The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

FAKULTAT
FUR INFORMATIK
Faculty of Informatics
http://www.ub.tuwien.ac.at/eng

Optimizing Trip Itinerary for
Tourist Groups

DISSERTATION
zur Erlangung des akademischen Grades
Doktor der technischen Wissenschaften
eingereicht von

Kadri Sylejmani
Matrikelnummer 0728620

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: Ao. Univ. Prof. Dipl. -Inf. Dr. -Ing. Jirgen Dorn

Diese Dissertation haben begutachtet:

(Ao. Univ. Prof. Dipl. -Inf. Dr. -Ing. (Assoc. Prof. Dr. Ing.
Jargen Dorn) Lule Ahmedi)

Wien, 05.09.2013

(Kadri Sylejmani)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Optimizing Trip ltinerary for
Tourist Groups

DISSERTATION
submitted in partial fulfillment of the requirements for the degree of
Doktor der technischen Wissenschaften
by

Kadri Sylejmani
Registration Number 0728620

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao. Univ. Prof. Dipl. -Inf. Dr. -Ing. Jirgen Dorn

The dissertation has been reviewed by:

(Ao. Univ. Prof. Dipl. -Inf. Dr. -Ing. (Assoc. Prof. Dr. Ing.
Jargen Dorn) Lule Ahmedi)

Wien, 05.09.2013

(Kadri Sylejmani)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Kadri Sylejmani
Ulpiana U1, H-1, Nr. 9, 10000, Prishtina, Kosova

Hiermit erklére ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit -
einschlieBlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Acknowledgements

During the period of my PhD studies, the support of the members of my family was crucial in
order to come to this concluding stage. It was my wife Sadete, who would always support me in
every dimension of my life, and would always try to create the atmosphere for me so that I could
remain focused in my PhD work. Her love, courage and care have kept me always strong on
dealing with challenges I have faced during this period. I thank her for the double role she has
had to play to cover my absence in front of our son Adi and daughter Jeta, due to my frequent
stays in Vienna. I thank Adi and Jeta for their love, patience and understanding in this period
of intensive engagements. The backing and blessing of my mother was always present. 1 am
thankful to her for the care and protection she has given to me throughout my life. I am grateful
to my oldest brother Halil, who has been supporting me since my early stages of education. |
also thank my sisters Qama and Sevdie, and my brothers Sahit, Sabit, Sadik, Sadri and Bedri
and their wives for their support and help. In addition, I also want to thank all my nephews and
nieces.

My success in this thesis comes as result of great support from my supervisor Prof. Jiirgen
Dorn, who has always been there for me in advising and listening to my proposals. His readiness
in backing me up was essential for me to focus in achieving the real aimed goal in this thesis.
His valuable feedback has always helped me get to a step further in understanding the research
work. I have to thank him also for understanding and supporting me with various administrative
letters that I have needed frequently over the last few years. I thank him and his wife Erika for
hosting me and Sadete to their house and thus give us a rear possibility to get more insights
about Austrian and German traditions and cultures.

There is professor that has given a tremendous support to me in two major directions. The
first is his remarkable help for me to start building my research capacities along with his con-
tinuous and indispensible support in my PhD work. Meanwhile, he has helped me to stay in a
working mood by providing to me the possibility to also get into the rhythm of the social life
whenever I stayed in Vienna. I thank you a lot for this Prof. Nysret Musliu. In addition, I thank
Prof. Nysret for reading this PhD thesis and for his valuable comments.

I thank professors Prof. Agni Dika, Prof. Lule Ahmedi and Prof. Blerim Rexha from
Department of Computer Engineering at Faculty of Electrical and Computer Engineering, Uni-
versity Prishtina for their support. I am especially thankful to Prof. Lule Ahmedi who acted
as the second evaluator of this thesis and who led the research project that was partially within
the topic of this PhD thesis. I thank Prof. Agni Dika for the motivation given to me towards
concluding my PhD studies. I also thank the dean of Faculty of Electrical and Computer Engi-
neering Prof. Enver Hamiti and his team for the support given during my final stages of PhD

iii

studies. I thank Ehat Qerimi, Zenun Kastrati, Vehbi Neziri and Artan Mazrekaj for covering me
in my teaching hours during my stays in Vienna. In addition, I take the opportunity to thank all
the other members of Department of Computer Engineering and the other staff of the faculty.

I thank director of IT at the rectorate of University of Pristhina Prof. Isak Shabani for pro-
viding the facilities for testing the algorithms developed in this thesis. I thank Atdhe Muhaxhiri
for his support and reediness to talk to me about the issues related to my PhD work. I thank
Bujar Krasniqi and Albin Ahmeti for their support and friendship during my stays in Vienna.

My research work was partially supported by Austrian Federal Ministry of Education under
the project “Bertha von Suttner-Stipendien/Kosovo” and Ministry of Education, Sciences and
Technology of Kosova under the research project “Tourist Tour Planning and Social Network
Analysis”. I am thankful for that.

Abstract

In this PhD thesis, we solve the problem of trip itinerary planning for tourist groups. We assume
that each tourist has individual preferences for points of interest and preferences with whom
in the group s/he would like to share travelling. This problem has practical relevance, since
often tourists prefer going on trip in company, while aiming to visit points of interest that meet
their individual preferences. Hence, the proposed solution can relieve the tourists from the
task of itinerary planning. However, in terms of optimization, this problem is complex due to
its objective to maximize the satisfaction of all tourists, while coping with various individual
constraints.

We follow a path of three steps for solving the problem at hand. In the first step, we develop
an algorithm based on Tabu search for solving the solo trip planning problem, which we com-
pare in quality and time consumption against existing solutions in the literature. In the second
step, we define the group trip problem that models the objective and the constraints of itinerary
planning for a whole tourist group. Further, we use the algorithm developed in the first step to
devise three straightforward approaches for solving group trip problem. The difference between
the three approaches is whether tourist travel alone, in subgroups or altogether. Finally, in the
third step, we extend our planning algorithm, to develop a sophisticated group trip planning al-
gorithm, which allows tourists to have a personalised trip itinerary throughout the trip. In order
to meet individual preferences of tourists, the group trip algorithm combines the itinerary of
different tourists so that they are sometimes planned to travel alone, and at other times travel in
groups.

In order to evaluate the proposed algorithms, we create a new benchmark for the group trip
problem by extending the existing benchmarks in the literature for the solo trip problem. We
conduct the computational experiments with four different proposed approaches by using the
new benchmark. The proposed approaches are evaluated based on the quality and respective
computation time. Our experiments show that our sophisticated algorithm finds always a better
solution than the other three approaches for our extended benchmarks. In addition, we also make
experiments with the aim of identifying two modes of algorithm execution, one which produces
high quality solutions with a longer computation time, and the other one that produces slightly
worse solutions, but with a much less computation effort.

Kurzfassung

In dieser Arbeit wird eine Losung fiir die Planung eines Weges fiir Gruppen von Touristen vor-
geschlagen. Wir nehmen an, dass jeder Tourist individuelle Priferenzen fiir interessante Punkte
hat und auch individuelle Préferenzen hat, mit wem er gemeinsam reisen will. Dieses Problem
hat praktische Relevanz, weil hdufig Touristen es vorziehen in Gruppen zu verreisen, wobei sie
aber stets auch ihre eigenen Priferenzen zumindest teilweise erfiillt haben mochten. Folglich
kann die vorgeschlagene Losung Touristengruppen von der Planung der Tour befreien, Aus der
Sicht der Optimierungtheorie ist das Problem komplex, weil die maximale Erfiillung von Zielen
aller Touristen unter Beachtung weiterer individueller Einschrinkung erreicht werden soll.

Auf dem Weg zur Losung haben wir drei wesentliche Schritte gesetzt. Im ersten Schritt ha-
ben wir eine Losung zur Suche eines optimalen Weges fiir einen einzelnen Touristen entwickelt,
die wir mit existierenden Losungen in Bezug auf Qualitdt und Zeitverbrauch vergleichen. Im
zweiten Schritt haben wir das Group Tour Problem definiert, das die Optimierung und Beriick-
sichtung aller Touristen in einer gemeinsamen Gruppe beschreibt. Wir stellen drei Ansétze vor,
wie das Group Tour Problem mit dem im ersten Schritt entwickelten Algorithmus gelost werden
kann. Der Unterschied dieser drei Ansitze beruht auf der Entscheidung, ob fiir jeden Touristen
einzeln ein Weg geplant wird, fiir Untergruppen oder fiir die ganze Gruppe. Schliesslich erwei-
tern wir im dritten Schritt unseren Algorithmus, um ein verbessertes Verfahren zu erhalten, das
es erlaubt, dass Touristen einen individualisierten Weg vorgeschlagen bekommen, Dieser Group
Tour Algorithmus versucht die Wege der verschiedenen Touristen teilweise vereinen, um eine
Maximierung aller Priferenzen zu erreichen.

Um die vorgeschlagene Losung zu evaluieren, entwickeln wir einen neuen Benchmark Test
indem wir die in der Literatur existierende Benchmarks fiir Einzeltouren erweitern. Wir fiihren
Experiment auf Basis des Benchmark Tests mit den vier genannten Ansétzen durch und verglei-
chen die Ergebnisse in Bezug auf Qualitit und bendtigter Rechenzeit. Die Experimente zeigen,
dass unser verbesserter Algorithmus fiir die erweiterten Benchmarks immer eine bessere Losung
findet als die drei anderen Ansitze. Zusitzlich fithren wir Experimente durch um zwei Ausfiih-
rungsmodi zu unterscheiden, bei denen entweder kurze Verarbeitungszeit oder hochste Qualitét
im Vordergrund steht.

vii

Contents

(I__Introduction| 1
[I.I ' Research Question| 6
(1.2 Main Contributions| L 6
1.3 Methodology| 8
1.4 Scenario] e 9
[L5 Structure of the Thesis| 10
1.6 Grounding Materialf 11

2__Related Workl 13
[2.1 'Tourist Information Systems| 13
[2.2 Recommender Systems in Tourtsm| 15
[2.3 Tourist Trip Planning Systems| 16
2.4 SocialRelations| 17
[2.5 Local Search Techniques| 19

[2.5.1 Objective Function| 20
[2.5.2 Neighborhood Exploration| 21
253 MetaHeunisticsl oo 22
254 TabuSearchl. s 24
[2.5.5 Applications of Tabu Search| 27
[2.6 Modeling Tourist Trip Planning Problems| 28
[2.6.1 Ornenteering Problem|. 29
[2.6.2 Team Orienteering Problem| 32
[2.6.3 Orenteering Problem with Time Windows| 35
[2.6.4 'Team Orienteering Problem with Time Windows| 37
[2.6.5 Multi Constraint Team Orienteering Problem with Time Windows| . . . 41
[2.6.6 Generalized Orienteering Problem| 42
[2.6.7 Orenteering Problem with Hotel Selection| 43
..................................... 45

|3 Planning Solo Trip Itinerary| 47
[3.1 Mathematical Modelling| 47
[3.2 Solution Approach| 49

[3.2.1 Solution Representation| 49

iX

[3.2.2 Neighborhood Exploration|
[3.2.3 Feasibility Evaluation|

[3.2.5 Tabu Search Implementation|

B3

Computational Experiments|

[3.3.1 'Test instances and approach comparison|.
[3.3.2 Parametertuning| Lo
[3.3.3 Comparisons with the state of the art approach|

4 Considering Preferences of Tourist Groups|

A1

Mathematical Modelling of MCMTOPTW problem|

A2

Solution Approach| oL L

4.2.1 Tourist Subgroupmg| Lo
4.2.2 Tourists’ Data Merging|
4.2.3 Application of Solo Trip Planning algorithm|

3

Computational Experiments|

4.3.2 Mode of algorithm execution versus social relationship range{.
4.3.3 Comparisons between different modes of algorithm execution|

[Planning Group Trip Ifinerary|

5.1

Mathematical Modelling|o o oo oo

52

Solution Approach|o

[5.2.1 Solution Representation|
[5.2.2 Neighborhood Exploration|

[5.2.4 Tabu Search Implementation|

53

Computational Experiments|

[5.3.1 Parametertuning|
[5.3.2 Comparison with the previous approaches|

6.1

Case 1 - Agroupofthreefriends|

6.2 Case2-Agroupoftwocouples|

6.3 Case 3 - A group of seven studentofarts|.
.....................................

[7__Conclusionl
[7.1 Answer to Research Question|.
[7Z2 Future Work|
[£2.1 TestSet Extensionl

61
62
64
65
69
69
69
70
71
72
73

77
78
78
78
79
83
86
88
88
91
95

97
98
101
101
102

[7.2.2 Algorithmic Perspective| 107

[7.2.3 Feature Extensions and Applications in Other Domains|. 108
List of Figures 109
[List of Tables| 110
|A__Scenario datal 113
B~ Results for MCTOPTW problem| 120
[C Results for MCMTOPTW problem in Solo mode| 126
[D Results for MCMTOPTW problem in Subgroups mode| 132
[E Results for MCMTOPTW problem in Group mode 138
[Results for MCMTOPTW problem in Combined-Slow mode| 144
[G Results for MCMTOPTW problem in Combined-Fast mode| 150

Bibliograg 155

X1

CHAPTER

Introduction

The tourism, as defined by World Tourism Organization [93]], includes “the activities of persons
traveling to and staying in places outside their usual environment for not more than one consec-
utive year for leisure, business and other purposes”. The tourists when visiting a certain travel
destination might get engaged in different activities such as walking tours, site seeing, guided
tours, shopping and other leisure related activities. In general, the tourism experience for tourists
is embodied into three phases of tourists’ life cycle (Figure [I.1]), namely pre-tour, on-trip and
post-trip phase. In the pre-trip phase, the tourist gets engaged in usual preparations for the trip
such as booking an accommodation, purchasing traveling tickets, planning site visits, etc. Even
though, in the on-trip phase, the tourists are concentrated on conducting the priory planned ac-
tivities, they still might be in need for getting additional information such as ad hoc navigation
information, information about Points of Interest (POIs), contextual information (weather, lo-
cation, time), etc. The post trip phase is mainly characterized with social interactions about
sharing the trip experience with other people and provision of feedback for certain activities
accomplished during the trip.

The systems and tools of Information and Communication Technology (ICT) that are devel-
oped to support tourism activities in all three phases of tourist’s life cycle, make up the electronic
tourism (eTourism) research field. In [[14)], Buhalis and Law identify three main directions of
eTourism research, namely: consumers and demand dimensions, technological innovation and

Figure 1.1: Tourists’ life cycle [141]

industry functions. The consumer and demand dimension is about provision of access to tourism
services for tourists, in an accurate and reliable way. The service might include accommoda-
tion reservation, tourism information search, travel and holiday package purchase, etc. The
technological innovations, along to continuous improvement of hardware, software, network
appliances, includes also development of advanced techniques [14] like interoperability and
ontology building [[141]], multimedia, mobile and wireless technologies, wireless local area net-
works (WLANSs), web design functionality and usability. The dimension of industry in eTourism
is concerned with support in advancing business functions and processes of an organization op-
erating in tourism sector, thus contributing in achieving its strategic and operational objectives.
Furthermore, Buhalis and Law [14] indicate that, in future, eTourism research will be focused
on consumer centric technologies that would enable organizations and the tourists to interact
dynamically.

A research agenda in e-tourism that has recently gained a considerable attention is the prob-
lem of automatic planning of tourist trip itinerary [45]. This problem can be characterized with
the situation when a tourist travels to a touristic destination with intention to visit a number of
POIs during a period of limited time. In general, the number of POIs available in a touristic des-
tination is much higher than the number of POIs that can be visited by a tourist. Moreover, the
maximal satisfaction of a tourist could be achieved if POIs that suit the most her/his preferences
are visited. Additionally, tourists might enforce several other constraints for their trip, like max-
imum amount of money they want to spent, or maximum number of POIs of certain category
(e.g. religious art) they want to visit. Undermining these trip constraints, the objective would
be to prepare a trip itinerary that includes the POIs that meet tourist preferences at a maximum
extent.

Itinerary planning is a complex problem

The problem of creating the trip itinerary for a tourist is known as “tourist trip design prob-
lem” (TTDP) [[135]]. In its most basic model, the TTDP problem could be described in following
details [45]):

e In a certain tourist destination there exist a number of POIs associated with a number of
features (e.g. location, type, category, working hours, entry fee, etc.).

e The traveling time for the distances between POlIs is calculated by considering different
means of transportation (e.g. car, bicycle, walking or public transportation).

e The “score” of a POI could be calculated by using a weighted function for the objective
(e.g. popularity) and subjective (e.g. user specific preferences) importance of its features.

e The estimation of visit duration to a POI could be calculated based on average visit dura-
tion and on the match of tourist preferences to the POI features (type and category).

e The number of days of the trip to the tourism destination determines the number of
itinerary routes that must generated.

e The tourist specifies the time duration of each single route, which includes the times spent
in visiting the POIs and the traveling times between them.

Based on different additional parameters and constraints, several versions of TTDP are de-
rived. The Orienteering Problem (OP) [[129] can be used to model the simplest form of TTDP.
The OP is defined as an orienteering game, where a set of locations with scores have to be vis-
ited during a single route. A location can be visited at most once and the aim is to visit those
points that maximize the total collected score, which have to be visited within the specified time
limit for the route. The Team OP (TOP) [21]] is used to model the trip consisting of multiple
periods (e.g. multiple days), while TOP with Time Windows (TOPTW) [134] is used to addi-
tionally model the operating/working hours of POIs. Note that other possible extensions to OP
are described in the next chapter.

Vansteenwegen et al. [[133]] summarize a number of complexity issues for solving OP. In [57],
Golden et al. prove that OP is a NP-hard problem and underlined that no polynomial time algo-
rithm could be designed to produce optimal solutions. In such occasions, systematic algorithms
can be very time intensive and thus not be suitable for practical implementations where a quick
response time is expected. Hence, the alternative would be tackling such problems by using
heuristic algorithms. The difficulties for designing good heuristic algorithms, as indicated by
Gendreau et al. [52], stand in the fact that score of a location and time to get to that location
are independent and often contradictory. In this respect, a simple and straightforward heuristic
function might lead the search process toward getting stack in local optimum and thus avoid
searching the whole search space. Vansteenwegen et al. [[130] argue that the most difficult test
instances to solve are those that enable insertion of a little more than half of available points into
the route plan. Further, finding the optimal route path becomes harder as the number of inserted
points increases.

PROBLEM: Planning trip itineraries for tourists is a NP - hard problem.

Systems support itinerary planning

There is a plethora of tourist trip planning functionalities that are supported by different ap-
proaches in literature [117]]. Basically, such functionalities enable the tourist to make automatic
trip planning, including selections of POlIs, routing between POlIs, enforcing different planning
constraints (e.g. maximum tour duration), and consideration of tourist context (e.g. weather
conditions). In Table [L.T] the first column shows a list of most popular planning functionalities,
while the second column depicts the respective description.

Functionality

Description

Estimation of tourist in-
terest

Determining how much a certain POI meets tourist preferences

Automatic selection and
routing of POIs

Automatic inclusion of POIs into itinerary and finding out the
optimal order/sequence of visit

Mandatory POIs

POlIs that are very popular may be denoted as (“must see”)

Dynamic recalculation of
itinerary

Possibility to regenerate the trip itinerary in case the pre-
scheduled itinerary becomes infeasible or less satisfactory

Multiple day tour plan-
ning

Planning the trip itinerary for multiple days

Opening hours

Considering the working/operating hours of POIs

Budget limitations

Considering tourist budget limitations for visiting POIs

Weather dependency Taking into account the weather conditions when planning the
trip (e.g. outdoor POIs might become less desirable by tourists in
rainy weather conditions)

Max n-types Tourist might set up a limit for visiting a maximum n number of
POIs of certain type

Mandatory types Tourist can make some POI types mandatory (e.g. there must be

at least one POI of type nature present in itinerary)

Scenic routes

A number of POIs might be located into a certain street (e.g.
downtown of a city), known as “scenic routes”, and their inclu-
sion into trip itinerary might increase the tourist satisfaction

Hotel selections

Automatic selection of the accommodation for tourist, which
would serve as the end point for actual tour and as the start point
for the next tour

Public transportation

Taking into account the schedules of public transportation facili-
ties such as bus, train and metro

Group profiles

Considering the interests of multiple tourists about POIs

Table 1.1: Planning functionalities

Diverse commercial systems or prototypal implementations support more or less the above
presented planning features. For instance web or mobile systems like City Trip Plannerﬂ Your
TOUIH, Plnanl, Trip Ternlﬂ and Mtrilﬂ can be used to plan personalized trip itineraries for number
of popular cities around the world. Souffriau et al. [[117] compare the existing tour scheduling
approaches that implement different functionalities presented above.

Although, many planning features are supported, none of the systems or approaches consider
the problem of group trip planning, where a group of tourists (e.g. a group of friends) would

"http://www.citytripplanner.com/

“http://www.yourtour.com/
3http://plnnr.com/
*http://triptern.com/
Shttp://www.mtrip.com/

prefer to conduct a joint trip. In general, in such situations, most tourists might like to conduct
the trip all together, but probably some of them would like to retain the option to get separated
from the main group for some part of the trip so that they could visit some POIs of their own
specific interest.

PROBLEM: Tourist trip planning systems do not enable trip planning for a group of tourists.

The scope of the thesis

The work in this thesis aims to solve the aforementioned trip itinerary planning problem for
tourist groups. The problem at hand is about planning the detailed tour itinerary for a group of
tourists who visit a certain number of POIs during a trip of multiple periods (days). Further,
the envisioned problem is associated with some additional constraints about the trip, such as
individual tourist budget, maximum number of POIs of certain POI category, and time windows
of POIs. The objective is to plan a joint trip itinerary for all tourists, with options of separation
in some parts of the trip, so that the overall tourists’ satisfaction is maximized by enabling them
to visit the most preferred POIs in company of the closest related group members.

A prerequisite to planning the trip itinerary, is the existence of a suitable method for the
process of matchmaking [76] between the features of POIs (categories and types) and tourist
preferences. The process of matchmaking estimates tourist interest in particular POIs based on
her/his preferences about types (e.g. mosque, church, monument) and categories (e.g. archeol-
ogy, architecture, nature, etc.). Note that it is out of scope of this thesis to build a new method
for estimating the interest of tourists about POIs. Additionally, a function that reflects the mutual
social relationship (connectedness) level between individual tourists in the group is needed, but
the introduction of a new method for that purpose is again out of scope of this thesis.

In order to compare our solution with existing approaches in the literature, as far as possible
we use the existing test instances of Solomon [116] for the Vehicle Routing and Scheduling
Problem (VRSP) and Cordeau et al. [25] for Multi-Depot Vehicle Routing Problem (MDVRP).
Further, we extend these instances to reflect the new problem of tourist groups, so that the
applicability of the proposed method, for different situations that might be encountered in real
life, can be assumed.

In addition, we study the methods for determining the match between members in tourist
groups based on their preferences about POIs and their mutual social relationship. This is done
with the aim of finding out whether subgrouping the tourists into smaller groups could be bene-
ficial when planning the trip itinerary.

The envisioned problem of this thesis, as an extension of MCTOPTW problem for modeling
the group trip planning problem is characterized with far more huge search space than the origi-
nal problem. Hence, in addition to basic procedures from the literature for exploring the search
space, new procedures must be investigated and developed.

1.1 Research Question

In this thesis, we aim to tackle the problem of group trip itinerary planning that is an exten-
sion of the general Tourist Trip Design Problem (TTDP) [[135]]. As described earlier, the Multi
Constraint Team Orienteering Problem with Time Windows (MCTOPTW) [43]], as a particular
version of TTDP problem used to model a version of trip planning problem for a single tourist,
allows modeling of multiple day tours, multiple constraints about POI types or categories and
single working hours of POIs. Hence, we focus in extending and solving the problem of MC-
TOPTW for multiple tourists. We name the extended version of MCTOPTW as Multi Constraint
Multiple Team Orienteering Problem with Time Windows (MCMTOPTW). The difficulty in
solving the proposed problem derives from the original problem of Orienteering Problem that is
proven by Golden et al. [57] to belong to the class of NP hard problems.

Considering the situations where a group of tourists visits a city or region for a number of
days, where the level of interest of tourists about POIs and the their mutual social relationship is
known, we formulate the research question of this PhD thesis that reads as follows:

Can we improve trip planning systems for tourist groups by considering individual
preferences and social relationship?

In addition, in order to answer the proposed research question, we formulate the following
three hypotheses:

1. An existing method for solo trip itinerary planning can be utilized for planning the trip
itinerary for a group of tourists

2. By clustering tourists into subgroups based on their preferences and social relationship
the results could be improved

3. New specialized operators in local search techniques may further improve the solutions
for tourist groups

Note that the scope of this PhD thesis is not to develop a method for estimation of tourist
interest about POlISs, or to create a method for estimating the social relationship between different
tourists.

1.2 Main Contributions

The modules and the flow of arrows in the block scheme represented in figure show different
variants for preparing the trip itinerary for a group of tourists. Each module in the block scheme
reflects a distinct contribution of the work in this thesis as described in the following:

1. The solo trip planner is an optimization algorithm based on tabu search meta heuristic that
enables planning a multiple day trip itinerary for a single tourist. The algorithm explores
the search space by applying operators for insertion of new POlIs, replacing existing POIs
with new ones (from outside the itinerary), and swapping the existing POIs in the itinerary

Tourists Contribution 1

v

Preferences
Profile
Trip constraints

Solo Trip
Planner

_ ¢

Group
Trip

Tourist

Clustering
Module

Planner

Contribution 3 Contribution 4

Figure 1.2: Main contributions of the thesis

between each other. The algorithm takes advantage of a tabu list for employing a pertur-
bation and a diversification mechanism so that it does not get caught in local optimum.
The algorithm performance is comparable to the existing solutions in the literature.

2. The existing test set in the literature (Solomon [116] and Cordeau et al. [25]] originated
test set) that can be used for modeling solo trip planning, is extended for modeling the
tourist trip planning problem for a group of tourist. The existing test set is enriched with
data for multiple tourists, including the data for social relationship between them. The
generation of the data for new tourists is done randomly by following the same patterns as
the existing data in the test set.

3. The tourist clustering module is based on K-means method and it aims finding an optimal
clustering of tourists into subgroups based on their preferences about POIs and also on
their mutual social relationship. The appropriateness of the number of clusters obtained
by K-means is evaluated by using the so called “pseudo F-static” statistical functions of
Calinski and Harabasz [18]]. Depending on the trip constraints, the clustering module can
serve as an added component priory to applying either the single or group trip planner.

4. The group trip planner acts as a meta algorithm that initiates the search process from
solutions gained with the solo trip planner either for individual tourists or for tourist sub
groups (obtained by the clustering module). The group trip planner is also based on tabu
search and its task is finding optimal solution for the group as a whole. The search space
is explored by using two new operators, namely Separate (a tourist from its subgroup)
and Join (two tourists at a POI in the tour) and one standard /nsert operator to fill any gap
created in the tour with a POL.

A systematic experimental testing of the described planning modules is conducted by using
the generated test set. The strengths of the proposed approach are clearly indicated by the
experiments when it comes to planning the itinerary for a group of tourists.

1.3 Methodology

The research approach of design science promoted by Hevner et al. [62] has been adopted as a
methodology to answer the research question of this thesis. This methodology is a common ap-
proach for research and development in the domain of information systems. Conceptually, this
approach is based on the process of developing/building theories or artifacts for an identified
problem, which than, based on the problem at hand, are justified/evaluated by performing activ-
ities such as analytical analysis, case studies, experimentation, field studies or simulation. This
process includes a series of assessment and refinement steps until the targeted research results
are reasoned. In general, the expected research results impact both, the appropriate environment
(people, organization and technology) and knowledge base (foundations and methodologies).
Conversely, the business needs of a targeted environment and the existing knowledge in that
environment also impact the process of research and development in information systems.

In our case, as described in previous section, we contribute with three artifacts in the domain
of research and development, namely solo trip planner, tourist clustering method and group
trip planner. In line with the terminology used by Hevner et al. [62]], an “artifact” equals to a
method and an instantiation corresponds to the respective implementation. In addition, we also
contribute with a test set that can be used for evaluating artifacts (in our case the method for
group trip planning) in the domain of research and development.

Due to the high complexity of the problem at hand, systematic approaches can not be ef-
fective in tackling such problems. Hence, we base our method on one of the frequently utilized
approaches (in different domains of application) from meta heuristic techniques, namely Tabu
Search [56] (described in detail in Subsection [2.5.4] of Chapter [2). Our approach for plan-
ning the trip for a group of tourists is motivated on existing approaches for solo trip planning.
As result, our research work starts by creating a Tabu Search based approach for the existing
problem of solo trip planning. Next, the existence of social relationship between tourist group
members, motivates us to take the approach of initially clustering tourists into subgroups, and
then trying out plan the itinerary for each subgroup by applying the existing solution for a single
tourist. In addition, in order to optimize the tourist group itinerary, on top of the solo trip planner
method, we develop a group trip planner method, also based on Tabu Search, by utilizing two
new operators, namely Separate and Join.

We use the generated test set described in previous section to fine tune the parameters of
the algorithms and to evaluate their overall performance. Further, we compare the results of
solo trip planner with the state of the art approach and then we analyze the results of each of
proposed algorithms towards finding an optimal mode of operation for different trip constraints
(e.g. number of tourists, number of tours, number of POlIs, etc.). In order to ensure an equal
environment of algorithm execution, we use the same machine for computation experiments of
all three proposed algorithms. The experiments include the complete generated test set (148 test
instances), where each instance is run ten times. The minimal, maximal and average values of
individual instance executions are considered for analyzing and discussing the obtained results.

Information systems research

Artifacts I

- Experiment

=5

Solo trip planner
| Build Tourist clustering method
Group trip planner

Evaluate

Business needs C Research results) Applicable
A/_/\A knowledge

Application environment Knowledgebase

E-Tourism applications Algorithm

Figure 1.3: Research methodology framework

1.4 Scenario

In this section, we formulate a scenario that consists of three cases of tourist trips to city of Pr-
ishtina in Kosova. These cases are used to didactically elaborate the proposed methods through-
out this thesis. Further, the cases of this scenario aim to show applicability of the proposed
methods in planning the trip itinerary for tourist groups.

Case 1: A group of three friends make a trip to a Prishtina. Two of them are woman and the
other one is a man. They have a close relationship between each other and mostly share common
interests for visiting POIs that belong to the category of nature and architecture. In addition, the
man is also interested in visiting POIs that have religious attributes, thats why he would not like
to visit more than one POI of category nature. They decide to have a trip of two days and make
sightseeing visits starting from 9 am until 11:30 am. The budget they are willing to spend is the
same for all of them.

Case 2: A group of two couples plan two have a one day trip to Prishtina. In general, all
four tourists share the same interest about visiting POIs that belong to category of archeology.
In addition, the women are also interested in going to some shopping centers, although also the
men would not mind if they go there. Nevertheless, the men are more interested in going to
some architectural POIs. In addition, the men are not willing to spent as much money as the
women. They plan to start the trip at 10 am and finish at 1 pm.

Case 3: A group of seven students of arts go for a one day trip to Prishtina. The social
relationship between the members in the group is different, where some of them are more related
to some members than to the others. Although all group members like visiting POIs that belong
to religious arts, some of them are also interested in visiting POIs that belong to category of
nature, while some others would prefer to visit archaeological sites. Different group members
have different constraints abut the amount of money they are willing to spent for visiting POIs.
They all agree to start the trip at 8:00 am and end it at 12:00 am.

In addition, in Appendix [A] we give data of some arbitrary selected POISs in the city of
Prishtina and the data of tourists of all three cases.

1.5 Structure of the Thesis

This thesis is divided into seven chapters. In the following, we present a short description for
each of the remaining six chapters.

In the next chapter, we discuss the state of the art approaches existing in the literature for the
domain of tourist trip planning. We first talk about Tourist Information Systems (TIS) in general
and, and then specifically, about Recommender Systems that are related to tourism. Further, we
describe shortly the local search techniques that are usually used for solving different variants
of trip planning problems, and then we elaborate the Tabu Search metaheuristic in more details,
since we use it as a framework for planning the trip itinerary for single and multiple tourists.
Next, we elaborate the existing approaches in the literature that are closely related to the problem
at hand. Planning the itinerary for a one day (period) tour is considered to be the most basic
problem to be solved, even though, as stated earlier, it belongs to the class of NP hard problems.
Multiple day (period) tour planning is further more complex, as the diapason of search space
increases. Conversely, while introduction of operating hours of POIs restricts the research space
to some extent, it makes the search process more complex, because the application of a number
of operators become ineffective. In addition, other approaches that solve extended versions of
OP are discussed.

In Chapter [3] we present a solo trip planning method that is based on Tabu Search meta
heuristic. First, we give the mathematical formulation of the problem, and then we outline the
fundamental characteristics of the developed algorithm. Further, we describe the operators that
are used to explore the search space, as well as the techniques we employ for diversification of
the search process. Finally, we present the experiments conducted for fine tuning the values of
the algorithm parameters, and the comparison of the results of our approach with state of the art
approaches.

Chapter] aims at discussing the possibilities to apply the solo trip planner method for plan-
ning the trip for a group of tourists. We start with formal definition of trip problem for tourist

10

groups and then introduce a clustering method that is aimed at subgrouping tourists into sub-
groups based on their preferences about POI types and categories and their mutual social re-
lationship. Next, we apply the solo trip planning method for the problem of trip planning for
tourist groups. The goal of the experimentation, presented at the end of this chapter, is to show
whether, in general, it would be better for tourists to conduct the trip in solo, in subgroups of
closely related group members, or all together.

In Chapter[5] we present a new method for planning the trip itinerary for a group of tourists.
This method utilizes the solo trip planning method to create the initial solution. Further, new
operators, built by combining the itinerary of different tourist group members, are used to search
for better solutions that would improve the overall satisfaction of all group members. The ex-
periments at the end of this chapter show the performance of the algorithm for different group
trip modes, as well as the details for fine tuning the values of algorithm parameters.

Further, in Chapter [6] we present the evaluation of the three cases of the scenario for the
different approaches of trip planning that are developed in the course of this thesis.

Chapter [7] concludes this thesis by revisiting the outlined research question and then dis-
cussing the corresponding answer based on the obtained results. The answers to the formulated
hypothesis are also discussed based on the respective results achieved. Furthermore, we discuss
the limitations of our PhD work and then shed light on implications and issues for future work
to be challenged.

1.6 Grounding Material

The content of this thesis is partially based on two publications. Please refer to the Biography to
see the full details about the listed publications.
Parts of Chapter 3 are written based on the paper:

e K. Sylejmani, J. Dorn, N. Musliu, A Tabu Search approach for Multi Constrained Team
Orienteering Problem and its application in touristic trip planning, HIS 2012 [123]]

Parts of Chapter 4 are written based on the paper:

e K. Sylejmani, J. Dorn, N. Musliu, Touristic trip planning: solo versus group traveling,
PlanSIG 2012 [124]

11

CHAPTER

Related Work

This chapter presents the research work related to the field of tourist trip itinerary planning and
it describes the particular optimization techniques used in solving the related problems. We first
discuss about the tourist information systems in general (Section and then focus in elabo-
rating the recommender systems that are related to the domain of tourism (Section [2.2). Then,
we discuss about tourist trip planning systems (Section and social relations (Section [2.4)).
Afterward, we elaborate local search techniques (Section [2.5) in general and tabu search method
in more details by giving more insights about modalities of its implementation and domains of
successful application. Finally, in Section [2.6] we present a schema for theoretical modeling of
various versions of tourist trip planning problem, and then, we review the related research work
on approaches for solving single and multiple day tourist trip planning that consider: operating
hours of POIs, multiple attribute constraints about POIs (e.g. entry fee, type, category, etc.) and
selection of accommodation.

2.1 Tourist Information Systems

Acquisition of information is qualified as one of the most immediate needs for a tourist during
her/his trip experience [35]. Hence, in the emerging age of Information and Communication
Technologies (ICT), the Tourist Information Systems (TIS) play an essential role in increasing
tourist satisfaction during her/his tourism experience. There exist two main desired functions to
be provided by a TIS systems [9]]. The first is extraction and fusing the information coming from
different (and heterogeneous) information sources (e.g. web sites, tourist information providers,
transport information providers, etc.), and the second is assuring that the information is up-to-
date. The provided information needs to be found efficiently and conveniently [127] and should
provide not only informative service, but also value added services such as for example on-line
hotel reservation (e.g. booking.com), on-line route planning (e.g. Google maps), on-line flight
ticket purchase (e.g. fluege.de), etc. In addition, in [97], authors identify three crucial aspects
that seem to be essential for the success of TIS systems; these are quality of access, quality

13

of content, and ability to customize the whole system. Many actors in tourism sector such as,
airlines, railway, car rentals, hotels, travel agencies, tour operators and tourist attractions all over
the world, already have established their web pages for the services they offer [98]] in reference
to tourists needs.

There exist many TIS systems that support all three phases of tourists’ life cycle [141]],
namely pre-trip, on-trip and post-trip. Nowadays, the social medias (e.g. blogs, wikis, social
networks, virtual communities, etc.) are increasingly supporting the process of online tourism
information search [142]]. Recently, Emmanouilidis et al. [36] present a survey on the mobile
guides existing in the literature, which can be used by tourists to get tourism information or
make various transactions while they are on the move (on-trip phase).

Gretzel [59] outlines a number of types of emerging intelligent systems in tourism, such
as recommender systems (recommendation of tourism services and products), context-aware
systems (consideration of user context such as location, weather, type of device used, etc.),
autonomous agents searching and mining Web resources (searching tourist information auto-
matically on behalf of users), and ambient intelligence (systems that sens, through sensors, and
adapt in response to the change of tourist context).

In order to outline the existence of a wide variety of TIS systems, in the following, we shortly
describe some specific TIS systems that appeared recently in the literature.

The so called MOMIS (Mediator envirOnment for Multiple Information Sources) system
[9] ingrates information wrapped from different tourism web sites. As such, it acts a mediator
framework for heterogeneous and distributed data sources, and, in addition, it provides query
management for the accumulated data into the integrated data repository. The system is based
on a web services architecture by using XML technology and SOAP protocol, and thus enabling
a semantic integration of its features.

In [98]], the TIS system named TIScover is identified with three main characteristics in trying
to achieve high quality tourism information content in terms of comprehensiveness, accurateness
and certainty. The first characteristic includes a database technology with a decentralized struc-
ture, the second is about support of various retrieval methods, starting from simple navigation
mechanism up to structured search and full text search capabilities, while the third one allows
provision of customization capabilities about different tourism information providers, different
geographic places (e.g. regions, countries, etc.). These features enable TIScover to provide
complex and heterogeneous tourism information and products.

In [95]], authors present a context aware TIS system, called CATIS, that is also implemented
based on Web services and XML technologies. The tourist context is derived by considering dif-
ferent elements such as current tourist location, time of day, speed, direction of travel, personal
preferences and type of device. These context elements are brought together to provide tourism
information for tourists on the move. Moreover, the CATIS architecture includes a context man-
ager that deals with both dynamic and static context elements.

In [70], a TIS system that runs on personal digital assistants (PDA), called Accessights and
intended for persons with visual impairments, provides tourism information based on tourist
actual location. The system uses a multi modal interface to support various user groups - each on
their suitable manner. The system is based on Niccimon [5]] platform, AIR3D sound framework
and XML technologies.

14

2.2 Recommender Systems in Tourism

Resnick and Varian [103]] describe recommender systems as tools to mimic the social process
of recommendation that happens “in everyday life”, where , “we relay on recommendations
from other people either by word of mouth, recommendation letter, movie and book reviews
printed in newspapers” [103]. A recommender system basically suggests products, services,
or informations that are tailored to user needs and preferences, by taking into account the user
actual situation and context [[105[]. Based on on the method used to predict the subjective interest
of a user for an item, Burke [15] distinguishes four main categories of recommender systems,
namely collaborative-based (analyzing correlations between users), content-based (analyzing
the similarity of items which the user has rated in past), knowledge-based (derivation of user
needs and preferences by explicit relation) and hybrid approach (combination of two or more
techniques).

The state of the art recommendation systems in tourism “acquire the user needs and wants,
either explicitly (by asking) or implicitly (by mining the user activities), and suggest destina-
tions to visit, POIs, events/activities or complete tourist packages” [44]]. The main aim of a
recommender system in tourism is facilitation of the information search process for the tourist
by suggesting useful information based on user profile and context. Ricci [104] discusses some
earlier “travel recommender systems” such as TripMatcher EI and Me-Print E] that try to mimic
the traditional travel agents when advising the tourist for possible holiday destinations. Further,
Ricci in [105]] surveys a range of recommender systems for mobile devices in regard to their
user interface (e.g. starfield displays, map-based), tasks and functions supported (e.g. finding
relevant attractions and services, exploring the city, route recommendation, information recom-
mendation) and mobile computing models (e.g. context dependent, distributed models, proactive
recommendation).

Recently, Gavalas et al. [44]] briefly survey some representative web recommender systems in
the field of tourism, such as TripAdvisorE], DieToRecsE], HeraclesE] and TripSayﬂ which could be
merely used for recommending trips, locations and activities, and for selection of travel services.
Further, Gavalas et al. [44] propose a schema for classification of mobile recommender systems
in tourism based on three aspects, namely (1) chosen architecture (e.g. web based, standalone
system, web-to-mobile) , (2) degree of user involvement in the delivery of recommendation (e.g.
pull based, reactive, proactive), and (3) criteria considered for deriving recommendations (e.g.
user preferences and constraints based, context awareness based, user critique/feedback based).
Gavalas et al. [44]] use the proposed schema to compare a plethora of recently developed systems
in the field of mobile recommender systems.

"http://www.ski-europe.com/
Zhttp://www.travelocity.com/
3http://www.tripadvisor.com/
“http://www.modul.ac.at/dietorecs
Shttp://www.isi.edu/integration/Heracles/
Shttp://www.tripsay.com/

15

Tourists data

Trip details Profile POIs
(Date, number of (age, gender, eth- (type, category,
days, Budget, ctc.) nicity, tourism coordinates, entrée

preferences etc.) fee etc.)

Trip itinera
Tourists’ interest 2 4

. design algorithm
estimation

mussnnsphannnnan
v

ﬁ‘\ Itinerary display

Figure 2.1: General block scheme of tourist trip itinerary design system

2.3 Tourist Trip Planning Systems

The problem of planning the trip itinerary for a tourist is known as “Tourist Trip Design Prob-
lem (TTDP)” [[135]]. The Tourist Trip Planning Systems (TTPS) that solve TTDP problems, are
mainly based on tourist’s personal interests about POI types (e.g. monument, tower, museum,
etc.) and categories (e.g. archeology, architecture, classical art, etc.), on the information about
POIs (e.g. opening hours, location, entry fee, etc.) and trip details (e.g. start date, duration,
budget, etc.) located in the visited city or region. Figure [2.1]depicts the main components of
a TTPS system. The tourist’s interest estimation component estimates the match between the
tourist preferences and POI features and based on that generates the score (satisfaction factor)
values that reflect the satisfaction of the tourist with individual POIs. The trip designing algo-
rithm uses the generated scores to design the itinerary so that the POIs with high scores have
higher probability to be included into the itinerary.

As described earlier, there is a number of mobile and web based systems that enable design-
ing the trip itinerary for a number of cities around the world, such as City Trip Planner, Your
Tour, Plnnr, Trip Tern and Mtrip. These systems considers tourist preferences and constraints
and the data about POIs to prepare a multiple day trip itinerary. In the simplest format, the gener-
ated trip itinerary would at least contain a list of sequenced visits to POIs that are annotated with
respective start and end time, cost and traveling times between POIs. Moreover, the itinerary
could include maps containing routes for visiting the scheduled POIs, navigation information
for traveling between the consecutive POIs, descriptive information about POIs (e.g. textual,
pictures, videos, augmented reality based services, etc.), etc.

Each of the systems, initially, utilizes some mechanism to estimate the tourist interest about

16

POlIs, and then it applies some algorithm to plan the trip itinerary. Since, the focus of this PhD
work is to deal with trip itinerary planning algorithms (see the component of trip itinerary design
algorithm in Figure [2.1), in Section [2.6] we solely focus in describing the existing approaches
that solve various versions of Tourist Trip Design Problem.

2.4 Social Relations

In social sciences, the social relations are defined as the relationship between any two or more
persons. Kenny and La Voie [68|] presents a social relations model for observing the relationship
between two persons (suppose A and B) based on the effects caused by three different compo-
nents, which are called actor, partner and relationship. The actor effect refers to the personality,
skill and character of person A, whereas the partner effect refers to the amount of behavior that
a person A elicits from person B. The relationship effect refers to situations when person A
and B have already established a relationship, and an eventual action or response of person A
to B, alters their social relation. The relationship effect between person A and B is directional.
That is, adjustment effects of person A towards person B do not need to be the same as those
of person B towards A. In addition, Berscheid [10f], while defining the scope of “relationship
science”, states that “tissue” of a relationship “ is the oscillating rhythm of influence observed in
the interactions of two people”. The oscillation of rhythm of relationship over the time, reflects
that a relationship between two person is temporal rather than static. Finding the conditions that
influence the rhythm of relationship between two persons is the core object of study of the field
of “relationship science”. In more practical terms, the interpersonal relationship between two or
more persons might exist in different dimensions of their interaction, such as family, friendship,
love, marriage, work, neighborhood, club, etc.

The presentation of social relations in form of a network was done by Zachary [143]] in late
1970s. He described a social relations network between 34 members of a karate club within an
university (see Figure [143]]). The club members that have a social relation between each other
outside their normal activities (karate classes and club meetings) are represented in the network
of relations. The lines between the vertexes shows whether there exist a relation between two
club members. The relation itself is considered to be symmetric (same level of relation between
two members). The example shows that some members (p;, p33 and p34) have considerably
more number of relations then the others, thus gathering certain members of the club around
themselves and in that way forming groups. It is obvious that on one side p; can represent a
group, whereas on the other side p33 and p34 can jointly represent another group. In addition,
some other members (e.g. p) might act as “intermediaries” between the different groups.

Nowadays, many social network systems (e.g. Facebook, MySpace, Twitter, etc.) use social
relation concepts to provide better services for their users. In such systems, besides provision
of on-line communities of friends, users are also provided with facilities for on-line chatting,
sharing of multimedia contents (pictures, audio, video), journal entries, etc. For the purpose of
exploring the relations between the members in the on-line communities, there exist a number
of methods that enable eliciting the social relationship level (closeness) between different com-
munity members. Wasserman [[139] describes a variety of general methods from the field of
social network analysis that can be used to elicit social relations between persons. Chun et al.

17

- Pis Pro i
P4 Ps P20
P2s P22
P1o
Ps p3 P23
P24
p7 = P34 P21
P12
P2 Pas
P14 -
P13 P33
P17 P9 Pso
P27
P32
P26
Pis P29
Person p; —— Denotes existence of social relation between person p; and p;

Figure 2.2: Social relations between 34 members of a karate club (adapted from [|143]]

[23[] use some of the concepts from social network analysis to compare on-line social relations
of users based on their activity and interaction.

In addition, more specialized systems and approaches that use social relations are presented
in the literature in different domains of application. For instance, Guy et al. [60]] present a
recommender system that elicits social relations of user from social network systems, and rec-
ommends social software items (bookmarked web-pages, blog entries and communities) based
on the social relations of users. Alshabib et al. [J3] define ratings aggregation in recommender
systems by introducing a model that combines context based ratings with the structure of a social
network. Kwak et al. [72] use PageRank algorithm [94]] to analyze social relations, with the
aim of identifying users that are more influential in the community. Crampes et al. [26] present
a method that visualizes social photos on Hasse diagram, which beside indexing new photos,
can also be used for eliciting social relations between persons in photos. Nevertheless, Gretzel
in [59]], concludes that “most tourism research is still based on antiquated representations of the
human mind as a protected storage container instead of a malleable entity that functions within
a social context”.

Ahmedi et al. [2] present a method for estimation of tourist interest about POIs based
on concepts from the field of social network analysis (SNA) [31]. The tourist preferences
about POI categories (e.g. archeology, architecture, nature, etc.) and her/his personal profile

18

(e.g. age, gender, profession, etc.) are compared against the preferences and profile of previous
users (called “reviewers”) by using a number of metrics from SNA. Then, the POIs that are
visited/recommended by the reviewers that are in close relationship, in terms of preferences
about POIs and personal profile, to the tourist, are proposed. The preliminary results on three
test instances show that the method has an accuracy of more than 75% in estimating tourists
interest about POls.

To the best of our knowledge, except for the work of Ahmedi et al. [2] that uses social
relations for estimating tourists interest on POIs, there is no research published in the literature
that uses social relations within the algorithm of itinerary planning for a tourist group. Therefore,
our approach for considering the social relationship of tourists in the algorithms for trip itinerary
planning, represents a new dimension of research in the envisioned field.

2.5 Local Search Techniques

Before we give more insights about modeling Tourist Trip Planning Problems, we discuss, in
general, about local search techniques that are used in solving highly complex combinatorial
problems.

Local search techniques belong to the class of optimization techniques known with the name
metaheuristics. The word “meta” before the word “heuristics” is used to indicate that such
methods usually serve as a higher level frameworks for lower level search algorithms/heuristics
(e.g. A* algorithm, Dijkstra’s algorithm, Branch & Bound algorithm, etc.) or partial search
algorithms.

Local search techniques focus on searching for a better solution in the neighborhood of a
current solution, that is why some authors (e.g. [1] and [[102]) refer to them with the name
'neighborhood search’. The search process begins with the construction of an initial solution,
which is used as the starting solution by an improvement procedure that runs for a specified
number of iterations. The initial solution is evaluated by using an objective/evaluation function
that is defined based on the specific problem being solved. At a given iteration, the improvement
procedure applies the so called operators (or moves) to transform the current solution into neigh-
bor solutions. The neighborhood of a current solution is denoted with N(S) and often contains all
neighborhood solutions that can be obtained by applying the predefined transformation operator
(see Figure [2.3). The defined objective function is used to evaluate the neighbor candidates,
where one or more of them are accepted as new current solution/s. The accepted solution is
considered to be local optimal solution (local optimum) as it is the best found solution in the
explored neighborhood. A local search technique usually iterates until an acceptable or optimal
solution is obtained. A solution is considered to be optimal (global optimum) when it is the best
solution in the solution space. In order to search for a global optimal solution, a local search
procedure repeats a number of predefined iterations.

The procedure for construction of the initial solution is done by generating randomly a candi-
date solution or by using some heuristic algorithm in order to generate a good starting solution.
More advanced techniques for construction of initial solution might hybridize randomization
approach with the heuristic algorithm approach.

19

O
O 0¥y NN
O O Q I// O O OO\ O O
© o0 OO0 \J0
0000 O D e
o~ 0o ©.0 0 O
oo~ , N0 0
O o O O Current solution
O Q O Q Q Neighbor solution
O o O O O @ & Accepted neighbor solution
O O O O O O O .:‘, Neighborhood of current solution (N(s))
®) O O o 0 o (O Other candidate solution
O o O O [] Solution space

Figure 2.3: Sample neighborhood representation in local search techniques

In general, the difference between various local search techniques stands in the principles
that they use to explore the neighborhood and on the way they make the decision for accepting
the descendant of the current solution [92]. Some techniques apply complete search of neigh-
borhood, whereas some other only explore a small subset of neighbors. Regarding the selection
of the descendant of the current solution, in some techniques, a neighbor is accepted as cur-
rent solution only if it better than the existing current solution, whereas on some other cases, a
neighbor solution that is worse than the current solution might be accepted.

Another difference between various local local search techniques is that some of them work
only with one current solution, whereas others use a number of current solutions concurrently.
The earlier techniques are attributed as single solution exploration oriented methods, while the
latter techniques are known as population based methods.

In the following, we discuss in more details about the objective function and the procedure of
neighborhood exploration. Next, we shortly describe a number of frequently used meta heuris-
tics, and then describe in more details the tabu search metaheuristic and some of its successful
applications.

2.5.1 Objective Function

The objective function is used to evaluate the quality (also called fitness) of a solution being
examined. Different problems use different objective functions when evaluating a candidate so-
lutions. For instance, let us suppose a Traveling Salesman Problem (TSP) with N=170 points,
where the goal is to find the shortest path for visiting all N points. The solution can be repre-
sented as an array that contains the sequence of points to be visited. An arbitrary current solution
could be written as S.={4, 5, 1, 9, 10, 6, 2, 3, 7, 8}. In this case, the objective function would
measure the travel distance needed to traverse the sequence of points in current solution S..

20

In general, there might be optimization problems where the aim is to find a solution with
a minimal evaluation (such as the case of the presented TSP example), whereas in some other
cases the goal might be to find a solution with a maximal evaluation (e.g. Utility Maximiza-
tion Problem [120]]). In such cases, the objective function would be called a minimization or
maximization function, respectively. In addition, there exist objective functions that are used
to measure a single feature of a problem, such as the measurement of traveling distance in the
above described TSP problem, while there also exist multi objective functions that evaluate the
fitness of solution by measuring two or more features of the problem being optimized. For in-
stance, an example of multi objective optimization can also be the case of tourist trip planning,
where the aim can be defined so that, in one side it is tried to include the POIs that have the
highest score, and on the other side the minimization of the total traveling time for visiting the
POlIs is aimed. The evaluation of solution in multi objective problems is usually done by giving
weights to the different components of the objective function, such as for instance the case of
trip planning, where the objective function can be defined as f = W, x E; + W, % E;. In this
case, F/s and E; represent the evaluation components of satisfaction and travel time, whereas
W and W, represent the respective weights.

In some optimization problems, the calculation of the value of the objective function can
be costly in terms of computation time. Since, in local search techniques, the evaluation of
neighbor candidates of current solution needs to be done in every iteration, a straightforward
implementation of the objective function might add unnecessary load into overall computation
time. For instance, if in the presented TSP problem, a neighbor solution S, is created by ex-
changing two of its points, calculating the whole traveling distance for traversing all points is
not necessary. Instead, a deviation (delta) function can be used to calculate the traveling distance
of S, by adding the travel distance of the path that is added and subtracting the travel distance of
path that is removed form the traveling distance of current solution S..

2.5.2 Neighborhood Exploration

The exploration of the neighborhood of a given current solution is made by using the so called
operators (or moves). In order to describe the concepts standing behind operators (or moves), let
us considers again the presented example of TSP problem and the given current solution S.={4,
51,9 10,6, 2, 3,7, 8. A possible operator in the current solution S, would be swapping points
in positions i and j. The neighborhood of the current solution S. would contain all neighbor
solutions that can be obtained by swapping points in position i and j, where i and j can take
integer values from 1 to 10. If for example points in positions i=2 and j=5 are swapped, the
corresponding neighbor of S, is S,={4, 10, 1, 9, 5, 6, 2, 3, 7, 8}.

In general, different operators could be defined (for solving different problems). Some op-
erators might be more general by being able to be applied to a range of problems (e.g. k-Opt
for reducing travel time between to points), while some others might be specifically designed
for specific problems. Principally, the operators with large neighborhood, where all possible
combinations are tried out, have higher probability to obtain good quality solutions, but would
require a longer computation time. On the other hand, the operators that do not to explore all
possible neighbor are more quick in terms of computation time, but in general tend to produce
worse solutions in terms of quality.

21

In addition, some operators explore only neighbors that satisfy the hard constraints (feasible
neighbors) of the problem being solved. This has the advantage of limiting the number of neigh-
bors that are explored, therefor reducing the computation time, while the disadvantage stands
in the possibilities of getting stack in a particular area of search space, which might be disjoint
from other feasible areas.

2.5.3 Meta Heuristics

In this subsection, we briefly describe some of the most utilized metaheuristic techniques,
whereas in the next subsection, we present a detailed description of tabu search technique, be-
cause of its application in solving the envisioned problem of this PhD thesis.

Simulated Annealing (SA) - is based on theories from thermodynamics where creation of the
structure of crystals depends merely on the cooling function, which should not be so quick or
so slow as defects in the crystal might appear. Analogical, in the field of optimization, SA uses
a “cooling function” to determine whether the algorithm should be able to also select random
solutions that might be worse then the current solution, or it should only accept better solutions,
and thus act more as a hill climber. The attribute of selecting solutions that are worse than the
current solution, enables the SA algorithm to escape from getting stuck in local optima. This
approach was initially presented by Kirkpatrick et al. in [69].

Iterated Local Search (ILS) - builds a sequence of local optimum solutions with the aim of
storing previous search experience that is used to avoid getting stuck in local optima. At the start
of a given iteration, one of the stored local optimal solutions is first perturbed/modified and then
used as current solution in a local search procedure. The strength of this method stands at the
way the perturbation/modification mechanism is implemented, which should enable searching
only those areas of search space that seem to be promising in finding better solutions. This
approach was first introduced by Lourenco et al. in [82].

Variable Neighborhood Search (VNS) - is attributed as a method that can explore neighbors
of current solution that are distanced between each other. VNS accepts a new current solution
only when it encounters a better one. The method iterates several times so that it does not get
caught in local optima. The method was introduced by Mladenovi¢ and Hansen in [85]].

Greedy Randomized Adaptive Search Procedure (GRASP) - during the course of an itera-
tion performs two steps, namely construction and iterative improvement. The construction step
creates a current solution by adding elements based on a ranking generated by a greedy func-
tion that ranks elements in accordance to the improvement they are expected to produce. The
randomness is achieved by shortlisting the most promising elements, and then adding them ran-
domly into the solution being constructed. The iterative improvement step undergoes a local
search procedure to search the neighborhood of current solution. The method was first proposed
by Feo and Resende in [37].

Guided Local Search (GLS) - enforces penalties for frequent moves to enable the local search
process to escape from getting stuck in local optimum. GLS utilizes a problem specific mecha-
nism for modification of the objective function when the algorithm get stuck in local optimum.
The algorithm works with a modified objective function until it gets out of local optimum. The
strength of this method stands on the way that the objective function is modified. GLS was
originally proposed by Voudouris and Tsang in [136].

22

Large Neighborhood Search (LNS) - searches the solution space by applying complex neigh-
borhood procedures based on problem specific heuristics. The exploration of large neighbor-
hoods enables the algorithm to make a more systematic searching and thus make a better traver-
sal of solution space. Different variants of LNS appear in literature, such as variability in the
depth of neighborhood search or adaptivity of the size of neighborhood search. However, search-
ing large neighborhoods might lead to larger computation times, hence various filtering tech-
niques are enforced to avoid exploring neighbors that do not seem to result in any improvement.
LNS was first introduced and applied by Shaw in [[114].

Genetic Algorithms (GA) - are inspired by processes of nature evolution. The concepts such
as inheritance, mutation, selection and crossover are used for implementing certain parts of the
algorithm. The initial population of candidate solutions can be made randomly or based on
some problem specific heuristic. GA maintains a population of candidate solutions throughout
the evolution process, which usually undergoes a predefined number of generations (iterations).
In a single generation, new members of population are created by altering the old members
of population through application of mutation and crossover operators. A mutation operator
creates a new candidate solution from a single existing solution, whereas a crossover operator
creates a new candidate solution by combing two or more existing solutions. The first noticeable
application of GA is made by Rechenberg in [[101]], although other authors have preliminarily
used concepts of nature evolution for dealing with different optimization problems.

Ant Colony Optimization (ACO) - is inspired by the behavior of ants for finding paths from
their colony to the sources of food. The process starts when some ants mark a new path to a
source of food by laying down pheromone trails. Other ants follow the marked path for bringing
food to their colony. As the path is used more and more by the ants, the pheromone trails get
dissolved, hence new (most probably) shorter paths are created. As results, the new shorter paths
are used by the majority of ants. In optimization techniques terms, the concept of “dissolving
pheromone trails” is understood as escaping from areas of search space that appear to contain
local optimum solutions, whereas the paths that are frequented more by the ants are taken as
areas of search space that contain high quality solutions. ACO is a population based method,
where a pheromone represents a candidate solutions. In general, more pheromones come from
shorter paths of ants, whereas few pheromones are selected from longer paths, in order to retain
a degree of diversification of search process. ACO was proposed by Colorni et al. in [24].

Farticle Swarm Optimization (PSO) - is based on social behavior of living beings who move
by following the movement of the majority of other living beings (particles) in the swarm. In
optimization terms, the swarm of particles represents the population of candidate solutions. The
swarm movement is dictated by the local best particle position and by the best known particle
position in the environment of movement (search space). In addition, the velocity of swarm
movement also impacts its movement direction. When new better positions in the swarm and
in overall environment are identified, they are adopted so that the other members of the swarm
start following it. In this way, the particles of the swarm are expected to move towards areas
of environment that are likely to produce better solutions. PSO was developed by Eberhart and
Kennedy [33]] and Eberhart et al. [34].

Harmony Search (HS) - is motivated from the processes of a group of musicians/instruments
who should be harmonized while playing their instruments. In the HS algorithm, a musician

23

is equivalent to a solution variable. Since a group of musicians (population of solutions) play
instruments simultaneously, they all generate solution values concurrently with aim of generat-
ing best possible value (global optimum). HS is attributed as a method that can escape from
local optimum. Some advanced variants of HS can work without input parameters. HS was
introduced by Geem et al. in [47].

Memetic Algorithms (MAs) - are usually composed of a mix of algorithms, where a partic-
ular population based search method (e.g. Genetic Algorithms) is combined with local search
methods and/or multi-agent systems. Hence, MAs belong to population based methods, where
each member of population is a tentative solution for the problem under consideration. MAs
frequently apply operators that are based on the acquired knowledge about specific problem (in-
stance) being solved. Maintenance of diversity in the population of MAs can be difficult, thats
why many practitioners use specific algorithms to preserve the diversity in the search process.
MAs were first introduced by Moscato in [|89].

Artificial Neural Networks (ANNs) - try to mimic biological nervous system, which func-
tions through interaction of billions of neurones in the so called neural network. Hence, ANNs
consist of a set of interconnected nodes (neurons) that have processing capabilities. The inter-
connection segments between the nodes are associated with weights, which are controlled and
adapted during the learning/searching process. The nodes are usually divided into a number of
communicating layers. In the simplest case, the nodes are organized into three layers, namely
input nodes, output nodes and hidden nodes. The communication between different layers starts
from the input layer and goes through the hidden layer up to the output layer. Usually, ANNs
are characterized with three types of features: model of interconnection between different lay-
ers, the learning/searching process that updates interconnection segments, and the function used
for transformation of input weight of a node to the corresponding output weight. ANNs are
widely applied in the fields of machine learning and pattern recognition. Nevertheless, ANNs
are occasionally applied as searching techniques in different domains of application (an example
is shown in Subsection [2.6.7)).

2.5.4 Tabu Search

The Tabu Search meta heuristic is a local search method that is used for solving highly con-
strained combinatorial problems. It was initially proposed by Glover and McMillan in [56]] and
then further formalized by Glover in [53]]. The main principles of tabu search consist of storing
information about previous search experience and based on that take actions either in intensi-
fying the search process in direction of some promising search space area, or diversifying the
search process towards less explored sections of search space. The search information is stored
in the so called tabu memories, which keep information about moves that are forbidden or tabu
for a certain period of time (or number of iterations). In general, tabu search uses three sorts of
memories, namely short term, intermediate and long term memory.

The short term memory (also called recency memory) keeps record of the recency of ap-
plication of a certain move (e.g. swap between to points in TSP problem) during the search
process. This memory constitutes the core of the method, as it facilitates the search process to
escape from getting caught in local optimum. The so called Tabu List Size parameter specifies
the number of iterations a certain move can not be utilized (is tabu).

24

The intermediate and long term memory (also called frequency memory) keep record of
how often certain moves are applied during the search process. The intermediate memory is
used to intensify the search process in a promising section of search space by giving priority to
frequently used moves. Conversely, the long term memory is applied when the diversification
(exploration of rarely visited regions of search space) of search process is needed. This is done
by prioritizing less frequent used moves.

The pseudo code in Algorithm [2.1] [84]] shows the basic steps of tabu search method. After
initialization of tabu memories/lists, a random initialization of initial solution is usually made,
and then the evaluation of the initial solution is performed by using the respective fitness function
of the problem at hand. The method runs for a number of iterations as specified by the actual
termination condition parameter. At each iteration, the neighborhood of the current solution will
be examined by means of different operators for the problem being solved. For instance, Knox
[71] used the “2-interchange” operator for interchanging two vertexes to solve the TSP problem,
while Gendreau et al. [49] used Remove and Insert operators for insertion and removal of a
certain vertex from a route, when tackling the Vehicle Routing Problem. The best tabu and non
tabu solution are always searched in the neighborhood of current solution. The tabu memories,
both short term and long term, are consulted when deciding which best neighbor solution to
adapt as next current solution. The first choice is always accepting the best non tabu neighbor,
but if a good tabu neighbor that fulfills some ‘“aspiration criteria” is found, then it is accepted
as next solution for exploration. The concept behind the “aspiration criteria” is about allowing
adaption of some possible tabu neighbors that are promising such as for example, a neighbor that
is the best found ever during the search process or a neighbor that has unique properties (e.g.
represents an unexplored area of search space) in comparison to the other neighbor candidates.
The last choice is the acceptance of the best non tabu neighbor that might not necessarily be the
best neighbor found. At the end of each iteration, respective memories are updated accordingly.

Depending on the implementation, the method might use various parameters, but a basic
tabu search implementation uses at least four parameters as in following:

e Tabu List Size - Determines the number of iterations that a certain move can not be used
(is tabu)

e Number of Iterations - Specifies the number of iterations the algorithm would run

e Penalty Coefficient - Used for penalizing certain moves when intensifying/diversifying
the search process

e Memory Horizon - Determines the reset frequency of intermediate and long term memo-
ries

The data structures for implementation of memories might range from the most simple im-
plementations like arrays and FIFO (First In First Out) lists up to some more advanced data
structures like hash tables. For instance, as presented in [84]], a possible memory for the TSP
problem with N vertexes could be a square matrix with N-1 rows and columns. In this example,
the individual matrix members would represent either the number of next iterations a swap be-
tween two points can not be performed (Figure [2.4]a) or the number of swaps that are made by

25

input : Method parameters
output: Solution

1 begin

2 Initialize tabu list;

3 Generate randomly Initial Solution S,;
4 Evaluate S.;

5 while termination condition not met do
6

7

8

9

Generate all neighbor candidates of solution S,;
Find best candidate S, in neighborhood of solution S,;
if S, is not tabu solution then
‘ Se = Sgz;
10 else if aspiration criteria is fulfilled then
1 | Se= S
12 else
13 Find best not tabu solution in the neighborhood S,,;;
14 Sc = Snt;
15 end
16 Update tabu list;
17 end
18 end

Algorithm 2.1: Pseudo code of Tabu Search

2 3 4 5 6 7 8

0 0 0 0 1 1
0 5 0 0 2)
0| 0| 4] 0]3 3
3000004 4
00215 5
00|56 6
0| 7 ;

a) Recency based memory b) Frequency based memory

Figure 2.4: A sample tabu memory for TSP problem

any two points during the search process (Figure [2.4]b). In [28], authors used a FIFO memory
strategy when applying tabu search to solve job scheduling problem.

In [65]], a special memory structure is used which consists of a hash table and a self height
balancing trinary (three branch) tree. The explored solutions are indexed into the hash tables
and in the tree based on their objective function value. This enables a fast scanning process for
the best solutions that are placed into the tree and are pointed to by the hash table.

Some advanced implementations of tabu search utilize a variable tabu list size throughout the

26

search process. Battiti and Tecchiolli [[8] are the first to introduce the reactive tabu search where
the appropriate tabu list size is derived automatically. In addition, they showed that this kind
of technique could be implemented in a trivial way by using hash tables and digital trees. The
advantages of reactive tabu search implementation were demonstrated by doing a comparison to
static format of tabu memory for the Knapsack and Quadratic Assignment Problem.

In [108]], Rochat and Taillard present a tabu search implementation for Vehicle Routing
Problem enriched with probabilistic features. The diversification, intensification and paralleliza-
tion mechanisms are relied on strategic embodiment of probabilistic elements rather than use of
simple randomized features. As concluded by the authors, the probabilistic technique is suitable
for implementation for any local search method by making it more robust, and hence, enabling
it to converge more often toward solutions that have more quality and are close to best known
solutions.

2.5.5 Applications of Tabu Search

Tabu search is successfully applied in solving, (near) to optimality, many problems in different
domains of application such as scheduling, computer channel balancing, cluster analysis, space
planning, assignment, etc. [54]. In the following, we report on some successful applications of
tabu search in some of the above mentioned domains.

In [11]], Blazewicza et al. compare tabu search with Simulated Annealing (SA) and Variable
Neighborhood Search (VNS) when solving two-machine flow-shop problem with weighted late
work criterion and common due date. The efficiency of meta-heuristics was evaluated by using
20 problem instances. The fine tuning of tabu search parameters yielded to an improvement
performance of about 7 %. Nevertheless, this study showed that SA approach could generate
better schedules in a shorter time.

In [121f], Subrata et al. discuss application of tabu search and Genetic Algorithms (GA)
in load balancing in computational grids. Their results show that tabu search and GA achieve
similar results, while, on the other hand, both methods outperform other tested algorithms like
Best-fit, Random, Min-min, Max-min, and Sufferage. This is further more obvious when the
number of iterations the algorithm runs is increased. The reported drawback is that both tabu
search and GA need more storage space and processing power in the scheduling mechanism.

Sung and Jin [122]] apply tabu search in clustering a data set into natural and homogeneous
subsets such that each subset is composed of elements that are similar to one another but different
from any other subset. The efficiency and effectiveness of the tabu search implementation is
further extended by introducing a procedure that comprises of a packing and a releasing step.
The task of packing step is to bind a subset of elements together, while the releasing step tries
to separate any packed elements form each other. The numerical testing of the proposed method
shows that, in overall, it outperformed other implementations existing priorly, such as basic tabu
search, K-means and simulated annealing. The authors outline different possible applications
of the presented algorithm, such as patient classification, product distribution center allocation,
and government service branch organization.

Gendreau et al. in [50] presents an approach based on tabu search for solving the ambulance
location problem. The problem modeling is done in accordance to the rules set by the United
States Emergency Medical Services Act of 1973. The actual implementation uses the funda-

27

mental tabu search features for escaping from the local optimum, intensifying and diversifying
the search process. The algorithm is tested on a set of random instances, as well as on instances
generated from the data derived from the Island of Montreal. It is concluded that the tabu search
implementation achieves near to optimal solution in a relatively short (“modest”) computation
time.

In [75], Laguna et al. describe a tabu search approach for solving multilevel generalized
assignment problem (MGAP), which could be used for solving practical problems in manufac-
turing such as lot sizing (finding the optimal combination for achieving maximal production).
The tabu search implementation is powered by using a neighborhood search procedure based
on “ejection chains”, that allow more effective and efficient use of machine capacities. The
“ejection chains” were first introduced by Glover in [55]]. Based on authors, the algorithm has
shown high level performance when tested on difficult Single - level GAP instances. In addition,
the authors claim that the proposed method does not significantly change its performance if the
parameter values are refined. At the time of paper publication, this implementation was a sub-
stantial move ahead in comparison to the other existing scientific and commercial approaches.
For more detailed information about application of tabu search for the domain of assignment
problems and others, the reader is referred to [91].

2.6 Modeling Tourist Trip Planning Problems

The modeling of tourist trip planning problem depends on the kinds of constraints that are con-
sidered when solving a particular problem. Figure [2.5]shows possible modelings to the tourist
trip planning problem. The most basic modeling is the game called “Orienteering Problem”
(OP) [129], which is played in a place that has a number of points, each associated with a score.
Due to the limited time, not all points can be visited, and the goal is to visit those points that
maximize the total collected score. A point can be visited at most one time. It is obvious that
OP can be used to model a single day (period) trip with a limited duration, where the score as-
sociated with points would represent the satisfaction factor of a tourist with the POI. Note, that
the selective traveling salesman problem (STSP) [77] is related to OP, except it also considers
compulsory points to be included in the trip.

Various additional constraints could be modeled to the trip planning problem when other
extensions of OP are applied. The operating/working hours of POIs in tourist trip planning
problems could be modeled by applying OP with Time Windows (OPTW) [66], whereas mul-
tiple day (period) trip could be modeled by using Team OP (TOP) [21]]. The TOPTW [134]
models both, multiple tours and operating hours, at the same time. The constraints about maxi-
mum allowed budget to be spent and maximum allowed POIs of certain type or category to be
visited, could be modeled by utilizing Multi Constraint TOPTW (MCTOPTW) [43]]. Different
means of traveling between POlIs (e.g. walking, bicycle, public transport, etc.) could be mod-
eled by using Time Dependent OP (TDOP) [39]. In case the operating hours of POIs need to
be taken into account, the Time Dependent OPTW (TDOPTW) has to be considered. In some
occasions a POI is characterized with a number of features (e.g. beauty, cultural background,
historical relevance, etc.) and as result a range of scores for each of the features is associated
with that POI. This situation can modeled by using Generalized Orienteering Problem (GOP)

28

.

A 4

TOPTW

—
S
N

¢

oP TDOP TDTOPTW

OPTW MCTOPTW >—» | MCMTOPTW

GOP

OPHS

:

Figure 2.5: Theoretical models of tourist trip planning problems

[99], which allows modeling multiple score for each POI. In addition, based on the location of
last visited POI in the trip, an accommodation could be selected automatically at the end of the
each trip. This problem extension is coined as OP with Hotel Selection (OPHS) [30].

To the best of our knowledge, there is no model published in the literature that can be used
for modeling the trip planning problem for a group of tourists. Since, an itinerary for each
tourist in the group needs to be planned, we propose to extend MCTOPTW to Multi Constraint
Multiple Team Orienteering Problem with Time Windows (MCMTOPTW). This would define
a new extension to OP, in which multiple trips become possible, and where each trip would have
multiple tours.

In the following subsections, we present the mathematical modelings and the existing ap-
proaches from the literature for solving the OP and its respective extensions. Further, related
approaches for solving similar problems to OP (e.g. STSP) are discussed. The related work
that is presented in the remaining part of this section, is primarily based on survey papers of
Vansteenwegen et al. [133]] and Gavalas et al. [45].

2.6.1 Orienteering Problem

In OP, a set of N points i is given, each associated with a score S;. The starting point (i=1) and
the ending point (i=N) of the tour are fixed. Each point i can visited at most once. The traveling
time between points i and j is known for all i,j=1, ..., N. The duration of the tour is limited to the
maximum value 7., therefore often not all points can be visited. In the time frame specified
by Tynax, the aim is to find a route that passes by those points that maximize the total collected
score.

In the following, we present the OP formulated as an integer programming problem [[133]].
The boolean variable x;; is set to / when a visit to point i is followed with a visit to point j,

29

otherwise x;; is set to 0. The integer variable u; shows the index of visit to point i out of all
selected visits throughout the route.

N-1 N
Maz Y " Sixyj, 2.1)
i=1 j=2
N N-1
Z$1j = Z TiN = 1, (2.2)
7=2 =1
N—-1 N
dwp =) wpy <L VE=2,..,N-1, (2.3)
i=1 j=2
N-1 N
> tijwij < Tnass (2.4)
i=1 j=2
2<u; <N; ,Vi=2, .., N, (2.5)
ui—uj—l—l < (N—l)(l—l‘ij); Vi, 5 =2,..,N, (2.6)
Tij € {0, 1}; Vi, j=1,...,N, 2.7)

The objective function of OP (Constraint [2.1]) is maximization of the total collected score.
As formulated by Constraint [2.2] the tour should always start at point / and end at point N.
Equation [2.3] on one side enforces the tour connectivity by constraining current visit to point i
with a next visit to point j, and on the other side it allows maximum one visit to a given point.
Constraint [2.4]sets tour’s maximum allowed time budget to 7},,,. Constraints [2.5/and [2.6|make
sure that no subtours occur throughout the tour.

Since OP is a NP hard problem [57]], exact algorithms are very computation intensive, and
therefore highly time consuming. Hence, for practical implementations, heuristic approaches
are considered. In addition, Gendreau et al. [52] emphasizes that the score of any point and
the traveling time to go to that point, can be often contradictory. In this regard, straightforward
heuristics might lead the search process in getting stuck into local optimum, and as result make
the search process avoid the global optimum. Further, it is indicated [130] that instances that
enable selection of around half of existing points, are the most difficult to solve, since the highest
number of combinations are to be computed. In addition, Vansteenwegen [130] shows that as
the number of selected points increases, it becomes more difficult to obtain the shortest path in
the tour.

In regard to exact approaches, Laporte and Martella [77] and Ramesh et al. [100] apply
a branch-and-bound algorithm to solve STSP, respectively OP, while Gendreau et al. [51]]
and Fischetti et al. [38]] use branch-and-cut algorithm to solve STSP, respectively OP. Recently,
Gavalas et al. [45]] survey a number of approximation approaches that tackle OP and its variants

30

with high complexity. Further, Gavalas et al. [45] outline additional details about possibilities
to approximate OP and its variants.

In order to consider more realistic situations, for practical applications, a number of ap-
proaches based on heuristic methods has been proposed. In the following, we discuss some of
the most break through approaches in the literature.

Tsiligirides [129] presents two heuristic approaches for OP. The first uses stochastic algo-
rithms based on Monte-Carlo techniques to initially create multiple tour solutions and then select
the best tour based on the total collected score. The second one is a deterministic algorithm that
searches for tour solutions in different local geographic regions that are limited inside circles
that have different diameters.

Golden et al. [57] introduces a three step approach based on the center of gravity heuristic.
The first step creates tours by inserting points based on their score and on the time consumption
on the tour. The second step initially applies 2-Opt operator to arrange the sequence of points in a
way that the total consumed time gets minimized, and then it tries out to insert new points based
on minimal time consumption heuristic. The third step applies the center of gravity heuristic by
inserting a new point based on the ratio of the score of point over the distance to the center of
gravity that is calculated by considering the previous tour. In addition, Golden et al. [58]] further
improve their method by also adding the concepts of randomness, sub gravity and learning.

Ramesh and Brown [99] apply a four-phase heuristic for the generalized OP. The first phase
keeps the time budget constraint relaxed while inserting new points into the tour. The second
phase applies k-Opt (k=2,3) operator with the aim of narrowing down the consumed time in the
tour. In the following phase, the time budget constrained is enforced by deleting extra points
from the tour. In the fourth phase, if room is available in the tour, new points are tried to be
inserted. This procedure repeats for a number of iterations as specified by the corresponding
control parameters of the algorithm.

OP is also solved by using an approach from artificial neural networks [137]]. A fourth order
convex energy function is used along with a learning algorithm, and both are put into work by
using a Hopfield based neural network.

Chao et al. [20] apply a five phase heuristic by considering only the points that lie inside
a defined ellipse in a Euclidean space. The foci of the ellipse is represented by the start point
and end point, while, for the major axis of the ellipse, the time budget value 7},,,, is adapted. In
the first phase, the initial solution is created by considering a pool of candidate solutions that
are created with a cheapest point insertion heuristic. In order to achieve the required diversity
into the pool of candidate solutions, a single candidate starts with point far away from the start
point and ends with a point far away from the end point. The best candidate from the pool of
solutions is accepted as the current solution. In the second phase, the a two-point exchange
operator is applied between points included in the current solution with points to other less
evaluated candidate solutions. In the third phase, a move operator will try to move a point from
one solution to another solution in the pool of candidate solutions. Next, in the fourth phase
the 2-Opt operator tries to reduce the consumed time in the current solution. In the last phase,
some points that have a low ratio of score over the insertion cost are removed from the current
solution. The five phases are repeated for several times until the termination condition of the
algorithm is met.

31

A tabu search approach is applied by Gendreau et al. [52] through a repetitive procedure for
insertion of cluster of points and removal of sequence of points. This approach has advantages of
escaping from local optima and abilities to include points with high scores that might be located
far from the points currently inserted into the tour.

Schilde et al. [[110] introduce two approaches for the multi objective OP, which are also
applied for the single objective OP. The first approach is a Pareto ant colony optimization al-
gorithm that uses three basic operators for iterative improvement of candidate solution, namely
2-Opt (to shorten the time consumption of the tour), insert (to insert a new point into the tour)
and exchange. The second approach is a Pareto variable neighborhood search algorithm that
consists of two main phases, namely shaking (based on a two point exchange move) and itera-
tive improvement (based on 2-Opt, insert and exchange). In addition, both of the approaches are
hybridized with a path relinking method.

2.6.2 Team Orienteering Problem

In the TOP [21] [126]], the objective is to find a number of tours M, each limited to 7}, that visit
a subset of points so that the total collected score is maximized. TOP is equivalent to Multiple
Tour Maximum Collection Problem introduced by Butt and Cavalier [16].

TOP can be formally described as an integer programming problem [133]] by utilizing two
boolean variables and one integer variable. The boolean variable x;j,, is set to / when in tour m a
visit to point i is followed with a visit to point j, otherwise x;;, is set to 0. The boolean variable
Yim 18 set to 1 if point i is visited in tour m, otherwise x;j, is set to 0. The integer variable u;y,
shows the index of visit to point i in tour m.

M N-1
Max Z Sillim, (2.8)
m=1 i=2
M N M N-1
DD wm=) Y wivm =M, 2.9)
m=1 j=2 m=1 i=1
M
> yim <L Vi=2,.,N -1, (2.10)
m=1
N—-1 N
> Zikm = Y Thjm = Ykmy VE=2,.., N =1, ¥m=1,.., M, (2.11)
i=1 j=2
N—-1 N
> tiitijm < Tiaas Ym=1,..., M, (2.12)
i=1 j=2
2 < upm < N; ,Vi=2,..,N,VYm=1,.., M, (2.13)
Uim — Ujm +1< (N — 1)(1 — xijm); VZ,] = 2, ...,N, Vm = 1, ...,M, (2.14)

32

Tijmy Yim € {0,1}; Vi,j=1,..,N, Vm =1,..., M, (2.15)

The objective function of TOP (Constraint [2.8)) is maximization of the total collected score
in all tours. Constraint [2.9] ensures that each tour starts at point / and ends at point N. Equation
[2.10|makes sure that a point can be maximally visited once at any tour. Equation [2.1T]enforces
the tour connectivity by constraining current visit to point in tour m with a next visit to point j
in the same tour. Constraint [2.12]limits the maximum allowed time budget to T, for any tour
m. Equations [2.13]and [2.14] make sure that no subtours occur in any of the tours.

But and Ryan [17]] solve TOP by using an exact algorithm based on a procedure for column
generation and constraint branching. In addition, Boussier et al. [13]] also take the approach
of exact algorithms by presenting a branch-and-price approach, which is a coupling of column
generation and branch-bound algorithms. The algorithm includes some specific branching rules
and acceleration techniques to deal with particularities of the orienteering problem. The branch-
ing rules are about points and arcs between them. The acceleration techniques include a halting
strategy for reducing the computation time, application of limited discrepancy search (LDS)
heuristic [61] to help search towards promising points, and label loading and meta extensions
techniques that are used to speed up the algorithm for column generation.

Chao et al. [21]] make two modification in their five phase approach [20] for OP to use it
to solve TOP. Instead of returning the best tour from the pool of candidate solutions, the best M
tours are returned and the frequency of re-initialization in the algorithm is doubled.

Tang and Miller-Hooks [[126] tackle TOP by using a tabu search approach that is embed-
ded in an Adaptive Memory Procedure (AMP). The search process of the approach could be
divided into three main phases, namely initialization, improvement and evaluation of solution.
In the initialization phase, the algorithm parameters are tuned to allow a rather narrow neighbor-
hood of searching for creating the initial solution. The improvement phase is characterized with
switching between large and small neighborhood modes, consideration of feasible and infeasi-
ble candidate solutions, and enforcement of random and greedy methods for selection of best
neighbor solutions. In the evaluation phase, as usual for tabu search, the best non tabu solution
is selected as next solution, whose neighborhood would be explored in the next iteration. The
size of the neighborhood in the next iteration depends on current solution neighborhood size and
quality. AMP combines different existing candidate solutions for preparing the initial solution
for tabu search.

Archetti et al. [4] approach the problem by using tabu search and variable neighborhood
search (VNS). In both approaches, the non-included points are organized in form of regular
tours. Authors develop two variants of tabu search, one that accepts infeasible solutions and the
other one that works only with feasible solutions. Both tabu search variants use two operators,
namely /-Move that moves one point from a tour to the other, and swap that swap one point of
a tour with one point of some other tour. A jump operator, used in both variants, swaps two
sets of points from the tour with two sets of points from tours with non-included points. The
infeasible solutions are corrected by a number of correction procedures. The VNS approach also
comes in two variants, the slow variant that is intended for a high quality solutions and the fast
variant that is intended for quick computation time. Both VNS variants, use tabu search (variant
that considers only feasible solutions) as local search method, but with much less number of

33

iterations. In addition, 2-Opt operator is used, in both VNS variants,to reduce the tour time
consumed. In average, the approaches presented by Archetti et al. [4] perform better than the
approaches described earlier.

Ke et al. [67] introduce an Ant Colony Optimization (ACO) approach for TOP. This ap-
proach constructs the candidate solutions based on four methods, namely, the sequential (tours
are filled up with points sequentially), deterministic-concurrent (a point is inserted in one of the
tours according to some fixed order), random-concurrent (a point is inserted in one of the tours
in a random order) and simultaneous (at each iteration a point is inserted in one of the tours).
The local search procedure consists of a 2-Opt operator that tries to shorten the time consumed
in the tour and of an insert operator that tries to insert as many feasible points as possible. This
local search procedure is repeated until no improvement can be obtained in the searched neigh-
borhood. At each iteration, each ant constructs a feasible candidate solution and the described
local search procedure is applied to improve the solution. Afterwards, the pheromone trails are
updated. The algorithm stops iterating when a predefined maximum number of iterations has
been reached. According to [133]], the results obtained by this method are as good as results
achieved by Archetti et al. [4]], but with less computation effort. This is specially the case of
ACO approach with sequential tour completion.

Vansteenwegen et al. [131]] [132] present two approaches for solving TOP with the aim of
obtaining quality solutions in a short period of computation time. The first approach is based
on Guided Local Search (GLS) framework, whereas the second approach is based on Skewed
Variable Neighborhood Search (SVNS) framework. The GLS approach uses basic operators
like Insert, Replace, 2-Opt and Swap, while the SVNS approach, in addition to this basic ora-
tors, uses some extra operators like Twolnsert, TwoReplace and Change [133]]. Both approaches
implement two variants of diversification and intensification mechanisms. The idea of removal
of sequence of points from the tour constitutes the both variants of the mechanism for diversi-
fication of search process. The first variant of intensification mechanism tries to increase the
overall score, whereas the second variant tries to minimize the spent time in a tour. The experi-
mental results [132]] show that SVNS outperforms GLS, both, in terms of solution quality and
computation time.

Souffriau et al. [[118] present an approach to solve TOP that is based on Greedy Random-
ized Adaptive Search Procedure enhanced with a Path Relinking (PR) method. This method
comes in two variants, the slow variant intended for high quality solutions, and the fast variant
intended for quickly generated near to high quality solutions. At each iteration, GRASP with PR
performs four steps, namely construction of initial solutions, application of local search proce-
dure, application of PR method and the update of the “pool of elite solutions”. The generation of
initial solution could be a random or a greedy one, as determined by the so called “greediness”
parameter, which prescribes a precise probability ratio between greediness and randomness. The
local search procedure alternates between reducing the total spent time in all tours and maximiz-
ing the total collected score. At each iteration, the local search procedure applies the operators
of 2-Opt, Swap, Replace and Insert. The Path Relinking method introduces a long term mem-
ory called “pool of elite solutions”, which contains the best solutions found during the search
process. This memory is used with the aim of avoiding the complete independence of creating
the initial solution in different executions of the original GRASP procedure. The PR method

34

considers the candidate solutions in the search space that can be virtually composed by using
current local search solution and each solution residing the memory of “pool of elite solutions”.
The fourth step updates the memory of “pool of elite solutions” with newly found good solu-
tions. According to [133]], the slow variant of GRASP with PR obtains comparable results to
approaches of Archetti et al. [4] and Ke et al. [67].

Bouly et al. [12] propose a memetic algorithm (MA) to solve TOP. The algorithm uses an
Optimal Splitter developed by using a modified version of the Program Evaluation and Review
Technique/Critical Path Method (PERT/CPM). In addition, a heuristic for initialization of popu-
lation termed “Iterative Destruction/Construction Heuristic” (IDCH) has been proposed, which
is based Construction/Destruction principles described by Ruiz and Stuezle [109]], combined
with priority rules and local search techniques. A small part of initial solution is created by us-
ing IDCH technique, whereas the major part is created randomly. At each iteration, a couple of
parents is selected among the population by using the Binary Tournament technique. The LOX
[96] crossover operator is used to produce a child chromosome, while newly created chromo-
somes are evaluated by using the Optimal Splitter procedure. The population is updated with
new chromosome, while its size remains constant and the redundancy between chromosomes is
avoided. The chromosomes with higher score and lower travel time would constitute the pop-
ulation. A child chromosome has a certain probability to get mutated by using a set of local
search techniques, namely shift, swap and construct/destruct operators. The stop condition of
the algorithm is bound to a predefined number of iterations without improvement.

Dang et al. [27] present a Particle Swarm Optimization (PSO) approach based on Memetic
Algorithms (PSOMA) for tackling TOP. The algorithm uses the techniques of Optimal Split-
ting, IDCH and local search operators shift and destruction/repair, which are also used in the
algorithm of Bouly et al. [12]. Moreover, a genetic crossover operator is used to update the
positions of particles in the swarm. In order to avoid a premature convergence of best local
particles in the swarm, an update procedure based on set of specific rules [[112] is applied. The
major part of particle positions in the swarm, including local best positions, are initialized in a
random sequence. In order to accelerate the algorithm, a small part of the particle swarm have
their positions generated by using IDCH technique. The algorithm terminates when a prede-
fined number of iterations have not produced any improvement in the new local best solution.
The experimental results show that the proposed approach is competitive with priory introduced
approaches for TOP.

More insight about the performance of the approaches presented above (except for Bouly et
al. [12] and Dang et al. [27]) that solve TOP can be found in Vansteenwegen et al. [133]], which
summarize a comparison between respective approaches based on 157 benchmark instances for
this problem.

2.6.3 Orienteering Problem with Time Windows

In OPTW, each point is associated with a time window determined by an opening time O; and
a closing time C;. This time window constraints the start of visit in between its specified
boundaries. Based on notations for OP and TOP, the OPTW can also be expressed as integer
programming problem [133] by using the following variables: x;; is set to / when a visit to

35

point i is followed with a visit to point j, otherwise x;; is set to 0; ;; represents the traveling time
between point i and point j; s; start of the visit at point i; Q is a large constant.

N-1 N
Max Z ZSixij, (2.16)
i=1 j=2
N N-1
doay=) aiv=1, (2.17)
=2 i=1
N-1 N
g =) apy <L VE=2,..,N-1, (2.18)
i=1 j=2
si+tij —s; < Q1 —wij); Vi,j=1,...,N, (2.19)
N-1 N
) tiwij < Tnaas (2.20)
i=1 j=2
0O; <s;; Vi=1,...,N, 2.21)
5 < Ci; Vi = 1, ...,N, (222)
zi; € {0,1}; Vi,j =1,...,N, (2.23)

The objective function of OPTW (Constraint [2.16) is maximization of the total collected
score. Constraint [2.17] limits the start of the tour at point / and the end at point N. Equation
[2.18] on one side enforces the tour connectivity by constraining current visit to point i with a next
visit to point j, and on the other side it allows maximum one visit to a given point. Constraint
[2.19]ensures that the assigned time slots of visits to points do not overlap between each other or
with traveling times between them. Constraint sets tour’s maximum allowed time budget
t0 Tynax. Constraints [2.21]and [2.22]limit the start of the visit to a point only in margins of the
respective time window.

Kantor and Rosenwein [66]] are the first to deal with OPTW. They developed a depth-first-
search algorithm for construction of partial tours. The insertion of points into the tour is done
by considering the heuristic function that is calculated as ratio between score of the point and
the respective required time for insertion. The point time window is taken into account when it
is inserted into the tour. The algorithm prunes the search process from the areas of search space
where it encounters infeasible solutions or where current solution quality worsens.

Righini and Salani [106] solve OPTW by using a bi-directional and bounded dynamic pro-
gramming algorithm. The bi-directional search procedure is implemented by extending the num-
ber of explored states in two opposite direction, going forward from start point and coming back-
ward to end point. The extension of explored states is stopped at stage, when it is guaranteed

36

that the current state belongs to the optimal tour, and the remaining part of the the tour has been
or will be generated in the opposite direction of search. In addition, if needed the search process
for an optimal tour might continue as long as the critical resources do not surpass the half of the
overall quantity of available resources. Further, in a second variant of the algorithm, Righini and
Salani [107]], with the aim of decreasing the number of explored states, apply the mechanism of
Decremental State Space Relaxation (DSSR).

Gavalas et al. [45] describe a number of approximation algorithms for some variants of
OPTW that are proposed in the literature. Bansal et al. [6] present a O(log?,) approximation
algorithm for Vehicle Routing Problem with Time Windows (VRPTW). Chekuri et al. [22]
give a O(log’ OPT) approximation algorithms for TSP with time windows. Lately, Frederickson
et al. [40] present an approximation algorithm for Traveling Repairman Problem (TRP). The
algorithm has a 3-approximation ratio and a running time of O(n*) when the input graph is a
tree. If the input is a general graph, the approximation ratio is (6+¢). and the running time is
n#*-n01%%) Note that in above notations, variable n represents the number of nodes.

2.6.4 Team Orienteering Problem with Time Windows

In TOPTW, there are M tours for visiting a subset from N available points, each associated with a
time window that is determined by an opening time O; and a closing time C;. This time window
constraints the start of visit in between its specified boundaries. Based on notations for TOP and
OPTW, the TOPTW can be formulated as an integer programming problem [133]] by using the
following variables: x;j, is set to / when in tour m a visit to point 7 is followed with a visit to
point j, otherwise x;j,, is set to 0; y;y, is set to / if point i is visited in tour m, otherwise x;;;, is set
to 0; t;; represents the traveling time between point i and point j; s;,, start of the visit at point i of
tour m; Q is a large constant.

M N-1
Mazx Z SiYim, (2.24)
m=1 i=2
M N M N-1
DD wim= Y Y Tivm =M, (2.25)
m=1 j=2 m=1 =1
M
> Yim <L Vi=2,.,N -1, (2.26)
m=1
N-1 N
> Bikm = > Tkjm = Ykm; Yk =2,.., N = 1; ¥m =1,..., M, (2.27)
i=1 =2
N—-1 N
> tiijm < Tmaws Ym=1,..., M, (2.28)
i=1 j=2
Sim + tij — Sjm < Q(l — xijm); Vi,j=1,...N; Vm=1,.... M, 2.29)

37

O; <sim; Vi=1,....N; Vm=1,..., M, (2.30)
Sim < Ciyy Vi=1,...N; VYm=1,...,. M, (2.31)

Tijm, Yim € {0,1}; Vi, j=1,..,N; Vm =1,..., M, (2.32)

The objective function of TOPTW (Constraint is maximization of the total collected
score in all tours. Constraint [2.25] ensures that each tour starts at point / and ends at point N.
Equation [2.26]makes sure that a point can be maximally visited once at any tour. Equation [2.27]
enforces the tour connectivity by constraining current visit to point i in tour m with a next visit
to point j in the same tour. Constraint limits the maximum allowed time budget to 7}, for
any tour m. Constraint [2.29]ensures that the assigned time slots of visits to points, in each tour
m, do not overlap between each other or with traveling times in between them. Constraints [2.30|
and [2.3T]limit the start of the visit to a point only in margins of the respective time window.

Montemanni and Gambardella [86] solve TOPTW by using an Ant Colony System (ACS)
approach that models the solution based on a hierarchic generalization of the original problem.
The generalized problem is called Hierarchical TOPTW (HTOPTW), which requires the com-
putation of an ordered list of non-overlapping elementary tours. The first m tours belong to the
original TOPTW problem, whereas the remaining tours are ordered hierarchically and contain
the points that are not part of solution for TOPTW. The organization of tours in form of hier-
archy helps in keeping fragments of tours somehow pre- optimized. Such tour fragments are
used by local search operators to perform exchanges/insertions of points, aiming at improving
the quality of the hierarchy of tours. Further, representation of an ant as a giant tour [41]], makes
the HTOPTW problem more similar to traveling salesman problem. This enabled the authors to
borrow the construction phase from their prior approach for Vehicle Routing Problem with Time
Windows (VRPTW). The approach outperformed the algorithm of Mansini et al. [83]] for the
instances of OPTW.

Vansteenwegen et al. [134]] tackle TOPTW by developing their approach based on the
Iterated Local Search (ILS) framework. The algorithm combines an insert step with a shake step
to escape from local optima. The insert step adds consecutively new points into the tours. The
insertion feasibility is quickly done by using two recorded values about each already included
point, namely Wait and MaxShift. The Wait value represents the waiting time at a point, in case
the arrival occurs before the opening of time window, whereas the MaxShift value indicates the
maximum possible shift of a visit to a point without making other visits into the tour infeasible.
The shake step removes one or more visits from each tour. The place of removal and number
of consecutive visits to be removed are determined by two controlling parameters, namely R,
respectively Sz . Due to different tour lengths, the value of S, is different for different tours.
This makes the shake step more effective in escaping from local optima. The computation time
of this algorithm is, with a factor several hundred, faster than the other presented approaches for
TOPTW. In terms of solution quality, the average gap to prior approaches is only 2%.

Tricoire et al. [128|] name an extended variant of TOPTW as Multi Period Orienteering
Problem with Multiple Time Windows (MuPOPMTW). In this modeling, every point can have

38

multiple time windows, where each time window can be different in different days. The pro-
posed solution is based on the framework of Variable Neighborhood Search (VNS) algorithm
and it is embedded with an exact algorithm to cope with feasibility evaluations. A deterministic
heuristic based on stochastic local search of best insertion [116] is developed for construction
of initial solution which is than used by VNS algorithm. The main steps of VNS algorithm are
shaking, iterative improvement and acceptance decision. The shaking step is based on three
operators, namely cross-exchange [125|], optional exchange 1 (exchanges a number of optional
customers with number of other unplanned customers) and optional exchange 2 (removes a num-
ber of optional customers from the tour). The shaking step makes the neighborhood exploration
process very distinct in consecutive iterations, and as such, the algorithm has a higher probability
to escape from local optimum. In the iterative improvement step, 3-Opt operator re-optimizes
the tour spent time after utilization of cross-exchange and optional exchange 1 operators, or fills
up the vacant places in the tour by using a sequential best insertion procedure after utilization
of optional exchange 2 operator. In the acceptance decision step, a newly found solution can
be accepted as current solution if it is better than the running solution, or if it meets a threshold
accepting criteria that is correlated to particular operators used during the shaking step. The ex-
perimental results show that VNS approach obtains high quality solutions in about one minute
of computation time.

Later, Montemanni et al. [87] enhance the performance of their ACS approach by adding
two new operations. The first operation is about the constructive phase, which deals with both
diversification (exploring new regions of the search space) and intensification (searching very in-
tensely a given region of the search space). The second operation regards the integration between
the constructive phase itself, and the local search procedure. The enhanced ACS outperforms
the previous ACS approach and obtains new best results for number of instances in the literature
for TOPTW problem.

Garcia et al. [42] solve a variant of OPTW called Time Dependent Orienteering Problem
with Time Windows (TDOPTW), which models the variability of traveling time between points.
The authors use TDOPTW to model the traveling time of a tourist when she/he moves between
different points of interest either by walking or by public transportation. Authors present a
hybrid meta-heuristic based on two different algorithms, Dijkstra’s Shortest Path algorithm and
Iterated Local Search (ILS). The Dijkstra’s algorithm is used to calculated the average travel
times between all points available. Due to the constraint for a real time response, the traveling
times between points are done in an off-line-mode and saved for letter use by the optimization
logic. When the traveling times have been calculated, the TDOPTW converts to regular OPTW.
Next, the ILS algorithm presented by Vansteenwegen et al. [134]] is used to solve the derived
problem. The experimental performed with the data of city of San Sebastian in Spain, prove that
the approach is able to generate valid routes in real time.

Labadie et al. [74] introduce a hybridized evolutionary local search approach for TOPTW.
The approach combines the greedy randomized adaptive search procedure (GRASP) with the
evolutionary local search (ELS). ELS is used to generate multiple distinct child solutions using
a mutation mechanism. Each child solution is further improved by a local search procedure. In
each iteration of ELS, GRASP is used for construction of starting solution. The initial solution is
constructed by using five similar methods, where three of them are insertion operators, whereas

39

the other two are variants of sweep algorithm (at first points are clustered into subgroups than
for each subgroup a tour is built). GRASP, as a local search procedure, alternates between two
different neighborhood exploration procedures. The first procedure aims at reducing the tour
length through k-opt operator (in three different variants) and swap operator, whereas the second
procedure enables introduction of unvisited points into the current solution by applying a replace
operator to replace points in the tour with unvisited points. ELS has the task to diversifying the
search process through a perturbation phase. This is realized by randomly removing a sequence
of points in each tour and then creating new sequence of points (from unvisited points) to fill the
created gaps in the respective tours. The experimental results show, this approach succeeds in
improving several best known results from the benchmark instances in the literature

Labadie et al. [73]] propose a LP-based granular variable neighborhood search (FVNS) for
TOPTW. The method is focused on improving the efficiency, without loosing the effectiveness,
of search process by proposing a granular (instead of complete) exploration of search space.
The construction of initial solution is done by using the same method as described earlier in
the hybridized ELS [74]. The VNS algorithm, first uses a routine for removing a sequence
of k nodes and replacing it with a new sequence of no predefined length, and then applies a
local search procedure. As in the hybridized ELS [74]], the local search procedure comes with
two variants of neighborhood exploration. The first tries to shorten the tour length, whereas the
second one tries to increase the total collected score. Since, the second variant of neighborhood
is quite large, a granular variant is introduced with the aim of reducing the size of analyzed
neighborhood space. The idea stands at excluding non promising arcs during the construction of
the sequence of points in the local search procedure. In general, this procedure can be described
in two steps. The first step is using a graph algorithm to solve to optimality an assignment
problem, and the second step is using a dual information function to identify more promising
arcs. The method performs quite good on standard benchmark instances by allowing to improve
the best known values for 25 test instances.

Lin and Yu [79] solve TOPTW by using a standard Simulated Annealing (SA) approach.
The structure of neighborhood is random and consist of three types of operators, namely swap,
insert and inverse. The swap operator randomly selects two points into the tours and exchanges
their positions. The insert operator randomly selects a point X from the tour and then tries to
insert it before some other randomly selected point Y. The inverse operator randomly selects two
points, and then reverses the sequence of points that are between the selected points (including
the selected points). Each operator has a probability of 1/3 for adaption to generate the neigh-
borhood candidates at a particular iteration. The algorithm can be fine tuned with the help of
five parameters such as, number of iterations at a particular temperature, minimal temperature,
maximum allowable computation time, maximum allowable temperature reduction without im-
provement and speed of cooling schedule. Depending on parameter settings, the algorithm can
work in a fast mode (FSA) or in slow mode (SSA). The experimental results show that the FSA
mode is competitive to the ILS approach of Vansteenwegen et al. [134], both in terms of com-
putation time and solution quality. Moreover, the SSA mode outperforms the prior approaches
by finding 33 new best solutions for the existing instances in the literature.

Mota et al. [90] apply Genetic Algorithms (GA) to solve a variant of TOPTW named
TOPATW, which, in addition to time windows for points, also models time windows for tours.

40

This problem is motivated from the real problem of operating rooms in the hospital. The al-
gorithm is characterized with three components, namely chromosome (representing the set of
tours), evolutionary process (executing mutation and crossover operators) and evaluation (fit-
ness and feasibility check). The crossover operator is applied between two tours that are selected
based on the principle of roulette-while. Fragments of tours are selected randomly and are used
to create two new tours (chromosomes). The mutation operator randomly removes a customer
from randomly selected tour and then attempts to add one or more unvisited customers. The
presented preliminary results indicate that the algorithm has the potential of being used to solve
problems of practical relevance.

Gavalas et al. [46] tackle TOPTW by using two related approaches from cluster-based
heuristics called Cluster Search Cluster Ratio (CSCRatio) and Cluster Search Cluster Routes
(CSCRoutes). The presented approaches aim at encouraging visits to topology areas that consist
of a high density of “good” points. Both heuristics employ a clustering procedure to organize
points into clusters based topological distance. This increases the probability that more visits
would take place inside individual clusters, and as result, two positive effects could arise, the
decrease of duration of tours and minimization of number of transfers between different clus-
ters. Both CSCRatio and CSCRoutes employ the global k-means algorithm [78] to build the
clusters of points. In the initialization phase, in order to start from diverse positions in the
search space, the k tours of the solution are constructed by using points from different clus-
ters. Further, in the local search phase, both approaches use insert and shake operators that
are originated by Vansteenwegen et al. [134] for exploring the neighborhood of current solu-
tion. CSCRatio heuristic is designed to favor tours with more points inside individual clusters,
whereas CSCRoutes heuristic is designed to construct tours that visit each cluster at most once.
This approach improves in terms of quality in comparison to ILS [134], while keeping the
computation time in comparable level.

Recently, Hu and Lim [64] present an iterative three-component heuristic for TOPTW. The
first two components consist of a local search procedure and a simulated annealing procedure
that discover a set of routes and store them in the so called route “pool”, whereas the third
component recombines the routes into the “pool” to identify better solutions. The first two
components initially use a neighborhood operator called eliminator that randomly removes some
customers (points) from some tours, and then inserts unvisited customers (points). Next, with
the aim of improving the local search solutions, a post-processing procedure iteratively applies
seven operators. These seven different operators could be grouped into three types, relocate
(insert a customer into tour), exchange (swap two customers) and 2-opt (separates two tours
into four parts). The route combination component receives the routes from the “pool” and
recombines them by deriving a set packing formulation. The computational results indicate that
this approach outperforms the existing approaches in the literature in average performance by
0.41%. Further, 35 new best solutions for the existing instances in the literature are presented.

2.6.5 Multi Constraint Team Orienteering Problem with Time Windows

In Multi Constraint TOPTW (MCTOPTW), each point, in addition to the inherited attributes
(score §;, visit time T;, opening time O;, closing time C;), is also associated with a set of e;;
attributes, where z&{1, ..., Z}. Attribute e;; might represent different features of point i such

41

as, entry fee, capacity, type, category, etc. The notations of MCTOPTW [43] are the same as
those of TOPTW presented in previous subsection, except for the addition of an extra maximum
attribute constraint that constrain the selection of point i based on its e;, attribute value and on
E. value as given in Equation [3.6]

N
> eiyim <Ey; Vz=1,..,Z; Ym=1,.,M (2.33)
=1

Garcia et al. [43] are the first to introduce and solve the MCTOPTW. They extend the
original approach of ILS [[134] for TOPTW to use and solve MCTOPTW problem. After the
phase of initial solution construction (through local search), the ILS metaheuristic iteratively
executes the sequence of three main procedures, namely perturbation, local search, and accep-
tance criterion. The implementation of local search procedure is based on an insert operator
that tries to include new points into the tour by using the concepts of Wair and MaxShift pro-
posed by Vansteenwegen et al. [134]]. The perturbation procedure is implemented with the help
of a shake operator that excludes a number of consecutive visits from the tour. The heuristic
for evaluation of candidate solutions differs form ILS, since it has to also consider the added
attribute constraints. Moreover, different versions of fitness function are proposed and then ex-
perimented. The experimental results show that this approach is competitive when applied to
solve the instances of the related problems in the literature.

Another approach for the extended variant of MCTOPTW with multiple time windows (MC-
TOPMTW) is presented by Souffriau et al. [119]. The proposed approach for solving MC-
TOPMTW is a hybridization between ILS and GRASP algorithms. This approach is also based
on the ILS approach of Vansteenwegen et al. [134] for TOPTW. In this regard, the insert and
shake operators are used as part of the local search procedure of ILS. Since the problem at hand
is highly constraint, an extra component to deal with these constraints is added to ILS. This
component is based on GRASP and it performs a number of consecutive iterations, each con-
sisting of a constructive procedure followed by local search mechanism. This hybrid approach
has an average computation time of only 1.5 seconds, whereas the quality of solutions has a gap
of only 5.2% in comparison to the best known solutions. Further, the ILS-GRASP approach
outperforms the approach of Garcia et al. [43].

2.6.6 Generalized Orienteering Problem

The Generalized Orienteering Problem (GOP) extends OP by introducing a range of ; attribute
scores (instead of one) for each point. Depending on particular application, an adequate function
needs to be selected for calculation of the final score of the tour. For instance, in [138] a
weighted function that specifies W; for each of m attribute scores has been adopted such that that
if fulfills the Constraint [2.34] If X out of N points of an instance are included into the tour, then
the score is calculated by using the function expressed by Equation [2.35|for some non-negative
exponent k. If k goes toward the infinite value, then the value of the given function becomes the
sum of the maximum scores attained by X points for each of their attribute scores. In the special
case, when k=1 and m=1 then GOP converts to OP.

42

> wi=1, (2.34)
=1
m X
Sn=> Wil)_ Si(5)/* (2.35)
i=1 j=1

A number of heuristic approaches have been proposed for solving GOP. The first approach
is presented by Ramesh and Brown [99]] based on a four phase heuristic that consist of point in-
sertion, cost improvement, point deletion, and maximal insertion. All four phases are integrated
into an algorithmic framework, which could be guided by set of five parameters. The exper-
imental results show that the algorithm is able to find near to optimal solutions with minimal
computation effort.

Geem et al. [48] tackle GOP by using a Harmony Search (HS) algorithm. There are five
main steps that comprise the algorithm: (1) initialize algorithm parameters, (2) initialize HS
memory, (3) improvise new harmony, (4) update HS memory, and (5) check stopping criterion.
The algorithm is tested against test instances created by using cities from eastern part of China.
The experimental results show that HS obtains comparable results with the earlier proposed
approaches.

Silberholz and Golden [115] propose an algorithm based on large neighborhood search
[113]] and on ruin and recreate principle [111]]. The algorithm can be controlled with the help
of two parameters and it maintains a single solution during the search process. There are two
distinctive steps applied: initialization and iterative modification. In the initialization step, first
the points are appended iteratively at the end of the tour until no more time space is left. Then,
a 2-Opt operator is applied to reduce the tour length. Further, a local search path tightening
operator adds new points at the end of the tour whenever theres is new space created as result
of application of 2-Opt operator. In the iterative modification step, first a number of points are
removed, then a modified version of path tightening operator is applied by given less priority to
points that were just removed, afterwards the 2-Opt operator is applied, and finally the unmod-
ified path tightening operator is enforced. This procedure iterates until the returned solution is
worse than the previous solution. The proposed approach outperforms the previous approaches
for the GOP.

2.6.7 Orienteering Problem with Hotel Selection

Divsalar et al. [30]] extend OP to Orienteering Problem with Hotel Selection (OPHS). In this
problem, a set of points with score and set of hotels are given. The objective is to find a fixed
number of connected trips that visit a subset of points that maximize the total collected score.
Each trip has a limited duration and it starts and ends in one of the available hotels. Based
on the original formulation of OP, Divsalar et al. [30] formulate OPHS as a mixed integer
programming problem by using the following variables and equations: x;; 4 is set to / when in
trip d a visit to point i is followed with a visit to point j, otherwise x;; 4 is set to 0; u; shows the
index of visit to point i in tour.

43

D H+NN+H

Maz Y > Y Swija, (2.36)

d=1 i=0 j=0

H+N
> @ =1, (2.37)
=1
H+N
> wkan =1, (2.38)
k=0
H H+N
Z g =1; Vd=1,...,D, (2.39)
h=0 [=0
H H+N
> Tppg = 1; Vd =1, ..., D, (2.40)
h=0 k=0
H+N H+N
> e = Y Tparn; Vd=1,..,D—1; Vh=0,.., H, (2.41)
k=0 =0
H+N H+N
> wpa= Y wgja; Ve=H+1,..,H+N;Vd=1,..,D, (2.42)
i=0 =0
D H+N
> zijg=<1; Vi=H+1,...H+ N, (2.43)
d=1 j=0
H+N H+N
tijxijd =< Td; Vd = 1, ceey D, (2.44)
i=0 j=0
D
wi—u;+1=< (N =1)(1 =) 2yq); Vi,j=H+1,.,H+N, (2.45)
d=1
uje{l,...,N}; Vi=H+1,...H+ N, (2.46)
zija € {0,1}; Vi,j=H+1,..H+ N |i#j; Vd=1,...,D, (2.47)

The objective function of OPHS (Constraint is maximization of the total collected
score. Constraint makes sure that the tour commences at the starting hotel, whereas Con-
straint [2.38] guarantees the tour ends at the ending hotel. Constraints [2.39and [2.40]ensure that
each trip starts and ends in one of the available hotels. Constraint [2.41] makes sure that when
a trip ends at a given hotel, the next one starts from the same hotel. Constraint [2.42] enforces
the connectivity by constraining current visit to point i in trip d with a next visit to point j in the
same trip. Constraint [2.43] makes sure that a point can be maximally visited once. Constraint

44

[2.44]sets tour’s maximum allowed time budget to 7,;. Constraint [2.45]eliminates the subtours in
the tour.

In addition to the formulation of OPHS problem, Divsalar et al. [30] propose a Skewed
VNS (SVNS) approach for obtaining high quality solutions. In general, in SVNS slightly worse
current solutions might be accepted, provided the that solution is far from the incumbent. Nev-
ertheless, in [30] the distance form current solutions and the incumbent is not taken into con-
sideration. The algorithm consists of three phases: initialization, improvement and re-centering.
In the initialization phase, first a number of feasible combinations of hotels for the tour is calcu-
lated and stored in the list called “Number of Used Feasible Combination of hotels (NUFC)” for
later use, and then a sub-OP problem is solved for each trip of the tour by using a local search
procedure that include insert, replacement, 2-Opt and Move-best operators. The improvement
phase consists of two sub phases, namely shaking and local search. The shaking phase performs
the “shaking” of points (by deleting the half of points from a trip) and the “shaking” of hotels (by
replacing current combination of hotels with another combination from NUFC list). The local
search phase applies a variety of operators, such as: insert (inserts a non-included point), move-
best (moves a points to a best possible position), 2-Opt (reduces the travel time in each trip),
swap-trips (exchanges two points between two different trips) and extract-n insert (removes n
points from each trip and tries to insert new points in the vacant place). Finally, the re-centering
phase decides which solution would be accepted as the next solution, the current solution that is
obtained during the improvement phase or the one that was used at the start of current iteration.

Further, Divsalar et al. [30] design a testbed of 224 instances with known optimal solutions
based on instances of Tsiligirides [129]] and Chao et al. [[19]]. The proposed solution finds the
optimal solutions for 102 instances, whereas the average gap from optimal solutions over all
instances is 1.44%. The average computation time is 1.91 seconds.

Later, in form of a preliminary work, Divsalar et al. [29]] rename the OPHS with the name
Orienteering Problem with Intermediate Facilities (OPIF), and propose e new metaheuristic ap-
proach based on memetic algorithms (MA). The structure of proposed MA to tackle OPIF is a
combination of genetic algorithms (GA) and variable neighborhood search (VNS) method . The
GA deals mainly with the optimization of intermediate facilities. The algorithms consists of two
major steps: initialization and improvement. In the initialization step, the OP is solved between
the intermediate facilities and a number of feasible combinations of intermediate facilities is
created by using a local search procedure. In the improvement step, GA is applied by using two
crossover operators and one mutation operator with the aim of diversification of search space by
creating different combination of intermediate facilities. The preliminary results, show that the
MA approach performs even better than SVNS approach, both in terms of solution quality and
computation time.

2.7 Summary

The tourism information provided by a TIS has a crucial role in enhancing the tourist experi-
ence [35] throughout her/his tourism life cycle [141]]. In addition, to provision of common
services like hotel reservation, transport ticket purchasing, navigation, etc., we underlined that
the role of a TIS system might also be the recommendation of tourism information and prod-

45

ucts, such as trips, points of interest and activities. More specialized tourist products could be
the trip itineraries that include a list of POIs to be visited during a limited time period, which are
planned by taking into account tourist preferences (interest about POI categories and types) and
constraints (budget, maximum number of POIs of certain category). We outlined a number of
prototypical and commercial systems that enable tourist itinerary planning for a single tourist.
Nevertheless, based on our best knowledge, there exist no any system the enable trip planning
for a group of tourists, where both the individual preferences of tourists about POIs and their
mutual social relationship are considered.

The solo trip planning problem is known with name Tourist Trip Design Problem (TTDP)
[135]. We noted that OP can be used to model the simplest variant of TTDP, where single day
itinerary could be planned. Based on Golden et al. [57] OP belongs to the class of NP hard prob-
lems and as result systematic approaches are not suitable to solve the problem when considering
realistic situations with many number of points. Moreover, the various extended variants of OP,
such OPTW, TOP, TOPTW, TDOP, TDOPTW, MCTOPTW, TDTOPTW, GUP and OPHS are at
least as complex as OP. In this regard, most of the authors tackle the afore mentioned problems
by using various optimization techniques from the field of meta-heuristics. Some of the most
wildly used metaheuristics include TS, ILS, VNS, SVNS, GA, ACO, HS, GRASP, SA, GLS and
a number of hybridized approaches. The underlined metaheuristics explore the neighborhood
mostly based on operators like Insert (a new point), Remove (a point from tour), Swap (two
points inside tour), Replace (an existing points with a new point), k-Opt (remove k edges and
add k new edges) and Move (a point to a new position). Note that it is common that different
approaches implement these operators in slightly different variants.

Tabu search (TS), as one of the most frequently used metaheuristic in different domains of
application, is known with its abilities for escaping from local optima by using a “tabu” mem-
ory that saves information about frequency and recency of used moves throughout the search
process. The saved information is usually used to either diversify the search process toward
unexplored areas of search space, or intensify the search process to dig more deeply in some
particular are of search space. Our motivation for using TS as primary approach for solving
single and group tourist trip planning problem is based on prior successfully application of TS
for solving OP [52] and its TOP extension [126] [4].

46

CHAPTER

Planning Solo Trip Itinerary

This chapter presents an algorithm that can be used for planning the trip itinerary by considering
single tourist preferences. Based on foundations about current modelings and approaches from
the literature, for the problem of solo trip itinerary planning, we consider as it follows: multiple
day tours, single time windows for points, no waiting time in between consecutive visits, max-
imum budget limit of the tourist, and multiple constraints that can be expressed by the tourist
about categories of points. In this regard, a solo trip itinerary planning problem that is expressed
with above mentioned constraints can be qualified as Multiple Constraint Team Orienteering
Problem with Time Windows (MCTOPTW) [43]], with the extension of the constraint for not
allowing any waiting time in between consecutive visits.

If we consider Case 1 of the previously presented scenario, the envisioned algorithm in this
chapter would be able to plan the trip itinerary separately for each tourist or jointly for all of
them. In the separate approach, the algorithm has to make three separate runs for each of the
three tourists in the example and the itinerary of tourists would be optimized by considering
individual preferences of tourists abut POIs, without taking into account the mutual social rela-
tionship factor between the tourists. In the joint approach, the algorithm needs to runs only once
as all tourists would be planned to travel together with same itinerary, whereas also their social
relations would be taken into account.

In the following we initially present a formal modeling (Section [3.1)) of the envisioned
problem, and then present the our tabu search metaheuristic implementation (Section [3.2)) for
solving the problem. Afterwards, we show and discuss the experimental results (Section [3.3)
that are obtained by executing the algorithm on standard test sets from the literature. Finally, we
draw our conclusions (Section [5.4) about the performance of our algorithm in comparison to
the state of the art approaches in terms of solution quality.

3.1 Mathematical Modelling

A number of N points are given in a certain geographic location. Each point is characterised
with a score §;, an entry fee E;, a visit duration 7;, an opening O; and closing C; time and a range

47

of Z logical values e;, that indicate the different categories that the point belongs to. Each point
can be visited at most once. The starting point / and ending point N are fixed for each tour. The
traveling times f; between points i and j are known for all pairs of points. The start of a visit
to point i in tour m is denoted as s;;,. The trip consists of M tours, each limited to a maximal
duration of T},,,. Further, the tour has a range of Z maximum values E, that limit the number
of selected points of category z. The aim is to visit a subset of points that would maximise the
overall trip score by complying with the underlined hard constraints. Higher trip scores imply
better fitness to tourist preferences.

In the following, we rewrite the mathematical formulation of the MCTOPTW problem made
by Garcia et al. [43]]. The definition of two Boolean variables, namely x;;,, and y;,, is done with
following functions:

1, if a visit to point i is followed with a visit to point j in tour m
Tijm = .
0, otherwise

1, if point i is visited in tour m
Yim = .
0, otherwise

The defined variables x;;,, and y;,, are used in the following formulation equations of MCTOPTW
problem:

M N-1
Maz Y S Sigim, (3.1)
m=1 =2
M N M N-1
DD wm =D > winm =M, (3.2)
m=1 j=2 m=1 i=1
N-1 N
> Tikm = Y Thjm = Ykm; VE=2,.., N = 1; ¥m=1,..., M, (3.3)
i=1 j=2
(acijm = 1) - (Sjm = Sim + 1 + tij); Vi,j =1,..N;Vm=1,..,. M, (3.4)
M
Zy,-m <1;Vi=2,.,N—1, (3.5)
m=1
N
> eiyim < Ey; Vz=1,..,7Z; ¥Ym=1,., M (3.6)
=1
O; <sim; Vi=1,....N; Vm=1,..., M, (3.7
Sim < Cy; Vi=1,..,N;Vm=1,... M, (3.8)

48

N-1 N

S| Tittim + D tigwigm | < Tonazs Ym =1, ..., M, (3.9)
i=1 j=2

Equation [3.Texpresses the objective function in solving the MCTOPTW problem. Start of
each tour at point / and its end at point N is ensured by Constraint [3.2] Constraint [3.3] makes
sure that each visit to a point is followed with another visit to a next point. Constraint allows
no waiting times in between consecutive visits, which, as pointed out earlier, differentiates from
the original problem defined in [43]] and [119], where a waiting time before starting a visit at a
certain point could occur. Constraint [3.5allows maximum one visit to any visited point, while
limits the number of selected points of certain category to an upper bound. Constraint
and [3.§|bound the start of the visit to a point to its time window, while [3.9]constraints the tour
duration to its specified limit.

3.2 Solution Approach

In tourist trip itinerary planning applications, a short computation time of few seconds is ex-
pected. Therefore, considering that MCTOPTW is a highly constrained and NP hard problem,
exact approaches are not expected to obtain solutions in such short computation time. In such
situations, the optimization techniques from the filed of metaheuristics are frequently used for
acquiring good solutions in a short period of time. Successful applications of tabu search by
Gendreau et al. [52] to solve OP and Tang and Miller-Hooks [126] to solve TOP, indicate that
tabu search could be a good alternative for tackling MCTOPTW problem too. Based on that,
we opt to use tabu search as a framework for our algorithm to solve MCTOPTW. The algorithm
is characterized with two main components, namely neighborhood exploration (for an efficient
search of a particular area of search space) and search diversification (to ensure a broader ex-
ploration of search space). In the following subsections, we initially describe the solution repre-
sentation, discuss the component of neighborhood exploration, show insights about the process
of feasibility evaluation of the candidate solutions, and then present the search diversification
process. At the end, we elaborate the general structure of our tabu search implementation.

3.2.1 Solution Representation

In our encoding, we represent the solution by using a list for each of the m tours, where each
list contains the sequence of points scheduled for visits. In addition, a separate list is used to
keep record of points that are not inside the solution. Considering Example 1 of the scenario,
which has N=10 points and m=2 tours, a candidate solution for tourist p/ might be represented
by Tourl={2, 5, 3, 8}, Tour2={9, 7, 4, 10} and TourOff {1, 6} (see Figure @ The score of
a point is illustrated with the size of the respective circle. The larger the circle the higher the
score.

49

4
v T (O Start/End point
@ O Point of Interest
@ —» Tourl path

/ =% Tour2 path
—>
@/ Solution representation

v A@ Y Tourl |{2,5,3,8}
@ @ Tour2 |{9,7,4,10}
.............. TourOff | {1, 6}
N >

Figure 3.1: Sample representation of a solution with two tours

3.2.2 Neighborhood Exploration

The neighborhood structure of the approach of Souffriau et al. in [119] consists of two basic
operators, namely /nsert (a non-included point in tour) and Remove (an existing point from the
tour). In our approach, we also apply Insert operator, whereas we use also the Replace and
Swap operators. As part of the mechanism for diversification of search process, we apply a
Delete operator which is equivalent to the Remove operator that was applied by Souffriau et al.
in [119]. In the following, we give a short description for each of the applied operators.

Insert operator tries to insert one of the non included points into the current solution by
considering all possible positions into all tours. In case of a solution with M tours, the insert
operator would pick each non included point and try to insert it before each existing point into
each of M tours and at their end. The time consumption for insertion of a point k before point i
at a particular tour is At = ¢(;_1)p + Tk + tg; — t(;—1); (see Figure . If At > 0, all points
after point i are shifted towards the end of the tour, otherwise if At < 0, the points are shifted
towards the beginning of the tour.

Replace operator replaces an existing point into one of the tours with a non-included point.
All possible combinations are tried out by considering each non-included point to replace each
point currently in the solution. The time consumption for replacing point i with point k at a
particular tour is At = t(;_1yg, + Tk + tiig1) — tii—1)i — Ti — Tigig1)- If At > 0, all points after
point i are shifted forward, otherwise if At < 0, the points are shifted backward.

Swap operator is applied between any two points inside current solution. The points might
belong to the same tour or to different tours (z = y respectively = # y in Figure [3.4). The time
consumption for tour x is Aty = t(;_1)k + Tk + tpgir1) — -1y — Ti — Ti@y1), Whereas for
tour y itis Aty = t_1); + Ti + tikg1) — te—1)k — Lk — Th(k+1)- Depending on values of At,
and At,, whether they are positive or negative, the shift of the following points in the respective
tours could be forward respectively backward.

50

> <>
tig+1)
Point of Interest t;j— Travel time between point i and j
""" » Tour path T;— Duration of visit at point ;

Figure 3.2: Insertion of a new point

i T; tigi+1)

44— >
() ‘‘ OF
D +—r
-k Tk tiGin
Point of Interest tjj— Travel time between point i and j
...... » Tour path T;— Duration of visit at point i

Figure 3.3: Replacement of an existing point with a new point

Each of the operators always returns two feasible neighbors, one of them being ‘best non-
tabu’ and the other one ‘best tabu’. The two best neighbors are created by choosing two combi-
nations (‘tabu’ and ‘non tabu’) that have the highest scores. In case there are more combinations
that have the same highest score, then one of them is selected randomly.

3.2.3 Feasibility Evaluation

As formally presented earlier, the original MCTOPTW problem is associated with a number of
hard constraints, such as maximum tour duration, the limit for the maximum number of points

51

O 4—r O
tionk Tk tigien)

tee T ey
<+ “—> >

Toury » > » »‘»@»

44— >

tewni T tiger1)
Point of Interest tij— Travel time between point i and j
...... » Tour path T;— Duration of visit at point i

Figure 3.4: Swapping between two existing points inside current solution

of particular categories, and the time windows. The first two constraints are evaluated by using
an efficient deviation/incremental function when a particular move is applied. The evaluation of
feasibility of Time Window (TW) constraint is the most time consuming action. Vansteenwegen
et al. [134]] record a Wait and MaxShift value to speed up the time window feasibility check
process. The Wait value indicates how much time a person has to wait before starting a visit,
while the MaxShift value shows how much time a certain visit could be delayed. In our approach,
we do not utilize a Waiting time value, since we do not allow any waiting time prior to starting a
visit. Instead, a pair of two values, namely Max Forward Shift (MFS;) and Max Backward Shift
(MBS;), is saved for each point inside the trip itinerary. These variables show how much time a
point at position i in tour m could be shifted forward respectively backward.

Suppose there is a point x that either replaces/swaps point i or it is inserted before point i of
tour m. Equation [3.10|is a function that defines the consumption time At that is applicable for

52

Replace, Swap and Insert operators. Constraint bounds the consumption time At in the
boundary values of the pair of -MBS;.; and MFS;,;.

At — ti—1)e + Lo + te@ir1) — ti—1)i — Li — tiir1), Replace, Swap (3.10)
li—1)z + T, + La(it1) — Li—1)is Insert
— MBSj1 < At < MFSi 3.11)

Whenever a new point is either inserted, replaced or swapped in tour m, the corresponding
MBS; and MF'S; values of all points in tour m need to be updated. This technique is useful when
evaluating the feasibility of time windows of candidate solutions, since it eliminates the need
to check the time window feasibility of points after point i+/ thus reducing the computational
effort to a great extent.

3.2.4 Search Diversification

The mechanism for diversification of search process is done by using four different additional
operators, namely Delete, Perturbate, Restart and Penalise, which are described in the following.

The Delete operator removes two points from the tour that is the most constrained by the
TW constraint. The most constrained position in the tour is found by considering the MBS; and
MFS; values. In case of a tie between most constrained tours, a random selection of one of them
is made.

Perturbation is realized by applying the Delete operator in the actual best found solution and
then continuing the search from that perturbed solution. At times, as specified by one of the
algorithm parameters, the search process is re-initiated from a random solution.

The algorithm consists of two usual tabu lists, namely recency and frequency memories. The
recency memory is used to record the latest iteration index when a certain move (Insert, Replace
or Swap) between two points is applied. The Tabu List Size - TLS (described in next subsection)
parameter determines how many iterations the applied move would remain tabu. On the other
hand, the frequency memory keeps track of the number of iterations a certain move has been
applied. The penalize operator uses the frequency memory to penalize all moves that have been
used more than 10 times up to the iteration when the operator is applied. The penalization is
made by making the tabu status of these frequent moves twice as longer as the original tabu list
size.

3.2.5 Tabu Search Implementation

The algorithm is provided with six basic parameters that enable the fine tuning of its perfor-
mance. The parameters are presented in Table [3.1] where the first column presents parameter
abbreviation, the second one its whole name, while the third one presents a short description for
the parameter.

At the start, as presented in Algorithm [3.1I] the procedure that creates a random initial
solution is executed and tabu memories are initialized to an empty state. The evaluation of initial

53

Abbreviation| Name Description

TLS Tabu List Size Specifies the number of iterations a certain
move cannot be used.
MI Maximum Iterations Defines the number of iterations the algorithm
shall run.
DOF Delete Operator Fre- | Determines how often the delete operator
quency needs to be applied.
PF Perturbation Frequency Sets the frequency of perturbation from actual
best found solution.
RIF Random Initialization | Indicates the frequency of re-initialization
Frequency from random solution.
PEF Penalization Frequency Defines the frequency of penalization of fre-
quently used moves.

Table 3.1: Algorithm parameters

solution and, latter, the generated candidate solutions, is done by using the objective function
expressed by Equation [3.1] Next, the algorithm enters into a loop that runs MI iterations. The
neighborhood exploration alternates between the above described operators in such way that in
every second iteration, the algorithm uses the Replace operator, and then in between, in turn, it
uses Insert and Swap operators. In each iteration, a best tabu and non-tabu solution is searched
by trying all possible combinations available within the running operator. The best non tabu
solution is considered first for adaption as current solution. If the non-tabu solution is not better
than the current solution, then the best tabu solution is tested whether it fulfills the aspiration
criteria. In this implementation, a tabu solution is considered to be fulfilling the aspiration
criteria only if it is better than the best found solution so far. Normally, the adaption of a better
solution is done whenever a new, better one, is found, otherwise the number of iterations without
improvement is recorded. In occasional iterations, when the number of running iterations is
equal to one of the values of controlling parameters (DOF, PF, RIF and PEF), the process of
search diversification is applied by using the respective operator (Delete, Perturbate, Restart
and Penalise) accordingly.

The number of consecutive iterations without any improvement is tracked continually and
when it reaches 30% of the maximum iterations allowed (as specified by MI parameter), the
algorithm quits and returns the best found solution. If the number of iterations without improve-
ment never surpasses 30% of MI parameter value then the algorithm completes its full course of
iterations.

Note that the source code of the algorithm could be downloaded on the following web page:
https://sites.google.com/site/ushtrimet/tourist-trip-planning.

54

input : TLS, MI, DOF, PF, RIF, PEF
output: MCTOPTW solution

1 begin
2 Operator List = {Replace, Insert, Swap};
3 S, = Create initial solution;
4 Evaluate S,;
5 Sb = Sc;
6 IterationCounter=0;
7 IterationWithoutImprovement=0;
8 while M1 not reached do
9 Select Operator from Operator List;
10 Apply Operator in S;
11 if S, better then Sy, then
12 Sp = S¢;
13 IterationWithoutImprovement=0;
14 else
15 ‘ IterationWithoutImprovement +1;
16 end
17 if IterationWithoutImprovement equals DOF then
18 ‘ Apply delete operator in S¢;
19 if IterationWithoutImprovement equals PF then
20 ‘ S, = Perturbate Sp;
21 if IterationWithoutImprovement equals RIF then
22 ‘ Reset S, to a random initial solution;
23 if IterationWithoutImprovement equals PEF then
24 ‘ Penalize frequently used moves;
25 if IterationWithoutImprovement equals 0.3*MI then
26 ‘ Quit search;
27 IterationCounter +1;
28 end
29 end

Algorithm 3.1: Algorithm for MCTOPTW based on Tabu Search

3.3 Computational Experiments

The algorithm is coded by using Java 1.7. All experiments are done by using an Intel i3 2.2
GHz processor with 2 GB of RAM memory. The experiments for fine tuning of algorithm
parameters use 10 runs for each instance, while the experiment for testing the overall algo-
rithm performance uses 30 runs for each instance. The best, average and worst scores are
presented for each instance and parameter value. In the following we present a summary of
experiments, while the complete results could be found in Appendix [B| and on-line through
https://sites.google.com/site/ushtrimet/tourist-trip-planning.

55

3.3.1 Test instances and approach comparison

In order to compare the performance of our algorithm with the hybridized ILS-GRASP approach
of Souffriau et al. [119], we use their instance set for Multi Constrained Team Orienteering
Problem with Multiple Time Windows (MCTOPMTW). The test set consists of 148 instances
and, based on the origin, they are divided into two subsets, namely Solomon [116]] and Cordeau
[25] based. The Solomon-based subset consists of 116 instances, while the Cordeau-based part
consists of 32 instances. The number of tours varies from one to four. Note that even though
the test instances allow modeling of multiple time windows, in our implementation we only
consider single time windows by taking into account the opening time of first time window and
closing time of last time window. Hence, we compare the results of our approach with the results
obtained by ILS-GRASP approach [119] for MCTOPTW problem and with the best existing
results in the literature for the relaxed problems of OP, TOP and TOPTW.

3.3.2 Parameter tuning

The range of values used for parameter tuning is based on preliminary experiments that included
all test instances. Further, based on the same preliminary experimental results, we fixed the value
of MI parameter to 46000 iterations. Increasing further the number of iterations only leads to
longer execution time. In Tables [3.2]to [3.6] we present a range of values that are close to
the optimal values of the parameters. In the first column the different parameter values are
shown, while the next three columns represent the best, average and the worst score gaps from
benchmark solution, respectively, averaged over all instances. In the last column, we represent
the average execution time.

In our first experiment, we investigated the impact of the tabu list length. Table [3.2] shows
that keeping a used move tabu for 10 iterations yields to lower score gap while it causes a slight
increase in execution time compared to other considered values. It can be noticed that if the
tabu list size is 5, the algorithm degrades its performance, both in terms of solution quality and
computational time. For the other values, the average performance of the algorithm might differ
only up to 0.1%.

Gap from best (%)
’ TLS | Best ‘ Average ‘ Worst | Time (S) ‘
51548 10.01 | 16.46 6.54
10 | 5.1 9.27 13.8 6.09
15 | 5.28 9.33 | 14.18 5.93
20 | 5.14 9.31 | 13.98 5.88
25| 5.22 9.36 | 13.47 5.72

Table 3.2: Tabu list size

Next, we experimented with a range of preselected values for DOF parameter. Table [3.3]
indicates that the delete operator should be applied once in 30 iterations. Further, if changing
the values of DOF between 20 up to 90, the average solution quality changes for only 0.47%
and the average computation time changes only for 0.3 Seconds.

56

Gap from best (%)
DOF | Best | Average ‘ Worst | Time (S) ‘

20 | 5.31 9.13 | 13.59 | 5.78
30 | 5.11 9.11 | 13.59 | 5.93
40 | 5.22 9.36 | 13.83 | 5.93
50 | 548 9.51 | 1441 | 6.02
60 | 5.34 9.57 | 14.35 | 5.93
70 | 5.37 9.37 | 13.64 | 6.04
80 | 5.39 9.57 | 14.62 | 6.03
90 | 53 942 | 1442 | 6.08
100 | 5.59 9.7 | 1449 | 5.97

Table 3.3: Delete operator frequency

Experiments regarding the perturbation and random initialization frequency are given in
Tables and It is indicated that these two operators should not be both applied in the
same iteration, as in that case the solution quality worsens for about 3%. The best values for the
PF and RIF pair are 190 and 160, respectively. In terms of value change, the PF parameter is
less sensitive than RIF parameter, as the change of their respective values in the range from 120
to 200, deviates the solution quality for 0.32% in the earlier case and for 0.97% in the later one.

Gap from best (%)
PF | Best | Average ‘ Worst | Time (S) ‘
120 | 5.49 9.36 | 14.05 6.35
130 | 5.17 9.39 14.2 5.91
140 | 5.29 9.33 | 1391 6.1
150 | 4.98 9.18 | 13.44 6
160 | 5.31 9.15 | 1343 5.99
170 | 8.21 11.51 | 1491 3.52
180 | 5.23 9.25 | 13.83 5.88
190 | 5.13 9.07 | 13.47 5.87
200 | 5.67 9.25 | 13.68 5.83

Table 3.4: Perturbation frequency

We also experimented with a range of selected values for the penalization frequency of
frequently used moves. In Table it can be noticed that the best frequency of penalization is
240. The sensitivity of the algorithm in changing the value of PEF inside its pre-defined domain,
stands at a low rate of 0.33%, except for value 150 that has a difference of 1.82% compared to
the best value of the parameter.

Analyzing the experiments for fine tuning of the parameters, we notice that in general the
algorithm is not very sensitive to changes in the parameter values inside their defined domains.
However, as claimed in [119]], over fitting the parameter values to the current test set might cause

57

Gap from best (%)

RIF | Best | Average | Worst | Time (S)
120 | 5.92 | 10.01 14.61 5.13
130 | 5.8 | 9.56 13.63 5.64
140 | 5.56 | 9.55 14.26 5.73
150 | 8.31 | 11.79 15.11 3.49
160 | 5.17 | 9.06 13.67 6.08
170 | 5.23 | 9.27 13.94 5.91
180 | 5.14 | 9.11 13.69 5.93
190 | 5.22 | 9.04 13.78 6.08
200 | 5.32 | 9.19 13.75 5.73

Table 3.5: Re-initialization frequency

Gap from best (%)

PEF | Best | Average | Worst | Time (S)
150 | 6.12 11.18 16.6 4.68
180 | 5.32 9.69 | 14.58 5.92
210 | 5.47 9.49 | 14.23 6.09
240 | 5.27 9.36 14.3 6.01
270 | 5.38 9.43 | 14.33 6.06
300 | 5.48 9.62 | 14.36 5.64

Table 3.6: Penalization frequency

the algorithm no to perform well in other test sets or in any possible practical implementation.

3.3.3 Comparisons with the state of the art approach

In order to analyze the algorithm performance for the MCTOPMTW instances, we use the ob-
tained optimal values for the parameters, which are as follows: TLS=10, MI=46000, DOF=30,
PF=190, RIF=160 and PEF=240. The experiments are conducted by executing the algorithm
30 times for each instance.

The comparison of the algorithm performance with the state of the art results and with the
approach from [119] (in following tagged as ILS-GRASP) is presented in Table 7. To the best
of our knowledge, ILS-GRASP approach [119] obtains the best results for the MCTOPTW and
MCTOPMTW. Since, we use the set of test instances for MCTOPMTW problem, we compare
our algorithm with results obtained by ILS-GRASP approach [119]] for MCTOPTW. The results
are averaged over specified subsets of test instances. First column shows the number of tours
used, while the second column specifies whether Solomon-based or Cordeau-based instances
were utilized. The gap from the state of the art results is presented in the next three columns,
by showing the best, average and worst performance, respectively. Further, in the next three
columns the gap from ILS-GRASP approach [[119] is given. The second last column shows the

58

execution time of approach in ILS-GRASP approach [119]], whereas the last column shows the
average computation time of our algorithm.

Gap from best (%) Gap from ILS- Time (S)
GRASP (%)
M Test set | Best | Average | Worst | Best | Average | Worst | Ten One
runs run
ILS-
GRASP
1 | Solomon | 4.07 6.57 | 13.82 | 3.82 6.04 | 12.98 2.68 1.74
1 | Cordeau | 6.42 1497 | 25.84 | 2.89 9.06 | 18.04 6.83 5.49
2 | Solomon | 2.59 6.35 11.8 | 0.69 2.14 | 5.82 7.69 3.34
2 | Cordeau | 5.41 145 | 23.51 | -0.8 5.74 | 12.83 17.85 | 10.18
3 | Solomon | 3.3 7.85 | 13.09 | -0.66 1.96 | 5.53 14.3 5.03
3 | Cordeau | 6.84 14.18 | 23.67 | 0.77 5.35 | 13.19 3232 | 15.28
4 | Solomon | 3.06 7.85 | 12.56 | -2.2 0.79 4 22.99 6.71
4 | Cordeau | 6.28 13.88 | 20.59 | -0.62 5.51 | 10.86 52.13 | 18.32
1-4 | Solomon | 3.15 7.38 | 12.71 | 0.31 296 | 6.97 11.91 4.2
1-4 | Cordeau | 6.27 14.25 | 22.82 | 0.59 6.28 | 13.15 27.28 | 12.32
All | 3.97 9.19 | 1538 | 0.51 4 8.79 15.24 5.96

Table 3.7: Performance results

Authors in [[119] compare their approach with the state of the art results that were obtained
by various algorithms in the literature for the relaxed problems of OP, TOP and TOPTW [[117].
Although the best existing results could not be reached by ILS-GRASP approach, according to
the authors their results are very good because the problem at hand is more constrained as it is
extended to multiple time windows and it has an extra budget constraint and a multiple category
constraint. Comparing our results with those of ILS-GRASP approach, we can conclude that
our algorithm is still outperformed by ILS-GRASP approach regarding the average performance
in the set of instances. However, our algorithm finds better solutions then ILS-GRASP approach
in 70 instances. Since we use different machines (the ILS-GRASP approach uses an Intel Xeon
2.5 GHz with 4 GB of RAM memory), we cannot give an accurate comparison regarding the
computation time. However, also our algorithm gives good solutions within few seconds.

The results show that the algorithm performs well, especially with the Solomon-based in-
stances. The average score gap from the best known solutions is 9.19% and it is only 4.00%
from the results obtained by ILS-GRASP approach that is tested for the same instance set. For
7% of test instances new best solutions were found, while 18% of best known solutions were
found.

59

3.4 Conclusions

In this chapter, we presented a solution approach for the MCTOPTW problem. The existing test
instances were used to analyze the algorithm performance. The Tabu search metaheuristic was
applied to solve the problem in conjunction with three basic operators Insert, Replace and Swap.
Four additional operators (Delete, Perturbate, Restart and Penalise) were applied to escape from
local optimum. Additionally, we proposed an efficient technique to speed up the evaluation of
the time window constraint.

In a test set of 148 instances, the algorithm average performance, in terms of quality, has a
gap of 4% from the state of the art approach [[119] for MCTOPTW problem. It is evident that the
Solomon-based instances are solved considerably better than the Cordeau-based instances with
2.96% and 6.48% average gap respectively. In 57.43% of test instances, the best solutions of
[[119]] were either found or improved. In 70 instances, our algorithm obtains better best solutions
than [119]]. Note that in [119] also the waiting times between consecutive visits are allowed.
Therefore it’s a question whether the results of our algorithm eventually could be still improved
if we would not enforce such a constraint as given in Equation [3.4]

The average time of execution of around 6 seconds, makes this algorithm suitable for use in
tourism domain for planning personalized tourist trips, where real time response is expected. We
can conclude that our proposed Tabu Search based algorithm can be used successfully for solving
challenging instances from the literature. Although in average it shows worse performance
compared to the state of the art solution, the new best solutions that are found (in the existing
test set) indicate that our algorithm is competitive with the approach of Souffriau et al. in [119].

60

CHAPTER

Considering Preferences of Tourist
Groups

Sightseeing tours are often done in groups, where tourists enjoy their trip in company with their
relatives or friends. Hence, in this chapter, in order to model tourist group tours, we introduce a
new problem, as an extension of the existing MCTOPTW problem. Since multiple tours need to
be modeled for each tourist in the group, we call the new problem with name Multi Constraint
Multiple Team Orienteering Problem with Time Windows (MCMTOPTW).

The new problem (MCMTOPTW) extends the existing problem in the literature (MCTOPTW)
with two additional concepts. The first one is consideration of multiple tourists, where their in-
dividual preferences about POIs are taken into account, and the second one is introduction of
mutual social relationship between the different tourists.

Figure §.T|shows the modeling of mutual relationship between tourists, and the satisfaction
factor of all tourists with all existing points of Case I of the scenario. The social relationship
between any two tourists is modeled to be asymmetric, since, in general it is considered that
two persons might not be related towards each other with same relationship level. Preliminarily,
we define a domain range of O to 5 for the values of social relationship (a detailed comparison
between different domain ranges is given in the Section {.3). In addition, the tourists themselves
have their own specific interests (satisfaction factors) about POIs. The range of the satisfaction
factor of tourists with POIs is define between values O and 50. The same domain range for
satisfaction factors is used in the test instances in the literature [119]. As it can be seen in
Figure [4.1] all tourists have a high social relationship between each other (in all cases the social
relationship is 4 or 5), whereas also their preferences about POIs are mostly similar. In reference
to Case 1 of the scenario, in this chapter, we aim to investigate whether it will be better for all
three tourists to travel in solo, organized in subgroups or all together.

In the following, we initially present the mathematical modeling of MCMTOPTW problem
(Section [.I)), and then, we present a straightforward approach (Section [#.2)) to solve this new
problem by using the algorithm for solo trip planning that was introduced in the previous chapter.
There are three modes of trip itinerary planning that are enabled by this approach, namely Solo

61

Tourist p; —» Social relationship between tourist p; and p;

@ Point ny - - Satisfaction of tourist p; with point 7,

Figure 4.1: Model of social relationship and satisfaction factor with POIs for Case 1

(tourists travel alone), subgroup (related tourists travel together) and Group(all tourists travel
together). In addition, we present the computation experiments ([4.3) on a new test set that is
created based on the instances in the literature. Finally, we present our conclusions ([4.4) about
application of solo trip planning algorithm in the context of tourist groups.

4.1 Mathematical Modelling of MCMTOPTW problem

A number of P persons make a multiple day trip to a geographic area. The visited area has N
points, where each of them is characterized with its coordinates x; and y;, visiting duration 7;,
opening O; and closing time C;, entry fee b; and an array of Z category attributes e, that specify
the different categories the point belongs to. The details known for each person p include:
maximum budget B, satisfaction factor with each point S,,, social relationship factor R, with
each other person ¢ in the group, and a range Z of E),; values that specify the maximum number
of points of each point category z to be visited. Each person p conducts exactly M tours that
have the same duration 7},,,. A person can visit a point at most once. The starting point / and
ending point N are fixed for each tour. The traveling times #; between points i and j are known
for all points. The start of a visit to point 7 in tour m of person p is denoted as s;,,,. The objective

62

is to prepare a multiple day trip itinerary for all persons so that their overall satisfaction, both
with visited points and with each other’s company, is maximized.

Next, we give a mathematical definition of the MCMTOPTW problem by extending the for-
mulation made by Garcia et. al [43]] for MCTOPTW problem. The Boolean variables X;jup, Ypnm
and 2,4, are defined with the following expressions:

1, if a visit to point i is followed with a visit to point j in tour m of person p
Lijmp = .
0, otherwise

1, if person p visits point n in tour m
Y = .
prm 0, otherwise

1, if person p and ¢ visit together point » in tour m
Zpgnm =

0, otherwise

The defined variables x;jmp, Ypnm and z,gny, are used in the following formulation equations of
the new problem:

Max Z Z Z SpnYpnm + Z RpgZpgnm | 4.1)

p=1m=1 | n=2

q#p
M N M N-1
SN wjmp =Y > @inmp=M; Vp=1,.., P, (4.2)
m=1 j=2 m=1 i=1
N
Z Tikmp = Y Thjmp = Ypkms Tk = 2,. —1;Vm=1,..,M;Vp=1,...P, (4.3)
Jj=2

(Zijmp =1) = (Sjmp = Simp + Ti + ti5); Vi,j=1,..,N; Vm=1,.. ., M; Vp=1,..., P,

4.4
M
> Yprm 1L Vp=1,..,P; Vn=2,..,N —1; VYm =1,.., M, (4.5)
m=1
N
Zenzypnm <E,; Vp=1,..,P;Vm=1,..,M; Vz=1,..,Z, (4.6)
n=1
Oi <Spmp <C;; Vn=1,...N; Vm=1,...M; Vp=1,..., P, 4.7

63

N-—1 N
Tiimp + Y _ tijigmp | < Tmaas Ym =1,..,M; V2 =1,..,Z, (48
i=1 j=2

Equation [.T] expresses the objective function of the problem, which is maximisation of
the overall tourists’ satisfaction, both in terms of satisfaction with points and with each other’s
company by considering their mutual social relationship factor. Constraint [4.2]enforces the start
of each tour at point / and the end of it at point N. Constraint [4.3]enforces the continuity of a
tour by making sure that any visit to a point is followed with another visit to some other point, so
that no break up occurs in any of the tours. Constraint .4] allows no waiting times in between
consecutive visits. Constraint 4.5/ makes sure that any person could visit a particular point at
most one time, whereas Constraint [4.6]limits the number of points of certain point category that
could be visited by a person to the given maximal value E,,. Constraint forces the start of
a visit to a point to occur only during its respective time windows. Constraint [{.8]limits the
duration of any tour to the maximal specified value 7},4.

4.2 Solution Approach

Given that the new problem of MCMTOPTW extends the existing problem of MCTOPTW, we
present a straightforward method that uses the described algorithm from previous chapter to
make an initial attempt for solving MCMTOPTW problem. The goal is to devise a method
that can enable planning the tour itinerary in three different modes: Solo (each tourist makes
the tour alone), Subgroups (tourists with common interests and constraints travel together) and
Group (all tourists go together). The method consists of two steps, namely the preprocessing
and application of the planning algorithm. Note that the preprocessing step is utilized only
when the tour itinerary is planned in the modes of Subgroups or Group tour. In the mode of
Subgroups, initially, a tourist subgrouping method is brought into action to subgroup tourists
into subgroups based on tourists’ preferences (about points and mutual social relationship) and
constraints (available budget and maximum number of points for each point category), and then
a procedure for merging the data of preferences and constraints of tourist’s (belonging to the
same subgroups) is applied. On the other hand, in the mode of Group tour only a procedure for
merging the preferences and constraints of all group members needs to be applied. Further, in
the second step, simply, the solo trip planning algorithm is applied for planning the itinerary for
all tourists.

Figure [4.2] shows the solution representation for Case I of the scenario for different trip
modes. In the Solo mode (Figure a), each from the three tourists has its own trip itinerary,
whereas in the Subgroups mode (Figure B.2]b), Tourist 1 and Tourist 3 have a joint itinerary
throughout the trip, while Tourist 2 has its own itinerary, and finally, in the Group mode (Figure
M.2]c), all three tourists have a joint itinerary throughout the trip. The score of a point is correlated
to the size of the corresponding circle. The larger the circle the higher the score. The score of
Tourist 1 1s illustrated with a solid line circle, whereas for Tourist 2 the illustration is done with
a dashed line circle, and lastly the score of Tourist 3 is illustrated with a dotted line circle.

64

v

b) Subgroups

Solution representation (Solo) Solution representation (Subgroups)

Tour, {2,5,3,8}

I
Toun | (25.3,8) | |0 P PP

Tourist p; | Tour, 19,7,4,10} | | Tourist ps

Touross {1,7,10}

Tourog {1, 6}
Tour, {1,8,2}

Tour, {1,8,2} .
Tourist ps Tour, {9,7,10}

Tourist p, | Tour, {9,7, 10} Touror (3,4,5,6)

Touror | {3,4.5,6}

Solution representation (Group)

Tour, {2,3,8}
Tourist p, | Tour, {2,5,3,8}
R Touristps | Tour, | {7, 4,6} Touristp, | Tour, (9,7,4,6}
X Touros | {1,5,9,10} | | Tourist ps | Touroy {1,10}

¢) Group

<:> Start/End point Point of Interest — Tourist p; tours -=% Tourist p, tours » Tourist p; tours

Figure 4.2: Solution representation for different trip modes

In the the rest of this section, we initially describe the tourist subgrouping method and
tourist’s data merging process, and then elaborate the application of solo trip planning algorithm
for the case of tourist groups.

4.2.1 Tourist Subgrouping

The k-means algorithm is a rather simple approach to subgroup a dataset into k subgroups. The
algorithm has been introduced into several disciplines by many authors, most remarkably by
Lloyd in [80] and [81].

The algorithm works on a dataset of d-dimensional vectors, D= {x; | i=1... N}, where x;
represents the i-th data point. It starts by picking k points in dataset as initial subgroup repre-
sentatives also called “centroids”. The methods used to select these initial centroids vary from
random to more sophisticated ones. Then, the algorithm alternates between two steps until it

65

—» Coordinate

O Tourist

<-» Distance between two tourists

Figure 4.3: Representation of tourists in a n, dimensional coordinate system

converges. The first step includes assignment of each data point to the closest centroid, which
results into portioning of dataset. The second step, deals with relocation of the centroids, by
calculation of the new central point of the data points assigned to individual subgroups. The al-
gorithm converges when no more data points change their subgroups. The calculation of distance
between data points is an issue to resolve and subject to different domains of implementations.
The default distance measure is the Euclidean distance.

In our implementation, the data set consists of tourists’ data, where each tourist p is repre-
sented by four types of attributes:

e Maximum budget (B)),

e Satisfaction factor about points (Sy,; n=1, ..., N),

e Social relationship factor with other tourists (R, g=1, ..., P; p # q),
e Maximum number of points for each point category z (Ej;; z=1, ..., Z)

Given these four types of attributes, the total number of different attributes is n, = (N) +
(P—1)+(1)+(Z) = N+P+Z. These attributes are used to represent the individual tourists into
a n, dimensional coordinate system (see Figure [4.3)). The measurement of closeness between
tourist / and tourist j is calculated by using Equation [4.9|that is based on the Euclidean distance.

N P
dij = | (Bi = Bj)?+ Y (Sin = Sjn)? +) _(Rip = Ryp)? +) (Eiz — Ejz)? (49)

n=1 p=1 z=1

66

In the initiation phase, the k-means algorithm (see Algorithm M.T) randomly selects k cen-
troids from the represented tourists in the n, dimensional coordinate system. Then, the sub-
grouping is done by assigning the remaining tourists to their closest centroid. Afterwards, the
algorithm iteratively alternates between adaption of new centroids for individual subgroups by
choosing the most central point inside the subgroup, and then formation of new subgroups based
on the distance from newly adapted centroids. The algorithm terminates and returns the result
when no more tourists change their subgroups.

The k-means algorithm alone is associated with the disadvantage of keeping the number of k
subgroups fixed. In order to overcome this disadvantage, we implemented an iterative approach
(see Algorithm [.2)) that takes the advantage of k-means algorithm to create the subgroups
and uses an evaluation framework to evaluate the subgrouping process for different number of
subgroups.

input : NumberO f Subgroups, TouristCoordinates
output: Tourist subgroups

1 begin

2 Select random centroids for each subgroup;

3 Create subgroups around each centroid;

4 while some tourist changes the subgroup do

5 Select new centroids for each subgroup;

6 Create new subgroups around each centroid;
7 end

8

end
Algorithm 4.1: K-means algorithm for subgrouping tourists

The cluster analysis method of Califiski and Harabasz [18] is used to evaluate which is the
best number of subgroups. The method is named pseudo F-static F, and it is based on statistical
analysis of subgroups. In the following, we give details about the evaluation function and the
comprising components, as well as for the variables used.

SST P—n,

FCh:(SSE_l)(nc—l

); (4.10)

Ne Ny Ny

SST =33 (Vi —VF)?, (4.11)

i=1 j=1 k=1

Ne N Ny

SSE=Y "3 "> (vk-vF?, (4.12)

i=1 j=1 k=1

Where:

SST - total sum of squared distance to the overall mean,

SSE - sum of squared distance of the tourists to their own subgroup means,
P - Number of tourists,

67

n. - number of subgroups,

n; - number of members in subgroup i,

n, - number of attributes used for representing tourists,
Vijk - value of the k-th variable of the j-th tourist,

V% - mean of the k-th variable,
Vlk - mean over all observations of the k-th variable in subgroup i

In order to increase the probability of obtaining the best possible number of subgroups, the
algorithm executes for number of iterations as specified by Maximumlterations parameter. In
the course of a single iteration, the algorithm executes the k-means method for each possible
number of subgroups, starting from minimum number of subgroups up to maximum number of
subgroups. The best evaluating number of subgroups is found based on pseudo F-static Fp.
After a series of executions, the algorithm returns the best evaluated subgroups. Based on our
experiments, for test instances with maximum 10 tourists, it is sufficient to run the algorithm for
20 iterations to obtain the best evaluating number of subgroups.

input : Mazimumlterations
output: Tourist subgroups

begin
IterationCounter=1;
while IterationCounter <= MaximumlIterations do

end

MinimumNumberOfSubgroups=2;
MaximumNumberOfSubgroups=NumberOfPersons-1;
CurrentNumberOfSubgroups=MinimumNumberOfSubgroups;
S¢ = Get K-Means Subgrouping (CurrentNumberOfSubgroups);
Evaluate S;
Sp=S¢;
while CurrentNumberOfSubgroups <= MaximumNumberOfSubgroups do
Sc = Get K-Means Subgrouping (CurrentNumberOfSubgroups);
Evaluate S;
if S. better then S;, then
Sp=S¢;
end
end
IterationCounter +1;

end

Algorithm 4.2: An iterative algorithm based on k-means with automatic selection of the num-
ber of subgroups

68

4.2.2 Tourists’ Data Merging

In the cases of subgroup and group trip itinerary planning, the data of tourists in individual
subgroups or in the whole group, respectively, need to be merged into a single virtual tourist so
that the algorithm for solo trip planning could be applied. In case there are k subgroups, then for
each subgroup a virtual tourist needs to be created. The process of data merging should consider
the hard constraints of each tourist in a particular subgroup or group.

If we suppose a subgroup/group comprised of X tourists, the corresponding virtual tourist’s
attributes for budget limitation (B,,) and maximum number of points for different point categories
(E,;), are set to the minimal values of the respective attributes by using Equations [4.13]and {4.14]
respectively. On the other hand, the satisfaction factor of the virtual tourist with points (S,,)
is calculated as the average value of satisfaction factors of all tourists in the subgroup/group,
respectively. Note that the solo trip planning algorithm is not designed to work with the attribute
of social relationship between tourists, therefore such attributes are not considered when merging
the tourist’s data.

BU = M’in{Bl,BQ,...,Bx}, (413)
E’UZ = Min{Elz7E227 7EXZ}7 vz = 17 "'7Z7 (414)
Son = AU@TGge{Slmsén, "'7SXn}; Vn=1,..,N, (4.15)

4.2.3 Application of Solo Trip Planning algorithm

In Algorithm [4.3] we present the pseudo code of the method that applies solo trip planning al-
gorithm for the case tourist groups. The algorithm takes an argument named Zour Type that de-
termines the mode of algorithm execution among three different possibilities, namely Solo, Sub-
groups and Group. When the algorithm is run in the Solo mode, it prepares separate itineraries
for each tourist so that they could travel alone and visit points of their own specific preferences.
If the algorithm is run in Subgroups mode, then it will plan a separate itinerary for each tourist
subgroup that is created by using the subgrouping method described earlier. The Group mode
of the algorithm execution produces a joint itinerary for all tourists. The data merging process
(described in previous subsection) is used to create virtual tourist when the algorithm is run in
Subgroups or Group mode. A virtual tourist for each subgroup is created in Subgroups mode of
execution, whereas only one virtual tourist is needed in Group mode of execution.

4.3 Computational Experiments

The algorithm is coded by using Java 1.7. All experiments are done by using an Intel i3
2.2 GHz processor with 2 GB of RAM memory. The experiments are done by using a new
test set that is created based on existing test sets from the literature.The experiments use 10
runs for each instance. The best, average and worst scores are presented for each test in-
stance. In the following we present a summary of experiments, while the complete results for

69

input : TourType
output: Tour itineraries

1 begin

2 if TourType is Solo then

3 ‘ NumberO fItineraries = NumberO fTourists;

4 else if TourType is Subgroups then

5 Subgroups=Apply Tourist Subgrouping Algorithm;

6 NumberO fItineraries = NumberO f Subgroups;

7 SubgroupCounter = 1;

8 while SubgroupCounter <= NumberO fSubgroups do

9 ‘ Virtual Tourists[SubgroupCounter]=Create Virtual Tourist ;

10 end

11 else

12 NumberO fItineraries = 1;

13 VirtualTourist=Create Virtual Tourist ;

14 ItineraryCounter = 1;

15 while ItineraryCounter <= NumberO fItineraries do

16 Itineraries[ItineraryCounter]=Apply Algorithm for Solo Trip Planning ;
17 end

18 end

Algorithm 4.3: Application of singlet tourist trip planning algorithm for tourist groups

modes of Solo, Subgroups and Group could be found in Appendix [C] Appendix [D]and Ap-
pendix [E} respectively. In addition, the experimental results can be accessed on the web page:
https://sites.google.com/site/ushtrimet/tourist-trip-planning.

4.3.1 Test set

The existing test set of 148 test instances for Multi Constrained Team Orienteering Problem with
Multiple Time Windows (MCTOPMTW) created by Souffriau et al. [119] can only be used to
model a solo trip planning problem. Therefore, we further extend this data to enable modeling
of a group trip itinerary. In accordance to the test set origin, the instances are divided into two
subsets, namely Solomon [116] and Cordeau [25] based. The Solomon-based subset consists
of 116 instances, while the Cordeau-based ones consist of 32 instances. The number of tours
differs from one to four. Note that even though the test instances allow modelling of multiple
time windows, in our implementation we only utilize single time windows by considering the
opening time of first time window and closing time of last time window.

In order to model multiple tourists to the problem of trip planning, an additional attribute P
that specifies the number of tourists is added. The value of attribute P varies from 2 to 10. Fur-
ther, the preferences of additional tourists are modeled by adding additional satisfaction factors
Spn» p={2,...,P}, n={1,...,N}). The newly added satisfaction factor values get a random value in
the range of 0 to 50 as in the original test instances. Moreover, the budget limit (B, p={2,...,P})

70

and the maximum number of points for particular point categories (E,;, p={2,...,P}, p={1,...,Z})
for the additional tourists, are modeled. The budget for the new added tourists is set as a random
value in the range of the budget of the existing tourist in the instance, with a possible deviation
of plus-minus 100. In addition, the values of the new tourists for the maximum number of points
for particular points categories, are also random values in the range of the existing tourist, with a
possible deviation of plus-minus 3. In order to model the “connectedness” between the tourists,
we added a matrix of asymmetric social relationship values (R, p={1,....P}, q={1,....P}, p # q)
that determine how much individual tourist are related/friends to each other. We model this rela-
tionship as asymmetric, as in general it is considered that two persons might not have the same
relationship/friendship level toward each other. In the following subsection, we make an experi-
mentation for finding out which possible range of social relationship values (R),) is appropriate
in a specific mode (Solo, subgroup and Group) of trip itinerary planning. Note that the format
of instances of this new test set is presented in the web page presented above.

4.3.2 Mode of algorithm execution versus social relationship range

In this experiment, we focus in showing which trip itinerary planning mode is suitable to be
applied in some preselected domain ranges of mutual social relationship (SR) factors of tourists.
In Table [A.1] the first column represents the range of discrete values that are used to represent
the social relationship factor between the tourists. The second column indicates the mode of ex-
ecution of the algorithm. The next three columns represent the best, average and worst algorithm
performance, respectively. The last column shows the average time of computation for different
SR domain ranges and algorithm mode of execution.

] SR domain Mode Best | Average Worst | Average time (S) ‘
Oto1 Solo | 6163.89 | 6068.50 | 5958.24 40.95
Oto1 Subgroups | 5485.49 | 5319.74 | 5141.78 12.69
Oto 1 Group | 5301.91 | 5100.34 | 4818.48 5.64
0to3 Solo | 6181.06 | 6077.46 | 5965.35 38.40
0to3 Subgroups | 6062.74 | 5870.95 | 5654.93 12.77
0to3 Group | 6415.11 | 6169.21 | 5871.83 5.28
Oto5 Solo | 6193.06 | 6091.78 | 5973.70 38.87
Oto5 Subgroups | 6598.26 | 6368.77 | 6126.08 13.03
Oto5 Group | 7578.79 | 7260.53 | 6838.80 5.15

Table 4.1: Mode of algorithm execution vs. SR range

It can be noticed that for SR domain range between O to 1, the Solo mode of the algorithm
outperforms the other two modes by a clear distance, where the average advantage for all in-
stances compared to Subgroups and Group modes is 12.34% and 15.95%, respectively. This
could also be intuitively explained that for poor relationship factors between different tourists, it
would be better for them to conduct the trip separately so that they visit the POIs that are more
related to their specific preferences.

71

When the SR domain range varies between values O to 3, the Group mode shows to be a
better approach than the other two modes. The results, averaged over the complete test set,
indicate that while the advantage in comparison to Solo mode is only 1.49%, the advantage from
Subgroups mode reaches the value of 4.83%.

If the upper bound of SR domain range is increased to 5, the Group mode becomes superior to
the other modes. The dominance, for the complete set of test instances, from Solo and Subgroups
mode stands at 16.10% and 12.28%, respectively. This could be understood by the fact that if the
mutual social relationship factor between the tourists increases, their overall satisfaction depends
more and more in the component of mutual social relationship (see Equation {.T]). In addition,
it is expected that further increase of upper bound of SR domain range would intuitively favor
utilization of Group mode for trip itinerary planning, therefor we do not find it important, from
research point of view, to make additional experimentations with SR domain ranges higher than
0to 5.

In general, it can be concluded that dividing tourists into subgroups does not yield to any
improvement in their overall satisfaction. This could be explained by considering two different
issues. The first, if they get divided into subgroups, they get a decrease in overall satisfaction
factor, since a “compromise” in preferences of different subgroup members is made. The sec-
ond, they also lose points in their overall satisfaction due to the component of mutual social
relationship, since by getting divided from some member of the whole group, the respective
gain from mutual social relationship to them is lost. Nevertheless, the Subgroups mode proves
to be a better choice than the Solo mode when the SR domain range of O to 5 is used. In that
case, the difference if favor of Subgroups mode is 6.14%.

It is obvious that the computation time is always in favor of Group mode, since it only
requires a single run of the algorithm for solo trip planning to produce a joint itinerary for
all tourists. The average execution time, taken form the complete test set, across different SR
domain ranges is 39.41 seconds for Solo mode, 12.83 seconds for Subgroups mode and 5.35
seconds for Group mode.

4.3.3 Comparisons between different modes of algorithm execution

In this subsection, we examine the performance of different modes of the algorithm execution
for different number of tours (1 to 4 tours) and different number of tourists (2 to 10 tourists).
We also present the performance of the the tree modes of algorithm execution when considering
different subsets of Solomon and Cordeau based instances. Further, in the remaining part of this
thesis, we adapt the domain range of 0 to 5 for the social relationship factor of tourists.

Initially, we present the performance of three modes of algorithm execution for itineraries
with number of tourists ranging from 3 to 10. In this experiment, for comparison purposes, we
skip instances with two tourists, since Subgroups mode would always divide the two tourists
into two subgroups each having one tourist, and this would be the same solution that is obtained
by the Solo mode of algorithm. Figure [4.4]shows that for tours with three tourists the Solo and
Group mode have equal number of instances, in which they are better, whereas for tours with
more than four tourists, the group mode performs better. Additionally, this experiment shows
that Subgroups mode of execution is outperformed by the two other modes, since, in total, it is
better only for eight instances (with 3 to 6 tourists).

72

25

20

15

Number of instances

[O Y R |

6
Number of tourists

22
14 14
11 11 ® Solo
Subgroups
B Group
4
I | i 2 2 2
0 0 0 0
=8 NN R
7 8 9 10

Figure 4.4: Algorithm mode vs. number of tourists

Further, in Figure @]it can be noticed that, in overall, for itineraries consisting of one tour,
the Solo mode of the algorithm execution performs slightly better, while for higher number of
tours the Group mode is superior. Further, even though the Subgroups mode is outperformed by
the Group mode for itineraries with all possible number of tours, it proves to be a better choice
then the Solo mode for itineraries with 3 and 4 tours.

In addition, in Table [4.2] we present the performance of the three modes of algorithm execu-
tion for different number of tours (M) and different test subsets (Solomon and Cordeau based).
An in depth analysis of the results in the column of average performance, shows that the Group
mode performs better than the other two modes in all presented subsets, except for the Solomon
subset with 1 tour, in which Solo mode is better. Further, the Subgroups mode is also better in
more occasions than the Solo mode, especially when dealing with Cordeau based test subsets,
where for all four of them, the Subgroups modes performs better.

4.4 Conclusions

In this chapter, we presented a new problem called “MCMTOPTW that represents an extension
to the existing problem of “MCTOPTW?”. Further, we elaborated a straightforward approach for
tackling the new MCMTOPTW problem by using the existing algorithm for solving MCTOPTW
problem. A k-means based approach was introduced for subgrouping tourists into subgroups.

73

Mode\ M\ Test set Best | Avgerage Worst \ Time (S)‘
1 [Solomon | 243155 | 2392.96 [2325.00 11.08

1 | Cordeau | 3853.00 | 3741.51 | 3529.88 35.22

2 | Solomon | 476372 | 4701.33 | 4623.45 20.53

2 | Cordeau | 6991.50 | 6791.65 | 6602.25 68.19

3 | Solomon | 6841.00 | 6752.60 | 6661.59 31.28

Solo 3 | Cordeau | 9567.38 | 9379.75 | 9125.38 103.82
4 | Solomon | 8704.07 | 8587.91 | 8465.86 42.57

4 | Cordeau | 11726.00 | 11458.88 | 11230.88 129.60

1-4 | Solomon | 5685.09 | 5608.70 | 5518.97 21.09

1-4 | Cordeau | 8034.47 | 784295 | 7622.09 84.21

All 6193.06 | 6091.78 | 5973.70 38.87

1 [Solomon | 2242.03 | 2171.72 [2065.00 3.58

1 | Cordeau | 404450 | 3877.14 | 3553.75 11.45

2 | Solomon | 4797.52 | 4668.46 | 4516.14 7.07

2 | Cordeau | 767550 | 726895 | 6941.88 24.04

3 | Solomon | 7203.52 | 6989.93 | 6808.21 10.78
Subgroups | 3| Cordeau | 10534.88 | 10060.25 | 9482.88 32.14
4 [Solomon | 9584.17 | 9280.74 | 8998.76 14.75

4 | Cordeau | 13439.25 | 12839.09 | 12197.13 42.30

1-4 | Solomon | 5956.81 | 5777.71 | 5597.03 9.05

1-4 | Cordeau | 8923.53 | 8511.36 | 8043.91 27.48

All 6598.26 | 6368.77 | 6126.08 13.03

1 [Solomon | 237038 | 2295.70 [2029.83 1.35

1 | Cordeau | 468250 | 4185.80 | 3147.13 4.59

2 | Solomon | 5309.59 | 5152.63 | 4948.00 2.53

2 | Cordeau | 889825 | 8314.29 | 7662.75 8.45

3 | Solomon | 8245.03 | 7973.32 | 7677.38 4.27

Group 3 | Cordeau | 12329.75 | 11618.37 | 10795.88 13.36
4 | Solomon | 11195.28 | 10849.44 | 10492.62 5.79

4 | Cordeau | 15986.13 | 14968.56 | 13751.25 18.36

1-4 | Solomon | 6780.07 | 6567.77 | 6286.96 3.49

1-4 | Cordeau | 10474.16 | 9771.76 | 8839.25 11.19

All 7578.79 | 7260.53 | 6838.80 5.15

Table 4.2: Mode of algorithm execution for different instance subsets

35

30

25

= Solo

Subgroups

Number of instances

= Group

Number of tours

Figure 4.5: Algorithm mode vs. number of tours

The process of subgrouping is evaluated by using the pseudo F-static F,j function of Caliiski
and Harabasz [18]]. In addition, we singled out three different modes of algorithm execution so
that the tour itinerary could be planned in three different modes, namely Solo, Subgroups and
Group. Further, we introduced new test instances based on the existing instances that are used
for solo trip planning problem.

The computational results made by using the newly generated test instances indicate that the
Solo mode of itinerary planning is more suitable in the cases when the mutual social relationship
factor between the tourists is lower (with a domain rang from O to 1), whereas for higher mutual
social relationship factors, the Group mode of itinerary planning becomes superior. The relative
short time (in average) of algorithm execution of a little more than 5 seconds for Group mode,
indicates that the algorithm for solo trip planning could be adapted for use in group trip planning.

Further, the computational results with SR domain range of O to 5, indicate that subgrouping
tourists into subgroups does not prove to be a better choice than the Group mode, although it
is evident that it is a better choice in comparison to Solo mode. However, it would be worth
investigating whether using other functions for measuring the distance between tourists, would
make the Subgroups mode more competitive to the Group mode.

In addition, this chapter answers our first hypothesis, where we hypothesized that solo trip
planning method could be used for planing the trip for a group of tourists. We can conclude
that the first hypothesis is met, since the solo trip planing algorithm can also be used to plan the
itinerary for multiple tourists regardless whether they are in subgroups or groups.

Finally, in this chapter the second hypothesis is also answered, which hypothesized that by
clustering tourists into subgroup based on their preferences and social relationship the results
could be improved. As result, based on the computational experiments that were performed on
the generated test set and on the distance measuring function, despite our expectations, we can
conclude that in overall the process of clustering tourists into subgroups does not improve the
results to an extent that would be better then the results obtained by group approach.

75

CHAPTER

Planning Group Trip Itinerary

All three modes of itinerary planning presented in previous chapter, concentrate in making a
solution that predetermines the company of tourists’ throughout the trip. They are either all
separated, in subgroups or all together. In this chapter, we aim to tackle this drawback by
allowing tourists to change their company during the trip, so that they can visit specific POIs
of their own interest in the company of their closely related relatives or friends. This is needed
when considering frequent situations where some tourists have their own specific preferences
about POIs and they are not very much related to some group members.

Revisiting Case 1, it can be noticed that all three tourists are very much related to each
other, both in terms of mutual social relationship and in the similarity of their interest about
points. Their social relationship values are high (either 4 or 5), whereas the interest values for
the corresponding points are always either the same or with value difference of maximum 20,
except for point 79, in which the value difference of tourist p3 from both tourists, p/ and p2, is
45. In this particular case, in order to get a maximal score for tourists, it is obvious that all tourists
should be traveling together (according to Group mode of the approach from previous chapter).
Nevertheless, if we would be able to somehow separate tourist p3 from the other tourists, so that
he can visit point n;9, while the other two tourists visit some point of their common interest, we
would be able to get an itinerary that would increase the satisfaction of tourist p3, and with that
the satisfaction of the overall group members.

In general, we assume that in situations similar to Case 1, a method that would allow sepa-
rating or joining tourists during the trip, might make it possible to find better tours for some of
the them in the group. Therefore, our approach in this chapter is devising an algorithm that uses
the existing algorithm for solo trip planning to create a good joint starting solution, and then
applying some effective operators to somehow personalize the trip itineraries for tourists based
on their specific preferences. In this chapter, we first present a slight mathematical reformulation
of MCMTOPTW problem (Section [5.1)), and then show a detailed description of the solution
approach (Section [5.2). The computational experiments (Section [5.3)) are followed with our
conclusions (Section [5.4) about the proposed approach.

77

5.1 Mathematical Modelling

The mathematical formulation of the MCMTOPTW problem presented in the previous chapter
does not allow any waiting time between consecutive visits in a given tour (Constraint 4.4). In
this chapter, we relax this constraint by allowing waiting times of tourists before starting a visit
to a certain point. The Constraint {4.4] in the modeling of Chapter[4] is replaced with Constraint
[5.1] which, instead of not allowing waiting times, makes sure that consecutive visits are aligned
in timely manner so that no overlapping occurs between consecutive visits and traveling times
between them. Coefficient Q in Constraint [5.1|represents a constant.

Simp —|—tij — Sjmp S Q(l — 5Uz'jmp); Vi,j = 1,...,N; Vm = 1, ...,M; Vp = 1, ...,P, (51)

Note that the objective function and all the other constraints remain the same as defined in
Section @.1]of Chapter]

5.2 Solution Approach

In Chapter [3| we presented a tabu search implementation that is competitive to state of the art
algorithms for solving solo trip itinerary planning problem that is regarded as MCMTOPTW
problem. Then, in Chapter[d] we showed that the algorithm for solo trip itinerary planning prob-
lem could be applied to plan tour itinerary for tourist groups, which we denoted as MCMTOPTW
problem. Further, the Group mode of itinerary planning proved to be a better choice when the
range of social relationship values is between 0 to 5. In this regard, on top of solo itinerary
planning algorithm, we employ again an approach that is based on tabu search metaheuristic to
optimize the group tour itinerary planning problem. The approach initially uses the solo itinerary
planning algorithm for creating the initial solution that is optimized based on joint preferences
of all tourists, and then it iteratively applies a neighborhood exploration mechanism that aims in
optimizing the itinerary based on specific preferences of tourists. In the following subsections,
we initially show the solution representation, then discuss the operators we use as part of the
neighborhood exploration mechanism, and at the end we describe the general structure of our
meta tabu search implementation.

5.2.1 Solution Representation

The representation of the solution is done by using an array of P objects, where each object
consists of M+1 lists. For each tourist p, a single list contains the sequence of points that are part
of a tour. The first M lists contain the points that are scheduled to be visited in respective tours,
whereas the last list keeps record of points that are not part of the solution of the corresponding
tourist. Considering Example 1, which is a problem consisting of P=3 tourists, N=10 points and
M=2 tours, a candidate solution might be represented as in following: Touristl{Tourl=[2, 5, 3,
8], Tour2=[9, 7, 4, 10], TourOff [1, 6]}, Tourist2{Tourl=[1, 8, 2], Tour2=[9, 7, 10], TourOff [3,
4, 5, 6]} and Tourist3{Tourl=[2, 5, 3, 8], Tour2=[9, 7, 4, 6], TourOff [1, 10]} (see Figure @
The score of a point is in direct proportion to the size of the corresponding circle. The larger the

78

Solution representation

Tourl {2,5,3,8}

Tourist1 Tour2 {9,7,4, 10}

TourOff {1, 6}

Tourl {1, 8,2}

Tourist2 Tour2 {9,7,10}

TourOff | {3,4,5,6}

Tourl {2,5,3,8}

<:> Start/End point —> Tourist 1 tours Tourist3 Tour2 (9,7, 4, 6}
- -» Tourist 2 tours
Point of Interest . » Tourist 3 tours TourOff {1, 10}

Figure 5.1: Sample representation of a solution with two tourists and two tours

circle the higher the score. The score of Tourist 1 is illustrated with a solid line circle, whereas
for Tourist 2 the illustration is done with a dashed line circle, and lastly the score of Tourist 3 is
illustrated with a dotted line circle.

5.2.2 Neighborhood Exploration

The exploration of the neighborhood of a given current solution S, is performed by using three
operators, namely Separate, Join and Insert. The first two operators are used in local search
techniques, whereas the the last one is based on greedy algorithms. In the following part of this
subsection, we describe these operators in more details.

5.2.2.1 Separate operator

The separate operator tries to separate a tourist p from his current subgroup at point i in tour
m (see Figure [5.2). The number of combinations for the separate operator is determined by
considering every tourist (belonging to a subgroup of at least two members) for separation from
his own subgroup at every point i of every tour .

The operator procedure (see Algorithm [5.1)) after initialization of best non tabu and tabu
points to a null value, enters into a triple loop that iterates for every tour m, every point i in tour
m and every tourist p visiting point i. Then, a list of points (L P,) that are located close to point i
is created based on current consumption time T = t(;_1); + Wi +T; +;(;41) + W;41) of tourist
p. All available points that can replace point i in the time limit specified by T are inserted into
L P, list. In the following, every point j from L P, list is evaluated against the constraints, such

79

tink Te iy Wpaen

Point of Interest t;j— Travel time between point i and j

______ » Path of subgroup Ti— Dure?gon o.f visit at point .
W; — Waiting time of the subgroup at point i
— Sub path of separated tourist p W, — Waiting time of tourist p at point i

Figure 5.2: Separating tourist p at point Py,

tourist budget, tour duration and maximum point category constraint. Afterwards, every feasible
point is evaluated by using the objective function of the problem (expressed by Equation [.1]in
Chapter [d). Based on the tabu status of the evaluated point, a comparison to the best found non
tabu or tabu point is made. The operator always records a best non tabu or tabu point when a
such point is encountered.

The separate operator returns two best separating points, one of them being non tabu and the
other one tabu. A returned point is associated with informations such as tourist being separated,
point being replaced and position of separation in tour. At the main algorithm level, it will be
decided whether the non tabu or tabu point would be adopted as the separating point of tourist.

5.2.2.2 Join operator

The join operator considers joining any two tourists belonging to subgroups that visit different
points in the same tour. The join operator returns two best joining points, one of them being non
tabu and the other one tabu (see Algorithm [5.2). The breadth of neighborhood exploration of
the join operator is determined by the product of the triplet comprising number tourists, number
of tours and number of points in each tour.

The operator procedure starts by initializing the best non tabu and tabu points to a null value.
Then, for each existing point i in each tour m of each tourist p, a list of points (L P,) that contains
points located close to point i of tourist p, is created. The closeness of other points to point i is
calculated by using the respective consumption time Ts;, = t(;_1); + Wi+ T; + t41) + Wiig)
of tourist p (see Figure @ All points that could replace point i in the time specified by T,
are included into L P, list. Next, a list of other tourists (LOT) that can visit one ore more points

80

input : ListO fTourists, ListO f Points, NumberO fTours
output: BestNonT abuPoint, BestT abuPoint

1 begin
2 Initialize Best NonT abuPoint and BestT abuPoint;
3 for m = 1 to NumberO fTours do
4 foreach point i in tour m do
5 foreach rourist p visiting point ¢ in tour m do
6 Create list of points L P, that are located close to point 7;
7 foreach point j in LP, do
8 if point j satisfies the constraints then
9 Evaluate point j;
10 if point j is not tabu then
11 if point j is better then BestNonT abuPoint then
12 ‘ BestNonTabuPoint=j;
13
14 else
15 if point j is better then BestT abuPoint then
16 ‘ BestTabuPoint=j;
17
18 end
19
20 end
21 end
22 end
23 end
24 end

Algorithm 5.1: Pseudo code of Separate operator

from LP, list, is created. The LOT list is populated by selecting tourists that visit at least a
point that is in L, list. The consumption time Tsq = ¢(x—1); + Wi + Tk + trr1) + W)
of tourist ¢ is used as a time limit within which one ore more points from L P, list have to
be in position to replace the current point of tourist g, in order for tourist g to be considered
as closely located to tourist p. In the following, for each identified closely located tourist ¢, a
list of points (LP,,) that could be visited by both tourists p and g, is created. Then, for each
candidate point in L P, list, the algorithm evaluates the feasibility of constraints, such as point
time window, budget, maximum point category, tour duration and at most one point constraint.
Further, a feasible point is evaluated by using the objective function expressed by Equation [4.1]
in Chapter 4] Afterwards, same as in the case of separate operator, based on the tabu status of
the evaluated point, a comparison to the best found non tabu or tabu point is made. The operator
always saves a better non tabu or tabu point when it finds one.

After all tourist have undergone the above procedure, the best non tabu and best tabu points
are returned. A returned point is associated with information about: tourists being joined, points

81

ting W; T Gty W

’Q@

ta-nk - Wi To tgeny Ween

Point of Interest

...... » Path of subgroup tjj— Travel time between point i and j
T;— Duration of visit at point i

Sub path of tourist p W, — Waiting time of the subgroup at point i

— Sub path of tourist ¢ W,i— Waiting time of tourist p at point i

Figure 5.3: Joining tourist p and ¢q at point P,

being replaced and position of join in the tour. Then, at the main algorithm level, either best non
tabu or best tabu solution is selected as the joining point (denoted as P, in Figure [5.3).

5.2.2.3 Insert operator

The insert operator tries to insert some new points for tourists that are scheduled to wait at some
points in the tour or have some spare time at the end of the tour. The operator takes a greedy
algorithms approach by trying to insert new non included points that have the highest satisfaction
factor for the respective tourists.

The procedure of insert operator (see Algorithm [5.3)) consists of three main loops, which, in
turn, enable consideration of each tourist p visiting each point point i in each tour m. In addition,
at the end of each tour m, the operator tries to insert new points in the spare time that might be
available. During the course of an iteration for tourist p visiting point i in tour m, a list of points
(LP,) that are closely located to point i is created. All points that could be inserted in between
point i-/ and point i, in the time defined by 75, = ¢(;_1); + Wi, are included into LP), list
(see Figure @) Afterwards, LP, list is filtered by removing points that do not meet problem

82

input : ListO fTourists, ListO f Points, NumberO fTours
output: BestNonT abuPoint, BestT abuPoint

1 begin
2 Initialize Best NonT abuPoint and BestT abuPoint;
3 foreach rourist p in the ListO fTourists do
4 for m = 1 to NumberO fTours do
5 foreach point i in tour m of tourist p do
6 Create list of points L P, that are located close to point ¢ of tourist p;
7 Create list of other tourists LOT" that can visit points in LP,;
8 foreach rourist g in LOT do
9 Create list of points L P, from L P, that could be visited by tourist p
and q;
10 foreach point j in LP,, do
11 if point j satisfies the constraints then
12 Evaluate point j;
13 if point j is not tabu then
14 if point j is better then Best N onT abuPoint then
15 ‘ BestNonTabuPoint=j;
16 end
17 else
18 if point j is better then BestT abuPoint then
19 ‘ BestTabuPoint=j;
20
21 end
22
23 end
24 end
25 end
26 end
27 end
28 end

Algorithm 5.2: Pseudo code of Join operator

constraints. Then, if L P, list does not become empty, the point with the highest score for tourist
p from LP, list is added before point i in tour m. If a new point is added into current tour m,
then the next iteration reconsiders again point i to check whether there is still room left before it
for insertion of new points.

5.2.3 Tabu Memories

For experimentation purposes, we design three different tabu memories, which differ in terms
of restrictiveness they pose to the search process. There are two two-dimensional memories,

83

-1k T Wi
4+ —> OO

Point of Interest tij— Travel time between point i and j

T;— Duration of visit at point i
""" » Tour path W, — Waiting time of the subgroup at point i
—» Path to visit the inserted point P, W, — Waiting time of tourist p at point /

Figure 5.4: Inserting point Py in the tour path of tourist p

input : ListO fTourists, ListO f Points, NumberQO fTours
output: Solution with new inserted points

1 begin
2 for m = 1 to NumberO fTours do
3 foreach point i in tour m do
4 foreach rourist p visiting point ¢ in tour m do
5 Create list of points L P, that are located close to point 7;
6 Remove points that do not satisfy the constraints from LFP,;
7 Select best scoring point k from LP,;
8 Add point & before point ¢ in tour m of tourist p;
9 end
10 end
11 end
12 end

Algorithm 5.3: Pseudo code of Insert operator

namely the rourist based memory (see Figure [5.5a) that is used to record operator information
about two different tourists and the point based memory (see Figure [5.5]b) that keeps record of
operator information whenever an operation between two points occurs, and a three-dimensional
one, called rourist and point based memory (see Figure [5.5]c) that saves operator information
about two tourists being involved in an operation at a certain point. In tourist trip planning
situations that we consider in this PhD thesis, the number of tourists is usually much less than
the number of points, therefore the tourist based memory is more restrictive than the point based

84

memory, since there is more probability that more tourists than points would be included into
respective memories. On the other hand, the fourist and point based memory can be classified
as the least restrictive one, since there is a low probability that two tourists would be very often
subject of an operator at the same point. In Figure [5.5] a cell, denoted as TBM;;, PBM; or
PTBM i, shows the iteration when a certain move was last time applied between tourists p; and
pj» points n; and n; or tourists p; and p; at point ny, respectively.

In our encoding, we save the value of current algorithm iteration into respective cells/cell of
memory, whenever the Separate or Join operator is applied. In the case of Separate operator, all
the cells that match the separated tourist with subgroup members from whom she/he has been
separated, are updated. Whereas, in the case of Join operator, only the cell that matches the
two tourists being joined is updated. Further, if the tourist and point based memory is utilized,
then the cells/cell of respective matrix that represents the point where the separation or joining
occurs, are/is updated. If the value of a cell in a memory equal to value zero that indicates that
the respective tourists (points, or tourists and point) are not used at all by the operators during the
search process, therefor eventual application of an operator between them is allowed (not tabu).
Conversely, when the value of a cell is grater than zero, then, that indicates that the respective
tourists (points, or tourists and point) are used at least once either by Separate ore Join operator,
and the corresponding value of the cell shows the latest iteration when an operator between the
tourists (points, or tourists and point) was utilized. In this case, in order to find out whether a
certain operator between two tourists (points, or tourists and point) is tabu, we initially define a
delta function A D (Equation that finds the difference between the current iteration and the
iteration when the operator was applied last time for them. Then, we define a function with the
name Tabu Status (TS) as expressed by Equation which uses the A D function to calculate
the tabu status. This function returns a true value in case the operator between tourists (points,
or tourists and point) is tabu, otherwise it returns a false value.

I —TMIpi][p;], tourist based memory
A D = { I —TM[n][nj], point based memory (5.2)
I —TM]ps)[p;][nk], tourist and point based memory

TS = AD < TLS (5.3)

Where:

p; - Tourist i number,

p; - Tourist j number,

n; - Point i number,

n; - Point j number,

ny - Point k number,

I - Current iteration number,

TM - Tabu memory (two or three dimensional array),

TLS - Tabu List Size (algorithm parameter described in next subsection)

85

n, n, n; cee Ny Ny

pl n,
pz n,
Pi n;
p(P—Z) nlN-Z)
Peay Ny
a) Sample tourist based memory (TBM)
ny
v 9 1 0 0 0 121 0 [0
568 0 0 0 0 [334] 6 0
e 4 0 0 |689] 9 0 0 0 379
0 0 0 8 9 0 0 6781 0 3
n, 20001 8 999 | O 0 0 0 35y 7 0 0
1, 0 0 7 0 0 0 0
P 0 146 | 990 3450 O 0 | 38
p: 63 0 0 0 0
581771 0 0
pj 0 055
0 0
Peo 0
p(P—Z)

p: ps bi . Pen P
¢) Sample tourist and point based memory (TPBM)

Figure 5.5: Sample representation of tabu memories

5.2.4 Tabu Search Implementation

The algorithm can be fine tuned by using four different parameters. Table [5.1] gives more
details about the utilized parameters, where first column shows the abbreviation, second column
represent the full name, whereas the third column describes the purpose of using a particular
parameter.

86

Abbreviation| Name Description

TLS Tabu List Size Specifies the number of iterations a certain
move cannot be used.
MI Maximum Iterations Defines the number of iterations the algorithm
shall run.
RIF Re-Initialization Fre- | Indicates the frequency of re-initialization
quency from a new solution.
OSF Operator Switching Fre- | Sets the frequency of switching between Sep-
quency arate and Join operators.

Table 5.1: Algorithm parameters

The procedure of the algorithm (see Algorithm [5.4)) starts by setting the tabu memory at
an empty state and defining a list of possible operators. Then, the data of all group members
are merged into a single virtual tourist with the tourist’s data merging procedure described in
subsection [4.2.2]of Chapter[d], and then the Group mode of the algorithm for solo trip planning
is applied, in order to create a joined initial solution, which is denoted as current solution S.. The
evaluation of the quality of a group solution is done by using the objective function expressed
by Equation (presented in Chapter {)). Next, the algorithm starts its iterative procedure by
entering into a loop that runs as far as the maximum number of iterations allowed (specified by
MI parameter) is not surpassed. During the course of an iteration, the algorithm applies either
Separate or Join operator. Since, the starting solution is a group solution, where all tourists
are joint together, it becomes obvious that the Separate operator should be applied in the first
couple of iterations as specified by OSF operator. Then, the algorithm alternates, every OSF
iterations, between applying Separate or Join operator. Same as with the algorithm for solo
trip planning, in each iteration, a best tabu and non-tabu solution is returned by the respective
operator (Separate or Join). The best non tabu solution is considered first for adaption as
current solution. If the non-tabu solution is not better than the current solution, then the best
tabu solution is tested whether it fulfills the aspiration criteria. Also, in this implementation, a
tabu solution is considered to be fulfilling the aspiration criteria only if it is better than the best
found solution so far.

Whenever Separate or Join operator is applied, it might happen that some tourists get sched-
uled to wait for some time for the other tourists so they can start the next visit together. In order
to try to reduce or eliminate this waiting time, we apply the Insert operator to try and insert new
points in the margins of the waiting time.

Further, in order increase the probability of not getting stack in some are of search space, a
random re-initiation procedure foresees restarting the search process from a new initial solution
by re-using the solo trip planning algorithm. This procedure is repeated every RIF iterations. The
solution that is returned by the solo trip planing algorithm is a group solution that is optimized
based on preferences and constraints of all tourists. Since the returned solution represents only
a starting solution that is used by group trip planning algorithm, we employ the solo trip planing
algorithm with its reduced value of MI parameter. As shown in Subsection [3.3.2] of Chapter
[the best value of MI parameter of the solo trip planning algorithm was 46000 iterations, but

87

when the algorithm is called to generate the starting solution for group trip planner, the value of
its respective MI parameter is set to 10000 iterations. This is reasoned based on two different
aspects. The first, it shortens the overall computation time, and the second, since the returned
solution is used as a starting solution, it does not fully optimize the starting solution based on the
objective function of solo trip planner, thus retaining a degree of diversity in the initial solution
for different algorithm callings.

The algorithm quits either if it reaches 30% of iterations without any improvement or if it
makes the foreseen maximum iterations by MI parameter.

Note that the source code of the algorithm could be downloaded on the following web page:
https://sites.google.com/site/ushtrimet/tourist-trip-planning.

5.3 Computational Experiments

In order to compare the approach presented in this chapter with the approaches from Chapter 4]
we conduct the computational experiments by using the same test of 148 instances that is de-
scribed in Section [3.3]of Chapter] The algorithm is coded by using Java 1.7. All experiments
are done by using an Intel i3 2.2 GHz processor with 2 GB of RAM memory. A single exper-
iment is conducted by making 10 runs for each instance in the test set. The best, average and
worst scores are presented for each instance and parameter value. In the following we present
a summary of experiments, while the complete results could be found in Appendix [Fand Ap-
pendix |G|and on-line through https://sites.google.com/site/ushtrimet/tourist-trip-planning.

5.3.1 Parameter tuning

Based on some preliminary experiments that included a subset of test instances, we selected a
range of values for tuning the values for each of the parameters of the algorithm. The value of
MI parameter is fixed to 10000 iterations. Increasing further the number of iterations only leads
to longer execution time.

The RIF parameter, as described in previous section, determines the frequency of reinitial-
ization of search process from a new solution that is generated by the algorithm for solo trip
planning. Hence, the RIF parameter will determine how often the solo trip planning algorithm
will be called. Even though, the solo trip planning algorithm is called with a reduced value of
MI=10000, it still requires an average time of execution of about 1.2 seconds. Thus, calling the
algorithm for solo trip planning very often makes the algorithm for group trip planning execute
more slowly. Therefore, based on the experiments with the complete data set and in accordance
to the selected value for the RIF parameter, we identify two different modes of group algorithm
execution, namely slow and fast mode. The algorithm operates in the slow mode when the value
of RIF parameter equals 5, whereas if the value of RIF parameter equals 40 the algorithm ex-
ecutes in the fast mode. In the next subsection, we give a detailed comparison of the complete
data set for the two selected values of RIF parameter.

In the following, the approach presented in this chapter is tagged with the name “Combined”
by considering that the produced trip itineraries are often combined between the tourists in the

88

input : LS MI,RIF,OSF
output: MCMTOPTW solution

1 begin
2 OperatorList = {Separate, Join, Insert};
3 S, = Create initial solution;
4 Evaluate S,;
5 Sb = SC;
6 ITterationCounter = 0;
7 TterationWithoutImprovement = 0;
8 TterationWithoutChangeO fCurrentSolution = 0;
9 while IterationCounter <= M1 do
10 Select CurrentOperator from Operator List;
11 Apply CurrentOperator in S;
12 Apply Insert operator in S¢;
13 if S, better then Sy, then
14 Sp = S¢;
15 IterationWithoutImprovement = 0;
16 else
17 ‘ IterationWithoutImprovement + 1,
18 end
19 if S. has changed then
20 ‘ IterationWithoutChangeO fCurrentSolution = 0;
21 else
22 ‘ IterationWithoutChangeO fCurrentSolution + 1;
23 end
24 if IterationWithoutChangeO fCurrentSolution equals RIF then
25 ‘ Reset S, to a random initial solution;
26 if IterationWithoutImprovement equals 0.3*M I then
27 ‘ Quit search;
28 IterationCounter + 1;
29 end
30 end

Algorithm 5.4: Algorithm for MCMTOPTW based on Tabu Search

group. Further, the presented results are averaged over 10 executions for each of the instances
in the data set. The algorithm is executed in the fast mode by setting RIF parameter value to 40.

In Table [5.2] we present the experimental results that are done by using the three different
types of tabu memories and five different tabu list sizes. The first column shows the type of tabu
memory, whereas the second column displays the size of tabu list. In the next three columns, we
present the gap of the Combined approach from the three approaches from Chapter @] namely
Solo, Subgroups and Group. A positive value of the gap means that the Combined approach has
the advantage in comparison to the other compared approach. In the last column, we represent

&9

the average execution time of the Combined approach.

Gap

Type of tabu memory \ TLS Solo \ Subgroups \ Group | Average time (S) ‘
5] 1836% | 14.65% | 2.70% 10.59

10| 1837% | 14.66% | 2.71% 10.28

, 15| 1829% | 14.58% | 2.62% 9.48
Tourist based 20 | 1839% | 14.68% | 2.73% 9.00
25 [1850% | 14.80% | 2.87% 9.50

5[1858% | 14.87% | 2.96% 9.56

10| 1856% | 14.86% | 2.94% 927

. 15| 1855% | 14.85% | 2.93% 9.10
Point based 20 | 1845% | 14.74% | 2.81% 8.76
25 [1847% | 14.76% | 2.83% 8.83

5| 1826% | 14.54% | 2.58% 943

10 | 1846% | 14.75% | 2.81% 939

. . 15| 1856% | 14.86% | 2.94% 923
Tourist and Point based =557 78 580 [~ 14.88% | 2.96% 9.03
25 [1852% | 14.81% | 2.88% 8.04

Table 5.2: Tabu list size

Based on current experiments, the results in Table [5.2]indicate that TLS=5 of point based
memory and TLS=20 of tourist and point based memory produce the best results in compar-
ison to the other considered values. In those two cases, the gap of Combined approach from
approaches such as Solo, Subgroups and Group is 18.58%, 14.87% and 2.96%, respectively,
except for TLS=20 of tourist and point based memory, which is slightly better (14.88%) when
Combined and Subgroups approaches are compared. Further, since for TLS=20 of tourist and
point based memory, the average execution time of algorithm is 9.03 seconds, which is for 0.53
seconds faster than in the case of TLS=5 of point based memory, we conclude that utilizing a
tourist and point based memory with a TLS value of 20 is the most favorable combination out
of all other considered combination of tabu memories and tabu list sizes. In addition, the results
show that a tourist based memory, besides producing worse solutions than the other two memo-
ries, it also causes the algorithm to execute a little slower, especially when the size of tabu list is
short (TLS=5 and TLS=10).

Further, Table shows the advantage of Combined mode over the three modes of Chapter
M) in respect to a range of different values of OSF parameter. The selection of values for the
experiment is done based on some preliminary experiments with a subset of test instances. In
this experiment, the first column presents the value of OSF parameter, while the other columns
are denoted same in the previous experiment.

In addition, based on current experiments, the experimental data in Table [5.3]indicate that,
in terms of quality of solutions, the range of higher selected values (from 50 to 110) yields con-
siderably better results than the lover range of selected values (from 3 to 40), but the execution
time in those cases is much slower (at times, it is more than three times slower than for the

90

Gap
] OSF Solo Subgroups | Group | Average time (S) ‘

3| 18.50% 14.80% | 2.87% 9.35

5| 18.59% 14.89% | 2.97 % 9.26
10 | 18.53% 14.82% | 2.89% 9.07
20 | 18.53% 14.82% | 2.90% 8.94
30 | 18.37% 14.66% | 2.71% 8.79
40 | 18.26% 14.55% | 2.58% 8.65
50 | 19.12% 15.44% | 3.61% 19.84
60 | 19.18% 15.50% | 3.67% 22.86
70 | 19.32% 15.65% | 3.84% 24.95
80 | 19.45% 15.79% | 3.99% 23.68
90 | 19.49% 15.83% | 4.04% 27.60
100 | 19.22% 15.54% | 3.72% 28.94
110 | 19.34% 15.68% | 3.87% 31.64

Table 5.3: Operator Switching Frequency

lower range of values). Such results might be correlated to the value of RIF parameter, which,
for this experiment, is set to 40. There is an indication that as soon the OSF parameter values
surpasses the value of RIF parameter, the quality of results increases in expense of a noticeable
increase of the computation time. This result suggests that in order to get solutions that are better
in terms of quality, the value of OSF parameter should be higher than value of RIF parameter,
although in that case the computation time increases too. According to the obtained results, the
most favorable value of OSF parameter is 90, which is a little more than the double value of RIF
parameter.

On the other hand, the lower range of selected values of OSF parameter has the advantage
in terms of computation time, which is 2.85 times faster then in the case of the higher range
of values. As result, in order to enforce a compromise between the quality of solutions and
computation time, we alternatively select two best values for the OSF operator, one being the
best value from the lower range (OSF=5) and the other one being the best value from the higher
range (OSF=90). We set the alternation frequency of OSF parameter to 5% of the maximum
number of iterations (F' = (5/100) x M I). Thus, the alternation between the selected values of
OSF occurs every F iterations. In the first F iterations, OSF takes value 5, and then, in the next
F iterations, it uses value 90. This alternation process continues as far as the algorithm runs.

5.3.2 Comparison with the previous approaches

In this subsection, we present the performance of the group trip algorithm (tagged as “Com-
bined”) in comparison to the three approaches from the previous chapter, namely Solo, Sub-
groups and Group. Further, we present a comparison between the slow and fast mode of the
execution of the Combined approach.

91

Tables [5.4] and [5.5] present the comparison results of the Combined approach with the
previous approaches, in terms of quality of solutions and time of execution, respectively. The
results are aggregated based on the instance types (originated from Solomon or Cordeau) and on
the number of tours in the instances. The test instances that belong to a certain type and have
certain number of tours are aggregated into a single value by calculating the average value over
10 executions for each instance in the subset.

In table the first column depicts the names of the methods being compared, whereas
the second and third column show the number of tours and the type of the aggregated test in-
stances, respectively. The last two columns show the average advantage of slow (RIF=5) and
fast (RIF=40) mode from the three previous modes, over the instances in a particular subset.

In terms of quality of solutions, the obtained results indicate that both modes (slow and
fast) of “Combined” approach yield to better results than any of the approaches from Chapter
Ml namely Solo, Subgroups and Group. The comparison results of Combined approach with
the Solo approach show that the difference is quite large (20.68% for slow mode and 19.48%
for the fast mode). This can be explained by the fact that Solo approach does not consider
social relationship between tourists in the group, and as result, the overall satisfaction of tourists
is calculated only based on the satisfaction of tourists with POIs. The difference margin of
the Combined approach with the Subgroups approach is narrower (17.08% for slow mode and
15.82% for the fast mode), since Subgroups approach takes into account the social relationship
between the tourists into the subgroups, but as we discussed in the previous chapter, in most of
the test instances, it is not a favorable method. Lastly, the Combined approach shows that it can
even obtain better results (5.47% for slow mode and 4.03% for the fast mode) than the Group
approach, which in overall proved to be better than the Solo and Subgroups approach.

Further, it is obvious that in comparison to all three previous approaches, the Combined
approach (in both modes) makes more improvement in the Cordeau based instances than on
the Solomon based instances. Such results, highlight the strength of the Combined approach in
solving difficult instances such as Cordeau based instances.

In reference to the time of execution, Table [5.5] shows the comparison results of all four
approaches. First and second column of Table [5.5]present the number of tours and instance
type of the test subset, respectively. The next three columns show the average execution time of
the previous approaches (Solo, Subgroups and Group), whereas the last two columns present the
execution time of Combined approach in both modes (Slow and Fast).

The experimental data in Table [5.5|show that the slow mode of Combined approach (as
the best performing approach in terms of quality), is the most intensive it terms of computation
time by requiring in average a little more than 150 seconds per execution, which is by multiple
times higher than of all the other presented approaches. On the other hand, in average, the fast
mode of the Combined approach is eight time faster then the slow mode and it is also two times
faster then the Solo approach, while being slower than the Subgroups approach (less than two
times) and the Group approach (around four times). In addition, for both modes of the Combined
approach, the computation time for the subset of Coredeau based instances is much higher than
for the subset of Solomon based instances. The ratio of computation time between Coredeau
and Solomon based instances is around 5 for slow mode and around 2 the for fast mode.

In terms of quality of solutions, in Table [5.6] we give a more detailed description between

92

Gap

Comparison \ M \ Test set | RIF=5 | RIF=40

1 | Solomon 5.30% 4.28%

1 | Cordeau | 21.14% | 19.81%

2 | Solomon | 13.36% | 12.29%

2 | Cordeau | 25.86% | 23.40%

. 3 | Solomon | 18.73% | 17.64%
Combined vs. 3 qeau | 25.58% | 24.20%
Solo 4 | Solomon | 23.49% | 22.28%
4 | Cordeau | 28.10% | 27.40%

1-4 | Solomon | 18.38% | 17.24%

1-4 | Cordeau | 26.09% | 24.75%

All 20.68% | 19.48%

1 | Solomon | 14.05% | 13.13%

1 | Cordeau | 18.28% | 16.90%

2 | Solomon | 13.97% | 12.90%

2 | Cordeau | 20.65% | 18.02%

. 3 | Solomon | 15.87% | 14.75%
Combined vs. ™37 qeau [20.18% | 18.70%
Subgroups 4 | Solomon | 17.32% | 16.01%
4 | Cordeau | 19.44% | 18.66%

1-4 | Solomon | 15.92% | 14.75%

1-4 | Cordeau | 19.79% | 18.34%

All 17.08% | 15.82%

1 | Solomon 9.15% 8.17%

1 | Cordeau | 11.78% | 10.29%

2 | Solomon 5.05% 3.87%

2 | Cordeau 9.24% 6.23%

. 3 | Solomon 4.04% 2.75%
Combined vs. 37" qeau | 7.81% | 6.11%
Group 4 | Solomon | 3.34% | 1.82%
4 | Cordeau 6.08% 5.17%

1-4 | Solomon 4.42% 3.09%

1-4 | Cordeau 7.91% 6.24%

All 547% | 4.03%

Table 5.4: Quality of solutions for different modes of algorithm execution

Time (S)

Combined
| M| Test set Solo Subgroups | Group Slow | Fast
1 | Solomon 11.08 3.58 1.35 37.27 8.48
1 | Cordeau 35.22 11.45 4.59 119.84 | 18.61
2 | Solomon 20.53 7.07 2.53 67.25 | 12.54
2 | Cordeau 68.19 24.04 8.45 230.22 | 31.85
3 | Solomon 31.28 10.78 4.27 101.46 | 18.17
3 | Cordeau | 103.82 32.14 13.36 264.17 | 42.53
4 | Solomon | 42.57 14.75 5.79 127.51 | 23.86
4 | Cordeau | 129.60 42.30 18.36 | 1028.61 | 59.50
1-4 | Solomon 21.09 9.05 3.49 83.37 | 15.76
1-4 | Cordeau 84.21 27.48 11.19 410.71 | 38.12
All 38.87 13.03 5.15 154.15 | 20.60

Table 5.5: Time of algorithm execution for different modes

the two modes of the Combined approach. While the first two columns are the same as in the
previous table, the last three columns represent the gap between the results of the slow and the
fast mode of the Combined approach. A positive gap means that the slow mode obtains better

results, otherwise the fast mode performs better.

Gap

] M \ Test set Best \ Avgerage \ Worst
1 | Solomon | 0.86% 1.07% | 1.02%

1 | Cordeau | 1.13% 1.66% | 3.63%
2 | Solomon | 0.65% 1.22% | 2.71%
2 | Cordeau | 2.64% 3.22% | 6.02%
3 | Solomon | 0.87% 1.32% | 2.18%
3 | Cordeau | 091% 1.82% | 4.39%
4 | Solomon | 0.41% 1.55% | 2.83%
4 | Cordeau | -0.09% 0.96% | 1.91%
1-4 | Solomon | 0.64% 1.37% | 2.45%
1-4 | Cordeau | 0.94% 1.78% | 3.73%
All 0.73% 1.49% | 2.83%

Table 5.6: Comparison of performance between slow and fast mode

In average, the slow mode obtains better results than the fast mode with a gap of 1.49%. An
other advantage of slow mode is that it improves the worst case solutions by 2.83% in average,
whereas the best case solutions are improved as well, but with gap of only 0.73%. In addition,
the slow mode is better than the fast mode with a higher margin for Cordeau based instances
(average gap is 1.78%) than for Solomon based instances (average gap is 1.37%). The fast

94

mode is slightly better only in the case of Cordeau subset of instances where number of tours
is four. In that case the gap, in favor of fast mode, is 0.09%. In overall, the slow mode has the
advantage of obtaining solutions with a higher quality than the fast mode, but it requires much
more computation efforts.

5.4 Conclusions

In this chapter, we presented an algorithm for planning the trip itinerary for tourist groups that
is built on top of the solo trip planning algorithm, which is used for construction of the starting
solution. The proposed algorithm was implemented under the framework of tabu search meta
heuristic with a neighborhood structure that relays on three operators, namely Separate, Join and
Insert. The solution that is returned by the algorithm creates personalized itineraries for each
tourist in the group, by allowing them to switch the company with different tourists during the
trip, in accordance to their preferences.

In the experimental results that were conducted in the test set of Solomon and Coredeau
based instance, based on the required computation efforts, we outlined two different modes of
algorithm execution, which were tagged as slow and fast mode. The slow mode of algorithm
execution proved to obtain in average better results for 1.49% than the fast mode, while be-
ing around eight times slower than fast mode. In addition, both modes of algorithm execution
outperform the previous approaches, namely Solo, Subgroups and Group, although their com-
putation time is in general increased. The fast mode of algorithm execution requires around 20
seconds of computation time for planning a combined trip itinerary for a group of tourist, which
is four time more than the time needed by the Group approach, which would otherwise enable
planning a joint itinerary throughout the trip.

When comparing the Combined mode to the Group mode, as the two most closest ap-
proaches in terms of quality of solutions, we can conclude that even if the Group mode is
executed for the same amount of time as the Combined mode, it can not obtain better results
than Combine mode, because the solution of Group mode is obtained by applying the solo trip
planning algorithm, which is primarily not intended to plan the trip for tourist groups. The
disadvantages in applying the solo trip planning algorithm for a tourist group are as follows:

o The satisfaction factors of all tourists are averaged for each individual points (as explained
in Subsection {.2.2]of Chapter {). This makes the Combined approach unable to consider
personal preferences of individual tourists.

e When tourists are kept into a single group, the personal constraints of individual tourist
must be enforced. Therefore the process of planing becomes more constraint and with
that the number of possible candidate solutions is decreased.

e The solo tour planning algorithm, when applied to plan a group trip itinerary, always
(throughout the trip) keeps the group members together, since it has no operators for
joining or separating tourists during the trip. Therefore, the solo tour planning algorithm
can not consider personal preferences of individual tourists.

95

In general, the new proposed approach can obtain better itineraries then the previous ap-
proaches by enabling tourists to get divided during the trip, so that sometimes they travel to-
gether (or in subgroups) and visit POIs of their common interest, and at other times they travel
alone so that they can visit POIs of their own specific interest.

We conclude that the slow mode of algorithm execution could be suitable for application of
planning a combined trip itinerary during the pre-trip phase, where tourists could afford to wait
few minutes in order to get a itinerary with a higher quality, whereas the fast mode could be
applicable in the on-trip phase where tourists might select the option of planning a trip itinerary
in a shorter time (in few seconds), although with a slight decrease in quality.

In reference to our first hypothesis, which was given a positive answer in Chapter [3] the
approach presented in this chapter supports again a positive answer, since the solo trip planing
algorithm is used as a sub algorithm for the group trip planing algorithm.

Finally, this chapter answers our third hypothesis, which hypothesized that new specialized
operators in local search techniques may further improve the solutions for tourist groups. We can
conclude that the third hypothesis is met, since by applying the two new operators for separating
and joining tourists we were able to further improve itineraries for tourists groups.

96

CHAPTER

Scenario Evaluation

In this chapter, we present the results of the evaluation of the three cases of the scenario (de-
scribed in Section [I.4]of Chapter [I)) with all four modes of itinerary planning. The scenarios are
executed against ten arbitrary selected POIs (belonging to five categories) in city of Prishtina. In
table the categories of the POIs are presented, whereas the detailed description and the cor-
responding data of POISs is given in Appendix [A]l In addition, with aim of clarifying the process
of calculation of solution evaluation, we show the steps of calculation of the solution evaluation
for Case 1 in the Solo and Subgroups mode of itinerary planning. Note that, since the scenario
cases are very simple examples, individual methods manage to solve them easily by returning
always the same results for different executions.

Point | Category Point | Category

POI'1 | Archeology POI 6 | Shopping center
POI 2 | Archeology POI7 | Nature

POI 3 | Architecture POI 8 | Nature

POI 4 | Architecture POI9 | Religious art
POI 5 | Shopping center POI 10 | Religious art

Table 6.1: Categories of ten POIs of an arbitrary tourism destination

Tables [6.2] [6.4]and [6.5] show the itinerary of the trip for Case 1 of the scenario for Solo,
Subgroups, Group and Combined mode, whereas Tables [6.6|and show the itinerary of Case
2 and Case 3 for the Combined mode of itinerary planning. Further, in all mantioned tables,
the first column shows the tourists that are planned to pursue a particular itinerary, whereas the
second column presents the respective tours and POIs planned in the itinerary. The next three
columns show the wait time, start time, end time of a visit to a POI, whereas the second last
column presents the amount of time that is left as unused at the end of a trip. Finally, the last
column shows the cost of an itinerary for each respective tourist.

97

6.1 Case1 - A group of three friends

’ Tourist \ Tour/POI \ Wait time \ Start time \ End time | Left time \ Cost ‘

Tour 1 9:00 11:30 0
POI 3 0 9:18 9:43
Woman 1 | POI 7 0 9:58 10:47
Woman 2 | Tour 2 9:00 10:55 35 33
POI 4 0 9:25 9:45
POI 8 0 10:04 10:23
Tour 1 9:00 11:30 0
POI 3 0 9:18 9:43
Man POI 7 0 9:58 10:47
Tour 2 9:00 11:11 19| 32
POI 10 0 9:35 9:55
POI 8 0 10:19 10:39

Table 6.2: Trip itinerary for tourists of Case 1 in Solo and Subgroups mode

As it can be seen in Table [6.2] the itinerary of Case 1 for Solo and Subgroups modes is the
same, where the women are scheduled to visit POI 3 and POI! 7 in the first tour and POI 4 and
POI 8 in the second tour, while the man is also scheduled to visit POI 3 and POI 7 in the first
tour, but in the second tour he is initially scheduled to visit POI 10 and then POI 8. Even though
the Solo mode plans the trip separately for each tourist, the resulting itineraries are totally the
same for both woman, whereas the man is also scheduled with same itinerary as the woman in
the first tour, while in the second tour he is scheduled to follow a different path. On the other
hand, the Subgroups mode puts the two woman in a subgroup, while keeping the man separately.
However, also the Subgroups mode produces the same itinerary as the Solo mode. The similarity
in the itineraries of three tourists (especially in the case of woman) can be explained due to their
similar preferences about POIs categories of nature and architecture. Nevertheless, the man in
contrast to the woman is scheduled to visit POI 10 in the second tour, as he is also interested
in visiting POIs that belong to category of religious art and due to his specification that he does
not want to visit more than one POI that belongs to category of architecture (see Table [A.TT]in
Appendix [A). It can be noticed that in the first tour, non of the tourists has any left (unused)
time at the end of the tour, while in the second tour the woman have 35 minutes left, whereas
the man has only 19 minutes left.

The details for calculation of the overall satisfaction of all tourists with the itineraries of
Solo and Subgroups mode are given in Table [6.3] The first column shows all POIs that are in the
itinerary, whereas the next four columns present the social relationship values (see Table [A.9]in
Appendix [A) between the tourists that visit a certain POI together. The last two columns show
the satisfaction of tourists when visiting a certain POI (satisfaction from POIs) in company of
certain group members (satisfaction from company of other tourists).

The calculation of the overall tourists satisfaction (evaluation of solution) with the proposed
itinerary is done by using the objective function (Equation [4.1)) that is defined in Section §.T]of

98

Social relationship
Satisfaction Satisfaction
POI Tourist Woman 1 | Woman 2 | Man . with
with POIs
company

Woman 1 4 5 40 9

POI3 | Woman 2 5 5 40 10
Man 5 4 50 9
Woman 1 4 45 4
POI4 M¥oman 2 5 45 5
Woman 1 4 5 40 9
POI7 | Woman 2 5 5 40 10
Man 5 4 40 9
Woman 1 4 40 4
POI8&8 | Woman 2 5 40 5
Man 40 0
POI 10 | Man 45 0
Subotal 191 195 | 193 505 74

Total 579

Table 6.3: Calculation of solution evaluation for Case 1 in Combined mode

Chapter 4] The satisfaction of a single tourist consists of two parts, which is the satisfaction for
visiting POIs and the satisfaction for being accompanied by the other tourists. Each time a tourist
visits a certain POI with some particular group members, the score of that POI for that tourist
and the sum of social relationship values of the tourist with the particular group members are
added into her/his overall satisfaction. Similarly, the process is repeated for all tourists, where
the sum of their satisfaction constitutes the overall group satisfaction with the tour. In following,
we present three functions, namely S,omani> Swoman2 and Syq, that reflect the overall satisfaction
of woman and man, respectively. Further, the S, function reflects the overall satisfaction of
all tourists.

Swoman = [40+ (4+5)] +[45+(4)]+[40+(4+5)]+[40+(4)] = 191
Swoman2= [40+ (5+5)] +[45+(5)]+[40+(5+5)]+[40+(5)] = 195
Sman= [50+ (5+4)] +[40+(5+4)]+[40+(0)]+[45+(0)] = 193
Stotar = 191 + 195 +193 = 579

Note that the procedure for calculation of the overall evaluation of the itinerary is the same
also for the cases of the Group and the Combined mode of trip planing, therefore, we do not
present it in such details in the remaining part of this section.

Further, the Group mode makes a joint itinerary for all tourists (see Table [6.4). In this case,
based on the procedure for merging tourists’ data (see Subsection {.2.2]of Chapter H)), the score

99

of a POl is calculated as the average value of the score of all tourists with that POI. In addition,
in order to meet the constraints set by each tourist regarding the budget limit and the maximum
number of POIs, the minimal values of the data of the respective tourists are taken. Considering
such constraints, the Group mode of trip planning prepares the itinerary that contains POI 3 and
POI 7 in the first tour and POI 10 and POI 8 in the second tour. The negative side of the itinerary
returned by Group mode is evident in the case of woman, who although they are not interested
in visiting POIs of category of religious art, they are still scheduled to visit POI 10, due to the
presence of man in the group, who has expressed interest in visiting POIs of such category. The
overall satisfaction of all tourists for the Group mode is 527, while the left time for the first tour
is zero and for the second tour it is 19 minutes.

Tourist Tour/POI | Wait time | Start time | End time | Left time \ Cost ‘

Tour 1 9:00 11:30 0
POI3 0 918 9:43

Woman 1
POI 7 0 9:58 10-47

Woman 2 "> 9:00 1111 19

Man our . N 32
POIL 10 0 9:35 9:55
POI 8 0 1019 10-39

Table 6.4: Trip itinerary for tourists of Case 1 in Group mode

Finally, Table [6.5]presents the itinerary that is returned by the Combined mode of algorithm
execution. It can be noticed that the returned itinerary is a combination of previous itineraries
returned by Solo and Subgroups mode on one side, and the itinerary returned by Group mode
on the other side. The woman visit their most preferred POIs (3, 7, 4 and 8), whereas also the
man visits his most preferred POIs (3, 7, 10 and 8). In this way, the woman are not scheduled to
visit POI 10 (which is out of their interest) as in the case of Group mode, whereas the man is not
scheduled to travel alone in the second tour as in the cases of Solo and Subgroups mode. The
Combined approach takes advantage of the left time at the end of the second tour, by scheduling
the woman to wait (15 minutes) for the man when they arrive at POI 8, so that they can make
the visit together, hence their overall satisfaction will be increased. In this way, the Combined
mode of itinerary planning increases the overall satisfaction of three tourists by assuming that
none of them finds it inconvenient to wait for the other group members in order to make a joint
visit. The overall satisfaction of all tourists with itinerary is 598, while the left time for both
tours is 19 minutes.

Note that Case 2 and Case 3 of the scenario are also executed against all proposed modes of
itinerary planning. Nevertheless, in the following we present only the itinerary that is returned
by the Combined mode, since, in both cases, it returns the best evaluating itinerary amongst the
others.

100

Tourist Tour/POI | Wait time | Start time | End time | Left time \ Cost ‘

Tour 1 9:00 11:30 0
POI 3 0 9:18 9:43
Woman 1 | POI7 0 9:58 10:47
Woman 2 | Tour 2 9:00 11:11 19| 33
POI 4 0 9:25 9:45
POI 8 15 10:19 10:39
Tour 1 9:00 11:30 0
POI 3 0 9:18 9:43
Man POI 7 0 9:58 10:47
Tour 2 9:00 11:11 19| 32
POI 10 0 9:35 9:55
POI 8 0 10:19 10:39

Table 6.5: Trip itinerary for tourists of Case 1 in Combined mode

6.2 Case 2 - A group of two couples

Table [6.6] shows that the two couples are scheduled with a combined (mixed) itinerary. They
all start the trip together by visiting POI I, and then they get separated, since the women are
scheduled to go to POI 5 and POI 6 (both shopping centers), while the men shall join them at
POI 6 after making a visit to POI 4. In addition, the women are assigned to wait (8 minutes) for
their men before starting the visit at POI 6. The overall evaluation for the Combined mode is
Scombinea=622, whilst the other modes are evaluated as in following: Ss,1, =590, Ssubgroups=590
and SGroup=594.

Tourist Tour/POI | Wait time | Start time | End time | Left time \ Cost ‘

Tour 1 10:00 12:47 13
Man 1 POI 1 0 10:10 10:40
Man 2 POI 4 0 10:52 11:22 24
POI6 8 11:43 12:23
Tour 1 10:00 12:47 13
Woman 1 | POI'1 0 10:10 10:40
Woman 2 | POIL 5 0 11:00 11:30 30
POI 6 0 11:43 12:23

Table 6.6: Trip itinerary for tourists of Case 2 in Combined mode

6.3 Case 3 - A group of seven student of arts

Table shows that the students of the Case 3 of the scenario are scheduled to be divided
into two subgroups, where the first subgroup consists of the first four students, whereas the other

101

subgroup has the remaining students. Both subgroups start the trip separately, where the first one
visits in sequence POI 10 and POI 8, while the second subgroup visits consecutively POI I and
POI 2. Afterwards, before the end of the trip, the second subgroup waits (5 minutes) for the first
subgroup so that they can get together before starting the visit to POI 9. The overall satisfaction
of tourists of Case 3 for the Combined mode is Scompinea=1191, whereas for the other modes,

the results areas follows: Sgo10=1138, Ssupgroups=1023 and S¢oup=1147.

Tourist Tour/POI | Wait time | Start time | End time | Left time \ Cost ‘
Student 1 Tour 1 8:00 11:23 37
Student 2 POI 10 0 8:35 9:15
Student 3 POI 8 0 9:39 9:59 19
Student 4 POI9 0 10:08 10:38
Tour 1 8:00 11:23 37
StudentS =5 a7 0 8:10 8:40
2:332‘;: S POI 2 0 8:55 9:45 21
POI 9 5 10:08 10:38

Table 6.7: Trip itinerary for tourists of Case 3 in Combined mode

6.4 Summary

In Table we present a summary of the results for the three cases. It is evident that in all
three cases of the scenario, the results of the Combined mode are better then the results of any
other mode. Although, the selected cases are primarily introduced for easing to the reader of
this thesis the understanding of the goal of the proposed methods, the obtained results are in
compliance with the results obtained from the computational experiments presented in Section
[5.3] of Chapter [5] where it was indicated that in general it could be possible to improve the
itinerary by applying the Combined mode of trip planning. Further, the results of the cases
of the scenario indicate that there might often exist situations in real life where tourist could
have their itinerary prepared into a combined (mixed) form, where at some POI they could be
together, and then at some other POI they could get separated or they could change the group.

] Case \ Solo \ Subgroups \ Group \ Combined

102

Case1 | 579 579 527 598
Case2 | 590 590 594 622
Case 3 | 1138 1023 1147 1191

Table 6.8: Summary of results for the three cases

CHAPTER

Conclusion

There is a trend to ever more sophisticated recommendation services in the domain of electronic
tourism. The traditionally supported services, such as recommendation of accommodations,
restaurants, organized tours, etc., are now being complemented with more specialized services
such as for example the case of recommendation of trip itineraries for tourists. In addition, group
trips are already, either directly or indirectly, supported by various online communities, which
take advantage of user relations to enable them to share tourism information that might be of
mutual relevance. In this regard, the research work in this PhD thesis was motivated by the
idea of by making it possible to plan the trip itinerary for a group of tourists, where individual
preferences of tourists and their mutual social relationship is considered. The goal was to plan a
trip itinerary that maximizes the satisfaction of all groups members, both in terms of scheduling
POIs that meet their individual preferences and in arranging the visits in groups (or subgroups)
of tourists, who are in close social relationship. In order to accomplish this task, we took an
evolutionary approach of research and development by first developing an algorithm that can
be used to plan the trip itinerary for a single tourist, and then, we used it as a starting point for
introducing three different approaches for planning the trip itinerary for a group of tourists.

This chapter aims to answer the research question (Section that was initially formulated
within this thesis. In order to do this, the main contributions that are achieved in this thesis
are revisited and discussed in the context of their contribution in answering the posed research
question. Finally, we present our views for future research work (Section in the envisioned
field.

7.1 Answer to Research Question

The work in this thesis was guided by the following research question:

Can we improve trip planning systems for tourist groups by considering individual
preferences and social relationship?

103

We answer the research question by developing and comparing four approaches for planning
the trip itinerary for a group of tourists. These approaches relay on three algorithms (artifacts
[[62]]) that are built based on a predefined sequence. The first algorithm (solo trip planning) is
developed with a twofold goal, where the first is to create an algorithm that is comparable with
existing approaches in the literature, and the second is to use it as a building block for developing
the two later algorithms. The second algorithm (tourist subgrouping) is aimed at finding out how
much could trip planning systems (for tourists groups) be improvement if tourists are grouped
into smaller subgroups based on their individual preferences and social relationship. Finally, the
third algorithm (group trip planning) is aimed to investigate further improvement of trip planning
systems (for tourist groups) by enabling tourists to change their group (company) while they
are on the trip, so that a more personalized trip itinerary is planned by accounting individual
preferences and social relationship.

In Chapter [3| we presented the solo trip planning algorithm that was developed based on
tabu search metaheuristic. The algorithm enables planning the trip itinerary by considering mul-
tiple period trips, time windows of POIs and maximum number of POIs of certain category (e.g.
archeology, architecture, nature, etc.). In the literature, such a problem is known with the name
Multi Constraint Team Orienteering Problem with Time Windows (MCTOPTW) [43]. The
algorithm can be attributed with two main components, namely the neighborhood exploration
and search diversification. The neighborhood exploration component explores the neighbors of
a given solution based on three operators that includes Insert operator (for inserting new non-
included points), Swap operator (for swapping two included points) and Replace operator (for
replacing two included points with two non-included points). Meanwhile, the search diversifi-
cation component employs a diversification mechanism based on four operators, namely Delete
(that removes two points from solution), Perturbate (that restarts the process from best solu-
tion), Restart (that restarts the search process from a random initial solution) and Penalize (that
penalizes frequently used moves).

Based on the experimental computations on the instances from literature, we can conclude
that our proposed algorithm obtains good results, although in average they are worse than the
results obtained by the state of the art approach of Souffriau et al. [119] for about 4%. Nev-
ertheless, when comparing the best returned solutions, our approach finds new better solutions
for 70 (out of 148) instances in comparison to the approach of Souffriau et al. [119] for the
MCTOPTW problem. In terms of computation time, we can not draw a conclusion in compar-
ing our approach with the approach of Souffriau et al. [[119], since we conduct the computation
experiments by using machines with different processing capabilities. However, our approach
gives good solutions within few seconds of computation time.

Despite its good performance for solo trip planning, this algorithm can not be appropriately
applied in the case of tourists groups, because it does not take into account the preferences
of multiple tourists and the social relationship between them. For instance, in Case 1 of the
scenario, when the algorithm was applied in the Solo and Subgroups approaches, the women
and man were scheduled to travel separately in their second tour, although they visit the same
place (POI 8). Further, also in Case 1 of the scenario, when the algorithm was applied in Group
approach, the women and the man were scheduled to visit POI 10 (religious art), since the man
is interested in such POI categories, although the women are not interested in that POI category.

104

However, based on the performance of the algorithm (in the test set existing in the literature),
both in terms of quality of solution and computation time, we can conclude that this algorithm
can be used to create a good starting solution when planning the itinerary for tourists groups,
where all tourists would either be initially scheduled to travel alone or together.

In order to theoretical model the group trip planning problem, we defined a new problem that
we called Multi Constraint Multiple Team Orienteering Problem with Time Windows (MCM-
TOPTW), which has two extensions in comparison to the existing MCTOPTW problem [43]].
The first extension is about modeling preferences and constraints of multiple tourists, whereas
the second one is about modeling interpersonal social relations of the tourists in the group. Fur-
ther, we generated a new test set based on the existing tests for the MCTOPTW problem [119].

In Chapter [we presented a method for clustering tourists into subgroups based on their
preferences about POIs and on their interpersonal relationships. The subgrouping method is
based on k-means algorithm and clusters tourists into subgroups by measuring the distance be-
tween any two of them using a function based on euclidean distance. The measurement of the
distance between any two tourists includes their: budget limit, interests about all POIs, limits
about the maximum number of POIs of different categories they want to visit, mutual social rela-
tionship and social relationship with other tourists. In order to keep the number of groups (value
of k) dynamic, we implemented an iterative procedure that executes the k-means algorithm for a
number of iterations, where the best evaluating subgrouping solution is returned. The evaluation
of a subgrouping solution is done by using the method of Calinski and Harabasz [18]]. The sub-
grouping method is used to identify tourist subgroups, for which a separate itinerary is planned
by applying the solo trip planning algorithm (the Subgroups approach).

Based on computational experiments on the instances of new MCMTOPTW problem and
by using the above presented distance function between tourists, despite our second hypothesis,
in overall, we can conclude that there is no indication that the process of clustering tourists
into subgroups yields to better trip itineraries for tourist groups. Nevertheless, the experimental
results indicate that Subgroups approach performs slightly better then Solo approach for test
instances with three and four number of tours.

A drawback that it obvious when planning the itinerary in the Subgroups and Group ap-
proach is related to the constraints (e.g. budget limit of 50 Euro, maximum 2 POIs of category
religious art, etc.) that individual tourists in subgroup/group impose, since when they are in
subgroup/group, the constraints of each of the members need to be respected, and as result the
process of planning the itinerary for the whole subgroup/group is much more constrained. In
addition, the Subgroups approach partially inherits non favorable features of Solo approach in
reference to the component of social relationship, since the relations between tourists that be-
long to different subgroups are always omitted, although such relations sometimes might be
week. On the other hand, the Group approach always considers the social relationship between
all tourists, since they are always together. Further, it remains an open question to investigate
utilization of other distance functions (between tourists) that could hypothetically improve the
subgrouping algorithm and with that increase its impact in planning better itineraries for tourist
groups.

In Chapter [5} we presented a group trip planning algorithm that combines the itineraries of
different group members with the goal of enabling them to change the group during the trip so

105

that they can visit most preferred PIOs with the closest related group members. Therefore, the
algorithm can consider trips with multiple tourists and the social relationship between them. The
algorithm is based on the general framework of tabu search meta heuristic and it is implemented
on top of the solo trip planning algorithm, since its initial solution is created by employing solo
trip planning algorithm. The neighborhood structure of the algorithm consists of three operators,
namely Separate (two tourists at a given POI), Join (two tourists at a given POI) and Insert
(new POIs in vacant time slots of tours). In addition, at some iterations (as determined by re-
initialization frequency - RIF parameter) the algorithm employees a diversification mechanism
by restarting the search process from a new initial solution.

The experimental results that were conducted on the instances of the new MCMTOPTW
enabled two identify two modes of group algorithm execution (the Combined approach), which
differentiate in terms of computation time and quality of solutions they produce. The slow mode
requires about 150 seconds per execution, while the fast mode needs about 20 seconds. The
quality of solutions obtained by the slow mode is in average for 1.5% higher then in the case of
fast mode.

In general, it can be concluded that the Combined approach (in both modes) of itinerary
planning obtains better itineraries then all three previous approaches. The difference in terms of
quality of solutions of the Combined approach (in its slow mode) from the Solo, the Subgroups
and the Group approaches is 20.68%, 17.08% and 5.47%, respectively. Thus, the Combined ap-
proach is able to make a combined itinerary for tourists by enabling them to change their groups
during the trip based on their preferences about POIs and the social relationship. For instance, if
Case 1 of the scenario is considered again, it can be noticed that the Combined approach meets
the preferences of the women by scheduling them to visit POI 4 (architecture) instead of visiting
POI 10 (religious art) as it was previously proposed by Group approach. Further, also in Case
1, the Solo and Subgroups approaches scheduled the man to travel separately from the women
for the whole duration of the second tour, whereas the Combined approach schedules them sep-
arately only when visiting POIs of their specific interest (POI 4 for the women and POI 10 for
the man).

As result, given the obtained computational results, we can finally answer our research ques-
tion with a “yes”, the trip planning systems for tourist groups obtain improved itineraries when
they consider separating and joining tourists for some part of the trip based on individual pref-
erences and social relationship.

7.2 Future Work

In this section, we discuss some opportunities for future research work that are divided into four
different paths that include test set extension, algorithmic perspective, feature extensions and
possible applications in other domains.

7.2.1 Test Set Extension

In reference to the generated test set (for the new MCMTOPTW problem), which is used to
evaluate the group trip planning algorithm, in Subsection [4.3.T]of Chapter] we presented the

106

details about modelling the test data for multiple tourists and the social relationship between
them. The data about preferences (score for POIs) and constraints (budget limit, and limits for
maximum number of POIs of certain category) of additional tourists very generated randomly
by following the same patterns as the existing data in the test instances. In addition, the data
about social relationship between tourists were also generated randomly in a domain range from
0 to 5 by assuming that the relationship between different tourists in the group has a random
distribution structure. Nevertheless, based on claims by many authors [32] [[140] [88]] in the
literature that the social relations between people in different networks, tend to have a power
of low distribution (scale free networks, where some persons have stronger relationship than
the others) [7]], it might be worth to investigate creating test data that model social relationship
between tourists based on a power of law distribution rather than in a random way.

Another extension to the problem could be enforcing a constraint that defines a minimum
number of tourists that are at any moment in the group. This constraint is typical in practice, as
often people do not want to remain alone or in a group of very few members.

7.2.2 Algorithmic Perspective

As described in Chapter [2] the simplest theoretical modelling for the solo trip planning problem
is the Orienteering Problem, which was proved by Golden et al. [57] to belong to the class of
NP-hard problems. Further, the other extensions of OP such as TOP, TOPTW, MCTOPTW are
at least as hard as OP. In addition, our extension of MCTOPTW problem to MCMTOPTW in
order to consider multiple tourists produces even larger search space.

As results, within the group trip planning algorithm we applied two new operators, where
one of them separates two tourist at a given POI, while the other one joins two of them at given
POI. In principal, the two new operators consider separating/joining any pair of tourists at any
given point in the itinerary, provided that they satisfy the constraints of the problem. Therefore,
one could assume that these two operators are atomic enough so that they can theoretically reach
any possible combination in the search space.

Nevertheless, investigating neighbourhood mechanisms that apply new operators for solving
the problem at hand might lead to improvements in efficiency or/and effectiveness of exploration
of search space, given that the problem is also highly constraint. For instance, a new possible
operator for investigation in future could be swapping one or more tourists between two sub-
groups that visit two different closely located POIs. Another more general operator could rotate
three or more tourists between their own subgroups so that each tourist goes in the subgroup
of another tourist based on some order that might be generated randomly or by using a specific
heuristic function.

Besides trying out new operators, it would also be interesting to apply other meta heuristic
techniques such as for instance memetic algorithms, or hybridization of meta heuristic tech-
niques with other techniques from constraint programming and operations research.

Gavalas et al. [45] identify application of parallel algorithms for computation of trip
itinerary as one of the future promising paths of research in the envisioned field. The search
process of the metaheuristics could be divided into separate parts so that they could be executed
in different computation threads. For instance, a possible separation of search process could
include parallel execution of different operators when exploring the neighbourhood of a given

107

current solution. This might enable more efficient utilization of large neighbourhood search
operators [114], which in a sequential oriented implementation might be very computation in-
tensive.

7.2.3 Feature Extensions and Applications in Other Domains

Besides the inclusion of features for automatic selection of the accommodation (hotel) at the end
of the trip [30]], it would be an added value for the tourist if the trip itinerary could also include
stays at restaurants so that tourists can eat and rest after visiting a couple of POIs. The process
of selection should be based on the preferences of tourists (e.g. time of eating, budget, cousin
type, indoor or outdoor, fast food, etc.) and on the geographical position of the restaurants.

In the approaches presented within this thesis and on the related approaches from the liter-
ature, the visit duration to a certain POI is considered to be the same (static) for any tourist. In
practice, it might happen that individual tourists (in accordance to their preferences) might pre-
fer to stay longer or shorter to a given POI. Therefor it would be interesting to investigate new
methods that determine the length of a visit (variable visit duration) to a POI based on tourist
preferences.

Many tourists might prefer walking through a “scenic route” [[63]] (e.g. down town of a city)
that has a number of POIs alongside. Nevertheless, consideration of scenic routes makes the
tourists trip planning problem further more complex, since the score of such route must be taken
into account.

A feature of added value for tourist trip planning systems could also be consideration acces-
sibility features to POIs, such as for example the POIs that are physically located at places (e.g.
hilly area, staircases, etc.) that are not reachable by people with disabilities.

During the on-trip phase, the itinerary might become infeasible due to different situations
that might arise, such as for instance closure of certain POI, transportation difficulties, whether
change, etc. Therefore investigating methods that automatically detect the infeasibility in the
itinerary might be an important path of future research in the field of tourist trip planning. In
addition, during the on-trip phase, it might also happen that new opportunities (POIs) might
become available for tourists (e.g. a football match is played in the city where tourist are doing
their trip). In such cases, it would be interesting to have a system that would automatically react
in updating the trip itinerary by including a visit to a such POI.

A possible application of the approach for group trip planning could be the problem of
assigning staff members to projects, where different staff members are engaged in different
projects during a working day. In that case, each project would have a score for each staff
member, whereas also the staff members have their preferences in reference to the co-workers
they want to work with. Therefore, the objective would be to find a plan for assigning staff
members to projects, so that they are assigned to the projects where they fit the most and the
groups consists of staff members that are highly related. In between the day, the staff members
could change their group. Although our approach covers the concept of assigning staff members
based on their score to projects and social relations between staff members, it is a question of
further investigation to determine a correlation between the constrains of this new problem and
the constraints that are supported by our approach (e.g. maximum budget, maximum POIs of
certain category, etc.).

108

List of Figures

[T Toursts” lifecycle TT41]]
(1.2 Main contributions of the thesisl,
|1.3 Research methodology framework|
[2.1 ~ General block scheme of tourist trip itinerary design system|.
[2.2”Social relations between 34 members of a Karate club (adapted from [143]]].
[2.3 Sample neighborhood representation 1n local search techniques|
2.4 A sample tabu memory for TSP problem|.
[2.5 Theoretical models of tourist trip planning problems|.
[3.1 ~ Sample representation of a solution with two tours|.
3.2 Insertionofanewpoint L
[3.3 Replacement of an existing point withanew point|.
3.4 Swapping between two existing points inside current solution|.
|4.1 Model of social relationship and satistaction factor with POIs for Case /|
|4.2 Solution representation for different tripmodes|
|4.3 Representation of tourists in a n, dimensional coordinate system|
4.4 Algorithm mode vs. number of tourists|.
[4.5 Algorithm mode vs. numberoftours|
5.1 Sample representation of a solution with two tourists and two tours|
[5.2 Separating touristpatpoint Pr|o
5.3 Joining tourtstpand gatpomt P,f oL,
[5.4 Inserting point Py 1n the tour path of touristp|
5.5 Sample representation of tabu memories| Lo Lo

16
18
20
26
29

50
51
51
52

62
65
66
73
75

79
80
82
84
86

109

List of Tables

1.1 Planning functionalities| 4
[3.1 Algorithm parameters|. 54
32 Tabulistsizel 56
3.3 Delete operator frequency|. Lo Lo 57
3.4 Perturbation frequency| 57
[3.5 Re-initialization frequency| oL L 58
[3.6 Penalization frequency|o 58
3.7 Performance results| 59
4.1~ Mode of algorithm execution vs. SRrange| 71
4.2 Mode of algorithm execution for different instance subsets| 74
5.1 Algorithm parameters|. e 87
5.2 Tabulistsizel 90
[5.3 Operator Switching Frequency| o oL 91
5.4 Quality of solutions for different modes of algorithm execution| 93
5.5 Time of algorithm execution for different modes| 94
5.6 Comparison of performance between slow and fastmode| 94
|6.1 Categories of ten POIs of an arbitrary tourism destination| 97
[6.2 'Trip itinerary for tourists of Case 1 in Solo and Subgroups mode| 98
6.3 Calculation of solution evaluation for Case I in Combined model 99
|6.4 Trip itinerary for tourists of Case 1 in Groupmode| 100
|6.5 Trip 1tinerary for tourists of Case 1 in Combined mode| 101
|6.6 Trip 1tinerary for tourists of Case 2 in Combined mode| 101
|67 Trip 1tinerary for tourists of Case 3 in Combined mode| 102
|6.8 Summary of results for the threecases| 102
[A.l Detaillsof POIS| 113
A2 Listoftypesof POIs| 114
IA.3 Listof categoriesof POIs| 114
|A.4 General tripdetails| L 114
[AS Tounstdetailsl 114

[A.6 Listofexamples|. e 114

[A.7 Dataofpoints| e e e 115
|[A.8 Distances betweenpoints| 115
|A.9 Case 1: Budget and tourists’ relationship|. 115
[A.10 Case 1: Satisfaction factors with POIs| 115
|A.11 Case 1: Maximum allowed point categories| 116
|A.12 Case 2: Budget and tourists’ relationship|. 116
[A.13 Case 2: Satisfaction factors with POIs| 116
|A.14 Case 2: Maximum allowed point categories| 116
|A.15 Case 3: Budget and tourists’ relationship|. 116
IA.16 Case 3: Satisfaction factors with POIs| 117
|A.17 Case 3: Maximum allowed point categories| 117

111

APPENDIX

Scenario data

We suppose a geographic location that contains N=10 POls, which are characterized with at-
tributes as presented in Table Further, there are five different types and categories of POIs
that are utilized in the scenario (see Table [A.2]and [A.3). In addition, the same starting and
ending point is used for all three examples of the scenario.

A single case of the scenario is characterized with basic trip details and data of tourists, as
described in tables [A.4]and [A.5] respectively. Table [A.6|presents the actual values used for the
basic trip details of the three cases in the scenario.

The data about the points and the tourists of the corresponding case could be found in
the respective tables. The data about points and the distances between points (including start-
ing/ending point) are presented in tables and [A.8] The data about tourists of a single case
are divided into three separate tables and are organized in parts as follows: tourists budget and
tourists’ relationship, satisfaction factors with POIs, and maximum allowed point categories.
Tables from up to show the data of tourists for all three envisioned cases of the
scenario.

Symbol/Abbreviation \ Description

b; Entrée fee

O; Open time

C; Closing time

PCj(i=1,... N; j=1, .., 5) Contains a logical value that indicates whether point

i belongs to category j. Not that a single point might
belong to different categories.
dij (i=1,...,N;j=1,..., N, 1 % 9) Distance (in unit of minutes) between point i and j

Table A.1: Details of POIs

113

E | Type name
1 Castle
2 Park
3 Mosque
4 Church
5 Miscellaneous

Table A.2: List of types of POIs

] # \ Category name
1 Archeology
2 Architecture
3 Religious art
4 Nature
5 Shopping center

Table A.3: List of categories of POIs

Symbol/Abbreviation Description
P Number of tourists
M Number of tours (days) for the trip
ST Start time of the tour
ET End time of the tour
Table A.4: General trip details
] Symbol/Abbreviation \ Description
B Budget limitation

S;j (i=1,..., P; j=1, ..., N) Satisfaction factor of tourist { with point j

SRjj (i=1, ..., P; j=1,..., P.i # j) | Social relationship level of tourist i with tourist j

MCy (i=1,..., P; j=1, ..., N) Maximum allowed number of points of category j

that are allowed by tourist i

Table A.5: Tourist details

114

Example | P M [ST [ET

Case 1 3 2 09:00 | 11:30
Case 2 4 1 10:00 | 13:00
Case 3 7 2 08:00 | 12:00

Table A.6: List of examples

Category

] Point \ Entry fee | Open time | Close time

PCI | PC2 | PC3 | PC4 | PC5

Pl 5 0 9] 1] o[o] o] o0
P2 10 0 145 1| o] of o] o
P3 7 30 1200 0] 1] o[o] 0
P4 9 0 145 o] 1| o] o] o©
P5 15 0 1200 o] o] 1] o] 0
P6 10 0 145 o] o] 1] o] o0
P7 12 0 1200 o] o] o] 1] 0
P8 5 0 130 0] o] of 1 0
P9 6 40 200 o] o[o] o 1

P10 8 0 80| o[o] o] of 1

Table A.7: Data of points
Distance

Point | Start/end point | P1 [P2 [P3 [P4 [P5 | P6 | P7 | P8 | P9 | P10
Pl 10] - [15]18[25[30[25]42[32[45] 35
P2 3015 - | 8[12]20]24[18[30[24] 26
P3 1818 8| - [16[23]10|28 |30 18| 28
P4 301251216] - [30[19[15][35[15| 44
P5 25302023 [14] - [13[28|19]15] 14
P6 12[25[24[10[10[13] - [33]16]26] 12
P7 16 421828273833 - [17] 5] 45
P8 22032[30[30 25191617 -] 9] 20
P9 10 34[24[18[27[15]13] 5] 9| - | 24
P10 30 182628 [22| 14| 12[45[20 24| -

Table A.8: Distances between points

Tourist | Budget \ SR1 \ SR2 \ SR3 ‘

T1 50 - 4 5
T2 40 5 - 5
T3 45 5 4 -

Table A.9: Case 1: Budget and tourists’ relationship

Tourist [P1 | P2 [P3 [P4 [P5 | P6 [P7 | P8 [P9 | P10 |

T1 0| 0] 40| 45 0| 04040 O 0
T2 | 0] 0] 40| 45 0] 040|140] O 0
T3 0] 0|50 (50| 0 0]40| 40| 20| 45

Table A.10: Case 1: Satisfaction factors with POIs

115

Tourist | MC1 | MC2 | MC3 | MC4 | MC5 |

T1 3 2 3 2 1
T2 3 2 3 2 1
T3 3 1 0 3 2

Table A.11: Case 1: Maximum allowed point categories

Tourist | Budget | SR1 [SR2 | SR3 | SR4 |

T1 50 - 5 4 3
T2 100 5 - 3 4
T3 50 4 3 - 5
T4 100 3 4 5 -

Table A.12: Case 2: Budget and tourists’ relationship

Tourist | P1 | P2 [P3 [P4 | P5 | P6 | P7 [P8 | P9 | P10 |
TI[50[50[50[40[10[20[10] 5] 5[10
T2[50[50] 0[10[45[50[10] 5[10] 10
T3[50[50[50[40[10[20] 5[5[5[10
T4[50[50[10[10[45[50] 5[10[10] 10

Table A.13: Case 2: Satisfaction factors with POIs

Tourist | MC1 | MC2 | MC3 | MC4 | MC5 |

T1 3 2 3 2 3
T2 3 2 3 3 4
T3 3 4 3 2 2
T4 3 2 3 3 2

Table A.14: Case 2: Maximum allowed point categories

Tourist | Budget | SR1 | SR2 | SR3 | SR4 | SR5 | SR6 | SR7

T1 70 - 2 2 3 1 3 1
T2 60 3 - 1 2 1 4 2
T3 80 1 1 - 2 1 1 2
T4 90 2 1 2 - 1 3 2
T5 70 2 3 1 1 - 5 1
T6 70 2 3 4 3 3 - 2
T7 75 3 2 4 3 1 2

Table A.15: Case 3: Budget and tourists’ relationship

116

Tourist | P1 | P2 [P3 [P4 [P5 | P6 [P7 | P§ [P9 | P10 |
T1 0] 0] 0[40[10]| 10]45[45] 50
T2| 0] 0] 0] 0[20] 5[5/45|45] 50
T3| 0] 0] 0] 0[30[10[10]45]45] 50
T4| 0] 0] 0] 0[20] 5[5/40|45] 50
T5 |50 [50] 0] 0[30[5[5] 0] 0] 50
T6 |50 [50] 0] 0[20] 5[5] 0] 0] 50
T7 50 [50] o] 0[30] 3[5] 0] 0] 50

Table A.16: Case 3: Satisfaction factors with POIs

Tourist

| MC1

| MC2

| MC3

| MC4 | MC5

T1

T2

T3

T4

TS

T6

W W W AR~ W

B W W] W W W

| | | | &~

IR IR RN R

T7

Wl W Wl W A~~~

Table A.17: Case 3: Maximum allowed point categories

117

APPENDIX B I

119

Results for MCTOPTW problem

ILS- AvFrage

Instance GRASP Best | Average | Worst time
(ms)

MCTOPMTW-1-c101.txt 320 260 | 240.00 220 1402.50
MCTOPMTW-1-c102.txt 360 320 | 316.67 250 1375.87
MCTOPMTW-1-c103.txt 400 390 | 377.33 370 1900.17
MCTOPMTW-1-c104.txt 420 400 | 400.00 400 1987.70
MCTOPMTW-1-c105.txt 340 340 | 334.00 220 1739.00
MCTOPMTW-1-c106.txt 340 340 | 337.67 300 2214.27
MCTOPMTW-1-c107.txt 370 350 | 349.33 330 2593.03
MCTOPMTW-1-c108.txt 370 370 | 370.00 370 1646.23
MCTOPMTW-1-¢c109.txt 380 380 | 380.00 380 2411.13
MCTOPMTW-1-r101.txt 198 170 | 122.50 71 523.07
MCTOPMTW-1-r102.txt 286 275 | 275.00 275 1456.47
MCTOPMTW-1-r103.txt 293 282 | 278.33 275 1576.13
MCTOPMTW-1-r104.txt 303 295 | 290.07 269 1369.90
MCTOPMTW-1-r105.txt 247 226 | 200.80 152 2155.73
MCTOPMTW-1-r106.txt 293 293 | 283.67 277 1578.20
MCTOPMTW-1-r107.txt 299 293 | 285.63 271 1911.67
MCTOPMTW-1-r108.txt 286 295 | 292.27 286 1981.33
MCTOPMTW-1-r109.txt 277 277 | 275.37 264 1872.47
MCTOPMTW-1-r110.txt 284 284 | 282.57 271 1606.00
MCTOPMTW-1-r111.txt 297 285 | 282.63 281 1861.67
MCTOPMTW-1-r112.txt 298 298 | 286.30 285 1453.53
MCTOPMTW-1-rc101.txt 219 203 191.20 163 1857.80
MCTOPMTW-1-rc102.txt 266 239 | 215.67 157 1811.37
MCTOPMTW-1-rc103.txt 266 252 | 250.30 242 1751.13
MCTOPMTW-1-rc104.txt 301 301 | 299.77 264 1286.20
MCTOPMTW-1-rc105.txt 244 233 | 217.03 183 2013.53
MCTOPMTW-1-rc106.txt 252 252 | 250.70 231 1534.30
MCTOPMTW-1-rc107.txt 277 267 | 264.93 254 1493.47
MCTOPMTW-1-rc108.txt 298 278 | 278.00 278 1974.13
MCTOPMTW-1-prO1.txt 308 301 | 271.40 253 1358.57
MCTOPMTW-1-pr02.txt 379 377 | 363.03 335 2875.57
MCTOPMTW-1-pr03.txt 388 381 | 349.97 318 5040.60
MCTOPMTW-1-pr04.txt 475 443 | 402.73 353 7617.83
MCTOPMTW-1-pr05.txt 526 535 | 464.27 392 10433.83

120

Average

Instance GgAS éP Best | Average | Worst time
(ms)

MCTOPMTW-1-pr07.txt 298 298 | 272.53 188 2220.97
MCTOPMTW-1-pr08.txt 463 435 | 406.10 357 4907.57
MCTOPMTW-1-pr09.txt 463 453 | 398.47 358 9453.97
MCTOPMTW-2-c101.txt 580 520 | 460.33 420 3073.10
MCTOPMTW-2-c102.txt 640 630 | 613.00 590 3487.53
MCTOPMTW-2-c103.txt 670 710 | 692.67 670 3774.13
MCTOPMTW-2-c104.txt 710 750 | 736.33 720 3969.60
MCTOPMTW-2-c105.txt 640 620 | 616.67 600 3794.30
MCTOPMTW-2-c106.txt 620 600 | 594.67 580 3475.03
MCTOPMTW-2-c107.txt 660 670 | 668.00 640 2872.57
MCTOPMTW-2-c108.txt 640 680 | 674.33 670 3492.33
MCTOPMTW-2-c109.txt 680 710 | 708.67 690 3814.30
MCTOPMTW-2-r101.txt 330 262 | 235.07 210 1758.67
MCTOPMTW-2-r102.txt 508 486 | 455.73 423 3474.10
MCTOPMTW-2-r103.txt 513 513 | 490.30 463 3581.03
MCTOPMTW-2-r104.txt 503 539 | 519.57 497 3798.83
MCTOPMTW-2-r105.txt 430 393 | 35143 330 2743.47
MCTOPMTW-2-r106.txt 529 529 | 493.50 447 3690.33
MCTOPMTW-2-r107.txt 517 529 | 508.73 479 3287.40
MCTOPMTW-2-r108.txt 525 550 | 530.73 507 3703.40
MCTOPMTW-2-r109.txt 466 493 | 475.17 442 3788.67
MCTOPMTW-2-r110.txt 502 510 | 489.93 459 3167.50
MCTOPMTW-2-r111.txt 517 529 | 511.97 492 4043.93
MCTOPMTW-2-r112.txt 515 506 | 494.80 479 3735.70
MCTOPMTW-2-rc101.txt 427 382 | 339.03 301 2878.40
MCTOPMTW-2-rc102.txt 495 466 | 447.80 416 3245.50
MCTOPMTW-2-rc103.txt 509 513 | 492.20 463 3254.37
MCTOPMTW-2-rc104.txt 565 564 | 540.43 509 3969.27
MCTOPMTW-2-rc105.txt 440 434 | 403.53 348 2820.27
MCTOPMTW-2-rc106.txt 455 442 | 419.73 363 2743.40
MCTOPMTW-2-rc107.txt 515 505 | 485.43 467 2400.00
MCTOPMTW-2-rc108.txt 546 526 | 509.87 414 3159.87
MCTOPMTW-2-prO1.txt 471 480 | 435.07 413 2019.97
MCTOPMTW-2-pr02.txt 611 652 | 622.53 573 5590.17
MCTOPMTW-2-pr03.txt 695 689 | 624.50 569 9745.37
MCTOPMTW-2-pr04.txt 795 804 | 727.03 635 15006.67
MCTOPMTW-2-pr05.txt 923 937 | 816.10 689 | 20262.50
MCTOPMTW-2-pr07.txt 544 546 | 499.83 469 3761.57
MCTOPMTW-2-pr08.txt 727 740 | 694.03 611 9226.60
MCTOPMTW-2-pr09.txt 755 765 | 654.33 580 15804.50

121

122

Average

Instance GgJASéP Best | Average | Worst time
(ms)

MCTOPMTW-3-c101.txt 770 660 | 628.33 590 4387.13
MCTOPMTW-3-c102.txt 860 840 | 808.33 770 4844.73
MCTOPMTW-3-c103.txt 910 960 | 933.67 900 5934.47
MCTOPMTW-3-c104.txt 940 1010 | 981.33 960 4723.87
MCTOPMTW-3-c105.txt 810 840 | 816.00 780 4522.53
MCTOPMTW-3-c106.txt 820 840 | 814.67 780 5000.93
MCTOPMTW-3-c107.txt 830 870 | 856.33 840 5112.50
MCTOPMTW-3-c108.txt 850 900 | 893.33 870 4195.03
MCTOPMTW-3-c109.txt 910 960 | 946.00 930 5476.60
MCTOPMTW-3-r101.txt 475 373 | 32847 292 2588.13
MCTOPMTW-3-r102.txt 666 640 | 592.63 548 5348.83
MCTOPMTW-3-r103.txt 669 707 | 669.33 610 6132.87
MCTOPMTW-3-r104.txt 737 749 | 721.63 678 6393.93
MCTOPMTW-3-r105.txt 609 532 | 491.40 453 4293.57
MCTOPMTW-3-r106.txt 695 710 | 658.83 614 5270.20
MCTOPMTW-3-r107.txt 710 740 | 707.50 673 5916.93
MCTOPMTW-3-r108.txt 731 770 | 742.93 719 5195.03
MCTOPMTW-3-r109.txt 668 692 | 651.50 585 5536.00
MCTOPMTW-3-r110.txt 717 717 | 671.20 623 5496.00
MCTOPMTW-3-r111.txt 705 748 | 702.13 660 5434.07
MCTOPMTW-3-r112.txt 729 738 | 709.17 667 5029.33
MCTOPMTW-3-rc101.txt 574 515 | 481.30 443 4248.33
MCTOPMTW-3-rc102.txt 694 665 | 621.47 579 4579.30
MCTOPMTW-3-rc103.txt 703 728 | 684.07 639 5463.33
MCTOPMTW-3-rc104.txt 786 818 | 760.73 700 5741.63
MCTOPMTW-3-rc105.txt 629 624 | 555.27 514 4340.77
MCTOPMTW-3-rc106.txt 676 676 | 644.67 572 4895.53
MCTOPMTW-3-rc107.txt 715 737 | 700.17 654 5433.77
MCTOPMTW-3-rc108.txt 729 747 | 721.13 684 4250.77
MCTOPMTW-3-prO1.txt 572 590 | 562.37 529 2196.33
MCTOPMTW-3-pr02.txt 830 864 | 814.87 752 8026.63
MCTOPMTW-3-pr03.txt 868 918 | 830.77 686 14493.83
MCTOPMTW-3-pr04.txt 1112 1081 | 972.40 836 | 21039.07
MCTOPMTW-3-pr05.txt 1284 1215 | 1131.23 | 990 | 31996.87
MCTOPMTW-3-pr07.txt 688 687 | 647.63 613 5038.87
MCTOPMTW-3-pr08.txt 1030 1003 | 923.53 862 13785.40
MCTOPMTW-3-pr09.txt 1056 1032 | 925.07 787 | 25647.03
MCTOPMTW-4-c101.txt 960 860 | 800.00 750 6425.97
MCTOPMTW-4-c102.txt 1070 1100 | 1026.67 | 960 7610.97
MCTOPMTW-4-c103.txt 1090 1160 | 1134.00 | 1100 | 6204.87

Average

Instance GgAS éP Best | Average | Worst time
(ms)

MCTOPMTW-4-c104.txt 1160 1210 | 1195.67 | 1170 | 6324.57
MCTOPMTW-4-c105.txt 1000 1030 | 996.33 950 6493.70
MCTOPMTW-4-c106.txt 1000 1030 | 1006.00 | 980 6479.77
MCTOPMTW-4-c107.txt 1060 1100 | 1077.33 | 1050 | 6778.70
MCTOPMTW-4-c108.txt 1030 1110 | 1098.67 | 1070 | 6921.90
MCTOPMTW-4-c109.txt 1090 1160 | 1147.33 | 1130 | 6782.67
MCTOPMTW-4-r101.txt 584 464 | 419.87 392 3386.23
MCTOPMTW-4-r102.txt 767 735 | 698.80 659 7010.73
MCTOPMTW-4-r103.txt 843 830 | 796.63 760 6984.63
MCTOPMTW-4-r104.txt 869 933 | 882.13 834 7755.63
MCTOPMTW-4-r105.txt 740 692 | 623.60 582 6105.97
MCTOPMTW-4-r106.txt 817 867 | 813.50 749 8412.57
MCTOPMTW-4-r107.txt 857 897 | 861.23 809 7196.23
MCTOPMTW-4-r108.txt 900 948 | 910.30 856 6840.47
MCTOPMTW-4-r109.txt 792 847 | 797.17 750 7357.33
MCTOPMTW-4-r110.txt 826 854 | 822.53 779 7314.50
MCTOPMTW-4-r111.txt 852 925 | 867.97 810 7685.13
MCTOPMTW-4-r112.txt 902 932 | 893.03 855 7606.40
MCTOPMTW-4-rc101.txt 745 671 | 614.97 559 5088.20
MCTOPMTW-4-rc102.txt 801 847 | 774.27 720 6695.87
MCTOPMTW-4-rc103.txt 881 911 862.03 819 6835.57
MCTOPMTW-4-rc104.txt 991 1035 | 966.13 920 6746.83
MCTOPMTW-4-rc105.txt 795 794 | 713.90 654 5684.80
MCTOPMTW-4-rc106.txt 837 875 | 807.27 753 6302.87
MCTOPMTW-4-rc107.txt 902 937 | 882.27 822 6561.70
MCTOPMTW-4-rc108.txt 945 974 | 916.03 866 6962.57
MCTOPMTW-4-prO1.txt 630 644 | 635.90 616 2149.13
MCTOPMTW-4-pr02.txt 974 1012 | 955.67 903 9314.53
MCTOPMTW-4-pr03.txt 1071 1061 | 985.53 878 17576.07
MCTOPMTW-4-pr0O4.txt 1329 1324 | 1197.83 | 1059 | 26326.70
MCTOPMTW-4-pr05.txt 1536 1585 | 1379.97 | 1266 | 36949.77
MCTOPMTW-4-pr07.txt 793 802 | 769.90 733 5657.03
MCTOPMTW-4-pr08.txt 1141 1209 | 1106.10 | 1041 | 17247.53
MCTOPMTW-4-pr09.txt 1321 1270 | 1153.67 | 1051 | 31344.63

123

APPENDIX C I

125

Results for MCMTOPTW problem in

Solo mode
Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-1-c101.txt 690 632 450 3.60
MCMTOPMTW-1-c102.txt | 1250 1245 1220 5.20
MCMTOPMTW-1-c103.txt | 1810 | 1785.7 1747 7.00
MCMTOPMTW-1-c104.txt | 2408 | 2375.5 | 2350 7.80
MCMTOPMTW-1-c105.txt | 2261 | 2186.8 | 2010 11.80
MCMTOPMTW-1-c106.txt | 2949 | 2857.3 | 2740 15.40
MCMTOPMTW-1-c107.txt | 3602 | 3565.2 | 3520 17.70
MCMTOPMTW-1-c108.txt | 4039 | 4020.8 | 3929 12.10
MCMTOPMTW-1-c109.txt | 4706 | 4676.5 | 4659 12.40
MCMTOPMTW-1-r101.txt 308 308 308 0.90
MCMTOPMTW-1-r102.txt 1055 | 1019.2 910 5.80
MCMTOPMTW-1-r103.txt 1487 | 14574 1432 7.10
MCMTOPMTW-1-r104.txt 1797 | 1781.9 1773 8.40
MCMTOPMTW-1-r105.txt 1716 | 1637.6 1514 12.30
MCMTOPMTW-1-r106.txt | 2738 2713 2667 15.00
MCMTOPMTW-1-r107.txt | 3393 | 3365.3 3297 15.40
MCMTOPMTW-1-r108.txt | 3687 | 3661.3 3642 14.90
MCMTOPMTW-1-r109.txt | 3612 | 3572.4 | 3522 17.40
MCMTOPMTW-1-r110.txt | 3961 | 3939.2 | 3907 17.70
MCMTOPMTW-1-rl1l.txt | 3949 | 3895.7 | 3862 19.40
MCMTOPMTW-1-r112.txt | 4370 | 4341.7 | 4255 17.80
MCMTOPMTW-1-rc101.txt | 508 434.5 304 3.90
MCMTOPMTW-1-rc102.txt | 899 843.9 762 5.60
MCMTOPMTW-1-rc103.txt | 1374 | 1354.1 1302 6.50
MCMTOPMTW-1-rcl104.txt | 1759 | 1746.7 1702 6.10
MCMTOPMTW-1-rc105.txt | 1951 | 1847.5 1668 11.60
MCMTOPMTW-1-rc106.txt | 2265 | 2210.4 | 2107 13.00
MCMTOPMTW-1-rc107.txt | 3011 | 2982.5 | 2951 13.10
MCMTOPMTW-1-rc108.txt | 2960 | 2938.7 | 2915 16.30
MCMTOPMTW-1-prO1.txt 889 863.5 842 2.60
MCMTOPMTW-1-pr02.txt 1605 | 1555.2 1479 8.70
MCMTOPMTW-1-prO3.txt | 2316 | 2235.5 | 2046 17.40
MCMTOPMTW-1-prO4.txt | 3539 3407 3136 32.50
MCMTOPMTW-1-pr05.txt | 5130 | 4979.4 | 4638 61.40

126

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-1-pr07.txt 3665 | 3581.6 | 3457 14.60
MCMTOPMTW-1-pr08.txt 6072 5920 5777 47.00
MCMTOPMTW-1-pr(9.txt 7608 | 7389.9 | 6864 97.60
MCMTOPMTW-2-c101.txt 1360 1268 1040 6.70
MCMTOPMTW-2-c102.txt 2429 | 2409.1 2380 9.20
MCMTOPMTW-2-c103.txt 3500 | 34747 | 3420 14.20
MCMTOPMTW-2-c104.txt 4680 | 46574 | 4640 15.80
MCMTOPMTW-2-c105.txt 5095 | 50544 | 5035 20.80
MCMTOPMTW-2-c106.txt 5747 | 5695.7 | 5630 22.60
MCMTOPMTW-2-c107.txt 7407 | 7378.9 | 7343 28.40
MCMTOPMTW-2-c108.txt 8338 | 8305.2 | 8262 30.90
MCMTOPMTW-2-c109.txt 9472 | 94437 | 9418 32.80
MCMTOPMTW-2-r101.txt 607 571.9 522 3.10
MCMTOPMTW-2-r102.txt 1849 1768.1 1677 11.00
MCMTOPMTW-2-r103.txt 2616 | 2564.6 | 2508 13.50
MCMTOPMTW-2-r104.txt 3949 | 39203 | 3886 19.50
MCMTOPMTW-2-r105.txt 2973 | 2888.3 | 2746 14.90
MCMTOPMTW-2-r106.txt 4970 | 48909 | 4798 24.00
MCMTOPMTW-2-r107.txt 6162 | 6084.5 | 6046 26.30
MCMTOPMTW-2-r108.txt 7992 | 7899.6 | 7619 37.00
MCMTOPMTW-2-r109.txt 7345 | 7163.8 | 6924 33.50
MCMTOPMTW-2-r110.txt 7670 | 75243 | 7426 35.10
MCMTOPMTW-2-r111.txt 7701 | 7627.5 | 7556 34.30
MCMTOPMTW-2-r112.txt 7893 | 7829.9 | 7747 33.00
MCMTOPMTW-2-rc101.txt 973 920.8 865 5.60
MCMTOPMTW-2-rc102.txt | 1772 | 1743.8 1707 8.80
MCMTOPMTW-2-rc103.txt | 2573 | 2534.7 | 2445 14.30
MCMTOPMTW-2-rc104.txt | 3626 | 3554.6 | 3486 17.40
MCMTOPMTW-2-rc105.txt | 3597 | 3516.8 | 3475 17.60
MCMTOPMTW-2-rc106.txt | 4373 | 4293.6 | 4218 20.00
MCMTOPMTW-2-rc107.txt | 5320 | 5271.6 | 5219 21.30
MCMTOPMTW-2-rc108.txt | 6159 6082 6042 23.90
MCMTOPMTW-2-prO1.txt 1094 | 1047.1 998 3.80
MCMTOPMTW-2-pr02.txt 2929 | 2847.3 | 2791 15.80
MCMTOPMTW-2-pr03.txt 4285 | 4140.3 | 4033 37.60
MCMTOPMTW-2-pr04.txt 6828 | 6528.1 6234 76.80
MCMTOPMTW-2-pr05.txt 9161 8952.1 8688 124.50
MCMTOPMTW-2-pr07.txt 7321 7220.1 7046 30.10
MCMTOPMTW-2-pr08.txt 10588 | 10322 | 10115 86.50
MCMTOPMTW-2-pr(9.txt 13726 | 13276.2 | 12913 170.40

127

128

Instance

\ Best \ Average \

Worst \ Average time (s) ‘

MCMTOPMTW-3-c101.txt 1740 1676.1 1620 10.80
MCMTOPMTW-3-c102.txt 3570 | 3516.6 3466 15.60
MCMTOPMTW-3-c103.txt 5205 | 5140.9 5098 20.30
MCMTOPMTW-3-c104.txt 6354 6298 6260 23.70
MCMTOPMTW-3-c105.txt 7236 | 7184.6 | 7121 28.80
MCMTOPMTW-3-c106.txt 8395 8308 8262 31.00
MCMTOPMTW-3-c107.txt 9972 | 9898.7 9802 41.60
MCMTOPMTW-3-c108.txt 11874 | 11828 | 11771 42.00
MCMTOPMTW-3-c109.txt 13566 | 13492.8 | 13435 46.90
MCMTOPMTW-3-r101.txt 947 875.4 804 5.40
MCMTOPMTW-3-r102.txt 2558 2437 2351 13.80
MCMTOPMTW-3-r103.txt 4211 4141 4091 25.60
MCMTOPMTW-3-r104.txt 5510 5399 5301 26.00
MCMTOPMTW-3-r105.txt 4587 | 4536.3 4482 24.20
MCMTOPMTW-3-r106.txt 6854 6801 6715 35.70
MCMTOPMTW-3-r107.txt 9256 | 9122.6 8985 45.50
MCMTOPMTW-3-r108.txt 10734 | 10640.9 | 10584 49.80
MCMTOPMTW-3-r109.txt 9720 9606 9352 45.60
MCMTOPMTW-3-r110.txt 10663 | 10552.2 | 10466 50.10
MCMTOPMTW-3-r111.txt 11591 | 11391.8 | 11169 55.60
MCMTOPMTW-3-r112.txt 11896 | 11813.2 | 11665 57.10
MCMTOPMTW-3-rc101.txt | 1398 1302.7 1223 9.20
MCMTOPMTW-3-rc102.txt | 2568 | 2484.8 2391 16.00
MCMTOPMTW-3-rc103.txt | 3675 | 3621.6 3527 17.30
MCMTOPMTW-3-rc104.txt | 5549 | 5460.8 5391 25.50
MCMTOPMTW-3-rc105.txt | 4963 | 48499 | 4760 25.70
MCMTOPMTW-3-rc106.txt | 6532 | 64474 6361 35.60
MCMTOPMTW-3-rc107.txt | 7772 | 7642.6 | 7515 38.60
MCMTOPMTW-3-rc108.txt | 9493 | 9355.5 9218 44.00
MCMTOPMTW-3-prO1.txt 1735 1703.5 1678 4.60
MCMTOPMTW-3-pr02.txt 4081 3920.3 3807 26.50
MCMTOPMTW-3-pr03.txt 5799 | 5667.2 5511 54.00
MCMTOPMTW-3-pr04.txt 8821 8594.3 8279 108.00
MCMTOPMTW-3-pr05.txt 12179 | 11954.6 | 11645 197.80
MCMTOPMTW-3-pr07.txt 9913 | 9741.1 9518 37.00
MCMTOPMTW-3-pr08.txt 14758 | 14501.9 | 14120 125.70
MCMTOPMTW-3-pr09.txt 19253 | 18955.1 | 18445 277.00
MCMTOPMTW-4-c101.txt 2240 | 2180.6 2130 14.70
MCMTOPMTW-4-c102.txt 4488 | 4445.6 | 4392 25.20
MCMTOPMTW-4-c103.txt 6420 6375 6327 29.20

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-4-c104.txt 8590 | 8546.5 8515 37.50
MCMTOPMTW-4-¢c105.txt 8896 | 8795.4 | 8681 37.30
MCMTOPMTW-4-c106.txt | 10608 | 10558.5 | 10478 43.00
MCMTOPMTW-4-c107.txt | 13566 | 13470.5 | 13359 60.40
MCMTOPMTW-4-c108.txt | 14846 | 14757.6 | 14707 54.40
MCMTOPMTW-4-c109.txt | 17345 | 17296 | 17245 68.00
MCMTOPMTW-4-r101.txt 1318 1113.7 1042 6.60
MCMTOPMTW-4-r102.txt 3108 | 30559 | 2957 18.90
MCMTOPMTW-4-r103.txt 4633 | 4527.3 | 4290 30.20
MCMTOPMTW-4-r104.txt 6968 | 6844.7 | 6706 42.90
MCMTOPMTW-4-r105.txt 6161 | 5991.3 | 5890 33.20
MCMTOPMTW-4-r106.txt 9040 | 8924.8 8829 55.00
MCMTOPMTW-4-r107.txt 10733 | 10548.7 | 10303 54.70
MCMTOPMTW-4-r108.txt 12397 | 12302.6 | 12153 62.10
MCMTOPMTW-4-r109.txt 13453 | 13263.9 | 13119 72.00
MCMTOPMTW-4-r110.txt 14139 | 14014 | 13894 67.70
MCMTOPMTW-4-r111.txt 14323 | 14113.2 | 13844 71.00
MCMTOPMTW-4-r112.txt 14299 | 14165.6 | 14026 73.90
MCMTOPMTW-4-rc101.txt | 1612 | 1542.8 1471 11.30
MCMTOPMTW-4-rc102.txt | 3146 | 3030.3 | 2807 17.50
MCMTOPMTW-4-rc103.txt | 5187 | 5060.5 | 4959 28.20
MCMTOPMTW-4-rc104.txt | 6857 | 67932 | 6708 35.80
MCMTOPMTW-4-rc105.txt | 6419 | 62552 | 6089 30.00
MCMTOPMTW-4-rc106.txt | 8164 | 80109 | 7850 40.90
MCMTOPMTW-4-rc107.txt | 10679 | 10534.7 | 10399 52.20
MCMTOPMTW-4-rc108.txt | 12783 | 12530.5 | 12340 60.70
MCMTOPMTW-4-prO1.txt 1955 1935.5 1919 4.30
MCMTOPMTW-4-pr02.txt 4684 | 4504.1 4369 29.20
MCMTOPMTW-4-pr03.txt 7507 | 7159.1 6962 71.70
MCMTOPMTW-4-pr04.txt 10978 | 10777.7 | 10494 136.50
MCMTOPMTW-4-pr(05.txt 15246 | 14905.3 | 14475 264.60
MCMTOPMTW-4-pr(7.txt 11472 | 11331.3 | 11218 45.20
MCMTOPMTW-4-pr08.txt 18332 | 17980.2 | 17706 161.50
MCMTOPMTW-4-pr09.txt | 23634 | 23077.8 | 22704 323.80

129

APPENDIX D I

131

Results for MCMTOPTW problem in
Subgroups mode

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-1-c101.txt 700 643 430 3.10
MCMTOPMTW-1-c102.txt | 1063 | 1051.3 1050 3.00
MCMTOPMTW-1-c103.txt | 1682 | 1656.6 1616 2.80
MCMTOPMTW-1-c104.txt | 2230 2226 2210 2.50
MCMTOPMTW-1-c105.txt | 1849 | 1836.5 1744 2.50
MCMTOPMTW-1-c106.txt | 2822 | 2766.7 | 2615 4.20
MCMTOPMTW-1-c107.txt | 3234 | 3202.3 3145 3.30
MCMTOPMTW-1-c108.txt | 3568 | 3556.1 3514 3.60
MCMTOPMTW-1-c109.txt | 4312 | 4250.4 | 4158 2.10
MCMTOPMTW-1-r101.txt 308 308 308 0.90
MCMTOPMTW-1-r102.txt 1041 971.5 740 4.20
MCMTOPMTW-1-r103.txt 1373 | 1346.8 1182 3.50
MCMTOPMTW-1-r104.txt 1604 | 1589.9 1554 3.90
MCMTOPMTW-1-r105.txt 1643 | 1483.1 1267 3.60
MCMTOPMTW-1-r106.txt | 2592 | 2537.9 | 2417 7.40
MCMTOPMTW-1-r107.txt | 3224 | 3182.5 3124 2.80
MCMTOPMTW-1-r108.txt | 3485 | 3423.5 3321 6.80
MCMTOPMTW-1-r109.txt | 3397 | 31379 | 2783 3.20
MCMTOPMTW-1-r110.txt | 3813 | 3699.1 3606 5.40
MCMTOPMTW-1-r111.txt | 3490 | 3358.8 | 3317 2.80
MCMTOPMTW-1-r112.txt | 4139 | 3983.3 3876 3.40
MCMTOPMTW-1-rc101.txt | 519 453.6 364 4.40
MCMTOPMTW-1-rc102.txt | 776 739.4 659 2.50
MCMTOPMTW-1-rc103.txt | 1313 | 1300.8 1274 2.90
MCMTOPMTW-1-rc104.txt | 1632 | 1627.2 1626 2.90
MCMTOPMTW-1-rc105.txt | 1879 1704 1612 3.20
MCMTOPMTW-1-rc106.txt | 2062 1921 1627 5.10
MCMTOPMTW-1-rc107.txt | 2525 | 2437.7 | 2233 3.00
MCMTOPMTW-1-rc108.txt | 2744 | 2585.1 2513 4.80
MCMTOPMTW-1-prO1.txt 889 859.5 840 3.10
MCMTOPMTW-1-pr02.txt 1622 | 1574.9 1499 6.10
MCMTOPMTW-1-prO3.txt | 2422 | 2326.7 1948 8.50
MCMTOPMTW-1-prO4.txt | 3469 | 3304.1 3173 18.40
MCMTOPMTW-1-prO5.txt | 5419 | 5119.2 | 4658 21.00

132

Instance

\ Best \ Average \ Worst \ Average time (s) ‘

MCMTOPMTW-1-pr07.txt 3746 | 3672.1 3417 3.60
MCMTOPMTW-1-pr08.txt 6090 | 5903.6 5074 14.20
MCMTOPMTW-1-pr(9.txt 8699 8257 7821 16.70
MCMTOPMTW-2-c101.txt 1350 1289.7 1239 6.30
MCMTOPMTW-2-c102.txt 2438 | 2404.8 2370 6.50
MCMTOPMTW-2-c103.txt 3278 | 32532 3230 6.00
MCMTOPMTW-2-c104.txt 4460 | 44139 | 4345 10.00
MCMTOPMTW-2-c105.txt 5162 | 4992.1 4875 6.60
MCMTOPMTW-2-c106.txt 5652 | 5615.3 5570 11.10
MCMTOPMTW-2-c107.txt 7527 | T7211.5 6941 8.20
MCMTOPMTW-2-c108.txt 8165 8014.8 7941 15.70
MCMTOPMTW-2-c109.txt 9804 | 9536.4 9343 5.30
MCMTOPMTW-2-r101.txt 607 571.9 518 3.30
MCMTOPMTW-2-r102.txt 1786 1707.3 1632 7.10
MCMTOPMTW-2-r103.txt 2621 2554.5 2516 5.90
MCMTOPMTW-2-r104.txt 3924 | 3864.2 3795 11.20
MCMTOPMTW-2-r105.txt 2744 | 2637.3 2424 3.80
MCMTOPMTW-2-r106.txt 4972 | 4850.6 | 4706 5.20
MCMTOPMTW-2-r107.txt 6011 5905.4 5838 5.00
MCMTOPMTW-2-r108.txt 8729 | 8545.7 8185 6.70
MCMTOPMTW-2-r109.txt 7711 7458.6 6553 6.70
MCMTOPMTW-2-r110.txt 8425 8224.5 7990 6.40
MCMTOPMTW-2-r111.txt 7160 | 7070.3 6942 6.30
MCMTOPMTW-2-r112.txt 8546 | 8407.7 8222 5.70
MCMTOPMTW-2-rc101.txt 985 930.5 810 7.20
MCMTOPMTW-2-rc102.txt | 1702 1667 1626 5.30
MCMTOPMTW-2-rc103.txt | 2525 | 2474.7 2415 5.60
MCMTOPMTW-2-rc104.txt | 3284 | 32524 3219 9.90
MCMTOPMTW-2-rc105.txt | 3797 | 3521.7 3200 5.60
MCMTOPMTW-2-rc106.txt | 4209 | 4138.8 4032 10.10
MCMTOPMTW-2-rc107.txt | 5750 | 5238.8 5081 5.40
MCMTOPMTW-2-rc108.txt | 5804 | 5631.7 5410 6.90
MCMTOPMTW-2-prO1.txt 1082 1047.4 1021 3.80
MCMTOPMTW-2-pr02.txt 3078 | 29854 2892 10.40
MCMTOPMTW-2-pr03.txt 4660 | 4474.8 4246 14.50
MCMTOPMTW-2-pr04.txt 6612 6264 5925 47.10
MCMTOPMTW-2-pr05.txt 9877 | 92399 8773 40.00
MCMTOPMTW-2-pr07.txt 8506 | 8308.8 8085 6.80
MCMTOPMTW-2-pr08.txt 12708 | 11873.5 | 11169 17.90
MCMTOPMTW-2-pr(9.txt 14881 | 13957.8 | 13424 51.80

133

134

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-3-c101.txt 1734 | 1681.5 1537 9.50
MCMTOPMTW-3-c102.txt 3498 | 3460.8 | 3400 10.60
MCMTOPMTW-3-c103.txt 4940 | 4860.8 | 4808 9.70
MCMTOPMTW-3-c104.txt 6151 | 6084.7 | 6010 13.60
MCMTOPMTW-3-c105.txt 7160 | 70232 | 6933 7.50
MCMTOPMTW-3-c106.txt 8543 | 8366.5 8242 6.80
MCMTOPMTW-3-c107.txt | 10178 | 10082.3 | 9980 8.00
MCMTOPMTW-3-c108.txt | 12586 | 12435.2 | 12260 8.90
MCMTOPMTW-3-c109.txt | 14332 | 14237.7 | 14123 7.50
MCMTOPMTW-3-r101.txt 902 880.7 838 5.70
MCMTOPMTW-3-r102.txt 2646 | 2533.1 2479 9.20
MCMTOPMTW-3-r103.txt 4452 4234 4016 11.60
MCMTOPMTW-3-r104.txt 5775 | 5644.5 5483 10.70
MCMTOPMTW-3-r105.txt 4836 | 4635.1 4298 8.20
MCMTOPMTW-3-r106.txt 6820 | 66544 | 6571 18.30
MCMTOPMTW-3-r107.txt 10403 | 9824.7 | 9594 9.70
MCMTOPMTW-3-r108.txt 11640 | 11050.6 | 10709 13.80
MCMTOPMTW-3-r109.txt 10565 | 10299.4 | 10068 8.10
MCMTOPMTW-3-r110.txt 12152 | 11658.8 | 11100 11.50
MCMTOPMTW-3-r111.txt 13287 | 13013.6 | 12499 8.50
MCMTOPMTW-3-r112.txt 13293 | 12182.6 | 11769 19.80
MCMTOPMTW-3-rc101.txt | 1381 1303.1 1247 9.20
MCMTOPMTW-3-rc102.txt | 2671 | 2563.4 | 2449 9.70
MCMTOPMTW-3-rc103.txt | 3726 | 36704 | 3622 9.10
MCMTOPMTW-3-rc104.txt | 5414 | 53314 | 5140 15.90
MCMTOPMTW-3-rc105.txt | 5244 | 5046.5 | 4910 7.20
MCMTOPMTW-3-rc106.txt | 6676 | 6501.3 6244 13.90
MCMTOPMTW-3-rc107.txt | 8276 | 8082.1 7916 8.00
MCMTOPMTW-3-rc108.txt | 9621 | 9365.5 | 9193 22.50
MCMTOPMTW-3-prO1.txt 1738 1700.2 1662 5.10
MCMTOPMTW-3-pr02.txt 4234 | 4068.3 3941 16.10
MCMTOPMTW-3-pr03.txt 5801 | 55744 | 5243 24.50
MCMTOPMTW-3-pr04.txt 9838 9084 8581 43.30
MCMTOPMTW-3-pr05.txt 12751 | 12068.7 | 11183 64.70
MCMTOPMTW-3-pr07.txt 11517 | 11216.4 | 10974 8.50
MCMTOPMTW-3-pr08.txt 15463 | 15063.3 | 14505 48.30
MCMTOPMTW-3-pr09.txt | 22937 | 21706.7 | 19774 46.60
MCMTOPMTW-4-c101.txt 2320 | 22042 | 2140 17.10
MCMTOPMTW-4-c102.txt 4684 | 45922 | 4494 15.80
MCMTOPMTW-4-c103.txt 6457 | 6411.9 | 6347 10.60

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-4-c104.txt 8706 | 8571.5 8457 15.70
MCMTOPMTW-4-¢c105.txt 9263 | 9065.6 | 8818 10.60
MCMTOPMTW-4-c106.txt | 11239 | 11099.9 | 11034 9.80
MCMTOPMTW-4-c107.txt | 14857 | 14674.4 | 14433 13.90
MCMTOPMTW-4-c108.txt | 15541 | 15401.2 | 15286 15.10
MCMTOPMTW-4-c109.txt | 20398 | 20018.4 | 19730 11.90
MCMTOPMTW-4-r101.txt 1176 | 1130.7 1096 6.90
MCMTOPMTW-4-r102.txt 3303 | 32453 | 3189 12.20
MCMTOPMTW-4-r103.txt 4596 | 4453.8 | 4233 13.90
MCMTOPMTW-4-r104.txt 7014 | 6795.5 | 6560 22.90
MCMTOPMTW-4-r105.txt 6361 | 6144.6 | 5626 10.10
MCMTOPMTW-4-r106.txt 10464 | 9936.2 | 9484 13.90
MCMTOPMTW-4-r107.txt 11163 | 10947 | 10742 24.60
MCMTOPMTW-4-r108.txt 14319 | 13848 | 13275 11.00
MCMTOPMTW-4-r109.txt 16316 | 14979 | 13852 19.90
MCMTOPMTW-4-r110.txt 15117 | 14499.7 | 14146 25.40
MCMTOPMTW-4-r111.txt 16755 | 16559.5 | 16277 10.50
MCMTOPMTW-4-r112.txt 17415 | 16840.5 | 16263 13.60
MCMTOPMTW-4-rc101.txt | 1614 | 1549.3 1495 11.00
MCMTOPMTW-4-rc102.txt | 3201 31114 | 3034 13.10
MCMTOPMTW-4-rc103.txt | 5532 | 5301.9 | 5023 14.60
MCMTOPMTW-4-rc104.txt | 7504 | 7221.1 6854 15.90
MCMTOPMTW-4-rc105.txt | 7550 | 7309.5 | 7027 9.60
MCMTOPMTW-4-rc106.txt | 8153 | 7959.1 7786 22.30
MCMTOPMTW-4-rc107.txt | 11944 | 11436.8 | 11041 12.90
MCMTOPMTW-4-rc108.txt | 14979 | 13833.4 | 13222 23.00
MCMTOPMTW-4-prO1.txt 1950 | 1926.6 1905 4.40
MCMTOPMTW-4-pr02.txt 4802 4683 4571 19.50
MCMTOPMTW-4-pr03.txt 7988 | 7569.5 | 7162 36.80
MCMTOPMTW-4-pr04.txt 11761 | 10993.9 | 10471 53.00
MCMTOPMTW-4-pr(05.txt 16980 | 16043.5 | 15157 93.10
MCMTOPMTW-4-pr(7.txt 14569 | 14256.5 | 13736 12.60
MCMTOPMTW-4-pr08.txt | 22676 | 22037.2 | 21163 30.50
MCMTOPMTW-4-pr09.txt | 26788 | 25202.5 | 23412 88.50

135

APPENDIX E l

137

Results for MCMTOPTW problem in
Group mode

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-1-c101.txt 567 543.6 514 1.60
MCMTOPMTW-1-c102.txt 940 925 870 1.70
MCMTOPMTW-1-c103.txt | 1560 1558 1540 1.00
MCMTOPMTW-1-c104.txt | 2100 | 2082.6 1926 1.20
MCMTOPMTW-1-c105.txt | 1834 1834 1834 1.60
MCMTOPMTW-1-c106.txt | 3210 | 3147.6 | 2923 2.20
MCMTOPMTW-1-c107.txt | 3548 3340 2834 1.20
MCMTOPMTW-1-c108.txt | 3925 3925 3925 1.00
MCMTOPMTW-1-c109.txt | 4514 4504 4494 0.80
MCMTOPMTW-1-r101.txt 216 216 216 0.40
MCMTOPMTW-1-r102.txt 911 869.1 714 1.80
MCMTOPMTW-1-r103.txt 1592 | 1524.5 1492 1.60
MCMTOPMTW-1-r104.txt 1477 1477 1477 1.40
MCMTOPMTW-1-r105.txt 1707 | 1459.3 1347 1.40
MCMTOPMTW-1-r106.txt | 2832 | 2379.8 1170 1.60
MCMTOPMTW-1-r107.txt | 3671 | 3639.3 3598 1.10
MCMTOPMTW-1-r108.txt | 3696 | 3679.1 3527 0.90
MCMTOPMTW-1-r109.txt | 3628 | 3423.4 | 2402 1.60
MCMTOPMTW-1-r110.txt | 4693 | 4620.9 | 3972 1.50
MCMTOPMTW-1-r111.txt | 4293 | 4031.5 1919 1.20
MCMTOPMTW-1-r112.txt | 4990 | 4988.6 | 4988 1.50
MCMTOPMTW-1-rc101.txt | 473 449 .4 387 1.80
MCMTOPMTW-1-rc102.txt | 720 686.3 606 1.60
MCMTOPMTW-1-rc103.txt | 1246 1246 1246 1.40
MCMTOPMTW-1-rc104.txt | 1227 | 1218.2 1139 1.20
MCMTOPMTW-1-rc105.txt | 1935 | 1710.2 1083 1.40
MCMTOPMTW-1-rc106.txt | 2381 | 2336.8 | 2161 1.50
MCMTOPMTW-1-rc107.txt | 2699 | 2626.6 | 2518 0.70
MCMTOPMTW-1-rc108.txt | 2156 | 2133.4 | 2043 1.20
MCMTOPMTW-1-prO1.txt 984 937.5 874 1.30
MCMTOPMTW-1-pr02.txt 1675 | 1621.9 1536 3.00
MCMTOPMTW-1-pr03.txt | 2327 | 2150.8 1486 4.30
MCMTOPMTW-1-pr04.txt | 3564 | 3209.7 | 2223 4.70
MCMTOPMTW-1-pr05.txt | 6050 | 5502.1 4226 9.20

138

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-1-pr07.txt 3979 | 3868.6 | 3680 1.30
MCMTOPMTW-1-pr08.txt 7945 | 6827.3 | 4519 4.50
MCMTOPMTW-1-pr(9.txt 10936 | 9368.5 | 6633 8.40
MCMTOPMTW-2-c101.txt 1440 | 1357.1 1291 2.50
MCMTOPMTW-2-c102.txt 2428 | 23889 | 2339 3.00
MCMTOPMTW-2-c103.txt 3380 | 3329.5 | 3275 3.30
MCMTOPMTW-2-c104.txt 4524 | 44495 | 4387 2.20
MCMTOPMTW-2-¢105.txt 5472 | 5360.4 | 5230 2.50
MCMTOPMTW-2-c106.txt 6050 | 57659 | 5267 3.20
MCMTOPMTW-2-c107.txt 7780 7767 7740 3.00
MCMTOPMTW-2-c108.txt 9847 | 9638.2 | 9420 2.50
MCMTOPMTW-2-c109.txt | 11598 | 11317.2 | 11204 2.60
MCMTOPMTW-2-r101.txt 531 514.5 468 1.50
MCMTOPMTW-2-r102.txt 1734 | 1673.7 1579 2.50
MCMTOPMTW-2-r103.txt 2801 | 27344 | 2563 3.10
MCMTOPMTW-2-r104.txt 4283 | 4079.5 | 3941 2.70
MCMTOPMTW-2-r105.txt 2771 2727.6 | 2576 2.10
MCMTOPMTW-2-r106.txt 5508 | 5238.1 4884 2.60
MCMTOPMTW-2-r107.txt 6528 | 6439.1 6100 2.10
MCMTOPMTW-2-r108.txt 10423 | 10156.5 | 10031 3.10
MCMTOPMTW-2-r109.txt 9268 | 87719 | 7590 3.10
MCMTOPMTW-2-r110.txt 9628 | 91944 | 8736 2.20
MCMTOPMTW-2-r111.txt 8795 8231 7678 2.40
MCMTOPMTW-2-r112.txt 9984 | 9608.6 | 9268 2.30
MCMTOPMTW-2-rc101.txt | 1018 926.8 863 2.60
MCMTOPMTW-2-rc102.txt | 1699 1604 1539 3.10
MCMTOPMTW-2-rc103.txt | 2669 | 2609.5 | 2495 2.20
MCMTOPMTW-2-rc104.txt | 2965 | 2946.6 | 2903 2.90
MCMTOPMTW-2-rc105.txt | 3737 | 37289 | 3696 2.00
MCMTOPMTW-2-rc106.txt | 4625 | 4541.3 | 4381 2.20
MCMTOPMTW-2-rc107.txt | 6202 | 6156.3 | 6078 2.00
MCMTOPMTW-2-rc108.txt | 6290 | 6169.9 | 5970 1.90
MCMTOPMTW-2-prO1.txt 1240 | 1189.6 1156 1.40
MCMTOPMTW-2-pr02.txt 2985 | 2898.8 | 2727 4.70
MCMTOPMTW-2-pr03.txt 4762 | 45214 | 4232 6.30
MCMTOPMTW-2-pr04.txt 7412 | 69549 | 6704 13.70
MCMTOPMTW-2-pr05.txt 10847 | 10218.9 | 9599 15.90
MCMTOPMTW-2-pr07.txt 9732 | 93044 | 8856 3.10
MCMTOPMTW-2-pr08.txt 14360 | 13642 | 12828 9.50
MCMTOPMTW-2-pr(9.txt 19848 | 17784.3 | 15200 13.00

139

140

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-3-c101.txt 1753 1695.2 1652 3.80
MCMTOPMTW-3-c102.txt 3646 | 3589.8 | 3538 5.00
MCMTOPMTW-3-c103.txt 4968 | 4894.4 | 4832 5.20
MCMTOPMTW-3-c104.txt 6466 | 6435.7 | 6353 4.40
MCMTOPMTW-3-c105.txt 7843 | 76744 | 7477 3.40
MCMTOPMTW-3-c106.txt 9574 | 9136.2 | 8902 3.70
MCMTOPMTW-3-c107.txt | 11480 | 11275 | 11052 4.50
MCMTOPMTW-3-c108.txt | 14704 | 14264.2 | 13990 3.20
MCMTOPMTW-3-c109.txt | 16682 | 16388.3 | 16201 3.50
MCMTOPMTW-3-r101.txt 1031 957.3 881 3.00
MCMTOPMTW-3-r102.txt 2531 2380 2244 3.60
MCMTOPMTW-3-r103.txt 4594 | 4480.7 | 4357 6.00
MCMTOPMTW-3-r104.txt 6203 | 60809 | 5757 5.10
MCMTOPMTW-3-r105.txt 5342 | 5025.5 | 4724 3.70
MCMTOPMTW-3-r106.txt 7275 | 7093.7 | 6799 3.90
MCMTOPMTW-3-r107.txt 11685 | 11178.3 | 10384 4.70
MCMTOPMTW-3-r108.txt 13583 | 13137 | 12822 4.80
MCMTOPMTW-3-r109.txt 12251 | 11811.9 | 11521 3.40
MCMTOPMTW-3-r110.txt 15443 | 14951.5 | 14423 4.40
MCMTOPMTW-3-r111.txt 15796 | 15412.8 | 15186 3.90
MCMTOPMTW-3-r112.txt 16340 | 15792.7 | 15279 4.20
MCMTOPMTW-3-rc101.txt | 1385 1256.3 1166 4.00
MCMTOPMTW-3-rc102.txt | 2609 | 2517.6 | 2394 5.00
MCMTOPMTW-3-rc103.txt | 3717 | 36324 | 3565 4.30
MCMTOPMTW-3-rc104.txt | 6323 | 61709 | 5942 4.90
MCMTOPMTW-3-rc105.txt | 5918 | 5467.6 | 4798 5.00
MCMTOPMTW-3-rc106.txt | 8417 | 75384 | 5990 4.60
MCMTOPMTW-3-rc107.txt | 9432 | 9195.7 8897 4.50
MCMTOPMTW-3-rc108.txt | 12115 | 11791.8 | 11518 4.10
MCMTOPMTW-3-prO1.txt 1928 1882 1834 2.00
MCMTOPMTW-3-pr02.txt 4278 | 4107.5 3959 8.50
MCMTOPMTW-3-pr03.txt 5618 | 5306.5 | 4982 11.50
MCMTOPMTW-3-pr04.txt 10901 | 9753.6 | 8897 22.30
MCMTOPMTW-3-pr05.txt 14847 | 14215.7 | 13138 27.70
MCMTOPMTW-3-pr07.txt 13732 | 13268.1 | 13014 4.00
MCMTOPMTW-3-pr08.txt | 20058 | 18869.2 | 17349 13.60
MCMTOPMTW-3-pr09.txt | 27276 | 25544.4 | 23194 17.30
MCMTOPMTW-4-c101.txt 2292 | 2216.8 | 2148 6.40
MCMTOPMTW-4-c102.txt 4678 4608 4522 8.30
MCMTOPMTW-4-c103.txt 6800 6671 6550 4.50

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-4-c104.txt 8624 | 8514.4 | 8470 6.40
MCMTOPMTW-4-¢c105.txt 9811 | 9731.1 9642 5.10
MCMTOPMTW-4-c106.txt | 12880 | 12469 | 12178 5.30
MCMTOPMTW-4-c107.txt | 17457 | 17178.5 | 16629 6.40
MCMTOPMTW-4-c108.txt | 18864 | 18677.8 | 18420 5.10
MCMTOPMTW-4-c109.txt | 24075 | 23735.6 | 23209 4.90
MCMTOPMTW-4-r101.txt 1235 1114.7 1075 3.00
MCMTOPMTW-4-r102.txt 3445 | 33105 | 3109 5.50
MCMTOPMTW-4-r103.txt 4843 | 4549.3 | 4233 5.30
MCMTOPMTW-4-r104.txt 7929 | 7516.9 | 7246 8.20
MCMTOPMTW-4-r105.txt 6574 | 62023 | 5847 3.30
MCMTOPMTW-4-r106.txt 12067 | 11640.7 | 11054 7.80
MCMTOPMTW-4-r107.txt 14017 | 13761.9 | 13591 5.40
MCMTOPMTW-4-r108.txt 17324 | 16861.7 | 16482 5.40
MCMTOPMTW-4-r109.txt 19649 | 18400.8 | 17758 6.50
MCMTOPMTW-4-r110.txt | 20833 | 20312.1 | 19555 5.40
MCMTOPMTW-4-r111.txt | 21553 | 20795.4 | 20205 6.60
MCMTOPMTW-4-r112.txt | 21574 | 20805.2 | 19224 6.90
MCMTOPMTW-4-rc101.txt | 1490 | 14199 1347 5.10
MCMTOPMTW-4-rc102.txt | 3191 3021.5 | 2871 5.70
MCMTOPMTW-4-rc103.txt | 5615 | 5403.4 | 5085 6.60
MCMTOPMTW-4-rc104.txt | 8252 | 79473 | 7759 7.40
MCMTOPMTW-4-rc105.txt | 7442 | 71299 | 6679 4.20
MCMTOPMTW-4-rc106.txt | 9512 | 9304.6 | 8971 4.70
MCMTOPMTW-4-rc107.txt | 14080 | 13745.8 | 13214 6.80
MCMTOPMTW-4-rc108.txt | 18557 | 17587.8 | 17213 5.80
MCMTOPMTW-4-prO1.txt 2187 | 2170.3 | 2145 2.10
MCMTOPMTW-4-pr02.txt 5300 | 5079.5 | 4812 10.20
MCMTOPMTW-4-pr03.txt 8877 | 8095.5 | 7285 16.60
MCMTOPMTW-4-pr04.txt 12253 | 11315 | 10470 22.50
MCMTOPMTW-4-pr(05.txt 19443 | 18574 | 17227 45.70
MCMTOPMTW-4-pr(7.txt 18371 | 17620.3 | 16626 5.20
MCMTOPMTW-4-pr08.txt | 27538 | 25866.2 | 23343 13.80
MCMTOPMTW-4-pr09.txt | 33920 | 31027.7 | 28102 30.80

141

APPENDIX F .

143

Results for MCMTOPTW problem in
Combined-Slow mode

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-1-c101.txt 725 719.3 712 78.70
MCMTOPMTW-1-c102.txt | 1106 1094 1076 64.40
MCMTOPMTW-1-c103.txt | 1727 | 1722.1 1704 26.80
MCMTOPMTW-1-c104.txt | 2320 | 2306.8 | 2268 16.20
MCMTOPMTW-1-c105.txt | 2276 | 2242.8 | 2237 28.60
MCMTOPMTW-1-c106.txt | 3262 | 3238.8 | 3230 17.40
MCMTOPMTW-1-c107.txt | 3845 | 3814.7 | 3775 9.20
MCMTOPMTW-1-c108.txt | 4038 | 4015.6 | 4008 9.80
MCMTOPMTW-1-c109.txt | 5259 | 5188.1 5123 12.40
MCMTOPMTW-1-r101.txt 361 361 361 17.60
MCMTOPMTW-1-r102.txt 1038 | 1019.2 1005 131.80
MCMTOPMTW-1-r103.txt 1612 1612 1612 70.30
MCMTOPMTW-1-r104.txt 1554 | 1552.2 1552 20.10
MCMTOPMTW-1-r105.txt 1616 | 1520.3 1451 30.70
MCMTOPMTW-1-r106.txt | 2917 | 2903.5 | 2877 32.70
MCMTOPMTW-1-r107.txt | 3684 3683 3681 11.20
MCMTOPMTW-1-r108.txt | 3844 3844 3844 17.30
MCMTOPMTW-1-r109.txt | 4201 | 4169.9 | 4091 20.10
MCMTOPMTW-1-r110.txt | 4700 4700 4700 11.80
MCMTOPMTW-1-rl11.txt | 4293 | 4290.1 4264 9.60
MCMTOPMTW-1-r112.txt | 5316 | 5156.9 | 4989 9.50
MCMTOPMTW-1-rc101.txt | 525 500.3 495 146.80
MCMTOPMTW-1-rc102.txt | 832 830.2 830 111.70
MCMTOPMTW-1-rc103.txt | 1266 | 1263.6 1263 40.00
MCMTOPMTW-1-rc104.txt | 1652 | 1576.9 1552 22.10
MCMTOPMTW-1-rc105.txt | 1969 | 1950.6 1948 51.10
MCMTOPMTW-1-rc106.txt | 2555 | 2486.3 | 2434 36.30
MCMTOPMTW-1-rc107.txt | 3045 | 2930.4 | 2745 8.50
MCMTOPMTW-1-rc108.txt | 2795 | 2585.1 2482 18.00
MCMTOPMTW-1-prO1.txt 985 983 972 32.80
MCMTOPMTW-1-pr02.txt 1760 | 1737.6 1722 128.10
MCMTOPMTW-1-pr03.txt | 2478 | 2440.6 | 2398 173.10
MCMTOPMTW-1-prO4.txt | 3808 | 3694.4 | 3643 159.60
MCMTOPMTW-1-pr05.txt | 6459 | 6308.8 | 6076 222.10

144

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-1-pr07.txt 4187 | 4134.6 | 4099 31.40
MCMTOPMTW-1-pr08.txt 7933 | 78632 | 7729 64.50
MCMTOPMTW-1-pr(9.txt 11575 | 10795.2 | 10325 147.10
MCMTOPMTW-2-c101.txt 1511 1473 1448 203.20
MCMTOPMTW-2-c102.txt 2539 | 25099 | 2489 138.10
MCMTOPMTW-2-c103.txt 3615 3575 3531 64.80
MCMTOPMTW-2-c104.txt 4804 | 47404 | 4692 25.30
MCMTOPMTW-2-c105.txt 5695 | 5539.8 | 5479 29.60
MCMTOPMTW-2-c106.txt 6199 | 61042 | 5971 20.90
MCMTOPMTW-2-c107.txt 8277 | 8195.6 | 8041 18.80
MCMTOPMTW-2-c108.txt | 10021 9972 9880 14.50
MCMTOPMTW-2-c109.txt | 11588 | 11358.1 | 11219 12.80
MCMTOPMTW-2-r101.txt 643 625.8 609 81.20
MCMTOPMTW-2-r102.txt 1866 1849 1830 169.70
MCMTOPMTW-2-r103.txt 2886 | 2861.7 | 2832 122.20
MCMTOPMTW-2-r104.txt 4358 | 43227 | 4283 86.70
MCMTOPMTW-2-r105.txt 3175 | 31457 | 3078 59.80
MCMTOPMTW-2-r106.txt 5671 | 55742 | 5444 33.90
MCMTOPMTW-2-r107.txt 6873 | 67779 | 6699 20.30
MCMTOPMTW-2-r108.txt 10609 | 10492.7 | 10377 23.80
MCMTOPMTW-2-r109.txt 9340 | 9193.8 8948 22.80
MCMTOPMTW-2-r110.txt 9829 | 9698.5 | 9562 19.10
MCMTOPMTW-2-r111.txt 9305 | 8885.6 | 8769 18.50
MCMTOPMTW-2-r112.txt 9996 | 9829.7 | 9685 13.80
MCMTOPMTW-2-rc101.txt | 1045 1027.2 1018 235.80
MCMTOPMTW-2-rc102.txt | 1785 1764.1 1745 214.30
MCMTOPMTW-2-rc103.txt | 2749 | 2729.2 | 2707 97.30
MCMTOPMTW-2-rc104.txt | 3298 3239 3177 51.70
MCMTOPMTW-2-rc105.txt | 4028 | 39659 | 3906 57.00
MCMTOPMTW-2-rc106.txt | 4877 | 4801.2 | 4742 39.00
MCMTOPMTW-2-rc107.txt | 6680 6622 6602 34.80
MCMTOPMTW-2-rc108.txt | 6519 | 6496.5 | 6481 20.50
MCMTOPMTW-2-prO1.txt 1282 | 1272.7 1251 178.70
MCMTOPMTW-2-pr02.txt 3138 | 31044 | 3075 262.60
MCMTOPMTW-2-pr03.txt 5075 | 4964.4 | 4860 328.80
MCMTOPMTW-2-pr04.txt 8209 | 79493 | 7764 398.20
MCMTOPMTW-2-pr05.txt 12082 | 11722.5 | 11303 352.40
MCMTOPMTW-2-pr07.txt 10224 | 10037.3 | 9950 73.70
MCMTOPMTW-2-pr08.txt 14995 | 14508.8 | 14053 101.40
MCMTOPMTW-2-pr09.txt | 21025 | 19727.4 | 19073 146.00

145

146

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-3-c101.txt 1892 | 1864.8 1847 252.60
MCMTOPMTW-3-c102.txt 3738 | 3704.2 | 3680 203.70
MCMTOPMTW-3-c103.txt 5207 | 5180.1 5146 81.00
MCMTOPMTW-3-c104.txt 6870 | 68149 | 6756 28.70
MCMTOPMTW-3-c105.txt 8072 | 79757 | 7892 34.20
MCMTOPMTW-3-c106.txt 9769 | 94852 | 9287 12.50
MCMTOPMTW-3-c107.txt | 11854 | 11642.5 | 11352 14.00
MCMTOPMTW-3-c108.txt | 14989 | 14706.3 | 14562 15.90
MCMTOPMTW-3-c109.txt | 17026 | 16629.8 | 16290 18.30
MCMTOPMTW-3-r101.txt 1137 1109 1073 210.10
MCMTOPMTW-3-r102.txt 2624 | 2589.4 | 2534 212.20
MCMTOPMTW-3-r103.txt 4850 | 4786.6 | 4728 213.80
MCMTOPMTW-3-r104.txt 6411 | 6316.1 6254 115.60
MCMTOPMTW-3-r105.txt 5539 5384 5239 72.90
MCMTOPMTW-3-r106.txt 7814 | 7547.1 7388 29.80
MCMTOPMTW-3-r107.txt 11964 | 11901.5 | 11695 61.70
MCMTOPMTW-3-r108.txt 13570 | 13378 | 13155 27.60
MCMTOPMTW-3-r109.txt 12316 | 11937.1 | 11607 18.70
MCMTOPMTW-3-r110.txt 15717 | 15282.6 | 14535 44.80
MCMTOPMTW-3-r111.txt 16180 | 15763.3 | 15539 27.10
MCMTOPMTW-3-r112.txt 16638 | 16203 | 15397 27.00
MCMTOPMTW-3-rc101.txt | 1519 1449.6 1387 291.90
MCMTOPMTW-3-rc102.txt | 2716 2679 2640 279.70
MCMTOPMTW-3-rc103.txt | 3912 | 3863.7 | 3829 203.70
MCMTOPMTW-3-rc104.txt | 6459 | 6399.5 6350 143.10
MCMTOPMTW-3-rc105.txt | 6281 | 6066.6 | 5890 128.50
MCMTOPMTW-3-rc106.txt | 8498 | 84004 | 8264 65.00
MCMTOPMTW-3-rc107.txt | 9942 | 9693.8 | 9587 90.30
MCMTOPMTW-3-rc108.txt | 12399 | 12204 | 11890 18.00
MCMTOPMTW-3-prO1.txt 1966 1944.9 1933 215.10
MCMTOPMTW-3-pr02.txt 4390 | 4339.9 | 4290 403.90
MCMTOPMTW-3-pr03.txt 6070 | 59654 | 5895 478.30
MCMTOPMTW-3-pr04.txt 10914 | 10572.9 | 10265 362.80
MCMTOPMTW-3-pr05.txt 15868 | 15528.8 | 14902 307.00
MCMTOPMTW-3-pr07.txt 14226 | 13885.3 | 13592 107.90
MCMTOPMTW-3-pr08.txt | 20862 | 20345.9 | 19344 135.20
MCMTOPMTW-3-pr09.txt | 29418 | 28242.3 | 27632 103.20
MCMTOPMTW-4-c101.txt 2442 | 24104 | 2388 413.90
MCMTOPMTW-4-c102.txt 4750 | 4724.6 | 4698 282.00
MCMTOPMTW-4-c103.txt 6949 | 6887.2 | 6799 109.20

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-4-c104.txt 9130 | 8999.6 | 8888 36.80
MCMTOPMTW-4-c105.txt | 10206 | 10044.5 | 9960 41.80
MCMTOPMTW-4-c106.txt | 13131 | 12798.2 | 12531 17.50
MCMTOPMTW-4-c107.txt | 17397 | 17154.7 | 16733 19.60
MCMTOPMTW-4-c108.txt | 19133 | 18857.8 | 18541 21.20
MCMTOPMTW-4-c109.txt | 24181 | 23842.3 | 23240 25.10
MCMTOPMTW-4-r101.txt 1383 1349.4 1320 206.80
MCMTOPMTW-4-r102.txt 3520 | 3469.1 3417 273.20
MCMTOPMTW-4-r103.txt 4960 | 4881.9 | 4830 216.10
MCMTOPMTW-4-r104.txt 7971 | 7804.8 | 7688 240.30
MCMTOPMTW-4-r105.txt 7121 | 68922 | 6706 62.20
MCMTOPMTW-4-r106.txt 12678 | 12444.2 | 12267 115.20
MCMTOPMTW-4-r107.txt 14443 | 14274.6 | 14085 56.70
MCMTOPMTW-4-r108.txt 17858 | 17416.6 | 17025 43.10
MCMTOPMTW-4-r109.txt 19571 | 19054.8 | 18196 67.70
MCMTOPMTW-4-r110.txt | 21333 | 21156.1 | 20972 54.50
MCMTOPMTW-4-r11l.txt | 21698 | 21228.4 | 20625 38.10
MCMTOPMTW-4-rl12.txt | 21617 | 21098.9 | 20001 38.70
MCMTOPMTW-4-rc101.txt | 1634 | 1612.1 1595 333.70
MCMTOPMTW-4-rc102.txt | 3358 | 3324.7 | 3288 295.40
MCMTOPMTW-4-rc103.txt | 5763 | 5676.6 | 5627 303.10
MCMTOPMTW-4-rc104.txt | 8281 8206.3 8142 141.70
MCMTOPMTW-4-rc105.txt | 7780 | 7654.5 | 7521 81.50
MCMTOPMTW-4-rc106.txt | 10244 | 9949.5 | 9732 55.80
MCMTOPMTW-4-rc107.txt | 14385 | 14145.6 | 13728 79.90
MCMTOPMTW-4-rc108.txt | 18521 | 18153.8 | 17721 27.00
MCMTOPMTW-4-prO1.txt 2205 | 22003 | 2196 808.60
MCMTOPMTW-4-pr02.txt 5417 | 5341.1 5279 1906.70
MCMTOPMTW-4-pr03.txt 8851 8620.8 8362 2346.50
MCMTOPMTW-4-pr04.txt 12863 | 12650 | 12402 1422.50
MCMTOPMTW-4-pr05.txt | 20165 | 19455.8 | 18841 1239.90
MCMTOPMTW-4-pr(7.txt 18741 | 18380.6 | 18056 233.10
MCMTOPMTW-4-pr08.txt | 27653 | 27027.5 | 25800 88.80
MCMTOPMTW-4-pr09.txt | 35008 | 33818.4 | 32524 182.80

147

APPENDIX G I

149

Results for MCMTOPTW problem in
Combined-Fast mode

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-1-c101.txt 725 707.3 648 18.80
MCMTOPMTW-1-c102.txt | 1092 | 1074.6 1055 16.30
MCMTOPMTW-1-c103.txt | 1725 | 1722.9 1704 8.30
MCMTOPMTW-1-c104.txt | 2320 | 2280.4 | 2239 5.70
MCMTOPMTW-1-c105.txt | 2246 | 22379 | 2237 4.50
MCMTOPMTW-1-c106.txt | 3239 | 3230.9 | 3230 6.00
MCMTOPMTW-1-c107.txt | 3845 | 3774.6 | 3701 4.50
MCMTOPMTW-1-c108.txt | 4014 4014 4014 9.00
MCMTOPMTW-1-c109.txt | 5187 | 5133.7 | 5113 4.70
MCMTOPMTW-1-r101.txt 361 361 361 5.20
MCMTOPMTW-1-r102.txt 1038 | 1006.4 986 19.30
MCMTOPMTW-1-r103.txt 1612 | 1611.2 1604 12.70
MCMTOPMTW-1-r104.txt 1552 | 1549.6 1548 4.20
MCMTOPMTW-1-r105.txt 1554 | 14743 1451 7.70
MCMTOPMTW-1-r106.txt | 2912 | 2867.9 | 2793 10.20
MCMTOPMTW-1-r107.txt | 3690 | 3680.9 | 3671 5.20
MCMTOPMTW-1-r108.txt | 3844 | 3841.8 | 3822 10.20
MCMTOPMTW-1-r109.txt | 4261 | 4055.5 3876 5.60
MCMTOPMTW-1-r110.txt | 4700 4700 4700 6.10
MCMTOPMTW-1-rl11.txt | 4293 | 4277.6 | 4261 5.80
MCMTOPMTW-1-r112.txt | 5316 | 5023.2 | 4989 5.60
MCMTOPMTW-1-rc101.txt | 513 4959 489 23.40
MCMTOPMTW-1-rc102.txt | 830 830 830 9.70
MCMTOPMTW-1-rc103.txt | 1263 | 1262.2 1255 8.50
MCMTOPMTW-1-rc104.txt | 1563 | 1542.3 1497 7.10
MCMTOPMTW-1-rc105.txt | 1948 | 1919.7 1894 4.10
MCMTOPMTW-1-rc106.txt | 2555 | 2426.8 | 2389 6.40
MCMTOPMTW-1-rc107.txt | 2936 | 2876.8 | 2725 3.70
MCMTOPMTW-1-rc108.txt | 2559 | 2517.7 | 2488 7.40
MCMTOPMTW-1-prO1.txt 985 981.9 972 16.20
MCMTOPMTW-1-pr02.txt 1742 | 1719.7 1697 15.90
MCMTOPMTW-1-pr03.txt | 2486 | 2383.9 | 2268 16.90
MCMTOPMTW-1-pr04.txt | 3671 | 3563.2 | 3458 22.30
MCMTOPMTW-1-pr05.txt | 6393 | 6099.5 | 5864 30.90

150

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-1-pr07.txt 4155 | 40274 | 3782 5.10
MCMTOPMTW-1-pr08.txt 7921 7750 7261 13.70
MCMTOPMTW-1-pr(9.txt 11388 | 10801 | 10319 27.90
MCMTOPMTW-2-c101.txt 1471 1451.5 1434 29.70
MCMTOPMTW-2-c102.txt 2531 | 2504.3 | 2459 27.40
MCMTOPMTW-2-c103.txt 3613 3564 3494 15.60
MCMTOPMTW-2-c104.txt 4774 4710 4616 10.70
MCMTOPMTW-2-¢105.txt 5535 | 5479.5 | 5403 7.90
MCMTOPMTW-2-c106.txt 6229 | 61199 | 5951 8.90
MCMTOPMTW-2-c107.txt 8232 | 8103.9 | 7889 7.00
MCMTOPMTW-2-c108.txt | 10038 | 9947.3 | 9742 8.60
MCMTOPMTW-2-c109.txt | 11626 | 11393 | 11204 10.20
MCMTOPMTW-2-r101.txt 629 621.2 602 13.00
MCMTOPMTW-2-r102.txt 1866 | 1811.1 1787 24.70
MCMTOPMTW-2-r103.txt 2880 | 2850.8 | 2817 14.40
MCMTOPMTW-2-r104.txt 4350 | 42219 | 4134 13.00
MCMTOPMTW-2-r105.txt 3116 | 30463 | 2978 6.70
MCMTOPMTW-2-r106.txt 5530 | 5403.5 | 4985 10.00
MCMTOPMTW-2-r107.txt 6974 | 6720.2 | 6532 8.00
MCMTOPMTW-2-r108.txt 10558 | 10295.5 | 10046 8.60
MCMTOPMTW-2-r109.txt 9245 | 8996.7 8601 9.50
MCMTOPMTW-2-r110.txt 9807 | 9534.5 | 9165 9.50
MCMTOPMTW-2-r111.txt 9212 8686 8277 10.00
MCMTOPMTW-2-r112.txt 9772 | 9737.8 | 9628 11.60
MCMTOPMTW-2-rc101.txt | 1023 1008.5 988 23.70
MCMTOPMTW-2-rc102.txt | 1768 1742.1 1706 19.00
MCMTOPMTW-2-rc103.txt | 2728 | 27104 | 2676 12.30
MCMTOPMTW-2-rc104.txt | 3215 | 3138.7 | 30064 9.20
MCMTOPMTW-2-rc105.txt | 4028 | 3917.7 | 3819 11.00
MCMTOPMTW-2-rc106.txt | 4877 | 4729.9 | 4645 9.20
MCMTOPMTW-2-rc107.txt | 6613 | 6542.4 | 6098 7.90
MCMTOPMTW-2-rc108.txt | 6496 | 6456.1 6290 6.40
MCMTOPMTW-2-prO1.txt 1282 | 12514 1215 21.50
MCMTOPMTW-2-pr02.txt 3104 | 3034.8 | 2811 34.30
MCMTOPMTW-2-pr03.txt 4989 | 4832.1 4669 28.20
MCMTOPMTW-2-pr04.txt 7996 | 7735.7 | 7420 36.70
MCMTOPMTW-2-pr05.txt 11864 | 11622.4 | 11437 69.20
MCMTOPMTW-2-pr07.txt 9944 | 96804 | 9179 10.30
MCMTOPMTW-2-pr08.txt 14643 | 14117.6 | 13514 20.80
MCMTOPMTW-2-pr09.txt | 20202 | 18656.1 | 16789 33.80

151

152

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-3-c101.txt 1927 1851.2 1808 44.10
MCMTOPMTW-3-c102.txt 3720 | 3693.8 | 3656 37.90
MCMTOPMTW-3-c103.txt 5194 | 5150.9 | 5086 19.30
MCMTOPMTW-3-c104.txt 6922 | 68144 | 6710 15.60
MCMTOPMTW-3-c105.txt 8129 | 7978.8 | 7825 8.50
MCMTOPMTW-3-c106.txt 9711 9468.1 9272 10.80
MCMTOPMTW-3-c107.txt | 11964 | 11701.9 | 11406 10.80
MCMTOPMTW-3-c108.txt | 14817 | 14663.5 | 14306 12.50
MCMTOPMTW-3-c109.txt | 16945 | 16672.3 | 16296 14.40
MCMTOPMTW-3-r101.txt 1100 | 1061.5 1043 28.20
MCMTOPMTW-3-r102.txt 2620 | 2562.2 | 2512 27.10
MCMTOPMTW-3-r103.txt 4860 4690 4562 31.00
MCMTOPMTW-3-r104.txt 6307 | 61462 | 5974 14.40
MCMTOPMTW-3-r105.txt 5368 | 5234.1 5087 11.60
MCMTOPMTW-3-r106.txt 7594 | 7399.7 | 7071 12.70
MCMTOPMTW-3-r107.txt 11880 | 11470.8 | 11225 11.30
MCMTOPMTW-3-r108.txt 13617 | 13348.2 | 13145 12.80
MCMTOPMTW-3-r109.txt 12099 | 11644.2 | 10433 11.20
MCMTOPMTW-3-r110.txt 15401 | 15081 | 14727 16.90
MCMTOPMTW-3-r111.txt 15749 | 15462.2 | 15082 14.20
MCMTOPMTW-3-r112.txt 16529 | 16037.6 | 15438 13.60
MCMTOPMTW-3-rc101.txt | 1455 1382.2 1349 34.50
MCMTOPMTW-3-rc102.txt | 2700 2648 2578 29.20
MCMTOPMTW-3-rc103.txt | 3855 | 3785.3 3744 25.60
MCMTOPMTW-3-rc104.txt | 6435 | 6313.6 | 6206 12.90
MCMTOPMTW-3-rc105.txt | 6031 | 5851.6 | 5706 14.10
MCMTOPMTW-3-rc106.txt | 8423 | 8069.1 7691 9.80
MCMTOPMTW-3-rc107.txt | 9692 | 9377.1 9090 10.50
MCMTOPMTW-3-rc108.txt | 12722 | 12213.8 | 11616 11.30
MCMTOPMTW-3-prO1.txt 1948 1932.7 1912 25.60
MCMTOPMTW-3-pr02.txt 4366 | 42725 | 4212 51.10
MCMTOPMTW-3-pr03.txt 6074 | 59054 | 5712 48.70
MCMTOPMTW-3-pr04.txt 10720 | 10371.1 | 9847 47.40
MCMTOPMTW-3-pr05.txt 15957 | 15145.5 | 14614 70.40
MCMTOPMTW-3-pr07.txt 13853 | 13547 | 12873 11.70
MCMTOPMTW-3-pr08.txt | 20796 | 19983.7 | 19133 28.10
MCMTOPMTW-3-pr09.txt | 29055 | 27835 | 25251 57.20
MCMTOPMTW-4-c101.txt 2430 2396 2376 52.60
MCMTOPMTW-4-c102.txt 4776 | 4725.6 | 4656 49.20
MCMTOPMTW-4-c103.txt 6919 | 68659 | 6811 21.30

Instance \ Best \ Average \ Worst \ Average time (s) ‘
MCMTOPMTW-4-c104.txt 9049 | 8946.8 8865 22.30
MCMTOPMTW-4-c105.txt | 10163 | 9976.8 | 9863 14.50
MCMTOPMTW-4-c106.txt | 12957 | 12693.5 | 12373 12.20
MCMTOPMTW-4-c107.txt | 17454 | 17307.8 | 16982 13.10
MCMTOPMTW-4-c108.txt | 19345 | 18753.6 | 18483 15.90
MCMTOPMTW-4-c109.txt | 24195 | 23850.6 | 23666 21.40
MCMTOPMTW-4-r101.txt 1380 | 1312.5 1235 29.70
MCMTOPMTW-4-r102.txt 3496 | 3429.5 | 3380 53.40
MCMTOPMTW-4-r103.txt 5022 4860 4785 30.50
MCMTOPMTW-4-r104.txt 7780 | 7592.6 | 7235 25.60
MCMTOPMTW-4-r105.txt 6864 | 6665.8 | 6465 10.70
MCMTOPMTW-4-r106.txt 12553 | 12197.6 | 11917 17.80
MCMTOPMTW-4-r107.txt 14251 | 13826.7 | 12845 19.20
MCMTOPMTW-4-r108.txt 17694 | 17117.7 | 16702 18.60
MCMTOPMTW-4-r109.txt 19469 | 18337.4 | 17019 16.30
MCMTOPMTW-4-r110.txt | 21052 | 20513 | 19593 16.10
MCMTOPMTW-4-r111.txt | 22201 | 21157.7 | 19871 18.70
MCMTOPMTW-4-r112.txt | 21338 | 20687.8 | 19957 15.80
MCMTOPMTW-4-rc101.txt | 1658 1587.3 1516 47.00
MCMTOPMTW-4-rc102.txt | 3447 | 3292.3 | 3216 51.80
MCMTOPMTW-4-rc103.txt | 5781 | 5586.4 | 5474 24.00
MCMTOPMTW-4-rc104.txt | 8302 7947 7402 14.10
MCMTOPMTW-4-rc105.txt | 7898 | 75939 | 7388 16.20
MCMTOPMTW-4-rc106.txt | 10067 | 9778.2 | 9444 14.10
MCMTOPMTW-4-rc107.txt | 14203 | 13828.3 | 13159 15.20
MCMTOPMTW-4-rc108.txt | 18333 | 17628.3 | 16571 14.60
MCMTOPMTW-4-prO1.txt 2205 | 2194.1 2188 38.60
MCMTOPMTW-4-pr02.txt 5485 | 5288.9 | 5190 49.70
MCMTOPMTW-4-pr03.txt 8824 | 84924 | 8247 61.60
MCMTOPMTW-4-pr04.txt 12619 | 12390.2 | 12030 76.70
MCMTOPMTW-4-pr05.txt | 20234 | 19469.5 | 18887 105.90
MCMTOPMTW-4-pr(7.txt 18103 | 17759.7 | 17405 15.60
MCMTOPMTW-4-pr08.txt | 28011 | 27118.7 | 26034 39.10
MCMTOPMTW-4-pr09.txt | 35541 | 33557.7 | 31119 88.80

153

Bibliography

E. H. L. Aarts and J. K. Lenstra. Local search in combinatorial optimization. Princeton
University Press, 1997.

L. Ahmedi, K. Rrmoku, and K. Sylejmani. Tourist tour planning supported by social
network analysis. In Sociallnformatics, pages 295-303, 2012,.

H. Alshabib, O. F Rana, and A. Shaikh Ali. Deriving ratings through social network struc-
tures. In Availability, Reliability and Security, 2006. ARES 2006. The First International
Conference on, pages 8—pp. IEEE, 2006.

C. Archetti, A. Hertz, and M. Grazia Speranza. Metaheuristics for the team orienteering
problem. Journal of Heuristics, 13(1):49-76, 2007.

J. Baldzer, S. Boll, Klante P, J. Krosche, J. Meyer, N. Rump, A. Scherp, and H. Appel-
rath. Location-Aware Mobile Multimedia Applications on the Niccimon Platform. In
Braunschweiger Symposium — Informationssysteme fiir mobile Anwendungen, 2004.

N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation algorithms for
deadline-tsp and vehicle routing with time-windows. In Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages 166—174. ACM, 2004.

A. L. Barabdsi and R. Albert. Emergence of scaling in random networks. science,
286(5439):509-512, 1999.

R. Battiti and G. Tecchiolli. The Reactive Tabu Search. INFORMS Journal on Computing,
6(2):126-140, 1994.

S. Bergamaschi, D. Beneventano, F. Guerra, and M. Vincini. Building a tourism infor-
mation provider with the MOMIS system. Information Technology and Tourism, Appli-
cations, Methodologies, Techniques, Hannes Werthner (Ed.), 1(1):15-31, 1998.

E. Berscheid. The greening of relationship science. American Psychologist, 54(4):260,
1999.

J. Blazewicza, E. Peschb, M. Sternaa, and F. Wernerc. Meta-heuristic Approaches for the
Two-Machine Flow-Shop Problem with Weighted Late Work Criterion and Common Due
Date. Computers and Operations Research, 35(2):574-599, 2008.

155

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

156

H. Bouly, D. C. Dang, and A. Moukrim. A memetic algorithm for the team orienteering
problem. 40R, 8(1):49-70, 2010.

S. Boussier, D. Feillet, and M. Gendreau. An exact algorithm for team orienteering prob-
lems. 4or, 5(3):211-230, 2007.

D. Buhalis and R. Law. Progress in information technology and tourism management:
20 years on and 10 years after the internet—the state of etourism research. Tourism
management, 29(4):609-623, 2008.

R. Burke. Hybrid web recommender systems. In The adaptive web, pages 377-408.
Springer, 2007.

S. E. Butt and T. M. Cavalier. A heuristic for the multiple tour maximum collection
problem. Computers & Operations Research, 21(1):101-111, 1994.

S. E. Butt and D. M. Ryan. An optimal solution procedure for the multiple tour maxi-
mum collection problem using column generation. Computers & Operations Research,
26(4):427-441, 1999.

T. Caliriski and J. Harabasz. A dendrite method for cluster analysis. Communications in
Statistics-theory and Methods, 3(1):1-27, 1974.

I. Chao, B. L. Golden, and E. A. Wasil. Theory and methodology—the team orienteering
problem. European Journal of Operational Research, 88(3):464-474, 1996.

I. Chao, B. L. Golden, E. A. Wasil, et al. A fast and effective heuristic for the orienteering
problem. European Journal of Operational Research, 88(3):475-489, 1996.

I. Chao, B. L. Golden, E. A. Wasil, et al. The team orienteering problem. European
Jjournal of operational research, 88(3):464—474, 1996.

C. Chekuri, N. Korula, and M. Pal. Improved algorithms for orienteering and related
problems. ACM Transactions on Algorithms (TALG), 8(3):23, 2012.

H. Chun, H. Kwak, Y. H. Eom, Y. Y. Ahn, S. Moon, and H. Jeong. Comparison of online
social relations in volume vs interaction: a case study of cyworld. In Proceedings of the
8th ACM SIGCOMM conference on Internet measurement, pages 57-70. ACM, 2008.

A. Colorni, M. Dorigo, V. Maniezzo, et al. Distributed optimization by ant colonies. In
Proceedings of the first European conference on artificial life, volume 142, pages 134—
142. Paris, France, 1991.

J. E. Cordeau, M. Gendreau, and G. Laporte. A tabu search heuristic for periodic and
multi-depot vehicle routing problems. Networks, 30(2):105-119, 1997.

M. Crampes, J. de Oliveira-Kumar, S. Ranwez, and J. Villerd. Visualizing social photos
on a hasse diagram for eliciting relations and indexing new photos. Visualization and
Computer Graphics, IEEE Transactions on, 15(6):985-992, 2009.

D. C. Dang, R. N. Guibadj, and A. Moukrim. A pso-based memetic algorithm for the
team orienteering problem. In Applications of Evolutionary Computation, pages 471—
480. Springer, 2011.

A. Dell’ Amico and M. Trubian. Applying tabu search to the job-shop scheduling problem.
Annals of Operations Research, 41(3):231-252, 1993.

A. Divsalar, P. Vansteenwegen, and D. Cattrysse. A memetic algorithm for the orienteer-
ing problem with intermediate facilities. status: published, 2013.

A. Divsalar, P. Vansteenwegen, and D. Cattrysse. A variable neighborhood search method
for the orienteering problem with hotel selection. International Journal of Production
Economics, 2013.

D. Easley and J. Kleinberg. Networks, crowds, and markets, volume 8. Cambridge Univ
Press, 2010.

H. Ebel, L. I. Mielsch, and S. Bornholdt. Scale-free topology of e-mail networks. arXiv
preprint cond-mat/0201476, 2002.

R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Micro
Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International
Symposium on, pages 39-43. IEEE, 1995.

R. Eberhart, P. Simpson, and R. Dobbins. Computational intelligence PC tools. Academic
Press Professional, Inc., 1996.

A. Ebner. TIS - Tirol Informations System - Die Konsequenz einer Idee. Tourismus als
Informationsgesellschaft. W. Schertler (eds.), Ueberreuter, 1994 (in German).

C. Emmanouilidis, R. A. Koutsiamanis, and A. Tasidou. Mobile guides: taxonomy of
architectures, context awareness, technologies and applications. Journal of Network and
Computer Applications, 36(1):103-125, 2013.

T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal
of global optimization, 6(2):109-133, 1995.

M. Fischetti, J. J. S. Gonzalez, and P. Toth. Solving the orienteering problem through
branch-and-cut. INFORMS Journal on Computing, 10(2):133-148, 1998.

F. V. Fomin and A. Lingas. Approximation algorithms for time-dependent orienteering.
Information Processing Letters, 83(2):57-62, 2002.

G. N. Frederickson and B. Wittman. Approximation algorithms for the traveling repair-
man and speeding deliveryman problems. Algorithmica, 62(3-4):1198-1221, 2012.

L. M. Gambardella, E. Taillard, and G. Agazzi. Macs-vrptw: A multiple colony system
for vehicle routing problems with time windows. In New ideas in optimization. Citeseer,
1999.

157

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

158

A. Garcia, O. Arbelaitz, P. Vansteenwegen, W. Souffriau, and M. T. Linaza. Hybrid
approach for the public transportation time dependent orienteering problem with time
windows. In Hybrid Artificial Intelligence Systems, pages 151-158. Springer, 2010.

A. Garcia, P. Vansteenwegen, W. Souffriau, O. Arbelaitz, and M. Linaza. Solving multi
constrained team orienteering problems to generate tourist routes. status: published,
2009.

D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou. Mobile recommender
systems in tourism. Journal of Network and Computer Applications, 2013.

D. Gavalas, C. Konstantopoulos, K. Mastakas, G. Pantziou, and Y. Tasoulas. A Survey on
Algorithmic Approaches for Solving Tourist Trip Design Problems, 2012.

D. Gavalas, C. Konstantopoulos, K. Mastakas, G. Pantziou, and Y. Tasoulas. Cluster-
based heuristics for the team orienteering problem with time windows. In Experimental
Algorithms, pages 390—401. Springer, 2013.

Z. W. Geem, J. H. Kim, and G. V. Loganathan. A new heuristic optimization algorithm:
harmony search. Simulation, 76(2):60-68, 2001.

Z. W. Geem, C. L. Tseng, and Y. Park. Harmony search for generalized orienteering
problem: best touring in china. In Advances in natural computation, pages 741-750.
Springer, 2005.

M. Gendreau, A. Hertz, and G. Laporte. A Tabu Search Heuristic for the Vehicle Routing
Problem. Management Science, 40(10):1276-1290, 1994.

M. Gendreau, G. Laporte, and F. Semet. Solving an ambulance location model by tabu
search. Location Science, 5(2):75-88, 1997.

M. Gendreau, G. Laporte, and F. Semet. A branch-and-cut algorithm for the undirected
selective traveling salesman problem. Networks, 32(4):263-273, 1998.

M. Gendreau, G. Laporte, and F. Semet. A tabu search heuristic for the undirected
selective travelling salesman problem. FEuropean Journal of Operational Research,
106(2):539-545, 1998.

F. Glover. Tabu Search - Part 1. ORSA Journal on Computing, 1(3):190-206, 1989.
F. Glover. Tabu Search - Part 2. ORSA Journal on Computing, 2(1):4-32, 1989.

F. Glover. Multilevel tabu search and embedded search neighborhoods for the traveling
salesman problem. Graduate School of Business, University of Colorado, 1991.

F. Glover and C. McMillan. The general employee scheduling problem. An integration
of MS and Al. Computers and Operations Research, 13(5):563-573, 1986.

[57]

[58]

B. L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research Logistics
(NRL), 34(3):307-318, 1987.

B. L. Golden, Q. Wang, and L. Liu. A multifaceted heuristic for the orienteering problem.
Naval Research Logistics (NRL), 35(3):359-366, 1988.

U. Gretzel. Intelligent systems in tourism: A social science perspective. Annals of
Tourism Research, 38(3):757-779, 2011.

I. Guy, N. Zwerdling, D. Carmel, 1. Ronen, E. Uziel, S. Yogev, and S. Ofek-Koifman.
Personalized recommendation of social software items based on social relations. In Pro-
ceedings of the third ACM conference on Recommender systems, pages 53—60. ACM,
2009.

W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In International Joint
Conference on Artificial Intelligence, volume 14, pages 607-615. LAWRENCE ERL-
BAUM ASSOCIATES LTD, 1995.

A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in information systems
research. MIS quarterly, 28(1):75-105, 2004.

H. Hochmair and G. Navratil. Computation of scenic routes in street networks. In Geospa-
tial Crossroads@ GI_Forum’08: Proceedings of the Geoinformatics Forum Salzburg,
pages 124-133, 2008.

Q. Hu and A. Lim. An iterative three-component heuristic for the team orienteering
problem with time windows. European Journal of Operational Research, 2013.

R. James. Long Term Memory Strategies for Solving the Early/Tardy Scheduling Problem.

M. G. Kantor and M. B. Rosenwein. The orienteering problem with time windows. Jour-
nal of the Operational Research Society, pages 629—635, 1992.

L. Ke, C. Archetti, and Z. Feng. Ants can solve the team orienteering problem. Computers
& Industrial Engineering, 54(3):648-665, 2008.

D. A. Kenny and L. La Voie. The social relations model. Advances in experimental social
psychology, 18:142—-182, 1984.

S. Kirkpatrick, D. G. Jr., and M. P. Vecchi. Optimization by simmulated annealing. sci-
ence, 220(4598):671-680, 1983.

P. Klante, J. Krosche, and S. Boll. Accessights - a multimodal location-aware mobile
tourist information system. In International Conference on Computers Helping People
with Special Needs (ICCHP), pages 187-294. Springer-Verlag, 2004.

J. Knox. Tabu Search Performance on the Symmetric Traveling Salesman Problem. Com-
puters and Operations Research, 21(8):867-876, 1994.

159

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

160

H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news
media? In Proceedings of the 19th international conference on World wide web, pages
591-600. ACM, 2010.

N. Labadie, R. Mansini, J. Melechovsky, and R. Wolfler Calvo. The team orienteering
problem with time windows: An Ip-based granular variable neighborhood search. Euro-
pean journal of operational research, 220(1):15-27, 2012.

N. Labadie, J. Melechovsky, and Roberto W. Calvo. Hybridized evolutionary local search
algorithm for the team orienteering problem with time windows. Journal of Heuristics,
17(6):729-753, 2011.

M. Laguna, J. P. Kelly, J. L. Gonzfilez-Velarde, and F. Glover. Tabu search for the
multilevel generalized assignment problem. European Journal of Operational Research,
82(1):176-189, 1995.

C. Lamsfus, C. Griin, A. Alzua-Sorzabal, and H. Werthner. Context-based matchmaking
to enhance tourists’ experiences. Novatica, 11:17-23, 2010.

G. Laporte and S. Martello. The selective travelling salesman problem. Discrete applied
mathematics, 26(2):193-207, 1990.

A. Likas, N. Vlassis, and J. J Verbeek. The global< i> k</i>-means clustering algorithm.
Pattern recognition, 36(2):451-461, 2003.

S. W. Lin and V. F. Yu. A simulated annealing heuristic for the team orienteering problem
with time windows. European Journal of Operational Research, 217(1):94—-107, 2012.

S. Lloyd. Least squares quantization in pcm. In Unpublished Bell Lab. Tech. Note. por-
tions presented at the Institute of Mathematical Statistics Meeting Atlantic City, 1957.

S. Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on,
28(2):129-137, 1982.

H. R. Lourengo, O. C. Martin, and T. Stutzle. Iterated local search. arXiv preprint
math/0102188, 2001.

R. Mansini, M. Pelizzari, and R. Wolfer. A granular variable neighbourhood search
heuristic for the tour orienteering problem with time windows. Technical report, Techni-
cal Report RT 2006-02-52, University of Brescia, Italy, 2008.

Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer, 1995.

N. Mladenovi¢ and P. Hansen. Variable neighborhood search. Computers & Operations
Research, 24(11):1097-1100, 1997.

R. Montemanni and L. M. Gambardella. An ant colony system for team orienteering
problems with time windows. Foundations of Computing and Decision Sciences, 34:287—
306, 2009.

[87]

[92]

[93]

[99]

[100]

R. Montemanni, D. Weyland, and L. M. Gambardella. An enhanced ant colony system
for the team orienteering problem with time windows. In Computer Science and Society
(ISCCS), 2011 International Symposium on, pages 381-384. IEEE, 2011.

J. M. Montoya and R. V. Solé. Small world patterns in food webs. Journal of theoretical
biology, 214(3):405-412, 2002.

P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Caltech concurrent computation program, C3P Report,
826:1989, 1989.

G. Mota, M. Abreu, A. Quintas, J. Ferreira, L. S. Dias, G. A. B. Pereira, and J. A. Oliveira.
A genetic algorithm for the topdtw at operating rooms. In Computational Science and Its
Applications—ICCSA 2013, pages 304-317. Springer, 2013.

Edited by Wassim Jaziri Multiple authors. Local Search Techniques: Focus on Tabu
Search. 1-Tech Education and Publishing, 2008.

N. Musliu. Intelligent search methods for workforce scheduling: new ideas and practical
applications. PhD thesis, Technische Universitdt Wien, 2001.

World Tourism Organization. UNWTO technical manual: Collection of Tourism Expen-
diture Statistics, 1995.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: bringing
order to the web. 1999.

A. Pashtan, R. Blattler, A. Heusser, and P. Scheuermann. CATIS: A Context-Aware
Tourist Information System. In Proceedings of the 4th International Workshop of Mo-
bile Computing, 2003.

C. Prins. A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & Operations Research, 31(12):1985-2002, 2004.

B. Proll and W. Retschitzegger. Discovering Next Generation Tourism Information Sys-
tems: A Tour on TIScover. Journal of Travel Research, 39(2):182-191, 2000.

B. Proll, W. Retschitzegger, R.R. Wagner, and A. Ebner. Beyond Traditional Tourism
Information Systems - The Web-Based Approach TIScover. Information Technology and
Tourism, Applications, Methodologies, Techniques, Hannes Werthner (Ed.), 7(3/4):221-
238, 2004.

R. Ramesh and Kathleen M. Brown. An efficient four-phase heuristic for the generalized
orienteering problem. Computers & Operations Research, 18(2):151-165, 1991.

R. Ramesh, Y. S. Yoon, and M. H. Karwan. An optimal algorithm for the orienteering
tour problem. ORSA Journal on Computing, 4(2):155-165, 1992.

161

[101] I. Rechenberg. Evolutionsstrategie—optimierung technisher systeme nach prinzipien der
biologischen evolution. 1973.

[102] C. R. Reeves. Modern heuristic techniques for combinatorial problems. John Wiley &
Sons, Inc., 1993.

[103] P. Resnick and H. R. Varian. Recommender systems. Communications of the ACM,
40(3):56-58, 1997.

[104] F. Ricci. Travel recommender systems. IEEE Intelligent Systems, 17(6):55-57, 2002.

[105] F. Ricci. Mobile recommender systems. Information Technology & Tourism, 12(3):205—
231, 2010.

[106] G. Righini and M. Salani. Dynamic programming for the orienteering problem with time
windows. 2006.

[107] G. Righini and M. Salani. Decremental state space relaxation strategies and initializa-
tion heuristics for solving the orienteering problem with time windows with dynamic
programming. Computers & Operations Research, 36(4):1191-1203, 2009.

[108] Y. Rochat and E. D. Taillard. Probabilistic diversification and intensification in local
search for vehicle routing. Journal of Heuristics, 1(1):147-167, 1995.

[109] R. Ruiz and T. Stiitzle. A simple and effective iterated greedy algorithm for the per-
mutation flowshop scheduling problem. European Journal of Operational Research,
177(3):2033-2049, 2007.

[110] M. Schilde, K. F. Doerner, R. F. Hartl, and G. Kiechle. Metaheuristics for the bi-objective
orienteering problem. Swarm Intelligence, 3(3):179-201, 2009.

[111] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record breaking opti-
mization results using the ruin and recreate principle. Journal of Computational Physics,
159(2):139-171, 2000.

[112] D. Y. Sha and C. Y. Hsu. A hybrid particle swarm optimization for job shop scheduling
problem. Computers & Industrial Engineering, 51(4):791-808, 2006.

[113] P. Shaw. A new local search algorithm providing high quality solutions to vehicle routing
problems. APES Group, Dept of Computer Science, University of Strathclyde, Glasgow,
Scotland, UK, 1997.

[114] P. Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In Principles and Practice of Constraint Programming—CP98, pages 417—
431. Springer, 1998.

[115] J. Silberholz and B. Golden. The effective application of a new approach to the general-
ized orienteering problem. Journal of Heuristics, 16(3):393-415, 2010.

162

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations research, 35(2):254-265, 1987.

W. Souffriau and P. Vansteenwegen. Tourist trip planning functionalities: State—of—the—
art and future. In Current Trends in Web Engineering, pages 474—485. Springer, 2010.

W. Souffriau, P. Vansteenwegen, G. Vanden Berghe, and D. Van Oudheusden. A path

relinking approach for the team orienteering problem. Computers & Operations Research,
37(11):1853-1859, 2010.

W. Souffriau, P. Vansteenwegen, G. Vanden Berghe, and D. Van Oudheusden. The multi-
constraint team orienteering problem with multiple time windows. Transportation Sci-
ence, Articles in Advance, pages 1-11, 2011.

R. H. Strotz. Myopia and inconsistency in dynamic utility maximization. The Review of
Economic Studies, 23(3):165-180, 1955.

Zomaya. A. Y. Subrata, R. and B. Landfeldt. Artificial life techniques for load balancing
in computational grids. Journal of Computer and System Sciences, 73(8):1176-1190,
2007.

C. S. Sung and H. W. Jin. A tabu-search-based heuristic for clustering. Pattern Recogni-
tion, 33(5):849-858, 2000.

K. Sylejmani, J. Dorn, and N. Musliu. A tabu search approach for multi constrained team
orienteering problem and its application in touristic trip planning. In Hybrid Intelligent
Systems (HIS), 2012 12th International Conference on, pages 300-305. IEEE, 2012.

K. Sylejmani, J. Dorn, and N. Musliu. Touristic trip planning: solo versus group traveling.
In PlanSIG 2012, 2012.

E. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J. Y. Potvin. A tabu search heuris-
tic for the vehicle routing problem with soft time windows. Transportation science,
31(2):170-186, 1997.

H. Tang and E. Miller-Hooks. A tabu search heuristic for the team orienteering problem.
Computers & Operations Research, 32(6):1379-1407, 2005.

D. Tapscott. The digital economy: Promise and peril in the age of networked intelligence,
volume 1. McGraw-Hill New York, 1996.

F. Tricoire, M. Romauch, K. F. Doerner, and R. F. Hartl. Heuristics for the multi-period
orienteering problem with multiple time windows. Computers & Operations Research,
37(2):351-367, 2010.

T. Tsiligirides. Heuristic methods applied to orienteering. Journal of the Operational
Research Society, pages 797-809, 1984.

163

[130] P. Vansteenwegen. Planning in tourism and public transportation — attraction selection by
means of a personalised electronic tourist guide and train transfer scheduling. PhD thesis,
Katholieke Universiteit Leuven, Centre for Industrial Management, Belgium, 2008.

[131] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden. A guided local
search metaheuristic for the team orienteering problem. European Journal of Operational
Research, 196(1):118-127, 2009.

[132] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. Van Oudheusden. Metaheuristics
for tourist trip planning. In Metaheuristics in the service industry, pages 15-31. Springer,
2009.

[133] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden. The orienteering problem: A
survey. European Journal of Operational Research, 209(1):1-10, 2011.

[134] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, and D. Van Oudheusden. Iterated lo-
cal search for the team orienteering problem with time windows. Computers & operations
research, 36(12):3281-3290, 2009.

[135] P. Vansteenwegen and D. Van Oudheusden. The mobile tourist guide: an or opportunity.
OR Insight, 20(3):21-27, 2007.

[136] C. Voudouris and E. Tsang. Partial constraint satisfaction problems and guided local
search. Proc., Practical Application of Constraint Technology (PACT’96), London, pages
337-356, 1996.

[137] Q. Wang, X. Sun, B. L Golden, and J. Jia. Using artificial neural networks to solve the
orienteering problem. Annals of Operations Research, 61(1):111-120, 1995.

[138] X. Wang, B. L. Golden, and E. A. Wasil. Using a genetic algorithm to solve the gener-
alized orienteering problem. In The vehicle routing problem: latest advances and new
challenges, pages 263-274. Springer, 2008.

[139] S. Wasserman. Social network analysis: Methods and applications, volume 8. Cambridge
university press, 1994.

[140] D.J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440-442, 1998.

[141] H. Werthner and S. Klein. Information technology and tourism: a challenging relation-
ship. Springer Verlag Wien, 1999.

[142] Z. Xiang and U. Gretzel. Role of social media in online travel information search. Tourism
management, 31(2):179-188, 2010.

[143] W. W. Zachary. An information flow model for conflict and fission in small groups.
Journal of anthropological research, pages 452-473, 1977.

164

Curriculum Vitae

Kadri Sylejmani was born on May 10, 1977 in Podujeva, Republic of Kosova. He received
his secondary school diploma in 1995 in his home town. He finished his diploma studies in
2004 in the field of computer engineering and telecommunications at Electro-technical Faculty,
University of Prishtina, Kosova. In 2010, he got a master degree in computer science, in an in-
terdisciplinary study program that was organized by University of Prishtina in cooperation with
Universite de La Rochelle, France and Institute of Technology Carlow, Ireland. In the mean-
time, in 2008 he started his PhD studies in the field of computer science at Vienna University of
Technology.

His working experience began just after the war in Kosova, back in 2000, when he was em-
ployed as language assistant in the United Nations Mission in Kosova. After, completing his
studies, in 2005, he got employed as university assistant at Department of Computer Engineer-
ing in Faculty Electrical and Computer Engineering, University of Prishtina, where he is still
working. He teaches the courses of programming languages, algorithms and data structures and
digital circuits. His research engagement includes application of optimization techniques in the
domain of e-tourism.

In the meantime, in form of part time basis, he has been engaged in a number of professional
projects that were developed within several private companies and NGOs in Kosova. His engage-
ments have mainly been in the fields of software development, consultancy and training. During
the year of 2012, he was engaged into two research projects, namely “Tourist Tour Planning and
Social Network Analysis” and “Text to speech conversion — case of Albanian language”, where
the earlier one was within his PhD project.

165

Publications

K. Sylejmani, J. Dorn, N. Musliu, Tourist trip planning: solo versus group traveling, 30th Work-
shop of the UK Planning And Scheduling Special Interest Group, Middlesbrough, United King-
dom, December 2012.

K. Sylejmani, J. Dorn, N. Musliu, A Tabu Search approach for Multi Constrained Team Orien-
teering Problem and its application in touristic trip planning, 12th International Conference on
Hybrid Intelligent Systems (HIS 2012), December 4-7, 2012, Pune, India, IEEE.

L. Ahmedi, K. Rrmoku, K. Sylejmani, Tourist Tour Planning Supported by Social Network
Analysis, 2012 ASE International Conference on Social Informatics, December 14-16, 2012,
Washington, IEEE.

K. Sylejmani, Optimizing tourist group trip planning problem, PhD workshop of ENTER 2012
organized by International Federation for Information Technology and Travel & Tourism (IFITT),
Helsingborg, Sweden.

K. Sylejmani, A. Dika , A taboo search algorithm for tourist trip planning, Workshop of The

Journal of Information Technology and Tourism — JITT, International Federation for IT and
Travel & Tourism — IFITT, Queen Margaret University, Edinburgh, Scotland, November 2010.

166

	Introduction
	Research Question
	Main Contributions
	Methodology
	Scenario
	Structure of the Thesis
	Grounding Material

	Related Work
	Tourist Information Systems
	Recommender Systems in Tourism
	Tourist Trip Planning Systems
	Social Relations
	Local Search Techniques
	Objective Function
	Neighborhood Exploration
	Meta Heuristics
	Tabu Search
	Applications of Tabu Search

	Modeling Tourist Trip Planning Problems
	Orienteering Problem
	Team Orienteering Problem
	Orienteering Problem with Time Windows
	Team Orienteering Problem with Time Windows
	Multi Constraint Team Orienteering Problem with Time Windows
	Generalized Orienteering Problem
	Orienteering Problem with Hotel Selection

	Summary

	Planning Solo Trip Itinerary
	Mathematical Modelling
	Solution Approach
	Solution Representation
	Neighborhood Exploration
	Feasibility Evaluation
	Search Diversification
	Tabu Search Implementation

	Computational Experiments
	Test instances and approach comparison
	Parameter tuning
	Comparisons with the state of the art approach

	Conclusions

	Considering Preferences of Tourist Groups
	Mathematical Modelling of MCMTOPTW problem
	Solution Approach
	Tourist Subgrouping
	Tourists' Data Merging
	Application of Solo Trip Planning algorithm

	Computational Experiments
	Test set
	Mode of algorithm execution versus social relationship range
	Comparisons between different modes of algorithm execution

	Conclusions

	Planning Group Trip Itinerary
	Mathematical Modelling
	Solution Approach
	Solution Representation
	Neighborhood Exploration
	Tabu Memories
	Tabu Search Implementation

	Computational Experiments
	Parameter tuning
	Comparison with the previous approaches

	Conclusions

	Scenario Evaluation
	Case 1 - A group of three friends
	Case 2 - A group of two couples
	Case 3 - A group of seven student of arts
	Summary

	Conclusion
	Answer to Research Question
	Future Work
	Test Set Extension
	Algorithmic Perspective
	Feature Extensions and Applications in Other Domains

	List of Figures
	List of Tables
	Scenario data
	Results for MCTOPTW problem
	Results for MCMTOPTW problem in Solo mode
	Results for MCMTOPTW problem in Subgroups mode
	Results for MCMTOPTW problem in Group mode
	Results for MCMTOPTW problem in Combined-Slow mode
	Results for MCMTOPTW problem in Combined-Fast mode
	Bibliography

