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Abstract

In order to (preferably) automatically derive the neuronal structures from brain
tissue image stacks, the research field computational neuroanatomy relies on com-
puter assisted techniques such as visualization, machine learning and analysis.
The image acquisition is based on the so-called transmission electron microscopy
(TEM) that allows resolution which is high enough to identify relevant structures
in brain tissue images (less than 5 nm per pixel). In order to get to an image stack
(or volume) the tissue samples are sliced (or sectioned) with a diamond knife in
slices of 40 nm thickness. This approach is called serial-section transmission
electron microscopy (ssTEM). The manual segmentation of these high-resolution,
low-contrast and artifact afflicted images would be impracticable alone due to the
high resolution of 200,000 images of size 2, 000, 000 × 2, 000, 000 pixel in a cubic
centimeter tissue sample. But, the automatic segmentation is error-prone due
to the small pixel value range (8 bits per pixel) and diverse artifacts resulting
from mechanical sectioning of tissue samples. Additionally, the biological samples
in general contain densely packed structures which leads to a non-uniform back-
ground that introduces artifacts as well. Therefore, it is important to quantify,
visualize and reproduce the automatic segmentation results interactively with as
few user interactions as possible.

This thesis is based on themembrane segmentation proposed by Kaynig-Fittkau
[2011] which for ssTEM brain tissue images outputs two results: (a) a certainty
value per pixel (with regard to the analytical model of the user selection of cell
membrane pixels) which states how certain the underlying statistical model is
that the pixel is belonging to the membrane, and (b) after an optimization step
the resulting edges which represent the membrane. In this work we present a
visualization-assisted method to explore the parameters of the segmentation. The
aim is to interactively mark those regions where the segmentation fails in order
to structure the post- or re-segmentation and to prove-read the segmentation re-
sults. This is achieved by weighting the membrane pixels by the uncertainty values
resulting from the segmentation process.

We start here and employ user knowledge once more to decide which data and in
what form should be introduced to the random forest classifier. The aim here is to
improve the segmentation results by either improving the segmentation quality, by
increasing the segmentation speed or by reducing the memory consumption for the
segmentation. In this regard we focus our attention especially on the visualizations
of the uncertainty, the errors and the multi-modal data. The interaction techniques
are explicitly used in those cases where we expect the highest gain at the end of
the exploration. We show the effectiveness of the proposed methods using the
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freely available ssTEM brain tissue dataset of the drosophila fly. Because we lack
the expert knowledge in the field of neuroanatomy we base our assumptions and
methods on the underlying ground truth segmentations of the drosophila fly brain
tissue dataset.

In this work we carry out five experiments with six feature sets and three
training sets for the segmentation of membranes. The experiments indicate that
creating new features with so-called aspect windows help improve the prediction
performance through lower prediction error and higher precision. Furthermore,
the visualization-assisted feature exploration presented in this work leads to a
reduction of the original feature set of 42% which results in slightly higher (0.07%)
prediction error. The reduction of the feature set also leads to shorter processing
times and to lower memory space requirements which is necessary especially for
large ssTEM brain tissue images.



Kurzfassung

Der Forschungsbereich Computational Neuroanatomy verwendet rechnergestützte
Techniken wie Visualisierung, Modellierung und Analyse, um die neuronalen Struk-
turen von Gehirnproben aus Bild-Stapeln (semi-)automatisch abzuleiten. Für die
Gewinnung der Bilder, in der relevante Strukturen hoch genug aufgelöst sind,
verwendet man die sogenannte Transmissionselektronenmikroskopie (TEM), die
eine Pixelauflösung von unter 5 nm ermöglicht. Um einen Bild-Stapel oder ein
Volumen zu erhalten, wird die Probe mit einem Diamantenmesser in 40 nm dicke
Slices geschnitten, dies bezeichnet man als serial-section Transmissionselektronen-
mikrospie (ssTEM). Die manuelle Segmentierung dieser hochaufgelösten aber kon-
trastarmen und mit Aufnahmefehlern behafteten Bilder wäre allein wegen der ho-
hen Auflösung der 200.000 Bilder mit 2.000.000×2.000.000 Pixel pro Bild in einem
Kubikzentimeter Gehirnprobendatensatz inpraktikabel. Da die Pixel einen gerin-
gen Wertebereich (8 Bits pro Pixel) haben und verschiedenste Aufnahmeartefakte
beinhalten, ist eine vollautomatische Segmentierung fehleranfällig. Erschwerend
kommt noch hinzu, dass biologische Proben dichtgepackt mit Strukturen sind,
was in einem nicht-uniformen Hintergrund resultiert und zu weiteren Artefakten
führt. Deshalb ist es wichtig, die Ergebnisse aufwendiger automatischer Segmen-
tierungsverfahren zu quantifizieren, zu visualisieren und interaktiv mit möglichst
wenig Benutzer-Interaktionen reproduzieren zu können.

Diese Arbeit basiert auf dem Membran-Segmentierungsverfahren von Kaynig-
Fittkau [2011], welches für ssTEM Hirngewebe-Bilder unter anderem folgende Aus-
gaben liefert: (a) ein Zuversichtswert für jeden Pixel (bezüglich des analytischen
Modelles der Benutzerwahl der Zellmembranen) der angibt, wie sicher sich das zu-
grundeliegende statistische Modell ist, dass das Pixel zur Membran gehört und (b)
die nach der Optimierung erhaltenen Kanten, welche die Zellmembranen repräsen-
tieren. In dieser Arbeit präsentieren wir eine visualisierungsgestützte Methode,
die Parameter der Segmentierung zu explorieren. Wir möchten dem Benutzer,
der eine Nachsegmentierung oder ein Korrekturlesen der Segmentierungsergebnisse
vornehmen möchte, interaktiv Stellen der Unsicherheit anzeigen, indem wir jede
Kante mit den Wahrscheinlichkeiten der zur Kante gehörenden Pixel gewichten
und die Stellen der Unsicherheit visualisieren.

Wir setzen genau hier an und verwenden Benutzerwissen ein weiteres Mal, um
entscheiden zu können, welche und in welcher Form man Daten dem Random-
Forest-Klassifizierer zur Verfügung stellen muss. Das Ziel dabei ist es, die Seg-
mentierungsergebnisse zu verbessern, in dem man die Qualität der Segmentierung
verbessert, die Segmentierung beschleunigt oder den Speicheraufwand reduziert.
In diesem Zusammenhang gehen wir insbesondere auf die Visualiserung von Un-
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sicherheiten, Fehlern und multimodalen Daten ein. Die Interaktionstechniken wer-
den gezielt dort eingesetzt, wo wir den höchsten Gewinn am Ende der Exploration
erwarten. Wir überprüfen unsere Erkenntnisse dann mit einem frei zur Verfügung
stehendem Beispiel, nämlich anhand eines Drosophila-Larven Datensatzes. Da uns
das Expertenwissen aus dem Bereich der Neuroanatomie fehlt, stützen wir unsere
Annahmen und Methoden auf den zugundeliegenden vorsegmentierten Beispielen.

In dieser Arbeit führen wir fünf Experimente mit sechs Merkmalsmengen und
drei Trainingsmengen durch, die für die Segmentierung von Membranen verwen-
det werden. Die Experimente zeigen, dass das Erzeugen von neuen Merkmalen
mithilfe von sogenannten Aspektfenstern die Vorhersage, durch geringere Vorher-
sagefehler und höhere Präzision, verbessert. Des Weiteren führt die in dieser
Arbeit vorgestellte visualisierungsgestützte Exploration der Merkmalsmengen zu
einer Reduktion der ursprünglichen Merkmalsmenge von 42%, das in einem gering
höheren (0.07%) Vorhersagefehler resultiert. Die Reduktion der Merkmalsmenge
führt auch zu kürzeren Rechenzeiten wie zur geringeren Speicherplatz Anforderun-
gen, was insbesondere für große ssTEM Hirngewebe-Bilder notwendig ist.
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Chapter 1

Introduction

"Example is the school of mankind, and they will learn at no
other."

Letters on a Regicide Peace
Edmund Burke

Image understanding is a relatively new research topic in the field of digital
image processing and pattern recognition. The idea is to use computational meth-
ods (a) to pre-process images, (b) to recognize logical structures in images, (c)
to extrapolate object movements, and (d) to summarize the contents of an image
in order to understand the overall scene. The prerequisite for the most image
understanding tasks is to identify logically coherent objects in an image, either
automatically or semi-automatically. Logical coherent objects are objects which
make "sense" to the domain expert but not necessarily to the software system.
This process, also known as image segmentation, is guided by a human expert image

segmentationuser who knows which pixels are belonging to a bigger structure and therefore to
a logically coherent object. The problem here is that it is a non-trivial task to
recognize image objects and to represent user knowledge of what an object might
look like.

1.1 Short Introduction to Neuroanatomy

In the field of neuroanatomy the focus lies on understanding the central nervous neuro-
anatomysystem which basically consists of two main cell types: the neurons and the neu-

roglia. While the former cells receive impulses (through dentrites), conduct them
and send them (through axons) to other cells (e.g., other neurons or muscle cells),
the latter ensures the proper functionality of the neurons (Patestas and Gartner
[2006]). The dentrites and the axons of a neuron are also called neuronal processes. neuronal

processesEach neuron communicates with other neurons and other target cells through the
so called synapses which are located at the axon terminal, as illustrated in Fig- synapses

ure 1.1. There are two types of synapses: An electrical synapse exchanges ions via
gap junctions, where the gap (also called the synaptic cleft) width is about 2-4
nm (Patestas and Gartner [2006]). A chemical synapse having a synaptic cleft of
20-30 nm exchanges messenger molecules which are contained in synaptic vesicles.
These molecules are then released into the synaptic cleft and registered by the

1
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Figure 1.1: Illustration of a neuron cell with neuronal processes (© 2007 by
Mariana Ruiz Villarreal http://commons.wikimedia.org).

receptors on the other side of the cleft. Furthermore, it is important to know that
some axons have a fatty substance called myelin sheath which protects its inter-myelin sheath

nals from the surrounding tissue. All neuronal processes contain mitochondria and
vesicles.

1.2 Transmission Electron Microscopy

The images discussed in this work show neuroanatomical structures like mem-
branes, vesicles and mitochondria, as illustrated in Figure 1.1 and illustrated in a
real-world example in Figure 1.2. In order to capture such small objects an imaging
technique is necessary which allows a resolution of below 5 nm per pixel (Kaynig-
Fittkau [2011]). Such an apparatus is called Transmission Electron Microscope
(TEM) with examples of the resulting images shown in Figure 1.3.TEM

Williams and Carter [2009] state some drawbacks of TEM imaging. First, we
are only able to view small parts of the specimen at a time. In other words, if we
would like to capture a larger tissue area we need to take a worse sampling quality
into account. Second, we are only able to produce two-dimensional images of non-
uniform widths of three-dimensional specimens. In this setting, it is difficult to
recognize structures for an expert user as well. Third, all pixels we see in a section
image are averages through the thickness of the specimens and a section image

http://commons.wikimedia.org/wiki/File:Complete_neuron_cell_diagram_en.svg
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(a) ssTEM image

(b) Segmentation result

Figure 1.2: Sliced image of densely packed neuronal structures such as mem-
branes of neuronal processes (dark green), mitochondria (light
green) and vesicles (red) (from Vazquez-Reina et al. [2011]).
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(a) Milled region

(b) Milled tissue sample

Figure 1.3: An example of a milled region (dashed rectangle) of a human male
brain tissue using serial section TEM (scale bar: 20µm; from
Knott et al. [2008]).
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does not have depth sensitivity (Williams and Carter [2009]).
In Figure 1.3b we see the trail of the diamond knife which mills sections from the

brain tissue sample. The automatic process of tissue milling and capturing is called
serial section transmission electron microscopy (ssTEM). For an introduction to ssTEM
electron microscopy we refer to Kaynig-Fittkau [2011] and Williams and Carter
[2009].

1.3 Problem Statement

One focus of computational neuroanatomy is the automatic segmentation of neu- compu-
tational
neuro-
anatomy

ronal structures in images of brain tissue samples. For this purpose, computing
techniques such as the visualization, the modeling and the analysis of image and
volumetric datasets are used (Kaynig-Fittkau [2011]). The images to be segmented
are captured using transmission electron microscopy which allows to detect very
small structures such as vesicles. Vesicles are shown as small dark circles which
while being in a cluster are a hint for being part of a synapse.

On the one side, it is important to state that the manual segmentation is not
practicable. Lets assume that each pixel represents a region area of A = sx× sy =
5 × 5nm (for sx = sy = 5) and we only have a brain tissue sample of, lets say,
D = 1 cm3 = 10,000,0003 nm3. Furthermore, if the section (also called slice)
thickness in z direction is sz = 20nm then we have a volume resolution of

V =

(
10,000,000

5
;
10,000,000

5
;
10,000,000

20

)
= (2,000,000; 2,000,000; 500,000)

voxels. If we only use eight bits per voxel then we need a storage requirement of
2,000,000× 2,000,000× 500,000× 8 = 1.6e19 bits or 1776+ petabyte.

On the other side, the quality of automatic segmentation is greatly influenced
by the quality of the captured images that contain densely packed structures which
are not easily separable with simple density value thresholding. In general, ssTEM
produces anisotropic volumes and results in two additional artifacts: The voxel size
in z direction is larger than in x and y directions. Therefore, the quality of volume
rendering and slice structure tracing across multiple slices of anisotropic volumes
is greatly influenced by slice stitching. Another common artifact in ssTEM images
is the problem of compressed zones, as illustrated in Figure 1.4, which lead to
blurry membranes and make it difficult to achieve a satisfying segmentation.

The central issues in this work are the selection of features (short for feature
images) and the training sample selection for the task of ssTEM segmentation of
membranes. Domingos [2012] describes why the feature selection is important:

"Easily the most important factor is the features used. If you have
many independent features that each correlate well with the class, learn-
ing is easy. On the other hand, if the class is a very complex function
of the features, you may not be able to learn it. Often, the raw data
is not in a form that is amenable to learning, but you can construct
features from it that are." (p. 81).
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(a) Slice thickness: 60 nm

(b) Slice thickness: 40 nm

Figure 1.4: Influence of slice thickness and compressed zones on image quality
using the same brain tissue (from Kaynig-Fittkau [2011]).
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1.4 Contributions of this Work

This work copes with the selection and construction of features (also called pre-
dictor variables in statistics) to improve the statistical learning task of finding the
pixels belonging to the neuronal membrane structures in TEM images as shown in
Figure 1.2. We build on the previous work of Kaynig-Fittkau [2011] and explore
visualization and interaction techniques for the selection of existing features and
the construction of new features from the old features. Furthermore, we discuss
an incremental approach for the construction of the training sample. The overall
goal is to improve the segmentation result through either a smaller prediction error
rate or smaller computation time.

1.5 Pipeline Overview

In this work to explore a set of features that is more representative as the orig-
inal set of 90 features proposed by Kaynig-Fittkau [2011]. Figure 1.5 shows five
feature images derived from the density feature D. Figure 1.5b shows a template
matching result R0 using rotated template images (with rotation angle being 0◦).
Figures 1.5c-1.5e are combinations of the rotated template images: variance, max-
imum and minimum. Figure 1.5f shows the per-pixel local histogram image h2 of
the bin having pixel intensity values in range [25.5, 51] (this means that we dis-
cretize the 8 bits per pixel value range [0, 255] into 10 bins and take the second
bin). The feature construction is described in depth in Chapter 3. The overall
target is to improve the segmentation process through either a smaller error rate,
a lower computation time or a lower memory requirement. For this purpose, we
combine visualization, user interaction and machine learning approaches into a
coherent feature exploration framework for ssTEM image segmentation.

1.5.1 Membrane Segmentation

The machine learning methods for the segmentation of membranes in ssTEM im-
ages can be split into different stages as illustrated in Figure 1.6. At the beginning
we have a density volume (or a stack of intensity images) which has been (a) cor-
rectly distorted because of the used lens system, (b) stitched and (c) aligned in
the z direction (we refer to Kaynig-Fittkau [2011] for an in-depth discussion of
the image processing workflow in connectomics). Because of the large data sets
we must rely on automatic distortion correction, stitching and alignment. The
aligned anisotropic density volume holds either 8 or 16 bits voxels.

Through the manual user labeling of a small sub-set of all existing pixels in a
slice image (couple of hundreds) we construct positive and negative examples of
membrane pixels as the training data table. In other words, each table row contains
an M -dimensional representation of a pixel. These M dimensions correspond
to the number of features in the data table that need to be pre-calculated (see
Chapter 3 for feature creation). After the feature pre-calculation step we now
have the data base which we can use to train the random forest classifier (see
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(a) D (b) R0

(c) σ2
R (d) MaxR

(e) MinR (f) h2

Figure 1.5: A sub-set of six feature images derived from density slice D illus-
trating value distributions of higher (brighter) and lower (darker)
feature values.
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Per-Slice Feature 
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Training Sample

Segmentation Result 
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Figure 1.6: The segmentation process relies on a pre-computed set of features
for each slice and training data. From this set we build a model
(here illustrated as a decision tree) that has the ability to classify
each new voxel in the class membrane (green) or the class non-
membrane (orange).
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Section 2.3.5). The result of the classification/segmentation stage is a confidence
value which describes for each pixel how confident the random forrest is that this
pixel is belonging to a membrane or a non-membrane.

1.5.2 Feature Exploration

The overall feature exploration workflow is illustrated in Figure 1.7. We start
with a density image and domain user knowledge or a ground truth image (Fig-
ure 1.7a). The ground truth volume contains pre-segmented membrane (blue) or
non-membrane labels for each pixel and the resulting segmentation volume con-
tains for each voxel a confidence value that states how confident the machine
learning algorithm is that this voxel belongs to the class membrane (green) or
non-membrane (orange). Figure 1.7b compares the features after the segmenta-
tion. The errors made are shown as false negative (red) and as false positive (blue)
regions. The true positives are shown in green and the false positives are not shown
at all.

1.5.3 Organization

In Chapter 2 we provide an introduction to a fundamental data structure that al-
lows the storage and access of spatially related objects which is used to represent
arrays, matrices and volumes. Furthermore, we will discuss tensor-based visual-
ization methods of spatial data structures. Then, we give a short introduction
in machine learning basics which are needed to understand the previous work as
well as the contribution of this work. At the end, we discuss the previous work in
the field of neuronal process segmentation as well as feature selection and creation
using statistical and machine learning approaches. In Chapter 3 we learn how new
features can be derived from the original intensity image and how they are used to
improve the overall error rate during segmentation. Over 90 different features are
derived from the intensity image through intensity transformation and filtering.
In Chapter 4 we use the pre-computed features and explore their expressiveness
by searching for redundancies and guide the search for relevant features. Further-
more, we combine the segmentation results with expert knowledge to explore the
impact of the feature set for the purpose of random forrest classification. We will
answer the following questions: Which features are relevant to the task of mem-
brane segmentation in ssTEM images? Which features can be omitted? Can we
construct new features as a combination of existing ones that better discriminate
between membrane and non-membrane voxels? In Chapter 5 we will discuss the
results from the exploration process by performing and analyzing the outcomes of
six experiments. We will see the impact of newly created feature sets as a result of
the feature exploration process. Finally, in Chapter 6 we will provide conclusive
remarks and possible future research directions.
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Density Volume Domain User Knowledge Segmentation Result Volume

Membrane Voxels Non-membrane Voxels

(a) Initial situation

False NegativesTrue Positives False Positives

(b) Feature comparison

Figure 1.7: Feature exploration workflow. (a) Initially, we only have a density
volume, the expert user knowledge of what a membrane voxel is
and the segmentation result volume. (b) The confusion matrix
slice plot for six different feature images which originated from
the density slice.





Chapter 2

Fundamentals & Previous Work

"Probability provides a way of summarizing the uncertainty
that comes from our laziness and ignorance."

Artificial Intelligence: A Modern Approach, 2nd Edition
Stuart Russel, Peter Norvig (p. 464)

In the previous chapter we have mentioned that the density volume alone is not
enough for a satisfactory segmentation of ssTEM brain tissue. To overcome this
issue we derive new feature volumes from the original density volume and provide
these feature volumes to a machine learning algorithm that classifies each pixel
individually into membrane or non-membrane. But to get to this point we need
an appropriate data structure – called tensor data structure – that stores different
kinds of feature volumes in a unified way. In order to utilize the expressiveness
of scientific and information visualization we need different visualization methods
to visualize and compare both feature volumes as well as feature slices. Finally,
we need to have a machine learning tool which allows the segmentation of single
pixels by not only providing a classification result but also a confidence percentage
or a probability.

2.1 Tensor Data Structure

One of the most commonly used data structures in scientific visualization is the
equidistant grid which stores scalar arrays, two-dimensional texture images and equidistant

gridthree-dimensional density volumes. Two examples of such grids are illustrated in
Figure 2.1: Cartesian grid in case of dx = dy and the rectangular grid for dx 6= dy.
In order to handle different types of equidistant spatial data (such as intensity,
three-channel and four-channel color images) as well as different dimensions (such
as images and volumes) we organize its elements in a tensor data structure. tensor data

structure
Originally, a tensor is defined as a mathematical description of a physical object

which can be viewed as multi-dimensional array and as the generalization of vectors
and matrices (Kolda and Bader [2009]). For the purpose of processing data based
on equidistant grids extend the tensor data structure in such a way that it can
hold any kind of storable information that is organized spatially according to the
order of the tensor which also determines its storage requirements:

13
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dy
dx

(a) Cartesian grid dx = dy

dy
dx

(b) Rectangular grid dx 6= dy

Figure 2.1: Two types of equidistant grids used in scientific visualization: (a)
Cartesian grid and (b) Rectangular grid.

0th-Order Tensors of order 0 are called scalars (e.g., temperature value, densityscalars

value, probability value, confidence value).

1st-Order Tensors of order 1 are called vectors (e.g., directions)vectors

2nd-Order Tensors of order 2 are called matrices (e.g., two-dimensional equidis-matrices

tant grids)

3rd-Order Tensors of order 3 are called volumes (e.g., density volume, confidencevolumes

volume).

We use the same notation as Vasilescu and Terzopoulos [2004]: (a) scalars are
denoted by lower case letters (x1, x2, . . .), (b) vectors are denoted by bold lower case
letters (x,y, . . .), (c) matrices are denoted by bold upper-case letters (A,B, . . .),
and (d) for higher-order tensors we use calligraphic upper-case letters (A,B, . . .).

More generally, we can say that the order of a tensor A = RI1×I2×...×IN is N
(Vasilescu and Terzopoulos [2004]), where Il is the size of the tensor in the l-th
dimension for l = 1, . . . , N . For example, for the 3rd-order tensor displayed in
Figure 2.2 the number of dimensions N = 3 and l ∈ {I1, I2, I3} with i = 1, . . . , I1,
j = 1, . . . , I2 and k = 1, . . . , I3. We can extend the tensor data structure to not
only to store scalars but to store a tensor element (TE) – in computer sciencetensor

element we speak about a structure rather than a single scalar value. For example, this
is necessary particularly in visualization where we would like to store Red-Greed-
Blue-Alpha channels for each image pixel. In this case the TE holds four scalars
instead of one.

Additionally, for the purpose of image slice and volume visualization we con-
sider 1st-, 2nd- and 3rd-order tensors. A vector has a number of elements where
the i-th element of a vector a is denoted by ai with i = 1, . . . , I1 where I1 is the
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number of elements stored in the vector. A matrix has a number of rows I1 and
columns I2 and its elements ai,j can be accessed using an index pair (i, j) with
i = 1, . . . , I1 and j = 1, . . . , I2. A volume has a number of rows I1, a number of
columns I2 and a number of tubes I3 and its elements can be accessed using an
index triple (i, j, k) with i = 1, . . . , I1, j = 1, . . . , I2 and j = 1, . . . , I3. Apart from
that, we also use fibers as the higher-order analogue of matrix rows and columns fibers

(Kolda and Bader [2009]), as illustrated in Figure 2.2.

i

j

k

(a) Mode-1 (column)
fibers: x:,j,k

i

j

k

(b) Mode-2 (row)
fibers: xi,:,k

i

j

k

(c) Mode-3 (tube)
fibers: xi,j,:

Figure 2.2: 3rd-order tensor fibers (from Kolda and Bader [2009]).

Particularly for the purpose of volume visualization, we can cut the volume
into coordinate-plane-parallel slices as illustrated in Figure 2.3. Kolda and Bader slices

[2009] defines slices as two-dimensional sections of a tensor where two indices are
varying and all others are fixed. The 3rd-order tensor can have horizontal (i fixed,
j and k varying), lateral (j fixed, i and k varying) and frontal slices (k fixed, i and
j varying).

i

j

k

(a) Horizontal slices:
xi,:,:

i

j

k

(b) Lateral slices: x:,j,:

i

j

k

(c) Frontal slices: x:,:,k

Figure 2.3: 3rd-order tensor slices parallel to the (a) j-k, (b) i-k and (c) i-j
coordinate-plane (from Kolda and Bader [2009]).



16 Fundamentals & Previous Work

2.2 Visualization of Tensor-based Data Structures

As stated before, tensors provide an efficient way to organize, store and access
spatial datasets. In this work we focus on the visualization of 0th, 2nd and 3rd
order tensors. The main goal of visualization can be stated as follows:visualization

"The goal of visualization is to leverage existing scientific methods by
providing new scientific insight through visual methods." Johnson and
Hansen [2004] (p. xiv).

In order to provide insight in this work we need to display tensor-based data
structures by encoding not just the spatial relationships but also other properties
as well.

2.2.1 Mapping Scalars to Colors

The 1st order tensor is a scalar value which is associated with a point or cell of
a dataset (Johnson and Hansen [2004]). The most common scalar visualization
algorithm is the color mapping which maps scalar data to colors, as illustrated incolor

mapping Figure 2.4a. First, the scalar value is mapped to an index in a color lookup table,

MapRange(.)

s

fmaxfmin tmaxtmin

(a) Scalar-color mapping

MapRange(.)
↵

s

fmin fmax tmin tmax

(b) Transfer function mapping

Figure 2.4: Two mappings of a single scalar value according to (a) color lookup
table and (b) transfer function with transparency parameter α on
the y axis.

holding a color array of length n. Because the scalar might not be an integer which
is in the range of [0, . . . , n− 1] we need to map its value s ∈ [fmin, . . . , fmax] to an
index i into a target range [tmin, . . . , tmax]. This can be achieved by applying the
range mapping function on the scalar s.

DEFINITION 2.1 (Range Mapping)

The range mapping function maps a sclar value s ∈ R which has a source range
[fmin, fmax] to a target range [tmin, tmax] with

MapRange(s) = tmin +
s− fmin

fmax − fmin
· (tmax − tmin) . (2.1)
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Second, the index i = bMapRange(s)c is then used to retrieve a color from the
color lookup table.

The color lookup table is a discrete data structure containing a fixed number of
colors. A more general color mapping function is the transfer function which maps transfer

functiona scalar value not to a discrete index but to a color specification by interpolating
between two colors, as illustrated in Figure 2.4b (Johnson and Hansen [2004]).
Additionally, we can extend the standard RGB color definition by a transparency
part α (A). All images produced in Chapter 5 are generated using a transfer
function.

2.2.2 Image Visualization

The visualization of a 2nd order tensor, also represented as an image, is straight
forward: each pixel in a ssTEM image has an intensity value which is mapped using
a transfer function into the color space. Each pixel value s is looked up using the
transfer function which interpolates between two neighboring colors. The looked
up color is saved in the image buffer.

In case of the visual comparison of multiple images (e.g., an intensity image
with the corresponding segmentation result) it is important to visualize objects
so that they can be compared easily. Gleicher et al. [2011] propose a taxonomy
that divides the space of comparative designs into three categories for information
visualization, as illustrated in Figure 2.5. The juxtaposition design shows images juxtaposition

next to each other either in space or in time. This is shown in Figure 2.5a where
the drosophila fly brain image is shown in comparison to the ground truth. An-
other comparative design is the superposition (or overlay) which shows two images superposition

on top of each other. See Figure 2.5b for blending the ground truth (green) and
original density image. The third design is explicit encoding which encodes explicit explicit

encodingrelationships between the images (Gleicher et al. [2011]). This is shown in Fig-
ure 2.5c where differences of two segmentation results are shown. Yellow indicates
highest differences, red indicates medium differences and the blue pixels indicate
low differences. Comparative ssTEM image visualization is discussed in Chapter 4.

2.3 Machine Learning

One of the most cited and broad definitions of machine learning (ML) is the one machine
learningby Tom M. Mitchell:

"A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance
at tasks in T , as measured by P , improves with experience E." Mitchell
[1997] (p. 2).

In the context of this work, the learning problem can be stated as follows:

Task T : Classify each pixel according to two classesmembrane (⊕) or non-membrane
(	) (i.e., do a binary classification). Therefore we use ⊕ and 	 as abbrevi- binary

classification
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(a) Juxtaposition

(b) Superposition (c) Explicit encoding

Figure 2.5: Three comparative designs used for the exploration of segmenta-
tion results of drosophila fly brain ssTEM images.

ations for the classes.

Performance Measure P : Measure the percentage ρ of incorrectly classified
pixels in a slice image, where ρ ∈ [0, 1] and ρ ∈ R.

Training Experience E: Domain expert provides a small sub-set of membrane
and non-membrane examples to the machine.

This means, that based on the training examples the machine should extract rele-
vant information of how a membrane pixel is described and embed this information
into a model. This model is then used for new pixels with the following objective:
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"The main practical objectives of machine learning consist of gener-
ating accurate predictions for unseen items and of designing efficient
and robust algorithms to produce these predictions, even for large-scale
problems." Mohri et al. [2012] (p. 2)

For this purpose, we first must create a data structure that holds the descrip-
tions of the pixels. Such data structure can be represented by a data table (also data table

known as data sample) S with X = {xi} and xi = (xi,j), i = 1, . . . , N and
j = 1, . . . ,M , as illustrated in Figure 2.6. X is a data table with N rows or

...

...

x1

xN

xi

F1 Fj FM· · · · · ·
x1,jx1,1

xi,j xi,M

xN,1 xN,j xN,M

x1,M

xi,1

...

...

...
...

...
...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

. . .

. . .

c1

ci

cN

C

...

...

Figure 2.6: A schematic view on the underlying data table S found in many
ML applications. Each observation xi is represented by a vector
of feature values (xi,1, . . . , xi,j, . . . , xi,M) and has a class label ci.
Each feature Fj can hold nominal, ordinal or numerical values.

observations (also known as examples or items) and M columns or features (also
known as attributes or variables) where each column can either hold nominal (e.g,
strings such as gender or names), ordinal (e.g., week days, date, time) or numeric
values (e.g., integer or real scalars). Additionally to the feature columns we also
have a class column C in which a class ci is assigned to each observation in case
of classification. The number of distinct classes in C is denoted by NC , i.e., for
a binary classification we have NC = 2 and ci ∈ {⊕,	} where ⊕ and 	 are the
classes (e.g., membrane = ⊕ and non-membrane = 	). It is possible to encode the
data table as well as a 2nd-order tensor by encoding nominal and ordinal features
as numerical features and therefore storing only numerical values as TEs.

With that in mind, we can define the target function as follows: target
function
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DEFINITION 2.2 (Target Function)

Mitchell [1997] defines the target function that needs to be represented and
approximated by a machine learning algorithm as

f : X −→ c (2.2)

which maps each possible input tuple – also known as a feature vector – xi ∈ X
to a categorical output value – also known as the class or response vector c
(Breiman [2001]) – ci ∈ c in case of Classification (or a numerical value ci ∈ c
in case of Regression) with i = 1, . . . , N .

In general, the target function is not known and needs to be estimated, fitted or
learned from the training sample by either providing the corresponding class labels
for each training feature vector (illustrated as column C in Figure 2.6) or by not
providing it. The former case is called Supervised Learning (SL) which requires aSupervised

Learning training sample with the class label assigned to each example. The SL approaches
include algorithms such as decision trees, naive Bayes classifiers, support vector
machines and random forests. The second case is called Un-supervised LearningUn-supervised

Learning which does not require this example-to-class mapping for training. We only rely
on the power of the algorithm to separate the feature vectors into a number of
clusters which corresponds to the number of classes we assume are in the sample.
Such methods include algorithms like artificial neural networks, self organizing
maps, k-means clustering and mixture models.

2.3.1 Machine Learning Issues

As Domingos [2012] puts it: "The fundamental goal of machine learning is to
generalize beyond the examples in the training set." (p. 79). In this context
we need to take care of certain inherent problems that occur in any machine or
statistical learning setting.

First, ML should be used if it outperforms random guessing (Domingos [2012]).random
guessing This requirement can be fulfilled if the sample is split into a training and a sep-

arate test set (see Section 2.3.2). The problem here is that most of the machine
learning algorithms have parameters (e.g., number of nodes in a decision tree or
the number of trees in a random forest) which need to be tuned. Therefore, a
third validation data set is taken from the training data set. It is used to evalu-
ate different parameter settings for the learned models but it leaves us with fewer
training examples and possibly biased prediction models. To overcome this issue
cross-validation can be used by randomly splitting the training data into NT ∈ Ncross-

validation sub-sets. While the models are trained with (say) NT − 1 training sub-sets we
use one sub-set to validate these models. Each of the NT − 1 models are created
with different parameter settings from which we only choose the one where the
validation sub-set performs best (Domingos [2012]). The difference between the
validation and test set is that the validation set is used during the construction of
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the prediction model while the test set is a priori chosen to test the model after it
has been constructed.

Second, it is not sufficient to provide the machine learning algorithm with just
more data to improve its prediction accuracy. In order to improve the generaliza-
tion, the predictive model needs some prior information, knowledge or assumptions
about the problem domain (Domingos [2012]). This issue is discussed in Chapter 4.

Third, the problem of over-fitting occurs when insufficient domain knowledge is over-fitting

provided or if insufficient data is provided in order to model the correct classifier.
In such cases we are creating a classifier that is not grounded in the problem
domain but it is incorporating noise in the data (Domingos [2012]). The problem
of over-fitting can only be discovered if we have the ground truth to compare the
classifier to.

Fourth, as mentioned before, generalization is an essential goal for any ML
algorithm. A measure of how well a ML algorithm generalizes to test data is the
so-called generalization error. Over-fitting can also be described by splitting the generalization

errorgeneralization error into bias and variance. As Domingos [2012] describes it: "Bias
bias
variance

is a learner’s tendency to consistently learn the same wrong thing. Variance is the
tendency to learn random things irrespective of the real signal." (p. 80).

Fifth, the second biggest problem in machine learning is the curse of dimension- curse of
dimension-
alityality: "Generalizing correctly becomes exponentially harder as the dimensionality

(number of features) of the examples grows, because a fixed-size training set covers
a dwindling fraction of the input space." (Domingos [2012] (p. 81)). This issue
is explored further in this work for the segmentation ssTEM images using over
90 features and an image size of 512 × 512 = 262,114 pixels. Even if we use all
the image pixels as training set we still cover only about 262,114 examples of an
input space which is actually 262,114 · 90 = 23,590,260 examples large. We refer
to Domingos [2012] for an extensive introduction to machine learning issues and
to Pereira et al. [2009] for an introduction to image segmentation using machine
learning methods.

2.3.2 Sample Management

Even state-of-the-art machine learning algorithms can fail to predict the correct
class if the algorithm is not provided with representative data samples. This is,
because the algorithm can only rely on the data we provide and it has no prior
knowledge about the data domain. It is therefore imperative to provide clues of
what representative data samples are. The clues include the selection of data
samples and weighting of data samples for training.

Moreover, prior to the task of learning we need to ensure that the ML classifier
follows common principles in statistical testing by splitting training samples from
test samples as described by Mohri et al. [2012] and illustrated in Figure 2.7. The
training sample L (yellow) should contain representative examples, correct class training

samplelabels assigned to each example and a feature set that is descriptive with regard
to the classification problem. After the training the examples in the training
sample are considered as seen. The test sample E (blue) should contain unseen test sample
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F1 Fj FM· · · · · · C

Figure 2.7: Illustrative example for splitting the data table into training (yel-
low), validation (gray) and test samples (blue).

examples that need to be predicted in order to get a robust accuracy estimate of
the predictive model. The test sample must also contain the class label assigned to
each example in order to determine the prediction accuracy of the learned model.
Some learning algorithms provide a range of model parameters that can be tuned
as well. For that purpose, we remove randomly examples from the training sample
and put them into a validation sample (Mohri et al. [2012]). These examplesvalidation

sample are not used for training but for evaluation of the parameters while creating the
prediction model.

2.3.3 Evaluation of Classification Results

In order to distinguish good classifiers from bad classifiers we need to compare the
results through an evaluation function (also known as objective function or scoringevaluation

function function) (Domingos [2012]). The evaluation is done using an unseen test sample
E , as described in the previous section. The standard evaluation function is the
one which determines the prediction accuracy: ν = Nc/NE where Nc is the numberprediction

accuracy of correctly classified examples in the test set and NE = |E| is the number of all
test examples. It is also possible to rephrase the prediction accuracy as predictionprediction

error error ε = (NE −Nc)/NE (Witten and Frank [2005]).
For a binary classifier, rather than considering only the prediction accuracy

or the prediction error we could further separate the classification results into a
2× 2 confusion matrix (Forman and Scholz [2010], Davis and Goadrich [2006]) asconfusion

matrix illustrated in Figure 2.8. True positives (TP ) is the number of examples correctly
classified as positive. False negatives (FN) is the number of examples classified
as negative that are in fact positive and false positives (FP ) is the number of
examples classified as positive that are in fact negative. True negatives (TN) is
the number of examples correctly classified as negative. We consider FP as type I
error and FN as type II error. We can reformulate the test set prediction accuracy
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Figure 2.8: Confusion matrix representing the outcomes of a two-class predic-
tion (Witten and Frank [2005]).

as ν = (TP + TN)/(TP +FN +FP + TN) and the prediction error as ε = 1− ν
(Forman and Scholz [2010]). As we will see, the confusion matrix provides an
intuitive way of visualizing and identifying errors in image segmentations.

The combinations of the four factors of a confusion matrix lead to different
measures. The sensitivity (also known as true positive rate or recall) is defined sensitivity

as ρtp = TP/P ′ where P ′ = TP + FN is the total number of positives. It
is a measure how well the model classifies positive examples as positive (Witten
and Frank [2005]). Analogous to sensitivity, the false positive rate is defined
as ρfp = FP/N ′ with N ′ = FP + TN being the total number of negatives.
The specificity (also known as true negative rate) on the other hand measures specificity

the rate of correctly classified negative examples. It is defined as σ = TN/N ′

with N ′ = FP + TN (Forman and Scholz [2010]). The precision is defined as precision

$ = TP/P where P = TP + FP .
In standard machine learning literature there are numerous ways to illustrate

the effectiveness of a classifier (Witten and Frank [2005]). We will discuss three of
them: lift charts, ROC curves and recall-precision curves. Some classifiers (such as
random forests) output confidence values rather than classes for each test example.
To produce a binary decision we need to set a confidence value threshold. While
for the lift chart the threshold is set, for the ROC and the recall-precision curves
is not set but is varying. This variation leads to the curve points for ROC and
recall-precision curves.

The lift chart as illustrated in Figure 2.9a provides a way to visually compare lift chart

the prediction performance for true positives when adding more and more data
to the test sample. In other words, it tells us, for example, that if the prediction
model is correct we will get 75 percent of all positives (dotted line) by just using
30 percent (i.e., the cost) of the test data. The desirable position on the chart is
the top left corner.

Another visual evaluation method is the so-called receiver operating character-
istic (ROC) curve which plots the false positives rate ρfp against the true positive ROC
rate ρtp, as illustrated in Figure 2.9b (Witten and Frank [2005]). ρfp is a fraction
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Figure 2.9: Three ways to show the goodness of a classifier. The optimum
classifier would have measure properties that bring it to the cor-
ners of the charts (purple spots).

of the negative examples which are misclassified as positive, while ρtp is a fraction
of positive examples that are correctly classified as positive (Davis and Goadrich
[2006]). The desirable position on the chart is the top left corner.

The last kind of curve we would like to discuss is the precision-recall curveprecision-
recall
curve where we plot recall ρtp = TP/P ′ against the precision $ = TP/P , as illustrated

in Figure 2.9c. We see that ρtp is the true positive rate while $ is the fraction
of examples classified as positive that are in fact positive (Davis and Goadrich
[2006]). For more information on the different evaluation methods for classifiers
we refer to Witten and Frank [2005], Davis and Goadrich [2006] and Forman and
Scholz [2010].

2.3.4 Decision Tree Learning

Before discussing the random forest classifier let us consider what a decision tree
is. A decision tree is a tree data structure which models a concept. For example,concept

the decision tree shown in Figure 2.10b summarizes the concept of when a person
does play tennis. The underlying data table is found in Figure 2.10a. The decision
tree has a root node with possibly multiple successor nodes. Each successor node
might either be an intermediate node (round corner rectangle) or a leaf node
(rectangle). While the root and intermediate nodes represent feature variables
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Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

(a) Data table

Outlook

Humidity Wind

NoYes

Yes

NoYes

HighNormal StrongWeak

RainOvercastSunny

(b) A corresponding decision tree

Figure 2.10: Eexample illustrating a decision tree for the concept Play Tennis
(Mitchell [1997]). (a) The underlying data sample to be learned
from. (b) The resulting decision tree for the concept Play Tennis.

and the links represent feature values, the leaf nodes represent the classes. The
tree data structure can also be interpreted as a set of rules, i.e., disjunctions
of conjunctions that represent the learned concept. Therefore, the concept Play
Tennis can be represented as a data table (see Figure 2.10a), as a decision tree
(see Figure 2.10b) or as a set of rules, deduced from the decision tree:

Play Tennis = (Outlook = sunny ∧ Humidity = high)

∨ (Outlook = overcast)

∨ (Outlook = rain ∧Wind = strong) .

The main issue during the construction of the tree is how to choose the next
feature as an intermediate node or, as Mitchell [1997] puts it, we need to answer
the question: "Which attribute is the best classifier?" (p. 55). An answer to
this question provides a statistical property that measures how well an attribute
separates the training sample according to the class (Mitchell [1997]). One such
property is called the information gain which is defined using the entropy concept information

gain
entropy

borrowed from information theory (MacKay [2002]):

DEFINITION 2.3 (Entropy Function)

Mitchell [1997] defines the entropy function with regard to the classification
problem of a collection S of data examples as

Entropy(S) =
Nc∑
i=1

−pi log2 pi , (2.3)

where Nc is the number of classes and pi is the proportion of S belonging to the
class i. The base 2 logarithmic function is used because the entropy measures
the encoding length of a message in bits (Mitchell [1997]).

In other words, the entropy function measures the (im)purity of an arbitrary col-
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lection of examples S (Mitchell [1997]). Figure 2.11 shows the binary entropy
function used in binary classification for the class ⊕ (e.g., person does play ten-
nis). Equation 2.3 states also that in case that all examples in S do belong to

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

p⊕

Entropy(S)

Figure 2.11: Entropy function relative to a boolean classification. p⊕ denotes
the proportion of the class ⊕ in S.

the same class (⊕ or 	) the entropy is 0. If we have the same number of class
occurrences in S (so that p⊕ = 1/2 and p⊕ = 1/2) then the entropy is 1 (see
p⊕ = 1/2 in Figure 2.11).

With the definition of the entropy we now can specify the information gain
function. Mitchell [1997] defines the information gain for an attribute as "... the
expected reduction in entropy caused by partitioning the examples according to this
attribute" (p. 57).

DEFINITION 2.4 (Information Gain)

Mitchell [1997] defines the information gain of an attribute Fj relative to a
collection of examples S as

InfoGain(S,A) = Entropy(S)−
∑

v∈Values(A)

|Sv|
|S| Entropy(Sv) , (2.4)

where Entropy(S) is the entropy of the original collection S, Values(A) is the
set of all possible values for attribute A and Sv is the subset of S for which
attribute A has value v, i.e., Sv = {s ∈ S|A(s) = v} Mitchell [1997] (pp. 57).

The first part of the information gain is the entropy of the original collection
while the second part is the sum of entropies of each subset Sv Mitchell [1997].
Let us determine the entropy of the data examples S in Figure 2.10a where we
have 9 positive and 5 negative examples (denoted as a set S = {S⊕, S	} with S⊕ =
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{D3, D4, D5, D7, D9, D10, D11, D12, D13} = 9⊕ and S	 = {D1, D2, D6, D8, D14} =
5	 from table in Figure 2.10a):

Entropy({9⊕, 5	}) = − 9

14
log2

9

14
− 5

14
log2

5

14
= 0.9403

Using this we can calculate for each attribute its information gain and deter-
mine the one with the highest information gain as the root node. For the attribute
Outlook we determine the second part of Equation 2.4 as illustrated in Figure 2.12a.
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Figure 2.12: Illustration of proportions of positive and negative examples for
the Play Tennis concept extracted from the data table in Fig-
ure 2.10a. These proportions are used to determine the informa-
tion gain for each attribute.

InfoGain(S,Outlook) = Entropy(S)−
∑

v∈{Sunny,Overcast,Rain}

|Sv|
|S| Entropy(Sv)

= Entropy(S)− 5

14
Entropy(SSunny)−

4

14
Entropy(SOvercast)

− 5

14
Entropy(SRain)

= Entropy(S)− 5

14
Entropy({2⊕, 3	})− 4

14
Entropy({4⊕, 0	})

− 5

14
Entropy({3⊕, 2	})

= 0.9403− 5

14
· 0.9710− 4

14
· 0− 5

14
· 0.9710

= 0.2467 bits

After having determined the information gains for each attribute we choose the
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one with the highest information gain as the root node. The next step is to deter-
mine the intermediate node by calculating the information gain in case Outlook =
Sunny. For example, if we choose the Humidity as the next intermediate node
under Outlook = Sunny, we get:

InfoGain(SSunny,Humidity) = Entropy(SSunny)−
3

5
Entropy({0⊕, 3	})

= − 2

5
Entropy({2⊕, 0	})

= 0.9710 bits

Again, we choose the remaining attribute which has the highest information gain
as the next intermediate node. This way, it is ensured that one attribute has
been used at most once. This process is stopped if all examples can be classified
correctly using the current decision tree. This algorithm is called ID3 (Quinlan
[1986]) and we refer to Mitchell [1997] for a deeper discussion.

We have seen the construction process for nominal attributes. For numeric
attributes we use discretization to split the value range of a numeric attributediscretization

(also called continuous-valued attribute) into discrete bins. For example, we could
also use a numeric representation for the feature Temperature by discretizing it
into three categories hot, mild and cool (Nguyen [2004]).

There are also other well known decision tree approaches such as the Clas-
sification and Regressoin Trees (CART) by Breiman et al. [1984] and C4.5/C5.0CART
classifiers by Quinlan [1993]. Their differences and similarities are compared in
Table 2.1. They appear to be similar: but while ID3 and C4.5/C5.0 store fea-
tures in the intermediate nodes and its values in the links, the CART approach
stores queries in the nodes and the left and right links are indicating whether
these queries evaluate to True or False. During the decision tree induction (also
known as the construction or the growth), the goodness of a feature is determined
using statistical measures such as the information gain, the Gini index and nor-
malized information gain. While Gini index measures the deviations between the
probability distributions of the classes (Maimon and Rokach [2010]), normalized
information gain measures the deviations in entropy values (Quinlan [1993]). Fur-
thermore, pruning is used to avoid over-fitting by removing those sub-trees whichpruning

have little influence on the classification result (Kohavi and Quinlan [1999]). Ad-
ditionally, the ID3 algorithm does not cope with the problem of over-fitting, as
discussed in Section 2.3.1. Another difference is that ID3 can not handle numeric
features contrary to the others.

2.3.5 Random Forests

In the previous section we have seen what decision trees are and how they are in-
duced. The Random Forest algorithm, presented by Breiman [2001], is a statisticalRandom

Forest classifier popular in many research fields especially in the field of computational bi-
ology, computational neuroanatomy and connectomics. As indicated in the name,
the forest consists of one or multiple decision trees (created with CART) which are
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ID3 CART C4.5/C5.0

Tree
Type

Tree Binary tree Tree

Variable
Types

Nominal Nominal, numeric,
ordinal

Nominal, numeric

Node
Splitting
Crite-
rion

Information gain Gini impurity Normalized
information gain

Pruning
Behavior

No pruning Post-prune tree by
testing against
un-seen examples

Post-prune tree by
replacing branches
irrelevant with leaf
nodes

Root
Node

Feature with
highest information
gain

Feature with
minimum Gini
index after splitting

Feature with highest
normalized
information gain

Over-
fitting

Not solved Solved through
post-pruning

Solved through
post-pruning

Table 2.1: Qualitative comparison of three decision tree approaches.

built in a specific way by introducing randomness in the creation process. This
set of prediction models is also called an ensemble method. ensemble

Figure 2.13 illustrates the induction of the random forest on a simple example.
From the original dataset of twelve examples we create a forest of six CART trees
(see dark blue root nodes) each created using a randomly sampled, equally sized
data set (dotted frames around data sets). In this context, randomly sampled
means that a randomly chosen example might occur multiple times in the same
dataset while others might not occur at all. Indeed, the left out examples, called
out-of-bag (OOB) data, do serve a purpose: they are used to get an unbiased out-of-bag

estimate of the classification error. This is achieved by cross-validating the trees
during, rather than after induction, in order to obtain a model which is prone to
variance (Breiman [2001]). The randomness is illustrated as differently distributed
membrane (green) and non-membrane examples (orange) in each random dataset.
The randomization in general is a way to reduce the impact of noise in the data.
The resulting leaf nodes contain not only strict classification decision of positive
and negative but the corresponding confidence values (see the shading between
green and orange in leaf nodes). The randomness is also introduced during the
selection of feature splits. For each splitting decision, we select randomly a pre-
defined number of features m ∈M from the original feature pool of M .

After the random forest induction step we now have a number of decision tree
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Original 
Dataset

Membranes
Non-membranes
Introduced Randomness

Figure 2.13: Illustration of random forest induction on a simple example. The
six CART trees, created with six randomly sampled data sets,
are forming the random forest.

models packed in an ensemble. The classification using the random forest ensembleclassification

is illustrated in Figure 2.14. A new (unseen) example is traced through each of the
six decision trees and its outcome is noted. The prediction made by the random
forest is the unweighted plurality (i.e., the relative majority) vote (Breiman [2001])
of all trees expressed as a confidence value. It is the class label with the highest
total number of trees that predicted it. In the case of Figure 2.14 four trees are
predicting the class positive and two are predicting the class negative. Therefore,
the prediction of the whole random forest is positive with a certainty p⊕ = 0.6667.

The random forest has many desirable properties (from Breiman [2001]). First,
it provides a classification accuracy which is similar to other state-of-the-art ap-
proaches such as Support Vector Machines and C4.5/C5.0. Second, it can handle
thousands of variables, missing values and unbalanced data sets (i.e., those where
the class label frequencies differ greatly). Third, it avoids biased estimates through
construction of full trees. Fourth, it avoids over-fitting by having multiple trees
in the ensemble which are created using randomly sampled datasets and which
decide in ensemble rather than using only one tree.

2.4 Previous Work on Feature Selection

Let us discuss previous work in feature selection, creation and weighting. A gen-
eral overview on the topic of feature selection is provided by Guyon and Elisseeff
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Unseen 
Dataset

Figure 2.14: Classification of an unseen data example (light blue). The sample
is traced through each tree and its outcome is noted (colored leaf
nodes). This random forest predicts the class positive with a
certainty of p⊕ = 4

6
= 0.6667.

[2003]. The authors state that there are a couple of benefits to feature selection,
such as: simpler data lead (a) to better data understanding and utilizes expressive
visualization, (b) to reduced induction and execution times of machine learning
algorithms, (c) to reduced storage requirements which is of special importance
in the field of ssTEM image segmentation, and (d) to improved prediction per-
formance due to the avoidance of the curse-of-dimensionality. It is important to
note, that the feature selection algorithms proposed in the literature do not rely
on domain-specific knowledge but only follow statistical and information theoretic
guidelines. After all, the machine learning algorithms should be general purpose
algorithms and not bound to a specific domain. The proposed feature selection
methods differ in their output (Guyon and Elisseeff [2003]). While some lead to
a sub-set of features relevant to the task, others output a ranking of all poten-
tially relevant features. Guyon and Elisseeff [2003] state also that there might be
a tradeoff between the relevance and the redundancy of features. The selection of
the most relevant features is not preferred if they are redundant and just because
a feature is redundant does not necessarily mean that they are not relevant. Yu
and Liu [2004] propose a feature selection algorithm based on the analysis of the
feature relevance and the feature redundancy.

There are of course statistical measures for redundancy and relevance of fea-
tures as well as information theoretic ranking criteria. All these measures use the
underlying feature values as a representation of the real feature value distribution
which in general remains unknown. Auffarth et al. [2010] provide a discussion on
measures for the selection based on the redundancy and relevance of features for
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the segmentation of computer tomography images.
The aim of feature selection is to reduce the redundancies between features

while at the same time increase the relevance of the feature set with regard to the
classification task. Blum and Langley [1997] identifies the feature selection as a
heuristic search which can be viewed from two different points of view: forwardheuristic

search selection and backward elimination. While the forward selection starts with an
forward

selection empty feature set and adds features successively, the backward elimination starts
backward

elimination
with a full feature set and removes them from the consideration successively. We
can evaluate the alternative feature sub-sets by some metric which shows how
well a feature discriminates among classes in the training sample, as discussed in
Section 2.3.3. The traversal of this search space of 2M possible feature sub-sets
of M features is not practicable. One solution to this problem is a greedy search
which only considers the local changes when adding a feature to the feature set
(Blum and Langley [1997]) and halts if no further improvement is possible.

2.4.1 Feature Relevance

Peng et al. [2005] formally define three forms of feature relevance: strongly relevant,relevance

weakly relevant and irrelevant. A feature is called strongly relevant if the featurestrongly
relevant is always necessary for an optimal sub-set. A feature is called weakly relevant

weakly
relevant if the feature is not always necessary. By contrast, irrelevant features are those

irrelevant which are not necessary at all. Following this definitions, an optimal subset should
include all strongly relevant features, a (not further declared) sub-set of the weakly
relevant features and no irrelevant features. One of the central questions here is
which weakly relevant features are to be removed and which ones to be selected.
One answer to this question provides the concept of feature redundancy.

2.4.2 Feature Redundancy

In machine learning literature, redundancy is defined formally by Peng et al. [2005].redundancy

However, in this work we concentrate on the intra-class covariance-based definition
of redundancy (Guyon and Elisseeff [2003]). A feature Fi is called redundant if
there exists a second feature Fj which correlates with Fi for a class label. The
most commonly known correlation measure is the linear correlation coefficient forcorrelation

coefficient two variables (X, Y ) defined as

ρ =

∑
i(xi − xi)(yi − yi)√∑

i(xi − xi)2
√∑

i(yi − yi)2
, (2.5)

where xi is the i-th value of feature X, xi is the mean of variable X and yi is
the i-th value of feature Y , yi is the mean of variable Y . In case that ρ = 0
the variables X and Y are called uncorrelated and for ρ = ±1 they are perfectlyuncorrelated

correlated. The denominator in Equation 2.5 is also called covariance (Guyon and
Elisseeff [2003]). We will discuss feature redundancy extensively in Chapter 4.



Chapter 3

Feature Pre-computation

"In general, a feature is good if it is relevant to the class
concept but is not redundant to any of the other relevant
features."

Feature Selection for High-Dimensional Data: A Fast
Correlation-Based Filter Solution

Lei Yu and Huan Liu (p. 858)

In Chapter 2 we have seen that for the ML-based segmentation it is necessary
to transform the image in a tabular form where each row corresponds to a pixel
and the set of columns to the feature set of that pixel. The obvious pixel feature
is the pixel intensity. Any other feature needs to be derived from the intensity
image. There is no spatial relationship between rows in the data table but there is
one between neighboring pixels. This spatial relationship needs to be transformed
from the image into the machine learning domain? In general, machine learning
methods are unaware of the spatial relationships between pixels, the point spread
function which determines the shape of each real-world object on an image and
the nature of the image.

In Section 3.1 we discuss methods to create new features from the original
density feature. The pre-computed features are split into four categories: (a)
the original density feature discussed in Section 3.2, (b) the rotation-invariant
membrane matching features discussed in Section 3.3, (c) the per-pixel local his-
togram features discussed in Section 3.4, and (d) the feature created using gaussian
smoothing discussed in Section 3.5.

3.1 Introduction

The density (in volumes), or intensity feature (in images), shows the measured
image of a real world object. In general, we know that image segmentation using
only the intensity image leads to poor results. For example, a value range of
[20, . . . , 60] does not only correspond to a membrane in ssTEM brain images but
also to mitochondria (see dark blob in Figure 3.1b). A membrane in ssTEM membrane

brain images is indicated by low intensity pixels while white matter (also known
as cell background) consists of high intensity pixels and it is surrounded by other

33
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(a) Membranes vs. white matter

(b) Compression artifacts

Figure 3.1: Two examples of ssTEM brain tissue images with membrane
ground truth shown as green perimeter lines. (a) A cleanly sliced
section and (b) compression artifacts which lead to smeared mem-
branes.
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white matter objects (like synapses, axons or neurons). The regions between white
matter objects are the membranes (see dark ribbons whose perimeter is highlighted
in green in Figure 3.1a).

In general there are two domains in which we are able to process images: the
spatial domain and the frequency domain. The spatial domain refers to the image spatial

domainplane itself in which the pixels are directly manipulated (Gonzalez and Woods
[2006], see Figure 3.2). The spatial domain of a Sx × Sy image is the image

w(�1,�1) w(�1, 0) w(�1, +1)

w(0,�1) w(0, 0) w(0, +1)

w(+1,�1) w(+1, 0) w(+1, +1)

f(x� 1, y � 1) f(x� 1, y) f(x� 1, y + 1)

f(x, y � 1) f(x, y) f(x, y + 1)

f(x + 1, y � 1) f(x + 1, y) f(x + 1, y + 1)

x

y

Spatial Domain

(x, y)

Filter Mask

3⇥ 3 neighborhood of (x, y)

Filter Coe�cients

Image pixels under filter

i

j

(0, 0)

(0, 0)

(Si, Sj)

(Sx, Sy)

Figure 3.2: Common components in spatial domain (adopted from Gonzalez
and Woods [2006]).

plane itself. A pixel (green) at the position (x, y) with 0 ≤ x ≤ Sx − 1 and
0 ≤ y ≤ Sy − 1 has a Si × Sj neighborhood, in this illustration Si = Sj = 3. For
this neighborhood we can use a different coordinate system with the coordinates
(i, j) whre 0 ≤ i ≤ Si − 1 and 0 ≤ j ≤ Sj − 1, as shown in Figure 3.2.

The spatial domain algorithms can be further split into two categories: intensity intensity
transform-
ationstransformations which manipulate single pixels (e.g., for contrast manipulation)

and the spatial filterings which take the local neighborhood of each pixel into ac- spatial
filteringscount (e.g., for blurring). Figure 3.2 also shows a filter mask (also known as filter
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kernel) w around the pixel at (x, y). w has its own filter coefficients which are
offsets in x and y-direction. A filter mask is laid over the image f in such a way
that w(0, 0) is right above f .

In the following we discuss general methods used for the creation of new features
for the segmentation of membranes. Especially, local histograms and Gaussian
filtering are used to create new features.

3.1.1 Intensity Histograms

Intensity histograms (or short histograms) are useful tools in digital image process-
ing with which different intensity transformations become possible. The histogram
can be defined as a function:

DEFINITION 3.5 (Histogram Function)

Gonzalez and Woods [2006] defines the histogram function of an Sx×Sy image
with pixel intensity values in the range [0, L− 1] as a discrete function

h(vk) = nk , (3.1)

where vk is the k-th intensity value and nk is the frequency of pixels with in-
tensity vk in the image. Furthermore, it is common to normalize the histogram
by dividing each nk by the number of all pixels p(vk) = nk

N ·M .

If, for example, the value range of pixel intensities is real we can discretize it into
Nb histogram bins in such a way that vk is not a value but a value range. If
the number of bins Nb is less than the number of values we call it a course scale
in contrast to fine scale histograms. The image histogram can be used to modify
pixels based on the intensity distribution of the entire image (Gonzalez and Woods
[2006]).

As mentioned before, the membrane pixels in ssTEM brain tissue images have
local properties such as (a) belonging to an elongated region of the same or similar
pixel intensity and (b) being surrounded by white matter regions. Such knowl-
edge can not be encoded by a global image histogram. Therefore, an adaption
to histograms namely the per-pixel local histograms (also known as per-pixel re-per-pixel

local
histograms gion histogram) are more suitable to represent local neighborhood information, as

illustrated in Figure 3.3. For each pixel (x, y) we consider its immediate neigh-
borhood f(i, j) with i ∈ I and j ∈ J where I = J = {− cs

2
,− cs

2
+ 1,− cs

2
+

2, . . . ,−1, 0, 1, . . . ,+ cs
2
− 2,+ cs

2
− 1,+ cs

2
}, with cs ∈ N. The immediate neighbor-

hoods are shown as orange regions of size cs×cs. For the immediate neighborhood
we determine the histogram of that neighborhood for Nb bins (in Figure 3.3 Nb = 6
with b1, . . . , b6). The histogram information can be transformed into Nb per-pixel
local histogram images h1, . . . , hNb illustrated on the right.
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Figure 3.3: Per-pixel local histograms to capture neighborhood information
(yellow region) of pixels (green and blue). As result we get for
each pixel a histogram with six bins which are transformed into
six per-pixel local histogram images h1, . . . , h6.

3.1.2 Spatial Filtering

The second spatial domain transformation category is the filtering. Gonzalez and
Woods [2006] describe the filter as follows: filter

"The name filter is borrowed from frequency domain processing, ...
where "filtering" refers to accepting (passing) or rejecting certain fre-
quency components." (p. 167)

If we pass low frequencies (i.e., low-pass filter) we get a blurred image. This can
be achieved either in frequency or spatial domain. The spatial domain offers in
terms of filtering more benefits which is discussed by Gonzalez and Woods [2006].

Image filtering is a part of image pre-processing which indeed decreases the
image information content but in many situations helps to rule out non-relevant
information specific to a task (Sonka et al. [2007]). Image filtering is used for
example to remove noise (e.g., median or averaging filter), to enhance the edges
of image objects (e.g., Canny edge detector) or to match a template to an image.
Especially, two concepts are of special interest for the spatial domain filtering:
the correlation and the convolution. While convolution is used, for example, for convolution

smoothing of an image f by convolving the image with Gaussian filter, correlation correlation

is used to match an template image in f .
Correlation describes the movement of the filter mask over the image and the

summation of products at each location (Gonzalez and Woods [2006]). Convolu-
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tion, on the other hand, works the same except that the filter (or the image) needs
to be rotated 180◦ first. This concept is illustrated for the case of image filtering
in Figure 3.4. Figure 3.4a shows a simple example image f with a single pixel set
to one. Such a function is also called a discrete unit impulse function. To avoid
the handling of the image margins in the definition of convolution or correlation
we extend the image by 0-padding and get f̂ (see Figure 3.4b). w? and w∗ denote
the filter masks used in case of correlation and convolution respectively and are
shown in Figure 3.4c. Please note that w∗ is a 180◦ rotated version of w?.

First, we start at the image origin (0, 0) and apply the correlation and convo-
lution (see Figures 3.4d and 3.4g). As a result we crop the final result images (see
Figures 3.4f and 3.4i). Formally, the correlation of a padded image f̂ with a filter
mask w? of size n×m is defined as

w? ? f̂ =
a∑

i=−a

b∑
j=−b

w?(i, j)f̂(x+ i, y + j) , (3.2)

where a = (n− 1)/2 and b = (m− 1)/2 for a n and m being odd integer numbers.
On the other hand, the convolution is defined as

w∗ ∗ f̂ =
a∑

i=−a

b∑
j=−b

w?(i, j)f̂(x− i, y − j) or (3.3)

w∗ ∗ f̂ =
a∑

i=−a

b∑
j=−b

w∗(i, j)f̂(x+ i, y + j) . (3.4)

The minus signs correspond to f̂ being rotated by 180◦ (see Equation 3.3; Gon-
zalez and Woods [2006]). We get the same result by rotating w? and not f̂ (see
Equation 3.4). The main difference between correlation and convolution is that
convolution is associative which means that for w1 and w2 being filter masks

w1 ∗
(
w2 ∗ f̂

)
=
(
w1 ∗ w2

)
∗ f̂ . (3.5)

Let us consider a low-pass filter in the spatial domain. A low-pass filter is a
smoothing filter which averages the pixel intensities contained in the neighborhood
of a pixel position (x, y) (Gonzalez and Woods [2006]). The filter mask defines
the neighborhood and the coefficients which are the scalar values contained in the
filter mask (for example, the coefficients in Figure 3.4c are 1, 2, . . . , 9). One low-
pass filter is the Gaussian smoothing filter. The smoothing of an image f withGaussian

smoothing
filter Gaussian filter G is the same as convolving the image with the bi-variate Gaussian

distribution function: G ∗ f .

Figure 3.5 shows the bi-variate Gaussian distribution function that is applied
to each pixel. The bi-variate Gaussian coefficients G(x, y) can be considered as
weights to be used on the image pixels. These weights are computed using
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Figure 3.4: Filtering toy example which uses a discrete unit impulse function
f for correlation and convolution with filter masks w? and w∗
respectively (adopted from Gonzalez and Woods [2006]).
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Figure 3.5: Bi-variate Gaussian distribution used as weighting function for the
Gaussian smoothing filter.

G(x, y) =
1

2πσxσy
√

1− ρ2

exp

[
− 1

2(1− ρ2)

[
(x− µx)2

σ2
x

+
(y − µy)2

σ2
y

− 2ρ(x− µx)(y − µy)
σxσy

]]
(3.6)

where ρ is the correlation between x ∈ X with x ∼ N (µx, σ
2
x) and y ∈ Y with

y ∼ N (µy, σ
2
y). In our case ρ = 0. µx and µy are the means and σ2

x and σ2
y

are the variances of uni-variate Gaussian distributions N (µx, σ
2
x) and N (µy, σ

2
y)

respectively. This means, that the highest weights are centered at (0, 0) of the
bi-variate Gaussian distribution while the lower weights are those farther away
from the centre. Discrete Gaussian filter masks Gσ are shown in Figure 3.6 as
textures of different sizes and different standard deviations σ where σ = σx =
σy = 1, 2, . . . , 10.
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Figure 3.6: Gaussian filter masks Gσ for different standard deviations σ. The
mask image size in pixels is determined by (2σ+1)× (2σ+1). All
mask images are scaled to the same size.

3.1.3 Gradients

In image processing gradients are used to represent numerous informations. We
can define the gradient as follows: gradient

DEFINITION 3.6 (Gradient Vector)

The gradient vector at position (x, y) of a function f is defined as

∇f = grad(f) =
[
gx
gy

]
=

[∂f
∂x
∂f
∂y

]
(3.7)

where ∂f
∂x

is the partial deviation of f in x, also denoted as fx.

In image terms, the gradient vector points in the direction of the greatest rate of
change at location (x, y) (Gonzalez and Woods [2006]). Furthermore, the length
of the gradient vector is called the gradient magnitude and is defined as follows gradient

magnitude(Gonzalez and Woods [2006]):

DEFINITION 3.7 (Gradient Magnitude)

The gradient magnitude of a gradient vector at position (x, y) is defined as

GradMag(x, y) = ||∇f || =
√
g2x + g2y . (3.8)
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The length GradMag(x, y) of the gradient vector denotes the rate of change in the
direction of that vector. Because GradMag(x, y) is an image of real values we refer
to this image shortly as the gradient image (Gonzalez and Woods [2006]).gradient

image

3.1.4 Structure Tensors

The local neighborhood is of special interest in other image processing approaches
as well. One example is the structure tensor which uses a local neighborhoodstructure

tensor around a point (x, y) to describe the intensity value distribution (i.e., the local
structure information) at that point (Weickert and Hagen [2006]). Traditionally,
we can estimate the local orientation with the help of gradient vectors, as discussed
in Section 3.1.3. But, gradient vectors alone are not able to distinguish a corner
from an edge. This leads to a more powerful tool, namely the structure tensors
which Brox et al. [2006] describe as follows:

"The structure tensor therefore extends the structure information of
each pixel, which is described in a first order approximation by the
gradient at that pixel, by the structure information of its surroundings
weighted with a Gaussian window function. This comes down to the
convolution of the structure data with a Gaussian kernel, i.e. Gaussian
smoothing." Brox et al. [2006] (p. 18).

In this sense, the structure tensor for an image f can be defined as follows:

DEFINITION 3.8 (Structure Tensor)

Brox et al. [2006] define the structure tensor T of a certain neighborhood of
scale τ of an image f as the convolution of the Gaussian kernel Gτ with the
so-called initial matrix field

Tτ = Gτ ∗
[
fxfx fxfy
fxfy fyfy

]
=

[
Gτ ∗ f 2

x Gτ ∗ fxfy
Gτ ∗ fxfy Gτ ∗ f 2

y

]
, (3.9)

where the initial matrix field is the outer product of the gradient image of the
image f [

fxfx fxfy
fxfy fyfy

]
= ∇f∇f> . (3.10)

fx = ∂xf and fy = ∂yf are the partial derivatives of f .

From the definition we see that the structure tensor incorporates a smoothing
operation which integrates the neighborhood information. Since T is a positive
definite matrix it has two non-negative eigenvalues λ1 and λ2. The local gradi-
ent properties are estimated using the eigenvectors by determining the dominant
orientation as the eigenvector of the largest eigenvalue. The eigenvalues are a
measure of dominance in orientation. The direction with the smallest change is
the eigenvector with the smallest eigenvalue of the structure tensor (Weickert and
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Hagen [2006]). For further discussion on structure tensors we refer to Weickert
and Hagen [2006] or Jähne [2005].

3.2 Density Feature

The quality of an intensity image f is influenced by the point-spread function point-spread
functionwhich describes a two-dimensional distribution of light (or electrons in ssTEM

images) of a light point (or a point object which scatters the electrons in ssTEM
images) on the focal plane. In addition to the artifacts coming from the point
spread function we also have sectioning artifacts which lead to washed out regions
in ssTEM brain tissue images. Figure 3.1 on page 34 shows two sub-images of
the same slice of the ssTEM volume of the drosophila fly brain. The green lines
indicate the perimeter of the membrane ground truth. While Figure 3.1a shows a
cleanly sliced section where the membranes have similar widths, Figure 3.1b shows
washed out membranes where it is difficult to decide the real width of a membrane.

3.3 Rotation-invariant Membrane Matching

In ssTEM brain tissue images the most membranes can be characterized as con-
nected elongated regions having similar thickness and intensity values. The idea
behind membrane matching is to extract a template image which represents most
parts of the membranes and find regions in the original ssTEM image which are
similar to this template image.

In Figure 3.7, the density image f contains membranes (see Figure 3.7a) that
can be described by ribbons (see Figure 3.7b). Each ribbon has a certain width and

(a) Original (b) Ribbons (c) Ribbon
segments

(d) Approxi-
mated
ribbons

Figure 3.7: Ribbon analogy used to create features that contain information
about membrane matching.

can be connected with other ribbons. This ribbon analogy can be simplified by an
equally wide, straight ribbon segment which can be fitted onto the real membrane
by duplication, translation and rotation. This simplified ribbon is described by a
number of template images Tk which are illustrated in Figure 3.7c. The template template

imagesimages are created by rotating the top-left black-and-white ribbon segment image
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around the centre of the image with an angle ϕk = k·π
8
, for k = 0, . . . , 7. The

rotated template is then used as a template image to recognize similar ribbon
segments in the density image. A popular method for object recognition is the
matching by correlation which uses normalized cross-correlation (NCC) (Gonzalezmatching by

correlation

NCC
and Woods [2006])

γ(x, y) =

∑
i

∑
j

[
Tk(i, j)− T k

] [
f(x+ i, y + j)− fxy

]√∑
i

∑
j

[
Tk(i, j)− T k

]2∑
i

∑
j

[
f(x+ i, y + j)− fxy

]2 (3.11)

where Tk is the template image rotated by ϕk with k = 0, . . . , 7, and i and j are
the indices of the pixels in the template image. T k is the mean of the template and
fxy is the mean of f in the region coincident with Tk (Gonzalez and Woods [2006]).
NCC is also a two-dimensional version of the correlation coefficient discussed in
Section 2.4.2 on page 32. As a result of NCC we get images R0, . . . , R7, shown in
Figure 3.8, containing the NCC coefficients γ(x, y) for specific template Tk for all
pixels. The darker the pixel the identical T and f are in that pixel. Furthermore,
six additional feature images are computed from these NCC coefficient images
where

MinR = min(R0, . . . , R7)

MaxR = max(R0, . . . , R7)

µR = mean(R0, . . . , R7)

σ2
R = var(R0, . . . , R7)

MedianR = median(R0, . . . , R7)

DiffR = MaxR −MinR .

3.4 Per-pixel Local Histograms

In Section 3.1.1 we discussed that global image histograms are not sufficient to
capture local distributions of the pixel intensities in an image. We can capture the
local properties of a membrane pixel in such a way that for Nb bins we create Nb

different histogram images where the first h1 holds frequencies of lowest intensity
pixel values and the hNb histogram image contains local frequencies of the highest
intensity pixel values. The resulting per-pixel local histogram features are shown
in Figure 3.9.

3.5 Smoothing

Another possibility to integrate local neighborhood information is by smoothing
(also known as blurring) the image with a corresponding filter. In Section 3.1.2 we
discussed that applying a smoothing filter on an image is the same as convolving
the image with the filter mask. Popular smoothing filters include the Gaussian
filter, the normalized box filter, the median filter and the bilateral filter. For
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Figure 3.8: Rotation-invariant membrane filtering uses the original density
image f to produce images R0, . . . , R7. The last two rows MinR,
MaxR, µR, σ2

R, MedianR and DiffR show combined features of these
images.
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(a) Membranes
and white
matter

(b) h1 (c) h2 (d) h3

(e) h4 (f) h5 (g) h6 (h) h7

(i) h8 (j) h9 (k) h10

(l) µH (m) σH

Figure 3.9: Per-pixel local histograms split into ten histogram features
h1, . . . , h10 with its combinations µH and σH . The subscript H
denotes that µH and σH are determined using per-pixel local his-
togram features.
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simplicity, we use simple Gaussian filtering to create new feature images.
In general, we can smooth any image we have produced so far. For this pur-

pose, we use Gaussian filter masks Gσ shown in Figure 3.6 on page 41 with ten
different standard deviations σ = 1, . . . , 10 and sizes, as well as different images
for the smoothing. The results are shown in Figure 3.10. The Gaussian smooth-
ing filter (see Figure 3.10a) is applied to all four images with varying standard
deviations and filter sizes. Figure 3.10b shows smoothing results of the original
ssTEM brain tissue intensity image f . Figure 3.10c shows the smoothing results
for the component-wise division of the two eigenvalue images λ1/λ2 determined by
the structure tensor discussed in Section 3.1.4. Furthermore, Figure 3.10 contains
the resulting images where the gradient magnitude image is determined for the
smoothed intensity image G1(f) (G1 is same as Gσ with σ = 1) and then smoothed
again with Gσ (see Figure 3.10d), as well as the images where the gradient mag-
nitude determined for each smoothed intensity image Gσ(f) (see Figure 3.10e).

Additionally, Figure 3.11 shows some difference feature images with various
standard deviations used for the Gaussian filtering. The set of difference feature
images used in this work can be described by{

Gσ(f)−Gσ′(f)
∣∣σ = 3, . . . , 10 ∧ σ′ = 2l + 1 for l ∈ N ∧ σ′ ≤ σ − 2

}
.

Furthermore, we also determine the variance of the eight features shown in
Figure 3.12a. The result of the variance is shown in Figure 3.12b. In addition, we
also determine the difference between the smoothed images which are smoothed
with small and large standard deviations (see Figure 3.12c). Finally, we add
the density feature f twice to the feature set which is used for the membrane
segmentation. The reason is to increase the possibility of the density feature to
be selected more often than other features during the construction of the random
forrest.

3.6 Other Features

The set of features discussed in the previous sections is neither complete nor the
optimal representation for the purpose of membrane segmentation in ssTEM brain
tissue images, as we will see in Chapter 5. The discussed feature set offer diverse
possibilities to incorporate the neighborhood information. Vazquez-Reina et al.
[2011] propose a segmentation method that uses circular patches of brain tissue
which are then transformed using the Zernike transform. Kumar et al. [2010] pro-
pose the so-called radon-like features which provide compact feature descriptors.
An extension to the radon-like features provide Seyedhosseini et al. [2011]. In this
work we will not deal with such features.
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Figure 3.10: Image smoothing using Gaussian filter mask (a) with different
standard deviations. (b) The smoothed intensity image f (c)
the smoothed eigenvalue image λ1/λ2 (d) the smoothed gradi-
ent magnitude image of (smoothed once with G1) , and (e) the
gradient magnitude of the smoothed image.
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Figure 3.11: Variously smorrrothed original images using different standard
deviations for the Gaussian filter mask. (c) Difference images of
the smoothed images shown in (a) and (b).
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(a) Set of features created using G10 (denoted as G∗10).
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Figure 3.12: Additional features used in this work. (a) G10
∗ denotes a set

of eight features which are created using the Gaussian filter with
σ = 10. (b) Variance of G10

∗. (c) Difference in smoothing results
when using small standard deviation (σ = 2) and large standard
deviation (σ = 50). (d) Original density image.



Chapter 4

Sample Selection & Feature Exploration

"The traditional goal of the feature extractor is to
characterize an object to be recognized by measurements
whose values are very similar for objects in the same
category and very different for objects in different
categories."

Pattern Classification, 2nd Edition
Richard O. Duda, Peter E. Hart, David G. Stork (p.11)

In Chapter 3 we learned that different transformations and filters integrate the
local neighborhood information into a single pixel value. This value corresponds
to a feature value xi,j in the underlying data table with i being the row and j
the column in that table. In Chapter 2 we have seen that the more expressive
a feature is, with regard to the classification task, the lower the prediction error
is. Therefore, we would like to get answers to the following three questions: (a)
How can we know whether a feature is expressive sufficient? (b) How can we know
which feature set is enough to describe the concept of membranes in ssTEM brain
tissue images? (c) How can we develop new features from existing ones that grasp
this concept better?

4.1 Introduction

Before we start exploring the features created and discussed in Chapter 3, we need
to organize them in a coherent way which is compatible with the random forest
learning paradigm. In Section 2.3 we discussed that for the purpose of machine
learning-based image segmentation the data table is the preferred data structure
for holding pixel descriptions in the form of feature images. Because the feature
images are scalar-valued, normalized images we can organize them individually in
terms of tensors. The feature image of every slice can be described as a 2nd-order
tensor while the set of features can be stacked together into a 3rd-order tensor of
the corresponding slice. All feature images of a slice have the same size and are
derived from the intensity image as illustrated in Figure 2.3 on page 15. This way
we have a coherent representation which is easily transferrable between different
memory domains – through tensor flattening – and which is also easily accessible
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– through slicing of the 3rd-order tensor. Tensor flattening is of special concern
when porting the algorithms on data-parallel computing architectures.

Since, we are not domain experts we need a manually segmented volume of the
ssTEM brain tissue data sets which are produced by a domain expert that knows
which pixels belong to membranes and which do not. Such a manually segmented
image is called a ground truth image. If no explicit ground truth image is availableground truth

in the form of a fully segmented image, it would suffice if the domain expert knows
which pixels belong to which class. We call this case as implicit ground truth
knowledge. Furthermore, the expert user also has additional knowledge which
the software system does not incorporate. This means that even if we have the
ground truth segmentation available we either do not understand all the decision
processes and mechanisms that produced that result (e.g., the brushing tools used
or the decision making process for manual segmentation of compressed regions as
shown in Figure 1.4a on page 6), or we are not able to map all expert knowledge
into existing machine learning frameworks. Essentially, this leads to segmentation
errors, as discussed in Section 2.3.1, that need to be dealt with.

The classification of the image pixels differs from the prediction in general
purpose domains usually discussed in machine learning literature. Such domains
include: credit rating, functional gene classification, medical diagnosis and so on.
The image segmentation does not have to suffer from the possibly complex high-
dimensional separation hyperplanes as in general data mining. We can always
simplify the feature set by combining the strengths of multiple features for dif-
ferent image regions into a single feature through filtering and transformation,
as discussed in Chapter 3. Additionally, we have always an idea of what repre-
sentative pixels are with regard to the classification task. We are aware of the
imaging artifacts like the point spread function or the artifacts coming from the
sectioning of brain tissue with a diamond knife. We need to take care of two
fundamental concepts: (a) the selection of representative positive and negative
pixels as training sample and (b) the selection of a feature set that describes the
membrane-non-membrane concept well.

An exhaustive search withM features would require to test 2M different feature
sub-sets which need to be evaluated separately in order to determine the most
relevant feature set. Blum and Langley [1997] provide five definitions of feature
relevance from which we only focus on the incremental usefulness of a featureincremental

usefulness which is defined as follows:

DEFINITION 4.9 (Incremental Usefulness)

"Given a sample of data S, a learning algorithm L, and a feature set A, feature
xi, is incrementally useful to L with respect to A if the accuracy of the hypoth-
esis that L produces using the feature set {xi} ∪ A is better than the accuracy
achieved using just the feature set A." Blum and Langley [1997] (p. 248)

The feature selection based on incremental usefulness can be achieved through
the heuristic search for a feature sub-set which is the most relevant to the target
concept. In order for the heuristic search to be effective we need to consider the
following points (Blum and Langley [1997]):
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Starting Point There are two possibilities to start the search. While the forward forward
selectionselection starts with an empty feature set and adds new features successively,

the backward elimination starts with all features and removes the irrelevant backward
eliminationones.

Organization of Search An exhaustive search is not practicable. Therefore,
the filtering of the search space and the use of greedy methods are necessary
when choosing a search direction.

Evaluation Alternative feature subsets can be evaluated by the ability of a fea-
ture to discriminate between the classes. Alternatively, we can evaluate fea-
ture sets based on their prediction accuracies or in case of certainty output
ROC and prediction/recall curves.

Stopping Criterion There are different ways to stop the search. For example,
we can stop the search as soon as the prediction accuracy degrades or we
can continue the search and possibly find a better alternative feature subset.

4.2 Sample Selection

In Section 2.3 machine learning is defined as a computer program that learns
from experience (i.e., the training sample). In this work, experience is provided
through the labeling of a small sub-set of all pixels in ssTEM brain tissue images as
membranes or positives and another pixel sub-set as non-membranes or negatives.
The labeling is a visual representation of the selection process as discussed by Yi labeling

selectionet al. [2007]. The selection itself is realized by the brushing of the pixels with two
distinct colors, as illustrated in Figure 4.1, Figure 4.2 and Figure 4.3, and creating
three training sets Ti, TGT and Ti+1. Figure 4.1a, Figure 4.2a and Figure 4.3a
show the selected pixels used for training where the training sets are denoted as Ti,
Ti+1 and TGT respectively. The corresponding intensity value histograms for the
training sets are shown in Figure 4.1b, Figure 4.2b and Figure 4.3b respectively.
While the green histograms show the intensity value frequencies for the membrane
pixels the orange histograms show the intensity value frequencies for the non-
membrane pixels. We see that the ground-truth histograms differ in shape from
the histograms for Ti and Ti+1. This means that, the random forest classifier which
should approximate the real intensity distribution (shown in Figure 4.3b) might not
be able to achieve this using only the training sample shown in Figure 4.1a and the
underlying feature set which is derived from the intensity feature. Please note: the
intensity value distribution corresponds to a histogram with 64 bins where instead
of plotting the histogram bars we plot the frequencies as data points which are
connected. This allows to identify the overlapping regions between the membrane
and non-membrane histograms in the histogram plot.
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(a) Initial training sets Ti with prediction error
ε = 0.1315
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(b) Intensity value histogram for the training sample Ti

Figure 4.1: (a) training sets Ti with (c) the corresponding intensity value his-
togram for two classes (memrane=green, non-membrane=orange).
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(a) Incremental training sample Ti+1 with
prediction error ε = 0.1169
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(b) Intensity value histogram for the ground truth

Figure 4.2: (a) Incremental training sample Ti+1 with (b) the corresponding
intensity value histograms for the two classes (memrane=green,
non-membrane=orange).
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(a) Ground truth as training sets TGT with
prediction error ε = 0.1296
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(b) Intensity value histogram for the training sets TGT

Figure 4.3: (a) Actual ground truth image with (b) the corresponding inten-
sity value histograms for the two classes (memrane=green, non-
membrane=orange).
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4.2.1 Selection Histogram

Even though the selection made by a domain expert does not represent the real in-
tensity value distribution, we assume that it must suffice for the (semi-)automatic
segmentation. The reason for this requirement is that the user interaction should
be small due to the large density volumes to be segmented. However, there is
not only an automatic machine learning process. Additionally, there exists also an
incremental learning process of the domain expert about the underlying machine
learning method. The incremental learning process is not only desired but neces-
sary due to the fact that a random forest with hundreds of trees acts like a black
box and opposes the intuition of the domain expert especially if many features are
necessary. This problem is illustrated in Figure 4.1, Figure 4.2 and Figure 4.3.
An intuitive assumption would be that if we label every pixel in a ssTEM image
correctly, by using the ground truth image as the training sample, we should get
the best segmentation results (see Figure 4.3a). This is because the more training
examples we use the more precise the prediction should become. However, the
comparison of the prediction errors in Figures 4.1a, 4.2a and 4.3a shows that the
prediction error ε for the bigger training set TGT (ε = 0.1296) is higher than for
the smaller (incremental) training set Ti+1 (ε = 0.1169) for this image. This means
that we do not need to label all pixels to perform well. A smaller, more expressive
training sample may lead to better results.

4.2.2 Summary

Blum and Langley [1997] describe a conservative sample selection algorithm as the conservative
sample
selectionone which only learns new examples if the current model misclassifies them. The

pixels used for training in Figure 4.2a have been selected using this approach. The
selection of positive and negative examples for the induction process of the random
forest classifier can be outlined into an iterative algorithm shown in Algorithm 4.1.
We extend the training sample T by membrane and non-membrane samples, build
the random forest classifier and execute it on the entire image. The segmentation
results are visualized in two ways. First, the segmentation results are blended over
(a) the original intensity image and (b) the ground truth image. This way we can
identify where the type I and type II errors are. These regions are then added to
the set of membranes and non-membranes respectively and the training sample is
iteratively extended. This is repeated as long as there is further improvement. The
loop invariant in Line 14 can be specified in different ways: (a) a fixed number of
iterations or (b) an iteration halt in case of no improvement (i.e., greedy search).
Moreover, the selection of additional samples (i.e., corrections, in Line 13) can
be done randomly from the set of all erroneous pixels. This knowledge-guided
selection of FP and FN pixels is discussed in Section 4.4.1.

In our experiments (discussed in Chapter 5) we used training sets of ∼ 3, 000
and ∼ 4, 000 membrane and nom-membrane pixels for training. The labeling of the
training examples takes 20 to 60 seconds. The training of ∼ 4, 000 examples using
the random forest classifier takes three seconds and the testing on one slice of size
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Input: Intensity image f(x, y),
expert user knowledge as ground truth image fGT(x, y),
transfer functions TFf , TFSeg and TFGT for intensity, segmentation and ground
truth

Output: A representative training sample T

1: T ← {T⊕ ∪ T	} . Label some pixels as positives ⊕ and some as negatives 	
2: bC ← NewColorImage(Width(f),Height(f),(1, 1, 1)) . Initialize

background image to white
3: repeat
4: RF←TrainRF(T )
5: Seg←TestRF(RF,f) . Segment f with learned RF
6: fC ←VisualizeTF(f ,b,TFf )
7: SegC ←VisualizeTF(Seg,bC ,TFSeg)
8: GC ←VisualizeTF(fGT,bC ,TFGT)
9: SC ←AlphaBlend(SegC ,fC ,Seg)

10: Identify type I ⊕ and type II errors 	 in visualizations SC and GC

11: T⊕ ← Label some type I errors as ⊕
12: T	 ← Label some type II errors as 	
13: T ← {T⊕ ∪ T	} . Extend training sample with some errors corrected
14: until No improvement possible

15: function VisualizeTF(f(x, y),b(x,y),TF) . Visualize image f using
transfer function TF and background image b

16: vC(x, y)← NewColorImage(Width(f),Height(f),(0,0,0))
17: for each p ∈ f(x, y) do
18: c1 ←Sample(TF,p)
19: c2 ←Sample(TF,b(x, y))
20: vC(x, y)← InterpolateColors(c1,c2,p) . Alpha-blending
21: return vC(x, y)

22: function AlphaBlend(fC(x, y),gC(x, y),α(x, y)) . Alpha-blend two images
fC and gC using an alpha value image α(x, y)

23: vC(x, y)← NewColorImage(Width(fC),Height(fC),(0,0,0))
24: for each p ∈ f(x, y) do
25: c1 ←Sample(fC ,x,y) . Sample color from fC(x, y)
26: c2 ←Sample(gC ,x,y) . Sample color from gC(x, y)
27: vC(x, y)← InterpolateColors(c1,c2,α(x, y)) . Alpha-blending
28: return vC(x, y)

29: function InterpolateColors(c1,c2,α) . Linear color interpolation
30: return c1 · α + c2 · (1− α)

31: function NewColorImage(w,h,p) . RGB color image creation and
initialization

32: vC ←New2D(w,h)
33: for y ← 1, h do
34: for x← 1, w do
35: vC(x, y)← p . Initialize with pixel
36: return vC(x, y)

Algorithm 4.1: Iterative training sample construction.
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512× 512 takes five seconds using the random forrest classifier. The visualization
of the segmentation results is realized under one second.

4.3 Feature Redundancy

The feature redundancy can be viewed as a measure of similarity between two redundancy

features. In other words, it is a measure of "... how much adding a feature to a
given set of features contributes to prediction" (Auffarth et al. [2010] (p. 250)).
This contribution can be described by the correlation between two features, as correlation

discussed in Section 2.4.2 (see Equation 2.5 on page 32). From a statistical point
of view, if two variables are uncorrelated they are also statistically independent
and therefore not redundant (Duda et al. [2000]).

Figure 4.4 illustrates different types of correlation which can occur when com-
paring two features Fi (x-axis) and Fj (y-axis). All sub-figures show a two-
dimensional histogram with 15 × 15 bins where red means high, orange means
average and gray means no feature value occurrences. A perfect correlation (de-
fined as |ρ| = 1 in Equation 2.5 on page 32) would mean that there is a linear
relationship between the features (see Figure 4.4a) while in case of no correlation
we have independent variables (see Figure 4.4b). Positive correlation implies that
as the values of Fi increase, the values for Fj also increase but that are not per-
fectly correlated (see Figure 4.4c), while the negative correlation implies that as
the values of Fi increase, the values for Fj decrease (see Figure 4.4d). A strong cor-
relation means that the feature values are scattered in the vicinity of the diagonal
(see Figure 4.4e) while a weak correlation means that they are scattered around
the diagonal but are further away (see Figure 4.4f). If for a little change in one
variable the other variable changes greatly we call this situation low correlation
(see Figures 4.4g and 4.4h).

4.3.1 Visualization-assisted Feature Redundancy Framework

In general, those two features which correlate perfectly can be considered as redun-
dant (see Figure 4.4a) because both have a strong linear relationship and therefore
contain the same information. In Section 2.4.2 on page 32 we discussed the corre-
lation coefficient ρ which is one tool to measure redundant features. We can select
features based on correlation coefficients by setting a threshold to (say) |ρ| ≥ 0.7
and then testing the feature set on a test set in a trial-and-error manner. The
problem with this approach is that the manual comparison of correlation coeffi-
cients of overM = 90 features is cumbersome. Therefore, we propose a structured
visualization-assisted tool for feature redundancy framework which incorporates
interaction techniques such as selection, encoding, elaboration, abstraction and
connection (as proposed by Yi et al. [2007]).

According to Gauss summation we would need to visualize and compare NC =∑M
k=1 k = M(M+1)

2
= 8,190 different scatter plots. The visualization of that many

scatterplots leads to an information overload problem which occurs when (a) having information
overload
problemirrelevant data with respect to the task, (b) having processed the data inappropri-
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Figure 4.4: Six special cases of feature correlation visualized as two-
dimensional histograms with 15 × 15 bins. ρ is the correlation
coefficient discussed in Section 2.4.2 on page 32.
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ately, and (c) having presented the data inappropriately (Keim et al. [2008]).
In order to overcome this problem for the task of feature redundancy explo-

ration we propose the correlation exploration view shown in Figure 4.5. This view
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Figure 4.5: Feature redundancy exploration by visual elaboration and abstrac-
tion of correlation scatterplots. The numbers at the top indicate
the indices of the features. The magnifying glasses show two-
dimensional histograms with more detail.

consists of two components based on the elaboration-abstraction concept (discussed
by Yi et al. [2007]). The correlation coefficient matrix view (CCM view) encodes
the correlation coefficients ρ of features by color (blue, gray, red). The correspond-
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ing feature indices are displayed at the top of the view. Because a printed page is
limited we show 64 out of 90 features in the CCM view. The correlation coefficient
ρ ∈ {−1, . . . , 0, . . . ,+1} abstracts the result of the correlation of two features by a
colored glyph (in our case: blue, gray and red squares). We allow the elaboration
of each selected glyph by zooming into the CCM and visualizing the corresponding
correlation plot. Instead of showing the scatter plots with hundreds of thousands
of data points (in our case 262,144 data points per image) we use two-dimensional
histogram plots (with 30× 30 bins) from which the overall shape of the scattered
points can be identified. The colors in these plots correspond to the number of
data points within the corresponding bin: yellow corresponds to a high number of
data points in that bin, orange corresponds to a medium and gray to a low number
of data points. Because the correlation matrix is symmetric we only need to show
half of the matrix (in this case: the upper triangular matrix). In Figure 4.5 we see
64 out of 90 feature correlation coefficients visualized as strong positive correlation
(red), strong negative correlation (blue) and no correlation (gray).

Because the CCM view contains many objects that we can interact with we
use a thresholding filter (discussed by Yi et al. [2007]) on the correlation coeffi-
cients. This allows interactive search and comparison of strongly correlated fea-
tures (|ρ| ≥ 0.7). However, a strong correlation does not necessarily mean that
there is no gain by adding a feature to the feature set (Guyon and Elisseeff [2003]).
This exceptional circumstance requires the calculation of the so-called intra-classintra-class

covariance covariance which is illustrated in Figure 4.6. Both cases show high correlation
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Figure 4.6: Effect of the intra-class covariance shown on an simple example.
(a) Adding both features to the feature set do not lead to a gain
in separation betwwen classes (green, orange). (b) Adding both
features lead to a gain in separation (adopted from Guyon and
Elisseeff [2003]).

in the directions of the corresponding lines. The adding features Fi and Fj in
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Figure 4.6a does not lead to a significant gain in the separation between the two
classes. While adding Fi and Fj in Figure 4.6b to the feature set does lead to
an important separation gain because Fi as well as Fj is necessary to identify the
separation line shown in Figure 4.6b.

The intra-class covariance indicates where strongly correlating features do not
automatically lead to omitting a feature. Instead of using only one of these features
we use the second one as well if it helps separating the positives from the negatives,
as shown in Figure 4.7. It shows that two highly correlated features ||∇G2|| and
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Figure 4.7: Intra-class covariance for ||∇G2|| and G4−G1 features. The sepa-
ration boundary is shown in (d) between the positive (b) and the
negative (c) histograms.

G4 − G1 with ρ = 0.96 represent basically the same information (Figure 4.7a).
Furthermore, we can show the histograms of feature values for membranes and
non membranes, which is illustrated Figure 4.7b and Figure 4.7c respectively. For
the purpose of intra-class covariance we can merge the three histograms shown
in Figure 4.7a, Figure 4.7b and in Figure 4.7c into a single histogram shown in
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Figure 4.7d. However, the number of membrane pixels is much lower than the
number of non-membrane pixels (compare the color bar ranges in Figure 4.7b and
Figure 4.7c).

From a visualization point of view, each two-dimensional histogram bin con-
tains two values: the number of positives and the number of negatives. One pos-
sibility of resolving this multi-modal situation is blending. But blending does not
lead to expressive histograms where the bi-variate distribution of positive and neg-
ative bins is clearly visible because of the large histogram bin height discrepancies
between the two classes. Therefore, we propose the per-class scaled histogram plotper-class

scaled
histogram

plot
(PCSH plot), as shown in Figure 4.7d, where the positive histograms (see Fig-
ure 4.7b) and negative histograms (see Figure 4.7c) are scaled between [0, 1] and
[-1,0] respectively. This is achieved as follows: let b⊕(i, j) denote the frequency of
positives in the bin at position (i, j) in the positive histogram with i = 1, . . . , 30
and j = 1, . . . , 30 and let b	(i, j) denote the frequency of negatives in the bin
at the same position (i, j) in the negative histogram. Then we can scale the bin
values in each histogram (positive and negative histograms separately) by finding
the maximum frequency and dividing all frequencies by the maximum frequency.
The results are scaled histograms which have bins denoted as b̂⊕(i, j) and b̂⊕(i, j)
respectively. Then the corresponding bin in the PCSH plot has the value

bPCSH(i, j) =

{
b⊕(i, j) if b⊕(i, j) ≥ b	(i, j)
−b	(i, j) if b⊕(i, j) < b	(i, j)

(4.1)

The negation of the scaled bins of the negative histogram is done in order to
separate the value range of the negative histogram bins from the value range of
the positive histogram bins. This leads to a clear visual separation between two
classes in a two-dimensional histogram but it does not show type I and type II
errors made when separating both distributions. The PCSH plot falls into the
interaction category of an encoding view (as used by Yi et al. [2007]).

Even though the framework provides an overview and structures the search
for redundant features a lot user interaction is necessary. First, the user gets an
overview of the correlation coefficients (CCM view). Second, because we have 8,190
different correlation coefficients the user can apply a threshold (say) |ρ| ≥ 0.7 and
rule out most correlation coefficients. For the remaining 222 correlation coefficients
we need to check the intra-class covariance to decide whether the highly correlated
features are though relevant.

4.3.2 Summary

We can summarize the visual exploration process of redundant features in terms
of the procedure shown in Algorithm 4.2. The CCM view is used as an abstraction
view with the purpose to identify and mark redundant features. The threshold-
based filtering is an interaction technique which allows to exclude weakly correlated
features from consideration. This means that out of 2080 possible feature correla-
tions we filter those which have |ρ| ≥ 0.7 and get 199 feature correlations to check.
The histogram plots are used to identify the intra-class covariance which is an in-
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Input: Feature image stack Fi(x, y; z) for slice Si(x, y) (z = 1, . . . ,M is feature
index),
ground truth image fGT(x, y),
transfer function TFCorr for correlation coefficient matrix view

Output: Flag sequence to indicate redundant features r ∈ RM

1: Idx⊕ ← fGT(x, y) == 1 . Get positive pixel indices
2: Idx	 ← fGT(x, y) == 0 . Get negative pixel indices
3: nb ← 32 . Number of 2D histogram bins is nb × nb
4: r(.)← 0 . Mark all features as non-redundant
5: m← CreateCCM(F(x, y; z))
6: v ← CreateCCMView(m,TFCorr)
7: vStrong ← ThresholdFilter(v,0.7) . Filter strongly correlated features

8: for each g ∈ vStrong do
9: {i, j} ← Index(g)

10: {Vi,⊕, Vj,⊕} ← {F(x, y; i)(Idx⊕),F(x, y; j)(Idx⊕)} . Get value arrays for ⊕
11: {Vi,	, Vj,	} ← {F(x, y; i)(Idx	),F(x, y; j)(Idx	)} . Get value arrays for 	
12: h⊕ ←Histogram2D(Vi,⊕,Vj,⊕,nb) . Get 2D histogram for class ⊕
13: h	 ←Histogram2D(Vi,	,Vj,	,nb) . Get 2D histogram for class 	
14: hICC ← Histogram2D2Class(h⊕,h	)
15: if hICC indicates weak intra-class covariance then
16: r(i)← 1

17: function CreateCCM(F(x, y; z)) . Create correlation coefficient matrix
18: M ← Size(F(x, y; z),3) . Number of features
19: ρ← New2D(M ,M)
20: for j ← 1,M do
21: for i← 1,M do
22: ρ(i, j)←Corr2(F(x, y; i),F(x, y; j)) . Equation 2.5 on p. 32
23: return ρ(i, j) . ρ(i, j) ∈ {−1, . . . , 0, . . . ,+1}

24: function ThresholdFilter(v(i, j),t) . Filter correlation coefficient |ρ| ≥ t
25: M ← Size(F(x, y; z),3) . Number of features
26: for j ← 1,M do
27: for i← 1,M do
28: if |v(i, j)| ≥ t then
29: v(i, j)←Sample(TFCorr,0) . Mark as uncorrelated
30: return v(i, j)

Algorithm 4.2: Feature redundancy checking according to correlation coefficients
and intra-class covariances.
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31: function CreateCCMView(m(i, j),TFCorr) . Create correlation coefficient
matrix view

32: M ← Size(m(i,j),1)
33: v ← NewColorImage(n,n,(0,0,0))
34: m← CreateCCM(F(x, y; z)) . Determine correlation coefficient matrix
35: for j ← 1,M do
36: for i← 1,M do
37: v(i, j)←Sample(TFCorr,m(i, j))
38: return v(i, j)

39: function Histogram2D(f1(x, y),f2(x, y),nb) . Create 2D histogram having
n× n bins

40: {w, h} ← {Width(f1),Height(f1)}
41: {xmin, xmax} ← {0, 1}
42: {ymin, ymax} ← {0, 1}
43: {wx, hy} ← {(xmax − xmin)/nb, (ymax − ymin)/nb}
44: h← New2D(n,n)
45: for j ← 1, h do
46: for i← 1, w do
47: sx ←Sample(f1,i,j) . Sample value from f1
48: sy ←Sample(f2,i,j) . Sample value from f2
49: if InRange(sx,xmin,xmax) and InRange(sy,ymin,ymax) then
50: {idxx, idxy} ← {[sx − xmin)/wx], [(sy − ymin)/hy]} . [.] round to

integer
51: h(idxx, idxy)← h(idxx, idxy) + 1 . Count frequencies
52: return h(x, y)

53: function Histogram2D2Class(h⊕(x, y),h	(x, y)) . Create 2D histogram
containing clearly separated classes

54: {w, h} ← {Width(h⊕),Height(h⊕)}
55: h⊕ ← Norm01(h⊕) . Normalize frequencies in range [0, 1]
56: h	 ← Norm01(h	) ◦ − 1 . ◦ element-wise multiplication
57: h← New2D(w,h)
58: for j ← 1, h do
59: for i← 1, w do
60: if |h⊕(i, j)| ≥ |h	(i, j)| then
61: h(i, j)← h⊕(i, j)
62: else
63: h(i, j)← h	(i, j)

64: return h(i, j)

65: function InRange(v,smin,smax) . Check v for being in [smin, smax]
66: return v ≥ smin and v ≤ smax

Algorithm 4.2: (continued)
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dicator of redundant but yet relevant features. The Line 15 in Algorithm 4.2 states
that it is up to the user to decide which feature he/she should mark as redundant.
As a heuristic one can say that the intra-class covariance is considered strong if
positive and negative distributions – shown as green and red bins in Figure 4.7d
– are far away and do not overlap. The overlap can be determined visually by
comparing Figure 4.7b and 4.7c.

4.4 Feature Relevance

In this work, a feature is called relevant or expressive if it captures the membrane relevant

concept that discriminates between membrane and non-membrane pixels. In this
regard, the most expressive image would be the ground truth image as it provides
for each pixel always the correct label and makes no error. Or as Yu and Liu [2003]
put it: "... a feature is good if it is highly correlated with the class but not highly
correlated with any of the other features." (p. 858). Because the ground truth can
only be produced manually by an expert user, it is of course not practicable to
generate it for every ssTEM image.

4.4.1 Aspect-oriented Feature Exploration

If it is not possible to achieve complete separation using one feature, then multiple
features can be combined into a set that captures different parts of the same
concept. For this purpose, we define an aspect window as an image patch (i.e., aspect

windowa small image region) of interest which captures a part of the membrane-non-
membrane concept. The identification of these parts can be structured in the
following way: (a) Segment the intensity image with a training set, (b) visualize
the corresponding confusion matrix (discussed in Section 4.5.3) to identify TP, TN,
FN and FP, (c) select a number of aspect windows (say five) as representatives of
TP, TN, FN and FP, and (d) connect each aspect window in the intensity image
to the corresponding aspect window in all other feature images. This procedure
consists of the selection and connection interaction techniques as proposed by Yi
et al. [2007]. The five selected aspect windows are shown in Figure 4.8 while the
corresponding connection view is shown in Figure 4.9. From a slice of the ssTEM
brain tissue data set we select five regions of interest (i.e., aspect windows). Each
aspect window marks a region in the slice image with potential problems as well as
that can occur when segmenting the image. The overall aim is to findWith aspect
visualization it becomes clear which features are best suited to represent which
aspects. The visualization of the segmentation result is discussed in Section 4.5.1.

The five aspects shown in Figure 4.9 lead to a set of rules shown in Table 4.1
that are derived by comparing the intensity value distributions for both mem-
brane and non-membrane regions. The blue image patch shows a membrane region
without compression zones where in f the intensity value distribution is centered
around 88 (mean) for the membrane and 161 (mean) for the non-membranes. We
also see that other features capture the differences in pixel value distributions
between membrane and non-membrane regions. The cyan and red patches show
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(a) Density image with five aspect windows.

(b) Corresponding ground truth image with
the same aspect windows.

Figure 4.8: Aspects as image patches of interest with regard to the membrane-
non-membrane concept. (a) The density image with aspect win-
dows. (b) The ground truth image with the corresponding aspect
windows.
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Figure 4.9: The corresponding feature patches for each aspect window defined
in Figure 4.8.
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Aspect Membrane Non-membrane

Blue Membrane pixels are part of
ribbon-like structures of equal
thickness and have density
values agglomerated around
intensity value 88 as shown in
Figure 4.3b on page 56.

Non-membrane pixels are blobs
having density values
agglomerated around intensity
value 161 as shown in
Figure 4.3b on page 56.

Magenta No membrane pixels are shown,
only white matter and a
mitochondrion which has similar
pixel intensities as the
membrane shown in blue aspect
window.

Both, the white matter as well
as the mitochondrion (round
dark region) are part of the
non-membrane.

Yellow Membrane pixels are part of
ribbon structures with varying
thicknesses as well as part of a
synapse (darker pixels of the
membrane).

Non-membrane regions contain
pixels being part of the synapse.

Cyan Compressed zones show
membrane pixels as part of
ribbon structures with varying
thicknesses and pixel intensity
distributions.

Non-membrane regions contain
white matter as well as a part of
a mitrochondrion.

Red Membrane pixels are part of
both the compressed image
zones (thick vertical ribbon) as
well as non-compressed image
zones (horizontal ribbons).

Non-membrane regions contain
white matter.

Table 4.1: Membrane observations lead to a high-level set of rules which are ex-
tracted and illustrated by aspect windows shown in Figure 4.8 and
Figure 4.9.

different variants of compression artifacts. The magenta image patch shows the
boundary of a mitochondrion and the white matter surrounding it. The yellow
image patch shows a synaptic cleft. We also see that in the blue patches the
differences in pixel value distributions between the membrane and non-membrane
regions are represented by the density feature f , the minimum and variance of
the rotation-invariant membrane matched images MinR and σ2

R, the Gaussian
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smoothed images G1. On the other hand we see that the non-membrane region
in the magenta image patch is best approximated by σ2

R under the six selected
features.

The visual exploration of features based on the selected aspect windows works
as follows: (a) visualize the aspect windows for the original intensity image f (i.e.,
the first row in Figure 4.9), (b) for each aspect window visualize the the full set of
features (columns in Figure 4.9), and (c) select those features which represent the
membranes and the non-membranes the best. In the last step the membranes are
best represented by a feature if the pixel values along the membranes are clustered
around a pixel value (i.e., are similar along the membrane) and if those similar
pixel values are drawn through the membranes (i.e., are represented by ribbons
with uniform pixel values). f and G1 show drawn through membranes (i.e., those
where the variation of the pixel values is small) while σ2

R, G10 and σH show not
drawn through membranes in Figure 4.9 (i.e., it shows non-uniform snakes). On
the other hand we select features which represent non-membranes as well. Non-
membranes are represented as regions instead of ribbons. Therefore, we select at
least one feature for each aspect window where at least one non-membrane region
(in the blue aspect window, f shows four non-membrane regions) has uniform
pixel values. For example, the blue aspect window in Figure 4.9 contains a non-
membrane region (indicated by red dotted square in the lower-right corner) which
is best represented by uniform dark regions shown in σ2

R and G10.

4.4.2 Aspect-oriented Feature Creation

Aspect windows can also be used to identify those features which represent specific
regions in an image better than the original intensity image. This can be achieved
by comparing the pixel value distributions within the membrane regions as well as
non-membrane regions. From Figure 4.9 we see that different features represent
different parts of the same concept. In our case: some features represent different
parts of the membrane ribbons better than the intensity image and some other
features represent different parts of the non-membrane regions better than the
intensity image. Therefore, we can use aspect windows to guide the construction
of new features which are more expressive than the existing ones by combining
these a feature sub-set using means of filtering and weighting operators.

For example, let us consider only the features shown in Figure 4.9 which evi-
dent problem for the segmentation of the intensity image. In the magenta aspect
window, f shows only non-membrane pixels. The round dark region on the right
is a mitochondrion which has similar pixel value distribution as the membrane rib-
bon shown in f in the blue aspect window. Therefore, the idea is to create a new
feature that displays mitochondria differently from membranes. The construction
of this feature is described in Algorithm 4.3. Because white matter pixels have
higher pixel intensities than membranes we select pixels which are bright by split-
ting the value range of the Gaussian smoothed intensity image equally (G1 < 0.5,
G1 ≥ 0.5). Then, in aspect windows we search for a feature that represents the
mitochondria uniformly. In our case σ2

R displays the mitochondria mostly as dark
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Input: Feature images f , MinR, σH , σ2
R, G1, G10

Output: A new feature capturing the mitochondrion sub-concept

1: {w, h} ← {Width(f),Height(f)}
2: vn ← New2D(w,h)
3: for y ← 1, h do
4: for x← 1, w do

. Handle white matter with mitochondria
5: if G1(x, y) ≥ 0.5 and σ2

R(x, y) < 0.2 then
6: vn(x, y)← G10(x, y)

. Handle membrane-like pixel regions
7: else if G1(x, y) < 0.5 and σ2

R(x, y) ≥ 0.5 then
8: vn(x, y)← MinR(x, y) ◦G1(x, y) . Element-wise feature weighting
9: else

10: if σH(x, y) ≤ 0.2 then . Reverse mitochondria pixel values
11: vn(x, y)← 1−G1(x, y)
12: else
13: vn(x, y)← G1(x, y)

14: return vn(x, y)

Algorithm 4.3: Creation of the new feature shown in Figure 4.10 based on the
observations of the pixel value distributions in the aspect windows
show illustrated in Figure 4.8 on page 68.

uniform regions. The next step is to find a proper threshold for σ2
R which can

be achieved by providing a threshold slider for selecting pixels whose position is
propagated to all aspect windows for σ2

R (i.e., row four). We choose a threshold
with which most of the mitochondrion region, shown in σ2

R in the magenta aspect
window, is captured (σ2

R < 0.2). Then we replace the selected pixel by a uniform
region such as G10 (see Line 6 in Algorithm 4.3. The same principle is applied also
for membrane ribbons and other pixels which do not fall into the specified value
ranges in Line 5 and Line 7.

The result of Algorithm 4.3 is shown in Figure 4.10. Adding the new feature
to the original feature set of 90 features lead to an improvement of the prediction
error from 12.70% to 12.48%.

4.5 Visual Comparison of Segmentation Results

The output of the random forest-based image segmentation is a confidence func-
tion c(x, y) ∈ [0, 1] which maps a confidence value c(x, y) to each image pixel
(x, y). This confidence map (also called confidence image.) can be visualized us-
ing transfer functions, as discussed in Section 2.2 on page 16. Furthermore, if
NSeg distinct segmentation results are produced with different configurations (i.e.,
either with different training or feature sets) we can combine the confidence im-
age tensor C(x, y; z). C(x, y; z) consists of a stack of NSeg confidence images with
z = 1, . . . , NSeg using operators such as the mean and variance of NSeg images
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(b) Value histogram for new feature

Figure 4.10: Aspect-oriented creation of a new feature from f , G1, G10, MinR
and σ2

R and corresponding pixel value histogram.

and in case of NSeg = 2 also the difference between two confidence images. The
function that determines these operators is shown in Algorithm 4.4.

. Create encoded image of C(x, y; z) = {cz(x, y)|z = 1, . . . , NSeg} confidence
images

1: function ExplicitModelEncodingVisualization(C(x, y; z),Op)
2: {w, h} ← {Width(c1),Height(c1)}
3: ec ← New2D(w,h)
4: for y ← 1, h do
5: for x← 1, w do
6: v← C(i, j; :) . Sample all values from C at position (i, j) with

v ∈ RNSeg

7: if Op == Mean then
8: e(x, y)←Mean(v) . Determine mean of value array
9: else if Op == Variance then

10: e(x, y)←Variance(v) . Determine variance of value array
11: else
12: if NSeg == 2 then
13: e(x, y)← |v1 − v2| . Determine absolute of difference from

v = {v1, v2}
14: return e(x, y)

Algorithm 4.4: Explicit encoding of the mean, the variance or the difference be-
tween different segmentation results which are provided as confi-
dence images.

The difference in segmentation result images shown in Figure 4.11a can be
used to determine the impact of the incremental training sets (as discussed in
Section 4.2) on page 53 on the outcome of the segmentation. Yellow regions
indicate big differences between two models which have been created using training
set Ti+1 and the (final) incremental training set TGT. Red indicate medium and
blue low differences between the two models. We see that the additional selection of
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Medium VarianceHigh Variance Low Variance

(a) Difference in segmentation results using
Ti+1 and TGT

Medium DifferenceBig Difference Small Difference

(b) Variance of segmentation results using
Ti, Ti+1 and TGT

Figure 4.11: Explicit encodings to summarize models using training sets Ti,
Ti+1 and TGT from Figure 4.1, Figure 4.2 on page 56.
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compressed, white matter as well as mitochondrion regions (compare Figure 4.1a to
Figure 4.2a on page 54 and 55 respectively) lead to a degradation of the prediction
performance in other regions such as mitochondria or membrane regions (shown
in red and yellow). In Figure 4.11b the variance image shows those regions where
the variance between the segmentation results using training sets Ti, Ti+1 and
TGT is the greatest. This shows that a careful selection of the training examples
(i.e., through conservative sample selection discussed in Section 4.2) can handle
mitochondrial regions. The explicit encodings created using Algorithm 4.4 are used
as a hint for the next iteration step in Line 13 of the Algorithm 4.1 on page 58.

4.5.1 Uncertainty Visualization

The segmentation output of the random forest classifier is a certainty image which
states how confident the machine learning model is that a pixel is belonging to the
class membrane. Therefore, the visualization of the model uncertainty is straight-
forward. We use a transfer function to generate the uncertainty image and blend
this image over the original intensity image as shown in Figure 4.12 where green
means high confidence (c ≥ 0.5).

4.5.2 Final Segmentation Result

In the end, the segmentation of ssTEM images should result in a binary volume
that indicates which voxels belong to the membrane class. For this purpose, the
real-valued certainty images C(x, y; z) need to be converted into a binary image
stack C0,1(x, y; z) 7→ {0, 1} which is a stack of binary indicator functions. The
standard approach is to assign an indicator value of 1 to a pixel (x, y) if its cer-
tainty value c(x, y) is greater or equal than the certainty threshold tc. Because certainty

thresholdthe certainty value corresponds to the highest number predictions of a class in the
random forest relative to the total number of pixels in the image, choosing tc = 0.5
would assign those pixels to the membrane class where the majority of the decision
trees vote for membrane.

4.5.3 Confusion Matrix Visualization

In this thesis we assumed that the domain knowledge is explicitly provided in
terms of a ground truth segmentation. On new data sets where no ground truth is
provided, the domain expert who wants to optimize the sample selection and the
used feature sets knows which regions in a segmentation result image correspond
to errors and which are successfully segmented. Therefore, the domain expert can
select manually the errors and the successes made by the random forest segmenta-
tion either through brushing (i.e., implicit generation of a ground truth image) or
just select the aspect windows without brushing. Either way the domain expert
can apply the sample selection and feature exploration methods discussed in this
chapter. The aim of this visualization is provide means of identifying the types
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(a) Original slice image

Low CertaintyHigh Certainty

(b) Confidence image

Figure 4.12: Uncertainty visualization for (a) intensity image by (b) blending
the uncertainty image over the intensity image.
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of errors made by the segmentation procedure and use this information during
sample selection and feature exploration.

In Section 2.3.3 on page 22 we learned that instead of displaying the certainty
values using a transfer function, as shown in Figure 4.12b, we get more information
about the type I (FP; blue) and type II errors (FN; red) when visualizing the
confusion matrix image for the segmentation result. As illustrated in Figure 4.13, confusion

matrix imagethe two coloring modes guide the analysis of aspect windows. Figure 4.13a shows
transparent (α = 0) TP, FP and FN regions which allow the identification of the
pixel value distributions within these regions. Figure 4.13b shows an overview
image where big error regions are identified more quickly by coloring the TP, FP
and FN regions.

The synthesis of the confusion matrix image is straightforward and it is shown
in Algorithm 4.5. From the ground truth and certainty image we determine four
confusion mask images: true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) mask images. Each of these indicator images are blended
over the previous one using the corresponding alpha-weighted color.
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False NegativesTrue Positives False Positives

(a) Transparent confusion matrix image
α = 0.0

False NegativesTrue Positives False Positives

(b) Colored confusion matrix image
α = 0.5

Figure 4.13: Two visualization modes of confusion matrix image.
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. Create TP, TN, FP and FN images and blend them over f
1: function CreateConfusionMatrixImage(f(x, y),c(x, y),fGT (x, y),α)
2: v ← NewColorImage(Width(f),Height(f),(1, 1, 1)) . Initialize to

white
3: mGT

⊕ ← fGT(x, y) == 1 . Determine TP
4: mGT

	 ← fGT(x, y) == 0 . Determine TN
5: mc

⊕ ← c(x, y) ≥ 0.5 . Determine predicted positives
6: mc

	 ← c(x, y) < 0.5 . Determine predicted negatives
. Determine indicator images for all four categories

7: mTP ← mGT
⊕ ◦mc

⊕
8: mTN ← mGT

	 ◦mc
	

9: mFP ← mGT
	 ◦mc

⊕
10: mFN ← mGT

⊕ ◦mc
	

. Color each category and blend the results
11: {mRGB, mI} ColorRegion(mTP, (0,1,0,1), α,true)
12: v(x, y)← BlendImages(mRGB,f(x, y),mI)
13: {mRGB, mI} ColorRegion(mTN, (0,0,0,0), α,false) . Skip TN
14: v(x, y)← BlendImages(mRGB,v(x, y),mI)
15: {mRGB, mI} ColorRegion(mFP, (0,0,1,1), α,true)
16: v(x, y)← BlendImages(mRGB,v(x, y),mI)
17: {mRGB, mI} ColorRegion(mFN, (1,0,0,1), α,true)
18: v(x, y)← BlendImages(mRGB,v(x, y),mI)

19: return v(x, y)

. Color a region indicated by Idx using color p and enhance the perimeter of
the region if usePerimeter is true

20: function ColorRegion(Idx(x, y),p,α,usePerimeter)
21: vC(x, y)← NewColorImage(Width(Idx),Height(Idx),(1, 1, 1))
22: mp(x, y)← Perimeter(Idx) . Get perimeter image
23: if usePerimeter then
24: mα(mp)← 1 . Assign for perimeter pixels mp alpha value 1

25: m(x, y)← Idx · α . Create alpha-weighted mask image
26: vC(x, y)← (mα(x, y),mα(x, y),mα(x, y)) . Convert to RGB image
27: return vC(x, y)← mα(x, y) ◦ p . Color region by incorporating α into

channels

. Blend images using α for f1 and (1− α) for f2
28: function BlendImages(f1(x, y),f2(x, y),α)
29: {w, h} ← {Width(f1),Height(f1)}
30: vC(x, y)← NewColorImage(w,h,(1, 1, 1))
31: return vC(x, y)← f1(x, y) · α + f2(x, y) · (1− α)

Algorithm 4.5: Creation of confusion matrix image.





Chapter 5

Results & Discussion

In Section 2.3.1 on page 20 we discussed that multiple classification models can be
learned from experience by configuring either (a) the parameters of the machine
learning method (as discussed in Section 2.3.5), (b) the feature space (as discussed
in Chapter 4) or (c) by using different training samples (as discussed in Section 4.2).
In Section 2.3.3 we learned that the evaluation function is used to compare the
segmentation results of different models. Depending on the chosen function we
get the prediction accuracy/prediction error which is the standard way to describe
the effectiveness of a model. Because the random forest classifier is applied on the
image pixels where the expert user needs to select the training sample manually it
is advantageous to categorize the errors into type I and type II errors (as discussed
in Section 4.5.3). This is achieved by comparing models using the confusion matrix.
For this purpose we also use (a) the sensitivity to measure the proportion of the
membrane pixels which are classified as membranes, and (b) the specificity to
measure the rate of correctly classified non-membrane pixels. That the size of the
entire ssTEM drosophila fly brain volume is 512× 512× 30 = 7, 864, 320 voxels.

5.1 Evaluation of Sample Selection

In Section 4.2 we have seen that selecting the training examples iteratively lead
to a better prediction performance than using the entire ground truth image as
the training sample. This result is consistent with the machine learning literature
which explains this phenomenon as being caused by model over-fitting. In the
machine learning literature, the selection of the same examples for training and
testing is not a valid method for model evaluation. Instead cross-validation is
used to get more representative model estimates. In our case the aim is not to test
the prediction capabilities of the model but instead we evaluate different training
sample selection strategies for the same classifier using different feature sets.

In Figure 4.1, Figure 4.2 and Figure 4.3 we have seen the prediction accuracies
for the corresponding training samples Ti, Ti+1 and TGT for a single slice of the
drosophila fly brain dataset discussed by Cardona et al. [2012]. The subscripts
i and i + 1 denote that the incremental training set construction result in two
consecutive selections of training sets. The training set with subscript i + 1 has
is created by adding new training examples to the training set with subscript i.
While for the initial training sample Ti the prediction accuracy on that specific
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slice is ε = 0.1315, for the incremental training sample Ti+1 the lower error rate is
ε = 0.1169 (ε = 0.1169 means that 11.69,% of the pixels have been misclassified).
When using the ground truth image as the training sample we get an error rate of
ε = 0.1296. The drosophila dataset is a stack of 30 512× 512 images. Segmenting
the entire volume with Ti, Ti+1 and TGT from only one slice leads to error rates of
εTi = 0.1366, εTi+1

= 0.1255 and εTGT = 0.1461 respectively.
Figure 5.1 shows the ROC plot and the precision-recall plot for the entire

drosophila brain volume. For example, from the ROC plot (as shown in Fig-
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Figure 5.1: Evaluation curves for confidence-based segmentation results for
three training samples Ti, Ti+1 and TGT shown in Figure 4.1 on
page 54, Figure 4.2 on page 55 and Figure 4.3 on page 56 respec-
tively.

ure 5.1a) we see that in order to get 80% of the true membrane voxels the best
choice between these three training samples is to use the ground truth sample
because for 80% true membranes we only get ∼ 12% of false membranes. We also
see that the incremental training sample Ti+1 is a better choice for training than
the initial training sample Ti for every true positive rate.

We also plot the corresponding precision-recall (PR) curves in Figure 5.1b
which takes the skewness in the dataset into account (Davis and Goadrich [2006]).
Skewed means: huge difference between the number of positive and negative ex-
amples. In our case: 1,745,293 positives to 6,119,027 negatives. It captures the
skewness because the precision $ = TP/(TP + FP ) compares the false positives
to the true positives rather than to the true negatives (Davis and Goadrich [2006]).
While the difference between the training samples Ti and Ti+1 is small in the ROC
curve, in the PR curve we see a clearer evidence for emphasizing the choice of Ti+1

over Ti. This is because the PR curve for T1+1 is closer to the optimum classifier
(top-right corner) than Ti. But selecting an entire slice TGT of 262,144 pixels lead
to better performance in the PR curve on the entire volume of 30 slices.
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5.2 Feature Selection

In Chapter 3 we have discussed the original feature set of 90 features which can
be divided into four categories: (a) the original density feature f from which all
other features are derived, (b) the eight rotation-based template matching features
(R0, . . . , R7) with six derivations (MinR, MaxR, µR, σ2

R, MedianR and DiffR), (c)
the per-pixel local histogram features split into ten bins (h1, . . . , h10) with two
derivations (µH and σH), and (d) different images which have been smoothed
using the Gaussian filters Gσ with varying standard deviations σ (see Figure 3.10,
Figure 3.11 and Figure 3.12). Because each category serves a specific purpose
we organize the feature selection process in such a way that each category is
represented by a category–sub-set. Formally, let F = Ff ∪ FR ∪ FH ∪ FG be
the entire feature set which consists of four categories with |Ff | = 1, |FR| = 14,
|FH | = 12 and |FG| = 63. The aim is to find for each feature category a feature
sub-set F ′f ⊆ Ff , F ′R ⊆ FR, F ′H ⊆ FH , F ′G ⊆ FG that is relevant to the purpose
of learning.

As discussed in Section 4.3.1 on page 59, let us first explore the feature redun-
dancy for each category. For this purpose, we introduce a sub-view shown at the
top of Figure 5.2. The sub-view encodes the column-wise summation of all abso-
lute values of correlation coefficients in the re-configured CCM view. The CCM
view differs from the one shown in Figure 4.5 on page 61. Instead of displaying
only the upper triangular matrix we show the entire correlation coefficient matrix.
Furthermore, instead of distinguishing between positive and negative correlation
coefficients we take the absolute value of those and encode them as dark blue for
high correlation and white as no correlation in the CCM view. The color legend
of the sub-view at the top shows the sum of absolute value of the feature corre-
lations. The higher the value (yellow) for a feature the higher the correlation of
that feature when compared to all other features. This additional view allows us
to threshold those features which in sum are redundant to the others. In other
words: the more high correlation coefficients a feature has (in its column of the
CCM) the yellower it is in the sub-view.

Let us start with the smallest category Ff which consists of only one feature
namely the density image f (highlighted in red in Figure 5.2). Because all other
features are derived from this feature by either reducing noise or introducing new
artifacts it makes sense to leave it in the feature set. Noise is reduced through the
Gaussian smoothing of the images. Artifacts are introduced for example through
the determination of the per-pixel local histograms which results in hard edges
shown in row σH in Figure 4.9 on page 69.

The second feature category FR introduces the results of the rotation-invariant
membrane matching Ri for rotation angle ϕ = i · π/8 for i = 0, . . . , 7 and are
summarized by the MinR, MaxR, µR, σ2

R, MedianR and DiffR features. Even
though the features Ri are in sum having smaller correlation coefficients than its
derivations we found out that adding derivations to the smaller feature set is more
suitable as adding the Ri images to FR. We found out about this by comparing
the prediction results by using 90 features and 82 features. Furthermore, we prefer
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Figure 5.2: CCM view of original 90 features extended by column-wise sum-
mation sub-view at the top. Instead of showing the upper trian-
gular matrix we show the full matrix.
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the choice of the features derived from rotation-invariant matching because we use
those features later in the construction of new features as discussed in Section 4.4.2.
We also visually split the set of rotation-invariant membrane matching features into
two sub-categories the left one (with eight columns in CCM view) indicates the
correlation coefficients for the Ri features while the right one (with six columns)
indicates the derivations of Ri.

For the features created with per-pixel local histograms hb with b = 1, . . . , 10 we
select the derivations µH and σH over hb because the validation of the correspond-
ing feature sets lead to better results. Another question that arises is whether we
can omit one of those derived features. The answer is shown in Figure 5.3 which
indicates that using both features is more helpful in separating the positive from
the negative examples because of the intra-class covariance.

The Gaussian-smoothed feature sub-set FG = {FG1 , . . . ,FG10 ,FG′} consists
of 63 features (highlighted in magenta in Figure 5.2). In Section 3.5 we have
seen that beside the original intensity image f , we also smooth the eigenvalue
images Gσ(λ1/λ2) as well as the gradient magnitude images Gσ(‖∇G1(f)‖), and
we determine the gradient magnitude images from the smoothed original intensity
image ‖∇Gσ(f)‖. These four feature images are part of feature sub-set

FGσ =
{
Gσ(f), Gσ(λ1/λ2), Gσ(‖∇G1(f)‖), ‖∇Gσ(f)‖

}
∪ F ′Gσ . (5.1)

FGσ is created for each σ = 1, . . . , 10. In addition, F ′Gσ is the corresponding set
of difference images Gσ − Gσ′−2 for σ = 3, . . . , 10 and σ′ = 2l + 1 where ∈ N
and σ′ ≤ σ − 2 as discussed in Section 3.5 on page 44. In Figure 5.2 the magenta
vertical lines mark the FGσ . The correlations are visualized as dark clusters shown
in sub-set FG in Figure 5.2. Although, smoothed images produce correlations they
also provide a way to introduce neighborhood information which is essential for
the modeling of membranes. Therefore, from each sub-set of FGσ we select the
Gσ(f) features and those features where the correlation (in sum) is lower than
tc = 23 which is determined through trial-and-error feature set validation.

The results of this correlation-based feature filtering is shown in Figure 5.4
where white vertical stripes are marking those features which are excluded from
F . Out of 90 features only 52 are used for the segmentation which is a reduction
of ∼ 42%. The reduction of features implies also a reduction of memory space
as well as of computation time. Furthermore, the features belonging to the four
categories are highlighted in the corresponding colors as well.

5.3 Segmentation Performance

In order to evaluate the effectiveness and efficiency of the proposed methods we
present five experiments that measure (a) the mean error rate, (b) the mean preci-
sion and (c) the mean (this means: mean with regard to all 30 slices of the ssTEM
drosophila brain data set) recall, as well as the time needed to (d) extract the
features, (e) to train and (f) to test the random forest model on the entire volume.
The measurements are presented in Table 5.1 for the three training samples Ti,
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Figure 5.3: Intra-class covariance for µH and σH features.

Ti+1 and TGT shown in Figure 5.1.

5.3.1 Experiment 1: Full Feature Set

This experiment is intended to show the prediction performances using the entire
feature set F90 = F{∪FR∪FH∪FG as shown in the CCM view in Figure 5.2. This
is the reference feature set to which all other (smaller) feature sets are compared
to. We see that the prediction error rate for the training set Ti+1 (12.70,%) is the
lowest among Ti (15.13,%) and TGT (14.64,%), and because of being the largest
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Figure 5.4: Results of feature selection showing removed features from each
category (highlighted as white vertical stripes).
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Ti Ti+1 TGT Ti Ti+1 TGT

# Positives 1,358 1,613 61,451

# Negatives 1,636 2,350 200,691

Size in % 0.04 0.05 3.33

Error 0.1513 0.1270 0.1464 Extraction 975

F90 Precision 0.6731 0.7914 0.6294 Training 2 3 94

Recall 0.6528 0.5910 0.8300 Testing 151 154 251

Error 0.1505 0.1277 0.1448 Extraction 891

F52 Precision 0.6784 0.7893 0.6349 Training 2 3 60

Recall 0.6457 0.5910 0.8302 Testing 147 154 182

Error 0.1560 0.1305 0.1472 Extraction 877

F49 Precision 0.6601 0.7822 0.6297 Training 2 3 57

Recall 0.6510 0.5831 0.8308 Testing 142 150 181

Error 0.1353 0.1248 0.1464 Extraction 994

F90+1 Precision 0.7333 0.8053 0.6290 Training 4 5 96

Recall 0.6307 0.5834 0.8316 Testing 198 212 254

Error 0.1497 0.1298 0.1473 Extraction 892

F52+1 Precision 0.6792 0.7918 0.6285 Training 2 3 62

Recall 0.6451 0.5736 0.8282 Testing 150 157 185

Error 0.1558 0.1336 0.1479 Extraction 884

F49+1 Precision 0.6607 0.7778 0.6277 Training 2 3 58

Recall 0.6472 0.5690 0.8287 Testing 144 152 178

Segmentation Results Timing Results (sec)

Table 5.1: Segmentation results of feature exploration and creation for six different
feature sets as well as timing results for building the feature set, training
and testing. The corresponding minimum and maximum values for each
feature set is highlighted in italic. The corresponding overall minimum
and maximum values are highlighted in bold.
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feature set, the feature extraction takes the longest. The question is, wether we
can reach the same (or better) prediction error rates by using a smaller feature
set which has the benefit of requiring less processing time. Furthermore, we can
see that the mean rate of positively identified membrane pixels (79.14,%) for all
30 slices is in the middle of all experiments. In Figure 5.1 we see the ROC and
the precision-recall curves for the entire data set using all three training samples
Ti, Ti+1 and TGT and all 90 features. Using more data TGT leads to better mean
precision-recall rates.

5.3.2 Experiments 2, 3: Reduced Feature Sets

The second and the third experiment measure the effectiveness of the reduced
feature sets F52 and F49 after the feature selection described in Section 5.2. The
reason for the evaluation of both feature sets instead of just one is to evaluate the
relevance of highly correlating but possibly relevant features which are encoded in
the last three columns (FG′) in the 90× 90 CCM view, as shown in Figure 5.4.

From Table 5.1 we see that the reduced feature set F52 has a similar error rate
(12.77,%) compared to the full feature set F90 (12.70,%). The most important
benefit in this regard is the speedup in segmentation: the feature extraction step
is speeded up by 8.62,%. Although the speed up effect in case of the training
is negligible for small training sets (∼ 0%), it is noticeable (36.17,%) for large
training sets (such as TGT) when using the entire feature set F90. The same effect
can also be observed for the testing of the entire data set (27.49,%).

In order to answer the question of whether the three highly correlating features
FG′ are still relevant to the prediction task we compare the error rates for the
training samples F52 (with FG′) and F49 (without FG′). We see that using a
smaller feature set F49 we need to take a higher error rate into account when
compared to F52.

5.3.3 Experiments 4, 5, 6: Effect of Feature Construction

In Section 4.4.2 we learned that using aspects and the information displayed in
the aspects (i.e., as ground truth and feature images) we can construct algorithms
that produce new features. An expert user either knows implicitly (i.e., through
user knowledge) or explicitly (i.e., as ground truth image) where the prediction
model succeeds (true positive and true negatives) and where it fails (type I and
type II errors). This information is used to guide the development of a feature
creation algorithm as illustrated in an example in Algorithm 4.3 on page 72. The
new feature is constructed with the aim to increase the number of true positives
and true negatives.

The results of these experiments are shown in Table 5.1 where in case of F90+1

we have an increase in precision of 1.39 percentage points when compared to F90.
But this increase in precision does not necessarily lead to overall lower error rates
as shown for feature sets F49 and F49+1 (13.05,% compared to 13.36%). Yet
constructing new features can lead to overall better prediction results 12.48,%.
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5.3.4 ROC & Precision-Recall Curves

Figure 5.5, Figure 5.6 and Figure 5.7 compares the performances of all evaluated
feature sets. From the precision-recall plot of the initial training sample Ti (see
Figure 5.5b) we see that by adding a new constructed feature to the original feature
set F90 the recall rate increases from ∼ 44% to ∼ 52% for the fixed precision of
80%. But this effect diminishes for larger data sets. Furthermore, we also see that
the the larger the training sample the more similar the outcomes of the prediction
models are for different feature sets. This implies that the real benefit of using
feature exploration is to reduce the number of features which results in smaller
processing times as well as memory requirement.
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Figure 5.5: Evaluation curves for all evaluated feature sets and training set
Ti.
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Figure 5.6: Evaluation curves for all evaluated feature sets and training sam-
ples Ti+1.
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Figure 5.7: Evaluation curves for all evaluated feature sets and training sam-
ples TGT.





Chapter 6

Conclustion & Future Work

In this chapter we discuss the contributions of this work and conclude with the
observations made through the experiments. Furthermore we also suggest future
directions on the topic of visualization-assisted, machine learning-based ssTEM
image segmentation.

6.1 Conclusion

We have learned that segmentation is a crucial part in image understanding of
ssTEM images. The segmentation performance – either through prediction ac-
curacy or processing times – is even more crucial when dealing with large images
having a lot of artifacts due to the image capturing technique. Moreover statistical
segmentation requires a careful selection of both the training sample as well as the
feature set that represents the concept well.

This thesis presents an interactive exploration approach to feature image se-
lection and feature image creation for ssTEM brain tissue volumetric data sets. It
combines the expressiveness of scientific visualization through transfer functions
with abstract and elaborate interaction techniques. It further helps bridging the
gap between computational neuroanatomy, visualization and machine learning for
the purpose of the segmentation of neuroanatomical brain tissue data sets.

The field of image processing provides a great number of image transformation
techniques. Therefore, finding an appropriate feature image set that is transformed
from the original intensity image is of special concern, especially for large ssTEM
data sets which are used for machine learning-based segmentation. In this work we
show how the search for a proper feature set can be organized. Furthermore we also
compare the effects of different training samples on the outcome of the prediction.
We demonstrated the construction of a training set using a conservative sample
selection algorithm.

The filtering of features based on correlation coefficients lead to a smaller but
as representative feature set as the original one. For this purpose we introduce a
correlation coefficient matrix view that instantly shows the correlation values and
helps to narrow down the search for redundant and relevant features. This search
is further improved through two-dimensional histograms that indicate intra-class
covariance which categorize redundant features into truly redundant and indeed
redundant but not-redundant in combination with others. Furthermore we show

95



96 Conclustion & Future Work

that simple histograms are a useful tool for estimating the effectiveness of single
features as well as training samples.

The evaluation of the visual feature exploration approach solely on prediction
outcome suggests that adding features to the feature set can help to improve the
prediction accuracy. However, visual feature exploration for image segmentation
is a subject for further research. Moreover adding new features to the feature
set penalizes the pre-processing, training and testing of the volumes in terms of
the execution times and memory requirement. This effect is further enhanced for
larger volumetric data sets present in computational neuroanatomy.

From this work we conclude that careful consideration of the training samples
as well as the feature sets lead to improvements in the prediction accuracy and/or
to decreased computational costs in terms of processing times as well as in terms
of storage requirements. We also conclude that areas of interest can be visualized
effectively by using aspects as image patches in combination with confusion matrix
views which show were the prediction model does make mistakes and which features
can be used to avoid these mistakes.

6.2 Directions for Future Work

New feature categories may require other statistical evaluation methods than cor-
relation coefficients as well as other visualization techniques in order to speed up
the search for relevant features. We have observed the limits of the correlation for
two the feature categories rotation-invariant object matching and per-pixel local
histograms. Here, correlation coefficients were not helpful in deciding feature rel-
evance. We solved this issue through trial-and-error but a more organized search
would be preferable.

The state-of-the art segmentation methods of ssTEM images are using machine
learning as a tool of handling large datasets automatically. The question remains of
whether machine learning alone is suitable for the segmentation of artifact afflicted
ssTEM images. In work of Kaynig-Fittkau [2011], which this thesis is based on,
the author states that the result of the machine learning is used as a starting point
for the membrane segmentation which closes spatial gaps that occur because the
segmentation results are statistics-based and not spatial-based. Therefore, finding
new features through the transformation of the density volume that capture the
spatial relationships better than image smoothing is necessary.

Another interesting future direction is to improve the aspect-oriented feature
exploration. In this work aspects are only showing a single feature together with
either the ground truth or the confusion matrix image. In order to speed up
the search for an adequate feature which is then used to construct new features a
connection view might be helpful (from terminology introduced by Yi et al. [2007]).
This view would show the related features, whose values in TP, TN, FP and FN
regions fit better than the considered aspect feature.

Finally, with regard to the feature exploration, interactive steering can be
achieved by segmenting the aspect window images (e.g., 128 × 128) instantly
through the parallelization the random forest classifier. In this way it would be
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possible to keep track of the local changes in the segmentation result which are
influenced by both the training sample as well as feature set selection.
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