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Abstract

When interacting within a closed timing domain the timing requirements (esp. setup/hold re-
quirements) of all stateful elements (memory) in different systems or components can be safely
met. Examples are a globally synchronous clock domain or an asynchronous handshake do-
main. Often it is, however, necessary to exchange signals between two (or more) such timing
domains, as within a GALS system (globally asynchronous locally synchronous) each compo-
nent/subsystem has its own timing domain. This exchange of data inevitably leads to metastabil-
ity problems at the interfaces. To prevent or handle the problems with metastability of stateful
elements at the interfaces of a system synchronizers are needed. In this work a survey of the
different existing interfacing solutions of synchronous and asynchronous systems, including all
levels of synchrony (mesochronous, plesiochronous, heterochronous, rational) and the differ-
ent handshake-protocols (2-phase, 4-phase) of asynchronous system design is created. In the
survey the interfacing solutions are compared according to criteria such as MTBF (Mean Time
Between Failures), throughput, latency, assumptions on their functionality. From this a suitable
and efficient solution is chosen for each possible system combination between synchronous and
asynchronous systems, to further make a general reference book about interfacing solutions.
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Kurzfassung

Die Kommunikation zwischen Elementen mit deren Setup/Hold- Anforderungen (Speicherele-
mente) kann innerhalb einer geschlossenen Timing Domain (Bereich mit einheitlichem Zeit-
verständnis, z.B.: Systemtakt) sicher bewerkstelligt werden. Oft ist es aber notwendig Signa-
le zwischen verschiedenen Timing Domains auszutauschen, wie im Falle eines GALS-Systems
(Globally Asynchronous Locally Synchronous) bei dem die verschiedenen Systemkomponenten
jeweils unterschiedliche Timing Domains besitzen. Diese Übertragungen von Signalen können
zu Metastabilitätsproblemen an den Schnittstellen führen. Um diesen Metastabilitätsproblemen
entgegenzuwirken müssen die Signale an der Empfängerseite in die dort herrschende Timing
Domain synchronisiert werden. Diese Aufgabe bewerkstelligen Synchronizer.

In der vorliegenden Arbeit wird als erster Schritt ein Überblick über bestehende Interfacing-
Lösungen erstellt um diese durch analytische Modelle vergleichen zu können. Dazu werden ver-
schiedene Vergleichskriterien wie MTBF (Mean Time Between Failures), Durchsatz und Verzö-
gerung herangezogen. Dabei werden die Interface-Typen von synchronen Systemen (z.B. meso-
chronous, plesiochronous, heterochronous) und asynchronen Systemen (verschiedene Handshake-
Protokolle) betrachtet. Nach dem Vergleich der gesammelten Lösungen kann eine Identifizie-
rung geeigneter Lösungen für die unterschiedlichen Kategorien vorgenommen werden und so
ein Nachschlagewerk verfasst werden.
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CHAPTER 1
Introduction

1.1 Motivation

Most systems are not self-contained, thus communicate with their environment, which can be
either another system or an external sensor or else. Often new incoming data occurs at arbitrary
points in time (seen from receiver’s point of view), so asynchronously to the local timing (clock
or step in computation cycle). If a change on the data signal occurs within a time interval Tw
around a sampling clock edge that triggers a memory element, it may latch an undefined voltage
level and thus cannot resolve to one of the defined states within bounded time.

This effect is called metastability. Inside a memory element the signal wobbles around half
VDD or oscillates during metastability [28]. The logical value has not settled yet inside the
memory element, a little disturbance (e.g. noise) is sufficent for the memory element to resolve
to a defined but arbitrary value (this may cause erroneous or byzantine behaviour). It is safe to
say, that if this takes longer than the clock-to-output delay for the memory element to resolve to
the expected value one can conclude that it became metastable. To avoid metastable states within
memory elements like flip-flops or latches, the incoming data has to be synchronized to the local
timing (clocked or self-timed). Hence synchronizers are required at borders of timing domains.
The design of synchronizers for different application demands has long been, and still is, an area
of active research, and a wealth of approaches have been published. The focus of this thesis is
to produce a guide that helps one to make the right decision on the choice of synchronizer that
is perfectly suitable for a particular interface between different timing domains.

In some degree synchronizers are also needed in self-timed systems, because metastability
is also present in asynchronous (self-timed) systems in case of external failure or interfacing to
other timing domains. In contrast to clocked systems metastable states are based upon different
reasons and apply to arbiters and Muller C-Elements. Arbiters are used to synchronize incoming
data to the computational cycle of a self-timed system, they grant access to the system to an
external request or prevent interrupts due to incoming requests. The arbiter may suffer from the
arbiter problem, where it can not decide on a correct order of access to the single source within
bounded time if the requests are not sufficiently separated in time.
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The Muller C-Element forms the basic building block of a control path in an asynchronous
circuits, e.g. as element of an elastic pipeline, its storage element creates a potential for metasta-
bility, so its setup/hold time window must be respected. To rapidly resolve metastability and sup-
press metastable outputs for positive transistions as well as for negative transistions a Schmitt-
Trigger at the output of a Muller C-Element can be employed [40].

Metastability has several effects on a self-timed system. Interpretation of metastable out-
put voltage depends on actual threshold of the input stage, thus different stages have different
interpretations, which may lead to Byzantine behaviour. Metastable voltages may propagate to
the output stage and further to the next element. Oscillations with multiple periods may emerge
in storage loops, whose length exceeds a critical length relative to the transistion times. From
this we conclude that Metastability is defined as the state where signal voltage within a stateful
circuit element is inbetween thresholds, thus the affected component is in an undefined state, a
small perturbation (e.g. noise) is sufficient to let the output converge to one of the two stable
states [12]. This process may take an arbitrary amount of time.

1.2 Problem Statement

Meeting the timing requirements of stateful circuit elements within a system gets difficult as
soon as it is necessary to exchange signals with another system or the environment.
Communication within completely synchronous systems is conceptually simple, but lacks mod-
ularity due to the constraints that are applied to the signalling. In completely synchronous sys-
tems careful clock distribution, i.e. a balanced clock tree, is required to ensure that each part or
module of the system has exactly the same clock (in frequency and phase). Thus if a compo-
nent is changed a complete redesign of the system (especially the clock tree) may be required.
Other communication approaches have been proposed, they circumvent the constraints of com-
pletely sychronous systems and achieve an improvement in efficiency, but open the issue of
crossing clock domain boundaries and thus require synchronizers to safely transmit data. These
approaches may use separate clock domains with either related (e.g. rationally related) or un-
correlated clocks (e.g. a GALS system), where the system is divided in several independent
modules, that operate fully independent/parallel (loosely coupled), each with its own clock. It is
also possible to operate systems completely asynchronous/self-timed (i.e. no clocks). The mod-
ules in these systems operate in lock-step and require request-driven synchronization approaches
(strongly/tightly coupled). Further these approaches can be mixed, hence a clocked system can
sample asynchronous signals from its environment (e.g. a sensor) or a self-timed system and
vice versa. Further there are several different possible implementations of the data link and the
used communication protocol between the modules. A simple wire (single bit) or a bus structure
or an asynchronous interconnect can be used to interface different modules/systems between
each other or their environment. With these interconnects various communication protocol ap-
proaches come along. For instance when using a bus structure a handshake protocol (2-/4-phase)
can be implemented. When using an asynchronous interconnect a Bundled Data approach (se-
rial communication protocol) or a Level Encoded Two Phase Dual Rail protocol [14] or a Null
Convention Logic protocol can be employed.
We see that synchronizing synchronous as well as asynchronous systems is a broad field of op-
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tions, many solutions are available. Thus we need to categorize our system in terms of the timing
domain of our system and of our communication partner and the used link and communication
protocol between them. After evaluating these parameters we want to choose an appropriate
synchronizer for our system, but which one is best to be used for which system? To answer
this question a survey is done to gather existing synchronizer solutions and summarize and com-
pare them, leading us to a general reference book about synchronizer solutions and interfacing
techniques between different timing domains.

1.3 Methodological Approach

In this thesis an extensive literature survey shall lead us to a general reference book about syn-
chronizer solutions and interfacing techniques between different timing domains. We will start
with a literature survey to discover possible existing synchronizers and interfacing solutions.
To find the most adequate solution for each possible system combination, the discovered syn-
chronizers are categorized (by their concept) and we compare them among each other. The
comparison is done in terms of Mean Time Between Failures (MTBF), throughput and latency.
The MTBF is the time between two consecutive sychronization failures within a system and is
defined for systems with unrelated clocks as

MTBF =
e

tres
τc

T0 · fclk · fdat
,

where tres is the resolution time, a duration in which the output has time to settle. Further τc,
time constant, and T0, width of decision window are empirically determined flip-flop parameters.
At last we have the frequency of the sampling clock fclk and the data rate fdat. Note that this
formula is not applying to every relationship of receiver and transmitter frequency, only in case if
the clocks are unrelated (see [3] for further details on this restriction). Latency denotes the time
the synchronization process takes to synchronize a data item to the receiver’s timing domain. The
Throughput specifies the number of transmitted data items per time unit through a synchronizer.

1.4 Structure of the work

This thesis is structured as follows, in Chapter 2, the survey of existing synchronizer solutions
is started by a brief description of the classification of system synchronization, for each class
a table is presented in Section 9 giving an overview of the result of the survey. In Chapter 3
the Mesochronous Synchronizers are described in detail. The Plesiochronous Sychronizers are
described in Chapter 5. Chapter 6 holds the detailed descriptions of synchronizers that are used
between systems with uncorrelated clocks. The Ratiochronous Synchronizers are described in
detail in Chapter 4. Interfacing solutions for self-timed systems are described and analyzed in
detail in Chapter 7. Different types of interconnects are described in Chapter 8. The thesis
concludes in Section 10.
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CHAPTER 2
Levels of Synchrony

2.1 Classification

Synchronizers have to cope with different amount of clock and delay variations. There are four
types of clock and delay variations [26]. First of all the skew that is constant over time and
emerges from delay inside a chip and communication. The second one is jitter that refers to de-
lay that varies between clock cycles. The next variation principle is called drift which is similar
to jitter but refers to slower variations of delay. The last mentioned source of delay variations
are fast switching and clock harmonics. The differences between transmitter and receiver clock
in terms of the stated variations denotes the class of a system. The following list presents a
classification of system synchronization [12] [28], which forms the base for the survey below.

Classification of System Synchronization:

→ Synchronous:

Transmitting as well as receiving systems have same clock frequency and are in phase.
Safe communication is possible with out the need of explicit synchronization.

→ Mesochronous:

Both communication partners employ clocks with the same frequency with an arbitrary
but fixed phase shift. The clock (local or foreign) or incoming data signal has to be delayed
by a constant time for safe sampling.

→ Multisynchronous:

A multisynchronous system is composed of different modules which are using a globally
generated clock that is distributed without underlying balanced clock tree, thus the clock
of each module has an arbitary relative phase drift. Such a system has to cope with delay
variations and correlation which evolve from such a clock distribution, such that the fre-
quency of its clock is the same at each module but its relative phase is apriori unknown
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and may change. Within a system with multisynchronous clocking each module mostly
generates its local clock by reshaping the global multisynchronous clock.

→ Ratiochronous (Rational Related):

The clock frequencies of two systems are related by a ratio that is known at design time
e.g. 1:3, it is simple to determine dangerous cycles, where metastability may occur and

thus one can directly add a delay at this point of time. Thus
fm
fn

=
M

N
describes the ratio,

where fm is the transmitter’s clock frequency and fn is the receiver’s clock frequency
and M and N are integers. Hence a special case of Heterochronous/Periodic system
synchronization.

→ Plesiochronous:

Both systems have the same or nearly the same clock frequency. There is an arbitrary
phase shift between the system clocks which is drifting slowly. To safely sample an in-
coming signal a continuously adjustable delay is needed for clock or data signals.

→ Heterochronous/Periodic:

Systems are both clocked (periodic) at arbitrary nominally different frequencies. Synchro-
nizers take advantage of the periodic nature of clock and data signals, to predict dangerous
events which would lead to metastable states.

→ Asynchronous/Clocked:

Communicating systems are in the same relationship as at Heterochronous/Periodic, but
the synchronizer will not or cannot take advantage of the periodicity of the clocks, thus
events occur at arbitrary times, which further requires a synchronizer that is capable of
every frequency relationship (assume unrelated).

→ Asynchronous/Self-Timed:

One or both communication partners are self-timed, means these systems do not employ
clock signals and thus are event-triggered using either a handshake protocol (2-/4-phase)
and/or a dual-rail implementation of the data path to maintain the delay-insensitivity prop-
erty.

The major part of the above presented classes uses seperate clock domains (e.g. a GALS sys-
tem), where the system is divided in several independent modules each with its own clock. The
local clock of each module can either be generated within the module or derived from a cen-
tral source that distributes a system wide clock to every module (i.e. unbalanced clock tree).
Thus changes of modules are independent to the system and the other modules. Due to the
modularity and the involved simplified signalling this approach is most commonly used in prac-
tice. A drawback is that the initial synchronization adds latency to the data transmission. The
asynchronous/self-timed approach has several advantages compared to the clocked ones like less
power dissipation, further the system remains in a quiescent state until triggered for a new data
transmission. Although an asynchronous system is obviously event triggered in some degree
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there is synchronization or arbitration required, to synchronize incoming events to the current
computation cycle (run) and to arbitrate between asynchronous requests, basically to determine
which signal was asserted first, as mentioned before. Several of the synchronizers presented in
this thesis employ an asynchronous interconnect to interface different modules/systems between
each other or their environment. The advantages of such an asynchronous communication path
(and asynchronous logic in general) are less power consumption, average case performance,
adaption to changing environmental conditions and reduced electromagnetic radiation, which
make an asynchronous interconnect more attractive and valuable. Interfacing asynchronous sys-
tems needs distinct design methodologies [23] [24]:

First there is the Bundled Data (BD) approach, where data transmission is parallelized. With
this approach a 2(NRZ)-/4(RTZ)-phase handshaking (request and acknowledgement) is intro-
duced. To avoid race conditions between the data stream and handshake signals the gate as well
as wire delays are bounded by assumption. The main problems with this approach are glitches,
and therefore masking is needed.

Further the Level Encoded Two Phase Dual Rail (LEDR) protocol [14], which is a delay-
insensitive (no clocking) protocol that uses a 2-phase handshaking (with NRZ). Gate and wire
delays are unbounded and unknown but finite. The data transmission needs a completion detec-
tion logic. A dual-rail approach is needed to determine “no transition” from a late transition, that
is two physical wires are employed to represent a single signal. Data in this phased logic [24] is
represented in two phases, ϕ0 and ϕ1, each includes both logical values. The phase of the signal
changes with each transition, this is derived by a XOR operation on the two lines. Synchroniza-
tion is easily done by waiting for all input signals to be in the same phase.

At last the Null Convention Logic (NCL) protocol, as the LEDR protocol it is a dual-rail
approach, but uses a 4-phase handshaking (with RTZ). The protocol extends the boolean logic
by a NULL value. The data stream consists of alternating waves of data and NULL (empty)
words. These methodologies use a handshaking protocol, a 4-phase handshake involves the
following steps [27] (see Figure 2.1): At first a new data is available at the transmitter. From
this the transmitter rises the request signal and keeps it up to signal a starting data transmission.
The request is synchronized at the receiver and the bundled data stream from the transmitter is
latched. After data transfer has finished the receiver rises its acknowledgement signal, which is
synchronized at the transmitter. Data now may be removed from the output at the transmitter and
the request signal is de-asserted and synchronized at the receiver. The receiver then de-asserts
its acknowledgement signal which is further synchronized at transmitter. After these steps the
transmitter is allowed to start this procedure all over again. A 2-phase handshake on the other
hand involves similar steps, but in contrast to the 4-phase handshake each transition on the re-
quest and acknowledgement lines signal a new request or acknowledgement.
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Figure 2.1: Handshaking signals (2-/4-phase)
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CHAPTER 3
Mesochronous Synchronizers

A mesochronous system consists of communication partners that employ clocks with the same
frequency with an arbitrary but fixed phase shift. Synchronizers can exploit this relationship
between the two clocks to efficiently synchronize data communication.
Thus Mesochronous synchronizers need two mechanisms to safely interface two systems. First
they need a phase estimation mechanism, to determine by which amount the phase of the re-
ceiver clock is shifted in respect to the transmitter clock, there are different approaches given in
sections 3.2.2, 3.2.5 and 3.2.6 (see Figures 3.2, 3.8 and 3.10 respectively) that employ a phase
estimation circuit. From the result of the phase estimation the synchronizer educe how to adjust
a delay in the data path or on the clock or control lines, that is formed either by an adjustable
delay element (see 3.2.2 and 3.2.5) or alternative data paths(see 3.2.3, 3.2.4 and 3.10), to adjust
the arbitrary phase shift between clock reference and data signal and keep signal transistions
away from unsafe regions of the clock.

3.1 Basic Concepts

The mesochronous synchronizers presented in this chapter can be classified in three basic con-
cepts:

• First the Brute-Force Synchronizer, the Delay-Line Synchronizer and the Adaptive Syn-
chronization approach directly modify the timing in the data stream either by a cascade
of flip-flops or a variable delay element in the data channel.

• The Three-Element FIFO Synchronizer and the Four-Stage Mesochronous Synchronizer
both use a ring buffer sampling incoming data every cycle of receiver’s clock to one of its
latches in spite of possible metastable states and let it rest for one turn (the other latches
are written in sequence) and thus let a possible metastability decay.
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• The Two-Register Synchronizer and the Low-Latency and Low-Overhead Mesochronous
Synchronizer control the input latches at the receiver module to safely sample new data,
either by delaying the control input of the latch relative to the receiver clock or using
a strobe signal, sent by the transmitter (synchronized by a Brute-Force Synchronizer) to
enable the latch.

From each set of synchronizers associated with the different basic concepts one solution is
picked as a representative in the following general discussion of properties. Details on the im-
plementation and function of all solutions can be found in the subsequent subsections. Note
that a calculation of the MTBF using the formula given in the introduction does not work for
mesochronous system due to the correlated clocks [3], but if the synchronizer is properly con-
figured it achieves an infinite MTBF in the data path.

From the set of synchronizers that directly modify the timing in the data stream the Adaptive
Synchronization approach is chosen. This approach employs a learning phase to dynamically
adjust the delay line on the data channel. Thus is able to react to changes in phase drift (also
capable of plesiochronous timing relations) when employing a continuous learning phase, thus
achieving an infinite MTBF and a latency of half a clock cycle maximum (variable delay ele-
ment). A throughput of m bit per clock cycle can be attained with m parallel input data paths
each employing an adapative synchronization block and a variable delay.

From the set of parallel staged synchronizers the Four-Stage Mesochronous Synchronizer is
chosen for discussion. It is an enhancement of the Three-Element FIFO Synchronizer, with a
fourth stage and a FIFO at the input of the receiver to enable data burst from the transmitter and
a mechanism to support back-pressure. The Four-Stage Mesochronous Synchronizer is chosen
as the reference of its concept class, due to its enhanced functionality and MTBF compared
to the Three-Element FIFO Synchronizer. In detail the Four-Stage Mesochronous Synchronizer
provides a infinite MTBF, a latency of three clock cycles and one word per cycle throughput (see
table in [17]).

From the last group the Low-Latency and Low-Overhead Mesochronous Synchronizer is
picked as a representative. It uses a strobe signal, that is generated in the transmitter timing
domain and synchronized by a Brute-Force Synchronizer to the receiver timing domain, to de-
termine whether it is safe to sample incoming data on either the rising or falling clock edge (or
if only dummy data was sent). This mechanism has the advantage that synchronization is done
completely off the data path, hence metastabilities can only occur at the strobe signal input. The
MTBF in the strobe signal path is very high due to the used cascade of latches. The latency of
the Low-Latency and Low-Overhead Mesochronous Synchronizer is in best case Tw, equal to the

delay in the strobe signal path, and in average case
T

2
+ Tw or in worst case T + Tw (see [7]). It

supports “maximal throughput” [7] of one data token per clock cycle. For a detailed description
and references of the comparative parameters of the chosen prototypes see the correspondening
section below (Adaptive Synchronization 3.2.5, Four-Stage Mesochronous Synchronizer 3.2.7,
Low-Latency and Low-Overhead Mesochronous Synchronizer 3.2.6).
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3.2 Detailed Descriptions

3.2.1 Brute-Force Synchronizer

The Brute-Force Synchronizer or Waiting Synchronizer [12] employs two or more (like in the
conservative version, see 6.2.1) flip-flops. A system employing a Brute-Force Synchronizer is
depicted in Figure 3.1. At first the flip-flop samples the input signal (asynchronous) and waits
(one clock cycle) for any metastable state to decay, then in the next clock cycle the (possibly)
stable output of the first flip-flop is sampled by a second flip-flop adding another cycle of re-
solving time to the synchronization process and providing the data item to the receiver. This
synchronizer does not take advantage of knowledge about periodicity of clocks. Disadvantages
involved with this approach are enhanced delay and a non-zero probability of synchronization
failure. Further if the phases of transmitter and receiver clock almost match and the synchro-
nizer runs into “bad” timing the input data may be corrupted by a metastability event leading
to inconsistency in the communication which introduces a criterion for exclusion and thus it
should not be used. Its average delay is tz = tw + 2tdCQ + tcy/2 (see [12]), where tdCQ is the
clock-to-output delay of the synchronizing latches and tcy is the cycle time and tw, the waiting
time denotes the time a system is configured to wait until the output of synchronizer is sampled,
typically about one clock cycle. In summary, the synchronizer has a non-zero probability of
synchronization failure (thus a non-infinite MTBF), similar to the Two-Flip-Flop Synchronizer.
The Brute-Force Synchronizer has an average latency of tz and a very low throughput hence it
synchronizes only one bit every three clock cycles.

Figure 3.1: Digital Systems Engineering [12]: Brute-Force Synchronizer

3.2.2 Delay-line synchronizer

The Delay-line Synchronizer presented in [12] is used to synchronize mesochronous systems, a
block diagram is depicted in Figure 3.2. It employs a variable delay-line on the data path with an
adjustment range of a clock period. During its learning phase two flip-flops capture the variable
delayed input with two different delayed versions of the clock to measure the relative phase of
the delayed input and further adjust the variable input delay on the data path. If the delayed input
signal changes during the keep-out region of the clock the two flip-flops will capture different
values (the lower one will sample a different value) and signalling the FSM to adjust the delay
so that it keeps the input out of the forbidden region. In detail the second and third flip-flop
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span a window of ± td around the rising edge of the original clock to simply define the keep-out
region (see timing diagram in Figure 3.3). With a well chosen value for delay element td the
setup and hold constraints can be reflected, hence td at the second flip-flop matches thold and
tcy− td at the third flip-flop is equal to tsu, iff td < tcy/2. The synchronizer employs an average
delay of tz = tv(min) + td + tdCQ + tcy/2, where tv(min) is the minimum variable delay, td is
the value of the delay element at the control input of the second and third flip-flop, tdCQ is the
clock-to-output delay of a flip-flop and tcy denotes the cycle time. In summary, the Delay-line
Synchronizer has a infinite MTBF, provides a data item per clock cycle with an average latency
of tz .

Figure 3.2: DSE [12]: Delay Line Synchronizer

Figure 3.3: DSE [12]: Delay Line Synchronizer - Timing Diagram
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3.2.3 Two-Register Synchronizer

The Two-Register Synchronizer [12] is similarily constructed as the Delay-Line Synchronizer
but it delays the clock line instead of the data line, as one can see in Figure 3.4. There are
two flip-flops or registers (for multiple data lines), one samples data on the rising edge of the
clock, and the other one is triggered by a delayed version of the same clock edge, thus sampling
data delayed at least by the width of the forbidden (keep-out) region of the flip-flop. A phase
comparator measures the relative phase between the local clock and the transmitter clock of
the incoming data stream once after reset and thus determines which of the flip-flops is safe to
be selected by the multiplexer. The measurement phase may be repeated during operation to
support variable phase shifts. Usually the upper (not delayed one) flip-flop is used unless there
is an event on the data line during the keep-out region, in this case the lower one is chosen by
the multiplexer. The average delay of the Two-Register Synchronizer is tz = t2ko/tcy + td +
tdCQ + tcy/2, where the term t2ko/tcy is the duration of the keep-out window multiplied with
the probability that the lower flip-flop is chosen by the comparator, td is the delay of the flip-
flop, tdCQ the clock-to-output delay and tcy/2 the half of the cycle time, which is the inherent
synchronization delay of rounding up to the next cycle (see [12]). In summary, the Two-Register
Synchronizer achieves an infinite MTBF in the data path, if the comparator has chosen correctly
and the phase shift remains constant. On the other hand the phase comparator itself may get
metastable, the MTBF in this case depends on the used technology. Further the synchronizer
employs an average latency of tz and a throughput of a data item each cycle.

Figure 3.4: DSE [12]: Two Register Synchronizer

3.2.4 Three Element FIFO Synchronizer

The Three Element FIFO Synchronizer [12] [28] uses a small ring-buffer to decouple transmit-
ter and receiver timing. The synchronizer employed with three stages is depicted in Figure 3.5.
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Incoming data items are written alternately into a couple of flip-flops. The flip-flop is chosen
by a transmit pointer (xp) which is generated by a counter in case of a three-element (or higher)
synchronizer. A further ring counter, which is driven by the local clock of the receiver, is con-
trolling the multiplexer to select the flip-flop with the oldest sampled value for read. The pointer
of the receiver (rp) should lag the pointer of the transmitter (xp) by at least one clock cycle. In
fact this lag represents the available resolution time and should therefore be maximized. Ob-
viously more stages allow for higher resolution time. Note that the pointers xp and rp need to
stay in sync to avoid pointing to the same flip-flop. This is guaranteed by the assumption of a
mesochronous environment. In this respect a higher number of stages allows for a longer dis-
tance between the pointers and hence better tolerance of long phase variations. To accommodate
for the combinational delay introduced by the multiplexer another flip-flop stage is added to
relax the contraints. On the other hand is also possible to reduced the number of stages to two.
In this two-element FIFO synchronizer only two toggle flip-flops are needed to generate the xp
and rp, instead of counters. With only two flip-flops the data latency is reduced, but problems
may occur in case the two clocks are nearly in phase, because it is not guaranteed that the cho-
sen value will be stable for an entire clock cycle at the multiplexer (may be overwritten before
read). Hence the three-element (or higher) version might be the preferred choice. In summary,
a possible metastable state in one of the flip-flops has n clock cycles to decay, thus the MTBF is
clearly finite for the Three Element FIFO Synchronizer, where n is 3. Data is passed every clock
cycle after the three stages are filled initially with a data latency equal to the number of stages
(i.e. a data item stays in the FIFO for n cycles of the receiver clock).

Figure 3.5: DSE [12]: Three Element FIFO Synchronizer
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3.2.5 Adaptive Synchronization

Adaptive Synchronization [26] is a proposed method to synchronize multi-synchronous modules
within a system. Delay variations and correlation evolve from unbalanced clock distribution,
such that the frequency of the system clock is the same at each module but its relative phase
is apriori unknown and may change. In [26] the relative phase is supposed to be “stationary”
which means that the relative phase can be seen as fixed over long periods of time. The trans-
mitter module provides additionally to the data a ready signal to the receiver module. The ready
signal and the local clock are provided to a conflict detector which activates a counter as long
as a detected conflict lasts (see Figures 3.7 and 3.8). The counter is reset at the start of the
adaption cycle by the controller. The counter value (one-hot encoding) directly increases the
number of inverters within the digital delay line (see Figure 3.9) to delay the incoming data.
The conflict detector employs four mutual exclusion elements, each two to detect conflicts at
rising and falling edges. A conflict is detected if the time interval between a transition of the
ready signal and transition of the local clock is shorter than the employed delay of the conflict
detector (see Figure 3.3). In [26] there are five modes (learning phases) proposed in which adap-
tion is achieved. There are “one time adaption” (after manufacture), “power-up adaption” (once
after power is applied), “periodic training sessions”, “triggered training sessions” and “contin-
uous tracking” to accommodate a different amount of drift and different electrical schemes. In
summary, the synchronizer employs a very high or up to infinite MTBF (depending on which
mode of learning phase is used), a latency of maximal a half clock cycle (variable delay) plus a
learning phase and thus passes data each clock cycle.

Figure 3.6: Adaptive Synchronization [26]: Structure
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Figure 3.7: Adaptive Synchronization [26]: Adaptive Sensitivity Implementation

Figure 3.8: Adaptive Synchronization [26]: Conflict Detector
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Figure 3.9: Adaptive Synchronization [26]: Digital Delay Line

3.2.6 Low-Latency and Low-Overhead Mesochronous Synchronizer

A low-latency and low-overhead mesochronous synchronizer is presented in [7]. It can be used
in so-called globally non-synchronous system as GALS or systems with unbalanced clock trees,
which bring performance enhancements and power savings in contrast to globally clock systems
(with a balanced clock tree). Due to such an unbalanced clock tree each module of the system
run with the same nominal frequency indeed, but with an unknown constant phase shift between
them. The mesochronous receiver interface comes with an over-head of three flip-flops per
data line, see Figure 3.10. The synchronizer does not employ backpressure or a handshaking
mechanism and the transmitter is assumed to send data every clock cycle. It decides upon a
learning phase when it is safe to sample further whether data should be sampled with rising or
falling clock edge of receiver clock. A strobe signal that is generated by the transmitter, which
ideally toggles with all data lines, is used to learn about when it is safe to sample. Note that the
learning phase is necessary only once after reset in the mesochronous synchronizer. The strobe
signal (bundled with data lines) changes from low to high and is sampled every rising and falling
edge during the learning phase by the receiver. A delay Tw of a quarter of the cycle period time
is inserted to ensure that a change of the strobe signal is first sampled on the falling edge. An
additional flip-flop in this path is used to “move” the sample to be passed on the same rising edge
as the sample taken a half clock cycle later (i.e. actually on the rising edge). The delayed signal
is called strobed, that is used by the receiver to control the multiplexer that switches between the
data input that is sampled on the falling and the other one that is sampled on the rising clock edge.
During the learning phase two consecutive samples of the strobed signal are compared. These
samples results in a sequence s0, s1, . . . , si, where si is the first sample of the strobe signal that
is high, thus s0 to si−1 are low samples. If si is sampled by a rising edge of the receiver clock
the rising edge is further used to sample data. The learning phase thus takes several clock cycles,
in this phase only dummy data is received. Clearly the “strobed” signal may become metastable,
thus must be synchronized by a cascade of flip-flops. The use of an additional control signal as
strobe moves the synchronization issue and thus the probability of metastabilities away from the
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data path. The total number of flip-flops needed for mesochronous interface is 3·(number of data
lines) + 6 + 2·(number of FF for strobed signal). Since the learning phase happens only once
after reset it does not effect the data latency. In summary, the Low-Latency and Low-Overhead
Mesochronous Synchronizer avoids metastabilities at the data input by using a strobe signal to
control the input flip-flop, at this path a very high MTBF is achievable (as mentioned before the
MTBF cannot be calculated with the given formula and thus only an estimate is given). The
initial latency of the synchronizer consists of a single learning phase after reset and in best case
only Tw (delay of the strobe signal), average case T/2 + Tw or worst case is T + Tw [7]. The
synchronizer operates with maximal throughput (a data item per cycle), an example in [7] shows
data transfer at 1GHz.

Figure 3.10: Low-Latency and Low-Overhead Mesochronous and Plesiochronous Synchro-
nizer [7]: Mesochronous Receiver
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3.2.7 Four-Stage Mesochronous Synchronizer

The Four-Stage Mesochronous Synchronizer (FSMS) presented in [17] provides full backpres-
sure and buffering for data bursts, thus the receiver clock and the read/write pointers are never
stopped or modified. Further it can be used for long range communication. If a FSMS is con-
sidered to interface between systems the most important design considerations are first the inital
spread of read and write pointers and further the number of the used synchronizer stages (mini-
mum of 4 stages). The FSMS employs two cyclic buffers, one for the transmitter and one for the
receiver with each 4 parallel stages (registers), one can see a block diagram of the FSMS in Fig-
ure 3.11. The transmitter buffer uses four stages as data buffer for the data transfer and another
four stages to buffer forward token, which indicate the validity of data items. Since a forward
token shows data validity to the receiver it is used to push new data into the FIFO buffer, thus
is linked with empty status line of the FIFO buffer and the pop signal. At the transmitter side
the data transfer is done by writing data and forward token cyclically in one of the four stages,
the stage is chosen by a cyclic counter, that is never stopped and then data and forward token
will be transmitted to the receiver. Due to initial spread (chosen by design) of the read pointer
data can settle and metastability decay before it is read from a transmitter stage into the receiver
FIFO. The forward token indicates that the data item is valid in the corresponding data register
(transmitter stage). Since the receiver clock is never stopped or modified data can arrive every
cycles at the receiver side. The receiver can either read data directly from transmitter stage and
process it or buffer it firstly into its FIFO. Further for the receiver to be capable of data bursts
from the transmitter its FIFO needs to be deeper than the minimum four stages. The receiver
may assert backpressure by sending a backward token containing logical 0 for “do not send”,
which is produced by de-asserting the pop signal. By this the data input is directed to the FIFO
to buffer incoming data items which were currently pending in the transmitter buffer when the
backward token was sent. Therefore the FIFO threshold must be L − 4, where L is the size of
the FIFO, to prevent data loss, thus its minimal depth is 4 or equal to the transmitter buffer. One
backwards token is sent by one stage of the receiver buffer and blocks the corresponding stage
in the transmitter buffer sending new data. For long wire communication (e.g. mesochronous
NoC) the four stage synchronizer can either be employed at only one communication partner
(transmitter or receiver) or in a split fashion. In the former case no modifications are necessary,
in the latter an extension on the transmitter buffer (stages) depth will be necessary to compensate
long delays. The FSMS can be further used to interface between multi-synchronous modules.
Note that a system is multi-synchronous when a common clock is provided to its local modules
without taking care of a balanced distribution. In this case six FIFO stages are needed to handle
the occuring phase drifts during operation. Note that an additional phase shift by T adds two
synchronizer stages, this results in a total number of stage of 4 + 2k, where k is an integer that
numbers the phase drift [0,±kT ]. The asynchronous reset must be synchronized by a 2 flip-flop
brute force synchronizer to the transmitter as well as to the receiver domain to synchronously
release the reset signal. To prevent metastability the read and write pointer of the used FIFOs
must not be initialized to the same value, there has to be an initial spread of at least 2 stages.
Forward latency varies in the range of (T, 3T ) and depends on the initial pointer spread and
relative phase difference. Throughput is maximized, one data item can be transferred on each
clock cycle, but backpressure affects the throughput latency. A comparison table between the
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four-stage mesochronous synchronizer and the 2-Clock FIFO is provided in [17]. In summary,
the Four-Stage Mesochronous Synchronizer has an infinite MTBF, a average latency of three
clock cycles and a throughput of one word per cycle [17].

Figure 3.11: Four-Stage Mesochronous Synchronizer [17]: Structure
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CHAPTER 4
Ratiochronous Synchronizers

Ratiochronous Synchronizers are used to interface between clocked systems with rationally re-
lated frequencies.

4.1 Basic Concepts

There are two Ratiochronous Synchronizers presented in this chapter where the clocks of the
communicating systems have to be rationally related, one from Rational Clocking that employs
a fixed communication schedule placed in a LUT and furthermore the GRLS approach, which
takes advantage of the periodic nature of the rational relation and uses a strobe signal to regulate
data latching at the receiver.
From the two ratiochronous synchronizers presented in this thesis, the GRLS approach is chosen
as the prototype for this category. The main advantage of the GRLS approach over the Rational
Clocking technique is that it is able to cope with phase shifts in the rationally related clocks.
Further the Rational Clocking technique implements a lazy algorithm, hence introduces a higher
latency than the GRLS approach (length of input delay in best case). The GRLS synchronizer
is based on the Low-Latency and Low-Overhead Mesochronous/Plesiochronous Synchronizer
presented before, thus moves the synchronization away from the data channel and uses a strobe
signal to control the input at the receiver. Both approaches provide optimal throughput (i.e. one
data item per clock cycle).
The following section holds the detailed descriptions of these synchronizers, the parameters that
are used for comparison are taken from the original resources.
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4.2 Detailed Descriptions

4.2.1 Rational Clocking

The proposed solution acts on the assumption that the frequencies of the clocks of two systems
which tend to communicate are related by the ratio of two integers and that the phase relation-
ship of these clocks is known. This can be used to exploit the predictability of points in time
where it is not safe for the receiver to sample data and further create a schedule to time all
communications and data transfers. This is called “rational clocking” [43] and relies on a given

frequency ratio between the clocks of two modules f1 and f2. Thus
fm
fn

=
M

N
describes the

ratio, where fm is the transmitter’s clock frequency and fn is the receiver’s clock frequency.
M and N are (small) integers that represent the same ratio as fm and fn. The communication
schedule is generated upon the prediction of the relative position of the systems clock edges
within M cycles on system m (employs clock with frequency fm) and N cycles on system n
(with clock frequency fn) and shows safe and unsafe cycles for transmission. It can be derived
in two ways either statically in a schedule diagram written to a LUT or dynamically at run time
using graphical algorithms and a schedule plot. A schedule diagram contains the sequence of
cycles and the corresponding values that state if it is safe to transmit/receive in this cycle. Within
a cycle of the transmitter there is a transition window that defines when the transmitter latches
data into the transmit register. At the receiver there is a decision window or setup-hold window
defined around each clock edge during which the data must be stable at the input of the receiver
to be sampled safely. If these windows overlap it is not safe to transmit data. So starting at
the transmitter a sequence is derived where alternatingly transition windows and the next fol-
lowing decision window at the receiver (must not overlap) form a communication schedule (see
Figure 4.1 and 4.4). This schedule is created at boot-up or is programmed into a ROM. On the
other hand it is possible to generate a schedule at run-time. The advantage of this is that it has
an O(log(n)) need in memory in contrast to the previous mentioned method which has a cubic
growth rate in needs of memory bits, O(N3) for a supporting ratio range of 1 . . . N . Run-Time
Scheduling uses a graphical algorithm similar to Bresenham’s algorithm to generate a schedule
plot. The schedule plot is a function f(t) defined by f(t) = t − (Pm + Sn) that is equal to the
time the transmitter has to provide data stablely to the receiver. Pm is the end of the transition
window and Sn the start of the decision window. The resulting straight line is drawn on a grid
of M ×N lines. For each of the N vertical line a dot is set beneath f(t) on the nearest crossing
point with one of the M horizontal lines of the grid. At these dots, which define points in time, it
is safe to sample data. If two nearby dots are on the same horizontal line it is not safe to sample
data on the later dot or no new data is available yet. For a detailed algorithm and implementation
in hardware see [43]. The interface hardware employs a phase-locked loop to derive the clock of
system N from the clock of system M. Two frequency-dividing counters are employed to indicate
the current clock cycle of each system and form the index for the LUT. Each of the two LUTs
generate a control signal for transmitter and receiver register, to enable the register when it is
safe to sample or latch new data for transmission. Each system employs a transmit and a receive
register (see Figure 4.2). The LUTs can be “generic” to take M and N as inputs and produce the
signals for the appropriate ratio or they can be “programmable” where a LUT is loaded at boot-
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up from a ROM providing different frequency ratios. When creating a communication schedule
the starting transition window affects the throughput efficiency, so one needs to make a schedule
for each transition window as starting point or uses the double-buffering technique, which guar-
antees 100% throughput efficiency. The double-buffering technique uses multiple registers to
alternately sample data. When using average timing parameters (of components) two registers
are sufficient, but [43] provides a formula to derive the appropriate number of registers for one’s
design. In the double-buffering technique the transmit register is doubled and further selected
by an additional control signal generated by the LUT during operation (see Figure 4.3). If the
transmission is not safe data is placed in the second register. This gives new possibilities for
communication schedules (see Figure 4.4). The Run Time Scheduling introduces a delay which
can be critical in fast, high performance systems.

Figure 4.1: Rational Clocking [43]: Schedule Diagram 1
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Figure 4.2: Rational Clocking [43]: Interface Hardware
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Figure 4.3: Rational Clocking [43]: Double Buffered Hardware (direction m→ n shown only)

Figure 4.4: Rational Clocking [43]: Schedule Diagram 2

25



4.2.2 A Flexible Communication Scheme for Rational-Related Clock
Frequencies

In [5] and [6] a design style is introduced called Globally-Rationchronous Locally-Synchronous
(GRLS). It is located between the mesochronous and the GALS design style. Basically it con-
strains the frequencies used by the communicating modules to be rationally related, such that
there is a global clock with frequency fH that is determined by the least common multiple (lcm)
of the frequencies of the receiver and the transmitter, where fH = NT ·fR = NR ·fR. In contrast
to the rational clocking technique from [43] presented in section 4.2.1 the GRLS interface can
cope with unknown phase differences (skew) between the receiver and transmitter clock. The
GRLS interface exploits the periodic nature of the rationally related systems/modules to safely
interface them. The transfer rate is dictated by the slower communication partner. Note that the
clock edges (of receiver and transmitter clock) align with period PC = NR · TT = NT · TR,
where PC denotes the periodicity cycle. The interface operates as follows; the transmitter mod-
ule passes a data item to its local GRLS transmitter including information if this data item is
valid or not. The data item is placed in a FIFO preliminarily. The regulator circuit based on a
regulation algorithm given in [6] generates a send signal, that is passed to toggle flip-flop and
the read input of the FIFO where the data item is placed. The regulation algorithm generates a
periodic signal to control the data flow at a rate of min(fT , fR). Thus if the receiver is the faster
module, the GRLS transmitter sends with a rate of its local clock. The toggle flip-flop is enabled
by the periodic send signal and generates a strobe signal that is sent to the GRLS receiver besides
the data item and the valid signal. The receiver samples all incoming data (and signals) at both
the rising as well as falling clock edge. Thus the GRLS receiver may sample two valid data items
in one clock cycle. But the receiver module cannot processes more than one data item per cycle
hence a FIFO buffer is necessary. The FIFO only needs one cell due to the average rate property
of the regulation algorithm, where the number of data items is limited to d 6 K + 1 in a time
K · TR with K as an integer. There are also three other properties given in [6] that were used
to formally prove the regulation algorithm (for further details refer to [6]). The sampling of new
data is enabled by the result of the analysis of the incoming strobe signal, which determines if it
is safe to sample. It is safe to sample if the sample of the strobe signal at time ti is different to the
sample analysed a half clock cycle before. First the strobe signal has to be synchronized to the
receiver’s timing domain. After a delay Tw that is defined as tsu+ tho < Tw <

TH
2 − (tsu+ tho)

the strobe signal is synchronized by multistaged synchronizer, several cascaded flip-flops. The
strobed signal (the delayed strobe signal) is sampled on both clock edges, the current sample is
then (after synchronization) compared with the previous sample (arrived a half cycle earlier) by
XOR gates. After comparison the signal is further delayed by a programmable delay line using a
cascade of flip-flops. The length of the delay line is determined by K ·NT −NS − 1, where NT

is the multiplier of the transmitters frequency to match the global common clock and NS is the
number of stages at the synchronizer for the strobed signal and K is an integer. This forms the
selector value for the multiplexer to determine at which point in the delay line the analysis result
is grabbed and passed to the data sampler as enable signal (either for rising or falling edge). The
sampled data item is then either directly passed to the receiver module or buffered in the 1-cell
FIFO depending on which clock edge the previous data item was sampled (i.e. two data items
are sampled in the same clock cycle by two consecutive clock edges). One can see the interface
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in Figure 4.5, it is based on the circuit from Low-Latency and Low-Overhead Mesochronous
and Plesiochronous Synchronizer presented in 3.2.6 and 5.2.4 from [7] (see also Figure 3.10
and 5.6). So we conclude that the data flow is free from unwanted latency and metastability
events. Metastable events only may take place at the input of the strobe signal, to ensure a high
MTBF a Brute-Force Synchronizer with NS stages is used. Notice that is might be problematic
using a Brute-Force Synchronizer, because the clocks and thus the incoming events are not un-
correlated [3]. Further the data latency is not affected by the length of the learning phase (strobe
analysis). Although the strobe signal shows if it is safe to sample the current data item is sam-
pled with the strobe signal synchronized and analysed K · PC before, this is guaranteed by the
periodicity property of the regulation algorithm. There is only an initial latency that affects the
data transmission once after startup, which is defined as ts = ti +K · PC, where ti is the point
in time when the strobe signal is analysed. The transmitter then sends every cycle so that the
analysis flow (and data flow) is not interrupted, also in cycles in which the transmitter has no new
data to send, in this case the valid signal is simply de-asserted and thus the receiver module does
not process the incoming data. [5] also provides implementation details and a latency analysis.
In the worst case using 90 nm technology the GRLS approach works with at most 1 GHz as
global frequency (fH ). The latency is given as TW in best case, and (dNR

NT
− 1e)TT + TR + TW

in worst case.
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Figure 4.5: GRLS Interface Structure [5] [6]
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CHAPTER 5
Plesiochronous Synchronizers

In contrast to the mesochronous synchronizers, treated in Chapter 3, Plesiochronous Synchro-
nizers have to handle slight drifts in clock phases. That involves that the delay within the syn-
chronizer needs to be adapted during operation to cope with changing relation in phase and
to avoid duplicated or dropped data items. Within heterochronous/periodic systems, where the
communication partners are clocked at different frequencies, synchronizers take advantage of
the periodic nature of clock signals, to predict points in time where it is unsafe to transmit data.
Due to different system clocks there is a need of flow control at the interfaces either at the faster
or the slower clocked module, in order to avoid duplicated or dropped data items. There are
different ways to accomplish flow control for example a backpressure mechanism (like in 3.2.7)
or a common sending speed equal to the speed of the slowest module. Some mesochronous
synchronizers can be used, but mostly require modifications like update circuits, null insertion
or explicit flow control.

5.1 Basic Concepts

All the plesiochronous synchronizers presented in this chapter basically use the same concept.
They synchronize a signal (transmitter’s clock, resynchronization signal or strobe signal) from
the transmitter to control a multiplexer that switches between a latch with the directly latched
(unmodified) data item and a delayed version of it. The Plesiochronous FIFO Synchronizer uses
a resynchronization mechanism to align the “read pointer” of the receiver to the “write pointer”
of the transmitter, so that the receiver always samples the oldest value (more time for metastabil-
ity resolution). The Periodic Asynchronous Synchronizer and the Low-Latency Plesiochronous
Data Retiming approach directly influence the data stream by adding a delay upon the detec-
tion of a change of data within the exclusion region of the clock. At last the Low-Latency and
Low-Overhead Plesiochronous Synchronizer works like the Low-Latency and Low-Overhead
Mesochronous Synchronizer, but employs a continuous learning phase for the strobe signal that
controls the input data latches (enable input) and further the used multiplexers.
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As representative solution for plesiochronous synchronizers the Low-Latency and Low-Overhead
Plesiochronous Synchronizer is chosen. As mentioned before, it is similar in construction to the
Low-Latency and Low-Overhead Mesochronous Synchronizer with a difference in the strobe sig-
nal path and the continuously performed learning phase. Due to the continuous learning phase
the synchronizer employs an infinite MTBF, in contrast to the other solutions. Note that the
Low-Latency Plesiochronous Data Retiming approach uses a fixed delay and the Plesiochronous
FIFO Synchronizer and the Periodic Asynchronous Synchronizer (only for predicted clock) em-
ploy a resolution time of one cycle only. Further the Plesiochronous FIFO Synchronizer has
to wait for a cycle when a resynchronization of the read pointer it active, thus the throughput
is limited, the Low-Latency and Low-Overhead Plesiochronous Synchronizer on the other hand
supports maximal throughput. The latency of the chosen synchronizer is equal its mesochronous
version, with the difference that it employs a continuous learning phase. Only the Low-Latency
Plesiochronous Data Retiming approach employs a lower latency of three quarters of the cycle
time, but on average the Low-Latency and Low-Overhead Plesiochronous Synchronizer achieves
the best overall performance. Detailed descriptions of the prototypes and references for their
comparative parameters can be found in the sections below.

5.2 Detailed Descriptions

5.2.1 Plesiochronous FIFO Synchronizer

The Plesiochronous FIFO Synchronizer [12] [28] is an extended version of the Two Element
FIFO Synchronizer 3.2.4. The synchronizer is depicted in Figure 5.1. A reset logic for the
pointer of the receiver (rp) is added to the two element (mesochronous) FIFO synchronizer.
The resynchronization signal (resync) either lets the receiver pointer toggle with the local clock
(inverter loop) or resets the pointer and resynchronizes it with the transmitter pointer (xp). In the
latter case the current value of the transmitter pointer, delayed by an adequate margin, is set as
new receiver pointer. This is neccessary to prevent that the multiplexer in the data path switches
to the flip-flop input that is currently in its decay phase (the latest written flip-flop). When the
receiver pointer is about to reset it is set to the current value of the transmitter pointer delayed
by an adequate margin.

When using a FIFO synchronizer with more than two stages a phase-slip detector is required
to determine the point in time at which the phase of the receiver pointer has to be adjusted. In the
phase-slip detection logic (see Figure 5.2) the receiver pointer is controlled in such a way that
it lags the transmitter pointer by a sufficient margin (in the case shown approximately two cycle
plus the tm to allow appropriate resolution time for the data within the Brute-Force Synchronizer
formed by the FIFO. The resynchronization signal (resync) also controls a multiplexer within the
phase-slip detector which switches between an incrementer loop and the delayed value of the
transmitter pointer (xp). A comparator compares the inputs of the multiplexer, if the incrementer
value of the receiver pointer is greater than the value of the transmitter pointer the comparator
will signal that a duplicate will occur and the receiver pointer will not be incremented if the
resynchronization signal is asserted. On the other hand if the receiver pointer is lower than the
transmitter pointer it will skip a state and the comparator will signal a drop. Additionally it is
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possible to handle duplicates and drops by adding either null symbols to signal the absence of
data or enable open/closed loop flow control.

Figure 5.1: DSE [12]: Plesiochronous FIFO Synchronizer

Figure 5.2: DSE [12]: Phase Slip Detector
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5.2.2 Periodic Asynchronous Synchronizer

The Periodic Asynchronous Synchronizer [12] predicts the transmitter clock at receiver’s inter-
face and takes advantage of periodic nature of the used clocks to avoid synchronization failure.
Some type of flow control will be required due to the difference in the clock frequency. A circuit
to predict external clock is employed to “foresee” the transmitter’s clock one clock cycle of the
local clock ahead and to further generate a keep-out signal for the receiver pointer, one can see
the synchronizer’s structure in Figure 5.3. The clock predictor is based on a phase comparator,
which sets a variable delay on the transmitter clock line upon the comparison of two consecutive
clock edges of the transmitter clock. The predicted clock (pxclk) is interpreted like in a Delay-
line Synchronizer, latched with a delayed local clock and synchronized with a second stage of
latches, to let a possible metastable state decay. These two samples are then merged by an XOR
gate to form a keep-out signal, which switches between the unmodified data item and a delayed
version, i.e. it controls the multiplexer of a Two-Register Synchronizer). The interpreter has two
paths, one with a higher delay than the other to determine if the input event (predicted clock)
lies in the keep-out region of the local clock, which is indicated if the flip-flops latch different
values. If the values are different and merged by the XOR gate the keep-out signal is asserted
and the delayed data is passed.

Figure 5.3: DSE [12]: Periodic Asynchronous Synchronizer

32



5.2.3 Low-Latency Plesiochronous Data Retiming

Data retiming is a synchronizer-avoidance method presented in [15] to interface data transmis-
sion within mesochronous and plesiochronous systems. More specifically, data retiming is the
transmission of a data item from one timing domain to another. Each data item is sent within a
so-called ’cell’, that consists of an exclusion region where the data item changes or is not stable
yet and a valid region where a data or non-data item can be safely sampled. It is used in com-
munication networks as in network repeaters, parallel systems and so on, where several modules
operate with the same frequency from different sources (this removes a single point of failure).
With data retiming no handshake mechanism is required. Main focus is to keep up the one-
by-one transmission of data items between the different timing domains. In a plesiochronous
system the frequencies are nearly the same with a little deviation of ± ∆f . To avoid underruns
(when receiver clock is faster) and overflows (when transmitter clock is faster) the transmitter
sends data items at a lower rate, lower than the computation rate of the receiver. Furthermore the
items in the stream produced by the transmitter can either contain data or non-data, the receiver
distinguishes between them, and will only process data items. Thus the transmitter produces a
stream at its clock rate (filled with both data and non-data), but data items occur only at receiver
clock rate (operational rate) in the stream. The receiver (if it is faster than another module or
finished computation early) must tolerate occasional delays waiting for the next data cell. Note
that, in a communication network with several systems a transmitter must send data at the rate
of the slowest receiver. So the transmitter always presumes that its clock is the fastest and send

data at rate fd = ft
f0 −∆f
f0 +∆f

. If the sampling clock edge occurs within the exclusion region

of a cell within a mesochronous system, the transmitted signal is simply delayed by half a clock
period to get the edge to the valid region. A detection circuit is employed to detect if a sampling
edge occurs within the exclusion region, if so a multiplexer switches between the original signal
and the delayed signal.

Within a plesiochronous system the method is similar to the one from the mesochronous sys-
tem with the difference that switching between original signal and its delayed version is allowed
dynamically. The retiming circuit can be seen in Figure 5.4. To avoid missed or duplicated data
items the switching is controlled by an automaton within the transmitter timing domain. The au-
tomaton only switches between original and delayed signal after both became valid and have the
same non-data item. Since over- and undersampling only occurs when switching the input signal
only non-data items are missed or duplicated. An extensive case distinction is given in [15] that
shows the different scenarios what happens when the signal is switched (in both directions) once
with a faster transmitter and once with a faster receiver. This approach has an average latency
of three quarters a cycle time. When implementing a circuit for this method the used cell has to
be divided into four pieces, each piece is related to a transmitter clock edge, the even numbered
pieces to the rising edges and odd numbered pieces to falling edges. This is necessary to locate
the exclusion region that straddles around a transmitter clock edge and further to construct the
delayed version of the signal from the other three pieces (clock edges) and control the switching
point between the two signals. Further the exclusion regions are sampled by the receiver clock
to determine if switching is needed. These sampling outputs are sent back and synchronized
into the transmitter domain to control the automaton. Note that the used synchronizer is off the
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critical path thus has no impact on the data movement. See Figure 5.5 for a FSM diagram of the
signal switching. Further the data retiming can be used between system with frequencies that
are integral multiples of each other, such that either ft ≈ i · fr or fr ≈ i · ft, where i is an
integer, must hold (for details on necessary adaptations see [15]). Either if the receiver is faster
with additional sampling and occasionally creating a non-data cell (if sampling is not possible)
or if the transmitter is faster by reducing the send rate and occasionally inserting a non-data cell.
The achievements of this method are low latency, no synchronizers in the data path and true
unidirectional retiming/signalling, that is communication without the need of any flow control.

Figure 5.4: Low-Latency Plesichronous Data Retiming [15]: Mesochronous Retiming Circuit

Figure 5.5: Low-Latency Plesichronous Data Retiming [15]: Select Q↔ R FSM
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5.2.4 Low-Latency and Low-Overhead Plesiochronous Synchronizer

The low-latency and low-overhead plesiochronous synchronizer [7] is based on the low-latency
and low-overhead mesochronous synchronizer, see 3.2.6. But it can tolerate drifts in clock rate
(±∆f ). To cope with these drifts an additional flip-flop for the plesiochronous synchronizer is
required, thus it has four flip-flops over-head per data path. In contrast to the mesochronous
interface it employs a continuous learning phase. Thus the strobe signal is sampled not only
once after reset but continuously during operation (every cycle at the transmitter) to cope with
the dynamically changing clock relation between the transmitter and the receiver. Hence it can
also be used for mesochronous modules. The circuit is a little different from the mesochronous
interface as one can see in Figure 5.6. In [7] formulas are given to determine the maximal fre-
quency of the modules clocks.

Figure 5.6: Low-Latency and Low-Overhead Mesochronous and Plesiochronous Synchro-
nizer [7]: Plesiochronous Receiver
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CHAPTER 6
Synchronizers for Systems with

Uncorrelated Clocks

General Purpose Asynchronous Synchronizers are used to interface between clocked systems
with unrelated frequencies, and also to synchronize sporadic incoming events into a clocked
system (e.g. measurement readings from sensors).

6.1 Basic Concepts

The synchronizers discribed in this chapter use six different basic concepts. Starting with a
group that synchronizes handshake signals like requests and acknowledgements (2- or 4-phase)
between two mutually asynchronous systems. The Two Flip-Flop Synchronizer, the Robust Syn-
chronizer, the synchronizer used for Register Communication, the Fast Universal Synchronizer
and the Micropipeline belong to this group. The second concept is based on pausible, stoppable
clocking or data-driven clocking or locally delayed latching (partial pausible clocking). The syn-
chronizer in High Rate Data Synchronization in GALS, the Stoppable Clock Synchronizer, the
Asynchronous Interlocked Pipelined CMOS Circuit, the Asynchronous Wrapper for Heteroge-
neous Systems, the synchronizer from Pausible Clocking: A First Step Towards Heterogeneous
Systems, SCAFFI, the Point to Point Interconnect, the synchronizer in Interfacing Synchronous
and Asynchronous Modules Witin a Highspeed Pipeline and Using Stoppable Clocks to Safely
Interface Asynchronous and Synchronous Subsystems use the pausible clocking technique. The
Wagging Synchronizer and the BiNMOS Synchronizer use parallel paths that are alternately
written, either within a component or built from Jamb Latches, respectively (like the Three Ele-
ment FIFO Synchronizer). Some of the presented synchronizers use a FIFO as interconnect and
explicitly synchronize the write and read pointer of the FIFO to ensure that a data item is not
read before entirely written. The Asynchronous FIFO Synchronizer, the Robust Interfaces for
Mixed-Timing Systems, the Pipeline Synchronization mechanism, the Even/Odd Synchronizer,
the Four-Slot ACM and the self-timed circuit version of the four-slot ACM, and the STARI ap-
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proach (and its improvment) use FIFOs for communication. The Two-Way Adaptive Prediction
Synchronizer and the Periodic Synchronizer from A Solution to a Special Case of the Synchro-
nization Problem use a combination of clock prediction and conflict detection to generate a
keep-out signal that controls the input latches at the receiver (by either delaying its clock or
simply enabling it). The last concept forms a self-timed bus that implements handshaking and
uses arbiter and is presented as On-Chip Segmented Bus. The synchronizers of each category
are compared among each other in terms of MTBF, latency and throughput to find a prototype
for each set. In the first group of synchronizers, which use handshaking to enable safe commu-
nication, the Micropipeline as bounded delay approach is picked. In general all synchronizers
of this category are not very fast in terms of throughput, due to the FIFO structure of the Mi-
cropipeline the throughput depends on the fill level of the FIFO, but with a consistent data stream
the throughput is higher than the other solutions. The only drawback is that the Micropipeline
suffers from a high initial latency (as every other approach using FIFOs). The synchronizers of
the next category use the pausible clocking technique to interface between mutual asynchronous
systems. Among these various solutions the Point to Point GALS Interconnect is elected as pro-
totype to represent its basic concept. The Point to Point GALS Interconnect employs a classical
clock pausing mechanism using an arbiter that halts the clock (in a low phase) upon receiving a
request signal from the transmitter. A possible metastable state at this point is quietly resolved
by the arbiter. The solution from Using Stoppable Clocks to Safely Interface Asynchronous and
Synchronous Subsystems is quite similar to the Point to Point GALS Interconnect. The Point to
Point GALS Interconnect employs an infinite MTBF (due to the arbiter), and transmits a data
item per handshake (FIFO buffering). The latency of the interfaces in this category is depending
on the duration of the handshaking and thus fairly equal. Summing up the synchronizers using
plausible clocking employ quite similar characteristics, the Point to Point GALS Interconnect
is picked due to its simplicity of concept (represents the basic idea). In the category of paral-
lel staged synchronizers the Wagging Synchronizer is chosen. It employs a significantly higher
MTBF than other synchronizers, in [1] an example is given, while the Wagging Synchronizer em-
ploys a MTBF of 2.66 years at a rate of 2.5 GHz (and 511 ps resolution time) a Two Flip-Flop
Synchronizer employs a MTBF of only 49.6 mins using edge-triggered flip-flops. The BiNMOS
Synchronizer employs a MTBF of 6 · 1034 years with 3 cycles settling time at 100MHz. The
Even/Odd Synchronizer is picked as prototype for synchronizers that use a FIFO as interconnect
and synchronize the access pointers. It employs an arbitrarily small probability of synchroniza-
tion failure and a very low latency of 0.5 + x cycles in average case, where x is the keep-out
region of the registers. The throughput widely depends on the used FIFO. Since these solutions
each employs a FIFO as interconnect the throughput can be seen as equal, the more crucial fac-
tor here is the latency. In these terms the Even/Odd Synchronizer employs the lowest average
latency. From the basic concept of using collision detection the Periodic Synchronizer is taken
as prototype. Either of the solutions move the synchronization away from the data path to the
employed conflict detector. In contrast to the Two-Way Adaptive Prediction Synchronizer the
Periodic Synchronizer employs a shift register (i.e. Brute-Force Synchronizer) and thus guaran-
tees a resolution time of three clock cycles, while the former employs merely a half clock cycle
which results in a MTBF of only 1016 years at a rate of 125MHz, hence too little for modern
system using fast clocks. On the other hand the used shift register in the Periodic Synchronizer
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employs a MTBF of 10204 years using a clock rate of 200 MHz [27]. For further details on
the functionality and specifications of the chosen prototypes see the descriptions in the follow-
ing section (Micropipeline, SCAFFI, Point to Point GALS Interconnect, Wagging Synchronizer,
Even/Odd Synchronizer, Periodic Synchronizer, GRLS, Segmented Bus). Notice that the results
for the comparative parameters are gathered from the original resources (see the detailed sections
for references).
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6.2 Detailed Descriptions

6.2.1 Two Flip-Flop Synchronizer

The Two-Flip-Flop Synchronizer [27] does not synchronize the data stream, instead it synchro-
nizes request and acknowledgement signals and implements a handshake protocol. So the trans-
mitter and receiver can safely agree on one point in time to transmit a bundled data item (namely
a point where the transmitter holds new data at its output and the receiver is ready to latch it).
A block diagram of the Two Flip-Flop Synchronizer can be seen in Figure 6.1, where each
communication partner employs two flip-flops, that are clocked with its local clock, as input
interface. The Two Flip-Flop Synchronizer can be used with various principles [27]. First as
“push” synchronizer, where the request is sent from transmitter to receiver to signal that new
data is available, further as “pull” synchronizer, where the request for new data is transmitted
from receiver to transmitter, or in either way as “push-pull” synchronizer. Further it can be used
as a “control-only synchronizer”. In [27] the MTBF for the Two Flip-Flop Synchronizer is cal-
culated, based on the assumption that at an input flip-flop in a system without synchronizer that
is running at 200 MHz with new data on every tenth clock cycle 2 metastability events occur
within a millisecond. Two flip-flops in cascade enable a MTBF of 10204 years, with a third flip-
flop the conservative synchronizer is formed and increases the MTBF to 10420 years.

Figure 6.1: Two Flip-Flop Push Synchronizer [27]
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6.2.2 A Robust Synchronizer

The Robust Synchronizer in [59] uses the Jamb latch synchronizer [16] and improves it to pro-
vide a stable value of the metastability time constant τ without increasing the power consump-
tion. The Jamb latch synchronizer is simply a Brute-Force Synchronizer or Two-Flip-Flop Syn-
chronizer that uses Jamb latches. The circuit of a Jamb latch can be seen in Figure 6.2. Using
Jamb latches for a synchronizer results in a reduction of supply voltage of about 50%, which
further results in an increase of 100% of the resolution time τ [59]. The Jamb latch is extended
by two p-type load transistors (A) to maintain the current supply during metastability and by two
feedback transistors (B) to hold the state of the latch, in Figure 6.3 one can see the circuit of the
robust synchronizer. By using a metastability filter between the two nodes within the latch it is
possible that the current is only increased during metastability.

Figure 6.2: Robust Synchronizer [59]: Jamb Latch Circuit
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Figure 6.3: Robust Synchronizer [59]: Robust (Improved) Synchronizer
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6.2.3 Register-Communication Between Mutually Asynchronous Domains

In [32] a communication register is presented that supports non-blocking communication be-
tween two mutually asynchronous modules (clocked or self-timed). It is used as a wrapper
circuit around modules to enable communication between the clocked module and the asyn-
chronous bus. The write and read accesses to the register are never paused or held up, hence
data may get duplicated or lost. Note that a write access is destructive and on the other side a
read access is non-destructive. Register communication is usually used in terms of command and
status exchange, in combination with a completion indication (interrupt or status register). The
concept is based on the two-flip-flop synchronizer, but extended to support more than single-bit
communication. A formal description and verification of the functional requirements (correct-
ness and liveness) are given in [32], but omitted in this context. Since this approach supports
clocked as well as self-timed modules there are four types of communication registers, where
self-timed modules use a 4-phase handshake. The clock signals of the synchronous modules
are only used as event generators by the communication register to synchronize the handshake
signals. The ports of the communication register (write, read) are passive, thus the module or
environment connecting to a port initiates the activity (write, read) using a request signal. Each
register has data and request inputs and data and acknowledgement outputs. The data at the input
must be valid when the request is asserted. When the acknowledgement signal is asserted the
output data is valid and stable until the next rising edge of the request signal. Such a register can
be written in two different ways, which differ in the duration of validity of the input data. First
with an early-write register the input data is only valid until the acknowledgement is asserted,
on the other hand the input data of a broad-write register is valid until the acknowledgement
is de-asserted again. Within an early-write register flip-flops clocked by the request signal are
used. The broad-write register uses latches that are transparent with the request asserted. Fig-
ure 6.4 shows the communication register that can be used to interface two modules which use
a handshaking protocol. It consists of a broad-write register and an arbiter. The arbiter controls
the access to the register by arbitrating the request signals (write, read). This register guarantees
that a read value is always the latest written value.
If the communication register interconnects a module within a clocked domain with a mod-
ule within a handshaking domain there are two cases to distinguish. On the one hand there
is the case where the module within the handshake domain is the transmitter and on the other
hand where the clocked module is the transmitter. Figure 6.5 shows these two communication
registers. Both employ an ’up-edge’ component instead of the simple arbiter. The ’up-edge’
component consists of two sequential wait components, see Figure 6.6. A ’wait’ component is
either a Muller C-Element or an arbiter. Both have an enable and a request input and an ac-
knowledgement output. Note that the output of the arbiter that is related to the enable input is
ignored, and that the enable input is inverted. The first ’wait’ component within the ’up-edge’
component is provided with the inverted clock signal, used as enable input, and the second one
with the original clock signal from the clocked module. The ’up-edge’ component delays the re-
quest input within the handshake domain only for a 4-phase handshake until a rising clock edge
occurs, thus is synchronized with the clocked module. This is done by the two sequential ’wait’
components. If the input request is asserted the first wait component stalls until the clock is low,
then asserts an intermediate acknowledgement signal that is passed to the second ’wait’ compo-
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nent, which further asserts the acknowledgement output on the next rising edge of the clocking
signal. If the clock frequency is very slow the handshake response time has to be bounded. This
is done by adding another register to the interface and a repeater that involves the handshake for
the passive ports (write, read). For further details refer to [32]. Additionally [32] provides low-
power registers, here the input and output of an employed register is compared. The output of
the comparator controls a ’wait’ component between the repeater and the ’up-edge’ component.
The ’wait’ component delays the request, generated by the repeater, until the compared values
are different. For a detailed description and block diagram see [32].
The last type of communication register connects two clocked modules. This communication
register can be realized in two ways. Either with one control loop or two symmetric control
loops, where the first one supports higher clock frequencies and the second one provides a
smaller latency. Both employ two registers, the one control loop approach an early-write regis-
ter at the sender side and a broad-write register at receiver side. The solution using two control
loops employs an early-write register on either side. Further both employ each two ’up-edge’
components, to synchronize the request into clock domain of the respective side. The circuit
with one control loop employs one repeater that generates the request signal for the register of
the write port. Note that the request signal for the read register is the acknowledgement output
of the write register. The approach with two control loops employ two repeaters that generate
the request for the write and read register. The employed arbiter only passes one request into the
system at a time. The approach of using communication registers for mutually asynchronous
modules is not very fast in general in terms of throughput [32].

Figure 6.4: Register Communication [32]: Handshake-to-handshake Register
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Figure 6.5: Register Communication [32]: Basic Design

Figure 6.6: Register Communication [32]: Four-Phase Up-Edge Component
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6.2.4 Fast Universal Synchronizer

In [20] the Fast 4-Phase Synchronizer is presented, which is based on the Simple 4-Phase Syn-
chronizer, which is basically a Brute Force Synchronizer. The Simple 4-Phase Synchronizer
employs two flip-flops to sample asynchronous 4-phase handshake signals (acknowledgement
and request), see Figure 6.7. These two flip-flops enable one clock cycle for metastability resolu-
tion. To stretch resolution time for metastability additional flip-flops in row can be inserted. On
the other hand to shorten the resolution time, i.e. shorter than the duration of a half clock cycle,
a falling edge flip-flop can be employed in first place. Such an universal synchronizer (between
mutually asynchronous domains) does not take advantage of knowledge about the clock rela-
tionship, i.e. it is not optimized for a specific system. The Simple 4-Phase Synchronizer forms
the base for the Fast 4-Phase Synchronizer, which simply increases the number of used flip-flops
to extend the resolution time and further support faster clocks. A 2-phase handshake protocol
improves the synchronization data rate significantly. This requires addtional control logic, see
Figure 6.8. The time needed for metastability resolution is reduced by the delay of an XOR gate
while maintaining the same MTBF [20], compared to the Fast 4-Phase Synchronizer. The Fast
2-Phase Synchronizer operates as follows: it waits for data, whose arrival is indicated by rising
VI and SNT signal. A request is sent to the receiver (event on REQ signal), and if the preceeding
handshake is done the transmitter output registers (REGD/REGV) are enabled and will send out
data on the next rising edge of transmitter clock. When the receiver is ready to latch new data it
rises the READY signal. This generates a falling edge on the VO signal that indicates that new
data is arriving and needs to be processed. Further the REGR register is enabled latching the
incoming data (falling edge of RXE signal). The falling edge causes VO to rise again and with
the rising edge of the RXE signal (indicating that latching is finished) the acknowledgement is
sent to the transmitter (event on ACK signal). Note that the READY signal may be delayed by an
extra clock cycle due to metastability resolution. The acknowledgement disables the transmit-
ter’s output registers (REGD/REGV) and asynchronously resets request and stays disabled until
the handshake is finished (when both VI and SNT fall again). The data cycle depends largely on
the slower clock if the fast universal synchronizer is employed between mutually asynchronous
systems, i.e. two cycles from each domain with the Fast 2-Phase Synchronizer and three cycles
from each domain with the Fast 4-Phase Synchronizer. Between mesochronous systems the
minimal data cycle is four clock cycles in the worst case [20], thus a maximal throughput of 0.3
words per transmitter cycle is achievable.
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Figure 6.7: Fast Universal Synchronizer [20]: Simple Four Phase Synchronizer

Figure 6.8: Fast Universal Synchronizer [20]: Fast Two Phase Synchronizer
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6.2.5 Micropipelines

A micropipeline [53] implements a request/acknowledgement handshake mechanism using an
elastic pipeline. It forms a closed-loop control for the data stream between transmitter and re-
ceiver and uses a 2-phase handshake (transistion signalling (events), non-return-to-zero (NRZ)).
A bundled data approach is used in combination with the micropipeline where the data wires and
request signalling are treated as a bundle. In Figure 6.9 a string of Muller C-Elements employed
with inverters (in reverse signal path) and delay elements (to avoid race conditions between data
and request) forming a micropipeline with four stages and computional logic between them is
depicted. Each stage consists of a Muller C-Element with one input as request input and the
other one as acknowledgement input, latter is the inverted request of the successor stage or the
acknowledgement output of the receiver. Each request line employs a delay element that cor-
respondes to the propagation delay of the logical cloud of each stage to avoid a race between
request and data (requests should be forwarded faster than a data item). This bounded delay is
employed to match the transmission of request and data, note that the data line delay has to be
smaller than request line delay. The logic is guided by event-controlled registers in each stage,
which are controlled by the signals capture and pass. Data is latched by a register when the
capture signal is changed, the capture signal is the output of the Muller C-Element. When a
register finished latching data the capture-done signal is asserted, which is routed back to the
register of the previous stage as the pass signal which is equivalent to the acknowledgement. An
empty pipeline is indicated by all stages having the same state, within a full pipeline the states
of the stages are alternating. Initally the micropipeline is empty, all stages have the same state.
When the transmitter asserts R(in), A(1) is low (due to an empty pipeline) hence the output of the
Muller C-Element rises, propagating the request through the delay to the next stage and further
triggers the register to latch D(in). Note that each request (and data item) propagate through the
entire pipeline to the last (empty) stage. The state of A(1) changes, thus allowing the first stage
only a falling transistion of R(in). When the register has finished capturing data the capture-done
signal is asserted and the next stage activated, in the meanwhile the logic of the stage 1 processes
the new data. The procedure repeats in each stage until the receiver samples the processed data
or the pipeline is full.
The concept of the micropipeline is further reused for other functionalities. First a micropipeline
can be used with asynchronous stages forming a FIFO ring, as presented in [22]. Such a FIFO
ring can be used for clock recovery and clock generation and distribution. Further the mi-
cropipeline is used for a ripple-through FIFO that is presented in [55], that can be used to in-
terface the modules of a GALS system. FIFOs are commonly used within GALS systems in
numbers, thus seize a large part of chip area. To minimize the chip area used by the interfacing
FIFOs the design is changed from using SRAM stages to an asynchronous micropipeline [53].
Thus each stage employs a latch for exactly one data item and a control circuit.
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Figure 6.9: Micropipeline [53]: Structure
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6.2.6 High Rate Data Synchronization in GALS SoCs

A clock stretching approach for a synchronizer used for a GALS system is presented in [18]. The
presented synchronizer uses locally delayed latching (LDL) to interface mutually asynchronous
modules within a GALS system. In contrast to other synchronizers used within GALS system
this LDL approach does not require pausible clocking for the entire module (restricted to a single
input latch only). This eliminates the potential threat of failure caused by delays from the clock
distribution network in systems that uses pausible clocking [18]. One can see in Figure 6.10 that
a LDL input port synchronizer employs an asynchronous controller that controls the input port
latch and how the high phase of the local clock of the locally synchronous module is shortened.
In the LDL approach the clock is not paused but the rising edge is delayed (note that the falling
edge is unaffected by the delay). The rising clock is thus “moved” in case a conflict between
an incoming request and a rising edge is imminent, the conflict detection is done by a mutual
exclusion element within the asynchronous controller. To maintain a sufficient amount of time
for metastable state to resolve, even if the edge gets moved, the controller must assure a high
phase that is long enough to clock the registers in the module. In [18] a high phase of 43 gate
delays (FO-4 inverters) and a period time of T = 100τ (where 10−11 < τ < 10−10 seconds)
for a MTBF of 104 years is the minimum length (too short for modern systems), hence at least
one half of a symmetric clock cycle should be intended for resolution.
Three possible implementations are shown in [18]. First the ’Decoupled Input Port’, shown in
Figure 6.11 synchronizes an asynchronous incoming request. The incoming request is forwarded
to the Muller C-Element and as soon as the previous transmitted data is processed (valid signal
is low) the request asserts the mutual exclusion element input to delay the rising edge of the local
clock. This is possible because the clock forms the second input to the mutual exclusion element.
If the request wins an imminent conflict it is forwarded/looped back to the asynchronous input
control and directed through the latch-matched delay. After the delay a signal is asserted that
activates the latch (gather new data) and sets the valid signal. The valid signal is used to signal
that a new data item has arrived and thus prevents write-after-read hazards. Then an acknowl-
edgement is generated and sent back to the sender, which in turn de-asserts the request. This
leads the Muller C-Element output to fall and the clock is forwarded to the register in the mod-
ule to sample new data from the latch. As second implementation a ’Decoupled Output Port’ is
presented. A detailed block diagram of the circuit is given in [18], the difference to the ’Decou-
pled Input Port’ is that instead of the incoming request an incoming acknowledgement must be
synchronized. The last implementation variant is a simplification of the ’Decoupled Input Port’.
It removes the asynchronous input control and moves the delay element to the acknowledgement
ouput. Further the input request is directly connected to the Muller C-Element. The ’Simple In-
put Port’ is depicted in Figure 6.12. Further details on simulation results and verification results
are given in [18], as well as a comparison to classical GALS interfacing solutions.
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Figure 6.10: High Rate Data Synchronization in GALS SoCs [18]: LDL Circuit
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Figure 6.11: High Rate Data Synchronization in GALS SoCs [18]: GALS decoupled input port
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Figure 6.12: High Rate Data Synchronization in GALS SoCs [18]: Simple input port
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6.2.7 Module with Stoppable Clocks

A Module with Stoppable Clocks is presented in [12] and is shown in Figure 6.13. On the arrival
of a new asynchronous event a clock signal is generated and stopped while waiting for the next
event, this is called data-driven clocking. The module using such a mechanism is clocked, only
the used interface is asynchronous. This eliminates the synchronization delay and probability of
synchronization failure. A data transmission starts with a request (rin) that is sent bundled with
the input data to the receiver’s interface. The asynchronous state machine (ASM) asserts the
go signal enabling the latch to sample new data at the input (datain). Further the rise of the go
signal causes the circuit (a ring oscillator) to generate the stoppable clock. The done signal is de-
asserted to continue the operation for another clock cycle. Additionally the acknowledgement
for the transmitter is sent (rising ain), thus the transmitter de-asserts the request (rin falls). After
the input is sampled and the computation finished the done signal rises again causing the go
signal to fall, which further stops the clock signal. Note that the delay of stopping the clock
signal has to be shorter than the delay of the delay-element in order to avoid glitches on the
clock line. The request signal (rout) for the receiver module is now asserted to signal new data
at the output (dataout), which causes the acknowledgement signal (ain) for the transmitter to fall
again. From this point the transmitter is allowed to initate a new data transmission (assert rin).
Note that if a new request is sent to the receiver after a data transmission, the go signal is delayed
as long as the request (rout) for the receiver has not be acknowledged (rising aout). Thus the
data transmission is finished with an acknowledgement from the receiver module. Further notice
that the request signal for the receiver (rout) and the acknowledgement signal for the transmitter
(ain) has to be explicitly synchronized to the local timing, respectively, to avoid metastable states
at these inputs (e.g. a Brute-Force Synchronizer may be used).

Figure 6.13: Stoppable Clock Synchronizer [12]
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6.2.8 Asynchronous Interlocked Pipelined CMOS Circuits

The interlocked pipelined CMOS (IP CMOS) approach [44] is a further solution for an asyn-
chronous, data-driven clocking technique. Each module that is interlocked uses an acknowl-
edgement input and data and valid output to send data. A strobe circuit (see Figure 6.15 and
further 6.16) is an input control circuit that is used to generate a clock-enable signal such that a
data-driven clock is generated only upon receiving new data (closing the switch). In particular
after a strobe was generated all valid signal inputs are low, as well as the clock-enable output
(see Figure 6.14), when the first valid signal input rises the clock-enable output rises too, and
falls again when all risen valid signal inputs have fallen again. Note that the clock generation
is done in the module (receiver) and is not further mentioned in [44]. The acknowledgement
signal rises with the valid signal input and falls again upon the rising edge of the clock-enable
output. The generated clock is delayed due to the used handshaking mechanism, but running
at 4.5 GHz in best-case conditions (3.3 GHz under typical conditions). For further details on
measurement results refer to [44].

Figure 6.14: Asynchronous Interlocked Pipelined CMOS Circuits [44]: Strobe circuit unique
“AND” function
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Figure 6.15: Asynchronous Interlocked Pipelined CMOS Circuits [44]: Local clock strobe
circuit

Figure 6.16: Asynchronous Interlocked Pipelined CMOS Circuits [44]: Strobe circuit switch
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6.2.9 Asynchronous Wrapper for Heterogeneous Systems

An asynchronous wrapper is presented in [4] that provides an asynchronous interface to a locally
synchronous module. This input and output interface is wrapped around a locally synchronous
module within a GALS system. The wrapper uses an asynchronous finite state machine (AFSM)
to do the handshaking, which further pauses or stretches the local clock of the synchronous mod-
ule. This asynchronous handshake circuit (AFSM) is built up by using Extended-Burst-Mode
specifications, for further details on these see [57]. In contrast to the original GALS implementa-
tion this approach requires only one clock period to complete a full 4-phase handshake due to its
used AFSM. This enables a data exchange every clock cycle. Each locally synchronous module
uses its own variable-length stretchable clock, independent from other modules in the system.
Figure 6.17 shows a locally synchronous module surrounded by an asynchronous wrapper. As
one can see the wrapper provides an input port, an ouput port and a stretchable clock circuit to
the module (see Figure 6.18). Each port has a request, acknowledgement and data line. The
request and acknowledgement lines are used to perform a 4-phase bundled data handshaking for
each data item entering or leaving the module. The port module generates a stretch signal to sig-
nal that new data is provided to the module and the handshake is not completed now. The stretch
signal also causes the stretchable clock circuit to pause the local clock and thus synchronizing
the asynchronous data, until the handshake is done. In particular the next rising edge of the local
clock is prevented as long as the stretch signal is asserted. [4] provides detailed specifications
of active and passive input and ouput ports. As in every other bundled data approach that uses
pausible clocking the value of used delay element that stretches the clock has to be consistently
higher than the worst case delay of the combinational logic within the synchronous module.
In [4] the clock buffer delay (realized through inverter chain) is about at least 10 inverter delays
for 32 internal registers. This number grows approximately proportional to the natural logarithm
of the number of loads. Due to the use of stretchable clocks the MTBF in terms of metastability
grows to infinity [4]. A further advantage of this approach is that the module stops the clock after
computation has finished and sleeps until new data arrives. The asynchronous wrapper however
suffers from the same problems as every approach that uses pausible clocks, namely the fact that
with each request the clock is paused. With several inputs from different modules and “bad”
timing the computation is badly delayed.
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Figure 6.17: Asynchronous Wrapper for Heterogeneous Systems [4]: Locally Synchronous
Module with Asynchronous Wrapper

Figure 6.18: Asynchronous Wrapper for Heterogeneous Systems [4]: Stretchable Clock Circuit
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6.2.10 Pausible Clocking: A First Step Toward Heterogeneous Systems

Another approach that uses pausible clocking mechanism for communication between differ-
ently clocked modules is presented in [58]. The modules communicate via an asynchronous
FIFO. Further a module uses a 2-phase handshaking protocol to interact with its FIFO. Each
module employs a pausible clocking control (PCC) unit as interface to a FIFO. A detailed cir-
cuit schematic of the PCC unit is given in [58]. The PCC unit adjusts the local clock to avoid
synchronization failure by using a mutual exclusion element, which arbitrates between an in-
coming request from the FIFO and the local clock generated by a ring oscillator. Note that the
used ring oscillator [58] limits the maximum frequency of the local clock to 22MHz. We know
from [40] that mutual exclusion elements become metastable in case that both inputs are asserted
at nearly the same time. In this case the mutual exclusion element needs an arbitrary amount of
time to decide on one input, once decided the PPC either immediately pauses the local clock or
stalls the incoming request for another half cycle. So there is no malicious behaviour in case of
metastability, except for the indefinite delay. Figure 6.19 shows a block diagram of a receiver
PCC unit for one-way communication. One sees the request Rp from the FIFO is provided to
the asynchronous FSM, that converts the 2-phase handshake request to a 4-phase signal. The
AFSM provides the request to the mutual exclusion element. When the request input is selected
by the mutual exclusion element it generates a grant signal which is looped back to the AFSM.
The AFSM de-asserts the request output after having seen the rising edge at the grant signal.
Furthermore the grant signal triggers the generation of the synchronized request (SRp) that is
forwarded to the FSM (synchronous), which generates the acknowledgement for the transmitter
(Ap). The grant signal is converted from a 4-phase to a 2-phase protocol signal. The local clock
that is generated by the ring oscillator is provided to the other input of the mutual exclusion
element. It is paused or stretched if the mutual exclusion element has chosen the request input.
In the bidirectional version of the PCC unit (see Figure 6.20) the FSM and AFSM are doubled,
one as input and one as output interface to a FIFO. The input and output interface are switched
by an additional arbiter between the AFSM and the mutual exclusion element. This approach
allows the mixture of asynchronous and synchronous modules within a system and proposes to
use the communication mechanism in a ring configuration to keep the system simple.

Figure 6.19: Pausible Clocking - A First Step Toward Heterogeneous Systems [58]: Receiver
PCC for unidirectional communication
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Figure 6.20: Pausible Clocking - A First Step Toward Heterogeneous Systems [58]: Receiver
PCC for bidirectional communication

6.2.11 SCAFFI: An Intrachip FPGA Asynchronous Interface Based on Hard
Macros

The Stretchable Clock Asynchronous Flexible FPGA Interface, SCAFFI [41], is an approach
of an asynchronous interconnect between differently clocked modules that is based on pausi-
ble clocking. SCAFFI does not use an arbiter like other solutions and thus circumvents pos-
sible metastabilities caused by the employed mutual exclusion element and involved indefinite
delays. On the other hand SCAFFI creates problems with metastabilities by using Muller C-
Elements [40]. Further the interface can stretch the clock using both logical levels. In the basic
architecture it supports bundled data communication using a 4-phase handshake between the
transmitter and the receiver. Between the data production block of the transmitter and its out-
put port as well as between the data consumption and the input port of the receiver a 2-phase
handshake is used. The structure of SCAFFI is depicted in Figure 6.21. Further in Figure 6.22
one can see a detailed circuit of the stretcher module. The circuit employs two feedback loops
which are switched by a multiplexer controlled by the input request. If a request is asserted the
current value of the clock signal is kept (blocked by the Muller C-Element), else the clock is
generated by the lower loop (and its inverter). The blocking Muller C-Element allows stretching
of the clock at any logical level. An acknowledgement is generated after a delay that is longer
than the delay of the multiplexer and the Muller C-Element combined. The delay D3 controls
the frequencies (duty cycle) of the pausible clock. To prevent possible glitches at the output of
the multiplexer from propagating to the clock output the delay element D2 is inserted.
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In operation the data production of the sender asserts a synchronous request to signal the
output port (of the transmitter) that it has new data available for the receiver. The output port as-
serts the request line of the stretcher and thus pauses the clock. Upon the acknowledgement from
the stretcher the output port generates an asynchronous request for the input port of the receiver.
This asynchronous request is forwarded to the stretcher of the receiver, thus the clock of the
receiver is paused. A synchronous request is placed on the data consumption of the receiver, but
since the clock is paused it cannot gather data immediately. Next an asynchronous acknowledge-
ment is sent to the transmitter and further the clock of the receiver is released, hence the receiver
samples the new data on deassertion of the acknowledgement from the stretcher. On reception of
the acknowledgement from the receiver the request input of the stretcher is deasserted and thus
its acknowledgement output. From this the synchronous acknowledgement for the data produc-
tion is generated signalling that data transmission is completed. Note that the transmitter’s clock
is paused more than twice as long as the receiver’s clock. The bundled data approach is only
used if short-range connections are employed, for long wire interconnections SCAFFI is used as
a point-to-point delay-insensitive interface implementing dual-rail data lines. Figure 6.23 shows
the concept of the dual-rail SCAFFI. The dual-rail SCAFFI employs two addtional modules a
single-to-dual-rail converter at the sender and a dual-to-single-rail converter and validity detec-
tion (XOR gate) at the receiver. Note that the Muller C-Element forms the asynchronous request.
With these extensions SCAFFI can be used to create an interface between synchronous and dual-
rail quasi-delay-insensitive modules. In summary, SCAFFI employs 4 times the throughput of
a series of 2-phase handshake flip-flops with a transmitter clocked at 50MHz and a receiver at
78MHz a throughput of 31 MegaWords/s is achieved.

Figure 6.21: SCAFFI [41]: Structure of SCAFFI, including transmitter and receiver sides of the
interface
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Figure 6.22: SCAFFI [41]: Structure of the Stretcher

Figure 6.23: SCAFFI [41]: Dual Rail SCAFFI for long distance between transmitter and re-
ceiver (stretchers omitted for clarity)
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6.2.12 Point to Point GALS Interconnect

The point to point GALS interconnect presented in [37] is basically a combination of a clock
pausing mechanism, a self-calibrating delay line and an asynchronous interconnect using a 2-
phase signalling technique. Since the interconnect is asynchronous it can be placed between
independently clocked domains and enables communication between asynchronous and syn-
chronous modules. [37] provides two circuits, a synchronous receiver and a synchronous trans-
mitter, to receive and send asynchronous data, respectively. The synchronous receiver (see Fig-
ure 6.24) employs a looped (clock) oscillatory process, that is looped through an arbiter and
paused if the clock input is currently low and a request is incoming (connected to other port of
the arbiter). When the arbiter grants access for the request it activates the first latch to sample
new data, and further signals that request is received, thus the request is dropped (XOR gate is
deactivated) which unpauses the clock (arbiter grants access to the clock input). If the clock
falls (arbiter input goes high) simultaneously to the rising request signal the arbiter may become
metastable. This is safe since the arbiter does not propagate request or generate clock until
metastability has resolved, but the decision making may take an arbitrary amount of time. When
the clock is running again and data is latched in the system the request signal is synchronized
and used as acknowledgement for the transmitter. The second provided circuit forms the syn-
chronous transmitter (see Figure 6.25), it uses a pausible clocking mechanism as the receiver.
For data transmission it requires a control signal from the (asynchronous) receiver that shows
whether the receiver is ready to receive new data. This is done by an acknowledgement signal,
that is generated as response to the request signal from the transmitter, showing that new data
is ready. The acknowledgement signal pauses the clock at the transmitter and further de-asserts
the request signal and initiates the transmission of new data. After enabling the latches the ac-
knowledgement is looped back (ACK received), which releases the arbiter and further unpauses
the clock. For both modules the clock generating delay is matched to the worst case path of
the combinational logic within the system (GALS module). Using only these modules limits
the bandwidth to only one data item per clock cycle at maximum. The average bandwidth is
even worse, the synchronous transmitter has to wait at least one cycle between sending data and
receiving the corresponding synchronized acknowledgement. To circumvent this bottleneck the
channel communication is enhanced with buffering, in particular an asynchronous FIFO, which
decouples the path of the request signal to the synchronized acknowledgement signal and al-
lows the transmitter to send a data item every clock cycle, see Figure 6.26. The buffering FIFO
shows that a data element is empty by a consumed signal which is used as acknowledgement for
the transmitter. If the FIFO is full, no consumed signal will be sent to the transmitter, thus no
acknowledgement arrives and the transmitter clock is paused. The synchronizer module can be
extended to interface more than one input or output, therefore for each interface an additional
arbiter is required, all the parallel used arbiters of the interface are merged by an AND gate. A
simulation in [37] shows that a FIFO with more than two slots does not improve performance
further. To provide the modules with a sleep mode extension an additional arbiter is required
that permits the clock to be paused.
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Figure 6.24: Point to Point GALS [37]: Interface between an asynchronous transmitter and a
synchronous receiver
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Figure 6.25: Point to Point GALS [37]: Interface between a synchronous transmitter and an
asynchronous receiver

Figure 6.26: Point to Point GALS [37]: Channel communication with FIFO buffering
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6.2.13 Interfacing Synchronous and Asynchronous Modules within a Highspeed
Pipeline

A method to interface synchronous as well as asynchronous modules with a highspeed syn-
chronous pipeline is shown in [50]. In opposite to a typical GALS system it combines a globally
synchronous pipeline with locally asynchronous modules. This is done by using a synchronously
stoppable clock signal generated by a ring oscillator. Additionally the clock signal is used as
handshake signal for controlling the asynchronous modules. In contrast to typical GALS inter-
facing solutions the proposed pipeline interface does not need a mutual exclusion element for
clock generation due to the assumption that the pipeline determines when to move data to an
asynchronous module and thus the transmission is synchronized to the internal clock. Hence
data is moved every clock cycle into and from an asynchronous module. The pipeline employs
an interface controller that generates the stoppable clock as well as the handshake signal for the
asynchronous modules. Therefore the interface controller employs a stoppable clock generator
and a handshake controller module. Figure 6.27 shows the asynchronous-synchronous interface
controller. The interface controller generates a rising clock edge and then de-asserts the run sig-
nal. When all asynchronous modules finished the handshake procedure, the run signal is asserted
again. Note that the run signal needs to be explicitly synchronized to the interface controller
clock, otherwise bad timing can cause metastability in the synchronous interface controller. The
handshake controller circuit is shown in Figure 6.29. The interface controller employs one hand-
shake controller for each asynchronous module to generate the request signal for them. Further
it generates the run signal for the stoppable clock generator. The request signal is generated on
reset or falling edge of the acknowledgement from asynchronous module. During low phase
of the request signal the asynchronous logic is precharged (domino dual-rail logic) and thus re-
sults from previous computations are removed. The request signal is de-asserted when clock
and acknowledgement signals from the asynchronous module are high. A state holding inverter
loop is used to keep the request signal during low phases of the running clock. So the hand-
shake controller is used to generate a 4-phase handshake from the stoppable clock signal, the
request signal is asserted to signal that new data is available and the acknowledgement signal to
signal that the computation is finished and data lies ready at the output. The acknowledgement
signals of all employed handshake controllers are merged into an AND gate and forwarded as
run signal to the stoppable clock generator. The circuit of the stoppable clock generator is de-
picted in Figure 6.28. It employs a state-holding gate to save the state of the clock in case of the
run signal is de-asserted from one of the handshake controllers. An inverter chain is employed
whose length matches the time of the worst case computation path of the slowest synchronous
module to generate a clock signal that is suitable for the system. After the acknowledgement
falls, thus the precharge is completed data is forwarded on the rising edge of the clock signal. To
compensate the large control overhead the delay between the de-assertion of the acknowledge-
ment signal to that of the run signal is covered by the computation. Further the time between
the assertion of acknowledgement and that of the run signal can be masked by adding another
pipeline register to cover the delay with the precharge delay. The additional register is needed to
preserve the computation results, recall that during the precharge phase all results get lost. A lot
of measurements was done on the technique, for results see [50].
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Figure 6.27: Interfacing Synchronous and Asynchronous Modules within a Highspeed
Pipeline [50]: Interface Structure

Figure 6.28: Interfacing Synchronous and Asynchronous Modules within a Highspeed
Pipeline [50]: Basic Stoppable Ring Oscillator Clock Circuit
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Figure 6.29: Interfacing Synchronous and Asynchronous Modules within a Highspeed
Pipeline [50]: Handshake Control Circuit
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6.2.14 Using Stoppable Clocks to Safely Interface Asynchronous and
Synchronous Subsystems

A Simple Clock Stretching Circuit that is used to safely interface asynchronous and synchronous
systems is presented in [38] and can be seen in Figure 6.30. It is used in combination with a
bundled data approach and is employed at the receiver side. Instead of resolving metastability it
is prevented by stretching the clock, this is achieved by a digital delay line. A 4-phase handshake
is used on the one hand to signal that new data is available and on the other hand that data is
latched. The stretching circuit employs two data latches and a digital delay line that is looped
through an arbiter to generate the pausible clock. Besides the pausible clock line a request
input line is an input to the arbiter. When the request input rises and clock is low data will be
latched by the first register, thus the request enables the first latch directly (data must be stable
when request is asserted). As long as the request is asserted the clock is paused. Once the
arbiter grants access to the pausible clock line data is moved forward, which will generate the
acknowledgement for the transmitter. Once a request is de-asserted the clock starts again and the
second register latches the data and forwards it to the combinational logic of the receiver. The
performance of the receiver is reduced due to this arbitration process. Thus the minimum latency
on data latching is one half clock cycle, if a data request arrives slightly after the clock goes low.
On the other hand the maximum latency of the interface is one full clock cycle, if a request
arrives slightly after the clock rises. In [38] there are some improvements to the basic stretching
circuit, first of all the clock prediction circuit that predicts when the next rising clock edge occurs
and starts arbitration early to give the synchronous system (receiver) a higher priority. It uses the
inverted clock to lock out the asynchronous system (transmitter). There are two possible ways to
use the interface for more than one input, first by serializing the data from different transmitters,
thus the transmitters have to take turns and second adding arbiters for each additional input. By
serializing the data input the latency of the interface is increased. As previously mentioned it
is possible to receive data from more than one transmitter by adding arbiters per input. This
is realized by the parallel clock pause circuit (see Figure 6.31) that consists of a number of
arbiters, one for each input. Each arbiter switches between request input and the inverted clock,
outputting either an acknowledgement for the transmitter or producing a clock-allowed signal
when all requests are low, respectively. The inverted clock locks the arbitration process at each
input and is merged by an AND gate to result in a clock-allowed signal. When clock is high, the
inverted clock releases the arbiter and data can be forwarded to the system. The timing of this
window can be adjusted by the variable delay to converge as near as possible to the rising edge
of the receiver clock. The clock-allowed signal is the merged product (by AND gates) of all
inverted clock signals, and prevents operation in presence of metastability. Further each of these
input interfaces requires a decoupler circuit that guarantuees that the input locks on its arbiter for
the minimum time that is required by the receiver to latch data and thus ensure correct operation.
The decoupler circuit, see Figure 6.32, operates as follows, when a new-data indication signal
arrives, a request is generated and sent to the clock pause circuit (see Figure 6.31) which respond
with an acknowledgement when it is safe to forward new data. The acknowledgement sets the
RS-flip-flop which further generates an enable signal that controls the data latches. When data is
consumed, i.e. clock is rising and acknowledgement is still high the enable signal is de-asserted
and a consumed signal is generated. The consumed signal is forwarded to the transmitter and
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allows it to de-assert the new-data signal. A simulation in [38] shows that there is sufficient time
between clock going low and new data signal rising such that the arbiters does not go metastable.
Note that the enable signal of the data latches forms the most critical delay.

Figure 6.30: Using Stoppable Clocks to Safely Interface Asynchronous and Synchronous Sub-
systems [38]: Simple Clock Stretching Circuit
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Figure 6.31: Using Stoppable Clocks to Safely Interface Asynchronous and Synchronous Sub-
systems [38]: Parallel Clock Pause Circuit

Figure 6.32: Using Stoppable Clocks to Safely Interface Asynchronous and Synchronous Sub-
systems [38]: Decoupler Circuit
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6.2.15 A Synchronizer Design Based on Wagging

The wagging synchronizer is proposed in [1]. This synchronizer uses an extended version of
dual-edge triggered D-flip flops (DETFF) whose operation is based on wagging. The DETFF
consists of two latches each with an input gate and an output gate. In the wagging synchronizer
the DETFF is extended by a third latch. Furthermore the input and output stage of the latches
are clocked by two different clock signals based on the same clock signal but different in phase
(same duty-cycle). For the entire wagging synchronizer the clock signal is used with three
different phases (see signals clk0, clk1 and clk2 in Figure 6.33). The circuit of the wagging
synchronizer can be seen in Figure 6.34. The upper latch (latch0) samples the input on an edge
of clk0 and the lower latch (latch2) outputs the value (on the same edge). In this time segment
the latch in the middle (latch1) holds the current value to let a possible metastable state decay.
Next, on an edge of clk1 the latch in the middle outputs the value and the lower latch samples
a new one, while the upper latch holds its value for metastability resolution. An edge of clk2
triggers the upper latch to output its value and the latch in middle to sample a new one. The
lower latch holds its value to recover from metastability. From this point onward the procedure
repeats again. The wagging synchronizer is compared to two 2-flip flop synchronizers in [1] in
detail, it exceeds them in MTBF and latency and area. The MTBF is calculated for a system
using a 2.5 GHz system clock and is about 2.66 years, with a latency of 511ps for a resolution
time of 40τ , where τ is the resolution time and τ = 10.66ps. Further is employs a throughput
as the Two-Flip-Flop Synchronizer of one word per cycle.

Figure 6.33: A Synchronizer Based on Wagging [1]: Signals of Wagging Synchronizer Opera-
tion
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Figure 6.34: A Synchronizer Based on Wagging [1]: Wagging Synchronizer Flip-Flop
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6.2.16 A Fast Resolving BiNMOS Synchronizer for Parallel Processor
Interconnect

The BiNMOS metastability resolving synchronizer is presented in [31]. This synchronizer en-
ables communication between two synchronous systems with unknown phase and frequency
relationship, thus the interconnected systems are truly asynchronous in respect to each other.
The BiNMOS synchronizer is built up as parallel staged synchronizer. Metastable immune cir-
cuitry is omitted in its structure, because this usually does not accelerate the output of a stable
value nor enhances the settling time of the synchronizer. The parallel staged BiNMOS synchro-
nizer is shown in Figure 6.35. It employs three Jamb latches and a multiplexer. The Jamb latch
is a cross-coupled inverter latch and its schematic can be seen in Figure 6.36. Each Jamb latch
is alternately enabled, thus only one is enabled at a time to latch incoming data. A ring counter
generates a special enable signal for each synchronizer stage (Jamb latch), which on the one
hand enables a latch to sample data and on the other controls the multiplexer and connects the
output to the following latch and forwards the previously latched data. The benefit of paralleliza-
tion of the synchronizer stages is that there is only one latch in the data path at a time, thus high
throughput, and the settling time is enhanced without reducing the sampling rate. The Figure
shows three synchronizer stages but it can be extended and with each additional stage the MTBF
increases. The benefit of using Jamb latches is the reduced RC loading in the synchronizer and
the resulting optimization of the gain-bandwidth product [31]. This behaviour results from the
structure and operation principle of the Jamb latch. Note that the Jamb latch switches by over-
powering an NMOS that uses a bipolar emitter follower, from there originates the name of the
synchronizer ’BiNMOS’. In [31] an extensive testing is done and a table with MTBF results for
different parameters (settling time and clock frequency) is given. The BiNMOS synchronizer
provides a settling time of 8.5 ns at a clock frequency of 200MHz and exponential time con-
stant of the decay rate of metastability τ of around 70 ps (simulated results, a table is given
in [31]).
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Figure 6.35: BiNMOS Synchronizer [31]: Parallel Synchronizer Stages
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Figure 6.36: BiNMOS Synchronizer [31]: Basic Jamb Latch
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6.2.17 Asynchronous FIFO Synchronizer

The Asynchronous FIFO Synchronizer [12] [28] can be seen in Figure 6.37. A FIFO is used to
synchronize the data stream by explicitly synchronizing the transmitter and receiver pointer to
generate a signalization for a full or empty FIFO. The data is shifted into the FIFO according to
the transmitter clock and consumed with receiver clock, employing a latency of 3−6 cycles [17]
and a throughput of one data word per cycle [17]. A flow control is implicitly implemented via
the full and empty signalization of the FIFO. As synchronizer for the pointers, a two-flip-flop or
conservative synchronizer as outlined in the previous section can be used.

Figure 6.37: Asynchronous FIFO Synchronizer [12]

6.2.18 Robust Interfaces for Mixed-Timing Systems

Another approach using FIFOs as interfacing solution is presented in [10]. Four ’mixed-timing’
FIFOs are presented, first one interfaces between synchronous (clocked) modules with arbitrary
clock frequencies, second one between asynchronous (self-timed) modules and the last two FI-
FOs either synchronize the communication from a synchronous to an asynchronous module or
vice versa. Each FIFO consists of a variable number of cells that are circular arranged, each
cell further consists of a get interface (receiver side), a put interface (transmitter side), a register
(part of get and put interface) for data latching and a data validity controller. Due to this modular
structure of the mixed-timing FIFO approach, the different variations are easily accomplished by
freely combining the put and get interfaces. Note that the validity controller needs a special im-
plementation for each of the interface types. In the synchronous version of the FIFO the put/get
interfaces employ a full/empty detector, respectively, that monitors the current state of the FIFO
(cells). Additionally a put/get controller regulates the access to the FIFO according to the state
of the FIFO (full/empty). These two function blocks are not required within the asynchronous
version. The asynchronous interfaces use a 4-phase communication protocol in combination
with a single-rail bundled data approach. In both cases data transmission is initiated by a request
either from the transmitter (put request) or the receiver (get request). In the synchronous version
the request is blocked if the FIFO is full/empty by the put/get controller. In the asynchronous
case the acknowledgement for the handshake is simply held back if the FIFO is full or empty.
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Once a data item is placed in a cell of the FIFO it does not change the spot until it is removed
from the FIFO.
In Figure 6.38 one sees the implementation of the mixed-clock FIFO, that interfaces two syn-
chronous modules. The cell that is next to be written or read is identified by a put or get token,
respectively. The tokens are passed to the left cell after an operation. In the mixed-clock FIFO
the data validity controller consists of a SR-Latch that is set when a data item is written to the
cell (a put token is received and the interface is enabled) and reset when a data item is read (a get
token is forwarded and the interface enabled). The control signals (full/empty) of the FIFO have
to be synchronized to the respectively domain to assure that a changing cell state is not falsely
read. Simple two flip-flop synchronizers are used in combination with a modified definition of
the cell states (full/empty). So ’full’ is asserted when there are either zero or one empty cells
left. To avoid deadlocks in the FIFO and assure robustness the definition of the ’empty’ signal
is split into two signals the so-called “new empty” that is asserted when there either non or one
cell is filled and the ’true empty’ that shows that no full cells are left. Both employed signals
are synchronized into the receiver domain and merged with an AND gate into a global empty
signal. Still it is possible that the control signals become metastable and are read incorrect. The
metastabilities can only occur when changing from “full”/“empty” to “not full”/“not empty”,
thus in case of a wrong control signal an interface is stalled for one clock cycle in worst case.
The latency of the mixed-clock FIFO is minimum Lmin = 0.5 Tput + 2.5 Tget and maximum
Lmax = 0.5 Tput + 3 Tget, where Tput is the period time of the transmitter clock and Tget the
period time of the receiver clock. This depends on the synchronizers used to synchronizes the
control signals. The mixed-clock FIFO can be extended by a frequency comparator to easily
shortcut the synchronizer if both clocks (receiver and transmitter) are equal. This is called a
dual-mode FIFO and reduces the latency to one clock cycle. The FIFO that interfaces two asyn-
chronous (self-timed) systems simply consists of two asymmetric Muller C-Element for token
control and a register for latching data items.
Figure 6.39 shows the FIFO (asynchronous to asynchronous). The cell on the right passes the
token by asserting a write enable signal. The put token is merged with the put request and valid
signal into the Muller C-Element and form the write enable signal for the next cell on the left.
For an asymmetric Muller C-Element all inputs must be asserted to assert the output but not
every input has to be de-asserted to de-assert the output (only designated inputs are required).
For the Muller C-Element of the put interface the valid signal input may not be low to de-assert
the output. In the get interface the read enable is generated as output of the asymmetric Muller
C-Element upon asserted request signal, valid signal and read acknowledgement signal from the
register. With the assertion of the read enable signal the get token is passed. The data validity
controller generates the valid signal from the write and read enable signals.
For the mixed asynchronous-synchronous FIFO: the put and get interfaces from above can be
reused, only a new data validity controller that indicates when a cell contains a data item is
required. The STG specifications of the data validity controller for asynchronous-synchronous
and synchronous-asynchronous FIFOs can be found in [10]. In summary, the throughput is de-
creased to two data items in three cycles due to the constraints on the empty and full cell, the
basic interface moves a data item every cycle, further a table with simulation results is given
in [10]. The latency can be calculated by the given formulas and further a table with simulation
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results is given in [10]. To get a sufficient value for the MTBF (at the FIFO control signals) for
fast clock speeds more latches are necessary.

Figure 6.38: Robust Interfaces for Mixed-Timing Systems [10]: Mixed-Clocked FIFO cell
implementation
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Figure 6.39: Robust Interfaces for Mixed-Timing Systems [10]: Asynchronous-asynchronous
FIFO cell implementation
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6.2.19 Pipeline Synchronization

The pipeline synchronization mechanism [47] is a solution to interface asynchronous signal
into synchronous systems or two synchronous modules running two mutually different clock
frequencies. It can be implemented as 2-phase or 4-phase handshake protocol both using bun-
dled data approach. In Figure 6.40 one can see the structure of the pipeline synchronizer. It
employs k stages, each consisting of a 2- or 4-phase protocol FIFO and an asymmetric or sym-
metric synchronizer element, respectively. A 2-phase FIFO behaves as follows: it waits for an
incoming request, then concurrently generates an outgoing request for the successor stage and
an acknowledgement for the stage that sent the original request and then waits for the acknowl-
edgement from the successor stage to arrive. The request input of each stage is synchronized by
a symmetrical mutual exclusion element to the clock input (ϕ(k−1)mod 2). Note that the clock
inputs ϕ0 and ϕ1 (ϕ(k−1)mod 2) are 2-phase non-overlapping clocks [47]. In [47] a CMOS
circuit is provided for the symmetric synchronizer. In a pipeline synchronizer the data stream
synchronization is done along with the data flow to decrease the probability of synchronization
failure exponentially with the number of pipeline stages. A correctness proof is given for this
in [47]. For further details on the 4-phase version of the pipeline synchronizer see [47]. The
design was implemented and tested with a measurement result of a latency of four clock cycles
when using an 8-stages pipeline synchronizer resulting in a probability of metastability failure
of less than 10−53. The throughput of the design is throttled by the synchronous side to one
word per cycle.

Figure 6.40: Pipeline Synchronization [47]: Pipeline Synchronizer with asynchronous input
and synchronous output
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6.2.20 The Even/Odd Synchronizer

The Even/Odd synchronizer [13] represents a synchronizer for periodic or heterochronous tim-
ing domains. In such a timing domain the transmitter and receiver clock are totally unrelated,
there are no constraints on the used clock frequency other than it must be constant. The ba-
sic idea of the Even/Odd synchronizer is that the transmitter writes alternately to two registers.
During even clock cycles it writes to the ’E’ register and during odd cycles to the ’O’ register
(see Figure 6.41), the alternate write access is realized by an even-enable signal. At the receiver
domain a selection signal that controls the multiplexer which selects between the ’E’ or ’O’ reg-
ister is generated based upon the phase estimation of the transmitter clock (signal p). The phase
estimation is calculated by interval arithmetic and comes with an estimation error of ε = |ϕ−p|
where ϕ is the actual phase of the transmitter clock and p the estimation of it. The phase ϕ of the
transmitter clock is given as a real number within the interval [0, 2[, where 0 and 1 depicts a tran-
sition of the transmitter clock. The time around 0 and 1 is handled as a keep-out window of wide
±x (e.g. 60 ps like the duration of the sample and hold window of a typical flip-flop), where the
registers are not safe to sample. The transmitter writes the ’O’ register within ]x, 1 + x], within
this phase it is only safe for the receiver to sample the ’E’ register. On the other hand the trans-
mitter writes the ’E’ register within ]1+x, x], where it is only safe for the receiver to sample the
’O’ register. So the rule is that the register that is most recently written (in the last half cycle) is
safe to sample by the receiver. This mechanism does not ensure that each value written to the
registers of the transmitter is exactly sampled once. It is possible to drop data if the transmit-
ter clock is faster than the receiver clock and also to sample it more than once if the receiver
clock is the faster one. This further requires a flow control mechanism, as in the proposed FIFO
synchronizer where the write and read pointers (head/tail) are synchronized via the Even/Odd
synchronizer. For the receiver it is necessary to estimate the phase of the transmitters clock. To
do this it is required to measure its frequency in a first step. This is done by the fraction of two
counter values, first counter (fR) in the receiver timing domain increments until a fixed value
(i.e. 2b) is reached, at this point the counter (fT ) in the transmitter timing domain is stopped and

relative frequency f can be derived by f =
fT
fR

. The counter in the transmitter timing domain

is stopped by a signal from the receiver which is synchronized by Brute Force Synchronizer to
the transmitter timing domain. Further to estimate transmitter’s clock phase even clock cycles
are sampled with receiver’s clock twice, once early once late. If the samples are different, a
transition obviously occured in the observed interval. To determine the detection interval of the
phase a bound value for the delay used for the late sample and the cycle time of transmitter’s
clock is necessary. All this happens off the critical path of the synchronization process, thus
has no effect on the delay of the synchronized data, which allows metastability to decay. The
Even/Odd synchronizer has a low latency of 0.5 + x cycles on average, where x is the keep-out
region of the registers, and an arbitrarily small probability of synchronization failure. The idea
of the Even/Odd synchronizer has similarities to the Two-Register-Synchronizer of [12] without
the constraints of mesochronous clocking (no phase drift, same nominal frequency) with a fixed
delay of half a clock cycle.
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Figure 6.41: Even/Odd Synchronizer [13]: Structure
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6.2.21 Four-slot Fully Asynchronous Communication Mechanism

A four-slot fully asynchronous communication mechanism is presented in [49]. This mecha-
nism is provided as algorithm for software and hardware implementation. The basic idea is
to use a shared memory communication mechanism without mutual exclusion to provide fully
asynchronous data transfer. To avoid any timing interference between the communication part-
ners the mechanism must avoid usage of control variables in conditional statements, like in use
with arbiters or busy waiting to provide fully asynchronous communication. Several approaches
are shown in [49] but only a four-slot solution is truly capable of asynchronous communication.
Listing 6.42 shows the algorithm for the four-slot mechanism. There are two procedures, one
for write access and one for read access to the shared memory. The control variables are bit
variables (latest, reading, slot array). The data array consists of two fields with each two slots,
hence four slots in total. The ’write’ procedure sets the ’pair’ variable to the complement of
’reading’, the currently or latest read data pair, in the first step. Then it looks for a free slot
in that pair and after that writes a data item to the memory. As a last step it sets the index of
the written pair and slot for the reader. The ’read’ procedure firstly gets the latest written pair
and slot and then gathers the data item. Hence these procedures are forced to avoid conflicts
on the shared memory (two dimensional data array) and so the four-slot mechanism forms an
orthogonal avoidance strategy. This strategy directs the ’write’ procedure to write the pair that
is not currently read and the ’read’ procedure to read the latest pair that is not currently written.
Further a performance improvement to the algorithm above is given in [49], where the algorithm
works with pointers instead of the data items directly. Paper [49] provides a hardware imple-
mentation of the given algorithm. A schematic of the hardware design is given in Figure 6.43.
The hardware design reflects the mechanism using registers, bistables and switches. A register
is a flip-flop with enable input. A bistable is a latch with enable input and two complementary
outputs. Note that the negative ouput is looped back into the input to switch the binary state of
the bistable on activity at the enable input. The read and write of the data items are executed
simultaneously in hardware. Latching pulses guide the data item into the right register and out of
them. A number of timing constraints are summarized in [49], but omitted here. Two errors can
occur in the hardware implementation. First a so-called ’flicker’ can occur if the reader is much
faster than the writer and two read accesses can occur between consecutive write accesses. The
author [49] states that this error is bounded by the write duration and is not of practical concern.
The second error, called ’dither’, is in contrast an unbounded failure and is caused by metasta-
bility in bistables. Thus the reader may receive an unstable or erroneous value. Unfortunately
the author omits the details of an effective solution to this problem and only gives the recom-
mendation to lower the speed and increase the length of the paths. The design is experimentally
validated in detail in [49].
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mechanism four slot;
var data:array[bit, bit] of data := ((null,null),(null,null));

slot:array[bit] of bit := (0,0);
latest, reading : bit := 0,0;

procedure write (item : data);
var pair, index : bit;
begin

pair := not reading;
index := not slot[pair];
data[pair,index] := item;
slot[pair] := index;
latest := pair;

end;

function read : data;
var pair,index : bit;
begin

pair := latest;
reading := pair;
index := slot[pair];
read := data[pair,index];

end;
end;

Listing 6.1: Four-slot Fully Asynchronous Communication Mechanism [49]: Four-slot algo-
rithm
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Figure 6.42: Four-slot Fully Asynchronous Communication Mechanism [49]: Basic Building
Blocks
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Figure 6.43: Four-slot Fully Asynchronous Communication Mechanism [49]: Schematic hard-
ware design
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6.2.22 Asynchronous Communication Mechanisms Using Self-timed Circuits

The asynchronous data communication mechanisms (ACMs) presented in [56] are based on the
three-slot and four-slot fully ACMs in [49]. The algorithms (see Listing 6.1) from [49] are
picked up and for each statement a circuit is designed. Additionally the accesses (write/read)
to the ACM are controlled by arbiters to improved handling of the possible metastability events
and constrain them to these particular points, away from data path to control logic. The devel-
oped speed independent statement circuits use a 4-phase handshake bundled data protocol for
write/read access to the ACM control part as well as in the data path (see Figure 6.44). In Fig-
ure 6.44 one can see the writer starts its access by handshake request, when the ACM control
part grants access, data is forwarded to the ACM data path. On reader side a similar procedure
takes place. The ACM control part steers the data to the next slot. The used arbiters are enhanced
with metastability detectors, or also called metastability resolvers, and are taken from [46]. As
long as this arbiter detects a metastable state its outputs will not change until metastability has
resolved. In the ACM the arbiter controls the execution of two statements, one from each the
writer and the reader. The statement of the writer sets the index of the last written data item and
the one of the reader gets the index of the lastest data item. This ensures full data coherence
over temporal independence. Due to the arbiter as metastability detector the full asynchronism
of the base design from [49] is no longer achieved (“theoretically”), due to the required waiting
for the input that lost arbitration (such an temporal relation causes the loss of full asynchro-
nism [56]); although the arbitration only takes place outside the ACM data path, hence in the
control part. To maintain a certain degree of temporal independence in this approach a more
flexible handshake protocol is employed. After the writer/reader initiates a data transmission, it
waits for the acknowledgement from the control part, but the writer only waits for a predefined
time period, by this point in time the writer continues its operation. This maximum waiting
period is obtained by simulation of the algorithm and measuring the execution time of each
statement and an additional amount of time for metastability resolution (about 5 ns in modern
CMOS systems). In [56] a circuit for each statement is provided, details are omitted here, since
the single statements only involve latching data. For this, transparent latches are introduced
and further handshake decoupling elements from [54] are provided which use David’s Cells to
control handshakes. Each David’s Cell consists of a flip-flop and a NOR gate. In contrast to
the four-slot ACM the three-slot ACM only provides full asynchronism, full data coherence and
data freshness if the statements involving the index of the last written data item are atomic to
each other. This is easily achieved by the used arbiters. The benefit of the three-slot ACM is the
maximization of operation speed. The design of the three-slot ACM is given in Figure 6.45. The
access of the write and read control processes the data movement from writer to the reader, their
accesses are controlled by the arbiter. The ’differ’ block reads the indices of latest written and
read values and negate them to provide a new indices pair for the next write access. Additionally
simulation results and analysis of the presented solution are given in detail in [56].
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Figure 6.44: Asynchronous Communication Mechanism Using Self-timed Circuits [56]: Basic
structure of modified 4-slot ACM with SI circuits

Figure 6.45: Asynchronous Communication Mechanism Using Self-timed Circuits [56]: Basic
structure of 3-slot ACM design
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6.2.23 Implementing a STARI Chip

The STARI (Self-timed at Receiver’s Input) [29] interface uses synchronous as well as self-
timed (asynchronous) circuits. The transmitter and receiver operate with a global clock and
communicate via a self-timed FIFO. STARI does not use low-level flow control. This technique
is able to compensate clock skew (drifts in relative phase) and variations in delay on data items,
it tolerates up to 1.5 cycle lasting jitter [7] and is often used with mutually asynchronous clocks.
The intent of using a self-timed FIFO is to avoid an explicit handshake mechanism between
FIFO and transmitter and get rid of the round-trip delay that comes along and thus the limitation
of the bandwidth of the channel. To assure this the FIFO has to appear synchronous to the
transmitter and the receiver. To appear synchronous the FIFO must complete a write as well as a
read operation within one cycle of the global clock. Furthermore the transmitter and the receiver
appear as self-timed communication partners to the FIFO using the STARI signaling technique.
There is only one synchronization process, at the initialization of the FIFO when the first data
packet arrives. The receipt of the first data packet can occur at an arbitrary point in the clock
cycle of the receiver and thus hold the possibility of metastability. To avoid this a cascade of
synchronizers is employed. Each new data packet sets the latch (see Figure 6.46), its output
increments the write address of the FIFO synchronized to the receivers clock. The receiver only
needs to know the position of the first data item in the FIFO to have a point where to start
from, this happens during initialization. After a reset the FIFO is empty, when the transmitter
starts its transmission it signals the receiver for an appropriate number of clock cycles (equal to
synchronizer depth) that the first data packet is sent. The receiver waits until the FIFO is half-

filled
(n+ 1)

2
, where n is the number of stages within the FIFO, before reading data from it. The

half-full FIFO is needed to avoid an overflow or underrun and is used to maximize throughput
and robustness, this is guaranteed through static timing analysis. So with a STARI interface the

receiver has to wait S +
(n+ 1)

2
cycles until receiving first data, after this initialization the

receiver accepts a data item every clock cycle, resulting a throughput of 120Mb/s [29]. STARI
avoids double-buffering (as in [43]) and synchronization and thus is free from timing hazards
during operation. The FIFO in detail uses inverted dual-rail data encoding with a four-phase
handshake protocol. In [29] a detailed comparison is provided between different implementation
variations.
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Figure 6.46: STARI [29]: Structure
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6.2.24 Efficient Self-Timed Interfaces for Crossing Clock Domains

The source-synchronous communication interface presented in [29] called STARI, short for Self-
Timed At Receivers Input is improved and enhanced in [9] and [8]. There are solutions for
mesochronous, plesiochronous systems as well as systems with rational clocking or arbitrary
clocking. First, STARI itself is a mesochronous interfacing technique, there is one global clock
and a fixed phase drift between receiver and transmitter clock. In [9] and [8] the STARI ap-
proach is first improved to only using a special latch instead of a FIFO. The special latch in this
minimal source-synchronous interface employs a generic latch (single-stage FIFO) and a latch
controller that generates the clock for the latch upon the product of the clocks from transmit-
ter and receiver. The latch controller is basically a Muller C-Element, after both, receiver and
transmitter clock events, the latch controller generates the corresponding event (falling or rising
edge) to clock the latch (see Figure 6.47). To satisfy setup and hold requirements of the trans-
mitter and receiver latches their input clocks are delayed within the latch controller. For further
details on timing, circuit and its correctness see [9]. The interface can be initialized for maxi-
mum robustness or minimum latency. To employ the latter the “transmitter-last” mode is used.
The “transmitter-last” mode describes the scenario that the last clock event before the generated
clock event from the latch controller occurs is from the transmitter. The “receiver-last” mode
refers to the other case. To achieve maximum robustness to skew variations the interface must
run in the mode that tolerates the largest skew change in either direction. If the time between a
rising edge of the transmitter clock to the next rising edge of the receiver clock is greater than
the time between a rising edge of the receiver clock and the next rising edge of the transmitter
clock then the “transmitter-last” mode is optimal, the “receiver-last” mode is used in the opposite
case. To achieve these modes an adjustable delay is required within the latch-controller (self-
reset cycle), which is gradually decreased during initialization until a point is reached where one
of the two modes is feasible. During this process metastability can occur. To support rationally
related clock frequencies the previous single stage FIFO interface has to be extended by another
module, the rate-multiplier. The rate-multiplier, based on an algorithm provided in [9], is only
employed at the communication partner that operates at the higher clock rate. It generates a
derived clock from the source clock that is provided to the latch-controller. The rate-multiplier
outputs n pulses of the slower clock for every pulse of the faster clock to the latch controller.
This clock is an estimate of the clock of the slower running communication partner. Further the
derived clock signal is used as a valid signal for the faster module to indicate when it is safe to
latch new data. The latch controller in the rational approach can miss an event (either transmitter
or receiver clock) during its self-resetting phase. To avoid this a miss-detector is employed that
indicates the misses or near-misses and reports them to the receiver and transmitter. Further-
more a plesiochronous interface can be realized, where the frequency of receiver and transmitter
clocks are closely matched, but the relative phase shift between them is slowly drifting. The
interface uses a modified miss detector that indicates when either a rising edge from the trans-
mitter clock or the receiver clock occurs shortly after the self-reset of the latch controller. To
detect near-misses a delayed version of the generated clock from the latch controller is used.
Near-misses indicate misses thousands of cycles in advance, giving the module that causes the
near-miss a chance to react, hence to skip clocking the latch controller for the next cycle. To
implement such a mechanism “stuffed bytes” are used, these are extra bytes at the end of a data
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item. Additionally the interface for the rational clocking and the plesiochronous interface can
be combined to support communication between systems with arbitrary clock frequency. First
of all the communication partners forward their clock to each other to derive an estimate using
a counter and further provide a rational approximation. This is necessary if the clocks are un-
known in advance. The communication partner with the faster clock employs a rate-multiplier
module to create an approximation of the slower clock (as described above). Due to the fact that
the used frequency values are only approximations the used FIFO may underflow of overflow.
Near-miss signals are generated and forwarded to the rate-multiplier module to update the fre-
quency estimation. The interfaces for rational clocking, plesiochronous and arbitrary clocks do
not transfer exactly one data item on every clock cycle thus an additional receiver FIFO (syn-
chronous FIFO clocked by the receiver) is required. If the FIFO is not empty new data is placed
in the receiver FIFO, if the FIFO is empty it is bypassed by a multiplexer directly providing the
new data item to the receiver.

Figure 6.47: Efficient Self-Timed Interfaces for Crossing Clock Domains [9]: Simple Single
Stage FIFO Latch Controller
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6.2.25 A Predictive Synchronizer for Periodic Clock Domains

A Two-Way Adaptive Predictive Synchronizer is presented in [25], which synchronizes bi-
directional communication between systems within periodic clock domains by taking advantage
of the periodic nature of their clocks. The synchronizer assumes that a conflict occurs when an
integral number of cycles of the local (receiver) clock span the same time as the number of cycles
of the external (transmitter) clock. This assumption is used to predict conflicts and to control the
send/receive output that signals when it is safe to send/receive to avoid duplicates and misses in
data transfer. More precisely the sampling of the input is delayed by keep-out time Tko, which is
controlled by the keep-out controller to signal whether it is safe to receive data or not. Conflict
prediction is achieved by creating a predicted clock (by ∆ delayed external (transmitter) clock).
Thus the predicted and local (receiver) clock will conflict one Tlocal cycle ahead from a “real”
conflict between transmitter and receiver clock. A term is introduced in [25], d-conflict, to de-
fine the occurence of two clock events of different clocks within an interval of length d. The
structure of the predictive synchronizer (see Figure 6.48) consists of a d-conflict detector (see
Figure 6.50), a programmable delay line (Tlocal-delay, part of Figure 6.51), an adaptive clock
predictor (see Figure 6.51) and a conflict prevention circuit (keep-out controller and clock select
circuit, see Figure 6.49). There are three different versions of the conflict detector, in this con-
text the d-conflict detector is presented. As mentioned before the d-conflict detector determines
that two clock events occur within an interval of d or that one of these clock events precedes
the other. The circuit operates as follows, two flip-flops sample the clk2 input d time after and
before the rising clock event of clk1 input. To cope with susceptibility to metastability there
are two additional flip-flops (FF3 and FF4) employed for metastability resolution, this results
in a half clock cycle for metastability to decay. If the rising edge event at the clk2 input occurs
within the sampled 2d interval a conflict is detected one clock cycle in advance (due to usage
of the delayed external (transmitter) clock). The adaptive clock predictor circuit employs two
adaptive delay lines (Tlocal and ∆) which are programmable via digitally tapped inverter chains
and dynamically tuned. Each delay line starts with a zero (minimal) delay and in- or decreases in
steps of size q, where q is the adjustment step size and must be smaller than the time resolution
of the conflict detector. The ∆-delay line is adapted if the conflict detector predicts a conflict or
one of the compared clock events precedes the other (clk1 ≷ clk2). Further the adaptive clock
predictor employs a rate reducer, that reduces the output rate to a slower clock (either external or
local), the employed flip-flops are doubled as at the conflict detector for metastability resolution.
A formula for the total tuning time of the clock prediction is given in [25]. The adaptive clock
predictor generates a delayed version of the external clock that periodically precedes its original
version by Tlocal. The conflict prevention circuits, keep-out controller and clock select, employ
a d-conflict detector which generates a keep-out signal indicating a conflict between local and
predicted clock, which is further taken to select either local clock or a delayed version of the lo-
cal clock in case of a conflict to finally generate the receiver clock. The d-conflict detector may
become metastable if two rising events on the input clocks occur about d time from each other.
The additional flip-flop enables one half clock cycle for metastability to decay (latency), this re-
sults in a MTBF of 1016 years. To add more resolution time for metastable states (in case of fast
clock frequencies) further flip-flops can be added (which results in an extended prediction time).
Also the rate reducer may become metastable, there is one full cycle available for metastability
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to decay, thus the MTBF is higher than MTBF of the detector. If metastability resolves either to
logical zero or one the only effects are extension of convergence time or small variations in the
timing of the predicted clock, thus no malicious behaviour results from a wrong decision after
a metastable state. A formal proof and verification of the two-way predictive synchronizer is
given in [25].

Figure 6.48: A Predictive Synchronizer for Periodic Clock Domains [25]: Architecture of Two
Way Predictive Synchronizer
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Figure 6.49: A Predictive Synchronizer for Periodic Clock Domains [25]: Keep-Out/Clock-
Select Circuit

Figure 6.50: A Predictive Synchronizer for Periodic Clock Domains [25]: d-Conflict Detector
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Figure 6.51: A Predictive Synchronizer for Periodic Clock Domains [25]: Adaptive Clock
Predictor Circuit

Figure 6.52: A Predictive Synchronizer for Periodic Clock Domains [25]: SR-Circuit (Dupli-
cate/Miss Controller)
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6.2.26 A Solution to a Special Case of the Synchronization Problem

In [51] a Brute Force Synchronizer is called a “shift-register” synchronizer and is described as a
cascade of n D-flip-flops clocked by the receiver’s local clock. A periodic synchronizer is pro-
posed, it exploits the periodicity of the receiver’s and transmitter’s clock and their predictability
of near-conflicts and performs the synchronization in advance. The clocks are not related, but
must be known in advance. The proposed synchronizer has an improved synchronization delay
compared to the shift-register synchronizer, such that the synchronized signal lags never more
than a fraction of a clock period of the receiver’s local clock.
A system employing this periodic synchronizer operates as follows: the transmitter generates a
signal x which should be transmitted to the receiver and synchronized to result in a signal xsafe
that is safe to sample. The synchronization is done off the critical path by creating a window
signal within the local clock domain which is a chain of pulses with a duration τl and a period Tl
(same as local clock) that shows that xsafe must not be changed to stay safe. Further a second
window signal is created but within transmitter (remote) clock domain. The latter signal is a
chain of pulses with a duration of τf and a period of Tf (same as remote clock) and each pulse
shows that the signal x may change such that it cannot be sampled safely. These two window
signals are merged by an AND gate and only if they overlap a synchronization failure can oc-
cur. The resulting signal is monitored by a pulse detector, namely a D-flip-flop that is cleared on
overlapping window signals. Due to the asynchronity of the two window signals runt pulses may
occur at the output of the AND gate. Thus a shift-register synchronizer to decay a metastable
state within the pulse detector may be needed. When the two signals do not overlap, the pulse
detector is set statically to logical one providing a safe signal that shows that it is safe to sample.
Additionally an enable signal is generated by the local clock that consists of pulses of duration
τe and period of the local clock. The safe and enable signals are merged by an OR gate to control
a D-flip-flop that samples signal x into the receivers domain (resulting in xsafe). The mentioned
pulse widths (τl,τf ,τe) are important parameters and depend on the frequency of local/remote
clock. τl states how long the data signal x must be stable before the rising edge of the local clock.
τf states the last point in time after a rising edge of the transmitter clock when a transition of
signal x can occur. The pulse width τe depends on τl and τf and is defined as τe < Tl−(τl+τf ).
Notice that the window signal of the transmitter domain is delayed by τd to adjust the phase be-
tween the two window signals and model the relationship between the receiver and transmitter
clock d periods in advanced. The delay τd is fixed and defined by τd = nTf − (dTl − τl) where
n is chosen to be the smallest positive integer that results in τd > 0. For details of the derivation
see [51]. A drawback is that the delays must be exactly adjusted to the used clocks, and that the
frequency must be known in advance. A next step would be an adaptive periodic synchronizer
where the frequencies of the clocks are permitted to move within a given range.
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Figure 6.53: A Solution to a Special Case of the Synchronization Problem [51]: Periodic Syn-
chronizer Circuit
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6.2.27 On-Chip Segmented Bus: A Self-timed Approach

Another solution to realize the interconnect/communication interfaces between the modules of
a GALS system is presented in [45]. A segmented bus architecture designed in a self-timed
fashion is presented. The presented bus is split in several (at least two) segments, which are
dynamically interconnected such that every module of a segment can reach every other module
in the system independent from its location (same or different segment). The different bus
segments operate concurrently (concurrent communication). Each bus segment contains three
component groups, masters, slaves and arbiters and an inter-segment bridge. A master requests
a connection to a slave to send or receive data. The arbiter grants mutual exclusive access
(read or write) to a slave. There are two arbiter types employed in the segmented bus, the local
arbiter and the central arbiter. The local arbiter controls the access within a bus segment and
the central arbiter controls the access inbetween the bus segments. The modules that frequently
communicate are mounted into the same bus segment to provide the optimal solution for a high
communication probability. The segmented bus uses a communication protocol based on request
and acknowledgement handshaking. The request line from each master module are sequentially
polled by the local arbiter. A master asks for the ownership of its segment by asserting its request
line. The request is forwarded to the local arbiter, if no other master requests the ownership or
it has the highest priority the local arbiter sends an acknowledgement back to the requesting
master and grants access to the segment. The protocol to obtain ownership of another segment
is quite similar. The master sends its request to the local arbiter but with an address of a foreign
segment. The local arbiter forwards such a request to the central arbiter, which further moves the
request to the desired bus segment and its local arbiter, if the target segment is currently not busy,
this information is obtained from the Segment Register of the central arbiter. An external request
has always the highest priority, currently active connections will be finished first. If the foreign
bus segment has acknowledged the request for ownership the connection is built up between the
inter-segment bridge and the central arbiter at each communication partner. The inter-segment
bridge is composed by tri-state buffers and logical building blocks and is used to dynamically
build up and close the physical connection to the central arbiter. Measurement results of the self-
timed bus are given in [45], the maximum polling frequency is about 425MHz but there is no
given lower bound, thus no timing constraints can be met. The segment bus provides about 20%
improvement in comparison to a single bus communication mechanism. The presented solution
is similar to a Network-on-Chip (NoC), thus focuses more on the communication scheme than
on the interfacing technique.
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Figure 6.54: On-Chip Segmented Bus - A Self-timed Approach [45]: Bus Structure
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CHAPTER 7
Synchronizers for Self-Timed Systems

This section describes synchronizers for self-timed systems. This refers to systems where com-
putation and communication is not timed by a clock reference, but defined by a schedule of
events.

7.1 Basic Concepts

The interfaces presented in this chapter are used to synchronize signals, originated in clocked
as well as self-timed systems, into the working cycle of a self-timed system. These interfaces
can be classified by four basic concepts. The most basic one is the Arbiter, it grants mutually
exclusive access to a shared resource, such that an external request can not interfer with another
input or the working cycle of the target system itself (assuming that it was granted access first).
The Synchronization and Conversion Circuits and the Glitching Synchronizer are both used to
convert incoming signals to a self-timed protocol and from single-rail to dual-rail, but there are
no special mechanisms to synchronize incoming data to the working cycle of the receiver sys-
tem. Thus when these protocol converters are needed, e.g. when interfacing a clocked module
and a self-timed module using LEDR [14], they should be combined with an additional synchro-
nizer or at least an arbiter. The delay-insensitive chip area interconnect called Chain provides
a special self-timed pipeline latch, that is used as a basic building block to construct network
components such as router, multiplexer or arbiter for a self-timed data bus. At last the Modu-
lar Synchronizing FIFO for NoCs, the FIFO Ring Performance Experiment, the GasP approach
and the Doubly-Latched Asynchronous Pipeline use a FIFO controlled by a handshake pipeline
(e.g. a Micropipeline) to form a communication channel between self-timed systems. As in the
chapters before the synchronizers are compared amoung each other within the categories to de-
rive a prototype for each category, with the difference that the MTBF equation from section 1.3
cannot directly be applied, since there is no periodic clock anymore. Further more most of the
self-timed systems are delay-insensitive or quasi-delay-insensitive and therefore latency is not
as valueable for the comparison. Note that the latency of self-timed interfaces is often omitted
in literature. So the synchronizers are only compared in terms of throughput and elegance of the
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solution.
The most basic concept is the Arbiter, it is used to grant mutually exclusive access to a system
or shared resource. It can be used to synchronize either self-timed or clocked signals to a self-
timed system. Although its design is optimized to avoid metastability as far as possible there is
inevitably a residual risk of getting metastable. For the arbiter this happens when both request
inputs are asserted at the same time. However, even when the arbiter is internally metastable,
this metastable state is not exposed at the output. In that case the decision of whom to give the
grant is simply delayed [40]. It has no direct opponent and thus is noncompetitive. In the cate-
gory of synchronizers which use a FIFO that is controlled by a handshake pipeline as self-timed
interconnect the Modular Synchronizing FIFO for NoCs provides the most modular design with
the highest throughput of 2− 2.5 Gtps. It provides get and put interfaces for self-timed as well
as clocked systems to use the self-timed asP* FIFO pipeline. The following sections provide
detailed descriptions and references for the comparative parameters of the chosen prototypes.

7.2 Detailed Descriptions

7.2.1 Arbiter

An arbiter as described in [12] and [33] is used to grant mutually exclusive access to a resource
shared among different clients upon an incoming request. No other input request is granted until
a preceeding (granted) request is dropped again. A request may be enhanced with a priority
value to signal the arbiter the urgency of the request (needs additional logic), or it is simply first-
come-first-serve principle in use. Thus in self-timed systems an arbiter can be used as interface,
to synchronize incoming (asynchronous) signals to the internal operation cycle. Arbiters can be
part of different interfaces and building blocks as e.g. synchronizers using pausible clocking and
completion detection circuits [12]. The circuit and electronic symbol of an arbiter are depicted
in Figure 7.1, the shown arbiter is a cross-coupled NAND-Arbiter.

104



Figure 7.1: DSE [12]: Arbiter Circuit

7.2.2 Glitching Synchronizer

The Glitching Synchronizer [24] is a phased logic interface that synchronizes incoming (clocked)
data to the internal phase of a self-timed module and generates a valid phased logic dual-rail sig-
nal. The circuit of the Glitching Synchronizer can be seen in Figure 7.3. It acts as an interface to
the self-timed module (see Figure 7.2, the handshaking path is omitted in this figure). Note that
the system shown in Figure 7.2 with only one data line is often used for simple communication
protocols, further the synchronous system does not forward its clock to the self-timed system (in
System-on-Chips (SoCs) and for serial communication protocols the clock would be required at
the receiving self-timed module). The incoming data is latched by two registers in a row that are
alternately triggered by the internal phase signal. Data is provided to the system via two lines,
PL.Line0 and PL.Line1. The PL.Line0 forms the XOR product of the current phase and the
sampled data, while PL.Line1 directly shows the sampled data. The used XOR gate always will
produce glitches. The author in [24] states that in practice these glitches have enough time to
decay because they occur at the beginning of a new phase where the phased logic module is not
ready to latch the new data. The output must be glitch-free to maintain the delay-insensitivity
property. The Glitching Synchronizer can be extended to definitely eliminate these glitches. The
Double-Edge Flip-Flop Synchronizer takes the Glitching Synchronizer as basis and extends it by
a third register after the XOR gate, one can see the circuit in Figure 7.4. The third register makes
it necessary using double-edge triggered flip-flops, because the interface output needs to change
with each transition on the phase signal. Further it is crucial that the XOR gate introduces a
delay that is long enough to avoid a change of the phase output (PL.Line0) of the third flip-flop
within the same phase transition. Only one rail is permitted to change its value at a time when
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a LEDR protocol is employed. This also can be handled by pre-calculated phase output values
that are selected via a multiplexer that is controlled by the phase signal.

Figure 7.2: Coupling Asynchronous Signals into Asynchronous Logic [24]: System Overview
(Synchronous Module→ Self-Timed Module, without clock)

Figure 7.3: Coupling Asynchronous Signals into Asynchronous Logic [24]: Glitching Synchro-
nizer

Figure 7.4: Coupling Asynchronous Signals into Asynchronous Logic [24]: Double Edge Flip-
Flop Synchronizer

7.2.3 Synchronization and Conversion Circuit

The Synchronization and Conversion Circuits presented in [24] form an interface that synchro-
nizes a single-rail (synchronous or asynchronous) signal and converts it to a dual-rail signal. It is
based on the Glitching Synchronizer presented in the previous section and extends its circuit to
derive a delay-insensitive implementation. The circuit can be seen in Figure 7.5, the handshak-
ing path is omitted as at the Glitching Synchronizer. It is used as an interface for a self-timed
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module like the Glitching Synchronizer, see Figure 7.2. It employs several building blocks,
firstly the sync block, it consists of two cascaded D-flip-flops, one triggered by the falling and
one triggered by the rising edge of the phase input signal. It synchronizes the incoming data to
the internal phase and passes it to the data block and the phase calculation (ϕ0/ϕ1) block. The
data block stores the data value for the data output line (PL.Line1) and the phase calculation
circuit, it uses a D-flip-flop triggered by the rising edge of phase input signal. Note that the data
is delayed by a full cycle of the phase input signal. The phase calculation block calculates ϕ0

and ϕ1 signal for phase output line (PL.Line0). It consists of two D-flip-flops, one samples the
data (ϕ0) from the data block and the other one samples the inverted data stream directly from
the sync block (ϕ1). The outputs are provided once to the multiplexer block as inputs and also to
the sel block. Note that in phase ϕ0 the values of both output lines are equal in contrast to phase
ϕ1 where the value must be different, further the phases must alternate thus only one output line
changes at a time. The sel block generates the selection signal to control the multiplexer which
selects between (precalculated) ϕ0 and ϕ1. The phase input signals from the phase calculation
block are merged by an XOR gate and latched into a D-flip-flop. The output of the flip-flop is
merged with the phase input signal by an AND gate forming the selection signal that controls
the multiplexer. At the end of the interface the MUX block, controlled by the signal from the sel
block, switches between the two precalculated phase values for the phase output line (PL.Line0).
(redundant logic should by employed to avoid static-1-hazards at the multiplexer)

Figure 7.5: Coupling Asynchronous Signals into Asynchronous Logic [24]: Synchronization/-
Conversion Circuit
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7.2.4 A FIFO Ring Performance Experiment

In [35] and [36] an experiment shows that the performance of an asynchronous FIFO that uses
a pulse-like protocol to advance data (asP*) is equal to or greater than that of a clocked shift
register. For the experiment a FIFO ring of 17 stages with a 4-bit wide data path was con-
structed. A control circuit containing three NAND gates per stage is presented that controls the
move operation of a data item through its stage and shows the control stages (full or empty), see
Figure 7.6. The asynchronous symmetric persistent pulse protocol, short asP*, a pulse-like pro-
tocol is used to efficiently move data items from one stage to the next. In Figure 7.7 the structure
of the first and last stage of the FIFO ring is depicted. Inbetween these two stages an interface
to insert and read data to and from the ring is employed. Thus to do the experiment and the
associated measurements each stage has a control block and a 4-bit D-Latch that holds the data.
This solution achieves a maximum throughput of 930 to 1126 million data items per second.
The FIFO ring performance experiment is enhanced in [36], where a two-rail implementation of
a micropipeline is shown and a comparison between it and a synchronous FIFO ring is given,
with the result that the two-rail micropipeline operates faster than the conservative solution.

Figure 7.6: A FIFO Ring Performance Experiment [35]: Alternative Control Circuit
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Figure 7.7: A FIFO Ring Performance Experiment [35]: Four stages of FIFO ring
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7.2.5 A Modular Synchronizing FIFO for NoCs

A modular synchronizing FIFO is presented in [39] that forms an interface between either syn-
chronous (clocked) and asynchronous (self-timed) modules and an asynchronous Network-on-
Chip (NoC). This is realized through interchangeable put (write) and get (read) interfaces, which
form the input and output interface of the FIFO, respectively. In Figure 7.8 one can see the basic
structure of the modular FIFO with n stages. The sender interacts with the put interface (dashed
area in Figure 7.8), which is further divided into cells (see detailed structure in Figure 7.10),
one for each FIFO stage. To put data in the FIFO the data storage (at least one stage) has to
be ’not full’, which is determined by the Full-Empty controller. When the sender inputs data
to the FIFO, the data is passed through the stages as a token to the last empty stage which is
realized as a ring counter within the put interface cell of each stage. On the other side the FIFO
is read out by the get interface (dashed area in Figure 7.8) that triggers the receiver with a re-
quest signal. Like in the put interface the get interface is also organized in cells (see detailed
structure in Figure 7.10), the cell that is ready for the next read operation is marked with a token
generated by a ring counter. The modular synchronizing FIFO employs the asP* handshaking
protocol [35]. Each FIFO stage employs a data latch, a SR-Latch as Full-Empty controller and
the handshake logic (in the simplest way only an AND gate), see Figure 7.9. The scheme can
be used for asynchronous (self-timed) modules with short interconnects. Due to the fact that
asP* is not delay-insensitive, only short interconnects can be used because the minimum pulse
width that is required by the SR-Latch for a set and reset operation must be less than the min-
imum of the input-to-output delay of the latch. This requirement can easily be met in systems
with short interconnects. For systems where long interconnects are employed a truly delay-
insensitive protocol like LEDR is used. To use LEDR with the presented modular synchronizing
FIFO an asynchronous protocol converter is required, one before the put interface and one after
the get interface. Within the the LEDR-to-asP* protocol converter each data line (2-wire) em-
ploys a completion detection (XOR gate), the received data is stored into a latch. This first stage
converts the transmission into the micropipeline protocol [53]. Then the second stage transfers
the transmission from the micropipeline protocol to the asP* protocol. Note that one can use
the second stage alone as a protocol converter to a micropipeline module. The asP*-to-LEDR
converter employs as first stage an asP*-to-micropipeline converter and then a micropipeline-to-
LEDR converter as final stage. Further the put and get interfaces can be employed in a clocked
version. The put interface as well as the get interface employ a FIFO put/get control block
that synchronizes the full/empty signal and write/read signal of the FIFO into the transmitter/re-
ceiver clock domain. The synchronizer depth can be chosen according to the requirements of
the modules. The depth is freely chosen due to the fact that the FIFO controller is seperated
from the synchronizer. As synchronizing elements flip-flops (full-cycle synchronization stage)
or transparent latches (half-cycle synchronization stage) can be used and combined (see Fig-
ure 7.10). As well as the clockless FIFO the clocked version employs a Full-Empty controller
and data latches to control operations and store data. The achievements of this approach are a
high-throughput at 2 − 2.5 Giga-transfers per seconds (at 90 nm process) at a FIFO size of
d2 · (n+ 1)e stages, where n is the number of cycles that the synchronizer needs (its depth) and
that both modules with synchronous and asynchronous timing can be used.
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Figure 7.8: A Modular Synchronizing FIFO for NoCs [39]: FIFO Structure

Figure 7.9: A Modular Synchronizing FIFO for NoCs [39]: asP* FIFO
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Figure 7.10: A Modular Synchronizing FIFO for NoCs [39]: put Interface Cell

Figure 7.11: A Modular Synchronizing FIFO for NoCs [39]: get Interface Cell
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Figure 7.12: A Modular Synchronizing FIFO for NoCs [39]: Full/Empty Controller

Figure 7.13: A Modular Synchronizing FIFO for NoCs [39]: FIFO Stage with asP* (asy-
chronous) put and get interface
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7.2.6 Chain: A Delay-Insensitive Chip-Area Interconnect

Chain [2] is a network-on-a-chip approach that connects asynchronous and synchronous mod-
ules using a delay-insensitive encoding and a return-to-zero signaling technique. The link is
employed as an one-of-five data encoding using five communication lines and one acknowl-
edgement line, only one of these communication lines is allowed to send at a time, thus be at
logic one. These five communication lines are further divided into one end-of-packet (EOP)
signal and four data line. When one of these data lines is driven high a binary code is signaled
which is interpreted as a two-bit data value, e.g. for a logical one data line 2 has to be asserted,
for the two-bit data value ’10’. The EOP signal seperates two consecutive data packets of vari-
able length. This asynchronous interconnect uses pipeline latches for the self-timed latch stage
for the one-hot links. Between consecutive pipeline latch stages a loop via Muller C-Elements
is built up, which can be thought of as a ring oscillator, to latch data for a minimum oscillation
period, that is determined by the Muller C-Elements, the OR gate, the inverter (acknowledge-
ment) and the length of line between the stages. The pipeline latch (or pipe latch) consists of
5 Muller C-Elements, one for each data line. The outputs of the Muller C-Elements are for-
warded either to the next stage or the receiver and are merged by a 5-input OR gate to form the
acknowledgement for the predecessor stage. The acknowledgement forms the second input to
each C-Element. An advantage of using return-to-zero signaling and one-hot coding is the min-
imized crosstalk. With Chain one can create networks of any topology. To achieve this several
additional modules (circuits) are needed, like routers, arbiters and multiplexers. These can be
built by adapting and extending the pipeline latch, as one can see in Figure 7.16, 7.17, 7.18. Note
that the multiplexer (Figure 7.16) does not employ a select input, thus either the environment has
to enable mutually exclusive communication or an arbiter is needed at its input (as seen in the
collage in Figure 7.14), to ensure uninterrupted forwarding of data from one of the two inputs
to the output. The figure shows two versions how a transmitter can be connected to a receiver,
first through a router and second through an arbiter. The transmitter determines the routing by
using its full knowledge of the network topology, further it spreads this information via encoded
symbols at the start of each data package. Performance is limited by the path, because it is self-
regulating in the asynchronous approach. By increasing the width of the data path, thus ganging
links together increases the throughput (if 700Mb/s of a single wire are too slow). In [2] five
message types are defined to be used with Chain, one command message and four different
responses. In Chain these two message types are transmitted via two seperately switched net-
works. Additional multimessage packets are provided to enable semaphore operations. In [2]
a prototype is implemented using around 20 gates for each network fabric component and pro-
viding a maximum worst case performance (read memory via greatest network distance) of 20
million transfers per second. For further measurement data refer to [2].
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Figure 7.14: Chain - A DI chip area interconnect [2]: Collage

Figure 7.15: Chain - A DI chip area interconnect [2]: Pipe Latch
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Figure 7.16: Chain - A DI chip area interconnect [2]: Multiplexer
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Figure 7.17: Chain - A DI chip area interconnect [2]: Arbiter
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Figure 7.18: Chain - A DI chip area interconnect [2]: Router
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7.2.7 GasP: A Minimal FIFO Control

The GasP approach [52] is an asynchronous control circuit for simple (handshake) pipelines.
GasP is based on Molnar’s asP* control circuits, and is short for “Gigabit asynchronous sym-
metric persistent pulse control”. The idea was to lower the reverse path latency as improvement
to Molnar’s asP* (where forward and reverse path have the same latency), because it is easy and
fast to move nothing (no data) backwards the pipeline. In GasP the forward path has a latency of
four gate delays and the reverse path a latency of two gate delays, thus a cycle time of six gate
delays (like a three-inverter ring oscillator). GasP employs two different circuit modules called
PATH and PLACE, where the PATH is to perceive as a gate between the pipeline stages, the
PLACEs. The PATH gates the data from its full predecessor stage to its empty successor stage.
The PLACE or stage consists of a data latch (inverter loop) and a state conductor. The state
conductor provides the state of the PLACE, either full or empty, to the surrounding PATH mod-
ules. The PATH module simply consists of a self-resetting NAND gate, whose inputs are both
state conductor outputs from the predecessor and successor PLACEs. The output of the self-
resetting NAND gate is provided to a pass transistor that “opens the gate” for data between two
successive stages. The PLACE only gates data iff the predecessor stage is full and its successor
stage is empty. Note that the state encoding is logical high for an empty stage and logical low
for a full stage. In [52] several implementation approaches are shown for GasP. The first one,
described previously, employs self-resetting NAND gates and a single state conductor. A further
implementation employs two seperate state conductors, which is proven to be useful in [21]. In
this approach the PLACE module provides both state conductors to each surrounding PATH, but
the PATH module only monitors one of them. Additional a (unconditional) BRANCH module
is presented where data of a full stage is provided to two other stages, both must be empty. A
JOIN circuit is mentioned too. A data conditional circuit is described that can be used to prevent
or permit driving the successor stage depending on the data input value. Furthermore GasP can
be changed using another state encoding where logical high means full, which is preferabel for
several reasons (refer to [52]), but has a slightly higher logical effort. The last presented im-
plementation employs an additional mutual exclusion element for arbitration and a metastability
guard (two inverters at the outputs) for it. The arbitration is used to stop the data flow without
damaging the data. GasP is a fast approach, it provides a throughput of 1.5 Giga data items per
second. To make it work it is crucial that the transistor widths are carefully balanced to match
the delays.
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Figure 7.19: GasP - A Minimal FIFO Control [52]: GasP Self-Resetting NAND

120



Figure 7.20: GasP - A Minimal FIFO Control [52]: GasP Twin State Conductors
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7.2.8 A Doubly-Latched Asynchronous Pipeline

The DLAP (double-latched asynchronous pipeline) [34] is a single-rail, 4-phase protocol ap-
proach for an asynchronous pipeline that employs two registers per stage in a master-slave hier-
archy. The registers are either edge-triggered or transparent latches. The DLAP operates similar
to a synchronous pipeline by imitating a synchronous master-slave pipeline and can also be used
for synchronous-to-asynchronous conversion. Due to the employed dual registers DLAP op-
erates truly decoupled thus data is shifted simultaneously through all stages. This is done by
alternately latching data to master register and slave register. While the master register latches
new data from a predecessor stage (from its slave register), the slave register retains the previous
data and provides it to the successor stage (to its master register). The communication between
the stages is achieved by a stage controller and ready and acknowledgement signals. The stage
controller has different implementations, depending on which type of register is used, either
edge-triggered or transparent latches. First the stage controller for edge-triggered register is re-
alized by three Muller C-Elements. One merges the done signals of either the master and slave
register, whose output further is used by either of the two Muller C-Elements to alternately ac-
tivate either the master or slave register in combination with the ready signal of the predecessor
stage or the acknowledgement signal of the successor stage, respectively (see Figure 7.21). The
advantage of edge-triggered registers is the low response time compared to transparent latches.
On the other hand transparent latches are simpler than edge-triggered registers. The transparent
latches are kept closed when no data must be latched. Thus the master and slave register can
not be open at the same time, thus the controller has to be more complex than the one for the
edge-triggered DLAP. There has to be an extra signal within the controller that signals which
of the registers has been opened last. The controller for transparent latches employs six Muller
C-Elements and several logic gates to achieve a mutual exclusion element for the activation sig-
nals for the latches. For further details of the circuit see [34]. Further non-linear DLAP data
path can be realized by using fork and join interconnection modules. A fork splits the ready
output signal and merges the incoming acknowledgement tokens. A join module merges two
input stages by merging their ready input signals. Additionally with these modules a DLAP ring
can be constructed. (Note that a ring must contain an extra register to prevent the possibility of a
deadlock.) In summary, the throughput of the DLAP widely depends on the width of data lines
and the register size, a SPICE simulation indicates that a full handshake needs about 24.7 ns
(see [34]), which results in a throughput of 40.5 million data items per second.
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Figure 7.21: A Doubly-Latched Asynchronous Pipeline [34]: DLAP Stage Structure
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CHAPTER 8
Interconnects

In this section the focus lies on the connection between modules rather than their interfaces.
Interconnects are tailored to particular needs, e.g. to enable long-wire communication, build up
networks or connect building blocks within FPGAs. The presented interconnects in this chapter
are slightly off the focus of this thesis and therefore not further compared to each other, but they
are, however, worth to mention.

8.1 Detailed Descriptions

8.1.1 Surfing Interconnect

The Surfing Interconnect [30] is an approach for long-wire signaling by dividing long wires into
several segments connected by so-called soft-latches or surfing-latches as buffers. This inter-
connect pipelining is used to regulate the data transfer along long-wires between either asyn-
chronous and synchronous modules. A surfing link can be seen in Figure 8.1. The surfing link
consists of two lines, the timing chain and the data path. The timing chain further consists of a
repeater, a simple inverter and a ’edge-to-pulse’ converter. The ’edge-to-pulse’ converter gener-
ates a timing pulse called FAST at every logic segment of the pipeline that controls the soft-latch,
more precisely its delay, on the data path. The FAST signal when asserted decreases the delay
within the soft latch. Hence the soft-latch consists of an ordinary inverter and a tristate inverter,
when FAST is asserted the tristate inverter provides extra drive capability and thus reduces the
delay. On the other hand when FAST is deasserted only the ordinary inverter drives the output
and thus the delay increases. With this mechanism two timing constraints hold, that neither the
data cannot keep up with the timing events in FAST mode nor that the data move faster than the
timing events in slow mode. The timing path itself does not employ a handshaking mechanism
(not needed for synchronous communication partners), thus an interface circuit is needed at the
receiver. So all data items can be kept in close relationship to their related timing event. Thus
surfing interconnect is achieved by changing the delay of the stages or varying the output driver
of the repeater and its strength. To enable proper communication using the Surfing Interconnect
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receivers need a FIFO for buffering. However, if the communication partners are running differ-
ent clock frequencies an acknowledgment signal back to the transmitter is required. A possible
implementation of a 2-phase handshaking surfing interconnect is shown Figure 8.2. In this case
the size of the buffering FIFO has to be large enough to compensate a handshake round-trip
delay back to the sender.

Figure 8.1: Surfing interconnect [30]: A Surfing Link

Figure 8.2: Surfing interconnect [30]: 2-phase Handshaking Surfing Link
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8.1.2 Practical Asynchronous Interconnect Network Design

An asynchronous interconnect design is presented in [42] that uses a 2-phase handshaking tech-
nique and dual-rail encoding. The intent of the authors was to create a solution to interconnect a
large number of IP (intellectual property) blocks with different clock rates to a single PLC (pro-
grammable logic core) in order to provide the possibility of a post-silicon debug mechanism. As
one can see in Figure 8.3, the asynchronous interconnect approach is organized in stages. Each
stage employs two flip-flops, one for each rail. Further a clock generation circuit is employed
that generates the clock-like signal upon the incoming data on the dual-rail line. More specifi-
cally the clock generator generates a rising edge on the output if new incoming data is different
in encoding to the current one or the current encoding of the data is equal to the one of the fol-
lowing stage. Note that each stage returns its current encoding of data to its predecessor stage as
acknowledgement signal. On the other hand a falling edge is produced when the flip-flops have
latched new data and thus generate a new current encoding of data. The generated clock is used
to control or activate the data flip-flops. The delays of the XOR gates in the stage and further the
clock generator have the most impact on the latency and cycle time of the design (approximately
8.75 ns at a die width of 12090 µm). This solution can be used by any module with 2-phase
encoding, it also can easily be adapted to fit 4-phase encoding.

Figure 8.3: Practical Asynchronous Interconnect Network [42]: Dual Rail, Two-Phase Imple-
mentation
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8.1.3 Asynchronous Current Mode Serial Communication

An approach for on-chip long-wire interconnects is presented in [19]. The approach uses an
asynchronous wave-pipelined serial link. The link is realized as dual-rail and uses the LEDR
2-phase protocol in order to avoid explicit handshaking and synchronizing of each bit. Typically
serial links are used for off-chip communication due to pin-out limitations, but they achieve
high throughput at long distances (about 7 mm in a 65 nm-process chip) within a chip and
need less area overhead. To be independent from the voltage swing of long-wire interconnects
genuine current-mode sense-amplifiers are used for communication, and further they enable a
data cycle of a single FO-4 (fan out of 4) gate delay. In Figure 8.4 one can see the serial
communication link, it employs two synchronizers for either communication partner, a serializer
and LEDR encoder for the sender, and a de-serializer and LEDR decoder for the receiver. The
receiver acknowledges every transmitted word. The LEDR encoding and decoding is done on-
the-fly and uses only an XOR and some transmission gates. The serializer and de-serializer
employ fast shift-registers. Each wave-pipeline shift-register consists either of a split stage (at
the receiver) or a merge stage (at the transmitter), to either split or merge the two seperate data
paths, respectively. These two seperate data lines are passed from/to the transition latches (see
Figure 8.5). These transition latches consists of an inverter and a weak keeper for each data
line and are controlled by a differential signal from the split stage (receiver) or the transmitter
directly. The keeper is off when a data bit is shifted. Data is shifted and sampled at rising
as well as falling edge of the differential control signal. For the technique of current mode
asynchronous signaling several differential current-mode drivers are available, in the presented
approach both differential wires pull currents of two slightly different values (i.e. I1 > I2 > 0
or I2 > I1 > 0). By this, the current swing is minimized in the solution of [19]. The benefit
of current sensing is to reduce the voltage swing that comes with long-wire interconnects. The
presented approach was simulated in [19] and achieves a throughput of 67 Gb/s over a 7 mm
distance for 65 nm-technology.
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Figure 8.4: Asynchronous Current Mode Serial Communication [19]: Serial Communication
Link

Figure 8.5: Asynchronous Current Mode Serial Communication [19]: One FO4 Gate Delay
Shift Register (De-Serializer
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8.1.4 Asynchronous FPGA Architecture with Distributed Control

An approach for an asynchronous delay-insensitive FPGA module interconnect is presented
in [48]. To keep the existing FPGA function blocks a wrapper is developed based on David’s
Cells to implement distributed control logic and provide asynchronous routing to the system. A
David’s Cell forms a distributed control circuit and is shown in Figure 8.6 in its simplest form. It
basically consists of three NAND gates, a backward line and a forward line, and a set and a reset
signal. The David’s Cell is set up when the set signal goes low and further the backward line
is de-asserted. These signals form a handshake protocol for the sender. A control token is for-
warded to the next stage by setting the forward line to low, after the set signal is high again. The
forward line together with the reset signal form the handshake protocol for the following stage,
the receiver (the reset signal has to go low to initiate the handshake). In [48] a more complex
example is shown as well as a block diagram of the general definition of the David’s Cell. This
mechanism is used to guide data items from one configurable logic block to the next. As one
can see in Figure 8.7 data items are delivered via dual-rail data lines towards a logic block. A
completion detection logic block detects the complete arrival of the data and triggers the David’s
Cell. The David’s Cell generates a signal that initiates the computation of the newly arrived data
item in the computational logic block. This signal is forwarded, through a programmable delay,
to the single-to-dual-rail converter (the FPGA module works with single-rail signaling). After
the conversion is completed the handshake is done (handshake signal), which signals the prede-
cessor stage to provide new data.

Figure 8.6: Asynchronous FPGA Architecture with Distributed Control [48]: Simple David
Cell
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Figure 8.7: Asynchronous FPGA Architecture with Distributed Control [48]: Wrapper Struc-
ture

8.1.5 FLEETzero: An Asynchronous Switching Experiment

FLEETzero [11] is a chip developed for testing an asynchronous switch-fabric based on GasP
control circuits [52]. The chip tests the transport of data item from eight different sources (in-
puts) to eight different destinations (outputs) where every source can address every destination.
The sources/destinations are called ships (modules). This is done by special data-controlled
branch and merge circuits. FLEETzero is a so-called “transport-triggered architecture” where
the focus of chip design is moved from ’operation-centric’ to ’communication-centric’ to im-
prove system performance in communication. In a ’communication-centric’ system data trans-
mission is done by “move” instructions, that are executed in sequential order and include their
source and destination address for routing. The used GasP circuits provide asynchronous data-
controlled branching and merging modules that offer data every six gate-delays, that results a
throughput of 1.2 Giga data items per seconds for the FLEETzero chip. The merge switch-
fabric called funnel and the branch switch-fabric called horn are used to build up a network
between source and destination to ensure that every source can reach every destination (for data
transfer). One can see the switch-fabrics in Figure 8.8. The function of the basic branch switch-
fabric is similar to a single multiplexer with two ouputs. The modified branch switch-fabric
multiplexes the data like the basic branch switch-fabric with the difference that the control sig-
nal is included in the data signal on the input of the branch and seperated afterwards for a distinct
order signal for the switching control. This order output line is typically forwarded to a merge
switch-fabric as control signal. The merge switch-fabric on the other side takes two input data
lines and an order signal, latter is used as control signal for the merge process and is merged
with the data at the output. The merge switch-fabric is similar to a demultiplexer with two in-
puts. A merge component can also be employed with an arbiter at the data input, so the first
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data item that arrives will activate the merge operation instead of the order input. This merge
process activated on-demand entails a first-come-first-serve order on data transfer, this implies
a non-deterministic order. When building a network with these modules a bottleneck is gen-
erated at the point where the funnel meets the horn, this is called the trunk. A network with
four sources and destinations and the trunk is shown in Figure 8.9. The network is a balanced
binary tree built up with asynchronous pipeline components. Note that between each branch
and merge component data and order FIFOs are employed. The merge component reconstructs
the data order from the information placed in the order FIFO. The performance and throughput
of the network can be improved by employing multiple trunks between source and destination.
The implementation details and simulation results of FLEETzero experiment are omitted in this
thesis because we are only interested in the used interface (asynchronous pipeline network) but
not in the resulting test chip.

Figure 8.8: FLEETzero [11]: Basic Switching Primitives
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Figure 8.9: FLEETzero [11]: Horn-and-Funnel Network
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CHAPTER 9
Quick Reference Guide

9.1 Tables of Categories

The following five tables list the over sixty different synchronizers and interconnect approaches
that have been found and classified into five different categories (thus a table for each category,
see Chapter 2.1).

9.1.1 Table of Mesochronous Synchronizers

Mesochronous Synchronizer

Name Chapter Reference
Brute-Force Synchronizer 3.2.1 [12]
Description

Directly synchronizing an incoming data signal from sender by latching
it with a Flip-Flop, which is clocked by receiver clock. A second FF,
that is also clocked by receiver clock, is set in row to ensure that a
possible metastable state of the first FF decay until the receiver reads
the new data item. (Not recommended)

Delay-Line Synchronizer 3.2.2 [12]
Description

Similar to the Brute Force Synchronizer, but with a variable delay on the
data lines, needed for each bit (line). Employs a learning phase during
which the FSM determines how to adjust the digital delay.
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Mesochronous Synchronizer - continued

Name Chapter Reference
Two-Register Synchronizer 3.2.3 [12]
Description

Acts like a Delay-Line Synchronizer, but the delay element is inserted
on clock-lines of the registers, only one delay element required for
multi-bit data paths.

Two/Three Element FIFO Synchronizer,
Mesochronous Synchronizer

3.2.4 [12] [28]

Description
Small ring-buffer to decouple transmitter and receiver timing, new data
is alternately sampled into a couple (2 or 3) of flip-flops to rest for a
round. The oldest value is chosen by the read pointer and transmitted to
the receiver.

Adaptive Synchronization 3.2.5 [26]
Description

Used to sychronize modules that operate with a clock that is distributed
through the system with an unbalanced clock tree. A conflict detector
unit checks the ready signal and the (reshaped) local clock, depending
on the detected conflicts a digital delay line is configured with less or
more stages to appropriately align the data to the clock.

Low-Latency and Low-Overhead Mesochronous Synchronizer 4.2.2 [7]
Description

Receiver interface samples incoming data either on the falling or rising
clock edge, depending on the strobe signal sent by the transmitter. The
strobe signal toggles with the data lines and is delayed and synchronized
at the receiver, and further used to control input latches. Metastabilities
may arise only during learning phase (only once after reset), when
sampling strobe signal and thus off the data path.

Four-Stage Mesochronous Synchronizer 3.2.7 [17]
Description

Employs four stages (ring buffer) at the transmitter for data transmis-
sion, which are alternately written to provide resolution time and new
data to the receiver every cycle. The receiver either directly latches data
from the transmitter’s stages or buffers it to a FIFO (data burst). A token
mechanism is used to indicate validity of data items in one direction and
for backpessure in the other direction. Also can be extended to support
transmission between multi-synchronous modules.
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9.1.2 Table of Plesiochronous Synchronizers

Plesiochronous/Periodic Synchronizer

Name Chapter Reference
Plesiochronous FIFO Synchronizer 5.2.1 [12]
Description Extended Two Element FIFO Synchronizer, a resynchronization signal

switches between pointer of transmitter and pointer of receiver if the
phase drifts over an entire cycle.

Periodic Asynchronous Synchronizer 5.2.2 [12]
Description Clock prediction mechanism; generates a keep-out signal that deter-

mines if the transition of the predicted clock cycles lies in the keep-out
region of the local clock and controls the multiplexer of a two-register
synchronizer.

Adaptive Synchronization 3.2.5 [26]
Description Basically a mesochronous synchronizer, but in conjunction with a

certain learning phase (“continuous tracking” mode) it is possible to use
it as plesiochronous synchronizer too.

Low Latency Plesiochronous Data Retiming 5.2.3 [15]
Description A synchronizer-avoidance method for mesochronous and ple-

siochronous systems. Data items are sent one-by-one in so-called
cells. To regulate the data rate, cells can also contain non-data items
(the receiver destinguishes). In a plesiochronous system data is retimed
(delayed) by a variable amount of time (to cope with the variable phase
drifts), if the receiver would sample data during the exclusion region.

Low-Latency and Low-Overhead Plesiochronous Synchronizer 5.2.4 [7]
Description Based on Low-Latency and Low-Overhead Mesochronous Synchro-

nizer 3.2.6. Employs a continuous learning phase (samples strobe
signal not only once after reset). Cope with plesiochronous systems,
modules with same clock frequency but slowly drifting phase shift.

Four-Stage Mesochronous Synchronizer 3.2.7 [17]
Description The Four-Stage Mesochronous Synchronizer (see Table 9.1.1) can be

extended (adding more stages to the transmission buffer) to support
plesiochronous (multi-synchronous) modules.
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9.1.3 Table of Synchronizers for Systems with Uncorrelated Clocks

Synchronizer for systems with uncorrelated clocks

Name Chapter Reference
Two-Flip-Flop Synchronizer, Waiting Synchronizer 3.2.1

6.2.1
[12] [27] [28]

Description
It has the same structure as the Brute-Force Synchronizer, but synchro-
nizes handshake signals instead of directly modifying the data stream.
Hence requests from the transmitter are synchronized by a cascade of
flip-flops. Provides a MTBF of 10204 years at a data rate of 200 MHz.

Conservative Synchronizer [27]
Description

Extends the flip-flop cascade of the Two-Flip-Flop Synchronizer by a
third flip-flop to enhance resolution time and increase the MTBF.

Asynchronous FIFO Synchronizer,
Two-clock FIFO Synchronizer

6.2.17 [12] [28]

Description
Synchronization is performed on transmit/receive pointers (used to
detect full/empty conditions of FIFO). New data is shifted into FIFO
from the transmitter clock domain and pulled out of FIFO into the re-
ceiver clock domain. Flow-control is enabled via full and empty signals.

Stoppable Clocks Module 6.2.7 [12]
Description

Local clock is only generated on incoming events (requests). The
receiver employs an asynchronous interface, but works internally
synchronous. The event-driven clock eliminates synchronization delay
and the associated probability of synchronization failure.

Asynchronous Interlocked Pipelined CMOS Circuits 6.2.8 [44]
Description

Asynchronous data-driven clocking technique. Provides a strobe circuit
that generates a clock signal upon data valid signals. Can be used at
4.5 GHz in best case conditions (3.3 GHz in average case).
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Synchronizer for systems with uncorrelated clocks

Name Chapter Reference
Asynchronous Wrapper for Heterogeneous Systems 6.2.9 [4]
Description

Provides asynchronous input and output interfaces for (locally) syn-
chronous modules of a GALS system. The wrapper employs a 4-phase
handshake (performed within one clock period by an AFSM) and
stretches the clock of the wrapped module.

A Robust Synchronizer 6.2.2 [59]
Description

An extension of a Jamb-Latch Synchronizer (basically a Two-Flip-Flop
Synchronizer using Jamb-latches), to reduce the supply voltage and
increase the metastability resolution time.

Pausible Clocking 6.2.10 [58]
Description

A FIFO-based synchronizer that uses pausible clocking technique and a
2-phase handshaking protocol to interface differently clocked modules.
Each module employs a PCC (pausible clocking control) unit to control
the access to the asynchronous FIFO.

A Synchronizer Design Based on Wagging 6.2.15 [1]
Description

Employs an extended version of a dual-edge triggered flip-flop
(DETFF). The DETFF employs three paths (each including an inverter
loop), which alternately sample the input and output the sampled data
according to another clock with a different phase than the sampling
clock.

SCAFFI: Asynchronous Interface 6.2.11 [41]
Description

Stretchable Clock Asynchronous Flexible FPGA Interface, SCAFFI, is
an asynchronous interconnect, that connects mutually asynchronous
modules and uses a pausible clocking mechanism. Is capable of
stretching the clock using both logical levels. Provides a 4-phase hand-
shake and bundled data mechanism between communication partners.
Between SCAFFI and the module (receiver, transmitter) a 2-phase
handshaking mechanism is used. A dual-rail version of SCAFFI is
provided for long-wire interconnects.
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Synchronizer for systems with uncorrelated clocks

Name Chapter Reference
Register-Communication 6.2.3 [32]
Description

Introduces a communication register that supports non-blocking data
transfer (write and read accesses are never paused) between mutually
asynchronous domains (clocked or self-timed). The four different types
of communication register are used as wrapper circuits for modules.

High Rate Data Synchronization in GALS SoCs 6.2.6 [18]
Description

Locally delayed latching (LDL) is used to synchronize data between
mutually asychronous modules within a GALS system. Employs an
asynchronous controller that assures that the high time of the clock of
the module is long enough to resolve possible metastabilities at the
input latch.

Robust Interfaces for Mixed-Timing Systems 6.2.18 [10]
Description

The mixed-timing FIFOs provide a variable number of cells, each
with a put (transmit) and a get (receive) interface; these cells are
circular arranged. The modular structure of the mixed-timing FIFO
enables several combinations and hence allow communication between
clocked and/or self-timed modules. The clocked version employs a
full/empty controller, the self-timed version uses a 4-phase handshake
and single-rail bundled data communication channel instead.

Pipeline Synchronization 6.2.19 [47]
Description

A pipeline using a k-staged 2- or 4-phase protocol FIFO (with bundled
data channel) with an asymmetric or symmetric synchronizer element,
respectively, per stage to synchronize mutually asynchronous modules
or asynchronous input signals. Data stream synchronization is done
along with the data flow.
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Synchronizer for systems with uncorrelated clocks

Name Chapter Reference
Interfacing Synchronous and Asynchronous Modules within a
Highspeed Pipeline

6.2.13 [50]

Description
Combines a globally synchronous pipeline with locally asynchronous
modules using a synchronously stoppable clock for the highspeed
pipeline. The pipeline interface controller generates the stoppable clock
(ring oscillator) without a mutual exclusion element. Further it handles
the handshaking and saves the state of the clock in the moment when it
is stopped. Uses bundled data approach (including inverter chain that
matches the worst case computation path).

Four-slot Fully Asynchronous Communication Mechanism 6.2.21 [49]
Description

An Asynchronous Communication Mechanism (ACM) that uses a
shared memory communication mechanism without mutually exclu-
sive access to provide fully asynchronous data transfer. A four-slot
algorithm (see Listing 6.1) that avoids control variables in conditional
statements is used to guarantee that no timing interferences between the
communication partners will occur.

A Fast Resolving BiNMOS Synchronizer for Parallel Processor
Interconnect

6.2.16 [31]

Description
Connects two mutually asynchronous modules/systems using parallel
staged Jamb-latches and a multiplexer for switching between the stages.
To latch incoming data the Jamb-latches are alternately activated by an
enable signal, that is generated by a ring counter. The multiplexer is
also controlled by the enable signal, thus enables data forwarding of
the successor stage (successor to the currently enabled latch). There is
only one latch in the data path at a moment in time. Additional stages
provide an increase in MTBF.
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Synchronizer for systems with uncorrelated clocks

Name Chapter Reference
Asynchronous Communication Mechanisms Using Self-Timed
Circuits

6.2.22 [56]

Description
Another ACM based on the four-slot algorithm in Listing 6.1. A
self-timed circuit with 4-phase handshake protocol and bundled data
transmission approach. The ACM constrains possible metastability
events to particular points in the control logic by using additional
arbiters with metastability resolvers for write/read accesses. But loses
the full asynchronism due to used arbiters in contrast to the ACM
from 6.2.21. Note that transparent latches are used which employ
David’s cells.

On-Chip Segmented Bus: A Self-timed Approach 6.2.27 [45]
Description

A self-timed segmented bus architecture to interface modules of a
GALS system. Modules that are closely related in terms of computation
are connected to the same bus segment. A master (transmitter) requests
a connection to a slave (receiver), i.e. ownership of slave’s segment,
either in the same segment or in another segment via the inter-segment
bridge, to communicate.

The Even/Odd Synchronizer 6.2.20 [13]
Description

Synchronizes mutually asynchronous (clocked) systems by alternately
(even and odd clock cycle) writing two registers. At the receiver a
multiplexer picks data from the non last recently written register, to
allow a possible metastability to resolve. The synchronizer is similar
to the Two-Register-Synchronizer but with a fixed delay of half a clock
cycle. Is used to synchronize FIFO read and write pointers, in direct use
duplicates and drops may occur.

Implementing a STARI Chip 6.2.23 [29]
Description

Self-Timed At Receiver’s Input (STARI) uses self-timed as well as syn-
chronous circuits. Communication is done between clocked modules
(appear self-timed to the FIFO) via a self-timed FIFO (appears clocked
to the modules). Receiver gets the position of the first data packet, then
waits until FIFO is half-filled before it receives data items. STARI uses
inverted dual-rail data encoding with a four-phase handshake protocol.
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Synchronizer for systems with uncorrelated clocks

Name Chapter Reference
A Solution to a Special Case of the Synchronization Problem 6.2.26 [51]
Description

Periodic Synchronizer, it uses a shift-register as basis and exploits
the periodicity and predictability of the clocks (must be known in
advanced). The synchronizer generates a window signal based upon
the clock to signal if it is safe to sample or not. This window signal is
synchronized to the receiver’s clock domain by the shift-register. The
synchronized signal never lags more than a fraction of receiver’s clock.

Efficient Self-Timed Interfaces for Crossing Clock Domains 6.2.24 [9]
Description

Improvement of the STARI approach to support mesochronous,
plesiochronous, rational and mutually asynchronous clocking.
Mesochronous clocking is improved by using a special latch that
employs a generic latch (single-stage FIFO) and a latch controller
(Muller C-Element) that generates the clock for the latch upon the
transmitter’s and receiver’s clocks. For rational clocking an additional
rate-multiplier has to be employed. For plesiochronous clocking a
near-miss detector is needed, that detects if a rising clock edge occurs
near to the self-reset of the latch controller. The latter both can be
combined to support mutually asynchronous clocking.

A Predictive Synchronizer for Periodic Clock Domains 6.2.25 [25]
Description

Synchronizes systems within periodic (mutually asychronous) clock
domains by exploiting the periodic nature of the clocks. Detects
conflicts between two clocks one clock cycle ahead and delays the
sampling of the input in case of a predicted conflict.
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Synchronizer for systems with uncorrelated clocks

Name Chapter Reference
Fast Universal Synchronizer 6.2.4 [20]
Description

Synchronizes a 2-/4-phase handshake protocol between mutually
asynchronous domains, using a bundled data channel.

Point to Point GALS Interconnect 6.2.12 [37]
Description

Provides synchronous receiver and transmitter interface circuits to use
an asynchronous interconnect within a GALS system. Uses a pausible
clocking technique to transmit data. Can be extended by a buffering
FIFO.

Using Stoppable Clocks to Safely Interface Asynchronous and
Synchronous Subsystems

6.2.14 [38]

Description
Using stoppable clock mechanism to synchronize incoming asyn-
chronous signals to the local clock domain. Employs a 4-phase
handshake to the asynchronous transmitter.

Micropipeline 6.2.5 [53] [22] [55]
Description

Implements a 2-phase handshaking mechanism for a bundled data
approach as a pipeline using Muller C-Elements. Namely a closed-loop
handshaking pipeline/interface, using bounded delays. Also used for
a ripple-through FIFO to interface modules of a GALS system, or for
clock recovery, generation and distribution.

144



9.1.4 Table of Ratiochronous Synchronizers

Ratiochronous Synchronizer

Name Chapter Reference
Rational Clocking 4.2.1 [43]
Description

Based on the phase relationship of two clocks that is given as a rational
number (frequency ratio). This is used to predict when it is safe to
sample data and further to generate a communication schedule (e.g.
written to a LUT). The schedule is used to enable or ’pause’ a latch on
the transmitter as well as on the receiver side. Clock may not be known
in advance, therefore a Run Time Scheduling can be introduced.

A Flexible Communication Scheme for Rational-Related Clock
Frequencies

4.2.2 [5] [6]

Description
Based on the Low-Latency and Low-Overhead Mesochronous/-
Plesiochronous Synchronizer [7]. Introduces a design style called
Globally-Rationchronous Locally-Synchronous (GRLS), the basically
frequencies of the communication partners has to be rationally related.
The synchronizer can to cope with unknown phase differences (skew)
in contrast to the rational clocking technique from [43]. Receiver
interface samples incoming data either on the falling or rising clock
edge, depending on the strobe signal sent by the transmitter. The strobe
signal is generated by a regulator circuit at the transmitter toggles with
the new data item at the output FIFO of the transmitter and is delayed
and synchronized at the receiver, and further used to control input
latches. Metastabilities may arise only during learning phase, when
sampling strobe signal and thus off the data path.
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9.1.5 Table of Asynchronous (Self-timed) Synchronizer

Synchronizer for Self-Timed Systems

Name Chapter Reference
Glitching Synchronizer 7.2.2 [24]
Description

A Delay-insensitive interface circuit that employs a LEDR protocol
(dual-rail) that synchronizes incoming data to the internal phase by
using two flip-flops that are alternately activated based upon the
transitions on the phase signal.

Double-Edge Flip-Flop Synchronizer 7.2.2 [24]
Description

Extends the Glitching Synchronizer by a third flip-flop to avoid in-
troduced glitches. Double-edge triggered flip-flops are required to
change the output with each phase signal transition. Like the Glitching
Synchronizer it synchronizes incoming data to the internal phase.

Synchronization/Conversion Circuit 7.2.3 [24]
Description

A circuit that converts incoming signals from single-rail to dual-rail. It
is used at input ports of delay-insensitive modules. Further employs a
Glitching Synchronizer to synchronize the incoming data to the internal
phase and calculates the phase line for a dual-rail signal.

Arbiter 7.2.1 [12]
Description

The arbiter basically grants mutually exclusive access to a shared
resource. This feature is used to synchronize asynchronous input
signals into the work flow of a asynchronous (self-timed) system, by
determining which of its inputs was asserted first.

Micropipeline using Muller C-Elements with Schmitt-Trigger
Masking

6.2.5 [40]

Description
Schmitt-Trigger masking is employed at the output of Muller C-
Elements to prevent a possible metastable state to be propagated to
successor stages. The enhanced Muller C-Element is thus used to
build micropipelines. Due to the increased propagation delay such a
micropipeline is only used in self-timed systems.
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Synchronizer for Self-Timed Systems - continued

Name Chapter Reference
A Modular Synchronizing FIFO for NoCs 7.2.5 [39]
Description

Synchronizes clocked as well as self-timed modules. The FIFO
employs modular put (write) and get (read) interfaces, and uses the
asP* handshaking protocol. For long interconnects the LEDR protocol
can be used.

Chain: A Delay-Insensitive Chip-Area Interconnect 7.2.6 [2]
Description

A delay-insensitive NoC interconnect (RTZ), that enables data exchange
between synchronous and asynchronous modules using a one-of-five
data encoding. Chain provides several NoC building blocks as router
and arbiters based on the presented pipeline latch (self-timed latch).

A FIFO Ring Performance Experiment 7.2.4 [35]
Description

An asynchronous FIFO ring with 4-bit wide data path using the asP*
pulse-like protocol. In [35] a 17 stage FIFO ring is compared to a
clocked shift register in terms of performance.

GasP: A Minimal FIFO Control 7.2.7 [52]
Description

Asynchronous control circuit for simple (handshake) pipelines. Em-
ploys two circuit modules (PATH and PLACE), where the PATH
(self-resetting NAND gate) functions as a gate between the pipeline
stages, the PLACEs (inverter loop).

A Doubly-Latched Asynchronous Pipeline 7.2.8 [34]
Description

A single-rail, 4-phase protocol approach for an asynchronous pipeline
using two registers per stage in a master-slave hierarchy. The stages are
decoupled by alternately latching data to the master and slave register
(slave forwards to the successor stage master, while master latches from
predecessor stage slave).
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Synchronizer for Self-Timed Systems - continued

Name Chapter Reference
Implementing a STARI Chip 6.2.23 [29]
Description

The Self-Timed At Receiver’s Input (STARI) approach uses a self-timed
FIFO as interconnect. Since the communication partners appear
self-timed to the self-timed FIFO it can also be used to interface real
asynchronous (self-timed) systems, using an inverted dual-rail data
encoding with a 4-phase handshake protocol.

9.1.6 Table of Interconnects

Types of System Interconnects

Name Chapter Reference
Surfing Interconnect 8.1.1 [30]
Description

The long wire interconnect consists of two lines (data line and timing
chain). A request forwarded on the timing chain pulses inverters on the
data line to refresh the data and thus keep the data signal stable on long
communication channels. Surfing interconnect can be used between all
types of system.

Practical Asynchronous Interconnect Network Design 8.1.2 [42]
Description

An asynchronous staged interconnect using 2-phase handshaking tech-
nique and dual-rail encoding to connect a large number of differently
clocked IP cores. Each IP core needs a 2-phase dual-rail interface or
converter.

Asynchronous Current Mode Serial Communication 8.1.3 [19]
Description

An asynchronous long-wire interconnect that is unaffected from voltage
swing. This serial link is a dual-rail link and uses LEDR proto-
col for communication, further provides on-the-fly LEDR encoding.
Employs a serializer that uses special fast (one gate delay) shift registers.
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Types of System Interconnects - continued

Name Chapter Reference
Asynchronous FPGA Architecture with Distributed Control 8.1.4 [48]
Description

A wrapper circuit for an asynchronous interconnect for FPGA modules
(e.g. IP cores) based on David’s cells. The controller circuit uses
David’s cells to implement the handshake protocol and signals the
arrival of new data for computation.

FLEETzero: An Asynchronous Switching Experiment 8.1.5 [11]
Description

FLEETzero is a chip developed for testing an asynchronous switch
fabric based on GasP control circuits, that introduces an asynchronous
pipeline network. It provides branching and merging components to en-
able connections between e.g. eight sources and eight destinations and
offers new data every six gate-delays. A so-called transport-triggered
architecture with a communication-centric focus to improve system
performance in communication.
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CHAPTER 10
Conclusion

The purpose of this thesis was to gather information around synchronizers and interfacing so-
lutions and methods to arrange a reference guide for technical engineers. The information was
collected by an extensive literature survey. The results of the survey were refined and summa-
rized in the tables of section 9.1 and described in detail in sections 3, 5, 6, 4 and 7 above to create
a guide for developers and others. The synchronizers presented in this thesis are grouped in five
rough categories, Mesochronous, Plesiochronous, Asynchronous, Ratiochronous and Self-timed.
The basic concepts of the synchronizers were identified and described in these five categories.
The solutions of each basic concept group were compared amoung each other in terms of MTBF,
throughput and latency to further determine a prototype that is representive for its group. The
resulting reference guide should support engineers in their decision which synchronizer or inter-
face should be used between different timing domains. The following table (Table 10.1) shows
the identified prototypes as the results of the comparisons between the synchronizers of each
category, that were investigated during the survey (see Chapter 2).

Recommendation

Classification Basic Concept Prototype
Mesochronous

data stream modification Adaptive Synchronizer
3.2.5 [26]

ring buffer Four-Stage Mesochronous Synchronizer
3.2.7 [17]

input latch control Mesochronous Strobe Synchronizer
3.2.6 [7]

Plesiochronous
read pointer synchronization Plesiochronous Strobe Synchronizer

5.2.4 [7]
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Recommendation

Classification Basic Concept Prototype
Asynchronous

handshaking Micropipeline
6.2.5 [53]

pausible clocking Point to Point GALS Interconnect
6.2.12 [37]

parallel staged Wagging Synchronizer
6.2.15 [1]

FIFO pointer synchronization Even/Odd Synchronizer
6.2.20 [13]

conflict detection Periodic Synchronizer
6.2.26 [51]

Ratiochronous
GRLS GRLS Strobe Synchronizer

4.2.2 [5] [6]
Self-timed

access control Arbiter
7.2.1 [12] [33]

self-timed data bus Chain
7.2.6 [2]

handshake pipeline Modular Synchronizing FIFO for NoCs
7.2.5 [39]

Table 10.1: Synchronizer Prototypes
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