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A B S T R A C T

Einstein gravity on three-dimensional flat space is holographically
renormalized by supplementing the bulk action with one half of the
Gibbons–Hawking–York boundary term. One-point functions for the
vacuum and flat space cosmologies are derived.
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1
I N T R O D U C T I O N

1.1 holographic principle

The holographic principle arose from considerations on the number
of degrees of freedom in a region of space. In classical field theories,
as well as in their quantum mechanical analogs, fields can in prin-
ciple take on distinct values at each point in space. The degrees of
freedom in any finite region are said to be infinite. When considering
quantum-gravity we are led to introducing a small distance cutoff,
which makes the number of degrees of freedom finite and propor-
tional to the volume of space under consideration. That this may still
be a vast overestimation can be concluded [1] from observations on
Bekenstein and Hawking’s formula relating entropy of a black hole
and area of its horizon,

S =
A

4G
. (1.1)

When considering a region of space with an entropy higher than that
of a corresponding black hole, the second law of thermodynamics
can be violated by adding more mass to the system therefore creat-
ing a black hole. It follows that (1.1) gives an upper bound for the
entropy inside a closed region of space with boundary area A. This
leads to the idea that it might be possible to describe all phenomena
within a region of space by a set of degrees of freedom on the surface
bounding the region [2].

1.2 gauge/gravity duality

The gauge/gravity duality is a possible realization of the holographic
principle. It is the general statement that there is a one-to-one cor-
respondence between a quantum theory of gravity on a particular
space on one hand, and a gauge theory on the boundary of space on
the other hand. Its first and most famous realization is the proposed
equivalence of a string theory on a space of constant negative curva-
ture (anti-de Sitter space) and a supersymmetric Yang-Mills theory
on its boundary [3]. Since the theory on the boundary has conformal
symmetry the duality is often referred to as AdS/CFT correspondence,
short for anti-de Sitter/conformal field theory correspondence.

The precise relation between the correlation functions in field the-
ory and the supergravity or string theory action is [4, 5]

ZS[φ
(0)] =

〈
exp
∫
∂M

Oφ(0)

〉
FT

, (1.2)

1



2 introduction

where the right hand side is the generating functional of the field the-
ory with φ(0) acting as a source on the operator O. The bulk partition
function ZS is calculated by integrating over all field configurations φ
satisfying the boundary condition φ(0),

ZS[φ
(0)] =

∫
φ(0)

Dφ exp(−ΓS[φ]) . (1.3)

The fields φ(0) act as sources for operators of the field theory. In the
classical supergravity approximation one simply has

ZS[φ
(0)] = exp(−ΓS[φ

(0)]) , (1.4)

where ΓS[φ
(0)] is the classical supergravity action evaluated on solu-

tion of the equations of motion satisfying boundary condition φ(0).

1.3 variational principle

The principle of stationary action is ubiquitous in physics. It is a varia-
tional principle that can be applied to a mechanical system to obtain
the equations of motion. 1 It is used to study classical mechanics as
well as relativistic particles and fields in space. In quantum mechan-
ics it appears in the semi-classical approximation to the path integral
as in (1.4). This quantum mechanical connection makes it relevant to
the gauge/gravity duality.

A well defined principle of stationary action (cf. section 7.1.2 in
[6]) consists of an action functional Γ and functionals Bi serving as
boundary conditions such that:

(i) Evaluating δΓ = 0 under the conditions δBi = 0 yields just the
equations of motion without additional constraints.

(ii) Those equations of motion have a unique solution consistent
with given values of the Bi.

For example the action of a point particle in its usual form,

Γ =

∫tB
tA

ẋ(t)2

2
dt , (1.5)

with variation

δΓ = ẋ(t) δx(t)
∣∣tB
tA

−

∫tB
tA

ẍ(t) δx(t)dt , (1.6)

leads to a well defined variational principle when the endpoints are
kept fixed:

B1 = x(tA) B2 = x(tB) (1.7)

1 The expressions “variational principle” and “principle of stationary action” will be
used interchangeably.



1.4 holographic renormalization 3

A modified action with an additional boundary term,

Γ =

∫tB
tA

ẋ(t)2

2
dt+ x(tA)ẋ(tA) (1.8a)

δΓ = x(tA) δẋ(tA) + ẋ(tB) δx(tB) −

∫tB
tA

ẍ(t) δx(t)dt , (1.8b)

gives a well defined variational principle for different boundary con-
ditions:

B1 = ẋ(tA) B2 = x(tB) (1.9)

In Einstein gravity a similar boundary term introduced by Gibbons,
Hawking, and York [7, 8] is needed for Dirichlet boundary conditions,
when considering a compact manifold with boundary M:

Γ =
1

16πG

∫
M

Rε+
1

8πG

∫
∂M

K ε̃ (1.10)

The Gibbons–Hawking–York boundary term makes it possible to ob-
tain a well defined variational principle when the metric is kept fixed
on the boundary ∂M.

1.4 holographic renormalization

Until now we have only considered compact domains of integration
in the action. In holography we want to study the Universe as a whole
so it is important to consider spaces with infinite extent. In classical
field theory, a well defined variational principle can easily be main-
tained by requiring the fields to fall off at spatial infinity rapidly
enough not to give boundary contributions. In general relativity the
situation is not as easily resolved: The boundary conditions affect the
global structure of space-time. They are ingredients to a theory of
gravity and can not simply be changed to make the variational prin-
ciple well defined.

To remove any divergences occurring in the action and to obtain a
well defined variational principle, a local counterterm must be added
[4]. The purpose of this work is to holographically renormalize Ein-
stein gravity on three-dimensional flat space in order to obtain a well
defined variational principle and to calculate one-point functions of
the corresponding boundary theory.

In chapter 2 the variational principle in General Relativity is sum-
marized. This information is used to review in chapter 3 the holo-
graphic renormalization of Einstein spaces with negative curvature
in Lorentzian signature (anti-de Sitter space), as well as Euclidean
signature (hyperbolic space). One-point functions are calculated. The
same methods are applied to flat space with Lorentzian signature in
chapter 4, and Euclidean signature in chapter 5.





2
VA R I AT I O N A L P R I N C I P L E I N G E N E R A L
R E L AT I V I T Y

This chapter gives a short review of the variational principle in gen-
eral relativity. It is shown that general relativity can be formulated in
terms of a principle of stationary action. Boundary terms that do not
usually appear in introductory texts are discussed. The equations in
this chapter are valid in any dimension unless stated otherwise.

The action usually considered is the Einstein–Hilbert action supple-
mented with a Gibbons–Hawking–York boundary term [7, 8]. For a
pseudo-Riemannian manifold M with boundary ∂M and its metric
metric gab this is

Γ =
1

16πG

∫
M

(R− 2Λ)ε+
1

8πG

∫
∂M

K ε̃ , (2.1)

where ε is the natural volume element and ε̃ the volume element
induced on the boundary. R is the scalar curvature, K the trace of
the extrinsic curvature of the boundary, and Λ is the cosmological
constant. The variation of the action,

δΓ = −
1

16πG

∫
M

(
Gab +Λgab

)
δgab ε

+
1

16πG

∫
∂M

(
Kγij −Kij

)
δγij ε̃ ,

(2.2)

vanishes for solutions satisfying the vacuum Einstein equations when
keeping the boundary metric fixed. See appendix A for the conven-
tions used.

The action (2.1) is not necessarily well suited for non compact
spaces. When considering such manifolds, a boundary at infinity has
to be included. The integrals makes no sense in this case unless some
kind of limiting procedure is involved: A radial coordinate r is intro-
duced and bulk integrals are restrict to a region r < rc. Integrals at
the boundary are evaluated at an r = rc cut-off hypersurface. The
limit rc →∞ can then be taken.

On a space- or time-like hypersurface, we can define the unit vector
na normal to the hypersurface. In the current chapter, whenever there
occurs a ± or ∓ sign, it refers to the sign of the norm nana = ±1. The
induced metric is then γab = gab ∓ nanb. Assuming our boundary
∂M is nowhere null we can apply these notions to the space- and time-
like components of ∂M separately and cover the whole boundary.

Let us consider a more general action with arbitrary coefficients α
and β, and a manifold M with corners (c.f. appendix C),

Γα,β =
1

16πG

∫
M

(R− 2Λ)ε+
1

8πG

∫
∂M

(αK+β) ε̃ . (2.3)

5



6 variational principle in general relativity

We obtain from (B.3), (B.6), (B.9f), (B.14) and (B.15)

δΓα,β =
1

16πG

∫
M

((
R

2
−Λ

)
gabδgab − R

abδgab +∇ava
)
ε

+
1

16πG

∫
∂M

(
(αK+β)γabδgab + 2αδK

)
ε̃ (2.4a)

= −
1

16πG

∫
M

(
Rab −

1

2
Rgab +Λgab

)
δgab ε

+

∫
∂M

(
nav

a + (αK+β)γabδgab + 2αδK
)
ε̃ (2.4b)

= −
1

16πG

∫
M

(
Rab −

1

2
Rgab +Λgab

)
δgab ε

+
1

16πG

∫
∂M

(
(αK+β)γab −Kab

)
δgabε̃

+
1−α

16πG

∫
∂M

(
±Knanbδgab − γabnc∇cδgab

)
ε̃

+
1− 2α

16πG

∫
∂M

∇̃a
(
γabncδgbc

)
ε̃ . (2.4c)

This can be rewritten by applying Stokes theorem to the divergence
on the boundary to obtain:

δΓα,β = −
1

16πG

∫
M

(
Gab +Λgab

)
δgab ε (2.5a)

+
1

16πG

∫
∂M

(
(αK+β)γij −Kij

)
δγij ε̃ (2.5b)

+
1−α

16πG

∫
∂M

(
±Knanb δgab − γabnc∇cδgab

)
ε̃ (2.5c)

+
1− 2α

16πG

∫
∂2M

ñanb δgab ˜̃ε , (2.5d)

where ña is the normal vector of ∂2M and ˜̃ε is the induced volume
element on it. From (2.5) we see that α = 1 is required to obtain
a well defined variational principle when keeping the metric on the
boundary fixed. With β = 0 we obtain the action from before (2.1),
whose variation including corner terms is

δΓGHY = −
1

16πG

∫
M

(
Gab +Λgab

)
δgab ε

+
1

16πG

∫
∂M

(
Kγij −Kij

)
δγij ε̃

−
1

16πG

∫
∂2M

ñanbδgab ˜̃ε .

(2.6)

With one half the usual Gibbons-Hawking-York term

Γ 1
2
=

1

16πG

∫
M

(R− 2Λ)ε+
1

16πG

∫
∂M

K ε̃ (2.7)
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the corner term of the variation vanishes and we have

δΓ 1
2
= −

1

16πG

∫
M

(
Gab +Λgab

)
δgab ε (2.8a)

−
1

16πG

∫
∂M

(
Kab −

1

2
Kgab

)
δgab ε̃ (2.8b)

−
1

32πG

∫
∂M

γabnc∇cδgabε̃ . (2.8c)

One more boundary term will be of importance,

B =

∫
∂M

R̃k ε̃ , (2.9)

where R̃ is the scalar curvature of the boundary ∂M. Its variation is

δB =

∫
∂M

(
1

2
R̃kγabδγab + kR̃

k−1
(
∇̃aṽa − R̃abδγab

))
ε̃ , (2.10)

with the vector ṽa defined as

ṽa ≡ γab∇̃cδγbc − γbc∇̃aδγbc . (2.11)

For three-dimensional M this can be rewritten using R̃ab = 1
2 R̃γab as

δB =
1− k

2

∫
∂M

(
R̃kγabδγab + 2kR̃

k−2ṽa∇̃aR̃
)
ε̃

+ k

∫
∂2M

ñaṽ
aR̃k−1 ˜̃ε .

(2.12)

These are the basic building blocks for constructing a well defined
variational principle with covariant boundary terms.





3
E I N S T E I N S PA C E W I T H N E G AT I V E C U RVAT U R E

Before turning to three-dimensional flat space, the variational princi-
ple in AdS3 and three-dimensional hyperbolic space is revisited.

In section 3.1 the Brown–Henneaux boundary conditions are re-
called. In section 3.2 the variational principle is reviewed. In sec-
tion 3.3 one-point functions are reconsidered.

3.1 boundary conditions

Asymptotically AdS3 metrics satisfying Brown–Henneaux boundary
conditions are defined by having the form [9]

grr = `
2/r2 + hrr `

4/r4 +O(1/r5) grt = O(1/r
3)

gtt = σ r
2/`2 + htt +O(1/r) grϕ = O(1/r3)

gϕϕ = r2 + hϕϕ `
2 +O(1/r) gtϕ = htϕ `+O(1/r) ,

(3.1)

where ` is the AdS radius and σ equals 1 or −1 for hyperbolic, resp.
AdS space. For convenience all hab are scaled with appropriate fac-
tors of ` so that they are dimensionless quantities. The set of vari-
ations preserving these boundary is called normalizable. It is given
by

δgrr = δhrr `
4/r4 +O(1/r5) δgrt = O(1/r

3)

δgtt = δhtt +O(1/r) δgrϕ = O(1/r3)

δgϕϕ = δhϕϕ `
2 +O(1/r) δgtϕ = O(1) .

(3.2)

All other variations are called non-normalizable and are used to calcu-
late one-point functions in section 3.3. The functions in (3.1) and (3.2)
depend on t and ϕ.

9



10 einstein space with negative curvature

With these definitions the following relations for constant r hyper-
surfaces are obtained:

na =
`

r
δra +O(1/r

3) (3.3a)

√
σγ =

r2

`
+O(1) (3.3b)

K =
2

`
−
`

r2
(hrr + σhtt + hϕϕ) +O(1/r

3) (3.3c)

γabδγab =
`2

r2
(δhϕϕ + σδhtt) +O(1/r

3) (3.3d)

Kabδγab =
`

r2
(δhϕϕ + σδhtt) +O(1/r

3) (3.3e)

nanbδgab =
`2

r2
δhrr +O(1/r

3) (3.3f)

γabnc∇cδgab = −
2`

r2
(δhϕϕ + σδhtt) +O(1/r

3) (3.3g)

3.2 variational principle

The action (2.3) with cosmological constant Λ = − 1
`2

is considered.
The coefficient β is rescaled to be dimensionless and an overall minus
sign is added to account for the Euclidean signature of the metric in
hyperbolic space.

Γα,β = −σ
1

16πG

∫
M

d3x
√
σg

(
R+

2

`2

)
− σ

1

8πG

∫
∂M

d2x
√
σγ

(
αK+

β

`

)
(3.4)

Accordingly, the variation of this action is:

δΓα,β = σ
1

16πG

∫
M

d3x
√
σg

(
Gab −

1

`2
gab

)
δgab

− σ
1

16πG

∫
∂M

d2x
√
σγ

[(
αK+

β

`

)
γab −Kab

]
δγab

− σ
1−α

16πG

∫
∂M

d2x
√
σγ
(
Knanb δgab − γ

abnc∇cδgab
)

(3.5)

Evaluated on fields obeying the equations of motion, the bulk term
vanishes. Inserting the relations (3.3), this becomes:

δΓ |EOM =
1

16πG

∫
∂M

d2x
(
2σ(α− 1)δhrr − (β+ 1)(δhtt + σδhϕϕ)

)
+O(1/r) (3.6)

Imposing no further restrictions on the boundary metric, for the first
variation to vanish we need to set

α = 1 β = −1 . (3.7)
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For these values a well known action [5] for asymptotically AdS3 is
recovered,

Γ = −σ
1

16πG

∫
M

d3x
√
σg

(
R+

2

`2

)
− σ

1

8πG

∫
∂M

d2x
√
σγ

(
K−

1

`

)
.

(3.8)

3.3 one-point functions

One-point functions of operators of the field theory are derived by
functionally differentiating the renormalized on shell action (3.8) with
respect to the corresponding source [10, 11]. This is expressed by the
relation

δΓ |EOM =

∫
∂M

d2x
√

|γ̂| 〈O〉 δϕ(0) , (3.9)

where γ̂ij = limr→∞ γij/r2 is the induced metric on the conformal
boundary. To compute this expression, the same asymptotic metric
as in (3.1) is considered, but non-normalizable metric fluctuations to
accommodate for sources are allowed,

δgtt = δh
(0)
tt r

2/`2 +O(1)

δgtϕ = δh
(0)
tϕ r

2/`+O(r)

δgϕϕ = δh
(0)
ϕϕ r

2 +O(1) .

(3.10)

In this way the identities (3.3) are generalized. The equations that
differ from (3.3) are

γabδγab = δh
(0)
ϕϕ + σδh

(0)
tt +

`2

r2

(
δhϕϕ + σδhtt

− hϕϕδh
(0)
ϕϕ − 2σhtϕδh

(0)
tϕ − httδh

(0)
tt

)
+O(1/r3)

(3.11a)

Kabδγab =
1

`

(
δh

(0)
ϕϕ + σδh

(0)
tt

)
+

`

2r2

(
2δhϕϕ + 2σδhtt

− (4hϕϕ + hrr)δh
(0)
ϕϕ − 4(2σhtϕ + htt)δh

(0)
tϕ

+ σhrrδh
(0)
tt

)
+O(1/r3) . (3.11b)

The variation of the action with the cutoff removed (r→∞) becomes

δΓ |EOM =
1

32πG

∫
∂M

d2x
(
(hrr + 2hϕϕ) δh

(0)
tt − 4htϕ δh

(0)
tϕ

+ (σhrr + 2htt) δh
(0)
ϕϕ

)
.

(3.12)

The non-normalizable modes of the metric act as sources for the
stress tensor, so the analog of equation (3.9) for Einstein gravity is

δΓ |EOM = −σ
1

2

∫
∂M

d2x
√
|γ̂|
〈
T ij
〉
δγ̂ij . (3.13)
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Rewritten using the expansion (3.10) this gives

δΓ |EOM = −σ

∫
∂M

d2x
(
1

2`3

〈
Ttt
〉
δh

(0)
tt +

1

`2

〈
Ttϕ

〉
δh

(0)
tϕ

+
1

2`
〈Tϕϕ〉 δh(0)ϕϕ

)
(3.14a)

= −

∫
∂M

d2x
(
σ
`

2
〈Ttt〉 δh(0)tt + 〈Ttϕ〉 δh(0)tϕ

+ σ
1

2`
〈Tϕϕ〉 δh(0)ϕϕ

)
, (3.14b)

where the indices of
〈
T ij
〉

are lowered with γ̂ij. With the standard
definitions of mass and angular momentum [12] it is possible to write
(3.14) in a form that can be easily compared to (3.12):

δΓ |EOM =

∫
∂M

d2x
(
M

4π

(
δh

(0)
tt − σδh

(0)
ϕϕ

)
+

J

2π`
δh

(0)
tϕ

)
. (3.15)

In the following subsections the result (3.12) is evaluated for BTZ
black holes, and globally AdS space. The expressions are compared
with the definition (3.15).

3.3.1 BTZ Black Holes

The metric of a BTZ black hole [13] can be written as

ds2 = σ
(r2 − r2+)(r

2 + σr2−)

`2r2
dt2 +

`2r2

(r2 − r2+)(r
2 + σr2−)

dr2

+ r2
(

dϕ−
r+r−

lr2
dt
)2

.

(3.16)

Non-trivial functions hab are accordingly

hrr = −σhtt =
r2+ − σr2−

`2
htϕ = −

r+r−

`2
. (3.17)

Evaluating (3.12) gives

δΓ |EOM =
1

32πG`2

∫
∂M

d2x
(
(r2+ − σr2−)(δh

(0)
tt − σδh

(0)
ϕϕ) + 4r+r−δh

(0)
tϕ

)
,

(3.18)
and the standard quantities for mass and angular momentum are
recovered by comparison with (3.15),

MBTZ =
r2+ − σr2−
8G`2

JBTZ =
r+r−

4G`
. (3.19)

3.3.2 Anti-de Sitter Spaces

Globally anti-de Sitter spaces (or hyperbolic spaces) can be given in
the form

ds2 = σ
(
1+

r2

`2

)
dt2 +

(
1+

r2

`2

)−1
dr2 + r2dϕ2 , (3.20)
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so that non-trivial hab are

hrr = −σhtt = −1 . (3.21)

Evaluating (3.12) gives

δΓ |EOM =
1

32πG

∫
∂M

d2x
(
σδh

(0)
ϕϕ − δh

(0)
tt

)
, (3.22)

and as before the standard quantities are recovered,

MAdS = −
1

8G
JAdS = 0 . (3.23)





4
L O R E N T Z I A N F L AT S PA C E

The methods used in chapter 3 are now employed to study flat space.
This is done in a formulation that is only applicable to Lorentzian
metric signature. Flat space with Euclidean signature is studied in
the next chapter.

In section 4.1 the boundary conditions for flat space in Eddington–
Finkelstein gauge are recalled. In section 4.2 the variational principle
is reviewed.

4.1 boundary conditions

Consistent boundary conditions for flat space are given by [14]

grr = hrr/r
2 +O(1/r3)

guu = huu + h
(1)
uu/r+O(1/r

2)

gϕϕ = r2 + (h2(ϕ) + uh3(ϕ)) r+ hϕϕ +O(1/r)

gru = −1+ hru/r+O(1/r
2)

grϕ = h1(ϕ) +O(1/r)

guϕ = huϕ +O(1/r) .

(4.1)

These are looser boundary conditions than the ones by Barnich and
Compère [15]. The corresponding variations are

δgrr = O(1/r
2) δgru = O(1/r)

δguu = δhuu + δh
(1)
uu/r+O(1/r

2) δgrϕ = O(1)

δgϕϕ = (δh2(ϕ) + uδh3(ϕ)) r+O(1) δguϕ = O(1) .

(4.2)

All functions in (4.1) and (4.2) depend on u and ϕ if not stated oth-
erwise. Evaluating the equations of motion (Rab − 1

2Rgab = 0) using
the metric (4.1) gives to leading order

∂uhuu = 0 (4.3a)

∂uhrr = −2hru (4.3b)

∂uhrϕ = u∂ϕhuu + ∂ϕhru − 2huϕ + h4(ϕ) . (4.3c)

15
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Equation (4.3a) will be user to simplify expressions in what follows.
Using definitions (4.1) and (4.2) the following relations are obtained:

na =
1√

−huu
δra +O(1/r) (4.4a)

√
σγ = r

√
−huu +O(1) (4.4b)

K = −
∂uh

(1)
uu − h3huu + 2huu∂uhru − 2h2uu

2r (−huu) 3/2
+O(1/r2)

(4.4c)

γabδγab =
δhuu

huu
+O(1/r) (4.4d)

Kabδγab =
δhuu

(
∂uh

(1)
uu + 2huu∂uhru

)
2r(−huu)5/2

+O(1/r2) (4.4e)

nanbδgab = −
δhuu

huu
+O(1/r) (4.4f)

γabnc∇cδgab =
∂uδhuu

(−huu) 3/2
−
2∂uhru δhuu + ∂uδh

(1)
uu

r(−huu)3/2

+
3h

(1)
uu ∂uδhuu − 2h2uu δh3

2r(−huu)5/2
+O(1/r2) (4.4g)

4.2 variational principle

The action (2.3) with vanishing cosmological is considered. The co-
efficient β is set to zero. The boundary term corresponding to β is
treated afterwards as a special case of the boundary term (2.9).

Γα =
1

16πG

∫
M

d3x
√
gR+

1

8πG

∫
∂M

d2x
√
γαK (4.5)

The variation of (4.5) is

δΓα = −
1

16πG

∫
M

d3x
√
gGabδgab

+
1

16πG

∫
∂M

d2x
√
γ
(
αKγab −Kab

)
δγab

+
1−α

16πG

∫
∂M

d2x
√
γ
(
Knanbδgab − γ

abnc∇cδgab
)

.

(4.6)

After inserting the relations (3.3) and removing some terms by inte-
gration along the u coordinate this becomes:

δΓ |EOM =
1

16πG

∫
∂M

d2x
[(
1− 2α−

αh3
2huu

)
δhuu + (1−α) δh3

]
+O(1/r) (4.7)

Since this is in general nonzero for any fixed α, a well defined varia-
tional principle can not be obtained with the boundary term in (4.5).
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With the aim of removing leading order contributions in (4.7), addi-
tional boundary terms in the form of

ΓRk =
1

8πG

∫
∂M

d2x
√
γ R̃k , (4.8)

are considered. The variation of (4.8) for any k ∈ R is:

δΓRk =
1

16πG

∫
∂M

d2x
√
γ (1− k)

(
R̃k γijδγij + 2kR̃

k−2 ṽa∇̃aR̃
)

(4.9)

Using the relations

R̃ =
h23 + 4∂u∂ϕhuϕ − 2∂2uhϕϕ − 2∂2ϕhuu

2r2huu

+
h3∂uh

(1)
uu + (∂ϕhuu)

2

2r2h2uu
+O(1/r3) (4.10a)

ṽa∇̃aR̃ =
(
h3∂

2
uh

(1)
uu + 4huu∂

2
u∂ϕhuϕ − 2huu∂

3
uhϕϕ

)
× h3 δhuu − 2huu δh3

4r3h4uu
+O(1/r4) , (4.10b)

the orders of r of the expressions in (4.9) are:

√
γ R̃k γijδγij = O(r

1−2k) (4.11a)
√
γ R̃k−2ṽa∇̃aR̃ = O(r2−2k) (4.11b)

It can be concluded that the variation of (4.8) is of the following order:

δΓRk =


O(r) k = 0

0 k = 1

O(r2−2k) otherwise
(4.12)

There is no k that results in a contribution independent of r. Con-
sequently the addition of the term (4.8) to the action can not cancel
(4.7).

Using these simple boundary terms did not result in a well defined
variational principle in Eddington–Finkelstein gauge. In the next sec-
tion a similar procedure is applied – with greater success – to flat
space with Euclidean signature.





5
E U C L I D E A N F L AT S PA C E

A well defined variational principle for flat space with Euclidean sig-
nature is formulated in this chapter. In section 3.1 a specific set of
flat space boundary conditions is obtained. In section 3.2 the vari-
ational principle is reviewed. In section 3.3 one-point functions are
calculated.

5.1 boundary conditions

Since there are no null vectors in Euclidean signature, the flat space
boundary conditions in Eddington–Finkelstein gauge (4.1) and (4.2)
have to be translated into a more suitable gauge. To transform (4.1)
into diagonal gauge, the coordinate u is replaced by the time coordi-
nate t,

u = t+K(r,ϕ) . (5.1)

From the equations of motion (4.3) we have

∂uhuu = 0 , (5.2)

and with the choice

K(r,ϕ) =
r

huu(ϕ)
+K0(ϕ) , (5.3)

the drdt term of the metric vanishes. If we furthermore restrict the
analysis to zero mode solutions ∂ϕhuu = 0 and upon converting t to
Euclidean time τ the form of the metric becomes

grr = hrr(ϕ) + h
(1)
rr /r+O(1/r

2) grτ = hrτ(ϕ)/r+O(1/r
2)

gττ = hττ(ϕ) + h
(1)
ττ /r+O(1/r

2) grϕ = hrϕ + h
(1)
rϕ/r+O(1/r

2)

gϕϕ = r2 + hϕϕ r+O(1) gτϕ = hτϕ +O(1/r) ,
(5.4)

with hrrhττ = 1. The following set of variations preserving the metric
(5.4) are considered:

δgrr = δhrr(ϕ) +O(1/r) δgrτ = δhrτ(ϕ)/r+O(1/r
2)

δgττ = δhττ(ϕ) +O(1/r) δgrϕ = O(1)

δgϕϕ = O(r) δgτϕ = O(1)

(5.5)

19
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All functions in (5.4) and (5.5) depend on τ and ϕ if not stated other-
wise. The following relations are obtained:

na =
√
hrr δ

r
a +O(1/r) (5.6a)

√
γ = r

√
hττ +

hττhϕϕ + h
(1)
ττ

2
√
hττ

+O(1/r) (5.6b)

K =
1

r
√
hrr

+O(1/r2) (5.6c)

γabδγab =
δhττ

hττ
+O(1/r) (5.6d)

Kabδγab = O(1/r2) (5.6e)

nanbδgab = −
δhττ

hττ
+O(1/r) (5.6f)

γabnc∇cδgab = O(1/r2) (5.6g)

5.2 variational principle

Up to a changed sign to account for Euclidean signature, the same
action (4.5) as in chapter 4 is considered here.

Γα = −
1

16πG

∫
M

d3x
√
gR−

1

8πG

∫
∂M

d2x
√
γαK (5.7)

The variation of the full action yields:

δΓα =
1

16πG

∫
M

d3x
√
gGabδgab

−
1

16πG

∫
∂M

d2x
√
γ
(
αKγab −Kab

)
δγab

−
1−α

16πG

∫
∂M

d2x
√
γ
(
Knanbδgab − γ

abnc∇cδgab
) (5.8)

Inserting (5.6) into the variation gives

δΓ |EOM =
1

16πG

∫
∂M

d2x
1− 2α√
hrrhττ

δhττ +O(1/r) , (5.9)

which vanishes for the choice

α = 1/2 . (5.10)

A well defined variational principle is obtained with this value of α.
The resulting boundary term is one half the usual Gibbons–Hawking–
York boundary term.
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5.3 one-point functions

One-point functions are computed in analogy with chapter 3. The set
of metric fluctuations that include sources is

δgrr = δhrr +O(1/r) δgrτ = O(1/r)

δgττ = δhττ +O(1/r) δgrϕ = O(1)

δgϕϕ = δh
(0)
ϕϕ r

2 +O(r) δgτϕ = δh
(0)
τϕ r

2 +O(1) .

(5.11)

The relations generalizing (5.6) are:

γabδγab = δh
(0)
ϕϕ +

δhττ − 2hτϕ δh
(0)
τϕ

hττ
+O(1/r) (5.12a)

Kabδγab = −
∂τhrϕ δh

(0)
τϕ√

hrrhττ
+
δh

(0)
ϕϕ

r
√
hrr

+

(
h
(1)
rr ∂τhrϕ

2rh
3/2
rr hττ

+
∂τ(hϕϕhrϕ) − 2hτϕ − ∂ϕhrτ − ∂τh

(1)
rϕ

r
√
hrrhττ

+
h
(1)
ττ ∂τhrϕ + hrτ∂ϕhττ

r
√
hrrh2ττ

)
δh

(0)
τϕ +O(1/r2)

(5.12b)

nanbδgab = −
δhττ

hττ
+O(1/r) (5.12c)

γabnc∇cδgab =
hrϕ∂τh

(1)
rr + hrτ∂ϕhrr + 2hrτhrr∂τhτϕ

rh
3/2
rr hττ

δh
(0)
τϕ

+
hrτ

r
√
hrrh2ττ

(
2hτϕ ∂τδh

(0)
τϕ − ∂τδhττ

)
−
hrτ ∂τδh

(0)
ϕϕ

r
√
hrrhττ

+O(1/r2) (5.12d)

Inserting these equations into the variation of the action and remov-
ing some terms by integration along the τ coordinate gives:

δΓ |EOM =
1

32πG

∫
∂M

d2x
1√

hrrhττ

[
hττ δh

(0)
ϕϕ

+ (2 r hrϕ +O(1))∂τδh
(0)
τϕ −

δ(hττhrr)

hrr

+

(
hrτ∂ϕ ln

(
hrrh

2
ττ

)
− 2hτϕ − 2∂ϕhrτ

+
h
(1)
ττ ∂τhrϕ

hττ
+ hrϕ∂τhϕϕ

)
δh

(0)
τϕ

]
(5.13)

This expression diverges for nonzero ∂τδh
(0)
τϕ, so we require

∂τδh
(0)
τϕ = 0 . (5.14)
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Restricting the variations (5.11) by δ(hττhrr) = 0 we finally obtain

δΓ |EOM =
1

32πG

∫
∂M

d2x
1√

hrrhττ

[
hττ δh

(0)
ϕϕ

+

(
hrτ∂ϕ ln

(
hrrh

2
ττ

)
− 2hτϕ − 2∂ϕhrτ

+
h
(1)
ττ ∂τhrϕ

hττ
+ hrϕ∂τhϕϕ

)
δh

(0)
τϕ

]
.

(5.15)

When considering only stationary axisymmetric solutions this simpli-
fies to

δΓ |EOM =
1

32πG

∫
∂M

d2x
1√

hrrhττ

(
hττ δh

(0)
ϕϕ − 2hτϕδh

(0)
τϕ

)
. (5.16)

With the definitions

M =
hττ

8G
JBTZ =

hτϕ

4G
, (5.17)

and using hrrhττ = 1, an expression analogous to (3.15) can be writ-
ten down:

δΓ |EOM =

∫
∂M

d2x
(
M

4π
δh

(0)
ϕϕ −

J

4π
δh

(0)
τϕ

)
(5.18)

This has a close resemblance to the corresponding equation in the
AdS case (3.15). The mass M and angular momentum J are calculated
for flat space and flat space cosmologies in what follows.

5.3.1 Flat Space

Starting with the flat metric in cylindrical coordinates

ds2 = dr2 + dτ2 + r2dϕ2 , (5.19)

leads to the response

δΓ |EOM =
1

32πG

∫
∂M

d2x δh(0)ϕϕ . (5.20)

The resulting expressions

Mflat =
1

8G
Jflat = 0 , (5.21)

coincide precisely with mass and angular momentum of flat space
[15, 14].
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5.3.2 Flat Space Cosmologies

Similarly the metric of flat space cosmologies is given by [16]

ds2 =
dr2

r2+

(
1−

r20
r2

) + r2+

(
1−

r20
r2

)
dτ2 + r2

(
dϕ−

r+r0
r2

dτ
)2

. (5.22)

With the response

δΓ |EOM =
1

32πG

∫
∂M

d2x
(
r2+h

(0)
ϕϕ + 2r+r0δh

(0)
τϕ

)
, (5.23)

the expressions

MFSC =
r2+
8G

JFSC = −
r+r0
4G

, (5.24)

are obtained. They are again in agreement with the values for flat
space cosmologies [15, 14].





6
C O N C L U S I O N

The variational principle in general relativity was reviewed and bound-
ary terms that supplement the Einstein–Hilbert action were studied.
For anti-de Sitter space and its Euclidean counterpart – hyperbolic
space – a well defined variational principle was recovered using the
usual Gibbons–Hawking–York boundary term and a constant coun-
terterm. Using this counterterm, one-point functions were calculated
according to the gauge/gravity duality and the usual terms for mass
and angular momentum were recovered. The same methods were
then used to study the variational principle in flat space, where a well
defined variational principle was obtained for zero mode solutions in
Euclidean signature. It was shown that the bulk action has to be sup-
plemented by one half of the Gibbons–Hawking–York boundary term.
The one-point functions for zero mode solutions were derived using
this action.

Several generalizations and extensions to the present work can be
thought of. First, it is interesting to generalize the discussion to de-
scribe non-zero mode solutions in Euclidean signature. It is also an
open issue to calculate two- and three-point functions for flat space.
Zero-point functions can be found in a related work [17]. Moreover,
extension of the analysis to different theories would be of interest. Ex-
amples are the zero cosmological constant cases of topologically mas-
sive gravity [18, 19] in general and flat space chiral gravity [20, 14]
in particular. So far all work on three-dimensional flat space hologra-
phy is restricted to boundary conditions adapted to null infinity. An
important extension to this description is inclusion of spatial infinity
to describe all components of the asymptotic boundary.
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A
C O N V E N T I O N S

The same sign conventions as in [21, 22, 23] are used throughout the
text. In particular, the metric signature consists of mostly pluses, and
the Riemann and Ricci tensors are defined as

R d
abc = ∂bΓ

d
ac − ∂aΓ

d
bc − Γdae Γ

e
bc + Γdbe Γ

e
ac (A.1)

Rab = R c
acb . (A.2)

Letters from the beginning of the alphabet (a, b, c, . . . ) and letters
from the middle of the alphabet (i, j, k, . . . ) are used as vector indices
in the bulk M and on the boundary ∂M, respectively.

The natural volume element on the bulk is ε. The induced metric
on the boundary is γij. Symbols with a tilde refer to quantities on
the boundary: ε̃ and R̃ denote the natural volume element and the
scalar curvature on the boundary, respectively. The derivative ∇̃a is
the unique covariant derivative compatible with γab,

∇̃aγbc = 0 . (A.3)

For a tensor Πab, symmetrization is written as

Π(ab) =
1

2
(Πab +Πba) . (A.4)

The symbol > denotes projection to the tangent space of the bound-
ary, (

Πab
)>

= γacγ
b
dΠ

cd . (A.5)
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B
VA R I AT I O N S

b.1 variations in the bulk

In this section we derive variations of expressions that occur in the
integral over M. Expressions that can be defined on the boundary
∂M are considered in appendix B.2. We recall the expressions for the
derivatives of the inverse and determinant of an invertible matrix A

∂A−1

∂x
= −A−1∂A

∂x
A−1 , (B.1a)

∂det(A)
∂x

= det(A) tr
(
A−1∂A

∂x

)
. (B.1b)

These formulas yield the variations of the metric gab, its inverse gab

and its determinant g

δgab = −gacgbd δgcd , (B.2a)

δg = ggab δgab , (B.2b)

δ
√

|g| =
1

2

√
|g|gab δgab . (B.2c)

The natural volume element ε can be written as
√
|g|e, where e is

a total antisymmetric tensor whose nonzero components are 1 or −1.
This leads to the coordinate independent expression

δε =
1

2
gab δgab ε . (B.3)

The Levi-Civita connection is expressed in a coordinate system via
Christoffel symbols Γabc . From simple comparison of the two sides
it can be verified that

δΓabc =
1

2
gad (∇bδgcd +∇cδgbd −∇dδgbc) . (B.4)

Similarly we can check that the Riemann tensor R d
abc has the varia-

tion

δR d
abc = ∇bδΓdac −∇aδΓdbc , (B.5)

which leads to the variation of the scalar curvature

δR = ∇ava − Rab δgab , (B.6a)

va ≡ gab∇cδgbc − gbc∇aδgbc . (B.6b)
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b.2 variations on the boundary

On a space- or time-like hypersurface, we can define the vector na

normal to all vectors lying in the hypersurface. We require it to be
normalized nana = ±1. The induced metric is then

γab = gab ∓nanb . (B.7)

We apply these notions to space- and time-like components of the
boundary ∂M.

Since na is a covector, the condition for it to be normal to a vector
va does not depend on the metric. This means that the direction of
na does not depend on the metric and we have δna ∝ na. From the
normalization condition we conclude that:

δna = ±1
2
nan

bnc δgbc (B.8a)

δna =

(
∓1
2
nanb − γab

)
nc δgbc (B.8b)

We obtain the following relations in a straightforward manner:

δγab =
(
δcaδ

d
b −nanbn

cnd
)
δgcd (B.9a)

δγba = ±naγbcnd δgcd (B.9b)

δγab = −γacγbd δgcd (B.9c)

δγ = γγij δγij (B.9d)

δ
√

|γ| =
1

2

√
|γ|γij δγij (B.9e)

(δε̃)> =
1

2
γij δγijε̃ (B.9f)

The extrinsic curvature is defined as

Kab = γca∇cnb , (B.10)

which implies that Kab = K>
ab. Its variation is

δKab = δ
(
γcaγ

d
b∇cnd

)
(B.11a)

= δγcaγ
d
b∇cnd + δγdbKad

+ γcaγ
d
b∇cδnd − γcaγdbδΓecdne (B.11b)

= ±naKcbndδgcd ±nbKcandδgcd

± 1
2
γcaγ

d
b∇c

(
ndn

enfδgef
)

−
1

2
γcaγ

d
bn
e (∇cδgde +∇dδgce −∇eδgcd) (B.11c)

= ±
(
2n(aK

c
b)n

d +
1

2
Kabn

cnd
)
δgcd

−
1

2
γcaγ

d
bn
e (∇cδgde +∇dδgce −∇eδgcd) . (B.11d)
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To rewrite derivatives of δgab in the bulk as boundary terms the
following relation comes in handy

γabnc∇aδgbc = γab∇a (ncδgbc) − γab∇ancδgbc (B.12a)

= γab∇a
(
nc
(
γdb ±ndnb

)
δgcd

)
− γab∇ancδgbc (B.12b)

= ∇̃a
(
ncγadδgcd

)
± γab∇anbncndδgcd

− γab∇ancδgbc (B.12c)

= ∇̃a
(
γabnc δgbc

)
+
(
±Knanb −Kab

)
δgab ,

(B.12d)

where ∇̃a is the covariant derivative on the boundary compatible
with γab,

∇̃aγbc = 0 . (B.13)

Using (B.12) the variation of the trace of the extrinsic curvature can
be written as

δK = δ
(
gabKab

)
= gabδKab −K

abδgab (B.14a)

= ±1
2
Knanbδgab − γ

abnc∇aδgbc

+
1

2
γabnc∇cδgab −Kabδgab (B.14b)

= ∓1
2
Knanbδgab − ∇̃a

(
γabncδgbc

)
+
1

2
γabnc∇cδgab .

(B.14c)

Similarly the divergence term appearing in (B.6) contracted with na
is

nav
a = gabnc∇aδgbc − gabnc∇cδgab (B.15a)

= naγbc∇cδgab − γabnc∇cδgab (B.15b)

=
(
±Knanb −Kab

)
δgab

+ ∇̃a
(
γabncδgbc

)
− γabnc∇cδgab . (B.15c)

b.3 variations of non covariant boundary terms

In this section the variations of non covariant boundary terms are
calculated.
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(i) For any Πab with Πab =
(
Πab

)>
δ
(
Πab∇anb

)
= δΠab∇anb +Πab∇aδnb −ΠabδΓcabnc (B.16a)

= δΠab∇anb ±
1

2
Πab∇a (nbδgnn)

−Π(ab)nc∇aδgbc +
1

2
Πabnc∇cδgab (B.16b)

= δΠab∇anb ±
1

2
ΠabKabδgnn

− γad∇a
(
Π(db)ncδgbc

)
+ γad∇a

(
Π(db)nc

)
δgbc +

1

2
Πabnc∇cδgab (B.16c)

=

(
KcaΠ

(ad) + γab∇aΠ(bc)nd ± 1
2
ΠabKabn

cnd
)
δgcd

+ δΠab∇anb +
1

2
Πabnc∇cδgab

− ∇̃a
(
Π(ab)ncδgbc

)
, (B.16d)

where δgnn ≡ nanbδgab.

(ii) For any va with va = (va)>

δ
(
navb∇anb

)
= δnavb∇anb +naδvb∇anb
+navb∇aδnb −navbδΓcabnc (B.17a)

=

(
∓1
2
nanc − γac

)
ndvb∇anbδgcd

+naδvb∇anb ±
1

2
navb∇a (nbδgnn)

−
1

2
navbnc∇bδgac (B.17b)

= −Kcbn
dvbδgcd +n

aδvb∇anb ±

−
1

2
va∇aδgnn +

1

2
va∇a

(
nbnc

)
δgbc (B.17c)

= naδvb∇anb −
1

2
va∇aδgnn (B.17d)

= naδvb∇anb +
1

2
∇̃avaδgnn

−
1

2
∇̃a (vaδgnn) . (B.17e)



B.3 variations of non covariant boundary terms 33

(iii) For ka = (ka)>, pa = (pa)>, kapa = 0, p2 = fixed

δ
(
kakb∇apb

)
= δ

(
kakb

)
∇apb + kakb∇aδpb

+ kakbδΓ
b
acp

c + kakb∇apcδgbc (B.18a)

= δ
(
kakb

)
∇apb − kakb∇a

(
1

2p2
pbpcpdδgcd

)
+
1

2
kakbpc∇cδgab + kakb∇apcδgbc (B.18b)

= δ
(
kakb

)
∇apb −

1

2
kakb∇apb

pcpd

p2
δgcd

+
1

2
∇̃a

(
pakbkcδgbc

)
−
1

2
γda∇d

(
pakbkc

)
δgbc

+ kakb∇apcδgbc (B.18c)





C
M A N I F O L D S W I T H C O R N E R S

When dealing with general relativity it is sometimes useful to con-
sider manifolds like cylinders and cubes that are topological mani-
folds but are not smooth manifolds with boundary because they have
“corners”. This is a short review of manifolds with corners closely fol-
lowing [24]. We use the notion of boundary for a manifold with cor-
ners as given in [25], which is inequivalent to the one usually given
in the context of manifolds with boundary.

Let R̄n+ denote the subset of Rn where all of the coordinates are
nonnegative:

R̄n+ =
{(
x1, . . . , xn

)
∈ Rn : x1 > 0, . . . , xn > 0

}
. (C.1)

Suppose M is a topological n-manifold with boundary. A chart with
corners for M is a pair (U,ϕ) were U ⊆ M is open and ϕ is a home-
omorphism from U to an open subset Û ⊆ R̄n+. Two charts with
corners (U,ϕ), (V ,ψ) are smoothly compatible if the composite map
ϕ ◦ψ−1 : ψ(U ∩ V) → ϕ(U ∩ V) is smooth. A smooth structure with
corners on a topological manifold with boundary is a maximal collec-
tion of smoothly compatible interior charts and charts with corners
whose domains cover M.

Definition 1 (Manifold with corners). A topological manifold with bound-
ary together with a smooth structure with corners is called a smooth manifold
with corners.

Smooth maps, partitions of unity, tangent vectors, covectors, ten-
sors, differential forms, orientations, and integrals of differential forms
can be defined on smooth manifolds with corners in exactly the same
way as for smooth manifolds and smooth manifolds with boundary,
using smooth charts with corners in place of smooth boundary charts.
To summarize, with ascending generality:

• A smooth manifold is locally isomorphic to Rn.

• A smooth manifold with boundary is locally isomorphic to a
half-space Hn.

• A smooth manifold with corners is locally isomorphic to R̄n+.

We now turn to the definition of the boundary of a manifold with
corners. Let U ⊆ R̄n+ be open. For each u = (u1, . . . ,un) in U, define
the depth depthUu of u in U to be the number of u1, . . . ,un which
are zero. Let M be an n-manifold with corners. For x ∈ M, choose
a chart (U,ϕ) on the manifold M with ϕ(u) = x for u ∈ U, and
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define the depth depthMx of x in M by depthMx = depthUu. This is
independent of the choice of (U,ϕ). For each k = 0, . . . ,n, define the
depth k stratum of M to be

Sk(M) = {x ∈M : depthMx = k} . (C.2)

Let M be a manifold with corners, and x ∈ M. A local boundary
component β of M at x is a local choice of connected component of
S1(M) near x. That is, for each sufficiently small open neighborhood
V of x inM, β gives a choice of connected componentW of V ∩S1(M)

with x ∈ W, and any two such choices V ,W and V ′,W ′ must be
compatible in the sense that x ∈ (W ∩W ′). There are exactly depthMx
distinct local boundary components β of M at x for each x ∈M.

Definition 2 (Boundary of a manifold with corners). Let X be a mani-
fold with corners. The boundary is defined as the set

∂M = {(x,β) : x ∈M,β is a local boundary component for M at x} .
(C.3)

Given this definition ∂M naturally has the structure of an (n− 1)-
manifold with corners and we can iterate the boundary construction
to obtain ∂M,∂2M, . . . ,∂nM, with ∂kM an (n−k)-manifold with cor-
ners.

When viewing a manifold with corners M as a topological mani-
fold with boundary we inherit a different notion of boundary that we
denote by ∂̃M. That ∂M and ∂̃M are in general not equal can be seen
from:

• ∂M is a manifold with corners whereas ∂̃M may not be one.

• ∂̃2M = ∅ always holds, whereas ∂2M 6= ∅ in general.

These differences make ∂M the preferred notion of boundary when
working with stokes theorem, since then it holds without modifica-
tion: ∫

M

dω =

∫
∂M

ω . (C.4)

Example (The cube as a manifold with corners). Let M be the three-
dimensional cube which is a 3-manifold with corners. The depth 1 stratum
S1(M) consists of six disconnected regions and is given by the faces, ex-
cluding edges and vertices. A point in the interior has no local boundary
component. A point on a face that does not lie on an edge has exactly one
boundary component, the interior of the corresponding face. A point on an
edge that is not a vertex has two boundary components and each vertex
has three boundary components. The boundary ∂M consists of six disjoint
squares, ∂2M consists of 24 disjoint lines, and ∂3M consists of 48 points.
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