
Integration of External Libraries
into the Foundational Subset of

UML
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Patrick Neubauer
Matrikelnummer 1028573

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel
Mitwirkung: Dipl.-Ing. Tanja Mayerhofer, BSc

Wien, 10.02.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Integration of External Libraries
into the Foundational Subset of

UML
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Patrick Neubauer
Registration Number 1028573

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel
Assistance: Dipl.-Ing. Tanja Mayerhofer, BSc

Vienna, 10.02.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Patrick Neubauer
Rembrandtstr. 27/13, 1020 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

Wien, 10. Februar 2014

(Unterschrift Verfasser)

i

“Imagination is everything. It is the preview of life’s coming attractions.”

Albert Einstein

Acknowledgements

Many people brought in effort to this thesis, my education and the prototype realized as part of
this work. I greatly reward the opportunity to have come across so many wonderful people, and
it is now my great pleasure to take this opportunity to thank them.

First and foremost, I would like to express my sincere gratitude to my thesis assistance Tanja
Mayerhofer for her continuous support that finally led to the completion of this work. Her
motivation, enthusiasm, patience, and immense knowledge guided me all the time while both
creating the prototype and writing this thesis. Sincere thanks also to my thesis advisor Prof.
Kappel who took very good care in arranging all events.

I also thank Philip Langer and Manuel Wimmer for their support and motivation at the very
beginning that led to the final decision of choosing this particular topic. Thanks also to Uwe
Brunflicker who carefully answered my questions.

Special thanks goes to my girlfriend, Mirjam Raffeiner, and my family and friends for all their
love and spiritual support along the way.

v

Abstract

With the introduction of OMG’s Foundational UML (fUML) standard, that precisely defines
the execution semantics for a subset of UML, and the conforming virtual machine, completely
executable systems can be built and executed with UML. However, the full potential of having
executable models has yet to be unleashed. An important aspect that increases the potential of
executable models is the ability to re-use existing software components since that reportedly in-
creases the overall quality and productivity of the software development process. Furthermore,
large-scale software that is produced nowadays, involves the usage of a high number of existing
software components primarily in form of software libraries (i.e., APIs provided for the used
programming language).

This thesis identified that the fUML standard does not offer a procedure to use software
libraries. In fact, creating models that build on top of software libraries is not foreseen in the
fUML standard. On the contrary, the standard foresees its extendability through the Founda-
tional Model Library. Yet, doing so requires implementing model libraries that basically mimic
the functionality provided by currently existing software libraries. This approach imposes a sig-
nificant drawback. It requires a huge amount of dedicated joint effort to build a set of libraries
having similar functional coverage and sophistication as the existing set of software libraries.

The research question of this thesis is as follows. Is the fUML virtual machine extendable,
such that it allows the execution of models referencing external software libraries? Within this
work, an approach has been elaborated that enables to use external software libraries in fUML
models. The applicability of this approach has been shown by implementing a prototypical Inte-
gration Layer that is able to integrate Java libraries with the fUML virtual machine such that the
modeler can benefit from the advanced and complex functionalities provided by those libraries.
This prototype focuses on creating instances of library classes and calling library operations.
Moreover, a two-step procedure to make existing libraries available for their usage in fUML
models, has been implemented.

While conducting several case studies, experiences have been gained that led to further en-
hancements of the prototype and to the following conclusion. The fUML virtual machine can be
extended, such that it allows the execution of models referencing external libraries. Neverthe-
less, to broaden the applicability of the implemented prototype, and therefore increase the scope
of applicable modeling scenarios, an in-depth investigation on common library use cases and
their following implementation is recommended.

vii

Kurzfassung

Mit der Einführung von OMG’s Foundational UML (fUML) Standard, der die Ausführungs-
semantik für ein Teilmenge von UML und die konforme virtuelle Maschine präzise definiert,
können vollständig ausführbare Systeme in UML entwickelt und ausgeführt werden. Das voll-
ständige Potenzial von ausführbaren Modellen ist jedoch noch nicht gegeben. Die Möglichkeit
der Wiederverwendung von existierenden Softwarekomponenten, die Studien zufolge die Quali-
tät und Produktivität des Softwareentwicklungsprozesses gesamtheitlich erhört, ist ein wichtiger
Aspekt, der das Potenzial von ausführbaren Modellen steigert. Darüber hinaus involviert heuti-
ge Software die hochgradige Nutzung von existierenden Softwarekomponenten, primär in Form
von Software Bibliotheken (d.h. zur Verfügung gestellte APIs in der angewandten Programmier-
sprache).

Diese Arbeit identifiziert, dass der fUML Standard keine Prozedur um Software Bibliothe-
ken zu nutzen zur Verfügung stellt. Tatsache ist, dass das Erstellen von Modellen, die Bibliothe-
ken verwenden, im fUML Standard nicht vorgesehen ist. Der Standard sieht dessen Erweiterbar-
keit hingegen durch die Foundational Model Library vor. Dies jedoch benötigt die Implemen-
tierung von Modellbibliotheken, die im Grunde die Funktionalität von derzeitig existierenden,
und damit bereits zur Verfügung gestellten, Bibliotheken imitieren. Dieser Ansatz weist einen
erheblichen Nachteil auf. Es wird eine große Menge an gemeinsamen Bemühungen benötigt um
eine Menge von Modellbibliotheken aufzubauen, die einen ähnlichen Funktionsumfang bieten,
wie die existierende Menge von Software Bibliotheken.

Die Forschungsfrage dieser Arbeit lautet daher: Ist die virtuelle Maschine für fUML Mo-
delle erweiterbar, sodass diese die Ausführung von Modellen, die externe Bibliotheken verwen-
den, erlaubt? Innerhalb dieser Arbeit wurde ein Ansatz ausgearbeitet, der es ermöglicht Softwa-
re Bibliotheken in fUML Modellen zu verwenden. Die Anwendbarkeit dieses Ansatzes wurde
nachgewiesen durch die Entwicklung eines prototypischen Integration Layers der fähig ist, Ja-
va Bibliotheken mit der fUML virtuellen Maschine zu integrieren, sodass der Modellierer von
deren Funktionalität profitieren kann. Dieser Prototyp fokusiert sich auf die Instantiierung von
Bibliotheksklassen und den Aufruf von Bibliotheksoperationen.

Während der Durchführung verschiedener Fallbeispielen wurden Erfahrungen gewonnen,
die zur Weiterentwicklung des Prototypen, sowie zu folgendem Endergebnis geführt haben: Die
fUML virtuelle Maschine kann erweitert werden, sodass diese die Ausführung von Modellen,
die externe Bibliotheken verwenden, erlaubt. Um jedoch die Anwendbarkeit des implementier-
ten Prototypen, und damit den Umfang der anwendbaren Modellierungsszenarien zu erweitern,
wird eine eingehende Untersuchung von verbreiteten Anwendungsfällen für die Verwendung
von Bilbiotheken, sowie deren Implementierung, empfohlen.

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Aim of the Work . 3
1.4 Methodological Approach . 4
1.5 Structure of the Work . 5

2 UML 7
2.1 Introduction to UML . 7
2.2 UML Metamodel . 8
2.3 UML Diagram Types . 8
2.4 Class Diagrams to Capture Structure . 10
2.5 Activity Diagrams to Capture Behavior . 13

3 Executable UML 19
3.1 Introduction to Foundational UML . 19
3.2 Syntax of Foundational UML . 20
3.3 Semantics of Foundational UML . 24
3.4 Foundational Model Library . 28

4 Overview on the Foundational UML Library Support 31
4.1 Introduction to the Integration Layer Concept 31
4.2 Reverse Engineering of External Libraries . 33
4.3 Preparation of Library UML Models . 35
4.4 Definition of UML Models Referencing External Libraries 37
4.5 Execution of UML Models Referencing External Libraries 38

5 Reverse Engineering of Java Libraries 43
5.1 Introduction to Reverse Engineering . 43
5.2 Reverse Engineering Using MoDisco Model Discovery Tool 44
5.3 ATLAS Transformation Language . 49
5.4 Reverse Engineering Libraries: An Example 51

6 Modeling with fUML Using External Libraries 57

xi

6.1 Preparing Reverse Engineered UML Model 57
6.2 Implementation of Preparing a UML Model 62
6.3 Building a UML Model Referencing an External Library 65

7 Executing Foundational UML Models Integrating External Libraries 77
7.1 Java Reflection and Dynamic Class Loading 77
7.2 Executing fUML Models Referencing External Libraries 81
7.3 Foundational UML External Library Eclipse Plugin 86
7.4 Prototype Capabilities . 88
7.5 Prototype Limitations . 94

8 Case Studies and Lessons Learned 99
8.1 Research Questions . 99
8.2 Experimental Setup . 100
8.3 Mail Case Study . 100
8.4 Petstore Case Study . 106
8.5 Database Case Study . 111
8.6 Lessons Learned . 117
8.7 Threats to Validity . 118

9 Related Work 119
9.1 Approaches Taken by Other fUML Compliant Tools 119
9.2 The fUML Foundational Model Library and Similar Approaches 123
9.3 Other Approaches . 123

10 Conclusion 127
10.1 Summary . 127
10.2 Future Work . 129

Bibliography 131

xii

CHAPTER 1
Introduction

This chapter introduces the reader to the context of this master’s thesis and states the motivation,
problem, aim, methodological approach and structure of this work.

1.1 Motivation

In Model Driven Engineering (MDE), the focus of software development is shifted from coding
to modeling [18] to automate the software development process by using modeling languages
and model transformation, as well as code generation [19]. Therefore, MDE promotes the sys-
tematic use of software abstractions in terms of models as primary artifacts during a software
engineering process. MDE claims to have many benefits, such as increasing productivity, porta-
bility, interoperability, and maintainablity, but also organizational benefits such as the ability of
abstraction that allows to see the bigger picture [14]. The usage of MDE has reportedly lead to
productivity increases ranging from 20 to 800 percent [14].

Users of MDE employ different modeling languages. The Unified Modeling Language
(UML) [30], standardized by the Object Management Group (OMG), is used by about 85 percent
of MDE users [14].

Formal specification techniques are particularly relevant to MDE since modeling languages
must have a formally defined semantics if they are used to create analyzable models. There-
fore, it is suggested, that appropriate aspects of modeling languages must be formalized [9].
Currently, popular modeling languages, such as UML, have the shortcoming of informally and
imprecisely defined semantics that makes semantic-based manipulations of models difficult.

The OMG recently defined the Foundational Subset of UML (fUML) standard [31] that is
intended to give UML formal execution semantics. It precisely defines the execution semantics
for a defined subset of UML by dealing with the structural foundation layer and the behavioral
base layer (includes Actions, Inter-Object Behavior Base, and Intra-Object Behavior Base) and
Activities of UML as depicted in Figure 1.1. Specifically, fUML provides a standardized virtual
machine capable of executing activities compliant to the UML subset contained in fUML.

1

Figure 1.1: Semantic areas of UML [30].

With the standardization of executable UML, referred to as fUML, execution semantics have
been added to a subset of UML. The fUML specification together with an fUML virtual machine
allows to interpret (i.e., execute) fUML models. However, when modeling executable models
based on the fUML standard, none of the libraries that already exist in general purpose program-
ming languages, such as the Java programming language, can be used. That fact imposes major
drawbacks when it comes to building sophisticated applications in a timely and qualitatively
reasonable manner. As pointed out by Mayerhofer et al. [22], these drawbacks occur because
the modeler is unable to take advantage of powerful libraries when constructing models and thus
applications. The reason for the latter drawback is that such libraries, that exist in a general
purpose programming language like Java, simply do not (yet) exist in the action language of
fUML.

These days, when building an fUML activity model performing a simple task, such as com-
posing and sending an e-mail message to some recipient, for which a general purpose program-
ming provides simple-and-quick-to-use libraries, the whole (used) logic behind such libraries
needs to be re-implemented with fUML. Re-using software components, for example in form
of external libraries, allows to incorporate already well established and tested application logic
into newly written applications. In other words, to use a metaphor: wheels do not need to be
reinvented. When adding a dedicated layer to the fUML virtual machine that is able to interpret,
for example, operation calls to an external library, the modeler can take advantage of already
well-established software components.

Thus, since the overall quality and productivity to build applications is improved by re-
using software components [15], it might as well improve the quality and productivity to build
applications in form of executable fUML models.

2

1.2 Problem Statement

Libraries in modern general-purpose programming languages (GPL) provide access to huge,
already implemented, applications. For example, the Java Class Library (JCL)1 provides core
libraries, integration libraries, user interface libraries, and many more. The integration library
includes, e.g., the Java Database Connectivity (JDBC) API that allows the developer to rapidly
access a database. In Java there is also a huge amount of third party libraries available. One
prominent example is Apache Commons2. Those libraries and APIs are powerful since they
allow using well established and tested code that improves software productivity by speeding up
the software development process. Additionally, software quality is increased by the usage of
well tested library code.

While the fUML virtual machine is developed in Java and does allow the execution of fUML
models, it does not provide the ability to integrate and invoke external Java libraries from models.
In other words, the fUML virtual machine does not make external libraries available to be used
by the modeler, which imposes a significant drawback. Since libraries are nowadays widely
used in the software development process, the rapid development of software based on fUML is
hindered by its inability of providing the benefits of external libraries.

In general, the problem is that, when using the fUML virtual machine to execute an fUML
model, one cannot invoke a method from an external library and retrieve its result, e.g,. to
analyze the model execution at runtime. Therefore, a modeler could, for instance, not invoke the
nextInt() method in java.util.Random to generate a random number for further usage
in the model.

1.3 Aim of the Work

In order to cope with the previously stated problem, an approach for integrating external Java
libraries with the fUML virtual machine was proposed by [22]. This includes the integration
of required interfaces and classes of external libraries, into the fUML model. Additionally,
a dedicated Integration Layer is proposed to be employed in order to forward calls to library
classes to the actual class instance at runtime. By integrating external libraries with the fUML
virtual machine and employing a dedicted Integration Layer, modelers can benefit from the full
power provided by external Java libraries. The aim of this thesis is to implement a prototypical
solution for integrating external libraries with the fUML virtual machine and to evaluate the
practicability of this approach.

Hence, the prototype to be implemented needs to provide the possibility to use external
libraries from within an fUML activity diagram. In order to develop such a prototype, the fol-
lowing components and steps are designed and implemented as proposed in [22]:

1The Oracle Java Platform Standard Edition 7 Documentation can be found online at http://docs.
oracle.com/javase/7/docs/. Accessed January, 2014.

2Apache Commons library is available online at http://commons.apache.org. Accessed December,
2013.

3

http://docs.oracle.com/javase/7/docs/
http://docs.oracle.com/javase/7/docs/
http://commons.apache.org

Importing external libraries: To make external Java libraries available to the modeler of
fUML models, a class diagram representation of these external libraries is obtained using a re-
verse engineering tool. For importing the interfaces and classes of external libraries, MoDisco [4]
or Jar2UML3 can be used. The result of this procedure consist of interfaces, classes, fields, and
operation signatures of the required components. To avoid an information overflow of fUML
models, the modeler may manually select certain classes (as, e.g., org.apache.commons.
mail.Email) and their class members (as, e.g., EMAIL_SUBJECT) she/he aims to use. In
case, only parts of the external library (like, e.g., the Email class in the org.apache.
commons.mail library) are integrated into the fUML model, field types, operation param-
eter types and return types4 still have to be imported. In contrast, the bodies of the operations
are omitted from the integrated classes. They are replaced by special place holders (empty fUML
activities) from which the actual functionality of the external library is triggered at runtime as
described in the following.

Integrating external libraries at runtime: In order to integrate external libraries into the exe-
cution of an fUML model, a dedicated Integration Layer is developed that is capable of invoking
methods of the previously reverse-engineered library out of the fUML model and integrates the
result (or: return value) obtained from the invoked method call into the fUML runtime model.
During the execution of the fUML model, when an activity representing an operation of an ex-
ternal library is called, the Integration Layer forwards the call to the external library. In order
to allow this, the Integration Layer is notified on such a call to allow pausing the execution of
the fUML model until the external library responds with the result. Afterwards, the result of the
call to the external library is incorporated into the runtime model of the executed fUML model.
Here, the event mechanism and command API that have been developed and integrated into the
standardized fUML virtual machine [21] is used. Using these extensions allows the creation and
modification of library class objects and the invocation of library functions at runtime. Hence,
objects might be created and manipulated.

1.4 Methodological Approach

The research method used within this work is based on the idea of the constructive approach
of Design Science [12]. Design Science consists of the two basic activities Build and Evaluate.
In the Build activity, models, methods and implementations are built. The Evaluate activity
evaluates the performance of the built artifacts related to the environment.

Based on this constructive approach, the following steps are carried out for the mater’s thesis:

3The Eclipse Jar2UML tool has been developed by the Software Languages research lab within the department
of Computer Science of the Vrije Universiteit Brussel. The official project webpage can be retrieved from http:
//soft.vub.ac.be/soft/research/mdd/jar2uml. Accessed December, 2013.

4A summary on field types, operation parameter types, and return types of the mentioned example library
class Email in org.apache.commons.mail can be found online at http://commons.apache.org/
proper/commons-email/apidocs/org/apache/commons/mail/Email.html. Accessed Decem-
ber, 2013.

4

http://soft.vub.ac.be/soft/research/mdd/jar2uml
http://soft.vub.ac.be/soft/research/mdd/jar2uml
http://commons.apache.org/proper/commons-email/apidocs/org/apache/commons/mail/Email.html
http://commons.apache.org/proper/commons-email/apidocs/org/apache/commons/mail/Email.html

Analysis: In this step, existing work concerning fUML and reverse engineering is elaborated
to get a more thorough understanding of the problem at hand, existing solutions, and barriers that
have to be overcome. This guides in getting an understanding about:

• The fUML standard and its utilization.

• The functionality of the fUML virtual machine.

• The fUML extensions: command and event mechanism.

• Reverse engineering tools capable of producing a UML class diagram representation of
Java libraries.

Design: In the design step, an artifact is designed that is implemented by a prototype, which
approaches the problem of integrating external Java libraries investigated in the Analysis step.
The prototype is capable of:

• The integration of a reverse engineered Java API into fUML models.

• Providing a dedicated Integration Layer that forwards calls from the fUML model to the
reverse engineered Java API to the actual external library.

• Support of object manipulation actions to allow manipulation of library objects.

During the development phase, reviews are conducted by several researchers for refining and
improving the artifact towards the initially defined goals and/or goals discovered in later stages.

Evaluation: Finally, the practicability of the implemented prototype is evaluated by con-
ducting a case study particularly looking at the usability, correctness, and performance when
executing fUML models that use external libraries with the designed prototype. Thus, sugges-
tions for improvements and future work on the implemented artifact are obtained.

1.5 Structure of the Work

This work is structured into the following additional nine chapters.

Chapter 2 and Chapter 3 present the main theoretical part covering the concepts used in the
upcoming chapters. These concepts include UML class and activity diagrams as well as con-
cepts used in OMG’s fUML action language.

Chapter 4 is meant to provide an overview to the proposed concept of integrating external
libraries into fUML models.

The subsequent chapters describe the implemented prototype. On one hand, Chapter 5 dis-
cusses the reverse engineering process that produces a UML class model.

5

On the other hand, Chapter 6 depicts how to construct fUML activity models that reference
classes and operations of external libraries.

Chapter 7 discusses how the artifacts created in the previous chapters are used as input for
the Integration Layer that ultimately executes the fUML model referencing external libraries.

Within Chapter 8 case studies performed on the implemented prototype are discussed along-
side with the examined research questions and the lessons learned from the studies.

Chapter 9 mentions related work on the state of the art concerning the execution of models
accessing external libraries.

The conclusion and the summary of the work are given in Chapter 10. Furthermore, potential
future work is also discussed.

6

CHAPTER 2
UML

In this section we aim to introduce the reader to the Unified Modeling Language (UML) and its
types of diagrams used in this work.

2.1 Introduction to UML

Just as Java is a general-purpose programming language, the Unified Modeling Language (UML)
is a general-purpose modeling language (GPLs or GPMLs1) commonly used in software engi-
neering. UML arose out of the existence of several modeling language definitions and has been
standardized by the Object Management Group (OMG) in late 1997. Until recently, the OMG
released several version of UML with version 2.4.1 being the most recent release published in
August 2011 [30]. In 2000, the International Organization for Standardization (ISO) accepted
UML as an industry standard for modeling software-intensive systems.

Domain Specific Languages vs. General-Purpose Languages

Domain-specific languages (DSLs or DSMLs2) are languages designed for a specific purpose.
Thus, they are designed for a specific domain to help people describe phenomena in their specific
domain. UML is a many-domains language (MDL), therefore it may not be a domain-specific
language. While a DSL can certainly not model any domain, UML can [3]. On the other hand,
UML may not be well suited for all domains but it can be directly applied to easily model
any domain. In case a development project includes some modeling needs that are not com-
pletely covered by the UML standard, then one can take advantages of the extensibility features
provided by UML. Specifically, stereotypes, constraints, tagged values, and profiles are UML
extension mechanisms which can be used for this purpose.

1GPML stands for general-purpose modeling language
2DSML stands for domain-specific modeling language

7

2.2 UML Metamodel

The concepts provided by a modeling language are usually defined by a metamodel that, hence,
defines the abstract syntax of a modeling language. While a model is an abstraction of phenom-
ena in the real world, a metamodel is an abstraction of a model (i.e., a metamodel describes a
model). In other words, a metamodel defines a modeling language by describing the whole class
of models that one can model by using that particular modeling language. Subsequently, meta-
metamodels describe metamodels in the same way as metamodels describe models and models
describe real world phenomena. Hence, one can recursively define infinite levels of metamodels.
As a result of that, a model (at any level of abstraction) conforms to its metamodel. Analogously,
a computer program, written in the Java programming language, conforms to the grammar of
the Java programming language. Also the abstract syntax of UML is defined by a metamodel.
This metamodel consists for instance of the metaclasses “Class” and “Association” which can
be used to define classes, such as the classes “Person” and “Car” and association between these
classes (cf. Figure 2.1).

Figure 2.1: An example for metamodeling3 [29].

2.3 UML Diagram Types

In general, the OMG UML Superstructure specification version 2.4.1 [30] categorizes UML di-
agrams into the two basic types of structure diagrams and behavior diagrams. Subsequently,
behavior diagrams can be further classified into interaction diagrams. The most important dis-
tinction of these two diagram categories is that, while structure diagrams represent the static
structure of the objects in a system, behavior diagrams present the dynamic behavior of the ob-
jects in a system.

3Note that not all instance-of relationships are shown

8

While structure diagrams do not define dynamic behavior and behavior diagrams do not ex-
hibit static structure, they can be related to each other. OMG’s diagram type taxonomy only
provides a logical organization of UML modeling concepts and does not inhibit the combination
of various kinds of modeling concepts on the same diagram. In the following, each diagram
type, owned by the diagram categories as depicted in Figure 2.2, is shortly described. Finally,
class diagrams and activity diagrams are described in more detail as they play a key role in this
work.

Figure 2.2: UML version 2.4.1 diagram taxonomy [30].

Structure Diagrams

• The profile diagram operates at metamodel level to show stereotypes as classes, and pro-
files as packages. The extension relation denotes the metamodel element that a specific
stereotype extends.

• The class diagram describes the system structure by primarily visualizing its classes, their
attributes, and relationships between classes. A more detailed description is available in
Section 2.4.

• A composite structure diagram describes the internal structure of a class and its collabo-
rations hierarchically. Hence, it can be used to decompose the modeled system.

• A component diagram shows the separation of a system into modular components and
highlights their dependencies between each other.

9

• The deployment diagram describes system artifacts (e.g., a JAR file), execution environ-
ments (e.g., Apache Tomcat servlet container) and devices (e.g., the hardware of a server).
Therefore, it can illustrate how artifacts are deployed in specific execution environments
on the hardware.

• The object diagram models an either partially or complete instance of the system. In other
words, objects and their attribute values are modeled together with relationships among
the objects themselves.

• A package diagram shows how the system is composed (or split) into specific groups (i.e.,
packages) and how these groups are related to each other.

Furthermore, in order to describe the behavior of a system, another set of diagrams, as listed
below are defined by UML.

Behavior Diagrams

• The activity diagram shows the flow of control in a system. Accordingly, it describes the
operational and business workflows (i.e., data and control flows) of each system compo-
nent. A more detailed description, including modeling concepts used in these diagrams,
is available in Section 2.5.

• A use case diagram typically describes “use case scenarios” from the viewpoint of in-
volved actors of the particular system. It shows, in particular, the actor’s goals, relation-
ships and dependencies among each other.

• State machine diagrams are based on the mathematical concept of finite automata. Hence,
they can be used to describe object life cycles that show actions (or transitions) required
for an object to move from one to another state.

• Interaction diagrams are composed of sequence diagrams, communication diagrams, in-
teraction overview diagrams, and timing diagrams. They are used to define different as-
pects of the interactions between objects of the modeled system.

2.4 Class Diagrams to Capture Structure

UML class diagrams are static structure diagrams that describe the structure of a system by
visualizing system classes, operations, attributes, and relationships among classes [30]. An
example of a UML class diagram is shown in Figure 2.3. Every box in the class diagram,
except the box labeled Person, represents a class. The upper part of the box, also called the
name compartment, contains the name of the class and identifies applied stereotypes such as,
for example, «interface». The lower part, also called the attributes compartment, contains
a list of attributes of a class. The part on the bottom of the box, also called the operations
compartment, displays the operations the class can perform. While the name compartment is
required in every class definition, the attributes compartment and the operations compartment

10

are optional. For example, the class Order has the attributes date and status and operations
calcTax(), calcTotal(), and calcTotalWeight().

Check

+ na me :String
+ ba nkID :int

+ au thorized() :boo lean

Cash

+ cashTen dere d :do uble

Creditcard

+ nu mber :int
+ typ e :S tring
+ exp Date :Da te

+ au thorized() :boo lean

Customer

+ na me
+ address

Item

+ shi pping Weig ht :d oubl e
+ de script ion :String

+ ge tPrice ForQuant ity(int) :do uble
+ ge tWeig ht() :doub le

Order

+ da te :Date
+ sta tus :S tring

+ cal cTax() :do uble
+ cal cTota l() :d oub le
+ cal cTota lWei ght() :dou ble

OrderDe tail

+ qu antiti y :int
+ taxStatu s :St ring

+ cal cSub Tota l() :d ouble
+ cal cWei ght() :dou ble

Payment

+ am ount :dou ble

«in terfa ce»
Person

0..*1 1..*1

1

0..*1

1..*

Figure 2.3: UML class diagram example4.

4The UML class diagram example depicted in Figure 2.3 represents a modified version of the UML class diagram
found online at http://edn.embarcadero.com/article/31863. Accessed January, 2014.

11

http://edn.embarcadero.com/article/31863

The most important UML modeling concepts for defining classes are described in the fol-
lowing.

Attributes and operations are class members. Two types of members can be defined: clas-
sifier members and instance members. The scope of classifier members is limited to the class
itself such that method invocations do not affect the instance’s state and attribute values are equal
for all instances. This is similar to the static keyword in Java. On the other hand, instance
members have a scope bound to their instance, i.e., method invocations can affect the instance’s
state and attribute values can vary between instances.

Relationships, in class diagrams, are logical connections that can take various forms. In
general, relationships can be classified into instance level relationships, class level relationships
and general relationships. Association, aggregation, and composition are instance level rela-
tionships. Realization and generalization are class level relationships. Dependency is a general
relationship. To clarify, a uni-directional relationship is defined as a relationship capable of
flowing in one direction (i.e., from source to target) only and not in both directions like a bi-
directional relationship.

An association is represented by a line between classes as depicted in Figure 2.3 by, for
example, the two-ended line connecting the class Customer and the class Order. While the
latter example does not specify a direction in the relationship, an uni-directional relationship is
shown from the Order class to the Payment class.

Aggregation is another form of a relationship in UML class diagrams. It represents a type
of “has a” relationship. In Figure 2.3 it is illustrated by the relationship connecting Order
and OrderDetail. It represents the fact that OrderDetail is part of Order. On one hand, the
containing element is represented by the class from which the relationship starts with the empty
(or not filled) diamond and on the other hand, the contained element is represented by the other
class. Aggregation relationships have weak life cycle dependency.

A composition relationship is another form of an aggregation relationship with the differ-
ence that it is represented by a non-empty (or filled) diamond and its life cycle dependency is
strong. Therefore, it represents a type of “owns a” relationship.

The difference between weak and strong life cycle dependency is that when the container of
an aggregation relationship, i.e., having weak life cycle dependency, is destroyed, the contained
elements are kept. On the other hand, a strong life cycle dependency, as in the composition
relationship, causes both the container and the contained elements to be destroyed when the
container is destroyed.

A realization relationship is represented by a dashed lined ending with an arrow, e.g., from
the Customer model element that realizes the Person model element. While the former is
the client of the relationship, the latter is the supplier of it. In Figure 2.3, the class Customer
realizes the «interface» Person. In Java this corresponds to the interface implementa-
tions defined with the keyword implements.

12

A generalization relationship is also called a “is a” relationship that indicates that a class is a
specialized form of another class. In Figure 2.3, Payment (i.e., the super type) is the superclass
(or parent) of Creditcard, Check, and Cash. Therefore, the latter classes are subclasses
(or children) of Payment, i.e., they all represent a specific form of the Payment class. In Java
this corresponds to the class inheritance defined with the keyword extends.

Multiplicity, in UML class diagrams, is a property of relationship ends. In the example
shown in Figure 2.3, a Customer instance can be associated with zero or more instances of
Order. On the other hand, an Order instance can be associated with exactly one instance of a
Customer. Possible kinds of multiplicities used in class relationships are depicted in Table 2.1.

Dependencies are relationships that indicate that a class depends on another class, i.e., a
class uses another class at some point in time.

multiplicity notation

No or one instance (i.e., optional instance) 0..1
Exactly one instance 1

Zero or more instances 0..*
One or more instances (i.e., at least one instance) 1..*

At least n but not more than m instances n..m

Table 2.1: Relationship multiplicities in UML

2.5 Activity Diagrams to Capture Behavior

Activity diagrams describe the control and data flow of actions to be performed within a system
(in a step-by-step fashion until a specific goal is reached) [3]. In other words, these diagrams
are object-oriented flowcharts that allow to model a process in form of an activity consisting of
a collection of nodes connected by edges [1]. When comparing UML version 1 and 2 one can
see that activity diagrams have been specified completely different. During the times of UML 1,
activity diagrams have been specified similar to state machines while starting with UML 2 their
semantics is based on Petri Nets. Obviously, in that way, state machines and activity diagrams
can be better differentiated but another advantage is that the Petri Nets semantic allows to model
different types of flows with an increased flexibility. In summary, activity diagrams are used to
model the system’s dynamic behavior.

Since UML 2 activity diagrams are based on Petri Nets. They model behavior using the to-
ken game [1]. The token game specifies how tokens flow around the network of nodes and edges.
At any point in time, the state of the system is fully determined by the current arrangement of
its tokens. Tokens may represent objects, some data, or the flow of control. They use edges to
move from source nodes to target nodes whenever all their conditions are satisfied. Conditions

13

activities. The UML metamodel is described in more detail in Chapter 2.4. The notations of the
modeling concepts for activities and further details are presented in Table 2.1.

Activity

ActivityNode ActivityEdge
+�target
1

+�incoming
*

+�source
1

+�outgoing
*

+�activity +�activity

+�node +�edge

0..1 0..1

**

ObjectNode Action ControlNode ControlFlow ObjectFlow

Pin ActivityParameterNode InitialNode DecisionNode ForkNode

InputPin OutputPin
FinalNode

ActivityFinalNode

MergeNode JoinNode

0 1 0 1

**+�/input +�/output

Parameter

*

1+�parameter

Action

0..1 0..1

Figure 2.2: Excerpt of the UML metamodel that contains the basic concepts of activity diagrams
[19]

Activities consist of activity nodes and activity edges. Actions are activity nodes that define the
single steps of an activity. Actions can also process data and therefore have inputs and outputs
which are modeled using so-called input pins and output pins. Also an activity can have inputs
and outputs which are specified by activity parameter nodes. Pins and activity parameter nodes
are object nodes. To define the start of an activity, the end of an activity, alternative branches or
concurrent branches, control nodes are used. The initial node defines the starting points of an
activity, whereas the activity final node determines the end of an activity. Alternative branches
are modeled using a decision node that defines under what condition which of the branches is
executed. Alternative branches are merged using the merge node. With the fork node concurrent
actions can be defined which can again be synchronized using the join node. Activity nodes
are connected by activity edges. Control flow edges are used to define the control flow among
activity nodes whereas data flow edges are used to model the data flow.

9

Figure 2.4: UML metamodel excerpt containing the basic concepts of UML activity dia-
grams [20].

are imposed by nodes in the form of preconditions and postconditions, as well as by edges in
form of guard conditions.

An Activity consists of a network of nodes connected by edges. To be more precise, the
former is referred to as ActivityNode while the latter as ActivityEdge (cf. Figure 2.4). Activity
nodes can take the form of an ObjectNode, an Action, and a ControlNode. The syntactic rep-
resentation of an Activity is a rounded rectangle as depicted in Figure 2.5. Actions represent
discrete tasks to be completed within the activity in order to finish it. ControlNodes are used
to control the flow of tokens throughout the activity. An ObjectNode represents objects used in
the activity. Edges (see ActivityEdge in Figure 2.4) are represented by either a ControlFlow or
an ObjectFlow. ControlFlows define the flow of control through the activity. ObjectFlows are
the edges between ObjectNodes, therefore they represent the flow of objects through the activity.

Actions, who’s shape is depicted in Figure 2.6, only execute when their local precondition
is satisfied and all input edges are supplied with tokens. On one hand, a local precondition and
a local postcondition are constraints that need to hold at the point in time when the execution
starts and completes, respectively. Furthermore “local” refers to a specific point in the flow
rather than “global”, i.e., other invocations of the behavior at other places in the flow. Hence,
those conditions perform logical AND operations. After execution, the action node checks its

14

432 UML Superstructure Specification, v2.4.1

Graphic Paths

The graphic paths that can be included in activity diagrams are shown in Table 12.2

Other Graphical Elements

Activity diagrams have graphical elements for containment. These are included in Table 12.3.

Table 12.2 - Graphic paths included in activity diagrams

Path Type Reference

ActivityEdge See ControlFlow and
ObjectFlow.

See 12.3.5, ’ActivityEdge (from BasicActivities,
CompleteActivities,
CompleteStructuredActivities,
IntermediateActivities)’

ControlFlow See 12.3.19, ’ControlFlow (from BasicActivities)’

ObjectFlow See 12.3.37, ’ObjectFlow (from BasicActivities,
CompleteActivities)’ and its children.

Table 12.3 - Graphic elements for containment in activity diagrams

Type Notation Reference

Activity See 12.3.4, ’Activity (from
BasicActivities,
CompleteActivities,
FundamentalActivities,
StructuredActivities)’

Activity name

...
...

...

Parameter name: type

Figure 2.5: UML Activity.

local postcondition and in case it is satisfied, tokens are provided on all of its outgoing edges.
Hence, an action may give rise to many flows - this is also called an implicit fork and makes
activity diagrams inherently concurrent. Action nodes can also have a various number of Input-
Pins and OutputPins as depicted in Figure 2.8 and described below.

Figure 2.6: UML Action.

ObjectNodes are nodes that denote that instances of a specific classifier or its subclasses
are available at that particular point in the activity. When an object token is received by an
ObjectNode on one of its input edges, the token is offered on all its output edges at the same time
such that the target nodes have to compete for the token. Therefore, the token is not replicated
on the output edges and the first target node that accepts the token receives it. Furthermore,
ObjectNodes act as buffers, i.e., object tokens can reside within them until they are accepted by
other nodes. ObjectNodes are represented by rectangles holding the classifier name inside as
visualized in Figure 2.7. These nodes are sometimes also referred to as stand-alone style pins
because they are equivalent to the combination of an OutputPin and an InputPin [1].

A Pin is a form of an ObjectNode (cf. Figure 2.7) that represents the input to (i.e., an
InputPin) or the output from (i.e., an OutputPin) an Action. Input and output edges of ObjectN-
odes are called ObjectFlows and are described below. An Action having one InputPin and one
OutputPin is shown in Figure 2.8.

ActivityParameterNodes are, like Pins, a form of ObjectNode that provide input and out-
put. On the contrary to Pins, they provide input to and output from Activities instead of Actions.
The ActivityParameterNodes are drawn overlapping the Activity frame. Figure 2.5 shows an

15

Figure 2.7: UML ObjectNode.

Figure 2.8: UML Action with InputPin and OutputPin shown with arrow pin-style (cf. [30]).

Activity with two input ActivityParameterNodes and one output ActivityParameterNode.

ControlNodes are used to describe the flow of control within an activity. Table 2.2 summa-
rizes the available ControlNodes in UML 2.

UML Superstructure Specification, v2.4.1 345

Notation

The notations for activity nodes are illustrated below. There are three kinds of nodes: action node, object node, and
control node. See these classes for more information.

Examples

This figure illustrates the following kinds of activity node: action nodes (e.g., Receive Order, Fill Order), object nodes
(Invoice), and control nodes (the initial node before Receive Order, the decision node after Receive Order, and the fork
node and Join node around Ship Order, merge node before Close Order, and activity final after Close Order).

Rationale

Activity nodes are introduced to provide a general class for nodes connected by activity edges.

Changes from previous UML

ActivityNode replaces the use of StateVertex and its children for activity modeling in UML 1.5.

Figure 12.50 - Activity node notation

Figure 12.51 - Activity node example (where the arrowed lines are only the non-activity node symbols)

Action node Object node Control nodes

Receive Fill
Order

Ship
OrderOrder

Close
Order

Send
Invoice

Make
Payment

Accept
Payment

[order
accepted]

[order
rejected]

Invoice

Figure 2.9: UML InitialNode (left), ActivityFinalNode (center), and FlowFinalNode (right).

Figure 2.10: UML DecisionNode.

16

Name Semantics F igure

InitialNode Highlights the starting point of
an activity.

2.9 (left)

ActivityFinalNode Indicates where the activity ter-
minates.

2.9 (center)

FlowFinalNode Used to indicate the termination
of a specific flow (other flows re-
main unaffected).

2.9 (right)

DecisionNode Outputs a token on an out-
put edge whose guard condition
evaluates to true.

2.10

MergeNode Brings together multiple alterna-
tive flows to a single outgoing
flow.

2.11

ForkNode Fork nodes split the flow into
multiple concurrent flows.

2.12

JoinNode A join node synchronizes multi-
ple concurrent flows into a single
output flow.

2.13

Table 2.2: Types of UML control nodes.

Figure 2.11: UML MergeNode.

A ControlFlow defines the flow of control through an Activity. Figure 2.14 shows a flow of
control from one Action to another Action.

ObjectFlows define the flow of objects through an Activity. Objects transferred by an Ob-
jectFlow are created and consumed by Actions. Figure 2.15 shows that there is an ObjectFlow
between the left-hand Action (which produces the flowing object) and the right-hand Action
(which consumes the flowing object).

17

Figure 2.12: UML ForkNode.

Figure 2.13: UML JoinNode.

Figure 2.14: UML Actions connected via a ControlFlow.

Figure 2.15: UML Actions connected via an ObjectFlow.

18

CHAPTER 3
Executable UML

This section aims at introducing the reader to the Foundational Subset for Executable UML
Models (fUML). fUML is introduced in greater detail by describing its syntax and semantics.
Regarding the syntax of fUML, the Activities and Actions packages are described in further
detail. The fUML semantics are described together with a step-by-step textual description on
how the execution engine executes an fUML model. At the end, the built-in model library and
the limitations regarding external libraries are discussed.

3.1 Introduction to Foundational UML

Foundational UML, Foundational UML Subset, or fUML are shorthands for the “Semantics of
a Foundational Subset for Executable UML Models” that represents a standard defined by the
OMG [31]. As its name suggests, it is based on a subset of UML (i.e., the metamodel of fUML
is a subset of the metamodel of UML), covering specific parts of it. The goal of this standard is
to precisely define the execution semantics of this UML subset. fUML 1.1 (beta 1) [33] has been
released in January 2013, and is based on UML 2.4.1 [29] released August 2011, representing
the current version at the time of writing this thesis. The extension of the fUML virtual machine
built by Mayerhofer et al. [21] builds upon fUML version 1.0 [31] (released February 2011)
based on UML 2.3 [25].

In the specification, the fundamental purpose of fUML is described as being an intermediary
between UML “surface subsets” used for modeling and computational platform languages used
as the target for model execution (cf. Figure 3.1). To clarify, fUML is an executable UML and
not Executable UML1. fUML deals with two layers of the semantic areas of UML 2 namely the
structural foundations and the behavioral base, as well as with Activities as shown in Figure 1.1
in Section 1.1.

1Executable UML, also called xtUML or xUML, as introduced by Mellor and Balcer [23] is a different approach
for specifying the semantics of UML.

19

The “surface UML subset” is translated in a two-step process. First, the surface UML subset
is translated into the “foundational UML subset” since the surface UML subset is typically used
to model a system as it contains a larger amount of modeling concepts than the fUML subset.
Second, the fUML subset is translated into a computational platform language such as Java.
Furthermore, the computational platform language can then be used to execute the model.

With this in mind, fUML can be seen as an intermediary between the computational platform
language and the surface UML subset for modeling a system. fUML has sufficient expressibility
to enable the creation of models, which can then be executed automatically [33]. Hence, the
foundational UML subset is a computationally complete language for executable models that
defines the execution semantics for the rest of UML in the long run.

Figure 3.1: Translation to and from the foundational UML subset [31].

3.2 Syntax of Foundational UML

The syntax of a modeling language, like fUML, provides rules for how to construct well-formed
models. In fUML, such well-formed models are presumed to have met all the constraints im-
posed by the abstract syntax defined in the UML specification [33]. As described earlier, fUML
merges packages of the UML 2 superstructure into syntactic packages. Since fUML is struc-
tured in the same way as UML because its metamodel is a subset of the UML metamodel, also
their packages are structured in the same way. Those UML packages that are included in fUML
may be object to further restrictions in form of additional constraints and/or excluded elements.
Figure 3.2 depicts UML packages that are merged into the foundational UML subset. While the
red colored packages, namely Classes, Actions, Common Behaviors and Activities, are included,
the black colored packages (i.e., Composite Structures, Deployments, Components, Interactions,
State Machines, and Use Cases) are currently (still) excluded from the foundational UML subset.

20

Classes

Componets

Composite
Structures

Deployments

Actions

Activities

Common
Behaviors

Interactions

State Machines

Use Cases

UML 2Foundational UML Subset

Modeling of
Structure

Modeling of
Behavior

Figure 3.2: UML packages merged into the foundational UML subset.

Furthermore, as mentioned in Section 2.3, UML categorizes diagrams into structure dia-
grams and behavior diagrams, respectively. On one hand, structure diagrams model the static
structure and on the other hand, behavior diagrams model the dynamic behavior, of the objects
in a system. fUML contains class diagrams for modeling structure using the Classes package
and activity diagrams for modeling behavior using the packages Common Behaviors, Activities,
and Actions. The Activities and Actions packages are discussed in more detail below.

Activities Package

The UML and fUML Activity syntax sub-packages are referred to as UML::Activities in UML
and fUML::Syntax::Activities in fUML, respectively. When looking for UML activity modeling
concepts in the fUML specification one can see that almost all of them are available (cf. Ta-
ble 3.1). Exceptions, i.e., excluded modeling concepts, are the SequenceNode, CentralBufferN-

21

ode, and the DataStoreNode. Note that the FlowFinalNode is available starting from fUML
specification version 1.1.

Category UML modeling concept Available in fUML 1.1

Behavior Activity yes

Executable Nodes

StructuredActivityNode yes

ConditionalNode yes

LoopNode yes

SequenceNode no

ExpansionRegion yes

Object Nodes

ActivityParameterNode yes

ExpansionNode yes

CentralBufferNode no

DataStoreNode no

Control Nodes

InitialNode yes

ActivityFinalNode yes

DecisionNode yes

MergeNode yes

ForkNode yes

JoinNode yes

FlowFinalNode yes

Activity Edges
ControlFlow yes

ObjectFlow yes

Table 3.1: UML Activity modeling concepts available in fUML.

Actions Package

The UML and fUML Action syntax sub-packages are referred to as UML::Actions in UML
and fUML::Syntax::Actions in fUML, respectively.

Table 3.2 lists primitive actions supported by fUML version 1.1. Note that the primitive
actions supported by fUML version 1.0 are equal. The table is categorized into object-related,
link-related, variable- and structural feature-related, and communication-related actions [13].

22

When examining the table, one can see that none of the variable-related actions is supported by
fUML. Therefore, fUML version 1.1 does not directly support variables.

Category UML modeling concept Available in fUML 1.1

Object-related actions

CreateObjectAction yes

DestroyObjectAction yes

ReadSelfAction yes

TestIdentityAction yes

ReclassifyObjectAction yes

ReadIsClassifiedObjectAction yes

ReadExtentAction yes

StartClassifierBehaviorAction yes

StartObjectBehaviorAction yes

Link-related actions

CreateLinkAction yes

CreateLinkObjectAction no

ReadLinkAction yes

ReadLinkObjectEndAction no

ReadLinkObjectEndQualifierAction no

ClearAssociationAction yes

DestroyLinkAction yes

Variable-related actions

AddVariableValueAction no

ReadVariableAction no

ClearVariableAction no

RemoveVariableAction no

Structural feature
related actions

AddStructuralFeatureValueAction yes

ReadStructuralFeatureAction yes

ClearStructuralFeatureAction yes

RemoveStructuralFeatureAction yes

ValueSpecificationAction yes

Continued on next page

23

Table 3.2 – continued from previous page

Category UML modeling concepts Available in fUML 1.1

Communication
related actions

AcceptCallAction no

AcceptEventAction yes

CallBehaviorAction yes

CallOperationAction yes

BroadcastSignalAction no

SendSignalAction yes

SendObjectAction no

ReplyAction no

Other actions

OpaqueAction no

RaiseExceptionAction no

ReduceAction yes

UnmarshallAction no

Table 3.2: UML Actions available in fUML.

3.3 Semantics of Foundational UML

A natural language, or a language in general meaning, represents a symbolic means for com-
munication that provides rules that evolved socially and neurologically over time [33]. While
statements constructed using such languages communicate some specific meaning, statements
constructed using a formal language have a more precise meaning. In a formal language, like
fUML, rules are constructed artificially and statements need to be correctly constructed and
well-formed as they serve some intended purpose. Thus, the semantics of a formal language
provides the specification of the meaning of well-formed statements.

Foundational UML Execution Model, Execution Engine, and Execution Environment

In fUML, the execution model is itself an executable, object-oriented, fUML model of an ex-
ecution engine that specifies how fUML models are to be executed. Since every user-defined
behavior in fUML is an activity, also the behavior of the execution model could be defined by
activity diagrams. However, in the fUML specification, the behavior of the execution model
is textually defined in the Java programming language to avoid using enormously large (but
equivalent) diagrams. It is important to note that static semantics (i.e., constraints on the well-

24

formedness of fUML models) are not part of the execution semantics since meaning can only
be assigned to models that are well-formed. The execution model is composed of the following
packages:

• The Loci package with its sub-packages LociL1, LociL2, and LociL3 specifies the execu-
tion engine and its environment for executing fUML models.

• The structural semantics definition in the Classes package.

• The behavioral semantics definition in the CommonBehaviors, Activities, and Actions
packages.

<<import>>

Basic�Behaviors
(from�Syntax::CommonBehaviors)

Kernel
(from�Semantics::Classes)

import

Loci�L1Kernel
(from�Syntax::Classes)

<<import>><<import>>

i
Basic�Actions

(from�Semantics::Actions)

Intermediate Actions

Basic�Actions
(from�Syntax::Actions)

Intermediate Actions Loci L2

<<import>> <<import>>

<<import>>

Intermediate�Actions
(from�Semantics::Actions)

Intermediate�Activities
(from Semantics::Activities)

Intermediate�Actions
(from�Syntax::Actions)

Intermediate�Activities
(from Syntax::Activities)

Loci�L2<<import>> <<import>>

<<import>> <<import>>

<<import>>

(from�Semantics::Activities)

Complete�Actions
(from�Semantics::Actions)

(from�Syntax::Activities)

Complete�Actions
(from�Syntax::Actions)

<<import>> <<import>>

Complete�Structured�Activities
(from�Semantics::Activities)

Complete�Structured�Activities
(from�Syntax::Activities)

Loci�L3<<import>> <<import>>

Extra�Structured�Activities
(from�Semantics::Activities)

Extra�Structured�Activities
(from�Syntax�::Activities)

<<import>> <<import>>

Figure 3.4: Dependencies of the Loci packages to other fUML packages [20]

31

Figure 3.3: The fUML Loci sub-packages with their dependencies [33].

The execution engine in fUML is represented by the Executor class in LociL1 and
provides the operations execute, evaluate and start. At the Locus instances of the

25

class ExtensionalValue can be created during the execution of an fUML model that rep-
resent the output of an activity execution. When looking more carefully at Figure 3.3, one
can see that the Locus class basically represents the center of the package as it contains
the other classes ExtensionalValue, Executor, and ExecutionFactory. There-
fore, ExtensionalValues may exist prior and after the execution of an activity. The
ExecutionFactory is used to instantiate visitor classes. A visitor class is a class that exists
for every metaclass of the abstract syntax of fUML and specifies the behavior for that particular
metaclass of fUML.

In general, the visitor design pattern basically allows to add functions to classes without
modifying the classes themselves but instead creating specialized classes with additional func-
tions. In fUML, the following types of visitors are distinguished:

• An instance of the Activation visitor class models the semantics of a specific kind of
activity node.

• Instances of the Evaluation visitor class evaluate a specific kind of value specification
by returning an instance of the value like, for example, denoted by a LiteralInterger
value specification. Therefore, an abstract syntax metaclass, such as LiteralInteger,
can be evaluated by its respective evaluation visitor class, like
LiteralIntegerEvaluation.

• For every concrete subclass of Behavior in the fUML subset there exists a correspond-
ing Execution visitor class that is used to execute its specific kind of behavior. For
example, the behavior of the Activity class can be executed by instantiating its corre-
sponding visitor class ActivityExecution.

In addition, the ExecutionFactory provides a list of built-in primitive types (see Ta-
ble 3.3) that have their corresponding literal value specifications. Whenever the literal value
specification is evaluated, its corresponding evaluation class is looked up by its name and at-
tached to a resulting value. Note that the fUML specification version 1.0 did not yet include the
Real primitive type.

The Executor class extends the FumlObject class and provides the following opera-
tions:

1. The evaluate operation evaluates a value specification (as e.g., LiteralString) by re-
turning the specified value.

2. The execute operation takes several input parameters, synchronously executes a behav-
ior in the context of a provided fUML object, and then returns output values.

3. The start operation is used to asynchronously start the execution of a behavior and
returns a reference to the instance of the executing behavior.

In order to build-up the execution environment to execute fUML models, the following
components are required [33]:

26

1. An instance of the Locus class.

2. An instance of the Executor class that is linked to the previously mentioned Locus
object.

3. An instance of the ExecutionFactory class, also linked to the same Locus object.

4. An instance of the PrimitiveType class for each primitive type (i.e., Integer, Real,
Boolean, String, and UnlimitedNatural) linked to the previously created Execution
Factory.

5. An instance of a strategy class (i.e., ChioceStrategy, DispatchStrategy, and
GetNextEventStrategy) also linked to the same ExecutionFactory.

Foundational UML Activity Execution

In order for the execution engine to execute an fUML model (i.e., an UML activity), the follow-
ing five steps are performed by the engine [20]:

1. Initially, before the actual execution of the activity is started, activity input parameter
nodes are supplied with input.

2. As a next step, still before the actual activity execution, the execution engine identifies
enabled nodes. Activity input parameter nodes, initial nodes, control nodes, and actions
with no incoming edges build the set of enabled nodes.

3. After the set of enabled nodes is determined, every enabled node is supplied with a
control token.

4. When an enabled node is supplied with tokens, the execution of the activity node begins.

a) Determine if activity node execution prerequisites are fulfilled. Execution pre-
requisites of an activity node are that each of its incoming control flow edge is sup-
plied with a control token and each of its input pins is supplied with the minimal
necessary object tokens.

b) In case all prerequisites of an activity node are fulfilled (i.e., the activity node is
ready to be executed), available control tokens and object tokens are consumed.
“Consuming tokens” means that tokens are moved from the providing activity node
to the activity node itself.

c) Right after tokens are moved to the activity node itself (i.e., they are “consumed” by
the activity node), the behavior execution of the activity node is triggered. In this
step, whenever the activity node is an action (e.g., CreateObjectAction), output pins
may need to be supplied with output in form of object tokens.

27

d) After the behavior execution of the activity node has been carried out and eventually
existing output pins are supplied with object tokens (i.e., in case the activity node is
an action), tokens are sent to subsequent activity nodes. In detail, every outgoing
control flow edge is supplied with a control token that is sent to the target of the
control flow edge. Additionally, in case of outgoing object flow edges (i.e., if the
activity node is an action), the object tokens previously supplied at the output pins
are sent to the target input pin of the subsequent activity node.

e) Next, after the behavior execution of the activity node (including the sending of
tokens to their destination), it is determined if the same activity node is supposed
to be executed again. In case an activity node should be executed again, the steps
from a to e are repeated for the same activity node.

f) Subsequently, activity nodes supplied with tokens by the previously executed ac-
tivity node may be executed if they are ready (i.e., their prerequisites are fulfilled).
In case a subsequent activity node is ready to be executed, the steps a to e are per-
formed on that particular node.

5. At the end of the activity execution (i.e., when no activity node can be executed anymore),
the activity output parameters are supplied with output values which have been estab-
lished during the execution of the activity.

3.4 Foundational Model Library

The fUML Model Library or Foundational Model Library is the only library, in the fUML spec-
ification, and contains user-level model elements which can be referenced in fUML models.

The PrimitiveTypes package, which is imported by the PrimitiveBehaviors package in the
fUML Model Library, is provided by the UML 2 Infrastructure Specification [29]. Hence, in
user models those types can also be directly referenced. Table 3.3 describes the value domains
of the primitive types provided by fUML. For these types, corresponding literal values can be
specified in fUML as long as they are all registered with the ExecutionFactory at every Locus.

The PrimitiveBehaviors package contains a set of primitive behaviors that provide operations
on the primitive data types. This set of primitive behaviors is composed of IntegerFunctions,
RealFunctions, BooleanFunctions, StringFunctions, UnlimitedNaturalFunctions, and ListFunc-
tions. These behaviors may be called from user models using the CallBehaviorAction.

The Common sub-package of the fUML Foundational Model Library contains classifiers that
are currently only used in the basic input/output model of the fUML specification but they are
considered to be usable in a wider context in the future [33].

The basic input/output library (i.e., the BasicInputOutput sub-package) builds upon a chan-
nel model that regards the executing model as a “closed universe” [33]. This means that input
and output requires an opened channel to this closed universe where the actual source or tar-
get is not known. Therefore, while the input channel provides a means for an executing model

28

Type Description

Integer An Integer can have literal values in the signed
set of integers (...-2, -1, 0, 1, 2...). The set is the-
oretically infinite but the conforming implemen-
tations may limit the supported values to a finite
set.

Real The Real type has been first introduced in fUML
Specification Version 1.1. It represents literal
values in the infinite, continuous set of real num-
bers. Also here, the conforming implementation
may limit the set to be finite.

Boolean The primitive type Boolean has the two literal
values true and false.

String Strings can have literal values that are a sequence
of zero or more characters with maximum size
being unbound. Note that the fUML specification
does not define the character set of this type.

UnlimitedNatural The UnlimitedNatural type has literal values like
Integer but only the non-negative (0, 1, 2...) part
of them.

Table 3.3: Primitive types in fUML specification version 1.1 [33].

to receive values from outside, the output channel sends values from the executing model to
the outside. In addition, those channels need to be made available as services at the current
execution locus. The idea behind the basic input/output model is based on providing textual in-
put/output as well as file input/output that is external to the execution model. The primary goal
of the BasicInputOutput library is to provide a simple semantic foundation for what it means to
receive input to and send output from an executing model.

fUML Limitations Regarding External Libraries

As mentioned earlier in this chapter, the Foundational Model Library provides basic support for
user-level model elements that can be referenced in an fUML model. It basically contains a set
of primitive types (PrimitiveTypes package), primitive behaviors for these primitive types
(PrimitiveBehaviors package) and a basic input/output library (BasicInputOutput
package). The functions made available by the Foundational Model Library are indeed on a
basic level. To be more precise, the available functions are bound to primitive data types, e.g.,
the integer function library includes a function to subtract two integer values. The Foundational
Model Library does do not include a mechanism to reuse existing Java APIs.

29

For this purpose, one could alternatively implement domain-specific model libraries that
basically mimic the functionality provided by currently existing Java libraries. To be more
precise, for every operation that is intended to be used, one needs to overwrite the Opaque
BehaviorExecution class and register the class using the addPrimitiveBehavior
Prototype method in the ExecutionFactory class. Additionally, an fUML model con-
taining the intended OpaqueBehavior has to be created and called using a CallBehavior
Action. Alternatively to the latter, some kind of a library UML model, containing the intended
OpaqueBehavior, can be referenced. Implementing domain specific model libraries requires
an extensive amount of work that might only be feasible within a community as large as the
existing Java open source community.

With the available capabilities of the fUML Foundational Model Library a modeler cannot
use and benefit from the full power of the target GPL, such as Java. If the modeler would be
granted full access to GPL libraries and third party libraries, she or he could use huge, already
implemented, applications and APIs to speed up development time and benefit from already
well-tested modules. Rapid software development, as it is done nowadays by making use of
external libraries, is hindered by the inability to use those libraries. If developers do not escape
the borders of the fUML virtual machine they will not gain from the benefits provided by external
libraries. Integrating external libraries into the fUML Foundational Model Library would require
a huge amount of effort as is requires writing source code for every single function of a library
to make it available to the modeler. The latter approach and similar approaches are shortly
discussed in Section 9.2. An overview on our approach proposed for supporting the access to
external Java libraries in fUML models that does not require any programming effort at all is
provided in Chapter 4.

30

CHAPTER 4
Overview on the Foundational UML

Library Support

Within the scope of this chapter a conceptual overview over the proposed approach for the inte-
gration of external libraries into fUML is given. Moreover, each of the four steps required to be
taken to execute an activity model referencing an external library is briefly explained.

In the subsequent chapters the entire approach is divided into parts and each part is described
by a specific chapter. Namely, Chapter 5 presents how a library can be reverse engineered; Chap-
ter 6 shows how fUML activity models that reference classes and operations of external libraries
are built; and Chapter 7 presents how the created artifacts are used by the Integration Layer in
order to execute the fUML activity model that accesses an external library.

4.1 Introduction to the Integration Layer Concept

The initial concept of the Integration Layer, implemented within this work, was proposed in the
paper “Towards xMOF: Executable DSMLs based on fUML” authored and presented by May-
hofer et al. [22] during the 12th Workshop on Domain-Specific Modeling in Tucson, Arizona,
USA.

The paper presents the existence of a major drawback that results from the fact that modelers
may not escape the boundaries of the fUML virtual machine. To be more precise, in fUML mod-
els, external libraries providing extensive capabilities to quickly create sophisticated models and
thus applications cannot be used. Mayerhofer et al. propose the approach of integrating required
classes of the external libraries into the fUML model and to employ a dedicated Integration
Layer during runtime.

Since, by re-using software components one is able to improve quality and increase pro-
ductivity as concluded by several studies [15], re-using software components within the scope

31

of fUML models in form of external libraries might also decrease the number of defects and
speed-up the modeling process.

The Integration Layer prototype, developed during the course of this work, is based on the
fUML virtual machine prototype by Mayerhofer et al. [20]. The fUML virtual machine pro-
totype allows the execution of fUML models based on the fundamental principle of UML’s
semantics, which is that every system behavior is ultimately expressed and hence caused by a
sequence of actions. Their prototype has been built upon the reference implementation of the
fUML standard execution semantics1 to interpret fUML models. However, the fUML model
interpreter is not able to access resources, such as classes or operations, from external libraries -
that is where the Integration Layer prototype comes into play.

The Integration Layer concept proposes an approach of re-use existing libraries by extending
the capabilities of the current fUML virtual machine implementation. In particular, by re-using
existing libraries modeling complete applications using fUML becomes more feasible. Sim-
ple jobs such as sending e-mails or accessing an in-memory database, that previously were not
possible, could be as simple as an operation call in a traditional GPL. The operation call to an
external library then handles all required details necessary to finally send an e-mail or retrieve
data coming from a database. Therefore, the modeler does not need to reason about how the e-
mail is sent but only about which operation is necessary to be called in order to send the e-mail
and create the model accordingly. As a result, the Integration Layer releases the modeler from
trying to re-implement the functionality provided by the existing library.

The goal of the Integration Layer is to be capable of invoking operations of external libraries
using a CallOperationAction during the execution of the fUML model. Within this work,
an external operation refers to an operation located in an external library. When the return value
of the external operation call has been retrieved, the Integration Layer translates the Java value
into an fUML value and integrates the value into the fUML runtime model. Equally important,
these values can be either primitive, such as int, boolean, or String, or complex, i.e., of
any type. Moreover, also operation input parameters can be primitive and complex. While an
operation can return only a single parameter at any point in time, it can certainly receive multi-
ple input parameters. Multiple different cases of such external operation calls by executing an
fUML CallOperationAction arise. Possible cases are discussed within Chapter 7.4 along
with which of them have been realized in the Integration Layer prototype.

Furthermore, the proposed Integration Layer allows to create and modify instances of ex-
ternal library classes. As a result of that, potential changes made by external operation calls on
Java objects and changes made by actions on fUML objects need to be taken into consideration
when the same objects are reused at a later point in time. Otherwise, if those changes would not
be taken into account, potentially unwanted side effects might occur. As a simple example, con-
sider an object of type Clock with a primitive integer field secondOfHour having the value “10”
assigned to it. An initial operation call to get the secondOfHour field might return “10”. Then,

1The reference implementation of the fUML standard execution semantics can be found online at http://
portal.modeldriven.org/content/fuml-reference-implementation-download.

32

http://portal.modeldriven.org/content/fuml-reference-implementation-download
http://portal.modeldriven.org/content/fuml-reference-implementation-download

after translating the Clock Java object into a corresponding fUML object and re-using the fUML
object at a later point in time during the model execution without considering changes that might
have been done to the corresponding Java object in the meantime might result in an undesired
side effect done to the application. To finish the simple example, the secondOfHour field with
the value “10” used within the fUML execution environment 5 seconds later still contains “10”
instead of “15” like its corresponding Java object.

The approach or strategy to execute an fUML model referencing an external library using the
Integration Layer prototype consists of four general steps which are described in the following.
Figure 4.1, 4.2, and 4.4 illustrate the approach graphically and Listing 4.1 depicts the practical
realization of step 4.

4.2 Reverse Engineering of External Libraries

Initially, before the actual integration of an external library at runtime can occur, the classes
provided by that external library first need to be imported into the fUML model. In order to
import classes of the external library, the library needs to be reverse engineered with a reverse
engineer tool such as MoDisco.

The external library chosen to be used by the fUML model to be executed, has to be reverse
engineered into a UML class model. The reverse engineering process, as described in Chapter 5
in more detail, typically requires access to the library’s source code. Specifically, when using
the Eclipse MoDisco reverse engineering tool, the Java source code contained within the project
to be reverse engineered is used to establish the UML class model. Accordingly, the UML class
model gained from the Java source code reflects the project’s structure. In this case, the reverse
engineered Java project represents the external library to be used in the upcoming steps. Addi-
tionally, the Java project is packed into a Java Archive file (also called JAR file) that aggregates
all the Java project files into one file that is often used to represent a Java library. To summarize,
from the artifacts created within this step there are two files, namely the JAR file representing
the external library itself and the UML class model representing the external library structure,
used in the forthcoming steps.

On the other hand, when using the Eclipse Jar2UML tool, an existing JAR file can be used
to build an UML class model representing the external library. The Eclipse Jar2UML tool takes
a JAR file as input and produces a UML class model as output that represents the library’s struc-
ture. Finally, when using this strategy, the JAR file and the generated UML class model file are
used in the next steps.

Figure 4.1 visualizes this first step. In this step, existing library source code is used to gener-
ate the library’s corresponding JAR and UML class model file. In more detail, a library’s JAR file
can be generated within Eclipse by right-clicking on the Java project and selecting “Export...”
and then choosing “JAR file” in the wizard. Alternatively, it can be retrieved from an existing
repository. Furthermore, it is important to mention that the UML class model can be generated
in different ways. One possibility of generating the UML class model out of existing library
source code is by using the Eclipse MoDisco reverse engineering tool. The Eclipse Jar2UML

33

«executionEnvironment,Java Runtime Execution Environment»

mail

Email.java

SimpleEmail.java EmailAttachment.java

Library source files

Library packed into a
Java Archive (JAR) file

«abstract»
Email

- message :MimeMessage
- subject :String
- toList :List

+ addTo(String) :Email
+ send() :String
+ setMsg(String) :Email
+ setSubject(String) :Email

SimpleEmail

+ setMsg(String) :Email

EmailAttachment

+ ATTACHMENT :String
+ INLINE :String

+ getName() :String
+ getPath() :String
+ getURL() :URL
+ setName(String) :void
+ setPath(String) :void
+ setURL(URL) :void

UML class model file

UmlActivity1
ActivityInitial

Fork1

ActivityOutput

Defined UML activity model file referencing an external library (i.e. the preparered UML class
model)

Defined UML activity model file referencing an external library (i.e. the preparered UML class
model)

CreateObjectAction1
CreateObject

CallOperationAction1
(::)

CallOperationAction2
(::)

«fUML.Syntax.Activities.IntermediateActivities.Activity»
fUmlActivity1

«org.eclipse.uml2.uml.Activity»
umlActivity1

With "Classifier" attribute equal to
root::model::package1::Class1

With "Operation" attribute equal to root
model::package1::Class1::operation1

Final

References the
prepared UML class
model that depicts the
structure of the external
library

UmlActivity1.uml

ObjectFlow3

MoDisco: reverse
engineer source
files to UML class
model

Jar2UML: reverse
engineer JAR to UML
class model

ObjectFlow1

Eclipse: export
as JAR file

ObjectFlow2_2

Obtain resource from file system

org.modelexecution.fuml.convert.uml2.UML2Converter().convert(umlActivity1)

org.modelexecution.fuml.extlib.IntegrationLayer.getExecutionContext().execute(fUmlActivity1, ...)

ObjectFlow2_1

Figure 4.1: Reverse engineering the external library (step 1).

34

tool provides another way for generating a UML class model file. Specifically, it does so by
using the library’s Java Archive file.

4.3 Preparation of Library UML Models

Although, the outcome of the reverse engineering process using the MoDisco tool is a dedicated
UML class model that represents an interface to its corresponding reverse engineered library, it
does not contain enough information for the Integration Layer to be able to, for example, locate
the classes and operations provided by the library. For this purpose, the file path to the Java
Archive (JAR) is stored within the UML class model as a UML comment.

In order to do so, the UML2Preparer is used to create a so-called placeholder activity
for each operation of each class contained by the reverse-engineered UML class model of the
external library. Placeholder activities are created because reverse engineering tools are not
capable of representing library behavior in the models they create. First, placeholder activities
allow the Integration Layer to identify library operations, and proceeding that, to interrupt the
execution. To be more precise, during the latter interruption the Integration Layer forwards the
operation call to the actual library method, obtains the result, and re-integrates the result into
the fUML runtime model. For the fUML model to stay executable, every operation created by
the reverse engineering tool needs to have a corresponding method in form of an fUML activity
(i.e., placeholder activity).

Further, in order to differentiate elements in a UML activity model that reference classes
and operations that are external to the model from those that are not, is to somehow flag them
as external. There are several ways of flagging or marking an element in a UML class model. A
possibility of doing so is given by adding a UML comment element to the element in question.
That UML comment element will need to contain a value that is consistent over all as external
flagged elements. Therefore, the Integration Layer can identify classes and operations that are
external from those that are not by examining the element for the existence of the consistent
pre-defined comment.

One of the two artifacts gained in step 1, namely the UML class model, is exclusively used in
this step as input for the UML2Preparer. To be more precise, the UML2Preparer, created within
the scope of this work, reads the UML class model file and produces a modified copy of it in
order to fulfill the Integration Layer prototype requirements. The Integration Layer prototype
requirements include the provision of the information of whether a class or operation refers to
an external library class or operation and where the appropriate external library (i.e., the JAR
file) is located. A more detailed description on the UML2Preparer can be found in Chapter 6.1.
In summary, the outcome produced by the UML2Preparer is another UML class model, also
referred to as prepared UML class model, containing additional information about the library
whose structure it represents. The additional information is also composed of placeholder activ-
ities representing stubs for library behavior.

Step 2 is visualized in Figure 4.2. Particularly, the UML class model generated in step 1
is reconsidered and put through a customization process performed by the UML2Preparer. In

35

mail

«abstract»
Email

- message :MimeMessage
- subject :String
- toList :List

+ addTo(String) :Email
+ send() :String
+ setMsg(String) :Email
+ setSubject(String) :Email

SimpleEmail

+ setMsg(String) :Email

EmailAttachment

+ ATTACHMENT :String
+ INLINE :String

+ getName() :String
+ getPath() :String
+ getURL() :URL
+ setName(String) :void
+ setPath(String) :void
+ setURL(URL) :void

UML class model file

Prepared UML class model file

mail

«abstract»
Email

- message :MimeMessage
- subject :String
- toList :List

+ addTo(String) :Email
+ send() :String
+ setMsg(String) :Email
+ setSubject(String) :Email

Contains UML Comment:
"@external=PATH_TO
\commons-email-1.3.1.jar"

SimpleEmail

+ setMsg(String) :Email

EmailAttachment

+ ATTACHMENT :String
+ INLINE :String

+ getName() :String
+ getPath() :String
+ getURL() :URL
+ setName(String) :void
+ setPath(String) :void
+ setURL(URL) :void

UML2Preparer: prepare UML class model for the Integration Layer

Figure 4.2: Preparing the UML class model (step 2).

36

more detail, the UML2Preparer functionality can either be utilized by its dedicated graphical
user interface or by creating an instance of its Java class. In case its graphical user interface is
used, the user needs to specify various file locations such as of the library JAR file, the input
UML class model representing the library’s structure, and the location where the output UML
class model should be stored. In case the library JAR file itself depends on other JAR file(s),
those files can also be added to the list of required Java Archives. In the other case, if an in-
stance of the UML2Preparer class is created, specific operation calls can be made to provide the
UML2Preparer instance with the resources required to perform the preparation process. Thus,
after the preparation process has been performed, a new UML class model file is created at the
specified location in the file system.

The prepared UML class model, differs from the reverse engineered original model in sev-
eral ways. In summary, its classes and operations are marked as referring to an external library
and supplied with information regarding where their corresponding Java Archive file is located.
Additionally, for every operation in the UML class model, a corresponding placeholder activity
is created. A more detailed description on the UML class model preparation process can be
found in Section 6.1.

4.4 Definition of UML Models Referencing External Libraries

In this step, the modeler specifies the UML model that references the previously mentioned ex-
ternal library. He or she can do so by loading the prepared UML class model file within the
Eclipse UML2Tools Editor as an additional resource. Chapter 6.3 describes the process of mod-
eling a UML model referencing an external library by example. An instance of a class from
an external library can be created by modeling a CreateObjectAction having its “Classifier” at-
tribute referencing the external class. Equally important, to allow instances of those objects to
flow between nodes, Pins and ObjectFlows between them need to be created. Furthermore, an
external operation call can be made by defining a CallOperationAction with its “Operation” at-
tribute referencing the external library operation.

Figure 4.3 shows a UML model, that references an external library by referencing the cor-
responding prepared UML class model. This UML model has been modeled by the modeler in
step 3 using, for example, the Eclipse UML2Tools Editor.

37

«executionEnvironment,Java Runtime Execution Environment»

mail

Email.java

SimpleEmail.java EmailAttachment.java

Library source files

«abstract»
Email

- message :MimeMessage
- subject :String
- toList :List

+ addTo(String) :Email
+ send() :String
+ setMsg(String) :Email
+ setSubject(String) :Email

SimpleEmail

+ setMsg(String) :Email

EmailAttachment

+ ATTACHMENT :String
+ INLINE :String

+ getName() :String
+ getPath() :String
+ getURL() :URL
+ setName(String) :void
+ setPath(String) :void
+ setURL(URL) :void

UML class model file

MailActivity

transmissionReceipt :
String

mail::SimpleEmail
CreateObject

result : SimpleEmail

mail::Email::setMsg
(::)msg : String

target : SimpleEmail

mail::Email::send
(::)target : SimpleEmail

«fUML.Syntax.Activities.IntermediateActivities.Activity»
fUmlActivity1

«org.eclipse.uml2.uml.Activity»
umlActivity1

Final

UmlActivity1.uml

Message
ValueSpecification

msg : String

Fork

mail::Email:setTo
(::)to : String

target : SimpleEmail

Recipient
ValueSpecification

to : String

org.modelexecution.fuml.extlib.IntegrationLayer.getExecutionContext().execute(fUmlActivity1, ...)

org.modelexecution.fuml.convert.uml2.UML2Converter().convert(umlActivity1)

Obtain resource from file system

Reverse engineering with tool of choice (e.g.,
Eclipse MoDisco or Jar2UML)

Figure 4.3: Modeling the UML activity model referencing the ApacheMail external library (step
3).

4.5 Execution of UML Models Referencing External Libraries

After step 3 has been completed, all artifacts required for the execution of the defined UML
model have been established. To summarize, the required artifacts include the UML model to
be executed, the prepared UML class model, the library’s Java Archive, and Java Archives on
which the library depends. Having that in mind, initially, the UML model that shall be executed
has to be converted into an fUML model by the moliz UML2Converter. After the model has
been successfully converted into an fUML model, it can finally be executed by handing it over
to the Integration Layer.

The Integration Layer itself uses the fUML virtual machine prototype developed by May-
erhofer et al. in order to execute a UML activity. More specific, the fUML model is passed
to the Execution Context. During the execution, whenever references to external library oper-
ations are encountered, the Integration Layer calls the referenced operation and integrates the
resulting outcome (i.e., the return value) into the fUML runtime model. Furthermore, in case
the fUML model references an external library class in a CreateObjectAction, the Integration
Layer instantiates the external library class and integrates the Java object instance in form of
an fUML object into the fUML runtime model. Whenever the execution has been completed,
the Execution Context’s Locus can be examined for any residing fUML objects created during
the execution. Additionally, the Integration Layer keeps track of events occurring during the
execution such that the output parameter value of a specific event can be retrieved.

For a better comprehension of step 4, the UML activity model execution, consider comparing
Figure 4.4 and Listing 4.1.

Initially, an instance of the Integration Layer is created and the UML activity is loaded
from the file system (listing line 5). In order to do so, the loadActivity method located in
the IntegrationLayer is called by passing the file path of the external library UML class
model, the file path to the UML model containing the activity to be executed, and the activity’s
name.

38

lib
ra

ry
M

od
el

 :S
tri

ng

ac
tiv

ity
N

am
e

:S
tri

ng

um
lM

od
el

 :S
tri

ng

lib
ra

ry
M

od
el

 :S
tri

ng

ac
tiv

ity
N

am
e

:S
tri

ng

um
lM

od
el

 :S
tri

ng

lo
ad

 a
ct

iv
ity

(In
te

gr
at

io
nL

ay
er

::l
oa

dA
ct

iv
ity

)

ac
iv

ity
N

am
e

:S
tri

ng

lib
ra

ry
M

od
el

 :S
tri

ng

um
lM

od
el

 :S
tri

ng

um
lA

ct
iv

ity
 :

or
g.

ec
lip

se
.u

m
l2

.u
m

l.A
ct

iv
ity

in
te

gr
at

io
nL

ay
er

cr
ea

te
 c

on
ve

rt
er

C
re

at
eO

bj
ec

t

um
l2

co
nv

er
te

r :
or

g.
m

od
el

ex
ec

ut
io

n.
fu

m
l.

co
nv

er
t.u

m
l2

.U
M

L2
C

on
ve

rte
r

co
nv

er
t a

ct
iv

ity
(U

M
L2

C
on

ve
rte

r::
co

nv
er

t)
um

lA
ct

iv
ity

fu
m

lA
ct

iv
ity

 :
fU

M
L.

S
yn

ta
x.

A
ct

iv
iti

es
.

In
te

rm
ed

ia
te

A
ct

iv
iti

es
.A

ct
iv

ity
um

l2
co

nv
er

te
r

re
ad

 in
te

gr
at

io
n

la
ye

r

R
ea

dS
el

f

in
te

gr
at

io
nL

ay
er

 :
or

g.
m

od
el

ex
ec

ut
io

n.
fu

m
l.

ex
tli

b.
In

te
gr

at
io

nL
ay

er

ge
t e

xe
cu

tio
n

co
nt

ex
t

(In
te

gr
at

io
nL

ay
er

::g
et

E
xe

cu
tio

nC
on

te
xt

)
in

te
gr

at
io

nL
ay

er
ex

ec
ut

io
nC

on
te

xt
 :

or
g.

m
od

el
ex

ec
ut

io
n.

fu
m

ld
eb

ug
.

co
re

.E
xe

cu
tio

nC
on

te
xt

ex
ec

ut
e

ac
tiv

ity
(E

xe
cu

tio
nC

on
te

xt
::e

xe
cu

te
)

ex
ec

ut
io

nC
on

te
xt

fu
m

lA
ct

iv
ity

Figure 4.4: Executing the UML activity model referencing an external library (step 4).

39

Next, an instance of the moliz UML2Converter is created and used to convert the activity
into a corresponding fUML activity (listing line 8 and 11). At this point, the Execution Context
residing inside the Integration Layer can be used to execute the previously created fUML activity
as shown in listing line 14. Finally, by retrieving the Execution Context’s Locus, any residing
fUML object, created during the execution, can be examined (listing line 17 and 20).

Moreover, by using the “getOutputParameterValue” method provided by the Inte-
gration Layer, the output parameter value of a specific event that occurred during the execu-
tion can be retrieved as shown in listing line 23 and 26. Such an event can be, for example,
an ActivityEntryEvent, ActivityExitEvent, ActivityNodeEntryEvent, or
ActivityNodeExitEvent. Using the functionality provided by this method one can, for
example, retrieve the ParameterValue that has been produced by executing a specific node
within an activity or the entire activity itself.

40

L
is

tin
g

4.
1:

E
xe

cu
tin

g
th

e
U

M
L

ac
tiv

ity
m

od
el

re
fe

re
nc

in
g

an
ex

te
rn

al
lib

ra
ry

us
in

g
th

e
In

te
gr

at
io

n
L

ay
er

(s
te

p
4)

.
1

/
/
C
r
e
a
t
i
n
g
a
n
e
w
I
n
t
e
g
r
a
t
i
o
n
L
a
y
e
r
i
n
s
t
a
n
c
e

2
o
r
g
.
m
o
d
e
l
e
x
e
c
u
t
i
o
n
.
f
u
m
l
.
e
x
t
l
i
b
.
I
n
t
e
g
r
a
t
i
o
n
L
a
y
e
r
i
n
t
e
g
r
a
t
i
o
n
L
a
y
e
r
=

n
e
w
I
n
t
e
g
r
a
t
i
o
n
L
a
y
e
r
I
m
p
l
(
)
;

3 4
/
/
L
o
a
d
i
n
g
a
s
p
e
c
i
f
i
c
U
M
L
a
c
t
i
v
i
t
y
f
r
o
m
a
U
M
L
m
o
d
e
l
s
t
o
r
e
d
i
n
t
h
e
f
i
l
e
s
y
s
t
e
m

5
o
r
g
.
e
c
l
i
p
s
e
.
u
m
l
2
.
u
m
l
.
A
c
t
i
v
i
t
y
u
m
l
A
c
t
i
v
i
t
y
=
i
n
t
e
g
r
a
t
i
o
n
L
a
y
e
r
.
l
o
a
d
A
c
t
i
v
i
t
y
(
"
p
a
t
h
\
t
o
\
l
i
b
r
a
r
y
M
o
d
e
l
.
u
m
l
"
,

"
A
c
t
i
v
i
t
y
1
"
,
"
p
a
t
h
\
t
o
\
u
m
l
M
o
d
e
l
.
u
m
l
"
)
;

6 7
/
/
I
n
s
t
a
n
t
i
a
t
i
n
g
t
h
e
M
o
l
i
z
U
M
L
2
C
o
n
v
e
r
t
e
r

8
o
r
g
.
m
o
d
e
l
e
x
e
c
u
t
i
o
n
.
f
u
m
l
.
c
o
n
v
e
r
t
.
u
m
l
2
.
U
M
L
2
C
o
n
v
e
r
t
e
r
u
m
l
2
C
o
n
v
e
r
t
e
r
=

n
e
w
U
M
L
2
C
o
n
v
e
r
t
e
r
(
)
;

9 10
/
/
C
o
n
v
e
r
t
U
M
L
a
c
t
i
v
i
t
y
i
n
t
o
f
U
M
L
a
c
t
i
v
i
t
y
u
s
i
n
g
t
h
e
U
M
L
2
C
o
n
v
e
r
t
e
r

11
f
U
M
L
.
S
y
n
t
a
x
.
A
c
t
i
v
i
t
i
e
s
.
I
n
t
e
r
m
e
d
i
a
t
e
A
c
t
i
v
i
t
i
e
s
.
A
c
t
i
v
i
t
y
f
U
M
L
A
c
t
i
v
i
t
y
=
u
m
l
2
C
o
n
v
e
r
t
e
r
.
c
o
n
v
e
r
t
(
u
m
l
A
c
t
i
v
i
t
y
)
.

g
e
t
A
c
t
i
v
i
t
i
e
s
(
)
.
i
t
e
r
a
t
o
r
(
)
.
n
e
x
t
(
)
;

12 13
/
/
H
a
n
d
t
h
e
f
U
M
L
a
c
t
i
v
i
t
y
o
v
e
r
t
o
t
h
e
I
n
t
e
g
r
a
t
i
o
n
L
a
y
e
r
’
s
E
x
e
c
u
t
i
o
n
C
o
n
t
e
x
t
f
o
r
e
x
e
c
u
t
i
o
n

14
i
n
t
e
g
r
a
t
i
o
n
L
a
y
e
r
.
g
e
t
E
x
e
c
u
t
i
o
n
C
o
n
t
e
x
t
(
)
.
e
x
e
c
u
t
e
(
f
U
M
L
A
c
t
i
v
i
t
y
,

n
u
l
l
,

n
e
w
P
a
r
a
m
e
t
e
r
V
a
l
u
e
L
i
s
t
(
)
)
;

15 16
/
/
O
b
t
a
i
n
i
n
g
t
h
e
I
n
t
e
g
r
a
t
i
o
n
L
a
y
e
r
’
s
E
x
e
c
u
t
i
o
n
C
o
n
t
e
x
t
’
s
L
o
c
u
s

17
L
o
c
u
s
l
o
c
u
s
=
i
n
t
e
g
r
a
t
i
o
n
L
a
y
e
r
.
g
e
t
E
x
e
c
u
t
i
o
n
C
o
n
t
e
x
t
(
)
.
g
e
t
L
o
c
u
s
(
)
;

18 19
/
/
O
b
t
a
i
n
i
n
g
a
n
e
x
p
e
c
t
e
d
f
U
M
L
O
b
j
e
c
t
f
r
o
m
t
h
e
L
o
c
u
s

20
O
b
j
e
c
t
_
f
U
m
l
O
b
j
e
c
t
=
(
O
b
j
e
c
t
_
)
l
o
c
u
s
.
e
x
t
e
n
s
i
o
n
a
l
V
a
l
u
e
s
.
g
e
t
(
0
)
;

21 22
/
/
O
b
t
a
i
n
i
n
g
t
h
e
A
c
t
i
v
i
t
y
O
u
t
p
u
t
i
n
f
o
r
m
o
f
a
n
f
U
M
L
P
a
r
a
m
e
t
e
r
V
a
l
u
e

23
P
a
r
a
m
e
t
e
r
V
a
l
u
e
o
u
t
p
u
t
P
a
r
a
m
e
t
e
r
V
a
l
u
e
=
i
n
t
e
g
r
a
t
i
o
n
L
a
y
e
r
.
g
e
t
O
u
t
p
u
t
P
a
r
a
m
e
t
e
r
V
a
l
u
e
(
"
A
c
t
i
v
i
t
y
N
o
d
e
E
n
t
r
y
E
v
e
n
t
"
,
"

L
a
s
t
A
c
t
i
o
n
I
n
A
c
t
i
v
i
t
y
1
"
)
;

24 25
/
/
I
n
c
a
s
e
a
S
t
r
i
n
g
o
u
t
p
u
t
p
a
r
a
m
e
t
e
r
v
a
l
u
e
i
s
e
x
p
e
c
t
e
d
,
i
t
c
a
n
b
e
o
b
t
a
i
n
e
d
i
n
t
h
e
f
o
l
l
o
w
i
n
g
w
a
y

26
S
t
r
i
n
g
o
u
t
p
u
t
V
a
l
u
e
=
(
(
S
t
r
i
n
g
V
a
l
u
e
)
o
u
t
p
u
t
P
a
r
a
m
e
t
e
r
V
a
l
u
e
.
v
a
l
u
e
s
.
g
e
t
(
0
)
)
.
v
a
l
u
e
;

41

CHAPTER 5
Reverse Engineering of Java Libraries

In this chapter the reader is introduced with the process of reverse engineering software and
presents the Eclipse MoDisco model discovery tool. In detail, it describes the principles of
metamodel-driven discovery as well as the architecture, existing components, and migration
chains of MoDisco. Additionally, a short introduction to the ATLAS Transformation Language
is provided to help understand model-to-model transformation processes. The second part of the
chapter provides an example that shows how a Java application can be reverse engineered into a
UML class model.

5.1 Introduction to Reverse Engineering

“Reverse engineering is the process of analyzing a subject system to create representations of
the system at a higher level of abstraction.” [5]. Ideally, the reverse engineering process out-
put is a model that allows to analyze, understand, and even re-generate a refactored version of
the system. This is where Model-Driven Reverse Engineering (MDRE) comes in by providing
model-based views on systems that help understand the existing system [3]. The goal of the
reverse engineering part of this thesis is to obtain a UML class diagram representation of a Java
application that describes the structure of the reverse engineered application. In order to achieve
this goal, the Eclipse Model Driven Technology (MDT) project MoDisco1 has been taken into
account as it already provides several model discoverers, generators, and transformations. Alter-
natively, to immediately create a UML class model out of a Java Archive, the Eclipse Jar2UML
tool can be used2.

1The Eclipse MoDisco project is available online at http://www.eclipse.org/MoDisco/. Accessed
February, 2014.

2The Eclipse Jar2UML tool, developed by the Software Languages Lab within the Department of Computer
Science of the Vrije Universiteit Brussel, is available online at http://soft.vub.ac.be/soft/research/
mdd/jar2uml. Accessed January, 2014.

43

http://www.eclipse.org/MoDisco/
http://soft.vub.ac.be/soft/research/mdd/jar2uml
http://soft.vub.ac.be/soft/research/mdd/jar2uml

5.2 Reverse Engineering Using MoDisco Model Discovery Tool

MoDisco stands for Model Discovery and is an Eclipse Generative Modeling Technology (GMT)
compontent for model-driven reverse engineering. In more detail, it is an extensible framework
to develop model-driven tools to support use cases of software modernization (i.e., extracting
models from legacy systems and use them on modernization use cases). MoDisco has been ini-
tially funded by the European Community in the context of the IST European MODELPLEX
research project in 2007. The objective of the research project was to provide open, model-driven
solutions for complex systems engineering. The plan of MODELPLEX was to deliver solutions
for knowledge discovery (i.e., how to create models out of existing heterogeneous systems to
handle their complexity) under the lead of Sodifrance and AtlanMod in a French laboratory
founded by Jean Bézivin [38]. The AtlanMod research team, already involved in several Eclipse
modeling projects such as ATL and AMW3, proposed to launch MoDisco, a new Eclipse-based
project that should serve as a reference platform for legacy modernization tools dedicated to
reverse engineering.

In this work we are specifically interested in the reverse engineering capabilities of the
MoDisco tool. Since MoDisco goes beyond reverse engineering, its architecture will be shortly
described together with a more in-depth description of how models are extracted from Java
source code using components that are already included in MoDisco.

MoDisco proposes an extensible model-driven approach to model discovery that is generic.
This means that Eclipse contributors can develop their own solutions to discover models in dif-
ferent legacy systems thanks to the framework provided by MoDisco. In particular, the MoDisco
framework includes a set of guidelines together with several OMG standards implementations
such as the Structured Metrics Metamodel (SMM) [34] or the Knowledge Discovery Metamodel
(KDM) [27]. Since MoDisco is an Eclipse component it can integrate with Eclipse technologies
or plug-ins like those of the Eclipse Modeling Project such as model-to-model transformations
(like, for example, ATL), Eclipse Modeling Framework (EMF), Graphical Modeling Framework
(GMF), and others.

In conclusion, MoDisco provides a platform to extract knowledge from existing applications,
transform this knowledge into new architecture and paradigms, and to regenerate the applica-
tion according to specific patterns and technical platforms that are more reusable and flexible.
It does so by providing an open and therefore extensible framework that contains model-driven
reverse-engineering components and tools.

Metamodel-Driven Discovery

Model discovery is based on a metamodel-driven approach such that every step is guided by
a metamodel [38]. The metamodel-driven discovery approach is shown in Figure 5.1. Conse-
quently, at the beginning of the discovery process, a metamodel defining the modeling language

3AMW stands for ATLAS Model Weaving, a model weaving technology.

44

for models to be discovered, has to be defined. In the next step, one or multiple discoverer tools
are built that extract all the necessary information from the existing system and build a model
that conforms to the metamodel defined in the first step. Ideally, those discoverers come with the
metamodel, if not they might be partially generated from the syntax description of the files to
be discovered. Alternatively, the discoverer reuses an existing component to extract information
such that a model can be created. In conclusion, the output of the discovery process is a model
(e.g., in XMI4 format) conforming to a dedicated metamodel.

Figure 5.1: Metamodel-driven discovery approach [38].

MoDisco Architecture

MoDisco’s architecture is split into three basic layers to facilitate the reuse of components be-
tween several use cases. Figure 5.2 illustrates the three-layer architecture of MoDisco.

The Use Cases Layer contains components supporting legacy modernization use cases.
Theoretically, MoDisco could support any kind of use cases but four main ones are defined:
quality assurance (does the system meet the required qualities), understanding (how does a spe-
cific aspect of the system work), refactoring (how to integrate better coding norms or design
patterns), and migration (how to change the system’s framework, language, or architecture).

4XMI stands for XML Metadata Interchange and is a standard for exchanging metadata information via Exten-
sible Markup Language (XML), both defined by the OMG [36].

5Figure 5.2 has been obtained from the MoDisco wiki available online at http://wiki.eclipse.org/
MoDisco. Accessed January, 2014.

45

http://wiki.eclipse.org/MoDisco
http://wiki.eclipse.org/MoDisco

Figure 5.2: MoDisco’s three-layer architecture5.

The Technology Layer is composed of components that are dedicated to one specific legacy
technology (e.g., Java or SQL) that can be reused between several use case components that use
the same technology but not multiple technologies. This means that, for example, a use case that
provides refactoring for Java applications and a use case that computes metrics on Java source
code can use the same technology layer component that deals with the Java technology. Such
technology components require a complete or partial metamodel specification of the dedicated
technology and ideally come with a discoverer tool that builds models from existing system ar-
tifacts (e.g., Java source files) that conform to the metamodel.

In the Infrastructure Layer, MoDisco includes two kinds of components: knowledge com-
ponents and technical components. Both of them are independent from legacy technologies
and use cases. Knowledge components provide metamodels (and therefore they might also in-
clude discoverers and utilities) that describe legacy systems independently from their technol-
ogy. Examples of such components, include KDM, ASTM6, and SMM that are metamodels
from OMG/ADM7. Technical components are utilities to build or facilitate the use of all other
components such as a model browser to visualize models.

Existing MoDisco Components

Some of the existing MoDisco components used in this work are described below.

6ASTM, or Abstract Syntax Tree Metamodel, seeks to establish a single comprehensive set of modeling elements
to capture similar software language concepts and constructs of different software languages [26].

7ADM stands for Architecture Driven Modernization and represents an OMG initiative related to building and
promoting standards that can be particularly applied to modernize legacy systems.

46

MoDisco’s KDM Reference Implementation Component

MoDisco includes in its infrastructure layer an EMF reference implementation of KDM. KDM
is an OMG standard that ensures exchange of data and interoperability between different legacy
modernization tools used for evolution, assessment, maintenance, and modernization [27]. In
other words, it functions as a foundation for software modernization and standardizes existing
approaches of software mining (i.e., knowledge discovery in software engineering artifacts). It is
defined as a metamodel such that structural and behavior elements of an entire existing software
project can be represented. Using the “container” concept (i.e., an entity owns other entities),
systems can be represented at different granularity degrees. Note that a KDM model is not an
executable model but rather a representation of artifacts for the purpose of analyses.

MoDisco’s J2SE5 Component

The MoDisco J2SE5 component belongs to MoDisco’s technology layer and comes with a meta-
model, a discoverer, and a transformation. The metamodel reflects the Sun Microsystems Java
Language Specification version 3 that corresponds with JDK 5 8 and allows to capture the com-
plete abstract syntax graph of a Java file [38]. It contains 101 metaclasses to describe the fol-
lowing components of a Java file:

• Structure of a class to describe declarations of methods and variables.

• Link between the usage and declaration of elements like, for example, declaration of the
variable and its setting, superclass definition and the corresponding class declaration.

• Body of each method that includes expressions, statements, and entire blocks.

The discoverer, which is the Eclipse Java Developer Toolkit (JDT) component, creates an
abstract syntax tree (AST) from a Java project. This AST is then translated into a J2SE5 con-
forming model. In other words, the J2SE5 discoverer takes a Java project, in form of Java source
code as input, analyzes the code, and then populates a J2SE5 model. This process is depicted
on the left-hand side of Figure 5.3. This discoverer has already been used on a variety of use
cases including quality assurance (coding rules control), documentation, model filter (generation
of partial UML models), and different migration use cases like, for example, the conversion of
Swing APIs to the Google Web Toolkit (GWT).

During the transformation the J2SE5 model is translated into a KDM model. In more detail,
the structure of the Java classes, method signatures, and method bodies are created in the KDM
model. Statements within methods include, for example, method invocations. Therefore, this
transformation supports the KDM Code package and part of the Action package. The right-half
of Figure 5.3 illustrates the model-to-model (M2M) transformation from the J2SE5 model to the
KDM model.

8The Java Development Kit (JDK) 5 can be found online at http://docs.oracle.com/javase/1.5.
0/docs/index.html.

47

http://docs.oracle.com/javase/1.5.0/docs/index.html
http://docs.oracle.com/javase/1.5.0/docs/index.html

Figure 5.3: MoDisco’s J2SE5 discoverer [38].

MoDisco Migration Chains

The MoDisco standard migration chain is built of two basic types of components. First, a model
discoverer that extracts a model from source code and second, model transformations to trans-
late between different metamodels. KDM has been chosen to act as a pivot metamodel in the
standard migration chain since it facilitates the reusability of components.

For example, as depicted in Figure 5.4, rather than developing a separate transformation
from Java source code to UML and from C# source code to UML, part of the transformation
can be reused such that both Java and C# source code is transformed to a KDM model and then
the latter is transformed into a UML model. Note that neither Java nor C# source code can be
immediately transformed into a KDM model, but has to be first discovered by a J2SE5 discoverer
and CSharp discoverer, respectively. In detail, the J2SE5 discoverer transforms Java source files
into J2SE5 models and the CSharp discoverer C# source files into a C# model. Furthermore,
the KDM model could not only be used as input for transformations into UML but also to other
kinds of metamodels. Transformations in the mentioned migration chain are based on the ATL
described in chapter 5.3.

Figure 5.4: MoDisco standard transformation chain [38].

Newly arising needs to understand a legacy application can be satisfied by extending the

48

standard migration chain with new discoverers or additional transformations. In other words,
since the initial components developed for the MoDisco platform are built upon EMF and based
on open standards like KDM, UML, and Java, additional components can be developed with any
tool that is compliant to those standards.

For example, a possible extension of the standard transformation chain is to add dependen-
cies between existing components. This can be realized by adding an additional transformation
that creates a KDM model with Action elements that contain the behavior of applications. In
order to do so, a filtered model with dependencies from a selected element is obtained by enhanc-
ing, for example, the Java and C# discoverers. Figure 5.5 shows such an extended transformation
chain. The additional transformation from KDM model to enriched KDM model basically ex-
plores the KDM model based on its structure and statements, detects dependencies, and adds
them to the KDM model resulting in an enriched KDM model.

Figure 5.5: MoDisco extended transformation chain [38].

5.3 ATLAS Transformation Language

Model-to-model transformations in the previously described migration chains are performed
using the rule-based approach of the hybrid ATLAS Transformation Language (ATL). ATL
has been developed as part of the ATLAS Model Management Architecture and comes as a
plugin for Eclipse that includes an editor, a debugger, and a profiler [16]. It is called “hybrid”
since it is composed of a mixture of declarative and imperative constructs and “rule-based”
because the transformation is mainly built in form of rules.

Generally, there are two kinds of model-to-model transformations available from which each
describes a different execution paradigm [3]. On one hand, there are out-place transformations
that generate the output model (or target model) from scratch and on the other hand there are
in-place transformations that rewrite the input model (or source model) by creating, updating,
and deleting elements. While in-place suits well for endogenous transformations like refactor-

49

ings, out-place and in-place suites well for exogenous transformations. ATL supports out-place
transformations. ATL is one of the most widely used transformation languages for which there
is also mature tools support available.

The rule-based approach in ATL builds largely on the Object Constraint Language (OCL)9

while adding dedicated language features for model transformations that are not available in
OCL. Transformations in ATL are operating on read-only input models and generating write-
only output models. Hence, transformations are uni-direction (i.e., they go in one direction
only). In order to have bi-directional transformations, two different transformations have to be
developed.

ATL transformations are anatomically divided into a header and a body section. While the
header part contains the transformation module name and the declaration of the input and output
models as typed by their metamodels, the body part contains a set of rules and helpers. Helpers
are auxiliary functions that allow the factorization of ATL code that is used in the transformation.
A helper either represents an attribute that is accessible throughout the complete transformation
or an operation that computes the value for given input parameters and a context object.

ATL rules describe how to generate from a part of the source model a part of the target
model. There are two types of rules, namely matched rules and lazy rules. First, matched
rules are automatically matched on the input model by the ATL execution engine. Second, lazy
rules give the developer more control over the transformation execution since they have to be
explicitly called from another rule.

Listing 5.1: A simple matched rule in ATL10.
1 rule Member2Female {
2 from
3 s: Families!Member (s.isFemale())
4 to
5 t: Persons!Female (
6 fullName <- s.firstName + ’ ’ + s.familyName
7)
8 }

Listing 5.1 shows a simple matched ATL rule. Such a rule is basically composed of an
input pattern (the from part) and an output pattern (the to part). In this particular example for
each Member of each Families that is female (using the helper operation “s.isFemale()”
not visible in this listing) a Female Person “t” is created with its fullName attribute con-
sisting of the firstName and familyName of a particular Families Member “s”.

9OCL is a formal language for describing expressions on UML models. Since it is defined based on the common
core of UML and MOF, it may be used with any MOF meta-model, including UML [32].

10The simple matched rule of Listing 5.1 has been taken from the Eclipse ATL Tutorial available online at http:
//wiki.eclipse.org/ATL/Tutorials_-_Create_a_simple_ATL_transformation. Accessed
January, 2014.

50

rule
from
to
Member
Families
s.isFemale()
Female
Person
t
fullName
firstName
familyName
Families
Member
s
http://wiki.eclipse.org/ATL/Tutorials_-_Create_a_simple_ATL_transformation
http://wiki.eclipse.org/ATL/Tutorials_-_Create_a_simple_ATL_transformation

5.4 Reverse Engineering Libraries: An Example

The following example obtains a complete view of the Vehicles Java application11, created as
part of this work, by reverse engineering it into a full UML model that shows the structure of the
application. As explained previously in this chapter, the UML model represents the artifact that
can be gained at the end of the reverse engineering chain.

The steps to reverse engineer Java source code to UML models using MoDisco are as follows:

1. Discovery of the Java model

2. Transformation of the Java model into a KDM model

3. Transformation of the KDM model into a UML model

In this thesis, the following version of Eclipse, MoDisco, ATL, and the ATL transformations
have been used:

• Eclipse Indigo12, build 20120216-185713 from the official Eclipse project website

• MoDisco SDK (Incubation), version 0.9.2.v201202151138 from the official Eclipse In-
digo update server14

• ATL Eclipse plugin, version 3.2.1.v20110914-0724, also from the official Eclipse Indigo
update server15

• The ATL files JavaToKdm.atl and KdmToUml.atl and their corresponding ASM
files JavaToKdm.asm and KdmToUml.asm from the official Eclipse developer SVN16

11The Vehicles Java application, created as part of this work, represents a sample library and is available online
at https://github.com/patrickneubauer/sample-libraries/tree/master/Vehicles. Ac-
cessed January, 2014.

12At the point when this experiment has been conducted, the newest available version of Eclipse (Kepler) did not
successfully create the desired output.

13Eclipse Indigo build 20120216-1857 is available online at http://archive.eclipse.org/eclipse/
downloads/drops/R-3.7.2-201202080800/. Accessed January, 2014.

14MoDisco SDK (Incubation), version 0.9.2.v201202151138 has been retrieved from the Eclipse repository
http://download.eclipse.org/releases/indigo/201202240900.

15ATL Eclipse plugin, version 3.2.1.v20110914-0724 have been retrieved from the Eclipse repository http:
//download.eclipse.org/releases/indigo/201202240900.

16Both JavaToKdm.atl and JavaToKdm.asm have been retrieved from https://dev.eclipse.org/
svnroot/modeling/org.eclipse.mdt.modisco/plugins/branches/0_9/org.eclipse.
modisco.java.discoverer/src/org/eclipse/modisco/java/discoverer/internal/
resources/transformations. KdmToUml.atl as well as KdmToUml.asm have been retrieved from
https://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.modisco/plugins/
branches/0_9/org.eclipse.modisco.kdm.uml2converter/src/org/eclipse/modisco/
kdm/uml2converter/internal/resources/transformations.

51

https://github.com/patrickneubauer/sample-libraries/tree/master/Vehicles
http://archive.eclipse.org/eclipse/downloads/drops/R-3.7.2-201202080800/
http://archive.eclipse.org/eclipse/downloads/drops/R-3.7.2-201202080800/
http://download.eclipse.org/releases/indigo/201202240900
http://download.eclipse.org/releases/indigo/201202240900
http://download.eclipse.org/releases/indigo/201202240900
https://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.modisco/plugins/branches/0_9/org.eclipse.modisco.java.discoverer/src/org/eclipse/modisco/java/discoverer/internal/resources/transformations
https://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.modisco/plugins/branches/0_9/org.eclipse.modisco.java.discoverer/src/org/eclipse/modisco/java/discoverer/internal/resources/transformations
https://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.modisco/plugins/branches/0_9/org.eclipse.modisco.java.discoverer/src/org/eclipse/modisco/java/discoverer/internal/resources/transformations
https://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.modisco/plugins/branches/0_9/org.eclipse.modisco.java.discoverer/src/org/eclipse/modisco/java/discoverer/internal/resources/transformations
https://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.modisco/plugins/branches/0_9/org.eclipse.modisco.kdm.uml2converter/src/org/eclipse/modisco/kdm/uml2converter/internal/resources/transformations
https://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.modisco/plugins/branches/0_9/org.eclipse.modisco.kdm.uml2converter/src/org/eclipse/modisco/kdm/uml2converter/internal/resources/transformations
https://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.modisco/plugins/branches/0_9/org.eclipse.modisco.kdm.uml2converter/src/org/eclipse/modisco/kdm/uml2converter/internal/resources/transformations

Step 1: Discovery of the Java Model

First, in order to gain the Java model representation of the Java application, a new run con-
figuration for a MoDisco Discovery has to be created. Note that “org.elicpse.modisco.
java.discoverer.project” represents the selected discoverer, “/Vehicles” the source
element and the “in” parameter SERIALIZE_TARGET has to be set to true. The outcome of
the discovery process is serialized in the Vehicles_java.xmi file as shown in Figure 5.6.
On the very left hand side, there is the project package visualization. The next vertical tab shows
the content of the Java class SpaceShip.javawith the SpaceShip class. On the right hand
side of the Figure, the MoDisco model browser shows the content of the produced output file
Vehicles_java.xmi. Also here, the same class declaration, namely SpaceShip, is high-
lighted. Field and method declarations are located inside the bodyDeclarations element
of the XMI file.

Step 2: Transformation of the Java Model into a KDM Model

Second, when the Java model from the first step has been successfully obtained, the transfor-
mation of the Java model in a KDM model can be performed. In order to do so, another run
configuration has to be created. This time the run configuration is of the type ATL transforma-
tion and uses the ATL file JavaToKdm.atl. In detail, the following specifications have to be
made:

• ATL Module:
/Vehicles/Transformations/JavaToKdm.atl

• Java metamodel:
uri:http://www.eclipse.org/MoDisco/Java/0.2.incubation/java

• KDM metamodel:
uri:http://www.eclipse.org/MoDisco/kdm/action

• Source model (IN):
/Vehicles/Vehicles_java.xmi

• Target model (OUT):
/Vehicles/Vehicles_kdm.xmi

Figure 5.7 shows the outcome of step 2, the transformation of the Java model into a KDM
model. When comparing it with the Java model in Figure 5.6 one can see that, for example,
the types of the model elements changed (e.g., Class Declaration elements in the Java model
were transformed into Class Unit elements in the KDM model). Furthermore, field and method
declarations are now located inside the codeElement UML element.

52

org.elicpse.modisco.java.discoverer.project
org.elicpse.modisco.java.discoverer.project
/Vehicles
SERIALIZE_TARGET
SpaceShip
Vehicles_java.xmi
SpaceShip
bodyDeclarations
JavaToKdm.atl
/Vehicles/Transformations/JavaToKdm.atl
uri:http://www.eclipse.org/MoDisco/Java/0.2.incubation/java
uri:http://www.eclipse.org/MoDisco/kdm/action
/Vehicles/Vehicles_java.xmi
/Vehicles/Vehicles_kdm.xmi
codeElement

Figure 5.6: Step 1: From Java source code to Java model. 53

Figure 5.7: Step 2: From Java model to KDM model.54

Step 3: Transformation of the KDM Model into a UML Model

Third, the transformation of the KDM model into a UML model represents the last transforma-
tion step completed with MoDisco. Again, an ATL transformation is used by executing another
run configuration. The run configuration contains a reference to the ATL file KdmToUml.atl.
Additionally, the following specifications are made:

• ATL Module:
/Vehicles/Transformations/KdmToUml.atl

• KDM metamodel:
uri:http://www.eclipse.org/MoDisco/kdm/action

• UML metamodel:
uri:http://www.eclipse.org/uml2/2.1.0/UML

• Source model (kdmInput):
/Vehicles/Vehicles_kdm.xmi

• Target model (umlOutput):
/Vehicles/Vehicles.uml

Figure 5.8 shows the outcome of step 3 visualized by initializing a UML class diagram with
the UML2 Tools plugin17 from the obtained UML model Vehicles.uml.

Note that all three steps can be executed at once by creating a MoDisco workflow run con-
figuration in Eclipse. In detail, this MoDisco workflow specifies in which order the previously
created run configurations are executed.

17Note that, at the time this experiment has been conducted, the UML2 Tools plugin has only been available in
Eclipse versions up to 3.5 (Galileo).

55

KdmToUml.atl
/Vehicles/Transformations/KdmToUml.atl
uri:http://www.eclipse.org/MoDisco/kdm/action
uri:http://www.eclipse.org/uml2/2.1.0/UML
/Vehicles/Vehicles_kdm.xmi
/Vehicles/Vehicles.uml

A
ir
pl
an
e

Tr
uc
k

C
om

pl
ex
En
gi
ne

M
ot
or
C
yc
le

Si
m
pl
eE
ng
in
e

Sp
ac
eS
hi
p

Fu
el

Sh
ip

V
eh
ic
le
Tu
rn

Ve
hi
cl
e

C
ar

Figure 5.8: Step 3: From KDM model to UML model (figure visualizes the vehicles pack-
age within Vehicles.uml).

56

CHAPTER 6
Modeling with fUML Using External

Libraries

Chapter 5 introduced an example of reverse engineering a Java application into a UML class
model. Within the scope of this chapter, the UML class model resulted out of Chapter 5 is re-
considered. First, the UML class model is prepared in order to be supported by the Integration
Layer prototype implementation. For this purpose, the graphical tool “UML2Preparer” has been
developed to simplify and ease the preparation process. Finally, the outcome of a successful
preparation, a prepared UML class model, is then used to build an fUML model referencing
external classes and operations.

Initially, in this chapter the preparation of the UML class model is described conceptually
and by example. Next, the UML2Preparer is introduced alongside a short description on how
it is used to prepare a given UML class model for the Integration Layer prototype. Finally, the
step-by-step modeling process of building an fUML model that references external classes and
operations is shown.

6.1 Preparing Reverse Engineered UML Model

In order to fulfill the needs of the Integration Layer, created as part of this project, the UML
model gained from the reverse engineering process with MoDisco has to be customized. Rea-
sons of this customization include that the Integration Layer needs to know where to find the
JAR file of the reverse engineered library in order to, for example, instantiate its classes and
call its operations. Note that for executing the UML model it is first converted into an fUML
model by the moliz converter. Therefore, also the moliz converter needs to take the additional
customizations done to the UML model into account.

57

The implementation of the UML model customization is done in the UML2Preparer Java
class. The input of the UML2Preparer is composed of the UML model obtained from the
MoDisco reverse engineering process and a String referencing the location of the external
library JAR file. The main customizations done to the UML model include:

• To every packagedElement with type “uml:Class” an ownedComment is added
with information about where the external library JAR file is located as, for example, in
line 2 of Listing 6.1.

• For every ownedOperation an ownedBehavior with type “uml:Activity” is
created that contains an ownedComment with information that identifies it as an external
activity. This newly created ownedBehavior is referred to as placeholder activity.
Line 6 of Listing 6.1 shows the placeholder activity of the “toString” operation located
in the “Car” class.

• Every placeholder activity contains a copy of all ownedParameter elements from its
corresponding ownedOperation. For example, line 10 of Listing 6.1 shows a copied
“return” parameter.

• Every placeholder activity holds a reference to its corresponding ownedOperation.
For example, the placeholder activity named “toString” (see line 6 of Listing 6.1)
has the same identifier in its “specification” attribute as its corresponding owned
Operation in its “xmi:id” attribute (see line 21 of Listing 6.1).

• For every (copied) parameter of a placeholder activity, a corresponding node is created
that references the parameter. These are of type “uml:ActivityParameterNode”.
See line 14 of Listing 6.1 for an example.

• Every created Activity Parameter Node is also referenced in the placeholder activity’s
“node” attribute. See line 6 row 2 and line 14 of Listing 6.1, respectively.

The above mentioned UML model customization is required to be done after the reverse
engineering process but before the actual model execution. It also needs to be done before the
actual fUML activity modeling process, in which references to external classes and operations
are made. The reason why the fUML activity model needs to reference the already prepared
UML class model is that during the preparation process, when the information that identifies
external classes and operations are added, UML element identifiers are re-established. To be
more precise, since references of the fUML activity model to the UML class model are made
using identifiers, the preparation process needs to occur before any external reference within the
activity model is assigned. Accordingly, any external reference assigned in the fUML activity
model can never be made using the unprepared UML class model but only using the prepared
UML class model.

58

Figure 6.1 contains an abstraction of the UML class model elements added during the cus-
tomization process. Elements contained within the yellow box are created during the customiza-
tion process and hence extend the input UML class model with additional elements.

In the following this customization process is also referred to as preparation process as it is
required for the modeler to refer to the external classes and operations and for the Integration
Layer to be able to access the referenced classes and operations.

59

cl
as

s
:C

la
ss

-
na

m
e

 :S
tri

ng
 =

 "c
la

ss
 n

am
e"

co
m

m
en

t1
 :C

om
m

en
t

-
bo

dy
 :

S
tri

ng
 =

 "@
ex

te
rn

al
=P

A
TH

...

op
er

at
io

n
:O

pe
ra

tio
n

-
na

m
e

 :S
tri

ng
 =

 "o
pe

ra
tio

n
na

m
e"

pa
ra

m
et

er
1

:P
ar

am
et

er

-
na

m
e

 :S
tri

ng
 =

 "p
ar

am
et

er
 n

am
e"

pl
ac

eh
ol

de
r :

Ac
tiv

ity

-
na

m
e

 :S
tri

ng
 =

 "o
pe

ra
tio

n
na

m
e"

pa
ra

m
et

er
2

:P
ar

am
et

er

-
na

m
e

 :S
tri

ng
 =

 "p
ar

am
et

er
 n

am
e"

co
m

m
en

t2
 :C

om
m

en
t

-
bo

dy
 :

S
tri

ng
 =

 "@
ex

te
rn

al
"

+o
w

ne
dB

eh
av

io
r

+o
w

ne
dC

om
m

en
t

+o
w

ne
dP

ar
am

et
er

+s
pe

ci
fic

at
io

n

+m
et

ho
d

+o
w

ne
dO

pe
ra

tio
n

+o
w

ne
dP

ar
am

et
er

+o
w

ne
dC

om
m

en
t

Figure 6.1: An abstraction of the UML class model customization.

60

L
is

tin
g

6.
1:

Pa
rt

of
th

e
cu

st
om

iz
ed

U
M

L
m

od
el

re
pr

es
en

tin
g

th
e

“C
ar

”
cl

as
s.

1
<
p
a
c
k
a
g
e
d
E
l
e
m
e
n
t
x
m
i
:
t
y
p
e
=
"
u
m
l
:
C
l
a
s
s
"
x
m
i
:
i
d
=
"
_
r
e
q
8
V
6
y
7
E
e
K
q
-
N
k
W
V
o
C
N
D
Q
"
n
a
m
e
=
"
C
a
r
"
>

2
<
o
w
n
e
d
C
o
m
m
e
n
t
x
m
i
:
i
d
=
"
_
y
w
d
S
a
q
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
>

3
<
b
o
d
y
>
@
e
x
t
e
r
n
a
l
=
e
x
t
l
i
b
s
/
V
e
h
i
c
l
e
s
.
j
a
r
<
/
b
o
d
y
>

4
<
/
o
w
n
e
d
C
o
m
m
e
n
t
>

5
<
g
e
n
e
r
a
l
i
z
a
t
i
o
n
x
m
i
:
i
d
=
"
_
r
e
q
8
W
K
y
7
E
e
K
q
-
N
k
W
V
o
C
N
D
Q
"
g
e
n
e
r
a
l
=
"
_
r
e
q
8
g
K
y
7
E
e
K
q
-
N
k
W
V
o
C
N
D
Q
"
/
>

6
<
o
w
n
e
d
B
e
h
a
v
i
o
r
x
m
i
:
t
y
p
e
=
"
u
m
l
:
A
c
t
i
v
i
t
y
"
x
m
i
:
i
d
=
"
_
y
w
d
5
c
K
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
n
a
m
e
=
"
t
o
S
t
r
i
n
g
"
s
p
e
c
i
f
i
c
a
t
i
o
n
=
"

_
r
e
q
8
W
a
y
7
E
e
K
q
-
N
k
W
V
o
C
N
D
Q
"
n
o
d
e
=
"
_
y
w
d
5
d
a
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
>

7
<
o
w
n
e
d
C
o
m
m
e
n
t
x
m
i
:
i
d
=
"
_
y
w
d
5
c
a
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
>

8
<
b
o
d
y
>
@
e
x
t
e
r
n
a
l
<
/
b
o
d
y
>

9
<
/
o
w
n
e
d
C
o
m
m
e
n
t
>

10
<
o
w
n
e
d
P
a
r
a
m
e
t
e
r
x
m
i
:
i
d
=
"
_
y
w
d
5
c
q
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
v
i
s
i
b
i
l
i
t
y
=
"
p
u
b
l
i
c
"
d
i
r
e
c
t
i
o
n
=
"
r
e
t
u
r
n
"
>

11
<
l
o
w
e
r
V
a
l
u
e
x
m
i
:
t
y
p
e
=
"
u
m
l
:
L
i
t
e
r
a
l
I
n
t
e
g
e
r
"
x
m
i
:
i
d
=
"
_
y
w
d
5
c
6
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
/
>

12
<
u
p
p
e
r
V
a
l
u
e
x
m
i
:
t
y
p
e
=
"
u
m
l
:
L
i
t
e
r
a
l
U
n
l
i
m
i
t
e
d
N
a
t
u
r
a
l
"
x
m
i
:
i
d
=
"
_
y
w
d
5
d
K
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
v
a
l
u
e
=
"
1
"
/
>

13
<
/
o
w
n
e
d
P
a
r
a
m
e
t
e
r
>

14
<
n
o
d
e
x
m
i
:
t
y
p
e
=
"
u
m
l
:
A
c
t
i
v
i
t
y
P
a
r
a
m
e
t
e
r
N
o
d
e
"
x
m
i
:
i
d
=
"
_
y
w
d
5
d
a
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
p
a
r
a
m
e
t
e
r
=
"

_
y
w
d
5
c
q
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
/
>

15
<
/
o
w
n
e
d
B
e
h
a
v
i
o
r
>

16
<
o
w
n
e
d
B
e
h
a
v
i
o
r
x
m
i
:
t
y
p
e
=
"
u
m
l
:
A
c
t
i
v
i
t
y
"
x
m
i
:
i
d
=
"
_
y
w
e
g
g
K
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
n
a
m
e
=
"
C
a
r
"
s
p
e
c
i
f
i
c
a
t
i
o
n
=
"

_
r
e
q
8
X
a
y
7
E
e
K
q
-
N
k
W
V
o
C
N
D
Q
"
>

17
<
o
w
n
e
d
C
o
m
m
e
n
t
x
m
i
:
i
d
=
"
_
y
w
e
g
g
a
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
>

18
<
b
o
d
y
>
@
e
x
t
e
r
n
a
l
<
/
b
o
d
y
>

19
<
/
o
w
n
e
d
C
o
m
m
e
n
t
>

20
<
/
o
w
n
e
d
B
e
h
a
v
i
o
r
>

21
<
o
w
n
e
d
O
p
e
r
a
t
i
o
n
x
m
i
:
i
d
=
"
_
r
e
q
8
W
a
y
7
E
e
K
q
-
N
k
W
V
o
C
N
D
Q
"
n
a
m
e
=
"
t
o
S
t
r
i
n
g
"
v
i
s
i
b
i
l
i
t
y
=
"
p
u
b
l
i
c
"
m
e
t
h
o
d
=
"

_
y
w
d
5
c
K
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
>

22
<
o
w
n
e
d
P
a
r
a
m
e
t
e
r
x
m
i
:
i
d
=
"
_
r
e
q
8
W
q
y
7
E
e
K
q
-
N
k
W
V
o
C
N
D
Q
"
v
i
s
i
b
i
l
i
t
y
=
"
p
u
b
l
i
c
"
t
y
p
e
=
"
_
r
e
s
K
g
a
y
7
E
e
K
q
-
N
k
W
V
o
C
N
D
Q
"

d
i
r
e
c
t
i
o
n
=
"
r
e
t
u
r
n
"
>

23
<
l
o
w
e
r
V
a
l
u
e
x
m
i
:
t
y
p
e
=
"
u
m
l
:
L
i
t
e
r
a
l
I
n
t
e
g
e
r
"
x
m
i
:
i
d
=
"
_
r
e
q
8
X
K
y
7
E
e
K
q
-
N
k
W
V
o
C
N
D
Q
"
/
>

24
<
u
p
p
e
r
V
a
l
u
e
x
m
i
:
t
y
p
e
=
"
u
m
l
:
L
i
t
e
r
a
l
U
n
l
i
m
i
t
e
d
N
a
t
u
r
a
l
"
x
m
i
:
i
d
=
"
_
r
e
q
8
W
6
y
7
E
e
K
q
-
N
k
W
V
o
C
N
D
Q
"
v
a
l
u
e
=
"
1
"
/
>

25
<
/
o
w
n
e
d
P
a
r
a
m
e
t
e
r
>

26
<
/
o
w
n
e
d
O
p
e
r
a
t
i
o
n
>

27
<
o
w
n
e
d
O
p
e
r
a
t
i
o
n
x
m
i
:
i
d
=
"
_
r
e
q
8
X
a
y
7
E
e
K
q
-
N
k
W
V
o
C
N
D
Q
"
n
a
m
e
=
"
C
a
r
"
v
i
s
i
b
i
l
i
t
y
=
"
p
u
b
l
i
c
"
m
e
t
h
o
d
=
"

_
y
w
e
g
g
K
y
8
E
e
K
B
2
u
9
w
j
m
i
H
B
Q
"
/
>

28
<
/
p
a
c
k
a
g
e
d
E
l
e
m
e
n
t
>

61

6.2 Implementation of Preparing a UML Model

The org.modelexecution.fuml.extlib.umlpreparer1 has been created in order
to prepare a given UML class model. Consequently, the Integration Layer is able to use it as
a UML class model representing the structure of an external library. The initial requirement of
that particular artifact has been raised by the fact that the Integration Layer needs to distinguish
non-external references from external references. These references, from which the Integration
Layer has to distinguish from, are defined in the UML activity model to be executed by the In-
tegration Layer. Another requirement for the Integration Layer in order to be able to access an
external library includes a definition of the location where to find the JAR file corresponding to
the external Java library. Both requirements are fulfilled by preparing the UML class model.

In order for the Integration Layer to know where to look for the JAR file that corresponds to
the referenced reverse engineered UML class model in the UML activity model to be executed,
the UML2Preparer adds an UML comment to every UML class. Furthermore, the UML class
model is modified, such that, for every UML operation a UML activity is created that contains a
UML comment that identifies the operation as belonging to an external library. These activities
are referred to as placeholder activities within this work. Placeholder activities contain a copy
of all UML parameters as defined in their corresponding UML operation. A more detailed de-
scription of the conversion process can be found in Section 6.1.

The main class of this project, the UML2Preparer class, is able to load a UML class
model, prepare it, and store it as a prepared UML class model. This newly created UML class
model can be used by the Integration Layer in order to gain access to the external library. Further-
more, the prepared class model is used by the modeler to reference the external library whenever
required while modeling the UML model to be executed. The modeler can load the prepared
class model by loading it as an additional resource in his or her activity model and then refer-
ence to, for example, a class by specifying it as the classifier of a CreateObjectAction.
A further and more detailed description on how to create UML activity models referencing an
external library can be found in Section 6.3. At this point it is important to mention that the
preparation of the UML class model, created by the reverse engineering process, is required to
be done before modeling the UML activity model. The reason for this is that the identifiers used
within the UML class model are re-established during the preparation process. Hence, when
using the unprepared UML class model as a reference in the UML activity model any references
break. In short, the prepared UML class model is required to be used when referencing to any
classes or operations specified within the scope of the UML activity model.

1The org.modelexecution.fuml.extlib.umlpreparer is part of the fuml-library-support
repository and can be found online at https://github.com/patrickneubauer/
fuml-library-support/tree/master/external-library-support-fuml/src/org/
modelexecution/fuml/extlib/umlpreparer. Accessed February, 2014.

62

https://github.com/patrickneubauer/fuml-library-support/tree/master/external-library-support-fuml/src/org/modelexecution/fuml/extlib/umlpreparer
https://github.com/patrickneubauer/fuml-library-support/tree/master/external-library-support-fuml/src/org/modelexecution/fuml/extlib/umlpreparer
https://github.com/patrickneubauer/fuml-library-support/tree/master/external-library-support-fuml/src/org/modelexecution/fuml/extlib/umlpreparer

The UML2PreparerTest class2 demonstrates the functionality of the UML2Preparer
by loading the Vehicles.uml3 UML class model and preparing it as described in Section 6.1
and then asserting the prepared class model on the existence of the expected UML comments,
UML parameters, and placeholder activities.

Listing 6.2: Usage of UML2Preparer to prepare reverse engineered UML model.
1 String inputFilePath = "External_Library_UML_Class_File.uml";
2 String outputFilePath = "External_Library_Prepared_UML_Class_File.uml";
3 String[] jarFilePaths = { "External_Library_JAR_File.jar", "

External_Library_JAR_Dependency1.jar", "External_Library_JAR_Dependency2.
jar" };

4

5 UML2Preparer preparer = new UML2Preparer();
6

7 preparer.load(inputFilePath);
8 preparer.convert(jarFilePaths);
9 preparer.save(outputFilePath);

The UML2PreparerUI class represents a user interface for preparing a UML class model
to be used by the modeler to reference to it in the activity model and that allows the Integration
Layer to access the external library. The UML2PreparerUI can be run as a Java application
and looks as depicted in Figure 6.2. Generally, it offers the same functionality as depicted in
Listing 6.2.

2The UML2PreparerTest class can be found online at https://github.com/patrickneubauer/
fuml-library-support/blob/10fd7b8ac429c5b5f496ac7fe10d94472d980145/
external-library-support-fuml-test/src/org/modelexecution/fuml/extlib/
umlpreparer/test/UML2PreparerTest.java. Accessed February, 2014.

3Note that the Vehicles.uml class model has been created by reverse-engineering the Vehicles sample
library as described in Section 5.4.

63

https://github.com/patrickneubauer/fuml-library-support/blob/10fd7b8ac429c5b5f496ac7fe10d94472d980145/external-library-support-fuml-test/src/org/modelexecution/fuml/extlib/umlpreparer/test/UML2PreparerTest.java
https://github.com/patrickneubauer/fuml-library-support/blob/10fd7b8ac429c5b5f496ac7fe10d94472d980145/external-library-support-fuml-test/src/org/modelexecution/fuml/extlib/umlpreparer/test/UML2PreparerTest.java
https://github.com/patrickneubauer/fuml-library-support/blob/10fd7b8ac429c5b5f496ac7fe10d94472d980145/external-library-support-fuml-test/src/org/modelexecution/fuml/extlib/umlpreparer/test/UML2PreparerTest.java
https://github.com/patrickneubauer/fuml-library-support/blob/10fd7b8ac429c5b5f496ac7fe10d94472d980145/external-library-support-fuml-test/src/org/modelexecution/fuml/extlib/umlpreparer/test/UML2PreparerTest.java

Figure 6.2: The graphical user interface of the UML2Preparer.

64

The UML2PreparerUI might be used as followed:

• Inside the External Library Settings compartment, the user can specify the external library
JAR file location by clicking the Select library JAR button and selecting the desired JAR
file using a file chooser.

• In the lower part of the External Library Settings compartment, the user can click on the
Add dependent JAR(s) button to add multiple JAR files on which the JAR file, specified in
the previous step, depends on.

• By clicking the Remove selected JAR(s) button, the user is able to remove previously
added JAR files from the list of dependent JARs.

• On the right hand side of the graphical user interface, in the upper part of the Input / Output
UML Class Model compartment, the input and output UML class models are specified.

– The input UML class model that corresponds to the reverse engineered external li-
brary specified in the Library JAR part, can be specified by clicking on the Select
Input UML Class Model button.

– The newly created output UML class model is stored in the Ouput UML Class Model
file path which can be specified by clicking the Select Output UML Class Model
button. In case an existing file is chosen, its content will be overwritten during the
preparation process.

• In case all required files have been selected, the UML2Preparer is ready to be executed.
This can be done by clicking the Prepare UML Class Model button.

• Clicking the Quit button closes the graphical user interface.

To summarize, the required files to be specified in the UML2Preparer graphical user in-
terface include:

• The external library JAR file.

• Any libraries that are used by the external library JAR file.

• The input UML class model file that represents the reverse engineered class model of the
specified external library JAR file.

• The output UML class model file.

6.3 Building a UML Model Referencing an External Library

In general, there are serval ways to build a UML activity model. Experiments of building such
a model that references an external library has been conducted using the Eclipse UML2 Tools
editor, the Papyrus Editor, and the conventional Eclipse text editor within Eclipse Juno4. The

4To be more precise, the Eclipse version Juno Service Release 2 with build id 20130225-0426 has been used.

65

Eclipse UML2 Tools editor, in the following also referred to as UML model editor, is part of the
Eclipse Model Development Tools (MDT)5 and has been found to be the most adequate Eclipse
model editor tool for building activity models referencing an external library. On the other hand,
the Eclipse Papyrus model editor6 has been identified to require multiple workarounds in order
to succeed in the intended purpose of building a fUML activity model that references an external
library. Some of the issues encountered using the Papyrus modeling editor are listed below:

• When creating a ValueSpecificationAction and adding a value to it one is not able to store
the specified value. To workaround this issue, the mentioned value has to be specified in
the UML file associated with the Papyrus model using a conventional text editor.

• Also, when adding an OutputPin to a ValueSpecificationAction and trying to setup an up-
per bound value, the Papyrus model editor is only able to store the upper bound type (e.g.,
LiteralInteger) but not its value as specified in the dialog box. In order to work around this
issue, a fork node has to be created in the model that channels the ValueSpecificationAc-
tion’s OutputPin object flow to a receiving InputPin (e.g., of a CallOperationAction).

In the following a step-by-step description on how to build a UML activity model that refer-
ences an external library, based on an example, is provided. For a better understanding, multiple
figures visualizing some of the involved steps are shown.

Using the Eclipse UML model editor, a UML activity model referencing classes and opera-
tions located in an external library can be built as follows:

1. Within the Eclipse application a new UML model can be created using the standard
Eclipse wizard. Figure 6.3 depicts the mentioned Eclipse wizard. In the last step of
the same wizard, the “Model Object” has to be specified as “Model”.

2. After the UML model has been successfully created, the external resource (i.e., the pre-
pared UML class model of the external library) can be added by right-clicking inside the
previously created UML model displayed in the UML model editor and selecting “Load
Resource...” as depicted in Figure 6.4. Inside the “Load Resource” dialog, the modeler
can browse the file system or workspace in order to select the desired external resource.

3. In the next step, the modeler creates a new activity by right-clicking on the model node
(i.e., the root element of the UML model) and selecting “New Child > Owned Type >
Activity”.

4. After the activity has been created, a new CreateObjectAction can be added to the activ-
ity by right-clicking on the <Activity> node and selecting “New Child > Node > Create
Object Action”.

a) At this point the modeler is able to create the first reference to the external library
by specifying the desired external library class to be instantiated by the previously

5The exact version of the Eclipse Modeling Tools used is 1.5.2.20130211-1820.
6Papyrus SDK Binaries (Incubation) version 0.9.2.v101302131112.

66

Figure 6.3: Creating a new UML model using the Eclipse UML model editor wizard.

created node. He or she can do so by selecting the CreateObjectAction node (i.e.,
step (1) in Figure 6.5) and specify the “Classifier” property value to refer to a class
located in the prepared UML class model loaded in the the second step (i.e., step
(2) followed by step (3) in Figure 6.5) . To summarize, in this example the mod-
eler specifies the “Airplane” class located in the external resource as classifier to be
instantiated by the created CreateObjectAction.

b) The object created by the CreateObjectAction node can only be used by preced-
ing nodes if a result OutputPin and an associated ObjectFlow are created. A result
OutputPin can be created by right-clicking on the CreateObjectAction node and se-
lecting “New Child > Result > Output Pin”.

5. Next, in case the modeler wants to use the created object more than once, a ForkNode is
required. By right-clicking on the activity node and selecting “New Child > Node > Fork
Node” a new ForkNode is created.

6. In order to allow the created object to flow from the OutputPin to another node or pin the
modeler can right-click on the activity and select “New Child > Edge > Object Flow” to
create a new object flow within the activity. To emphasize, creating a new object flow does

67

Figure 6.4: Loading a resource within the UML model editor.

not create any immediately visible elements in the UML model editor. On the contrary to
adding, for example, a new CreateObjectAction, the outcome of adding a new ObjectFlow
only becomes apparent to the modeler in step 7. If the modeler wishes to assign a name to
the created object flow (optional), the same UML activity model file needs to be opened
in a text editor. To specify the object flow name in the UML model file, the object flow
element can be equipped with the additional attribute “name” in order to easier distinguish
different object flow instances from each other. In case no name is added to any given
object flow in the UML model file, object flows differentiate each other by the position
at which they are visualized (i.e., the chronological order in which they have been added)
visualized by their respective position number. Note that the object flow order can also be
changed manually.

7. Furthermore, the modeler needs to specify the object flow source and target. Specifically,
the object flow source can be specified by selecting the CreateObjectAction’s output pin

68

Figure 6.5: Selecting a CreateObjectAction classifier located in an external resource.

69

(i.e., step (1) in Figure 6.6) and then, within the Properties view, the appropriate outgoing
object flow. In order to do so, the modeler clicks on the “...” button (i.e., step (2) in
Figure 6.6) located in the “outgoing” property row displayed in the Properties view. Next,
the appearing dialog enables the modeler to chose between the available object flows (i.e.,
step (3) in Figure 6.6) and add them to the list of outgoing object flows (i.e., step (4)
in Figure 6.6). It has to be made sure that the object flow selected in the list of choices
(located on the left hand side of the appearing dialog) that is intended to be added also
appears in the list of features (located on the right hand side of the appearing dialog).
Clicking on the “OK” button (i.e., step (5) in Figure 6.6) finalizes the object flow’s source
specification.

8. Consequently, also a target has to be set for the given object flow. In the example, by
clicking on the fork node one can select any incoming object flow by clicking on the “...”
button located in the “incoming” property row of the Properties view. In the same fashion
as described in the previous step, the modeler can chose an appropriate incoming object
flow in the appearing dialog.

9. In the same way as the CreateObjectAction and the ForkNode previously created, a Val-
ueSpecificationAction can be created by right-clicking on the activity node and selecting
“New Child > Node > Value Specification Action”.

a) Within the ValueSpecificationAction, a result OutputPin and a LiteralString value
are created. The result OutputPin can be created in a similar fashion as previously
mentioned in step 4b.

b) The LiteralString value is created by right-clicking on the ValueSpecificationAction
node and selecting “New Child > Value > Literal String”.

c) The value of the created LiteralString can be specified by selecting the LiteralString
node (i.e., step (1) in Figure 6.7) and typing the desired value directly in the “Value”
field in the Properties view as visualized by step (2) in Figure 6.7.

d) However, for the specified value to arrive at the desired location, an object flow needs
to be specified. Again, to do so, a new object flow for the Activity has to be created as
mentioned in step 6. Next, the outgoing object flow of the ValueSpecifcationAction’s
OutputPin is specified in a similar fashion as described in step 7.

10. A CallOperationAction node can be created by right-clicking on the Activity node and
selecting “New Child > Node > Call Operation Action”.

a) In the created CallOperationAction, the modeler can specify the desired external
library operation to be called whenever that node is reached during the model execu-
tion. As shown in Figure 6.8, by clicking on the CallOperationAction node (cf. (1)
in Figure 6.8), the desired operation can be chosen from a drop-down list of available
operations at the “operation” property visualized within the Properties view (cf. (2)
and (3) in Figure 6.8).

70

Figure 6.6: Adding an outgoing object flow to a CreateObjectAction’s OutputPin. 71

Figure 6.7: Specification of a ValueSpecificationAction’s LiteralString value.

b) Next, a target and an argument InputPin are added to the CallOperationAction. A
target InputPin, that refers to the incoming object for which the specified operation
shall be called, can be created by right-clicking on the CallOperationAction node and
selecting “New Child > Target > Input Pin”. Further, a new ObjectFlow is created as
described in step 6. The resulting object flow is set to be having its source coming
from the previously created ForkNode and its target to the CallOperationAction’s
target InputPin. The object flow is specified in a similar fashion as described in
step 7 and step 8.

c) At this point the CallOperationAction is equipped with information regarding what
kind of operation call is made (i.e. “setManufacturer” in the shown example) and on
which object it is called (i.e. the “Airplane” object created by the CreateObjectAc-
tion). The yet missing part, the operation input parameter, can be added by creating
a new argument InputPin by right-clicking on the CallOperationAction node and se-

72

Figure 6.8: Specification of a CallOperationAction’s operation that references an external li-
brary operation.

73

lecting “New Child > Argument > Input Pin”. Likewise, as for the target InputPin
created in the previous step, also the argument InputPin needs to have an incom-
ing object flow. To realize that, the CallOperationAction’s argument InputPin’s in-
coming object flow is specified to be coming from the ValueSpecificationAction’s
OutputPin.

d) Finally, every CallOperationAction has to have a result OutputPin, even if it does
not return a parameter value. The CallOperationAction’s OutputPin can be added as
described in step 4b.

11. The additional ValueSpecificationActions for “model”, “type”, “seats”, and “doors” can
be added in a similar fashion as described in step 9.

12. Analogous to step 10, the additional CallOperationActions “setModel”, “setType”, “set-
Seats”, and “setDoors” can be added.

13. As a last step, in order to obtain the created object for further processing, one can add a
Parameter to the Activity and setup an appropriate ActivityParameterNode.

a) To create a Parameter owned by the activity, the modeler can right-click on the Ac-
tivity node and select “New Child > Node > Activity Parameter Node”. No object
flow needs to be assigned to this parameter.

b) The activity’s last object flow is going to end in an ActivityParameterNode. Hence,
such a node needs to be created. An ActivityParameterNode is created by right-
clicking on the Activity node and selecting “New Child > Node > Activity Parameter
Node”. Within the ActivityParameterNode’s Properties view, the “parameter” prop-
erty is assigned to reference to the parameter created in step 13a. The last object flow
is created as described in step 6 and specified such that it flows from the ForkNode
to the ActivityParameterNode.

The final result of modeling the UML activity model is visualized in Figure 6.9. Figure 6.10
depicts the same example as a graphical activity model.

To summarize, the AirbusExampleActivity initially creates an Airplane instance
and then specifies its manufacturer, model, type, number of seats, and number of doors. Finally,
the customized Airplane instance is specified as the activity’s output.

74

Figure 6.9: Final outcome of the UML activity modeling process.

75

Figure 6.10: Final outcome of the UML activity modeling process depicted as a graphical
model.

76

CHAPTER 7
Executing Foundational UML Models

Integrating External Libraries

Initially, this chapter begins with an introduction into the Java Reflection technique and the
concept of dynamic class loading. Next, the execution of fUML models referencing external
libraries is described. Moreover, the developed fUML External Library Eclipse plugin is briefly
presented. Furthermore, supported fUML actions are mentioned next to a detailed description
on how they are handled by the prototype. Additionally, encountered limitations regarding the
supported fUML actions are listed. The section on limitations does also include a list of other
investigated fUML actions and how they could be integrated into the developed prototype.

7.1 Java Reflection and Dynamic Class Loading

There have been several proof-of-concept projects1 created during this work that are briefly
mentioned in this section. The purpose of those projects is to show that the concepts used in the
Integration Layer are feasible.

The SpaceShipReflection project2 created during this work demonstrates the capa-
bility of the Java Reflection technology.
In the programming language area of computer science, reflection is defined as “the ability of a
program to manipulate as data something representing the state of the program during its own
execution” [2]. In other words, reflection is the term for a set of features that allows a program to
examine its own definition [24]. Therefore, using the Java Reflection API, arbitrary Java objects
can be manipulated on the fly during runtime. Thus, when objects are modified during runtime

1The proof-of-concept project repository can be found online at https://github.com/
patrickneubauer/basic-building-blocks-poc.

2The SpaceShipReflection project can be found online at https://github.com/
patrickneubauer/basic-building-blocks-poc/tree/master/SpaceShipReflection.

77

https://github.com/patrickneubauer/basic-building-blocks-poc
https://github.com/patrickneubauer/basic-building-blocks-poc
https://github.com/patrickneubauer/basic-building-blocks-poc/tree/master/SpaceShipReflection
https://github.com/patrickneubauer/basic-building-blocks-poc/tree/master/SpaceShipReflection

the runtime behavior of the application running within the Java virtual machine can be altered. In
this way the reflection technique enables to do meta programming, i.e., the discipline of writing
programs that represent and manipulate other programs or themselves during runtime [8]. Some
of these features include the capability to an application to use external classes by creating in-
stances of objects using their fully-qualified names. This allows, for example, the class browsers
of a development environment (or programming IDE3) to enumerate the members of classes and
display the available type information to assist the developer when writing code. Java Reflection
also allows to access and manipulate private class members. Debuggers make extensive use of
the latter feature as they allow the developer to display and change, not only public, but also
private class members during runtime. The Java programming language supports the reflection
technique since version 1.0.

Despite of the above mentioned advantages and capabilities that are otherwise impossible,
reflection also comes with certain drawbacks. One of the disadvantages is the performance over-
head on the Java virtual machine caused by the technique. Specifically, optimizations that are
performed during normal Java program execution cannot be performed whenever the reflection
technique is used. Hence, reflective operations slow down the execution performance. Further-
more, reflection may only work whenever no security manager is used or the security manager
allows to use reflection. Java Applets are an example for code running within a restricted se-
curity context. Moreover, using reflection allows to write code to access private fields which
is strictly illegal within the non-reflective context. This can have the side effect of destroyed
portability or code that deviates from its intended behavior.

The Integration Layer, created during this work, makes extensive use of the Java Reflection
API because of the advantages mentioned earlier. Since certain information used by the Inte-
gration Layer becomes available only at runtime, reflection is the only way to access and make
use of that information. Specifically, that information includes the file path to the JAR file, class
names and operation names of the external library used by an fUML model passed to the Inte-
gration Layer during execution.

Listing 7.1 depicts an example of using the Java Reflection API within a JUnit test. Specif-
ically, the goal of this test is to assert the access of a private member field. The test depicted in
Listing 7.2 shows how to access a private method of a Java object. Both JUnit tests are part of
the SpaceShipReflection project.

The private member field secretWeapon of the USSpaceShip class is accessed in List-
ing 7.1 in line 6 by first retrieving its associated class and then by getting the desired field by
passing a String that exactly matches the private member field name. After the security has been
shutdown, the value of the private member field can be retrieved (line 8). Additionally, in order
to access the actual value of the field, it may be casted into the designated field type. Finally,
line 14 shows how to set a private field member value of a specific Java object.

3IDE stands for integrated development environment. Eclipse, NetBeans and IntelliJ Idea are examples of IDEs.

78

Listing 7.1: JUnit test that uses the Java Reflection API to access a private member field.
1 @Test
2 public void USSpaceShipPrivateMemberVariableReflectionTest() {
3 USSpaceShip usSpaceShipPrivate = new USSpaceShip();
4

5 try {
6 Field privateField = usSpaceShipPrivate.getClass().getDeclaredField("

secretWeapon");
7 privateField.setAccessible(true);
8 String secretWeapon = (String) privateField.get(usSpaceShipPrivate);
9

10 // check if the reading of the private field worked
11 assertEquals("LaserBeamer5000", secretWeapon);
12

13 // write something into the private field
14 privateField.set(usSpaceShipPrivate, (Object) "NinjaBeam200");
15

16 // read the private field to check if the writing worked
17 String newSecretWeapon = (String) privateField.get(usSpaceShipPrivate

);
18 assertEquals("NinjaBeam200", newSecretWeapon);
19

20 } catch (SecurityException | IllegalArgumentException |
NoSuchFieldException | IllegalAccessException e) {

21 e.printStackTrace();
22 }
23 }

Listing 7.2 shows how to call private methods reflectively. In order to access a private
method, the parameter types (line 7) and parameter values (line 11) have to be defined before-
hand. More specifically, parameter types are defined as an array of type Class while parameter
values are defined as an array of type Object. The specified parameter types are required
together with the exact method name in order to obtain (line 13) the correct method from the de-
sired class. Line 17 shows how the actual method invocation is carried out. Likewise, a method
invocation to a method without parameters can be written in a similar fashion except null is
passed instead of the method parameter type class array (line 20). Finally, the retrieval of the
method return parameter slightly differs from the previous method call as a specific parameter
value is retrieved which needs to be casted into the expected parameter value type (line 24).

79

Listing 7.2: JUnit test that uses the Java Reflection API to access a private method.
1 @Test
2 public void USSpaceShipPrivateReflectionTest() {
3 USSpaceShip usSpaceShipPrivate = new USSpaceShip();
4

5 try {
6 // Define parameter(s) expected by the private set method
7 Class[] methodParameters = new Class[]{Double.TYPE};
8

9 // Provide the parameter(s) with values
10 double primitiveValue = 2.26;
11 Object[] params = new Object[]{new Double(primitiveValue)};
12

13 Method privateSetMethod = USSpaceShip.class.getDeclaredMethod("
setCurrentEngineSpeed", methodParameters);

14 privateSetMethod.setAccessible(true);
15

16 // Execute private set method and pass parameter(s)
17 privateSetMethod.invoke(usSpaceShipPrivate, params);
18

19 // Get a private method
20 Method privateGetMethod = USSpaceShip.class.getDeclaredMethod("

getCurrentEngineSpeed", null);
21 privateGetMethod.setAccessible(true); // shut down security
22

23 // Execute private get method
24 Double privateReturnValue = (Double) privateGetMethod.invoke(

usSpaceShipPrivate, null);
25

26 // Check if the return value of the private get method matches the
27 // previously set values (set by private set method)
28 assertTrue(primitiveValue == privateReturnValue.doubleValue());
29

30 } catch (NoSuchMethodException | SecurityException |
IllegalAccessException | IllegalArgumentException |
InvocationTargetException e) {

31 e.printStackTrace();
32 }
33 }

The DynamicClassLoading project4 has been initially built as a proof-of-concept project
and then evolved to be a basic building block of the Integration Layer. In other words it is used in
the Integration Layer project to dynamically load Java classes and methods from one or multiple
JAR files.

The DynamicJarLoader is built in a straight forward way on top of the java.net.
URLClassLoader. By instantiating the DynamicJarLoader and passing one or many

4The DynamicClassLoading project can be found online at https://github.com/
patrickneubauer/basic-building-blocks-poc/tree/master/DynamicClassLoading.

80

https://github.com/patrickneubauer/basic-building-blocks-poc/tree/master/DynamicClassLoading
https://github.com/patrickneubauer/basic-building-blocks-poc/tree/master/DynamicClassLoading

Strings, defining the location of JAR files, to its constructor, the DynamicJarLoader object
initializes its own java.ClassLoader member field. As a result of that, this
DynamicJarLoader can be used to access classes and operations located in the referenced
JAR files.

The Java class-loading delegation mechanism is used by the Java Extension framework5

that defines Java Extensions as groups of packages and classes bundled as JAR (Java Archive)
files. As a consequence of that, these JAR files expand the Java platform using the extension
mechanism. Whenever the Java runtime environment is required to load new classes during the
execution of an application it is doing so by looking them up at the following locations in this
order:

1. Bootstrap classes: for example, runtime classes (i.e., classes in rt.jar) and interna-
tionalization classes (i.e., classes in i18n.jar).

2. Installed extensions: typically JAR files within the lib/ext folder of the Java Runtime
Environment.

3. Class path: finally, if the requested class has not yet been found the last location to look
is in the system property java.class.path.

To be more precise, the DynamicJarLoader from the DynamicClassLoader project,
which is used by the Integration Layer, creates a dedicated Java class loader having no parent
class loader. The reason for not using a parent class loader is to avoid name conflicts that
might be present. Such name conflicts (i.e., another class of the same name is found) can
cause the runtime environment to load an undesired class that might cause unexpected results.
More specifically, the class loader created within the DynamicJarLoader is an instance of
java.net.URLClassLoader. Therefore, it is capable of loading classes and resources
from a path of type java.net.URL. Despite the fact that URLs can also refer to directories
and thus also directories could be loaded by the DynamicJarLoader, the Integration Layer
only uses it to load JAR files referenced in the prepared UML class model.

7.2 Executing fUML Models Referencing External Libraries

For the Integration Layer, in order to work as intended, it needs to be able to control the execution
of an fUML model. This functionality is provided by the fUML virtual machine implementation
developed by Mayerhofer et al.6. In the following, it is described how the Integration Layer uses
this fUML virtual machine implementation in order to integrate external Java libraries during
the execution of an fUML model.

5Information regarding the Java class-loading delegation mechanism is available online at http://docs.
oracle.com/javase/tutorial/ext/basics/load.html. Accessed January, 2014.

6The fUML virtual machine implementation by Mayerhofer et al. is available online at https://code.
google.com/a/eclipselabs.org/p/moliz/. Accessed January, 2014.

81

http://docs.oracle.com/javase/tutorial/ext/basics/load.html
http://docs.oracle.com/javase/tutorial/ext/basics/load.html
https://code.google.com/a/eclipselabs.org/p/moliz/
https://code.google.com/a/eclipselabs.org/p/moliz/

Execution Context

Initially, an fUML model is loaded from a file in the file system. Proceeding that, it is passed to
the execution context to execute it. The execution context itself is a field within the Integration
Layer. Hence, in order to execute an fUML model referencing external libraries, it has to be
passed to the Integration Layer’s execution context.

ActivityExecutionStatus

- directCallerExecutionStatus :ActivityExecutionStatus = null
- directCalledExecutionStatuses :List<ActivityExecutionStatus> = new ArrayList<A...
- activityExecution :ActivityExecution = null
- activity :Activity = null
- executionID :int = -1
- inResumeMode :boolean = false
- enabledActivityNodeExecutionStatuses :HashMap<ActivityNode, ActivityNodeExecutionStatus> = new HashMap<Act...
- executingActivityNodeExecutionStatuses :HashMap<ActivityNode, ActivityNodeExecutionStatus> = new HashMap<Act...
- allActivityNodeExecutionStatuses :HashMap<ActivityNode, ActivityNodeExecutionStatus> = new HashMap<Act...
- callerNodeExecutionStatus :CallActionExecutionStatus = null
- enabledNodesSinceLastStep :List<ActivityNode> = new ArrayList<A...
- tokensending :HashMap<ActivityNodeActivation, List<Token>> = new HashMap<Act...
- tokenCopies :HashMap<Token, List<Token>> = new HashMap<Tok...
- tokenOriginals :HashMap<Token, Token> = new HashMap<Tok...
- edgeTraversal :HashMap<Token, List<ActivityEdge>> = new HashMap<Tok...

+ ActivityExecutionStatus(ActivityExecution, int)
+ getActivityExecution() :ActivityExecution
+ getExecutionID() :int
+ getActivity() :Activity
+ isInResumeMode() :boolean
+ setInResumeMode(boolean) :void
+ setWholeExecutionInResumeMode(boolean) :void
+ getDirectCallerExecutionStatus() :ActivityExecutionStatus
+ setDirectCallerExecutionStatus(ActivityExecutionStatus) :void
+ getDirectCalledExecutionStatuses() :List<ActivityExecutionStatus>
+ addDirectCalledExecutionStatus(ActivityExecutionStatus) :void
+ getRootCallerExecutionStatus() :ActivityExecutionStatus
+ getAllCalleeExecutionStatuses() :List<ActivityExecutionStatus>
+ getEnabledNodes() :List<ActivityNode>
+ getExecutingActivation(ActivityNode) :ActivityNodeActivation
+ getExecutingActivityNodeExecutionStatus(ActivityNode) :ActivityNodeExecutionStatus
+ getTokens(ActivityNode) :TokenList
- hasEnabledNodes() :boolean
+ hasEnabledNodesIncludingCallees() :boolean
+ addEnabledActivation(ActivityNodeActivation, TokenList) :void
+ getActivityNodeExecutionStatus(ActivityNode) :ActivityNodeExecutionStatus
+ addExecutingActivation(ActivityNode) :void
+ removeExecutingActivation(ActivityNode) :void
- createActivityNodeExecutionStatus(ActivityNodeActivation) :ActivityNodeExecutionStatus
- getNextNodeActivationIndex() :int
+ getEnabledActivation(ActivityNode) :ActivityNodeActivation
+ getEnabledActivationTokens(ActivityNodeActivation) :List<TokenList>
+ getActivityCallerNoderExecutionStatus() :ActivityNodeExecutionStatus
+ setActivityCallerNode(CallActionActivation) :void
- getEnabledNodesSinceLastStep() :List<ActivityNode>
- clearEnabledNodesSinceLastStep() :void
+ removeTokenSending(ActivityNodeActivation) :List<Token>
+ addTokenSending(ActivityNodeActivation, List<Token>, ActivityEdge) :void
+ addTokenCopy(Token, Token) :void
+ getOriginalToken(Token) :Token
+ getTraversedActivityEdges(Token) :List<ActivityEdge>
+ isNodeEnabled(ActivityNode) :boolean
+ isAnyNodeEnabled(List<ActivityNode>) :boolean
+ handleEndOfExecution() :void
+ destroyActivityExecution() :void
- obtainActivityOutput() :void
+ handleSuspension(Element) :void
+ getExecutingNodes() :Set<ActivityNode>

ActivityNodeChoice

- node :ActivityNode
- executionID :int

+ ActivityNodeChoice(int, ActivityNode)
+ getActivityNode() :ActivityNode
+ getExecutionID() :int

Comparable

ActivityNodeExecutionStatus

activityExecutionStatus :ActivityExecutionStatus = null
- activationIndex :int = -1
- activityNodeActivation :ActivityNodeActivation = null
- waitingTokens :List<TokenList> = new ArrayList<T...

+ ActivityNodeExecutionStatus(ActivityExecutionStatus, ActivityNodeActivation, int)
+ getIndex() :int
+ addWaitingTokens(TokenList) :void
+ removeWaitingTokens() :TokenList
+ getActivityNodeActivation() :ActivityNodeActivation
+ getWaitingTokens() :List<TokenList>
+ compareTo(ActivityNodeExecutionStatus) :int
+ handleEndOfExecution() :void
checkIfCanFireAgain() :void
updateStatusOfContainingStructuredActivityNode() :void
- getContainingStructuredActivityNodeActivation() :ActionActivation

«interface»
Breakpoint

+ getActivityNode() :ActivityNode

BreakpointImpl

- node :ActivityNode

+ BreakpointImpl(ActivityNode)
+ getActivityNode() :ActivityNode

CallActionExecutionStatus

- callActionActivation :CallActionActivation = null
- calledActivityExecutionStatus :ActivityExecutionStatus = null
- calledActivityExecution :ActivityExecution = null

+ CallActionExecutionStatus(ActivityExecutionStatus, CallActionActivation, int)
+ setCalledActivityExecutionStatus(ActivityExecutionStatus) :void
+ getCalledActivityExecutionStatus() :ActivityExecutionStatus
+ handleEndOfExecution() :void
- obtainCallActionOutput() :void

ClauseExecutionStatus

- clauseActivation :ClauseActivation = null
- status :ClauseExecutionState = ClauseExecution...
- testFulfilled :boolean = false

+ ClauseExecutionStatus(ClauseActivation)
+ setTestFulfilled() :void
+ isTestFulfilled() :boolean
+ setStatus(ClauseExecutionState) :void
+ getClauseActivation() :ClauseActivation
+ getStatus() :ClauseExecutionState

«enumeration»
ClauseExecutionStatus::
ClauseExecutionState

 INITIALIZED
 TESTSTARTED
 TESTFINISHED
 BODYSTARTED
 BODYFINISHED

ConditionalNodeExecutionStatus

- clauseExecutionStatuses :List<ClauseExecutionStatus> = new ArrayList<C...
- conditionalNodeActivation :ConditionalNodeActivation = null

+ ConditionalNodeExecutionStatus(ActivityExecutionStatus, ConditionalNodeActivation, int)
+ addClauseActivation(ClauseActivation) :void
+ clauseStartsTest(ClauseActivation) :void
+ updateStatus() :void
- anyClauseStartedBody() :boolean
- anyClauseFinishedBody() :boolean
- getClauseActivationWithExecutedBody() :ClauseActivation
- getClauseExecutionStatusesInState(ClauseExecutionState) :List<ClauseExecutionStatus>
- areAllClauseTestsFinished() :boolean
- getSuccessorClausesToBeEvaluated() :List<ClauseActivation>
- setClauseSelectedForExecutingBody(Clause) :void
- getClauseExecutionStatus(ClauseActivation) :ClauseExecutionStatus
- startTestOfClauses(List<ClauseActivation>) :void
- startBodyOfSelectedClause() :void
- finishConditionalNodeExecution(ClauseActivation) :void

EventHandler

- listeners :Set<ExecutionEventListener> = new HashSet<Exe...
- primaryListeners :Set<ExecutionEventListener> = new HashSet<Exe...
- executionStatus :ExecutionStatus
- eventStore :EventStore = new EventStore()

+ EventHandler(ExecutionStatus)
+ addEventListener(ExecutionEventListener) :void
+ addPrimaryEventListener(ExecutionEventListener) :void
+ removeEventListener(ExecutionEventListener) :void
+ notifyEventListener(Event) :void
- shouldTransferEvent(Event) :boolean
+ handleActivityEntry(ActivityExecution, CallActionActivation) :void
+ handleActivityExit(ActivityExecution) :void
+ handleActivityNodeEntry(ActivityNodeActivation) :void
+ handleActivityNodeExit(ActivityNodeActivation) :void
+ handleSuspension(ActivityExecution, Element, List<ActivityNode>) :void
+ handleBreakpointSuspension(ActivityExecution, Element, List<Breakpoint>, List<ActivityNode>) :void
+ handleExtensionalValueCreation(ExtensionalValue) :void
+ handleExtensionalValueDestruction(ExtensionalValue) :void
+ handleObjectTypeAddition(Object_) :void
+ handleObjectTypeRemoval(Object_) :void
+ handleFeatureValueCreation(Object_, FeatureValue) :void
+ handleFeatureValueDestruction(Object_, FeatureValue) :void
+ handleFeatureValueAdded(Object_, FeatureValue, ValueList, int) :void
+ handleFeatureValueRemoved(Object_, FeatureValue, ValueList, int) :void

EventHandler::EventStore

- activityEntryEvents :HashMap<ActivityExecution, ActivityEntryEvent> = new HashMap<Act...
- activityNodeEntryEvents :HashMap<ActivityNodeActivation, ActivityNodeEntryEvent> = new HashMap<Act...

- addActivityEntryEvent(ActivityExecution, ActivityEntryEvent) :void
- addActivityNodeEntryEvent(ActivityNodeActivation, ActivityNodeEntryEvent) :void
- removeActivityEntryEvent(ActivityExecution) :ActivityEntryEvent
- removeActivityNodeEntryEvent(ActivityNodeActivation) :ActivityNodeEntryEvent
- getActivityEntryEvent(ActivityExecution) :ActivityEntryEvent
- getActivityNodeEntryEvent(ActivityNodeActivation) :ActivityNodeEntryEvent

ExecutionContext

- instance :ExecutionContext
- locus :Locus = null
- activityExecutionOutput :HashMap<Integer, ParameterValueList>
- breakpoints :HashMap<ActivityNode, Breakpoint>

ExecutionContext()
+ getInstance() :ExecutionContext
+ execute(Behavior, Object_, ParameterValueList) :void
+ executeStepwise(Behavior, Object_, ParameterValueList) :void
+ nextStep(int) :void
+ nextStep(int, ActivityNode) :void
+ resume(int) :void
+ getExtensionalValues() :ExtensionalValueList
+ getEnabledNodes(int) :List<ActivityNode>
+ getActivityOutput(int) :ParameterValueList
+ getTrace(int) :Trace
+ addBreakpoint(Breakpoint) :void
+ getBreakpoint(ActivityNode) :Breakpoint
+ removeBreakpoint(Breakpoint) :void
+ terminate(int) :void
+ getLocus() :Locus
+ addEventListener(ExecutionEventListener) :void
+ removeEventListener(ExecutionEventListener) :void

«interface»
ExecutionEventEmitter

+ notify(Event) :void

«interface»
ExecutionEventListener

+ notify(Event) :void

«interface»
ExecutionEventProvider

+ addEventListener(ExecutionEventListener) :void
+ removeEventListener(ExecutionEventListener) :void
+ notifyEventListener(Event) :void

ExecutionHierarchy

- caller :HashMap<ActivityExecution, ActivityExecution> = new HashMap<Act...
- callee :HashMap<ActivityExecution, List<ActivityExecution>> = new HashMap<Act...

+ getDirectCallees(ActivityExecution) :List<ActivityExecution>
+ getAllCallees(ActivityExecution) :List<ActivityExecution>
+ getCaller(ActivityExecution) :ActivityExecution
+ getRootCaller(ActivityExecution) :ActivityExecution
+ removeExecution(ActivityExecution) :void
+ addExecution(ActivityExecution, ActivityExecution) :void
getCaller() :HashMap<ActivityExecution, ActivityExecution>
getCallee() :HashMap<ActivityExecution, List<ActivityExecution>>

ExecutionStatus

- activityExecutionStatuses :HashMap<Integer, ActivityExecutionStatus> = new HashMap<Int...
- executionIDs :HashMap<Integer, Integer> = new HashMap<Int...

+ isExecutionRunning(int) :boolean
+ addActivityExecution(ActivityExecution, CallActionActivation) :int
+ removeActivityExecution(int) :void
+ getRootExecutionID(int) :int
+ getActivityExecutionStatus(int) :ActivityExecutionStatus
+ getActivityExecutionStatus(ActivityExecution) :ActivityExecutionStatus
- getExecutionID(ActivityExecution) :int

ExpansionRegionExecutionStatus

- expansionRegionActivation :ExpansionRegionActivation = null

+ ExpansionRegionExecutionStatus(ActivityExecutionStatus, ExpansionRegionActivation, int)
+ updateStatus() :void
- getCurrentExpansionActivationGroup() :ExpansionActivationGroup
- hasExpansionActivationGroupEnabledNodes(ExpansionActivationGroup) :boolean
- determineNextExpansionActivationGroup(ExpansionActivationGroup) :ExpansionActivationGroup
+ handleEndOfExecution() :void

LoopNodeExecutionStatus

~ state :LoopExecutionState = LoopExecutionSt...
~ loopNodeActivation :LoopNodeActivation = null

+ LoopNodeExecutionStatus(ActivityExecutionStatus, LoopNodeActivation, int)
+ loopNodeStartsTest() :void
+ loopNodeStartsBody() :void
+ updateStatus() :void
- isLoopNodeTestFinished() :boolean
- isLoopBodyFinished() :boolean
- finishLoopNodeBody() :void
- isLoopNodeTestFulfilled() :boolean
- runLoopNodeBody() :void
- runLoopNodeTest() :void
- prepareLoopIteration() :void
- finishLoopIteration() :void
- finishLoopNodeExecution() :void

«enumeration»
LoopNodeExecutionStatus::

LoopExecutionState

 INITIALIZED
 TESTSTARTED
 TESTFINISHED
 BODYSTARTED
 BODYFINISHED

«interface»
NodeSelectionStrategy

+ chooseNextNode(int, ExecutionStatus) :ActivityNodeChoice

NodeSelectionStrategyImpl

+ chooseNextNode(int, ExecutionStatus) :ActivityNodeChoice
- chooseNode(int, ExecutionStatus) :ActivityNodeChoice
- chooseNodeInCalleeHierarchy(int, ExecutionStatus) :ActivityNodeChoice

OpaqueBehaviorFactory

- listgetBehavior :OpaqueBehaviorExecution
- listsizeBehavior :OpaqueBehaviorExecution
- addBehavior :OpaqueBehaviorExecution
- subtractBehavior :OpaqueBehaviorExecution
- greaterBehavior :OpaqueBehaviorExecution
- lessBehavior :OpaqueBehaviorExecution
- lessOrEqualsBehavior :OpaqueBehaviorExecution
- multiplyBehavior :OpaqueBehaviorExecution
- divideBehavior :OpaqueBehaviorExecution
- listindexofBehavior :OpaqueBehaviorExecution

+ initialize() :void
- createListIndexOfBehavior() :OpaqueBehaviorExecution
- createMultiplyBehavior() :OpaqueBehaviorExecution
- createDivideBehavior() :OpaqueBehaviorExecution
- createListgetBehavior() :OpaqueBehaviorExecution
- createListsizeBehavior() :OpaqueBehaviorExecution
- createAddBehavior() :OpaqueBehaviorExecution
- createSubtractBehavior() :OpaqueBehaviorExecution
- createGreaterBehavior() :OpaqueBehaviorExecution
- createLessBehavior() :OpaqueBehaviorExecution
- createLessOrEqualsBehavior() :OpaqueBehaviorExecution
- createBinaryBehavior(String) :OpaqueBehavior
- createParameter(String, ParameterDirectionKind, int, int) :Parameter
+ getListgetBehavior() :OpaqueBehaviorExecution
+ getListsizeBehavior() :OpaqueBehaviorExecution
+ getAddBehavior() :OpaqueBehaviorExecution
+ getSubtractBehavior() :OpaqueBehaviorExecution
+ getGreaterBehavior() :OpaqueBehaviorExecution
+ getLessBehavior() :OpaqueBehaviorExecution
+ getMultiplyBehavior() :OpaqueBehaviorExecution
+ getDivideBehavior() :OpaqueBehaviorExecution
+ getListindexofBehavior() :OpaqueBehaviorExecution
+ getLessOrEqualsBehavior() :OpaqueBehaviorExecution

StructuredActivityNodeExecutionStatus

- structuredActivityNodeActivation :StructuredActivityNodeActivation = null

+ StructuredActivityNodeExecutionStatus(ActivityExecutionStatus, StructuredActivityNodeActivation, int)
+ updateStatus() :void
- hasStructuredActivityNodeEnabledChildNodes() :boolean
- hasStructuredActivityNodeEnabledDirectChildNodes() :boolean
- hasStructuredActivityNodeEnabledCalledNodes() :boolean
- getAllContainedNodes(StructuredActivityNode) :List<ActivityNode>
+ handleEndOfExecution() :void

TraceHandler

TRACE_FACTORY :TracemodelFactory = TracemodelFacto... {readOnly}
- activityExecutionTrace :HashMap<Integer, Trace> = new HashMap<Int...
- tokenInstances :HashMap<Token, TokenInstance> = new HashMap<Tok...
- tokenInstancesToToken :HashMap<TokenInstance, Token> = new HashMap<Tok...
- executionStatus :ExecutionStatus

+ TraceHandler(ExecutionStatus)
+ notify(Event) :void
+ getTrace(int) :Trace
- traceHandleActivityEntryEvent(ActivityEntryEvent) :void
- traceHandleActivityExitEvent(ActivityExitEvent) :void
- traceHandleActivityNodeEntryEvent(ActivityNodeEntryEvent) :void
- traceHandleActivityNodeExitEvent(ActivityNodeExitEvent) :void
- updateObjectOutput(List<Token>, ActivityExecutionStatus) :void
- addObjectOutput(ActionExecution, OutputPin, List<Token>) :void
- createOutputValue(ObjectTokenInstance) :OutputValue
- createObjectTokenInstance(ValueInstance) :ObjectTokenInstance
- addControlOutput(ActionExecution, List<Token>) :void
- traceHandleExtensionalValueEvent(ExtensionalValueEvent) :void
- getCreator(Value) :ActivityNodeExecution
- getDestroyer(Value) :ActivityNodeExecution
- getLinkCreator() :ActivityNodeExecution
- getObjectCreator() :ActivityNodeExecution
- getLinkDestroyer() :ActivityNodeExecution
- getObjectDestroyer() :ActivityNodeExecution
- getCurrentlyExecutingActivityNodeExecutionsOfType(List<Class<?>>) :List<ActivityNodeExecution>
- getCurrentlyExecutingActivityNodeExecutions() :Collection<ActivityNodeExecution>
- traceHandleSuspendEvent(SuspendEvent) :void
- addObjectExpansionInput(ExpansionRegionExecution, TokenList, ExpansionNode, ActivityExecutionStatus) :void
- addObjectInput(ActionExecution, TokenList, InputPin, ActivityExecutionStatus) :void
- createInputValues(TokenList, ObjectNode, ActivityExecutionStatus) :List<InputValue>
- addControlInput(ControlNodeExecution, ActivityNode, List<Token>, ActivityExecutionStatus) :void
- addControlInput(ActionExecution, ActivityNode, List<Token>, ActivityExecutionStatus) :void
- createInputParameterSetting(org.modelexecution.fumldebug.core.trace.tracemodel.ActivityExecution, Parameter, ValueList) :InputParameterSetting
- initializeTraceWithExtensionalValuesAtLocus(Trace) :void
- createValueInstance(Value) :ValueInstance
- createValueSnapshot(Value) :ValueSnapshot
- getOrCreateValueInstance(Trace, Value) :ValueInstance
- getTokensForEnabledNode(ActivityExecutionStatus, ActivityNodeActivation) :List<Token>
- createInputParameterValue(Trace, Token) :InputParameterValue
- createOutputParameterValue(Trace, ObjectTokenInstance) :OutputParameterValue
- getInputControlTokenInstances(List<Token>, ActivityNode, ActivityExecutionStatus) :List<ControlTokenInstance>
- getInputTokenInstances(List<Token>, ActivityNode, ActivityExecutionStatus) :List<TokenInstance>
- createActivityNodeExecution(ActivityNode) :ActivityNodeExecution
- setChronologicalRelationships(ActivityNodeExecution) :void
- getTraversedEdge(List<ActivityEdge>, ActivityNode) :List<ActivityEdge>
- getTokenInstanceConsideringCopies(Token, ActivityExecutionStatus) :TokenInstance
- getTokenInstance(Token) :TokenInstance
- addTokenInstance(Token, TokenInstance) :void

-calledActivityExecutionStatus

-status

-clauseExecutionStatuses 0..*

-callerNodeExecutionStatus

#activityExecutionStatus

-executionStatus-executionStatus

~state

-eventStore

Figure 7.1: A simplified version of the ExecutionContext class located in
org.modelexecution.fumldebug.core.

The execution context handles the execution of fUML activities. The structure of the exe-
cution context is depicted in Figure 7.1 in form of a UML class diagram. A model can either
be executed as a whole (using the operation execute()) or stepwise (using the operation
executeStepwise()). An execution can happen in a predefined context and be provided
with a list of input parameter values. In case the execution is run stepwise, the execution context
provides specific methods to execute steps (operations called nextStep(int) and next
Step(int, ActivityNode)). Moreover, breakpoints can be added and removed (op-
erations addBreakpoint(Breakpoint) and removeBreakpoint(Breakpoint)).
Furthermore, the execution context provides the possibility to terminate and resume the exe-
cution (operations resume(int) and terminate(int)). On one hand, terminating the
execution causes all called and calling activities to be terminated. On the other hand, when re-
suming the execution a specific execution identifier needs to be provided that defines what is
executed in the next step. Every activity execution has a specific and distinct execution identifier

82

that is used to differentiate activities among each other during runtime. Moreover, the execution
context also owns a data structure that keeps track of the output produced by every activity exe-
cution. The execution context also provides an operation that allows to retrieve the final output of
a specific activity execution by providing its execution identifier. Particularly relevant execution
context operations required by the Integration Layer include the execute operation, the get
Locus operation, the getExtensionalValues operation and the addEventListener
operation.

Execution Event Listener

The execution event listener interface, provided by the fUML virtual machine implementation,
is going to play a crucial role in the Integration Layer concept. For the Integration Layer, in
order to determine wether an event that requires to access an external library is triggered, it has
to be able to listen to occurring events during the model execution. The execution event listener,
as depicted in Figure 7.2, is a very simple interface with only one operation that takes an event
as parameter. That particular operation can be overwritten in any class that implements the men-
tioned listener. Consequently, by overwriting the notify operation, the class that overwrites
the operation becomes notified about events triggered during the model execution process. As
a result of that, the Integration Layer becomes able to react upon any kind of event triggered
during the execution of an fUML model. For this, the Integration Layer registers itself as an
event listener at the execution context where any given activity is going to be executed. Having
the Integration Layer itself listening to any events occurring at the execution context, permits
the Integration Layer to intercept the activity execution during any, in the execution context oc-
curring, event.

«in terfa ce»
ExecutionEv entListener

+ no tify(Event) :voi d

Figure 7.2: The ExecutionEventListener interface located in org
.modelexecution.fumldebug.core.event.Event.

The execution event listener allows the Integration Layer to be notified in case an event oc-
curs but does not provide the information wether the event is required to be handled. Hence,
it does not give information on whether the event is supposed to be handled by the Integration
Layer or can be skipped. As an example, consider an event caused by executing a Create
ObjectAction during the model execution process. Such a node contains information on

83

what kind of classifier it is supposed to instantiate object from. If the classifier is specified by a
class that is not located in an external library, the Integration Layer is not supposed to handle that
specific event. On the other hand, if a CreateObjectAction node is reached that specifies a
classifier located in an external library, the Integration Layer is required to intercept and handle
such an event in an appropriate way. Details about how the Integration Layer handles different
kinds of events are presented in Section 7.4.

Events

The event types, which are triggered by the execution context during an activity execution, are
visualized in Figure 7.3. The Integration Layer implementation is required to handle activity
events and activity node events in order to be able to fulfill the intended purpose and being able
to interrupt the model execution. An activity event is triggered whenever an entire fUML ac-
tivity is either entered (i.e., an activity entry event) or exited (i.e., an activity exit event) by the
fUML virtual machine. Moreover, an activity node event is triggered every time a node within
an fUML activity is entered (i.e., activity node entry event) or exited (i.e., activity node exit
event).

84

«i
n

te
rfa

ce
»

Ac
tiv
ity
En
try
Ev
en
t

«i
n

te
rfa

ce
»

Ac
tiv
ity
Ev
en
t

+
ge

tA
ct

iv
ity

()
 :

A
ct

iv
ity

«i
n

te
rfa

ce
»

Ac
tiv
ity
Ex
itE
ve
nt

«i
n

te
rfa

ce
»

Ac
tiv
ity
No
de
En
try
Ev
en
t

«i
n

te
rfa

ce
»

Ac
tiv
ity
No
de
Ev
en
t

+
ge

tN
od

e
()

 :A
ct

iv
it

yN
od

e

«i
n

te
rfa

ce
»

Ac
tiv
ity
No
de
Ex
itE
ve
nt

«i
n

te
rfa

ce
»

Br
ea
kp
oi
nt
E
ve
nt

+
ge

tB
re

a
kp

oi
n

ts
()

 :
Li

st
<B

re
ak

po
in

t>

«i
n

te
rfa

ce
»

Ev
en
t

+
ge

tT
im

e
st

am
p(

)
:l

on
g

«i
n

te
rfa

ce
»

Ex
te
ns
io
na
lV
al
ue
Ev
en
t

+
ge

tE
xt

e
ns

io
n

al
V

al
ue

()
 :

E
xt

e
ns

io
n

al
V

a
lu

e
+

ge
tT

yp
e

()
 :E

xt
en

si
on

al
V

al
u

eE
ve

nt
T

yp
e

«e
nu

m
e

ra
tio

n»
Ex
te
ns
io
na
lV
al
ue
Ev
en
tT
yp
e

C

R
E

A
T

IO
N

D

E
S

T
R

U
C

T
IO

N

T
Y

P
E

_A
D

D
E

D

T
Y

P
E

_R
E

M
O

V
E

D

V
A

LU
E

_
C

R
E

A
T

IO
N

V

A
LU

E
_

D
E

S
T

R
U

C
T

IO
N

V

A
LU

E
_

A
D

D
E

D

V
A

LU
E

_
R

E
M

O
V

E
D

«i
n

te
rfa

ce
»

Fe
at
ur
eV
al
ue
Ev
en
t

+
ge

tF
ea

tu
re

V
a

lu
e(

)
 :F

ea
tu

re
V

al
ue

+
ge

tF
ea

tu
re

()
 :S

tru
ct

ur
a

lF
ea

tu
re

+
ge

tV
al

u
es

()
 :

V
al

u
eL

is
t

+
ge

tP
os

it
io

n(
)

 :i
nt

«i
n

te
rfa

ce
»

Su
sp
en
dE
ve
nt

+
ge

tL
oc

a
tio

n(
)

 :E
le

m
en

t
+

ge
tN

ew
E

na
b

le
dN

o
de

s(
)

 :L
is

t<
A

ct
iv

ity
N

od
e>

«i
n

te
rfa

ce
»

Tr
ac
eE
v
en
t

+
ge

tP
ar

e
nt

()
 :

E
ve

n
t

+
ge

tA
ct

iv
ity

E
xe

cu
ti

on
ID

()
 :

in
t

Figure 7.3: The Event interface and inheriting interfaces located in
org.modelexecution.fumldebug.core.event.

85

7.3 Foundational UML External Library Eclipse Plugin

The execution of the fUML model that references an external library can be performed by us-
ing the dedicated fUML External Library Eclipse plugin developed as part of this work. The
developed plugin is based on the moliz fUML Eclipse plugin and provides a simple Eclipse run
configuration dialog to specify a new run configuration containing all required information to
execute a UML activity referencing an external library. Figure 7.4 shows the fUML External
Library Eclipse plugin run configuration dialog. A new fUML External Library Activity run
configuration can be created by double-clicking on “fUML External Library Activity” inside the
Eclipse run configuration dialog. In detail, such a run configuration is defined by a “Name”,
an “Activity Resource”, a “Class Resource” and a specific “Activity”. While the “Name” can
be chosen freely, the “Activity Resource” refers to the UML model file containing the activ-
ity to be executed in the file system. The “Class Resource” refers to the prepared UML class
model of the external library used by the activity to be executed that has been created using the
UML2Preparer. Finally, before being able to perform the execution, a specific UML activity
located in the UML model has to be chosen. A list of available activities residing in the chosen
UML model is displayed and selectable in the same run configuration dialog. In case all required
information is provided, clicking on the “Run” button executes the selected activity.

86

Figure 7.4: Foundational UML External Library Eclipse Plugin run configuration dialog.

87

7.4 Prototype Capabilities

The Integration Layer prototype supports a subset of the available fUML actions defined in the
fUML standard. The fUML standard defines numerous so called “Actions” and divides them
into three sub-packages: BasicActions, IntermediateActions, and CompleteActions. An Action
can have zero or more InputPin(s) and OutputPin(s). Such a pin can have an incoming and an
outgoing ObjectFlow that is used to transport values and objects between them. Actions them-
selves can not only have incoming and outgoing ObjectFlows but also incoming and outgoing
ControlFlows. The latter kind of flows can control the execution path, i.e., what action is exe-
cuted after another.

The Integration Layer prototype supports the following actions:

• CreateObjectAction (contained in IntermediateAction package)

• CallOperationAction (contained in BasicAction package)

• AddStructuralFeatureValueAction (contained in IntermediateAction package)

During the execution of an fUML activity, the Integration Layer listens to every occurring
event. In case the occurring event both refers to one of the supported actions and is marked as
external (i.e., the classifier of a CreateObjectAction node contains a UML comment containing
“@external” in its body), the Integration Layer acts accordingly. In order to integrate an
external library into the execution of an fUML activity, the Integration Layer needs to support
the creation and modification of library objects, i.e., Java instances of classes contained in the
library, as well as the ability to call library operations on these instances and to integrate the
result of a library operation call into the runtime model of fUML. This means that the Java
objects have to be mapped to corresponding fUML object (representing the Java objects in the
fUML runtime model) and that these object have to be kept synchronous by the Integration
Layer. The Integration Layer does the latter by using a data structure that keeps a map between
every Java object and its fUML object counterpart.

In the following each by the Integration Layer prototype supported action is described to-
gether with various cases in which it can be used in practice to build an fUML activity. The
reason why these actions have been chosen to be added to the set of actions supported by the In-
tegration Layer is the outcome of an investigation that took a set of fUML actions into account.
The other, during the investigation, encountered fUML actions are discussed in Chapter 7.5.
The reason why the above mentioned actions have been chosen to be implemented implies from
the fact that they most probably represent a subset of highly used library actions (i.e., creating
instances of library classes, modifying them, and calling library operations).

CreateObjectAction

A fUML.Syntax.Actions.IntermediateActions.CreateObjectAction refers
to an action that creates an fUML object of an fUML classifier. The Java counterpart for such
an action is the creation of a Java object instance from a specific Java class by using the class’s

88

default constructor.

During the activity execution, the Integration Layer prototype carries out 6 steps if a Cre-
ateObjectAction that references an external library class as its classifier is executed. Step 1 is
carried out when the CreateObjectAction is entered, which is indicated by an ActivityNodeEn-
tryEvent. All other steps are carried out when the action is exited, which is indicated by an
ActivityNodeExitEvent. The steps executed in case the Integration Layer prototype encounters
an external CreateObjectAction include the following:

1. fUML placeholder object retrieval. When the Integration Layer is notified about enter-
ing a CreateObjectAction by a corresponding ActivityNodeEntryEvent, the list of exten-
sional values residing in the Integration Layer’s execution context is cloned and stored for
the upcoming ActivityNodeExitEvent related to the action execution. When this Activi-
tyNodeExitEvent is encountered, the previously stored list of extensional values is used
to obtain the fUML placeholder object that has been created by the execution of the Cre-
ateObjectAction in the meantime. More specifically, this is done by comparing the pre-
viously cloned list of extensional values (at encountering the ActivityNodeEntryEvents)
with the currently existing list of extensional values (at encountering the ActivityNodeEx-
itEvent) .

2. Java object creation. When the Integration Layer is notified about exiting the CreateOb-
jectAction by an ActivityNodeExitEvent the external Java class to be instantiated is de-
termined by examining the CreateObjectAction’s classifier reference. More specifically,
while the namespace and class name are defined by the referenced classifier, the Java
Archive file path is found in the classifier’s owned comment. Having determined both the
class with fully qualified namespace and the JAR file location, the dynamic class loader is
able to create an instance of the desired Java class. Hence, at this point, an instance of a
Java class located in an external library is created.

3. fUML object creation. In order to create an fUML object that corresponds to the pre-
viously created Java object, an object transformation needs to be done because fUML
objects and Java objects are different. For example, a Java object field of type int is
wrapped into an fUML.Semantics.Classes.Kernel.IntegerValue. For this
purpose, the Integration Layer’s Object_Transformer class has been created. In
general, the transformer uses the Java object to read its fields and values and the fUML
object to create its feature values. In other words, initially the transformer recursively re-
trieves fields within the Java object that includes private and inherited fields. It does so by
starting from the Java object class populating a map data structure mapping each inherited
class with its own fields. During the transformation, each field in the map data structure
is considered to be transformed into a corresponding fUML representation. In case a non-
primitive Java field is encountered, an existing fUML object representing the value of the
encountered field is looked up at the Integration Layer. If such an fUML object is found,
it is added as a feature value to the fUML object. In case it is not found, it is not added as
a feature value. Hence, only objects that have been previously created by the same fUML

89

object creation procedure, are added. Finally, after the transformer has finished transform-
ing the fUML placeholder object, it can be retrieved by calling getObject_() upon the
Object_Transformer instance.

4. fUML object replacement. The next step in handling the CreateObjectAction is to re-
place the existing fUML object determined in Step 1 with the previously in Step 3, by
the Object_Transformer instance created, fUML object. The object replacement is
required because the fUML object determined in Step 1 only represents a stub object with
no values. More specifically, the hash code of each value from the list of extensional val-
ues residing in the locus is compared with the in Step 1 determined fUML object’s hash
code. Finally, when the matching placeholder object has been found, it is replaced at the
locus with the object created by the transformer.

5. CreateObjectAction result assignment. The goal of this step is to assign an fUML
.Semantics.Classes.Kernel.Value.ObjectToken to the CreateObjectAc-
tion’s OutputPin. The ObjectToken itself contains an fUML.Semantics.Classes
.Kernel.Reference that refers to the actual fUML object created by the Integration
Layer’s Object_Transformer in Step 3. Finally, after an appropriate token has been
created, it is added to the CreateObjectAction’s result OuputPin. In more detail, within the
current activity execution, the fUML.Semantics.Actions.BasicActions
.OutputPinActivation is located inside the fUML.Semantics.Actions
.IntermediateActions.CreateObjectActionActivation and retrieved by
searching for the CreateObjectAction’s result OutputPin within the CreateObjectAction-
Activation.

6. Object bookkeeping. The last step required to handle a CreateObjectAction is to add
both the Java object and the fUML object to the dedicated map data structures located
inside the Integration Layer. These data structures are needed to find existing objects in
later stages of the activity execution.

CallOperationAction

The fUML standard defines an fUML.Syntax.Actions.BasicActions.
CallOperationAction as an action that specifies an operation to be called in its
“operation” reference. Typically, in case no external library operation is referenced in the
CallOperationAction’s operation reference, it refers to an owned operation residing within an
activity or class of the same or another UML model. On the other hand, if the operation refer-
ence refers to an external library operation, it refers to an operation defined in the prepared UML
class model. A CallOperationAction requires a target InputPin for providing the object on which
the operation call is made and a result OutputPin for providing the operation call return value. A
CallOperationAction can own one or many argument InputPins that define the operation input
parameters. Generally speaking, the Java counterpart of an fUML CallOperationAction is a Java
operation call.

90

In case an ActivityNodeEntryEvent for a CallOperationAction referencing an external oper-
ation is received during the activity execution, the Integration Layer prototype acts accordingly.
More specifically, a CallOperationAction references an external operation (i.e., an operation de-
fined in the prepared UML class model) when its operation refers to an operation owned by
a class that itself owns a UML comment containing a body element defining “@external=
PATH_TO_LIBRARY.jar”. The prototype acts upon an occurring external CallOperationAc-
tion in the following way:

1. CallOperationAction target object retrieval. Initially, the fUML object on which the
operation shall be called needs to be determined. An ActivityEntryEvent notifies about
entering the placeholder activity defined for the operation called by the occurring CallOp-
erationAction. For the execution of the placeholder activity, an ActivityExecution instance
resides at the Locus which can be retrieved by comparing the instance’s hash code with
the activity execution identifier provided by the ActivityEntryEvent. The fUML object on
which the operation is called can be determined by the context field of the retrieved Ac-
tivityExecution instance. In other words, the event’s activity execution identifier equalizes
with the hash code of the extensional value within the Locus that represents the activ-
ity execution in question. The latter contains a “context” field of type Object_ that
represents the fUML object provided through the CallOperationAction’s target InputPin.

2. Corresponding Java object and operation name retrieval. After the CallOperationAc-
tion target object (i.e., the object on which the operation call ought to be made) has been
retrieved, the Integration Layer’s internal map that stores references to fUML objects and
their Java counterparts, is used to retrieve the Java object that corresponds to the target
object. Moreover, based on the CallOperationAction’s ActivityEntryEvent, the fully qual-
ified name of the Java object’s class together with the name of the operation to be called
are determined. The information gathered up to this point does not yet allow to uniquely
identify the Java operation to be called. A Java operation residing in a specific Java class
can only be uniquely identified by both its name and its input parameter types. This also
includes the order of input parameter type definitions.

3. fUML input parameters and corresponding value retrieval. As mentioned in Step 2, to
uniquely define the Java operation to be called, its name, input parameter types, and input
parameter type ordering needs to be known. To achieve this, a sub-algorithm is executed
that obtains the latter mentioned information. Since the input parameters themselves do
not contain any value, existing values need to be looked up in the ActivityExecution ob-
ject. More specific, in order to find a value that corresponds to a specific input parameter,
the ActivityExecution object corresponding to the currently occurring CallOperationAc-
tion’s ActivityEntryEvent is accessed to look up existing parameter values. Next, if the
parameter value’s qualified parameter name equals to the given input parameter name, it
is added to a map data structure. Finally, the map contains all the CallOperationAction’s
input parameters and their corresponding values.

4. fUML to Java input parameter and value translation. The output produced by Step 3,
the operation’s input parameters and values in form of fUML parameters and values, is

91

reused within this step to create corresponding Java parameters and values. The Integra-
tion Layer prototype creates corresponding Java parameters and values by establishing a
new map data structure containing the Java value, in form of a primitive value or a Java
object, and the Java class to which it corresponds to.

• Primitive input parameter. For example, if the fUML parameter type is named
“Integer”, the map data structure is filled with Integer.TYPE and the actual
Java value by reading the fUML input parameter value and casting it to a primitive
“int”.

• Complex input parameter. In case a complex parameter needs to be handled, the
prototype initially retrieves the fUML Reference to which the fUML parameter
value refers to. Next, it takes the fUML object referred to in the Reference to
look up the corresponding Java object in the Integration Layer prototype’s object
bookkeeping map. If the fUML object, referred to in the Reference, has been
previously created by a CreateObjectAction during the current activity execution, a
corresponding Java object is retrieved from the bookkeeping map. The case in which
the fUML object has not been created by a preceding CreateObjectAction has not
been considered.

5. Actual external library operation call. The actual external library operation call can
be made having either no input parameter at all, a single input parameter, or multiple
input parameters. There are limitations to the kind of operation calls that the Integration
Layer prototype can handle. More on those limitations can be found in Chapter 7.5. The
prototype distinguishes between the following cases of operation calls:

• No input parameter. If no input parameter is specified in the CallOperationAction’s
operation, the method name constitutes enough information to retrieve the unique
Java method from the Java object’s class.

• Single or multiple primitive input parameters. If the CallOperationAction’s oper-
ation defines parameters, which all are primitive, their Java counterparts established
in Step 4 are used when invoking the Java method on the Java object. More specif-
ically, the corresponding unique Java method can be retrieved by its method name
and an ordered array of Java parameter types.

• Single complex input parameter. In case the CallOperationAction’s operation de-
fines a single complex input parameter, the Java operation needs to be found first.
To find the latter, name and parameter type of the available operations of the Java
object’s class are compared with the single complex input parameter name and type
determined in Step 4 until the Java operation is identified. Finally, the identified
operation is invoked on the given Java object together with the actual complex input
parameter value (i.e., a Java object).

6. fUML object re-creation. Preceding the actual external library operation call, the Java
object on which the operation call has been made might have changed. Hence, the fUML
object that previously corresponded to the Java object (i.e., before the actual external

92

library operation call has been made) might not be a valid representation of the Java object
anymore. To ensure the representation is valid, the Object_Transformer is used to
re-assign the fUML object’s feature values according to the field values stored in the latest
Java object. The procedure of doing the latter results in the re-creation of the fUML object
and is similar to the procedure described in the CreateObjectAction Step 3.

7. Java to fUML return value translation. In addition to the translation done for the fUML
object upon which the operation call is made, also an existing return value needs to be
translated from Java to fUML. First, the fUML activity’s return parameter is retrieved
and depending on the Java return value type, the Integration Layer prototype handles the
translation of its value in the following way:

• Primitive return parameter. Accordingly to the type of value that is handled, a
suitable fUML value (i.e., BooleanValue, IntegerValue, or StringValue) is created.
Next, the Java method return value is casted into the expected primitive Java type
and assigned to the suitable fUML value’s “value” field.

• Complex return parameter. In case a complex object (i.e., a value that is not prim-
itive) is returned by invoking the Java method, a new fUML object, that corresponds
to the returned Java object, needs to be created. To achieve the latter, the Integration
Layer prototype first creates a new fUML object and sets its type to be equal to the
CallOperationAction’s operation return parameter type. Secondly, the Integration
Layer’s Object_Creator is used to adapt the newly created (yet empty) fUML
object to the Java operation return value, i.e., the fUML object’s feature values are
set according to the Java object’s field values. Third, the resulting fUML object from
the Object_Creator is added to the CallOperationAction’s target object locus.

8. CallOperationAction result specification. Finally, the fUML return parameter and value
established in Step 7 is assigned to the ActivityExecution. Having made the latter assign-
ment, the CallOperationAction’s result OutputPin is supplied with the appropriate return
parameter value. In case of a complex return parameter, a new fUML Reference is
created that references the fUML object created by the Object_Creator and the Ref-
erence is added to the output parameter values of the Activity Execution.

AddStructuralFeatureValueAction

An AddStructuralFeatureValueAction (to be more precise an fUML.Syntax.Actions.
IntermediateActions.AddStructuralFeatureValueAction) refers to an action
that sets the feature value of a feature owned by an fUML object. In Java, such an action corre-
sponds to the assignment of an object field. A more concrete example is having a Person Java
class with various fields such as String nationality, creating an instance of the latter
class called “person1” and setting its field as follows:
person1.nationality = “United States of America”.

To handle the execution of an AddStructuralFeatureValue for an external object, the Integra-
tion Layer performs the following steps:

93

1. fUML object retrieval. During the ActivityNodeEntryEvent, caused by reaching an
AddStructuralFeatureValueAction during the activity execution, the Integration Layer re-
trieves the fUML object, whose value is supposed to be specified, in the first step. In fact,
the fUML object is obtained from the ObjectToken reference assigned to the AddStruc-
turalFeatureValueAction’s object InputPin. To be more precise, the ActivityNodeEn-
tryEvent’s execution identifier is used to find the appropriate ActivityExecution from
which the AddStructuralFeatureValueActionActivation in question is retrieved. In the
following, the latter can be used to acquire the InputPinActivation containing the Object-
Token whose reference contains the fUML object to be modified.

2. fUML property retrieval. The fUML.Syntax.Classes.Kernel.Property re-
ferring to the feature within the fUML object whose value is supposed to be modified
can be retrieved by accessing the AddStructuralFeatureValueAction’s “structural
Feature” reference.

3. Specification value gathering. Next, the ValueSpecificationAction that defines the fea-
ture value to be set in the fUML object is considered. First, in order to retrieve the Value-
SpecificationAction, the AddStructionalFeatureValueAction’s value InputPin is obtained.
The latter InputPin has an incoming ObjectFlow whose source is in fact the ValueSpecifi-
cationAction in question. Secondly, having determined the ValueSpecificationAction, its
value can be retrieved by accessing the ValueSpecificationAction’s “value” field.

4. Corresponding Java object and field retrieval. Furthermore, after the fUML object that
ought to be modified has been determined, the Integration Layer’s internal map, that stores
references to fUML objects and their Java counterparts, is used to retrieve the Java object
that corresponds to the fUML object to be modified. Moreover, to access the Java field in
question, Java reflection techniques are used.

5. fUML object and Java object value specification. At this stage, the required data to
perform the value assignment has been established. In accordance to the type of the value
to be assigned, a suitable literal type (i.e., LiteralBoolean, LiteralInteger, or LiteralString)
and value type (i.e., BooleanValue, IntegerValue, or StringValue) are created. Afterwards,
appropriate assignments are made and the fUML object’s feature value is assigned. In
greater detail, in order to do so, a new ValueList containing the new value is created and
together with the property, as obtained in Step 2, used to set the feature value of the fUML
object. Finally, also the Java field value is assigned such that it equalizes with the assigned
fUML feature value.

7.5 Prototype Limitations

The Integration Layer prototype has limitations that are mentioned in this chapter. These limita-
tions also include untested capabilities. Hence, capabilities that have not been tested are treated
as limitations, even if they might turn out to be partly supported by the Integration Layer proto-
type. The set of Integration Layer prototype limitations include the following:

94

• Other investigated fUML actions. The fUML standard defines a set of fUML actions
from which a subset is supported by the Integration Layer prototype implementation. On
one hand, the subset of realized fUML actions, namely CreateObjectAction, CallOpera-
tionAction, and AddStructuralFeatureValueAction, are discussed in Chapter 7.4. On the
other hand, a subset of the unrealized fUML actions (i.e., fUML actions that have been
investigated while developing the prototype) are discussed later in this chapter. Other in-
vestigated fUML actions include: ReadStructuralFeatureAction, ClearStructuralFeature-
Action, RemoveStructuralFeatureValueAction, CreateLinkAction, ReadLinkAction, De-
stroyLinkAction, DestroyObjectAction, and ClearAssociationAction.

• Data structures and types. There are several limitations regarding data types that have
been identified during the testing stage of the prototype development that includes the
following:

– Arrays. The Java array data type, as an input parameter, a return parameter of an
operation call, and as object field type is not supported.

– Enums. Java enumerations, again as an input parameter, a return parameter of an
operation call, or object field type is not supported.

– Collections. Advanced data structures, such as Java collection, are not supported by
the Integration Layer prototype.

• CallOperationAction. Multiple limitations regarding the implemented CallOperation-
Action support, have been identified. These include the following:

– Multiple complex input parameters. Support for multiple complex input parame-
ter values passed to an external library operation has not been realized in the proto-
type.

– Mixture of primitive and complex input parameters. Calls to an external library
operation passing both primitive and complex input parameter values is not sup-
ported in the prototype implementation.

– Static method calls. Calls to static external library operations made by the prototype
are not supported.

– Interface input parameters. Passing a complex input parameter value that imple-
ments a specific interface to an external library operation that defines an interface as
its parameter type is not supported.

• AddStructuralFeatureValueAction. For AddStructuralFeatureValueActions, the Inte-
gration Layer prototype implementation supports primitive data types but no complex
data types. Hence, in order to be able to specify the value of an fUML object’s non-
primitive feature value, appropriate support needs to be implemented for the prototype.
Additionally, the creation of fUML links using an AddStructuralFeatureValueAction is
not supported. Furthermore, the value to be assigned has to be provided by a ValueSpec-
ificationAction whose result OutputPin is directly connected to the value InputPin of the
AddStructuralFeatureValueAction via an ObjectFlow.

95

• Manual resource selection. The manual selection of external library resources (e.g.,
classes and operations) that are aimed to be used in the fUML model, as proposed in
Chapter 1.3, has been omitted. The reason for leaving out the latter is the good support
of the Eclipse UML2Tools Editor that already provides a dialog for the modeler to define
a name for any available external resource to be used. The defined name is then used to
filter available resources such that the modeler can select the desired resource.

Other Investigated fUML Actions

During the development of the Integration Layer prototype, several fUML actions, as defined in
the fUML standard, have been investigated on supportability by the prototype. The following
list mentions those actions together with a short description of their semantics and their possible
Java counterparts (i.e., how they could be implemented in the Integration Layer).

• ReadStructuralFeatureAction. A ReadStructuralFeatureAction reads a specific feature
value of specific fUML target object. The Java equivalent of such an action is reading
a specific field of an object using the “dot” notation (e.g. personObject.name to
read the “name” field of “personObject” or a getter operation). Moreover, using the
ReadStructuralFeatureAction, also fUML links can be read, which corresponds to reading
an object field of a complex type.

• ClearStructuralFeatureAction. When executing a ClearStructuralFeatureAction a spe-
cific feature is provided from which all values in the target object are removed. Hence,
values associated with the feature of a target fUML object are cleared. The Java program-
ming language is not equipped with such a scenario but the Java Reflection API allows
to loop through existing fields within a specific Java object. Hence, a Java equivalent for
realizing such an action is to loop through all fields of an object and set the value of the
specified field to “null”.

• RemoveStructuralFeatureValueAction. While the ClearStructuralFeatureAction clears
all values of a feature for an fUML object, the RemoveStructuralFeatureValueAction
clears only one value associated with a feature from a target object.

• CreateLinkAction. A CreateLinkAction provides the ability to create a link between
two fUML objects. In Java an fUML link might be realized as a Java reference. Thus,
an fUML link in Java could be realized as assigning a reference from one Java object to
another.

• ReadLinkAction. In fUML, a ReadLinkAction navigates across associations to retrieve
an object on one end. In Java such an action could be defined as obtaining an object by its
reference.

• DestroyLinkAction. As already mentioned, an fUML link might be represented by a
Java reference (i.e., a Java variable). Thus, destroying a link is equivalent to removing
the reference. To be more concrete, destroying a link is equal to setting a reference to
“null”.

96

• DestroyObjectAction. On one hand, if the target InputPin of a DestroyObjectAction
refers to an fUML link, a DestroyObjectAction is equivalent to a DestroyLinkAction. On
the other hand, if the target InputPin refers to an object, then the object is destroyed. In
Java, destroying an object (i.e., removing its value from the memory) can be done by
removing all references to it, i.e., setting all existing references to this object to “null” and
either leaving it up to the garbage collector to finally destroy its value or willfully calling
“System.runFinalization(); System.gc();” to force the garbage collector
to do its work immediately.

• ClearAssociationAction. In fUML, a ClearAssociationAction destroys all links of a spe-
cific association type in which a provided object is linked. In Java this would mean to
remove selected references that point to a specific object in memory. In Java, in order to
remove a reference to an object in memory, the reference needs to be set to “null”. Ex-
isting references to the object can be obtained by taking into account the fUML object and
fUML links to this object at the Locus, respectively. After the set of existing references to
the object have been determined, they can be removed by setting their value to “null”.

In addition to the above mentioned actions, there exists a set of other actions that have not
been investigated. While some of them might be relevant (e.g., a StartClassifierBehaviorAc-
tion represents constructor calls by passing parameters), others might be less relevant (e.g., a
CallBehaviorAction could not be realized in Java since Java only supports operations). In order
to fully determine the set of fUML actions possible to be supported by the Integration Layer,
based on the Java programming language, a more detailed and further investigation needs to be
conducted.

97

CHAPTER 8
Case Studies and Lessons Learned

Succeeding the Integration Layer prototype development, case studies to evaluate the artifact
have been designed and executed. In total, three different case studies have been performed
in order to evaluate the prototype from multiple different perspectives. Each case study aims
to utilize the Integration Layer prototype from different use cases. In short, the following case
studies have been carried out with the following aim in mind:

• Mail Case Study. The Mail Case Study aims at building an application that uses an
external library to compose and send an e-mail to an existing e-mail address in order
to evaluate the ability of the Integration Layer prototype to successfully access and use
external library resources.

• Petstore Case Study. The aim of the Petstore Case Study is to extend an existing ap-
plication with the usage of an external library. Hence, addressing the Integration Layer
prototype’s ability to handle the execution of an existing application that has been ex-
tended with the usage of an external library.

• Database Case Study. The Database Case Study’s goal is to evaluate the feasibility of
the Integration Layer to handle more complex external library calls.

8.1 Research Questions

The main research questions on the Integration Layer prototype artifact that are aimed to be
answered during the evaluation phase of the case studies are as follows:

1. Usability. How usable is the developed prototype regarding additional effort required to
use external libraries in fUML activities?

2. Correctness. Is the developed prototype correct? Thus, does the prototype work as ex-
pected? Are there unsupported scenarios and if so, why aren’t they supported and how
could they be supported.

99

3. Performance. How is the performance of executing an fUML model accessing an exter-
nal library compared to executing a plain Java application that behaves the same way or
implements the same functionality?

8.2 Experimental Setup

The case studies mentioned in this chapter have been, if not otherwise mentioned, executed on
the following experimental setup:

• fUML model. The fUML model has been interpreted by the dedicated Eclipse fUML
External Library Plugin within Eclipse Juno version Service Release 2 (build 20130225-
0426).

• Plain Java application. The plain Java application has been executed within the same
Eclipse workspace and instance as the one using the Eclipse fUML External Library Plu-
gin.

• Hardware setup. The hardware setup used is specified as followed: Apple MacBook Pro
15-inch (Mid 2010) incorporating a 2.53 GHz Intel Core i5 with 8 GB of memory and a
conventional hard drive (no SSD) running Mac OS X 10.8.5.

8.3 Mail Case Study

The Mail Case Study has been built in order to assess the functionality of the Integration Layer
prototype to access an external library. Hence, the UML activity model developed as part of this
case study creates an instance of a class defined in an external library. Additionally, multiple op-
eration calls targeting that external library instance are made that ultimately lead to composing
and sending an e-mail message to the specified recipient powered by the external library.

The external library used to create this case study is referred to as Apache Commons Email
or more precisely commons-email-1.3.1.jar1. The Apache Commons Email library it-
self depends on the JavaMail API or more detailed com.sun.mail version 1.4.7 distributed
in mail.jar2.

Diving right into the constructed artifacts, Listing 8.1 shows a Java implementation that cre-
ates an org.apache.commons.mail.SimpleEmail instance based on the org.apache
.commons.mail.Email interface. Before the actual send() operation can be called, that
ultimately causes the e-mail message to be sent, multiple other operations, taking various input
parameters of different input parameter types, have to be called first. More specifically, in line

1The Apache Commons Email library JAR file has been retrieved from http://commons.apache.org/
proper/commons-email/.

2The JavaMail API Java Archive file has been downloaded from the Oracle Corporation website: http://
www.oracle.com/technetwork/java/javamail/index.html.

100

http://commons.apache.org/proper/commons-email/
http://commons.apache.org/proper/commons-email/
http://www.oracle.com/technetwork/java/javamail/index.html
http://www.oracle.com/technetwork/java/javamail/index.html

14 an instance of SimpleEmail is created. The lines 15, 19, 20, 21, and 22 are operation
calls taking a single String value as input parameter. Within those operation calls the host name
used to send the e-mail, the sender and receiver e-mail address, as well as the e-mail subject and
message are specified. Moreover, in line 16 an operation call is made taking a single primitive
Integer value as input setting the SMTP port on which the e-mail is supposed to be sent. Further-
more, line 18 takes a single primitive Boolean value as input specifying the usage of the Secure
Sockets Layer3 (or short SSL) protocol. The last line, line 24, represents an operation call with
no input parameters and is made on the initially created SimpleEmail instance to finally send
the composed e-mail to the specified recipient.

Figure 8.1 shows an equivalent fUML activity resulting in the creation of a similar Simple
Email instance. Figure 8.2 is analogous to Figure 8.1 but rather than depicting it using the
Eclipse UML2Tools Editor it is visualized graphically as UML activity diagram. The UML ac-
tivity model uses a set of different UML elements to achieve the same logic as seen in Listing 8.1,
namely: CreateObjectAction, ValueSpecificationAction, CallOperationAction, ForkNode, Ac-
tivityParameterNode, Parameter, ObjectFlow, InputPin, and OutputPin. The single CreateOb-
jectAction existing in the activity creates an instance of the SimpleEmail class and by using
an ObjectFlow it transports the object to a ForkNode. At the ForkNode, various other object
flows transport the object to the target InputPin of different CallOperationActions. The Value-
SpecificationActions defined in the activity specify the input parameter values for the operation
calls such as the e-mail subject. Furthermore, the value specified by a ValueSpecificationAction
is transported to the value InputPin of a corresponding CallOperationAction. When examining
Figure 8.2, one can see that all CallOperationActions own a result OutputPin but none of them,
except the one of SendCallOperationAction, has any outgoing ObjectFlow. If no return value
from the operation call within a CallOperationAction is expected, the result OutputPin needs no
outgoing object flow. The SendCallOperationAction’s result OutputPin specifies an ObjectFlow
that flows to the UML activity’s ActivityParameterNode that stores the received object in the
activity parameter called “outputParameter” (see Figure 8.1).

3A Secure Sockets Layer is a cryptographic protocol designed to provide communication security over the Inter-
net.

101

L
is

tin
g

8.
1:

Ja
va

so
ur

ce
co

de
fo

rt
he

M
ai

lC
as

e
St

ud
y

fU
M

L
m

od
el

.
1

i
m
p
o
r
t
o
r
g
.
a
p
a
c
h
e
.
c
o
m
m
o
n
s
.
m
a
i
l
.
E
m
a
i
l
;

2
i
m
p
o
r
t
o
r
g
.
a
p
a
c
h
e
.
c
o
m
m
o
n
s
.
m
a
i
l
.
E
m
a
i
l
E
x
c
e
p
t
i
o
n
;

3
i
m
p
o
r
t
o
r
g
.
a
p
a
c
h
e
.
c
o
m
m
o
n
s
.
m
a
i
l
.
S
i
m
p
l
e
E
m
a
i
l
;

4 5
/
*
*

6
*
T
h
i
s
E
m
a
i
l
c
a
s
e
s
t
u
d
y
r
e
q
u
i
r
e
s
t
h
e
f
o
l
l
o
w
i
n
g
l
i
b
r
a
r
i
e
s
i
n
t
h
e
c
l
a
s
s
p
a
t
h
:

7
*
-
c
o
m
m
o
n
s
-
e
m
a
i
l
-
1
.
3
.
1
.
j
a
r

8
*
-
m
a
i
l
.
j
a
r
(
f
r
o
m
j
a
v
a
m
a
i
l
-
1
.
4
.
7
)

9
*
/

10
p
u
b
l
i
c
c
l
a
s
s
E
m
a
i
l
C
a
s
e
S
t
u
d
y
{

11 12
p
u
b
l
i
c
s
t
a
t
i
c
v
o
i
d

m
a
i
n
(
S
t
r
i
n
g
[
]
a
r
g
s
)

t
h
r
o
w
s
E
m
a
i
l
E
x
c
e
p
t
i
o
n
{

13 14
E
m
a
i
l
e
m
a
i
l
=

n
e
w

S
i
m
p
l
e
E
m
a
i
l
(
)
;

/
/
C
r
e
a
t
e
O
b
j
e
c
t
A
c
t
i
o
n

15
e
m
a
i
l
.
s
e
t
H
o
s
t
N
a
m
e
(
"
s
m
t
p
.
g
o
o
g
l
e
m
a
i
l
.
c
o
m
"
)
;

/
/
C
a
l
l
O
p
e
r
a
t
i
o
n
A
c
t
i
o
n
,
S
t
r
i
n
g
V
a
l
u
e
(
*
)

16
e
m
a
i
l
.
s
e
t
S
m
t
p
P
o
r
t
(
4
6
5
)
;

/
/
C
a
l
l
O
p
e
r
a
t
i
o
n
A
c
t
i
o
n
,
I
n
t
e
g
e
r
V
a
l
u
e
(
*
)

17
e
m
a
i
l
.
s
e
t
A
u
t
h
e
n
t
i
c
a
t
i
o
n
(
"
f
u
m
l
e
x
t
l
i
b
"
,
"
[
P
A
S
S
W
O
R
D
]
"
)
;

/
/
C
a
l
l
O
p
e
r
a
t
i
o
n
A
c
t
i
o
n
,
2
x
S
t
r
i
n
g
V
a
l
u
e
(
*
)

18
e
m
a
i
l
.
s
e
t
S
S
L
O
n
C
o
n
n
e
c
t
(
t
r
u
e
)
;

/
/
C
a
l
l
O
p
e
r
a
t
i
o
n
A
c
t
i
o
n
,
B
o
o
l
e
a
n
V
a
l
u
e
(
*
)

19
e
m
a
i
l
.
s
e
t
F
r
o
m
(
"
f
u
m
l
e
x
t
l
i
b
@
g
m
a
i
l
.
c
o
m
"
)
;

/
/
C
a
l
l
O
p
e
r
a
t
i
o
n
A
c
t
i
o
n
,
S
t
r
i
n
g
V
a
l
u
e
(
*
)

20
e
m
a
i
l
.
s
e
t
S
u
b
j
e
c
t
(
"
M
a
i
l
f
r
o
m
a
n
A
c
t
i
v
i
t
y
D
i
a
g
r
a
m
"
)
;

/
/
C
a
l
l
O
p
e
r
a
t
i
o
n
A
c
t
i
o
n
,
S
t
r
i
n
g
V
a
l
u
e
(
*
)

21
e
m
a
i
l
.
s
e
t
M
s
g
(
"
H
e
l
l
o
,
t
h
i
s
i
s
a
n
e
m
a
i
l
s
e
n
t
f
r
o
m
a
n
A
c
t
i
v
i
t
y
D
i
a
g
r
a
m
.
C
h
e
e
r
s
,
f
U
M
L
"
)
;
/
/

C
a
l
l
O
p
e
r
a
t
i
o
n
A
c
t
i
o
n
,
S
t
r
i
n
g
V
a
l
u
e
(
*
)

22
e
m
a
i
l
.
a
d
d
T
o
(
"
f
u
m
l
e
x
t
l
i
b
@
g
m
a
i
l
.
c
o
m
"
)
;

/
/
C
a
l
l
O
p
e
r
a
t
i
o
n
A
c
t
i
o
n
,
S
t
r
i
n
g
V
a
l
u
e
(
*
)

23 24
S
t
r
i
n
g
o
u
t
p
u
t
=
e
m
a
i
l
.
s
e
n
d
(
)
;

/
/
C
a
l
l
O
p
e
r
a
t
i
o
n
A
c
t
i
o
n
,
n
o
i
n
p
u
t

25 26
/
/
(
*
)
=
V
a
l
u
e
S
p
e
c
i
f
i
c
a
t
i
o
n
A
c
t
i
o
n

27
}

28 29
}

102

Figure 8.1: Mail Case Study UML activity depicted in the Eclipse UML2Tool Editor.

103

Figure 8.2: Mail Case Study UML activity depicted as an UML activity diagram.

Figure 8.3: E-mail sent by executing the Mail Case Study - a view into the receiver’s Google
Mail inbox.

104

Evaluation

• Usability. The usability of the Integration Layer prototype in form of the UML2Preparer
UI and the Eclipse fUML External Library Plugin itself is straight forward to evaluate.
Furthermore, the usage of the Eclipse Jar2UML plugin, that generates the UML class
model representing the structure of the reverse engineered Apache Mail library JAR file,
turned out to be a procedure requiring only a small amount of steps all performed using
a dialog wizard. Moreover, it takes only a small timely effort (when compared with the
overall modeling effort) for the modeler to use the UML2Preparer UI to prepare a given
UML class model, representing the structure of the Apache Commons Email library, and
setting up an Eclipse run configuration for the fUML External Library Eclipse Plugin.
Creating a UML activity model that itself is able to do the same job without using any ex-
ternal library is out of the scope of this work and can be assumed to involve a much higher
effort. Doing so would require to model the logic used within the Apache Commons Email
library and the JavaMail API from scratch.

• Correctness. Regarding the correctness, executing both the constructed Java application
and the corresponding UML activity model produces the same result. In other words,
the composed e-mail is correctly sent as depicted by the receiver’s Google Mail inbox in
Figure 8.3. This means that the interceptions made by the Integration Layer prototype
are perform as expected. In more detail, the CreateObjectAction successfully created
an instance of the SimpleEmail class defined in the Apache Commons Email library.
Moreover, all defined preceding CallOperationActions that call operations defined in the
Apache library are carried out as expected (i.e., they correctly call operations upon the
SimpleEmail target object passing the specified parameter values). The integration
test that executs the Mail Case Study evaluated the String output value produced by the
UML activity to be as expected. Consequently, the correctness of the developed prototype
for this case study, when evaluated on achieving the expected result, is confirmed.

• Performance. On one hand, performing the execution of the plain Java implementation,
as depicted in Listing 8.1, takes approximately 6.5 seconds. This includes the make, com-
pile, and run process. The run process alone takes about 4.25 seconds. On the other hand,
executing the UML activity model visualized in Figure 8.1 also consumes approximately
4.5 seconds. One might not expect a rather simple and small Java application like this
to take as much time but it turns out that most of the execution time is consumed by the
email.send() statement in line 24 of Listing 8.1. In summary, during the execution of
this statement, the Apache Commons Email library creates a Secure Sockets Layer con-
nection to the specified SMTP server, authenticates itself using the provided credentials,
and transmits the specified e-mail message. Additionally, the execution time of both the
plain Java application and the corresponding UML activity model depend on the current
connectivity between the client (i.e., the computer executing the case study application)
and the server (i.e., the Google Mail server handling the incoming requests).

The Mail Case Study can be concluded as proving the Integration Layer prototype to be
straight forward to use, the activity itself to be interpreted as expected, and the performance of

105

both the plain Java application and the UML activity model to be almost identical.

8.4 Petstore Case Study

The Petstore Case Study uses the same external library and operation calls as used in the Mail
Case Study (see Chapter 8.3) but rather than building a UML activity model that is equivalent to
a plain Java application, a different approach is taken. The basic idea behind the Petstore Case
Study is to extend both an existing plain Java application and an existing UML activity model to
provide additional functionality. Hence, the ability of the prototype to handle the execution of
an existing application that has been extended with the usage of an external library is taken into
consideration.

The Java version of the application4 has been developed by Antonio Goncalves having in
mind the original Java Petstore application that has been built in order to depict the functional-
ities of J2EE (and later Java EE) to develop e-commerce web applications. The corresponding
UML model has been developed by hand and represents part of the functionality of the Java
Petstore application.

The extension made to the Petstore Java application has been realized as a service class
called MailService. In brief, the latter class contains a method that takes an Order object
as input and retrieves the associated Customer object from it to use his or her e-mail address
as recipient for sending a confirmation e-mail message. In the UML model, one activity called
“MailService” takes an e-mail address as input and uses it to compose an e-mail and send it to the
designated recipient. While Figure 8.4 depicts a part of the UML model, Figure 8.5 visualizes the
“SendEmail” activity from the same model in form of a diagram. The e-mail address provided
as input for the “MailService” CallBehaviorAction is initially read from a “Customer” object via
a ReadStructuralFeatureAction. The Customer itself originated from the “scenario7Customer”
CallBehaviorAction execution. The “MailService” activity is largely equivalent to “MailAc-
tivity” depicted in Figure 8.2 except that it additionally takes the customer’s e-mail address as
input. More specifically, the customer’s e-mail address is used as input parameter for the “Ad-
dToCallOperationAction”.

The “scenario7Customer” CallBehaviorAction itself calls the “scenario7” activity and reads
the Customer object from its output (cf. Figure 8.4). The output produced by the “scenario7”
activity is an “Order” object resulting from executing the “confirmOrder()” CallOperationAc-
tion calling the “confirmOrder(sessionId : Integer)” operation from the ApplicationController
class. The input objects required for making the latter operation call are established by calling
the “scenario6” activity via a CallBehaviorAction. In brief, the “scenario6” activity represents
the actual scenario establishing customers, items, and services used in this case study.

4The source code for Antonio Goncalves’s Java Petstore application has been retrieved from https://
github.com/agoncal/agoncal-application-petstore-ee6.

106

https://github.com/agoncal/agoncal-application-petstore-ee6
https://github.com/agoncal/agoncal-application-petstore-ee6

Listing 8.2: Java source code of the Petstore Case Study.
1 package org.agoncal.application.petstore;
2

3 @RunWith(Arquillian.class)
4 public class SendEmailIT extends AbstractServiceIT {
5

6 @Inject
7 private OrderService orderService;
8 @Inject
9 private CustomerService customerService;

10 @Inject
11 private CatalogService catalogService;
12 @Inject
13 private MailService mailService;
14

15 @Test
16 public void sendEmailTest() {
17

18 // Creates objects
19 Address address = new Address("78 Gnu Rd", "Texas", "666", "WWW");
20 Customer customer = new Customer("Lisa", "Appleseed", "liz", "liz", "

fumlextlib@gmail.com", address);
21 CreditCard creditCard = new CreditCard("1234", CreditCardType.

MASTER_CARD, "10/12");
22 List<CartItem> cartItems = new ArrayList<CartItem>();
23

24 // Adds items to cart items list
25 CartItem cartItem1 = new CartItem(catalogService.searchItems("Bulldog

").get(0), 1);
26 CartItem cartItem2 = new CartItem(catalogService.searchItems("Poodle"

).get(0), 1);
27 cartItems.add(cartItem1);
28 cartItems.add(cartItem2);
29

30 // Creates order
31 Order order = orderService.createOrder(customer, creditCard,

cartItems);
32

33 // Sends confirmation email
34 mailService.sendConfirmationEmail(order);
35

36 }
37

38 }

107

Figure 8.4: Petstore Case Study UML activity depicted in the Eclipse UML2Tool Editor.

108

6HQG(PDLO

scenario7Customer

customer

read email

object result

MailService

email outputParameter

sendConfirmation� String

sendConfirmation�

[true]

Figure 8.5: Petstore Case Study UML activity depicted as UML activity diagram.

Figure 8.6: E-mail sent by executing the Petstore Case Study - a view into the receiver’s Google
Mail inbox.

109

Evaluation

• Usability. Within this case study, when compared with the other performed case studies,
the UML model is not constructed from scratch but rather builds on top of an existing
model. To be more precise, the existing UML model contains both UML classes and
UML activities. Basically, that model represents part of the logic of the Java Petstore
application developed by Antonio Goncalves. Yet, it is not a complete representation of
its Java counterpart. For example, it does not use a database nor does it require any servlet
container. In order to execute the activities of to the UML model, a certain customization
has to be made. Intially, in order to execute the activities already existing in the UML
model (i.e., before any extension to it has been made) need to be modified. This necessity
of this modification solely lies in the fact that certain OpaqueBehaviors have not been
modeled and therefore need to be replaced by PrimitiveBehaviors in order to correctly
execute the model. However, this replacement step is done by the Integration Layer and
the modeler does not have to be aware of it.

• Correctness. When comparing the results of both executing the UML activity created
by extending the existing UML model and the JUnit test created for Goncalves’s Petstore
application, they both lead to the same result as visualized by the Google Mail inbox in
Figure 8.6. On one hand, the extension made to Goncalves’s Petstore application is repre-
sented by the added MailService and SendEmailIT (see Listing 8.25) test class. On
the other hand, the UML model has been extended by three additional activities, namely
“scenario7Customer”, “SendEmail”, and “MailService”.

• Performance. Looking to it performance wise, executing the SendEmail activity takes
approximately 6 seconds when done using the temporarily modified Eclipse fUML Ex-
ternal Library Plugin6. On the other hand, running the created SendEmailIT test, that
has been added to Goncalves’s Petstore implementation, the amount of time consumed to
finish the execution equals to approximately 27 seconds from which approximately 4.5
seconds is consumed by the actual test run. Most of the execution time is consumed by
starting up the GlassFish servlet container and related services.

In conclusion, the usability of the Integration Layer prototype, in form of the Eclipse fUML
External Library Plugin, is equal to the case study in Chapter 8.3. Hence, it is straight forward to
use. The correctness, when measured on the produced outcome of both alternatives, is provided.
Furthermore, the performance differs by approximately 1.5 seconds even if the startup time of
the servlet container required to execute Goncalves’s Petstore implementation is not taken into
account. A hypothesis explaining this difference is that, even both the fUML activity and the
plain Java project produce the same outcome, they are not equivalent and hence their execution
time differs. In order to establish a more reliable performance evaluation of the fUML virtual
machine together with the Integration Layer prototype, more sophisticated (i.e., more complex
and larger) case studies need to be constructed and executed.

5Note that asserts and imports in Listing 8.2 are removed due to space limitations.
6Note that the performance measured takes into account the temporary modification made to the Eclipse fUML

External Library Plugin replacing existing OpaqueBehaviors within the model before the actual execution proceeds.

110

8.5 Database Case Study

The Database Case Study aims to evaluate the usage of an external library that requires more
complex library calls such as calling operations by passing a non-primitive parameter value. The
external library used within this case study, is an open-source document database called mon-
goDB7.

Listing 8.3 shows the Java implementation of the case study. Initially, a MongoClient
object is created for connecting to the database server running on the local machine. Next, a
specific database and table within it are retrieved from the database server. Furthermore, a new
BasicDBObject object is created and some exemplary key-value pair is put into it. Line 19
concludes the insertion process by inserting the created document into the retrieved database ta-
ble. The query process begins with creating another BasicDBObject object used to query the
database table on a specific key-value pair. Line 24 executes the query and returns a DBCursor
object that can be used to iterate over the result set. Line 26 shows how to retrieve the first
DBObject from the result set.

Figure 8.8 shows the constructed UML activity, namely “DatabaseActivity”, depicted within
the Eclipse UML2Tools Editor. Figure 8.7 visualizes the same model in form of a UML activity
diagram. In order to ensure the same execution flow as depicted in Listing 8.3, control flows
are required. First, the connection to the local database is established and the desired table is
retrieved (Line 11 to 14 in Listing 8.3 and from the initial control flow to “GetCollection” Cal-
lOperationAction in Figure 8.7). Next, a new document with the specified values is created and
inserted into the database table (Line 17 to 19 in Listing 8.3 and from the “document” node
to the “Put” and “Insert” CallOperationActions in Figure 8.7). Then, a new query, looking for
the same document as specified in the insertion procedure, is created and passed to the find
method defined in the com.mongodb.DBCollection class (Line 22 to 24 in Listing 8.3
and from the “query” node to the “Put” and “Find” CallOperationActions in Figure 8.7). Fi-
nally, DBObject instances are retrieved by iterating over the DBCursor object (Line 26 in
Listing 8.3 and from the “Next” CallOperationAction to the “OutputDbObject” ActivityParam-
eterNode in Figure 8.7).

7The external library JAR file mongo-java-driver-2.10.1.jar representing the mongoDB has been
retrieved from http://www.mongodb.org/.

111

http://www.mongodb.org/

Figure 8.7: Database Case Study UML activity depicted as an UML activity diagram.

112

Listing 8.3: Java source code for the Database Case Study.
1 package sandbox;
2

3 import com.mongodb.*;
4

5 import java.net.UnknownHostException;
6

7 public class DatabaseCaseStudy {
8

9 public static void main(String[] args) throws UnknownHostException {
10

11 MongoClient dbClient = new MongoClient();
12

13 DB database = dbClient.getDB("mydatabase");
14 DBCollection table = database.getCollection("mytable");
15

16 // Insert data
17 BasicDBObject document = new BasicDBObject();
18 document.put("mykey", "myvalue");
19 table.insert(document);
20

21 // Search data
22 BasicDBObject query = new BasicDBObject();
23 query.put("mykey", "myvalue");
24 DBCursor cursor = table.find(query);
25

26 DBObject resultObject = cursor.next();
27

28 }
29

30 }

113

Listing 8.4: The put method definition of the org.bson.BasicBSONObject class.
1 package org.bson;
2

3 // import ...
4

5 public class BasicBSONObject extends LinkedHashMap<String,Object> implements
BSONObject {

6

7 // ...
8

9 /** Add a key/value pair to this object
10 * @param key the field name
11 * @param val the field value
12 * @return the <code>val</code> parameter
13 */
14 public Object put(String key , Object val){
15 return super.put(key , val);
16 }
17

18 // ...
19

20 }

Listing 8.5: The insert method definition of the com.mongodb.DBCollection class.
1 package com.mongodb;
2

3 // import ...
4

5 public abstract class DBCollection {
6

7 // ...
8

9 /**
10 * Saves document(s) to the database.
11 * if doc doesn’t have an _id, one will be added
12 * you can get the _id that was added from doc after the insert
13 *
14 * @param arr array of documents to save
15 * @return
16 * @throws MongoException
17 * @dochub insert
18 */
19 public WriteResult insert(DBObject ... arr){
20 return insert(arr , getWriteConcern());
21 }
22

23 // ...
24

25 }

114

Figure 8.8: Database Case Study UML activity depicted in the Eclipse UML2Tool Editor.

115

Evaluation

When analyzing Listing 8.3 in more detail and with special attention on the operation input
parameters one can identify that not only primitive values are passed but also single complex
values (see line 19 and 24). Moreover, the put method in BasicBSONObject is defined
as depicted in Listing 8.4. Even if primitive parameters (i.e., the two Strings “mykey” and
“myvalue”) are passed for both input parameters, the Integration Layer prototype does not
properly handle the operation call.

Therefore, the Integration Layer prototype fails to correctly execute this case study. First, it
fails because a mix of primitive and complex parameters is not supported as described in Sec-
tion 7.5. Before the case study has been conducted it was not clear if the case study requires
functionality that is not supported by the Integration Layer prototype. Secondly, even if the pro-
totype would support a mix of primitive and complex parameters on operation calls, it would
expect an instance of a plain Java Object to be passed as the second parameter of the put
operation (see line 14 of Listing 8.4) instead of a String as depicted in line 18 and 23 of List-
ing 8.3. Listing 8.5 shows the definition of the insert method of the DBCollection class
on which one can identify two scenarios not yet taken into account in the prototype implementa-
tion. First, the prototype expects an array of DBObject even if only one object is passed8. And
secondly, a similar issue is encountered as mentioned in association with the “put” method.
Namely, a “BasicDBObject” is passed instead of the expected “DBObject”. Moreover, the
expected object is in fact an interface and thus cannot be instantiated.

As a result of the fact that the UML activity does not successfully produce the expected result
because of missing support for more complex scenarios, it produces a non correct outcome and
hence the performance cannot be safely determined. When looking on the usability, the artifacts
(i.e., the UML class model and the UML activity model) produced for this case study are used in
the same way as in the other case studies. Namely, the UML2Preparer UI and the Eclipse fUML
External Library Plugin are used. Again, both of them are straight forward to use. On the other
hand, for the Integration Layer prototype to be able to successfully handle the execution of the
defined UML activity (and hence provide correctness and enable the performance evaluation),
at least the following scenarios or use cases have to be supported by the Integration Layer:

• Interface input parameters. CallOperationActions specifying complex value parameters
that implement an interface defined in the external library should be supported.

• Mixture of primitive and complex input parameters. Passing of both complex and
primitive value input parameters in CallOperationActions should be supported. This also
includes passing arrays as input parameters.

To summarize, the Integration Layer prototype is able to execute the UML activity defined
in this case study only up to the point when the “Put” CallOperationAction is reached. Hence,
the database connection is successfully created as can be seen in the database server log, but any
execution beyond that point is suspect to failure due to unsupported scenarios.

8Note that within the standard Java language it is sufficient to pass a single object for any “...” notation.

116

8.6 Lessons Learned

To summarize, three case studies have been performed during the evaluation phase of this work.
The research questions on which the Integration Layer prototype has been evaluated during
the execution of these case studies include the usability, correctness, and performance of the
developed prototype. While evaluating the usability, the additional effort required to use external
libraries by using the developed prototype, has been taken into account. The correctness has been
evaluated by comparing both the execution outcome of the plain Java counterpart and the fUML
activity model and by highlighting unsupported scenarios. The performance has been evaluated
based on the execution time required to generate any outcome and finish the execution.

When looking on the usability of the prototype during the execution of the case studies we
can conclude that the overall modeling process has not been affected. In case the modeler intends
to build a model that accesses classes or operations from external libraries, the external library
first needs to be reverse engineered in order to gain its structure (i.e., in form of a UML class
model) and second, it needs to be prepared (i.e., by using the UML2Preparer) in order to be used
by the prototype.

Moreover, when taking into account that missing support for specific use cases might affect
the correctness of the outcome produced during the fUML activity execution we mentioned that
the Database Case Study represents such an example. In more detail, the Database Case Study
could not be correctly executed because the Integration Layer prototype does not support a mix
of primitive and complex parameters as operation input parameters. Additionally, passing the
instance of a specialization of a Java class (e.g., an instance of the Java String class as a
specialization of the Java Object class) as an operation input parameter, also represents an
unsupported use case. Both the Mail and Petstore Case Study produced the expected outcome
and hence is evaluated to be correct.

Furthermore, on one hand by evaluating the performance of both the Mail Case Study and
the Petstore Case Study by comparing the Java counterpart with the fUML activity we could not
identify a significant difference (0̃.25 seconds of difference). On the other hand, when compar-
ing the execution time for the Petstore Case Study, even when dismissing the startup time for
the services required in Goncalves’s petstore application, the time differs by about 1.5 seconds
(6̃ versus 4̃.5 seconds). In order to evaluate the hypothesis, which states that the difference is
caused by the non-equivalent implementations, a larger and equivalent case study needs to be
performed.

While performing the case studies we encountered several use cases or scenarios not thought
of when implementing the Integration Layer prototype. For some of these unsupported use cases,
the developed prototype has been extended (also consider Section 7.4). They are discussed in
the following:

• External libraries that themselves depend on libraries. At the time the first case study,
namely the Mail Case Study, has been developed, the need for more than one Java library
arose. In more detail, the Apache Commons Email library used within the scope of the
Mail and Petstore Case Studies depends on the JavaMail API. In order to support addi-

117

tional libraries, the DynamicClassLoader needed to be extended in order to be able to load
classes and operations from multiple dependent JAR files.

• Single complex input parameter. While constructing the Database Case Study, support
for CallOperationActions defining a single complex input parameter has been added. To
be more precise, while implementing the plain Java application we recognized the need
for an object input parameter.

Moreover, while performing the Database Case Study, we learned that a set of other use
cases need to be supported in order to achieve an execution that produces the desired outcome.
Those use cases include the support for CallOperationActions specifying complex input value
parameters that implement an interface defined in the external library and the mixture of primi-
tive and complex input parameters. While adding support for these use cases might produce the
desired outcome when running the Database Case Study, the implemented use cases will also
increase the set of capabilities of the prototype. As a next step, to further advance the proto-
type capabilities, an in-depth investigation on the most common library use cases and how these
could be implemented by the Integration Layer, is suggested. The resulting list of most frequent
use cases could then be used to gradually increase the Integration Layer capabilities by imple-
menting their support. It is open to the investigation outcome to what extend those additionally
discovered prototype limitations can be eliminated.

8.7 Threats to Validity

There are several threats to validity [37] encountered that might have affected the performed
studies.

• Construct validity. The construct validity concerns to what extent the operational mea-
sures that are studied represent what the researcher has in mind and what is investigated
according to the research questions. The research questions raised in Section 8.1 might
be interpreted differently by the researcher and the reader of this work. For example, the
usability examined takes into account how much the modeling process is affected by the
prototype but does not take into account the end user experience.

• Internal validity. Threats to internal validity arise primarily from our technique for veri-
fying correctness. For instance, we evaluated that a study is correctly supported based on
its produced outcome but we did not further examined the process involved in constructing
the outcome. Hence, objects built by the Integration Layer prototype during the execution
might differ from what is expected or valid by the fUML standard.

• External validity. External validity concerns the generalization of the case study results.
The case studies that we built capture the functionality of the Integration Layer prototype
but they might not scale up to real world scenarios.

118

CHAPTER 9
Related Work

State of the art that has to be considered for this thesis concerns how external libraries may be
invoked when executing fUML models. The different, currently available approaches on how to
use external libraries in MDE are also relevant for this work.

9.1 Approaches Taken by Other fUML Compliant Tools

First of all, there are a number of tools available to execute UML models. A rather large part
of them is not conform with the fUML standard. In this section we limit the description of
related approaches to those tools that comply with the fUML standard. Currently there exist
the following tools1, frameworks, and approaches that allow to execute UML models compliant
with the fUML standard:

• fUML Reference Implementation. The fUML reference implementation is available
under the Common Public License (CPL) version 1.0 and has originally been developed
on behalf of the Lockheed Martin Corporation2 by Model Driven Solutions, a spin-off
of Data Access Technologies, Inc. The reference implementation can, for example, be
used to evaluate the fUML conformance of vendor specific implementations. The fUML
Foundational Model Library is part of the fUML standard definition by the OMG [33]
and also implemented in the fUML reference implementation. Therefore, this library
implementation conforms to the fUML standard and currently contains primitive functions
for primitive data types. The ability to extend this library is given but comes with the
downside of rewriting source code for every single library function. A more detailed
discussion is provided in Section 9.2.

1The list of existing tools to execute UML models compliant with the fUML standard has been taken from
http://modeling-languages.com/list-of-executable-uml-tools/ on December 6, 2013.

2The Lockheed Martin Corporation is an American global aerospace, defense, security, and advanced technology
public company.

119

http://modeling-languages.com/list-of-executable-uml-tools/

• Cameo Simulation Toolkit. NoMagic, Inc.3 has developed an add-on for their commer-
cially distributed MagicDraw software called the Cameo Simulation Toolkit. MagicDraw
is a multi-purpose visual modeling tool including team collaboration support. It allows to
create UML, SysML, BPMN, and UPDM models and is designed for software analysts,
business analysts, programmers, and QA engineers basically facilitating the analysis and
design of object oriented systems and databases. The Cameo Simulation Toolkit add-on,
on the other hand, claims to be the first in the industry extendable model execution frame-
work based on OMG fUML and W3C SCXML standards allowing to model UML 2 state
machine and activity models4. Using the toolkit it is possible to access external libraries
if the associated JAR files have been previously added to the CLASSPATH variable of the
appropriate properties file5. Next, for example as depicted in Figure 9.1, the “body” at-
tribute of an OpaqueAction can be used to specify a call to an external library operation6.
Figure 9.2 shows the result of executing the latter example.

Figure 9.1: NoMagic MagicDraw Cameo Simulation Toolkit external library call specification.

• LieberLieber AM|USE. LieberLieber Software GmbH is a privately held Austrian soft-
ware engineering company with a model engineering division that builds several Enter-

3NoMagic, Inc. is a privately held company operating in Europe, Thailand and headquartered in the USA.
MagicDraw represents their flagship product.

4Information regarding the Cameo Simulation Toolkit has been retrieved from the NoMagic company website
at http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.
html on December 6, 2013.

5In the Mac OS X version of the MagicDraw software, the CLASSPATH variable to be modified is located in the
“mduml.properties” or “csm.properties” file in case of the Cameo Systems Modeler.

6The mentioned approach to access external library resources using the Cameo Simulation Toolkit has been
proposed by the NoMagic customer support and has not been further evaluated.

120

http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html
http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html

Figure 9.2: NoMagic MagicDraw Cameo Simulation Toolkit external library call specification
execution result.

prise Architect7 add-ons and plugins. The AM|USE add-on can be used to execute behav-
ior models (i.e., state machines and activities) within Enterprise Architect. Their approach
initially generates Microsoft .NET code from UML models, then compiles and executes
the generated code8. Hence, the obtained .NET code could potentially be extended with
external library calls and executed in a runtime environment outside the Enterprise Ar-
chitect software. There exists a functionality9 that allows to reference external DLL files
from which classes can be instantiated.

• Eclipse Alf Implementation10. Alf is the shorthand for Action Language for fUML and
represents a textual language with Java-like syntax. Alf has, like fUML, been standardized
by the Object Management Group. Its main goal is to act as the surface notation for spec-
ifying executable UML behaviors within an extensive model that is primarily represented
using the usual graphical notations of UML [35]. In other words it tries to overcome the
issues raised by too detailed graphical models. A typical example might include the mod-
eling of operations of classes that would otherwise quickly grow a graphical model into

7Enterprise Architect, developed by Sparx Systems, is a proprietary visual modeling and design tool based on a
variety of standards. These include UML, SysML, BPMN, BPEL, SoaML and so forth.

8Information regarding the capabilities of the AM|USE add-on have been taken from the LieberLieber website
at http://www.lieberlieber.com/en/model-engineering/AMUSE/product-overview/. Ac-
cessed December 2013.

9The functionality that allows to reference external DLL files is called “add reference to external .net library”.
10The Eclipse Alf implementation is available online at https://code.google.com/p/e-alf/. Ac-

cessed January 2014.

121

http://www.lieberlieber.com/en/model-engineering/AMUSE/product-overview/
https://code.google.com/p/e-alf/

a cumbersome and, for a human, incomprehensible size. The developers of the Eclipse
Alf implementation did not consider the support for external libraries or other Java code in
their implementation. Hypothetically, one way to extend the capabilities of the Eclipse Alf
implementation is to re-implement the functionalities provided by existing Java libraries
in form of Alf code with similar drawbacks as the approach of extending the fUML Foun-
dational Model Library.

• Papyrus UML. Papyrus is an open source Eclipse plugin that allows UML 2 modeling
in a graphical way. Within the currently available version of the Eclipse Papyrus plugin,
UML models cannot yet be executed as it still represents (only) a graphical modeling
tool. However, in the Papyrus project, current work is targeted at building an extensible
framework for model execution and debugging called Moka 11. Part of this work is the de-
velopment of an execution environment for fUML models conform to the fUML standard.
When modeling UML models within the Papyrus editor, it is possible to load external
resources (i.e., already defined UML models) and reference them, for example, in UML
activity model elements. In more detail, the latter referencing procedure within Papyrus
is similar to the one in the Eclipse UML2 Tools editor. On the other hand, when looking
for ALF support in Papyrus, standard ALF libraries and fUML libraries can be used [7].
Therefore, when specifying fUML libraries through the Foundational Model Library12,
functionalities already provided by powerful Java libraries have to be re-implemented in
the appropriate form and added to the fUML Foundational Model Library.

• Pópulo. The Pópulo tool presented by Fuentes et al. [10] is fully compliant to UML 2.0
and can execute and debug UML models that are specified using the fUML action lan-
guage. In other words, it is able to execute and debug activity diagrams containing ac-
tions. They try to overcome tool-interoperability and extensibility problems by providing
customization capabilities. By using UML profiles, the supported action language can be
extended. The execution semantics of the introduced stereotypes, has to be defined using
a GPL such as Java. The resulting drawbacks are therefore the same as those from the
approach of extending the fUML Foundational Model Library.

• Gessenharter et al. Yet another approach of model execution is to generate code out
of UML models. Gessenharter and Rauscher present in [11] a prototype that is able to
generate code out of UML 2 activity diagrams. In this case, whenever an operation is
called at runtime, its specified behavior is executed. Hence, a code fragment of any lan-
guage can be executed. As a consequence of that, also external Java source code can be
executed. The presented approach generates Java code for activities preceded by model
transformations. In order to specify behavior, UML activities are used that directly contain
actions. To fit the specification when modeling actions, set, get, add, and remove methods

11The bug ticket named “Bug 405389 - [Moka] Papyrus shall provide a generic and extendible framework
for execution and debugging of models” concerning the development of Moka is available online at https://
bugs.eclipse.org/bugs/show_bug.cgi?id=405389. Furthermore, the source code associated with the
Moka project can be found online at https://eclipse.googlesource.com/papyrus/org.eclipse.
papyrus/+/0.10_RC1/sandbox/Moka/. Accessed January, 2014.

12The Foundational Model Library is presented in chapter 9 of [31].

122

https://bugs.eclipse.org/bugs/show_bug.cgi?id=405389
https://bugs.eclipse.org/bugs/show_bug.cgi?id=405389
https://eclipse.googlesource.com/papyrus/org.eclipse.papyrus/+/0.10_RC1/sandbox/Moka/
https://eclipse.googlesource.com/papyrus/org.eclipse.papyrus/+/0.10_RC1/sandbox/Moka/

are mapped to StructuralFeatureActions and LinkActions. Moreover, when an action with
a corresponding attribute is executed, the mapped StructuralFeatureAction or LinkAction
is called. Furthermore, their approach translates sequences of actions into sequences of
method calls in which each method represents the implementation of its corresponding
action. Additionally, those sequences are implemented as dedicated threads since they
might be executed concurrently. Overall, when compared with fUML, their approach is
not interpreter-based as it uses the technique of code generation.

9.2 The fUML Foundational Model Library and Similar
Approaches

The only way to use external libraries that conforms to the fUML standard is to extend the fUML
Foundational Model Library, that already provides primitive functions for primitive data types,
as foreseen in the fUML standard [31]. The downside of this approach is that it requires writing
source code for every single function of a library to make it available to the modeler. A rather un-
reasonable amount of work would be required to cover the huge set of existing libraries. In more
detail, in order to do so, the fUML.Semantics.CommonBehaviors.BasicBehaviors
.OpaqueBehaviorExecution class residing in the fUML reference implementation can
be overwritten and the doBody method, taking input- and output-parameters, implemented.

Thus, as an example, the org.modeldriven.fuml.library.stringfunctions
.StringConcatFunctionBehaviorExecution class represents such a library func-
tion. Namely, it represents a re-implementation of the functionality provided by the java.
lang.String.concat operation. Moreover, one instance of such a class needs to be regis-
tered at the ExecutionFactory as it is done, for example, in the fUML.Library
.PrimitiveBehaviors.addPrimitiveBehavior operation.

Our approach, on the other hand, allows to import any Java library without producing any
source code or requiring detailed knowledge of the fUML virtual machine.

Another approach could be specifying the functionality of libraries by fUML models result-
ing in a library of fUML models providing the same functionality as the external Java library
which shall be used in the model. Those fUML library models could then be natively invoked
by any other fUML model whenever necessary. But again the specification of fUML models
providing the same functionality as existing libraries requires an extensive amount of effort.
Furthermore, this approach is only applicable in combination with extending the fUML Founda-
tional Model Library, as some primitive functionalities, as for instance accessing the file system,
are not yet available.

9.3 Other Approaches

Generally, there exists a set of other approaches for accessing advanced and complex library
functionality that are not fUML compliant. Some of them are mentioned below.

123

Kirshin et al. describe in [17] a generic model execution engine that enables the simulation
of models. In this approach, developed in the IBM Haifa Research Lab, Java is used as action
language enabling to call any Java library by executing source code, stored for each model el-
ement (e.g., Action elements), whenever the model is interpreted. Many UML execution tools
use this approach. The main difference between this approach and ours is that we do not store
source code behind model elements but rather use special place holder activities that trigger
calls to the actual library at runtime through a dedicated Integration Layer that uses fUML ex-
tensions providing a command API and an event mechanism. The approach of Kirshin et al. has
been realized as an extension to the commercially distributed IBM Rational Software Architect
Simulation Toolkit13. The latter extension adds execution and simulation capabilities to IBM’s
Rational Software Architect.

Furthermore, the UML Model Simulator developed on top of the Rational Software Archi-
tect by Kirshin et al., supports step-wise execution and run to break-point execution. Its first
version supports UML classes and primitive data types and the execution of activities. Addition-
ally, by applying stereotypes to UML elements, their behavior can be changed. In more detail, a
UML profile has been developed for model simulation. Among others, it can be used to specify
elements containing Java code and an external classpath to link them with existing Java code.
Their prototype contains a visualization technique that highlights different execution states by
assigning different colors to UML elements. Figure 9.3 shows a UML behavior model depicted
in the diagram visualization tool that is part of their prototype. A magenta node represents a
node providing a token, a blue node shows which edges are passed by a token, and a green node
highlights a node that is ready for execution.

13The IBM Rational Software Architect Simulation Toolkit is available online at http://www-03.ibm.com/
software/products/en/ratisoftarchsimutool/. Accessed January 2014.

124

http://www-03.ibm.com/software/products/en/ratisoftarchsimutool/
http://www-03.ibm.com/software/products/en/ratisoftarchsimutool/

Rational Software Architect (RSA)

Eclipse platform

UML Model Simulator

Generic model
execution engine

UML Activities

UML State Machines

Voice Applications Profile

. . .

Extensions:

Figure 6: UML Simulator

The first version of the tool supports UML classes and
primitive data types, and focuses on the execution of
activities. It also supports Java as an action language.
The behaviour of a UML element can be changed using
profiles by applying stereotypes to UML elements. The
tool can be extended to support the execution of models
that conform to a specific profile.

The UML Model Simulator provides a wide range of
capabilities. It supports the most commonly used
execution modes such as step-wise execution and run to
break-point. It allows run-time state observation,
including the visualization of the current execution state,
token offers, and parameter values. The debugger also
allows dynamic object creation and user initiated
invocation of behaviours and operations. The most
useful feature is the visualization of the execution of
model behaviour.

We extended RSA with a Model Debugging
perspective that contains various views:

Model Explorer view. This is the corresponding
RSA view with the addition of two items to the popup-
menu: Debug Model used to start a model simulation
session, and Add Breakpoint, which can be applied to
any runnable element of the model.

Debug view. This view is responsible for the control
of the execution process (starting, stopping, and step
mode execution), object creation and destruction,
observing the values of objects’ attributes, and invoking
the operations on the objects.

Figure 7: Debug View

Call Stack view. This view shows all running
behaviours organized according to the call history.

Figure 8: Call Stack View

I/O view. This view, is used to observe outputs sent
from the model and to send or broadcast signals to
model behaviours.

Figure 9: I/O View

Ready view. This view shows all elements that are
ready for execution and all elements that have reached
breakpoints. The user can select the next element for
execution.

Figure 10: Ready View

Breakpoints view. This view lists all active
breakpoints.

Diagram visualization. This is the most powerful
part of the tool. It illustrates the execution of a UML
behaviour model. The user can see which nodes are
ready for execution (green), which edges pass tokens
(blue), and which node provides the token (magenta):

Figure 11: Diagram Visualization

We developed a UML profile for model simulation.
The profile is used to specify:

 Elements containing Java code (Java as an action
language)

 External classpath for linking with existing code

Figure 9.3: UML behavior model execution depicted in the diagram visualization tool of the
prototype of Kirshin et al. [17].

125

CHAPTER 10
Conclusion

This chapter summarizes the work completed within this thesis and outlines possible future
work.

10.1 Summary

On one hand, re-using software components improves quality and increases productivity [15]
and on the other hand, Hutchinson et al. report in [14], that the usage of MDE enables report-
edly productivity increases up to 800 percent. Within MDE, UML is the most used modeling
language. When UML is used as an executable language, important problems arise. Namely,
the semantics of UML is neither precisely nor completely specified. France et al. suggest in [9]
that appropriate aspects of modeling languages must be formalized. The fUML standard, de-
fined by the OMG, intends to equip the UML standard with formal execution semantics. More
specifically, it defines precise execution semantics for a subset of UML. In this work, we iden-
tified that the fUML standard does not offer a standardized procedure to re-use existing Java
libraries. It rather takes the approach of a Foundational Model Library, which represents a li-
brary of user-level model elements that can be referenced in fUML models. At this point in
time, with the specification of the fUML standard version 1.1 from August 2013, the Founda-
tional Model Library contains the packages PrimitiveTypes, PrimitiveBehaviors, Common, and
BasicInputOutput. Therefore, sophisticated functionalities, as provided by, e.g., the Java API
or any third party like Apache libraries, are missing. Hence, building fUML models that build
on top of existing Java libraries is not foreseen in the fUML standard. There are at least two
approaches to provide the modeler with advanced functionalities in fUML models as they are
available in today’s Java libraries. On on hand, there is the approach of extending the Foun-
dational Model Library by implementing model libraries that basically mimic the functionality
provided by currently existing Java libraries. But doing so requires an extensive amount of work
that might only be feasible within a community as large as the existing Java open source com-
munity. On the other hand, there is our approach that re-uses existing Java libraries such that

127

they can be referenced in the models built by the modeler and are integrated during the model
execution.

The aim of this thesis was to integrate external Java libraries with the fUML virtual machine
such that the modeler can benefit from the advanced and complex functionalities provided by
those libraries. Based on the fUML virtual machine developed by Mayerhofer et al. in [20], a
prototypical solution has been implemented as main outcome of this work. The implemented
prototype can be used to execute fUML models referencing external libraries. To achieve the
latter, the external library initially needs to be made available to the modeler such that it can
be referenced in created models. Next, the model referencing the library needs to be properly
interpreted such that, for example, library calls are forwarded to the actual library and the result
is integrated into the fUML runtime model.

In order to make the external library available to the modeler, a two-step procedure has been
made available. First, the external library, either in form of Java source code or as a JAR file, is
reverse engineered by either the Eclipse MoDisco tool (in case of Java source code) or by the
Eclipse Jar2UML tool (in case of a JAR file). Secondly, the UML class model yielded in the
first step, that represents the external library’s structure, needs to be prepared to be used during
the model execution achieved by the implemented Integration Layer together with the fUML
virtual machine. The preparation is required such that the Integration Layer prototype knows,
for example, where the JAR file matching the UML class model is located. To realize the latter
step, the UML2Preparer has been built and made available in form of a graphical user interface.
The Integration Layer prototype itself has been built in order to be able to detect intended access
to an external library, forward calls to the actual external library, and re-integrate the result of
such a call into the fUML runtime model. This also requires the translation of Java objects into
fUML objects. The prototype has been made available in form of an Eclipse plugin providing a
specific run configuration dialog.

During the implementation of the Integration Layer prototype, insights have been gained
into the fUML standard and the fUML virtual machine implementation. These insights have
mainly been gained during the execution of three use case studies. The goal was to evaluate
the implemented prototypical solution based on the criteria of usability, correctness, and perfor-
mance. The usability evaluation concluded that the overall modeling process is not affected by
the implemented prototype. Furthermore, during the evaluation of the correctness, previously
unknown limitations of the implemented prototype have been discovered. Moreover, the perfor-
mance measurements comparing the time needed for executing both the fUML activity and its
Java counterpart resulted in no significant difference. However, to establish more reliable results
even larger case studies need to be performed. While some of the limitations encountered by car-
rying out the case studies have been taken into account in the prototypical solution of this work,
others have been listed as final limitations of the prototype. Limitations that have been taken
into account in the final version of the prototype include the support for libraries that themselves
depend on libraries. Possible future features that have been listed as final limitations include a
set of further fUML actions currently unsupported by the prototype, advanced data structures,

128

and specific use cases of the CallOperationAction and AddStructuralFeatureValueAction.

In this work we also suggest possible extensions that can be made to the Integration Layer
prototype to improve its maturity. These include different enhancements and performance im-
provements to the existing artifacts. The process of creating a prepared UML class model for a
library, which can be referenced by fUML activities, could be further simplified from a two-step
process into a one-step process. Other enhancements include the elimination of existing limi-
tations, such as the support for further fUML actions, advanced data structures, and data types.
Furthermore, a study on common library use cases could increase the understanding of features
desired most by modelers.

Different approaches on invoking external libraries when execution UML models exist.
Mainly, those can be differentiated between being fUML compliant and not being fUML compli-
ant. The former includes NoMagic’s commercially available Cameo Simulation Toolkit, Lieber-
Lieber’s AM|USE plugin for Sparx System’s proprietary visual modeling and design tool En-
terprise Architect, and open source tools such as the Eclipse Papyrus plugin and the Pópulo
tool. Gessenharter and Rauscher [11] provide a tool that initially generates source code out of
a model and then compiles and executes the generated code. All of the investigated tools use
largely different techniques to access external library functionality or do not intend and provide
external library access. Expanding the fUML Foundational Model Library, as foreseen in the
fUML standard, by providing similar advanced functionalities as provided by existing Java li-
braries, represents another interesting approach. The drawback of the latter approach is that it
might require a community as large as the existing Java community in order to implement the
vast amount of library functions as they are nowadays available in the Java GPL.

10.2 Future Work

We have completed a prototype version of the Integration Layer and future work might include
to further extend the capabilities of the Integration Layer and improve its maturity. In this respect
the following enhancements and extensions were identified:

• UML2Preparer enhancement. Enhance the capabilities of the reverse engineering pro-
cess and the UML2Preparer tool such that it can be done in a one-step process. In detail,
the process could look like the following: the modeler choses a JAR library file to be re-
verse engineered and prepared and the tool automatically detects dependent libraries and
creates a prepared UML class model out of a selected JAR library file using a reverse en-
gineering tool in the background. The detection of dependent libraries could be realized
in a Apache maven-like fashion (i.e., by using the Apache maven dependency detection
mechanism 1) or by using tools like the JarAnalyzer2. Therefore, the process of generating

1An introduction to the Apache maven dependency detection mechanism can be found online at http:
//maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.
html. Accessed January, 2014.

2The JarAnalyzer tool can be found online at http://www.kirkk.com/main/Main/JarAnalyzer.
Accessed January, 2014.

129

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://www.kirkk.com/main/Main/JarAnalyzer

a prepared UML class model file out of a JAR library file can be boiled down to a one-step
process.

• Eliminate existing prototype limitations. Extend the Integration Layer prototype capa-
bilities by eliminating the encountered and hence existing limitations. A more detailed
description on existing limitations can be found in Section 7.5. Removing these limita-
tions leads to the following capabilities:

– Support of all fUML actions. The set of fUML actions that are not yet supported by
the Integration Layer (i.e., for example ReadStructuralFeatureAction, ClearStruc-
turalFeatureAction, RemoveStructuralFeatureValueAction, CreateLinkAction, Read-
LinkAction, DestroyLinkAction, DestroyObjectAction, and ClearAssociationAction)
can be implemented to enhance the capabilities and hence extend the supported use
cases of the prototype.

– Support of advanced data structures and types. Support for advanced data struc-
tures and types like, for example, arrays, enums, and collections as they can be found
in the Java programming language.

– CallOperationAction enhancement. Support for discovered limitations regarding
the CallOperationAction in the Integration Layer. These include the support of mul-
tiple complex input parameters, the mixture of primitive and complex input parame-
ters, static method calls, and interface input parameters.

– AddStructuralFeatureValueAction enhancement. Adding complex data type sup-
port and fUML link creation support to the AddStructuralFeatureValueAction.

• Study on common library use cases. An in-depth investigation on common library use
cases in, for example the Java GPL, and how these could be supported and implemented
by the Integration Layer could increase the understanding on what kind of Integration
Layer features are beneficial to the modeler.

• Performance improvements. Increase the Integration Layer’s performance by, for exam-
ple, instead of re-translating a Java object into an fUML object every time it is accessed,
only re-translate the object when potential changes to it have been made. Sánchez et al.
describes in [6] how to keep Java objects in synch with EMF objects.

130

Bibliography

[1] Jim Arlow and Ila Neustadt. UML 2 and the Unified Process: Practical Object-Oriented
Analysis and Design. Pearson Education, 2005.

[2] Daniel G. Bobrow, Richard P. Gabriel, and Jon L. White. Object-oriented programming,
chapter CLOS in context: the shape of the design space, pages 29–61. MIT Press, Cam-
bridge, MA, USA, 1993.

[3] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineering
in Practice. Morgan & Claypool, 2012.

[4] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot. Modisco: A generic
and extensible framework for model driven reverse engineering. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, ASE ’10, pages
173–174, New York, NY, USA, 2010. ACM.

[5] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1):13–17, 1990.

[6] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. The Program Is the Model:
Enabling transformations@run.time. In Software Language Engineering, volume 7745 of
Lecture Notes in Computer Science, pages 104–123, 2012.

[7] Arnaud Cuccuru. Papyrus support for Alf. Technical report, Carbot Institut, 2011.
Available online at http://www.omg.org/news/meetings/tc/agendas/va/
xUML_pdf/Cucurru.pdf.

[8] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000.

[9] Robert France and Bernhard Rumpe. Model-driven development of complex software: A
research roadmap. In Proceedings of Future of Software Engineering, FOSE ’07, pages
37–54, Washington, DC, USA, 2007. IEEE Computer Society.

[10] Lidia Fuentes, Jorge Manrique, and Pablo Sánchez. Pópulo: A Tool for Debugging UML
Models. In Companion of the 30th International Conference on Software Engineering,
ICSE Companion ’08, pages 955–956, New York, NY, USA, 2008. ACM.

131

http://www.omg.org/news/meetings/tc/agendas/va/xUML_pdf/Cucurru.pdf
http://www.omg.org/news/meetings/tc/agendas/va/xUML_pdf/Cucurru.pdf

[11] Dominik Gessenharter and Martin Rauscher. Code Generation for UML 2 Activity Dia-
grams: Towards a Comprehensive Model-Driven Development Approach. In Proceedings
of the 7th European Conference on Modelling Foundations and Applications, ECMFA ’11,
pages 205–220, Berlin, Heidelberg, 2011. Springer-Verlag.

[12] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in
information systems research. MIS Quarterly, 28(1):75–105, 2004.

[13] Martin Hitz, Gertrude Kappel, Elisabeth Kapsammer, and Werner Retschitzegger. UML @
Work. Objektorientierte Modellierung mit UML 2. dpunkt.verlag, 3. edition, 2005.

[14] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. Empirical
Assessment of MDE in Industry. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 471–480, New York, NY, USA, 2011. ACM.

[15] Suryani Ismail, Wan M.N. Wan-Kadir, Yazid M. Saman, and Siti Z. Mohd-Hashim. A
review on the component evaluation approaches to support software reuse. In International
Symposium on Information Technology, volume 4, pages 1–6, 2008.

[16] Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Proceedings of the
Satellite Events at the MoDELS 2005 Conference, MoDELS’05, pages 128–138, Berlin,
Heidelberg, 2005. Springer-Verlag.

[17] Andrei Kirshin, Dolev Dotan, and Alan Hartman. A UML Simulator Based on a Generic
Model Execution Engine. In Proceedings of the 2006 International Conference on Mod-
els in Software Engineering, MoDELS ’06, pages 324–326, Berlin, Heidelberg, 2006.
Springer-Verlag.

[18] Vinay Kulkarni, Sreedhar Reddy, and Asha Rajbhoj. Scaling up model driven engineering
– experience and lessons learnt. In Proceedings of the 13th International Conference on
Model Driven Engineering Languages and Systems, MODELS ’10, pages 331–345, Berlin,
Heidelberg, 2010. Springer-Verlag.

[19] Grzegorz Loniewski, Emilio Insfran, and Silvia Abrahão. A systematic review of the use
of requirements engineering techniques in model-driven development. In Proceedings of
the 13th International Conference on Model Driven Engineering Languages and Systems,
MODELS ’10, pages 213–227, Berlin, Heidelberg, 2010. Springer-Verlag.

[20] Tanja Mayerhofer. Breathing new life into models - an interpreter-based approach for ex-
ecuting UML models. Master’s thesis, E188 - Institut für Softwaretechnik und Interaktive
Systeme (Technische Universität Wien), 2011.

[21] Tanja Mayerhofer, Philip Langer, and Gertrude Kappel. A Runtime Model for fUML. In
Proceedings of the 7th International Workshop on Models@run.time (MRT 2012), MOD-
ELS ’12, New York, NY, USA, 2012. ACM.

132

[22] Tanja Mayerhofer, Philip Langer, and Manuel Wimmer. Towards xMOF: Executable
DSMLs based on fUML. In Proceedings of the 12th Workshop on Domain-Specific Mod-
eling (DSM 2012), SPLASH ’12, New York, NY, USA, 2012. ACM.

[23] Stephen J. Mellor and Marc J. Balcer. Executable Uml: A Foundation for Model-Driven
Architecture. The Addison-Wesley Object Technology Series. ADDISON WESLEY Pub-
lishing Company Incorporated, 2002.

[24] Maurice Naftalin and Philip Wadler. Java Generics and Collections. O’Reilly Media, Inc.,
2006.

[25] Object Management Group. OMG Unified Modeling Language (OMG UML), Infrastruc-
ture, Version 2.3, 2010.

[26] Object Management Group. Abstract Syntax Tree Metamodel (ASTM), Version 1.0, 2011.

[27] Object Management Group. Knowledge Discovery Meta-Model (KDM), Version 1.3,
2011.

[28] Object Management Group. Meta Object Facility (MOF), Version 2.4.1, 2011.

[29] Object Management Group. OMG Unified Modeling Language (OMG UML), Infrastruc-
ture, Version 2.4.1, 2011.

[30] Object Management Group. OMG Unified Modeling Language (OMG UML), Superstruc-
ture, Version 2.4.1, 2011.

[31] Object Management Group. Semantics of a Foundational Subset for Executable UML
Models (fUML), Version 1.0, 2011.

[32] Object Management Group. Object Constraint Language, Version 2.3.1, 2012.

[33] Object Management Group. Semantics of a Foundational Subset for Executable UML
Models (fUML), Version 1.1, 2012.

[34] Object Management Group. Structured Metrics Metamodel (SMM), Version 1.0, 2012.

[35] Object Management Group. Action Language for Foundational UML (ALF), Version
1.0.1, 2013.

[36] Object Management Group. OMG MOF 2 XMI Mapping Specification, Version 2.4.1,
2013.

[37] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, 14(2):131–164, 2009.

[38] William M. Ulrich and Philip Newcomb. Information Systems Transformation:
Architecture-Driven Modernization Case Studies. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2010.

133

	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	UML
	Introduction to UML
	UML Metamodel
	UML Diagram Types
	Class Diagrams to Capture Structure
	Activity Diagrams to Capture Behavior

	Executable UML
	Introduction to Foundational UML
	Syntax of Foundational UML
	Semantics of Foundational UML
	Foundational Model Library

	Overview on the Foundational UML Library Support
	Introduction to the Integration Layer Concept
	Reverse Engineering of External Libraries
	Preparation of Library UML Models
	Definition of UML Models Referencing External Libraries
	Execution of UML Models Referencing External Libraries

	Reverse Engineering of Java Libraries
	Introduction to Reverse Engineering
	Reverse Engineering Using MoDisco Model Discovery Tool
	ATLAS Transformation Language
	Reverse Engineering Libraries: An Example

	Modeling with fUML Using External Libraries
	Preparing Reverse Engineered UML Model
	Implementation of Preparing a UML Model
	Building a UML Model Referencing an External Library

	Executing Foundational UML Models Integrating External Libraries
	Java Reflection and Dynamic Class Loading
	Executing fUML Models Referencing External Libraries
	Foundational UML External Library Eclipse Plugin
	Prototype Capabilities
	Prototype Limitations

	Case Studies and Lessons Learned
	Research Questions
	Experimental Setup
	Mail Case Study
	Petstore Case Study
	Database Case Study
	Lessons Learned
	Threats to Validity

	Related Work
	Approaches Taken by Other fUML Compliant Tools
	The fUML Foundational Model Library and Similar Approaches
	Other Approaches

	Conclusion
	Summary
	Future Work

	Bibliography

