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ABSTRACT 

 

This master thesis explains applying statistical and artificial intelligence techniques (Bayesian 

Networks) to validate and diagnose data processing systems. Complex processes have many 

processing variables and operators are challenged with monitoring, controlling, diagnosing and 

analysing current states of processes. He also has to take appropriate actions when it is needed. 

This thesis may help for operators who maintain such a complex systems. 

The verification regime of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) 

is designed to detect events around the world. The International Monitoring System (IMS) con-

sists of facilities around the world that equipped with seismometers that convert ground motion 

into electric voltage. International Data Centre (IDC) is located at the headquarters of the 

CTBTO and it receives data continuously from these stations for processing. Detection and Fea-

ture Extraction (DFX) and Global Association (GA) are two most important applications in the 

data processing pipeline. The primary function of DFX application is to identify detections and 

to measure features from waveforms. GA application reads detections and amplitude data for a 

pre-defined time interval and forms set of associations using an exhaustive search algorithm. 

Hypothesis testing and estimation are used to reach conclusions about a population by examin-

ing a sample of that population. Hypothesis testing is widely used in medicine, dentistry, health 

care, biology and other fields as a means to draw conclusions about the nature of populations. 

Hypothesis testing is to provide information in helping to make decisions. The administrative 

decision usually depends on a test between two hypotheses and decisions are based on the out-

come. The null hypothesis (H0), stated as the null, is a statement about a population parameter, 

such as the population mean, that is assumed to be true. We will test whether the value stated in 

the null hypothesis is likely to be true. An alternative hypothesis (HA) is a statement that directly 

contradicts a null hypothesis by stating that that the actual value of a population parameter is 

less than, greater than, or not equal to the value stated in the null hypothesis. Level of signifi-

cance refers to a criterion of judgment upon which a decision is made regarding the value stated 

in a null hypothesis. The criterion is based on the probability of obtaining a statistic measured in 

a sample if the value stated in the null hypothesis were true. In behavioural science, the criterion 

or level of significance is typically set at 5%. 

When we decide to reject the null hypothesis, the decision can be correct or incorrect. If the 

incorrect decision is to reject a true null hypothesis, this decision is an example of a Type I er-

ror. Other option is to retain a false null hypothesis. This decision is an example of a Type II 

error. 
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Artificial Intelligence (AI) section of this master thesis focuses on Bayesian network. AI sys-

tems have to cope with uncertainty and they have to deal with incomplete evidence leading to 

conclusion through its short of knowledge. This fallible conclusion is called non-monotonic 

reasoning. Bayesian reasoning is a kind of probabilistic reasoning. There are mainly two types 

of probabilities. Prior Probability: This Probability is also popularly known as unconditional 

probability. Posterior Probability: This type of probability is also known as conditional proba-

bility. Bayesian networks are successfully applied to a variety of applications such as machine 

diagnosis, robotics, data mining and natural language interpretation and planning. 

A Bayesian network is used to model domains containing uncertainty in some manner. It is a 

graphical model that shows probabilistic relationships among a set of variables. It also consists 

of directed acyclic graphs (DAGs) and the links represent informational or causal dependencies 

among the variables. The conditional probability table of a node contains probabilities of the 

node being in a specific state given the states of its parents. Master thesis explains how to use 

Bayesian networks as a diagnostic support tool for DFX and GA application failures. 

In Bayesian networks, there are four inferences. (1) Backward inferences, which is also called 

diagnostic inference (from effects to causes) (2) Forward inferences, which is also called predic-

tive inference (from causes to effects) (3) Intercausal inferences, which is also called explaining 

away (between parallel variables). The inference reasons about the mutual causes (effects) of a 

common effect (cause). (4) Mixed inferences, which is also called combined inferences. It does 

not fit exactly into one of the types described above. These four inferences are demonstrated 

using simple version of DFX failures Bayesian network. 

There are models in Bayesian networks, which are single-connected, multiple connected, or 

event looped networks. To solve more complex network, it is necessary to simplify it into Poly-

tree. Polytree at most have one path between any pair of nodes; hence they are also referred to 

as singly-connected networks. Polytree algorithm can be applied to Polytrees. It is a basis for a 

more general class of algorithms, known as conditioning algorithms, which apply to arbitrary 

Bayesian networks. 
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1 INTRODUCTION 

 

Statistics is the mathematical science which analyses collected data and then interpret and pre-

sented in a detail format for decision making process. Statistic is important field of study in 

human history because it helps to understand current situation and also to predict the future. 

Some areas which use statistical methods are the medical, biological and social sciences, eco-

nomics, finance, marketing research, manufacturing and management, Meteorological centres , 

research institutes and many more. 

Hypothesis testing is one key part of statistics and it is used to determine probability of given 

hypothesis is true for observed data. Hypothesis testing is a form of statistical inference that 

uses data from a sample to draw conclusions about a population parameter or a population prob-

ability distribution. Hypothesis testing is commonly used in scientific research to justify the 

final conclusion. 

Artificial Intelligence (AI) has become important in science and engineering fields in last few 

decades. Artificial Intelligent is the study of systems that act in a way that to any observer 

would appear to be intelligent. AI solves problems the way that human beings solve the com-

plex problems. After World War II, lot of software applications and machines were created to 

perform difficult intellectual tasks. There are lot of other fields which contribute to development 

of AI and some of them are Philosophy, Mathematics, Computer Engineering, Control theory. 

Artificial Intelligence is commonly used in many applications in 21st century. Fuzzy logic is 

used in washing machines, cars and elevators. Robots are used to perform difficult tasks. Com-

puter games and intellectual games such as chess apply AI concepts. Reasoning with uncertainty 

is important for field of Artificial Intelligence and probability theories are used to uncertainties. 

Bayesian networks uses for diagnosing in computer systems, health and many other fields. 

There will be a comprehensive description about Bayesian network and calculations of different 

inferences in this thesis. 

Data processing system at International Data Centre (IDC) processes data from seismic, infra-

sound and hydroaccustic stations. This data processing system is subjected to various changes 

and the thesis will describe how to validate these changes using hypothesis testing. 

Detection and Feature Extraction (DFX) and Global Association (GA) applications are two pro-

cessing subsystems of IDC. The primary functions of DFX are to make detections and to meas-

ure features from waveforms. DFX processes data from all three waveform technologies (seis-

mic, hydroacoustic, and infrasonic). GA reads arrival and amplitude data for pre-defined time 

interval and forms set of associations and then these associations create an event. 
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This thesis describes how to implement a Bayesian diagnosis support tool for DFX and GA 

applications. 

 

This master thesis will cover the following sub topics in four major chapters: 

 

 Null hypothesis & Statistics: Average and Standard Deviation, null hypothesis and its 

related theories, P-value, Z-statistics and its examples, TYPE I and TYPE II Errors, 

Two-sample t-test. 

 Reasoning with Uncertainty: Inductive, Abductive and Deductive Reasoning. Then, it 

will describe about Bayesian probability, Bayesian network and believe network. Mar-

kov blanket and d-separation, generic algorithm for Bayesian network queries. 

 IDC processing system: seismology, CTBTO IMS network, automatic processing pipe-

line at IDC, DFX and GA application 

 Automatic data processing validation and diagnosis: Null hypothesis for processing 

changes validation, Bayesian network as DFX and GA diagnosis supporting tool. 
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2 PROBLEM FORMULATION 

 

Complex data processing system has many processing variables and database tables. These pa-

rameters are used to configure the system. Their values are subjected to changes and modifica-

tions. System operates face difficulties in validating these changes and come to conclusions 

within a short period. Hypothesis testing application will provide additional support for validat-

ing these changes. 

 

These complex systems usually consist of many sub-systems and processing of these sub sys-

tems depend on inputs of other minor systems. In a case of a failure in sub-systems, it will take 

more time and effort to diagnosis causes of failures. Bayesian diagnosis supporting tool will 

provide additional assist to find out possible causes of failures and system operators can take 

necessary prompt actions using results of diagnosis tool. 
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3 TESTING HYPOTHESES 

 

Statistic is the art and science of collecting and analyzing data and understanding the nature of 

variability. Mathematics, especially probability, governs the underlying theory, but statistics is 

driven by applications to real problems. (Chihara and Hesterbery, 2011) 

 

3.1 Average and Standard deviation 

 

3.1.1 Population and Sample 

 

In analyzing data, we need to determine whether the data represents a population or a sample. 

The population must be fully defined so that those to be included and excluded are clearly spelt 

out. For example, all the earthquakes, which have magnitude greater than 5 and taken place in 

Asia last year. 

A sample is a subset of a population, containing the objects or outcomes that are actually ob-

served. A simple random sample (SRS) of size n consists of n items from the population and 

items are chosen in such a way that every set of n individuals has an equal chance to be the 

sample actually selected. 

 

3.1.2 Mean and Standard Deviation 

 

The mean or average is obtained by dividing the sum of observed values by the number of ob-

servations, n. It can be considered a good estimate for predicting subsequent data points. The 

formula for the mean is given below as equation: 

 

											 തܺ 	ൌ 	
∑ 				 ௜ܺ
௜ୀ௡
௜ୀଵ

݊
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The standard deviation gives an idea of how close it is the entire set of data to the average value. 

Data sets with a small standard deviation have tightly grouped, precise data. Data sets with large 

standard deviations have data spread out over a wide range of values. The formula for standard 

deviation is as follows: 

 

ߪ																						 ൌ 	ඩ
	1

݊ െ 1
	෍ሺ ௜ܺ െ ܺሻതതത	ଶ
௜ୀ௡

௜ୀଵ

 

 

3.2 Testing Hypothesis 

 

Hypothesis testing is a method for testing hypothesis about a parameter in a population, using 

data measured in a sample. 

The method of hypothesis testing can be summarized in four steps: 

 Identify a hypothesis, which should be tested 

 Select a criterion upon which that the claim being tested is true or not 

 Select a random sample from the population and measure the sample mean 

 Compare the observe in the sample to what expect to observe if the claim to be tested is 
true 

 

3.2.1 Null and Alternative Hypothesis 

 

Statistical problems involved a parameter θ, whose value is unknown but must lie in a certain 

parameter space Ω, that can partitioned into two disjoint subsets Ω0 and Ω1, and that the statisti-

cian must decide whether the unknown value of θ line in Ω0 or in Ω1. 

H0 is denoted the hypothesis that  θ ϵ Ω0  and H1 denotes the hypothesis that θ ϵ Ω1. Since the 

subsets Ω0 and Ω1 are disjoint and  Ω0  ∪ Ω1  = Ω, exactly one of hypotheses H0 and H1 must be 

true. The statistician must decide whether to accept the hypothesis H0 or to accept the hypothesis 

H1. A problem of this type, in which there are only two possible decisions, is called a problem 

of testing hypotheses. If the statistician makes the wrong decision, he typically must suffer a 

certain loss or pay a certain cost. In many problems, he will have an opportunity to take some 

observations before he has to make his decision, and the observed values will provide him with 

information about the value of θ. A procedure for deciding whether to accept the hypothesis H0 

or to accept the hypothesis H1 is called a test procedure or simply a test. 
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In most problems, however, the two hypotheses H0 and H1 are treated quite differently. To dis-

tinguish between them, the hypothesis H0 is called the null hypothesis and the hypothesis H1 is 

called the alternative hypothesis. One way of describing the decisions available to the statisti-

cian is that he may accept either H0 and H1. However, since there are only two possible deci-

sions, accepting H0 is equivalent to rejecting H1, and accepting H1 is equivalent to rejecting H0.  

(DeGroot, 1986) 

 

The null hypothesis, denoted H0, is a statement about a population parameter (population mean), 

that is assumed to be true.  

H0 : ߤ ൌ 1.75   Mean height of students in the university is 1.75m 

 

The alternative hypothesis, denoted Ha, is a statement that directly contradicts a null hypothesis 

by stating that that the actual value of a population parameter is less than, greater than, or not 

equal to the value stated in the null hypothesis. 

Ha : ߤ ് 1.75   

 

3.2.2 Significance Level 

 

The significance level is the criterion used for rejecting the null hypothesis in hypothesis testing. 

It refers to make a decision regarding the value stated in a null hypothesis. Traditional experi-

menters use either the 0.05 or 0.01 level, although the choice of levels is largely subjective. The 

lower the significance level, the more the data must diverge from the null hypothesis to be sig-

nificant. Therefore, the 0.01 level is more conservative than the 0.05 level. 

 

3.2.3 P-Value 

 

When testing a null hypothesis against an alternative hypothesis using a dataset, the two hy-

potheses specify two statistical models for the process sample data. The alternative hypothesis 

may be true if the null hypothesis is false. The alternative hypothesis cannot be proved that it is 

true but it may be possible to demonstrate that the alternative is much more plausible than the 

null hypothesis given the data. This experiment is usually carried out using a probability and it 

is P-value and it will strength of the evidence against the null hypothesis in favour of the alter-

native hypothesis.  
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The P-value is often incorrectly interpreted as the probability that the null hypothesis is true. 

One can interpret “the probability that the null hypothesis is true” using subjective probability, a 

measure of one’s belief that the null hypothesis is true. Then, calculate this subjective probabil-

ity can be calculated by specifying a prior probability (subjective belief before looking at the 

data) that the null hypothesis is true, and then uses the data and the model to update one’s sub-

jective probability. This is called the Bayesian approach because Bayes’ Theorem is used to 

update subjective probabilities to reflect new information. 

When reporting a P-value to persons unfamiliar with statistics, it is often necessary to use de-

scriptive language to indicate the strength of the evidence. 

 

 

P > 0.10 No evidence against the null hypothesis. The data appear to be con-
sistent with the null hypothesis. 

0.05 < P < 0.10 Weak evidence against the null hypothesis in favour of the alternative 

0.01 < P < 0.05 Moderate evidence against the null hypothesis in favour of the alterna-
tive. 

0.001 < P < 0.01 Strong evidence against the null hypothesis in favour of the alternative. 

P < 0.001 Very strong evidence against the null hypothesis in favour of the alter-
native. 

Table 3.1 P value and its corresponding descriptive language 

 

3.2.4 Z statistic 

 

The test statistic for a one–independent sample z test is called the z statistic. The z-statistic con-

verts any sampling distribution into a standard normal distribution. The z statistic is therefore a 

z transformation. The solution of the formula gives the number of standard deviations, or z-

scores, that a sample mean falls above or below the population mean stated in the null hypothe-

sis. 

Z-score ൌ	
ܺതതതതെ	0ߤ
ߪ

ඥ݊൘ 	  

 

Xഥ - sample mean 

μ଴	- population mean 

n - sample count 

σ - Standard deviation of sample 
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3.2.5 One-Sided and Two-Sided Tests 

 

When null hypothesis (H0) specifies a single value for  (sample mean), both tails contribute to 

the P-value, and the test is said to be a two-sided or two-tailed test. 

When H0 specifies only that  is greater than or equal to, or less than or equal to a value, only 

one tail contributes to the P-value, and the test is called a one-sided or one-tailed test 

 

 

 

 

 

 

 

 

Fig. 3.1 probability distribution for two-sided test 

 

 

 

 

 

 

 

 

Fig. 3.2 probability distribution for one- sided test 

 

 

Simple example to illustrate above topics  

 

H0 : μ	 ൒ 1.75  Mean height of students in the university is 1.75m 

Alternative hypothesis; Ha : μ ൏ 1.75 
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Let’s assume that a random sample of students’ height has been taken with following values: 

Sample size (n) = 100  

Mean of Sample (Xഥሻ ൌ 	1.74  

Standard deviation σ	 ൌ 	0.24  

 

Assumptions: Sample is normally distributed with given standard deviation 

 

Z-score ൌ	
ܺതതതതെ	0ߤ
ߪ

ඥ݊൘ 	  

											ൌ 	
1.74 െ 	1.75
0.24

√100
ൗ 	

 

											ൌ 	െ0.417 

 

It is one-tailed test; P value is 0.3383 

There is no evidence against null hypothesis. The data appear to be consistent with the null hy-

pothesis. 

 

3.3 TYPE I and TYPE II Errors  

 

With and hypothesis test, there are two errors we can make – to reject H0 when it holds, or to 

fail to reject it when it does not hold. 

A Type I error occurs if we reject the null hypothesis when it is true. A Type II error occurs if 

we do not reject the null hypothesis when the alternative is true. 

Type I Errors 

To get an idea of types of errors in a hypothesis test, we look at this courtroom setting. Suppose 

John Doe is on trial for murder. In the United States, accused are considered “innocent until 

proven guilty,” and the proof must be “beyond a reasonable doubt.” This corresponds to  

H0 : John Doe is innocent 

HA : John Doe is guilty 
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Unless the evidence strongly shows otherwise, we accept the null hypothesis. 

 

Jury Decision Truth 

 Innocent Guilty 

Guilty Type I error Correct 

Not Guilty Correct Type II error 

Table 3.2 Type I and Type II error 

 

 

Which error is more serious, convicting an innocent person (Type I) or freeing a guilty person 

(Type II)? Our justice system sidesteps this question; it holds that convicting an innocent person 

is bad, and the probability of a wrongful conviction must be small. The severity of a Type II 

error doesn’t really enter the picture. 

Similarly, in the classical approach to hypothesis testing, we do not adjust critical values to bal-

ance the two kinds of errors, taking into account their relative severity. Instead, we set thresh-

olds to limit the probability of a Type I error to a pre-specified value. ( Ex 5 %). 

(Chihara and Hesterbery, 2011) 

 

Increasing sample size is an obvious way to reduce both types of errors for either the justice 

system or a hypothesis test. An increase of sample size narrows the distribution because the 

distribution represents the average of the entire sample instead of just a single data point. In 

hypothesis testing the sample size is increased by collecting more data. 

 

3.4 Two-Sample  t-TEST for means 

 

t-distribution is a family of continuous probability distributions that arises when estimating the 

mean of a normally distributed population in situations where the sample size is small and popu-

lation standard deviation is unknown. 

 

Let X1, X2, X3.................., Xn1 ~ N(µ1, σ1
2) and Y1, Y2, Y3,.................., Yn2 ~ N(µ2, σ2

2) be two independ-

ent random samples with sample means and standard deviation തܺ	, ଵܵ, ܻ,ഥ ܵଶ respectively; 

To test, 
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௢ܪ ∶ 		 μଵ ൌ μଶ		versus				ܪ஺:		μଵ ് μଶ 

 

We form the test statistic  

 

ܶ ൌ 	
തܺ െ	 തܻ

ඨ ଵܵ
ଶ

݊ଵൗ 		൅ 	ܵଶ
ଶ

݊ଶൗ 			

 

 

If the null hypothesis is true, then T has approximate a t distribution with degrees of freedom is 

given by equation : 

 

ݒ ൌ 	
൬ ଵܵ

ଶ

݊ଵൗ 		൅ 	ܵଶ
ଶ

݊ଶൗ ൰
ଶ

	

൬ ଵܵ
ଶ

݊ଵൗ ൰
ଶ

ሺ݊ଵ െ 1ሻൗ ൅ ൬ܵଶ
ଶ

݊ଶൗ ൰
ଶ

ሺ݊ଶ െ 1ሻൗ

 

 

The P- value is the probability that chance alone would produce a test statistic as extreme as or 

more extreme than the observed value if the null hypothesis is true. 

 

An example for illustrate two – sample t-test for means. 

Birth weights data for smoking and nonsmoking mothers in North Carolina 

 

 Non-smoking mothers Smoking mothers 

Mean weight 3472g 3257g 

Std. Deviation 479g 520g 

No of Babies 898 111 

Table 3.3 Sample details (Mean weight, Std. Deviation, No of Babies) 

 

Is the observed mean difference in the mean weights of 	̅ݔଵ െ 	 ଶݔ̅ ൌ 215݃ easily explained by 

chance, or is there a real difference in the mean weights of North Carolina babies born to non-

smoking and smoking mothers ? 
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Let ߤଵ and ߤଶ  denote true mean weight of babies born to non-smoking and smoking mothers, 

respectively. We consider the hypotheses 

௢ܪ ∶ 		 μଵ ൌ μଶ		versus				ܪ஺:		μଵ ് μଶ 

 

Assuming that the distribution of weights is normal for babies born to both non-smoking and 

smoking mothers, then the statistic has approximately a t-distribution  

 

ݐ ൌ 	
ሺ̅ݔଵ െ ሻ	ଶݔ̅ െ ሺߤଵ െ ଶሻߤ

ඨ ଵܵ
ଶ

݊ଵൗ 		൅ 	ܵଶ
ଶ

݊ଶൗ 			

 

 

If the null hypothesis is true (ܪ௢ሻ ∶ 		 μଵ െ	μଶ ൌ 0 ; 

 

ݐ ൌ 	
ሺ3472 െ 3257	ሻ െ ሺ0ሻ

ඨ
479ଶ

898ൗ 		൅	520
ଶ
111ൗ 			

	ൌ 		
215
51.88

	ൌ 4.144 

 

Degree of freedom is  

ݒ ൌ 	
൬ ଵܵ

ଶ

݊ଵൗ 		൅ 	ܵଶ
ଶ

݊ଶൗ ൰
ଶ

	

൬ ଵܵ
ଶ

݊ଵൗ ൰
ଶ

ሺ݊ଵ െ 1ሻൗ ൅ ൬ܵଶ
ଶ

݊ଶൗ ൰
ଶ

ሺ݊ଶ െ 1ሻൗ

 

ݒ ൌ 	
ቀସ଻ଽ

మ
଼ଽ଼ൗ 		ା	ହଶ଴

మ
ଵଵଵൗ ቁ

మ
	

ቀସ଻ଽ
మ
଼ଽ଼ൗ ቁ

మ
ሺ଼ଽ଼ିଵሻൗ ାቀହଶ଴

మ
ଵଵଵൗ ቁ

మ
ሺଵଵଵିଵሻൗ

 = 134.011 

 

If the null hypothesis is true, then the chance of obtaining a statistic as extreme as 4.14 is  

 

ܲ൫	ݐ	 ൒ 	4.14	൯ ൌ 	0.00003 
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Thus, if there really is no difference in mean weights, then the samples we obtained are rare-

random chance alone would give a test statistic that large, less than 3 out of a 100,000 times. 

(Chihara and Hesterbery, 2011) 

 

There is very strong evidence against the null hypothesis in favour of the alternative hypothesis. 

Thus, we conclude that babies born to non-somking mothers do weigh, on average, more than 

babies born to smoking mothers. 
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4 REASONING WITH UNCERTAINTY 

 

The "reasoning with uncertainty" (or "reasoning under uncertainty") is a research field in Artifi-

cial Intelligence(AI) and it has been focused on the uncertainty of truth value. This is a large and 

active subfield of AI research. There are mainly three different approaches for representing un-

certainty, are considered. Two of them represent two different forms of quantitative uncertainty; 

that is where we attempt to give numerical values expressing the degree to which we are uncer-

tain about pieces of knowledge. At the third approach, truth maintenance systems, is just one 

example of a non-monotonic reasoning system, that is one where adding new items of 

knowledge may cause conclusions we had previously drawn to become invalid. 

 

4.1 Reasoning 

 

(ELA KUMAR (2008)) 

Reasoning, in simple terms means deriving conclusion from the available set of data and infor-

mation. We are called intelligent when we are able to draw conclusions from the given infor-

mation. Hence, for a human being to be intelligent, it is necessary to have ability to reason. 

However, in real world, there are many situations where we are required to draw conclusions 

from incomplete and uncertain evidences. For example, if the available information is: 

 

Birds can fly. 

Yamu is a bird. 

 

From this information, an obvious conclusion would be that Yamu could fly. However, this 

conclusion is based on the most likely characteristics of birds. We often draw conclusions based 

on assumptions we make that are inclined towards most likely characteristics of the situation or 

object under consideration and also, our beliefs about real world situations. If some information 

is withdrawn or some new information is added, our conclusions would change. For example, in 

above mentioned case, if one or more information is added that Yamu was an Ostrich, our con-

clusion would be exactly opposite of what had been earlier. Our aim is to understand that we 

have to deal with many such situations in everyday life that is full of uncertainties. Such types 

of situations are called uncertain situations and reasoning with these situations is known as rea-

soning with uncertainty. 
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An uncertain situation requires representation of uncertain knowledge. Consider the following 

examples of certain and uncertain events: 

 

Certain events: 

 Earth revolves around Sun. 

 The states of a chess game. 

 

Uncertain events: 

 If it cloudy, it will rain. 

 If the weather is sunny, it will not rain. 

 If a patient is vomiting, he is suffering from cholera. 

The representation of uncertain knowledge requires attachment of an additional factor indicating 

the correctness of knowledge. This additional conceptual factor is called “degree of belief”. The 

value of this factor varies between 0 and 1. It can take any fractional value in this range. Thus, 

the uncertain situation is represented by attaching a degree of belief factor e.g. in medical diag-

nosis, we observe some symptoms in the patient, but if those symptoms are present, still it can-

not be guaranteed that a particular disease is present. Only with some degree of belief, it can be 

said that particular disease is present. The degree of belief is a conceptual factor indicating the 

degree of correctness of diagnosis. This belief factor is also related with probability theory. 

However, in the theory of probability, the total possible outcomes are defined. But in real world 

problems, there may be situations where even total outcomes are not defined. 

 

In representing uncertain knowledge, we define certain terms as follows: 

Evidence: It is the observations obtained in real world. 

Belief: It is any meaningful and coherent expression that can be represented. Hence it can be 

true or false. Belief represents just observer’s view about any incidence. At the time of defining 

the face, nothing can be said about the truthiness of belief. 

Hypothesis: It is a justified belief that is supported by some evidence. 

 

AI means building intelligent systems to solve real world problems. Intelligent systems provide 

solutions on the basis of facts and rules stored in the knowledge base. These fact and rules are 

often incomplete and hence uncertain. AI systems are required to reason with this uncertain 

knowledge or information. Thus, reasoning is the process by which we use available knowledge, 

in whatever quantity or of whatever quality, to draw conclusions or to infer about a new event. 

Without this ability, the AI system will simply be considered as “information system” giving 

answers based on lookup table. The three basic types of reasoning methods are: 
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 Inductive reasoning 

 Abductive reasoning 

 Deductive reasoning 

 

4.1.1 Inductive Reasoning 

 

Inductive reasoning is based on the generalizations of the previous experiences about the prob-

lem. e.g. a person, how haven’t seen any black pigeons, can come to conclusion such that 

  “ All pigeons are completely white ” 

 

Inductive reasoning can be risky because conclusion may be not correct. However, inductive 

reasoning is used in machine learning AI applications. 

 

4.1.2 Abductive reasoning 

 

In the abductive reasoning, we will come to final conclusion, only looking after back through 

the chain of events to perform reasoning. For example; 

I went to market yesterday. 

There are potatoes at my home. 

Conclusion: I bought potatoes from market yesterday 

 

We believe that most plausible conclusion is also the correct one in Abductive reasoning. As a 

result, conclusion may not necessary true for every interpretation. 

 

4.1.3 Deductive reasoning 

 

Deductive reasoning originates from the philosophy and mathematics and is the most obvious 

form of reasoning. It is worked on the standard logic. It is kind of explicit reasoning. 

All shops are closed on holidays. 

Sunday is a holiday.  

Conclusion: All shops are closed on Sunday. 
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4.2 Dealing with Uncertain Situations 

 

(ELA KUMAR (2008)) 

For certain situations, where the knowledge base stores consistent information, all new 

knowledge that is added to it is bound to be consistent with the previous knowledge. Such type 

of reasoning is known as monotonic reasoning and in systems using this, the size of knowledge 

base always increases. In monotonic reasoning, whenever some conclusion is drawn as true, it 

remains true under all circumstances. However, in real life, all inferences do not necessarily be 

considered correct under all circumstances. 

What does it mean in simple terms can be viewed as logical reasoning cannot be a realistic 

presentation of real world. On the contrary, intelligent beings are required to make decisions and 

function in a world full of uncertainties. However, while reasoning with uncertain knowledge 

conclusion is drawn based on what is most likely to be true. Following approaches are followed 

for this type of reasoning: 

 

 Nonmonotonic reasoning: In this type of reasoning, the rules of inference are extended 
to make it possible to reason with incomplete information. The systems using this 
method show the property that at any given point of time, a statement is either believed 
to be true, believed to be not true or not believed to be true or not true. 

 Probabilistic reasoning: These are also known as statistical methods of reasoning. In 
these method, the results are not in the form of TRUE or FALSE but some numeric val-
ue is assigned to them that is a measure of certainty of those events to be true under giv-
en circumstances. Some of the methods using probabilistic reasoning methods are: 

o Bayesian belief networks 
o Reasoning with certainty factors 
o Dempster Shaffer theory 
o Fuzzy reasoning 
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4.3 Bayesian Reasoning 

 

(ELA KUMAR (2008)) 

Bayesian reasoning is a kind of probabilistic reasoning, introduced by Thomas Bayes in eight-

eenth century that is based on formal probability theory and is used in several areas of research 

including pattern recognition and classification. Assuming a random sampling of events, Bayes-

ian theory devises the calculation of complex probabilities from previously known results. 

Probability is of two types 

 

 Prior Probability: This probability is also popularly known as unconditional probabil-
ity. It is probability assigned to an event in the absence of knowledge supporting its oc-
currence or absence. i.e. the probability of the event prior to any evidence supporting or 
negating the occurrence of that particular event. The prior probability of an event is rep-
resented as P(event) 

 Posterior Probability: This type of probability is also known as conditional probability. 
It is probability of an event after evidence, i.e. the probability when some evidences 
supporting or negating the outcome are known. Posterior probability is symbolized as 
P(event ׀ evidence). 

 

Bayes Theorem is based on the theory of conditional probability. Let’s explain the concept by 

an example of medical diagnosis. 

 

p = number of sick persons or number of patients. 

n = total number of persons in the domain 

d = set of persons actually having disease d 

s = set of persons having symptoms of disease d 

d ∩ s = set of persons actually having diseases d and symptoms s both 

 

Unconditional probability of having disease: 

ܲሺ	݀ሻ ൌ 	݌	
	݊ൗ  

Thus, the conditional probability of persons having disease d with symptoms s would be repre-

sented as: 

ܲሺ	݀	׀	ݏሻ ൌ 	݀	 ∩ 	ݏ ൗݏ	 	 

 

Let’s consider that total 1000 people are present in the domain out of which 100 persons are 

sick. Out of 100 patients, 60 persons had high fever that this symptom of malaria. Further inves-

tigation found that, only 20 persons had malaria. 
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Conditional probability of persons having malaria:  

ܲሺ	݀ሻ ൌ 	݌	
	݊ൗ ൌ

100
1000

ൌ 0.10 

 

Unconditional probability of persons having malaria: 

ܲሺ	݀	׀	ݏሻ ൌ 	݀ ∩ 	ݏ ൗݏ	 ൌ
20
60

ൌ 0.33 

 

It can be calculated also using probabilities values: 

ܲሺ	݀	׀	ݏሻ ൌ 	ܲሺ݀ ∩ 	ሻݏ
	ܲሺݏሻ൘ 		െ െ െ െ(1) 

 

ܲሺ	݀	׀	ݏሻ ൌ
	ሺ 20
1000ሻ	

	ሺ60/1000ሻ
൘ ൌ 0.33 

We can have an equivalent relationship for conditional probability of persons having symptoms 

s with disease d  

ܲሺ	݀	׀	ݏሻ ൌ 	ܲሺ݀ ∩ 	ሻݏ
	ܲሺݏሻ൘ 			െ െ െ െ(2) 

 

Substituting this result in the equation for (1) and (2); 

ܲሺ	݀	׀	ݏሻ ൌ 	ܲሺ	ݏ	׀	݀ሻ ∗ ܲሺ݀ሻ	
	ܲሺݏሻ൘  

This equation is known as Bayes theorem.  

We present here the most important finding of probability theory, the general form of Bayes 

theorem. Taking reference of the above discussion, the disease would now be called hypothesis 

(H) and symptom would be called evidence (E). Substituting these notations; 

 

ܲሺ	ܪ	|	ܧሻ ൌ 	ܲሺ	ܧ	|	ܪሻ ∗ ܲሺܪሻ	
	ܲሺܧሻ൘  
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This is most simple view of Bayes theorem. It can be applied assuming real world phenomena 

as simple and straight forward. However, real world situations are complex and tedious where 

we have to deal with multiple hypothesis and multiple evidences. These set of exhaustive and 

mutually exclusive hypotheses can be represented as ܪ௝ (j =1 to n, n is number of hypotheses) 

 

Now, if we generalize the Bayes theorem for multiple hypothesis and multiple evidences: 

 

ܲሺ	ܪ௜	|	ܧሻ ൌ 	
ܲሺ	ܧ	|	ܪ௜	ሻ ∗ ܲሺܪ௜ሻ

∑ ܲሺ	ܧ	|	ܪ௜	ሻ ∗ ܲሺܪ௜ሻ
௡
௝ୀଵ

 

 

 

This is generalized version of Bayes theorem, where 

ܲሺ	ܪ௜	|	ܧ	ሻ ∶ 	the	probability	that	ܪ௜	is	true	given	evidence	E   

ܲሺ	ܪ௜	ሻ 						 ∶ 	the	probability	that	ܪ௜	is	true	overall 

ܲሺ	ܧ	|	ܪ௜	ሻ ∶ 	the	probability	of	observing	E	when	ܪ௜	is	true	n	is	the	number	of	hypotheses 

 

 

4.4 Bayesian and Believe Network 

 

Bayes theorem can help in reasoning, especially when case simply contains single disease and 

single symptom, because in these cases many numbers are not needed on the right-hand side in 

the equation of Bayes theorem. In real world situations, the Bayes theorem in this case would 

like: 

 

ܲሺ݀ ∣ …&	ଶݏ	&	ଵݏ . . ௡ሻݏ	& ൌ ሺܲ	ሺݏଵ	&ݏଶ	&… . . ௡ݏ& 	 ∣ ݀ሻ	ሻ ∗ ܲሺ݀ሻ/		ܲሺݏଵ	&ݏଶ	&… . .  ௡ሻݏ&

 

However, problem starts when reasoning is required to be done about possible disease from 

among set of multiple diseases and multiple symptoms. Let us consider multiple diseases dm 

from set of diseases D and multiple symptoms Sn from the set of symptoms S. In the case, we 

would require (m * n) posterior probabilities and (m + n) prior probabilities. In actual real world 

situations, we hardly have single disease and single symptom.  
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Now suppose there are m number of diseases in D and if we want to use Bayes theorem to cal-

culate the probability of a patient having a particular disease out of possible m, if he has n num-

ber of symptoms, we would require about (m * n2) conditional probabilities + n2 symptoms 

probabilities + m disease probabilities to complete right-hand side of the Bayes theorem. 

(ELA KUMAR (2008)) 

 

 

As described above, it is required large number of probabilities due to combining effect of hy-

potheses to use Bayesian theorem and calculations also become difficult in these situations. 

Human would use their heuristics and intuition to separate evidence and hypotheses that are not 

dependent. 

In combine probability, there are possible two scenarios depending on events are independent or 

not. Combined probability of two events occurring if they are independent; 

P(A&B) = P(A) * P(B) 

 

If they are not independent, their combined probability is ; 

P(A&B) = P(A) * P(B∣A) 

With knowledge of combine probabilities, we can draw a graphical model to show interdepend-

ence of various parameters. In these graphical diagrams, propositional variables are represented 

as nodes and the causal influences or dependencies among nodes are represented by arcs. These 

graphical diagrams are called as Bayesian networks. Bayesian belief network reduce many con-

straints of the full Bayesian model. It is not necessary to build large joint probability tables in 

which the probabilities of all possible combinations of events and evidences are listed. After 

analysing all events, experts can collect obtain probabilities of events which are only dependent 

events. 

Let’s look at Bayesian network example for water sprinkler-rain problem from Pearl (1998) in 

figure 4.1 

 

In this problem, grass wet being depends upon water either from rain or from sprinkler. The 

water from sprinkler system or from rain depends on cloudy weather condition and they are not 

independent. This Bayesian network is an example for multiply connected belief network.  To 

convert this directed acyclic graph to undirected acyclic graph, it is required a mechanism to 

transfer probabilities correctly. Clique triangulation method is one of algorithms for doing such 

computations. 

 

 



28 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Bayesian probabilistic network in multiply connected, probability dependencies are lo-

cated next to each node 

 

 

The algorithm to build a junction tree: 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Triangulated structure from Bayesian network (ELA KUMAR (2008)) 
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1. Make all directed links are replaced with undirected links in the belief network 
2. Draw links between all parents for any node which doesn’t include. E.g. dashed link be-

tween sprinkler and rain in the figure 
 

3. Check the network and ensure that all the cycles have only three nodes. If not, add fur-
ther links to reduce all cycles to have maximum three nodes at each cycle. This process 
is called triangulation. 

4. Create a Junction tree from the resulting triangulated structure. This is done by finding 
the maximal cliques. The variables in these cliques are put into junctions and the junc-
tion tree is created by connecting any two junctions that share at least one variable. e.g. 
“R, W” rectangular box reflect the variables which share above and below nodes. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 A junction tree for Bayesian probabilistic network (ELA KUMAR (2008)) 
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4.5 Markov blanket 

 

Let us consider a set of random variables {X1 ,….., Xn}. As before, by a model M we mean a set 

of edges between nodes that represent the random variables {X1,…….,Xn} or 

{X1[1],…..,Xn[1],X1[2],….,Xn[2]} for the Bayesian Network (BN) or Dynamic Bayesian Net-

work (DBN) case, respectively. For the DBN case, we allow only connections between time-

slices, leaving the intra-graph empty. We start by introducing the parents set for node Xi. 

 

ሺݎܽܲ ௜ܺሻ ൌ ሼ	 ௝ܺ ∶ ൫ ௝ܺ, ௜ܺ൯ 	 ∈  	ሽ	ܯ

 

The edges which start in nodes taken from Par(Xi) and end in node Xi surely belong to the 

common set of relationships, because they directly explain how the node Xi is influenced. The 

node Xi is conditionally independent of any other node conditioned on the parents set of Xi. 

The explanation of impact on the behaviour of the node Xi is complete. Although the dependen-

cy goes even further to parents sets of Xi’s parents and so on, the impact gets less and less im-

portant with every step so we narrow our interest down to the direct dependencies set. Beside 

edges that explain somehow the behaviour of the node Xi we can also look in the opposite direc-

tion and ask how the node Xi influences other nodes in the structure. These dependencies can be 

expressed as the set of edges which start at the node Xi and end in a node taken from children 

set of node Xi. We define the children set of node Xi as follows. 

 

ሺ݄ܥ ௜ܺሻ ൌ ሼ	 ௝ܺ ∶ ൫ ௜ܺ , ௝ܺ൯ 	 ∈  	ሽ	ܯ

 

Now we formed the set of edges that somehow make up a coherent system that describes the 

behaviour of the node Xi and its impact on other nodes. The Markov Blanket in a BN for node 

Xi which we denote by MB(Xi) is a set of nodes composed of Xi’s parents, its children and par-

ents of its children. Formally the definition of Markov Blanket in a BN, or more general in a 

graph, is as follows. 

(Tomasz Ku laga, 2006) 

 

ሺܤܯ ௜ܺሻ ൌ ሺ	ݎܽܲ ௜ܺሻ 	∪ ሺ݄ܥ ௜ܺሻ 		∪ ራ ሺܻሻݎܽܲ
௒	∈஼௛ሺ௑೔ሻ
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Fig. 4.4 Markov Blanket 

 

 

4.5.1 d-separation 

 

d-separation is a graphical test of independence between variables in a directed acyclic graph. 

This is a very useful tool for working with Bayesian networks. Given two sets of variables A 

and B, we test if they are independent conditioned on a set Z of variables by checking all paths 

between each variable in A and each variable in B. We say that A is independent of B given Z 

ሺܣ	 ⫫  ሻ  is all paths between each variable in A and B are closed when we condition onܼ	|	ܤ

(or in other words observe) Z. If any path is open, we cannot claim independence but also can-

not claim dependence. We would have to examine the conditional probability tables to verify 

the independence claims if there is no d-separation. 

 

 

 

 

 

 

 

 

 

                              Fig. 4.5 directed acyclic graph  
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Using above graph, we can express the following statements: 

 ሺܳ ⫫ ܺ, ܻ, ܼ, ܲ	|	ܹሻ:	ܳ → ܹ	 → ܺ is a divergent path that is closed since we set condition 
on W. 

 ሺܼ ⫫ ܺ,ܹ,ܳ	|	∅ሻ:	ܼ → ܻ ← ܺ is a closed convergent path since we do not condition on Y 
or it’s descendent P 

 ሺܼ, ܻ, ܲ ⫫ ܹ,ܳ	|	ܺሻ:ܹ → ܺ → ܻ is closed sequential path since we condition on X 

 

 

4.6 Algorithm for Bayesian Network Queries 

 

There are mainly four different types of querying in Bayesian network. 

 

 Diagnostic inference 

 Causal inference 

 Inter-causal inference 

 Mixed inference 

 

 

 

 

 

 

 

 

 

 

 

             Fig. 4.6 Types of reasoning (Diagnostic, Causal, Inter-Causal, Mixed) 
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                        Fig. 4.7 Simple Bayesian network for Lung Cancer diagnosis 

 

Using above Bayesian network (Fig 4.7), we can explain above four inferences for singly con-

nected Bayesian network. 

 

Diagnostic inference: Reasoning from symptoms to cause, such as when a doctor observes 

blood test report and then updates doctor belief about lung cancer and whether the patient is a 

Smoker. In above diagram, it goes opposite direction to arrows. 

Causal inference: The patient may tell the doctor that he is a smoker; even before any symp-

toms have been assessed, the physician knows this will increase the chances of the patient hav-

ing lung cancer. It will increase possibility of having symptom such as coughing. 

Inter-Causal inference: It can be represented by a v-structure in the BN. In above simple Bayes-

ian network, smoking and pollution has common effect and that is lung cancer. Suppose, the 

patient has lung cancer, then it will increase probability of he is smoker or he lives in a polluted 

area. If we found that he is a smoker, then it decrease the probability of he lives in a polluted 

area. 

Mixed inference: It is combination of one or more above inferences. For example, the probabil-

ity of a patient having lung cancer, while he lives in a polluted area and coughing. In this chap-

ter, we will create generic algorithm for this case. 
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The 6.2.2 chapter describes to how to calculate above inferences using DFX failures diagnosis 

Bayesian network. 

 

Mixed inference pattern is more general inference and we are going to create an algorithm for it 

in this chapter. All other inferences are special cases of Mixed inference. 

 

Let’s consider the following belief network which is poly-tree. In the poly-tree, there is at least 

one undirected path between any two nodes. In this poly-tree, X is query variable and evidence 

are given by E. 

 

 

 

 

௑ܧ
ା 

 

 

 

 

 

௑ܧ
ି 

 

 

 

 

Fig. 4.8 Poly-tree Belief network X is query variable and Ex+ and Ex- evidence nodes 

 

U1,…., Um are parent nodes of X 

Y1,…., Ym are children nodes of X 

௑ܧ
ା are evidence nodes which are causal support for X node 

௑ܧ
ି are evidence nodes which are evidential support for X node 
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Computation of P(X ∣	E) 

 

ܲሺܺ	|	ܧሻ ൌ 	ܲሺܺ	|	ܧ௑
ି, ௑ܧ

ାሻ 			െ െ െ െ െ െሺ1ሻ 

																		ൌ 	
ܲሺܧ௑

ି	|	ܺ, ௑ܧ
ାሻ	ܲሺܺ|	ܧ௑

ାሻ
ܲሺ	ܧ௑

௑ܧ	|	ି
ାሻ

 

 

Since X is d-separated ܧ௑
ା from ܧ௑

ି ,we can use conditional independence to simply the first 

term in the numerator. 

 

																		ൌ 	
ܲሺܧ௑

ି	|	ܺ	ሻ	ܲሺܺ|	ܧ௑
ାሻ

ܲሺ	ܧ௑
௑ܧ	|	ି

ାሻ
 

 

Let’s take denominator as constant (α) 

																		ൌ 	α		ܲሺܧ௑
ି	|	ܺ	ሻ	ܲሺܺ|	ܧ௑

ାሻ  െെെെെെ ሺ2ሻ 

 

Both of them ܲሺܧ௑
ି	|	ܺ	ሻ	&	ܲሺܺ|	ܧ௑

ାሻ		 are similar to causal terms 

 

 

Computation of 	ܲሺܺห	ܺܧ
൅ሻ from equation (2):  

Let U be the vector parents U1, U2, ……, Um and all of them are parents of X as shown in Fig 

4.8. 

 

			ܲሺܺ|	ܧ௑
ାሻ 		ൌ 	෍ܲሺܺ|ܷ, ௑ܧ

ାሻ	ܲሺܷ	|	ܧ௑
ାሻ

௎
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In the above poly-tree, Ui nodes are d-separates from X node. As result of that, we can simpli-

fies to ሺܺ|ܷሻ : 

 

			ܲሺܺ|	ܧ௑
ାሻ 		ൌ 	෍ܲሺܺ|ܷሻ	ܲሺܷ|	ܧ௑

ାሻ
௎

 

As seen in the above ploy tree, each Ui connects other only thru X. So that; ܧ௑
ା d-separates 

each Ui from the others. The probability of a conjunction of independent variables is equal to 

the product of their individual probabilities. 

 

			ܲሺܺ|	ܧ௑
ାሻ 		ൌ 	෍ܲሺܺ|ܷሻ	ෑܲሺ ௜ܷ|	ܧ௑

ାሻ
௜

	
௎

 

 

The last term can be simplified by partitioning ܧ௑
ା into ܧ௎భ\௑,…… ,   and noting that	௎೘\௑ܧ

௑ܧ ௎೔\௑ d-separates Ui from all the other evidence inܧ
ା 

  are evidence nodes which are connected to node Ui except thru the path from X	௎೔\௑ܧ

 

			ܲሺܺ|	ܧ௑
ାሻ 		ൌ 	෍ܲሺܺ|ܷሻ	ෑܲሺ ௜ܷ|	ܧ௎೔\௑ሻ

௜

	
௎

 

 

 ܲሺܺ|ܷሻ	 is a lookup in the conditional probability table of X 

 ܲሺ ௜ܷ|	ܧ௎೔\௑ሻ is a recursive (smaller) sub-problem 

 

Now, we have simplified second term of the equation (2) to above equation. 

 

Computation of 	ܲ൫ܺܧ
െ	ห	ܺ	ሻ from equation (2):  

Let Zi be the parents of Yi other than Xi, and let Zi be an assignment of values to parents. The 

evidence in each Yi box is conditionally independent of the others given X 

 

			ܲሺܧ௑
ି|	ܺሻ 		ൌ 	ෑܲሺ	ܧ௒೔\௑ ∣ 	ܺ	ሻ

௜
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Averaging over Yi and Zi yields: 

 

			ܲሺܧ௑
ି|	ܺሻ 		ൌ 	ෑ෍෍ܲ൫ ௒೔\௑ܧ	 ∣∣ 	ܺ, ,௜ݕ ௜ݖ ൯

௭೔௬೔

	ܲሺ ,௜ݕ		 ௜ݖ ∣∣ 	ܺ ሻ		
௜

 

 

௒೔\௑ܧ
ା  are evidence nodes which are connected to node Yi except thru the parents of X 

Breaking 	ܧ௒೔\௑ into the two independent components 	ܧ௒೔
ି  and 	ܧ௒೔\௑

ା   

 

		ൌ 	ෑ෍෍ܲ൫ ௒೔ܧ	
ି ∣∣ 	ܺ, ,௜ݕ ௜ݖ ൯	ܲ൫ ௒೔\௑ܧ	

ା ∣∣ 	ܺ, ,௜ݕ ௜ݖ ൯
௭೔௬೔

	ܲሺ ,௜ݕ		 ௜ݖ ∣∣ 	ܺ ሻ		
௜

 

 

 

௒೔ܧ
ି 		is independent of X and zi given yi and ܧ௒೔\௑

ା 	is independent of X and yi 

 

		ൌ 	ෑ෍ܲ൫ ௒೔ܧ	
ି ∣∣ ௜ݕ	 ൯෍ 	ܲ൫ ௒೔\௑ܧ	

ା ∣∣ ௜ݖ	 ൯	ܲሺ ,௜ݕ		 ௜ݖ ∣∣ 	ܺ ሻ		
௭೔௬೔

			
௜

 

 

Apply Bayes’ rule to ܲ൫ ௒೔\௑ܧ	
ା ∣∣ ௜ݖ	 ൯ 

 

		ൌ 	ෑ෍ܲ൫ ௒೔ܧ	
ି ∣∣ ௜ݕ	 ൯෍

ܲ൫ ௜ݖ ∣∣ ௒೔\௑ܧ
ା ൯ܲሺܧ௒೔\௑

ା ሻ

ܲሺݖ௜ሻ
	ܲሺ ,௜ݕ	 ௜ݖ ∣∣ 	ܺ ሻ		

௭೔௬೔

			
௜

 

 

Rewriting the conjunction of yi and zi 

 

	ൌෑ෍ܲ൫ܧ௒೔
ି ∣∣ ௜ݕ	 ൯෍

ܲ൫ ௜ݖ ∣∣ ௒೔\௑ܧ
ା ൯ܲ൫ܧ௒೔\௑

ା ൯

ܲሺݖ௜ሻ
ܲሺ ௜ݕ ∣∣ ܺ, ௜ݖ ሻܲሺݖ௜ ∣ ܺሻ	

௭೔௬೔

	
௜
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ܲሺ ௜ݖ ∣∣ ܺ ሻ ൌ ܲሺݖ௜)  because Z and X are d-separated. Also ܲ൫ܧ௒೔\௑
ା ൯ is a constant  

 

ൌෑ෍ܲ൫ܧ௒೔
ି ∣∣ ௜ݕ	 ൯෍ߚ௜ܲ൫ ௜ݖ ∣∣ ௒೔\௑ܧ

ା ൯	ܲሺ ௜ݕ ∣∣ ܺ, ௜ݖ ሻ	
௭೔௬೔

	
௜

 

 

The parent of yi (Zij) are independent of each other 

We also combine the ߚ௜ into ߚ 

 

PሺEଡ଼
ି	|	X	ሻ 	ൌ 	βෑ෍P൫Eଢ଼౟

ି ∣∣ 	y୧ ൯෍Pሺ y୧ ∣∣ X, z୧ ሻ	ෑܲሺܼ௜௝ ∣ ௓೔ೕ\௒೔ሻܧ
௝

	
୸౟୷౟

	
୧

 

 

 P൫ Eଢ଼౟
ି ∣∣ 	y୧ ൯ is a recursive instance of ܲሺܧ௑

ି	|	ܺሻ 

 Pሺ y୧ ∣∣ X, z୧ ሻ is a conditional probability table entry of Yi  

 ܲሺܼ௜௝ ∣  ௓೔ೕ\௒೔ሻ is recursive sub-instance of the P(X | E) calculationܧ

 

(Prof. P. Dasgupta (2008)) 

Now, we have simplified first term of the equation (2).If we use only Bayesian analysis, it will 

be complex for larger Bayesian network. 
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5 IDC DATA PROCESSING SYSTEM 

 

IDC software acquires time-series data from stations of International Monitoring System. The 

data are passed through a number of automatic and interactive analysis stages, which culminate 

in the estimation of location and in the origin time of events such as earthquakes and volcanic 

eruptions in the earth, including its oceans and atmosphere. The automatic processing pipeline 

processes data through the following computer software components such as Stations Pro-

cessing, Network Processing, Post-location Processing, Event Screening, Time-series Tools, 

Time-series Libraries.  

 

In this master thesis, only the following two software components were considered in the exam-

ples. 

 

 Station Processing 

This software scans data from individual time-series stations for characteristic changes 

in the wave forms (detections of onsets) and characterizes such onsets (feature extrac-

tion). The software then classifies the detections as arrivals in terms of phase type. 

 

 Network Processing 

This software combines arrivals from several stations originating from one event and in-

fers the location and time of its origin. 

 

Station Processing consists of two main configurable software components, which are Detection 

and Feature Extraction (DFX) and Station Processing (StaPro) software items 
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5.1 Seismology 

 

Every day there are about fifty earthquakes worldwide that are strong enough to be felt locally, 

and every few days an earthquake occurs that is capable of damaging structures. Each event 

radiates seismic waves that travel throughout Earth, and several earthquakes per day produces 

distant ground motion that, although too weak to be felt, are readily detected with modern in-

struments anywhere on the global. Seismology is the science that studies these waves and what 

they tell us about the structure of and the physics of earthquakes. (Shearer, 2009) 

 

5.1.1 Body Waves 

 

In 1830 Poisson used the equations of motion and elastic constitutive laws to show that two 

fundamental types of waves propagate through the interior of homogeneous solids: P waves 

(compressional waves involving volumetric disturbances, and directly analogous to sound 

waves in fluids) and S waves (shear waves with only shearing deformation and no volume 

change, which can therefore not propagate in fluids). The sense of particle motions relative to 

the direction of propagation for P- and S- waves disturbances is shown in Figure 5.1. These two 

types of motion are called body waves, because they traverse the interior of the medium. P 

(primary) waves travel faster than S (secondary) waves and are thus the first motion to be de-

tected from any source in an elastic solid.  (Thorne Lay & Terry C. Wallace(1995)) 

 

 

5.1.2 Surface Waves 

 

In 1887 Lord Rayleigh demonstrated the existence of additional solutions of elastic equations of 

motion for bodies with free surfaces. These are Rayleigh waves, involving wave motions con-

fined to and propagating along surface of the body. By 1911 a second type of surface-wave 

motion, produced in a bounded body with layered material properties, was characterized by 

Love and is hence called Love wave. Rayleigh and Love waves are surface waves result from 

the interaction of P and S waves with the boundary conditions on the body. The sense of particle 

motions for these surface waves is indicated on Figure 5.1. Body and surface waves are influ-

enced by changes in material properties with depth, such as the existence of internal boundaries 

in the Earth that can reflect energy. These interactions can be quantitatively analysed by solving 

boundary-value problems, and they are expressed in terms of reflection and transmission coeffi-

cients.  (Thorne Lay & Terry C. Wallace(1995)) 
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Fig. 5.1 Schematic of the sense of particle motions during passage of the two fundamental elastic 

body waves. (a) P and (b) S waves, as well as the two surface waves in the Earth. (c) Love and (d) Ray-

leigh waves. The waves are all propagating from left to right, with the surface of initial particle motion 

corresponding to the wave front. The relative velocity of each wave type decreases from top to bottom. 

(Thorne Lay & Terry C. Wallace(1995) 
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5.1.3 Whole Earth phases 

Here the main layers are the mantle, the fluid outer core, and the solid inner core. P- and S- 

wave legs in the mantle and core are labelled as follows: 

  

 P – P wave in the mantle 

 K – P wave in the outer core 

 I – P wave in the inner core 

 S – S wave in the mantle 

 J – S wave in the mantle 

 c – reflection off the core-mantle boundary (CMB) 

 i – reflection off the inner-core boundary (ICB) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 Global seismic ray paths and phase names, computed for the PREM velocity model. P 

waves are shown as solid lines, S waves as wiggly lines. The different shades indicate the inner core, the 

outer core, and the mantle (Shearer, 2009). 



43 

 

 

For P and S waves in the whole earth, the above abbreviations apply and stand for successive 

segments of the ray path from source to receiver. Some examples of these rays, paths and their 

names are shown in Figure  

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 Deep earthquakes generate surface-reflected arrivals, termed depth phases, with the up 

going leg from the source labelled with a lower-case p or s. Ray paths plotted here are for an earthquake 

at 650 km depth, using the PERM velocity model. 

(Shearer, 2009) 

 

5.1.4 PREM Model 

For many years the most widely used 1-D model of Earth’s seismic velocities has been the pre-

liminary Reference Earth Model (PREM) of Dziewonksi and Anderson (1981). This model was 

designed to fit a variety of different data set, including free oscillation centre frequency meas-

urements, surface wave dispersion observations, travel time data for a number of body-wave 

phases, and basic astronomical data (Earth’s radius, mass and movement of inertia). In addition 

to profiling the P and S velocities, PERM specifies density and attenuation as functions of 

depth. Although these parameters are known less precisely than the seismic velocities, including 

them is important because it makes the model complete and suitable for use as a reference to 

compute synthetic seismograms without requiring additional assumptions. In order to simulta-

neously fit Love and Rayleigh wave observations, PRERM is transversely isotropic between 80 

to 220 km depth in the upper mantle. This is a spherically symmetric form of anisotropy in 

which SH and SV waves travel a different speeds. 

(Shearer, 2009) 
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5.2 CTBTO IMS Network 

 

The International Monitoring System (IMS) of CTBTO currently consist of 337 facilities (Fig 

5.4) worldwide to monitor the planet for signs of any natural and man-made events. These facili-

ties contain seismometers, which is an instrument that converts ground motion into electric volt-

age. Different types of seismometers are used at seismic stations. The IMS uses the following 

three types of technologies to receive continuous data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 IMS monitoring stations and laboratories will operate in 89 countries around the world. (CTBTO 

Public Information) 
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5.2.1 Seismic network  

 

CTBTO’s seismic network consists of 50 primary stations and 120 auxiliary stations. The task 

of the network is to detect natural events such as an earthquake and other events such as an ex-

plosion. 

Seismic arrays employ several seismic sensors arranged in a certain geometric pattern across an 

area that can range from a few to several hundred square kilometres. A seismic array employs 

two types of seismic sensors, which measure both types of seismic waves: body waves and sur-

face waves. Seismic arrays help identify the location of an event based on information about the 

direction of a signal and its speed. 

 

5.2.2 Hydroacoustic Network 

 

An International Monitoring System network consists of eleven stations used to detect any 

events. Hydroacoustic station monitors the big oceans for hydroacoustic waves to detect under-

water events. There are two types of stations – hydrophone stations and T-phase stations. Hy-

drophone stations use hydrophones, essentially underwater microphones, to detect hydroacous-

tic waves. T-phase stations measure seismic waves that converted from hydroacoustic waves 

when hitting land. These stations are usually located on oceanic islands. 

 

5.2.3 Infrasound Network 

 

A network consists of 60 infrasound stations, which use microbarometers to detect low-

frequency sound waves in the atmosphere. A monitoring station consisting of four to eight in-

frasound array elements, arranged in different geometric patterns. Stations located in windy 

locations on isolated islands require more array elements to improve their detection capacity. At 

each array element, microbarometers measure the pressure changes in the air produced by infra-

sonic waves 
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5.3 International Data Centre (IDC) 

 

International Data Centre (IDC) located at the headquarters of the CTBTO in Vienna, Austria 

Primary stations from above mentioned networks deliver data continuously to IDC, whereas 

auxiliary stations provide data upon request. 

Each station needs to be equipped with communication devices to send the data for analysis to 

the IDC. The Global Communication Infrastructure (GCI) is developed to provide a functioning 

communication system for the timely, reliable and accurate transmission of data. Very Small 

Aperture Terminal (VSAT) is a set-up on the ground called earth station that allows for com-

munication via a satellite. 

Then, these data are stored in the file system and data are passed through a number of automatic 

analysis stages. Detection and Feature Extraction (DFX) and Station Processing (StaPro) are 

first two steps out of them. 

 

5.4 Detection and Feature Extraction (DFX) 

 

(IDC doc (DFX), 2001) 

DFX applications perform a variety of tasks. Their primary functions are to make detections and 

to measure features from waveforms. DFX processes data from all three waveform-based tech-

nologies (seismic, hydroacoustic, and infrasonic). In the current system, DFX is used in auto-

matic station processing, interactive analysis and automatic post-analysis processing. In auto-

matic station processing, DFX detects transient signal and estimates features in the vicinity of 

these detections. In interactive processing, DFX estimates or updates features for detections that 

have been modified or added by the analysts. In automatic post-analysis processing, DFX makes 

a final update of the detection features, and it make measurements, based on event hypotheses, 

which can be used to characterize the event. DFX is also used to beam form array data.  

Automatic processing begins with continuous waveforms arriving from the IMS primary sta-

tions through the Continuous Data Subsystem. The detections and features are measured in the 

DFX detection applications, which include: Automatic Seismic Detection, Automatic Hydroa-

coustic Detection and Automatic Infrasonic Detection. In addition to feature extraction, the 

seismic and infrasonic DFX applications produce and save detection beams. 

The next process in the pipeline, StaPro (6.5), classifies detections into phase types based on the 

extracted waveform features. StaPro can also make single station locations at seismic stations. 
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5.5 Station Processing (StaPro)  

 

(IDC doc (StaPro), 2000) 

The first function in StaPro initializes station specific processing and reads detection features 
from the database. The core station processing consists of three main functions: Determining 
Signal Type, Grouping Signals and Identifying phases. Feature estimates from all signals found 
during DFX detection processing are written to the station processing database. StaPro uses this 
information to determine most likely signal types. Signals are then assembled into groups repre-
senting possible events. Phase names for regional seismic arrivals are determined by using a 
Bayesian analysis method and phase prediction.  

 
Initialization 

StaPro initialization includes reading user parameters specified for the station being processed, 

opening a database connection, loading station-specific CLIPS rules and neural network weights 

into memory. 

 
Determining signal type 

StaPro determines signal types (for example, P or S) of each detected signal. Signal types differ 
depending on the data technology, so this functional area has separate modules for S/H/I tech-
nologies. Each module has the same basic concept of evaluating feature characteristics to de-
termine each signal type. 

 

Grouping Signals 

The purpose of this function is to place signals into groups in which each member has similar 

characteristics suggesting they were generated by the same event. Groups follow rules based on 

geophysical principles, such as P phases proceeding P coda phases or S phases. 

 
Identifying Phases  

The main purpose of this function is to identify phase names for regional seismic data. Phase 

names for teleseismic, hydroacoustic, and infrasonic data are limited to a more simplified nam-

ing convention by StaPro. For these data, signals are labelled similar to their signal type. 

 

Estimating Location and Magnitude 

The purpose of this function is to estimate single-station location and local magnitude for seis-

mic groups that have been formed. An International Association of Seismology and Physics of 

the Earth’s Interior (IASPEI) velocity model is currently employed. However, other models 

could be used. 
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                        Fig. 5.6 Process Flow of Station Processing   (IDC doc (StaPro), 2000) 

 

 

5.6 Global Association(GA) Sub System  

 

(IDC doc (GA), 2001) 

GA is the process in the automatic pipeline that forms event hypothesis. GA reads arrival and 

amplitude data for a time interval and forms set of associations using an exhaustive search algo-

rithm. These association set define the events, which then are located and have their magnitude 

estimated.  

GA’s components (Five program and one library) are identified as follows : 

 

 GAassoc 
 GAconflict 
 GA_DBI 
 GAcons 
 GAgrid 
 libGA 

 

GAassoc constructs initial event hypotheses by associating arrivals from different stations using 

a grid search algorithm.  
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The GAconflict program resolves conflicts between sectors and between time intervals. In addi-

tion, the program predicts and associates defining and non-defining phases after relocating ini-

tial event hypotheses, and it applies a number of geo-physical checks on the associations and 

events. It modifies and removes associations that do not pass these checks. 

 

GA_DBI performs a few auxiliary functions and is specific to particular configuration of GA. 

 

The GAcons process is a stand-alone program that builds the propagation knowledge base grid 

file and the static grid file to be used by the pipeline-activated programs GAassoc and GACon-

flict. 

 

GAgrid is a GUI program that allows visualization of one of the two grid files (the propagation 

knowledge base grid file) built by the GAcons program. The information in the grid file is used 

by GAassoc to form trial event hypotheses in the initial phase of automatic association process. 

 

 

  



50 

 

6 VALIDATION AND DIAGNOSIS OF DATA 

PROCESSING SYSTEM 

 

CTBTO IMS stations are subjected to various upgrades such as station equipment changes, sta-

tions parameter updates, relocation of station’s sites and calibration exercises for seismometers 

at stations. After these changes, stations’ results need to be validated. This chapter will describe 

how to apply statistical methods for validation process of new station parameters. 

 

 

6.1 Validation of station and processing parameter changes 

 

IMS stations send continuous data to IDC and these data are segmented to 10 min time inter-

vals. Station data processing software (DFX and StaPro) processes these intervals and identifies 

detections. 

It is necessary to introduce new versions of DFX and StaPro applications to improve perfor-

mance of the processing pipeline. At the same time, we should install software patches to solve 

the software bugs in the application. These changes are implemented in a test environment at 

IDC. Current version of the software is being used in the production environment during this 

period. At the same time, both test and production environments receive same data stream from 

stations. 

 

To statistically verify these software changes, ‘Two-sample t-Test’ hypotheses testing can be 

carried out for detections’ mean.  

 

After implementing these changes in the test environment at IDC, DFX application run on 10 

min data intervals and it will generate detections. In this example, number of detections will be 

counted for same hours in both test and production environments. 

During the testing period, random samples are collected from test environment. It is necessary 

to collect samples for same hours from production environment, where old software is installed. 
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Data set for test and production environments can be represented with the notation of ‘DLHH’ 

 

L : Represents test or production environment 

HH : Represents hour of the day  

 

E.g DT05 means the data sample, which is collected from test environment between 04 and 05  

time interval. 

 

Let DT01, DT02, DT03.................., DTNN  ~ N(µT, σT
2) and DP01, DP02, DP03.................., DPNN  ~ N(µP, σP

2) 

 

Assuming that mean of detections has t-distribution for both test and production environment; 

 

μ் and μ୔ denotes the true detection mean of test and production environments respectively. 

Now, we consider the following hypotheses: 

 

௢ܪ ∶ 		 μ் ൌ μ௉		versus				ܪ஺:		μ் ് μ௉  

 

 

ݐ ൌ 	
ሺ்̅ݔ െ ሻ	௉ݔ̅ െ ሺ்ߤ െ ௉ሻߤ

ඨ்ܵ
ଶ

்݊ൗ 		൅ 	ܵ௉
ଶ

݊௉ൗ 			

 

 

்ݔ̅ ∶ Mean of detections in test environment sample (∑ DTHH / ்݊) 

௉ݔ̅ ∶ Mean of detections in production environment sample (∑ DOHH / ݊ை) 

	்ܵ:	 Std. deviation of detections in test environment sample 

ܵ௉:	 Std. deviation of detections in production environment sample 

்݊:	 Number samples of test environment 

݊௉:	 Number samples of production environment 
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If the null hypothesis is true (ܪ௢ሻ ∶ 		 μ் െ	μ௉ ൌ 0 ; 

 

ݐ ൌ 	
ሺ்̅ݔ െ ሻ	௉ݔ̅

ඨ்ܵ
ଶ

்݊ൗ 		൅ 	ܵ௉
ଶ

݊௉ൗ 			

 

 

If the null hypothesis is true, degrees of freedom can be calculated from the following equation: 

 

 

ݒ ൌ 	
൬்ܵ

ଶ

்݊ൗ 		൅ 	ܵ௉
ଶ

݊௉ൗ ൰
ଶ

	

൬்ܵ
ଶ

்݊ൗ ൰
ଶ

ሺ்݊ െ 1ሻൗ ൅ ൬ܵ௉
ଶ

݊௉ൗ ൰
ଶ

ሺ݊௉ െ 1ሻൗ

 

 

P	൫	ݐ	 ൒ 		   can be calculated with values of t and v using t-distribution table. This p value	൯݌ݔ݁ݐ

will be used to compare with value set in the Table 3.1 and corresponding descriptive language 

can be used to final decision. 

 

In addition to software changes, there are various other changes are taken place at processing 

pipeline such as software parameter updates, database upgrades and operating system upgrades. 

After implementing these changes, it is possible to apply same hypotheses testing to verify re-

sults of DFX and StrPro applications using same above calculation. 
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6.2 Diagnostics Bayesian Network for station processing 

application (DFX) 

 

The Bayesian network has been used by many systems for the development of diagnostic sys-

tems. Bayesian networks are successfully applied to a variety of applications such as machine 

diagnosis, robotics, data mining and natural language interpretation and planning. This chapter 

describes practical aspects for creating a Bayesian network model as a diagnostic support tool 

for DFX processing. 

 

6.2.1 Bayesian model for DFX processing 

 

The Bayesian network consists of two parts, qualitative part and a quantitative part. The qualita-

tive part represents the graphical part of the network and quantitative part consists of the condi-

tional probability tables. This diagram shows only qualitative part and next chapter will describe 

both these parts in a simple diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1 Bayesian network for diagnosis DFX processing failures 
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In this Bayesian network, there are three intermediate cause nodes: 

 

Parameter Changes Errors: DFX application uses application parameter files and station related 

parameters. These parameter values are modified due to software changes and SHI station 

changes. 

IMS stations undergo various upgrades and it requires updating station specific values in station 

parameter files. There may be errors in these updates (Station Upgrade Error node) 

When installing new SHI stations, it is required to generate new station specific files and update 

the existing shared parameter files. New station installation node represents probability of errors 

in these changes. 

 

Corrupt Data: SHI stations send corrupt data to IDC due to failures at stations or data transmis-

sion problems. DFX processing may fail while processing these corrupt data. Issues at Stations 

and Data Transmission Errors are causes for corrupted data. 

 

Software Issues: Activities such as installing DFX application patches, upgrading OS system 

and upgrading middleware (Distributed Transaction Processing) are taken place in processing 

pipeline. These activities may effect to processing of DFX application. (Distributed Transaction 

Processing Issues, OS errors and Application Upgrade Errors nodes in the figure) 

 

There are two evidence nodes:  

Failed Interval: DFX application run on segmented station data intervals (10 min). When there 

is an error in DFX processing, the processing interval will be changed to “Failed” status. These 

failed processing intervals can be observed in a special workflow. 

 

No Detections: The primary functions of DFX processing are to make detections and to measure 

features from waveforms. If there are any processing failures in DFX application, it will possi-

ble to have intervals with no station detections. Looking at database entries, it is possible to 

check number of detections for each station or each interval. 
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6.2.2 Simple Bayesian model for DFX processing 

 

In this sub-chapter, simple version of Bayesian network is used to perform calculations for main 

four types of queries. All the probability values in Bayesian model are estimated values and not 

real. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.2 Simple version of Bayesian network for diagnosis DFX processing failures 

 

6.2.2.1 Diagnostic inference Calculation 

Using above simplified version of Bayesian Network, diagnostic interference can be calculated 

as follows : 

P ( Parameter Error (E) | No detections (D) )  

 

E = P (Parameter Error) 

S = P (Software Issue) 

D = P (No Detections) 

F = P (DFX processing Failure) 

I = P (Failed Interval) 
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	ܲሺ	ܧ	|	ܦ	ሻ ൌ 		
ܲሺ	ܦ	ܧ	ሻ

ܲ	ሺ	ܦ	ሻ
					െ െ െ		 ሺ1ሻ			 

	ܲሺ	ܦ	ܧሻ 	ൌ 		ܲ	ሺ	ܦ	ܧ	ܨ	ሻ 	൅ 		ܲ	ሺ	ܦ	ܧ	ܨᇱ	ሻ			 

																		ൌ 		ܲ	ሺ		ܦ	|	ܧܨ	ሻ	. ܲ	ሺ	ܧܨ	ሻ ൅ ܲ	ሺ	ܦ	|	ܨᇱܧ	ሻ	. ܲ	ሺ	ܨᇱܧ	ሻ			 

 

 	݁݀݋݊	ݎ݋ݎݎܧ	ݎ݁ݐ݁݉ܽݎܽܲ	݉݋ݎ݂	݁݀݋݊		݊݋݅ݐܿ݁ݐ݁ܦ	݋ܰ	ݏ݁ݐܽݎ݁݌݁ݏ	݁݀݋݊	݁ݎݑ݈݂݅ܽ	݃݊݅ݏݏ݁ܿ݋ݎ݌	ܺܨܦ

ܲ	ሺ	ܦ	|	ܨ	ܧ	ሻ ൌ ܲ	ሺ	ܦ	|	ܨ	ሻ	;		 

;	݊݋݅ݐ݅݀݊݋ܿ	݁݉ܽݏ	݃݊݅ݕ݈݌݌ܣ 		ܲ	ሺ	ܦ	|	ܨᇱܧ	ሻ ൌ ܲ	ሺ	ܦ	|	ܨᇱሻ	 

 

																		ൌ 		ܲ	ሺ	ܦ	|	ܨ	ሻ	. ܲ	ሺ	ܧܨ	ሻ ൅ ܲ	ሺ	ܦ	|	ܨᇱ	ሻ	. ܲ	ሺ	ܨᇱܧ	ሻ 		െ െ െ		ሺ2ሻ 

 

 ;ሻ	ܧܨ	ሺܲ		݁ݐ݈ܽݑ݈ܿܽܿ	ݏᇱݐ݁ܮ

ܲሺ	ܨ	ܧ	ሻ 	ൌ 		ܲ	ሺ	ܧ	ܨ	ܵ	ሻ 	൅ 		ܲ	ሺ	ܧ	ܨ	ܵᇱ	ሻ 	െ െ െ	ሺ3ሻ	 

																		ൌ 		ܲሺ	ܨ	|	ܵܧ	ሻ	. ܲሺ	ܵܧ	ሻ ൅ ܲሺ	ܨ	|	ܵܧ′	ሻ	. ܲሺ	ܵܧᇱ	ሻ		 

 		ݎ݄݁ݐ݋	݄ܿܽ݁	ݏݐ݊݁ݒ݁	ݐ݊݁݀݊݁݌݁݀݊݅	݁ݎܽ	ሺܵሻ	݁ݑݏݏ݅	݁ݎܽݓݐ݂݋ܵ	݀݊ܽ	ሻܧሺ	ݎ݋ݎݎܧ	ݎ݁ݐ݁݉ܽݎܽܲ

																		ൌ 		ܲሺ	ܨ	|	ܵܧ	ሻ	. ܲሺ	ܧሻ	. ܲሺ	ܵ	ሻ ൅ ܲሺ	ܨ	|	ܵܧ′	ሻ	. ܲሺ	ܧ	ሻ	. ܲሺ	ܵᇱ	ሻ		 

																		ൌ 		0.95	 ∗ 0.3 ∗ 0.4	 ൅ 		0.9 ∗ 0.3 ∗ 0.6		 

																		ൌ 		0.276		 

 

 

 ;ሻ		ܧ′ܨ	ሺܲ		݃݊݅ݐ݈ܽݑ݈ܿܽܥ

ܲሺ	′ܨ	ܧ	ሻ 	ൌ 		ܲ	ሺ	′ܨ	ܧ	ܵ	ሻ 	൅ 		ܲ	ሺ	ܨᇱܧ	ܵᇱ	ሻ 			െ െ െ		ሺ4ሻ		 

																		ൌ 		ܲሺ	′ܨ	|	ܵܧ	ሻ	. ܲሺ	ܵܧ	ሻ ൅ ܲሺ	′ܨ	|	ܵܧ′	ሻ	. ܲሺ	ܵܧᇱ	ሻ		 

																		ൌ 		0.05	 ∗ 0.3 ∗ 0.4	 ൅ 		0.1 ∗ 0.3 ∗ 0.6		 

																		ൌ 		0.024		 
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 ;	݊݋݅ݐܽݑݍ݁	ሺ2ሻ	݋ݐ	݃݊݅ݕ݈݌݌ܣ

ܲሺ	ܦ	ܧሻ ൌ 	ܲ	ሺ	ܦ	|	ܨ	ሻ	. ܲ	ሺ	ܧܨ	ሻ ൅ ܲ	ሺ	ܦ	|	ܨᇱ	ሻ	. ܲ	ሺ	ܨᇱܧ	ሻ		 

																ൌ 		0.97 ∗ 	0.276	 ൅ 0.95 ∗ 0.024	 

																ൌ 			0.290 

 

 ;ሻ	ܦ	ሺܲ		݃݊݅ݐ݈ܽݑ݈ܿܽܥ

ܲሺ	ܦ	ሻ 	ൌ 		ܲ	ሺ	ܦ	ܨ	ሻ 	൅ 		ܲ	ሺ	ܦ	ܨᇱ	ሻ				 

														ൌ 		ܲ	ሺ	ܦ	|	ܨ	ሻ	. ܲሺ	ܨ	ሻ 	൅ 		ܲ	ሺ	ܦ	|	ܨᇱሻ	. ܲ	ሺ	ܨᇱ	ሻ 			െ െ െ		ሺ5ሻ 

 

 ;ሻ	ܨ	ሺܲ		݃݊݅ݐ݈ܽݑ݈ܿܽܥ

ܲሺ	ܨ	ሻ 	ൌ 		ܲሺ	ܨ	ܧ	ܵ	ሻ ൅ ܲሺ	ܨ	ܧ	ܵᇱሻ ൅ ܲሺ	ܨ	ܧᇱ	ܵ	ሻ ൅ ܲሺ	ܨ	ܧᇱ	ܵᇱሻ 			െ െ െ		ሺ6ሻ 

														ൌ 		ܲሺ	ܨ	|	ܧ	ܵ	ሻ.		ܲሺ	ܵܧ	ሻ ൅ ܲሺ	ܨ	|	ܧ	ܵᇱሻ. ܲሺ	ܵܧᇱ	ሻ ൅ ܲሺ	ܨ	|	ܧᇱܵ	ሻ.		ܲ	ሺ	ܧᇱܵ	ሻ

൅ ܲሺ	ܨ	|	ܧᇱ	ܵᇱሻ. ܲሺ	ܧᇱܵᇱ	ሻ			 

 		ݎ݄݁ݐ݋	݄ܿܽ݁	ݏݐ݊݁ݒ݁	ݐ݊݁݀݊݁݌݁݀݊݅	݁ݎܽ	ሺܵሻ	݁ݑݏݏ݅	݁ݎܽݓݐ݂݋ܵ	݀݊ܽ	ሻܧሺ	ݎ݋ݎݎܧ	ݎ݁ݐ݁݉ܽݎܽܲ

														ൌ 		ܲሺ	ܨ	|	ܧ	ܵ	ሻ. ܲሺ	ܧ	ሻ. ܲሺ	ܵሻ ൅ ܲሺ	ܨ	|	ܧ	ܵᇱሻ. ܲሺ	ܧ	ሻ.		ܲሺ	ܵᇱ	ሻ …… ..	 

																								ൌ 		0.95 ∗ 	0.3 ∗ 0.4	 ൅ 0.9 ∗ 0.3 ∗ 0.6 ൅ 0.8 ∗ 0.7 ∗ 0.4 ൅ 0.1 ∗ 0.7 ∗ 0.6 

																										ൌ 		0.114	 ൅ 	0.162 ൅ 0.224 ൅ 0.042 

																										ൌ 		0.542 

 

 ;ሻ	′ܨ	ሺܲ		݃݊݅ݐ݈ܽݑ݈ܿܽܥ

								ܲሺ	ܨ′	ሻ 				ൌ 		1 െ ܲሺ	ܨ	ሻ 

																										ൌ 		1 െ 0.542 ൌ 0.458 

 

 ;	݊݋݅ݐܽݑݍ݁	ሺ5ሻ	݋ݐ	݃݊݅ݕ݈݌݌ܣ

								ܲሺ	ܦሻ 						ൌ 		ܲ	ሺ	ܦ	|	ܨ	ሻ	. ܲሺ	ܨ	ሻ 	൅ 		ܲ	ሺ	ܦ	|	ܨᇱሻ	. ܲ	ሺ	ܨᇱ	ሻ			 

																										ൌ 		0.97 ∗ 0.542	 ൅ 0.95 ∗ 0.458		 

																										ൌ 		0.96084 
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 ;	݊݋݅ݐܽݑݍ݁	ሺ1ሻ	݋ݐ	݃݊݅ݕ݈݌݌ܣ

ܲሺ	ܧ	|	ܦ	ሻ ൌ 		
ܲሺ	ܦ	ܧ	ሻ

ܲ	ሺ	ܦ	ሻ
		 

																			ൌ 		
0.290
0.96084

		 

																			ൌ 		0.302		 

 

 

6.2.2.2 Causal inference Calculation 

Causal inferences reason top-down from causes to effects. To illustrate this using above Bayesi-

an network, the following example can be used: 

 

P ( Failed Interval (I) | Software Issue (S) ) 

 

ܲሺ	ܫ	|	ܵ	ሻ ൌ 		
ܲሺ	I	ܵ	ሻ
ܲሺ	S	ሻ

					െ െ െ		ሺ7ሻ			 

ܲሺ	ܫ	ܵ	ሻ 	ൌ 		ܲሺ	ܫ	ܵ	ܨ	ሻ 	൅ 		ܲሺ	ܫ	ܵ	ܨᇱ	ሻ			 

																		ൌ 		ܲሺ		ܫ	|	ܵܨ	ሻ	. ܲሺ	ܵܨ	ሻ ൅ ܲሺ	ܫ	|	ܨᇱܵ	ሻ	. ܲሺ	ܨᇱܵ	ሻ 

 

 	݁݀݋݊	݁ݑݏݏ݅	݁ݎܽݓݐ݂݋ܵ	݉݋ݎ݂	݁݀݋݊		݈ܽݒݎ݁ݐ݊݅	݈݀݁݅ܽܨ	ݏ݁ݐܽݎ݁݌݁ݏ	݁݀݋݊	݁ݎݑ݈݂݅ܽ	݃݊݅ݏݏ݁ܿ݋ݎ݌	ܺܨܦ

ܲሺ	ܫ	|	ܵܨ	ሻ ൌ ܲ	ሺ	ܫ	|	ܨ	ሻ	;		 

;	݊݋݅ݐ݅݀݊݋ܿ	݁݉ܽݏ	݃݊݅ݕ݈݌݌ܣ 		ܲሺ	ܫ	|	ܨᇱܵ	ሻ ൌ ܲሺ	ܫ		|	ܨᇱ	ሻ	 

 

																		ൌ 		ܲሺ	ܫ	|	ܨ	ሻ	. ܲሺ	ܵܨ	ሻ ൅ ܲሺ	ܫ	|	ܨᇱ	ሻ	. ܲሺ	ܨᇱܵ	ሻ		 

 

 

 ;ሻ	ሺ3	݈݁݌݉ܽݔ݁	ݏݑ݋݅ݒ݁ݎ݌	݄݁ݐ	݊݅	݈݀݁݊݅ܽ݌ݔ݁	ݏܽ	ሻ	ᇱܵܨ	ܲሺ	ܽ݊݀	ሻ	ܵܨ	ሺܲ	ݎ݋݂	݊݋݅ݐ݈ܽݑ݈ܿܽܿ	݄݁ݐ	݉ݎ݋݂ݎ݁ܲ

	ܲሺܵܨሻ 		ൌ	0.338 

ܲሺܨᇱܵሻ ൌ 		0.062 
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	ܲሺ	ܵܫ	ሻ 	ൌ 	ܲሺ	ܫ	|	ܨ	ሻ	. ܲሺ	ܵܨ	ሻ ൅ ܲሺ	ܫ	|	ܨᇱ	ሻ	. ܲሺ	ܨᇱܵ	ሻ		 

																ൌ 	0.9 ∗ 0.338	 ൅ 	0.01 ∗ 	0.062	 

																ൌ 	0.30482 

 

 ݊݋݅ݐܽݑݍ݁	ሺ7ሻ	݋ݐ	݃݊݅ݕ݈݌݌ܣ

ܲሺ	ܫ	|	ܵ	ሻ ൌ 		
ܲሺ	I	ܵ	ሻ

ܲሺ	S	ሻ
 

																		ൌ 		
0.30482
0.4

 

																		ൌ 		0.76205 

 

 

6.2.2.3 Inter-causal inference calculation 

Inter-causal reasoning is a common inference pattern involving probabilistic dependence of 

causes of an observed common effect. In the following example, probability of software issue 

for given DFX failure can be calculated as below: 

 

P ( Software Issue (S) | DFX failure (F) ) 

 

ܲሺ	ܵ	|	ܨ	ሻ ൌ 		
ܲሺ	ܵ	ܨ	ሻ
ܲሺ	F	ሻ

						െ െ െ		ሺ8ሻ		 

 

 ;ሻ	ܨ	ܵ	ሺܲ		݃݊݅ݐ݈ܽݑ݈ܿܽܥ

ܲሺ	ܨ	ܵ	ሻ 	ൌ 	ܲሺ	ܨ	ܵ	ܧ	ሻ ൅ ܲሺ	ܨ	ܵ	ܧᇱ	ሻ		 

																ൌ 	ܲሺ		ܨ	|	ܵ	ܧ	ሻ	. ܲሺ	ܵ	ܧ	ሻ ൅ ܲሺ	ܨ	|	ܵ	ܧᇱ	ሻ	. ܲሺ	ܵ	ܧᇱ	ሻ	 

 		ݎ݄݁ݐ݋	݄ܿܽ݁	ݏݐ݊݁ݒ݁	ݐ݊݁݀݊݁݌݁݀݊݅	݁ݎܽ	ሺܵሻ	݁ݑݏݏ݅	݁ݎܽݓݐ݂݋ܵ	݀݊ܽ	ሻܧሺ	ݎ݋ݎݎܧ	ݎ݁ݐ݁݉ܽݎܽܲ

																ൌ 	ܲሺ		ܨ	|	ܵ	ܧ	ሻ	. ܲሺ	ܵ	ሻ	. ܲ	ሺ	ܧ	ሻ ൅ ܲሺ	ܨ	|	ܵ	ܧᇱ	ሻ	. ܲሺ	ܵ	ሻ	. ܲሺ	ܧᇱ	ሻ 

																ൌ 	0.95 ∗ 0.4 ∗ 0.3	 ൅ 	0.8 ∗ 0.4 ∗ 0.7 

																ൌ 	0.338 
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ܲሺ	ܨ	ሻ	݅ݏ	݀݁ݐ݈ܽݑ݈ܿܽܿ	݊݅	݄݁ݐ	ݏݑ݋݅ݒ݁ݎ݌	݈݁݌݉ܽݔ݁	ሺ6ሻ; 

	ܲሺ	ܨ	ሻ ൌ 0.542 

 

 ݊݋݅ݐܽݑݍ݁	ሺ8ሻ	݋ݐ	݃݊݅ݕ݈݌݌ܣ

ܲሺ	ܵ	|	ܨ	ሻ ൌ 		
ܲሺ	ܵ	ܨ	ሻ

ܲሺ	F	ሻ
		 

																			ൌ 		
0.338
0.542

	 

																			ൌ 		0.623 

 

 

 

Assuming there is more evidence, let’s calculate same probability as follows: 

P ( Software Issue (S) | DFX failure (F) ˄ Parameter Error (E) ) 

 

ܲሺ	ܵ	|	ܨ	ܧ	ሻ ൌ 		
ܲሺ	ܵ	ܨ	ܧ	ሻ
ܲሺ	ܨ	ܧ	ሻ

						െ െ െ		 ሺ9ሻ		 

 

 ;ሻ	ܧ	ܨ	ܵ	ሺܲ		݃݊݅ݐ݈ܽݑ݈ܿܽܥ

ܲሺ	ܨ	ܵ	ܧ	ሻ 	ൌ 	ܲሺ	ܨ	|	ܵ	ܧ	ሻ. ܲሺ	ܵ	ܧ	ሻ 

 		ݎ݄݁ݐ݋	݄ܿܽ݁	ݏݐ݊݁ݒ݁	ݐ݊݁݀݊݁݌݁݀݊݅	݁ݎܽ	ሺܵሻ	݁ݑݏݏ݅	݁ݎܽݓݐ݂݋ܵ	݀݊ܽ	ሻܧሺ	ݎ݋ݎݎܧ	ݎ݁ݐ݁݉ܽݎܽܲ

																				ൌ 	ܲሺ	ܨ	|	ܵ	ܧ	ሻ. ܲሺ	ܵ	ሻ. ܲሺ	ܧ	ሻ 

																				ൌ 	0.95 ∗ 0.4 ∗ 0.3 

																				ൌ 	0.114 

 

 ;ሻ	ܧ	ܨ	ሺܲ		݃݊݅ݐ݈ܽݑ݈ܿܽܥ

ܲሺ	ܨ	ܧ	ሻ 	ൌ 	ܲሺ	ܨ	ܧ	ܵ	ሻ ൅ 	ܲሺ	ܨ	ܧ	ܵ′	ሻ 	െ െ െ		ሺ10ሻ 

																	ൌ 	ܲሺ	ܨ	|	ܧ	ܵ	ሻ. ܲሺ	ܵ	ሻ. ܲሺ	ܧ	ሻ ൅ 	ܲሺ	ܨ	|	ܧ	ܵ′	ሻ. ܲሺ	ܵ′	ሻ. ܲሺ	ܧ	ሻ 

																	ൌ 	0.95 ∗ 	0.4 ∗ 0.3	 ൅ 	0.9 ∗ 0.6 ∗ 0.3 

																	ൌ 	0.276 
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 ݊݋݅ݐܽݑݍ݁	ሺ9ሻ	݋ݐ	݃݊݅ݕ݈݌݌ܣ

ܲሺ	ܵ	|	ܨ	ܧ	ሻ ൌ 		
ܲሺ	ܵ	ܨ	ܧ	ሻ

ܲሺ	ܨ	ܧ	ሻ
		 

																							ൌ 		
0.114
0.276

		 

																							ൌ 		0.41		 

 

With additional evidence, the probability goes down to 0.41 

 

 

6.2.2.4 Mixed inferences calculation 

It combines above inferences in Bayesian network. 

 

P ( DFX failure (F) | Failed Interval(I) ˄ Parameter Error (E) ) 

 

ܲሺ	ܨ	|	ܫ	ܧ	ሻ ൌ 		
ܲሺ	ܨ	ܫ	ܧ	ሻ
ܲሺ	ܫ	ܧ	ሻ

						െ െ െ		ሺ11ሻ		 

 

 ;ሻ	ܧ	ܫ	ܨ	ሺܲ		݃݊݅ݐ݈ܽݑ݈ܿܽܥ

ܲሺ	ܨ	ܫ	ܧ	ሻ 	ൌ 	ܲሺ	ܫ	|	ܨ	ܧ	ሻ. ܲሺ	ܨ	ܧ	ሻ 

 ݁݀݋݊	ݎ݋ݎݎ݁	ݎ݁ݐ݁݉ܽݎܽ݌	݉݋ݎ݂	݁݀݋݊		݈ܽݒݎ݁ݐ݊݅	݈݀݁݅ܽܨ	ݏ݁ݐܽݎ݁݌݁ݏ	݁݀݋݊	݁ݎݑ݈݂݅ܽ	݃݊݅ݏݏ݁ܿ݋ݎ݌	ܺܨܦ

																				ൌ 	ܲሺ	ܫ	|	ܨ	ሻ. ܲሺ	ܨ	ܧ	ሻ 

 

ܲሺ	ܧܨ	ሻ	݅ݏ	݀݁ݐ݈ܽݑ݈ܿܽܿ	݊݅	݄݁ݐ	ݏݑ݋݅ݒ݁ݎ݌	݈݁݌݉ܽݔ݁	ሺ10ሻ; 

ܲሺ	ܨ	ܧ	ሻ 	ൌ 	0.276 

 

 

ܲሺ	ܨ	ܫ	ܧ	ሻ 	ൌ 	ܲሺ	ܫ	|	ܨ	ሻ. ܲሺ	ܨ	ܧ	ሻ 

																			ൌ 	0.9 ∗ 	0.276 

																			ൌ 	0.248 
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 ;ሻ	ܧ	ܫ	ሺܲ		݃݊݅ݐ݈ܽݑ݈ܿܽܥ

ܲሺ	ܫ	ܧ	ሻ 	ൌ 	ܲሺ	ܫ	ܧ	ܨ	ሻ 	൅ ܲሺ	ܫ	ܧ	ܨᇱ	ሻ 

																ൌ 	ܲሺ	ܫ	|	ܧ	ܨ	ሻ. ܲሺ	ܧ	ܨ	ሻ ൅ ܲሺ	ܫ	|	ܧ	ܨ′	ሻ. ܲሺ	ܧ	ܨᇱ	ሻ 

 ݁݀݋݊	ݎ݋ݎݎ݁	ݎ݁ݐ݁݉ܽݎܽ݌	݉݋ݎ݂	݁݀݋݊		݈ܽݒݎ݁ݐ݊݅	݈݀݁݅ܽܨ	ݏ݁ݐܽݎ݁݌݁ݏ	݁݀݋݊	݁ݎݑ݈݂݅ܽ	݃݊݅ݏݏ݁ܿ݋ݎ݌	ܺܨܦ

																ൌ 	ܲሺ	ܫ	|	ܨ	ሻ. ܲሺ	ܨ	ܧ	ሻ ൅ ܲሺ	ܫ	|	ܨ′	ሻ. ܲሺ	ܧ	ܨᇱ	ሻ 

 

ܲሺ	ܧܨ	ሻ	݅ݏ	݀݁ݐ݈ܽݑ݈ܿܽܿ	݊݅	݄݁ݐ	ݏݑ݋݅ݒ݁ݎ݌	݈݁݌݉ܽݔ݁	ሺ10ሻ; 

ܲሺ	ܨ	ܧ	ሻ 	ൌ 	0.276 

 

ܲሺ	ܨᇱܧ	ሻ	݅ݏ	݀݁ݐ݈ܽݑ݈ܿܽܿ	݊݅	݄݁ݐ	ݏݑ݋݅ݒ݁ݎ݌	݈݁݌݉ܽݔ݁	ሺ10ሻ; 

ܲሺ	′ܨ	ܧ	ሻ 	ൌ 	0.024 

 

ܲሺ	ܫ	ܧ	ሻ 			ൌ 	ܲሺ	ܫ	|	ܨ	ሻ. ܲሺ	ܨ	ܧ	ሻ ൅ ܲሺ	ܫ	|	ܨ′	ሻ. ܲሺ	ܧ	ܨᇱ	ሻ 

																		ൌ 		0.9 ∗ 0.276	 ൅ 	0.01 ∗ 	0.024 

																		ൌ 		0.9 ∗ 0.276	 ൅ 	0.01 ∗ 	0.024 

																		ൌ 		0.2486 

 

 ݊݋݅ݐܽݑݍ݁	ሺ11ሻ	݋ݐ	݃݊݅ݕ݈݌݌ܣ

ܲሺ	ܨ	|	ܫ	ܧ	ሻ ൌ 		
ܲሺ	ܨ	ܫ	ܧ	ሻ

ܲሺ	ܫ	ܧ	ሻ
							 

																						ൌ 		
0.248
0.2486

			 

																						ൌ 		0.9974 
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6.3 Diagnostics Bayesian Network for GA application 

 

The Diagnostic Bayesian network for GA application consists of two parts, qualitative part and 

quantitative part. The qualitative part represents the graphical part of the network and quantita-

tive part consists of the conditional probability tables. The figure 6.3 shows only qualitative 

part. 

 

In this Bayesian network, there are four intermediate cause nodes: 

 

Parameter Changes Errors: GA application uses application parameter files and these parame-

ter values are subjected to modify due to software changes. GA application also reads earth-

model configuration data. Any errors occur during modifications to these parameter files will 

effect on GA processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.3 Bayesian network for diagnosis GA processing failures 

 

GA grid errors: IMS stations undergo various upgrades and it results updating station specific 

parameter values in parameter files. When installing new SHI stations, it is required to generate 

new station specific files and update existing shared parameter files.  
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After installing the new primary stations, it must be required to generate new GA grid. It may be 

required to generate new GA grid file for station parameter upgrades depending on the changes. 

Station upgrade and new station installation errors will contribute to GA grid errors. 

 

Corrupt Data: SHI stations send corrupt data to IDC occasionally due to failures at stations or 

data transmission problems. GA application may fail while processing these corrupt data. Issues 

at Station and Data Transmission Errors nodes represent causes for corrupted data. 

 

Software Issues: Installing GA application patches, upgrading OS system and upgrading mid-

dleware (Distributed Transaction Processing) are major activities, which carried out on pro-

cessing pipeline. These activities can cause to GA processing. Distributed Transaction Pro-

cessing Issues, OS errors and Application Upgrade Errors nodes are cause nodes for software 

issues. 

 

There are two evidence nodes:  

 

Failed Interval: GA processing executes on 10min station data segments. When there is an error 

in GA processing, the status of processing interval will be “Failed”. These failed intervals can 

be observed in a special workflow. At the same time, this failed interval also can be caused by 

database errors because interval data are read and written to a database table. 

 

No associations: The primary function of GA is to read arrival and amplitude data for a time 

interval and forms set of associations using an exhaustive search algorithm. If there are pro-

cessing failures in GA, there will no associations. It is possible to count number of associations 

for each station at each interval by querying at database entries. 
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6.4 Populating Conditional Probability Table 

 

It is easy to understand failures in ‘diagnostic’ form than ‘causal’ form to diagnostic experts. 

This is due to the fact that they are primarily interested in determining component failure given 

test results. For example, if an electrical system indicator light is illuminated on an automobile 

dashboard, and automotive diagnosis expert will have little difficulty determining the probabil-

ity that the car has, say, an alternator malfunction. However, to determine the likelihood that a 

particular dashboard light is on or off given alternator failure may be hard to answer, because it 

is equivalent to asking the expert to pass judgment on the effectiveness of the light to capture 

various forms of alternate failures. This is a question on test design relative to functional modes 

of the observed component, which may fall outside of the expert’s domain knowledge. 

(K. Wojtek Przytula & Don Thompson (2000)) 

 

To fill out Conditional Probability Tables (CPT), it required knowledge of domain (diagnostics) 

experts and processing engineers, who has lot of experiences about processing failures in DFX 

and GA applications. 

Diagnostic inference in the Bayesian network context refer to conditional probabilities of the 

form P (Parameter Error | No detections) from figure 6.1. This indicates probability of parame-

ter error for given failure condition of “No detections”. To obtain this information, it is required 

to look at previous DFX and GA processing failures with help of processing engineers. 

 

Determining the prior probability of any errors such P(OS error) will not be easy task but sys-

tem operators can obtain this information from past log files or log tickets, which contains fail-

ures on mean time. 

In above Bayesian networks, the prior component probability and conditional diagnostic proba-

bilities may be not sufficient to calculate conditional causal probabilities of the network.  

An example from Fig 6.3: 

P (software issue | distribution transaction error, ~OS error, ~application upgrade error) 

 

It is required to elicit additional diagnostic or prior probability information to network. The 

following theorem can be used to build a complete diagnostic Bayesian model, capable of for-

ward and backward reasoning with reduced burden for the domain expert. 
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Theorem 1: 

(K. Wojtek Przytula & Don Thompson (2000)) 

 

Suppose we have the Bayesian network depicted in figure 6.4. Given the complete diagnostic 

conditional joint distribution of “component defectiveness given T”. (i.e the complete set of 

probabilities of the form {P(C1, C2, ….,Cn | T)}, over all complemented and un-complemented 

value combinations of  the Ci), the single probability P(C1, C2, ….,Cn) and the single probability 

P(C1, C2, ….,Cn | T’), it is possible to calculate the complete joint probability distribution of Ci 

and T, and thus, all probabilities pertaining to these variables. In particular, it is possible to cal-

culate all causal probabilities. 

 

 

 

 

 

 

 

 

 

 

Fig 6.4 Bayesian network node with C and T primary events 

 
 
 
 
Proof of Theorem 
 

The proof follows inductively on the number of components. The root case of one component 

follows. 

 

First of all, it is clear that from our given information we may calculate P(C’), P(C’|T) and 

P(C’|T’) 

 

ܲሺܥᇱሻ ൌ 1 െ ܲሺܥሻ 

ܲሺܥᇱ|ܶሻ ൌ 1 െ ܲሺܥ|ܶሻ 
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ܲሺܥᇱ|ܶᇱሻ ൌ 1 െ ܲሺܥ|ܶᇱሻ 

 

Next, using the laws of probability we have: 

ܲሺܥ|ܶሻ ൌ 	ܲሺܥ, ܶሻ ܲሺܶሻ⁄  

																ൌ 	ܲሺܥ, ܶሻ ሺܲሺܥ, ܶሻ ൅ 	ܲሺܥᇱ, ܶሻሻ⁄  

 

ܲሺܥ|ܶᇱሻ ൌ 	ܲሺܥ, ܶᇱሻ ܲሺܶᇱሻ⁄  

																ൌ 	 ሺܲሺܥሻ െ 	ܲሺܥ, ܶሻሻ ሺ1 െ ܲሺܥ, ܶሻ െ 	ܲሺܥᇱ, ܶሻሻ⁄  

 

Solving for ܲሺܥ|ܶሻ and ܲሺܥ|ܶᇱሻ we see that are led to the matrix system: 

 

൤
ܲሺܥᇱ|ܶሻ ܲሺܥ|ܶሻ
ܲሺܥᇱ|ܶᇱሻ ܲሺܥ|ܶሻ

൨	൤
					ܲሺܥ, ܶሻ 	
				ܲሺܥᇱ, ܶሻ 	

൨ = ൤
	0 	

						ܲሺܥሻ െ ܲሺܥ|ܶሻ 	൨ 

 

The determinants of the coefficient matrix of this system reduce to: 

 

ܲሺܥ|ܶᇱሻܲሺܥᇱ|ܶᇱሻ 	െ 	ܲሺܥᇱ|ܶሻܲሺܥ|ܶᇱሻ ൌ 	ܲሺܥ, ܶሻܲሺܥᇱ, ܶᇱሻ െ ܲሺܥᇱ, ܶሻܲሺܥ, ܶᇱሻ ሺܲሺܶሻܲሺܶᇱሻሻ⁄  

 

Which has a vanishing numerator only if ܲሺܥ, ܶሻ ܲሺܥᇱ, ܶሻ ൌ ܲሺܥ, ܶᇱሻܲሺܥᇱ, ܶᇱሻ⁄ , which is 

equivalent to C and T being independent events. We assume that this is not the case, else our 

conditional probabilities all collapse to prior probabilities, an uninteresting case. 

 

Upon solving the above matrix system, we get ܲሺܥ, ܶሻ and ܲሺܥᇱ, ܶሻ; hence also  

ܲሺܥ|ܶᇱሻ ൌ ܲሺܥሻ െ ܲሺܥ|ܶሻ 

ܲሺܥᇱ|ܶᇱሻ ൌ ܲሺܥሻ െ ܲሺܥᇱ|ܶሻ 

 

Thus, we can complete determine the joint distribution of C and T. This will uniquely determine 

all pertinent probabilities in this two-node network, including the causal probabilities. 



68 

 

7 SUMMARY AND FUTURE WORK 

 

Hypothesis testing is one of the most widely used methodologies in statistics. Testing hypothe-

sis is a powerful statistical method in validating changes and modification, which have been 

carried out in data processing pipeline at IDC. 

There were no actual data collected during this master thesis. It is required to collect data sam-

ples and analyse their distribution for future work. These data samples can be collected through 

system operators at IDC.  

At the same time, only statistics validation will not be enough to accept or reject validation 

changes. Most of these changes will be required additional testing with system experts, data 

analysis and scientists. Testing hypothesis methodology will be an additional auxiliary tool for 

validating changes in processing pipeline. 

You might to perform several experiments to find out correct significance level, minimum num-

ber of samples required for hypothesis testing and length of data segment e.g. when we are 

computing number of detections, it is necessary to define a time period (1hrs, 2hrs or more 

lengthy hour) for data collection. Once these details are finalized, some script can be developed 

to collect necessary samples from real data. Currently, there are many numbers of commercial 

statistical applications available in the market. These collected samples can be fed to the statisti-

cal applications to get the result faster. 

 

Bayesian network section of Artificial Intelligence is a popular method in the modelling under 

the uncertain knowledge. This topic has become a research field recently and there are many 

books which take a broad look at the literature on Bayesian networks. This master thesis cov-

ered most discussed topics in this Bayesian networks field. However, specific or research level 

topics have not been discussed. 

Chapter 4 explained about Bayesian Network and its theories. In the same chapter, we discussed 

how to create generic algorithm for Bayesian queries. In Chapter 6, these theories were applied 

to create diagnostic support tool for DFX and GA applications. we have discussed about four 

inferences calculation using simple diagnostic Bayesian Network for DFX application in that 

chapter. 

Finding out prior probabilities of errors such as station upgrade errors, OS errors, application 

upgrade errors and any other error is a difficult task. Calculating conditional probabilities need 

more domain experts’ knowledge. We discussed about populating conditional probability tables 

(CPT) in chapter 6.4. But probability elicitation for Bayesian network discussion is beyond this 

thesis. Probability elicitation will be an interesting area for the further research. 
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DFX and GA are only two sub systems of Automatic processing pipeline at IDC but there are 

more complex subsystems are included in the pipeline. After gaining knowledge of building 

Bayesian network of those two sub systems, Bayesian network knowledge engineers can inves-

tigate about other sub systems as well. 
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