4, F). This can
be seen since 3 is not a valley in T and 10 is not a valley in the subsequence consisting of
elements larger than 6. However, this matching can be represented by the matching 4 6 2 9 that
only involves representative elements (3 is represented by 2; 10 by 9) and that is compatible with
the same matching function F . a

This concludes our description of representative elements, our first modification of the sim-
ple alternating run algorithm. We proceed by explaining the data structureXF

κ , which is changed
from a set to an array of fixed size. In this array, every (κ, F)-matching ~x has a predetermined
position which depends on the notion of vales.

46

3

1

2

10

2

8
9

5

= F (1) = F (3)

4

7

= F (2)

Figure 5.3: Schematic representation of the permutations occurring in Example 5.6: to the left
is the pattern P , to the right is the text T .

Definition 5.5. A subsequence of a permutation π consisting of a consecutive run down and run
up (formed like a V) is called a vale. If π starts with a run up, this run is also considered as a
vale and analogously if π ends with a run down. Let vale(π) denote the number of vales in π.
Finally, we define the vale index function vi(x): given a matching function F and x ∈ F (i), let
vi(x) = j if x is contained in the j-th vale in F (i). For notational convenience, vi(0) = 1.

The main idea is the following: Two (κ, F)-matchings ~x and ~y inXF
κ with v(xi) = v(yi) for

all i ∈ [run(P)] are comparable in the sense that one of these is less likely to lead to a matching.
More precisely, the (κ, F)-matching containing the larger element at the ri(κ)-th position (this
is also the largest element of the entire tuple) leads to a matching only if the other one leads
to a matching as well. Thus, the former (κ, F)-matching can be discarded and only the latter
(κ, F)-matching has to be stored. The following example illustrates this notion of comparability:

Example 5.6. Consider the two permutations P and T schematically represented in Figure 5.3.
We are searching for representative elements for κ = 3 which lie in a run down in P . Which
elements κ may be matched to depends on the choices for its run predecessor pre(3) = 1 and
for κ − 1 = 2. For the element 1, two representative elements are 2 (circle) and 5 (square),
the valleys in F (1) in T . They lead to one representative element for 2 each: if 2 has been
chosen then 4 is a representative element (circle) and if 5 has been chosen then 7 (square) is
one. At this point, we have the following two (2, F)-matchings: ~x = (. . . , 0, 2, 4, 0, . . .) and
~y = (. . . , 0, 5, 7, 0, . . .). On the one hand, ~x seems to be preferable since it involves smaller
elements than ~y and this leaves more possibilities for the following elements. On the other hand,
~y seems to be preferable since it involves 5 in F (1), which is further to the right than 2. This
is advantageous since F (1) corresponds to a run down and this means that larger elements in
the same run will have to be chosen to the left. All together we cannot say which of ~x and ~y is
preferable and thus have to store both of them.

47

When we now turn to the element 3 in P , there are three representative elements: if we have
chosen ~x the only possible choice is the element 10; if we have chosen ~y there are two possible
choices namely 8 and 9. We thus obtain three (3, F) matchings: ~x′ = (. . . , 0, 10, 4, 0, . . .),
~y′ = (. . . , 0, 8, 7, 0, . . .) and ~y′′ = (. . . , 0, 9, 7, 0, . . .). We can now observe that we do not
have to keep track of all three possibilities. Indeed, the two (3, F)-matchings ~x′ and ~y′ have
coinciding vales and ~x′ can be discarded in favor of ~y′ since ~x′ will only lead to a matching of P
into T if ~y′ does. This is due to the fact that x′ri(3) = 10 > 8 = y′ri(3) and can be seen as follows:

Let i be an element in the same run as 3 in P that is larger than 3 (which means that it lies to
the left of 3). All elements to the left of and larger than 10 in F (i) are clearly also to the left of
and larger than 8. Thus, if there exists an element ν ∈ Rep(~x′, i, F) there also exists a smaller
element in Rep(~y′, i, F). This means that from the point of view of the run containing 3, ~y′ is to
be preferred over ~x′. Now let i > 3 be an element in the same run in P as 2 (which means that
it lies to the right of 2). Representative elements for i have to both lie to the right of the element
chosen for 2 (4 or 7) and be larger than the element chosen for 3 (10 or 8). Since 4 and 7 lie in
the same vale in T there are no larger elements in between them. This implies that elements that
are to the right of 4 in F (2) and larger than 10 are automatically to the right of 7 and larger than
8. From the point of view of the run containing 2, ~y′ it also to be preferred over ~x′. The same
argument also holds for any other element i in P that is larger than 3.

To put this example a nutshell: if we have two (κ, F)-matchings ~x and ~y with coinciding
vales and yri(κ) ≤ xri(κ) we only need to store ~y. For a formal proof of this statement, we refer
the reader to Lemma 5.9 in Section 5.1.3. a

If we store only one (κ, F)-matching out of those with identical vales, the question arises
how many vales there are in F (i), i ∈ [run(P)]. The answer is that at most brun(F (i))/2c+1 ex-
ist: all vales but the two outermost consist of two runs and the two outermost may consist of only
one run (cf. Definition 5.5). Consequently, we have to store at most

∏run(P)
i=1

(
b run(F (i)

2 c+ 1
)

many (κ, F)-matchings, but this number is still too large to show our desired runtime bounds.
However, it suffices to distinguish between brun(F (i))/2cmany vales inF (i) with i ∈ [run(P)−
1]. This is achieved by not distinguishing between the first and the last vale in F (ri(i)) for
i < run(P). We only briefly mention that this is correct due to the Conditions (C5) and (C6); a
formal proof will follow with Lemma 5.9 in Section 5.1.3. For i = run(P), the last run in P ,
we still consider all vales occurring in F (run(P)).

Recall that our goal is to assign a position in the array XF
κ to every (κ, F)-matching ~x. For

every one of the run(P) values of the (κ, F)-matching there are at most brun(F (ri(i))/2c vales
to be distinguished, except for the last one where we distinguish between brun(F (run(P)))/2c+
1 vales. Thus, it is natural to use a mixed radix numeral system with bases b1 = brun(F (1)/2c,
b2 = brun(F (2)/2c, . . . , brun(P)−1 = brun(F (run(P)−1)/2c and brun(P) is equal to the number
of vales in F (run(P)). Let Index be the function that assigns a position in the array to each
(κ, F)-matching ~x = (x1, . . . , xrun(P)):

Index
(
x1, . . . , xrun(P)

)
= 1 +

run(P)∑
i=1

(vi(xi)− 1 mod bi) ·
i−1∏
j=1

bj .

The mod operator is required since for x ∈ F (i), vi(x) ∈ [bi + 1] – as explained above.

48

Index(., ., .) = 1 Index(., ., .) = 2

XF
1 (0, 2, 0) ε

XF
2 (8, 2, 0) (4, 2, 0)

XF
3 (6, 2, 0) (11, 2, 0)

XF
4 (6, 2, 9) ε

Table 5.1: The arrays XF
1 , . . . , X

F
4 for our running example (cf. Figure 5.2)

Example 5.7. Let us discuss what the Index function looks like for our running example Pex
and Tex (cf. Figure 5.2). The subsequence F (1) contains four runs. Thus, b1 = 2. Since
both F (2) and F (3) contain two runs, b2 = b3 = 1. Consequently, in our running example,
XF
κ contains at most two elements for every κ ∈ [k]. For example, Index(8, 3, 10) = 1,

Index(6, 3, 10) = 1 and Index(11, 3, 10) = 2. a

From the definition of the Index-function, it follows immediately that the length of our
array is

∏run(P)
i=1 bi. We will show in Lemma 5.12 that

∏run(P)
i=1 bi = O

(
1.2611run(T)

)
. At this

point, we see the huge advantage of this array data structure over the set data structure in the
simple algorithm: the set XF

κ has a potential size of nrunP – too large for an fpt algorithm.
This concludes the description of the array data structure. Let us now – once again – return

to our running example and see how this would be dealt with by the alternating run algorithm.

Example 5.8. Let us demonstrate how the alternating run algorithm works. As before, con-
sider Tex , Pex and the matching function F as represented in Figure 5.2. We already know
from the last example that XF

κ has size 2, i.e., the Index function has range {1, 2}. We start
with XF

0 = {(0, 0, 0)}. Refer to Table 5.1 for an overview. For the element 1 in P the only
representative element is 2. Since Index(0, 2, 0) = 1, we store this (1, F)-matching at po-
sition 1 in XF

1 . Position 2 remains empty (symbolized by ε). For the element 2, we have
more representative elements: Rep((0, 2, 0), 2, F) = {4, 8}. Note that 3 is not a representa-
tive element since there is no larger element to its right in F (ri(2)) = F (1) (cf. (C6)). Since
Index(8, 2, 0) = 1 and Index(4, 2, 0) = 2, both (2, F)-matchings are stored inXF

2 . For plac-
ing the element 3, observe that 3 is the largest element in its run in P . Thus, Condition (C5) ap-
plies. We obtain Rep((8, 2, 0), 3, F) = min{11, 12} = {11} as well as Rep((4, 2, 0), 3, F) =
min{7, 6} = {6}. Thus, we have two (3, F)-matchings to store in XF

3 : (11, 2, 0) and (6, 2, 0)
with Index(11, 2, 0) = 2 and Index(6, 2, 0) = 1. Finally, we have to place the element
4. The (3, F)-matching (11, 2, 0) does not lead to a matching since Rep((11, 2, 0), 4, F) = ∅.
However, Rep((6, 2, 0), 3, F) = {9}. Thus, XF

4 contains the (4, F)-matching (6, 2, 9). This
(4, F)-matching corresponds to the matching {2 7→ 4, 3 7→ 6, 1 7→ 2, 4 7→ 9}. a

Finally, it only remains to explain the GetMatching procedure.
From Lemma 5.5 we know that if there is an element inXF

k , a matching from P into T that is
compatible with F exists. However, we have not yet shown how a matching can be constructed
from an element in XF

k . This is what the GetMatching procedure does: it extracts an actual

49

Procedure GetMatching(XF
1 , . . . , X

F
k)

input : k arrays XF
1 , X

F
2 , . . . , X

F
k generated by Algorithm 2

output: M , a matching of P into T that is compatible with F
1 for κ← k . . . 1 do
2 if κ = k then
3 ~x← some element in XF

k

4 else
5 ~x← some element ~y in XF

κ with xi = yi for all i 6= ri(κ)
6 M(κ)← xri(κ)

7 return M = (M(1),M(2), . . . ,M(k))

matching M : [k] → [n] out of the arrays XF
1 , . . . , X

F
k . We construct M recursively: First,

we pick some element ~x ∈ XF
k and set M(k) := xri(k). Now, suppose the matching has been

determined for κ ∈ [k] and M(κ) = xri(κ) for some ~x ∈ XF
κ . Then there must exist an element

~y ∈ XF
κ−1 that has led to the element ~x ∈ XF

κ , i.e., ~y differs from ~x only at the ri(κ)-th element.
We define M(κ− 1) := yri(κ−1). This defines the function M : [k]→ [n]. It can easily be seen
with the help of Lemma 5.4 that the function M returned by the GetMatching procedure is
indeed a matching of P into T that is compatible with F .

This concludes our description of the alternating run algorithm. We would like to remark that
this description omits two minor details necessary for obtaining the polynomial factor O(n · k)
of the desired runtime. The one detail concerns the calculation of the Index function. The
second details concerns how data is stored in the array. These details are described in the proof
of the runtime, Proposition 5.13.

5.1.3 Correctness

We start by providing the proof of Lemma 5.3, which states that for every matching M there
exists a matching function F such that M is compatible with F .

Proof of Lemma 5.3. Given a matching M from P to T , we will construct a matching function
F such that M is compatible with F . In order to describe F , it is enough to determine the
first (=leftmost) element lF (i) of every F (i), where i ∈ [run(P)]. In order to specify the last
(=rightmost) element rF (i) of F (i) for i ∈ [run(P)], we simply need to apply the properties (P3)
and (P4): rF (i) is either the last element in T or the leftmost valley (peak) in F (i+1) in case that
the i-th run is a run up (down). Clearly, lF (1) = T (1), the first element in T – cf. (P3). When
determining lF (i), let lP,i be the first element in the i-th run in P and rP,i be the last element in
the i-th run in P . If the i-th run is a run up (down), lF (i) is the right-most element in T lying
to the left of M(lP,i) and following a valley (peak). This construction guarantees that F is a
matching function.

In order to prove that M is compatible with F , we need to show for all i ∈ [run(P)] that
lF (i) �T M(lP,i) and M(rP,i) �T rF (i). The first statement holds by construction. For i =
run(P), the second statement clearly also holds by construction. Let i ∈ [run(P) − 1]. Let

50

� and ◦ in the same run
� and ◦ not in the same run;

◦ in a run up
� and ◦ not in the same run;

◦ in a run down

LF (i+1)

RF (i)

LF (i+1)

RF (i)

LF (i+1)

RF (i)

Figure 5.4: Three cases that have to be distinguished in the proof of Lemma 5.3 when showing
that M(rP,i) �T rF (i) for all i ∈ [run(P) − 1] under the assumption that the i-th run in P is a
run up. The element M(rP,i) is represented by a � and the element M(lP,i+1) by a ◦.

us assume that the i-th run is a run up – the proof for runs down is analogous. We distinguish
between the following cases that are depicted in Figure 5.4:

• M(rP,i) and M(lP,i+1) lie in the same run in T . Since we have assumed that the i-th run
in P is a run up, rP,i is a peak in P . Hence, this case is only possible ifM(rP,i) is in a run
down in T and rP,i > lP,i+1. Thus, lF (i+1) is the first element in this run, which implies
that rF (i) is the last element of this run and thus M(rP,i) �T rF (i).

• M(rP,i) and M(lP,i+1) do not lie in the same run in T and M(lP,i+1) is in a run up in T .
In this case, rF (i) is the last element in the run down preceding this run and thus it clearly
holds that M(rP,i) �T rF (i).

• M(rP,i) and M(lP,i+1) do not lie in the same run in T and M(lP,i+1) is in a run down
in T . In this case, rF (i) is the last element in this run and again it clearly holds that
M(rP,i) �T rF (i).

Example 5.9. Constructing F as described in the proof of Lemma 5.3 for the matching 4 6 2 9
of Pex into Tex yields the matching function represented in Figure 5.2. a

Next, we prove Lemma 5.4. This lemma states that a function M :[k]→ [n] is a matching of
P into T compatible with F if and only if for every κ ∈ [k]:

1. M(κ) ∈ F (ri(κ)),

2. M(κ) > M(κ− 1) and

3. if pre(κ) exists, then pre(κ) ≺P κ if and only if M(pre(κ)) ≺T M(κ), i.e., if κ is
contained in a run up (down), then M(κ) is right (left) of M(pre(κ)).

51

Proof of Lemma 5.4. Let M :[k] → [n] be a matching of P into T that is compatible with
F . Recall Definition 2.1 which states that M has to be a monotonically increasing function.
This implies the second condition. Moreover, the sequence M(P) = M(P (1)),M(P (2)), . . . ,
M(P (k)) has to be a subsequence of T . This means nothing else than

M(P (1)) ≺T M(P (2)) ≺T . . . ≺T M(P (k)).

In particular it must hold that M(i) ≺T M(j), where i and j are two neighbouring elements
in the same run in P with i ≺P j. This implies the third condition. Finally, the first condition
follows directly from the definition of compatibility (Definition 5.3).

Let M :[k] → [n] be a function fulfilling the three conditions stated above. The second
condition implies that M is monotonically increasing. In order to show that M is indeed a
matching of P into T , we have to show that M(P) = M(P (1)),M(P (2)), . . . ,M(P (k)) is
a subsequence of T . In other words, we have to show that for all i ∈ [k − 1] it holds that
M(P (i)) ≺T M(P (i+ 1)). We distinguish three cases:

• The elements P (i) and P (i + 1) lie in the same run in P . Thus, for the case of a run up
(down) we have P (i) = pre(P (i + 1)) (P (i + 1) = pre(P (i))). With κ = P (i + 1)
(κ = P (i)) it follows from the third condition that M(P (i)) ≺T M(P (i + 1)) (in both
cases).

• The elements P (i) and P (i+1) do not lie in the same run in P andM(P (i)) andM(P (i+
1)) do not lie in the same run in T . If P (i) lies in the j-th run in P , the first condition
implies that M(P (i)) lies in F (j) and that M(P (i + 1)) lies in F (j + 1) in T . Then
property (P4) of matching functions (the leftmost run of F (j + 1) is the rightmost run of
F (j)) implies that M(P (i)) lies to the left of M(P (i+ 1)) in T .

• The elements P (i) and P (i+1) do not lie in the same run in P butM(P (i)) andM(P (i+
1)) lie in the same run in T . By the definition of matching functions and since it holds
that M(κ) ∈ F (ri(κ)) for all κ ∈ [k], this can only be possible if M(P (i)) is in the last
run of F (j) and M(P (i+ 1)) is in the first run of F (j + 1) for some j ∈ [run(P)]. Thus,
if P (i) lies in a run up (down) in P both M(P (i)) and M(P (i + 1)) are contained in a
run down (up) in T . On the other hand, if P (i) is in a run up (down) it must be a peak
(valley) and thus it holds that P (i) > P (i+ 1) (P (i) < P (i+ 1)). The second condition
then ensures that M(P (i)) > M(P (i + 1)) (M(P (i)) < M(P (i + 1))), which implies
that M(P (i)) lies to the left of M(P (i+ 1)) in T .

The function M is thus a matching of P into T additionally fulfilling that M(κ) ∈ F (ri(κ))
which means that M is a matching compatible with F .

Lemma 5.5 states that in Algorithm 1, ~x ∈ XF
κ is a (κ, F)-matching. This can be shown as

follows:

Proof of Lemma 5.5. We prove this statement by induction over κ. For κ = 1 this is easy:
An element ~x ∈ XF

1 looks as follows: xi = 0 for all i 6= ri(1) and xri(1) is equal to some
j ∈ F (ri(1)). Thus, the function M : [1]→ [n] with M(1) = j is clearly a (1, F)-matching.

52

Now suppose we have proven the statement of Lemma 5.5 for κ− 1 and we want to prove it
for κ. If ~x ∈ XF

κ , then there must exist an element ~y ∈ XF
κ−1 and an element ν ∈ [n] such that

~x = (y1, . . . , yri(κ)−1, ν, yri(κ)+1, . . . , yrun(P)) (see lines 5 to 8 in Algorithm 1). This element
ν may not be any arbitrary element, it must fulfill the following conditions (see Algorithm 1,
Line 6): ν ∈ F (ri(κ)), ν > xri(κ−1)) and pre(κ) ≺P κ if and only if xri(pre(κ)) ≺T ν. Since
~y ∈ XF

κ−1 it is a (κ− 1, F)-matching and thus there exists a function M : [κ− 1]→ [n] that is
a matching of P |[κ−1] into T that is compatible with F and for which it additionally holds that
for every yi 6= 0, M(max{κ′ ≤ κ− 1 : ri(κ′) = i}) = yi.

We now define a function M̃ : [κ] → [n] as follows: M̃(i) = M(i) for all i ∈ [κ − 1] and
M̃(κ) = ν. We will see that this function M̃ is a witness for the fact that ~x is a (κ, F)-matching.
For this purpose we have to check that the three conditions in Lemma 5.4 are fulfilled for every
i ∈ [κ]. For i < κ these conditions are necessarily fulfilled since we then have M̃(i) = M(i) and
M is a matching of P |[κ−1] into T that is compatible with F . For i = κ, i.e., M̃(i) = ν, these
conditions are exactly those stated above that must be fulfilled by the element ν ∈ [n]. The last
condition in Definition 5.4, namely that for every xi 6= 0, M̃(max{κ′ ≤ κ : ri(κ′) = i}) = xi,
is fulfilled since M is a witness for the fact that ~y is a (κ− 1, F)-matching and since we defined
M̃(κ) to be equal to ν = xri(κ). Thus, ~x is a (κ, F)-matching.

The next lemma shows that only considering elements returned by the Rep procedure is
sound.

Definition 5.6. Let F be a matching function and ~x = (x1, x2, . . . , xrun(P)) be a (κ, F)-
matching for some κ ∈ [k]. A matching M (κ, F)-extends ~x if M is compatible with F and
if for every xi 6= 0, M(max{κ′ ≤ κ : ri(κ′) = i}) = xi, i.e., M maps the largest element ≤ κ
in the i-th run of P to the i-th element of ~x.

Definition 5.7. Let ~x = (x1, . . . , xrun(P)). In the following, we write ~x(ri(κ) ← ν) instead of
(x1, . . . , xri(κ)−1, ν, xri(κ)+1, . . . , xrun(P)).

Lemma 5.7. Let κ ∈ [k] and ~x ∈ XF
κ . If there exists a matching M that (κ, F)-extends ~x,

then there exist an element ν ∈ Rep(~x, κ + 1, F) and a matching M̃ that (κ + 1, F)-extends
~x(ri(κ+ 1)← ν).

Proof. Let us first explicitly show how to pick the element ν. Then we will prove that it indeed
holds that ν is in Rep(~x, κ+1, F). We define M̃ as follows: M̃(κ+1) := ν and M̃(i) := M(i)
otherwise. Finally, we will see that M̃ is a matching that (κ+ 1, F)-extends ~x(ri(κ+ 1)← ν).

In order to increase legibility, let i ∈ [k] be such that P (i) = κ+ 1. Let us then consider the
set S consisting of all elements in T that lie strictly to the right ofM(P (i−1)) and strictly to the
left of M(P (i+ 1)), that are contained in F (ri(κ+ 1)) and that are larger than M(κ) = xri(κ).
Thus,

S := {j ∈ [n] : M(P (i− 1)) ≺T j ≺T M(P (i+ 1))} ∩ F (ri(κ+ 1)) ∩ [M(κ) + 1, n].

This set is never empty: Especially, M(κ + 1) is contained in S since M is a matching that
(κ, F)-extends ~x. We now define ν := min(S).

We have to check that it indeed holds that ν ∈ Rep(~x, κ+ 1, F). We refer the reader to the
definition of Rep(~x, κ+ 1, F) on page 44.

53

• (C1) is fulfilled by construction of S.

• (C2) is fulfilled since ν > M(κ− 1) = xri(κ−1).

• (C3) is fulfilled: ν is a valley in the subsequence of T consisting of elements larger than
M(κ) by construction of S.

• (C4) If the run predecessor of κ+ 1 exists and κ+ 1 lies in a run up (down), pre(κ+ 1) =
P (i− 1) (pre(κ+ 1) = P (i+ 1)). Moreover, note that M(pre(κ+ 1)) = xri(κ+1) since
M (κ, F)-extends ~x. Since S ⊆ {j ∈ [n] : M(P (i − 1)) ≺T j ≺T M(P (i + 1))}, it is
guaranteed that ν lies on the correct side of xri(κ+1).

• (C5) In case κ + 1 is the largest element in its run in P , there is only a single element in
Rep(~x, κ+ 1, F) which is exactly ν.

• (C6) In case κ + 1 is not the largest element in its run in P and κ + 1 lies in a run up
(down), the element M(P (i + 1)) (M(P (i − 1))) is an element larger than ν that lies to
the right (left) of ν in F (ri(κ+ 1)) since M is compatible with F .

Now let us show that M̃ as defined above is a matching that (κ+1, F)-extends ~x(ri(κ+1)←
ν). First we need to show that the function M̃ is a matching of P into T that is compatible with
F . Here Lemma 5.4 comes in handy since it tells us that we only have to check the following
three conditions for all j ∈ [k]:

1. M̃(j) ∈ F (ri(j)): For j = κ + 1 this holds by construction of ν and for j 6= κ + 1 this
holds since we then have M̃(j) = M(j) and M is a matching that is compatible with F .

2. M̃(j + 1) > M̃(j) for j 6= k: For j /∈ {κ, κ+ 1} this again holds since M is a matching.

j = κ: By the construction of S, M̃(κ+ 1) = ν > M(κ) = M̃(κ).

j = κ + 1: Again by the construction of S we know that ν ≤ M(κ + 1). Since M is a
matchingM(κ+1) < M(κ+2) = M̃(κ+2) it follows that ν = M̃(κ+1) < M̃(κ+2).

3. If pre(j) exists, then pre(j) ≺P j if and only if M̃(pre(j)) ≺T M̃(j): Since M is a
matching, we only have to check this condition for κ+1 and its run predecessor pre(κ+1)
as well as for κ + 1 and κ′, the next largest element in the same run in P (we could call
this element the run successor of κ + 1), i.e., pre(κ′) = κ + 1. If κ + 1 lies in a run up
(down), we have pre(κ+ 1) = P (i− 1) and κ′ = P (i+ 1) (pre(κ+ 1) = P (i+ 1) and
κ′ = P (i − 1)). By construction of S we have that M(P (i − 1)) = M̃(P (i − 1)) ≺T
ν = M̃(κ+ 1) ≺T M̃(P (i+ 1)) = M(P (i+ 1)) and thus this condition is also fulfilled.

In order to show that M̃ (κ + 1, F)-extends ~y := ~x(ri(κ + 1) ← ν) it remains to show that for
every yi 6= 0, M̃(max{κ′ ≤ κ : ri(κ′) = i}) = yi. For i 6= ri(κ + 1) this follows from the
fact that yi = xi and that M is a matching that (κ, F)-extends ~x. For i = ri(κ+ 1) this hold by
definition of M̃ : we have yi = ν and M̃(max{κ′ ≤ κ + 1 : κ′ is in the same run as κ + 1}) =
M̃(κ+ 1) = ν.

54

possible for i = 1 possible for i ∈ [1, run(P)− 1]
th

e
i-

th
ru

n
in
P

is
a

ru
n

up

b1 = number of vales in F (1)− 1 bi = number of vales in F (i)− 1

th
e
i-

th
ru

n
in
P

is
a

ru
n

do
w

n

b1 = number of vales in F (1)− 1 bi = number of vales in F (i)

Figure 5.5: Possible shapes that F (i) can have in T , where i 6= run(P). Runs that are drawn
with dashed lines indicate that elements x lying in these runs fulfil vi(x) ≡ 1 mod bi.

It remains to prove that the use of the array data structure and in particular the Index
function do not cause that relevant (κ, F)-matchings are discarded. This is done by the following
two lemmas.

Lemma 5.8. Let ~x, ~y be two (κ, F)-matchings, where κ ∈ [k] and F is a matching function. If
Index(~x) = Index(~y), then for all i ∈ [run(P)] it holds that

• xi and yi lie in the same vale in T or

• the largest element in the i-th run in P is smaller or equal to κ.

Proof. From the definition of the Index function it is clear that Index(~x) = Index(~y)
implies that vi(xi) ≡ vi(yi) mod bi for all i ∈ [run(P)]. Recall that for i = run(P), bi
corresponds exactly to the number of vales in F (i) and thus vi(xrun(P)) ≡ vi(yrun(P)) mod bi
is only possible if vi(xrun(P)) = vi(yrun(P)) which means nothing else than that xrun(P) and
yrun(P) lie in the same vale in T .

For the case that i 6= run(P), this is not always as simple. Consider the four possible shapes
that F (i) can have, as depicted in Figure 5.5. Let us first take a look at the case that the i-th run
in P is a run up. Here, vi(xi) ≡ vi(yi) mod bi is possible if xi and yi lie in the same vale in T
or if xi lies in the first vale in F (i) and yi lies in the last run in F (i) (or vice-versa). Now recall
the definition of the Rep procedure: an element in the last run (which is always a run down)
may only be chosen for the largest element in its run in P (Condition (C6)). This means that
the largest element in the i-th run in P must be smaller or equal to κ. Now let us consider the
case that the i-th run in P is a run down. Here, if xi and yi do not lie in the same vale in T ,
vi(xi) ≡ vi(yi) mod bi is only possible for i = 1 and if T starts with a run up: xi has to then lie
in this first run of T and yi in the last vale of F (1) (or vice-versa). Again, because of Condition

55

(C6), this is only possible for the largest element in its run in P . Thus, we can again conclude
that the largest element in the i-th run in P must be smaller or equal to κ.

Lemma 5.9. Let ~x, ~y be two (κ, F)-matchings, where κ ∈ [k] and F is a matching function. In
addition to that, let νx ∈ Rep(~x, κ+ 1, F) and νy ∈ Rep(~y, κ+ 1, F). If

Index(~x(ri(κ+ 1)← νx)) = Index(~y(ri(κ+ 1)← νy))

and νy ≤ νx the following holds: if there exists a matching that (κ+1, F)-extends ~x(ri(κ+1)←
νx), then there exists a matching that (κ+1, F)-extends ~y(ri(κ+1)← νy). Thus, the alternating
run algorithm only has to keep track of the (κ+ 1, F)-matching ~y(ri(κ+ 1)← νy).

Proof. Let Mx be a matching of P into T that (κ+ 1, F)-extends ~x(ri(κ+ 1)← νx). We shall
construct a function My : [k] → [n] and show that it is a matching that (κ + 1, F)-extends
~y(ri(κ+ 1)← νy).

Since ~y is a (κ, F)-matching (Recall Definition 5.4) there exists a partial matching M :
[κ]→ [n] of P |[κ] into T for which it additionally holds that for every yi 6= 0, M(max{κ′ ≤ κ :
ri(κ′) = i}) = yi. We define the function My as follows:

My(i) =


M(i), for i ∈ [κ]

νy, for i = κ+ 1

Mx(i), for i ∈ [κ+ 2, k]

We now need to show that My is indeed a matching that (κ+ 1, F)-extends ~y(ri(κ+ 1)←
νy). As in the proof of Lemma 5.7, we shall use Lemma 5.4 to show that My is a matching that
is compatible with F . We have to check the following three conditions for all j ∈ [k]:

1. My(j) ∈ F (ri(j)): For j = κ+1 this holds since νy ∈ Rep(~y, κ+1, F) (Condition (C1))
and for j 6= κ+ 1 this holds since Mx and M are matchings that are compatible with F .

2. My(j + 1) > My(j) for j 6= k: For j /∈ {κ, κ+ 1} this again holds since Mx and M are
matchings.

a) My(κ + 1) > My(κ) or equivalently νy > M(κ) = yri(κ): This holds since νy ∈
Rep(~y, κ+ 1, F) (Condition (C2)).

b) My(κ+ 2) > My(κ+ 1) or equivalently Mx(κ+ 2) > νy: Since Mx is a matching
that (κ+ 1, F)-extends ~x(ri(κ+ 1)← νx) it has to hold that Mx(κ+ 2) > Mx(κ+
1) = νx. Since we have νy ≤ νx, this condition is fulfilled.

3. If pre(j) exists, then pre(j) ≺P j if and only if My(pre(j)) ≺T My(j): Since Mx and
M are matchings, this condition is fulfilled for all j ∈ [k] such that both j < κ + 1 and
pre(j) < κ + 1 or such that both j > κ + 1 and pre(j) > κ + 1. Thus, we only have to
check this condition for j = κ+ 1 and for all κ′ ∈ [κ+ 2, k] that satisfy pre(κ′) ≤ κ+ 1.
Let K be the set of all such κ′. Observe that such a κ′ is the smallest element in the ri(κ′)-
th run in P that is strictly larger than κ + 1. This means that pre(κ′), if it exists, is the
largest element in the ri(κ′)-th run in P that is smaller or equal to κ+ 1. We only consider

56

the case that j is contained in a run up – the proof for the case that j lies in a run down
works analogously. We have to check the condition for the following three situations:

a) j = κ+ 1: If pre(κ+ 1) exists it has to hold that My(pre(κ+ 1)) = yri(κ+1) ≺T νy.
This condition is fulfilled since νy ∈ Rep(~y, κ+ 1, F) (Condition (C4)).

b) j = κ′ ∈ K such that pre(κ′) = κ + 1: If this element κ′ exists we have to show
that νy ≺T My(κ

′) = Mx(κ′). Since κ + 1 is not the largest element in its run in
P , we know from Lemma 5.8 that νx and νy lie in the same vale in T . Moreover we
know that νx ≥ νy – but what does this imply for the right-left order of νx and νy
within this vale? Two cases may occur: νx may lie in the run up or in the run down
of this vale. If νx lies in the run up, then it has to hold that νy ≺T νx. Since Mx is a
matching, it has to hold that νx = Mx(κ+ 1) ≺T Mx(κ′) and thus νy ≺T Mx(κ′).
If νx lies in the run down, νx ≺T νy and all elements between νx and νy in T are
smaller than vx. This implies that Mx(κ′) which is larger than νx and lies to the
right of νx also has to lie to the right of νy in T .

c) j = κ′ ∈ K with pre(κ′) < κ + 1: We need to show that yri(pre(κ′)) = yri(κ′) =
M(pre(κ′)) ≺T Mx(κ′). Since Mx is a matching that (κ + 1, F)-extends ~x(ri(κ +
1) ← νx), we know that Mx(pre(κ′)) = xri(κ′) and that xri(κ′) ≺T Mx(κ′). More-
over, since Index(~x(ri(κ + 1) ← νx)) = Index(~y(ri(κ + 1) ← νy)) and pre(κ′)
is not the largest element in its run in P we know from Lemma 5.8 that xri(κ′) and
yri(κ′) lie in the same vale in T . However, nothing is known about the relative posi-
tions of these two elements within this vale and we have to distinguish two cases. If
yri(κ′) ≺T xri(κ′) the statement follows easily since yri(κ′) ≺T xri(κ′) ≺T Mx(κ′). If
xri(κ′) ≺T yri(κ′) we have to collect a few more arguments in order to prove that the
condition holds. By transitivity and the condition checked in Point 2. of this proof
we know that yri(κ′) < νy = My(κ + 1) < Mx(κ′). Now note that the elements
that lie in T between xri(κ′) and yri(κ′) are all smaller than max(xri(κ′), yri(κ′)) (since
both are contained in the same vale). Thus, the element Mx(κ′) – that is to the right
of xri(κ′) and larger than yri(κ′) – has to lie to the right of yri(κ′). This is what we
wanted to prove.

Let ~y′ = ~y(ri(κ + 1) ← νy). It remains to show that for every i ∈ [run(P)] with y′i 6= 0,
My(max{κ′ ≤ κ+1 : ri(κ′) = i}) = y′i. This follows directly from the definition ofMy(κ+1)
and the fact that M is a witness for ~y being a (κ, F)-matching.

Finally, we have gathered all necessary information to prove the correctness of the alternating
run algorithm.

Proposition 5.10. P can be matched into T if and only if XF
k is non-empty for some matching

function F .

Proof. (⇒) If there is a matching of P into T , then there is at least one matching function F for
which XF

k is nonempty:
Since there exists a matching M , we know from Lemma 5.3 that there exists some matching
function F such thatM is compatible with F . Let us fix this F . We prove by induction over κ ∈

57

[k] that there is an ~x ∈ XF
κ and a matchingMκ that (κ, F)-extends ~x. For κ = 1 this is easy. Let

ν be the valley in T that lies in the same vale asM(1). It is clear that ν ∈ Rep((0, . . . , 0), 1, F).
Consequently, the tuple ~xwith xi = 0 for i 6= 1 and xri(1) = ν) is contained inXF

1 . Observe that
M1 being defined by M1(i) = M(i) for i 6= 1 and M1(1) = ν is a matching that (1, F)-extends
~x.

Now, let κ ∈ [k] and assume that ~x ∈ XF
κ and Mκ κ-extends ~x. We show that there

exist an ~x′ ∈ XF
κ+1 and a Mκ+1 that (κ + 1)-extends ~x′. By Lemma 5.7, there exists a ν ∈

Rep(~x, κ + 1, F) and a matching Mκ+1 that (κ + 1)-extends ~x(ri(κ + 1) ← ν). At this point,
we cannot be sure that ~x(ri(κ + 1) ← ν) ∈ XF

κ+1 since XF
κ+1 may contain another (κ, F)-

matching ~y with Index(~x) = Index(~y). However, this is only possible if yri(κ+1) ≤ xri(κ+1)

(see Line 10 in Algorithm 2). By Lemma 5.9 we know that, in this case, there exists a matching
that (κ+1)-extends ~y. So, no matter whether ~x(ri(κ+1)← ν) ∈ XF

κ+1 or not, we can conclude
that there is an ~x′ ∈ XF

κ+1 and a matching function Mκ+1 that (κ+ 1)-extends ~x′. By induction,
we have shown that XF

k 6= ∅.
(⇐) If there is a matching function F such that the corresponding XF

k is non-empty, then a
matching of P into T can be found: This is an immediate consequence of Corollary 5.6.

Finally, let us remark that the function M as returned by the procedure

GetMatching(XF
1 , . . . , X

F
k)

is indeed a matching, as can easily be seen with the help of Lemma 5.4: The first condition
in the lemma is satisfied because of Condition (C1) for representative elements. The second
condition holds because of Condition (C2). The third condition corresponds to Condition (C4).
Note that(C3), (C5) and (C6) are only required for improving the runtime.

5.1.4 Runtime

We are now going to prove the promised fpt runtime bounds. First, we bound the number of
matching functions.

Lemma 5.11. There are less than (
√

2)
run(T)

functions from [runP] to subsequences of T that
satisfy (P1) to (P4).

Proof. A matching function F can be uniquely characterized by fixing the position of the first
run up in every F (i) for i ∈ [run(P)]. This is because the last run of F (i) is the first run of
F (i + 1) for all i ∈ [run(P) − 1]. Moreover the first run up in F (1) is always the first run up
in T . Thus, the number of matching functions is equal to the number of possibilities of picking
run(P)− 1 runs (for the first run in P no choice has to be made) among the at most drun(T)/2e
runs up in T . Hence, we obtain(drun(T)/2e

run(P)− 1

)
≤ 2drun(T)/2e−1 < (

√
2)

run(T)
.

The first inequality holds since
(
n
k

)
< 2n−1 for all n, k ∈ N as can easily be proven by induction

over n.

58

Now we bound the size of XF
κ , which is the main step to achieve the 1.79run(T) runtime

bound.

Lemma 5.12. For any given matching function F and every κ ∈ [k]

|XF
κ | ≤ 2 ·

run(P)∏
i=1

run(F (i))

2
≤ 1.6 · 1.261071run(T).

Proof. Recall that each (κ, F)-matching in XF
κ has a position as determined by the function

Index, defined by

Index(x1, . . . , xrun(P)) = 1 +

run(P)∑
i=1

(vi(xi) mod bi) ·
i−1∏
j=1

bj .

For i ∈ [k−1], bi = brun(F (i)/2c, and brun(P) ≤ brun(F (run(P))/2c+1 since brun(P) is equal

to the number of vales in F (run(P)) 1 The range of Index is
{

1, . . . ,
∏run(P)
i=1 bi

}
. Since the

function Index determines the positions in the array XF
κ , we obtain

|XF
κ | =

run(P)∏
i=1

bi ≤
run(P)−1∏
i=1

⌊
run(F (i))

2

⌋
·
(⌊

run(F (run(P)))

2

⌋
+ 1

)
and consequently

|XF
κ | ≤ 2 ·

run(P)∏
i=1

run(F (i))

2
. (5.1.1)

We want to bound XF
κ and thus want to know when the product in Equation (5.1.1) is maximal.

The maximum of this product has to be determined under the condition that

run(P)∑
i=1

run(F (i)) = run(T) + run(P)− 1, (5.1.2)

since two subsequent F (i)’s have one run in common (cf. Definition 5.2). The inequality of
geometric and arithmetic means implies that the product in Equation (5.1.1) is maximal if all
run(F (i)) are equal, i.e., for every i ∈ run(P), run(F (i)) = run(T)+run(P)−1

run(P) . Therefore, XF
κ

has at most 2 ·
(
run(T)+run(P)−1

2·run(P)

)run(P)
elements. To shorten the proof, we write in the following

p for run(P) and t for run(T). Thus, we want to determine the maximum of the function

g(p) =

(
t+ p− 1

2p

)p
1The reason why we do not set brun(P) = brun(F (run(P))/2c is a rather technical one: F (run(P)) may end

with a run up if the last run in P is a run up and may end with a run down if the last run in P is a run down. This
would lead to unwanted collisions concerning the Index function and consequently would prohibit the proof of
Lemma 5.8.

59

(we omit the factor 2 for the calculation).

g′(p) =
1

p

(
2−p
(p+ t− 1

p

)p−1
·

·
(

(p+ t− 1) log
(p+ t− 1

p

)
− p log(2)− t(1 + log(2)) + 1 + log(2)

))
!

= 0

=⇒ (p+ t− 1)

(
log

(
p+ t− 1

p

)
− log(2)

)
− t+ 1 = 0

=⇒ log

(
p+ t− 1

2p

)
=

t− 1

p+ t− 1
.

The solutions are:

p1(t) = (−1 + t)/(−1 + 2e1+W0(−1/(2e)))

p2(t) = (−1 + t)/(−1 + 2e1+W−1(−1/(2e))),

where W0 is the principal branch of the Lambert function (defined by x = W (x) · eW (x)) and
W−1 its lower branch. It holds that

(−1 + t)/3.311071 ≤ p1(t) ≤ (−1 + t)/3.311070

(−1 + t)/− 0.62663 ≤ p2(t) ≤ (−1 + t)/− 0.62664,

The second solution p2(t) is negative and therefore of no interest to us. The first solution p1(t)
is a local maximum as can be checked easily and yields

g(p1) ≤
(
t+ (−1 + t)/3.311070− 1

2(−1 + t)/3.311071

)(−1+t)/3.311070

≤ 0.80 · (1.261071)t .

It therefore holds that |XF
κ | ≤ 1.6 · 1.261071run(T).

Proposition 5.13. The runtime of the alternating run algorithm is O(1.784run(T) · n · k).

Proof. The main structure of the algorithm is the following: for every matching function F
and for every κ ∈ [k] the array XF

κ is computed. There are (
√

2)
run(T)

matching functions
(Lemma 5.11). The maximal number of elements in XF

κ is 1.6 · 1.2611run(T) (Lemma 5.12).
Given a matching function and an element κ ∈ [k], the algorithm has to execute Lines 6 to 11
for every ~x ∈ XF

κ−1. Once we have shown that the runtime of these lines is O(n), we obtain a

total runtime of O
(

(
√

2)
run(T) · 1.2611run(T) · k · n

)
= O(1.784run(T) · k · n).

So it remains to show that the runtime of the Lines 6 to 11 is O(n). First, observe that
determining the set R with the help of the Rep procedure requires O(n) time. Second, for
every element in R the Lines 8, 10 and 11 are executed. Since R only contains valleys (of some
subsequence of T), its size is less than run(T). Assuming unit cost for arithmetic operations,
computing Index requires O(run(P)) time. However, note that it is not necessary to repeat all

60

calculations for Index for every element ν in R. Indeed, for a fixed ~x ∈ XF
κ , the elements for

which Index is computed at Line 8 only differ at the ri(κ)-th position. Assume that we have
already computed Index(~x) for some ~x. Computing Index(~y) for a ~y that is identical to ~x
except at the ri(κ)-th position can be done as follows:

Index(~y) = Index(~x) +
(
vi(yri(κ))− vi(xri(κ)) mod bri(κ)

)
·
ri(κ)−1∏
j=1

bj .

Consequently, Line 8 requires (amortized) constant time.
Checking the condition in Line 10 requires only constant time. However, Line 11 requires

O(run(P)) time to write the (κ, F)-matching to its position in XF
κ . This is too much time to

obtain the desired runtime bound – we can only afford amortized O(n) time per ~x ∈ XF
κ−1.

This can be achieved by executing Line 11 at most once per ~x ∈ XF
κ−1. Let ν ∈ R be the first

element for which the condition at Line 10 is fulfilled. For this element Line 11 is executed
and a pointer p′ to the position Index(~x(ri(κ) ← ν)) is created. (Recall the ~x(ri(κ) ← ν)
notation from Definition 5.7.) If the condition at Line 10 is fulfilled for the same ~x and some
other ν ′ ∈ R, we do not execute Line 11. Instead we only store the pointer p′ and the element
ν ′. This is sufficient information since two (κ, F)-matchings in Line 11 that originate from the
same ~x are identical except for the ri(κ)-th element. It might be that Line 11 is executed for
some other element ~y ∈ XF

κ−1 and νy ∈ Rep(~y, κ, F) at a later point. It is then possible that
a (κ, F)-matching ~x(ri(κ) ← ν) is overwritten that has other (κ, F)-matchings ~x(ri(κ) ← ν ′)
pointing to it. However, this can only happen in the following situation: ~x(ri(κ)← ν ′) is (κ, F)-
extendable only if ~y(ri(κ) ← ν ′) is (κ, F)-extendable. (It holds that Index(~x(ri(κ) ← ν ′)) =
Index(~y(ri(κ) ← ν ′)). Lemma 5.9 shows that if ~x(ri(κ) ← ν ′) is (κ, F)-extendable, then
so is ~y(ri(κ) ← ν ′). Strictly speaking Lemma 5.9 is not applicable since it is not guaranteed
that ν ′ ∈ Rep(~y, κ, F) because ν ′ might not be a valley in the corresponding subsequence of
T (cf. Condition (C3)). However, all other conditions are satisfied and this suffices to prove
Lemma 5.9.) Therefore, this modified array data structure is equivalent to the original data
structure described in Section 5.1.2. Thus, we have shown that Lines 6 to 11 have a runtime
of O(n), if we modify the array data structure to also allow for pointers. This concludes our
proof.

We conclude this section about the runtime of the alternating run algorithm by proving that
an even smaller constant than 1.784 can be expected. Indeed, the following holds:

Theorem 5.14. Let Rn be the random variable counting the number of alternating runs in an
n-permutation chosen uniformly at random amongst all n-permutations. Then for n ≥ 2 we
have: E

(
1.784Rn

)
= O (1.515n).

Proof. In the following, let Rn,i denote the number of n-permutations with exactly i alternating
runs. Then the mean of Rn is given as follows:

E(Rn) =
∑
i≥1

i · Rn,i
n!

.

61

By the law of the unconscious statistician (see any textbook on probability theory, e.g. [107]) we
then have that:

E
(
1.784Rn

)
=
∑
i≥1

1.784i · Rn,i
n!

.

Let Rn(u) =
∑

i≥1Rn,iu
i denote the generating function of alternating runs in n-permutations.

Then E
(
1.784Rn

)
can also be expressed as follows:

E
(
1.784Rn

)
=
Rn(1.784)

n!
.

A lot is known about the numbers Rn,i as well as the associated generating functions: for in-
stance E(Rn) = 2n−1

3 and V(Rn) = 16n−29
90 (see e.g. [113]). However we cannot get our hands

on Rn(1.784) directly, but we can do so by exploiting a connection to the well-studied Eulerian
polynomials (see e.g. [32]). The n-th Eulerian polynomial An(u) enumerates n-permutations
by their ascents and is defined as An(u) =

∑
i≥1An,iu

i, where An,i is the number of n-
permutations with exactly i ascents. An ascent of a permutation π is a position i for which
it holds that π(i) < π(i+ 1). Now, for the Eulerian polynomials, the following is known:∑

n≥0

An(u)
zn

n!
=

1− u
e(u−1)z − u. (5.1.3)

Moreover, we have the following connection between Rn(u) and An(u) for all integers n ≥ 2
(established in [59] and formulated more concisely by Knuth [109]):

Rn(u)

n!
=

(
1 + u

2

)n−1

(1 + w)n+1An

(
1− w
1 + w

)
,

where w =
√

(1− u)/(1 + u). In order to evaluate Rn(u) at u = 1.784, we thus only need
to determine An(u) at the corresponding value. As demonstrated in Example IX.12 in [78],
it is easy to get asymptotics for the coefficients of zn in

∑
n≥0An(u) z

n

n! by a straight-forward
analysis of the singularities. Indeed, for |u| < 2, one has:

An(u)

n!
=

(
u− 1

log(u)

)n+1

+O(2−n). (5.1.4)

Putting Equations (5.1.3) and (5.1.4) together, we finally obtain:

E
(
1.784Rn

)
=
Rn(1.784)

n!
= O

((
2.784

2
· (1 + w) ·

1−w
1+w − 1

log(1−w
1+w)

)n)
= O (cn) ,

where w = w =
√

(1− 1.784)/(1 + 1.784). Computations using any computer algebra system
show that the constant c < 1.515. Finally, we remark that the tempting approach E

(
1.784Rn

)
=

1.784E(Rn) is not correct.

Corollary 5.15. The runtime of the alternating run algorithm can be expected to be in

O
(

1.514run(T) · n · k
)
.

62

2

5

9

7

4

6

8

3

1

1

2

3

4

5

6

7

8

9

Figure 5.6: To the left is a graphical representation of the permutation π introduced in Exam-
ple 5.10, to the right is the corresponding incidence graph Gπ.

5.2 The Parameter run(P)

The aim of this section is twofold: First, we want to show that PPM can be solved in time
O(n1+run(P)). This result builds upon an algorithm by Ahal and Rabinovich [1] and a novel
connection between the pathwidth of the incidence graph of a permutation [1] and the number
of alternating runs in that permutation. Second, we show that this runtime cannot be improved
to an fpt result unless FPT = W[1]. Let us start by defining incidence graphs:

Definition 5.8. Given an m-permutation π, the incidence graph Gπ = (V,E) of π is defined
as follows: The vertices V := [m] represent positions in π. There are edges between adjacent
positions, i.e., E1 :=

{
{i, i+ 1} | i ∈ [m− 1]

}
. There are also edges between positions where

the corresponding values have a difference of 1, i.e., E2 :=
{
{i, j} | π(i) − π(j) = 1

}
. The

edge set is defined as E := E1 ∪ E2.

Example 5.10. Consider the permutation

π =

(
1 2 3 4 5 6 7 8 9
2 5 9 7 4 6 8 3 1

)
written in two-line representation. A graphical representation of π can be found on the left-hand
side of Figure 5.6. The corresponding graph Gπ is represented on the right-hand side of the
same figure. The solid lines correspond to the edges in E1 and the dashed lines to the ones in
E2. a

Definition 5.9. Let G = (V,E) be a simple graph, i.e., E is a set of cardinality 2 subsets of V .
A path decomposition of G is a sequence S1, . . . , Sk of subsets of V such that

1. Every vertex appears in at least one Si, i ∈ [k].

2. Every edge is a subset of at least one Si, i ∈ [k].

63

3. Let three indices 1 ≤ h < i < j ≤ k be given. If a vertex is contained both in Sh and Sj
then it is also contained in Si.

The width of a path decomposition is defined as max{|S1|, . . . , |Sk|} − 1. The pathwidth of a
graph G, written pw(G), is the minimum width of any path decomposition.

In [1], Theorem 2.7 and Proposition 3.5, the authors present an algorithm that solves PPM
in time O

(
n1+pw(GP)

)
. The following lemma relates pw(GP) and the number of alternating

runs in P .

Lemma 5.16. For all permutations π, it holds that pw(Gπ) ≤ run(π).

Proof. Given anm-permutation π we will define a sequence S1, . . . , Sm. We then show that this
sequence is a path decomposition of Gπ = (V,E) with width at most run(π). In this proof we
use the variables i, j for positions in π and the variables u, v, w for values of π, i.e., π(1), π(2),
etc.

In order to define the sequence S1, . . . , Sm of subsets of V , we shall extend alternating runs
to maximal monotone subsequences. This means that we add the preceding valley to a run
up and the preceding peak to a run down. For any s ∈ [run(π)], Rs then denotes the set of
elements in the s-th run in π together with the preceding valley or peak. Note that this implies
that |Rs ∩Rs+1| = 1 for all s ∈ [run(π)− 1].

We define S′1 := {1} and for every v ∈ [2,m],

S′v :=
{

max(Rj ∩ [v − 1]) | j ∈ [run(π)] and Rj ∩ [v − 1] 6= ∅
}
∪
{
v
}
,

i.e., S′v contains v and the largest element of every run that is smaller than v. Since Sv should
contain positions in π (and not elements), we define

Sv := {π−1(w) | w ∈ S′v}.

For an example of this construction, see Example 5.11. We now check that S1, . . . , Sm
indeed is a path decomposition.

1. The vertex i appears in Sπ(i).

2. First we consider edges of the form {i, i + 1}. Without loss of generality let π(i) <
π(i+ 1). Then {i, i+ 1} is a subset of Sπ(i+1). Clearly, i+ 1 ∈ Sπ(i+1). Since π(i) and
π(i+1) are adjacent in π there has to be an s ∈ [run(π)] such that {π(i), π(i+1)} ⊆ Rs.
It then holds that max(Rs ∩ [π(i+ 1)− 1]) = π(i) since π(i) ∈ Rs ∩ [π(i+ 1)− 1] and
π(i) is the largest element in Rs smaller than π(i+ 1). Consequently i ∈ Sπ(i+1).

Second, every edge {i, j} ∈ E with π(i) − π(j) = 1 is a subset of Sπ(i): As before
i ∈ Sπ(i). Let s be any element of [run(π)] such that j ∈ Rs. Then max(Rs∩[π(i)−1]) =
max(Rs ∩ [π(j)]) = π(j) and hence j ∈ Sπ(i).

Only these two types of edges exists.

64

i π(i) X ′i Xi

1 2 1 9
2 5 12 91
3 9 123 918
4 7 234 185
5 4 2345 1852
6 6 3456 8526
7 8 34567 85264
8 3 3 5678 8 2647
9 1 5

789
2

473

Figure 5.7: The sets S′1, . . . , S
′
9 and S1, . . . , S9 for the permutation π = 2 5 9 7 4 6 8 3 1

3. Let 1 ≤ u < v < w ≤ m with i ∈ Su and i ∈ Sw. Let s be any element of [run(π)]
such that π(i) ∈ Rs. Then either π(i) ∈ Rs ∩ [u − 1] or π(i) = u. In both cases is
π(i) ∈ Rs∩[v]. Furthermore, since π(i) < w, π(i) = max(Rs∩[w−1]) = max(Rs∩[v]).
Hence π(i) ∈ S′v and i ∈ Sv.

The cardinality of each Si is at most run(π) + 1 and hence pw(Gπ) ≤ run(π).

Remark 5.17. This bound is tight since Gπ for π = 1 2 3 . . . m is a path and hence pw(Gπ) =
run(π) = 1.

Example 5.11. Consider again π as defined in Example 5.10. The elements of the sets S′1,. . .,S′9
and those of S1, . . . , S9 as defined in the proof of Lemma 5.16 are given in Figure 5.11. It is
easy to check that S1, . . . , S9 indeed is a path decomposition of width 4 = run(π). Note that in
the given table, columns of equal numbers do not contain any gaps. This fact corresponds to the
third condition in the definition of path decompositions. a

Theorem 5.18. PPM can be solved in time O(n1+run(P)).

Proof. Since pw(Gπ) ≤ run(π) (Lemma 5.16), the runtime of theO(n1+pw(GP)) algorithm can
be bounded by O(n1+run(P)).

We continue with a corresponding hardness result. We prove that one cannot hope to sub-
stantially improve the XP results in Theorem 5.18: an fpt algorithm with respect to run(P) is
only possible if FPT = W[1].

Theorem 5.19. PPM is W[1]-hard with respect to the parameter run(P).

Proof. We give an fpt-reduction from the W[1]-hard SEGREGATED PERMUTATION PATTERN

MATCHING problem (cf. Theorem 4.7) to PPM. We repeat the definition of SEGREGATED

PERMUTATION PATTERN MATCHING here:

65

SEGREGATED PERMUTATION PATTERN MATCHING (SPPM)
Instance: An n-permutation T (the text), a k-permutation P (the pattern) and

two positive integers p ∈ [k], t ∈ [n].
Parameter: k

Question: Is there a matching M of P into T such that M(i) ≤ t if and only
if i ≤ p?

In this problem we are looking for matchings M where for all i ≤ p it holds that M(i) ∈ [t]
and for all i > p it holds that M(i) ∈ [t + 1, n]. Let (P, T, p, t) be a SPPM instance, where
|P | = k ≤ n = |T |. We are going to construct a PPM instance (P̃ , T̃) as follows:

P̃ = (p+ 0.5) (k + 1)(k + 2) . . . (k + n+ 1)︸ ︷︷ ︸
=RP

P

T̃ = (t+ 0.5) (n+ 1)(n+ 2) (2n+ 1)︸ ︷︷ ︸
=RT

T

Note that the increasing runs RP and RT both consist of (n+ 1) elements. The element placed
at the beginning of P̃ , p+0.5, is larger than p but smaller than p+1. Analogously, t+0.5 in T̃ is
larger than t but smaller than t+1. Note that P̃ and T̃ are not permutations in the classical sense,
since they contain elements that are not integers. However, in order to obtain permutations on
[k+n+2] and [2n+2], we simply need to relabel the respective elements order-isomorphically.

Given this construction of P̃ and T̃ the following holds: In every matching of P̃ into T̃ the
element p + 0.5 has to be mapped to t + 0.5. Indeed, the increasing run of elements RP =
(k + 1)(k + 2) . . . (k + n + 1) in P̃ has to be mapped to the increasing run of elements RT =
(n + 1)(n + 2) (2n + 1) in T̃ and consequently P has to be matched into T . This holds
because of the following observation: If the element (k+1) in P̃ is mapped to an element (n+i)
with i > 1 in T̃ , some of the elements of RP have to be matched into T since RP and RT have
the same length. This is however not possible, since all elements in T are smaller than (n + i).
If (k + 1) is instead mapped to one of the elements of T , then all remaining elements of RP
also have to be matched into T which is not possible since RP is longer than T . Therefore, the
element (k+ 1) in P̃ is always mapped to the element (n+ 1) in T̃ . Both in P̃ and in T̃ there is
only one element lying to the left of (k + 1) and one to left of (n+ 1): (p+ 0.5) and (t+ 0.5),
respectively. Thus, (p+0.5) has to be mapped to (t+0.5). This implies that all elements smaller
than (p+ 0.5), i.e., elements in the interval [p], in P have to be mapped to elements smaller than
t+ 0.5, i.e., elements in the interval [t], in T . We have shown that (P, T, p, t) is a YES-instance
of SPPM if and only if (P̃ , T̃) is a YES-instance of PPM.

It remains to show that this reduction can be done in fpt-time. Clearly run(P̃) = 2 +
run(P) = O(k). Moreover the length of T is bounded by a polynomial in the size of G since
|T | = n+ 2 + |T | = 2n+ 2 = O(n).

5.3 Summary

The results in this chapter are the following:

66

• Our main result is a fixed-parameter algorithm for PPM with a runtime of O(1.79run(T) ·
n · k). Since the combinatorial explosion is confined to run(T), this algorithm performs
especially well when T has few alternating runs.

• Since run(T) ≤ n, this algorithm also solves PPM in time O(1.79n · n · k). This is a
major improvement over the brute-force algorithm with a runtime of O(2n · n).

• Since the number of runs in a random permutation is unlikely to be n, one can expect an
even smaller constant than 1.79 on average. Indeed, we prove that the expected runtime
of our algorithm is in O(1.52n · n · k).

• We also show that an algorithm by Ahal and Rabinovich [1] has a runtime ofO(n1+run(P)).
This is achieved by proving that the pathwidth of a certain graph generated by a permuta-
tion is bounded by the number of alternating runs of this permutation.

• Finally, we prove that – under standard complexity theoretic assumptions – no fixed-
parameter algorithm exists with respect to run(P), i.e., no algorithm with a runtime of
O(crun(P) · poly(n)) for some constant c may be hoped for. Thus, the runtime of the
aforementioned O(n1+run(P)) algorithm cannot be substantially improved.

67

Part II

Structure in Preferences

69

CHAPTER 6
Nearly Structured Preferences:

Complexity Results

This chapter is based on the publication Computational aspects of nearly single-peaked elec-
torates [70], a joint work with Gabór Erdélyi and Andreas Pfandler. We introduce and study
notions of distance to single-peakedness, motivated by the fact that both experimental [116,135]
and theoretical analyses (cf. Chapter 9) have shown that single-peakedness is a property very
unlikely to appear in preferences. Thus, it is reasonable to ask if preferences are close to single-
peakedness.

We present a systematic theoretical study of “nearly” single-peaked preferences. Our main
contributions are:

• We introduce three new notions of nearly single-peakedness. In addition, we study four
notions that already have been defined or suggested in the literature.

• We explore connections between both existing and new notions by providing inequalities.
These allow use to compare these notions and better understand their relationship.

• We analyze the computational complexity of computing the distance of arbitrary prefer-
ence profiles to single-peakedness. In most cases we show NP-completeness. For the
k-candidate deletion distance, we present a polynomial-time algorithm.

• In addition, we consider the complexity of computing distances if the axis is already given.
In this case, we find polynomial-time algorithms in all considered cases.

6.1 Nearly Single-peaked Preferences

In real-world settings one can expect a certain amount of “noise” in preference data. The single-
peakedness property is very fragile and thus susceptible to such noise. The following example
illustrates the fragility of single-peakedness: Consider the single-peaked election consisting of

71

two kinds of votes: a � b � c � d and d � c � b � a. Assume that both votes have
been cast by a large number of voters. This election is single-peaked only with respect to the
axis a > b > c > d and its reverse. Adding a single vote a � b � d � c destroys the
single-peakedness property although this vote is almost identical to the first kind of votes.

In this section we formally define different notions of nearly single-peakedness. All these
notions define a distance measure1 to single-peaked profiles. We will now describe them and
provide first (trivial) upper bounds on these distances.

k-Voter Deletion (VD)

The first formal definition of nearly single-peaked societies was given by Faliszewski, Hema-
spaandra, and Hemaspaandra [75]. Consider a preference profile P for which most voters are
single-peaked with respect to some axis A. The voters that are not single-peaked with respect to
A are referred to as mavericks by Faliszewski, Hemaspaandra, and Hemaspaandra. The number
of mavericks, i.e., the number of voters that have to be deleted, defines a natural distance mea-
sure to single-peakedness. If an axis can be found for a large subset of the voters, this is still a
fundamental observation about the structure of the preference profile.

Definition 6.1 (Faliszewski, Hemaspaandra, and Hemaspaandra [75]). Let E = (C,P) be an
election and k a positive integer. We say that the profile P is k-voter deletion single-peaked with
respect to an axis A if by removing at most k votes from P one can obtain a preference profile
P ′ that is single-peaked with respect to A.

Furthermore, we say that the profile P is k-voter deletion single-peaked consistent if there
exists an axis A such that P is k-voter deletion single-peaked with respect to A.

Let VD(P) denote the smallest k such that P is k-voter deletion single-peaked consistent.
Note that VD(P) ≤ n− 1 always holds.

Example 6.1. Consider an election with C = {a, b, c, d, e} and P = {V1, V2, . . . , V202}. Let
the vote V1 be defined as a �1 b �1 c �1 e �1 d, vote V2 as e �2 d �2 c �2 a �2 b, the votes
V3 to V102 as a � b � c � d � e and the remaining votes V103 to V202 as e � d � c � b � a.
Notice that any preference profile containing a � b � c � d � e and e � d � c � b � a may
only be single-peaked consistent with respect to the axis a > b > c > d > e and its reverse.
Since V1 and V2 are not single-peaked with respect to this axis, P is not single-peaked. Deleting
V1 and V2 obviously yields single-peaked consistency and thus we have VD(P) = 2. a

k-Candidate Deletion (CD)

As suggested by Escoffier, Lang, and Ötztürk [71], we introduce outlier candidates. These are
candidates that do not have a “correct place” on any axis and consequently have to be deleted
in order to obtain a single-peaked consistent profile. Examples could be a candidate that is
not well-known (e.g., a new political party) or a candidate that prioritizes other topics than most
candidates and thereby is judged by the voters according to different criteria. The votes restricted

1We remark that we use the words “distance” and “distance measure” with their informal meaning and not in the
mathematical sense of a metric.

72

to the remaining candidates might still have a clear and significant structure, in particular they
might be single-peaked consistent.

Definition 6.2. Let E = (C,P) be an election and k a positive integer. We say that the profile
P is k-candidate deletion single-peaked with respect to an axis A if we can obtain a set C ′ ⊆ C
by removing at most k candidates from C such that the preference profile P[C ′] is single-peaked
with respect to A[C ′].

Furthermore, we say that the profile P is k-candidate deletion single-peaked consistent if
there exists an axis A such that P is k-candidate deletion single-peaked with respect to A.

Let CD(P) denote the smallest k such that P is k-candidate deletion single-peaked consis-
tent. Note that CD(P) ≤ m− 2 always holds.

Example 6.1 (continued). Consider the preference profile P as defined above. Observe that for
C ′ = {b, c, d}, P[C ′] is single-peaked consistent. Deleting a single candidate does not yield
single-peaked consistency and thus CD(P) = 2. a

k-Local Candidate Deletion (LCD)

Personal friendships or hatreds between voters and candidates could move candidates up or down
in a vote. These personal relationships cannot be reflected in a global axis. To eliminate the
influence of personal relationships to some candidates we define a local version of the previous
notion. This notion can also deal with the possibility that the least favorite candidates are ranked
without special consideration or even randomly.

Definition 6.3. Let E = (C,P) be an election and k a positive integer. We say that the profile
P is k-local candidate deletion single-peaked with respect to an axis A if for every vote V ∈ P
there exists a set C ′ ⊆ C with |C ′| ≥ m − k such that V [C ′] is single-peaked with respect to
A[C ′].

Furthermore, we say that the profile P is k-local candidate deletion single-peaked consistent
if there exists an axis A such that P is k-local candidate deletion single-peaked with respect to
A.

Let LCD(P) denote the smallest k such that P is k-local candidate deletion single-peaked
consistent. Note that LCD(P) ≤ m− 2 always holds.

Example 6.1 (continued). Note that it is sufficient to remove a from vote V1 and e from vote V2

to obtain single-peaked consistency. Consequently, LCD(P) = 1. a

k-Additional Axes (AA)

Another suggestion by Escoffier, Lang, and Ötztürk [71] was to consider the minimum number
of axes such that each preference relation of the profile is single-peaked with respect to at least
one of these axes. This notion is particularly useful if each candidate represents opinions on
several issues (as it is the case in political elections). A voter’s ranking of the candidates would
then depend on which issue is considered most important by the voter and consequently each
issue might give rise to its own corresponding axis.

73

Definition 6.4. Let E = (C,P) be an election and k a positive integer. We say that the profile
P is k-additional axes single-peaked with respect to axes A1, . . . , Ak+1 if there is a partition
P1, . . . ,Pk+1 of P such that for all i ∈ {1, . . . , k + 1}, the subprofile Pi is single-peaked
consistent with respect to Ai.

Furthermore, we say that the profile P is k-additional axes single-peaked consistent if there
exist k + 1 axes A1, . . . , Ak+1 such that P is k-additional axes single-peaked with respect to
A1, . . . , Ak+1.

Let AA(P) denote the smallest k such that P is k-additional axes single-peaked consistent.
Note that AA(P) < min

(
n, m!

2

)
always holds. This is because the number of distinct votes is

trivially bounded by n. Furthermore, AA(P) is bounded by m!
2 since at most m! distinct votes

exist, and each vote and its reverse are single-peaked with respect to the same axes.

Example 6.1 (continued). We argue that one additional axis is required for single-peaked con-
sistency. Notice that V1 and V2 are single-peaked consistent with respect to axis b > a > c >
e > d. The remaining votes are consistent with respect to a > b > c > d > e. Thus, one
additional axis is required and hence AA(P) = 1. a

k-Global Swaps (GS)

There is a second method of dealing with candidates that are “not placed correctly” according
to an axis A. Instead of deleting them from either the candidate set C or from a vote, we could
try to move them to the correct position. We do this by performing a sequence of swaps of
consecutive candidates. We remark that the minimum number of swaps required to change one
vote to another is the Kendall tau distance [102] of these two votes (permutations). For example,
to get from vote abcd to vote adbc, we first have to swap candidates c and d, and then we have
to swap b and d. Since this changes the votes in a more subtle way, this can be considered a less
obtrusive notion than k-(Local) Candidate Deletion.

Definition 6.5. LetE = (C,P) be an election and k a positive integer. We say that the profile P
is k-global swaps single-peaked with respect to an axis A if P can be made single-peaked with
respect to A by performing at most k swaps in the profile.

Furthermore, we say that the profile P is k-global swaps single-peaked consistent if there
exists an axis A such that P is k-global swaps single-peaked with respect to A.

Note that these swaps can be performed wherever we want – we can have k swaps in only
one vote, or one swap each in k votes. Let GS(P) denote the smallest k such that P is k-global
swaps single-peaked consistent. Note that GS(P) ≤

(
m
2

)
· n always holds since rearranging a

total order in order to obtain any other total order requires at most
(
m
2

)
swaps.

Example 6.1 (continued). It is possible to make P single-peaked consistent by swapping d and
e in vote V1 and swapping a and b in vote V2. This gives GS(P) = 2. a

74

k-Local Swaps (LS)

We can also consider a “local budget” for swaps, i.e., we allow up to k swaps per vote. This
distance measure has been introduced by Faliszewski, Hemaspaandra, and Hemaspaandra [75]
as Dodgsonk.

Definition 6.6. Let E = (C,P) be an election and k a positive integer. We say that the profile
P is k-local swaps single-peaked with respect to an axis A if P can be made single-peaked with
respect to A by performing no more than k swaps per vote.

Furthermore, we say that the profile P is k-local swaps single-peaked consistent if there
exists an axis A such that P is k-local swaps single-peaked with respect to A.

Let LS(P) denote the smallest k such that P is k-local swaps single-peaked consistent. Note
that LS(P) ≤

(
m
2

)
always holds.

Example 6.1 (continued). Since only one swap is required in V1 and V2 each, we consequently
obtain LS(P) = 1. a

k-Candidate Partition (CP)

Our last nearly single-peaked notion is the candidate analogon of k-additional axes. In this case
we partition the set of candidates into subsets such that all of the corresponding profiles are
single-peaked consistent. This notion is useful for example in the following situation. Each can-
didate has an opinion on a controversial Yes/No-issue. Depending on their own preference voters
will always rank all Yes-candidates before or after all No-candidates. It might be that when con-
sidering only the Yes- or only the No-candidates, the election is single-peaked. Therefore, if we
acknowledge the importance of this Yes/No-issue and partition the candidates accordingly, we
may obtain two single-peaked elections.

Definition 6.7. LetE = (C,P) be an election, k be a positive integer, and a partitionC1, . . . , Ck
be disjoint subsets of C such that C1 ∪ · · · ∪ Ck = C. We say that the profile P is k-
candidate partition single-peaked with respect to an axis A and a partition C1, . . . , Ck if for
each i ∈ {1, . . . , k} the profile P[Ci] is single-peaked with respect to A[Ci].

Furthermore, we say that the profile P is k-candidate partition single-peaked consistent if
there exist an axis A and a partition C1, . . . , Ck such that P is k-candidate partition single-
peaked with respect to A and C1, . . . , Ck.

Let CP(P) denote the smallest k such that P is k-candidate partition single-peaked consis-
tent. Note that CP(P) ≤

⌈
m
2

⌉
always holds.

Example 6.1 (continued). We partition the candidates into C1 = {a, e} and C2 = {b, c, d}.
Notice that P[C1] is trivially single-peaked consistent because this holds for all profiles over at
most two candidates. Furthermore, P[C2] contains only votes of the form b � c � d or its
reverse, which also gives immediately single-peakedness. Thus, CP(P) = 2. a

75

Decision Problems

We now introduce the algorithmic problems we will study. For X ∈ {Voter Deletion, Candidate
Deletion, Local Candidate Deletion, Additional Axes, Global Swaps, Local Swaps, Candidate
Partition} we define:

X SINGLE-PEAKED CONSISTENCY

Instance: An election E = (C,P) and a positive integer k.
Question: Is P k-X single-peaked consistent?

X SINGLE-PEAKED EVALUATION

Instance: An election E = (C,P), a positive integer k and an axis‡A.
Question: Is P k-X single-peaked with respect to A?

Clearly, the X SINGLE-PEAKED EVALUATION is computationally at most as hard as X
SINGLE-PEAKED CONSISTENCY, since the evaluation problem has the axis as additional input.

6.2 Basic Results about Single-Peaked Profiles

We start with a simple observation which we will use in several proofs.

Lemma 6.1. Let P be a preference profile containing the vote V : c1 . . . cm and its reverse V .
Then P is either single-peaked with respect to the axis c1 < · · · < cm (and its reverse) or it is
not single-peaked at all.

Proof. Since the vote V ranks cm last while the vote V ranks c1 last, these candidates have to
be at the left-most and right-most position on any compatible axis. Note that c1 is top-ranked in
V . Hence this already determines the position of all other candidates. Consequently only two
axes are possible: c1 < · · · < cm and cm < · · · < c1.

The following observation says that any subelection, i.e., an election with the same voters
over a subset of the candidate set, of a single-peaked election is also single-peaked.

Lemma 6.2. Let (C,P) be a given election and C ′ ⊆ C. If P is single-peaked consistent then
also P[C ′] is single-peaked consistent.

Proof. This is an immediate consequence of the definition of single-peakedness, Definition 2.2,
since valleys cannot appear by restricting P to C ′.

‡For Additional Axes we assume that k + 1 axes A1, . . . , Ak+1 are given in the input (cf. Definition 6.4).
For Candidate Partition we assume that an axis A together with a partition C1, . . . , Ck is given in the input (cf.
Definition 6.7).

76

GS

CD

CP

VD

AA

LS

LCD

GS
VD
CD
LS
AA
CP
LCD

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Global Swaps
Voter Deletion
Candidate Deletion
Local Swaps
Additional Axes
Candidate Partition
Local Candidate Deletion

Figure 6.1: Hasse diagram of the partial order described in Theorem 6.3

6.3 Relations between Notions of Nearly Single-Peakedness

Theorem 6.3 shows several inequalities that hold for the distance measures under consideration.
We hereby show how these measures relate to each other.

Theorem 6.3. Let P be a preference profile. Then the following inequalities hold:

(1) LS(P) ≤ GS(P). (4) LCD(P) ≤ LS(P). (7) CP(P) ≤ CD(P) + 1.

(2) LCD(P) ≤ CD(P). (5) VD(P) ≤ GS(P). (8) CP(P) ≤ LS(P) + 1.

(3) CD(P) ≤ GS(P). (6) AA(P) ≤ VD(P).

This list is complete in the following sense: Inequalities that are not listed here and that do not
follow from transitivity do not hold in general. The resulting partial order with respect to ≤ is
displayed in Figure 6.1 as a Hasse diagram.

Proof. Inequalities 1 and 2 are immediate consequences of the definitions since k-LS permits
more swaps than k-GS and k-LCD permits more candidate deletions than k-CD. Inequalities 3
and 4 are due to the fact that swapping two candidates in a vote is at most as effective as removing
one of these candidates. Similarly, for Inequality 5 observe that removing the corresponding
voter is at least as effective as swapping two candidates in the vote. Concerning Inequality 6
observe that instead of deleting a voter we can always add an additional axis for this voter.
Inequality 7 follows from the fact that putting each deleted candidate in its own partition leads
to single-peakedness if deleting these candidates does.

In order to show Inequality 8 let P be k-local swaps single-peaked consistent. This means
that there exists an axis A such that after performing at most k swaps per voter, P becomes
single-peaked with respect to A. Without loss of generality assume that the axis A is c1 < c2 <
· · · < cm. We now partition the candidates in k + 1 sets S0, . . . , Sk. This is done by putting
the i-th smallest element of A into the (i modulo k + 1)-th set. Since we assume that A is
c1 < c2 < · · · < cm, we can equivalently say that ci is put into the (i modulo k + 1)-th set,
i.e., the c1 in S1, the c2 in S2, the ck in Sk and ck+1 in S0. Let S ∈ {S0, . . . , Sk}. Towards
a contradiction assume that P[S] is not single-peaked with respect to A[S]. By Definition 2.2
there exists some voter V ∈ P and three candidates ci, cj , ck ∈ C such that ci < cj < ck on axis
A[S] (or equivalently i < j < k), ci � cj and ck � cj . On axis A the distance between ci and

77

V
D

(P
)

C
D

(P
)

LC
D

(P
)

G
S

(P
)

LS
(P

)

A
A

(P
)

C
P

(P
)

Voter Deletion VD (P) = 1 4 ≤ 4 1 1
Candidate Deletion CD (P) 3 = 4 ≤ 4 3 3
Local Candidate Deletion . . . LCD (P) 3 ≤ = ≤ ≤ 3 3
Global SwapsGS (P) 2 2 2 = 4 2 2
Local Swaps LS (P) 2 2 2 ≤ = 2 2
Additional Axes AA (P) ≤ 5 5 ≤ 6 = 5
Candidate Partition CP (P) 8 ≤ 7 ≤ ≤ 8 =

Table 6.1: Inequalities regarding the distance measures. This table should be read as follows.
Measures on the left-most column are bounded (≤) by the measures in the top row. Numbers
point to the corresponding counterexamples if no such bound exists.

cj respectively cj and ck is at least k+ 1, i.e., at least k elements lie in between them. We know
that at most k swaps in V can make this vote single-peaked with respect toA. Let V ′ denote this
swapped vote. Necessarily, these swaps have to either cause that cj �′ cj−1 �′ · · · �′ ci+1 �′ ci
holds or that cj �′ cj+1 �′ · · · �′ ck−1 �′ ck holds in V ′v (depending whether top-ranked
candidate of V ′v is right or left of cj). Let us focus on the case where the swaps ensure that
cj �′ cj−1 �′ · · · �′ ci+1 �′ ci; the other case is analogous. For V , contrary to V ′, it
holds that ci � cj . Hence these swaps have to cause that cj �′ ci holds. In addition, at least
k elements, namely ci+1, . . . , cj−1, have to be in between them. This requires at least k + 1
swaps which contradicts the fact that at most k swaps suffice. Therefore for all partition sets
S ∈ {S0, . . . , Sk}, P[S] is single-peaked consistent and CP(P) ≤ LS(P) + 1.

It remains to show that these are indeed all inequalities. This can be done by providing
counterexamples for each remaining case. Table 6.1 offers an overview by pointing to the cor-
responding counterexample. In the following examples we assume that m,n ≥ 4.

Counterexample 1 (VD cannot be bounded by CD, AA and CP): Consider the preference profile
over the candidate set C = {c1, . . . , cm} with the following 2m votes:

• There are m votes of the form: c1 c2 . . . cm.

• There are m votes of the form: cm c2 c3 . . . cm−1 c1.

The corresponding preference profile P is not single-peaked consistent. This is because c2

has to be next to both c1 and cm on any suitable axis but c1 and cm have to be either the left-most
or right-most element. Consequently, VD(P) = m. Removing candidates instead of voters is
far more useful in this case. When we remove either c1 or cm, P becomes single-peaked and
hence CD(P) = 1. Since we have only two distinct votes, we require two axes to makeP single-
peaked and hence AA(P) = 1. Furthermore, notice that we can obtain single-peaked consistency
by partitioning the candidates into two sets C1 = {c1, cm} and C1 = {c2, . . . , cm−1}. As a
consequence CP(P) = 2.

78

Counterexample 2 (Neither GS nor LS can be bounded by AA, CD, LCD and CP): This coun-
terexample is similar to the previous one but P consists of only two votes. Let the set of candi-
dates be C = {c1, . . .,c3m+1}.

• There is one vote of the form: c1 c2 . . . c3m+1.

• There is one vote of the form: c3m+1 c2 c3 . . . c3m c1.

If we consider this profile P restricted to the candidates c1, cm+1, c2m+1 and c3m+1, i.e.,
P [{c1, cm+1, c2m+1, c3m+1}], we observe that this restricted profile is not single-peaked. Con-
sequently, by Lemma 6.2, P is not single-peaked as well. If we want to make P single-peaked
with swaps, at least two of {c1, cm+1, c2m+1, c3m+1} have to swap position. This requires
at least m swaps and consequently GS(P) ≥ LS(P) ≥ m. Since there are only two votes,
AA(P) = VD(P) = 1. As in the previous counterexample removing either c1 or c3m+1 yields a
single-peaked profile and hence CD(P) = 1. Since CP(P) ≤ CD(P) also CP(P) = 1. Finally,
LCD(P) ≤ CD(P) implies LCD(P) = 1.

Counterexample 3 (Neither CD nor LCD can be bounded by VD, AA and CP): This time we
consider three votes over the candidates C = {c1, . . . , c2m}.

• There is one vote V1 of the form: c1 c2 . . . c2m.

• There is one vote V2 of the form: c2m c2m−1 . . . c1.

• There is one vote V3 of the form: cm . . . c1 cm+1 . . . c2m.

By Lemma 6.1 we only have to consider the axis c1 < c2 < · · · < c2m for P = (V1, V2, V3).
The third vote V3 is however not single-peaked with respect to this axis. Hence P is not single-
peaked consistent. Here VD(P) = 1 since deleting vote V3 leads to single-peaked consistency.
Since AA(P) ≤ VD(P) also AA(P) = 1. However, we need to remove by far more candidates;
we have to remove candidates until the indices of the remaining candidates in V3 are either
increasing or decreasing. Thus, there are at least m − 1 to remove and CD(P) ≥ LCD(P) ≥
m − 1. Finally, we have that CP (P) = 2 since P[{c1, . . . , cm}] and P[{cm+1, . . . , c2m}] are
single-peaked consistent.

Counterexample 4 (Neither VD, GS nor CD can be bounded by LCD and LS): We consider an
election with 3n votes over the candidates C = {c1, . . . , c3n}.

• There are n votes V1, . . . , Vn of the form: c1 c2 . . . c3n.

• There are n votes Vn+1, . . . , V2n of the form: c3n c3n−1 . . . c1.

• The remaining votes are obtained from the first vote by swapping the first two candidates
in each block consisting of three candidates. Formally, for each i ∈ {1, . . . , n} there is a
vote V2n+i of the form: c1 . . . c3(i−1) c3(i−1)+2 c3(i−1)+1 c3i . . . c3n.

79

Let P = (V1, V2, . . . , V3n). By using Lemma 6.1 it is easy to check that for each 1 ≤ i ≤ n,
P[{c3(i−1)+2, c3(i−1)+1, c3i}] is not single-peaked consistent. By Lemma 6.2, P is not single-
peaked consistent. Also, this implies that we have to remove at least one candidate in each set
{c3(i−1)+2, c3(i−1)+1, c3i} in order to make P single-peaked consistent. Therefore CD(P) ≥ n.
Since GS(P) ≥ CD(P) also GS(P) ≥ n. We now want to prove a lower bound on VD(P). If
we delete n − 1 votes then at least one vote of {V1, . . . , Vn}, one of {Vn+1, . . . , V2n} and one
of {V2n+1, . . . , V3n} remains. Again by Lemma 6.2, this profile would not be single-peaked
consistent. Hence VD(P) > n − 1. Finally, notice that the votes V2n+1, . . . , V3n can be turned
into vote V1 by a single swap, which shows that LS(P) = 1. Since LCD(P) ≤ LS(P) also
LCD(P) = 1.

Counterexample 5 (AA cannot be bounded by CD, LCD and CP): In this example we use n
votes over the candidates C = {c1, . . . , cn+1}, where n ≥ 3.

• For each i ∈ {1, . . . , n}, there is one vote Vi of the form:
cn+1 ci ci−1 . . . c1 ci+1 ci+2 . . . cn.

Let us consider the preference profile P = (V1, V2, . . . , Vn). All votes have the same peak
but different candidates in the second position. If this preference profile was single-peaked then
these second-place candidates had to be either left or right of the peak. This is not possible
for three or more candidates. Hence the profile P containing three or more votes is not single-
peaked. By the previous argument AA(P) ≥ n

3 . Deleting cn+1 however makes P single-peaked
with respect to the axis c1 < c2 < · · · < cn and hence CD(P) = LCD(P) = CP(P) = 1.

Counterexample 6 (AA cannot be bounded by LS): We consider n votes over 4n candidates
C = {c1, . . . , c4n}.

• For each i ∈ {1, . . . , n}, there is one vote Vi of the form:
c1 . . . c4i−4 c4i c4i−2 c4i−1 c4i−3 c4i+1 . . . c4n.

Let P = (V1, . . . , Vn). The preference profile P is not single-peaked consistent since
P[{c4k−3, c4k−2, c4k−1, c4k}] is neither for any k ∈ {1, . . . , n}. With 5 swaps in each vote
we can make these votes identical and hence LS(P) ≤ 5. Also, a profile consisting of only two
of these votes is not single-peaked; hence AA(P) ≥ n

2 .

Counterexample 7 (CP cannot be bounded by LCD): Consider an election with 3n votes over
the candidates C = {c1, . . . , c3n}.

• For each i ∈ {1, . . . , 3n}, there is one vote Vi of the form: c1 . . . ci−1 ci+1 . . . c3n ci.

Since the lowest ranked candidates have to be either at the left-most or right-most position on
the axis and there are more than two lowest ranked candidates, this profile is not single-peaked
consistent. However, if the last ranked-candidate is removed in each vote, the profile becomes
single-peaked consistent and hence LCD(P) = 1. Concerning CP(P) notice that any partition
into n sets contains a set with at least three candidates – say ci, cj and ck. But then the votes Vi,
Vj and Vk cannot be single-peaked consistent because they rank three different candidates at the

80

last position. Hence n candidate partitions are not enough to obtain single-peaked consistency
and hence CP(P) > n.

Counterexample 8 (CP cannot be bounded by VD and AA): Consider the candidates C =
{c1, . . . , cm2} and the following three votes:

• There is one vote V1 of the form: c1 c2 . . . cm2 .

• There is one vote V2 of the form: cm2 cm2−1 . . . c1.

• There is one vote V3 of the form:
c1 cm+1 c2m+1 . . . cm(m−1)+1 c2 cm+2 c2m+2 . . . cm(m−1)+2 . . .

. . . cm c2m c3m . . . cm2 .

This preference profile is not single-peaked but VD (P) = 1 and AA (P) = 1. The candi-
dates, however, have to be partitioned into many sets in order to obtain single-peakedness. First,
observe that by Lemma 6.1 we only have to consider the axis c1 > c2 > · · · > cm2 . Let us now
consider vote V3. Since we have fixed an axis we can consider longest increasing and decreasing
subsequences in this vote. Note that both increasing and decreasing subsequences have a length
of less than 2m. Hence a subset of the candidates cannot be single-peaked if it contains more
than 4m candidates. We therefore have to partition the candidates of P into sets of cardinality
at most 4m and by that CP (P) ≥ m

4 .

We conclude this section by illustrating how the inequalities stated in Theorem 6.3 can be
used to obtain new results. More specifically, we will show that it is possible to construct pref-
erence profiles such that the profile is close to single-peakedness but does not have a Condorcet
winner.

Theorem 6.4. For every m ≥ 3 and n ≥ 1 there is an election E = (C,P) with 2n + 1 votes
and m candidates such that

• GS(P) = 1 and

• P does not have a Condorcet winner.

Proof. Let the set of candidates be C = {a, b, c} ∪ {d1, . . . , dm−3}, where d1, . . . , dm−3 are
dummy candidates. The profile P contains the following votes:

• a single vote of the form: b � c � a � d1 � · · · � dm−3,

• n votes of the form: a � b � c � d1 � · · · � dm−3, and

• n votes of the form: c � a � b � d1 � · · · � dm−3.

It is straight-forward to verify that the profile P does not have a Condorcet winner. Notice that
P becomes single-peaked with respect to axis b > a > c > d1 > · · · > dm−3 if we swap
candidates a and c in the single vote. Hence, we know that GS(P) = 1.

81

Due to the inequalities stated in Theorem 6.3, the result of Theorem 6.4 holds also if GS(P)
is replaced by any of the measures VD, CD, LCD, LS, AA, and CP. Therefore, even a distance
of 1 to single-peakedness (with respect to the measures discussed in this work) does not help to
avoid the Condorcet-paradox.

6.4 Complexity of Nearly Single-Peaked Consistency

6.4.1 Hardness results

We start with the complexity analysis of voter deletion single-peaked consistency. In our proof
we are going to cascade two or more preference profiles. The following definition captures this
notion.

Definition 6.8. Let (C1,P1) and (C2,P2) be two elections with C1 ∩C2 = ∅. Furthermore, let
P1 = (V ′1 , . . . , V

′
n) and P2 = (V ′′1 , . . . , V

′′
n). We define P1 �P2 = (V1, . . . , Vn), where for any

i ∈ {1, . . . , n} the total order Vi is defined by

c �i c′ iff (c, c′ ∈ C1 and c �′i c′) or (c, c′ ∈ C2 and c �′′i c′) or (c ∈ C1 and c′ ∈ C2).

Note that P1 � P2 is always a preference profile over C1 ∪ C2.

Lemma 6.5. Let (C1,P1) and (C2,P2) be two elections with C1 ∩ C2 = ∅. Assume that

• P1 and P2 are single-peaked consistent with respect to the axes A1 and A2, respectively.

• The votes in P2 have at most 2 peaks.

• These (two) peaks are adjacent on the axis A2.

Then P1 � P2 is single-peaked.

Proof. We are going to construct an axis A in a way that P1 � P2 is single-peaked with respect
to A. First we split A2 in two parts A′2 and A′′2 . If P2 contains two peaks (which have to be
adjacent), we split A2 in between these two peaks. If P2 contains only one peak, we split A2

left of the peak (this is arbitrary). The new axis A is A′2 followed by A1 and then A′′2 , i.e.,
A′2 > A1 > A′′2 . The correctness proof of this construction is straight-forward.

Before we start with the hardness proof, let us first make the following observation.

Observation 6.6. We are given a set of candidates C = {a, b, c, d} and three votes Vv, Ve and
Vne, where the candidates are ranked as follows:

• a �v c �v b �v d,

• c �e b �e d �e a and

• d �ne c �ne b �ne a.

82

Then the preference profile (Vv, Ve) is single-peaked with respect to the axis a > c > b > d and
(Ve, Vne) is single-peaked with respect to the axis d > c > b > a. The profile (Vv, Vne) is not
single-peaked consistent.

We show NP-hardness via a reduction from the clique problem, one of the standard NP-
complete problems. This result has been proven independently by Bredereck [43] and was
subsequently published in a more general context [44].

CLIQUE

Instance: A graph (VG, EG) and a positive integer s.
Question: Has the (VG, EG) an induced subgraph of size s that is complete, i.e.,

does (VG, EG) contain a clique of size s?

Theorem 6.7. VOTER DELETION SINGLE-PEAKED CONSISTENCY is NP-complete.

Proof. To show hardness we reduce from CLIQUE. Let G = (VG, EG) be the graph in which
we look for a clique of size s. Furthermore, let VG = {v1, . . . , vn} be the set of vertices and EG
the set of edges. Each vertex vi has four corresponding candidates c1

i , . . . , c
4
i . We consequently

have C = {c1
1, . . . , c

4
1, c

1
2, . . . , c

4
2, . . . , c

1
n, . . . , c

4
n}. The votes directly correspond to vertices and

thus P = (V1, . . . , Vn).
In order to define the votes in P we introduce three functions creating partial votes. In the

following definition let a, b, c, d ∈ C.

fv(a, b, c, d) = a � c � b � d
fe(a, b, c, d) = c � b � d � a
fne(a, b, c, d) = d � c � b � a

If we consider fv, fe and fne as votes then observe that by Observation 6.6 (fv, fe) and (fe, fne)
are single-peaked consistent but (fv, fne) is not.

Next we define a mapping p(i, j) to a total order over the candidates {c1
j , . . . , c

4
j}.

p(i, j) =


fv(c

1
j , c

2
j , c

3
j , c

4
j) if i = j

fe(c
1
j , c

2
j , c

3
j , c

4
j) if {i, j} ∈ EG

fne(c
1
j , c

2
j , c

3
j , c

4
j) if {i, j} /∈ EG

The intuition behind function p(i, j) is to encode a row of the adjacency matrix of G as a
vote in the preference profile P . To this end, we put in “cell” (i, j) the result of fe if there is an
edge between i and j. In case there is no edge between i and j we put the result of fne in cell
(i, j). In the special case i = j (we are in the diagonal of the matrix) we put the result of fv in
the cell.

Let the partial profiles representing the columns of the adjacency matrix be defined as Pj =
(p(1, j), . . . , p(n, j)), for j ∈ {1, . . . , n}. We are now going to define the preference profile
P = (V1, . . . , Vn) by

P = P1 � P2 � · · · � Pn.

83

To conclude the construction let E = (C,P) and k = n − s, i.e., we are allowed to delete
k voters from E in order to obtain a single-peaked profile. The intuition behind the construction
is that the voters in a single-peaked profile will correspond to a clique. We claim that G has a
clique of cardinality s if and only if it is possible to remove k voters from P in order to make
the resulting preference profile single-peaked consistent.

“⇒” Assume that there is a clique I = {vi1 , . . . , vis} with |I| = s. Let P ′ = (Vi1 , . . . , Vis).
By that we keep only those voters whose corresponding vertices are contained in the clique I .
Observe that the election E′ = (C,P ′) can be obtained by deleting k = n − s voters from the
election E, |V \ I| = k. It remains to show that E′ is indeed single-peaked consistent. Recall
that we denoted the votes in the j-th “column” of the profile by Pj . By P ′j we denote the j-th
“column” of a profile considering only the voters from P ′. Since I is a clique, for each x, y ∈ I ,
x 6= y, there is an edge {x, y} ∈ EG. Thus the profile cannot contain an instantiation of fv and
of fne in the same column. By Observation 6.6, all profiles Pj with j ∈ {1, . . . , n} are single-
peaked consistent. In order to be able to apply Lemma 6.5, all conditions have to be checked.
First, notice that the profiles P ′j and P ′j′ , for 1 ≤ j < j′ ≤ n, do not share any candidates and are
single-peaked consistent. Furthermore, each of the profiles has at most two peaks. Each column
contains either instantiations of fv and fe or instantiations of fe and fne. Otherwise it would
not be single-peaked consistent. But then there are only two top-ranked candidates, i.e., either
the candidates top-ranked by fv and fe, or the candidates top-ranked by fe and fne. Finally,
the two top-ranked candidates of P ′j have to be adjacent on the axis which gives single-peaked
consistency. Consider again Observation 6.6. For (fv, fe) the top-ranked candidates a and c are
adjacent on the axis a > c > b > d. The same holds for (fe, fne) with axis d > c > b > a
and c, d as top-ranked candidates. Since all conditions are fulfilled, we can iteratively apply
Lemma 6.5. Therefore, P ′1 � P ′2, (P ′1 � P ′2) � P ′3, . . . , (P ′1 � · · ·) � P ′n and hence also P ′
are single-peaked consistent.

“⇐” Assume that E′ = (C,P ′) is an election that has been obtained from E by deleting
k voters such that P ′ is single-peaked. Consequently P ′ contains s votes. Let i1, . . . , is ∈
{1, . . . , n} such that P ′ = (Vi1 , . . . , Vis).

We claim that P ′ is a clique in G. By Lemma 6.2 we know that each of the n columns
(P ′1, . . . ,P ′n) of P ′ is single-peaked consistent. Then, by Observation 6.6, each column must
not contain an instance of fv together with an instance of fne. (Otherwise the respective column
would not be single-peaked consistent!) Observe that by construction each vote (in P ′) contains
an instance of fv in some column. But then each vertex must be adjacent to all other vertices –
in other words the vertices vi1 , . . . , vis form a clique.

We now turn to additional axes single-peaked consistency. Here we make use of a similar
construction as presented in Theorem 6.7 with the difference that we now show NP-hardness
via a reduction from the partition into cliques problem, which is also one of the standard NP-
complete problems (see, e.g., [86]).

PARTITION INTO CLIQUES

Instance: A graph (VG, EG) and a positive integer s.
Question: Is it possible to partition VG into s sets such that each set of vertices

induces a clique on (VG, EG)?

84

Theorem 6.8. ADDITIONAL AXES SINGLE-PEAKED CONSISTENCY is NP-complete.

Proof. Hardness is shown by a reduction from PARTITION INTO CLIQUES. For the reduction
we use the same transformation as presented in the proof of Theorem 6.7 to obtain an election.
Then we set k = s−1, i.e., we are searching for a partition of the voters into s disjoint sets such
that each of the partitions is single-peaked consistent. Due to the one-to-one correspondence
between voters and vertices we can use the partition of the vertices to obtain a partition of the
voters and vice versa. With arguments similar to the proof of Theorem 6.7 one can show that
a set of vertices is a clique if and only if the corresponding profile is single-peaked consistent.

Remark 6.9. The PARTITION INTO CLIQUES problem is NP-complete even when one is asked
to partition the graph into three cliques. Consequently it follows from the proof of Theorem 6.8
that ADDITIONAL AXES SINGLE-PEAKED CONSISTENCY is NP-complete even for k = 2, i.e.,
for checking single-peaked consistency with two additional axes.

In the proofs of our next two results, we will provide reductions from the NP-complete
MINIMUM RADIUS problem [82]. It is defined as follows:

MINIMUM RADIUS

Instance: A set of strings S ⊆ {0, 1}` and a positive integer s.
Question: Has S a radius of at most s, i.e., is there a string α ∈ {0, 1}` such

that each string in S has a Hamming distance of at most s to α?

Theorem 6.10. The LOCAL CANDIDATE DELETION SINGLE-PEAKED CONSISTENCY prob-
lem is NP-complete.

Proof. A MINIMUM RADIUS instance is given by S ⊆ {0, 1}`, the set of binary strings,
and a positive integer s. Given a string β, let β(i) denote the bit value at the i-th position
in β. We are going to construct an LCD SINGLE-PEAKED CONSISTENCY instance. Each
string in S = {β1, . . . , βn} will correspond to a voter. Each bit of the strings corresponds
to two candidates. In addition, we have 2`s + 2 extra candidates. Consequently, we have
C = {c1

1, c
2
1, c

1
2, c

2
2, . . . , c

1
n, c

2
n, c
′
1, . . . , c

′
`s+1, c

′′
1, . . . , c

′′
`s+1}.

We define the preference profile with the help of two functions creating total orders.

f0(a, b) = a � b f1(a, b) = b � a

The vote Vk, for each k ∈ {1, . . . , `}, is of the form

c′1 . . . c
′
`s+1 fβk(1)(c

1
1, c

2
1) fβk(2)(c

1
2, c

2
2) . . . fβk(n)(c

1
n, c

2
n) c′′1 . . . c′′`s+1.

The preference profile P is now defined as (V1, . . . , Vn, V1, . . . , Vn). We claim that (C,P) is
s-LCD single-peaked consistent if and only if S has a radius of at most s.

“⇐” Suppose that S has a radius of at most s, i.e., there is a stringα ∈ {0, 1}` with Hamming
distance at most s to each β ∈ S. We consider the following axis A:

c′1 > · · · > c′`s+1 > fα(1)(c
1
1, c

2
1) > fα(2)(c

1
2, c

2
2) > · · · fα(n)(c

1
n, c

2
n) > c′′1 > · · · > c′′`s+1.

85

We claim that P is single-peaked with respect to A after deleting at most s candidates in each
vote. The deletions for vote Vk, k ∈ {1, . . . , `}, are the following: We delete candidate c1

i in Vk
if and only if α(i) 6= βk(i). The deletions in Vk are exactly the same as in Vk. These are at most
s deletions since the Hamming distance between α and every β ∈ S is at most s. After these
deletions all votes are either subsequences of A or its reverse. Hence we obtain a single-peaked
consistent profile.

“⇒” Let P ′ be the partial, single-peaked consistent profile that was obtained by deleting at
most s candidates in each vote. First, note that some c′ ∈ {c′1, . . . , c′`s+1} has not been deleted
in any vote since in total at most ` · s many different candidates can be deleted. In the same
way let c′′ ∈ {c′′1, . . . , c′′`s+1} be a candidate that has not been deleted in any vote. Now let us
consider the profile P ′[{c′, c′′, c1

i , c
2
i }] for any i ∈ {1, . . . , n}. We claim that α, defined in the

following way, has a Hamming distance of at most s to all bitstrings in S.

α(k) =


0 if P ′ contains the vote c′ � c1

i � c2
i � c′′,

1 if P ′ contains the vote c′ � c2
i � c1

i � c′′,
1 otherwise.

First, observe that Case 1 and 2 cannot occur at the same time since then P ′ would not be single-
peaked consistent. This is because P ′[{c′, c′′, c1

i , c
2
i }] also contains votes where c′′ is ranked top

and c′ is ranked last and hence either c′ � c1
i � c2

i � c′′ or c′ � c2
i � c1

i � c′′ would not be
single-peaked.

Let βj ∈ S, j ∈ {1, . . . , n}. Note that if at any position i, βj(i) 6= α(i) then either c1
i or c2

i

had to be deleted in the vote Vj . Otherwise P ′ would not be single-peaked consistent. Hence the
set {k ∈ {1, . . . , `} | α(i) 6= βj(i)} cannot contain more than s elements because this would
require more than s candidate deletions in the corresponding vote Vj . Hereby we have shown
that the Hamming distance of α and βj is at most s.

Theorem 6.11. LOCAL SWAPS SINGLE-PEAKED CONSISTENCY is NP-complete.

Proof. We use the same construction as in the proof of Theorem 6.10. It holds that (C,P) is s-LS
single-peaked consistent if and only if S has a radius of at most s. This can be shown similarly
to the proof of Theorem 6.10 except that we swap elements instead of deleting them.

The following problem will be useful for showing NP-hardness of GLOBAL SWAPS SINGLE-
PEAKED CONSISTENCY. Given two votes, Vx and Vy, let swaps(Vx, Vy) denote the minimum
number of swaps of adjacent candidates needed to make Vx and Vy equal, i.e., swaps(Vx, Vy) is
the Kendall-Tau distance of Vx and Vy.

KEMENY OPTIMAL AGGREGATION

Instance: An election (C,P), with P = (V1, . . . , Vn), and an integer s.
Question: Is there a vote V ∗ over C such that

∑
1≤i≤n swaps(Vi, V

∗) ≤ s.

KEMENY OPTIMAL AGGREGATION was shown to be NP-hard in [22]. This result was
strengthened in [65] to require only four voters.

86

Theorem 6.12. GLOBAL SWAPS SINGLE-PEAKED CONSISTENCY is NP-complete.

Proof. We show NP-hardness of this problem by reduction from KEMENY OPTIMAL AGGRE-
GATION. Let a KEMENY OPTIMAL AGGREGATION instance be given by (C,P) and an integer
s. Furthermore, let C = {c1, . . . , cm}, P = (V1, . . . , Vn) and let k be defined as 2s.

We create a new election (C ′,P ′) with C ′ = C ∪ {ctop
1 , . . . , c

top
2k+1, c

last
1 , . . . , clast

2k+1}, i.e.,
|C ′| = m+ 4k + 2.

For each i ∈ {1, . . . ,m} we create two votes V ′i and V ′′i as follows. The vote V ′i ranks
c

top
1 first, followed by ctop

2 , ctop
3 , . . ., ctop

2k and finally ctop
2k+1. Then it ranks the candidates in C

in the same order as Vi does. Finally, it orders the candidates clast
1 · · · clast

2k+1 with descending
preference, i.e., clast

2k+1 being the last ranked candidate. The preference profile P ′ is now defined
as (V ′1 , V

′
1 , . . . , V

′
n, V

′
n).

We claim that (C ′,P ′) is k-GS single-peaked consistent if and only if (C,P) and s are a
yes-instance of the KEMENY OPTIMAL AGGREGATION problem.

“⇒” Suppose that (C ′,P ′) is k-GS single-peaked consistent. Therefore, one can obtain the
profile PS from P ′ by applying at most k = 2s swaps such that PS is single-peaked consistent
with respect to an axis A. Since there are 2k + 1 candidates in the set {ctop

1 , . . . , c
top
2k+1} at

least one of them must have remained in place in each vote. Analogously, the same holds for
one of the candidates contained in the set {clast

1 , . . . , clast
2k+1}. Let ctop (resp. clast) denote these

two candidates. From Lemma 6.2 we know that PS [{ctop, c1, . . . , cm, clast}] is single-peaked
consistent as well. Observe that all primed votes in PS [{ctop, c1, . . . , cm, clast}] have ctop as peak
and clast as last candidate, while in the double-primed votes clast is top and ctop is the last ranked
candidate. By Lemma 6.1 all primed votes in PS [{c1, . . . , cm}] must be ordered in the same
way. We denote this ordering by V ∗. The double-primed votes in PS [{c1, . . . , cm}], however,
must be ordered according to the reverse of V ∗. Notice that turning the primed votes into V ∗

requires the same number of swaps as turning the double-primed votes into the reverse of V ∗.
Therefore, k

2 = s swaps are sufficient to turn all primed votes into �∗. Taken together, V ∗

fulfills all properties to be a yes-instance of the KEMENY OPTIMAL AGGREGATION problem.
“⇐” Assume (C,P) and s describe a yes-instance of the KEMENY OPTIMAL AGGREGA-

TION problem. Then there is some common ordering V ∗, which has in total a swap distance of
≤ s to all votes in P . Let A∗ be an axis ordering the candidates in C in the same way as V ∗

does. Then, (C ′,P ′) is k-GS single-peaked consistent with respect to the axis ctop
1 > c

top
2 >

· · · > c
top
2k+1 > [c1, . . . , cn as ordered by A∗] > clast

1 > clast
2 > · · · > clast

2k+1. This is because all
votes can be brought into the form c

top
1 � c

top
2 � · · · � c

top
2k+1 � [c1, . . . , cn as ordered by V ∗] �

clast
1 � clast

2 � · · · � clast
2k+1 or its reverse by using at most k = 2s swaps – s swaps for the primed

votes and s swaps for the double-primed votes.

Remark 6.13. Since KEMENY OPTIMAL AGGREGATION is NP-complete [65] even with only
four voters, it follows from the proof of Theorem 6.12 that GLOBAL SWAPS SINGLE-PEAKED

CONSISTENCY is NP-complete even for eight voters.

87

6.4.2 A polynomial time algorithm for CANDIDATE DELETION
SINGLE-PEAKED CONSISTENCY

In contrast to the previous hardness results, we are able to show that CANDIDATE DELETION

SINGLE-PEAKED CONSISTENCY can be decided in polynomial time. The algorithm builds
upon the O(n · m) time algorithm for testing single-peaked consistency by Escoffier, Lang,
and Ötztürk [71]. Since we make some modifications to the algorithm and also for the sake
of completeness we present it here as well. For the remainder of this section let (C,P) be an
election with n voters and C = {c1, . . . , cm}.

The single-peaked consistency algorithm. This algorithm is a modified version of the algo-
rithm by Escoffier, Lang, and Ötztürk [71]. We start by giving three fundamental definitions that
we use to state the algorithm.

Definition 6.9. L(P, C ′) is the set of last ranked candidates in P[C ′].

Definition 6.10. A partial axisA is a total order of a subset of the candidates in C. Let cand(A)
denote the candidates that are ordered by A. Consequently, any partial axis A is an axis over
cand(A). By the cardinality of a partial axis A we mean |cand(A)|.

Definition 6.11. An incomplete axis is a partial axis with a marked position that indicates where
further elements may be added. We denote this position by a star symbol, e.g., the incomplete
axis c1 > c2 > ? > c3 allows additional candidates to be added right of c2 and left of c3. The
boundary of an incomplete axisA, boundary(A), is a quadruple consisting of the two candidates
left of the star and the two candidates right of the star, e.g., boundary(c1 > c2 > ? > c3 > c4 >
c5) = (c1, c2, c3, c4). If only one or no candidates exist left/right of the star, the corresponding
entry in the quadruple is ε, e.g., boundary(c1 > ?) = (ε, c1, ε, ε).

Given an incomplete axis A and a candidate set C, an axis A′ extends A if A′ can be
constructed from A′ by adding elements left or right of the ? symbol.

The algorithm by Escoffier, Lang and Ötztürk proceeds iteratively by placing the last ranked
candidates that have not yet been placed. Let C ′ be the set of candidates that have not yet been
positioned on the (incomplete) axis A. The algorithm checks what kinds of constraints follow
from each vote. If these constraints do not contradict each other, the set of last ranked candidates
L(P, C ′) is placed. We denote this procedure with place(A,X) where X = L(P, C ′). The
procedure place(A,X) returns either a new incomplete axis (extending A by the candidates in
X) or the value INCONSISTENT. The algorithm repeatedly invokes place until all elements
have been placed or a contradiction has been found.

Now we would like to describe place(A,X) in detail since it is used also by our candidate
deletion algorithm. Let boundary(A) = (b′1, b1, b2, b

′
2), i.e., A = · · · < b′1 < b1 < ? < b2 <

b′2 < · · · . If a condition contains a boundary element and this element is ε (i.e., it does not exist),
the corresponding constraint is not valid. The following cases are considered for each vote ≺k,
k ∈ {1, . . . , n} and thus we obtain constraints on all possible placements of X .

Case 1. |L(P, C ′)| ≥ 3. There are three or more candidates that would have to be placed at the
positions next to b1 and b2. Since this is not possible, P is not single-peaked consistent.

88

Case 2. L(P, C ′) = {x1, x2}. The candidates x1 and x2 have to be placed at the positions next to
b1 and next to b2.

a) x1 ≺k b1 and x1 ≺k b2: In this case x1 can be placed neither left nor right and thus
place returns INCONSISTENT.

b) b1 ≺k x1 and b2 ≺k x1: There are no constraints for x1 that follow from vote Vk.

c) b1 ≺k x1 ≺k b2 ≺k x2: x1 has to be placed next to b1 and therefore x2 is placed
next to b2.

d) b1 ≺k x1 ≺k x2 ≺k b2: x1 has to be placed next to b1 and therefore x2 has to be
placed next to b2.

All these rules are also applicable if b1 and b2 are interchanged and also if x1 and x2 are
interchanged.

Case 3. L(P, C ′) = {x}. The candidate x has to be placed either at the position next b1 or b2.

a) x ≺k b1 and x ≺k b2: In this case x can be placed neither left nor right and thus
place returns INCONSISTENT.

b) b1 ≺k x and b2 ≺k x: There are no constraints for x.

c) b1 ≺k x ≺k b2: x has to be placed next to b1.

d) b2 ≺k x ≺k b1: x has to be placed next to b2.

In addition to these three cases, the following constraints are applicable independent of the
cardinality of L(P, C ′). Let x ∈ L(P, C ′).

• If b′1 �k b1 and x �k b1, then x can be placed neither left nor right.

• If b′2 �k b2 and x �k b2, then x can be placed neither left nor right.

For each vote ≺k, these case distinctions yield constraints on placing the candidates in X .
If there is a way to place the candidates in X that is compatible with every vote, place(A,X)
is successful and returns the new incomplete axis. (If there is more than one possibility to place
X , we choose arbitrarily.) Otherwise the value INCONSISTENT is returned. To simplify the
notation, we define place(A, ∅) to return A.

The following lemma is the main reason why we can employ dynamic programming in our
algorithm for deciding the CANDIDATE DELETION SINGLE-PEAKED CONSISTENCY problem.

Lemma 6.14. Let A be an incomplete axis and let X ⊆ C contain one or two candidates not
yet placed on A. If P is single-peaked with respect to an axis A′ that extends A, then it is
single-peaked with respect to an extension of the axis returned by place(A,X). If place(A,X)
returns INCONSISTENT, then there is no axis A′ that extends A such that P is single-peaked
with respect to A′.

89

Proof. This lemma follows from the correctness proof of the single-peaked consistency algo-
rithm [71] since the place procedure performs the same steps as this algorithm does. The main
difference is that the single-peaked consistency algorithm places all remaining candidates at
once as soon there is at most one possibility left. The place procedure continues to place one or
two candidates at a time even in that case.

Observation 6.15. The place(A,X) procedure places the candidates in X only considering
boundary(A) and does not depend on the full incomplete axis A.

The candidate deletion algorithm. Observation 6.15 states that the (at most) four boundary
candidates of an incomplete axis fully determine whether and which further candidates can be
placed on the axis. The main idea of our algorithm is to store only incomplete axes that differ
in these four candidates, i.e., only incomplete axes with differing boundaries. If two axes with
the same boundary are considered, we take the incomplete axis with the larger cardinality. This
strategy allows for a dynamic programming approach.

Our algorithm resembles the previously described single-peaked consistency algorithm in
that it places last ranked candidates first. However, since we are allowed to delete candidates,
our algorithm does not terminate if at some point three or more last ranked candidates are en-
countered (cf. Case 1 in the single-peaked consistency algorithm). Nevertheless, our algorithm
utilizes the place procedure and thus can place at most two candidates in each step. To this end,
we define a sequence L1, . . . , Lm of sets, each of which contains a disjoint subset of candidates.
Our algorithm places the candidates in L1 (or a subset of L1) first, then (a subset of) those in L2

and so on.
The sequence L1, . . . , Lm is defined as follows:

Li = L (P, C \ (L1 ∪ · · · ∪ Li−1)) . (6.4.1)

Note that some Li’s might be empty and that
⋃
i∈[m] Li = C.

Now, we describe the algorithm. Refer to Algorithm 3 for an overview. The main data struc-
ture is an array S containing incomplete axes. Each position in this array is uniquely described
by a quadruple of candidates. Consequently, the array has size m4. Each incomplete axis is
stored at the position that corresponds to the boundary of this axis.

We start with the array S containing only the empty incomplete axis ?. (Recall that ? marks
the position where new candidates can be added to the axis.) Now, the candidates in L1 are
placed. We make a copy of S called Snew. Then, we use the place procedure to place the
candidates in L1 on the empty axis. Note that at most two of the candidates in L1 can be placed,
since otherwise we would create two peaks. Thus, we consider every subset of L1 of size 0, 1 or
2. This gives rise to new incomplete axes. These axes are stored in Snew, a copy of S. After all
possible axes are created, we replace S with Snew.

We continue by placing the candidates in L2. Again, we copy S to Snew. For every incom-
plete axis A in S, we place any subset of L2 with size 0, 1 or 2 on A – and again create new
incomplete axes. These axes are stored in Snew. At this point, it might be that Snew already
contains an axis with the same boundary. In this case, we keep the axis with a larger cardinality.

We repeat this procedure until the candidates in Lm are placed as well. We say that one
axis A1 is a representative of axis A2 if boundary(A1) = boundary(A2) and |A1| ≥ |A2|. The

90

set S now contains one representative axis for every possible incomplete axis. Consequently,
S contains a cardinality maximal axis and thus yields the minimum number of candidates that
have to be deleted to make P single-peaked.

Algorithm 3: Polynomial time algorithm for k-CD single-peaked consistency – Theo-
rem 6.16
1 S ←

{
?
}

// S contains the empty incomplete axis
2 Choose L1, . . . , Lm according to Equation 6.4.1
3 for i = 1 . . .m do
4 Snew ← S
5 foreach X ⊆ Li with 0 ≤ |X| ≤ 2 do
6 foreach incomplete axis A ∈ S do
7 Anew ← place(A,X)
8 if Anew 6= INCONSISTENT then
9 (c1, c2, c3, c4)← boundary(Anew)

10 if S[c1, c2, c3, c4] is empty then
11 S[c1, c2, c3, c4]← Anew
12 else
13 if |cand(Anew)| > |cand(S[c1, c2, c3, c4])| then
14 S[c1, c2, c3, c4]← Anew

15 S ← Snew

16 return an axis A ∈ S with maximum |cand(A)|

Theorem 6.16. CANDIDATE DELETION SINGLE-PEAKED CONSISTENCY can be solved in
time O(n ·m6).

Proof. The runtime bound can be seen as follows. Clearly, L1, . . . , Lm can be computed in
O(m · n) time. The algorithm places the candidates L1 first, then L2, and so on. We consider
O(|Li|2) many subsets of Li (those of cardinality at most 2). Thus, the place procedure is
executed at most |L1|2 · |L2|2 · · · · · |Lm|2 times. This number can be bounded byO(m2). Since
the array S has size at most m4 and since place has a runtime of O(n), we require in total
O(n ·m6) time.

6.5 Complexity of Nearly Single-Peaked Evaluation

In the previous section we have analyzed the computational complexity of the X SINGLE-
PEAKED CONSISTENCY problem. We now turn to the computational complexity of the related
X SINGLE-PEAKED EVALUATION problem, where the axis is also given in the input. Because of
this additional information, the X SINGLE-PEAKED EVALUATION problem becomes tractable
where the X SINGLE-PEAKED CONSISTENCY problem was NP-complete.

Proposition 6.17. VOTER DELETION SINGLE-PEAKED EVALUATION can be solved in time
O(n ·m).

91

Proof. This result is trivial due to the fact that whenever a vote is not single-peaked consistent
with respect to axis A we have to delete it. If at most k votes have to be deleted, we know that
the profile is k-voter deletion single-peaked consistent with respect to A.

Proposition 6.18. CANDIDATE DELETION SINGLE-PEAKED EVALUATION can be solved in
time O(n ·m6).

Proof. We employ the algorithm for solving CANDIDATE DELETION SINGLE-PEAKED CON-
SISTENCY, Algorithm 3. The only necessary modification is to change the place procedure in
such a way that only placements compatible with the given axis are allowed.

Proposition 6.19. ADDITIONAL AXES SINGLE-PEAKED EVALUATION can be solved in time
O(k · n ·m).

Proof. Evaluation is also trivial for the additional axes distance measure. It suffices to check
each of the k + 1 axes for single peaked-consistency, which can be done in O(n ·m).

Theorem 6.20. LOCAL CANDIDATE DELETION SINGLE-PEAKED EVALUATION can be solved
in time O(n ·m2 · logm).

Proof. For every vote V ∈ P we have to find the minimum number of candidates that have to be
deleted. We iterate over all candidates; let p be this candidate and V the vote under consideration.
We first consider V restricted to p and the candidates left of it. We have to a find subsequence of
maximum length that is increasing with respect to the axis A and increasing with respect to this
restricted vote. We delete the candidates not contained in this subsequence. Then, we consider
the vote V restricted to the candidates right of p. This time, we search for a subsequence of
maximum length that is increasing with respect to the axis A and decreasing with respect to this
restricted vote. Again, we delete the candidates not contained in this subsequence. In this way,
we obtain a selection of candidates C ′ such that V [C ′] is single-peaked with respect to A.

We repeat this procedure for every vote. This yields a local deletion distance for every choice
of p. The smallest of these distances is optimal.

Since computing a longest increasing subsequence can be done for sequences of length m
in time O(m · logm) [129], we obtain a total runtime of O(n ·m2 · logm).

Theorem 6.21. The GLOBAL SWAPS SINGLE-PEAKED EVALUATION and LOCAL SWAPS

SINGLE-PEAKED EVALUATION problem can be solved in time O(n ·m2).

Proof. Both algorithms rely on the minswaps(V,A) procedure, which computes the minimal
number of swaps required to make vote V single-peaked with respect to A. Let us first de-
scribe how this procedure is used and later on give a precise description of minswaps. To solve
GLOBAL SWAPS SINGLE-PEAKED EVALUATION it suffices to execute for each V in P the pro-
cedure minswaps(V,A) and sum over all returned values. If the sum does not exceed the limit
k we know that the profile is k-global swaps single-peaked consistent with respect to A. For
the LOCAL SWAPS SINGLE-PEAKED EVALUATION the procedure is similar. Here, we check
whether for every V in P , minswaps(V,A) ≤ k.

92

Let us now describe how minswaps(V,A) works. The procedure is depicted in Algorithm 4.
It is based on the observation that one of the two outermost candidates on A have to be ranked
last in V . These candidates are a and b in the algorithm. It is optimal to swap the lower one
of these two candidates to the last position. The function bottomdist(c, V), which is used in
the algorithm, computes the number of swaps required to swap candidate c in vote V to the last
position.

After either a or b have been swapped to the last position, we repeat these steps with both the
vote and the axis restricted to those candidates that have not been swapped to the last position
so far. In this way we obtain a vote with a minimal number of swaps that is single-peaked.
Since the runtime of the procedure minswaps can be bounded by O(m), GLOBAL SWAPS

SINGLE-PEAKED EVALUATION as well as LOCAL SWAPS SINGLE-PEAKED EVALUATION can
be solved in time O(n ·m).

Algorithm 4: Procedure minswaps(V,A) used in Theorem 6.21

1 s← 0
2 C ′ ← C
3 while C ′ 6= ∅ do
4 a← rightmost candidate on A[C].
5 b← leftmost candidate on A[C].
6 sa ← bottomdist(a, V [C ′])
7 sb ← bottomdist(b, V [C ′])
8 if sa < sb then
9 s← s+ sa

10 C ← C \ {a}
11 else
12 s← s+ sb
13 C ← C \ {b}
14 return s

93

SP-Consistency SP-Evaluation

k-Voter Deletion NP-c (Thm. 6.7) in P (Prop. 6.17)
k-Candidate Deletion in P (Thm. 6.16) in P (Prop. 6.18)
k-Local Candidate Deletion NP-c (Thm. 6.10) in P (Thm. 6.20)
k-Additional Axes NP-c (Thm. 6.8) in P (Prop. 6.19)
k-Global Swaps NP-c (Thm. 6.12) in P (Thm. 6.21)
k-Local Swaps NP-c (Thm. 6.11) in P (Thm. 6.21)
k-Candidate Partition open open

Table 6.2: Complexity results for different notions of nearly single-peakedness

6.6 Summary

In this chapter we have studied seven notions measuring nearly single-peakedness. Three of
them are novel: the local candidate deletion distance, the global swaps distance and the candi-
date partition distance; the other four have already been defined or suggested in the literature.
We have drawn a complete picture of the relations between all the notions of nearly single-
peakedness discussed in this chapter (cf. Figure 6.1 and Table 6.1). For five notions we have
shown that deciding single-peaked consistency is NP-complete and for k-candidate deletion we
have presented a polynomial time algorithm. For the simpler single-peaked evaluation problem,
where an axis is given as part of the input, we found polynomial-time algorithms for all these
six cases. We refer the reader to Table 6.2 for an overview.

Finally, we would like to remark that these notions of distance are not only applicable to
single-peakedness. Most of the notions are immediately applicable to other domain restrictions
such as the single-crossing restriction. Only k-additional axes explicitly concerns axes and is
thus not trivially applicable to arbitrary domain restrictions. However, if we view k-additional
axes as the number of partitions of voters such that each corresponding set of votes satisfies the
domain restriction, this definition is equivalent and applicable to arbitrary domain restrictions.

94

CHAPTER 7
Nearly Structured Preferences:

Efficient Detection

This chapter is based on the publication On detecting nearly structured preference profiles [68],
a joint work with Edith Elkind.

In the previous chapter we have seen that it is often NP-hard to determine whether a pref-
erence profile is close to single-peakedness. It is then natural to ask whether these hardness
results can be circumvented using approximation algorithms and/or parameterized algorithms.
The main contribution in this chapter is answering this question in the affirmative for the voter
deletion distance and the candidate deletion distance. Our results do not only apply to the single-
peaked domain but to a large family of restricted domains. Specifically, our results apply to
any restricted domain that can be characterized in terms of forbidden configurations (see Sec-
tion 7.1); this includes all domains discussed by Bredereck et al. [44]. For any such domain
D, we present approximation algorithms for the problem of finding the smallest number of vot-
ers/candidates to delete in order to obtain an election in D. The approximation ratio on our
algorithm is determined by the size of the largest forbidden configuration used to character-
ize D, which is typically a small integer. Our algorithm proceeds by reducing our problem to
the classic HITTING SET problem. For the voter deletion distance and several restricted do-
mains (including, notably, the single-peaked domain), we can improve the approximation ratio
of our algorithm by using a more elaborate reduction to HITTING SET; this approach results
in a 2-approximation algorithm. We then show that this result is optimal subject to a plausible
complexity-theoretic assumption.

Our reduction to HITTING SET also allows us to use parameterized algorithms for this prob-
lem, resulting in fpt algorithms for our problem. For a summary of approximation and fpt results,
we refer the reader to the summary, Section 7.7.

For voter deletion, we also consider the setting where we need to delete more than half of the
voters. In this case, from the approximation algorithms perspective, it is more natural to focus
on approximating the number of surviving voters. We show that this problem is W[1]-complete,
and cannot be approximated within n1−ε unless P 6= NP.

95

7.1 Configurations

A condition on a set of variables X = {x1, . . . , xt} is a Boolean formula with pairwise compar-
isons of x1, . . . , xt as atoms. For instance, φ : x1 > x2 ∧ x3 > x4 (or short: φ : x1x2 ∧ x3x4) is
a condition on {x1, x2, x3, x4}. A configuration is a set of conditions Φ = {φ1, . . . , φs}, where
all φi, i ∈ [s], are conditions over a common set of variables. We denote by s(Φ) the number of
conditions in Φ and by X(Φ) the set of variables that occur in Φ; also, we write t(Φ) = |X(Φ)|.
We refer to a configuration Φ with s(Φ) = s, t(Φ) = t as an (s, t)-configuration. Let ‖Φ‖
denote the input size (required space) of a configuration. Since we only consider configurations
on a variable set of small constant size, the representation details do not affect the complexity of
our algorithms.

The following definition plays a central role in this chapter as well as in Chapter 9.

Definition 7.1. Given an injective function ξ : X → C and a condition φ over X , let ξ(φ)
denote the Boolean formula obtained by replacing all variables in φ according to ξ. A vote V
over C fulfills φ with respect to ξ (and write V |=ξ φ) if V is a model for ξ(φ). An election
E = (C,P) is said to contain a configuration Φ = {φ1, . . . , φs} with X(Φ) = X if there exists
an injective function ξ : X → C and s distinct votes Vi1 , . . . , Vis ∈ P such that Vij |=ξ φj for
all j ∈ [s].

Example 7.1. Consider an election E = (C,P), where C = {c1, c2, c3, c4}, P = (V1, V2),
V1 : c1c2c3c4, V2 : c4c1c2c3, and a configuration Φ = {φ1, φ2}, where φ1 : abc, φ2 : bca. Then
E contains Φ. Indeed, if we set ξ(a) = c4, ξ(b) = c1, ξ(c) = c2, Vi1 = V2, Vi2 = V1, we get
Vi1 |=ξ φ1, Vi2 |=ξ φ2. a

We will now introduce five configurations that will play an important role in this chapter.

Definition 7.2. The α-configuration is a (2, 4)-configuration Φα with conditions

φ1 : abc ∧ db, φ2 : cba ∧ db.

The ᾱ-configuration is a (2, 4)-configuration Φᾱ with conditions

φ1 : abc ∧ bd, φ2 : cba ∧ bd.

The β-configuration is a (2, 4)-configuration Φβ with conditions

φ1 : abcd, φ2 : bdac.

The γ-configuration is a (3, 6)-configuration Φγ with conditions

φ1 : ba ∧ cd ∧ ef, φ2 : ab ∧ dc ∧ ef, φ3 : ab ∧ cd ∧ fe

The δ-configuration is a (4, 4)-configuration Φδ with conditions

φ1 : ab ∧ cd, φ2 : ab ∧ dc,
φ3 : ba ∧ cd, φ4 : ba ∧ dc

96

The worst-diverse configuration is a (3, 3)-configuration ΦW with conditions

φ1 : ac ∧ bc, φ2 : ab ∧ cb, φ3 : ba ∧ ca.

The best-diverse configuration is a (3, 3)-configuration ΦB with conditions

φ1 : ab ∧ ac, φ2 : ba ∧ bc, φ3 : ca ∧ cb.

The medium-diverse configuration is a (3, 3)-configuration ΦM with conditions

φ1 : bac ∨ cab, φ2 : abc ∨ cba, φ3 : acb ∨ bca.

The value-diverse configuration is a (3, 3)-configuration ΦC with conditions

φ1 : abc, φ2 : bca, φ3 : cab.

An election is said to be worst-restricted if it does not contain ΦW ; best-restricted, medium-
restricted, and value-restricted elections are defined similarly.

We will now formulate two simple conditions on configurations.

Definition 7.3. A configuration Φ is exact if every preference order over X(Φ) fulfills at most
one condition in Φ. Further, Φ is partitioning if every preference order overX(Φ) fulfills exactly
one condition in Φ.

Observe that Φα, ΦW , ΦB , ΦM , and ΦC are exact configurations; further, ΦW , ΦB , and
ΦM are partitioning, but Φα and ΦC are not.

The notion of partitioning configurations will play an important role in Section 7.3. We
will now describe an efficient algorithm for checking whether an election E contains an exact
configuration Φ.

Proposition 7.1. Given an exact configuration Φ with s(Φ) = s, t(Φ) = t and an election
E = (C,P) with |C| = m, |P| = n, we can detect whether E contains Φ in time O(‖Φ‖nmt).

Proof. We can go over all ordered t-tuples of elements of C. Each such tuple can be interpreted
as a mapping ξ from X = X(Φ) to C. For each such mapping, we set Φ′ ← Φ and go over the
votes in P one by one. For each vote V ∈ P , we check whether V |=ξ φi for some φi ∈ Φ′;
this can be done in time O(‖Φ‖). Note that, since Φ is exact, there can be at most one such
condition. If V |=ξ φi, we remove φi from Φ′, and repeat this process with the next vote in P .
If Φ′ becomes empty, we return “yes” and stop. If all votes in P have been processed, but Φ′

remains non-empty, we move on to the next mapping ξ : X → C (and reset Φ′ ← Φ). If we
have enumerated all mappings ξ : X → C, we stop and output “no”. The correctness of this
algorithm and the bound on its running time are immediate.

If Φ is not exact, the algorithm described in the proof of Proposition 7.1 may fail to work
correctly. However, by considering all mappings ξ : X → C and all ordered s-tuples of voters
in P , we can check whether E contains Φ in time O(‖Φ‖nsmt).

97

We say that a preference domain D is characterized by a set of forbidden configurations
Γ = {Φ1, . . . ,Φγ} if for every election E we have E ∈ D if and only if E does not contain any
of the configurations in Γ.

By definition, the domains of worst-restricted, best-restricted, medium-restricted, and value-
restricted elections can be characterized by sets of forbidden configurations that consist of a
single (3, 3)-configuration each. Moreover, the following results are known.

• The domain of single-peaked preferences is characterized by the set of forbidden config-
urations {Φα,ΦW } [15].

• The domain of single-crossing preferences is characterized by the set of forbidden config-
urations {Φγ ,Φδ} [45].

• The domain of single-caved preferences is characterized by the set of forbidden configu-
rations {Φᾱ,ΦB} [15].

• The domain of group-separable preferences is characterized by the set of forbidden con-
figurations {Φβ,ΦM }. [15].

Observe that each of the configurations Φᾱ, Φβ , Φγ , Φδ is exact. We set ΓW = {ΦW },
ΓB = {ΦB}, ΓM = {ΦM }, ΓC = {ΦC }, Γsp = {Φα,ΦW }, Γscv = {Φᾱ,ΦB}, Γsc =
{Φγ ,Φδ}, Γgs = {Φβ,ΦM }.

We will now define the two families of computational problems that will be the focus of this
chapter. Both families take a set of configurations Γ as an argument, determining which domain
restriction is considered.

Γ-VDEL

Instance: An election E = (C,P).
Question: Find the smallest k such that for some P ′ ⊆ P with |P ′| = k the

election (C,P \ P ′) contains no configurations from Γ.

Γ-CDEL

Instance: An election E = (C,P).
Question: Find the smallest k such that for some C ′ ⊆ C with |C ′| = k the

restriction of E to C \ C ′ contains no configurations from Γ.

Note that Γsp-VDEL is the corresponding function problem of VOTER DELETION SINGLE-
PEAKED CONSISTENCY, which we have studied in the previous chapter; that is, Γsp-VDEL asks
for a set of voters whereas VOTER DELETION SINGLE-PEAKED CONSISTENCY asks whether
such a set exists. For Γsp-CDEL and CANDIDATE DELETION SINGLE-PEAKED CONSISTENCY

the same relation holds.

98

7.2 A Simple Conversion to Hitting Set

In this section, we describe a straightforward transformation from Γ-VDEL and Γ-CDEL to the
classic HITTING SET problem, which is defined as follows.

d-HITTING SET

Instance: A finite set A and a collection T of subsets of A, where |S| ≤ d for
all S ∈ T .

Question: Find the smallest k such that there is a set A′ ⊆ A with |A′| = k
satisfying A′ ∩ S 6= ∅ for each S ∈ T .

Theorem 7.2. Let Γ be a set of exact configurations, let ‖Γ‖ =
∑

Φ∈Γ ‖Φ‖, and let s =
maxΦ∈Γ s(Φ), t = maxΦ∈Γ t(Φ). Then an instance E = (C,P) of Γ-VDEL (respectively,
Γ-CDEL) with |C| = m, |P| = n can be reduced to an instance (A, T) of d-HITTING SET

with d = s (respectively, d = t) in time O(‖Γ‖nmt) so that the optimal number of voters
(respectively, candidates) to delete in E equals the optimal size of the hitting set for (A, T).

Proof. We first consider Γ-VDEL. Given an election E = (C,P), we set A = P . Further,
for each occurrence of a forbidden configuration from Γ in E we add the corresponding set of
voters to T . We obtain an instance of d-HITTING SET with d = maxΦ∈Γ s(Φ). For Γ-CDEL,
the reduction is similar: we set A = C, and the sets in T correspond to sets of candidates in
occurrences of configurations from Γ in E.

Let (A, T) be the instance of d-HITTING SET produced by our reduction. Suppose that we
can eliminate all occurrences of the configurations in Γ from E by deleting a set of voters P ′ ⊆
P . Then P ′ intersects every set in T , so (A, T) admits a hitting set of size |P ′|. Conversely, if
A′ is a hitting set for (A, T), then by deleting the corresponding voters from P we ensure that
our election contains no configurations in Γ. A similar argument works for Γ-CDEL.

To implement this reduction, we go over all configurations in Γ, and, for each configuration
Φ, detect all occurrences of Φ in E using a modification of the algorithm described in Proposi-
tion 7.1. This establishes the bound on the running time of our reduction.

This simple conversion enables us to use the techniques developed for d-HITTING SET

in order to solve Γ-VDEL and Γ-CDEL whenever all configurations in Γ are exact and t =
maxΦ∈Γ t(Φ) is bounded by a small constant; this is the case for all sets of forbidden configura-
tions considered in this thesis. These techniques include, in particular, approximation algorithms
and fpt algorithms for d-HITTING SET. However, the running time and/or solution quality of
these algorithms often depends on the value of d. Thus, it would be desirable to have a reduction
that produces an instance of d-HITTING SET with a smaller value of d. We will now see that
this is indeed possible for Γ-VDEL, for several important sets of forbidden configurations Γ,
including the one that characterizes single-peaked preferences.

7.3 An Improved Conversion to Hitting Set

Our improved conversion from Γ-VDEL to d-HITTING SET relies on the notion of a partitioning
configuration (Definition 7.3). Given an election E = (C,P) and a mapping ξ : X → C, a

99

partitioning (s, t)-configuration Φ = {φ1, . . . , φs}withX(Φ) = X induces a partition ofP into
s sets Pξ1 , . . . ,Pξs , where Pξi = {V ∈ P | V |=ξ φi} for each i ∈ [s]. Using this observation,
for Γ-VDEL we can strengthen Theorem 7.2 as follows.

Theorem 7.3. Let Γ be a set of exact configurations, let ‖Γ‖ =
∑

Φ∈Γ ‖Φ‖, and let s =
maxΦ∈Γ s(Φ), t = maxΦ∈Γ t(Φ), where s ≥ 3. Suppose also that Γ contains exactly one
configuration Φ+ with s(Φ+) = s, and this configuration is partitioning. Then, given an in-
stance E = (C,P) of Γ-VDEL with |C| = m, |P| = n, where the optimal solution size is less
than n

s−1 , we can construct s instances of (s− 1)-HITTING SET in timeO(‖Γ‖nmt) so that the
optimal number of voters to delete in E equals mini∈[s] |Ai|, where Ai is an optimal hitting set
for the i-th instance.

Proof. We construct s instances of (s − 1)-HITTING SET, denoted by (A, T1), (A, T2), . . . ,
(A, Ts). We set A = P . The sets T1, . . . , Ts are constructed in three steps.

Step 1. Let Φ+ = {φ1, . . . , φs} be the unique configuration in Γ with s(Φ+) = s; let X =
X(Φ+). As explained above, for every mapping ξ : X → C, Φ+ defines a partition of P
into sets of votes Pξ1 , . . . ,Pξs . Pick a mapping ξ that maximizes the size of the smallest set in

{Pξ1 , . . . ,Pξs}. For each i ∈ [s], initialize Ti by setting Ti =
{
{V } | V ∈ Pξi

}
.

Step 2. Let P−i = P \ Pξi for all i ∈ [s]. We will now iterate over all mappings ξ′ : X → C
and for every such mapping we consider its induced partition of P−i. We denote the sets in this
partition by Pξ′,i1 , . . . ,Pξ′,is and assume without loss of generality that |Pξ′,i1 | ≤ . . . ≤ |Pξ′,is |.
For each tuple (Vi1 , . . . , Vis−1) ∈ Pξ′,i1 × · · · × Pξ′,is−1 we add the set {Vi1 , . . . , Vis−1} to Ti.
Step 3. It remains to deal with configurations in Γ \ {Φ+}; by our assumption, we have s(Φ) ≤
s−1 for every Φ ∈ Γ\{Φ+}. We handle them in the same way as in Theorem 7.2, i.e., for each
i ∈ [s] and each Φ′ ∈ Γ \ {Φ+} we add to Ti all sets of voters that correspond to occurrences of
Φ′ in E.

This completes the description of our reduction. The bound on its running time is immediate.
Also, each Ti, i ∈ [s], only contains sets of size s−1 or less, i.e., we have constructed s instances
of (s− 1)-HITTING SET. Let Ai be an optimal solution for (A, Ti). To complete the proof, we
will show that for each i ∈ [s] (1) removing the voters in Ai from E results in an election that
contains no configurations from Γ, and (2) if one can ensure that E contains no configurations
from Γ by deleting a set of votes P ′ = {Vi1 , . . . , Vik}, k < n

s−1 , then P ′ is a hitting set for at
least one of the instances (A, T1), . . . , (A, Ts).

To prove the first claim, fix i ∈ [s] and consider a configuration Φ ∈ Γ. If Φ 6= Φ+, the claim
is immediate: Ai intersects each set of voters corresponding to an occurrence of Φ in E, so by
removing Ai we eliminate all occurrences of Φ. Now, suppose that Φ = Φ+ = {φ1, . . . , φs}.
Consider some occurrence of Φ+ in E; it corresponds to a mapping ξ′ : X → C and a set of
votes {Vi1 , . . . , Vis}, where Vij |=ξ′ φj for j ∈ [s]. If ξ′ = ξ, then we have Pξi ⊆ Ai, and hence
no vote in (C,P \ Ai) fulfills φi with respect to ξ′. Now, suppose that ξ′ 6= ξ. If Vij ∈ Pξi for

some j ∈ [s], then Vij ∈ Ai, and we are done. Otherwise we have Vij ∈ Pξ
′,i
j for all j ∈ [s]. But

then the set {Vij | 1 ≤ j ≤ s− 1} belongs to Ti, and therefore Ai intersects it. This completes
the proof of our first claim.

100

To prove the second claim, consider a set of votes P ′ = {Vi1 , . . . , Vik} such that E′ =
(C,P \ P ′) contains no configurations from Γ. Note first that P ′ has to contain at least one of
Pξ1 , . . . ,Pξs ; indeed, if P \ P ′ intersects each of Pξ1 , . . . ,Pξs , the votes in the intersection would
correspond to an occurrence of Φ+. Thus, suppose that Pξi ⊆ P ′ for some i ∈ [s]. We will
now argue that P ′ is a hitting set for (A, Ti). Consider a set S ∈ Ti. If S is a singleton that has
been added to Ti during the first step, then we are done, since S = {Vj} for some Vj ∈ Pξi , and
Pξi ⊆ P ′. If S corresponds to an occurrence of a configuration in Γ \ {Φ+}, we are done, too,
since P ′ hits all occurrences of this configuration.

Finally, suppose that S = {Vj1 , . . . , Vjs−1} where Vj` ∈ Pξ
′,i
` for all ` ∈ [s − 1]. We will

now argue that if P ′ ∩ S = ∅, then |P ′| ≥ n
s−1 . To see this, suppose that P ′ ∩ S = ∅. Then

Pξ′,is ⊆ P ′. Indeed, if this is not the case, consider a vote Vj ∈ Pξ
′,i
s . All of the votes in S∪{Vj}

are present inE′ = (C,P \P ′), and henceE′ contains an occurrence of Φ+, a contradiction. As
we also have Pξi ⊆ P ′ for some i ∈ [s], and Pξ′,is ∩Pξi = ∅, it follows that |P ′| ≥ |Pξ′,is |+ |Pξi |.
It remains to prove that |Pξ′,is |+ |Pξi | ≥ n

s−1 .

To establish this, let y = |Pξi | and zj = |Pξ′,ij | for j ∈ [s]; we need to show that y+zs ≥ n
s−1 .

Recall that we have z1 ≤ z2 ≤ · · · ≤ zs, and hence zs ≥ 1
s−1 (z2 + · · ·+ zs). Further, by our

choice of ξ we have y ≥ z1 and therefore z2 + · · ·+ zs = n− y− z1 ≥ n− 2y. Thus, we obtain

y + zs ≥ y +
n− 2y

s− 1
≥ n

s− 1
+ y

s− 3

s− 1
≥ n

s− 1
,

where the last inequality follows since we assume s ≥ 3.
We have argued that if P ′ fails to intersect some set in Ti, then |P ′| ≥ n

s−1 . This completes
the proof.

The constraint on the true size of the optimal solution for Γ-VDEL in Theorem 7.3 may
appear to be significant (and difficult to check). However, in Section 7.4 we will see that it does
not affect our ability to design efficient approximation algorithms for Γ-VDEL.

Further, we remark that Theorem 7.3 only provides an improved reduction for Γ-VDEL,
and not for Γ-CDEL. This is because there is no direct analog to the notion of a partitioning
configuration for the latter problem.

7.3.1 Optimality of the Conversion

We will now show that the improved conversion is optimal by providing a reduction from d-
HITTING SET to Γ-VDEL. In this reduction, any solution of a d-HITTING SET instance directly
corresponds to a solution of the corresponding Γ-VDEL instance and, in particular, these two
solutions have the same size. Consequently, improving the approximation factor for Γ-VDEL

will lead to an improvement for d-HITTING SET. Since the approximation algorithm for d-
HITTING SET is assumed to be optimal, we can also assume that our conversion algorithm is
optimal. These consequences are discussed in more detail in Section 7.4. In this section, we
only present the underlying reduction.

To make our reduction applicable to as many configuration-definable domain restrictions as
possible, we introduce the notion of solid subconfigurations. The main intuition behind solid

101

subconfigurations is that if a profile does not contain a solid subconfiguration on a set of candi-
dates C1 and neither on a set of candidates C2, then it also does not contain this subconfiguration
on C1 ∪ C2. This property is essential for our reduction.

Definition 7.4. Consider a configuration Φ with X = X(Φ), and a subset X ′ of X with |X ′| ≥
2. Let Φ[X ′] be the restriction of Φ to X ′. We say that Φ[X ′] is a solid subconfiguration if
(i) Φ[X ′] is exact and (ii) for every x, y ∈ X ′ there exists a condition φ ∈ Φ where x > y
necessarily holds, i.e., φ implies x > y.

Example 7.2. Consider the configuration Φα. The subconfiguration Φα[{a, b, c}] is solid, but
α[{a, b, d}] is not solid since neither φ1 nor φ2 implies b > d. The subconfiguration Φα[{b, d}]
is also not solid since it is not exact. a

Theorem 7.4. Consider a set of configurations Γ and a configuration Φ ∈ Γ. Suppose that there
exists an election E = (C,P) with P = (V1, . . . , Vr) such that r ≥ 3 and

1. E contains Φ;

2. for every Φ′ ∈ Γ there exists a solid subconfiguration of Φ′ such that for every i ∈ [r− 1]
the election (C,P \ {Vi}) does not contain this solid subconfiguration.

Then there exist a polynomial-time reduction from (r − 1)-HITTING SET to Γ-VDEL with the
properties that

• the (r−1)-HITTING SET instance has a size k solution if and only if the Γ-VDEL instance
has a size k solution, and,

• the elements in the set A in the (r − 1)-HITTING SET instance correspond one-to-one to
voters in the Γ-VDEL instance.

The consequence of this theorem is that solutions of Γ-VDEL instances can be directly
translated to solutions of the (r − 1)-HITTING SET instances. This will allow us to show that
our improved conversion algorithm is (in some sense) optimal. First, let us prove this theorem.

Proof sketch. Let (A,S) be a (r − 1)-HITTING SET instance given by A = [u] and T =
{S1, . . . , Sq}. For each j ∈ [q], we define a profile Rj = (W j

1 ,W
j
2 , . . . ,W

j
u+k+1). To define

the votes W j
i , we use the function f(l, S) that returns the l-th smallest number in a set S. For

example, f(2, {3, 4, 9}) = 4. We define W j
i for i ∈ [u + 1, u + k + 1] and j ∈ [q], using the

votes V1, . . . , Vr from P , as follows:

W j
i =

{
Vl if f(l, Sj) = i,

Vr otherwise.

Note the following three facts. First, f(l, Sj) ≤ r − 1 since we have a (r − 1)-HITTING SET

instance. Second, for all i ∈ [u+ 1, u+ k + 1], W j
i = Vr regardless of j. Third, the candidate

set is identical for all profilesRj , j ∈ [q].

102

Now, we would like to join these profiles together. For this, we assume distinct candidate
sets C1, . . . , Cq forR1, . . . ,Rq, respectively. The joint profile is defined as follows:

R = (W 1
1 �W 2

1 � · · · �W q
1 ,

W 1
2 �W 2

2 � · · · �W q
2 ,

...

W 1
u+k+1 �W 2

u+k+1 � · · · �W q
u+k+1).

This concludes our construction. We claim that it is possible to delete k votes from R to
make it not contain the configurations from Γ if and only if (A, T) has a size k hitting set.

(←) Let H be a hitting set of size≤ k. We remove the votes inR that correspond to H , i.e.,
for every i ∈ H we remove the vote W 1

i � W 2
i � . . . � W q

i from R. Let R′ be this reduced
profile. Observe that none of the subprofiles R′[Cj], j ∈ [q], contains a configuration in Γ; this
is the case since by the theorem statement, for any i ∈ [r − 1], (C,P \ {Vi}) does not contain
a solid subconfiguration of every configuration in Γ and, consequently, (C,P \ {Vi}) does not
contain any configuration in Γ. It remains to verify that alsoR′ does not contain a configuration
in Γ. This is not possible since every solid subconfiguration would have to be contained in one
of the subprofiles R′[Cj], j ∈ [q] (due to the second condition in the theorem statement); we
have already excluded this possibility.

(→) Let H be the set of vote indices that have been deleted. If for some set Sj , j ∈ [q],
H ∩Sj = ∅, then the profiles still contains a forbidden configuration regardless of the deletions.
To see this, consider the votes inR[Cj] corresponding to indices contained in Sj (r−1 many) as
well as some vote in {W j

r+1, . . . ,W
j
u+k+1}. (Note that it is not possible thatWr+1, . . . ,Wu+k+1

are deleted with k deletions.) These votes contain a configuration Φ by the first condition of the
theorem statement; this is a contradiction. Thus H is a hitting set.

This theorem holds for r = 3 and Γ ∈ {ΓW , ΓB , ΓM , Γsp, Γscv, Γgs}, and, for r = 4
and ΓC . The only set of configurations for which Theorem 7.4 does not hold is Γsc, since Φδ

does not have any solid subconfigurations. This is because Φδ restricted to any proper subset of
X(Φδ) is no longer exact – and Φδ itself does not satisfy the second condition for being a solid
subconfiguration. Theorem 7.4 not being applicable is reasonable since Γsc-VDEL is solvable
in polynomial time and thus a reduction from HITTING SET would imply P = NP.

Let us exemplarily explain why this holds for r = 3 and Γsp. Consider the configuration Φα

and the election E = (C,P), where C = {a, b, c, d}, P = (V1, V2, V3), V1 : dabc, V2 : dcba,
V3 : dacb. This election satisfies the conditions of Theorem 7.4. Indeed, it contains Φα in the
first two votes. If one of these two votes is deleted, the resulting election no longer contains the
solid subconfiguration Φα[{a, b, c}] (see Example 7.2). Further, ΦW is a solid subconfiguration
by itself, and it can be eliminated by removing any of the three votes. Thus, 2-HITTING SET

admits an approximation-preserving reduction to Γsp-VDEL.
Finally, let us remark that while the theorem works for r = 4 and ΓC , it does not work for

r = 4 and ΓW , ΓB , or ΓM . The reason is that ΓW , ΓB , and ΓM are partitioning and thus the
second condition does not hold for r = 4. (In this case Vr would have to be a model of some
of condition, say condition φi. Some vote, say vote Vi, has to be a model for φi. However,

103

the election (C,P \ {Vi}) now contains the configuration because Vr is a model for φi. This
contradicts the second condition of Theorem 7.4.)

7.4 Approximation Algorithms

We now present the first application of our reductions. Since d-HITTING SET allows for a factor-
d approximation [72], we are able to approximate Γ-VDEL and Γ-CDEL up to a constant factor
for all sets of forbidden configurations Γ considered in Section 7.1.

Theorem 7.5. Let Γ be a set of configurations and let s = maxΦ∈Γ s(Φ), t = maxΦ∈Γ t(Φ).
Then Γ-VDEL admits a s-approximation algorithm, and Γ-CDEL admits a t-approximation al-
gorithm. Moreover, if Γ contains a unique configuration Φ with s(Φ) = s, and this configuration
is partitioning, then Γ-VDEL admits an (s− 1)-approximation algorithm.

Proof. The first claim follows immediately from Theorem 7.2 and the fact that d-HITTING SET

admits a polynomial-time d-approximation algorithm. Now, suppose that Γ contains a unique
configuration Φ with s(Φ) = s, and Φ is partitioning. We then use the reduction described in
the proof of Theorem 7.3, and obtain s instances of (s− 1)-HITTING SET. We run the (s− 1)-
approximation algorithm for (s− 1)-HITTING SET, and obtain s sets A1, . . . , As. We return the
set of voters that corresponds to the smallest of these sets.

To see why this approach is correct, observe first that by Theorem 7.3 each of the sets
A1, . . . , As corresponds to a feasible solution to our instance of Γ-VDEL. Now, let k be the size
of the optimal solution for our instance of Γ-VDEL. If k < n

s−1 , then by Theorem 7.3 one of
our instances of (s − 1)-HITTING SET has a hitting set of size k, so mini∈[s] |Ai| ≤ (s − 1)k.
Otherwise we have (s − 1)k ≥ n, so even the solution that deletes all voters (and hence any of
the sets Ai) is within a factor of (s− 1) from optimal.

Corollary 7.6. For Γ ∈ {ΓW ,ΓB ,ΓM ,Γsp,Γscv,Γgs}, the problem Γ-VDEL can be approxi-
mated within a factor of 2, and ΓC -VDEL can be approximated within a factor of 3. Moreover,
the problem Γ-CDEL can be approximated within a factor of 3 for Γ ∈ {ΓW ,ΓB ,ΓM ,ΓC },
within a factor of 4 for Γ = Γgs, and within a factor of 6 for Γ = Γsc.

Corollary 7.7. Assuming the Unique Games Conjecture, the approximation results for Γ-VDEL

with Γ ∈ {ΓW ,ΓB ,ΓM ,ΓC ,Γsp,Γscv,Γgs} are optimal.

Proof. The d-approximation of d-HITTING SET is optimal under the assumption that the Unique
Games Conjecture holds [103]. As remarked at the end of Section 7.3.1, Theorem 7.4 holds for
r = 3 and Γ ∈ {ΓW , ΓB , ΓM , Γsp, Γscv, Γgs} and for r = 4 and ΓC . Thus, a 3-approximation
is optimal for ΓC and a 2-approximation for the other domain restrictions – which are exactly
the approximation ratios we obtained.

104

d 2 3 4 5 6

cd 1.28 2.08 3.15 4.11 5.07

Table 7.1: Currently best algorithms for d-HITTING SET with a runtime ofO∗(cdk), where k is
the optimal solution size

7.5 Fixed-Parameter Algorithms

Fixed-parameter algorithms for Γ-VDEL can be obtained by utilizing fpt algorithms for d-
HITTING SET [51, 77, 137]. The currently best runtimes for d-HITTING SET are displayed
in Table 7.1.

Theorem 7.8. Let Γ be a set of configurations, and let s = maxΦ∈Γ s(Φ), t = maxΦ∈Γ t(Φ).
Then Γ-VDEL can be solved in time O∗(csk), and Γ-CDEL can be solved in time O∗(ctk),
where k is the size of the optimal solution and cs is taken from Table 7.1. Moreover, if k < n/2,
Γ contains a unique configuration Φ with s(Φ) = s, and Φ is partitioning, then Γ-VDEL can be
solved in time O∗(cks−1), where k is the size of the optimal solution.

Corollary 7.9. For Γ ∈ {ΓW ,ΓB ,ΓM ,Γsp,Γscv,Γgs}, Γ-VDEL can be solved in timeO∗(1.28k)
if k < n/2 and in time O∗(2.08k) otherwise; ΓC -VDEL can be solved in time O∗(2.08k).

For Γ ∈ {ΓW ,ΓB ,ΓM ,ΓC }, Γ-CDEL can be solved in time O∗(2.08k), Γgs-CDEL in time
O∗(3.15k) and Γsc-CDEL in time O∗(5.07k).

The results in Corollary 7.9 for k < n/2 can be considered optimal in the following sense:
Observe that Theorem 7.4 shows that for instances with k < n/2 there is a reduction from
VERTEX COVER, i.e., 2-HITTING SET, to VDEL. This reduction is also an fpt reduction. Thus,
any fpt runtime improvement on VDEL for k < n/2 would also imply an improvement for
VERTEX COVER.

7.6 Deleting Almost All Votes

The approximation algorithm described in Section 7.4 is useful when the size of the optimal
solution for Γ-VDEL does not exceed n/2. However, it may also be the case that, to eliminate
configurations in Γ, we need to delete almost all voters. In this case, it is trivial to find a 2-
approximate solution to Γ-VDEL: simply deleting all voters provides a 2-approximation. Thus,
a more fine-grained approach is to try to approximate the number of surviving voters; we refer
to this variant of our problem as Γ-VDEL−.

Γ-VDEL −

Instance: An election E = (C,P).
Question: Find the largest k such that for some P ′ with |P ′| = k the election

(C,P ′) contains no configurations from Γ.

It turns out that Γ-VDEL− is hard to approximate for many sets of configurations Γ.

105

Theorem 7.10. Consider a set of configurations Γ and a configuration Φ ∈ Γ. Suppose that
there exists an election E = (C,P) with P = (V1, . . . , Vr) such that r ≥ 3 and

1. E contains Φ;

2. for every Φ′ ∈ Γ there exists a solid subconfiguration of Φ′ such that for every i ∈ [r− 1]
the election (C,P \ {Vi}) does not contain this solid subconfiguration.

Then Γ-VDEL − cannot be approximated by a constant factor unless P = NP.

Proof sketch. We reduce from INDEPENDENT SET, which cannot be approximated by a constant
factor (not even within n1−ε) unless P = NP [95, 144]. The INDEPENDENT SET problem
asks whether, given a graph G = (N,T), there exists a set of vertices S ⊆ N with |S| ≤ k
such that there are no edge in T between vertices in S. Let N = {x1, . . . , x|N |} and T =
{e1, . . . , e|T |}. We construct a Γ-VDEL instance, similar to the construction in the proof of
Theorem 7.4. Let u = |N |+ (k + 1) · (r − 2). For each j ∈ {1, . . . , |T |}, we define a profile
Rj = (W j

1 , . . . ,W
j
u). We join these subprofiles to the profile

R = (W 1
1 �W 2

1 � . . . �W |T |1 , . . . ,W 1
u �W 2

u � . . . �W |T |u)

(again by making the candidate sets distinct, as in the proof of Theorem 7.4). Let us define the
votes W j

i , i ∈ {1, . . . , u} and j ∈ {1, . . . , |T |}:

W j
i =


V1 if ej = {xi, xi′} with i < i′,

V2 if ej = {xi, xi′} with i′ < i,

Vr if xi /∈ ej ,
Vl if |N |+ (l − 3) · (k + 1) < i ≤ u.

Note that, regardless of j,

W j
|N |+1 = W j

|N |+2 = · · · = W j
|N |+k+1 = V3,

W j
|N |+k+2 = W j

|N |+k+3 = · · · = W j
|N |+2k+2 = V4, . . .

. . . ,W j
|N |+(k+1)(r−3)+1 = W j

|N |+(k+1)(r−3)+2 = · · · = W j
|N |+(k+1)(r−2) = Vr.

The intuition here is that for each edge xi, xi′ (i < i′) either the vote W 1
i � W 2

i � . . . � W
|T |
i

(containing an occurrence of V1) or the voteW 1
i′ �W 2

i′ � . . . �W
|T |
i′ (containing an occurrence

of V2) has to be deleted since deleting all occurrences of either V3, V4, . . . , Vr is not possible.
We claim that deleting k votes from R to make it avoid every configuration in Γ is possible if
and only if there is a size k independent set. The proof is similar to the one of Theorem 7.4.

Corollary 7.11. For Γ ∈ {ΓW ,ΓB ,ΓM ,ΓC ,Γsp,Γscv,Γgs}, Γ-VDEL− cannot be approxi-
mated by a constant factor unless P = NP.

106

Γ VDEL CDEL

Single-peaked / Single-caved 2 P

Single-crossing P 6

Best-/Medium-/Worst-restricted 2 3

Value-restricted 3 3

Group-separable 2 4

Table 7.2: Approximation algorithms for Γ-VDEL and Γ-CDEL

We can also characterize the parameterized complexity of Γ-VDEL−. Here, we require the
decision problem corresponding to Γ-VDEL−, i.e., given k > 0, is there a subset of at least k
voters such that the corresponding profile contains no configuration from Γ?

Theorem 7.12. Γ-VDEL− parameterized by the size of an optimal solution, i.e., the number of
surviving voters, is W[1]-complete.

Proof sketch. First, observe that the reduction in the proof of Theorem 7.10 is also an fpt reduc-
tion. Since INDEPENDENT SET is W[1]-hard, we obtain W[1]-hardness from Theorem 7.10.

W[1]-membership can be shown by encoding a VDEL instance in a model checking problem
of a propositional Σ1 formula. For a formal definition of this model checking problem we refer
the reader to the book by Flum and Grohe [80].

7.7 Summary

We have investigated the complexity of approximating the distance between a given election
and a restricted preference domain, for two natural distance measures and many well-known
restricted preference domains. Our results are broadly positive: they include polynomial-time
approximation algorithms whose approximation ratio is bounded by a small constant (summa-
rized in Table 7.2) and reasonably fast fpt algorithms (summarized in Table 7.3). However,
for the variant of the voter deletion problem where the goal is to approximate the number of
surviving voters, our results are rather negative.

The reader may wonder if improving the approximation ratio of our algorithms, e.g., for
Γsp-VDEL from 3 to 2, by going through a more complicated reduction was worth the effort.
Observe, however, that the runtime of the algorithms for nearly single-peaked elections typically
grows exponentially (or faster) with the distance from the single-peaked domain [75]; thus, a
constant-factor improvement in approximation ratios translates into significant improvement in
the running time of these algorithms.

107

Γ FPT runtime for VDEL FPT runtime for CDEL

k < n/2 k ≥ n/2
Single-peaked / Single-caved O∗(1.28k) O∗(2.08k) P

Single-crossing P P O∗(5.07k)

Best-/Medium-/Worst-restricted O∗(1.28k) O∗(2.08k) O∗(2.08k)

Value-restricted O∗(2.08k) O∗(2.08k) O∗(2.08k)

Group-separable O∗(1.28k) O∗(2.08k) O∗(3.15k)

Table 7.3: Fpt algorithms for Γ-VDEL and Γ-CDEL

108

CHAPTER 8
Structure in Incomplete Preferences

This chapter is based on the publication Incomplete preferences in single-peaked electorates
[111].

Both human and automated decision making often have to rely on incomplete information.
The same issue arises in joint decision making – voting – in multi-agent systems. For example,
the majority of preference data collected on preflib.org [117] is incomplete. Konczak and
Lang [71] distinguish two main sources of incompleteness: The first one is intrinsic incomplete-
ness where the voter is unable1 or unwilling to give complete information, i.e., a total order on
all candidates. The second one is epistemic incompleteness where the voters do have prefer-
ences specified by total orders but at the time of decision making these total orders are not fully
available. Also a combination of these two scenarios is possible.

Whereas complete preferences are usually modeled as total orders, incomplete preferences
can be modeled as partial orders and are therefore a more general concept. In particular, the
determination of winners becomes harder since voting protocols usually require total orders. It
is therefore necessary to consider completions of incomplete votes. Completions of incomplete
votes are total orders that are compatible with the original partial orders. The determination of
possible and necessary winners in incomplete elections is often intractable and thus a fast winner
determination is not feasible [26, 27, 71, 124, 138, 142].

A popular approach to deal with hardness of voting problems is to consider domain restric-
tions. The most common restriction is single-peakedness [30] (see Section 2.2 for a definition).
For example, computing the winner of a Dodgson or Kemeny election, though ΘP

2 -complete in
general [96,97], can be done in polynomial time for single-peaked elections [41]. Also the com-
plexity of manipulation and control problems often decreases [76]. These results let us hope that
efficient, polynomial time algorithms for computing possible and necessary winners of single-
peaked incomplete elections could be found. Walsh [138] started investigating this issue and also

1In the case that the voter is unable to provide complete information because, for example, two candidates are
equally preferred by the voter, the term “incomplete” is not really accurate; a partial order might constitute complete
information in such a case. For our studies, however, this subtlety is not relevant.

109

pointed out a central question in that regard: What happens if the axis for which the incomplete
preference profile is single-peaked is not given as part of the input but has to be determined?

This chapter deals with this question, namely how to determine single-peakedness for in-
complete preferences. In the following, let n denote the number of votes and let m denote the
number of candidates. The main results are as follows:
• We prove that determining whether an incomplete preference profile is single-peaked is NP-
complete. This is in contrast to the case of complete preferences for which single-peakedness
can be determined in linear time [71]. Furthermore, we strengthen this result by showing that
NP-completeness still holds if one voter completely specifies his preferences.

Apart from these hardness results, this chapter contains four polynomial time algorithms:
• The first algorithm requires that the preference profile must contain at least one complete vote,
i.e., a total order. The algorithm is applicable to weak orders (see Figure 8.1 for an example and
Section 8.1 for a definition). We obtain a runtime ofO(m ·n). This algorithm is an improvement
over the algorithm by Escoffier, Lang and Ötztürk [71] since it is applicable to a broader class
of preference profiles (weak orders instead of total orders) while maintaining its runtime.
• Our second algorithm is 2-SAT based. It also requires a total order but is applicable to local
weak orders, which are a generalization of weak orders. This more general algorithm does not
run in linear time but requires O(m3 · n) time.
• In contrast to the previous two algorithms, the third algorithm does not require the profile to
contain a total order. However, it is restricted to top orders. Top orders rank an arbitrary number
of top candidates; all remaining candidates are ranked last and incomparable to one another (see
Figure 8.1 for an example). This algorithm has a runtime of O(m2 · n).
• Finally, we consider the problem of determining single-peakedness for an already given axis.
We prove this problem to be polynomial-time solvable even for incomplete profiles consisting
of partial orders.

8.1 Incomplete Preferences

In this chapter, preferences are represented by different types of orders (see Figure 8.1 for ex-
amples). The most general type are partial orders. A partial order P on a set X is a reflexive,
antisymmetric and transitive binary relation on X . We say that y is ranked above x if xPy
holds. If for two elements x, y ∈ X neither xPy nor yPx holds, these two elements are incom-
parable. A partial order where the incomparability relation is transitive is called a weak order.
A weak order can thus be considered a total order with ties. Weak orders are also referred to
as bucket orders (elements that tie are in the same “bucket”), cf. [73]. A weak order where all
incomparable elements are minimal is called top order. The ranked candidates of a top order
T are those that are not incomparable to any other candidate. We would like to remark that top
orders appear as top lists in [65, 74] and as top-truncated votes in [24]. A partial order with no
incomparable elements is called total order. Any partial order P can be extended to some total
order T such that aPb implies aTb; T is then a (not necessarily unique) extension of P . Finally,
we define a local weak order P on a setX to be a partial order onX with the following property:
there exist sets X1, X2 with X1 ∪X2 = X such that the elements in X1 are incomparable to all
other elements in X and the profile P restricted to X2 is a weak order. Intuitively, a local weak

110

Total Top Weak Local weak Partial
order order order order order

Figure 8.1: The order zoo: examples of different types of orders that are used to specify prefer-
ences

order is a weak order together with some isolated elements for which absolutely no information
is available. Note that we do not distinguish between tied and incomparable elements in this
paper; both are treated in the same way.

In this chapter, total orders are denoted by 〈c1 > c2 > . . . > ck〉; the brackets allow us to
unambiguously denote total orders consisting of one or even zero elements, i.e, we use 〈〉 to de-
note the empty order relation. For top orders, we write 〈c1 > c2 > . . . > ck > •〉 to denote a top
order where c1, . . . , ck are ranked as stated and all other elements (usually the remaining candi-
dates in C) are ranked last, i.e., are minimal elements. We sometimes use set operators (∪,∩, \)
on top orders with the intended meaning that we apply these operators to the corresponding sets
of ranked candidates.

We would now like to address the usefulness of these types of orders for expressing pref-
erences. Total orders allow the voter to fully specify a ranking of options. Given a large set of
options, this might be unfeasible. Partial orders, on the other hand, allow the voter to specify
the relative order of any pair of options. Thus they can be seen as a very general formalism
for representing incomplete preferences. They are compatible with total orders in the sense that
partial orders can always be extended to total orders. Weak orders are less general than par-
tial orders but arise in many natural scenarios. For example every real-valued utility function
implies a weak order (candidates with the same utility tie, i.e., are incomparable). Local weak
orders correspond to partial real-valued utility functions and thus arise in scenarios where voters
do not have knowledge about all candidates. If the elicitation of preferences is costly, one might
ask only for the most important (top ranked) options of each voter. In such a case, top orders
arise. Top orders also are the natural type of order for specifying preferences in some scoring
protocols. We will further comment on scoring protocols and top orders at the end of the chapter.

Votes are considered to be either partial, local weak, weak, top or total orders. A tuple
(V1, . . . , Vn) of votes is called a (preference) profile of {partial orders, weak orders, top orders,
total orders}, depending on the type of orders.

111

v-valley u-valley u-valley

a b c a b c d a c b d

Figure 8.2: What v-valleys and u-valleys may look like

8.2 Single-peaked Profiles

We start by repeating the definition of single-peaked profiles of total orders and then extend
this definition to partial orders. Our definition of single-peakedness for profiles of total orders
(Definition 2.2) as well as for profiles of partial orders is based on so-called valleys. Here, we
distinguish two types of valleys. The first type, v-valleys, is the one already used in Defini-
tion 2.2.

Definition 8.1 (v-valleys). Let V be a partial order on C. The vote V contains a v-valley with
respect to an axis A if there exist c1, c2, c3 ∈ C such that c1 < c2 < c3, c2 ≺ c1 and c2 ≺ c3.

Recall that a profile P of total orders is single-peaked with respect to A if no vote V ∈ P
contains a v-valley with respect to A (and thus every vote has only a single “peak”).

We now want to extend this definition to profiles of partial orders. The natural way is to
consider extensions of partial orders to total orders:

Definition 8.2. Let P = (V1, . . . , Vn) be a profile of partial orders. The profile P is single-
peaked with respect to an axis A if for every k ∈ {1, . . . , n}, Vk can be extended to a total order
V ′k such that the profile of total orders P ′ = (V ′1 , . . . , V

′
n) is single-peaked with respect to A.

While it is also conceivable to require that every extension is single-peaked, this would yield
an extremely restrictive definition. In this sense, our definition seems to be preferable.Next, we
want to find an equivalent definition based on valleys, for which we also require u-valleys:

Definition 8.3 (u-valleys). Let V be a partial order on C. The vote V contains a u-valley with
respect to A if there exist distinct elements a, b, c, d ∈ C with a < b < d and a � b as well as
a < c < d and d � c.

In Figure 8.2 a graphical representation of v- and u-valleys is shown. These two types of
valleys allow a characterization of single-peakedness for profiles of partial orders.

Lemma 8.1. Let P = (V1, . . . , Vn) be a profile of partial orders. The following two statements
are equivalent.

(i) The profile P is single-peaked with respect to A.

(ii) Every vote V ∈ P contains neither a u-valley nor v-valley with respect to A.

112

Proof. Statement (i) implies Statement (ii) since if some Vk contained a u-valley in the sense of
Definition 8.3 then every extension V ′k would contain a v-valley. More concretely, if a, b, c, d ∈
C form a u-valley in Vk then any extension of Vk either contains a v-valley with respect to A on
the candidates a, b, c or on b, c, d. Furthermore, if Vk contained a v-valley then so would every
extension.

For the other direction, we show that a vote V not containing a valley can be extended to
a total order that is single-peaked with respect to A. We are going to recursively define its
extension V ′ starting with the last ranked candidate. Let V ′(1) denote the last ranked candidate,
V ′(2) the second-to-last, etc. For the definition we require two functions:

• minA(X) is the smallest (leftmost) candidate in X with respect to the axis A.

• maxA(X) is the largest (rightmost) candidate in X with respect to the axis A.

We now define for every i ∈ {1, . . . ,m},

Xi = C \ {V ′(1), . . . , V ′(i− 1)} and

V ′(i) =

{
maxA (Xi) if maxA (Xi) is �-minimal in V [Xi]

minA (Xi) otherwise.
.

This definition immediately yields that V ′ is single-peaked with respect to A: By always choos-
ing one of the two outermost candidates on A (that have not yet been chosen) for the next higher
ranked candidate, valleys cannot arise.

It remains to show that V ′ is indeed an extension of V , i.e., we have to show that for every
pair of candidates a, b ∈ C, a � b implies a �′ b. Towards a contradiction assume that a � b and
b �′ a. Let i ∈ {1, . . . ,m} such that V ′(i) = a. We have to consider two cases: a = minA(Xi)
and a = maxA(Xi).

Let a = minA(Xi) and d = maxA(Xi). Since a has been chosen as V ′(i), we know that
there has to exist a c ∈ Xi with d � c. Observe that a < c < d has to hold. Furthermore,
either a < b < d or b = d holds. If a < b < d holds then a, b, c, d for a u-valley. If b = d then
a < c < b, a � b and b � c holds: a v-valley. Both cases contradict our assumption that V does
not contain a valley with respect to A.

Now, let a = maxA(Xi). This immediately yields a contradiction since a � b and a is not a
�-minimal element.

This lemma immediately yields a polynomial time algorithm for checking whether an in-
complete profile is single-peaked with respect to a given axis:

Theorem 8.2. Checking whether a profile of partial orders is single-peaked with respect to a
given axis can be done in O(n ·m4) time.

Proof. For every quadruple of candidates and every vote, one has to check whether a u- or
v-valley arises.

Let T ∈ {partial order, local weak order, weak order, top order, total order} be a type of
order. In this chapter we are going to study the following problem:

113

T SINGLE-PEAKED CONSISTENCY

Instance: A profile P of type T and a set of candidates C.
Question: Is P single-peaked consistent?

Note that in contrast to Theorem 8.2, the input of this problem does not include an axis. The
TOTAL ORDER SINGLE-PEAKED CONSISTENCY problem is known to be solvable in polyno-
mial time [23,61,71]. In the next section, we show that this is likely not to be the case for partial
orders and even local weak orders.

8.3 Hardness Results

Theorem 8.3. The LOCAL WEAK ORDER SINGLE-PEAKED CONSISTENCY problem is NP-
complete.

Proof. We reduce from the NP-complete BETWEENNESS problem [121]. A BETWEENNESS

instance consists of a finite set S and a set T containing (ordered) triples of distinct elements
of S. The decision problem asks whether there is a total order L such that for every triple
(a, b, c) ∈ T we have either aLbLc or cLbLa. Intuitively, a triple (a, b, c) ∈ T corresponds to
the constraint that b has to lie “in between” a and c on the total order L.

We construct an incomplete election (C,P) with C = S, i.e., we identify elements in S with
candidates. The preference profile P consists of two votes for each triple (a, b, c): the partial
order {a � c, b � c} and the partial order {b � a, c � a}. These two votes form a valley on any
axis with c between a and b and on any axis with a between b and c. Thus b has to be between a
and c on any single-peaked axis. We are now going to show that P has a single-peaked extension
profile if and only if the BETWEENNESS instance is a Yes-instance.

“ ⇒′′ Assume that there exists an extension profile Pext of P and an axis A such that Pext

is single-peaked with respect to A. By Lemma 8.1 we know that this implies that no v-valleys
exist. Since for every triple (a, b, c) ∈ T both the vote {a � c, b � c} and {b � a, c � a} are
contained in P , we have that neither a < c < b, b < c < a, b < a < c nor c < a < b can hold.
Consequently it has to hold that either a < b < c or c < b < a holds and thus b is “in between”
a and c.

“ ⇐′′ Assume that there exists a set T such that all constraints in T are satisfied. It is easy
to verify that (C,P) is single-peaked with respect to T .

Corollary 8.4. PARTIAL ORDER SINGLE-PEAKED CONSISTENCY is NP-complete.

The proof of Theorem 8.3 uses elections where the votes contain very little information: only
two pairs of candidates are comparable in each vote. We know that determining single-peaked
consistency is possible in polynomial time if every vote is a total order, i.e., all votes contain
complete information. Now the question arises: what happens if only a single voter provides
complete information? Having a single completely specified vote has been found to be helpful
in a related context: it allows for the efficient elicitation of single-peaked preferences using only
few comparison queries [52] and thus the communication complexity of preference elicitation is
reduced. However, in our case such a voter does not provide enough additional information for
a decrease in (computational) complexity.

114

Theorem 8.5. The PARTIAL ORDER SINGLE-PEAKED CONSISTENCY problem is NP-complete
even if the preference profile contains a total order.

Proof. We reduce from SET SPLITTING: Let X be a finite set. Given a collection Z of subsets
of X , is there a partition of X into two subsets X1 and X2 such that no subset of Z is contained
entirely in either X1 or X2? This problem is NP-complete even if all sets in Z have cardinality
three [86].

Let X = {c1, . . . , cm}. For the construction, we identify the elements of X with candidates
and add an additional candidate x. For each set {ci, cj , ck} ∈ Z with i < j < k we introduce
one vote: {ci � cj , x � ck}. In addition, we add the vote x � cm � · · · � c1. We claim that
the resulting preference profile P is single-peaked if and only if (X,Z) is a SET SPLITTING

yes-instance.
Assume that P is single-peaked and let A be the corresponding axis. We define X1 to be

the candidates on A left of x and X2 those that right of x. We will show that there is no subset
of Z entirely contained in X1 or X2. Towards a contradiction assume that {ci, cj , ck} ∈ Z
with i < j < k are contained in X1. Then it has to hold that, on A, ci, cj , ck are all left of
x. Furthermore, from the vote x � cm � · · · � c1 then it follows that the relative order on
A of x, ci, cj , ck has to be ci < cj < ck < x. However this order is not single-peaked for the
vote {ci � cj , x � ck}. Assuming that {ci, cj , ck} ∈ Z are contained in X2 leads to the same
contradiction. Thus, X1 and X2 indeed certify that (X,Z) is a yes-instance.

For the other direction, assume that (X,Z) is a yes-instance and X1 and X2 the partition.
Let an axis A be defined as the elements in X1 with indices in increasing order followed by x
followed by the elements in X2 with indices in decreasing order. We claim that A is an axis for
P . Clearly, the vote x � cm � · · · � c1 is single-peaked with respect to A. Let us consider a
vote {ci � cj , x � ck} with i < j < k. Since X1 and X2 are a valid partition, at least one of
ci, cj , ck has to be left of x and another one right. This rules out that a u-valley is formed and
thus all votes are single-peaked with respect to A.

It is important to note that – in contrast to the NP-hardness result in Theorem 8.3 – in this
proof we make use of u-valleys instead of v-valleys. This means in particular that this hardness
result does not hold for weak orders, which cannot contain u-valleys. This is not incidental: in
the next section, we present a polynomial-time algorithm for weak orders.

8.4 The Guided Algorithm

In this section, we present a polynomial time algorithm for profiles of weak orders. This algo-
rithm requires that the profile contains at least one total order to guide the placement of candi-
dates on the axis. We call this vote the guiding vote. Clearly, not all profiles of partial orders
possess a guiding vote. In particular, the profiles constructed in the proof of Theorem 8.3 do not
possess one.

Theorem 8.6. If the profile contains a total order, the WEAK ORDER SINGLE-PEAKED CON-
SISTENCY problem can be solved in O(m · n) time.

115

AL {ci+1, . . . , cm} ci AR

(R1) (R2)

AL {ci+1, . . . , cm}ci AR

(L1)(L2)

Figure 8.3: Graphical representation of the conditions testing whether ci can be placed on the
right-hand side ((R1), (R2)) or on the left-hand side ((L1), (L2))

We will refer to Algorithm 5, which Theorem 8.6 is based on, as the Guided Algorithm.
Without loss of generality, we assume that the guiding vote is cm � cm−1 � · · · � c1, i.e., we
number the candidates based on the guiding vote.

The most important observation for detecting single-peakedness in weak orders is that only
v-valleys can arise. An u-valley would violate the condition that the incomparability relation is
transitive.

The algorithm has a simple structure: The lowest ranked candidate in the guiding vote, c1, is
placed on the rightmost position of the axis (The leftmost position would work as well.) Starting
with the second lowest ranked candidate, c2, in the guiding vote, the candidates are successively
placed on the axis – either at the leftmost or rightmost still available position. The lists AL
and AR correspond to the left-hand and right-hand side of the axis. For each candidate, we test
whether it can be placed on the right-hand side or left-hand side without creating a valley. If
only one of these options is viable, the candidate is placed accordingly. If both left and right are
possible, we place the candidate arbitrarily right. If neither is possible, the preference profile is
not single-peaked.

Testing whether a vote Vk imposes restrictions on the placement of a candidate is achieved
by four conditions. These conditions distinguish four categories of candidates: candidates in
AR, candidates in AL, candidates that have not yet been placed (C>i = {ci+1, . . . , cm}) and
the candidate that is currently under consideration (ci). We are only checking for valleys that
include ci. This gives rise to the following four conditions: (R1) and (R2) test whether placing
ci on the right-hand side leads to valleys, (L1) and (L2) do the same for the left-hand side.
Figure 8.3 displays a graphical representation. Note that it is not necessary to verify whether a
v-valley arises with al � ci and ar � ci, where al ∈ AL and ar ∈ AR; such a valley would have
already be detected at an earlier stage of the algorithm. Since we only consider weak orders,
we do not have to consider every candidate triple possibly fulfilling these conditions but have
to check only maximal or minimal candidates. More specifically, checking whether there is a
candidate c ∈ AL and c′ ∈ C>i with c � c′ is equivalent to whether any maximal element in AL
is preferred to some minimal element in C>i. For k ∈ [n], let mink(X) denote a function that
picks some arbitrary element in X that is minimal with respect to �k. The function maxk(X) is

116

defined analogously. Now, we can formally define the four conditions:

ci �k mink(C>i) and maxk(AL) �k mink(C>i) (R1)

maxk(C>i) �k ci and maxk(AR) �k ci (R2)

ci �k mink(C>i) and maxk(AR) �k mink(C>i) (L1)

maxk(C>i) �k ci and maxk(AL) �k ci (L2)

Using these four definitions, we can give a succinct description of the algorithm (Algo-
rithm 5).

Algorithm 5: The Guided Algorithm

Input: A set of candidates C, a preference profile of weak orders P = (V1, . . . Vn)
including a guiding vote cm � cm−1 � · · · � c1.

Output: An axis A or not_single_peaked.

1 AL ← 〈〉
2 AR ← 〈c1〉
3 for i← 2 . . .m do
4 right← true; left← true
5 for k ← 2 . . . n do
6 if Condition (R1) or (R2) holds then
7 right← false
8 if Condition (L1) or (L2) holds then
9 left← false

10 if right = true then
11 AR ← 〈ci < AR〉
12 else
13 if left = true then
14 AL ← 〈AL < ci〉
15 else
16 return not_single_peaked
17 return AL < AR

Theorem 8.6 claims that the Guided Algorithm requiresO(m ·n) time. This is only possible
if the conditions can be checked in constant time. Thus, the minima and maxima have to be
computable in constant time. For maxk(AL) and maxk(AR) this is easily possible by storing
and updating these two values. If ci is placed left, we update maxk(AL) in case ci is the new
maximum (with respect to �k); if ci is placed right, we proceed analogously maxk(AR). For
computing a minimal value of C>i, observe that the set C>i becomes smaller with increasing i.
Thus, a minimal value of C>i might disappear at some point and a new (larger) value has to be
chosen. The new minimum is the smallest element (with respect to �k) in C>i that is at least as
large as the old minimum. If we maintain pointers to the minimum elements, the amortized cost
of this update procedure is O(1). A maximal value of C>i can be found analogously.

117

We are going to show that the Guided Algorithm is correct. For this, we require the following
definition and the two following lemmas.

Definition 8.4. In a weak order, we write a % b to denote that either a � b holds or a is
incomparable to b.

Lemma 8.7. We consider the Unguided Algorithm at any given point during its runtime. In
particular, we consider the sets AL, AR and {ci, . . . , cm}. Let Vk ∈ P , al = maxk(AL),
ar = maxk(AR) and cj = mink(ci, . . . , cm). Then it either holds that cj %k ar or it holds that
cj %k al. This means that, in every vote, the remaining candidates (ci, . . . , cm) are all either at
least as large as ar or all at least as large as al.

Proof. Without loss of generality we assume that al is placed before ar. Towards a contradiction
assume that ar �k cj and al �k cj . Let us consider the algorithm at the point when ar was
placed (ci′ = ar and i′ < i). We will show that (R1) is true and thus ar could not have been
placed on the right-hand side. Recall rule (R1):

ci′ �k mink(C>i′) and maxk(AL) �k mink(C>i′)

Since ar = ci′ %k cj %k mink(C>i′) and maxk(AL) = al �k cj %k mink(C>i′), (R1) is
true.

Lemma 8.8. We consider the Unguided Algorithm at any given point during its runtime. In
particular, we consider the sets AR and {ci, . . . , cm}. Let Vk ∈ P and cj = maxk(ci, . . . , cm).
Furthermore, let a, a′ ∈ AR such that candidate a has been placed on AR before a′. Then it
either holds that a′ %k cj or it holds that a′ %k a.

Proof. We consider the algorithm at the point where a′ was placed on the right-hand side, i.e.,
in AR. At this point, condition (R2) has to be false. The fact that a′ %k cj or a′ %k a holds is a
direct consequence of (R2) being false.

Proposition 8.9. The Guided Algorithm (Algorithm 5) is correct, i.e., it outputs an axis if and
only if the given preference profile is single-peaked and, furthermore, P is single-peaked with
respect to any axis that is returned by the algorithm.

Proof. We first show that if an axis A is found, the profile P is single-peaked with respect to A.
Towards a contradiction assume that there is a vote V ∈ P that is not single-peaked with respect
to A. This means that there are three candidates a, b, c with order a < b < c on A, a � b and
c � b. We have to distinguish six cases of how a, b, c are ordered by the guiding vote:

• a ≺ b ≺ c (a is placed first, then b, then c – other candidates in arbitrary order): Let
us consider the algorithm at the point when b is being placed, i.e., b = ci, and when the
conditions for vote V are being checked. It holds that either a ∈ AL or a ∈ AR. Observe
that in the first case Condition (L2) is satisfied since a � b and c � b. Consequently, b
has to be placed on the left side (right = false). Then it holds that a < c < b on the axis
generated by the algorithm which contradicts our assumption that a < b < c holds. In the
case that a ∈ AR Condition (R2) is satisfied. This leads to a contradiction by the same
argument.

118

Guiding vote Vote V Vote V ′

c′j

cj

ci

ar

al

ar ci

cj

al ci

c′j

Figure 8.4: Condition (L1) and Condition (R1)

• c ≺ b ≺ a: This case is analogous.

• a ≺ c ≺ b: Now we consider the point where c is being placed, i.e., c = ci, and when the
conditions for vote V are being checked. It holds that either a ∈ AL or a ∈ AR. Observe
that in the first case Condition (R1) is satisfied and hence c has to be placed on the left side
(right = false). Then it holds that a < c < b on the axis generated by the algorithm which
contradicts our assumption that a < b < c holds. In the case that a ∈ AR Condition (L1)
is satisfied. This leads to a contradiction by the same argument.

• c ≺ a ≺ b: This case is analogous to the previous one.

• b ≺ c ≺ a or b ≺ a ≺ c: Since we assume that a < b < c holds on A, these two cases are
not possible.

For the other direction, let us show that if the algorithm returns not_single_peaked,
then the profile P is not single-peaked. First, let us observe under what conditions the algorithm
returns not_single_peaked. There are four cases: Either Condition (R1) and (L1), (R1)
and (L2), (R2) and (L1) or Condition (R2) and (L2) hold. These pairs of conditions may either
hold for the same vote or for two distinct votes; we denote these two votes V and V ′ although it
might be that these two are the same.

• While placing ci, Condition (L1) holds for some vote V and Condition (R1) holds for
some vote V ′:
We have the following five candidates in these conditions: ar = maxV (AR), ci, cj =
minV (C>i) in Condition (L1) and al = maxV ′(AL), ci, c′j = minV ′(C>i) in Condi-
tion (R1). In Figure 8.4, the known information about the votes V and V ′ is shown. Since
Condition (R1) and (L1) are symmetrical, we can assume without loss of generality that
al is placed before ar and cj before c′j . Thus, the guiding vote is as shown in the figure.
There are four types of axes possible that are compatible with this guiding vote. (The
order of candidates in sets is arbitrary.)

119

Guiding vote Vote V Vote V ′

c′j

cj

ci

ar

al

al cj

ci

ar c′j

ci

Figure 8.5: Condition (L2) and Condition (R2)

–
〈
al < ci < {cj , c′j} < ar

〉
: Vote V is not single-peaked with respect to any axis of

this type (or their reverse).

–
〈
al < {cj , c′j} < ci < ar

〉
: Vote V ′ is not single-peaked with respect to any axis of

this type (or their reverse).

–
〈
al < ar < {cj , c′j} < ci

〉
: Vote V is not single-peaked with respect to any axis of

this type (or their reverse).

–
〈
al < ar < ci < {cj , c′j}

〉
: Consider vote V and Lemma 8.7. Since ar � cj it has

to hold that cj % al and ci % al. Since ci � cj we know that ci � al. Also, since
ar � cj we know that ar � al. Thus, the candidates al, ar, ci form a v-valley for
vote V .

Since these are all the possible axes, we can conclude that the profile is not single-peaked.

• While placing ci, Condition (L2) holds for some vote V and Condition (R2) holds for
some vote V ′:
This case is similar to the previous one. In particular, we use the same candidate variables.
In Figure 8.5, the known information about the votes V and V ′ is shown. There are four
types of axes possible that are compatible with this guiding vote. (The order of candidates
in sets is arbitrary.)

–
〈
al < ci < {cj , c′j} < ar

〉
: Vote V is not single-peaked with respect to any axis of

this type (or their reverse).

–
〈
al < {cj , c′j} < ci < ar

〉
: Vote V ′ is not single-peaked with respect to any axis of

this type (or their reverse).

–
〈
al < ar < {cj , c′j} < ci

〉
: Consider vote V and Lemma 8.7. Since al � ci it has

to hold that cj % ar and ci % ar. Since cj � ci we know that cj � ar. Also, since

120

Guiding vote Vote V Vote V ′

c′j

cj

ci

ar

a′r

a′r

ar

ci ar

cj

c′j a′r

ci

Figure 8.6: Condition (L1) and Condition (R2)

al � ci we know that al � ar. Thus, the candidates al, ar, cj form a v-valley for
vote V .

–
〈
al < ar < ci < {cj , c′j}

〉
: Vote V ′ is not single-peaked with respect to any axis of

this type (or their reverse).

• While placing ci, Condition (L1) holds for vote V and Condition (R2) holds for vote V ′:
We have the following five candidates in these conditions: ar = maxV (AR) ci, cj =
minV (C>i) in Condition (L1) and a′r = maxV ′(AR), ci, c′j = minV ′(C>i) in Condi-
tion (R2). In Figure 8.6, the known information about the votes V and V ′ is shown. In the
following arguments it is irrelevant which of cj and c′j is placed first. However, for ar and
a′r this is relevant. We will consider both cases. There are four types of axes possible that
are compatible with this guiding vote. (The order of candidates in sets is arbitrary.)

–
〈
{ar, a′r} < {cj , c′j} < ci

〉
: Vote V is not single-peaked with respect to any axis of

this type (or their reverse).

–
〈
{ar, a′r} < ci < {cj , c′j}

〉
: Vote V ′ is not single-peaked with respect to any axis of

this type (or their reverse).

–
〈
ar < {cj , c′j} < ci < a′r

〉
: Both V and V ′ are not single-peaked with respect to

any axis of this type (or their reverse).

–
〈
ar < ci < {cj , c′j} < a′r

〉
: Here we have to distinguish whether ar or a′r is placed

first.

∗ Let us assume that ar is placed before a′r. We apply Lemma 8.8 to vote V . This
yields that either a′r % ci or that a′r % ar. If a′r % ci holds then a′r % ci � cj
holds. If a′r % ar holds then a′r % ar � cj holds. In both cases vote V forms a
valley on the candidates a′r, ar, cj .
∗ Let us assume that a′r is placed before ar. We apply Lemma 8.8, this time to

vote V ′. This yields that either ar %′ c′j or that ar %′ a′r. If ar %′ c′j holds then

121

ar %′ c′j �′ ci holds. If ar %′ a′r holds then ar %′ a′r �′ ci holds. In both cases
vote V ′ forms a valley on the candidates a′r, ar, ci.

We see that in both cases either V or V ′ is not single-peaked with respect to any axis
of this type (or their reverse).

• While placing ci, Condition (L2) holds for some vote and Condition (R1) holds for some
vote:
This can be shown analogously to the previous case since (L1) and (L2) are symmetrical
as well as (R1) and (R2), cf. Figure 8.3.

We have shown that if the algorithm returns not_single_peaked then the profile P is in-
deed not single-peaked.

We conclude this section with a lemma showing that we can weaken the total order require-
ment: it suffices that the guiding vote is given implicitly in the profile.

Lemma 8.10. Let C = {c1, c2, . . . , cm} and T = 〈c1 < c2 < . . . < cm〉 be a total order on
C with the following property: for each i ∈ {1, . . . ,m}, it holds that there is a vote V ∈ P
such that ci is the unique last ranked candidate in V [{ci, ci+1, . . . , cm}]. If P is a single-peaked
profile, then P is also single-peaked if the total order T is added to it as a vote.

It is computationally easy to find such an implicitely given guiding vote: Look for a vote
with a unique last ranked candidate. This candidate is ranked last in the guiding vote. Remove
this candidate from the profile and repeat this step to obtain the second-to-last element in the
guiding vote, etc.

8.5 A 2-SAT Based Algorithm

Theorem 8.5 and Theorem 8.6 leave open the case of profiles of local weak orders which contain
at least one total order. Here, we show that this case is polynomial time solvable as well.

Theorem 8.11. If the profile contains a total order, the LOCAL WEAK ORDER SINGLE-PEAKED

CONSISTENCY problem can be solved in O(n ·m3) time.

We encode a LOCAL WEAK ORDER SINGLE-PEAKED CONSISTENCY instance in a 2-SAT

instance. The 2-SAT problem asks whether a Boolean formula of the form (a∨b)∧(¬a∨c)∧ . . .
(each clause has size two) is satisfiable. Solving 2-SAT requires only linear time [11]. The
boolean variables in our instance correspond to pairs of candidates, i.e., for each a, b ∈ C we
have a variable ab. The intended meaning of these variables is that ab = true if and only if a is
left of b on the axis. Now, for each vote V and triple a, b, c ∈ C, if a � b and c � b (a, b, c form
a v-valley), we add the clauses (ba ∨ cb) and (ab ∨ bc) to the 2-SAT instance. These clauses
correspond the requirement that b must not be placed between a and c. Finally, we add for each
pair of variables a, b the clauses (ab ∨ ba) and (¬ab ∨ ¬ba) (corresponding to the exclusive
or operator). Solving the 2-SAT instance either yields the information that the instance is not

122

satisfiable or a true/false assignment to the variables. In the first case, the profile is not single-
peaked. In the second case, we obtain a relation A = {(a, b) : ab = true} ∪ {(a, a) : a ∈
C} which is our wanted axis (as shown in Lemma 8.12). Since the instance contains at most
O(n ·m3) clauses, we obtain the stated runtime.

Lemma 8.12. The axis A, as returned by the 2-SAT algorithm, is a total order and P is single-
peaked with respect to A.

Proof. It is straight-forward to verify that A is reflexive, antisymmetric and total. Towards a
contradiction assume that A is not transitive, i.e., there exist three candidates a, b, c such that
{(a, b), (b, c), (c, a)} ⊆ A. Thus, ab = bc = ca = true. Let V be a total contained in P (there
exists at least one). We distinguish three cases:

• The last ranked candidate of a, b, c in V is b: By our construction, it has to hold that
(ba ∨ cb) – which is not the case.

• The last ranked candidate of a, b, c in V is a: It has to hold that (ba ∨ ac) – which is not
the case.

• The last ranked candidate of a, b, c in V is c: It has to hold that (cb ∨ ac) – which is not
the case.

Thus, A is transitive. It remains to show that P is single-peaked with respect to A. Assume that
there is a valley a � b, c � b in some vote and it holds that {(a, b), (b, c)} ⊆ A. Due to this
valley, our 2-SAT instance contains the clause (ba∨ cb). Thus, (b, a) ∈ A or (c, b) ∈ A and thus
ba = true or cb = true. This contradicts our requirement that for every pair of variables x, y
not both xy and yx can be true.

Both the 2-SAT based algorithm and the Guided Algorithm rely on the guiding vote. In the
next section, we will consider profiles that do not have a guiding vote.

8.6 The Unguided Algorithm

Here, we present a polynomial-time algorithm (Algorithm 6) that, in contrast to the Guided Al-
gorithm, is not dependent on a guiding vote. We therefore refer to it as the Unguided Algorithm.
The Unguided Algorithm is applicable to top orders. We assume the input preference profile
to be connected: Let us consider the ranked candidates in a top order to be a hyperedge of a
hypergraph with candidates as vertices. A profile of top orders is called connected if this graph
has only one connected component. This assumption does not limit the applicability: if two or
more connected components exist in this graph, we can use the algorithm for each component
(i.e., its respective candidates and votes) and concatenate the resulting axes in arbitrary order.

The algorithm works as follows: First, we choose a candidate cstart which is going to be the
leftmost candidate on the axisA. Since we have no guiding vote, each candidate might be placed
at the leftmost position. Hence we loop over all candidates (Line 1). The corresponding axis
under construction is A = 〈cstart〉. We now aim to complete this axis by adding candidates to
the right in such a way that all votes are single-peaked with respect to this axis. To this end we

123

Algorithm 6: The Unguided Algorithm

Input: A set of candidates C and a connected preference profile of top orders
P = (V1, . . . Vn).

Output: An axis A or not_single_peaked.

1 foreach cstart ∈ C do
2 A← 〈cstart〉
3 for i← 1 . . .m do
4 foreach V ∈ VotesWithPeak(ai) do
5 if A⊕ V = incompatible then
6 Continue with next cstart ∈ C in Line 1.
7 else A← A⊕ V
8

9 if |A| = i and i < m then
10 V ←IntersectingVote(A)
11 if ai /∈ V then
12 Continue with next cstart ∈ C in Line 1.
13 Let x be a new candidate not in C.
14 C ′ ← {c ∈ V | c � ai} ∪ {ai, x}
15 S ← ∅
16 for k ← 1 . . . n do
17 V ′k ← RepTop(Vk, C \ (A ∪ C ′), x)
18 S ← S ∪ {V ′k[C ′]}
19 A′ ←GuidedSP(S, V [C ′], ai, x)
20 if A′ =not_single_peaked then
21 Continue with next cstart ∈ C in Line 1.
22 else A← A < A′[C ′ \ {x}]
23

24 return A
25 return not_single_peaked

employ the loop in Line 3. In this loop (variable i) we infer from the already placed candidate
ai (the i-th candidate on A from left) the candidate ai+1 (or even more candidates further to the
right).

The Lines 4 to 7 are based on the following observation: Let us assume that at a certain
point A = 〈c1 < c2 < c3〉 and V = 〈c3 � c2 � c4 � c5 � •〉 ∈ P . Since c3, the peak of V , is
already contained in A, there is only one compatible extension of A: 〈c1 < c2 < c3 < c4 < c5〉.
We formalize this extension operation with the ⊕ operator:

Definition 8.5. Let A be an incomplete axis and V a top order. Furthermore, let V [C \ A] =〈
c′1 � c′2 � . . . � c′j � •

〉
. We define A ⊕ V =

〈
A < c′1 < c′2 < . . . < c′j

〉
if V is single-

peaked with respect to this axis and A⊕ V = incompatible otherwise.

124

The correctness (and necessity) of the ⊕ operator is a consequence of the following lemma.

Lemma 8.13. Let A be an incomplete axis and V a vote that satisfies the conditions in Defini-
tion 8.5. If B is an extension of A and V is single-peaked with respect to B, then B is also an
extension of A⊕ V .

Proof idea. If B were not an extension of A⊕ V , then V would contain a valley with respect to
B.

The loop in Line 4 enumerates all votes with peak ai (VotesWithPeak(ai)). Let V ∈
VotesWithPeak(ai). IfA⊕V = incompatible thenA cannot be extended to a complete
(single-peaked) axis and we consider the next cstart ∈ C in Line 1. Otherwise, we obtain a new
incomplete axis A← A⊕ V .

It might be the case that the candidate ai+1 has not yet been determined after these steps. The
Lines 9 to 22 deal with this case. Since the election is connected there has to be at least one vote
that ranks both a candidate on A and a candidate that has not been placed yet. The procedure
IntersectingVote in Line 10 returns such a vote V with A ∩ V 6= ∅ and V \ A 6= ∅. For
such a vote V it holds that peak(V) /∈ A. If peak(V) were contained in A, then V would have
been already considered in the first part of the algorithm (Lines 4 to 7). If V does not contain ai
(and thus ai is ranked last in V), A cannot be extended to a single-peaked axis. This procedure
can be efficiently precomputed in such a way that it can requires only O(m) time to provide an
answer. Details can be found in the proof of Theorem 8.14.

Now that we have such an intersecting vote V where ai is ranked by V , we employ the
Guided Algorithm to find a further extension of A. The main idea is to use V as a guiding vote
and find an axis for the candidates in {c ∈ V | c � ai}. In principle, this axis can be found
independently of the existing axis A. However, the leftmost and rightmost candidates have to be
chosen with regard to “external” considerations: The leftmost candidate has to be ai, otherwise
A and the newly obtain partial axis A′ could not be merged. For the rightmost candidate, we
have to consider votes with candidates that are not being placed on the axis in this step. The
following example illustrates the issue.

Example. Let A = 〈c1〉, V1 = 〈c2 � c3 � c1 � •〉 and V2 = 〈c3 � c4 � •〉. The vote V1

intersects A and hence C ′ = {c1, c2, c3}. We employ the Guided Algorithm and might obtain
A′ = 〈c1 < c3 < c2〉.2 Now observe that A⊕ A′ = A′ can no longer be extended in a way that
it is single-peaked for V2. This would have been possible if c3 had been chosen as the rightmost
candidate in A′.

As we see from this example, we sometimes have to “force” the rightmost candidate in A′.
We do this by adding an additional candidate x to every vote (Line 16 to 18). It is placed at the
position of the top ranked candidate in each vote that is not contained in A ∪ C ′. This is done
by the RepTop function: RepTop(V,D, x) replaces the one candidate in vote V that is the top
ranked of the candidates in D with candidate x. By forcing this element x to be the rightmost

2Whether we obtain this axis or 〈c1 < c2 < c3〉 depends on whether the algorithm prefers placing candidates to
the left or to the right if both choices are possible.

125

candidate, we ensure that A′ is chosen under consideration of all votes with ranked candidates
not in C ′.

Example (continued). We apply RepTop(V,D, x) to the votes V1 and V2 with candidate sets
C ′ = {c1, c2, c3, x} and D = {c4}. We obtain the votes V ′1 [C ′] = 〈c2 � c3 � c1 � x〉 and
V ′2 [C ′] = 〈c3 � x � •〉. Now, we can only obtain the axis 〈c1 < c2 < c3 < x〉.

The set S, as computed in Lines 15 to 18, is the profile P restricted to C ′, with x ∈ C ′.
We now employ GuidedSP(S, V [C ′], A′, ai, x) which means that we employ the Guided Al-
gorithm for the profile S and guiding vote V [C ′]. Furthermore, we require that the leftmost
candidate on the axis is ai and the rightmost is x. The function GuidedSP either returns
not_single_peaked or an axisA′. If it returns not_single_peaked, the next cstart ∈ C
is considered (Line 1). Otherwise, we continue with the extended axis A← A⊕A′[C ′ \ {x}].

Theorem 8.14. The TOP ORDER SINGLE-PEAKED CONSISTENCY problem can be solved in
O(m2 · n) time.

Proof. The runtime is achieved by precomputing the functions VotesWithPeak as well as
IntersectingVote. The function VotesWithPeak is stored as a list of lists containing
each vote exactly once. It can be computed in O(m · n) time.

The function IntersectingVote(A) returns a vote V with A ∩ V 6= ∅ and peak(V) /∈
C. We show that it suffices to compute a list of 2m votes to answer IntersectingVote
function calls in constant time. Let us first make the following observation: Let c ∈ C. Consider
the set of votes for which the sets {c′ ∈ C | c′ � c} are maximal (with respect to ⊆). If we
consider a single-peaked axis, then candidates in such a set have to form a contiguous subse-
quence either directly left or directly right of c. Since these sets are maximal, only two of them
can exist (assuming single-peakedness). Consequently, we compute these maximal sets for each
candidate. If three or more exist for one candidate, we can terminate the algorithm already at
this point. Also, if two maximal sets have a non-empty intersection, the algorithm terminates.
(The candidates in the intersection would have to lie left and right of c). Otherwise we store the
(at most) two corresponding votes for each candidate.

LetA = 〈c1 < . . . < ci−1 < ci〉, i.e., ci is the rightmost candidate in the incomplete axisA.
The function call IntersectingVote(A) can now be answered by considering the one or
two maximal votes for ci. The function simply returns the vote where ci−1 is not ranked higher
than ci. (It might be that both votes do not rank ci−1 higher than ci. In this case A cannot be
extended to a single-peaked axis, but this is going to be detected by algorithm. Any of the two
axes can be returned.)

It remains to observe that finding the (at most two) maximal votes for a candidate c requires
O(m · n) time. This has to be done for every candidate and consequently this preprocessing
requires O(m2 · n) time.

We can now analyze the runtime of the algorithm. The main loop (Line 1) iterates over all
m candidates. The loop in Line 4 iterates over every vote at most once. Consequently, the ⊕
operator is applied at most n times. Since A⊕ V can be computed inO(m) time, the Lines 4 to
7 have a total runtime of O(m2 · n).

126

It remains to determine the runtime of the Lines 9 to 22. Due to the preprocessing of the
IntersectingVote procedure we can obtain V in constant time. The set S can be generated
in O(|C ′| · n) time. Applying the Guided Algorithm requires O(|C ′| · n) time as well (Theo-
rem 8.6). Observe that after applying the Guided Algorithm the candidates in C ′ are placed on
the axis. Consequently, the Guided Algorithm is always applied to a disjoint set of candidates
(except maybe ai). Hence for a fixed cstart ∈ C, the total runtime of the Guided Algorithm is
O(m · n). Taking the loop in Line 1 into account, we obtain a total runtime of O(m2 · n).

Let us now show that the Unguided Algorithm (Algorithm 6) is correct, i.e., it outputs an axis
if and only if the given preference profile is single-peaked and, furthermore, P is single-peaked
with respect to any axis that is returned by the algorithm. If the algorithm outputs an axis, it is
certainly single-peaked since this is tested for every vote in Line 5. By the same argument, one
can conclude that if the profile is not single-peaked, the algorithm returns not_single_peaked.

It remains to prove that the algorithm always returns a valid axis in case of a single-peaked
profile. Let us consider the algorithm at the time when cstart is the leftmost candidate of a valid
axis. We show that the algorithm will find a complete axis with cstart as leftmost candidate. First,
observe that for every i (Line 3) either VotesWithPeak(ai) is not empty or the condition in
Line 9 is true. If this were not the case, the profile would not be connected. In the first case, the
⊕ operator adds candidates to the axis in the only possible way (Lemma 8.13). Hence, the axis
necessarily has to be extended in that way. In the second case, the Guided Algorithm is applied
and the axis is extended by the candidates in C ′. It remains to verify that the resulting axis A is
single-peaked for all votes with a non-empty intersection with C ′. This is guaranteed by the x
element, which ensures that candidates outside of A ∪ C ′ are taken into account.

8.7 Scoring Protocols

We would like to mention one particular application of the Unguided Algorithm concerning
single-peaked scoring protocols. Scoring protocols are specified by a scoring vector given
as (α1, . . . , αm). A vote c1 � · · · � cm gives α1 points to c1, α2 points to c2, etc. The
winner candidate is determined by summing over all votes. Often scoring vectors of the type
(α1, . . . , αk, 0, . . . , 0) with α1 > . . . > αk > 0 are considered. For such scoring vectors, top
orders (with k ranked candidates) constitute full information. It is therefore debatable whether
the input may be considered to be given as a profile of total orders, as total orders contain
problem-irrelevant information. This is relevant for single-peaked profiles. For example, Brandt
et al. [41] study the constructive coalition weighted manipulation problem for scoring protocols
in single-peaked elections. The authors consider the axis to be part of the input (for good reasons
as explained in their paper). The computation of such an axis with existing algorithms is possible
only if preferences are specified by total orders and thus contain problem-irrelevant information.
If only relevant information is given, i.e., the input consists of top orders, an algorithm such as
the Unguided Algorithm is required.

127

X general guiding vote
PARTIAL NP-c (Cor 8.4) NP-c (Thm 8.5)

LOCAL WEAK NP-c (Thm 8.3) poly (Thm 8.11)
WEAK open poly (Thm 8.6)

TOP poly (Thm 8.14) poly (Thm 8.6)
TOTAL poly3 poly3

Table 8.1: Overview of the complexity results for T ORDER SINGLE-PEAKED CONSISTENCY

8.8 Summary

In this chapter we have analyzed the T SINGLE-PEAKED CONSISTENCY problem for T ∈
{PARTIAL ORDER, LOCAL WEAK ORDER, WEAK ORDER, TOP ORDER, TOTAL ORDER}.
An overview of the results are displayed in Table 8.1. Despite the NP-completeness of PARTIAL

ORDER SINGLE-PEAKED CONSISTENCY, we have found four fast algorithms for plausible ap-
plication scenarios. The Guided Algorithm and the 2-SAT based algorithm require a guiding
vote. Such an order is likely to exist for large preference profiles. In the case that top orders
are elicited, a guiding vote might not exist. Here the Unguided Algorithm is applicable. In
addition, we have found that PARTIAL ORDER SINGLE-PEAKED CONSISTENCY is solvable in
polynomial time if the axis is already part of the input. We therefore believe to have succeeded
in covering a large spectrum of possible application scenarios with our algorithms.

3This is a result by Bartholdi and Trick [23].

128

CHAPTER 9
Connections between Structure in

Permutation Patterns and in
Preferences

This chapter is based on joint work with Marie-Louise Bruner that is partially published in The
Likelihood of Structure in Preference Profiles [48].

Here, we establish a strong link between the concept of configuration containment in profiles
and the pattern containment in permutations. This link enables us to approach the following two
questions concerning preferences with the help of methods and results concerning permutation
patterns.

• How likely is it that a preference profile belongs to a restricted domain?

• What is the computational complexity of testing whether a preference profile belongs to a
restricted domain?

The first question, despite the extensive literature on domain restrictions, has not received
much attention so far. There are two experimental studies on that topic: Mattei, Forshee and
Goldsmith [116] report that in their data sets almost no evidence for the single-peaked restriction
was found. Similarly, Sui, Francois-Nienaber and Boutilier [135] report also no occurences of
the single-peaked restriction in their data sets. However, they found that the preferences in their
data set are close to being 2D single-peaked.

Our contribution, in contrast, is of theoretical nature. We employ combinatorial methods
to study the likelihood of structure in preference profiles chosen according to the Independent
Culture assumption, i.e., all votes are equally likely to appear in the profile. Our result applies to
domain restrictions that can be characterized by a set of configurations (cf. Section 7.1) where
one of those configurations has cardinality two, i.e., one of those configurations consists of two
conditions. Thus, our results are applicable to the single-peaked, single-caved, group-separable

129

and 1D Euclidean [55,108] restriction. We show that these domain restrictions are very unlikely
to appear in a random profile chosen according to the Impartial Culture assumption. More
precisely, while the total number of profiles with n votes and m candidates is equal to (m!)n,
the number of profiles belonging to such a domain restriction can be bounded by m! · cnm for
some constant c. This theorem is obtained by utilizing the Marcus–Tardos theorem [115], a
famous result about permutation patterns.

We also approach the second question, concerning the computational complexity of detect-
ing domain restrictions, by studying configurations. If a domain restriction can be characterized
by forbidden configurations (as it is the case, for example, for all domain restrictions studied in
Chapter 7), detecting these domain restrictions is computationally equivalent to the following
problem:

CONFIGURATION CONTAINMENT

Instance: A profile P and a configuration Φ with conditions in disjunctive nor-
mal form.

Question: Is Φ contained in P?

Here, we require that the configuration Φ consists of conditions in disjunctive normal form.
This is the case for all domain restrictions studied in this paper. In addition, this circumvents
the problem that it is NP-complete even to decide whether a Boolean condition is satisfiable.
A hardness result based on this observation would not be satisfactory and, hence, we make
the reasonable assumption that all conditions are in disjunctive normal form, for which testing
satisfiability is tractable.

Despite this restriction, we show that CONFIGURATION CONTAINMENT is NP-hard if |P| ≥
2 and |Φ| ≥ 2 and (trivially) polynomial-time solvable otherwise. We also study the parameter-
ized complexity of CONFIGURATION CONTAINMENT, where we prove a parameterized com-
plexity dichotomy. These results make use of complexity results from permutation patterns,
in particular Theorem 4.7. Our results indicate that the algorithm for detecting configurations
presented in Chapter 7 (Proposition 7.1) cannot be substantially improved, i.e., a universally
applicable fpt algorithm is not possible.

9.1 Applying the Marcus–Tardos Theorem to Domain Restrictions

In this section, we make use of the Marcus–Tardos Theorem to obtain combinatorial results
about preferences. To be able to speak about the number of profiles avoiding a given con-
figuration, we have to fix the names of candidates. Thus, we assume that if |C| = m then
C = {1, . . . ,m}. An (n,m)-profile is then a profile with n votes and with candidate set
C = {1, . . . ,m}.

Let us start with two definitions. First, building upon the definitions in Section 7.1, we define
completions of configurations.

Definition 9.1. Given a configuration Φ = (φ1, . . . , φs), we say that a configuration Φ′ =
(φ′1, . . . , φ

′
s) is a completion of Φ if for every i ∈ [s] it holds that φ′i has exactly one model,

130

this model is a total order and it is also a model of φi. If a condition φ has a unique model, let
mod(φ) be this model.

The second definition establishes the connection between total orders and permutations.

Definition 9.2. Recall that T (i) denotes the i-th largest element with respect to T . Every
pair T1, T2 of total orders on a set with m elements can be identified with the m-permutation
p(T1, T2) := {i 7→ j : T1(j) = T2(i)}.

For example, if T1 = c > a > b and T2 = b > a > c, we have p(T1, T2) = 321. Note that
p(T1, T2) = p(T2, T1)−1 holds in general.

The following lemma establishes a link between configuration containment in profiles and
pattern containment in permutations.

Lemma 9.1. Let Φ = (φ1, φ2) be a completion of some arbitrary configuration and let C1 =
mod(φ1) and C2 = mod(φ2). The configuration Φ is contained in the profile P = (V1, V2) if
and only if the permutation π = p(C1, C2) or the permutation π−1 = p(C2, C1) is contained in
p(V1, V2).

Proof. In order to alleviate notation, we will assume in the following that the candidate set
C = {1, 2, . . . ,m} and X(Φ) = {1, 2, . . . , k} (the variables used in the conditions of Φ).

”←” We can assume without loss of generality that C1 is 1 > 2 > · · · > k and V1 is
1 � 2 � · · · � m. If π is contained in p(V1, V2) as witnessed by a matchingM , then V1 |=M φ1

and V2 |=M φ2 (cf. Definition 7.1). If π−1 is contained in p(V1, V2) as witnessed by a matching
M , then V1 |=M φ2 and V2 |=M φ1.

”→” Let Φ be contained in P with Vi1 |=ξ φ1 and Vi2 |=ξ φ1. Note that either i1 = 1
and i2 = 2 or that i1 = 2 and i2 = 1. Without loss of generality we assume that φ1 is
1 > 2 > · · · > k. Note that renaming the candidates (in C) does not change whether Φ is
contained in P . Thus, it is safe to rename the candidates according to i1 and i2: If i1 = 1 and
i2 = 2, let V1 be 1 � 2 � · · · � n. Since V1 |=ξ φ1, ξ is monotonic. It is easy to verify
that ξ is a matching from π into p(V1, V2). On the other hand, if i1 = 2 and i2 = 1, let V2

be 1 � 2 � · · · � n. Now, ξ is a matching from π into p(V2, V1) = (p(V1, V2))−1. This is
equivalent to ξ being a matching from π−1 into p(V1, V2).

As of now, we shall denote by Sm(π1, . . . , πl) the cardinality of the set of m-permutations
that avoid the permutations π1, . . . , πl.

Corollary 9.2. Let Φ = (φ1, φ2) be a completion of some arbitrary configuration. Furthermore,
let V1 be a vote on m ≥ 1 candidates. Then the number of votes V2 such that the profile P =
(V1, V2) avoids the configuration Φ is equal to Sm(π, π−1), where π = p(mod(φ1),mod(φ2)).

Proof. Lemma 9.1 tells us that P = (V1, V2) avoids the configuration Φ if and only if the
permutation p(V1, V2) avoids both the patterns π and π−1. Moreover, for the fixed total order V1

and a fixed m-permutation σ, there is a single total order V2 such that p(V1, V2) = σ. Thus the
number of votes V2 such that p(V1, V2) avoids π and π−1 and equivalently the number of votes
V2 such that P avoids Φ is equal to Sm(π, π−1), the number of m-permutations avoiding π and
π−1.

131

From this follows a very general result that is applicable to any set of configurations that
contains at least one configuration of cardinality two.

Theorem 9.3. Let a(n,m,Γ) be the number of (n,m)-profiles avoiding a set of configurations
Γ. Let k ≥ 2. If a set of configurations Γ contains a (2, k)-configuration Φ = (φ1, φ2), then it
holds for all n,m ≥ 1 that a(n,m,Γ) ≤ m! · c(n−1)m

k , where ck is a constant depending only
on k.

Proof. Instead of Φ, we will consider a completion of Φ; let us call this completion Φ′. This can
be done without loss of generality, since a(n,m, {Φ}) ≤ a(n,m, {Φ′}).

We want to determine the number of (n,m)-profiles avoiding Φ′. Let us start by choosing
the first vote V1 of the profile at random. For this there are m! possibilities. When choosing
the remaining (n − 1) votes V2, . . . , Vn, we have to make sure that no selection of two votes
contains the forbidden configuration Φ′. If we relax this condition and only demand that none
of the pairs (V1, Vi) for i 6= 1 contains the forbidden configuration, we clearly obtain an upper
bound for a(n,m, {Φ′}).

Now Corollary 9.2 tells us that there are – under this relaxed condition – Sm(π, π−1) choices
for every Vi where π := p(C1, C2). Thus we have the following upper bound:

a(n,m, {Φ′}) ≤ m!Sm(π, π−1)n−1 ≤ m!Sm(π)n−1, (9.1.1)

where the second inequality follows since all permutations avoiding both π and π−1 clearly
avoid π.

Now we apply the famous Marcus–Tardos theorem [115]: For every permutation π of length
k there exists a constant ck such that for all positive integers m we have Sm(π) ≤ ck

m.
Putting this together with Equation (9.1.1) and noting that a(n,m, {Φ′}) is an upper bound
for a(n,m,Γ) we obtain the desired upper bound.

This result shows that forbidding any (2, k)-configuration is a very strong restriction on
preference profiles. Indeed, m! · c(n−1)m

k is very small compared to the total number of (n,m)-
profiles which is (m!)n.

The proof of the Marcus–Tardos theorem provides an explicit exponential formula for the
constants ck, but these constants are far from being optimal. There is an ongoing effort to find
exact formulas for Sm(π) with fixed π [105].

Let us discuss the implications of this theorem. It is applicable to all configuration definable
domain restrictions that contain a configuration of cardinality two. This includes the single-
peaked restriction as well as the 1D Euclidean [55, 108] and group separable [16] restriction.

9.2 Computational Results

In this section we study the computational problem of checking whether a configuration is con-
tained in a profile. The results in this section heavily build upon the relation between con-
figuration containment and permutation patterns that was established in the previous section
(Lemma 9.1). The algorithm for detecting configurations presented in Chapter 7 (Proposi-
tion 7.1) has a runtime of O(||Φ||nmt), where t = |X(Φ)|. The main goal of this section is

132

to determine whether this runtime can be substantially improved. The strongest improvement
would be to find a polynomial-time algorithm. A weaker but still significant improvement would
be an fpt algorithm with respect to the parameter t, i.e., to find an algorithm with a runtime of,
say,O(||Φ|| ·2t ·nm). As a first result, we prove that a polynomial time algorithm does not exist
unless P = NP.

Theorem 9.4. The CONFIGURATION CONTAINMENT problem is NP-complete, even if |P| = 2
and |Φ| = 2.

Proof. We reduce from the NP-complete PERMUTATION PATTERN MATCHING problem (cf.
Chapter 4 and 5). Let σ denote the text permutation and π denote the pattern permutation.
We construct a profile consisting of two total orders P = (V1, V2) with C = [3n + 2] and a
configuration Φ = (φ1, φ2) with X(Φ) = [2n + k + 2]. The total order V1 is 1 � 2 � . . . �
3n+ 2; the total order V2 is defined as

2 � 4 � · · · � 2n+ 2 � 2n+ 1 � 2n− 1 � · · · � 3 � 1 �
� σ(1) + 2n+ 2 � σ(2) + 2n+ 2 � · · · � σ(n) + 2n+ 2.

The condition φ1 is 1 > 2 > . . . > 2n+ k + 2; the condition φ2 is defined as

2 > 4 > · · · > 2n+ 2 > 2n+ 1 > 2n− 1 > · · · > 3 > 1 >

> π(1) + 2n+ 2 > π(2) + 2n+ 2 > · · · > π(k) + 2n+ 2.

We show that the configuration (φ1, φ2) is contained in (V1, V2) if and only if π is contained in
σ.

“←” Assume that there is a matchingM from π into σ. We claim that there exists a function
ξ : [2n + k + 2] → [3n + 2] such that V1 |=ξ φ1 and V2 |=ξ φ2 (cf. Definition 7.1). Let ξ be
defined as

ξ(i) =

{
i if i ∈ [2n+ 2]

2n+ 2 +M(i− 2n− 2) if i ∈ [2n+ 3, 2n+ 2 + k].

Observe that since M is strictly monotone, also ξ is strictly monotone. Also, V1 |=ξ φ1 is an
immediate consequence of V1 and φ1 being monotone. That V2 |=ξ φ2 is more tedious to check
but fundamentally a consequence of M being a matching.

“→” Assume that (φ1, φ2) is contained in (V1, V2). Lemma 9.1 implies that either the permu-
tation p(mod(φ1),mod(φ2)) or the permutation p(mod(φ2),mod(φ1)) is contained in p(V1, V2).
First, let us observe that p(V1, V2) is the permutation

(2, 4, . . . , 2n+ 2, 2n+ 1, 2n− 1, . . . , 3, 1, σ(1) + 2n+ 2, . . . , σ(n) + 2n+ 2)

and that this permutation contains an ascending subsequence of length n + 1 followed by a
descending subsequences of length n+ 1. The permutation p(mod(φ2),mod(φ1)) is

(2n+ 2, 1, 2n, 2, 2n− 1, 3, . . . , n+ 2, n+ 1, [2n+ 3, 2n+ 2 + k]),

133

where [2n + 3, 2n + 2 + k] means these elements are in some (not explicitly specified) order.
This permutation consists of two interleaving ascending and descending subsequences of length
n + 1 followed by the elements [2n + 3, 2n + 2 + k]. If p(mod(φ2),mod(φ1)) was contained
in p(V1, V2), then p(V1, V2) would have to contain two interleaving ascending and descending
subsequences of length n + 1 – just as p(mod(φ2),mod(φ1)) does. Since this is not the case,
p(mod(φ1),mod(φ2)) has to be contained in p(V1, V2). It follows that π is contained in σ; the
matching can be obtained from the corresponding ξ.

Observe that the restrictions in Theorem 9.4 are as strong as possible in the following sense:
Configurations with only one (satisfiable) condition are contained in any profile and thus, in
such a case, we have a trivial yes-instance. If |P| = 1, either |Φ| = 1 (and hence we have a
yes-instance) or |Φ| > 1, in which case we have a trivial no-instance.

The question we have not answered with this theorem is whether an fpt algorithm for CON-
FIGURATION CONTAINMENT is possible. Our next theorem shows that such an fpt result is
indeed possible for configurations of size two.

Theorem 9.5. If |Φ| = 2, then CONFIGURATION CONTAINMENT is in FPT with respect to
t(Φ) = |X(Φ)|.

Proof. The algorithm builds upon the result by Guillemot and Marx that PERMUTATION PAT-
TERN MATCHING can be solved in FPT time parameterized by the length of the pattern permu-
tation [92]. Their algorithm has a runtime of 2O(k2·log k) ·m, where k is the length of π and m
the length of σ. Our algorithm works as follows: For every pair of total orders T1, T2 on X(Φ)
with T1 being a model of φ1 and T2 being a model of φ2 and every pair of votes V1, V2 ∈ P ,
we check whether the permutation p(T1, T2) or p(T2, T1) is contained in p(V1, V2). If p(T1, T2)
or p(T2, T1) is contained, we know that (C1, C2) is contained in P (cf. Lemma 9.1). If in none
of these combinations a pattern containment is detected, P avoids Φ. Observe that we have to
employ the permutation pattern matching algorithm at most (t!)2 times and thus our algorithm
runs in fpt time.

We now show that Theorem 9.5 is also as strong as possible: If the configuration has cardi-
nality three, CONFIGURATION CONTAINMENT becomes W[1]-hard.

Theorem 9.6. The CONFIGURATION CONTAINMENT problem parameterized by t(Φ) = |X(Φ)|
is W[1]-hard, even if |P| = 3 and |Φ| = 3.

Proof. We reduce from the W[1]-complete SEGREGATED PERMUTATION PATTERN MATCH-
ING problem, introduced in Chapter 4, Theorem 4.7.

SEGREGATED PERMUTATION PATTERN MATCHING (SPPM)
Instance: A permutation σ (the text) of length n, a permutation π (the pattern)

of length k ≤ n and two positive integers p ∈ [k], t ∈ [n].
Parameter: k

Question: Is there a matching M of P into T such that M(i) ≤ t if and only
if i ≤ p?

134

Let C = [n+ 2] and X(Φ) = [k + 2]. We define the configuration (φ1, φ2, φ3) as follows:

1 > 2 > · · · > p > k + 1 > k + 2 > p+ 1 > · · · > k (φ1)

1 > 2 > · · · > p > k + 2 > k + 1 > p+ 1 > · · · > k (φ2)

π(1) > · · · > π(p) > k + 1 > k + 2 > π(p+ 1) > · · · > π(k) (φ3)

The profile (V1, V2, V3) is defined as follows:

1 � 2 � · · · � t � n+ 1 � n+ 2 � t+ 1 � · · · � n (V1)

1 � 2 � · · · � t � n+ 2 � n+ 1 � t+ 1 � · · · � n (V2)

σ(1) � · · · � σ(t) � n+ 1 � n+ 2 � σ(t+ 1) � · · · � σ(n) (V3)

We claim that the configuration (φ1, φ2, φ3) is contained in the profile (V1, V2, V3) if and only if
there is a matching M of π to σ such that M(i) ≤ t if and only if i ≤ p.

“→” The crucial observation here is that only V1 and V2 are possible models for φ1 and φ2

and thus V3 |=ξ φ3 for some function ξ : [k + 2] → [n + 2]. Observe that ξ is monotone and
ξ(k + 1) = n+ 1 and ξ(k + 2) = n+ 2. As a consequence, ξ restricted to [k] is a matching of
π into σ such that M(i) ≤ t if and only if i ≤ p.

“←” Here, for ξ = M ∪ {k + 1 7→ n+ 1, k + 2 7→ n+ 2}, it is easy to verify to V1 |=ξ φ1,
V2 |=ξ φ2 and V3 |=ξ φ3.

As a consequence of these results, we know that a substantial improvement of the algorithm
for detecting configurations (Proposition 7.1) is not possible and, in particular, a universally
applicable fpt algorithm does not exist unless FPT = W[1].

9.3 Summary

In this section we have applied results from permutation pattern matching to the field of domain
restrictions. We have obtained combinatorial results (Theorem 9.3) about the number of profiles
avoiding (2, k)-configurations using the Marcus–Tardos theorem. In addition, we have presented
computational results establishing algorithmic bounds for efficient detection of configurations
(Theorem 9.4, 9.5, 9.6) making use of a complexity result established in Chapter 4. Our work in
this chapter is only preliminary and hopefully further connections between permutation patterns
and configurations are to be discovered.

135

CHAPTER 10
Conclusions and Directions for Future

Research

The goal of this thesis is to provide algorithms for detecting structure in permutations and pref-
erences. Structure in permutations is studied in the form of permutation patterns, structure in
preferences in the form of domain restrictions. The first part of this thesis contains an extensive
complexity analysis of PERMUTATION PATTERN MATCHING (PPM) for generalized patterns
(Chapter 4) as well as a novel algorithm for PPM with a runtime of O∗(1.79n); the first algo-
rithm to beat the brute-force runtime of O∗(2n) (Chapter 5).

The second part concerns structure detection in preferences. First, in Chapter 6, we show
for nearly single-peaked preferences that allowing for notions of “nearness” increases the com-
plexity of detecting structure. Then, in Chapter 7, we design approximation and fixed-parameter
tractable algorithms to deal with the high complexity of detecting “nearness” to structure. In
Chapter 8 we formalize the meaning of single-peakedness in the presence of incomplete infor-
mation and obtain algorithms for detecting single-peakedness in incomplete preference data.
Finally, we observe in Chapter 9 that permutation patterns and domain restrictions are not sepa-
rate topics but related concepts; their connection is established by relating permutation patterns
and forbidden configurations. In addition, we show that certain domain restrictions are very
unlikely to appear in random preference data. For a more detailed overview of the results of this
thesis, we refer the reader to the summary sections at the end of each chapter.

To sum up, this thesis presents a variety of algorithms for detecting structure in permutations
and preferences, applicable in a wide range of scenarios and applications.

The Big Picture

We would now like to identify general lessons that can be learned from this thesis. Let us
first consider our results from the perspective of computational complexity. Most algorithmic
problems are computationally hard and three reasons for high complexity can be observed.

137

1. Complexity arises due to unbounded size of the pattern one is looking for. While PPM
is NP-complete if the length of the pattern is unbounded [34], it becomes linear-time
solvable for bounded length [92]. For generalized permutation patterns the same holds:
while NP-complete in the general case (Corollary 4.3), it is polynomial-time solvable for
bounded pattern length (Theorem 4.6). Similar results hold for domain restrictions: while
the general CONFIGURATION CONTAINMENT problem is NP-complete (Theorem 9.4),
it requires only polynomial time to detect a fixed domain restriction that is configuration
definable (Proposition 7.1).

2. Computational complexity may also arise due to incomplete information. In Chapter 8 we
have seen that even for local weak orders (which possess quite some structure) detecting
single-peakedness is NP-hard (Theorem 8.3), although it only requires linear time for pro-
files of weak orders with a single total order (Theorem 8.6). For permutation patterns we
have not considered incompletely specified permutations, although this is an interesting
direction for future research.

3. Finally, complexity may arise due to allowing for more flexible notions of structure.
In Chapter 6 we have seen that, for example, deleting votes in order to obtain single-
peakedness is NP-hard, even though detecting single-peakedness can be done in linear
time. Questions of that sort may also be of interest in the context of permutation patterns;
for example, asking for the minimal number of elements that have to be removed from a
permutation to make it avoid a pattern.

From an algorithmic perspective, this thesis shows how the computational hardness of struc-
ture detection can be handled with established techniques in algorithm design: polynomial-time
solvable fragments, fixed-parameter algorithms and approximation algorithms. All of these tech-
niques have their strengths and weaknesses and are not applicable in every setting. For example,
approximation algorithms are not directly applicable to PPM and it is unclear what a reasonable
restricted fragment for detecting nearly single-peakedness would be. However, these techniques
taken together deliver excellent tools for solving computationally hard tasks regarding the de-
tection of structure in permutations and preferences.

We would now like to conclude with highlighting several possible research directions that
build upon the results presented in this thesis.

Future Directions: Permutation Pattern Matching

Polynomial time algorithms. In Section 4.2.2 we listed several special cases for which PPM
is polynomial time solvable. This list, however, is certainly far from being complete. In partic-
ular, polynomial time fragments of vincular, bivincular and mesh permutation pattern matching
are not known at all.

Other parameters than k = |P |. In Section 4.3 we have studied the influence of the length of
the pattern on the complexity of the different types of permutation pattern matching problems.
Both for generalizations of PPM that are W[1]-hard with respect to k as well as for classical

138

PPM which is in FPT with respect to k, it is of interest to find out whether other parameters
of the input instances lead to fixed parameter tractability results. In Chapter 5 we provided a
first result in this vein by designing an algorithm that solves PPM with a worst-case runtime of
O(1.79run(T) ·n ·k), where run(T) denotes the number of alternating runs of T . For future work
any permutation statistic (see for instance the list in Appendix A.1 of [105]) could be taken into
account for a parameterized complexity analysis of all versions of PPM. An analysis of PPM
with respect to several different parameters would then allow us to draw a more detailed picture
of the computational landscape of permutation pattern matching.

Patterns in words. In this thesis, we have considered patterns in permutations. However,
the concept of pattern avoidance respectively containment can easily be extended to patterns
in words over ordered alphabets (or permutations on multisets). In a matching of a word W
into another word V , copies of the same letter have to be mapped to copies of some letter in
the text. The topic of patterns in words has received quite some attention in the last years, see
e.g. Heubach and Mansour’s monograph Combinatorics of compositions and words [98]. The
corresponding pattern matching problems have not yet been studied.

Kernelization. Theorem 5.1 shows fixed-parameter tractability of PPM with respect to run(T).
An immediate consequence is that any PPM instance can be reduced by polynomial time pre-
processing to an equivalent instance – a kernel – of size depending solely on run(T). This raises
the question whether even a polynomial-sized kernel exists. Such kernels, and in particular
polynomial kernels, have been the focus of intensive research in algorithmics [94].

Implementations. At this point, several algorithms exist that solve PPM without imposing
restrictions on P and T . The algorithms by Guillemot and Marx [92], Albert et al. [2] and Ahal
and Rabinovich [1] seem to be particularly well-suited for small patterns. In contrast, the runtime
of our algorithm does not critically depend on |P |. Thus, it may be expected that our algorithm
is preferable for large patterns. However, only implementations and benchmarks could allow
one to settle this question and systematically compare these algorithms.

Future Directions: Structure in Preferences

Nearly Structured Preferences. An obvious direction for future work is to determine the
complexity of CANDIDATE PARTITION SINGLE-PEAKED CONSISTENCY. Also, as mentioned
in the summary of Chapter 6, the notions of distance to single-peakedness easily carry over to
other domain restrictions. The corresponding computational tasks of detecting such structure
have not been studied so far, except for the candidate and voter deletion distance [44]. As soon
as the complexity of these tasks is settled (which can be expected to be NP-hard in most cases),
it is desirable to search for fpt- or approximation algorithms in the spirit of those in Chapter 7.

Structure in Incomplete Preferences. Our work on structure in incomplete preferences, pre-
sented in Chapter 8, can be extended in several directions. One direction is to extend our al-
gorithms to notions of nearly single-peakedness. Another direction is the exploration of other

139

domain restrictions such as the single-crossing restriction. Finally, the complexity of WEAK

ORDER SINGLE-PEAKED CONSISTENCY remains open; settling this question would be highly
desirable.

Connections between Structure in Permutation Patterns and in Preferences. Chapter 9 is
only the starting point for a systematic study of the relation of permutation patterns and pref-
erences. So far, we have succeeded in applying the Marcus–Tardos theorem only to domain
restrictions containing a configuration of size two. Is it possible to generalize this result to ar-
bitrary domain restrictions? Another research direction is to study the likelihood for specific
domain restrictions aiming at (asymptotically) exact results. In particular, the likelihood of do-
main restrictions under different preference probability distributions would be desirable. Finally,
it might be the case that algorithms for permutation pattern detection (such as [1, 2, 92] or the
algorithm presented in Chapter 5) yield fast algorithms for detecting domain restrictions; this
has yet to be investigated.

140

Bibliography

[1] S. Ahal and Y. Rabinovich. On complexity of the subpattern problem. SIAM Journal on
Discrete Mathematics, 22(2):629–649, 2008. (Cited on pages 15, 30, 63, 64, 67, 139,
and 140.)

[2] M. H. Albert, R. E. L. Aldred, M. D. Atkinson, and D. Holton. Algorithms for pattern
involvement in permutations. In Algorithms and Computation, volume 2223 of Lecture
Notes in Computer Science, pages 355–367. Springer, 2001. (Cited on pages 15, 30, 139,
and 140.)

[3] M. H. Albert, R. E. L. Aldred, M. D. Atkinson, H. P. van Ditmarsch, B. D. Handley, C. C.
Handley, and J. Opatrny. Longest subsequences in permutations. Australasian Journal of
Combinatorics, 28:225–238, 2003. (Cited on page 16.)

[4] P. Anand, P. Pattanaik, and C. Puppe, editors. The Handbook of Rational and Social
Choice. Oxford University Press, 2009. (Cited on page 17.)

[5] D. André. Étude sur les maxima, minima et séquences des permutations. Annales Scien-
tifiques de l’École Normale Supérieure, 3(1):121–135, 1884. (Cited on page 39.)

[6] S. Arora and B. Barak. Computational complexity: A modern approach. Cambridge
University Press, 2009. (Cited on page 13.)

[7] K. J. Arrow. A difficulty in the concept of social welfare. The Journal of Political Econ-
omy, 58(4):328–346, 1950. (Cited on page 17.)

[8] K. J. Arrow. Social Choice and Individual Values. John Wiley and Sons, 1951. (Cited on
page 17.)

[9] K. J. Arrow, A. Sen, and K. Suzumura, editors. Handbook of Social Choice and Welfare,
Volume 1. Elsevier, 2002. (Cited on page 17.)

[10] K. J. Arrow, A. Sen, and K. Suzumura, editors. Handbook of Social Choice and Welfare,
Volume 2. Elsevier, 2010. (Cited on page 17.)

[11] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth
of certain quantified Boolean formulas. Information Processing Letters, 8(3):121–123,
1979. (Cited on pages 5 and 122.)

141

[12] S. Avgustinovich, S. Kitaev, and A. Valyuzhenich. Avoidance of boxed mesh patterns on
permutations. Discrete Applied Mathematics, 161(1-2):43–51, 2013. (Cited on pages 23
and 28.)

[13] H. Aziz. Testing top monotonicity. arXiv preprint arXiv:1403.7625, 2014. (Cited on
page 18.)

[14] E. Babson and E. Steingrímsson. Generalized permutation patterns and a classification of
the mahonian statistics. Séminaire Lotharingien de Combinatoire, 44:117, 2000. (Cited
on pages 23 and 26.)

[15] M. Ballester and G. Haeringer. A characterization of the single-peaked domain. Social
Choice and Welfare, 36(2):305–322, 2011. (Cited on page 98.)

[16] M. A. Ballester and G. Haeringer. A characterization of the single-peaked domain. Social
Choice and Welfare, 36(2):305–322, 2011. (Cited on pages 18 and 132.)

[17] S. Barberà, F. Gul, and E. Stacchetti. Generalized median voter schemes and committees.
Journal of Economic Theory, 61(2):262–289, 1993. (Cited on pages 12 and 18.)

[18] S. Barberà and B. Moreno. Top monotonicity: A common root for single peakedness,
single crossing and the median voter result. Games and Economic Behavior, 73(2):345–
359, 2011. (Cited on page 18.)

[19] S. Barberà, D. Berga, and B. Moreno. Some new domain restrictions in social choice,
and their consequences. In Modeling Decisions for Artificial Intelligence, volume 8234
of Lecture Notes in Computer Science, pages 11–24. Springer, 2013. (Cited on page 18.)

[20] J. Bartholdi, III, C. Tovey, and M. Trick. The computational difficulty of manipulating an
election. Social Choice and Welfare, 6(3):227–241, 1989. (Cited on page 17.)

[21] J. Bartholdi, III, C. Tovey, and M. Trick. Voting schemes for which it can be difficult to
tell who won the election. Social Choice and Welfare, 6(2):157–165, 1989. (Cited on
page 17.)

[22] J. Bartholdi, III, C. Tovey, and M. Trick. Voting schemes for which it can be difficult to
tell who won the election. Social Choice and Welfare, 6(2):157–165, 1989. (Cited on
page 86.)

[23] J. Bartholdi, III and M. Trick. Stable matching with preferences derived from a psycho-
logical model. Operations Research Letters, 5(4):165–169, 1986. (Cited on pages 18,
114, and 128.)

[24] D. Baumeister, P. Faliszewski, J. Lang, and J. Rothe. Campaigns for lazy voters: Trun-
cated ballots. In Proceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2012), pages 577–584, 2012. (Cited on page 110.)

142

[25] D. Baumeister, M. Roos, J. Rothe, L. Schend, and L. Xia. The possible winner problem
with uncertain weights. In Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI 2012), pages 133–138, Aug. 2012. (Cited on page 19.)

[26] D. Baumeister and J. Rothe. Taking the final step to a full dichotomy of the possible
winner problem in pure scoring rules. Information Processing Letters, 112(5):186 – 190,
2012. (Cited on pages 19 and 109.)

[27] N. Betzler and B. Dorn. Towards a dichotomy for the possible winner problem in elections
based on scoring rules. Journal of Computer and System Sciences, 76(8):812–836, 2010.
(Cited on pages 19 and 109.)

[28] N. Betzler, S. Hemmann, and R. Niedermeier. A multivariate complexity analysis of
determining possible winners given incomplete votes. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2009), pages 53–58. AAAI
Press, July 2009. (Cited on page 19.)

[29] N. Betzler, A. Slinko, and J. Uhlmann. On the computation of fully proportional rep-
resentation. Journal of Artificial Intelligence Research, 47:475–519, 2013. (Cited on
page 18.)

[30] D. Black. On the rationale of group decision making. Journal of Political Economy,
56(1):23–34, 1948. (Cited on pages 11, 18, and 109.)

[31] M. Bóna. A survey of stack-sorting disciplines. Electronic Journal of Combinatorics,
9(2):16, 2003. (Cited on page 1.)

[32] M. Bóna. Combinatorics of permutations. Chapman & Hall/CRC, 2004. (Cited on
pages 10, 15, and 62.)

[33] C. Borgers. Mathematics of Social Choice: Voting, Compensation, and Division. SIAM
Society for Industrial and Applied Mathematics, 2009. (Cited on page 17.)

[34] P. Bose, J. F. Buss, and A. Lubiw. Pattern matching for permutations. Information Pro-
cessing Letters, 65(5):277 – 283, 1998. (Cited on pages 2, 15, 16, 23, 25, 28, 32, 39,
and 138.)

[35] M. Bousquet-Mélou, A. Claesson, M. Dukes, and S. Kitaev. (2 + 2)-free posets, ascent
sequences and pattern avoiding permutations. Journal of Combinatorial Theory, Series
A, 117(7):884–909, 2010. (Cited on pages 23 and 27.)

[36] M. Bouvel and E. Pergola. Posets and permutations in the duplication-loss model: Mini-
mal permutations with descents. Theoretical Computer Science, 411(26–28):2487 – 2501,
2010. (Cited on page 1.)

[37] M. Bouvel and D. Rossin. The longest common pattern problem for two permutations.
Pure Mathematics and Applications, 17(1-2):55–69, 2006. (Cited on page 16.)

143

[38] M. Bouvel and D. Rossin. A variant of the tandem duplication-random loss model of
genome rearrangement. Theoretical Computer Science, 410(8–10):847 – 858, 2009.
(Cited on page 1.)

[39] M. Bouvel, D. Rossin, and S. Vialette. Longest common separable pattern among per-
mutations. In Combinatorial Pattern Matching (CPM 2007), Lecture Notes in Computer
Science, pages 316–327. Springer, 2007. (Cited on page 16.)

[40] P. Brändén and A. Claesson. Mesh patterns and the expansion of permutation statistics
as sums of permutation patterns. Electronic Journal of Combinatorics, 18(2):P5, 2011.
(Cited on pages 23 and 27.)

[41] F. Brandt, M. Brill, E. Hemaspaandra, and L. A. Hemaspaandra. Bypassing combinatorial
protections: Polynomial-time algorithms for single-peaked electorates. In Proceedings of
the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pages 715–722, 2010.
(Cited on pages 18, 109, and 127.)

[42] F. Brandt, V. Conitzer, and U. Endriss. Computational social choice. In Multiagent
Systems. MIT Press, 2013. (Cited on page 17.)

[43] R. Bredereck, 2012. Personal communication. (Cited on page 83.)

[44] R. Bredereck, J. Chen, and G. Woeginger. Are there any nicely structured preference
profiles nearby? In Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), pages 62–68, 2013. (Cited on pages 19, 83, 95, and 139.)

[45] R. Bredereck, J. Chen, and G. Woeginger. A characterization of the single-crossing do-
main. Social Choice and Welfare, 41(4):989–998, 2013. (Cited on pages 18 and 98.)

[46] M.-L. Bruner and M. Lackner. A fast algorithm for permutation pattern matching based
on alternating runs. In Proceedings of the 13th Scandinavian Workshop on Algorithm
Theory (SWAT 2012), volume 7357 of Lecture Notes in Computer Science, pages 261–
270. Springer, 2012. (Cited on page 39.)

[47] M.-L. Bruner and M. Lackner. The computational landscape of permutation patterns.
Pure Mathematics and Applications, 2014. Accepted for publication. (Cited on page 23.)

[48] M.-L. Bruner and M. Lackner. The likelihood of structure in preference profiles. In
Proceedings of the 8th Multidisciplinary Workshop on Advances in Preference Handling
(MPref 2014), 2014. Accepted for publication. (Cited on page 129.)

[49] M.-S. Chang and F.-H. Wang. Efficient algorithms for the maximum weight clique and
maximum weight independent set problems on permutation graphs. Information Process-
ing Letters, 43(6):293–295, 1992. (Cited on page 16.)

[50] K. Chaudhuri, K. Chen, R. Mihaescu, and S. Rao. On the tandem duplication-random
loss model of genome rearrangement. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 564–570. ACM, 2006. (Cited on page 1.)

144

[51] J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40-42):3736–3756, 2010. (Cited on page 105.)

[52] V. Conitzer. Eliciting single-peaked preferences using comparison queries. Journal of
Artificial Intelligence Research, 35:161–191, 2009. (Cited on pages 18 and 114.)

[53] V. Conitzer. Making decisions based on the preferences of multiple agents. Commun.
ACM, 53(3):84–94, Mar. 2010. (Cited on page 16.)

[54] V. Conitzer and T. Sandholm. Vote elicitation: Complexity and strategy-proofness. In
Proceedings of the 18th National Conference on Artificial Intelligence (AAAI 2002),
pages 392–397, 2002. (Cited on page 19.)

[55] C. H. Coombs. A Theory of Data. John Wiley & Sons, 1964. (Cited on pages 130
and 132.)

[56] D. Cornaz, L. Galand, and O. Spanjaard. Bounded single-peaked width and proportional
representation. In Proceedings of the 20th European Conference on Artificial Intelligence
(ECAI 2012), pages 270–275, 2012. (Cited on page 19.)

[57] D. Cornaz, L. Galand, and O. Spanjaard. Kemeny elections with bounded single-peaked
or single-crossing width. In Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI 2013), pages 76–82, 2013. (Cited on page 19.)

[58] M. Crochemore, C. S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu, S. P. Pissis,
J. Radoszewski, W. Rytter, and T. Walen. Order-preserving incomplete suffix trees and
order-preserving indexes. In String Processing and Information Retrieval, volume 8214
of Lecture Notes in Computer Science, pages 84–95. Springer, 2013. (Cited on page 16.)

[59] F. N. David and D. E. Barton. Combinatorial chance. Griffin London, 1962. (Cited on
page 62.)

[60] G. Demange. Single-peaked orders on a tree. Mathematical Social Sciences, 3(4):389–
396, 1982. (Cited on page 18.)

[61] J.-P. Doignon and J.-C. Falmagne. A polynomial time algorithm for unidimensional
unfolding representations. Journal of Algorithms, 16(2):218–233, 1994. (Cited on
page 114.)

[62] C. Domshlak, E. Hüllermeier, S. Kaci, and H. Prade. Preferences in AI: An overview.
Artificial Intelligence, 175(7–8):1037–1052, 2011. (Cited on page 16.)

[63] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999. (Cited on
pages 14 and 32.)

[64] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer
London, 2013. (Cited on page 14.)

145

[65] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the
web. In Proceedings of the 10th International World Wide Web Conference (WWW 2001),
pages 613–622. ACM Press, 2001. (Cited on pages 18, 86, 87, and 110.)

[66] S. Elizalde and M. Noy. Consecutive patterns in permutations. Advances in Applied
Mathematics, 30(1):110–125, 2003. (Cited on pages 23 and 28.)

[67] E. Elkind, P. Faliszewski, and A. Slinko. Clone structures in voters’ preferences. In
Proceedings of the 13th ACM Conference on Electronic Commerce (EC 2012), pages
496–513, 2012. (Cited on pages 18 and 19.)

[68] E. Elkind and M. Lackner. On detecting nearly structured preference profiles. In Proceed-
ings of the 28th AAAI Conference on Artificial Intelligence (AAAI 2014). AAAI Press,
2014. Accepted for publication. (Cited on page 95.)

[69] E. Ephrati and J. Rosenschein. A heuristic technique for multi-agent planning. Annals of
Mathematics and Artificial Intelligence, 20(1–4):13–67, 1997. (Cited on page 18.)

[70] G. Erdélyi, M. Lackner, and A. Pfandler. Computational aspects of nearly single-peaked
electorates. In Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI
2013). AAAI Press, 2013. (Cited on page 71.)

[71] B. Escoffier, J. Lang, and M. Öztürk. Single-peaked consistency and its complexity. In
Proceedings of the 18th European Conference on Artificial Intelligence (ECAI 2008),
pages 366–370, 2008. (Cited on pages 18, 19, 72, 73, 88, 90, 109, 110, and 114.)

[72] S. Even and R. Bar-Yehuda. A linear-time approximation algorithm for the weighted
vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981. (Cited on pages 6
and 104.)

[73] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing partial rankings.
SIAM Journal on Discrete Mathematics, 20(3):628–648, 2006. (Cited on page 110.)

[74] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM Journal on Discrete
Mathematics, 17(1):134–160, 2003. (Cited on page 110.)

[75] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. The complexity of manipula-
tive attacks in nearly single-peaked electorates. Artificial Intelligence, 207:69–99, 2014.
(Cited on pages 18, 19, 72, 75, and 107.)

[76] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. The shield that
never was: Societies with single-peaked preferences are more open to manipulation
and control. Information and Computation, 209(2):89–107, 2011. (Cited on pages 18
and 109.)

[77] H. Fernau. Parameterized algorithms for d-hitting set: The weighted case. Theoretical
Computer Science, 411(16–18):1698 – 1713, 2010. (Cited on page 105.)

146

[78] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, 2009.
(Cited on page 62.)

[79] J. Flum and M. Grohe. Model-checking problems as a basis for parameterized intractabil-
ity. Logical Methods in Computer Science, 1(1), 2005. (Cited on page 31.)

[80] J. Flum and M. Grohe. Parameterized complexity theory. Springer, 2006. (Cited on
pages 14 and 107.)

[81] F. Fomin and D. Kratsch. Exact Exponential Algorithms. Springer, 2010. (Cited on
page 39.)

[82] M. Frances and A. Litman. On covering problems of codes. Theory of Computing Sys-
tems, 30:113–119, 1997. (Cited on page 85.)

[83] J. Fürnkranz and E. Hüllermeier, editors. Preference learning. Springer, 2011. (Cited on
page 16.)

[84] Z. Füredi and P. Hajnal. Davenport-Schinzel theory of matrices. Discrete Mathematics,
103(3):233 – 251, 1992. (Cited on page 15.)

[85] W. Gaertner. A Primer in Social Choice Theory: Revised Edition. Oxford University
Press, 2009. (Cited on page 17.)

[86] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979. (Cited on pages 84 and 115.)

[87] P. Gawrychowski and P. Uznanski. Order-preserving pattern matching with k mismatches.
arXiv preprint arXiv:1309.6453, 2013. (Cited on page 16.)

[88] S. Ghosh, M. Mundhe, K. Hernandez, and S. Sen. Voting for movies: The anatomy of
recommender systems. In Proceedings of the 3rd Annual Conference on Autonomous
Agents (AGENTS 1999), pages 434–435. ACM Press, 1999. (Cited on page 18.)

[89] A. Gibbard. Manipulation of voting schemes. Econometrica, 41(4):587–601, 1973.
(Cited on page 17.)

[90] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Uni-
versity Press, 2008. (Cited on page 13.)

[91] J. Goldsmith and U. Junker, editors. Preferences, volume 29(4). AI Magazine, 2008.
(Cited on page 16.)

[92] S. Guillemot and D. Marx. Finding small patterns in permutations in linear time. In
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2014), pages 82–101, 2014. (Cited on pages 2, 15, 25, 31, 37, 134, 138, 139, and 140.)

147

[93] S. Guillemot and S. Vialette. Pattern matching for 321-avoiding permutations. In Al-
gorithms and Computation, volume 5878 of Lecture Notes in Computer Science, pages
1064–1073. Springer, 2009. (Cited on page 16.)

[94] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization.
SIGACT News, 38(1):31–45, 2007. (Cited on page 139.)

[95] J. Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182(1):105–
142, 1999. (Cited on page 106.)

[96] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Exact analysis of Dodgson elec-
tions: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. Journal
of the ACM, 44(6):806–825, 1997. (Cited on page 109.)

[97] E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Kemeny elections.
Theoretical Computer Science, 349(3):382–391, 2005. (Cited on page 109.)

[98] S. Heubach and T. Mansour. Combinatorics of compositions and words. Chapman &
Hall/CRC, 2009. (Cited on page 139.)

[99] L. Ibarra. Finding pattern matchings for permutations. Information Processing Letters,
61(6):293–295, 1997. (Cited on page 16.)

[100] K. Inada. A note on the simple majority decision rule. Econometrica, 32(4):525–531,
1964. (Cited on page 18.)

[101] K. Inada. The simple majority decision rule. Econometrica, 37(3):490–506, 1969. (Cited
on page 18.)

[102] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):pp. 81–93, 1938.
(Cited on page 74.)

[103] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2−ε. Journal
of Computer and System Sciences, 74(3):335 – 349, 2008. (Cited on page 104.)

[104] J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C. S. Iliopoulos, K. Park, S. J. Puglisi, and
T. Tokuyama. Order preserving matching. arXiv preprint arXiv:1302.4064, 2013. (Cited
on page 16.)

[105] S. Kitaev. Patterns in Permutations and Words. Springer, 2011. (Cited on pages 15, 24,
26, 28, 132, and 139.)

[106] M. Klazar. The Füredi-Hajnal conjecture implies the Stanley-Wilf conjecture. In For-
mal power series and algebraic combinatorics (FPSAC 2000), pages 250–255. Springer,
2000. (Cited on page 15.)

[107] A. Klenke. Probability theory: a comprehensive course. Springer, 2008. (Cited on
page 62.)

148

[108] V. Knoblauch. Recognizing one-dimensional Euclidean preference profiles. Journal of
Mathematical Economics, 46(1):1 – 5, 2010. (Cited on pages 130 and 132.)

[109] D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms.
Addison-Wesley, 1968. (Cited on pages 15, 24, and 62.)

[110] M. Kubica, T. Kulczyński, J. Radoszewski, W. Rytter, and T. Waleń. A linear time al-
gorithm for consecutive permutation pattern matching. Information Processing Letters,
113(12):430 – 433, 2013. (Cited on pages 16 and 30.)

[111] M. Lackner. Incomplete preferences in single-peaked electorates. In Proceedings of
the 28th AAAI Conference on Artificial Intelligence (AAAI 2014). AAAI Press, 2014.
Accepted for publication. (Cited on page 109.)

[112] J. Lang, M. Pini, F. Rossi, D. Salvagnin, K. Venable, and T. Walsh. Winner determination
in voting trees with incomplete preferences and weighted votes. Autonomous Agents and
Multiagent Systems, 25(1):130–157, 2012. (Cited on page 19.)

[113] H. Levene and J. Wolfowitz. The covariance matrix of runs up and down. The Annals of
Mathematical Statistics, 15(1):58–69, 1944. (Cited on page 62.)

[114] E. Mäkinen. On the longest upsequence problem for permutations. International Journal
of Computer Mathematics, 77(1):45–53, 2001. (Cited on page 16.)

[115] A. Marcus and G. Tardos. Excluded permutation matrices and the Stanley–Wilf con-
jecture. Journal of Combinatorial Theory, Series A, 107(1):153–160, 2004. (Cited on
pages 15, 130, and 132.)

[116] N. Mattei, J. Forshee, and J. Goldsmith. An empirical study of voting rules and manipu-
lation with large datasets. In Proceedings of the 4th International Workshop on Compu-
tational Social Choice (COMSOC 2012), 2012. (Cited on pages 71 and 129.)

[117] N. Mattei and T. Walsh. Preflib: A library of preference data. In Proceedings of the 3rd
International Conference on Algorithmic Decision Theory (ADT 2013). Springer, 2013.
(Cited on page 109.)

[118] I. McLean and A. Urken. Classics of Social Choice. University of Michigan Press, 1995.
(Cited on page 17.)

[119] J. Mirrlees. An exploration in the theory of optimal income taxation. Review of Economic
Studies, 38:175–208, 1971. (Cited on page 18.)

[120] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,
2006. (Cited on page 14.)

[121] J. Opatrny. Total ordering problem. SIAM Journal on Computing, 8(1):111–114, 1979.
(Cited on page 114.)

149

[122] C. H. Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003. (Cited
on page 13.)

[123] D. Pennock, E. Horvitz, and C. Giles. Social choice theory and recommender systems:
Analysis of the axiomatic foundations of collaborative filtering. In Proceedings of the
17th National Conference on Artificial Intelligence (AAAI 2000), pages 729–734. AAAI
Press, 2000. (Cited on page 18.)

[124] M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Incompleteness and incomparability
in preference aggregation: Complexity results. Artificial Intelligence, 175(7-8):1272 –
1289, 2011. (Cited on pages 19 and 109.)

[125] K. W. Roberts. Voting over income tax schedules. Journal of Public Economics,
8(3):329–340, 1977. (Cited on page 12.)

[126] F. Rossi, K. B. Venable, and T. Walsh. A Short Introduction to Preferences: Between
Artificial Intelligence and Social Choice. Morgan and Claypool, 2011. (Cited on page 16.)

[127] M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functions. Journal of Economic
Theory, 10(2):187–217, 1975. (Cited on page 17.)

[128] S. Saxena and V. Yugandhar. Parallel algorithms for separable permutations. Discrete
Applied Mathematics, 146(3):343–364, 2005. (Cited on page 16.)

[129] C. Schensted. Longest increasing and decreasing subsequences. Classic Papers in Com-
binatorics, pages 299–311, 1987. (Cited on pages 16 and 92.)

[130] A. Sen. A possibility theorem on majority decisions. Econometrica, 34:491–499, 1966.
(Cited on page 18.)

[131] R. Simion and F. W. Schmidt. Restricted permutations. European Journal of Combina-
torics, 6:383–406, 1985. (Cited on pages 15 and 24.)

[132] P. Skowron, L. Yu, P. Faliszewski, and E. Elkind. The complexity of fully proportional
representation for single-crossing electorates. In Proceedings of the 6th International
Symposium on Algorithmic Game Theory (SAGT 2013), pages 1–12, 2013. (Cited on
page 18.)

[133] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, composition and
application of preferences in database systems. ACM Transactions on Database Systems,
36(3):19:1–19:45, Aug. 2011. (Cited on page 18.)

[134] E. Steingrímsson. Generalized permutation patterns - a short survey. LMS Lecture Note
Series, 376:137–152, 2010. (Cited on page 26.)

[135] X. Sui, A. Francois-Nienaber, and C. Boutilier. Multi-dimensional single-peaked consis-
tency and its approximations. In Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI 2013), 2013. (Cited on pages 18, 71, and 129.)

150

[136] M. Trick. Recognizing single-peaked preferences on a tree. Mathematical Social Sci-
ences, 17(3):329–334, 1989. (Cited on page 18.)

[137] M. Wahlström. Algorithms, measures, and upper bounds for satisfiability and related
problems. PhD thesis, Linköping University, 2007. (Cited on page 105.)

[138] T. Walsh. Uncertainty in preference elicitation and aggregation. In Proceedings of the
22nd National Conference on Artificial Intelligence (AAAI 2007), pages 3–8. AAAI Press,
July 2007. (Cited on pages 19 and 109.)

[139] T. Walsh. Complexity issues in preference elicitation and manipulation. In Proceedings
of The 10th International Symposium on Artificial Intelligence and Mathematics (ISAIM
2008), Jan. 2008. (Cited on page 19.)

[140] T. Walsh. Complexity of terminating preference elicitation. In Proceedings of the 7th In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008),
pages 967–974. International Foundation for Autonomous Agents and Multiagent Sys-
tems, May 2008. (Cited on page 19.)

[141] J. West. Permutations with forbidden subsequences, and, stack-sortable permutations.
PhD thesis, Massachusetts Institute of Technology, 1990. (Cited on page 1.)

[142] L. Xia and V. Conitzer. Determining possible and necessary winners under common
voting rules given partial orders. Journal of Artificial Intelligence Research, 41(2):25–67,
2011. (Cited on pages 19 and 109.)

[143] L. Yu, H. Chan, and E. Elkind. Multiwinner elections under preferences that are single-
peaked on a tree. In Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), pages 425–431, 2013. (Cited on page 18.)

[144] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC 2006), pages 681–690, 2006. (Cited on page 106.)

151

Curriculum Vitae

Martin Lackner

CONTACT Vienna University of Technology
Institute of Information Systems
Database and Artificial Intelligence Group

ADDRESS Favoritenstraße 9-11
1040 Vienna, Austria

EMAIL lackner@dbai.tuwien.ac.at

WEB http://www.dbai.tuwien.ac.at/staff/lackner/

Education

2010–2014 Vienna University of Technology
Doctoral studies in the program “Mathematical Logic in Computer Science”

2009 University of Illinois at Urbana-Champaign, USA
Semester Abroad
Focus on mathematical logic, artificial intelligence, computational complexity

2005–2010 Vienna University of Technology
Diploma program: Technical Mathematics
Area of concentration: Mathematics in Computer Science
Degree: Dipl.Ing.

153

Publications

2014 Martin Lackner. Incomplete preferences in single-peaked electorates. In Proceedings
of the 27th AAAI Conference on Artificial Intelligence (AAAI 2014), 2014. Accepted
for publication.

Edith Elkind and Martin Lackner. On detecting nearly structured preference profiles. In
Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 2014), 2014.
Accepted for publication.

Martin Kronegger, Martin Lackner, Andreas Pfandler and Reinhard Pichler. A param-
eterized complexity analysis of generalized CP-nets. In Proceedings of the 27th AAAI
Conference on Artificial Intelligence (AAAI 2014), 2014. Accepted for publication.

Marie-Louise Bruner and Martin Lackner. The computational landscape of permutation
patterns. Pure and Applied Mathematics, 2014. Accepted for publication.

Marie-Louise Bruner and Martin Lackner. The likelihood of structure in preference pro-
files. In Proceedings of the 8th Multidisciplinary Workshop on Advances in Preference
Handling (MPref 2014), 2014. Accepted for publication.

2013 Gabór Erdélyi, Martin Lackner, and Andreas Pfandler. Computational aspects of nearly
single-peaked electorates. In Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI 2013), 2013.

Martin Kronegger, Martin Lackner, Andreas Pfandler, and Reinhard Pichler. A pa-
rameterized complexity analysis of generalized CP-nets. In Proceedings of the 7th
Multidisciplinary Workshop on Advances in Preference Handling (MPref 2013), 2013.

Martin Lackner. Incomplete preferences in single-peaked electorates. In Proceedings of
the 7th Multidisciplinary Workshop on Advances in Preference Handling (MPref 2013),
2013.

2012 Marie-Louise Bruner and Martin Lackner. A fast algorithm for permutation pattern
matching based on alternating runs. In Proceedings of the 13th Scandinavian Workshop
on Algorithm Theory (SWAT 2012), volume 7357 of Lecture Notes in Computer Science,
pages 261–270. Springer, 2012.

Martin Lackner and Andreas Pfandler. Fixed-parameter algorithms for finding minimal
models. In Proceedings of the 13th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2012), pages 85–95. AAAI Press, 2012.

Martin Lackner and Andreas Pfandler. Fixed-parameter algorithms for closed world
reasoning. In Proceedings of the 20th European Conference on Artificial Intelligence
(ECAI 2012), pages 492–497. IOS Press, 2012.

154

Martin Lackner, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. Multicut
on graphs of bounded clique-width. In Proceedings of the 6th Annual International
Conference on Combinatorial Optimization and Applications (COCOA 2012), volume
7402 of Lecture Notes in Computer Science, pages 115–126. Springer, 2012.

Leo Brueggeman, Michael R. Fellows, Rudolf Fleischer, Martin Lackner, Christian Ko-
musiewicz, Yiannis Koutis, Andreas Pfandler, and Frances A. Rosamond. Train mar-
shalling is fixed parameter tractable. In Proceedings of the Sixth International Confer-
ence on Fun with Algorithms (FUN 2012), volume 7288 of Lecture Notes in Computer
Science, pages 51-56. Springer, 2012.

Gabór Erdélyi, Martin Lackner, and Andreas Pfandler. The complexity of nearly single-
peaked consistency. In Proceedings of the 4th International Workshop on Computa-
tional Social Choice (COMSOC 2012), 2012.

Marie-Louise Bruner and Martin Lackner. From peaks to valleys, running up and down:
Fast permutation pattern matching. TinyToCS, 2012.

155

	Introduction
	Detection of Structure
	Goal and Main Results
	Methodology
	Publications

	Preliminaries
	Sets, Orders, Permutations
	Preferences and Social Choice
	Algorithms and Computational Complexity

	Related Work
	Permutation Pattern Matching
	Structure in Preferences

	Permutation Patterns
	Permutation Pattern Matching for Generalized Patterns
	Types of Patterns
	The Possibility of Polynomial-Time Algorithms
	The Impact of the Pattern Length
	Summary

	Fast Permutation Pattern Matching
	The Alternating Run Algorithm
	The Parameter run(P)
	Summary

	Structure in Preferences
	Nearly Structured Preferences: Complexity Results
	Nearly Single-peaked Preferences
	Basic Results about Single-Peaked Profiles
	Relations between Notions of Nearly Single-Peakedness
	Complexity of Nearly Single-Peaked Consistency
	Complexity of Nearly Single-Peaked Evaluation
	Summary

	Nearly Structured Preferences: Efficient Detection
	Configurations
	A Simple Conversion to Hitting Set
	An Improved Conversion to Hitting Set
	Approximation Algorithms
	Fixed-Parameter Algorithms
	Deleting Almost All Votes
	Summary

	Structure in Incomplete Preferences
	Incomplete Preferences
	Single-peaked Profiles
	Hardness Results
	The Guided Algorithm
	A 2-SAT Based Algorithm
	The Unguided Algorithm
	Scoring Protocols
	Summary

	Connections between Structure in Permutation Patterns and in Preferences
	Applying the Marcus–Tardos Theorem to Domain Restrictions
	Computational Results
	Summary

	Conclusions and Directions for Future Research
	Bibliography

