
Automated Detection of Security
Vulnerabilites Using Machine

Learning for Automated Testing

Diplomarbeit

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Andreas Hübler
Matrikelnummer 0456618

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig
Mitwirkung: Christian Schanes

Wien, 6. Oktober 2014
(Unterschrift Verfasser/In) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Automated Detection of Security
Vulnerabilites Using Machine

Learning for Automated Testing

Master’s Thesis

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computational Intelligence

by

Andreas Hübler
Registration Number 0456618

elaborate at the
Institut of Computer Aided Automation
Reseach Group for Industrial Software
to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Thomas Grechenig
Assistance: Christian Schanes

Vienna, October 6, 2014

Technische Universität Wien, Forschungsgruppe INSO
A-1040 Wien � Wiedner Hauptstr. 76/2/2 � Tel. +43-1-587 21 97 � www.inso.tuwien.ac.at

Statement by Author

Andreas Hübler
Heiderosenstraße 57, 4600 Wels

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quel-
len und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich
Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem
Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich ge-
macht habe.

I hereby declare that I am the sole author of this thesis, that I have completely indicated all sources
and help used, and that all parts of this work – including tables, maps and figures – if taken from
other works or from the internet, whether copied literally or by sense, have been labelled including
a citation of the source.

(Place, Date) (Signature of Author)

i

Acknowledgements

I want to thank my advisor Thomas Grechenig for his supervision and the possibility to write my
masters thesis at the INSO research group.

My particular thanks goes to my assistant advisor Christian Schanes for the possibility to work
at this project and his invaluable support during the creation of this work. Without him, all this
would not have been possible.

Further, I want to thank Florian Fankhauser. Without his lectures on IT security I would have
never discovered the fascination of this topic.

I am very grateful to my family for their unhesitant support during all these past years.

Finally my very special thanks to the love of my life for her incredible help in the writing of this
document and that she is always there for me.

ii

Abstract

IT security is an important aspect of the software development life cycle and thorough security
testing is necessary to ensure the quality of the software. To cope with the increasing complexity
and amount of software, security testing is required to increase its efficiency through the develop-
ment of automated testing methods. However, the manual analysis of the results produced by an
automated test execution can be very cumbersome and extremely time consuming.

The purpose of this thesis is to optimize the analysis phase through the automatic evaluation of test
results and detection of suspicious test cases. In this work the optimization task was approached
by using methods from the research field of machine learning. To this aim several supervised
and unsupervised machine learning methods were investigated: Artificial Neural Network, Self-
Organizing Map, Support Vector Machine, c-Means Clustering. Based on the prototypes created
in this thesis, the four approaches were evaluated in terms of their applicability in detecting suspi-
cious behaviour of the test subject.

The results show that machine learning methods are well suited for an integration into a security
testing framework. Three out of four implementations displayed a high vulnerability detection
rate while maintaining a straightforward implementation, fast running times and easy adaptation
into various projects. Integrated into a security testing system, machine learning methods can
improve the analysis phase of the test execution. With their help the amount of manual labor can
be decreased without any loss of vulnerability detection rate.

Keywords

Machine learning; System testing; Optimization; Security

iii

Kurzfassung

IT Sicherheit ist ein wichtiger Aspekt in der Entwicklung von Software Projekten. Um die Qualität
der Software zu gewährleisten, ist es notwendig, die Sicherheitsmaßnahmen gründlich zu testen.
Um mit der wachsenden Menge und Komplexität von Programmen zurechtzukommen, müssen
auch Sicherheitstests ihre Effizienz durch die Entwicklung von automatisierten Testmethoden stei-
gern. Allerdings generieren automatisierte Testmethoden eine Vielzahl an Daten, deren manuelle
Auswertung umständlich und zeitaufwändig ist.

Diese Arbeit hat sich das Ziel gesetzt, die Auswertungs- und Analysephase durch die automati-
sche Evaluation der Testresultate zu optimieren und auffällige Testfälle zu erkennen. Als Heran-
gehensweise an diese Zielsetzung wurden Methoden aus dem Forschungsgebiet des maschinellen
Lernens gewählt. Es wurden vier Methoden des überwachten und nicht-überwachten maschinel-
len Lernens eingesetzt: künstliche neuronale Netze, selbstorganisierende Karten, Support Vector
Machine sowie k-Means Clustering. In dieser Arbeit wurden Prototypen der jeweiligen Methoden
erstellt und evaluiert, wie gut sie verdächtiges Verhalten des zu testenden Systems erkennen.

Die Resultate zeigen, dass die Methoden aus dem Bereich des maschinellen Lernens gut für die
Integration in ein bestehendes Sicherheitstest-Programm geeignet sind. Drei der vier getesteten
Implementierungen erkannten Schwachstellen mit einer hohen Genauigkeit mit den zusätzlichen
Vorteilen einer unkomplizierten Anwendung, schnellen Laufzeiten und der Möglichkeit, sie ein-
fach in verschiedene Software-Projekte einzubauen. Integriert in einem Sicherheitstest-Programm
können dieses Methoden die Auswertung von Sicherheitstests verbessern. Mit ihrer Hilfe kann die
manuelle Arbeitszeit bei gleichbleibender Erkennungsrate von Schwachstellen deutlich verringert
werden.

Schlüsselwörter

Maschinelles Lernen; Systemtest; Optimierung; Sicherheit

iv

Cake, and grief counseling, will be available at the conclusion of the test.

– GLaDOS

v

Contents

1 Introduction 1
1.1 Expected Result . 1
1.2 Methodological Approach . 2
1.3 Organization of this Thesis . 2

2 Introduction to IT Security and Testing 4
2.1 Basics of IT Security . 4

2.1.1 Security Needs . 4
2.1.2 Definitons in IT Security . 6
2.1.3 Types of Attacks . 8
2.1.4 Measures against Threats . 12

2.2 Software Testing . 14
2.2.1 Black Box Testing . 15
2.2.2 White Box Testing . 16
2.2.3 Gray Box Testing . 17

2.3 Testing of IT Security . 17
2.3.1 Fuzz Testing . 17
2.3.2 Penetration Testing . 18

2.4 Challenges of Security Testing . 20

3 Artificial Intelligence in IT Security 21
3.1 Machine Learning . 21

3.1.1 Classification . 22
3.1.2 Clustering . 23

3.2 Artificial Neural Network . 24
3.2.1 Biological Model of a Neuron . 24
3.2.2 Mathematical Model of a Neuron . 24
3.2.3 Neural Network Architecture . 28
3.2.4 Learning in Artificial Neural Networks 29

3.3 Self-Organizing Maps . 31
3.3.1 Learning in Self-Organizing Maps . 32
3.3.2 Example . 33

3.4 Support Vector Machines . 34
3.5 Clustering . 36

3.5.1 Hard c-Means . 37
3.5.2 Fuzzy c-Means . 38

3.6 State of the Art . 40
3.6.1 Artificial Neural Network . 40
3.6.2 Self-Organizing Map . 40
3.6.3 Support Vector Machine . 41
3.6.4 Clustering . 41

4 Architecture of the PoC Implementation 43
4.1 Architecture of Security Testing Frameworks 43

vi

4.2 The Fuzzing Framework ”Fuzzolution” . 44
4.2.1 Process of one Fuzzing Test Run . 45
4.2.2 Composition of the fuzzolution tool . 45

4.3 Integration of the AI System . 48
4.3.1 Representation of the System Behavior Model 49
4.3.2 Integration of the Prototype Implementations 50

5 Setup of Test Environment 52
5.1 Setup of Test Environment . 52
5.2 Description of System Under Test . 54

5.2.1 WAVSEP . 55
5.2.2 ZAPWAVE . 56

6 Evaluation of PoC Implementations 58
6.1 Evaluation Method . 58
6.2 Artificial Neural Network (ANN) . 58

6.2.1 Design Decisions for the Implementation 59
6.2.2 Results of the Evaluation . 61

6.3 Self-Organizing Map (SOM) . 61
6.3.1 Design Decisions for the Implementation 61
6.3.2 Results of the Evaluation . 64

6.4 Support Vector Machine (SVM) . 65
6.4.1 Design Decisions for the Implementation 65
6.4.2 Results of the Evaluation . 67

6.5 Clustering Algorithm . 67
6.5.1 Design Decisions for the Implementation 67
6.5.2 Results of the Evaluation . 69

7 Summary and Discussion of Evaluation Results 70
7.1 Results of the Evaluation . 70

7.1.1 Support Vector Machine . 72
7.1.2 Self-Organizing Map . 72
7.1.3 Clustering . 73
7.1.4 Artificial Neural Network . 73

7.2 Discussion of Results . 74

8 Conclusion 76

Bibliography 78

vii

List of Figures

2.1 The relationship between the main security needs. [64] 5
2.2 A taxonomy of security flaws by Landwehr et al. . [45] 9
2.3 An example application with XSS vulnerability. 11
2.4 A picture about threats, vulnerabilities and control. [64] 13
2.5 An illustration of a black box test. [79] . 15
2.6 The control flow graph of an example program. [59] 16
2.7 All phases of a complete penetration test. [17] . 18
2.8 Intended and implemented functionality in software. [82] 20

3.1 The training data for the classification example. (based on [3]) 22
3.2 A example clustering of input data consisting of three clusters. (based on [3]) 23
3.3 The biological model of a neural cell. [27] . 25
3.4 A mathematical model of a neuron. [27] . 26
3.5 The transformation produced by adding a bias bk. [27] 27
3.6 An example of a fully connected single-layer neural network. (based on [27]) 28
3.7 An example of a partially connected multi-layer neural network. (based on [27]) . . . 29
3.8 An example of a single-layer neural network with feedback loops. (based on [27]) . . 30
3.9 A SOM with synaptic connections and the winning neuron. [27] 32
3.10 A graphical interpretation of the Gaussian neighbourhood function. [27] 33
3.11 Stages of a SOM training process: (a) the distribution of the training data; (b) the

SOM is initialised with random data; (c) during the training of the SOM; (d) training
is finished, the maps now spans over the entire dataset, representing its distribution. [42] 34

3.12 A SVM example showing an optimal separating hyperplane. [3] 35
3.13 A training set with a separating hyperplane in two and three dimensions. [72] 36
3.14 An example of a membership function for fuzzy sets. [14] 37

4.1 Architecture for learning system behaviour and determining security failures. [73] . . 44
4.2 Architecture of the fuzzolution framework. (based on [74]) 46
4.3 Sequence diagram describing the test execution of the fuzzolution tool. 47
4.4 Architecture of the extended fuzzolution framework. (based on [74]) 50

5.1 The OWASP Broken Web Applications Project page. 55
5.2 The WAVSEP web interface displaying some application descriptions. 56
5.3 The ZAPWAVE web interface displaying the application categories. 57

6.1 Artificial Neural Network design of the prototype implementation. 59
6.2 Artificial Neural Network parameter evaluation. 60
6.3 A visualisation of a test run evaluated with a SOM. 62
6.4 Self-Organizing Map parameter evaluation. 63
6.5 An example for an SVM used for novelty detection. 64
6.6 Support Vector Machine parameter evaluation. 66
6.7 An example for an c-means clustering used for outlier detection. 67
6.8 Clustering parameter evaluation. 68

viii

List of Tables

2.1 Amount of stolen user information from online community sites. 7
2.2 An excerpt of vulnerable websites taken from the ”xssed” project website. 12

5.1 Detailed values for each analyzer during one example test case. 53

6.1 Evaluation result of the Artificial Neural Network method. 61
6.2 Evaluation result of the Self-Organizing Map method. 64
6.3 Evaluation result of the Support Vector Machine method. 67
6.4 Evaluation result of the c-Means Clustering method. 69

7.1 All results of the Machine Learning (ML) method evaluation combined. 71
7.2 The result of the running time evaluation of the ML methods. 71
7.3 Summary of all results of the ML method evaluation. 74

ix

List of Listings

2.1 A small example presenting an SQL Injection. 10
2.2 An example Uniform Resource Locator (URL) that can cause a path traversal attack. 10
2.3 Typical code used for testing XSS vulnerabilities. 10

4.1 Some examples of attack vectors. 45
4.2 An attack template for an application of the WAVSEP platform. 45

5.1 An example attack string for an application of the WAVSEP platform. 56
5.2 An example attack string for an application of the ZAPWAVE platform. 57

x

xi

List of Abbreviations

AI Artificial Intelligence. 1–3, 22, 45, 52, 53

ANN Artificial Neural Network. iii, 2, 42, 53, 60, 63, 73–78, 80

BP Back Propagation. 42

CPU Central Processing Unit. 50, 51, 55, 57

DARPA Defense Advanced Research Projects Agency. 43

DNS Domain Name System. 20

DoS Denial of Service. 55

GA Genetic Algorithm. 42

GUI Graphical User Interface. 50

HTTP Hyper Text Transfer Protocol. 47, 49, 56–58, 80

IDS Intrusion Detection System. 14, 42–44

IEEE Institute of Electrical and Electronics Engineers. 15

IP Internet Protocol. 20

MITM Man-In-The-Middle. 8

ML Machine Learning. 22, 23, 42, 74, 77

OWASP Open Web Application Security Project. 9, 12, 56, 58

RBF Radial Basis Function. 43, 67

RFC Request For Comments. 7

RSVM Robust Support Vector Machine. 43

SIP Session Initiation Protocol. 80

SOM Self-Organizing Map. iii, 2, 33–35, 42, 43, 53, 64–66, 73–78, 80

SQL Structured Query Language. 9, 78

SUT System Under Test. 16, 18, 19, 45, 47–57, 61, 64, 76, 78, 80, 81

SVM Support Vector Machine. iii, iv, 2, 36, 42, 43, 53, 67–70, 73–78, 80

xii

TCP Transmission Control Protocol. 49

UML Unified Modeling Language. 48

URL Uniform Resource Locator. 11, 47, 56, 58, 59

VoIP Voice over Internet Protocol. 80

WAVSEP Web Application Vulnerability Scanner Evaluation Project. 47, 54–57, 59, 60, 80

XSS Cross Site Scripting. 9, 11, 12, 57, 59

ZAP Zed Attack Proxy. 58, 59

ZAPWAVE Zed Attack Proxy - Web Application Vulnerability Examples. 54, 56, 58–60, 80

xiii

Chapter 1. Introduction

1 Introduction

Information Technology (IT) has become of great importance to our society. We trust IT systems
to keep us safe (e.g., airplanes) or to hold our most private data (e.g., health care systems). We
know that all these systems are build by humans and therefore contain flaws. The more complex
a system is, the more flaws it will contain. With knowledge of this flaws, some adversaries may
misuse the system to take over control or steal the confidential data stored. Therefore a very
important part of building IT systems is testing: finding these flaws and correcting them.

Fuzz testing is a technique for IT security and quality assurance to find flaws in software. Typically
it is a fast and cost efficient way of testing. The most basic way of fuzz testing, or ”fuzzing” as
it is often called, is to send abnormal data to a system in order to crash it. From these crashes
conclusions to possible flaws can be drawn. Although this is a very simple approach, experience
has shown that many programs are not able to handle unexpected input correctly.

The most important modules of a security testing software are the generation of the attack data
and the analysis of the behaviour of the system under test (SUT). The data generation module is
responsible for a fast coverage of the possible attack data and getting the SUT into an erroneous
state as quickly as possible. The analysis module on the other hand has to detect all unexpected
behaviour reliably while reducing the false positive feedback to a minimum.

The topics of security testing and especially fuzz testing have received a lot of scientific interest in
the recent past (e.g., [24] [1] [8]). Nevertheless, experience from projects with complex systems
to be tested has shown that there is still improvement to be done until fuzz testing tools, often
shortened to ”fuzzers”, are the fast and general-purpose, easy-to-use tools they are expected to be.

The results of the studies of the thesis will be used to improve an existing fuzzing software project.
This fuzzer is a black-box fuzzer and uses state-of-the-art techniques within its components. It has
been successfully used in several projects, including the publication of Schanes et al. [74].

1.1 Expected Result

Currently, most fuzz testing tools either give no feedback about the behaviour of the tested system
or have a simple check, to test if the system is still responding or not. To improve the general
efficiency of fuzz testing and generate a useful feedback for the user, a more sophisticated approach
is required. As mentioned above, a set of analyzers will monitor some metrics of the system and
generate a feedback from these values. Manually programming the analyzers to return useful
values for a particular system can be a very time consuming and inefficient process. A more
desired approach would be a set of analyzers that can evaluate the SUT with a minimum of manual
interaction.

In the research field of Artificial Intelligence (AI) there exist methods that can automatically learn
about the behaviour of a system. The methods can classify the behaviour of a system and, for
example, tell whether the system is not acting properly.

The thesis will make use of these AI methods and present an approach that will allow the analyzers
to learn about the behaviour of the tested system. During the actual testing phase, the analyzers
can use the learned knowledge for a better evaluation of the system and give more useful feedback.

Automated Detection of Security Vulnerabilites 1 / 82

Chapter 1. Introduction 1.2. Methodological Approach

This concept was already proposed in an earlier work of the author: ”Generic Approach for Secu-
rity Error Detection Based on Learned System Behavior Models for Automated Security Tests” by
C. Schanes, A. Hübler, F. Fankhauser and T. Grechenig. The publication appeared in the Proceed-
ings of the Sixth IEEE International Conference on Software Testing, Verification and Validation
in 2013 [73]. The ideas presented in this published work are used as basis and will be extended
further in this thesis.

The improvements on these method will have a huge impact on the efficiency of Fuzz Testing.
On the one hand this will reduce the amount of time that is required to manually program and
configure the test software to interact with the system to test. On the other hand, by yielding more
meaningful results such that less manual analyzing has to be done.

1.2 Methodological Approach

The work will start with research on the current development of the topic ”Computational Intelli-
gence” and the combination of this topic with ”IT Security”. There is a lot of research going on in
the recent years, with many new approaches and ideas. Some of them are presented in the chapter
3. Artificial Intelligence in IT Security. The goal of this study is to find useful and well working
combinations of security projects supported by artificial intelligence and to get some ideas on new
possibilities.

With the knowledge of this theoretical study, the work will focus on finding possible algorithms
that could be used for security testing. These ideas will then be studied further to evaluate if they
actually can improve automated testing and how well they could perform on these tasks.

To gain significant results from the evaluation of the algorithms, it is necessary to have a working
implementation that can be used for testing and evaluating. Since the implementation and testing
of a fully-featured algorithm is a very time consuming process, a proof-of-concept approach was
chosen. For this purpose, already existing implementations and frameworks will be used and
adapted. These prototypes are then tested with various parameters to develop their full potential
within the testing subject. All algorithms will be tested against the same prepared system under
test. This system is specially designed for evaluating security testing tools.

The background architecture of the existing Fuzz Testing project will be redesigned for the inte-
gration of the algorithms. Finally, the selected prototype algorithms are implemented as proof of
concept and used for test execution. These tests are intended to evaluate the applicability of the
algorithms and to analyze possible improvements for the test result. Eventually, conclusions will
be drawn from these test results.

1.3 Organization of this Thesis

The thesis is organized in three main parts. The first part includes the chapters 2 and 3 and explains
the theoretical background upon which the later chapters are based on. In particular, chapter 2
gives information about the topics of Security and Software Testing. Chapter 3 covers general
knowledge about Machine Learning and in detail information about the method: Artificial Neural
Network, Self-Organizing Map, Support Vector Machine, and Clustering.

The second part of the thesis includes the chapters 4, 5 and 6. Using the knowledge given in
chapters 2 and 3, the chapter 4 combines the data to an architectural overview, of how the field of
Artificial Intelligence can be used to improve security tests. The following chapter 5 describes the

Automated Detection of Security Vulnerabilites 2 / 82

Chapter 1. Introduction 1.3. Organization of this Thesis

test environment that was used to evalute the methods. Chapter 6 presents the implementations of
the methods given in chapter 3 and the results of the prototype evaluation.

The final part consists of the chapters 7 and 8. A summary is given in chapter 7, followed by a
detailed discussion of the results. Some conclusions will be drawn in chapter 8 together with a
few ideas of how the gained knowledge can be used and further improved.

Automated Detection of Security Vulnerabilites 3 / 82

Chapter 2. Introduction to IT Security and Testing

2 Introduction to IT Security and
Testing

The world is a complex place. We build huge systems that support us in our everyday life. Sys-
tems far too complex for one person to understand as a whole. Imagine the Internet: millions of
computers, each one a incomprehensibly complex system, connected into one giant system. But
we still trust these systems to keep our most private secrets, protect our wealth and keep us save
from harm. [75]

The world is an interconnected place. With the ever increasing availability of Internet connections,
physical interaction becomes less and less important. On the Internet every two points are adjacent,
whether they are across the hall or across the planet. Even while travelling around the world, you
can log into a server operating in your country, read your mails and check your account balance.
However, if one person can do it, others can too, with potentially ill intentions. [75]

The world is an imperfect place. In theory, we can design systems that are provably secure, but
we can’t actually build them to work securely in the real world. Mathematics is perfect; reality
is subjective; Mathematics is defined; computers are ornery. Mathematics is logical; people are
erratic, capricious and barely comprehensible. But we can take precautions: testing of a system
with the intention of improving its security performance is one possibility and the topic of this
thesis. [75]

2.1 Basics of IT Security

When dealing with security and especially IT security, the first thing required is to define what
security means in the current context. In general, security is about the protection of assets. When
going into detail, ”security” becomes a highly overloaded word and its meaning can be quite
subjective. Anderson [5] brings an example of a corporation and its employees: for the company,
security might mean the ability to monitor all online activities of its employees; to the employees,
it might mean to be able to do online activities without being monitored.

2.1.1 Security Needs

Following this example it becomes obvious, that many different goals of security exist. A common
separation is into three main security needs: confidentiality, integrity and availability [10][64][75].
However, the interpretations of these aspect may wary, depending on the context in which they
arise.

The purpose of IT Security is addressing these three goals. The challenge hereby is finding the
right balance between these often conflicting goals. Figure 2.1 visualises the security needs and
shows that these three characteristics can be independent, can overlap and even be mutually ex-
clusive. A simple example of a conflicting situation is ensuring the confidentiality of some object
by simply preventing everyone from accessing it. Although this system preserves the goal of con-
fidentiality it does not meet the requirements of availability. The result is that such a system can,
by definition, not regarded as secure. [10]

Automated Detection of Security Vulnerabilites 4 / 82

Chapter 2. Introduction to IT Security and Testing 2.1. Basics of IT Security

Figure 2.1: The relationship between the main security needs. [64]

Confidentiality The aspect of confidentiality ensures that assets are only accessed by parties
that are authorized to do so. Meaning that only those individuals who should have access to
some resources will actually get access. This is a very general definition, since in this context the
term individual can mean several different things, for example a person or a computer program.
A resource can be some kind of information like a file, some computer program or the likes.
Although this definition seems to be straightforward, ensuring confidentiality can be very difficult
to maintain. [64]

Confidentiality is sometimes called secrecy or privacy. These terms clearly do overlap but then
again they are not exactly the same. Secrecy is more of a technical term referring to the effect of the
mechanisms used to limit the number of individuals that can access a resource. Cryptography is a
typical example for a mechanism ensuring secrecy. Privacy is the ability and right to protect your
personal secrets from becoming public knowledge [5]. Hospital patients, for example, have a right
to privacy. If some information about their treatment gets public this could lead to embarrassment
and to social disadvantages for the patient [75].

Integrity The property of integrity deals with the validity of data. It is not concerned with the
origin of the data, but whether the data has been modified since its creation. Suppose, a decision
about a treatment for a patient is based on the information in the medical record. Then it is very
important that the data has not been modified since its collection and still represents the actual
knowledge of the condition of the patient. Otherwise a completely different decision could be
made, with unknown and probably negative effects. [75]

In a different context the above definition of integrity may differ slightly. The example above
talks about an item being unmodified. However, integrity could also refer to a different situation
where an item is for example ”modified only in acceptable ways” or ”modified only by authorized
people”. Even the interpretation ”meaningful and consistent” may refer to integrity. [64]

Availability Availability describes the ability to use a desired resource or information. It is an
important aspect of system design, since an unavailable system is equally useful to an non existing
system. In a typical design, several mechanisms that are based on statistical models will try to

Automated Detection of Security Vulnerabilites 5 / 82

Chapter 2. Introduction to IT Security and Testing 2.1. Basics of IT Security

ensure the availability of the system. However, someone may be able to use the system in such
a way that the assumptions of the model are no longer valid. This can lead to a situation where
the availability can not be maintained any longer. These attempts to block availability are called
denial of service. [10]

As before, this definition is not generally valid. Different people may expect different things from
availability. For example, a system may still be counted as available if it is in waiting mode and has
a bounded waiting time. Pfleeger et al. constructed an overall description of availability consisting
of five goals [64]. Following this description, a system is said to be available, if:

• There is a timely response to our request.

• Resources are allocated fairly so that some requester are not favored over others.

• The system involved follows a philosophy of fault tolerance, whereby hardware or software
faults lead to graceful cessation of service or to work-arounds rather than to crashes and
abrupt loss of information.

• The service or system can be used easily and in the way it was intended to be used.

• There is a control mechanism that ensures concurrency. That is, simultaneous access, dead-
lock management and exclusive access are supported as required.

2.1.2 Definitons in IT Security

How important a working security process is can easily be seen by looking at various security
reporting news sites on the web. Almost every day, reports of hacks, password leaks and other ma-
licious events are published. These attacks affect the privacy of millions of people as the following
examples indicate.

During a relative short period of time, from June 2012 to March 2013, several large online commu-
nity sites have been compromised. In each case, password hashes or personal information about
the users have been stolen: LinkedIn, a social network for people in professional occupations,
6 million password hashes stolen 1; LastFM, an online music community, 2.5 million password
hashes stolen 2; eHarmony, an online dating site, 1.5 million unsalted password hashes stolen 3;
Gamigo, a news portal and community for online gaming, 11 million password hashes stolen 4;
Twitter, a microblogging site, 250, 000 password hashes and user information stolen 5; Evernote,
an online service for note taking, unknown or unpublished number of password hashes and user
information stolen 6.

For a better overview, these impressive numbers have been aggregated into table 2.1.

Other forms of security vulnerabilities are common too, for example a serious vulnerability in
HP printing devices 7 was detected. It could allow remote attackers to gain access to sensitive

1 http://blog.linkedin.com/2012/06/06/updating-your-password-on-linkedin-and-other-account-security-best-
practices/ (last accessed: 25.09.2014)

2 http://www.last.fm/passwordsecurity (last accessed: 25.09.2014)
3 http://www.h-online.com/security/news/item/Millions-of-Last-fm-passwords-leaked-1613641.html (last accessed:

25.09.2014)
4 http://www.h-online.com/security/news/item/11-million-passwords-leaked-from-online-gaming-platform-

1651198.html (last accessed: 25.09.2014)
5 http://blog.twitter.com/2013/02/keeping-our-users-secure.html (last accessed: 25.09.2014)
6 http://blog.evernote.com/blog/2013/03/02/security-notice-service-wide-password-reset/ (last accessed: 25.09.2014)
7 http://www.crn.in/news/security/2013/03/12/hp-printer-flaw-enables-remote-attacks-data-access (last accessed:

25.09.2014)

Automated Detection of Security Vulnerabilites 6 / 82

Chapter 2. Introduction to IT Security and Testing 2.1. Basics of IT Security

Community # of stolen data
Gamigo 11, 000, 000
LinkedIn 6, 000, 000
LastFM 2, 500, 000
eHarmony 1, 500, 000
Twitter 250, 000
Evernote unpublished

Table 2.1: Amount of stolen user information from online community sites.

data. Even governmental institutions are not safe from hacks: The Reserve Bank of Australia
has admitted a security breach of their systems 8. The attackers tried to gain access to internal
information, but did not succeed, according to the bank.

In order to deal with all the activities threatening the security of a system, we need clear definitions,
starting with the terms vulnerability and threat. Bishop [10] gives a definition of a vulnerability
being:

A weakness that makes it possible for a threat to occur.

Whereas a threat is defined as:

A potential occurrence that can have an undesirable effect on the system assets or
resources. It is a danger that can lead to undesirable consequences.

Generally speaking, a security threat is a breach of confidentiality, disruption of integrity or denial
of service. Threats may have various origins: from either outside or inside some system boundary,
from authorized users or unauthorized users, or many other sources are possible too [11]

In his book, Bishop refers to an internet draft called ”Security Architecture for Internet Protocols:
A Guide for Protocol Designs and Standards” by Rober W. Shirey in November 1994 [76]. This
draft never made it into an Request For Comments (RFC) document and was therefore removed
after a fixed period. In this draft, Shirey proposed a partition of threats into four broad classes:
disclosure, deception, disruption and usurpation.

Disclosure Sometimes called ”interception”, this class contains actions that try to gain unautho-
rized access to assets. An example is snooping, which is an unauthorized and passive interception
of information. It suggest that some entity is listening to communications, browsing through files
or other system information. A very simple form of snooping is listening to a secret conversation
by eavesdropping through the door. Another form of snooping is wiretapping in which a network
is monitored and all information going through this network can be intercepted. [11]

Deception Deception in general is the acceptance of false data. The preceding step to a decep-
tion threat is a modification where an unauthorized entity not only accesses but tampers with an
asset. An example of a deception scenario is where some party relies on data to determine which
action to take but the data has been modified by an attacker. If the incorrect information is accepted
as correct, then the deception was successful and is a potential threat to this party. [11]

8 http://www.rba.gov.au/media-releases/2013/mr-13-05.html (last accessed: 25.09.2014)

Automated Detection of Security Vulnerabilites 7 / 82

Chapter 2. Introduction to IT Security and Testing 2.1. Basics of IT Security

Another example is masquerading or spoofing, the impersonating of one entity by another. The
threat occurs by convincing the victim of the masquerade into believing that the entity with which
it is communicating is a different entity. This can be a user that tries to log into a remote system
but instead reaches some other system that claims to be the desired one. [11]

While the example of wiretapping from above is typically a passive form of snooping, there exist
also actions that can be classified as active wiretapping. A prominent example is the Man-In-The-
Middle (MITM) attack where an attacker intercepts messages from the sender. He can then read
the message and even modify them before sending them onwards to the actual receiver.

Disruption If an asset becomes lost, unavailable or unusable to its users this is a form of disrup-
tion or interruption. Several nuances of the interruption of an asset exists, some of then will be
mentioned here. Denial of receipt is an attack with a false denial about an entity receiving some
information or message. This can be the case when a customer complains to the vendor to have
not received some ordered product yet and demands a new shipment. Suppose the customer did
actually receive the products but simply claims otherwise, then this is a case of denial of receipt.
A similar but still different action of disruption is the delay, a temporary blocking of a service.
During normal operation the request to a system requires some expected time t to be handled and
answered. If an attacker can force the process to take more time than t he has successfully delayed
the execution. [11]

The most famous form of disruption is the denial of service which is a long-term interruption of
an service or asset. An attacker has several points of actions to chose from. The denial can either
occur directly at the source by preventing the server from obtaining resources required for the
processing of the requests (e.g., by erasing an important file). It can also occur at the destination
by preventing the client from receiving messages from the server (e.g., by misconfiguring the
firewall rules). Finally the denial can be along the intermediate path between client and server
by discarding message from one or both of the communication members (e.g., by unplugging one
from the network). [11]

Usurpation Usurpation is present when an unauthorized party has taken control of some part of
a system. This action often comes along with some action from another class. A classical example
is the Man-In-The-Middle attack where the attacker can not only read all messages, he can even
modify them and thus take full control of the communication.

Masquerading is also often the first step to an usurpation attack. Suppose a user logs into a system
which he believes is the one he desires. However, the system itself or the way to the system has
actually been modified by a third party. This leads to the situation where the user, in good believe,
is connected to a system controlled by someone other than he thinks. All the actions the user takes
and all the commands that are executed can then be modified by the attackers to their wishes. [11]

2.1.3 Types of Attacks

This section will explain some practical attacks that are mentioned in this thesis at some point.
As mentioned in the previous sections, an attack always targets a weakness in the system. To
obtain an overview of the security flaws, Landwehr et al. introduced the ”Taxonomy of Computer
Security Flaws” [45]. In their work they introduce three taxonomies, one of them is based on the
genesis of the security flaws (how did the flaw enter the system). The taxonomy is illustrated in
figure 2.2. Of special interest for this thesis are two classes inside the inadvertent branch:

Automated Detection of Security Vulnerabilites 8 / 82

Chapter 2. Introduction to IT Security and Testing 2.1. Basics of IT Security

Figure 2.2: A taxonomy of security flaws by Landwehr et al. . [45]

First of all, a major risk to all applications are validation errors. A weak validation of input data
can lead to an attack where untrusted data is sent to an interpreter, called an injection attack.
Attacks that belong to the class of injection are: SQL Injection, Path Traversal and Cross Site
Scripting. These type of attacks are the most common security risks according to the ”Open Web
Application Security Project (OWASP) Top 10” awareness document from 2013 [67].

The second class that will be mentioned here is the class of identification/authentication inad-
equate. These flaws permit the execution of a protected operation without proper checks of the
identity and authority of the invoking user [45]. A type of attack that exploits such a flaw is Session
Hijacking

In the following sections the mentioned attacks will be presented shortly. Starting with the three
attacks belonging to the class of injection attacks and following with the session hijacking attack.

SQL Injection This attack belongs to the class of injection attacks where the attacker tries to
modify a request in such a way, that the included code will be executed on the target machine.
A Structured Query Language (SQL) injection is a specialised kind of injection. The goal of the
SQL injection is to insert arbitrary code into a string that is eventually executed by the database.
The injected code is for example a part of a database query coded in the SQL statement. The
attacker thereby tries to access information inside the database to which he is not authorized to,
making this action a disclosure attack. The vulnerability that enables this threat is due to a very
common programming mistake. The program (often a website) passes user input to a database
without doing any kind of input checking. A simple example is :

Automated Detection of Security Vulnerabilites 9 / 82

Chapter 2. Introduction to IT Security and Testing 2.1. Basics of IT Security

$name = " foo ; DELETE FROM u s e r s ; " ;
mysql_query ("SELECT ∗ FROM u s e r s WHERE name={$name} ") ;

Listing 2.1: A small example presenting an SQL Injection.

The function mysql_query contains the database query and may ask the user for his name. The
malicious user, however modifies the query in such a way, that after the selection of the user ”foo”
a second query is executed, deleting all user data. [34]

Path Traversal The path traversal attack targets services that offer files for downloading, like
web servers do. Every web server has a logical root directory corresponding to some fixed di-
rectory on the target machine, most commonly /var/www/ . Every directory contains a special
subdirectory with the name ”..” which is a pointer to the parent directory. Using this knowledge
and a badly coded web server, a crafty attacker can request any directory on the file system of the
server. By multiply adding ”..” to the file request he can get down to the root directory of the file
system. This hypothetical web server would send an attacker his system user password file when
asked for the following URL:

h t t p : / / example . com / . . / . . / e t c / shadow

Listing 2.2: An example URL that can cause a path traversal attack.

Again, this vulnerability is enabled through a program that does not validate the user input and
accepts every command as is [20]. With a path traversal an attacker tries to access data to which
he has no authorization, classifying this action as disclosure attack.

Cross Site Scripting Another injection attack is Cross Site Scripting (XSS). In distinction to
the injection attacks mentioned previously, the target of XSS is not the web server directly but
focuses on attacking the client. The goal is to inject script code into a web application that is later
visited by a user. The modified code is transfered to the client and executed inside the browser.
The damage cause by a successful XSS can vary widely, starting with annoying, but harmless pop-
ups. However, a skilled attacker can use this technique to hijack session, gain access to restricted
content stored by a website, execute commands on the target and even record keystrokes. [17]

A typical script code commonly used in testing for XSS vulnerabilities is the javascript code:

< s c r i p t > a l e r t ("You have been hacked ! ") < / s c r i p t >

Listing 2.3: Typical code used for testing XSS vulnerabilities.

If this little code snipped is placed inside a web application, then every visitor of this page receives
a small pop-up with the message ”You have been hacked!”. This situation is illustrated in the
two figures 2.3a and 2.3b. Figure 2.3a shows a simple discussion board, implemented as web
application. Users can add their comments via the input text field, the inserted text is stored in the
backend and displayed to all visiting users. However, the user ”Mallory” found a vulnerability in
the application and inserted the code from listing 2.3 into the input field. When sent to the server,
this code will not be validated and will be stored in the backend unmodified. Every user accessing
the board will then automatically download the webpage including the inserted code from Mallory.
The browsers will trust the code, since it is coming directly from the server and execute it, leading
to the pop-up shown in figure 2.3b. By exploiting this vulnerability, Mallory was able to execute
code in the browsers of all other users.

Automated Detection of Security Vulnerabilites 10 / 82

Chapter 2. Introduction to IT Security and Testing 2.1. Basics of IT Security

(a) A simple discussion board application.

(b) The user Mallory inserted javascript code in the discussion board.

Figure 2.3: An example application with XSS vulnerability.

XSS vulnerabilities are another widely spread flaw in web applications. The ”OWASP Top 10
2013” even dedicates those attack an own category, ranked at position three [67]. Another web
project that clarifies the risk of XSS attacks is the ”xssed” project 9. The purpose of this project
is to archive as many sites as possible, that are or have been vulnerable to XSS attacks. To each
entry, the full exploit can be accessed, as well as a snapshot of the website containing the injected
code. An excerpt of vulnerable sites that were published during the last few month is given in
table 2.2.

9 http://www.xssed.com/ (last accessed: 27.09.2014)

Automated Detection of Security Vulnerabilites 11 / 82

Chapter 2. Introduction to IT Security and Testing 2.1. Basics of IT Security

site published
www.bankaustria.at 29.04.2014
wdt.weather.fox.com 29.04.2014
locate.apple.com 29.04.2014
www.paypal.com 13.09.2013
www.dolby.com 20.06.2013

Table 2.2: An excerpt of vulnerable websites taken from the ”xssed” project website.

Session Hijacking When a user has established a connection to a service and authenticated
himself by logging in, some kind of token is generated for this connection. This token is necessary
for both sides to identify subsequent packets as belonging to this connection. If someone observes
all the traffic of the network used for this communication, he has all the information required to
imitate the victim. At some point the attacker may decide to hijack the connection, sending proper
packets with a faked source address of the victim to the server. The server will regard this packets
as originating from the victim and execute all commands accordingly. [78]

With this method even strong authentication mechanisms can be avoided, since the attacker uses
the already authenticated connection. An encrypted communication may prevent or at least com-
plicate this kind of attack. In this case, the attacker additionally has to recreate the encryption
mechanisms [78]. This attack uses a form of disclosure action to gain all the information about
the connection as well as a usurpation attack when taking control over the session and executing
commands with the authority of the user.

2.1.4 Measures against Threats

To prevent all these threats, vulnerabilities and attacks from happening we can use control as a
protective mechanism. With control (e.g., an action, a device or a mechanism) it is possible to
remove or reduce a vulnerability. In his book, Pfleeger draws a picture (figure 2.4) about threats,
vulnerabilities and control. Illustrated is a pool of water, that is held in place by a wall keeping
the space behind it dry (the asset). However, this wall is punctured by a hole, referencing a
vulnerability in the system. If the water rises further, this vulnerability will lead to a threat of
water leakage, threatening the dry space. The man placing his finger in the hole, ensuring there is
no water flow, is the reference to a control of the vulnerability.

In general the relationship between threat, control and vulnerabilities is defined as [64]:

A threat is blocked by control of a vulnerability.

The control over the vulnerabilities is performed by one or many security mechanisms. Bishop
categorises them into three classes based on their strategy [11]: Prevention, Detection and Recov-
ery. Mechanisms belonging to these classes either prevent an attack, detect an ongoing or past
attack or execute recovery methods after or during an attack. All three strategies may be used in
combination or separately.

Prevention Prevention of an attack is the favoured strategy. An attack is prevented if it is en-
sured that the attack will fail, so that no harm to the protected systems is done. A crude example
of preventing an attack on a system over the network is disconnecting the system from the net-
work. This may be a valid solution in some cases, but will typically disable the systems intended
operation. Preventive mechanisms are often very cumbersome and interfere with the usage of the

Automated Detection of Security Vulnerabilites 12 / 82

Chapter 2. Introduction to IT Security and Testing 2.1. Basics of IT Security

Figure 2.4: A picture about threats, vulnerabilities and control. [64]

system. However, there are some solutions that have become widely accepted. The following
section will give some examples of widely used vulnerability control system using the strategy of
prevention. [11]

A very important part of securing a system is access control [5].

Detection If an attack cannot be prevented, another control strategy is detection. Detection
mechanism accept the fact that an attack will occur. The goal is to detect an ongoing or past attack
and report it. The attack may be monitored, to provide data for further analysis. An example of a
simple Intrusion Detection System (IDS) is one that gives a warning if a user enters an incorrect
password more than three times. The system will not hinder the user from entering his password,
but the warnings will report an unusual high number of mistyped passwords for this user. An-
other example of an IDS is a system that monitors the network and scans the traffic for outgoing
spam messages. This detection mechanism essentially tells the operator that a particular system is
compromised. [5]

Recovery The third strategy of security mechanism is recovery and has two forms. The first is to
stop an ongoing attack and assess and repair any damage that was done. For example, if an attacker
deletes a crucial file, a recovery mechanism would be to replace the lost file with a replacement
from a backup source. Since the characteristics of each attack can be very different, the recovery is
far more complex than this example indicates. However in all these cases the systems functionality
will be affected by the attack. [11]

The second form of recovery is a very powerful but quite difficult to implement because of the
complexity of computer systems. In this scenario, the attacked system will continue to function
correctly even during an ongoing attack. These recovery system are based on techniques of fault
tolerance and techniques of security and are typically used in safety-critical environments. The
main difference to the first form is, that at no point does the system function incorrectly. [11]

Automated Detection of Security Vulnerabilites 13 / 82

Chapter 2. Introduction to IT Security and Testing 2.2. Software Testing

2.2 Software Testing

Software has undergone testing for almost as long as computer programs have been developed.
Today several formal definitions of testing exist:

Testing is any activity aimed at evaluating an attribute or capability of a program or
system and determining that it meets its required results. (Hetzel [30])

This definition addresses an intuitive view of testing: there exist some specifications about how
the system should behave, and the testing process should confirm that these requirements are met.
This approach is also known as positive testing, or functional testing [48].

Another definition of testing addresses a different view, known as negative testing:

Testing is the process of executing a program or system with the intent of finding
defects. (Myers [59])

This definition does not consider the requirements of the software. It introduces the notion of ac-
tively looking for defects outside of the specifications, in order to find errors that may compromise
the successful operation or usefulness of the system. In practice, a testing process will combine
both positive and negative testing approaches. [85]

Besides the definition of testing, we require some more definitions about security errors in order to
characterise them correctly. The Institute of Electrical and Electronics Engineers (IEEE) defines
the terms mistake, fault, error and failure as follows [68]:

Mistake: An action done by a human that leads to an incorrect result.

Fault: An incorrect part of a computer program. This could be a incorrect computation
step, some process of data definition. ”Defect” is often used as a synonym for faults.

Error: The difference between the specified value and the value computed by the program.

Failure: The inability of a program to execute its required functions to comply with its
specifications.

In general, the purpose of testing is a destructive process of trying to find the errors in a program.
A test case is regarded successful if it causes the program to fail and thereby furthers the progress
of the development. The best way to oppose the claim of an error free program is done by refuting
this statement by finding some error in the program. [59]

Regarding the properties of errors, some defects are subtle and can be difficult to detect. This
fact causes software testing to often be an expensive task. Not testing, however, can have an even
larger effect on an organization’s business. The impact of a system not performing correctly can
easily result in financial losses for the providing company. Among other reasons, this may happen
through the loss of working time to recover the system or through the loss of prestige and public
confidence. There even are examples where the failure of a system has resulted in the software
provider going completely out of business. [85]

Edsger Dijkstra stated in a famous work [16], that to show the presence of bugs software testing can
be a very effective way. However, to show the absence of bugs it is hopelessly inadequate. In fact,
even with mathematical methods (e.g., formal verification, see below) it is impossible to ensure
that but the simplest programs are provably free of defects. Another problem is, that resources for

Automated Detection of Security Vulnerabilites 14 / 82

Chapter 2. Introduction to IT Security and Testing 2.2. Software Testing

Figure 2.5: An illustration of a black box test. [79]

testing are finite and typically in short supply. With both problems combined, testing appears to
be very inefficient process and adequate testing seems unlikely. Software testers have the difficult
task to make the testing process – against all odds – as efficient and effective as possible. [85]

Some important testing strategies, that rely on the available knowledge about the System Under
Test (SUT), are the complementary techniques black box and white box testing. If the test ana-
lyst has information about the internal structure of the software, the designed tests based on that
knowledge are called white box tests. On the other hand, if no internal information is available, the
tests are called black box tests. The design of these tests is therefore solely based on the external
behaviour of the system [85]. This thesis is primarily focused on black box testing.

2.2.1 Black Box Testing

The name black box testing derives from the notion of viewing the program as a black box. An-
other name for black box testing is data-driven testing. The goal is to be complete uncertain of
the internal structure and behaviour of the program. The only thing known to the tester are the
specifications from which the test data is derived. An example that illustrates black box testing
is given in figure 2.5. The system can be seen as a black box which does not reveal its contents.
The test data is given the system as input and it generates some output. The goal of this testing
approach is to send specially crafted input data Ie that causes anomalous behaviour in the system,
which can be detected through the output Oe. [79]

In order to find all errors in the program, it is important to have an exhaustive input testing process.
By using every input for testing you will eventually end up finding all errors. However, trying this
will quickly end in a scenario with an impossible amount of test cases. It is not only important
to test all valid input, but all possible input values, which will probably be an infinite amount of
test cases. This leads to two implications about black box testing: first you literally can not test a
program to guarantee that it is error free. The second implication is that you have to design a black
box test to be economically efficient. The objective is to maximize the number of errors found but
limiting the amount of test cases to a finite, manageable number.

Some relaxation to the problem would deliver a black box test approach with some additional
information about the program. It is not required to have full insight to the program code, just
enough to make some valid assumptions about the program. [59]

Automated Detection of Security Vulnerabilites 15 / 82

Chapter 2. Introduction to IT Security and Testing 2.2. Software Testing

Figure 2.6: The control flow graph of an example program. [59]

2.2.2 White Box Testing

The second testing strategy in this list is white box testing, or sometimes called logic-driven test-
ing. It permits the tester to examine the internal structure of the program. The goal is analogously
to the goal of black box testing: trying to get an exhaustive input testing process, causing every
statement in the program to be executed at least once. Similar to the attempt in the black box
testing approach, it is not difficult to show that this method is highly inadequate. The method to
do this testing approach is called exhaustive path testing. It runs test cases in order to execute all
possible paths of control flow inside the program. [59]

The problem is, that even a very simple program can have an incredible high number of different
logic paths. Myers delivers a very simple example program (see figure 2.6 for the control flow
graph) and calculates the number of paths to be approximately 1014 [59]. Even if it would be
possible to test every logic path inside a program, it is in no way guaranteed to be free of errors.
For example, path testing cannot test a program against its specifications. If the path test returned
with no detected error, the program could still be simply the wrong program.

A very interesting technique that belongs to the class of white box testing is formal verification.
In fact this is not a testing but a prove technique. A formal approach is executed by assuming
precondition states and checking the postcondition states after the program run:

{Preconditions}
|

Program

|
{Postconditions}

To analyse the program, the tester makes an assumption that there exist flaws in the system. The
tester determines the state in which the vulnerability will arise, which is the precondition of the
program. Afterwards, the tester puts the system into the defined state and analyses the program

Automated Detection of Security Vulnerabilites 16 / 82

Chapter 2. Introduction to IT Security and Testing 2.3. Testing of IT Security

execution. The analysis will give information about the resulting state of the system, which is
called the postcondition. This postcondition can be compared to the security policy of the system.
If there is an inconsistency, the hypothesis of an existing vulnerability is correct. [10]

Concluding can be said that neither of the two testing strategies proves to be useful on its own,
because both are infeasible. It would be necessary to combine elements of black box and white
box testing to derive a reasonable testing strategy. [59]

2.2.3 Gray Box Testing

As the previous sentences already suggested it is possible to further loosen the tight definitions of
black and white box testing. The approach that combines techniques of white box and black box
testing is called gray box testing. Black box testing typically looks at the expected behaviour of an
application from the point of view of the user. White box testing has all knowledge of the internal
data of the program and therefore looks at testing from the point of view of the developers.

Gray box testing combines elements of both black box and white box testing. It evaluates applica-
tion design in the context of the interoperability of the systems components. This strategy consists
of methods derived from the knowledge of the application internals and the environment with
which it interacts. With this possibilities gray box testing can reveal problems that are not easily
discovered by either of its parents: Problems such as end-to-end information flow and distributed
hardware/software system configuration.

However, gray box testing alone is not the sole solution to all testing problems. The key is to
have a mix of testers understanding every aspect of the program, of the internal processes and the
interactions with its environment. [60]

2.3 Testing of IT Security

As stated in section 2.2, security related defects can not be detected by functional testing. Thus,
security tests need to be planned and executed separately. The testing process can take place
alongside functional testing, but it has almost an opposite focus. [48]

The target of security testing is similar to functional testing, though: finding errors in the system
that lead to security vulnerabilities. Security vulnerabilities manifest themselves as additional be-
haviour of software, something extra the software does that was not originally intended [83]. The
target of security testing is therefore to find every unspecified functionality of the tested software.
This additional functionality could be a vulnerability that may allow a threat to occur. Several
techniques have been developed in the attempt to reach this goal.

2.3.1 Fuzz Testing

One technique used for testing the effectiveness of security measures is fuzz testing, for simplicity
reasons often called fuzzing. The purpose of this technique is to send anomalous data to a system
in order to find security vulnerabilities. Fuzz testing is defined as a highly automated, negative
testing approach. [48]

Similar to the software testing strategies black, gray and white box testing, fuzz testing tools (also
known as ”fuzzers”) can be classified based on the knowledge given about the SUT. A black box
fuzzer has no further information about the internal structure of the tested system. Figure 2.5
illustrated a general black box approach for software testing and is also applicable for black box

Automated Detection of Security Vulnerabilites 17 / 82

Chapter 2. Introduction to IT Security and Testing 2.3. Testing of IT Security

Figure 2.7: All phases of a complete penetration test. [17]

fuzz testing. The fuzzer sends input data to the system and scans the output in order to find defects
in the tested software. [81]

White box fuzzing can infer further information about the SUT by analyzing its source code. This
additional information can, for example, be used to automatically generate test data. Godefroid
[23] presented an approach where a white box fuzzer is enhanced with a grammar-based specifica-
tion of valid inputs. Based on this context free grammar, a constraint solver can then automatically
deduce test cases for the fuzzer. [23]

As before, a combination of both approaches is gray box fuzzing. It uses the testing approach of
black box fuzzers with some additional run-time information about the SUT to improve testing.
[81]

2.3.2 Penetration Testing

Penetration testing is a another testing technique and allows a view on the system through the
eyes of an attacker. It can be defined as a legal and authorized attempt to locate and successfully
exploit a system for the purpose of making this system more secure. The difference to many other
techniques is, that penetration tests not only search for, but actually exploit the vulnerabilities in
order to prove that a security issue exists. A penetration test is even more useful if the testers give
specific recommendations for addressing and fixing the discovered issues afterwards. [11].

Depending on the contract, the penetration test can take on one of two forms. The first type is
an attempt to violate some specified controls in the security system. An example goal for such a
test would be to gain read and write access to a defined file on a specific server. The second type
of penetration test does not have such a well defined target. Instead the goal is to find as many
vulnerabilities in the system as possible within a given period of time. [11]

In general, a penetration test is executed from an attacker’s point of view. By simulating an attack,
the security mechanisms can be tested in the environment in which an assumed attacker would
function. Since different attackers come from different environments, this suggests a layering of
penetration tests comparable to the black, gray, and white box tests presented in section 2.2 above.
A possibe layering is: [11]

Automated Detection of Security Vulnerabilites 18 / 82

Chapter 2. Introduction to IT Security and Testing 2.3. Testing of IT Security

• External attacker with no knowledge of the system. At the lowest level, the testers have as
little information as possible. They have knowledge that the system exists and can identify
it, once found. Gathering more information is thus an additional task for the testers, which
they can handle by e.g., social engineering or network scans.

• External attacker with access to the system. At this level, the testers already have access to
the system. However their privileges are limit to those available to all hosts on the network.
From this initial position the testers have to launch their attack. For example, the testers can
try to get access to an account from which they can achieve their goals.

• Internal attacker with access to the system. This level can be compared to a white box testing
approach. The testers have an authorized account on the system and a good knowledge about
its internal structure. Based on this knowledge, the testers can develop and execute attacks.

A complete penetration test includes all the steps that any attacker would take. These steps typi-
cally are: Reconnaissance, Scanning, Exploitation and Maintaining Access. Figure 2.7 visualises
the four phases of a penetration test. The inverted triangle represents the methodology going from
very generic to very specific. At reconnaissance every piece of information is stored about the
target where at the maintaining access phase very specific actions are taken. [17]

Reconnaissance is the phase of information gathering. The attacker investigates their target using
publicly available information. Every detail and every piece of information is collected and stored
and possible targets are located. In comparison to the other phases, this is the least technical one.
Some examples for reconnaissance techniques are: web searches, ”whois” database analysis and
Domain Name System (DNS) querying. [78]

In the second step, scanning, the attacker has collected some vital information about the infras-
tructure of the target, like DNS names and Internet Protocol (IP) addresses. Armed with this
knowledge, the attacker may then scan target systems looking for openings. A careful mapping of
the network infrastructure can help to determine the critical hosts, routers and firewalls. Following
this thorough network scan, the attacker wants to discover potential entry points into the host by
scanning the machine for open network ports. By then the attacker will have a good understanding
of the services of the system and can try to discover vulnerabilities in these programs, by using
automated vulnerability scanners, for example. [78]

Exploitation is the phase where the attacker tries to gain control over the previously identified,
vulnerable targets. The particular approach can have many different forms, starting from using
readily available exploit tools to highly sophisticated methods. The course of actions taken de-
pends heavily on the situation, requiring for example local attacks directly on installed application
or the operating system. Attacks can also be executed on a network, sniffing for information or
manipulating communications. [78]

After gaining unauthorized access to a system, the attacker will try to maintain the access. The
ways opened in the third phase are often only temporary, thus the final phase consists of converting
the temporary access into a permanent one. To achieve this goal the attacker has an arsenal of
techniques based on malicious software at disposal. Examples of such software are trojan horses,
backdoors, bots and rootkits. [78]

This description of a complete penetration test includes all the steps any attacker would take in
an attempt to control the target. Which of these steps the penetration test will include depends on
the mutual agreement of the employer and the testers. For example the fourth phase, maintaining
access, can seriously compromise an existing system and may be omitted in a penetration test.

Automated Detection of Security Vulnerabilites 19 / 82

Chapter 2. Introduction to IT Security and Testing 2.4. Challenges of Security Testing

Figure 2.8: Intended and implemented functionality in software. [82]

2.4 Challenges of Security Testing

Software testing, as described in section 2.2, has developed into a very good and useful discipline
at verifying functional requirements. Several types of bugs can not easily be detected through
functional testing, though. Even a software that was frequently tested against its requirements and
is considered to behave perfectly correct, according to its requirements, may not be considered
secure. This is due to the fact that the application may perform some additional tasks that were
not specified or even intended. Flaws like this will not be detected by functional testing, because
the test cases are designed to look for the presence of some correct behaviour and not the absence
of additional behaviour. [82]

As an example, a typical test case may look like: ”apply input A, and check for output B”.
Suppose that during the calculations for output B, the application produces some other output C.
If the output is some obvious action, like a dialog box popping up, the tester will certainly notice.
However, the action can even be something more subtle like the writing of a file or the opening of
a network port. Such a behaviour will probably never be detected by the testers, although it will
occur during every test case and may result in a dangerous side-effect. [82]

Thompson describes the situation of intended and implemented software functionality, which is
illustrated in figure 2.8. The circle represents the intended functionality of a software as given
by its specification. In a perfect world the shape of the implemented software would fit right into
the circle, but in practice this is hardly the case. The amorphous shape represents the actually
implemented functionality of the application. The areas in the circle that are not covered by the
implementation are behaviour of the software that was implemented incorrectly, thus a typical
software bug. These flaws in the application can be detected by functional testing. On the other
hand, the areas of the amorphous shape that lie outside the circle represent behaviour of the im-
plemented software that was not intended or specified. This behaviour is potentially dangerous
software functionality. [82]

Automated Detection of Security Vulnerabilites 20 / 82

Chapter 3. Artificial Intelligence in IT Security

3 Artificial Intelligence in IT Security

”How do we think?” – This question intrigues us humans now for several thousands of years. Still
we try to answer the questions about how it is possible that our brain, which is just a handful of
matter, can perceive, understand, predict, and manipulate a world far more complicated than itself.
Several research fields try to find answers to that question. One of them is Artificial Intelligence,
which not only tries to give answers to that question, but also to go even further. It tries to build
intelligent entities. The work on AI is divided into several subfields, for example learning and per-
ception. [72] Some applications of AI are: robotics, speech recognition, planning and scheduling,
translation, and many more. [72]

The work of this thesis will concentrate on methods for Classification and Clustering which are
applications of the subfield of Machine Learning. These principles can be used in a wide range of
IT Security applications. For example automated classification, if a suspicious network packet is
regular traffic or if it is coming from a individual with ill intentions.

This chapter will start with a general introduction to the topic of Machine Learning. Subsequently
it will discuss several methods of AI that can be used in combination with IT Security systems.
It will start with methods able to classify the input data given: Artificial Neural Networks, Self-
Organizing Maps, Support Vector Machines and Clustering. Every method will be described and
its current usage in the topic of IT Security will be discussed.

3.1 Machine Learning

In general one can say that there are a lot of problems for which no solution exists. The reason
is that we either do not yet know how to solve them, or we provably know that it is not possible
to write an exact algorithm that solves it. In short, an algorithm is a sequence of instruction that
should be carried out to transform a given input to some output. An example for a yet unsolvable
problem is face recognition. A solution to this problem has the task to transform the image of a
face to a name or any other identification. We do this task effortlessly every day, but since we can
not explain how we do it we can not write an algorithm for this task. Thus, no algorithm exists so
far that can automatically and provable correctly recognise a person from a face image. [3]

However, in many cases it is not necessary to have an algorithm that solves a problem perfectly.
In the field of Machine Learning (ML) exist methods that can approximate solutions to a given
problems. These methods may not be able to find an optimal solution to the problem, but we will
still be able to extract an adequate solution. These ML methods are based on the idea, that what
we lack in knowledge, we make up for in data. A definition of Machine Learning by Alpaydin [3]
is:

Machine learning is programming computers to optimize a performance criterion us-
ing example data or past experience. (Alpaydin [3])

With the advances in computer technology, we are now able to store huge amounts of data and
even access it from physically distant locations. We believe that there is a process that explains the
data we observe, e.g., why the image of a face looks like a face. We may not be able to identify

Automated Detection of Security Vulnerabilites 21 / 82

Chapter 3. Artificial Intelligence in IT Security 3.1. Machine Learning

Figure 3.1: The training data for the classification example. (based on [3])

the process exactly, but we believe we can construct an approximation that yields us a good and
useful solution.

For example, a face image is not just a random collection of pixels, such an image has a structure.
It is symmetric, has two eyes, a nose and a mouth positioned on certain places. By training on
sample faces, a learning program can analyse the patterns specific for one person. Later, it can
recognise that person by analysing a similar image and drawing conclusions from its previous
experience, or technically speaking: from its knowledge base. [3]

Two applications of ML are called classification and clustering, which will be discussed further.
Both methods try to find patterns in a given set of data, but they are separated by one main dif-
ference. This difference is mainly located in the training phase. Supverised learning methods can
access some additional knowledge about the goals of their task. Unsupervised learning methods
on the other hand are given no such information and have to draw conclusions solely based on the
structure of the data itself.

3.1.1 Classification

Classification is an application of machine learning, which belongs to the class of supervised
learning methods. This means that during the learning phase, the program is guided by some kind
of supervisor. The classification program improves its performance by learning mappings from
input values to output values. The correct values of these mappings are known and provided by
this supervisor. In the face recognition example, the training process would be done by giving the
classification algorithm some images of faces and additionally telling it the correct answer. After
a few iterations, when the program is trained sufficiently, it can draw conclusions from this stored
knowledge and recognise a trained face by itself. [3]

An application of classification is the loaning of a credit from a bank to a customer. The bank
is interested in the probability of the case that the customer will default and not be able to repay
the money. The institute will collect financial information about the customer, e.g., income and
savings, and compare the data to records of past loans. From the knowledge, if these past loans

Automated Detection of Security Vulnerabilites 22 / 82

Chapter 3. Artificial Intelligence in IT Security 3.1. Machine Learning

Figure 3.2: A example clustering of input data consisting of three clusters. (based on [3])

have been paid back, the bank can draw conclusion to the present case. The bank will be interested
in a classification of the customer into, for example two classes: low-risk and high-risk customer.
The collected, financial information about the customer will be the input to a classifier program.
The task of the program is to assign the input to one of the two classes. Based on the knowledge
learned from past loans, represented by the values of α and β, a classification rule may look like:

IF income > α AND savings > β THEN low-risk ELSE high-risk

The rule acts as discriminant, separating the training samples into two different classes, as shown
in figure 3.1. With a rule like this it becomes possible to make predictions of the future. If we
assume that the future will not be much different from the past, we can make correct predictions
for future instances. For the next loaning decision, the bank can collect the financial information
and apply this rule to easily decide whether the customer is low-risk or high-risk. [3]

3.1.2 Clustering

Clustering is a method belonging to the class of unsupervised learning methods. This means that
there is no supervisor and only the input data is available to the algorithm. The goal of clustering
is to find some kind of regularities inside the input data. There probably exists a structure in the
data such that some patterns occur more often than other. The clustering algorithm has to detect
these patterns.

An example of Clustering is called customer segmentation. A company stores demographic infor-
mation as well as past transactions about its customers. It is interested in the distribution of the
profile of its customers, to see what type of customers frequently occur. The clustering method
groups customers that are similar in their attributes, providing the company with a natural group-
ing of its customers. Once such groups are found, the company can develop strategies that are
specially designed for specific groups. The clustering even identifies outliers, customers that do
not belong to any groups. They may imply a niche in the market that can be further exploited by
the company [3]. An illustration of a typical clustering situation is drawn in figure 3.2.

Automated Detection of Security Vulnerabilites 23 / 82

Chapter 3. Artificial Intelligence in IT Security 3.2. Artificial Neural Network

3.2 Artificial Neural Network

The idea of artificial neural networks is based on the realization that a brain of a human, or an
animal works in a completely different way than current digital computers do. A brain consists of
multiple basic cells, called neurons that are connected by structural units, called synapses. Each
neuron cell is a small calculating unit and has a very slow rate of operation, where an event happens
in the range of milliseconds (10−3s), compared to a silicon chip, where events happen the range of
nanoseconds (10−9s). However, the brain makes up the lack of speed with its massive number of
neurons and connections in between. The human brain, in particular, consists of up to 100 billion
neural cells and about 60 trillion synapses, making it a highly complex, non-linear and parallel
computer. With this characteristics, it has the capability of performing certain computations (e.g.,
pattern recognition) many times faster than a conventional, digital computer. [27] [18]

The research on artificial neural networks is based on the knowledge of biological neural networks,
trying to model or simulate the functionality. An elementary work on this field did McCulloch and
Pitts in their 1943 publication ”A logical calculus of the ideas immanent in nervous activity” [52].
They were the first to design a mathematical model of a neuron as basic element of brains. [18]

3.2.1 Biological Model of a Neuron

As mentioned above, the human brain consists of about 100 billion neural cells. The structure of
a biological neuron is illustrated in figure 3.3. Each neuron consists of a cell body and an axon.
The axon acts a connector to the synapses of the neighbour neurons. Every neural cell in the brain
has about 1000 to 10000 connections to other neurons, creating a massive network. [18]

The cell body of a neuron can store some amount of electrical voltage, similar to a capacitor. It
is charged by the voltage pulses of its incoming connections from other neurons. If the stored
voltage reaches a certain level in the cell, it is again released as a brief voltage pulse, commonly
known as spikes, over the axons and the synapses to its neighbouring neurons. There, the process
is repeated.

An elementary role in the neural network play the synapses, which are positioned on the axons be-
tween every two neurons. The most common kind of synapse is a chemical synapse. This synapse
type is no perfect conductor, since it connects its two ”wires” not directly, but with a transmitter
substance. To be able to pass the transmitter substance, the incoming electrical signal has to be
converted into a chemical signal at first and then converted back into an electrical signal. The
conductibility of the substance depends on various parameters like the concentration or chemical
composition of the substance. With this mechanism, a synapse is able to control the interaction
between two neurons. [27] [18]

3.2.2 Mathematical Model of a Neuron

A single neuron is the fundamental unit for the construction of a neural network. The design of
the mathematical model is directly based on its biological counterpart. To define the mathematical
model of a neural network, Haykin identified three basic elements of a neuronal model [27]:

Automated Detection of Security Vulnerabilites 24 / 82

Chapter 3. Artificial Intelligence in IT Security 3.2. Artificial Neural Network

Figure 3.3: The biological model of a neural cell. [27]

1. A set of connecting links with corresponding weights. They represent the synapses of a
biological neuron, together with their conductibility. For every neuron k, and for every con-
nected synapse j the connecting link has a weight wkj . An incoming signal xj is multiplied
with the weight wkj to the final input of the synapse j.

2. An adder function for combining up the input signals of the synapses.

3. An activation function that has the task to limit the output of the neuron. Typically the
output of the neuron is limited to a closed unit interval of [0, 1], or alternatively [−1, 1].

Automated Detection of Security Vulnerabilites 25 / 82

Chapter 3. Artificial Intelligence in IT Security 3.2. Artificial Neural Network

Figure 3.4: A mathematical model of a neuron. [27]

Based on this elements, a model of a neuron is illustrated in figure 3.4. A possible adder function
is a simple sum over all the input elements, represented as formula:

uk =

m∑
j=1

wkjxj (3.1)

where x1, x2, . . . , xm are the input signals and wk1, wk2, . . . , wkm the weights of the synapses of
neuron k. An external parameter, the bias bk, can be used optionally to apply an affine transfor-
mation to the output uk. This effect is illustrated in figure 3.5. The formula for the applied bias
is:

vk = uk + bk (3.2)

The activation function is then applied onto the result of the adder function, yielding the final
output of neuron k:

yk = ϕ(vk) (3.3)

The simplest activation function is the identity ϕ(x) = x , which just passes the values on that are
given as parameter. However, this may lead to convergence problems since the identity function
is not bounded [18]. The next section describes some activation functions that are bounded.

Activation Function

The activation function represents the function of a biological neural cell to store voltage up to a
specific level until it releases the voltage as spike. Three basic types of activation functions can be
identified [27] : Threshold Function, Piecewise-Linear Function and Sigmoid Function.

Threshold Function This activation function is also known as Heaviside Function and does
only return two values, e.g., (0, 1). The output depends on whether the input is larger than a
specified threshold Θ or not (from [18]):

ϕ(v) =

{
0 if v < Θ
1 otherwise

(3.4)

Automated Detection of Security Vulnerabilites 26 / 82

Chapter 3. Artificial Intelligence in IT Security 3.2. Artificial Neural Network

Figure 3.5: The transformation produced by adding a bias bk. [27]

Applied to the neuron k this gives the function:

ϕ(vk) =

{
0 if vk < Θ
1 otherwise

(3.5)

This function can be useful for a binary neuron, since the activation function of a binary neuron
can only return the values 0 or 1. A special case of a binary neuron model is the McCulloch-Pitts
model. In this model the threshold value Θ is set to 0 and the activation function yk only returns 1
if the output of the neuron (vk) is larger or equal than 0.

Piecewise-Linear Function The piecewise-linear function is a combination of a threshold and
a linear function [27]:

ϕ(v) =

1 if v ≥ +1

2
v if +1

2 > v > −1
2

0 if v ≥ −1
2

(3.6)

For a defined region, [−1
2 , +1

2] in this case, the function acts as linear function. To satisfy the
bound properties that are required for activation functions used in neural networks, the function
returns a maximum (respectively a minimum) if the input is outside the linear region.

Sigmoid Function The most common form of activation functions used in neural networks is
the sigmoid function. It offers a fine balance between linear and non-linear behaviour. An example
is the logistics function [27]:

ϕ(v) =
1

1 + e−av
(3.7)

Where the parameter a defines the shape of the function graph. As a advances to infinity the
sigmoid function simply becomes a threshold function. The return value of the function is a
continuous range of values from 0 to 1.

Automated Detection of Security Vulnerabilites 27 / 82

Chapter 3. Artificial Intelligence in IT Security 3.2. Artificial Neural Network

Figure 3.6: An example of a fully connected single-layer neural network. (based on [27])

3.2.3 Neural Network Architecture

So far, the functionality of a single neuron model have been defined. To gain their full potential,
multiple neurons have to be connected to a neural network. The neurons are structured into a
directed graph with at least two different types of neurons. The learning algorithm is a direct
consequence of the architecture of the networks, it will be discussed in section 3.2.4. This section
explains the different structure types of artificial neural networks.

First of all, the network can be fully connected or partially connected. In a fully connected net-
work, every node in one layer is directly connected with every node on the adjacent layer. If this
is not the case and some possible connections are missing, then the network is called partially
connected. [27]. As example, the network in figure 3.6 is a fully connected neural network, since
each neuron on a layer is directly connected to each neuron in the next layer. Figure 3.7 on the
other hand is said to be partially connected. The neurons in the last layer do not receive input from
all neurons in the layer in front.

Further, Haykin identified three fundamentally different classes of network architectures [27]: the
single-layer network, the multi-layer network as well as the recurrent network.

Single-layer Networks In a layered neural network, the neurons are organized in layers. The
structure is a directed, acyclic graph and the signal is passed from one layer to another in a strict
feedforward manner. An example is drawn in the figure 3.6. The single-layer network is composed
of two layers, each consisting of a different type of nodes. The first class represent the input nodes
illustrated as squares, which act as signal sources for the network. The second layer contains all
the neurons, that return the transformed signals as output values. This layer is therefore called
the output layer. Although the network actually consists of two layers, it is called a single-layer
network. In the input nodes no computation is done, so their layer is omitted from the count. [27]

Multi-layer Networks Multi-layer networks have similar properties as single-layer networks.
They too can be viewed as directed, acyclic graphs and their signal processing is again strictly
feedforward. The difference lies in one or more hidden layers. The neurons in these layers are
called hidden neurons. With additional layers of neurons, the network is able to work with more
complex problems, for example extract higher-order statistics [27].

The input signal coming from the source nodes is passed to the first hidden layer of neurons. They
process the signal and the output is then used as input for the second hidden layer or the output
neurons, depending on the structure. Figure 3.7 illustrates an artificial neural multi-layer network
with one layer of hidden neurons. [27]

Automated Detection of Security Vulnerabilites 28 / 82

Chapter 3. Artificial Intelligence in IT Security 3.2. Artificial Neural Network

Figure 3.7: An example of a partially connected multi-layer neural network. (based on [27])

Recurrent Networks A recurrent neural network is significant different from the two classes
already presented. The signal process of a recurrent network is not strictly feedforward, since it
has at least one feedback loop. The use of feedback loops in a neural network has a great impact
on the learning capability and performance of the network.

Feedback occurs in nearly every part of the nervous system of every animal. In general, it describes
the functionality of a dynamic system, that is able to use the output of an element to influence the
input of the same element. In the special case of a directed neural network, feedback is an arc
from the output of a neuron to its input or to a preceding layer, building a cycle. The target of the
arc on one of the preceding layers can be the input of one or more neurons. [27]

For example, a recurrent network may consist of a layer of input nodes fully connected to a layer
of neurons. The neurons feed their output to some of the input nodes, generating a feedback loop.
Some of the neurons act as output neurons, leaving the remaining neurons as hidden neurons. A
possible recurrent neural network with hidden layers is drawn in figure 3.8.

3.2.4 Learning in Artificial Neural Networks

One of the most important abilities of a neural network is the ability to learn from its environment
and adapt its actions towards the environment. It is not possible to find a globally valid definition of
the term ”learning”, since there exist too many different facets of the activity learning. However,
if we stick to the topic of neural networks, we can use a definition of learning by Mendel and
McLaren [54]:

Learning is a process by which the free parameters of a neural network are adapted
through a process of stimulation by the environment in which the network is em-
bedded. The type of learning is determined by the manner in which the parameter
changes take place. (Mendel [54])

Automated Detection of Security Vulnerabilites 29 / 82

Chapter 3. Artificial Intelligence in IT Security 3.2. Artificial Neural Network

Figure 3.8: An example of a single-layer neural network with feedback loops. (based on [27])

This definition implies the following sequence of events that are required to be executed for a
neural network to be able to learn [27]:

1. The neural network is stimulated by the environment.

2. The neural network react to this stimulations and undergoes changes in its free parameters.

3. With the changes made, the neural network responds to the environment in a different way.

The main goal of learning for neural networks is to improve the performance of the network. The
improvement is done iteratively in many small steps, defined by some algorithm. A neural network
learns about its environment through the information that the environment applies to the network.
The stimulated network then adapts its synaptic weights and bias levels accordingly. Ideally the
neural network can improve its performance with every iteration of the learning process.

The following sections will deal with examples of learning methods.

Error-Correction Learning The error-correction learning rule is based on the idea of optimiza-
tion. The neurons are given a target to which they should iteratively adjust. Consider a single
neuron k, driven by a input vector x(n) coming from other neurons, which are themselves driven
by an input vector applied to the source nodes. The natural number n represents a time step of
an iterative training process. After an iterative step, the output yk of the neuron is compared to a
given target output dk(n). The error signal produced by these values is:

ek(n) = dk(n)− yk(n) (3.8)

The error signal ek(n) is used in an adjustment step that is applied to the synaptic weights of the
neuron k. These adjustments are designed to iteratively make the output signal yk(n) come closer
to the desired target output dk(n).

Hebbian Learning The oldest and most famous learning algorithm is named in honour after the
neuropsychologist Donald O. Hebb. It is based on the descriptions of the behaviour of biologi-
cal neural cells, which Hebb described in his book ”The Organization of Behaviour” [29]. The
hebbian learning rule consists of two sub rules [27]:

Automated Detection of Security Vulnerabilites 30 / 82

Chapter 3. Artificial Intelligence in IT Security 3.3. Self-Organizing Maps

• If two neurons on either side of a synapse are activated synchronously, then the strength of
that synapse is selectively increased.

• If two neurons on either side of a synapse are activated asynchronously, then this synapse is
selectively weakened or eliminated.

A synapse with this properties is called a Hebbian synapse.

Competitive Learning In a competitive learning method, the output neurons compete against
each other, in order to become active. In a network based on, for example hebbian learning rules,
it is possible that more than one neuron become active at a time. In a competitive environment
only one neuron can be active at the same time. Haykin describes three basic preconditions for a
competitive learning rule [27]:

• A set of equal neurons, initialised with random synaptic weights. Therefore every neuron
will respond differently to a given set of input signals.

• A limit on the ”strength” of every neuron.

• A mechanism to limit the number of active neurons in a group to one at a time. The winning
neuron is called the winner-takes-all neuron.

For a neuron k to be the winning neuron of its group, its output value vk for a given input vector
must be the largest among its group. The output signal yk of the winning neuron is set to one,
whereas the signal of all other neurons is set to zero. The learning is done by a shifting of synaptic
weights. Every neuron shifts some amount of weight from the inactive synapses (with a value of
zero) to its active neurons. Therefore the synapses of the winning neuron are strengthened, while
the synapses of the loosing neurons are weakened.

3.3 Self-Organizing Maps

A special application of an artificial neural network is the so-called Self-Organizing Map (SOM).
These networks are based on the principle of competitive learning, where only one neuron can be
active at a time [27]. This learning method was explained earlier in section 3.2.4. The neurons are
arranged in a two-dimensional array and are connected to a defined neighbourhood set of nearby
neurons [42].

The ideas for self-organizing maps are based on the knowledge gained about the structure of the
human brain. The various areas of the brain and especially the cerebral cortex are organized
according to different sensory inputs. These areas perform specialized tasks, for example for
processing tactile, visual and acoustic sensory input. Every specialized region is again divided in
several subregions. These fine-structured areas are organized according to the topographical origin
of the response signal, e.g., the somatic sensory areas for hand and fingers all lie close together
on the somatosensory cortex of the brain. This configuration is useful in many ways. By bringing
similar brain functions close together, the wiring and the ”crosstalk” between functions can be
minimized and the brain becomes more efficient, more logical and more robust. [42]

This knowledge about the self-organizing representation of information that the brain is capa-
ble of, led to the development of a uniform, singly-connected, one-level medium that is able to
represent hierarchically related data. This type of medium is known as Self-Organizing Maps.

Automated Detection of Security Vulnerabilites 31 / 82

Chapter 3. Artificial Intelligence in IT Security 3.3. Self-Organizing Maps

Figure 3.9: A SOM with synaptic connections and the winning neuron. [27]

Different areas of the map are assigned different abstraction levels of information and represent a
tree structure. This tree structure can be used to extract taxonomic and cluster information. [42]

As mentioned earlier, a SOM is a artificial neural network, whose neurons are usually structured
in a regular two-dimensional grid. Higher-dimensional maps would be possible, but are not as
common [27]. Self-organizing maps may be described formally as a non-linear, ordered, smooth
mapping of high-dimensional input data mapped onto the elements of a regular, low-dimensional
array [42].

3.3.1 Learning in Self-Organizing Maps

Let m denote the dimension of the input data and l denote the total number of neurons in the
network. Let x be an m-dimensional input vector (adapted from [27]):

x = (x1, x2, . . . , xm) (3.9)

Each neuron is represented as a m-dimensional synaptic weight vector:

wj = (wj1, wj2, . . . , wjm), j = 1, 2, . . . , l (3.10)

The neurons are initialised with random values, preferably the values are taken from the same
domain as the input samples. We require a general distance metric between x and wj denoted as
d(x,wj) [42]. The distance metric may be the Euclidean distance measure [42], defined as:

d(x,wj) =
√

(x1 − wj1)2 + (x2 − wj2)2 + . . . + (xm − wjm)2 (3.11)

When an input vector is applied to the network, the competitive learning rule dictates that only
one neuron can be active, winning the competition. The winning neuron is also called the image
of the input vector x on the SOM array. It is defined as the array element wc that matches best
with x where (adapted from [42]):

c = arg min
j
{d(x,wj)}, j = 1, 2, . . . , l (3.12)

The situation, where an input vector is applied to the neural network is illustrated in figure 3.9.
One neuron lies closest to the input vector and is therefore the winner of the competition.

Automated Detection of Security Vulnerabilites 32 / 82

Chapter 3. Artificial Intelligence in IT Security 3.3. Self-Organizing Maps

Figure 3.10: A graphical interpretation of the Gaussian neighbourhood function. [27]

The winning neuron and its geometric neighbourhood are stimulated by the input vector x. Thus,
they will try to decrease the distance of their synaptic weight vectors in regard of the position of x.
This continued shifting of positions of the neuron vectors leads to a global ordering. The learning
process is defined as [42] :

wj(t+ 1) = wj(t) + hcj(t)[x(t)− wj(t)] (3.13)

Where t = 0, 1, 2, . . . is a discrete time coordinate, numbering the steps of the learning phase. A
great impact on the learning process has the neighbourhood function hcj(t), a smoothing kernel
function over the array of nodes. Based on the position of the winning neuron i, it defines the set
of nodes that are affected by the stimulation. The function has its maximum at the winning neuron
(di,i = 0), monotonically decreases with increasing distance (di,j) to neuron i and decaying to
zero for di,j →∞ [27]. A widely applied neighbourhood kernel is the Gaussian function:

hi,j = α(t) · exp

(
−
d2i,j
2σ2

)
(3.14)

The parameter σ controls the shape of the graph and thus defines the topological width of the
neighbourhood. An example of a Gaussian neighbourhood function is illustrated in figure 3.10.
The function α(t) is a monotonically decreasing function and represents a learning-rate factor. It
is important for convergence reasons, since with increasing time, the neighbourhood selected for
stimulation decreases in size and the learning process slowly decays. [42]

3.3.2 Example

An example of the training of a SOM is illustrated in figure 3.11 (from [42]). The training data
is uniform distributed, as seen in subfigure 3.11(a). Subfigure 3.11(b) illustrates the first step of
the training, at the time when the synaptic weight vectors wj(0) of the neurons are initialised with
random values from the same domain as the training data. Then the training is started and the
network unfolds into a mesh and the structure becomes visible after some time (subfigure 3.11(c)).
After the learning process died off due to convergence, the geometric structure of the network is
approximately uniform distributed like the input data, as seen in subfigure 3.11(d).

Automated Detection of Security Vulnerabilites 33 / 82

Chapter 3. Artificial Intelligence in IT Security 3.4. Support Vector Machines

Figure 3.11: Stages of a SOM training process: (a) the distribution of the training data; (b) the
SOM is initialised with random data; (c) during the training of the SOM; (d) training is finished,
the maps now spans over the entire dataset, representing its distribution. [42]

3.4 Support Vector Machines

One classification approach that has become popular in recent years is the Support Vector Machine
(SVM). The concept behind SVM is to find an optimal hyperplane that separates the data in two
sectors, according to their classes. Basically it is a linear classification method but can be extended
to separate non linear separable data [3][72] and even to find clusters for one-class problems [2][3].

Traditionally SVMs use the labels y = −1 and y = +1 for the two classes C1 respectively C2.
Consider the m-dimensional training samples xi with i = 1, . . . , n. If the training data is linearly
separable, a decision function D can be defined:

D(x) = wTx+ b (3.15)

where w is an m-dimensional vector and b is a bias term. For i = 1, . . . , n

wTxi + b

{
> 0 for yi = +1
< 0 for yi = −1

(3.16)

Since we required the training data to be linearly separably, no data point satisfies wTx + b = 0.
Therefore it is sufficient to consider the following inequalities:

wTxi + b

{
≥ +1 for yi = +1
≤ −1 for yi = −1

(3.17)

Automated Detection of Security Vulnerabilites 34 / 82

Chapter 3. Artificial Intelligence in IT Security 3.4. Support Vector Machines

Figure 3.12: A SVM example showing an optimal separating hyperplane. [3]

which is equivalent to

yi(w
Txi + b) ≥ 1 for i = 1, . . . ,m (3.18)

It is intended that the equation be ≥ +1. We require that the instances should not only be on the
correct side of the hyperplane, they should even have some distance to it. The distance from the
hyperplane to the closest instance is called margin. Maximizing the margin allows the method to
correctly classify test instances that were slightly displaced by noise interferences. The hyperplane
with the largest margin is called optimal separating hyperplane. [2] [3]

An example is drawn in figure 6.5. The two classes are shown by dot and plus signs, the thick line
is the hyperplane and the dashed lines define the margin. The support vectors of the margin are
drawn in circles.

So far we assumed the training data to be linearly separable. This is a valid assumption, but often
the training data will not meet this requirement and the linear classifier may not perform as well
as expected. A solution to this problem is to map the training data into a high-dimensional space
and use the linear classifier in this new space. [2]

An example of non linearly separable training data is drawn in figure 3.13a. The two classes are
drawn as white and black circle. By mapping the same training data into a higher dimension, it
becomes linearly separable. Figure 3.13b shows the same training data mapped into three dimen-
sions. The possibility of separation is indicated by the hyperplane. [72]

To determine the optimal separating hyperplane, we need to find a w with the minimum Euclidean
norm that satisfies equation 3.18. A solution to this problem can be obtained by solving the
following optimization problem for the two variables w and b [3]:

minimize Q(w, b) = 1
2‖w‖

2

subject to yi(w
Txi + b) ≥ 1 for i = 1, . . . ,m

(3.19)

Automated Detection of Security Vulnerabilites 35 / 82

Chapter 3. Artificial Intelligence in IT Security 3.5. Clustering

(a) The training set in two dimensions. (b) The training set mapped into three dimensions.

Figure 3.13: A training set with a separating hyperplane in two and three dimensions. [72]

Due to the square of the Euclidean norm ‖w‖ this problem becomes a quadratic optimization
problem. In addition, this problem can further be converted into an equivalent problem whose
number of variables is only the number of training data [3]:

minimize Q(α) =
m∑
i=1

αi − 1
2

m∑
i,j=1

αiαjyiyjx
T
i xj

subject to
m∑
i=1

yiαi = 0, αi > 0 for i = 1, . . . ,m

(3.20)

The details of this conversion, however, are not part of this thesis and may be looked up in several
technical books, including the book ”Introduction to Machine Learning” by Ethem Alpaydın [3].

3.5 Clustering

The unsupervised learning method of fuzzy clustering is based on ideas from the field of fuzzy set
theory. Fuzzy set theory on the other hand is an extension of the classical set theory, which is
sometimes called crisp set theory in this context. The classical theory is build on a fundamental
concept of a ”set” where an individual either is a member or is no member of this set. There
exists a crisp and unambiguous distinction between a member and a nonmember. Mathematically
speaking, let A be a nonempty set. To indicate that an individual x belongs to the set A we write
[14]:

x ∈ A (3.21)

If x is not a member of A we write:

x /∈ A (3.22)

Automated Detection of Security Vulnerabilites 36 / 82

Chapter 3. Artificial Intelligence in IT Security 3.5. Clustering

Figure 3.14: An example of a membership function for fuzzy sets. [14]

Thus, we can define a characteristic function χ of A [14]:

χA(x) =

{
1 if x ∈ A
0 if x /∈ A (3.23)

On the contrary to this sharp distinction of the classical set theory, the fuzzy set theory accepts
partial membership of a set. In a way it thereby generalizes the classical set theory to some extent
[14].

In order to allow an element a partial membership of a set, we need to generalize the characteristic
function. This is done by describing a membership grade of the elements in the set: larger values
describe higher degrees of membership. For example, consider the set S containing all humans
and the subset Sf which is defined by

Sf = {s ∈ S|s is old } (3.24)

The subset Sf can not be defined by classical set theory, since the property ”old” is not well defined
and can not be precisely measured. Therefor, in order to define Sf we have to quantify and define
the concept ”old”. One way to describe the concept is by a curve shown in figure 3.14, where the
only people who are considered to be ”absolutely old” are those who are 120 years old or older.
The ones who are considered to be ”absolutely young” are the newborns. All other people are
considered old and young at the same time. A person who is 40 years old is equally old and young
with a degree of 0.5 for both. [14]

The curve illustrated in figure 3.14 is in fact a generalization of the classical characteristics func-
tion χSf

and is called a membership function of subset Sf . By this function it can be determined
if a person is or is not a member of Sf . We will denote this function by µSf

(s) with s ∈ S.

The subset Sf together with the membership function µSf
is called a fuzzy subset. A fuzzy set

always consists of these two components: a set and a membership function. This is in contrast
to the classical set theory, where every set uses the same two-valued characteristic function, as
previously described in formula 3.23. [14]

3.5.1 Hard c-Means

c-Means is a clustering method based on classical set theory. Each data point will be assigned to
exactly one data cluster, sometimes called partitions. A valid partition of all data points has to
meet several requirements: The data points form the set X = {x1, x2, . . . , xn}. A partition U
consists of several sets U := {Ai, i = 1, 2, . . . , c}. The union of the sets have to contain every
data points, every data point has to be in a set (formula 3.25). No sets may overlap, every data
point can be in at most one set (forumla 3.26). No set may be empty or contain all data points
(formula 3.27). [71]

Automated Detection of Security Vulnerabilites 37 / 82

Chapter 3. Artificial Intelligence in IT Security 3.5. Clustering

c⋃
i=1

Ai = X (3.25)

Ai ∩Aj = ∅ ∀i 6= j (3.26)

∅ ⊂ AI ⊂ X (3.27)

The relationship between data points and classed can be illustrated as matrices, the so-called par-
tition matrices. The columns correspond to the data points xi, the rows to the partitions A1 and
A2. Some examples are [71]:

U1 =

[
1 1 1 1 0
0 0 0 0 1

]
U2 =

[
0 1 1 0 1
1 0 0 1 0

]
(3.28)

By this definition, it is obvious that there are several partitions of a given set of data samples
possible. The task of the clustering method is to select the most reasonable c-partition U of all
possible partitions, denoted as the set Mc. To solve this task, an objective function that will be
used to cluster the data is required. One proposed algorithm is known as a within-class sum of
squared errors approach, using a Euclidean norm to characterize distance. The function that is
used by this algorithm is denoted J(U, v) and is defined as [71]:

J(U, v) =

n∑
k=1

c∑
i=1

χAi
(xk)d(xk, vi)

2 (3.29)

Where U is a partition matrix and the parameter v is a vector of cluster centers. The Euclidean
distance measure is d(xk, vi) (see formula 3.11) and determines the distance between each data
point xk and its cluster center vi. The characteristics function is χAi

(xk) (see formula 3.23). The
clustering method seeks the optimum partition U∗, which is the partition that gives the minimum
value for the function J [71]:

J(U∗, v∗) = min
U∈Mc

J(U, v) (3.30)

Finding the optimal partition can become a very difficult task for practical problems, because
Mc → ∞ for even modest-size problems. An exhaustive search for optimality is obviously not
computationally feasible, but effective alternative search algorithms have been designed. One such
algorithm is known as iterative optimization and was introduced by J.C. Bezdek [9]. [71]

3.5.2 Fuzzy c-Means

The Fuzzy c-Means algorithm works similar to the algorithm of Hard c-Means. As explained
earlier, fuzzy set theory allows individuals a partial membership in more than one set. Applied
to the field of clustering, a data sample can have a partial membership in more than one class or
cluster. [71]

First of all, we have to define a set of fuzzy sets Ũ := {Ai, i = 1, . . . , c} that form the c-partition of
all data points X . The characteristics function χ needs to be extended to an membership function

Automated Detection of Security Vulnerabilites 38 / 82

Chapter 3. Artificial Intelligence in IT Security 3.5. Clustering

µ, displaying the degree of membership of a data point xk to a class Ai [71]:

µAi
(xk) ∈ [0, 1] (3.31)

A valid partition in fuzzy clustering has to satisfy similar constraints as in crisp clustering. First of
all, the sum of all membership values of a data point has to be unity, equivalent to the crisp case.
Formally written as

c∑
i=1

µAi
(xk) ∀k = 1, 2, . . . , n (3.32)

The restriction of formula 3.26, that every data point can be in at most one class, can be dropped.
In fuzzy set theory, each data point can have multiple partial memberships. The expression of
formula 3.27, stating that no set can be empty or contain all data points, remains in effect, though.
[71]

In contrast to Hard c-Means the partition matrices can contain every number ∈ [0, 1]. An exem-
plary partition matrix Ũ is:

Ũ =

[
0.91 0.58 0.13
0.09 0.42 0.87

]
(3.33)

Again, the columns of the matrix represent a data samples xk, whereas the rows stand for two
classes A1 and A2. In this case, x1 has membership values of 0.91 for class A1 and 0.09 for class
A2. [71]

To determine the optimal c-partition Ũ for grouping a collection of n data points into c classes, we
require a fuzzy objective function Jm:

Jm(Ũ , v) =
n∑
k=1

c∑
i=1

µAi
(xk)

m′
d(xk, vi)

2 (3.34)

As distance metric again the Euclidean distance d(xk, vi) between the ith cluster center and the kth
data point is used. The difference to Hard c-Means, which used a characteristic functionχ, is that
the fuzzy objective function uses the membership function µ defining the degree of membership
between data point xk and classAi. A new parameterm′ is introduced, which is called a weighting
parameter. It has a range of m′ = [1,∞) and is used to control the amount of fuzziness in the
clustering. [71]

The optimum fuzzy c-partition will be the smallest of the partitions described by formula 3.34:

Jm(Ũ∗, v∗) = min
Ũ∈Mfc

J(Ũ , v) (3.35)

The problem of exploding complexity with larger instances is even further tightened, since the
number of possible, valid c-partition is now infinite. As with many optimization problems, how-
ever, the solution to formula 3.35 cannot be guaranteed to be the best solution (the global opti-
mum). Thus, the best solution given by a predefined level of accuracy (e.g., a local optimum) will
suffice. The iterative optimization algorithm by Bezdek [9] is again an effective way of finding an
adequate solution to the fuzzy c-clustering problem. [71]

Automated Detection of Security Vulnerabilites 39 / 82

Chapter 3. Artificial Intelligence in IT Security 3.6. State of the Art

3.6 State of the Art

Using artificial intelligence method to enhance security system is a well studied topic. Machine
Learning concepts like the four presented are often used to learn the normal system behaviour and
detect abnormal behaviour during runtime.

Jalil et al. [36] compare three ML methods (Artificial Neural Network (ANN), SVM and decision
tree) for their use in IDS systems. Firdausi et al. [22] presented an analysis of ML techniques
used in an behaviour based malware detection system. The classifiers compared in their work are:
k-Nearest Neighbours, Naive Bayes, J48 Decision Tree, SVM and Multilayer Perceptron Neural
Network.

3.6.1 Artificial Neural Network

A well studied topic is the use of an ANN for classification of a behaviour of a system, e.g., net-
work traffic. Several publications exist that propose or improve ANNs for the use within an IDS,
for example Gosh et al. [25], Han et al. [26] or Zhao et al. [90]. Linda et al. [47] investigate the
monitoring of network timing behaviour for its use within an IDS to detect abnormal network be-
haviour. Shun and Malki [77] presented an approach with a so-called feedforward neural network
and trained it with the Back Propagation (BP) algorithm.

Another interesting combination showed Jiang and Zhao [37] and similar Zhou and Yang [91]:
They combined a Genetic Algorithm (GA) with a BP Neural Network to gain the good global
searching ability of genetic algorithms with the accurate local searching feature of the neural
network.

A Multi-Agent System in combination with a neural network classifier has been used in the paper
of Júnior et al. [39]. The agents search for binaries on a file system and let the neural network
decide whether the binary is vulnerable or not. They can communicate with each other and can
request the help of nearby agents to work on a specific region of the workspace. The neural
network is specialised in heap- and stack-overflows, but due to its learning capabilities, it can
detect other classes of vulnerability, such as format string, integer overflows and others.

The applicability of neural networks in automated malware detection investigated Gavrilut et al.
[15]. They analysed two variants of networks: a cascaded one-sided perceptron and cascaded
kernelized one-sided perceptrons.

3.6.2 Self-Organizing Map

A Self-Organizing Map is used by Ramadas et al. [69] to create an anomalous network traffic
detector. The SOM is trained by a set of sample web connections. To make sure the training set
does not contain intrusions itself, the data was checked by a rule based intrusion detection system
at first. After a two phased training and a final validation phase, the SOM was tested and produced
promising results.

Kiziloren and Germen [41] introduced a SOM-based approach to classify traffic in a network in
three classes: port scanning, heavy-downloading and the rest. In their test setup they achieve a
success rate of near certainty.

Ting et al. [84] address the robustness and reliability problem of some SOMs by replacing the
distance metric by a non-linear kernel function, gaining higher classification precision.

Automated Detection of Security Vulnerabilites 40 / 82

Chapter 3. Artificial Intelligence in IT Security 3.6. State of the Art

Intrusion detection is an often used appllicaton for Self-Organizing Maps, for example Höglund et
al. [31], Lichodzijewski et al. [46] and Ippoliti and Zhou [35] successfully created an IDS based
on a SOM.

Powers and He [66] presented a hybrid approach for Intrusion Detection Systems. The initial
detection of an anomalous network connection is done by an artificial immune system. This suspi-
cious connections are then further classified by a SOM. The SOM allows the extraction of higher-
level information like membership to a specific cluster and with this, the attack type.

3.6.3 Support Vector Machine

In an evaluation work of Mukkamala et al. [56] they compared an Intrusion Detection System
based on neural networks and an IDS based on SVMs. Both systems were trained with the same
data set originating from a competition designed by the Defense Advanced Research Projects
Agency (DARPA). Both systems showed a result greater than 99% accuracy. The authors predicted
a great potential for the SVM, due to its scalability and faster training and running time.

A similar conclusion reaches Ambwani [4] within the work on a Multi-Class SVM for intrusion
detection. A one-versus-one approach with a Radial Basis Function (RBF) kernel was trained
and tested on a huge sample set of seven million connection records. The sample data was again
taken form a contest created by the DARPA. Further, Bao et al. [7] present a combination of SVM
algorithms with Anomaly Intrusion Detection and Misuse Intrusion Detection in their work.

Khan et al. [40] use a SVM for detecting network-based anomalies and address the problem of a
long training time of the SVM with the use of a special clustering algorithm, called Dynamically
Growing Self-Organizing Tree. The same problem is addressed by Mulay et al. [57], they propose
the use of a decision tree for preparing the training data.

A possible problem for SVMs is that they are sensitive to noise in the training sample. The
presence of mislabelled data can lead to poor generalization ability and classification accuracy.
Hu et al. [32] address this problem by using a so-called Robust Support Vector Machine (RSVM).
This extension to regular SVMs uses an adaptive margin as well as an ”average” algorithm [80].
With this method, a particular sample in the training set only contributes little to the final result.
The effect of outliers can be eliminated by taking averages on the samples.

Rieck et al. [70] presented an study on SVMs for their applicability in automatic behaviour based
malware detection.

3.6.4 Clustering

An intrusion detection system based on clustering was presented by several authors, for example
Portnoy [65] and Oh et al. [62]. The approach of Oh reads a data stream, which is an ordered
sequence of objects, and clusters these objects for anomaly detection. In conventional methods,
the number of clusters is given in advance. This can lead to an identification of inaccurate clusters.
The proposed algorithm puts every object in its own cluster until a given number of clusters is
reached. Every later object is assigned to one of the existing clusters. To maintain the quality of
the clusters they can be split up or merged if necessary.

In another work of the same authors [61] they modify their clustering algorithm to build a be-
haviour profile of a user. The method extracts several features of an audit data log and generates
a long-term profile containing a statistical summary for each feature. To detect an anomaly, the
activities of the user are summarized into a short-term profile and compared with the long-term

Automated Detection of Security Vulnerabilites 41 / 82

Chapter 3. Artificial Intelligence in IT Security 3.6. State of the Art

profile. If the difference between two profiles is large enough, the on-line activities are considered
as anomalous behavior. A similar approach was presented by Park et al. [63].

A clustering algorithm based on fuzzy c-means is introduced by Hubballi et al. [33]. They iden-
tify a huge problem of IDSs in the large amount of false positives and false negatives caused by
outliers. The proposed algorithm can control the degree of false alarms, by adjusting the threshold
of membership. This leads to a higher accuracy and detection rate compared to related works.

Jiang et al. [38] proposed a method to detect outliers by a two-phase clustering process. In the first
phase, they modify the traditional c-means algorithm by using a heuristic and build a minimum
spanning tree in the second phase.

Automated Detection of Security Vulnerabilites 42 / 82

Chapter 4. Architecture of the PoC Implementation

4 Architecture of the Proof of Concept
Implementation

The previous chapters explained the topics of IT Security, Software Testing and Artificial Intelli-
gence to some extent. These chapters build the foundation of the following pages where Security
Testing and Artificial Intelligence are combined.

The basic concept of the combination is based on learning the normal behaviour of the tested
system. If the security testing tool knows how the system works under normal circumstances, then
it can also automatically detect changes in the behaviour during the test and tell the executing tester
which input data called on this behaviour change. The tester can then investigate this situation and
draw conclusions to possible vulnerabilities in the system.

The first section presents an architecture of security testing frameworks, which will later be used
in the proof-of-concept implementation. The architecture of the selected fuzzing software is ex-
plained in section 4.2 and is subsequently extended with artificial intelligence modules. Some
prototype implementations of the security framework extended with various AI methods are then
evaluated in chapter 6.

4.1 Architecture of Security Testing Frameworks

In general, a security test setup consists of two systems: the security test system and the test subject
(i.e., System Under Test, SUT). As any human tester would do, the test system sends requests to the
SUT and analyses the responses. It checks the responses against some predefined specifications
to decide whether the system has passed or failed the tests. The following description of the
architecture is based on the originating paper of this thesis called ”Generic Approach for Security
Error Detection Based on Learned System Behavior Models for Automated Security Tests” [73].

Figure 4.1 shows a test setup with a security test system and a System Under Test. The security
test system is positioned on the top and the SUT is on the bottom. The figure shows a simplified
architecture of the components of both systems.

The SUT contains various components which communicate with internal communication inter-
faces. Often the tested system has a user interface attached. The operating system and the un-
derlying hardware are part of the system too. Additionally, the SUT communicates with external
components which are not part of the test target, for example a database server.

The security testing framework contains the test execution controller as central component. It
manages the execution of learning and security test cases. In the module ”Preparation of Test
Data”, two engines generate and prepare the messages that are sent as requests to the SUT. One
each for the learning and for the test cases. ”Learning and Determination” contains all components
that are responsible for analyzing the SUT behaviour and drawing conclusions from the gained
data.

Each analyzer observes one specific behaviour and deduces a metric. To combine the single
measured values from the analyzers, the analyze manager is used. It collects the results of all
analyzers and performs the learning and clustering. The manager triggers the single analyzer

Automated Detection of Security Vulnerabilites 43 / 82

Chapter 4. Architecture of the PoC Implementation 4.2. The Fuzzing Framework ”Fuzzolution”

Figure 4.1: Architecture for learning system behaviour and determining security failures. [73]

before and after the execution of the security test/learning case. Before the security test/learning
case the analyzers are informed, that they should start capturing the system behaviour. After the
security test/learning case the analyze manager collects the determined metrics for the security
test cases and for learning cases from the single analyzers. The metrics from all analyzers are
combined by the analyze manager to a single behaviour. Based on this observed behaviour and
changes in the behaviour, the analyze manager decides whether a security failure is present or
not. A more detailed description of the functionality of the components in the ”Learning and
Determination” module can be found in section 4.3.2

4.2 The Fuzzing Framework ”Fuzzolution”

The fuzzolution project is a software which provides a generic and easily expandable framework
for security tests using the technique of fuzz testing (see section 2.3). The framework is based on
the architecture of security testing frameworks described in the previous section.

Automated Detection of Security Vulnerabilites 44 / 82

Chapter 4. Architecture of the PoC Implementation 4.2. The Fuzzing Framework ”Fuzzolution”

4.2.1 Process of one Fuzzing Test Run

One test run is executed on one functionality of an application that requires arguments, for example
an URL with various parameters. During a run, negative tests are sent in order to try and break
the system. Each run repeatedly starts a test iteration until all predefined attack vectors have been
selected. Basically, one iteration of the fuzzer consists of multiple steps:

1. select an attack vector

2. build the attack string

3. send the request to the SUT

4. run the analyzers to extract the metrics

The attack vector is an argument that is injected into the SUT in order to generate a response. The
attack vector could either be automatically generated data or a string selected from a well-known
attack list. An example SUT could be a simple web interface backed by a SQL database. The
application expects an id of a user as input and displays the stored information. Possible attack
vectors are:

<>" ’%;) (&+
’ o r 1=1
1 or s l e e p (2 0 0 0) #

Listing 4.1: Some examples of attack vectors.

The selected attack vector is then inserted into the attack template, which is defined by the con-
figuration. The following is an example of a attack template taken from the configuration for
one application of the Web Application Vulnerability Scanner Evaluation Project (WAVSEP) tool
(see section 5.2 for a description of this tool). The substring @@username@@ is replaced by the
chosen attack vector and the whole attack string is send as Hyper Text Transfer Protocol (HTTP)
request to the SUT. For readability reasons it is split up:

h t t p : / / l o c a l h o s t : 8 0 8 0 / wavsep / a c t i v e / S I n j e c t i o n−
D e t e c t i o n−E v a l u a t i o n−GET−200 V a l i d / Case03−
I n j e c t i o n I n C a l c −S t r i n g−B o o l e a n E x p l o i t−
W i t h D i f f e r e n t 2 0 0 R e s p o n s e s . j s p ? username=@@username@@

Listing 4.2: An attack template for an application of the WAVSEP platform.

After the SUT has send a response, the configured analyzers are called to collect data as described
in the previous section 4.1.

4.2.2 Composition of the fuzzolution tool

In order to achieve the flexibility required for security testing of various applications, the fuzzer
is designed as a modular system. A framework defines the properties and functionality of every
module in order to be able to work with the other modules. Around this framework a core in-
stallation includes implementations of all modules. These generic modules can be used in many
test setups without the need of further development. It is enough to modify the configuration files

Automated Detection of Security Vulnerabilites 45 / 82

Chapter 4. Architecture of the PoC Implementation 4.2. The Fuzzing Framework ”Fuzzolution”

Figure 4.2: Architecture of the fuzzolution framework. (based on [74])

of every module to set up the fuzzer for the current testing project. However, if a SUT requires
a module to have specialised features, it can easily be extended or replaced by a specific suiting
implementation.

These mentioned base modules are called: Runner, Connector, Handler, Generator and Analyze
Manager. The architecture of the fuzzolution framework is presented in figure 4.2. The image
displays the command chain from Runner to the Generator and Handler. The Handler requests
data from the Generator and starts the Connector. The Connector communicates with the SUT and
calls the Analyze Manager afterwards.

Figure 4.3 represent an Unified Modeling Language (UML) sequence diagram of the activities
inside the fuzzer. Visible is the initialisation sequence started by the Runner and relayed by the
Analyze Manager to its Analyzers. The process of one test run, as described in words above, is
displayed in the execution sequence. The Runner activates the Handler, which calls the Generator
and later the Connector. The SUT response analyze sequence is again initialised by the Runner by
starting the Analyze Manager. The Manager calls all his assigned Analyzers in sequential order:

In the following paragraphs all components are described with respect to their common core im-
plementations.

Runner The Runner is the outermost module and acts as controller for the test execution. The
configuration files for the tests are parsed by the entrance method and the contained information
is provided to the Runner class. The Runner analyses the given information and iterates through
all configured test cases. For every test case it activates the Generators in order to prepare the test
case for execution. The Handler is called, taking the information gathered from the Generator and
combines them with a predefined template file, completing the test case preparations. The actual
test execution is done by the Connector, which is again called by the Handler class. The response
of the SUT is eventually parsed by the Analyze Manager.

Generators The generator classes are responsible for the selection and generation of attack vec-
tors. Every generator has a specific task of creating one kind of attack vectors. An example is a
generator that produces random integer numbers in a defined range. A different type of generator
reads input strings from a file containing attack vectors. In a test run several generators can be
used and their combined output is the list of all attack vectors that will be used.

Automated Detection of Security Vulnerabilites 46 / 82

Chapter 4. Architecture of the PoC Implementation 4.2. The Fuzzing Framework ”Fuzzolution”

Figure 4.3: Sequence diagram describing the test execution of the fuzzolution tool.

Handler The handler module requires two arguments: the list of attack vectors produced by the
generators and an attack template. For every argument defined in the template (e.g., @@username@@)
and for every attack vector, the handler builds one request by replacing the placeholders in the tem-
plate by a value of the attack vector list. Then the connector is invoked with the request.

Connector The Connector is one of two components that communicate with the SUT, with the
other being some specific analyzers. It takes the connection settings from the configuration and
a request given by the handler. Depending on the configuration, the connector could e.g., start a
Transmission Control Protocol (TCP) connection and transfer a HTTP request to the remote end.
The response of the SUT is recorded and handed back via the Handler to the Runner module.

Analyze Manager The configuration of the test run tells this module which analyzer programs
have to be loaded and managed. For every response it obtains from the Runner, the analyze
manager calls all of its analyzers with the response object as argument. The analyzers itself convert
the response to a metric and return the value to the manager. All response metrics are weighted
and summed up to a single value and returned to the Runner module. This value determines the
state of each attack iteration, either pass or fail for a successful (i.e., no error) or failed test (i.e.,
an error has occurred).

Automated Detection of Security Vulnerabilites 47 / 82

Chapter 4. Architecture of the PoC Implementation 4.3. Integration of the AI System

In general, an analyzer consists of two parts: a data capture module and a metric deduction algo-
rithm. The data capture module extracts the required information from the given response object,
or during the test execution (e.g., to measure the response time). The metric deduction algorithm
takes the information given by the capture module and infers a value from this information. An
example is the response size analyzer: The capture module extracts the content from the response
object and the metric deduction measures the size of the content in bytes.

4.3 Integration of the Artificial Intelligence System

In order to extend testing with methods of artificial intelligence, some kind of intermediate step
is required. An interface both system can understand. Such an idea of an intermediate model
was already published in an earlier collaboration work of the author [73] and is called the System
Behaviour Model.

In our published work we propose a model that is based on a set of individually measured be-
haviour metrics of the system and the relationship between them. The first step in obtaining the
model is to install sensors around the SUT to monitor the behaviour of the system. This can be
done by using different available interfaces of the SUT, and derive measurable metrics. Some
examples of interfaces that can be monitored are drawn in figure 4.1, like the operating system,
internal and external interfaces as well as an user interface used by the application.

The kind of sensors used often depends on the current test stage of the software development life
cycle. During component tests direct access to the SUT is available most of the time which allows
white-box monitoring approaches. That is, for example, the possibility to monitor the Central
Processing Unit (CPU) load, memory usage of the application and the system, coverage of the
application, syscall graphs, etc. During system tests, often no access to the host is available and,
therefore, other methods to monitor the SUT are required. In such cases it may be possible to ana-
lyze the network traffic, timing behaviour, message sizes, etc. If enough access rights are available
during test execution, debuggers can be attached to the SUT to monitor application internals. Of-
ten, virtualization is used in system architectures. Virtualization provides additional monitoring
possibilities of the encapsulated virtualized system, e.g., extending the Java Virtual Machine al-
lows monitoring access to system components via the Java security manager. If the SUT has a
Graphical User Interface (GUI), this is one more example of a possible interface to monitor.

To capture information about the system, we identified approaches from the literature that can be
used. Willems et al. [86] present several monitoring aspects for malware analysis used in the tool
cwsandbox1 which can also be used for monitoring the SUT for security tests. Bossert et al. [12]
use a monitoring approach for reverse engineering of application protocols. The presented usage
of monitoring communication channels can be applied for security tests.

After monitoring the SUT behaviour, the metrics have to be converted in some kind of measurable
form. We used aspects from the representational theory of measurement to derive measurable
metrics. To process the data, five types of measurement scales have to be considered which are
nominal, ordinal, interval, ratio and absolute [44].

A nominal scale is an unordered set of categories and the captured behaviour belongs to one of
the categories (e.g., male or female). An ordered nominal scale is called ordinal scale (e.g., true
or false). This scale allows to apply comparisons such as a is greater than b. For nominal and
ordinal scales no further arithmetic operations such as addition or subtraction are possible. The
interval scale is an ordinal scale with consistent intervals between the points on the scale (e.g.,

1 https://mwanalysis.org/ (last accessed: 29.09.2014)

Automated Detection of Security Vulnerabilites 48 / 82

Chapter 4. Architecture of the PoC Implementation 4.3. Integration of the AI System

from −90◦C to +90◦C). Arithmetic operations addition and subtraction are possible for interval
scales but not multiplication and division. Using constant intervals for an interval scale will lead
to a ratio scale (e.g., from 0 to 99 years). For ratio scale all arithmetic operations are valid. This
is also the case for the absolute scale. The absolute scale is a ratio scale but with the count of the
number of occurrences (e.g., the Kelvin temperature scale).

Depending on the values derived using the measurement scales further processing might be re-
quired. The reason the allowed arithmetic operations are important is because different further
calculations of statistical properties are allowed for different measurement scales. Mean, median
and mode are used for central tendency statistics in data sets for a single metric. All three are
allowed for interval, ratio and absolute scales. For ordinal scales only mode and median are valid
whereas for nominal scale only the calculation of the mode is meaningful.

In our published approach, statistical methods for the measurement of central tendency and vari-
ability of the derived set of numeric values are used on the metrics of the system behaviour model.
As example, metrics based on the CPU usage of the SUT, an absolute scale and a range measure
of variability is used to detect the difference between highest and lowest CPU usage within the ex-
ecution of one test case. For monitoring a crash of the system, e.g., the SUT does not answer any
more, a nominal scale with the categories system crash and no system crash is used. No further
statistical methods are applied.

4.3.1 Representation of the System Behavior Model

To represent the system behaviour model, we combined the individually derived behaviour metrics
to one model which can be used during security test execution for the determination of unexpected
behaviour. The form used for captured behaviour depends on the interface. Regardless of the
captured behaviour of the interface, as a result a numeric representation for the metric is required
for the model. This is used for further processing and deriving one final result.

Given one example: analyzing a log file for abnormal behaviour requires a deduction from the
textual representation of the observed behaviour to a measurable metric, e.g., counting the occur-
rence of various critical keywords. Similar processing is required for system load behaviour, e.g.,
CPU load, which represents the load during the test execution. Representative metrics have to be
extracted from the observation of the CPU load, for example, min/max/average of the load during
execution of the security test case.

In our presented approach the system behaviour model is defined as a set M of behaviour metric
vectors xi:

M := {xi|xi ∈ Rn, i = 1, 2, . . . l} (4.1)

where n is the number of behaviour metrics derived from the captured system behaviour for the
specific system (i.e., the number of the used analyzers) and l is the number of learning cases used
to build the system behaviour model.

During the security test execution, the single metrics are collected after each executed security test
case and a measurable form is derived. The measurable form is combined as a vector tj ∈ Rn
where j is the index of the security test case. The vector tj represents the specific system behaviour
under security test case j.

The SUT is formally defined as function f(pi) = bi. The result of the function f is the captured
behaviour bi of the system for the learning case pi. Further, a function g(bi) = xi is required
which converts the captured behaviour bi to a measurable form as vector xi for the learning case
pi. Testing the software f is defined as f(qj) = cj where qj is the input test data for the SUT. cj

Automated Detection of Security Vulnerabilites 49 / 82

Chapter 4. Architecture of the PoC Implementation 4.3. Integration of the AI System

Figure 4.4: Architecture of the extended fuzzolution framework. (based on [74])

is the specific behaviour of the SUT for the test data qj and the measurable form tj is determined
by g(cj) = tj .

The system behaviour model and the extraction of behaviour metrics are generic and can be used
by various machine learning methods. In the following section, this approach will be used to train
the machine learning methods introduced in section 3.

4.3.2 Integration of the Prototype Implementations

The goal of this thesis is to analyze AI methods to improve the detection rate of the fuzzolution
tool. The results of a fuzz test will be pre-analyzed by the proposed methods which will reduce the
required amount of manual work significantly. The following method is a general idea to improve
this situation.

Each fuzzing run is split up into two phases, both similar to a fuzzing run described in the previous
section 4.2. During the first phase the generators are requested to exclusively return functional
testing data. This is a type of data that is not intended to break the system, like a random integer
number when asked for an integer user identification number. The requests based on this valid
data, called learning cases, are regularly constructed by the handler and sent to the SUT. The
second phase remains as the original test run with sending of attack vectors and trying to break the
system.

The results of the analyzers are handled differently in both phases. During the first phase, called
learning phase, the results of the analyzers is used to build the System Behaviour Model and
given to a machine learning method. After the learning phase is complete, this model represents
the behaviour of the SUT under ”normal” working conditions. The results of each test case in
the second phase are likewise converted to a behaviour vector and given to the machine learning
method. The AI method compares the given vector to the previously trained model and determines
if the vector is an outlier. If the vector is classified as an outlier this yields some information about

Automated Detection of Security Vulnerabilites 50 / 82

Chapter 4. Architecture of the PoC Implementation 4.3. Integration of the AI System

possible abnormal behaviour. A vector describing abnormal behaviour can belong to an attack
string that probably exploits a security flaw in the SUT.

Figure 4.4 and illustrates the extended fuzzolution architecture including the machine learning
methods (see figure 4.2 for the original image). The output of the analyzers inside the Analyze
Manager module is used to build the System Behaviour Model. The model is then handed over
to the four prototype implementation of the methods: Artificial Neural Network (ANN), Self-
Organizing Map (SOM), Support Vector Machine (SVM) and Clustering. They deduce further
information about the test cases and return the overall result.

Implemented in the fuzzolution project, this method will improve the overall results of a fuzz
test. Instead of manually selecting weights for the analyzers and returning a simple metric, the
result would be a metric describing the similarity of each test case compared to the automatically
learned, normal system behaviour. This result can be used to select the most ”interesting” cases
for further analysis.

Automated Detection of Security Vulnerabilites 51 / 82

Chapter 5. Setup of Test Environment

5 Setup of Test Environment of the
Proof of Concept Implementations

In order to evaluate several machine learning methods and get meaningful results, it is necessary
to test the methods against the same benchmarking tool and compare the results. In the following
sections the test setup will be explained. A detailed explanation of the prototype implementations
for each method and the results will be presented in chapter 6.

5.1 Setup of Test Environment

The actual testing and behaviour model extraction was done with the help of the fuzzing software
”fuzzolution” 1. It was configured to test all sub applications of WAVSEP and Zed Attack Proxy -
Web Application Vulnerability Examples (ZAPWAVE).

The analyzers where chosen following the suggestions of originating paper [73] to reflect a wide
range of metrics. This allows the deduction of a very detailed system behaviour model. In partic-
ular, the analyzers used in the test setup were: [73]

• Response time analyzer: Measuring the response time that was needed for the request to
be handled by the SUT. This means increased processing time from the simulated attack
request can be detected.

• Response size analyzer: This analyzer uses the size of the response which can yield some
information about unexpected responses if the returned response differs from the normal
behaviour.

• Response message analyzer: The response message analyzer uses the text within the re-
sponse for further processing. It checks the content of the response for suspicious strings,
e.g., error messages. To make decisions about captured text behaviour, a metric has to be
derived. A simple approach of counting the occurrence of predefined keywords in the re-
sponse was used. Example keywords used for the security test execution are: exception,
bad, missing, fatal, or segmentation fault.

• Response classification analyzer: The response classification analyzer is based on methods
of the field of information retrieval. It uses text indexing to build an index of the response
data during the learning phase. In the testing phase it starts a query on the index for every
test case by comparing the response data to the existing data. By deducing a similarity
metric from this comparison, it can tell whether the current response is similar to a learned
and known response or not. The advantage of this method is that the metric is deduced from
the content of the response. Two responses with the same length can get assigned a different
value from this analyzer.

1 http://security.inso.tuwien.ac.at/esse-projects/fuzzolution/ (last accessed: 29.09.2014)

Automated Detection of Security Vulnerabilites 52 / 82

Chapter 5. Setup of Test Environment 5.1. Setup of Test Environment

• Crash analyzer: The crash analyzer checks if a crash of the SUT occurred by trying to
establish a connection to the SUT. The analyzer performs a full TCP handshake using the
TCP ports of the SUT. It returns a boolean value, thus if the handshake is successful, the
system is regarded as “up”, otherwise the system is considered to have “crashed”.

• CPU load analyzer: This analyzer monitors the CPU load of the processes in the SUT to
detect heavy load during or after executing a test which could indicate a Denial of Service
(DoS) attack.

• Memory analyzer: This analyzer monitors the size of the allocated memory of the pro-
cesses in the SUT to detect changes during or after executing a test case.

The deduced values for each iteration are then stored as mathematical vector for further analysis.
All vectors gathered during one test run combined form the System Behaviour Model. As example,
one resulting training vector during the test of the WAVSEP tool was:

x20 = (6.00, 356.00, 0.40, 43.57, 1.00, 0.00, 0.00) (5.1)

In comparison to this, one test vector of the same test run:

t48 = (12889.05, 356.00, 0.40, 43.57, 1.00, 0.15, 0.00) (5.2)

This vector is basically an encoded form of all the metrics that the analyzers returned after the
examination of the response of the SUT. They can be decoded again to the following values for
each analyzer:

Analyzer x20 t48 remark
Response time analyzer 6.00 12889.05 ms
Response size analyzer 356.00 356.00 Byte
Response message analyzer 0.40 0.40
Response classification analyzer 43.57 43.57
Crash analyzer 1.00 1.00 no crash
CPU load analyzer 0.00 0.15 load
Memory analyzer 0.00 0.00 % usage

Table 5.1: Detailed values for each analyzer during one example test case.

Finally, the behaviour data is used to train one of the following machine learning methods. The
requested task of these methods is to analyze the training vectors and, based on the gathered
knowledge from the training phase, detect outliers in the attack vectors. These outliers repre-
sent behaviour that was not encountered during the functional testing. Therefore it is considered
interesting since such behaviour could lead to possible vulnerabilities in the tested software.

The ability of a machine learning method to detect samples in the test set that are significantly
different from those in the training set is sometimes referred to as novelty detection [6].

Automated Detection of Security Vulnerabilites 53 / 82

Chapter 5. Setup of Test Environment 5.2. Description of System Under Test

5.2 Description of System Under Test

As system under test, two different benchmarking tools were selected: the ”WAVSEP” 2 as well as
the ”ZAPWAVE” 3. Both tools are designed for evaluating the coverage and accuracy of security
testing tools. They are written as Java servlets and can therefore easily be deployed onto any
servlet engine, e.g., Apache Tomcat 4. Since both platforms are based on web pages, they can
easily be accessed by any HTTP client. This has several advantages. First of all, the HTT-Protocol
is a very common form of data transmission, thus many implementations and frameworks already
exist. Many security scanning tools already understand this protocol, so does the fuzzolution
project. Second it is a text-based protocol, which gives a big advantage when it comes to automated
scanning. The pages of the applications of both tools can easily be parsed, so the configuration of
the testing tool can be done without much manual work.

The tools offer a number of different small applications, against which the actual testing is done.
These programs may contain flaws that lead to vulnerabilities and their output can be anything
between nothing and, for example, a full exception including a stack trace. When evaluating a
security testing tool, the goal is to detect all vulnerabilities in each application, if there exists any
and do not report anything if the application contains none.

In his blog called sectooladdict, Shay Chen publishes a score chart of vulnerability scanners in
yearly intervals starting in 2010. Chen is the CTO of Hacktics ASC and made a name as prominent
blogger, security researcher and experienced speaker [21]. The chart is called The Web Application
Vulnerability Scanners Benchmark 5. In this blog, Chen compares the qualities accuracy, coverage,
versatility, adaptability, feature and price of several commercial and open source vulnerability
scanners. Taken from the introduction section of the latest benchmark report, the project seems to
be getting a lot of attention from organizations in the financial and technology sector using it as
reference for their decisions.

In the last edition from February 2014, a total of 63 tools were compared in a very detailed and
thorough fashion. All scanners were tested against the benchmarking platform WAVSEP and
included test cases from the ZAPWAVE project. The overall leader in this years comparison is a
software of the HP Application Security Center, called WebInspect.

To evaluate the prototype implementations the same test environment was used as in the scanner
benchmark report, consiting of the platforms WAVSEP and ZAPWAVE.

The OWASP team maintains a project called the ”Broken Web Applications Project”. This is a
preconfigured virtual machine image including WAVSEP and ZAPWAVE, among others. With the
start of the virtual machine an Tomcat instance is started automatically. On this servlet engine both
tools are already deployed. After the configuration of the port forwarding to the local machine, the
tools can be accessed e.g., via the URL http://localhost:8080 and are ready for testing.
Figure 5.1 shows the entrance page of the Broken Web Applications including an overview of all
available tools in this virtual machine.

There is one big advantage of having a physically or virtually separated and dedicated SUT en-
vironment. Presuming, the host machine has enough hardware resources to support both with
ease, there will be hardly any influences between the system running the testing software and the
machine running the SUT. This is of importance during test execution and measuring of system

2 https://code.google.com/p/wavsep/ (last accessed: 29.09.2014)
3 https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project (last accessed: 29.09.2014)
4 https://tomcat.apache.org/ (last accessed: 29.09.2014)
5 http://sectooladdict.blogspot.com (last accessed: 29.09.2014)

Automated Detection of Security Vulnerabilites 54 / 82

Chapter 5. Setup of Test Environment 5.2. Description of System Under Test

Figure 5.1: The OWASP Broken Web Applications Project page.

parameters. As example, a high CPU-load in the host machine caused by the testing software
will not be visible inside a guest virtual machine. On the other hand, a high CPU-load inside the
guest will most likely be caused by the software of the SUT. This circumstances help to reduce
the external influences, and thereby lead to a higher significance of the evaluation results.

5.2.1 WAVSEP

The Web Application Vulnerability Scanner Evaluation Project contains a collection of vulnerable
web pages categorized into different security flaws. These known flaws can be used to evaluate
the effectiveness of security testing tools. Among others, these vulnerabilities are: Path Traversal,
Remote File Inclusion, XSS and SQL Injection. For the evaluation of the methods in the thesis,
the category SQL Injection was selected, since these kind of vulnerabilities are a major risk to
web applications (as discussed in section 2.1) and since injection attacks are targeted directly on
the system, they are well suited for an automated testing approach. Moreover, a successful exploit
can typically be detected directly, either through the output of the test subject, through timing
behaviour, or some similar mechanics.

The SQL Injection web page of the WAVSEP platform is divided into four parts, each with a
different responses. These are:

• Erroneous 500 Responses: These pages return a HTTP 500 response code including an
error message, if they cannot complete the task.

• Erroneous 200 Responses: These pages return a standard HTTP 200 response code includ-
ing an error message, if they cannot complete the task.

• 200 Responses With Differentiation: These pages return a standard HTTP 200 response
code including some valid message, depending on the result of the execution.

Automated Detection of Security Vulnerabilites 55 / 82

Chapter 5. Setup of Test Environment 5.2. Description of System Under Test

Figure 5.2: The WAVSEP web interface displaying some application descriptions.

• Identical 200 Responses: These pages return a standard HTTP 200 response code includ-
ing a fixed valid message. Thus, successful exploits can only be detected by blind SQL
Injections.

• False Positive Injection: These pages return a HTTP 500 or 200 response code, along with
an erroneous message no matter the input. This tests can be used to challenge scanners with
weak exploit detection mechanisms.

All these application are called via an URL and their arguments can be set either by GET or
POST method. An example URL with GET parameters from third application of the category 200
Responses With Differentiation is :

h t t p : / / l o c a l h o s t : 8 0 8 0 / wavsep / a c t i v e / S I n j e c t i o n−
D e t e c t i o n−E v a l u a t i o n−GET−200 V a l i d / Case03−
I n j e c t i o n I n C a l c −S t r i n g−B o o l e a n E x p l o i t−
W i t h D i f f e r e n t 2 0 0 R e s p o n s e s . j s p ? username= t e x t v a l u e

Listing 5.1: An example attack string for an application of the WAVSEP platform.

Listing 4.2 is the associated template for this attack string. The description page of this application
along with the link to its URL can be seen in the screenshot displayed in figure 5.2.

5.2.2 ZAPWAVE

The Zed Attack Proxy - Web Application Vulnerability Examples test platform is a spin off of the
OWASP Zed Attack Proxy (ZAP) project. This attack proxy is a similar to the fuzzolution frame-
work. Both are security testing tools and can be used for finding vulnerabilities in applications.

Automated Detection of Security Vulnerabilites 56 / 82

Chapter 5. Setup of Test Environment 5.2. Description of System Under Test

Figure 5.3: The ZAPWAVE web interface displaying the application categories.

However, the ZAP is designed for web applications only, where the fuzzolution tool can be used
in any environment, given an appropriate configuration.

The ZAPWAVE platform is a small set of web pages with known vulnerabilities that can be de-
tected via automated scanners. These pages have been developed alongside the ZAP to have a set
of pages that can be used for testing the proxy.

Available for testing are several applications with different security flaws with the main categories
active and passive vulnerabilities. The difference between those two is that an active vulnerability
can only be detected by direct testing, i.e., sending requests to the program. Implemented examples
are XSS, SQL injections and redirection attacks. Passive vulnerabilities can only be detected
indirectly by listening to the traffic between a client and the vulnerable server. The examples
contained in the ZAPWAVE tool are information leakage and session handling defects.

Similar to the WAVSEP environment, for each application exists a variant for GET and for POST
parameter handling. An example application URL that contains an SQL Injection can be accessed
via:

h t t p : / / l o c a l h o s t : 8 0 8 0 / zapwave / a c t i v e / i n j e c t / i n j e c t −
s q l−u r l−b a s i c . j s p ?name= t e x t v a l u e

Listing 5.2: An example attack string for an application of the ZAPWAVE platform.

A screenshot of the starting page of the ZAPWAVE platform is shown in figure 5.3. Note that
applications are linked that should return false positive results. However in the version used for
the evaluation, those were not implemented yet.

Automated Detection of Security Vulnerabilites 57 / 82

Chapter 6. Evaluation of PoC Implementations

6 Evaluation of Proof of Concept
Implementations

This chapter presents the details of the implementations and the results of the evaluations of all
methods mentioned in chapter 3. Each method has its design explained, followed by a detailed
description of the parameters of the implementation. The evaluation consists of an analysis of
the runtime of each test run, as well as the overall results, particularly the correctly identified test
cases.

6.1 Evaluation Method

To evaluate the output of the methods, a manual analysis was done on all results of the test runs.
The manually detected outliers were compared to the marked vectors of the methods. Four cases
can occur by this comparison:

Manually marked, automatically marked: This case counts as correct case. The machine
learning method correctly detected an outlier, according to manual analysis.

Manually marked, automatically not marked: The method failed to detect an existing outlier,
leading to a false negative case.

Manually not marked, automatically marked: The method detected an outlier but was wrong
in its decision. A false positive case.

Manually not marked, automatically not marked: Another correct case. The algorithm did
not detect any outlier and none was present.

Both cases of correct detection summarized and the number of false positive as well as the number
of false positive cases give a triple that can be used for comparison. All three values can be
summarized to the total number of vectors.

The test data of both tools, WAVSEP and ZAPWAVE, consisted of 76 complete test runs with a
total of 21315 vectors.

6.2 Artificial Neural Network (ANN)

The implementation of the Artificial Neural Network prototype follows the explanations of section
3.2. The design decisions are based on the proposed design of Augusteijn et al. in their publication
”Neural network classification and novelty detection” [6].

Automated Detection of Security Vulnerabilites 58 / 82

Chapter 6. Evaluation of PoC Implementations 6.2. Artificial Neural Network (ANN)

Figure 6.1: Artificial Neural Network design of the prototype implementation.

6.2.1 Design Decisions for the Implementation

The implemented network design is based on the network structure used by Augusteijn [6] and is
schematically illustrated in figure 6.1. The number of input neurons correspond to the dimension
of the behaviour vectors, such that every input neuron processes one vector. The prototype imple-
mentation therefore consists of seven input neurons. The input neurons are fully connected to the
first layer of hidden neurons. In total there are three layers of hidden neurons, each fully connected
to the next layer. In the implementation every hidden layer has six neurons. The output layer of
the network consists of two neurons. The third and last layer of hidden neurons is connected to the
output layer as follows: The first half of the hidden neurons is connected to the first output neuron,
whereas the second half of the hidden neurons is connected to the second output neuron.

Following the suggestions of Augusteijn [6], as activation function the hyperbolic tangent function

tanh(x) =
e2x − 1

e2x + 1
(6.1)

was chosen, as adder function the weighted sum function (see formula 3.1). The learning rule was
standard back-propagation.

The software prototype was implemented in Java using the framework ”Neuroph” 1. It offers all
functions for building, training and testing an artificial neural network.

For every test run, the neural network was trained with the vectors representing the normal be-
haviour of the SUT (F = {f1, . . . , fk}, fi ∈ Rn) with a required output of (1,−1). The network
was trained using the parameter γ. The training continued until either 20,000 iterations were done
or until the mean-squared error of the network was 0.01 or below.

After the network was successfully trained, each training vector fi ∈ F was applied to the network
and the euclidean distance to the vector (1,−1) was calculated. Let F ′ = {f ′1, . . . , f ′k}, f ′i ∈ R be
the set of training vector differences. The extreme values of these distancesmin(F ′) andmax(F ′)
were stored for later use. Then the testing vectors T = {t1, . . . , tl}, ti ∈ Rn were applied to the
network and again the euclidean distances of their output vectors to the coordinates (1,−1) was
calculated and stored as set T ′ = {t′1, . . . , t′l}, t′i ∈ R.

1 http://neuroph.sourceforge.net/ (last accessed: 29.09.2014)

Automated Detection of Security Vulnerabilites 59 / 82

Chapter 6. Evaluation of PoC Implementations 6.2. Artificial Neural Network (ANN)

Figure 6.2: Artificial Neural Network parameter evaluation.

The outlier detection included the parameter α and was defined such that for every t′ the following
check was made:

outlier(ti) =

1 if t′i > α max(F ′)
1 if t′i <

1
α min(F ′)

0 otherwise
(6.2)

As described above, the neural network was trained using the learning rate γ ∈ [0, 1]. This
parameter influences the rate at which shifts in the synaptic weights are performed. The lower the
value, the more accurate the trainings but the process requires more time to finish and possibly
even diverges. Choosing a greater value may lead to a faster learning process convergence but will
affect the accuracy of the network.

The second parameter α is used by the outlier detection. Based on the results of the training phase
it defines the α-environment of outliers. If a vector belongs to this environment it is classified as
outlier. As simple example, suppose the distances of the training vectors range from 2 to 7, then
an α = 1.1 defines the outlier environment of {x | (x < 1.81) ∨ (x > 7.7)}.

To find the optimal parameters for the designed artificial neural network, several combinations of
both parameters were tested. Values for the learning rate γ where taken from the range of 0.10 to
1.00 in steps of 0.02, i.e., :

A = {0.10, 0.12, 0.14, . . . , 0.98, 1.00}

The range for the outlier parameter α used in the test cases was defined to be [0.9, 1.2], since
preliminary tests indicated that no useful further results could be extracted outside this range.
Thus the values for α were taken from its limits 0.90 to 1.20 in steps of 0.01, i.e., :

B = {0.90, 0.91, 0.92, . . . , 1.19, 1.20}

Automated Detection of Security Vulnerabilites 60 / 82

Chapter 6. Evaluation of PoC Implementations 6.3. Self-Organizing Map (SOM)

The test subject of the parameter tests is described in section 5.2 and was used for all tests. The
combination of both parameter sets A × B give a total of 1426 test cases to evaluate the neural
network. The output of each test case is the percentage p of the correctly identified test cases (see
section 5.1 for details on the evaluation of test runs). The result is a three dimensional data set
where each entry is a triple v = (α, γ, p).

The data set visualised in figure 6.2. The x-axis displays the range of the outlier parameter α
where on the y-axis is the range of the learning rate γ and the z-axis is the resulting precision p of
each test case at (α, γ). A representation of the third dimension is given by the levels of gray on
each coordinate and is described by the color bar on the right.

As the figure clearly states, an α-value lower than 1.00 does not yield satisfying results. A pre-
cision rate of about 50% can even be scored by a simpler guessing algorithm. Starting from 1.00
to about 1.03 is an high density area of greater precision values, slowly fading with an increasing
γ-value.

Following this figure it is safe to assume that good estimates of the parameters for α are about
1.01 while γ should not be higher than 0.4.

6.2.2 Results of the Evaluation

Using the gained information about the parameter values for the outlier detection based on neural
networks a final test run can now be done. The parameters for the test run where chosen as
α = 1.01 and γ = 0.1. Since the training of the neural network is a non-deterministic algorithm,
it is required to complete the test run severals times and extract statistical information from these
runs.

The performance of this method on all test cases can be seen in table 6.1:

mean median std. dev.
correct 13805.00 64.76% 13767.50 64.59% 582.03 2.73%
false positive 3684.33 17.28% 3655.00 17.14% 382.42 1.79%
false negative 3825.67 17.94% 3864.50 18.13% 478.73 2.25%

Table 6.1: Evaluation result of the Artificial Neural Network method.

6.3 Self-Organizing Map (SOM)

The self-organizing map is based on the introduction section 3.3. The design of the implementation
is based on an earlier work of the author [73].

6.3.1 Design Decisions for the Implementation

The software prototype was implemented in Java using the ”Java SOMToolbox” 2. This toolbox
is developed at the Institute of Software Technology and Interactive System at the Vienna Uni-
versity of Technology. It offers tools for training a SOM and its framework was used for the
implementation of the novelty detection.

2 http://www.ifs.tuwien.ac.at/dm/somtoolbox/ (last accessed: 29.09.2014)

Automated Detection of Security Vulnerabilites 61 / 82

Chapter 6. Evaluation of PoC Implementations 6.3. Self-Organizing Map (SOM)

Figure 6.3: A visualisation of a test run evaluated with a SOM.

Both training and testing vectors of one test run are used in the training of the SOM in order to
create a map that spans over all input vectors. After the training was completed all units and their
assigned vectors were inspected in detail. A unit that contained training vectors was considered as
normal behaviour of the SUT. However, if a unit consisted solely of testing vectors, it indicated
that the vector of the unit itself was different in a way. Since such a unit did not contain any
training vectors, all vectors belonging to such a unit were marked as outliers.

An example of a SOM is given in figure 6.3. The picture shows the visualisation of one SOM that
was created during the evaluation. It has the size of 7× 7 units and contains a total of 355 vectors.
The pie charts inside the units represent the distribution of training and test vectors belonging to
this unit. The blue parts represent training vectors, the red parts of the pie represent test vectors.
All units with plain red dots are considered interesting. Additionally, the amount of empty units
between two filled ones can be a clue for the distance of the unit vectors from each other, but this
is not generally valid. For a precise visualisation of the distances between the units, an additional
distance indicator would be needed.

The algorithm behind the Self-Organizing Map is controlled by several parameters. The structure
of the map is mainly defined its size and the number of neighbours for each unit. The number of
neighbours was decided to be the common four neighbours, leading to square shaped units in the
map. Its width and height is defined by the two parameters x and y respectively. The selection
of the size of the map has an influence on the overall performance of the outlier detection. If
the map is too small, it is not possible for the units to spread out as needed, leading to a poor
representation of the input data. This case may lead to high number of false negatives, since it is
highly possible that at least one training vector is contained in all units. If the map is too large, the
training vectors will be distributed very sparse in a large area, leading to a possible falsification of
the outlier detection. This could lead to many false positive classifications, since there is possibly
not enough training data available that helps classifying the test vectors.

In training the map, two other values are of importance. The first is the number of iterations with
which the map is trained. The second is the learning rate α, which was defined by formula of the

Automated Detection of Security Vulnerabilites 62 / 82

Chapter 6. Evaluation of PoC Implementations 6.3. Self-Organizing Map (SOM)

Figure 6.4: Self-Organizing Map parameter evaluation.

neighbourhood function (see formula 3.14). Both influence the unfolding of the map and have to
be chosen carefully. If the neighbourhood function converges too fast or the number of iterations
is chosen too small, the units in the map may not had time to expand and thus can not represent
their actual distances. The documentation of the somtoolbox suggest a default value of α = 0.75
and the number of iterations to be about 5 times the number of input vectors. Since the test setup
of section 5.1 was used in testing the performance of the SOM method, the number of iterations
was fixed prior to testing. Each test case uses about 500 vectors and to be on the safe side, the
number of iterations was determined to be 10, 000. With such a high number another advantage
was gained: Preliminary tests indicated that the learning rate α had virtually no influence on the
overall performance with such a high number of iterations, since the map hat enough time to
unfold.

The remaining two variables x and y for the width and height of the map can theoretically be cho-
sen from the domain of natural numbers. However a SOM with only one unit is not applicable and
the same holds for too large maps. A selection of the set A = {2, 3, . . . , 20} for both parameters
have proven useful during earlier tests. Testing each x with each y leads to |A × A| = 361 test
cases for the parameter evaluation. As before, the output of each test case is the percentage p of
correctly identified vectors. The result is a three dimensional data set where each entry is a triple
v = (x, y, p).

The results of the evaluation are illustrated in figure 6.4. The x-axis of the diagram represents the
width x of the map, where the height y is represented by the y-axis. The z-axis is the resulting
precision p of each SOM with size (x, y). The third dimension is represented by the levels of gray
on each coordinate. An overview of the levels gives the color bar on the right side of the diagram.

Clearly visible is a gradient from the upper right corner to the lower left. The precision levels are
symmetric along the diagonal (e.g., (5, 12) has the same precision as (12, 5)), which supports the
property of the SOM that the orientation of the map has no influence on its development. The
gradient increases slowly from top right until about a line from (2, 5) to (5, 2), then the precision
drops rapidly. The area with the highest precision is curve-shaped and reaches from about (2, 10)

Automated Detection of Security Vulnerabilites 63 / 82

Chapter 6. Evaluation of PoC Implementations 6.3. Self-Organizing Map (SOM)

Figure 6.5: An example for an SVM used for novelty detection.

down to (4, 4) with a peak precision at (2, 7). This observations lead to the conclusion, that the
size of the map should be somewhere between 10 and 25 units and have a non-square shape.

6.3.2 Results of the Evaluation

Based on the results of the parameter validation above, a final test run was executed. The pa-
rameters of the SOM were determined to be x = 2 and y = 7, which leads to a map with 14
units. Due to the random selection of the vectors for training the map, the SOM algorithm is non-
deterministic. However, because of the large number of training iterations, in every case the unit
vectors unfolded into the same map and therefore the results are exactly the same.

The performance of this method on all test cases was as follows:

sum
correct 20402 95.71%
false positive 745 3.49%
false negative 168 0.78%

Table 6.2: Evaluation result of the Self-Organizing Map method.

Automated Detection of Security Vulnerabilites 64 / 82

Chapter 6. Evaluation of PoC Implementations 6.4. Support Vector Machine (SVM)

6.4 Support Vector Machine (SVM)

The prototype follows the description for Support Vector Machines that has been given in section
3.4, with small adjustments.

6.4.1 Design Decisions for the Implementation

In a traditional training set for SVMs multiple classes are present, but in the case of the unsuper-
vised novelty detection no class labels are available. Lukashevich et al. [51] suggested the use of
a one-class SVM in this case. For their experiments, they used a common type of kernel, a RBF:

K(xi, xj) = exp(−γ‖xi − xj‖2) (6.3)

The software prototype was implemented in Python using the module ”sklearn” from the scikit-
learn machine learning project3. This module offers a wide range of simple and efficient tools for
data mining and analysis.

The ”sklearn” Python module supports the use of an parameter µ that controls the size of the
area inside the support vectors by setting an upper bound on the fraction of training errors and
a lower bound on the fraction of support vectors. A training error occurs if a training vector,
which is by definition no outlier, is not supported by any vectors. The value for µ is selected
from the interval (0, 1]. A second parameter is γ, which defines the kernel coefficient. The scikit-
learn documentation suggest a default value of γ = 1

num_features , where num_features is the
dimension of the input vectors. In case of the test setup described in section 5.1 the default value
is γ = 1

7 = 0.143.

In training of the SVM, an iterative process was selected. Each iteration started with the selection
of a value for µ. The training of the SVM with all training vectors formed one test run. A training
error ratio ε was calculated as the ratio of vectors covered by the resulting support vectors and
those not covered. If the error value was below a certain bound (e.g., 0.01) the SVM was accepted
and the training terminated. Otherwise the area covered by the support vectors was increased
slightly (by decreasing the value of µ) and a new iteration started. Since the initial value of ε was
chosen to be very small, it could happen that no SVM was accepted. In this case the value for the
training error was increased slightly and the training process started anew. This method assured to
have a final result with the least possible ε.

After a SVM has been accepted, the determination of outlying test vectors is a trivial process: If
a test vector is not covered by any support vector it must be different from the training data and is
therefore considered interesting and marked by the method.

Figure 6.5 illustrates a simplified test run. The dimension of the training and test vectors have been
reduced to two, such that they can be drawn on the plane. Clearly visible is the kernel function as
red circle and the covered area in orange. Training vectors are drawn as white dots and test vectors
are drawn as green dots on the map. It can be seen that the kernel function has been trained with
the training vectors, as almost all white dots are inside the circle. A small training error ratio of
2 : 120 is accepted. Test vectors that can be considered interesting are those twelve green dots
outside the kernel function.

Due to the design of the method described above, many parameters of the algorithm are determined
automatically. The training error ratio ε started initially with a value of 0.01. The second parameter

3 http://scikit-learn.org/ (last accessed: 29.09.2014)

Automated Detection of Security Vulnerabilites 65 / 82

Chapter 6. Evaluation of PoC Implementations 6.4. Support Vector Machine (SVM)

Figure 6.6: Support Vector Machine parameter evaluation.

was initialised with the value of µ = 0.3 and was decreased by 0.001 if the error ratio was not
satisfied by the resulting SVM. If the value of µ at some point reached 0, then the value for ε was
increased by 0.01. Then µ was reset to 0.3 and the process started over until a SVM with a low
enough error rate was found.

The third parameter γ of the SVM algorithm is thus not fixed and appropriate values have to be
determined. As mentioned above, a suggested value for γ is the inverse of the dimension of the test
vectors. With this reference value and some preliminary testing, this leads to a suggested interval
of about [0.0002, 0.3]. The selected values for the parameter testing where split in two sets with
different steps. From 0.0002 to 0.2 each step increased by 0.0002. From 0.02 to 0.3 the parameter
was incremented by 0.01. This lead to a combined set of:

A = {0.0002, 0.0004, . . . , 0.0198, 0.02, 0.03, . . . , 0.29, 0.3}

As before, the test environment described in section 5.1 was used in determining optimal values
for γ. The number of test cases was given by the size of the set, therefore 128 tests were executed.
The output of each case is again the percentage p of the correctly identified outliers. Since there
was only one parameter to evaluate, each resulting vector is a tuple v = (γ, p).

The set of resulting vectors is displayed in figure 6.6. In general can be said that there is a slight
decrease of precision with increasing γ values. Viewed in detail, the resulting precision stays about
constant high in the interval from (0, 0.019] and decreases afterwards. However the decrease is not
very significant since the precision of the SVM drops from about 93% to about 91%. Nevertheless
this leads to the conclusion that a γ of less than 0.02 is a good estimate value.

Automated Detection of Security Vulnerabilites 66 / 82

Chapter 6. Evaluation of PoC Implementations 6.5. Clustering Algorithm

Figure 6.7: An example for an c-means clustering used for outlier detection.

6.4.2 Results of the Evaluation

With the results of the parameter evaluation, the final test run for the outlier detection based on
the Support Vector Machine can be executed. The parameter γ for the test run was chosen to be
0.019. Due to the fact that the SVM is a deterministic algorithm, one test run suffices for the final
results, which are:

sum
correct 19969 93.68%
false positive 1236 5.79%
false negative 110 0.51%

Table 6.3: Evaluation result of the Support Vector Machine method.

6.5 Clustering Algorithm

The implemented clustering algorithm prototype follows the description of the Hard c-Means clus-
tering in section 3.5. It is further based on the publication ”Discovering cluster-based local out-
liers” as described by He et al. [28].

6.5.1 Design Decisions for the Implementation

In the prototype both training and test data sets are used for clustering. A crucial factor of the
method is the resulting numbers of clusters c. The determination of the factor c is done with
respect to the size of the input data. In the implemented approach the number of clusters were
defined as:

c =

⌊
1

α
|M |

⌋
(6.4)

Where M is the set of all training and test vectors for one test run and α is a variable to influence
the number of clusters based on the size of M .

Automated Detection of Security Vulnerabilites 67 / 82

Chapter 6. Evaluation of PoC Implementations 6.5. Clustering Algorithm

Figure 6.8: Clustering parameter evaluation.

The software was implemented in Python using the module ”scipy” available from the SciPy.org
project website 4. As mentioned before, the training of the method was done by a c-means cluster-
ing algorithm into c clusters. After the calculations are complete, all clusters and their vectors are
inspected. Similar to the analysis of a trained SOM, all clusters are suspicious that only contain
test vectors. These vectors have to be different in some way, otherwise they would belong to a
cluster that includes training vectors too. Thus all vectors belonging to suspicious clusters are
marked.

The figure 6.7 displays a typical outlier situation. The clustering has been completed and four
clusters were requested as output. The two large clusters c2 and c4 contain the majority of the
vectors, the clusters c1 and c3 on the other hand are outliers. The main purpose of the clustering
based outlier detection is to classify the elements from the clusters c1 and c3 as outliers such that
they can be inspected further.

As described before, an essential part of the clustering algorithm is the desired amount of clusters
that the result will contain. Formula 6.4 defined the number of clusters to be the number of
elements divided by a factor α. The range of α is therefore at most [1, |M |]. The chosen outlier
detection algorithm implies that a too large number of clusters will lead to many false positives
where a too small number of clusters will give a high amount of false negatives. After some
preliminary testing, the maximum value for α was defined to be 200. To find optimal values for
α, all natural numbers from 1 to 200 were tested, giving the following set:

A = {1, 2, . . . , 200}

As test subject, the setup from section 5.1 was used. Testing all values of A requires a total of
200 test cases to evaluate the parameter α for the clustering method. The output of the test is

4 http://www.scipy.org/ (last accessed: 29.09.2014)

Automated Detection of Security Vulnerabilites 68 / 82

Chapter 6. Evaluation of PoC Implementations 6.5. Clustering Algorithm

again the percentage p of correctly identified test cases. The resulting vector of each test is a tuple
v = (α, p).

The data set of result vectors is visualised in figure 6.8. Starting from the left the precision starts
high and continues increasing until its peak at about α = 33. Further on, the graph experiences a
significant drop of precision with an α value higher than about 60. Following this suggestions it is
safe to say α should be selected from the interval [20, 50].

6.5.2 Results of the Evaluation

The evaluation of the parameter α gave a strong suggestion for the value selection. With this
result the final test run of the clustering based outlier detection method can now be applied. The
parameter was chosen to be α = 33 and the clustering method was executed with this parameter.
Since the used algorithm in the implementation is not a deterministic algorithm, several test runs
have been executed. The statistics of the result are the following:

mean median std. dev.
correct 20576.70 96.53% 20566.50 96, 49% 66.15 0.31%
false positive 620.00 2.90% 624.00 2.92% 46.22 0.22%
false negative 118.30 0.55% 140.00 0.65% 41.14 0.19%

Table 6.4: Evaluation result of the c-Means Clustering method.

Automated Detection of Security Vulnerabilites 69 / 82

Chapter 7. Summary and Discussion of Evaluation Results

7 Summary and Discussion of
Evaluation Results

In the first part of this work, composed of chapter 2 and 3, explanations on the scientific back-
ground of this thesis were presented. The second part, consisting of the chapters 4, 5 and 6,
introduced some new approaches on optimization of security test executions by using methods of
computational intelligence. The following sections will give a detailed analysis of the evaluation
results presented in chapter 6.

7.1 Results of the Evaluation

A first glance on the outcome of the machine learning method evaluation gives the impression that
three of them produced adequate results. The accuracy of these three methods lie between 93.68%
and 96.53%, which seems like acceptable values. However, the percentage of correctly identified
test cases is not the only criterion in the overall evaluation. Therefore, all methods will now be
compared to each other in detail regarding their evaluation results.

The Support Vector Machine scored about 93.7 percent points in accuracy. In detail this means,
that out of 100 test cases, the SVM method identified about 94 cases correctly either as failure
or no failure. Additionally, this particular method identified 5.79% of all test cases as outlier, but
they were in fact none. Only 110 test cases or 0.52% of all cases that contained a flaw were not
detected correctly and thereby not marked. This gives a relation of about 0.09 false negative cases
per false positive (1236 : 110 ≈ 1 : 0.09).

The Self-Organizing Map identified about 95.7% of all test cases correctly, which is a slightly
better result than the SVM. Considering the incorrectly identified cases, the SOM produced 3.49%
false positive results and identified 0.78% failures of actually correct test cases. The relation
between those two values is 0.22 false negative cases per false positive (745 : 168 ≈ 1 : 0.22).

Still on top of this is the clustering method with an arithmetic average of about 96.5% accuracy.
The further results of this method yield a value of 2.90 percent points for test cases that were
marked by the clustering algorithm, but had no flaw at all. In about 118 or 0.55% the method did
not report anything suspicious but was wrong by doing so. This leads to a false positive:negative
relation of 0.19 since (620 : 118 ≈ 1 : 0.19).

However, far behind those three lies the Artificial Neural Network with an arithmetic average of
about 64.76% correctly identified cases. It identified about 17.28% of all cases incorrectly as
failure and at about 17.94% of the test cases it did not detect the existing security flaw. This values
leads to a ratio of about 1.03 with even more false negatives as false positives (3684 : 3825 ≈ 1 :
1.03).

An algorithm which has no information about the underlying test cases at all, would result in a
purely random guessing algorithm. For every test case it would decide based on a random number,
whether the test case is an outlier or no, resulting in an average accuracy of about 50%. Comparing
the results of the ANN to this random algorithm, we can conclude that the network still returns
much better results than this simple guess and check algorithm. However, 64.76% accuracy is by
far not a practical value. Using this ANN implementation for example during an penetration test,

Automated Detection of Security Vulnerabilites 70 / 82

Chapter 7. Summary and Discussion of Evaluation Results 7.1. Results of the Evaluation

ML method accuracy false pos. (fp) false neg. (fn) ratio fp:fn
Artificial Neural Network 64.76% 17.28% 17.94% 1 : 1.03
Support Vector Machine 93.68% 5.79% 0.52% 1 : 0.09
Self-Organizing Map 95.71% 3.49% 0.78% 1 : 0.22
c-Means Clustering 96.53% 2.90% 0.55% 1 : 0.19

Table 7.1: All results of the ML method evaluation combined.

ML method mean median std.dev
Artificial Neural Network 17.38s 17.71s 1.48
Support Vector Machine 29.70s 30.30s 4.18
Self-Organizing Map 139.49s 147.61s 18.61
c-Means Clustering 35.33s 36.70s 4.93

Table 7.2: The result of the running time evaluation of the ML methods.

the tester could not trust the results of the algorithm. With the knowledge that about one third of
all results of the algorithm are incorrect, this would lead to a situation where every test case has to
be double checked manually. Since the goal is to optimize the security test execution, this is not a
desired situation.

In table 7.1 all the results of the evaluation phase are compiled together for an overview. Visible
is the accuracy, the relative amount of false positives and false negatives, along with the ratio of
the false positive compared to the false negative results. The entries are sorted by their accuracy
value.

Having a low value of false negative means, by definition, that the program did only miss a few
vulnerabilities in the test setup. In other words, it actually did find most of the vulnerabilities. A
high value of false negative results on the other hand means that many vulnerabilities remained
hidden from the program and thus also from the tester. With respect to security testing it seems
more applicable to accept a slightly higher rate of false positives in trade of a smaller number of
false negative results. In this scenario the tester maybe has to double check some of the test cases
the method marked as outlier. However there will be a high probability that the program missed
only a few security flaws. The other way around, with a high rate of false negative and a low rate
of false positive test cases, the output of the program will be correct most of the time. Still, a
probably very high number of vulnerabilities could not be discovered by the tool, making it a bad
choice for security testing.

To gain some information on the time required from each method to execute a complete test run,
an analysis on the running times was made. To gain statistical relevance, all prototypes have been
executed 100 times in an encapsulated environment and statistical values have been extracted. The
running times in seconds of all four method are displayed in table 7.2.

From this results we can conclude that three out of four algorithms, SOM, SVM and c-Means
Clustering scored very high values. However, the results of this three methods are very close to
each other. In the following sections the evaluation of all methods will be examined more carefully
and more details will be given.

Automated Detection of Security Vulnerabilites 71 / 82

Chapter 7. Summary and Discussion of Evaluation Results 7.1. Results of the Evaluation

7.1.1 Support Vector Machine

With the help of the ”sklearn” module, the prototype implementation was done very fast in the
language python. The whole algorithm was completely coded in about 20 lines, not counting
comments. This included input data preparation as well as the output of all detected outliers.
As mentioned in section 6.4, this code even included an iterative process of finding the smallest
possible error ratio by stepwise decreasing the value for µ.

The average running time of about 30 seconds for a complete test over all 21, 000 test vectors is
about as fast as the clustering method and much faster than the SOM prototype implementation.
Assuming that a fixed value for µ can be found that is optimal or near-optimal over all cases, this
would further improve the running time of the algorithm. Even the source code would lose some
more complexity with the drop out of the parameter detection part.

The parameter evaluation for a value of the kernel coefficient displayed a very stable result over
all chosen values of γ (see figure 6.6), leading to the conclusion that this parameter does not have
a huge impact on the overall performance of the algorithm. Furthermore this leads to the save
assumption that the SVM algorithm will produce stable results in various test environments.

The ratio between the false positive and the false negative results was calculated. The SVM pre-
sented itself with the lowest value compared to the other methods, with a ratio of 0.09.

The description of the prototype stated that in constructing the support vectors only actual train-
ing vectors have been used. This means that the program can build its support vectors as soon
as the training phase is finished. It does not need to wait until the whole test run is completely
executed. This situation may be advantageous regarding a possible implementation into the fuz-
zolution project. It opens the possibility to have instant feedback after each test case.

7.1.2 Self-Organizing Map

The implementation of the prototype was a more complex than that of the SVM since the program
was split in two parts. The first part was done by a shell script and used the ”SOMToolbox’
application directly to grow and store the map. The second part was written in Java and used the
framework of the toolbox to compare the input vectors to the existing SOM and deduce the outliers
thereby.

Since for every one of the 76 test runs a completely new SOM had to be grown, it affected the
running time of the program. As mentioned and discussed in section 6.3 a very large amount of
training iterations were chosen. Both reasons combined lead to the rather long 140 seconds per
complete test. However, due to this fact there is still a huge potential of optimizations that will
improve the running time greatly.

The parameter evaluation of the size of the map indicated a preference for smaller maps (see figure
6.4). While this fact was sufficiently proven for the presented test environment, it may not be a
valid assumption for an arbitrary test environment. This may lead to an uncertainty in the practical
usage of the SOM method.

Regarding the ratio of the false positive and false negative results, the table 7.1 stated a value
of 0.22 false negatives per false positive. Disregarding the ANN prototype, this is the highest
ratio compared to the other methods. Compared to the SVM and clustering method, this SOM
implementation will likely miss more vulnerabilities than the others.

The section about the design of the SOM implementation mentioned, that both training and testing
data were used in training the map. This leads to the situation with less flexibility, since the results
of each test case can only be determined after the whole test run is completed.

Automated Detection of Security Vulnerabilites 72 / 82

Chapter 7. Summary and Discussion of Evaluation Results 7.1. Results of the Evaluation

7.1.3 Clustering

The clustering prototype was implemented in python with the help of the ”scipy” module. This
module simplified the source code greatly and the core part was done in about 15 lines of code.
Already included in this count is data input and outlier output. The clustering program was by far
the simplest program compared to the other three implementations.

Each evaluation test required a running time of about 35 seconds, which is comparable with the
implementation of the SVM method. However, in this case there is not much optimization poten-
tial left besides switching to a different module or language.

The parameter evaluation for the number of clusters showed a clear peak at about α = 33, dis-
played in figure 6.8. However, this value is not a constant fixing the number of clusters, but rather
a part of a formula used in calculating it. The cluster calculation was defined in formula 6.4. As
can be seen, another major part in this calculation is the number of the size of the input data. This
leads to the conclusion that α may be assigned a fixed value but the number of clusters still may
vary from case to case.

The ratio between the false positive and false negative test case results of the clustering method
were calculated as 0.19. Thus, for every false positive the method produced, it also produced
0.19 false negative results. This ratio is slightly better, but still comparable to the value that was
calculated for the SOM method.

7.1.4 Artificial Neural Network

As mentioned in section 6 the ANN prototype was implemented with the help of the Java frame-
work ”Neuroph”. It offered great support in developing the network and training it. Still, the
structure of the neural network and additionally the algorithm that detected the outliers had to be
implemented by hand. The coding and testing of this program took quite some time. All together
the source code consists of about 300 lines of Java code, not counting comments.

Although the source code was the longest of all prototypes, the running time of the outlier detection
based on the artificial neural network still was very fast. On average, the program required about
17.5 seconds for a complete test run, which is about half as long as the faster of the other methods
needed.

Looking at the parameter evaluation in figure 6.2 gives some clear statements about the outlier
parameter α and the learning rate γ. The learning rate did not seem to have a lot of impact into the
overall precision of the prototype. Only due to a slight increase in precision, a recommendation
was given for the interval [0.1, 0.4]. The parameter α on the other hand indicated a high precision
area inside the interval [1.00, 1.03]. However, there is no evidence that both parameter selections
will produce stable results in a changing environment. This could either lead to a further drop
of precision or possible even an increase in precision if tested against a different SUT. Without
further investigation it is not possible to make any predictions on this matter.

An advantage of the neural network design is its flexibility regarding the training and learning
phase of a test run. As mentioned in the prototype design descriptions in chapter 6 the network
is trained exclusively with training vectors. During the testing phase, each testing vector can be
applied to the network directly and conclusions about it being an outlier or not can be drawn at
once.

Another shortcoming of the ANN is the ratio between the false positives and false negatives it
displayed. About as many test cases without a vulnerability have been marked as outliers as test
cases with vulnerabilities have not been marked.

Automated Detection of Security Vulnerabilites 73 / 82

Chapter 7. Summary and Discussion of Evaluation Results 7.2. Discussion of Results

SVM SOM Clustering ANN
detection accuracy 93.58% 95.71% 96.53% 64.76%
source code complexity simple complex simple complex
running time 30s 140s 35s 18s
parameter stability stable unknown stable unknown
training flexibility flexible fixed fixed flexbile
ratio fp:fn 1 : 0.09 1 : 0.22 1 : 0.19 1 : 1.03

Table 7.3: Summary of all results of the ML method evaluation.

7.2 Discussion of Results

To give a better overview of the results, the data from the detailed analysis of the evaluation re-
sult in section 7.1 is compiled and presented in table 7.3. The columns represent each of the
four methods: Support Vector Machine, Self-Organizing Map, c-Means Clustering and Artificial
Neural Network. The rows of the table contain information about all investigated properties of
the implementations. Highlighted are those columns with the most promising results. The row
detection accuracy reflects the precision of each method in finding vulnerabilities as percentage
of correctly identified test cases. Source code complexity contains one of the two values simple
or complex and indicates the overall complexity of the source code of the implementation as de-
scribed before. The running time is given in seconds of run time required for a complete test run.
The row parameter stability summarises the considerations on the parameter evaluation for each
method. The term stable indicates that the implementation with the selected parameter will pro-
duce similar results in an arbitrary test environment. If no conclusion could be drawn to predict
the stability of the implementation, then the term unknown is present. If an implementation grants
some flexibility regarding the training and testing phase this is displayed in the row training flexi-
bility. A flexible method has the property that the training of the machine learning method can be
done right after the training phase of the fuzzing run is complete. Afterwards, for each test vector
produced, conclusions can immediately be drawn about its state as outlier. Such a situation is
indicated by the term flexible. The term fixed is present if determination of test vectors can only be
done after a completed test run. Finally, the row ratio fp:fn is a comparison of the ratios between
the false positive and the false negative results of each method.

These results indicate clearly, that the implementation of the Artificial Neural Network is not
competitive in its current state. A lot of effort was put into this method, much more compared to the
other three prototypes, yet it was not able to produce any comparable results. Some investigations
on the issue revealed that the training of the network did sometimes call on some strange behaviour
in the network. This was even the case when the training was successful in a mathematical way,
meaning that the mean-squared error of the network was below the required value of 0.01. Still,
the network was not able to detect any outliers properly in the given set of test vectors. This
situation could occur at any test run regardless of the actual data it contained. Further, due to the
non-deterministic training of the network this behaviour did only occur occasionally at a fixed test
run.

The Self-Organizing Map method did show some minor disadvantages compared to the SVM and
clustering method. One is the need to create a new SOM for each test run which leads to a slightly
higher running time. However, regarding the total security test process with test preparation and
manual analysis phase, the required time of the SOM method can be considered as being insignif-
icant. The uncertainty on the map size and its inflexible training algorithm are some additional

Automated Detection of Security Vulnerabilites 74 / 82

Chapter 7. Summary and Discussion of Evaluation Results 7.2. Discussion of Results

minor drawbacks. Nevertheless it is undeniable, that this method produced formidable results in
the detection of outliers.

The two candidates Support Vector Machine and clustering method stand out with a simple source
code, acceptable running time and stable parameter conditions. Additionally, both scored com-
parable and high results in the evaluation of the vulnerability detection accuracy. The clustering
method did produce slightly better result of about three percent points. On the other hand it does
not offer the training flexibility of the SVM method and its false positive/negative ratio is slightly
worse.

Taking all results of this evaluation into account it is obvious that every method has some advan-
tages and disadvantages. This conclusion is in line with the famous ”No-Free-Lunch”-Theorem
formalized by Wolpert [87] and later specified to machine learning algorithms [88]. This theo-
rem states that over all possible functions to be learned, the average performance of all learning
algorithms is equivalent.

The implementation and evaluation of the prototypes has shown that the test quality is highly
dependent on a wide array of different parameters. To gain optimal results, it is important to have
an automated determination of the parameters used by the method. A lot of scientific work has
been dedicated to this task already, for example by Murata [58] and Luk [50] for the ANN, by
Liu [49] and Kumar [43] for the SOM, by Min [55] and Wu [89] for the SVM and by Ester [19],
McDonald [53] and Brohée [13] for clustering algorithms.

Another very important aspect of the performance of machine learning tools in the context of au-
tomated security scanning is the architecture of the combined system. The quality of the security
testing tool depends on the quality of several components and one crucial component is the An-
alyze Manager. As described in chapter 4, the machine learning methods get their input in form
of the System Behaviour Model. By its definition (see formula 4.1), this model is a list of vec-
tors extracted from all analyzers used in the test setup. Thus the quality of the System Behaviour
Model depends mainly on two circumstances: on the quality of each analyzer and additionally on
the number of used analyzers. It is important for the quality of the model that the output of each
analyzer reflects the actual behaviour of the tested system as exactly as possible. In addition, the
number of used analyzers is an important part, too. The more of them are used, the higher is the
probability of capturing a behaviour that reveals a vulnerability in the SUT. For example, only an
analyzer measuring the response time can detect a timed SQL injection attack. If no such analyzer
is contained in the test setup, these types of injection could not be detected at all. Following these
statements, it is a highly important task to maintain a large set of high quality analyzers.

The selection of attack vectors is another important part in the automated security testing process.
In order to design significant test cases, it is important to have a good coverage of all possible attack
vectors (see section 4.2), since the probability of finding flaws can only increase with the amount
of input values sent. Without some additional information this can quickly become an intractable
problem, leading to drawbacks of either poor test coverage or immense run time. Therefore, it is
important to have a high quality set of attack strings that can be used by the security scanner.

A possible drawback regarding the evaluation of the methods was mentioned in section 7.1. By the
evaluation of the prototype implementations it has already been sufficiently proven, that the two
most suitable methods are ideal candidates for the integration into a security testing framework.
However, the evaluation was mainly based on tests against web applications. These types of
applications are a very important part of software products, however the range of product types
is far bigger. The selected methods should be tested against several different application types
and protocols. The results of these tests will help to further confirm the generality of the methods
presented in this thesis.

Automated Detection of Security Vulnerabilites 75 / 82

Chapter 8. Conclusion

8 Conclusion

Up to now, most of the analysis of an automated security test execution had to be done by manually
checking a huge amount of test cases. This is a very time consuming process that limits the
overall usefulness and efficiency of automated testing. The goal of this thesis was to present an
approach to significantly improve the analysis phase by using methods of artificial intelligence.
These methods should detect outliers in the behaviour of the tested system and thus greatly reduce
the amount of test cases that have to be checked manually.

This thesis presented an approach that automatically detects vulnerabilities during an automated
security test. The approach is based on the idea of learning the behaviour of the SUT and building
a System Behaviour Model by sending functional test cases. After the learning phase, simulated
attacks are executed which can trigger unexpected behaviour in the SUT. The behaviour of the
SUT is captured and checked against the learned model representing normal system conditions.
Any difference in the behaviour of the system during the attack simulation can be caused by a
security failure inside the SUT.

The automatically built System Behaviour Model consists of the behaviour data of the SUT gen-
erated by functional test cases and is used to train a machine learning algorithm. During the attack
simulation, the captured behaviour of the SUT is given to the algorithm. It compares the data to
the learned model and automatically classifies the behaviour as normal or abnormal.

This approach was already presented to the scientific community, peer-reviewed and published
in March 2013 as ”Generic Approach for Security Error Detection Based on Learned System
Behavior Models for Automated Security Tests” by C. Schanes, A. Hübler, F. Fankhauser and T.
Grechenig [73].

This thesis further presented an evaluation of four machine learning methods for their use in au-
tomated security testing: Artificial Neural Networks, Self-Organizing Maps, Support Vector Ma-
chine and c-Means Clustering. To evaluate the methods, prototypes have been implemented and
tested against the specialised vulnerability scanner evaluation platforms WAVSEP and ZAPWAVE.

The results presented in the previous chapter showed that three of the investigated prototypes are
well suited solutions to the problem addressed by this thesis. These prototypes implemented the
methods: Self-Organizing Map, Support Vector Machine and c-Means Clustering. The results
showed that a high vulnerability detection rate could be reached by these implementations in the
test environment.

All prototype implementations have been evaluated by testing them against two different plat-
forms. Both platforms contain several applications with or without vulnerabilities. However, all
these applications are based on websites and are accessible via HTTP. These circumstances limit
the significance of the evaluation results slightly. Without further investigations it remains un-
known if the evaluation will have the same results in an arbitrary environment. For example, if the
prototype implementations were tested against a SUT communicating with some other protocol,
like the Session Initiation Protocol (SIP) used for Voice over Internet Protocol (VoIP) applications.

During the testing process of the prototypes, a lot of time was invested in the evaluation of the
optimal parameters of each prototype. The chosen parameters based on this evaluation are well
tested in the test environment and returned good results. For a future work it would be better to
use an automated approach of parameter selection. This would reduce another uncertainty in the

Automated Detection of Security Vulnerabilites 76 / 82

Chapter 8. Conclusion

generalised results of the prototypes and in addition some amount of manual labor for each test
environment.

Machine learning methods can support the error detection capabilities of automated security tests.
Integrating these methods in a security testing framework can reduce the manual work required
for the analysis phase. Due to the automated detection of abnormal behaviour in the SUT, the
manual analysis will mainly consist of checking the test cases corresponding to the detected be-
haviour. With the reduction of manual labor needed for executing the test, the overall efficiency of
automated testing will improve.

Automated Detection of Security Vulnerabilites 77 / 82

Bibliography

Bibliography

[1] H. Abdelnur et al. Spectral Fuzzing: Evaluation & Feedback. Tech. rep. Feb. 2010, p. 40.

[2] S. Abe. Support Vector Machines for Pattern Classification. Advances in Computer Vision
and Pattern Recognition. Springer, 2005. ISBN: 9781852339296.

[3] E. Alpaydin. Introduction to machine learning. Adaptive computation and machine learn-
ing. MIT Press, 2010. ISBN: 9780262012430.

[4] T. Ambwani. “Multi class support vector machine implementation to intrusion detection”.
In: Neural Networks, 2003. Proceedings of the International Joint Conference on. Vol. 3.
IEEE. 2003, pp. 2300–2305.

[5] R. J. Anderson. Security Engineering: A Guide to Building Dependable Distributed Sys-
tems. Wiley, 2010. ISBN: 9781118008362.

[6] M. F. Augusteijn and B. A. Folkert. “Neural network classification and novelty detection”.
In: International Journal of Remote Sensing 23.14 (2002), pp. 2891–2902.

[7] X. Bao, T. Xu, and H. Hou. “Network Intrusion Detection Based on Support Vector Ma-
chine”. In: International Conference on Management and Service Science. 2009. DOI: 10.
1109/ICMSS.2009.5304051.

[8] S. Bekrar et al. “Finding Software Vulnerabilities by Smart Fuzzing”. In: Software Testing,
Verification and Validation (ICST), 2011 IEEE Fourth International Conference on. Mar.
2011, pp. 427 –430.

[9] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, MA,
USA: Kluwer Academic Publishers, 1981. ISBN: 0306406713.

[10] M. Bishop. Computer Security: Art and Science. Addison-Wesley, 2003. ISBN: 9780201440997.

[11] M. Bishop. Introduction to Computer Security. Addison-Wesley, 2005. ISBN: 9780321247445.

[12] G. Bossert, G. Hiet, and T. Henin. “Modelling to Simulate Botnet Command and Control
Protocols for the Evaluation of Network Intrusion Detection Systems”. In: Conference on
Network and Information Systems Security (SAR-SSI). May 2011, pp. 1 –8.

[13] S. Brohee and J. van Helden. “Evaluation of clustering algorithms for protein-protein inter-
action networks”. In: BMC bioinformatics 7.1 (2006), p. 488.

[14] G. Chen and T. T. Pham. Introduction to Fuzzy Sets, Fuzzy Logic and Fuzzy Control Sys-
tems. Taylor & Francis, 2001. ISBN: 9780849316586.

[15] Gavrilut D. et al. “Malware detection using machine learning”. In: International Multicon-
ference on Computer Science and Information Technology - IMCSIT. 2009, pp. 735–741.
DOI: 10.1109/IMCSIT.2009.5352759.

[16] E. W. Dijkstra. “The humble programmer”. In: Commun. ACM 15.10 (1972), pp. 859–866.
ISSN: 0001-0782. DOI: http://doi.acm.org/10.1145/355604.361591.

[17] P. Engebretson. The Basics of Hacking and Penetration Testing: Ethical Hacking and Pene-
tration Testing Made Easy. Syngress basics series. Elsevier Science, 2011. ISBN: 9781597496568.

[18] W. Ertel. Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung. Computa-
tional Intelligence. Vieweg+Teubner Verlag, 2009. ISBN: 9783834807830.

Automated Detection of Security Vulnerabilites 78 / 82

http://dx.doi.org/10.1109/ICMSS.2009.5304051
http://dx.doi.org/10.1109/ICMSS.2009.5304051
http://dx.doi.org/10.1109/IMCSIT.2009.5352759
http://dx.doi.org/http://doi.acm.org/10.1145/355604.361591

Bibliography

[19] M. Ester et al. “A density-based algorithm for discovering clusters in large spatial databases
with noise.” In: Kdd. Vol. 96. 1996, pp. 226–231.

[20] R. Ettisberger. IT Security & Hacking. Norderstedt: Books on Demand GmbH, 2006.

[21] BlackHat Conference Europe. Speaker Description. (last accessed: 29.09.2014). 2013. URL:
https://www.blackhat.com/eu-13/speakers/Shay-Chen.html.

[22] I. Firdausi et al. “Analysis of machine learning techniques used in behavior-based mal-
ware detection”. In: Advances in Computing, Control and Telecommunication Technologies
(ACT), 2010 Second International Conference on. IEEE. 2010, pp. 201–203.

[23] P. Godefroid, A. Kiezun, and M. Y. Levin. “Grammar-based whitebox fuzzing”. In: ACM
Sigplan Notices. Vol. 43. 6. ACM. 2008, pp. 206–215.

[24] P. Godefroid, M. Y. Levin, and D. A. Molnar. “Automated Whitebox Fuzz Testing”. In:
Proceedings of the Network and Distributed System Security Symposium, NDSS 2008, San
Diego, California, USA, 10th February - 13th February 2008. 2008.

[25] A. K. Gosh and A. Schwartzbard. “A Study in Using Neural Networks for Anomaly and
Misuse Detection”. In: USENIX Security Symposium. 1999.

[26] C. Han et al. “An intrusion detection system based on neural network”. In: Mechatronic
Science, Electric Engineering and Computer (MEC), 2011 International Conference on.
Aug. 2011, pp. 2018 –2021.

[27] S. S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall International
Editions Series. Prentice Hall, 1999. ISBN: 9780139083853.

[28] Z. He, X. Xu, and S. Deng. “Discovering cluster-based local outliers”. In: Pattern Recogni-
tion Letters 24.9 (2003), pp. 1641–1650.

[29] D.O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Taylor & Francis
Group, 2002. ISBN: 9780805843002.

[30] W. C. Hetzel. The complete guide to software testing. QED Information Sciences, 1988.
ISBN: 9780894352423.

[31] A. J. Hoglund, K. Hätonen, and A. S. Sorvari. “A computer host-based user anomaly detec-
tion system using the self-organizing map”. In: Neural Networks, 2000. IJCNN 2000, Pro-
ceedings of the IEEE-INNS-ENNS International Joint Conference on. Vol. 5. IEEE. 2000,
pp. 411–416.

[32] W. Hu, Y. Liao, and V. R. Vemuri. “Robust Support Vector Machines for Anomaly Detection
in Computer Security.” In: ICMLA. 2003, pp. 168–174.

[33] N. Hubballi, S. Biswas, and S. Nandi. “Fuzzy mega cluster based anomaly network intru-
sion detection”. In: Network and Service Security, 2009. N2S’09. International Conference
on. IEEE. 2009, pp. 1–5.

[34] Alshanetsky. I. php - architect’s Guide to PHP Security. Tabini & Associates, Sept. 2005.

[35] D. Ippoliti and X. Zhou. “An adaptive growing hierarchical self organizing map for net-
work intrusion detection”. In: Computer Communications and Networks (ICCCN), 2010
Proceedings of 19th International Conference on. IEEE. 2010, pp. 1–7.

[36] K. A. Jalili, M. H. Kamarudin, and M. N. Masrek. “Comparison of Machine Learning algo-
rithms performance in detecting network intrusion”. In: International Conference on Net-
working and Information Technology. 2010. DOI: 10.1109/ICNIT.2010.5508526.

[37] H. Jiang and X. Zhao. “Study on the Network Intrusion Detection Model Based on Genetic
Neural Network”. In: Modelling, Simulation and Optimization, 2008. WMSO ’08. Interna-
tional Workshop on. Dec. 2008, pp. 60 –64.

Automated Detection of Security Vulnerabilites 79 / 82

https://www.blackhat.com/eu-13/speakers/Shay-Chen.html
http://dx.doi.org/10.1109/ICNIT.2010.5508526

Bibliography

[38] M. F. Jiang, S. S. Tseng, and C. M. Su. “Two-phase clustering process for outliers detec-
tion”. In: Pattern recognition letters 22.6 (2001), pp. 691–700.

[39] M. A. B. Junior, F. B. de Lima Neto, and J. C. S. Fort. “Improving black box testing by using
neuro-fuzzy classifiers and multi-agent systems”. In: Hybrid Intelligent Systems (HIS), 2010
10th International Conference on. Nov. 2010, pp. 25 –30.

[40] L. Khan, M. Awad, and B. Thuraisingham. “A new intrusion detection system using sup-
port vector machines and hierarchical clustering”. In: The VLDB Journal. Vol. 16. 4. 2007,
pp. 507 –521.

[41] T. Kiziloren and E. Germen. “Network traffic classification with Self Organizing Maps”.
In: Computer and information sciences, 2007. iscis 2007. 22nd international symposium
on. Nov. 2007.

[42] T. Kohonen. Self-Organizing Maps. Springer Series in Information Sciences Series. Springer-
Verlag GmbH, 2001. ISBN: 9783540679219.

[43] G. S. Kumar, P. K. Kalra, and S. G. Dhande. “Curve and surface reconstruction from
points: an approach based on self-organizing maps”. In: Applied Soft Computing 5.1 (2004),
pp. 55–66.

[44] L. M. Laird and C. Brennan. Software measurement and estimation: a practical approach.
John Wiley & Sons, 2006. ISBN: 9780471676225.

[45] C. E. Landwehr et al. “A taxonomy of computer program security flaws”. In: ACM Com-
puting Surveys 26 (3 1994), pp. 211–254. DOI: 10.1145/185403.185412.

[46] P. Lichodzijewski, A. N. Zincir-Heywood, and M. I. Heywood. “Dynamic intrusion detec-
tion using self-organizing maps”. In: The 14th Annual Canadian Information Technology
Security Symposium (CITSS). Citeseer. 2002.

[47] O. Linda, T. Vollmer, and M. Manic. “Neural network based intrusion detection system
for critical infrastructures”. In: Neural Networks, 2009. IJCNN 2009. International Joint
Conference on. IEEE. 2009, pp. 1827–1834.

[48] M. A. van der Linden. Testing Code Security. Taylor & Francis, 2007. ISBN: 9781420013795.

[49] Y. Liu, R. H. Weisberg, and C. N. K. Mooers. “Performance evaluation of the self-organizing
map for feature extraction”. In: Journal of Geophysical Research: Oceans (1978–2012)
111.C5 (2006).

[50] K. C. Luk, J. E. Ball, and A. Sharma. “A study of optimal model lag and spatial inputs to
artificial neural network for rainfall forecasting”. In: Journal of Hydrology 227.1 (2000),
pp. 56–65.

[51] H. Lukashevich, S. Nowak, and P. Dunker. “Using one-class SVM outliers detection for
verification of collaboratively tagged image training sets”. In: Multimedia and Expo, 2009.
ICME 2009. IEEE International Conference on. IEEE. 2009, pp. 682–685.

[52] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous activ-
ity”. English. In: The bulletin of mathematical biophysics 5 (4 1943), pp. 115–133. ISSN:
0007-4985. DOI: 10.1007/BF02478259.

[53] A. B. McDonald and T. F. Znati. “A mobility-based framework for adaptive clustering in
wireless ad hoc networks”. In: Selected Areas in Communications, IEEE Journal on 17.8
(1999), pp. 1466–1487.

[54] J. M. Mendel and R. W. McLaren. “8 Reinforcement-Learning Control and Pattern Recog-
nition Systems”. In: Adaptive, Learning and Pattern Recognition Systems Theory and Ap-
plications. Vol. 66. Mathematics in Science and Engineering. Elsevier, 1970, pp. 287 –318.

Automated Detection of Security Vulnerabilites 80 / 82

http://dx.doi.org/10.1145/185403.185412
http://dx.doi.org/10.1007/BF02478259

Bibliography

[55] J. H. Min and Y. C. Lee. “Bankruptcy prediction using support vector machine with optimal
choice of kernel function parameters”. In: Expert systems with applications 28.4 (2005),
pp. 603–614.

[56] S. Mukkamala, G. Janoski, and A. Sung. “Intrusion detection using neural networks and
support vector machines”. In: Neural Networks, 2002. IJCNN’02. Proceedings of the 2002
International Joint Conference on. Vol. 2. IEEE. 2002, pp. 1702–1707.

[57] S. A. Mulay, P. R. Devale, and G. V. Garje. “Decision tree based Support Vector Machine
for Intrusion Detection”. In: Networking and Information Technology (ICNIT), 2010 Inter-
national Conference on. June 2010, pp. 59 –63.

[58] N. Murata, S. Yoshizawa, and S. I. Amari. “Network information criterion-determining the
number of hidden units for an artificial neural network model”. In: Neural Networks, IEEE
Transactions on 5.6 (1994), pp. 865–872.

[59] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing. ITPro collection.
Wiley, 2011. ISBN: 9781118133156.

[60] H. Q. Nguyen. Testing Applications on the Web: Test Planning for Internet-Based Systems.
Wiley, 2001. ISBN: 9780471437642.

[61] S. H. Oh and W. S. Lee. “An anomaly intrusion detection method by clustering normal user
behavior”. In: Computers & Security 22.7 (2003), pp. 596–612.

[62] S. H. Oh et al. “Anomaly Intrusion Detection Based on Clustering a Data Stream”. In: In-
formation Security. Ed. by SokratisK. Katsikas et al. Vol. 4176. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2006, pp. 415–426. ISBN: 978-3-540-38341-3. DOI:
10.1007/11836810_30.

[63] N. H. Park, S. H. Oh, and W. S. Lee. “Anomaly intrusion detection by clustering transac-
tional audit streams in a host computer”. In: Information Sciences 180.12 (2010), pp. 2375–
2389.

[64] C. P. Pfleeger and S. L. Pfleeger. Security in Computing. Prentice Hall professional technical
reference. Prentice Hall PTR, 2006. ISBN: 9780130355485.

[65] L. Portnoy. “Intrusion detection with unlabeled data using clustering”. In: (2000).

[66] S. T. Powers and J. He. “A hybrid artificial immune system and Self Organising Map for
network intrusion detection”. In: Information Sciences 178.15 (2008), pp. 3024 –3042.

[67] Open Web Application Security Project. Top 10 2013. (last accessed: 29.09.2014). 2013.
URL: https://www.owasp.org/index.php/Top_10_2013.

[68] J. Radatz, A. Geraci, and F. Katki. “IEEE standard glossary of software engineering termi-
nology”. In: IEEE Std (1990).

[69] M. Ramadas, S. Ostermann, and B. Tjaden. “Detecting anomalous network traffic with self-
organizing maps”. In: Recent Advances in Intrusion Detection. Springer. 2003, pp. 36–54.

[70] K. Rieck et al. “Automatic analysis of malware behavior using machine learning”. In: Jour-
nal of Computer Security 19.4 (2011), pp. 639–668.

[71] T.J. Ross. Fuzzy Logic with Engineering Applications. Wiley, 2009. ISBN: 9780470748510.

[72] S.J. Russell and S.R.P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
Series in Artificial Intelligence. Prentice Hall, 2010. ISBN: 9780136042594.

[73] C. Schanes et al. “Generic Approach for Security Error Detection Based on Learned Sys-
tem Behavior Models for Automated Security Tests”. In: Proceedings of the Sixth IEEE
International Conference on Software Testing, Verification and Validation (2013), pp. 453–
460.

Automated Detection of Security Vulnerabilites 81 / 82

http://dx.doi.org/10.1007/11836810_30
https://www.owasp.org/index.php/Top_10_2013

Bibliography

[74] C. Schanes et al. “Security Test Approach for Automated Detection of Vulnerabilities of
SIP-based VoIP Softphones”. In: International Journal On Advances in Security 4.1 and 2
(Sept. 2011), pp. 95–105.

[75] B. Schneier. Secrets & Lies. Indianapolis, Indiana: Wiley Publishing, Inc., 2004.

[76] R. W. Shirey. Security Architecture for Internet Protocols: A Guide for Protocol Designs
and Standards. Internet Draft: draft-irtf-psrg-secarch-sect1-00.txt. 1994.

[77] J. Shun and H. A. Malki. “Network Intrusion Detection System Using Neural Networks”.
In: Natural Computation, 2008. ICNC ’08. Fourth International Conference on. Vol. 5. Oct.
2008, pp. 242 –246.

[78] E. Skoudis and T. Liston. Counter Hack Reloaded. Pearson Education, Inc., 2006.

[79] I. Sommerville. Software Engineering. Pearson Education, 2011. ISBN: 9780133001495.

[80] Q. Song, W. Hu, and W. Xie. “Robust support vector machine with bullet hole image clas-
sification”. In: Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on 32.4 (2002), pp. 440–448.

[81] A. Takanen, J. D. DeMott, and C. Miller. Fuzzing for Software Security Testing and Quality
Assurance. Artech House, 2008. ISBN: 978-1-59693-214-2.

[82] H. H. Thompson. “Why security testing is hard”. In: Security Privacy, IEEE 1.4 (2003),
pp. 83–86. ISSN: 1540-7993. DOI: 10.1109/MSECP.2003.1219078.

[83] H. H. Thompson and J. A. Whittaker. “Testing for Software Security”. In: (2002). URL:
http://www.drdobbs.com/184405196.

[84] H. Ting, W. Yong, and T. Xiaoling. “Network traffic classification based on Kernel Self-
Organizing Maps”. In: Intelligent Computing and Integrated Systems (ICISS), 2010 Inter-
national Conference on. Oct. 2010, pp. 310 –314.

[85] J. Watkins and S. Mills. Testing IT: An Off-the-Shelf Software Testing Process. Cambridge
University Press, 2010. ISBN: 9780521148016.

[86] C. Willems, T. Holz, and F. Freiling. “Toward Automated Dynamic Malware Analysis Us-
ing CWSandbox”. In: IEEE Secur Priv 5.2 (2007), pp. 32–39.

[87] D. H. Wolpert. “The lack of a priori distinctions between learning algorithms”. In: Neural
computation 8.7 (1996), pp. 1341–1390.

[88] D. H. Wolpert. “The supervised learning no-free-lunch theorems”. In: Soft Computing and
Industry. Springer, 2002, pp. 25–42.

[89] C. H. Wu et al. “A real-valued genetic algorithm to optimize the parameters of support vec-
tor machine for predicting bankruptcy”. In: Expert systems with applications 32.2 (2007),
pp. 397–408.

[90] J. Zhao, M. Chen, and Q. Luo. “Research of intrusion detection system based on neural net-
works”. In: Communication Software and Networks (ICCSN), 2011 IEEE 3rd International
Conference on. May 2011, pp. 174 –178.

[91] T. Zhou and L. Yang. “The research of intrusion detection based on genetic neural net-
work”. In: Wavelet Analysis and Pattern Recognition, 2008. ICWAPR ’08. International
Conference on. Vol. 1. Aug. 2008, pp. 276 –281.

Automated Detection of Security Vulnerabilites 82 / 82

http://dx.doi.org/10.1109/MSECP.2003.1219078
http://www.drdobbs.com/184405196

	Abstract
	Contents
	Introduction
	Expected Result
	Methodological Approach
	Organization of this Thesis

	Introduction to IT Security and Testing
	Basics of IT Security
	Security Needs
	Definitons in IT Security
	Types of Attacks
	Measures against Threats

	Software Testing
	Black Box Testing
	White Box Testing
	Gray Box Testing

	Testing of IT Security
	Fuzz Testing
	Penetration Testing

	Challenges of Security Testing

	Artificial Intelligence in IT Security
	Machine Learning
	Classification
	Clustering

	Artificial Neural Network
	Biological Model of a Neuron
	Mathematical Model of a Neuron
	Neural Network Architecture
	Learning in Artificial Neural Networks

	Self-Organizing Maps
	Learning in Self-Organizing Maps
	Example

	Support Vector Machines
	Clustering
	Hard c-Means
	Fuzzy c-Means

	State of the Art
	Artificial Neural Network
	Self-Organizing Map
	Support Vector Machine
	Clustering

	Architecture of the PoC Implementation
	Architecture of Security Testing Frameworks
	The Fuzzing Framework ''Fuzzolution''
	Process of one Fuzzing Test Run
	Composition of the fuzzolution tool

	Integration of the AI System
	Representation of the System Behavior Model
	Integration of the Prototype Implementations

	Setup of Test Environment
	Setup of Test Environment
	Description of System Under Test
	WAVSEP
	ZAPWAVE

	Evaluation of PoC Implementations
	Evaluation Method
	Artificial Neural Network (ANN)
	Design Decisions for the Implementation
	Results of the Evaluation

	Self-Organizing Map (SOM)
	Design Decisions for the Implementation
	Results of the Evaluation

	Support Vector Machine (SVM)
	Design Decisions for the Implementation
	Results of the Evaluation

	Clustering Algorithm
	Design Decisions for the Implementation
	Results of the Evaluation

	Summary and Discussion of Evaluation Results
	Results of the Evaluation
	Support Vector Machine
	Self-Organizing Map
	Clustering
	Artificial Neural Network

	Discussion of Results

	Conclusion
	Bibliography

