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Deutsche Kurzfassung

Das Verständnis von elektronischen Korrelationsphänomenen stellt eine der größten Her-
ausforderungen der Festkörperphysik dar. In den letzten 25Jahren hat sich die dynamische
Molekularfeldtheorie (DMFT) als die "Standardmethode" fürkorrelierte fermionische Systeme
etabliert, welche weit über eine störungstheoretische Behandlung hinausgeht und auch heute
noch Grundlage von theoretischen Weiterentwicklungen ist.Dank DMFT lassen sich heutzu-
tage nicht nur viele Phänomene gut verstehen, etwa der berühmte Mott-Isolator Übergang, son-
dern es eröffnen sich sogar Möglichkeiten der Vorhersage elektronischer Eigenschaften für
Materialien in denen ein effektives Einteilchenbild unzureichend ist.

Allerdings hat auch die DMFT ihre Grenzen: Zum einen beruht sie auf der Annahme, dass
elektronische Korrelationen rein lokal sind. Zum anderen handelt es sich historisch gesehen um
eine Methode, welche zuvorderst niederenergetische Freiheitsgerade zu beschreiben versucht.
In der Tat existieren Systeme und physikalische Eigenschaften für welche diese Beschränkun-
gen nicht möglich ist.

In der vorliegenden Arbeit versuche ich diese beiden Probleme, welche Gegenstand inten-
siver Bemühungen in der aktuellen Forschung sind, anzugehenund Wege aufzuzeigen, welche
eine bessere Beschreibung korrelierter Materialien ermöglichen. Dazu stelle ich die Kombina-
tion von DMFT mit zwei etablierten Methoden vor, die beide auf der Feynmanschen Diagram-
matik basieren: Die HedinscheGW Näherung (G: Greensche Funktion;W : abgeschirmte
Wechselwirkung) und die funktionale Renormierungsgruppe (fRG). Während man mitGW
höherenergetische Freiheitsgrade erfassen kann, ist fRG inder Lage auch niedrigdimensionale
Systeme, in welchen Korrelationen manifest nichtlokal sind, zu beschreiben.

In Kapitel 1 werden diese drei Methoden (DMFT,GW und fRG) eingeführt. Der erste Teil
des Kapitel behandeltGW und diskutiert weitere Näherungen, die oft nötig sind, umGW in
realistischen Berechnungen zu verwenden. Im zweiten Teil wird die fRG eingeführt und ihre
diagrammatischen Grundlagen erklärt. Schlussendlich wird auch die DMFT und als Anwen-
dungsbeispiel der Mott-Übergang besprochen.

In Kapitel 2 wird die Kombination vonGW und DMFT, welche auchGW+DMFT genannt
wird, eingeführt. Die Methode wurde bereits vor einem Jahrzehnt vorgeschlagen und hat viele
konzeptuelle Vorteile gegenüber z.B. lokale Dichteapproximation (LDA)+DMFT, einer an-
deren, sehr erfolgreichen realistischen Erweiterung von DMFT. Leider ist jedoch die Implemen-
tierung derGW+DMFT Methode für realistische Berechnungen technisch äußerst aufwendig,
weshalb es bisher nur wenige Beispiele tatsächlicher Anwendungen gibt. Deshalb wird hier
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die Implementierung einerQuasiteilchen Näherungfür GW+DMFT vorgeschlagen, deren nu-
merischer Aufwand vergleichbar ist mit jenem von LDA+DMFT.Am Beispiel des korrelierten
Metalls SrVO3 zeigen wir die Vorteile unserer Methode und vergleichen siemit experimentellen
Photoemissionsspektren, sowie mit Resultaten der etablierten LDA+DMFT Methode.

Schließlich wird inKapitel 3 die ‘‘DMF 2RG’’ eingeführt, eine neuartige Kombination
zwischen DMFT und fRG. Der große Vorteil dieser neuen Methodeist, dass der fRG-Fluss
hier bereits von Anfang an die nicht-perturbative Physik der DMFT beinhaltet. Zudem werden
nicht-lokale Fluktuationen durch den Fluss unverfälscht in allen Kanälen berechnet. Als erstes
Beispiel für die Anwendungsmöglichkeiten der DMF2RG Methode wird das zweidimensionale
Hubbard-Modell bei halber Füllung betrachtet, insbesondere werden die elektronische Selbsten-
ergie sowie einige Zweiteilcheneigenschaften (die statische Spinsuszeptibilität und die 4-Punkt
Vertexfunktion) berechnet. Die vielversprechenden Ergebnisse und der Vergleich mit anderen
Methoden, wie etwa der ‘‘dynamical cluster approximation"(DCA) und Quanten-Monte-Carlo-
Methoden zeigt die gorßen Perspektiven, diese neuen DMF2RG Methode zu verwenden.



Introduction

Our ability to understand, predict and control the properties of the materials around us is at
the basis of many technological applications that are shaping the world as we know it. Most of
these applications are based on our deeper comprehension ofthe quantum properties of matter.
Even so, thequantum realmis still far from being completely explored, and representsone of
the most important frontiers for our physical understanding. There are still several interesting
phenomena that remain elusive to us, like the high temperature superconductivity (HTC) or
quantum criticality, and many more phenomena that still wait to be unveiled.

Remarkably, the common thread of many of these phenomena is constituted by the relevant
role played by the electroniccorrelations. This represents a striking difference from the more
conventional situation, where, thanks to the screening of the interaction and to Landau’s Fermi
liquid theory, we can think of the motion of each electron as if it was independent form the one
of the others

On the contrary, in "strongly correlated" systems the individual motion of each electron is
deeply influenced by the presence of all the others. The theoretical description of this situation
is much more challenging, which has stimulated and is still stimulating us to think out of the
box. In fact, in the presence of correlations, often we cannot reason in terms of a simple col-
lection of single electrons anymore. Instead collective modes arise which involve all, or many,
(valence) electrons, such as, e.g., a string of misaligned electronic spins in the case of spin
polarons, also studied in this thesis. Understanding what this behavior is, and how it affects
the macroscopic properties of the systems represents one ofthe major challenges in the field of
modern condensed matter.

There are three main strongly interconnected paths to achieve this goal: The experimental
exploration, the purely theoretical analysis, and the computational (numerical) approach. In this
thesis we are focused on the two latter aspects, and on the connections between them, i.e., how
a mathematical theory can be implemented numerically to obtain results, when, as it is almost
always the case, an analytical solution is not feasible.

One of the main starting points of this thesis’ work, is the dynamical mean-field theory
(DMFT). This approach is based on the mapping of a lattice problem onto a single impurity
site. The physics captured by DMFT can be understood considering the limit where it becomes
exact: the limit of infinite dimensions. In this limit the spatial fluctuations average out and
the physics becomes purely local, from which the name "mean-field", while on the other hand,
the fluctuations in time are fully retained, and hence the name "dynamic". Although this limit
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might sound exotic, DMFT has proven to be an extremely successful tool in the description of
strong electronic correlations, succeeding where all the perturbative methods are bound to fail,
such as for the description of the Mott metal insulator transition. This is possible because, in
DMFT the local physics is treated non perturbatively. For these reasons the last fifteen years
have seen the rise of DMFT, in combination with density functional theory (DFT+DMFT), as
the tool-of-choice to study strongly correlated materials.

Unfortunately, however, the "mean-field" nature of DMFT manifests itself in a number of
physical situation of interest: This is when the nonlocal correlations, neglected by DMFT, play
a major role, as, e.g., in low-dimensional systems, or for systems close to a quantum phase tran-
sition. A second drawback of DMFT is that, due to the high computational cost of the solution
of its many-body problem, it can treat only a restricted number of degrees of freedom. Hence,
it is necessary to downfold the high energy degrees of freedom of the original Hamiltonian,
for which the strong electronic correlations are less important, onto a low-energy Hamiltonian,
which is then treated in DMFT. The downfolding procedure, however, is not uniquely defined
and, in practice, it requires the introduction nonab-initio parameters, in particular to repre-
sent the screened Coulomb interaction in the low-energy Hamitonian. This represents a major
drawback for the predictive power of DMFT-based methods.

To overcome these drawbacks we need to make a further effort and go beyondDMFT. To
this end, the strategy that we will follow consists in combining the strengths of DMFT with
those of two other methods which, taken singularly due to their perturbative nature, are not
suited for the description of materials in the strongly correlated regime. These methods are the
GW which is capable to deal directly with the full expression ofthe Coulomb interaction, and
the functional renormalization group, which, is ideally suited to study in an unbiased way the
competing instabilities of a system. However, combining two theories, is a nontrivial task: This
can only work if the two methods act in synergy. Therefore oneof our major efforts consisted
in bridging DMFT withGW first, and fRG then in the most effective way.

The combination ofGW and DMFT was already proposed more than one decade ago in
a seminal paper [24] by Biermann and coworkers. While the derivation on paper of the new
method, namedGW+DMFT, is particularly elegant, its practical implementation has been hith-
erto difficult and it was achieved only in a few cases. This specific, but very important, aspect
represents the focus of our work: We have implemented a simplified scheme, which combines
some of the strengths ofGW with the ones of DMFT for the case of a prototypical material,
the strongly correlated metal SrVO3. In order to obtain an implementation feasible at a relative
cheap computational cost, we have traded some of the elegance of the original theory in favor of
a further "quasiparticle" approximation inGW , obtaining a method which is doable at an effort
similar to the one required by more the more standard DFT+DMFT algorithms. The application
of this method to the case of SrVO3 allowed us to show an improved agreement of our results
with the experiments as compared to the DFT+DMFT results. Furthermore, a comparison of
our results with those of rigorous (and cumbersome)GW+DMFT implementations shows that
the main features of the latter are correctly reproduced.

With the combination of DMFT with fRG, instead, we aimed at a different issue: The treat-
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ment of correlations over all length scales for systems withcompeting instabilities in the regime
of intermediate to strong electronic coupling. One of the most famous examples in this respect
is given by the two-dimensional Hubbard model used to describe the copper-oxide layers sup-
posed to be one of the most crucial ingredients for the basic understanding of high-temperature
superconductivity in the cuprates. Already at weak coupling, due to the reduced dimensionality
and hence to the properties of the Fermi surface, a very rich phase diagrams arises, ranging
from superconductivity, antiferromagnetism, ferromagnetism, and different types of charge or-
der. This reflects the emergence of several comparable energy scales in the systems, a problem
ideally suited for fRG, that can deal unbiasedly with the emergent instabilities. However, the
weak coupling limitation of the fRG only allows for indicating what the situation in the strong
coupling regime, relevant for HTC, might be. At the same time,due to the reduced dimen-
sionality and to the importance of nonlocal correlations DMFT alone also fails in describing
these phenomena. We show, however, that a combined approach of fRG and DMFT, can be
derived exactly and is applicable to this class of situations. The nonperturbative description
of the local correlations in DMFT is combined with the unbiased treatment of competing in-
stabilities of fRG. From the theoretical point of view we haveshown by means of a Feynman
diagrammatic analysis, that, even in its first most simple implementation, is the fRG formalism
to avoid any double counting of diagrams, and we have also compared the diagrammatic con-
tent of DMF2RG to that of other diagrammatic extensions of DMFT. On the practical point of
view we have performed the first implementation of the method, and applied to the test case
of a two-dimensional Hubbard model, obtaining promising results. Motivated by this, we are
confident that the work presented in this thesis can represent a ground zero for several further
developments and high impact applications in the field of quantum many-body theory.
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Outline

One of the main challenges that we have experienced during the work of this thesis has
been represented by the complex communication between people with different scientific back-
grounds. This aspect is reflected in the style of this thesis, because some concepts that may
sound obvious to people experienced, for example, in fRG can be more difficult to assimilate
for someone more trained in DMFT, andvice versa. For this reason we decided to be pedagog-
ical in several parts of the thesis, especially when the different approaches used are introduced.
At the same time, as we aim at the combination of different theories, we devoted quite some
effort trying to clarify the physical content of each of them, their range of applicability and their
representation in terms of Feynman diagrams.

The main structure of the thesis is organized as follows. Thefirst chapter , is devoted to the
presentation to the three existing approaches to electronic correlations that we are going to use
afterwards, arranged in an ideal order of complexity of the corresponding Feynman diagrams:
First theGW , based on ladder diagrams, then the fRG, based on parquet diagrams, and, finally,
DMFT which includes all possible local diagrams. More in detail, after briefly describing
density functional theories, we will focus on theGW equations. First we will derive the exact
set of Hedin’s equation and then theGW approximation to them.
The second part of this chapter is devoted to fRG. This will be analyzed in the language of
Feynman diagrams: first the exact hierarchy of flow equations will be derived, then the trun-
cation to it, necessary for making the problem tractable, will be discussed, and eventually the
corresponding diagrammatic content will be shown. The section is concluded by an overview
of the most common choices for the cutoff functions.

Finally we will turn our attention to DMFT. This will be firstderived in a more standard way.
Then we will also propose a more unusual derivation, based onfunctional integral methods. The
chapter is concluded by a brief discussion about the DMFT description of the Mott transition.

The second chapteris devoted toGW+DMFT. The method will first be introduced, em-
phasizing howGW and DMFT can be integrated in a single, formally elegant, method and the
possible advantages of doing this. The practical implementation, however presents several tech-
nical complication, and, in a second part of the chapter, we will propose a simplified scheme,
which relies on a quasiparticle approximation to theGW self-energy. We will discuss then
how, with this approximation, we can perform quasiparticleGW+DMFT calculations keeping
substantially unaltered the DFT+DMFT main steps.
In the last part of this chapter, we present the results obtained testing our quasiparticleGW+DMFT
implementation in VASP for the correlated metal SrVO3. The improvement over conventional
DFT+DMFT is shown by a comparison with experimental data. Finally our results are com-
pared with those obtained within a much more demandingGW+DMFT calculation, exhibiting
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good agreement for the main features.

In the third chapter we present DMF2RG, our novel approach, obtained by combining
DMFT and fRG, to study electronic correlations on all length scales. In the first part of the
chapter we present the state-of-the-art methods to treat strong electronic correlations beyond
DMFT. This way we emphasize how our new method, exploiting the strengths of fRG, can be
competitive with already established approaches. Specifically, we will then demonstrate how
the flexible structure of fRG allows us to include in an algorithmically simple way the local
nonperturbative physics of DMFT as a starting point for the flow equations. We will then use
the results obtained in the first chapter to understand the diagrammatic content of DMF2RG.

After that, we will demonstrate the applicability of the newscheme, by presenting our first
practical implementation of DMF2RG. As a test case, we applied it to the two-dimensional
Hubbard model, obtaining results for the self-energy, the spin susceptibility, and the one particle
irreducible vertex. The former are shown to be in qualitative agreement with results obtained
by cluster extension of DMFT and lattice quantum Monte Carlo respectively. A complete
understanding of the results for the vertex has not yet been fully gained, but its importance for
future studies as well for the interpretation of already obtained results, encourages us to further,
more accurate, analysis. This directly leads us to our conclusions and to a rich outlook of further
possible improvements, in-depth analysis and possible applications of our newborn approach.

The thesis is completed by the conclusion chapter in which webriefly recapitulate the con-
tent of the thesis and the main achievements obtained in it, and the future perspectives of our
research work.





Chapter 1

Different methods for different
correlations: GW, fRG, and DMFT

In this chapter we prepare the ground for the discussion of themain results of this thesis,
presented in the other two chapters. To this end we introduce here the three existing approaches
to electronic correlations that we are going to use afterwards, arranged in an ideal order of
complexity of the corresponding Feynman diagrammatics: First, theGW based on ladder dia-
grams for the charge screening, then the fRG, based on parquet diagrams, and, finally, DMFT
which includes all possible local diagrams. More in detail, after briefly describing density
functional theories, we focus on theGW equations: First we derive the exact set of Hedin’s
equations and then theGW approximation to them. The second part of the chapter is devoted
to fRG. This is analyzed in the language of Feynman diagrams:first the exact hierarchy of flow
equations will be derived, then the truncation to it, necessary for making the problem tractable,
will be discussed, and eventually the corresponding diagrammatic content will be shown. The
section is concluded by an overview of the most common choices for the cutoff schemes. Finally,
we will turn our attention to DMFT. This will be first derived in arather standard way. However
we will also propose a less common derivation, based on functional integral methods, which
is closer to the spirit of the new developments described in the other chapters. The chapter is
concluded by a short discussion about the DMFT description of the Mott transition. We have
arranged the chapter so that each section is independent from the others, being self-contained
and, unless when strictly necessary, we have tried to avoid technicalities, rather focusing on
the physical content of the methods, to facilitate the reading of those who are familiar with one
of the methods and are experts of the others.

The present thesis is focused on the electronic properties of condensed matter at low tem-
peratures. Withlow temperatureswe mean the temperature interval up toO(103) K, or equiva-
lently up toO(0.1) eV. The limiting energy scale is essentially set by the melting temperature
of the crystal: For higher temperatures the motion of the ions cannot be considered to be re-
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stricted to small vibrations around the position of the lattice sites, and the Born-Oppenheimer
approximation [28], that we are going to discuss in the following, does not hold anymore.

On the other hand, when lowering the temperature we encounter several other energy scales,
connected with collective excitations or with spontaneoussymmetry breaking. For example
ferromagnetic or antiferromagnetic transitions usually occur for temperatures belowTN ∼
O(102 − 103)K, while superconductivity is hitherto restricted to temperatures belowTC ≈ 137

K.
Consequently, we want to describe the systems of interest using a Hamiltonian which cap-

tures the physical properties at these energy scales, while, for simplicity, it may neglect, or
treat in a simplified way those effects which supposedly do only play a marginal role, like for
example the ionic motion. Considering this, the Hamiltonianthat we will use to describe the
electronic properties reads:

He =
∑

i

[

−~
2∆i

2m
+
∑

l

− e2

4πǫ0

Zl
|ri −Rl|

]

︸ ︷︷ ︸

H0

+
1

2

∑

i 6=j

e2

4πǫ0

1

|ri − rj|
︸ ︷︷ ︸

Hee

, (1.1)

where∆i is the Laplacian operator,m represents the electron mass,ri is the position of electron
i, with charge−e and spinσi, andRl is the position of the nucleusl, with chargeZle, ~ is the
reduced Planck constant andǫ0 is the vacuum dielectric constant. The Hamiltonian (1.1) already
involves two important approximations:

• The neglecting of relativistic corrections (and of any interaction besides the Coulomb
one);

• The so-called Born-Oppenheimer approximation [28]: The degrees of freedom associated
with the motion of the nuclei have been decoupled from the ones of the electrons.

The latter is possible due to the fact that the nuclei moves much slower than the electrons, due to
the high ratio between the masses of protons and neutrons andthe one of electrons. Therefore,
in the present approximation, the set of positions{Rl} is considered fixed, i.e. they are the
equilibrium position of the nuclei in the periodic lattice.The Coulomb interaction between the
nuclei and the electrons then effectively acts as an external potential. However, the determina-
tion of the set{Rl} for a real material is itself not an easy task, and sometimes it is determined
experimentally instead of being computed from first principles.

It is often desirable to go beyond the Born-Oppenheimer approximation, and treat the mo-
tion of the nuclei at least perturbatively around the equilibrium position. This can be done by
including a term in the Hamiltonian accounting for the so-called electron-phononcoupling: The
vibrations of the lattice are treated as quanta, calledphonons, interacting with the electrons [43].
In some cases the electron-phonon coupling can be very important, e.g., it is at the origin of
conventional low-temperature superconductivity.

Let us focus on the terms constituting the Hamiltonian (1.1). The first term accounts for the
standard kinetic energy of the electrons; The second term for the Coulomb interaction between
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the electrons and the nuclei. As mentioned, this term can also be seen as an external potential
termvext(r). Such a potential often (and in all the cases we will consider) possesses translational
invariance under displacement of a lattice vectorR:

vext(r+R) = vext(r). (1.2)

This symmetry has very important consequences, due to theBloch theorem[14], and guarantees
the conservation of the total momentum. Finally, the third term accounts for the Coulomb
interaction between the electrons and is the most difficultto treat.

1.1 Electronic correlations

The Coulomb interaction between the electrons makes themcorrelated, i.e. the motion of
one electron is influenced by the motion of all the others. Formally, due to the interaction term
v̂ee, the Hamiltonian (1.1) is non-separable. Indeed, if the Coulomb interactions were so small
that one could safely neglect them, it would be possible to write theN particle electronic wave
function solution of the Schrödinger equation defined byH as the Slater determinant of the one
electron wave functionsψnkσ(r). Theseψnkσ(r) would be the solutions of the single particle
eigenvalue equation:

H0ψnkσ =

(

−~
2∆i

2m
+ vext(r)

)

ψnkσ = ǫnkψnkσ, (1.3)

with eigenenergiesǫnk being theband energiesof thenth band. Furthermore, due to the above-
mentioned periodicity of the external potential, the one-particle functionsψnkσ are Bloch func-
tions [14]:

ψnkσ(r) = e−ik·runk(r), (1.4)

with u(r+R) = u(r), for R being a lattice vector.
In realistic situations, however, the Coulomb energy can hardly be neglected: The ratio

between kinetic and potential energy fromHee is notsmall. To estimate the ratio let us proceed
as follows: First let us assume thatN particles occupy a volumeNr30. Then the minimum
kinetic energy per particle will be, due to the uncertainty principle,O(~2/mr20). The Coulomb
energy per particle, instead, can be estimated asO(e2/ǫ0r0), under the assumption that every
particle interacts mainly with its nearest neighbors [4]. The ratio between potential and kinetic
energy will therefore be roughly proportional tor0/a0 ≡ rs, a0 = 0.529Å being the Bohr
radius. Neglecting the electron-electron interaction would be reasonable in the limit of high
density, corresponding tors ≪ 1. This is not true in conventional metals wherers is usually of
orderO(1), and therefore potential and kinetic energy are of the same order. Hence one needs
to deal with the full complexity of the Hamiltonian (1.1).

The exact numerical solution is, however, not feasible already for an extremely smallO(10)

number of particles. Besides, the knowledge of the full wave function is, by large extent, also
not particularly useful, since one is only interested in thethermodynamic properties of the
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system, rather than in the motion of the individual electrons. To overcome these difficulties
several techniques have been developed so far to tackle the many electron problem in condensed
matter physics during the last century,. Among them, a very successful one is thelocal density
approximation (LDA) of density functional theory (DFT), which will be described in the next
paragraph. The success of LDA in computing the electronic properties of most materials and in
particular of metals is an extremely surprising information: in spite of the large Coulomb energy
a description in terms ofeffectivelyindependent particles, calledquasiparticles, in several (but
not all) cases works very well. The electron-electron interaction is accounted for by aneffective
potentialacting on the quasiparticles.

A posteriori it is possible to say that this is a consequence of theFermi liquid theory: due to
theadiabatic continuity[8], in the absence of electronic phase transitions, one cancontinuously
connect the excitation of the system in which the electron-electron interaction is ideally turned
off with the (single-particle) excitations of the interacting system. When this picture becomes
questionable, and therefore LDA fails to describe the properties of the system, one talks about
strongly correlated materials. These require a more sophisticated treatment of the electronic
interactions.

1.2 LDA: mapping onto independent particles

A quite widespread, though unsatisfactory, definition in the strongly correlated community
states thata strongly correlated material is a material for which LDA fails. Then, as pointed out
by Robert O. Jones [90] it is of great importance to have a feeling of what LDA can do and in
which cases it is successful. This is what we are going to discuss in this paragraph.

LDA is a ground state theory: it is designed for the calculation of the ground state energy:

〈Ψ|He|Ψ〉 =
∫

d4x1...

∫

d4xNΨ
∗(x1, ...,xN )HeΨ(x1, ...,xN), (1.5)

wherexi is a shorthand forri, σi, and
∫
d4xi ≡

∑

σi

∫
d3ri, andN is the number of particles.

To gain some physical insight we introduce the reduced density matrix:

ρ(1)(x,x′) ≡ N

∫

d4x2...

∫

d4xNΨ(x,x2, ...,xN )Ψ
∗(x′,x2, ...,xN ); (1.6)

and the one- and two-particle densities, withx = (r, σ) andx′ = (r′, σ′):

n(1)(r) =
∑

σ

ρ(1)(x,x) = N
∑

σ

∫

d4x2...

∫

d4xN |Ψ(x,x2, ...,xN )|2, (1.7)

n(2)(r, r′) = N(N − 1)
∑

σ,σ′

∫

d4x3...

∫

d4xN |Ψ(x,x′,x3, ...,xN )|2. (1.8)
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With this we rewrite the total energy as:

E =

∫

d4x′
∫

d4xδ(x− x′)

(−~
2

2m
∆+ vext(r)

)

ρ(1)(x,x′) +

1

2

∫

d3r

∫

d3r′
e2n(2)(r, r′)

4πǫ0|r− r′| . (1.9)

On physical grounds, let us split the two particle density intwo terms, introducing the so-called
correlation hole functionh(r, r′):

n(2)(r, r′) = n(1)(r)
[
n(1)(r′) + h(r, r′)

]
. (1.10)

The first term in the above equation is nothing more than the probability of finding an electron
in the positionr and a second one in the positionr′ assuming that there is no correlation between
the two electrons (not even the one arising from the Pauli principle).

All the complication has simply been shifted to the hole function. The latter accounts for the
fact that the conditional probability of having one electron at the positionr′ given that another
electron is at the positionr is not the product of the two one-particle densities. In fact to know
the density of the second electron, one has to take into account the negative density (correlation
hole) that the first electron leaves behind in the rest of thespace and that depends on its position
r.

A big step forward to find the ground state energy is due to Kohn and Sham [103]. Their idea
relies on the Hohenberg-Kohn theorem [67], which states that the ground state properties of a
full many body problem can be found by solving an effective single particle problem associated
with an effective potentialV eff [n(r)], which is a functional of the ground state densityn(r) only.
Given this effective potential the ground state energy can be determined using a Ritz-variational
scheme, as the functional minimum of the energy functional with respect to the density.

At first sight the gain is not apparent: We have traded anN -particle problem, that we are
not able to solve, for a single-particle problem defined by apotential that we do not know.
However, the most important information of the Hohenberg-Kohn theorem is that the ground
state energy is a functional of the density alone, and not of the wave function. This formalizes
an idea that dates back to Dirac, who already in the 1930s wrote [38]:

[...] the whole state of the atom is completely determined bythis electric den-
sity; it is not necessary to specify the individual three-dimensional wave functions
that make up the total electric density. [...]

Following Kohn and Sham, we next write the total energy functional as:

E[n(1)] = T0[n
(1)] +

∫

d3r vext(r)n
(1)(r) +

1

2

∫

d3r

∫

d3r′
e2n(1)(r)n(1)(r′)

4πǫ0|r− r′| + Exc[n
(1)]

(1.11)
WhereT0 is the kinetic energy of a system ofnon-interacting electrons with densityn(1),
which are taken as a reference system. The second term accounts for the interaction of the
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electrons with the lattice ions. The third term is the Coulombenergy that a system of electrons
with densityn(1) would have if they were classical particles. It is easy to seethat this arises by
including the first term of Eq. (1.10) in the last one of Eq. (1.9). Finally the last termExc is
calledexchange and correlation energyand includes all the unknown terms that have been
neglected so far.

It consists of two contributions: (i) a potential and (ii) a kinetic energy one.
The former (i) describes the decrease of the Coulomb repulsion between electrons in the

same spin state due to the Pauli principle and pure correlation effects due to the fact that elec-
trons do not move independently from each other. This term, sometimes called exchange and
correlation term, reads:

Uxc =

∫

d3r n(1)(r)
1

2

∫

d3r′
e2h(r, r′)

4πǫ0|r− r′| . (1.12)

The second contribution (ii), also included inExc, accounts for the difference between the
true kinetic energyT of the interacting system and the kinetic energyT0 of a reference non-
interacting system with the same density:T [n(1)]− T0[n

(1)]. This term originates from the fact
that in the presence of the Coulomb interaction the wave function of the system is deformed,
compared to the one of the noninteracting system, even if thetwo systems share the same elec-
tron density. In other words the interacting system will minimize its total energy and therefore
adjust its wave function to reduce the potential energy at the price of having a higher kinetic
energy compared to the noninteracting system.

Up to now no approximation has been made. The energy has just been expressed as a
functional of the electron density alone, and then has been split in a known part and in an
unknown part, in which all the difficulties are hidden. On the other hand such a splitting is
very convenient, because all the quantities butExc in Eq. (1.11) can be evaluated exactly, and
therefore we only need an approximation for the exchange andcorrelation energy.

However, before discussing the possible approximation schemes forExc, let us discuss now
how to obtain a single particle Schrödinger equation from the energy functional, Eq. (1.11).
First, let us write the density in terms of one-electron wavefunctionsφi:

n(1)(r) =
∑

σ

N∑

i

|φi(x)|2. (1.13)

Now the functional (1.11) is minimized with respect to theφi’s, yielding:
[

−~
2∆

2m
+ V eff(r)− ǫi

]

φi(x) = 0. (1.14)

Here the effective one-particle potential (depending on the particle density) has been identified
with:

V eff(r) = vext(r) +

∫

d3r′
e2n(1)(r′)

4πǫ0|r− r′| +
δExc[n

(1)]

δn(1)(r)
, (1.15)

and theǫi’s appearing in Eq. (1.14) are the Lagrange multipliers usedto impose the orthog-
onality of the one-electron wave functions. Let us stress that all this construction is aimed at
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the calculation of the ground state energy. This means that there is no theoretical argument to
attribute a physical meaning to the Lagrange multipliersǫi’s and to the one-particle wave func-
tionsφi’s. One is, in principle, only allowed to see them as the eigenvalues and eigenvectors
of a simplified one-particle problem that can be used as a tool for the calculation of the ground
state energy of a many-body problem.

However, the great success obtained by the LDA is also due to the empirical observation
that very often the Lagrange multipliersǫi can be identified with thereal excitations of the
many-body system. Therefore these are used to compute the bandstructure. In this sense LDA
does not give onlyground state propertiesof a system, but also theexcitation spectra.

Approximations for the exchange and correlation energy

The last step that we need to actually employ the density functional theory described above
is the definition of an approximation forExc. It is only at this level that some approximation
will be introduced: up to now we have only exactly rewritten the problem in a form more suited
for developing an approximate scheme.

The namelocal density approximation, in a strict sense, refers to the original approximation
proposed by Kohn and Sham, who assumed:

Exc =
∑

σ

∫

d3r n(1)(r)ǫxc[n
(1)(r)], (1.16)

whereǫxc[n(1)] is the exchange and correlation energy per particle of ahomogeneous electron
gaswith densityn(1), that can be obtained, for example by means of quantum Monte Carlo
calculations [32]. The name explicitly refers to the fact that the integrand in Eq. (1.16) only
depends on thelocal value of the electron density. So in this approximation the homogeneous
electron gas is used as reference system.

What one hopes for is that the error made in the estimation of the exchange and correla-
tion potential is small enough to give reasonable results, but in general the approximation is
well justified only in the limits of slowly varying densities and very high densities [89]. The
simplest generalization of LDA is thelocal spin density approximation(LSDA), which general-
izesǫxc[n

(1)
↑ (r), n

(1)
↓ (r)] to the exchange and correlation energy per particle of a homogeneous

electron which is allowed to undergo a spin polarization.
Besides LDA, several other approximations have been developed to improve the descrip-

tion of the exchange and correlation energy, also includingnon local terms in the functional.
This led to several other approximated schemes, including for example the generalized gradient
approximation (GGA), hybrid functionals and LDA+U. All these methods, based on the map-
ping of the interacting problem onto an effective single-particle problem go under the name of
density functional theory. However, with a little abuse of notation we will often refer to them
simply as LDA.

To summarize, in all DFT methods some system, most usually the homogeneous electron
gas, is taken as reference for developing an approximation for the exchange and correlation
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energy of the real system. Surprisingly this approximationvery often yields very good results
not only for theground stateproperties of the system but also for theexcitation spectra, i.e.
the bandstructure.

Solution of the one-particle Schrödinger equation

To complete the discussion about the LDA methods, we only need to discuss the numerical
solution of Eq. (1.14). This can be done in a self-consistentway following the protocol below:

i. Choose a set of starting one-particle wave functionsφi(r), e.g., atomic ones, and calculate
the densityn(1), by Eq. (1.13).

ii. Calculate the effective potentialV eff(r) associated with the densityn(1)(r).

iii. Solve the Kohn Sham equations. (1.14) yielding the new wave functionsφnew
i .

iv. Compute the new density from the new wave functions using Eq. (1.13).

v. Compare the old and the new density, and iterate (continuing with ii) until the difference is
smaller than some threshold valueǫthres.

vi. Once self consistency is reached identify the densityn(1)(r) with the ground state density
n(r).

From this self-consistent density one can finally compute the ground state energy, and, as men-
tioned, also the bandstructure.

The approach described above is implemented in several codes available to the scientific
community, which mainly differ in the choice of the basis, functions, and it is now the standard
for calculating properties of solids. In the following we will describe a different approach,
theGW approximation, which allows to go beyond LDA (or DFT), stillkeeping into account
the full complexity of the Hamiltonian, and which, on the long term, is a good candidate for
becoming the new standard for the computation of propertiesof solids.

1.3 GW : Hedin’s equations and theGW approximation

Even though the LDA has proven to be a very powerful tool, there is a number of cases
for which LDA and related methods fail. An important exampleare semiconductors, for which
the spectral gap is systematically underestimated compared to the experimental values, up to a
factor 50% in the case of germanium.

The reason for this discrepancy has been attributed to the presence of extendedsp3 states,
whose exchange and correlation interaction is approximated in a quite poor way by the local
exchange of LDA. Apart from this, as we will discuss later, LDA also fails for the description
of the transition metal oxides (TMO), even at a qualitative level. For example it does not give
the insulating behavior of many TMO’s.
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Also from the theoretical point of view it would be desirableto have a method that goes
beyond LDA, at least in two respects. These are, first, the fact that a deep reason for the iden-
tification of the spectra with the eigenvalues of the auxiliary one-particle problem is missing,
and, second, the fact that LDA is based on the estimation of the exchange and correlation en-
ergy from a calculation (often numerically) done for the homogeneous gas. This, as we will
discuss in the third chapter, makes the combination of LDA with a diagrammatic method, such
as DMFT, more difficult.

For all these reasons, it is strongly desirable to device methods that go beyond LDA, allow-
ing for a better treatment of the correlations. A first possibility that people have explored is the
improvement of the functionalExc. However the approaches developed so far in this direction,
like GGA or LDA+U , were not able to solve the main problems in a systematic way.In the
case of GGA, for example the improvement compared to LDA was mainly quantitative, rather
than qualitative, and not universally better. On the other hand LDA+U , besides introducing
undesirable fitting parameters, often does not predict thecorrect ground state. It predicts a too
strong tendency towards polarized states, and it opens a gapin the density of states too easily .

An alternative approach consists in using techniques basedon quantum field theory. In this
context the quantity of main interest is the (one-particle)Green’s function, defined as:

G(x1, x2) = −〈T [ψ̂(x1)ψ̂†(x2)]〉, (1.17)

wherexi is a shorthand notation for position in (imaginary) time andspace, a spin index and
eventually also other quantum numbers (e.g. band index):x1 = (r1, τ1, σ1). The operatorŝψ
are in the Heisenberg notation, andT stands for a time ordered product. Knowing the Green’s
function one is able to compute:

• the ground state energy;

• the expectation value of any one-particle operator (and correspondingly from the knowl-
edge of ann-particle Green’s function the ground state of anyn particle operator, e.g. the
spin or charge susceptibility);

• the one-electron excitation spectrum, that in principle can be directly compared with pho-
toemission experiments.

A very important quantity is the self-energyΣk(ω).

Gk(ω) =
1

ω − ǫk + µ− Σk(ω)
, (1.18)

where the Green’s function has been Fourier transformed in afrequency/momentum representa-
tion,µ is the chemical potential, andǫk is the eigenenergy of a quasiparticle of momentumk in
the noninteracting system (momentum and frequency conservation has been implicitly assumed
by taking a Green’s function that depends only on one frequency and momentum argument; for
simplicity we disregard a possible spin and orbital dependence here.).
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Figure 1.1: The Hartree diagram (on the left) accounts for the interaction of one electron with
the background electronic density. The Fock diagram (on theright) is the lowest order
diagram encoding exchange effects.

Figure 1.2: Selected self-energy diagrams at second order perturbation theory in the interac-
tion. A straight line represents a noninteracting Green’s function, a wavy line represents an
interaction vertex.

The self-energy accounts for all the interaction effects inthe Green’s function. In the ab-
sence of interaction, the Green’s function can be triviallycomputed diagonalizing the noninter-
acting Hamiltonian and the self-energy is zero. In the presence of an interactionV , i.e., the
vertex associated with the interaction part of the Hamiltonian Hee expressed in second quan-
tization, this does not hold anymore and computing the self-energy becomes involved. The
first thing that one can think of, to compute the self-energy, is a perturbative expansion in the
interaction. In doing so the first two terms contributing toΣk(ω) at the lowest order in the
interactionV are the ones depicted in Fig. (1.1), the so called Hartree andFock term1.

The approximation obtained by truncating the perturbativeexpansion for the self-energy to
the two diagrams in Fig. 1.1 is called the Hartree-Fock approximation (HFA). It is now well
known that while the HFA works reasonably well only for atoms, already for insulating solids
the HFA predicts a far too large gap, due to the neglect ofscreening effectsthat reduce the
Coulomb repulsion. The description of metals is even worse: HFA predicts qualitatively wrong
results, like a zero density of states at the Fermi level.

If one wants to improve on HFA while still maintaining a perturbative approach a naive

1Details about the Feynman diagrams can be found in the standard literature, see e.g. [1,43,119]. Unless stated
otherwise, in the graphic representations of the Feynman diagrams, a single line depicts anoninteractingGreen’s
function, a double line aninteractingGreen’s function and a wiggled line an interaction vertexV , and frequency
momentum ands spin must be conserved at every vertex. The thinner black lines represent the "external legs" of
the diagrams, they are reminders for the direction of the incoming or outgoing particles, but do not represent a
Green’s function.
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way of proceeding would be the inclusion of higher order diagrams, like those (shown in Fig.
1.2. However this approach is bound to fail. Indeed at the densities of relevance for metals
(rs > 1) the perturbation series does not converge at any finite order and one has to device
better approximation techniques.

In this respect the seminal work of Lars Hedin was very important [59]. He, already in
1965,

• rewrote and reorganized a set of equation "well known to the Green’s function people"
in a way that is particularly suited for devising approximations. These equations are now
calledHedin’s equations.

• suggested a simple approximation to take into account screening effects (for the Coulomb
interaction). This is made possible by the resummation atinfinite orderof a certain class
of diagrams, motivated by physical reasons. This approximation goes under the name of
GW approximation.

We will discuss Hedin’s equations and theGW approximation to them in the next para-
graph.

1.3.1 GW diagrammatics

In this paragraph we will derive Hedin’s equations. Comparedto the original derivation
[59], which is based on the functional integral, we will use here a different language based on
Feynman diagrams.

The first of Hedin’s equations relates the one-particle Green’s function with the self-energy.
Let us consider the expansion of the Green’s function in terms of Feynman diagrams. The

diagrams generated at the lowest orders are shown in Fig. 1.3. One can identify two classes of
diagrams contributing to the Green’s function: Diagrams that can be cut in two halves by cutting
one fermionic line, and therefore calledone-particle reducible, and diagrams that cannot be
divided by cutting one fermionic line, calledone-particle irreducible (IPI).

It is quite natural to collect all the one-particle irreducible diagram into a single structural
unity usually calledself-energy operator(or simply self-energy) and denoted byΣ(r, r′, τ), or
equivalently, in frequency and momentum space2, asΣk(iωn).

By doing so, we can rewrite all the diagrams contributing to the Green’s function as it
is shown in Fig. 1.4, where the self-energy has been represented by a shaded circle: every
irreducible diagrammatic contribution is included in the self-energy, while every reducible con-
tribution can be obtained by forming a chain of noninteracting Green’s function and self-energy
insertions.

2We are always assuming that we have translational and time invariance therefore the Green’s function depends
only on one argument in momentum and frequency space. The time and frequency dependence can be expressed
either in real timet and frequencyω or in terms of imaginary timeτ and Matsubara frequenciesωn = π/β(2n+1),
with β = 1

kBT the inverse temperature.
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= + +

+ + + +
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Figure 1.3: Selected diagrams contributing to the Green’s function up to the second order in the
interaction. The diagrams on the second line are one-particle irreducible, i.e., they contribute
to the self-energy. The diagrams on the third line, instead,are one-particle reducible, i.e.,
they do not contribute to the self-energy, and can be generated as a chain of self-energy
insertions.

The diagrammatic equation in Fig. 1.4 is the known as Dyson equation, and its mathematical
expression, in real and momentum space reads:

G(11′) = G0(11′) +

∫

d2d2′G0(12)Σ(22′)G0(2′1′) + (1.19)
∫

d2d2′d3d3′G0(13)Σ(33′)G0(3′2)Σ(22′)G0(2′1′) + ...

= G0(11′) +

∫

d2d2′G(12)Σ(22′)G0(2′1′);

Gk(iωn) = G0
k(iωn) +G0

k(iωn)Σk(iωn)G
0
k(iωn) + (1.20)

G0
kΣk(iωn)G

0
k(iωn)Σk(iωn)G

0
k(iωn) + ...

= G0
k(iωn) +G0

k(iωn)Σk(iωn)G
0
k(iωn).

To compactify the expression, we are denoting with a number in the argument a set of space
and time coordinates as well as a spin index.

The solution of the equations above can be written as:

G(11′) =
([
G−1

0 − Σ
]−1

)

(11′)
; (1.21)

Gk(iωn) =
[
(G0

k(iωn)
−1 − Σk(iωn)

]−1
; (1.22)
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Figure 1.4: Diagrammatic representation of Dyson equation.

where the matrix inversion in the first equation involves aninversion in spatial and temporal
coordinates.

Eq. (1.21), or equivalently (1.22), are the desired equations which connect self-energy and
Green’s function. We will refer to them asfirst Hedin’s equation (either in real or momentum
space).

In our line of thought we have started from the diagrammatic expansion of the Green’s
function, used the property of one-particle irreducibility to define the self-energy, from which
we have derived the Dyson equation. Equivalently, from a functional integral point of view
we can define the self-energy as the difference between the one-particle irreducible (1PI) one-
particle vertex for the interacting systemΓ(1)(1, 1′) = [G]−1

(1,1′) and the 1PI one-particle vertex

for the non-interacting systemΓ(1)
0 (1, 1′) = [G0]

−1
(1,1′):

[G0]
−1
(1,1′) − [G]−1

(1,1′) = Σ(1, 1′). (1.23)

This equation is just a different way of writing Eq. (1.21), however it can be seen as a definition
for the self-energy, from which one can derive Eq. (1.19). The advantage of this perspective is
that it highlights the relation between the self-energy andthe 1PI one-particle vertex function,
which in turn can be obtained from functional derivation3, via the so-calledeffective action
Γ[φ, φ] (a quantity related to this functional will be discussed in the next sections). Taking Eq.
(1.23) as a definition for the self-energy, one can indeed show that the diagrammatic contribu-
tions to it are the one-particle irreducible diagrams described above. More details about this
approach can be found in reference [134].

To derive the next of Hedin’s equations we introduce the concept ofirreducibility in the in-
teraction. We represent an interaction vertexV by a wiggled line. For our purposesV (11′; 22′)

is the Coulomb interaction vertex appearing in the interaction part of the Hamiltonian written in
second quantization. A diagram will be calledreducible in the interactionif it can be separated
into two halves by cutting one interaction line, otherwise it will be irreducible in the interac-
tion. This concept is introduced in analogy with the (more standard) one-particle irreducibility
to introduce two new diagrammatic elements: The screened interactionW and the polarization
operatorP , shown in Fig. 1.5. The screened interaction is defined as the sum of all Feynman
diagrams which connect the left and right side by interactionsV . As the self-energy is account-

3In an almost equivalent way the self-energy can also be derived from the derivative of other functionals, like,
e.g., theeffective interactionfunctional [156].
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Figure 1.5: Relation between the screened interactionW , represented by a double wiggled line,
and the polarization operatorP , denoted by a square.

ing for the fact that the electrons interact among themselves in their motion, the polarization
accounts for the fact that the Coulomb interaction in a mediumis screened. Indeed, the interac-
tion of the electrons is different in a medium than in vacuum:Each electron will polarize the
background charges, scatter other electrons, and take partin collective excitations.

These effects are considered in the polarization, that plays a role analogous to the one of
the self-energy for the electron propagator: it collects ina structural unit all the irreducible
diagrams that correct the bare interaction. It is easy to seethen that all the diagrams contributing
toW can be obtained by forming a chain of polarizationP and bare interactionV , like in Fig.
1.5. The only formal difference compared to Eq. (1.19) consists in the fact that, while the
(single-particle) Green’s function and the self-energy have only two indices, the interaction,
the polarization and the screened interaction are four points objects, depending on four indices.
Indeed the polarization is related to the two-particles Green’s function. Translated into formulas
the equation of Fig. 1.5 reads:

W (11′; 22′) = V (11′; 22′) +

∫

d3d3′V (11′; 33′)P (3′3; 4′4)W (44′; 22′). (1.24)

The four indices of the screened interaction label the particle and the hole that are created at the
two ends of the diagram. As it is defined the polarization is still a complicated object, that can
be still separated in two structurally different parts: a connected part and a disconnected one, as
shown in Fig. 1.6, or equivalently by the relation:

P (11′; 22′) = G(12′)G(21′) +

∫

d3d3′G(13)G(3′1′)Γ∗(33′; 44′)G(4′2′)G(24). (1.25)

Eq. (1.25) isHedin’s third equation : The disconnected part is simply the product of two
Green’s functions, while the connected one contains avertex function Γ∗ that corrects the
independent propagation of the particles, and includes themany body effects at the two-particle
level. It explicitly accounts for the scattering between the particles. The vertex that we have
denoted withΓ∗ is the one-particle irreducible vertexwhich is, as the superscript "∗" shall
indicate, also irreducible in the interaction.4

4The vertex irreducible in the interaction must not be confused with the more standard [134]one-particle
irreducible vertex, that we will discuss mainly in the section about fRG, cf. Sec. 1.4.
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Figure 1.6: Diagrammatic expression of the relation between the polarization operatorP , the
separated Green’s functions (bubble term) and the vertex correctionΓ∗. Since the polariza-
tion cannot include interaction-reducible diagrams instead of using the vertexΓ we have to
express the equation in term ofΓ∗ (more details are given in the text).
Second line: In terms of real space or momentum (but not in an orbital representation) two
indexes can be contracted to a single one.

Hedin’s fourth equation is obtained by relating the vertexΓ∗ to the particle-hole irre-
ducible vertex irreducible in the interactionΓ∗

ph. This relation is given by the standard Bethe-
Salpeter equation, i.e. the equivalent of the Dyson equation for the vertex. Indeed, the vertex
Γ∗ will contain some Feynman diagrams that can be separated in two halves by cutting one
incoming and one outgoing Green’s function line. Such diagrams will be calledparticle-hole
reducible, while all the particle-hole irreducible diagrams can be collected in another structural
unity, called particle-hole irreducible vertex irreducible in the interactionΓ∗

ph.
All the diagrams contributing toΓ∗ can be generated by summingΓ∗

ph and a geometric series
of repetitions ofΓ∗

ph connected by two Green’s function, (Fig. 1.8):

Γ∗(11′; 22′) = Γ∗
ph(11

′; 22′) +

∫

d3d3′d4d4′Γ∗(11′; 33′)G(3′4)G(4′3)Γ∗
ph(44

′; 22′). (1.26)

Some remarks are necessary here: To avoid that some diagramsare counted twice in Eq. (1.24),
we should not include inΓ∗ all the diagrams that can be generated as a ladder of interaction and
pairs of particle hole Green’s functions, otherwise such diagrams would be counted twice when
calculatingW via Eq. (1.24). This can be easily done by imposing thatΓ∗

ph does not contain
the diagram consisting of the bare interactionV alone, therefore we get:

Γ∗
ph(11

′, 22′) = Γph(11, 22
′)− V (11′, 22′), (1.27)

whereΓph(11, 22
′) is the "standard" particle-hole irreducible vertex. In the original formulation

of his equations, Hedin [59] related the derivative of the self-energy with respect to the Green’s
function with the particle-hole irreducible vertex:

Γph =
δΣ(11′)

δG(2′2)
. (1.28)

This is a standard field theoretical relation. In terms of Feynman diagrams this relation follows
from the observation that differentiation with respect to the Green’s function means removing
one Green’s function line, see Fig. 1.7 and Ref. [22].
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Figure 1.7: By means of selected Feynman diagrams we illustrate that differentiation ofΣ with
respect toG yields the particle-hole irreducible vertex.

However, in considering the work of Hedin, we should keep in mind that, since he worked
out his equations for the case of the uniform electron gas, hecould incorporate from the very
beginning the Hartree term in the noninteracting Hamiltonian, canceling the energy contribution
due to the positive ions. For this reason in our formulation Eq. (1.28) reads:

Γ∗
ph =

δ(Σ(11′)− ΣHartree)

δG(2′2)
. (1.29)

Before we can move to the derivation of the last Hedin’s equation, we have now to inves-
tigate the relation between the two-particle Green’s functionG(2) and the polarization operator
P , and correspondingly betweenΓ andΓ∗. Thetwo-particle Green’s functionis defined as:

G(2)(11′; 22′) = 〈T [ψ̂(1′)ψ̂(2′)ψ̂†(1)ψ̂†(2)]〉. (1.30)

It describes the correlated propagation of two particles. It can be split in a connected part and
a disconnected one. The latter is given by the product of two single particle Green’s functions:

G(2)(11′; 22′) = G(11′)G(22′) +G(12′)G(21′) +G
(2)
C (11′; 22′). (1.31)

Following Ref. [134] we relate the two particle-connected Green’s function with the one-particle
irreducible vertex functionΓ:

G(2)
c (11′; 22′) =

∫

d3d3′G(13)G(3′1′)Γ(33′; 44′)G(4′2′)G(24). (1.32)
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Figure 1.8: Diagrammatic representation of the Bethe-Salpeter equation between the irre-
ducible vertex in the particle-hole channelΓ∗

ph and the particle-hole reducibleΓ∗. The
particle-hole irreducible vertexΓ∗

ph collects the Feynman diagrams which cannot be sepa-
rated into left and right part by cutting two Green’s function lines. All diagrams are then
generated by the Bethe-Salpeter equation.

Figure 1.9: Diagrammatic representation of the relation betweenΓ andΓ∗. This relation can be
obtained by an iterative procedure, inserting Eq. (1.27) inEq. (1.33), and finding an iterative
solution forΓ. Using the polarization operatorP and the screened interactionW one can
collect the generated diagrams in the form shown in the figure.

Comparing this with Eq. (1.25), we see how the connected part of the polarization and the
connected part of the two-particle Green’s function are related. As in Eq. (1.26), the one-
particle irreducible vertex can be expressed in terms of theparticle-hole irreducible vertexΓph,
using a Bethe-Salpeter equation:

Γ(11′; 22′) = Γph(11
′; 22′) +

∫

d3d3′d4d4′Γ(11′; 33′)G(3′4)G(4′3)Γph(44
′; 22′). (1.33)

For later use let us expressΓ in terms ofΓ∗. To do this we insert Eq. (1.27) in Eq. (1.33).
Diagrammatically one can understand the contributions that arise by performing an iterative
solution forΓ. By doing so, and collecting the generated diagrams in terms of polarization and
screened interaction, using equations. (1.25) and (1.24),one can easily convince himself that
all the generated diagrams can be expressed5 in the form shown in Fig. 1.9.

Mathematically Fig. 1.9 translates (omitting the arguments of each function and the integra-
tion signs) to:

Γ = Γ∗ + Γ∗GGW +WGGΓ∗ + Γ∗WΓ∗ +W. (1.34)

We are now in the position to consider the last Hedin’s equation, that connects the self-
energy with the vertexΓ∗. We will proceed as follows: First we will use the Heisenberg
equation of motion to relate the self-energy and the two-particle Green’s function. Then we
will use the relations derived above to express the two-particle Green’s function in terms ofΓ∗,
and to obtain the desired equation.

5For a more formal derivation see Ref. [63].
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Let us start from the derivation of the equation of motion. The time evolution of an operator
in the Heisenberg representation can expressed in terms of its commutator with the Hamiltonian:

i
∂ψ̂(1)

∂τ1
= [ψ̂(1),He]. (1.35)

From the equation above we derive an equation of motion for the Green’s function:

−
[∫

d2′
∂

∂τ1
δ(2′ − 1) + h0(12

′)

]

G(2′1′) +

∫

d3′d2d2′V (13′, 2′2)〈T ψ̂(3′)ψ̂†(2)ψ̂(2′)ψ̂†(1′)〉 = δ(1− 1′). (1.36)

The expectation value of four field operators is the two-particle Green’s function. From Eq.
(1.36) for a non-interacting system (V (11′, 22′) = 0) one can express the noninteracting Green’s
function as:

G0(1, 1
′) = −

[
∂

∂τ
+ h0

]−1

(1,1′)

. (1.37)

Substituting Eq. (1.37) back in Eq. (1.36) gives:
∫

d2′G−1
0 (1, 2′)G(2′, 1′) +

∫

d3′d2d2′V (13′, 2′2)G(2)(3′1′; 21′) = δ(1− 1′), (1.38)

multiplying all terms timesG−1(1′, 4) and integrating over1′ yields:

G−1
0 (1, 4)−G−1(1′, 4) =

∫

d3d2d2′d1′V (13′; 2′2)G(2)(3′2′; 21′)G−1(1′, 4). (1.39)

Inserting Eq. (1.32) and (1.31) for the two-particle Green’s function, and comparing with Eq.
(1.23) yields:

Σ(1, 4) = −
∫

d3d2d2′d5′d6d6′V (13′, 2′2)Γ(5′6′, 46)G(3′, 5′)G(2′, 6′)G(6, 2)

−
∫

d3′d2′V (13′; 2′4)G(3′, 2)−
∫

d2d2′V (14; 2′2)G(2′2). (1.40)

The diagrammatic representation of the equation above is inthe first line of Fig. 1.10.
To close the set of Hedin’s equations, we only need now to express Eq. (1.40) in terms of

Γ∗. We show how this is possible in a diagrammatic way. First we insert the diagrams shown
in Fig. 1.9 or equivalently expressed in Eq. (1.34) in Eq. (1.40). In this way the self-energy
can be expressed in terms of the diagrams shown in Fig. 1.11. The diagrams A1, A2 and
A3 in Fig. 1.11 can be collected together and form the second diagram of the second line of
Fig. 1.10. After some inspection, one can see that the diagrams labeled B1, B2, B3 can be
grouped in the diagram shown in the first line of Fig.1.12 by introducing the block labeled A
and shown in the second line of Fig 1.12. Again, in the first two diagrams of the block A (Fig.
1.12, second line) one can recognize the diagrams forming the polarization multiplied times the
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Figure 1.10: Equation of motion for the self-energy, expressed in terms of Γ (first line) andΓ∗

(second line)

screened interaction. Finally, expressing Eq. (1.24) in the equivalent formP = V −1 −W−1,
and substituting for the polarization in the block A one getsthe first diagram in second line
of Fig. 1.10. Expressing such result in mathematical terms gives the desired result, namely
Hedin’s fifth equation :

Σ(1, 4) =

∫

d3d2d2′d5′d6d6′W (13′, 2′2)Γ(5′6′, 46)G(3′, 5′)G(2′, 6′)G(6, 2)

−
∫

d3′d2′V (13′; 2′4)G(3′, 2′)−
∫

d2d2′W (14; 2′2)G(2′2). (1.41)

In summary, we have re derived the set of five Hedin’s equations (1.21), (1.24), (1.25),
(1.26) and (1.41), corresponding6 to equations (A13), (A20), (A24), (A22) and (A23) respec-
tively in the original paper [59]. This set of equationsis exactand is only a rearrangement
of standard equation of quantum field theory: solving them exactly is as difficult as solving
the original problem. However, they offer a better startingpoint for developing perturbative
approximations.

1.3.2 GW approximation

As it was known already in 1965 [59], expanding the self-energy in terms of the bare in-
teractionV does not take into account a very important process for metals: The screening of
the interaction. In fact, whenever an external "test" chargeis added to a metallic system the
existing charge will rearrange to minimize the Coulomb potential energy. As a consequence
each electron will not see the "bare" test charge, but a "screened" charge that also accounts for
the polarization of the medium. The most striking consequence of this is the fact that the inter-
action, instead of being long ranged, i.e.,∝ 1/r, in a medium becomes effectively short ranged,

6We stress once more that in his derivation Hedin followed an equivalent but different route: he incorporated
the Hartree potential in the noninteracting Hamiltonian. For the case considered by Hedin, of an uniform electron
gas, incorporating the Hartree potential in the noninteracting Hamiltonian is straightforward. He could then derive
all his set of equation by appropriate functional derivation. Following this approach is possible also for nonuniform
systems, like in Ref. [12].
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Figure 1.11: Expansion of the Heisenberg equation of motion in terms ofΓ∗.

i.e.,∝ e−rkTF/r, as correctly predicted by Thomas-Fermi theory, withkTF being the Thomas-
Fermi momentum, which depends on the details of the medium considered. In this paragraph
we will discuss how, starting from the Hedin’s equations, wecan obtain a perturbation theory
that keeps screening into account. In the next section we will discuss physically the meaning of
the contributions taken into account.

The approximation is obtained by neglecting completely thevertex corrections, i.e. setting
Γ∗
ph = 0. Then the Bethe-Salpeter Eq. (1.25) gives:

Γ∗ = 0. (1.42)

Doing so we only consider the disconnected part of the polarization operatorP . Correspond-
ingly the propagation of an electron-hole excitation, described byP , is simplified by the in-
dependent propagation of the electron and the hole (each one, however described by a full
interacting Green’s function). The polarization then reduces to the so-called Lindhardt bub-
ble [119]:

PGWA(11′; 22′) = G(12′)G(21′). (1.43)

Substituting Eq. (1.43) in Eq. (1.24) yields the simplest form of screened interaction:

WGWA(11′; 22′) = V (11′; 22′) +W (11′; 33′)PGWA(3′3; 4; 4)V (44′; 22′), (1.44)
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A

A = 1+ +

Figure 1.12: The block A includes the diagrams B1,B2 and B3 defined in Fig. 1.11.

and using the equation of motion (1.41) the self-energy becomes:

ΣGWA(11′) = −i
∫

d2d2′G(2′2)W (12′; 21′), (1.45)

to which one should add the Hartree termΣHartree(11′). From this, the Green’s function can be
obtained using Eq. (1.21):

G(11′) = G0(11
′) +

∫

d2d2′G(12)
[
ΣGW(22′) + ΣHartree(22′)

]
G0(2

′1′). (1.46)

The new closed set of equations should be solved self consistently.
A first approximation consists in takingG0 for G in Eq. (1.43) for the polarization, as was

done for the first time by Hedin [59], who applied his equations to the uniform electron gas,
obtaining7 the first results of theGW approximation. The results obtained by Hedin were very
promising in spite of the seemingly crude approximation. Infact, it turns out that the success
of the approximation depends on the fact that it allows for the inclusion of a class of diagrams
for the screened interaction, i.e., those diagrams obtained by summing an infinite series of bare
interaction and Green’s function particle-hole bubbles, that are crucial [119], in the description
of screening. In the literature, for historical reasons, one often refers to the approximation that
takes into account only the bubble diagrams in the screeningof the interaction as the random
phase approximation (RPA). Clearly, inGW , the screened interactionW contains the informa-
tion of the RPA screening. Importantly, it can be seen that, inthe case of the homogeneous
electron gas [119], the RPA screened interaction shows the same exponential decay correctly
predicted by the Thomas-Fermi screening∝ e−rkTF/r, and is therefore effectively short ranged.

7Besides this, Hedin has also shown that it is possible to generate other Ward conserving approximation [59].
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However, RPA is capable to capture more than this exponentialdecay. In fact, unlike what
happens in Thomas-Fermi approximation, which is a purely static approximation, the screen-
ing of the interaction in RPA, and therefore inGW , is dynamic: The screened interactionW
acquires a nontrivial frequency and momentum dependence. Going beyond the RPA approx-
imation is very complicated, and not much is known about the effect of vertex corrections to
the polarization. Some attempts have been done to include atthe lowest orders perturbative
diagrams neglected by RPA [119]. This is however less trivialthan it might appear. Further-
more for strongly correlated electron system one should notexpect that this brings substantial
improvements. Another possibility consists in including in the screening of the interaction not
only the ladder diagrams in the particle-hole (direct) channel as considered by RPA, but rather
the one-loop parquet diagrams8 including also the other two channels, namely particle-particle
and particle-hole crossed. In fact, in general, there are nostrong reasons to justifya priori
the fact that the RPA diagrams alone are sufficient to captureall the most important processes
contributing to the interaction. These issues are addressed in a slightly different context9 in
Ref. [71] making use of fRG methods. Nevertheless, as we shall see in the next paragraph, also
neglecting completely the vertex corrections, theGW approximation has been successfully ap-
plied, in the last few decades, to the study of real material system, providing results in good
agreement with LDA for weakly correlated metals, where bothmethods work well, and results
in better agreement with the experiments than the LDA one, inthe case of insulators and semi-
conductors, and more recently also transition metal oxidesor pnictides superconductors, like,
e.g., in Ref. [175].

1.3.3 Actual implementations ofGW : quasiparticle GW

The self-consistent solution of the Hedin’s equation above, even in theGW approximation
form, is still an extremely complicated task for real materials10.

For this reason in recent years several (further) approximations to tackle theGW equations
have been developed. This gave rise to a full new class of methods. This makes it sometimes
not so easy to understand the main approximations employed in each specific implementation.
In other words today a series of different methods go under the generic name ‘‘GW ’’

More in detail there are two points that require particular care:

• the level of self-consistency;

8The parquet diagrams, and the one-loop approximation will be discussed in the section about the fRG diagram-
matics, cf. Sec. 1.4.2.

9The author of Ref. [71], rather than on RPA focuses on constrained RPA (cRPA) [13,131]. The cRPA is used
to downfold the interaction of a full Hamiltonian on a low-energy one, and therefore the low-energy degrees of
freedom are not allowed to take part in the screening of the interaction. The screening from the high energy degrees
of freedom, however, is performed in cRPA considering ladder diagrams in the particle-hole direct channel. In
Ref. [71] it is shown how to include, at the model level, also parquet diagrams using the fRG formalism. The result
is a much more rich frequency structure for the interaction than the one obtained in cRPA.

10Let us note that the full self-consistent solution of theGW equations is doable for small systems, like
molecules. On the other hand the calculation for solids requires the treatment of a larger number ofk-points,
which strongly increases the computational effort.
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• the treatment of the self-energy.

Let us see what are the methods that arise from dealing in different ways with these two points.

Level of self-consistency MostGW calculations start from a preliminary LDA bandstructure
calculation. The next step is the computation of the polarization. This is done starting from the
knowledge of the eigenvalues and eigenfunctions of LDA. TheLindhardt bubble is expressed
using the Lehman representation of the Green’s function [144]:

Pq(G,G
′, ω) =

1

Ω

∑

nn′k

2wk(fn′k−q − fnk)
〈ψn′k−q|e−i(q+G)r|ψnk〉〈ψnk|e−i(q+G′)r′ |ψn′k−q〉

ω + ǫn′k−q − ǫnk + iηsgn[ǫn′k−q − ǫnk]
,

(1.47)
wherewk is the k-point weight,fnk is the one electron occupancy of the statenk, η is an
infinitesimal complex shift,q andk are wave vectors in the Brillouin zone.G andG′ are
reciprocal vectors of the lattice. In the equation above thespin sum has been substituted with
the factor two in front of the expression, while the spin indices have been suppressed. This is
sometimes referred to astest chargeapproximation, as it would correspond to the response of
the system to a spineless (test) charge in RPA.

Using the LDA wave function and the polarization above one can compute the screened
Coulomb interactionW0, and, after convolution with the LDA Green’s function, theGW self-
energy:Σ = iG0W0. In this approximation Green’s function, polarization andself-energy are
computed in a non-self-consistent way, and the approximation is referred to asG0W0 approxi-
mation.

This approximation already yields improved results compared to LDA, but still depends
crucially on the LDA underlying calculation. To further improve on this, however, it is desirable
to go beyond a single shotG0W0 calculation on top of LDA, going in the direction of a self-
consistentGW . This is not a trivial task and there are several ways to proceed that have been
explored.

On the one hand, one possibility consists in realizing a fullupdate of the Green’s function
andof the screened potential. This approach has been followed for the free electron gas [68] as
well as for metals and semiconductors [162]. The results obtained in this way, however, did not
turn out to be satisfactory. This is explained considering that the shift of spectral weight from
the quasiparticle peaks into satellites causes a substantial reduction of the screening. This results
in an overestimation of the bandwidth and of the bandgaps, assevere as the underestimation
in LDA. For this reason it is still not completely clear how reliable fully self-consistentGW
approximationwithout vertex correctionsare [166]. Furthermore this approach is technically
extremely demanding.

For these reasons different partially self-consistent approaches have been developed, in
which one updates the quasiparticle eigenvalues in the Green’s function and/or in the dielec-
tric function, while the one-electron wave functions are kept fixed to the LDA solution. The
advantage of these partially self-consistent approaches compared to the fully self consistent one
is twofold: on the one hand the problem of the shift of spectral weight to the satellites is less
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severe, and on the other hand the computational burden is less heavy. However, to proceed in
this direction some further simplification to the self-energy is required. This is described in the
next paragraph.

Treatment of the self-energy: the quasiparticle approximation

In the partially self-consistent approaches toGW one is interested in the calculation of the
quasiparticle energiesǫnk. If one assumes that the wave functions are kept fixed at the LDA
value, the quasiparticle energies can be computed self-consistently solving the diagonal matrix
elements of the quasiparticle (QP) equation [80,165]:

ǫnk = Re[〈ψnk|T + vion + vHartree + Σ(ǫnk)|ψnk〉], (1.48)

wherevHartree is the Hartree potential, andΣ(ǫnk) is the self-energy operator computed at fre-
quencyω = ǫnk. To obtain a solution of the above equation one can proceed iteratively, ob-
taining the quasiparticle energyǫN+1

nk at the iterationN + 1 linearizing the self-energy around
ǫNnk:

ǫN+1
nk = ǫNnk + ZnkRe[〈ψnk|T + vion + vHartree + Σ(ǫNnk)|ψnk〉 − ǫNnk], (1.49)

with Znk being the renormalization factor:

Znk =

(

1− Re〈ψnk|
∂

∂ω
Σ(ω) |ω=ǫN

nk
|ψnk〉

)−1

. (1.50)

If one relies on a single-shotG0W0 on top of LDA one simply gets, after one iteration only of
equation (1.49):

ǫG0W0

nk = ǫLDA
nk + ZnkRe[〈ψnk|T + vion + vHartree + Σ(ǫLDA

nk )|ψnk〉 − ǫLDA
nk ]. (1.51)

The solution of this set of equations is a new set of quasiparticle energies. For everyk point the
self-energy is computed at a single frequency11 and all the quasiparticle weight is transferred
from the original LDA quasiparticle energyǫLDA

nk to theGW quasiparticle energy. Since the
frequency dependence as well as the imaginary part of the self-energy have been neglected,
there is no incoherent spectral weight at frequencies different from the quasiparticle energy and
the excitations of the system are given by infinitely long lived quasiparticles at the new set of
energies. The effect of the interaction, included via theGW self-energy, is therefore a shift of
the excitation energy in exactly as in a one-particle picture. For these reasons we will refer to
this approximation as quasiparticleGW (qpGW ).

We also notice that these methods, whatever the degree of selfconsistency applied, still
depend on the wave functions, computed in LDA, and thereforemay have problems in the
treatment of systems for which the LDA gives unreliable results [166].

11Actually, since the numerical derivative of the self-energy is required, the self-energy is computed also at
frequency valuesǫnk + δω andǫnk − δω.
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Comparison of different schemes

As there is a number of similar possible approximations thatchange only by the degree of
self consistency, it is not clear which approximation is better justifieda prioriand only the com-
parison with experiments cana posteriorianswer this question, at least partially. Traditionally
the quantity that is used to test the quality of aGW calculation is the quasiparticle band gap.
Indeed it is known, that it is not correctly computed by LDA based approximations12, which
usually yield a bandgap way too small compared to the experimental one. In Ref. [166] three
quasiparticleGW method are tested against the experimentally measured bandgap for a number
of materials. Namely the authors consider:

• one shot qpG0W0;

• partially self-consistent qpGW0;

• self-consistent(at the quasiparticle level) qpGW .

The main result is summarized in Fig. 1.13. One can see that the qpG0W0 bandgaps are already
much closer than LDA to the experimental values, but are still a bit too small for all the consid-
ered materials except carbon. A partial self-consistency substantially improves the results, and
apart for ZnO, the computed bandgap is always less than 10% off the experimental one. It is
also shown that there is a linear correlation between the error in the predicted bandgap and the
error in the dielectric constant computed at the RPA level. This proves that an accurate predic-
tion of the screening properties of a given material is necessary for an accurate calculation of its
bandgap. This is also important when considering the results obtained with the self-consistent
qpGW approximation: While qpGW0 usually underestimates the bandgap it is slightly overes-
timated by qpGW . The reason for this is that, if one neglects the vertex corrections, the RPA
screening is not sufficient to give a good estimate of the dielectric constant.

From such a systematic analysis the authors could conclude that the method that best pre-
dicts the bandgap is the qpGW0, even if this is probably caused by a fortunate cancellationof
errors. The predicted band gap is usually only around 3%-5% smaller than the experimental
one. The most important deviations from the experimentallypredicted smaller bandgap occurs
for materials having shallowd states. For these a treatment at the perturbative level, like inGW
based methods, can hardly be sufficient.

1.4 Functional renormalization group

In the previous section aboutGW we have seen how the inclusion of a subclass of diagrams
could substantially improve the results of plain perturbation theory, and we have also given an
argument to justify the selection of such diagrams, considering the important role that they play
in the screening of the Coulomb interaction.

12In LDA the bandgap can be computed interpreting the eigenvalues of the Kohn-Sham equation as the quasi-
particle energy. This is not fully justified: The bandgap isnot a ground state property.
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Figure 1.13: Quasiparticle band gaps computed in LDA (marked as PBE, blue dots), qpG0W0,
and qpGW0, plotted against the experimental ones, for several materials. On both axis a loga-
rithmic scale has been used. One can see a substantial improvement of qpG0W0 and qpGW0

as opposed to LDA, that tends to underestimate the band gap. The figure is reproduced from
Ref. [166].

There are important cases, however, where this procedure isnot sufficient to take the most
important physics into account. This typically happens if

• the physical properties of the system are influenced by differentcompeting instabilities;

• correlation effects become too strong.

In these cases more involved many-body approaches are required. Furthermore, due to the
complexity of the many-body approaches, one often has to abandon the ambition of treating all
the degrees of freedom on the same footing, and rather restrict oneself to alow-energyHamilto-
nian, on which the other degrees of freedom are downfolded. In a renormalization group sense
this corresponds to formally integrating out all the high energy degrees of freedom, for which
the correlation effects are less relevant. The low-energy Hamiltonian is then approached with
the most appropriate many-body method to treat the physicalaspects that are expected to be
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more relevant. The downfolding procedure itself, however,is often very complicated, and in
practice, one has to define amodelHamiltonian, like, e.g., the Hubbard Hamiltonian [77], to
describe the problem. The model Hamiltonian is a further approximation to the low-energy
one, that can be required either to avoid the complication ofthe downfolding or because the
downfoalded Hamiltonian might still be to difficult to solve (for a given many-body method) or
contain too much information than required to capture the essential physics of the problem.

While we will discuss the theoretical tools to be used to treatthe strong correlations later on
(cf. Sec. 1.5), in the present chapter we focus on the first situation, i.e., the one of competing
instabilities, which can arise also in a weak-coupling regime in presence of nontrivial nesting
properties, or in general, when, at lower energy scales, a treatment that includes the charge-
channel only, likeGW , is not sufficient.

As a paradigmatic example of this we can consider the Hubbardmodel in two spatial dimen-
sions: In the case of half-filling and with nearest neighbors hoppingt only, the noninteracting
Fermi surface of the system will be perfectly nested. This means that the low-temperature
particle-hole fluctuations corresponding to the nesting vector [hereQ = (π, π)], will be large
and eventually logarithmically divergent as the temperature is lowered to zero. From these di-
vergent fluctuations one expects an instability of the ground state towards antiferromagnetism.
At the same time, if one increases the ratiot′/t of the next neighbors hoppingt′ over the near-
est neighbors hoppingt or changes the filling, the perfect nesting property of the Fermi sur-
face will be lost, and other kinds of instabilities will emerge. In particular, the checkboard
commensurate antiferromagnetic fluctuations, with wavevector(π, π), will now compete with
incommensurate antiferromganetism,d-wave superconductivity and even ferromagnetism for
t′/t sufficiently large. From a diagrammatic perspective this can be understood as follows: In
the first case due to the perfect nesting there is one susceptibility (i.e. the one associated with
the nesting vector) that dominates over the others and a specific analysis restricted to diagrams
in the corresponding channel, for example an appropriate RPAladder resummation, is often
an accurate approximation. In the second case however no dominating channel can be clearly
identified. Hence for a correct description of the system (and of its instabilities) one should
include diagrams in all channels as well as the coupling among them. This task is much more
difficult: While it is rather easy to express the ladder diagrams in a given channel in terms of
a geometric series (for example like it is done for the screened interactionW in the previous
section), there is no simple way of computing infinite resummations of diagrams in which the
channels mix among each other. The diagrams in which the channel mix are those needed to
accurately describe the competing instabilities.

A very efficient way that emerged in the last fifteen years todeal with this kind of problems
makes use of thefunctional Renormalization Group (fRG) [129,141], which is the main topic
of the present section. From a very pragmatic point of view, this is for us the main motivation to
introduce fRG: It allows us to sum parquet diagrams in a systematic and unbiased way. On the
other hand, we should recall here that fRG is a powerful technique that goes beyond this, being
also connected, as the name suggests, with Wilson’s idea of the renormalization group [185],
as well with Shankar’s modern renormalization group techniques [164].
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The main idea behind fRG is to rewrite a problem which we are notable to solve exactly
in terms of a set of coupled differential equations, whose integration would provide theexact
solution of the problem. For practical purposes, however, the integration of the full set of differ-
ential equations cannot be performed in general, as it corresponds to compute exactly the flow
of a functional, which is typically not feasible for a nontrivial case. The way to circumvent
this is to formally expand the functional in terms of its derivative with respect to the fields and
study their flow. The expansion of the functional flow, however, would generate a set of cou-
pled differential equations involving functions of arbitrary high degrees of freedom. Obviously
to make possible a numerical treatment of these equations one shouldtruncatethe set of flow
equations at a certain level. It is only at this point that an approximation, in an otherwise exact
set of equations, is introduced. In this respect fRG can be seen as an excellent starting point
for devising new approximations, numerically affordable and superior to standard lowest order
perturbation theory or resummation of ladder diagrams of a selected channel in RPA.

In the next subsection the fRG equations will be derived and discussed in more detail. There-
after we will show the relation between the diagrammatic content of fRG with the one of the
so-called parquet approximation [22], which is, in usual cases, very complicated to solve even
numerically [187]. In this context the main approximationsused in fRG, as well as the main
cutoff schemeswill be introduced. Finally, we will discuss the major achievements of fRG
over the last fifteen years, focusing in particular on the results for the two dimensional Hubbard
model.

1.4.1 Derivation and diagrammatic elements of fRG

The namefunctionalrenormalization group stems from the fact that the flow equations can
be obtained directly for a generating13 functional [134], and eventually expanded into the fields.
This also stresses one important difference compared to Wilson’s renormalization group: The
flowing quantity is a functional, andnot some coupling in the Hamiltonian. In the literature
several review papers [5, 129, 141, 157] and textbooks [104,156] are now available in which
the aforementioned derivation is elucidated in detail. Here, following Jakobs and coworkers
[83, 84] we prefer to present first a derivation of the flow equations which focuses more on
the diagrammatic aspects of fRG, and which is specific for theone particle irreducible (1PI)
vertex functions. Such a diagrammatic derivation will be also helpful in the discussion of the
diagrammatic content of fRG.

Let us start from the action describing a spin-1/2 fermionic system, which we write as:

S[ψ, ψ] = S0[ψ, ψ] + Sint[ψ, ψ], (1.52)

with ψ being Grassman’s variables [134]. The first term represents the Gaussian part of the
action:

S0 = −T
∑

nσ

∫

ddkψk,σ(iωn)G0(k, iωn)
−1ψkσ(iωn). (1.53)

13Usually are obtained for the generating functional of the connected Green’s function, of the one particle
irreducible vertex functions or of the amputated connectedGreen’s functions (effective interaction).
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whereψk,σ(iωn) andψk,σ(iωn) are the Grassman’s variables associated with the creation and
annihilation operators in a Hamiltonian formulation. For anoninteracting system with band
dispersionǫk and chemical potentialµ the propagatorG0(k, iωn) reads:

G0(k, iωn) = −〈ψkσ(iωn)ψkσ(iωn)〉0 =
1

iωn − µ− ǫk
, (1.54)

and the symbol〈...〉0 denotes the expectation value within the system defined by the actionS0:

〈...〉0 =
∫
D[ψ, ψ] ...e−S0[ψ,ψ]
∫
D[ψ, ψ]e−S0[ψ,ψ]

. (1.55)

This functional integral can be computed exactly, due to theGaussian form ofS0. In the more
general case all the complications are originated by the interaction term, that for the case of an
instantaneous two-body interaction we assume to be of the following form:

Sint =
T 3

2V

∫

ddkddk′ddq
∑

n,n′,m

∑

σ,σ′

Vkk′qψkσ(iωn)ψk′+qσ′(iωn′+iΩm)ψk′σ′(iωn′)ψk+qσ(iωn+iΩm),

(1.56)
with Ωm being a bosonic Matsubara frequency:Ωm = Tπ(2m) andωn = Tπ(2n + 1) being
a fermionic Matsubara one. The form of the interaction is specified by Vkk′q. Here we have
assumed SU(2) spin-rotational and translational invariance, which allows us to restrict the mo-
mentum summation to three independent sums, due to momentumconservation. If additional
(e.g. orbital) degrees of freedom are involved the fields would acquire a further index and a
summation over four indexes would become necessary.

We focus, in the following, on two models in particular, i.e. the Anderson impurity model
(AIM) and the two-dimensional Hubbard model with onsite interaction. In the former the sums
over the momentum indexes are suppressed everywhere, sinceit corresponds to a single impu-
rity model without spatial dependence. In this case the action (in absence of a magnetic field)
is completely defined by (i) the Gaussian propagator:

GAIM(iωn) =
1

iωn − µ−∆(ωn)
, (1.57)

with ∆(ωn) being the hybridization function, and (ii) by the couplingU of the quartic part of
the action. On the other hand, in the Hubbard model with onsite interaction the momentum
dependence of the Gaussian part is retained, while the matrix element of the interaction is
structureless in momentum space:Vkk′q = U , which corresponds, in a lattice model in real
space to an interaction only between fermions sitting on thesame lattice site. From this moment
on, to simplify the notation, we will often refer to the interaction simply asU , even if the locality
of the interaction is not necessary for the derivation of thefRG equations.

The basic idea of fRG is to obtain a one-parameter family of effective actions, by making
the Gaussian propagatorG0 explicitly dependent on an additional parameterΛ:

G0(k, iωn) → GΛ
0 (k, iωn) = G0(k, iωn)f

Λ(k, iωn). (1.58)
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The explicit form of theregulating functionfΛ does not need to be specified at the moment,
and several possible alternative choices will be presentedlater on (cf. Subsec. 1.4.2).

Upon this substitution also the effective action acquires aΛ-dependence:S → SΛ. The
nontrivial, interacting part of the action is leftunchangedby this substitution; however all the
functional integrals like the one for the grand canonical partition function:

Z =

∫

D[ψ, ψ]e−S[ψ,ψ], (1.59)

or the one for the imaginary time orderedn-particle Green’s function:

G(n)(k1iω1, ...,kniωn|k′
1iω

′
1, ...,k

′
niω

′
n) =

− 1

Z

∫

D[ψ, ψ]e−S[ψ,ψ]ψk1
(iω1)...ψkn

(iωn)ψk′

n
(ω′

n)...ψk′

1
(iω′

1), (1.60)

acquire aΛ-dependence. The advantage of the procedure that we are going to describe is
that if theΛ-dependence of the Gaussian propagator is smooth and differentiable we are able
to compute also theΛ-derivative of quantities which can be in principle obtained performing
functional integrals (involving non Gaussian term), like,e.g., the one in Eq. (1.60). Assuming
that we know the result of the functional integration, say for a generic quantityFΛ, at some
valueΛ0 and that we are able to compute itsΛ-derivative for all the values ofΛ in the interval
[Λ0,Λ

′], then we can obtain the value of the functional integralFΛ for any value ofΛ in the
interval by integrating a (standard) differential equation:

FΛ′

=

∫ Λ′

Λ0

dΛ ∂ΛFΛ. (1.61)

Usually, one refers to an equation in the form of Eq. (1.61) asflow equation for the quantity
F . In particular, the relevant quantities for the physical system we are interested in will be
recovered forΛfin, whenfΛfin = 1. In this way a functional integration, which we are not able
to perform, is traded for a standard integration of a differential equation.

Up to now this procedure is exact, but of little use unless we make it more concrete and
specify some physical quantities for which we want to obtainthe flow equations. It turns out
that a convenient choice are then-particle vertex functionsone-particle irreducible (1PI)Γn.
These are defined as the sum of all the connected Feynman diagrams withn incoming andn
outgoing legs, which do not fall apart cuttingonefermionic internal line. Let us stress that this
is just one among several possible choices. In fact, one could also focus on other quantities, like,
e.g. the connected Green’s functions. This would correspond to other fRG schemes [129,189].

Let us remember that an equivalent definition of the 1PI vertex functions can be given in
terms of expansions in the fields of a 1PI generating functionalΓ[ψ, ψ] [134]. It is possible to
obtain a flow equation directly for the 1PI generating functional, as it is usually done in most of
the functional derivations mentioned above, [5, 104, 129, 141, 156, 157]. This way, one obtains
an equation for a functional, which turns out to be manageable only after an expansion in the
fields: the final result is the hierarchy of equations for the 1PI vertex functions, which we will
derive below following a different (diagrammatic) path.
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+ + +

Figure 1.14: Diagrammatic representation of theΛ-derivative of a third order diagram con-
tributing the the two particle 1PI vertex.

Let us start by writing the expansion for the 1PIn-particle vertexΓΛ
n at a given scaleΛ as:

ΓΛ
n =

∑

dΛn,m∈1PIn

dΛn,m. (1.62)

1PIn denotes the set ofall diagrams, of all orders, contributing toΓΛ
n then-particle 1PI vertex;

dΛn,m is a selected diagram belonging to this set of perturbative orderm in the interaction (but,
obviously, havingn incoming and outgoing legs). As such, it can be expressed as the integral
of a product of2m−n Green’s functionsGΛ

0 , fulfilling momentum and frequency conservation
at each interaction vertex, times a factor accounting for the interaction at each vertex. In the
integral, the only terms that depend onΛ are the Green’s function, since we have explicitly
assumed that the interaction part of the action isΛ-independent. Therefore, theΛ-derivative of
ΓΛ
n can be written as the sum of terms in each of which one of the Green’s function is derived

with respect toΛ:

∂ΛΓ
Λ
n =

∑

dΛn,m∈1PIn

∑

j=1,2m−n

∫

ddkj
∑

iωj

d′Λn,m(j)∂ΛGΛ
0 (kj, iωj), (1.63)

whered′Λn,m(j) corresponds to the diagramdΛn,m with the only difference that thej-th Green’s
function (and the relative integration) is removed. Mathematically:

dΛn,m =
∑

iωj

∫

ddkj d
′Λ
m,n(j)G0(kj, iωj). (1.64)

Introducing a new diagrammatic element for∂ΛGΛ
0 (kj, iωj), which we denote by a single

slashed line, we can represent diagrammatically the contributions to the derivative of the vertex
function, as it is done in Fig.1.14 for a specific third orderdiagram. Let us observe that the
Λ-derivative does not change the topology of the diagrams, i.e., the diagrams contributing to
∂ΛΓ

Λ
n are the same contributing toΓΛ

n , but with each Green’s function line substituted once by
a slashed line.

Let us now focus on the diagramsd′Λn,m contributing to theΛ-derivative of the 1PI vertexes.
We will show that these diagrams can be expressed as a closed chain of one-particle irreducible
blocks connected by Green’s functions lines and a single slashed line. To see this we notice that
dΛn,m is by definition one-particle irreducible, hence each diagram obtained removing a Green’s
function line can be written as a chain of irreducible sub-blocks connected by Green’s function
lines (see for example Fig. 1.15). Being in the form of achainas soon as the diagram with
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Figure 1.15: Schematic illustration of the ring shaped diagrams contributing to the derivative
of a Feynman diagram in fRG. Diagramsa andd are topologically the same, but the slashed
line, corresponding to the derivative of a Green’s functionis located in two different posi-
tions. Removing the slashed lines one obtains one-particlereduciblediagrams. For example
in diagramd it would be possible to separate the self-energy insertion (in sky blue) by cut-
ting one Green’s function line. Upon reinserting the slashed line the diagrams must form
a ring structure, that guarantees one-particleirreducibility. Changing the position of the
slashed line one obtains different vertex structure (compare diagramsb ande). In diagrams
c andf the self-energy insertion has been reabsorbed in thedressedGreen’s function lines,
represented by the double lines.

a Green’s function removed contains more than one block it isone-particlereducible. Upon
reinserting the missing Green’s function, the diagramdΛm,n must be 1PI. This is the case only if
the chain closes into a ring shaped structure once the Green’s function line is restored. We refer
to diagrams of this form asring-diagrams, in which each vertex is connected to the neighboring
one by a single Green’s function line. The consideration above does not hold only for the
diagramdΛm,n, but also for its derivatived′Λm,n. The only difference is that in the latter case in
place of the missing Green’s function is reinserted itsΛ-derivative, i.e. a slashed line takes the
place of a non slashed one, as shown in Fig. 1.15.

After having understood the shape of the diagrams contributing to ∂ΛΓΛ
n we have to sum

them up. This is done in two steps: First, (i) we sum up all the diagrams sharing the same ring
structure, but different sub blocks. Next, (ii) we sum up allthose diagrams which have the same
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vertex structure, but different self-energy insertions. As an example we can imagine that we are
interested in those diagrams contributing to∂ΛΓΛ

2 , in which one of the sub-blocks has only two
legs and two sub-blocks have four legs (see Fig. 1.15a). It iseasy to imagine that summing
these diagrams including all the possible diagrams contributing to each sub-block will give us
a diagram in which the sub-blocks are respectively substituted by the one-particle (1PI) vertex
function, i.e. the self-energy14 ΣΛ, and by the two-particle 1PI vertex function, i.e.ΓΛ

2 (see Fig.
1.15b). Let us then suppose that we want to sum all the self-energy insertions on the Green’s
function line connecting two given vertex functions. We havetwo possibilities: The slashed
line, corresponding to∂ΛGΛ

0 may or may not be between the two considered vertexes. In the
latter case the two vertexes can be connected by a dressed Green’s function:

GΛ = GΛ
0 + GΛ

0 Σ
ΛGΛ

0 + ..., (1.65)

which accounts for all the diagrams with different self-energy insertions, and is represented by
a double line. Instead all the diagrams in which the slashed lines is located between the two
vertexes can be summarized in a diagram introducing the so-calledsingles scalepropagator:

SΛ = (1 + GΛ
0 Σ

Λ + ...)∂ΛGΛ
0 (1 + ΣΛGΛ

0 + ...)

= GΛ(GΛ
0 )

−1∂ΛGΛ
0 (GΛ

0 )
−1GΛ = −GΛ∂(GΛ

0 )
−1

∂Λ
GΛ =

∂GΛ

∂Λ
|ΣΛ=const., (1.66)

as shown diagrammatically in Fig. 1.15 by a slashed double line.
Considering the discussion above, theΛ-derivative of the vertex functionΓΛ

n is obtained as
follows: First draw all the rings including 1PI vertex functionsΓΛ

m with 1 < m ≤ n + 1 and
with incoming external indexesk1, ω1, ...,knωn and outgoing external indexesk′

1ω
′
1, ...k

′
nω

′
n.

One of the lines connecting the vertex functions must be a single-scale propagatorSΛ, while
all the others are full propagatorsGΛ. Then evaluate the ring diagrams performing the internal
summation and following the standard diagrammatic rules.

The derivative of eachn-particle 1PI vertex function, and therefore its flow equation, in-
volves all the 1PI vertex functions with up to2(n + 1) amputated legs. In fact, it is easy to
see that closing two of the legs of ann + 1-particle 1PI vertex with a single-scale propagator
one obtains a diagram in the allowed ring structure with2n amputated legs, i.e., this diagram
contributes to theΛ-derivative of then-particle vertexΓΛ

n . On the other hand it is not possible
to generate diagrams of ring structure with2n legs using vertexes of more thann+ 1 particles:
This structure allows to saturate only two of the external legs of a vertex. As a consequence of
the fact that∂ΛΓΛ

n depends also onΓΛ
n+1, we obtain an infinite hierarchy of flow equations.

For practical purposes, the treatment of vertexes with morethan four legs is not feasible
and therefore one usuallytruncates the flow equations by taking all the 1PI vertex functions
ΓΛ
n of ordern > 2 equals to zero. This approximation is motivated by the fact that the original

interaction in Eq. (1.56) is a two-particle interaction. Therefore, if (as is done in most fRG flows,
see below) we start fromGΛ0

0 = 0 the vertex functions with more than two legs vanish at the

14Strictly speaking the self-energy is not exactly the one-particle 1PI vertex function [134], but they differ by a
noninteracting Green’s function line.
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Figure 1.16: Flow equations for the self-energyΣΛ (light blue block), and the one-particle 1PI
vertexΓΛ

2 (green block). The last term of the derivative ofΓΛ
2 contains the three-particle

1PI vertexΓΛ
3 (orange block), which in a truncated scheme is usually neglected. In order to

translate these diagrams into equations one needs to attribute a direction and a spin to each
of the internal lines.

beginning of the flow, but can grow bigger during the flow. By neglecting these vertex functions
our flow equations arenot exact anymore, but they can still be used to get approximate results
for the self-energy and the two particle vertex functions. In fact it is reasonable to believe that
at weak or moderate-coupling then-particle vertex functions will not become too big and the
approximation is justified. More formal arguments about the correctness of this approximation
are given, for example, in Ref. [157].

In this respect fRG can be seen as arenormalization group basedway of doing perturbation
theory, and in a subsequent paragraph we will investigate more in detail the relation between
diagrams of perturbation theory and diagrams of fRG.

The flow equations for the self-energy and the one-particle1PI vertex can be written apply-
ing the standard [1, 134] diagrammatic rules15 to the diagrams shown in Fig. 1.16. In a very
compact notation the flow equations, after truncating the three-particle 1PI vertex, i.e.,ΓΛ

3 = 0,
read:

∂ΛΣ
Λ = ΓΛ

2 ◦ SΛ, (1.67)

∂ΛΓ
Λ
2 = ΓΛ

2 ◦ (SΛ ◦GΛ) ◦ ΓΛ
2 . (1.68)

Here the symbol ‘‘◦’’ stands for the standard summation over all internal variables, i.e., momen-
tum integration as well as spin and Matsubara frequency summation. In most situations one has
to truncate the flow equations by imposing thatΓΛ

3 = 0, i.e., the flow equations are truncated at
the three-particle level. In this case the flow equation forthe two-particle 1PI vertex includes
a diagram, in the form of afermionic loop, i.e., two fermionic lines connect two vertexes. The
topological structure of this diagram (or diagrams, if we explicitly specify the direction and the
spin of the internal lines) is topologically the same as the diagrams obtained in the context of
(Shankar’s) modern renormalization group [164], in a cumulant expansion of the interaction

15In the diagrams in Fig. 1.16, and in general whenever we do notattribute a specific direction to the internal
lines, vertex blocks represent the fully antisymmetrized vertexes, as explained, e.g., in Ref. [1] cf. Sec. 9.1.
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part of the action at the quadratic order. In modern renormalization group framework these di-
agrams are calledone-loopdiagrams, a term that we will also use here to refer to the diagrams
obtained at this truncation level.

Including 1PI vertexesΓΛ
n of highern in the flow equations allows us to include in the

flow equation for the two-particle 1PI vertex, also diagrams with more fermionic loops. For
example it is easy to see, as we will show, how including (evenpartially) the contribution of
the three-particle vertex generatestwo-loopdiagrams. This will be discussed in the following,
where we discuss also how retaining the most significant contribution of the three-particle ver-
tex in the flow equation of the two-particle vertex allows for important improvements, in the
diagrammatic content produced and in the fulfillment of theWard identities.

Three-particle vertex and two-loop truncation Let us anticipate a very typical choice for
the initial conditions of the flow and assume thatGΛ0

0 = 0 for all momenta and frequencies.
This corresponds, in RG language, to suppressing all the fluctuations, on all energy scales, at
the beginning of the flow, . In this caseΓΛ0

2 = U andΓΛ0

n>2 = 0, i.e., at the beginning of the flow
then-particle vertex functions withn > 2 vanish. Therefore the three diagrams16 contributing
to ∂ΓΛ

3 in Fig. 1.17 are respectively of orderO(U4), O(U4) andO(U3). If we want to retain
only the lowest order contributions arising fromΓΛ

3 in the flow forΣΛ andΓΛ
2 , we can restrict

ourselves to the lowest order diagram, which, in a compact notation17, reads:

∂ΛΓ
Λ
3 = ΓΛ

2G
ΛΓΛ

2G
ΛΓΛ

2S
Λ + ΓΛ

2G
ΛΓΛ

2S
ΛΓΛ

2G
Λ + ΓΛ

2S
ΛΓΛ

2G
ΛΓΛ

2G
Λ +O(U4). (1.69)

To obtain the lowest order contribution ofΓΛ
3 to the flow ofΓΛ

2 , we should integrate Eq. (1.69).
To this extent let us first substitute the single-scale propagatorSΛ = ∂ΛG

Λ|Σ=const. with the
derivative of the full Green’s function with respect toΛ. Within a perturbation theory analysis,
this is allowed at the third order inU since the error that we make in the substitution is∝
(∂ΛΣ

Λ)ΓΛ
2Γ

Λ
2Γ

Λ
2 ∼ O(U4). Then we rewrite Eq. (1.69) as a total derivative, by lettingthe

Λ-derivative act also on the vertexesΓΛ
2 , and again notice that the error that we make in doing

so is∝ (∂ΛΓ
Λ
2 )Γ

Λ
2Γ

Λ
2 ∼ O(U4). In this way we obtain:

ΓΛ
3 =

∫ Λ

0

∂Λ(Γ
Λ
2G

ΛΓΛ
2G

ΛΓΛ
2G

Λ) +O(U4) = ΓΛ
2G

ΛΓΛ
2G

ΛΓΛ
2G

Λ, (1.70)

where in the last equation we have retained only the terms up to third order inU . Reinserting
Eq. (1.70) forΓΛ

3 in the flow equation for the two-particle 1PI vertex we obtain the diagrams
shown in Fig. 1.18. In particular, diagramsb andc in Fig. 1.18 containtwo fermionic loops,
hence the nametwo-loop approximation[41,96]. The diagram in Fig. 1.18b has a much easier
structure than the third one. In fact in 1.18b the extra loop containing the single-scale propagator
topologically has the form of a self-energy insertion. On the other hand, diagram 1.18c has the
typical form of a parquet diagram. This can be seen considering that one can group the loop

16By looking at the diagrammatic structure of∂ΓΛ
n one can see that the lowest order diagram is the one consisting

of a ring in which the sub-blockΓΛ
2 is repeatedn times.

17Here to avoid lengthy expression we suppress all the indexesand integrals.
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Figure 1.17:Λ-derivative ofΓΛ
3 .

on the right in a single vertex block. We refer to this loop asinternal, since the loop variables
of the externalloop enter in its argument. This can also be seen in terms oftwo-particle
reducibility : The third diagram in Fig. 1.18 falls apart in two pieces by cutting the loop lines
of the externalloop, and only afterwards also theinternal loop can be split in two pieces by
cutting two fermionic lines.

Conservation of Ward identities and Katanin substitution One possible way of estimating
the improvement of the two-loop approximation compared to the one-loop one is by analyzing
the violation of the Ward identity for the charge conservation [95]. The Ward identities [1,181]
are a set of a relations that the vertex functions must fulfill in order that the conservation of
physical quantities is respected. However in approximate solutions of a given problem the
Ward identities may be violated. This is also the case for fRG, whenever we truncate the flow
equations at a given order. Following Katanin [95] it is possible to derive a Ward identity,
relative to charge conservation, which connects the self-energy and the two-particle 1PI vertex.
By further deriving the Ward identity with respect toΛ one can see that the violation to the Ward
identities, when truncating the flow equations, involves terms which are ofO(U3), i.e. the Ward
identity is fulfilled only within the accuracyO(U3). Repeating the same steps for the two-loop
approximation one can further see that, in this case, the Wardidentity is fulfilled with accuracy
O(U4). This shows the advantage of using a more complicated two-loop approximation rather
than a one-loop one. Technically, the inclusion of the two-loop diagram in Fig. 1.18b) is not
complicated: By inspection of such diagram one can recognizethe derivative of the self-energy,
and hence the following substitution, often calledKatanin substitution:

SΛ → SΛ −GΛ∂Σ
Λ

∂Λ
GΛ =

∂GΛ

∂Λ
, (1.71)

accounts for the diagram in Fig. 1.18b). The inclusion of thediagram in Fig. 1.18c) is instead
more involved [41].

In practice, it has been observed that using the Katanin substitution improves the conver-
gence properties of the flow equations, and therefore it hasbeen often applied, even without
the inclusion of the overlapping two-loop diagrams in the flow. Only more recently it has been
possible to implement a full two-loop approximation, with promising results [41,98].
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a b c

Figure 1.18: Contributions to∂ΛΓΛ
2 at the two-loop truncation level

1.4.2 Diagrammatic content of fRG

While it is clear that the fRG can be regarded as adiagrammatic theory(i.e., its equa-
tions can be expressed in terms of Feynman diagrams), it is not so obvious understanding how
its diagrammatic content can be explicitly related to the specific subset of diagrams of other
diagrammatic approximations, like e.g.,n-th order perturbation theory, fluctuation exchange
(FLEX), or parquet approximation. This is due to the fact that in the fRG a new diagrammatic
element, the single-scale propagator, comes into the play,and the corresponding 1PI vertexes
can be obtained only after integrating a set of differentialequation, which is not present in the
other diagrammatic theories. Without truncation, the integration could be done exactly and the
diagrams would coincide with the exact ones. However, sincetruncation is unavoidable, the
differential equations cannot be integrated exactly. In this situation the question about which
(or how) diagrams are resummed, by integrating the flow equations, becomes highly nontrivial.

In the following we address this specific issue proceeding in two steps: First we will rewrite
the flow equations in a less compact way and highlight theirchannelstructure; then we will
formally integrate them by iteration in order to compare them to otherapproximations.

As a first step let us rewrite explicitly the one-loop flow equations for the self-energy and the
1PI two-particle vertex. To this extent we just have to applythe diagrammatic rules and specify
the direction of the internal propagators and label the external lines in the flow equations of Fig.
1.19.

∂ΛΣ
Λ(1′|1) =

∫

d2SΛ(2)ΓΛ
2 (2, 1

′|2, 1); (1.72)

∂ΛΓ
Λ
2 (1

′2′|12) = T Λ
pp(1

′2′|12) + T Λ
pp(1

′2′|12) + T Λ
pp(1

′2′|12). (1.73)

Here the label1 ≡ (iω1,k1, σ1) denotes the set of Matsubara frequency, momentum and spin18.
Accordingly, the integral

∫
d1 is a shorthand forT

∑

iω1

∑

σ1

∫
ddk. The quantitiesTx, with

x = pp, ph− d, ph− c, correspond respectively to the contribution of the first diagram, middle
three diagrams, and last diagram on the right hand side of Fig. 1.19 respectively, and the
subscript denotes the particle-particle, particle-hole direct and particle-hole crossed channels.
In Fig. 1.19 the dashed lines inside the two-particle vertexes denote spin conservation and the

18And possibly also other degrees of freedom, e.g. an orbital index.
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Figure 1.19: Explicit flow equations in the one-loop approximation to the flow equation for
the two particle 1PI vertexΓΛ

2 . The first diagram on the right hand side corresponds to the
particle-particle channel, the second, third and fourth correspond to the particle-hole direct
(or sometimes particle-hole bubble) channel, and the fifthcorresponds to the particle-hole
crossed channel (or sometimes particle-hole exchange).

ordering of the creation and annihilation operators associated with the vertexes. The reason for
such a classification will be apparent in a moment. We can use the fact that for a translationally
invariant system the arguments of the vertex functions are not independent:

ΣΛ(1|1′) ∝ δ(1− 1′), (1.74)

ΓΛ(1′2′|12) ∝ δ(1′ + 2′ − 1− 2), (1.75)

to fix one of the two internal indeces in the loops of Fig. 1.19. Doing so the contribution of
each channel reads:

Tpp(1
′2′|12) =

∫

d3 (1.76)

ΓΛ
2 (1

′2′|3(1′ + 2′ − 3))[SΛ(3)GΛ(1′ + 2′ − 3) +GΛ(3)SΛ(1′ + 2′ − 3)]ΓΛ
2 (3(1

′ + 2′ − 3)|12),

Tph−d(1
′2′|12) =

∫

d3 (1.77)

ΓΛ
2 (1

′3|1(3 + 1′ − 1))[SΛ(3)GΛ(1′ − 1 + 3) +GΛ(3)SΛ(1′ − 1 + 3)]ΓΛ
2 ((3 + 1′ − 1)2′|32) +

ΓΛ
2 (1

′3|1(3 + 1′ − 1))[SΛ(3)GΛ(1′ − 1 + 3) +GΛ(3)SΛ(1′ − 1 + 3)]ΓΛ
2 ((3 + 1′ − 1)2′|23) +

ΓΛ
2 (1

′3|(3 + 1′ − 1)1)[SΛ(3)GΛ(1′ − 1 + 3) +GΛ(3)SΛ(1′ − 1 + 3)]ΓΛ
2 ((3 + 1′ − 1)2′|32)

Tph−c(1
′2′|12) =

∫

d3 (1.78)

ΓΛ
2 (1

′(3 + 2′ − 1)|32)
[
SΛ(3)GΛ(2′ − 1 + 3) +GΛ(3)SΛ(2′ − 1 + 3)

]
ΓΛ
2 (32

′|1(3 + 2′ − 1))

From the argument of the Green’s function and single-scale propagator in the internal loop
one can see the reason for the subdivision of∂ΛΓ

Λ
2 in three channels. In fact the Green’s

function and the single-scale propagator in each of the three classes of diagrams depends either
on the loop argument, i.e., the integration variable3 in equations (1.76-1.78), and on a single
momentum and frequency transfer:1′ + 2′ for Tpp, 1′ − 1 for Tph−d and2′ − 1 for Tph−c. This
dependence plays a major role: assume that at a given scaleΛ the two-particle vertex is a well
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behaved function; then the only possible divergence in∂ΛΓ
Λ
2 can be driven by a singularity

in the bubble appearing in the internal loop. This kind of divergence is not surprising: it is
closely related to the divergence of the renormalized vertex in RPA. In some studies [36, 191]
only those terms for which the internal loops exhibit a singular dependence in each of the three
channels were retained in the derivation of the flow equations of the divergent couplings. This
approach, dubbed sometimesg-ology model, is particularly interesting for systems withclear
Fermi surface nesting: It is assumed that the nonsingular terms do not affect qualitatively the
physics of the competing instabilities, which is mostly determined by the structure of the Fermi
surface, and consequently, by the corresponding singularity in the loop diagrams. This can be
particularly relevant, for example, for one dimensional systems, or two dimensional systems
with flat Fermi surfaces. However, in contrast with what is done in references [36, 191] the
fRG scheme doesnot include in the flow equations only the most divergent contributions, but it
allows to take into account also nonsingular diagrams that can give quantitative changes in the
final results.

Two-particle vertex parametrization Before proceeding with the discussion let us discuss
the most natural parametrization of the arguments of the two-particle 1PI vertex. This will be
needed in the third chapter, and is connected with the channel decomposition described above.
The two-particle 1PI vertex can be parametrized in terms of three independent frequencies and
momenta. A convenient choice is represented by the following bosonic frequencies and mo-
menta transfer:

Π = 1′ + 2′, (1.79)

∆ = 1′ − 1, (1.80)

X = 2′ − 1. (1.81)

This choice is strongly physically motivated: It corresponds to the frequency and momen-
tum transfer in the three channels described above, and therefore constitutes, at least at weak-
coupling, the "natural" argument for the (full) vertex19. Indeed, this parametrization captures
the frequency dependence of the weak coupling structures ofthe local 1PI vertex [94, 149].
Conversely, the original (fermionic) Matsubara frequencies and incoming/outgoing momenta
can be expressed as:

1′ =
1

2
(Π +∆−X) , 2′ =

1

2
(Π−∆+X), (1.82)

1 =
1

2
(Π−∆−X) , 2 =

1

2
(Π +∆+X).

Let us notice in passing that if we define the bosonic Matsubara frequencies asΩΠ = 2π/βnΠ,
Ω∆ = 2π/βn∆ andΩX = 2π/βnX , the only allowed combinations for the three frequencies are

19At weak-coupling, one can expect that the main structures ofthe 1PI vertex will be the ones associated with
the lowest order diagramsO(U2), which have the frequency and momentum dependence described above. We
note, incidentally, that these diagrams aretwo-particle reducible, and therefore not present in thetwo-particle
irreduciblevertex.
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those withnΠ+n∆+nX odd, to preserve the fermionic frequency of the Matsubara frequencies.

Iterative solution of the flow equations

We are finally in the position to show explicitly which diagrams are generated by the flow.
To this extent let us maintain the fermionic frequency and momenta parametrization of the
vertex and solve the flow equations (1.72) and (1.76-1.78) iteratively. Let us stress from the
very beginning that the iterative solution is used only for pedagogical purposes. In principle,
one can not attribute a too specific physical meaning to the intermediate result (at a certain
integration step), since the iterative solution obviouslycorresponds to the true solution of the
problem only after convergence. Let us denoteΣ(n)Λ andΓ(n)Λ

2 the self-energy and two-particle
1PI vertex function at the iterationn. At the 0-th order in the iteration we assume:

Σ(0)Λ = ΣΛ0 , (1.83)

Γ
(0)Λ
2 = ΓΛ0

2 , (1.84)

which do not depend onΛ. Therefore the integration of equations (1.72) and (1.73) can be
readily performed, and we obtain, for the self-energy afterthe first iteration:

Σ(1)Λ(1) = ΣΛ0(1) +

[∫

d2 GΛ′

(2)ΓΛ0

2 (12|12)− ΓΛ0

2 (12|21)
]Λ′=Λ

Λ′=Λ0

(1.85)

= ΣΛ0(1) + ΣΛ
HF(1)− ΣΛ0

HF(1).

The interpretation of this result is straightforward if we start the flow with a vanishing Gaussian
propagatorGΛ0

0 = 0. In this case the initial conditions areΣΛ0 = 0 andΓΛ0

2 = U . By reinserting
these in Eq. (1.85) one can easily see that the obtained result is the first order perturbation theory
result, i.e., the ‘‘standard’’ Hartree-Fock diagrams.

In general, if we started the flow from a nonvanishing choiceof GΛ
0 the corresponding initial

condition for the self-energy and the 1PI two-particle vertex would have been different. In this
case, the flow equations generate a termΣΛ

HF − ΣΛ0

HF which corrects an initial conditionΣΛ0

non vanishing from the beginning. The topological form of the term generated by the flowΣΛ
HF,

however, wouldnot change compared to the previous case: It still consists of the Hartree and
the Fock diagrams,but this time with two important differences: (i) the vertexes in the diagrams
are notU anymore, but ratherΓΛ0

2 , corresponding to the specific choice of the initial Gaussian
propagator, (ii) the Green’s function lines are dressed by the self-energyΣΛ0. However,ΣΛ0

is by definition theexactself-energy of the problem defined by the actionSΛ0, hence already
includes the Hartree and Fock diagrams of that specific action. To avoid double counting these
diagrams need to be subtracted, and this isautomaticallydone by the lower boundary of the
integral indΛ, which gives−ΣΛ0

HF , and removes the redundant contribution to the self-energy.
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For the two-particle vertex we obtain:

Γ
(1)Λ
2 (1′2′|12) = ΓΛ0

2 (1′2′|12) +
[ ∫

d3
{

(1.86)

χΛ′

(3, 1′ + 2′ − 3)ΓΛ0

2 (1′2′|3(1′ + 2′ − 3))ΓΛ0

2 (3(1′ + 2′ − 3)|12)
+ χΛ′

(3, 1′ − 1 + 3)ΓΛ0

2 (1′3|1(3 + 1′ − 1))ΓΛ0

2 ((3 + 1′ − 1)2′|32)
+ χΛ′

(3, 1′ − 1 + 3)ΓΛ0

2 (1′3|1(3 + 1′ − 1))ΓΛ0

2 ((3 + 1′ − 1)2′|23)
+ χΛ′

(3, 1′ − 1 + 3)ΓΛ0

2 (1′3|(3 + 1′ − 1)1)ΓΛ0

2 ((3 + 1′ − 1)2′|32)

+ χΛ′

(3, 2′ − 1 + 3)ΓΛ0

2 (1′(3 + 2′ − 1)|32)ΓΛ0

2 (32′|1(3 + 2′ − 1))
}]Λ′=Λ

Λ′=Λ0

≡ ΓΛ0

2 (1′2′|12) +
[

ΓΛ0 ◦ χΛ′ ◦ ΓΛ0(1′2′|12)
]Λ′=Λ

Λ′=Λ0

.

WhereχΛ(1, 2) = GΛ(1)GΛ(2). The result of Eq. (1.86), if our initial condition isGΛ
0 = 0, is

the second-order perturbation theory expression for the vertex [96]. Correspondingly, similarly
to what happens for the self-energy, if we start from a different, less trivial, choice for the initial
Gaussian propagator, one gets a correction to the initial two-particle 1PI vertexΓΛ0

2 , including
one-loop diagrams built with the Green’s function bubble ofthe problem at the final scaleΛ
and the initial vertex function. Again the lower boundary ofthe integral automatically removes
the diagrams that would be otherwise counted twice.

Obtaining the next step in the iteration is more involved. Let us focus on the two particle
vertex and substitute the result of equation (1.86) for the vertex, and dress the Green’s function
with the self-energy obtained by (1.85) in the right hand side of the flow equations. To generate
diagrams up to the third order in the two-particle vertex, wesubstituteΓ(1)Λ

2 only for one of the
two vertexes on the right hand side of the equation. We can distinguish the following classes of
diagrams:

• one diagram in which the two vertexes are bothΓΛ0:

Γ
(2a)Λ
2 (1′2′|12) = ΓΛ0

2 (1′2′|12) +
∫ Λ

Λ0

dΛ′ ΓΛ0

2 ◦ P (2)Λ′ ◦ ΓΛ0

2 , (1.87)

with P (2)Λ(12) ≡ GΛ(1)SΛ(2) + SΛ(1)GΛ(2), with the Green’s function lines dressed
by the self-energy at the previous iterationΣ(1)Λ. Due to theΛ-dependence ofΣ(1)Λ the
integration overΛ can not be performed as easily as in the previous iteration, sincePΛ

is not in the form of a totalΛ-derivative. On the other hand, if we apply the Katanin
substitution Eq. (1.71) to the single-scale propagator, the integral can be performed and
gives a correction to the two-particle vertex identical to the one of Eq. (1.86), but with
the propagators in the bubbleχ(2) computed with the self-energy of the previous iteration
Σ(1)Λ.

• Ladder type diagrams like the ones shown in Fig. 1.20. We use the symbol◦x=pp,ph,ph

to specify the summation over the internal indexes, but includingonly diagrams reducible
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Figure 1.20: Ladder type diagrams generated at the second step in an iterative solution of the
flow equations. The blue box representsΓ

(1)Λ′

2 , while the gray one representsΓΛ0

2 . Here
the long line crossing two Green’s functions marks the propagators the loop on which the
Λ-derivative acts.

either in the particle-particle, particle-hole direct or particle-hole crossed channel respec-
tively (i.e., reduciblein the specified channel). Then such a diagram, e.g., in the particle-
particle channel reads:

Γ
(2b)Λ
2 (1′2′|12) =

∫ Λ

Λ0

dΛ′ ΓΛ0

2 ◦pp χ(1)Λ′ ◦pp ΓΛ0 ◦pp P (2)Λ ◦pp ΓΛ0

2 (1.88)

+

∫ Λ

Λ0

dΛ′ ΓΛ0

2 ◦pp P (2)Λ′ ◦pp ΓΛ0 ◦pp χ(1)Λ ◦pp ΓΛ0

2 .

Once again, this integral cannot be performed straightforwardly, even using the Katanin
substitution: Forming a totalΛ-derivative would be possible only if all the lines in the
two terms were dressed with the same self-energy, which is evidently not the case. How-
ever this looks, to some extent, suspicious: From the structure of the flow equations it
appears that self-energy and vertex are always kept at the same scaleΛ. In fact, this prob-
lem reflects the arbitrariness in the iterative solution ofa system of coupled equations,
which does not have a meaning at each iteration step. Hence even limiting ourselves to
illustrative purposes, it is desirable to keep all the internal lines dressed with thesame
self-energy. A possible way to obtain this is proceeding as follows: First compute the
self-energy from the two-particle vertex at the previous iteration; then, plug the new self-
energy and the old two-particle vertex for computing an updated vertex using equations
(1.76-1.78). Finally insert again this ‘‘intermediate’’ vertex just obtained in the flow
equations (1.76-1.78) to compute the final vertex function. This is reminiscent of the
internal loop iteration that is sometimes needed in the iterative solution of the parquet
equations [187]. Following the prescription just described for the iterative solution, we
have that all the lines in the diagrams like the ones shown in Fig. 1.20 are dressed with
the same self-energy. Doing so (and using the Katanin substitution) we are now able to
integrate Eq. (1.88) by forming a totalΛ-derivative and we obtain a standard ladder dia-
gram with two loops. Such diagrams are generated in all channels separately. These are
the diagrams that can be generated by means of RPA.

• Parquet-type diagrams, like the one shown in Fig. 1.21. In this class of diagrams a
block containing a loop (internal, according to the definition given above) in some given
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Figure 1.21: Parquet type-diagram generated in the second step of an iterative solution of the
flow equations. The blue box representsΓ

(1)Λ′

2 , while the gray one representsΓΛ0

2 . In this
case the internal loop is particle-hole and the external oneparticle-particle.

channel, say for example particle-hole direct, substitutes one of the two bare vertexes that
build up the external loop in a different channel, say for example particle-particle. Also
in this case we can not form a totalΛ-derivative: The single-scale propagator acts only on
the line of the external loops, there is no diagram in which the derivative acts on the lines
of the internal loop, and, hence, even applying the Katanin substitution is not sufficient to
form a total derivative. For simplicity, let us restrict ourselves to the third order20 in the
two-particle vertexU . At this order we can approximate the single-scale propagator with
the total derivative of the Green’s function. Doing so, the diagram of Fig. 1.21 evaluates
to:

∫ Λ

Λ0

dΛ′ ΓΛ0

2 ◦pp PΛ′ ◦pp ΓΛ0

2 ◦ph χΛ′ ◦ph ΓΛ0 = (1.89)

ΓΛ0

2 ◦pp χΛ′ ◦pp ΓΛ0

2 ◦ph χΛ′ ◦ph ΓΛ0 −
∫ Λ

Λ0

dΛ′ ΓΛ0

2 ◦pp χΛ′ ◦pp ΓΛ0

2 ◦ph PΛ′ ◦ph ΓΛ0 .

The last term is identical to the one in Fig. 1.21, but with theline denoting theΛ-
derivative switched from the external propagator to the internal one. There is no diagram
that cancels this contribution at the truncation level of three-particle vertex. Such a di-
agram is however present at the two-loop level (see Fig.1.18). A posteriori this is not
surprising after all, and we could have seen this in a different way. The derivative of a
third order parquet-type diagram is shown in Fig. 1.14. It ismade up of four contributions.
It is easy to see that upon removing the slashed line the two diagrams on the left can be
put in the form of two blocks with four legs connected by a Green’s function. These two
blocks belong to the two-particle 1PI vertex, and thereforethe first two diagrams of Fig.
1.14 are included in the flow with truncation at the level of the three-particle vertex. On
the contrary removing the slashed line from the two rightmost diagrams in Fig. 1.14 one
obtains a block withsix legs, i.e., a block included in thethree-particle vertex. Truncating
at the level of the three-particle vertex we do not include these diagrams in our flow equa-

20It would be more appropriate to say that we restrict ourselves to some order inΓΛ0

2
. However for the time

being we take the freedom of assuming that the initial vertexis of the same order of the interaction. Practically
this is always the case.
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Figure 1.22: Lowest order contribution to the flow of the four-particle 1PI vertexΓΛ
4 .

a) b) c)

d) e) f) g)

Figure 1.23: Top row: Contributions toΓΛ
3 at the fourth order inΓΛ0

2 , arising from the four-
particle 1PI. Bottom row: Some selected contributions at thethree loop level to be included
in the flow of the two-particle 1PI vertex.

tion. These diagrams are exactly the same that we miss to forma totalΛ-derivative in the
iterative solution, as illustrated before. We will argue later that even if those diagrams
are of third order in the interaction, in many cases (in particular for aregularizingcutoff)
the neglected diagrams (i.e. those in which the single-scale propagator is acting on the
internal loop) are less relevant than the ones included (i.e. those in which the single-scale
propagator is acting on the external loop).

• double counting subtraction terms, generated by the lower boundary of the integral
overdΛ. Structurally these diagrams are the same as the diagrams shown above, but with
the internal loop lines being substituted by the Green’s functions at the scaleΛ0. The role
of these diagrams is very important, as they guarantee that no new diagram generated by
the flow is counted twice. This means, in practice, that all the corresponding diagrams
already included in the initial condition, but evaluated with the initial Green’s function,
are removed. It is important to stress here that within the fRGprocedure the removal of
double counting diagrams is intrinsically encoded in the formalism, i.e. it is not necessary
to subtract them by hand (as for example in LDA+DMFT). In the case ofGΛ0 = 0 all these
diagrams vanish identically.
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An intriguing question is the following: by retaining the leading terms at the fourth order in
ΓΛ0, can we obtain something similar to the Katanin substitution for the parquet type diagrams
(like those of Fig 1.21)? The answer is indeed positive. First, we would need to take into
account the lowest order contribution in the flow equation of ΓΛ

4 . It is clear that this contribution
is constituted by a ring of four two-particle 1PI vertexes connected by three Green’s function
and one single-scale propagator, as shown in Fig.1.22. Inserting this diagram in the flow for the
three- and two-particle 1PI vertex generates respectivelydiagrams with two and three loops, as
in Fig. 1.23. In particular, the diagrams d) and f) of Fig.1.23 have the required structure to allow
for the substitutionSΛ → ∂ΛG

Λ in the diagram of Fig.1.21. Let us also observe in passing, that
the fourth diagram of the bottom row of Fig. 1.23 is the lowestordertwo-particle irreducible
diagram, and hence it cannot be generated within a parquet21 approximation [22,149].

From the analysis above we can draw some conclusion about thediagrammatic content
of fRG. Truncating the equation hierarchy at the level of the three-particle vertex, the flow
equations for the vertex are in the form of equations (1.76-1.78) diagrammatically shown in
Fig.1.19, hence also the name one-loop approximation for this truncation level. In an iterative
solution, we recover the results of first order perturbation theory for the self-energy, and second
order perturbation theory for the vertex after the first iteration. By further iterations of the flow
equations, we obtain diagrams which have the topology of parquet-diagrams, but due to the
neglection of three- and more particle vertex, are only anapproximationto them. The reason
for this lays in the fact that, structurally, the parquet diagrams consist of a sequence of nested
loops. Recasting a diagram in the form of a total derivative with respect toΛ requires that the
single-scale propagators acts once on every loop line. Instead, truncating the flow equation at
some level, one is able to include only those diagrams in which the single-scale propagator acts
on the outermost loops. For example truncating at the level of the three-particle vertex one
obtains the one-loop approximation, and the single-scale propagator acts only on the lines of
the outer loop.

As a further example let us consider the diagrams in Fig. 1.24. In the top row we show
a diagram of fourth order in the interaction with three nested loops. TheΛ-derivative of this
diagram consists of six diagrams, in which a single-scale propagator substitutes each of the
the Green’s function lines. Of these six diagrams, the two with the single-scale propagator on
the outermost loop can be obtained already truncating the flow equations at the level of the
three-particle vertex. This is shown in the middle row of Fig. 1.24: One can substitute the
vertex labeled 1 with a block of a loop and two vertexes obtained at the previous iteration;
eventually substituting a block containing a loop also for the diagram labeled 2, in the next
iteration, one recovers the desired diagram. At the next loop-nesting level, to obtain a diagram
in which the single-scale propagator substitutes one of theGreen’s function lines of the first
internal loop, one needs to consider a diagram with two loops, like the one shown in in the left

21The ‘‘parquet approximation’’ must not be confused with theparquet equations. The parquet equations are
an exact relation between the two-particle reducible vertexes and the two-particle irreducible (2PI) one, while
the parquet approximation consists in replacing the 2PI vertex with its lower order contribution to calculate the
two-particle reducible verteces.
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3

one-loop

two-loop three-loop

Figure 1.24: Example of how a diagram is generated in the iterative solution of the flow equa-
tions.

of bottom row of Fig. 1.24. Then, at the next iteration step, substituting the vertex labeled 3
with a block containing one loop one obtains the desired contribution. Finally, the diagrams
in which one of the fermionic lines of the innermost loop is slashed can not be obtained by
substituting any of the vertexes by a block containing a loop, i.e., it is not obtained at the one-
loop level. These diagrams can be obtained only in an approximation that includes from the
beginning, in the flow equations for the 1PI two-particle vertex, diagrams with three nested
loops, which can be ascribed to the leading order contribution of the four-particle vertex. Only
if all these contribution are included one can form the totalderivative of the diagram that we
are considering.

As mentioned, in a one-loop approximation scheme, therefore, we would obtain the dia-
grams of second order perturbation theory at the first step of an iterative procedure. Higher
order contributions would be generated in the next iterations, but an exact identification with
perturbative diagrams is not possible for them. Topologically, the generated diagrams (at this
approximation level) are in the form of a sequence of nested loops, and consequentlytwo-
particle reducible: It will always be possible to split the diagrams in two partsby cutting the
lines of the mostexternalloop. Hence the structure of the diagrams generated at the one- (and
two- ) loop truncation level is exactly the same of the diagrams included in the parquet ap-
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proximation. Arguably, even if the diagrams of the parquet approximation are not reproduced
exactly, due to the truncation, the fRG will, in many cases, capture the main contribution to
them. The connection between parquet approximation22 and fRG that we have elucidated using
a diagrammatic procedure is shown in Ref. [25, 26] regarding the problem from the opposite
perspective, i.e., they started considering the parquet approximation as a perturbative approxi-
mation for the vertex and shown that retaining only the leading contributions they lead to the
one-loop renormalization group equations. We will come backto the approach of Ref. [26] at
the end of this section. Two-particle irreducible diagramsbeyond the bare interaction are not
included in the parquet approximation. The lowest order ones, however, can be in principle be
obtained in fRG in a three-loop truncation scheme, i.e., retaining the leading order contribution
from the four-particle vertex allows, in principle, to go beyond the parquet approximation, in
an fRG framework.

In general if we retain contribution up to then-loop (i.e., we keep the leading order contri-
bution from then+1-particle 1PI vertex) we reproduce, after then-th iteration the perturbation
theory result up to the ordern + 1 for the two-particle 1PI vertex. Among the generated dia-
grams, all the 2PI diagrams, up to the given approximation order, would be included. By further
iterating, we will build approximately otherreduciblediagrams, but no more irreducible ones
will be generated.

Finally let us conclude with two important remarks: First, as mentioned, the results of an
iterative solution must be taken with a grain of salt, and in arealsolution one can not rigorously
isolate the contributions of some perturbation order. Second, we have often implicitly assumed
thatΓΛ0

2 = U , which is the typical case, but not strictly necessary. In fact we will see in the
following that one can also start from aΓΛ0

2 already containing nontrivial correlation effects.
Hitherto, most of the fRG calculations have been performed atthe one-loop approximation

level, since including an higher number of loops raises the level of the computational challenge
significantly: Only a few calculations at the two-loop level have been performed [41, 96] with
a still manageable computational cost.

Choice of the cutoff

In this section we will discuss some possible cutoff choices. In particular we will first
discuss the mostconventionalchoices, in the sense that they are suited for starting the flow
from a problem which includes only ‘‘trivial’’ correlations (i.e.ΓΛ0

2 = U ), or in other words, a
problem in which all the fluctuations, at all energy scales,are suppressed. This is opposed to
the cutoffs that already include some nontrivial correlation effects in the beginning of the flow,
like the recently introduced hybridization cutoff [102] for an impurity problem, or the cutoff
used in DMF2RG, that will be the main topic of the fourth chapter.

Due to the truncation, the final result, of the fRG flow, due tothe truncation, will be in-

22We also mention that some similar relations were obtained also by the russian school, see, e.g., Ref. [191] and
reference therein. Here some equations close to the ones of one-loop renormalization group are obtained starting
from the perturbative expansion of the vertex using the so-called "Sudakov trick". It is very difficult, however, to
find a description of this trick in the western literature.
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fluenced by the cutoff used, through the choice of the initial ‘‘solvable’’ action SΛ0, but also
through the details of the Gaussian propagator for each value ofΛ. Therefore it is necessary to
choose appropriately in order to grasp the relevant. There are two main guidelines to be in prin-
ciple considered in this choice: the regulator property andthe unbiasedness, i.e., the property
of treating on the same footing all the channels.

The regulator properties are connected with the way instabilities may arise due to the proper-
ties of the Fermi surfac e . To see this, let us consider the general expression of the susceptibility
in the random phase approximation (RPA):

χRPA =
χ0

1− Uχ0
. (1.90)

Here we have omitted the specific momentum and frequency arguments, and denoted with
χ some general susceptibility of the system;χ0 represents the bare Green’s function bubble,
whose general expression is of the form [4]:

χ0(iΩ,q) ∝
∫

dk
n(ξk)− n(ξk+q)

iΩ− (ǫk − ǫk+q)
, (1.91)

with n being the Fermi function, andξ the energy measured from the Fermi level. A diver-
gence in the expression of Eq. (1.90) for some value of frequency and momentum signals the
tendency of the system towards an istability, and requires adifferent treatment. Especially at
low temperature more than one susceptibility may diverge, making it difficult to find out which
is the leading one. Let us illustrate how this happens with some examples. Trading the integral
over the momenta for an integral over the density of statesN(ǫ) =

∫
dkδ(ǫ− ǫk) we obtain the

following expression forΩ = 0 andq → 0 at low temperature:

χ0(iΩ = 0,q → 0) ∝
∫

dǫN(ǫ)
∂n(ǫ)

∂ǫ
= N(0). (1.92)

In two dimensions, or in general in presence of a Van Hove singularity of the density of states
the quantityN(0) is logarithmically divergent.
Another divergence in two dimensions and with nearest neighbors hopping dispersionǫk =

−[2t(cos(kx) + cos(ky)] happens forQ = (π, π), the nesting vector at half-filling (the Fermi
surface is perfectly nested23). In this case:

χ0(iΩ = 0,Q) =

∫

dǫN(ǫ)
n(ǫ− ǫF )− n(−ǫ− ǫF )

2ǫ
. (1.93)

In this case the divergence is even stronger as the function to integrate is large for small values
of ǫ: the contribution coming from the energy region close to theFermi surface is the most
important. Since the two dimensional Hubbard model at half-filling has also a Van Hove singu-
larity in the density of states, the system has two divergentsusceptibilities in the particle-hole

23In the words of Shankar: ‘‘Each point on the Fermi surface goes to another point on the Fermi surface upon
adding a vectorQ. This means that, if we shift the figure byQ, the shifted figure (in the repeated zone scheme)
will fit perfectly with the original like something out of Escher’s drawings’’ [164]
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crossed channel. The RPA is able to treat themsingularly, the ‘‘renormalization’’ of the sus-
ceptibility at a wave vectorq depends only on the bare susceptibility at that vector, and is not
influenced by the other, possibly divergent, susceptibilities. In this case RPA predicts, for the
half filled Hubbard model, an instability of the system towards the symmetry breaking associ-
ated with the stronger susceptibility, i.e., the antiferromagnetic one associated with the nesting
vector, which is eventually correct. We will see soon how a regularizing cutoff allows us to
better tackle this problem.

The other requirement that we want from a regulating function is the unbiasedness. This
means that we want our cutoff to allow for a treatment on the same footing of all the channels
and of all the momentum and frequency combinations, including both the diverging and the non
diverging ones.

Regularizing cutoffs The main contributions to the bubble diagrams come from the region
of the momentum space in the immediate vicinity of the Fermi surface, see equations (1.92)
and (1.93). Our aim is to sum up these contributions to the integral step by step, by getting
gradually closer to the Fermi surface, and eventually recovering the divergence at the very end
of the flow.

This is closely related to the original spirit of Wilson renormalization group, in which, start-
ing from high energy, some energy (or distance) scale is gradually integrated out, to obtain, in
the end of the flow, the solution of the problem in which all the energy scales are taken into
account.

In our framework we can reach this goal by assuming that the Gaussian propagator has the
following form:

GΛ
k (iω) = Gk(iω)ΘΛ(iω,k), (1.94)

whereΘΛ is a function equal to one for energy or momentum larger than the cutoffΛ (which
dimensionally is an energy) and equal to zero for energy or momentum smaller thanΛ, the
momentum being measured from the Fermi surface. In this way,starting from some value ofΛ
much bigger than all the other typical energy scales of the problem, we can gradually include
fluctuations of smaller momentum, by decreasingΛ till the original Green’s function is restored.
In this way the most divergent terms in the bubble are roughlylimited to:

χ ∝ log

[
D

max(iΩ, T,Λ)

]

, (1.95)

D being the scale for the kinetic energy of the system. This expression may diverge only for
smallΛ, i.e. when the fluctuations have been taken into account at all the energy scales.

At some particular scaleΛc the vertex functionΓΛc

2 generated during the flow may become
very big compared to the other energy scales of the problem and eventually diverge by further
lowering the cutoff. In this case, one has to stop the fRG flow,since in this regime the truncation
can not be considered a good approximation any more. If one has to stop at some nonzero scale,
the algorithm is (usually) not able to describe a physical action: The low energy degrees of
freedom have not been taken into account yet. However, even if it is not assured that the
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instabilities that emerge first in the flow are the ones thatin the end survive at the end of
the flow, we can use the two-particle 1PI vertex at the ‘‘stopping scale’’ as an indication of
the emergent instabilities for the real physical system. The ‘‘stopping scale’’ itself can be
considered, in certain circumstances and with a grain of salt, as an indication of the critical
temperature at which the system would enter in a broken spin phase. We note here that there is
some freedom in the explicit choice of the functionΘΛ. A typical choice goes under the name
of momentum shell cutoff. This corresponds to taking

GΛ
k (iω) = Gk(iω)θ(|ξk| − Λ), (1.96)

with θ being either the usual Heaviside step function, or some smoothed version of it. In the
case of a sharp step function theΛ-derivative ofGΛ is nonzero only in a momentum shell with
|ξk| − Λ. This is the reason for the namesingle-scale propagator: its support is reduced to
momenta with a single energy (measured from the Fermi surface). With this choice of the
cutoff we take into account one momentum shell at a time, getting gradually closer to the
Fermi surface. This is reminiscent of the gradual treatmentof the momenta in Wilson’s [185]
renormalization group or in (Shankar’s) [164] modern renormalization group. In particular, we
also note that in the loop equations for the two-particle vertex (1.76-1.78) it appears a single-
scale propagator and a Green’s function, the single-scale propagator in modern RG terms is ‘‘on-
shell’’, while the Λ-dependent Green’s function is not. This situation is closer to the one of the
field theoretical approachdescribed by Shankar [164], in which one of the internal propagator
momenta is at the cutoff and the other has support up to the cutoff value.

This kind of cutoff has been widely used, for example in the study of the two dimensional
Hubbard model. Unfortunately, however, the momentum cutoff is regulating but not unbiased:
The particle-hole processes with different momenta are nottreated in a uniform way [70]. To see
this, let us consider the expression of the susceptibility bubble for small values of momentum
q, Eq. (1.92), which has contribution only in the momentum region wheren(ǫ)

∂ǫ
6= 0. This is

true only in a small momentum shell around the Fermi surface of width ≈ T . Therefore in
a momentum shell cutoff scheme, these processes, which may eventually lead to a divergent
susceptibility, will be only taken into account forΛ ≤ T . In the presence of other divergence
tendencies we may have to stop the flow before we reach the scaleΛ ∼ T , and therefore before
we are able to include the effect of particle-hole excitations with small momentum transfer.
Even if there are no strong tendencies to divergences the processes with a different momentum
transfer will be treated at higher cutoff scales, in contrast to the idea of unbiasedness. To better
deal with this point also other cutoff schemes have been devised.

By looking at the the expression in Eq. (1.95), we evince that,if we want to avoid the
divergence of the susceptibility before the low energy degrees of freedom have been considered,
we can also act either on temperature or on the frequency.

Let us first discuss thefrequency cutoff. In this case we assume the regulating function
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ΘΛ(iω,k) to be a function of the frequency only. One possibility is a sharp cutoff24, like [94]:

ΘΛ(iω,k) = θ(|ω| − Λ). (1.97)

Another possibility [79] is to use a smooth function, like inthe so calledΩ-scheme. In this case
the regulating function would be:

ΘΛ(ω,k) =
ω2

ω2 + Λ2
. (1.98)

A possible drawback of the momentum shell cutoff and of the frequency cutoff is that if we
have to stop the flow at the stopping scaleΛC , the system defined by the actionSΛC , which con-
tains only fluctuations of energies higher than the stopping scale, does not strictly correspond
to the physical system we are interested in, for which fluctuations of all energies are allowed.
However, if we consider the frequency cutoff, the Gaussian propagatorGΛC has support only at
high frequencies, and the corresponding action can be loosely interpreted as a physical action
at a higher temperature.

For these reasons, it is sometimes useful to adopt a physicalcutoff. Eq. (1.95) suggests that
such a possibility can be given by using the temperature itself as a cutoff. This is the spirit of
thetemperature flow scheme [73,74]. In this scheme the fields are rescaled by thetemperature
in a way that does not affect the interaction part of the action. Therefore, in order to cancel the
temperature dependence ofSint in Eq. (1.56) we rescale the fields according to:

φkσ(iω) = T− 3

4ψkσ(iω), φkσ(iω) = T− 3

4ψ†
kσ(iω). (1.99)

Rewritten in the new fields, the action depends explicitly onthe temperature only in its Gaus-
sian part, that is proportional toT− 1

2 (see also Eq. 1.53). Then-particle 1PI vertex function
expressed in the new fields̃Γn and the one expressed in the original fieldsΓn, are related by:

Γn = T
3n
2 Γ̃n. (1.100)

Therefore one can perform the flow starting from high temperature for theφ fields, and then
obtain the vertex functions for the original problem. The starting point for the flow is at high
temperature, in which caseΓ2 = U . The temperature flow is unbiased. As a consequence, the
temperature flow can produce qualitatively different results from the momentum shell cutoff
ones, especially if particle-hole processes with small momentum transfer play an important role.
This happens, for example, in the two dimensional Hubbard model with next nearest neighbors
hopping [74], where a ferromagnetic instability may emergefor some values of the parameters.

Non-regularizing cutoff The ones discussed up to now are the more common cutoff choices
which possess regulating properties: i.e. the logarithmicdivergence of the bubbles is recovered
only in the very end of the flow. However, if we study a system for which we do not expect a

24Or some generalization of it to take into account the fact that the Matsubara frequencies are defined on a
discrete grid [94].
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particularly strong divergence due to the Fermi surface properties, or in other words if we do
not expect divergences for the bare bubble, we can treat all the degrees of freedom at the same
time and use the coupling strength as flowing quantity. Thisis the basic idea of theinteraction
cutoff [72]. To realize this task we have to rescale the fields in a way that, effectively, the
ratio between the potential and kinetic energy is changed, but leaving formally untouched the
interaction part of the action. To this extent we introduce amultiplicative factor in the Gaussian
part of the action:

SΛ
0 = T

∑

nσ

∫

ddkc†k,σ(iωn)Λ
− 1

2G0(k, iωn)
−1Λ− 1

2 ckσ(iωn), (1.101)

with the flow parameterΛ having in this case the dimension of a pure number. The physical
system we are interested in is recovered forΛ = 1. To understand the physical meaning of the
interaction cutoff we formally rescale the fields according to:

φkσ(iω) = Λ− 1

2ψkσ(iω), φkσ(iω) = Λ− 1

2ψkσ(iω). (1.102)

In this way the Gaussian part of the action would formally beΛ independent, while the interac-
tion part would become proportional toΛ2. We can absorb this factor in an effective interaction
ŨΛ = Λ2U , and interpret the new action as the one of a (physically welldefined) system with
a ŨΛ rescaled interaction for every given value of the cutoffΛ. The flow can then be started
atΛ = 0+, i.e. from an infinitesimally small interaction, until theoriginal bare interactionU is
recovered. As it clear from Eq. (1.101) theΛ-dependent propagators reads:

[GΛ
0 (k, iωn)]

−1 = Λ− 1

2G0(k, iωn)
−1Λ− 1

2 , (1.103)

hence the cutoff acts in the same way on all the modes and therefore it is also referred to as a
flat cutoff.

Hybridization cutoff Let us close this small overview of cutoff choices with the recently
introducedhybridization cutoff [102]. We will also come back on this topic at the end of
the third chapter. The hybridization cutoff is designed to treat the problem of an impurity
embedded in a bath, in particular in view of a possible application as impurity solver for DMFT
or its cluster extensions [101]. The idea of the cutoff is assuming as starting point for the
flow the exact solution (for the self-energy and the 1PI vertex) of a small exactly solvable
portion of the system, such as, e.g., an isolated atom, and inthe flow gradually activating the
hybridization with the rest of the system. To this end, the bath is discretized and represented
as a chain of noninteracting sites attached to the impurity.Next, a small portion of this chain,
called "core" and including the interacting site, is singledout and solved exactly. The size of this
portion is mainly determined by the maximal system size thatone can solve exactly. Finally, the
hybridization of the end site of the core with the rest of the chain is restored, and the self-energy
and vertex function of the impurity computed through the flow equations. Although this cutoff
is not completely successful in reproducing the Kondo physics [102], it’s application as impurity
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solver for DMFT [101] gives satisfactory results for both weak and strong coupling regime.
This highlights the important role played by the self-consistent hybridization function in DMFT
and at the same time indicates a possible way to approach a strong coupling correlation regime
in fRG. These two points will be discussed more in Sec. 1.5 and 3.2 respectively.

Regularizing cutoffs and neglected terms in the perturbative expansion.

After having discussed some possible cutoffs, we are now in the position to better analyze
the diagrams that are neglected in a one-loop approximationto the fRG equations. In particular
we focus on diagrams such as the one presented in Fig. 1.21, i.e., the lowest order parquet dia-
grams. We have already mentioned that integrating by parts the diagram in the figure one gets,
besides the parquet diagram without the single-scale propagators, the integral of an identical
diagram but in which the single-scale propagator replaces one of the internal loop lines.

This last contribution is unpleasant since (i) it only arises due to the truncation of the flow
equations, and (ii) it is of the same perturbative order in the interaction as the retained diagram.
Therefore it is desirable to show that the retained diagramscontribution is much larger than the
neglected one. A general argument is difficult to find, alsobecause the relative weight of the
retained and neglected diagrams (that would be needed to obtain exactly the parquet diagram
without single-scale propagators) crucially depends on the cutoff choice. To see this let us
compare the situation for a regularizing cutoff (e.g., frequency cutoff), and a non regularizing
cutoff (e.g., interaction cutoff).

The latter case is easier: neglecting everywhere the self-energy in the Green’s function and
considering thatGΛ = ΛG, we obtainSΛ = ∂GΛ

∂Λ
= G, χΛ = GΛGΛ = Λ2GG, andPΛ =

∂Λχ
Λ = 2ΛGG. Therefore it can be easily seen that, since the cutoff function does not operate

selectively in frequency or momentum space, the integrals over dΛ are independent from the
integrals over the momentum and frequency variables, and can be performed separately. Hence,
the contribution of every diagram is independent on the position of the single-scale propagator
in the loop: The neglected and retained diagrams have the same weight.

The situation is different in the case of cutoffs that operate selectively in momentum or
frequency space. In this case since the integral overdΛ and those over the internal loop variables
do not factorize and an analytic evaluation is more involved. This issue as been addressed by
Binz and coworkers in Ref. [26]. In particular in Appendix B of Ref. [26] it is analyzed a parquet
diagram consisting of a particle-particle loop embedded ina particle-hole crossed one (which is
the same diagram we will analyze numerically in the following, obtaining the same results). The
authors of Ref. [26] show that, assuming perfect nesting of the Fermi surface and an infrared
cutoff (i.e., a cutoff excluding the low-energy degrees of freedom, like the momentum cutoff),
the contribution to theΛ-derivative of the diagram arising from the derivative of the internal
loop lines is negligibly small compared to the contributionarising from the derivative of the
external loop. Therefore, they conclude that, if a diagram is reducible in a channel (e.g., in
this case in the particle-hole crossed channel), the main contribution to itsΛ-derivative will be
obtained by deriving only the propagators connecting the irreducible blocks and not deriving the
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r n

Figure 1.25: Parquet-type diagram studied numerically. In the top line the diagram is shown
with all the fermionic lines being Green’s function, corresponding to calculation (i) described
in the text. In the bottom line we show the four contribution to theΛ-derivative of the
diagram. Integrating all the four contributions overdΛ corresponds to calculation (ii) in the
text. The contributions have been separated in ‘‘r’’, retained in one-loop fRG, and ‘‘n’’
neglected in one-loop fRG.

irreducible blocks themselves [26]. This justifies the one-loop truncation of the flow equations,
at least for systems with nested Fermi surfaces. This argument is somewhat analogous to the
results obtained by Shankar [164] in the framework modern renormalization group. In Ref.
[164], in fact, he argues25 that it is possible to relate the sum over all loops to the one-loop
result. The argument is based on an analogy with the small parameter of the1/N expansion,
made possible by phase space arguments, which are beyond thescope of this thesis.

On a different perspective, since analytical evaluations are difficult and need to restrict one-
self to specific situations (e.g., perfect nesting of the Fermi surface), one can rely on numerical
techniques, for example by evaluating numerically theΛ-derivatives of the lowest order parquet
diagrams and comparing for these the contributions arisingfrom the derivative of the internal
and of the external loop lines. This approach, although lesselegant than analytical estimations,
has the advantage of being flexible and easily generalizable to different choices of the cutoffs
and general Fermi surfaces. In particular, we have analyzednumerically the third order parquet
diagram shown in Fig. 1.25, for the dispersion of a two dimensional Hubbard model at half-
filling with nearest neighbors hopping only, and onsite interactionU . We neglected everywhere
the self-energy and did the numerical calculationat finitetemperatureT . We have evaluated the
diagram in two different ways:

(i) direct evaluation from standard perturbation theory;

25cf. Sec. VII of Ref. [164]
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(ii) evaluation of the integral overdΛ of the four diagrams obtained by substituting one of
the Green’s function lines with a single-scale propagator (bottom row of Fig. 1.25). As a
cutoff we have assumed a frequency cutoff at finite temperature, following Ref. [94]:

Θ(|ω| − Λ) =







0 if −πT > |ω| − Λ,
1
2
+ |ω|−Λ

2πT
if −πT ≤ |ω| − Λ ≤ πT ,

0 if |ω| − Λ > πT,

(1.104)

andSΛ(k, ω) = G(k, ω)Θ(|ω| − Λ).

The numerical evaluation following (i) and (ii) has provided the same result (within the nu-
merical error) as expected. Furthermore, the evaluation (ii) using the fRG procedure allowed
us to disentangle the contribution of the retained (Fig.1.25r) and of the neglected diagrams
(Fig.1.25n). This way we have checked that the contribution coming fromthe integration of
Fig.1.25r is typically one order of magnitude larger than the one coming from the integration
of Fig.1.25n, for all the values of momentum26 and temperature considered. Although this nu-
merical analysis does not allow for a definitive assessmentabout the validity of the one-loop
approximation, it provides a further indication that the major role is played by the diagrams
retained in the one-loop approximation (for the cutoff considered). However, this should be
verified case by case, and supported with physical intuition, and, whenever possible, with ana-
lytical or semi-analytical evaluations.

26The diagram, due to energy and momentum conservation, depends on three momentum and frequency vari-
ables. The three frequency variables have been assumed to beequal to the lowest Matsubara frequency, while
several combinations of momentum variables have been analyzed.
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1.5 Dynamical mean-field theory

In the present section we will discuss thedynamical mean field theory (DMFT). DMFT
has been the first method to give a reliable nonperturbativedescription of the Mott transition,
and is nowadays one of the most powerful tools for the description of strongly correlated sys-
tems. Hence it is not surprising that it has been described ina very large number of references,
and that it has been derived in several different ways, see, e.g., Refs. [46,48,60].

Therefore we will not try to give an exhaustive overview about DMFT, for which we refer
to the literature, but we will rather present it in a way to prepare the ground for the combination
with GW and with fRG, which we will discuss in the following chapters.

To this end we will present two different derivations of DMFT. The first one uses an easier
formalism and is intended to show the physical content of DMFT. The second one makes use
of a more involvedfunctional integralformalism and is intended to show the formal similarities
as well the differences with fRG.

In this perspective we will first introduce what is the idea behind DMFT, i.e., the exten-
sion of standard mean field theories to quantum problems, byusing alocal approximation to
describe the properties of lattice models for solids. Then we will describe in which limits this
approximation becomes exact: the limit ofinfinite dimensions, but also in thenoninteracting
and in theatomic limit . At this point we will be in the position to tackle a more technical
discussion and deal with the derivation of the DMFT self consistency equations, that allow the
mapping of a lattice model onto anAnderson Impurity Model (AIM). These two points, (i)
the description of a lattice problem with a local approximation and (ii) the mapping onto an
impurity site, constitute the heart of DMFT.

The limit of infinite dimensions will serve us as a guide to understand what kind of physics
we are able to capture by the DMFT approximation. In view of a later use, we will propose
two possible complementary pictures to visualize DMFT: On the one hand we can imagine that
we are approximating a finite dimensional problem by the AIMwhich better describes its local
physics, or, on the other hand, we can imagine to approximatethe local physics of the finite
dimensional lattice with the one of an appropriate(auxiliary) infinite dimensional problem.

To make contact with the fRG techniques we will discuss an alternative derivation of DMFT,
following the lines of the discussion presented in Ref. [46].This derivation is based on the defi-
nition of an effective action functional of the local Green’s function and is related to the Baym-
Kadanoff [19] and Luttinger-Ward [117] approach. As an example of successful application of
DMFT we will touch upon the DMFT description of the Mott transition. We will not discuss
here, instead, the combination of DFT and DMFT methods aimedto anab-inito treatment of
strongly correlated materials.

1.5.1 Dynamical mean field

One of the most essential model Hamiltonians that is able to capture the relevant physics of
strongly correlated materials is the Hubbard Hamiltonian [53, 77, 92] (and its generalizations,
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e.g., to many bands). In general, this Hamiltonian describes two kinds of processes: The hop-
ping of an electron from one site to another one and the energycost of doubly occupying a
lattice site.

If we focus on one lattice site only (in a one band case), thereare four possible configura-
tions: |0〉, | ↑〉, | ↓〉 and| ↑, ↓〉. The configuration of the site can change as the electrons hop
back and forth to the neighboring sites: If we lookonly at this single sitethe lattice plays the role
of a bath and guarantees the electrons the chance to hop, therefore changing the configuration
of the site, which is still a full quantum problem.

This idea can be formalized in the following way: Instead of considering the lattice problem
with all its degrees of freedom, we can approximate it with a single site problem, embedded in
an effective bath, drastically reducing the number of degrees of freedom. In this way we keep
track of thelocal physics of each site: We do not focus onwherethe electrons are going or
coming from, but,on the given site, the electrons still feel the interaction among each other.

However, a given electron on the sitei will not feel the interaction with a time averaged
electron density on the site, but an interaction that will depend on the quantum state of the site
i at a specific timeτ . In this sense the questionwhere(on which site) the other electrons are
hopping is not relevant, but the questionwhenan electron is coming back still is: In this sense
the physics isdynamic, i.e., time dependent.

Once we approximate the lattice physics with the one of a single site embedded in an effec-
tive bath, we need to perform two main steps to accomplish ourtask:

• we have to define the equations that connect the lattice problem to the effective bath in a
self-consistent way;

• we have to solve the impurity problem (which remains a quantum many body problem).

While the solution of the many body problem can be achieved in several different ways using
different techniques (impurity solvers), the problem of defining the self-consistent bath is more
fundamental and we will focus on it in the following.

Self-consistent AIM

To be specific let us focus on a single band Hubbard model, whose Hamiltonian can be
written as:

H =
∑

ij,σ

(tij + µδij)c
†
iσcjσ + U

∑

i

n̂i↑n̂i↓. (1.105)

Heretij is the hopping amplitude,U is the Coulomb interaction,µ is the chemical potential,c†iσ
(ciσ) creates (annihilates) an electron of spinσ at the lattice sitei. The quantity that describes
the dynamical state of the lattice sitei is the local Green’s function:

Gloc,σ(τ − τ ′) ≡ −〈Tciσ(τ)c†iσ(τ ′)〉. (1.106)

FromGii,σ one can read out the probability that the lattice site is occupied at some given time
or that the electron can hop back or forth from the bath: It is the relevant quantity to describe
the embedding in an effective medium.
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As stated above, our aim is finding the local problem that describes the state of a site of the
lattice problem. The Hamiltonian that describes the local problem of an impurity embedded in
a bath can be written in the form of the AIM:

HAIM = Hatom +Hbath +Hcoupling. (1.107)

The first term describes the on-site interaction between spin-up and spin-down fermions:

Hatom = Un̂↑n̂↓ + µ(n̂↑ + n̂↓), (1.108)

where the chemical potentialµ is used to fix the occupation on the site, andn̂σ = c†σcσ, with c†σ
andcσ the creation and annihilation operators of the impurity site.

The ‘‘form’’ of the effective bath is encoded in the two followings terms:

Hbath =
∑

lσ

ǫ̃la
†
lσalσ (1.109)

Hcoupling =
∑

lσ

Vl(a
†
lσcσ + c†σalσ), (1.110)

the operatorsalσ define anauxiliary set of fermions, with dispersion defined byǫ̃l and hopping
amplitude to the impurity given byVl. The set of̃ǫl’s andVl’s will be referred to as ‘‘Anderson
parameters’’.

The details of the AIM defined by Eq. (1.107), i.e., its Anderson parameters, have to be
determined considering that we want it to describe the localphysics of a lattice site, which,
in turn, is completely defined by the local Green’s function, equation (1.106). Therefore one
wants to determine that particular AIM whose interacting Green’s functionGAIM

σ (τ − τ ′) ≡
−〈Tcσ(τ)c†σ(τ ′)〉AIM is equal to the local one of the lattice:

Glocσ(τ − τ ′)
!
= GAIM

σ (τ − τ ′). (1.111)

Whenever this condition is met the one-particle physics on the impurity site and on each lattice
site is the same, regardless of what happens respectively tothe auxiliary fermions and to each
other lattice site. In fact, sharing the same local Green’s function, the single impurity and the
lattice site will also give the same results for the single one-particle local operators like, e.g.,
the magnetization or the (local) density of states. To fulfill the requirement (1.111) one has to
fix the Anderson parameters defining the auxiliary fermions ǫ̃l andVl. However, even assuming
that our impurity solver allows us to solve exactly the AIM and to computeGAIM

σ we still do
not know the local Green’s function of the latticeGlocσ. Therefore solving equation (1.111) is
not possible until we define an approximation for the local Green’s function. In DMFT we will
chose an approximation forGloc that involves the AIM Green’s function itself. We will see that
this gives rise to the DMFT self consistency cycle: The AIM determines the self-energy that
enters in the local Green’s function, and the local Green’s function obtained this way determines
a new AIM. However before discussing how to find the self-consistency equation it is useful to
switch to an effective action formalism for the AIM.
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This is particularly convenient since the auxiliary fermions in the Hamiltonian (1.107) are
noninteracting27, and can be therefore easily integrated out. This yields thefollowing effective
action:

SAIM = − 1

β

∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

ψσ(τ)G−1
0 (τ − τ ′)ψσ(τ

′) + U

∫ β

0

dτn↑(τ)n↓(τ). (1.112)

Here the action is expressed in terms of the Grassman variablesψ andψ associated with the
annihilation and creation operators of the impurity.β is the inverse temperature. The Gaussian
part in the action (1.112) is specified by the noninteracting Green’s function of the AIM (also
called Weiss field)G0. It is related with the Anderson parameters of the auxiliarybath fermions
by:

G−1
0 = iωn + µ−∆(iωn), (1.113)

∆(iωn) =
∑

l

|Vl|2
iωn − ǫ̃l

, (1.114)

and∆(iωn) is usually referred to as thehybridization function. The action (1.112) has the
appropriate form to describe the single site embedded in a lattice, since it does now depend
only on the Grassman variables of the impurity site. The termquadratic in the fields in the
action (1.112) describes processes in which a fermion leaves or reaches the impurity site, while
the term proportional toU , quartic in the field, is responsible for the local Coulomb repulsion.
The fact that the Gaussian propagatorG0 is time dependent is essential to describeretarded
processesin which a particle leaves the site at a timeτ and comes back on the site at a time
τ ′ after propagating in the bath during the time intervalτ ′ − τ . Conversely, this can also be
analyzed in frequency space: The fact that the Weiss field is frequency dependent implies that
the particle that hops to the impurity site or leaves it can have different energies, and fermions
of different energies have different probabilities to hop.

G0 can be considered thequantum counterpartof the effectivemean fieldof classical statis-
tical mechanics, since its functional form is used to represent, in an effective way, the relation
between a site and the lattice. This is also the origin for thenameWeiss fieldattributed toG0.
Until now, we did not yet introduce any specific approximation for the local Green’s function,
but we only stated that if we know the local Green’s function of a lattice problem we can also
find the AIM whose Green’s function equals the local one of the lattice. However this is of
little or no use until we define an approximation to find the local lattice Green’s function. The
guideline that suggests the best approximation comes from the infinite dimensional limit of a
lattice model. In this case the mapping onto an AIM is exact, i.e., not only one can find an
AIM having the same local Green’s function of the lattice model, but it is possible to calculate
exactlythe local Green’s function of the lattice from the solution of a self-consistent AIM.

27Here we mean that there is no term in the Hamiltonian (1.107) beyond the quadratic one in the operators of
the auxiliary fermions. However, strictly speaking, thereis some interaction between the auxiliary fermions due
to their linear coupling with the impurity. This can be most easily seen formally integrating out the degrees of
freedom of the impurity.
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Infinite dimensional limit

The infinite dimensional limit of a lattice (Hubbard) modelwas pioneered in 1989 by Met-
zner and Vollhardt [130]. This limit, although sounding exotic, turns out to be very useful. In
fact it represents the limit in which the dynamical mean field theory, intended as a mean field
theory in space but not in time, becomes exact. This is analogous to the what happens for a
classical spin system where, in the infinite dimensional limit, the mean field approximation (in
spaceand time) becomes exact [130]. For a quantum model, like the Hubbard model, this is
not the case, since a static mean field approximation, such as the Hartree-Fock approximation,
does not allow to obtain an exact result, even in the infinitedimensional limit [130]. This is
very reasonable: In infinite dimensions the fluctuations in space are averaged out, while there
is no suppression for the fluctuations in time, and therefore one needs adynamical mean field.

Before discussing the physics, let us make a short remark about the nomenclature. We refer
here to the limit of infinitedimensionsaccording to the original paper in which it was proposed.
However, rather than the number of dimensions, it is the coordination number, i.e., the number
of neighbors to which an electron can hop from a given site, which is really important. In this
way the limit can be made also for lattices, like the Bethe lattice, for which the dimension is not
well defined. Obviously for a hypercubic lattice ind dimensions with nearest neighbor hopping
the coordination number isz = 2d.

Following Metzner and Vollhardt [130] we refer to the specific case of a Hubbard Hamilto-
nian in the form (1.107), where the two sums range over the sites of ad-dimensional lattice. In
the case of a hypercubic lattice with nearest neighbors hopping the kinetic term can be diago-
nalized in momentum space, with eigenvalues:

ǫk = −2t
d∑

j=1

cos kj, (1.115)

with t the hopping amplitude andk = (k1, k2, ..., kd) the momentum vector. From this one can
evaluate the density of statesD(ǫ) = (2π)−d/2

∑

k δ(ǫ− ǫk), which in the infinite dimensional
limit, due to the central limit theorem, reads [130]:

D(ǫ) =
1

2t(πd)1/2
exp

[

−
(

ǫ

2t
√
d

)2
]

, (1.116)

i.e., the density of states is a Gaussian distribution with variancet
√
2d

d→∞→ ∞. The kinetic
energy per lattice site of the noninteracting model equals the second moment of the density of
states, i.e., the variance for a Gaussian density of states.Therefore the energy scale associated
with the kinetic energy diverges in infinite dimensions forfixed t.

On the other hand, the potential energy per lattice site, does not scale with the number
of dimensions. In this situation the model (1.105) would be trivial: It would not describe a
competition between kinetic and potential energy. To avoidthis we assume that the hopping
amplitude scales according to theproper scaling:

t ∝ t∗/
√
2d, (1.117)
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with t∗/U ≈ O(1). In this way the variance stays finite, and the model still describes the
competition between kinetic and potential energy in the limit d→ ∞.

Let us note [46] that this agrees with the scaling of the exchange interaction between nearest
neighbors, for statistical mechanics models, that takes the form: Jij ∝ J∗/z, which is needed
to recover the essential physics involved in the magnetic transition of those models. In fact, it
can also be seen that in the limit of largeU the Hubbard model can be mapped on at−J model,
with superexchangeJij ∝ t2ij/U . In this case the proper scaling Eq. (1.117) guarantees thatthe
superexchange scales like1/z.28

The proper scaling was derived above in the special case of a hypercubic lattice with nearest
neighbors hopping only. This can be generalized to a system with longer range hoppings by
introducing the quantityZ‖i−j‖ which counts the number of equivalents sites at the (Manhattan)
distance‖ i− j ‖ from the sitei [60]. It can be seen that assuming a scaling of the form

tij ∝ t∗ij/
√

Z‖i−j‖, (1.118)

with t∗ij being independent onZ‖i−j‖ guarantees a finite kinetic energy also in the limitZ‖i−j‖ →
∞.

Let us assume now the proper scaling of the form of Eq. (1.118)and see how it affects the
diagrammatics of DMFT.

Locality of the self-energy Let us focus on the self-energy. In this derivation we followthe
lines of Ref. [60]. The proper scaling imposed on the hopping amplitude, implies that also the
noninteracting Green’s function scales in the same way:

G0
ij(ω) ∝

1
√

Z‖i−j‖
. (1.119)

This can be easily seen by the definition of the Green’s function in real space [60].
The interacting and noninteracting Green’s function are connected via the Dyson equation

1.21. Therefore, unless the self-energy tends to zero more slowly than the hopping amplitude
whenZ‖i−j‖ → ∞, the interacting Green’s function will scale like the noninteracting one. In
the end we will find that the self-energy is purely local, therefore validating thisansatz.

Due to the assumed locality of the Coulomb interaction, in a Feynman diagram, the interac-
tion line29 always connects a lattice sitei with itself. Let us consider a diagram contributing to
the self-energy, like the one shown in Fig. 1.26. The sitesi andj are connected by three lines
and each of them brings in a factorZ−1/2

‖i−j‖, hence the diagram scales with a factorZ−3/2
‖i−j‖. This

factor implies that, fori 6= j, in the limit of Z‖i−j‖ → ∞ the diagrams vanishes. This is not
the case forlocal diagrams, i.e. those withi = j which stay of orderO(1) even in the limit of
infinite coordination. Therefore the nonlocal self-energy diagrams in which two different sites

28We also mention that the idea of the proper scaling is, in some sense, related to the one of the1/N expansions,
in which one writes a theory in terms of fermions withN components. The difference is that in this case one usually
introduces a term1/N to avoid the divergence of the interaction energy, rather than of the kinetic one [164].

29In the Feynman diagrams that we show in this chapter we represent the Coulomb interaction as a wiggled line.
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Figure 1.26: Feynman diagram for the self-energy. In the limit of infinite dimensions it con-
tributesonly if i = j.
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Figure 1.27: A) Non skeleton Feynman diagram for the self-energy. B) Second order Feynman
diagram in terms of dressed Green’s functions.

are connected by at least three Green’s function lines are irrelevant compared to the ones, topo-
logically identical, in which the three Green’s function lines connect the same site. Focusing
on skeleton diagrams (the ones relevant for the self-energy) one can see that whenever in the
diagram there are two sites,i andj thesemustbe connected byat leastthree Green’s function
lines, either directly or through other sites.30 In any case their contribution will scaleat least
like 1/Z−3/2

‖i−j‖.
Hence all the nonlocal self-energy diagrams are irrelevant, and the only relevant diagrams

in the limit of infinite dimensions are the purely local ones: as announced the self-energy in this
limit is purely local:

Σij(ω) = δijΣ(ω), (1.120)

Σk(ω) = Σ(ω). (1.121)

This also justifies the initial ansatz on the scaling of the interacting Green’s function.

Mapping on the AIM in d → ∞ We shall now come back to our original problem and dis-
cuss how to calculate the local Green’s function of an infinite dimensional lattice by pinpoint-

30More precisely one can talk of independent paths that connect the sitei to the sitej. Each one brings in at
least a factorZ−1/2

‖i−j‖.
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ing and solving the self-consistent AIM. Let us stress that in the limit of infinite dimensions
the proper scaling has to be the one described above, to allowfor an exact relation. We will
thenassumethat the relation (1.121) holds, as an approximation, also in the case of a finite
dimensional lattice.

We have just shown that in infinite dimension the only diagrams that contribute to the self-
energy are the local skeleton (i.e., built withinteractingGreen’s function lines) ones. Topolog-
ically, therefore, the diagrams contributing to the self-energy of an infinite dimensional lattice
are equal to those that contribute to the self-energy of ageneralAIM, which include only local
Green’s function lines by definition. If we further assume that also the (local) interaction term
is the same for the impurity and for each individual lattice site, then the self-energy diagrams
of the two systems, besides being topologically equivalent, will also assume exactly the same
value if the local interactingGreen’s function lines are the same. In other words, since the
diagrams are topologically the same thefunctional that gives the self-energy as a function of
the interacting Green’s function is the same for the AIM and for the infinite dimensional lat-
tice. Therefore, the knowledge of the AIM that fulfills Eq. (1.111), i.e., that has the same local
Green’s function as the infinite dimensional Hamiltonian,also implies the knowledge of the
lattice self-energy, since the two self energies of the two models are the same:

Σ(ω) = ΣAIM(ω). (1.122)

We can next make use of the Dyson equation to express the local Green’s functions of the lattice
and of the AIM in function of the self-energy:

Glocσ(ω) =

∫

dǫ
D(ǫ)

iω + µ− ǫ− Σ(ω)
, (1.123)

GAIM
σ (ω) =

[
G−1
0 (ω)− ΣAIM(ω)

]−1
. (1.124)

Equation (1.122) can be used to assume that the self energiesin equations (1.123) and (1.124)
are the same. Reinserting them in Eq. (1.111) we obtain an implicit relation for the Weiss field
G0 of the AIM that satisfies equation (1.111):

(
G−1
0 (ω)− Σ(ω)

)−1
=

∫

dǫ
D(ǫ)

iω − ǫ+ µ− Σ(ω)
, (1.125)

where the self-energyΣ can be calculated from the solution of the AIM. In general theWeiss
field of the AIM that fulfills Eq. (1.111) is not known. Therefore equation (1.125) can be
regarded as aself-consistencyequation: If one is able to find an AIM with an associated Weiss
field G0(ω) and self-energyΣ(ω) that fulfill equation (1.125) one also knowsexactlythe self-
energy and local Green’s function of the infinite dimensional problem specified by the density
of statesD(ǫ). In practice the problem of solving equation (1.125) arisesfrom the fact that the
self-energy is not known a priori, but one has to solve a many-body problem. The usual way to
deal with equation (1.125) is by making use of the following self consistency cycle:

(i) Start from a reasonable guess, e.g., for the self-energy;
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(ii) compute a new Weiss fieldG0 by inverting Eq. (1.125).

(iii) Solve the new AIM defined by the new Weiss field. In the solution of the AIM problem
several different impurity solvers can be used;

(iv) iterate, inserting the new self-energy in Eq. (1.125),step (ii).

Self-consistency will be reached when, for a given accuracy, the quantities (e.g. the self-energy
or the Weiss field) computed in the new iteration equal the ones of the previous iteration. When-
ever self-consistency is reached one knows theexactself-energy and local Green’s function of
an infinite dimensional problem, which would have been extremely difficult to obtain from a
direct solution (e.g., using exact diagonalization, quantum Monte Carlo, or any other technique)
of the lattice original problem.

Approximation for finite dimensions In finite dimensions, in general, the self-energy isnot
purely local. However, in several situations as we will describe below, we can still assume
that relation (1.122) holds as anapproximation for the self-energy of a finite dimensional
problem. This implies that we assume a purely local self-energy also in the finite dimensional
case, neglecting its the nonlocal part. Under the assumption of a local self-energy, equation
(1.122), the local Green’s function can be computed using a Dyson equation of the form (1.123),
where the density of statesD(ǫ) refers now to the finite dimensional lattice. The local Green’s
function obtained this way can be the inserted in Eq. (1.111), or equivalently in Eq. (1.125), to
form together with equation (1.122) a set of approximate self-consistent equations. This set of
equations is at the basis of theDMFT approximation .

The self-energyΣDMFT, obtained at self consistency, isassumedto be the DMFT approxi-
mation for the self-energy of the finite dimensional problem. Obviously this is not exactly true:
We are neglecting the nonlocal part of the self-energy, or, equivalently, its momentum depen-
dence. Through the Dyson equation the momentum dependence of the self-energy also enters
in the local Green’s function. Therefore also equation (1.111) only holds approximatively, and
the AIM describes in an approximate way the local physics on alattice site (cf. footnote 31).
Let us stress, however, that this does not depend on the question whether an impurity problem
that describes it exactly exists (at least at the one particle level) but on the fact that we do not
know how to find the right AIM, and we have to rely on an approximation to find it. At the
same time, while the self-energy momentum dependence is neglected, the interacting Green’s
function remains momentum dependent, due to the momentum dependence ofG0(k, ω).

The physical condition that we have to keep in mind when we want to apply DMFT is that
we are going to neglect the nonlocal self-energy. This implies that if we have physical reasons
to believe that the nonlocal fluctuations, that translate in a strong momentum dependence of the
self-energy, might play a key role, DMFT must be either discarded, or supported with the results
from some DMFT extensions or other techniques that allow forthe (at least partial) inclusion
of nonlocal fluctuations.
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Other limits where the DMFT is exact One of the main strengths of DMFT is that it is able
to accurately describe the two opposite limits of weak and strong coupling. This is not the case
for many other approximations. For example, focusing on thehalf filled Hubbard model, a good
description of its physics can be obtained in the weak coupling regime by means of perturbation
theory, e.g., Hartree-Fock (or BCS) like theories. Also the region of (very) strong coupling can
be described in a perturbative way, after projecting out thedoubly occupied states and mapping
on at − J model at weak coupling (J ∝ t2/U ≪ t). However these perturbative approaches
work only in one of the two limits.

On the other hand DMFT is exact in both limits ofnon-interacting bandsand ofisolated
atoms, regardless of the number of dimensions. Let us briefly showwhy this is the case. The
non-interacting limit is (trivially) given byU = 0. Then the self-energy of the lattice isk-
independent by definition, as it vanishes for everyk-point. Equation (1.125) simply gives:

G0(ω) = G0
loc(ω). (1.126)

In this limit (andonly in this limit) the Gaussian propagator of the AIM associatedwith the
lattice problem by the approximation (1.122) equals the noninteracting local propagator of the
lattice.

In the opposite limit, that of isolated atoms, the self-energy is local by definition, as each
atom is isolated. Formally this is obtained by removing all the hoppings among the atoms:
tij = 0, or equivalentlyǫk = 0. The density of states reduces to aδ-function: D(ǫ) = δ(ǫ).
As a consequence, the self consistency equation (1.125), after expressingG0(ω) in terms of the
hybridization function∆(ω), reduces to:

(iω −∆(ω)− Σ(ω))−1 =
1

iω − Σ(ω)
, (1.127)

i.e., the hybridization function vanishes for all the values of its argument∆(ω) = 0.
Remarkably DMFT is exact in both limits, and provides an interpolation between them

for intermediate coupling regimes. This is important because it allows to describe not only
the two regimes of strong and weak coupling but also the (morecomplicated) intermediate
regimeon the same footing. In the interpolation between the two physical situations akey
role is played by the evolution of the hybridization function ∆(ω). Let us stress here, that in
spite of appearing in the noninteracting part of the auxiliary AIM, the hybridization function,
in a DMFT calculation, already carries crucial informationabout the correlations of the lattice
model, i.e., through equations (1.111) and (1.125) it depends on the interaction. In fact this
quantity can be interpreted as a ‘‘quantum’’ generalization of a classical mean field [49]. More
specifically we have seen∆(ω) vanishes in the atomic limit, Eq. (1.127). Moreover the low
frequency behavior of the hybridization function plays thecrucial role in the Mott transition:
∆(ω → 0) = 0 corresponds to a Mott insulating solution. Besides this, also beforethe Mott
transition is approached, the hybridization function encodes very important features about the
new energy scales arising in the lattice problem [62], for example a three peak structure of∆(ω)

is associated with the emergence of a kink in the self-energy. The connection can be made more
explicit analyzing the Mott transition in a Landau theory framework, as done in [106,107,150].
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Auxiliary model In view of the upcoming discussion about DMF2RG let us elaborate further
about the concept of the auxiliary model in DMFT. As discussed above, in DMFT we approx-
imate the self-energy of a lattice model with the one, local by definition, of an AIM. We have
often referred to the latter as anauxiliary model. We try now to better investigate the connection
of the auxiliary model with the lattice one, making the distinction between finite and infinite
dimensions.

In infinite dimensions the proper scaling and the locality of the self-energy guarantee that
the lattice self-energy can be computedexactlyfrom the one of the auxiliary model: In this limit
DMFT is not an approximation but amapping. This is not the case in finite dimensions. In this
case thephysicalmeaning of the auxiliary model is less well defined. Indeed the auxiliary
model can be thought of as that model that best approximates the local quantities of the lattice
one under the approximation that the lattice self-energy islocal31.

However, in view of the combination with fRG, it might be instructive to envision the
auxiliary model in an equivalent way. Let us notice explicitly that in Eq. (1.125) the lattice
entersonly through the noninteracting density of statesD(ǫ). This means that, as long as
we focus on the paramagnetic phase [48, 133], we can find several different lattices which
share the same density of states and are therefore describedby the same AIM in DMFT. More
specifically, we can define anauxiliary infinite dimensional lattice, with hoppingt̃ij, which has
the same density of statesD(ǫ) of the finite dimensional lattice we are interested in. The infinite
dimensional lattice defined by the infinite dimensional hoppingst̃ij will share with the auxiliary
AIM the same self-energy and local Green’s function, which in infinite dimensions are exact.
Therefore one can equivalently think of DMFT as havingapproximatedthe self-energy and
local Green’s function of a finite dimensional lattice withthe ones of theinfinite dimensional
auxiliary lattice which has the same density of states. Thisconsideration will turn useful in
defining an fRG-like flow equation in the context of DMF2RG.

1.5.2 Functional perspective on DMFT

In the following we would like to present a different derivation of DMFT, based on the
definition of aneffective actionΓ[G], which is afunctional of the local Green’s function.
This second derivation will not add information about the physical content of DMFT, already
discussed in the previous paragraphs using a formalism way less involved. Instead here we
wish ‘‘ to kill two birds with one stone’’ 32: On the one hand, we want to show that the local
Green’s function in DMFT can be obtained byfunctional minimization of an effective action
functional. On the other hand we want to explicitly show someformal similarities between the
functional that we will use to derive DMFT and the generatingfunction for the one-particle
irreducible functions studied in fRG (see footnote 38). The common idea is that both in fRG

31Theexactlocal Green’s function of the lattice modelGlocσ(ω) =
[∑

(G0

kσ(ω)
−1 − Σk(ω))

]−1
, is, in general,

different from the DMFT one. Strictly speaking the AIM that best describes the local properties of the lattice model
is the one whose interacting Green’s function isGlocσ(ω), which does not necessarily coincide with the AIM of
DMFT at self consistency.

32This sentence has been already used in a scientific work, seeRef. [164].
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and in DMFT one can start from a simpler form of the functional, that one knows how to treat
exactly, and then ‘‘flow’’ to the more complicated functional in which one is interested in. In
DMFT: We will start from a functional corresponding to a problem in which the hopping is com-
pletely suppressed, i.e. we will start from anatomic problemand then switch on the hoppings.
There are however important differences. Indeed to obtain the physical quantities of interest
in the generating functionals one has to evaluate their functional derivatives, and this is done
in two different ways in fRG and in DMFT, therefore yielding two different answers. These
answers are complementary in the sense that in fRG one drops the higher order vertex functions
(with the truncation of the flow equations) but keeps a complex momentum and frequency de-
pendence, while in DMFT one rather gives up the momentum dependence, while retaining a
nonperturbative description.

The presentation below is based on the one given in Ref. [46]. Related approaches are
presented in [86] and [34, 35]. In Ref. [34] the connection between the functional derivation
of DMFT and the common Green’s function methods early developed by Baym and Kadanoff
(BK) [19] and Luttinger and Ward (LG) [117] is also stressed. Inboth cases one builds a func-
tional of the Green’s function so that its stationary point gives the physical value of the Green’s
functions. The main difference consists in the fact that, while the BK and LW functionals de-
pend on thelocal andnonlocalGreen’s functions, the DMFT functional depends only on the
local one. Obviously, also in the case of the BK and LG theoriesthe functionals cannot be
computed exactly and one has to rely on approximations.

The rest of this section is organized as follows. First we will construct the effective action,
i.e., the functional of the local Green’s functionΓ[G] which is stationary for the physical value
of the local Greens functionGloc:

δΓ[G]

δG
= 0 ⇒ G = Gloc. (1.128)

We stress that this functional can be formally constructedexactly [134] using some standard
relations in the functional integral formalism. Of course the complication comes when we want
to compute the functional, or its derivatives, a task that requires approximations.

Then, before discussing the DMFT approximation to the functional, we will present an
‘‘ fRG intermezzo’’: To stress the analogy between the construction of the DMFT functional
and the fRG one we will report the fRG flow equation for the 1PI effective action functional
ΓΛ
fRG, whose structure is formally similar to the ‘‘flow equations’’ that lead to the construction

of the DMFT functional. We hope, with this comparison, to stimulate further analysis or refined
approximations.

Then, we will focus again on the DMFT functional, and presentthe approximation that we
will use to compute it explicitly, i.e., we will see how the counterpart of Eq. (1.122) arises in
the functional derivation framework. Once we have defined away to compute approximately
the functional we still have tominimize it. In doing that we will recover theself-consistency
condition, Eq. (1.125). Finally we will discuss the differences between the DMFT approxima-
tion and the fRG one. The main steps that we will follow in this procedure are sketched in Fig.
1.28.
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1)

3)

Γ[G] G2(iωn)

G1(iωn)

G3(iωn)

. . .

2)
δΓ

δG
= 0 ⇒ G = Gloc

Γ → ΓDMFT ⇒ Σ(k, iωn) = ΣAIM(iωn)

δΓDMFT

δG
= 0 ⇒ Gloc =

∑

k

Gk = GAIM

Figure 1.28: Schematic representation of the derivation of the DMFT selfconsistency equa-
tions using an approximate functional of the local Green’s functionΓDMFT[G]. The first step
consists in the construction of the exact effective action functional of the local Green’s func-
tion. The argument of the functional is an arbitrary function of frequency or timeG. The
effective action functional is constructed in a way that it is stationary for the physical value
of the local Green’s function (step 2). Hence, by minimizingΓ[G] one obtains the physical
valueGloc of the local Green’s function. The knowledge of the local Green’s function of the
lattice is sufficient to determine an AIM which has the same local physics of each lattice site,
i.e., the same Green’s function. The steps 1) and 2) can be formally achieved but require
the integration of functional integrals which, in general,are not doable. Therefore in step
3) we approximate the effective action functional:Γ → ΓDMFT. To this end, we assume
that the self-energy of the lattice is approximated by the one of a (self-consistent) AIM. The
minimization of the approximated functional, then, corresponds to the requirement that the
impurity Green’s function equals the local one of the lattice (with the approximated self en-
ergy). This way, the DMFT self-consistency cycle is defined: The local Green’s function
is determined by the AIM through the self-energy, and, at thesame time, the choice of the
specific AIM is defined by the minimal condition for the functional, through the requirement
Gloc = GAIM.

Construction of the effective action

Before starting with the derivation of the effective action,let us state the obvious and focus
on the definition of the object we are going to construct: Theeffective actionΓ[G]. Γ is afunc-
tional, i.e., its argument is afunctionG(ω) of asingletime argument, which can be specified in
imaginary frequencyω or timeτ . G is not necessarily the local Green’s function of the system
we are considering. However, we are going toconstructthe effective action in a way that its
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argumentat its stationary point33 is the physical local Green’s function of the system, that we
callGloc. Gloc has the physical meaning of local Green’s function, while, in general, we cannot
attribute a specific physical meaning toG, and we have to regard it just as the argument of the
functional. In this section, unless we specify the momentumargument, the symbolG is used
for a function of the time or frequency only, and one should not confuse it with the Green’s
function of the system.

To write the effective action in a manageable form, we start by considering a one band
Hubbard Hamiltonian, explicitly dependent on a parameterΛ [46]:

HΛ = Λ
∑

ij,σ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ (1.129)

= Λ

∫

d3k
∑

σ

ǫkc
†
kσckσ + U

∑

i

ni↑ni↓. (1.130)

For Λ = 0 the Hamiltonian (1.130) is purely local (atomic problem), while for Λ = 1 it
corresponds to the lattice Hamiltonian we are interested in. Let us explicitly notice thatΛ
multiplies only the part of the Hamiltonian that isquadratic in the creation and annihilation
operators. To make an analogy with fRG, we can define from Eq. (1.130) theΛ dependent
noninteracting Green’s function associated withHΛ:

GΛ
0 (iωn,k) = [QΛ

0 (iωn,k)]
−1 = (iωn + µ− Λǫk)

−1. (1.131)

This quantity34 is the coefficient of the quadratic term in the fields in a functional integral
formulation. The latter is based on the actionSΛ associated with the HamiltonianHΛ, that
reads:

SΛ[ψ, ψ] = − 1

β

∑

ωn,σ

∫

d3kψkσ(iωn)[G
Λ
0 (iωn,k)]

−1ψkσ(iωn) + U
∑

i

ni↑ni↓, (1.132)

with niσ(τ) = ψiσ(τ)ψiσ(τ). Let us notice that the actionSΛ depends onΛ only through the
propagator of the Gaussian partGΛ

0 . The first functional that we construct is thegenerating
functional for the local connected Green’s functionof the HamiltonianHΛ. To do this in the
functional integral formalism, we couple a termbilinear in the fields to alocal source term35

33We are not going to discuss two important points here: (i) therepresentabilitycondition and (ii) thestabilityof
the functional. The representability condition corresponds, in this context, to the question whether one can always
find an AIM whose Green’s function equals the local one of thelattice. The stability issue corresponds to the
question whether the vanishing of the functional derivative yields a true minimum, or a saddle point. This problem
is still open in DMFT and is discussed in Ref. [35], and it is possibly also connected with the recently exposed
divergences of the vertex [85,160]. For a (brief) discussion of these two points, as well of the connection with the
BK and LW functionals, we address the reader to Ref. [46].

34The quantityQΛ
0 is introduced here to make contact with the notation of Ref. [129] generally used in the fRG

literature.
35We will refer equivalently to the source term∆ either in time or frequency domain. For a more general de-

scription of the generating functional for the connected Green’s functions, of the source terms, and of the Legendre
transformation in functional integral context we refer to Ref. [134], specifically Sec. 2.4.
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∆(τ):

GΛ[∆(ω)] = − ln

∫

DψDψ exp{−SΛ[ψ, ψ]

−
∫ β

0

dτ

∫ β

0

∑

σ

∆(τ)ψiσ(τ)ψiσ(0)}. (1.133)

Or, expressing explicitly the actionSΛ, Eq. (1.132):

GΛ[∆(ω)] = − ln

∫

DψDψ exp
{∫ β

0

dτ [−HΛ[ψ, ψ] +
∑

iσ

ψiσ(τ)(−∂τ + µ)ψiσ(τ)]

−
∫ β

0

dτ
∑

iσ

∆(τ)ψiσ(τ)ψiσ(0)
}

. (1.134)

The reason why we chose to couple the bilinear termψiσ(τ)ψiσ(τ
′) to the local source will be

apparent in a moment.
The interactinglocal Green’s function ofHΛ (or equivalently ofSΛ) is defined as36 the

following expectation value:

GΛ
loc(τ) =

∫
DψDψ ψiσ(τ)ψiσ(0)e

−SΛ[ψ,ψ]

∫
DψDψ e−SΛ[ψ,ψ]

. (1.135)

This quantity can be expressed particularly easily [134] using the generating functional (1.133),
as we can see by differentiating37 with respect to the source, for vanishing value of the source
field:

δGΛ[∆]

δ∆(iωn)

∣
∣
∣
∣
∣
∆=0

= GΛ
loc(iωn). (1.136)

In complete analogy with equation (1.136), we can define thefollowing quantity:

GΛ[iωn; ∆] ≡ δGΛ[∆]

δ∆(iωn)
. (1.137)

This quantity is the equivalent of a local Green’s function for an action thatincludesthe cou-
pling to the source∆. The quantityGΛ[iωn; ∆] depends on its time and frequency argument,
butalsoon (i) the source field∆(ω) and (ii) on the parameterΛ.

The generating functional (1.134) that we have defined is a functional of the source∆(τ),
which, being the argument of the functional, is an arbitraryfunction, while the local Green’s
function of the actionSΛ can be computed by functional derivation with respect to thesource
only for vanishing value of the source. However the functionalGΛ

c [∆] is not the one we are

36We assume that no spin symmetry breaking happens, and therefore the local Green’s function does not depend
on the spin.

37One has to consider that in Ref. [134] the source is coupled tothe field, while here we have coupled the source
to a bilinear in the field, that is why a physical quantity, like the Green’s function, is given by afirst derivative of
the generating functional with respect to the source, and not by asecondderivative.
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looking for, as can be seen considering equation (1.136), i.e. the physical local Green’s function
is not obtained by functional minimization. The problem is that the generating functionalGΛ

c [∆]

is not a functional of the local Green’s function, but of the source. To write a functional of the
Green’s function we can use equation (1.137): Instead of using as argument of the functional
the source∆ itself we can use the local Green’s function that can be obtained in the presence
of ∆. We stress that this local Green’s function is also, in principle, an arbitrary function: To
every different function corresponds a different source field, while of course thephysicalvalue
of the Green’s function is uniquely determined (for every value ofΛ) by the condition that the
source vanishes. To finally obtain a functional with the required properties we need to perform
aLegendre transformation. This is done in two steps:

(i) First we formally invert Eq. (1.137), and look at∆ as a function ofG: ∆ = ∆Λ[G]

is the function that inserted in Eq. (1.137) givesGΛ[∆Λ[G]] = G. HereG and∆ are
functions of a frequency or time argument only. The quantities with aΛ subscript, instead,
are quantities that involve a functional integration, likeequation (1.137) forGΛ and its
inversion for∆Λ. They depend on their frequency or time argument, on anotherfunction
(i.e., the source∆ for GΛ and the functionG for ∆Λ) and onΛ and therefore, implicitly
on the HamiltonianHΛ.

(ii) Then we define the following functional ofG:

ΓΛ[G] = GΛ[∆Λ(G)]−
∫ β

0

dτ∆Λ[τ ;G]G(τ). (1.138)

The functional (1.138) is theeffective actionof the local Green’s function. By construction
it obeys the following relation [134]:

δΓΛ[G]

δG
= −∆Λ[G]. (1.139)

From Eq. (1.136) one can see that the physical local Green’s function corresponds to∆[GΛ
loc] =

0, and therefore Eq. (1.139) tells us that the effective action is stationary forG = GΛ
loc. Hence

the functional just defined is the one we are looking for: Thephysical value of the local Green’s
function is stationary for the effective action (1.138). The functional just defined is similar, in
its construction, to the one used in (the 1PI version of) fRG [129]38. We refer to the functional
(1.138) as the effective action of the local Green’s function.

The construction of the effective action (1.138) is quite standard, but we have obtained
just a formal expression for it. What we want to do now is finding a way to compute it, at
least in an approximate way. To this end theΛ dependence of the Hamiltonian (1.130) that
we have required from the beginning will turn out useful. In fact, we start with noting that
we are able to compute the value of the functionalΓΛ for Λ = 0. This can be done exactly

38 In fRG using the 1PI generating functional, or effective action corresponds to a specific choice of the func-
tional [129]. However there are also other possible functionals, for example the effective interaction.
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since the HamiltonianHΛ=0 is purely local. In this situation the argument of the exponential
in the generating functional (1.134) for the HamiltonianHΛ=0, for every value of the source
∆, is equal to theaction of an AIM in which the source∆ plays the role of the hybridization
function:

SAIM[∆] = − 1

β

∑

ωn,σ

ψiσ(iωn)[iωn + µ−∆(iωn)]ψ(iωn) + U

∫ β

0

dτn↑(τ)n↓(τ
′), (1.140)

and therefore the generating functional (1.134) itselffor the lattice atΛ = 0 equals the free
energy of the AIMFAIM:

FAIM[∆] = GΛ=0[∆]. (1.141)

In equations (1.140) and (1.141) we have stressed in the arguments of the action and of the free
energy of the AIM that they have to be seen as functions of the source, in the language of the
generating functional of the lattice, or as functionals of the hybridization in the language of the
action of the AIM. Therefore computing the Green’s functionGΛ=0 in presence of the source
∆ corresponds to the solution of the AIM with hybridization function∆(ωn). This is for sure
possible: Thanks to the development in impurity solvers we can compute the Green’s function
GΛ[iω; ∆] for every value of the hybridization function∆(iω). Conversely we can, in principle,
invert the relation to find the hybridization function∆Λ=0[iω,G] of the AIM whose Green’s
function isG(iω). To this end we write the effective actionΓΛ=0 expressing the free action in
terms of∆0[G]:

Γ0[G] = FAIM[∆
0[G]]−

∫ β

0

dτG(τ)∆0[τ ;G]. (1.142)

Similarly to section 1.4 for fRG, we know the effective actionat Λ = 0, and we want to
compute it atΛ = 1. This is possible if we can evaluate theΛ-derivative of the effective action
dΓΛ/dΛ, and then integrate overdΛ:

ΓΛ=1[G] = ΓΛ=0[G] +

∫ 1

0

dΛ
dΓΛ[G]

dΛ
. (1.143)

It is worth noting that this decomposition for the effectivefunctional of the lattice problem at
Λ = 1 in terms of a contribution atΛ = 0, i.e., for the simpler case without hopping taken
as ‘‘reference system’’, plus an integral that describes a gradual switching on of the hopping,
is still exact. The gain from this decomposition is that the approximation that will be made
involves only the term in the integral in Eq. (1.143). This isalso similar to what is done
in LDA, where the reference system is the noninteracting electron gas (the analogy is better
explained in Ref. [46]).

To computeΓΛ=1 using equation (1.143) we have to start by computing theΛ derivative of
ΓΛ. This can be done by deriving Eq. (1.138) with respect toΛ:

dΓΛ[G]

dΛ
=

dGΛ

dΛ

∣
∣
∣
∣
∣
∆=∆Λ[G]

+

∫ β

0

dτdτ ′

{

d∆Λ[τ ;G]

dΛ

δGΛ[∆]

δ∆(τ)

∣
∣
∣
∣
∣
∆=∆Λ[G]

−d∆
Λ[τ ;G]

dΛ
G(τ)

}

, (1.144)



1.5 Dynamical mean-field theory 81

where the first term in the integral comes from the application to the chain rule toGΛ[∆Λ[G]].
Due to Eq. (1.137) the argument of the integral vanishes and the derivative of the effective
action equals the derivative ofGΛ at fixed value of the source∆Λ[G]:

dΓΛ[G]

dΛ
=

dGΛ

dΛ

∣
∣
∆=∆Λ[G]

. (1.145)

By noting thatGΛ depends onΛ only through the sources and through the inverse propagator
Q0

Λ (1.131) of the Gaussian part of the action (1.132) we obtain:

dΓΛ[G]

dΛ
=

1

β

∑

ωn,σ

∫

d3k Q̇Λ
0 〈ψkσ(iωn)ψkσ(iωn)〉

∣
∣
G
. (1.146)

where〈...〉|G denotes the expectation valuein the presence of the source∆Λ[G]:

〈...〉|G ≡
∫
DψDψ ... e−S

Λ[ψ,ψ]−
∫ β

0
dτ∆Λ(τ)ψ(τ)ψ(0)

∫
DψDψ e−S

Λ[ψ,ψ]−
∫ β

0
dτ∆Λ(τ)ψ(τ)ψ(0)

, (1.147)

and a dot denotes aΛ-derivative:Q̇Λ
0 = ∂QΛ

0 /∂Λ. Finally, noting thatQ̇Λ
0 (iωn,k) = ǫk we can

express the derivative of the effective action in terms of the Green’s functions computed in the
presence of the source:

dΓΛ[G]

dΛ
=

1

β

∑

ωn,σ

∫

dk ǫkG
Λ(iωn,k)

∣
∣
G
. (1.148)

The right hand side of this equation can be identified with the kinetic energy computed in the
presence of the source. Eq. (1.148) inserted in Eq. (1.143),gives the exact expression for the
effective action functional.

This is the last exact expression for the effective action that we are able to obtain. From
now on, to proceed further, we have to rely on some approximation, which in this case is the
DMFT approximation. Before switching to that step, however,in the next subsection we will
show that equations (1.145) and (1.146) are formally similar to the equations that define the
fRG flow equations for the 1PI generating functional.

Comparison with fRG flow equations

In order to make a comparison with fRG, we write the flow equations for a functional similar
to the effective action of the local Green’s functionΓΛ[G]. There are two main differences
however. The first one is that in fRG one does not look only at local quantities, and the second
one is that one usually works with functionals expressed in termsof the expectation value of
the fields themselves, and not in terms of expectation values of bilinear forms of the fields.
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DMFT fRG
Functionals GΛ[∆], ΓΛ[G] GΛ

fRG[η, η], Γ
Λ
fRG[φ, φ]

Source(s) ∆(τ) η(x), η(x)
Coupling ψiσ(τ)ψiσ(0)∆(τ) (η, ψ) + (ψ, η)

Expectation values GΛ = δGΛ

δ∆
φΛ = − δGΛ

c,fRG

δη
, φ

Λ
= − δGΛ

c,fRG

δη

"Flow" equations Eqs. (1.146), (1.148) Eqs. (1.157), (1.158)
Approximation Local self-energy Truncation of the hierarchy of flow equations

Table 1.1: Illustration of the main quantities involved in the functional derivation of DMFT
and relative comparison with fRG quantities.

This means that in defining the counterpart of the generating functional (1.134) the sources are
coupled to the fields, and not to a term bilinear in them. The Legendre transformations defined
consequently.

Let us also note explicitly that the choice of the HamiltoniansHΛ (1.130) defines a one
parameter family of Gaussian propagatorsGΛ

0 (1.131), which is well suited to fully determine
an fRG flow, and one could keep, in principle, the sameΛ dependent actionsSΛ for an fRG
flow or for a DMFT integration of the (nonlocal) effective action. We will use from now on
the subscriptfRG to emphasize that the functionalsGΛ

fRG[η, η] andΓΛ
fRG[φ, φ] are not the same

as the functionals defined above, although they play a similar role. Let us start by defining the
generating functional of the connected Green’s function [129,134] as:

GΛ
fRG[η, η] = − ln

∫

DψDψe−SΛ[ψ,ψ]+(η,ψ)+(ψ,η). (1.149)

Here the sourcesη(x), η(x) are not local and depend on a full set of quantum numbersx which
collects, e.g., position (momentum), imaginary time (frequency) and spin, and the round brack-
ets denote a scalar product:(f, g) ≡

∫
dx f(x)g(x). The "expectation values" of the fields can

be defined from the functional derivatives of equation (1.149) with respect to the sources:

φΛ[η, η] = −δG
Λ
fRG

δη
, (1.150)

φ
Λ
[η, η] = −δG

Λ
fRG

δη
. (1.151)

These relations can be formally inverted to express the sourcesη in terms of the expectation
values of the fields:

φΛ[ηΛ[φ, φ], ηΛ[φ, φ]] = φ, (1.152)

φ
Λ
[ηΛ[φ, φ], ηΛ[φ, φ]] = φ. (1.153)

With these definitions the effective action is obtained performing the following Legendre trans-
formation [129]:

ΓΛ
fRG[φ, φ] = (ηΛ[φ, φ], φ) + (φ, ηΛ[φ, φ]) + GΛ

fRG[η
Λ[φ, φ], ηΛ[φ, φ]]. (1.154)
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Let us follow the notation of Ref. [129] and define the matrix of the second derivatives of
ΓΛ
fRG[φ, φ] with respect to the fields as:

Γ(2)Λ[φ, φ] =





∂2ΓΛ
fRG

∂φ(x′)∂φ(x)

∂2ΓΛ
fRG

∂φ(x′)∂φ(x)
∂2ΓΛ

fRG

∂φ(x′)∂φ(x)

∂2ΓΛ
fRG

∂φ(x′)∂φ(x)



 . (1.155)

It can be seen [129, 134] that the inverse of the quantity defined in Eq. (1.155) can be directly
connected with the Green’s function computed in presence ofthe sources. Let us define the
matrix Q̇Λ

0 by:

Q̇Λ
0 (x, x

′) =

(
Q̇Λ

0 (x, x
′) 0

0 −Q̇Λ
0 (x

′, x)

)

, (1.156)

Using these definitions we can write [129] theΛ-derivative of the effective action, i.e., the fRG
flow equation for the 1PI functional as:

dΓΛ
fRG[ψ, ψ]

dΛ
=

dGΛ
fRG[η, η]

dΛ
|(η,η)=(ηΛ[ψ,ψ],ηΛ[ψ,ψ]) (1.157)

= −(ψ, Q̇Λ
0ψ)−

1

2
tr{Q̇Λ

0 (Γ
(2)Λ[ψ, ψ])−1}. (1.158)

Equations (1.145) and (1.157) are similar: The derivative of an effective action can be expressed
in terms of the derivative of the respective generating functional at fixed value of the sources.

The formal analogy between equations (1.146) and (1.158) ismore obscure, but one can
see it39 considering that the second derivative of the effective functionalΓΛ

fRG is basically the
inverse of a Green’s functions, see Refs. [129,134].

In spite of the formal analogies, the approximations used toexplicitly compute the derivative
of the (otherwise exact) functionalsdΓΛ/dΛ anddΓΛ

fRG/dΛ are very different in DMFT and
fRG, therefore yielding results that are valid in different regimes. In the fRG framework, the
problem is dealing withΓ(2)Λ[φ, φ], which is still a functional of the fieldsφ andφ. As we have
seen in section 1.4 , this problem is usually tackled by an expansion around zero inφ, φ, which
generates a hierarchy of differential equations for the one-particle irreducible vertex functions.
A subsequent truncation of the hierarchy is then needed to obtain a finite set of equations. Due
to the truncation, the approximation is reliable for weak tomoderate values of the coupling,
while the frequency and momentum dependence of the verticescan be maintained. In the next
paragraph we will see that in DMFT one uses a completely different approximation.

39One can also check that the term−(ψ, Q̇Λ
0 ψ) appearing in Eq. (1.158) but not in Eq. (1.146) is due to the fact

that the sources are coupled to the fields in the former case and to a bilinear of the fields in the latter, and therefore
the Green’s function is obtained by a second derivative of the generating functionalGΛ

fRG
w.r.t. toη, η, and by a

first derivative ofGΛ w.r.t. ∆. This can be seen most easily by explicitly writing theΛ derivative of theGfRG and
comparing it to the second derivative w.r.t. the sources.
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DMFT approximation to the effective action

Until now we have just defined a functionalΓΛ[G], so thatΓΛ=1[G] is the effective action for
the system we are interested in. We stress that this functional is exact: No approximation is in-
volved. However we could have formally written the exact effective action functional from the
beginning, without making use of theΛ integration of the kinetic energy described above. The
reason why we have introduced theΛ dependence is that it allows to rewrite the effective action
in the form (1.143), which is convenient for what we are doingnext, i.e., finding an approxima-
tion to practically use the effective action functional. Indeed, also in the form of Eq. (1.143) to
compute the effective action functionalΓΛ[G] we have to evaluate

∑

ωn,σ

∫
d3k ǫkG

Λ(k, iωn)
∣
∣
G

,
i.e., the kinetic energy in the presence of the source∆Λ[G]. Computing exactly this quantity
is, in general, not possible. In the presence of this source we constraint the value of the local
Green’s function:〈ψiσ(ω)ψiσ(ω)〉|G = G, but even in this case we still do not know the value
of thenonlocal Green’s function: In general the constraint on the local Green’s function alone
is not sufficient to determine the kinetic energy40.

Therefore to proceed further we define the self-energy associated with theΛ dependent
Hubbard model, in presence of the source∆Λ(iωn):

GΛ(k, iωn) =
1

iωn + µ−∆Λ(iωn)− Λǫk − ΣΛ[k, iωn; ∆Λ]
. (1.159)

Let us underline that, as specified by theΛ superscript,∆Λ is the source that guarantees that
the interacting local Green’s function of the HamiltonianHΛ assumes the valueG (which in
generaldoes not needto be thephysicalvalue of the local Green’s function). The problem of
determining∆Λ(ω) is not possible in general, since the HamiltonianHΛ for non zero values of
Λ is a lattice Hamiltonian with non vanishing hopping amplitudes. This is different forΛ = 0,
in which case one has to solve an AIM rather than a lattice model, then one can invert Eq.
(1.137) to find the source term∆0[G] that givesG as local Green’s function. This source, seen
as hybridization function, defines an AIM, with self-energy Σ0 and Green’s functionG. Let
us remark here that in principle the self-energyΣ0 depends on the hybridization function that
defines the AIM, which in turns is a functional ofG. TheDMFT approximation that we are
going to follow from now on consists in replacing the self-energyΣΛ with the self-energy at
the beginning of the flowΣΛ=0, i.e., the self-energy of the AIM whose local Green’s function
is G, at least for the purpose of the calculation of the kinetic energy in equation (1.148). This
approximation isequivalentto the one defined by equation (1.122). Performing the substitution
equation (1.159) yields for the local Green’s function:

GΛ(iωn) =

∫

dǫ
D(ǫ)

iωn + µ−∆Λ(iωn)− Λǫ− Σ0(iωn)
. (1.160)

Defining the Hilbert transform associated with the densityof statesD(ǫ) asD̃(z) =
∫
dǫD(ǫ) 1

z−ǫ
Eq. (1.160) reads:

GΛ(iωn) =
1

Λ
D̃(

ζΛ

Λ
), (1.161)

40A notable exception is the Bethe lattice with infinite connectivity [46].
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with
ζΛ = iωn + µ−∆Λ(iωn)− Σ0(iωn), (1.162)

Following [46], we write the self-energyΣ0 in terms of the local Green’sG function and of
the hybridization function∆0, inverting the Dyson equation:

Σ0(ωn) = iωn + µ−∆0(ωn)−G(ωn)
−1. (1.163)

Substituting it in Eq. (1.162) we obtain:

ζΛ = ∆0(iωn)−∆Λ(iωn) +G(iωn)
−1. (1.164)

To obtain an expression for∆Λ(iωn) in terms of∆0(iωn) let us introduce the inverse of the
Hilbert transformR with D̃[R(g)] = g which, combined with equations (1.161) and (1.164)
gives:

∆Λ[iωn;G(iωn)] = G(iωn)
−1 +∆0[G(iωn)]− ΛR[ΛG(iωn)]. (1.165)

Inserting the relation just obtained in the equation for thekinetic energy41, equation (1.148),
in the DMFT approximation of a local self-energy, equation (1.160), we obtain:

dΓΛ
DMFT[G]

dΛ
=

1

β

∑

ωn,σ

1

Λ

∫

dǫ
ǫD(ǫ)

R(ΛG(iωn))− ǫ
(1.166)

=
1

β

∑

ωn,σ

{

− 1

Λ
+

1

β
G(iωn)R[ΛG(iωn)]

}

. (1.167)

The integral overdǫ has been performed by summing and subtractingR(ΛG(ωn)) in the numer-
ator. The subscriptDMFT is used to emphasize that the functional that we are using isnot exact
anymore, but is obtained with the DMFT approximation (1.160). Finally, combining (1.167)
and (1.143) we obtain the effective functional of the local Green’s function in the DMFT ap-
proximation:

ΓΛ=1
DMFT[G] = FAIM[∆

0[G]]− 1

β

∑

ωn

G(iωn)∆
0(iωn) +

∫ 1

0

dΛ
1

β

∑

ωn

G(iωn)R[ΛG(iωn)]. (1.168)

Here we have dropped the term1/Λ since it does not depend onG, and therefore does not con-
tribute to functional derivatives. Eq. (1.168) is a closed expression for the effective functional
of the local Green’s function of the lattice in the DMFT approximation: Under this approxima-
tion we are able, in principle, to compute the effective functional also for non vanishing values
of Λ. Eq. (1.168) still involves the solution of a many body problem trough the implicit relation
that connectsG with the source∆0[G].

41Strictly speaking, the sum overωn must be performed with a convergence factoreiωn0
+

.



86 Different methods for different correlations: GW, fRG, and DMFT

Minimization of the functional Our task is not yet accomplished: We have found a way to
compute the functional, but we are interested in theminimum of its functional derivativewith
respect toG. Therefore what we are going to do now isminimize the functionalΓΛ

DMFT. The
physical value of the local Green’s functionGloc(iωn) (in the DMFT approximation) is the one
that minimizes the effective action:

δΓDMFT[G]

δG
= 0 ⇒ G = Gloc. (1.169)

Using the fact thatδΓ0/δG = −∆0 this reduces to:

∆0[iωn] =
δ

δG(iωn)

∫ 1

0

dΛ
1

β

∑

ωn

G(iωn)R[ΛG(iωn)]. (1.170)

Using the relation42 R[ΛG] + ΛG∂ΛR[ΛG] = ∂Λ[ΛR[ΛG]], Eq. (1.170) becomes:

∆0
DMFT[iωn;G] = R[G(iωn)]−

1

G(iωn)
. (1.171)

In this equation we appended the subscriptDMFT to the source∆0 to emphasize that this is the
specific value of the source that minimizes the effective actionΓΛ=1

DMFT in the DMFT approxima-
tion. In other words,∆0

DMFT is the hybridization function of the AIM whose Green’s function
is thephysicallocal Green’s functionGloc of the HamiltonianHΛ=1, under the DMFT approxi-
mation. Equation (1.170) assumes a familiar form expressing the hybridization function∆0 in
terms of the self-energy, Eq. (1.163), rearranging the terms and taking the Hilbert transform of
both sides:

Gloc(iωn) =

∫

dǫ
D(ǫ)

iωn + µ− ǫ− ΣDMFT(iωn)
, (1.172)

which is nothing more than the usual DMFT self consistency equation (1.125). In the func-
tional framework the self consistency relation guaranteesthat the effective action functional (in
the DMFT approximation) is minimal for the self-consistentGreen’s function. The same self-
consistency equation also corresponds to∆Λ=1[G] = 0, which is to be expected considering
thatδΓΛ=1/δG = ∆Λ=1, and this quantity must vanish when the derivative is evaluated for the
physical local Green’s function.

Let us stress that we did not rely on any expansion in the fields, and therefore we did not
need to truncate a hierarchy of flow equations, as was done infRG. This is the cornerstone
for the success of DMFT in strong coupling problems: The onlyapproximation that we have
made is assuming a specific (local) form of the self-energy in the derivation of an effective
functional. Whether this approximation works or not is nontrivially related with the strength
of the couplingU/t (i.e., since there is no perturbative expansions and this parameter does
not need to be small), and we have seen that both the limits of vanishing and atomic limit are
exactly reproduced. The quality of the approximation is more directly related on how well the
self-energy is approximated by a local one. If this is not thecase our estimation for the kinetic

42To evaluate the lower boundary of the integral also note thatlimx→0R[x] = 1/x.
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energy contribution to the effective action will be quite poor. Those are the cases in which
we will have to work out approximations aimed at the inclusion of nonlocal correction to the
DMFT self-energy.

1.5.3 DMFT description of the Mott transition

One of the main successes of DMFT is the qualitative and quantitative description of the
Mott metal insulator transition. Here we will briefly review the main points of the DMFT
description of the Mott transition. The aim is to show what are the strengths of DMFT and to
highlight the role played by the AIM.

The Mott transition is the paradigmatic phenomenon that causes a material predicted to be
conducting by bandstructure theory to become insulating due to strong electronic correlations.
The physical mechanism behind the Mott transition was understood already several decades ago:
In an half filled system and in absence of strong Coulomb repulsion the electrons have available
states for the hopping and the system is metallic. However, when the Coulomb repulsion is
stronger a double occupation on a lattice site is energetically costly. As a consequence, in the
limit whereU is much bigger than the hopping amplitudet, every site is occupied exactly by
one electron and the electrons can not move anymore, i.e., they become localized.

While the two limits of weak and strong Coulomb interaction were understood long ago,
a qualitative and quantitive description of the transitionregion has been elusive until it was
studied by DMFT. In fact, unlike in the two other limits, in the transition region the problem is
nonperturbative, since a really small parameter is missing, and a correct description of it should
take into account several different energy scales: The interplay of potential and kinetic energy
gives rise to a new energy scale (reminiscent of the Kondo temperature in isolated impurities)
which is often orders of magnitude smaller than the hopping amplitude or the Coulomb repul-
sion. We refer to the literature for a more thorough discussion, in particular to Ref. [45,81] for a
‘‘material perspective’’ and to [46,48] for a DMFT point of view. Let us focus on the DMFT de-
scription of an Hubbard model in infinite dimensions and discuss one by one the main features.
In the main points of this discussion we follow Ref. [46].

Fermi liquid. The original energy scales are roughly given by the kineticenergy∝ D (D
being half the bandwidth) and the potential energy∝ U . For low temperaturesT and in the
metallic state the system will be in a Fermi liquid state, characterized by aquasiparticle weight
Z, which in DMFT isk independent: The fraction of spectral weight in every quasiparticle peak
is the same for eachǫk. For higher temperatures the assumptions of Fermi liquid theory [1] do
not hold any longer. This temperature is referred to ascoherence temperatureǫ∗F . At very low
temperatures the quasiparticle weight evolves continuously from Z = 1 for the noninteracting
case toZ → 0 asU approaches afinite critical value for the Mott transition.

Hubbard bands. While the Fermi liquid theory is a low energy theory which does not de-
scribe the high energy incoherent excitations, DMFT gives also access to them. In fact, the
fraction 1 − Z of spectral weight that does not constitute the quasiparticle peak needs to be
transferred to some other incoherent excitations. Considering thek-summed spectra, the inco-
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herent spectral weight forms the so-called upper and lower Hubbard bands, roughly centered at
−U/2 andU/2. This unveils the connection with the underlying local problem: The spectrum
of an isolated atom at half-filling consists of two delta peaks at−U/2 andU/2. In the lattice
case these peaks broaden to form the Hubbard bands, with an energy cost of moving one elec-
tron from the lower to the upper Hubbard band being proportional to the energy necessary to
form a double occupation, i.e.,∝ U . Hence, in DMFT, we obtain athree peaks spectrumcom-
posed of two Hubbard bands and a quasiparticle peak of half-bandwidthZD, which collects
the quasiparticle excitations.

Kondo physics. The reduction of the quasiparticle weightZ when increasingU and the
formation of a three peak structure is not surprising: It is closely resembling the evolution of
the spectral function in the Kondo problem (at half filling)[66]. To some extent this is to be
expected: In both cases the self-energy is given by the solution of an AIM. However a closer
look reveals a dramatic difference: In the case of the Kondo problem the quasiparticle weight
decreases like:Z ∝ e

1

U (in the limit of largeU ), therefore vanishing only whenU approaches
infinity, while the critical value for the Mott transition is finite. The reason for this difference
has to be looked for in the difference in the form of the hybridization function. Indeed in the
description of the Kondo problem the hybridization function is kept constant asU is changed,
while in the lattice problem the hybridization function depends onU through Eq. (1.125). In
particular, in DMFT, the hybridization function acquires anontrivial frequency structure, while
a common, but not unique, assumption to describe the Kondo problem is∆(ω) = −iΓsign(ω).
The hybridization function in DMFT indeed is not only a computational tool but has a physical
meaning by itself. In the metallic phase, close to the Mott transition, it shows a three peak
structure, which is connected to the formation of new energyscales associated with the so-
called ‘‘kinks’’ in the self-energy [62]. On the other hand the vanishing of the hybridization
function forω → 0 is related to the Mott transition in an insulating state [106]. As a bottom
line there is a lot that can still be learnt from the understanding of the Kondo physics, applied
to the specific AIM that fulfills the self consistency equations for some given lattice in DMFT.

Insulating phase. WhenU exceeds some critical value, DMFT gives an insulating solution.
This is associated with the vanishing of the quasiparticle weightZ and with the formation of
unscreened local moments, as can be inferred from the temperature dependence of the local
susceptibilityχloc ∝ 1/T , which follows the Curie law43. Importantly, due to the presence of
the local moments, the entropy of the insulating phase ishigher than the one to the metallic
phase.

First order phase transition. The Mott transition in DMFT is a first order phase transition.
This is confirmed by the fact that in a region of the phase diagram it is possible to stabilize two
different solutions, an insulating and a metallic one. The area where this is possible is delimited
by two linesUc1(T ) andUc2(T ) [27, 48], that represent respectively the minimal value ofU

for which one can obtain an insulating solution and the maximal value ofU for which it is
possible to obtain a metallic solution. The two lines meet ata critical endpoint. The real first

43We have assumed a paramagnetic solution, if we would have allowed for it [48], in absence of frustration, we
would have obtained an antiferromagnetically ordered solution.
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order transition line can be found by minimizing the free energy (therefore the entropy plays an
important role).

The discussion above shows that DMFT is able to capture threedifferent regimes using
a single framework: The weak and the strong coupling regimes, that can be described also
with other techniques, and the more challenging intermediate regime that includes the Mott
transition region. ForU values slightly smaller than the criticalUc1 DMFT reveals important
physical analogies between the lattice systems and a Kondo systems at strong coupling, and
accounts for the appearance of new energy scales. Finally let us stress that, remarkably, the
DMFT description of the Mott transition, rigorously exactonly in infinite dimensions, agrees
very well with the experimental observations collected forseveral materials [46, 48], e.g., for
SrVO3 [163].

DMFT in the symmetry broken phase An application of DMFT in the broken phase, ob-
tained in the work of this thesis, can be found in Ref. [171], where the antiferromagnetic regime
of the Hubbard model in infinite dimensions is studied at weak and strong coupling. In partic-
ular it is discussed that the mechanisms that stabilize the onset of long range order, in the two
coupling regimes, are different. Surprisingly, this also have consequences for the optical con-
ductivity, which usually is supposed to depend only weakly on the spin degrees of freedom.
Finally, it is also argued that the theoretical prediction has already been observed in the optical
conductivity of LaSrMnO4. For more details we address the reader to the original paper[171].





Chapter 2

Merging GW and dynamical mean field
theory: the GW+DMFT method

This chapter is devoted to the combination ofGW and DMFT. The method is first in-
troduced, emphasizing howGW and DMFT can be integrated in a single, formally elegant,
method and the possible advantages of doing this. The practical implementation, however,
presents several technical complication, and, in the central part of the chapter, we propose
a simplified scheme, which relies on a quasiparticle approximation to theGW self-energy.
Hence we discuss how, with this approximation, one can perform quasiparticleGW+DMFT
calculations keeping substantially unaltered the DFT+DMFT main outline. In the last part of
this chapter, we present the results obtained testing our quasiparticleGW+DMFT implementa-
tion in VASP for the correlated metal SrVO3. The improvement over conventional DFT+DMFT
is shown by a comparison with experimental data. Eventually our results are compared with
those obtained within a much more demanding, fullGW+DMFT calculation, exhibiting good
agreement for the main features.

This chapter is partially based on Ref. [170], [Tarantoet al., Phys. Rev. B88, 165119 (2013)],
but considerably extends it.

2.1 Advantages ofGW+DMFT

The local density approximation (LDA) plus dynamical mean field theory (DMFT) ap-
proach [10, 60, 61, 108, 113] has been a significant step forward for calculating materials with
strong electronic correlations. This is because -on top of the LDA- DMFT includes a major part
of the electronic correlations: the local ones. In recent years, LDA+DMFT has been applied suc-
cessfully to many materials and correlated electron phenomena, ranging from transition metals
and their oxides to rare earth and their alloys, for reviews see Refs. [60,108].

For truly parameter-freeab initiocalculations, however, two severe shortcomings persist: (i)
the screened Coulomb interaction is usually treated as an adjustable parameter in LDA+DMFT
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and (ii) the so-called double counting problem, i.e., it is difficult to determine the electronic cor-
relations already accounted for at the local density approximation (LDA) level. These shortcom-
ings are intimately connected with the fact that the non-linear dependence on the electronic den-
sity of density functional theory does not match with the many-body, Feynman-diagrammatic,
structure of DMFT. These problems can be mitigated, but not solved, by constrained LDA
(cLDA) calculations [37, 52, 126], which can be exploited toextract two independent parame-
ters: interaction and double counting correction. [126,127]

A conceptually preferable and better defined many-body approach is achieved if one sub-
stitutes LDA by theGW approximation, [12, 59] described in Sec. 1.3. This approach, named
GW+DMFT, was formalized for the first time by Biermann, Aryasetiawan and Georges, in
2003 [24], who also applied a simplified version of it in a realistic calculation for Ni. Com-
pared to standard LDA+DMFT,GW+DMFT presents important conceptual advantages both
regarding (i) the choice of the Coulomb parameter and (ii) thedouble counting problems. How-
ever this is only possible at a much higher computational price.

2.1.1 GW +DFMT: a brief functional perspective

As it is stressed in Ref. [173], to overcome the difficulties of the LDA+DMFT based meth-
ods, it is desirable to have a theory that:

1. is formulated in the Green’s function language;

2. deals directly with the long-range Coulomb interaction;

3. retains the nonperturbative character of the dynamical mean field theory.

TheGW+DMFT approach that we are going to discuss fulfills these requirements. This can
be explicitly seen by constructing a specific Baym-Kadanofffunctional [24,173] appropriate to
derive theGW+DMFT approximation. Once the approximation to the functional is done the
physical quantities of interest can be computed by calculating the stationary points of the Baym-
Kadanoff functional, as mentioned in Sec. 1.5.2. More in particular, the functional of Ref. [24]
directly follows from the ones introduced by Refs. [3,35], and its main feature (as well its main
difference from the functional of Sec. 1.5.2), is that it isnotonly a functional of the interacting
Green’s1 functionG, but it is also a functional of thescreened Coulomb interactionW .
Therefore, by finding the stationary points of the functional with respect to its arguments one
obtains the values of the Green’s function and of the screened Coulomb interaction [24]. The

1Let us note that hereG does not denote thelocal component only of the Green’s function (as in Sec. 1.5.2),
but also the nonlocal part.



2.1 Advantages ofGW+DMFT 93

explicit form of the exact functional that we consider2 is:

Γ[G,W ] = Tr lnG+Tr[(G−1
H −G−1)G]− 1

2
Tr lnW+

1

2
Tr[(V −1−W−1)W ]+Ψ[G,W ]. (2.1)

V (r − r′) is the Coulomb potential,G−1
H = iω + µ − vc − vH is the bare Green’s function

of the solid, withvc being the crystal potential andvH(r) ≡
∫
d3r′ V (r − r′)n(r′) the Hartree

potential. All the complication is contained in the many body correction [173]Ψ[G,W ], which
is the part of the functional that we will have to approximate. An appropriate choice of the
approximation applied to the functional leads directly to theGW+DMFT equations. Some
light on the diagrammatic content ofΨ can be shed by performing a functional derivation of it
for stationary points ofΓ yielding [24,173] the self-energyΣ and the polarization operatorP :

δΓ

δG
= 0 ⇒ G−1 = G−1

H − Σ, Σ =
δΨ

δG
, (2.2)

δΓ

δW
= 0 ⇒ W−1 = V −1 − P, P = −2

δΨ

δW
, (2.3)

i.e., diagrammaticallyΨ is the sum of all skeleton diagrams that are irreducible withrespect to
both the one-electron propagator and the interaction lines. The self-energyΣ defined here does
not include the Hartree diagram, which is explicitly included into the bare Green’s functionGH .
The equations above, show that the interacting Green’s function and the screened Coulomb
interaction enter in a very similar fashion in the effectiveaction (2.1). At the same time one
can see the analogy between the role of the bare Green’s function GH and the one of the bare
Coulomb interactionV , as well between the self-energyΣ and the polarization operatorP .3

Let us stress that until now we have just rewritten the effective action in the form (2.1),
which is exactby definition. The advantage of the expression (2.1) is thatit is well suited
for making approximation on the many-part of the functionalΨ[G,W ]. With the appropriate
approximation one can obtain the effective actionΓGW+DMFT, which leads to theGW+DMFT
approach. Specifically the approximation consists in replacing the nonlocal part4 of the Ψ-
functional [3] with theGW approximation:ΨGW = −1

2
TrGWG, and adding to it theΨ-

functional of aself-consistentAnderson impurity model (AIM)ΨAIM[G
RR,WRR], whereR

2To obtain the functional of the Green’s functionandthe screened Coulomb interaction one can [35] start from
the free energy functional of the solid and use an Hubbard-Stratonovich transformation to decouple the quartic
term in the fermionic fieldsψ. This introduces a set of bosonic fieldsφ. The action written in terms of the bosonic
and fermionic fields assumes a particularly symmetric form, from which the functional follows straightforwardly.
This action, see Ref. [35] Eq. (24), consists of a quadratic term in the fermionic fields, with propagatorGH , a
quadratic term in the bosonic fields with propagatorV , and a coupling of the formφψψ between bosonic and
fermionic fields. This also shows the similar role played inthis context by the bare Green’s functionGH and
the bare Coulomb interaction. The functionalΓ[G,W ] written in equation (2.1) is then obtained in the standard
way coupling the field to appropriate sources, performing aLegendre transformation and expressing explicitly the
sources in term ofG andW [24,35].

3To further emphasize the analogy betweenG, the propagator of the fermionic field, andW we stress that [173]
W can also be defined as the correlation function of bosonic excitations corresponding to density fluctuations, i.e.,
the propagator of the Hubbard-Stratonovich field decoupling the Coulomb interaction term.

4We do not enter in the details here, for which we refer to [24], but we just note that in order to perform this
operation one needs to specify a basis set, like the maximally localized Wannier functions [125] or linearized
muffin tin orbitals [6]: locality refers to sites indexesR not to position in spacer.
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denotes a lattice position. Hence the nonlocal part of theΨ-functional is treated by keeping
only the leading order inW , while the local part requires a nonperturbative treatmentand can
be calculated from an impurity model as in DMFT. This can be justified a posterioriby the
observation [190] that (at least for systems whose physics is not too low dimensional [15,173])
the self-energy diagrams of higher order inW give mainly a local contribution which advocates
the use of DMFT, while for the nonlocal diagrams a leading order approximation, like theGW
one is sufficient.

The specific form attributed to the functionalΓGW+DMFT[G,W ] encodes two essential
points of the method:

(i) The minimization of the functionalΓGW+DMFT involves the functional derivates of both
ΨGW andΨAIM. This implies thatGW+DMFT should be implemented using a self-
consistency cycle (see below) that involves bothGW and DMFT, i.e., the separated self
consistency of DMFT andGW alone, like one would have in a one-shot calculation, is, in
principle, not sufficient. However, as we will see, very good results can be obtained also
within non self-consistent calculations.

(ii) Importantly,ΨAIM depends on both the Green’s function and the screened Coulombinter-
action. This implies that one does not only have to find a self-consistent Weiss fieldGAIM,
see, e.g., Sec. 1.5, but also a self-consistent interactionU that together with it defines the
AIM. In other words, inGW+DMFT the self-consistency requirement is extended also
to a two-particle quantity, i.e., the local projection of the screened interaction, which is
required to equal the impurity screened interaction [173].

Let us explicitly observe that for the AIM the "auxiliary interaction"U and the auxiliary Weiss
field GAIM play a similar role. As the Weiss fieldGAIM, also the auxiliary interactionU will
acquire a nontrivial frequency dependence due to the screening of the interaction operated by
other electrons5. This is also at the origin of the absence of free parameters in the method: Once
we have specified the bare Green’s function and the bare (long range) Coulomb interactionV
in real space the parameters to associate to the AIM are obtained self consistently.

2.1.2 GW+DMFT self consistency from a diagrammatic point of view

We now turn our attention to theGW+DMFT self-consistency cycle. Instead of following
the functional approach we will rather focus on the Feynman diagrams, and the result will be
the same if we take the right combination of diagrams for the self-energy and the polarization
operator. Specifically, DMFT will give a nonperturbative solution for thelocal part of the self-
energy and of the polarization, hence the best that one can dois to combine the local DMFT

5Possibly, not all the bands will be taken into account into the DMFT part of the calculations, since solving
an AIM with O(10) bands is already technically very demanding. If it is the case only the bands close to the
Fermi level will be described by DMFT, while all the others will be treated only at theGW level. In this case
the frequency dependence of the interaction will account also for the screening of all the bands not treated in
DMFT. [173]
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self-energy and polarization (obtained solving an AIM), and the nonlocalGW self-energy and
polarization. Doing so, the connection with the functionalformalism [24] is clear considering
the approximation described above forΨGW+DMFT and the diagrams that one can obtain by its
derivation, equations (2.2) and (2.3). In the rest of the paragraph, we will mainly follow the
lines of Ref. [63]. Let us also note here that, while the functional written in terms ofGH , which
incorporates the Hartree potentialvH , acquires a more symmetric form, in the following we
find more clear treating explicitly the Hartree term. Beforeproceeding with the self-consistency
scheme, it is necessary to specify a local basis set. Once this is specified, the quantities with
which one has to deal, like, e.g., the Green’s function or theCoulomb interaction, are matrices in
orbital space and depend either on a set of discrete lattice vectorsR (or on a momentum vector
k). Their local projection, therefore, is well defined, e.g., the local component of the Green’s
function will be denoted by:GRR. TheGW+DMFT self-consistency cycle then consists of the
following steps:
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Do LDA calculation, yieldingG0
k(ω) = [ω1+ µ1− ǫk]

−1.

CalculateGW polarizationPGW (1) = −2i
∫
d2G(1 + 2)G(2),

If DMFT polarizationPDMFT is known (after the 1st iteration), include it

P(k, ω) = PGW (k, ω)−
∑

q

PGW (q, ω) +PDMFT (ω).

With this polarization, calculate the screened interaction:
W(k, ω) = V(k)[1−V(k)P(k, ω)]−1.

CalculateΣHartree
k =

∑

qGq(τ = 0−)V(k− q) andΣHartree
dc .

CalculateΣGW (r, r′;ω) = i
∫
dω′

2π G(r, r′;ω + ω′)W(r, r′;ω′).

Calculate the DMFT self-energyΣDMFT and polarizationP DMFT as follows:

Calculate the auxiliary Weiss field
[G0]−1(ω) = [GRR]−1(ω) + ΣDMFT(ω), ΣDMFT=0 in 1st iteration.

Calculate the auxiliary interaction:
[U ]−1(ω) = [WRR]−1(ω) +PDMFT(ω), PDMFT=0 in 1st iteration.

Solve impurity problem with effective action

SAIM = −(ψ, [G0]−1ψ) +
∑

σσ′

∫

dτ ψσ(τ)ψσ(τ)U(τ − τ ′)ψσ′(τ ′)ψσ′(τ ′),

resulting inGAIM and the susceptibilityχAIM.

CalculateΣDMFT(ω) = [G0]−1(ω)− [GAIM]−1(ω),
PDMFT(ω) = U−1(ω)− [U − UχAIMU ]−1(ω).

Obtain the totalGW+DMFT self-energy:
Σ(k, ω) = ΣGW (k, ω)−

∑

k

ΣGW (k, ω)+ΣHartree(k)−ΣHartree
dc +ΣDMFT(ω).

From this andG0, calculateGnew
k (ω)−1 = G0

k(ω)
−1 −Σk(ω).

Iterate withGk = Gnew
k until convergence, i.e.||Gk −Gnew

k ||<ǫ.

Figure 2.1: Flow diagram of theGW+DMFT algorithm (adapted from [63]).

(i) In mostGW calculations, the starting point is a conventional densityfunctional theory
calculation, for example LDA, that yields a set of one-electron orbitals|φk〉 (bold symbols
denote matrices in orbital space) and one-electron6 energiesǫk. Accordingly the Green’s
function can be computed as:

[G0]RR′

(ω) =
1

Nk

∑

k

eik(R−R′)[ω1+ µ1− ǫk]
−1, (2.4)

with µ being the chemical potential, andNk the number ofk-points used for the sum. In
the first step, when no self-energy fromGW+DMFT is known, this LDA Green’s function

6We remind that the interpretation of the eigenvalues of the Kohn-Sham equation as one-particle energies does
not have a strong theoretical justification, see Sec. 1.2.
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is directly used in step (ii) as interacting Green’s function.

(ii) Knowing the Green’s function, one can calculate theGW polarization:

PGW (1) = −2i

∫

d2G(1 + 2)G(2). (2.5)

Here, as in Sec. 1.3, to simplify the notation we use1 ≡ (k1, ω) and the integral is
intended over a frequency and momentum variable. The factortwo in the equation above
corresponds to the spin summation.

(iii) From the polarization operator, in turn, the local polarization has to be subtracted since
this can (and has to) be calculated more precisely within DMFT, including also a local
vertex correction. Mathematically this reads:

P(k, ω) = PGW (k, ω)−
∑

q

PGW (q, ω) +PDMFT(ω). (2.6)

(iv) Next, the screened interactionW is calculated from the bare Coulomb interaction and the
overall polarization operator:

W(k, ω) =
V(k)

1−V(k)P(k, ω)
. (2.7)

V(k) andW(k, ω) are the bare and screened Coulomb interaction projected ontothe local
basis. For example the bare interaction matrix reads:

VRR′

ijkl ≡ 〈φR
i φ

R′

j |V |φR
k φ

R′

l 〉, (2.8)

with i, j, k and l being the orbital indexes. The frequency dependence of the screened
interaction thus arises from the one of the polarization.

(v) Now, we are in the position to calculate theGW self-energy. The first term is the
Hartree diagram,7 which can be calculated straightforwardly in imaginary timeτ , yielding
ΣHartree:

ΣHartree
k =

∑

q

Gq(τ = 0−)V(k− q), (2.9)

and the corresponding local contributionΣHartree
dc , which we need to subtract later to avoid

a double counting as it is also contained in the DMFT.

(vi) The second term of theGW self-energy corresponds to the exchange diagram8 (with full
Green’s function and screened interaction):

ΣGW (r, r′;ω) = i

∫
dω′

2π
G(r, r′;ω + ω′)W(r, r′;ω′). (2.10)

7Let us note explicitly that in several cases the Hartree termis directly included in the bare Green’s function,
like, e.g., in Ref. [24].

8For illustrative reasons, we give here the expression of theself-energy as a function of the position vectorsr

andr′. However to make use of this self-energy in aGW+DMFT scheme, one needs to project this self-energy on
some basis set. For more details we refer to the literature, e.g., Ref. [165] Eq. (10) for a complete expression of the
self-energy on a specific basis set, and Ref. [12] for a more thorough discussion about the basis sets in numerical
implementations ofGW .
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(vii) TheGW self-energy and polarization operator obtained this way have to be supplemented
by the corresponding DMFT local ones calculated from an appropriate auxiliary AIM. The
latter is defined by an auxiliary propagator (Weiss field)G

0(ω), as well by an auxiliary
interactionU(ω). With these two quantities, the action of the auxiliary AIM reads:

SAIM = − 1

β

∑

ωnσ

ψσ(iωn)[G0
σ]

−1(iωn)ψσ(ω)+
∑

σσ′

∫

dτ ψσ(τ)ψσ(τ)U(τ−τ ′)ψσ′(τ ′)ψσ′(τ ′),

(2.11)
where we have omitted a summation over the band indexes.

(viii) The Weiss fieldG0 can be obtained by asking that, at self-consistency, the local Green’s
function of the lattice equals the Green’s function of the AIM:

[G0]−1(ω) = [GRR]−1(ω) +ΣDMFT(ω). (2.12)

In the first iteration, when no previous self-energy from the solution of an AIM is available
one can assumeΣDMFT = 0. This equation is almost identical to the one that gives the
Weiss field in DMFT, Eq. (1.125). However it should be noted that in Eq. (2.12) the local
Green’s function of the lattice is dressed by ak-dependent self-energy, see step (xii), and
not by the local one of the AIM alone, as in DMFT.

(ix) In a completely parallel fashion one can obtain the auxiliary interactionU(ω):

[U ]−1(ω) = [WRR]−1(ω) +PDMFT(ω). (2.13)

Here the local screening is removed from the interaction since it will be again included by
DMFT. In Eq. (2.13) the polarization of the auxiliary AIM clearly plays the same role as
the self-energyΣDMFT in the equation for the bare Green’s functionG0, Eq. (2.12).

(x) Once the action of the AIM (2.11) has been completely defined it has to be solved for
its interacting Green’s functionGAIM and two-particle charge susceptibilityχAIM. This
step, performed with an impurity solver, is probably one of the most demanding from the
computational point of view, together with9 the calculation of the frequency dependent
polarization and self-energy inGW .

(xi) From GAIM andχAIM one can compute the new self-energy and polarization operator
respectively:

ΣDMFT(ω) = [G0]−1(ω)− [GAIM]
−1(ω), (2.14)

PDMFT(ω) = U
−1(ω)− [U − UχAIMU ]−1(ω). (2.15)

The steps from (vii) to (xi) are the ones that explicitly involve an impurity action, and
therefore form the "DMFT block" of the self-consistency cycle.

9At the model level the solution of the AIM is for sure more involved than theGW part. In real material,
instead, since for convergency reasons one can not restrictoneself to a few bands in theGW , its computational
cost is comparable with that of the impurity solver.
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(xii) After having obtained the new self-energy of the AIM weare in the position to sum all
the terms contributing to theGW+DMFT self-energy: The local one from the AIM, and
the nonlocal Hartree and exchange:

ΣGW+DMFT(k, ω) = ΣGW (k, ω)−
∑

k

ΣGW (k, ω)+ΣHartree(k)−ΣHartree
dc +ΣDMFT(ω).

(2.16)

(xiii) The new Green’s function to be used in the next step is calculated using the Dyson equa-
tion with the self-energy just obtained:

[Gnew
k ]−1(ω) = [G0

k]
−1(ω)−ΣGW+DMFT(k, ω). (2.17)

(xiv) The new Green’s function is used to start a new iteration of the self-consistency cycle,
starting from step (ii). The self consistency is eventuallyreached when the Green’s func-
tion from the new iteration equals the one from the previous iteration.

A critical point is the physical meaning of the auxiliary interaction of the AIM. In particular, it
can be considered a "bare interaction" with respect to the AIM, in complete analogy with the
definition of the bare Green’sG0: If the interaction was decoupled via an Hubbard-Stratonovich
transformation,U would appear as the bare propagator for the bosons that decouple the inter-
action. However, exactly as the Weiss field carries information about the hopping from and
to neighboring sites, the interactionU contains information about thenonlocalscreening to
the interaction, as can be seen considering equations (2.6), (2.7) and (2.13). The point here is
made even more subtle considering that there can be bands which take part to the screening
of the Coulomb interaction that are usually neglected in the DMFT part of the calculation, in
a so-calledorbital-separated scheme[173]. Therefore the screening from these bands10 needs
to be taken into account inU , which, hence, from the point of view of the lattice is far from
being bare. Altogether equations (2.12) and (2.13) can be viewed [24] as arepresentability
assumption, i.e., one is asking that the local components ofG andW are equal to the ones
obtained by the auxiliary action (2.11) once a suitable choice for the auxiliary Weiss fieldG0

and auxiliary interactionU is made. This choice is not known a priory and one has to resortto
the self-consistency cycle to find the right auxiliary AIM.The flow diagram in Fig. 2.1 already
shows that theGW+DMFT approach is much more involved11 than LDA+DMFT. However, it
has the advantage that, at self consistency, there is no double counting problem, since the LDA
enters only in the first step, and also the Coulomb interaction is calculatedab initio in a well
defined and controlled way. Hence, noad hocformulas or parameters need to be introduced or
adjusted.

It has to be noted that in the flow diagram that we have presented we did not discuss the
important point of the appropriate choice of the basis set. This is nontrivial: The DMFT, as

10This screening is done at the RPA level: The polarization coming from bands neglected in DMFT is computed
by Eq. (2.6) and takes part to the screening ofW. For more details about this point see Ref. [173], Sec. II C.

11For a comparison of the flow diagrams of the two approaches compare, e.g., Fig. 11 and Fig. 15 of Ref. [60].
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mentioned above, requires alocal basis set that describes the narrowd or f orbitals, which are
expected to be the most strongly correlated orbitals. On theother hand theGW is naturally
formulated in real ork space and is presently implemented, e.g., in LMTO [12] or projector
augmented wave (PAW) basis [165]. The switching between these two representations is non
trivial. It can be done by a downfolding [7] or by a projectiononto Wannier orbitals, e.g.,
using maximally localized Wannier orbitals [111, 125] or a simpler projection onto thed (or
f ) part of the wave function within the atomic spheres [2, 9]. On the DMFT side, the biggest
open challenges are to actually perform the DMFT calculations with a frequency dependent
Coulomb interactionU(ω) and to calculate the DMFT charge susceptibility or polarization
operator. In particular DMFT calculations with a frequencydependentU interaction have been
only recently tested at the model level [15, 16, 54, 76], and on top of an LDA calculation for
BaFe2As2 [182] and SrVO3 [31] (other calculations with a frequency dependent interaction,
but in aGW+DMFT context are listed below).

A measure of the difficulty of the implementation of theGW+DMFT method can be given
comparing the number of realistic calculations for materials performed using this method with
the number of material calculations in LDA+DMFT: While the latter, during the last ten years, is
of the order of a few hundreds, only a few materials calculations are reported withinGW+DMFT,
in particular one for Ni [24], some for SrVO3 [155, 170, 173, 174], and one for adatom sys-
tems [58], in none of which a full self consistency has been achieved. Following these con-
sideration, if one wants to make further progress in realistic calculations for materials using
GW+DMFT at a reasonable computational cost it is necessary to proceed with further approxi-
mations.

In the following paragraph we present one possible approximation that allows to com-
bine some aspects ofGW with the DMFT at a computational cost comparable with the one
of LDA+DMFT. This approach makes use of aquasiparticle approximation (qp) to the self-
energy, see Sec. 1.3.3, and is therefore named qpGW+DMFT. The quality of the approximation
will be demonstrated for the correlated metal SrVO3, and compared to the results obtained in
LDA+DMFT [116, 135, 136, 140, 163] as well to those of photoemission spectroscopy [163].
We find the qpGW+DMFT spectra to be quite similar to the LDA+DMFT ones due to apartial
cancellation of two effects: The reducedGW bandwidth in comparison to LDA and the weaker
screened Coulomb interaction. An important difference, however, is in the position of the lower
Hubbard band, which in qpGW+DMFT agrees better with the experiments. Importantly, the
quasiparticle approximation to the self-energy neglects the effects of frequency dependence of
the self-energy, and therefore a consistent approximationto the Coulomb interaction has to be
assumed, i.e., we take astaticapproximation also for the Coulomb interaction. This is alsoclear
by performing a calculation including aZB factor, introduced by Casulaet al. in Ref. [30], to
mimic the frequency dependence of the calculation. The results obtained this way are quite dif-
ferent from the ones of qpGW+DMFT withoutZB factor, and are in worse agreement with the
spectroscopy experiments. To further understand this and the role of the frequency dependence
of the interaction (and self-energy) we will compare our results to the ones obtained with the
computationally more expensiveGW+DMFT implementation of Refs. [173,174], in which the
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frequency dependent of the self-energy and of the interaction is fully taken into account.

2.1.3 qpGW implementation in VASP

Let us briefly outline the relevant methodological aspects. The starting point of our calcu-
lation is theGW implementation within (VASP) [165]. Specifically, we first performed Kohn
Sham density functional theory calculations using the local density approximation for SrVO3
at the LDA lattice constant ofa = 3.78 Å and determined the Kohn Sham one-electron orbitals
|φnk〉 and one-electron energiesǫnk. The position of the GW quasiparticle peaksEQP

nk were
calculated by solving the linear equation

EQP
nk = ǫnk + Znk ×Re[〈φnk|T + vc + vH + ΣGW (k, ω = ǫnk)|φnk〉 − ǫnk], (2.18)

whereT is the one-electron kinetic energy operator andvc andvH are the crystal potential and
the Hartree-potential, respectively.ΣGW is theG0W0 self-energy, andZnk is the renormaliza-
tion factor evaluated at the Kohn-Sham eigenvalues [80, 165], see below. The original Kohn
Sham orbitals are maintained at this step.

Equation (2.18) can be obtained after a linearization of theself-energy around the LDA
single particle energies:

ΣGW (k, EQP
nk ) ≈ ΣGW (k, ω = ǫnk) +

∂ΣGW (k, ω)

∂ω

∣
∣
ω=ǫnk

︸ ︷︷ ︸

≡ξnk

(EQP
nk − ǫnk). (2.19)

Since the off-diagonal components of the self-energy are small, we concentrate on the diagonal
components only. This yields the following equation for thequasiparticle poles:

EQP
nk 〈φnk|1− ξnk|φnk〉 = 〈φnk|T + vc + vH + Σ(k, ǫnk)− ξnkǫnk|φnk〉, (2.20)

which is exactly equation (2.18) once the quasiparticle renormalization factorZnk is expressed
in terms of the derivative of the self-energy:

Znk = (1− ξnk)
−1. (2.21)

The Kohn Sham orbitals expressed in the projector augmentedwave (PAW) basis are then pro-
jected onto maximally localized Wannier functions [125] using the Wannier90 code [132]. To
construct an effective low-energy Hamiltonian for thet2g vanadium orbitals, we follow Faleev,
van Schilfgaarde and Kotani and approximate the frequency dependentG0W0 self-energy by
an Hermitian operator̄H that reproduces the position of the quasiparticle peaks of the original
self-energy exactly [33,42]:

H̄mn,k =
1

2
[〈φmk|Σ∗(k, EQP

mk ) + Σ(k, EQP
nk )|φnk〉]. (2.22)

This approximation is commonly used inGW calculations, in particular for self-consistent
calculations, since fully frequency dependent calculations are computationally very demanding.
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In practice, for the present calculations, we have applied the slightly more involved proce-
dure to derive an Hermitian approximation outlined in Ref. [166], although this yields essen-
tially an almost identical Hermitian operator̄Hmn,k. Furthermore, the off diagonal components
are found to be negligibly small, also in the Wannier basis, and henceforth disregarded. The fi-
nal Hermitian andk-point dependent operator̄H is transformed to the Wannier basis and passed
on to the DMFT code, where it is used to construct thek-dependent self-energy by adding the
local DMFT self-energy.

This qpGW+DMFT procedure allows to maintain the structure and outline of the common
DFT-DMFT scheme and can be easily adopted in any DMFT code. Instead of the LDA one-
electron matrix elements, the qpGW ones are passed to the DMFT. To avoid a double counting
of the local part of the qpGW Hermitian operator we have to subtract it. In the case of the
degeneratet2g orbitals the double counting correction basically yields only a constant shift.
The double counting correction can be performed in the following way. What we have to do
is subtracting the local part of all qpGW self-energy contributions. i.e., the local part of the (i)
Σ(k, ǫnk), (ii) ξnk and (iii) ξnkǫnk terms in equation (2.20). We define their local part as the
one-centerR = 0 component of the Wannier representation:

Aij =
1

Nk

∑

nk

U
∗(k)
ni An(k)U

(k)
jn . (2.23)

whereNk is the number of k-points andU (k)
ni the unitary matrix for the transformation of Bloch

vectors|φnk〉 to Wannier states|wi0〉. ForAn(k) = Σ(k, ǫnk), ξnk, andξnkǫnk these averages
are computed, transformed back to the Bloch basis using againU

(k)
ni and subtracted in Eq. (2.20).

With the local part subtracted, Eq. (2.20) becomes

Eqp−nl
nk 〈φnk|1− ξnk + ξn|φnk〉 = 〈φnk|T+vc+vH+Σ(k, ǫnk)−Σn−ξnkǫnk+ξnǫn|φnk〉. (2.24)

This yields the bandstructure without local quasiparticleself-energy contributions. The
Hamiltonian corresponding to this bandstructure is subsequently transformed again to the Wan-
nier basis and passed to the DMFT. Let us emphasize that this local part of thequasiparticle
GW self-energy is very different from the local part of a frequency-dependent fullGW self-
energy. In the latter case, we naturally obtain also a frequency-dependent local partΣGW

loc. =
∑

k Σ(k, ω). In our case of the quasiparticle linearization of theGW self-energy [Eq. (2.20)],
we obtain three frequency-independent terms stemming fromthe constant [Σn] and linear terms
[ ξn andξǫ0n] in Eq. (2.20), respectively. This is consistent with the qpGW approximation. Let
us note though that doing (i) the qp approximation and (ii) subtracting the local part does not
commute. For a comparison with the double-counting correction in approximations that main-
tain the frequency dependence of the self-energy see Refs. [173,174].
This procedure neglects lifetime broadening and any frequency dependence of theGW self-
energy beyond its linear part. Let us also note that hithertowe did not perform self-consistency
on theGW part.TheGW part of the calculation has been performed by Merzuk Kaltak, in the
group of Georg Kresse at the University of Vienna.
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Fig. 2.3 shows the obtainedG0W0 bandstructure, which for thet2g vanadium target bands
is about 0.7 eV narrower than for the LDA. The oxygenp band (below−2 eV) is shifted down-
wards by 0.5 eV compared to the LDA, whereas the vanadiumeg bands (located about 1.5 eV
above the Fermi-level) are slightly shifted upwards by 0.2 eV. In the LDA, the top most vana-
dium t2g band at theM point is slightly above the lowesteg band at theΓ point, whereas the
G0W0 correction opens a gap between thet2g andeg states.

Within this Wannier basis, we also calculate the screened Coulomb interaction using the
random phase approximation (RPA). As described in Ref. [137],for an accurate estimate of
the interaction value to be used in DMFT (UDMFT), only the local screening processes of the
t2g target bands of SrVO3 are disregarded since only these are considered later on in DMFT.
This approach [137] is similar to the constrained RPA (cRPA) , with the difference being that
in cRPA alsonon-localscreening processes of thet2g target bands are disregarded which are
not included in DMFT. Depending on the material and doping level, there might be a difference
betweenUDMFT andU cRPA. However, for the case of SrVO3, this difference is very minor, and
we hence only considerUDMFT in the following.

Here some remarks are in order. First, we explicitly note that the valueUDMFT corresponds
to thestatic value of the interaction:UDMFT = UDMFT(ω = 0), i.e., the frequency dependence
of the interaction, arising from the RPA polarization, is neglected. This assumption is justified
considering that we are also neglecting the frequency dependence of theGW self-energy, as
we are also going to show mimicking the frequency dependenceof the interaction using theZB

factor. Second, we observe that quite counterintuitivelyUDMFT turns out to be slightly larger
thanU cRPA, in spite of the fact that the nonlocal contribution to the polarization is allowed
to screen the interaction inUDMFT and not inU cRPA. This effect has been attributed [137]
to Friedel oscillations of the nonlocal polarization, which also strongly depends on the filling
of the system: While for lower filings (of thet2g manifold) the nonlocal screening effects is
negative, i.e., it increases the value of the interaction instead of decreasing it, for higher filling
the nonlocal screening effect becomespositive.

In Fig. 2.2 we show12 the frequency dependence of the cRPA interactionU (in our notation
U cRPA) compared to the local part of the fully RPA screened interaction W . The latter is
computed allowingall bands (including thet2g ones) to screen the interaction through the RPA
polarization (it corresponds to theW defined in the paragraphs above if we assumeP = PGW

for the local and nonlocal part). We can distinguish three different regimes for the frequency
dependence ofU (andW ): (i) a first regime forω . 15eV, (ii) a second regime for 15eV.
ω . 35eV, and a third regime forω larger than 35eV. In the first region (i) the interaction
U cRPA stays more or less constant. From a comparison withW it is clear thatU cRPA is flat
because the particle-hole excitations in thet2g bands have been suppressed. In the second
region (ii)W andU cRPA are very close, and show a dramatic frequency dependence around
ω ∼ 15eV, corresponding to the plasma frequency of the system [4, 119]. In the third region
(iii) the screening is rather ineffective and the value of the screened interactions is close to the

12The data are provided by J. M. Tomczak, see also [173].
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bare one. If there was no region (i) in which the interaction stays more or less constant it would
appear hard to justify at all a calculation with a staticω = 0 calculation.
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Figure 2.2: Frequency dependence of the real and imaginary part of the fully screened RPA
interactionW (ω) and of the cRPA interactionU(ω) for SrVO3. For the latter, thet2g bands
are not contributing to the screening. One can see that at lowfrequenciesW exhibits a
nontrivial frequency dependence, attributed to particle-hole processes taking place in the
vicinity of the Fermi level. On the other handU stays more or less flat up toω ≈ 15eV,
corresponding to the plasmon frequency of the system. For larger frequencies the screening
is not effective anymore. and the two interaction converge to the unscreened valueV ≈
O(20eV). The data have been provided by J. M. Tomczak [174].

With our calculations, we carefully compare qpGW+DMFT with LDA+DMFT and exper-
imental results. In both cases, we use (frequency-independent) interactions obtained from this
locally unscreened RPA and cLDA. The Kanamori interaction parameters as derived from
the locally unscreened RPA are: intra-orbital Coulomb repulsion UDMFT = 3.44eV; inter-
orbital Coulomb repulsion̄UDMFT = 2.49eV; Hund’s exchange and pair hopping amplitude
JDMFT = 0.46eV. These values are, for SrVO3, almost identical13 to the cRPA [137]. In

13Note that the values differ slightly from the VASP values published in Ref. [137] since with additional data,
we have further improved the extrapolation.
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Figure 2.3: (Color online) Upper panel:G0W0 quasiparticle bands (red, grey) in comparison to
LDA (black). The Fermi level sets our zero of energy and is marked as a line. Lower panel:
Wannier projectedt2g bandstructure fromG0W0 (red, grey) and LDA (black). Thet2g target
bands bandwidth is reduced by∼ 0.7eV inGW .

cLDA, on the other hand, somewhat larger interaction parameters were obtained and are em-
ployed by us14 for the corresponding calculations:U cLDA = 5.05eV, Ū cLDA = 3.55eV,
JcLDA = 0.75eV [163].

For the subsequent DMFT calculation, we employ the Würzburg-Wien w2dynamics code
[139], based on the hybridization-expansion variant [183]of the continuous-time quantum
Monte Carlo method (CT-QMC) [153]. This algorithm is particularly fast since it employs
additional quantum numbers for a rotationally-invariant Kanamori interaction [139]. The max-
imum entropy method is employed for the analytical continuation of the imaginary time and
(Matsubara) frequency CT-QMC data to real frequencies [88].

All our calculations are without self-consistency, which is to some extend justified for
SrVO3: Since the threet2g bands of SrVO3 are degenerate, DMFT does not change the charge
density of the low-energyt2g manifold and hence self-consistency effects are expected to be
small within LDA+DMFT. This is, in principle, different forGW+DMFT. Here, the frequency
dependence of the DMFT self-energy might yield some feedback already for a simplified
Faleev, van Schilfgaarde and Kotani quasiparticle self-consistency [33, 42]. Finally, as antici-
pated above, we also test theZB-factor renormalizedGW bandwidth withZB =0.7 obtained
in [30] for mimicking the frequency dependence of the cRPA interaction.

Results for SrVO3

For analyzing the differences between qpGW+DMFT and LDA+DMFT we analyze and
compare five different calculations in the following:

1. LDA+DMFT@Ū cLDA (conventional LDA+DMFT calculation with the cLDA interaction
Ū cLDA = 3.55eV),

14Note, that cLDA tends to overestimate the Hund’s exchangeJ , see [60], so that in subsequent LDA+DMFT
calculations smaller values ofJ have been employed [186] For thed1 system SrVO3 this smaller value ofJ mainly
influences the upper Hubbard band.
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Figure 2.4: Comparison of the imaginary part of the DMFTt2g self energiesΣ vs. (Matsubara)
frequencyω for SrVO3 at inverse temperatureβ = 40 eV−1 as computed in five different
ways: employing qpGW and LDA Wannier bands, the locally unscreened RPA interaction
ŪDMFT = 2.49 eV and the cLDAŪ cLDA = 3.55eV, as well as theZB=0.7 renormalization
[30].

2. LDA+DMFT@ŪDMFT (LDA+DMFT calculation but with the locally unscreened RPA
interactionŪDMFT = 2.49eV),

3. qpGW+DMFT@ŪDMFT (qpGW+DMFT calculation withŪDMFT = 2.49eV),

4. qpGW+DMFT@Ū cLDA (qpGW+DMFT calculation but withŪ cLDA = 3.55eV),

5. qpGW+DMFT@ŪDMFT, ZB=0.7 (as 3. but with a Bose renormalization factorZB).

Let us first turn to the imaginary part of the local self-energy which is shown as a function
of (Matsubara) frequency in Fig. 2.4. The self-energy yields a first impression of how strong
the electronic correlations are in the various calculations. This, in Matsubara frequency space,
can be inferred from the imaginary part of the self-energy for the first few Matsubara frequen-
cies, which (for a metallic solution) carries the information about the renormalization factor
and the quasiparticle lifetime, and therefore contain the most relevant information about the
electronic correlations. The high frequency tail of the self-energy, on the other hand, decays
like limωn→∞ Σ(iωn) = −U2(n − 1)n/ωn, wheren is the occupation of each band, which, in
the case of SrVO3, due to the degeneracy of thet2g bands, is fixed. Therefore the high en-
ergy tails of the self-energy carry only the trivial information about the value of the interaction
used in the calculations, and only very little message aboutthe correlations, hence compar-
ing the self-energy of the different calculations one should mainly focus on the low frequency
part, and in particular its slope. The LDA+DMFT@ŪDMFT self-energy is the least correlated
one, somewhat less correlated than LDA+DMFT@Ū cLDA due to the smaller locally unscreened
Coulomb interaction (̄UDMFT = 2.49eV < 3.55 eV= Ū cLDA). For the same reason also the
qpGW+DMFT@ŪDMFT self-energy is less correlated than that of a qpGW+DMFT@Ū cLDA

calculation.
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Scheme Z dintra d↑↑inter d↑↓inter

LDA+DMFT@Ū cLDA 0.51 0.004 0.013 0.009

LDA+DMFT@ŪDMFT 0.67 0.007 0.016 0.013

qpGW+DMFT@ŪDMFT 0.57 0.005 0.014 0.010

qpGW+DMFT@Ū cLDA 0.39 0.003 0.010 0.007

qpGW+DMFT@ŪDMFT,ZB=0.7 0.36 0.003 0.009 0.006

experiment [124,163,168] ∼0.5-0.6

Table 2.1: DMFT quasiparticle renormalization factorsZ from the five different calculations
at inverse temperatureβ = 40 eV−1. Also shown are the pairwise double occupations within
the same orbitaldintra and between different orbitals with the samed↑↑inter and opposite spin
d↑↓inter. The ‘‘standard’’ LDA+DMFT@Ū cLDA and qpGW+DMFT@ŪDMFT calculations are
similarly correlated and well agree with experiment. Usingthe cLDA interaction(̄U cLDA)
for qpGW+DMFT or the locally unscreened RPA (ŪDMFT) for LDA+DMFT yields a too
strongly and too weakly correlated solution in comparison to experiment, respectively. Note
that qpGW+DMFT becomes even more strongly correlated, if the Bose renormalization
factor is included.

If we compare LDA+DMFT and qpGW+DMFT on the other hand, the LDA+DMFT self-
energy is less correlated than the qpGW+DMFT one, if the Coulomb interaction is kept the
same. This is due to the 0.7 eV smallerGW t2g-bandwidth in comparison to LDA. This obser-
vation also reflects in the DMFT quasiparticle renormalization factorsZ, which were obtained
from a fourth-order fit to the lowest four Matsubara frequencies, see Table 2.1. In other words,
GW self-energy, including part of the correlations, providesa further renormalization factor
reducing the bandwidth in comparison to LDA.

However, the effect of the smallerGW bandwidth is partially compensated by the smaller
ŪDMFT interaction strength. Altogether this yields rather similar self energies of the standard
approaches: LDA+DMFT@Ū cLDA and qpGW+DMFT@ŪDMFT, see lower panel of Fig. 2.4.
This also reflects in very similar renormalization factorsin Table 2.1,Z = 0.51 vs. Z = 0.57,
which both agree well with experimental estimates of 0.5-0.6 [124,163].

Since one important difference is the strength of the interaction, it is worthwhile recalling
that ŪDMFT is defined as the local interaction strength at low frequencies. While this value is
almost constant within the range of thet2g-bandwidth, it approaches the bare Coulomb inter-
action at larger energies, exceeding15 eV, as we discussed above, see Fig. 2.2. It has been
recently argued and shown in model15 calculations [30] that the stronger frequency-dependence
of the screened Coulomb interaction at high energies is of relevance and can be mimicked by a
ZB-renormalization factor for the bandwidth. The latter can be determined from the frequency

15See also Ref. [54], for a further comparison with a full frequency-dependent calculation.



108 MergingGW and dynamical mean field theory: theGW+DMFT method

dependence of the interaction using the relation [30]:ZB = exp
(

1
π

∫
dω U(Imω)

ω2

)

, and its eval-

uation in the case of SrVO3 [30] yieldsZB=0.7.
We have tried to take this into account in the qpGW+DMFT@ŪDMFT, ZB=0.7 calculation.

Due to the additional bandwidth renormalization, this calculation is very different from all
others and yields the largest quasiparticle renormalization, i.e.,Z = 0.36 is smallest.

This too small quasiparticle weight can be understood as follows: in the calculation of
the DMFT self-energy, theZB factor mimics the effect of the frequency-dependence of cRPA
screened Coulomb interaction, which is much larger at high frequencies. In a fully frequency de-
pendentGW calculation, this is properly matched by a correspondinglylargeGW self-energy
at large frequencies. However, within the quasiparticle treatment of theGW self-energy (which
represents a linear approximation around the LDA quasiparticle energy to its frequency depen-
dence) such high frequency contributions of theGW self-energy are not included. As our
results show, in this case, it is hence more consistent not toinclude the frequency dependence
for the Coulomb interaction only, which theZB factor emulates.

Next, we compare thek-integrated spectrum in Fig. 2.5. At low-frequency we find the
same trends as for the self-energy results: the qpGW+DMFT and LDA+DMFT at ŪDMFT

andŪ cLDA, respectively, yield a rather similar spectrum. In particular, the quasiparticle peak
has a similar weight and shape. However, a difference is found at larger frequencies: the
qpGW+DMFT Hubbard bands are closer to the Fermi level in comparison to LDA+DMFT
(see Sec. 2.1.4). If we perform qpGW+DMFT and LDA+DMFT at the ‘‘wrong’’ interaction
strength (i.e.,Ū cLDA and ŪDMFT, respectively), we obtain a noticeably stronger and weaker
correlated solution, respectively. This trend is also reflected in the double occupations presented
in Table 2.1. Finally, as in the case of the self-energy, the qpGW+DMFT@ŪDMFT, ZB =0.7

solution is much more strongly correlated.

2.1.4 Comparison to photoemission spectroscopy
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Figure 2.5: Spectral function for SrVO3 (t2g orbitals only) computed in five different ways
as in Fig. 2.4. At lower temperatures the central peak gets only slightly sharper and higher,
albeit the temperature effects fromβ = 25 to 40 eV−1 are small.
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An obvious question is whether LDA+DMFT or qpGW+DMFT yields ‘‘better’’ results.
This question is difficult to answer and for the time being weresort to a comparison with
experimental photoemission spectroscopy (PES) [163]. However, one should be well aware of
the limitations of such a comparison. On the theory side, theinvolved approximations common
to the calculations, as, e.g., neglecting non-local correlations beyond the DMFT andGW level,
or further effects, such as the electron-phonon coupling orthe photoemission matrix elements,
might bias the theoretical result in one way or the other. On the experimental side, care is in
place as well, although the PES results have considerably improved in the last years due to better
photon sources16. Furthermore, in Ref. [163] an oxygenp-background has been subtracted,
which by construction removes all spectral weight below theregion identified as the lower
Hubbard band.

Fig. 2.6 compares the proposed LDA+DMFT and qpGW+DMFT (with and without Bose
renormalization) with PES experiment. To this end, the theoretical results have been multiplied
with the Fermi function at the experimental temperature of20K and broadened by the experi-
mental resolution of 0.1 eV. The height of the PES spectrum has been fixed so that its integral
yields 1, i.e., accommodates onet2g-electron, as in theory.

The qpGW+DMFT@ŪDMFT and LDA+DMFT@Ū cLDA have a quite similar quasiparticle
peak, which also well agrees with experiment, as it was already indicated by the quasiparticle
renormalization factor. A noteworthy difference is the position of the lower Hubbard band
which is at−2 eV for LDA+DMFT@Ū cLDA and∼ −1.6 eV for qpGW+DMFT@ŪDMFT. The
latter is in agreement with experiment and a result of the reducedGW bandwidth. Let us note
that the sharpness and height of the lower Hubbard band very much depends on the maximum
entropy method, which tends to overestimate the broadeningof the high-energy spectral fea-
tures. Hence, only the position and weight is a reliable result of the calculation.

As we have already seen, the Bose-factor renormalized qpGW+DMFT@ŪDMFT, ZB=0.7

calculation is distinct from both, qpGW+DMFT@ŪDMFT and LDA+DMFT@Ū cLDA. It is also
different from experiment with a much more narrow quasiparticle peak and a lower Hubbard
band much closer to the Fermi level. A similar difference between staticU on the one side and
frequency dependentU was reported in Ref. [30]. A difference of this magnitude is hence to be
expected.

Our results also compare well with those obtained within more involved schemes, like those
presented in Ref. [173, 174], in which aGW+DMFT calculation is performed for SrVO3. In
this works the frequency dependence of the self-energy is taken into account, and a dynamical
interactionU(ω), obtained by cRPA, is employed. While theGW self-energy and the value
of the interactionU(ω) are not treated self consistently, a full self consistency is achieved for
the Green’s function in DMFT [173]. A careful analysis of thefrequency and momentum
dependence of theGW self-energy, similar to the one carried out for the first time in Ref. [175],
allows the authors of [173] to show that theGW self-energy can be essentially separated in
two contributions: (i) adynamicalpart which is essentiallylocal, (ii) and astatic nonlocal

16The surface sensitivity in PES has also been discussed very recently for the case of SrVO3, see Ref. [192].
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Figure 2.6: Comparison of LDA+DMFT@U cLDA, qpGW+DMFT@UDMFT (without and with
Bose renormalizationZB=0.7) and experiment. The position of the lower Hubbard band is
better reproduced in qpGW+DMFT whereas the central peak is similar in LDA+DMFT and
qpGW+DMFT. The Bose renormalization qpGW+DMFT differs considerably (photoemis-
sion spectra reproduced from Ref. [163]).

part. These two contributions to the self-energy have opposite effect on the LDA bandstructure,
which partially cancel each other: The local and dynamic contribution (i) tends toshrink the
bandstructure (i.e., to shift coherent spectral weight closer to the Fermi level, reducing the
coherent quasiparticle energies) while the nonlocal and static contribution (ii) tend to enlarge
the bandstructure (i.e., shifting the quasiparticle excitation energies more far away from the
Fermi level). In a combination with DMFT only the nonlocal contribution (ii) needs to be
retained, resulting in effectively enhancedk-dependence of the bandstructure compared to LDA.
However in theGW+DMFT calculations of J. M. Tomczaket al. [173,174], this effect is more
than compensated by the frequency dependence of the interaction, which, for larger values
of the frequency approaches the bare Coulomb value: in spite of a bandstructure with a larger
bandwidth theZ factor is in the right value range, in comparison with the experiment, and hence
with our qpGW+DMFT calculation. On the other hand our approximate treatment of theGW
self-energy, which neglects the frequency dependence of theGW self-energy that is linearized
beforeremoving the local contribution17, yields an effective nonlocal qpGW Hamiltonian with
a reducedbandwidth compared to LDA. As discussed above, combining this approximation
with a frequency dependent Coulomb interaction would yield atoo correlated result, while
using a consistent static approximation also for the self-energy yields results in agreement with
the ones of Ref. [173, 174]. However there are some features that can only be captured by the

17This is rather different from the qp Hamiltonian obtained in[173], Eq. (48), where the quasiparticle approxi-
mation is performedafter having removed the local self-energy contribution.
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more elaboratedGW+DMFT scheme of Refs. [173, 174]. In particular, while the agreement
in the vicinity of the Fermi level is quite good, and the hightand spectral weight of the central
peak of the spectrum is well reproduced by our qpGW+DMFT, the transfer of spectral weight
to satellites and excitations far away from the Hubbard bands (especially in the unoccupied part
of the spectrum) can only be reproduced within a scheme that takes into account the frequency
dependence of the Coulomb interaction and of theGW self-energy.

2.2 Conclusion

We have carried out a careful comparison of LDA+DMFT, qpGW+DMFT (specifically,
quasiparticleG0W0+DMFT) and experiment for the case of SrVO3, which is often consid-
ered to be a ‘‘benchmark’’ material for new methods for correlated systems. To this end,
the LDA or G0W0 quasiparticle bandstructure was projected onto maximallylocalized Wan-
nier orbitals for thet2g bands. For these in turn correlation effects have been calculated on
the DMFT level. If we take the locally unscreened RPA interaction (or the similar cRPA one)
for the qpGW+DMFT and the cLDA interaction for LDA+DMFT, the two approaches yield
rather similar self energies and spectral functions at the Fermi level. These also agree rather
well with photoemission spectroscopy. A noteworthy difference between these two calcula-
tion is found, however, for the position of the lower Hubbardband, which is better reproduced
in qpGW+DMFT. Similar spectra were also obtained by Tomczaket al. [173, 174] using a
GW+DMFT calculation including the frequency dependence of the interaction.

From a principle point of view also a LDA+DMFT calculation with a locally unscreened or
cRPA Coulomb interaction is possible and employed in the literature. In the static limit, these
cRPA interactions are typically smaller than cLDA values. Atleast for SrVO3, these smaller
interaction values yield too weak electronic correlationsif used for LDA+DMFT calculations.

Our calculations are performed using theGW implementation of one of the most widespread
DFT codes. The implementation that we proposed has the advantage that it substantially keeps
the same procedure employed in LDA+DMFT, as well as a comparable computational cost, but
with several advantages compared to it. At the theoretical level the interaction value for the
DMFT can be determinedab initio in a consistent way, and a well defined treatment of the
double counting is possible. Besides this, the description of the lower Hubbard band in SrVO3
is also improved. Therefore, while a self-consistent and fully frequency dependent scheme
would be preferable, due to the high difficulty of the methodit does not seem realistic that a full
GW+DMFT can overtake the standard LDA+DMFT scheme, at least inthe foreseeable future,
and our qpGW+DMFT scheme might represent a valid alternative to it.





Chapter 3

Combining dynamical mean field theory
and functional renormalization group:
The DMF2RG

In this chapter we present DMF2RG, our novel approach, obtained by combining DMFT
and fRG, with the aim of studying electronic correlations on all length scales and at all coupling
straights. In the first part of the chapter, we present the state-of-the-art methods to treat strong
electronic correlations beyond DMFT. This way we emphasize how our new method, exploiting
the strengths of fRG, can be competitive with already established approaches. Specifically, we
show how the flexible structure of fRG allows us to include in an algorithmically simple way
the local nonperturbative physics of DMFT as a starting point for the flow equations. We will
then use the results obtained in the first chapter to understand the diagrammatic content of
DMF2RG. After that, we demonstrate the applicability of the new scheme, by presenting our
first practical implementation of DMF2RG. As a test case, we apply it to the two-dimensional
Hubbard model at half filling, obtaining results for the momentum and frequency resolved self-
energy, spin susceptibility, and one particle irreduciblevertex. The former two are shown to
be in qualitative agreement with results obtained by clusterextension of DMFT and lattice
quantum Monte Carlo respectively. Finally we conclude the chapter with a outlook of further
possible improvements, in-depth analysis and possible applications of our newborn approach,
and a brief summary of our findings.

The material presented in this chapter is partially taken from Tarantoet al., Phys. Rev. Lett.
112, 196402 (2014), Ref. [169].

The very idea of introducing a new method that combines DMFT and fRG arises from the
desire of developing a scheme which is, at the same time,unbiased(towards any channel) and
non-perturbative (in the electronic interaction). For this reason we proposea scheme that
inherits the non-perturbative character of DMFT, while adding to its local physics the non-local
fluctuations in all the channels by means of fRG.
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Explaining how to achieve this goal is the main subject of thefirst part of this chapter: We
will focus first on the physical idea that drives us in developing the new method, and then we
will deal with the formal details. However before introducing DMF2RG, we will present some
of the state-of-the-art methods that includenon-local correlationson top of a DMFT treatment
of the local ones. This discussion is aimed at motivating whya novel diagrammatic technique,
such as DMF2RG, may be helpful, being complementary, and even superior inspecific respects,
with the ones (cluster anddiagrammatic) already existing.

After this discussion, we will show the feasibility of the method, presenting numerical re-
sult for a special case, i.e. the two-dimensional Hubbard model at half filling. The presentation
will be first focused on the practical implementation of themethod, and on the several further
approximations involved, and, subsequently, will be devoted to the analysis of the results, also
in comparison with the ones obtained with fRG and DCA. Finally we will also propose an alter-
native path to improve the present formulation of DMF2RG, introducing an auxiliary problem
which might be more suited than the original one for an fRG treatment in the strong-coupling
regime.

3.0.1 Introduction and motivation

As we have discussed in the previous chapters, correlated electron systems display undoubt-
edly some of the most fascinating phenomena of condensed matter physics, including, among
the others, superconductivity, which we will discuss more in detail later, and quantum critical-
ity.

Besides these phenomena belonging to the ‘‘more traditional’’ condensed matter area, the
accurate study of the strongly correlated regime of latticemodels is becoming more important
also in the context of cold atoms. In fact the tremendous progress in trapping, cooling, and
controlling atoms in an optical lattice is offering the possibility of ‘‘simulating’’ a lattice model
in a different context from the one usually studied in connection with real materials. Although
the physics involved in cold atoms experiments is arguably more complicated (as it involves,
e.g., the specific form of the Feshbach resonances and of thetrapping potentials), the cold
atomic systems are appealing for their cleanness (absence of phonons) and for their incredibly
high tunability. The considerations above have justified the huge effort devolved in the last
several years to the study of phenomena involving strong electronic correlations. However,
most of the approaches developed so far have not been able to deal at the same timewith all
the aspects of strongly correlated electron problems. Let us use the striking example of the high
temperature superconducting cuprates to show where the difficulties arise.

The case of cuprates The technological potential of high temperature superconductors is vir-
tually unlimited, and several applications have already been used in different fields, ranging
from frontier research in high energy particle physics (in the magnets that deflect the flux at
LHC) to medical devices (for example in the devices used for the nuclear magnetic resonance).
Obviously, even more applications would be possible if we were able to find the way of ‘‘design-
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Figure 3.1: Schematic representation of the phase diagram of cuprates (panel a) and pnictides
(panel b) for hole and electron doping. Adapted from Ref. [18].

ing’’ material to further increase the critical temperature (at the moment the highest recorded
critical temperature at ambient pressure is134K for the so called Hg-1223 compound). Obvi-
ously, before a reliable material design is possible, it is necessary to understand the essence
of the mechanism behind the superconductivity in the discovered materials. Even today, more
than 25 years after the discovery of cuprate superconductivity by Bednorz and Müller, these
task has not been completely achieved. However, almost three decades of intensive research
made several points clear:

• The relevant physics happens in the copper oxide planes, which constitute the common
elements of all cuprates;

• The parent compounds, that become superconducting upon doping, are usually strongly
correlated (Mott) antiferromagnets below their respective Néel temperature;

• Doping the parent compound a nontrivial phase diagram emerges: The Néel temperature
quickly drops and a pseudogap opens in the spectral function. All in all the phase diagram
is rather rich, as it is shown in Figure 3.1, and includes, besides superconductivity also
magnetic ordering and ‘‘strange metal’’ phases;

• The superconducting pairing function has adx2−y2 character: It has a nontrivial spatial
dependence in the copper-oxide planes;

• For hole doping, in the underdoped region of the phase diagram a pseudogap [159, 172]
opens below some temperatureT ∗. The signature of the pseudogap is the opening of a
gap in the spectrum for some directions of the momentum. The nature of the pseudogap
and its connection with the superconductivity has been subject to intensive discussion in
the literature, see, e.g., [159] and references therein.

From the theoretical point of view, there is no general consensus yet about the minimal
model that can be used to describe the cuprates. However, it is believed, and the experience
has shown, that most of the features of the cuprate phase diagram, including the pseudogap,
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can be understood using a two dimensionalsingle band two-dimensional Hubbard model, as
early suggested by Anderson [159]. We will adopt this model inthe following, even if it is still
debated what is the role played by multi-band effects, in particular due to the hybridization with
thep-bands of oxygen.

From the points listed above one can see why the description of cuprates is so difficult: On
the one hand the strong electronic correlations, due to a poorly screened Coulomb interaction
on the copper 3d orbitals, prevent the full success of perturbative methods(like fRG) alone.
On the other hand, the main non perturbative method which is able to study strong electronic
correlations, i.e. DMFT, fails due to the low-dimensionality of the copper oxygen layers, where
the main physics is supposed to happen. Due to its spatial mean-field character DMFT alone
is not able to deal with the strongly non-local self-energy,which reflects the appearance of the
pseudogap, nor with the momentum dependence of the pairing function.

Even if DMFT is not sufficient, a lot of progress has been madeusing, among other methods,
approaches which extend DMFT, like the cluster extensions,such as cellular DMFT (cDMFT)
or dynamical cluster approximation (DCA), which are mainly focused on the treatment of (short-
range) strong electronic correlations. At the same time, even if fRG is only able to address the
weak coupling regime, thanks to the unbiased inclusion of parquet-like diagrams, it has allowed
to gain a deep insight about the competing instabilities in the two-dimensional Hubbard model.1.
These two approaches, cluster extensions of DMFT and fRG, focus on different aspects of the
problems and have different limitations. Cluster DMFT methods are by construction limited
to describe short correlation lengths (see below) and therefore the obtained results do not fully
describe the cuprate situation, where long range order is realized. Moreover, the results obtained
with cluster methods require a nontrivial extrapolation tothe limit of infinitely large cluster.
At the same time the perturbative analysis of fRG has to be performed in a parameter range
which is far away from the one expected to be relevant for the cuprates: The analysis of the
weak coupling instabilities may serve only as an indicationfor what the situation is at strong
coupling.

In fact the discussion above can be considered quite paradigmatic: fRG and DMFT allow to
study complementary aspects of a correlated problem. This motivates us in combining the main
strength of DMFT (nonperturbative treatment of purely local diagrams) with the one of fRG
(unbiased, but perturbative, treatment of competing instabilities) in a single novel approach.
This method is coined DMF2RG, and it can be considered either as a diagrammatic extension
of DMFT or as a new starting point for an fRG flow. With this, we mean that it aims at the
inclusion of non-local diagrams in a perturbative (diagrammatic) way on top of the nonper-
turbative local diagrams of DMFT. The main difference from the other existing diagrammatic
extensions of DMFT is the fact that the way non-local diagrams are computed relies on fRG.
To understand the great potential gain of the use of fRG, before presenting the DMF2RG, we
will first introduce the standard (cluster and diagrammatic) extensions of DMFT.

1We note that fRG has been recently also used in the study of pnictides. In this case the electronic correlations
are supposed to be less strong while the interplay of severalbands, with different topologies of the Fermi surfaces
is more important [115].
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3.0.2 Extensions of DMFT

As discussed in chapter 1.5, DMFT represent the ‘‘quantum’’extension of the classical
(static) mean-field theory [47]. More formally, it provides the exact solution of a quantum
many-body Hamiltonian in the limit of infinite spatial dimensions (d→ ∞) [48]. Hence DMFT
allows for an accurate (and non-perturbative) treatment ofthepurely localpart of the correla-
tions. At the same time, the mean-field nature with respect to the spatial degrees of freedom
implies that all thenon-localspatial correlation are completely neglected.

Several approaches have been developed in the past two decades to include non-local corre-
lations beyond DMFT. These can mainly be classified into cluster and diagrammatic extensions
of DMFT. The philosophy behind these approaches is different and therefore they are suited to
analyze different questions and regimes in a complementaryway. Let us discuss the cluster
extensions first.

Cluster extensions

With the increasing computational power and the progress in the impurity solvers, in recent
years it has become possible to solve, numerically exactly and with high efficiency, bigger and
bigger cluster of impurities. Since DMFT is based on a mapping of a lattice problem onto
a single AIM embedded in a self-consistent bath, the most natural extension of it consists in
mapping a small portion of the lattice problem on a cluster consisting ofNc > 1 impurity sites
embedded in a self-consistent bath. In this way the correlations inside the cluster are treated
exactly (or numerically exactly), while the correlations beyond the cluster size are treated at the
dynamical mean field level using the self-consistent effective bath. This procedure is the basic
idea behind the so-calledcluster extensionsof DMFT.

There are two possibilities to define the cluster: it can be done either inreal spaceor in
momentum space. Defining the cluster in real space is more intuitive, as onesimply needs
to single out a portion of the lattice and associate to it a cluster of impurities. The hoppings
between the impurities as well the interaction on them are kept fixed at the lattice value, while
the cluster embedding is defined self consistently. This approach is namedcellular DMFT
(CDMFT) [109,114].

In the same direction goes thevariational cluster approach2 (VCA) [143]. In VCA the
lattice is represented by a small cluster, but in this case, instead of treating the correlation
beyond the cluster by embedding the cluster in a self-consistent bath (like in CDMFT), one
deals with it by (i) attaching uncorrelated bath sites at theboundaries of the cluster; and by (ii)
determining in variational way also the on-site energies and hoppings between the correlated
cluster sites, to take effectively into account the correlations beyond the cluster size and to
overcome the drawback of having a discrete embedding (bath sites) of the cluster instead of a
continuous one.

An equivalent way to proceed consists in defining the cluster in momentum space: The

2Sometimes also called variational cluster perturbation theory [159].
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Brillouin zone is dived inNc patches, the self-energy being assumed constant in each patch:

Σkσ(ω) =
Nc∑

i

Σiσ(ω)ζ(k, i). (3.1)

Here ζ(k, i) equals one if the momentumk belongs to the patchi and zero otherwise. The
self-energy of each patch is then computed solving self-consistently a cluster ofNc sites. This
approach is known asdynamical cluster approximation (DCA) [64, 65, 122]. As cDMFT,
DCA relies on the fact that, at least in systems of high dimensionality, the frequency dependence
of the self-energy is supposed to be more important than the momentum one [64], and the latter
can be therefore be approximated well enough by an ansatz of the form of equation (3.1). For
both (cDMFT and DCA) methods, it is also important to notice, that for small cluster sizes the
geometry of the cluster (or, in other words, how the Brillouinzone is dived in patches) turns
out to play an important role, with some geometries being more favorable than others [21].

An appealing feature of the cluster methods is that they provide an interpolation between
the DMFT, corresponding toNc = 1, and the exact solution, which is recovered in the limit of
an infinite cluster size (1/Nc → 0). Since the correlations inside the cluster are treated exactly,
cluster methods, and DCA in particular, have been able to describe quite accurately short-range
non-local correlations, and phenomena which are associated with them, like the opening of the
pseudogap in the spectrum of the two-dimensional Hubbard model at half filling [87], as well
as finite doping [51, 118]. Furthermore, it can also be seen that the Néel temperature for the
antiferromagnetism at half filling is reduced with increasing cluster size [123], and that it is
possible to find a divergent susceptibility associated with adx2−y2 pairing, for finite tempera-
tures, compatible with a Kosterlitz and Thouless (KT) [4, 20, 105] transition [123]. However
due to the space dependence of the order parameter the convergency with the cluster size is
only very slow [122]. Moreover it is physically clear that whenever approaching a (second
order) phase transition, which involves a divergent correlation lengthξ the convergence of the
results with the cluster size will become slower and slower,since the number of cluster sites
required to reproduce the correlations will increase together withξ. For the very same reason,
the cluster methods are not able to give an accurate answer regarding the critical exponents at
the transition.

In fact, the analysis of the critical exponents requires thestudy of the critical region, which,
in temperature, corresponds to the immediate vicinity of the critical temperatureT − Tc ≪
1. In this temperature regime a divergent length scale appears, since the correlation length
diverges as∝ (T − Tc)

−ν , that will soon exceed the length of the longest correlations that can
be described exactly within a cluster, with scales with the number of cluster sites likeN (1/d)

c .
All the correlations beyond this length will be captured only at the mean field level (in space),
and hence the authors of reference Ref. [123] conclude that close enough to the transition the
critical exponents reproduced in DCA reduce back to the mean-field ones, reflecting the mean
field treatment of the correlations beyond the size of the cluster. Conversely, phenomena which
arise from correlations related with a narrow region of reciprocal space, such as the vicinity of
a Van Hove singularity [82], are very hard to describe [55] incluster approaches.
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It has also to be stressed that increasing the size of the cluster is computationally extremely
challenging: Due to the increase of the size of the Hilbert space associated with the cluster the
computational effort increases with the number of sites. This also limits the possibilities of the
cluster calculations for multi orbital systems, which would require further computational effort.
Besides this one should also consider that usually the cluster is solved using quantum Monte
Carlo methods, and this might imply, away from half filling the emergence of the so-called sign
problem, for large values of the Hubbard interaction [122].

The take home message from the discussion above is that the cluster methods are very
powerful in dealing with the short-range correlations, which are treated very precisely, but
might have to be supported with other methods for the analysis of the long range correlations
arising in the proximity of (quantum) phase transitions andinstabilities. To this aim, one such
possibility is making use of the diagrammatic extensions ofDMFT described below.

While the most powerful cluster techniques have been developed in Refs. [64, 109, 114],
historically the idea of treating short range correlationsusing more than one impurity can be
traced back to the work of Schiller and Ingersent [161]. In this paper the authors discuss about
1/d (d representing the number of dimensions) corrections to the infinite dimensional limit of
DMFT: Due to the proper scaling of the hopping (sec. 1.5) the self-energyΣij scales like
1/d‖i−j‖, ‖ i− j ‖ being the Manhattan distance between the sitesi andj, and therefore:

The [...] summation of all skeleton diagrams with no inter site distance greater than
n constitutes a systematic approximation scheme correct to the order1/dn.

In turns, the non-local Green’s function between sites at a Manhattan distance smaller thann
can be computed from the solution of an action ofn+1 impurities. In other words, by defining
a problem containingn + 1 impurities we are able to describe (i) the Green’s functionGij for
‖ i − j ‖≤ n and (ii) the leading diagrams in1/d, up to the order1/dn. Correspondingly,
the Weiss field ofn + 1 impurities (which takes a matrix form) needs to be computed self-
consistently.

Such so-called "1/d expansion", however, is different from the other cluster expansions
described below in some important aspects. First, the cluster which is solved in the1/d ap-
proximation does not correspond to a small portion of the lattice (as in cDMFT or DCA), but
is rather an auxiliary tool, defined to compute the local andnon-local Green’s function for dis-
tances inside the cluster size. Secondly, on the conceptualpoint of view, the1/d expansions
can be regarded as being at the border between diagrammatic and cluster extensions of DMFT:
The parameter1/d serves as ‘‘small’’ perturbative parameter, and the diagrammatic content of
the approximation is controlled, in the sense that it is clear which diagrams can be attributed to
the theory and which not. In this respect, the impurity clusters are introduced as an aid for the
approximation, which is anyway derived diagrammatically.The first order correction1/d was
included for the Falicov-Kimball model in Ref. [161] by introducing an action involving two
impurities. The correction obtained using the1/d approach are very small and this approach
has not been very successful, possibly also due to the very limited size of the cluster that one
was able to solve exactly when the method was proposed. Thereafter not many studies have



120 Combining DMFT and functional renormalization group: The DMF 2RG

been performed in this direction.

Diagrammatic extensions

The common idea behind the diagrammatic extensions of DMFT is assuming the DMFT
as the zeroth order approximation, pinpointing a parameterthat is supposed to be small and
selecting a subclass of diagrams which corresponds to some form of perturbative expansion in
the supposedly small parameter, while keeping the nonperturbative local physics of DMFT3 as
starting point for the expansion.

Several approaches of this kind have been proposed. Historically, the first attempt to extend
DMFT was the1/d expansion [161], which shares aspects of the cluster and of the diagrammatic
extensions of DMFT. In this case the perturbative parameteris given by1/d. The1/d expansion
allows for the inclusion of short range correlations only: At the order1/dn are exactly included
only correlations extending to the firstn neighbors, and increasingn involves the solution of a
bigger auxiliary cluster of interacting impurities, therefore limiting the method to short length
correlations.

A second attempt has been tried in Ref. [154], where the methodused has been coined
DMFT+Σk. At odds with the previous one (and with the ones that we will describe below)
this approach is mostly phenomenological: It is supposed that one can split the self-energy in a
local part and a non local part, in an additive fashion. The local self-energy is then computed
solving an appropriate AIM, while the non-local one is obtained using some other approxima-
tion scheme, taking into account, e.g., interactions with collective modes or order parameter
fluctuations. It is clear that in this case the ‘‘small’’ perturbative parameter is given by the
non-local self-energy itself. Of course the quality of the approximation depends on a number of
factors, like the effective smallness of the non-local self-energy, the approximate way how this
is computed, and the assumption of an additive form of the self-energy.

A third class of more "mature" diagrammatic methods4 has been developed starting from the
second half of last decade, and includes dynamical vertex approximation (DΓA) [147,176], dual
fermion (DF) [55, 151] and, more recently, the one particle irreducible approach (1PI) [146].
In these methods the idea is building subclasses of diagramsusing ‘‘standard’’ perturbative
approaches (e.g.,n-order perturbation theory, ladder-like diagrams, parquet-like diagrams) but
using ‘‘building blocks’’ (i.e., Green’s functions, two-particle interactions...) which already
include all the local physics captured by DMFT.

Let us consider, as an example, a simple resummation of ladder diagrams. In standard
perturbation theory these diagram are built up using as building block the bare Green’s function
and the bare interaction vertex (i.e.,U in the case of a single-band Hubbard model). Such ladder
approximation is valid ifU is small enough, i.e., in the perturbative regime. A possibility for

3Strictly speaking, in self-consistent schemes one takes the nonperturbative local physics of an auxiliary AIM
as a starting problem. This AIM does not need to be the same as the one of DMFT.

4For completeness we also mention other diagrammatic methods: Ref [56] in which the short range correlation
of DCA are supplemented with long range ones by means of a fluctuation exchange (FLEX) approximation, and
so-called multiscale methods, like the one of Ref. [167].
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acceding a non-perturbative regime of largerU consists in keeping fixed the topology of the
subclass of diagrams (the ladder diagrams, for example, if they are well motivated physically)
but using building blocks which are already nonperturbative, and include the strong correlation
at best as we can do, i.e., at the DMFT level. In first approximation, this means that the ladder
diagrams are to be built using a non-local Green’s function (which already should keep into
account the local self-energy of DMFT) in place of the full bare Green’s function, and the local
one particle irreducible vertex, fully irreducible in the ladder channel considered, of DMFT.
In this way the building blocks of the perturbation theory already include nonperturbatively
the effects of the interaction, at least at the local level, through the self-energy and the vertex.
Since the DMFT is nonperturbative, and the DMFT diagrams areincluded in the theory from
the beginning, also the resulting new theory will be nonperturbative in the purely local diagrams,
i.e., no selection on the "topology" of the purely local diagrams is made. However, if the new
theory will provide a good approximation for the problem considered essentially depends on
how the non-local correlation effects can be captured by thediagrammatic selection done. In
other words, the approximation will work only if a "perturbative" (i.e., Feynman diagrammatic)
treatment of the non-local physics is possible. In this sense the discriminating criteria for the
quality of the approximation isnot the size of the rationU/D (D being the bandwidth), but
rather how important are the non-local diagrams, neglectedfrom the DMFT and not generated
by the perturbative expansion. In this respect, for example, it is clear that the theories might
work better for very large values ofU , where the physics is closer to the atomic limit, than
in the region of intermediate values ofU [152]. For example, in the case of the half filled
three dimensional Hubbard model the problematic region canbe the one around the maximal
Neél temperature for the antiferromagnetic transition [147], where a crossover between Slater
and Mott antiferromagnetism is expected [171]. Furthermore the existence, or not, of a "small
parameter" for non locality depends also onhow the building blocks are defined, and different
choices of the building blocks give rise to different approximations.

The DΓA, for example, relies on the assumption that the two-particle fully irreducible vertex
is purely local. This way, the locality condition of DMFT is raised from the one particle level of
the self-energy to the two particle level of the two-particle irreducible (2PI) two particle vertex
Λirr. The "control parameter" in this case would be the non-locality of the fully irreducible
vertexΛirr: If the exact fully irreducible vertex is local enough, the DΓA approximation is well
justified. From the practical point of view, the condition of locality of Λirr should be translated
in some diagram resummation, which can be carried out numerically. Keeping in mind that the
solution of the parquet equations would formally allow to obtain the exact full 1PI vertex, when
the exact frequency and momentum dependent 2PI vertex is used as input, it is clear that the
best that one can do, is summing all the parquet diagrams after substituting the local 2PI vertex
to the momentum dependent one. However the resummation of parquet diagrams (see also the
section about the diagrammatics of DMF2RG) is a very difficult task, and, if allowed by the
physics of the problem under consideration, one can rather restrict himself to ladder diagrams
instead of parquet ones. In this case one does not need the fully irreducible local vertex, but
rather the irreducible vertex in the one channel that is usedin the ladder resummation. This
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approximation is often referred to asladder-DΓA [147].
A related approach is the dual fermion (DF) one [55,151]. In this case one makes use of an

Hubbard-Stratonovich transformation (HST) to introduce some new auxiliary (dual) fermionic
degrees of freedom, which are noninteracting but couple to the original electrons. The trans-
formation allows to formally integrate out the original degrees of freedom of the system. The
price to pay for that is that the in the action of the dual fermions appears a complicate interaction
term, that, when the transformation is chosen properly, involves terms including the product of
four and more fermionic fields, whit coefficients related to the two- and more particle vertices
of the local problem considered5. The first approximation in DF, considered that the Hubbard-
Stratonovich transformation is obviously exact, is neglecting the terms with more than four
fields, that would be not easy to treat numerically. This relies on the idea that the three- and
more particle vertices6 are small and can be neglected. The problem now reduces to solving
approximatively (here is the second approximation of DF) the problem in dual space, and then
map the results back to evince the non-local vertex and self-energy of the original electrons.
The advantage is that the HST was chosen from the beginning sothat the local part of the inter-
action can be integrated out and the dual fermions have to account for the non-local effects only.
Whenever the local part of the interaction is really the majorone, then, it is reasonable to treat
the DF action in a perturbative fashion. To this extent, one can then choose a subset of diagrams
to construct using as building blocks the (two-particle) interaction and the Green’s function of
the dual fermions, which are respectively related with the local two particle vertex and with the
non-local part of the self-energy [151]. To summarize the DFfermion approximation will be
then successful if (i) the terms beyond the quartic one in thedual action which are neglected
are small (in turns this means that the three particle local vertex must be small) and if (ii) the
dual problem allows for a perturbative treatment. However,the choice of the diagram used in
the perturbative treatment remains important, and also in this case the best that one can (and
sometimes have to [188]) do is choosing a parquet-like approximation.

Finally, the recently introduced 1PI approach [146] presenting unifying aspects of both
DΓA and DF. In this approach one tries to extract as much informations as possible from a
resummation of ladder-type diagrams. In fact, this resummation is performed in such a way
to include, exploiting the introduction of further auxiliary fermionic fields, also diagrammatic
contributions from the other channels, without making use of the parquet formalism.

It has to be stressed that DΓA, DF and 1PI, unlike the cluster methods, include correlations
at all length scalesalthough in an approximate way. It is in this respect that diagrammatic
and cluster methods cab be indeed consideredcomplementary. A beautiful example of the
capabilities of the diagrammatic methods is the accurate description of the critical properties,
see, e.g., the calculation of the critical exponents, whichhas been performed in DΓA for the

5In first approximation the local problem can be the one of DMFT. However this is not necessary, and the
proposed scheme [151] is self-consistent.

6Here we do not specify furtherwhatkind of vertex, since it depends on a non-unique choice of theHubbard-
Stratonovich transformation. With the choice of [151] the vertices to employ are the two and more particle Green’s
functions.
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Figure 3.2: Inverse AF spin susceptibility as a function ofT for differentU values. Lower
inset: Inverse DMFT susceptibility with a MF (γ = 1: linear behavior) critical exponent.
Upper inset: largerT interval. Reproduced from Ref. [147].

case of the three-dimensional Hubbard model [147], see Fig.3.2, and in DF for the two-, three-
and four-dimensional Falicov-Kimball model [11].

However there is still a caveat: Even when it is possible to define a "small control param-
eter" for the physics beyond DMFT, it is still necessary to select and compute subclasses of
diagrams that encodeas much as possiblethe relevant non-local physics. In most cases, in fact,
keeping only the lowest diagrams in perturbation theory does not allow for big improvements,
and it is needed to use resummation ofinfinite set of diagrams, although, restricted to some spe-
cific topology, like in ladder or parquet approximation. Ifpossible, the resummation of parquet
diagrams is the best that one can do, and allows for the correct treatment of competing instabil-
ities. However this is in general an extremely hard task, andin most cases one has to restrict
himself to ladder diagrams. In specific cases, as those treated in Refs. [11, 147], this can be a
good approximation, i.e., when there are reason to believe that one instability dominates over
the others. However in more general situations, typically one does not know a priori whether
a ladder channel dominates over the others or not, exactly asin the cuprate situation. In these
cases a ladder approximation can produce rather biased results.

It is in this kind of situations that using DMF2RG may become appealing: As we have
already discussed, thanks to fRG we have the possibility of computing parquet-like diagram (in
the sense of Sec. 1.4.2), which we will use to obtain anunbiasedtreatment of the electronic
correlations beyond DMFT inall channels. In the next section we will formalize the method and
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we will see how these parquet-like diagrams are obtained using the non-perturbative building
blocks of DMFT.

Slattice

Sinitial

SDMFT

Figure 3.3: Sketchy representation of the difference between the standard fRG flow and the
DMF2RG one. Each point of the ‘‘parameter space’’ corresponds to the action associated
with a different gaussian propagator (but the same interaction term). The goal is computing
field integrals relative to the action labelledSlattice, by performing a flow that starts from
an action that we are able to solve (Sinitial). Choosing a cutoff corresponds in our sketchy
representation to the selection of a path in the parameter space. Obviously if no approxima-
tion is done at the end of the flow one would end with the same result for the field integrals
that one would have integratingSlattice. However, due to the truncation, we are not able
to integrate exactly along the path, and therefore we might end quite off from the desired
result, as represented in the figure. This makes the choice of the starting action very impor-
tant. In a conventional fRG one usually starts from a problem in which all the fluctuations
are suppressed: the propagator of the gaussian term is identically zero in the beginning of
the flow. This corresponds to the case denotedSinitial in the figure. Increasing the value of
the interactionU the full action contains gradually more correlations that are neglected in
the initial one, and are only partially recovered during theflow. Therefore the result of the
integration of the flow equations can be quite different from the exact result. In DMF2RG
the starting point,SDMFT corresponds to the action of the AIM associated with the DMFT
solution of the lattice problemSlattice. Therefore it contains already a possibly big part of
the correlations, i.e., the local ones. In the flow only a smaller part have to be built: The
starting point of DMF2RG is ‘‘closer’’ to the final action than the starting point offRG. As
a consequence one can expect that the results obtained by integrating the flow equations of
DMF2RG might be closer to the exact result.
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3.0.3 From infinite to finite dimensions

The idea behind DMF2RG can be visualized pictorially as flowing from the solutionof
an infinite dimensional system to the solution of a finite dimensional one, as we represented
schematically in Fig. 3.3.

Figure 3.4: Schematic illustration of the DMF2RG approach, showing the evolution of the
Gaussian partG0

Λ of the action from DMFT to its exact expression for a two-dimensional
system. The (truncated) flow equations for the self-energyΣΛ and the two-particle vertex
ΓΛ are explicitly given in terms of Feynman diagrams.

The infinite dimensional system is introduced because it can be solved exactly, by means
of DMFT, and therefore it can be taken as a starting point for fRG. As discussed in the chapter
about DMFT, the solution of the infinite dimensional problem is obtained, in practice, from the
one of an AIM embedded in a self-consistent bath, which accounts for the effects of the rest of
the system, i.e., for the other sites of the lattice. In fact,in the single band case, the only lattice
quantity entering in the DMFT self consistency equation (1.125) is the density of statesρ(ǫ),
and a DMFT calculation for a finite and for an infinite dimensional lattice, will yield the same
results7, provided that the density of states of the noninteracting systems are the same. However,
only in the case of really infinite dimensional lattices thelocal physics will be described exactly
by the AIM self-energy and Green’s function, otherwise it will be an approximation. For this
reason in Fig. 3.4 the "infinite dimensional" starting pointhas been sketched by an impurity
site surrounded by a cloud, representing the effective bathof the self-consistent AIM that is
replacing the hopping. As we flow towards the finite dimensional lattice of our interest the
embedding cloud is supposed to fade out while the lattice hopping is gradually activated. This
is the basic idea of DMF2RG that we are going to express more formally in the next paragraph.

7This is true if no symmetry breaking takes place [48].
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Method

Let us start by briefly recapitulating the standard fRG technique, already discussed in the
fRG chapter 1.4, which makes it easier, then, to clarify how the DMFT approximation can be
combined with it.

We consider an interacting problem defined by the action:

Slattice = −
∫ β

0

dτdτ ′
∑

kσ

ψ̄kσ(τ)G
0
latt(k, τ − τ ′)−1ψkσ(τ

′) + Sint. (3.2)

Here,ψ̄kσ(τ)(ψkστ ) are the Grassmann variables [134] corresponding to the creation (annihi-
lation) of a fermion with spin projectionσ =↑, ↓ of momentumk at imaginary timeτ . G0

latt

is the free propagator of the finite dimensional system, which reads explicitlyG0
latt(k, iωn) =

(iωn−ǫk+µ)−1 in terms of the fermionic Matsubara frequenciesωn = π/β(2n+1), the energy-
momentum dispersionǫk and the chemical potentialµ. All the terms beyond the Gaussian one
are contained inSint. In the simplest case, for the interaction of a single band Hubbard model,
this reads:

Sint = U

∫ β

0

dτψ̄i↑(τ)ψi↑(τ)ψ̄i↓(τ)ψi↓(τ). (3.3)

The Grassman variables̄ψiσ(ψiσ) correspond to the creation (annhilation) of a fermion of spin
projectionσ on the lattice sitei. The Grassman variables in real and momentum space are
related by a Fourier transform:

ψ̄jσ(τ) =
∑

k

e−iRjkψ̄kσ(τ), ψjσ(τ) =
∑

k

eiRjkψkσ(τ); (3.4)

ψ̄kσ(τ) =
∑

i

eiRjkψ̄iσ(τ), ψkσ(τ) =
∑

j

e−iRjkψiσ(τ). (3.5)

HereRj is the lattice position of the sitej. The summation
∑

k is intended over the first
Brillouin zone. As usual Grassman fields can also be expressed in terms of the Matsubara
frequencies:

ψ̄kσ(ωn) =

∫ β

0

dτe−iωnτ ψ̄kσ(τ), ψkσ(ωn) =

∫ β

0

dτeiωnτψkσ(τ); (3.6)

ψ̄kσ(τ) =
∑

n

eiωnτ ψ̄kσ(ωn), ψkσ(τ) =
∑

n

eiωnτψkσ(ωn); (3.7)

(the same transformation applies to the fields expressed inreal space).
In general, the fRG procedure, described in Sec. 1.4 can be summarized conceptually in

three steps [129,141]:

1. First a ‘‘solvable’’ action (Sini) is introduced as initial starting point. Here, ‘‘solvable’’
means that at the beginning the ‘‘problematic’’ (i.e., non gaussian) parts of the original
action are excluded (e.g., the degrees of freedom close to the Fermi level). Note thatSini

differs from the originalSlatt only in its Gaussian part.
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2. A one-parameter family of actionsSΛ is defined. These actions smoothly interpolate
between the solvable action for the initial value of the parameter (i.e., ifΛ = Λini, SΛini ≡
Sinitial ) and the physical one at the end (forΛ = Λfin: SΛfin ≡ Slattice). This corresponds
to a continuous change of the Gaussian propagator fromSinitial to Slattice.

3. The evolution of all (1PI)m-particle vertex functions of the actionsSΛ as a function of
Λ is determined from a set of coupled differential equations,called ‘‘flow equations’’.

The formal derivation of this procedure, as well as of the flow equations for the vertex func-
tions is presented exhaustively in the literature, see, e.g., the recent reviews Refs. [129, 141]
as well in chapter 1.4. By integrating this set of differential equations, one canin principle
evaluate exactly all 1PIm-particle vertex functions of the actionS of the problem of interest
by computing the flow from the corresponding vertex functions of the solvable model, indepen-
dently on which specific choice was made for it. However, in the presence of a two-particle
interaction, the hierarchy of flow equations couples them-particle vertex functionΓΛ

m with the
(m + 1)-particle one, i.e., the set of flow equations is in generalinfinite. Hence, in practice
one needs to truncate the equations: As an approximation, itis assumed that all the 1PI-vertex
functions withm bigger than some value (typicallymmax = 2) are neglected. Within this
approximate treatment, the choice of the initial action becomes obviously important.

More specifically, by retaining only the one-particle vertex function (self-energy) and the
two-particle vertex, and setting the three-particle vertex to zero, the truncated flow equations
assume the form:

∂ΛΣ
Λ = ΓΛ

2 ◦ SΛ, (3.8)

∂ΛΓ
Λ
2 = ΓΛ

2 ◦ (SΛ ◦GΛ) ◦ ΓΛ
2 . (3.9)

Here the symbol ‘‘◦’’ stands for the standard summation over all internal variables, i.e., momen-
tum integration as well as spin and Matsubara frequency summation. At each vertex, energy,
spin, and momentum is conserved according to the conventional diagrammatic rules. The sym-
bols ΣΛ, ΓΛ

2 , GΛ andSΛ stand respectively for the self-energy, two-particle vertex, dressed
Green’s function and single scale propagator, as defined inthe main text. The initial condition
for these differential equations,ΣΛini , ΓΛini

2 are obtained by solving the initial ‘‘solvable’’ action
Sini.

Their explicit expression in terms of frequency, momenta and spin summations can be found,
e.g., in Refs. [129] and in Chapter 1.4. The main difference from the conventional fRG ap-
proach, is that in DMF2RG we aim at including a major part of the correlated physicsalready
at the level of the initial ‘‘solvable’’ action. This is certainly possible for the non-perturbative,
but purely local, correlations of DMFT, because the DMFT solution of several models and
realistic problems of solid state physics can be obtained both at the one and the two-particle
level [54,138,149], providing the input for the truncated flow.

The formal implementation of this idea requires evidently to replace the initial action with
a one describing the non-perturbative local physics of the DMFT solution and then to set up
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the flow to the final actionSlattice of the desired problem (whereall correlations, namely also
thosebeyondDMFT, are eventually included). Due to the flexibility of the fRG scheme, there
are several ways to realize this in practice. A first attemptcan be obtained considering that,
from a mathematical point of view, as DMFT corresponds to theexact solution of a quantum
many body Hamiltonian in the limit of infinite dimensions (d → ∞), the most intuitive way
might be realized by building up a ‘‘dimensional’’ flow fromd = ∞ to the actual dimensions
(e.g.,d = 2 or 3) of the problem of interest. In this case, one would start from the action of an
infinite dimensional lattice (e.g., hypercubic) and the parameterΛ should gradually turn off the
hopping in all directions, except the physical ones of the final problem.

This can be done considering the family of actions associated with the following Hamiltoni-
ans in the limitd→ ∞ :

HΛ =
∑

kσ

{
1√
2d

[f(Λ)ǫk1k2 + Λǫk3...kd ]− µ

}

c†kσckσ

+U
∑

i

ni↑ni↓, (3.10)

with niσ = c†iσciσ.
Here the momenta in the first sum ared dimensional:k = (k1, k2, ..., kd) while the second

sum extends over the lattice sites of ad dimensional lattice. The operatorsc†kσ (ckσ) create
(annihilate) a fermion of momentumk and spinσ, niσ is the number operator counting the
fermions of spinσ at the lattice sitei.

To be specific, let us assume that the energiesǫk1k2 refer to a two dimensional square lattice
with nearest neighbors hoppingt: ǫk1k2 = −2t(cos k1 + cos k2). The infinite dimensional limit
of this lattice is obtained whenΛ = 1 andf(Λ) = 1 takingǫk3...kd = −2t(cos k3 + ...+ cos kd).
The factor 1√

2d
accounts for the proper scaling: it guarantees that the kinetic energy does not

diverge in the limitd→ ∞ (see sec. 1.5). The termsΛ andf(Λ) are used to interpolate between
the Hamiltonian ind and two dimensions. For example, assuming the following form for f(Λ):

f(Λ) = 1 + (1− Λ)(
√
2d− 1), (3.11)

one recovers thed → ∞ limit for Λ = 1, while for Λ = 0 one restores the two dimensional
lattice Hamiltonian. To each Hamiltonian then, one can, in principle, associate an actionSΛ.
The most intuitive of doing this is just using the standard connection between the action and
hamiltonian formulation:

SΛ = −
∫ τ

0

∑

iσ

ψ̄iσ(−∂τ + µ)ψiσ −HΛ[ψ, ψ̄], (3.12)

whereHΛ[ψ, ψ̄] is the Hamiltonian expressed in terms of the Grassman fieldsψ andψ̄ instead
of the usual creation and annhilation operatorsc and c†. It should be noted, however, that
these actions ared dimensional: Formally even the final action should be written in terms of
Grassman variables of ad dimensional lattice, and therefore it is not equal to the physical action
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Slattice (3.2), of the two dimensional lattice we are interested in. However, since at the end of
the flow the hopping to the extrad − 2 dimensions is suppressed the corresponding Grassman
variables are decoupled from the physical ones and can be integrated out.

A possible way of circumventing the problem is building ‘‘byhand’’ a family of action
by defining an appropriate propagator for the gaussian partof the action that depends only on
the two-dimensional physical momentum. This can be done rewriting the interactingGreen’s
function in the following way:

GΛ(k1, k2;ωn) =
∑

k3,...,kd

1

iωn − (1− Λ)ǫk1k2 − Λ
ǫk3...kd√

2d
+ µ− ΣΛ(k1, k2, ωn)

(3.13)

!
=

1

[ζΛ(k1, k2, iωn)]−1 − ΣΛ(k1, k2, ωn)
. (3.14)

This equation has to be seen as an implicit expression for thepropagatorζΛ of the Gaussian part
in the following action:

SΛ =
1

β

∑

n

ck1k2σ(ωn)[ζ
Λ(k1, k2, iωn)]

−1ck1k2σ(ωn) + Sint. (3.15)

Equation (3.14) and (3.15) define a one parameter family of actions suited for a flow. In fact
Eq. (3.13), in the beginning of the flow (Λ = 1) does not depend onk1 andk2 and reduces
to the DMFT self consistency equation (1.125), which, is worth reminding, is exact in infinite
dimensions. ThereforeζΛ=1(k1, k2, ωn) = Ghyp(ωn), whereGhyp(ωn) is the gaussian propagator
of the AIM which has the same local Green’s function of the infinite hypercubic lattice with
rescaled hoppingt/

√
2d, and the initial actionShyp would coincide with the solvable action of

the AIM associated to the hypercubic lattice.
In spite of its rather intuitive picture, however, such ‘‘dimensional’’ flow equation scheme,

is not the most suitable choice to be adopted in practice. Thefirst reason is of practical nature:
The gaussian propagator defined by Eq. (3.13) is extremely unpleasant, as it requires the in-
version of an implicit equation that includes also the self-energy8. Since in the flow equation
also the derivative of the propagator is required it is evident that a different definition of the
propagator at intermediate scaleΛ is required. The second, and most important, reason is of
conceptual nature. In fact, one should consider that in mostof its applications, and in particular
in those aiming at the realistic description of materials, DMFT is employed as anapproximation
for describing the local physics of a givenfinite-dimensional system, and no limit of infinite
dimensions is actually taken. Indeed, it would be rather cumbersome to define a rigorous and
general procedure for connecting on a Hamiltonian level, case by case, a finite dimensional lat-
tice with its infinite dimensional limit. In particular, the Hamiltonian for a real system involves
complicated hopping amplitudestij, which are not limited to the nearest neighbors and which
are also often not isotropic. Therefore, even if it was the correct thing to do (and it is not, as

8Eq. (3.13) can actually be made explicit only in the case of a Lorentzian density of states, while it is well
known that the density of states associated with the infinite dimensional hypercubic lattice is gaussian, see chapter
about DMFT.



130 Combining DMFT and functional renormalization group: The DMF 2RG

we discuss below), it would not be clear how to generalize thehoppings to those of an infinite
dimensional lattice.

To understand why "generalizing the hopping" tod = ∞ is not the right thing to do, let us
rethink of our goal, referring to the schematic representation of the flow of Fig. 3.3. We want
to obtain the correlations in the actionSlattice, which are difficult to access directly, because, in
presence ofSint, they have to be computed solving an integral over Grassman variables that go
beyond the Gaussian term. fRG allows us to circumvent this integration. As discussed above,
the first step is a different choice of the ‘‘solvable’’ action from Sinitial. This new action is
represented by another point in the parameter space of Fig. 3.3. An usual choice in fRG would
be an actionS0 which is solvable because the fluctuations are completely suppressed by the
choice of the Gaussian propagator, which often is assumed tocompletely vanish in the initial
action. The choice of the explicitΛ-dependence of the propagator then singles out a path in
the ‘‘action space’’. Integrating along this line we are able to obtain the correlations ofSlattice.
However, due to the truncation, some error is accumulated along the path. For this reason we
want to start from an action which, besides being solvable, is also as close as possible, in some
physical sense, to the final one. Therefore the question is:Which is the solvable action that,
in a DMFT perspective, is closest to the lattice one? A possible choice isShyp defined above.
However a much better choice is given by the effective actionof the DMFT solution (SDMFT),
i.e., the action of the auxiliary AIM associated to the DMFT solution of the specific, finite
dimensional problem of interest, i.e.:

SDMFT = −
∫ β

0

dτdτ ′
∑

iσ

c̄iσ(τ)G0
AIM(τ − τ ′)−1ciσ(τ

′) + Sint, (3.16)

In fact we have seen in Sec. 1.5.2 that the actionSDMFT is the local action whose interacting
Green’s function equals the local Green’s function of the problem of interest, under the DMFT
approximation. It was also discussed that this action is obtained as the minimum of an appro-
priate functional of the local Green’s function, which encourages our idea that it is closer to the
final action.

The DMFT self consistency condition (1.125), which in the functional context arises natu-
rally as a condition for the minimum of the functional, involvesonly the density of states of the
lattice problem and no other details of the lattice, which inDMFT is the relevant quantity rather
than the hopping itself. For example the density of states ofthe two dimensional lattice with
nearest neighbors hopping:

ρ2D(ǫ) =
1

(2π)2

∑

k

δ(ǫ− ǫk), (3.17)

is certainly different from the density of states of the initial HamiltonianHΛ=1, i.e., the density
of states of the hypercubic lattice with nearest neighbors hopping, which is a Gaussian function.
On the other hand it is possible, in principle, to find anauxiliary infinite dimensional Hamil-
tonian with hoppings̃tij so that its density of states equalsρ2D(ǫ). For this auxiliary infinite
dimensional Hamiltonian the DMFT solution is exact. Therefore we have two possible ways of
looking at our starting point in DMF2RG:
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• From an action perspective, we start our flow from the self-consistent actionSDMFT of
the DMFT impurity problem that approximates the local physics of the lattice problem
we want to study and we gradually attribute a momentum dependence to the gaussian
propagator, until it equalsG0

latt;

• From an Hamiltonian perspective, we start our flow from an infinite dimensional aux-
iliary Hamiltonian with hopping amplitudes̃tij, and gradually change the hopping until
the hoppings ind − 2 dimensions are suppressed and the Hamiltonian equals the two
dimensional one.

This physically motivates our choice for the starting pointof DMF2RG.
Now let us see how we can put in practice our intent of computing the correlation beyond

DMFT, i.e. how do we single out a path in the parameter space, and perform the integration of
the flow equations:

1. Find the impurity actionSDMFT whose self-energy and Weiss field fulfill the DMFT self
consistency condition;

2. Solve the quantum many-body problem associated with thisimpurity action, extracting
the 1PI one-[ΣDMFT(ωn)] and two-particle [ΓDMFT(ν1, ν2; ν

′
1, ν

′
2)] vertex functions;

3. Finally, useΣDMFT(ωn) andΓDMFT(ν1, ν2; ν
′
1, ν

′
2) as initial condition for the fRG flow-

equations (3.8), (3.9) for the self-energy and the vertex functions.

This way the local correlated physics captured by DMFT will be present from the very begin-
ning of the flow, and the local and non-local corrections to it will be generated unbiasedly in all
channels by the fRG algorithm, via the numerical solution of the associated differential equa-
tions (see also section about the diagrams). The exact form of such equations is defined by the
choice ofSΛ (cutoff) and by the truncation scheme. While for the latter wehave assumed the
most simple truncation at the two-particle level, the cutoff choice will be discussed in the next
subsection.

Cutoff scheme of DMF2RG

For DMF2RG, a quite natural cutoff choice is a linear interpolation ofthe Gaussian part
(G0

Λ(k, ωn)
−1) of the action fromSinitial = SDMFT, where

SDMFT = −
∫ β

0

dτdτ ′
∑

iσ

c̄iσ(τ)G0
AIM(τ − τ ′)−1ciσ(τ

′) + Sint, (3.18)

to Sfin = Slattice. The interpolated Gaussian propagator reads explicitly:

G0
Λ(k, iω)

−1 = f(Λ)G0
AIM(iω)

−1 + [1− f(Λ)]G0
latt(k, iω)

−1, (3.19)

wheref(Λ) is an arbitrary smooth function ofΛ such thatf(Λini) = 1 andf(Λfin) = 0. In
practice without loss of generality one can takef(Λ) = Λ with Λini = 1 andΛfin = 0, as any
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alternative choice off(Λ) can be reabsorbed in a change of variables in the integrationof the
flow equations.

We note that the cutoff schemeSΛ defined by Eq. (3.19) is similar to the ‘‘interaction
cutoff’’ [72] in standard fRG, since it does not operate any selective cut on specific regions
of the momentum and/or frequency space. The implementationof a cutoff analogous to the
frequency cutoff in standard fRG, might read

G0
Λ(k, iω)

−1 = [1− θ(|ω| − Λ)]G0
AIM(iω)

−1 + θ(|ω| − Λ)G0
latt(iω,k)

−1, (3.20)

whereθ(x) is the Heavyside step function, or some smoothened version of it. Clearly, as long as
the impurity problemSDMFT does not show any infrared divergencies, this cutoff is regulating.
Evidently all possible cutoff schemes are equivalent in thecase of a non-truncated flow. In
the actual implementation however, a frequency- or momentum-cutoff, which can regularize
infrared divergences of the problem, might be more suited tostudy the regime in the proximity
of (quantum) phase transitions. Its effective implementation, however, is numerically more
involved than the simple cutoff of Eq. (3.19) and subject to future investigations.

3.0.4 Diagrammatic content

We will turn our attention now to the diagrammatic content of DMF2RG. The derivation
of the diagrams included in DMF2RG follows directly from the diagrammatic analysis of fRG
described in 1.4.2, and it will allow us to understand which diagrams are added to the standard
diagrammatics of DMFT and fRG. This will allow us at the end of this section to compare the
diagrammatic content of DMF2RG to the one of DΓA in its parquet and ladder implementations.

As we have discussed in 1.4.2, the diagrams generated by the integration of the flow equa-
tions can be written explicitly by formally solving the flowequations in an iterative fashion.
The way this was done in Sec. 1.4.2 was quite general: We did notassume specifically any
choice of the initial, condition, therefore what we have to do now is specializing to DMF2RG
the results obtained there.

Let us first discuss the diagrammatic content of the DMFT initial condition andΣDMFT(ν)

andΓDMFT(ν1, ν2; ν
′
1, ν

′
2), trying to understand its relation with the standard fRG. Thequestion

can be posed in the following way: Let us suppose that we try toobtain the local (but nontrivial)
initial condition of DMF2RG (i.e., the one- and two-particle 1PI vertices ofSDMFT) using an
fRG flow starting from an actionS0 which suppresses all the fluctuations and flowing to the one
of the auxiliary AIM. What diagrams would we lose compared to the initial condition obtained
in DMFT? Of course if we were able to avoid the truncation of the flow equations we would
obtain the same diagrams since both, fRG without truncation and the solution of the AIM in
DMFT are exact. However in presence of a truncation, the fRG isnot able to recover all the
diagrams of the exact solution. In particular, with the usual truncation at the level of the three-
particle vertex the fRG will reproduce only parquet-like diagrams (with the approximations
already specified in Sec. 1.4.2). A typical diagram which isincluded in the DMFT solution of
SDMFT but not in the one of fRG, is the so-called ‘‘envelope diagram’’, shown in Fig. 3.5a).
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Figure 3.5: Examples of diagrams included in different theories. Diagram a) is included in
DMFT, but not in fRG with truncation at the six point vertex; Diagram b) is included in fRG,
but not in DMFT (as long asi 6= j); Diagram c) is included in DΓA and, at a certain ex-
tent, also in DMF2RG. Diagram d) is the part of diagram c) which is neglected in DMF2RG;
The line cutting the Green’s function propagator stands forthe fact that the integral over the
derivative of the internal bubble is neglected. Diagram e) is included in DMF2RG, and in
ladder-DΓA, but only if j = i. Finally diagram f) is not included in any of the diagram-
matic extensions of DMFT mentioned until now, unless all thesite labels are equal (or if the
distance between the sites is small, in the case of the1/d expansion).

This diagram is the lowest order two-particle irreducible diagram, and can be generated in fRG
only keeping vertices of an higher number of particles in theflow equations (see Sec. 1.4.2).
More in general, the fRG truncated at the level of the three particle 1PI vertex will miss all
the two particle irreducible diagrams contributing to the 1PI vertexΓDMFT. In turns, also the
self-energy will be different. In truncated fRG, the self-energy is not related to the 1PI vertex
by the equation of motion, but rather by perturbation theory-like equations and, together with
the vertex, it does not fulfill exactly Ward identities [95].On the other hand, this is not the case
in DMFT: Since the self-energy and the vertex are obtained from the exact solution of the AIM,
they are related by the equation of motion, and they respect the Ward identities.

Let us now focus on the diagrams that are generated along the flow. This can be under-
stood specializing to the case of DMF2RG the discussion that was kept general in Sec. 1.4.2:
The starting point of the flow is now constituted byΣDMFT andΓDMFT. All the parquet-like
diagrams are now generated by building iteratively one-loop diagrams in all the channels with
the 1PI two-particle vertex of DMFT, which, in this context,plays the role that is played by
the bare interactionU in the diagrammatics of the parquet approximation (PA). To clarify this
point, let us remind that the parquet equations form an exactset of equations [22] when the
fully-irreducible two-particle vertex, momentum and frequency dependent, isknown and used
to build all the two-particle reducible diagrams (in all thechannels). The simplest approxima-
tion, namely the parquet approximation, early introduced by the Soviet school [142], consists in
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substituting the bare interactionU to the fully-irreducible two particle vertex, i.e., suppressing
its frequency and momentum dependence and works only for small interaction values.

We should emphasize here that the termparquet-likediagrams is used in the same sense
specified in Sec. 1.4.2 as opposed to the more standard diagrams of the PA. It is necessary to
make this difference since in truncated fRG, and hence in DMF2RG, the diagrams generated by
the flow have the topological structure of the PA diagrams, but are not computed exactly. In
fact, the truncation has two consequences. The first one is that, instead of generating all the
diagrams one is restricted to the PA ones. The fully irreducible diagrams, at the one-loop trun-
cation level, are discarded. At higher truncation levels only the lowest order fully irreducible
diagrams are be generated, the maximum order of generated irreducible diagrams depending on
the specific truncation level. The second consequence is that the diagrams are not computed
exactly even within the PA. To understand what is the neglected contributions one can imag-
ine a parquet diagram as a sequence of nested loops. In fRG, theGreen’s function lines that
constitute these loops acquire aΛ-dependence. Any given diagram can be then formally ob-
tained by an iterative integration of the flow equations as shown in Sec. 1.4.2. As discussed in
Sec. 1.4.1, the derivative of the diagram is given by a sum of diagrams in which one Green’s
function line is substituted by itsΛ-derivative represented by a smashed line, representing a
Λ-derivative of the Green’s function, see Eq. (1.63) and Fig.1.14. Without truncation all these
diagrams, with one smashed line substituting a propagator line are generated by the fRG flow
equations. In presence of truncation, however, this is not the case. Truncating at the level of
then-particle vertex only diagrams in which the derivative actson then-1 outermost loop lines
are generated, while the remaining contribution is neglected. This explains the nomenclature
‘‘parquet-like’’: The diagrams generated in truncated fRG share the same topology with the par-
quet diagrams, but reproduce them only partially. The definitive quality of this approximation
crucially depends on a proper choice of the cutoff, that, as it is argued in Sec. 1.4.2, can be used
to minimize the effects of the neglected contributions.

After this necessary remark we can go back, now, at the analysis of the DMF2RG diagram-
matic content. A better approximation, compared to the PA, is obtained with DΓA, by replacing
the two-particle irreducible vertex in the parquet equations by the local fully irreducible vertex
of DMFT9, i.e. its momentum dependence is suppressed while the frequency dependence is
retained. Hence one includes all the local fully irreducible diagrams nonperturbatively, while
the (mostly nonlocal) corrections to DMFT for the 1PI vertexand the self-energy are obtained
through the parquet equations. An example of a diagram obtained in this way is shown in Fig.
3.5c): two non-local loops, involving the Green’s functionGij are built on the irreducible local
‘‘envelope’’ diagram. The diagrams of DMF2RG are topologically very close to the ones of
DΓA. In fact in both theories, all the local 1PI diagrams (two-particle reducible and irreducible)
are included10, while all nonlocal diagrams are of the parquet type: Two particle reducible in

9In the full DΓA treatment, the local vertex is not necessarily the one of DMFT, but can to be obtained in a self-
consistent way, with the self-consistency being at the two-particle level rather than at the one-particle one [176].

10Let us stress again that when we refer tolocal diagramsstrictly speaking we mean the diagrams of an auxiliary
self-consistent AIM, where the self consistency is at the one-particle level (DMFT and DMF2RG) or at the two-
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one channel. The main difference is that in DMF2RG the diagrams are do not coincide exactly
with the ones generated by the parquet equations, as we discussed above: For example a diagram
with the topological structure of the one in Fig. 3.5c) is clearly included in DMF2RG, since it
consists of two non-local loops, built on a local fully irreducible vertex, but is not computed
exactly. The neglected contribution equals the integral over Λ of the diagram shown in Fig.
3.5d), where each Green’s function line has to be intendedΛ-dependent, and theΛ-derivative
acts on the two smashed lines.

At a first glance, moreover, one might be puzzled by yet another apparent difference:
While in DΓA the non-local parquet diagrams are built on the fully irreducible local vertex,
in DMF2RG one builds them starting from the 1PI local vertex. In fact,trying to use the 1PI lo-
cal vertex directly in the parquet equations of DΓA would generate the local parquet diagrams
twice, since they are already included in the 1PI local vertex ΓDMFT(ν, ν

′, ω), with dramatic
double counting issues. Consequently in DΓA it is necessary to use the fully irreducible vertex
Γirr
AIM, which is, however, a much more complicated object to deal with, as we explain below.

It is important to stress here that, instead, there is no double counting of diagrams in DMF2RG.
In fact (cf. Sec. 1.4.2) it is the fRG formalism itself that takes care of this double counting: In
the formal iterative solution of the flow equations, the 1PIvertex at the iterationn + 1 can be
obtained from an integral fromΛini to Λfin of Eq. (3.9), where the right hand side is computed
from the vertex and the Green’s function at the previous iterationn-th iteration. If one was able
to integrate the flow equations without the truncation, onecould perform the integral overΛ
analytically and obtain, at this iteration step, a collection of diagrams, where the Green’s func-
tion lines have to be computed at the boundaries of the integral, while the interaction vertex is
held fixed at its initial valueΓDMFT. Evaluating the upper boundary of the integral we generate
the new diagrams which involve non-local lines with momentum dependent Green’s function
GΛ=Λfin(k, ω) = G0

Latt(k, ω). The evaluation of the lower boundary gives topologically iden-
tical diagrams with opposite sign and with some of the Green’s function lines evaluated at the
beginning of the flow, i.e., in DMF2RG, local. This is the contribution that would otherwise be
counted twice and, in this way, is removed completely. In presence of truncation the analytical
integration is not possible anymore, or is possible only in the very first iteration steps. On the
other hand the role of lower boundary of the integral remainsthe same, i.e., subtracting the 1PI
parquet-like diagrams which fall apart cutting twolocal lines11. In the DΓA framework several
results can be obtained using a ladder approximation, in a selected channel, instead of solving
the parquet equations (ladder-DΓA). In this way it is possible to include important non-local
contributions which might be essential for the physics of the system, but the competition and
the feedback between the channels is missed, so the applicability of this scheme crucially de-
pends on the physical problem of interest. On a diagrammaticpoint of view, the diagram c) in
Fig. 3.5 is not included in ladder-DΓA, because it includes two bubbles that belong to ladders

particle level DΓA. Hence, even with the same topology the local Green’s function lines might not be the same.
11Let us remark that this is possible only because in our approach we do not touch the interaction part of the

action along the flow. If the interaction part of the action,instead, is changed one might need involved corrections
to avoid double counting of diagrams [145].
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in different direction. Diagram 3.5e) instead is included,but only provided thatj = i.
From the discussion above we evince that the diagrammatic content of DMF2RG is topolog-

ically similar with the one of DΓA, when the latter is solved in its parquet implementation. This
implementation of DΓA, to which we refer asparquet-DΓA, however is extremely demanding
numerically, and only recently it have started to be explored. There are two main difficulties
in this implementation. The first one is, obviously, of technical nature, as the set of parquet
equations are extremely difficult to solve [187]. The second issue is much deeper: The input
of the parquet equations of DΓA is the local two-particle irreducible two-particle vertex Λirr in
DMFT. This quantity is neither directly accessible via a measuring process in QMC, nor can
be computed in ED using a Lehmann representation. Rather it can be obtained starting from
the two-particle Green’s function and inverting a set of Bethe-Salpeter equations. Besides the
technical complication of this operation, the second problem, is related to the strong-coupling
divergencies of the irreducible vertex. In fact it has been reported [85, 160], that the fully irre-
ducible vertex of DMFT diverges at low frequencies even wellbeforethe Mott transition takes
place. This divergence is not connected with any symmetry breaking and does not cause any
non-analytic behavior of the response functions. In fact, the physical origin of the divergence
still remains elusive, although it has been argued that it represents aprecursorof the Mott tran-
sition, as it should always take place at lower values ofU than those of MIT (see Ref. [85,160]).
Independently of its physical interpretation, it is evident that in presence of this divergence, it
is not possible to obtain the fully irreducible local vertexwithout running into this singularity
problem, and as also stated in Ref. [85], it is preferable to reformulate the parquet equations in
a way that they do not involve the 2PI vertex, but rather the 1PI, which is exactly what is done
in DMF2RG.

3.1 Application to the 2D Hubbard model

As a first application of DMF2RG, we now show, results for a prototypical model of corre-
lated fermions, the two-dimensional Hubbard model. We recall that many aspects of its physics,
and especially the interplay of antiferromagnetism and superconductivity in this model have
been studied by weak coupling truncations of different versions of the fRG already some time
ago [57,69,91,189]. More recently, these analysis have regained some attention in the context
of fRG studies that include the frequency dependence of the interactions either fully on a smaller
number of frequencies [178], or using a decomposition into fermionic bilinears [79]. In stan-
dard second-quantization notation, the Hubbard Hamiltonian with nearest-neighbors hopping,
on which we are going to focus, reads [77]:

H = −t
∑

〈ij〉σ
c†iσcjσ + U

∑

i

ni↑ni↓, (3.21)

wheret denotes the nearest-neighbor hopping amplitude on a squarelattice andU the local
Coulomb repulsion. In the following, we will define our energies in terms of4t ≡ 1, and fix the
average particle density to half fillingn = 1. In this case, the momentum transfer of(π,±π)
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corresponds to perfect (antiferromagnetic) nesting on thesquare shaped Fermi surface. As we
have discussed in Sec. 3.0.1 the two dimensional Hubbard model is considered to be proto-
typical for the cuprates, and therefore it has been largely studied in that context. This applies,
however, to cases with slightly different fillings and including also next nearest neighbors hop-
ping, which show a rich phase diagram and different competing instabilities. As a test case for a
new method, instead, we found more convenient to focus on a more simple situation, where the
physics is largely dominated by the tendency towards antiferromagnetic fluctuations, due to the
perfect nesting. Let us recall that, while the physics at weak coupling can be easily understood
in terms of nesting of the Fermi surface. At stronger coupling other physical mechanism be-
come more important. This has been analyzed systematicallyis the case for the Hubbard model
in infinite dimensions, studied in Refs. [158] and [171], it is shown that even if at weak- and
strong- coupling the ground state is antiferromagnetic, the physical mechanism that drives the
symmetry breaking is very different: at weak-coupling the onset of long-range is stabilized by
a gain in the potential energy, while at strong coupling by a gain in the kinetic energy.

In our DMF2RG study we integrated the truncated flow equations numerically, by means of
a sixth order Runge-Kutta method. We have included the self-energy feedback in the equations
for the self-energyΣΛ and for the vertexΓΛ. To keep the numerical effort under control we
used a channel decomposition of the interaction vertex similar to the one of Ref. [94], while we
decided to discretize the Brillouin zone in square patches, without making any further specific
approximation, like those of [78, 79] where the momentum dependence is fixed to a specific
choice of form factors. The details about the vertex parametrization are given below.

Parametrization of the two-particle vertex

Before describing our parametrization, let us focus on the 1PI vertex main features. The
two-particle vertex is a difficult quantity to study numerically, since already in the one band
translational invariant case, it depends on three momenta and three frequencies, making a nu-
merical analysis quite demanding (even in simple terms of storage memory). In recent12 years,
however, also thanks to the increased computational power,the two-particle vertex has started
to be investigated in its complexity. Most of the studies, however, focused only on some of the
features of the vertex, and, even nowadays, a comprehensiveand systematic knowledge of the
frequency and momentum behavior of this object is partiallymissing. In fact, the momentum
dependence of the vertex has been analyzed (at weak coupling) in several fRG studies while its
frequency dependence has been explored in the DMFT framework. A simultaneous treatment
of its frequency and spatial argument, instead, has been obtained within a DCA study of the dy-
namical susceptibilities (e.g., see Ref. [118]), and in a DCA approach based on fRG as cluster
solver [100,101].

More in detail, the momentum dependence of the vertex has been explored within theN -

12Some semi analytical studies of the vertex has been performed focusing on specific limits of the frequency
arguments, with a more direct connection to physical properties of the system under consideration. For example
the two particle vertex has been studied in relation to the Fermi liquid properties of a system in Refs. [39,40].
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patch renormalization group scheme [75, 157], in which one neglects the frequency of the ver-
tex and divides the Brillouin zone intoN patches. The momentum dependence of each patch
is then projected onto the Fermi surface. This way it is possible to observe a nontrivial momen-
tum dependence of the vertex arising along the flow, strictly related with the emergent leading
instabilities of the system. A different approach to deal with the frequency dependence is the
one first proposed by Husemann and Salmhofer [79], where thevertex is decomposed in three
channels and for each channel the main momentum dependence is identified and treated with
higher accuracy, while the dependence on the other two momenta is limited to a restricted set
of basis functions.

A complementary line of investigation is the one followed inthe DMFT framework [54,110,
149]. In this case one focuses on the local two-particle vertex of the auxiliary AIM (by definition
momentum independent) keeping fully the Matsubara frequency dependence. The calculation
of the vertex can be then performed, numerically exactly, either using quantum Monte Carlo
methods [54] or by means of exact diagonalization [148,149]. In particular in ED, our method
of choice in the calculation of the vertex that we are showingin the following, one can compute
the two-particle Green’s function using the Lehman representation, and from it one can extract
the irreducible vertex, by amputating the external legs [134]. A drawback of the method is that
the bath has to be discretized and described by a small numberof bath sites, which in our case
was five. This is, however, already enough to observe the nontrivial frequency structures of
the vertex. We have also checked that the frequency structures that we observe are in good
agreement with the ones computed in QMC using the vertex computed using the w2dynamics
code [139] by M. Wallerberger.
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Figure 3.6: On the left, diagrammatic representation of the two-particle 1PI vertex functionΓΛ
2 ;

the arrows mark the position of the incoming and outgoing electrons. On the right, DMFT
vertex functionΓΠ∆X

2,↑↓ as a function ofΠ andX at fixed∆ (∆ = 2πTn2; n2 = 20) for the
Hubbard model on a three dimensional cubic lattice with nearest neighbors hopping andU =
0.5D, T = 0.038D (D measures the half bandwidth). The color coded values are measured
in units ofD. Please note that in DMFT the main features of the vertexdo not depend
significantly on the details of the lattice, but mostly on the bandwidth, or more precisely,
on the second momentum of the density of states, therefore the following considerations
apply in general, including the two dimensional case described in the main text. The white
background color corresponds to the asymptotic valueU reached by the vertex. On the top
of this, one can recognize three structures:i) a vertical line atΠ = 0, ii) a horizontal line at
X = 0, andiii) a broader (hardly discernible at thisU value) cross structure on the diagonals
at Π = ±X. The origin of the three structures has been analyzed in Ref. [149]. While
the structuresi) and ii) are well reproduced by the frequency dependence approximation
described in the text, the cross structure is not captured bythe approximation. Please notice
that the white corners on the right of the density plot correspond to frequencies not included
in the frequency window of our data set.

To show the frequency structures of the vertex, we use here the conventions13 and defini-
tions of Ref. [149] (in particular in ‘‘particle-hole notation’’). In general for an SU(2) sym-
metric interaction and for a single band translationally invariant system -- as we show in Fig.
3.6a)-- the vertex function depends on two spins, three frequencies, and three momenta vari-
ables, while the fourth frequency and momentum can be fixed requiring energy and momentum
conservation:

13Please note, however, that there the two-particle 1PI vertex is labeledF and does not depend on the momenta,
while here it is calledΓΛ

2 , and is in general momentum dependent.
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ΓΛ,νν′ω
2,σσ′ (k′

1,k
′
2;k1) := ΓΛ

2 ( νk′
1σ, (ν

′ + ω)k′
2σ

′
︸ ︷︷ ︸

outgoing electrons

; (ν + ω)k1σ, ν
′(k′

1 + k′
2 − k1)σ

′
︸ ︷︷ ︸

incoming electrons

).

(3.22)
Hereν andν ′ are fermionic Matsubara frequencies, whileω is a bosonic Matsubara frequency.
Physically this describes the scattering of a hole of energy−ν with an electron of energyν +ω.

As we have discussed in Sec. 1.4.2 the most natural frequencyparametrization for the weak
coupling structure, that can be also used for the implementation of a frequency parametrization
similar to the one of previous fRG studies [94] is a notation interms of threebosonicMatsubara
frequencies [94] defined as follows:

Π = ν + ν ′ + ω, (3.23)

∆ = ν − (ν + ω) = −ω, (3.24)

X = ν ′ + ω − (ν + ω) = ν ′ − ν. (3.25)

As for the spin indexes by exploiting the SU(2) symmetry we have [100,148]:

ΓΛ,Π∆X
2,↑↑ (k′

1,k
′
2;k1) = ΓΛ,Π∆X

2,↑↓ (k′
1,k

′
2;k1)− ΓΛ,Π∆X

2,↑↓ (k′
2,k

′
1;k1). (3.26)

Hence, we can concentrate on the vertexΓΛ
2,↑↓ only (all the other spin combinations can be

obtained by symmetry) [93,148].
Even by restricting ourselves to the↑↓ sector, the vertex functionΓΛ

2,↑↓ displays, in general,
a rather complicated structure in momentum and frequency space.
To keep under control the numerical effort required by our first DMF2RG calculations we de-
cided to parametrize the frequency dependence ofΓ2

Λ following previous experience in fRG
studies [94], as follows:

ΓΛΠ∆X
2,↑↓ (k′

1,k
′
2;k1) ≈ U +Γ̃Λ,Π

2,pp(k
′
1,k

′
2;k1)+Γ̃Λ,∆

2,ph−d(k
′
1,k

′
2;k1)+Γ̃Λ,X

2,ph−c(k
′
1,k

′
2;k1). (3.27)

This corresponds to approximating the complicated dependence ofΓΛ
2 on the three bosonic

frequenciesΠ, ∆, X, assuming that the scattering amplitude among two particles can be
completely decomposed in three different channels, particle-particle, particle-hole direct, and
particle-hole crossed (pp, pp− d, ph− c). This assumption is not exact for a genericU , as one
could immediately see already by looking at the DMFT vertex function, like the one shown in
Fig. 3.6. Following Ref. [94], for the single impurity Anderson model, or Ref. [79], for a lat-
tice system, one can derive the flow equations directly for the functions̃ΓΛ

2,x=pp,ph−d,ph−c. This
is possible because one can associate each function with a specific channel: particle-particle,
particle-hole direct and particle-hole crossed, and attribute uniquely14 each diagram to a spe-
cific channel.

As described in detail in Refs. [94,149], the bosonic frequency parametrization and decom-
position of the vertex is consistent with the lowest-order perturbation theory forΓΛ

2,↑↓, see also

14At least at the truncation level of the three-particle vertex [41].
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Sec. 1.4.2. In fact, each bosonic frequency correctly describes the frequency transfer associ-
ated with the lowest order [O(U2)] nontrivial15 diagrams contributing to the 1PI vertex. These
diagrams are simply fermionic loops in the three channels, and with each of them is associated
one of the three bosonic momentum transfers. This way, the bosonic frequency parametriza-
tion and vertex decomposition capture the main vertex structures up toO(U3) and one expects
them to be reliable for moderate values ofU . The neglected structures appearing on the diag-
onals, instead, can be easily associated to processes in which one of the incoming or outgoing
frequencies is small, and mainly arise from diagrams of third order in the interaction. Hence,
at weak coupling, these structure will be suppressed compared to the vertical and horizontal
ones. However, when the value ofU is increased, the structure not captured by Eq. (3.27) will
become gradually more important, making the vertex decomposition unreliable. This is one of
the reason why we have hitherto restricted our numerical study to moderateU values in the
following.

The last point left to be discussed is how to extract the initial condition for the three functions
in Eq. (3.27) from the fully frequency dependent DMFT vertexΓΠ∆X

DMFT which contains more
information than we need for the decomposed vertex. By looking at Fig. 3.6b), one sees that
the problem consists in how to get rid of the cross structure (labelediii) in the caption of Fig.
3.6 which depends on all the frequencies. However, the structure under consideration fades out
becoming gradually broader and less intense as the third frequency is increased. Therefore to
extract one of the three functions, say, e.g.,Γ̃Λini,Π

2,pp , it suffices to take a cut inΓDMFT keeping∆
andX fixed at some very large values∆ andX:

Γ̃Λini,Π
2,pp (k′

1,k
′
2;k1) = ΓΠ∆X

DMFT. (3.28)

Even within this approximated scheme for the frequency dependence, to further speed up
the calculations, we have found useful to consider only the Matsubara frequencies on a given
grid, inspired to the logarithmic grid used in Ref. [94] for theT = 0 case. Practically, instead
of taking all the (bosonic) Matsubara frequencies associated with any integern < Nmax, with
Nmax the number of frequency used in the calculation, we have considered only the (positive
and negative) frequencies associated with the integers defined by:

ni =







i, if i ≤ a;

a+ 2(i− a) if a < i ≤ 2a;

3a+ 4(i− a) if 2a < i ≤ 3a;

...

(3.29)

with a being some integer number, while whenever in the flow it was necessary to compute the
vertex at a frequency not belonging to the grid we have used a linear interpolation. This choice
is well motivated considering that the bosonic structures have only a rather small spread around
zero frequency, and therefore the only thing that one has to check is thata is large enough to
describe accurately these structures, while less accuracyis required by the large frequency tails.

15We do not consider here the trivial constant "background" of the vertex equalU .
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Figure 3.7: Flow of the largest component (gmax) of the two-particle vertex function, i.e., in
our case,Γ in the particle-hole crossed channel, for zero transfer frequency (ν2 − ν ′1 = 0),
antiferromagnetic momentum transfer (k2 − k′

1 = (π, π)) andk1 = (0, π), k2 = (π, 0)
computed by fRG, with interaction cutoffΛint [72] (inset) and DMF2RG (main panel) for
the two-dimensional half-filled Hubbard model atU = 1, at different (inverse) temperatures.

On the other hand this choice of frequencies on a grid should not be expected to work well in the
description of the full frequency dependent vertex, since it would fail in the description of the
diagonal structures, which are not centered at small valuesof any of the bosonic frequencies.

Our momentum parametrization is a tradeoff between computational effort and accuracy of
the description: The momentum-dependence is taken into account by discretizing the Brillouin
zone into patches with constant coupling function. If fine enough, this discretization captures
the angular variation of the coupling function along the Fermi surface with good precision. For
simplicity, we restrict ourselves to8 patches, which already includes important physical aspects
of the2D system [50]. We decided for this kind of parametrization to avoid the restriction of
the momentum dependence to specific form factors, like in [79], and rather have a coarse, but
general, description of the momentum dependence of the vertex. This is probably one of the
parts of our calculation that can be most easily improved in asystematic way, in particular
making use of some of the symmetries of the vertex in momentumspace.

Numerical results

Our calculations for the two-particle vertex function and self-energy are reported in Figs. 3.7
and 3.8-3.9, respectively. In Fig. 3.7 we plot the largest component (gmax) of the vertex function,
which -- at half-filling -- is found in the particle-hole crossed channel for zero frequency and
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antiferromagnetic momentum transfer:k′
2 − k1 = (π, π). This reflects the tendency of the

system to antiferromagnetic ordering due to the perfect nesting of the Fermi surface.
The data, which refer to a weak-intermediate regime (U=1), clearly show that the DMF2RG

mitigates the fRG tendency to a low-T divergence of the flow: We still obtain a converged
DMF2RG result forgmax atβ = 1/T = 10 , whereas the fRG flow for the vertex is manifestly
divergent. The fRG data presented in Fig. 3.7 have been obtained with the interaction cutoff,
but we have verified that these results are robust with respect to the choice of the cutoff, by
comparing the data also with those obtained with a sharp frequency cutoff, like the one of
Ref. [94]. We also remind here that the interaction cutoff is not regularizing, but this problem
is mitigated by the fact that we are working at finite temperature, and, on the other hand, this
cutoff is the most similar to the simple cutoff that we have chosen for DMF2RG.

Quantitatively, by fixing an upper-bound forgmax, we observe that the temperature at which
it is reached is slightly decreased in DMF2RG compared to fRG for moderate values of the
interaction (up toU = 0.75) while is significantly decreased fromT ∼ 0.125 (fRG) to∼ 0.085

(DMF2RG) atU = 1. This is attributed to the damping effect of the local correlations, captured
from the very beginning in the flow of DMF2RG. In fact the DMFT self-energy is included in
the propagators from the beginning of the flow, making them less metallic. We emphasize that
this ‘‘divergence’’, observed also in DMF2RG, is not associated with a true onset of a long-
range order. In principle, it is possible to adapt the fRG scheme to access also the disordered
phase at lowerT [17], though such an extension goes beyond the scope of the present thesis.
The growth of the 1PI vertex, in fact, is associated, to a tendency of the system towards a
strong coupling regime [157], where the form of the interaction is usually simplified, because
some dominant term in the coupling appear, each corresponding to some emergent instability.
However, extending the analysis about the "three regimes" ofthe flow defined in Ref. [157], i.e.,
a first regime associated with high energy scales, a second one in which the couplings grow, and
a third one of strong coupling, to the case of DMF2RG, also depending on the specific choice
of the cutoff, is a nontrivial task, considering that the initial condition, for larger values of the
coupling, might already include nonperturbative effects from the three- and more particle vertex.

Let us also note here that the temperatures for which the leading coupling diverges are rather
high. In particular these temperatures are higher than the Néel temperature of DMFT [99,147]
(which, in DMFT, is also finite, violating the Mermin-Wagnertheorem [128]). With our present
setup it is difficult to rationalize this empirical observation. On the one hand thinking of the
"divergence temperatures" in terms of Néel temperature is somewhat misleading, as explained
above. On the other hand, it cannot be excluded that this divergence temperatures in DMF2RG
are artificially enhanced by our approximation to the vertex. In particular, while it is difficult to
understand what might be the effect of using a fully frequency dependent vertex, one can expect
that increasing the number of momentum patches will decrease the divergence temperature. In
fact, the coarse discretization of the Brillouin zone might artificially enhance the feedback in
the flow equation of combinations of momenta for which the vertex is particularly large. For
example the vertex with momentum transfer(π, π) will represent several momentum transfers
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Figure 3.8: Comparison of the results for the imaginary part of the fermionic self-energy of
the two-dimensional Hubbard model forU = 1, andβ = 10, calculated within DMFT
(k-independent, in black) and DMF2RG, for differentk-vectors (the color coding of the
differentk is defined in the inset, note that the values of ImΣ(k, iωn) for k = (0, 0) and
(π, π) coincide because of the particle-hole symmetry).Inset: Scheme of the8-patches
discretization used for the calculations.

within the discretized patches, on the right hand side of theflow equations. This is confirmed
empirically confirmed by the fact that using a coarser discretization of the Brillouin zone, using
only four patches, leads to much larger divergence temperatures. A definitive answer to this
question, however, can only be given by comparing with further, improved, implementation of
DMF2RG.

Self-energy We now turn to the analysis of the self-energy results obtained with the DMF2RG
flow at the lowest temperature considered, i.e.,β = 10. Here, the fRG flow diverges, and it is
worth to compare the DMF2RG results with the original DMFT data, see Fig. 3.8. As expected
in 2D, the non-local correlations captured by the DMF2RG strongly modify the DMFT (k-
independent) results, determining a significant momentumdependence of the self-energy at low
frequencies: While in DMFT a metallic solution, with a moderate Fermi-liquid renormalization
of the quasi-particle mass, is obtained, in DMF2RG we observe a strong enhancement of the
imaginary part of the self-energy at the Fermi surface. In fact, at the ‘‘antinodal’’ point (π,
0), where the largest value of−ImΣ is found, the low-frequency behavior is manifestly non
quasi-particle-like, indicating the destruction of the Fermi surface in this region of the Brillouin
zone. Deviations from the DMFT metallic results, albeit less marked, are found at the ‘‘nodal’’
point (π

2
, π
2
), for which one cannot exclude, at this temperature, a residual presence of strongly

damped quasi-particle excitations. The significant reduction of −ImΣ w.r.t. DMFT, observed
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Figure 3.9: Comparison of the imaginary part of the self-energy forU = 0.5, 0.75, n = 1,
andβ = 10, calculated by fRG and DMF2RG, for differentk-vectors (color coding as in
Fig. 3.8).

at (0,0) or (π,π), does not imply metallicity since these points are far awayfrom the Fermi
surface; and the real part of the self-energy is also strongly enhanced w.r.t. DMFT.

In Fig. 3.9, we compare the DMF2RG self-energy data with the fRG. The comparison can
only be performed at weaker coupling and/or higherT than in Fig. 3.8, as the fRG flow needs to
converge. Our numerical data of Fig. 3.9 indicate that in theconsidered parameter region (same
T , but weaker interaction than in Fig. 3.8) the fRG and DMF2RG yield qualitatively similar
results for thek dependent self-energy. Considering that in DMF2RG local correlations have
been included non-perturbatively via DMFT, this confirms the validity of previous fRG analysis
of the Hubbard model at weak and moderate interaction. At thesame time, the applicability of
DMF2RG goes beyond the weak-to-intermediate coupling of the fRG, allowing for the study
of parameter regions where the Mott-Hubbard physics ‘‘already’’ captured by DMFT becomes
important.

As a further test, we have directly compared the self-energyof DMF2RG with the one of
DCA. Unfortunately, in the DCA or cDMFT literature it is not usual to show the self-energy
on the Matsubara axis, while usually the the spectra, obtained via maximum entropy method
for analytic continuation on the real axis, are shown. The latter quantity is not ideally suited
for a methodological comparison, as it is affected by an additional uncertainty due to the ill-
definiteness of any analytical continuation procedure. Hence, we have made a comparison with
new (unpublished) DCA calculations, performed by Olle Gunnarsson for the specific set of data
of Fig. 3.9, i.e., forU = 3t, β = 10.

As also recently reported for the case of DCA results in three dimensions [44], one observes
a visible cluster dependence of the self-energy results forcluster-sizes asNc = 8, 16, ... up to
100, especially at low energies. Hence, it is difficult to draw definitive and rigorous conclusions.
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Figure 3.10: Comparison of the imaginary part of the self-energy as a function of the Matsub-
ara frequency (ImΣ(k, iωn)) computed in DMFT (black empty circles), DMF2RG (green
solid circles), with the (unpublished) DCA data (blue colored symbols, see legend) by Olle
Gunnarsson for different cluster sizesNc for the parameter setU = 0.75, T = 0.1. The blue
arrows indicate the trend shown by the DCA data when the cluster sizeNc is increased.

Nevertheless, looking at Fig. 3.10, we can clearly see that the results of DMF2RG do show a
similar qualitative behavior as DCA. In particular, they reproduce well both the high-frequency
tail of the self-energy and the trends of the (much more important) low-frequency corrections
w.r.t. the DMFT self-energy for allk-points. In this respect, both DCA and DMF2RG find that
non-local correlations increase the incoherent part of thelow-frequency self-energy mostly at
the anti-nodal pointk = (0, π), whereas ImΣ at the nodal pointk = (π/2, π/2) is less changed
compared to DMFT. We also observe that the changes of the self-energy far from the Fermi
Level present the same trend in DCA and DMF2RG, i.e., the reduction of ImΣ is compensated
by a corresponding enhancement of ReΣ atk = (π, π) [or (0, 0)].

From a more quantitative viewpoint we found that, while the self-energy data at the smallest
Matsubara frequency obtained with the conventional fRG displays a sort of systematic down-
wards shift for all k-points w.r.t. the DCA data, such an ‘‘offset’’ is not present in the DMF2RG
results. In the latter case, the most visible difference w.r.t. to DCA consists in a larger overall
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k-dispersion (or spread) of ImΣ at the smallest Matsubara frequency. In this respect, however,
we should point out that for our parameter set (U = 3t, β = 10), the corresponding DCA results
appears not fully converged yet w.r.t. the cluster sizeNc. On the contrary, for cluster sizes big-
ger thanNc = 16, they display a net trend towards alargerk-dispersion of ImΣ by increasing
Nc, i.e., in the direction of the results of DMF2RG. At the same time, increasing the number of
patches used to discretize the Brillouin zone in DMF2RG we expect a trend towards asmaller
k-dispersion of ImΣ, i.e., in the direction of the DCA results. This expectation can be moti-
vated by an argument similar to the one given above for the divergence temperature: A more
refined description of the momenta should mitigate the influence of the largest components of
the vertex in the flow equations. Also in this case, however,future studies will be needed for
a more systematic benchmark of DMF2RG with respect to DCA (or other cluster methods). In
this respect, the reduction of thek-spread of the self-energy might be a good indicator for the
specific choice of the cutoff more appropriate for a given implementation.

Spin-spin susceptibility

A further insight on the non-local correlations captured bythe DMF2RG is given by the
analysis of the momentum/frequency-dependent susceptibilities, which in DMF2RG can be ex-
tracted from the two-particle vertex. The frequency/momentum dependent susceptibility can be
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S(q, iΩ= 0) =

∫ β

0
dτ

∑

i,j eiri,jqC(ri,j, τ), see text, computed with DMF2RG atU = 1 for
different temperatures (T = 1/β).

computed as:

S(q,Ω) =

∫ β

0

dτ
∑

i,j

eiri,jqeiΩτC(ri,j, τ), (3.30)

whereC(ri,j, τ) is the time dependent spin-spin correlation function:

C(ri,j, τ) =
1

N

∑

R

〈Ŝz(R+ ri,j, τ)Sz(R, 0)〉

=
1

N

∑

R

〈[n̂↑,R+ri,j(τ)− n̂↓,R+ri,j(τ)][n̂↑,R(0)− n̂↓,R(0)]〉. (3.31)

whereN is the number of lattice sites in the sum overR, and n̂↑,r the number operator for
the spin projection↑ in thez direction at the lattice siter. The spin susceptibility can be then
expressed in terms of the two-particle Green’s function that we can compute at the end of
the flow. A similar definition of the susceptibility is adopted in Ref. [101], where it is also
shown how to rewrite it explicitly in terms of the two-particle Green’s functions for theSU(2)
symmetric case.

In Fig. 3.12, we show the DMF2RG results for the momentum-resolved spin-susceptibility
at zero frequencyS(q, iΩ=0). This quantity is most important at half-filling, where magnetic
fluctuations predominate, and it is experimentally accessible, e.g., via neutron spectroscopy.
Our results are in qualitative agreement with the QMC data ofRefs. [23, 184] and show the
major role played by antiferromagnetic fluctuations, witha pronounced peak at(π, π), grow-
ing upon decreasingT . Furthermore, we also note that the evolution of theq-dependence of
S(q, iΩ = 0) for decreasing temperatures is also consistent with the analysis of [112] and [29],
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where numerical results obtained with diagrammatic extensions of DMFT were compared with
QMC. At low T , the ferromagnetic fluctuations also get enhanced due to the van Hove sin-
gularity at the Fermi level, this explains the fact that the point (0, 0) becomes a local max-
imum for S(q, iΩ = 0) at low temperatures, here only visible as relative enhancement of
S(q = (0, 0), iΩ = 0) w.r.t S(q = (0,Π), iΩ = 0). This behavior can be observed also in the
bare bubble, i.e. without considering the vertex correction.

Frequency and momentum dependence of the vertexLet us now turn to a more quantita-
tive analysis of the vertex, as obtained within our first implementation of DMF2RG. With our
momentum parametrization we have83 momenta combination for each ofΓ̃Λ,Ω

2,c . This number
can be reduced considering the symmetries in momentum space, but even so the number of
functions to analyze remains quite large. Therefore we decided to focus on a particular subset
of four combination of incoming and outgoing momenta of the vertex, labeledgi, i = a, b, c, d,
see Table 3.1.

k′
1 k′

2 k1 qpp=k′
1+k′

2 qph−d=k′
1−k1 qph−c=k′

2−k1

ga (0, π) (π, 0) (0, π) (π, π) (0, 0) (π,−π)
gb (0, π) (π, 0) (π, 0) (π, π) (−π, π) (0, 0)
gc (0, π) (0, π) (π, 0) (0, 0) (−π, π) (−π, π)
gd (0, π) (0, π) (0, π) (0, 0) (0, 0) (0, 0)

Table 3.1: Combinations of momenta shown for the analysis of the vertex.The columns from
two to four refer to the incoming and outgoing momenta, whilethe last three columns refer
to the momenta transfer in each channel, in analogy with the bosonic frequencies.

Our choice is the same of Ref. [97], and is well motivated considering that it allows for
an "antiferromagnetic" momentum transfer of(±π,±π) (marked in red in the table) or for a
"ferromagnetic" momentum transfer of(0, 0) (marked in blue) in each channel.
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Figure 3.13: Frequency dependence of the real part of the three functionsΓ̃Λ,Ω
2,c , with c =

pp, ph− d, ph− c andΩ = Π,∆, X respectively, at the end of the flow for a selected
choice of the momentum arguments, see Table 3.1. The data refer toU = 0.75 andT = 0.1.
Please note that the scale on they-axis is different for the three channels. In all the three
cases the enhancement compared to DMFT is noticeable and nontrivial. Furthermore for
each channels the four curves are paired in two couples. By looking at the definition of the
gi’s, one can further see that the two curves ofΓ̃Λ,Ω

2,x which have a similar behavior are those
which share the same momentum transfer in thex-channel, e.g.,k′

1 + k′
2 for pp.

The results for the frequency dependent vertex functions are shown in Fig. 3.13, where is
also shown, in black, the initial condition from DMFT. The data in the figure refer to the case
of U = 0.75 andT = 0.1. Let us stress that in the discussion below we focus on therealpart of
the vertex, and that we will often refer to vertexchannelsto specify each of the terms in which
the 1PI two particle vertex has been decomposed. It is evident that in all the three channels
the frequency dependence induced by the flow is nontrivial,and, even within our simplified
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frequency parametrization, it becomes richer than the one of DMFT. As a general trend, we
observe that for each channel the four curves are arranged intwo pairs, with the curves of each
pair showing a very similar frequency dependence. This reflects the fact that there is a dominant
momentum dependence associated with the momentum transferin the channel considered. For
example in the particle-hole crossed channelΓ̃2,ph−c the main momentum dependence is on the
transfer frequencyqph−c = k′

2 − k1, as one can see considering that the momenta combination
are paired asga-gc andgb-gd. As we have also anticipated at the beginning of the section,the
maximum of the vertex function is reached in the particle-hole crossed channel for momentum
transfer(π, π), i.e., ga and gc. In this channel, due to the tendency of the system towards
strongly enhanced antiferromagnetic fluctuations, the frequency structure is not particularly
rich, being mostly affected by the strong increase (w.r.t DMFT) of the vertex corresponding to
the antiferromagnetic momentum transfer and a slight suppression for the momentum transfer
(0, 0).

In the other two channels the situation is much more involvedand the frequency dependence
induced by the flow does not only changequantitativelythe DMFT structure, but also alters it
qualitatively. Let us focus in particular to the vertex function in the particle-particle channel. In
this case, already the initial condition of DMFT has a different sign from the one of the particle-
hole channels, i.e., charge fluctuations reduce the interaction. The effect of the flow for the
two-momenta transfers(0, 0) and(±π,±π), corresponding respectively togc-gd andga-gb, is
strikingly different. In fact, in the former case ofqpp = (0, 0) the flow leads to an enhancement
of the (negative) corresponding initial vertex of DMFT.

On the other hand, the frequency dependence ofΓ̃2,pp for the antiferromagnetic momentum
transfer goes in the opposite direction and becomespositive(i.e., with the same sign of̃Γ2,ph−c)
apart for the single frequencyΠ = 0, for which it changes sign.

As a side remark, let us remind that not much is known about thefrequency dependence
of the vertex functions in fRG, and especially about the effect of the frequency decomposition
of the vertex, equation (3.27), that we have employed here. Apossibility to better understand
the frequency dependence arising from the fRG flow, would be to comparing the 1PI vertex
as obtained in a full treatment of the frequencies and in a channel decomposed approach, for
a single impurity Anderson model. In this case, in fact, boththe implementations have been
achieved [94], also showing the efficiency of the channel decomposition, which, gives similar
results to the full frequency implementation. For the specific case of the single impurity Ander-
son model one could also compare the vertex with those of QMC or ED (like the one that we
are using as starting point in DMF2RG).

Despite these technicalities, which call for further investigations, it is clear that the 1PI
vertex exhibits a very rich frequency and momentum dependence that will need to be analyzed
and understood in future studies. Hence in future studies, it will be important to understand
which are the main features of the vertex that are connected with the physical properties of
the system. An important step in this direction is understanding how the vertex, computed
numerically on the Matsubara frequency axis, can be connected with its frequency relevant
limits on the real frequency axis [85], and in turns, with theLandau’s parameters in Fermi
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liquid theory [39,40].

3.2 Summary, open questions ad outlook

In the course of the work that lead to the present thesis, we have introduced the new ap-
proach that we named DMF2RG, and that exploits the synergy of treatinglocal DMFT corre-
lations as well asnon-localcorrelations generated by the fRG flow. To test the new method
we have applied it to the2D Hubbard model, finding that, due to the inclusion of all local
correlations by the DMFT starting point, the divergence of the fRG-flow for the interaction
vertex is pushed to lower temperatures, where significant non-local corrections to DMFT are
found. At the same time, in the temperature interval where both fRG and DMF2RG converge,
the self-energy results are qualitatively similar, supporting the results of previous fRG studies
at weak-to-intermediateU . Quantitatively, the most visible effect of DMF2RG compared to
fRG consists in a strongerk-dependence of the self energy for the considered parameters and
a suppression of the ‘‘pseudocritical’’ temperature at which the vertex diverges. We consider
these findings of our first implementation very promising.

At the same time, however, due to the novelty of the approach,we are aware that the issues
to be addressed in the future are yet many more than those thathave already been analyzed.
Therefore, in this conclusive section, we would like to discuss in detail the several possible di-
rections that, we believe, should be followed to bring DMF2RG at an equal or possibly superior
level of applicability as other diagrammatic extensions ofDMFT.

Practical improvement on the implementation From a practical point of view, it will be
necessary to improve the present implementation of the method, in particular regarding the
frequency and momenta parametrization. An improvement on the frequency parametrization
is essential to capture the diagonal structure of the vertex, see Fig. 3.6, whose neglect can
only be well justified at weak coupling. The improvement on the momentum parametrization,
instead, might be important to reduce spurious effect of thecourse discretization of the Brillouin
zone, like an artificial enhancement of the pseudocriticaltemperature, and of the overall low-
frequency momentum spread of the electronic self energy.

Theoretical open issues Besides the problems connected with the practical implementation
there are also some theoretical aspects that need to be investigated. These are related to two
main interconnected issues: (i) the proper choice of a cutoff and (ii) the possibility of accessing
the strong coupling, possibly Mott insulating, regime in presence of a truncation of the flow
equations.

As for the choice of the cutoff, we have already noted that thecutoff employed in Sec. 3.1
is not regularizing. There we have already proposed a different choice of the cutoff, Eq. (3.20),
that instead is regularizing. On a diagrammatic point of view, the choice of the cutoff also
determines the part of parquet diagrams that is neglected due to the truncation, see Sec. 1.4.2.
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There we have argued that, with a suitable choice of the cutoff, the retained contribution of the
parquet diagrams is the dominant one [26]. However, the analysis of Ref. [26] applies well to
"standard" regularizing cutoffs and is not easy to generalize to the cutoff of DMF2RG, even
in the formulation of Eq. (3.20). Hence, a numerical analysis at the lowest perturbative order
diagrams, as also suggested in section 1.4.2, might be the best solution to gain more insight in
the search for future, better regularizing cutoffs in DMF2RG.

Furthermore the choice of the cutoff in DMF2RG is related to an additional problem to
which we refer as the "flow in infinite dimensions". In fact, as we have extensively discussed
in Sec. 1.5, in the limitd → ∞ the DMFT solution becomes exact. Therefore it would be
desirable that for any given density of statesρ(ǫ) considered as the density of states of an
infinite dimensional problem and starting with the self-consistent self-energy of DMFTΣDMFT

the integration of the flow equations maintains the DMFT results as a solution. As originally
suggested by W. Metzner and A. A. Katanin, mathematically this corresponds to asking that for
every value ofΛ the local Green’s function stays constant along the flow if the self-energy is
kept at the DMFT value:

Gloc
Λ (ωn) =

∫

dǫ
ρ(ǫ)

[G0
Λ(ǫ, iωn)]

−1 − ΣDMFT(iωn)
= GDMFT(iωn). (3.32)

WhereGDFMT is the DMFT Green’s function. Deriving with respect toΛ the above equation
one can see that it also corresponds to the requirement that the local single scale propagator
vanishes:

Sloc
Λ (ωn) =

dGloc
Λ (ωn)

dΛ

∣
∣
∣
Σ=ΣDMFT

= 0. (3.33)

As one can check from Eq. (3.32), at the beginning and at the end of the flow this condition
coincides with the DMFT self-consistency condition, i.e.,it is fulfilled if GDMFT(iωn), ΣDMFT

andG0
Λini

are respectively the exact local Green’s function, exact self-energy and Weiss field of
the self-consistent AIM of the infinite dimensional problem with density of statesρ(ǫ). On the
other hand, requiring that Eq. (3.32) is fulfilled for everyvalue ofΛ is more complicated, and
it can be seen that our choice of the cutoff of Eq. (3.19) does not fulfill this condition, i.e., if
we applied our flow in infinite dimensions we would incorrectly predict a flowawayfrom the
exact DMFT solution.

A possible condition for a choice of a cutoff that fulfills Eq. (3.32) is shown in the following.
First let us rewrite a generalization Eq. (3.13) for aD → ∞ dimensional problem with density
ρ(ǫ):

GΛ(k1, k2, ..., kD;ωn) =
∑

kD+1,...,kd

1

iωn − (1− Λ)ǫk1,k2,...,kD − Λ
ǫ̃kD+1...kd√

2d
+ µ− ΣDMFT(ωn)

.

(3.34)
ΣDMFT is the DMFT self-energy associated with a density of statesρ(ǫ). HereΛ acts as a
multiplicative factor for the energiesǫ. We do not need to specify the energy dispersion in the
extrad−D dimensions̃ǫkD+1...kd , we just assume that it is associated to a density of statesρ̃(ǫ).
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Summing overk1, ..., kD, and passing from the summations to the integral over the density of
states, theΛ-dependent Green’s function can be written as:

Gloc
Λ (ωn) =

∫

dǫdǫ′
ρ(ǫ)ρ̃(ǫ′)

iωn − (1− Λ)ǫ− Λǫ′ + µ− ΣDMFT(ωn)
. (3.35)

Requiring (3.32) at the beginning of the flowΛ = 1 and comparing with the definition of the
DMFT self consistency:

GDMFT(iωn) =

∫

dǫ
ρ(ǫ)

iωn − ǫ+ µ− ΣDMFT(ωn)
, (3.36)

one can see that̃ρ(ǫ) = ρ(ǫ). Definingρx(ǫ) the density of states of the energy dispersionxǫk,
i.e.,ρx(ǫ) =

ρ(ǫ/x)
|x| , we can rewrite Eq. (3.35) for a generic value ofΛ:

Gloc
Λ (ωn) =

∫

dǫdǫ′
ρ(1−Λ)(ǫ)ρΛ(ǫ− ǫ′)

iωn − ǫ+ µ− ΣDMFT(ωn)
. (3.37)

Comparing with Eq. (3.36), we obtain:
∫

dǫ′ρ(1−Λ)(ǫ)ρΛ(ǫ− ǫ′) = ρ(ǫ), (3.38)

that should be fulfilled for every value ofΛ. Taking a Fourier transform on both sides of the
equations, one can get rid of the convolution, and obtain an equation in terms of the product
of the Fourier transform of the density of states on the left hand side. It can be further seen
that Eq. (3.38) has a simple solution ifρ(ǫ) is a gaussian density of states, i.e., the density of
states of an hypercubic lattice in infinite dimensions. However for a general density of states,
e.g., a two-dimensional one, solving Eq. (3.38) is more difficult. Clearly finding a solution to
this problem for a general density of states would be very desirable because it would guarantee
that the DMF2RG flow is exact in the limit of infinite dimensions. Obviously, in general in
finite dimensions, the condition (3.32) should be fulfilled only for the initial value of the self-
energyΣDMFT, and therefore it willnot imply that the local single scale propagator vanishes
along all of the flow. In fact, when the flow is applied to a finite dimensional problem, a
nonlocalΛ-dependent self-energy will be generated and including itsfeedback in the single
scale propagator it will also acquire a non vanishing local part.

Also connected to the choice of the cutoff in DMF2RG is the question about the regime of
applicability of the method. In fact, in Ref. [157] argumentsare presented that justify the use
of a truncated equations.. These are based on phase space considerations, which are difficult to
apply to the case of DMF2RG. Hence, one should think to a different analysis to better under-
stand the regime of applicability of the method. Importantly, this question is related with the
possibility of acceding to a strong coupling, possibly Mottinsulating, regime within DMF2RG.
This issue can be reformulated in terms of the existence of a small parameter associated with the
non-locality of the problem16, and of the possibility to treat it in a perturbative way. Ourphys-
ical understanding is that in the Mott insulating regime thephysics becomes more localized

16More precisely on the non deviation from the purely local physics of DMFT
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and therefore the local description provided by DMFT might represent a good starting point.
When this is the case the 1PI two-particle vertex, might be described already quite well by the
local DMFT picture, and the non-local corrections to it might be viewed as a sort of "small
parameter". Then the fRG flow should only provide a smaller contribution to the final result.
However one should be very careful in making these considerations. In fact, at strong coupling,
the local vertex of DMFT is much enhanced compared to the already large, i.e., nonperturbative,
interaction value. Therefore the feedback on the right handside of the flow equations might be
very large, leading very soon to a divergence of the interaction. At the same time, the insulat-
ing propagators, associated with a divergent self-energy,will moderate this feedback, possibly
avoiding spurious divergences of the flow equations.17

The question about the existence of a small perturbative parameter can also be approached
in a slightly different way, taking advantage of the studiesof Refs. [100, 101]. There, the fRG
was used as impurity solver for DMFT showing results consistent with previous studies, not
only for the weak coupling regime but also for the Mott insulating one. More in detail the self-
consistent AIM of DMFT was mapped on a model containing an interacting impurity attached
to a chain of noninteracting sites. The problem was then approached using the hybridization
cutoff introduced in Ref. [102]: First the chain is divided ina "core system", containing the
interacting impurity and a small number of sites, and a "bath"containing the rest of the sites,
see Fig. 3.14. Then, in the beginning of the flow, the hybridization between the core system
and the bath is switched off, and therefore the core can be solved exactly. Afterwards the
hybridization is gradually restored.

The important information, from our perspective, is the following: The attempt of a direct
calculation of the vertex function of the interacting impurity was not always successful, since
for larger couplings leads to a divergent flow. On the other hand the problem can be approached
in a different way: First the interacting impurity (as well all the sites of the core but one18) can
be formally integrated out. One therefore remains with a single interacting site. The interaction
on this site can the be treated by means of fRG, leading to non divergent results. The final step is
tracing back the quantities obtained through the flow to thecorresponding vertex of the impurity
site, i.e., the one we were originally interested in. This way an essentially nonperturbative
problem (the one of the impurity) is treated by solving, using fRG, a perturbative one (the
one of the originally noninteracting site whose vertex are computed by the flow). In general,
however we are interested in Hubbard models in whicheachsite is interacting, and therefore

17We should also note here that, up to date, not many calculations in fRG have been performed in a gapped
system, like it would be the Mott insulating one, and it is notcompletely clear what it can be expected performing
the flow in a system not in the Fermi-liquid regime from the beginning. At the best of our knowledge, the only
calculation in fRG starting from a gapped system is reportedin a recent work from Eberlein and coworkers [41],
where a small gap was assumed from the beginning of the calculation to describe the pairing in the attractive
Hubbard model. The flow could the coupling associated with superconductive pairing would then grow during the
flow and reach very large values, but the calculation could be anyway concluded.

18This site is usually the one at the end of the core system. Before the integration of the other degrees of freedom,
in the action, the fields associated to this site appear onlyquadratically and linearly. After the integration there are
also higher order terms corresponding to the remainder of the interaction on the impurity. More details are given
in Ref. [102].
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Figure 3.14: Schematic illustration of the subdivision of an infinite chain of sites into a "core"
and a "bath" system. The core system is integrated exactly, while the interaction with the
rest of the bath sites is restored with the cutoffΛ. The figure is reproduced from Ref. [102].

the application of this procedure will be more involved. Forthis goal, one can first make use
of an Hubbard-Stratonovich transformation to introduce a new set of auxiliary (dual) fermions,
like in the DF approach [55, 151]. As in the case of the chain described above, these fermions
are interacting only through their hybridization to the "physical" fermions19. If the physics is
local enough the auxiliary fermion problem can be approached perturbatively by means of fRG.
Eventually, the solution of the auxiliary problem can be traced back to calculate the relevant
quantities of the original one. At the moment this idea represents just one possibility, but
we believe that it is an interesting direction to be exploredin the near future for an efficient
description of the whole phase diagram from weak to strong coupling.

Possible applications Clearly, after having tested our first implementation of DMF2RG on
the two-dimensional Hubbard model at half filling, we wouldlike to use the newborn method
to approach more challenging problems. Themostchallenging problem is for sure the one of
the Hubbard model in the regime of interactions, hoppings and filling relevant for the cuprates.
Having access to this regime, we could not only test our new method against a large amount
of data available in the literature, but we could also hope togain new insight in the interesting
physics associated with the opening of the pseudo-gap. Further technical improvements would
be needed to also increase the number of bands that one can treat in DMF2RG. However, this
should be possible considering the non exponential scalingof the method, and this would allow
us to explore more realistic multi orbital situations [120,121], as well the intriguing physics of
system with multiple fermi surfaces pockets, like the iron pnictides [115].

A completely different line of investigation could be followed to treat an extended Hub-
bard model within DMF2RG. In fact, while DMFT is very effective in the treatment of the
local interaction, the non local ones are only treated, as inthe limit of infinite dimensions, at

19In this action there is no quartic term in the auxiliary fermions but only a linear coupling to the original ones.
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Figure 3.15: Schematic illustration of a benzene molecule (carbon atomsshown in blue) con-
tacted to metallic environments (in red and orange). Also represented are the hopping chan-
nels t, t′, t′′ between the correlated sites, and the hybridization strength V . The figure is
reproduced from Ref. [180].

the Hartree-Fock level, e.g., along the line of theab-initio DΓA [177]. Hence, improving this
approximate treatment in finite dimensions using fRG is for sure appealing. Finally, the last
application that we would like to mention, but probably the first that we are going to study,
is represented by nanoscopic systems [179, 180]. In particular one could consider finite-size
Hubbard clusters with periodic boundary conditions (whichgrant translational invariance). In
fact, for systems involving only a few atoms, the Brillouin zone contains only a discrete number
of k-points, and therefore several different approaches, including a numerically exact solution,
become feasible. For example, for nanoscopic systems it is also possible to solve the the par-
quet equations with a relatively manageable computationaleffort (and without relying on any
arbitrary sampling of the Brillouin zone). This offers a goodchance to gain further insight on
the physical content of different approximations, by critically comparing the fRG result against
the ones obtained within the parquet approximation, as wellas the DMF2RG and DΓA ones.
In this respect, nanoscopic systems represent an excellentplayground for further testing our
theory, and a comparison with existing results would be a very stringent test for the quality of
our approximation.

Conclusion We emphasize, to conclude, the potential of the DMF2RG approach to extend the
channel unbiased treatment of the fRG to the strong-couplingregime, where the Mott-Hubbard
physics already captured by DMFT will play a more important role and qualitative changes in
the self-energy and susceptibility results are expected. The flexibility of the DMF2RG scheme
and its ability to avoid the sign-problem of a direct QMC treatment of non-local physics beyond
DMFT look promising for future, unbiased studies of correlations in realistic multi-band models.
We hope that DMF2RG may serve as a first bridge between two different methods (and the two
related scientific communities), this way stimulating a stronger "hybridization" between the
two approaches, that might lead, in the future, to yet betterunderstanding of correlations in the
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complicated regime that, up to now, DMFT and fRG alone are not able to correctly describe.



Chapter 4

Conclusions

Mastering the physics of strong electronic correlations represent a pivotal challenge for con-
densed matter physics as well as a prospective resource for future technological applications.
In this thesis we have engaged this quest from a theoretical and computational point of view.
The well established starting point for our investigation has been the state-of-the-art method for
treating strongly correlated systems, namely dynamical mean-field theory (DMFT). Our strat-
egy relies on combining the main strength of DMFT, i.e., its ability to treat nonperturbatively
the local correlations, with the advantages of two different methods, namely theGW approxi-
mation and the functional renormalization group (fRG). These two approaches are the so-called
GW+DMFT and the novel DMF2RG respectively. Both aim at overcoming some of the main
limitations of DMFT.

Within GW+DMFT we addressed the problem of realistic calculation of material proper-
ties withpredictive power. For this to be possible, it is essential to avoid any parameter fitting
procedure and, instead, modeling the studied system from first principles, i.e.,ab-initio. GW is
capable of computing accurately nonlocal exchange correlations and, in aGW+DMFT frame-
work, offers the chance to do so while accurately treating strong local electronic correlations
at the local level of DMFT. Unfortunately, the practical implementation of this method has
proven to be technically extremely involved, thus hampering its application to realistic cal-
culations. In the course of this thesis we have shown how, making use of a "quasiparticle"
approximation to theGW self energy, we can circumvent some of the most challenging steps
of the fullGW+DMFT, while still preserving, at least partially, its advantages. This way, our
specific implementation, to which we refer as qpGW+DMFT, provides a valid alternative both
to more standard combinations of density functional theoryand DMFT (DFT+DMFT) and to
more involved implementations ofGW+DMFT. Compared to the former, it has the advantage
of avoiding the introduction of fitting parameters, in particular for the Coulomb interaction, and
of ad hocdouble counting corrections. Compared to the latter, our quasiparticle implementation
is more flexible and computationally cheaper.

We have tested the efficiency of qpGW+DMFT for the case of the correlated metal SrVO3.
Our results compare well with more demanding implementations ofGW+DMFT as well with
experimental results. Remarkably, we obtained improved results compared to DFT+DMFT at
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a similar computational cost. Hence, while on the long run a full GW+DMFT implementation
definitively remains the final goal, the quasiparticle implementation proposed in this thesis de-
serves to be considered as an interesting option for the short-term future, and for the applications
to particularly complex or large systems.

If within qpGW+DMFT our main contribution was the implementation of an efficient al-
gorithm in an already existing method, with DMF2RG we undertook the more ambitious goal
of combining, for the first time, two methods, i.e., DMFT andfRG, in a novel approach. The
purpose of the novel method is the treatment, at least at the model level, of the strong electronic
correlations at all length scales. This scope is beyond the reach of both DMFT and fRG taken
separately, due to the local nature of the former and to the perturbative limit imposed to the
latter by the truncation of the flow equations. On the other hand, exploiting the complemen-
tary strengths of the two methods, we have theoretically designed a new algorithm with high
potential. This is because, ideally, the nonperturbative local physics of DMFT is taken as a
starting point for the fRG flow, which then treats the nonlocal correlations. Thanks to the fRG
structure, these are unbiasedly generated in all the channels, allowing for a theoretical treatment
of competing instabilities, which is not possible in schemes based on the summation of ladder-
type diagrams, such as many of the state-of-the-art diagrammatic extensions of DMFT. To test
the method we have accomplished the first implementation ofDMF2RG and we have applied
it to a well studied case, i.e., the half-filled two-dimensional Hubbard model. In spite of the
additional approximation required in our numerical implementation, we obtained results both
for one and two-particle quantities in qualitative agreement with those of other well-established
methods, such as cluster extensions of DMFT or lattice quantum Monte Carlo. These first
positive results pave the way for future progress in quantummany-body physics. From the
methodological point of view, two questions stand out as prominent. The first is the one regard-
ing the best choice of the cutoff, in particular regarding its regularizing nature and the properties
of the "flow in infinite dimensions". The second is the applicability of DMF2RG to describe
nonlocal correlations in the strong coupling regime. The answer to these questions is beyond
the scope of our first implementation, but motivates further studies, both from the point of view
of the technical implementation as well from a purely theoretical perspective. Being able to
provide a positive answer to these questions, we can be sure that DMF2RG provides a great
opportunity opening new ways towards the understanding of fascinating physics.
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