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1 Introduction

1.1 Overview

Dealing with the approximation and design using general cylinders, the motivation for
this thesis originates from architecture. While façades tend more and more towards
free-form shapes, the latter initially call for a vast amount of purpose-built items and
thus increase the costs dramatically.

Rationalization of those façades using ruled and particularly developable surfaces
provides a powerful method to overcome this problem. This thesis introduces a com-
plete pipeline for the initialization of a surface covering with cylinder strips – which
are a subset of developable surfaces – using contour generators. Based on this initial-
ization and the work [Pot+08], the ideas and methods of the latter are extended to a
rationalization technique using cylinder strips.

Similarly, the work [Liu+06] is extended to enable the modeling with cylindrical
meshes.

Additionally to the mathematical formulation, details on some algorithms are given.
In order to test the proposed methods, they were implemented in C++ using the Evo-
lute SDK allowing to present many of the examples.

In chapter 2 all basic notions are given for further progressing without the need
of breaks to state the foundation. The first section describes differential geometric
properties, the second section transfers some of the statements from surfaces to meshes
and introduces cylinder strips. In the last section of the chapter the notions and
solution methods for selected optimization problems are given.

Chapter 3 treats the rationalization of surfaces in two sections. The first section
is the initialization of directrices along which the cylinders shall be initially aligned.
The individual methods are stated along with their theory to give a step by step
description of the whole process. Afterwards, the second section deals with the actual
approximation of a given mesh using cylinder strips by formulating an optimization
problem.

Chapter 4 describes the process of generating a strip-wise cylindrical mesh through
successive alteration between subdividing and optimizing, by describing the subdivi-
sion step and the optimization phase separately and then combining them.

Both, chapter 3 and chapter 4 provide examples and conclusions at the end, showing
the possible applications and limitations of the described methods.

Finally, chapter 5 starts with some details on the implementation, sharing some
details on the algorithms and complexity to conclude the thesis.
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1 Introduction

1.2 Prior Work

In order to initialize a cylindrical strip-model for the rationalization, the contour gen-
erator of the mesh is of interest – this is the shadow border on the mesh arising from
(parallel) illumination – and the idea originates from the reconstruction of a surface
from a sequence of images ([Lau94]). Computing the contour generators from dif-
ferent positions and using their connectivity, the original surface can be recovered
approximately ([LBP01]). In doing so, one relies on results of the analysis of apparent
contours, i.e. the projected contour generators in the image space, as information
about the contour generators like sign of the Gaussian curvature, depth and convexity
can be retrieved through the image sequence and viewing motion ([Koe84], [CB90]).
An overview of those properties and methods for the parallel case, which is important
in the following, as well as perspective case is given in [CG00].

In practice and for this thesis, not only the analysis of smooth surfaces is of in-
terest, therefore discrete methods need to be developed. Extraction of those edges
of a mesh, which belong to the contour generator, is fast ([BE99]), but is not very
accurate. Describing the contour generator as a piece-wise linear curve through the
mesh triangles is more precise and can be accelerated using clustering ([Wan+08]).
Other approaches work in the image space or are hybrid methods combining object
and image space information ([Ise+03]). These algorithms are also extensively used
for non-photorealistic rendering, where feature lines like the silhouette of an object
shall be emphasized ([Mar+97]), this also includes technical drawings ([Goo+98]).

The illumination directions and the contour generator tangents are conjugate, which
has many important implications for the surface construction along the contour gen-
erators – in the parallel case forming cylindrical strips – and the relation between
neighboring generators. Conjugate curve networks can be seen as the smooth coun-
terpart of planar quad-meshes, so-called PQ-meshes ([Sau70]), which in turn can be
disassembled into developable strips. Hence, discrete conjugate nets are of interest too
([BS08]).

Although not the only geometric objects ([Pot+07]), ruled ([FP10]) and developable
strips play an important role in architecture, because they are cost-efficient to produce,
since they are generated by moving lines. Surface approximation using developable
strips was already treated extensively, especially for the use in architecture in [Pot+08]
in form of circular and conical models. Although that work does not rely on conjugate
nets arising from parallel illumination, the approximation method used in this thesis
is an adaption of the method presented in that paper. The representation of the
cylindrical strips is chosen to be B-Spline surfaces, because smooth cylinders can be
seen as the limit case of discrete cylinders under subdivision processes ([Wal]) and are
a well-studied ([FHK02]). There clearly are other rationalization methods as well, for
example in case of surfaces which can be approximated well with only one cylindrical
strip and have a suitable shape, it is possible to treat the rationalization problem in
image space through correct projection ([Ran98]).

In the design section, the presented method is an adaption of an existing algorithm
again. Based on the PQ-perturbation showcased in [Liu+06] for conical meshes, a
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1.2 Prior Work

quad-mesh is alternately perturbed, i.e. optimized towards a developable strip model
with parallel rulings, and subdivided to get a refined strip-wise cylindrical mesh. Sim-
ilar approaches are undertaken in the area of paper-craft toys, where likewise strips
need to be extracted and subsequently optimized ([MGE08], [MS04]).

Additionally, much of the foundation concerning surfaces and their representations
is covered by [Car76] and [HL92], those dealing with optimization and general surface
approximation by [MNT04], [Kel04], [GK02] and [Pot].
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2 Preliminaries

There are some notational conventions used in this thesis. If not stated differently,
scalars are denoted with lower case Greek letters (e.g. λ ∈ R) or, if used as parameters,
with lower case Latin letters (e.g. t ∈ R), elements of a vector space are denoted with

lower case Latin letters in the form
−→
d ∈ Rn and matrices with upper case Latin letters

(e.g. A ∈ Rm×n). To identify maps, they are usually written with their parameters,
for example c(t), x(u, v).

2.1 Differential Geometry

2.1.1 Curves and Surfaces

DEFINITION 2.1 Let I = (a, b) ⊂ R be an open interval. A map c : I → Rn : t 7→
c(t) is called a differentiable parametrized curve if c(t) is differentiable. For a
point c(t0) = (c1(t0), c2(t0), . . . , cn(t0)) of the curve at time t0, c′(t0) = (c′1(t0), c′2(t0),
. . . , c′n(t0)) denotes the derivative with respect to the parameter t, called the tangent
vector of c(t) at t0.

In the following, a curve c(t) will be a differentiable map c : I → R3. A point c(t0)
is called a regular point if c′(t0) 6= 0 and a singular point if c′(t0) = 0. Further,
a straight line ` ⊂ R3 is said to be tangent to the curve at a regular point c(t0) if
c(t0) ∈ ` and c′(t0) is parallel to `.

Regular curves – curves consisting of regular points only – can be re-parametrized.
A useful parameter is the arc length s(t) of the curve, which is given by

s(t) :=

∫ t

a
||ċ(u)||du

and yields ds = ||ċ||dt.
Let c : I → R3 be a curve parametrized by arc length, then κ(s) := ||c′′(s)|| is called

the curvature of the curve at s. Using an arbitrary parameter t, the curvature is

given by κ(t) := ‖c′′(t)∧c′(t)‖
‖c′(t)‖3 . The concept of curvature can be developed for surfaces

too, which is done subsequently.

DEFINITION 2.2 A set S ⊂ R3 is called a regular surface, if for each p ∈ S
there exists a neighborhood V ⊂ R3 of p and a subset U ⊂ R2 so that there is a map
x : U → V ∩ S : (u, v) 7→ (x(u, v), y(u, v), z(u, v)) with the following properties:

1. x is differentiable: x(u, v), y(u, v), z(u, v) have continuous partial derivatives of
all orders in U .
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2 Preliminaries

2. x is a homeomorphism, which means the continuous map x also has a contin-
uous inverse x−1 : V ∩ S → U which is the restriction of a continuous map
X : W → R2, W ⊃ V ∩ S.

3. For each q ∈ U , the differential dxq : R2 → R3 is one-to-one, that is ∂x
∂u and ∂x

∂v
are linearly independent for each q.

The map x in definition 2.2 yields local coordinates for the surface S in the neighbor-
hood V ∩ S, thus it is called a local coordinate chart (or parametrization).

Similar to curves, a parametrized surface is a differentiable map x : U ⊂ R2 → R3

and points q ∈ U where dxq is one-to-one are regular points, those where this does
not hold are called singular points.

A vector −→v ∈ R3 is a tangent vector to a surface S at a point p ∈ S if there is
a regular curve c : (−ε, ε) → S with c(0) = p and c′(0) = −→v . The set of all tangent
vectors at the regular point p is denoted TpS and with p = x(q) for q ∈ U holds

dxq(R2) = TpS .

The set of tangent vectors TpS at a point p is a 2-dimensional vector space with basis
{xu := ∂x

∂u ,xv := ∂x
∂v } associated with x.

2.1.2 First Fundamental Form

Given S ⊂ R3, for every regular point p ∈ S the vector space TpS ⊂ R3 can also be
seen as a subset of the Euclidean Space E3, that is R3 endowed with the Euclidean
inner product

< (x1, y1, z1), (x2, y2, z2) >= x1x2 + y1y2 + z1z2 .

Hence, one can restrict the inner product of the ambient space E3 to TpS.
Let p ∈ S be a regular point of a surface S ⊂ R3 and < ., . > the Euclidean inner

product. Then the map

< ., . >p: TpS × TpS → R : (−→v1 ,
−→v2) 7→ < −→v1 ,

−→v2 >p:=<
−→v1 ,
−→v2 > (2.1)

is a symmetric bilinear form on TpS, namely the restriction of the Euclidean inner
product to TpS.

DEFINITION 2.3 With the notation from (2.1), the quadratic form

Ip : TpS → R+ : −→v 7→ < −→v ,−→v >p (2.2)

is called first fundamental form of the regular surface S at p ∈ S.

PROPOSITION 2.4 Let c(t) = x(u(t), v(t)) ⊂ S be a regular curve on a regular
surface S, parametrized via a map x(u, v), then there exist functions E(u, v), F (u, v),
G(u, v) so that for p = c(t0) = x(u0, v0) holds

Ip(c′(t0)) = E(u0, v0)(u′(t0))2 + 2F (u0, v0)u′(t0)v′(t0) +G(u0, v0)(v′(t0))2 .

6



2.1 Differential Geometry

Proof Since S is regular, one can write TpS = span{xu,xv} and c′(t0) = d
dtx(u(t0),

v(t0)) = xuu
′ + xvv

′. To shorten the notation, xu := xu(u0, v0), other maps respec-
tively. Hence

Ip(c′(t0)) = < xuu
′ + xvv

′ , xuu
′ + xvv

′ >p

= < xuu
′ , xuu

′ + xvv
′ >p + < xvv

′ , xuu
′ + xvv

′ >p

= < xuu
′ , xuu

′ >p +2 < xuu
′ , xvv

′ >p + < xvv
′ , xvv

′ >p

= < xu,xu >p (u′)2 + 2 < xu,xv >p u
′v′+ < xv,xv >p (v′)2

and defining

E(u, v) := < xu,xu >p

F (u, v) := < xu,xv >p (2.3)

G(u, v) := < xv,xv >p

for x(u, v) = p yields the desired functions. �
The inner product of two elements < −→v1 ,

−→v2 >p will also be denoted −→v1 ·−→v2 , suppressing
the point p.

2.1.3 Gauss Map

In order to define the second fundamental form, which plays an important role in the
next chapter, one has to examine the Gauss map and its differential.

For a surface S ⊂ R3, a vector field is a map V : S → R3. Clearly, as this is a
very general concept, not all vector fields are of interest. Assume S ⊂ R3 is a regular
surface. A map V : S → R3 is called tangential vector field if V (p) ∈ TpS for every
p ∈ S and normal vector field if V (p) · −→vp = 0 for every p ∈ S and −→vp ∈ TpS. In the
following, they are assumed to be normalized.

Every normalized vector has length 1, hence one can think of it as lying on the
unit sphere, so −→v ∈ R3 with ‖−→v ‖ = 1 can be seen as −→v ∈ S2 := {(x, y, z) ∈
R3|x2 + y2 + z2 = 1}.

DEFINITION 2.5 Given a parametrization x(u, v) in a neighborhood U of p ∈ S,
the map

N : x(U)→ S2 : q 7→ xu ∧ xv
‖xu ∧ xv‖

(q) , (2.4)

is a normalized normal vector field on x(U). If it can be extended to a differentiable
unit normal vector field on the whole surface S it is called the Gauss map of S.

The extendability of (2.4) means, that locally there always exists a parametrization
x(u, v) so that < xu ∧ xv,N > has the same sign for every point p ∈ S. In this case,
the surface is called orientable.

7



2 Preliminaries

PROPOSITION 2.6 The Gauss map is differentiable. Its differential, also called
Weingarten map or Shape operator, in a point p ∈ S is given by

dNp : TpS → TN(p)S2 : −→v 7→ dNp(
−→v ) (2.5)

and is a self-adjoint linear map.

Proof It is obvious, that the Gauss map is differentiable and has a linear differential
of the form (2.5). The property that it is self-adjoint, which means < dNp(

−→v ),−→w >=
< −→v ,dNp(

−→w ) >, is developed in the subsequent paragraphs. �

Given a parametrized surface S = x(u, v) and a point p ∈ S, one can express
every element of TpS as a linear combination of its basis {xu,xv}. Along a curve
on the surface through the point p, the normal field can be written as N(u(t), v(t)).
Then, as dNp can also be seen as a map to TpS, there are two possibilities to denote
d
dtN(u(t), v(t)), whereupon the second is interesting because it allows an expression in
terms of the tangential plane;

d

dt
N(u, v) = Nuu

′ + Nvv
′

= ζxu + ηxv , ζ, η ∈ R .

Consider the inner product of d
dtN(u, v) with the basis elements

<
d

dt
N(u, v),xu > = < Nuu

′ + Nvv
′,xu >

= < Nu,xu > u′+ < Nv,xu > v′ ,

<
d

dt
N(u, v),xu > = < ζxu + ηxv,xu >

= ζ < xu,xu > +η < xv,xu >
(2.3)
= ζE + ηF

and

<
d

dt
N(u, v),xv > = < Nuu

′ + Nvv
′,xv >

= < Nu,xv > u′+ < Nv,xv > v′ ,

<
d

dt
N(u, v),xv > = < ζxu + ηxv,xv >

= ζ < xu,xv > +η < xv,xv >
(2.3)
= ζF + ηG

which yields(
< Nu,xu > < Nv,xu >
< Nu,xv > < Nv,xv >

)(
u′

v′

)
=

(
E F
F G

)(
ζ
η

)
.

8



2.1 Differential Geometry

Because of < N,xu >= 0, deriving with respect to u leads to < Nu,xu > + <
N,xuu >= 0 and thus < Nu,xu > = − < N,xuu >. Using the same argument for the
parameter v, the above equation becomes

−
(
E F
F G

)−1(
< N,xuu > < N,xuv >
< N,xvu > < N,xvv >

)(
u′

v′

)
=

(
ζ
η

)
or using

L := < N,xuu > ,

M := < N,xuv >=< N,xvu > , (2.6)

N := < N,xvv >

one has

−
(
E F
F G

)−1

︸ ︷︷ ︸
(

L M
M N

)
︸ ︷︷ ︸

(
u′

v′

)
=

(
ζ
η

)
. (2.7)

I−1 II

Equation (2.7) shows how to compute the unknown coefficients ζ, η of the derivative
of the normal vector field N along a curve on the surface with the knowledge of the
second partial derivatives of the parametrization and the velocity vector (u′, v′) of the
curve.

Note that I−1 always exists in these cases because xu = 0, xv = 0 or < xu,xu > ·
< xv,xv > = < xu,xv >

2 all contradict the regularity.

COROLLARY 2.7 The differential of the Gauss map can be computed as

dNp(
−→v ) = −I−1II

(
α
β

)
,

where −→v = αxu + βxv ∈ TpS.

Taking tangent elements −→v 1 = ζxu + ηxv ∈ TpS and −→v 2 = ζ̂xu + η̂xv ∈ TpS, one can
define the bilinear map

II(−→v 1,
−→v 2) = (ζ, η)II(ζ̂, η̂)T (2.8)

which fulfills II(−→v 1,
−→v 2) = II(−→v 2,

−→v 1) because the matrix II is symmetric and further

II(xu,xu) = (1, 0)II(1, 0)T = L ,

II(xu,xv) = (1, 0)II(0, 1)T = M = II(xv,xu) ,

II(xv,xv) = (0, 1)II(0, 1)T = N .

9



2 Preliminaries

2.1.4 Second Fundamental Form

DEFINITION 2.8 The bilinear form

IIp : TpS × TpS → R : (−→v ,−→w ) 7→ − < dNp(
−→v ),−→w > (2.9)

is called second fundamental form.

PROPOSITION 2.9 Let c(t) = (v(t), w(t)) be a curve on S through the point p =
c(0) ∈ S with c′(0) = −→v ∈ TpS, −→w ∈ TpS arbitrary. Then the second fundamental
form (2.9) at p can be computed by (2.8) via

IIp(−→v ,−→w ) = II(−→v ,−→w ) .

Proof First consider the coefficients L,M,N . As < N,xu >= 0, differentiating with
respect to u yields < Nu,xu > + < N,xuu >= 0 and thus < N,xuu = − < Nu,xu >.
Applying this argument to < N,xv >= 0 too and differentiating also with respect to
v then helps expressing L,M,N as

L = − < Nu,xu > ,

M = − < Nu,xv >= − < Nv,xu > , (2.10)

N = − < Nv,xv > .

Given IIp(−→v ,−→w ) = − < dN(−→v ),−→w >, dN(−→v ) can be written as dN(−→v ) = Nuu
′+Nvv

′

and −→w as −→w = αxu + βxv. Hence

− < dN(−→v ),−→w > = − < Nuu
′ + Nvv

′, αxu + βxv >

= (u′, v′)

(
− < Nu,xu > − < Nu,xv >
− < Nv,xu > − < Nv,xv >

)(
α
β

)
= (u′, v′)

(
L M
M N

)(
α
β

)
= II(−→v ,−→w ) .

�
With all this preparatory work, one can define one of the most important properties
for this thesis, which is used for the initialization in the next chapter.

DEFINITION 2.10 Assume −→v ,−→w ∈ TpS, −→v 6= 0, −→w 6= 0, then −→v and −→w are said
to be conjugate if II(−→v ,−→w ) = 0.

2.1.5 Curvature

The concept of curvature can now be extended to surfaces.

DEFINITION 2.11 For p = x(u, v) ∈ S and −→v ∈ TpS, the normal curvature of
S at p in the direction −→v is defined by

kn =
IIp(−→v ,−→v )

Ip(−→v )
= −< dNp(

−→v ),−→v >

||−→v ||2
.

10



2.2 Cylindrical Strip Models

THEOREM 2.12 [Car76] Let V be a 2-dimensional linear vector space and A : V→
V a self-adjoint linear map. Then there exists an orthonormal basis {−→e 1,

−→e 2} of V
such that A(−→e 1) = λ1

−→e 1, A(−→e 2) = λ2
−→e 2 (that is, −→e 1 and −→e 2 are eigenvectors, and

λ1, λ2 are eigenvalues of A). In the basis {−→e 1,
−→e 2}, the matrix A is clearly diagonal

and the elements λ1, λ2, λ1 ≥ λ2, on the diagonal are the maximum and minimum,
respectively, of the quadratic form Q(−→v ) =< A−→v ,−→v > on the unit circle of V.

So, for all p ∈ S exists an orthonormal basis {e1, e2} of TpS1 such that

dNp(e1) = −κ1e1

dNp(e2) = −κ2e2

where κ1, κ2 are the minimum and maximum of the second fundamental form on the
unit circle of TpS1, respectively, and thus the extreme values of kn at p, following the
last theorem 2.12.

DEFINITION 2.13 The maximum κ1 and the minimum κ2 of the normal curvature
kn are called principal curvatures at p ∈ S. The corresponding directions −→e 1, −→e 2

are the principal directions.

Using theorem 2.12, on sees also sees that det dN = κ1κ2 and tr dN = κ1 + κ2.

DEFINITION 2.14 The value K = det dNp is called Gaussian curvature in p ∈ S
and the value H = −1

2tr dNp is the Mean curvature in p ∈ S.

The Gaussian curvature is crucial for the following tasks, while the Mean curvature
will not play an important role. Thus, despite the definition above, it is not considered
anymore. The Gaussian curvature can be computed by

K = det dNp =

(
det

(
E F
F G

))−1

det

(
−L −M
−M −N

)
=

LN −M2

EG− F 2
.

The Gaussian curvature is used to classify the points of a surface. A point p ∈ S is
called elliptic if K > 0, parabolic if K = 0 and in case K < 0 it is called hyperbolic.
Additionally, if p is elliptic and κ1 = κ2 then it is also called an umbilical point and if
p is parabolic with dNp = 0 it is said to be planar. If a connected (subset of a) surface
consists of umbilical points only, it is either planar or contained in a sphere. A special
case of conjugacy occurs for −→v ∈ TpS\{

−→
0 } with II(−→v ,−→v ) = 0. These elements are

called self-conjugate or asymptotic directions and kn = 0 holds at p in direction
−→v .

2.2 Cylindrical Strip Models

With help of the notations of the previous section, one can now define cylindrical strip
models.

11
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2.2.1 Ruled and Developable Surfaces

DEFINITION 2.15 A surface S is called a ruled surface if there is a parameteri-
zation

x(u, v) = c(u) + vd(u) (2.11)

of the surface, where c(u) is an arbitrary curve, called directrix, d(u) defines a direction
for every u, called generating direction, and the straight lines Lu(v) = x(u, v) are called
rulings.

As set earlier, c(u) as a curve is smooth. The direction d(u) in the definition above
is required to be at least continuously changing in order to generate a useful surface,
nevertheless a ruled surface is allowed to have singular points per definition. For every
ruled surface defined via (2.11), there exists a parametrization x̃(u, v) = c(u) + vd̃(u)
with ||d̃(u)|| = 1 which generates the same surface. So, without loss of generality, d(u)
is always considered to be normalized.

Often of interest are developable surfaces, i.e. surfaces that can be mapped isomet-
rically into the plane, which means they can be bend and folded without stretching or
shearing to a planar surface.

DEFINITION 2.16 A surface S is called developable surface if for every point
p ∈ S holds K = 0.

In R3 developable surfaces are ruled surfaces, so equivalently a surface with parametri-
zation (2.11) is developable if det(c′(u), d(u), d′(u)) = 0. To see this, look at

xuu = c′′(u) + vd′′(u),

xuv = d′(u),

xvv = 0

which leads to K = 0 exactly if M =< N,xuv >= 0.
With (||d(u)|| = 1 ⇒ d(u) ∧ d′(u) = 0), follows xu ∧ xv = (c′(u) + vd′(u)) ∧ d(u) =

c′(u) ∧ d(u), hence < xu ∧ xv, d
′(u) >=< c′(u) ∧ d(u), d′(u) >= det(c′(u), d(u), d′(u))

and finally
K = 0⇔ det(c′(u), d(u), d′(u)) = 0 .

DEFINITION 2.17 A surface S is called a cylinder or cylindrical surface if there
is a parametrization

x(u, v) = c(u) + v
−→
d (2.12)

of the surface where c(u) is an arbitrary curve, called directrix, and
−→
d is an arbitrary

direction vector, called generating direction.

The case of a ruled surface (2.11) with d(u) not constant is also called non-cylindrical

surface and the special case where c(u) is a circle and
−→
d is normal to the plane in

which the circle lies, is called right circular cylinder and complies with the surface

12



2.2 Cylindrical Strip Models

Figure 2.1: Example of a cylinder strip.

most people usually think of first when they hear the term “cylinder”. Fig.(2.1) shows
an example of a cylinder strip.

For a cylinder given by (2.12), one can compute the second derivatives xuu =
c′′(u), xuv = 0, xvv = 0 and thus via (2.6) the coefficients of the matrix of the
second fundamental form are, for the normal field given via (2.4),

L =< N,xuu > =< N, c′′ > ,

M =< N,xuv > =< N, 0 >= 0 ,

N =< N,xvv > =< N, 0 >= 0 .

That means for K = det dNp with numerator LN −M2, that the Gaussian curvature
fulfills K = 0, independently of the considered point. Therefore cylindrical surfaces
are developable and thus consist of parabolic (or planar) points only.

For computational purposes an useful representation of cylindrical surfaces is needed.
As B-Spline surfaces provide a theory-rich method and nice properties, they are used
to parametrize cylinder strips in the smooth case, while their control nets represent
discrete cylinder strips, as shown in the subsequent sections.

2.2.2 Mesh representation

A map

x : Z× Z→ R3 : (i, j) 7→ xi,j := x(i, j) (2.13)

13
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is called 2-dimensional net. As only finite objects are treated in the following, (2.13)
will be used as

x : U ⊂ Z× Z→ R3 , (2.14)

with U finite and connected. Further, the triple (V,E, F ) containing discrete finite
sets of vertices V , halfedges E and faces F with

V = {vk|vk = xi,j} ,
E = {(xij , xk`)|(i, j) 6= (k, `) and (k = i+ ik ∨ ` = j + j` with ik, j` ∈ {−1, 0, 1})},
F = {(vi, vj , vk)|(vi, vj), (vj , vk), (vk, vi) ∈ E} or

F = {(vi, vj , vk, v`)|(vi, vj), (vj , vk), (vk, v`), (v`, vi) ∈ E} ,

depending on whether so-called tri-meshes or quad-meshes are considered, respec-
tively, is called mesh.

Halfedges can be thought of as oriented edges, i.e. (vi, vj) 6= (vj , vi), and are used
because they deliver more information and allow systematic movement on the mesh.
Faces are seen as being traversed counter-clockwise, which means that it is possible to
orient them, see fig.(2.2).

e = (k, k + 1)

e = (k + 1, k)

vj

vk
v`

vi

v0

v1

v2

v3

−→n 1

−→n 2

Figure 2.2: Exemplary quad-face, with halfedge e belonging to the face, while the
opposite edge e is part of of the neighboring face.

On a mesh x(u, v), the operators τi and δi operate as follows,

τ1x(u, v) = x(u+ 1, v) , τ2x(u, v) = x(u, v + 1) ,

δ1x(u, v) = x(u+ 1, v)− x(u, v) , δ2x(u, v) = x(u, v + 1)− x(u, v) .
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2.2 Cylindrical Strip Models

DEFINITION 2.18 Let M = (V,E, F ) be a mesh, then val(v) = #{f ∈ F |v ∈ f} is
the valence of v ∈ V . If every face f ∈ F is a quad and for all interior vertices v
holds val(v) = 4, it is called quad-mesh. Further, if every face is planar, the mesh is
called planar quad-mesh or short PQ-mesh.

It is easy to define normals on the faces, as the normals of the planes in which the
faces lie can be taken, but in the following normals at vertices are needed. Thus, it
is necessary to transfer the normals from the faces to the vertices of the mesh. For
this purpose an adequate method must be found because in order to adopt smooth
concepts to discrete objects, these must be viewed as approximations of smooth ones
and therefore the normals at the vertices of the mesh should correspond to those of a
smooth surface approximating the mesh locally.

The method chosen for this task is the vertex normal computation scheme described
in [ZX06], which needs more computation time than more direct approaches but also
ensures better general results. The idea is to compute a vertex normal considering the
local geometry of the surface.

For the computation of a vertex normal, the surrounding faces have influence, that
is for a normalized normal −→n of a vertex v with surrounding faces {fi} ⊂ F

−→n =

∑
−→n i:v∈fi ωi

−→n i

||
∑
−→n i:v∈fi ωi

−→n i||

with appropriate weights ωi. What “appropriate” means differs from case to case.
Some weights exhibit very good results with one class of surfaces and different ones
with another class of surfaces. In this thesis the weights will be chosen to yield overall
useful results.

Based on the mean weighted by sine and edge length reciprocals (MWSELR) method
with weights ωi = sinαi

||vvi||·||vvi+1|| , where αi = ∠(vvi, vvi+1), the weights are chosen to
second order approximate a surface for which the mesh can be seen as a discretization.
Thus take

ωi =
sinαi

||vvi||ki||vvi+1||ki+1
(2.15)

with kj is the normal curvature of the shortest curve gi(s) parametrized by arc-length
connecting v and vi at gi(si) = vi. The curvatures kj are replaced with the second
order approximates k∗j and substituting −→a j := vvj and xj := ||−→a j ||k∗j yields for the

weights in (2.15) the approximation ωi = sinαi
xixi+1

where xj is part of the solution of the

linear system A−→x =
−→
b with

−→x =


x1

x2
...
xn

 ,
−→
b =


<

−→a 1

||−→a 1||
,
−→a 2∧−→a 3

||−→a 2∧−→a 3||
>

<
−→a 2

||−→a 2||
,
−→a 3∧−→a 4

||−→a 3∧−→a 4||
>

...

<
−→a n

||−→a n|| ,
−→a 1∧−→a 2

||−→a 1∧−→a 2||
>

 ,
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A =
1

2



1 − sin(α1,2)
sinα2

sinα1
sinα2

0 . . . 0 0

0 1 − sin(α2,3)
sinα3

sinα2
sinα3

. . . 0 0
...

. . .
. . .

. . .
. . .

...
...

0 0 0 0 . . . − sin(αn−2,n−1)
sinαn−1

sinαn−2

sinαn−1
sinαn−1

sinαn
0 0 0 . . . 1 − sin(αn−2,n)

sinαn

− sin(αn,1)
sinα1

sinαn
sinα1

0 0 . . . 0 1


where αi,j := αi + αj .

For a detailed description see [ZX06].

Consider a cylindrical strip, a discrete approximation can be chosen to be a is a PQ-
mesh. The directrix c(u) in definition 2.17 is replaced by a polyline c = (c0, c1, . . . , cn)
which can be defined formally as c : Z→ R3 with c(i) =: ci and the faces f0, . . . , fn−1

are given by
fj = (v0,j , v1,j , v1,j+1, v1,j)

with

v0,i = ci + `0,i
−→
d

v1,i = ci + `1,i
−→
d .

where `1,i−`0,i defines the width of the edge ei. Therefore a discrete cylinder is a quad
mesh where the edges ei = {v0,i, v1,i} are pairwise parallel, thus the faces are planar
and it is a special case of a PQ-mesh, see fig.(2.3). Conversely, a smooth cylinder strip
can be seen as the limit of a discrete cylinder strip undergoing a subdivision process
with quads tending to rulings, motivating the classification of cylinder strip models
as semi-discrete objects and the representation as B-Spline surfaces for computational
purposes.

2.2.3 B-Splines

B-Splines exhibit a rich theory of their own, but since they are just used as a tool
for other calculations, the given statements only provide a rough introduction and
overview.

For a B-Spline curve of order k with control points bi, i = 0, 1, . . . , n one needs an
ordered knot vector T = (t0, t1, . . . , tn+k), t0 < t1 < · · · < tn+k, in order to define
B-Spline basis functions. The vector T is also called support.

The normalized B-Spline basis functions Nk
i (t), i = 0, . . . , n, of order k are defined

via

N1
i (t) :=

{
1 , for ti ≤ t < ti+1

0 , else
, and for k > 1

Nk
i (t) :=

t− ti
ti+k−1 − ti

Nk−1
i (t) +

ti+k − t
ti+k − ti+1

Nk−1
i+1 (t) . (2.16)
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2.2 Cylindrical Strip Models

Figure 2.3: A cylindrical strip as a special case of a PQ-mesh.

Direct consequences of this definition are Nk
i (t) > 0 for t ∈ (ti, ti+k) and Nk

i (t) = 0
for t ∈ [t0, ti] ∪ [ti+k, tn+k], because the fractions in (2.16) are non-negative. Further,
for t ∈ [tk−1, tn+1] holds

n∑
i=0

Nk
i (t) = 1 (2.17)

which, together with the two above properties, is called partition of one.

DEFINITION 2.19 For points (bi)i=0,...,n, bj ∈ R3, and an ordered knot vector T =
(t0, t1, . . . , tn+k) the function

X : [tk−1, tn+1]→ R3 : t 7→
n∑
i=0

Nk
i (t)bi (2.18)

defines the B-Spline curve of order k with support T , where n ≥ k−1 and the points
bj are called de Boor points.

B-Spline curves do generally not interpolate their endpoints. In order to achieve
endpoint interpolation, which is desired, it is necessary to adapt the support of the
curve, which is stated explicitly after some properties are noted.

Such properties include affine invariance, which allows a location independent de-
scription as well as local polynomial form. A B-Spline curve exhibits local control,
which means that moving a de Boor point only changes the curve in a neighborhood.
More formally, the number of intervals that influence a point on the curve is given by
(n − k + 2); see (2.17) which motivates the restricted domain of (2.18). A de Boor
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point bi influences the curve in the parameter interval [ti, ti+k] and X(t) depends on
bj−k+1, . . . ,bj , for t ∈ (tj , tj+1).

For B-Spline curves the convex hull property holds, which means that every point
X(t) lies inside the convex hull of its k depended de Boor points bi. Additionally, for
pairwise different knots tj the B-Spline curves of order k have differential order (k−2).
If one also allows m subsequent knots to be equal, the differential order is reduced to
k− 2− (m− 1), thus X(t) ∈ Ck−m−1, which is a consequence of the differential order
of the basis functions.

Finally, endpoint interpolation can be achieved by setting the first, respectively the
last (k − 1) knots to be equal, e.g.

T = (0, 0, . . . , 0︸ ︷︷ ︸, 1, 2, . . . , n− k + 3, n− k + 4, n− k + 4, . . . , n− k + 4︸ ︷︷ ︸) .
(k − 1) times (k − 1) times

Figure 2.4: Example of B-Spline curve with and without endpoint interpolation.

Important for the following tasks is a surface description based on B-Splines, namely
the tensor product B-Spline surface which allows easy description and fast evaluation.

DEFINITION 2.20 The tensor product B-Spline surface of orders k and ` is
defined by

X(u, v) =
m∑
i=0

n∑
j=0

Nk
i (u)N `

j (v)bij , (2.19)

where (bij)i,j is called de Boor net.

Setting v = v0 = const in (2.19), one can substitute Pi :=
∑n

j=0N
`
j (v0)bij to obtain

the B-Spline curve

X(u) =

n∑
i=0

Nk
i (u)Pi (2.20)

and for u = u0 = const in an analogous manner. Hence fixing one parameter yields
a B-Spline curve and thus all of their properties. For evaluation of X(u0, v0) evaluate
the curve X(u, v0) to get the curve (2.20) which then can be evaluated again to get
the desired point. A fast and stable method for the evaluation is given by the de Boor
algorithm, see [HL92].
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Figure 2.5: Example of tensor product B-Spline surface with marked parameter curve
and cylindrical strip represented as tensor product B-Spline surface.

Take a polyline ci = (p0, p1, . . . , pn) with direction
−→
d and set up the de Boor net

C = (aj ,bi)j with control points at positions

aj = pj − δj
−→
d ,

bj = pj + δj
−→
d

for suitable δj ∈ R and j = 0, . . . , n. This clearly is a discrete cylinder strip.
The surface strip x(u, v), which uses C as a control surface, given by

x(u, v) = (1− v)a(u) + vb(u) , (2.21)

where

a(u) =
∑
j

N4
j (u)aj

b(u) =
∑
j

N4
j (u)bj ,

is a B-Spline surface with degrees 1 and 3 (it is of order 2 and 4, respectively) and
represents a smooth cylinder strip, created from a discrete cylinder strip using a sub-
division process. For an example see fig.(2.5).

2.3 Optimization Problems

This section deals with the foundations of the optimization methods used in this thesis.
To gain deeper insight one is referred to [GK02] and [Kel04].
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2.3.1 Classification

DEFINITION 2.21 Given f : Rn → R, the problem

min f(x) subject to x ∈ Rn (2.22)

is called an unconstrained optimization problem with objective function f . Let
X ⊂ Rn be non-empty and f : X → R, then the problem

min f(x) s.t. x ∈ X (2.23)

is called a constrained optimization problem with objective function f and feasible
region X.

Similarly, one can define (2.22) and (2.23) using max f(x). As in (2.23), the term
“subject to” will be abbreviated “s.t.” for the rest of the thesis.

DEFINITION 2.22 Assume n,m ∈ N\{0}, then the optimization problem

min f(x) s.t. g(x) = b, (2.24)

is called quadratic programming, if f(x) is quadratic and g(x) is linear, i.e.

min
1

2
−→x TQ−→x +−→c T−→x + γ s.t. A−→x = b, (2.25)

with Q ∈ Rn×n symmetric, −→c ∈ Rn, γ ∈ R, A ∈ Rm×n and
−→
b ∈ Rm.

Convex optimization problems (those where g(x) is a convex function) have the ad-
vantage that local minima are already global minima , thus they are favored, but as
convexity cannot always be guaranteed, local optimization must be satisfactory in the
following.

DEFINITION 2.23 A feasible x∗ ∈ X is called local constrained minimizer if

f(x∗) ≤ f(x) , ∀x ∈ Uε(x∗) := {y : ||x∗ − y|| < ε} . (2.26)

To identify a necessary (but not sufficient) condition the subsequent definitions provide
a tool.

2.3.2 Methods

DEFINITION 2.24 The function

L : Rn × Rm → R : (x, λ) 7→ f(x) +
m∑
i=1

λigi(x)

is called Lagrange-function of the optimization problem (2.24).
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DEFINITION 2.25 Let f(x) and g(x) in (2.24) be continuously differentiable and
let ∇xL(x, λ) := ∇f(x) +

∑m
i=1 λi∇gi(x) denote the gradient of the Lagrange-function

with respect to x. Then the Karush-Kuhn-Tucker conditions (KKT conditions)
are defined by

∇xL(x, λ) = 0 ,

λigi(x) = 0 , ∀i ∈ {1, . . . ,m}.

Every point (x∗, λ∗) that satisfies the KKT conditions is called KKT-point and λ∗i
are called Lagrange-multipliers.

With definition 2.25 it is possible to express the necessary first order conditions.

THEOREM 2.26 Let x∗ be a local constrained minimizer of a constrained optimiza-
tion problem with affine linear constraints gi(x). Then there exist Lagrange-multipliers
λ∗i so that (x∗, λ∗) is a KKT-point of the optimization problem.

COROLLARY 2.27 Let xs be feasible, then a pair (xs, λs) is a KKT-point if and
only if xs is a stationary point.

For second order sufficient and necessary conditions, the second partial derivatives
are needed, therefore the presented functions in any occurring optimization problem
should be at least two times differentiable. Because of the formulation, it will be
always convenient that this is fulfilled.

The case of quadratic optimization problems is treated more in detail first. They
are of the form

min f(x) =
1

2
xTHx+ cTx+ γ s.t. g(x) = Jx = 0 (2.27)

where H = f ′′(x) =
(

∂2f
∂xi∂xj

)
i,j

denotes the Hessian of the objective function and

J = g′(x) =
(
∂gi
∂xj

)
i,j

denotes the Jacobian of the constraint function.

Given (x∗, λ∗) ∈ Rn × Rm then (x∗, λ∗) is a KKT-point of (2.27) if and only if
(x∗, λ∗) is solution of the linear system(

H −JT

−J 0

)( −→x
λ

)
=

(
−−→c

0

)
. (2.28)

The KKT conditions 2.25 applied to (2.27) are of the form

H−→x +−→c T − JTλ = 0 ,

−J−→x = 0

therefore a pair (x∗, λ∗) that fulfills the KKT conditions is also a solution of (2.28)
and conversely.
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An important class of methods for solving quadratic optimization problems is Se-
quential Quadratic Programming (SQP). These iterative methods are described
more in detail in [MNT04],[GK02].

So given a current iterate (xc, λc), one wants to find the next iterate (xc + ∆x, λc)
that fulfills (2.28), thus with(

H −JT

−J 0

)(
xc + ∆x

λc

)
=

(
−−→c

0

)
⇔(

H −JT

−J 0

)(
∆x
λc

)
=

(
−−→c −Hxc

Jxc

)
⇔(

H −JT

−J 0

)(
∆x
λc

)
=

(
−∇f(xc)
g(xc)

)
(2.29)

the step direction ∆x can be determined by (2.29). In [MNT04] this system is modified

by exchanging H = f ′′(x) with W := ∂2

∂x2
L(x, λ) and therefore adapting the system

for a faster convergence.

If x∗ is a local minimum, the H is positive semi-definite and the Cholesky decom-
position H = LLT exists, with L being a non-singular lower triangular matrix with
positive diagonal. The Cholesky decomposition provides a stable and useful method
for solving smaller linear systems.

Another approach is the so called penalty method which puts constrained optimiza-
tion down to unconstrained optimization. The constraint, which gives the feasible
region, is used to “punish” the objective function through a penalty term if it leaves
the feasible region, e.g. the penalty term is zero for a feasible element and positive
else. There are different ways of defining a penalty function, one is given below.

DEFINITION 2.28 Given an optimization problem of the form

min f(x) s.t. g(x) = 0 , (2.30)

then the corresponding penalty function is

P : Rn × R+ → R : (x, α) 7→ f(x) +
α

2
g(x)T g(x) .

The parameter α is called penalty parameter.

For Nonlinear Least Squares problems, these are problems with objective function
of the form

f(x) =
1

2

N∑
i=1

||ri(x)||2 , (2.31)

the iterative Gauss-Newton method can be applied. The functions rj(x) are called
residuals. In order to solve the problem, the second order derivatives are needed,
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which, given that f(x) can be written as f(x) = 1
2R(x)TR(x) using the vector R(x)T =

(r1(x), r2(x), . . . , rN (x)), are

∇f(x) = R′(x)TR(x) ,

∇2f(x) = R′(x)TR′(x) +R′′(x)TR(x) .

In the above equations R′(x) stands for the Jacobian matrix of f(x), R′′(x) is a tensor,
so the term R′′(x)TR(x) may be written as

∑
i ri(x)T∇2ri(x) with Hessians ∇2ri(x).

As the computations of the latter term are very costly, they should be avoided. The
Gauss-Newton method bypasses it by computing the update step x+ for an iterate xk
using the approximation

f(x) = f(xk) + (x− xk)∇f(xk) +
1

2
(x− xk)T∇2f(xk)(x− xk)

by
x+ = −(R′(xk)

TR′(xk))
−1R′(xk)

TR(xk) . (2.32)

This is a consequence of the necessary first order condition for optimization problems.
With f(xk + x+) = f(xk) +∇f(xk)x+ +O(x2

+), it reads

∇f(xk + x+) = ∇f(xk) +∇2f(xk)x+ +O(x2
+) = 0 .

The next iterate is xk+1 = xk + x+ and the omitted term R′′(xk)
TR(xk) does not

cause much trouble assumed that the initial point xk is near an optimum, because it
would vanish for a zero residual problem.

If the matrix R′(xk)
TR′(xk) in (2.32) does not have full rank or is not uniformly

bounded and well-conditioned, one can add a regularization parameter ν > 0, called
Levenberg-Marquardt parameter, so

x+ = −(νkI +R′(xk)
TR′(xk))

−1R′(xk)
TR(xk) .
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3 Rationalization

3.1 Initialization

In order to cover a surface with cylindrical strips, one needs to find curves on the surface
along which these strips can be laid out. The approach undertaken in this thesis to
find such curves is by using parallel illumination. Via parallel illumination one can
cover a surface with contours. Evaluating these contours and extracting “good” ones
leads to a set of curves which can be used as directrices for the cylindrical strips.

It is a well studied area in computer graphics, as the area of non-photorealistic
rendering heavily relies on good algorithms for this task. A good overview can be
found in [Ise+03], where a rough classification of the methods is done and related
algorithms are mentioned. The authors note, that – contrary to this thesis – some
distinguish between contours and silhouettes, for example the contours being a subset
of the silhouettes, and define other lines, often called feature lines, like creases (edges
with sufficient big angles between adjacent triangles), borders of open meshes and
self-intersections. In the classification of the contour detection algorithms into image
space algorithms, hybrid algorithms and object space algorithms, the last ones are of
interest for the tasks in this thesis. This is because the contours are used as a first
input for further computations and thus shall be available in an analytic description
which cannot be provided by image space or hybrid algorithms in general, as the
former ones operate on pixel matrices and the latter ones too, after some geometry
manipulations in object space.

In object space, pre-computations can be done to reduce the computation time of
the contours, but these methods are omitted as there is no need to accept the time for
pre-computations when the actual algorithms rerun only a limited number of times
and do not need to terminate in interactive spans. An example for such an algorithm
is given in [Wan+08], where hierarchial clustering accelerates the computations at the
expense of additional data structures. The idea in that paper is to view the normalized
face normals as elements of the Gaussian sphere and split it into cells delimited by
four normals in each case. Therefore, the visibility of the faces within each cell can be
determined by the corner elements of those cells in case they share the same visibility
or otherwise via subdividing the cells.

This chapter starts with the basics of parallel illumination and defines and describes
contour generators, stating many properties for a better understanding. The defini-
tions and theorems follow closely [CG00]. Afterwards, the theory is adapted to be
applied on meshes, mentioning the necessary steps to achieve suitable results for the
use as an initial input in the approximation phase.
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3 Rationalization

3.1.1 Parallel Illumination and Contour Generators

Given a plane Σ ⊂ R3 through the origin with normal
−→
d ∈ R3 and a surface S ⊂ R3,

the set
P (
−→
d ) := {q ∈ Σ | ∃p ∈ S : ∃λ ∈ R : q + λ

−→
d = p}

is the orthographic projection of S onto Σ.
The use of a plane through the origin is not necessary, but since all orthographic

projections onto a plane that do not contain the origin are parallel translates along

the normal
−→
d , this easy to handle definition is sufficient.

The useful part of the orthographic projection is the boundary, but as stated below,
a bit more than this is needed. That is the apparent contour, a superset of the
boundary of the orthographic projection. For a surface S ⊂ R3 and a point p ∈ S, let
N : S → R3 be the normal vector field and Np := N(p) the normal vector in the point
p.

DEFINITION 3.1 The set

Γ(
−→
d ) := {p ∈ S |

−→
d ·Np = 0} (3.1)

is called contour generator and the set

γ(
−→
d ) := {q ∈ R3 |

−→
d · q = 0 and ∃λ ∈ R : q + λ

−→
d ∈ Γ(

−→
d )} (3.2)

apparent contour.

This definition is accompanied by fig.(3.1).
There is no consistent nomenclature, the contour generator is also called rim in some

papers and the apparent contour is referred to as contour. There is also a difference
between opaque and semi-opaque surfaces. While definition 3.1 uses semi-opaque
surfaces, where only the surface normal is crucial, one must consider visibility in case

of opaque surfaces. That means that Γ(
−→
d ) 6= Γ(−

−→
d ) may occur and the position of

the light source is important too. This thesis only uses semi-opaque surfaces, which
means that contours actually visually hidden behind parts of the surface are treated
as part of the contour generator, i.e. the visual ray pierces the surface.

Assume S is a surface, then in order to identify problematic points, the apparent
contour can be used to detect them as it exhibits many properties of the contour

generator. Let Γ(
−→
d ) be a contour generator on S and p ∈ Γ(

−→
d ) an arbitrary contour

point. With π(p) denoting the projection of p onto the image plane of the apparent

contour and −→v π(p) the tangent to γ(
−→
d ) at π(p), the normal at p is parallel to −→v π(p)∧

−→
d

if γ(
−→
d ) is regular at π(p). If γ(

−→
d ) has a cusp at π(p) – that means for γ(

−→
d )(s0) = π(p)

that γ(
−→
d )′(s0) = 0 – one has to distinguish two cases.

The first case is an ordinary cusp, defined by γ(
−→
d )′(s0) = 0 and γ(

−→
d )′′(s0) 6= 0.

Then the limit normal at π(p) is parallel to the surface normal at p. An ordinary
cusp indicates an asymptotic direction at the contour generator, hence the tangent
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3.1 Initialization

Figure 3.1: Example of a contour generator and apparent contour.

to Γ(
−→
d ) at p denoted as −→v p and

−→
d are parallel, so the tangential line has exactly

3-point contact with the surface at p (this means that for a local parametrization of
the surface x and a parametrization of the tangential line `, that (x − `) has a root

of order 3 in p). The second case is a cusp where the tangential line to Γ(
−→
d ) passing

through p has at least 4-point contact with the surface, also called flecnodal point.

Thus, an apparent contour γ(
−→
d ) is smooth at a point π(p) unless

−→
d is an asymptotic

direction at p, therefore the apparent contour gives information about problematic
points of the contour generator.

Another special type of contour generators, one with two crossing contours in one
point, called beaks point, can be detected using the apparent contour if depth in-
formation (the distance between p and π(p)) is stored. A beaks point is a singular

point of the contour generator and given the apparent contour components {γi(
−→
d )}i

in the same plane of different components belonging to one contour generator, their
intersection points are beaks points if the depth information agree. Additionally, a
contour generator can contain an isolated point, a so-called lips point.

An example surface given by x(u, v) =
(
u, v,−(v2 − u)2

)
with illumination direction

along the x-axis is shown in fig.(3.2). In (a), the contour with asymptotic point in
p = (0, 0, 0) is highlighted and in (b), the entire contour generator is outlined with the
beaks point even coincident with the asymptotic point.

The contour generator is defined as a point set, but it will also be treated as a
set of continuous curves. The projection of a contour is likewise seen as a connected
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3 Rationalization

(a) (b)

Figure 3.2: Contour generators.

component of the apparent contour.
To conclude this section it will be checked that the property of conjugate directions,

defined in 2.10, also holds for contour generators in a certain sense, before the next
section tackles this property more in detail.

LEMMA 3.2 Given a surface S, an illumination direction
−→
d and a contour generator

Γ(
−→
d ) on S. Then, if Γ(

−→
d ) is smooth, for every p ∈ Γ(

−→
d ) the tangent −→v at p is

conjugate to
−→
d .

Proof As stated in definition 2.10, two elements in TpS are conjugate at p ∈ S if
the second fundamental form is zero or equally in coordinates (d1, d2)II(v1, v2)T = 0.
Without loss of generality, assume p = (0, 0, 0)T and the surface S parametrized by

x(x, y) =

 x
y

f(x, y)

 , x(0, 0) = p = 0

in a neighborhood of p with
−→
d = (1, 0, 0)T and the tangential plane to agree with the

xy-plane. Hence

xx =

 1
0
fx

 , xy =

 0
1
fy

 ,

xxx =

 0
0
fxx

 , xyy =

 0
0
fyy

 , xxy =

 0
0
fxy


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3.1 Initialization

and

N =
xx ∧ xy
||xx ∧ xy||

=
1√

f2
x + f2

y + 1

 −fx−fy
1

 .

With z = f(x, y) = 1
2(ax2 + 2bxy + cy2) + O

(
{x, y}3

)
– the linear term vanishes

because the tangential plane has normal parallel to −→n = (0, 0, 1)T , thus fx(0, 0) = 0
and fy(0, 0) = 0 – follows

fxx(0, 0) = a , fyy(0, 0) = b , fxy(0, 0) = c (3.3)

as well as

N ·
−→
d = 0 (3.4)

1√
f2
x + f2

y + 1

 −fx−fy
1

 ·
 1

0
0

 = 0

fx = 0 (3.5)

and at (x, y) = (0, 0)

L =< N,xxx > =
1√

f2
x + f2

y + 1

 −fx−fy
1

 ·
 0

0
a


= a ,

M =< N,xxy > = b ,

N =< N,xyy > = c ,

so

II =

(
a b
b c

)
.

Given that (3.4) is the condition for a point to be an element of the contour generator

Γ(
−→
d ), one can write down its equation explicitly using (3.3) and (3.5);

Γ(
−→
d ) : ax+ by +O

(
{x, y}2

)
= 0 . (3.6)

Suppose a 6= 0 or b 6= 0 (else compare asymptotic directions), w.l.o.g. a 6= 0, then
(3.6) can be transformed into

x = − b
a
y +O({x, y}2)

and thus

z = f(x, y) = f

(
− b
a
y +O

(
{x, y}2

)
, y

)
=

ac− b2

2a
y2 +O

(
{x, y}3

)
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3 Rationalization

along Γ(
−→
d ). These computations serve as a tool to express the tangent of Γ(

−→
d ) at p.

All that is left to do now is differentiating the curve Γ,

Γ(
−→
d )(y) =

 − b
ay +O({x, y}2)

y
ac−b2

2a y2 +O({x, y}3)

⇒ Γ′(
−→
d )(0) =

 − b
a

1
0

 .

Since
−→
d = (1, 0, 0)T and −→v = Γ′(

−→
d )(0) =

(
− b
a , 1, 0

)T
lie in the tangent plane TpS with

p = (0, 0, 0)T and plane equation z = 0, the elements e1 = (1, 0, 0)T , e2 = (0, 1, 0)T

clearly form a basis of TpS and in this basis,
−→
d has coordinates (d1, d2) = (1, 0) and

(v1, v2) =
(
− b
a , 1
)
. To conclude the proof

(d1, d2)II(v1, v2)T = (1, 0)

(
a b
b c

)(
− b
a

1

)
= (a, b)

(
− b
a

1

)
= −b+ b = 0 .

�

3.1.2 Conjugate curve networks

This section deals with conjugate curve networks, as their property of covering (reg-
ular) surfaces with a two-parametric family of curves, is used for initialization in the
following sections. A comprehensive overview over conjugate nets and their discrete
counterparts - these are PQ-meshes - can be found in [Sau70].

The term conjugate was introduced in definition 2.10. An example of a conjugate
net is the principle curvature net. Given a surface S then for every point p ∈ S one can
compute the principle directions −→e 1,

−→e 2 in p as defined in 2.13. From proposition 2.12
it follows immediately that −→e 1 and −→e 2 are conjugate. This enables a parametriza-
tion of a surface along the principle curvature lines which in turn is a conjugate net
parametrization. Although this is a useful method in order to initialize for conical
meshes, as shown for example in [Liu+06], the approach taken here to initialize for
cylindrical meshes is via conjugate nets from parallel illumination.

To gain more insight, the conjugacy property of contour generator tangent and
illumination direction is generalized to tangent surfaces which touch a given surface
along a curve.

First it is useful to rewrite the second fundamental form using (2.10). Let x1(t) :=
x(u1(t), v1(t)) and x2(t) := x(u2(t), v2(t)) be two curves on a surface S which intersect
in a common point p. Then these two curves are conjugated in p if per definition for
x′1 = xuu

′
1 + xvv

′
1 and x′2 = xuu

′
2 + xvv

′
2 holds

II(x′1,x
′
2) = 0
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3.1 Initialization

and thus

(u′1, v
′
1)

(
L M
M N

)(
u′2
v′2

)
= 0

Lu′1u
′
2 +Mu′1v

′
2 +Mu′2v

′
1 +Nv′1v

′
2 = 0 (3.7)

−xuNuu
′
1u
′
2 − xuNvu

′
1v
′
2 − xvNuu

′
2v
′
1 − xvNvv

′
1v
′
2 = 0

(xuu
′
1)(Nuu

′
2) + (xvv

′
1)(Nuu

′
2) + (xuu

′
1)(Nvv

′
2) + (xvv

′
1)(Nvv

′
2) = 0

(xuu
′
1 + xvv

′
1)(Nuu

′
2 + Nvv

′
2) = 0

which can be written as

x′1N′2 = 0 or because of symmetry as x′2N′1 = 0 . (3.8)

Equation (3.7) can also be interpreted as a differential equation for a family of curves
X2 if a family of curves X1 is prescribed (or otherwise). If a family of curves X1

contains a curve x1 for which holds II(x′1,x
′
1) = 0 in a point p, then the tangent is

self-conjugate there (it is an asymptotic direction), otherwise the families of curves
X1 and X2 form a conjugate curve network. So, if there exists a conjugate curve
network on a parametrized surface, it is possible to parametrize the surface via x(u, v)
with x(u, v0) ∈ X1 for v = v0 = const and x(u0, v) ∈ X2 for u = u0 = const.

For a curve on a surface it is of interest to examine the properties of a surface strip
that touches the surface along this curve. A surface strip along a curve is a ruled
surface so that for every point of the curve the corresponding ruling lies in the tangent
space of the surface in this point. The length of each ruling shall be small enough to
not intersect with the surface apart from this directrix.

Consider a one-parametric family of planes, defined via

N(t)x = d(t) . (3.9)

For now, omit the case where all planes share a common point (finite or at infinity).
To compute the envelope differentiate with respect to t, thus

N′(t)x = d′(t) (3.10)

and hence the points x lie on a family of straight lines with directions parallel to
e(t) = N(t) ∧N′(t). Demanding also that x fulfils

N′′(t)x = d′′(t) (3.11)

yields a curve x(t) for which (3.9), (3.10) and (3.11) holds. Applying (3.10) to the
differential of (3.9), that is N′(t)x(t) + N(t)x′(t) = d′(t), and (3.11) to the differential
of (3.10), thus N′′(t)x(t) + N′(t)x′(t) = d′′(t), these equations become

N(t)x′(t) = 0 ,

N′(t)x′(t) = 0 . (3.12)
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3 Rationalization

This means that x′(t) is orthogonal to N(t) as well as to N′(t), hence

x′(t) = λe(t) . (3.13)

Thus the tangents of x(t) are the rulings of the envelope of (3.9).
In the conical case, e.g. all planes share a common finite point p, equation (3.9) can

be written as
N(t)x = N(t)p

and thus N(t)(x− p) = 0 which leads to

N′(t)(x− p) = 0 ⇒ (x− p) = se(t)

⇒ x = p+ se(t) .

With the above one gets a curve x(u) for which holds

N(t)(x(u)− p) = 0

N′(t)(x(u)− p) = 0

N′(t)
∂

∂s
x(t) = < N′(t),N(t) ∧N′(t) >= 0 (3.14)

which means that the lines through x(t) and p are the rulings of the strip.
For the cylindrical case see the previous section and examples of the surfaces are

given in fig.(3.3).
Comparing (3.12) respectively (3.14) with (3.8), these calculations lead to the fol-

lowing theorem.

THEOREM 3.3 The ruling directions of a surface strip that touches a surface along
a curve are conjugated to the tangent directions of that curve.

COROLLARY 3.4 For a one-parametric family of curves X1, the conjugate curves
X2 are given as the integral curves of the conjugated tangential directions.

Additionally, for a surface that is parametrized as a conjugate curve network like
described above, so II(xu,xv) = 0, it is obvious that xuNv = xvNu = 0 which leads to
M = 0 in the second fundamental form and one can formulate corollary 3.5 because
the converse holds too.

COROLLARY 3.5 A surface is parametrized as a conjugate curve network if and
only if M = 0 in the second fundamental form.

With M = 0, which means xuv is normal to xu ∧ xv, a parametrization x(u, v) is a
conjugate net if for all parameters (u, v) holds xuv = xvu ∈ span{xu,xv} and motivates
the discrete version below.

DEFINITION 3.6 A mesh x : Z2 → R3 : (i, j) 7→ xij is called discrete conjugate net
if for all pairs (i, j) holds δiδjxij = δjδixij ∈ span{δixij , δjxij}.
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Figure 3.3: Examples of cylinder surface, cone surface and tangent surface.

So clearly, PQ-meshes form a conjugate net.

Recall the conjugate direction property from above, x′1N′2 = 0. Instead of writing
the curve as x1(u1(t), v1(t)) denote it as c(t) then the above calculations can be applied
to the surface curve. From theorem 3.3 immediately follows the subsequent corollary.

COROLLARY 3.7 Given a curve c(t) in a conjugate curve network x(u, v) then the
tangents of the conjugated curves along c(t) form a developable surface.

Conjugate curve networks are defined for smooth surfaces like above. As for the
applications in this thesis mostly discrete objects are treated, a discrete analogon is
needed. The following motivates that planar quad-meshes can be seen as such. For a
complete overview see [Sau70] which the subsequent follows very closely.
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For a surface x(u, v), ε > 0 and parameter values (u, v) ∈ {ui|ui := u0 + iε} ×
{vj |vj := v0 + jε} the triangles T = (x(u, v),x(u + ε, v),x(u, v + ε)) form the so-
called chord triangle network and the quads that consist of T and the triangles
T̂ = (x(u, v + ε),x(u + ε, v),x(u + ε, v + ε)) the chord quadrilateral network,
compare fig.(3.4).

Figure 3.4: Example of chord triangle network respectively chord quadrilateral
network.

One is interested in the angle between the triangles T and T̂ which will be denoted
αε, see fig.(3.5). Using the notation

aε(u, v) = x(u+ ε, v)− x(u, v) , aε(u, v) = ||aε(u, v)||2 ,
bε(u, v) = x(u, v + ε)− x(u, v) , bε(u, v) = ||bε(u, v)||2 ,
cε(u, v) = x(u+ ε, v)− x(u, v + ε) , cε(u, v) = ||cε(u, v)||2 ,
dε(u, v) = x(u+ ε, v + ε)− x(u, v) , dε(u, v) = ||dε(u, v)||2

for the edges of the triangle and

a(u, v) = < xu(u, v),xu(u, v) >
1
2 =

√
E ,

b(u, v) = < xv(u, v),xv(u, v) >
1
2 =

√
G ,

c(u, v) = ||xu(u, v)− xv(u, v)|| =
√
E +G− 2F ,

d(u, v) = < xuv(u, v),xuv(u, v) >
1
2

for the smooth counterparts, where E,F,G are the coefficients of the first fundamental
form, one can approximate the discrete quantities for ε→ 0 as (z = {a, b, c, d})

zε(u, v) = εz(u, v) + ε2z′(u, v) +O(ε3) ,

αε(u, v) = εα(u, v) + ε2α′(u, v) +O(ε3) .
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x(u, v)

x(u+ ε, v)

α

x(u+ ε, v + ε)

x(u, v + ε)

a

b

c

d

Figure 3.5: A chord quadrilateral, divided into two triangles with the angle they
enclose.

Continuing in this manner, one can express the sides of T̂ and all other angles inside
the triangles. As with Volε(u, v) =< dε(u, v),bε(u + ε, v) ∧ aε(u, v + ε) >, this is six
times the volume of the tetrahedron spanned by the corresponding vertices,

sinαε(u, v) =
cε(u, v)Volε(u, v)

Aε(u, v)Âε(u, v)
(3.15)

where Aε(u, v) is the area of the parallelogram spanned by aε(u, v) and bε(u, v),thus
Aε(u, v) = ||aε(u, v)∧bε(u, v)||, and Âε(u, v) = ||aε(u, v+ε)∧bε(u+ε, v)|| is the area
of the corresponding parallelogram in T̂ , it can then be shown that

α(u, v) =

√
E − 2F +G√
EG− F 2

M

with M being the coefficient of the second fundamental form, because the smooth
version of (3.15) reads

sinα(u, v) =

√
E +G− 2F < xu(u, v) ∧ xv(u, v),xuv(u, v) >√

EG− F 2
√
EG− F 2

=

√
E +G− 2F < N(u, v),xuv(u, v) >

√
EG− F 2

√
EG− F 2

√
EG− F 2

=

√
E − 2F +G√
EG− F 2

M .
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Using the Taylor expansion of the sine function, i.e. sin(x) = x− x3

3! + . . . and therefore

sin(xε) = sin(εx+ ε2x′ +O(ε3))

= εx+ ε2x′ +O(ε3)− (εx+ ε2x′ +O(ε3))3

6
+ . . .

= εx+ ε2x′ +O(ε3) ,

one sees that the use of the sine function can be suppressed.
These computations yield for a surface x(u, v) which is parametrized as as conjugate

curve network that the angles between the triangles, which form the chord quadrilat-
erals, are for ε > 0 given by

αε(u, v) = ε

√
E − 2F +G√
EG− F 2

M + ε2α′(u, v) +O(ε3)

(3.5⇒M=0)
= ε2α′(u, v) +O(ε3)

= O(ε2) .

So for conjugate curve networks, the chord quadrilaterals are planar with an error
of O(ε2), thus the (almost) planar chord quadrilaterals of a conjugate curve network
parametrization converge to that conjugate curve network. Conversely PQ-meshes are
in general not chord quadrilaterals of a conjugate curve network parametrization, thus
subdivision processes do not lead to conjugated curve networks in general.

This motivates the use of strips initialized with contours as boundary curves in the
section 3.2.

3.1.3 Sampling Methods and Discretization

Until now, mostly smooth surfaces were of interest. Several statements on surfaces
with continuously changing properties were given so far. For the rest of the thesis,
discrete objects play a more important role.

Since discrete surfaces are of interest, a discrete method shall be given to compute
the contour generators of an arbitrary surface. First, one must consider the possible
light directions.

For semi-opaque surfaces, it was stated that Γ(
−→
d ) = Γ(−

−→
d ), this means that it is

sufficient to consider the direction
−→
d or the direction −

−→
d . Further, as the position of

the light source is not relevant, the illumination direction can be chosen as an element
of the unit sphere S2 without loss of generality.

Summed up, one gets all possible contour generators for semi-opaque surfaces by
positioning light sources at O with illumination directions ` ∈ H2 = {(x, y, z) ∈ S2|z ≥
0}. As it is not possible to compute the contour generators for every point in H2, a
good subset is needed. The approach is to approximate H2 with a discrete set I = IH
that has the form

IH = {(cos(φi) sin(ψj), sin(φi) sin(ψj), sin(ψj))} ,

36



3.1 Initialization

where φi ∈ {0, 360
n , 2

360
n , . . . , (n−1)360

n } and ψj ∈ {0, 90
m , 2

90
m , . . . , (m−1)90

m }. Choosing
n,m ∈ N big enough yields a good approximation of H2. Another method would
be to draw the parameters φ and ψ from a uniform random distribution. Also, as
a hemisphere is not the best choice for every surface that shall be covered, other
illumination direction sets can be used, for example the discrete subset

IT = {(cos(φi) sin(ψj), sin(φi) sin(ψj), sin(ψj)) |0 ≤ φi < 360,−45 ≤ ψj ≤ 45} ⊂ S2 .
(3.16)

This may seem unnecessary at this point, but makes sense as soon as tangential
fields on the meshes, constructed from I, are integrated to levelsets in section 3.1.5.

Figure 3.6: Example for IH , IT with illumination directions.

Given a mesh M and an illumination direction
−→
d , a direct identification of points

which lie in Γ(
−→
d ) using (3.1) is not effective because the normal field on M is discrete

too, thus does not change continuously.

One approach could be to identify those edges of M for which one adjacent face is
pointing towards the light source (viewed as located at infinity) and the other adjacent
face is pointing away. Mathematically this means for neighboring faces f1, f2 with face
normals −→n 1,

−→n 2

( −→n 1 ·
−→
d ≥ 0 and −→n 2 ·

−→
d < 0 ) or ( −→n 1 ·

−→
d ≤ 0 and −→n 2 ·

−→
d > 0 ) .

The problem with this method is, that it heavily relies on the resolution of the mesh
M , so another – less resolution-dependent – method is needed.
Instead of identifying edges of the mesh, one can identify contour lines on the mesh
going through the triangles.
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With proper normals at the vertices of the mesh, the argument for finding contour
generators is similar to the method stated above. For a given mesh M and an illu-

mination direction
−→
d , consider all vertices v0, v1, v2 ∈ f for every face f ∈ F and the

corresponding normals −→n 0,
−→n 1,
−→n 2. If for two of these three normals −→n i,

−→n j , i 6= j,
holds

−→n i ·
−→
d < 0 and −→n j ·

−→
d > 0

then there is a point v∗ on the edge connecting vi and vj for which

−→n ∗ ·
−→
d = 0 , (3.17)

where −→n ∗ is the interpolated normal at v∗. To get v∗ respectively −→n ∗ a simple linear
interpolation is applied, which means

v∗ = vi(1− t) + vjt
−→n ∗ = −→n i(1− t) +−→n jt

with t given as the solution of

0 = (−→n i ·
−→
d )(1− t) + (−→n j ·

−→
d )t , leading to

t =
−→n i ·

−→
d

(−→n i ·
−→
d )− (−→n j ·

−→
d )

.

In case of a second pair of vertices of the same face fulfilling that condition, one
has a root of (3.17) for two different edges and can connect them with a straight line
through the face. This line is a local linear approximation of the contour generator and
proceeding with this method for the other faces and connecting the lines in adjacent

faces if possible yields a discrete contour generator for direction
−→
d (that may consist

of several components).

3.1.4 Evaluation and Extraction of Samples

Not every contour line is suitable as a directrix of a cylindrical strip. To guarantee
a good covering, the angle between directrix and rulings should be near 90◦. That
is, the illumination direction should be as perpendicular to the contour generator as
possible. This restriction provides a good visual effect but above all it is important to
avoid singularities (an angle of zero yields a locally degenerate strip with width zero)
that impede the method from working correctly.

Now assume M is a mesh. The contour generators do not consist of curves but
of polygonal lines and as the normals in the vertices are linearly interpolated, using
the apparent contour to identify properties of the contour generator would not work
directly. Instead of explicitly naming contour points with special features and treating
them appropriately, the following method tries to avoid such contours.

The idea is, given the contour generators for every sample
−→
d ∈ I, discard those

with components which are “too parallel” to the illumination direction. As every
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−→n 1

−→n 2

−→n 3

−→
d

−→n 1 ·
−→
d > 0

−→n 3 ·
−→
d > 0

−→n 2 ·
−→
d < 0

t12

t23

Figure 3.7: Procedure of root finding.

component c ∈ Γ(
−→
d ) is a polyline, c can be written as an edge-list c = (e1, e2, . . . , en)

and an edge ei is admissible if the normalized direction vector −→ei of ei encloses an
angle near enough to 90◦ or equally

−→ei ·
−→
d ∈ (−εα, εα) (3.18)

where εα denotes an angle-threshold.
If a contour generator admits not solely but mostly admissible edges it can be regarded
sufficient good. Therefore the following definition makes sense as a requisite for not
discarding contour generators.

DEFINITION 3.8 Let Γ(
−→
d ) be a contour generator on a surface S, then a component

c ∈ Γ(
−→
d ), c = (e1, e2, . . . , en) is admissible if for a given angle-threshold εα and a

length-threshold εδ holds

1

n
#{ei|ei satisfies (3.18)} > 1− εδ . (3.19)

The contour generator Γ(
−→
d ) is admissible if at least one component is admissible.

For the above definition note, that if only a few edges are allowed to be not ad-
missible, the case of self-conjugate directions does not occur for meshes with sufficient
resolution because then the angles between illumination direction and subsequent edges
does not change that fast. Therefore, with increasing resolution, more edges are not
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3 Rationalization

admissible around self-conjugate edges and hence the component is disqualified by
(3.19).

Removing those contour generators and their corresponding samples from I which
are not admissible, one gets a more coarse sampling Ĩ ⊂ I. Also components that are

not admissible are removed from admissible contour generators, getting for every
−→
d ∈

Ĩ a (maybe partial) contour generator Γ̃ ⊂ Γ – consisting of admissible components
only.

Figure 3.8: Scheme of admissible (blue) and not admissible (red) edges with εα = 0.5.
With εδ = 0.5 this polyline would be admissible.

3.1.5 Computation of Initializing Curves

Consider Ĩ, a one-parametric family Φ of contours shall be extracted, which is done by
finding a polyline connecting those elements of Ĩ for which the corresponding contour
generators Γ̃ fulfill the needed criteria of quality.

To do this, one needs some structure on Ĩ. Because of the fact that every
−→
d ∈ Ĩ is

also an element of S2, the boundary of the convex hull of Ĩ contains all elements of Ĩ,
so instead of regarding Ĩ as a set, consider it as a triangle mesh that can be found by
computing the convex hull of Ĩ, see [BDH96].

In order to get a good covering of the mesh, the contour generators must be evenly
distributed or rather a contour should be nearly a translate of its neighboring contours.
Thus, given Γ̃ one needs to find a step direction which tells the illumination direction
where to move next in order to generate such a contour, producing a curve consisting
of points that represent illumination directions, which in turn generate a covering in
the end. These step directions, which are to be found, correspond to the tangents of
the curve of illumination directions.

If one denotes the contour as an element of X1, a good translate is found by moving
along the curves in X2. The method is motivated by the idea, that the illumination
direction is conjugate to the contour. A set of illumination directions is already sam-
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3.1 Initialization

pled, so for every of those the question is where to move next from them, in order to
get a one-parametric family of illumination direction curves.

As
−→
d ∈ S2, the wanted step direction −→x ∈ TdS2 is perpendicular to

−→
d and for

a good offset property it clearly also has to be perpendicular to the contour. Let

c = (e1, . . . , ek) be the best component of Γ̃(
−→
d ) with respect to (3.19). At this point,

the component already (mostly) consists of edges enclosing an angle of nearly 90◦ with
−→
d . Denoting the summed up mesh normals along the component c with

−→n c =
1

k

k∑
i=0

−→n i

and its projection onto the tangential plane of Ĩ in
−→
d with −→x , one has a tangential

vector field on Ĩ.

This vector field is seen as the gradient field of a scalar piecewise-linear function
f : Ĩ → R. Also, it may exhibit the problem of disoriented directions in the sense
of their signs, because for a solution −→x one gets (−−→x ) as a solution as well, thus
the vector field is combed, i.e. vectors may exchange their sign depending on their
neighbors.

The levelsets of this function then serve as the wanted one-parametric family of
curves. The subsequent paragraphs deal with this problem following [Pin] by investi-
gating the properties of such a function.

Assume a triangle ∆ ⊂ R3 with vertices vi, vj , vk, halfedges eij , ejk, eki oriented
counter-clockwise and function values f` := f(v`), ` ∈ {i, j, k}. As f is linear on ∆ the
gradient ∇f is constant on ∆ and for the restriction of f to a halfedge, for example
eij , holds

f�eij (t) = (1− t)fi + tfj , t ∈ [0, 1]

and therefore

< ∇f,−→eij > =
∂f

∂−→eij
= f�eij

′(t)

= fj − fi .

The face normal is given by N =
−→eij∧−→ejk
2Area , with Area = 1

2 ||
−→eij ∧ −→ejk||, all statements

analogous for the other halfedges. Consider

−→g :=
1

2Area
N ∧ (fk

−→eij + fi
−→ejk + fj

−→eki)
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3 Rationalization

which behaves like the gradient of f , to wit

< −→g ,−→eij > =
1

2Area
< N ∧ (fk

−→eij + fi
−→ejk + fj

−→eki),−→eij >

=
1

2Area
< N ∧ fi−→ejk + N ∧ fj−→eki,−→eij >

=
1

2Area
(fi < N ∧ −→ejk,−→eij > +fj < N ∧ −→eki,−→eij >)

=
1

2Area
(fi < N,−→ejk ∧ −→eij > +fj < N,−→eki ∧ −→eij >)

=
1

2Area
(−fi < N,−→eij ∧ −→ejk > +fj < N,−→eki ∧ −→eij >)

= fj − fi .

Thus ∇f = −→g and using the gradient rotated by 90◦ into the plane of the triangle the
formula is

N ∧∇f = − 1

2Area
(fk
−→eij + fi

−→ejk + fj
−→eki) . (3.20)

As mentioned earlier, Ĩ is a mesh approximating a subset of S2 where every vertex
is identified with an illumination direction and also holds the corresponding contour
generator. Further a vector −→x pointing into the direction of another illumination
direction that guarantees a good covering is attached to every vertex. But because of
the above, one needs such directions on the faces of the mesh. So for every triangle
∆ ∈ Ĩ, the directions −→x of its vertices are averaged to - here viewed as such - a gradient
on the face and attached to it.

This means for vertices vi, vj , vk ∈ ∆ with directions −→x i,−→x j ,−→x k, respectively, and
halfedges eij , ejk, eki, one has

∇f�∆ =
1

3
(−→x i +−→x j +−→x k) .

Knwowing ∇f�∆ implies the knowledge of the left-hand-side of equation (3.20) and
thus yields a linear equation system for the unknown values f`, that is the sparse
system


E∆1

E∆2

...

E∆m


︸ ︷︷ ︸


f1

f2
...
fn

 =


N ∧∇f�∆1

N ∧∇f�∆2

...

N ∧∇f�∆m

 ,

:= E

where n = |V |,m = |F | and E ∈ Rn×3m with entries E∆`
∈ R3×n,

E∆`
= − 1

2Area(∆`)
(0 . . . 0 −→ejk 0 . . . 0 −→eki 0 . . . 0 −→eij 0 . . . 0)

↑ ↑ ↑
i j k
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3.2 Approximation

for ∆` = (vi, vj , vk) with corresponding halfedges.

Solving the sparse system yields function values fi at the vertices vi. As mentioned
earlier, the gradient of f in a vertex always points into the direction of the contour
generator that guarantees a good covering with the current one. However, for the
computation above the gradient was rotated about 90◦ which means that it does not
point into the wanted direction but is orthogonal to it. As well known the gradient
in a point is orthogonal to the levelset through this point, thus the levelsets that
correspond to the funtion values fi are exactly the desired curves.

For practical reasons, a prescribed number of levelsets K are computed. For this
task the minimum and maximum function values fmin and fmax, respectively, are
taken and the levelsets with function values f = fmin + j fmax−fmin

K−1 , j = 0, . . . ,K − 1,
are computed.

Only one levelset is needed for covering, hence a choice must be made. The question
which would be the best cannot be answered definitely, because it depends on the input
and illumination meshes as well as on personal preferences.

An example of the initialization method is given in fig.(3.9). The initial set of il-
lumination directions is displayed as a mesh top left and the final set of illumination
directions after removing not admissible ones below, also showing the computed lev-
elsets with the one used for the covering of the mesh on the right side emphasized in
red. With a sampling size of 64 directions and 2176 mesh vertices, the computation
of all contour generators takes 750 milliseconds, the initialization method as a whole
takes 1160 milliseconds, thus only a bit more than a second.

3.2 Approximation

The chosen levelset from the last section yields a one-parametric set of illumination
directions and corresponding contour generators which are used for the surface ap-
proximation explained in the following.

Given the contours from the last section, one can now start to use them for cov-
ering the given surface with cylindrical strips. As a representation of these strips,
tensor product B-Splines are used. It is already known from previous statements,
that the contours together with those curves that have the corresponding illumination
directions as tangential directions form a conjugate network on the surface, thus it
is convenient to set up the cylindrical surfaces with a contour as directrix and the
illumination direction as the ruling direction.

For practical reasons, the question of ordering the contour generators arises. As
contour generators usually consist of more than one component, all components must
be arranged in a manner that guarantees a useful surface initialization. In the case
of a smooth closed surface and parallel illumination, this question would be easier to
answer as every possible normal direction must occur and thus for two illumination

directions
−→
d i,
−→
d j there is always a normal −→n so that −→n is parallel to

−→
d i ∧

−→
d j which

yields an intersection point p = Γ(
−→
d i) ∩ Γ(

−→
d j) with normal −→n .

In some cases, when problematic components (cusps, lips, . . . ) are already removed,
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3 Rationalization

Figure 3.9: Example of the initialization method.

thus having a covering that resembles a conjugate curve network, and a sequential
arrangement which makes sense exists, one can use the illumination direction to move
from one contour to the next one.

Take a point p0 on a component c0 of a contour generator and append the corre-

sponding illumination direction
−→
d 0. Construct the ray with direction given as the

projection of
−→
d 0 on the mesh through p0 which lies in the same triangle as p0 and

intersect it with the edges of this triangle giving a new point p′0. Again, construct

a ray with direction given as the projection of
−→
d 0 onto the next triangle through p′0

and intersect it with the next edges yielding p′′0. This procedure is applied until the
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3.2 Approximation

ray intersects with another contour c1 inside a triangle yielding the point p1 for which

the procedure is repeated using
−→
d 1 as new direction. Iterating until every contour

occurred (maybe this method leads to the boundary of the mesh, before every com-
ponent occurred, then start with the next unused component in line), one has a list of
points (p0, p1, . . . , pN ) which can be used to order the corresponding components.

Constructing cylinder strips given the contours as directions in the manner of (2.21),
the main step is to change this coarse surface approximation in a way that improves
the approximation as well as it preserves the cylindrical property which is fulfilled
when using the mentioned construction. An alternative is to take of two neighboring
contours as the boundary curves of a strip which then is not cylindrical in general and
use an optimization which enforces the cylindrical property. This idea is motivated by
the already treated chord quadrilaterals and their property to be nearly planar. The
following optimization problem tackles both these tasks similar to [Pot+08].

The target functional shall guarantee that the strips are as close to the original mesh
M as possible, thus for sample points {xk}k of the B-Spline surface x(u, v)

fclose =
∑
k

‖xk − πM (xk)‖2 (3.21)

provides a closeness term where πM (x) denotes the projection on M and

ffair =

∫
‖xuu‖2du (3.22)

takes care of the fairness. The first one pushes the initial strip towards the mesh by
minimizing the distance of sample points on the strip to the projections of these points
onto the mesh. The fairness functional smooths the strip by minimizing the bending
energy of the strip which helps suppressing noise along the directrix which results in
a higher visual smoothness.

Using these two functionals as a basis for the approximation, one can add several
others which help optimize into the desired form. So clearly, one first needs a functional
to ensure the cylindrical property.

There are two possibilities of doing this, using a cylindrical constraint or a cylindrical
penalty. In both cases, the rulings are required to be parallel, so an exemplary direction

can bet stated towards which they are forced. Let
−→
`i be this direction for a strip xi.

The linear constraint A−→x =
−→
b has the control points of the strip as variable vector

and the matrix A is chosen so that the rows 3j, 3j + 1, 3j + 2 of the left-hand side are

equal to bij − aij and the vector
−→
b consists of entries of the direction

−→
`i , yielding

gcyl = A−→x −
−→
b .

Similarly,

fcyl =
∑
j

∥∥∥∥ bi(uj)− ai(uj)
‖bi(uj)− ai(uj)‖

−
−→
` i

∥∥∥∥2

(3.23)
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3 Rationalization

provides the cylinder property penalty, e.g. rulings parallel to
−→
`i , see fig.(3.10).

The idea behind the functional fcyl is to minimize the difference between the nor-

malized ruling direction
bi(uj)−ai(uj)
‖bi(uj)−ai(uj)‖ given at a parameter value uj and the prescribed

target direction
−→
`i . The target direction can be chosen as the mean value of all ruling

directions and should be updated in every optimization iteration.

Further functionals which may be helpful are fboundary and fgap which extend fclose
to the boundary curve of the surface and minimize the distance between two succeeding
strips, respectively. So fboundary is set as

fboundary =
∑
k

‖xk − π∂M (xk)‖2

for sampled points xk at the surface boundary and

fgap =
∑
k

dist(bi(xk), ai+1(x̃k))
2

describes the gap penalty between two strips. The use of parameters xk and x̃k is a
shortcut to denote the distance between sample points of a boundary curve and their
footpoints on the opposite boundary curve.

To enforce the cylindrical property even more, it may be useful to also apply a
functional which helps to transform the given strip into a developable surface, i.e.
a strip with planar faces but without the parallelism of the rulings. Therefore the
tangential planes along the rulings need to agree, which is enforced by minimizing the

length of the projection of the ruling direction −→r j =
bi(uj)−ai(uj)
‖bi(uj)−ai(uj)‖ onto the normal

direction −→n j given as the cross product of the normalized directions of the diagonals

d1
j = ai(uj) ∨

(
bi(uj) +

‖|bi(uj)− ai(uj)‖
‖b′i(uj)‖

b′i(uj)

)
,

d2
j = bi(uj) ∨

(
ai(uj) +

‖|bi(uj)− ai(uj)‖
‖a′i(uj)‖

a′i(uj)

)
resulting in

fdev =
∑
j

< −→n j ,
−→r j >2 .

Finally, for the visual quality of the approximation

fwidth =
∑
j

(||bi(uj)− ai(uj)|| − ||bi+1(uj)− ai+1(uj)||)2

provides a functional which ensures strips which are similar in width and

fdist =
∑
j

‖π(mi(uj))−Mi(uj)‖2
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residual

Figure 3.10: Idea behind fcyl.

comes in handy when the initial strips are not distributed evenly enough. The used
functions are mi(u) = ai(u)+bi(u)

2 and Mi(u) = mi−1(u)+mi+1(u)
2 , with π(mi(u)) being

the projection of mi(u) onto the line connecting mi−1(u) with mi+1(u).

Since there are different functionals which play a role for the optimization, they may
interfere with each other, hence priorities should be set. This is achieved by weighting
the individual functionals before putting them together into a single objective function,
so for example

fbasic = wclosefclose + wfairffair

with positive weights wclose, wfair is used as the basic objective function,

fextended = wboundaryfboundary + wgapfgap + wwidthfwidth + wdistfdist + wdevfdev

then extends it. So the constrained optimization problem is given by

min fbasic + fextended s.t. gcyl =
−→
0

and the penalty optimization has the form

min fbasic + fextended + wcylfcyl .

Depending on the initialization of the strips and the current state of the approximation,
the type of optimization problem as well as the weights should be set appropriately.
Below in section 3.3, some examples are given.
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3.3 Examples and Results

In order to outline the quality of the rationalization, the examples use color-coded
strips. Measuring the angles between consecutive rulings sampled along the strip, a
maximum angle α of more than 10◦ leads to a black strip, similarly

α ∈ (5.0◦, 10.0◦] =̂ red ,

α ∈ (2.0◦, 5.0◦] =̂ blue ,

α ∈ (1.0◦, 2.0◦] =̂ green ,

α ∈ (0.5◦, 1.0◦] =̂ light green

and α ≤ 0.5◦ yields a white strip.
While the mesh for the first example was solely created to test the method, starting

with the second example, the used meshes come from external sources to provide a
richer variety of test cases.

Example 1

Similarly to the example of the initialization method using a vase mesh, a simple
object is considered first. In fig.(3.11), the strips are initialized using two neighboring
contours. Width and distribution of the strips are not ideal, but good enough to correct
them using higher weights for the respective functionals in the beginning. Afterwards,
high values for developability and cylindrical weights, together with positive weights
for boundary approximation and strip gaps, yield the final covering.

In the result, the deviation between subsequent drawn rulings is less than 0.5◦

and the maximum deviation along the strip, measured as the sum of the consecutive
unsigned angles between subsequent rulings is less than 1.3◦.

Example 2

In order to cover the given mesh, shown in fig.(3.12), the strips were initialized and
subdivided to control the initial strip width. Again, width and distribution are en-
forced before the focus lies on the other functionals. The angles between consecutive
rulings are less than 0.3◦, summed up along the strips, none has a deviation of more
than 3◦, using a cylinder penalty. For the final covering, a cylinder constraint was
used to get perfect cylinders.

The upper part of the surface does not hold any contour generators. This is a
result of the threshold settings, because the faces at the sides needed different values.
Nevertheless, initial strips emerge from connecting contours on the edges between the
sides and the upper part.

Examples 3

This example (top of Lilium Tower, Warsaw, by Zaha Hadid Architects) shows the
capabilities and limitations of the presented method by means of approximating a
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clearly non-suited surface in fig.(3.13). Here, the initialization algorithm only yields
a very coarse set of contours, thus the initial covering is far off an optimum. Higher
values for closeness and gap weights allow a first usable layout which then is optimized
further using the typical steps.

Two different final coverings are given. As the surface does not allow a good overall
covering with cylinder strips, a priority has to be chosen. Close-ups are given in
fig.(3.14). Focus on closeness gives a covering that resembles the underlying mesh
shape better, but gaps between the strips have to be treated outside the method in
addition. Focus on continuity closes the gaps between the strips, but much of the
shape is lost.

For the final coverings, the cylinder property was enforced using the cylinder con-
straint, thus leading to a deviation of nearly zero (all values < 10−5 ◦).

Examples 4

Even if it is not always possible to get a set of contours that allows a covering of the
whole surface, at least quite a bit can be covered. In fig.(3.15), large parts of the mesh
are covered initially. Obviously, the proposed method for rearranging the contours
does not work in this case, because no meaningful order can be defined, so for this
example all functionals which involve more than one strip at a time must be set up
manually. Using a cylinder penalty with gap and width functionals, the strips are
aligned before a cylinder constraint guarantees a result consisting of perfect cylinders.

3.4 Discussion and Conclusions

This chapter first introduced an initialization method in 3.1 which can be used to gen-
erate a set of contour lines that are useful for surface approximation in the subsequent
section 3.2.

The quality of the method highly depends on two properties. First, on the type
of mesh which shall be covered, i.e. the curvature and the structure. This raises the
question, for which input meshes the method should even be considered and is treated
in the paragraphs below.

Second, it depends on the resolution of the mesh. If there are too few faces, the
local geometry of the surface cannot be reflected correctly by the normal computation
scheme and the linear interpolation of the vertex normals in order to compute the
contour generators. High resolutions allow lower angle- and length-thresholds, which
leads to a better quality of the contours and, because there can only be one contour
line through one face, it also results in a higher covering density, but the backsides of
high resolution meshes are increased computational time and storage.

In the examples different types of meshes were considered to show the potential of the
method. The initialization is always applied using exactly one curve of illumination
directions as described in section 3.1.5. In example 2, this leads to a blank area on
top of the mesh in favor of a better covering on the sides, which is an outcome of the
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choices of thresholds. Therefore, it may be of use for future implementations to use
more than one illumination curve, possibly generated using different thresholds.

Another possibility for future applications of this method is the exchange of the
mesh which shall be covered by another mesh which approximates the actual one but
exhibits nicer features with respect to the initialization algorithm, thus resulting in
a better initial covering. Using this initial covering but approximating the original
mesh with it may solve the rationalization problem better than working only with
the original mesh. Needless to say, this would require additional work by creating a
second mesh with adapted geometry, which is not always possible. Also, segmentation
of the input mesh and local coverage could lead to a more practical method in case of
complex geometry and topology.

Examining example 4, one sees that it is even possible to (nearly) cover meshes with
a more complicated geometry. This is, because the mesh can be deconstructed into
parts which are clearly easy to approximate using cylinder strips.

On the other side, example 3 exhibits a geometry that poses more problems. Even
segmentation would yield parts which are difficult to approximate with cylinders, al-
though better sets of contours could be extracted.

So, to conclude this discussion, a major limitation shall be stated. Particularly
when considering the fourth example, one may expect contour generators of the form
shown in fig.(3.2), thus intersecting contour generators resulting from one illumination
direction. These cases cannot occur because of the piece-wise linear interpolation of the
contour generators in each triangle, allowing only one line per face. Hence, contrary to
the smooth case, there are no critical points where it is necessary to split the contour
lines and complicate the initial strip alignment, but this also means loss of accuracy.

Nevertheless, the optimization step itself seems to produce good results using the
approach of first concentrating on width and gaps (and maybe distribution) with
smaller values for cylinder and developability weights and then optimizing towards
developable and cylindrical strips which also minimize the distance to the boundary
of the mesh. Depending on the mesh, for the final covering the cylinder penalty may
be exchanged for a cylinder constraint resulting in nearly perfect cylinders.

Some key figures read

Ex. #IM Thresh. Approx. Err. Gap Err. Cyl. Err.
εα εδ avg max avg max cons avg len

1
2
3.1
3.2
4

64
160
64
64
256

.45 .45

.55 .45

.60 .35

.60 .35

.60 .45

0.28% 0.96%
0.16% 2.75%
0.92% 5.06%
2.23% 9.17%
0.77% 5.68%

.028% .029%

.011% .012%

.125% .140%

.043% .048%

.010% .035%

.56◦ .06◦ 1.27◦

.27◦ .12◦ 2.91◦

.00◦ .00◦ 0.00◦

.00◦ .00◦ 0.00◦

.00◦ .00◦ 0.00◦

with the approximation error measured with respect to the diagonal of the bound-
ing box of the underlying mesh using samples. The cylindrical error is measured as
explained in the examples.
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Initial mesh. Initial covering of the mesh.

Focus on distribution and width.
Focus on developability and cylinder

property.

Final covering. Final covering with mesh.

Figure 3.11: Rationalization Example 1.
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Initial mesh. Initial covering of the mesh.

After some iterations. Final result.

Figure 3.12: Rationalization Example 2.
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Initial mesh.
Initial covering.

After optimizing the layout. Enforced cylindrical property.

(1) Result with focus on closeness. (2) Result with focus on continuity.

Figure 3.13: Rationalization Example 3.
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Figure 3.14: Rationalization Example 3 close-ups.
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Initial mesh. Initial covering.

Optimized covering. Wireframes of the final covering.

Figure 3.15: Rationalization Example 4.
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4.1 Motivation

The previous sections dealt with a method for approximating given surfaces with
cylindrical strips. That method guaranteed, that the resulting surface consisted of
parts which have the cylinder property, i.e. parallel rulings. The negative side of the
method is, that much computation is needed to only set up the initial covering.

Another interesting method is the deformation of a parametrizable quad-mesh to-
wards a quad-mesh that exhibits cylindrical properties along one parameter line. As
a discrete cylinder strip is a special case of a PQ-strip, the PQ-perturbation method
presented in [Liu+06] can be adapted for this intent.

The combination of optimization and subdivision can be used, although the surface
will not be subdivided in a common manner but only along the directrices to keep the
cylindrical structure as good as possible while getting a smoother cylindrical strip.

This method makes it possible to design a coarse input mesh which represents the
desired form of the surface and then transform it towards a piecewise finer and more
cylindrical mesh.

4.2 Subdivision

Let C = ((aj), (bj))j=0,...,n be a cylindrical PQ-strip, that is (aj ∨ bj)||(ak ∨ bk)
∀j, k ∈ {0, . . . , n}. A mesh refinement along the rulings (aj ∨ bj) is omitted because
it would yield a mesh with two families of rulings and could be interpreted as two
cylindrical PQ-strips which are glued together. For subdivision along the directrices
one needs a method that preserves the cylinder properties, like the Chaikin-rule applied
to the boundary polylines.

The Chaikin-rule is a simple subdivision scheme which works by cutting off the
corners of the polyline. For a polyline p = (p0, . . . ,pn) the new points are computed
by

p̂2j =
3

4
pj +

1

4
pj+1

p̂2j+1 =
1

4
pj +

3

4
pj+1 ,

thus for two subsequent points, the new points are calculated as convex combinations
and therfor lie on the connecting line segment of the old ones. Also, the total number
of points increases from n+1 to 2n = (n+1)+(n−1) as all points except the first and
last are doubled (although they are kept in the implementation to fix the boundary).
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Applying this method on the boundary curves of a cylindrical PQ-strip yields a
refined strip Ĉ = ((âj), (b̂j))j=0,...,2n−1. The faces spanned by (â2i, b̂2i, b̂2i+1, â2i+1)
are obviously planar and cylindrical again. For the faces (â2i+1, b̂2i+1, b̂2(i+1), â2(i+1))

holds the same, because both rulings (â2i+1∨ b̂2i+1) and (â2(i+1)∨ b̂2(i+1)) are parallel

to the original ruling (ai+1,bi+1). Hence, Ĉ describes a cylindrical PQ-strip again and
thus this technique can be applied multiple times without loss of the wanted features,
for an example see fig.(4.1).

Initial surface strip. After some subdivision steps.

Figure 4.1: The subdivision process applied on a cylinder strip.

Given a regular quad-mesh M = (vij)i,j , the edges (vi0,j , vi0+1,j)j=0,...,n are seen as
the rulings of a strip for i0 = const, so the mesh is considered to consist of strips that
are glued together. If the strips are cylindrical, applying the Chaikin-rule produces a
refined mesh based on cylinder strips again, so one has a method to create visually
semi-smooth meshes for the specified input.

In the following, the considered mesh is required to have a suitable topology, i.e. a
mesh as described in the previous paragraph. The strips will not be cylindrical or
PQ-strips in general, thus the subdivision does not produce a mesh with the desired
properties, but as described in the next section, it still is useful, because at least one
does not lose those features.

The design method works on meshes of the form (2.14), i.e. meshes defined over a
rectangular parameter domain, because these can be seen as a set of cylinder strips
which are glued together along one boundary, which has to be chosen beforehand.

So given a mesh that is not closed in any direction, the boundary can be split in
four parts which are seen as the parameter lines where u = 0, u = 1, v = 0 or v = 1,
respectively. Choosing one of them determines which faces belong to the same strip.
It does not matter if u = 1 is chosen over u = 0 or v = 1 is chosen over v = 0 as these
boundary parts yield the same strips.

In case the surface is closed in one direction, the boundary is already split into two
polylines and it does not matter which one would be chosen.
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4.3 Optimization

This method is displayed in fig.(4.2).

Figure 4.2: Splitting the boundary to parametrize the mesh.

4.3 Optimization

Arbitrary strips or meshes result in refined arbitrary strips or meshes, thus in these
cases - which are likely to occur more often than the case of cylindrical input - a
method for deforming the arbitrary surfaces into cylindrical surfaces is needed. This
leads to an optimization problem similar to that in the previous chapter.

The objective function

fclose(x) =
∑
i,j

||yi,j − xi,j ||2

where yi,j are the footpoints of xi,j on the initial surface guarantees that the approxi-
mation surface stays close to the initial one and

ffair(x) =
∑
i,j

||xi,j+1 − 2xi,j + xi,j−1||2 + ||xi+1,j − 2xi,j + xi−1,j ||2

ensures a low bending energy, preventing sharp features resulting from the optimiza-
tion.

Again, a developability functional supports the cylinder objective. If a quad-face
is planar, one can define a uniform normal on the face which is orthogonal to all
halfedges. For an arbitrary quad-face, one can define a normal and measure how much
the halfedges deviate from being orthogonal to it. Given a face f with normalized

diagonal vectors
−→
d 1,
−→
d 2, the normal is set to −→n =

−→
d 1 ∧

−→
d 2 and for every normalized
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halfedge vector −→e the deviation is given by < −→n ,−→e >. Thus,

fdev =
∑
f∈F

∑
e∈f

< −→n f ,
−→e >2

yields a developability penalty.
The cylinder property is enforced in the same manner as in the rationalization,

fcyl =
∑
i,j

∥∥∥∥ xi+1,j − xi,j
||xi+1,j − xi,j ||

−
−→
` i

∥∥∥∥2

.

These functionals lead to an optimization of the form

min wclosefclose + wfairffair + wdevfdev + wcylfcyl

which is being solved using a Gauss-Newton method as in the case of rationalization.
Between two subdivision steps, the optimization is done using several iterations with
predefined stopping criteria like maximum number of iterations and minimal size of
update step. The method is demonstrated on a strip in fig.(4.3) and further examples
can be found in 4.4.

4.4 Examples and Results

It is necessary to optimize while still having only a few faces, in case the mesh is too
far away from consisting of cylinder strips. So as an input, it is not useful to take a
high-resolution mesh.

It is necessary to have a positive fairness term in the beginning because there is
more perturbation first in order to approximate a cylindrical strip and the fairness
term prevents visually bad perturbation. Later on, when the cylindrical property is
good enough one can sometimes get rid of it completely. For surfaces which are closed
in one direction, fairness must also be linked with closeness because if not, one gets a
right-angular cylinder as a result.

Just as used for the rationalization examples, the quality of the approximation is
color-coded. For the concrete grading see section 3.3.

Example 1

In fig.(4.4), a deformed cylinder is processed. In the first optimization step, a small
value for closeness ensures that the developability and cylindrical functional do not
change the shape to much and a small fairness weight provides good visual quality.
After a subdivision step, optimization is done without closeness and fairness, as the
shape is already near an optimum.

The maximum angle between successive rulings in a single face is less than 10−4 ◦,
the maximum absolute deviation (the maximum absolute value of the sum of successive
angles) is less than 10−3 ◦.
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4.4 Examples and Results

Initial strip. After one step.

After two steps.
Refined strip with cylinder

property.

Figure 4.3: Method demonstrated on a strip.

Examples 2

The same idea as above applied to another mesh, as can be seen in fig.(4.5).

The maximum angle between successive rulings in a single face is 0.203◦, the maxi-
mum absolute deviation (the maximum absolute value of the sum of successive signed
angles) is 1.981◦.

Example 3

This example shall show how different choices of parameters affect the result. While
both presented version work well with respect to the cylindrical property, the visual
features diverge. The initial surface is refined using closeness and fairness additionally
to cylindrical and developability objectives in the left column of fig.(4.6) and in the
right column only fairness is added to the basic optimization.
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Initial surface. After optimization.

Final result. Final result with original net.

Figure 4.4: Design Example 1.

Using closeness gives a result which stays close to the original mesh, but as can be
seen in fig.(4.7), it comes at the cost of visual smoothness, while on the other side,
using fairness only results in a visually more appealing surface, but differs a lot from
the original.
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4.5 Discussion and Conclusions

Initial surface. After optimization.

Final result. Final result with original net.

Figure 4.5: Design Example 2.

4.5 Discussion and Conclusions

If the input mesh is not very cylindrical, it cannot be approximated reasonably, be-
cause, contrary to simply planar faces for example, the cylindrical property has to be
impeded along the whole strip, thus for very skew strips the final cylindrical mesh may
not have much in common with the original shape. This means that, like shown in
the third example, a trade-off between different objectives has to be made depending
on ones priorities.
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4 Design

Initial surface.

Using closeness and fairness. Using fairness.

Final result with closeness and
fairness.

Final result with fairness.

Figure 4.6: Design Example 3: Comparison of the method using different parameters.

Looking at some results based on the presented examples, where the number of faces
is given per strip, this becomes obvious in the table on the next page.
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4.5 Discussion and Conclusions

Close-up of optimized mesh with
closeness and fairness.

Close-up of optimized mesh with
fairness.

Figure 4.7: Design Example 3: Detail comparison.

Object #Faces Approx. Err. Cyl. Err. ms
init final min avg max cons avg len

Ex. 1
Ex. 2
Ex. 3 (1)
Ex. 3 (2)

8 72
12 104
28 56
25 500

.42% 1.74% 2.85%

.04% 1.30% 4.39%

.04% 0.99% 5.59%

.11% 1.60% 9.90%

.001◦ .000◦ .016◦

.018◦ .003◦ .343◦

.021◦ .002◦ .136◦

.003◦ .000◦ .012◦

9050
24490
67870
66260

Further subdivision was neglected for the purpose of displaying the objects with
emphasized rulings. To measure the approximation quality, the distances between
vertices of the final mesh and corresponding vertices in a mesh that resembles the
original mesh, which undergoes only subdivision process, are taken into account and
displayed with respect to the length of the diagonal of the bounding box of the original
mesh.

The proposed method currently only works on regular quad-meshes. Further work
should include the extraction of local strips which can be modified towards cylindrical
strips while on the rest of the mesh only developability is enforced, because with this
extension it would be more useful for practical applications to use such a strong ob-
jective as the cylinder property. This would also demand another subdivision method,
because the Chaikin-rule as applied here is not suitable for a more complex topology.
Other interesting directions are provided by works on paper-craft models like [MGE08]
and [MS04], where developable strips are extracted based on features like curvature
and hard edges to allow a construction based on paper strips.
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5 Implementation Details

This section deals with the concrete implementation of some methods described in
the previous chapters. Most of the methods were presented constructively and can
be implemented straight forward, so this chapter only deals with the computation of
the contour generators, the parametrization in the design method and explains the
whole initialization in an end-to-end and consistent way with focus on implementation
instead of mathematics.

All methods were tested and examples created using Evolute SDK 1 on a computer
with 2.4 GHz Intel Core 2 Duo, 2 GB RAM, running Linux 32-bit.

5.1 Initialization Algorithms

Algorithm 5.1 shows the initialization algorithm that is used. As an input ([1],
2.2.2), a triangulated mesh M is required as well as sampled light directions in the

form of a mesh IM ⊂ S2, then for each vertex
−→
d ∈ IM ([2], 3.1.3), interpreted

as an illumination direction, the corresponding contour generator is computed ([3],
3.1.3). As this algorithm is not as straight-forward as the rest of the initialization,
it is given explicitly in the algorithms 5.1 and 5.2. Each contour generator is then
evaluated ([4], 3.1.4) and if found admissible its illumination direction is used as a
vertex in a new, initially empty, mesh ĨM . As all vertices of IM and thus ĨM lie on the
unit sphere, the missing faces of ĨM can be computed using an convex hull algorithm
(compare [BDH96]), which is adapted considering the type of IM (for samples on the
upper hemisphere IH use the upper convex hull only, for samples forming a ring IT as
in (3.16) use faces of the convex hull, where the normals form an angle between −45◦

and 45◦ with the xy-plane and so on).

For every admissible illumination direction in ĨM ([5]), the corresponding optimal
direction, which describes the best change of illumination in order to get a good
covering, is computed ([6], 3.1.5). These optimal directions are linked to the sampling
mesh as elements of the tangential plane in the assigned vertex, where transfered to
the faces of the mesh and rotated about 90◦, they are used as a vector field which is
integrated ([7], 3.1.5). From the given levelsets, one polyline can be chosen as a one-
parametric subset of samples which yields those contour generators that are actually
used ([8], 3.1.5). The methods used in step [9] are a test for intersection of different
contour generators (and if so, the intersecting contour with worse quality is deleted)
and a sorting algorithm that guarantees that neighboring contours on the input mesh
are recognized as such (if a reasonable order is possible). The output consists of the

1www.evolute.at
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[1] Input : Mesh

[2]
do foreach

Illumination Direction

[3]
compute

Contour Gen.

[4]
evaluate

Contour Gen.
Contour Gen.
admissible?

add
Contour Gen.

[5]
foreach

Accepted Direction

[6]
compute

Optimal Direction

[7]
integrate

V ector F ield

[8]
choose

Level Set

[9]
compute

Final Covering [10] approximate

no

yes

Figure 5.1: Initialization Algorithm

finally accepted contours, also referred to as final covering which then is used as input
for the approximation algorithms.

The initialization is not very time consuming for small meshes, which is a conse-
quence of the complexity of the algorithms. Let N be the number of faces of the input
mesh and let K be the number of vertices of the sample mesh, then the complexities
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of the sub-steps are given by

compute Contour Generator O(N)
evaluate Contour Generator O(N)

⇒ foreach Illumination Direction K O(K ·N)

compute Optimal Direction O(N)
⇒ foreach Accepted Direction O(K) O(K ·N)

test for intersections O(K ·N)
sort contours O(K) or O(K ·N)

⇒ compute F inal Covering ∞ O(K ·N)

O(K ·N)

with K usually being bounded (in the examples by 256). The running times from the
examples are given below.

K N time

Ex. 1 64 3400 1.85 sec
Ex. 2 160 1787 1.77 sec
Ex. 3 64 19957 10.04 sec
Ex. 4 256 7162 11.36 sec

5.2 Design Algorithms

To conclude the implementation, the parametrization algorithm for the design method
is stated in 5.3. For the algorithm to work, the underlying mesh has to consist of
quad-faces. The idea is to use the halfedge-structure to move systematically from one
quad to the next. Given a halfedge in a quad considered as a ruling, one gets the
corresponding halfedge of the next quad by moving along the boundary of the quad
for two halfedges and then switching to the opposite halfedge.
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Algorithm 5.1 Computation of the contour generators.

fn computeCG( mesh, dir )

list contours;

forall mesh.faces |f| do

f.visited := false;

end

forall mesh.halfedges |e| do

e.has_root := false;

end

forall mesh.faces |f| do

if f.visited = true then continue;

list points;

forall f.halfedges |e| do

if test_for_root( e, dir ) = true then

e.has_root := true;

points.add( root );

next_face = mesh.get_face( e.opposite_halfedge );

computeCG_recursive( mesh, dir, next_face, points );

end

end

if points.empty() = false then contours.add( points );

f.visited := true;

end

return contours;

end
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Algorithm 5.2 Recursive method for the computation of the contour generators.

fn computeCG_recursive( mesh, dir, next_face, points )

if next_face.visited = true OR

next_face.is_valid() = false then return;

forall next_face.halfedges |e| do

if e.has_root = true then continue;

if test_for_root( e, dir ) = true then

e.has_root := true;

points.add( root );

next_face = mesh.get_face( e.opposite_halfedge );

computeCG_recursive( mesh, dir, next_face, points );

break;

end

end

end
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Algorithm 5.3 Compute the parametrization of the mesh.

fn computeParametrization( boundary : halfedge[] )

param : vertex[,];

length := boundary.size();

foreach i from 1 to length do

e := boundary[i];

idx := 0;

while ( e.is_valid() = true ) do

param[i-1,idx] := e.start_vertex;

if (i = length) then

param[i,idx] := e.end_vertex;

end

++idx;

e := e.next_halfedge;

e := e.next_halfedge;

e := e.opposite_halfedge;

end

e := e.opposite_halfedge;

param[i-1,idx] := e.end_vertex;

if (i = length) then param[i,idx] := e.start_vertex;

end

return param;

end
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