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Zusammenfassung

Die Arbeit beschäftigt sich mit der Frage wie, im Fall eindimensionaler Viel-
teilchensysteme, die klassische Physik aus der Quantenphysik hervorgeht. Der
erste Abschnitt klärt die Frage warum die experimentelle Technik des ‘evapo-
rativen’ Kühlens in eindimensionalen Bose-Einstein Quasikondensaten so ef-
fektiv angewandt werden kann obwohl diese Systeme in sehr guter Näherung
quantenmechanisch integrabel sind. Basierend auf dem Luttingerflüssigkeits-
formalismus präsentiere ich hierfür ein neues Model welches keinen Thermali-
sierungsmechanismus benötigt und die experimentellen Daten gut beschreibt.
Der zweite Teil der Arbeit beschäftigt sich mit der Thermalisierung nach einem
Quanten-Quench in einer mesoskopischen eindimensionalen Bose-Hubbard Kette,
welche bosonische Atome in einem optischen Gitter beschreibt. In numerischen
Simulationen zeige ich wie sich die Thermalisierung am Übergang zu einem
integrablen System verhält und versuche aufzuzeigen welche Rolle die Eigen-
zustandsthermalisierungshypothese, die Verschränkung in der Eigenbasis, Quan-
tenchaos, das verallgemeinerte Gibbs-Ensemble sowie die kinetische Boltzmann-
Gleichung spielen.
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Abstract

The thesis is structured around the question of how classical physics emerges
from the quantum in the case of one-dimensional many-body systems. The first
part of the thesis resolves the long-standing issue of why the experimental tech-
nique of ‘evaporative’ cooling is so effective in application to the one-dimensional
Bose-Einstein quasicondensate, despite the fact that the latter represents a
quantum integrable system to a high degree of accuracy. I present a novel
theory based on the Luttinger liquid formalism that explains cooling without
any need of thermalization. The theory agrees with experimental data well. The
second part concerns thermalization after a quantum quench in a mesoscopic
one-dimensional Bose-Hubbard chain, which describes bosonic atoms in opti-
cal lattices. Using numerical simulations I show how thermalization proceeds
at integrability crossover and try to reveal the role played by the eigenstate
thermalization hypothesis, entanglement in the eigenbasis, quantum chaos, gen-
eralized Gibbs ensemble, and kinetic Boltzmann equation.

3



Preface

We know that at the very fundamental level physics is described by the linear
equations of quantum mechanics, with the evolution being unitary and time-
reversal symmetric. On the other hand, classical world is governed by irre-
versibility, clearly defining the arrow of time. So a fundamental question arises,
how can we recover the classical from the quantum? How does thermodynamics
and statistical description emerge from reversible unitary evolution?

For many years these questions remained purely theoretical, but recent ex-
perimental progress in the field of quantum optics and atomic physics finally
allowed to directly probe the emergence of classical behavior in almost-perfectly
controlled isolated quantum environment. In particular, ultracold atomic gases
became the modern tool of choice to study macroscopic quantum effects.

This thesis addresses exciting physics of cold atoms in one spacial dimension,
as this regime allows to study the whole spectrum of thermalization and out-of-
equilibrium phenomena, from the integrable free limit to the complete ergodicity
of quantum chaos.

The first chapter is devoted to a process of cooling of a one-dimensional
Bose-Einstein quasicondensate. Using analytical model of the Luttinger liquid,
I describe a novel mechanism of cooling in an integrable system and show that
it doesn’t require thermalization. The latter fact is highly counter-intuitive and
displays some of the most interesting features of integrable models. In addition,
presented theory agrees well with experimental results.

But what if we perturb an integrable system? Will the chaos set in im-
mediately or is there an intermediate semi-integrable phase? This question is
addressed in detail in the second chapter, where I present a numerical study
of relaxation of ultracold atoms in a one-dimensional optical lattice. I explore
the whole spectrum of quantum thermalization, addressing equilibration, initial
state independence, entanglement, eigenstate thermalization, emergent general-
ized Gibbs ensemble and its deformation, and kinetic Boltzmann equation.

Appendices C–E contain additional work in progress on a squeezed Gen-
eralized Gibbs ensemble, limitations of truncated Wigner approximation, and
ergodic eigenstate thermalization.

I hope that presented study will inspire new breakthroughs in the fascinating
interdisciplinary area of non-equilibrium quantum physics with cold atoms.
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Chapter 1

Cooling of one-dimensional
Bose-Einstein
quasicondensate

1.1 Introduction

Physicists working in the field of one-dimensional atomic gases know how well
the gas can be cooled by the so called ‘evaporative cooling’ technique, when the
trap is being opened from above to let the high-energy particles to escape, reduc-
ing in such a way the mean energy per particle. But theoretical understanding
of this phenomenon had never been complete, taking into account the fact that
a degenerate bosonic gas in 1D represents an integrable quantum system with
a high degree of accuracy, meaning that thermalization of the remaining atoms
is highly suppressed.

This chapter resolves this long-standing controversy by introducing a new
mechanism—dissipative cooling—responsible for cooling 1D degenerate gas with-
out any need of thermalization.

Section 1.2 begins with a minimal review of Bose-Einstein condensation
(BEC) in the amount necessary to understand the following material. Then
I introduce one of the central notions of the theory—the Wigner function—in
Section 1.3.

The derivation of the cooling mechanism is based on the Luttinger liquid
description and Petrov’s generalization, which are presented in Sections 1.4
and 1.5. Discussion on the phenomenon of prethermalization follows in Sec-
tion 1.6, which will appear to be closely related to the cooling mechanism.

Section 1.10 is devoted to a specific type of a thought experiment, when a
density of 1D BEC is quenched down, leaving the phase intact. I show that
such a quench leads to temperature decrease and derive scaling laws for the
temperature in case of both harmonically trapped and untrapped degenerate
gases. In the end I discuss the emergence of a Generalized Gibbs ensemble.

Section 1.11 contains the main results of the chapter. Firstly I explain
the conventional evaporative cooling and the reasons why it cannot be applied
to 1D quasicondensate. Then I present the atomic loss mechanism and show
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CHAPTER 1. COOLING OF 1D BEC 9

how it is connected to the previously considered thought experiment of quench
cooling. Finally I show that there is indeed cooling without thermalization by
presenting the power-law scaling of temperature, and compare the theory with
experimental results.

An impatient reader may skip directly to the conclusions on page 54, where
the cooling mechanism is summarized in a few words, as well as the outlook to
future studies.

1.2 Bose-Einstein condensates

Bose-Einstein condensation is a phenomenon known for about a century since
the works of Bose and Einstein, and brought into the spotlight of modern physics
in 1995, when the first Bose-Einstein condensates (BEC) of neutral atoms were
experimentally realized [4, 5]. This is a well-established area of research, so
I present only the shortest introduction necessary to understand the reported
original research. More information on BEC basics can be found in many books
and reviews, e.g. [6, 7, 8].

Non-interacting bosons. Basic understanding of condensation phenomena can
be gained by considering non-interacting particles.

Bose-Einstein distribution tells us that the number of non-interacting bosons
ni occupying a one-particle state with energy εi at thermal equilibrium is given
by

ni =
1

e(εi−µ)/kbT − 1
,

where µ is the chemical potential, entering the equation as the Lagrange multi-
plier to ensure the constant total number of particles N =

∑
ni.

For a classical gas µ is much less than zero, but as temperature drops,
µ increases to the point when it becomes equal to the energy of the lowest
lying level ε0 = µ, which formally leads to divergence of n0. In fact, this
signifies the onset of Bose-Einstein condensation, i.e. macroscopic occupation
of a single quantum state (n0 � ni). This lowest-lying single-particle state from
now on will be called the Bose-Einstein condensate. In fact, µ quantifies how
much the system’s energy increases when there is another particle added to the
condensate. For non-interacting gas it is obviously ε0.

Knowing the density of states g(ε), the number of particles in the excited
states is given by

Ne =

∫ ∞
ε0

dε g(ε)n(ε, µ, T ), (1.1)

and the critical temperature Tc of the Bose-Einstein condensation can be calcu-
lated from the fact that it is the marginal temperature at which all the particles
can still be accommodated in the excited levels N = Ne(Tc, µ = 0).

For an experimetally relevant case of a 3D condensate in an isotrpoic har-
monic trap of angular frequency ω, the density of states g(ε) ∝ ε2, and the
critical temperature can be calculated as

kT 3D
c =

~ωN1/3

ζ(3)1/3
,
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where ζ is the Riemann zeta-function [6].
A non-interacting gas can be confined in one dimension in a highly anisotropic

trap where the longitudinal trapping frequecy ω is much smaller than the ra-
dial one ωr (for instance, in modern experimental realizations on atomchips,
ω ∼ 2π · 10 Hz, ω ∼ 2π · 2000 Hz). Then if the temperature kBT is small com-
pared to the radial trapping frequency ~ωr, particles occupy only the lowest-
energy state of the radial potential, ‘freezing’ any movement in this direction
(50 nK corresponds to ≈ 1000 Hz). Energy levels of the longitudinal trap can
still be considerably occupied.

Considering the density of states in 1D, which is g(ε) ∝ 1/
√
ε in the case

of a box, and g(ε) = const in a harmonic trap, one can perform integration
in (1.1) and easily convince oneself that Ne diverges, meaning that there are
always particles in the excited states and that there can be no real condensation
in 1D at any finite temperature in thermodynamic limit. Though taking the
discreteness of the energy levels into account (which stems from the finite size of
the cloud), one can still get macroscopic population of the longitudinal ground
state below a critical temperature T 1D

c = ~ω
kB

N
logN [9].

Interacting bosons in 1D. Non-interacting theory is not sufficient to describe
modern experiments, so one has to take into account atomic interactions.

Intaratomic interaction potential is short-range, and we can effectively ap-
proximate it as hard-core, where particles interact only locally. Then the first-
quantized Hamiltonian for an interacting bosonic gas in 1D reads

Ĥ =

N∑
i=1

(
− ~2

2m

∂2

∂z2
i

+ V (zi)

)
+
∑
i<j

g δ(ri − rj), (1.2)

where the summation is over all partice locations zi, m is the mass of one
particle, V is the external potential, g = 2ωras is the interaction constant [10],
and as is the scattering length.

In case of a 1D homogeneous system with repulsive interactions g > 0, this
Hamiltonian is exactly solvable by Bethe ansatz [11, 12] and exhibits several
different physical regimes [13].

These regimes can be characterized with two parameters, the first of them
being the Lieb-Liniger parameter

γ =
mg

~2ρ0
,

where ρ0 is the linear density. It measures the typical interaction to kinetic
energy ratio. The second one is the degeneracy temperature

Td =
~2ρ2

0

2mkB
,

which is the temperature at which the thermal de Broglie wavelength λdB =√
2π~2

mkBT
becomes equal to the average interparticle distance.

At γ > 1 and T < Tdγ
2, the gas is in the strongly interacting Tonks-

Girardeau regime [14, 15]. There strong repulsion dominates and the particles
cannot be found at the same spot, resembling a gas of fermions (more on this
in Section 2.3).
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Figure 1.1: Example density (left) and phase profiles (right) for untrapped (top four
panels) and harmonically trapped (bottom four panels) 87Ru bosonic gas with the
parameters usual for experiments on an atomchip. The quasicondensate regime is
evident from large phase fluctuations. Density fluctuations are considerable only on
scales smaller than the healing length ξ ∼ 1µm, but over larger distances the cloud
appears smooth. Intense phase fluctuations at the edge of some figures are due to the
fact that there are no atoms there. Profiles acquired through numerical simulations
and taken from our published research [3].
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At γ < 1 and T < Td
√
γ the gas is in the so called quasicondensate regime,

first predicted by Popov in 1972 [16] and experimentally realized in 2001 [17],
where the density fluctuations are suppressed on the length scales larger than
the so called healing length ξ =

√
~2/mgρ0. As this is the regime considered

in this chapter, the example density and phase profiles of the quasicondensate
are presented in Figure 1.1, where γ ∼ 0.01 and Td ∼ 1000 nK. I consider only
the regime where the fluctuations are predominantly thermal T > Tdγ. 1D
quasicondensate will be abbreviated simply as 1D BEC in the following.

Regime of T > Td
√
γ is not considered here as the gas loses coherence and

is characterized by large fluctuations both in phase and density.
The discussion above can be generalized to a trapped inhomogeneous gas as

long as the density profile varies sufficiently smoothly. In this so called local
density approximation, one can treat the gas locally as being untrapped and
having γ and Td given by the local density.

Gross-Pitaevskii equation. Ground state of a quasicondesate can be described
by a celebrated Gross-Pitaevskii equation (GPE), which is recovered in the
Hartree-Fock approximation by representing the full many-body wavefunction
as a product of single-particle functions

Ψ(z1, z2, . . .) = ψ(z1) · ψ(z2) · . . .

(here I present the 1D case for simplicity, but GPE is valid in any dimension).
One-particle wavefunction is found variationally as the one minimizing the

expectation value of the Hamiltonian (1.2) under the normalization condition∫
dz |ψ(z)|2 = N and is given by [18, 19]

µψ(z) =

(
− ~2

2m
∇2 + V (z) + gρ(z)

)
ψ(z),

where the local density ρ(z) = |ψ(z)|2.
Obviously, such a state is stationary and evolves with time as

ψ(z, t) = ψ(z, 0)e−iµt/~.

Gross-Pitaevskii equation can be generalized to a time-dependent variant to
study the dynamics and the collective modes of the quasicondensate, when it
reads

i~
dψ(z)

dt
=

(
− ~2

2m
∇2 + V (z) + gρ(z)

)
ψ(z).

It is interesting to note that in 1D this non-linear partial differential equa-
tion is exactly solvable by the inverse scattering method [20], supproting non-
decaying solitonic solutions as well as complete set of local integrals of motion,
and was considered in detail in one of the autor’s publications [1]. Classical and
quantum integrability will be one of the central notions of this thesis and there
are special sections devoted to it.

Elementary excitations of the quasicondensate were found by Bogoliubov by
representing the wavefunction in terms of stationary and fluctuating parts

ψ(z, t) = ψ0(z, t) + δψ(z, t) =
√
ρ(z)e−iµt + δψ(z, t).
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Substituting it into GPE and linearizing it to the first order in δψ, we can
convince ourselves that the latter is satisfied by a trial elementary fluctuation

δψ = e−iµt[u(z)e−iωt − v∗(z)eiωt].

In the homogeneous system u and v are simply counterpropagating plane
waves with momentum q, and the spectrum of elementary excitation is given by

~ω = εq =

√
~2q2

2m

(
~2q2

2m
+ 2gρ0

)
.

Note that this dispersion relation is phonon-like at small q: εq = c|q|, where
c =

√
ng/m is the speed of sound, and particle-like at large q: εq = ~2q2/2m.

The crossover happens around the inverse healing length q ∼ ξ−1. Somehow
this dispersion relation can be called anti-relativistic, as for normal relativis-
tic particles the regimes of linear and quadratic dispersion correspond to the
opposite limits of q.

Knowing the dispersion relation we see that the quasicondensate satisfies
the Landau superfluidity criterion, and an object moving in the quasiconden-
sate at the speed lower than c will move without friction and will not produce
excitations.

In Sections 1.4 and 1.5 another formalism to study the elementary excitations
of the quasicondensate is addressed in detail, which however is equivalent to
Bogoliubov’s at length scales larger than ξ.

1D to 3D crossover. Real experiments are performed with 3D traps, so it is an
important question at which parameter regime the gas is really one-dimensional.

Earlier I mentioned that the thermal energy must be smaller than the trans-
verse level spacing, kBT < ~ωr, but in the interacting condensate the strength
of the interaction is characterized by the chemical potential, which must be also
small µ = gρ0 < ~ωr.

In such a case the transversal dynamics is frozen out, and the system’s
wavefunction can be factorized into longitudinal and radial parts ψ(z, r) =
ψz(z) ·ψr(r). Radial part can be efficiently described by a variational Gaussian
ansatz [13, 21].

In usual experiments with atomchips in a harmonic trap, length scales of
variations in local density and external potential are large comparing to phase
coherence length, allowing to employ the Thomas-Fermi approximation by ne-
glecting the kinetic energy term in the Gross-Pitaevskii equation [6]. At zero
temperature it leads to an inverse parabolic longitudinal density profile.

The condition for the chemical potential naturally limits the maximal den-
sities allowed in 1D experiments, which are about 100 atoms/µm in 87Ru .
Though it was theoretically and experimentally proven that quasicondensate
picture is still valid in this high-density 1D–3D crossover regime if the chemical
potential is corrected as µ = ~ωr(

√
1 + 4ρ0as − 1) [22, 17, 23].

Temperature measurements. Temperature is the central topic of this thesis,
so it is important to understand the experimentally available tools to measure
it.
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The most widely used thermometer for 1D BEC is the so called density ripple
method, when the trap is abruptly switched off, and the gas is allowed to expand
freely (the so called time-of-flight measurement). The fluctuating phase in the
longitudinal direction will lead to appearance of matter interference fringes—
the density ripples [24, 25]. Time-of-flight density-density correlation function
was proven to map to the initial thermal phase correlation function, given for
an untrapped gas by [26, 27]

<
〈
ψ∗(z)ψ(z′)

〉
= ρ0 e

−|z−z′|/λ,

where λ = 2~2ρ0/mkBT is the thermal coherence length, and the density fluctu-
ations are neglected. Such exponentially decaying correlation function is char-
acteristic to thermal occupation of the quasipartice modes.

1.3 Wigner functions

In the next sections I’ll show that a quasicondensate can be represented in terms
of quantum harmonic oscillators, and here I introduce the Wigner function as
one of the most powerful tools to study (and visualize) harmonic oscillator
states.

TheWigner function was introduced in 1932 by EugeneWigner as a quasiprob-
ability distribution for studying the quantum corrections to classical statistical
mechanics [28]. Later in 1949 José Moyal rediscovered the Wigner function
and realized that it could be used as a quantum moment-generating functional
[29], establishing a whole new way of formulating quantum mechanics—the so
called phase-space representation (which nowadays is being used along the more
familiar second-quantized and path integral formalisms [30]).

Basically, the Wigner function is a classical real-valued function, completely
determined by a density matrix, and classically representing a statistical ensem-
ble given by the latter. For instance, one-particle density matrix in momentum
representation ρ(p, p′) is mirrored by a W-function

W (x, p) =
1

π~

∫
ρ(p+ q, p− q)e−2ixq/~ dq.

Non-classical features of dynamics are represented by negative values of the
W-function, which is clearly not allowed for a proper probability distribution.
However, those regions were proven to be small, not extending ∼ ~ area in
the phase space (so a straightforward semiclassical approximation would imply
smoothening W-function over such an area).

Physical significance of the Wigner function lies in the fact that marginal
probabilities are given by ‘shadows’ of the W-function on the appropriate axis,
e.g. probability to find a particle on the line interval [a, b] is

P [a 6 x 6 b] =

∫ b

a

∫ +∞

−∞
W (x, p) dp dx.

Secondly, for a particular case of a free bosonic field (a harmonic oscillator),
the averages of symmetrically ordered products of the field operators are given
by moments of the W-function in the coherent state basis (which is nothing else



CHAPTER 1. COOLING OF 1D BEC 15

Figure 1.2: Wigner functions of coherent states of a harmonic oscillator.

Figure 1.3: Wigner functions of Fock states of a harmonic oscillator containing 0 to 5
bosons (left to right then top to bottom). Sea level represents zero, so landscapes going
underwater correspond to highly non-classical states with negative quasiprobability
distribution.

Figure 1.4: Wigner functions of thermal states of a harmonic oscillator at σ =
1/2, 5/8 and 3/4 (left to right), with the corresponding temperatures kBT =
~ω/ 2 arctanh (1/4σ2). Note that the vacuum state is a Fock state, a thermal state
and a coherent state at the same time.
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than a complex rotation of the coordinates: a =
√
mω/2~ [x + ip/mω], a∗ =√

mω/2~ [x− ip/mω]), for example

〈
{â†â}sym

〉
=
〈1

2
(â†â+ ââ†)

〉
=

∫∫
da da∗ aa∗W (a, a∗).

This formalism is particularly well suited for studies of classical to quantum
correspondence and developing semiclassical approximations [31, 32].

As will be shown later, a 1D cold bosonic gas can be formulated in terms of
a free bosonic theory, so the free modes can be readily represented by Wigner
functions. In this chapter I will mostly consider thermal Wigner functions,
which for one mode are given by a Gaussian distribution

W (a, a∗) =
1

2πσ2
e−
|a|2

2σ2 ,

where the width σ is given by the temperature T

1

σ2
= 4 tanh

~ω
2kBT

.

At zero temperature σ = 1/2, which corresponds to a vacuum state having
non-zero variance in x and p quadratures in accordance to the Haisenberg un-
certainty relation. Note that thermal states are classical in the sense that their
W-functions are everywhere positive and represent well-defined probability dis-
tributions. Non-classical states, such as Fock states, have W < 0 in some parts
of the phase space, but we will not encounter them in this chapter. A gallery of
common W-functions is presented in Figures 1.2–1.4.

1.4 Tomonaga-Luttinger liquid

Tomonaga-Luttinger liquid (or simply Luttinger liquid, abbreviated as LL) is
a theoretical model initially developed by Tomonaga [33] and Luttinger [34]
to describe interacting electrons in a one-dimensional conductor. Later it was
realized by Haldane that the same mechanism can be applied to interacting
bosons in 1D [35].

The model. In the current section I will briefly describe the formalism as
applied to bosons following the notation of Cazalilla [36].

First of all let’s consider a 1D BEC in a box of length L with periodic bound-
ary conditions, defined by field operators Ψ̂(z) and Ψ̂†(z), which annihilate or
create a particle at position z, and obey standard bosonic commutation relations

[Ψ̂(z), Ψ̂†(z′)] = δ(z − z′).

The dynamics of a 1D quantum gas interacting via two-body potential v(z−
z′) is governed by the Hamiltonian

Ĥ =
~2

2m

∫ L

0

dz ∂zΨ̂
†(z) ∂zΨ̂(z) +

1

2

∫ L

0

dz dz′ v(z − z′)ρ̂(z)ρ̂(z′), (1.3)

where m is the atomic mass and ρ̂(z) = Ψ̂†(z)Ψ̂(z) is the local density operator.
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Phase-density representation of the field operators is defined as follows

Ψ̂†(z) =
√
ρ̂(z)e−iφ̂(z) =

√
ρ0 + Π̂(z)e−iφ̂(z),

where ρ0 is the mean density, Π̂(z) is the local density fluctuation operator and
φ̂(z) is the local phase operator.

It can be proven that phase and density operators are again canonically
conjugated if we take their ‘slow’ parts, meaning that we neglect fluctuations
on the scales shorter than the condensate healing length ξ (see [36, Appendix
A] for derivation and additional discussion in [26, 37])

[Π̂(z), φ̂(z′)] = iδ(z − z′).

Assuming completely local interaction between particles v(z − z′) = g δ(z −
z′), where g is the interaction strength, we can derive the low-energy effec-
tive Hamiltonian in the phase-density representation by leaving only the slowly
varying terms in (1.3)

Ĥeff =
~c
2

∫ L

0

dz

[
K

π
(∂zφ̂(z))2 +

π

K
(Π̂(z))2

]
, (1.4)

where c =
√
ρ0g/m is the speed of sound, and K = ~π

√
ρ0/mg is a dimension-

less parameter related to the strength of quantum fluctuations and describing
the physical regime of the gas: Tonks-Girardeau (hard-core) gas for K = 1, re-
pulsive interactions for K > 1 and non-interacting gas for K = +∞. For purely
local interaction K cannot decrease below one [27]. For usual experiments with
weakly interacting 87Ru atoms K ∼ 50 [38, 24, 25].

Let’s introduce the so-called counting field Θ̂(z), which changes by π every
time z surpasses the location of another particle

1

π
∂zΘ̂(z) = ρ0 + Π̂(z).

Then in his pioneering work Tomonaga showed that the counting field Θ̂(z)

and phase field φ̂(z) can be cast in terms of emergent bosons [b̂q, b̄q′ ] = δq,q′ [33]

Θ̂(z) = θ0 +
πz

L
N +

1

2

∑
q 6=0

∣∣∣∣2πKqL
∣∣∣∣1/2 e−a|q|/2[eiqz b̂q + e−iqz b̂†q],

φ̂(z) = φ0 +
πz

L
J +

1

2

∑
q 6=0

∣∣∣∣ 2π

qLK

∣∣∣∣1/2 e−a|q|/2sign q [eiqz b̂q + e−iqz b̂†q], (1.5)

where N is the total number of particles in the gas, J is the total momentum, θ0

and φ0 are arbitrary (non-physical) initial phases, q = (. . . ,−2,−1, 1, 2, . . .) · 2π
L

is the wave number, and a is the high-frequency cutoff.
Taking into account that the total momentum J = 0, neglecting the high-

frequency cutoff a (which is justified by a natural ‘cutoff’ due to the exponen-
tially small Bose-Einstein thermal occupation number of the high-lying modes
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〈
b†qbq

〉
), and taking into account that πΠ(z) = ∇θ(z) = ∇(Θ(z)−πρ0x), we get

πΠ̂(z) =
1

2

∑
q 6=0

∣∣∣∣2πKqL
∣∣∣∣1/2 iq[eiqz b̂q − e−iqz b̂†q],

φ̂(z) =
1

2

∑
q 6=0

∣∣∣∣ 2π

qLK

∣∣∣∣1/2 sign q [eiqz b̂q + e−iqz b̂†q]. (1.6)

Fourier transforming1 the fields f(z) = 1√
L

∑
eiqzfq, we get their momentum

components2

πΠ̂q =
1

2

∣∣∣∣2πKq
∣∣∣∣1/2 iq(b̂q + b̂†−q),

φ̂q =
1

2

∣∣∣∣ 2π

qK

∣∣∣∣1/2 sign q (b̂q − b̂†−q). (1.7)

Substituting (1.6) into the Hamiltonian (1.4) casts the latter into a collection
of uncoupled harmonic oscillators

Ĥeff =
∑
q 6=0

~ c|q| b̄q b̂q + Ĥ0, (1.8)

where Ĥ0 is the constant contribution of the macroscopically occupied q = 0
mode.

So we see that the Luttinger liquid model describes uncoupled phonon-like
excitations. This result is in full agreement with Bogoliubov theory as long as
we are limited to length scales larger than the condensate healing length ξ. The
only type of low-energy excitations are collective modes and not the individual
particle-like ones, so the Fermi liquid theory breaks down in 1D.

Emergent Tomonaga bosons evolve freely under this Hamiltonian

b̂q(t) = e−ic|q|t b̂q, b̄q(t) = eic|q|t b̄q, (1.9)

so dephasing is the only type of relaxation possible. An important application
of this dephasing is the phenomenon of prethermalization of 1D BEC, which is
the topic of Section 1.6. Later we will see that the same dephasing plays its role
in cooling of 1D gas.

Temperature regimes of the Luttinger liquid. Quantum Bose-Einstein statis-
tics has two distinct classical limits: the Rayleigh-Jeans limit, when there is a
lot of bosons in each mode 〈nq〉 � 1, and the quantum noise can be neglected
and the field can be represented in terms of classical waves; and the Boltzmann
limit, where 〈nq〉 � 1, and the system can be approximated by a classical gas of
particles. The occupation numbers and mode energies are shown in Figure 1.5.

1Note that in Matlab the Fourier transform must be implemented as ffourier =
dx/sqrt(L) * fft(f), where dx is the distance between the grid points.

2According to tradition I call q the ‘momentum’ though it has dimension of inverse length,
so a more precise term would be the ‘wave number’. It should not lead to any confusion as
the correct physical momentum can always be recovered by p = ~q.
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Figure 1.5: Comparison between Bose-Einstein 〈nq〉 = (exp(εq/kbT )−1)−1, Boltzmann
〈nq〉 = exp(−εq/kbT ) and Rayleigh-Jeans 〈nq〉 = kbT/εq distributions, where εq =
~c |q| is the energy of the mode. Top: mode occupation number as a function of
momentum in linear and log-log scales. Bottom: total energy of one mode Eq = εq〈nq〉
in units of kBT as a function of momentum. Momentum is measured in units of thermal
momentum qT = kBT/~c; it is called thermal because a phonon with momentum qT
will have exactly kBT of energy. Note that the Rayleigh-Jeans distribution describes
the classical equipartition (every mode holds the same energy).

Depending on which length scales of the 1D BEC are experimentally achiev-
able, we can probe different limits of the Bose-Einstein distribution. Modern
experiments, measuring density correlation in time of flight [25], are currently
limited to ∆zoptical ≈ 1µm optical resolution. An average healing length, giving
the applicability criterion of the LL formalism, in those experiments ξ ≈ 0.3µm,
meaning that we are probing only modes well described by the Luttinger theory.

The temperature regime we are able to probe is governed by the quantity
qoptical/qT , where qoptical = 1/∆zoptical is experimentally achievable momentum
and qT = kBT/~c is the thermal momentum. Taking an experimental value
of the sound speed to be c = 2600µm/s, we can plot qoptical = 1/∆zoptical vs
temperature (Figure 1.6). Comparing it to the Figure 1.5 we immediately see
that for all experimetally achievable temperatures of T > 10 nK we are always
deeply in the Rayleigh-Jeans regime.

This observation will be of crucial importance later when I’ll be comparing
the cooling theory with experimental data.

1.5 Harmonically trapped 1D BEC

In modern experiments cold 1D bosonic gases are usually confined in mag-
netic/optical traps. For low-energy modes the central region of the cloud, where
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Figure 1.6: Shaded area: achievable momentum range in modern experimens with cold
87Rb gases [24, 25, 39], limited by three different optical resolutions of the apparatus,
as a function of temperature in nK for c = 2600µm/s. Comparing it to Figure 1.5, we
see that for all experimentally achievable temperatures of T > 10 nK, and the optical
resolution of 1 µm (middle line), we are always deeply in the Rayleigh-Jeans regime.
Though the future technology may lead to increase of the optical resolution, allowing
to measure the full Bose-Einstein statistics (top line). Here I imply measurements only
in the very center of the cloud, where the local density approximation holds and the
homogeneous Luttinger theory is applicable.

its density is almost constant, can be well approximated by the Luttinger theory
from the previous section. But in the case of measurements on the cloud as a
whole, its inhomogeneous density profile should be taken into account.

So here I review the theory for an experimentally relevant case of a harmoni-
cally confined degenerate 1D gas following the work of Petrov, Shlyapnikov and
Walraven [40].

As usual, let’s introduce the local density ρ(z), central peak density ρ0 =
ρ(0), scattering length as, transversal harmonic trap angular frequency ωr, 1D
interaction strength g = ~ωras, longitudinal trapping frequency ω, atomic mass
m and global chemical potential µ = gρ0. (see Section 1.2 for a review).

Then using the Thomas-Fermi approximation the density profile of the con-
densate becomes

ρ(z) = ρ0(1− z2/R2
TF ),

where RTF =
√

2µ/mω2 is the Thomas-Fermi radius.
The phase and density fluctuation operators are given by

ρ̂(z) = ρ(z)1/2
∞∑
j=1

if−j (z)b̂j + h.c.,

φ̂(z) = [4ρ(z)]−1/2
∞∑
j=1

f+
j (z)b̂j + h.c., (1.10)

where [b̂j , b̄k] = δjk are the bosonic annihilation/creation operators for quasi-
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particles in modes {j, k}, f±j (x) being the auxiliary functions

f±j (x) =

(
j + 1/2

RTF

)1/2 [
2µ

εj
(1− x2)

]±1/2

Pj(x), (1.11)

x = z/RTF ,

and Pj(x) —the Legendre polynomials.
The spectrum of the quasiparticles is given by

εj = ~ω
√
j(j + 1)/2 = ~c

√
j(j + 1)/R, (1.12)

where c =
√
gρ0/m is the speed of sound in the central (homogeneous) region

of the cloud, and R is the instantaneous radius (in the non-equilibrium case it
can differ from the Thomas-Fermi radius RTF ).

Substituting the TF profile into (1.10) and (1.11), we get

ρ̂(z) = ρ
1/2
0

∞∑
j=1

i

(
j + 1/2

RTF

)1/2 [
2µ

εj

]−1/2

Pj(x)(b̂j − b̂†j),

φ̂(z) = (4ρ0)−1/2
∞∑
j=1

(
j + 1/2

RTF

)1/2 [
2µ

εj

]1/2

Pj(x)(b̂j + b̂†j).

Decomposing the fluctuations into normal modes and using orthogonality
relations for Legendre polynomials, we arrive at

ρ̂j =

∫
n(x)Pj(x)dx = ρ

1/2
0

2i

2j + 1

(
j + 1/2

RTF

)1/2 [
2µ

εj

]−1/2

(b̂j − b̂†j),

φ̂j =

∫
φ(x)Pj(x)dx = (4ρ0)−1/2 2

2j + 1

(
j + 1/2

RTF

)1/2 [
2µ

εj

]1/2

(b̂j + b̂†j).(1.13)

So we see that fluctuations on top of a parabolic Thomas-Fermi profile can
be bosonized the very similar way as the fluctuations on a homogenous profile
(1.7); the resulting noninteracting Petrov bosons b̂j are completely analogous
to Tomonaga bosons b̂q (1.9), so discussion from the previous section applies to
them fully, including dephasing, prethermalizaton and temperature regimes.

Slight differences between Petrov and Tomonaga bosons include the structure
of the spectrum and the fact that momentum q ∈ (−∞, 0)∪ (0,+∞), but mode
number j ∈ (0,+∞).

1.6 Prethermalization

Prethermalization is a concept first introduced in 2004 by Berges, Borsányi and
Wetterich [41] to describe a very interesting and somewhat counter-intuitive out-
of-equilibrium phenomenon, when in spite of being far from thermal equilibrium,
the system rapidly establishes some properties of a thermal state. Those prop-
erties include the equation of state (a constant ratio of pressure over density)
and equipartition between kinetic and potential energy, allowing to introduce
‘kinetic temperature’, proportional to the average kinetic energy per mode. It
is crucial that prethermalization establishes on time scales much shorter than
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those needed for full thermalization, and in the prethermalized state the mode
occupation numbers are far from being populated according to the Bose-Einstein
or Fermi-Dirac statistics.

In the original work [41] prethermalization was formulated in the context of
high-energy physics and colliding heavy nuclei. Using the analytical technique
of two-particle irreducible effective action approach to path integration, the
authors were able to show that prethermalizaton timescale is independent of the
interaction strength or scattering properties, but is described by ‘dephasing’ in
the basis of non-interacting particles [42].

Applications. Since then the prethermalization description has been applied to
many different out-of-equilibrium phenomena outside the high-energy physics,
especially in connection with dephasing in (nearly-)integrable models and es-
tablishment of the Generalized Gibbs ensemble (GGE). Some notable results in
this field include prethermalization in an integrable Lieb-Liniger model [43, 44],
Bose-Hubbard and Fermi-Hubbard models [45, 46, 47], as well as in other
Hubbard-type lattice models [48], a noisy Ising chain [49], other non-integrable
quantum spin chains [50], a weakly non-integrable interacting Peierls insulator
[51, 52], and many others. So prethermalizaion opened a new rapidly developing
sub-field in the area of out-of-equilibrium physics.

However later the term ‘prethermalization’ became somewhat fuzzy and cur-
rently is often used just as a synonym to ‘GGE’. In the current thesis I will use
the term ‘prethermalization’ in its original sense as a more strict notion than
GGE. For prethermalization I require the establishment of some sort of global
thermal properties with one well-defined temperature, which might be different
from the final temperature of the fully thermalized state though.

Prethermalization with cold gases. In the field of cold atomic gases probably
the most prominent result on prethermalization was achieved in the laborato-
ries of Schmiedmayer’s group, where a pretermalized state was experimentally
realized as a result of a sudden splitting of a 1D quasi-BEC [38].

The experimentally realized cigar-shaped 1D quasi-BEC is described in terms
of its long-wavelength dynamics in the central region, where the density may
be considered almost constant and it can be well approximated with the Lut-
tinger liquid theory. The sudden coherent splitting of the quasi-BEC along its
longitudinal z-axis creates two 1D clouds (called left and right) with almost the
same phase and Gaussian noise in density: if we pick a length element ∆z of
the original condensate containing N atoms, then the splitting can be thought
of as atoms randomly jumping to the corresponding ∆z element either in the
left or in the right cloud. So the probability of the right cloud having M atoms
will be, according to the binomial distribution

Pr (M ;N) =
N !

M !(N −M)!
· 0.5N ,

which gives the Gaussian distribution for large enough N .
Labelling the local density operators of the left and the right condensate as

n̂L(z) and n̂R(z), and phase operators respectively as φ̂L(z) and φ̂R(z), we can
introduce the symmetric and antisymmetric operators of the total L+R system
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as
n̂±(z) =

1

2
(n̂L(z)± n̂R(r)), φ̂±(z) = φ̂L(z)± φ̂R(r).

Taking into account the fact that the density fluctuations are uncorrelated
beyond some small unobservable length scale ξs, but exhibit Gaussian noise
locally, we get

〈n̂−(z)n̂−(z′)〉 =
ρ

2
δ(z − z′), (1.14)

where ρ is the local density of the BEC before splitting.
Introducing phase and density operators in momentum space n̂±k , φ̂

±
k as the

Fourier transform of n̂±(z) and φ̂±(z), we get

〈n̂−k n̂−k′〉 =
ρ

2
δk,−k′ .

This initial state (after splitting) represents a highly out-of-equilibrium (squeezed)
state with large fluctuations in average densities 〈n̂−k n̂−−k〉 = ρ/2 and small fluc-
tuations in φ−±k. The density and phase fluctuations in Luttinger formalism can
be understood as the conventional quadratures of a harmonic oscillator, so as
this initial state evolves, the energy oscillates between them. Oscillation fre-
quency is different for different k, and after a short initial ‘dephasing’ time, the
relative phases of all the oscillators k may be considered random.

Note that the initial state after the splitting has the same energy in each
mode Ek ∝ 〈n̂−k n̂−−k〉 = ρ/2 according to (1.4), and this energy cannot be re-
distributed among the different modes as they are uncoupled. The ‘classical’
temperature in the Rayleigh-Jeans limit can be defined in terms of equiparti-
tion: each degree of freedom has to have the same mean energy, a quantity
proportional to this mean energy being called the temperature.

So we immediately see that after the splitting, the modes k of the antisym-
metric combination of the left and the right clouds are uncorrelated and have
the same energy Ek, allowing to define a ‘prethermalized’ Rayleigh-Jeans tem-
perature T ∝ Ek ∝ ρ/2, which depends on the initial density only, and not on
the interaction strength or the initial temperature of the quasicondensate before
splitting.

This formalism describes prethermalization in its original sense: we do not
get just a steady state, but a steady state that has thermal properties in spite
the system being far from equilibrium. Experiments fully confirmed the predic-
tions of the theory [38]. Note that the resulting ‘squeezed GGE’ is generally
different from a conventional GGE, see Figure 1.7 and additional discussion in
Appendix C.

More details on the formalism can be found in [43, 53]. A similar mechanism
of prethermalization will be developed in the next sections as it will appear to
be crucially important to our research concerning cooling of 1D BEC.

Prethermalization and classical chaos. Additionally I would like to note that
prethermalization can be understood in terms of completely classical models of
non-linear physics [54, 55]. The basic idea is simple: the evolution of a finite-
dimensional integrable classical system can be always formulated in terms of
the action-angle variables, where the actions, being integrals of motion, stay
constant, but phases monotonously increase in time. A sudden change in the
Hamiltonian will generally turn on the evolution of the actions to their thermal
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Figure 1.7: Prethemalization. Left: before splitting, each Luttinger mode of the
antisymmetric quasicondensate ψ̂a = ψ̂r − ψ̂l is in the vacuum state. Right: after the
splitting, the phase quadrature stays almost untouched, but the density quadrature
becomes streched because of the Gaussian noise (atoms ‘don’t know’ whether to go to
the left or to the right cloud). Note that the Wigner functions are normalized, and
the number of bosons per mode is proportional to the width of the distribution.

equilibrium values (assuming the perturbation is sufficiently strong that KAM
theorem conditions are not satisfied), giving rise to the thermalization time
scale. But in many cases this evolution of the actions is much slower than the
winding speed of the angles (the phases), so for one period of phase evolution
an appropriate action can be assumed constant. That means that the possible
initial alignment of the phases will be almost suddenly disrupted, the actions
will appear dephased on a time scale much shorter than the thermalization time
scale.

In some special cases prethermalization can be proved to be stemming from
this dephasing. For instance, when the unperturbed modes can be approximated
by harmonic oscillators, the phases describe the ratios of kinetic to potential en-
ergies. Then in the dephased regime we have to take average of all the different
phases (as they evolve with different uncorrelated frequencies and their angles
become effectively random) and can immediately prove the equipartition be-
tween kinetic and potential energies, even if the actions are far from being at
their equilibrium values.

1.7 Evaporative cooling

Evaporative cooling is usually the last step to prepare atoms at the lowest
temperatures possible. Its main idea can be grasped from looking at a cooling
cup of coffee: only the hottest atoms can escape the cup, meaning that the mean
energy per remaining atom decreases, and the coffee cools down.

In the case of quantum gases such mechanism was proposed by Hess [56], a
comprehensible review can be found in [57, 58]. Schematically this process is
represented in Figure 1.8.

In practice one can separately address the high-energy atoms with radio-
frequency field (rf-field), which couples the state of trapped atoms to the un-
trapped on even anti-trapped state. If this rf-field is detuned in such a way as to
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Figure 1.8: Scheme of the conventional 2D and 3D evaporative cooling. Initial Bose-
Einstein distribution of mode occupation numbers

〈
nq

〉
= (exp[βεq]−1)−1 with energy

εq (left) is deformed by removing high-energy atoms (middle). Then the remaining
atoms rethermalize to a BE-distribution at a lower temperature (right, dashed line).

be resonant only with the high-energy atoms (say, having energies higher than
some εt), then only they will be outcoupled and expelled off the trap, which
leads to cooling. Low-energy atoms are off-resonant and remain in the trap.

A crucial part of evaporative cooling is rethermalization of remaining atoms
(see Figure 1.8, right), when atoms collide and some of them are promoted
to energies higher than εt to be able to escape the trap again. But as the
temperature of the gas drops, the number of such promoted atoms drops expo-
nentially ∼ exp(−εt/kBT ) [59], so eventually the cooling rate is counterbalanced
by always-present heating mechanisms, such as shaking of the trap or collisions
with the background gas.

By the moment the experimental technique of evaporative cooling is im-
plemented in almost all setups dealing with cold atoms, including cooling of
spin-polarized atomic hydrogen [60], 87Ru atoms on atomchips [61, 62, 24, 63],
cooling into double-wells [64, 65, 66, 67] and optical lattices [68, 69], and many
others.

Analytical results concentrate mostly on Boltzmann equation approach [70]
and include emergent scaling laws in the course of adiabatically trap lowering
[71], as well as path integral effective action approaches for rapid cooling [72, 73].
It is conjectured that after rapid cooling Kibble-Zurek phenomena should be
observable [74, 75].

Numerical simulations of evaporative cooling include stochastic GPE ap-
proaches [37], Monte-Carlo [76, 77] and real-time quantum-dynamical simula-
tions [78].

1.8 Limitations on thermalization in 1D

In spite of all before mentioned successes of the evaporative cooling model, it
is not sufficient to explain the cooling of a bosonic gas deeply in 1D regime.
The reason being that cold gases in 1D represent a realization of an integrable
system to a high degree of accuracy.

1.8.1 Lack of thermalization in free systems.

As we saw in Sections 1.4 and 1.5, 1D gas below degeneracy temperature in Bo-
goliubov approximation can be cast into a form of a collection of non-interacting
harmonic oscillators, realizing the simplest quantum integrable system—a free
system. It is obvious that the occupation number of different harmonic modes
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stay constant during evolution, meaning that such a system will remember its
initial state much better than conventional classically chaotic 3D systems, where
the only conserved quantities are energy, momentum and particle number.

And as quasiparticles cannot travel between energy levels, the energy of the
system cannot be effectively redistributed to lead to thermalization. In such a
way we see that the most essential ingredient of evaporative cooling is missing.

Lack of thermalization in integrable systems is not a novelty, and it has
been addressed in a great detail in a series of publications. Some of the most
influential studies on the subject were performed by M. Rigol et. al. considering
mostly different variants of quenches of one-dimensional hard-core bosons on a
lattice, which can be mapped to an integrable free system of spinless fermions
by Jordan-Wigner transformation (more on that in Section 2.3). Respectively,
numerical experiments showed that indeed an equilibrium state of such a system
after a quench retains a lot of information about the initial state and can be
described in terms of the generalized Gibbs ensemble [79], which is one of the
central topics of Chapter 2.

A beautiful experiment named “the quantum Newton’s craddle” confirmed
the predictions of the theory. In the experiment a 1D quasicondensate of ultra-
cold bosons close to hardcore Tonks-Girardeau regime was split into counter-
propagating two clouds, which were made to collide with each other [80]. There
was no evidence of redistribution of momenta on long timescales, meaning no
thermalization, in full agreement with the theory.

1.8.2 Lack of thermalization in Bethe-ansatz-integrable sys-
tems.

The works referenced in the previous paragraph concern the simplest type of
integrable models, namely those which are mappable to free systems (such as our
model of Tomonaga/Petrov bosons from Section 1.10), but the full description
of locally-interacting bosons in 1D is given by the Lieb-Liniger theory, which
is integrable via Bethe ansatz and cannot be mapped to a free system, in this
sense showing another type of quantum integrability.

For such a system, a description in terms of conserved quasimomenta (ra-
pidities) is possible [81, 82]. But those rapidities are neither local in position
space nor constructed with few second-quantized field operators (e.g. in contrast
to Jordan-Wigner fermions), and applicability of Generalized Gibbs description
for such systems is still an open question [83, 84].

There are studies explicitly addressing lack of thermalization in Lieb-Liniger
gas, such as preservation of memory of the initial state in course of relaxation
after a quench [44],

Our studies on the classical counterpart of this system, namely the Gross-
Pitaevskii equation (integrable via Zakharov-Shabat construction [20]), showed
that it doesn’t thermalize to a classical thermal equilibrium, but retains some of
the information about the initial state [1], confirming the consensus that inte-
grable models don’t thermalize completely. Additionally, we saw that provided
we started close to a (classical) thermal equilibrium, after relaxation the long-
wavelength modes will end up close to equilibrium as well, so for those modes
some sort of emergent thermalization can be formulated.

Obviously, the long-wavelength and short-time phenomena of Lieb-Liniger
model can be described in terms of Luttinger liquid, in this sense connecting
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those two types of integrability classes [85, 36, 86].
Additional studies of the lack of thermalization include quenches in XXZ

model [87]

1.8.3 Integrability breaking

Lieb-Liniger model still doesn’t describe all the physics of 1D cold bosonic field.
Various physical effects limit the applicability of the model and render the sys-
tem essentially non-integrable. Coupling to an external bath can obviously lead
to thermalization [88], but here I’ll discuss mechanisms inherent to isolated
systems.

One of the proposed integrability breaking mechanisms includes excitations
of radial modes due to two-body collisions. Rate of populating radially excited
modes can be estimated using Fermi’s golden rule and is proportional to the
Boltzmann factor for the fraction of atoms in the radial ground state fast enough
to scatter out [89]

Γ2b ∝ exp

(
−2~ωr
kBT

)
.

In the case of a degenerate gas in 1D, considered in this thesis, kBT ≈ 1
2~ωr,

which renders this mechanism of integrability breaking completely irrelevant.
Three-body collision rate is independent of temperature but scales as local

density squared, which is way too small to support effective thermalization in the
case of experimentally relevant dilute gas. For example, for n1D = 50 atoms/µm
the thermalization time is estimated to be τth ∼ 1 s [90, 89, 91, 92]. The time
scales of 1D cooling are usually ten–hundred times shorter, so in the following
we stick to the essential physics of the Lieb-Liniger model.

In addition, I’d like to note that integrability breaking is a novel and rapidly
growing subfield of non-equilibrium physics and thorough studies had been per-
formed for many different models, including spinless fermion models, where a
prethermalization plateau for few-body observables was reported [51, 93], as
well as emergence of Wigner-Dyson level statistics [94]; Ising-like spin chains
[95]; and even for only two zero-range-interacting atoms, where the onset of
quantum chaos had been found to be responsible for thermalization [96].

The whole Chapter 2 of this thesis is devoted to the problem of thermaliza-
tion of bosonic gas in 1D optical lattices in the presence of integrability breaking.

1.8.4 Emergence of temperature in 1D BEC

So we have seen that in Bogoliubov approximation to the Lieb-Liniger model the
ultracold atomic gas does not thermalize. But what if we go beyond Bogoliubov
approximation? What type of relaxation should we expect in a Lieb-Liniger
model and its classical analog, the Gross-Pitaevskii equation? Is there any
possibility of an emergent temperature for some degrees of freedom despite the
integrability of the model?

These are the questions we addressed numerically in one of our previous
publications, and the current section builds upon its results [1].
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Numerical approach. We start with the Gross-Pitaevskii equation

i~
∂

∂t
Ψ(x, t) = − ~2

2m

∂2

∂x2
Ψ(x, t) + g|Ψ(x, t)|2Ψ(x, t),

where Ψ(x, t) is a classical complex field representing a quasicondensate of atoms
with mass m and g is the effective coupling constant in one dimension (we
assume g > 0). The interaction strength is characterized by the Lieb-Liniger
parameter [11] γ = mg/(~2n̄) ≡ (n̄ξ)−2, where ξ is the quasicondensate healing
length and n̄ ≡ 〈|Ψ(x, t)|2〉 is the mean 1D number density (weak interaction
limit corresponds to γ � 1). We assume periodic boundary conditions for
Ψ(x, t), with the period L being long enough to ensure the loss of correlations
over the half period: 〈Ψ∗(x, t)Ψ(x + L/2, t)〉 � n̄. The angle brackets denote
here averaging over the ensemble of realizations.

For each realization the initial conditions are prepared in a manner similar
to the truncated Wigner approach [97, 98] but taking into account thermal
fluctuations only (cf. Ref. [99]). We express the macroscopic order parameters
in terms of the phase φ and density δn fluctuations: Ψ = (n̄ + δn)1/2eiφ. The
initial (at t = 0) fluctuations are expanded into plane waves as

δn(x, 0) = 2
√
n̄/L

∑
k 6=0

βk
√
ηk/εk cos(kx+$k),

φ(x, 0) = (1/
√
n̄L)

∑
k 6=0

βk
√
εk/ηk sin(kx+$k),

where εk =
√
ηk(ηk + 2gn̄) is the energy of the elementary (Bogoliubov) ex-

citation with the momentum ~k and ηk = (~k)2/(2m). The real numbers βk
and $k have the meaning of the scaled amplitude and the offset of the ther-
mally excited elementary wave with the momentum ~k at t = 0. The values
of $k are taken as (pseudo)random numbers uniformly distributed between 0
and 2π. Each ensemble of realizations is also characterized by a distribution of
the βk values with 〈β2

k〉 being equal to the main number N0(k) of elementary
excitation quanta (quasiparticles) in the given mode1. In equilibrium at the
temperature T the populations of the bosonic quasiparticle modes are given by
NBE(k, T ) = {exp[εk/(kBT )]− 1}−1. For our particular numerical experiments
we have taken the classical distribution instead N0(k) = N0(−k) (equiparti-
tion), which is justified for the low momenta, where there is much more than
one boson per degree of freedom and so the mode occupation numbers can be
approximated by continuous variables.

We found that for a range of initial conditions when the Bogoliubov modes
are occupied in a momentum band around k = 0 the system develops an effective
classical temperature of the low-energy modes. To see it, let’s consider the
equilibrated mode energies Ek, which are given by

Ek =

〈
m

2
n̄|vk|2 +

(
~2k2

8mn̄
+
g

2

)
|δnk|2

〉
,

where δnk and vk are the Fourier transforms of the density δn(x, t) and ve-
locity v(x, t) = ~

m
∂φ
∂x fluctuations. Results of the numerical experiment show

1In our simulations we neglect the fluctuations of βk and always choose βk =
√

N0(k).
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Figure 1.9: An example of an initial state that leads to an emergent temperature
of the low energy Bogoliubov modes in classical fields approximation. Dots: mean
energies per mode Ek in units of the initial temperature kBT0 as a function of the
wave number k in units of the inversed healing length ξ−1 for different times: (a) at
t = 0 only the modes in a narrow momentum band |k| < k0, k0ξ = 0.33 are initialized in
thermal states at classical temperature T0 (equipartition). (b) Complicated evolution
at τ = gn̄t/~ = 50. (c,d) The steady state at τ ∼ 3000 and ∼ 6000, where the modes
near k = 0 hold almost constant energy, which corresponds to classical equipartition
at Teq ≈ 0.35T0. The Lieb-Liniger parameter γ = 0.005, the unit of the reduced time
τ is about 0.1 ms in case of weakly interacting 1D gas of 87Ru atoms. Red solid line
represents the Bose-Einstein distribution at Teq for reference. The data are averaged
over 200 realizations. Units on axes are dimensionless. The figure is taken from our
published article [1].

that interaction between Bogoliubov modes lead to the establishment of almost-
constant population of the low-lying modes in the stationary state, supporting
the claim of the classical equipartion of energy and so the emergence of temper-
ature kBT ∼ Ek = εkNk(t), where k ≈ 0 (Figure 1.9, lower panels).

Elementary excitations at different momenta are found to be uncorrelated for
all propagation times, i.e., 〈δnk′δn∗k〉 = 〈|δnk|2〉δk k′ and 〈vk′v∗k〉 = 〈|vk|2〉δk k′ ,
as expected for a thermal state.

I note that not all the initial conditions lead to the emergence of temperature.
A particular counterexample is presented in Figure 1.10.

Integrability of the Gross-Pitaevskii equation as a measure of numerical
accuracy. It is well-known that the GPE is integrable by the inverse scattering
method [20]. Respectively, there is an isospectral linear operator (Lax operator)
associated with the GPE,

L̂ =

(
i∂/∂x̄ q
q∗ −i∂/∂x̄

)
,
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Figure 1.10: An example of an initial state (dashed line, physically representing
particle-like excitations propagating in opposite directions) that does not relax to
a thermal equilibrium. The equilibrated state at τ ∼ 20 000 is presented with dots.
The units and parameters of the simulations are explained in the previous figure. The
figure is taken from our published article [1].

where x̄ = x/ξ and q = n̄−1/2Ψ(x, t). Its isospectrality during time evolution
can be used as a convenient measure of numerical stability (Figure 1.11, left).

In addition, GPE possesses a full set of local integrals of motion, defined
recursively

In =

∫ L

0

fn(x)dx,

fn = q∗
1

dx

1

q∗
fn−1 +

∑
j+k=n−1

fjfk, f0 = −|q|2.

First three integrals are proportional to the total particle number I0, total
momentum I1 and energy I2. Higher-order integrals of motion don’t have a sim-
ple physical meaning. A numerical accuracy measure based on the conservation
of the integrals of motion is presented in Figure 1.11, bottom.

An independent measure of numerical accuracy is the so called fidelity, de-
fined as F =

∣∣∣1− (n̄L)−1
∫ L

0
dxΨ∗(x, 0)Ψfb(x, t,−t)

∣∣∣, where Ψfb(x, t,−t) is the
numerical solution of the GPE with the initial condition Ψ(x, 0) first propagated
forward in time (up to time t) and then propagated backward over the same
time interval. This measure is presented in Figure 1.11, right.

1.8.5 Discussion

In the current section I’ve showed that when the interaction between the Bo-
goliubov modes is taken into account, some particular initial conditions exhibit
thermalization in the sense of classical equipartition of the low-energy modes,
and any observable will show thermal character on long length scales (e.g. the
correlation functions on distances ∆x� ξ).

Nevertheless, the main topic of this chapter deals with the dissipative cool-
ing of 1D BEC, where the system already starts in a thermal state, which
corresponds to the classical equipartition for the low-energy Bogoliubov modes
(as long as their occupation number is � 1). Even if there were some few
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Figure 1.11: Integrability of GPE as a measure of numerical accuracy. Left. Lax
operator eigenvalue in the steady state λt relative error to its value in the initial state
λ0. Isospectrality of the Lax operator assures that λt = λ0 at all times, and a small
error is due to numerical algorithm. Lax operator eigenvalues are non-local conserved
quantities of classical integrable non-linear equations analogous to the rapidities of the
Bethe-ansatz solvable quantum models. Right. Fidelity (one minus the Loschmidt
echo) as a function of the reduced time τ . F = 0 corresponds to perfect numerical
accuracy. Bottom. Relative error of the n-th integral of motion (in logarithmic scale)
relative to its value in the initial state as a function of the integral number n. I0, I1, I2
are proportional to the total atom number, momentum and energy respectively; higher
In do not have simple physical meanting. The apparent decrease of accuracy is due to
the recurrence relations for the value of the integrals: to compute (n + 1)-th integral
one have to know the value of the n-th, meaning accumulation of numerical error. In
this sense isospectrality of the Lax operator is a better numerical test for convergence
of the algorithm. The units and parameters of the simulations are explained in the
Figure 1.9.

highly occupied B-modes on top of a thermal background, perturbative calcu-
lations show that their decay rate scale with the momentum as ΓLL ∝ k3/2

[100], meaning that this decay is highly suppressed at small momenta and large
wavelengths (which are the only ones observed with current experimental tech-
nology). For the experiments discussed later in this thesis, lifetime of the modes
with wavelength larger that the healing length is estimated to be of the order of
100–300 ms [101], which is still 5–20 times larger than any other relevant time
scale, including the cooling time.

So the conclusion is that if we consider the cooling of 1D degenerate gas,
not only all the integrability breaking mechanisms are irrelevant (as they enter
the game at longer times), but also the interaction of Bogoliubov modes can be
safely ignored as long as we stay close to thermal equilibrium, validating the
applicability of the Luttinger model.



CHAPTER 1. COOLING OF 1D BEC 32

1.9 Toy models for quantum dissipation

1.9.1 Modified Leggett-Caldeira model

Before we turn to dissipative cooling of 1D BEC, let’s consider first a couple of
toy models to gain insight.

Perhaps the simplest quantum toy system, where dissipation arises as a
consequence of unitary dynamics is the Leggett-Caldeira model [102]. Thorough
description of the model can be found in almost any textbook on quantum open
systems, e.g. [103].

In this section I introduce the model with a slight modification in the cou-
pling term. The model amounts to having one single quantum harmonic oscilla-
tor1 with the frequency ω and creation/annihilation operators a† and a, coupled
to a bath of harmonic oscillators with frequencies ωs and field operators b† and
b. But the interaction term involves ‘hopping’ terms from and into the bath
Hint =

∑
s gs(a

†bs + b†sa). Then the Hamiltonian of the model reads

H = ωa†a+
∑
s

gs(a
†bs + b†sa) +

∑
s

ωsb
†
sbs.

The model is quadratic, so it allows for an exact solution, and conserves
the number of bosonic particles. Physically it may be thought of as a ground
level of a trapping potential having energy ω, filled with non-interacting bosonic
atoms (the number of particles is given by n =

〈
a†a
〉
), weakly coupled to the

continuum of modes by the real hopping coefficients gs. For instance, if the
bath parameter s represents momentum, and the dispersion relation of the bath
is quadratic ωs ∝ s2, then the Hamiltonian may represent free non-interacting
atoms with momenta s escaping from or being trapped into a harmonic trap.

This model is not directly applicable to the 1D BEC, as the Hamiltonian of
the latter is not quadratic (interactions are important), but in the next section
we will see how the latter could be reduced to a similar system.

If we consider a standard Leggett-Caldeira model (LC), then the system and
the bath would be coupled through their x coordinates,

HLC
int ∝

∑
s

xxs ∝
∑
s

(ωωs)
−1/2·(a†+a)(b†s+bs) =

∑
s

(ωωs)
−1/2·(a†b†s+ab†s+a†bs+abs),

which doesn’t conserve particle number. I’ve made use of the standard harmonic
oscillator field quadratures

x =
√

~/2mω (a+ a†), p = i
√
mω~/2 (a† − a),

where m = ms = ~ = 1.
In our modified Leggett-Caldeira model (MLC) the coupling is given by

HMLC
int ∝

∑
s

(ab†s + a†bs) ∝
∑
s

(ωωs)
1/2xxs + (ωωs)

−1/2pps.

So our modification amounts to an additional coupling through the momen-
tum quadrature in comparison to the standard LC model.

1In the current section I will omit the hats over the operators and set ~ = 1 where it
doesn’t lead to confusion
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If the Hamiltonian is time-independent and the bath modes ωs are in thermal
equilibrium (including the case of T = 0, when the bath is initially empty), they
can be integrated out exactly using the standard second quantized formalism
or the Matsubara technique. Nevertheless, let’s solve the system in Keldysh
formalism for a possibility to potentially introduce explicit time-dependence. In
this section I closely follow and generalize the solution of the Caldeira-Leggett
model presented in [104] to the case of complex fields.

The Keldysh action for our system is given by S = S0 + Sbath + Sint. The
first term

S0 =

∫∫
dt dt′ φ̄ᵀ(t)G−1(t, t′)φ(t′)

is the action for a free bosonic field given by the two-component vector

φ̄ᵀ =
(
φ̄cl φ̄q

)
, φ =

(
φcl
φq

)
,

the bar (̄ ) denotes the complex conjugate, and (ᵀ) denotes matrix transpose,
and φ are fields given by the coherent states of â

∣∣φ〉 = φ
∣∣φ〉. The Green’s

function for a free field is given by its causality structure

G−1 =

(
0 G−1

A

G−1
R G−1

K

)
, (1.16)

with the retarded and advanced components

G−1
R(A)(ε) = ε− ω ± i0, (1.17)

G−1
R(A)(t, t

′) = δ(t− t′)(i∂′t − ω0 ± i0).

The Keldysh contrubution G−1
K for a free field is only a regularization and

plays no role in continuum notation.
The bath contribution is given by the sum of actions of harmonic oscillators,

each of them being completely equivalent to S0 save the different frequency
ω → ωs:

Sbath =
∑
s

∫∫
dt dt′ ϕ̄ᵀ

s (t)G−1
s (t, t′)ϕs(t

′).

The interaction Hamiltonian Hint =
∑
s gs(a

†bs + b†sa) translates into the
action coupling φ and ϕ fields

Sint =
∑
s

gs

∫
dt [(φ̄+ϕ+,s + φ+ϕ̄+,s)− (φ̄−ϕ−,s + φ−ϕ̄−,s)] =

=
∑
s

gs

∫
dt [φ̄clϕq,s + φ̄qϕcl,s + φclϕ̄q,s + φqϕ̄cl,s]

The interaction is local in time so I have omitted the
∫
dt′ δ(t− t′) terms for

brevity.
Gaussian integration for ϕs fields can be performed according to

Z(J̄ , J) =

∫ ∏
j=cl,q

d[ϕ̄j , ϕj ] exp

− ∑
i,j=cl,q

ϕ̄iAijϕj +
∑
j=cl,q

(ϕ̄jJj + J̄jϕj)

 =(1.18)

=
1

detA
exp

 ∑
i,j=cl,q

J̄i(A
−1)ijJj

 ,



CHAPTER 1. COOLING OF 1D BEC 34

where we notice that J1 = φq, J2 = φcl and Aij = (−G−1
s )ij .

Integrating out the bath degrees of freedom leaves us with the dissipative
action for φ fields

Sdiss = −
∫∫

dt dt′
(
φ̄q φ̄cl

)
t

[∑
s

g2
s

(
GK,s GR,s
GA,s 0

)
t,t′

](
φq
φcl

)
t′

=

= −
∫∫

dt dt′
(
φ̄cl φ̄q

)
t

[∑
s

g2
s

(
0 GA,s

GR,s GK,s

)]
t,t′

(
φcl
φq

)
t′

=

=

∫∫
dt dt′ φ̄(t)D−1(t, t′)φ(t′).

The inverse dissipative Green’s function has the same causality structure as
(1.17):

D−1 =

(
0 D−1

A

D−1
R D−1

K

)
= −

∑
s

g2
s

(
0 GA,s

GR,s GK,s

)
.

Retarded and advanced components of the inverse dissipative Green’s func-
tion (D−1)R/A are given by the respective components of Gs:

D−1
R/A(ε) = −

∑
s

g2
sGR/A,s = −

∑
s

g2
s

ε− ωs ± i0
= −

∫
dω

π

J(ω)

ε− ωs ± i0
,

where J(ω) = π
∑
s g

2
sδ(ω − ωs) is the spectral density of the bath.

Let’s assume a constant coupling with the bath modes g2
s = γ, and the

continuum of the latter, allowing to write the spectral density as J(ω) = γ,
then

D−1
R/A(ε) = −γ

∫
dω

π

1

ε− ωs ± i0
=

= −γ
∫
dω

π

(
1

ω − ε ∓ iπδ(ω − ε)
)

= C ± iγ,

where C is an infinite real constant used to renormalize the potential (‘Lamb’s
shift’). Other choices of the spectral density will lead to a different type of
(possibly non-Markovian) dissipation and noise kernels, but won’t change the
picture qualitatively.

Due to the fact that the loss process is quasistationary and the bath is
infinite, the latter can be always assumed to be at thermal equilibrium, which
leads to the fluctuation-dissipation theorem for the Keldysh component of the
bath Green’s function

GK,s(ε) = (GR,s(ε)−GA,s(ε)) coth
ε

2T
.

This translates into the same expression for the inverse dissipative Green’s
function

D−1
K (ε) = (D−1

R (ε)−D−1
A (ε)) coth

ε

2T
= 2iγ coth

ε

2T
.

We are interested in the case where the bath is initially empty, so T = 0 and

D−1
K (ε) = 2iγ.
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In time domain all the components of D−1 are local:

D−1
R/A(t, t′) = ±iγ δ(t− t′),
D−1
K (t, t′) = 2iγ δ(t− t′).

Finally substituting the found D into the full action S = S0 + Sdiss in time
representation and noting that the action is completely time-local, we get

S =

∫
dt
(
φ̄cl φ̄q

)( 0 i∂t − ω − iγ
i∂t − ω + iγ 2iγ

)(
φcl
φq

)
. (1.19)

If only linear terms in φq, φ̄q are kept in the action, the standard saddle-point
approximation leads to

(i∂t − ω + iγ)φcl(t) = 0, (1.20)
(−i∂t − ω − iγ)φ̄cl(t) = 0,

leading to the exponential decay of the fields

φcl(t) = φcl(0)e−iωt−γt

φ̄cl(t) = φ̄cl(0)eiωt−γt.

This amounts to the classical approximation, where there is no noise in the
fields (the variance is zero); for example, a classical x coordinate of a harmonic
oscillator would evolve as x(t) ∝ φ̄cl(t)+φcl(t) ∝ e−γt cosωt, exhibiting damping
(friction).

The resulting dissipative action is quadratic again, meaning that it is possible
to integrate it exactly and gain access to all the correlation functions of the fields
φ, including their variance at equal times (fluctuations). But this would imply
knowing the initial density matrix of the system.

To keep the discussion as general as possible we can postpone the introduc-
tion of the initial density matrix, but instead introduce fluctuations into the
classical fields (1.20) by the Hubbard-Stratonovich transformation on the q − q
term in the iS, where S is given by (1.19):

exp

[
−2γ

∫
dt|φq|2

]
=

∫
D[ξ(t), ξ̄(t)] exp

[
−
∫
dt

(
1

2γ
|ξ(t)|2 + iξ̄(t)φq(t) + iξ(t)φ̄q(t)

)]
.

Any observable O[φ̄cl, φcl] of a classical coordinate can be represented as

〈O[φ̄cl, φcl]〉 =

∫
D[∀φ]O[φ̄cl, φcl]e

iS[∀φ] =

=

∫
D[ξ(t), ξ̄(t)]e−

1
2γ

∫
dt|ξ(t)|2

∫
D[φ̄cl, φcl]O[φ̄cl, φcl]×

×
∫
D[φ̄q, φq]e

φ̄q [(−∂t−iω−γ)φcl−iξ]+φq [(∂t−iω+γ)φ̄cl−iξ̄].

where ∀φ = {φ̄cl, φcl, φ̄q, φq}. Integrating over the quantum fields in the last
integral gives us the functional delta-function leading to the equation of motion
of the classical fields

(∂t + iω + γ)φcl(t) + iξ(t) = 0, (1.21)
(∂t − iω + γ)φ̄cl(t)− iξ̄(t) = 0,
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where the complex terms ξ, ξ̄ must be integrated over all possible paths in time
with the Gaussian weight e−

1
2γ

∫
dt|ξ(t)|2 . Gaussian statistics implies that ξ, ξ̄

can be represented by correlated complex white noise sources with

〈ξ̄(t)ξ(t′)〉 = 2γδ(t− t′),
and so can be constructed as combinations of two independent real white noise
sources η, ζ having the same correlator:

ξ(t) =
η(t) + iζ(t)√

2
, ξ̄(t) =

η(t)− iζ(t)√
2

.

These considerations make (1.21) the Langevin equation, which solution is
given by

φcl(t) = φcl(0)e(−iω−γ)t − i
∫ t

0

dt′ ξ(t′) e(−iω−γ)(t−t′),

φ̄cl(t) = φ̄cl(0)e(iω−γ)t + i

∫ t

0

dt′ ξ̄(t′) e(iω−γ)(t−t′),

〈φ̄cl(t)φcl(t)〉 = 〈φ̄cl(0)φcl(0)〉e−2γt + (1− e−2γt),

n(t) = n0e
−2γt,

where the last expression is recovered from the classical fields correlator in the
Keldysh formalism 〈φ̄cl(t)φcl(t)〉 = 2n(t) + 1.

This result allows us to estimate the validity of purely classical approxima-
tion (1.20), when the quantum noise is neglected and the fields correlator is
approximated as 〈φ̄cl(t)φcl(t)〉 ≈ 2n(t)

2n0 e
−2γt � 1− e−2γt,

2n0 � e2γt − 1,

log(2n0 + 1)� 2γt,

which means that the initial particle number must be much larger than zero
and the observation time must be t� log(2n0 + 1)/2γ.

Discussion. When we couple a harmonic system to a thermal bath, the run-
away of energy quanta is inevitably followed by an induced noise due to the
fluctuation-dissipation relation. In case of the zero temperature bath the noise
is still there, but has not thermal, but quantum character.

In this section I showed the validity of classical approximation for one specific
realization of the bath spectral density, which lead to Markovianity of the loss
process and subsequent simplification of calculations. Nevertheless, qualitatively
the result shouldn’t change even for a non-Markovian dissipation kernel, as the
fluctuation-dissipation relation is universal.

The result is that the classical approximation completely neglecting the
quantum noise is appropriate as long as the initial mode occupation number
is big and the time of evolution is short enough t� log(2n0 + 1)/2γ, where n0

is the initial mode occupation number.
Current analysis is not directly applicable to a Bose-Einstein condensate, as

the dynamics of the latter is given by a self-interacting (non-quadratic) Hamil-
tonian. But in the next section I will show at which conditions it can be ap-
proximated by a harmonic system by utilizing the Bogoliubov theory.
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1.9.2 Dissipative Bose-Hubbard dimer

In this section I consider another toy model which will lead us closer to de-
scription of the full Bose-Einstein condensate. Let’s introduce a Bose-Hubbard
dimer (a double well or a bosonic Josephson junction) given by the Hamiltonian
H0, following the approach of [105].

H0 = −J(a†b+ b†a) +
U

2
[(a†a)2 + (b†b)2],

where J is the Josephson hopping parameter, U is the self-interaction energy,
and the fields operators a and b destroy a particle in the left and right well
respectively. I introduce the full Bose-Hubbard Hamiltonian with more than
two sites later in Section 2.3.

To add dissipation I introduce coupling to two different harmonic baths (their
harmonicity ensures that particles in the baths are non-interacting), where the
coupling and the bath Hamiltonians are given by

Hint =
∑
s

gs(a
†as + a†sa) + hs(b

†bs + b†sb),

Hbath =
∑
s

ωsa
†
sas +$sb

†
sbs,

with gs and hs being the coupling coefficients, field operators as and bs destroy
a boson in one or the other baths, and the harmonic frequencies of the bath
modes are given by ωs and $s.

Physically this system again can be viewed as bosonic particles confined in
the two ground states of the double-well potential, but this time the particles
are hard-core interacting, meaning that it costs energy to put more than one
particle in each of the wells. Finite hopping energy J implies that the particles
can move between the wells. If we again assume that s is the momentum and
ω,$ ∝ s2, the coupling Hamiltonian will describe free particles tunneling in
and out from the double-well.

The Bogoliubov approximation amounts to introducing the symmetric and
antisymmetric field operators

c0 =
a+ b√

2
, c =

a− b√
2
,

and considering the occupation of the symmetric (low-energy) mode to be of
the order of the total particle number N . When N = const, it is legitimate to
replace the operator c0 by a real number

√
N − c†c ≈

√
N − c†c/2

√
N , where

only terms up to the second order in c are kept, as due to the spontaneous sym-
metry breaking c0 acquires a time-independent phase, which is non-observable
and thus can be safely put equal to zero. In time-dependent setting this type of
Bogoliubov transformation is questionable. Nevertheless, I’ll stick to this def-
inition as we are only interested in the quasistationary regime, when at short
times the total particle number can be assumed constant (more on this later).

Then the appropriate parts of the Hamiltonian (up to the second order in
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the field operator c) become

H0 =
1

8
UN2 −NJ +

(
1

2
UN + 2J

)
c†c+

1

4
UN(cc+ c†c†),

Hint =
∑
s

gs

[
(
√
N − c†c

2
√
N

)(as + a†s) + asc
† + a†sc

]
+ hs

[
(
√
N − c†c

2
√
N

)(bs + b†s)− bsc† − b†sc
]
,

Hbath =
∑
s

ωsa
†
sas +$sb

†
sbs.

Another simplification can be achieved by considering the two baths com-
pletely identical

hs = gs, $s = ωs.

This allows us to introduce the symmetric and antisymmetric bath field
operators

ds =
as + bs√

2
, cs =

as − bs√
2

,

and the interaction and bath Hamiltonians become

Hint =
∑
s

gs

[
(
√
N − c†c

2
√
N

)ds + c†cs +H.c.

]
,

Hbath =
∑
s

ωs(d
†
sds + c†scs).

Interaction Hamiltonian can be simplified further taking into account that
after tracing out the bath, terms c†c would produce quartic terms in the dissi-
pative action ∼ φ̄φ̄φφ, which are not allowed in the Bogoliubov approximation,
and the fact that after that the symmetric modes of the bath ds become coupled
to a classical field, so their occupation numbers don’t change and their contri-
bution amounts to a constant shift in energy and so can be safely ignored (of
course, as long as we are following the Bogoliubov approximation). So

Hint =
∑
s

gs

[√
Nds + c†cs +H.c.

]
=
∑
s

gs
[
c†cs +H.c.

]
,

Hbath =
∑
s

ωsc
†
scs.

Next I perform the standard Bogoliubov rotation on the fields of the system
to diagonalize H0

c = u(t)γ − v(t)γ†, c† = ū(t)γ† − v̄(t)γ,

u(t) = coshχ(t), v(t) = sinhχ(t),

|u(t)|2 − |v(t)|2 = 1,

tanh 2χ(t) =
U

U + 4J/N(t)
.

Note that the total number of particles is time-dependent, making our Bogoli-
ubov rotation coefficients time-dependent as well.
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In the Bogoliubov basis the Hamiltonian becomes

H0 =
1

4
UN(N − 1)− J(N + 1) + ω(t)

(
γ†γ +

1

2

)
,

Hint =
∑
s

gs[(ū(t)γ† − v̄(t)γ)cs +H.c.],

Hbath =
∑
s

ωsc
†
scs.

Time-dependence of the Bogoliubov rotation coefficients (as well as the fre-
quency of the B-mode ω) will lead to complicated non-Markovian dissipation
dynamics. A reasonable first approximation would be to imply that the number
of particles N decays so slowly that for short times

N,ω, u, v = const.

I will show that in this quasistationary regime we still recover simple expo-
nential decay of B-mode occupation number in case of Markovian baths.

Introducing the coherent fields

ĉs
∣∣ϕ〉 = ϕ

∣∣ϕ〉, γ̂
∣∣φ〉 = φ

∣∣φ〉,
we see that despite a complicated interaction term, the Hamiltonian is still
quadratic in the operators of the bath, meaning that it’s possible to integrate
them out exactly. Performing the Gaussian integral (1.18) where A is given by
the standard causality structure of the free field (1.16), ϕ1 = ϕcl, ϕ2 = ϕq, and
J is given by Hint

J1 = uφq − vφ̄q, J2 = uφcl − vφ̄cl.
After integration the dissipative action D = J̄i(A

−1)ijJj will have a similar
causality structure as the model from the previous secttion save to additional
anomalous correlators

D = −
∫
dt
(
φ̄cl φ̄q

) [∑
s

g2
s

(
0 |u|2GA,s + |v|2GR,s

|u|2GR,s + |v|2GA,s DK

)](
φcl
φq

)
−

−
∑
s

g2
s(GR,s +GA,s)(vū φ̄clφ̄q + v̄u φclφq)

Again I took advantage of time-locality of the free field Green’s function,
which left us with only one time integration. The Keldysh component DK

can be found from the fluctuation-dissipation theorem due to thermality of the
bath. Assuming the very same Markovian heat bath as in the previous section,
we come to

D−1
R (ε) = −

∑
s

g2
s(|u|2GR,s + |v|2GA,s) = −

∑
s

g2
s

( |u|2
ε− ωs + i0

+
|v|2

ε− ωs − i0

)
=

= −γ
∫
dω

π

|u|2
ε− ω + i0

+
|v|2

ε− ω − i0 =

= −γ
∫
dω

π

( |u|2 + |v|2
ω − ε − iπ|u|2δ(ω − ε) + iπ|v|2δ(ω − ε)

)
=

= C + i(|u|2 − |v|2)γ = C + iγ.
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Discussion. As we see the dissipative action in quasistationary approximation
resulted in an imaginary constant being added to the energy of the Bogoliubov
mode, implying that its occupation number decays exponentially absolutely
the same way as for the model of the previous section. The discussion on
quantum noise fully applies here as well, meaning that one can approximate
the Bogoliubov mode with a classical noiseless field as long as its occupation
� 1. This result is again achieved by postulating a particular effective spectral
density of the bath, but the applicability criterion of the classical description
should hold due to the universal character of the fluctuation-dissipation theorem,
applied to the systems coupled to an equilibrium bath.

Based on this validity criterion we develop a somewhat simpler picture of
dissipation of classical matter waves, valid when the loss of atoms is slower than
any other relevant time scale. As it will demonstrated later, the classical picture
is enough to describe actual experiments with weakly interacting 1D BEC.

On the other hand, when the decay of the condensate mode is not quasista-
tionary, u and v coefficients acquire time dependence and we can expect larger
particle number fluctuation in the B-mode. An extreme case would be to out-
couple a finite number of atoms instantaneously (γN →∞), which is similar to
a coherent splitting of a BEC leading to prethermalization [38]. It was proven
that such coherent splitting results in fluctuations of the local density of the
order of the local density itself. Solution of the full quantum problem and its
relation to the instantaneous splitting is a promising direction of future studies.

1.10 Dissipative quench for classical matter waves

1.10.1 Introduction

A quantum quench is an abrupt change of some parameter in the Hamiltonian or
in the boundary conditions. Studies of quenches in Luttinger liquid model (LL)
have a long and fruitful history. Quenches in LL are especially easy to deal
with analytically, as LL represents one of the simplest and purest integrable
models—a free system, and arbitrary perturbations to LL Hamiltonian can lead
to a whole family of interesting nearly-integrable models. And what is maybe
even more important, in recent years it became possible to experimentally realize
a bosonic Luttinger model with cold atom setups.

Some of the most recent advancements in the field of LL-quenches include
studies of dynamics following a sudden switch-on of interactions [106], an in-
teraction quench with simultaneous switching on of commensurate periodic po-
tential [107], emergent power-laws in the prethermalized regime [108], universal
‘rephasing’ dynamics [109], quench from Luttinger liquid to Mott insulator [110]
and many more. A special case of prethermalziation, described in the previ-
ous section, results from a specific type of quench in Luttinger liquid as well
[111, 38, 43].

Based on the validity criteria of the classical approximation developed in
the previous section, I consider a classical limit of the Luttinger liquid (hy-
drodynamic regime of 1D cold atomic cloud). In this approximation we ne-
glect non-commutativity of LL field operators and substitute them by complex
matter-wave amplitudes.

In this section I report on a specific type of thought experiment, namely a
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dissipative density quench, when the cloud density is decreased abruptly, but
the phase stays almost unaffected. Such a density quench to my knowledge has
never been extensively studied before. The main result of this section will be
an apparent decrease of temperature after a dissipative density quench, so it can
be called a ‘quench cooling’.

This type of quench cannot be realized on existing setups used previously to
demonstrate prethermalization [38]. In those experiments a 1D ultracold cloud
was coherently split along the longitudinal direction, then the two resulting
clouds were recombined in time-of-flight measurement to reveal the dynamics of
the relative (antisymmetric) phase. But such coherent splitting introduces large
density fluctuations in each cloud (1.14), which doesn’t lead to temperature
decrease [112]. This is due to the shot noise, an intrinsically quantum effect,
that cannot be taken into account in the classical matter-wave approximation.

The gedankenexperiment of dissipative quench will be important in under-
standing cooling of 1D BEC and the mechanism of the dissipative cooling, pre-
sented in the next section.

1.10.2 Periodic boundary conditions

To see how such a decrease of temperature is possible, let’s consider a sudden
density quench in the classical counterpart of the Luttinger liquid Hamiltonian

Heff =
∑
q 6=0

~ c|q| b̄qbq +H0,

where b̄ and b are complex numbers representing the amplitude A and phase θ
of the corresponding matter waves through the relations b = Aeiθ, b̄ = Ae−iθ,
and the bar signifies the complex conjugate. The classical Hamiltonian can be
derived from the quantum one (1.8) by the substitution b̂† → b̄, b̂→ b, meaning
that we are neglecting the non-commutativity of the field operators, and have
classical waves instead of bosons. Such an approximation is valid as long as
the mode occupation numbers

〈
b̂†b̂q

〉
� 1, see the discussion in Section 1.9.

I’m always considering only the low-energy modes of the 1D BEC where the
Luttinger description is sufficient, see Section 1.4 for discussion.

The classical phase and density fluctuations in momentum space read

πΠq =
1

2

∣∣∣∣2πKq
∣∣∣∣1/2 iq(bq + b̄−q),

φq =
1

2

∣∣∣∣ 2π

qK

∣∣∣∣1/2 sign q (bq − b̄−q). (1.22)

So the state of our classical matter-wave system can be unambiguously de-
fined by a classical probability distribution on Πq and φq for all q. Note that
this probability distribution is nothing else than the Wigner function in those
cases when it’s strictly positive (e.g. for thermal states which I’ll be considering
shortly, see Section 1.3 for details on Wigner functions).

The dissipative density quench happens when the density of the condensate
(zeroth mode ρ0 of the Luttinger liquid Hamiltonian suddenly changes γ times,
ρ′0 = γρ0, and the density fluctuations change α times, Π′q = αΠq (∀q 6= 0).
For all experimentally relevant situations the mean density is believed to be
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quenched at the same degree as the fluctuations, but it is instructive to carry
out the calculations separating these two contributions and letting α = γ in the
final result.

So after the quench the old and the new variables (1.22) are transformed as

Π′q = αΠq, φ′q = φq,

K ′ =
√
γK, c′ =

√
γc,

as both Luttinger parameter K and the speed of sound c scale as √ρ0.
Decomposing density and phase fluctuation in both the old {b̄, b} and the

new {b̄, b} basis of Tomonaga waves and taking into account that the basis itself
changes due to the changes in the Luttinger parameter and the speed of sound,
we get

α
1

2

∣∣∣∣2πKq
∣∣∣∣1/2 iq(bq + b̄−q) =

1

2

∣∣∣∣2πK ′q

∣∣∣∣1/2 iq(bq + b̄−q),

1

2

∣∣∣∣ 2π

qK

∣∣∣∣1/2 sign q (b̂q − b̄−q) =
1

2

∣∣∣∣ 2π

qK ′

∣∣∣∣1/2 sign q (bq − b̄−q),

and simplifying

αK1/2(bq + b̄−q) = K ′1/2(bq + b̄−q),

K−1/2(bq − b†−q) = K ′−1/2(bq − b̄−q),

we get

α(bq + b̄−q) = γ1/4(bq + b̄−q),

(bq − b̄−q) = γ−1/4(bq − b̄−q).

Introducing auxiliary variables

A =
1

2
(αγ−1/4 + γ1/4), B =

1

2
(αγ−1/4 − γ1/4),

we arrive at

bq = Abq +Bb̄−q, b̄q = Bb−q +Ab̄q.

Note that it is a unitary Bogoliubov transformation only in the case α =
0, which correspond to a conventional quantum quench of K and c. We are
interested in the case α 6= 0, which renders the transformation non-unitary,
being the reason why it’s called the ‘dissipative quench’.

So this particular model cannot be translated back into quantum operator
language because after the substitution b → b̂ the new field operators will not
obey the canonical commutation relation [b̂, b̂†] 6= 1. The physical reason is
that we are explicitly neglecting the phase fluctuations: a real quench reducing
the variance in the density quadrature will inevitably increase variance in the
conjugate phase quadrature due to the Heisenberg uncertainty principle, which
in the second quantized formalism expresses itself through the canonical com-
mutation relations. Nevertheless, when the mode occupation number is much
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larger than one, it it legitimate to neglect the induced phase noise and say that
the phase of the matter wave stays constant.

Now we proceed with the calculation of the mode occupation numbers after
the quench:

b̄qbq = (Bb−q +Ab̄q)(Abq +Bb̄−q) =

= ABb−qbq +A2b̄qbq +B2b−q b̄−q +ABb̄q b̄−q.

Averages in a thermal state read〈
b̄qbq

〉
= (A2 +B2)

〈
b̄qbq

〉
, (1.23)

where it was taken into account that b, b̄ are complex numbers that commute,
the anomalous averages

〈
b̄q b̄p

〉
=
〈
bqbp

〉
= 0 if q 6= p 6= 0, different modes are

uncorrelated in the initial state
〈
b̄qb−q

〉
= 0, and in the absence of currents〈

b̄−qb−q
〉

=
〈
b̄qbq

〉
.

It is important to note from (1.23) that different q modes do not mix, in the
sense that the relative occupation of two modes nq/np stays constant across the
quench.

Initial quasiparticle occupation numbers are given by the Bose-Einstein dis-
tribution 〈

b̄qbq
〉

= nq = (eβεq − 1)−1 ≈ 1

βεq
,

where εq = c|q| is the energy of the quasiparticle, and the last term is equal to the
classical equipartition in the regime of validity of classical fields approximation
(nq � 1).

After the quench the occupation numbers become

n′q = (A2 +B2)nq =
α2 + γ

2
√
γ
nq.

The thermal properties are dependent on the length scale we are observing,
and all the low-energy modes, with occupation numbers n(q), n′(q) � 1 will
have a well-defined and equal temperature β′ (classical wave limit). We can see
it by noticing that the mode energies after the quench become

ε′q =
c′

c
εq =

√
γεq,

β′ =
ε

ε′
2
√
γβ

α2 + γ
=

2β

α2 + γ
,

T ′ = T · α
2 + γ

2
,

λ′ = λ
2γ

α2 + γ
,

where λ = 2~2ρ0β/m is the thermal coherence length.
So both the quench of the condensate mode and the quench of the density

fluctuations have their influence on the final temperature. In the experimentally
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relevant case the mean density is quenched at the same rate as the density
fluctuations, so γ = α and we get (see Figure 1.17)

n′q =
1

2

√
α(α+ 1)nq,

T ′ = T · α(α+ 1)

2
,

λ′ = λ · 2

α+ 1
.

(1.24)

1.10.3 Harmonic trap

Density quench. Quenching density α times, we can repeat the calculations of
the previous subsection, taking into account resolution of the density and phase
fluctuations into Petrov modes before {bj , b̄j} and after the quench {bj , b̄j}
(1.13)

αρ
1/2
0

(
1

R

)1/2 [
µ

εj

]−1/2

(bj − b̄j) = ρ
1/2
0

(
1

R

)1/2 [
µ

εj

]−1/2

(bj − b̄j),

(ρ0)−1/2

(
j + 1/2

R

)1/2 [
µ

εj

]1/2

(bj + b̄j) = (ρ0)−1/2

(
j + 1/2

R

)1/2 [
µ

εj

]1/2

(bj + b̄j).

We simplify further considerations taking α = γ from the beginning, meaning
that all j modes are quenched at the same rate, including j = 0 mode.

Then noticing that ρ0 ∝ α, µ ∝ α, εj ∝ c ∝ √α and keeping the radius
constant (because right after splitting the radius does not change) we get

bj − b̄j = α−3/4(bj − b̄j),

bj + b̄j = α−1/4(bj + b̄j),

which after trivial manipulations reduces precisely to the untrapped case of the
previous subsection.

Though immediately after splitting the cloud will start to breathe, with its
temperature adiabatically varying as a function of radius

T (t)

T (0)
=

(
R(t)

R(0)

)−3/2

. (1.25)

Theory and experiment in adiabatic breathing are presented in [63], but
its physical idea is straightforward: if the dynamics of the condensate is slow
comparing to the inverse energy scale between longitudinal energy levels t ∼
1/ω, then we can assume that number of Petrov bosons stays constant during
such evolution 〈nj〉 = const.

In the classical wave limit temperature is given by equipartition, meaning
that the total energy of each mode is proportional to the temperature

kBT (t) = ~ω
√
j(j + 1)〈nq〉 = ~c(t)

√
j(j + 1)〈nq〉/R(t),

so T (t) ∝ c(t)/R(t), where c(t) ∝
√
ρ0(t) is the instantaneous speed of sound in

the center of the cloud. Finally we notice that given the constant total number
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of particles N , central density scales as ρ0(t) ∝ 1/R(t), assuming self-similar
shape change of the cloud during breathing. Combining all the scaling laws we
recover (1.25) as T (t) ∝ c(t)/R(t) ∝

√
ρ0(t)/R(t) ∝ R(t)−3/2.

Sudden density and radius quench. A trapped condensate is somewhat a
more complicated object than a plain Luttinger liquid as it has its radius R
as an additional degree of freedom. In this paragraph I develop a theory for a
double quench, when the density ρ → ρ′ and radius R → R′ are quenched at
t = 0 at different rates.

I am unaware of any experimental setup able to perform such a double
quench, but this gedankenexperiment is more than another exercise in algebra
as it will prove to be crucial in understanding the next section describing the
dissipative cooling in trapped geometry.

So let’s set the ratio of the final to the initial radius ζ = R′/R, radius being

R =
√

2µ/mω2
e =

√
2ρ0g/mω2

e ,

ωe = R−1 · (2ρ0g/m)1/2,

where ωe is the effective trap frequency (the frequency at which the condensate
with central density ρ0 and radius R would be in equilibrium).

Again equating density and phase fluctuations before and after the quench,
but now taking into account both density and radius change we get

α(ρ0)1/2

(
1

R

)1/2 [
µ

εj

]−1/2

(bj − b̄j) = (ρ′0)1/2

(
1

R′

)1/2
[
µ′

ε′j

]−1/2

(bj − b̄j),

(ρ0)−1/2

(
j + 1/2

R

)1/2 [
µ

εj

]1/2

(bj + b̄j) = (ρ′0)−1/2

(
j + 1/2

R′

)1/2
[
µ′

ε′j

]1/2

(bj + b̄j).

Substituting the scaling relations R ∝ ζ, ρ0 ∝ µ ∝ α, εj ∝ ωe ∝ ζ−1α1/2 we
arrive at the relationship between the old and the new Petrov waves

bj − b̄j = α−1α1/2ζ−1/2

[
α

ζ−1α1/2

]−1/2

(bj − b̄j),

bj + b̄j = (α)−1/2ζ−1/2

[
α

ζ−1α1/2

]1/2

(bj + b̄j),

which simplifies to

bj − b̄j = α−3/4ζ−1(bj − b̄j),

bj + b̄j = α−1/4(bj + b̄j).

Repeating the calculations of the previous subsection we get (see Figure 1.12)〈
b†jbj

〉
=

1

2

√
α(αζ2 + 1)nj ,

T ′ = T · 1

2
αζ−1(αζ2 + 1),

where it was taken into account that T ∝ εjnj ∝ ωenj ∝ ζ−1α1/2nj , and
λT ∝ ρ0/T ∝ α/nj .
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Figure 1.12: Harmonic trap: Quasiparticle occupation numbers n′j/nj (left) and tem-
perature T ′/T (right) as functions of the density and radius quenching parameters.
Dashed line represents the manifold of stationary states ζ =

√
α (a sudden quench

along the dashed line will not excite cloud breathing, though it will affect the temper-
ature). Note that for non-equilibrium quenches the temperature can be increased to
arbitrary value (lower white region in the right figure), but equilibrium quenches lead
only to decrease in temperature (cooling).

Quench to equilibrium. Let’s consider a specific type of quench to equilib-
rium: when central density is quenched α times, but the final radius is quenched
to the equilibrium Tomas-Fermi radius at the new central density. We know that
in equilibrium RTF ∝ ρ

1/2
0 , so ζ = α1/2. As a final result for the equilibrium

quench we get

bj − b̄j = α−5/4(bj − b̄j),

bj + b̄j = α−1/4(bj + b̄j).

〈
b̄jbj

〉
=

1

2

√
α(α2 + 1)nj ,

T ′ = T · 1

2

√
α(α2 + 1).

(1.26)

I will use this result in the next section in derivation of the dissipative cooling.

1.10.4 Discussion

By this thought experiment I’ve shown that after a dissipative density quench
on long scales the system looks thermal with a well-defined temperature β′.

Even more, for a density quench the temperature of the harmonically trapped
gas behaves exactly as if the gas was untrapped, so I’ll discuss only the case of
periodic boundary conditions and conventional Luttinger liquid in the following.

An intuitive understanding can be gained from Figures 1.13 and 1.14. A
density quench prepares squeezed thermal states of momentum modes, which
are all initially in phase. During the free evolution according to Hamiltonian
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Figure 1.13: Quench cooling. Wigner functions of one Luttinger mode q 6= 0, in
terms of the real parts of the density Πq and phase φq fluctuations. Initially the
mode is in thermal Gaussian state (left). In our thought experiment, after a sudden
dissipative density quench, the mode ends up being squeezed in density quadrature
(right), keeping the phase quadrature intact. Free evolution under Hamiltonian (1.8)
corresponds to the rotation of the Wigner function around Π = φ = 0 axis (vertical
line). Average number of bosons in a mode in the classical picture corresponds to the
squared modulus of the wave amplitude, and is proportional to the average variance of
the Wigner function—so after the quench occupation number decreases. Each mode
q rotates with its own angular velocity ωq = c |q|, and different modes quickly become
dephased.

(1.4), shape of the Wigner function doesn’t change, but it rotates as a rigid
body, so fluctuations in density and phase quadratures oscillate periodically.

As explained in detail in [43], the two-point correlation function

g1(z, z′) =
〈Ψ̂†(z)Ψ̂(z′)〉
〈Ψ̂†(z)〉〈Ψ̂(z′)〉

≈ Re 〈ei[φ(z′)−φ(z)]〉

will have exponential character in the long time limit (when all the modes have
lost their initial coherence)

g1(z, z′) = exp(−(z − z′)/λ′),

with a well-defined thermal coherence length λ′ ∝ 1/T ′, which is indistinguish-
able from a thermal equilibrium.

A resulting after-quench ensemble cannot be fully described with a conven-
tional GGE with a partition function ZGGE though, where the latter is given
by a free theory with mode-dependent temperature

ZGGE =

∫
[db∗][db]e−

∑
q βqεqb

∗
qbq ,

because the modes after the quench are not in Gaussian states, but squeezed
(Figure 1.13, right). We can call the resulting state a squeezed-GGE, and Wick’s
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Figure 1.14: An example of mode occupation number as a function of momentum
(in units of thermal momentum qT = kBT/~c at initial temperature T ) for density
quenched ten times (α = 0.1). Initial BE distrtibution (thin dashed) at temperature
T is transformed into a squeezed-GGE distribution with apparent temperature T ′,
which in the classical fields approximation is nothing else than the Rayleigh-Jeans
distribution (thick solid line). Thin solid line represents how a real BE distribution
would look like at T ′. Periodic boundary conditions implied. Shaded region represents
the low momenta at which temperature is being measured in real experimental setups.
In this region resulting GGE is almost indistinguishable from the respective Bose-
Einstein distribution, meaning that experimentally a well-defined temperature T ′ of
the gas will be measured.

theorem has to be modified accordingly [113]. See Appendix C for additional
discussion.

Prethermalization time scale can be straightforwardly calculated from (1.5)
and (1.6), taking into account the free evolution of after-quench waves bq(t) =

e−ic
′|q|t bq, but a simple estimate can be done noticing that for g1(∆z) to have

established prethermalized value on a lenght scale ∆z, a wave with momentum
q = 1/∆z must have performed a nearly full rotation, so

2π ∼ c′|q|t = c′t/∆z ⇒ t ∼ 2π∆z/c′.

In usual experiments c ∼ 2500 µm/s, length scales are limited by the optical
resolution and the size of the condensate, so ∆z ∼ 1÷50 µm, from which follows
that prethermalization time scale t ∼ 3÷ 150 ms.

Note that prethermalization time scale is proportional to the length scale,
meaning that just after the quench perturbations in the cloud propagate ballisti-
cally with a finite speed, forming a causal cone of correlations. For conventional
prethermalization in antisymmetric degree of freedom after splitting the conden-
sate this propagation speed was found to be equal to the speed of sound, which
was confirmed experimentally [114]. The light cone emergence after the den-
sity quench considered in the current section is a scheduled direction of future
research.
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1.11 Dissipative cooling

1.11.1 Introduction

In this section I report on a novel model of cooling of 1D BEC. The model is
largely based on the gedankenexperiment from the previous section and can be
thought of as a sequence of infinitesimal dissipative density quenches followed
by a long equilibration time. This mechanism was independently confirmed by
hydrodynamic calculations (Appendix B), numerical simulations with Gross-
Pitaevskii equations, and, most importantly, with experiment (see the Results
section below).

A notable previous attempt to understand cooling in 1D is made byWitkowska
et al. in a numerical work [75]. Their model is based on the loss of atoms at
the wings of the potential only; in contrary, our model uses analytical Luttinger
theory and considers the outcoupling of atoms in the bulk of the cloud.

It is remarkable that the experimental sequence for 1D cooling is absolutely
identical to the one used in 2D and 3D, where the cooling mechanism is well
understood and known under the name of evaporative cooling. So for long time
it was thought that the evaporative cooling should also work in 1D the very
same way.

Our results show that this ‘common lore’ is wrong, and instead of conven-
tional evaporation, a completely new mechanism is responsible for decrease of
temperature, which we call the dissipative cooling.

1.11.2 Atom loss mechanism

Let’s consider a real experimental setup used to cool degenerate 87Ru atoms to
ultracold temperatures of 10−100 nK. Such procedure is routinely implemented
in the labs of J. Schmiedmayer’s group [65, 39, 38, 66, 24], and in the current
thesis I present the theory behind its applicability.

Our level scheme consists of three hyperfine levels of the 87Ru ground state
in inhomogeneous magnetic field (Figure 1.15). The trapped mF = 2 state is
coupled with the untrapped mF = 0 state by a radio-frequency electromagnetic
field (rf-field), inducing the two-photon transitions. The two-photon process can
be characterized by frequency ω2p = 2ω1p, which is sum of frequencies of two
microwave photons.

To create a true one-dimensional quantum gas, the magnetic trap formF = 2
state is harmonic with high trapping frequency ωr in radial x, y directions and
low frequency ω in longitudinal z direction. In usual experiments ωr & 100ω,
which creates a long cigar-shaped trapping potential. Gravity acts along the x
direction.

The atomic resonance frequency ν20 = ν∗ + µ can be represented as a sum
of two terms. The first term ν∗ is the frequency distance between the ground
state of the parabolic potential for the mF = 2 state (which is located for
ρ =

√
x2 + y2 = 0) and the value of the potential for the mF = 0 state at the

same point ρ = 0. If there were no gravitation, the potential for mF = 0 would
be flat, but due to the presence of gravitation it is UmF=0 = −mgx. The second
term µ is the positive chemical potential due to the atomic interactions.

The condition ν20 > ω2p corresponds to the positive released kinetic energy.
The two-photon effective Rabi frequency Ωeff is, in the perturbative regime, the
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Figure 1.15: Scheme of the coupling of two hyperfine levels of the 87Ru ground state
(not to scale, only x direction is shown). Inhomogeneous magnetic field creates har-
monic trapping potentials for mF = 2 and mF = 1 states, mF = 0 remaining un-
trapped but tilted due to gravity (note that minima of mF = 2 and mF = 1 states
are shifted due to gravity as well). Atoms trapped in mF = 2 state are represented
as dots and have energy higher than the ground level of the harmonic trap due to
interactions (positive chemical potential). Both temperature and chemical potential
are smaller than the distance between the energy levels ωr ∼ 2π · 2000 Hz, so the oc-
cupation of the excited states in the radial direction can be neglected. The atoms are
coupled to the mF = 0 state with two-photon transition with effective frequency ω2p,
where they fall off the trapping region due to gravity and repulsion from the remaining
atoms. Negative detuning δ corresponds to released kinetic energy. The experimental
procedure includes gradual decrease of detuning δ, which in case of 2D and 3D gases
leads to evaporative cooling. In our case of 1D gas the mechanism behind cooling is
different despite the fact that the experimental setup is completely the same.



CHAPTER 1. COOLING OF 1D BEC 51

product of two Rabi frequencies for the transitions mF = 2 ↔ mF = 1 and
mF = 1 ↔ mF = 0 divided by the single-photon detuning from the transition
between the (interacting) ground state of mF = 2 atoms and the (empty) mF =
1 ground state [115].

This two-photon outcoupling leads to a loss term Γ in the Gross-Pitaevskii
equation

i~∂tΨ = − ~2

2m
∂2
zΨ + g|Ψ|2Ψ− i~Γ Ψ,

where the sought-for relaxation rate is [116]

Γ = |Ωeff |2 Re

∫ ∞
0

dt exp[−i(ω2p − ν20)t− ηt]
∫
dx

∫
dy ψ∗2(x, y)ψ̄(x, y, t),

where, regularization is introduced via η → 0+. The ground-state radial wave-
function of an interacting gas is given by a Gaussian ansatz [26, 22]

ψ2(x, y) =
1√
πσ

exp

(
−x

2 + y2

2σ2

)
,

where the width of the wave function σ2 =
~

mωr

√
1 + 2n1Das, and n1D is the

local 1D density in longitudinal direction. If we put this wave packet into the
potential for the untrapped state at mF = 0 and follow its time evolution, we
obtain, ψ̄(x, y):

i~∂tψ̄ = − ~2

2m
(∂2
x + ∂2

y)ψ̄ −mgxψ̄,

ψ̄(x, y, 0) = ψ2(x, y).

The Fourier transform
∫

dkx√
2π

∫ dky√
2π

. . . yields conservation of the scalar product∫
dx

∫
dy ψ∗2(x, y)ψ̄(x, y, t) =

∫
dkx

∫
dky ψ

∗
2 kxky ψ̄kxky (t).

If we take ~ωr and
√
~/(mωr) as the units of energy and length, then

i (∂t + g̃∂kx) ψ̄kxky = −k
2
x + k2

y

2
ψ̄kxky .

In these units g̃ = g/(ωr

√
~ωr/m) and σ2 =

√
1 + 2n1Das. The solution is

ψ̄kxky (t) =
A(t)σ√

π
exp

{
−σ

2 + it

2
[(kx − κ(t))2 + k2

y]

}
,

where, since d
dt [(σ

2 + it)κ(t)]− g̃(σ2 + it) = 0,

κ(t) =
g̃(σ2t+ it2/2)

σ2 + it
=
g̃t

2

(
σ2

σ2 + it
+ 1

)
,

1

A

dA

dt
= − i

2
κ2(t).

The scalar product of ψ2 and ψ̄ is to be taken numerically (in k-space), and
then the time Fourier is to be performed.

The equations for Γ[n1D(z, t)] can be efficiently solved numerically, see Fig-
ure 1.16. Two main conclusions are drawn from the numerical solution:
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1. Local density fluctuation plays almost no role, and an effective approxi-
mation is considering the loss rate only as a function of the mean density
(or chemical potential)

Γ[n1D(z, t)] = Γ[n̄1D(t)].

2. Gravity is an important player in the dissipation process, and its role can
be visualized as the atoms first being driven to the state mF = 0 with
rf-field and then falling freely from the trap (compare with the toy model
of Section 1.9). Interactions would also ‘push’ the mF = 0 atoms from the
trap, but their contribution in dissipation is much smaller.

1.11.3 Results for quasistationary density variation

As we’ve seen from the previous section, atom loss can be characterized with
a parameter Γ dependent only on the chemical potential (mean density). Such
loss leads to continuous squeezing in the density quadrature of Luttinger/Petrov
modes (cf. Section 1.10 for a sudden finite squeezing). In different words,
in the classical fields approximation a quasistationary (with the rate smaller
than quasiparticle energy level splitting Γ > cdq, dq = 2π

L ) atom loss can be
represented as a series of infinitesimal dissipative density quenches, followed by
long periods of equilibration.

This amounts to a power-law approximation to the formulas (1.24) and (1.26)
around α = 1, where α = ρ′/ρ is the ratio between final and initial central
densities. In the case of periodic boundary conditions the power law becomes

n′q/nq = α,

T ′/T = α3/2 = (N ′/N)3/2,

λ′/λ = α−1/2,

and in the case of a harmonic trap

n′j/nj = T ′/T = α3/2 = N ′/N.

Note that the temperature scales with the central density the same way both
in untrapped and trapped cases, but in the trap temperature is proportional to
the total particle number because N ∝ ρ3/2. The thermal coherence length and
Luttinger/Petrov mode occupation numbers scale differently depending on the
confinement geometry.

These scaling laws are compared with the results for density quench in Fig-
ures 1.17 and 1.18, and summarize the main findings of the present chapter.

This result has been independently confirmed with hydrodynamic-type cal-
culations (Appendix B), numerical simulations (Figure 1.19) and experiments
done in J. Schmiedmayer’s group (Figures 1.20 and 1.21).

Intuitive understanding of the cooling process can be gained from Figure 1.22.
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Figure 1.16: Top row: Dissipation rate scaled to the effective Rabi frequency ΓR =
Γ/Ω2 as a function of rf-field detuning from the resonance δ = ω2p−ν20. Conventional
evaporative cooling procedure implies decreasing δ from above, so physically interesting
region of δ > 0 is depicted to the right. Different lines correspond to densities of
n1D = 0, 50, 100, 150µm−1, from bottom to top. Important conclusion is that ΓR

is almost independent of the density, meaning that in the cooling mechanism it is
legitimate to neglect the density fluctuations. Bottom: Different dissipation rates
as a function of the gravity field (repulsive interactions are neglected). Sharp cutoff
at g = 0 can be explained by the fact that at δ > 0 ⇒ ω2p > ν20, the transition is
completely prohibited as in the absense of gravity the kinetic energy, that the atom
acquire after the transition, is Ek = ν20 − ω2p = −δ, and it cannot be negative.
Numerical calculations were performed by Bernhard Rauer.
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Figure 1.17: Periodic boundary conditions: Quasiparticle occupation numbers, tem-
perature and thermal coherence length as a function of the density quenching param-
eter α for sudden (solid line) and quasistationary (dashed line) regimes.

Fast cooling. If the quasicondensate is long enough, the evolution rate of low-
energy modes can be quite slow. In this case the picture of infinitesimal density
quenches followed by long equilibration times breaks down, and the cooling
cannot be considered quasistationary any more.

Let’s estimate the relevant length scales for Luttinger liquid using dimen-
sional considerations. Wigner function of a mode with energy εq = c |q| will
make one revolution in tε = 2π/c |q|, which must be smaller than the relevant
time scale associated with dissipation tΓ = 1/Γ for the dissipative cooling mech-
anism to be applicable: tε . tΓ, which leads to q & Γ/2πc.

For usual cooling experiments Γ ∼ 14 s−1, c ∼ 0.2 cm/s which corresponds
to the momentum q & 11 cm−1 and the corresponding length scale l = 1/q .
900µm, which is much larger than usual condensate length of about 50µm.

So for usual experimental conditions the cooling can be considered slow
enough for described mechanism to work. Even if there are deviations for the
long-wavelength modes, they are irrelevant as the temperature for BEC is mea-
sured on the length scales much smaller.

1.12 Summary and Outlook

In this chapter I presented theory behind cooling of 1D BEC. Despite the fact
that the experimental procedure being essentially the same as one employed for
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Figure 1.18: Top: final temperature T ′ to initial temperature T as a function of the
central density quenching parameter α (top) and as a function of total final particle
number to initial particle number (bottom) in linear (left) and double-logarithmic
(right) scales for periodic boundary conditions (PBC) and harmonic trap in Tomas-
Fermi approximation (trap), as well as for a sudden density/radius quench (quench)
and slow quasistationary density/radius variation (wheel). Note that ‘Wheel, PBC’
and ‘Wheel, trap’ give the same results for temperature drop as a function of central
density (top panels). Dashed line on the bottom panels is the theoretical prediction
to be directly compared with experiment (see Figures 1.20 and 1.21).
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Figure 1.19: Numerical results for slow cooling of untrapped gas. Top row: Particle
number (left) and temperature (right) as a function of time with error bars. Bottom
left: Reduced temperature as a function of reduced density with error bars. Solid
line is the analytical Luttinger liquid prediction T ∝ N3/2. Bottom right: Penrose-
Onsager mode occupation relative to the total number of particles as a function of
time. Steady growth signifies phase space density increase, as well as decrease in
entropy per particle. Simulations were performed with 1D Gross-Pitaevskii equation
and initial condition picked from a thermal ensemble given by the truncated Wigner
approximation. Error bars on temperature are due to the finite size of the ensemble.
Parameters of the simulation were typical to actual experiments.
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Figure 1.20: Preliminary results of a 1D cooling experiment performed on an atom-
chip in the group of J. Schmiedmayer [117, manuscript in preparation]. Top panel:
temperature measured with density ripple technique [25] as a function of total atom
number. Dashed line shows the T ∝ N scaling law derived in this chapter. Colored
dots correspond to different measurements, which are presented in detail in six lower
panels: total number of atoms vs time (left) and temperature vs time (right). Figures
prepared by B. Rauer.
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Figure 1.21: Preliminary results of a 1D cooling experiment performed on an atomchip
in the group of J. Schmiedmayer [117, manuscript in preparation]. Temperature as a
function of total atom number. Shaded region represents the true 1D region of the
quasicondensate (kBT < ~ωr, µ < ~ωr). Dashed line shows the T ∝ N scaling law
derived in this chapter. The measurement scheme differs from the one utilized in the
previous figure by the fact that all the data points were taken at constant time, but
with different outcoupling rates Γ. Figure prepared by B. Rauer.

evaporative cooling of 2D and 3D, here the mechanism is different.
Due to almost perfect integrability of 1D degenerate bosinic gas, thermal-

ization is highly suppressed, so conventional evaporative cooling is rendered
inefficient.

Our proposed explanation—the dissipative cooling—implies out-tunneling of
the atoms out of a rf-dressed potential. This out-tunneling is insensitive to ve-
locity of the atoms in longitudinal direction of a long cigar-shaped trap, leading
to quasistationary density decrease. It is also a coherent process, retaining the
phase of the quasicondensate intact, so in the mean-field description (which is
valid at low temperatures of 10–100 nK present in the experiment) this amounts
to an addition of a loss term to the Gross-Pitaevskii equation.

Elementary excitations of the system are phonons at long length scales,
which incorporate density Π and phase φ fluctuations of the cloud as field
quadratures (analogous to x and p coordinates of a conventional harmonic os-
cillator). Free evolution of the phonons can be represented as rotation of the
Wigner function in Π–φ space, and when combined with the constant loss of
density (which amounts to squeezing of the Wigner function in Π quadrature),
leads to loss in quasiparticle occupation numbers.

Cartoon picture of the process is creating pottery on a classical potter’s
wheel (Figure 1.22): we can imagine a piece of clay in form of a Gaussian,
representing initial thermal state of a quasiparticle more, is being rotated (free
evolution) and squeezed from two sides by potter’s hands (density loss). This
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results in a ‘sharper’ Gaussian, as the volume of the clay is conserved the same
way as the normalization of the Wigner function. But occupation number of the
mode is proportional to the width (standard deviation) of the Gaussian, which
decreases, meaning that we are loosing quasiparticles from each mode.

Dissipation in our open quantum system is due to a coupling to a bath at
zero temperature, and in the case of quasistationary atom loss the fluctuations
in the modes are purely quantum (given by the fluctuation-dissipation relation
of the zero-temperature bath), and can be neglected as long as the occupation
number of the modes is � 1. It is always the case for low-momenta modes
k � ξ−1 at experimentally realizable temperatures of 10–100 nK and supports
the classical fields approximation taken in the derivation.

For long-wavelength modes the classical equipartition shall hold, meaning
that temperature is proportional to the average energy of a mode

∀q : T (t) ∝ Eq(t).
In the case of untrapped gas

T (t) ∝ Eq(t) = ~c(t) |q|nq(t).
It is important that the relative occupation number of the modes is preserved

during our cooling,
nq(t)

np(t)
=
nq(0)

np(0)
,

where q 6= p are some arbitrary mode numbers.
So it follows that if the initial state had a well-defined classical temperature,

and Eq(0) = Ep(0), it will also have one after the cooling as Eq(t) = Ep(t) (see
Figure 1.14).

So our mechanism amounts to a process of cooling without any need of
thermalization.

Our cooling mechanism cannot be called adiabatic in a strict sense, be-
cause the modes’ energy is composed of two time-dependent terms, one of them
being adiabatic change in the energy levels (due to changing sound velocity
proportional to the square root of mean density c(t) ∝

√
ρ̄(t)), but another

one—change of quasiparticle occupation numbers nq(t).
Numerical simulations show increase of the relative population of the Penrose-

Onsager mode, defined as the largest eigenvalue of a one-body density matrix,
which correspond to decrease of Boltzmann entropy (the entropy of the nor-
malized one-body reduced density matrix, SB = −tr ρ1 log ρ1), see Figure 1.19,
bottom right. On the other hand, the Gibbs entropy of the full normalized
many-body density matrix SG = −tr ρ log ρ in Bogoliubov approximation stays
constant, due to the fact that the relative occupation of the Bogoliubov modes
doesn’t change. This discrepancy is no surprise as by performing the partial
trace to get the one-body density matrix we are neglecting a lot of information
about many-particle correlations, so SB > SG for an interacting system, and SB
can decrease as long as it stays larger than SG with no violation of the second
law of thermodynamics. Relationship between Boltzmann and Gibbs entropies
is discussed in detail in [118].

Being able to construct a simple Luttinger liquid model of 1D cooling, we are
in principle able to calculate all the relevant correlation functions. In the cur-
rent thesis I presented power laws for temperature scaling, which were already
confirmed in experiment (Figures 1.20 and Figure 1.21).
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The same discussion applies to a trapped condensate in Thomas-Fermi ap-
proximation and leads to the very same power law dependence of the tempera-
ture on the central peak density.

Outlook. Presented results open a wide field of future study.
The current study was concentrated on the slow quasistationary decay, but

in the case of fast decay I anticipate production of phonons, which would coun-
terbalance the temperature drop. Currently we are investigating at which condi-
tions the resulting state may be considered thermal. In particular, other studies
showed emergence of true thermal states by slow variation of parameters of the
Hamiltonian in free systems [119, 120].

A direction of future study is to develop a fully quantum theory of losses in
1D BEC, which should incorporate quasistationary dissipative cooling and the
sudden splitting of the condensate (e.g. in prethermalization experiments) as
limiting cases.

Experimental study on the topic will continue by measuring the higher-
order correlation functions. (Generalized) Gibbs ensemble implies decoupling
of correlators through Wick’s theorem, so probing higher-order moments will
provide important information on the regimes of the model’s applicability and
possible future refinements. Another experimental study could concern with fast
cooling, where the model predicts appearance of non-classical squeezed thermal
states.

One can note that Bogoliubov-Luttinger modes are not completely indepen-
dent, but interact at long time scales [100, 101]. Future studies will elucidate
how this process affects the cooling mechanism.

I hope that presented results will lead to even better experimental techniques
to cool and manipulate bosonic gases, opening new horizons in exploring the
fascinating area of non-equilibrium many-body quantum physics.
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Figure 1.22: Top. Dissipative cooling in 1D—the quantum potter’s wheel. Wigner
functions of one specific Luttinger/Petrov mode q as functions of density Π and phase φ
field quadratures during time evolution (from left to right). Quasistationary squeezing
in the density quadrature is represented with arrows. The free evolution is rotation
around the symmetry axis. The analogy with a classical potter’s wheel is apparent
from the picture: the free evolution of the Wigner function corresponds to the rotation
of the piece of clay on a potter’s wheel, and the squeezing in the density quadrature due
to atom loss corresponds to potter’s hands squeezing the clay blank. Normalization
of the Wigner function corresponds to the constant volume of the clay. Compare
this with Figure 1.13, where the density quench is instantaneous. Number of bosons
per mode is proportional to the width (standard deviation) of the Gaussian, so it’s
apparent that this number decreases, which leads to decrease of temperature in the
low-momenta modes as described in detail in Section 1.10. Bottom. Classical potter’s
wheel: Indian potter shaping a not-so-Gaussian piece of clay. [Image by Wikipedia user Yann
licensed under GNU FDL]



Chapter 2

Thermalization at the
breakdown of integrability

2.1 Introduction

Out-of-equilibrium phenomena. Since the inception of quantum mechanics
researchers have been challenged by the complexity of quantum many-body
interacting systems. During the last century most of them could be prepared
only near thermal equilibrium, as there were no effective techniques of reducing
environmentally induced decoherence and thermalization.

But in recent decades, experimental advancements in atomic phycics, quan-
tum optics and nanoscience finally allowed to study many-body systems in iso-
lation. This had huge consequences, opening whole new branches of science
such as the quantum non-equilibrium physics, which is the field the author had
been working in.

There are many ways to drive the system out of equilibrium, such as applica-
tion of external time-dependent fields or coupling the system to a non-thermal
reservoir. The main topic of this chapter will be another very common approach
in studies of non-equilibrium phenomena—the so called quantum quench. It hap-
pens when a system, initially prepared in an eigenstate (e.g. the ground state) of
some Hamiltonian H0, is evolving under action of another Hamiltonian H. This
change in Hamiltonian is sudden in the sense that the time scale of the manip-
ulation is be smaller than the inverse energy level spacing of H0. The opposite
to a quench would be the adiabatic regime, when the Hamiltonian changes so
slowly that there are no transitions between energy levels. Note that for gapless
Hamiltonians there may be no such a slow adiabatic regime in thermodynamic
limit [121].

In a nutshell, the dynamics after a quench can be often imagined as a relax-
ation of a great number of quasiparticles (ground state of H0 corresponds to an
excited state of H). Incoherent quasiparticles from points 2x apart move with
the group velocity v = dE/dk and meet after the time t = x/v, destroying local
correlations at the meeting point, which is viewed as thermalization. Sure, dis-
persion relation and scattering events make this picture much more complicated
[122].

On the other hand, in an important case of conformal field theories (CFT),

62
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Figure 2.1: Notions of non-equilibrium physics, addressed in this chapter. Acronyms
are explained in the text and summarized in Appendix A.

such as Luttinger liquid, discussed in the previous chapter, quasiparticles are
non-dispersing non-interacting phonons, which leads to a clean light-cone spread-
ing of correlations after a quench. Such behavior was experimentally confirmed
with cold 1D gas [114].

There exist few overviews of non-equilibrium phenomena as the field itself is
very novel. Quenches are addressed in detail in [123], and applications to cold
gases in [124].

Motivation of the study. The study reported in this chapter is devoted to
understanding how the laws of statistical physics emerge from the many-body
quantum mechanics. In particular, I will address one of the most fundamental
questions of non-equilibrium physics: whether an isolated system can thermal-
ize, serving as its own bath.

I will present the results of equilibration and thermalization in a mesoscopic
quantum system after a quench. Motivation for the study is the rich physics
of the model, exhibiting both integrable and non-integrable regime. Usually
people say that non-integrable systems thermalize and integrable—not. I will
show that there exists a whole spectrum of different levels of thermalization at
integrability crossover.

The size of the system under study is limited by exact diagonalization
method, so no strong conclusions about the thermodynamic limit can be drawn.
Nevertheless, I will show that even a small system can possess definite fea-
tures, characteristic to macroscopic statistical description. Some recent results
on small systems demonstrate application of thermodynamics even to a single
quantum harmonic oscillator [125].

Even more, thermalization of mesoscopic systems is interesting by its own in
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the context of modern advancements in nanotechnology and quantum comput-
ing. Mid-level many-body systems represent an ideal bridge between the areas
of quantum information and quantum foundations, tensor networks, thermody-
namics, and statistical mechanics.

Structure of the chapter. I will study a particular mesoscopic quantum sys-
tem, which can be experimentally realized with cold bosonic atoms in optical
lattices (Section 2.2).

Section 2.3 introduces the Bose-Hubbard model. I argue about the par-
ticularly interesting features of the model in 1D, namely that it exhibits two
integrable limits as well as a chaotic regime. I discuss the exact diagonalization,
which is the numerical method used in this study, in comparison with the other
widely used numerical approaches.

Section 2.4 proceeds with a brief summary of the most important concepts of
non-equilibrium physics, which will later appear to be helpful in understanding
thermalization.

After the scene has been set up, I turn to the dynamics after a quantum
quench in Section 2.5. This particular quench had been already experimentally
realized, studied analytically (in the limiting cases of U = 0 and ∞) and nu-
merically, using DMRG in positon space [126, 127, 128]. The theory showed
excellent agreement with the experiment.

I extend the existing studies to the intermediate non-integrable regime and
perform calculations with momentum (Fourier) modes, which are interesting
due to the fact that this formulation might be able to open a way to kinetic
description and wave turbulence phenomena [129].

In the same section I address the interesting properties of the initial state,
explicitly calculate the full and reduced density matrix of the steady state and
evolution of the entanglement entropy.

As our system has both integrable and non-integrable regimes, quantum
integrability is discussed in detail in Section 2.6. I present the spectrum of our
Hamiltonian, which has clear signatures of quantum chaos.

If we want to claim that a quantum sys-
tem thermalizes, then we would expect that
it somehow forgets its initial state. This ques-
tion is addressed in Section 2.7, where I apply
a measure known as the entanglement in the
eigenbasis to quantify the ‘forgetfulness’.

Section 2.8 is devoted to the cornerstone
of modern thermalization description—the
eigenstate thermalization hypothesis, which
assures the thermality of expectation values
after equilibration. I demonstrate how it can
be used to measure degree of integrability.

Generalized Gibbs ensemble, which is a
straightforward generalization of a conven-
tional thermal ensemble, is discussed in Sec-
tion 2.9. I show that the equilibrated state
after a quench can be described in terms of a deformed GGE at integrability
crossover.
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The last observation allows for applications of kinetic description, which is
the topic of Section 2.10. There I show that quantum Boltzmann equation is
indeed able to describe small deviations from thermal and generalized thermal
states.

The chapter is concluded with summary and outlook in Section 2.11.
An additional goal of the study was to check the applicability of semiclassical

approximation schemes. Results on the limitations of the truncated Wigner
approximation (TWA) are summarized in Appendix D.

2.2 Optical lattices

Optical lattice is a spatial pattern of varying electric field intensity produced
by interference of counter-propagating laser beams. It effects in a spatially
periodic potential able to trap neutral atoms by Stark shift, with the resulting
arrangement of atoms resembling a crystal lattice, hence the name.

Principle of operation. To get a qualitative understanding of the mecha-
nism let’s follow the example given in [6] and consider two counterpropagating
linearly-polarized laser beams, creating electric field of the form

~E(z, t) = ~E(z)e−iωt + ~E∗(z)eiωt,

~E(z) = E0(êxe
iqz + êye

−iqz).

Polarization state of the electric field oscillates in the direction of z axis
between being linearly and circularly polarized, polarization vector given by

~e =
1√
2

(êx + êye
−2iqz).

Now let’s imagine that the lasers are tuned to the 2S1/2 ↔ 2P3/2 transition
in an alkali atom. Intensities of the two circularly polarized components of the
electric field change in space, leading to a position-dependent shift in the energy
levels, so two ground states g± feel the potential

V ± = V0(−2± sin 2qz),

where V0 is the magnitude of the potential, dependent on the detuning δ, Rabi
frequency ΩR and the inverse lifetime of the excited level Γe as

V0 = −2

3

~Ω2
Rδ

δ2 + Γ2
e/4

.

This picture can be generalized to more complicated laser arrangements to
create position-dependent potentials in 1D, 2D and 3D geometries.

Applications. Area of application of optical lattices is tremendous, growing
larger and larger every year.

First of all, optical lattices provide an unprecedented level of control over
experimental parameters thus becoming an ultimate quantum simulator for var-
ious condensed matter systems [130].
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The systems being successfully simulated include a chain of interacting Ising
spins at the phase transition point [131], self-trapping in an array of 1D BEC
[132], geometrically frustrated systems with large degeneracy of low-energy
states [133], quantum criticality [134], and many others.

A sub-field of its own includes simulation of quantum magnetism, which re-
sults from spin-orbit coupling [135]. Some recent results on this frontier include
simulations of a frustrated classical spin system by creating strong effective mag-
netic field [136], vortices formation due to a synthetic magnetic field [137, 138],
unique Hofstadter-Harper Hamiltonian exhibiting a fractal structure and de-
scribing electrons in a magnetic field [139, 140], and others.

Optical lattices allow to build a quantum system from the bottom, with
control of positioning single atoms. Those atoms can act as qubits allowing
realization of quantum gates for prospects of quantum computers [141, 142, 143].

An interesting result is an observation of negative absolute temperatures in
an inverted optical lattice, which is possible due to the fact that the system’s
Hamiltonian is bounded from above [144].

A novel tool in studying atoms in optical lattices is so called quantum gas
microscope, which is able to detect single atoms for precise control over quantum
simulations or read-out of potential qubits [69, 145].

In addition, optical lattices can be used to cool atoms below the Doppler
limit, which states that the minimal temperature achievable via laser cooling is
limited by the recoil energy of an atom at rest, absorbing one photon TDoppler =
(~q)2/2mkB , where ~q is the momentum of the photon. This is achieved by so
called Sisyphus cooling, when atoms loose kinetic energy when they climb up the
potential hill just to be driven to the low-energy state by the optical pumping,
giving away their energy to the light field [146, 147].

2.3 Bose-Hubbard model

2.3.1 Introduction

Interacting bosons in optical lattices can be approximately described by a Bose-
Hubbard (BH) model, first introduced by Gersch and Knollman in 1963 [148].
The model is a close kin to Hubbard model, used in condensed matter theory
to describe interacting fermions on a lattice [149]. Name ‘Bose’ doesn’t refer to
the inventor of the model though, but is accounting for the fact that here the
particles are bosons.

The Hamiltonian of the model (implying periodic boundary conditions) is
given by

Ĥ = −J
∑
〈ij〉

(â†i âj + â†j âi) +
U

2

M∑
i=1

n̂i(n̂i − 1), (2.1)

where âi is the bosonic annihilation operator and n̂i = â†i âi is the number
operator on site i, J is the hopping parameter, quantifying the tendency of par-
ticles to move to a neighboring site, U is the on-site self-interaction parameter,
U > 0 makes it more energetically costly for several particles to occupy one site,
which corresponds to repulsive interactions, M is the total number of sites, and〈
ij
〉
stands for summation over the nearest neighbors only (short-range inter-

actions). In this study I’m not interested in the equilibrium properties of the
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model in the grand-canonical ensemble, so I omit the chemical potential term
Hµ = −µ∑i n̂i, which in any case amounts just to a constant shift in energy
due to total particle number conservation.

BH model is notable by its phase diagram: at zero temperature it can be
either in superfluid phase at large J/U , where particles can flow freely between
the sites or in a Mott insulating phase at small J/U , characterized by inte-
ger bosonic on-site occupation numbers and existence of an energy gap [150].
In superfluid phase long-wavelength modes don’t ‘feel’ the lattice and exhibit
universality of the Luttinger liquid model, described in Section 1.4.

2.3.2 One-dimensional case

Fourier-transforming the field operators by

b̂q =
1√
M

M∑
j=1

e2πijq/M âj ,

we arrive at the representation of the Hamiltonian (2.1) in momentum space

Ĥ = −2J

M−1∑
q=0

cos(2πq/M)b̂†q b̂q + +
U

2M

M−1∑
q1,2,3,4=0

b̂†q1 b̂
†
q2 b̂q3 b̂q4δq1+q2,q3+q4 , (2.2)

where the interaction becomes completely non-local in terms of new bosons b̂,
the delta-function assuring the conservation of momentum.

One-dimensional BH model is of particular interest as it is integrable in two
limiting cases: U = 0, where it describes a free system (quadratic Hamiltonian)
with cosine dispersion law, and U = ∞, hard-core bosons, which can be cast
into a form of non-interacting fermions.

U = 0 U = ∞
integrable integrablenon-integrable

More on what exactly is quantum integrability is written in Sections 1.8
and 2.6, but for now I’ll note that a free system with quadratic Hamiltonian
represents the simplest possible integrable model (as different quasiparticle oc-
cupation numbers are conserved, so the Hilbert space can be split into many
non-coupled symmetry sectors). In the intermediate regime 0 < U < ∞ there
is no mapping to a free model and BH chain is non-integrable.

2.3.3 Hard-core bosons

An important case of infinitely-strong repulsive on-site interaction is realized in
the hard-core regime of BH model. Then because of the infinite energy barrier
there cannot be more than one boson per site, which reminds of Pauli exclusion
principle {âi, â†i} = 1. Though on different sites bosons commute [âi, â

†
j ] = 0,

so they themselves cannot be thought of as fermions.
But there exists a highly non-local many-body unitary transformation, which

allows to cast the Hamiltonian into a free form for new true fermionic field
operators ĉi

Ĥ = −J
∑
〈ij〉

(ĉ†i ĉj + ĉ†j ĉi),
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or in the momentum space

Ĥ = −2J

M∑
q=0

cos(2πq/M) ĉ†q ĉq. (2.3)

This Jordan-Wigner transformation, which was initially developed to map
spin operators into fermions to solve 1D XY model by Jordan and Wigner in
1928 [151], and in the case of fermionization of bosons reads as [152, 79, 153]

â†j = ĉ†j

j−1∏
`=1

eiπĉ
†
` ĉ` .

The product part represents a ‘string’ operator which contains the sum of
the occupation numbers of fermions to the left of site j and ensures the right
anticommutation relation {ĉi, ĉ†j} = 1.

The main advantage of this model is its Hilbert space being orders of magni-
tude smaller than that of the system of soft-core bosons, meaning that efficient
techniques of exact diagonalization can be used to study longer chains, allowing
conclusions on thermodynamic limit. That’s why hard-core bosons have been
fruitfully exploited in many studies of peculiarities of quantum thermalization
(more on that in the next sections).

Bethe Ansatz studies showed that presented hard-core description can be
generalized to low-enegrgy soft-core bosons, which can be formulated as a pair
of entangled fermionic quasiparticles and a fermionic collective excitation [154].
At U →∞ the pairs break and give raise to a free fermionic gas in accordance
to Jordan-Wigner transformation

In this thesis I don’t concentrate on hard-core bosons, but explore the BH-
chain in the full range of interaction strength to uncover the effects of integra-
bility breaking on different aspects of thermalization.

2.3.4 Applications

So far most of the studies on the BH-model concentrated on two topics: either
studies of equilibrium properties and the phase transition or its application in
the context of equilibration and thermalization.

Some recent advancements of the former topic include experimental observa-
tion of superfluid to Mott insulator phase transition, realized in optical lattices
[155]; description of a ordered spin-liquid state on a kagome lattice [156]; studies
of spin-orbit coupling [157]; calculations of non-equilibrium steady states, main-
tained by coupling BH chain to a heat bath [158]; new analytical approaches in
studies of thermodynamics of the model in terms of diagrammatic expansion in
hopping parameter [159], and many others.

Studies of the second topic are of direct relevance to my thesis and will be
considered in detail in the next sections in the context of specific aspects of
thermalization.

2.3.5 Numerical simulations

Nowadays there exist a plethora of numerical methods of studying condensed
matter systems, all of them having their positive and negative traits. But gen-
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erally speaking, they all can be separated in three classes only: variational,
stochastic and exact.

Variational methods. These are based on an initial ansatz of a specific trial
wavefunction for a many-body system. One of the most famous algorithms of
this type are based on an ansatz called tensor networks or matrix product states,
where exact diagonalization steps are followed by truncation of the Hilbert space,
which leaves only relevant states and prevents the exponential growth of the
latter [160].

Variational methods are especially efficient at low temperatures and 1D ge-
ometry, and have been successfully applied to studies of the Kondo problem
[161], the fractional charge and fractional statistics [162, 163] and even to rela-
tivistic models, allowing investigation of the holographic principle and AdS/CFT
correspondence [164]. Of course, there are many studies of the Bose-Hubbard
model itself [165, 127].

Some variations of the algorithms include those able to explicitly deal with
the thermodynamic limit [166, 167].

Drawback of these methods usually lies in the fact that they are applicable
to finite times only because of entanglement growth. Also they are not so well
suited for studies of highly excited systems, as entropy area laws don’t usually
hold there [168].

Stochastic methods. Also called quantum Monte Carlo methods, they aim
at calculating physical quantities by averaging over some stochastic ensembles.
The main advantage is that methods’ precision is dependent on the size of such
ensemble, and not the size of the Hilbert space, hypothetically allowing studies
of systems of arbitrary size [169].

For bosonic systems such as BH model, a particularly fruitful approach is the
path integral Monte Carlo, which exploits the fact that n-dimensional quantum
system can be mapped to a (n+ 1)-dimensional classical system, and quantum
fluctuations of the former correspond to thermal fluctuations of the latter [170,
171, 172].

Strong advantages of stochastic methods lie in the feature that they can be
applied to 2D and 3D systems, giving especially good results for near-thermal
equilibrium simulations, and that they can be efficiently run on a parallel com-
puter. Drawbacks include sometimes slow convergence of the observables (espe-
cially at phase transitions), difficulties in analytical continuation to the real-time
case (in contrast to the imaginary time thermodynamic case1), infamous sign
problem for fermions, and requirement of a lot of computational power.

Numerical simulations in Chapter 1 were done using a specific stochastic
method, namely the truncated Wigner approximation (TWA) [37, 32]. I tried
to use it for the present study of thermalization in a BH-chain and found that it is
not able to describe the system. More on the limitations of TWA in Appendix D.

Exact diagonalization. Variational and stochastic methods lead to experi-
mentally relevant predictions, but they don’t reveal the ‘inner gears’ of quantum
mechanics, respectively exact eigenstates and eigenenergies. And because this

1An interesting recent paper suggests using AdS/CFT correspondence instead of perform-
ing analytical continuation to study dynamics [173].
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Figure 2.2: Example structures of 1D Bose-Hubbard Hamiltonians for a chain of 8
sites and 4 particles in position space, left (2.1); and in momentum space, right (2.2).
On axes are exact many-body eigenstates

∣∣i〉, and non-zero elements of Hij are marked
with dots; ‘nz’ stands for the number of non-zero elements. In position space only few
eigenstates are coupled by the Hamiltonian, which reflects the locality of the hopping
term in real space.

study is not aimed at getting an agreement with some specific experiment, but
to shed light on how exactly the process of thermalization is happening in a
many-body system, I’ve chosen to use exact diagonalization.

The obvious positive side of it is that we have access to all possible physics
and are able to calculate all the quantities, including spectrum of the Hamil-
tonian, reduced density matrices in any basis, equilibrium states after t → ∞,
entanglement entropies etc.

A considerable drawback of the method is its applicability to small chains
only as the dimension of the Hilbert space grows exponentially with the system
size. And because I consider soft-core bosons, the system sizes are still much
smaller than those in the simulations of hard-core bosons, so I abandon the hope
to make conclusions of thermodynamic limit. Still small systems are of interest
of its own as they can be realized in experiments with optical lattices. And I
claim there are some universal features of non-equilibrium dynamics, so even
studies on small system can lead to important insights. This is going to be the
topic of the next sections.

Hamiltonians were constructed following the procedure of [174], and the
particle conservation was explicitly taken into account. Example of the structure
of the Hamiltonian is shown in Figure 2.2. All results of this chapter were
obtained on a desktop computer.

2.4 Thermalization glossary

Before diving into physics of thermalization I’ll provide a set of definitions that
will play a major role in the following. Some of key notions such are Eigenstate
Thermalization hypothesis of Generalized Gibbs ensemble are not in the glossary
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as there are whole sections dedicated to them.

Free system. A system with quadratic Hamiltonian in second-quantized field
operators. For example, (2.1) and (2.2) correspond to free systems if U =
0. A free system is the simplest quantum integrable system (more on that in
Section 2.6). A free bosonic system can be represented as a set on uncoupled
harmonic oscillators. Luttinger liquid from Chapter 1 is a paradigmatic example
of a free system.

Microcanonical state. Describes completely isolated system with the density
matrix diagonal in the eigenstate basis ρ = 1

Z δ(Ĥ − E), meaning that the
eigenstates sufficiently close in energy to E contribute with the same weight
[175].

Gaussian state. Density matrix ρ̂ of the system holds all the statistical infor-
mation about the ensemble. Quantum characteristic function is a representation
of the density matrix defined as

χ(~λ,~λ∗) = tr

[
ρ̂ · exp

(∑
i

λiâ
†
i − λ∗i âi

)]
,

where ~λ, ~λ∗ are complex vectors and âi are quantum field annihilation operators
in some basis [31, 176]. For example, the set of âi may correspond to annihilation
operators on site i in (2.1).

By definition, a Gaussian state is a state for which the characteristic function
is Gaussian in all the variables. Important consequence is that the characteristic
function factorizes

χ(~λ,~λ∗) =
∏
i

χ(λi, λ
∗
i ),

which corresponds to a product state in a specific basis (a classical state where
different parts of the system are not entangled with each other).

In the Gaussian state Wick theorem applies, allowing to express higher order
correlation functions in terms of the lower-order correlators. In this regard
Gaussian states are very convenient for calculations.

An important example of a Gaussian state is a thermal state of a free system
(even a vacuum is a Gaussian state as it is a thermal state at zero temperature).
The same logic applies to a generalized thermal state of a free system, namely
the Generalized Gibbs ensemble. I note that a thermal state of a non-free
(interacting) system is in general non-Gaussian.

Wigner function of a Gaussian state is also a Gaussian (Section 1.3).

Equilibration. A tendency of the system to relax to a steady state, which is
the starting observation for applying statistical methods and the expression of
the second law of thermodynamics.

Weak equilibration. The time average of an observable converges to a specific
value as t→∞. This allows for fluctuations around a time-averaged state [177].
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Strong equilibration. At almost all times the local observables are equal to
the observables in time-averaged (equilibrated) state. It is conjectured that
all systems exhibiting weak equilibration also exhibit strong equilibration in
thermodynamic limit [178].

Equilibrated state. The time averaged state with the density matrix given by

ς̂ = (ρ̂t) = lim
τ→∞

1

τ

∫ τ

0

ρ̂tdt.

For system without degenerate eigenstates it is given by a diagonal state,
namely the state given by a density matrix, which has only diagonal values in
its eigenrepresentation

lim
τ→∞

1

τ

∫ τ

0

dt ρ̂(t) = lim
τ→∞

1

τ

∫ τ

0

dt
∑
k`

ei(εk−ε`)t
〈
k
∣∣ρ̂0

∣∣`〉 =
∑
k

〈
k
∣∣ρ̂0

∣∣k〉,
where

∣∣k〉 and εk are exact eigenstate and the corresponding eigenenergy.
In case of a degenerate spectrum the equilibrated state retains more infor-

mation about the initial state as the equilibrated density matrix has coherence
terms between degenerate eigenstates. But this case can be reduced to a diag-
onal matrix by splitting the Hilbert space into non-coupled symmetry sectors,
each of which contains no degenerate eigenstates. So in the following I will use
terms ‘diagonal’ and ‘equilibrated’ states interchangeably.

Thermalization. Amore narrow notion than equilibration (thermal state must
be equilibrated, but equilibrated state can be non-thermal), meaning that ob-
servables of equilibrated system (even starting from a pure state) can be pre-
dicted by usual statistical ensembles, i.e. observables computed with density
matrix an equilibrated system are close to observables computed with a micro-
canonical density matrix at the same energy.

I note that a small subsystem of a large microcanonical ensemble can be
always formulated in terms of a canonical (or grand canonical) ensemble, as
long as the interactions along the subsystem boundary are sufficiently weak
(e.g. short-range). Classical case can be found in any textbook on statistical
physics [175, 179]. An explicit derivation in quantum case can be found in [180].

Typicality. A randomly picked pure state will almost always locally appear
fully thermalized (subsystems having maximal possible entanglement entropy
with their complement). It was proven by the geometry of the Hilbert space by
invoking Levy’s lemma, that states that for multidimensional spheres a smooth
function evaluated at a random spot will be exponentially close to its mean
value [181].

Typicality has to be distinguished from ETH (to be defined later in Sec-
tion 2.8): in ETH we are considering one eigenstate which locally looks thermal;
typicality claims that a random state, being a superposition of arbitrary many
eigenstates, will in general look thermal.

In classical physics typicality has a very simple intuitive understanding: if we
pick a random state of, say, a gas in a box, that with overwhelming probability
we will pick a state of largest entropy, which is thermal by definition [118].
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Typicality is a statistical concept and doesn’t deal with time evolution. Some
criticism of the notion is based on the fact that in physics we never deal with
random states: we usually prepare a system in a very controlled specific state
(say, a ground state) and then follow its time evolution. Nevertheless, typicality
argument was recently shown to be fruitful in numerical simulations where it is
sometimes easier to pick a random pure state and evolve it in time rather than
to diagonalize the Hamiltonian [182].

There are ways to extend typicality to dynamical processes, e.g. it was shown
that for almost any interacting system in a pure state, a subsystem of it will
spend overwhelmingly large time near its equilibrated value during evolution
[178].

There are two more notions which are defined a bit different from the actual
typicality in original sense:

Weak typicality: the diagonal ensemble has a thermal structure, meaning
that observables calculated using weakly equilibrated state are indistinguishable
from observables calculated on a corresponding microcanonical thermal state
[183].

Strong typicality: the reduced density matrix of the system is thermal, im-
plying that at each point in time the system looks locally thermal (no need of
time averaging) [183].

Quantum central limit theorem (QCLT). States that when the entanglement
of the initial state of a 1D system is weak enough (e.g. if the initial state is a
product state or if the correlators

〈
a†iaj

〉
decay algebraically with |i − j|), the

system will relax to a Gaussian state after evolution given by a free (quadratic)
Hamiltonian [184].

2.5 Dynamics after a quench

This section begins the main part of the chapter devoted to studies of relaxation
and thermalization of a quantum many-body system after a quench to a highly
non-equilibrium state. In this section I address the first aspect of thermalization:
equilibration to a steady state.

I have already discussed a specific type of quench in a continuous quantum
system in Section 1.10 of the previous chapter, but now I’m introducing a quench
in a discrete analogue of it, namely a quench in a one-dimensional Bose-Hubbard
chain.

2.5.1 Setup

My setup is inspired by an actual experiment performed in I. Bloch’s group
[126]. In a nutshell the experiment looked like this: initially a one-dimensional
optical lattice was initialized with a density wave state with every other site
occupied with one atom in a Fock state∣∣ψ0

〉
=
∣∣ . . . 010101 . . .

〉
= â†1â

†
3â
†
5 . . . â

†
M

∣∣0〉.
I will call this initial state a Néel state by analogy with a ground state

of an antiferromagnet
∣∣ . . . ↑↓↑↓↑↓ . . . 〉 [185]. Initially there is no tunneling,
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Figure 2.3: Scheme of the system under study in the current chapter. Initially every
second site in 1D optical lattice (Bose-Hubbard chain in Mott-insulating regime) is
occupied with one boson in Fock state (Néel state). At t = 0 the tunneling rate
is quenched from J = 0 to J = 1. Atoms start to tunnel between the wells, and
eventually an equilibrium state is reached with 1/2 of a particle per site on average
(in thermodynamic limit). I study the dynamics and the steady state as a function
of the on-site self-interaction U ∈ [0,∞]. The setup is inspired by the experiments
performed in I. Bloch’s group [165, 126].

corresponding to J = 0 in the BH Hamiltonian (2.1). At t = 0 the parameters
J, U are quenched to a finite values and the system starts to evolve, Figure 2.3.

The experiment showed relaxation of the charge-density with the final state
even and odd site occupation numbers being 1/2 on average. Numerical DMRG
simulations agreed very well with experimental data, confirming the full relax-
ation of the system in position space [127].

When implying periodic boundary conditions, this result is anticipated be-
cause of the translation invariance of the Hamiltonian (2.1). On the other hand,
relaxation in momentum space under Hamiltonian (2.2) is far from being trivial
and will be the main topic of this chapter.

In the following I will put J = 1, so the only free parameter being U . Real
value of J can be always recovered by rescaling of time.

2.5.2 Initial State

I’ve already discussed the initial state in position space, but now let’s turn to
the system’s description in momentum space, namely to the reduced one-mode
states with momentum k, given by the density matrices ρk0 (in the following I
will omit hats over operators where it cannot lead to confusion)

ρk0 = tr 6̀=k(ρ0), (2.4)

where the trace is performed over all modes that are not k.
For example, if our system is given by the Hamiltonian in momentum space

(2.2) and has four bosons, then ρk0 for mode k is a 5× 5 matrix with rows and
columns corresponding to n = 0 − 4 bosons. Its diagonal elements give proba-
bilities of finding n bosons in mode k (so tr ρk0 = 1), and off-diagonal elements
represent coherences due to superpositions of different occupation numbers.

Note that it is not the same as the one-body density matrix ρ1
0 given by〈

k
∣∣ρ1

0

∣∣`〉 = tr (ρ0 b
†
kb`), k, ` ∈ [0,M − 1].
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The latter can give expectation values of all one-body operators
〈
O1

〉
= tr (O1ρ

1
0),

but has no information about higher order moments.
On the other hand, the one-mode density matrix ρk0 gives all the information

about correlators of all orders, but only for one mode k.
It is possible to show that

The initial reduced one-mode states are Gaussian and correspond to locally
infinite temperature (i.e.

〈
n̂k
〉

= 1/2 for all k regardless of energy).

This statement amounts to the fact that if we would perform any measure-
ment on one mode only in an initial state, we couldn’t distinguish it from a
thermal state at T = ∞, cf. Figure 2.9. Of course, the system as a whole is
not thermal as there are correlations between different modes that are neglected
performing the trace in (2.4).

Proof. 1. Assume that our system is non-interacting.

2. Then quantum central limit theorem holds as in [184], and the final state
after dephasing is a product state of Gaussian states on each site.

3. Fourier transformation of uncorrelated chain of Gaussian states gives us
again a set of uncorrelated Gaussian modes.

4. The modes are non-interacting, meaning that their expectation values of
all one-mode (and many-body) correlation function stay constant in time,
e.g.

〈
n̂k
〉

= const,
〈
n̂2
k

〉
= const, etc. This also implies that all one-mode

Wigner functions retain their shape from the very initial state (of course,
the relative phases between the modes will change during evolution—that’s
the dephasing).

5. That means that the reduced one-mode density matrix of the initial state
is Gaussian (the system looks locally Gaussian in the momentum space;
though the initial state is not the product state of Gaussians as different
modes are correlated in the beginning).

6. The initial state is independent of interaction, so the initial state looks the
same for any interaction strength: the reduced density matrix gives the
same Gaussian state for each mode. A local measurement in momentum
space (tracing out all the modes except one k-mode, by this forgetting all
the correlations between different modes k1, k2 etc.) will show a Gaussian
state with the same shape for any k, so a momentum-local observer would
conclude that the initial state is an infinite temperature state.

Finally I note that if we define ‘bath’ as all degrees of freedom we are tracing
out, then it was showed that physically cutting off the ‘bath’ and letting the
system thermalize will lead to the same outcome [183].

2.5.3 Equilibration

Recurrence times for quantum many-body systems, which happen when the
initial state is perfectly restored due to realignment of all the eigenstates, is
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Figure 2.4: Weak equilibration in mesoscopic system: mode occupation numbers (thin
zigzag lines) for M = 4, 6, 8, J = U = 1 are fluctuating around equilibrium values
n̄k = tr (ς n̂k), thick horizontal lines, where ς is the diagonal (equilibrated) state.
Different colors correspond to different modes k. Note that ∀k : nk|t=0 = 1/2 as
described in Section 2.5.2.

generally exponentially large in the number of particles, so it must have no
relevance even to modest-sized quantum systems.

Neglecting the revivals, a quantum system is expected to equilibrate in a
weak or strong sense. Considering relaxation after a quench, our mesoscopic
Bose-Hubbard chain clearly equilibrates in the weak sense, Figure 2.4, so in
the following sections I’ll be considering the properties of the system in the
equilibrated state ς.

An important question is whether different modes are correlated in the equi-
librated state. This can be checked using correlator Ckl = tr ς b̄kbl. For a
non-interacting system the modes must be uncorrelated due to the QCLT. On
the other hand, for hard-core bosons the modes must be highly correlated as a
lot of modes contribute to a single fermionic quasiparticle.

It was checked numerically that for small U the modes are almost uncor-
related, which supports the random phase approximation hypothesis; more on
that in Section 2.10.

It is interesting to look at the entanglement entropies in mode basis, as
the initial one-mode states are highly entangled with the other modes in the
‘bath’, but this entanglement decreases as the system evolves, leading to dis-
entanglement and apparent reverse thermalization, Figure 2.5. Of course, in
the complimentary site basis we started from a product state, meaning that
initially there was no entanglement, and it developed as the system evolved. In
some sense thermalization correspond to ‘equilibration’ of entanglement in both
bases.

There is a close analogy with the process of decoherence from quantum
foundational studies, and applying this insight to condensed matter systems is
an interesting direction of future study [186].
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Figure 2.5: One-mode entanglement entropies Sk = −tr (ρk log ρk) forM = 8, U = 0.1
(left) and total one-mode entropy

∑
k Sk for different interaction strengths (right). We

see that the total entropy in the mode basis is larger initially than during the evolution,
which correspond to some kind of reverse thermalization in modes basis.

2.6 Quantum Integrability

Classical integrability is a well-defined and thoroughly studied concept [54, 55],
but its quantum counterpart is still far from being fully understood.

Caux and Mossel introduce a chain of integrability classes considering how
the number of integrals of motion scales with the system size in appropriate
basis [189]. For example, Luttinger liquid is linear integrable in sites basis as it
can be cast into a free theory by Fourier transformation.

Many algebraic-Bethe-ansatz integrable models also fall into the linear in-
tegrability class, including Heisenberg chains (and Tonks-Girardeau hardcore
bosonic gas in a 1D optical lattice, as it is mappable to the Heisenberg XXZ
magnet), t-J and Hubbard models, restricted Bose-Hubbard with up to two
bosons per site, and few others.

Some long-range interacting systems such as Haldane-Shastry model [190]
have quasi-polynomial density character such as O(N logN ) ∼ O(elog2N ), in this
sense possessing a weaker form of integrability than Heisenberg spin chains. Its
energy level statistics is neither Poissonian nor Wigner-type.

Quantum counterparts of classical chaotic systems, which possess Wigner-
type energy level statistics, should fall into exponential integrability class with
numbers of integrals of motion scaling as O(eN ) (e.g. they can be projectors on
the exact eigenstates), so such systems can be called quantum non-integrable.

Sticking to this classification we see that our Bose-Hubbard chain is linearly
quantum integrable in sites basis in non-interacting and hardcore-interacting
limits, as in both cases it is mappable to a free system. How to classify the
system in the intermediate regime 0 < U <∞ is not completely clear.

It is conjectured that in thermodynamic limit even the infinitely small inte-
grability breaking term leads to emergence of chaos, in this way denying exis-
tence of a quantum KAM theorem [94].

The spectrum of the BH-model is thoroughly studied and is known to exhibit
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Figure 2.6: Integrability crossover from the spectrum perspective for a system of
N = 4 bosons on M = 8 lattice sites. Line segments represent energies Ei of the exact
many-body eigenstates as a function of interaction strength U . Three panels differ
in the energy scale only. At small U we observe continuous phononic spectrum of
non-interacting oscillators (its apparent discreteness stems from the finite size of the
system), which evolve into tight clusters of eigenstates, characterized by 1–4 particles
sitting on the same site. Note that the energy of those states with more than one
particle per site goes to infinity with U →∞, so in the end we are left with only one
cluster of eigenstates—the fermionic spectrum of the hard-core gas (right panel). Note
the uniqueness of the many-body ground state and chaotic region at 0.1 < U < 10,
where the eigenenergies are proved to obey Wigner-Dyson statistics—a well-known
criterion for quantum non-integrability [187, 188].
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regular statistics in both integrable limits and the Wigner-Dyson statistics in
between [187, 188], in this way stating its non-integrability. The spectrum for
a particular symmetry sector M = 8, N = 4 is shown in Figure 2.6.

One can see from the figure how exactly Poisson-type spectrum of integrable
system at U = 0 transforms into a chaotic region, and then the latter dissipates
due to the fact that eigenstates having more than one boson per site acquire
infinite energies and disappear from the spectrum. Finally at U → ∞ one re-
covers again a Poisson-type spectrum of four noninteracting fermions, governed
by the Hamiltonian (2.3).

In the next following sections I develop new measures of integrability as
functions of interaction strength, which are based on eigenstate thermalization
and ‘forgetfulness’ of the initial state.

2.7 Initial State Independence

The Second aspect of thermalization is initial state independence, namely the
statement that the properties of a small subsystem in a thermalized state should
not depend on this subsystem’s initial state and on the initial state of the ‘bath’,
but rather only on some aggregate properties like energy density.

It is generally believed that integrable systems retain the information about
the initial state better (as there are many integrals of motion that separate the
phase space into non-connected parts, only one of which is left for the system to
explore). On the other hand, non-integrable systems should be more forgetful,
as for them the whole microcanonical shell is open to explore.

Many-body localization (MBL). First of all, in the recent years it has been
shown that a simple classification of quantum many-body systems into inte-
grable vs non-integrable is not sufficient due to a discovery of a new—many-body
localized—phase.

Anderson localization is a well-known concept of one-particle physics, which
exhibits itself in the absence of transport in disordered potential [191]. However,
for a long time it was believed that introduction of inter-particle interaction will
break the localization and restore transport, until it was proven that in some
cases localization can still persist [192], opening a whole new branch of non-
equilibrium physics.

It is interesting that despite the system being localized and exhibiting no
transport, the entanglement still grows logarithmically in time [193], in con-
trast to a conventional non-integrable system with diffusive transport, where it
grows linearly [194]. Sure, there is no contradiction as entanglement is not an
observable and doesn’t carry information.

Novel research suggests that MBL phase is closer to integrable systems,
where integrals of motion may be constructed from tight clusters of eigenstates,
which are localized in real space [195]. It is not yet clear if a GGE can be
constructed in this case.

So in the following when talking about initial state dependence in non-
integrable systems, I will exclude MBL states from this category.

Effective entanglement in the eigenbasis (EEE). It is known that sometimes
many-body nonintegrable systems don’t relax and preserve memory of the initial
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Figure 2.7: Results for a 1D Bose-Hubbard chain with 4 bosons on 8 sites: effective
entanglement in the eigenbasis (EEE)—the measure of how much the relevant energy
eigenstates resemble locally the initial state. Small EEE means that two systems,
prepared initially in distinguishable states, will remain distinguishable after quantum
evolution; large EEE means that the system will effectively forget its initial condition
after equilibration [196]. Different modes k are represented with different colors, black
line being the average. The shape of the curve suggests that the system forgets its
initial state better in the chaotic regime U ∼ 1, meaning that EEE can be used as a
measure of quantum integrability. I note that the Hamiltonian does not contain any
disorder.

state, and Gogolin, Müller and Eisert developed a measure of such memory
preservation [196]. This measure is effective entanglement in the eigenbasis
R(ρ) defined for a non-degenerate Hamiltonian as

R(ρ) =
∑
j

∣∣〈j∣∣ρ∣∣j〉∣∣2 · D(ρk, trB
∣∣j〉〈j∣∣),

where
∣∣j〉 are the eigenstates, ρk is a reduced density matrix of some subsystem,

partial trace is performed over the ‘bath’ (complement of k), and D(x, y) =
||x− y||1 is a trace distance between two density matrices.

Physical understanding of this measure can be gained from the fact that
D(ρk, trB

∣∣j〉〈j∣∣) shows how much an eigenstate
∣∣j〉 resembles the state ρ locally,

locality in this context doesn’t necessary indicate real space locality, but is
manifest in an arbitrary splitting of the system into subsystem ρk and the bath
B. And second observation is that the term

∣∣〈j∣∣ρ∣∣j〉∣∣2 weights the eigenstates
by their overlap with the initial state, including only the relevant ones in the
sum.

Let’s perform the trace over the bath on our time-averaged state, with re-
sulting reduced density matrix ςk = trB ς enough to calculate all the observables
in subsystem k. Then a theorem proved in [196] states that the systems well dis-
tinguishable locally in the beginning (say, we are starting from different initial
states) will remain distinguishable during time evolution (meaning that there is
some memory of the initial state) if EEE is small.

D[ςk, ς
′
k] > D[(ρ0)k, (ρ

′
0)k]−R(ρ0)−R(ρ′0).
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That suggests using EEE as a measure of how much information the system
forgets during time evolution. Naive expectation would be that a non-integrable
system loses information about the initial state quickly, meaning that EEE can
serve as a measure of integrability. And indeed, calculations with 1D Bose-
Hubbard model suggest that it’s precisely the case, see Figure 2.7.

Conclusion is that EEE can serve as another quantum integrability mea-
sure in addition to those known before (e.g. Poisson to Wigner-Dyson statistics
crossover). Here I note that there was no frustration in the Hamiltonian, mean-
ing that MBL effects cannot be present.

2.8 Eigenstate Thermalization Hypothesis

Our third aspect of thermalization is the fact that we may call a system ther-
malized if measurements in the steady state give us the very same results as a
conventional thermal ensemble (e.g. microcanonical) would predict. In mod-
ern quantum mechanics this conjecture is known under the name of Eigenstate
thermalization hypothesis (ETH).

Definition. ETH is a conjecture stating that a general non-integrable system
prepared in an eigenstate looks thermal (in the sense of microcanonical ensem-
ble) for some set of observables. Equivalent to say is that those observables
are smooth functions of energy. ETH implies that apparent thermalization is
just dephasing of the eigenstates, but non-equilibrium states don’t look thermal
because of finely-adjusted phases.

Following the discussion in [197], we start with an arbitrary initial state
∣∣ψ0

〉
evolving as ∣∣ψt〉 = e−iĤt

∣∣ψ0

〉
=
∑
i

Cie
−iεit∣∣i〉,

where Ci =
〈
i
∣∣ψ0

〉
and εi is the energy of the eigenstate

∣∣i〉. Then an expectation
value of some observable Ô will be〈

Ô(t)
〉

=
〈
ψ0

∣∣Ô∣∣ψ0

〉
=
∑
ij

C∗i Cje
i(εi−εj)tOij ,

where Oij =
〈
i
∣∣Ô∣∣j〉.

If the observable relax, it must only be to the time-averaged value〈
Ô
〉

=
∑
i

|Ci|2Oii,

where the spectrum is taken not to have degenerate energy gaps for the sake
of simplicity. This non-degeneracy condition is not essential and can be lifted.
The ensemble on the right-hand side is called the diagonal ensemble.

Statement that the diagonal ensemble predictions agree with those of the
microcanonical one can be formulated as∑

i

|Ci|2Oii =
〈
Ô
〉
E0

= N
∑
j

Ojj · θ(|E0 − εj | < ∆E),
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where
〈
·
〉
E0

stands for a microcanonical ensemble average centered at the
energy E0 with the width of ∆E, θ is the Heaviside step function, and N is a
normalization factor.

Eigenstate Thermalization hypothesis conjectures that this universality is
due to the fact that the observable looks thermal in each eigenstate〈

i
∣∣Ô∣∣i〉 =

〈
Ô
〉
E0
.

We see that the left-hand side contains properties of exact eigenstates, but
the right-hand side—nothing but energy. So the most simple statement for ETH
could be formulated as:

“Eigenstates close in energy are similar in all relevant aspects.”

An open question is which aspects should we consider relevant. Usually rel-
evant observables are measurable ones, which can be represented as sums over
few-body field operators in second quantized formalism. For example, relevant
operators in this case would be local density n̂(z) = b̄(z)b̂(z) or mode occupa-
tion numbers n̂q = b̄q b̂q = 1

L

∑
eiq(z−z

′)b̄(z)b̂(z′). This leading role of locality
stems from the fact that physical interactions are local in position space. Ob-
viously, one can always explicitly construct non-local observables, which never
thermalize, e.g. projectors on eigenstates, but there is no physical procedure to
measure them. In Appendix E I formulate a conjecture which addresses ETH
without explicitly appealing to locality.

In the following I will accept the locality condition, which implies that if
ETH holds, then for all local few-body observables the diagonal state is close to
the microcanonical state.

History and recent developments. ETH, believed to bridge the gap between
the statistical description of a classically chaotic system and quantum mechan-
ics, has a long history. One of the predecessors of ETH was Berry’s conjecture,
which states that for a gas of hard spheres the exact many-body eigenstates are
superpositions of plane waves with random phases and amplitudes, but fixed
momenta (eigenstates are infinitely sharp in energy) [198, 199, 200].

Later Srednicki proved Berry’s conjecture [201], and coined the term ETH
as a generalization of it for systems other than hard-sphere gases. Similar ideas
have been independently formulated by Perez [202] and Deutsch [203].

One can even trace the roots of ETH to the heroic times of establishment of
the quantum theory in the first half of the 20th century, as it was proven that one
assumption of quantum ergodic theorem by von Neumann [204] is equivalent to
ETH [205]. Recently quantum ergodic hypothesis was revived under the name
of normal typicality [206].

In the new century ETH was brought into spotlight of modern non-equilibrium
theory by the seminal paper of Rigol, Dunjko and Olshanii [197], where a clear
distinction between integrable and non-integrable systems (being in this case
1D and 2D hard-core bosonic gases) was numerically demonstrated, which de-
clares itself in the absence/presence of thermal eigenstates, in full agreement
with ETH.

Since then it became a widespread belief that ETH can serve as an ultimate
litmus test of quantum (non-)integrability. In the following I show that this
conjecture can be applied even to small systems.
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Shortly after many more studies on ETH started to appear. Detailed anal-
ysis of onset of quantum chaos in a system of hard-core bosons, when the
non-integrability is caused by next-nearest-neighbor hopping, showed that in
a quantum chaotic system states close in energy seem statistically similar, link-
ing quantum chaos and ETH. Localized eigenstates, on the other hand, were
shown not to obey ETH, which opens new interesting connections between ETH
and many-body localization phenomena [207].

ETH was also generalized to integrable systems, where it was shown that
majority of states close in the values of all the conserved charges are similar
in all relevant observables, thus assuming that the diagonal ensemble can be
efficiently approximated by a generalized microcanonical one [208].

Note that observables can have thermal values even in absence of ETH.
For example, due to the finite number N � 1 of eigenstates contributing to an
initial state, averaging can bring expectation values close to their microcanonical
values even in the integrable case when ETH doesn’t hold. This idea was noted
in the seminal paper by Peres [202], and recently has been applied under the
name of Eigenstate Randomization Hypothesis [209].

Finally I’d like to note that there is an alternative way of addressing the
thermal expectation values of the operators besides ETH, namely the application
of Mazur’s inequality [210, 189, 211], which states that if we take an arbitrary
observable with zero mean At, then the long-time average of correlations will
be 〈

A0At
〉
>

N∑
i=1

|
〈
A ·Qi

〉
|2〈

Q2
i

〉 ,

where N is the number of properly normalized integrals of motion Qi. Note that
right-hand side corresponds to overlap of the observable with all the integrals
of motion, and if it is finite, then there is quasiperiodic behavior of correlators
and the current observable is integrable. It remains an interesting question how
this approach is linked with ETH.

ETH and integrability breakdown. I studied the applicability of ETH at in-
tegrability breakdown with the same 1D Bose-Hubbard chain, as a function of
on-site interaction U , see Figure 2.8. As we are interested in the properties of
the Hamiltonian, the dynamical evolution is irrelevant.

Implying that physical observables should be represented with few field op-
erators in position basis, I turned to momentum occupation numbers

n̂k = b̄k b̂k =
1

L

∑
eik(z−z′)b̄(z)b̂(z′).

Eigenstate expectation values n̄k =
〈
εi
∣∣n̂k∣∣εi〉 follow the similar pattern

independent of k (the figure shows a typical example for k = 2), but strongly
dependent on U .

In the free boson limit U = 0 expectation values of n̄q (EEV) fluclutate
wildly between the eigenstates close in energy, as expected for an integrable
system where ETH does not hold (green stars on the figure). This behavior
can be easily understood noting that the exact eigenstates for an ensemble of
uncoupled harmonic oscillators are multiply degenerate and result in integer
boson occupation numbers.
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Figure 2.8: Results for eigenstate thermalization hypothesis applicability to 1D Bose-
Hubbard chain. Left: Eigenstate expectation values (EEV) of the occupation of
the 2nd momentum mode

〈
n2

〉
=
〈
εi
∣∣n̂2

∣∣εi〉 for non-interacting bosons U = 0, soft-
core U = 1 and almost-hardore ones U = 1000. Right: Eigenstate non-thermality
Q0 = std n̄k (for a microcanonical window ∆E = 2 centered at zero, it was checked
that the overall behavior doesn’t depend on ∆E much) as a measure of breakdown
of the eigenstate thermalization: the closer Q is to zero, the closer are predictions of
the diagonal ensemble and the microcanonical ensemble, and the better ETH holds.
For some observables the microcanonical prediction fits better at the chaotic region
U ∼ 1 (a dip in the functions), which hints to applicability of ETH even for mesoscopic
systems and shows that ETH can serve as a measure of quantum integrability.

As U grows and integrability fades, the fluctuations in EEV go down, mean-
ing that eigenstates close in energy become more similar to each other with
respect to n̄q.

To quantify ETH applicability I introduce eigenstate non-thermality, which
is given by a standard deviation of n̄q in a small microcanonical window around
energy E

QE = std {
〈
i
∣∣n̂q∣∣i〉 : |E − εi| < ∆E.}

The closer QE is to zero, the closer are prediction of the diagonal ensemble
and the microcanonical ensemble, and the better ETH holds.

QE is dependent on energy, meaning that this measure takes into account
the initial state. Our usual pick is the Néel state, which has zero energy, so in
Figure 2.8 I consider Q0.

Right panel of Figure 2.8 shows an interesting feature: we know that Bose-
Hubbard chain is integrable in both limits U = 0 and U = ∞, and for high-
energy modes Q0 exhibits a dip in the chaotic region U ∼ 1, meaning that ETH
holds better there, and values of

〈
nk
〉
computed with diagonal ensemble would

agree better with microcanonical prediction.
The conclusion is that ETH is still applicable to small mesoscopic systems

and can be used as a measure of integrability.
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2.9 Generalized Gibbs Ensemble

In the previous sections we discussed the equilibration of a quantum many-body
system after a quench in the non-integrable regime, where it is supposed to
thermalize in microcanonical sense in accordance with ETH (the conventional
thermal partition function Z = tr exp(−βĤ) can always be recovered if the
density of states grows fast enough [180]). But is there any analogous steady
state after eqilibration in the integrable regime?

Definition. A popular conjecture is that indeed there is a statistical ensemble
able to describe the steady state in thermodynamic limit, which is known under
the name of the generalized Gibbs ensemble (GGE) and is given by the partition
function

Z = tr exp

(
−

N∑
i=1

βiÎi

)
,

where {Îi} is a set of conserved quantities (the Hamiltonian being one of them),
and βi are generalized temperatures.

This claim is not as trivial as it might look from the first sight. Stating
that the system equilibrates to a GGE (meaning it spends most of the time
near GGE) is essentially equivalent to claiming the generalized ergodic hypoth-
esis, meaning that during evolution the system uniformly explores the whole
generalized microcanonical shell νI of the phase space, given by {Îi}.

If we consider the whole phase space (and not only the shell νI), then GGE
can be viewed as the high-probability region that maximizes the full Gibbs-von
Neumann entropy S = −tr ρ̂ log ρ̂, and ergodicity implies that at almost all times
we’ll find the system inside that region just because it’s overwhelmingly large.
In thermodynamic limit this region collapses to the shell νI , and we recover the
equivalence of ensembles [208]. The same discussion applied to Gibbs ensemble
can be found in [118].

An important observation was made by Caux and Mossel in [189] which can
help to pick the relevant Ii, at least for finite systems. Normally a system after
a quantum quench is not in an eigenstate, but in a superposition of eigenstates
around some central energy with finite spread. If some integral Îi varies slowly in
that region, it will have large βi, and is important for our statistical description
(e.g. energy obviously satisfies that); on the other hand if Îi has large variance,
then βi → 0, and it can be omitted from the GGE.

In most studies Îi are assumed to be local in real space (due to the locality of
interaction), but there is no rigorous proof why should they be. There is neither
a consensus on what number N of integrals of motion one should consider.

One easy choice would be to pick the projectors on the eigenstates as con-
served charges Îi =

∣∣i〉〈i∣∣, where βi can be recovered from self-consistency condi-
tion; but this choice is unphysical as there is no procedure of measuring highly
non-local many-body operators such as projectors. Even more, their number
must be equal to the dimensionality of the Hilbert space, which grows at least
exponentially with system size1.

1It has been proven that most of the states in the Hilbert space cannot be reached anyway
with any experimental procedure [212]
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The general consensus in the community seems to be that GGE is a well
defined and fruitful notion for all systems that can be cast into a free form, such
as Luttinger liquid, non-interacting or hard-core bosons on a 1D lattice, etc.
Hamiltonian of free models has a quadratic form

Ĥ =
∑
i

εib̄ib̂i,

where b̂i is a bosonic/fermionic field operator. In this case the partition function
of the GGE can be readily recovered as

Z = tr exp

(
−

N∑
i=1

βiεib̄ib̂i

)
.

An important property of such a free GGE, shared with conventional ther-
mal state, is the fact that correlations factorize due to Wick’s theorem (e.g.〈
b̄ib̄ib̂ib̂i

〉
= 2

〈
b̄ib̂i
〉2 for bosons), which leads to a great simplification of an-

alytic description [103, 213]. But one can easily imagine initial states where
Wick’s theorem doesn’t apply (see Appendix C).

History and recent developments. The new wave of GGE studies came with
the seminal paper by Rigol, Dunjko, Yurovsky and Olshanii, where it was nu-
merically observed that the state of a 1D hard-core bosonic gas after relaxation
can be very well described with a GGE [79]. After that many more studies on
hard-core bosons followed, as this system can be solved efficiently with exact
diagonalization.

When a system is weakly non-integrable, it is widely accepted that it estab-
lishes a prethermalized plateau, where it stays for a long time before the final
relaxation to the thermal state. At the plateau the system may be described
with a deformed GGE (e.g. by calculating perturbative corrections to a free
system in powers of interaction parameter). There are many results supporting
this claim, including studies of nearly-integrable Hubbard model [48], perturbed
Falicov-Kimball model [214], weakly non-integrable interacting Peierls insulator
[51].

It is still an open question how to apply GGE to other types of integrable
models beyond free ones, e.g. those integrable with Bethe Ansatz. The Lieb-
Liniger model of one-dimensional locally interacting bosons has always been a
paradigmatic quantum integrable system, so it is a natural candidate for con-
struction of a GGE. Although using thermodynamic Bethe Ansatz it is possible
to explicitly address the local conserved quantities [83, 81], recently the applica-
bility of the GGE was put under question as it was shown that the Lieb-Liniger
gas develops divergent integrals of motion after a quench [215]. It was conjec-
tured that such behavior is endemic to other integrable continuum models with
contact interactions. Nevertheless, in long time limit the system end up in a
steady state far away from a thermal one.

Another method was proposed to cure this, namely, the ‘quench action’
approach, where a steady state of 1D Bose gas is found by a variational method
as a saddle-point of a particularly constructed action, which can be viewed as
some type of a generalized Hamiltonian. [216, 217].
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Figure 2.9: Left: Wigner functions Wn(x, p = 0) of the first four modes in the equi-
librated state (solid) and microcanonical state (dots). At U = 0 the modes are Gaus-
sians due to the quantum central limit theorem (Section 2.5.2), which corresponds
to a true free GGE in thermodynamic limit. Right: Distance from the Gaussian
G =

∫
dx [Wn(x) − Gn(x)]2, where Gn is the Gaussian best fit to Wn. At small in-

teraction strengths Wn are well approximated by a Gaussian, indicating a deformed
GGE. Different colors correspond to different modes, black curve is the average. Sig-
nificance of the measure G is elucidated in the next section devoted to the kinetic
approach.

Emergent GGE at the breakdown of integrability. So in the limiting cases
U = 0 and U → ∞ the Bose-Hubbard chain is integrable, and then its equili-
brated state in thermodynamic limit should be describable by a GGE. On the
other hand, in the intermediate soft-core regime it is non-integrable, so the ques-
tion is how exactly the applicabilty of GGE breaks down at the integrability
crossover.

To address this question in the case of the familiar Néel state to superfluid
quench I looked at the shape of the Wigner functions of the one-mode reduced
density matrices.

GGE in a free system would correspond to a Gaussian density matrix in
momentum mode representation. Arbitrary slices of a Gaussian are Gaussian
again, so a measure of gaussianity of one-mode reduced states can serve a test
for deviation from a GGE. Results are presented in Figures 2.9 and 2.10.

At U = 0 the system is describable by a true free GGE in thermodynamic
limit as the modes are Gaussian due to the quantum central limit theorem (Sec-
tion 2.5.2), and there is no correlation between the modes in the time-evolved
state, because in the Heisenberg picture field operators evolve with different fre-
quencies b̄q(t) = eiεqtb̄q(0) and quickly dephase from the initial highly-correlated
state.

On the other hand, at U → ∞ the modes are in non-Gaussian states and
are highly correlated even in the time-averaged state due to Jordan-Wigner
mechanism. We know that it still corresponds to a GGE in the basis of emergent
free fermions. It illustrates the simple fact that it is possible to have a GGE in
one basis (emergent Fermions) and none in another basis (normal modes).

At the intermediate regime the modes are in deformed Gaussian states. A
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Figure 2.10: BH-chain with moderate interaction strength: U = 1, J = 1,M = 8, N =
4. Comparison between the Wigner function of the thermal state (dots), initial state
(red) and steady state (blue line). Temperature increases from left to right. Mode
numbers increase from bottom to top. Left-most figure: at zero temperature in ther-
mal equilibrium the lowest-lying mode is filled with almost four bosons in a Fock
state (‘condensate’), other modes are in an almost-vacuum state (‘almost’ because
of the interaction-induced depletion of the condensate). Right-most figure: the ini-
tial state is almost indistinguishable locally (in momentum space) from the infinite-
temperature thermal state. The steady state is also Gaussian with good accuracy
(meaning deformed-GGE), but doesn’t correspond to a conventional thermal ensem-
ble (e.g. compare blue lines with dots on the third figure).

straightforward route of analytically quantifying the deformation of the GGE
would be to construct the partition function from the full BH Hamiltonian
(2.2), and then to use standard diagrammatic techniques for perturbation over
the small parameter U [218, 219].

Another possibility would be to consider the integrals of motion of the nearby
integrable models such as nonlinear Schrödinger equation and Ablowitz-Ladik
lattice [220]. It has been shown that in some cases nearby integrable modes
constraint the dynamics of quantum chaotic system [48]. Note the problem’s
similarity with the scarring phenomena of in the context of classical chaos [201].

Maybe the most important question considering the emergent GGE could
be: “Who cares? Maybe there is some deformed GGE, but what benefits does
this description provide?” I turn to this question in the next section devoted to
the kinetic theory.
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2.10 Kinetic theory

Kinetic theory describes evolution of a classical/quantum system driven out
of equilibrium. This approach was pioneered by Boltzmann in 1872 when he
derived his famous equation

L̂[f ] = Ĉ[f ],

where L̂ = d
dt = ∂

∂t + ~p
m ·∇+ ~F · ∂∂~p is the Liouville operator describing the evo-

lution of a phase space volume, f(~r, ~p, t) is the one-particle probability density
function, and Ĉ is the collision operator.

The key insight of Boltzmann was the molecular chaos hypothesis or Stosszahlansatz,
stating that one can neglect correlations between particles, which leads to a
great simplification of the collision term and renders they dynamics Markovian
(time-local and memory-less). For example, in the case of two-body collisions
in a nearly ideal classical gas the collision term becomes

Ĉ[f ] =

∫∫∫
ω [f2f3 − ff1] dΓ1 dΓ2 dΓ3,

where dΓi are phase space elements, ω = ω(Γ,Γ1; Γ2,Γ3) is a function describing
effectiveness of collision which drives two particles from the phase space elements
Γ and Γ1 into Γ2 and Γ3. The term in square brackets has an intuitive meaning
of the ‘income term’ f2f3, given by the occupancies of phase space elements
where the particles can come from, and the ‘outflow term’ ff1, given by the
occupancies of the parts of the phase space from where the particles are drained
[221].

In this section I’ll show how to apply the Boltzmann kinetic equation to
dynamics of a quantum Bose-Hubbard chain driven out of equilibrium by a
quench.

Recent developments and applications. Kinetic approach is historically the
first method of studying systems out of equilibrium, and it has a strong record
of successful applications. In the context of condensed matter, it has been
used to describe evaporative cooling and condensation of a bosonic gas in a
trap [59, 70, 222], decay of quasiparticles in 1D BEC [92], equilibration after a
quench in multidimensional Hubbard model [223, 48, 47], thermalization in the
BH model with next-neighbor-hopping terms [46], and many other setups.

In this study I derive quantum Boltzmann equation in the second quantized
formalism, but there exist more advanced approaches to kinetic theory. One of
them is the Keldysh formalism of path integration [224]. For instance, in such
a way kinetic equation was formulated and numerically solved for a Luttinger
liquid with periodic potential approximated by a sine-Gordon model [107, 108].

Another one is the two-particle irreducible effective action approach, which
accounts for off-shell scattering and the situation when there is no quasiparti-
cles with well-defined dispersion relation. In such a way new results had been
achieved for quantum turbulence and emergence of Kolmogorov-like scaling laws
in BEC far away from equilibrium [225, 226, 227]

Application to a quenched Bose-Hubbard chain. Let’s apply kinetic theory
to the equilibrated state after the familiar quench from Néels state to superfluid
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in 1D Bose-Hubbard chain. BH Hamiltonian in momentum space reads

Ĥ =

M−1∑
q=0

εq b̂
†
q b̂q + u

M−1∑
q1,2,3,4=0

b̂†q1 b̂
†
q2 b̂q3 b̂q4δq1+q2,q3+q4 ,

where for brevity εq = −2J cos(2πq/M), u = U/2M .
The Heisenberg equation of motion for q-mode occupation number n̂q = b̂†q b̂q

is
dn̂q
dt

= −i[n̂q, Ĥ]. (2.5)

The equilibrium condition for a stationary state is

dnq
dt

=
d
〈
n̂q
〉

dt
= 0,

which should be satisfied in the time averaged state no matter which statistical
ensemble describes it.

To get some constraints on the possible values of nq in this stationary state,
I separate the fast and the slow dynamics. It is known that a general near-
integrable system can be reformulated in terms of action-angle variables [55, 54].
Angles dephase fast, leading to prethermalized states. But the actions (being the
integrals of motion) are conserved only for strictly integrable systems, and they
diffuse in case of any integrability breaking, leading to proper thermalization (on
a much longer time scale compared to the dephasing though). So dephasing can
be considered the ‘fast’ part of dynamics. To average out those fast oscillations
of the angles I perform an integration of (2.5) over a small time window (small
in the sense that actions are changed only a little, but the angles are completely
dephased)

nq(t) = −i
∫

[nq(t
′), H]dt′

Assuming that in this time window the interaction between the modes is negli-
gible and the field operators are governed by free evolution only

b̄q(t) = b̄q(t0)eiεk(t−t0), b̂q(t) = b̂q(t0)e−iεk(t−t0),

we get

n̂q(t) = −4u2

∫ ∑
mnrt

(−b̄q+t−r b̄m+n−q b̄r b̂mb̂tb̂n − b̄q b̄m+n−q+t−r b̄r b̂mb̂tb̂n+

+b̄q b̄m+n−q b̄r b̂m−t+r b̂tb̂n + b̄q b̄m+n−q b̄r+t−mb̂r b̂tb̂n +H.c.) · eit′(εm+εn−εq−εm+n−q)dt′.

Integration over the small time window gives the delta function over the
energy

n̂q(t) = −8πu2
∑
mnrt

(−b̄q+t−r b̄m+n−q b̄r b̂mb̂tb̂n − b̄q b̄m+n−q+t−r b̄r b̂mb̂tb̂n+

+b̄q b̄m+n−q b̄r b̂m−t+r b̂tb̂n + b̄q b̄m+n−q b̄r+t−mb̂r b̂tb̂n +H.c.) · δεq+εm+n−q
εm+εn .

The results of the previous section state that at U → 0 the system is de-
scribed by a Gaussian GGE, so we can substitute this result back into (2.5) and
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Figure 2.11: Kinetic description of the thermal state for a BH-chain with moderate
non-linearity U = 1, J = 1,M = 8, N = 4 and different temperatures. Dots: thermal
state prediction for mode occupation numbers nq, solid lines: nq evolution in time
due to kinetic equations, initial condition being the thermal state. Different colors
represent different modes q. There is almost no deviation as the thermal state is an
equilibrium state and dnq/dt = 0.

perform the averaging nq(t) =
〈
n̂q(t)

〉
by utilizing Wick’s theorem to factorize

higher order correlators. Noticing that lowest-order correlators are given by〈
b̄q b̂p

〉
= nqδqp,

〈
b̂pb̄q

〉
= (nq − 1)δqp, we arrive at the final result

dnq
dt

=
π

2

∑
q1,q2,q3

T 2 · Fq123 · δ(q + q1 − q2 − q3) · δ(εq + ε1 − ε2 − ε3), (2.6)

where T = 8u and

Fq123 = n2n3(n1 + nq + 1)− n1nq(n2 + n3 + 1),

which gives us the well known quantum four-wave kinetic equation for weak
turbulence [129]. Note that Fq123 describes the usual for the Boltzmann’s ap-
proach particle inflow minus outflow for the mode q into all other modes given
by the energy and momentum conservation (cf. Fermi’s golden rule), and the
ones are due to bosonic amplification.

Note that three-wave term of the form Fq12 = n1n2−nq(n1+n2+1) is absent
due to particle conservation. There is no assumption about the thermodynamic
limit, so kinetic approach should work even for small systems.

Kinetic description for the modes is possible if (1) the one-mode reduced
states are close to Gaussian (Wick’s theorem), which usually implies weak non-
linearity and near-equilibrium initial state, and (2) the initial phases of the
modes are uncorrelated (random phase approximation) [129].

The initial momentum modes, though being Gaussian, are not uncorrelated,
which breaks down the random phase approximation and renders the kinetic
description of the short-time evolution impossible.

Even more, if we neglect correlations, then the initial condition in momentum
space is nothing else than a state of infinite temperature, which is a steady state
solution for kinetic equations (as any other thermal state), so kinetic equations
would never predict any evolution at all.
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Figure 2.12: Quantum kinetic equation prediction for mode occupation numbers (thin
lines) for a Bose-Hubbard chain for M = 8, N = 4, J = 1, U = 0.1, 1, 10 (from left
to right) compared with the steady state solutions tr (ς̂ b̄q b̂q), dotted lines. Different
colors represent different modes q. Initial condition for kinetic equations are taken to
be the steady state solutions, so if kinetic equations were a good description of the
system, then solid lines and dots would coincide. With moderate nonlinearity (middle)
we indeed see a good agreement. Deviations from the kinetic theory are evident for
strong nonlinearity (right) due to non-Gaussianity of the modes.

True thermal equilibrium is a steady state, so dnq/dt must be zero and
kinetic equation should not lead to any deviation. It is indeed the case with
high accuracy for all interaction strengths U , an example for U = 1 is presented
in Figure 2.11.

Another question is whether kinetic description is applicable to the diagonal
(equilibrated) state. To test it numerically I used the diagonal state as the initial
condition for the kinetic equation (2.6), Figure 2.12. Surprisingly, at moderate
non-linearities U ≈ 1 the kinetic equations show very small deviation from the
diagonal states. I attribute it to the fact that the diagonal state is close to
the Generalized Gibbs ensemble (each mode having different temperature and
different modes being non-correlated). At strong nonlinearities kinetic approach
perform poorly as the two assumptions it’s based are obviously violated.

The conclusion is that kinetic description is applicable not only to studies
of small deviations from conventional thermal state, but also from GGE in case
of an integrable or near-integrable system, even for systems of modest size. An
interesting observation is that kinetic description works even for moderately
strong nonlinearity U = 1, when the system is deeply in the chaotic regime. I
attribute it to the fact that in this regime the stationary state is still described by
an approximate GGE with almost-Gaussian one-mode reduced density matrices.

2.11 Summary and outlook

This chapter was devoted to studies of thermalization in a mesoscopic quantum
system driven far from equilibrium by a quantum quench. The explicit exam-
ple was a small 1D Bose-Hubbard chain quenched from a Néel state

∣∣ψ0

〉
=∣∣ . . . 10101 . . .

〉
to superfluid, the setup being inspired by an experiment realized

in I. Bloch’s group, in which bosons were relaxed from a product state in a 1D
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optical lattice [126, 165].
I showed that the initial Néel state in momentum space looks like being at

infinite temperature, and the momentum modes are strongly entangled. On
the other hand, the initial state in position space is a product state with zero
entanglement. In this regard the thermalization process can be thought of as
redistribution of entanglement entropy between complimentary bases, stating
the conservation of quantum information, which in turn is deeply rooted in
linearity of quantum mechanics [228].

An interesting finding of the present work is that the methods of quan-
tum statistical mechanics can be applied to mesoscopic systems, and hints of
thermodynamic behavior can be acquired even from a system as small as four
particles.

As expected, a quantum many-body system equilibrates to its diagonal state.
But in the case of a mesoscopic system this is a weak equilibration, meaning
that one needs to average out the fluctuations to recover the diagonal state.

The system is of a particular conceptual interest, as it is quantum linearly
integrable (in the sense of [189]) in the two limiting cases of non-interacting and
hard-core bosons, but quantum chaotic in between, allowing to study all the
spectrum of integrability breaking.

As the behavior of integrable and non-integrable systems is believed to be
drastically different (e.g. the integrable systems generally don’t relax to con-
ventional Gibbsian thermal states), it is interesting to quantify the integrability
in a system which can undergo a smooth transition between the tho regimes. In
this study I demonstrated the application of some new measures of integrability
in addition to the well-known measures of quantum chaos (such as the onset of
Wigner-Dyson statistics in the distribution of the energy level0.

I showed that the non-integrable phase is characterized by increased effective
entanglement in the eigenbasis, In a nutshell, this very anticipated result shows
that a non-integrable system retains less memory about its initial state. I note
that the Hamiltonian didn’t include any noise, ruling out possible many-body
localization effects.

Eigenstate thermalization hypothesis (ETH) is the modern backbone of
quantum thermalization, believed to hold if observable expectation values in
the equilibrated state are close to thermal prediction. I demonstrated that even
for a small system ETH holds better in the non-integrable regime, meaning that
the eigenstates of a chaotic system are indeed more thermal.

Equilibrated states of general non-integrable systems are well-known to be
simple Gibbsian thermal states, characterized by few intensive parameters such
as temperature and chemical potential, but the situation around integrable and
near-integrable systems remains far from being completely understood. Ad-
dressing the last question, I showed that for a 1D Bose-Hubbard chain after
a quench there exists a region of integrability breaking where the momentum
modes are close to being in a Gaussian state, supporting the claim that close-
to-integrable systems relax to a deformed generalized Gibbs ensemble (GGE).

Surprisingly enough, this region is not limited to small integrability breaking,
but extends far into the chaotic region.

A reasonable question is why such an emergent GGE should be of any in-
terest. I tried to answer to this question in the last part of the chapter, where
I derived the kinetic Boltzmann equation for mode occupation numbers. Initial
one-mode states are highly correlated, so no surprise that kinetic description
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was not able to predict the short-time evolution after the quench. But the non-
trivial result that the equilibrated state is close to a Gaussian ensemble even
in the chaotic regime allowed to successfully apply the kinetic equation to the
equilibrated state itself.

I additionally note that kinetic description’s applicability is based on random
phase approximation and Gaussianity of the states, so it should be applicable
not only to situations near thermal equilibrium, but also for studying small de-
viations from a proper GGE in case when the non-linerarity of the Hamiltonian
is weak enough.

Finally, this study helped to shed light on the limitations of the truncated
Wigner approach, which are reported in Appendix D.

Outlook. Present study opens a lot of interesting questions both on the be-
havior of mesoscopic systems and on the onset of thermalization at integrability
breakdown.

First of all, the presented study can be straightforwardly generalized to
larger system sizes to be run on a supercomputer or a computational cluster.
This would allow for a careful finite-scaling analysis to elucidate onset of ETH
and breakdown of GGE at the integrability crossover. Another route to the
thermodynamic limit would be to employ quantum Monte-Carlo and tensor
network algorithms.

An important question to address in the further studies would be which num-
ber of intensive parameters is enough to characterize a given nearly-integrable
experimental system, statistical equilibrium of which is given by a deformed
GGE.

Analytical ways of quantifying GGE deformation could include a standard
perturbative diagrammatic expansion in the small interaction parameter, if we
start from a non-interacting free Gaussian ensemble of the modes. But presum-
ably the quest for quasi-conserved quantities should not stop at effectively free
models such as free or hard-core bosons, but might be continued by exploring the
nearby integrable models such as Lieb-Liniger model, Gross-Pitaevskii equation
with the Zakharov-Shabat construction [20], or the integrable Ablowitz-Ladik
lattice [229].

The breakdown of GGE can be additionally addressed with the method
suggested by Caux and Mossel, which would show itself in the gradual decrease
of all the generalized temperatures to zero, leaving only the real temperature in
the final completely chaotic state at U ∼ 1 [189].

There are results stating that a many-body quantum system after a quench
undergoes a regime of quantum turbulence, characterized by a Kolmogorov-like
cascade of energy and particle number during the equilibration time, see e.g.
[226]. The numerical simulations done by the author with classical number of
particles N � 1 and truncated Wigner approach indeed showed an emergence
of a cascade (to be published elsewhere). In the future it would be interest-
ing to approach this beyond quasiclassical approximation. If the system holds
nontrivial integrals of motion, should they exhibit cascades as well?

Another prospective research direction would be trying to describe the ther-
malization of an isolated system from the point of view of the quantum informa-
tion theory, where decoherence is a well-established way of deriving the classical
from the quantum [186, 230, 231].
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The research reported in this chapter lies at the interface between thermo-
dynamics, statistical mechanics, quantum foundations and quantum informa-
tion theory, dynamical systems, and non-equilibrium quantum field theory, and
I hope that the results presented here will inspire new breakthroughs in this
rapidly growing interdisciplinary area of physics.



Conclusion

In this thesis I addressed many fundamental questions of non-equilibrium physics,
as applied to ultracold atomic gases1.

In the first Chapter I showed how a one-dimensional Bose-Einstein quasi-
condensate could be effectively cooled using experimental ‘evaporative cooling’
technique, despite the fact that the 1D BEC represented an almost perfect inte-
grable system. The answer was that ‘evaporative cooling’ proceeded completely
differently in 1D: the gradual loss of quasiparticles on long length scales led
to an establishment of apparent classical equipartition and a single well-defined
temperature, as a result of a process that could be called prethermalization. Ex-
periments on atomchip were able to probe those long length scales and showed
a good agreement with theoretically predicted power-law temperature decrease.

The second chapter was devoted to the process of integrability breaking in a
mesoscopic quantum system of several bosonic atoms in a one-dimensional opti-
cal lattice (the Bose-Hubbard model). I showed that notions of thermodynamics
and statistical mechanics were applicable even to small systems, which might
appear relevant to future applications in nanoscale devices. I developed novel
measures of integrability breaking (in addition to the well-known ones such as
the onset of the Wigner-Dyson statistics), based on the eigenstate thermaliza-
tion and entanglement in the eigenbasis. Further results included emergence of
a deformed generalized Gibbs ensemble and applicability of kinetic Boltzmann
approach in the regime of integrability crossover.

To conclude, I hope that my study was able to shed some light on the fun-
damental question of how thermodynamics and statistical description emerged
from purely unitary quantum many-body dynamics. In the following years, I
anticipate many more theoretical and experimental advancements to come in
this interdisciplinary area of non-equilibrium physics, and I am happy that I
was able to make a humble contribution to its foundations.

1Much more detailed summary, discussion, conclusions and outlook are to be found in
Sections 1.12 and 2.11
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Appendix A

Acronyms

1D One-dimensional
BE Bose-Einstein
BEC Bose-Einstein condensate
BH Bose-Hubbard model
CFT Conformal field theory
DMRG Density matrix renormalization group
EEE Effective entanglement in the eigenbasis
EEV Eigenstate expectation values
ETH Eigenstate thermalization hypothesis
GGE Generalized Gibbs ensemble
GPE Gross-Pitaevskii equation
LC Leggett-Caldeira model
LL Tomonaga-Luttinger liquid
KAM Kolmogorov-Arnold-Moser theorem
MBL Many-body localization
PBC Periodic boundary conditions
QCLT Quantum central limit theorem
RJ Rayleigh-Jeans approximation
rf-field Radio-frequency field
RWA Rotating wave approximation
TF Thomas-Fermi
TWA Truncated Wigner approximation
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Appendix B

Hydrodynamic derivation of
the scaling law T ∝ N

Here I formulate hydrodynamic derivation of the scaling law presented in Sec-
tion 1.11.3 for cooling of trapped 1D BEC, which uses Thomas-Fermi and adi-
abatic approximations. This calculation was done by Dr. I. E. Mazets.

Gross-Pitaevskii equation for our trapped degenerate cloud with dissipation
γ reads

i~ψ̇ = −i~γ(t)ψ − ~2

2m
∂zzψ +

mωz2

2
ψ + g|ψ|2ψ, (B.1)

where g = 2~ωras.
Implying phase-density approximation the order parameter of the gas is

represented with density n and phase φ fields

ψ = eiφ
√
n. (B.2)

Local velocity of atoms is given by

v =
~
m
∂zψ = b(t)z + δv, (B.3)

and includes fluctuations δv and stationary flow of the atoms due to cloud
breathing, where b(t) is the scaling parameter defined through the instantaneous
radius of the cloud

b(t) =
R(t)

R(0)

Density includes parabolic time-dependent profile n̄ and density fluctuations δn,
‘freezed in’ the profile.

n = n̄+ δn, (B.4)

n̄ =
3N(t)

4R(t)

(
1− z2

R2(t)

)
θ(R(t)− |z|),

where θ(x) is the Heaviside function.
Substituting (B.3) and (B.4) into (B.2), the result into (B.1), and neglecting

phase and density fluctuations we get the evolution equation for the scaling
parameter

b̈+ ω2b− ω2

(
RTF0

R(0)

)3
e−2

∫
γ dt

b2
= 0,
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where RTF0 is the Thomas-Fermi radius corresponding to the initial particle
number N(0) (for the sake of generality we assume that initially the cloud radius
can be different from that of the equilibrium Thomas-Fermi, R(0) 6= RTF0)

RTF0 =
3

√
3N(0)~ωras

mω2
.

Taking into account that particle number decays exponentially with time

N(t) = N(0)e−2
∫
γ dt,

and the initial density in the centre of the cloud nc(0) is given by

nc(0) =
3N(0)

4R(0)
,

we can linearize (B.1) with respect to density and velocity fluctuations. Then
subsituting n̄ and v from (B.4) and (B.3) we arrive at

∂

∂t
δn+

ḃ

b
δn+

ḃ

b
z
∂

∂z
δn = −nc(0)

b

∂

∂z

[(
1− z2

b2R2(0)

)
δv

]
e−2

∫
γ dt− 2γ(t)δn,

∂

∂t
δv +

ḃ

b
δv +

ḃ

b
z
∂

∂z
δv = − g

m

∂

∂z
δn. (B.5)

Let’s introduce rescaled time-dependent reference frame with spatial coor-
dinate ζ ‘frozen in’ the breathing oscillation of the cloud and τ = t as we are in
non-relativistic limit

ζ =
z

bR(0)
,

z = b(τ)R(0)ζ,

∂

∂t
=

∂

∂τ
− 1

b(τ)

db(τ)

dτ
ζ,

∂

∂z

∂

∂z
=

1

b(τ)R(0)

∂

∂ζ
,

Decomposing phase and density fluctuations into Petrov modes (which is
legitimate in the case of Thomas-Fermi parabolic profile, see Section 1.5) we get

δn =

∞∑
`=1

ν`
b
P`(ζ), δv =

∞∑
`=1

χ`
b

∂

∂ζ
P`(ζ), (B.6)

where P`(ζ) are Legendre polynomials, defined the standard way as solutions to
the following Sturm-Liouville problem

∂

∂ζ
(1− ζ2)

∂P`(ζ)

∂ζ
= −`(`+ 1)P`(ζ).

After substituting (B.6) into (B.5) we arrive at

∂

∂τ
ν` =

nc(0)

b2(τ)R(0)
`(`+ 1)e−2

∫
γ dτχ` − 2γν`, (B.7)
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To simplify derivation we introduce auxiliary variable ρ` to absorb the ex-
ponential factor

∂

∂τ
χ` = − g

mb(τ)R(0)
ν`,

ν` = e−2
∫
γ dτρ`,

∂

∂τ
ρ` =

nc(0)

b2(τ)R(0)
`(`+ 1)χ`,

∂

∂τ
χ` = − ge−2

∫
γ dτ

mb(τ)R(0)
ρ`,

and combining it with (B.7) we get

∂

∂τ

[
b2(τ)

∂ρ`
∂τ

]
= −ω

2

2
`(`+ 1)

[
RTF0

R(0)

]3
e−2

∫
γ dτ

b(τ)
ρ`.

Let’s define the efficient mode frequency at the initial time ω`(0) as

ω2
` (0) =

ω2

2
`(`+ 1)

[
RTF0

R(0)

]3

.

Note that ω`(0) reduces to standard definition (1.12) in the case we start
from an equilibrium Thomas-Fermi profile RTF0 = R(0).

Then we introduce action A` and angle η` variables in a procedure similar to
transformation from Cartesian to polar coordinates (the difference being explicit
time-dependence)

χ` = − g

mR(0)ω`(0)

√
be−2

∫
γ dτA` sin η`,

ρ` = A` cos η`.

After some algebra we arrive at

Ȧ` cos η` −A`η̇` sin η` = −ω`(0)

b3/2
e−

∫
γ dτA` sin η`,

Ȧ` sin η` −A`η̇` cos η` +
1

2

ḃ

b
A` sin η` − γA` sin η` =

ω`(0)

b3/2
e−

∫
γ dτA` cos η`,

Ȧ`
A`

= −1

2

ḃ

b
sin2 η` + γ sin2 η`, (B.8)

η̇` = ω`(τ)− 1

2

ḃ

b
sin η` cos η` + γ sin η` cos η`. (B.9)

So now we have evolution equation for action-angle variables. Integrating
(B.9) and (B.8) from 0 to some final time tf taken to much larger than one
period of revolution T` = 2π/ω`, sine- and cosine-like contributions average out
to zero, so

η` =

∫
ω`dτ,
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and sine- and cosine-squared terms average to 1/2, so we get

A`(τ) = b−1/4A`(0)e
1
2

∫
γ dτ

In the classical wave limit (classical equipartion, see Section 1.4) temperature
is proportional to the total energy of the system T ∝ E, and the energy stored
in fluctuation is given by, cf. (1.4)

E =

∫ R

−R
dz

[
~2

2m
n̄δv2 +

g

2
δn2

]
=
∑
`>0

E`,

which is calculated substituting resulting A` and η` into δn and δv. The result
for temperature scaling is

T (t)

T (0)
=
E(t)

E(0)
=
N(τ)

N(0)

ω`(t)

ω`(0)
= b−3/2e−3

∫
γ dt = b−3/2(t)N3/2(t).

Finally we note that in adiabatic regime b(t) ∝ N1/3(t), so

T (t) ∝ N(t),

which confirms our result from Section 1.11.3.



Appendix C

Squeezed GGE

It has become a common lore that a steady equilibrated state, produced after
relaxation after a quantum quench in an integrable system, can be described by
a Generalized Gibbs ensemble. Here I show that at least for free systems it is
not the case by providing an explicit example of a relaxed integrable system,
which has observables that cannot be described by GGE.

This claim can be intuitively understood taking into account a very special
nature of the free systems, namely that different quasiparticles don’t interact,
so they remain in the states they were intially. For example, if we initialize the
Luttinger liquid with bosons in Fock states in each mode, this ensemble will
not be described by GGE, because for Fock states correlations don’t factorize
according to Wick’s theorem.

As an instance, let’s consider a prethermalized state discussed in detail in
Section 1.6. As we know after prethermalization Luttinger modes end up in
Gaussian squeezed states, see Figure 1.7 on page 24 and [43, Figure 6 on page
21]. Then those squeezed states rotate as rigid bodies with different frequencies,
leading to dephasing.

The question is whether this squeezed dephased ensemble is equivalent to a
conventional GGE. My answer is no.

Proof. Let’s consider an ensemble of Luttinger modes in squeezed states, mean-
ing that their Wigner function are given by

Wq(x, y) =
1

2πσqxσqy
e
− x2

2σ2qx
− y2

2σ2qy ,

where q is the mode number, x, y are the field quadratures (e.g. appropriately
scaled Πq and φq), and σqx 6= σqy are the initial widths of the Gaussian in both
quadratures.

Note that for a conventional GGE σqx = σqy = σq, so the Wigner function
is rotationally symmetric.

Free evolution under Luttinger Hamiltonian is nothing but rigid rotation of
the modes: (

x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x0
y0

)
,
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where θ = ωqt. So the Wigner function becomes

Wq(x, y, t) =
1

2πσqxσqy
e
− (x cos θ−y sin θ)2

2σ2qx
− (y cos θ+x sin θ)2

2σ2qy .

Employing phase space representation, the expectation value of an observ-
able is given by [32] 〈

Ô
〉

=

∫
OW ·W (x, y, t) dx dy,

where OW is Weyl symbol for operator Ô and I utilize the Schrödigner picture
with stationary operators and evolving quantum states.

After some algebra it is straightforward to get the expressions for average
occupation number per mode Nq =

〈
N̂
〉
and its variance ∆q =

〈
N̂2
〉
−
〈
N̂
〉2,

both for squeezed and conventional GGE (note they are not time-dependent).

Squeezed GGE Conventional GGE

Ñq = σ2
xq + σ2

yq − 1/2 Nq = 2σ2
q − 1/2

∆̃q = 2σ4
xq + 2σ4

yq − 1/4 ∆q = 4σ4
q − 1/4

So it’s always possible to find a GGE with σ2
q = (σ2

xq + σ2
yq)/2, which will

give the same predictions for the mode occupation numbers Ñq = Nq. But the
variances will in general be different:

∆̃q −∆q = (σ2
xq − σ2

yq)
2 > 0,

meaning that the variance of quasiparticle occupation number of the squeezed
GGE is always larger than the variance of a conventional GGE constructed in
such a way that to match mean occupations Ñq = Nq.

If we are interested in some observables in real space, say interference con-
trast, given by

〈
cos[φ(z)−φ(z′)]

〉
, where φ(z) is the phase of the antisymmetric

condensate, then

φ̂(z) ∝ 1√
L

∑
eiqzφ̂q ∝

1√
L

∑
eiqz(b̄q + b̂−q) · f(q),

where b̂q are the annihilation operators of the Luttinger modes, and N̂q =

b̄q b̂q, we see that fluctuations of operators in real space will decay to zero in
thermodynamic limit, the similar way as the equivalence between conventional
thermal ensembles is proven in statistical mechanics [175].

The conclusion is that in general for a free system after a quench

Z 6=
∑
q

e−βqεq b̄q b̂q .

Speaking about GGE, it’s necessary to specify the observables of interest,
as there can be some (like variances of the mode occupation numbers) that will
not agree with GGE predictions. In real space though GGE can provide the
full description, but only in thermodynamic limit. For finite size systems real-
space observables will have larger fluctuations than those predicted by GGE,
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and the discrepancy can be straightforwardly calculated given the structure of
the steady state.

The fact that GGE still applies in the thermodynamic limit must be at-
tributed to the fact that initially we have Gaussian noise in the modes of anti-
symmetric condensate, meaning we start with Gaussian states initially, and then
no matter how do Gaussian states are squeezed or rotated, they remain Gaus-
sian, and transforming back to the real space we get measurements according
to GGE due to the central limit theorem. One can speculate that this might be
generalized to Unruh thermal radiation thought as Bogoliubov transformation
of the vacuum (a Gaussian state) [232].

When applied to discussion on prethermalization, I propose to substitute
the statement

“Prethermalized system is in a steady state which is fully described
by a GGE, and predicts thermal expectation values for some observ-
ables.”

with a new one

“Prethermalized system is in steady state which is fully described by
a squeezed GGE, which looks like a GGE and a thermal ensemble
for some observables.”

Finally I note that presented derivation in no way conflicts with results of
Imambekov, Kitagawa and others on prethermalization [43, 233, 25, 61, 24].



Appendix D

Limitaitions of the truncated
Wigner approximation

TruncatedWigner approximation (TWA) is a semiclassical approximation scheme,
where the quantum averages are approximated with an average over an ensem-
ble of the classical field equation solutions with initial conditions sampled from
the Wigner function of the initial quantum state [32].

TWA has a long record of successful applications in numerical simulations
of Bose-Einstein condensates [37, 234, 99]. In particular, numerical simulations
for cooling of 1D BEC from the Chapter 1 were performed with TWA. The
approximation is believed to hold when the initial quantum state has a positive
Wigner function, which is the case for thermal, coherent states, and possibly for
Fock states with a large number of particles [98, 235].

On the other hand, when applied to the studies of Néel state (where the
atoms are in Fock states initially) to superfluid quench in a Bose-Hubbard chain
from Chapter 2, TWA failed to reproduce the experimental results of [126].

Let’s see why Fock states are so special and whether there exist semiclassical
ways to appoximate them.

Fock-1 state. The Wigner function for the Fock-1 state reads [31]

W1(a, a∗) = − 2

π
e−2|a|2L1(4|a|2) =

2

π
e−2|a|2(4|a|2 − 1),

where Ln(x) is the Laguerre polynomial.
Exploiting the rotational symmetry we can represent the W-function in the

polar coordinates and integrate out the phase

W1(ρ) = 4ρe−2ρ2(4ρ2 − 1)∫ +∞

0

W1(ρ)dρ = 1.
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Figure D.1: Wigner functions of the Fock-0 (vacuum), Fock-1 and Ring-1 states (from
left to right). Sea level represents zero, so W-function for Fock-1 state is not a proper
probability distribution as it becomes negative in some regions.

For instance, moments can be calculated using Wick symbol [32, 30]

〈
N̂
〉

=

∫ +∞

0

N̂WW1(ρ)dρ =

∫ +∞

0

(ρ2 − 1

2
)W1(ρ)dρ = 1

〈
N̂2
〉

=

∫ +∞

0

(N̂2)WW1(ρ)dρ =

∫ +∞

0

(ρ4 − ρ2)W1(ρ)dρ = 1

To study dynamics, it’s convenient to work in Heisenberg representation,
where the state vector (Wigner function is stationary), but the operators evolve
according to Heisenberg’s equation. For instance, time-dependent number op-
erator can be calculated as〈

N̂(t)
〉

=

∫ +∞

0

N̂(t)WW (ρ, t = 0)dρ =

∫ +∞

0

(ρ(t)2 − 1

2
)W (ρ, t = 0)dρ

where ρ(t) = |a(t)|2 is acquired by solving classical equations of motion for the
field operators (GPE), with initial conditions picked from W (ρ, t = 0).

But the W-function of Fock-1 state has negative values, so it’s not a well-
defined probability distribution (Figure D.1). How can one circumvent this
problem?

The initial thought was to split the W-function into (positive) exponential
part and (negative) polynomial part, constructing the new observable from the
old one times the polynomial part and then averaging this new observable with
the weight of the exponential part of the W-function (sampling the random
initial conditions only from the exponential part):

〈
N̂t
〉

=

∫
(N̂t)WW (x0, p0)dx0 dp0 =

=

∫
(x2
t + p2

t −
1

2
)W (x0, p0)dx0 dp0 =

=

∫ [
2

π
(x2
t + p2

t −
1

2
)(4(x2

0 + p2
0)− 1)

]
e−2(x2

0+p20)dx0 dp0 =∫
Ñte

−2(x2
0+p20)dx0 dp0,

where x and p are the field quadratures (real), ρ2 = x2 + p2.
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But this approach failed because if we sample the initial conditions, say,
for the first site (which is supposed to be in Fock-1 state) from the Gaussian
distribution e−2(x2

0+p20)—it effectively represents only the vacuum state. So the
initial conditions for the equation of motion are all vacuum (e.g. the second
site, which is coupled to the first, has no clue that the first site is in Fock-1
state, besause it sees only the Gaussian distribution in the initial state of the
first site).

So the only solution seems to be using the ‘ring states’, introduced first by
A. Polkovnikov under the name of the ‘best Gaussian approximation’ [236].

Best Gaussian approximation (a ring state). The ring state Rn(ρ), approx-
imating the Fock-n state Wn(ρ), is defined to have the W-function

Rn(ρ) =
1√
2πσ

exp
(ρ− ρ̄)2

2σ2

with σ and ρ̄ such that the occupation number and variance are the same for
Rn(ρ) and Wn(ρ) (the higher moments will unavoidably differ).

〈
N̂n
〉

=

∫
N̂WWn(x, p)dx dp =

∫
N̂WRn(x, p)dx dp = n〈

N̂2
〉

=

∫
N̂2
WWn(x, p)dx dp =

∫
N̂2
WRn(x, p)dx dp = n2

For Ring-1 state (approximating Fock-1) the parameters were numerically
found to be σ = 0.20, ρ̄ = 1.208, Figure D.1.

However, TWA with ring states failed to predict the correct steady state
solution for a Bose-Hubbard chain (see e.g. Figure D.2).

Discussion. The 1D Bose-Hubbard chain initially in a Néel state (see Chap-
ter 2), solved with TWA without quantum corrections, shows classical ther-
malization to the Boltzmann ensemble and even some hints of turbulent scaling
laws during equilibration (to be published elsewhere). But the initial state must
be interpreted just as an ensemble of classical systems with close initial condi-
tions. Most importantly, even if U is large, the quantum system relaxes to a
state ∀ini = 1/2, but the TWA results show self-trapping (e.g. ni = 0.1 for
even sites, which are initially unoccupied, and ni = 0.9 for odd sites, which are
initially occupied with one particle). This shows that TWA fails to account for
the discreteness of particles and may be used only if the sites are occupied ini-
tially with many particles (high wave amplitudes—in the quantum case there is
self-trapping as well, see e.g. experiments with Josephson junctions [237, 132]).
But it’s impossible to experimentally prepare optical lattice with high imbalance
between neighboring sites, which in this case makes TWA description irrelevant.
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Figure D.2: The 1D Bose-Hubbard chain initially in a Néel state, quenched to a super-
fluid (see Chapter 2). Mode occupation number evolution (k = 0 . . . N), calculated by
TWA ring-state simulations (red), in comparison with exact diagonalization (black)
for a chain with M = 8, N = M/2, J = 1, U = 1. Black horizontal line represents the
quantum diagonal steady-state ς prediction, and horizontal red line—TWA long-time
average. It seems that TWA fails to predict the correct steady state. Note that TWA
predicts larger occupation for low-lying modes, which must correspond to a state closer
to a classical thermal equilibrium at lower temperatures.



Appendix E

Ergodic eigenstate
thermalization theorem

Summary. Eigenstate thermalization hypothesis was formulated in Section 2.8,
and usually reads:

In a quantum non-integrable system, eigenstates close in energy are
close in all other local observables.

In this appendix I explore the locality criterion and argue that it stems from
a more general concept of ergodic eigenstates (to be defined later).

Statement. Let {
∣∣K〉, ∣∣L〉 . . .} be the exact many-body eigenstates of an in-

teracting system (further called simply ‘eigenstates’).
ETH claims that eigenstates close in energy are close in observables, which

reads 〈
K
∣∣n̂∣∣K〉 ≈ 〈L∣∣n̂∣∣L〉 if εK ≈ εL,

where n̂ is some observable and εK ≡
〈
K
∣∣Ĥ∣∣K〉 are the energies of the eigen-

states, so that a system prepared in the eigenstate
∣∣K〉 can be well described

by a microcanonical ensemble around the energy εK .
A reasonable question would be for which observables does ETH hold. Ob-

viously, it won’t hold for projectors on eigenstates
∣∣K〉〈K∣∣ in the role of the

observables.
Let’s define an arbitrary complete many-body basis {

∣∣k〉, ∣∣`〉 . . .} (later ref-
erenced as the ‘preferred basis’). Then each eigenstate can be decomposed into
the basis states ∣∣K〉 =

∑
m

∣∣m〉〈m∣∣K〉 =
∑
m

Cm,K
∣∣m〉.

An example of a preferred basis may be the eigenbasis of the corresponding
non-interacting system.

Following [238] we define the energy shell in the preferred basis with respect
to the eigenstate

∣∣K〉 as the range in energies between the basis state
∣∣a〉 with

the lowest energy εa and the basis state
∣∣z〉, with the highest energy εz with the

condition that states εa and εz contribute to the eigenstate
∣∣K〉, i.e. Ca,K 6= 0

and Cz,K 6= 0:
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Energy shell = [εa, εz].

Then the eigenstate
∣∣K〉 is called ergodic in the working basis if it fills the

energy shell densely,

∀m, εa ≤ εm ≤ εz : Cm,K 6= 0.

Note that this notion of ergodicity is defined in the Hilbert space, and is
different from the conventional ergodicity, defined on the phase space, as there
is no one-to-one continuous correspondence between vectors in Hilbert space
and regions in phase space (e.g. states close in phase space may be orthogonal
in Hilbert space [202]).

I claim that if there exists a preferred basis where the eigenstates are ergodic,
then the observables diagonal in this basis will exhibit ETH.

I stress that I do not explicitly appeal to ‘locality’ of operators to justify
ETH.

Proof. Let’s have an observableX diagonal in the preferred basis, i.e.
〈
k
∣∣X∣∣m〉 =

xmδkm. Then the observable in the exact eigenstate is〈
K
∣∣X∣∣K〉 =

∑
m

〈
K
∣∣m〉xm〈m∣∣K〉 =

∑
m

|Cm,K |2xm.

Ergodicity implies that there is a lot of preferred basis states {
∣∣m〉} with

energies close to the exact eigenstate energy Em ≈ EK , and non-zero Cm,K , so
following the approach of [180], I define the microcanonical distribution function

Fm,K = |Cm,K |2 = F (Em − EK).

Then it is easy to see that if F is smooth enough (as it should be in an
ergodic state), then X average in an eigenstate K is dependent only on the
energy EK , 〈

K
∣∣X∣∣K〉 =

∑
m xmF (Em − EK)∑
m F (Em − EK)

= X(EK),

proving the ETH.

Discussion. So what is a preferred basis and at what condition the eigenstates
are ergodic in it? There is no single definite answer.

A general belief, confirmed with numerical simulations, states that for quan-
tum chaotic (non-integrable) systems, the eigenfunctions are ergodic with re-
spect to a local basis1 [238], which immediately shows that ETH should hold
for local observables.

The first to–do for future study would be to find an explicit example of a
non-local basis, where eigenstates are ergodic, and show that indeed ETH is
satisfied there.

1E.g. the vectors of the local basis may be defined with respect to the Fock states on single
sites of a Bose-Hubbard chain, like

∣∣2100〉 = â†1â
†
1â
†
2

∣∣0〉.
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We present numerical results demonstrating the possibility of thermalization of single-particle observables in
a one-dimensional system, which is integrable in both the quantum and classical (mean-field) descriptions (a
quasicondensate of ultracold, weakly interacting bosonic atoms are studied as a definite example). We find that
certain initial conditions admit the relaxation of single-particle observables to the equilibrium state reasonably
close to that corresponding to the Bose-Einstein thermal distribution of Bogoliubov quasiparticles.

DOI: 10.1103/PhysRevA.84.053635 PACS number(s): 03.75.Gg, 05.30.−d, 02.30.Ik, 67.85.−d

I. INTRODUCTION

A one-dimensional (1D) system of identical bosons with
contact interactions is known to be integrable since Lieb and
Liniger have solved analytically the corresponding quantum
problem by means of the Bethe ansatz [1]. In the weakly
interacting limit, this system can be described in the mean-field
approximation by the Gross-Pitaevskii equation (GPE), also
known as the nonlinear Schrödinger equation (NLSE). Za-
kharov and Shabat [2] have demonstrated that the NLSE with
defocusing nonlinearity (which corresponds to the repulsive
interactions between particles) is integrable by the inverse
scattering transform (see [3] for a general review of the inverse
scattering transform method). Since the number of integrals
of motion in an integrable system equals to the number of
degrees of freedom (infinite in the continuous mean-field
description [2] or equal to the number of particles in the
quantum Lieb-Liniger model [1]), one might expect that the
finally attained equilibrium state must still bear signatures of
the initial conditions.

One-dimensional bosonic systems have been experimen-
tally implemented with ultracold atoms on atom chips [4,5],
with the radial trapping frequency being ∼103 times higher
than the longitudinal one. The ultracold degenerate atomic
system (quasicondensate, i.e., a system describable by a
macroscopic wave function with a fluctuating local phase)
was in the 1D regime since both the temperature and the
mean interaction energy per atom were well below the energy
interval between the ground and the first excited states of the
radial motion. The fact that the static and dynamic correlation
properties of these systems were in a very good agreement with
the Bose-Einstein equilibrium distribution of quasiparticles
seemed to be in contradiction with the system integrability
and called for explanation. To explain the observed relaxation
of single- and two-particle distribution functions for the ele-
mentary excitations (Bogoliubov quasiparticles) to the Bose-
Einstein equilibrium, a mechanism of integrability breakdown
via three-body effective collisions involving virtual excitations
of the radial degrees of freedom has been proposed [6].

In the present paper we numerically show the existence
of a certain case of nonquilibrium initial conditions of the
GPE, which provide a very fast relaxation of the simplest
(single-particle) observables to an equilibrium state very
close to thermal equilibrium, despite the integrability of the
problem.

Some indications of thermalization in 1D bosonic systems
have been obtained in numerical simulations of various physi-
cal processes in quasicondensates, such as the subexponential
decay of coherence between coherently split quasicondensates
[7], soliton formation in a 1D bosonic system in the course
of (quasi)condensation [8], in-trap density fluctuations [9],
wave chaos [10], and condensate formation after the addition
of a dimple to a weak harmonic longitudinal confinement
of a 1D ultracold atomic gas [11]. However, a systematic
study of thermalization of the GPE solution in the course
of time evolution was lacking up to now. Even Ref. [12],
where thermalization of the GPE solution with the initial
conditions corresponding to the high-temperature limit has
been numerically obtained, states that formal and systematic
understanding of the problem is still incomplete. We fill this
gap, at least to a certain extent, with our present study.

We also have to draw a clear distinction between our
approach and that of Rigol et al. [13], who theoretically
studied dephasing in a quantum system of hard-core bosons
on a lattice, prepared initially in a coherent superposition of
eigenstates, and its relaxation to a generalized Gibbs (fully
constrained) equilibrium. Our aim is to demonstrate that a
weakly interacting 1D degenerate bosonic gas can approach,
in the course of its evolution, a state that is reasonably close to
the conventional thermal Bose-Einstein equilibrium.

II. NUMERICAL APPROACH

We solve the GPE

ih̄
∂

∂t
�(x,t) = − h̄2

2m

∂2

∂x2
�(x,t) + g|�(x,t)|2�(x,t), (1)

where �(x,t) is a classical complex field representing a
quasicondensate of atoms with mass m and g is the effective
coupling constant in one dimension (we assume g > 0).
The interaction strength is characterized by the Lieb-Liniger
parameter [1] γ = mg/(h̄2n̄) ≡ (n̄ξ )−2, where ξ is the quasi-
condensate healing length and n̄ ≡ 〈|�(x,t)|2〉 is the mean 1D
number density. We consider the weak interaction limit γ � 1.
We assume periodic boundary conditions for �(x,t), with the
period L being long enough to ensure the loss of correlations
over the half period: 〈�∗(x,t)�(x + L/2,t)〉 � n̄. The angle
brackets denote here averaging over the ensemble of realiza-
tions. For each realization the initial conditions are prepared
in a manner similar to the truncated Wigner approach [14] but
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taking into account thermal fluctuations only (cf. Ref. [7]).
We express the macroscopic order parameters in terms of the
phase φ and density δn fluctuations: � = (n̄ + δn)1/2eiφ . The
initial (at t = 0) fluctuations are expanded into plane waves as

δn(x,0) = 2
√

n̄/L
∑
k �=0

βk

√
ηk/εk cos(kx + �k),

(2)
φ(x,0) = (1/

√
n̄L)

∑
k �=0

βk

√
εk/ηk sin(kx + �k),

where εk = √
ηk(ηk + 2gn̄) is the energy of the elementary

(Bogoliubov) excitation with the momentum h̄k and ηk =
(h̄k)2/(2m). The real numbers βk and �k have the meaning
of the scaled amplitude and the offset of the thermally
excited elementary wave with the momentum h̄k at t = 0.
The values of �k are taken as (pseudo)random numbers
uniformly distributed between 0 and 2π . Each ensemble of
realizations is also characterized by a distribution of the βk

values, with 〈β2
k 〉 being equal to the main number N0(k)

of elementary excitation quanta (quasiparticles) in the given
mode [15]. In equilibrium at the temperature T the populations
of the bosonic quasiparticle modes are given by NBE(k,T ) =
{exp[εk/(kBT )] − 1}−1.

The use of the classical field (GPE) approach is justified,
as it has been shown [16] that the noise and correlations in an
atomic quasicondensate are dominated by thermal (classical)
fluctuations under experimentally feasible conditions, and the
observation of quantum noise is a challenging task that can be
solved in particular regimes by means of involved experimental
tools [17].

To integrate Eq. (1), we used the fourth-order time-splitting
Fourier spectral method [18], which is rather similar to that
used in Ref. [7].

We have found a set of examples of solutions of Eq. (1)
that demonstrate quite a good degree of thermalization.
Efficient thermalization has been observed in the cases of
initial population of Bogoliubov modes within a certain
momentum band around k = 0 [for simplicity, we assume
N0(k) = N0(−k)], with the bandwidth being narrow enough
to ensure the phononic nature of these excitations, |k|ξ � 1.
In Fig. 1, we present our results of numerical integration
of Eq. (1) for the initial conditions corresponding to the
truncated classical distribution, parametrized by the effective
temperature T0 and the cutoff momentum h̄k0, i.e., for N0(k)
being equal to kBT0/εk for |k| < k0 and zero otherwise. For
the sake of convenience, in Fig. 1 we plot the mean energy
per mode Ek = εkN (k), which does not diverge at k → 0,
in contrast to the time-dependent population distribution
N (k). Practically, Ek can be calculated by averaging over the
ensemble of realizations the energy stored in the given mode:

Ek =
〈
m

2
n̄|vk|2 +

(
h̄2k2

8mn̄
+ g

2

)
|δnk|2

〉
, (3)

where δnk and vk are the Fourier transforms of the density
δn(x,t) and velocity v(x,t) = (h̄/m)∂φ/∂x fluctuations.

Elementary excitations at different momenta are found to
be uncorrelated for all propagation times, i.e., 〈δnk′δn∗

k〉 =
〈|δnk|2〉δk k′ and 〈vk′v∗

k 〉 = 〈|vk|2〉δk k′ , as expected for a thermal
equilibrium state.
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FIG. 1. (Color online) Dots: mean energy per mode (scaled to
kBT0 with kBT0 = 2 gn̄) as the function of wave number k (scaled to
ξ ) for the dimensionless time gn̄t/h̄ = (a) 0, (b) 50, (c) 2850, and
(d) 5750. The Lieb-Liniger parameter γ = 5 × 10−3, k0ξ = 0.33.
Solid line: mean energy per mode εkN (k,Teq) for the equilibrium
state, Teq = 0.35 T0; see Eq. (4). The data are averaged over 200
realizations. Units on the axes in this figure and the subsequent figures
are dimensionless.

The energy distribution approaches its equilibrium, which
is quite close to the thermal Bose-Einstein distribution. The
main difference is that the former is flat at k → 0 and
the latter has a cusp there. The equivalent temperature Teq

of the corresponding Bose-Einstein thermal distribution is
determined from the energy conservation [19]:

∑
k �=0

εkN0(k) =
∑
k �=0

εkNBE(k,Teq). (4)

Note that for a weakly interacting 1D system of 87Rb atoms
with the parameters as in Fig. 1 the time unit h̄/(gn̄) ≈ 0.1 ms.

To check our numerical method, we performed the fol-
lowing tests. First, we checked the isospectrality of the
(generalized) Lax operator of the inverse scattering problem
[2,3]. We calculated the spectrum of the linear differential

operator ( i∂/∂x̄ q

q∗ −i∂/∂x̄
), where x̄ = x/ξ and q = n̄−1/2�(x,t),

by substituting the numerically obtained solution for �(x,t) at
different times and comparing the result to the spectrum that
corresponds to the initial condition �(x,0). The spectrum of
the Lax operator has been found to be time independent with
a high accuracy. The maximum relative shift of an eigenvalue
over more than 100 realizations was about 10−7 for a numerical
grid consisting of 1024 points in x.

Then we checked the time independence of the numerical
values of the integrals of motion of Eq. (1). The first three of
them are (up to a numerical factor) the particle number, the total
momentum, and the total energy of the system. Other integrals
of motion can be calculated using the recurrent formula [2].
We found that they are conserved with high accuracy, with the
relative error being of order of 10−11 for the first integral of
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motion (the number of particles) and of order of 10−4 for the
15th integral of motion.

Following Ref. [10], we estimated the numerical er-
ror through the fidelity, defined as F = |1 − (n̄L)−1

∫ L

0 dx

�∗(x,0)�fb(x,t, − t)|, where �fb(x,t, − t) is the numerical
solution of the GPE with the initial condition �(x,0) first
propagated forward in time (up to time t) and then propagated
backward over the same time interval. We obtained F ∼ 10−8

for the propagation times t as long as 103 h̄/(gn̄), which is
sufficient for the establishment of equilibrium, with the spatial
grid consisting of 512 points.

We found that our method converges if the grid contains
more than 200 points for L ≈ 400 ξ . A coarse grid (about
100 points) yields a numerical artifact: any initial distributions
rapidly smears out to the “classical-like” flat distribution of
the energy over modes, i.e., to Ek ≈ const for all momenta
− π

x
< k < π

x
resolvable by the grid with the step x.

To quantify relaxation of the system toward its equilibrium,
we introduce the measure

W =
∑

k �=0{εk[N (k) − NBE(k,Teq)]}2∑
k �=0[εkNBE(k,Teq)]2

, (5)

which has a meaning of the normalized energy-weighted
squared deviation of the quasiparticle distribution from the
Bose-Einstein thermal equilibrium. For the parameters of
Figs. 1 and 2, with T0 = 150 nK, the thermalization time is
τeq ∼ 20 ms. If we change T0 to 50 nK and k0ξ to 1, then τeq

decreases by an order of magnitude. Note that the obtained
thermalization time τeq is always shorter than the time needed
for a sound wave to traverse the distance L. Therefore the
thermalization observed in our simulations is a local physical
effect, which is not related to specific boundary conditions. The
thermalization time τeq should not be confused with the time
τd ∼ mλ2

T /h̄ [7], where λT = 2h̄2n̄/(mkBT ), of dephasing be-
tween two 1D quasicondensates initially prepared in thermal-
like states with strongly mutually correlated fluctuations.
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FIG. 2. (Color online) Numerically obtained energy-weighted
squared deviation of the quasiparticle distribution from the Bose-
Einstein thermal equilibrium as a function of time. The initial energy
distribution and other parameters are the same as in Fig. 1(a). The
inset shows the numerically calculated first-order correlation function
g1(x − x ′) (shown on the logarithmic scale) for the dimensionless
time gn̄t/h̄ = 0 (circles) and 6000 (squares). The distance is scaled
to λeq.
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FIG. 3. (Color online) Dots: mean energy per mode (scaled to
kBT0 with kBT0 = 0.66 gn̄) as a function of wave number k (scaled to
ξ ) for the dimensionless time gn̄t/h̄ = 2 × 104, which is long enough
to provide equilibration. The Lieb-Liniger parameter γ = 5 × 10−3,
k1ξ = 1.0, k2ξ = 2.0. Note the closeness of the equilibrium states to
the initial energy distribution (dashed line).

III. DISCUSSION AND CONCLUSIONS

Therefore we found numerically an example of the GPE
solution that relaxes toward a state with practically measurable
noise and correlation properties [20] well describable by
a thermal Bose-Einstein ensemble of quasiparticles. As an
illustration, in the inset in Fig. 2 we plot the numeri-
cally calculated first-order correlation function g1(x − x ′) =
〈�∗(x ′,t)�(x,t)〉/n̄ for t = 0 and for t large enough to provide
equilibration [21]. We see that this correlation function finally
approaches the exponential form g1(x − x ′) = exp(−|x −
x ′|/λT ), predicted for the thermal equilibrium [22], with
T ≈ Teq [the distance in the inset in Fig. 3 is scaled to
λeq = 2h̄2n̄/(mkBTeq)].

Not every initial distribution relaxes toward the Bose-
Einstein thermal equilibrium. For example, if there are
initially two oppositely propagating bunches of particle-like
elementary excitations well separated in the momentum space,
an equilibrium state very far from NBE(k,Teq) is established,
as seen from Fig. 3, where we assume εkN0(k) to be equal
to kBT0 for k1 < |k| < k2 and zero otherwise (k1 � ξ−1). This
behavior can be viewed as a conspicuous example of relaxation
toward the fully constrained equilibrium [13] in the weakly
interacting case.

To elucidate the qualitative difference between the cases
shown in Figs. 1 and 3, we calculate the time dependence of the
distance D(2)[ψ1,ψ2] = (2n̄L)−1

∫ L

0 dx |ψ1(x,t) − ψ2(x,t)|2
between two solutions ψ1,ψ2 of the GPE, which are very
close at t = 0. As we can see from Fig. 4, if phononic
modes are initially populated, D(2) grows exponentially and
saturates at the unity level (corresponding to the total loss of
correlations at t → ∞), thus signifying the chaotic regime.
If only particle-like modes are initially populated, then D(2)

grows very slowly and stays well below 1 at all experimentally
relevant times (hence, the chaotic behavior is practically not
observed in that case).

To conclude, we numerically observed thermalization in
a 1D quasicondensate, i.e., in an ultracold atomic system
described by the NLSE with a cubic repulsive nonlinearity, if
only phononic modes are populated initially. The correctness
of the numerical solution has been checked via the criteria of
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FIG. 4. (Color online) Distance D(2)[ψ1,ψ2] (on the logarithmic
scale, dimensionless) as a function of scaled time for the parameters
of Fig. 1 (I, upper curve) and Fig. 3 (II, lower curve).

the Lax operator isospectrality, conservation of the integrals of
motion, and fidelity. Such a series of tests prevents the possible
numerical artifacts that may occur in the split-step method [23].
Although the thermalization is not complete, experimentally

measurable correlations are expected to be well described by
the thermal equilibrium of bosonic elementary excitations. Our
findings are in good agreement with the high efficiency of the
evaporative cooling of ultracold atomic gases on the atom
chips deeply in the 1D regime [4,5] (our work on numerical
modeling of evaporative cooling of ultracold bosonic atoms
in elongated traps is in progress). On the other hand, to
provide full thermalization of nonequilibrium ensembles of
particle-like excitations, like the one displayed in Fig. 3, we
have to resort to the option of the integrability breakdown
provided by the mechanism of effective three-body elastic
collisions in one dimension [6].
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We revisit the theory of tunnel-coupled atomic quasicondensates in double-well elongated traps at finite
temperatures. Using the functional-integral approach, we calculate the relative-phase correlation function beyond
the harmonic limit of small fluctuations of the relative phase and its conjugate relative-density variable. We show
that the thermal fluctuations of the relative phase between the two quasicondensates decrease the frequency of
Josephson oscillations and even wash out these oscillations for small values of the tunnel coupling.

DOI: 10.1103/PhysRevA.87.013629 PACS number(s): 03.75.Kk, 03.75.Lm, 67.85.Jk

I. INTRODUCTION

Systems of ultracold bosonic atoms in two parallel atomic
waveguides mutually coupled via quantum tunneling (so-
called extended bosonic Josephson junctions) have been a
subject of intensive theoretical [1–7] and experimental [8]
studies. The finite spatial extension of these systems provides
much richer physics compared to the case of a pointlike
bosonic Josephson junction [9]. The novel features arise due to
the enhanced role of noise and correlations in low-dimensional
ultracold atomic systems.

Before discussing the effects of tunneling, we recall the
basic properties of a bosonic system in an isolated waveguide
[10–12]. This system is effectively one-dimensional (1D) if the
interaction energy per atom (we assume interatomic repulsion
characterized by the effective 1D coupling strength g > 0)
and the temperature are well below the spacing between
the discrete energy levels of the potential of tight radial
confinement. In this case quantum degeneracy does not lead to
establishment of the long-range order; instead, atoms form a
quasicondensate, i.e., a system describable by a macroscopic
wave function with strong phase fluctuations. The characteris-
tic length of the phase coherence in a quasicondensate at finite
temperature T is λT = 2h̄2n1D/(mkBT ), where m is the atomic
mass and n1D is the mean linear density of atoms [10] (we
assume an infinite system; the thermodynamic limit implies
constant n1D = N/L, while both the atom number N and the
quantization length L tend to infinity). The power-law decrease
of the single-particle correlation function takes place only at
T = 0.

If two waveguides are tunnel coupled, the system is
described by the generalized Hamiltonian

Ĥ =
∫

dz

⎡
⎣ 2∑

j=1

(
h̄2

2m

∂ψ̂
†
j

∂z

∂ψ̂j

∂z
+ g

2
ψ̂

†
j ψ̂

†
j ψ̂j ψ̂j − μψ̂

†
j ψ̂j

)

− h̄J (ψ̂†
1ψ̂2 + ψ̂

†
2ψ̂1)

⎤
⎦ , (1)

where ψ̂j is the atomic annihilation operator for the j th waveg-
uide (j = 1,2), μ = h̄gn1D − h̄J is the chemical potential,
and 2J is the tunnel splitting (in frequency units), i.e., the
frequency interval between the two lowest eigenstates of the

radial trapping Hamiltonian (the antisymmetric and symmetric
superpositions of the single-atom states localized in either
j = 1 or j = 2 wells of the double-well Hamiltonian). In this
case the situation changes qualitatively: the tunnel coupling
mutually locks phase fluctuations in the two quasicondensates
[1]. Phase locking (as we shall quantify in Sec. II) means
that the distribution of the relative phase between the two
quasicondensates becomes peaked around zero, while the local
phase of an individual (j = 1 or 2) quasicondensate remains
fully random (the phase-density representation for quasicon-
densates will be discussed in Sec. II). In the spatial correlation
of the local relative phase between two quasicondensates a
new length parameter appears [1,5]:

lJ =
√

h̄/(4mJ ). (2)

The length lJ sets the scale of restoration of the interwaveguide
coherence due to finite tunnel-coupling strength J . The tunnel-
coupling strength is usually estimated from the single-particle
energy (kinetic and potential) and the overlap in the potential
barrier region of the wave functions for a particle localized in
the first and second waveguides. However, it is also possible
to take into account atomic interactions (see Ref. [6] and
references therein). Experimentally, the interwell coherence
can be observed by releasing the two quasicondensates from
the trap and measuring locally the contrast and the phase of
their interference pattern after time of flight [13,14].

Up to now, only the theory based on linearization of
the Hamiltonian (1) has been developed [1] and applied
to the analysis of the experimental data [5,8]. Our work
aims to develop a model of the steady-state thermal noise
in tunnel-coupled quasicondensates beyond the harmonic
approximation as well as to quantify the influence of the
thermal noise to the macroscopic coherent dynamics of the
system (Josephson oscillations).

Our paper is organized as follows. In Sec. II we summarize
the harmonic approach of Ref. [1]. Section III is divided in
two parts. In Sec. III A we calculate the static correlation
properties of our system beyond the harmonic approximation
using the transfer operator technique in the classical limit.
The condition for negligibility of the quantum noise is also
derived. Our way to model the equilibrium state by numerical
simulation of the system’s relaxation to the equilibrium after
a quench is explained in Sec. III B. Section IV deals with the
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noise-affected Josephson oscillations. We derive analytically
the frequency of Josephson oscillations modified by the ther-
mal noise in our extended system. We support our analysis by
numerical simulations and also observe Josephson oscillations
washing out as a result of thermal noise for low enough
tunnel coupling. Section V contains our final remarks and
conclusions. Explanations of the ways to derive the main
equations of Secs. III and IV are presented in Appendices A
and B, respectively.

II. HARMONIC APPROXIMATION

Following the standard procedure [11], we represent our
atomic field operators through the phase θ̂j (z) and density ρ̂j (z)
operators, obeying the commutation relation [θ̂j (z),ρ̂j ′(z′)] =
−iδ(z − z′)δj j ′ , as

ψ̂j (z) = exp[iθ̂j (z)]
√

ρ̂j (z), j = 1,2. (3)

A discussion of the way to introduce the phase operator for
quasicondensates by coarse graining a lattice model on length
scales containing sufficiently many atoms can be found in
Ref. [11]. The density operator can be represented as ρ̂j (z) =
n1D + δρ̂j (z). Since for quantum gases with repulsive atomic
interactions density fluctuations are suppressed, we can always
consider the corresponding operator δρ̂j as a small correction.
However, the same is not always true for the phase fluctuations.

Whitlock and Bouchoule [1] from the very beginning
assumed the phase fluctuations to be small and thus linearized
Hamiltonian (1), reducing it to Ĥ ≈ Ĥlin,

Ĥlin =
∫

dz

[
h̄2n1D

m

(
∂θ̂s

∂z

)2

+ h̄2

16mn1D

(
∂δρ̂s

∂z

)2

+ g

4
δρ̂2

s + h̄2n1D

4m

(
∂θ̂a

∂z

)2

+ h̄2

4mn1D

(
∂δρ̂a

∂z

)2

+ g δρ̂2
a + h̄Jn1Dθ̂2

a

]
. (4)

Here the symmetric (s) and antisymmetric (a) variables are
introduced via canonical transformation,

δρ̂s(z) = δρ̂1(z) + δρ̂2(z), θ̂s(z) = [θ̂1(z) + θ̂2(z)]/2,

δρ̂a(z) = [δρ̂1(z) − δρ̂2(z)]/2, θ̂a(z) = θ̂1(z) − θ̂2(z).

Diagonalization of the Hamiltonian (4) is based on
the Fourier transform δρ̂s(a)(z) = L−1/2∑

k �=0 δρ̂s(a),ke
ikz,

θ̂s(a)(z) = L−1/2∑
k �=0 θ̂s(a),ke

ikz. The frequencies ωs(a)(k) of
the symmetric and antisymmetric modes with the momentum
h̄k are given by the dispersion relations

ω2
s (k) = h̄k2

2m

(
h̄k2

2m
+ 2gn1D

h̄

)
, (5)

ω2
a (k) =

(
h̄k2

2m
+ 2J

)(
h̄k2

2m
+ 2J + 2gn1D

h̄

)
. (6)

Correlations in two tunnel-coupled quasicondensates are
experimentally accessible via the two-point correlation func-
tion ga

2(z − z′) = n−2
1D〈: ψ̂†

1(z)ψ̂†
2(z′)ψ̂2(z)ψ̂1(z′) :〉. Since the

system described by Hamiltonian (1) is translationally invari-
ant, ga

2 depends only on the difference of the two coordinates.
The symbol 〈: Ô :〉 denotes the average of the normal ordered

(with respect to the atomic operators ψ̂j , ψ̂
†
j ) form of the

operator Ô. In what follows, we omit the normal ordering
notation, thus neglecting the atomic shot noise.

Since the density fluctuations for |k| � ξ−1, with ξ =
h̄/

√
mgn1D = h̄/(mc) being the healing length, are suppressed

by the atomic repulsion [10,11], the main contribution to this
correlation function is given by the phase fluctuations, ga

2(z −
z′) ≈ 〈exp[iθ̂a(z′) − iθ̂a(z)]〉. The experimentally accessible
length scale cannot be shorter than the optical resolution
length 
zopt. On this scale the shot noise yields the quantum
uncertainty of the relative phase, coarse grained over the dis-
tance 
zopt, of the order of 1/

√
2n1D
zopt. For 
zopt � 3 μm

and n1D � 30 μm−1 the shot-noise-induced phase uncertainty
does not exceed 0.075 rad. This relatively small value can
always be kept in mind when comparing theoretical predictions
to measurement results. However, for the sake of simplic-
ity, in what follows we assume 〈: exp[iθ̂a(z′) − iθ̂a(z)] :〉 ≈
〈exp[iθ̂a(z′) − iθ̂a(z)]〉 and so on.

Another point related to the use of the fully classical
approximation is the substitution of the Bose-Einstein statistics
of the elementary excitations by its classical limit,

1

exp[h̄ωa(k)/(kBT )] − 1
≈ kBT

h̄ωa(k)
. (7)

One obtains strong deviations from Eq. (7) for h̄ωa(k) � kBT ,
which corresponds, under typical experimental conditions, to
the range of wave lengths shorter than 
zopt, i.e., not resolvable
optically. These considerations justify our method based on
genuinely classical statistics.

In the harmonic approximations fluctuations are Gaussian;
hence, 〈exp[iθ̂a(z′) − iθ̂a(z)]〉 = exp{− 1

2 〈[θ̂a(z′) − θ̂a(z)]2〉}.
Expressing θ̂a through creation and annihilation operators of
the elementary excitations and calculating thermal popula-
tions of the elementary modes using Eq. (7), Whitlock and
Bouchoule obtained [1]

〈exp[iθ̂a(z′) − iθ̂a(z)]〉 = exp

[
−2lJ

λT

(1 − e−|z−z′ |/lJ )

]
. (8)

From this expression we can see that tunnel coupling
locks the relative phase between two quasicondensates. This
locking means that the relative-phase correlation function
(8) does not decrease to zero but even at |z − z′| → ∞
has a finite value, corresponding to 〈θ̂2

a (z)〉 = 2lJ /λT . On
the contrary, the phase correlations in each of the waveg-
uides are 〈exp[iθ̂j (z′) − iθ̂j (z)]〉 = 〈exp{i[θ̂s(z′) ± 1

2 θ̂a(z′) −
θ̂s(z) ∓ 1

2 θ̂a(z)]}〉, with the upper and lower signs correspond-
ing to j = 1 and j = 2, respectively. We can evaluate them
using the statistical independence of noise in the symmetric
and antisymmetric modes. The result

〈exp[iθ̂j (z′) − iθ̂j (z)]〉

= exp

{
−1

2
〈[θ̂s(z

′) − θ̂s(z)]2〉 − 1

8
〈[θ̂a(z′) − θ̂a(z)]2〉

}

= exp

[
−|z − z′|

2λT

− lJ

2λT

(1 − e−|z−z′ |/lJ )

]
(9)

decreases ∝ exp[−|z − z′|/(2λT )] at |z − z′| → ∞ because
of the unlimited growth of the fluctuations of the symmetric
component of the phase along the z direction. The correlation
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properties of the symmetric mode can be experimentally mea-
sured using the density-density correlations of the ultracold
gas in a time-of-flight experiment [15]; however, this subject
is beyond the scope of our present paper.

The phase locking of the relative phase becomes most
apparent if we treat the evolution of the relative phase along
z in the harmonic approximation as the Ornstein-Uhlenbeck
stochastic process [5]: while thermal excitations result in
the relative phase diffusion, with the diffusion coefficient
proportional to λ−1

T , the tunnel coupling gives rise to the
“friction” force that tends to restore a small (ultimately zero)
local phase difference between the two quasicondensates.

III. CORRELATION FUNCTIONS AND THE INTERWELL
COHERENCE BEYOND THE HARMONIC

APPROXIMATION

A. Equilibrium theory

In the present work we make a step further with respect
to the theory of Ref. [1] and abandon the assumption of small
phase fluctuations (but still consider small density fluctuations,
which is a reasonable approximation for quasicondensates
with repulsive interactions). We evaluate the partition function
[10]

Z =
∫

Dδρs

∫
Dθs

∫
Dδρa

∫
Dθa exp[−H/(kBT )], (10)

where

H =
∫

dz

[
h̄2n1D

m

(
∂θs

∂z

)2

+ g

4
δρ2

s + h̄2n1D

4m

(
∂θa

∂z

)2

+ g δρ2
a + 2h̄Jn1D(1 − cos θa)

]
(11)

is Hamiltonian (1) expressed through the classical fields
δρs,a, θs,a (in the coordinate representation), over which the
functional integrals are taken. For the sake of simplicity,
we write Hamiltonian (11) in the phononic limit, where the
fluctuation wavelengths are long compared to the healing
length of the quasicondensate and Eqs. (5) and (6) are reduced
to ω2

s (k) ≈ c2k2 and ω2
a (k) ≈ c2k2 + 4Jgn1D/h̄, where c =√

gn1D/m is the speed of sound. Of course, the phase-
density description can be extended into the short-wavelength
excitation range [10,11], bringing about the Hamiltonian terms
∝(∂δρs,a/∂z)2 and thus revealing the full Bogoliubov-like
spectra (5) and (6). However, we are not interested in the short-
wavelength limit since the respective length scales cannot be
resolved by optical imaging systems [8,13,14]. The system’s
description by Eq. (11) is fully consistent with Haldane’s
bosonization method [16]. The relative phase θa is accessible
through interference patterns observed in time-of-flight ex-
periments [8,13,14]. We develop here the way to evaluate its
correlation properties. Since the density fluctuations are small,
we can decouple symmetric and antisymmetric modes [17] and
integrate out the variables of the symmetric mode. The absence
of cross terms containing both δρa and θa in Eq. (11) allows us
to integrate out δρa as well and to obtain, as an intermediate

result, the partition function in the form

Z = const
∫

Dθa exp

{
−
∫

dz

[
h̄2n1D

4mkBT

(
∂θa

∂z

)2

+ 2h̄Jn1D

kBT
(1 − cos θa)

]}
(12)

that was considered long ago [18,19] in the context of the
statistical mechanics of systems describable by the sine-
Gordon equation, which is known to adequately account for
the low-energy physics of tunnel-coupled 1D ultracold atomic
systems [17].

Note that anharmonic Hamiltonian terms, which depend on
the density fluctuations neglected in our present theory, do not
affect much the static properties of the quasicondensate [11].
One needs to take them into account in the analysis [20] of a
slow process of the system’s relaxation towards equilibrium
starting from a nonequilibrium, prethermalized initial state
[21], characterized by two different temperatures T+ and T− �
T+ for the symmetric and antisymmetric modes, respectively.

The applicability range of our fully classical approach
can be determined as follows. Consider, for the sake of
simplicity, distances shorter than lJ . The effects of tunnel
coupling can be neglected at such short length scales, and
the fully classical correlation function can be estimated [1]
as 〈exp[iθa(z′) − iθa(z)]〉 ≈ exp(−2|z − z′|/λT ). We have to
compare this result to the power-law decay of correlations
due to quantum effects, which is obtained in the limit T → 0
[10,11]. Neglecting, as done previously, the contribution of
the density fluctuations, we can write limT →0〈exp[iθ̂a(z′) −
iθ̂a(z)]〉 ≈ limT →0〈ψ̂†

1(z′)ψ̂1(z)〉〈ψ̂†
2(z)ψ̂2(z′)〉 and, finally,

lim
T →0

〈exp[iθ̂a(z′) − iθ̂a(z)]〉 ≈
(

�UV

|z − z′|
)1/K

, (13)

where the quantum-mechanical average over the ground state
is taken, K = πh̄

√
n1D/(mg) is the Luttinger liquid parameter

(for quasicondensates, which are weakly interacting systems,
K  1), and �UV is the ultraviolet cutoff of the theory.
Equation (13) is valid if

|z − z′|  �UV. (14)

The estimation by Popov [22] yields �UV ∼ ξ .
We can fully neglect quantum fluctuations if their

contribution to the decay of correlations is small compared to
the contribution of the thermal noise on a given length scale.
The correlation decay is dominated by the thermal noise if the
classical formula exp(−2|z − z′|/λT ) yields stronger decay of
correlations than the quantum limit (14), i.e., if

2|z − z′|/λT � K−1 ln(|z − z′|/ξ ). (15)

The experimentally relevant range of |z − z′| is bound from
below by 
zopt, as we discussed in Sec. II, and 
zopt  ξ in a
typical experiment [8]. Therefore the use of the fully classical
approach is reasonable for

kBT � mc2 ξ ln(
zopt/ξ )

π
zopt
. (16)

We can evaluate the partition function (12) using the transfer
operator technique [18,19,23]. First of all, we evaluate the
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phase-correlation function as (see Appendix A for the sketch
of derivation)

〈exp[iθa(z′) − iθa(z)]〉

=
∞∑

n=0

|〈n|eiθ |0〉|2 exp[−(εn − ε0)|z − z′|], (17)

where

〈n|eiθ |0〉 =
∫ π

−π

dθ �∗
n (θ )eiθ�0(θ ), (18)

�n(θ ) is the eigenfunction (normalized to 1) of the auxiliary
Schrödinger-type equation,[

− 2

λT

∂2

∂θ2
− λT

4l2
J

(cos θ − 1)

]
�n(θ ) = εn�n(θ ), (19)

and εn, n = 0,1,2, . . . is the respective eigenvalue. For
simplicity, we set periodic (and not quasiperiodic) boundary
conditions to Eq. (19) with the period 2π , thus neglecting the
band structure of its spectrum, since the zero-quasimomentum
solutions define all the system properties [19] which are
relevant to our present work.

In the limit of strong tunnel coupling, lJ � λT , the operator
on the left-hand-side of Eq. (19) can be approximated by the
harmonic oscillator Hamiltonian (in proper units), and εn =
l−1
J (n + 1

2 ), n = 0,1,2, . . . In this limit Eq. (17) reproduces
the result [Eq. (8)] that holds for small phase fluctuations.

In the opposite limit, Eq. (19) can be solved perturbatively,
and we obtain

〈exp[iθa(z′) − iθa(z)]〉

≈
(

λ2
T

8l2
J

)2

+
[

1 −
(

λ2
T

8l2
J

)2
]

exp

(
−2|z − z′|

λT

)
,

lJ  λT . (20)

In what follows, we will be interested in calculating the
value of

〈cos θa〉 = 〈0| cos θ |0〉, (21)

which can be viewed as the mean interwell coherence. This
expression can be derived in different ways, e.g., from Eq. (17)
by employing the statistical independence of phase fluctuations
at two very distant points, |z − z′| → ∞, and recalling that
〈sin θ̂a〉 = 0. In a general case, Eq. (21) can be evaluated from
the lowest-energy solution of the Mathieu equation [24]. In the
two limiting cases we obtain the asymptotics

〈cos θa〉 ≈
{

exp(−lJ /λT ), lJ � λT ,

λ2
T /
(
8l2

J

)
, lJ  λT .

(22)

A possible physical explanation of the fact that the mean
interwell coherence decreases at lJ /λT → ∞ much slower
than the harmonic approximation [1] predicts is the large
probability of thermal excitation of a soliton in this limit. Each
emerging soliton decreases the number of phononic states by
1 [19], and the phononic density of states is reduced mostly
in the long-wavelength range (for phonon momenta less than
or of the order of h̄/ lJ ), which gives the main contribution to
the long-distance behavior of the correlation function (17) and
hence to 〈cos θa〉.

B. Relaxation to the equilibrium after a quench

The results of Sec. III A are obtained at the equilibrium.
However, it is interesting to investigate also the process of
equilibration in the system of two 1D quasicondensates after
a quench. The study of this dynamical problem is motivated
by our recent numerical results [25] related to thermalization
in a single 1D quasicondensate. In Ref. [25] we found that,
despite the numerically confirmed integrability of the system,
phononic (low-momentum) modes rapidly relaxed from their
initial nonequilibrium state towards a final equilibrium state;
particle-like (large-momentum) excitations, on the contrary,
exhibited almost no relaxation. The equilibrium ensemble of
phonons was different from the classical limit of equipartition
of the thermal energy between all the degrees of freedom
and was quite close to the Bose-Einstein distribution with the
temperature Teff determined by the total excitation energy of
the initial nonequilibrium state. Observed fluctuations around
this equilibrium state were due to the finite size of the system
inherent in numerical modeling. Remarkably, the correlations
observed at the length scales, which are large compared
to the healing length, as well as to the wavelength of an
elementary excitation with the energy equal to kBTeff , were
well described by classical expressions. Note that the main
contribution to the noise on these length scales stems from the
low-energy excitations, which approximately exhibit classical
equipartition of energy.

The need to extend the numerical approach of Ref. [25]
to tunnel-coupled 1D quasicondensates can also be seen from
the following considerations. Our aim is to numerically check
the theoretically predicted correlations of two tunnel-coupled
quasicondensates at equilibrium. This equilibrium state can
be viewed as a result of the system’s relaxation from its
initial nonequilibrium state. Moreover, the available analytic
theory predicts only averages; unlike the case of harmonic
approximation, there is no way yet to generate individual
realizations of the phase, obeying the necessary statistics,
without simulating numerically the equilibration process. The
most obvious way to obtain numerically the equilibrium
solution is to observe the numerical relaxation after a quench
and wait until a steady-state regime establishes. The particular
type of the quench and the corresponding initial conditions are,
up to a certain degree, arbitrary, as long as the system exhibits
true relaxational dynamics.

Motivated by these considerations, we performed numerical
modeling of the thermal equilibrium values of 〈cos θ̂a〉 after
the dynamical process of relaxation in our system after a
quench. We simulated the time evolution of two coupled
Gross-Pitaevskii equations using the split-step method [26]
previously used by us [25] to simulate the dynamics of a
single quasicondensate and now extended it to the case of
tunnel-coupled systems. As the initial conditions we took two
independent quasicondensates with phonon modes populated
randomly according to the Bose-Einstein thermal distribution.
At t = 0 we quenched the system by switching on the tunnel
coupling between them. We solved this coupled system for a
time long enough to provide equilibration.

To juxtapose the input parameters of our numerical sim-
ulations to typical parameters of modern atom-chip experi-
ments [8,13,14], we give the system parameters used in our
simulations first in dimensional units but later show them also
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in dimensionless form. The linear density for a single quasicon-
densate n1D = 30 μm−1 and interaction constant g = 2 h̄ω⊥as

with radial trapping frequency ω⊥ = 2π × 3 kHz and s-wave
scattering length as = 5.3 nm for 87Rb yields the healing
length ξ ≈ 0.35 μm and the Luttinger liquid parameter K ≈
33. The periodic boundary conditions were set at an interval
of the length L = 100 μm ≈ 290 ξ . The maximum integration
time was tmax = 0.8 s. After a few hundred milliseconds, some
kind of equilibrium was obtained. The total energy of the
system was conserved in our numerical simulations with good
(∼10−3) accuracy; however, it was constantly redistributed
in an oscillatory manner between different low-frequency
elementary modes, including Josephson oscillations. The non-
linear interaction between different modes (see Sec. IV) led to
excitation of Josephson oscillations of the total number imbal-
ance (N1 − N2)/2, where Nj is the integral of the density in the
j th quasicondensate over the whole length L, i.e., the number
of atoms in this quasicondensate, N1 + N2 ≡ 2N . In general,
the numerical stability of our split-step method was controlled
using the criteria of Ref. [27]. The thermal coherence length
was determined from the phase-correlation functions for each
of the two quasicondensates taken separately by comparison
of the numerically obtained value of 〈exp[iθj (z) − iθj (z′)]〉,
j = 1,2, with its theoretical value exp(−|z − z′|/λT ) for
|z − z′| � lJ [10,11] (if we trace out the phase and density
variables of one of the two tunnel-coupled quasicondensates,
the properties of its remaining counterpart will be described by
the same temperature as of the whole system at equilibrium).
The averaging is performed over statistically uncorrelated
(separated by sufficiently large distances) intervals of the
whole length L for |z − z′| � λT . We never obtain complete
equilibration. In each realization, the correlation length λT

obtained in such a way oscillates around a certain mean value
and so does the value of 〈cos θa〉 (averaged over the length L).
Typically, λT ≈ 8 μm, which corresponds to T ≈ 40 nK.

We present the results of our numerical simulations in
Fig. 1. Dots represent mean values of 〈cos θa〉 obtained by
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FIG. 1. (Color online) Mean interwell contrast as a function of
the ratio of the length scales λT and lJ . Solid line: exact theory given
by Eq. (21). Dashed line: small-fluctuation approximation 〈cos θa〉 =
exp(−lJ /λT ) following from the linearized theory [1]. Dots: results
of the numerical simulations of the equilibration dynamics of two
coupled condensates. Units on the axes are dimensionless. Inset:
Magnified part of the main plot for small λT /lJ , illustrating the high-
temperature asymptotics of Eq. (21) in comparison to the linearized
theory result.

averaging over both the time (on the quasiequilibration stage
of the system evolution) and the ensemble of realizations. The
error bars in Fig. 1 show the standard deviations of 〈cos θa〉 and
λT . These error bars indicate slow, quasiperiodic variations of
〈cos θa〉 and λT detected in our simulations. The range of λT /lJ
shown in Fig. 1 corresponds to J increasing from 2π × 0.1 up
to 2π × 8 Hz.

To summarize the results of the present section, we
can state that we developed a theory describing the static
correlation properties more precisely than the harmonic model
[1]. Our approach is based on consideration of the classical
partition function for the antisymmetric mode of our problem
(describable by the sine-Gordon model) and application of the
well-known transfer operator technique [18,19]. As one can
see from Fig. 1, the difference between our results and those
of Ref. [1] is most apparent for intermediate and small values
of λT /lJ (intermediate and weak tunnel coupling).

IV. JOSEPHSON OSCILLATIONS IN A NOISY
EXTENDED JUNCTION

The thermal noise effects considered in Sec. III reduce
the frequency of Josephson oscillations. Consider the absolute
number imbalance between two wells, N12 ≡ (N1 − N2)/2,
and its canonically conjugate variable, the overall phase
difference � between two quasicondensates. In the limit of
the atomic repulsion energy dominating over the tunneling,
gn1D ≡ gN/L  h̄J , and for small-amplitude oscillations,
|N1 − N2| � N , the evolution of these “global” variables is
described by the set of equations (see Appendix B)

d

dt
� = −2gN12

Lh̄
, (23)

d

dt
N12 = 2Jn1D

∫ L

0
dz sin θa, (24)

which is reduced, after elimination of the number-difference
variable, to

d2

dt2
� = −ω2

J0
1

L

∫ L

0
dz sin θa, (25)

where

ωJ0 =
√

4Jgn1D/h̄ (26)

is the frequency of the Josephson oscillations for bosonic
junction unaffected by thermal noise. At zero temperature,
when the thermal noise is absent, and for ln(L/ξ ) � K, when
the quantum noise can be neglected, spatial extension of
the ultracold atomic Josephson junction plays no role, and
we can derive Eq. (26) from the results of Ref. [9]. In the
case of small-amplitude Josephson oscillations, the statistical
properties of cos θa and cos(θa − �) do not differ significantly,
in particular, 〈cos θa〉 ≈ 〈cos(θa − �)〉, i.e., the quadratic in �

correction is negligible, and Eq. (25) reduces to

d2

dt2
� + [ω2

J + δω2
J (t)
]
� = ζ (t), (27)

where

ω2
J = ω2

J0〈cos θa〉. (28)
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In Eq. (27) we explicitly indicate the time argument of the
random driving force

ζ (t) = ω2
J0

1

L

∫ L

0
dz sin(θa − �) (29)

and the term

δω2
J (t) = ω2

J0
1

L

∫ L

0
dz (cos θa − 〈cos θa〉) (30)

that describes fluctuations of the oscillation frequency due to
the noise of θa caused by excitations with nonzero momenta.

If we prepare some appreciable initial imbalance at t =
0, we obtain, to the first approximation, free Josephson
oscillations governed by the equation d2�/dt2 + ω2

J � = 0,
i.e., with the frequency reduced by

√〈cos θa〉 compared to the
noise-free case of Eq. (26). The presence of the noise broadens
the power spectrum of Josephson oscillations

S(ω) =
∣∣∣∣1τ
∫ tmax

tmax−τ

dt eiωtη(t)

∣∣∣∣
2

, (31)

where η = (N1 − N2)/(2N ) is the relative number imbalance.
The integration in Eq. (31) is taken over the time interval τ

when the system has already reached its near-equilibrium state
(typically, τ ≈ 0.65 s). If ωJ is high enough, the theory [28]
predicts S(ω) to be a peaked function, centered at ωJ and having
the half width at the half maximum of the peak height γ =
[h̄L/(8gkBT )] Re

∫∞
0 dt ′〈ζ (t)ζ (t + t ′)〉 exp(iωJt

′). The latter
expression, roughly evaluated as γ ∼ π

8 kBT/(h̄K〈cos θa〉2),
correctly describes the order of magnitude of the bandwidth

ω/(2π ) ∼ 10 Hz of the numerically obtained spectra S(ω).
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FIG. 2. (Color online) Josephson oscillations for J = 2π × 8 Hz
(for other system parameters see Sec. III). (a) The relative imbalance
as a function of time. (b) The power spectrum of the atom-number
imbalance (averaged over seven realizations), peaked at theoretically
predicted ωJ/(2π ) = 157 Hz and broadened by thermal fluctuations.

The presence of the random driving force is the source
of excitation of Josephson oscillations in the course of the
system’s evolution, even if initially at t = 0, � = 0, and η ∝
d
dt

� = 0. Note that all the elementary excitations with nonzero
momenta in the antisymmetric mode have frequencies larger
than ωJ. The energy transfer between nonzero-momentum
excitations and the Josephson mode is thus an essentially
nonlinear process. The nonlinear structure of the right-hand
side of Eq. (29) provides the presence of the frequency ωJ in the
spectrum

∫∞
−∞ dt ′〈ζ (t)ζ (t + t ′)〉 exp(iωt ′) of the driving force

and thus ensures the parametric excitation of the Josephson
oscillations.

We confirmed our analytic estimations by the numerical
simulations of two coupled 1D Gross-Pitaevskii equations
already described in Sec. III B. An example of a sharp-peaked
power spectrum of relative number imbalance is given in Fig. 2,
together with an example of time dependence of η. If, on
the contrary, ωJ � ωT , where ωT = 2c/λT is the typical time
scale of fluctuations of ζ (t), then the behavior of η(t) becomes
irregular, and S(ω) does not exhibit a peak at ω ≈ ωJ any more
(see Fig. 3).

The results of numerical simulations shown in Figs. 2
and 3 demonstrate a certain energy exchange, but no full
equilibration between the Josephson oscillations and phononic
modes. If we set �|t=0 = 0 and η|t=0 = 0 for J/(2π ) = 8 Hz
(0.1 Hz), then at times t between 650 ms and 1 s the mean
energy of Josephson oscillations is an order of magnitude (1.5
orders of magnitude) less than kBT , where temperature T is
determined from the phase-correlation function for a single
quasicondensate and is thus associated with the phononic
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FIG. 3. (Color online) The same as in Fig. 2, but for J =
2π × 0.1 Hz (irregular behavior). The spectral peak at theoretically
predicted ωJ/(2π ) = 6.5 Hz is smeared out. S �= 0 at ω = 0 due to
finite integration time.
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FIG. 4. (Color online) The square of the frequency of numerically
obtained Josephson oscillations (normalized to its value ω2

J0 for zero
thermal noise) as a function of the mean interwell coherence 〈cos θa〉
(dots) and theoretical prediction given by Eq. (28) (straight line).
Units on the axes are dimensionless.

modes. This may indicate an extremely long thermalization
time for Josephson oscillations.

We selected our simulations that display a pronounced
narrow peak of S(ω) far from zero frequency (which was the
case for J > 2π × 0.7 Hz), estimated the Josephson frequency
ωJ, and analyzed the dependence of ω2

J on the mean interwell
coherence. The resulting values are in good agreement with
our theoretical prediction given by Eq. (28), as can be seen
from Fig. 4.

V. CONCLUSION

To conclude, we applied the transfer operator technique to
evaluate coherence and correlation properties of two tunnel-
coupled 1D weakly interacting, ultracold systems (quasicon-
densates) of bosonic atoms. These properties are determined
by the ratio of the two length scales: λT , which describes
the spatial scale of the loss of correlations between two points,
and lJ , which describes the scale for the phase locking between
two quasicondensates due to interwell tunneling. In the limit
lJ � λT the fluctuations of the relative phase are small, and
we reproduce the results of the linearized theory of Ref. [1].
In the opposite case, we found the mean interwell coherence
to decrease much slower (∝λ2

T / l2
J ) than the exponential law

predicted by the linearized theory. We interpret such a behavior
as a signature of the thermal creation of sine-Gordon solitons,
which provide a shift of the relative phase by 2π and thus
do not contribute to the coherence loss and the corresponding
decrease of the density of states for phonons (the excitations
responsible for the coherence loss at large distances).

Our analytic estimations are confirmed by numerical
modeling of the equilibrium state as a final state of the system’s
relaxational evolution after a quench. This task is solved by
extending our numerical method [25] to integration of two
coupled 1D Gross-Pitaevskii equations.

We demonstrate, both analytically and numerically, that
thermal fluctuations of the relative phase between two quasi-
condensates reduce the frequency of Josephson oscillations
in proportion to

√〈cos θa〉 and broaden their spectrum. If
the theoretically predicted value of ωJ is much less than the
bandwidth of the thermal fluctuation (which is of the order

of the speed of sound divided by λT ), regular Josephson
oscillations are not observed.
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APPENDIX A: DERIVATION OF EQ. (17)

We briefly recall here the basics of the transfer operator
technique, following Refs. [18,19,23]. We introduce a lattice
with the step 
z = L/M , with M being the number of sites.
We assume cyclic boundary conditions,

θa M+1 ≡ θa 1. (A1)

Then the partition function (12) can be written as

Z =
∫

dθa 1 · · ·
∫

dθa M

∫
dθa M+1 δ(θa M+1 − θa 1)

×
M∏

j=1

exp[−f (θa j , θa j+1)], (A2)

where

f (θa j , θa j+1) = h̄2n1D

4mkBT 
z
(θa j − θa j+1)2

+ h̄Jn1D
z

kBT
(2 − cos θa j − cos θa j+1)

(A3)

and integrals in our case are taken from −π to π . We omit
the constant prefactor in Eq. (A2) for the sake of simplicity.
Assume that eigenfunctions �n(θ ) of the transfer operator∫

dθa j e−f (θa j , θa j+1)�n(θa j ) = e−εn
z�n(θa j+1) (A4)

form a set, which is complete, orthogonal, and normalized to
unity, namely ∫

dθ �∗
n′(θ )�n(θ ) = δn′n, (A5)

∑
n

�∗
n (θ ′)�n(θ ) = δ(θ ′ − θ ). (A6)

Substituting Eq. (A6) into Eq. (A2) and using Eq. (A4), we
obtain

Z =
∑

n

exp(−εnL). (A7)

The eigenvalues εn are positive; in the thermodynamic limit
the partition function (A7) is dominated by the lowest
eigenvalue ε0,

Z ≈ exp(−ε0L), L → ∞. (A8)

In the continuous limit 
z → 0 Eq. (A4) is equivalent
to the Schrödinger-type equation (19). Strictly speaking, the
spectrum of Eq. (A4) is shifted with respect to the spectrum
of Eq. (19) by a common offset s0, which is related to
normalization of the eigenfunctions. Since s0 does not depend
on n, we neglect it in our calculations.
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To calculate correlation functions, in particular, Eq. (17),
we note that eiθa(z′) and e−iθa(z) act on �0 like quantum-
mechanical perturbations, coupling �0 to the whole spectrum
of eigenfunctions with the matrix elements given by Eq. (18).
Therefore the leading term for 〈exp[iθa(z′) − iθa(z)]〉 in the
limit of L → ∞ is the second-order perturbative correction to
the propagator for the ground state (with L playing the role of
imaginary time), and we obtain thus Eq. (17).

APPENDIX B: DERIVATION OF EQS. (23) AND (24)

We begin with the lattice version of the classical sine-
Gordon Hamiltonian that describes the dynamics of the
antisymmetric mode of our system:

Ha =
M∑

j=1

[
h̄2n1D

4m
z
(θa j − θa j+1)2 + g


z
δN2

a j

+ 2h̄Jn1D
z (1 − cos θa j )

]
, (B1)

where the j th generalized coordinate δNa j = δρa
z is the
half difference of the atomic numbers in the first and second
quasicondensates at the j th site, i.e., the variable canonically
conjugate to the local phase difference θa j (the j th generalized
momentum). Here we neglect the nonlinear coupling between
the symmetric and antisymmetric modes, as in Eq. (11) in the
continuous limit.

For the sake of simplicity, we assume an odd number of sites
in the lattice, M = 2M0 + 1, where M0 is a positive integer.
Then we do a canonical transformation

δNa j =
M0∑

�=−M0

δÑa(�)η(�,j ), θa j =
M0∑

�=−M0

θ̃a(�)η(�,j ), (B2)

where

η(�,j ) =

⎧⎪⎨
⎪⎩

√
2/M cos(2π�j/M), � = −1,−2, . . . ,−M0,

1/
√

M, � = 0,√
2/M sin(2π�j/M), � = 1,2, . . . ,M0.

(B3)

Then Hamiltonian (B1) reads

Ha =
M0∑

�=−M0

{
h̄2n1D

2m
z
[1 − cos(2π�/M)] θ̃2

a (�) + g


z
δÑ2

a (�)

}

+ 2h̄Jn1D
z

M∑
j=1

⎧⎨
⎩1 − cos

⎡
⎣ M0∑

�=−M0

θ̃a(�)η(�,j )

⎤
⎦
⎫⎬
⎭ .

(B4)

From the Hamiltonian equations

d

dt
δÑa(�) = ∂Ha

∂ θ̃a(�)
,

d

dt
θ̃a(�) = − ∂Ha

∂ δÑa(�)
, (B5)

we find, in particular,

d

dt
θ̃a(0) = −2gδÑa(0)


z
, (B6)

d

dt
δÑa(0) = 2h̄Jn1D
z

M∑
j=1

sin

⎡
⎣ M0∑

�=−M0

θ̃a(�)η(�,j )

⎤
⎦ . (B7)

In the limit of 
z → 0 the sums over j converge to
integrals over z. Taking into account that N12 = ∫ dz δρa =∑M

j=1 δNa j = √
MδÑa(0), identifying the generalized momen-

tum conjugate to N12 as � = θ̃a(0)/
√

M = (1/M)
∑M

j=1 θa j ,
and recalling that L = M
z, we obtain Eqs. (23) and (24).
The spatially fluctuating part of the phase is then θa − �.
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a b s t r a c t

We demonstrate the application of the Metropolis–Hastings algorithm to sampling of classical thermal
states of one-dimensional Bose–Einstein quasicondensates in the classical fields approximation, both in
untrapped and harmonically trapped case. The presented algorithm can be easily generalized to higher di-
mensions and arbitrary trap geometry. For truncatedWigner simulations the quantumnoise can be added
with conventional methods (half a quantum of energy in every mode). The advantage of the presented
method over the usual analytical and stochastic ones lies in its ability to sample not only from canonical
and grand canonical distributions, but also from the generalized Gibbs ensemble, which can help to shed
new light on thermodynamics of integrable systems.
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This is an open access article under the CC BY license
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1. Introduction

The recent advances in experimental methods allowed precise
control and manipulation of ultracold atoms in various trap [1–3]
and optical lattice geometries [4–6], including gases at tempera-
tures much lower than the degeneracy temperature.

The effective field theory of a cold gas of neutral bosonic atoms
with short-range repulsive interactions is given by the second
quantized Hamiltonian (in the following we deal explicitly with a
one-dimensional (1D) case, where quasicondensation takes place
instead of true condensation [7])

Ĥ = Ĥ0 + Ĥint, (1)

Ĥ0 =


dz ψ̂Ď(z)


−

h̄2

2m
∂2

∂z2
+ V (z)


ψ̂(z), (2)

Ĥint =
g
2


dz ψ̂Ď(z) ψ̂Ď(z) ψ̂(z) ψ̂(z), (3)

where Ĥ0 and Ĥint are respectively the free-particle and interaction
Hamiltonians, ψ̂(z) is the field operator, which annihilates a par-
ticle at position z, m is the atomic mass, V (z) is the external trap

∗ Corresponding author. Tel.: +43 158801141853.
E-mail addresses: peter.grishin@gmail.com, pgrisins@ati.ac.at (P. Grišins).

potential and g is the effective interaction strength, given in the
experimentally relevant case of a harmonic transversal confine-
ment with trapping frequencyωr by g = 2ωrash̄, with as being the
s-wave scattering length.

Theusual experimental setups dealwith thousands of atoms [1],
so the quantum dynamics can be numerically simulated only using
various approximations. The one approximation especially suited
for studies of weakly interacting cold atomic gases is the classical
field approximation, where we replace the quantum field opera-
tor of the effective field theory ψ̂(z) by a classical field ψ(z) [8].
This approach is valid for low temperatures, where we have a
range of macroscopically occupied modes ⟨ψ̂

Ď
n ψ̂n⟩ ≫ 1; the oper-

ators ψ̂n are defined through the normalized eigenfunctions of the
one-body non-interactingHamiltonian Ĥ0. The evolution of this re-
defined classical order parameterψ(z) is then governed by the cel-
ebrated Gross–Pitaevskii equation (GPE) [9].

In experiments with cold atomic gases the system is usually
prepared in thermal equilibrium, before a quench or another ma-
nipulation is applied, therefore the numerical methods for sam-
pling the thermal initial condition ψ0(z) are of great importance.
The quantum correction for the classical thermal state of a weakly
interacting system can be introduced using the so-called truncated
Wigner approximation (TWA), where zero-point quantum oscilla-
tions are taken into account in the initial state only, but the subse-
quent evolution is classical [10].

Conventional methods of initial state sampling include analyt-
ical ones [11,12], where the gas is initialized with a Bose–Einstein

http://dx.doi.org/10.1016/j.cpc.2014.03.021
0010-4655/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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distribution of Bogoliubov quasiparticles with random phases, as
well as stochastic ones [13,14], where the thermal state is achieved
during imaginary time GPE evolution with Langevin noise.

In the present paper we propose another way of sampling the
initial distribution, namely using the Metropolis–Hastings algo-
rithm. We believe that in some cases it might be preferable over
the analytical methods, as it does not use Bogoliubov-type approx-
imations, and may be used to sample states out of a generalized
Gibbs ensemble, which is impossible with existing stochastic real-
izations.

2. Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm is a Markov chain Monte
Carlo method for sampling a probability distribution, especially
suited for systems with many degrees of freedom [15]. For a broad
overview of quantum and classical Monte Carlo methods, includ-
ing the Metropolis–Hastings algorithm, see [16,17] and references
therein.

In the present paper we demonstrate the implementation of
the Metropolis–Hastings method for 1D Bose–Einstein quasicon-
densate without confinement (implying periodic boundary condi-
tions) as well as for the experimentally relevant case of a harmonic
longitudinal confinement. Themethod can be easily generalized to
higher dimensions and other trap geometries.

This method has been already applied to classical simulations
of cold Bose gases [18], but it has not been explicitly formulated as
a step-by-step algorithm. In the present paper we systematically
study the convergence properties of this method and outline its
application to sampling the generalized Gibbs ensemble (GGE).

In our particular realization the algorithm reads as follows:
1. Initialization:

(a) Choose an initial order parameterψ0(z). Specific choices of
ψ0(z)will be discussed in the following section.

(b) Calculate the reduced entropy S0 = −β(⟨ψ0|Ĥ|ψ0⟩ −

µ⟨ψ0|N̂ |ψ0⟩), where β is the inverse temperature, µ is
the chemical potential (both β and µ are fixed external
parameters), and N̂ =


ψ̂Ď(z) ψ̂(z) dz is the particle

number operator. Note that the free energy does not enter
the expression for S0, meaning that the zero-level of the
latter is not defined. This is justified by the fact that we are
interested only in differences of the reduced entropy, and
not in its absolute value.

2. For each iteration N ∈ [1,Nmax]:
(a) Generate a candidate field ψN(z) by varying the energy.

This variation of energy can be achieved by adding either
a density perturbation
ψN(z) = ψN−1(z) [1 + c1vr sin(krz + φr)] , (4)
or a phase perturbation
ψN(z) = ψN−1(z) exp [i c2vr sin(krz + φr)] , (5)
to the field from the previous iteration (‘the seeding field’).
Whether to choose the oneor the other is decided at random
(by a ‘coin toss’). The meaning and values of the parameters
are summarized in Table 1.

(b) Vary the particle number
ψN(z) = (1 + c3ur)ψN(z). (6)

(c) Calculate the reduced entropy of the candidate field

SN = −β

⟨ψN |Ĥ|ψN⟩ − µ⟨ψN |N̂ |ψN⟩


. (7)

(d) Calculate the acceptance ratio a =
pN

pN−1
=

eSN
eSN−1

=

eSN−SN−1 , where pN =
1
Z e

SN is the Boltzmann probability to
find the field in the state ψN(z). The main advantage of the
Metropolis–Hastings algorithm lies the fact that we have to
evaluate only the ratio of probabilities, in this way avoiding
to calculate the partition function Z , which is practically
impossible for interacting systems with many degrees of
freedom. Then we check the value of a:

Table 1
Numerical parameters of the Metropolis–Hastings algorithm.

Parameter Description

vr , ur Real random numbers, distributed normally with zero mean and
unit variance.

c1 , c2 , c3 Numerical constants governing the rate of convergence to the
equilibrium state. In the presented results they have been
empirically chosen to be c1 = 2(n0)

−1, c2 = 0.1 and c3 = 0.001,
where n0 = max |ψ0|

2 is the maximal initial density. This
particular choice provided typical values of the acceptance ratio
in each iteration a ∈ [0.4, 0.6], which gave the fastest
convergence to equilibrium. It was numerically checked that
different choices of those constants did not affect the resulting
state, only the rate of convergence.

φr Random phase φr ∈ [ 0, 2π) picked from the uniform
distribution.

kr Random wave number picked from the set
{±δk,±2δk, . . . ,±kmax}, where δk = 2π/L, L is the length of the
simulated region and kmax is the cutoff wave number. It was
numerically checked that the results do not depend on this cutoff
as long as it is larger than the inverse healing length
ξ−1

=


mgn̄/ h̄2 , where n̄ is the mean density. So we present

results where kmax = Nz δk/2 is the maximal allowed wave
number on a lattice ofNz sampling points.

i. If a ≥ 1, then the candidate state is more probable than
the seeding state, so we keep the former.

ii. If a < 1, we pick a uniform random number r ∈ [0, 1]. If
r ≤ a, the candidate state is accepted; but if r > a, the
candidate state is discarded and the seeding state is kept
for the next iteration ψN(z) := ψN−1(z).

(e) Proceed to the next iteration.

As a result we have a Markov chain of states ψN(z), N ∈

[0,Nmax], which can be used as thermal initial states for classical
fields simulations. It is important to throw away the states ob-
tained at early iterations (so-called ‘burn-in’ period), where the
thermal state is not yet achieved. Neighboring statesψN andψN+1
are usually highly correlated (as they differ by only one elementary
perturbation), so it is necessary to throw away majority of the re-
sults, picking only one state out of Na, where Na is calculated from
the iteration-to-iteration autocorrelation length. We will return to
these two issues in the results section.

Straightforward generalizations of the algorithm are easily
conceivable:

1. Arbitrary trap geometry, as we can freely modify the trapping
potential V in the total Hamiltonian Ĥ . In general the perturba-
tions in Eqs. (5) and (6) can bemodified to be the eigenfunctions
of the trapping potential (e.g. in the case of harmonic confine-
ment V (z) ∝ z2 we can take harmonic oscillator eigenfunctions
instead of sine-waves). But in practice using potential-specific
eigenfunctions instead of plane waves did not give any speed-
up to the achievement of the steady state, so the algorithm can
be used without this modification.

2. Any number of dimensions. This requires representing the or-
der parameter as a scalar field on many-dimensional space
ψ(z⃗), the perturbations (Eqs. (5) and (6)) being modified ac-
cordingly as sin(k⃗r z⃗ + φr).

3. Canonical state sampling. Reduced entropy becomes SN =

−β⟨ψN |Ĥ|ψN⟩, and we have to omit the 2b stage of the algo-
rithm to make sure the particle number does not change.

4. Generalized Gibbs ensemble sampling. Reduced entropy now
reads

SN = −β


⟨ψN |Ĥ|ψN⟩ − µ⟨ψN |N̂ |ψN⟩

−


i

µi⟨ψN |Îi|ψN⟩


, (8)
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Fig. 1. Typical examples of the grand canonical thermal state with the temperatures T = 10 nK and 60 nK (labels on the panels) of the interacting 1D BEC, achieved after
Nmax = 105 Metropolis–Hastings iterations in the untrapped system with periodic boundary conditions (four top panels) and harmonically trapped case (four bottom
panels). Quasicondensate local densities n(z) (left), measured in atoms per micrometer, and phases φ(z) (right), measured in radians, as a function of the longitudinal
direction z in micrometers. The initial conditions in the case of the untrapped system were taken to be the ground state of the non-interacting gas, and in the case of the
harmonic confinement as a Thomas–Fermi parabolic density profile with constant zero phase. Note that achieved thermal state is not dependent on the initial conditions
(see discussion in the text). Extensive fluctuations of the phase at the edges of harmonically trapped quasicondensate are due to the fact that the density there is close to
zero, and the phase can take arbitrary values. Physical parameters of the simulations are summarized in Table 2.

where Îi are the local conserved charges (integrals of motion) of
the system, in addition to the energy ⟨Ĥ⟩ and the particle num-
ber ⟨N̂ ⟩, andµi are generalized potentials. For instance, in case
of 1D GPE there exists an infinite number of local conserved
charges, which can be explicitly calculated using Zakharov–
Shabat construction [19].We regard this possibility of GGE sam-
pling as the primary advantage of the presented algorithm. In
fact, simulation of the GGE requires only redefinition of the
Hamiltonian to Ĥ ′

= Ĥ −
1
β


i µi Îi, to which the previously

described algorithm can be applied without further modifica-
tion. We reserve the detailed analysis of this case for a separate
publication.

3. Results

In the following we demonstrate the application of the algo-
rithm to generate a grand canonical thermal state for an untrapped
gas of neutral 87Rb atoms and an experimentally relevant case of
the same gas in a harmonic confinement. The parameters of the
simulation are summarized in Table 2.

Typical examples of the grand canonical thermal state of the
1D Bose–Einstein quasicondensate after Nmax = 105 Metropolis–
Hastings iterations are presented in Fig. 1.

The initial state for all the presented results was taken to be
the ground state of the non-interacting gas (n0(z) = n0 = const,
φ0(z) = 0) in the untrapped case, and a Thomas–Fermi parabolic
density profilewith constant zero phase in the case of the harmonic
confinement.

Table 2
Simulation parameters of the systems presented in the results section.

Parameter Description

m = 87 · 1.67 · 10−24 g Atomic mass of 87Rb atoms
as = 5.3 · 10−7 cm s-wave scattering length
T = 10, 60 or 120 nK Temperature
ωr = 2π · 2000 s−1 Transversal trapping frequency
n0 = 90 atoms/µm Maximal initial linear atom density of the cloud
g = 2ωrash̄ 1D interaction strength
µ = gn0 Chemical potential
ωl = 2π · 10 s−1 Longitudinal trapping frequency in case of a

harmonic confinement
L = 200 µm Total length of the simulation region
Nz = 512 Number of spatial discretization points, so the

state ψ(z) hasNz degrees of freedom
Nmax = 105 Total number of Metropolis–Hastings iterations
n(z) = |ψ(z)|2 Local density
φ(z) = arg ψ(z) Local phase

The achievement of the steady state is controlled by tempera-
turemeasurement at the each iteration of the algorithm, calculated
from the g1 autocorrelation function

g1,N(∆z) =


ψ∗

N(z) ψN(z +∆z) dz
|ψN(z)|2dz

. (9)

In thermodynamic equilibrium at positive temperatures in 1D
g1 is exponentially decayingwith∆z, confirming the fact that there
can be no true Bose–Einstein condensate in this case

g1(∆z) = e−|∆z|/λT , (10)
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Fig. 2. Natural logarithm of the g1 correlation function in the homogeneous case
for the temperatures T = 10, 60 and 120 nK (from top to bottom) at the last
iterationNmax of the algorithm, averaged over the ensemble of 70 realizations. These
g1 functions are used to calculate averaged temperatures presented in Fig. 3(a).
The linear region of the logarithm spans from 0 till ≈15 µm, and it is used in
temperature measurement. The bending and fluctuations in the subsequent region
are due to the finite size effects (as the total size of the system is L = 200 µm) and
are to be discarded.

where λT is thermal coherence length

λT =
2 h̄2 n̄
mkBT

, (11)

with kB being the Boltzmann constant and n̄ =
1
L′
 L
0 |ψ(z)|2dz

the mean density of the cloud. L′ is the averaging length, which
is the length of the integration region in Eq. (9) as well. In case of
untrapped gas L′

= L is the total simulation region, but in case
of harmonic confinement the integration region contains only the
points where the local density n(z) is larger than one tenth of the
mean density. This helps to get rid of unessential boundary pertur-
bations, probing the temperature of ‘the bulk’ of the condensate.

The Metropolis–Hastings ‘evolution’ of the temperature is pre-
sented in Fig. 3, with one particular example of the g1 function in
Fig. 2. It is evident that the thermal equilibrium is achieved after
N = (2 − 6) · 104 iterations.

During the initial phases of this ‘evolution’ the system passes
through a non-equilibrium region, so temperature in general sense
in not well defined until the final equilibrium is reached. Though
even in the non-equilibrium case the system always possesses a
well-defined energy, so we can always formally define an emer-
gent ‘non-equilibrium’ temperature as the temperature of a com-
pletely thermalized system with the given average energy. This
emergent temperature is then measured by g1. We stress though
that before the steady state is achieved the ‘temperature’ can be
used as a convergence monitor only. Clearly, there is no real phys-
ical process behind the apparent ‘heating’ in Fig. 3 as there is no
real time evolution. We also note that the temperature calculated
from g1 is independent of β in Eq. (7), the latter being an external
parameter, fixing our desired temperature.

Fig. 4. Influence of the initial state on the rate of convergence to the thermal
state. Temperatures during the Metropolis–Hastings ‘evolution’ as a function of
the iteration number N in the case of untrapped gas for T = 60 nK, averaged
over 70 realizations. Thick line: zero-temperature state of the non-interacting
gas, cf. Fig. 3(a). Thin line: thermal gas of Bogoliubov quasiparticles with random
phases and constant amplitudes (see explanation in the text). Both choices of initial
conditions eventually lead to equilibrium, but in case of the ‘Bogoliubov gas’ the
convergence is faster, meaning that it is a better ‘initial guess’ for the thermal state.
In this particular realization the temperature is rising during the ‘evolution’, but
we note that if we had chosen a higher-than-desired initial temperature, then the
temperature would be dropping to the desired value. Inset. Temperature of the
state, produced by the real-time GPE evolution starting from the achieved thermal
state as a function of time. Dots: one single realization, solid line: average over 70
realizations. The stability of the temperature shows that the initial state was indeed
the thermal state of the Gross–Pitaevskii Hamiltonian (see the text for further
discussion).

Another independent testwhether the achieved state is thermal
is the real-time development of the state, as by definition the ther-
mal state should remain thermal during such evolution. To check
this criterion we prepared the thermal state of the untrapped gas
withMetropolis algorithm and then propagated it in real timewith
Gross–Pitaevskii equation (there exist efficient algorithms for solv-
ing real-time GPE, see e.g. [20,21]). The results, presented in the
inset to Fig. 4, show that indeed the temperature of the state does
not change on average, assuring that the initial state was thermal
with respect to the Gross–Pitaevskii Hamiltonian.

As in all realization of Metropolis–Hastings algorithm a ‘good
guess’ of the initial state is essential for the fast convergence. In
Fig. 4 we compare the beforementioned zero-temperature initial
conditions with the initial state given by the thermal gas of Bogoli-
ubov quasiparticles with random phases and constant amplitudes,
given by the equilibrium Bose–Einstein distribution at the desired
temperature of 60 nK [11,12]. This initial condition seems to be
a much better ‘initial guess’, leading to faster convergence. Note
that the analytical method is only an approximation (implying
weak interactions and neglecting the variance of the amplitudes of
the quasiparticles), meaning that it gives a non-equilibrium state,
which though is expected to be close to the desired thermal equi-
librium: for instance, in Fig. 4 we see that the emergent ‘non-
equilibrium’ temperature of this initial condition is about 48 nK,

a b

Fig. 3. Temperatures during the Metropolis–Hastings ‘evolution’ as a function of the iteration number N in the case of untrapped (a) and harmonically trapped (b) gas for
three equilibrium temperatures (given as external parameters) T = 10, 60 and 120 nK. These temperatures are represented by three horizontal dashed lines serving as
guides for the eye. Dots stand for one particular realization of the algorithm for the three temperatures (respectively, from bottom to top), and the corresponding solid lines
show the averaged temperature over an ensemble of 70 realizations, each having the same initial conditions. Large temperature fluctuations in a single realization stem
from the finite size of the simulation region, as they should converge to the equilibrium value only in thermodynamic limit. But from the ensemble averages it is evident
that the thermal equilibrium is achieved after N = 2 − 6 · 104 iterations.



1930 P. Grišins, I.E. Mazets / Computer Physics Communications 185 (2014) 1926–1931

a b

Fig. 5. (a) Order parameter correlation function Cψ for the untrapped gas as a function of the iteration number N for temperatures 10, 60 and 120 nK (from top to
bottom), averaged over 70 realizations. Remaining strong phase coherence after 105 iterations is due to the existence of long-range order in finite-size quasi-BEC. (b)
Density fluctuation correlation function Cn for the same realizations as in subfigure (a) for temperatures 10, 60 and 120 nK (from bottom to top).

which is lower than the expected 60 nK. So this is one particular
example where numerical methods are superior to the analytical
ones.

It is well known that Markov chain methods give highly cor-
related samples from one iteration to the other. We present some
correlators for the untrapped gas in Fig. 5, where Cψ is the two-
point correlation function of the last sample ψNmax(z)

Cψ = Re


ψ∗

N(z) ψNmax(z) dz
|ψN(z)|2dz ·


|ψNmax(z)|2dz

, (12)

and Cn is the density fluctuation correlation function of the last
sample

Cn =


δnN(z) δnNmax(z) dz

δnN(z)2dz ·


δnNmax(z)2dz

, (13)

where δn(z) = n(z)− n̄, n(z) = |ψ(z)|2, and n̄ =
1
L′


n(z) dz for
the uniform gas.

It is evident that the order parameters still remain phase-
correlated after 105 iterations, which is a consequence of the fact
that we observe the system below the thermal gas to quasiconden-
sate crossover temperature [22]: the thermal fluctuations are too
weak to randomize the overall phase (note that the effects of phase
diffusion are absent as there is no real-time propagation).

This remaining phase correlation has to be taken into account
when performing simulations involving two or more indepen-
dently prepared condensates, where a random constant overall
phase difference should be added to the initial conditions at each
realization. For one condensate it is not necessary, as only the
phase difference is observable, and not the phase itself.

Density fluctuation correlation function Cn gives a better rep-
resentation of the correlations in Metropolis–Hastings algorithm,
and from the numerical simulations it follows that one should pick
one state out of Na = (2 − 8) · 104 iterations (depending on the
temperature) to assure statistical independence. It is always a safe
choice to pick only one last realization out of the whole Markov
chain, reinitializing the simulation for each ‘measurement’.

The proposed Metropolis–Hastings method is generally slower
(requiring more CPU time) than the analytical method of thermal
Bogoliubov gas [11,12] or stochastic ones [13,14]. For instance,
propagation ofN = 105 steps to achieve the thermal states in Fig. 1
takes about 100 s on a 3.40 GHz Intel Core workstation, while a
stochastic algorithm would require about 10 s and the analytical
one would be instantaneous. Nevertheless, the proposed method
is believed to be more precise in comparison with the analytical
one (see Fig. 4 and discussion in the text) and more versatile in
applications to generalized thermal ensembles in comparison to
stochastic methods. In addition, it can be used as an independent
benchmark for other numerical algorithms.

4. Conclusion

Wedeveloped an application ofMetropolis–Hastings algorithm
to sampling the classical thermal states of one-dimensional
Bose–Einstein quasicondensates in classical field approximation
in the case of untrapped gas with periodic boundary conditions
and in experimentally relevant case of harmonic confinement. The
achieved thermal steady state can be further used as an initial state
for truncatedWigner simulations. In casewhen the quantum noise
is important (e.g. collisions of condensates [23], prethermalization
of a split quasicondensate [24]), it can be added to the thermal state
using conventional methods [8,10].

The proposed algorithm can be generalized to higher dimen-
sions and arbitrary trap geometry. We see the main advantage
of the method in its ability to sample not only the conventional
thermodynamic ensembles, but also the generalized Gibbs ensem-
ble, which is believed to arise in the integrable one-dimensional
bosonic gas [25,26].
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