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Abstract

Many fields of modern science have to deal with events which are rare but of outstanding
importance. Extreme value theory is a practical and useful mathematical tool for modelling
events which occur with very small probability. In a wide variety of applications these ex-
treme events have an inherently multivariate character. This thesis provides an overview
of the relevant theoretical results for modelling multivariate extremes and their dependence
structures. We study multivariate extreme value distributions (MEVDs) and characterise their
maximum domain of attraction (MDA). We state the relationships between four equivalent rep-
resentations of MEVDs which can be used as a basis for estimation. Moreover we look at tail
dependence coefficients and provide information about the underlying dependence. The central
result is the multivariate extension of the Fisher–Tippett theorem, which basically says that
the maximum domain of attraction of a MEVD is characterised by the univariate MDAs of its
margins and a so-called copula domain of attraction (CDA) of its copula. We construct explicit
examples of copulas which are in no CDA and describe models for the tail of a multivariate
distribution function. In order to facilitate model building, some methods to construct new
extreme value copulas from known ones are presented.

Key words: multivariate extreme value distribution, extreme value copula, copula domain of
attraction, extreme value theory, tail dependence.
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Introduction

Extreme value theory (EVT) is a branch of statistics that deals with unusual or rare events and
gives a scientific approach to pure guesswork. It provides a set of tools that help us to deduce
reasonable conclusions from sparse data.

Classical statistical analyses often give primacy to averages and central moments. To force
data to fit a certain model, extremes are often labelled as outliers and even ignored. Such
an approach might be acceptable when seeking information about everyday events, but fails
miserably here.

EVT tries to model events that occur with a relatively small probability but have decisive
consequences. For the layman such surprising phenomena seem to follow no rule, but “care-
ful analysis has helped to discover distributions that acceptably model these extreme events.”
However, it is no silver bullet as the following experts pointed out.

“There is always going to be an element of doubt, as one is extrapolating into areas one
doesn’t know about. But what EVT is doing is making the best use of whatever data you
have about extreme phenomena.” (Richard Smith)

“The key message is that EVT cannot do magic but it can do a whole lot better than
empirical curve fitting and guesswork. My answer to the sceptics is that if people aren’t
given well founded methods like EVT, they’ll just use dubious ones instead.” (Jonathan
Tawn)

Many applications require the prediction of rare events, often outside the range of avail-
able data. EVT provides a framework that enables such extrapolation. But one has to be
careful. Relatively small model changes probably have astonishingly huge effects on extrapo-
lation. Thus, we have to compare different parameter estimates and measures of uncertainty
when working with parametric models. The models for the tail of a multivariate distribution
function we will present are parametric. In general, the results provided by extreme value
analyses are subject to the following restrictions (cf. [3]):

• As in many other statistical applications, the models are developed using asymptotic
arguments. Therefore, great care is required when interpreting the results for finite
samples.

• The models are based on idealised circumstances, which may not be reasonable, exact
or verifiable.

The statistical procedures obtained through EVT have many applications in hydrology,
reliability theory, finance and insurance. Think for instance of the value–at–risk and catas-
trophic claims.
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This thesis is about multivariate extremes. Most of the EVT literature treats the one-
dimensional case. The reason might be the lack of a standard definition of order in a multi-
dimensional space like Rd. In this work we consider the vector of componentwise maxima.
The aim of the thesis is to present the theory of multivariate extremes from an applied math-
ematical point of view. This means that on the one hand the reader can get a thorough
understanding of the mathematical aspects. We discuss the critical assumptions and the wide
range of possible outcomes. We also included extensive motivation and instructive examples
for the achieved results and definitions. On the other hand the reader is able to find very
practical ideas and help on how to set up a model in Chapter 6.

We now describe the contents of this thesis in more detail. Chapter 1 introduces the
concept of copulas and summarises some properties. Every copula gives rise to a survival
copula. Readers who are familiar with copulas can skip this chapter and start with Chapter 2.

In Chapter 2 we formulate the multivariate version of the maximum domain of attraction
(MDA). We work in a d-dimensional space. Multivariate extreme value distributions (MEVDs)
arise as the limit distributions of properly normalised componentwise maxima. A MEVD can
be standardised in order to work with simpler margins. By correcting a result in [14], we ex-
plicitly state this standardisation for Fréchet margins. The class of multivariate extreme value
distributions coincides with the class of max-stable distribution functions with non-degenerate
margins. This first characterisation is not very helpful in practice. Therefore we provide three
other representations of MEVDs, which can be used as a basis for statistical modelling and
estimation. We state the relationships between these equivalent representations and illustrate
them in a comprehensive example of the parametric Gumbel model.

In Chapter 3 we study conditional probabilities of high quantile exceedances. Tail depen-
dence coefficients are scalar measures of dependence in the tails of a bivariate distribution. They
provide a basic classification of the existing extremal dependence and can be expressed via
copulas. We look at two kinds of tail dependence coefficients and show how they complement
each other. The bivariate normal distribution with correlation less than 1 is asymptotically
independent, meaning that extreme events of the components happen independently.

Chapter 4 focuses on the limits of copulas of componentwise maxima of independent
identically distributed (iid) random sequences, which can naturally be considered to be ap-
propriate for the dependence structure between extreme events in the components. They are
called extreme value copulas (EV copulas). Similar to MEVDs, the class of EV copulas does not
permit a finite-dimensional parametrisation. Using the results of Chapter 2, we again find
many equivalent descriptions of EV copulas. A MEVD can be split into its margins, which
are univariate EVDs, and its copula, which has to be an EV copula. The central multivariate
extension of the Fisher–Tippett theorem basically says that the maximum domain of attraction
of a MEVD is characterised by the univariate MDAs of its margins and a so-called copula
domain of attraction (CDA) of its copula. An example illustrates how a verification of these
two conditions can be approached. The tail dependence coefficients of a copula provide a lot
of information about the corresponding EV copula. From a theoretical point of view, asymp-
totically dependent distributions are more interesting than asymptotically independent ones
because they lead to EV copulas different from the independence copula.

Section 4.4 is of crucial importance for a thorough understanding of the copula domain of
attraction. It shows that there do exist copulas which are in no CDA. From the definition of
the CDA this is far from obvious. Nevertheless this issue is not addressed in the vast majority
of EVT literature. The author of this thesis constructed two different kinds of examples of a

x



copula C such that C /∈ CDA(C0) for every EV copula C0. Especially the first example is very
intuitive and instructive. The second example is more general and forms a basis for further
probabilistic counterexamples.

Motivated by univariate EVT, Chapter 5 focuses on multivariate threshold exceedances
and offers a fully parametric model for the tail of a distribution. Moreover, we condition a
random vector to exceed high thresholds and study the arising copulas, the so-called threshold
copulas. We illustrate an alternative way to find the corresponding EV copula.

Chapter 6 is devoted to the practical considerations and challenges the user of MEVT has
to face. First, we present an approach based on the generalised extreme value distribution
and block maxima. It turns out that the availability of a wide variety of EV copulas is crucial
for its implementation. Therefore some methods to construct new extreme value copulas
from known ones are described. Product copulas and nested copulas are useful to introduce
asymmetry. Copula estimation and testing for extremes are discussed. Finally, we consider
violations of the standard assumptions and highlight the strengths and limitations of EVT.

Appendix A briefly summarises the most important results of univariate extreme value
theory.

Johannes Heiny
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Chapter 1

Copulas

The aim of this short chapter and Appendix A is to gather important results on dependence
modelling and univariate extreme value theory, which will be referred to in the main chapters
numerous times.

This thesis deals with extremes of random variables with values in Rd, where d ∈ N. A
copula describes the dependence structure of a multivariate distribution function (df).

Definition 1.1 (copula). A d-dimensional copula is a df on [0, 1]d with standard uniform
marginal distributions.

Theorem 1.2 (Sklar). [12, p. 186]
Let F be a d-dimensional df with margins F1, . . . ,Fd. Then there exists a copula C such that
for all x1, . . . ,xd ∈ R = [−∞,∞],

F (x1, . . . ,xd) = C(F1(x1), . . . ,Fd(xd)). (1.1)

If the margins are continuous, then C is unique. Otherwise C is uniquely determined on
Ran F1 × · · · ×Ran Fd.
Conversely, for a copula C and continuous margins F1, . . . ,Fd, the function F defined
in (1.1) is a d-dimensional df with margins F1, . . . ,Fd.

Definition 1.3 (generalised inverse). The generalised inverse of a non-decreasing function
f : R→ R is defined by

f←(t) := inf {x ∈ R : f(x) ≥ t}

with the convention inf ∅ :=∞.

From (1.1) one obtains with xi = F←(ui) that

C(u1, . . . ,ud) = F (F←1 (u1), . . . ,F
←
d (ud)), (u1, . . . ,ud) ∈ [0, 1]d. (1.2)

Let X = (X1, . . . ,Xd) ∼ F with margins F1, . . . ,Fd. Since

F (F←1 (u1), . . . ,F
←
d (ud)) = P(X1 ≤ F←1 (u1), . . . ,Xd ≤ F←d (ud)), (u1, . . . ,ud) ∈ [0, 1]d,

we can interpret C(u1, . . . ,ud) as the joint probability that all components of X stay at or
below their lower ui-quantiles of their margins.

1



2 CHAPTER 1. COPULAS

Definition 1.4 (copula of F ). Let the random vector X = (X1, . . . ,Xd) have the joint
df F with continuous marginal dfs F1, . . . ,Fd. The copula of F (or X) is the df C of
(F1(X1), . . . ,Fd(Xd)).

Strictly increasing transformations do not change the copula. Let X be a d-dimensional
random vector with continuous margins and copula C, and let T1, . . . ,Td be strictly increasing
functions. Then (T1(X1), . . . ,Td(Xd)) also has copula C.

Remark 1.5. The above result justifies the transformation of margins in a multivariate ex-
treme value (MEV) analysis. Suppose we prefer working with the continuous marginal dfs
G1, . . . ,Gd over the given strictly increasing dfs F1, . . . ,Fd. By applying the strictly increas-
ing transformations G←i ◦ Fi to the components of X , we could consider the vector

(G←1 ◦ F1(X1), . . . ,G
←
d ◦ Fd(Xd)),

which not only has the required margins, but also the same copula as X . A popular choice
for Gi is the standard Fréchet df, which we define below. An application can be found in
Theorem 2.5 later on.

For α > 0 the df of the Fréchet distribution Φα is given by

Φα(x) =

{
0 if x ≤ 0,

exp{−x−α} if x > 0.
(1.3)

If α = 1 we have the standard Fréchet distribution Φ1. This distribution will appear numerous
times in this thesis.

Proposition 1.6. [13, Theorem 2.10.7]
Every d-dimensional copula C is Lipschitz continuous. More precisely,

|C(u1, . . . ,ud)−C(v1, . . . , vd)| ≤
d∑
i=1

|ui − vi|, (u1, . . . ,ud), (v1, . . . , vd) ∈ [0, 1]d. (1.4)

The following bounds hold for every copula. The lower bound will be refined for the class
of extreme value copulas in (2.8).

Proposition 1.7 (Fréchet bounds). [12, Theorem 5.7]
Every d-dimensional copula C fulfills the inequalities

max

{
d∑
i=1

ui + 1− d, 0

}
≤ C(u1, . . . ,ud) ≤ min {u1, . . . ,ud} , (u1, . . . ,ud) ∈ [0, 1]d. (1.5)

The upper Fréchet bound is called comonotonicity copula. It represents the case of com-
plete dependence. Let U be a standard uniform random variable. Then the components of
the d-dimensional random vector (U , . . . ,U ) are completely dependent and its copula is the
upper bound in (1.5). The lower bound in (1.5), however, only is a copula if d = 2.
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1.1 Survival copulas

Definition 1.8 (survival copula). Let C be a d-dimensional copula and let the random
vector U ∼ C. The survival copula Ĉ of C is the df of the random vector 1−U .

Remark 1.9. Since 1−U has standard uniform margins, the df Ĉ is a proper copula.

For a d-dimensional df F with margins F1, . . . ,Fd and copula C, let (X1, . . . ,Xd) ∼ F . Define

F (x) := P(X1 > x1, . . . ,Xd > xd), x = (x1, . . . ,xd) ∈ Rd,

andF i := 1− Fi for i = 1, . . . , d. The survival copula Ĉ of C satisfies

F (x1, . . . ,xd) = Ĉ(F 1(x1), . . . ,F d(xd)), x ∈ Rd. (1.6)

In case of continuous margins

F (x) = P(1− F1(X1) ≤F 1(x1), . . . , 1− Fd(Xd) ≤F d(xd)),

where 1− Fi(Xi) ∼ U(0, 1). Therefore Ĉ is the df of (1− F1(X1), . . . , 1− Fd(Xd)).
For a two-dimensional copula C and its corresponding survival copula Ĉ, we have the

useful relationship

Ĉ(u1,u2) = u1 + u2 − 1+C(1− u1, 1− u2), (u1,u2) ∈ [0, 1]2. (1.7)
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Chapter 2

Multivariate Extremes

Many applications that require the prediction of rare events involve multivariate data. In
the univariate case our intuition tells us how to define records or extreme values. In the
multivariate case, however, we lack a natural notion of order as several different concepts of
ordering are possible.

A particular combination of the components, rather than the individual components them-
selves, might be of interest. In general these components influence each other, which explains
the importance of modelling their dependence structure. Unfortunately, as Coles [3] points
out, “some multivariate processes have a strength of dependence that weakens at high levels,
to the extent that the most extreme events are near-independent.”

In this chapter we consider the vector of componentwise maxima and describe all possible
limiting multivariate extreme value distributions. The reader is assumed to be familiar with
the basic results from univariate extreme value theory. A brief overview can be found in the
Appendix. From now on X is d-dimensional random vector with joint distribution function
(df) F and margins F1, . . . ,Fd. Furthermore, X1,X2, . . . is a corresponding iid sequence. The
vector Xi has d (univariate) components:

Xi = (X1,i , . . . ,Xd,i)
>, i ∈N.

2.1 The model

Our aim is to model the statistical behaviour of

Mn :=
(
max
1≤i≤n

X1,i , . . . , max
1≤i≤n

Xd,i

)>
, n ∈N,

the vector of componentwise block maxima. The vector Mn does not necessarily correspond
to any of the observations Xi. The df of the random vector Mn is Fn, the nth power of F .

Remark 2.1. Without loss of generality we can assume all margins to be non-degenerate.
For a degenerate random variable Xd,i, i.e. there exists x0 ∈ R with P(Xd,i = x0) = 1, the
df F factorises into F = G · Fd, where G denotes the joint df of the first d− 1 components.

Notation: For vectors x = (x1, . . . ,xd)
> and y = (y1, . . . , yd)

> ∈ Rd arithmetic operations
and relations are understood componentwise.

5



6 CHAPTER 2. MULTIVARIATE EXTREMES

• x y = (x1y1, . . . ,xdyd)
>.

• x
y = (x1y1 , . . . ,

xd
yd
)>where y 6= 0.

• x+ y = (x1 + y1, . . . ,xd + yd)
>.

• x ≤ y means xi ≤ yi for all i ∈ {1, . . . , d}.

• x < y means xi < yi for all i ∈ {1, . . . , d}.

• x ≮ y means there exists an i ∈ {1, . . . , d} with xi ≥ yi.

Multivariate extreme value distributions are defined analogously to the one-dimensional
case.

Definition 2.2 (MEVD, MDA). Let F be a d-dimensional df. Suppose there exist a
d-dimensional df G with non-degenerate margins, and normalising sequences an > 0 and
bn ∈ Rd for n ∈N such that

lim
n→∞

P

(
Mn − bn
an

≤ x
)
= lim

n→∞
Fn(anx+ bn) = G(x) (2.1)

for all continuity points x ∈ Rd of G, then G is called a multivariate extreme value distri-
bution (MEVD) and F is said to be in the maximum domain of attraction of G. We use the
notation F ∈MDA(G).

Remark 2.3.

1. If the df G is no multivariate extreme value distribution, MDA(G) := ∅.

2. The convergence in distribution of the random vector Mn−bn
an

in (2.1) implies the con-
vergence of its margins. Consequently, the margin Fi is in the MDA of a univariate
extreme value distribution (EVD) and a possible choice for the normalising sequences
of Fi in the Fisher–Tippett theorem (Theorem A.1) is an := ai,n and bn := bi,n, n ∈N.

3. A MEVD G necessarily has univariate EVDs as margins. Since the marginal dfs of G
are continuous (see Theorem A.1) and since the copula of G is continuous by Proposi-
tion (1.6), G is continuous too. By Sklar’s theorem, G has a unique copula.

Example 2.4 (Fréchet margins). Let d = 2 and F be a df with margins F1(x) = F2(x) =

exp(−x−1) = Φ1(x), for x > 0, the standard Fréchet df. Then

P

(
M1,n

n
≤ x

)
= P

(
M2,n

n
≤ x

)
= Fn2 (nx) = exp(−x−1), x > 0,

which shows an = (n,n)> and bn = (0, 0)>, n ∈N. Next we consider three possible choices
for the joint df F .

(a) Let Fa(x1,x2) = F1(x1)F2(x2) for (x1,x2) ∈ R2. By calculating

Fna (anx+ bn) = Fn1 (nx1)F
n
2 (nx2) = Fa(x1,x2), n ∈N,

we have found a first MEVD.
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(b) Let Fb(x1,x2) = exp
{
−
(
x−α1 + x−α2

)1/α}, (x1,x2) ∈ R2 and 1 ≤ α <∞. This defines
a df because the underlying copula is the well known Gumbel copula. Again

Fnb (nx1,nx2) = exp
{
−n−1

(
x−α1 + x−α2

)1/α}n
= Fb(x1,x2), n ∈N,

hence Fb is a MEVD. In general, for a MEVD F it holds F ∈MDA(F ), cf. Theorem 4.9

later on.

(c) Let Fc(x1,x2) = F1(x1)F2(x2)[1 + (1 − F1(x1))(1 − F2(x2))], x > 0, which is a df.
Now

Fnc (nx1,nx2) = F1(x1)F2(x2)[1+ (1− F1(nx1))(1− F2(nx2))]
n

→ F1(x1)F2(x2) = Fa(x1,x2)

for n→∞, thus Fc ∈MDA(Fa).

Taking EV distributions as margins simplified the calculations a lot. In fact, we did not
have to evaluate a limit in (a) and (b), a property shared by all max-stable dfs. ◦

The next result shows that one can easily standardise the problem in order to work with
simpler margins of G. Example 2.4 motivates to use standard Fréchet margins. The standard
Fréchet df is Φ1(x) = exp(−x−1) for x > 0, see also (1.3).

SupposeG is a multivariate df with continuous marginsG1, . . . ,Gd and Y ∼ G. According
to Remark 1.5 the vector

(Φ←1 (G1(Y1)), . . . ,Φ←1 (Gd(Yd)))

has df
G̃(x) = G(G←1 (Φ1(x1)), . . . ,G

←
d (Φ1(xd))), x ≥ 0, (2.2)

and standard Fréchet margins. Now set the function Ui := 1
1−Fi , i ∈ {1, . . . , d}. Since Ui has

range [1,∞], the generalised inverse U←i has domain [1,∞]. By a direct calculation one can
show that U←i (x) = F←i (1− 1/x) for x ≥ 1. The vector (U1(X1), . . . ,Ud(Xd)) has df

F̂ (x) = F (U←1 (x1), . . . ,U
←
d (xd)), x ∈ [1,∞]d.

Theorem 2.5. (cf. [14, Proposition 5.10])
Given a d-dimensional df G and using the notation from above, (1) implies (2), where

(1) G is a MEVD,

(2) G̃ is a MEVD with standard Fréchet margins.

For a d-dimensional df F an even more general result is: (i) implies (ii), where

(i) F ∈MDA(G),

(ii) F̂ ∈MDA(G̃) and F̂i ∈MDA(Φ1) for i = 1, . . . , d.



8 CHAPTER 2. MULTIVARIATE EXTREMES

Proof. This proof is an extended version of the proof given in [14]. Suppose we know
that (i) ⇒ (ii) holds. Since every MEVD G satisfies G ∈ MDA(G), cf. Theorem 4.9, we can
take F = G in (i) to conclude with (ii) that G̃ is a MEVD with standard Fréchet margins.
Therefore, we only need to show (i)⇒ (ii).

Let F ∈ MDA(G) with normalising sequences an > 0 and bn ∈ Rd for n ∈ N. Let
i ∈ {1, . . . , d}. Convergence of margins means

lim
n→∞

Fni (ai,nx+ bi,n) = Gi(x), x ∈ R. (2.3)

We derive an equivalent limit relation to (2.3) for all x ∈ R. For this aim we first consider
only x ∈ R with Gi(x) ∈ (0, 1). We start by taking logarithms and obtain

lim
n→∞

n · logFi(ai,nx+ bi,n) = logGi(x). (2.4)

It follows that Fi(ai,nx+ bi,n) −→ 1 as n → ∞. By using log(1+ y) ∼ y for y → 0, meaning
that the quotient of the two expressions approaches 1, we get

logFi(ai,nx+ bi,n) ∼ Fi(ai,nx+ bi,n)− 1, n→∞.

Accordingly (2.4) is equivalent to

lim
n→∞

nFi(ai,nx+ bi,n) = − logGi(x) (2.5)

for all x ∈ R with Gi(x) ∈ (0, 1). In the case of an x such that Gi(x) = 0 we can write
equation (2.3) as

lim
n→∞

Fni (ai,nx+ bi,n) = lim
n→∞

(
1− nF i(ai,nx+ bi,n)

n

)n
= 0.

Since
(
1− K

n

)n → exp(−K) for every K > 0 when n → ∞, there exists for every K > 0 an
nK ∈N such that mF i(ai,mx+ bi,m) > K for every m > nK . In other words, this means that
nF i(ai,nx+ bi,n) → ∞ which establishes (2.5), where we used the convention log 0 := −∞.
Similarly one sees that (2.5) also holds for x with Gi(x) = 1.

Taking reciprocals in (2.5) gives us for all x ∈ R that

1

nFi(ai,nx+ bi,n)
=
Ui(ai,nx+ bi,n)

n
−→ 1

− logGi(x)
as n→∞. (2.6)

Next we invert both sides of (2.6):(
Ui(ai,n·+ bi,n)

n

)←
(x) = inf

{
t :

Ui(ai,nt+ bi,n)

n
≥ x

}
= inf {t : ai,nt+ bi,n ≥ U←i (nx)}

=
U←i (nx)− bi,n

ai,n
, x > 0,

and (
1

− logGi(·)

)←
(x) = G←i (Φ1(x)), x > 0.
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Hence we get from (2.6) that

lim
n→∞

U←i (nx)− bi,n
ai,n

= G←i (Φ1(x)), x > 0.

We are ready to compute the limiting distribution for F̂ . We find that

lim
n→∞

F̂n(nx) = lim
n→∞

P (Mi,n ≤ U←i (nxi) , i = 1, . . . , d)

= lim
n→∞

P

(
Mi,n − bi,n

ai,n
≤ U←i (nxi)− bi,n

ai,n
, i = 1, . . . , d

)
= G̃(x)

for x > 0, completing the proof. �

Remark 2.6. Theorem 2.5 is a corrected version of Theorem 5.10 in [14], which unfortu-
nately is a frequently cited result in EVT literature. The problem is that in [14] the equiva-
lence of (1) and (2) is claimed. We show the opposite by a counterexample. Let

H(x1,x2) = N(x1)N(x2), (x1,x2) ∈ R2,

be the df of two independent standard normal random variables, where N denotes the
standard normal df. The df H obviously is no MEVD. Now we transform the margins of H
according to formula (2.2) and get

H̃(x1,x2) = H (N←(Φ1(x1)),N
←(Φ1(x2)))

= N(N←(Φ1(x1)))N(N←(Φ1(x2)))

= Φ1(x1)Φ1(x2), (x1,x2) ∈ R2.

Since H̃ is a MEVD with standard Fréchet margins, we conclude that (2) does not imply (1).
However, with the additional assumption Fi ∈ MDA(Gi) for i ∈ {1, . . . , d} it is possible

to show the other implication (ii)⇒ (i). In this case the normalising sequences can be chosen
as an = n and bn = 0 ∈ Rd for n ∈N. Using (2.6) and the definition of G̃, one finds

lim
n→∞

Fn(nx) = lim
n→∞

F̂n
(
n
U1(nx1)

n
, . . . ,n

Ud(nxd)

n

)
= G̃

(
1

− logG1(x1)
, . . . ,

1

− logGd(xd)

)
= G̃ (Φ←1 (G1(x1)), . . . ,Φ←1 (Gd(xd)))

= G(x), x ∈ Rd.

If the function G̃ in formula (2.2) is a MEVD, it has an interesting property (cf. Example 2.4
(a) and (b)):

G̃n(nx) = G̃(x), for n ∈N and x > 0.

This basically follows from the facts that the standard Fréchet distribution function satisfies
Φn

1 (nx) = Φ1(x) for n ∈ N and x ∈ R, and that the copula of a MEVD has the stability
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property (4.6). Setting x = 1
ny we then get G̃(y) = G̃1/n( 1ny) and by the continuity of the

MEVD G̃,
G̃(y) = G̃t(ty), for t ∈ R+ and y > 0. (2.7)

In particular, G̃t is a df for all real t > 0.

Definition 2.7 (max-id). A df F is is called max-infinitely divisible (max-id) if F t is a df
for all t > 0.

In contrast to univariate dfs, not every multivariate df is max-id.

Example 2.8 (bivariate case). Let the bivariate df F satisfy

F (0, 0) = 0, F (1, 0) = F (0, 1) =
1

4
,

and suppose there exists a random vector Z ∼ F 1/3. We calculate

P (Z ∈ {(0, 1]× (−∞, 0]} ∪ {(−∞, 0]× (0, 1]}) = F
1/3(1, 0) + F

1/3(0, 1) = 1.2599 > 1,

a contradiction. F 1/3 is no proper df and F is not max-id. ◦

Resnick provides a nice criterion for a two-dimensional df F to be max-id, [14, p. 254].

Proposition 2.9. A df F on R2 with continuous density Fx1x2 and Fxi the partial derivative of F
with respect to xi, i ∈ {1, 2}, is max-id if and only if Fx1Fx2 ≤ Fx1x2 a.s. on R2.

Remark 2.10. Applying this result to the bivariate normal distribution with correlation ρ

reveals max infinite divisibility if and only if ρ ≥ 0, see [14].

A stronger property than max infinite divisibility is max stability.

Definition 2.11 (max-stable). A d-dimensional df F is is called max-stable if there exist
functions α : R→ (0,∞)d and β : R→ Rd such that for every t > 0

F t(x) = F (α(t)x+ β(t)), x ∈ Rd.

Note that every univariate non-extreme value distribution is max-id but not necessarily
max-stable. If G is a MEVD, the df G̃ defined in (2.2) is max-stable with α(t) = t−1 and
β(t) = 0 (see (2.7)).

We round off this section with a characterisation of all MEV distributions and a property
of their dependence structure.

Theorem 2.12. The class of multivariate extreme value distributions coincides with the
class of max-stable dfs with non-degenerate margins.

Proof. Consult [14, p. 264]. �
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Every MEVD G is positively quadrant dependent, i.e.

G(x) ≥ G1(x1) · · ·Gd(xd), x ∈ Rd. (2.8)

A proof of this interesting result can be found in Remark 4.14. The lower bound for G in (2.8)
is a refinement of the lower Fréchet bound in Proposition 1.7. Moreover, the independence
of the components (i.e. G(x) = G1(x1) · · ·Gd(xd)) is equivalent to the existence of a point
y ∈ Rd with Gi(yi) ∈ (0, 1) for all i = 1, . . . , d such that G(y) = G1(y1) · · ·Gd(yd). Complete
dependence (i.e. G(x) = min{G1(x1), . . . ,Gd(xd)}) is equivalent to the existence of a point
y ∈ Rd with 0 < G1(y1) = . . . = Gd(yd) < 1 such that G(y) = G1(y1). The reference for the
last two statements is [1, p. 266]

2.2 Representations of multivariate extreme value distributions

Unfortunately the characterisation of MEV distributions in Theorem 2.12 fails to be very use-
ful in practice. Therefore this section is concerned with more explicit representations of MEV
distributions, which form a starting point for model building and estimation procedures. The
most modern approach via extreme value copulas, however, will be discussed in a separate
chapter.

In the whole section G is a MEV distribution with margins G1, . . . ,Gd. According to the
Fisher–Tippett theorem, the marginal dfs belong to the three parameter generalised extreme
value distribution family (see Definition A.2). Hence, it remains to shed light on the possible
dependence structures, which cannot be captured in a finite-dimensional parametric family.

2.2.1 Stable tail dependence function `

Definition 2.13 (stable tail dependence function). [1, p. 257]
The stable tail dependence function of a d-dimensional MEVD G is defined by

`(y) = − logG(G←1 (e−y1), . . . ,G←d (e−yd)), y ≥ 0. (2.9)

Given ` and univariate EVDs G1, . . . ,Gd we can recover the MEVD G through

G(x) = exp {−`(− logG1(x1), . . . ,− logGd(xd))} , x ∈ Rd, (2.10)

hence ` contains all the information about the underlying dependence. The function ` has
properties (L1)–(L4) (cf. [1, p. 257]). We provide some heuristic arguments to illustrate (L1)
and (L1), and prove (L3).

(L1) `(ty) = t`(y) for t > 0 and y ∈ [0,∞]d.

Observe that, with the convention 1
0 := ∞, ` can be expressed by G̃ of the previous

section (see (2.2)):
`(y) = − log G̃(y−1). (2.11)

Using equation (2.7) we see that

`(ty) = − log G̃(t−1y−1) = − log G̃t(y−1) = t`(y).
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(L2) `(ei) = 1 for i = 1, . . . , d, where e1, . . . , ed is the canonical basis of Rd.

This property follows from (2.9). To verify it in a special case one could take the df G̃
with standard Fréchet margins.

(L3) max{y1, . . . , yd} ≤ `(y) ≤ y1 + · · ·+ yd, y ∈ [0,∞]d.

From Remark 3.10 we know that the MEVD G̃ with Fréchet margins is positively quad-
rant dependent. Therefore we have

Φ1(x1) · · ·Φ1(xd) ≤ G̃(x) ≤ min{Φ1(x1), . . . ,Φ1(xd)}, x ∈ Rd,

and because of (2.11), we conclude that (L3) is an immediate consequence. Note that the
bounds max{y1, . . . , yd} and y1+ · · ·+ yd correspond to complete dependence ( comono-
tonic copula) and independence, respectively.

(L4) ` is convex.

2.2.2 Spectral measure H

This section is based on the presentation in [1, Chapter 8]. MEV distributions are characterised
by finite measures on the unit simplex

Sd := {w ∈ [0,∞]d : w1 + · · ·+wd = 1}.

Proposition 2.14 (spectral measure). For a d-dimensional extreme value distribution G with
margins G1, . . . ,Gd there exists a finite measure H on Sd with∫

Sd
wi dH(w) = 1, i = 1, . . . , d,

such that
G(x) = exp

{∫
Sd

min
1≤i≤n

{wi logGi(xi)} dH(w)

}
, x ∈ Rd. (2.12)

The measure H is called spectral measure and H(Sd) = d.

Because of (2.12) and (2.9), the stable tail dependence function is uniquely determined
by H ,

`(y) =

∫
Sd

max
1≤i≤n

{wiyi} dH(w), y ≥ 0. (2.13)

Conversely, given ` the calculation of H is possible but complicated, mainly due to the fact
that H can have atoms.

Remark 2.15 (bivariate case). In the bivariate case, where the stable tail dependence func-
tion is `(y1, y2) =

∫
[0,1] max{wy1, (1−w)y2} dH(w), one achieves this by the following for-

mulas from [1, p. 264]:

H({0}) = lim
y1→∞

∂`

∂y2
(y1, y2),

H({1}) = lim
y2→∞

∂`

∂y1
(y1, y2).
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A density of H on the interior of the unit interval is

h(w) = − 1

w(1−w)
∂2`

∂y1∂y2
(1−w,w), w ∈ (0, 1).

Extremal coefficients

The extremal coefficients θV , defined below, provide a first idea of the dependence structure
of the MEV distribution G. They are finite dimensional and thus cannot tell the full story.
However, the extremal coefficients are easily derived from ` and have an intuitive interpreta-
tion. Let V 6= ∅ be a subset of {1, . . . , d} and define eV =

∑
i∈V ei, a sum of canonical basis

vectors. The extremal coefficients are the numbers θV := `(eV ), where V runs through all
possible non-empty subsets of {1, . . . , d}. They have an interesting property. Let p ∈ (0, 1)

and Y ∼ G, then θV satisfies

P(Yi ≤ G←i (p), ∀i ∈ V ) = exp

{∫
Sd

min
i∈V
{wi log p} dH(w)

}
= exp

{
log p

∫
Sd

max
i∈V
{wi} dH(w)

}
= pθV ,

where the first equality followed from (2.12) and the last from (2.13). In particular for the set
V = {1, . . . , d}, we have pθV = CG(p, . . . , p), where CG is the unique copula of G. Beirlant
et al. point out that “stronger dependence corresponds to smaller extremal coefficients”. It
holds 1 ≤ θV ≤ |V |, where |V | is the cardinality of the set V .

2.2.3 Pickands dependence function A in the bivariate case

For d = 2, the Pickands dependence function A is defined as the restriction of the stable tail
dependence function to the unit simplex:

A(t) := `(1− t, t), t ∈ [0, 1]. (2.14)

Because of property (L1) we get `((y1 + y2)−1y) = (y1 + y2)−1`(y). It follows

`(y) = (y1 + y2)A

(
y2

y1 + y2

)
, y ≥ 0, (2.15)

and consequently with (2.10)

G(x) = exp

{
log(G1(x1)G2(x2))A

(
logG2(x2)

log(G1(x1)G2(x2))

)}
, x ∈ R2.

Properties (L3) and (L4) translate into

(A1) max(1− t, t) ≤ A(t) ≤ 1 for t ∈ [0, 1],

(A2) A is convex.

Any function A : [0, 1]→ R satisfying (A1) and (A2) is a valid Pickands dependence function
(see [8]).
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Figure 2.1: Some A-functions and the triangle region in (A1). A(t) = 1 corresponds to independence,
and A(t) = max(1− t, t) to complete dependence.

Remark 2.16. Properties (L1)–(L4) are sufficient to characterise a stable tail dependence
function if and only if d = 2.

In [8] and [9] Gudendorf and Segers compare various nonparametric estimators for A.
The main challenge for nonparametric estimation techniques in MEVT in general is to fulfill
functional constraints such as (A1) and (A2) (cf. Figure 2.2). The alternative is to consider
parametric sub-families (e.g. for A, `, H or G), which enables us to apply maximum-likelihood
methods, and the obtained results always define a MEVD. “In this way only a small subset of
the complete class of limit distributions for G is obtained, but by careful choice it is possible
to ensure that a wide sub-class of the entire limit family is approximated” [3, p. 146].

2.3 A comprehensive example

We have seen that there exists a great variety of equivalent descriptions of multivariate ex-
treme value distributions. Now we study the parametric Gumbel model in detail.

Let 1 < α < ∞ and G1,G2 be arbitrary univariate extreme value distributions. The func-
tion A(t) := ((1− t)α + tα)1/α, t ∈ [0, 1], fulfills (A1) and (A2). Therefore it is a Pickands
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Figure 2.2: Plots of various nonparametric estimates for a Pickands dependence function, which are
discussed in [8]. Estimates by Pickands (dotted line), Deheuvels (dashed line), Hall–Tajvidi (dot-dashed
line) and Capéràa–Fougères–Genest (solid line). In general these estimates are, however, not convex
which requires additional work for convexifying.

dependence function and characterises a two-dimensional EVD. From (2.15) we get the cor-
responding stable tail dependence function `,

`(y1, y2) = (yα1 + yα2 )
1
α , y ≥ 0.

Given ` and the margins G1 and G2 one calculates

G(x1,x2) = exp
{
− [(− logG1(x1))

α + (− logG2(x2))
α]

1
α

}
, x ∈ R2.

The copula of G is the Gumbel copula, which explains the model’s name. Now we turn to the
extremal coefficients. Trivially θ{1} = θ{2} = 1 and θ{1,2} = `(1, 1) = 21/α. A large α implies
strong extremal dependence. This is due to the fact that

G(G←1 (p),G←2 (p)) = pθ{1,2} , p ∈ (0, 1)

increases for increasing values of α. Finally, we use Remark 2.15 to obtain an expression for
the spectral measure H on [0, 1]. We get

H({0}) = H({1}) = 0.
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On (0, 1) a density of H is given by

h(w) = − 1

w(1−w)
∂2`

∂y1∂y2
(1−w,w)

= (α− 1)(w(1−w))α−2 ((1−w)α +wα)
1
α
−2 , w ∈ (0, 1).



Chapter 3

Tail Dependence Coefficients

Tail dependence coefficients are scalar measures of dependence in the tails of a bivariate
distribution. They are defined via conditional probabilities of high quantile exceedances and
can be expressed in terms of copulas. Thus, tail dependence coefficients do not depend on
the margins.

In this chapter X = (X1,X2) is a two-dimensional random vector with df F , copula C
and margins F1 and F2.

3.1 Tail dependence coefficient of the first kind

Definition 3.1 (upper tail dependence coefficient). [4, Definition 2]
The (upper) tail dependence coefficient of X1 and X2 is

λu := λu(X1,X2) := lim
q→1−

P(X2 > F←2 (q)|X1 > F←1 (q)), (3.1)

provided a limit λu ∈ [0, 1] exists. If λu ∈ (0, 1], then X1 and X2 are said to be asymptot-
ically dependent (or tail dependent) in the upper tail. If λu = 0, they are asymptotically
independent.

Analogously, the lower tail dependence coefficient is

λl := lim
q→0+

P(X2 ≤ F←2 (q)|X1 ≤ F←1 (q)), (3.2)

if a limit λl ∈ [0, 1] exists.

Remark 3.2. If X1 and X2 are independent, λu = 0. Whereas in case of complete depen-
dence λu = 1.

The upper tail dependence coefficient λu can be written in terms of the survival copula Ĉ
of X (see Definition 1.8):

λu = lim
q→1−

1− 2q+C(q, q)

1− q
= lim

q→0+

Ĉ(q, q)

q
. (3.3)

Hence, λu is independent of the margins F1 and F2.

17
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Furthermore, using the middle expression in (3.3), one obtains for a differentiable cop-
ula C that

λu = 2− lim
q→1−

1−C(q, q)
1− q

= 2− lim
q→1−

d

dq
C(q, q). (3.4)

Example 3.3. The bivariate Gumbel copula

Cα(u1,u2) = exp
{
− [(− log u1)

α + (− log u2)
α]

1
α

}
, 1 ≤ α <∞,

has λu = 2− 21/α. ◦

Next we are going to derive the upper tail dependence coefficient of the non-explicit Gauss
copula. Some notation: U = (U1,U2) ∼ C for a two-dimensional copula C.

Lemma 3.4. Suppose C is a two-dimensional and differentiable copula. Then

P(U2 ≤ u2|U1 = u1) =
∂

∂u1
C(u1,u2)

for all (u1,u2) ∈ [0, 1]2.

Proof. C is increasing and continuous in both arguments. For δ > 0 such that u1 + δ ≤ 1

we find

C(u1 + δ,u2)−C(u1,u2)
δ

=
P(u1 ≤ U1 ≤ u1 + δ,U2 ≤ u2)

δ
= P(U2 ≤ u2|u1 ≤ U1 ≤ u1 + δ)

and for δ < 0 such that u1 + δ ≥ 0 we find

C(u1 + δ,u2)−C(u1,u2)
δ

=
−P(u1 + δ ≤ U1 ≤ u1,U2 ≤ u2)

δ
= P(U2 ≤ u2|u1+ δ ≤ U1 ≤ u1).

Taking the limit δ → 0+ yields the desired result. �

Due to Lemma 3.4 and the identity

d

dq
C(q, q) =

∂

∂u1
C(q, q) +

∂

∂u2
C(q, q) (3.5)

equation (3.4) simplifies to

λu = lim
q→1−

(P(U2 > q|U1 = q) + P(U1 > q|U2 = q)) . (3.6)

Example 3.5 (Gauss copula). Let X = (X1,X2) have a bivariate normal distribution with
correlation ρ. The components Xi ∼ N(µi,σ2i ) so that Fi(x) = Φ

(
x−µi
σi

)
, i = 1, 2. The

copula CGa
ρ of X is unique. We evaluate its upper tail dependence coefficient λu. If ρ = −1,

then λu = 0. If ρ = 1, then λu = 1. Therefore assume ρ ∈ (−1, 1) and let (U1,U2) ∼ CGa
ρ . For

the first summand in (3.6) one finds

P(U2 > q|U1 = q) = P(F−12 (U2) > F−12 (q)|F−11 (U1) = F−11 (q))

= P(X2 > µ2 + σ2Φ−1(q)|X1 = µ1 + σ1Φ−1(q))
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Because of
X2 − µ2
σ2

|(X1 = µ1 + σ1x) ∼ N(ρx, 1− ρ2) it follows that

lim
q→1−

P(U2 > q|U1 = q) = lim
x→∞

P

(
X2 − µ2
σ2

> x|X1 = µ1 + σ1x

)
= lim

x→∞
Φ
(
x

√
1− ρ√
1+ ρ

)
= 0

and since the same applies to the second summand in (3.6), we get that λu = 0 for all ρ < 1.
Extreme events for X1 and X2 happen independently unless the correlation is 1. ◦

Remark 3.6. In contrast to the Gauss copula, the t-copula shows positive tail dependence.
For details consult [12, p. 211].

The bivariate normal distribution illustrates that even strong correlation ρ < 1 does not
necessarily imply asymptotic dependence. In general, there exists a variety of copulas (e.g.
Gauss copula) which do not have positive upper tail dependence, but nevertheless feature
some kind of dependence between F1(X1) and F2(X2) in their tails.

This means that the range of possibilities in the asymptotic independence case is extremely
wide. For instance if U1,U2 are independent standard uniform random variables, both pairs
(U1,U2) and (U1, 1−U1) are asymptotically independent. As a consequence, a need to com-
plement the information gained by λu with additional dependence measures arises.

3.2 Tail dependence coefficient of the second kind

Definition 3.7 (tail dependence coefficient of the second kind). [3, p. 164]
If the following limit exists, the tail dependence coefficient of the second kind is

λ̄u := λ̄u(X1,X2) := lim
q→1−

2 log(1− q)
logP(F1(X1) > q,F2(X2) > q)

− 1. (3.7)

Remark 3.8. For ease of notation we may omit the index and write λ, λ̄ instead of λu, λ̄u.
The upper tail dependence coefficient will be referred to as tail dependence coefficient.

Coles [3, p. 164] states the following properties of λ̄:

1. −1 ≤ λ̄ ≤ 1.

2. In case of asymptotic dependence λ̄ = 1.

3. For independent random variables λ̄ = 0.

4. For asymptotically independent random variables λ̄ increases with the strength of de-
pendence at extreme levels.

It makes a lot of sense to consider the pair (λ, λ̄). Three cases for the pair (λ, λ̄) can be
distinguished.
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• λ = 0, λ̄ ∈ [−1, 1)
Here λ̄ provides additional information about the dependence, although we have asymp-
totic independence.

• λ = (0, 1], λ̄ = 1

Under asymptotic dependence λ measures its strength.

• λ = 0, λ̄ = 1

This is a pathological case. By mistake, Coles (2001) claims that it does not exist, while
Demarta (2007) even provides an example [4, Example 2.9].

Example 3.9 (Gauss copula CGa
ρ ). The tail dependence coefficient of the second kind λ̄ exists

and equals the correlation ρ. Hence (λ, λ̄) = (0, ρ) for ρ < 1 and (λ, λ̄) = (1, 1) for ρ = 1. ◦

For the Gumbel copula Cα the coefficients are (λ, λ̄) = (2− 21/α, 1).

3.3 The tail dependence coefficient in context

We now consider the tail dependence coefficient λ of MEV distributions. Let G be a bivariate
EVD and C its copula. Using the middle expression in (3.4), 1− q ≈ log q for q close to 1 and
C(q, q) = q`(1,1), one finds

λ = 2− lim
q→1−

logC(q, q)

log q
= 2− `(1, 1), (3.8)

where ` is the stable tail dependence function of G. In terms of the Pickands dependence
function: λ = 2

(
1−A

(
1
2

))
.

Remark 3.10. Note that if λ = 0, then A
(
1
2

)
= 1 and by convexity A(t) = 1 (see Figure 3.1),

which implies C being the independence copula.

One calculates the lower tail dependence coefficient in (3.2):

λl = lim
q→0+

C(q, q)

q
= lim

q→0+

q2A(1/2)

q
=

{
0 if A

(
1
2

)
> 1

2 ,

1 if A
(
1
2

)
= 1

2 .

Apart from perfect dependence, copulas of MEV distributions are asymptotically indepen-
dent in the lower tails.

Finally, we (again) investigate the bivariate G̃ (i.e. a bivariate EVD on (0,∞)2 with stan-
dard Fréchet margins). Then, due to (2.10), property (L1) of the stable tail dependence func-
tion `, and (3.8),

G̃(x,x) = exp{−`(x−1,x−1)} = exp{−x−1`(1, 1)} = exp{−x−1(2− λ)}, ∀x > 0.

Hence, λ characterises the df G̃ on its diagonal.
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Figure 3.1: The tail dependence coefficient is connected to the A-function via λ = 2(1−A (1/2)),
source: [8].
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Chapter 4

Extreme Value Copulas

Basically, multivariate extreme value theory deals with the dependence structure of extreme
events. The most natural way of studying the inference between components of a random
vector, without worrying about its marginal distributions, is to consider its copula.

Our aim is to derive limiting copulas for the normalised vector Mn of componentwise
block maxima. We use the notation from Chapter 2:

Mn =

(
max
1≤i≤n

X1,i , . . . , max
1≤i≤n

Xd,i

)>
, n ∈N,

where X1,X2, . . . is a sequence of iid d-dimensional random vectors with joint distribution
function (df) F , copula C and margins F1, . . . ,Fd.

4.1 Multivariate extension of the Fisher–Tippett theorem

Lemma 4.1. For every n ∈N, the copula Cn of componentwise maxima Mn is given by

Cn(u) = Cn(u
1/n), u ∈ [0, 1]d.

Proof. For u ∈ [0, 1]d and n ∈N

Cn(u) = Fn((Fn1 )
← (u1), . . . , (F

n
d )
← (ud))

= Fn((F1)
← (u

1/n
1 ), . . . , (Fd)

← (u
1/n
d ))

= Cn(u
1/n).

�

Lemma 4.1 motivates to look at the limit limn→∞Cn.

Definition 4.2 (EV copula, CDA). A copula C0 is called an extreme value copula (EV cop-
ula) if there exists a copula C such that

lim
n→∞

Cn(u
1/n) = C0(u), ∀u ∈ [0, 1]d. (4.1)

Then C is said to be in the copula domain of attraction (CDA) of C0. We use the notation
C ∈ CDA(C0).

23
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In fact, the pointwise convergence in 4.1 holds even uniformly in u ∈ [0, 1]d. To see this,
consider a d-dimensional copula C which is in the CDA of some EV copula C0. We analyse
the sequence of copulas

Cn(u) = Cn(u
1/n), n ∈N,u ∈ [0, 1]d.

By definition (Cn)n∈N converges pointwise to C0. From Proposition 1.6 it follows that the
Cn, n ∈N, are Lipschitz continuous with Lipschitz constant 1. Let ε > 0. Since

|Cn(u)−Cn(v)| < ε, ∀n ∈N and u,v ∈ [0, 1]d, whenever
d∑
i=1

|ui − vi| < ε, (4.2)

the family {Cn : n ∈ N} is uniformly equicontinuous. Note that (4.2) is the definition of
uniform equicontinuity. Moreover, the family {Cn : n ∈ N} is uniformly bounded by 1. In
view of the Arzelà–Ascoli theorem, a pointwise convergent and uniformly equicontinuous
sequence of functions on the compact set [0, 1]d converges uniformly.

Remark 4.3. Even if we do not assume pointwise convergence to a continuous function C0,
the Arzelà–Ascoli theorem still guarantees the existence of a subsequence (Cn(k))k∈N that
converges uniformly to a continuous function on [0, 1]d. This proves that if the limit
limn→∞C

n(u1/n) exists for all u, it has to be continuous.

Next we consider the following conditions for a sequence of functions fn,n ∈ N, and a
function f : [0, 1]d → [0, 1].

1. The sequence fn : [0, 1]d → [0, 1],n ∈N, converges pointwise to f .

2. fn is continuous for all n ∈N.

3. The sequence fn,n ∈N, is uniformly bounded.

4. f is continuous.

Under these circumstances it can be shown that the sequence (fn) has a property called
continuous convergence: For x ∈ [0, 1]d and every sequence (xn) in [0, 1]d such that xn → x,
it follows

lim
n→∞

fn(xn) = f(x). (4.3)

In particular, these four conditions hold for the sequence of copulas (Cn) and the EV cop-
ula C0, where C ∈ CDA(C0). We rewrite (4.3) for this special case:

lim
n→∞

Cn(x
1/n
n ) = C0(x), if xn → x. (4.4)

Corollary 4.4. Let the d-dimensional df F be in the MDA of the d-dimensional EVD G. If
a copula C of F is in CDA(C0), then G also has copula C0.

Proof. Let an > 0, bn ∈ Rd,n ∈ N, be normalising sequences for F . Fix an x ∈ Rd. By the
convergence of margins Fni (ai,nxi + bi,n)→ Gi(xi) for n→∞ and i = 1, . . . , d the sequence

yn := (Fn1 (a1,nx1 + b1,n), . . . ,F
n
d (ad,nxd + bd,n)), n ∈N, (4.5)
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converges to (G1(x1), . . . ,Gd(xd)). Therefore we have

Fn(anx+ bn) = Cn(F1(a1,nx1 + b1,n), . . . ,Fd(ad,nxd + bd,n))

= Cn(y
1/n
n )

n→∞−→ C0(G1(x1), . . . ,Gd(xd))

= G(x), x ∈ Rd,

where the first equality followed by Lemma 4.1 and the limit from (4.4). Thus G has the
copula C0. �

Definition 4.5 (copula-max-stability). A d-dimensional copula C is copula-max-stable if
it satisfies

C(u) = Cm(u
1/m), ∀u ∈ [0, 1]d, (4.6)

for all m ∈N.

Remark 4.6. Copula-max-stability is completely different from the max-stability in Defi-
nition 2.11. In particular, every copula has standard uniform margins and thus can never
be max-stable in the sense of Definition 2.11. However, in order to be consistent with the
notation used in literature (e.g. [4, 8, 12, 13]) we call copulas with property (4.6) max-stable.

Proposition 4.7. A copula is an EV copula if and only if it is max-stable.

Proof. Starting with an EV copula C0 choose C ∈ CDA(C0) and m ∈N. Then

C0(u) = lim
n→∞

Cn(u
1/n) = lim

n→∞
Cnm(u

1/nm) = Cm0 (u
1/m), u ∈ [0, 1]d.

Conversely, every max-stable copula C is an EV copula because

lim
n→∞

Cn(u
1/n) = C(u), u ∈ [0, 1]d.

�

This also shows that an EV copula is in its own CDA. As seen above, the convergence
in (4.1) holds uniformly in u. Hence, we can replace n ∈N by a real t > 0 and work with the
relationship

lim
t→∞

Ct(u
1/t) = C0(u), u ∈ [0, 1]d (4.7)

instead. As shown in [12, p. 315], alternative formulations of (4.7) are

lim
s→0+

1−C(us)
s

= − logC0(u), u ∈ [0, 1]d (4.8)

and

lim
s→0+

1−C(1− sx1, . . . , 1− sxd)
s

= − logC0(e
−x1 , . . . , e−xd), x ≥ 0. (4.9)
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Example 4.8. In Example 2.4 we calculated the limiting bivariate EVDs for the dfs Fa,Fb
and Fc with standard Fréchet margins. Now we determine their EV copulas.

(a) CFa(u1,u2) = u1u2 ofr u ∈ [0, 1]2, where CFa denotes the copula of Fa, is an EV copula.

(b) CFb is the Gumbel copula, which is another EV copula.

(c) The underlying copula CFc is the Morgenstern copula CMδ with δ = 1:

CMδ (u1,u2) = u1u2[1+ δ(1− u1)(1− u2)], u ∈ [0, 1]2, δ ∈ [−1, 1].

Using the alternative formulation (4.9) we find for all δ ∈ [−1, 1] that

lim
s→0+

1−CMδ (1− sx1, . . . , 1− sxd)
s

= x1 + x2 = − log(e−(x1+x2))

and therefore C0(u1,u2) = u1u2 for u ∈ [0, 1]2 and δ ∈ [−1, 1]. This shows CFc is in
the CDA of the independence copula. ◦

The following theorem elegantly summarises everything one needs to know about MEVT.

Theorem 4.9 (Multivariate extension of the Fisher–Tippett theorem). [4, Theorem 3.1]
Let F (x) = C(F1(x1), . . . ,Fd(xd)) for the marginal dfs F1, . . . ,Fd and some copula C, and
let G(x) = C0(G1(x1), . . . ,Gd(xd)) be a MEVD with EV copula C0, where the marginal
dfs G1, . . . ,Gd of G are univariate EVDs.
Then F ∈MDA(G) if and only if

(i) Fi ∈MDA(Gi) for every i ∈ {1, . . . , d} and

(ii) limn→∞C
n(u1/n) = C0(u) for all u ∈ [0, 1]d.

Proof. We provide a different and more detailed proof of this important theorem. Given
F ∈ MDA(G) and normalising sequences an > 0, bn ∈ Rd,n ∈ N, (i) follows from the
univariate Fisher–Tippett theorem.

The difficult part is to show (ii). The idea is to use the convergence of margins
Fni (ai,nxi + bi,n) → Gi(xi) for n → ∞ and i = 1, . . . , d and the Lipschitz continuity of the
copula Cn(u) = Cn(u1/n).

By definition F ∈ MDA(G) is equivalent to limn→∞ F
n(anx+ bn) = G(x), x ∈ Rd,

which is the same as

lim
n→∞

Cn(F
n
1 (a1,nx1 + b1,n), . . . ,F

n
d (ad,nxd + bd,n)) = C0(G1(x1), . . . ,Gd(xd)). (4.10)

Fix u ∈ [0, 1]d. Since the univariate EVDs G1, . . . ,Gd are continuous, we can find xi such
that ui = Gi(xi), i = 1, . . . , d. By the triangle inequality we get

|Cn(u1, . . . ,ud)−C0(u1, . . . ,ud)| = |Cn(G1(x1), . . . ,Gd(xd))−C0(G1(x1), . . . ,Gd(xd))|
≤ |Cn(G1(x1), . . . ,Gd(xd))−Cn(Fn1 (a1,nx1 + b1,n), . . . ,F

n
d (ad,nxd + bd,n))|

+ |Cn(Fn1 (a1,nx1 + b1,n), . . . ,F
n
d (ad,nxd + bd,n))−C0(G1(x1), . . . ,Gd(xd))|.
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Now the second term goes to zero because of (4.10), i.e.

lim
n→∞

|Cn(Fn1 (a1,nx1 + b1,n), . . . ,F
n
d (ad,nxd + bd,n))−C0(G1(x1), . . . ,Gd(xd))| = 0.

Using the Lipschitz continuity of copulas (see Proposition 1.6), the first term is bounded by
a sum of terms, which converge to zero as well because of marginal convergence. In long
form

|Cn(G1(x1), . . . ,Gd(xd))−Cn(Fn1 (a1,nx1 + b1,n), . . . ,F
n
d (ad,nxd + bd,n))|

≤
d∑
i=1

|Gi(xi)− Fni (ai,nxi + bi,n)| → 0, for n→∞.

Therefore, limn→∞Cn(u1, . . . ,ud) = C0(u1, . . . ,ud) which establishes (ii). Finally, given (i)
and (ii), one copies the proof of Corollary 4.4 to see F ∈MDA(G). �

Remark 4.10. Both (i) and (ii) are relatively easy to check: (i) by means of univariate EVT;
(ii) by straightforward calculation.

Example 4.11. We study the two-dimensional df

F (x1,x2) = 1− e−x1 − e−x2 +(ex1 + ex2 −1)−1, x ≥ 0,

given in [14, p. 279]. The marginal dfs are standard exponential:

Fi(x) = 1− e−x for x > 0 and i ∈ {1, 2}.

In order to find the limiting MEVD, one first analyses condition (i) in Theorem 4.9. By
evaluating

Fn1 (x+ log n) =
(
1− e−x−logn

)n
1(0,∞) (x+ log n)

=

(
1− e−x

n

)n
1(− logn,∞)(x)

→ exp
{
− e−x

}
=: Λ(x), x ∈ R,

one concludes that the margins are in the MDA of the Gumbel distribution Λ. Therefore we
now turn our attention to condition (ii) and calculate the copula C of F . We get that

C(u1,u2) = F (F←1 (u1),F
←
2 (u2))

= F (− log(1− u1),− log(1− u2))

= 1− (1− u1)− (1− u2) +
(

1

1− u1
+

1

1− u2
− 1

)−1
=
u1u2(2− u1 − u2)

1− u1u2
, u ∈ [0, 1]2\{(1, 1)},

and C(1, 1) = 1.
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In the light of the alternative formulation (4.9) of condition (ii) we write

1−C(1− sx1, . . . , 1− sxd)
s

=
(x1 + x2 − sx1x2)− (x1 + x2)(1− sx1 − sx2 + s2x1x2)

s(x1 + x2 − sx1x2)
(4.11)

for x ≥ 0 and appropriate (depending on x) values of s > 0 such that 1− sx ∈ [0, 1]2.
When taking the limit in (4.11) for s → 0+, it turns out that both the nominator and the
denominator tend to 0. An application of l’Hôspital’s rule yields

lim
s→0+

1−C(1− sx1, . . . , 1− sxd)
s

= lim
s→0+

(
x1 + x2 −

x1x2
x1 + x2 − 2sx1x2

)
= x1 + x2 −

x1x2
x1 + x2

, x ≥ 0.

(4.12)

Next it needs to be checked that this last expression in (4.12) really defines an EV copula C0

via
− logC0(e

−x1 , e−x2) = x1 + x2 −
x1x2
x1 + x2

. (4.13)

It turns out that

C0(u1,u2) = exp

{
log u1u2 −

log u1 log u2
log u1u2

}
= exp

{
log u1u2

[
1− log u1 log u2

(log u1u2)2

]}
.

A comparison with the Pickands representation of an EV copula in Corollary 4.13 shows
that the corresponding A-function would be

A

(
log u1

log(u1u2)

)
= 1− log u1 log u2

(log u1u2)2

and thus
A(t) = t2 − t+ 1, t ∈ [0, 1],

which is a proper Pickands dependence function since it satisfies properties (A1) and (A2).
Consequently, C0 is an EV copula. To sum up F ∈ MDA(G) where G has copula C0 and
Gumbel margins. ◦

4.2 Representations of extreme value copulas

Chapter 2 covered different representations of a MEVD G:

• the stable tail dependence function `,

• the spectral measure H ,

• the Pickands dependence function A.

All these approaches could be used to construct MEV distributions. It is very logical to
employ the same techniques to characterise the corresponding EV copulas.

Let G(x) = C0(G1(x1), . . . ,Gd(xd)) be a MEVD with margins G1, . . . ,Gd and copula C0,
and let ` be its stable tail dependence function. The EV copula C0 can be written in terms
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of `. From equation (2.10) it follows

C0(u) = exp (−`(− log u1, . . . ,− log ud)) , u ∈ [0, 1]d, (4.14)

where by virtue of (2.13) ` can be expressed through the spectral measure:

`(y) =

∫
Sd

max
1≤i≤n

{wiyi} dH(w), y ≥ 0, (4.15)

with the constraints ∫
Sd
wi dH(w) = 1, i = 1, . . . , d. (4.16)

This representation of an EV copula also explains the somewhat mysterious constraints
in (4.16). Because of

ui = C0(1, . . . , 1,ui, 1, . . . , 1) = exp (−`(0, . . . , 0,− log ui, 0, . . . , 0))

= exp

(
log ui

∫
Sd
wi dH(w)

)
, ui ∈ [0, 1]

the constraints stem from the standard uniform margin property of copulas.

Remark 4.12. The EV copula C̃0 of the MEVD G̃ (see (2.2)) is written as

C̃0(u) = G̃

(
1

− log u1
, . . . ,

1

− log ud

)
, u ∈ [0, 1]d,

with log 0 := −∞.

Corollary 4.13 (Pickands representation of a two-dimensional EV copula). [8]
Every two-dimensional EV copula C0 with Pickands dependence function A has the repre-
sentation

C0(u1,u2) = exp

{
log(u1u2)A

(
log u1

log(u1u2)

)}
, (u1,u2) ∈ (0, 1)2. (4.17)

Once more we stress that C0 is the independence copula if A = 1. In this case the spectral
measure H concentrates on the points (1, 0) and (0, 1) with H({(1, 0)}) = H({(0, 1)}) = 1.

Remark 4.14. Now since for u ∈ (0, 1)2

exp

{
log(u1u2)A1

(
log u1

log(u1u2)

)}
≥ exp

{
log(u1u2)A2

(
log u1

log(u1u2)

)}
, (4.18)

if A1 and A2 are two Pickands dependence functions with A1(t) ≤ A2(t) for all t ∈ [0, 1],
one proves the positive quadrant dependence of EV copulas (i.e C0(u1,u2) ≥ u1u2). This
follows instantly because for all Pickands dependence functions A it holds A(t) ≤ 1 and 1 is
the Pickands dependence function of the independence copula.

Setting A(t) = min{t, 1− t} leads to C0(u1,u2) = min{u1,u2}, the comonotonicity copula.
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4.3 Tail dependence coefficients for extreme value copulas

Suppose C is a d-dimensional copula and (U1, . . . ,Ud) ∼ C. Denote by Cij the copula
of (Ui,Uj), 1 ≤ i < j ≤ d. Then Cij is a two-dimensional copula with tail dependence
coefficient

λij = 2− lim
q→1−

logCij(q, q)

log q
.

Moreover, if C0 is a d-dimensional EV copula, then C0ij is a two-dimensional EV copula.
The following theorem shows the importance of tail dependence coefficients for EV copu-

las. We use the notation λ0ij for the tail dependence coefficient of C0ij .

Theorem 4.15. [4, Theorem 3.4]
Let C and C0 be d-dimensional copulas and C ∈ CDA(C0). Then they have the same set of
tail dependence coefficients, that means if λij exists, then λ0ij = λij for 1 ≤ i < j ≤ d.

Proof. It is sufficient to concentrate on the bivariate case, C ∈ CDA(C0) with tail depen-
decne parameters λ and λ0, respectively. Since C is continuous we find

λ0 = 2− lim
q→1−

logC0(q, q)

log q
= 2− lim

q→1−
lim
n→∞

logCn(q1/n, q1/n)

log q

= 2− lim
q→1−

lim
n→∞

logC(q1/n, q1/n)

log(q1/n)
= 2− lim

v→1−

logC(v, v)

log v

= λ.

The tail dependence coefficients of C0 and C are the same. �

Proposition 4.16. [4, Proposition 3.5]
Let C be a d-dimensional EV copula for which λij = 0 for all 1 ≤ i < j ≤ d. Then C must be the
independence copula.

Proof. As shown in Remark 3.10, from λij = 0 it follows Cij(u1,u2) = u1u2 and hence
pairwise independence between the components of the corresponding MEVDs. Since for a
MEVD pairwise independence implies mutual independence (see for example [14, Proposi-
tion 5.27]), we conclude that C(u) = u1 · · ·ud = C ind(u). �

The last two results characterise the CDA of the independence copula.

Corollary 4.17 (CDA of the independence copula Cind). A d-dimensional copula C is in
the CDA of the independence copula if and only if λij = 0 for all 1 ≤ i < j ≤ d.

4.4 Copulas in no copula domain of attraction

In the light of condition (i) in Theorem 4.9 it is easy to give an example of a d-dimensional
df F which is in no MDA, meaning that F /∈ MDA(G) for all d-dimensional EVDs G. Simply
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let one of the margins F1 . . . ,Fd, not be in a MDA of a univariate EVD. For instance the
geometric distribution and the Poisson distribution are in no univariate MDA (see [5, p. 118]
for a proof).

Let C be a copula of the d-dimensional df F . Moreover, condition (ii) in Theorem 4.9

could fail, meaning that the limit limn→∞C
n(u1/n) does not exist for some u ∈ [0, 1]d. In this

case C /∈ CDA(C0) for all EV copulas C0. However, finding examples of such copulas C is
complicated by the fact that the limit limn→∞C

n(u1/n) highly depends on the behaviour of
C(u) for values of u ∈ [0, 1]d close to 1. This is due to the fact that u1/n → 1 for n → ∞
if u > 0.

In this section we give two different kinds of (pathological) examples of a copula C such
that C /∈ CDA(C0) for all EV copulas C0. These examples are designed to fill a small gap in
EVT literature and hopefully help to better understand the CDA condition (4.1).

4.4.1 An example via diagonal sections

We concentrate on the two-dimensional case, i.e. d = 2.

Definition 4.18 (diagonal section). The diagonal section δ of a two-dimensional copula C
is defined by

δ(u) = C(u,u), u ∈ [0, 1].

Lemma 4.19. Every diagonal section δ satisfies

1. δ(1) = 1,

2. 0 ≤ δ(u2)− δ(u1) ≤ 2(u2 − u1) for all 0 ≤ u1 ≤ u2 ≤ 1,

3. 0 ≤ δ(u) ≤ u for all u ∈ [0, 1].

The second property follows from Proposition 1.6. The first and the third properties are
obvious by definition.

Definition 4.20 (diagonal copula). Starting with a function δ : [0, 1]→ [0, 1] which has the
three properties stated in Lemma 4.19, the diagonal copula Cδ is given by

Cδ(u1,u2) = min

{
u1,u2,

δ(u1) + δ(u2)

2

}
, (u1,u2) ∈ [0, 1]2. (4.19)

Remark 4.21. Theorem 3.2.12 in [13] ensures that the function Cδ defined in (4.19) is a
copula if δ satisfies the three properties stated in Lemma 4.19.

The diagonal copula Cδ has diagonal section δ. Before we analyse the limiting EV cop-
ula of a diagonal copula, we need an auxiliary result about asymptotic equivalence. Two
functions f , g : R→ R are said to be asymptotically equivalent for x→ x0 ∈ R if

lim
x→x0

f(x)

g(x)
= 1.

We use the notation f ∼ g for x→ x0.
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Lemma 4.22. Let a, b, c and d be four functions such that a ∼ b and c ∼ d for x→ x0. Then
it follows that ac ∼ bd for x→ x0.

Proof. One uses an expansion, the triangle inequality and the asymptotic equivalence of
the pairs a, b and c, d to see∣∣∣∣a(x)c(x)b(x)d(x)

− 1

∣∣∣∣ = ∣∣∣∣a(x)b(x)

(
c(x)

d(x)
− 1

)
+
a(x)

b(x)
− 1

∣∣∣∣
≤
∣∣∣∣a(x)b(x)

∣∣∣∣ ∣∣∣∣ c(x)d(x)
− 1

∣∣∣∣+ ∣∣∣∣a(x)b(x)
− 1

∣∣∣∣→ 0 for x→ x0,

which shows ac ∼ bd for x→ x0. �

The following Proposition is a reformulation of Lemma 4.6 in [11]. We give a more detailed
proof.

Proposition 4.23. Let Cδ be a diagonal copula and assume that its tail dependence coefficient λ
exists. Then Cδ ∈ CDA(C0), where the EV copula C0 is given by

C0(u1,u2) = min
{
u1,u2, (u1u2)

2−λ
2

}
, (u1,u2) ∈ [0, 1]2. (4.20)

Proof. We work with the CDA condition in (4.7). For t ∈ R+ and (u1,u2) ∈ [0, 1]2

Ctδ

(
u

1/t
1 ,u

1/t
2

)
= min

{
u1,u2,

[
1

2

(
δ(u

1/t
1 ) + δ(u

1/t
2 )
)]t}

.

First one treats the case (u1,u2) ∈ (0, 1)2. Obviously[
1

2

(
δ(u

1/t
1 ) + δ(u

1/t
2 )
)]t

= exp

{
t log

(
δ(u

1/t
1 ) + δ(u

1/t
2 )

2

)}
.

Since log y ∼ y− 1 for y → 1, and

δ(u
1/t
1 ) + δ(u

1/t
2 )

2
→ 1 for t→∞,

we get from Lemma 4.22 with a(t) = b(t) = t that

lim
t→∞

[
1

2

(
δ(u

1/t
1 ) + δ(u

1/t
2 )
)]t

= lim
t→∞

exp

{
t

(
δ(u

1/t
1 ) + δ(u

1/t
2 )

2
− 1

)}
. (4.21)

The argument of the exponential function in (4.21) can be rewritten as

t

(
δ(u

1/t
1 ) + δ(u

1/t
2 )

2
− 1

)
=

1

2

[
−t(1− u1/t

1 )
1− δ(u1/t

1 )

1− u1/t
1

− t(1− u1/t
2 )

1− δ(u1/t
2 )

1− u1/t
2

]
. (4.22)

For u ∈ (0, 1) we have
lim
t→∞
−t(1− u1/t) = log u (4.23)
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and

lim
t→∞

1− δ(u1/t)

1− u1/t = lim
q→1−

1− δ(q)
1− q

= 2− λ; (4.24)

cf. (3.4). An application of Lemma 4.22 to the limit of (4.22) combined with the two results
in (4.23) and (4.24) yields that

lim
t→∞

t

(
δ(u

1/t
1 ) + δ(u

1/t
2 )

2
− 1

)
=

1

2
[log u1 (2− λ) + log u2 (2− λ)]

=
2− λ
2

(log u1 + log u2).

(4.25)

Together with (4.21) equation (4.25) shows that

lim
t→∞

[
1

2

(
δ(u

1/t
1 ) + δ(u

1/t
2 )
)]t

= (u1u2)
2−λ
2 , (u1,u2) ∈ (0, 1)2, (4.26)

and therefore

lim
t→∞

Ctδ

(
u

1/t
1 ,u

1/t
2

)
= min

{
u1,u2, (u1u2)

2−λ
2

}
, (u1,u2) ∈ (0, 1)2. (4.27)

The validity of (4.27) in the boundary cases (u1,u2) ∈ [0, 1]2\(0, 1)2 can be shown eas-
ily. If (u1,u2) = (1, 1), both sides of (4.27) are 1. In the cases (u1,u2) ∈ {(0, 0), (1, 0), (0, 1)}
equation (4.27) obviously holds since Cδ is a copula. Both sides are zero. Since Cδ is symmet-
rical it remains to consider the case u1 = 1 and u2 ∈ (0, 1). Apart from (4.24) all arguments
of the above proof for the case (u1,u2) ∈ (0, 1)2 hold as well. Fortunately, if u1 = 1, equa-
tion (4.22) simplifies to the extent that one does not need to apply (4.24) for u = 1 to proceed
with the proof analogously. �

Now we turn to the case where the tail dependence coefficient λ does not exist.

Corollary 4.24 (A criterion for a differentiable diagonal section δ to ensure that the corre-
sponding diagonal copula Cδ is in no CDA). Let δ′ denote the derivative of δ. If the limit
limx→1− δ

′(x) does not exist, then Cδ is in no CDA.

Proof. Fix u ∈ (0, 1). Because of

Ctδ

(
u

1/t,u
1/t
)
= exp

{
t log δ(u

1/t)
}
, t > 0,

we get analogously to (4.21) that

lim
t→∞

Ctδ

(
u

1/t,u
1/t
)
= lim

t→∞
exp

{
t(δ(u

1/t)− 1)
}
.

Thus, the convergence of Ctδ(u
1/t,u1/t) for t→∞ hinges on the existence of the limit

limt→∞ t(δ(u
1/t)− 1). Now

lim
t→∞

t(δ(u
1/t)− 1) = lim

q→0+

δ(uq)− 1

q

and for a differentiable δ an application of l’Hôspital’s rule yields that

lim
q→0+

δ(uq)− 1

q
= lim

q→0+
δ′(uq)uq log u = log u lim

x→1−
δ′(x).

If the last limit does not exist, then the corresponding diagonal copula Cδ is in no CDA. �
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Figure 4.1: The diagonal section δ from (4.28). δ1 and δ2 are the diagonal sections of the comonotonic-
ity and the independence copula, respectively. The idea of the construction is best understood when
looking at the graph of δ. First start with δ1(x) for x ≤ 1/2. Then continue horizontally until you hit
δ2. Then go along a line with slope 2. Once you hit δ1 again you continue horizontally, and so forth.
The secret behind this construction is that δ1 and δ2 are diagonal sections of EV copulas with different
tail dependence coefficients, namely 1 and 0. The figure is taken from [11].

If λ does not exist, then the limit limt→∞C
t
δ(u

1/t
1 ,u

1/t
2 ) does not necessarily have to exist

for all (u1,u2) ∈ [0, 1]2.

In the following we build a diagonal section δ such that limt→∞C
t
δ(u

1/t,u1/t) does not exist
for all u ∈ (0, 1). For this aim we use a construction inspired by [11].
Let x1 = 1

2 and for i ∈N

x2i =
√
x2i−1,

x2i+1 = 2x2i − x22i.

The sequence xi, i ∈ N, is increasing and converges to 1. Next we define an increasing
function δ : [0, 1]→ [0, 1] by

δ(x) =


1 x = 1,

x x ≤ 1
2 ,

x2i−1 x2i−1 ≤ x < x2i,

x22i + 2(x− x2i) x2i ≤ x < x2i+1.

(4.28)

Lemma 4.25. The function δ in (4.28) satisfies the three properties in Lemma 4.19.



4.4. COPULAS IN NO COPULA DOMAIN OF ATTRACTION 35

Proof. We discuss the three properties:

1. δ(1) = 1 by definition.

2. 0 ≤ δ(u2)− δ(u1) ≤ 2(u2 − u1) for all 0 ≤ u1 ≤ u2 ≤ 1:
Let 0 ≤ u1 ≤ u2 ≤ 1. First of all δ(u2)− δ(u1) ≥ 0 holds since δ is increasing. For the
other inequality consider the following cases.

• u1,u2 ∈ [0, 1/2]: Then δ(u2)− δ(u1) = u2 − u1 ≤ 2(u2 − u1).
• u1,u2 ∈ [x2i−1,x2i] for some i ∈N: Then δ(u2)− δ(u1) = 0 ≤ 2(u2 − u1).
• u1,u2 ∈ [x2i,x2i+1] for some i ∈N: Then δ(u2)− δ(u1) = 2(u2 − u1).

For the general case, u1,u2 ∈ [0, 1], let D = {j ∈ N : xj ∈ (u1,u2)}. The set {xj :
j ∈ D} contains all the points of the sequence (xi)i∈N which lie between u1 and u2.
Without loss of generality we can write D = {c, c+ 1, . . . , d− 1, d} for integers c and d.
Now

δ(u2)− δ(u1) = (δ(u2)− δ(xd)) +
d∑

j=c+1

(δ(xj)− δ(xj−1)) + (δ(xc)− δ(u1))

≤ 2(u2 − xd) +
d∑

j=c+1

2(xj − xj−1) + 2(xc − u1)

= 2(u2 − u1)

because for each of the summands one of the above three cases applies.

3. δ(u) ≤ u for all u ∈ [0, 1]:

• If u ∈ [0, 1/2], then δ(u) = u ≤ u.

• If u ∈ [x2i−1,x2i) for some i ∈N, then δ(u) = x2i−1 ≤ u.

• If u ∈ [x2i,x2i+1) for some i ∈N, then

δ(u) = x22i + 2(u− x2i) = u+ x22i − x2i + (u− x2i).

A calculation yields that x2i+1 − x2i = x2i − x22i and consequently

δ(u) = u+ x22i − x2i + (u− x2i) ≤ u.

�

By Lemma 4.25 and Remark 4.21 the corresponding Cδ is a copula. We study its tail
dependence coefficient. In view of (3.3) we look at

lim
x→1−

1− 2x+ δ(x)

1− x
.

On the one hand the sequence yi := x2i−1, i ∈N, converges to 1 and

lim
i→∞

1− 2yi + δ(yi)

1− yi
= lim

i→∞

1− 2yi + yi
1− yi

= 1.
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While on the other hand for zi := x2i, i ∈N, we have

lim
i→∞

1− 2zi + δ(zi)

1− zi
= lim

i→∞

1− 2zi + z2i
1− zi

= lim
i→∞

(1− zi) = 0.

Therefore the tail dependence coefficient λ does not exist.

Finally we want to show that limt→∞C
t
δ(u

1/t,u1/t) does not exist for all u ∈ (0, 1), violating
the CDA condition. Fix u ∈ (0, 1). Using the sequence yi = x2i−1, i ∈ N, from above, we
define a sequence ti, i ∈N, by choosing ti such that

u
1/ti = yi

which is equivalent to

ti =
log u

log yi
.

The sequence ti, i ∈N, is increasing and converges to infinity. One calculates

lim
i→∞

Ctiδ (u
1/ti ,u

1/ti) = lim
i→∞

δ(u
1/ti)ti = lim

i→∞
(u

1/ti)ti = u. (4.29)

Analogously, using the sequence zi = x2i, i ∈N, we define a sequence si, i ∈N, by choosing
si such that

u
1/si = zi.

Again the sequence si, i ∈N, is increasing and converges to infinity. One finds

lim
i→∞

Csiδ (u
1/si ,u

1/si) = lim
i→∞

δ(u
1/si)si = lim

i→∞
(u

2/si)si = u2. (4.30)

Since (4.29) and (4.30) do not lead to the same limit one concludes that the diagonal copula
Cδ cannot be in a CDA.

Remark 4.26. The construction in this subsection can even be extended to get a diagonal
copula with differentiable diagonal section. Note that apart from the points xi, i ∈ N, δ is
differentiable on [0, 1]. However, one can use quadratic smoothing on appropriately small,
symmetric intervals around these points to get a slightly modified δ̃ which is differentiable
on [0, 1]. Lemma 4.25 then also holds for δ̃ instead of δ because δ̃′ ≤ 2 on [0, 1]. We
briefly sketch the last step one would need in order to use Corollary 4.24 to show that
a Cδ̃, constructed that way, is in no CDA. The sequence si = xi+xi+1

2 , i ∈ N, converges
to 1. Because δ̃(x) = δ(x) in an open neighbourhood of si (assuming a reasonable choice
of intervals for smoothing), we see from the construction of the function δ in (4.28) that
δ̃′(si) = δ′(si) ∈ {0, 2} and δ̃′(si) 6= δ̃′(si+1).

4.4.2 An example via spectral measures

A multivariate extreme value distribution is characterised by its spectral measure (cf. Propo-
sition 2.14). Let E = [0,∞]d\{0}, ‖ · ‖ be a norm on Rd and C = {w ∈ E : ‖w‖ = 1}. The
set Sd in (2.12) was

{w ∈ [0,∞]d : w1 + · · ·+wd = 1} = {w ∈ E : ‖w‖1 = 1},
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where ‖ · ‖1 denotes the sum-norm. Sd is very similar to the set C. In fact for a d-dimensional
EVD G and the norm ‖ · ‖ there also exists a finite measure S on C such that

G(x) = exp

{∫
C
min
1≤i≤n

{wi logGi(xi)} dS(w)

}
, x ∈ Rd. (4.31)

This is formula (2.12) with Sd replaced by C and H replaced by S. Note that different spectral
measures S1 and S2 lead to different MEVDs.

Remark 4.27. Although (4.31) is more general than (2.12), we preferred (2.12) because of the
simpler formulas connecting the spectral measure representation to other characterisations.
For the purpose of this section a different norm than the sum-norm is more useful.

Theorem 4.28. [6, Theorem 2]
Let X be a d-dimensional random vector with df F and let B(C) denote the Borel sets of C.
Then the following statements are equivalent.

(D1) The df F is in the MDA of a MEVD G with standard Fréchet margins.

(D2)

lim
t→∞

tP
(
‖X‖ > t,

X

‖X‖
∈ A

)
=
S(A)

S(C)
=: σ(A), ∀A ∈ B(C),

where S is the spectral measure of G with respect to ‖ · ‖.

σ(·) is a probability measure on C. From now on d = 2. We are in a position to specify
our norm of choice, the Euclidean norm:

‖x‖ :=
√
x21 + x22, x ∈ R2.

Let Θ0 and Θ1 be two (0, π2 )-valued random variables such that there exists a set A0 ∈ B(C)
with

P
(
(cosΘ0, sinΘ0)

> ∈ A0

)
6= P

(
(cosΘ1, sinΘ1)

> ∈ A0

)
. (4.32)

Furthermore, let the random variable R ≥ 1 have the tail df P(R > x) = x−1, x ≥ 1. We
assume that R is independent of Θ0 and Θ1. Next consider the two-dimensional random
vectors

Xi = (R cosΘi,R sinΘi)
>, i = 0, 1

with dfs F0 and F1, respectively. For i ∈ {0, 1} one finds

lim
t→∞

tP
(
‖Xi‖ > t,

Xi

‖Xi‖
∈ A

)
= lim

t→∞
tP
(
R > t, (cosΘi, sinΘi)

> ∈ A
)

= P
(
(cosΘi, sinΘi)

> ∈ A
)

=: σi(A), ∀A ∈ B(C).

Due to the construction σ0 6= σ1. According to Theorem 4.28, F0 ∈ MDA(G0) and F1 ∈
MDA(G1), where G0 and G1 are two different MEVDs with standard Fréchet margins.
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Now consider the densities f0 and f1 of F0 and F1. The idea for the following construction
stems from [10, p. 5]. Take y ∈ R2 with ‖y‖ > 1. Then there exists a unique integer j ∈ N

such that
‖y‖ ∈ (j!, (j + 1)!].

Let X be an R2
+-valued random vector with density f given by

f(y) = 0 for ‖y‖ ∈ (0, 1], y > 0,

and

f(y) =

{
f0(y) if j is odd,

f1(y) if j is even,
for ‖y‖ ∈ (j!, (j + 1)!], y > 0.

The function f is a proper density because

P
(
‖X0‖ ∈ (j!, (j + 1)!]

)
= P

(
‖X1‖ ∈ (j!, (j + 1)!]

)
, ∀j ∈N,

and f0, f1 are densities on R2
+. It can be shown that the marginal dfs of X are in MDA(Φ1),

(see for example [5, Proposition A 3.8]). The copula of X would be in the CDA of an EV cop-
ula if and only if (D2) in Theorem 4.28 holds for X . However, one finds sequences

un = (2n)! and vn = (2n+ 1)! for n ∈N

which lead to different limits in (D2). For un and A ∈ B(C) we have

unP
(
‖X‖ > un,

X

‖X‖
∈ A

)
= unP

(
(2n)! < ‖X‖ ≤ (2n+ 1)!,

X

‖X‖
∈ A

)
+ unP

(
‖X‖ > (2n+ 1)!,

X

‖X‖
∈ A

)
,

where the last term can be neglected when taking the limit since

unP
(
‖X‖ > (2n+ 1)!,

X

‖X‖
∈ A

)
≤ (2n)! P

(
R > (2n+ 1)!

)
=

1

2n+ 1
.

For ‖y‖ ∈ ((2n)!, (2n+ 1)!] the density f(y) = f1(y) and therefore the probability
P((2n)! < ‖X‖ ≤ (2n+ 1)!, X

‖X‖ ∈ A) can be written as

P
(
‖X1‖ > (2n)!,

X1

‖X1‖
∈ A

)
−P

(
‖X1‖ > (2n+ 1)!,

X1

‖X1‖
∈ A

)
. (4.33)

Using (4.33) we get

lim
n→∞

unP
(
‖X‖ > un,

X

‖X‖
∈ A

)
= lim

n→∞
(2n)! P

(
‖X1‖ > (2n)!,

X1

‖X1‖
∈ A

)
− lim
n→∞

1

2n+ 1
(2n+ 1)! P

(
‖X1‖ > (2n+ 1)!,

X1

‖X1‖
∈ A

)
= σ1(A)− lim

n→∞

1

2n+ 1
σ1(A)

= σ1(A), ∀A ∈ B(C).

Analogously, it follows that

lim
n→∞

vnP
(
‖X‖ > vn,

X

‖X‖
∈ A

)
= σ0(A), ∀A ∈ B(C).

Setting A = A0 — in this case σ1(A0) 6= σ0(A0) by construction — we see that (D2) does
not hold and conclude that the copula C of X is in no CDA.



4.4. COPULAS IN NO COPULA DOMAIN OF ATTRACTION 39

Remark 4.29. The tail dependence coefficient of the copula C might exist. Remember that
with the diagonal copula approach of the previous subsection this was impossible. From
Θ0 and Θ1 one gets spectral measures H0 and H1, which characterise two EV copulas via
(4.14) and (4.15). By a careful choice of Θ0 and Θ1 one could achieve that those two EV cop-
ulas have the same tail dependence coefficient. Under these circumstances the author is
optimistic that the tail dependence coefficient of the resulting copula C does exist.
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Chapter 5

Multivariate Threshold Models

5.1 Multivariate threshold exceedances

In an extreme value analysis it is important to exploit as much relevant information as is
available. Multivariate threshold models are concerned with all observations for which at
least one component exceeds some high value. Because of their more efficient use of the often
limited data they are sometimes preferred over componentwise block maxima models. In
general, the use of block maxima is problematic if some blocks contain numerous high values
whereas others do not contain any. This has to be kept in mind when modelling the margins
of MEV distributions. To estimate the underlying copula for multivariate data, however, all
information can be used.

Let x1, . . . ,xn ∈ Rd be realisations of a d-dimensional random vector with df F . The df F
is not known, but it is assumed to be in the MDA of some MEVD G with EV copula C0.
Furthermore, C is a set of parametric EV copulas and C0 ∈ C, that means

C = {Cθ : θ ∈ Θ},

with Θ ⊂ Rp for some p ∈ N. Our aim is to model the upper tail of the df F above a high
threshold u ∈ Rd. The threshold u satisfies Fj(uj) ≈ 1 for j = 1, . . . , d. We are interested in
an approximation for F (x) for x > u. Note that only the realisations x1, . . . ,xn are known.

First, we derive an approximation for the tails of the margins. The Pickands–Balkema–
de Haan theorem (Theorem A.4) suggests to use the generalised Pareto distribution (see
Definition A.3). Let H be a univariate df, which is in some MDA, and u ∈ R such that
H(u) ≈ 1. Then Theorem A.4 basically says that

Hu(x) ≈ 1−
(
1+ ξ

x

β

)−1/ξ

+

, 0 < x < xH − u, (5.1)

where xH denotes the right endpoint of H , that is sup{x ∈ R : H(x) < 1}, and the mean
excess function Hu is given by

Hu(x) =
H(x+ u)−H(u)

1−H(u)
, 0 < x < xH − u. (5.2)

Combining (5.2) and (5.1) yields

H(x+ u) = (1−H(u))Hu(x) +H(u)

≈ 1− (1−H(u))

(
1+ ξ

x

β

)−1/ξ

+

, 0 < x < xH − u.

41
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Figure 5.1: Excesses over a threshold: the generalised Pareto distribution approach.

Finally, with λ := 1−H(u), we get a GPD based parametric form for the tail:

H(x) ≈ 1− λ
(
1+ ξ

x− u
β

)−1/ξ

+

, x > u. (5.3)

Our next step is to approximate the copula C (cf. [12, p. 320]). From (4.7) it follows that

Ct(v
1/t) ≈ C0(v)

for v ∈ [0, 1]d and t sufficiently large. If we now set w = v1/t, this is equivalent to

C(w) ≈ C1/t
0 (wt) = C0(w), w ∈ [0, 1]t. (5.4)

Since v1/t → 1 for all v ∈ (0, 1]d as t → ∞, this approximation should only be used for the
tail of C. Fortunately, Fi(xi) is close to one for x > u and i ∈ {1, . . . , d}.

The results in (5.3) and (5.4) justify the following model:

F (x) ≈ Cθ

(
1− λ1

(
1+ ξ1

x1 − u1
β1

)−1/ξ1

+

, . . . , 1− λd
(
1+ ξd

xd − ud
βd

)−1/ξd

+

)
=: F̃ (x), x > u,

(5.5)
where θ is the copula parameter, λi = 1− Fi(ui), βi > 0 and ξi ∈ R for i = 1, . . . , d (see
Definition A.3).

A big advantage of (5.5) is that it provides a fully parametric model for the tail. Since all
EV copulas can be approximated by parametric ones, the assumption that C0 is parametric
is no restriction. Given some observations all parameters can be estimated with maximum-
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likelihood techniques. We briefly sketch the necessary steps.

1. Determine a suitable threshold u by looking at the empirical tail dfs and plotting the
empirical tail excess functions. Since we know that the mean excess function of the GPD
is linear in u, we can search for a region where the empirical mean excess functions for
the given data become linear. “For such u ∈ Rd an approximation of Fui by a GPD
seems reasonable” [5, p. 167].

2. Maximise the likelihood

L(x1, . . . ,xn; ξ,β, θ) =
n∏
i=1

L(xi),

where ξ = (ξ1, . . . , ξd), β = (β1, . . . ,βd) and θ is the parameter of the copula. The
likelihood contribution L(xi) of an observation xi depends on which of its coordinates
exceed the corresponding threshold coordinates. This leads to the so-called censored
likelihood approach.
If in an observation xi no component exceeds its corresponding threshold (i.e. xi ≤ u),
then L(xi) = F̃ (u) which does not influence the maximisation. In general, one works
with the censored data max(xi,u) and only takes partial derivatives of F̃ with respect
to those xj,i which exceed their corresponding thresholds ui. More details can be found
in [1].

Example 5.1. The class of Galambos copulas

CGal
θ,α,β(u1,u2) = u1u2 exp

{(
(−α log u1)

−θ + (−β log u2)−θ
)−1/θ

}
, (u1,u2) ∈ [0, 1]2, (5.6)

where α,β ∈ [0, 1] and 0 < θ < ∞, is a class of three-parameter extreme value copulas (see
[12, Chapter 7]) and a possible choice for C in the bivariate case. ◦

5.2 Threshold copulas

In this section we condition a two-dimensional random vector X = (X1,X2) to exceed high
thresholds and study the arising copulas. Similar considerations in the univariate case have
lead to the generalised Pareto distributions, where one studied excess distributions. Now the
focus is on the dependence structure. The presented material is based on [4] and [12].

Let X = (X1,X2) be a two-dimensional random vector with df F , which has mar-
gins F1, F2 and copula C. We condition on the event

Av = {X1 > F←1 (v),X2 > F←2 (v)}, 0 ≤ v < 1.

This means that both components exceed their v-quantile. The conditional probability that
both components exceed even higher quantiles is

P(X1 > F←1 (u1),X2 > F←2 (u2)|Av) =
C(u1,u2)

C(v, v)
, for (u1,u2) ∈ [v, 1]2, (5.7)
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where C(u1,u2) = P(X1 > F←1 (u1),X2 > F←2 (u2)) = 1− u1 − u2 + C(u1,u2) denotes the
survival function of the copula C. From (1.7) one gets that

G(v)(u1,u2) =
C(u1,u2)

C(v, v)

defines a bivariate survival function on [v, 1]2. For the corresponding marginal survival func-
tions on [v, 1] we have

G1,(v)(u) = P(X1 > F←1 (u)|Av) =
C(u, v)

C(v, v)

and

G2,(v)(u) = P(X2 > F←2 (u)|Av) =
C(v,u)

C(v, v)
.

By (1.6), a survival copula Ĉ(v) can be used to write

G(v)(u1,u2) = Ĉ(v)(G1,(v)(u1),G2,(v)(u2)), u ∈ [v, 1]2. (5.8)

Here Ĉ(v) is the survival copula of C(v), with C(v) being a copula of G(v).

Definition 5.2 (upper threshold copula). The copula C(v) is called upper threshold copula
of C at level v.

Equation (5.8) can be also written as

Ĉ(v)

(
C(u1, v)

C(v, v)
,
C(v,u2)

C(v, v)

)
=
C(u1,u2)

C(v, v)
, u ∈ [v, 1]2. (5.9)

From (1.7) we get

C(v)(u1,u2) = Ĉ(v)(1− u1, 1− u2)− 1+ u1 + u2, u ∈ [0, 1]2. (5.10)

Example 5.3. Our aim is to calculate the corresponding upper threshold copulas at an arbi-
trary level v ∈ [0, 1) for the family of copulas

Cδ(u1,u2) = δmin{u1,u2}+ (1− δ)u1u2, δ ∈ [0, 1]. (5.11)

The first argument of Ĉδ,(v) in (5.9) is

Cδ(u1, v)

Cδ(v, v)
=

1− u1 − v+Cδ(u1, v)

Cδ(v, v)
=

1− u1 − v+ δv+ (1− δ)u1v
Cδ(v, v)

, u1 ∈ [v, 1].

With

a =
−1+ (1− δ)v
Cδ(v, v)

< 0,

one easily sees
Cδ(u1, v)

Cδ(v, v)
= u1a− a, u1 ∈ [v, 1].
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Since Cδ is symmetric it follows for the second argument that

Cδ(v,u2)

Cδ(v, v)
= u2a− a, u2 ∈ [v, 1].

Next we put x1 = u1a− a and x2 = u2a− a. The pair (x1,x2) is in [0, 1]2 because (u1,u2)

is in [v, 1]2. Using (5.9) we get

Ĉδ,(v)(x1,x2) =
1

Cδ(v, v)

[
1−

(
x1 + a

a

)
−
(
x2 + a

a

)
+ δmin

{(
x1 + a

a

)
,

(
x2 + a

a

)}
+ (1− δ)

(
x1 + a

a

)(
x2 + a

a

)]
,

which can be simplified to

Ĉδ,(v)(x1,x2) =
δmin{x1,x2}+ (1− δ)(1− v)x1x2

1− (1− δ)v
. (5.12)

Equation (5.10) finally yields

Cδ,(v)(u1,u2) =
δmin{1− u1, 1− u2}+ (1− δ)(1− v)(1− u1)(1− u2)

1− (1− δ)v
− 1+ u1 + u2, (5.13)

where u ∈ [0, 1]2. Cδ,(v) is the upper threshold copula of Cδ at level v. ◦

When analysing extremes large values of the quantile v ∈ [0, 1) are most interesting.

Definition 5.4 (limiting upper threshold copula). The limiting upper threshold cop-
ula Cup of a two-dimensional copula C, with upper threshold copulas C(v) at level v ∈ [0, 1),
is given by

Cup(u1,u2) = lim
v→1−

C(v)(u1,u2), u ∈ [0, 1]2,

provided the limit exists.

Example 5.5. We continue Example 5.3 and calculate the limiting upper threshold copu-
las Cup

δ for δ ∈ [0, 1]. From (5.13) one easily sees that

C
up
δ (u1,u2) = lim

v→1−
Cδ,(v)(u1,u2)

= min{1− u1, 1− u2} − 1+ u1 + u2

= min{u1,u2}, ∀δ ∈ [0, 1].

In particular the limiting upper threshold copula min{u1,u2} is a member of the copula
family in (5.11), namely C1. Moreover, we have shown in Example 5.3 that for all levels
v ∈ [0, 1) the upper threshold copulas of C1 coincide with C1. This is a remarkable stability
property of C1. ◦

The required calculations in Example 5.3 to establish (5.12) were rather tedious, although Cδ
had a relatively simple form. Therefore, an alternative way to determine the limiting upper
threshold copula Cup is helpful.
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Theorem 5.6. [4, Theorem 3.18], [12, Theorem 7.56]
If C is a symmetric two-dimensional copula with upper tail dependence coefficient λ > 0

satisfying C ∈ CDA(C0), then C has a limiting upper threshold copula Cup which is the
survival copula of the df

G(x1,x2) =
(x1 + x2)

(
1−A

(
x1

x1+x2

))
λ

, (x1,x2) ∈ [0, 1]2, (5.14)

where A is the Pickands dependence function of the EV copula C0.

Theorem 5.6 also shows that two copulas C1 and C2 belonging to the same CDA(C0)

necessarily have the same limiting upper threshold copula. By Theorem 4.15, C1, C2 and C0

have the same tail dependence coefficient, and therefore the dfs in (5.14) are identical for C1

and C2.

Remark 5.7. For a symmetric copula C ∈ CDA(C0) with tail dependence coefficient λ and
limiting upper threshold copula Cup, with tail dependence coefficient λup, it can be shown
that λup ∈ [λ, 1].

Example 5.8. We already know the copula

C(u1,u2) =
u1u2(2− u1 − u2)

1− u1u2

from Example 4.11, where it was shown that C is in the CDA of the extreme value copula

C0(u1,u2) = exp

{
log u1u2 −

log u1 log u2
log u1u2

}
with Pickands dependence function A(t) = t2 − t + 1 for t ∈ [0, 1]. Its tail dependence
coefficient is

λ = 2

(
1−A

(
1

2

))
=

1

2
> 0.

We apply Theorem 5.6:

G(x1,x2) =
2x1x2
x1 + x2

, (x1,x2) ∈ [0, 1]2.

The margins of G are

G1(x) = G2(x) = G(1,x) =
2x

1+ x
, x ∈ [0, 1],

and the copula CG of G is given by

CG(u1,u2) = G(G←1 (u1),G
←
2 (u2))

= G

(
u1

2− u1
,

u2
2− u2

)
=

u1u2
u1 − u1u2 + u2

.
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The limiting upper threshold copula of C and C0 is the survival copula ĈG. By (1.7)

ĈG(u1,u2) = CG(1− u1, 1− u2) + u1 + u2 − 1

=
u1u2(2− u1 − u2)

1− u1u2
.

◦

The following interesting result may be used to find EV copulas.

Theorem 5.9. [4, Proposition 3.23(ii)]
Let C be an exchangeable, two-dimensional copula with upper tail dependence coefficient
λ > 0 and let C0 and Cup be its EV copula and limiting upper threshold copula, respectively.
Additionally assume Cup ∈ CDA(C̃0) with upper tail dependence coefficient λ̃. Then C0

can be written in terms of the independence copula C ind and C̃0:

C0 =
(
C ind

)1−c (
C̃0

)c
, where c =

λ

λ̃
≤ 1. (5.15)

Remark 5.10. The inequality c ≤ 1 follows from Remark 5.7. Note that λ̃ cannot be zero
under the stated assumptions.

The next example shows how to apply Theorem 5.9 to find C0.

Example 5.11. We determine the corresponding EV copulas for the copulas

Cδ(u1,u2) = δmin{u1,u2}+ (1− δ)u1u2, δ ∈ (0, 1], (5.16)

without using one of the limit formulations in (4.7), (4.8) or (4.9). So let Cδ ∈ CDA(Cδ,0).
Instead of the direct calculation of Cδ,0 we make use of Theorem 5.9. From Example 5.5 we
know that

Cup(u1,u2) = min{u1,u2},

which is an EV copula and hence it is in its own CDA. With the notation of the above Theo-
rem 5.9, C̃0 = Cup. The copula C̃0 has tail dependence coefficient λ̃ = 1. A straightforward
calculation of the tail dependence coefficient λδ of Cδ via (3.3) yields

λδ = lim
q→1−

1− 2q+ δq+ (1− δ)q2

1− q
= δ.

An application of Theorem 5.9 gives us

Cδ,0(u1,u2) = (u1u2)
1−δmin{u1,u2}δ.

◦
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Example 5.11 brought together a variety of multivariate extreme value techniques:

• CDA theory,

• threshold copulas,

• EV copulas,

• and tail dependence coefficients.



Chapter 6

Practical Considerations

6.1 Block maxima approach

For block maxima models we group the d-dimensional observations in blocks of size n and
concentrate on the componentwise maxima of these blocks. Blocking data makes particular
sense if there are natural ways to determine the block size n.

In practical applications we are confronted with the following set-up. We have N observa-
tions from an unknown underlying d-dimensional df F , which is supposed to be in the MDA
of some MEVD G. For ease of presentation we assume N = m · n for some m,n ∈ N and
large n. Then the data can be divided into m blocks of size n. We denote the maximum of
the ith block by Mn,i. The distribution of Mn,i is approximated by the MEVD G. The multi-
variate extension of the Fisher–Tippett theorem suggests a model consisting of GEV margins
coupled with an EV copula.

Figure 6.1: Block maxima: the generalised extreme value distribution approach. Compare with the
GPD approach in Figure 5.1.

The choice of m and n can be a very difficult task. On the one hand n should be large
so that the approximation by the generalised EVD Hξ;µ,σ in the margin i ∈ {1, . . . , d} is

49
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acceptable, but on the other hand a large m, which is the number of block maxima we assume
to come from Hξ;µ,σ, is helpful for reliable parameter estimation. A small n can lead to bias
in estimation, whereas a large n leads to large estimation variance.

A general model for the tail of a d-dimensional df F could be

• a GPD based model as in (5.5) or

• a GEV based model as described above.

Both of these approaches rely on EV copulas. To successfully implement them, the availability
of a wide variety of EV copulas is crucial.

6.2 Constructing new extreme value copulas

The three-parameter Galambos copulas from Example 5.1

CGal
θ,α,β(u1,u2) = u1u2 exp

{(
(−α log u1)

−θ + (−β log u2)−θ
)−1/θ

}
, (6.1)

where α,β ∈ [0, 1] and 0 < θ < ∞, form a reservoir of flexible EV copulas to choose from
when setting up a parametric model for the tail. Another excellent choice is the asymmetric
Gumbel copula given by

CGu
θ,α,β(u1,u2) = u1−α1 u1−β2 exp

{(
(−α log u1)

θ + (−β log u2)θ
)1/θ

}
, (6.2)

where 0 ≤ α,β ≤ 1 and 1 ≤ θ < ∞. These two families from [12, Chapter 7] can straight-
forwardly be generalised for the d-dimensional case. In the bivariate case a different way to
obtain EV copulas is by using Corollary 4.13, which shows how a Pickands dependence func-
tion A defines an EV copula. It is natural to study parametric A-functions. As an example we
look at a polynomial Pickands dependence function of the form

A(t) = a0 + a1t+ a2t
2 + a3t

3, t ∈ [0, 1].

In order to guarantee that A(t) satisfies conditions (A1) and (A2) one needs some restrictions
on the parameters a0, a1, a2, a3. Since A(0) = 1 we immediately get a0 = 1. After analysing
(A1) and (A2) a bit more, it turns out that

A(t) = 1− (a2 + a3)t+ a2t
2 + a3t

3, t ∈ [0, 1], (6.3)

with the parameter restrictions

a2 ≥ 0, a2 + 3a3 ≥ 0, a2 + a3 ≤ 1, a2 + 2a3 ≤ 1

defines a valid Pickands dependence function. For details on the derivation see [1, p. 308].
This section provides various ways of gaining new EV copulas from known ones, such

as (6.1), (6.2) or those described through (6.3) and Corollary 4.13. The presented material is
based on [4, Chapter 4].
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6.2.1 Product copulas

Proposition 6.1 (product EV copula). Let C01, . . . ,C0p be d-dimensional copulas and let
A = (aij)

j=1,...,p
i=1,...,d ∈ [0, 1]d×p such that

∑p
j=1 aij = 1 for all i ∈ {1, . . . , d}. Then

C0A(u) =

p∏
j=1

C0j(u
a1j
1 ,u

a2j
2 , . . . ,u

adj
d ), u ∈ [0, 1]d, (6.4)

is a copula. If C01, . . . ,C0p are even EV copulas, then C0A also is an EV copula.

Proof. First we show that C0A is a copula. For this aim we find a vector U = (U1, . . . ,Ud)

with standard uniform margins and df C0A. Let the independent d-dimensional random
vectors Yj = (Y1,j , . . . ,Yd,j) ∼ C0j for j = 1, . . . , p and

Ui = max
j∈{1,...,p}

{
Y

1/aij
i,j

}
, i = 1, . . . , d.

Then

P(U ≤ u) = P
(
Y

1/a1j
1,j ≤ u1, . . . ,Y

1/adj
d,j ≤ ud, ∀j ∈ {1, . . . , p}

)
= P

(
Y1,j ≤ u

a1j
1 , . . . ,Yd,j ≤ u

adj
d , ∀j ∈ {1, . . . , p}

)
=

p∏
j=1

C0j(u
a1j
1 ,u

a2j
2 , . . . ,u

adj
d ), u ∈ [0, 1]d,

and therefore C0A is a distribution function on [0, 1]d. By checking that for every i ∈
{1, . . . , d} and ui ∈ [0, 1]

C0A(1, . . . , 1,ui, 1, . . . , 1) =

p∏
j=1

C0j(1, . . . , 1,u
aij
i , 1, . . . , 1) =

p∏
j=1

u
aij
i = ui,

we conclude that C0A is a copula. If C01, . . . ,C0p are even EV copulas, then we have

Ct0A(u
1/t) =

p∏
j=1

Ct0j(u
a1j/t
1 ,u

a2j/t
2 , . . . ,u

a2j/t
d )

=

p∏
j=1

C0j(u
a1j
1 ,u

a2j
2 , . . . ,u

adj
d ) = C0A(u), u ∈ [0, 1]d,

where we used property (4.6) of EV copulas for the second equality. Hence C0A is an
EV copula. �

Finding copulas in CDA(C0A) is very easy.

Corollary 6.2. If Cj ∈ CDA(C0j) for all j ∈ {1, . . . , p} and A ∈ [0, 1]d×p such that∑p
j=1 aij = 1 for all i ∈ {1, . . . , d}, then the copula

CA(u) =

p∏
j=1

Cj(u
a1j
1 ,u

a2j
2 , . . . ,u

adj
d ), u ∈ [0, 1]d, (6.5)
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is in the CDA of the EV copula C0A given in (6.4).

Proof. Since Cj ∈ CDA(C0j) for all j ∈ {1, . . . , p} we get for u ∈ [0, 1]d that

lim
t→∞

CtA(u
1/t) = lim

t→∞

p∏
j=1

Ctj(u
a1j/t
1 ,u

a2j/t
2 , . . . ,u

a2j/t
d )

=

p∏
j=1

lim
t→∞

Ctj(u
a1j/t
1 ,u

a2j/t
2 , . . . ,u

a2j/t
d )

=

p∏
j=1

C0j(u
a1j
1 ,u

a2j
2 , . . . ,u

adj
d )

= C0A(u).

In other words, CA ∈ CDA(C0A). �

6.2.2 Nested copulas

A nested copula can be written in terms of lower-dimensional copulas. For instance: assume
C1 and C2 are two-dimensional copulas. If the function

C(u1,u2,u3) := C1(u1,C2(u2,u3)), (u1,u2,u3) ∈ [0, 1]3, (6.6)

is a copula, then we call it a nested copula.

Remark 6.3. However, the function C in (6.6) is not necessarily a copula, as Example 3.30

in [13] shows.

Now let C1 and C2 be two-dimensional EV copulas such that C is a copula. Then by
calculating

Ct(u
1/t
1 ,u

1/t
2 ,u

1/t
3 ) = Ct1(u

1/t
1 ,C2(u

1/t
2 ,u

1/t
3 ))

= Ct1(u
1/t
1 ,C

1/t
2 (u2,u3))

= C1(u1,C2(u2,u3))

= C(u1,u2,u3)

one concludes that C is an EV copula as well. The construction of EV copulas via nested
copulas can be generalised to d dimensions as the following result from [4] shows.

Proposition 6.4 (nested EV copula). Let C01 be a two-dimensional EV copula and let C0d be a
d-dimensional EV copula such that

C0,d+1(u) := C01(u1,C0d(u2, . . . ,ud+1)), u ∈ [0, 1]d+1, (6.7)

defines a copula. Then C0,d+1 is a (d+ 1)-dimensional EV copula.
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6.3 Critical remarks and challenges

The implementation of EVT methodology faces many challenges. Sparse data, threshold
selection, choosing the methods of parameter estimation and model checking keep EVT users
busy. EVT can definitely not be regarded as an isolated science. The main challenge lies
in the inhomogeneity of the data. Although there exists a range of different methods how
to approach extremes or outliers, there is no universally accepted one. The method set up
involves some subjectivity.

In the author’s eyes, studying extreme value theory literature will inevitably lead to the
following observation: The probability theory for extremes seems elegant, rigorous and ex-
tensive. The variety of different ideas is enormous. The statistical theory, however, is under-
developed and primitive in many aspects. “Unfortunately, the current state of the art does not
seem developed far enough to provide the user with a fully automatic, universally applicable
methodology” [1].

Although many statistical procedures for extremes do exist, their outcomes have to be
carefully checked and complemented with other methods to justify their results. EVT is no
black-box machinery, which some practitioners would prefer.

MEVT allows for extrapolation outside the range of the data. We have considered extremes
in all components simultaneously. The case where only some components are extreme is
relatively unexplored in today’s literature.

6.3.1 Copula estimation and testing for extremes

A crucial requirement when using block maxima or threshold exceedance models is copula
estimation from data x1, . . . ,xn, which are observations from an unknown d-dimensional
df F with margins F1, . . . ,Fd and copula C. Unfortunately one does not have observations
directly from the copula C.

The margins can be estimated straightforwardly by the empirical dfs:

F̂j(x) =
1

n+ 1

n∑
i=1

1[xi,j ,∞)
(x), j = 1, . . . , d.

The empirical dfs can be used to transform the observations xi into pseudo copula observa-
tions

ûi = (F̂1(x1,i), . . . , F̂d(xd,i)), i = 1, . . . ,n.

This construction, however, introduces dependence between the pseudo copula observations,
thus violating the assumptions for a further maximum-likelihood estimation. Although the
obtained maximum-likelihood estimates are still asymptotically normal, very little can be said
about their finite-sample properties. That concern should be kept in mind.

Before fitting an EV copula to observations one might want to test the hypothesis

H0 : C is an EV copula.

The literature provides very few tests for H0. In the bivariate case the best known test is
based on the fact that for a two-dimensional random vectorX with EV copula C0 the random
variable W = C0(F1(X1),F2(X2)) satisfies

−1+ 8E[W ]− 9E[W 2] = 0.

For details on the distribution of W consult [7]. For another class of tests we refer to [2, p. 36].
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6.3.2 Violations of the maintained iid assumption

The most important assumption that we have maintained throughout this thesis is the iid
assumption of the sequence of random vectorsX1,X2, . . . which generate our data. However,
in the majority of situations the assumption that the original data are iid is very unrealistic. A
practical solution might be to form groups of data which can be assumed to be homogeneous.
For example think of a data set comprising the daily maximum temperatures at a certain
place. If there is a strong annual cycle in the data, they are not iid. An extraordinary hot
summer day will have other characteristics than an extraordinary hot winter day. But for the
daily maximum temperatures in a particular month homogeneity seems plausible.

Now what if the iid assumption does not hold? Think of a sea level estimation problem.
Is there any sense in trying to predict what sea levels might occur in the future without
knowledge of possible climate changes? In particular, we could be confronted with data
exhibiting a trend. Detrending techniques, such as fitting a polynomial trend or differencing,
might help us to filter out some iid residuals for which we could use our standard extreme
value methods. Unfortunately the interpretation of results gained in such a way becomes
more difficult since extremes in the detrended data do not necessarily correspond to extremes
in the original data.

Roughly speaking, most environmental data sets have a more complex than an iid struc-
ture. However, that can hardly be astonishing when we think of the four seasons and their
effect on our weather. Also it is widely agreed that high-frequency financial asset returns are
conditionally heteroskedastic, and thus not iid.

What can happen if we turn down the iid assumption? Basically everything, as the following
consideration shows. For simplicity we concentrate in the remainder of this subsection on the
univariate case. Let X1,X2, . . . be a non-iid sequence of random variables and X be a random
variable with df F . Now assume Xi = X for all i ∈N. Then

P(Mn ≤ x) = P(X ≤ x) = F (x), x ∈ R.

Since any distribution can be a limit distribution for maxima, a general characterisation of
the behaviour of extremes is impossible. What we can do is comparing the distribution of the
maxima of a stationary series (stationarity implies in particular that all marginal distributions
are the same) and of a series of iid random variables having the same marginal distribution.
Such a series of iid random variables is called an associated iid series. If there is any difference
in the limiting distributions of maxima for those two series, it can only be caused by the
dependence in the original series.

The next example, which appears in many variations in extreme value literature, is a nice
illustration of this argument.

Example 6.5 (dependence structure). Based on [3, Example 5.1]. Let Y0,Y1,Y2, . . . be an iid
sequence of random variables with df

F (y) = exp
{
− 1

(a+ 1)y

}
, y > 0, a ∈ [0, 1].

Define the sequence Xi by

X0 := Y0, Xi := max{aYi−1,Yi}, i ∈N.
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The marginal distribution of the Xi, i ∈N, is

P(Xi ≤ x) = P(aYi−1 ≤ x,Yi ≤ x)

= exp
{
− a

(a+ 1)x

}
exp

{
− 1

(a+ 1)x

}
1(0,∞)(x)

= exp
{
−x−1

}
1(0,∞)(x) = Φ1(x), x ∈ R.

Now, let X?
1 ,X

?
2 , . . . be the associated iid sequence (i.e. a sequence of independent, stan-

dard Fréchet random variables) and for n ∈ N define M?
n = max{X?

1 , . . . ,X
?
n}. By direct

calculation (see Example 2.4) it follows that

P(M?
n ≤ nx) = exp

{
−x−1

}
, n ∈N,x > 0.

On the other hand, for Mn = max{X1, . . . ,Xn}:

P(Mn ≤ nx) = P(X1 ≤ nx, . . . ,Xn ≤ nx)
= P(aY0 ≤ nx,Y1 ≤ nx, . . . , aYn−1 ≤ nx,Yn ≤ nx)
= P(aY0 ≤ nx) P(Y1 ≤ nx, . . . ,Yn ≤ nx)

= exp
{
− a

(a+ 1)nx

}
exp

{
− n

(a+ 1)nx

}
n→∞−→

[
exp

{
−x−1

}] 1
a+1 , x > 0.

If a 6= 0, the limit distributions for Mn and M?
n are not the same. Whereas if a = 0, the

original sequence Xi, i ∈N0, is iid. ◦

Remark 6.6. At the moment there is room for improvement of the theory on non-stationary
extremes, especially in the multivariate case. In the near future, however, the chances for
significant advances in the multivariate case are slim because there are still many unsolved
issues in the iid setting.

6.3.3 Applications and outlook

Financial risk management focuses on extreme quantiles and tails. The probability of surviv-
ing big hits, i.e. extreme events, leads to credit ratings and regulatory capital requirements.
Most applications of EVT are inherently multivariate. Taking into account the dependence
between different asset prices is crucial for an adequate risk assessment.

Many users of statistical software are interested in confidence intervals. In practice one
rarely sees confidence intervals for quantities related to extreme events. The reason being
that an EV analysis is prone to a lot of uncertainty due to the limited amount of data. This
uncertainty would often lead to very big confidence intervals which are useless for practi-
cal applications. A subjective explanation is that EVT is just a scientific approach to pure
guesswork and cannot do magic, meaning that it can be dangerous to ask for too much.

Many applications of EVT are found in hydrology, the cradle of modern EVT. Approxi-
mately 10 percent of the human population live at the coast. Accordingly the occurrence of
extreme sea levels along those low-lying and highly populated coastlines can lead to con-
siderable loss of life and billions of Euros of damage to coastal infrastructure. There is also
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now a growing concern about rising mean sea levels. Over the last 150 years, global mean sea
levels have on average risen by about 25 cm and it is predicted that this rise will continue over
the twenty-first century at an accelerated rate. However, it is very difficult to predict future
extreme sea levels. With rises in mean sea level, a particular water level will be exceeded more
and more frequently as progressively less severe storm conditions are required to achieve that
level. Some governments, for instance, demand dykes to be built high enough to withstand
the 500-year return level of the sea level. That is a level which is expected to be reached only
once in the next 500 years. If the observation period is a mere say 40 years, then the data
sample is terribly small in relation to the request. Nevertheless one has to come up with a
reliable estimate to minimise the risk of catastrophic structural failures due to under-design
or expensive wastes due to over-design.

When it comes to extremes we are not hopeless. Although

• the central iid assumption may not be satisfied, and

• in practice it is virtually impossible to check if the copula of given data is in the CDA
of some EV copula (we have presented pathological counterexamples in Chapter 4),

EVT is here to stay and it provides an excellent complement to alternatives such as graphical
data analysis. Today EVT is a respected and widely used scientific discipline with its own
limitations and strengths. Applications stretch from insurance and finance (cf. [5]), material
sciences (cf. [3]) to the modelling of natural hazards (cf. [15]) and many more.



Appendix A

Univariate Extreme Value Theory

This section provides a brief summary of univariate extreme value theory (UEVT). One con-
siders probabilities of the form

P

(
Mn − bn
an

≤ x
)
= P (Mn ≤ anx+ bn) = Fn(anx+ bn), x ∈ R,

where Mn := max{X1, . . . ,Xn} for a sequence X1,X2, . . . of independent identically dis-
tributed (iid) non-degenerate one-dimensional random variables with distribution function
(df)F and normalising sequences an > 0 and bn ∈ R for n ∈N.

Suppose there exist sequences an > 0, bn ∈ R and a non-degenerate df H such that

lim
n→∞

Fn(anx+ bn) = H(x)

for every continuity point x ∈ R of H , then H is called an extreme value distribution and F

is said to be in the maximum domain of attraction of H . We use the notation F ∈MDA(H).

The two central results in EVT are the Fisher–Tippett theorem, which describes all possible
limit distributions for maxima, and the Pickands–Balkema–de Haan theorem, which essen-
tially says that for sufficiently large thresholds the exceedances follow the generalised Pareto
distribution (GPD).

Theorem A.1 (Fisher–Tippett theorem). [5, Theorem 3.2.3]
Let (Xn) be a sequence of iid random variables. If there exist normalising sequences an > 0,
bn ∈ R and some non-degenerate df H such that

Mn − bn
an

d−→ H, (A.1)

then H is of the type of one of the following three dfs.
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Fréchet: Φα(x) =

{
0 if x ≤ 0

exp{−x−α} if x > 0
α > 0.

Weibull: Ψα(x) =

{
exp{−(−x)α} if x ≤ 0

1 if x > 0
α > 0.

Gumbel: Λ(x) = exp{− e−x} x ∈ R.

Φα, Ψα and Λ are called (standard) extreme value distributions.

The generalised extreme value distribution is a one-parameter representation of the three
extreme value distributions.

Definition A.2 (generalised extreme value (GEV) distribution). [12, Definition 7.1]
The df of the (standard) GEV distribution is given by

Hξ(x) =

{
exp

{
−(1+ ξx)−1/ξ} for ξ ∈ R\{0},

exp {− e−x} for ξ = 0,
(A.2)

for all x ∈ R satisfying 1 + ξx > 0. A three parameter family is obtained by defining

Hξ;µ,σ(x) := Hξ(
x− µ
σ

) for a location parameter µ ∈ R and a scale parameter σ > 0.

To model the excess distribution

Fu(x) := P(X − u ≤ x |X > u)

over a threshold u for 0 ≤ x < xF − u, one uses the generalised Pareto distribution. Here
xF = sup{x ∈ R : F (x) < 1} denotes the right endpoint of F .

Definition A.3 (GPD). [12, Definition 7.16]
The df of the generalised Pareto distribution (GPD) is given by

Gξ,β(x) =

1−
(
1+ ξx

β

)−1/ξ
for ξ 6= 0 ,

1− exp
{
−x
β

}
for ξ = 0 ,

(A.3)

where β > 0, and x ≥ 0 if ξ ≥ 0 and x ∈ [0,−β/ξ] if ξ < 0. The parameter ξ is called shape
parameter.

Theorem A.4 (Pickands–Balkema–de Haan). [5, Theorem 3.4.13(b)]
For every ξ ∈ R, F ∈MDA(Hξ) if and only if

lim
u↗xF

sup
0<x<xF−u

∣∣∣Fu(x)−Gξ,β(u)(x)∣∣∣ = 0 (A.4)

for some positive function β(·).
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