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Abstract

In many cases chemometric data can be described by linear models. Particularly

challenging in model-building is the high number of variables in many chemometric

data-sets. Satisfactory results are often achieved, if the complexity of the model

is specifically adapted to the data. One option to control this model complexity

is the use of penalties in the model estimation process. This work aims to clarify

the underlying ideas of these model estimation techniques, as well as to evaluate

their applicability in chemometrics.

Zusammenfassung

In vielen Fällen können chemometrische Daten durch lineare Modelle beschrieben

werden. Eine besondere Herausforderung bei der Modellierung ist die hohe An-

zahl an Variablen in vielen chemometrischen Datensätzen. Befriedigende Ergeb-

nisse lassen sich oftmals nur dann erzielen, wenn die Komplexität der Modelle

genau an die Daten angepasst werden kann. Eine Möglichkeit zur Kontrolle dieser

Modellkomplexität ist die Verwendung von Bestrafungstermen (Penalties) bei der

Modellschätzung. Die vorliegende Arbeit soll die zugrundeliegenden Ideen dieser

Schätzmethoden klären, sowie ihre Anwendbarkeit in der Chemometrie evaluieren.
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1. Introduction

To describe it in the words of Wold [1995], chemometrics deals with the question

“How to get chemically relevant information out of measured chemical data, how

to represent and display this information, and how to get such information into

data“. Chemical data can be very complex. They “tend to be characterized by

many measured variables on each of a few observations” [Frank and Friedman,

1993].

In this work, we focus on two important types of chemometrical data. The first

set of data is collected to model quantitative structure–property relationships

or qantitative structure–activity relationships (QSPR/QSAR). Furthermore we

have near-infrared (NIR) spectroscopy data, where the variables have a specific

correlation structure. These data sets were already analyzed in Varmuza et al.

[2013] and Liebmann et al. [2009], respectively. In both works, model estimation

was performed by partial least squares (PLS) regression, which is a popular linear

regression method in chemometrics (further information on PLS can be found e.g.

in Varmuza and Filzmoser, 2009).

PLS regression has a nice geometrical interpretation and can perform well in the

high dimensional case. Penalized regression methods, although popular in other

fields of applied statistics, seem to be less popular in chemometrics, compared to

PLS.

In this work we evaluate penalized model estimation procedures, which are

available due to the recent development in the field of penalized regression. These

developments involve both, the computation algorithms and the penalties itself.

To use PLS or penalized regression, at least one predefined parameter is re-

quired, which controls the complexity of the final model. In PLS this parameter

is the number of the latent variables. In penalized regression the predefined pa-

rameter controls penalization. The question naturally arises, how this parameter

should be set. Besides the popular answer to perform a cross-validation and take

a model which produces small error, a relatively new concept arised with the gen-

eralized degrees of freedom. They generalize the effective degrees of freedom of

an ordinary least squares (OLS) regression model. We use generalized degrees
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of freedom beside cross-validation in the calibration process, whereever they are

implemented in the optimization procedures.

Chapter 2 states definitions and assumptions, which will be used in the present

work and summarizes results and interpretations of least squares regression in

the high-dimensional case. Chapter 3 motivates the use of penalized regression

methods by bias-variance decomposition. In this chapter, the origin of sparsity of

particular penalties is explained in a simplified framework. In Chapter 4 different

penalties are presented and important interpretations are discussed, whereas in

Chapter 5 these penalties are generalized by bridge penalties. In Chapter 6 the

problem of model calibration is discussed. Generalized degrees of freedom are de-

fined and motivated, as well as the prediction error estimators Cp, cross-validation

and generalized cross-validation. Chapter 7 shortly describes the used optimiza-

tion methods. In Chapter 8, several penalized regression procedures are compared

and evaluated. Results of PLS regression are also presented for comparison. The

discussion of the results can be found in Chapter 9 and the R code is presented

in the Appendix.
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2. Least squares regression

2.1. Definitions and assumptions

Assume that we have given a model

y = Xβ + ε. (2.1)

Here X is a known n × p matrix, and β is a p−dimensional column vector of

unknown coefficients. ε is an n−dimensional vector of uncorrelated normally

distributed random variables with mean 0 and standard deviation σ. Thus y is a

random vector of a multivariate normal distribution with mean vector µ := Xβ

and covariance matrix σ2I. As we focus on high-dimensional problems, in what

follows we mostly assume that we have (much) more variables than observations,

say p � n. The variables (the columns of X) are assumed to be standardized

to mean 0 and variance 1, and the response vector y to be mean-centered. This

assumption makes some derivations more convenient, and establishes equivariance

in some of the below described estimation methods.

For fixed X the main target is now to find an estimator β̂(y) of β in a way,

that µ̂(y) := Xβ̂(y) is close to µ. It should be noted that β̂(y) does not neces-

sarily depend linearly on y. Let ‖·‖2 be the Euclidean norm. In the terminology

of Hastie et al. [2009], if y0 is an independent replication of y, the in-sample

prediction error is defined as

Errin(y) := Ey0

[
‖y0 − µ̂(y)‖22 |y

]
, (2.2)

and the residual sum of squares for a parameter vector b is

RSS(b) := ‖y −Xb‖22 . (2.3)

Before we discuss the properties of regularized least squares regression, basic

properties of OLS estimation in the high dimensional case will be revised.
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2.2. High dimensional OLS regression

The problem is stated as

β̂(y) = argmin
b

{
‖y −Xb‖22

}
(2.4)

= argmin
b
{RSS(b)}

and it is well known, that a solution of this problem can be derived algebraically

by solving the normal equations

X>Xb = X>y. (2.5)

In the case of X having full rank, the solution would be derived easily by multi-

plying both sides of (2.5) with
(
X>X

)−1
from the left. In the p � n case, X

has not full rank and the inverse of X>X does not exist.

Solution in the high dimensional case

Let UDT> be the singular value decomposition (SVD) of X, where U and T are

orthogonal matrices with dimension n×n, and p× p, respectively. The matrix D

is of the form [D1;D2], where D2 is an n× (p− n) matrix of zeros and D1 is a

positive semidefinite n×n diagonal matrix with the first r ≤ n diagonal elements

di being strictly positive. The SVD exists for every X (see e.g. Havlicek [2006]).

Remark 2.1. Given anm×n matrixA, an n×mmatrixB is called a pseudoinverse

of A, if it suffices the conditions ABA = A and BAB = B. The Matrix B is

called the Moore-Penrose pseudoinverse of A, if additionally AB and BA are

symmetric. The Moore-Penrose pseudoinverse of a matrix is unique.

It is easy to see, that the n× n matrix

D]
1 :=



d−1
1 0 · · · · · · · · · 0

0 . . .
. . .

...
...

. . . d−1
r

. . .
...

...
. . . 0 . . .

...
...

. . .
. . . 0

0 · · · · · · · · · 0 0



is the Moore-Penrose pseudoinverse of D1, as is
[
D]

1;D2
]>

of [D1;D2].
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Now X>X can be rewritten as TD2T> with D2 := D>D. By defining the

p× p matrix

D2] :=



d−2
1 0 · · · · · · · · · 0

0 . . .
. . .

...
...

. . . d−2
r

. . .
...

...
. . . 0 . . .

...
...

. . .
. . . 0

0 · · · · · · · · · 0 0


=
[
D]

1;D2
]> [

D]
1;D2

]
,

it is straightforward to verify, that D2]
is the Moore-Penrose pseudoinverse of

D2, and
(
X>X

)]
:= TD2]

T> is the Moore-Penrose pseudoinverse of X>X.

The next statement is taken from Koecher [2003], where the proof can be found.

Lemma 2.2. Let B ∈ Rn×m be the pseudoinverse of a matrix A ∈ Rm×n and

c ∈ Rm×1. A solution of the system of linear equations Ax = c exists, if and

only if

ABc = c (2.6)

Solutions have the form x0 = y − BAy + Bc with y ∈ Rn×1. If B is even

the Moore-Penrose pseudoinverse of A, then of all possible solutions of Ax = c,

x0 := Bc is the one with the least Euclidean length.

With this result and

D2] [D1;D2]> =
[
D]

1;D2
]> [

D]
1;D2

]
[D1;D2]> , (2.7)

=
[
D]

1;D2
]>

the next corolary immediately follows:

Corollary 2.3. The solution of (2.5) with minimum Euclidean length is

β̂(y) = T
[
D]

1;D2
]>
U>y. (2.8)

Furthermore we have

µ̂(y) = Xβ̂ = UIr,nU
>y, (2.9)

where Ir,n is the n × n diagonal matrix with the first r entries of the diagonal

being ones and the last n− r entries being zeros.
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Proof. We want to solve Ax = c with A := X>X = TD2T> and c := X>y =.

The Moore-Penrose pseudoinverse of X>X is TD2]
T> =: B. Now we have

ABc = TD2T>TD2]
T>TD>U>y

= TD2D2]
D>U>y

= T Ir,pD
>︸ ︷︷ ︸

=D>

U>

︸ ︷︷ ︸
=X>

y

= c

and according to Lemma 2.2,

x0 := Bc

=
(
X>X

)]
X>y

= TD2]
T>TD>U>y

(2.7)= T
[
D]

1;D2
]>
U>y

is the solution with the minimum Euclidean length.

The second statement follows immediately by using
[
D]

1;D2
] [
D]

1;D2
]>

=
Ir,n.
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3. Penalized least squares regression

In applied science it is often necessary for a “good” model to have the following

properties:

1. It should be useful for making predictions, thus the prediction error should

be small (prediction property), and

2. it should be interpretable. Often interpretation is much easier, if the number

of variables describing the model is low (interpretability property).

It is well known, that in many situations the OLS estimator fulfills neather of

these two properties. Thus one approach of statisticians to solve this problem is

to alter the regression problem by shrinking the coefficients of the OLS estimator

towards zero. This can be achieved by constraining the set of possible parameter

vectors b, when minimizing the residual sum of squares:

β̂(y) = arg min
b

{
‖y −Xb‖22

}
s.t. p(b) ≤ t (3.1)

= arg min
b
{RSS(b)} s.t. p(b) ≤ t,

where p(·) is the penalization term and t ≥ 0. In what follows, we often consider

the Lagrangian form of minimization problem (3.1):

β̂(y) = arg min
b
{RSS(b) + λp(b)} . (3.2)

3.1. Bias-variance decomposition

Another way to motivate penalized regression in general, is through the bias-

variance decomposition. In consideration of the prediction property, estimators

can be compared by their expected in-sample prediction error

Ey [Errin(y)] = Ey
{
Ey0

[
‖y0 − µ̂(y)‖22 |y

]}
.
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Trivially the in-sample prediction error can be written as:

Errin(y) = Ey0

[
‖(y0 − µ) + (µ− Eyµ̂(y)) + (Eyµ̂(y)− µ̂(y))‖22 |y

]
= σ2 + ‖(µ− Eyµ̂(y))‖22 + ‖(Eyµ̂(y)− µ̂(y))‖22 + 2C,

with C := (µ− Eyµ̂(y))> (Eyµ̂(y)− µ̂(y)) .
Because Ey [C] = Ey

[
(µ− Eyµ̂(y))> (Eyµ̂(y)− µ̂(y))

]
= 0, the expected in-

sample prediction error is

Ey [Errin(y)] = σ2 + ‖(µ− Eyµ̂(y))‖22︸ ︷︷ ︸
Bias

+Ey
[
‖(Eyµ̂(y)− µ̂(y))‖22

]
︸ ︷︷ ︸

V ariance

.

The second term on the right-hand side is the bias of the estimator, the third

term on the right-hand side is the variance (to be more precise it is the trace of

the variance matrix of µ̂(y)). Using the results in Section 2.2, it is easy to see,

that the OLS estimator is unbiased (note that Ir,nD = D):

Ey [µ̂ols(y)] = UIr,nU
>Eyy

= UIr,nU
>Xβ

= UIr,nU
>UDT>β

= UDT>β

= Xβ.

The idea in constructing penalized estimators is now to accept some bias, if

the variance of the estimator decreases enough to result in a smaller expected

in-sample prediction error compared to OLS estimation. The decrease of the

variance can be understood intuitively, because the set of the possible realizations

of β̂ is {b ∈ Rp : p (b) ∈ [0, t]}, which is a proper subset of Rp for properly chosen

p (·).

3.2. Sparsity and unbiasedness

In this section, sparsity and unbiasedness in problem (3.2) will be discussed, fol-

lowing the ideas of Fan and Li [2001]. The goal is to lay the foundation to build

well-behaving and interpretable penalties.

The next assumption is only presented to make the following results geometri-
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cally easier to interpret.

Assumption 1. The columns of X are orthonormal and p ≤ n (⇔X>X = Ip).

Assumption 2. The penalty p (b) is the sum of equal penalties on every coordi-

nate (also denoted by p for simplicity):

p (b) =
p∑
i=1

p(bi) (3.3)

According to Fan and Li [2001], assumptions 1 and 2 allow us to focus on the

single components in our minimization problem:

‖y −Xb‖22 + λ
p∑
i=1

p (bi) = (y −Xb)> (y −Xb) + λ
p∑
i=1

p (bi)

=
∥∥∥y −Xβ̂∥∥∥2

2︸ ︷︷ ︸
=:c

+
∥∥∥Xβ̂ −Xb∥∥∥2

2
+ λ

p∑
i=1

p (bi)

= c+
(
β̂ − b

)>
X>X︸ ︷︷ ︸
Ip

(
β̂ − b

)
+ λ

p∑
i=1

p (bi)

=
p∑
i=1

[(
xiy − bi

)2
+ λp (bi)

]
, (3.4)

where xi denotes the ith column of X, written as a row vector, and β̂ = X>y is

the OLS estimate of the parameter vector β.

The next assumption says, positive and negative coefficients are equally pe-

nalized and the zero coefficient vector will not be penalized. This assumption is

fulfilled by the commonly used penalties in scientific practise.

Assumption 3. The penalty p (b) is symmetric around zero and p (0) = 0.

The following assumption will provide the necessary mathematical structure to

solve the given minimization problems.

Assumption 4. The penalty p (b) is continous on R and continuously differen-

tiable on R \ {0} in b, and p (|b|) is non decreasing.

If the following assumption is fulfilled we can achieve sparsity. The motivation

is shortly discussed in Zhang [2010] and is recapitulated below.

Assumption 5. ṗ (0+) = c with c ∈ (0,∞)

15



Sparsity

With Assumption 4, each term in (3.4) is continously differentiable on R \ {0}.
Minimizing every single addend will minimize the whole equation. Our goal is

now to line out the stationary points of these terms, which are candidates for a

global minimum.

The first-order derivation of a single term is

λṗ (bi) + 2bi − 2xiy.

With ṗ (0+) = 2 according to Assumption 5 (if ṗ (0+) = c, we rescale p (·) by 2
c

and λ by c
2) and Assumption 3 (symmetry; implies ṗ (0−) = −2), we get

lim
bi→0+

[λṗ (bi) + 2bi] = 2λ (3.5)

and

lim
bi→0−

[λṗ (bi) + 2bi] = −2λ. (3.6)

Now assume
∣∣xiy∣∣ < λ. With (3.5) and (3.6) it follows, that there exist δ+ > 0

and δ− < 0, with λṗ (bi) + 2bi > 2xiy for bi ∈ (0, δ+), and λṗ (bi) + 2bi < 2xiy for

bi ∈ (δ−, 0), respectively. Therefore the first-order derivation is positive on (0, δ+)
and negative on (δ−, 0). With the assumed continuity of p (·), zero is a potential

minimum, if
∣∣xiy∣∣ < λ.

If ṗ (0+) = 0 contrary to Assumption 5, then also ṗ (0−) = 0 and p (·) is

continously differentiable on R. Substitution in the first order equation shows,

that zero can only be a minimum, if xiy = 0.

To get a clearer view into what this means, we assume normality as stated

in Section 2.1. In this setting xiy ∼ N
(
βi, σ

2) (the variance is σ2xixi
> = σ2

and xiµ = xiXβ = βi because of the orthogonality assumption). Therefore

ṗ (0+) = c ∈ R+ implies

Pr (bi = 0 is a candidate ) ≥ Pr
(∣∣∣xiy∣∣∣ ≤ λ) = Φ

(
λ− βi
σ

)
− Φ

(−λ− βi
σ

)
> 0,

and ṗ (0+) = 0 implies

Pr (bi = 0 is a candidate ) = Pr
(
xiy = 0

)
= 0.

The first result is the reason sparsity in penalized problems with ṗ (0+) = c >

16



0! The second result shows, that penalties which fulfill Assumption 4 but not

Assumption 5, do not have this property.

Again looking on the first result, it can also be seen, that the sparsity can be

controlled by λ. The higher λ, the higher the probability of getting estimates

being exactly zero

Unbiasedness

Another property which can be useful in some cases, was pointed out by Fan and

Li [2001]:

Assumption 6. ṗ (b) = 0 for |b| ≥ γ > 0

From the first order equation λṗ (bi) + 2bi − 2xiy = 0 we see, that bi = xiy is

a stationary point, if
∣∣xiy∣∣ ≥ γ.

Example

Here we are going to visualize the former discussed assumptions and properties.

Let us assume that we have only one variable x with x>x = 1 Furthermore the

following penalty is given:

p (b) =

2 |b| |b| ≤ γ

2γ |b| > γ
, (3.7)

where γ = 2 (Figure 3.1). It is clear that ṗ (0+) = 2 and ṗ (b) = 0 for |b| ≥ γ, thus,

Assumptions 5 and 6 are fulfilled. Assumption 4 is fulfilled, except for b ∈ {−2, 2}.
These values have to be treated with particular attention.

Now let λ = 1. The first order equation leads to β̂ = x>y − 1
2 ṗ
(
β̂
)
, which can

have the possible solutions :

β̂ =


x>y

∣∣xiy∣∣ > 2

x>y − 1 x>y ∈ (1, 3)

x>y + 1 x>y ∈ (−3,−1)

(3.8)

From (3.8) we get, that there are two stationary points in the interval (2, 3) and

(−3,−2). This is visualized in Figure 3.2. The plots in the top row and the bottom

left plot of the figure show the loss functions loss(β) :=
(
x>y − b

)2
+ λp (b)

for different values of x>y. Let x>y ∈ [0, 1] (top left). There exists only one

17



−4 −2 0 2 4

0
2

4
6

8

b

p(
b)

Figure 3.1.: Example penalty
p (b) has the values 2 |b| for |b| ≤ γ and 2γ for |b| > γ.

stationary point, which is 0. This follows from the above discussed fact, that∣∣∣x>y∣∣∣ ≤ λ. For x>y ∈ (2, 3) (bottom left) we have two stationary points (β̂ =
x>y − 1 and β̂ = x>y). If x>y ∈ (1, 3) (top right) there is only one stationary

point and the same holds true for x>y ∈ [3,∞). In the latter case we finaly

reach unbiasedness. The bottom right plot relates x>y to the solution β̂. Again,

sparsity, biasedness and unbiasedness is shown for different values of x>y.
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Figure 3.2.: Stationary points
The first three plots show loss functions for the example penalty. Different

curves stand for different values of x>y. The solid circles show global minima of
these curves. The last plot (bottom right) relates x>y to the solution β̂.
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4. Penalties

In this section, we present the basic penalties for our penalized model estimation

problem.

4.1. Ridge regression

We introduce Ridge regression Hoerl and Kennard [1970] by defining p(b) := ‖b‖22,

which results in the minimization problem

β̂(y) = arg min
b

{
RSS(b) +λ ‖b‖22

}
(4.1)

with λ > 0. The first-order conditions of problem (4.1) are

−2X>y + 2X>Xb+ 2λb = 0

which lead to the solution

β̂ =
(
X>X + λIp

)−1
X>y. (4.2)

It is clear that Assumptions 2 - 4 in Section 3.2 are fulfilled, but ṗ (0+) = 0
contrary to Assumption 5. Therefore the Ridge solution is not sparse.

Existence and uniqueness of the solution

The symmetric matrix X>X + λIp can be written as TD2T>+ λTT> by using

the SVD in Section 2.2. It follows that X>X + λIp = T
(
D2 + λIp

)
T> is a

regular matrix when λ is strictly positive and the matrix inverse in (4.2) exists.

Thus problem (4.1) has a unique solution.

Interpretation

By using above results, we have
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β̂ =
(
X>X + λIp

)−1
X>y

= T
(
D2 + λIp

)−1
T>TD>U>y

= T
(
D2 + λIp

)−1
D>U>y

and therefore

Xβ̂ = U D
(
D2 + λIp

)−1
D>︸ ︷︷ ︸

=:M

U>y. (4.3)

The diagonal elements of the (n× n)−matrix M are d2
i/(d2

i +λ) ≤ 1, where di is

the (i, i)−element of D. Following Hastie et al. [2009], (4.3) can be written as

Xβ̂ =
r∑
i=1
ui

>
(

d2
i

d2
i + λ

)
uiy. (4.4)

This is the solution of the high dimensional OLS estimation in Section 2.2, except

that orthonormal columns in U are shrunken towards the zero vector. From the

factors d2
i/(d2

i +λ) it can be seen, that for fixed λ, the shrinkage is high, if the d2
i

are small.

Grouping effect

The grouping effect of particular regression methods works in favour of the in-

terpretability property in Chapter 3. Equal variables result in equal coefficients,

similar variables get similar coefficients. The next Lemma is the first part of

Lemma 2 of Zou and Hastie [2005], where its proof can be found:

Lemma 4.1. Assume the minimization problem (3.2) with λ > 0 and a strictly

convex penalty p (·). If the columns i and j of X, then β̂i = β̂j

Because of the strict convexity of the l2−penalty, Ridge regression estimates

have the grouping effect property for equal variables.
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4.2. The Lasso

Using the l1−norm as a penalty in (3.1) results in the Lasso [Tibshirani, 1996]:

β̂(y) = arg min
β

{RSS(y) +λ ‖β‖1} . (4.5)

It is easy to see, that in an orthonormal setting, the Lasso fulfills Assumptions

2 - 5 in Section 3.2. Therefore Lasso regression leads to sparse solutions. This is

the reason, why the Lasso is now very popular in applied statistics: the variable

selection and the model estimation are done simultaneously in only one step of

calculation.

The results of the grouping effect in Ridge Regression do not hold true in the

Lasso. Actually if j1, . . . , jk are the indices of equal columns of X and β̂ is a

solution of (4.5), then Kβ̂ is also a solution of this minimization problem. Here

K is a p× p-matrix defined as

K :=


α1 0 · · · 0

0 . . .
. . .

...
...

. . .
. . . 0

0 · · · 0 αp


with

∑p
i=1 αi = 1, αi ≥ 0 for i ∈ {j1, . . . , jk} and αi = 0 for i /∈ {j1, . . . , jk}.

Therefore Lasso estimates are not unique in general.

Another drawback of Lasso regression in comparison to Ridge regression is, that

the Lasso penalty is not differentiable at zero. Due to this fact optimization gets

analytically harder with a Lasso penalty.

4.3. Best-subset-selection

On the problem of variable reduction, best-subset selection is very popular, how-

ever its formulation as a penalized regression problem is less common:

β̂(y) = arg min
b
{RSS(b) +λ ‖b‖0} , (4.6)

Here the penalty is the l0−”norm”:

‖b‖0 :=
p∑
i=1

I (|bi| > 0) ,
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where I (·) is the indicator. Strictly speaking this does not define a norm.

As Shen and Ye [2002] pointed out, popular examples of problem (4.6) are the

AIC and Cp (λ = 2 for both) and the BIC (λ = ln (n)). It should be noted, that

the usual stepwise methods do not necessarily lead to a global solution of (4.6).

The derivation of global solutions for large p is computationally expensive and

for very large p practically impossible (the brute-force search would require the

calculation of 2p models).

4.4. Fused Lasso

The last penalized regression technique which will be discussed in this chapter,

is the Fused Lasso [Tibshirani et al., 2004]. Essentially it is the Lasso with an

additional restriction, which penalizes the absolute differences of neighboring pa-

rameters. Therefore it is necessary to sort the columns of X in a logical order,

where neighboring variables are highly correlated. In chemometrics this order can

be the increasing wavelengths of a NIR spectroscopy for example. After sorting

the problem can be stated as:

β̂(y) = arg min
b
{RSS(b) +λ1 ‖b‖1 + λ2 ‖Lb‖1} ,

with λ1, λ2 > 0 and

L :=


−1 1 0 · · · 0

0 . . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −1 1

 .

4.5. Bayesian interpretation

To reach better interpretability of the penalization, we follow Frank and Friedman

[1993] and present a useful Bayesian point of view.

For fixed X we consider the relation

π (b|y) ∝ L (y|b)π (b) ,

where L is the likelihood (in our normal distribution framework), π (b) is the

(proper or improper) prior density of β and π (b|y) is its posterior density. One

could consider the estimator β̂ as the maximizing b of π (b|y). The maximiza-
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tion of π (b|y) is equivalent to the minimization of the negative logarithm of

L (y|b)π (b). Now the equivalent minimization problem has the form

‖y −Xb‖22 − 2σ2 ln (π (b)) , (4.7)

because multiplying by the factor 2σ2 does not change the solution. The question

is now how to choose the prior π (b) in (4.7) to get the same parameter vector, as

in minimization problem (3.1). In other words, −2σ2 ln (π (b)) has to be equal to

λp(b), which leads to

π (b) = exp
(
−
(
2σ2

)−1
λp(b)

)
. (4.8)

Substitution of the Ridge-, Lasso-, and Best-subset-penalty in (4.8) gets the (im-

proper) prior densities, which define the equivalent minimization problems to

(4.1), (4.5), and (4.6). Figure (4.1)(a)-(c) show the two-parameter case with

λ =
(
2σ2). It can be seen that the prior induced by Ridge regression sets equal

weights to parameters with equal Euclidean length. The weights are increasing

near zero. In the Lasso, parameter combinations with equal Euclidean length

can have different weights, depending on how near they are to a coordinate axis.

In best-subset regression, only parameter vectors on a coordinate axis would be

treated differently (with higher weights). In contrast, OLS regression would in-

duce an improper prior with equal weights for each combination in Rp.
Repeating the derivation of a Bayesian prior for fused Lasso with λ1 = λ2 =(

2σ2) in Figure 4.1(d) reveals a gain of weight towards the 45°−diagonal of two

neighboring parameters. Thus the prior probability is increased, that two neigh-

boring parameters have the same value.
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Figure 4.1.: Prior weights
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5. Bridge penalties

Each of the discussed penalties have their own advantages and disadvantages.

Bridge penalties are generalizations of these penalties in the sense, that they have

an additional meta parameter and that some of our former discussed penalties

can be retrieved at particular values of this meta parameter. Bridge penalties can

often be understood as a mixture of at least two of the penalties, discussed in

Chapter 4. The additional parameter then controls the mixture ratio.

5.1. Power family

Frank and Friedman [1993] suggested a generalization of best-subset selection,

Lasso- and Ridge regression. They called this generalized Ridge regression, which

is also known as bridge regression [Fu, 1998]. We use the name bridge regression

to denote a generalization of at least two of our basic frameworks (BSS, Lasso

regression, Ridge regression).

For each α ∈ [0,∞) we define the penalty

p (b) := ‖b‖αα =
p∑
i=1
|bi|α. (5.1)

With this penalty and λ, t ≥ 0 the minimization problem can again be written in

two equivalent forms:

β̂(y) = arg min
b
{RSS(b)} s.t. ‖b‖αα ≤ t, (5.2)

and

β̂(y) = arg min
b

RSS(b) +λ ‖b‖αα︸ ︷︷ ︸
=:f

 . (5.3)

For α = 0 and α = 1 we have the best-subset case and the Lasso case respectively,

for α = 2, we have Ridge regression. Therefore the bridge regression parameter α
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is considered to be in the interval [0, 2] in practice.

It should be noted, that for α > 1 the penalty does not fulfil Assumption 5 in

Section 3.2, therefore we cannot expect sparse solutions at this values of α.

5.2. Elastic net

The next bridge penalty we discuss, is the elastic net [Zou and Hastie, 2005]. The

basic (naive) version of this regression method is:

β̂ = arg min
b

{
RSS(b) +λ1 ‖b‖1 + λ2 ‖b‖22

}
, (5.4)

with λ1, λ2 ≥ 0. Equation (5.4) is often written in an equivalent form:

β̂ = arg min
b

{
RSS(b) +λ

[
(1− α) ‖b‖1 + α ‖b‖22

]}
, (5.5)

where λ ≥ 0 and α ∈ [0, 1]. The term in the square brackets is the elastic net

penalty. It is clear, that at α = 0 and α = 1, problem (5.5) degenerates to the

Lasso and to Ridge regression, respectively.

Zou and Hastie [2005] provided a result on the grouping effect as well:

Theorem 5.1. In addition to the global assumptions given in Section 2.1, let β̂

be the estimator in (5.4) with λ2 > 0. If two components β̂i and β̂j of β̂ fulfil

β̂iβ̂j > 0 then:
1
‖y‖1

∣∣∣β̂i − β̂j∣∣∣ ≤ 1
λ2

√
2 (1− (xi)>(xj)) (5.6)

Zou and Hastie [2005] also proposed a rescaled version of the above defined

β∗ = (1 + λ2) β̂ with β̂ from (5.4), which may improve results in practice.

Because of the Lasso penalty in minimization problem (5.5), except for α = 1,

Assumption 5 in Section 3.2 is fulfilled. Thus we can expect sparse solutions in

regression problems using the elastic net.

The form of the elastic net penalty for different values of α can be seen in Figure

5.1.

5.3. Generalized elastic net

Friedman [2008] proposed an alternative to the penalties of the power family with
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Figure 5.1.: Elastic net penalties for different values of α

parameter α ∈ [0, 1]. The generalized elastic net penalty is defined as

pα (b) :=
p∑
j=1

ln ((1− α) |bj |+ α) (5.7)

with α ∈ (0, 1).
Rescaling and centering (5.7) to

pα (b) :=
p∑
j=1

[(
− 1

ln (α)

)
ln ((1− α) |bj |+ α) + 1

]
(5.8)

yields an equivalent minimization problem. By using l’Hôpital’s rule we can see,

that for α −→ 0+ and b = 0 the square brackets in (5.8) converge to 0. On the

other hand, if α −→ 0+ and b 6= 0, they converge to 1. Therefore pα (b) converges

pointwisely to ‖b‖0 for α −→ 0+. It can be shown that for α −→ 1−, pα (b)
converges pointwisely to ‖b‖1. We have shown, that the generalized elastic net

serves as a bridge between the best-subset selection and the Lasso framework.

The penalties of the generalized elastic net have a similar shape compared to
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penalties of the power family as can be seen in Figure 5.2.
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Power family
Generalized elastic net

Figure 5.2.: Power family penalties and generalized elastic net penalties
The black solid lines show the penalties of the power family with α = 1, α = 0.5,
and α = 0.001. The red dotted lines show the (rescaled and centered) generalized
elastic net penalities with α = 0.999, α = 1

1010 , and α = 0.5. It can be seen, that
power family penalties can be approximated by generalized elastic net penalties.

5.4. Minimax concave penalty

In this section the minimax concave penalty (MCP) according to Zhang [2010]

will be derived.

Definition 5.2. A given penalty p (b) is assumed to be differentiable on the

interval (0,∞). The maximum concavity of p (·) for a given λ is defined as

κ(p) := sup
0<b1<b2

[
− ṗ (b2)− ṗ (b1)

b2 − b1

]
(5.9)

Non-convexity of a penalty can lead to computational problems and unstable

results in our minimization framework. As an example one can look at our exam-

ple penalty in Section 3.2 and its unstable behavior (bottom right plot in Figure
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3.2). The goal is now to find a penalty, which minimizes the maximum concav-

ity κ(p), and leads to sparse and nearly unbiased solutions with a threshold λγ.

In other words, κ(p) = sup0<b1<b2

[
− ṗ(b2)−ṗ(b1)

b2−b1

]
has to be minimized subject to

ṗ (0+) = 1 and ṗ (b) = 0 for b ≥ λγ (according to Assumption 5 and Assumption

6 in Section 3.2). By setting b1 −→ 0 and b2 = λγ, it can easily be seen that for

every penalty fulfilling these restrictions, we have

κ(p) ≥ − ṗ (λγ)− ṗ (0+)
λγ − (0+) = ṗ (0+)

λγ
= 1
λγ
. (5.10)

It is clear, that ṗ (b) :=
(
1− b

λγ

)
+

fulfils both of the above constraints. Three

cases should be considered:

1. b1, b2 ≥ λγ
It follows that, − ṗ(b2)−ṗ(b1)

b2−b1
= 0.

2. b1 ∈ (0, λγ), b2 ≥ λγ
This implies that

− ṗ (b2)− ṗ (b1)
b2 − b1

= −

(
1− b2

λγ

)
+
−
(
1− b1

λγ

)
+

b2 − b1

=
1− b1

λγ

b2 − b1

= 1
λγ

λγ − b1
b2 − b1

.

Because λγ−b1
b2−b1

≤ 1, we have ṗ(b2)−ṗ(b1)
b2−b1

≤ 1
λγ .

3. b1, b2 ∈ (0, λγ)
We immediately have − ṗ(b2)−ṗ(b1)

b2−b1
= 1

λγ
b2−b1
b2−b1

= 1
λγ .

With (5.10) it follows, that

p (b) :=
bˆ

0

(
1− x

λγ

)
+
dx (5.11)

minimizes the maximum concavity in the set of all admissible penalties. Hence

(5.11) is called the minimax concave penalty. By definition, this penality leads to

sparse solutions and is nearly unbiased.

Penalties for different values of α are plotted in Figure 5.3.
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6. Model calibration

6.1. Generalized degrees of freedom

Degrees of freedom of linear estimators

We consider the fitting procedure µ̂ : Rn −→ Rn : y 7→Xβ̂ (y) with components

µ̂i (y). At first we assume that µ̂ (·) is the OLS estimator: µ̂ (y) = Hy with

H := X
(
X>X

)−1
X>. The degrees of freedom in the full rank OLS case are

commonly defined as

df := tr [H] , (6.1)

which is equal to the rank of X. This holds true for the high-dimensional OLS

case, where H := UIr,nU
> according to the results in Section 2.2. Again the

trace of H is the rank of X.

We can generalize the definition of the degrees of freedom to all linear estimators

of µ. In Ridge regression, with H := UD
(
D2 + λIp

)−1
DTUT , the degrees of

freedom are

df = tr [H]

=
r∑
i=1

d2
i

d2
i + λ

. (6.2)

Degrees of freedom of almost differentiable estimators

For linear estimators, it is clear that H is the Jacobi matrix
[
∂µ̂(y)
∂y

]
. Thus the

trace of H is

df =
n∑
i=1

∂µ̂i (y)
∂yi

, (6.3)

which is the divergence of the estimator div µ̂ (y).

The next definition of almost differentiability and the following lemma are taken

from Stein [1981] and play an important role in the development of a generalized

definition of degrees of freedom.
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Definition 6.1. h : Rn −→ R is called almost differentiable, if there exists a

function ∇h : Rn −→ Rn, such that for all s ∈ Rn,

h (z + s)− h (z) =
1ˆ

0

s>∇h (z + ts) dt (6.4)

The function ∇h can be identified with the vector of the partial derivations of

h .

For the next lemma, with y = µ+ ε defined in accordance with Section 2.1, we

define z = 1
σy. Then z ∼ N

(
1
σµ, I

)
.

Lemma 6.2 (Stein’s Lemma). If h : Rn −→ R is an almost differentiable func-

tion, z ∼ N
(

1
σµ, I

)
, and Eµ ‖∇h (z)‖ <∞, then

Eµ [∇h (z)] = Eµ
[(
z − 1

σ
µ

)
h (z)

]
(6.5)

Now assume that µ̂ is almost differentiable (by that we mean that every µ̂i is

almost differentiable). It follows from Stein’s Lemma, that

Eµ [∇yµ̂i (y)] = 1
σ
Eµ [∇zµ̂i (σz)]

= 1
σ
Eµ [∇zµ̃i (z)]

= 1
σ
Eµ
[(
z − 1

σ
µ

)
µ̃i (z)

]
= 1
σ2Eµ [(y − µ) µ̂i (y)] , (6.6)

for every i ∈ 1, . . . , n, where µ̃i (z) := µ̂i (σz) .
From (6.6) it is clear that Eµ [∇yµ̂i (y)] is the i−th column of the covariance

matrix of y and µ̂ (y). Therefore we have the following result:

n∑
i=1

∂µ̂i (y)
∂yi

=
n∑
i=1

1
σ2Eµ [(yi − µi) µ̂i (y)]

= 1
σ2 trCov (y, µ̂ (y))

=
n∑
i=1

Cov (yi, µ̂i (y))
σ2 . (6.7)

Equation (6.7) leads to the definition of the generalized degrees of freedom (see

Ye, 1998) as
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df :==
n∑
i=1

∂µ̂i (y)
∂yi

=
n∑
i=1

Cov (yi, µ̂i (y))
σ2 . (6.8)

6.2. Estimation of the prediction error

To get a good calibrated model in the sense of prediction property 1 in Chapter

3, the idea of minimizing the expected in-sample prediction error

Ey Errin(y) = EyEy0

[
‖y0 − µ̂(y)‖22 |y

]
(6.9)

seems natural.

The expected in-sample error (6.9) can be written as

Ey Errin(y) = Ey
[
‖y − µ̂ (y)‖+ 2σ2 df

]
. (6.10)

Following Hirose et al. [2011], where also the proof of equation (6.10) can be

found, this motivates a Cp-type estimator for (6.9):

Cp := ‖y − µ̂ (y)‖+ 2σ2 df . (6.11)

This estimator written as (6.11) assumes, that the term 2σ2 df is known. This is

not the case in practice, where we either need an estimation for Cov (yi, µ̂i (y)),
or estimations for ∂µ̂i(y)

∂yi
, and σ2, respectively.

6.3. Cross-validation

One of the most important concepts in the area of model selection is cross-

validation (CV). It combines intuitive plausibility with wide applicability. Its

aim is to give a reasonable estimate of

1
n
Ey Errin(y). (6.12)

Validation

In statistical practice, model validation techniques often are applied to the same

data, on which the model depends. Selecting models on these techniques would

likely cause overfitting. To overcome this problem, it is recommended to split the

data in two independent parts. The first one is called the training set, on which
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the model will be estimated. The resulting model will be tested on the second

part of the data that is the test set.

Let I ⊂ {1, . . . , n} and I− := {1, . . . , n}�I be the training set and the test set,

respectively. The vector y− is of length |I−|, and contains the yi with i ∈ I−. The

vector µ− contains the entries of µ with indices i ∈ I−. µ̂−λ is an estimator of µ−,

based on the training set and the model parameter λ. We define the estimator of

(6.12) by

MSETEST := 1
|I−|

∥∥∥y− − µ̂−λ ∥∥∥2

2
,

which is called the mean squared error.

k-fold cross-validation

In general collecting data is often expensive in time and money. Splitting the data

can be seen as a drawback of the validation method. Only n − |I−| are going to

be used for estimation. Also training data and test data have to be representative

for the total population. If by chance the data splitting leads to unrepresentative

test data and/or training data, this can result in bad model estimates.

These drawbacks can be overcome by repeating this validation procedure on the

same data several times. More precisely, the data set is split in k parts of (almost)

equal size. Then every of these k parts is a test set for a model, estimated by

the remaining k − 1 parts. In obvious generalization of the notation from above

(where “−(i)” means, that the ith part is the respective test set), we define an

estimator

MSECV := 1
|n|

k∑
i=1

MSE
−(i)
TEST ·

∣∣∣I−(i)
∣∣∣ (6.13)

= 1
|n|

k∑
i=1

∥∥∥y−(i) − µ̂−(i)
λ

∥∥∥2

2
.

A special case of the k-fold cross-validation is the leave-one-out cross-validation,

where k = n.

Double cross-validation

CV can be used for both, for finding the optimal parameters for our penalized

regression models (calibration), and for estimating the prediction error of the

final model. One may want to use CV for both. Like above it would be necessary
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to split the data successively into test sets and training sets for the CV, which

estimates the prediction error of the final model. The training sets itself are split

in the same manner into new test sets and training sets to perform a CV for model

calibration. The result is a procedure with two nested CV loops. We call that

double cross-validation. In accordance to Varmuza and Filzmoser [2009], we call

the training set of the outer CV loop the calibration set, and the test set of the

inner CV loop the validation set.

If estimator (6.13) results from the inner CV loop (applied on the calibration

set), we denote it by MSECAL, instead of MSECV .

Varmuza and Filzmoser [2009] suggest to repeat the outer CV loop several

times. They called the procedure repeated double CV (rdCV).

6.4. Generalized cross-validation

Generalized cross-validation (GCV) is a model selection method developed by

Golub et al. [1979]. GCV was initially applied in Ridge regression. A generaliza-

tion for possibly non-linear estimators with model parameter γ is suggested by

Ye [1998] as

GCV (µ̂γ) =
‖y − µ̂γ(y)‖22
(n− df (µ̂γ))2 . (6.14)

The minimizing γ in (6.14) would then be chosen as the model parameter.

This approach has the advantage, that if an estimator for
∑n
i=1

∂µ̂i(y)
∂yi

exists, it

is not necessary to estimate the unknown σ2 in order to select a reasonable model.
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7. Optimization methods

In this chapter, we describe common optimization methods for the above defined

minimization problems.

7.1. Pathwise coordinate descent

Recently, Friedman et al. [2007] introduced coordinate descent methods in the field

of penalized regression with convex penalties. These methods have in common,

that the parameters are estimated one at a time. Usually parameters are updated

cyclically. This can be described as follows:

1. Begin with a starting vector b0 (which commonly is set equal to 0)

2. k runs through 1, . . . , p, p+ 1, . . . , 2p, 2p+ 1, . . .

a) set b equal to bk−1, the solution from the previous iteration

b) set i = kmod p, define X−(i) as the matrix X without the ith column

xi, and b−(i) as the vector b without the ith entry. Now solve the min-

imization problem
∥∥∥y −X−(i)b−(i) − xib∗i

∥∥∥2

2
+λp(b∗i ; b−(i)) for variable

b∗i , where b−(i) is considered to be fixed

c) set bk equal to bk−1 exept for the j-th component, which is set equal

to b∗i

This algorithm works fast when the one-variable-minimization in 2.(b) can be

solved easily.

The algorithm can be improved by predefining a monotonic sequence of the

regularization parameter λ1, . . . , λm. Then the solution of the penalized regression

problem with regularization parameter λj can be used as the starting vector for

solving the problem with the parameter λj+1.
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7.2. Generalized path seeking

The generalized path seeking algorithm was introduced by Friedman [2008] and

is a fast method to solve penalized regression problems, if the penalty fulfills
∂p(b)
∂|bi| > 0.

For t ≥ 0 we consider the penalized regression problem:

β̂(t) := arg min
b
{RSS(b)} s.t. p(b) ≤ t.

We set b(0) = 0 and 0 < ∆t � 1, and calculate b(t + ∆t) from b(t) by altering

only one coordiate i:

bj(t+ ∆t) =

bj(t) j = i

bj(t) + s ·∆t j 6= i
,

where s is either −1 or 1. For every t, b(t) can be seen as an approximation of

β̂(t).

Two questions arise in each iteration:

1. Which coordinate should be altered?

2. Is s either −1 or 1?

By a relaxation of the constraint t to t + ∆t we want RSS(b) to decrease as

much as possible, while simultaneously p(b) should increase only a little. In other

words, the absolute fraction of “ultility” and “costs”

∣∣∣∣∣∣−
∂RSS(b1(t),...,bp(t))

∂bi

∂p(|b1(t)|,...,|bp(t)|)
∂bi

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣
−∂RSS(b1(t),...,bp(t))

∂bi

∂p(|b1(t)|,...,|bp(t)|)
∂|bi|︸ ︷︷ ︸

=:ki(t)

· sign(bi)

∣∣∣∣∣∣∣∣∣∣∣∣
should be as big as possible.

The algorithm searches for indices i with ki(t) sign(bi(t)) < 0 and collects them

in the set S. Then with j = arg maxi∈S |ki(t)|, the variable bj is altered towards

zero, say

bj(t+ ∆t) =

bj(t) + ∆t bi(t) < 0

bj(t)−∆t bi(t) > 0
.
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If S is empty, we choose the coordinate j = arg maxi |ki(t)| and

bj(t+ ∆t) = bj(t) + sign (bi(t)) ∆t.

This procedure will be repeated until all kj(t) are equal to zero.

Friedman described the algorithm as follows:

1 Set t = 0 and bi(0) = 0, ∀i ∈ {1, . . . , p}
2 do {
3 c a l c u l a t e k(t)
4 S := {i : ki(t) sign(bi(t)) < 0}
5 i f (S = ∅) {
6 j = arg maxi |ki(t)|
7 } e l s e {
8 j = arg maxi∈S |ki(t)|
9 }

10 bj(t+ ∆t) = bj(t) + sign(ki(t)) ·∆t
11 bi(t+ ∆t) = bi(t) , i ∈ {1, . . . , j − 1, j + 1, . . . , p}
12 t← t+ ∆t
13 } whi le (k(t) 6= 0)

7.3. R packages

sparsenet

SparseNet [Mazumder et al., 2011] is a fast variant of the pathwise coordinate

descent optimization in Section 7.1, which works also for nonconvex penalties.

Mazumder et al. [2011] focused on regression problems with rescaled version of the

minimax concave penalty in Section 5.4. An R implementation of this particular

penalty is provided in the sparsenet package version 1.1 [Mazumder et al., 2013].

glmnet

Another implementation of pathwise coordinate descent is the R package glmnet

version 1.9-3 [Friedman et al., 2010]. Its same-named function uses the elastic

net penalty and calculates a path with varying λ and fixed α.
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msgps

An R implementation of the generalized path seeking algorithm is the package

msgps version 1.3 [Hirose, 2012]. Simultaneously to the coefficient path, corre-

sponding generalized degrees of freedom estimates are calculated.

penalized

For fused Lasso regression, coordinate descent methods can fail and R implemen-

tations with the generalized path seeking algorithm do not exist. Therefore we use

the R package penalized version 0.9-42 [Goeman, 2012]. This package optimizes

with a combination of gradient ascent and the Newton-Raphson algorithm.
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8. Method comparison

8.1. Datasets

Polycyclic Aromatic Compound (PAC)

The first dataset comes from 209 polycyclic aromatic compounds. The goal is to

describe quantitative structure-property relationships (QSPR) by a linear model.

Given are 2688 descriptors (after exclusion of almost constant variables), that

are structural features of molecular 3D structures (X matrix). The dependend

variable that should be predicted, consists of the gas chromatographic retention

index (y vector). This dataset was already used by Varmuza et al. [2013] to

describe and evaluate variable selection methods.

Near Infrared Spectroscopy (NIR)

The second dataset contains 235 variables (transformed NIR absorbance values)

of 166 alcoholic fermentation mashes of rye, wheat and corn. These variables are

ordered by increasing wavelength. Two dependend variables are available to be

taken into the model separately. This dataset was further described by Liebmann

et al. [2009].

8.2. Model estimation procedures

We examine two model estimation procedures, based on sparsenet. The calibration

is done by cross-validation. Looking at the MSECAL values for different values

of α and λ, we either choose the pair (λ∗, α∗) with

(λ∗, α∗) := arg min
(λ,α)

MSECAL (λ, α) (8.1)
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(“snet min”), or the model with the least generalized degrees of freedom of the set

of all models (λ, α) with

MSECAL (λ, α) < MSECAL (λ∗, α∗) + σCAL,

where (λ∗, α∗) is the solution of (8.1), and σCAL is the standard deviation of the

squared errors, estimated on the validation set (“snet 1se”).

With the functions, provided in package glmnet we evaluate Lasso regression,

Ridge regression, and regression with the elastic net penalty. For Lasso regression

and Ridge regression, we consider both model calibration procedures, which we

use in the sparsenet based model estimation (“lasso min” or “lasso 1se”, and “ridge

min” and “ridge 1se”). For regression with the elastic net penalty, the cross-

validation and model selection analogue to (8.1) is performed (“elastic net”).

The elastic net penalty as well as the generalized elastic net penalty are included

in the msgps package. Because for each parameter estimate the corresponding

degrees of freedom are provided, we evaluate these penalized regression methods

by using the model selection criteria (6.11) and (6.14) (“enet cp” or “enet gcv”,

and “genet cp” or “genet gcv”).

For NIR spectroscopy data, results from the fused Lasso (which are implemented

in the R package penalized) are presented (“fused”).

We compare these penalized regression methods with PLS regression, where

all variables are included (“pls”). The number of latent variables are obtained by

cross-validation (minimum MSECV ). The necessary computation are done, using

the R package pls version 2.3-0.

8.3. Results

For the evaluation of each method, repeated cross-validation was done with r = 10
repetitions (except for fused Lasso with only one repetition) and k = 10 splits of

the calibration set for cross-validation. If for an estimation method, calibration

was done by cross-validation too, the training set is split in 10 parts as well.

PAC data

Quantiles of the absolute cross-validation errors are listed in Table 8.1.

The performance of “enet cp” and “enet gcv” on this data is bad. It seems to

be, that the generalized path seeking algorithm converges at a suboptimal point
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in this setting. The methods “elasticnet” and “lasso min” perform well, and the

method “lasso 1se” performs best. All of these three methods have small standard

deviation estimates, but “lasso 1se” stands out, because the largest absolute error

is 28.8, which is less than a half compared to all other competing methods. The

sparsenet methods perform at a level with “elasticnet”, but produce a few severe

outliers. The “pls” method is beaten by “lasso 1se”, because of higher outliers, but

performs equally well comparing to “elasticnet” and “lasso min”.

Boxplots for visualization can be found in Figure 8.1(a). The boxplots of “enet

cp” and “enet gcv” are left out, because they would inflate the y-scale.

0% 25% 50% 75% 90% 95% 99% 100% RMSEP

elasticnet 0.00 1.62 3.59 6.81 10.98 14.41 21.48 97.33 7.73
enet cp 0.01 26.91 61.68 85.13 106.47 122.58 143.44 149.57 69.82
enet gcv 0.01 27.39 62.39 85.21 106.05 122.39 143.12 146.56 69.82
genet cp 0.00 4.23 8.52 15.88 27.49 32.79 45.68 83.07 15.77
genet gcv 0.00 2.06 5.03 10.42 17.96 22.66 37.20 371.62 13.79
lasso 1se 0.00 1.95 4.24 7.82 12.38 15.51 21.47 28.88 7.45
lasso min 0.00 1.66 3.71 7.03 11.23 14.88 22.53 121.73 8.43
pls 0.00 1.53 3.74 7.17 12.87 16.62 28.30 88.49 9.30
ridge 1se 0.01 2.66 6.15 12.16 20.01 28.02 50.05 318.72 17.18
ridge min 0.00 2.17 5.21 9.48 14.71 18.01 31.62 342.33 12.34
snet 1se 0.01 1.73 3.79 7.28 12.79 15.62 24.21 1186.71 27.86
snet min 0.00 1.73 3.85 7.00 11.89 15.41 24.54 238.01 12.58

Table 8.1.: Quantiles and RMSEP of absolute errors (PAC data)

NIR data (glucose)

In this case, the performance of our estimation methods is homogeneous, except

for the ridge regression methods “fused”, “ridge 1se” and “ridge min” (see Table

8.2 and Figure 8.2(a)).

NIR data (ethanol)

Again “enet cp“ performs not as good as the competing methods. The RMSEP is

9.21 and its maximum absolute error is 20.52. These values differ highly from the

rest (see Table 8.3 and Figure 8.3(a)). Except “enet cp”, “fused”, and the ridge

regression methods, all of the methods perform exceptionally good with RMSEPs

between 1.44 and 2.79.
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0% 25% 50% 75% 90% 95% 99% 100% RMSEP

elasticnet 0.00 1.76 3.81 6.72 8.92 9.93 14.11 28.86 5.71
enet cp 0.00 2.18 4.81 8.56 11.68 13.68 17.68 25.10 7.17
enet gcv 0.00 1.69 4.27 6.66 9.24 10.58 14.88 29.19 5.93
fused 0.07 3.73 5.94 14.51 19.72 21.47 28.59 31.73 11.41
genet cp 0.00 1.95 4.24 7.56 10.54 12.22 16.78 33.61 6.47
genet gcv 0.00 1.94 3.71 6.16 8.56 10.38 14.64 33.95 5.44
lasso 1se 0.00 1.94 4.06 7.09 9.55 10.65 15.46 26.42 6.06
lasso min 0.01 1.82 3.64 6.62 8.83 9.76 14.30 25.35 5.59
pls 0.00 1.67 3.35 6.15 9.16 10.46 12.71 22.34 5.32
ridge 1se 0.00 2.64 5.91 12.63 16.88 19.20 23.79 27.29 10.04
ridge min 0.00 2.49 6.07 11.99 16.14 18.14 22.33 25.72 9.55
snet 1se 0.00 1.87 3.80 6.66 9.69 11.03 14.23 28.76 5.81
snet min 0.00 1.78 3.76 6.43 9.22 10.73 13.71 21.98 5.54

Table 8.2.: Quantiles and RMSEP of absolute errors (NIR data [glucose])

Summary

To interpret these results correctly, we define a measure analogously to the idea of

the coefficient of determination R2. Evaluation of a model estimation procedure

by repeated cross-validation results in rn estimates ŷ1, . . . , ŷrn, where r is the

number of repetitions. Let yji be the (true) entry of the vector y, corresponding

to the estimate ŷi. Then the predicted residual error sum of squares is defined as

PRESS :=
rn∑
i=1

(yji − ŷi)
2 =

r∑
j=1

n ·MSE
(j)
CV ,

where MSE
(j)
CV is estimator (6.13) applied on the jth repetition of the r CV runs.

We further define the predicted sum of absolute residual errors

PSARE :=
rn∑
i=1
|yji − ŷi| ,

and the total sum of squares and the sum of absolute deviations of the original

values

TSS := r
n∑
i=1

(yi − ȳ)2

and

TSA := r
n∑
i=1
|yi − ỹ| ,
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0% 25% 50% 75% 90% 95% 99% 100% RMSEP

elasticnet 0.00 0.44 0.98 1.65 2.25 3.18 5.08 5.56 1.56
enet cp 0.00 5.25 8.06 11.23 14.08 15.53 18.17 20.52 9.21
enet gcv 0.00 0.39 0.83 1.47 2.42 3.27 4.53 7.44 1.49
fused 0.01 2.25 3.96 7.58 12.95 15.62 21.18 22.80 7.47
genet cp 0.00 0.98 1.93 3.03 4.60 5.66 7.39 9.64 2.79
genet gcv 0.00 0.42 0.88 1.47 2.33 3.03 4.60 5.54 1.44
lasso 1se 0.00 0.60 1.23 1.91 2.64 3.51 5.53 6.55 1.77
lasso min 0.00 0.50 1.07 1.74 2.50 3.38 5.02 6.13 1.64
pls 0.00 0.38 0.83 1.51 2.28 2.93 4.14 5.50 1.40
ridge 1se 0.00 2.43 4.11 6.65 9.20 11.39 14.20 17.26 5.81
ridge min 0.00 2.18 3.93 6.15 8.75 11.06 13.93 16.31 5.55
snet 1se 0.00 0.49 1.11 1.90 2.99 3.85 5.24 7.70 1.81
snet min 0.00 0.52 1.11 1.75 2.70 3.39 4.80 5.64 1.66

Table 8.3.: Quantiles and RMSEP of absolute errors (NIR data [ethanol])

with ȳ being the mean of the yi and ỹ being the median. Then we define the

quotient of squared errors as PRESS/TSS, and the quotient of absolute errors as

PSARE/TSA.

The smaller these quotients get, the better the corresponding model predicts.

From Table 8.4 and Table 8.5 we see, that above quotients are relatively high

for methods applied to the NIR (glucose) data. The methods “elasticnet”, “lasso

1se”, “lasso min”, “snet 1se”, and “snet min” perform well in the other situations,

and “genet cp” and “genet gcv” perform better than their “enet” counterparts. For

the NIR data (glucose and ethanol), the “ridge” methods and “fused” performed

worse than the competing methods.

We also see, that “pls” is always among the best model estimation procedures,

but it can always be replaced by a penalized regression procedure, leading to

sparse solution. More exactly the methods “elasticnet”, “lasso 1se”, “lasso min”

get almost equal residual errors with outliers of similar magnitude.
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PAC NIR (glucose) NIR (ethanol)

elasticnet 0.074 0.375 0.062
enet cp 0.867 0.472 0.423
enet gcv 0.867 0.384 0.057
fused 0.742 0.292
genet cp 0.169 0.422 0.116
genet gcv 0.113 0.360 0.056
lasso 1se 0.081 0.402 0.072
lasso min 0.077 0.368 0.066
pls 0.082 0.348 0.055
ridge 1se 0.139 0.654 0.248
ridge min 0.102 0.622 0.235
snet 1se 0.090 0.383 0.071
snet min 0.084 0.367 0.067

Table 8.4.: Quotients of absolute errors

PAC NIR (glucose) NIR (ethanol)

elasticnet 0.009 0.163 0.005
enet cp 0.751 0.257 0.171
enet gcv 0.751 0.175 0.004
fused 0.650 0.112
genet cp 0.038 0.209 0.016
genet gcv 0.029 0.148 0.004
lasso 1se 0.009 0.183 0.006
lasso min 0.011 0.156 0.005
pls 0.013 0.141 0.004
ridge 1se 0.045 0.503 0.068
ridge min 0.023 0.455 0.062
snet 1se 0.120 0.169 0.007
snet min 0.024 0.153 0.006

Table 8.5.: Quotients of squared errors
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Figure 8.1.: Performance on the PAC data

49



el
as

tic
 n

et

en
et

 c
p

en
et

 g
cv

fu
se

d

ge
ne

t c
p

ge
ne

t g
cv

la
ss

o 
1s

e

la
ss

o 
m

in pl
s

rid
ge

 1
se

rid
ge

 m
in

sn
et

 1
se

sn
et

 m
in

0

5

10

15

20

25

(a) Absolute errors (without outliers)

●●●●●●●

●

●●

●● ●● ●●

el
as

tic
 n

et

en
et

 c
p

en
et

 g
cv

fu
se

d

ge
ne

t c
p

ge
ne

t g
cv

la
ss

o 
1s

e

la
ss

o 
m

in

sn
et

 1
se

sn
et

 m
in

0

50

100

150

200

(b) Number of non-zero parameters

Figure 8.2.: Performance on the NIR data (glucose)
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Figure 8.3.: Performance on the NIR data (ethanol)
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9. Discussion

In this work we focused on three concepts: sparsity, (bridge) penalties, and model

selection based on the in-sample prediction error. We tried to summarize and to

motivate them with a little mathematics.

In chemometrics, penalized regression seems to be far less popular in com-

parison to the methods PLS or its close relative principal component regression

(PCR). After viewing our results, this fact may not be easy to explain. With

the recently introduced bridge penalties, more possibilities are available to adapt

the model complexity to the data. But the results also show, that even the more

simple and more intuitive penalized regression methods can serve the needs well,

with the Lasso leading the way. Another striking fact is, that in all situations

a well performing model with many non-zero variables, can be replaced by an

equally well performing model with much less non-zero variables. Not necessarily

a compromise between the prediction property and the interpretability of model

estimation methods has to be found.

One reason for these good results may be the optimization methods, which were

introduced recently in the field of penalized regression. Especially coordinate

descent methods converge very fast to a suitable stationary point, even in the

high-dimensional case.

Further research has to be done in the problem of model selection. Especially

on the elastic net, we saw that different model selection procedures may have a

severe impact on the performance in model estimation. The most stable results

where gained by using cross-validation.

In conclusion, we strongly recommend penalized regression methods as an al-

ternative to PLS, since these methods show equal or better performance, and

due to sparsity they lead to much simpler models, being more stable and better

interpretable.
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A. R Code

CrossValGroups <- function(n, g) {

# forms random groups for cross validation

#

# Args:

# n: number of observations

# g: number of groups

#

# Returns:

# vector of groupselection (integer; ranges from 1 to g)

groups <- rep(1:g, len = n)

perm.groups <- sample(groups)

return(perm.groups)

}

ParSelElasticNet <- function(x.inner, y.inner, alpha.split=10) {

# selects the parameters alpha and lambda with the least cross validation

# error. Alpha runs through alpha.split equidistant points between 0 and 1

# This function uses package "glmnet"

#

# Args:

# x.inner: matrix of variables

# y.inner: vector of the dependend variable

# alpha.split: number of equidistant values of alpha between 0 and 1

#

# Returns:

# list of alpha and lambda

cvm.matrix <- NULL

lambda.matrix <- NULL

n.inner <- length(y.inner)

for (j in 0:(alpha.split-1)) {

groups.for.cv <- CrossValGroups(n=n.inner, g=10)

res.cv.glmnet <- cv.glmnet(x.inner, y.inner, alpha=j/alpha.split,

foldid=groups.for.cv)

cvm.matrix <- cbind(cvm.matrix, res.cv.glmnet$cvm)
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lambda.matrix <- cbind(lambda.matrix, res.cv.glmnet$lambda)

}

idx.cvm.min <- which(cvm.matrix == min(cvm.matrix), arr.ind=TRUE)

lambda <- lambda.matrix[idx.cvm.min]

alpha <- (idx.cvm.min[2] - 1)/alpha.split

return(list(alpha=alpha, lambda=lambda))

}

ParSelElasticNet2 <- function(x.inner, y.inner, alpha.split=10, bridge="enet",

method="cp") {

# selects the parameters alpha and lambda with either mallow's Cp or

# generalized cross validation. Alpha runs through alpha.split equidistant

# points between 0 and 1. This function uses package "msgps"

# Args:

# x.inner: matrix of variables

# y.inner: vector of the dependend variable

# alpha.split: number of equidistant values of alpha between 0 and 1

# method: "cp" or "gcv"

# bridge: either "enet" or "genet" for (generalized) elastic net

#

# Returns:

# list of alpha and lambda

criterion <- NULL

lambda.vector <- NULL

if (bridge == "enet") {

for (j in 0:(alpha.split-1)){

res.msgps <- msgps(x.inner, y.inner, penalty=bridge, alpha=j/alpha.split)

if (method == "cp") {

criterion <- c(criterion, min(res.msgps$dfcp_result$result))

w.crit <- which.min(res.msgps$dfcp_result$result)

lambda.vector <- c(lambda.vector,

res.msgps$dfgps_result$tuning_stand[w.crit])

}

if (method == "gcv") {

criterion <- c(criterion, min(res.msgps$dfgcv_result$result))

w.crit <- which.min(res.msgps$dfgcv_result$result)

lambda.vector <- c(lambda.vector,

res.msgps$dfgps_result$tuning_stand[w.crit])

}

}

}

if (bridge == "genet") {
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for (j in 1:(alpha.split-1)){

res.msgps <- msgps(x.inner, y.inner, penalty=bridge, alpha=j/alpha.split)

if (method == "cp") {

criterion <- c(criterion, min(res.msgps$dfcp_result$result))

w.crit <- which.min(res.msgps$dfcp_result$result)

lambda.vector <- c(lambda.vector,

res.msgps$dfgps_result$tuning_stand[w.crit])

}

if (method == "gcv") {

criterion <- c(criterion, min(res.msgps$dfgcv_result$result))

w.crit <- which.min(res.msgps$dfgcv_result$result)

lambda.vector <- c(lambda.vector,

res.msgps$dfgps_result$tuning_stand[w.crit])

}

}

}

idx.crit.min <- which.min(criterion)

alpha <- idx.crit.min/alpha.split

lambda <- lambda.vector[idx.crit.min]

return(list(alpha=alpha, lambda=lambda))

}

ParSelFusedLasso <- function(x.inner, y.inner) {

mse.matrix <- matrix(NA, nrow=5, ncol=5)

n.inner <- length(y.inner)

for (j in 1:5) {

print("III")

print(j)

lambda1 <- exp(j/3) - 1

for (k in 1:5) {

print("IV")

print(k)

lambda2 <- exp(k/3 ) - 1

groups.for.cv <- CrossValGroups(n.inner, 10)

y.pred <- NULL

y.test <- NULL

for (i in 1:10) {

print("V")

print(i)

x.cv <- x.inner[groups.for.cv != i, ]

y.cv <- y.inner[groups.for.cv != i]

x.test <- x.inner[groups.for.cv == i, ]
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y.test <- c(y.test, y.inner[groups.for.cv == i])

print(y.test)

fused.obj <- penalized(y.cv, x.cv, fusedl=TRUE, lambda1=lambda1,

lambda2=lambda2, model="linear", maxiter=100)

y.pred <- c(y.pred, predict(fused.obj, penalized=x.test)[, 1])

print(y.pred)

}

mse.matrix[j, k] <- sum((y.pred - y.test)^2)

}

print(mse.matrix)

}

idx.mse.min <- which(mse.matrix == min(mse.matrix), arr.ind=TRUE)

print(idx.mse.min)

lambda1 <- exp(idx.mse.min[1]/3) - 1

lambda2 <- exp(idx.mse.min[2]/3) - 1

return(list(lambda1=lambda1, lambda2=lambda2))

}

MainFunction <- function(x, y, k.val=10, repetitions.val=10,

method1="elasticnet", method2="cp", alpha.split=10) {

# performs the repeated double cross validation and calls subfunctions for

# calibration

#

# Args:

# x: matrix of variables

# y: vector of the dependent variable

# k.val: number of splits for cross validation

# repetitions.val: number of outer cross validation loops

# method1: one of the following: "sparsenet", "elasticnet", "enet",

# "genet", "ridge", "lasso", "fused", "pls"

# method2: if method1 == "sparsenet"; either "parms.min" or "parms.1se"

# if method1 == "enet" or "genet"; either "cp" or "gcv"

# if method1 == "ridge" or "lasso"; either "lambda.1se" or

# "lambda.min"

# alpha.split: number of equidistant alpha values between 0 and 1

#

# Returns:

# a list containing the original and predicted y values and a vector

# of the numbers of nonzero estimates

n <- length(y)

y.val.save <- NULL

y.pred.save <- NULL
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nzero.save <- NULL

for (j in 1:repetitions.val) {

groups <- CrossValGroups(n, k.val)

for (i in 1:k.val) {

x.inner <- x[groups != i, ]

y.inner <- y[groups != i]

y.val.save <- c(y.val.save, y[groups == i])

if (method1 == "elasticnet") {

parameters <- ParSelElasticNet(x.inner, y.inner, alpha.split)

obj.glmnet <- glmnet(x.inner, y.inner, alpha=parameters$alpha)

pred.glmnet <-predict(obj.glmnet, newx=x[groups == i, ],

s=parameters$lambda, type="response")

nzero.new <- nrow(predict(obj.glmnet, newx=x[groups == i, ],

s=parameters$lambda, type="nonzero"))

y.pred.save <- c(y.pred.save, pred.glmnet)

nzero.save <- c(nzero.save, nzero.new)

}

if (method1 == "ridge"){

cv.ridge <- cv.glmnet(x.inner, y.inner, alpha=0)

pred.ridge <-predict(cv.ridge, newx=x[groups == i, ], s=method2,

type="response")

nzero.new <- nrow(predict(cv.ridge, newx=x[groups == i, ], s=method2,

type="nonzero"))

y.pred.save <- c(y.pred.save, pred.ridge)

nzero.save <- c(nzero.save, nzero.new)

}

if (method1 == "lasso"){

obj.lasso <- cv.glmnet(x.inner, y.inner, alpha=1)

pred.lasso <-predict(obj.lasso, newx=x[groups == i, ], s=method2,

type="response")

nzero.new <- nrow(predict(obj.lasso, newx=x[groups == i, ], s=method2,

type="nonzero"))

y.pred.save <- c(y.pred.save, pred.lasso)

nzero.save <- c(nzero.save, nzero.new)

}

if ((method1 == "enet") | (method1 == "genet")) {

parameters <- ParSelElasticNet2(x.inner, y.inner, alpha.split,

bridge=method1, method=method2)

obj.msgps <- msgps(x.inner, y.inner, penalty=method1,

alpha=parameters$alpha)

pred.msgps <- predict(obj.msgps, X=x[groups == i, ],
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tuning=parameters$lambda)

y.pred.save <- c(y.pred.save, pred.msgps)

if (method2 == "cp") {

nzero.new <- sum(coef(obj.msgps)[,"Cp"] != 0)

}

if (method2 == "gcv") {

nzero.new <- sum(coef(obj.msgps)[,"GCV"] != 0)

}

nzero.save <- c(nzero.save, nzero.new)

}

if (method1 == "sparsenet") {

obj.cv.sparsenet <- cv.sparsenet(x.inner, y.inner)

pred.sparsenet <- predict(obj.cv.sparsenet, which=method2,

newx=x[groups == i,])

y.pred.save <- c(y.pred.save, pred.sparsenet)

if (method2 == "parms.1se") {

nzero.new <- obj.cv.sparsenet$nzero[obj.cv.sparsenet$which.1se[1],

obj.cv.sparsenet$which.1se[2]]

nzero.save <- c(nzero.save, nzero.new)

}

if (method2 == "parms.min") {

nzero.new <- obj.cv.sparsenet$nzero[obj.cv.sparsenet$which.min[1],

obj.cv.sparsenet$which.min[2]]

nzero.save <- c(nzero.save, nzero.new)

}

}

if (method1 == "fused"){

parameters <- ParSelFusedLasso(x.inner, y.inner)

obj.fused <- penalized(y.inner, x.inner, fusedl=TRUE,

lambda1=parameters$lambda1,

lambda2=parameters$lambda2,

model="linear", maxiter=200)

pred.fused <- predict(obj.fused, x[groups == i,])[, 1]

nzero.new <- length(coef(obj.fused))-1

nzero.save <- c(nzero.save, nzero.new)

y.pred.save <- c(y.pred.save, pred.fused)

}

if (method1 == "pls") {

x.test <- x[groups == i, ]

obj.pls <- plsr(y.inner~x.inner, ncomp=30, validation="CV",

segments=10, segment.type="random", method="simpls")
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opt.ncomps <- which.min(RMSEP(obj.pls)$val[1,,-1])

pred.pls <- predict(obj.pls, x.test, ncomp=opt.ncomps, type="response")

y.pred.save <- c(y.pred.save, pred.pls)

}

}

}

return(list(y.val.save=y.val.save, y.pred.save=y.pred.save,

nzero.save=nzero.save))

}
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