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Introduction

The classical theory for stochastic partial di�erential equations depends strongly on the works of Ito at the

beginning of the twentieth century, where he developed a framework within which integration of stochastic

processes with respect to semi martingales can be de�ned. This allows us to rewrite any stochastic evolution

equation to an integral equation, which not only makes the mathematical treatment of these equations much

easier, but, in the �rst place, it also provides us with a formal de�nition of solutions to those equations.

These solutions are called strong solutions. However, this de�nition is often not enough in more complicated

situations, since, on the one hand, not every stochastic partial di�erential equation can be written as an

evolution equation, and, on the other hand, for many stochastic evolution equations it has turned out to be

very di�cult to show existence of strong solutions, and therefore proofs of existence of strong solutions only

exist in some special cases. Thus, other de�nitions of solutions are needed, either to weaken the de�nition

of Ito in order to make existence proofs possible, or to provide us with a framework that can be applied

apart from evolution equations. In many situations it is necessary to develop specialised frameworks that

can only be applied to a rather small class of stochastic equations, or that may work only for a single

equation. Important situations where the standard theory breaks down, and specialised theories are needed,

are equations that appear in �uid dynamics.

This thesis deals with the stochastic Navier-Stokes equations in both the incompressible and the com-

pressible case. The equations are considered with stochastic initial conditions and stochastic forces acting

on the �uid. The domain for the �uid �ow will always be a �xed bounded Lipschitz domain, and throughout

this thesis we assume homogeneous Dirichlet boundary conditions. Thus, neither the domain for the �uid

�ow, nor the boundary conditions, will be subject to stochastic perturbation. The second, respectively the

third, part of the thesis deals with the incompressible, respectively the compressible, Navier-Stokes equations.

Following the ideas described in the previous paragraph, our goal in both situations is, roughly speaking, to

present a de�nition of solutions to the SPDE systems and afterwards to prove existence of those solutions.

In both cases, uniqueness is an open problem.

The second part of the thesis considers the incompressible Navier-Stokes equations. The de�nitions of

strong, weak and martingale solutions to stochastic evolution equations are presented in section 5. Although

the existence of strong or weak solutions to the incompressible Navier-Stokes system is an open problem,

those de�nitions will be given for sake of completeness. The concept of martingale solutions di�ers essentially

from those of strong or weak solutions, since solutions in the sense of the former are probability measures on

the path space, while solutions in the sense of the latter two concepts are stochastic processes. To motivate

the concept of martingale solutions, it will be shown that the probability measure on the path space induced

by a weak solution is always a martingale solution, as it was proved in [14]. Following the presentation of [16],

it will then be shown that the incompressible Navier-Stokes equations admit a formulation as a stochastic

evolution equation in the space of divergence free vector �elds.

In section 6, we prove the existence of martingale solutions, following again [16]. The proof relies on the

existence of martingale solutions for �nite dimensional Hilbert space, a result that can be obtained using

Ito's calculus, and on Galerkin's approximation scheme.

As it was shown in [16], an abstract Markov selection theorem can be applied to the present situation

to prove the existence of almost sure martingale solutions to the Markov problem associated with the

incompressible Navier-Stokes equations. The original proof for this selection theorem from [13] is presented

in section 7, together with the application to the current situation.
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In the third part of the present thesis, the compressible Navier-Stokes equations are studied. At the be-

ginning of section 8, a brief discussion of the deterministic compressible Navier-Stokes equations it provided.

The concept of �nite-energy weak solutions, as introduced in [11], is presented, as well as the main theorem

proofed in [11], claiming the existence of those solutions for bounded and measurable forces. Afterwards,

following [9], the extension of this concept to the stochastic Navier-Stokes system is discussed. Roughly

speaking, a stochastic process will be called a �nite-energy weak solution to the stochastic compressible

Navier-Stokes system, if it solves the system path-wise. In other words, a stochastic process is called a

solution, if for almost every �xed ω in the state space the following holds: The function that arises from

�xing ω in the solution process is a �nite-energy weak solution to the deterministic Navier-Stokes equations,

driven by the force that arises from �xing ω in the force process. The major obstacle is that in all interesting

situations, the forces obtained in this way are de�ned as the time derivative of a nowhere di�erentiable

function. Thus, we need to deal with distributional forces and the existence theorem from [11] can not be

applied.

The heart of the third part is section 9, where the compressible Navier-Stokes system governed by

distributional forces is discussed, following the presentation of [9]. It will be shown that the system posses

a �nite-energy weak solution. The proof is based on the correspondent result for measurable forces and on

approximation.

The proof of existence of solutions to the stochastic Navier-Stokes system, which is content of the �rst

part of section 10, makes use of the measurable selection theorem proved in [17]. In the �nal subsection of

this thesis, the developed theory is applied to Levy processes as presented in [9].
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Part I

Preliminaries

1 Analysis

1.1 Frequently used notations

• N :� t1, 2, 3, ...u.
• N0 :� t0, 1, 2, 3...u.
• The symbols c, c1, c2, ..., C, C1, C2, ..., ĉ, c̃... denote generic constants. They have di�erent values in

di�erent parts of the text.

• We use the notation constpA,B, ...q to denote a constant only depending on A,B, ... .

• For p P r1,8s we set

p1 :�

$''&
''%
8 if p � 1

p
p�1 if 1   p   8
1 if p � 8.

• If M is a set and N �M , then IN denotes the characteristic function.

• Let M be any set and let A be an expression on M . We de�ne

rAs :� tx PM |Apxqu.

For instance, if f : M Ñ R, we have

rf   cs � tx PM | fpxq   cu.

• If f : M Ñ N and X �M then f |X : X Ñ N denotes the restriction of f to X. If A � NM , then we

de�ne

A|X :� tf |X | f P Au.

• We denote the power set of M by 2M .

• We denote the Lebesgue measure of a Borel measurable subset A � Rn by measA.

• In Lebesgue spaces and in Lebesgue integrals, we denote by dt, ds or dr the Lebesgue measure on

R and by dx, dy or dz the Lebesgue measure on RN for N ¡ 1. For instance, if A is the Borel σ-

algebra on R, then L1pR,A, dtq denotes the space of Lebesgue integrable functions and ³
f dt denotes

the Lebesgue integral of f .
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• If pM,dq is a metric space, we denote the open ball with radius R and center x P M by BRpxq. If

A �M , then we de�ne

BRpAq :�
¤
xPA

BRpxq.

• If not otherwise stated, we always use the implicit summation convention, i.e. we sum up over all

indices which appear precisely two times in a term. For instance, we have

|u|2 � uiui and div u � Bui
Bxi .

1.2 Functional Analysis

We will frequently use the following two theorems about product topologies. The proof can be found e.g. in

[31], Theorem 1.3.1, respectively in [18], Theorem 1.12.

Theorem 1.1. (Tychono�) Let pXiqiPI be a family of compact topological spaces. Then
±
iPI Xi is compact

in the product topology.

Theorem 1.2. Let pXnqnPN be a family of sequentially compact topological spaces. Then
±
nPNXn is se-

quentially compact in the product topology.

1.3 Banach spaces and Hilbert spaces

Unless otherwise stated, all Banach and Hilbert spaces in this thesis are real-valued spaces.

Let X be a vector space. We write Y ¤ X i� Y is a subspace of X. Let Z be a vector space and

X,Y ¤ Z. Suppose X respectively Y carry norms } � }X respectively } � }Y . Then, the spaces X � Y and

X X Y carry the norms

}z}X�Y :� inft}x}X � }y}Y |x� y � zu

and

}z}XXY :� }z}X � }z}Y .

Let X be a Banach space. We denote dual space by

X 1 :� tx1 : X Ñ R |x1 is linear and boundedu.

For x1 P X 1 and x P X we denote the duality product by

xx1, xy :�X1 xx1, xyX :� x1pxq.

We denote by ιX : X Ñ X2 the canonical embedding. For Y ¤ X 1 we denote by σpX,Y q the weak topology

on X with respect to Y , i.e. σpX,Y q is the initial topology with respect to the set Y of functionals on X.
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For a sequence pxnqnPN � X we write

xn
Yá x i� xn Ñ x in σ(X,Y).

We call σpX,X 1q the weak topology on X and σpX 1, ιXpXqq the weak-star topology on X 1 and we write

xn á x i� xn
X1á x

and for a sequence px1nqnPN � X 1 we write

x1n
�á x1 i� x1n

ιXpXqá x1.

We denote by Xw the topological vector spaces X endowed with the weak topology.

If Y is a further Banach space, then we write Y ãÑ X to denote that we can identify Y with some

subspace of X, i.e. there is a canonical embedding ιYÑX : Y Ñ X. If H is a Hilbert space, then we denote

the scalar product of x, y P H by

xx, yyH

or simply by xx, yy if no confusion can arise. If H � Rn, we use the notation x � y :� xx, yyRn � xiyi for the

scalar product.

Theorem 1.3. Let X be a separable Banach space and let A � X 1 be a bounded subset. Then, A equipped

with the weak-star topology on X 1 is metrizable.

Proof. De�ne the metric

d�px1, y1q :�
8̧

k�1

1

2k}ak}X |xx
1 � y1, aky|,

where takukPN � X is dense. Clearly, we have x
1

n Ñ x1 in d� if x
1

n
�á x1. Lemma 1.13 yields the inverse

implication.

Corollary 1.4. If X 1 is separable and A � X is bounded, then A equipped with the weak topology is

metrizable.

1.4 Linear operators

Let X and Y be Banach spaces.

De�nition 1.5. We denote by LpX,Y q the space of linear and bounded operators A : X Ñ Y . The space

carries the operator norm } � }LpX,Y q.
We denote by LSpX,Y q the space LpX,Y q equipped with the strong operator topology i.e. the initial

topology with respect to the family of mappings A ÞÑ Ax from LpX,Y q to Y for x P X. In particular,

An Ñ A in TSpX,Y q if AnxÑ Ax in Y for all x P X.
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We denote by LW pX,Y q the space LpX,Y q equipped with the weak operator topology, i.e. the initial

topology with respect to the family of mappings A ÞÑY 1  y1, Ax ¡Y from LpX,Y q to R for x P X and

y1 P Y 1.

De�nition 1.6. Let H and U be Hilbert spaces and let A P LpH,Uq. Then,

A|pkerAqK : pkerAqK Ñ U

is injective. The pseudo inverse of A is de�ned by

A�1 :� A|�1

pkerAqK
: ran AÑ pkerAqK

1.5 Function spaces

If X is a topological space and Y is a Banach space, we de�ne

CpX,Y q :� tf : X Ñ Y | f is continuous and boundedu

The space CpX,Y q carries the supremum norm } � }CpX,Y q. If no confusion about the involved spaces can

arise, we sometimes write } � }8 :� } � }CpX,Y q.
Let k, n P N, let Ω � Rn be an open set and let A � Rn be an arbitrary set. We de�ne the spaces

C0pA,Rkq :� tf : AÑ Rk | f is continuousu
CppΩ,Rkq :� tf P C0pΩ,Rkq | f 1 P Cp�1pΩ,Rkqu, for p ¥ 1

C8pΩ,Rkq :�
£
pPN

CppΩ,Rkq

and for m P NY t8u

CmpA,Rkq :� tf : AÑ Rk | DU � A open and g P CmpU,Rkq such that f � g|Au.

Furthermore, we de�ne

Cmb pA,Rkq :� tf P CmpA,Rkq |Dαf is bounded for all |α| ¤ mu
Cmc pA,Rkq :� tf P CmpA,Rkq | supp f � A is compactu.

In particular, we have

CpA,Rkq � C0
b pA,Rkq.

In order to simplify notations we set

CmpAq :� CmpA,Rq.

The spaces Cmb pAq and Cmc pAq are de�ned analogously. The spaces Cmb pA,Rkq for m P N0 are Banach spaces
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with respect to the norm

}f}Cmb pA,Rkq :�
¸

|α| m

}Dαf}CpA,Rkq.

For m P NY t8u and A � Rn, we de�ne the space of divergence free vector �elds

DmpAq :� tf P CmpA,Rnq | div f � 0u.

The spaces Dmb pAq and Dmc pAq are de�ned analogously.

Let I � R be an interval and let E be a Banach space. We call a function f : I Ñ E cádlág i� f is right

continuous and has left limits (i.e. limsÑt� fpsq exists in E for all t P Iztmin Iu). The set of cádlág functions
is denoted by DpI, Eq.

Let X be a topological space and Y be a Banach space. We de�ne the the space

CwpX,Y q :� tf : X Ñ Y | xfp�q, y1y P CbpXq for all y1 P Y 1u,

i.e. the space of all continuous functions f : X Ñ Y , where Y carries the weak topology, such that

}xfp�q, y1y}8   8 for all y1 P Y 1. We say

fn Ñ f in CwpX,Y q

i�

xfnp�q, y1y Ñ xfp�q, y1y in CbpXq

for all y1 P Y 1.

If X is any Banach space such that C8
c pA,Rnq ãÑ X for some A � Rn, then we denote by

Xσ :� tf P C8pA,Rnq | div f � 0u XX
}�}X

.

In particular, we have Dmb pAq � Cmb,σpAq for m P N.

1.6 The set of compact subsets

De�nition 1.7. Let pX, dq be a metric space. We denote by CpXq the space of compact non-empty subsets

of X. We de�ne a metric dC on this space by

dCpK,Hq :� inftε ¡ 0 : K � BεpHq and H � BεpKqu

for all compact sets K, H P CpXq. The space CpXq is endowed with the Borel σ-algebra of this metric.

The next lemmata can be proved directly. For the proofs see [29], section 12.1.

Lemma 1.8. If X is separable, then CpXq is separable.
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Lemma 1.9. For B P BpXq let

τpBq :� tK P CpXq |K � Bu,

and de�ne

E :� tτpUq |U � X is openu

and

E :� tτpAq |A � X is closedu

Then, each element of E is open in CpXq and each element of E is closed in CpXq. Furthermore, both E and

E are generators for the Borel σ-algebra BpCpXqq.
Lemma 1.10. Let pX, dq be a separable metric space and let pE,Ωq be a measurable space. Let f : E Ñ X

and g : E Ñ CpXq be measurable maps. Then the set tx P E | fpxq P gpxqu is a measurable subset of E.

1.7 Properties of the weak and the weak-* topology

We list some results about the weak topology. Let X be a Banach space.

Lemma 1.11. (Banach-Alaoglu) Bounded sets in X 1 are pre-compact in the weak-* topology.

The proof can be found in any introductory book about functional analysis, i.e. [31], Theorem 5.4.1. Since

the weak-star topology on bounded sets is metrizable, bounded sets in X 1 are also sequentially pre-compact.

Lemma 1.12. Let xk á x in X (respectively xk
�á x in X 1). Then, the sequence txkukPN is bounded and

}x} ¤ lim inf
kÑ8

}xk}.

Proof. In both cases (i.e. the weak resp. the weak-star convergence), the boundedness of the sequence is a

direct consequence from Banach-Steinhaus' Theorem. If xk á x in X, then the estimate follows from

}x}X � sup
}x1}X1�1

|xx1, xy| � sup
}x1}X1�1

lim
kÑ8

|xx1, xky| ¤ lim inf
kÑ8

sup
}x1}X1�1

|xx1, xky| � lim inf
kÑ8

}xk}X .

If xk
�á x, the statement follows by a similar calculation.

Lemma 1.13. Let txn,kupn,kqPN2 � X such that xn,k Ñ ϕk for any �xed k and xn,k á ψn for any �xed n.

Suppose that

lim
nÑ8

sup
kPN

}xn,k � ϕk}X � 0.

Then, there is x P X such that ϕk á x, ψk Ñ x and xk,k á x.

If xn,k Ñ ψn strong in X for all �xed n, then ϕk Ñ x and xk,k Ñ x.
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Proof. Let ε ¡ 0. There is N P N such that

}ψn � ψm}X ¤ lim inf
kÑ8

}xn,k � xm,k}X ¤ lim inf
kÑ8

}xn,k � ϕk}X � }xm,k � ϕk}X ¤ ε

for all n,m ¡ N . Thus, ψn Ñ x for some x P X. We get for all x1 P X 1zt0u and any k, n P N

|xx� ϕk, x
1y| ¤ }x� ψn}X}x1}X1 � |xψn � xn,k, x

1y| � }xn,k � ϕk}X}x1}X1 .

Choose n P N such that }x � ψn}X   ε 1
}x1}X1

and supkPN }xn,k � ϕk}X   ε 1
}x1}X1

. Now, choose K P N such

that |xψn � xn,k, x
1y|   ε for all k ¡ K. Then, the right hand side is   3ε for all k ¡ K. Thus, we have

ϕk á x. Furthermore, we have

|xx� xk,k, x
1y| ¤ }xk,k � xn,k}X}x1}X1 � }xn,k � ϕk}X}x1}X1 � |xϕk � x, x1y|,

where n is chosen as above. Then, }xk,k�xn,k}X ¤ }xk,k�ϕk}X �}xn,k�ϕk}X ¤ 2ε and }xn,k�ϕk}X ¤ ε.

By the above there is K P N such that for all k ¥ K we have |xϕk � x, x1y| ¤ ε. This shows xk,k á x.

If xn,k Ñ ψn strong in X, then have

}x� ϕk}X ¤ }x� ψn}X � }ψn � xn,k}X � }xn,k � ϕk}X ,

where the right hand side can be estimated as above. The assertion xk,k Ñ x can be shown similar.

Lemma 1.14. Let xn á x in X and x1n Ñ x1 in X 1. Then the iterated limit exists, and we have

lim
nÑ8

lim
mÑ8

xx1n, xmy � lim
mÑ8

lim
nÑ8

xx1n, xmy.

Proof. Since the sequence xn is bounded in X and x1n Ñ x1 uniformly on bounded sets, we have

lim
nÑ8

sup
mPN

|xx1n � x1, xmy| � 0.

Lemma 1.13 now yields the desired conclusion.

Lemma 1.15. (weak lower semicontinuity of convex functions) Let Ω � Rn be a bounded domain, fn á f

in L1pΩq and let F : RÑ R be a convex function. Then»
F pfq dx ¤ lim inf

nÑ8

»
F pfnq dx.

For the proof see [21], Lemma 3.5.

Lemma 1.16. Let pS ,A, µq be a complete, σ-�nite measure space, let F : R Ñ R be a strictly convex

function and let fn, f : S Ñ R be measurable. Suppose that

fn á f

F pfnq á F pfnq

in L1pΩq. Then fn Ñ f in L1pΩq.
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The proof can be found in [30], Theorem 2.

Lemma 1.17. Let T ¡ 0 and 1 ¤ p, q, r, s ¤ 8 such that

1

p
� 1

q
� 1

r
� 1

s
� 1.

Let fn á f in Lpp0, T ;LrpΩqq and gn á g in Lqp0, T ;LspΩqq. Assume that

}BfnBt }L1p0,T ;W�m,1pΩqq ¤ c

for some constants m ¥ 0 and c ¡ 0 independent of n, and

lim
|ξ|Ñ0

sup
nPN

}gnp� � ξ, rq � gn}Lqp0,T ;LspΩqq � 0.

Then, fngn Ñ fg in D1pp0, T q � Ωq. Furthermore, the weak convergence can be replaced with the weak-*

convergence, if some of the exponents are in�nite.

The proof can be found in [24], Lemma 5.1.

2 Partial Di�erential Equations

2.1 Distributions

Let Ω � Rn be a measurable set.

De�nition 2.1. We denote the set of test functions by

DpΩq :� C8
c pΩq.

De�nition 2.2. We say that ϕn Ñ ϕ in DpΩq i�

(1) there exists a compact set K � Ω such that suppϕn � K for all n;

(2) for all α P Nn0 we have

lim
nÑ8

}Dαpϕn � ϕq}8 � 0.

De�nition 2.3. We denote the set of distributions by

D1pΩq :�
"
u : DpΩq Ñ R

����u is linear and ϕn Ñ ϕ in DpΩq implies upϕnq Ñ upϕq
*
.

For ϕ P DpΩq and u P D1pΩq we denote the duality product by

xu, ϕy :� upϕq.

12



We de�ne the derivative of distributions by

xDαu, ϕy :� p�1q|α|xu,Dαϕy.

We say un Ñ u in D1pΩq i� xun, ϕy Ñ xu, ϕy for all ϕ P DpΩq.

2.2 Sobolev Spaces

All results about Sobolev spaces can be found in [8], chapter 5, if not otherwise stated.

De�nition 2.4. Let Ω � Rn be an open set, let k P N and p P NY t8u. We de�ne the Sobolev spaces

W k,ppΩ,Rmq :� tu P LppΩ,Rmq |Dαu P LppΩ,Rmq for all multi-indices α with |α| ¤ ku

and the norm

}f}Wk,ppΩ;Rmq :�

$'&
'%
�°

|α|¤k }Dαf}pLppΩ,Rmq

 1
p

if p   8
max|α|¤k }Dαf}L8pΩ,Rmq if p � 8.

Then we have

W k,ppΩ,Rmq � C8pΩ,Rmq XW k,ppΩ,Rmq}.}Wk,ppΩ,Rmq

for any p   8. The spaces W k,2pΩ,Rmq are Hilbert spaces, endowed with the scalar product

xf, gy2Wk,2pΩ,Rmq :�
¸
|α|¤k

xDαf,Dαgy2L2pΩ,Rmq.

Theorem 2.5. (Trace Operator) Let Ω � Rn be a bounded Lipschitz domain. There exists a unique bounded

linear operator T : W k,ppΩ,Rmq Ñ LppBΩ,Rmq such that

T puq � u|BΩ

for all u P C8pΩ,Rmq XW k,ppΩ,Rmq.
We de�ne the space

W k,p
0 pΩ;Rmq :� tu PW k,ppΩ;Rnq |T puq � 0u.

Lemma 2.6. Let Ω � Rn be a bounded Lipschitz domain. Then we have

W k,ppΩ;Rmq � C8pΩ;Rmq}.}Wk,ppΩ;Rmq
,

W k,p
0 pΩ;Rmq � C8

c pΩ;Rmq}.}Wk,ppΩ;Rmq .

Theorem 2.7. (Sobolev embedding) Let Ω � Rn be a bounded Lipschitz domain and let 1 ¤ p, q   8 and

13



k,m P N0 such that k   m. Then, the embedding

Wm,ppΩq ãÑW k,qpΩq

is continuous, if m� n
p ¥ k � n

q , and compact, if m� n
p ¡ k � n

q . The embedding

Wm,ppΩq ãÑ CkpΩq

is compact, if m� n
p ¡ k.

Theorem 2.8. (Poincare inequality) Let Ω � Rn be a bounded Lipschitz domain and let 1 ¤ p   8. Then,

}f}W 1,p
0 pΩq ¤ constpΩ, pq}∇f}LppΩq.

For the proof of the next Lemma see [10], Theorem 10.18.

Lemma 2.9. (div-curl lemma) Let 1   p   8. There exists a constant c such that for all u PW 1,ppRN ,RN q
we have

}∇u}LppRN ;RN�N q ¤ cp}div u}LppRN q � } curlu}LppRN ;RN qq

De�nition 2.10. For 1 ¤ k   8 and 1   p   8 we de�ne the space

W�k,ppΩq :�W k,p
0 pΩq1 .

We have

tDαf | f P LppΩq and |α| ¤ ku �W�k,ppΩq.

Lemma 2.12 in the next subsection can be used to show the next immediate corollary:

Corollary 2.11. Let Ω � Rn be a bounded Lipschitz domain and let 1 ¤ p, q   8 and k,m P N0 such that

k   m. Then, the embedding

W�m,ppΩq ãÑW�k,qpΩq

is continuous if k � n
q1 ¥ m� n

p1 .

2.3 Gelfand triples

Lemma 2.12. Let Y ãÑ X continuously and densely. Then X 1 ãÑ Y 1 continuously. If X is re�exive, then

X 1 ãÑ Y 1 densely.

The proof can be found in [32], Problem 18.6.

De�nition 2.13. Let X be a separable and re�exive Banach space and let H be a separable Hilbert space.

Suppose X ãÑ H continuously and densely. Then, H
�� H 1 ãÑ X 1 continuously and densely and we call the

14



triple

X ãÑ H ãÑ X 1

a Gelfand triple (or evolution triple).

Lemma 2.14. Let X ãÑ H ãÑ X 1 be a Gelfand triple, such that the embedding X ãÑ H is compact. Then,

there exists an orthonormal basis tbnunPN � X of H such that

}Pnx}X1 ¤ }x}X1

for all x P X 1, where Pn is the projection

Pnx :�
ņ

i�1

X1xx, biyXbi.

For the proof see [16], Lemma 4.4.

2.4 Auxiliary Equations

2.4.1 Bogovskii Operator

Theorem 2.15. Let Ω � R3 be a bounded Lipschitz domain and let p, r P p1,8q. There exists a bounded

linear operator

B : tf P LppΩq :

»
Ω

f dx � 0u ÑW 1,p
0 pΩ,R3q

such that v � Brf s solves the problem

div v � f in Ω

v � 0 on BΩ.

Furthermore, if div g � f for some g PW 1,rpΩ,R3q with g � ÝÑν � 0 on BΩ, then

}Brf s}LrpΩq ¤ constpp, r,Ωq}g}LrpΩq.

For the proof see [15], Theorem 3.3.

De�nition 2.16. The operator constructed in Theorem 2.15 is called Bogovskii operator.
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2.4.2 Lp multiplier

De�nition 2.17. Let N P N, 1 ¤ p ¤ 8 and let m : RN Ñ R be a measurable function. We denote by Tm

the formal Operator on LppRN q de�ned by

Tm :�
$&
%DpTmq

� � LppRN q�Ñ LppRN q
v ÞÑ F�1pmFpvqq

where F and F�1 denote the Fourier transformation and the inverse Fourier transformation on RN . The

operator Tm is called multiplier operator and m is the symbol of Tm. If T is a multiplier operator with

symbol m, we write

T � mpξq.

The function m is called an LppRN q-multiplier if Tm : DpTmqp� LppRN qq Ñ LppRN q is a densely de�ned,

bounded operator. The unique linear and bounded extension Tm : LppRN q Ñ LppRN q is then called LppRN q-
multiplier operator.

Let Ω � RN be a domain and denote for v P LppΩq by rvsRN P LppRN q the function that agrees with v

in Ω and is prolonged by zero on RNzΩ. If Tm is a multiplier operator, then we denote by the same symbol

Tm the operator Tm : DΩpTmq
� � LppΩq�Ñ LppΩq, de�ned by

Tmpvq :� TmprvsRN q|Ω,

where DΩpTmq :� tv P LppΩq | rvsRN P DpTmqu.
Lemma 2.18. If T and S are multiplier operators, then TS � ST whenever both sides are de�ned.

Proof. Follows directly from the de�nition.

Theorem 2.19. (Mikhiln multiplier theorem) Let m P L8pRN q be smooth except possibly at the origin and

suppose m satis�es

|x|k|∇km| P L8pRN ;RpNkqq

for all 0 ¤ k ¤ N
2 � 1. Then m is an LppRN q multiplier for all 1   p   8.

The original proof of this Theorem can be found in [25].

De�nition 2.20. We introduce the following pseudo di�erential operators on RN used in later sections:

• the double Riesz transform R �pRj,kqj,k�1,...,N , where

Rj,k � ξjξk
|ξ|2 , j, k � 1, ... , N
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• the inverse divergence A � pAjqj�1,...,N , where

Aj � � iξj
|ξ|2 , j � 1, ... , N

• the inverse Laplacian 4�1, where

4�1 � � 1

|ξ|2

Remark 2.21. Note, that we have

Aj � Bj4�1

A � ∇4�1

R � ∇∇4�1 � ∇A

and

44�1rvs � divpArvsq � v.

Theorem 2.22. The double Riesz transform is an LppRN q-multiplier operator for any 1   p   8.

Proof. This follows immediately from the Mikhlin multiplier Theorem.

The operators Ak are not LppRN q-multiplier operators for any p P r1,8s, but one can show the following

result:

Theorem 2.23. The operators Ak are bounded linear operators

Ak : L1pRN q X L2pRN q Ñ L2pRN q � L8pRN q

and

Ak : LppRN q Ñ L
Np
N�p pRN q

for all 1   p   N . Furthermore, we have for all 1 ¤ i, j, k ¤ N»
Ω

Akrusv dx � �
»

Ω

uAkrvsdx»
Ω

Ri,jrusv dx �
»

Ω

uRi,jrvsdx

whenever both sides are de�ned.
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This can be proved by using basic properties of the Fourier transform, see [10], Theorem 10.26, and the

formulae at the end of section 10.16. Now the following is easy:

Corollary 2.24. Let Ω � RN be a bounded domain. Then, the inverse divergence is a compact operator

Ai : LppΩq Ñ CpΩq

and a continuous operator

Ai : LqpΩq ÑW 1,qpΩq

for any p ¡ N and q ¡ 1 and all 1 ¤ i ¤ N .

Proof. For q   N , the mapping Ak : LqpΩq Ñ L
Nq
N�q pΩq is continuous, and since Nq

N�q ¡ q, the embedding

L
Nq
N�q pΩq ãÑ LqpΩq is also continuous. Therefore,

}Airvs}LqpΩq ¤ c}v}LqpΩq.

On the other hand, for any q ¥ N , there is r P rN2 , Nq such that Nr
N�r � q. Due to the continuity of the

embedding LqpΩq ãÑ LrpΩq and the continuity of the mapping Aj : LrpΩq Ñ LqpΩq, we conclude again

}Airvs}LqpΩq ¤ c}v}LqpΩq.

Furthermore, by the continuity of the double Riesz transform, we get

}BjAirvs}LqpΩq � }Ri,jrvs}LqpΩq ¤ c}v}LqpΩq.

Consequently, the second statement follows. The �rst statement now follows from the compactness of the

Sobolev embedding W 1,ppΩq ãÑ CpΩq for p ¡ N .

Finally, we state a crucial result about commutators involving the double Riesz transform. For the proof

see [10], Theorem 10.27.

Theorem 2.25. Let 1   p, q   8 such that 1
p � 1

q �: 1
r   1 and let vn á v in LppR3q and un á u in

LqpR3q. Then we have

vnRi,jruns � unRi,jrvns á vRi,jrus � uRi,jrvs in LrpR3q

for all 1 ¤ i, j ¤ 3.
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2.4.3 On the regularization of solutions of transport equations

De�nition 2.26. Let ξ P C8
c pRN q,

³
RN ξ dx � 1, supppξq � B1p0q and ξ ¥ 0. Then, the family pξεqεPp0,1s,

de�ned by ξε :� 1
εN
ξp �ε q, is called smoothing sequence.

The next Lemma follows immediately; see e.g. [19], Lemma 13.3.10 for the case p � 1.

Lemma 2.27. Let pξεqεPp0,1s be a smoothing sequence and let v P LppRN q for 1 ¤ p   8. Then

v � ξε Ñ 0 in LppRN q

as εÑ 0.

The proof for the next Lemma can be found in [23], Lemma 2.3.

Lemma 2.28. Let pξεq be a smoothing sequence, v P W 1,αpRN ,RN q, g P LβpRN q with 1 ¤ α, β ¤ 8 and
1
γ :� 1

a � 1
β ¤1, where we set 1

8 :� 0. Then, we have

Aε :� }divpvgq � ξε � divpvpg � ξεqq}LγpRN q ¤ C}v}W 1,αpRN ;RN q}g}LβpRN q

for some C ¥ 0 independent of ε, v and g. Furthermore, if γ   8, then limεÑ0Aε � 0.

We need the following immediate corollary:

Lemma 2.29. Let γ ¡ 1, f P L1pp0, T q � Ωq and let pu, ρq P L2p0, T ;W 1,2pR3;R3qq � L8p0, T ;LγpR3qq be
a solution of the transport equation

Bρ
Bt � divpρuq � f

in D1pp0, T q � R3q. Furthermore, let pξεq be a smoothing sequence and de�ne ρ̃ε :� ξε � ρ. Then,
Bρ̃ε
Bt � divpρ̃εuq � f � ξε � rε in D1pp0, T q � R3q

with rε Ñ 0 in L2p0, T ;LαpR3qq as εÑ 0, where α :� 2γ
γ�2 .

Proof. We have

Bρ̃ε
Bt � divpρuq � ξε � Bρ

Bt � ξε � divpρuq � ξε � f � ξε
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and consequently

rε � divpρ̃εuq � divpρuq � ξε.

By the preceding Lemma, the right hand side tends to zero in LαpR3q for a.e. �xed t P p0, T q. Since

}rε}L2p0,T ;LαpR3qq � }divpρ̃εuq � divpρuq � ξε}L2p0,T ;LαpR3qq ¤ C}v}W 1,2pR3;R3q}ρ}LγpR3q,

Lebesgue's theorem yields the desired conclusion.

3 Measure theory

3.1 General measure theory

De�nition 3.1. Let Ω be a set. If E � 2Ω is a system of subsets of Ω, we denote by AσpEq the smallest

σ-algebra A on Ω such that E � A. If pΩi,AiqiPI is a family of measurable spaces and Xi : Ω Ñ Ωi a family

of functions, we denote by AσptXi | i P Iuq the smallest σ-algebra A on Ω such that Xi is A{Ai measurable

for all i P I.
If pΩ,Aq and pΩ1,A1q are two measurable spaces, then we denote by L0pΩ,A; Ω1,A1q the set of all AzA1

measurable functions f : Ω Ñ Ω1.

Lemma 3.2. (Coincidence criterion) Let pΩ,Aq be a measurable space, let P and Q be probability measures

on pΩ,Aq and let E � A be a generator of A which is closed under �nite intersection. Assume PpAq � QpAq
for all A P E. Then P � Q.

For the proof see [4], Lemma 1.9.4.

Let X be a topological space. We denote by BpXq the Borel σ-algebra on X.

Theorem 3.3. Let X and Y be topological spaces and assume that Y has a countable base. Then, BpX�Y q �
BpXq � BpY q.

For the proof see [5], Lemma 6.4.2.

De�nition 3.4. Let pΩ, Aq be a measurable space. Then we denote by PpΩ, Aq the set of all probability

measures on pΩ, Aq. We sometimes simply write PpΩq if no confusion can occur; if Ω carries a topology,

this notation usually indicates that Ω is equipped with the Borel σ-algebra, if not otherwise stated.

De�nition 3.5. (weak convergence of measures) Let Ω be a topological space, let A be the Borel σ-algebra

and let tµnunPN � PpΩ,Aq. We write µn á µ in PpΩq i�»
f dµn Ñ

»
f dµ

for all bounded continuous functions f : Ω Ñ R.

If Ω carries a topology, then the set PpΩ,Aq is always endowed with the topology of weak convergence

of measures.
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Theorem 3.6. If pΩ, dq is a (separable and/or complete) metric space, then the topology of weak convergence

of measures is metrizable by a (separable and/or complete) metric.

For the proof see [5], Theorem 8.3.2.

Lemma 3.7. Let Ω be a separable metric space, let C � PpΩq be a convex and weakly closed subset and let

pΩ1,A1,P1q be a probability space. Assume f : Ω1 Ñ C is A1{BpPpΩqq measurable. Then»
Ω

fpωqp�qP1pdωq P C.

The proof can be found in [16], Lemma 7.2.

De�nition 3.8. Let pΩ, dq be a metric space. We call a subset X � PpΩq tight, i� for all ε ¡ 0, there is a

compact set K � Ω such that PpΩzKq   ε for all P P X.

Theorem 3.9. (Prokorhov's theorem) Let pΩ, dq be a complete and separable metric space. A set K � PpΩq
is tight if and only if K is pre-compact with respect to the weak convergence of measures.

For the proof see [5], Theorem 8.6.2.

Theorem 3.10. (Skorohod's theorem) Let E be a separable topological space and let Pn,P P PpE,BpEqq
for all n P N. Suppose that Pn á P. Then, there exist a probability space pO,F ,Qq and random variables

Xn : O Ñ Ω and X : O Ñ Ω such that Q �X�1
n � Pn, Q �X�1 � P and Xn Ñ X a.e. in O.

For the proof see [3], Theorem 6.7.

3.2 Lebesgue-Bochner spaces

Let pΩ,A, µq be a measure space and let E be a separable Banach space. Integration of measurable functions

with values in separable Banach spaces can be formally de�ned as in the real-valued case. For the proofs of

the Theorems see [26], chapter 1 and 2.

De�nition 3.11. For a simple function

fpωq :�
ņ

i�1

fiIAipωq,

where n P N, fi P E and Ai P A, the Lebesgue-Bochner integral is de�ned by

»
f dµ :�

ņ

i�1

fiµpAiq.

Analogously to the real-valued case, we have the following result:

Theorem 3.12. Let f : Ω Ñ E be A{BpEq measurable. Then, there exists a sequence pfnqnPN of simple

functions, such that

fn Ñ f µ� a.e. in Ω
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and

}fn}E ¤ }f}E µ� a.e. in Ω.

Remark 3.13. The preceding theorem does not hold for non-separable Banach spaces.

De�nition 3.14. Let f : Ω Ñ E be A{BpEq measurable and let pfnqnPN be a sequence of simple functions

enjoying the properties described in the above theorem. The Lebesgue-Bochner integral of f is de�ned as»
f dµ :� lim

nÑ8

»
fn dµ

if the limit exists. In this case, we call f Lebesgue-Bochner integrable. We set»
A

f dµ :�
»
IAf dµ.

The Lebesgue-Bochner integral is well de�ned:

Theorem 3.15. The de�nition of the Lebesgue-Bochner integral does not depend on the approximating

sequence.

De�nition 3.16. The Lebesgue-Bochner space LppΩ,A, µ;Eq is the space of all (equivalence classes of µ-a.e.
identical) A{BpEq measurable functions f : Ω Ñ E such that

}f}LppΩ,A,µ;Eq :�
�»

}f}pE dµ


 1
p

  8.

i� p   8 and

}f}L8pΩ,A,µ;Eq :� ess sup }f}E   8

i� p � 8. In order to simply notation, we set LppΩ, µ;Eq :� LppΩ,A, µ;Eq if no confusion can arise.

We list a few important theorems of Lebesgue-Bochner spaces:

Theorem 3.17. The Lebesgue-Bochner space L1pΩ,A, µ;Eq is precisely the set of all (equivalence classes

of) Lebesgue-Bochner integrable functions.

Remark 3.18. Obviously, the Lebesgue-Bochner integral does not depend on µ-null sets, thus we can de�ne³
f dµ for f P L1pΩ,A, µ;Eq.
Theorem 3.19. The Lebesgue-Bochner spaces are Banach spaces. For 1   p   8 the spaces are re�exive.

For 1 ¤ p   8 the spaces are separable and we have

pLppΩ, µ;Eqq1 � Lp
1pΩ, µ;E1q.

If µpΩq   8, then LqpΩ,A, µ;Eq � LppΩ,A, µ;Eq whenever 1 ¤ p   q ¤ 8. Finally, if H is a separable

Hilbert space, then the space L2pΩ,A, µ;Hq is a Hilbert space with respect to the scalar product

xf, gyL2pΩ,A,µ;Hq :�
»
xf, gyH dµ
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De�nition 3.20. Let Ω be a topological space, let A :� BpΩq and µ be a measure on pΩ,Aq. Then we

de�ne

LplocpΩ,A, µ;Eq :� tf P L0pΩ,A;E,BpEqq | fIC P LppΩ,A, µ;Eq for all compact C � Ωu.

We say fn Ñ f in LplocpΩ,A, µ;Eq i� ³
C
}fn � f}pE dµÑ 0 for all compact C � Ω.

3.3 Conditional expectation

Let pΩ,A, µq be a measure space and let E be a separable Banach space.

Theorem 3.21. Let P P PpΩ,Aq be a probability measure, let F � A be sub-σ-algebra and let f P
L1pΩ,A,P;Eq. Then, there exists a unique g P L1pΩ,F ,P|F ;Eq such that»

C

f dP �
»
C

g dP

for all C P F .
For the proof see [26], chapter 11.

De�nition 3.22. We call the function g P L1pΩ,F ,P|F ;Eq de�ned in the last theorem the conditional

expectation of f with respect to F and we use the notation

Erf |Fs :� EPrf |Fs :� g.

De�nition 3.23. Let P P PpΩ,Aq be a probability measure and let F � A be sub-σ-algebra. A version of

the conditional probability distribution of P with respect to F is a mapping pω,Aq ÞÑ PpA|Fqpωq for A P A
and ω P Ω, such that

PpA|Fq � EPrIA|Fs P- a.e. inΩ

for all A P A.
A version Pp�|Fqp�q : Ω�AÑ r0, 1s of the conditional probability distribution of P with respect to F is

called regular conditional probability distribution (r.c.p.d.) of P with respect to F i�

(1) PpA|Fqp�q is F{Bpr0, 1sq measurable for each A P A;
(2) Pp�|Fqpωq P PpΩ,Aq for each ω P Ω.

Theorem 3.24. Let Ω be a polish space. Then, for any sub-σ-algebra F � BpΩq and any P P PpΩq, there
exists a r.c.p.d. of P with respect to F . Furthermore, if Pp�|Fqp�q and �Pp�|Fqp�q are two r.c.p.d., then there

is a P-null set N P F such that

PpA|Fqpωq � �PpA|Fqpωq

for any A P BpΩq and ω P ΩzN .

For the proof see [5], Corollary 10.4.6. From now on, if Ω is a polish space, the expression Pp�|Fq always refers
to a regular conditional probability distribution. Regular conditional probabilities are helpful in calculations:
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Theorem 3.25. Let Ω be measurable space, let A :� BpΩq and let F � G � A be sub-σ-algebras. Assume

that some P P PpΩ,Aq admits a r.c.p.d. with respect to both sub-σ-algebras F and G. Then

Pp�|Fq �
»

Ω

Pp� |GqpωqPp dω |Fq P-a.e.,

and for any f P L1pΩ,A,P;Eq, where E is a separable Banach space, we have

Erf |Fs �
»

Ω

fpxqPp dx|Fq P-a.e.

For the proof see [5], Proposition 10.4.18.

Furthermore, the next two results will be helpful in di�erent parts of the text:

Theorem 3.26. Let pΩ,Aq be a measurable space, let F � A be a countable generated sub-σ-algebra, i.e.

F � AσpDq for some countable D � A, and let Pp�|Fqp�q be a r.c.p.d.. De�ne the set

Kpωq :�
£
tA P F |ω P Au

for any ω P Ω. Then, Kpωq P F , and there is a P-null set N P F , such that

PpKpωq|Fqpωq � 1

for all ω P ΩzN .

For the proof see [29], Theorem 1.1.8.

Lemma 3.27. Let pΩ,Aq be a measurable space, let P and Q be probability measures on pΩ,Aq and let

G � A be a sub-σ-algebra. Assume P|G � Q|G and Pp�|Gq � Qp�|Gq, where both are r.c.p.d. Then P � Q.

Proof. For any A P A we have

PpAq �
»
PpA|Gq dP|G �

»
QpA|Gq dQ|G � QpAq.

3.4 Inequalities

Let pΩ,A, µq be a measure space and let E be a separable Banach space. To simply notations, denote in

this section Lp :� LppΩ,A, µ;Eq. We have the following inequalities:

Theorem 3.28. (Hölder's inequality) Let p P r1,8s and q :� p1. Then, we have

}fg}L1 ¤ }f}Lp}g}Lq .

Corollary 3.29. Let p � q1 P r1,8s and r P p1,8q. Then, we have

}fg}Lr ¤ }f}Lpr}g}Lqr .
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Proof. By Hölder's inequality we have

}frgr}L1 ¤ }fr}Lp}gr}Lq � }f}rLpr}g}rLqr .

Corollary 3.30. Let γ P p1,8q, α ¡ 0 and p � q1 P p1,8q. Assume αγp ¥ 1 and p1� αqγq ¥ 1. Then, we

have

}f}Lγ ¤ }f}αLαγp}f}p1�αqLp1�αqγq
.

Proof. By the preceding Corollary, we have

}f}Lγ � }fαf p1�αq}Lγ ¤ }fα}Lγp}f p1�αq}Lγq � }f}αLαγp}g}p1�αqLp1�αqγq
.

Finally, the following Theorem is often helpful:

Theorem 3.31. Let µ be a �nite measure and let p ¡ 1. Suppose that }fn}Lp ¤ c for some c independent

of n, and fn Ñ f in measure with respect to µ. Then, f P Lp and fn Ñ f in Ls for any s   p.

Proof. Let Qε,n :� r}fn � f}E ¡ εs for any n P N and ε ¡ 0.

To show f P Lp, assume conversely that f R Lp. Let An :� rn� 1 ¤ |f |   ns. Since µ is �nite, we know

that1 p|f | � 2q� R Lp, and thus,

8̧

n�2

µpAnqpn� 2qp � 8.

Now, �x R ¡ 0 and choose N P N such that

Ņ

n�1

µpAnqpn� 2qp ¡ 2R.

Let

s :� mintµpAnq | 1 ¤ n ¤ N, µpAnq ¡ 0u

and choose k0 such that for any k ¡ k0

µpQ1,kq � µpr|fk � f | ¡ 1sq   s

2
.

1For any real-valued function h, we denote h� :� maxth, 0u.
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Now, we have

»
|fk|p dµ ¥

Ņ

n�1

»
An

|fk|p dµ

¥
Ņ

n�1

»
AnXQc1,k

|fk|p dµ

¥
Ņ

n�1

»
AnXQc1,k

pp|f | � 1q�qp dµ

¥
Ņ

n�1

1

2
µpAnqppn� 2q�qp

¥ R,

in contradiction to }fk}Lp ¤ c. We conclude that f P Lp.
Now, �x ε ¡ 0, and choose n0 such that

µpQε,nq   ε

for all n ¥ n0. Then, we have

p
»
}fn � f}sE dµq ps ¤ pµpΩqεs �

»
Qε,n

}fn � f}sE dµq ps

¤ 2
p
s�1

�
µpΩq ps εp � µpQε,nq ps�1

»
Qε,n

}fn � f}pE dµ




¤ 2
p
s�1pµpΩq ps εp � ε

p
s�1pc� }f}Lpqq,

where the right hand side tends to zero as εÑ 0.

3.5 Measurable selections

We need the following result about the existence of measurable selections for multivalued mappings. The

proof can be found in [17], Theorem 1.5.

Theorem 3.32. (Kuratowski-Ryll-Nardzewski theorem) Let pX,Aq we any measurable space and let pY, dq
be a complete and separable metric space. Let F : X Ñ 2Y . Assume that F pxq � Y is closed and non-empty

for any x P X and assume

tx P X |F pxq X U � Hu P A

for all open sets U � Y . Then, there exists a measurable selection F of F , i.e. a measurable mapping

F : X Ñ Y such that F pxq P F pxq for all x P X.

We need the following immediate corollary:

Corollary 3.33. Let X and Y be a complete metric spaces, and let F : X Ñ 2Y such that F pxq is closed
and non-empty for any x P X. Assume that graphF :� tpx, yq P X �Y | y P F pxqu is closed in X �Y . Then
there exists a Borel measurable selection of F .
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Proof. Let U � Y be an open set and let A :� X�U P BpXq�BpY q. Since F posses a closed graph, we have

graph F P BpX � Y q. By Lemma 3.3 we have BpX � Y q � BpXq �BpY q, thus AX graph F P BpXq �BpY q.
By writing

tx P X |F pxq X U � Hu � tx P X | Dy P Y such that px, yq P graph F XAu,

we conclude tx P X |F pxq X U � Hu P BpXq. Theorem 3.32 now yields the desired conclusion.

4 Stochastic processes

4.1 General stochastic processes

Let pO,F ,Pq be a probability space, let pE,Aq be a measurable space and let I � R.

De�nition 4.1. A family pFtqtPI of σ-algebras is called a �ltration of pO,F ,Pq i� Ft � Fs � F for all

s, t P I with s ¥ t. The tuple pO,F , pFtqtPI ,Pq is called �ltered probability space.

De�nition 4.2. The predictable σ-algebra P (with respect to pFtqtPI) is the σ-algebra on I �O de�ned by

P :� Aσ
� pps, ts X Iq �A | s   t, A P Fs

(Y P0




where

P0 :�

$'&
'%
H if Emin I,"
tmin Iu �A |A P Fmin I

*
if Dmin I.

De�nition 4.3. An E-valued stochastic process is a family of random variables pXtqtPI such that Xt is F{A
measurable for all t P I.
De�nition 4.4. The process X is called adapted to pFtqtPI i� Xt is Ft{A measurable for all t P I, progress-
ively measurable with respect to pFtqtPI i� the mapping X|IXp�8,ts : ps, ωq ÞÑ Xspωq is BpI X p�8, tsq b Ft
measurable for all t P I and predictable if the mapping X : I � O Ñ E is measurable with respect to the

predictable σ-algebra.

The next Lemma follows immediately from the De�nition.

Lemma 4.5. Every predictable process is progressively measurable. Every progressively measurable process

is adapted.

De�nition 4.6. The �ltration pFtqtPI given by

Ft :� AσptXs | s P I, s ¤ tuq

is called the canonical �ltration for X.

De�nition 4.7. If E is a Banach space, then we call an E-valued process pXtqtPI simple, if there are random

variables xXi : O Ñ E, i � 0, ..., n, such that xXi takes only a �nite number of di�erent values for all 1 ¤ i ¤ n,
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and t1   ...   tn with ti P I for i � 1, ..., n, such that

Xt �

$''&
''%
°n
i�1

xXiIpti�1,tisXIptq if Emin I,

°n
i�1

xXiIpti�1,tisXIptq � xX0Itmin Iuptq if Dmin I.

for all t P I.
The following theorem follows immediately:

Theorem 4.8. Let E be a separable Banach space. Then, the set E of simple processes is dense in LppI �
O,P, dtb P;Eq for any 1 ¤ p   8.

Proof. In this proof, we call a set A P P simple, if A � pps, ts X Iq � B for some s, t P I and B P Fs, or,
in the case that I posses a minimum, A � tmin Iu � B for some B P Fmin I . Let E be the set of simple

subsets. The set of processes of the form Xtpωq � °n
i�1 αiIAipt, ωq where αi P E and Ai P P is dense

in LppI � O,P, dt b P;Eq. The process X is simple if Ai is simple for each 1 ¤ i ¤ n. The proof is

�nished when we can show that for each A P P and ε ¡ 0, there are simple sets Bi, i � 1, ..., n such that

dtb PpA∆p�iBiqq   ε. But the set of all those sets A form a Dynkin system D such that E � D. Since E
is a generator of F which is closed under �nite intersection, we have

F � AσpEq � DpEq � D � F .

De�nition 4.9. For each ω P Ω, the mapping t ÞÑ Xtpωq is called a path of X. Let F � E. The process X

is called concentrated on the paths with values in F, i� for a.e. ω P Ω

Xtpωq P F for all t P I.

If E is a topological space, then the process X is called continuous if for a.e. ω P Ω the path t ÞÑ Xtpωq
is continuous. Right-, left-, Höldercontinuous, ... are de�ned analogously.

The proof for the next Lemma can be found e.g. in [20] Proposition 1.12.

Lemma 4.10. Let E be a topological space equipped with the Borel algebra. Then, every right (or left)

continuous and adapted process is progressively measurable.

De�nition 4.11. Let E be a Banach space. We call X (square) integrable i� Xt is (square) integrable for

all t P I.
De�nition 4.12. For t1, ... , tn P I, the probability measures Qt1, ... ,tn P PpEnq, de�ned by

Qt1, ... ,tnpB1 � ...�Bnq � PpXti P Bi for all 1 ¤ i ¤ nq

for all Bi P A, are called �nite dimensional distributions of X. A stochastic process Y : I � rO Ñ E, whererO is some further probability space, is called a version of X i� X and Y have the same �nite dimensional

distributions.
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4.2 Path space

De�nition 4.13. The space EI is called path space (for X). The standard σ-algebra G on the path space is

the σ-algebra generated by sets of the form (so-called cylindrical sets)

tf P EI | fptq P Bu

where t P I and B P A.
De�nition 4.14. The probability measure Q :� P �X�1 P PpEIq is called distribution of X.

Remark 4.15. A probability measure on the path space Q P PpEI ,Gq, is a distribution of X, if and only if

for all n P N, t1, ... , tn P I and Bi P A we have

Qptu P EI |uptiq P Bi for all 1 ¤ i ¤ nuq � PpXti P Bi for all 1 ¤ i ¤ nq,

since the system of sets of this form are a generator of G which is closed under �nite intersection. Thus,

two stochastic process X and Y have the same distribution if and only if they are version of each other

(Daniel-Kolmogorov theorem).

De�nition 4.16. The canonical process pξtqtPI of the path space is given by

ξtpuq :� uptq, t P I, u P EI .

De�nition 4.17. The canonical �ltration pGtqtPI on pEI ,Gq is given by

Gt :� Aσptξs | s P I, s ¤ tuq,

i.e the canonical �ltration on pEI ,Gq is the canonical �ltration of ξ. In particular, the canonical process is

adapted to the canonical �ltration.

Remark 4.18. A probability measure Q P PpEIq is a distribution of X i� the canonical process ξ and X are

versions of each other.

Lemma 4.19. Let B P Gt. Then tu P EI |u|IXp�8,ts P B|IXp�8,tsu � B.

Proof. The system

F :�
"
G P G

���� tu P EI |u|IXp�8,ts P G|IXp�8,tsu � G

*

is a σ-algebra. Let s P I X p�8, ts and A P A. Then we have

ξ�1
s pAq � tu P EI |upsq P Au P F ,

i.e. ξs is F{A measurable. Thus, Gt � F .
De�nition 4.20. Let I � pT,8q for some T P R. Then, for any t ¥ 0, we de�ne the shift operator

Ψt : EI Ñ EI by

Ψtpuqpsq :� upt� sq.
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Note, that images of G-measurable sets are G-measurable. In particular, we use the same symbol to denote

the corresponding image operator Ψt : G Ñ G de�ned by ΨtpAq :� tΨtpuq |u P Au.
If pXtqtPI is a stochastic process with paths inM � EI , we use the same notation and de�nitions on the

spaceM. In particular we also callM the path space. The canonical �ltration onM consists of the trace

σ-algebras of the σ-algebras of the canonical �ltration of EI .

Let F � E. We denote by PF pMq the set of all probability measures on M such that the canonical

process is concentrated on the paths with values in F .

4.3 The space Cpr0,8q;Eq as a path space

The most important path space in this thesis is the space of continuous functions from the interval r0,8q to
a separable Banach space E endowed with the Borel algebra. Everything described in this section holds for

any other interval analogously. We usually denote this space by the symbol U :� Cpr0,8q, Eq.
We have the following result:

Theorem 4.21. The standard σ-algebra G on Cpr0,8q, Eq is the Borel σ-algebra. The system E � G
consisting of sets of the form

tu P Cpr0,8q, Eq |uptiq P Ai for all 1 ¤ i ¤ nu

where 0 ¤ ti and Ai � E open, is a generator of G which is stable under �nite intersections. The system

Et � Gt consisting of sets of the form

tu P Cpr0,8q, Eq |uptiq P Ai for all 1 ¤ i ¤ nu

where 0 ¤ ti ¤ t and Ai � E open, is a generator of Gt which is stable under �nite intersections.

Proof. Denote by G the standard σ-algebra de�ned in the previous section. Let ε ¡ 0 and u P Cpr0,8q, Eq.
For every q P QX r0,8q we have tv P Cpr0,8q, Eq |upqq P Bεpupqqqu P G and therefore

Bεpuq �
£

qPQXr0,8q

¤
δPQXp0,εq

tv P Cpr0,8q, Eq | vpqq P Bδpupqqqu P G.

This shows BpCpr0,8q, Eqq � G.
On the other hand, for any �xed t ¥ 0, the mapping ϕ : Cpr0,8q, Eq Ñ E, de�ned by ϕpuq � uptq, is

BpCpr0,8q, Eqq{BpEq measurable, i.e. we have G � BpCpr0,8q, Eqq.
The �rst part of the above proof also shows that E is a generator of G. The assertion about Gt follows

similar.

Sometimes, it will be important to consider only the space of continuous functions on the interval rt,8q
for some t ¡ 0; we usually use the notation U t :� Cprt,8q, Eq for this space. Furthermore, we use the

notation Gt :� BpU tq for the standard σ-algebra and pGtsqs¥t for the canonical �ltration. Let P P PpUq be
any probability measure. By Theorem 3.26, the r.c.p.d. with respect to Gt satis�es the property

Pptv |u|r0,ts � v|r0,tsu |Gtqpuq � 1.
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Thus, we can consider Pp�|Gtqpuq as a probability measure on U t, de�ned by

PpA|Gtqpuq :� Pptv P U | Dw P A : w � v|rt,8qu |Gtqpuq

for any A P BpU tq. We will make use of this in di�erent parts of the thesis.

We need three results about the space U . The proofs can be found in [27], Lemma 4.3, Lemma 8.2, and

Lemma 8.3.

De�nition 4.22. Let E be a Banach space. For q ¥ 1, we denote by AqpEq the set of all functionals

Z : E Ñ r0,8s

such that

(1) Zpxq � 0 i� x � 0;

(2) Z is lower semi-continuous;

(3) Zpαxq ¤ αqZpxq for all α ¡ 1 and x P E;
(4) Z�1pr0, 1sq is relatively compact in E.

Lemma 4.23. Let X ãÑ H ãÑ X 1 be a Gelfand triple such that X ãÑ H compactly. Let tPnunPN � PHpUq
be a sequence of probability measures. Assume for some β ¡ 0, q ¥ 2 and Z P AqpHq we have

sup
nPN

EPn
�

sup
tPr0,T s

}ξptq}H � sup
0¤s t¤T

}ξptq � ξpsq}X1
|t� s|β �

» T
0

Zpξpsqq ds

�
  8

for all T ¡ 0. Then, PnpLqlocpr0,8q, X 1q X Uq � 1 and tPnunPN � PpLqlocpr0,8q, X 1q X Uq is tight.
Theorem 4.24. Let D :� tps, tq P r0,8q2 | s ¤ tu and let pXs,tqps,tqPD and pYs,tqps,tqPD be families of

GzBpR�q measurable random variables from U to R�, let P P PpUq and r ¥ 0.

Assume that for any �xed s ¥ 0 the mapping t ÞÑ Xs,t is P-a.s. increasing and t ÞÑ Ys,t is P-a.s. right

continuous and Ys,t is Gs-measurable for any t ¥ s.

Assume further that for any t ¥ s ¥ r ¥ 0 we have X�,t , , Y�,t P L1pp0, tq � Ω; dt b Pq and Xs,tpuq �
Xs�r,t�rpΨruq and Ys,tpuq � Ys�r,t�rpΨruq

Then, the following are equivalent

(1) There is a Lebesgue null set T � pr,8q such that for any s P pr,8qzT and t ¥ s we have

EPrXs,t |Fss ¤ Ys,t.

(2) For2 P|Fr �a.e. u P U , there is Lebesgue null set Tu � p0,8q such that for any s P p0,8qzTu and t ¥ s

we have

EPp�|Frq�Ψ�1
r rXs,t |Fss ¤ Ys,t.

2The expression P|Fr � a.e. u P U means that we can choose the exceptional null set in Fr.
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Theorem 4.25. Let pXtqt¥0 and pYtqt¥0 be pGtqt¥0-adapted, real-valued, integrable processes on pU ,G,Pq
such that Xtpuq � Xt�rpΨruq and Ytpuq � Yt�rpΨruq for all t ¥ r ¥ 0. Then, the following are equivalent:

(1) pXtqt¥r is a continuous martingale with square variation process pYtqt¥r with respect to P.

(2) For P|Fr � a.e. u P U , the process pXtqt¥0 is a continuous martingale with square variation process

pYtqt¥0 with respect to Pp�|Frqpuq �Ψ�1
r .

4.4 Markov processes

Let pO,F ,Pq be a probability space, pFtqtPI a �ltration and let E be a separable Banach space.

De�nition 4.26. An adapted E-valued stochastic process pXtqtPI is calledMarkov process ifXt P L1pO,F ,Pq
for all t P I and

ErXt |Fss � ErXt |AσpXsqs (4.1)

for all s, t P I with s ¤ t.

Lemma 4.27. An adapted, E-valued, integrable stochastic process pXtqtPI is a Markov process i�

PpXt P A |Fsq � PpXt P A |AσpXsqq (4.2)

for all s, t P I with s ¤ t and A P BpEq, i�

ω ÞÑ PpXt P A |Fsqpωq (4.3)

is AσpXsq{BpRq measurable for all s, t P I with s ¤ t and A P BpEq.
Proof. Step 1. Let pXtqtPI be a Markov process and let s, t P I with s ¤ t and A P BpEq. Since IA is

BpEq{BpRq measurable, (4.1) implies

ErIApXtq |Fss � ErIApXtq |AσpXsqs. (4.4)

This is equivalent to (4.2). Assume conversely that (4.4) holds. Then, by linearity we have

ErϕpXtq |Fss � ErϕpXtq |AσpXsqs. (4.5)

for all simple functions ϕ and by approximating id with simple functions, we get (4.1) by Daniell's continuity

of the conditional expectation.

Step 2. Since AσpXsq � Fs we have

PpPpXt P A |Fsq |AσpXsqq � PpXt P A |AσpXsqq

and we obviously have

PpPpXt P A |Fsq |AσpXsqq � PpXt P A |Fsq

i� ω ÞÑ PpXt P A |Fsqpωq is AσpXsq{BpRq measurable
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4.5 Martingales

Let pO,F ,Pq be a probability space, pFtqtPI a �ltration and let E be a separable Banach space.

De�nition 4.28. An adapted E-valued stochastic process pXtqtPI is called martingale, if Xt P L1pO,F ,Pq
for all t P I and

ErXt |Fss � Xs

for all s, t P I with t ¥ s.

De�nition 4.29. A mapping τ : O Ñ I is called stopping time, if

rτ ¤ ts P Ft

for all t P I.
De�nition 4.30. The process X is called a local martingale, if there exists a sequence of stopping times

pτnqnPN, such that τn Ñ8 a.e. in O and pXpτn^tqqtPI is a martingale for all n P N.

Theorem 4.31. (Burkholder-Davis-Gundy inequality or BDG inequality) For any 1 ¤ p   8 there are

constants c1 and c2 such that for all R-valued, continuous, local martingales X with X0 � 0 a.e. and

Xt P LppO,F ,Pq for all t P I, we have

c1ErxXy
p
2
t s ¤ Ersup

s¤t
|Xs|ps ¤ c2ErxXyt p2 s.

For the proof see [20], Theorem 3.28. For future use, we remark that in the case p � 1, a possible choice

for the right constant c2 is c2 � 4
?

2.

Corollary 4.32. (BDG inequality for conditional expectation) Let U :� Cpr0,8q;Eq for some separable

Banach space E, let P P PpUq and let r ¡ 0. Moreover, let pXtqt¥0 be an R-valued, continuous, square
integrable martingale X with Xr � 0 a.e. and assume that X satis�es Xpt, uq � Xpt� s,Ψsuq for all s ¡ 0

and P-a.e. u P U . Then, we have

EPr sup
r¤s¤t

|Xs| |Frs ¤ 4
?

2EPrxXy 1
2
t |Frs.

Proof. We have by Theorem 4.25 and the BDG-inequality

Er sup
r¤s¤t

|Xs| |Frs � EPp�|Frqr sup
r¤s¤t

|Xs|s

� EPp�|Frq�Ψ�1
r r sup

0¤s¤t�r
|Xs|s

»

¤ 4
?

2EPp�|Frq�Ψ�1
r rxXy 1

2
t�rs

»

� 4
?

2EPrxXy 1
2
t |Frs

»
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4.6 Stochastic integration in �nite Dimensions

Let pO,F , pFtqt¥0,Pq be a �ltered probability space, let n,m P N and let I � r0,8q.
De�nition 4.33. Let H be an Rn�m-valued simple process. Then, for any Rm-valued adapted stochastic

process pXtqt¥0, the stochastic integral of H with respect to X is de�ned by

» t
0

Hs dXs :�
ķ

i�1

xHipXti^t �Xti�1^tq

for all t ¥ 0 , if

Ht � xH0I0ptq �
ķ

i�1

xHiIpti�1,tisptq

De�nition 4.34. An Rm-valued adapted stochastic process X is called total semimartingale, if X is cádlág

and adapted, and whenever H is a simple process and tpHn
t qt¥0unPN is a sequence of simple processes, such

that Hn Ñ H in L8pp0, T q �O, dtb Pq for any T ¡ 0, then

» T
0

Hn
s dXs Ñ

» T
0

Hs dXs in probaility.

In other words, the last assertion is equivalent to the fact that
³T
0
�dXs : S Ñ L0 is a continuous operator for

any T ¥ 0, where the space S of simple processes is endowed with the topology of L8pp0, T q�O,Rn�mqq, and
the space of random variables L0 � L0pO;Rmq is endowed with the topology of convergence in probability.

De�nition 4.35. An Rm-valued adapted stochastic process X is called semimartingale, i� pXt^T qt¥0 is a

total semimartingale for any T ¡ 0.

De�nition 4.36. Let Hn and H be stochastic processes for n P N. We say Hn Ñ H uniformly on compacts

in probability, or short u.c.p., i� for any T ¥ 0 we have

sup
0¤t¤T

|Hn
t �Ht| Ñ 0 in probability

as nÑ8.

Theorem 4.37. For any semimartingale X, the mapping H ÞÑ ³t
0
Hs dXs is a bounded linear mapping if

both sides are endowed with the u.c.p. topology. Moreover, the stochastic integral can be uniquely extended to

the set of continuous stochastic processes by continuity. More precisely, for any t ¥ 0, the stochastic integral

with respect to X is a continuous map

» t
0

�dX :�
$&
%C Ñ DH ÞÑ ³t

0
Hs dXs

where C respectively D denote the sets of continuous respectively cádlág processes, both endowed with the

u.c.p topology.

For the proof see [28], Theorem 11.
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Lemma 4.38. Any adapted continuous local martingale is a semimartingale.

For the proof see [28], Corollary 2.

Lemma 4.39. Any adapted cádlág process of (path wise a.e.) �nite variation on compact intervals is a

semimartingale.

For the proof see [28], Theorem 7.

Lemma 4.40. The stochastic integral is continuous if and only if X is continuous a.e.

For the proof see [28], Theorem 13.

De�nition 4.41. Let pXtqt¥0 and pYtqt¥0 be continuous, real-valued semimartingales. The (predictable)3

quadratic covariation xX,Y y � pxX,Y ytqt¥0 is de�ned by

xX,Y yt :� XtYt �
» t

0

X dY �
» t

0

Y dX.

The (predictable) quadratic variation of X is de�ned by

xXyt :� xX,Xyt.

Lemma 4.42. The quadratic covariation process is an adapted, continuous, increasing semimartingale.

For the proof see [28], Theorem 22.

Lemma 4.43. Let X be a continuous, real-valued semimartingale of (path wise a.e.) �nite variation. Then,

xXy � const, i.e. xXyt � X2
0 for all t ¥ 0.

This is an immediate consequence from [28], Theorem 17.

Lemma 4.44. Let X and Y be continuous, real-valued semimartingales, and assume xXyt � const, i.e.

xXyt � xXy0 � X2
0 for all t ¥ 0. Then, xX,Y y � const, i.e. xX,Y yt � X0Y0 for all t ¥ 0.

This is an immediate consequence from [28], Theorem 25.

Lemma 4.45. If pXtqt¥0 is a continuous, R -valued (local) martingale, then the quadratic variation is the

unique adapted, continuous, increasing process pxXytqt¥0 starting at zero a.s., such that |X|2 � xXy is a

(local) martingale.

For the proof see [28], Theorem 27. The importance of quadratic covariation is due to Ito's formula,

which can be interpreted as a generalization of the fundamental theorem of calculus to stochastic processes.

Theorem 4.46. (Ito's Formula) Let X � pXiqni�1 be an Rn-valued continuous semimartingale and f P
C2pRnq. Then, fpXq is a semimartingale and the following formula holds for all t ¥ 0:

fpXtq � fpX0q �
» t

0

Bf
Bxi pXsq dXi

s � 1

2

» t
0

B2f

BxiBxj pXsq dxXi, Xjys.
3Formally, the De�nition below de�nes the predictable quadratic covariation and not the quadratic covariation. But these two

de�nitions only di�er if one of the involved processes is not continuous. Since in this thesis, (predictable) quadratic covariation
is only used in a case when X and Y are both continuous, we restrict the de�nition to continuous processes. Then, the process
de�ned below is actually both, the quadratic covariation and the predictable quadratic covariation of X and Y . Thus, from
now on, this process will be called the quadratic covariation.
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For the proof see [28], Theorem 32.

De�nition 4.47. Let X be an Rn-valued semimartingale. The quadratic covariation operator is the unique

Rn�n-valued process xxXyy � pxxXyytqt¥0 such that xxXyyt is symmetric and

uT xxXyytu � xX � uyt

for all t ¥ 0.

4.7 Brownian Motion

The proof for all theorems about (cylindrical) Brownian motions and integration with respect to (cylindrical)

Brownian motions can be found in [27], chapter 2 and appendix B.

Let pO,F ,Pq be a probability space and let E be a separable Banach space.

De�nition 4.48. A random variable X : O Ñ E is called Gaussian, if there is x P E and a positive and

symmetric operator Q P LpE1, Eq such that

X̂px1q :�
»
O

exppixx1, XyqdP � exppixx1, xy � 1

2
xx1, Qx1yq

for all x1 P E1. Then, x and the operator Q are called the mean and the covariance operator of X.

Theorem 4.49. Mean and covariance of a Gaussian random variable are uniquely determined. The covari-

ance operator is the unique positive and symmetric operator Q P LpE1, Eq such that

xx1, Qx1y � Erxx1, Xy2s

for all x1 P E1.

Theorem 4.50. A random variable X : O Ñ E is Gaussian i� xx1, Xy is an R-valued Gaussian random

variable for all x1 P E1.

De�nition 4.51. Let pFtqtPI be a �ltration and Q P LpE1, Eq be symmetric and positive. An adapted

stochastic process pWtqt¥0 is called Brownian motion with covariation Q if

(1) W p0q � 0 a.s;

(2) W ptq �W psq is Gaussian with zero mean and covariance operator pt� sqQ for all t ¥ s ¥ 0;

(3) W ptq �W psq is independent of Fs for all t ¥ s ¥ 0;

(4) W is continuous.

Theorem 4.52. (Lévy's martingale characterization theorem) An adapted R-valued stochastic process pWtqt¥0

is a Brownian motion if and only ifW p0q � 0 a.s. andW is a continuous martingale with quadratic variation

 W ¡t� t.

Not every positive and symmetric operator Q P LpE1, Eq is the covariance operator of some Gaussian random

variable. In Hilbert spaces, the set of all those operators Q can be explicitly identi�ed:
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De�nition 4.53. Let U and H be separable Hilbert spaces and let T P LpU,Hq. Then, T is called nuclear

operator or of �nite trace, if there exists sequences takukPN � H and tbkukPN � U such that

Tx �
8̧

k�1

xbk, xyU ak

for all x P U , and
¸
kPN

}ak}H}bk}U   8.

We denote the set of all nuclear operators by L1pU,Hq and we set L1pUq :� L1pU,Uq.
Lemma 4.54. Any nuclear operator is compact.

Theorem 4.55. Let Q P LpHq be symmetric and positive. Then, Q is the covariance operator of some

H-valued Gaussian random variable if and only if Q is of �nite trace.

Finally, we have the following representation theorem for Brownian motions:

Theorem 4.56. (Representation theorem) Let pWtqt¥0 be a Brownian motion in H with covariance operator

Q. Let pbnqnPN be an orthonormal basis consisting of eigenvectors of Q and let pλnqnPN be the corresponding

sequence of eigenvalues. Then

Wt �
¸
nPN

bnxWt, bny

where the sum converges in H and the processes pxWt, bnyqt¥0 are independent, real-valued Brownian motions

with covariance λn. Conversely, if pβnqnPN is a sequence of independent real-valued Brownian motions with

identity covariance, pλnqnPN P l2pN,Rq and pbnqnPN is a orthonormal basis of H, then

Wt :�
¸
nPN

λnβnbn

de�nes a Brownian motion, where the covariance operator is given by

Qx �
¸
nPN

λnxx, bnyH .

4.8 Cylindrical Brownian motions

Let H and U be separable Hilbert spaces and let Q P LpHq be symmetric and positive.

De�nition 4.57. (Hilbert-Schmidt operators) Let pbkqkPN be an orthonormal basis of U . The space of

Hilbert-Schmidt operators from U to H is de�ned by

L2pU,Hq :� tA P LpU,Hq |
¸
kPN

}Abk}2H   8u.
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The space L2pU,Hq carries the scalar product

xA,ByL2pU,Hq :�
¸
kPN

xAbk, BbkyH .

We denote L2pHq :� L2pH,Hq.
Theorem 4.58. The de�nition of L2pU,Hq and the value of xA,ByL2pU,Hq are independent of the choice

of the orthonormal basis pbkqkPN, the space L2pU,Hq is a Hilbert space and we have }A}LpU,Hq ¤ }A}L2pU,Hq

for all A P L2pU,Hq.
Theorem 4.59. For A P LpU,Hq, we have A P L2pU,Hq i� A� P L2pH,Uq, and in this case }A}L2pU,Hq �
}A�}L2pH,Uq.

The next Lemma states an important connection between nuclear and Hilbert-Schmidt operator:

Lemma 4.60. Let A P L2pH1, H2q and B P L2pH2, H3q, where Hi are separable Hilbert spaces for i � 1, 2, 3.

Then, BA P L1pH1, H3q.
De�nition 4.61. A Hilbert-Schmidt embedding from H to U is an injective mapping ι P L2pH,Uq.

Hilbert-Schmidt embeddings always exist: Let pbnqnPN be an orthonormal basis of H, let pckqkPN be an

orthonormal basis of U and let pαkqkPN P l2pN;R�q. Then

ιpxq :�
8̧

k�1

αkxx, bkyck

for x P H de�nes a Hilbert-Schmidt embedding from H to U .

Let

H0 :� ran Q
1
2

be equipped with the scalar product

xx, yyH0
:� xQ� 1

2x,Q� 1
2 yyH ,

where Q� 1
2 denotes the pseudo inverse. We have the following result.

Lemma 4.62. The space H0 is a Hilbert space.

Let J : H0 Ñ U be a Hilbert-Schmidt embedding. Then, rQ :� JJ� P L1pUq and rQ is a positive and

symmetric operator. Thus, there exists a Brownian motion pWtqt¥0 in U with covariance rQ. A simple

calculation shows the following.

Lemma 4.63. The mapping J : H0 Ñ ran rQ 1
2 is an isometry.

De�nition 4.64. A Brownian motion pWtqt¥0 in U with covariance rQ is called cylindrical Brownian motion

(in H) with covariance operator Q.

We end this subsection by introducing the following concept:
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De�nition 4.65. Let U and rU be separable Hilbert spaces and let J : U Ñ rU be a Hilbert-Schmidt

embedding. A Brownian stochastic basis (or simply Brownian basis) for pU, rU, Jq is a tuple

pO,F , pFtqt¥0,P, pWtqt¥0q

such that pO,F , pFtqt¥0,Pq is a �ltered probability space and pWtqt¥0 is an adapted a Brownian motion inrU with covariance operator JJ�.

We call pO,F , pFtqt¥0,P, pWtqt¥0q a Brownian stochastic basis (or simply Brownian basis) for U if there

exists rU and J such that pO,F , pFtqt¥0,P, pWtqt¥0q is a Brownian stochastic basis for pU, rU, Jq.
Remark 4.66. Let pO,F , pFtqt¥0,P, pWtqt¥0q be Brownian basis for pU, rU, Jq. Then pWtqt¥0 is a cylindrical

Brownian motion in U with identity covariance and corresponding Hilbert-Schmidt embedding J .

4.9 Integration with respect to Brownian motions

Let H and U be separable Hilbert spaces, let Q P L1pUq be symmetric and positive and let pWtqt¥0 be a

Brownian motion with covariance Q. Denote by U0 :� ran Q
1
2 , equipped with the scalar product de�ned in

the preceding subsection.

Denote by E the space of all simple L2pU,Hq-valued processes pΦtqt¥0,

Φt :� xΦ0It0uptq �
ņ

i�1

xΦiIpti�1,tisptq

for all t ¥ 0.

De�nition 4.67. The stochastic integral of Φ with respect to W is de�ned as

» t
0

Φt dWs :�
ņ

i�1

xΦipWti^t �Wti�1^tq.

Lemma 4.68. (Ito's isometry) Let Φt P E. Then, for any t ¥ 0, we have

}
» t

0

Φs dWs}L2pO,Ft,P;Hq � }Φ}L2pr0,ts�O,Bpr0,tsqbFt, dtbP;L2pU0,Hqq.

Since Theorem 4.8 implies that

E}�}L2pr0,ts�O,Bpr0,tsqbFt, dtbP;L2pU0,Hqq � L2pr0, ts �O,Pt, dtb P;L2pU0, Hqq :� N2
W p0, T ;Hq

where Pt denotes the predictable σ-algebra on r0, ts �O, the following de�nition makes sense.

De�nition 4.69. The stochastic integral is extended to an isometrical mapping

» t
0

�dW : N2
W p0, T ;Hq Ñ L2pO,Ft,P;Hq.
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4.10 Integration with respect to cylindrical Brownian motions

Let H and U be separable Hilbert spaces, let Q P LpUq be symmetric and positive, let U0 :� ran Q
1
2 and let

pWtqt¥0 be a cylindrical Brownian motion with covariance Q and corresponding Hilbert-Schmidt embedding

J : U0 Ñ rU . Let rQ :� JJ� P L1prUq and �U0 :� ran rQ 1
2 . Then, J : U0 Ñ �U0 is an isometry. An easy

calculation shows that

X P L2pr0, ts �O,Pt, dtb P;L2pU0, Hqq :� N2
W p0, T ;Hq

if and only if

X � J�1 P L2pr0, ts �O,Pt, dtb P;L2p�U0, Hqq.

De�nition 4.70. Let X P N2
W p0, T ;Hq. Then, the integral of X with respect to W is de�ned as

» t
0

Xs dWs :�
» t

0

Xs � J�1 dWs.

Theorem 4.71. The stochastic integral is a continuous, square integrable martingale, and Ito's isometry

}
» t

0

Φs dWs}L2pO,Ft,P;Hq � }Φ}L2pr0,ts�O,Bpr0,tsqbFt,dtbP;L2pU0,Hqq.

holds.

Theorem 4.72. The quadratic covariation of a stochastic integral is given by

x
» �

0

Xs dWsyt �
» t

0

}Xs}2L2pU0,Hq
ds.

4.11 Lévy processes

Let E be a separable Banach space.

De�nition 4.73. We call an E-valued stochastic process pXtqt¥0 a Lévy process if

(1) Xp0q � 0 a.s.;

(2) (independent increments) for all 0 ¤ t0   ...   tn the random variables Xt0 , Xt1 �Xt0 , ... , Xtn�Xtn�1

are independent;

(3) (stationary increments) for all s, t ¥ 0, the distribution of Xs�t �Xs does not depend on s;

(4) X is continuous in probability (i.e. limsÑtXs � Xt in probability for all t ¥ 0);

(5) X is cádlág.

An important example of Lévy process are Brownian motions:

Theorem 4.74. An E-valued stochastic process X is a Brownian motion if and only if X is a continuous

Lévy process.
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Part II

Incompressible Equations

5 Introduction and Framework

5.1 Introduction

Let pO,G,Pq be a probability space. We consider the incompressible Navier-Stokes equations on a bounded

Lipschitz domain Ω � R3 driven by a stochastic Noise w, that can be formally written in the form

div u � 0, (5.1)

du � �
ν4u� pu �∇qu�∇pq dt� fpx, uq dt� dpwpt, x, uqq, (5.2)

subject to the no-slip boundary condition

u|BΩ � 0, (5.3)

and the initial condition

up0q � u0. (5.4)

Here, the unknown functions u : r0,8q � Ω � O Ñ R3 and p : r0,8q � Ω � O Ñ R represent the random

velocity and the random pressure of the �uid, the function f : Ω � R3 Ñ R3 represents the deterministic

force and the stochastic process w : r0,8q � Ω � R3 � O Ñ R3 represents the random noise. This thesis

studies the equations in the case that w is a Brownian motion, see Section 5.4.

The incompressible Navier-Stokes equations can be written as a stochastic evolution equation in the space

of divergence-free vector �elds. Thus, we develop an abstract framework for stochastic evolution equations in

the next subsection. The subsequent subsection provides a summary of di�erent types of solutions to abstract

stochastic evolution equations. Subsection 5.4 describes how the Navier-Stokes equations can be formulated

in this abstract framework. Afterwards, we focus on martingale solutions (see De�nition 5.3) and show the

existence of a martingale solution for arbitrary initial conditions u0 in section 6. In section 7 abstract Markov

and pre-Markov families are introduced and an abstract Markov-selection theorem is proved. Afterwards,

the existence of a.s. martingale Markov solutions (see De�nition 5.8) is an rather immediate consequence of

this theorem.

5.2 Stochastic Evolution Equations

All de�nitions and results are formulated for separable Banach spaces (respectively separable Hilbert spaces);

everything holds for �nite dimensional spaces analogously.

Let X ãÑ H ãÑ X1 be an evolution triple and let pO,F ,P, pFnqnPN, pW ptqqt¥0q be a Brownian stochastic

basis for U (see De�nition 4.65), where U is a further separable Hilbert space. We assume X ãÑ H compactly.
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Let A and B be measurable operators

A : HÑ X1, (5.5)

B : HÑ L2pU,Hq, (5.6)

where all spaces are endowed with their respective Borel algebra. We consider the abstract stochastic

evolution equation

duptq � Apuptqq dt�Bpuptqq dWt, (5.7)

up0q � u0, (5.8)

for t ¥ 0 and u0 P H.
We always assume that the operators A and B satisfy the following three assumptions (A1)-(A3) :

(A1) (Demi-Continuity) We have

A : HÑ X1
w

continuously, and

B� : HÑ LSpH,Uq

continuously. Here, B�pxq P L2pH,Uq denotes the adjoint operator of Bpxq.
(A2) (Coercivity) There exists a constant κ1 ¥ 0 and Z P AqpHq for some q ¥ 2 such that

xApxq, xy ¤ �Zpxq � κ1p1� }x}2Hq

for all x P X, where AqpHq is de�ned in De�nition 4.22.

(A3) (Growth condition) There exists a constant κ2 ¡ 0 and γ̃ ¥ γ ¡ 1 such that

}Apxq}γX1 ¤ κ2p1� }x}γ̃H � Zpxqq,
}Bpxq}2L2pU,Hq ¤ κ2p1� }x}2Hq,

for all x P X, where Z is as in (A2).

5.3 Concepts of solutions

A huge amount of the theory of stochastic evolution equations we know today is due to, or was inspired by,

Ito's works at the beginning of the twentieth century. One of Ito's most important achievements was the

development of a framework within which stochastic integration can be performed. The theory of integration

of stochastic processes, in turn, leads to the natural concept of strong solutions. The �rst de�nition below

formally introduces this concept. But, as the existence of strong solutions to the incompressible Navier-

Stokes equations is still an open problem today, this will be done solely for completeness. A major di�culty
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in the present situation is that the Navier-Stokes equations do not satisfy any kind monotonicity conditions.

On the other hand, some kind of monotonicity condition on the operators A and B is usually essential to

prove existence of strong solutions.

Introducing weak and martingale solutions, the two subsequent de�nitions weaken the concept of strong

solutions considerably. The concept of martingale solutions is the weakest of the three and it is also of

di�erent nature: while strong and weak solutions are stochastic processes, martingale solutions are probability

measures on the path space. As shown below, the probability distribution on the path space induced by

a weak solution is always a martingale solution. In this sense, martingale solutions weaken the concept of

weak solutions once more.

Finally, any of these three de�nitions can be extended to the corresponding Markov problem. The goal

of part two of the thesis in hand is to show the existence of almost sure martingale solutions to the Markov

problem associated with (5.7), (5.8).

For the rest of this section, we let U :� Cpr0,8q,X1q. We consider U as a path space and use the notations

and de�nitions from the preliminaries. The next three de�nitions introduce strong, weak and martingale

solutions.

De�nition 5.1. Let pO,F , pFtqt¥0,P, pWtqt¥0q be a given Brownian basis for U and let u0 P H. We call an

pFtqt¥0-predictable stochastic process u : r0,8q �O Ñ H a strong solution of (5.7), (5.8) i�

(1) up., ωq P Cpr0,8q;X1q for a.e. ω P Ω;

(2) up0, ωq � u0 for a.e. ω P Ω;

(3) Apuq P L1pp0, T q �O, dtb P;X1q for all T ¡ 0;

(4) Bpuq P L2pp0, T q �O, dtb P;L2pU,Hqq for all T ¡ 0;

(5) We have for all t ¥ 0

uptq � up0q �
» t

0

Apupsqq ds�
» t

0

Bpupsqq dWs.

De�nition 5.2. Let u0 P H. A weak solution of (5.7), (5.8) consists of a Brownian stochastic basis

pO,F , pFtqt¥0,P, pWtqt¥0q and an pFtqt¥0-predictable stochastic process u : r0,8q �O Ñ H such that (1) -

(5) from the preceding De�nition 5.1 are satis�ed.

Often, we simply call u a weak solution of (5.7), (5.8) and pO,F , pFtqt¥0,P, pWtqt¥0q the Brownian basis

for the solution u.

De�nition 5.3. Let u0 P H. A probability measure P P PpUq is called a martingale solution of (5.7), (5.8)

i�

(1) The canonical process ξ : r0,8q � U Ñ X1 is P�concentrated on the paths with values in H;

(2) up0q � u0 for P� a.e. u P U ;
(3) Apξq P L1pp0, T q � U , dtb P;X1q for all T ¡ 0;

(4) Bpξq P L2pp0, T q � U , dtb P;L2pU,Hqq for all T ¡ 0;
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(5) There exists a dense subspace Y ¤ X such that for all x P Y the process

Mxpt, uq :� xuptq, xy � xup0q, xy �
» t

0

xApupsqq, xyds

is a continuous, square integrable pGtq-martingale with respect to P, whose quadratic variation process

is given by

xMxypt, uq �
» t

0

}B�pupsqqpxq}2U ds

where B�puq denotes the adjoin operator of Bpuq.

Obviously, any strong solution is also a weak solution. A little more work is needed to show that the

probability measure on the path space induced by an arbitrary weak solution is always a martingale solution.

The proof is given below.

The next Lemma provides a natural probability space for weak solutions:

Lemma 5.4. Let V be any separable Hilbert space and let

V :� Cpr0,8q;Vq.

If there exists a weak solution, then there exists an identically distributed weak solution of the form

�
u, pU � V,G b F , pGt b Ftqt¥0,P, pWtqt¥0qs

where G and Gt, respectively F and Ft, are the Borel σ�Algebra and the natural �ltration on U , respectively
V, P is a probability measure on pU�V,GbFq, the process u is the canonical process on the �rst component,

i.e.

upt, v, wq :� ξpt, vq � vptq t ¥ 0, v P U , w P V

and W is the canonical process on the second component, i.e.

W pt, v, wq :� ξpt, wq � wptq t ¥ 0, v P U , w P V

Proof. Since there exists a weak solution, there is a separable Hilbert space rU and J : U Ñ rU such that

pO,F , pFtqt¥0,P, pWtqt¥0q is a Brownian stochastic basis for pU, rU, Jq and
ru, pO,F , pFtqt¥0,P, pWtqt¥0qs

is a weak solution. Let ϕ : rU Ñ V be an isometrical isomorphism. Then, JV :� ϕ � J is a Hilbert-

Schmidt embedding from U to V and pWV
t qt¥0 :� pϕpWtqqt¥0 is a Brownian motion in V with covari-

ation operator ϕJpϕJq�. Consequently, pO,F , pFtqt¥0,P, pWV
t qt¥0q is a Brownian basis for pU,V, JVq and

ru, pO,F , pFtqt¥0,P, pWV
t qt¥0qs is a weak solution. Thus, we can assume without loss of generality thatrU � V and Wt �WV

t .
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We can regard pu,W q as a random variable with values in pU � V,G b Fq, thus we can de�ne

P :� P � pu,W q�1.

Then, the combined processes pu,W q and pu,W q are equally distributed, i.e.

P � pu �W q�1 � P � pu,W q�1.

Furthermore, pWtqt¥0 is a cylindrical Brownian motion in U and u and W are adapted processes. Now it

follows immediately that
�
u, pU � V,G b F , pGt b Ftqt¥0,P, pWtqt¥0qs is a weak solution.

The next three De�nitions introduce the concept of Markov-solutions.

De�nition 5.5. Let B � pO,F , pFtqt¥0,P, pWtqt¥0q be a Brownian basis for U and let puxqxPH be a family

of stochastic processes, such that for all x P H the process ux is a strong solution of (5.7), (5.8) with initial

value u0 � x. Then, the family puxqxPH is called almost sure strong solution to the Markov problem associated

with (5.7),(5.8), or short a.s. strong Markov solution, i�

(1) for each 0 ¤ t1   t2   ...   tn and all Ai P BpX1q, i � 1, ..., n, the mapping

x ÞÑ P � puxpt1q, ... , uxptnqq�1pA1 � ...�Anq

is BpHq{BpRq measurable;

(2) for all x P H there exists a Lebesgue null set Tx � p0,8q such that for all t P p0,8qzTx and any

t1, t2, ..., tn ¥ t we have

Pp�|Ftq �
�
uxpt1q, uxpt2q, ... , uxptnq

��1 � P � �uuxptqpt1 � tq, uuxptqpt2 � tq, ... , uuxptqptn � tq��1
.

With minor modi�cations, this de�nition can be extended to weak solutions:

De�nition 5.6. Let puxqxPH be a family of stochastic processes and let

pBxqxPH � pOx,Fx, pFxt qt¥0,Px, pW x
t qt¥0qxPH

be a family of Brownian bases for U, such that for all x P H the process ux is a weak solution of (5.7), (5.8)

with initial value u0 � x and Brownian basis Bx. Then, the family puxqxPH is called an almost sure weak

solution to the Markov problem associated with (5.7),(5.8), or short a.s weak Markov solution, i�

(1) for each 0 ¤ t1   t2   ...   tn and all Ai P BpX1q, i � 1, ..., n, the mapping

x ÞÑ Px � puxpt1q, ... , uxptnqq�1pA1 � ...�Anq

is BpHq{BpRq measurable;

(2) for all x P H there exists a Lebesgue null set Tx � p0,8q such that for all t P p0,8qzTx and any

t1, t2, ..., tn ¥ t we have

Pxp�|Fxt q �
�
uxpt1q, uxpt2q, ... , uxptnq

��1 � Puxptq � �uuxptqpt1 � tq, uuxptqpt2 � tq, ... , uuxptqptn � tq��1
.
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Remark 5.7. Let puxqxPH be an a.s. weak Markov solution. The above de�nition implies that each ux is a

Markov process: on the one hand, since the paths of ux are continuous, it is su�cient to show the Markov

property only for a dense subset I � p0,8q; in particular, we can assume I � p0,8qzTx. On the other hand,

since ux is pFxt qt¥0 adapted, it is su�cient to show that for each t P I, s ¡ t and A P BpHq, the random

variable Pxp�|Fxt q �
�
uxpsq

��1pAq is Aσpuxptqq{BpRq measurable. But this is obvious by (2) of De�nition 5.6,

since

ω ÞÑ uxptqpωq

is Aσpuxptqq{BpHq measurable and

y ÞÑ Py � uyps� tq�1pAq

is BpHq{BpRq measurable.

We can also formulate the idea of the Markov problem in terms of martingale solutions. Again, the connection

to the previous de�nitions is shown below.

De�nition 5.8. Let pQxqxPH � PpUq be a family of probability measures such that Qx is a martingale

solution of (5.7), (5.8) with initial value u0 � x. Then, the family pQxqxPH is called almost sure martingale

solution to the Markov problem associated with (5.7), (5.8), or short a.s. martingale Markov solution, i�

(1) for each A P G � BpCp0, T ;X1qq the mapping

x ÞÑ QxpAq

is BpHq{BpRq measurable;

(2) for all x P H there exists a Lebesgue null set Tx � p0,8q such that for all t P p0,8qzTx and v P U we

have

Qxp�|Gtqpvq � Qvptq �Ψt,

where both sides are considered as probability measures on U t � Cprt,8q,X1q (see section 4.3) and

where Ψt : U t Ñ U denotes the shift operator

Ψtpvqpsq � vps� tq.

The next two theorems summarize the connection between weak and martingale solutions and the connections

between the corresponding Markov problems.

Theorem 5.9. Let u0 P H and let putqt¥0 be a weak solution with initial value u0 and Brownian basis

pO,F , pFtqt¥0,P, pWtqt¥0q. Then,

Q :� P � u�1 P PpUq

is a martingale solution with initial value u0.
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Assume conversely that the noise is state independent, i.e. assume that Bpxq � B for some B P L2pU,Hq
and all x P H, and assume kerB � t0u. Let Q P PpUq be a martingale solution with initial value u0. Then,

the canonical process ξt is a weak solution with initial value u0.

Proof. Step 1. The canonical process ξ : r0,8q � U Ñ X1 has the same distribution under Q as u under P,
i.e. we have

Q � ξ�1 � P � u�1.

Since u is concentrated on the paths with values in H, the process ξ is too. Next, we have

Qptv P U : vp0q � u0uq � P
�
up0q � u0

� � 1.

The integrability conditions on A and B follow immediately. For the last point of De�nition 5.3 choose

Y � X and let x P X arbitrary. De�ne Mtpvq :�Mxpt, vq, then De�nition 5.2 implies

Mtpup�, ωqq �Mxpt, up�, ωqq �
�» t

0

xBpupsqq, xydWs



pωq

for a.e. ω P O. By this equation, Mt is de�ned Q� a.e. in U . We have
�
v ÞÑMtpvq

� P L2pU ,Gt,Q;Rq for all
t ¥ 0, since by Ito's isometry we have

EQrMtp�q2s � EPrMxpt, ξq2s Ito� }xBpup�, �qq, xy}2L2pp0,T q�O,dtbP;L2pU,Rqq
Def. 5.2, p4q  8.

Furthermore, we have
�
t ÞÑ Mtpvq

� P Cpr0,8qq for Q� a.e. v P U . We show that pMtqt¥0 is a martingale

with respect to pU ,G, pGtqt¥0,Qq, i.e. we need to show

EQrMt|Gsspvq �Mspvq for Q� a.e. v P U

for all t ¥ s. From the de�nition of Q it is clear, that it is su�cient to show

EQrMt|Gsspup�, ωqq �Mspup�, ωqq for P� a.e. ω P O

From the theory of stochastic integration with respect to a cylindrical Brownian motion, we know that

Ntpωq :�Mtpup�, ωqq

is martingale with respect to pO,F , pFtqt¥0,Pq, i.e. we have

EPrMtpuq|Fsspωq �Mspup�, ωqq. (5.9)

Consequently, we are left to show

EQrMt|Gss � up�, ωq � EPrMt � u|Fsspωq for P� a.e. ω P Ω.

If we consider both sides as a function in ω, then both sides are mappings from O to R. Furthermore, if

we consider u as a mapping u : O Ñ U , ω ÞÑ up�, ωq, then both sides are u�1pGsq{BpRq measurable, since
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both sides are compositions of a Gs{BpRq-measurable mapping and the u�1pGsq{Gs-measurable mapping u;

for the right hand side, this follows from (5.9). Let B P Gs and A :� u�1pBq, then we have»
A

EQrMt|Gss � udP �
»
B

EQrMt|GssdQ

�
»
B

Mt dQ

�
»
A

Mt � udP

�
»
A

EPrMt � u|FssdP.

Thus, we have shown that pMtqt¥0 is a continuous, square integrable martingale with respect to Q.
Finally, de�ne the process pRtqt¥0 by

Rtpvq :�
» t

0

}B�pvpsqqpxq}2U ds �
» t

0

}xBpvpsqqp�q, xy}2L2pU,Rq ds.

The proof is �nished, when we can show that pRtqt¥0 is the quadratic variation process of pMtqt¥0.

Obviously, pRtqt¥0 is a continuous, non-decreasing, pGtq-adapted process starting at zero a.e. with respect

to Q. Thus, we are left to show that p|Mt|2 �Rtqt¥0 is a martingale with respect to Q.
The theory of stochastic integration implies that ω ÞÑ Rtpup�, ωqq is the quadratic variation process of

ω ÞÑMtpup�, ωqq with respect to P, and consequently

ω ÞÑ
�
|Mtpup�, ωqq|2 �Rtpup�, ωqq




is a martingale with respect to pO,F , pFtqt¥0,Pq. Exactly as above, we deduce that

v ÞÑ
�
|Mtpvq|2 �Rtpvq




is a martingale with respect to pU ,G, pGtqt¥0,Qq.
Step 2. The �rst four points of De�nition 5.2 are easy to check. For the last point, let x P Y. We have

xMxyptq � tσ2

with

σ � }B�x}U ,

and by Lévy's martingale characterisation theorem it follows that pMxptqqt¥0 is a Brownian motion. Now

choose an orthonormal basis pbnqnPN of H with bn P Y for all n P N and de�ne

Wt :�
¸
nPN

bnMbnptq.

Then Wt is a Brownian motion on pU ,G, pGtqt¥0,Qq with values in H and covariance operator BB�. To
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construct the desired Brownian basis we choose rU � H and J � B. Then pWtqt¥0 is a cylindrical Brownian

motion in U with identity covariance and thus pU ,G, pGtqt¥0,Q, pWtqt¥0q is a Brownian basis for pU,H, Bq.
Now, we have

Mxptq �
¸
nPN

xbn, xyMbnptq � xW ptq, xy � xB �B�1W ptq, xy � x
» t

0

B dWs, xy

for all x P Y and consequently

xuptq, xy � xup0q, xy � x
» t

0

Apupsqq ds, xy � x
» t

0

Bpupsqq dWs, xy.

Since Y is dense in X, this shows

uptq � up0q �
» t

0

Apupsqq ds�
» t

0

Bpupsqq dWs.

Theorem 5.10. Let puxqxPH be an a.s. weak Markov solution, and denote the Brownian basis for ux by Bx :�
pOx,Fx, pFxt qt¥0,Px, pW x

t qt¥0q. Then, the family of probability measures pQxqxPH where Qx :� Px � u�1
x is

an a.s. martingale Markov solution.

Proof. Let E be the set of all Γ P G of the form Γ � �n
i�1 Γi with

Γi � tv P U : vptiq P Aiu

where n P N, 0   t1 ¤ t2 ¤ ... ¤ tn and Ai P BpX1q. Then, E is a generator of G and E is closed under �nite

intersection.

For all A P E the mapping

x ÞÑ QxpAq � Px � u�1
x pAq

is measurable by De�nition 5.6. By Lemma 5.11 below, the above mapping is measurable for all A P G.
To prove point (2), we assume without loss of generality that all weak solutions rux,Bxs are de�ned as

in Lemma 5.4. Let Et be the set of all Γ P Gt � BpU tq of the form Γ � �n
i�1 Γi with

Γi � tv P U : vptiq P Aiu

where n P N, t   t1 ¤ t2 ¤ ... ¤ tn and Ai P BpX1q. It is enough to show that we have

QxpΓ|Gtqpvq � Qvptq �ΨtpΓq (5.10)
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for all Γ P Et. We have for a.e. v P U by the De�nition of a.s. weak Markov solutions

QxpΓ|Gtqpvq � Pxppuxpt1q, ..., uxptnqq�1pA1 � ...�Anq|Fxt qpvq
� Pvptq � puvptqpt1 � tq, ..., uvptqptn � tqq�1pA1 � ...�Anq
� Qvptqptw P U : wpti � tq P Ai for all 1 ¤ i ¤ nuq
� Qvptq �ΨtpΓq.

Lemma 5.11. Let pΩ,Aq and pΩ1,A1q be measurable spaces, and let pPωqωPΩ be a family of probability

measures on pΩ1,A1q. Assume that the mapping ω ÞÑ PωpAq is A{BpRq measurable for all A P E, where
E � A1 is a generator of A1 which is closed under �nite intersection. Then, ω ÞÑ PωpAq is A{BpRq measurable

for all A P A1.
Proof. Let

D :� tA P A1 |ω ÞÑ PωpAq is A{BpRq measurableu.

Then, D is a Dynkin system and E � D. Thus, we have

A1 � AσpEq � DpEq � D � A1,

where DpEq denotes the Dynkin system generated by E .

Finally, we state an existence result about martingale solutions to stochastic evolution equations in �nite

dimensions. For the proof see e.g. [16], Theorem 9.3.

Theorem 5.12. Let A and B satisfy (A1)-(A3) and assume dimH   8. Then, there exists a martingale

solution to equation (5.7) for any initial value u0 P H.

5.4 Abstract Framework for the Navier-Stokes Equations

We use the notation from the previous subsection. From now on, we will restrict our attention to stochastic

perturbation dw in (5.2) of the form dwt � BpuptqqdWt for some cylindrical Brownian motion pWtqt¥0. To

formulate the Navier-Stokes system (5.1)-(5.4) in the framework of an abstract stochastic evolution equation,

let

H :� L2
0,σpΩ,R3q :� D8c pΩq

L2pΩ;R3q
,

and

X :�W 3,2
0,σ pΩ,R3q.

Denote by P : L2pΩ,R3q Ñ L2pΩ,R3q the orthogonal projection with ranP � H, and let

A1puq :� νPp4uq
A2puq :� Pppu �∇quq
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for u P D8c pΩq, and

A3puq :� Ppfp�, up�qqq

for u P DpA3qp� Hq. Then we get the following result:

Lemma 5.13. The operators A1 and A2 are local uniformly continuous mappings from H X D8c pΩq to X'
satisfying

}Aipuq}X1 ¤ c}u}2H (5.11)

for i � 1, 2. In particular, we can extend them to continuous operators from H to X1.

Proof. We prove the statement about A2, the statement about A1 follows similar. Let B :� tw P D8c pΩq :

}w}X ¤ 1u. By continuity of the Sobolev embedding W 3,2pΩq ãÑ C1
b pΩq we have

}A2puq �A2pvq}X1 � sup
wPB

|X1xA2puq �A2pvq, wyX|

� sup
wPB

|
»

Ω

divpub u� v b vqw dx|

� sup
wPB

|
»

Ω

pub u� v b vq �∇w dx|

¤ sup
wPB

}∇w}CpΩq}ub u� v b v}L1pΩq

¤ cp}u}H � }v}Hq}u� v}H.

This shows that A2 is local uniformly continuous. To see (5.11), let v � 0.

Assume that for some λ ¡ 0 and g P L2pΩq we have

|fpx, uq| ¤ λ|u| � gpxq (5.12)

for all px, uq P Ω� R3. Then we have also A3 : HÑ X1 and consequently

A :� A1 �A2 �A3 : HÑ X1.

To motivate the de�nition of a solution for the stochastic incompressible Navier-Stokes equations, it is

convenient to have a look at the deterministic equations �rst. Thus, consider the deterministic Navier-Stokes

equations:

divpuq � 0 in p0, T q � Ω (5.13)

Bu
Bt � ν4u� pu �∇qu�∇p� f in p0, T q � Ω (5.14)

u � 0 on p0, T q � BΩ (5.15)

and consider a smooth solution pu, pq. We will construct a weak formulation of these equations in the

following way: First, for smooth solutions, the equation of continuity (i.e. divpuq � 0) together with the
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boundary condition are equivalent to uptq P H for any t P r0, T s. Secondly, by integrating the second equation

from 0 to t P r0, T s and then applying the projection operator P, we get

uptq � up0q �
» t

0

Apuq dτ. (5.16)

Note, that the pressure has disappeared, since Pp∇pq � 0 for any smooth function p. Combining these two

steps, we call a function u P Cpr0, T s,Hq a weak solution of (5.13)-(5.15) i� (5.16) is satis�ed.

Back to the stochastic equations: by the thoughts above it seems plausible to restrict ourselves to noises

wt with values in H for any t ¥ 0. Furthermore, for simplicity, we will restrict ourselves to the case when the

noise wt is a Brownian motion4. To be concrete, we assume that there exists a further separable Hilbert space

U and a Brownian basis pO,F ,P, pFnqnPN, pW ptqqt¥0q for U, such that wt � BpuqWt for some measurable

operator B : HÑ L2pU,Hq satisfying assumption (A1)-(A3).

The above considerations make it seem reasonable to call an H-valued stochastic process u a solution5

to (5.1), (5.2) i�

uptq � up0q �
» t

0

Apuqdτ �
» t

0

Bpuq dWτ . (5.17)

Since any strong solution to the abstract stochastic evolution equation satis�es (5.17), we can rewrite the

Navier-Stokes equations to an abstract stochastic evolution equation:

duptq � Apuptqq dt�Bpuptqq dWt, (5.18)

up0q � u0, (5.19)

where u0 P H.

Proposition 5.14. The operators A and B satisfy assumptions (A1)-(A3).

Proof. (A1) The operators A1 and A2 are continuous from H to X1 and consequently demicontinuous. Now

let un Ñ u in H. Then

}A3punq}X1 ¤ c1}fp., unp.qq}L2pΩq ¤ c2p}un}L2pΩq � }g}L2pΩqq ¤ c3,

and consequently, by re�exivity of X, the sequence A3punq is sequentially pre-compact in X1
w. Let v be any

accumulation point of pA3punqqnPN in X1
w and choose a subsequence unk such that A3punkq á v in X1. We can

assume unk Ñ u a.e. in Ω, passing to another subsequence if necessary. Then, A3punkq Ñ A3puq a.e. in Ω and

by the Dominated convergence theorem A3punkq Ñ A3puq in H. This shows v � A3puq, and consequently,

the sequence A3punq has only a single accumulation point in X1
w. Thus, we have A3punq á A3puq.

(A2) For u P H de�ne

Zpuq :�
$&
%}∇u}

2
L2pΩ,R3q for u PW 1,2

0,σ pΩ,R3q
�8 otherwise.

4A generalization of the results presented in section 6 and 7 to Lévy processes was published in [7].
5This de�nition is only a motivation; we will never use (5.17) as an actual De�nition for a solution.
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We show that Z P A2pHq, where A2pHq is de�ned in De�nition 4.22. Let yn Ñ y in H. We show

Zpyq ¤ lim inf
nÑ8

Zpynq.

We can assume supnZpynq   8 and consequently}yn}W 1,2
0 pΩq ¤ c. Therefore, at least for a subsequence, we

have yn á y in W 1,2
0 pΩq. By Poincare's inequality, the mapping u ÞÑ pZpuqq 1

2 de�nes an equivalent norm

on W 1,2
0 pΩq. Since norms are weak lower-semicontinuous, this yields the desired conclusion.

Obviously, we have Zpuq � 0 i� u � 0 and

Zpcuq � c2Zpuq

for all c ¡ 0. Finally,

Z�1pr0, 1sq � H

is pre-compact by compactness of Sobolev embedding W 1,2
0 pΩq ãÑ L2pΩq. This shows Z P A2pHq.

Now let u P X. Then we have

X1xA1puq, uyX � �Zpuq,

X1xA2puq, uyX �
»

Ω

uiujBiuj dx � 1

2

»
Ω

uiBipujujq dx � �1

2

»
Ω

Biuipujujq dx � 0,

and

X1xA3puq, uyX � xfp�, up�qq, uyH ¤ Cp}u}2H � 1q.

This shows pA2q.
(A3) By Lemma 5.13 and (5.12) we have

}Apuq}X1 ¤ cp}u}2H � 1q.

6 Existence of martingale solutions

In this section we show the existence of martingale solutions in the sense of De�nition 5.3 for any initial

value x P H. Fix an arbitrary orthonormal basis tbnu � X of H enjoying the properties from Lemma 2.14.

Let

Y :� span tbn |n P Nu.
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Then, we have Y ¤ X and Y is dense in X. For all p P r2,8q we de�ne functions kp P C8pr0,8q;R�q by6

kpptq :� p4� γptq expp3γptq (6.1)

with γp :� maxt2pκ1 � p2ppp � 1q � 64p4qκ2, 1u, where κ1 and κ2 are as in (A2)-(A3), and we de�ne the

lower semi-continuous functionals on H:

Zppuq :� }u}p�2
H Zpuq (6.2)

where Z is as in (A2)-(A3).

De�nition 6.1. Let x P H. We denote by SA,B,Ypxq � PpUq the set of all martingale solutions P of (5.7)

with initial value x, which satisfy (5) in De�nition 5.3 with Y � Y, and which satisfy the following condition:

For any p P r2,8q there exists a Lebesgue null-set Tp � p0,8q such that7

EP
�

sup
rPrs,ts

}ξprq}pH �
» t
s

Zppξprqq dr

����Gs
�
¤ kppt� sq � p}ξpsq}pH � 1q (6.3)

for all s P p0,8qzTp and t ¥ s, where ξ denotes the canonical process on U .
We simply write S pxq :� SA,B,Ypxq if no confusion about the involved operators A and B and the space

Y can arise.

Remark 6.2. Condition (6.3) and the growth condition (A3) immediately imply points (3) and (4) from

De�nition 5.3.

We show that S pxq � H for all x P H.

6.1 Weak stability of the set of solutions

De�nition 6.3. We denote by

Uq :� U X Lqlocpr0,8q;Hq � Cpr0,8q;X1q X Lqlocpr0,8q;Hq

for any 1 ¤ q ¤ 8.

Lemma 6.4. For any x in H and any Q P S pxq, we have QpUqq � 1 for all 1 ¤ q ¤ 8.

Proof. Condition (6.3) implies that

Qptu P U : ess sup
rPrs,ts

}uprq}H � 8uq � 0

for a.e. t ¥ s ¥ 0, i.e. QpU8q � 1. Since U8 � Uq we have QpUqq � 1 for all 1 ¤ q ¤ 8.

Lemma 6.5. We have PpU8q � PHpUq.
6See end of proof of proposition 6.7.
7The function ω ÞÑ suprPrs,ts }ξprq}

p
Hpωq is measurable: Let K :� tx P X | }x}H � 1u, r P rs, ts and let rn Ñ r with rn P

rs, ts X Q. Then, we have }ξprq}H � supxPK X1xξprq, xyX � supxPK limnPNxξprnq, xy ¤ limn supxxξprnq, xy � limn }ξprnq}H.
Thus, it is enough to take the supremum over the countable set rs, ts X Q.
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Proof. Let u P L8locp0,8;Hq and t P p0,8q. There exists a sequence tn Ñ t such that uptnq P H. Since

}uptnq}H   c   8 for all n P N we have

uptnq á h in H

for some subsequence and some h P H. By continuity we have uptnq Ñ uptq in X1 and consequently uptq � h

and therefore uptq P H. Thus, uptq P H for all t ¥ 0.

Proposition 6.6. Let An : H Ñ X1 and Bn : H Ñ L2pU,Hq satisfy the conditions (A1)-(A3) with the

same constants κ1, κ2, γ, γ̃ and q as A and B. Assume that

Anphnq áAphq in σpX1,Yq (6.4)

and

B�
nphnq|Y Ñ B�phq|Y in LSpY;Uq (6.5)

whenever hn Ñ h in H. Let xn Ñ x in H and Qn P SAn,Bn,Ypxnq and assume Qn á Q in PpUqq, where
q ¥ 2 is as in (A2). Then, Q P SA,B,Ypxq. In particular, the set

tpx, µq |x P H and µ P SA,B,Ypxqu

is closed in H�PpUqq.
Proof. Step 1. We have to show that Q satis�es De�nition 5.3 and (6.3) with initial condition x. By

Skorohod's theorem, there exists a probability space pO,F ,Pq and Uq valued random variables pYnqnPN and

Y such that

P � Y �1
n � Qn, P � Y �1 � Q

and

Yn Ñ Y in Uq P� a.e.

Step 2. Since Q P PpU8q we have Q P PHpUq, thus (1) from De�nition 5.3 is satis�ed. Next, we have

Qprξp0q � xsq � PprY p0q � xsq ¥ Pp
£
nPN

rYnp0q � xsq ¥ 1�
¸
nPN

Qnprξp0q � xsq � 1,

thus (2) of De�nition 5.3 is satis�ed.

Step 3. We show (6.3). Fix p ¥ 2 and de�ne for 0 ¤ s   t

τpps, t;uq :� sup
rPrs,ts

}uprq}pH �
» t
s

Zppuprqq dr

where Zp is as in (6.3). We show that τpps, t; �q : Uq Ñ r0,8s is lower semi-continuous. Let un Ñ u in Uq
and assume without loss of generality that K :� lim infkÑ8 τpps, t;ukq   8. By passing to a subsequence,
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we can assume that τpps, t;unq Ñ K as n Ñ 8. Since un|rs,ts Ñ u|rs,ts in Lqps, t;Hq as n Ñ 8, we can

assume unprq Ñ uprq in H for a.e. r P rs, ts, passing to a subsequence once more if necessary. Since Z is

lower semicontinuous, we have by Fatou's lemma8

lim inf
nÑ8

τpps, t;unq ¥ lim inf
nÑ8

sup
rPrs,ts

}unprq}pH � lim inf
nÑ8

» t
s

}unprq}p�2
H Zpunprqq dr

¥ sup
rPrs,ts

lim inf
nÑ8

}unprq}pH �
» t
s

lim inf
nÑ 8

}unprq}p�2
H lim inf

nÑ8
Zpunprqq dr

¥ sup
rPrs,ts

}uprq}pH �
» t
s

}uprq}p�2
H Zpuprqq dr

� τpps, t;uq.

Thus, τpps, t, �q is lower semicontinuous.

Fix T ¥ 0. We have Yn Ñ Y in Lqp0, T ;Hq pointwise P-a.e. in O. Consequently, we have Yn Ñ Y in

Lqp0, T ;Hq in measure with respect to P. By (6.3) we have for any p ¥ 1

}Yn}pLppO,F,P;Lqp0,T ;Hqq � EPrp
» T

0

}Ynpsq}qH dsq pq s ¤ T
p
qEPr sup

0¤s¤T
}Ynpsq}pHs ¤ constpT q (6.6)

Thus, Theorem 3.31 yields

Yn Ñ Y in LppO,F ,P;Lqp0, T ;Hqq �� Lqp0, T ;LppO,F ,P;Hqq

for any p ¥ 1.

Now, �x p ¥ 2. By passing to subsequence, we obtain a Lebesgue null set N0 � p0,8q such that

Er}Ynpsq � Y psq}pHs Ñ 0 (6.7)

for all s P p0,8qzN0. Let Nn be the exceptional set in condition (6.3) for Qn and let N :� �
n¥0Nn. Fix

s P p0,8qzN and t ¥ s. We need to show that

EQrτpps, t; ξq|Gss ¤ kppt� sqp}ξpsq}pH � 1q,

which is equivalent to the relation

EQrτpps, t; ξqgpξqs ¤ kppt� sqEQrp}ξpsq}pH � 1qgpξqs

for any Gs-measurable, bounded and continuous function g : Uq Ñ r0,8q. Since gpYnq Ñ gpY q P-a.e. in O,
8With the same argumentation as in Footnote 7 on page 54, it is enough to take to supremum suprPrs,ts }unprq}

p
H only over

a countable and dens subset I of rs, ts; in particular suprPrs,ts }unprq}
p
H is measurable. Furthermore, we can choose I � rs, ts

such that unprq Ñ uprq in H for any r P I. This shows suprPrs,ts lim infnÑ8 }unprq}
p
H � suprPrs,ts }uprq}

p
H.
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the boundedness of g implies gpYnq Ñ gpY q in LrpO,Pq for all 1 ¤ r   8. Now we get

EQrτpps, t; ξqgpξqs � EPrτpps, t;Y qgpY qs
¤ lim inf

nÑ8
EPrτpps, t;YnqgpYnqs

� lim inf
nÑ8

EQnrτpps, t; ξqgpξqs
¤ kppt� sq lim inf

nÑ8
EQnrp}ξpsq}pH � 1qgpξqs

� kppt� sq lim inf
nÑ8

EPrp}Ynpsq}pH � 1qgpYnqs.

By (6.7), we can choose a subsequence such that Ynpsq Ñ Y psq P-a.e. in O and }Ynpsq}H ¤ ϕ for some

ϕ P LppO,Pq and all n P N. Thus, p}Ynpsq}pH�1qgpYnq ¤ pϕp�1q}g}8 P L1pO,Pq, and therefore p}Ynpsq}pH�
1qgpYnq Ñ p}Y psq}pH � 1qgpY q in L1pO,Pq by Lebesgue's theorem.

Thus,

kppt� sq lim inf
nÑ8

EPrp}Ynpsq}pH � 1qgpYnqs � kppt� sqEPrp}Y psq}pH � 1qgpY qs
� kppt� sqEQrp}ξpsq}pH � 1qgpξqs

Step 4. Fix y P Y. We show that

Mypt, uq � xuptq, yy � xup0q, yy �
» t

0

xApupsqq, yy ds (6.8)

is a pGtq-martingale. For R ¡ 0 let χR P C8
c pRq be any function satisfying χRptq � t for all |t| ¤ R, χRptq � 0

for all |t| ¥ 2R, 0 ¤ χRptq ¤ 2t for t ¡ 0 and 0 ¥ χRptq ¥ 2t for t   0. For n P N and R ¡ 0 de�ne»
λRpt, uq :� χRpxuptq, yyq»
λpt, uq :� xuptq, yy

and

µnRpt, uq :�
» t

0

χRpxAnpupsqq, yyqds,

µRpt, uq :�
» t

0

χRpxApupsqq, yyqds,

µnpt, uq :�
» t

0

xAnpupsqq, yyds,

µpt, uq :�
» t

0

xApupsqq, yyds,

for all t ¥ 0 and u P Uq. We show

λpt, Ynq Ñ λpt, Y q in L1pO,F ,Pq as nÑ8 (6.9)
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and

µnpt, Ynq Ñ µpt, Y q in L1pO,F ,Pq as nÑ8. (6.10)

Since for all t ¥ 0 we have Ynpt, �q Ñ Y pt, �q in X1, P�a.e. in O, we also have λRpt, Ynq Ñ λRpt, Y q in R,
P-a.e. in O. Since λR is bounded, Lebesgue's theorem yields

lim
nÑ8

λRpt, Ynq � λRpt, Y q in L1pO,F ,Pq. (6.11)

Furthermore, we have

sup
nPN

EP|λpt, Ynq � λRpt, Ynq| ¤ sup
nPN

EPr|λpt, Ynq|Ir|λpt,Ynq|¡Rss

¤ }y}H sup
nPN

EPr}Ynptq}2Hs
1
2 sup
nPN

EPrIr|λpt,Ynq|¡Rss
1
2 .

By (6.3) for Qn, we get on the one hand

sup
nPN

EPr}Ynptq}2Hs ¤ sup
nPN

k2ptqp}xn}2H � 1q ¤ constptq,

and on the other hand

sup
nPN

EPrIr|λpt,Ynq|¡Rss � sup
nPN

Pr|λpt, Ynq| ¡ Rs ¤ sup
nPN

EPr|λpt, Ynq|2s
R2

¤ }y}2H sup
nPN

EPr}Ynptq}2Hs
R2

¤ 1

R2
constptq.

Consequently, we have

lim
RÑ8

sup
nPN

}λRpt, Ynq � λpt, Ynq}L1pO,F,Pq � 0. (6.12)

In the same way, we deduce limRÑ8 λRpt, Y q � λpt, Y q in L1pO,F ,Pq, since (6.3) holds for Q by the

preceding step. Now, Lemma 1.13 implies (6.9).

We show that

lim
nÑ8

µnRpt, Ynq � µRpt, Y q in L1pO,F ,Pq. (6.13)

for any t ¥ 0. Let N � O be the P-null set such that Ynpωq Ñ Y pωq in Uq for all ω P OzN . Let ω P OzN .

We show that

µnRpt, Ynpωqq Ñ µRpt, Y pωqq (6.14)

as n Ñ 8. This holds if and only if every subsequence pnkq contains a subsequence pnkj q such that

µ
nkj
R pt, Ynkj pωqq Ñ µRpt, Y pωqq. Since Ynpωq Ñ Y pωq in Uq implies Ynpωq Ñ Y pωq in Lqp0, t;Hq, any sub-

sequence Ynkpωq contains a subsequence Ynkj pωq such that Ynkj pωqpsq Ñ Y pωqpsq in H for a.e. s P p0, tq. By
(6.4) we have χRpxAnkj pYnkj pωqpsqq, yyq Ñ χRpxApY pωqpsqq, yyq for a.e. s P p0, tq. Lebesgue's convergence

theorem now yields χRpxAnkj pYnkj pωqp�qq, yyq Ñ χRpxApY pωqp�qq, yyq in L1p0, tq, and thus µnkjR pt, Ynkj pωqq Ñ
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µRpt, Y pωqq. Therefore, (6.14) holds. Now, Lebesgue's theorem yields (6.13).

Next, we show that

lim
RÑ8

sup
nPN

}µnRpt, Ynq � µnpt, Ynq}L1pO,F,Pq � 0. (6.15)

By the de�nition of χR and Hölder's inequality, we have

EP|µnpt, Ynq � µnRpt, Ynq|

¤ EPr
» t

0

|xAnpYnpsqq, yy|Ir|xAnpYnpsqq,yy|¥Rs dss

¤ }y}X }AnpYnq}Lγpp0,tq�O, dsbP;X1q }Ir|xAnpYnpsqq,yy|¥Rs}Lγ1 pp0,tq�O, dsbPq.

We can estimate the terms on the right hand side in the following way: By the growth condition (A3) and

(6.3), we have

}AnpYnq}γLγpp0,tq�O, dsbP;X1q ¤ κ2EQnr
» t

0

�
1� }ξpsq}γ̃H � Z2pξpsqq



dss

¤ κ2

�
t� t kγ̃ptqp}xn}γ̃H � 1q � k2ptqp}xn}2H � 1q




¤ constptq.
�»

On the other hand, we have

}Ir|xAnpYnpsqq,yy|¥Rs}γ
1

Lγ1 pp0,tq�O, dsbPq �
» t

0

Pr|xAnpYnpsqq, yy| ¥ Rsds

¤
» t

0

1

R
Er}AnpYnpsqq}X1}y}Xsds

¤ 1

R
}AnpYnq}Lγpp0,tq�O, dsbP;X1q}y}γLγ1 pp0,tq�O, dsbP;Xq

»

¤ 1

R
constptq.

»

Thus, we have

EP|µnpt, Ynq � µnRpt, Ynq| ¤ cR
� 1
γ1 ,

where the constant c is independent of R and n. This shows (6.15). A similar calculation shows

lim
RÑ8

µRpt, Y q � µpt, Y q in L1pO,F ,Pq. (6.16)

Combining (6.13), (6.15) and (6.16), Lemma 1.13 implies (6.10).

Consequently, by de�nition of My, we have

Mn
y pt, Ynq ÑMypt, Y q in L1pO,F ,Pq as nÑ8, (6.17)
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where Mn
y denotes the process de�ned in (6.8) with A replaced by An. Let t ¥ s ¥ 0 and let g : Uq Ñ R

be any Gs-measurable, continuous and bounded function. Lebesgue's theorem implies gpYnq Ñ gpY q in

LppO,F ,Pq as n Ñ 8 for any p P r1,8q, and by the uniform boundedness of gpYnq, we also have this

convergence in the weak-star topology of L8pO,F ,Pq. Thus,

EQrpMyptq �Mypsqqgs � EPrpMypt, Y q �Myps, Y qqgpY qslim
n

� lim
nÑ8

EPrpMn
y pt, Ynq �Mn

y ps, YnqqgpYnqs
� lim
nÑ8

EQnrpMn
y pt, ξq �Mn

y ps, ξqqgpξqs
� 0,

where the last equality follows from De�nition 5.3 for Qn. This relation is equivalent to

EQrMyptq|Gss �Mypsq.

Step 5. We show that Myptq is square integrable with respect to Q. By BDG's inequality and the growth

condition (A3), we have for any p ¥ 1

EPrMn
y pt, Ynq2ps

BDG¤ c1EPrp
» t

0

}B�
npYnpsqqpyq}2U dsqps

¤ c2}y}2pH EPr
» t

0

}BnpYnpsqq}2pL2pU,Hq dss
pA3q¤ c2}y}2pH EPr

» t
0

pκ2p1� }Ynpsq}2Hqqp dss

¤ c3

» t
0

1� EPr}Ynpsq}2pH sds,

where c1, c2 and c3 are independent of n. Relation (6.3) for Qn yields

EPr}Ynpsq}2pH s ¤ k2pptqp}Ynp0q}2pH � 1q ¤ c (6.18)

where c is independent of n P N and s ¤ t. Consequently, Mn
y pt, Ynq is uniformly bounded in L2ppO,F ,Pq

for any p ¥ 1. Now, (6.17) and Theorem 3.31 imply

Mn
y pt, Ynq ÑMypt, Y q in L2pO,F ,Pq as nÑ8. (6.19)

Step 6. Fix y P Y. We show that

Nypt, uq :�Mypt, uq2 �
» t

0

}B�pupsqqpyq}2U ds (6.20)
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is a martingale with respect to Q. De�ne

Φnps, ωq :� B�
npYnps, ωqqpyq

Φps, ωq :� B�pY ps, ωqqpyq.

Let T ¡ 0 and N � O be the P-null set such that Ynp�, ωq Ñ Y p�, ωq in Lqp0, T ;Hq as nÑ 8 for all ω R N ,

and �x ω P OzN . We show that

Φnp�, ωq Ñ Φp�, ωq in U in measure with respect to dt|r0,T s. (6.21)

This holds if and only if any subsequence pΦnkq contains a subsequence pΦnkj q such that Φnkj p�, ωq Ñ Φp�, ωq
in U pointwise a.e. in p0, T q. Since Ynp�, ωq Ñ Y p�, ωq in Lqp0, T ;Hq, for any subsequence pnkq there

is a subsequence pnkj q such that Ynkj p�, ωq Ñ Y p�, ωq in H, pointwise a.e. in p0, T q. By (6.5) we have

Φnkj ps, ωq Ñ Φps, ωq in U for a.e. s P p0, T q. Thus, (6.21) holds. Furthermore, by the growth condition

(A3) we have

}Φnp�, ωq}qLqp0,T ;Uq �
» T

0

}B�
npYnps, ωqqpyq}qU ds ¤ κq2}y}qH

» T
0

p1� }Ynps, ωq}2Hq
q
2 ds

¤ cp1� }Ynp�, ωq}qLqp0,T ;Hqq ¤ constpωq.
»

Thus, Theorem 3.31 yields

Φnp�, ωq Ñ Φp�, ωq in Lrp0, T ;Uq (6.22)

for all r   q and P-a.e. ω P O.
By the growth condition (A3) and (6.18), we have ω ÞÑ Φnps, ωq bounded in LppO,F ,P;Uq uniformly in

n and s for all p ¥ 1, and in particular, we have

}Φn}Lppp0,T q�O, dtbF ;Uq ¤ c. (6.23)

Relations (6.22) and (6.23) imply the following relations:

�
ω ÞÑ Φnp�, ωq



Ñ

�
ω ÞÑ Φp�, ωq



in Lrp0, T ;Uq in measure w.r.t. P,

}Φn}LppO,P;Lrp0,T ;Uqq ¤ c.

Thus, Theorem 3.31 yields

Φn Ñ Φ in LppO,P;Lrp0, T ;Uqq

for any p ¥ 1, and in particular, we have

Φn Ñ Φ in measure w.r.t. dtb P. (6.24)
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Thus, by applying Theorem 3.31 once more, relations (6.23) and (6.24) imply

Φn Ñ Φ in L2pp0, T q �O, dtb P;Uq

In particular, we have

Nn
y pt, Ynq Ñ Nypt, Y q in L1pO,F ,Pq

for all t ¥ 0, where Nn
y denotes the process de�ned in (6.20) with B replaced by Bn. Now, for t ¡ s, by

calculating EQrpNyptq �Nypsqqgs for all continuous, bounded, Gs-measurable functions g, exactly as in step

5, we deduce that Ny is a martingale with respect to Q.
Condition (5) from De�nition 5.3 follows now by combining steps 4, 5 and 6.

6.2 Existence of solutions

Proposition 6.7. Assume dimH   8. Then, for any x P H the set S pxq is non-empty.

Proof. Without loss of generality, we assume H � X � RN �� X1 and all spaces are equipped with the

euclidean norm, denoted by |x| � }x}H � }x}X � }x}X1 for x P RN . By Theorem 5.12, there exists a

martingale solution Q with initial condition x. Thus, our task is to show that Q satis�es condition (6.3).

We set TQ :� H.

De�ne

Mpt, uq :�
Ņ

i�1

Meipt, uqei

where ei denotes the i-th unit vector and Mei is de�ned in De�nition 5.3, (5). Now, we have

ξptq � x�
» t

0

Apξprqq dr �Mpt, ξq

and pMptqqt¥0 is a continuous, RN -valued, pGtq-martingale with respect toQ. By polarization, the covariation
operator process xxMyy in RN�N is uniquely determined by symmetry and the values xT xxMyyx � xMxy for
all x P RN . Thus, the covariation operator process of M is given by

xxMyypt, uq �
» t

0

BpupsqqB�pupsqq ds.

Since r ÞÑ Apξprqq is continuous, the process p³t
0
Apξprqq drqt¥0 is continuous and of �nite variation. Thus,

Lemma (4.39) implies that p³t
0
Aipξprqq drqt¥0 is a semimartingale, and since the set of semimartingales is a

vector space, the process pξptqqt¥0 is also a semimartingale.

We use Ito's formula on the function F : RN Ñ R, F pxq � |x|p for p ¥ 2. Using Lemmata (4.43) and
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(4.44), we obtain after a lengthy but straight forward calculation the following formula:

|ξptq|p �

|ξp0q|p � p

» t
0

ξiprq|ξprq|p�2 dξiprq � ppp� 2q
» t

0

ξiprqξjprq|ξprq|p�4dxξi, ξjyprq

�p
» t

0

|ξprq|p�2dxξiprq, ξiprqy �

|ξp0q|p � p

» t
0

|ξprq|p�2xApξprq, ξprqydr � p

» t
0

|ξprq|p�2}Bpξprqq}2L2pU,RN q dr

�ppp� 2q
» t

0

|ξprq|p�4}B�pξprqqpξprqq}2U dr �M ppqpt, ξq

where M ppq is a continuous, R-valued, (Gt)-martingale with respect to Q, whose quadratic variation process

can be estimated by

xM ppqypt, uq � xM ppqyps, uq ¤ p2

» t
s

|uprq|2p�2}Bpuprqq}2L2pU,RN q dr.

Fix s ¥ 0 and p ¥ 2, and let

gptq :� EQr sup
rPrs,ts

|ξprq|p|Gss

for t ¥ s. Using the estimate

xp � xp�2 ¤ 2pxp � 1q (6.25)

for all x ¥ 0, we have by BDG's inequality for conditional expectation (Lemma 4.32), growth condition (A3)

and Young's inequality

EQ
�

sup
rPrs,ts

|M ppqpr, ξq �M ppqps, ξq|
����Gs

�
BDG¤ C1EQ

��» t
s

|ξprq|2p�2}Bpξprqq}2L2pU,RN q dr


 1
2
����Gs

�
pA3q¤ ?

κ2C1EQ
��» t

s

|ξprq|2p�2p|ξprq|2 � 1q dr


 1
2
����Gs

�
(6.25)¤ C2EQr sup

rPrs,ts

|ξprq| p2 �
�» t

s

p|ξprq|p � 1q dr


 1
2

|Gss
Y oung¤ 1

2
gptq � 1

2
C2

2EQr
» t
s

p|ξprq|p � 1q dr|Gss

¤ 1

2
gptq � 1

2
C2

2

» t
s

pgprq � 1q dr,

where C1 � 4
?

2p2 and C2 � 2
?
κ2C1 � 8

?
2κ2p

2.
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Furthermore, we have

}ξpτq}pH � }ξpsq}Hp � p

» τ
s

}ξprq}Hp�2xApξprq, ξprqydr � p

» τ
s

}ξprq}Hp�2}Bpξprqq}2L2pU,RN q dr

�ppp� 2q
» τ
s

}ξprq}Hp�4}B�pξprqqpξprqq}2U dr �M ppqpτ, ξq �M ppqps, ξq
pA2q,pA3q¤ }ξpsq}pH � p

» τ
s

}ξprq}p�2
H

�
� Zpξprqq � pκ1 � κ2qp1� }ξprq}2Hq



dr

�ppp� 2qκ2

» τ
s

}ξprq}p�2
H

�
1� }ξprq}2H



dr �M ppqpτ, ξq �M ppqps, ξq

(6.25)¤ }ξpsq}pH � p

» τ
s

Zppξprqq dr � C3

» τ
s

p}ξprq}pH � 1q dr �M ppqpτ, ξq �M ppqps, ξq,

where C3 � 2pκ1 � 2ppp� 1qκ2.

Combining the last two relations, taking �rst the supremum over τ P rs, ts in the last equation and then

the conditional expectation with respect to Gs, we get

gptq ¤ }ξpsq}pH � pEQr
» t
s

Zppξprqq dr|Gss � 1

2
gptq � γp

» t
s

pgprq � 1qdr (6.26)

where γp is as in (6.1). Consequently, we have

gptq ¤ 2}ξpsq}pH � 2γp

» t
s

pgprq � 1q dr,

and, by applying Grownwall's inequality, we get

gptq ¤ expp2γppt� sqqp2}ξpsq}pH � 2γppt� sqq ¤ 2 expp3γppt� sqqp}ξpsq}pH � 1q

and this combined with (6.26) yields

gptq � EQr
» t
s

Zppξprqq dr|Gss ¤ gptq � pEQr
» t
s

Zppξprqq dr|Gss

¤ 1

2
gptq � γp

» t
s

pgprq � 1q dr � }ξpsq}pH

¤ 2p}ξpsq}pH � 1q expp3γppt� sqq � 2

3
p}ξpsq}pH � 1qpexpp3γppt� sqq � 1q

�γppt� sq � }ξpsq}pH
¤ p4� γppt� sqq expp3γppt� sqqp}ξpsq}pH � 1q
¤ kppt� sqp}ξpsq}pH � 1q.

Thus, (6.3) holds.

Finally, we can show the existence of solutions:

Theorem 6.8. Let H be a separable Hilbert space and let A and B satisfy the assumption (A1)-(A3). Then,

for any x P H, the set S pxq is non-empty. In particular, there exists a martingale solution to equation (5.7).
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Proof. We use Galerkin's approximation. Let

Hn :� spantbi : i � 1, ... , nu � X

where bn is the orthonormal basis of H de�ned at the beginning of this section. Let

Pn : HÑ H

be the orthogonal projection onto Hn. We set xn :� Pnpxq and we de�ne the operators

An :� Pn �A

and

Bn :� Pn �B.

Then, the operators An and Bn satisfy assumptions (A1)-(A3) with the same constants κ1, κ2, γ, γ̃ and q

as A and B. Consider the equation

duptq � Anpuptqq dt�Bnpuptqq dWt, (6.27)

up0q � xn. (6.28)

in Hn. Since dimHn   8, there exists a martingale solution Qn satisfying (6.3), i.e. Qn P SAn,Bn,Hnpxnq.
The measures Qn are probability measures on Cpr0,8q;Hnq, but we can assume Qn P PpUqq by letting

QnpAq :� QnpAX Cpr0,8q;Hnqq for A P G � BpCpr0,8q;X1qq. Since tbnunPN is an orthonormal basis of H,
we have for all m ¡ n

Mbmpt, uq � xuptq, bmy � xup0q, bmy �
» t

0

xApupsqq, bmyds � 0

and since kerB�
npupsqq � pranBnpupsqqqK � HK

n , we have B
�
npupsqqpbmq � 0 and thus

xMbmypt, uq � 0 �
» t

0

}B�
npupsqqpbmq}2U ds.

Thus, (5) from De�nition 5.3 holds for Qn with Y � Y. Thus, we have Qn P SAn,Bn,Ypxnq.
We show that pQnqnPN is tight in PpUqq. By (6.3) we have

EQnr sup
tPr0,T s

}ξptq}H �
» T

0

Zpξprqq drs ¤ c1k2pT qpx2
n � 1q ¤ c2

where c1 and c2 are independent of n. Thus, by Lemma 4.23, it is su�cient to show that for some β, c ¡ 0

independent of n we have

EQnr sup
0¤s t¤T

}ξptq � ξpsq}X1
|t� s|β s ¤ c. (6.29)
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We set

Mnpt, uq :�
ņ

i�1

Mbipt, uqbi,

then, similar to the proof of Proposition 6.7, we have

ξptq � xn �
» t

0

Anpξprqq dr �Mnpt, ξq Qn � a.e. (6.30)

for all n P N. We estimate the terms on the right hand side.

We show

EQn
�

sup
0¤s t¤T

} ³t
s
Anpξprqq dr}X1
|t� s| γ�1

γ

�
¤ c (6.31)

for some c ¥ 0 independent of n. By Jensen's inequality, we have

EQn
�

sup
0¤s t¤T

1

pt� sqγ�1
}
» t
s

Anpξprqq dr}γX1
�
¤ EQn

� » T
0

}Anpξprqq}γX1 dr

�

and by (A3) and (6.3) we get

EQn
� » T

0

}Apξprqq}γX1 dr

�
¤ κ2EQn

� » T
0

�
1� }ξprq}γ̃H � Zpξprqq



dr

�
¤ constpT, γ̃q.

Thus, (6.31) follows. Next, we show

EQnr sup
0¤s t¤T

}Mnpt, ξq �Mnps, ξq}X1
|t� s| 12 s ¤ constpT q. (6.32)

Exactly as in the proof of Proposition 6.7 we deduce that

xxMnyypt, uq �
» t

0

BnpupsqqB�
npupsqq ds Qn � a.e.

Let Q :� tpt, sq P r0, T s2 | s   tu and let fpt, s, uq :� }Mnpt,uq�Mnps,uq}
2
X1

|t�s| . Then, we have for all q ¥ 1

}f}LqpQ�U, dtb dsb dQnq ¤ c

�» »
Q

EQn
�}Mpt, ξq �Mnps, ξq}H2q

|t� s|q
�

dtds


 1
q

.
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We have for all 0 ¤ s   t ¤ T and n P N

EQn
�
}Mnpt, ξq �Mnps, ξq}2qH

�
BDG¤ constpqqEQn

�� » t
s

}Bpξprqq}2L2pU,Hq dr
�q�

Jensen¤ constpqq|t� s|q�1

» t
s

EQn
�
}Bpξprqq}2qL2pU,Hq

�
dr

pA3q¤ constpqq|t� s|q�1

» t
s

EQn
�
}ξprq}2qH � 1

�
dr

(6.3)¤ constpq, T q|t� s|qp}xn}2qH � 1q

and therefore

EQnr }Mpt, ξq �Mnps, ξq}X12q
|t� s|q s ¤ cpαq � 1q

where α :� supnPN }xn}2H. Thus, we have

}f}LqpQ�U, dtb dsb dQq ¤ c

where c is independent of n and q. Since }f}LqpQ�U, dtb dsb dQq Ñ }f}L8pQ�U, dtb dsb dQq as q Ñ8 we have

ess sup
pt,s,uqPQ�U

|fpt, s, uq|   c

and therefore

EQnr sup
0¤s t¤T

}Mnpt, ξq �Mnps, ξq}X1
|t� s| 12 s ¤ ess sup

pt,s,uqPQ�U
|fpt, s, uq| 12   8.

The estimates (6.31) and (6.32) together with relation (6.30) imply (6.29). Thus, pQnqnPN is tight in

PpUqq and, for a suitable subsequence, we have

Qn á Q in PpUqq.

Proposition 6.6 now yields Q P S pxq, provided we can show (6.4) and (6.5). Let hn Ñ h in H. Since Pn
is H-self adjoin and Pny � y for all n ¥ Ny for some Ny P N, we have

lim
nÑ8

xAnphnq, yy � lim
nÑ8

xAphnq,Pnyy � lim
nÑ8

xAphnq, yy � xAphq, yy.

Finally, we have B�
nphnqy � B�phnqPny � B�phnqy for all n ¥ Ny and by the demicontinuity of B, i.e.

assumption (A1), relation (6.5) holds.

7 Solution to the Markov Problem

The key tool to show the existence of a.s. martingale Markov solutions is the notation of Markov families

and pre-Markov families. Especially the latter is a rather abstract de�nition, but we will show in the last

section of this part, that the set S pxq constructed in the previous section is in fact a pre-Markov family.
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Then it is clear from the de�nition that the proof of existence of a.s. martingale Markov solutions is �nished,

provided we can show that any pre-Markov family admits a Markov selection. This abstract Markov selection

Theorem was proved in [13].

7.1 Abstract Markov and pre-Markov families

Let X and Y be separable Banach spaces such that Y ãÑ X continuously and densely and let U :� Cpr0,8q;Xq.
We consider U as path space and use the notations from the preliminaries.

De�nition 7.1. A family pPyqyPY � PYpUq is called almost sure Markov family i�

(1) for each A P G the mapping

y ÞÑ PypAq

is BpYq{BpRq measurable;

(2) for each y P Y there exists a Lebesgue null set Ty � p0,8q such that for all t P p0,8qzTy and s ¥ t we

have

Pyp�|Gtqpuq � Puptq �Ψt,

where both sides are considered as probability measures on U t, see section 4.3.

Remark 7.2. A family pQxqxPH of probability measures, where Qx is a martingale solutions of equation (5.7)

with initial value x, is an a.s. martingale Markov solution i� it is an a.s. Markov family.

In order to introduce pre-Markov families, we start with the following lemma.

Lemma 7.3. Let t ¡ 0, P P PpUq and let Q : U Ñ PpUq (resp. Q : U Ñ PpU tq) be a map such that

(1) for any A P G (resp. A P Gt), the mapping

u ÞÑ QpuqpAq

is Gt{BpRq measurable;

(2) for P-a.e. u P U we have

Qpuqptv P U |u|r0,ts � v|r0,tsuq � 1,

resp.

Qpuqptv P U t |uptq � vptquq � 1.

Then, there is a unique probability measure Pbt Q P PpUq such that

Pbt Q|Gt � P|Gt (7.1)
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and the mapping pu,Aq ÞÑ QpuqpAq is a r.c.p.d. of Pbt Q with respect to Gt, i.e.

pPbt Qqp�|Gtqpuq � Qpuq (7.2)

for Pbt Q-a.e. u P U , where the left hand side is considered as a probability measure on U (resp. U t).

Proof. We show the version for Q : U Ñ PpUq, the other version follows similar. The mapping u ÞÑ QpuqpAq
is Gt{BpRq measurable by assumption. Thus, we can de�ne

Pbt QpAq :� EPrQp�qpAqs.

It is routine to check that Pbt Q de�nes a probability measure on pU ,Gq. If A P Gt, then u P A if and only

if tv P U |u|r0,ts � v|r0,tsu � A by Lemma 4.19. Thus, QupAq � IApuq for P-a.e. u P U , and consequently we

get

EPrQp�qpAqs � EPrIAs � PpAq,

i.e. (7.1) holds. For A P G and C P Gt we have»
C

Pbt QpA|Gtq dPbt Q � Pbt QpAX Cq

� EPrQp�qpAX Cqs
�

»
C

QpuqpAqPp duq

�
»
C

QpuqpAqPbt Qp duq

where the last equality holds, since u ÞÑ QpuqpAq is Gt{BpRq measurable and P|Gt � P bt Q|Gt . Thus, we

know that Qpuq is a conditional probability measure of P bt Q with respect to Gt. Since Qpuq P PpUq for
any u P U and u ÞÑ QpuqpAq is Gt measurable by assumption for any A P G, Q is regular. We conclude that

(7.2) holds.

Finally, the uniqueness follows from Lemma 3.27.

De�nition 7.4. A family tΘyuyPY � CpPYpUqq is called an almost sure pre-Markov family i� for each y P Y
and P P Θy, there exists a Lebesgue null set Ty,P � p0,8q such that for all t P p0,8qzTy,P there is a P�null
set N P Gt, such that

(1) The mapping

y ÞÑ Θy

is BpYq{BpCpPYpUqqq measurable;

(2) We have Pptv P U | vp0q � yuq � 1 for all y P Y and all P P Θy;

(3) (Disintegration) For all u P UzN

uptq P Y
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and there is a regular version Pp�|Gtqp�q of the conditional probability distribution, such that

Pp�|Gtqpuq �Ψ�1
t P Θuptq,

where the isomorphism Ψ�1
t : U Ñ U t is given by Ψ�1

t puqpsq � ups� tq.
(4) (Reconstruction) Let

Q : U Ñ PpU tq

be any mapping such that the following conditions are satis�ed:

(a) For any u P UzN we have uptq P Y, Qpuq P PYpUq and

Qpuq �Ψ�1
t P Θuptq;

(b) For any A P Gt, the mapping

u ÞÑ QpuqpAq

is Gt{BpRq measurable;

(c) For any u P UzN

Qpuqptv P U : uptq � vptquq � 1.

Then

Pbt Q P Θy.

Remark 7.5. In the context of the disintegration property, the notation Pp�|Gtqpuq always denotes a r.c.p.d.

enjoying the properties in (3) in the preceding De�nition.

De�nition 7.6. We call a pre-Markov family pΘyqyPY regular i� Θy is convex for all y P Y.

7.2 Abstract Markov Selections

In this subsection we prove that a regular pre-Markov family pΘyqyPY admits a Markov selection, i.e. there

exists a Markov family pQyqyPY such that Qy P Θy for all y P Y. Until the end of this subsection, �x a

regular pre-Markov family pΘyqyPY.
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De�nition 7.7. Let f P CbpX,Rq and λ ¡ 0. We de�ne the following functions:

Lf,λpt, uq :�
» 8

t

e�λsfpupsqq ds t ¥ 0, u P U
»

Jf,λpPq :� EPrLf,λp0, �qs P P PpUq
»

Mf,λ,Θpyq :� sup
PPΘy

Jf,λpPq y P Y
»

Ξf,λ,Θpyq :� tP P Θy | Jf,λpPq �Mf,λ,Θpyqu y P Y
»

Proposition 7.8. For all f P CbpXq and λ ¡ 0, the family pΞf,λ,ΘpyqqyPY is a regular pre-Markov family.

Proof. Step 1. Jf,λ is linear9 and continuous with respect to the weak topology. Since Θy is a convex and

weakly compact subset of PYpUq, the set Ξf,λ,Θpyq is non-empty, convex and weakly compact. In particular,

we have Ξf,λ,Θpyq P CpPYpUqq. Finally, (2) from De�nition 7.4 is satis�ed, since Ξf,λ,Θpyq � Θy.

Step 2. We show that y ÞÑ Ξf,λ,Θpyq is BpYq{BpCpPYpUqqq measurable. Per de�nition, that mapping

y ÞÑ Θy

is BpYq{BpCpPYpUqqq measurable. Thus, we need to show that

K ÞÑ ϕpKq :� tP P K | Jf,λpPq � sup
QPK

Jf,λpQqu

is BpCpPYpUqqq{BpCpPYpUqqq measurable. Let U � PYpUq be an open set. It is su�cient to show that

ϕ�1

�"
K P CpPYpUqq

����K � U

*

P BpCpPYpUqqq,

since by Lemma 1.9 the system of sets of this form is a generator for BpCpPYpUqqq. We have

ϕ�1

�"
K P CpPYpUqq

����K � U

*

�

"
K

����K � U

*
Y
"
K

����K X U c � H and sup
PPKXUc

Jf,λpPq   sup
PPK

Jf,λpPq
*
.

The set tK |K � Uu � CpPYpUqq is open. Next, we have

tK P CpPYpUqq | sup
PPK

Jf,λpPq   su �
¤
ε¡0

tK |K � tP | Jf,λpPq   s� εuu

and since by continuity of Jf,λ, the set tP | Jf,λpPq   s� εu is open in PYpUq, the right hand side is open in

CpPYpUqq. Thus,

K ÞÑ sup
PPK

Jf,λpPq (7.3)

9To be more precise: the set PYpUq is a convex and weakly closed subset of the spaceMpUq, whereMpUq denotes the set of all
signed real-valued �nite measures µ on pU ,Gq. We can prolong the functional Jf,,λ to MpUq by letting Jf,λpµq :�

³
Lf,λp0, �qdµ.

Now Jf,λ is linear and weakly continuous.
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is continuous and in particular BpCpPYpUqqq{BpRq measurable. We have

"
K P CpPYpUqq

����K X U c � H
*
�

"
K

����K � U

*c
P BpCpPYpUqqq

and it is easy to see, that K ÞÑ K XU c is BpCpPYpUqqq{BpCpPYpUqqq measurable on tK P CpPYpUqq |K X
U c � Hu. Therefore, the mapping

K ÞÑ sup
PPKXUc

Jf,λpPq

is measurable. Thus, we have"
K

����K X U c � H and sup
PPKXUc

Jf,λpPq   sup
PPK

Jf,λpPq
*
P BpCpPYpUqqq.

Step 3. We prove the disintegration property of De�nition 7.4. Fix y P Y, P P Ξf,λ,Θpyq and

t P p0,8qzTy,P, where Ty,P and N denote the corresponding exceptional null sets in the de�nition of the

disintegration property of Θy. Let
10

N2 :� tu P N c |PpΨ�1
t p�q|Gtqpuq R Ξf,λ,Θpuptqqu.

By the disintegration property for Θ we have N P Gt and PpNq � 0. By Lemma 1.10 we have N2 P Gt. The
disintegration property follows, provided we can show PpN2q � 0.

First, we apply Theorem 3.32 to the mapping y ÞÑ Ξf,λ,Θ. Since PpUq is a complete and separable

metric space and Ξf,λ,Θ � PYpUq is non-empty and compact, and therefore closed, for all y P Y, we are left
to show that

ApUq :�
"
y P Y

����Ξf,λ,Θpyq X U � H
*
P BpYq (7.4)

for all open sets U � PYpUq. But this is an easy consequence from Lemma 1.9 and the measurability of the

mapping y ÞÑ Ξf,λ,Θpyq since

ApUq �
"
y P Y

����Ξf,λ,Θpyq � U c
*
�

"
y P Y

����Ξf,λ,Θpyq � U c
*c

� Ξ�1
f,λ,ΘptK P CpPYpUqq |K � U cuqc.

Therefore (7.4) holds. Thus, there is a measurable selection η : YÑ PYpUq such that ηy P Ξf,λ,Θpyq for all
y P Y.

For B P G and u P U let τupBq :� tv P B | v|r0,ts � u|r0,tsu. Then, it is routine to check that A ÞÑ
ηuptq �Ψt � τupAq de�nes a probability measure on pU ,Gq. We de�ne the probability measures

Qpuq :�

$''&
''%
Pp�|Gtqpuq for u R N YN2

ηuptq �Ψt � τu for u P N2

δu for u P N,

for all u P U , where δu denotes the Dirac distribution with pole u. We show that Q satis�es the conditions

10Pp�|Gtq denotes a r.c.p.d. such that (3) of De�nition 7.4 holds for Θ.
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of the reconstruction property for Θ with P and t and with the exceptional P-null set N . Condition (a) for

Pp�|Gtqpuq follows from the disintegration property for Θ. Furthermore, direct calculations show

ηuptq �Ψt � τu �Ψ�1
t � ηuptq P Ξf,λ,Θpuptqq � Θuptq

and

ηuptq �Ψt � τu P PYpUq.

Thus, (a) is satis�ed on N2. Since N P Gt and N2 P Gt, it is su�cient to show condition (b) on the three

sets pN Y N2qc, N2 and N separately. Obviously, (b) holds on pN Y N2qc and on N . To show (b) on N2,

by Lemma 5.11 it is enough to show the measurability for all A P E , where E is the generator of G from

Theorem 4.21. For v P U let

ṽpsq :�
$&
%upsq for s ¤ t

vpsq for t   s.

Let A P E and assume that u|r0,ts P A|r0,ts. Then, for any v P A with vptq � uptq, we have ṽ P A. Since

ηuptqptv P U | vp0q � uptquq � 0 by (2) from De�nition 7.4, we get

ηuptq �Ψt � τupAq � ηuptqptv P U | Dw P τupAq : wpsq � vps� tq for all s ¥ t and wptq � uptquq
� ηuptqptv P U | Dw P τupAq : wpsq � vps� tq for all s ¥ t and wpsq � upsq for s ¤ tuq
� ηuptqptv P U | Dw P A : wpsq � vps� tq for all s ¥ t and wpsq � upsq for s ¤ tuq
� ηuptqptv P U | Dw P A : wpsq � vps� tq for all s ¥ tuq
� ηuptqpΨtpAqq.

On the other hand, if A P E with u|r0,ts R A|r0,ts, then we have

ηuptq �Ψt � τupAq � ηuptq �ΨtpHq � 0.

Now, we have

M :� tu P N2 |u|r0,ts P A|r0,tsu P Gt,

and u ÞÑ ηuptqpΨtpAqq is GtzBpRqmeasurable onM , since u ÞÑ uptq is GtzBpYqmeasurable and y ÞÑ ηypΨtpAqq
is measurable, since η is a measurable selection. Thus (b) is satis�ed on N2. Finally, (c) is obviously satis�ed

in all three cases.
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Thus, we have Pbt Q P Θy and we get

Jf,λpPq �Mf,λ,Θpyq ¥ Jf,λpPbt Qq
»

(7.1)� EPr
» t

0

e�λsfpξpsqq dss � EPbtQrLf,λpt, �qs

� Jf,λpPq � EPrLf,λpt, �qs � EPbtQrLf,λpt, �qs
»

� Jf,λpPq �
»
U

»
U
Lf,λpt, uqPpdu|GtqpvqPpdvq

�
»
U

»
U
Lf,λpt, uqpPbt Qqpdu|GtqpvqPpdvq

(7.2)� Jf,λpPq �
»
U

»
U
Lf,λpt, uqPpdu|GtqpvqPpdvq

�
»
U

»
U
Lf,λpt, uq QpvqpduqPpdvq.

where ξ denotes the canonical process. Since by de�nition ofQ we have Ppdu|Gtqpvq � Qpvqpduq for v R NYN2

and PpNq � 0, this yields

0 ¥
»
N2

�»
U
Lf,λpt, uq pηvptq �Ψt � τvqpduq



Ppdvq �

»
N2

�»
U
Lf,λpt, uqPpdu|Gtqpvq



Ppdvq.

We have

»
U
Lf,λpt, uq pηvptq �Ψt � τvqpduq � e�λt

»
twPU |w|r0,ts�v|r0,tsu

Lf,λp0,Ψtuq pηvptq �Ψtqpduq

� e�λt
»
twPU |wp0q�vptqu

Lf,λp0, uq ηvptqpduq

� e�λt
»
U
Lf,λp0, uq ηvptqpduq,

for any v P N2, where the �rst equality holds, since

ηvptq �Ψt � τvptw P U |w|r0,ts � v|r0,tsucq � 0

and

ηvptq �Ψt � τvpAq � ηvptq �ΨtpAq

for any measurable A � tw P U |w|r0,ts � v|r0,tsu, and where the last equality holds, since ηvptqptw P
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U |wp0q � vptquq � 1 by (2) from De�nition 7.4. Now, we get

0 ¥ e�λt
»
N2

�»
U
Lf,λp0, uq ηvptqpduq �

»
U
Lf,λp0,ΨtuqPpdu|Gtqpvq



Ppdvq

� e�λt
»
N2

�
Jf,λpηvptqq � Jf,λpPpΨ�1

t p�q|Gtqpvqq


Ppdvq.

On the other hand, since by De�nition v P N2 implies PpΨ�1
t p�q|Gtqpvq P ΘvptqzΞf,λ,Θpvptqq, we have

Jf,λpPpΨ�1
t p�q|Gtqpvqq  Mf,λ,Θpvptqq � Jf,λpηvptqq.

The last two inequalities yield

PpN2q � 0.

Step 4. We show the reconstruction property of De�nition 7.4. Let y P Y, P P Ξf,λ,Θpyq, t P p0,8qzTy,P
and Q : U Ñ PpU tq be a mapping satisfying the assumptions (4a)-(4c) from De�nition 7.4 with the family

pΞf,λ,ΘpyqqyPY, and denote by N the corresponding null set. We have P bt Q P Θy by the reconstruction

property for pΘyqyPY. Now, we get

Jf,λpPbt Qq � EPr
» t

0

e�λsfpξpsqq dss (7.1)� EPbtQrLf,λpt, �qs

� EPbtQ|Gt

�
EPbtQrLf,λpt, �q|Gts

�
(7.1), (7.2)� EP

�
EQp�qrLf,λpt, �qs

�

� e�λt
»
U
Jf,λpQpuq �Ψ�1

t qPpduq
Def. 7.4,(3)�(4)� e�λt

»
U
Jf,λpPp�|Gtqpuq �Ψ�1

t qPpduq

�
»
U

�»
U
Lf,λpt, uqPpdu|Gtqpvq



Ppdvq

� EPrLf,λpt, �qs
� Jf,λpPq � EPr

» t
0

e�λsfpξpsqq dss

where the �fth equality follows from the fact that on the one hand we have Qpuq � Ψ�1
t P Ξf,λ,Θpuptqq, due

to De�nition 7.4, (4), and on the other hand Pp�|Gtqpuq � Ψ�1
t P Ξf,λ,Θpuptqq, due to De�nition 7.4, (3), and

thus

Jf,λpQpuq �Ψ�1
t q �Mf,λ,Θpuptqq � Jf,λpPp�|Gtqpuq �Ψ�1

t q.

Consequently, we have

Jf,λpPbt Qq � Jf,λpPq �Mf,λ,Θpyq.
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and therefore

Pbt Q P Ξf,λ,Θpyq.

We can now prove the following crucial Theorem:

Theorem 7.9. Let pΘyqyPY be a regular pre-Markov family. Then, there exists a Markov selection pQyqyPY
for Θ, i.e. pQyqyPY is a Markov family such that Qy P Θy for all y P Y.

Proof. Step 1. Let Υ � CbpX;Rq be countable and dense, and let pλn, fnq be an enumeration of pQ X
p0,8qq �Υ. For each y P Y let Ξ0pyq :� Θy and de�ne inductively

Ξn�1pyq :� Ξfn,λn,Ξnpyq

where Ξfn,λn,Ξnpyq is de�ned in De�nition 7.7. By Proposition 7.8, the families pΞn�1pyqqyPY are regular a.s.

pre-Markov families. Let

Ξ8pyq :�
£
nPN

Ξnpyq.

Step 2. We show that pΞ8pyqqyPY is a regular a.s. pre-Markov family. First, since Ξ8pyq is a closed

subset of a compact set, it is compact, and since pΞnpyqqnPN enjoys the �nite intersection property, Ξ8pyq
is not empty. Thus, we have Ξ8pyq P CpPYpUqq. For any y P Y and ε ¡ 0 let Kε :� BεpΞ8pyqqc, where
Bε denotes the ball with radius ε with respect to the metric dC . For any �xed ε ¡ 0 and y P Y, the
sequence pΞnpyq XKεqnPN is a family of closed sets with empty intersection. Thus, for some N P N, we have�
n¤N Ξnpyq X Kε � H and consequently dCpΞnpyq,Ξ8pyqq   ε for n ¡ N . It follows that Ξn Ñ Ξ8 in

CpPYpUqq pointwise in Y, and thus, the mapping y ÞÑ Ξ8pyq is measurable.

The disintegration property follows since P P Ξ8pyq implies P P Ξnpyq for all n P N. Thus we have

PpΨ�1
t p�q|Gtqpuq P Ξnpyptqq for t P p0,8qzTy,P,n and u P UzNn, for some null sets Ty,P,n and Nn, and thus

PpΨ�1
t p�q|Gtqpuq P Ξ8pyptqq for t P p0,8qz�nPN Ty,P,n and u P Uz�nPNNn. The reconstruction property

follows similarly. Thus, Ξ8pyq is an a.s. pre-Markov family. As the intersection of convex sets, Ξ8pyq is
convex. Thus, pΞ8pyqqyPY is a regular a.s. pre-Markov family.

Step 3. Fix y P Y and probability measures P,Q P Ξ8pyq and let Ty,P and Ty,Q be the respective null-sets

in De�nition 7.4. Let T :� Ty,P Y Ty,Q. Fix 0 ¤ t1   ...   tn P p0,8qzT , let F :� Aσptξptiq : 1 ¤ i ¤ nuq
and assume P|F � Q|F . We show that for some A P F with PpAq � QpAq � 0 we have

Pp�|Fqpuq �Ψ�1
tn P Ξ8puptnqq

Qp�|Fqpuq �Ψ�1
tn P Ξ8puptnqq

(7.5)

for all u R A. 11

By the disintegration property, there is a P�null set NP � U such that

uptnq P Y (7.6)

11By the second part of Theorem 3.24, this does not depend on the choice of the r.c.p.d.'s, although the exceptional set A
may depend on the choice.
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and

Pp�|Gtnqpuq �Ψ�1
tn P Ξ8puptnqq. (7.7)

for all u R NP

Since F � Gtn , there is a P-null set B1
P P F such that

Pp�|Fqpuq �
»
U
Pp�|GtnqpvqPpdv|Fqpuq

for all u R B1
P.

Since
³
U PpNP|FqpuqPpduq � PpNPq � 0 , there is a P-null set B2

P P F such that

PpNP|Fqpuq � 0

for all u R B2
P.

Finally, Lemma 3.26 yields a P-null set B3
P P F such that Pptv : vptnq � uptnqu|Fqpuq � 0 for any u R B3

P.

Let BP :� B1
P YB2

P YB3
P.

For u R BP we get

Pp�|Fqpuq �Ψ�1
tn �

»
NcP

Pp�|Gtnqpvq �Ψ�1
tn Ppdv|Fqpuq

�
»
NcPXtv : vptnq�uptnqu

Pp�|Gtnqpvq �Ψ�1
tn Ppdv|Fqpuq

If u P BcP X tv : vptnq R Yu, then this implies Pp�|Fqpuq �Ψ�1
tn � 0 since (7.6) implies N c

P X tv : vptnq �
uptnqu � H. But since Pp�|Fqp�q is a r.c.d.p., we conclude BcP X tv : vptnq R Yu � H.

If u P BcP X tv : vptnq P Yu, then we have for all v P N c
P X tv : vptnq � uptnqu

Pp�|Gtnqpvq �Ψ�1
tn P Ξ8pvptnqq � Ξ8puptnqq.

Since for u R BP we have

Pp�|Fqpuq �
»
U
Pp�|GtnqpvqPpdv|Fqpuq,

Lemma 3.7 implies

Pp�|Fqpuq �Ψ�1
tn P Ξ8puptnqq.

We can repeat the above argumentation to obtain the corresponding result for Q with some Q-null sets
NQ P G and BQ P F . Let A :� BP YBQ. Since P and Q agree on F , we have

PpAq � QpAq � 0,

and (7.5) follows for u P Ac.
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Step 4. W e show that for all y P Y, all probability measures P,Q P Ξ8pyq and all bounded measurable

functions f : XÑ R we have

EPrfpξptqqs � EQrfpξptqqs (7.8)

for all t ¥ 0. By De�nition of Ξnpyq and Ξ8pyq we have» 8

0

e�qtEP
�
ϕpξptqq

�
dt �

» 8

0

e�qtEP
�
ϕpξptqq

�
dt

for all q P QX p0,8q and ϕ P Υ. The uniqueness of the Laplace transform implies

EPrϕpξptqqs � EQrϕpξptqqs

and by approximation we obtain (7.8).

Step 5. Fix y P Y. We show that Ξ8pyq contains only one element. Let P,Q P Ξ8pyq. It is su�cient

to show that the canonical process has the same �nite dimensional distribution under P and Q. Thus, we

need to show that P�1 � pξpt1q, ..., ξptnqq � Q�1 � pξpt1q, ..., ξptnqq for any n P N and 0 ¤ t1   ...   tn. By

continuity, it is enough to show this in the case ti P B for all 1 ¤ i ¤ n, where B is dense in p0,8q; in
particular, we can assume ti R T � Ty,P Y Ty,Q. The assertion follows when we can show that

EPr
n¹
i�1

fipξptiqqs � EQr
n¹
i�1

fipξptiqqs (7.9)

for any bounded measurable functions fi : XÑ R.
By the preceding step, (7.9) holds for n � 1.

Assume that (7.9) holds for all t1   ...   tn for some n P N and let 0 ¤ t1   ...   tn�1 such that ti R T
and let F :� Aσptξptiq | 1 ¤ i ¤ nuq. Then we have P|F � Q|F . Let A be the corresponding P-null and
Q-null set from step 3. We need to show that

EP
� n¹
i�1

fipξptiqqEPrfn�1pξptn�1qq|Fs
�
� EQ

� n¹
i�1

fipξptiqqEQrfn�1pξptn�1qq|Fs
�

i.e.»
U

n¹
i�1

fipuptiqq
�»

U
fn�1pvptn�1qqPpdv|Fqpuq



Ppduq �

»
U

n¹
i�1

fipuptiqq
�»

U
fn�1pvptn�1qqQpdv|Fqpuq



Qpduq.

Thus, it is su�cient to show that»
U
fn�1pvptn�1qqPpdv|Fqpuq �

»
U
fn�1pvptn�1qqQpdv|Fqpuq

for all u R A.
Now Step 4, with P and Q replaced by Pp�|Fqpuq�Ψ�1

tn and Qp�|Fqpuq�Ψ�1
tn , yields the desired conclusion,
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since »
U
fn�1pvptn�1qqPpdv|Fqpuq � EPp�|Fqpuq�Ψ�1

tn rfn�1pvptn�1 � tnqqs.

Step 6. Conclusion. Let Qy be the unique element of Ξ8pyq. Since dPYpUqpP,Qq � dCptPu, tQuq, we have
PYpUq ãÑ CpPYpUqq, where the embedding is isometrical, and thus, the mapping y ÞÑ Qy is BpYq{BpPYpUqq
measurable. Since for all A P G the mapping Q ÞÑ QpAq is weakly continuous and therefore measurable, the

mapping y ÞÑ QypAq is BpYq{BpRq measurable.

Point (2) of De�nition 7.1 follows immediately from the disintegration property for Ξ8.

7.3 Martingale solutions to the Markov problem

We return to the notations of Section 6. In particular, we have the Gelfand triple X ãÑ H ãÑ X1, where the

embeddings are compact, and a �xed countable dimensional and dense subspace Y ¤ X. From Proposition

6.8 we know that S pxq is non-empty for all x P H. We show that the family pS pxqqxPH is a regular a.s.

pre-Markov family, then Theorem 7.9 implies the existence of a Markov selection and thus the existence of

an a.s. martingale solution to the Markov Problem associated with (5.7).

Proposition 7.10. Let pxnqnPN � H with xn Ñ x in H and let Pn P S pxnq. Then there exists a subsequence

such that Pnk á P in PpUq for some P P S pxq.
Proof. Step 1. Weak convergence in PpUqq implies weak convergence in PpUq. Thus, we need only to show

that pPnqnPN is tight in PpUqq, where q is as in (A2), since then Pnk á P in PpUqq for some subsequence,

and P P S pxq by Proposition 6.6. Let pbnqnPN be the orthonormal basis of H de�ned at the beginning of the

previous section and let Pn be the corresponding orthogonal projection onto spantb1, ... , bnu. For all n P N
let

Mnpt, uq :�
8̧

k�1

Mbkpt, uqbk � xn

where Mbk are as in De�nition 5.3.

Step 2. We show thatMn is a continuous, H-valued pGtqt¥0-martingale starting at zero a.e. with respect

to Pn, whose covariation operator process is given by

xxMnyypt, uq �
» t

0

BpupsqqB�pupsqq ds. (7.10)

Let Mm
n pt, uq :� °m

k�1Mbkpt, uqbk � Pmxn. Then Mm
n is a continuous, H-valued pGtq-martingale with

respect to Pn. By applying the BDG's inequality, we get

EPnr sup
tPr0,T s

}Mm
n pt, ξq �M l

npt, ξq}2Hs
BDG¤ C

» T
0

EPnr
m̧

k�l

}B�pξpsqqpbkq}2Usds

� C}
m̧

k�l

}B�pξqpbkq}2U}L1pp0,T q�U ; dtbPnq
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and since

m̧

k�l

}B�pξqpbkq}2U ¤
8̧

k�1

}B�pξqpbkq}2U � }B�pξq}2L2pH,Uq P L1pp0, T q � U ;dtb Pnq

and
°m
k�l }B�pξqpbkq}2U Ñ 0 as l,mÑ8 pointwise in p0, T q � U , Lebesgue's theorem yields

}
m̧

k�l

}B�pξqpbkq}2U}L1pp0,T q�U ; dtbPnq Ñ 0

as l,m Ñ 8. Thus, (Mm
n qmPN is a fundamental sequence in L2pU ,Pn;Cpr0, T s;Hqq, and since Mm

n Ñ Mn

pointwise in p0, T q � U , we also have this convergence in L2pU ,Pn;Cpr0, T s;Hqq. Consequently, Mn is

a continuous, H-valued pGtqt¥0-martingale with respect to Pn. Furthermore,
³t
0
BpupsqqB�pupsqq ds is a

bounded and symmetric operator and

x
�» t

0

BpupsqqB�pupsqq ds



bm, bmy �

» t
0

}B�pupsqqbm}2U ds

Def. 5.3� xMbmypt, uq
� x

�
xxMnyypt, uq



bm, bmy.

Since these properties characterise the covariance operator uniquely, we have proved (7.10).

Step 3. De�nition 5.3, (5), and the preceding step imply

xξptq, bmy � xxn �
» t

0

Apξpsqq ds�Mnpt, ξq, bmy Pn � a.e.

for all m P N, and consequently we have

ξptq � xn �
» t

0

Apξpsqq ds�Mnpt, ξq Pn � a.e.

Exactly as (6.31) in the proof of Proposition 6.8, we deduce that

EQn
�

sup
0¤s t¤T

} ³t
s
Anpξprqq dr}X1
|t� s| γ�1

γ

�
¤ c

and exactly as (6.32) in the proof of Proposition 6.8, we deduce that

EQnr sup
0¤s t¤T

}Mnpt, ξq �Mnps, ξq}X1
|t� s| 12 s ¤ constpT, βq

Indeed, the only di�erence between the current situation and Proposition 6.8 is that now the dimension of

H is allowed to be in�nite, but this does not e�ect the proof. Exactly as in Proposition 6.8, we deduce that

pPnqnPN is tight.
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Theorem 7.11. Let A and B satisfy (A1)-(A3). Then there exists an a.s. martingale solution to the

Markov problem associated with (5.7).

Proof. We show that the family pS pxqqxPH is a regular a.s. pre-Markov family. Then Theorem 7.9 yields the

existence of a Markov selection, and it follows directly by de�nition that any Markov selection of pS pxqqxPH
is an a.s. martingale Markov solution.

Step 1. Lemma 6.5 implies S pxq � PHpUq. The compactness of S pxq in PpUq follows immediately

from Proposition 7.10 by letting xn � x for all n P N. Thus, we have S pxq P CpPHpUqq for all x P H. We

show that the mapping xÑ S pxq is BpYq{BpCpPHpUqq measurable. This holds, provided we can show that

S �1ptK P CpPHpUqq |K � Uuq � tx P H |S pxq � Uu

is open in H for any open U � PHpUq, or equivalently that tx P H |S pxqXU c � Hu is closed. Thus, assume

xn P H such that S pxnq X U c � H for n P N, and let xn Ñ x in H. Choose Pn P S pxnq X U c. Then, at

least for some subsequence, we have Pn á P in PHpUq for some P P S pxq by Proposition 7.10, and P P U c,
since U c is closed. Consequently, S pxq XU c is non-empty, and this yields the desired conclusion. Thus, (1)

of De�nition 7.4 is satis�ed. De�nition 7.4, (2), follows from De�nition 5.3, (2), since any P P S pxq is a
martingale solution with initial value x.

For the remaining steps (i.e. the disintegration and the reconstruction property) let x P H and Q P S pxq.
We set Tx,Q :� TQ, where TQ denotes the exceptional null set in De�nition 6.1 of S pxq. Fix t P p0,8qzTx,Q.

Step 2. We show that the family pS pxqqxPH satis�es the disintegration property. We show that there

is a Q-null set N P Gt such that QpΨ�1
t p�q|Gtqpuq P S puptqq for all u P UzN , i.e. we need to show (1), (2)

and (5) from De�nition 5.3 and (6.3), since (3) and (4) from De�nition 5.3 are immediate consequences from

(6.3).

De�nition 5.3, (1) holds, since we have»
U
QpΨ�1

t ptv | vpsq P H for all s ¥ 0uq|GtqpuqQpduq � Qptv | vpsq P H for all s ¥ 0uq � 1

and consequently, there is a Q-null set N1 P Gt such that

QpΨ�1
t ptv | vpsq P H for all s ¥ 0uq|Gtqpuq � 1,

i.e. ξ is QpΨ�1
t p�q|Gtqpuq-concentrated on the paths with values in H, for all u R N1.

De�nition 5.3, (2), follows, since by Lemma 3.26 there is a Q-null set N2 P Gt, such that

QpΨ�1
t ptv P U | vp0q � uptquq|Gtqpuq � Qpξptq � uptq|Gtqpuq � 1

for any u R N2.

De�nition 5.3, (5), at least for all u P UzN3, where N3 P Gt is some Q-null set, follows immediately from

Theorem 4.25.

Finally, we show (6.3). We apply Theorem 4.24 to

Xa,b :� sup
rPra,bs

}ξprq}pH �
» b
a

Zppξprqq dr
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and

Ya,b :� kppb� aq � p}ξpaq}pH � 1q,

for pa, bq P D :� tpα, βq P r0,8q |α ¤ βu. It is easy to check that the conditions for X and Y are satis�ed

with respect to Q, and consequently there is a Q-null set N4 P Gt such that (6.3) holds for u R N4.

Finally, N :� N1 YN2 YN3 YN4 P Gt is the desired null set.

Step 3. We show that the family pS pxqqxPH satis�es the reconstruction property. Let Q : U Ñ PpUq
be a mapping satisfying (4a)-(4c) from De�nition 7.4. We need to show that Qbt Q P S pxq.

De�nition 5.3, (1) holds, since

Qbt Qptv | vpsq P H for all s ¥ 0uq (7.2)�
»
U
Qpuqptv | vpsq P H for all s ¥ 0uqQbt Qpduq � 1.

De�nition 5.3, (2) holds, since Qbt Q|Gt � Q|Gt .
We show De�nition 5.3, (5). Since Q|Gt � QbtQ|Gt , (5) holds up to time t. By (a) from the reconstruction

property we know that Qpuq �Ψ�1
t satis�es (5). Since by De�nition of QbtQ we have QbtQp�|Gtq � Qpuq,

we know that (5) holds for Q bt Qp�|Gtq � Ψ�1
t . By Theorem 4.25, p2q ñ p1q we know that (5) holds for

Qbt Q at least on pt,8q. We conclude that p5q holds on p0,8q.
Finally, we show (6.3). For s ¤ t, (6.3) holds since Q|Gt � Q bt Q|Gt . By (a) from the reconstruction

property we know that Qpuq �Ψ�1
t satis�es (6.3). By Theorem 4.24, p2q ñ p1q we know that (6.3) holds for

Qbt Qp�q if s ¥ t.
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Part III

Compressible Equations

8 Introduction

8.1 Deterministic equations

We consider the deterministic compressible Navier-Stokes equations driven by a bounded external force

f P L8pp0, T q � Ω;R3q:
Bρ
Bt � divpρuq � 0, (8.1)

Bpρuq
Bt � divpρub uq �∇ppρq � div S � ρf, (8.2)

together with the no-slip boundary condition

u|BΩ � 0 (8.3)

and initial conditions for the density and the momentum

ρp0, .q � ρ0, (8.4)

pρuqp0, .q � q0. (8.5)

The symbol S denotes the viscous stress tensor

S � νp∇u�∇uT � 2

3
div uIq � η div uI, ν ¡ 0, η ¥ 0, (8.6)

ρ : r0, T s�Ω Ñ R the density, u : r0, T s�Ω Ñ R3 the velocity and p � ppρq the pressure. We always assume

for the pressure p the following conditions:

p P Cr0,8q X C2p0,8q, pp0q � 0, p1pρq ¡ 0 for ρ ¡ 0, and lim
ρÑ8

p1pρq
ργ�1

� ρ8 (8.7)

for some γ ¡ 3
2 and ρ8 ¡ 0.

As in the incompressible case, existence or uniqueness of smooth solutions is not known in general.

Instead, one can show the existence of so-called �nite-energy weak solutions. The term ��nite-energy� refers

to the fact that the solution satis�es an energy inequality: the change of total energy

Eptq :�
»

Ω

1

2
ρ|u|2 �Qpρq dx, (8.8)

where 1
2ρ|u|2 is the kinetic energy density and

Qpρq :� ρ

» ρ
1

ppzq
z2

dz
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is the internal energy density for isentropic �uid �ows, is bounded from above by the power resulting from

external force and dissipation »
Ω

pf � u�S p∇uq : ∇udx,

see [10], Section 1, or [6] for physical details. This is a-priori not clear for weak solutions; as shown below,

smooth solutions always satisfy an energy equality. Next, we give the precise de�nition of those solutions,

the motivation for this de�nition can be found below.

De�nition 8.1. We call a pair pu, ρq �nite-energy weak solution of (8.1)-(8.5), i�

(1) ρ P L8p0, T ;LγpΩqq, ρ ¥ 0;

(2) u P L2p0, T ;W 1,2
0 pΩ,R3qq;

(3) The equation of continuity (8.1) holds in D1pp0, T q � R3q, where u and ρ are prolonged by zero on

R3zΩ;
(4) The momentum equation (8.2) holds in D1pp0, T q � Ωq;
(5) The renormalized equation of continuity

Bpbpρqq
Bt � divpbpρquq � pb1pρqρ� bpρqq divpuq � 0 (8.9)

holds in D1pp0, T q � R3q for all

b P C1pRq with b1pzq � 0 for all z ¥M (where the constant M ¥ 0 depands on bq, (8.10)

where ρ and u are again prolonged by zero outside Ω;

(6) ρ P Cwpr0, T s, LγpΩqq and ppuq P Cwpr0, T s, L 2γ
γ�1 pΩ,R3qq and the initial conditions (8.4) and (8.5) hold

in these spaces;

(7) The energy is locally integrable, i.e. E P L1
locpr0, T qq, and the energy inequality

B
BtEptq �

»
Ω

S p∇uq : ∇udx ¤
»

Ω

pf � udx. (8.11)

holds in D1pr0, T qq.

Remark 8.2. The choice of the spaces in (6) in the preceding De�nition can be motivated in the following way:

Let pρ, uq be any pair of functions satisfying all conditions in the above De�nition except possibly (6). Then it
can be shown (see [11]), that this already implies ρ P Cwpr0, T s, LγpΩqq and ppuq P Cwpr0, T s, L 2γ

γ�1 pΩ,R3qq.
Remark 8.3. If pρ, uq is a solution in the sense of De�nition 8.1, then ρ P Cpr0, T s, L1pΩqq. This can be

proved via regularization, see �rst part of Section 9.6.
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Remark 8.4. If the equation of continuity holds in D1pp0, T q � R3q, then we have the additional boundary

condition

pρuq � ~ν � 0 on BΩ.

Furthermore, a simple calculation shows that the total mass
³
Ω
ρ dx is constant in time. This does not follow

from the equation of continuity in D1pp0, T q � Ωq, if ρ is not known to be square integrable.

Remark 8.5. If pρ, uq is a solution in the sense of De�nition 8.1, then (8.9) holds for all b P C1pr0,8qq
satisfying

b1pρqρ ¤ cp1� ρ
γ
2 q.

This follows immediately by applying Lebesgue's Theorem to the sequence bnpρq and b1npρqρ, where bn is any

sequence satisfying (8.10), such that |bn| ¤ |b|, |b1n| ¤ |b1|, bn Ñ b and b
1

n Ñ b1, both pointwise in r0,8q.
In the following, we motivate the preceding de�nition. We start by motivating the renormalized equation

of continuity: Let b : R Ñ R satisfy (8.10) and assume that pρ, uq is a smooth solution of the compressible

Navier-Stokes System. Then, by multiplying the equation of continuity (8.1) by b1pρq we get

0 � Bρ
Bt b

1pρq � ρdivpuqb1pρq �∇bpρq � u

� Bpbpρqq
Bt � ρdivpuqb1pρq � divpbpρquq � bpρqdivpuq

� Bpbpρqq
Bt � divpbpρquq � pb1pρqρ� bpρqq divpuq,

which is (8.9). Thus, smooth solutions satisfy the renormalized equation of continuity. In fact, the renormal-

ized equation of continuity can be deduced from the equation of continuity as soon as ρ P L8pp0, T q � Ωq,
see [10], Section 10.18.

We use the same strategy to motivate the energy inequality, i.e. we show that it is satis�ed by any

smooth solution. Thus, assume pu, ρq is a smooth solution of the Navier-Stokes equations and consider the

momentum equation (8.2), which, by direct calculation, yields for i � 1, 2, 3

Bpρuiq
Bt � divpρuiuq � pipρq � ν4ui � pη � 1

3
νqB div u

Bxi � ρfi.

By multiplying this equation by ui, summing up over i � 1, 2, 3 and integrating over Ω we deduce

»
Ω

ρf � udx �
»

Ω

Bpρuq
Bt � u� divpρuiuqui �∇ppρq � u� νui4ui � pη � 1

3
νqB div u

Bxi ui dx,

where the implicit summation convention is used. Using the equation of continuity, we obtain by a direct

calculation the following three formulas: �rst we have

»
Ω

Bpρuq
Bt � u� divpρuiuqui � νui4ui dx �

»
Ω

1

2

Bpρ|u|2q
Bt � 1

2

Bρ
Bt |u|

2 � 1

2
divpρuq|u|2 � ν|∇u|2 dx,
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secondly, a little bit lengthy but straight forward calculation shows

»
Ω

∇ppρq � udx �
»

Ω

BQpρq
Bt � divpuρQ1pρqq dx �

»
Ω

BQpρq
Bt dx,

and �nally we have »
Ω

B div u

Bxi ui dx �
»

Ω

pdivpudiv uq � divpuq2q dx �
»

Ω

divpuq2 dx.

Thus, we get

»
Ω

ρf � udx �
»

Ω

1

2

Bpρ|u|2q
Bt � BQpρq

Bt dx�
»

Ω

1

2

�Bρ
Bt � divpρuq



|u|2 � ν|∇u|2 � pη � 1

3
νq divpuq2 dx

� B
BtEptq �

»
Ω

ν|∇u|2 � pη � 1

3
νq divpuq2 dx.

Again by direct calculation, we deduce

B
BtEptq �

»
Ω

S p∇uq : ∇udx �
»

Ω

ρf � udx

for any smooth solution. Consequently, smooth solutions even satisfy the energy equality.

The next Lemma about Q will be helpful later.

Lemma 8.6. Suppose that the pressure p satis�es (8.7), then the function ρ ÞÑ Qpρq is a continuously

di�erentiable function mapping r0,8q onto r0,8q and satisfying Qp0q � 0 and Q1pρq ¡ 0. Furthermore,

there exists constants c1, c2, d1, d2 ¥ 0 such that

c1ppρq � d1 ¤ Qpρq ¤ c2ppρq � d2

Proof. Q is obviously continuously di�erentiable and ppzq ¡ 0 for z ¡ 0 yields Q1pzq ¡ 0. We get

lim
ρÑ0

Qpρq � lim
ρÑ0

³ρ
1
ppzq
z2 dz
1
ρ

� �pp0q � 0.

To see the last statement let z0 ¡ 1 be such that for all ρ ¥ z0 we have p1pρq P p 1
2p8ρ

γ�1, 3
2p8ρ

γ�1q.
Now by continuity we have Qpρq ¤ K for all ρ ¤ z0 for some K ¡ 0. For ρ ¡ z0 we get

Qpρq ¤ ρ

» z0
1

p1pzq
z

dz � ρ

» ρ
z0

3

2
p8z

γ�2 dz

� ρ

» z0
1

p1pzq
z

dz � 3

2

p8
γ � 1

pργ � ρzγ�1
0 q.

¤ d̃2 � ργ c̃2

¤ d2 � ppρqc2.
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A similar calculation shows the other inequality.

We have the following existence result of weak solutions to the deterministic compressible Navier-Stokes

equations:

Theorem 8.7. Let Ω � R3 be a bounded Lipschitz domain and let f P L8pp0, T q � Ωq. Assume that the

pressure p satis�es (8.7) for some γ> 3
2 and assume that the initial condition satisfy:

ρ0 P LγpΩq, ρ0 ¥ 0, q P L1pΩ,R3q, |q|
2

ρ0
P L1pΩq. (8.12)

Then, for any T ¡ 0, there exists a �nite-energy weak solution pρ, uq such that ρ P Cpr0, T s, L1pΩqq and the

total mass is constant in time, i.e. »
Ω

ρptq dx �M. (8.13)

The original proof of this theorem in [11] requires some smoothness of the boundary BΩ, which were

relaxed to Lipschitz domains in [22].

8.2 Stochastic equations

In the whole part let pO,B,Pq be some topological probability space, i.e. O is a topological space, B is the

Borel algebra on O and P is a regular probability measure. The compressible Navier-Stokes equations driven

by a stochastic noise w can formally be written as

dρ� divpρuqdt � 0 (8.14)

dpρuq � �
divpρub uq �∇ppρq � div S

�
dt � ρ dw (8.15)

where the unknown random variables ρ : r0, T s � Ω �O Ñ R and u : r0, T s � Ω �O Ñ R3 are the density

and the velocity, the given random variable w : r0, T s � Ω�O Ñ R3 is the stochastic noise and S denotes

the viscous stress de�ned in (8.6). We always assume that the pressure p � ppρq satis�es (8.7) for a certain

γ ¡ 3
2 . We also assume the initial and boundary conditions (8.3)-(8.5), where the initial conditions (8.4)

and (8.5) are random variables.

The compressible case is more complicated then the incompressible case and the mathematical theory of

these equations is far from being complete. In particular, the only successful approach so far to get solutions

to the compressible stochastic Navier-Stokes equations was done in [9]. The basic idea is to consider the

equations path wise, i.e. we �x any ω P O, and show the existence of a weak solution. Then, we obtain for

a.e. ω a non-empty set of solutions. In the second step we show that there exists a measurable selection and

thus a random variable pρ, uq satisfying that Navier-Stokes system for a.e. ω P O.
The major problem is that in most relevant situations the paths of the noise process are not di�erentiable,

or even not continuous, with respect to the time variable (important examples are Lévy processes, see section
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10.2). In those situations, Theorem 8.7 can not be applied directly, because the resulting force f � Btw is

not a function any more. In order to solve this problem we start with a slightly di�erent de�nition of a weak

solution then De�nition 8.1, which, as shown below, is in fact equivalent to De�nition 8.1 in the case when

w is bounded and di�erentiable with respect to t.

De�nition 8.8. We call a pair pρ, uq a �nite-energy weak solution of (8.14), (8.15), i�

(1) ρp�, �, ωq P Cpr0, T s, L1pΩqq X Cwpr0, T s, LγpΩqq and ρ ¥ 0 for a.e. ω P O;
(2) up�, �, ωq P L2p0, T ;W 1,2

0 pΩ,R3qq for a.e. ω P O;
(3) ρup�, �, ωq P L8p0, T ;L

2γ
γ�1 pΩ,R3qq and ρpu� wqp�, �, ωq P Cwpr0, T s, L 2γ

γ�1 pΩ,R3qq for a.e. ω P O;
(4) the following weak formulation of the renormalized equation of continuity

» T
0

»
Ω

�
ρ� bpρq�BϕBt � �

ρ� bpρq�u �∇ϕdxdt

�
» T

0

»
Ω

�
b1pρqρ� bpρq�div u ϕ dxdt�

»
Ω

�
ρ0 � bpρ0q

�
ϕp0, �q dx

(8.16)

holds for all b satisfying (8.10), ϕ P C8
c pr0, T q � Ωq and a.e. ω P O;

(5) the following weak formulation of the momentum equation

» T
0

»
Ω

ρpu� wq � BϕBt � ρub u : ∇ϕ� ppρq divϕdxdt

�
» T

0

»
Ω

S p∇uq : ∇ϕ� ρu �∇pw � ϕq dxdt�
»

Ω

q � ϕp0, �qdx

(8.17)

holds for all ϕ P C8
c pr0, T q � Ω,R3q and a.e. ω P O;

(6) the following weak formulation of the energy inequality

�
» T

0

Bψ
Bt

»
Ω

Eptq dx dt�
» T

0

ψ

»
Ω

S p∇uq : ∇udx dt

¤ ψp0q
»

Ω

1

2

|q|2
ρ0

�Qpρ0qdx

�
» T

0

ψ

»
Ω

S p∇uq : ∇w � ρub u : ∇w � ppρq divw � 1

2
ρu∇|w|2 dxdt

(8.18)

where

Eptq :�
»

Ω

1

2
ρ|u� w|2ptq �Qpρptqq dx

holds for all ψ P C8
c pr0, T qq, ψ ¥ 0 and a.e. ω P O.

Remark 8.9. The statement of Remark 8.5 still holds for De�nition 8.8.

88



Remark 8.10. De�nition 8.8 for �nite-energy weak solutions to the stochastic Navier-Stokes equations can

also be seen as a modi�ed de�nition for �nite-energy weak solutions to the deterministic Navier-Stokes

equations (8.1)-(8.5), by identifying the noise w, the initial conditions pρ0, qq and the solution pρ, uq with the

respective constant random variables on O. From now on, we will do so without further comment.

The motivation for De�nition 8.8 is contained in the following Theorem:

Theorem 8.11. Let f P L8p0, T,W 1,8pΩqq and de�ne

wpt, xq :�
» t

0

fps, xq ds,

i.e. f � Btw and wp0, �q � 0. Then, pρ, uq is a solution in the sense of De�nition 8.1 if and only if it is a

solution in the sense of De�nition 8.8.

Proof. Let pρ, uq be a solution in the sense of De�nition 8.1. Points (1) and (2) of De�nition 8.8 follow

immediately. The assertion about ρup�, �, ωq in (3) of De�nition 8.8 follows by (6) from De�nition 8.1. To see

the condition about ρpu� wq in (3) of De�nition 8.8, by (6) from De�nition 8.1 we have left to show that

ρw P Cwpr0, T s, L 2γ
γ�1 pΩ,R3qq.

By Sobolev embedding we have w P Cpr0, T s � Ω,R3q, and since ρ P Cpr0, T s, L1pΩqq, the assertion follows.

We show (4) from De�nition 8.8. Points (3) and (5) of De�nition 8.1 are equivalent to

» T
0

»
R3

�
ρ� bpρq�BϕBt � �

ρ� bpρq�u �∇ϕdx dt

�
» T

0

»
R3

�
b1pρqρ� bpρq� div u ϕ dx dy �

»
R3

�
ρ0 � bpρ0q

�
ϕp0, �qdx

for all ϕ P C8
c pr0, T q � R3q. Since u and ρ are prolonged by zero on R3zΩ and since tϕ|r0,T q�Ω : ϕ P

C8
c pr0, T q � R3qu � C8

c pr0, T q � Ωq, this is equivalent to (8.16).

We show the momentum equation. Point (4) in De�nition 8.1 is equivalent to:

» T
0

»
Ω

pρu � BϕBt � ρub u : ∇ϕ� ppρq divϕq dxdt

�
» T

0

»
Ω

S p∇uq : ∇ϕ� ρ
Bw
Bt � ϕdxdt�

»
Ω

q0 � ϕp0, �qdx

(8.19)

for all ϕ P C8
c pr0, T q � Ω;R3q. Using the identity

» T
0

»
Ω

ρ
Bw
Bt � ϕdxdt �

» T
0

»
Ω

ρ
Bpw � ϕq
Bt dxdt�

» T
0

»
Ω

ρw � BϕBt dxdt

� �
» T

0

»
Ω

ρu �∇pw � ϕqdx dt�
» T

0

»
Ω

ρw � BϕBt dx dt

(8.20)

for all ϕ P C8
c pr0, T q � Ω;R3q, we deduce (8.17).

89



Finally, we show the energy inequality. The energy inequality in (7) in De�nition 8.1 is equivalent to

�
» T

0

»
Ω

1

2
ρ|u|2 �Qpρq dx

Bψ
Bt dt�

» T
0

»
Ω

S p∇uq : ∇udxψ dt

¤ ψp0q
»

Ω

1

2

|q|2
ρ0

�Qpρ0q dx�
» T

0

»
Ω

ρ
Bw
Bt � udxψ dt

for all ψ P C8
c pr0, T qq, ψ ¥ 0. By approximation in the space W 1,2pp0, T q � Ωq we deduce that (8.19) and

(8.20) hold with ϕ � wψ as test function for any ψ P C8
c pr0, T qq. Consequently,» T

0

»
Ω

�
ρu � BwBt � ρub u : ∇w � ppρq divw �S p∇uq : ∇w



dxψ dt

� �
» T

0

»
Ω

ρu � w dx
Bψ
Bt dt�

» T
0

»
Ω

ρ
Bw
Bt � wψ dxdt

� �
» T

0

»
Ω

ρu � w dx
Bψ
Bt dt�

» T
0

»
Ω

1

2
ρu �∇pw � ϕq dx dt

and these relations combined yield (8.18).

The other direction follows by inverting the arguments.

9 Equations driven by irregular force

9.1 Introduction and convergence results

In this section we show the existence of solutions to the deterministic compressible Navier-Stokes equations

driven by noises w with low regularity with respect to the time variable. The main result of this section is

the following Theorem:

Theorem 9.1. Let Ω be a bounded Lipschitz domain in R3. Suppose that the pressure p satis�es (8.7) and

the initial values satisfy (8.12). Suppose further that w P L8p0, T ;W 1,8
0 pΩ,R3qq. Then the Navier-Stokes

system admits a weak solution in the sense of De�nition 8.8.

To prove this Theorem, we approximate the irregular noise w by smooth functions wn in such a way,

that at least a subsequence of the corresponding sequence of weak solutions converges to a weak solution of

the problem driven by w. Now, as shown below, the energy inequality yields uniform boundedness on the

sequence of solutions, provided the sequence wn is bounded in L8p0, T ;W 1,8
0 pΩ,R3qq; consequently, we will

restrict our attention to functions w in this space. From now on, to the end of the proof of Theorem 9.1, �x

w P L8p0, T ;W 1,8
0 pΩ,R3qq and a sequence twnunPN � C8pr0, T s � Ω,R3q satisfying

}wn}L8p0,T ;W 1,8
0 pΩqq ¤ R, (9.1)

wn Ñ w in L1p0, T ;W 1,1pΩ,Rqq. (9.2)

for some constant R ¡ 0. We can choose a subsequence such that wn Ñ w and ∇wn Ñ ∇w a.e. in p0, T q�Ω,
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and by the Lebesgue's theorem, we get

wn Ñ w in Lqp0, T ;W 1,spΩ,Rqq

for all 1 ¤ q, s,  8. Next, let

β :�
$&
%γ if γ ¥ 3,

3γ
2γ�3 if γ   3.

De�ne a modi�ed pressure by

pnpzq :� ppzq � δnz
β ,

where δn :� 1
n , and let Qn be the corresponding function in the energy inequality with p replaced by pn.

Then, pn satis�es the assumptions (8.7) with γ replaced by β. We note for future use that we have β ¥ γ

and

6γ

7γ � 6
¤ 2β

β � 2
.

Let c1, c2, d1, d2 be the constants from Lemma 8.6 for p. A simple calculation shows

Qnpρq � ρ

» ρ
1

ppzq
z2

� δnz
β�2 dz

� Qppq � ρδn
1

β � 1
pρβ�1 � 1q

¤ maxtc2, 1

β � 1
upppρq � δnρ

βq � d2

� rc2pnpρq � d2,

where the constants rc2 and d2 do not depend on n. A similar calculation shows the other inequality. Thus,

replacing γ by β, the functions pn and Qn satisfy Lemma 8.6 with constants that do not depend on n.

Moreover, �x initial conditions ρ0 and q satisfying 8.12 and let pun, ρnq be any sequence of weak solutions
of the compressible Navier-Stokes system with the pressure pn, driven by the noise wn, in the sense of

De�nition 8.8, whose existence is guaranteed by Theorem 8.7 and Theorem 8.11. We begin by deriving

uniform bounds on the sequence of solutions and consequently existence of a weakly convergent subsequence.

Lemma 9.2. We have, at least for a suitable subsequence,

ρn Ñ ρ in Cwpr0, T s;LγpΩqq, (9.3)

un á u in L2p0, T ;W 1,2
0 pΩ,R3qq. (9.4)

Furthermore, for all b P C1
b pRq satisfying (8.10), there is a function bpρq P Cwpr0, T s;LppΩqq for all p   8,
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such that

bpρnq á bpρq in Cwpr0, T s;LppΩqq for all 1 ¤ p   8., (9.5)

bpρnqun á bpρqu in L2pp0, T q � Ωq, (9.6)

passing again to a subsequence if necessary. As a consequence, the following convergences hold for a suitable

subsequence

ρnun Ñ ρu in Lqp0, T ;W�1,2pΩ,R3qq, (9.7)

ρnun á ρu in L2p0, T ;L
2γ
γ�1 pΩ,R3qq, (9.8)

ρnwn Ñ ρw in Lqp0, T ;W�1,rpΩ,R3qq (9.9)

ρnpun � wnq Ñ ρpu� wq in Cwpr0, T s;L 2γ
γ�1 pΩ,R3qq, (9.10)

ρnun b un á ρub u in L2p0, T ;L
6γ

4γ�3 pΩ,R3�3qq, (9.11)

for any 1 ¤ q   8 and some r   2. In particular, pρ, uq, prolonged by zero outside Ω, solve

Bρ
Bt � divpρuq � 0 (9.12)

u|BΩ � 0

ρp0q � ρ0

in D1pp0, T q � R3q.

Proof. Step 1. We show that the energy

Enptq :� p
»

Ω

1

2
ρn|un|2 �Qnpρnq dxqptq

is uniformly bounded in n and a.e. t P p0, T q. The energy inequality yields for a.e. t P p0, T q

Enptq :� p
»

Ω

1

2
ρn|un � wn|2 �Qnpρnq dxqptq

¤ b�
» t

0

»
Ω

S p∇unq : p∇wn �∇unq � ρnun b un : ∇wn � pnpρnqdivpwnq � 1

2
ρnun∇|wn|2 dx dt

where b :� supnPN
³
Ω

1
2
|q|2

ρ0
�Qnpρ0q dx � ³

Ω
1
2
|q|2

ρ0
�Q1pρ0q dx. We can estimate the terms on the right hand

side in the following way:

(1) We have

» t
0

»
Ω

S p∇unq : ∇un dx dt ¥ ν

» t
0

}∇un}2L2pΩq dx
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and by (9.1)

» t
0

»
Ω

S p∇unq : ∇wn dxdt ¤
» t

0

}S p∇unq}L1pΩq}∇wn}L8pΩq dt

¤ constpR,Ωq
» t

0

}S p∇unq}L2pΩq dt

and consequently

» t
0

»
Ω

S p∇unq : p∇wn �∇unqdx dt ¤ constpR,Ωq.

(2) By (9.1) we have

|
» t

0

»
Ω

ρnun b un : ∇wn dxdt| ¤ constpR,Ωq
» t

0

»
Ω

ρn|un|2 dx dt.

(3) By Lemma 8.6 we have

|
» t

0

»
Ω

pnpρnq divwn dx| ¤ constpp,R,Ωq � constpp,R,Ωq
» t

0

»
Ω

Qnpρnq dxdt.

(4) Since the total mass is constant in time, we have

}ρnpt, �q}L1pΩq �M for all t P r0, T s

and by the estimate

ρn|un| ¤
$&
%ρn for |un| ¤ 1

ρn|un|2 for |un| ¡ 1

we get

» t
0

»
Ω

1

2
ρnun∇|wn|2 dxdt ¤ constpRqp

» t
0

»
Ω

ρn � ρn|un|2 dxdtq,

¤ constpR,Mqp1�
» t

0

»
Ω

ρn|un|2 dxdtq.

Summing up these results, we obtain

Enptq ¤ b�
» t

0

c1 � c2Enpsq ds

where the constants c1 and c2 do not depend on n or t.
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Finally, we have»
Ω

1

2
ρn|un � wn|2ptq dx � 1

2

»
Ω

ρn|un|2ptq � 2ρnun � wnptq � ρn|wn|2ptq dx

¥ constpM,Rq � constpM,Rq
»

Ω

ρn|un|2ptq dx.

for all t P p0, T q and therefore

Enptq ¤ c3 � c4Enptq ¤ c5 �
» t

0

c6 � c7Enptq dt

where the constants to not depend on n or t.

Now, Grownwall's inequality can be used to obtain

ess sup
tPp0,T q

Enptq ¤ c (9.13)

where c is independent of n.

Step 2. We show (9.3). By (9.13) we have

}?ρnun}L8p0,T ;L2pΩ,R3qq ¤ c1, (9.14)

}Qnpρnq}L8p0,T ;L1pΩqq ¤ c2, (9.15)

where the latter yields

}ρn}L8p0,T ;LγpΩqq ¤ c3, (9.16)

where all constants are independent of n. Thus, for a suitable subsequence, we have

ρn
�áρ in L8p0, T ;LγpΩqq. (9.17)

To �nish the proof of (9.3) let ϕ P C8
c pΩq and let

Ψnptq :�
»

Ω

ρnptqϕdx.

Then, Ψn is continuous by (1) of De�nition 8.8. We use Ascoli's theorem to show that tΨnunPN is pre-compact

in Cpr0, T s;Rq. We have

|Ψnptq| ¤ }ρn}L8p0,T ;LγpΩqq}ϕ}Lγ1 pΩq ¤ c

and this shows the uniform boundedness. To see that tΨnu is equicontinuous, we use the equation of
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continuity (8.16) to deduce

|
»

Ω

pρnptq � ρnpsqqϕdx| � |
» t
s

»
Ω

ρnun �∇ϕdxdτ |

¤
» t
s

}?ρnun}L2pΩ,R3q}?ρn}L2γpΩq}∇ϕ}
L

2γ
γ�1 pΩ,R3q

dτ

¤ c|t� s|,

where the constant c is independent of n, t and s. This shows that tΨnu is equicontinuous, and consequently

pre-compact in Cpr0, T s;Rq. Furthermore, if Ψnk Ñ Ψ in Cpr0, T sq for some subsequence, then we have

Ψptq �
»

Ω

ρptqϕdx

by (9.17), i.e. Ψn has only a single accumulation point in Cpr0, T sq, and consequently

Ψn Ñ
»

Ω

ρp�qϕdx in Cpr0, T sq.

Now, let ϕ P Lγ1pΩq and tϕnunPN � C8
c pΩq such that ϕn Ñ ϕ in Lγ

1pΩq. Then, the above yields»
Ω

ρnϕk dxÑ
»

Ω

ρϕk dx in Cpr0, T sq

for any �xed k P N. Moreover, we have»
Ω

|ρnptqϕk � ρnptqϕ|dx ¤ }ρnptq}LγpΩq}ϕk � ϕ}Lγ1 pΩq ¤ c}ϕk � ϕ}Lγ1 pΩq

where c is independent of n and t, and therefore

lim
kÑ8

sup
nPN

}
»

Ω

ρnϕk dx�
»

Ω

ρnϕdx}Cpr0,T sq � 0.

Now, Lemma 1.13 yields »
Ω

ρnp�qϕdxÑ
»

Ω

ρp�qϕdx in Cpr0, T sq

for all ϕ P Lγ1pΩq, and this �nishes the proof of (9.3).

Step 3. To show (9.4), we estimate the terms in the energy inequality similar as above to deduce

}un}L2p0,T ;W 1,2
0 pΩ;R3qq ¤ c1

» t
0

»
Ω

S p∇unq : ∇un dx dt

¤ c1

�
Enptq � b�

» t
0

»
Ω

S p∇unq : ∇wn � ρnun b un : ∇wn dxdt

�
» T

0

»
Ω

�ppρnq divpwnq � 1

2
ρnun∇|wn|2 dxdtdxdt



¤ c2
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where the constants do not depend on n. By passing to a subsequence, we have (9.4).

Step 4. We show (9.5). Let

X :� tb P C1
b pRq : b satis�es (8.10)uC

1
b pRq

For the whole step �x 1   p   8 and q :� p1. For b P X and ϕ P C8
c pΩq de�ne

Ψkrb, ϕsptq :� p
»

Ω

bpρkqϕdxqptq.

We use Ascoli's theorem to show that the sequence pΨkrb, ϕsqkPN is pre-compact in Cpr0, T s;Rq. Obvi-

ously, we have |Ψkrb, ϕsptq| ¤ c for some c independent of k and t. We can use the renormalized equation of

continuity to deduce for 0 ¤ s   t ¤ T

|
»

Ω

�
bpρnptqq � bpρnpsqq

�
ϕdx| ¤ |

» t
s

»
Ω

bpρnqun∇ϕ�
�
b1pρnqρn � bpρnq

�
div un ϕdx dt|

¤
» t
s

}bpρnq}L2}un}L2}∇ϕ}L8 � }b1pρnqρn � bpρnq}L2} div un}L2}ϕ}L8 dt

¤ cpt� sq

where the constant c does not depend on t, s or n, and this shows the equicontinuity of Ψkrb, ϕs.
Next, we choose countable and dense subsets X � X and Y � LqpΩq. Since for all b P X, the sequence

bpρkq is bounded uniformly in L8p0, T ;LqpΩqq, it is sequentially pre-compact in the weak star topology, and

by Theorem 1.2, there exists a subsequence independent of b P X, such that

bpρnkq �á bpρq in L8p0, T ;LqpΩqq (9.18)

for all b P X. We pass to this subsequence.

Since tΨkrb, ϕsukPN is sequentially pre-compact in Cpr0, T sq for any �xed b P X and ϕ P Y, by Theorem

1.2 there exists a further subsequence (again independently of b and ϕ) such that

Ψkrb, ϕs Ñ Ψrb, ϕs in Cpr0, T sq (9.19)

for all pb, ϕq P X�Y and for some functions Ψrb, ϕs P Cpr0, T sq. We pass to this subsequence.

Combining (9.18) and (9.19), we deduce

Ψrb, ϕsptq �
»

Ω

bpρqptqϕdx

for all b P X and ϕ P Y, i.e. we have»
Ω

bpρkqϕdxÑ
»

Ω

bpρqϕdx in Cpr0, T sq

By interpolation and Lemma 1.13, we infer that the last relation holds for all ϕ P LqpΩq, exactly as in
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step 2, and consequently we have

bpρkq Ñ bpρq in Cwpr0, T s;LppΩqq, as k Ñ8

for all b P X.

Finally, let b P X and bn Ñ b in C1
b pRq with tbnunPN � X. The estimate

sup
tPr0,T s

}bnpρptqq � bmpρptqq}LppΩq ¤ sup
tPr0,T s

lim inf
kÑ8

}bnpρkptqq � bmpρkptqq}LppΩq

¤ measpΩq 1
p }bk � bm}L8pΩq

shows that bnpρq converges strong in L8p0, T ;LppΩq). We denote the limit by bpρq. Then we have for any

ϕ P LqpΩq
»

Ω

bpρqϕdx � lim
nÑ8

»
Ω

bnpρqϕdx

� lim
nÑ8

lim
kÑ8

»
Ω

bnpρkqϕdx

� lim
kÑ8

»
Ω

bpρkqϕdx

where all limits are in Cpr0, T sq and where the swap of the limits in n and k is allowed, because the limit in

n is uniformly in k. This �nishes the proof of (9.5).

Step 5. We show (9.6) by applying Lemma 1.17 to fn � bpρnq and gn � un. By the preceding

steps, we have bpρnq á bpρq and un á u, both in L2pp0, T q � Ωq. We show that Btbpρnq is bounded in

L1p0, T ;W�5,1pΩqq. Let

K :� tϕ P C8
c pp0, T q � Ωq | }ϕ}L2p0,T ;W 3,1

0 pΩqq ¤ 1u.

By the renormalized equation of continuity (8.16), we get

}BbpρnqBt }L2p0,T ;W�3,1pΩqq � sup
ϕPK

|
» T

0

»
Ω

bpρnqBϕBt dxdt|

� sup
ϕPK

|
» T

0

»
Ω

�bpρnqun∇ϕdxdt

�
» T

0

»
Ω

pb1pρnqρn � bpρnqq div unϕdxdt|

The �rst line on the right hand side is bounded in n since un is bounded in L2pp0, T q � Ωq and since by

Sobolev embedding, we have }∇ϕ}L2pp0,T q�Ω;R3q ¤ c for all ϕ P K and some c independent of ϕ. A similar

argument shows that the second line is bounded. Since } � }L1p0,T ;W�3,1pΩqq ¤ C} � }L2p0,T ;W�3,1pΩqq, we get

}BbpρnqBt }L1p0,T ;W�3,1pΩqq ¤ c.
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Next, we show

lim
|ξ|Ñ0

sup
nPN

}unp� � ξ, �q � un}L2pp0,T q�Ω,R3q � 0. (9.20)

Let ξ̂ :� 1
|ξ|ξ. Then, we have the following estimate for all n P N and r P p0, T q

}unp� � ξ, rq � unp�, rq}2L2pΩ,R3q �
»

Ω

|
» |ξ|

0

∇unp� � λξ̂, rqξ̂ dλ|2 dx

¤
»

Ω

» |ξ|

0

|∇unp� � λξ̂, rq|2 dλ dx

�
» |ξ|

0

}∇unp� � λξ̂, rq}2L2pΩ,R3�3q dx

¤ |ξ|}unp�, rq}2W 1,2pΩ,R3q.

Thus,

}unp� � ξ, �q � un}2L2pp0,T q�Ω,R3q ¤ |ξ|}un}L2p0,T ;W 1,2pΩ,R3qq ¤ c|ξ|

where c is independent of n P N. This shows (9.20). Now, Lemma 1.17 yields

bpρnqun Ñ bpρqu in D1pp0, T q � Ωq. (9.21)

For all b P C1
b pRq satisfying (8.10) we have

}bpρnqun}L2pp0,T q�Ωq ¤ c,

and thus bpρnqun is weakly pre-compact in L2pp0, T q � Ωq. Since by relation (9.21) every L2
wpp0, T q � Ωq

accumulation point agrees with bpρqu, this shows (9.6).
Step 6. We show (9.8). Let bk P C1

b pRq such that bkpxq � x for all x ¤ k, bkpxq � 2k for all x ¥ 3k and

bk concave. Then, we have for all 1 ¤ α   γ, β :� p γα q1 and all �xed t P p0, T q

}bkpρnptqq � ρnptq}LαpΩq ¤
»
rρnptq¡ks

ρnptqα dx

¤ }ρnptqα}L γα pΩq}Irρnptq¥ks}LβpΩq
¤ }ρnptq}αLγpΩqmeasprpnptq ¥ ksq 1

β .

Since measprρnptq ¥ ksq ¤ 1
k }pnptq}LγpΩq, the right hand side is tends to zero uniformly in n and t as k Ñ8,

i.e. we have

lim
kÑ8

sup
nPN

}bkpρnq � ρn}L8p0,T ;LαpΩqq � 0, (9.22)
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and in particular we have

lim
kÑ8

sup
nPN

}bkpρnq � ρn}Lαpp0,T q�Ωq � 0. (9.23)

Since by the preceding step, we have

lim
nÑ8

bkpρnq � bkpρq in Lαwpp0, T q � Ωq,

Lemma 1.13 yields for all 1 ¤ α   γ

lim
kÑ8

bkpρq � ρ in Lαpp0, T q � Ωq, (9.24)

and since

}bkpρq}L8p0,T ;LγpΩqq ¤ lim inf
kÑ8

}bkpρq}L8p0,T ;LγpΩqq ¤ lim inf
kÑ8

}ρ}L8p0,T ;LγpΩqq ¤ c,

we also have

bkpρq �á ρ in L8p0, T ;LαpΩqq (9.25)

for any 1 ¤ α   γ.

We use Lemma 1.13 once more on the sequence bkpρnqun in the Banach space L1pp0, T q �Ωq. First, the
preceding step implies that

lim
nÑ8

bkpρnqun � bkpρqu in L1
wpp0, T q � Ωq

and by choosing α � 61 � 6
5   γ in (9.25), we deduce

lim
kÑ8

bkpρqu � ρu in L1pp0, T q � Ωq

since u P L2p0, T ;L6pΩqq by Sobolev embedding. Finally, we have for all 6
5   α   γ

}bkpρnqun � ρnun}L1pp0,T q�Ωq ¤ c}bkpρnqun � ρnun}
L2p0,T ;L

6α
α�6 pΩqq

¤ c}bkpρnq � ρn}L2p0,T ;LαpΩqq}un}L2p0,T ;L6pΩqq

where by (9.22) the right hand side tends to zero uniformly in n as k Ñ 8. The last three relations are

enough for Lemma 1.13 to yield

lim
nÑ8

ρnun � ρu in L1
wpp0, T q � Ωq.

We now infer (9.8) by the estimate

}ρnun}
L2p0,T ;L

2γ
γ�1 pΩqq

¤ }?ρn}L2p0,T ;L2γpΩqq}?ρnun}L2pp0,T q�Ωq,

where the right hand side is bounded in n by (9.14) and (9.16).
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Step 7. We show (9.10). First, we have

ρnpun � wnq Ñ ρpu� wq in D1pp0, T q � Ωq (9.26)

by the preceding step and the strong convergence of wn.

Now, let ϕ P C8
c pΩq and

Ψnptq :�
»

Ω

ρnptqpunptq � wnptqqϕdx

We use Ascoli's theorem to prove that tΨnu is pre-compact in Cpr0, T sq. By (9.26), the sequence tΨnptqunPN
is uniformly bounded for any �xed t P r0, T s. Now, the momentum equation (8.17) yields

Ψnptq �Ψnpsq �
» t
s

»
Ω

� ρnun b un : ∇ϕ� ppρnq divϕ

�S p∇unq : ∇ϕ� ρnun �∇pwn � ϕq dx dτ .

an since we have

}ρnun b un}L1pΩ,R3�3q ¤ c1 by (9.14),

}ppρnq}L1pΩq ¤ c2 by (9.3) and (8.7),

}S p∇unq}L2pΩ,R3�3q ¤ c3 by (9.4),

}ρnun}
L

2γ
γ�1 pΩ,R3q

¤ c4 by (9.3) and (9.14),

we get

|Ψnptq �Ψnpsq| ¤ c|t� s|

where the constant c is independent of n, t and s. Consequently,

Ψn Ñ
»

Ω

ρpu� wqϕdx

uniformly on r0, T s. By approximation, exactly as in step 2, Lemma 1.13 yields that»
Ω

ρnpun � wnqϕdxÑ
»

Ω

ρpu� wqϕdx

uniformly on r0, T s for all ϕ P pL 2γ
γ�1 pΩqq1.

Step 8. In order to show (9.7) and (9.9), we �rst show for a.e. t P p0, T q

pρnunqptq á pρuqptq in L 2γ
γ�1 pΩq, (9.27)

pρnwnqptq á pρwqptq in L 2γ
γ�1 pΩq. (9.28)
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To see this, �x ϕ P pL 2γ
γ�1 pΩqq1 � L

2γ
γ�1 pΩq. By (9.10) we conclude for any t P p0, T q

»
Ω

pρnpun � wnqqptqϕdxÑ
»

Ω

pρpu� wqqptqϕdx. (9.29)

Since wnptq Ñ wptq pointwise in Ω for a.e. t P p0, T q, the Dominated convergence theorem yields for a.e.

t P p0, T q

wnptqϕÑ wptqϕ in Lγ
1pΩq,

and further »
Ω

pρnwnqptqϕdxÑ
»

Ω

pρwqptqϕdx.

Thus, (9.28) holds and, together with (9.29), this implies (9.27).

Since 2γ
γ�1 ¡ 6

5 , the embedding L
2γ
γ�1 pΩq ãÑW�1,2pΩq is compact, and therefore

pρnunqptq Ñ pρuqptq in W�1,2pΩq

for a.e. t P p0, T q, and since

}pρnunqptq}W�1,2pΩq ¤ }pρnunqptq}
L

2γ
γ�1 pΩq

¤ }ρnptq}LγpΩq}unptq}L2pΩq ¤ c,

where c is independent of t, Lebesgue's theorem yields (9.7). The same argumentation shows relation (9.9),

where we choose r   2 such that L
2γ
γ�1 pΩq ãÑW�1,rpΩq is still compact, i.e.

r ¡ 6γ

5γ � 3
.

Step 9. We show (9.11). First, we have

}ρnun b un}
L2p0,T ;L

6γ
4γ�3 pΩ,R3�3qq

¤ }?ρn}L8p0,T ;L2γpΩqq}?ρnun}L8p0,T ;L2pΩ,R3qq}un}L2p0,T ;L6pΩ,R3qq,

where the right hand side is bounded by (9.14), (9.16) and the continuity of the Sobolev embedding

W 1,2pΩq ãÑ L6pΩq. Thus we can pass to a weakly convergent subsequence. To identify the limit, we

show that ρnun b un Ñ ρub u in D1pp0, T q �Ωq. By applying Lemma 1.17 to the sequence fn :� ρnu
i
n and

gn :� ujn for any 1 ¤ i, j ¤ 3, where uin P L2p0, T ;W 1,2pΩqq denotes the i-th component of un. We know

already that both sequences are weakly convergent:

fn á ρui in L2p0, T ;L
2γ
γ�1 pΩqq by (9.8)

gn á uj in L2p0, T ;L6pΩqq by (9.4).

We have proved in step 4 that the sequence gn satis�es the properties needed in Lemma 1.17. Finally, we

can show that Bfn
Bt is bounded in L2p0, T ;W�3,1pΩqq. Let K :� tϕ P C8

c pp0, T q � Ωq | }ϕ}L2p0,T ;W�3,1
0 pΩqqu,
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then the momentum equation yields

}BfnBt }L2p0,T ;W�3,1pΩqq � sup
ϕPK

|
» T

0

»
Ω

ρnun
Bϕ
Bt dx dt|

� sup
ϕPK

����
» T

0

»
Ω

p�ρnun b un : ∇ϕ� ppρnq divϕq dxdt�
» T

0

»
Ω

S p∇unq : ∇ϕ� ρn
Bwn
Bt � ϕdxdt

����
¤ c

Note, that the estimation of the right hand side makes no trouble in view of the estimates already obtained

and the uniform boundedness of Bρn
Bt in L2p0, T ;W�3,1pΩqq; the latter can be proved exactly as in step 4

by replacing bpρnq with ρn and replacing the renormalized equation of continuity with the not renormalized

equation.

Step 10. Finally, the relations inferred in this theorem are enough to pass to the limit in the distributional

formulation of the (not renormalized) equation of continuity to deduce that (9.12) holds. Moreover, the

boundary condition follows from uptq P W 1,2
0 pΩ,R3q and the initial condition ρp0q � ρ0 follows from ρ0 �

ρnp0q Ñ ρp0q in LγwpΩq.

9.2 Estimation of the pressure

In this section we show that the pressure pnpρnq is bounded in some Lαpp0, T q �Ωq and consequently there

exists a weakly convergent subsequence. Then, the crucial point is to identify the weak limit of pnpρnq as
ppρq, to which the next three subsections are devoted.

Proposition 9.3. There exists α, c ¡ 0 independent of n such that for all n P N we have

}pnpρnqραn}L1pp0,T q�Ωq ¤ c.

Consequently, pnpρnq is bounded in Lqpp0, T q � Ωq and therefore, passing to a subsequence if necessary,

pnpρnq á ppρq in Lqpp0, T q � Ωq, (9.30)

where q � 1� α
γ .

Proof. Let pξεqεPp0,1s be any �xed smoothing sequence and de�ne

ρεn :� ξε � ρn.

Furthermore, �x ψ P C8
c p0, T q with 0 ¤ ψ ¤ 1 and b P C1pRq satisfying bp0q � 0 and bpzq � zα for all z ¥ 1,
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where α ¡ 0 is arbitrary, satisfying

α   mintγ
2
,

2γ � 3

3
,
γ � 1

2
u. (9.31)

Since ρnptq is bounded in LγpΩq uniformly in n and t, we have ρεnptq is bounded in LγpΩq uniformly in n, t

and ε. Consequently, bpρεnptqq is bounded in L
γ
α pΩq uniformly in n, t and ε. In particular, b is bounded in

LppΩq for

p P t2, 2γ

γ � 1
,

3γ

2γ � 3
u

uniformly in n, t and ε. Moreover, by Remark 8.5, the renormalized equation of continuity holds for b.

We consider test functions of the form

ϕpt, xq � ψptqB
�
xbpρεnqy

�

in the equations (8.16), (8.17), where we denote for f P L1pΩq

xfy :� f � 1

measpΩq
»

Ω

f dx,

and where the Bogovskii operator B is de�ned in Theorem 2.15. Using Lemma 2.29 we obtain, after a lengthy

but straightforward calculation, the following formula (see also [12]):

» T
0

»
Ω

ψpnpρnqbpρεnqdx dt �» T
0

ψ

»
Ω

pnpρnqdx

»
Ω

bpρεnq dxdt�

pη � 1

3
νq

» T
0

»
Ω

ψbpρεnq div un dxdt�» T
0

»
Ω

ψtρnpun � wnq � Brxbpρεnqys dxdt�

ν

» T
0

»
Ω

ψ∇un : ∇Brxbpρεnqysdx dt�» T
0

»
Ω

ψρnun b un : Brxbpρεnqys dx dt�» T
0

»
Ω

ψρnpun � wnq � Brx
�
bpρεnq � b1pρεnqρεn

�
div unysdxdt�

» T

0

»
Ω

ψρnpun � wnq � Brxrεnb1pρεnqysdx dt» T
0

»
Ω

ψρnpun � wnq � Brxdiv
�
bpρεnqun

�ys dx dt�» T
0

»
Ω

ρnun �∇pwn � ϕq dxdt
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Where rεn Ñ 0 in L2p0, T ;L
2β
β�2 pΩqq as εÑ 0 for any �xed n. We can estimate the terms on the right hand

side in the following way:

(1) By (9.15) and Lemma 8.6, the �rst integral on the right hand side is bounded uniformly in n, ε and

ψ, where the latter follows from 0 ¤ ψ ¤ 1.

(2) Next, we have

�� » T
0

»
Ω

ψbpρεnq div un dxdt
�� ¤ c}div un}L2pp0,T q�Ωq}bpρεnq}L2pp0,T q�Ωq,

where the right hand side is again bounded uniformly of n, ε and ψ.

(3) By virtue of Hölder's inequality, Theorem 2.15 and Sobolev embedding, we can estimate the third

integral as follows:

�� » T
0

»
Ω

Bψ
Bt ρnpun � wnq � Brxbpρεnqys dxdt

��
¤ c1

» T
0

| BψBt |}ρnpun � wnq}
L

2γ
γ�1 pΩq

}Brxbpρεnqys}
L

2γ
γ�1 pΩq

dt

¤ c1

» T
0

| BψBt |
�
}ρn}

1
2

LγpΩq}
?
ρnun}L2pΩq � }ρn}LγpΩq}wn}

L
2γ
γ�1 pΩ,R3q



}bpρεnq}

L
2γ
γ�1 pΩq

dt.

Now, by using (9.3), (9.14) and (9.31) we can estimate the latter by

c1

» T
0

| BψBt |
�
}ρn}

1
2

LγpΩq}
?
ρnun}L2pΩq � }ρn}LγpΩq}wn}

L
2γ
γ�1 pΩ,R3q



}bpρεnq}

L
2γ
γ�1 pΩq

dt ¤ c2

» T
0

| BψBt | dt� c3

(4) Similarly, we can estimate the fourth term by

�� » T
0

»
Ω

ψ∇un : ∇Brxbpρεnqys dxdt
�� ¤ c}∇un}L2pp0,T q�Ωq}bpρεnq}L2pp0,T)�Ω)

where the latter is bounded uniformly in n, ε and ψ.

(5) Again by Hölder's inequality, the �fth term can be estimated to

�� » T
0

»
Ω

ψρnun b un : Brxbpρεnqys dxdt
�� ¤ c

» T
0

}ρn}LγpΩq}un}2L6pΩq}bpρεnq}LqpΩq dt

where q � 3γ
2γ�3 . By (9.3), (9.4) and Sobolev embedding, this is again bounded uniformly in n, ε and ψ.

(6) To estimate the sixth term de�ne

r � 6γ

5γ � 6
, q � maxt1, 6γ

7γ � 6
u, p � maxt2, 3γ

2γ � 3
u.
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Then we have ����
» T

0

»
Ω

ψρnpun � wnq � Brx
�
bpρεnq � b1pρεnqρεn

�
div unys dx dt

����
¤ c

» T

0

}ρn}LγpΩq}un � wn}L6pΩq}Brx
�
bpρεnq � b1pρεnqρεn

�
div unys}LrpΩq dt

(9.32)

Now, by continuity of the Sobolev embedding W 1,qpΩq ãÑ LrpΩq we have

}Brx�bpρεnq � b1pρεnqρεn
�

div unys}LrpΩq ¤ c1}Brx
�
bpρεnq � b1pρεnqρεn

�
div unys}W 1,qpΩq

¤ c2}
�
bpρεnq � b1pρεnqρεn

�
div un}LqpΩq

¤ c3}bpρεnq � b1pρεnqρεn}LppΩq}div un}L2pΩq

And consequently, by Sobolev embedding, (9.3), (9.4) and the assumptions on b and α, the right hand

side of (9.32) is bounded uniformly in n,ε and ψ. Note, that b1pzqz � αbpzq for all z ¥ 1, and thus, b1pρεnqρεn
is bounded in Lppp0, T q � Ωq uniformly in n and ε.

(7) Similar, the seventh term can be estimated to

�� » T

0

»
Ω

ψρnpun � wnq � Brxrεb1pρεnqysdxdt
�� ¤ c

» T
0

}ρn}LγpΩq}un � wn}L6pΩq}rε}Lq dt

¤ c̃}rε}L2p0,T ;LqpΩqq,

with

q � 6γ

7γ � 6
¤ 2β

β � 2
.

(8) By Hölder's inequality and the continuity of the Sobolev embedding W 1,qpΩq ãÑ LrpΩq, where q and
r are as in (6), we have

�� » T
0

»
Ω

ψρnpun � wnq � Brxdiv
�
bpρεnqun

�ysdxdt
�� ¤ c

» T
0

}ρn}LγpΩq}un � wn}L6pΩq}bpρεnqun}LrpΩq ds

¤ c

» T
0

}ρn}LγpΩq}un � wn}L6pΩq}un}L6pΩq}bpρεnq}LppΩq ds

where p is as in (6), and by (9.3), (9.4), (9.1), the assumption on α and Sobolev embedding, the right hand

side is again bounded uniformly in n, ε and ψ.

(9) Finally, we have

» T
0

»
Ω

ρnun �∇pwn � ϕq dxdt ¤ c

» T
0

}ρn}
1
2

LγpΩq}
?
ρnun}L2pΩq}wnϕ}

W
1,

2γ
γ�1 pΩq

dt

and the right hand side is bounded uniformly in n and ε.
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Summing up these results, we obtain

» T
0

ψ

»
Ω

ppρnqbpρεnqdxdt ¤ cp1� }rεn}L2p0,T ;LspΩqq �
» T

0

| BψBt |dtq

with

s � 2β

β � 2
,

where the constant c is independent of n and ε.

Now, choose a sequence ψn P C8
c p0, T q with ψn Ñ 1 in L1p0, T q and ³T

0
| BψBt |dt ¤ K for some constant K

to obtain

» T
0

»
Ω

ppρnqbpρεnqdx dt ¤ c̃p1� }rεn}L2p0,T ;LspΩqqq

And �nally letting εÑ 0 and using Fatou's lemma, we conclude

» T
0

»
Ω

ppρnqbpρnq dxdt ¤ ĉ

for some ĉ independent of n.

Remark 9.4. The estimate (7) in the preceding proof is the reason for introducing the arti�cial pressure term

δnρ
β .

For later use, we show the following immediate consequences:

Corollary 9.5. We have

ppρnq á ppρq in Lqpp0, T q � Ωq, (9.33)

where q ¡ 1 is as in the preceding Proposition.

Proof. Since ppρnq � pnpρnq � 1
nρ

β
n, it is enough to show that

1

n
ρβn Ñ 0 in L1pp0, T q � Ωq.

Let fn :� n�
1
β ρn. Then, we have

}n 1
β fn}L1pp0,T q�Ωq � }ρn}L1pp0,T q�Ωq ¤ c

and consequently, fn Ñ 0 in L1pp0, T q � Ωq, and in particular, we have this convergence in measure with

respect to the Lebesgue measure. Since

}fn}Lβqpp0,T q�Ωq ¤ c
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for some q ¡ 1 by the preceding Proposition, Theorem 3.31 implies fn Ñ 0 in Lβpp0, T q � Ωq.
Corollary 9.6. The functions pρ, uq solve the following equation:

» T
0

»
Ω

ρpu� wq � BϕBt � ρub u : ∇ϕ� ppρqdivϕdxdt

�
» T

0

»
Ω

S p∇uq : ∇ϕ� ρu �∇pw � ϕq dx dt�
»

Ω

q � ϕp0, �qdx

(9.34)

for all ϕ P C8
c pr0, T q � Ω;R3q.

Proof. Relations (9.3) - (9.11) and Proposition 9.3 together with (9.2) are su�cient to pass to the limit in

the weak formulation of the momentum equation (8.17) and consequently we obtain (9.34).

9.3 Stability of the e�ective viscous �ux

With (9.34) in mind, the major task left is to show that the weak limit ppρq is in fact equal to ppρq. In a

�rst step we prove the so-called weak stability of the e�ective viscous �ux:

Proposition 9.7. We have for all b P C1
b pRq satisfying (8.10)

ppρqbpρq � p4

3
ν � ηqbpρq div u � ppρq bpρq � p4

3
ν � ηqbpρq div u (9.35)

where ppρq denotes the weak limit of ppρnq in Lqpp0, T q � Ωq for some q ¡ 1 as in Theorem 9.3 and

pnpρnqbpρnq á ppρqbpρq in Lαpp0, T q � Ωq, (9.36)

bpρnq div un Ñ bpρq div u in L2pp0, T q � Ωq, (9.37)

bpρnq á bpρq in Cwpr0, T s;LppΩqq for all 1   p   8. (9.38)

for a certain α ¡ 1, again passing to a subsequence if necessary.

We start with the following Lemma:

Lemma 9.8. There exists a subsequence of pρn, unq such that (9.36)-(9.38) and

bpρnqun á bpρqu in L2pp0, T q � Ωq (9.39)

pb1pρnqρn � bpρnqq div un á pb1pρqρ� bpρqq div u in L2pp0, T q � Ωq (9.40)

hold for all b P C1
b pRq satisfying (8.10).
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Proof. Relations (9.38) and (9.39) have been proved in Lemma 9.2. Relations (9.36), (9.37) and (9.40) for

all b P C1
b pRq satisfying (8.10), can be shown similar to Step 4 in the proof of Lemma 9.2: Let

X :� tb P C1
b pRq : b satis�es (8.10)uC

1
b pRq

and choose a countable and dense subset Y � X. The usual estimates and Theorem 1.2 yield that there is

a subsequence such that all three relations hold for all b P Y . For an arbitrary b P X, approximation yields

the desired conclusion.

We now pass to the subsequence described in the Lemma above. To prove Proposition 9.7, we use test

functions of the form

ϕnpt, xq � ψptqϑpxqArξbpρnqs

where ψ P C8
c p0, T q, ϑ, ξ P C8

c pΩq, b P C8r0,8q satisfying (8.10) and the inverse divergence A is de�ned in

De�nition 2.20, in the momentum equation (8.17), and test functions of the form

ϕpt, xq � ψptqϑpxqArξbpρqs

in the limit equation (9.34). We need the following Lemmata:

Lemma 9.9. We have for all 1   p, q   8:

Arξbpρnqs �á Arξbpρqs in L8p0, T ;W 1,qpΩ,R3qq,
Arξbpρnqs Ñ Arξbpρqs in Lpp0, T ;CpΩ,R3qq,

Arpb1pρnqρn � bpρnqq div uns á Arpb1pρqρ� bpρqq div us in L2p0, T ;W 1,2pΩ,R3qq,

passing to a subsequence if necessary.

Proof. Since A : LppΩq Ñ CpΩ;R3q is a compact operator for all p ¥ 3 and ξbpρnqptq á ξbpρqptq in LppΩq
for all t P r0, T s we get Arξbpρnptqqs Ñ Arξbpρqptqs in CpΩ,R3q and Lebesgue's theorem yields the second

relation.

By Corollary 2.24 we have A : LqpΩq ÑW 1,qpΩq continuously and therefore

}Arξbpρnqs}L8p0,T ;W 1,qpΩ,R3qq ¤ }ξbpρnq}L8p0,T ;LqpΩ,R3qq ¤ c

for all q ¡ 1 and this shows the �rst relation.

The statement about Arpb1pρnqρn � bpρnqq div uns follows similar.

Lemma 9.10. We have

Btbpρq � divpbpρquq � pb1pρqρ� bpρqq div u � 0 in D1pr0, T q � R3q (9.41)
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for all b P C1pr0,8qq satisfying (8.10).

Proof. This follows immediately by passing to the limit in the renormalized equation of continuity (8.16).

Lemma 9.11. The limit equation (9.34) and the momentum equation (8.17) are satis�ed respectively with

ϕ and ϕn as test functions.

Proof. To prove the statement concerning ϕn, it is su�cient to show ϕn P W 1,2pp0, T q � Ωq. By Theorem

2.24 we have ϕn P L8p0, T ;W 1,2pΩqq, thus it is left to show BtArξbpρnqs P L2pp0, T q � Ω,R3q. For g �
pgiqi�1,2,3 P C8

c pp0, T q � Ω;R3q we have

xBtArξbpρnqs, gy � �
» T

0

»
Ω

Arξbpρnqs � Btg dx dt

where x., .y : D1 �D Ñ R denotes the duality product for distributions.

We have BtArvs � ArBtvs and BxiArvs � ArBxivs whenever v P C1pp0, T q�Ωq. Indeed, the �rst statement

follows immediately from the di�erentiability of integrals with respect to a parameter, the second follows

from the fact, that di�erentiation is a multiplier operator (Bxj � �iξjq and thus commutates with A. Thus,
by Theorem 2.23 and by using the renormalized equation of continuity (8.16), we get

�
» T

0

»
Ω

Arξbpρnqs � Btg dxdt �
» T

0

»
Ω

bpρnqBt
�
ξAipgiqq

�
dxdt

�
» T

0

»
Ω

ξ
�
b1pρnqρn � bpρnq div un

�
Aipgiq dx dt

�
» T

0

»
Ω

bpρnqun � pξ∇Aipgiq �∇ξAipgiqq dxdt

��
» T

0

»
Ω

A
�
ξ
�
b1pρnqρn � bpρnqdiv un

�� � g dxdt

�
» T

0

»
Ω

divpArbpρnqunξsq � g �Arbpρnqun �∇ξs � g dxdt

Because of divpArbpρnqunξsq � bpρnqunξ, the last integral shows

BtArξbpρnqs � A
�
ξ
�
b1pρnqρn � bpρnq div un

��� bpρnqunξ �Arbpρnqun �∇ξs P L2pp0, T q � Ωq (9.42)

and this shows ϕn PW 1,2pp0, T q � Ωq.
Finally, we show the statement concerning ϕ. By the previous Lemma we have

Arξbpρqs P L2p0, T ;W 1,2pΩ;R3qq.

Furthermore, we can estimate the right hand side of (9.42) in the usual way to deduce that BtArξbpρnqs is
bounded in L2pp0, T q�Ωq. Since Arξbpρnqs Ñ Arξbpρqs in D1pp0, T q�Ωq we have BtArξbpρnqs Ñ BtArξbpρqs
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in D1pp0, T q � Ωq, and this is enough to infer that any accumulation point of BtArξbpρnqs in the weak-

L2pp0, T q � Ωq topology agrees with BtArξbpρqs. We deduce BtArξbpρnqs á BtArξbpρqs in L2pp0, T q � Ωq. In
particular we get BtArξbpρqs P L2pp0, T q � Ωq.

Finally, we can prove Theorem 9.7.

.

Proof of Theorem 9.7. Step 1. We use

ϕnpt, xq � ψptqϑpxqArξbpρnqs

as test functions in the momentum equation (8.17)

» T
0

»
Ω

ρnpun � wnq � BϕnBt � ρnun b un : ∇ϕn � pnpρnqdivϕn dxdt

�
» T

0

»
Ω

S p∇unq : ∇ϕn � ρnun �∇pwn � ϕnq dxdt.

(9.43)

Similar, we use

ϕpt, xq � ψptqϑpxqArξbpρqs

as a test function in the limit equation (9.34)

» T
0

»
Ω

ρpu� wq � BϕBt � ρub u : ∇ϕ� ppρq divϕdxdt

�
» T

0

»
Ω

S p∇uq : ∇ϕ� ρu �∇pw � ϕq dxdt.

(9.44)

We show, that in fact most of the terms in the momentum equation converge to their counterparts in the

limit equation. Then we infer that the remaining parts in the momentum equation converge to the remaining

parts in limit equation, and this will be precisely the statement of the theorem.

Step 2. By straight forward calculations, we obtain the following formulas:

» T
0

»
Ω

ρnun � BϕnBt dx dt �
» T

0

»
Ω

ϑ
Bψ
Bt ρnun �Arξbpρnqs � ϑψρnun � BiArξbpρnquinsdxdt�» T

0

»
Ω

�ϑψρnun �
�
Arbpρnqun �∇ξs �Arpb1pρnqρn � bpρnqq div uns

�
dx dt

� :
4̧

i�1

T 1
i

» T
0

»
Ω

ρu � BϕBt dx dt �
» T

0

»
Ω

ϑ
Bψ
Bt ρu �Arξbpρqs � ϑψρu � BiArξbpρquisdxdt�» T

0

»
Ω

�ϑψρu � �Arbpρqu �∇ξs �Arpb1pρqρ� bpρqq div us� dx dt

� :
4̧

i�1

T 1
i
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By Lemma 9.9 and (9.7) we have T 1
k Ñ T 1

k for k P t1, 4u. By Lemma 9.8 and Corollary 2.24 we have

T 1
3 Ñ T 1

3 . Thus, only the behaviour of the term T 1
2 for nÑ8 remains unclear.

» T
0

»
Ω

ρnwn � BϕnBt dx dt �
» T

0

»
Ω

ϑρnwn �
�Bψ
Bt Arξbpρnqs � ψBiArξbpρnquins

�
dxdt» T

0

»
Ω

ϑψρnwn �
��Arbpρnqun �∇ξs �Arpb1pρnqρn � bpρnqq div uns

�
dx dt

� :
4̧

i�1

T 2
i

» T
0

»
Ω

ρw � BϕBt dx dt �
» T

0

»
Ω

ϑρw �
�Bψ
Bt Arξbpρqs � ψBiArξbpρquis



dx dt

» T
0

»
Ω

ϑψρw �
�
�Arbpρqu �∇ξs �Arpb1pρqρ� bpρqq div us



dxdt

� :
4̧

i�1

T 2
i

By Lemma 9.9 and (9.9) we have T 2
k Ñ T 2

k for k P t1, 4u. By Lemma 9.8 and Corollary 2.24 we have

T 2
3 Ñ T 2

3 . Thus, the behaviour of the term T 2
2 for nÑ8 remains unclear.

» T
0

»
Ω

ρnun b un : ∇ϕn dxdt �
» T

0

»
Ω

ψϑρnun b un : ∇Arξbpρnqs dx dt�» T
0

»
Ω

ψρnpun b unq : pArξbpρnqs b∇ϑq dxdt

� :
2̧

i�1

T 3
i

» T
0

»
Ω

ρub u : ∇ϕdx dt �
» T

0

»
Ω

ψϑρub u : ∇Arξbpρqs dx dt�» T
0

»
Ω

ψρpub uq : pArξbpρqs b∇ϑq dxdt

� :
2̧

i�1

T 3
i

By Lemma 9.9 and (9.11) we have T 3
2 Ñ T 3

2 as n Ñ 8. Thus, the behaviour of the term T 3
1 for n Ñ 8
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remains unclear.

» T
0

»
Ω

pnpρnq divϕn dxdt �
» T

0

»
Ω

ψpnpρnq
�
ϑξbpρnq �∇ϑ �Arξbpρnqs



dxdt

� :
2̧

i�1

T 4
i

» T
0

»
Ω

ppρq divϕdxdt �
» T

0

»
Ω

ψppρq
�
ϑξbpρq �∇ϑ �Arξbpρqs



dxdt

� :
2̧

i�1

T 4
i

By (9.30) and Lemma 9.9 we have T 4
2 Ñ T 4

2 as n Ñ 8. Thus, the behaviour of the term T 4
1 for n Ñ 8

remains unclear.

» T
0

»
Ω

S p∇unq : ∇ϕn dx dt �
» T

0

»
Ω

S p∇unq : pψ∇ϑbArξbpρnqsq dx dt�» T
0

»
Ω

ψϑξpη � 4

3
νqdiv un bpρnq dxdt�

2

» T
0

»
Ω

νψp∇∇ϑq : pun bArξbpρnqsq dxdt�

2

» T
0

»
Ω

νψ div un∇ϑ �Arξbpρnqs dxdt�

2

» T
0

»
Ω

νψξbpρnq∇ϑ � un dxdt

�
5̧

i�1

T 5
i

» T
0

»
Ω

S p∇uq : ∇ϕdx dt �
» T

0

»
Ω

S p∇uq : pψ∇ϑbArξbpρqsqdx dt�» T
0

»
Ω

ψϑξpη � 4

3
νqdiv u bpρq dxdt�

2

» T
0

»
Ω

νψp∇∇ϑq : pubArξbpρqsq dxdt�

2

» T
0

»
Ω

νψ div u∇ϑ �Arξbpρqsdxdt�

2

» T
0

»
Ω

νψξbpρq∇ϑ � udxdt

�
5̧

i�1

T 5
i

By (9.4) we have S p∇unq á S p∇uq, div un á div u and un á u in L2pp0, T q � Ωq. These relations

together with Lemma 9.9 imply T 5
k Ñ T 5

k as n Ñ 8 for k P t1, 3, 4u. Relation (9.39) immediately implies

T 5
5 Ñ T 5

5 as n Ñ 8. Thus, the behaviour of the term T 5
2 for n Ñ 8 remains unclear. Note at this point
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that the statement of Proposition 9.7 is precisely

T 4
1 � T 5

2 Ñ T 4
1 � T 5

2 as nÑ8.

Finally, we have:

» T
0

»
Ω

ρnun �∇pwn � ϕnq dx dt �
» T

0

»
Ω

ψϑρnun �
�
wn �∇Arξbpρnqs

�
dxdt�» T

0

»
Ω

ψρun �
�
Arξbpρnqs �∇pϑwnq

�
dxdt

� :
2̧

i�1

T 6
i

» T
0

»
Ω

ρu �∇pw � ϕq dx dt �
» T

0

»
Ω

ψϑρu � �w �∇Arξbpρqs�dx dt�» T
0

»
Ω

ψρu � �Arξbpρqs �∇pϑwq�dxdt

� :
2̧

i�1

T 6
i

Step 3. We show that T 6
2 Ñ T 6

2 . Let s, q P p1,8q satisfy
1

s
� 1

q
� γ � 1

2γ
.

From Lemma 9.9 we infer

Arξbpρnqsptq Ñ Arξbpρqsptq in LspΩq

for all a.e. t P p0, T q. Since

∇wn Ñ ∇w a.e. in p0, T q � Ω

we have

∇pwnϑqptq Ñ ∇pwϑqptq a.e. in Ω

for a.e. t P p0, T q, and by Lebesgue's theorem we infer for a.e. t P p0, T q

∇pwnϑqptq Ñ ∇pwϑqptq in LqpΩq.

This gives rise to

�
Arξbpρnqs∇pwnϑq

�ptq Ñ �
Arξbpρqs∇pwϑq�ptq in L

2γ
γ�1 pΩq.
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for a.e. t P p0, T q. Since

}�Arξbpρnqs∇pwnϑq�ptq}
L

2γ
γ�1 pΩq

¤}Arξbpρnqsptq}
L

2γ
γ�1 pΩq

}∇pwnϑqptq}L8pΩq ¤ c

for a.e. t P p0, T q, Lebesgue's theorem yields

Arξbpρnqs∇pwnϑq Ñ Arξbpρqs∇pwϑq in L2p0, T ;L
2γ
γ�1 pΩqq

and since by Lemma 9.2

ρnun á ρu in L2p0, T ;L
2γ
γ�1 pΩqq

we deduce T 6
2 Ñ T 6

2 as nÑ8.

Step 4. We show that T 1
2 � T 3

1 Ñ T 1
2 � T 3

1 as nÑ8. Thus, we have to show

lim
nÑ8

» T
0

ψ

»
Ω

ρnϑ
�
ujnRi,jrξbpρnquins � uinu

j
nRi,jrξbpρnqs

�
dx dt �» T

0

ψ

»
Ω

ρϑψ
�
ujRi,jrξbpρquis � uiujRi,jrξbpρqs

�
dxdt,

where the double Riesz operators Ri,j are de�ned in De�nition 2.20. We have

»
Ω

ρnϑu
j
nRi,jrξbpρnquins dx �

»
Ω

Ri,jrρnϑujnsξbpρnquin dx»
Ω

ρϑujRi,jrξbpρquis dx �
»

Ω

Ri,jrρϑujsξbpρqui dx.

and consequently, we have to show

lim
nÑ8

» T
0

ψ

»
Ω

uin
�
Ri,jrϑρnujnsξbpρnq � ϑρnu

j
nRi,jrξbpρnqs

�
dx dt �» T

0

ψ

»
Ω

ui
�
Ri,jrϑρujsξbpρq � ϑρujRi,jrξbpρqs

�
dxdt

(9.45)

By (9.27) we have for a.e. t P p0, T q

pϑρnujnqptq á pϑρujqptq in L
2γ
γ�1 pΩq,

and by (9.38) we have for a.e. t P p0, T q

ξbpρnptqq á ξbpρptqq in LppΩq

for all 1   p   8. By virtue of Lemma 2.25 we have for a.e. t P p0, T q

Znptq :� �
Ri,jrϑρnujnsξbpρnq � ϑρnu

j
nRi,jrξbpρnqs

�ptq á Zptq :� �
Ri,jrϑρujsξbpρq � ϑρujRi,jrξbpρqs

�ptq
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in LppΩq for all p   2γ
γ�1 . Using the usual bounds on ρn and un and the continuity of the double Riesz

operator Ri,j we deduce that Zn is bounded in LppΩq for all p   2γ
γ�1 uniformly in t P p0, T q and n.

Now, choose p such that 6
5   p   2γ

γ�1 ; this is possible, since γ ¡ 3
2 . From the above results and the

compactness of the Sobolev embedding LppΩq ãÑW�1,2pΩq, we deduce for a.e. t P p0, T q

Znptq Ñ Zptq in W�1,2pΩq.

and consequently, by Lebesgue's Theorem,

Zn Ñ Z in L2p0, T ;W�1,2pΩqq.

This, together with (9.4) gives rise to (9.45).

Step 5. We show T 2
2 � T 6

1ÑT 2
2 � T 6

1 . Thus, we have to show

lim
nÑ8

» T
0

ψ

»
Ω

ϑρnwn �
�
∇Airξbpρnquins �∇Arξbpρnqsun

�
dxdt �» T

0

ψ

»
Ω

ϑρw � �∇Airξbpρquis �∇Arξbpρqsu� dxdt

(9.46)

We can use Lemma 2.9 to deduce that

Wn :� ∇Airξbpρnquins �∇Arξbpρnqs � un

is bounded in L2p0, T ;W 1,qpR3,R3qq for any 1   q   2. Indeed, a direct calculation shows

divpWnq � Ri,jrξbpρnqsBjuin � ξbpρnq div un,

curlpWnq � 0.

By the continuity of the Riesz operator Ri,j we have Ri,jrξbpρnqs bounded in LspRq for all 1   s   8
uniformly in t P p0, T q. Consequently, Ri,jrξbpρnqsBjuin is bounded in LqpRq uniformly in t P p0, T q for
1   q   2. Since ξbpρnq div un is bounded in L2p0, T ;LqpRqq for 1   q   2, Lemma 2.9 yields that Wn is

bounded in L2p0, T ;W 1,qpR3,R3qq. Thus, we have

Wn á ∇Airξbpρquis �∇Arξbpρqsu in L2(0,T;W 1,q(R3,R3)),

since by continuity of the double Riesz transform this convergence holds in Lqwpp0, T q�Ωq for any 1 ¤ q   2.

This, together with (9.9), shows (9.46).

Step 6. To sum up the above results, we have proved

4̧

i�1

T 1
i �

4̧

i�1

T 2
i �

2̧

i�1

T 3
i � T 4

2 �
5̧

i�1
i�2

T 5
i �

2̧

i�1

T 6
i Ñ

4̧

i�1

T 1
i �

4̧

i�1

T 2
i �

2̧

i�1

T 3
i � T 4

2 �
5̧

i�1
i�2

T 5
i �

2̧

i�1

T 6
i
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and, equations (9.43) and (9.44) in mind, we deduce

T 4
1 � T 5

2 Ñ T 4
1 � T 5

2 as nÑ8.

We have proved Theorem 9.7. l

9.4 The renormalized solution

The goal of this subsection is to show the following result:

Proposition 9.12. The limit functions u and ρ solve the renormalized equation of continuity (8.16).

Since Proposition 9.1 states that

Bρ
Bt � divpρuq � 0

u|BΩ � 0

ρp0q � ρ0

in D1pp0, T q � R3q, our task is to show

» T
0

»
Ω

bpρqBϕBt � bpρqu �∇ϕdxdt

�
» T

0

»
Ω

�
b1pρqρ� bpρq�div u ϕ dxdy �

»
Ω

bpρ0qϕp0, �qdx

(9.47)

for all ϕ P C8
c pr0, T q � Ωq and all b satisfying (8.10).

To show this, we introduce the following family of cut-o� functions

Γkpzq :� kΓp z
k
q (9.48)

where Γ P C8pRq is an arbitrary concave function satisfying

Γpzq � z for z ¤ 1and Γpzq � 2 for z ¥ 3.

We can use Proposition 9.7 to prove the following Lemma:

Lemma 9.13. There is a constant c independent of k such that

lim sup
nÑ8

}Γkpρnq � Γkpρq}Lγ�1pp0,T q�Ωq ¤ c

for all k P N.
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Proof. Since Γpzq ¤ z, we have

c1pppzq � ppyqqpΓkpzq � Γkpyqq � c2 ¥ |Γkpzq � Γkpyq|γ�1

for all y, z ¥ 0 and some constants c1, c2 ¡ 0 independent of y, z and k. Furthermore, since z ÞÑ ppzq is
convex and z ÞÑ Γkpzq is concave, we have

» T
0

»
Ω

pppρq � ppρqqpΓkpρq � Γkpρqq dxdt ¥ 0.

Therefore, we get

lim sup
nÑ8

}Γkpρnq � Γkpρq}γ�1
Lγ�1pp0,T q�Ωq

¤ c1 lim sup
nÑ8

» T
0

»
Ω

pppρnq � ppρqqpΓkpρnq � Γkpρqq dx dt� c2 � c1

» T
0

»
Ω

pppρq � ppρqqpΓkpρq � Γkpρqq dxdt

� c1 lim
nÑ8

» T
0

»
Ω

ppρnqΓkpρnq � ppρqΓkpρqdx dt� c2

¤ c1 lim
nÑ8

» T
0

»
Ω

pnpρnqΓkpρnq � ppρqΓkpρq dxdt� c2.

By virtue of Proposition 9.7, we obtain

c1 lim
nÑ8

» T
0

»
Ω

pnpρnqΓkpρnq � ppρqΓkpρq dx dt� c2

� c1p4

3
ν � ηq lim

nÑ8

» T
0

»
Ω

div unΓkpρnq � div uΓkpρq dxdt� c2

� c1p4

3
ν � ηq lim

nÑ8

» T
0

»
Ω

pΓkpρnq � Γkpρq � Γkpρq � Γkpρqq div un dxdt� c2

¤ 2c1p4

3
ν � ηq sup

nPN
}div un}L2pp0,T q�Ωq lim sup

nÑ8
}Γkpρnq � Γkpρq}L2pp0,T q�Ωq � c2.

Since supnPN }div un}L2pp0,T q�Ωq ¤ c and }�}L2pp0,T q�Ωq ¤ c}�}Lγ�1pp0,T q�Ωq, this yields the desired conclusion.

Furthermore, we can show strong convergence of the sequence Γkpρq:

Lemma 9.14. We have

}Γkpρnq � ρn}Lqpp0,T q�Ωq ¤ c � kq�γ

for any q ¥ 1 and any �xed k P N. Moreover, we have

Γkpρq Ñ ρ in Lppp0, T q � Ωq, as k Ñ8

for all 1 ¤ p   γ.
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Proof. Since (9.38) implies Γkpρnq á Γkpρq in Lppp0, T q � Ωq, we have

}Γkpρq � ρ}Lppp0,T q�Ωq ¤ lim inf
nÑ8

}Γkpρnq � ρn}Lppp0,T q�Ωq,

and since Γkpzq � z for all z ¤ k and z ¤ Γkpzq ¤ 2z for all z ¥ k, we have the following estimates:

}Γkpρnq � ρn}pLppp0,T q�Ωq ¤ kp
» T

0

»
Ω

|1
k
ρn|pIr 1

k ρn¥1s dx dt

¤ kp
» T

0

»
Ω

|1
k
ρn|γIr 1

k ρn¥1s dxdt

¤ kp�γ}ρn}γLγpp0,T q�Ωq.

¤ kp�γ � c

for some c independent of k. This show the �rst assertion. If γ ¡ p, then the right hand side tends to zero

uniformly in n as k Ñ8, and this shows the second assertion.

.

Proof of Proposition 9.12. By Lemma 9.10 we have

BtΓkpρq � divpΓkpρquq � pΓ1kpρqρ� Γkpρqq div u � 0 in D1pr0, T q � R3q

Let pξεqεPp0,1s be a smoothing sequence. By Lemma 2.29 we get

Btξε � Γkpρq � divpξε � Γkpρquq � ξε � ppΓ1kpρqρ� Γkpρqq div uq � rkε in D1pr0, T q � R3q (9.49)

where for any �xed k we have rkε Ñ 0 in L2p0, T ;LqpΩqq for any q   2 as ε Ñ 0. Now, �x any function

b satisfying (8.10). Since ξε � Γkpρqptq P C8
b pR3q for all t P r0, T s and u P L2p0, T ;W 1,2

0 pΩqq, we have

divpξε � Γkpρquq P L2pp0, T q � Ωq. The terms ξε � ppΓ1kpρqρ� Γkpρqq div uq and rkε are obviously integrable

functions on p0, T q � Ω. Thus, Btξε � Γkpρq P L1pp0, T q � Ωq, and therefore ξε � Γkpρq P W 1,1pp0, T q � Ωq.
Consequently, equation (9.49) holds in the sense of weak derivatives and in particular we are allowed to

multiply the above equation with b1pξε � Γkpρqq. A straight forward calculation yields

»
Btbpξε � Γkpρqq � divpbpξε � Γkpρqquq �

�
b1pξε � Γkpρqqpξε � Γkpρqq � bpξε � Γkpρqq



div u �»

� b1pξε � Γkpρqqpξε � pΓ1kpρqρ� Γkpρqq div uq � b1pξε � Γkpρqqrkε
(9.50)

in D1pr0, T q � R3q and by letting εÑ 0 we get»
BtbpΓkpρqq � divpbpΓkpρqquq �

�
b1pΓkpρqqΓkpρq � bpΓkpρqq

�
div u �»

b1pΓkpρqqpΓ1kpρqρ� Γkpρqq div uq
(9.51)
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in D1pr0, T q � R3q.
By the strong convergence of Γkpρq in Lppp0, T q � Ωq, the left hand side of (9.51) tends to

Btbpρq � divpbpρquq � �
b1pρqρ� bpρq� div u

in D1pr0, T q � R3q as k Ñ8. Thus, relation (9.51) yields the desired conclusion, provided we can show

b1pΓkpρqqpΓ1kpρqρ� Γkpρqq div uq Ñ 0 in L1pp0, T q � Ωq (9.52)

as k Ñ8.

Let M ¥ 0 be such that b1pzq � 0 for all z ¥M . Denote

Qk :��Tkpρq ¤M
� � p0, T q � Ω.

Then we have

» T
0

»
Ω

|b1pΓkpρqqpΓ1kpρqρ� Γkpρqq div uq| dxdt

¤ }b1}L8p0,8q
» »

Qk

|pΓ1kpρqρ� Γkpρqq div u|dxdt»
¤ }b1}L8p0,8q sup

nPN
}un}L2p0,T ;W 1,2pΩ;R3qq lim inf

nÑ8
}Γ1kpρnqρn � Γkpρnq}L2pQkq.

(9.53)

Corollary 3.30 implies that

}Γ1kpρnqρn � Γkpρnq}L2pQkq.

¤ }Γ1kpρnqρn � Γkpρnq}αL1pQkq.
}Γ1kpρnqρn � Γkpρnq}p1�αqLγ�1pQkq

where α � γ�1
2γ .

We can estimate the right hand side of this inequality in the following way: On the one hand, we have

lim inf
nÑ8

}Γ1kpρnqρn � Γkpρnq}L1pQkq. ¤ lim inf
nÑ8

�}pΓ1kpρnq � 1qρn}L1pQkq � }ρn � Γkpρnq}L1pQkq

�
(9.54)

¤ lim inf
nÑ8

�}Γ1kpρnq � 1}Lγ1 pQkq}ρn}LγpQkq � }ρn � Γkpρnq}L1pQkq

�
¤ lim inf

nÑ8
p}ρn}Lγpp0,T q�Ωq � 1qk1�γ

¤ c � k1�γ

where the estimate

}Γ1kpρnq � 1}Lγ1 pQkq ¤ k1�γ

can be proved exactly as the estimate }ρn � Γkpρnq}L1pQkq ¤ k1�γ in Lemma 9.14.

On the other hand, since Γ1kpzqz ¤ Γkpzq, we have
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}Γ1kpρnqρn � Γkpρnq}Lγ�1pQkq

¤ }Γkpρnq}Lγ�1pQkq

¤ }Γkpρnq � Γkpρq}Lγ�1pQkq � }Γkpρq � Γkpρq}Lγ�1pQkq � }Γkpρq}Lγ�1pQkq

¤ }Γkpρnq � Γkpρq}Lγ�1pQkq � }Γkpρq � Γkpρq}Lγ�1pQkq �MmeaspΩq 1
γ�1 ,

where the last inequality follows from the De�nition of Qk. By Lemma 9.13, we get

lim inf
nÑ8

}Γkpρnq � Γkpρq}Lγ�1pQkq � }Γkpρq � Γkpρq}Lγ�1pQkq ¤ 2 lim sup
nÑ8

}Γkpρnq � Γkpρq}Lγ�1pQkq ¤ c

Thus, we have

lim inf
nÑ8

}Γ1kpρnqρn � Γkpρnq}Lγ�1pQkq ¤ c (9.55)

where c is independent of k.

Relations (9.54) and (9.55) together with (9.53) imply (9.52). This completes the proof of Proposition

9.12. l

9.5 Strong convergence of the density

In this section we can �nally show the following crucial result:

Proposition 9.15. For a suitable subsequence, we have

ρn Ñ ρ in L1pp0, T q � Ωq

for nÑ8.

Proof. We begin by introducing a family of functions

Lkpzq :�

$'&
'%
z logpzq for 0 ¤ z ¤ k

z logpkq � z

» z
k

Γkpsq
s2

ds for z ¥ k

where the functions Γkpzq � kΓp zk q are de�ned in (9.48). Then, we have Lk P C8pr0,8qq and Lk is convex,

since

L2kpzq � 1

z
¡ 0, for 0 ¤ z ¤ k, and L2kpzq � Γ1kpzq

z
¡ 0, for k ¤ z.

Furthermore, since L1kpzq � logpkq � Γkp3kq
3k for all z ¡ 3k, we can write Lk in the form

Lkpzq � βkz � bkpzq (9.56)
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where βk P R and bk satis�es (8.10). Finally, since 0 ¤ Γkpsq ¤ s, it follows directly from the De�nition that

expp�1q ¤ Lkpzq ¤ z logpzq.
De�ne the double sequence

Fn,k :� Lkpρnq � Lkpρq

for n, k P N.
Step 1. limnÑ8 Fn,k. By virtue of (9.3) and (9.38) we have

lim
nÑ8

Lkpρnq Ñ Lkpρq in Cwpr0, T s;LγpΩqq. (9.57)

Thus, we have

lim
nÑ8

Fn,k � Lkpρq � Lkpρq

Step 2. limkÑ8 limnÑ8 Fn,k. Since pρn, unq and pρ, uq are renormalized solutions, we have

BtLkpρnq � divpLkpρnqunq � Γkpρnq div un � 0

BtLkpρq � divpLkpρquq � Γkpρq div u � 0

in D1pr0, T q � R3q.
Passing to the limit nÑ8 in the di�erence of the weak formulations of these two equations, we obtain

»
Ω

�
Lkpρq � Lkpρq



ptqϕdx

�
» t

0

»
Ω

�
Lkpρqu� Lkpρqu



�∇ϕdxdt�

» t
0

»
Ω

�
Γkpρq div u� Γkpρq div u



ϕdxdt

for all ϕ P DpΩq and all t P r0, T s, where Lkpρqu and Γkpρq div u denote the weak limits as in Proposition

9.7. The particular choice of ϕ � 1 yields »
Ω

pLkpρq � Lkpρqqptq dx

�
» t

0

»
Ω

Γkpρq div udx dt�
» t

0

»
Ω

Γkpρq div udxdt.

By Proposition 9.7 we get

p4

3
ν � ηq

» t
0

»
Ω

Γkpρq div udxdt

�
» t

0

»
Ω

Γkpρqppρq � Γkpρq ppρq dx dt� p4

3
ν � ηq

» t
0

»
Ω

Γkpρq div udx dt

¥ p4

3
ν � ηq

» t
0

»
Ω

Γkpρq div udx dt,
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where the last inequality holds, since

» t
0

»
Ω

Γkpρqppρq � Γkpρq ppρq dxdt � lim
nÑ8

» t
0

»
Ω

ppnpρnq � ppρqqΓkpρnq dxdt

¥ lim
nÑ8

» t
0

»
Ω

pppρnq � ppρqqΓkpρnq dxdt

¥ 0

Therefore, we have

»
Ω

pLkpρq � Lkpρqqptq dx ¤
» t

0

»
Ω

pΓkpρq � Γkpρqq div udxdt. (9.58)

By De�nition of Γk we have Γkpρq Ñ ρ point wise in p0, T q � Ω and by Lemma 9.14 we have Γkpρq Ñ ρ

point wise in p0, T q�Ω, where the latter holds at least for some subsequence. Since by Lemma 9.13 we have

}Γkpρq � Γkpρq}Lγ�1pp0,T q�Ωq ¤ c,

and since γ � 1 ¡ 2, Lemma 3.31 yields Γkpρq � Γkpρq Ñ 0 in L2pp0, T q � Ωq, and thus, the right hand side

of (9.58) tends to zero as k Ñ8.

On the other hand, since Lk are convex functions, we have»
Ω

pLkpρq � Lkpρqqptq dx ¥ 0

and consequently

pLkpρq � Lkpρqqptq Ñ 0 in L1pΩq as k Ñ8 (9.59)

for all t P r0, T s. Thus, we have proved

lim
kÑ8

lim
nÑ8

Fn,kptq � 0 inL1pΩq

Step 3. Convergence limkÑ8 Fn,k. Since Lkpzq Ñ z logpzq for all z ¥ 0, we have Fn,k Ñ ρn logpρnq �
ρ logpρq point wise in p0, T q�Ω for any �xed n as k Ñ8. Furthermore, we have

�
ρn logpρnq

�ptq bounded in

LαpΩq for all 1 ¤ α   γ uniformly in n and a.e. t P p0, T q, and consequently, Lkpρnqptq is bounded in LαpΩq
uniformly in k, n and a.e. t P p0, T q. In particular, Lebesgue's theorem yields

lim
kÑ8

Fn,k � pρn logpρnq � ρ logpρqqptq in LαpΩq

for any 1 ¤ α   γ.

Step 4. Convergence limnÑ8 limkÑ8 Fn,k. Since ρn logpρnq � ρ logpρq is uniformly bounded in LαpΩq
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for any 1 ¤ α   γ, we have

lim
nÑ8

lim
kÑ8

Fn,kptq �
�
ρ logpρq � ρ logpρq�ptq weakly in LαpΩq

for some function ρ logpρq P LαpΩq, passing to a subsequence if necessary.

Step 5. Our goal is to show ρ logpρq � ρ logpρq. To show this, we can use Lemma 1.13 on the Banach

space L1pΩq. Thus, we have to show that

lim
kÑ8

sup
nPN

}Fn,k � ρn logpρnq � ρ logpρq}L1pΩqptq � 0. (9.60)

Since

z ÞÑ |Lkpzq � z logpzq| � z logpzq � Lkpzq

is convex, we have

}Lkpρnq � ρn log ρn}L1pΩq ¥ }Lkpρq � ρ log ρ}L1pΩq.

Thus, it is su�cient to show

lim
kÑ8

sup
nPN

}Lkpρnq � ρn logpρnq}L1pΩqptq � 0. (9.61)

Let

Pnk :� �
ρn ¥ k

�
.

Let 1   β   γ and let z0 ¥ 1 be such that logpzq ¤ zβ�1 for all z ¥ z0 and let k ¥ z0. Since Lkpzq � z log z

for all z ¤ k and Lkpzq ¤ z log z for all z ¡ k, we have

sup
nPN

}Lkpρnq � ρn logpρnq}L1pΩqptq ¤ sup
nPN

»
Pnk

ρn log ρn dx,

¤ sup
nPN

»
Pnk

ρβn dx

¤ sup
nPN

kβ�γ
»

Ω

ργn dx

¤ c kβ�γ

where c ¡ 0 is independent of n, and this shows the desired conclusion. Thus, by virtue of Lemma 1.13 we

get ρ logpρq � ρ logpρq.
Since z ÞÑ z logpzq is strictly convex, Lemma 1.16 implies

ρnptq Ñ ρptq in L1pΩq
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for all t P p0, T q, and since ρnptq is bounded in L1pΩq uniformly in n and t, Lebesgue's theorem yields

ρn Ñ ρ in L1pp0, T q�Ωq.

9.6 Conclusion

We can �nish the proof of Theorem 9.1. To show ρ P Cpr0, T s;L1pΩq), choose a smoothing sequence pξεqεPp0,1s
and de�ne ρε :� ξε � ρ. Then ρε is smooth in the space variables for all ε. By Lemma 2.29 we have

Bρ̃ε
Bt � divpρ̃εuq � rε in D1pp0, T q � R3q

with rε Ñ 0 in L1pp0, T q � Ωq. Now, we have for ε, δ P p0, 1s
B
Bt |ρε � ρδ| � divpu|ρε � ρδ|q � sgnpρε � ρδqprε � rδq in D1pp0, T q � R3q

and by using ϕ � ϕptq P C8
c p0, T q as test function we deduce

B
Bt

»
Ω

|ρε � ρδ|dx �
»

Ω

sgnpρε � ρδqprε � rδq dx in D1p0, T q.

Since ρεp0q � ρδp0q we get

sup
tPr0,T s

»
Ω

|ρε � ρδ| dx ¤
» T

0

»
Ω

|rε � rδ|dxdt,

where the right hand side tends to 0 as ε, δ Ñ 8 and consequently pρεqεPp0,1s is a fundamental sequence in

Cpr0, T s;L1pΩqq. Since ρε Ñ ρ in L1pp0, T q � Ωq we have ρε Ñ ρ in Cpr0, T s;L1pΩq) and in particular we

have ρ P Cpr0, T s;L1pΩqq.
In view of Lemma 9.2, we have proven that the limit functions pρ, uq satisfy (1)-(3) from De�nition 8.8.

By Lemma 9.12, the limit functions satisfy (4) from De�nition 8.8.

Passing to a subsequence for the last time, we can assume ρn Ñ ρ a.e. in p0, T q � Ω. Consequently, we

have ppρnq Ñ ppρq in L1pΩq and consequently ppρq � ppρq. The limit equation (9.34) then gives rise to (5)

from De�nition 8.8.

Finally, since Qn Ñ Q locally uniformly on r0,8q and ρn Ñ ρ a.e. in p0, T q�Ω, we have Qnpρnq Ñ Qpρq
a.e. p0, T q � Ω. Since by Lemma 8.6 and Proposition 9.3, we have Qnpρnq bounded in Lqpp0, T q � Ωq,
Theorem 3.31 yields Qnpρnq Ñ Qpρq in Lrpp0, T q � Ωq for all r   q. Now, it is routine to check that all

terms in the weak formulation of the energy inequality converge to their respective counterparts.

Theorem 9.1 has been proved.
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10 Equations driven by stochastic force

10.1 General results

We return to the stochastic Navier-Stokes equations. Recall that the initial data pρ0, qq and the noise w are

random variables on some regular topological probability space pO,B,Pq. Assume that the initial data and

the noise are of the form

pρ0, qq : O Ñ C
w : O ÑW

for some spaces C and W and the solution pρ, uq is of the form

pρ, uq : O Ñ X

for a suitable space X . We start by giving an explicit description of those function spaces in such a way that

on the one hand Theorem 9.1 yields the existence of solutions up., ., ωq for a.e. ω P O and consequently a

mapping (see proof below)

M : C �W Ñ 2X ,

where 2X denotes the power set of X , mapping (deterministic) initial data and (deterministic) noise to the

non-empty set of solutions. On the other hand, we choose the spaces C, W and X in such a way that

Corollary 3.33 yields a measurable selection ofM.

We motivate and de�ne the spaces for the initial data. First observe, that by writing

q � ?
ρ0

q?
ρ0

the conditions (8.12) imply

q P L 2γ
γ�1 pΩ;R3q.

Thus, in order for Theorem 9.1 to yield solutions, we need the function space for the initial value pρ0, qq to
satisfy

C � LγpΩq � L
2γ
γ�1 pΩq.

For Corollary 3.33 to yield a measurable selection, we need the multivalued mapping M to have a closed

graph; in particular assume a sequence of initial conditions pρn0 , qnq that converge in C to pρ0, qq and assume

for each member of this sequence a solution pρn, unq. Then the sequence of solutions has to converge in

X to a solution with the initial conditions pρ0, qq. Recalling the �rst part of the proof of Lemma 9.2 (see

also below) it is necessary to assume that the initial Energy is bounded, i.e. we assume there exists some

constant Ẽ such that

Epρ0, qq :�
»

Ω

1

2

|q|2
ρ0

�Qpρ0q dx ¤ Ẽ
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for all pρ0, qq P C. Finally, we assume the natural condition that the total mass does not depend on ω P O,
i.e. we assume there exists some constant M ¡ 0 such that»

Ω

ρ0 dx �M

for all pρ0, qq P C, and, of course, the assumption that ρ0 is non-negative. Therefore, we arrive at the following

de�nition:

C :� tpρ0, qq P LγpΩq � L
2γ
γ�1 pΩq | (8.12) is satis�ed,

»
Ω

ρ0 dx �M, Epρ0, qq ¤ Ẽu. (10.1)

Note that C is a convex and closed subset of LγpΩq � L
2γ
γ�1 pΩq.

Next, we introduce the space W for the noise w. In accordance to Theorem 9.1, we assume

W � L8p0, T ;W 1,8
0 pΩ,R3qq. (10.2)

As shown below, it is not necessary that W inherits the norm of L8p0, T ;W 1,8
0 pΩ,R3qq; in particular, for

the multi-valued mapping M to be closed, it would be su�cient to assume that W carries a topology T ,
which is �ner than the weak-star topology of this space, and which has the property that convergence in

T implies the existence of some a.e. convergent subsequence. But on the other hand, we need W to be a

complete and separable metric space. Thus, we suppose that W carries a complete and separable metric dW

such that

wn Ñ w in dw implies

$&
%wn

�á w in L8p0, T ;W 1,8
0 pΩ,R3qq,

D a subsequene, such that wnk Ñ w a.e. in p0, T q � Ω.
(10.3)

Example 10.1. For a Banach space E � t0u the space L8p0, T ;Eq is never separable, but the space

Cpr0, T s;E) is separable i� E is separable. Thus, if the process w is continuous with respect to the time

variable, a possible choice for W is to start with some separable Banach space E continuously embedded

into W 1,8
0 pΩ;R3q, say, for example, E � W k,p

0 pΩ;R3q where 1   k, p   8 and k � 3
p ¡ 1, and consider

Cpr0, T s;Eq. In the next section we shall see that one can even consider the space Dpr0, T s;Eq of cádlág
functions.

Finally, we introduce the Space X for the solution pρ, uq. This is easy, because in accordance to De�nition

8.8 we can de�ne X as the Banach space

X :� Cpr0, T s;L1pΩqq � L2p0, T ;W 1,2
0 pΩ;R3qq. (10.4)

We are now ready to state and prove the main result of part 2 of this theses:

Theorem 10.2. Let Ω � R3 be a bounded Lipschitz domain and let C, X and W be the spaces de�ned above,

and suppose W carries an arbitrary complete and separable metric satisfying (10.3). Suppose further that

the pressure satis�es (8.7). Let

pρ0, qq : O Ñ C
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and

w : O ÑW

be random variables, where all spaces carry their respective Borel algebras. Then, there exists a random

variable

pρ, uq : O Ñ X

satisfying the Navier-Stokes system in the sense of De�nition 8.8.

Proof. We de�ne the multi valued mapping

M :

$&
%C �W Ñ 2X

p rρ0, rq, rwq ÞÑ tprρ, ũq P X | prρ, ruq is a solutionu

assigning to each triple p rρ0, rq, rwq P C�W the set of solution in the sense of De�nition 8.8, where 2X denotes

the power set. By Theorem 9.1 the set Mp rρ0, rq, rwq is non-empty for all p rρ0, rq, rwq P C �W. We show the

existence of a measurable selectionM ofM, i.e. a measurable mapping

M : C �W Ñ X

such that Mp rρ0, rq, rwq P Mp rρ0, rq, rwq. Corollary 3.33 yields such a measurable selection, provided we can

show thatM posses a closed graph. Therefore, let pρn0 , qn, wn, ρn, unqnPN � C �W � X be a sequence such

that pρn, unq PMpρn0 , qn, wnq for all n and

pρn0 , qn, wn, ρn, unq Ñ p rρ0, rq, rw, rρ, ruq in C �W � X .

Our task is to show, that prρ, ũq is a solution of the Navier-Stokes equation with initial condition p rρ0, rqq and
noise rw. By passing to a subsequence, we can assume all �ve convergences pointwise a.e. in Ω respectively

a.e. in p0, T q�Ω. Moreover, we can assume ∇un Ñ ∇u and ∇wn Ñ ∇w a.e. in p0, T q�Ω. Our assumptions

on W, C and X are precisely what we need to repeat almost verbatim the the proof of Lemma 9.2. Indeed,

there are only three di�erences between Lemma 9.2 and the present situation, which could cause trouble:

�rst, in the present situation, the initial data may depend on n, secondly, w is not as regular as in Lemma

9.2, and �nally, we do not have the arti�cial pressure term (represented through the δ quantities). But the

facts that the initial data pρn0 , qnq is bounded in LγpΩq � L
2γ
γ�1 pΩq and the initial energy is bounded are

clearly enough to overcome the �rst problem, and neither the regularity of w nor the arti�cial pressure term

have been use in the proof. In particular, we deduce that ρn is bounded in L8p0, T ;LγpΩqq. Now, this is

clearly enough to infer that all quantities in the weak formulation of the equation of continuity (8.16), the

equation of momentum (8.17) and the energy inequality (8.18) converge to their respective counterparts.

Thus, we have shown that prρ, ruq is a solution, and this yields the claimed closeness of the graph ofM and

consequently the existence of a measurable selectionM.

Finally, if pρ0, q, wq is a C �W-valued random variable, we can de�ne the desired solution:

pρ, uq :�M � pρ0, q, wq : O Ñ X .
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10.2 Application: Lévy processes

In this section we apply Theorem 10.2 to Lévy processes. The hardest part, i.e. the choice of W, can be

done due to the following preliminaries.

Let E be an separable Banach space. We consider the Space of cádlág functions Dpr0, T s;Eq. Since

cádlág functions are always bounded, one may consider the uniform norm on this space, but Dpr0, T s;Eq is
not separable with this norm. One possibility to overcome this problem is to consider the Skorokhod metric

on the space Dpr0, T s;E). The idea of this metric is as follows. Two functions x, y P Dpr0, T s;Eq are �near to
each other� in the uniform metric, if the graph of x can be carried onto the graph of y by a uniformly small

perturbation in the space coordinates (i.e. in E) while the time coordinate is kept �xed. The Skorokhod

metric on the other hand also allows uniformly small perturbations in the time variable t. To make this

idea concrete, we introduce the set Λ of strictly increasing, bijective and continuous mappings form r0, T s
to r0, T s. In particular we have λp0q � 0 and λpT q � T for all λ P Λ. Note that pΛ, �q is a group. Now we

de�ne for x, y P Dpr0, T s;Eq the metric

dpx, yq :� inftε ¡ 0 : Dλ P Λ such that |λptq � t|   ε and }xptq � ypλptqq}E   ε for all t P r0, T su.

One can easily check, that this de�nes a metric on Dpr0, T s;Eq.
We sketch the proof that d is a separable metric: One can consider the (countable) set of those cádlág

functions of the form

Ķ

k�1

ξkIrak�1,akq

with K P N, ak P Q and ξk P F for some �xed countable and dense subset F � E. Since each x P Dpr0, T s;Eq
has only �nitely many jumps �higher� then δ for all δ ¡ 0, the set of those functions is dense with respect to

the Skorokhod metric.

The problem is that this metric is not complete. But there is a complete metric d0 such that d and d0

induce the same topology . We de�ne for λ P Λ

Lpλq :� sup
s�t

���� log
λptq � λpsq

t� s

����,
and for x, y P Dpr0, T s;Eq

d0px, yq :� inf

"
ε ¡ 0

���� Dλ P Λ such that Lpλq   ε and }xptq � ypλptqq}E   ε for all t P r0, T s
*
.

Note, that the case Lpλq � 8 is allowed; those λ P Λ do not play a role in the de�nition of d0. On the other

hand, if λ : r0, 1s Ñ r0, 1s such that λp0q � 0 and λp1q � 1, then Lpλq   8 implies λ P Λ.

Lemma 10.3. The metrics d0 and d induce the same topology. In particular, d0 is separable.

Proof. Denote the induced topologies by T and T0.
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Step 1. We show T � T0. Let d0px, yq   ε   1
4 . Then we have for some λ P Λ

logp1� 2εq   �ε   log
λptq
t

  ε   logp1� 2εq

and consequently | log λptq
T � log t

T |   2ε. Since λptq
T   1 and t

T   1 and B
Bx logpxq ¡ 1 for x P r0, 1s, this

implies |λptq � t|   2εT and therefore

dpx, yq ¤ 2Td0px, yq

if d0px, yq   1
4 . Consequently, we have T � T 0.

Step 2. We show T0 � T . Assume dpx, yq   ε2   1
16 . For I � r0, T s and z P Dpr0, T s;Eq de�ne

SzpIq :� supt}zpsq � zptq}E | s, t P Iu

and for δ ¡ 0 de�ne

Tzpδq :� inf

"
max
1¤i¤r

Szprti�1, tiqq
���� r P N, 0 � t0   ...   tr � T and ti � ti�1 ¡ δ for all i

*
.

We show that there is some λ P Λ such that

}xptq � ypλptqq}E ¤ Txpεq � ε (10.5)

and

Lpλq ¤ 4ε. (10.6)

for all t P r0, T s. Choose 0 � t0   ...   tr � T such that Sxprti�1, tiqq   Txpεq � ε and ti � ti�1 ¡ ε for all

1 ¤ i ¤ r, and choose µ P Λ such that sup0¤t¤T }xptq�ypµptqq}E   ε2 and sup0¤t¤T |µptq� t|   ε2. De�ne λ

to agree with µ at ti for all 1 ¤ i ¤ r and to be linear between them. Then λ P Λ and therefore µ�1 � λ P Λ,

and since µ�1 � λptiq � ti, we have rti�1, tiq � pµ�1 � λqprti�1, tiqq. Thus, we get

}xptq � ypλptqq}E ¤ }xptq � xpµ�1 � λptqq}E � }xpµ�1 � λptqq � ypλptqq}E
� }xptq � xpµ�1 � λptqq}E � }xpλptqq � ypµ � λptqq}E
¤ Txpεq � ε2   Txpεq � ε.

and thus, (10.5) holds.

Since λptiq � µptiq we have

|pλptiq � λpti�1qq � pti � ti�1q|   2ε2   2εpti � ti�1q.

Because λ is linear between ti�1and ti this relation holds for all s, t P r0, 1s:

|pλptq � λpsqq � pt� sq|   2εpt� sq,
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and consequently

logp1� 2εq ¤ log
λptq � λpsq

t� s
¤ logp1� 2εq

and since ε   1
4 we deduce Lpλq   4ε, and thus (10.6) holds.

Relations (10.5) and (10.6) imply d0px, yq ¤ 4ε � Txpεq. Now �x x P Dpr0, T s;Eq an let Bd0
ε pxq be the

open ball with center x and radius ε with respect to d0. Choose δ   1
4 such that 4δ � Txpδq   ε. Then we

have Bdδ pxq � Bd0
ε pxq and consequently T0 � T .

Lemma 10.4. The metric d0 is complete.

Proof. Let pxnqnPN be a fundamental sequence and assume without loss of generality d0pxn, xn�1q   2�n.

Choose µn P Λ such that

sup
t
}xnptq � xn�1pµnptqq}E   1

2n

and

Lpµnq   1

2n
.

De�ne νmn P Λ by

νmn :� µn�m�1 � µn�m � ... � µn�1 � µn.

Then we have

}νm�1
n � νmn }Cpr0,T sq � sup

t
|µn�m�1ptq � t| � T sup

t
|µn�m�1ptq

T
� t

T
| ¤ T sup

t
| log

µn�m�1ptq
T

� log
t

T
|

�T sup
t
| logµn�m�1ptq � log t| ¤ T � Lpµn�m�1q   T

2n�m�1

and therefore we have

νmn Ñ λn in Cpr0, T sq.

for some λn P Cpr0, T sq.
The limit λn satis�es λnp0q � 0 and λnpT q � T . Since Lpλ � µq ¤ Lpλq � Lpµq for all λ, µ P Λ, we have

for all s, t P r0, T s, s � t���� log
νmn ptq � νmn psq

t� s

���� ¤ Lpνmn q ¤ Lpµnq � ...� Lpµn�mq ¤ 1

2n�1
.

By letting mÑ8 be deduce Lpλnq   1
2n�1   8 an therefore λn P Λ. Since λn � λn�1 � µnwe have

sup
t
}ypλ�1

n ptqq � yn�1pλ�1
n�1ptqq}E � sup

t
}ynpsq � yn�1pµnpsqq}E   1

2n
.

Consequently, xn � λ�1
n Ñ x uniformly in r0, T s for some x P Dpr0, T s;Eq, an together with Lpλnq Ñ 0 we
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have d0pxn, xq Ñ 0.

With this preliminaries we return to the problem of showing the existence of solutions to the Navier-Stokes

equation with Lévy noise. In view of Theorem 10.2 we de�ne

E :�W k,p
0 pΩq

where 1   k, p   8 and

k � 3

p
¡ 1.

Thus, E is a separable Banach space and we have the continuous and compact embedding

E ãÑW 1,8
0 pΩq.

Now, let the space W be de�ned by

W :� Dpr0, T s;Eq

equipped with the metric d0 constructed above. One can easily check, that W satis�es the conditions (10.2)

and (10.3).

Therefore, Theorem 10.2 yields

Corollary 10.5. Let Ω � R3 be a bounded Lipschitz domain. Let the pressure p satisfy (8.7), let the

initial condition be a C-valued random variable and let w be an E-valued Lévy process. Then the stochastic

Navier-Stokes equations admit a solution pρ, uq in the sense of De�nition 8.8.
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