
Building Robust GALS Circuits
Fault-Tolerant and Variation-Aware Design

Techniques for Reliable Circuit Operation

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Jakob Lechner
Registration Number 0226071

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger

The dissertation has been reviewed by:

(Ao.Univ.Prof. Dipl.-Ing.
Dr.techn. Andreas Steininger)

(Prof. Jens Sparsø)

Wien, 29.04.2014
(Jakob Lechner)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit

Jakob Lechner
Zur Spinnerin 22/11, 1100 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I would like to thank Prof. Andreas Steininger for his excellent supervision of my PhD research,
his invaluable technical and scientific insights during our discussions and his support and encour-
agement, which never failed to boost my motivation. He significantly influenced my academic
career at an early stage with his remarkable lecture on digital circuit design. In this lecture he
was able to spark my interest for the field, which ultimately led to the completion of this thesis.

Many thanks have to be given to my colleagues and friends from the Embedded Computing
Systems group, Markus Ferringer, Matthias Függer, Marcus Jeitler, Alex Kößler, Robert Najvirt,
Rameez Naqvi, Thomas Polzer, Thomas Reinbacher, Varadan Savulimedu Veeravalli and Martin
Zeiner. I want to thank them for all the helpful and inspiring discussions, the collaboration
in research projects and the late hours spent together when a paper submission deadline was
approaching. The great team spirit and companionship is what makes this research group special.

Furthermore, I would like to thank Prof. Ulrich Schmid for the opportunity to perform my
research as a part of the FATAL project1. Thank you also has to be said to Traude Sommer for
her administrative support and her efforts to remind me to go home when time was getting late.

With great appreciation I also want to thank Prof. Alex Yakovlev from the Newcastle Uni-
versity. Due to his support I was able to join his research group as a guest researcher for half
a year. This visit2 was a fantastic opportunity to meet and work with excellent researchers and
allowed me to perform the final steps towards the completion of my thesis.

A big thank you goes to all my friends who spent time with me outside of the university and
helped me to forget about my research once in a while and enjoy my free time.

Finally, I want to express my deepest gratitude to my parents, my brother and my sister for
their lifelong support and love! Thank you!

1This work received funding from the Austrian Science Foundation (FWF): FATAL project, no. P21694.
2The visit in Newcastle was supported with a Marietta Blau Grant of OeAD – GmbH, funded by the Austrian

Federal Ministry of Science and Research (BMWF).

iii

Abstract

Digital integrated circuits perform computations following a well-defined functional specifica-
tion. Any deviation from the circuit’s expected behaviour breaks the boundaries of this spec-
ification and can therefore lead to unknown and unwanted circuit states, miscomputations and
ultimately a service failure. Today transient faults are responsible for most of the circuit fail-
ures. They are typically triggered by adverse external influences like radiation, electromagnetic
interference or variations of supply voltage and ambient temperature during operation. Fault-
tolerance is the capability of a circuit to maintain its correct operation despite of such effects.

In this thesis we investigate fault-tolerance mechanisms applied to GALS-style circuits.
GALS, short for globally asynchronous locally synchronous, is a design paradigm, which par-
titions a complex circuit into several locally synchronized modules and performs data transfers
between these modules by means of asynchronous handshake channels. This is a systematic
approach to reduce timing dependencies in circuits and therefore ease their physical implemen-
tation. Based on the fundamental structure of GALS circuits, this thesis is split into a part
dedicated to fault-tolerant computation in synchronous modules and a part, where mechanisms
for reliable data transfers in asynchronous communication channels are explored.

For fault-tolerant computation we propose two new modular redundant circuit architectures.
The key concept in both cases is to apply full replication to all circuit elements of the targeted
GALS module, including the clock source and the clock tree. In contrast to conventional modu-
lar redundant circuits, replicated units can therefore be operated with independent clock signals.
This simplifies circuit timing and increases flexibility with respect to the physical partitioning of
redundant components. State restoration is performed at dedicated checkpoints, which are inter-
woven with regular computation cycles. Stoppable clocks, commonly used in GALS circuits for
safe data exchange among locally synchronous modules, provide the underlying framework for
executing the recovery process at these checkpoints. While the proposed architectures share the
same basic idea, we engage two different methods for state exchange and majority voting during
the recovery and compare their area, performance and reliability properties.

In the second part of the thesis we advocate for the combination of delay-insensitive and
error detecting codes to build asynchronous communication channels between GALS mod-
ules. This approach integrates variation tolerance and fault tolerance and therefore provides
a comprehensive form of robustness. First we present a systematic analysis of common delay-
insensitive codes to determine their resilience against transient faults and what capabilities as-
sociated error detecting codes need to have to mitigate a certain number of such faults during
a transmission. Based on these theoretical results, implementations for various encoder and
decoder circuits are developed, which can offer protection against single or double faults.

v

Kurzfassung

Digitale integrierte Schaltungen führen Berechnungen auf Basis einer genau definierten Spezi-
fikation durch. Jegliche Abweichung vom erwarten Verhalten einer Schaltung kann diese Spezi-
fikation verletzten und daher zu unbekannten und unerwünschten Schaltungszuständen, Fehlbe-
rechnungen und letztendlich zum Totalausfall der Schaltung führen. In den allermeisten Fällen
sind heutzutage transiente Fehler, ausgelöst durch ungünstige externe Einflüsse wie Strahlung,
elektromagnetische Interferenzen oder Spannungs- und Temperaturvariationen, verantwortlich
für solche Ausfälle. Kann eine Schaltung ihre korrekte Funktion trotz dieser Effekte aufrecht
erhalten, so spricht man von einem fehlertoleranten Design.

In dieser Arbeit untersuchen wir die Anwendung von Fehlertoleranz-Mechanismen im Kon-
text von sogenannten GALS-Schaltungen. Charakteristisch für GALS, abgekürzt für global
asynchron, lokal synchron, ist die Aufteilung von komplexen Schaltungen auf mehrere lokal
synchronisierte Module und der Einsatz von asynchronen Übertragungskanälen zum Datenaus-
tausch. Dieser systematische Designansatz begrenzt Zeitabhängigkeiten auf einzelne Module
und erleichtert somit die physische Umsetzung der Gesamtschaltung.

Im ersten Teil dieser Arbeit werden zwei neue Ansätze präsentiert, um GALS-Module mit-
tels Mehrfachredundanz gegen Fehler zu schützen. Die Kernidee ist in beiden Fällen die voll-
ständige Replikation aller Schaltungsbestandteile des entsprechenden GALS-Moduls, was ins-
besondere auch den Taktgeber und das Taktnetz einschließt. Im Gegensatz zu konventionellen
redundanten Schaltungen, können replizierte Einheiten daher mit einem unabhängigen Taktsi-
gnal versorgt werden. Das vereinfacht das Zeitverhalten der Schaltungen und erhöht die Flexi-
bilität bei der Aufteilung von redundanten Komponenten. Die Detektion und Korrektur von feh-
lerhaften Schaltungszuständen erfolgt zu bestimmten Kontrollpunkten, die zwischen den regulä-
ren Rechenvorgängen eingeschoben werden. Anhaltbare Taktgeneratoren, die häufig in GALS-
Schaltungen für den sicheren Datenaustausch zwischen lokal-synchronen Modulen Verwendung
finden, bilden die Basis für die Implementierung dieses Wiederherstellungsprozesses.

Zur zuverlässigen Kommunikation zwischen GALS-Modulen wird dann im zweiten Teil der
Arbeit eine Lösung vorstellt, die zeit-insensitive (engl. delay-insensitive) und fehlerdetektieren-
de Codes verbindet. Durch diesen Verband ist es dem Empfänger möglich sowohl Variationen
im Zeitbereich, als auch Fehler im Wertebereich des übertragenen Signals zu tolerieren. Zu-
nächst analysieren wir bekannte zeit-insensitive Codes systematisch auf ihre Widerstandsfähig-
keit gegen Fehler und bestimmen die benötigte Stärke der komplementären fehlerdetektierenden
Codes, um einer gewissen Anzahl von Fehlern während der Datenübertragung standzuhalten.
Auf Basis dieser theoretischen Ergebnisse werden dann verschiedene Implementierungen für
Kodierungs- und Dekodierungsschaltungen entwickelt und deren Eigenschaften evaluiert.

vii

Contents

1 Introduction 1
1.1 Circuit Timing . 2
1.2 Dependable Circuits . 3
1.3 Scope and Methodology . 4
1.4 Structure of the Thesis . 5

2 Dependable Computer Systems 7
2.1 Taxonomy of Dependable Systems . 7

2.1.1 Threats of Dependability . 8
2.1.2 Attributes of Dependability . 10
2.1.3 Means to Attain Dependability . 14

2.2 Faults in Integrated Circuits . 17
2.2.1 Transient Faults . 17
2.2.2 Permanent Faults . 20

3 Circuits Background 21
3.1 Asynchronous Circuit Design . 21

3.1.1 Delay Models and Classification of Asynchronous Circuits 22
3.1.2 Asynchronous Handshake Protocols 23
3.1.3 Control Elements . 24
3.1.4 Datapath Implementation . 25

3.2 Globally Asynchronous Locally Synchronous Circuits 28
3.2.1 Synchronization in Digital Systems 29
3.2.2 Brute-Force Synchronization . 30
3.2.3 Pausible Clocking . 31

3.3 Fault Tolerance in Integrated Circuits . 34
3.3.1 Hardware Redundancy . 34
3.3.2 Temporal Redundancy . 37
3.3.3 Information Redundancy . 38

4 Fault-tolerant Computation in Synchronous Modules 43
4.1 Modular Redundancy in GALS . 43
4.2 Approach I: Parallel Recovery . 45

ix

4.2.1 Recovery Controller . 46
4.2.2 Timing Constraints . 48
4.2.3 Robustness of the Recovery Circuitry 49
4.2.4 Formal Verification of the Recovery Controller 51
4.2.5 Area & Performance . 54
4.2.6 Proof of Concept . 55

4.3 Approach II: Serial Recovery . 56
4.3.1 Recovery Controller . 58
4.3.2 Timing Constraints . 61
4.3.3 Robustness of the Recovery Controller 61
4.3.4 A Short Note on Long Faults (Permanent Defects) 65
4.3.5 Verification . 67
4.3.6 Area & Performance . 71

4.4 System Architecture . 72
4.4.1 Selective Hardening of GALS Modules 73
4.4.2 Replica Partitioning . 74
4.4.3 Voting on Output Data . 74

4.5 Recovery Strategy . 79
4.5.1 Recovery Period . 79
4.5.2 Minimising the Recovery State . 79
4.5.3 Replica Determinism . 80
4.5.4 System-Level Considerations . 82

4.6 System Evaluation . 83
4.6.1 Design Automation . 84
4.6.2 Area & Performance . 84
4.6.3 Reliability . 87

4.7 Related Work . 93

5 Robust Asynchronous Inter-Module Communication Channels 101
5.1 Delay-Insensitive Fault-Tolerant Codes . 102

5.1.1 Problem Description: Transmission Faults 102
5.1.2 Formal Prerequisites . 104
5.1.3 Building Subcodes . 104
5.1.4 Combining DI and ED Codes . 106

5.2 Approach I: Robust 4-phase Dual-rail Channels 113
5.2.1 Fault Model . 114
5.2.2 Proposed Implementation . 115
5.2.3 Metastability-Tolerant Implementation 117
5.2.4 Implementation Details . 120
5.2.5 Evaluation . 121

5.3 Approach II: A Generic Sender/Receiver Implementation 124
5.3.1 Output Port . 124
5.3.2 Input Port . 125

x

5.3.3 Control Circuits . 126
5.3.4 Evaluation . 128

5.4 Related Work . 129

6 Summary & Conclusion 137

7 Future Work 141
7.1 Mesochronous Modular Redundant Systems 141
7.2 Reconfigurable GALS Architectures . 142
7.3 Recovery of Memory Cells . 143
7.4 Robust 2-phase Delay-Insensitive Codes . 144
7.5 Comprehensive Evaluation of Robust DI Channels 144

A Additional Resources 145
A.1 Scripts for Fault-Injection Experiments . 145
A.2 Reliability Evaluations . 146

Bibliography 151

xi

CHAPTER 1
Introduction

Integrated circuits have made their way into almost every aspect of our lives and have been able
to fundamentally change the way how we work, spend our free time, obtain information and
communicate. They can be found in general purpose hardware like classical personal comput-
ers, servers or notebooks, as wells as in mobile devices like tablets, smart phones or wearable
computers. Mobile computers in particular have been transforming how we interact with the
digital world in the past few years (and will potentially continue to do so in the years to come).
Beyond that there is an abundance of applications in embedded systems, usually designed to
perform a very specific function. These applications range from ordinary household appliances
and consumer electronics like dishwashers, MP3 players, digital cameras, etc. to professional
equipment used, e.g., in telecommunication or medical systems. Large numbers of embedded
devices can also be found in all modern means of transportation like cars, aircraft or trains.

Semiconductor technology, the propellant behind this digital revolution and precursor of
the information age, has undergone a remarkable and fascinating evolution in the past six to
seven decades. Even though the first discoveries in the field of semiconductors date back to
the 19th century [128], a pivotal moment for the emergence of integrated circuits, as we know
them today, is the development of the transistor. In 1947 John Bardeen and Walter Brattain
demonstrated the first transistor design at Bell Labs and only one year later William Shockley
proposed an improved device, known as the bipolar junction transistor [93]. The fabrication
of the first MOSFET device, just about a decade later in 1960, by John Atalla and Dawon
Kahng then spurred an unprecedented technological race. Driven by advances in fabrication and
process technology, transistor sizes kept shrinking continuously and the number of transistors
that could be built into an integrated circuit grew exponentially. Just within fifty years industry
went from chip designs with a couple hundred transistors to today’s processors, graphics cards
and FPGAs, containing several billions of transistor devices. Technology scaling and rising
integration densities, allowing for powerful chip designs at reduced costs, were and still are the
backbone of the semiconductor success story.

1

1.1 Circuit Timing

The progress of semiconductors in the last decades, however, has not been possible without
severe problems to solve, without tremendous efforts both in academic and industrial research
institutions to deepen our understanding of physical processes, to develop increasingly intricate
fabrication methods, and figure out ways to deal with rising design complexities. As industry
today is determined to continue scaling following Moore’s Law [74], the battle to keep pushing
the boundaries is still astir and with every technology node new challenges appear.

An increasingly severe problem of chip designs fabricated at 90 nm and below is circuit tim-
ing. Timing plays a key part in the overall design process because computations are usually
synchronized with the help of a global clock signal, which controls all sequential elements in
the circuit. This clock, being a periodic signal, enforces a rigid time base for the switching activ-
ities of all other signals. Thus, timing of every signal in such a synchronous design needs to be
carefully analysed to make sure that all signals comply with the timing constraints (setup/hold
constraints) mandated by the clock signal. One reason why this analysis has become more and
more difficult with recent technology nodes is the massive imbalance how gate and interconnect
delays are affected by scaling. While gate delays generally have been on the decline with ev-
ery new technology generation, the opposite is true for interconnect delays: Due to longer and
thinner wires, as well as smaller wire pitches, interconnect RC delays have deteriorated signif-
icantly, as can be seen in [44, 45]. These scaling trends have shifted the earlier dominance of
gate delays as the main contributor to total circuit delays towards interconnect delays. In re-
cent technologies relative gate and interconnect delays differ by approximately three orders of
magnitude [44]. This has severe impacts on the design flow of integrated circuits. While gate
delays are known relatively early in the implementation process, basically right after synthesis,
interconnect delays can only be modelled when the final chip layout has been performed, i.e.,
close to the end of the design flow. If unresolvable timing violations are uncovered at this stage,
a complete redesign and reimplementation of the circuit might be unavoidable.

Another side effect of aggressive scaling are timing uncertainties, e.g., caused by process
variations. To guarantee correct circuit operation these uncertainties have to be accounted for,
usually by adding conservative timing margins (and thereby reducing the performance gains
again, which we expect by downscaling feature sizes). Process variations originate from imper-
fections in chip fabrication, which can be traced back to random processes during the placement
of dopants, or limited resolution of lithographic fabrication steps [121]. At nanometre scale these
variations have a significant impact on crucial device parameters like oxide thickness, channel
length and width, doping profiles, as well as interconnect geometries (wire width/thickness).
The gate oxide thickness of transistors, e.g., can be controlled with an astounding accuracy of 1
to 2 atom layers. However, in 30 nm and below the gate oxide only consists of approx. 5 to 15
atom layers [121]. Consequently one or two layers more or less can already make a notable dif-
ference. The same is true for the placement of impurities in the channel region. With technology
nodes below 90 nm the number of dopant atoms is less than hundred, somewhere in the order of
a few tens of atoms [121]. Depending on the specific technology used, process variation-related
timing uncertainties can account for up to 30% of the overall timing budget [108].

A final key challenge we want to address here is the design of clock trees [45]. The clock

2

signal is distributed to all sequential endpoints, which are usually scattered all over the entire
chip area. To achieve high circuit performance the skew and jitter of the clock signal need to be
rigorously minimised. However, when dealing with large clock trees and high frequencies, lay-
out has become a rather cumbersome task. Growing interconnect delays and process variations,
as discussed above, further complicate this design challenge: In large clock trees, sometimes
with latencies of several clock cycles, process variations can have a detrimental effect on skew
and jitter [13]. Therefore careful routing of the clock net is required, e.g., by using symmetric
tree layouts like H-trees. Furthermore an optimal buffer placement and sizing has to be found to
evenly distribute clock transitions and drive all loads connected to the clock tree. These clock
buffers, however, consume considerable amounts of power since the clock net typically is the
most active signal of the circuit. In extreme cases the clock tree’s share of total power consump-
tion has been reported to be as high as 40% [24].

Because of the above mentioned issues (and others we did not discuss), globally synchronous
circuits with a single clock domain are mostly a thing of the past [109]. Nowadays circuit de-
signers are dealing with complex synchronous systems that incorporate several clock domains,
usually running at different clock frequencies. Exchanging data across clock domains requires
manual insertion of synchronizer circuits to make sure that incoming data can be safely pro-
cessed at the receiver side. For complex systems with many clock domain crossings this work
can become rather tedious and also error-prone, with severe consequences on the circuit’s relia-
bility, if done wrong. The globally asynchronous locally synchronous design (GALS) paradigm
offers a more robust and systematic approach to integration of separately clocked circuit mod-
ules: Communication between these locally synchronous modules is performed across asyn-
chronous links, using handshake protocols to enable safe data transfers. This methodology
decouples sender and receiver clock domains and eliminates the need for a global clock distri-
bution network. Locally synchronous modules are clocked independently with individual clock
frequencies adapted to their specific requirements and capabilities. With local modules that are
more compact and smaller in size the design of the local clock tree is simplified [30] and wire
lengths of intra-module interconnects can potentially be reduced. Timing problems thus become
more manageable and constraints can be easier met. Since even the latest ITRS report mentions
asynchronous global signalling as a desirable capability for future technologies [45], it can be
expected that GALS architectures will gain in importance.

1.2 Dependable Circuits

Next to performance or power efficiency, dependability can also be an essential requirement for
integrated circuits. In safety-critical systems, like airplanes or spacecraft, nuclear power plants,
transportation systems etc. high dependability is of utmost importance since a failure can po-
tentially threaten human lives, or cause significant environmental damages. Reliable operation
also needs to be specifically addressed for systems that operate in harsh environments, like satel-
lites in space, where increased radiation levels can cause malfunctions of onboard electronics.
For other applications, where a failure does not necessarily lead to a severe catastrophe, high
availability might still be required because service stops are extremely inconvenient for users or
cause notable financial losses.

3

Since we are on the brink of exciting new developments like commercial space travel or
autonomously driving cars, it can be expected that there will be a continuous, if not increasing,
demand in dependable integrated circuit architectures, which will potentially have to meet more
stringent requirements on computational performance and power-efficiency. However, while
large complex designs with high processing speeds can be implemented in modern semiconduc-
tor technology, reliability has become a major concern. Due to aggressive technology scaling,
leading to reduced feature sizes and reduced supply voltages, integrated circuits have become
much more susceptible to faults [10, 94], both of transient and permanent nature. While in the
former case, errors vanish after some time or can be corrected, permanent faults are caused by
damages in the physical structure of the die and will not disappear. Today transient faults are re-
sponsible for most of the circuit failures [114]. They are typically triggered by adverse external
influences like radiation, electromagnetic interference or variations of supply voltage and ambi-
ent temperature during operation. Radiation effects, typically referred to as single event effects,
can produce unwanted voltage pulses in an integrated circuit that might lead to miscomputations
and the corruption of the circuit state, which is maintained in storage elements like flip-flops or
memory cells. Unaccounted voltage or temperature variations can compromise system timing in
rigid synchronous circuits, again resulting in potential miscomputations and erroneous outputs.

To meet the demand of dependably operating circuit designs, fault tolerance has been an
active and thriving research area in the past decades. One of the first seminal works on this
subject was performed by John von Neumann and published in 1956 in a paper, which describes
how reliable systems can be built from unreliable components [117].

1.3 Scope and Methodology

In this thesis we are going to present our research results on robust GALS-based circuit archi-
tectures, which tackle current and future circuit design challenges, especially related to timing,
and also provide correct operation in the presence of external faults like single event effects or
internal faults such as process variations. We were interested to explore how fault tolerance
mechanisms can be applied to such circuit architectures and whether there are any benefits in
comparison to fault tolerance in classical all-synchronous designs. As described above, GALS
circuits consist of a) multiple synchronous modules, which perform computations, and b) asyn-
chronous communication channels between these modules. Therefore, our research efforts were
devoted to hardening these two integral circuit parts, i.e., the computation and communication
components of a GALS system. It was a fascinating aspect of our research that this distinctive
architecture of GALS systems allowed us to investigate quite different sets of fault tolerance
mechanisms, which account for the fundamentally different function and structure of compu-
tation and communication systems: While we explored replication-based techniques for GALS
modules (modular redundancy), building robust asynchronous communication channels mainly
involved protection with error detecting and correcting codes. Even though the presented tech-
niques can cope with permanent faults to some extent and there is a brief discussion on this
in Chapter 4, we focus on the mitigation of transient faults, so called single event transients
(SETs) and single event upsets (SEUs). Dealing with permanent faults requires quite different
counteractive measures, which puts them out of scope for this work.

4

In order to evaluate the viability of the proposed fault tolerance techniques, the associated
circuits were first modelled on register transfer- or gate-level and then synthesised and mapped
to a suitable CMOS technology (90 nm in our case, using an industrial-grade standard cell li-
brary). Functional verification as well as performance analysis was then performed with the
synthesised netlists. We are aware that the accuracy of pre-layout timing annotations is subopti-
mal, however, for the purpose of comparing different solutions we consider this approach to still
yield meaningful results. Verification of the behaviour in the presence of faults was partly done
by running exhaustive fault-injection experiments in a simulator, and partly with model check-
ing techniques to formally prove desired liveness and safety properties for smaller subcircuits.
Reliability evaluation was performed with Markov chain models to derive formulas for the mean
time to failure (MTTF), based on failure and recovery rates as basic parameters.

1.4 Structure of the Thesis

In Chapter 2 we will present a basic taxonomy of dependable computer systems, including con-
cise definitions of relevant terms like faults, errors and failures. Most importantly the concept of
reliability is introduced, along with mathematical definitions for MTTF, or reliability and failure
rate functions. Furthermore we will address dependability threats in digital integrated circuits
in this chapter, first to give an overview on the specific terminology that has been coined in this
research area, and secondly to get the reader acquainted with the origins of faults and failure
mechanisms in integrated circuits, both transient and permanent. Chapter 3 is intended to pro-
vide the necessary circuit-related background for the main part of the thesis. Thus, we give a
brief introduction to asynchronous logic and handshaking protocols, present previous work on
GALS systems and existing solutions with respect to communication issues between locally syn-
chronous modules. A third section in this chapter then is devoted to fault-tolerant circuit design
and the available techniques for leveraging either hardware, time or information redundancy.

The main pillars of this thesis are Chapter 4 and 5. As mentioned above, our research work
is partitioned into fault tolerance techniques for locally synchronous modules and asynchronous
interconnects. This thesis is structured accordingly. First we will present two approaches for
incorporating modular redundancy into GALS circuits. While the system-level fault tolerance
concept for both approaches is the same, they use different methods for state recovery, which
lead to interesting differences in circuit structure and associated properties. In Chapter 5 we
turn to asynchronous interconnects, where we strive for solutions that provide a comprehensive
form of robustness, which combines both variation and fault tolerance. Our approach therefore
advocates the fusion of delay-insensitive and error detecting/correcting codes. First a theoretical
analysis is performed to elaborate what codes can be paired to achieve tolerance against a certain
number of faults. Afterwards we present two link architectures along with specific circuits for
sender and receiver components, ready to be integrated into I/O wrappers of GALS modules. An
overview of the related work will be given at the end of each main chapter, where we elaborate
on commonalities and differences in comparison to the methods we propose.

In Chapter 6 we summarise the presented research results and draw our conclusions. The
thesis then ends with a short final chapter on possible directions for future work.

5

CHAPTER 2
Dependable Computer Systems

According to [8] dependability is the ability of a (computer) system to “avoid service failures
that are more frequent and more severe than is acceptable”. Basically dependability is a measure
to what extent a user can trust that a system will deliver a service or a set of services that complies
with the specification, or ultimately with the user requirements. In this chapter we will introduce
elementary concepts of dependable systems in general and how they relate to digital circuits in
particular. We want to present a concise taxonomy of the concepts and the terminology that will
be used throughout this thesis.

2.1 Taxonomy of Dependable Systems

The availability of a concise taxonomy for concepts related to dependability along with a well-
defined terminology is of vital importance for researchers and engineers working in this field.
It allows the development of a clear understanding of the problems and challenges that have
to be faced, and most notably provides a common view and vocabulary that enables experts to
discuss general concepts and specific techniques, both new and old. Since dependability is a very
broad area and a plethora of researchers and engineers have contributed to it in the last decades,
the used terminology to describe certain concepts or phenomena is often slightly different or
even inconsistent from author to author1. Thus, a first effort to develop a unified taxonomy
was undertaken in 1980, when a joint committee on “Fundamental Concepts and Terminology”
was formed by the Technical Committee on Fault-Tolerant Computing of the IEEE Computer
Society and an IFIP work group on Dependable Computing and Fault Tolerance [8]. Since
then many discussions have led to the continuous refinement of dependability concepts and also
an integration of security aspects. The most recent publication, giving a comprehensive and
elaborated description of the taxonomy dependable and secure computing, is [8]. An outline of
this taxonomy is depicted in Figure 2.1. As can be seen, all aspects of dependability and security
are partitioned into three fundamental categories: Attributes, Threats and Means.

1A wide-spread imprecision, e.g., is the synonymous use of the terms “transient fault”and “soft error”.

7

Threats
Dependability

& Security

Attributes

Means

Reliability [D]

Availability [D,S]

Safety [D]

Confidentiality [S]

Integrity [D,S]

Maintainability [D]

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Figure 2.1: Taxonomy of dependability and security concepts.

2.1.1 Threats of Dependability

Threats to the dependability of a system can be explained by three core concepts: faults, errors
and failures [8]. Each of these concepts describes a specific class of phenomena, events or
system states that occur during the transition of a system from a state of correct operation to a
state where it no longer follows its intended function.

Failures

The service of a system can be expressed as a sequence of externally-visible state changes, as
perceived by the users of the system. A service or system failure, short failure, therefore denotes
the transition from a state where the system delivers a correct service, i.e., operates within its
specified function, to a state of incorrect service [8]. The definitions of reliability, availability and
safety we will present below all relate to the concept of failure. Failures can be described with a
set of failure modes, which are characterised from different viewpoints, like the failure domain,
consistency, or the severity of a failure’s consequences. The failure domain is partitioned into
content failures (with correct timing) and timing failures (with correct content). Obviously,
content and timing failures can also occur simultaneously. In the best case a system simply stops
its service (halt failure), in the worst case the behaviour becomes erratic [8] and wrong data is
produced at wrong points in time (babbling idiot [111]). The concept of consistency refers to
how a failure is perceived by the system’s users. If all user see the same failing behaviour,
this is called a consistent failure, otherwise the failure is classified as inconsistent. The latter
failure type is quite difficult to detect and mitigate, since it can trick correct components into
an inconsistent behaviour. In literature inconsistent failures often are referred to as two-faced,
byzantine, or malicious failures [55].

8

Errors

An error is an incorrect system state, which in a digital computer system is typically manifested
by wrong data stored in some kind of memory element, like a flip-flop or an SRAM cell. An error
may lead to a failure, when it influences the system’s service and its effects become externally
visible. Thus, a system failure can also be understood as an error in some external service
interface. If the presence of an error is indicated by some form of signal, an error is said to be
detected. Undetected errors are called latent errors [8]. Note that an error does not necessarily
need to cause a failure, as it could be overwritten before the erroneous data is processed.

Faults

In [78] a fault is described as “anomalous physical condition” that affects the system behaviour
in some way and can ultimately lead to an error. If a fault causes an error, it is said to be active,
otherwise the fault is dormant. In [8] faults are classified in elementary fault classes, such as:

• Phase of creation: A fault might occur during the development phase or during the use
phase. The development phase includes all activities until a system can be deployed and is
ready for use, e.g., initial concept, specification, implementation, verification, fabrication,
installation, etc. The use phase begins when system starts its operations and provides its
designated service to the respective end user(s).

• System boundaries: An important classification is based on the origin of a fault, which can
be either inside or outside the system boundaries. In the former case we refer to internal
faults, in the latter case to external faults. Internal faults might be design flaws, bro-
ken hardware components due to manufacturing defects or wearout, etc. External causes
among others are incorrect inputs, or harsh environmental conditions such as temperature
variations, radiation, or electromagnetic interference [78].

• Persistence: Faults can either be of transient or permanent nature. Transient faults are
bounded in time and vanish without any explicit repair action [55]. Ionising radiation,
e.g., is a typical source for transient faults. Permanent faults, like physical defects in a
circuit, do not disappear on their own. They persist until the condition has been repaired.

• Phenomenological cause: Natural faults vs. human-made faults.

• Objective: Malicious vs. non-malicious faults. Malicious faults are caused by a human
with the purpose to harm the system (the term “malicious” in this context should not be
confused with “malicious (byzantine) failures”).

The Relationship between Faults, Errors and Failures

Figure 2.2a illustrates how a fault can lead to an error and consequently to a system failure. The
fault can either originate from an internal source or can be caused by some event outside the
system boundaries (external fault). The process when a fault turns into an error is called fault
activation. Once some part of a system is erroneous, the error might be propagated to other parts

9

as a result of the system’s computation steps. As soon as an error reaches a service interface, a
failure occurs as the (sub)system deviates from its specified behaviour. This failure can then be
understood as a fault for another subsystem that uses the services provided by the failed system.
Figure 2.2b summarises the relationships between faults, errors and failures.

Propagation
Error Error

E
rr

o
rPropagation

Internal
Dormant

fault

Activation

External Fault

Subsystem A

Propagation
Error Error

E
rr

o
rPropagation

Subsystem B

Propagation

A

B

Service Status Signals:

t

Service
Failure Service

Failure

Service Interface Service Interface

(a) Error propagation.

fault error failure
activation propagation

fault
causation

(b) Fault chain.

Figure 2.2: Faults, Errors and Failures.

2.1.2 Attributes of Dependability

Attributes refer to properties a dependable and/or secure computer system might need to have
to some extent, depending on the specific application and the users’ requirements. The pri-
mary attributes identified in [8] are: Reliability, Availability, Safety, Confidentiality, Integrity
and Maintainability. In Figure 2.1 we have tagged these attributes with capital D and S to high-
light their relationship to either dependability or security. As can be seen some attributes are
relevant for dependability, some for security, and some relate to both fields. Please note that this
classification does not say that maintainability, e.g., is only important for dependable, and not at
all for secure systems. The given allocation of attributes is only supposed to give an idea where
the primary concerns of the respective systems lie. Note that security, even though it is a matter
of vital importance, is currently not on our research agenda. Therefore, we will only discuss the
mentioned attributes with respect to their significance for dependable systems.

Reliability

The ability of an item to perform a required function, under given environmental and operational
conditions and for a stated period of time (ISO8402).

High reliability is crucial for systems where a single deviation from the expected behaviour
would lead to catastrophic consequences, e.g., in airplanes or power plants. The attribute is
associated with a reliability function R(t), which defines the probability that a system provides

10

the correct service until time t [92]. R(t) can be defined over the time to failure T , i.e., the time
it takes from the start of operation until the system fails for the first time. T is usually interpreted
as a continuous random variable with a probability density function f(t), called failure density.
The associated distribution function F (t) thus gives the probability that a failure occurs in the
interval (0, t] and is defined as

F (t) = P (T ≤ t) =

∫ t

0
f(u) du for t > 0. (2.1)

Since the reliability function R(t) denotes the probability that no failure occurs in interval
(0, t] it can therefore simply be derived from F (t) by

R(t) = P (T > t) = 1− F (t) =

∫ ∞
t

f(u) du for t > 0. (2.2)

While the failure density defines the probability that a system will fail within a certain time,
very often the probability that a system will fail in some interval (t, t + ∆t], given that it was
fully operational until t, is of interest. This conditional probability can be expressed as

P (t < T ≤ t+ ∆t |T > t) =
P (t < T ≤ t+ ∆t)

P (T > t)
=
F (t+ ∆t)− F (t)

R(t)
(2.3)

If this probability is divided by the length of the investigated time window ∆t, we receive
a probability per unit time. Note that this is no longer a probability but a rate, called failure
rate [53]. Consider, e.g., the conditional failure probability to be 0.4 within a time of 2 days.
Then the resulting failure rate would be 0.2 failures per day, or 1.4 failures per week, depending
on the unit. A commonly used unit in reliability engineering is Failures in Time (FIT), which
represents the failure rate in 109 hours, i.e., 1 FIT equals a rate of 1 failure in approx. 115000
years. We can now take the limit ∆t → 0 of Equation 2.3 divided by ∆t, which gives us the
failure rate function z(t), sometimes also referenced as (instantaneous) hazard rate [116]:

z(t) = lim
∆t→0

P (t < T ≤ t+ ∆t |T > t)

∆t
= lim

∆t→0

F (t+ ∆t)− F (t)

∆t

1

R(t)
=
f(t)

R(t)
(2.4)

The failure rate function can assume various shapes. For modelling the failure rate over the
lifetime of a system the bathtub curve is usually used (see Figure 2.3). Very often it is assumed
that the failure rate function has a constant value z(t) = λ. This means that the probability of
failure does not depend on how long ago the system has been put into operation, or in other
words, there is no history that influences whether the system is more or less likely to fail at a
particular point in time. A constant failure rate is useful for analysing system reliability in case
faults are caused by external phenomena, like radiation or electromagnetic interferences, under
certain (constant) worst-case conditions (see Section 4.6.3).

The time to failure T can be distributed in many different ways, depending on the specific
system and the environment in which it is operating. Examples for possible distributions are:
Exponential distribution, Gamma distribution, Normal distribution, Weibull distribution, etc.
Most commonly an exponential distribution is chosen in reliability analysis, because it is math-
ematically very simple and gives a realistic failure model for most systems [92]. It is the only

11

z(t)

t0

I II III

Figure 2.3: Bathtub curve modelling failure rate over a system’s lifetime across three typical
intervals: I) Burn-in period, II) useful life, and III) wear-out period.

distribution with a constant failure rate and is therefore suitable to model the “useful life” part of
a components life cycle (cf. Figure 2.3) [116]. In case of an exponential distribution the failure
density f(t) with the parameter λ can be defined as

f(t) =

{
λe−λt for λ > 0, t > 0
0 otherwise

(2.5)

Consequently, the reliability function R(t) is

R(t) = P (T > t) =

∫ ∞
t

f(u) du = e−λt for t > 0, (2.6)

which allows us to derive the failure rate function z(t):

z(t) =
f(t)

R(t)
=
λe−λt

e−λt
= λ. (2.7)

A key measure to describe a system’s reliability is the Mean Time to Failure (MTTF), which
is defined as the expected time to the first failure after the start of system operation. Formally
the MTTF can therefore be defined as the expected value of the time to failure T :

MTTF = E(T) =

∫ ∞
0

tf(t) dt. (2.8)

Since f(t) can be written as

f(t) =
dF (t)

dt
=

d(1−R(t))

dt
= −R′(t), (2.9)

it is also possible to express the MTTF in terms of the reliability function:

MTTF = −
∫ ∞

0
tR′(t) dt = −[tR(t)]∞0 +

∫ ∞
0

R(t) dt (2.10)

As the reliability function equals 0 when t → ∞, the term [tR(t)]∞0 evaluates to 0, and the
MTTF can therefore simply be stated as

12

MTTF =

∫ ∞
0

R(t) dt. (2.11)

In case of an exponential failure distribution the MTTF therefore is

MTTF =

∫ ∞
0

e−λt dt =
1

λ
. (2.12)

Maintainability

The ability of an item, under stated conditions of use, to be retained in, or restored to, a state in
which it can perform its required functions, when maintenance is performed under stated condi-
tions and using prescribed procedures and resources (BS4778).

Maintenance operations can either be repairs or modifications [8]. The former deals with the
removal of faults (corrective maintenance) or with the detection and removal of dormant faults
(preventive maintenance), the latter is concerned with adjustments due to environmental changes
or augmentations of the system’s function (adaptive and augmentive maintenance). Note that
repair operations are similar to the recovery of erroneous states in fault tolerance mechanisms.
However, we will follow the definition in [8] that maintenance involves the activity of an external
agent, e.g., a repair man who replaces failed units.

Availability

The ability of an item (under combined aspects of its reliability, maintainability and mainte-
nance support) to perform its required function at a stated instant of time or over a stated period
of time (BS4778).

Formally the availabilityA(t) of a system can be expressed as the probability that the system
is operational at time t. Note that if a system is permanently broken after a failure and cannot be
repairedA(t) = R(t), i.e., the probability that the system is operational in the interval (0, t] [25].
Availability as dependability measure, however, only makes sense for systems where service
interruptions are tolerable and a repair is possible. To quantify a system’s dependability very
often the average availability is used. This can be expressed as the fraction of time the system
is available to provide correct service [55], i.e., as the ratio of uptimes to total time (uptimes
+ downtimes). The downtimes are typically modelled as the Mean time to Repair (MTTR), or
alternatively as repair rate µ [25]:

µ =
1

MTTR
. (2.13)

The repair rate depends on several factors, like the mean time it takes after a failure until
repair is started, i.e., how fast the failure is detected and the responsiveness of maintenance staff.
Other issues might be how fast spare parts are available in case of defects, and also the time it
takes to fix the system, which is influenced by the maintainability. If failure and repair rates are
constant, the average availability can simply be computed as follows [55]:

13

Aaverage =
MTTF

MTTF +MTTR
. (2.14)

Safety

The safety attribute is an extension of reliability, where failures are partitioned into two cate-
gories: fail-safe and fail-unsafe [25]. In so-called safety-critical systems fail-unsafe failures can
have dramatic consequences, like human injuries, loss of life, or environmental disasters. The
safety function S(t) thus denotes the probability that a system is fully operational, or in case
of failures behaves in a fail-safe manner during the time interval (0, t]. Safety-critical systems
usually have to be certified by an independent certification agency [55].

Integrity

This attribute is concerned with the avoidance of “improper” system alterations [8]. Improper,
in this context, typically means unauthorised.

2.1.3 Means to Attain Dependability

Fault Tolerance

The aim of fault tolerance is to build systems that are able to avoid service failures in the presence
of faults [8]. An essential requirement for designing such systems is the precise formulation of
a fault hypothesis [55]. This hypothesis specifies what kind of faults the system is supposed to
mitigate. Faults are therefore either covered or uncovered by the fault hypothesis. If properly
designed and implemented, the system should be able to detect and recover errors that are the
result of the activation of covered faults. For uncovered faults, on the other hand, the system
behaviour is unspecified and can potentially lead to service failures. Obviously in a reasonable
fault hypothesis the latter kind of faults should be highly improbable so that they do not pose a
threat for dependable system operation.

To be able to mitigate the effects of faults a fault-tolerant system thus needs to be equipped
with mechanisms to detect internal errors and recover the system state before these errors can
propagate to externally visible service interfaces. The key concepts involved in fault-tolerant
system design are error detection and recovery. Figure 2.4 shows a classification of the most
commonly used fault tolerance techniques. Error detection can either be done concurrently to
the system operation or in a preemptive fashion, where the system stops to allow for detection of
latent errors or dormant faults. Preemptive error detection is often performed at system start-up,
but also during operation where, e.g., spare components are checked or memories are analysed
as part of scrubbing routines [8].

Once an error is detected a recovery mechanism has to be executed to prevent the propagation
of errors. Furthermore, it is essential to bring a system back to an error-free state before another
fault is activated, as fault tolerance mechanisms can usually only cope with a limited number of
concurrent faults (as specified in the fault hypothesis). Recovery mechanisms can be split into
two groups: error handling and fault handling techniques. Classical error handling techniques

14

Recovery

Fault Tolerance

Error Detection
Concurrent Detection

Preemptive Detection

Error Handling

Fault Handling

Rollback

Roll−forward

Compensation

Diagnosis

Isolation

Reconfiguration

Reinitialisation

Figure 2.4: Classification of fault tolerance techniques.

include rollback and roll-forward strategies. The fundamental concept for rollback mechanisms
is checkpointing. A checkpoint simply is a complete snapshot of the system state at a specific
point in time, which is stored in a safe memory for later use [56]. If an error is detected, the
system state can be rolled back to the last checkpoint and computations are repeated from there
on. Although the basic principle is simple, many difficult questions are entailed, like when
and how often a checkpoint should be captured, or how can a checkpoint be generated in a
distributed environment with many communicating processes. Furthermore, this approach leads
to a performance degradation due to the execution time overhead when taking a snapshot and
the recomputation when a rollback is necessary. For applications where such overheads are
not acceptable roll-forward techniques can be employed. In these approaches error correction
is directly applied on the current state when errors are detected [42]. Clearly some form of
redundancy is required to be able to do this. The third error handling technique depicted in
Figure 2.4, compensation, follows the idea of masking errors, again by using redundancy to
identify and filter erroneous computation results. Rollback and roll-forward are typically applied
on demand, whereas compensation can either be performed on demand or systematically. In the
latter case masking actions are performed unconditionally at predefined points in time without
prior detection of an error (cf. voting on output data).

When internal faults cause errors, fault handling can be performed following error detec-
tion to prevent that these faults will be activated again [8]. As can be seen in Figure 2.4 the
steps involved in fault handling are diagnosis, isolation, reconfiguration, and reinitialisation.
Diagnosis aims at identifying the location and type of a fault and isolation then tries to separate
a faulty component from the system, so the fault becomes dormant. Reconfiguration replaces
faulty units with spare components or redistributes tasks among active non-faulty components.
Reinitialisation finally updates the state of the new system configuration.

Redundancy plays a key role in the design of fault-tolerant systems. Redundancy can ei-
ther be static, where fault tolerance is structurally built into a system and directly masks fault
effects [104], or dynamic. For dynamic redundancy active actions are required, like error detec-
tion and subsequent error and fault handling activities, as described above. Consequently, static
and dynamic redundancy are also referred to as passive and active redundancy.

Depending on what resource is used to create redundancy, we can distinguish the following
four forms: hardware, time, information, and software redundancy. Many advanced fault toler-

15

ance mechanisms often use a bundle of approaches, like static techniques along with dynamic
ones, or a mix of hardware and time redundancy. This is called hybrid redundancy [104].

In hardware redundancy a computation is executed on multiple hardware components to be
able to detect and counteract errors [56]. Typically this is achieved by replication of hardware
units, which can be done on different levels, from transistor and gate to system level. The type
and number of errors that can be mitigated hereby depends on how many physical copies are
available. A well-known example for hardware redundancy are modular redundant systems.

Alternatively to executing a computation on multiple hardware components, in time redun-
dancy re-executions are done on a single component or processing node. Thus potentially high
hardware overheads can be avoided. The downside, however, can be a substantial performance
degradation. Also time redundancy is only effective against transient faults, where it can be
assumed that a fault vanishes before re-execution is performed. Time redundancy can be applied
systematically, i.e., when every computation is replicated and results of successive execution
runs are compared, or, when other error detection mechanisms are available, it can also be im-
plemented on demand (e.g., checkpoint and rollback recovery strategies) [56].

Information redundancy typically uses error detecting and error correcting codes to protect
computations or data transfers against faults. These codes extend processed or transmitted data
words with additional bits, which are some form of checksum of the encoded data bits. With
these redundant bits and with the help of specific decoding algorithms it can be determined
whether a data word contains errors or not. If the applied code is strong enough, i.e., if there is
sufficient redundant information available, the locations of erroneous bits can be inferred, thus
allowing for recovery of the correct data word. Note that information redundancy requires both
additional hardware, for encoders and decoders, as well as extra computation time.

In many complex computer systems nowadays an integral part of the computation is per-
formed in software. For high-reliability applications software redundancy is sometimes used as
a means to mitigate software faults (bugs). This is achieved with the implementation of multiple
functionally equivalent versions of the program code (design diversity), ideally by independent
teams of programmers. The hope driving this approach is that it is unlikely for differently im-
plemented program versions to contain the same type of bugs, i.e., fail for the same input [56].
The redundant program versions can be executed in parallel on different processors (hardware
redundancy), or in sequence on the same processor (time redundancy).

Fault Prevention

Fault prevention includes all possible means to prevent that faults can occur in the first place [25].
During the development phase, e.g., this can be achieved by using rigorous specification of sys-
tem requirements [91], structured design methods and careful verification with, e.g., code re-
views or formal methods. During the use phase the probability of faults can be reduced by using
robust hardware components that are not affected by adverse environmental conditions (electro-
magnetic interference, radiation, etc.), shielding of sensitive system parts, frequent maintenance
operations, etc.

16

Fault Removal

Removal of faults to enhance dependability can be performed either during the development or
during the use phase. In the former case faults have to be identified using verification, diag-
nosed and finally corrected. During the use phase fault removal is mainly conducted through
maintenance, either preventive or corrective.

Fault Forecasting

The term fault forecasting describes various means to evaluate the behaviour of a given system in
the presence of faults [8]. This can either be done with a qualitative or a quantitative evaluation,
or sometimes a combination thereof. Qualitative evaluations aim to analyse conditions that could
lead to a system failure, identify potential failure modes and classify and rank them with respect
to their effect, frequency and severity. A general procedure that can be employed for this kind
of evaluation is called failure mode and effect analysis [107].

Quantitative evaluation techniques on the other hand use probabilistic models of the system
to derive numerical values to what extent a system satisfies the dependability attributes presented
above. In this context these attributes are also called measures of dependability [8]. A wide-
spread technique in reliability modelling, e.g., is the use of Markov chains. An aspect often
involved in quantitative evaluation is testing, which delivers data on failure and maintenance
processes, etc. This data can then be filled into system models to provide probabilistic estimates
for dependability measures, based on realistic system or environmental parameters.

2.2 Faults in Integrated Circuits

In this section we will move our discussion from the general concepts in dependable systems to
the specific dependability issues we face in digital integrated circuits. A widely-used classifica-
tion of circuit faults is the distinction of transient and permanent faults [25]2. We will follow
this classification and briefly address some of the currently predominant causes for both types
of faults in this section. Our focus, however, will be on transient faults since circuit faults with
permanent effects are only a side issue in this thesis. Furthermore, we want to stress that the
fault tolerance mechanisms presented in the Chapters 4 and 5 of this thesis were designed for
mitigation of faults that occur during the use phase of a circuit. This excludes all sorts of devel-
opment faults, like specification and implementation faults or defects that are introduced during
circuit fabrication. While these are critical issues in circuit design, they are usually tackled with
different countermeasures, which are out of scope for our work.

2.2.1 Transient Faults

As described earlier, the duration of a transient fault is assumed to be bounded in time and is usu-
ally very short, e.g., below or around a nanosecond. There are various causes for transient faults

2Sometimes intermittent faults are listed as a third class. However, with respect to the taxonomy presented
above, they can also be described as dormant permanent faults that are activated from time to time, or as repeatedly
occurring transient faults.

17

in integrated circuits, which are normally originating from outside the system boundaries (exter-
nal faults). Examples are radiation effects, electrostatic discharge, electromagnetic interference,
drops in supply voltage or temperature variations [25]. In particular, sensitivity of semiconduc-
tors to radiation has increased dramatically due to technology scaling over the last decades [10].
Thus, radiation effects have become a key threat of deep submicron circuits, even when they
operate at sea level where radiation flux is much smaller than in space or at high altitudes.

Terminology

Since a lot of research has been done in the past decades on radiation effects in semiconductors,
a whole body of technical terms has been coined in this area that have been widely adopted
by most researchers and engineers working in fault-tolerant circuit design. The JESD89A stan-
dard [47], which defines procedures for testing and characterising the resilience of integrated
circuits in (terrestrial) radiation environments, provides definitions of the most commonly used
terms. Generally, radiation effects are referred to as single event effects (SEEs), which are de-
fined as a “measurable or observable change in the state or performance” of an integrated circuit,
caused by a single energetic particle strike [47]. Hence, all terms we will introduce below de-
scribe some kind of single event effect.

Errors that are caused by radiation-induced faults are typically called soft errors, often also
referred to as single event upsets (SEU) [10]3. The term “soft” reflects on the fact that the circuit
is not physically impaired, but a value stored in a memory cell, a latch or flip-flop, e.g., was
changed and thus the circuit state is compromised. Obviously, this condition can be reversed or
recovered by rewriting the correct value into the respective element. Soft errors can be classified
by the way the circuit state is modified: Typically only a single storage cell is affected, which
leads to a single bit upset (SBU). If more than one bit of information is altered, this is called
multiple-cell upset (MCU), and in the case that the affected bits belong to the same data word this
is described as multiple-bit upset (MBU) in the JESD89A standard. An important metric for the
reliability assessment of an integrated circuit is the soft error rate (SER), which simply describes
the rate at which soft errors occur. Clearly, the SER depends on a variety of parameters, like the
radiation flux, the circuit topology, supply voltages, transistor sizes, doping profiles, etc. [50].
Characterising the soft error rates for a given circuit is a complex task, which is usually based
on various circuit models and simulations along with an experimental validation.

A radiation effect that causes a voltage pulse at a node of a circuit is called single event
transient (SET). In a sequential element this SET can directly result in a soft error. On the other
hand, if the node is part of a combinational circuit, the SET might propagate through logic gates
until it is eventually latched by a sequential circuit element, which then ends in a soft error. In the
latter case, however, most SETs are never captured since they are filtered by logical, temporal
or electrical masking effects as they progress on combinational paths [50].

3The term soft error first appeared in 1978 [47] in a publication by May and Woods from Intel [69] on alpha
particle-induced faults in DRAMs. The name single event upset was then introduced one year later by Guenzer,
Wolicki and Allas [39] in a paper that also dealt with radiation faults in DRAMs, but caused by neutrons and protons.

18

Effects of Radiation on Semiconductor Devices

Radiation-induced faults occur when ionised particles travel through the semiconductor material
and lose energy along their track, which results in the deposition of charge in the form of electron
hole pairs. In a terrestrial environment there are two major sources for ionised particles: I) alpha
particles, which originate from radioactive isotopes in the die or the packaging, and II) secondary
particles that are generated by collisions of neutrons with silicon, oxygen or dopant atoms in
the die [80]. When the deposited charge is collected at p-n junctions of MOS transistors, a
current/voltage pulse is created at that particular node [10]. Whether this pulse actually results in
a harmful SET or even in a soft error, depends on the magnitude of the collected chargeQcoll and
the node’s sensitivity, which is influenced by various parameters like node capacitance, operating
voltage or the strength of the feedback inverters in the storage loop of sequential elements. This
sensitivity can be expressed in terms of a critical charge Qcrit, which needs to be exceeded by a
radiation event to be harmful for the computation of the circuits, i.e., Qcoll > Qcrit.

An SET pulse unfolds in three phases after an ionised particle hits the die, as can be seen
in Figure 2.5. In the first phase charge is generated around the track of the particle. This is
followed by a rapid charge collection process due to the electric field in the p-n junction, which
creates a steep increase of the current at that node. During this process the depletion region
forms a funnel-shaped extension into the substrate, which boosts the charge collection. This
phase lasts for less than a nanosecond [10], after which the funnel collapses. The collection of
the remaining charge can then be attributed to diffusion of electrons into the depletion region,
which happens at a much slower rate. The final phase of the SET can therefore last hundreds
of nanoseconds [10]. Figure 2.5d shows the junction current over these three phases, which is
often approximated with a double-exponential function [119].

+ − + −+− +−+ − + −+− +−+ − + −+− +−+ − + −+− +−+ − + −+− +−+ − + −+− +−+ − + −+− +−+ − + −+− +−+ − + −+− +−+ −+ −+− +−

n+

p−well

Ion track

(a) Phase I.

+ − +
+− +−+ − +

−
+

−
+

n+

p−well

Idrift

−−−
−−

−
−−−−

−−
−

−−−−
−−

−

−

−

−−− −−−

−−

+
++
+
+
+
++

+

+

+
+

+
+

+
+

+

+

+

(b) Phase II.

−−
−− +−+ −− +

−
+

−

+ −
+

−

+
−

+ +−
−

−+ +
+

+−
−

+−+ +
−−

+−

n+

p−well

Idiff

(c) Phase III.

I

t0
Idrift Idiff

(d) Current pulse.

Figure 2.5: SET generation after a single event effect.

19

2.2.2 Permanent Faults

Physical defects in integrated circuits can be caused by a variety of effects. Most commonly cir-
cuit defects are introduced during the fabrication process due to mask misalignment, over- and
under-etching, or spot defects, e.g., caused by contamination with dust particles [56]. Permanent
faults, however, can also occur during the use phase of a circuit, triggered by electrical, mechan-
ical or thermal stress, or wearout/ageing mechanisms like electromigration (EM), Hot Carrier
Injection (HCI), Negative Bias Temperature Instability (NBTI) or gate oxide breakdown [33].
Possible effects of permanent faults are open or short circuits, threshold voltage shifts, increased
leakage currents, variability of carrier mobility, etc. [104].

Various fault models have been developed that provide an abstraction from the specific physi-
cal fault manifestations. This helps to analyse potential circuit defects and implement procedures
for fabrication tests or for built-in self tests, which can be executed on a regular basis during cir-
cuit operation. The most popular model is the single stuck-at fault model (SSAF), where a single
circuit signal is assumed to be permanently tied to a value of 0 or 1, while all other circuit sig-
nals are non-faulty. Even though this model is very simple it can detect a high percentage of
manufacturing defects. In Chapter 4 we will perform fault-injection experiments based on this
model. Other important fault models are: Multiple stuck-at faults (MSAF), bridging faults, open
faults, path-delay faults and IDDQ faults [36].

20

CHAPTER 3
Circuits Background

3.1 Asynchronous Circuit Design

A fundamental principle in electrical engineering and computer science is the use of abstractions,
which help us to focus on the relevant properties of a system when describing or solving a
particular engineering problem. As a matter of fact, the design of many complex systems only
becomes tractable due to the use of such powerful abstractions [2]. Most digital circuits, e.g.,
are based on two fundamental abstractions: a) All signal values or stored bits of information
are assumed to be binary, with the respective physical representations denoted as 0 or 1 (low or
high), and b) there is a clock offering a global discrete time base and all circuit state changes
occur instantaneously at the ticks of this clock. These two abstractions have simplified the lives
of many circuit designers in the previous decades and are the main characteristics of so-called
synchronous circuits. In this class of circuits a square wave signal with a fixed frequency is used
as clock, where rising or falling signal transitions denote the clock tick. All circuit operations
like computations, communication among different components or sequencing of events are
performed with the temporal granularity of these clock ticks.

Asynchronous circuits, on the other hand, do not depend on the notion of a global, discrete
time [102]. Instead they use other mechanisms based on explicit control signalling and hand-
shake protocols, which implement a closed-loop form of control in contrast to the open-loop
control fashion of synchronous circuits [108]. Therefore circuit activities are not rigidly tied
to predetermined points in time but are triggered by local events, like the availability of data
for a particular component or an incoming request from the circuit’s environment. Because
of this adaptability and in the light of timing trends in recent technologies, asynchronous cir-
cuits are a promising alternative to traditional synchronous circuit designs. Potential benefits
include [40, 102]:

• Lower dynamic power consumption – As asynchronous circuit are event-based and only
perform operations when an actual request is active, switching activities can be signif-
icantly reduced. Synchronous circuits achieve a somewhat similar behaviour by clock

21

gating mechanisms. In asynchronous circuits, due to the ubiquitous presence of hand-
shakes, deactivation of unused circuit parts is performed implicitly and potentially at a
much finer granularity.

• Higher operating speeds – In synchronous circuits clock periods are fixed and have to
be adjusted to the worst-case timing and the most critical paths. However, if worst-case
propagation of signals, e.g., in arithmetic circuits, only occurs infrequently, a lot of per-
formance is squandered in the average case [21]. Due to their adaptability and localised
control, asynchronous circuits, especially delay-insensitive ones, have the potential to de-
liver an improved average-case performance.

• Reduction of electromagnetic noise – Since switching activities in asynchronous circuits
are not tightly concentrated on the regular ticks of a global clock signal, but happen rather
randomly distributed across time, it has been demonstrated that emissions of electromag-
netic noise can be reduced [35, 83].

• Robustness against timing variations – Asynchronous circuits measure the delay of com-
binational paths [108], or use coding techniques to determine the completion of computa-
tions. Therefore they can easily adapt to process variations, or to voltage and temperature
variations during operation.

• Better composability & modularity – Due to the use of handshake-based interfaces asyn-
chronous components can be integrated more easily, irrespective of global timing or syn-
chronization issues. Even if different protocols are used, converters allow a smooth inter-
connection of asynchronous modules.

3.1.1 Delay Models and Classification of Asynchronous Circuits

Although asynchronous circuits do not operate with the abstraction of a discrete time base, this
does not mean that no assumptions on circuit timing are made at all. In literature three basic
delay models are defined [21]: a) Fixed, b) bounded, and c) unbounded delays. In the latter case
delays are allowed to assume any finite value. When a bounded delay model is used, delays have
to be within certain intervals, whereas fixed delays assume a specific constant value. The used
timing model has a significant impact on the design of asynchronous circuits and depending on
the assumptions for gate and wire delays the following classification can be established [21]:

• For delay-insensitive (DI) circuits unbounded delays are assumed for both gates and wires.
DI circuits therefore have to be designed in a way that allows them to operate correctly
for arbitrary finite gate and wire delays. Unfortunately it has been shown that this class
of circuits is rather limited and no reasonable computations can be performed [68]. Nev-
ertheless, the attribute delay-insensitive is often used for circuits that introduce complex
components to perform useful computations. While local timing assumptions within such
components are required, the circuit remains delay-insensitive on component level [21].

• A less restricted class of circuits is called quasi-delay-insensitive (QDI). Like DI circuits
gate and wire delays are arbitrary, but additionally identical delays for certain critical wire

22

forks are assumed. Forks that must adhere to this assumption are called isochronic. Other,
more realistic, formulations of this assumption require that the skew of different branches
of these forks has a bounded or negligible value. The reasoning behind the introduction
of isochronic forks is an important principle of asynchronous circuits, called indication.
For further information the interested reader is directed to [102].

• In case of speed-independent (SI) circuits gate delays can be arbitrary, but wire delays
are assumed to be ideal, with zero delay. Clearly this is no longer a realistic scenario in
today’s semiconductor technologies, where the overall circuit delay is actually dominated
by wires. However, it is possible to lump wire delays into gate delays when the isochronic
fork assumption is applied. There is a well-established theory on the synthesis of speed-
independent control circuits, e.g., used in the synthesis tool Petrify [19].

• Another popular choice for implementing asynchronous circuits is the use of the bounded
delay model, consequently called bounded delay or matched delay circuits. They employ
timing assumptions for gates and wires, typically in the form of relative constraints, e.g.,
between control signals and associated data path components. This approach is similar
to synchronous circuits, however, all timing assumptions only have local effects on the
involved sub-circuits and do not impact the timing of a global control signal, like a clock.

3.1.2 Asynchronous Handshake Protocols

Signalling in asynchronous circuits is typically performed with the help of a request and an
associated acknowledge signal. The former initiates some action or event, whereas the latter
indicates the completion of that action. Request and acknowledge signals form the backbone of
asynchronous communication interfaces. When data is transferred, the communicating compo-
nents are called sender and receiver. Depending on who initiates the data transfer, the sender or
the receiver, we either speak of a push or a pull channel, respectively [102].

There is a large number of alternatives how asynchronous handshake protocols can be im-
plemented. Most commonly transitions of request and acknowledge signals alternate in a strict
sequence and, depending on the interpretation of rising and falling transitions, we distinguish
between 2-phase and 4-phase protocols. In a 2-phase protocol, also known as Non-Return-to-
Zero (NRZ), or transition signalling protocol, every transition of the request signal initiates a
new action. The subsequent transition of the acknowledge signal then expresses the completion
of that action and grants the permission to start a new request. In a 4-phase protocol, on the
other hand, every request, typically signalled with a rising transition, is terminated by a reset
phase, which returns both interface partners back to the initial state. The term 4-phase relates
to the four transitions performed during a single handshake cycle. Due to the reset phase, this
type of protocol is also called Return-to-zero (RTZ), or level signalling protocol. Figure 3.1
illustrates both forms of handshake protocols. Note that 4-phase protocols in comparison with
2-phase protocols require twice the number of request and acknowledge transitions per initiated
action/handshake cycle. Therefore 2-phase protocols potentially yield a better performance and
power efficiency. In practical implementations, however, 2-phase circuits turned out to be more
complex and do not automatically lead to more efficient solutions [21].

23

Req

Ack

Event 1 Event 2 Event 3 Event 4

(a) 2-phase (NRZ).

Req

Ack

Event 1 Reset Event 2 Reset

(b) 4-phase (RZ).

Figure 3.1: Asynchronous signalling protocols.

3.1.3 Control Elements

Two fundamental components of asynchronous control circuits are Muller C-elements and mu-
tual exclusion elements (MUTEX or ME elements). A basic C-element has two inputs and one
output, and can be described as an AND-gate for transitions. If and only if both inputs observe
a rising transition, the output also generates a rising transition. The same principle applies for
falling signal transitions. In case of inconsistent input values, the C-element maintains its current
output value. C-elements are extensively used in asynchronous circuits for synchronizing two
concurrent handshake signals, e.g., when two request signals need to be joined into a single one.
Since the output in some states does not only depend on the input values but also on the current
output, C-elements are sequential circuits, which need to be able to store data values, similar to
RS-latches [102]. Figure 3.2 shows the circuit symbol, the truth table and a standard gate im-
plementation of a two-input C-element. Specialised transistor-level implementations have been
developed, e.g., by Sutherland [105], Martin [66] and Van Berkel [113].

a

C

b

c

(a) Symbol.

a b c+

0 0 0
0 1 c
1 0 c
1 1 1

(b) Truth table1.

a

b

c

(c) Standard gate implementation.

Figure 3.2: Muller C-element.

Sometimes sequencing of concurrent asynchronous handshake signals is required, e.g., if
several producers want to deliver data to a single consumer, which can only process one request
at a time. In this case arbitration is needed to decide in what order requests are handled. This can
be done with mutual exclusion elements. As Figure 3.3a shows, a 2-way mutex element has two
request inputs and two associated grant outputs. When a request arrives on one of the inputs,
the corresponding grant signal is raised. As long as this request remains active, another request
arriving at the second input will not be granted. This behaviour is trivial as long as two incoming

1The notation c+ refers to the next output value, based on the inputs a and b, and the current output value c.

24

requests are well separated in time. If both requests, however, arrive almost simultaneously, the
mutex element can be driven into a so-called metastable state, where it can arbitrarily decide to
grant one or the other request. This decision can theoretically take an infinite amount of time.
In practice this metastable state resolves eventually in favour of one or the other request. This
analogue issue is well-known in synchronous circuits, where data and clock signals need to be
sufficiently separated in time to avoid metastability in flip-flops. We will briefly discuss this
phenomenon in Section 3.2.1. Figure 3.3b shows the implementation of a mutex element, which
basically consists of a latch, made of cross-coupled NAND-gates, and a metastability filter. This
filter keeps the the grant outputs low in case the latch enters a metastable state and only produces
rising output transitions after metastability has been resolved internally.

ME

reqest1

reqest2

grant1

grant2

(a) Symbol.

reqest1

reqest2

grant2

grant1

Latch Metastability Filter

(b) Implementation (cf. [102]).

Figure 3.3: Mutual exclusion element.

3.1.4 Datapath Implementation

In asynchronous circuits data transfers from one module to another, or from one pipeline stage to
another, are typically controlled by handshake protocols. Depending on the specific circuit class,
bounded delay or some form of delay-insensitivity, the request signal indicating data validity can
either be implemented as a separate wire or can be encoded along with the data signals. In the
first case, the delay of the separate request wire needs to be matched with the delays of the
bundled data signals. This implementation style therefore is called matched delay or bundled
data and obviously requires knowledge about upper bounds of the data signal delays. Figure 3.4
shows the waveforms of two bundled data channels, using either a 2-phase or a 4-phase protocol.

Req

Ack

Data 1Data Data 2 Data 3 Data 4

(a) 2-phase.

Req

Ack

Data 1Data Data 2

(b) 4-phase.

Figure 3.4: Bundled data channels.

25

In case of delay-insensitive circuits, special codes, which support completion detection, are
used for encoding data words. The receiver then is able to detect an incoming data request by the
completeness of the transmitted codeword. Therefore a separate request signal can be omitted
and no timing assumptions for the delays of data signals have to be made. Figure 3.5 shows
delay-insensitive channels, again for 2-phase and 4-phase protocols. The data signal is a parallel
bus, whose bit width depends on the length of the used codewords. Note that in case of 4-phase
protocols a special codeword is transmitted during the reset phase, which typically resets all
data signals to zero. This codeword is called empty, or spacer codeword, since it just serves the
completion of the handshake cycle and does not encode any useful data.

Ack

Data 1Data Data 2 Data 3 Data 4

(a) 2-phase.

Ack

Data 1Data Spacer Data 2 Spacer

(b) 4-phase.

Figure 3.5: Delay-insensitive data channels.

Since we cannot make any timing assumptions on the delay of individual wires of the data
bus, the transitions, when changing from one codeword to another, or between codewords and
spacers, may appear at any time in any order at the receiver. Completion detection can only
work, if no intermediate bit pattern occurring during a transmission can be confused with another
codeword. Only when the last bit changes, the received bit pattern forms a valid codeword again.
DI codes, which satisfy this property, exist for 4-phase and 2-phase protocols.

4-Phase Delay-Insensitive Codes

The most common 4-phase DI code is a dual-rail code, where every data bit is encoded with a
1-of-2 code and transmitted over two wires, a.k.a. rails. One rail is called false rail, the other one
true rail. Formally, c = (ctn−1, c

f
n−1, ..., c

t
0, c

f
0) is a dual-rail encoding of x = (xn−1, ..., x0),

when cti = xi and cfi = x̄i. Consider that the spacer codeword initially resets all rails to zero.
Consequently during the data transfer, a single rising transition will appear on the data bus for
every dual-rail pair, either on the false or on the true rail. Thus, for an n-bit wide data word,
the receiver will see exactly n rising transitions at its inputs. Completion detection therefore is
just a matter of waiting for the correct number of input transitions. Dual-rail codes have been
successfully used in a variety of different techniques for building asynchronous datapath circuits,
like Null Convention Logic (NCL) [34,54], self-timed boolean functions [20], Delay-Insensitive
Minterm Synthesis (DIMS) [103], or approaches that are based on dynamic logic [67, 100, 120].

The concept of dual-rail codes can be generalised to multi-rail codes, which can encode
more than a single bit per codeword. Popular examples are m-of-n codes like 1-of-4, 3-of-6, or
2-of-7. Consider, e.g., a 1-of-4 code: C14 = {0001, 0010, 0100, 1000}. With four codewords
obviously two data bits can be encoded. Like for the dual-rail code, the overhead wrt. redundant
bits is again 100%. However, in case of the 1-of-4 code we only need a single rising transition
per transmission instead of two. Thus a 1-of-4 code is more power-efficient. Depending on
the specific requirements of the circuit, a designer needs to choose the best code. For good

26

interconnect area efficiency (fewer wires), e.g., a 3-of-6 code might be beneficial, since four bits
can be transferred with just six wires, which is a rather low overhead for a DI code. However,
when power is the main optimisation target a 2-of-7 code could be a better trade-off, since it
allows the transmission of four data bits with just two rails that have to make a transition.

Dual-rail and general m-of-n codes are constant-weight codes, i.e., all codewords have the
same Hamming weight. Delay-insensitivity in this case can be easily implemented since the
receiver knows the exact number of transitions after which the incoming codeword is complete.
However, there are other codes, which are not constant-weight, and still can be used for DI data
transfers. One example are Berger codes, which are systematic error correcting codes, i.e., the
codewords can be partitioned into a field containing the unmodified transmitted data word, and
another field that consists of additional check bits. In the parlance of delay-insensitive codes
these check bits sometimes are also called synchronization part [115]. Let x denote the vector
of data bits and s the synchronization bits. For Berger codes the value assigned to s equals the
binary representation of the number of zeros in the encoded data word x. Formally, s is the r-bit
binary representation of w(x̄), where r is the length of the synchronization field and w denotes
the Hamming weight of a binary vector. The length r, consequently, needs to be adjusted to
the length of the encoded data words, denoted as k, so the maximum number of zeros can be
represented: r = dlog2(k + 1)e. Due to this logarithmic dependence Berger codes are very
efficient and the length of codewords scales well with larger k. An example of a Berger code for
k = 3 with a 2-bit synchronization field is:

C = {000|11, 001|10, 010|10, 011|01, 100|10, 101|01, 110|01, 111|00}

The fact that Berger codes fulfil the prerequisites for delay-insensitivity is not as intuitive as
for m-of-n codes. The interested reader is therefore directed to a proof presented in [115].

2-Phase Delay-Insensitive Codes

The level-encoded dual-rail scheme (LEDR) [22] is the 2-phase counterpart of the dual-rail code
described above. LEDR codewords again encode a single bit of data with two rails, however the
encoding scheme is a bit more intricate. In a 2-phase protocol there is no spacer codeword, so
one valid codeword follows right after the other. To still support completion detection the sender
strictly alternates between two different phases, called even and odd phases, for successive hand-
shake cycles. In these phases two different sets of encodings for 0 and 1 are used, as can be seen
in Table 3.1. It can be easily checked that for a change from any value of any phase to another
value in the other phase only one rail transition is needed. Thus, like before in the 4-phase dual-
rail code a single transition will occur for every bit of the data word and completion detection
can be easily performed by the receiver. Note that encoding and decoding of LEDR values is
rather simple since the first digit directly represents the encoded bit, and the second digit, also
called parity, is generated by a simple XOR operation of the encoded bit with a constant zero in
case of an even phase, or a constant one in the odd phase.

Again a generalisation for multi-rail 2-phase codes exists, called level-encoded transition
signalling (LETS). Since we do not use these codes throughout the rest of this thesis, we will

27

Table 3.1: LEDR encoding scheme.

0 1
even 00 11
odd 01 10

not discuss them further at this point. The interested reader, however, is directed to [14, 70],
where such codes are analysed and generic procedures how to generate them are presented.

3.2 Globally Asynchronous Locally Synchronous Circuits

As we already outlined in the introduction of this thesis, large globally synchronous systems
are mostly a thing of the past. On one hand scaling trends and timing uncertainties cause more
and more problems when implementing large-scale synchronous circuits, and on the other hand
today’s complex Systems-on-Chip (SoCs) integrate many different functional modules, which
have different timing requirements and therefore need to be clocked with specific frequencies.
One of the main challenges when designing GALS systems, or more generally systems that are
fragmented into multiple clock domains, is how to exchange data from one domain to another
in a reliable and efficient way. The globally asynchronous locally synchronous (GALS) design
methodology promotes the use of asynchronous data channels and protocols, as presented in the
previous section, to solve this challenge. In other words, GALS systems use locally synchronous
modules for computation, and asynchronous circuits for global communication. This design
methodology was first proposed by Chapiro in 1984 [15], and has ever since been the focus of
active research. Figure 3.6 shows a high-level illustration of a GALS system, consisting of dif-
ferent modules and various clock sources. As can be seen, a frequently used approach in GALS
is to surround locally synchronous modules with an asynchronous wrapper, which contains the
necessary circuitry to perform asynchronous communication and takes care of synchronization
problems. Potential benefits of GALS include [109]:

• Simplified timing closure – Partitioning a circuit into locally synchronous modules allows
the designer to tackle timing issues independently for each module. Smaller module sizes
also lead to less complex clock trees, shorter intra-modular interconnect wires, easier
power distribution and potentially reduce the impact of process variations.

• Easier system integration & reuse of modules – Since locally synchronous modules are
encapsulated by wrapper circuits and due to the great composability of asynchronous
communication interfaces, system integration is simplified. These properties also reduce
efforts to reuse existing modules in new designs.

• Power advantages – In conventional synchronous designs the entire circuit is clocked
with the maximum frequency, needed for the subcomponents with the highest throughput
requirements. In GALS systems individual modules can be clocked with the lowest pos-
sible clock frequency to attain the necessary performance of each module. Lowering the
frequencies of some circuit parts directly translates into power savings. GALS designs

28

are also well-suited for dynamic voltage and frequency scaling (DVFS) to implement ad-
vanced power reduction strategies [11, 122].

• Less electromagnetic noise – In traditional synchronous systems the concentration of all
switching activities at clock edges and the associated rise and fall of supply currents on
the circuit’s power rails, can cause large undesirable electromagnetic emissions. In GALS
circuits locally synchronous modules can be operated with unrelated clocks and signal
switching is thereby spread over time, which reduces supply currents. Furthermore, it has
been shown that methods like clock phase and frequency modulation, or power-balanced
partitioning of GALS modules lead to significant noise reductions [31, 32].

• Standard EDA tools applicable – Since GALS modules are ordinary synchronous circuits
standard EDA tools can be used. This is an advantage over entirely asynchronous circuits,
which require non-standard design methods and tools. To efficiently implement GALS
circuits, however, standard tools will still have to adopt their design flows and support
asynchronous wrapper implementation and GALS modules partitioning.

Clock
Source 1

Clock
Source 2

Asynchronous Interconnect

Clock
Source N

Synchronous
Module 1

Synchronous
Module 1

Asynchronous Wrapper

Synchronous
Module 1

Synchronous
Module 2

Asynchronous Wrapper

Synchronous
Module 1

Synchronous
Module N

Asynchronous Wrapper

Figure 3.6: High-level view of a GALS system.

3.2.1 Synchronization in Digital Systems

As mentioned above, safe communication between different clock domains is a critical design
issue. In synchronous circuits data is stored in flip-flops, which can only operate in a reliable
way, if certain timing requirements are met [52]. The data input of a flip-flop needs to be
stable during a certain time before, and for a certain time after the clock edge (setup/hold time).
A violation of this requirement due to an asynchronous input, originating from a foreign clock
domain, can cause a perturbation during the transition of the flip-flop’s internal storage loop from
the old to the new value. In a regular state the nodes of the storage loop, typically built from
two cross-coupled inverters (see Figure 3.7a), assume stable digital voltage values, either high or

29

low. During the transition from one stable state to another, however, both inverters also assume
intermediate non-digital outputs. This behaviour can be seen in Figure 3.7b, which shows the
overlapped input-output characteristics of the two cross-coupled inverters. In the top-left and
bottom-right corner, where the two curves cross, the flip-flop assumes a stable state, and either
stores a zero or a one. There is, however, a third intersection in the middle. This is a metastable
point, where the inverters can both assume non-digital voltages in a fragile equilibrium, which
can last for an indefinite amount of time. This transition between the two stable states is often
illustrated with the analogy of pushing a ball from one side of a hill to the other. If only a
marginal amount of energy is supplied to perform the push, the ball might just make it to the top
of the hill instead of going over it. This is called a metastable state, because in practical systems
the slightest disturbance might either nudge the ball back to where it came from or finally to the
other hill side. An illustration of this behaviour can be seen in Figure 3.7c.

v1

v2

(a) Storage loop.

Stable

state

Metastable

state

v1

v2
Stable

state

(b) Inverter characteristics.

Stable state Stable state

Metastable

state

(c) Metastability analogy.

Figure 3.7: Metastability in digital circuits.

Metastability is a fundamental issue in any bi-stable element, like flip-flops or the mutual
exclusion element, we mentioned above. Even though it only occurs in rare events, it poses a
severe threat to the correct function of a circuit: Either a wrong data value might be captured, or
a late output transition is generated after the metastable state has resolved, which in turn violates
the timing requirements of other elements in the synchronous circuit.

3.2.2 Brute-Force Synchronization

To solve the problem of metastability external signals need to be synchronized to the clock
domain of the receiver circuit. A simple synchronizer circuit can be built from one or more flip-
flops connected in a chain. This delays the input signal by additional clock cycles, which allow
metastable upsets to resolve before the signal is used by the receiver. This does not completely
eliminate metastability but significantly reduces its probability after every flip-flop stage.

A basic solution, using two-flop synchronizers, to build a reliable unidirectional communica-
tion channel between two GALS modules is shown in Figure 3.8. As can be seen, this solution
simply implements a bundled data channel using an asynchronous handshake mechanism for
flow control between sender and receiver (cf. [52]). Since request and acknowledge signals

30

cross between the clock domains of the two communicating GALS modules, they have to be
synchronized to the clock domain, where they are processed. Assuming that the data signals are
stable, when the request signal has been synchronized to the receiver clock domain, they can be
safely latched by the receiver without the need of additional synchronizer circuits.

D Q D Q

Q D Q D

Req

Data
Synchronous

Module 2

Receiver

Synchronous
Module 1

Sender Ack

Figure 3.8: Brute-Force synchronization of asynchronous handshake signals.

The drawback of this solution is clearly an increased latency and a lowered throughput for
data transfers between the GALS modules. FIFO buffers can be used to improve throughput,
since they decouple the write and read processes of the sender and receiver [52]. Also, if clocks
are related in some way, specialised synchronizers can be employed: In case of GALS mod-
ules with clocks that have the exact same frequency but a constant phase offset (mesochronous
timing relationship [72]), a synchronizer only needs to perform a phase compensation and then
communication can occur with full throughput [37,109]. Another situation, where efficient syn-
chronization is possible, are rationally related clock frequencies [96].

3.2.3 Pausible Clocking

Instead of minimising the probability of metastability it can be completely avoided by the use
of pausible clocking mechanisms. The basic idea, which was already proposed by Chaprio [15]
for GALS systems, is to stop the sender and receiver clocks when asynchronous inputs have to
be processed. This elegantly bypasses the synchronization problem, since asynchronous input
and output controllers are used to handle data transfers, and synchronous operation is only re-
sumed once the input signals have stabilised or were safely stored in some input latch. The next
active clock edge is basically delayed to some later, safe point in time. Therefore some authors
also describe this mechanism as clock stretching or stoppable clocks. A high-level schematic
of two GALS modules using pausible clocking can be seen in Figure 3.9. The asynchronous
wrappers surrounding the locally synchronous modules contain input and output ports, which
execute the asynchronous handshake protocol during data transmission. Furthermore each mod-
ule is equipped with a local clock generator, which can be enabled and disabled by the respective
I/O ports. Note that wrappers can of course contain multiple I/O ports, depending on the number
communication channels to other modules. Numerous GALS architectures have been developed
based on the stoppable or pausible clocking scheme. While they all follow the same fundamental
idea, there are many variations with different behaviour and properties. An important character-

31

istic of all these approaches is the specific strategy that is used in I/O ports to stop and start local
clocks during or after asynchronous data transfers.

Clock
Generator

Synchronous
Module 1

Synchronous
Module 1

Output
Port

Clock
Generator

Synchronous
Module 1

Synchronous
Module 2

Input
PortAck

Data

Req

Stretch Stretch

Figure 3.9: Concept of pausible clocking.

In [77] Muttersbach distinguishes between Demand-type (D-type) or Poll-type (P-type) I/O
ports for the implementation styles described above. However, we prefer to use the terms block-
ing and non-blocking I/O, since they offer a more direct description of the locally synchronous
modules’ behaviour during an ongoing data transmission. In case an output port is implemented
in a blocking manner, the clock and thereby the operation of the synchronous sender module is
immediately stopped at the beginning of the data transmission, and only restarted by the asyn-
chronous wrapper when the handshake procedure has completed. In other words, the clock is
stopped synchronously, when the sender module initiates an output transmission, whereas the
restart of the clock is performed asynchronously. In case of non-blocking output behaviour, the
clock is not stopped and the sender module continues its computations during the asynchronous
data transfer. The clock generator is only briefly paused when the asynchronous acknowledge in-
put needs to be processed. As soon as the returning acknowledge signal has been safely latched,
the synchronous sender module is permitted to issue the next output.

Similarly, solutions for input ports can be distinguished by their behaviour how the clock
generator is stopped. Again, designers sometimes use blocking solutions, where the synchronous
module decides at which clock cycle new inputs are required for further computations, and
instructs the asynchronous wrapper to stop the clock. The wrapper then takes over control and
restarts the clock generator when the wanted input data has been safely stored. The other option
for implementing input ports is to only pause the clock when a new asynchronous input request
arrives. The synchronous module therefore does not stop its operation to wait for new input data
at predetermined clock cycles, but new inputs can be delivered at arbitrary points in time.

The first systems with stoppable clocks used blocking behaviour [15, 98]. Figure 3.10a
shows a circuit template for the implementation of blocking input and output ports, which was
presented in [41]. The heart of the circuit is a stoppable clock generator, which is built from
an on-chip ring oscillator. The ring is formed by an inverter to enable oscillations and a delay
element for adjusting the frequency of the generated clock signal. The NAND-gate, which is
inserted into the ring, can be used to block clock transitions when the enable input is deasserted.
A synchronous state machine (FSM) is responsible for switching the circuit operation into trans-
mission mode, when data has to be sent or new inputs are required (depending on whether the
circuit is used an output or input port). In this case the FSM deasserts the SyncEn signal, which

32

in turn blocks the next rising clock edge. In case of an output port, a request is initiated over
the Output Handshake signal, and the combinational logic block waits for a corresponding ac-
knowledgement from the receiver module, which is connected to the Input Handshake. As soon
as the acknowledgement has arrived, the AsyncEn signal is raised. This reactivates the clock
generator and the next rising clock edge is released. An input port works in a similar way, only
with swapped roles for input and output handshake signal. After the clock has been stopped the
input port waits for a new request on the input handshake signal. Upon the arrival of this request
input data can be captured2, and the clock generator can be safely re-enabled. The synchronous
FSM can acknowledge the reception of the data upon the next clock transition. Figure 3.10b
illustrates the clock stretching mechanisms for an input port.

Clk

Delay

D QFSM

Comb.
Logic

Output
Handshake

Input
Handshake

AsyncEn

En
SyncEn

Clock Generator

(a) Circuit of I/O port (cf. [41]).

Clk

Req

Ack

SyncEn

AsyncEn

En

(b) Clock stretching during transmission.

Figure 3.10: Blocking I/O port template.

Yu and Donoehue [125] extended these earlier approaches and introduced a non-blocking
GALS architecture. Since the synchronous sender and receiver modules are only stopped when
asynchronous request or acknowledge signals need to be processed, they have added mutex ele-
ments to the clock generator to arbitrate between the next synchronous computing step and the
external input events. Many researchers have developed GALS architectures that are based on
this concept [29, 31, 71, 76]. An interesting implementation by Moore et al. [75] is depicted in
Figure 3.11. As can be seen, the clock generator is still implemented with a ring oscillator. After
the inverter the ring forks into two parallel branches. The lower one includes the delay element
for adjusting the clock period, whereas in the upper branch the mutual exclusion element is in-
serted. The two branches reconverge at a Muller C-element, which only outputs a new clock
transition, when both branches consistently deliver a rising or a falling edge. The mutex ele-
ments, which arbitrate between incoming asynchronous handshake signals (upper mutex input)
and the next rising clock transition (lower input), can therefore pause the clock generation pro-
cess. Note that the circuit in Figure 3.11 implements a 2-phase bundled data channel between
the sender and receiver module. Thus an XOR-gate is used to generate rising transitions for the
upper mutex input, in case there is a change on the request or acknowledge signals. If arbitration
over the clock generator is won, the asynchronous input event can be safely processed. Metasta-
bility can, of course, occur in the mutex elements, if the next rising transition of the clock and
the asynchronous input event are only marginally separated in time. This, however, is uncrit-
ical since both grant outputs of the mutex remain deasserted while metastability is resolved.
During this time, no matter how long, the clock generator is paused and the processing of the

2Please note that the data path signals have been omitted from the schematic in Figure 3.10a.

33

asynchronous request or acknowledge signals is delayed. In other words, the module remains
idle until the mutex decides on the next action – either another synchronous computing step or
handling the asynchronous input event. Clearly this introduces an element of non-determinism
to the system, which can be problematic for fault-tolerant systems with replicated components
that are expected to behave consistently. We will further discuss this issue in Chapter 4.

Sender

C

Delay

ME

Send

Clk

Data

Done

D Q

Ack

En

Q D

C

Delay

ME

Clk

En

Receiver

Data

New

Accept New

Data

Req

Figure 3.11: Two GALS modules connected over non-blocking I/O ports (cf. [75]).

3.3 Fault Tolerance in Integrated Circuits

3.3.1 Hardware Redundancy

Duplex Systems

The simplest form of hardware redundancy are duplex systems, which can be used for error
detection [56]. The general concept of this approach, also known as dual modular redundancy
(DMR), is shown in Figure 3.12a. A critical module is duplicated and a comparator unit is
connected to the output signals. If the comparator finds a disagreement between the outputs,
it raises an error signal to trigger some higher-level error handling mechanism. Figure 3.12b
and 3.12c show two application examples for detecting SETs in combinational and SEUs in
sequential circuits [51]. Note that duplex systems can provide protection against transient and
permanent faults. However, simple duplication does not allow the system to decide which of the
two replicated units is erroneous.

N-Modular Redundant Systems

To be able to detect faulty components, replicated systems can be built from three or more iden-
tical units. Such systems, generally known as N-modular redundant architectures, are able to
mask errors as long as the majority of replicated units provide correct outputs. The most common
form of N-modular redundant systems is triple modular redundancy (TMR), where systems are

34

Component Component

Comparator

ErrorOutput

Input

(a) General concept.

Combinational
Logic

Combinational
Logic

Output

Input

Error

(b) Combinational logic.

Output

Input

D

Q

Error

D

Q

(c) Sequential circuits.

Figure 3.12: Duplex systems.

built from three replicated components. TMR was first proposed by John von Neumann [117] as
a means to build reliable systems from unreliable components. This concept is therefore called
probabilistic computation. Von Neumann introduced a basic component, the majority organ,
which has three inputs and whose function can be described with following boolean equation:

m(a, b, c) = ab+ ac+ bc (3.1)

Based on this majority organ von Neumann showed that it is possible to construct automata,
which exhibit a lower probability of error than the basic components (organs) the automata are
made of. Majority organs are nowadays well-known as voters and in CMOS technology they can
be built from standard gates or more efficiently in the form of a complex gate, which implements
the boolean equation above. Figure 3.13a shows the schematic of a TMR system, as proposed
by von Neumann. As long as no more than one replicated unit is erroneous, the system will
deliver correct outputs. However, in this configuration the voter is a single point of failure and
as such might dominate the failure probability of the entire system. Although faults are typically
less likely to happen in voters in comparison with the replicated components [78], for ultra
high-reliable systems the use of redundant voters might be advisable. A schematic of a fully
replicated system is illustrated in Figure 3.13b.

Modular redundancy can be applied by replicating the entire system/chip, but it is often
reasonable to break the design down into smaller components, which are then replicated and
interconnected to form the target system. Adding voters on signals between subcomponents
ensures that errors are contained within a single subcomponent. Finding an optimal size (cluster
size) and partitioning for subcomponents, is a critical design task, which has a significant effect
on the overall system reliability. In [104] an elaborate design methodology is therefore presented
that extends traditional circuit synthesis and logic optimisation with reliability specifications and
constraints for optimising not only area, power and performance but also reliability. This also
includes steps for finding a reliability-optimal partitioning of a synthesised netlist.

Both transient and permanent faults can be mitigated with modular redundant systems. In

35

Module

Module

Module

Voter

(a) Single voter TMR.

VoterModule

Module

Module

Voter

Voter

(b) Replicated voter TMR.

Figure 3.13: Triple modular redundancy.

the latter case, performing maintenance to replace failed components plays a crucial role, since
the reliability of a degraded modular redundant system can actually drop below the reliability
of a simplex system [56]. For transient faults it was traditionally assumed that they are masked
as long as they only affect a minority of replicated components and unlike permanent faults
have no long-term effect on the system. Multiple transient faults could therefore be easily tol-
erated, if their occurrences are well separated in time [117]. However, this is only true as long
as replication is applied at the level of basic components. When modular redundant systems
are designed at a higher level and the replicated modules contain sequential machines, John F.
Wakerly established that even a single transient fault can have a permanent effect [118].

Wakerly therefore investigated active recovery and resynchronization schemes for sequential
TMR circuits [118]. A sequential machine can be represented by a 5-tuple 〈I,Q, Z, δ, ω〉, where
I is a set of input vectors, Q is a set of states, Z is a set of output vectors, δ : Q×I → Q is the next
state function, and ω : Q→ Z is the output function. If a transient fault affects the computation
of the next state function, a sequential machine can make a transition into an erroneous state Qe,
which is different from the correct state Qc. In general a sequence of input vectors i, applied to
the states Qe and Qc, will not lead to a common state again, i.e., δ(Qe, i) 6= δ(Qc, i). In other
words, once the state of a sequential machine is corrupted future states may be incorrect as well.

Long-term corruption of a replicated module of a modular redundant system obviously is
undesirable, as it might impair the system’s ability to mask future faults. Consequently, sequen-
tial machines have to be built in a way, where for every pair (Qe, Qc) an input sequence ir exists
such that δ(Qe, ir) = δ(Qc, ir) does hold. Wakerly calls sequential machines with this property
restorable and an appropriate ir is named restoring sequence. Note that for different erroneous
states different restoring sequences might be needed. A widely-used pattern how to build a
restorable circuit can be seen in Figure 3.14, where voters are directly placed after every se-
quential element, i.e., flip-flop. In this circuit architecture faults are immediately masked and an
erroneous state of one replicated module will be overwritten in the next clock cycle. Therefore
any input sequence of length 1 basically is a restoring sequence. In Chapter 4 we will develop
more intricate architectures to build restorable sequential circuits for GALS-based systems.

36

VoterQD

QD

QD

Voter

Voter

Combinational
Logic

Combinational
Logic

Combinational
Logic

Figure 3.14: Conventional voter architecture for triplicated sequential circuits.

3.3.2 Temporal Redundancy

Fault/Error detection and correction techniques can also be implemented with temporal/time
redundancy. Nicolaidis [79], e.g., presented architectures that can tolerate single event transients
in combinational logic. The circuits rely on the transient nature of faults and therefore evaluate
the output signal at different points in time. Figure 3.15a and Figure 3.15b show two realisations
of this concept for detecting SETs. In both cases the output of the combinational logic is captured
by two flip-flops and then evaluated by a comparator circuit, which generates an error output in
case of an inconsistency. In the first solution the second flip-flop is clocked with a phase offset
of d, thereby acquiring a newer sample of the output. With this setup one of the two flip-flops
certainly captures the correct output value, if the maximum length of an SET pulse is known
to be less than d. The same effect can be achieved with the second circuit implementation in
Figure 3.15b. Here the input of one flip-flop is delayed by d. Both flip-flops are supplied with the
same clock signal, where the clock period, however, needs to be increased by d to accommodate
for the additional delay in the data path. This way the upper flip-flop captures the most recent
output value, and the lower one samples an older version.

Comb.
Logic

D Q

D Q

Clk

Clk+d

Comparator

Error

(a) Delay on clock.

Comb.
Logic

D Q

D Q

Clk

Comparator

Error

d

(b) Delay on data path.

Figure 3.15: Fault detection in combinational circuits.

If faults are supposed to be masked, like in modular redundant approaches, three or more
output samples have to be taken at different points in time. Assuming that the majority of the
captured samples represents the correct output value, voting can be performed. Figure 3.16a
and Figure 3.16b depict two circuit architectures by Nicolaidis [79] that work similar to a TMR
system in the time domain. In both implementations three output values are sampled with offsets

37

of 0, d and 2d. Two of out three samples therefore are certainly correct, if the fault duration is
shorter than d. A voter can then recover the correct output value.

Comb.
Logic

D Q

D Q

Clk

Clk+d

Voter

D Q

Clk+2d

(a) Delay on clock.

Comb.
Logic

D Q

D Q

Clk

d

D Q2d

Voter

(b) Delay on data path.

Figure 3.16: Fault masking in combinational circuits.

As could be seen, the maximum length of a transient fault at the output of the combinational
logic is a critical parameter and therefore needs to be known at design time. This length depends
on a variety of parameters, including the characteristics of the process that caused the fault
(e.g., amount of energy deposited in case of a particle hit), the used technology, or the circuit
structure [79]. Reconvergent forks in the combinational circuits, e.g., can lead to broadening
of an SET pulse, if branches of the fork have different delays. Consider the example shown in
Figure 3.17, where the output of Block A fans out into two other blocks with a delay of 1ns
and 1.1ns. The outputs of these blocks then are joined again by an OR-gate. An SET pulse
in Block A can trigger two faulty pulses at the inputs of the OR-gate, which then results in a
longer output pulse. Reconvergent paths, therefore, have to be carefully analysed and delays on
different branches should be balanced during synthesis to avoid such pulse broadening effects.

Comb.

Block C

1.1 ns

Comb.

Block A
a out

Comb.

Block B

1 ns b

c

(a) Two branches with different delays.

a

1.1 ns

1 ns

0.2 ns

0.3 ns

b

c

out

(b) Pulse broadening on output.

Figure 3.17: Broadening of SET pulses on reconvergent paths.

3.3.3 Information Redundancy

A wide-spread method for protecting data, e.g., stored in unreliable memories or transmitted
over unreliable communication channels, is the use of error detecting or error correcting codes.
Although many pages could be written about the great variety of existing coding schemes and

38

information theoretical and algebraic foundations fill complete books, we restrict this section to
a short introduction of basic principles and present only two codes, which we will use later on
in this thesis: Parity check codes and Hamming codes.

In order to protect data words against errors redundant symbols, called control or parity
check symbols, are added based on a specific rule [87]. This process is called encoding and
transforms a data word, made of k symbols, into a codeword with n symbols, where n > k.
The symbols are elements of some predefined alphabet A, and data and codewords can usually
be interpreted as vectors of Ak and An, respectively. Typically a finite field GF (q) is used as
alphabet. The most important case is the fieldGF (2), which only consists of two elements, 0 and
1. Codes that are defined over this alphabet are consequently known as binary codes. Addition
and multiplication in GF (2) are performed modulo 2 and therefore correspond to logical XOR
and logical AND operations, which can be easily implemented in digital circuits.

A code C is characterised by its encoding function fC : Ak → An, which uniquely maps
each data word to a codeword. If the data word is directly embedded in the generated codeword,
i.e., fC(a1a2 . . . ak) = (a1a2 . . . ak ck+1ck+2 . . . cn) for (a1a2 . . . ak) ∈ Ak, the code is called
systematic. A code can also be described as a set of possible codewords C = {fC(~a) | ~a ∈ Ak},
where C ⊂ An for all practical codes. The most important parameters of a code are [87]:

• Length of the data words: k.

• Length of the codewords: n.

• Information rate: R = k/n.

• Minimum distance of codewords: d.

The minimum distance d is defined as min{d(~a,~b) | ~a,~b ∈ C,~a 6= ~b}, where d(~a,~b) is the
Hamming distance of two codewords. This is a fundamental parameter because it determines
the error detection and correction capabilities of a code.

Theorem 1. A Code C with minimum distance d can detect up to d − 1 errors in a codeword,
and can correct up to bd−1

2 c errors. In order words, for detecting t errors the minimum distance
needs to be d ≥ t+ 1, and d ≥ 2t+ 1 for correcting t errors [87].

Proof. If d ≥ t+1, f symbols of a codeword~c ∈ C can be changed, 0 < f ≤ t, and the resulting
erroneous vector will not be transformed into another valid codeword. Thus up to t errors can
certainly be detected. However, for error correction it is also necessary to identify what symbols
are erroneous. This can only be guaranteed for t errors, if d ≥ 2t + 1. Consider the sphere of
radius t around a codeword ~c ∈ C, defined as Bt(~c) = {~x ∈ An | d(~x,~c) ≤ t}. If d ≥ 2t + 1,
then the spheres of all codewords are disjoint, i.e., Bt(~c1) ∩ Bt(~c2) = ∅,∀~c1, ~c2 ∈ C, ~c1 6= ~c2.
Consequently, a vector with a maximum of t errors can only be element of a single sphereBt(~c),
and ~c ∈ C needs to be the correct codeword.

39

Parity Check Code

The most simple error detecting code is a parity check code, where just a single symbol or bit, in
case of a binary code, is appended to the data word. The value of the parity bit hereby needs to be
set to zero or one, so that the sum of all data bits and the parity bit modulo 2 equals a predefined
value v, i.e., a1 +a2 + · · ·+ak+p ≡ v mod 2 [106]. This sum is called a checksum function and
can be recomputed by the decoder to evaluate the validity of the codeword. If checksum result v
is arranged to be zero, the number of ones in correct codewords is always even, and the code is
therefore called even parity code. In the other case, when v equals one for a correct codeword,
we speak of an odd parity code. Parity check codes have a minimum hamming distance of 2 and
can therefore detect single bit flips in a codeword. More generally, any odd number of errors can
be detected since this changes the result of the checksum function. As mentioned above, adding
numbers in GF (2) is performed with a logical XOR-operation. Encoder and decoder circuits
therefore are simply built from chains of XOR-gates, as can be seen in Figure 3.18.

a1 a2 a2 ak v

p

(a) Encoder.

a1 a2 a2 ak p

error

v

(b) Decoder.

Figure 3.18: Circuits for parity codes.

Hamming Code

A code C(n, k, d) is called a linear code, if its codewords form a vector space. Consequently,
the sum of two codewords, or a codeword multiplied by a scalar is again an element of the code.
For linear codes, such as Hamming codes, a basis of this vector space {g1, g2, . . . , gk} can be
used to build a generator matrix G of the code. G is a k×nmatrix, where the rows are assembled
from the basis vectors gi. An encoding function fC of a linear code C can then be expressed in
terms of its generator matrix: fc(~a) = ~a · G, ∀~a ∈ Ak.

Example 3.1. Consider, e.g., the generator matrix of a (7,4) Hamming code:

G =

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

The encoding of ~a = (a1, a2, a3, a4) = (0, 1, 0, 1), e.g., can then be computed as follows:

fc(~a) = ~a · G = (0, 1, 0, 1, 1, 0, 1)

40

Note that the generator matrix in the example above has the canonical form G =
(
Ek M

)
,

where Ek denotes the k×k identity matrix andM is some other k× (n−k) matrix. In this case
the generator matrix then describes a systematic code, where the bits of the data words appear
as the first k bits in the codewords. Furthermore, it can be seen that the columns of submatrix
M specify the checksum functions for the computation of the check bits in the codewords. Con-
sider the first column ofM in Example 3.1 with the value (1, 1, 1, 0). This specifies that the first
check bit is the sum of the first three bits of a data word, i.e., p1 = a1 + a2 + a3. An encoder
circuit can therefore be built by assembling appropriate XOR-chains for every check bit, just
like we presented for parity check codes above.

Another way to characterise a code C is to use a matrix H, called parity check matrix or
control matrix. H is defined so that the product of a vector with the transposed form ofH yields
the null vector, if and only if this vector is a correct codeword, i.e., ~c · HT = ~0 ⇔ ~c ∈ C. For
binary codes the control matrix can be easily derived from the generator matrix. If G is specified
in canonical form, G =

(
Ek M

)
, the control matrix is constructed from the transposed form

ofM appended by an (n− k)× (n− k) identity matrix, i.e.,H =
(
MT En−k

)
,

Example 3.2. The control matrix of the (7,4) Hamming code presented in Example 3.1 is:

H =

 1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

If we multiply the codeword we computed in the example above ~c = (0, 1, 0, 1, 1, 0, 1) with

HT , it can be easily verified that indeed ~c · HT = ~0.

Hamming codes are described by their control matrices [87]. To build the control matrix
of a Hamming code with r check bits, the columns of H are filled from all possible vectors of
[GF (2)]r \~0. The control matrix consequently is a r× (2r − 1) matrix (cf. Example 3.2, where
r = 3). The length of the codewords consequently is n = 2r − 1, and the number of data bits
that can be encoded equals k = n− r = 2r− r−1. It can be shown that Hamming codes have a
minimum distance of d = 3, and can therefore detect double errors, or correct single errors [87].

Error detection for a given vector ~x ∈ An can be performed by multiplication with the trans-
posed control matrix. The result of this multiplication is called syndrome, denoted sH(~x). Due
to the definition of the control matrix, the syndrome is zero if ~x ∈ C, and non-zero otherwise.
In case of Hamming codes every syndrome vector can uniquely be related to an error vector ~e,
which identifies the erroneous bit in ~x, assuming that only single-bit errors can occur.

Example 3.3. Let ~x = (0, 1, 0, 1, 1, 0, 1) and ~y = (1, 1, 0, 0, 0, 0, 1) be two valid codewords of
a (7,4) Hamming code. Assume a single error, flipping the second bit, occurs during the trans-
mission of ~x and ~y over an unreliable channel. On the receiver side thus ~x′ = (0,0, 0, 1, 1, 0, 1)
and ~y′ = (1,0, 0, 0, 0, 0, 1) are delivered. It can be easily checked that both vectors have the
same syndrome:

sH(~x′) = ~x′ · HT = sH(~y′) = ~y′ · HT = (1, 1, 0)

The syndrome (1, 1, 0) consequently is mapped to the error vector ~e = (0, 1, 0, 0, 0, 0, 0).

41

With the knowledge of the mapping between syndromes and error vectors, correction of an
erroneous codeword can be easily implemented. Figure 3.19 shows the high-level schematic
of the implementation of a decoder circuit. First the syndrome is computed from the possibly
erroneous input word. Then a lookup table can be used to determine the error vector, which is
finally added to the input word. This addition, according to arithmetics of vectors over GF (2),
is performed bitwise with XOR-gates, and simply inverts erroneous bits in the input vector to
retrieve the correct codeword again.

Register

Register

Syndrome /
Error vector

LUT

+Input vector

Error vector

Decoded vector

Syndrome
Computation

Figure 3.19: Decoder circuit for Hamming codes.

Extended Hamming Codes

Let H be the control matrix of a regular Hamming code, as defined above. The control matrix
of an extended Hamming code can then be formed as follows:

Hext =

H

0
0
...
0

1 1 1 · · · 1

The last row of Hext defines the checksum function of an additional check bit pr+1, which

is introduced for extended Hamming codes. Given a codeword ~c of a regular Hamming code,
~c = (a1, a2, . . . , ak, p1, p2, . . . , pr), the new check bit’s value is simply the sum of all data bits
and the regular check bits, i.e., pr+1 =

∑k
i=1 ai +

∑r
i=1 pi.

This extension improves the minimum distance d from 3 to 4. A regular Hamming code with
d = 3 can perform safe error correction, if only single errors occur. Error correction fails in case
of double errors, since two erroneous bits in some codeword ~c1 ∈ C would be confused with a
single-bit error of some other codeword ~c2 ∈ C, ~c1 6= ~c2. With d = 4 an extended Hamming
code, however, can safely distinguish single and double-bit errors. Single errors then can be
corrected, while double errors are flagged as uncorrectable errors. Codes with these capabilities
are called single-error correcting, double-error detecting (SECDED codes).

42

CHAPTER 4
Fault-tolerant Computation in

Synchronous Modules

In Section 3.2 we explained that computation in GALS systems is performed in locally syn-
chronous modules. This chapter is devoted to their protection against transient faults and to
some extent to the mitigation of permanent faults. Since the core parts of GALS modules are
conventional synchronous circuits, many of the existing fault tolerance techniques, which we
have described in Section 3.3, are eligible candidates for application in a GALS setting. For
this thesis we decided to pick modular redundancy for detailed investigation, because it is well-
known and widely used in industry. It should, however, be made clear that by no means we
want to advocate modular redundancy as the only possible, or even the best solution for building
hardened GALS modules. As fault tolerance always incurs some form of additional costs for
the overall system, the choice of the employed fault tolerance scheme very much depends on the
specific application and its requirements and constraints.

4.1 Modular Redundancy in GALS

As we will see in this Chapter, a crucial design decision for implementing modular redundant
GALS systems is the chosen replication scheme for individual modules. This decision entails
tremendous consequences for the overall system architecture, the fashion in which error recovery
is performed and for system attributes like area, performance and reliability. A simple strategy
is to replicate all circuit elements within the boundaries of the module’s core logic, i.e., the syn-
chronous parts of the GALS module, which are encapsulated within an asynchronous wrapper.
In case of a TMR system1 all combinational and sequential parts of the core logic are triplicated
and voters added, as is illustrated in Figure 4.1. This replication strategy closely resembles the

1Please note that most of the time in this chapter we will refer to triple modular redundant systems and that all
the circuits presented assume a TMR configuration. The results can, however, be easily applied to general modular
redundant systems having an arbitrary (odd) number of replicated components.

43

way modular redundant circuits are typically implemented at gate level (cf. Section 3.3.1). Aside
from the fact that we use a stoppable clocking scheme, for reasons that will become apparent
shorty, Figure 4.1 does not expose many details about the asynchronous wrapper surrounding the
core logic. Wrapper implementation, especially with respect to replication of asynchronous I/O
components and ports, will be addressed at a later point in Section 4.4 of this thesis. The clock
generator, however, needs immediate attention since it directly affects the replication strategy
of the core logic. As can be seen in Figure 4.1, there is only a single clock generator driving a
single clock tree, which connects to all flip-flop endpoints of the triplicated module core. Since
voting is performed synchronously on every clock cycle in this replication scheme, maintaining
one common clock domain and therefore a single clock generator is unavoidable. Obviously this
creates a single point of failure in the redundant system and a single transient fault in the clock
generator or the clock distribution network could affect several replicated units during the same
clock cycle, thereby compromising the overall circuit state beyond recovery. A spurious clock
transition could, e.g., cause setup/hold time violations and consequently metastable upsets, or
simply lead to data inconsistencies when flip-flops sample at a wrong point in time.

VoterQD

QD

QD

Voter

Voter

Stoppable
Clock
Generator

Core LogicAsynchronous
Wrapper

Figure 4.1: Triplicated GALS module.

As the clock generator and clock tree consist of standard gates, which can be assumed to be
susceptible to faults just like the rest of the circuit, we believe this single point of failure poses a
major drawback of this replication strategy. Further disadvantages are:

• In a modular redundant system with n replicated units, the overall area of the GALS mod-
ule is increased more than n-fold (including overheads from voters). It can be assumed
that the dimensions of the clock distribution network also grow a in similar fashion. In
case of tight timing constraints, achieving timing closure for the module might therefore
be much more challenging. Recall that the one of the basic principles of GALS is to break
down a complex globally synchronous circuit into several small locally clocked modules
in order to alleviate timing issues. A replication strategy that significantly increases the
module size again, might therefore reduce the effectiveness of the GALS design approach.

44

• The voter components introduce additional delay in the critical path of the circuit and
contribute to area and power overheads.

• Using majority voters requires a fully connected network between the replicas to exchange
redundant state information. If a circuit withm flip-flops is fully replicated n-fold, follow-
ing the scheme shown in Figure 4.1, m · n2 connections are required. This significantly
increases the complexity of the interconnect and thereby has direct implications on the
physical implementation of the modular redundant circuit. Limited routing capacities and
strict timing constraints therefore enforce a compact circuit layout, where replicated com-
ponents have to be placed in close proximity. This might reduce the reliability of the
resulting system, especially if multiple-bit upsets should become more frequent with fu-
ture technologies. In general, physical separation is a desirable property in fault-tolerant
systems since this reduces the possibility of spatial proximity faults [55].

In this chapter we will therefore present the results of our research to find alternative repli-
cation strategies and state restoration mechanisms to avoid the above mentioned issues. Two
solutions, we have published in [60] and [64], will be discussed in detail. In both approaches we
use stoppable ring oscillators to generate the clock for GALS modules, and take advantage of the
fact that these provide a simple mechanism to freeze the circuit so that some form of recovery
routine can be conveniently performed.

4.2 Approach I: Parallel Recovery

A main concern, as mentioned above, is to avoid critical single points of failure in a fault-tolerant
design. Thus, an early design decision was that the clock generator and the clock generation
network should be replicated as well. While this removes the clock as single point of failure, this
concept also requires a modification of the voting mechanism. For three independent systems
voting can no longer be performed for each and every clock cycle. Even if the clock generators
are set to the same frequency and start with the same phase offset, frequency jitter and phase drift
will eventually lead to incorrect voting results or metastable upsets. In Figure 4.2 we therefore
suggest an alternative architecture, in which the three replicas of the synchronous module are
all operated with their own local clock and the voting is executed at safe checkpoints, where
normal circuit operation is interrupted. Consequently, we distinguish between two operation
modes: computation and recovery. During computation mode every replicated module runs
independently at its own pace and progresses with its computational task. When a checkpoint
is reached, the modules change to recovery mode and wait until all replicas have stopped their
operation, i.e., have stopped their clock generators. Then a common recovery cycle is inserted
into the execution in order to correct recent soft-errors, which might have compromised the state
of one replica. Since all clock generators have been stopped, the voting can be safely performed
and the voter outputs are fed back to the inputs of the corresponding flip-flops. As can be seen in
Figure 4.2, a multiplexer controlled by a recover signal (rec) switches between the normal data
signal of the combinational logic and the feedback signal of the voters. The recovery is done in a
single cycle in parallel for all the flip-flops, hence the name parallel recovery. Note that this is a
rollforward error handling approach. In contrast to rollback recovery, where checkpoints denote

45

snapshots of the system state, here we use the term checkpoint to refer to a point in time, where
the system state is checked and state restoration is performed. A similar scheme for conventional
synchronous TMR systems was presented in [123] (see related work in Section 4.7).

Voter

Q

D

Q

D

Q

D

Voter

Voter

Rec
2

Rec
3

Rec
1Stoppable

Clock
Generator

Stoppable
Clock
Generator

Stoppable
Clock
Generator

Asynchronous
Wrapper

Core Logic

Figure 4.2: Adapted voting mechanism.

4.2.1 Recovery Controller

Figure 4.3a shows a schematic of the overall TMR system with redundant clocking. In order to
coordinate the recovery process, the local clock generators of the three replicas are augmented
by a recovery controller. These controllers are then interconnected by a network of asynchronous
handshake signals, which can be interpreted as request signals indicating when a replica is ready
to start the recovery process. The controllers also generate the necessary recover signal, which
switches the multiplexers of the replicated units (see Figure 4.2).

As can be seen in Figure 4.3b, the extensions to the clock generator include three main parts:
A cycle counter, a comparator component and, most importantly, the recovery controller, which
is basically an asynchronous state machine. The purpose of the cycle counter is very simple.
All it does is to keep track how many cycles have passed since the last recovery process. After
a predefined number of cycles n, the counter wraps back to zero, which in turn triggers the
comparator to raise its output signal. This indicates that the next cycle will be a recovery round.
Note that this is a very basic mechanism to introduce regular checkpoints in the execution. We
will discuss details about more sophisticated strategies, like dynamically scheduled checkpoints,
in Section 4.5. The overall recovery mechanism, however, stays the same, independent from the
points in time when the recovery cycle is inserted.

Due to the rising transition of the comparator the recovery controller is activated and imme-
diately deasserts the clock enable signal. Consequently, the ring oscillator is stopped and the
next rising clock edge is delayed until the enable signal is asserted again. Furthermore, the re-
covery controller activates the recover request over the signal Handshake[Out] to the other two
controllers and waits for them to likewise raise their recover requests. Once these requests have
been received, all three replicas have stopped their operation and it is safe to perform majority
voting on the circuit state. A single clock edge then is issued and the voter results are latched

46

inout
ClkEn signals

Replica1

inout

Clock Generator /
Recovery Controller

R
e
c
o
v
e
r

H
a
n
d
s
h
a
k
e
s

R
e
c
o
v
e
r

inout
ClkEn signals

Replica2

inout

Clock Generator /
Recovery Controller

R
e
c
o
v
e
r

H
a
n
d
s
h
a
k
e
s

R
e
c
o
v
e
r

inout
ClkEn signals

Replica3

inout

Clock Generator /
Recovery Controller

R
e
c
o
v
e
r

H
a
n
d
s
h
a
k
e
s

R
e
c
o
v
e
r

(a) Top-level view.

C

Delay

ME ME

Req
0

Grant
0

Req
n

Grant
n

Clk

Cycle Counter

(+1) mod n

Recovery
Controller

== 0

Handshake[Left]

Handshake[Right]

ClkEn

Handshake[Out]

Recover

T1
T2

(b) Clock generator and recovery circuitry.

Figure 4.3: GALS TMR system.

into the respective flip-flops. Furthermore, the cycle counter is incremented to one and as a con-
sequence the comparator output is deasserted again. Now the recovery controller releases the
request signal Handshake[Out], which indicates that the recovery has been completed. When
the other two controllers also release their request signals, the local controller knows that all
three replicas have successfully completed the recovery. At this point the value of all repli-
cated flip-flops is consistent again, even in case a soft-error had occurred before. Finally every
controller is allowed to set the clock enable signal to one again and normal operation is resumed.

The implementation of the recovery controller is a central part of the presented fault-tolerant
architecture. Since the recovery process demands to switch the clock generator off and on again,
the state machine of the recovery controller clearly cannot be clocked by the clock generator
itself. Thus, it needs to be implemented as an asynchronous control circuit. Figure 4.4a shows a
signal transition graph (STG), which models the behaviour of the controller as described above.
STGs are a specific kind of petri-net, which can be synthesised into asynchronous control cir-
cuits. We used the tool Petrify [19] to perform this task. The resulting circuit, after performing
some minor manual optimisations, can be seen in Figure 4.4b. It only consists of two Muller
C-elements, a delay element and an XNOR gate. The main part of the state machine is imple-
mented by the two C-gates, which store the current state and also compute the next state. The
gate C2 is responsible for detecting the start of a new recovery cycle, as indicated by the com-
parator, and raises the request output in order to notify the other two replicas. C1 then performs
the join operation, which waits for all replicas to be stopped and subsequently triggers the voting
mechanism by asserting the go signal. This join exactly matches the transition go+ at the top
node of the STG, which is only enabled when all of the three handshake signals are asserted.
The XNOR gate enables and disables the clock generator appropriately during all stages of the
recovery process. Note that the clock enable signal is not only deasserted when waiting for the

47

INPUTS: Comparator_Out,HS_Left,HS_Right

OUTPUTS: ClkEn,HS_Out

INTERNAL: go

g o +

ClkEn+HS_Left- HS_Right-

Comparator_Out-

H S _ O u t +HS_Left+

go-

HS_Right+

ClkEn-/1

ClkEn-

Compara to r_Out+

HS_Out-

ClkEn+/1

(a) STG describing the behaviour.

ClkEn

C

C
Handshake[Left]

Handshake[Right]C
o
m

p
a
ra

to
r

o
u
tp

u
t

Handshake[Out]

g
o

Recover

Delay

C1

C2

X1

D
e

la
y

D1

D2

(b) Synthesised circuit.

Figure 4.4: Implementing the recovery controller.

beginning of the recovery but is also disabled directly after the recovery cycle. This ensures that
a fast replica is stalled until the other replicas have confirmed that they are done with the voting
as well and have safely captured the voter outputs. In this case all three handshake signals are
reset to zero, the C-gate C1 deasserts the go signal and in turn re-enables the clock generator.

4.2.2 Timing Constraints

Circuits synthesised by Petrify are speed-independent. Nevertheless, these circuits still demand
a specific behaviour from the environment for safe operation. The environment is only allowed
to change its input when the circuit has produced the outputs related with the previous input
changes. This mode of operation is called input-output mode [102]. Furthermore, there are some
timing constraints which arise from the interaction of the asynchronous control logic with the
synchronous replicas and the clock generator. The following circuit paths need to be considered:

• Clock to clock enable: When the clock generator issues the final clock edge before the
recovery starts, i.e., the clock edge upon which the cycle counter resets to zero, it must be
guaranteed that the clock generator is disabled before another clock edge can be issued.
Consider the path that starts at the C-element output of the clock generator, includes the
cycle counter, the comparator, the recovery controller and the AND-gate, and finally ends
at the lower input of the C-element. Clearly, the overall delay of this path must be shorter
than the clock period to disable the clock generator in time. While the total sum of the
clock-to-output delay of the cycle counter and the combinational delays of the comparator,
the recovery controller and the AND-gate might be well below the clock period, this
path also includes the clock tree latency, which needs to be considered carefully. If a
single clock tree is used for the entire GALS module and the cycle counter is just another
endpoint of this tree, this latency might be easily longer than a clock period. Therefore,
we propose to implement two clock trees, as can be seen in Figure 4.3b. The large clock
tree T1 fans out to the the regular GALS module, whereas T2 exclusively clocks the cycle

48

counter. Since the cycle counter just contains a few flip-flops the latency of T2 will be
minimal, possibly being just the delay of a single clock buffer.

However, this creates a mesochronous system, where the GALS module lags behind the
recovery circuitry by the latency difference of the two clock trees. Consequently, the
recovery operation must not start immediately when the clock generator is disabled but
only after the all clock transitions have propagated through the module’s clock tree T1.
This can be achieved by delaying the comparator output signal for the lower input of
C-element C2 in the recovery controller (see delay element D2 in Figure 4.4b). If D2
is matched to the latency difference of the two clock trees, the recovery starts right in
time after all computation cycles have been executed by the GALS module. A similar
method where the delay of asynchronous control signals is matched to clock tree latencies
to ensure safe data transfers in GALS SoCs has been proposed in [23].

• Setup time of data path: Obviously, the voting results need to be stable at the flip-flop
inputs before the clock generator is enabled again and the next clock edge is issued. In
order to ensure this setup requirement holds, a delay element on the go signal can be
included in the recovery controller (see Figure 4.4b). This delays the assertion of the
clock enable signal and gives voters and the multiplexers time to stabilise.

• C2 output to local C1 output: This path should be shorter than the external control loop
starting from the outgoing handshake signal, crossing the remote recovery controller of
the other replicas and returning with the incoming handshake signals. Otherwise the other
two replicas might withdraw their handshake requests again before the C-gate C1 of the
local recovery controller is even able to react on the asserted handshakes. This timing
relationship can be easily met since a local path is usually faster than the external paths.

4.2.3 Robustness of the Recovery Circuitry

There are two different types of erroneous behaviour that can occur in a recovery circuitry: 1)
Benign transient faults which only cause errors in the local replica. Although they can spoil
the state of the local replica, this can be tolerated as long as the other two replicas are able to
continue their operation without problems. When the transient fault disappears, the faulty replica
continues to work and its state will be corrected on the next correct recovery cycle. Consider,
e.g., an upset in the cycle counter of the replica R3. This just corrupts the state of R3, which
might then either start the recovery process a certain number of clock cycles too early or too
late, depending on the counter value after the upset. Nevertheless, the counter will eventually
reset to zero and the recovery mode will be initiated. The other two fault-free replicas will start
the recovery as planned in the correct clock cycle. At this point the registers of R3 will likely
store different values than the other replicas, since the computation was stopped at the wrong
cycle. However, after the restoration process is performed this inconsistency will be purged and
all three replicas maintain the same circuit state again and can continue their computations.

2) The other type of erroneous behaviour are faults that drive the three recovery controllers
into an inconsistent global state, which could lead to a deadlock of the whole system. As ex-
plained above, the recovery controllers are basically three instances of an asynchronous state

49

machine, which are interconnected and control the recovery procedure in a distributed manner.
Table 4.1 shows all possible deadlock states. An analysis of these states reveals that two condi-
tions need to be fulfilled for a deadlock to occur: I) The three handshake signals need to be in-
consistent, i.e., the recover request is asserted for at least one recovery controller and deasserted
for at least one other controller. II) All the local clock generators need to be disabled. This is
the case when the go signal and the comparator output have different signal values and thereby
deassert the output of the XNOR gate, which drives the clock enable signal (see Figure 4.4b).

Table 4.1: Deadlock states.

Compare1 HS1 go1 Compare2 HS2 go2 Compare3 HS3 go3

0 0 1 0 0 1 1 1 0
0 0 1 1 1 0 0 0 1
0 0 1 1 1 0 1 1 0
1 1 0 0 0 1 0 0 1
1 1 0 0 0 1 1 1 0
1 1 0 1 1 0 0 0 1

An example for a fault causing a deadlock can be seen in Figure 4.5. At the beginning
the handshake signal of the local replica and the handshake signals of the other two replicas
are zero, i.e., all three replicas operate independently in normal mode. Assume that the local
copy is slower than the other two instances, which pull up their handshake signals first (step 1).
Since the local handshake output is still zero, the C-gate C1 holds its current output value, i.e.,
it remains zero. Now assume this C-gate is affected by a single event effect at this point in time
and flips the stored value to one. Then the go signal is erroneously activated (step 2), which in
turn deactivates the clock enable signal (step 3). Now the clock generator is stopped and the
comparator output will be stuck at zero. As a consequence the local handshake output will also
remain zero and block the operation of the other two replicas, which results in a deadlock.

In order to prevent such a scenario, it is necessary to protect the state of the recovery con-
troller from upsets. As can be seen in Figure 4.4b, this state is contained in two C-elements.
These can be disturbed by erroneous signal transitions either on their inputs or on the internal
feedback signal of the storage loop. An option for increasing the resilience of C-elements against
SETs is the use of robust C-elements, such as the Van Berkel implementation [113] or dual-rail
C-elements. Although this decreases the likelihood of upsets, each of the C-elements still would
be a single point of failure. Hence, we suggest a solution based on replacing the C-elements by
duplicated double-checking gates (DD gates). This fault tolerance technique for asynchronous
QDI circuits was presented in [46]. The modified circuit schematic is shown in Figure 4.6.

In DD gates the original gate is duplicated and then connected to two double-checking C-
elements. In Figure 4.6 the duplicated gates, which perform the actual function of the circuit,
are shown in white, and the double-checking C-gates, which prevent errors from propagating,
in grey colour. This circuit structure is able to withstand and correct SEUs in any of the C-
elements. Assume, e.g., that one of the white C-elements is perturbated leading to a corruption
of the stored value. Nevertheless, the fault will not propagate because the other C-element in
the duplicated set still stores the correct value and the double-checking C-gates will not change

50

ClkEn

C

C
Handshake[Left]

Handshake[Right]

Comparator
output

Handshake[Out]

g
o

Recover

Delay

C1

C2

X1

0 1

0
1

1

0
1

1

1
3

0

0 1

0
2

1

Figure 4.5: Execution leading to a deadlock.

ClkEn

C

C
Handshake[Left][1]

Handshake[Right][1]

C
o

m
p

a
ra

to
r

o
u

tp
u

t

C

C

C

C

C

C
Handshake[Left][2]

Handshake[Right][2]

Handshake[Out]
[2]

Handshake[Out]
[1]

g
o

Recover

Delay

X1

C1

C2

Figure 4.6: Robust implementation.

their output value, if they see inconsistent inputs. The correct value will be restored immediately
when the transient error disappears and the inputs of the C-element still have the same value.
If the inputs are no longer equal, the incorrect value will simply be overwritten with the next
correct value, as soon as all inputs have finished their transition.

For the second case, assume that one of the double-checking C-gates is hit. Since the dupli-
cated gates, which drive the inputs of the perturbated gate, store the same value, the corruption
will be fixed almost immediately in most cases. Only when the duplicated gates perform a
transition they may get inconsistent for a short period of time and therefore the recovery of the
corrupted gate will be delayed. In this case it is possible that the fault disturbs the succeeding
gate. This again only affects one gate within a duplicated set, which can be restored after the
SEU in the preceding double-checking gate is removed. A full proof for the ability of DD gates
to withstand SEUs and even some kind of multiple upsets can be found in [46].

4.2.4 Formal Verification of the Recovery Controller

Unfortunately, there is still a single point of failure which may disrupt the described double-
checking mechanism: As can be seen in Figure 4.6, the lower inputs of the duplicated C2 C-
gates are both connected to a single signal, i.e., the output signal of the clock cycle comparator.
If long enough, glitches will overthrow the stored value of both duplicated C-gates and hereupon
the values of the attached double-checking C-elements. In order to verify whether such faults
can cause deadlocks or mess up the recovery scheme, we analysed the recovery controller with
the UPPAAL model checker [59]. UPPAAL is typically used for verification of real-time systems,
as its models are based on networks of timed automata. The query language for checking specific
properties of the modelled system is a subset of TCTL (timed computation tree logic [6]).

The basic idea is to provide a gate-level model of the circuit and assign lower and upper
bounds for the switching delays of the gates. This way the behaviour can be verified in the

51

wait_s0 dly <= D_MAX

wait_s1 dly <= D_MAX

s1

s0

y_c!

y_c!

dly >= D_MIN y := false

!(!a && !b)
a_c?

!(!a && !b)
b_c?

!a && !b
b_c?

dly := 0
!a && !b
a_c?

dly := 0

dly >= D_MIN
y := true

!(a && b)
b_c?

a && b
b_c?

dly := 0
!(a && b)

a_c?
a && b
a_c?

dly := 0

initValue
rstSeq?

y := true

!initValue
rstSeq?

y := false

(a) UPPAAL model of a 2-input C-gate.

S_glitch
dly <= D_MAX

S_normal

rstComb?
dly := 0,
done := false,
y := a

y_c!

dly >= D_MIN
y := a,
done := true

!done
y := !a,
dly := 0

y_c!
a_c?
y := a

(b) UPPAAL model of an SET saboteur.

1 A� not deadlock
2 A♦(r1.hs or r2.hs or r3.hs)
3 (r1.hs or r2.hs or r3.hs) – –> (r1.hs and r2.hs

and r3.hs)
4 (r1.hs and r2.hs and r3.hs) – –> (!r1.hs and

!r2.hs and !r3.hs and r1.clkEn and r2.clkEn and
r3.clkEn)

(c) Verified properties.

Figure 4.7: Models and properties for verification.

presence of glitches. In a first step, we developed suitable UPPAAL models for every gate in the
circuit, i.e., the 2-input and 3-input C-gates, the XNOR and the inverter gates. Timing properties
can be reflected in UPPAAL with the help of clock objects, which can be used to specify state
invariants and/or guards on state transitions. The model of a 2-input C-gate, e.g., is shown
in Figure 4.7a. It consists of four main states: Two stable states s0 and s1, where the gate
output is either zero or one and the two transition states wait_s1 and wait_s0. The latter states
model the switching time of the gate. The state wait_s1, e.g., is annotated with the invariant
dly ≤ Dmax. Since the clock variable dly is set to zero on all input transitions, this means
that the automaton must not remain in this state for more than the maximum switching delay
of Dmax. A lower bound for the switching delay is modelled with a clock guard on the output
transition: dly ≥ Dmin. After this minimum delay the output transition is allowed to fire and
the gate output y is set to one. Note that a wait state can only be entered when the gate inputs
change and the guards, reflecting the logic function of the gate, are satisfied. In case of the 2-
input C-gate, the guards on the input transitions for the state wait_s1 consequently are a && b.
Furthermore, there are also transitions leading from a wait state back to the stable state. These
transitions can be fired, if an input is changed again during the switching time of the gate. Then
the automaton drops back to the previous stable state. This mechanism models the behaviour of
input glitches, which may or may not cause a transition at the output of the gate.

The models of all other gates have the same basic structure as the 2-input C-gate model
presented in Figure 4.7a. Only the transition guards need to be adapted to the respective gate
function. Using these gate models, it is possible to build a complete model of the recovery
controller. This can then be triplicated and the interconnection of the handshake signals forms
a model of the entire system, which we want to investigate. Unfortunately UPPAAL does not

52

support hierarchical models at this point in time. Thus, it was not possible to combine gates
into submodels. All gates of the system had to be manually instantiated at the top-level model.
In order to reduce the complexity of the this model, we decided to perform the verification on
the non-duplicated version of the recovery controller, as can seen in Figure 4.4b. Note that the
catastrophic scenario for the duplicated recovery controller is a glitch on the comparator output
affecting the duplicated gates in the same way. Therefore, a proof that a glitch cannot compro-
mise the non-redundant version, also proves the correctness of the redundant implementation.

Table 4.7c lists the TCTL expressions we used for checking the desired properties. The first
formula verifies that there are no deadlocks on all possible execution paths. For this purpose
UPPAAL conveniently provides the deadlock attribute. If this property holds, the three recovery
controllers never get stuck during the whole operation of the circuit. Yet, this property does
not guarantee that the recovery process is always performed in a consistent way. Therefore,
more detailed checks are required to verify the correct execution of the handshake protocol: The
second query in Table 4.7c verifies that on all execution paths eventually at least one of the
recovery controllers starts a new recovery cycle by asserting its handshake signal. Subsequently,
the third formula can be used to check that once one controller has started a recovery cycle,
the other two controllers will eventually join the recovery process. In UPPAAL this property
can be expressed by the statement φ – –> ψ, which is a short-hand notation for the TCTL
expression A�(φ→ A♦ψ). The last behaviour which remains to be verified is the property that
a started recovery cycle is eventually completed by all three replicas, i.e., all handshake signals
are deasserted and all clock generators are enabled again. The verification of this property is
done with the last expression listed in Table 4.7c.

In a first verification step we applied the four queries to a fault-free model, where the com-
parator output is not disturbed. In this case all properties held as expected. For investigation
of the behaviour when a fault occurs at the comparator output, we added a saboteur unit for
this signal into the model. This is quite similar to the use of saboteur devices for fault injection
experiments. Since an SET pulse is only a temporary inversion of the current signal value, this
fault can be easily modelled by a simple state machine. As can be seen in Figure 4.7b, the sabo-
teur unit has a single input a and a single output y. During normal operation the state machine
just propagates input changes instantaneously to the output. However, when a glitch is supposed
to occur, the right-hand output transition of the state S_normal is taken, which inverts the current
input value and writes it to the output. Note that this transition is allowed to fire at any time.
There are no timing constraints given. Thus, a glitch may occur at any possible system state and
the verified properties apply throughout the whole circuit operation. In contrast to the time of
occurrence, the length of the glitch is constrained to same bounds used for the switching time
of the other gates. This restricts the number of glitch variations to a reasonable amount. Since
we only want to verify the circuit for the single-fault assumption, the saboteur model is only
allowed to generate a glitch for a single time. This is controlled with the variable done, which is
set to true once the first glitch has been generated.

After adding the saboteur unit to the comparator output signal of one replica, we verified
the properties again. While the first three properties could be satisfied, the forth property failed.
An analysis of the trace of a counter-example, for which the verification failed, revealed that
problems can arise when the cycle counter does not hold the correct value after the recovery

53

process is completed. Fortunately, a simple solution to elude this issue is to make sure that
the cycle counter is overwritten with the correct value during the recovery cycle. This can be
achieved by adding an appropriate reset circuitry to the counter register, which is controlled by
the recovery signal. After including this improvement into the UPPAAL model, the verification
of all TCTL queries terminated successfully.

The last error scenario, which needs to be considered is the possibility of metastability. Very
short pulses on the comparator output can put the C-gates into a metastable state, which may
break the double-checking mechanism. A solution to this problem is to incorporate a metasta-
bility filter in the duplicated C-gates. This will delay any output transition as long as the C-gates
have not resolved from a metastable upset [88].

4.2.5 Area & Performance

In comparison to a conventional TMR circuit architecture, two new circuit structures are intro-
duced in our approach: The first is the addition of multiplexers to the replicated target applica-
tion, as can be seen in Figure 4.2. This requires one extra 2-to-1 multiplexer for every replicated
flip-flop. Clearly, the area overhead of these multiplexers and the caused performance degrada-
tion depends on the specific circuit. We have therefore applied our technique to a real-life circuit,
an embedded 32-bit processor named SCARTS [65]. Detailed area and performance results of
this showcase will be presented in Section 4.6.2.

The second extension are the recovery controllers, which are added to the stoppable clock
generators of the GALS modules. While the area is constant for most parts of the controller,
the required resources of the cycle counter and the delay element in the recovery controller
depend on the specific implementation. In Table 4.2 we give an area overview in terms of
needed transistors, assuming a 4-bit wide cycle counter and a delay element, which is built with
an inverter chain of 20 inverters. For the flip-flops we assume a master-slave implementation
with 26 transistors. For the C-gates the weak-feedback implementation by Alain Martin [66]
with 8 transistors is considered. In total this adds up to 292 transistors for the robust version
of the recovery controller. This is a very decent footprint, even though the size of the recovery
controller increased quite significantly due to the duplication, which was needed to meet the
high robustness requirements.

Concerning the performance of the proposed method, we have to analyse fault-free execu-
tions and scenarios, when a soft-error occurs. In the first case, the execution time is simply
extended by the periodic recovery cycles. Depending on the chosen frequency of these recovery
cycles, the performance hit can be more or less significant. Considering the above example of a
4-bit wide cycle counter, a recovery cycle is executed every 16th cycle. The performance degra-
dation in this case is less than 10%. If a soft-error occurs, the execution behaviour depends on
the hit location. While a hit within the triplicated target application causes no additional delay,
an SET within the recovery controller can prolong the recovery process. If one of the duplicated
C-gates is hit, e.g., the double-checking C-gates will stop the execution until the transient fault
has vanished. Since transient faults typically last for a very short time, the inflicted delay does
not constitute a notable performance loss. A longer stall of multiple clock cycles can, however,
be caused if the cycle counter is perturbated. In the worst-case a faulty replica can skip an up-
coming recovery cycle when the cycle counter jumps over the zero value. Then the two correct

54

Table 4.2: Area in terms of transistors.

Block Gates Count Total transistors

Cycle counter

Flip-flop 4 104
XOR2 3 36
OR2 2 12
MUX21 1 12

Comparator NOR4 1 8

Recovery controller

CGATE2 6 48
GGATE3 2 20
XNOR2 1 12
Delay (inverters) 20 40

292

replicas will be blocked for a whole computation period until the faulty cycle counter reaches
the value of zero again. Fortunately, the probability of upsets in a 4-bit wide counter, e.g., is
very low and will therefore not have a significant impact on the execution time of the circuit.

4.2.6 Proof of Concept

To test a full implementation of our approach we have designed a small GALS module, con-
taining just an auto-incrementing counter. We then triplicated all combinational and sequential
circuit structures, extended them with voters and multiplexers for recovery, and added the re-
covery controllers. This is a simple yet adequate proof of concept that allowed us to verify
the implementation of the clock generator and the behaviour of the recovery mechanism in the
presence of faults. Figure 4.8 shows a gate-level simulation of the complete system. On top
the three clock signals can be seen. We deliberately chose three different clock frequencies to
demonstrate that the replicas work independently from each other. For a real-world application
the clock generators would obviously be adjusted to the same frequency. The next three sig-
nals displayed on the waveform are the outputs of the cycle counters. It can be seen that every
counter is incremented by one at the active edge of the corresponding clock signal. When the
cycle counter reaches the value zero, the clock generator is stopped and the local recover signal
is raised. As can be seen in Figure 4.8, the third replica with the shortest clock period is the first
to stop and waits for the other two copies to catch up. For the demonstration of the recovery
mechanism we injected a transient fault into an internal signal of the third replica to provoke an
SEU in the counter register. As a consequence the counter output jumps to the value 133 instead
of 5 at the beginning of the sixth clock cycle. For this demo configuration we chose a recovery
action to be scheduled every eighth clock cycle. When all replicas have stopped and the recov-
ery controllers have raised the recover signals, the result of the majority voters is written back
to each of the registers and the faulty value is corrected, as can be seen in the waveform. At the
end of the recovery cycle the counters of all three replicas store the same value again. Finally all
clock generators are re-enabled and the replicas continue their computations independently for
the next 7 clock cycles.

55

Recovery cycleSEU

Clock Signals

Clock Counter

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0

1 2 3 4 5 6 7 0 1 2 3 4 5 6

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0

Recover Signals

User Design - Counter Values

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 133 134 135 7 8 9 10 11 12 13 14

reset

Clock Signals

clk_r1

clk_r2

clk_r3

Clock Counter

cycle_r1 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0

cycle_r2 1 2 3 4 5 6 7 0 1 2 3 4 5 6

cycle_r3 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0

Recover Signals

recover_r1

recover_r2

recover_r3

User Design - Counter Values

cout_r1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

cout_r2 0 1 2 3 4 5 6 7 8 9 10 11 12

cout_r3 0 1 2 3 4 133 134 135 7 8 9 10 11 12 13 14

Figure 4.8: Simulation: Recovery from an SEU.

4.3 Approach II: Serial Recovery

In the last section we demonstrated a simple mechanism for implementing modular redundant
GALS modules in a way that clock domains are decoupled and voting and recovery can still be
performed at certain checkpoints. The proposed solution cautiously avoids any single point of
failure by replicating clock generators and clock distribution networks.

However, the parallel recovery approach does not solve the strong physical dependency be-
tween replicated circuit structures, which we criticised in Section 4.1. The interconnect network
required for voting, still limits the degree of freedom for placement and layout of module copies.
In order to avoid these restrictions and reduce physical coupling to its minimum, we will there-
fore introduce another solution to perform state restoration. Let us first investigate the three
basic ingredients any recovery mechanism in a modular redundant system needs to have:

1. Read/write access on the state-holding elements of all replicated modules.

2. A communication mechanism to exchange state information among the replicas.

3. Majority voting circuits to mask faults in the exchanged state.

In the previous approach read/write access is gained directly by tapping the outputs of flip-
flops and inserting a feedback signal to their inputs. The communication mechanism is imple-
mented by wires for sharing the tapped flip-flop outputs among all replicas. These wires connect
to voter components, which are added for every flip-flop. Thus, the three basic parts of the
recovery mechanism are directly embedded into the replicated circuit.

Another method to get read/write access on the state of a circuit is to use register scan chains.
In synchronous circuits scan chains are a well-known and widely-used method for implementing
design for test features, which are a necessity for fabrication tests. Re-using scan chains for state
recovery in a modular redundant system is therefore a very elegant and efficient approach since

56

inout
ClkEn signals

Replica1

inout

Clock Generator /
Recovery Controller

R
e
c
o
v
e
ry

 L
in

k
s

S
E

S
I

S
O

inout
ClkEn signals

Replica2

inout

Clock Generator /
Recovery Controller

R
e
c
o
v
e
ry

 L
in

k
s

S
E

S
I

S
O

inout
ClkEn signals

Replica3

inout

Clock Generator /
Recovery Controller

R
e
c
o
v
e
ry

 L
in

k
s

S
E

S
I

S
O

(a) Top-level view.

SE SOSI

Recovery
State Machine

Output
Port

Shift Registers /
Voter

Input
Port

Input
Port

C

Clock
Generator

Data

Req

Ack

Data

Req

Ack

Data

Req

Ack

Data

Ack

Data

Ack

Data

Ack

Replica1

SendReq

SendAck

ReceiveReq

ReceiveAck

S
ta

te
 E

x
c

h
a

n
g

e
C

o
n

tr
o

ll
e

r

ClkEn Transmit

To Replica 2 & 3

Ack

From Replica 2

From Replica 3

(b) Clock generator and recovery controller.

Figure 4.9: GALS TMR system.

it helps to avoid new overheads for sake of fault-tolerance alone. The use of scan chains in a
TMR system has been proposed by Ebrahimi et al. [26, 27].

Based on this technique it is now possible to build a recovery mechanism for GALS modules
that is non-intrusive and preserves physical independence of replicated components. The basic
concept is to read out the internal state from the circuit’s scan chain, distribute this data among
all replicas, perform voting and shift the data back into the scan chain to scrub erroneous bits.
As the recovery is done in several cycles bit for bit, we refer to this approach as serial recovery.
Figure 4.9a again shows the top-level structure of a triplicated GALS module. As can be seen,
the basic arrangement looks a lot like in the approach presented in the last section. However, in-
stead of a single recovery signal that controls many internal multiplexers, the recovery controller
is connected to the ports of the module’s scan chain, scan enable, scan input and scan output.
Note that the recovery controller could be interfaced with an arbitrary number of scan chains.
To keep the circuit presentations simple, however, we will assume that the module just imple-
ments a single scan chain, which contains all the internal registers. On the left-hand side of the
controller a network of communication channels, we call them recovery links, can be seen. In
contrast to the parallel approach, where the recovery controllers just communicated over a set of
control signals, the recovery links are fully-fledged data channels, dedicated for the exchange of
the state information, which is read out from the scan chains. With respect to the basic concept it
does not really matter how these recovery links are implemented. Nevertheless, we propose the
use of asynchronous, preferably delay-insensitive, channels. Thus, global timing assumptions
are avoided and full timing independence among the replicated module copies is preserved.

57

4.3.1 Recovery Controller

A closer view on the internal structure of the recovery controller can be seen in Figure 4.9b.
The controller basically consists of four core components: 1) the recovery state machine, which
controls the whole recovery process 2) a set of shift registers together with the voting circuitry,
3) the state exchange controller, responsible for exchanging state data, 4) input and output ports,
which are connected to the asynchronous recovery links between the replicas. The first two
components are synchronous circuits, whereas the state exchange controller and the I/O ports are
implemented as asynchronous components. The reason for this partitioning will become evident
when we take a closer look on the execution of the recovery process, which alternates between
scan and communication phases. As the state of a typical GALS module would most certainly
be too large to be transferred to the other module copies in one I/O operation, it needs to be
scanned out and transmitted in several blocks, one after another. Let us assume that the replicated
modules are located on three different chips for maximum independence in the fault-tolerant
system. The bus width of the off-chip recovery links is therefore limited, which obviously
restricts the number of bits that can be transferred at once.

Figure 4.10 shows the state chart of the (synchronous) recovery state machine. As can
be seen, the state machine only consists of three states: Compute, Scan and Exchange. The
compute state is the idle state, where the state machine rests when no recovery is performed. In
this state the only action is to increment a cycle counter with every local clock tick. Note that
we use the same counter-based mechanism to schedule periodic checkpoints like in the parallel
approach (cf. Section 4.2.1). Thus, the compute state is left when the cycle counter reaches a
predetermined value and switches to the scan state. This state transition marks the beginning
of the recovery process. In scan state the scan enable signal is activated and the read-out of
the circuit state begins. Figure 4.11 shows three shift registers that are connected to the output
of the scan chain. The width of these registers needs to match exactly to the bus width W of
the asynchronous recovery links. The state machine thus stays in the scan state for W cycles
to completely fill the shift registers and then changes to the third state, i.e., the exchange state.
This is a very interesting state transition as now the control over the recovery process is handed
over from the synchronous state machine to the asynchronous state exchange controller. As
can be seen in the state chart, the transmit signal is activated, which notifies the state exchange
controller to begin with its operation. At this point in time the controller (see STG specification
in Figure 4.12a) disables the clock generator and thus all synchronous components of the GALS
module and the synchronous parts of the recovery controller come to a full stop.

Now the state exchange phase begins and the controller raises the send request signal to
trigger the output port, as can be seen in Figure 4.9b. The output port then reads the data
block currently stored in the shift registers and encodes it with a delay-insensitive (DI) code.
As mentioned before, we use a DI transmission scheme to avoid timing assumptions for the
recovery links. For our prototype system we employed a 3-of-6 code with a 4-phase handshake
protocol, because the resulting links are very resource-efficient. In case low power consumption
is a criterion, one might rather choose a 2-phase 2-of-7 code, like in the SpiNNaker project [99].

In parallel with the outgoing transmission the other two module copies, having switched to
recovery mode as well, will transmit the data they have extracted from their scan chains. Two
local input ports (cf. Figure 4.9b) will receive the incoming data blocks and inform the transmit

58

Figure 4.10: Recovery state machine.

Load

Data

Shift In

Shift Out

Load

Data

Shift In

Shift Out

Shift In

Shift Out

Q

Voter

from Replica1

transmit

from Replica2

to output port

Scan Chain In (SI)

Scan Chain Out (SO)

Shift
Register

Shift
Register

Shift
Register

Figure 4.11: Transmit/receive shift registers with voter.

controller once these have been captured and fully decoded. When output and input operations
have been completed, the state exchange controller re-enables the clock generator and returns
control to the synchronous recovery state machine.

The data received from the two module copies is then loaded into the shift registers (parallel
load, see Figure 4.11) and the recovery state machine changes back to scan the state2. At this
point in time one of the three shift registers contains the data block extracted from the local scan
chain and the other two registers have stored the received data. Bit for bit majority voting can
now be performed for the contents of the shift registers and the resulting (correct) value is shifted

2Note that the arc in the state chart of the transition from transmit to scan state is not annotated with a condition.
Thus, the transition is immediately taken with the first clock tick, once the clock generator gets re-enabled.

59

back into the module’s scan chain. At the same time the next data block is moved from scan
chain output into the shift registers. After W cycles the state machine enters the exchange state
again. This routine is repeated until the all bits of the scan chain have been read out and have
been overwritten with voted values. Then the recovery state machine jumps back to the compute
state and the recovery process is finished.

Inputs: Transmit, SendAck, ReceiveReq
Outputs: ClkEn, SendReq, ReceiveAck

Transmit+

SendReq+

SendAck+

SendReq−

SendAck−

ClkEn+

ClkEn−

Transmit−

ReceiveAck+

ReceiveReq−

ReceiveAck−

ReceiveReq+

(a) Signal transition graph.

C

C

C

C

ReceiveReq

Transmit

SendAck
ClkEn

ReceiveAck

SendReq

(b) Synthesised circuit.

Figure 4.12: Specification and implementation of the State Exchange Controller.

The state exchange controller was again specified with an STG and synthesised with Petrify,
as can be seen in Figure 4.12b. The left column of the STG shows the 4-phase handshake proto-
col performed with the output port (transmitter), the right column incorporates the receive part
with input ports (receiver)3. The STG specification is quite straightforward and follows the de-
scriptions of the recovery process above. There are, nevertheless, two details that require closer
examination: 1) The Transmit signal, which is issued by the synchronous recovery state machine
to trigger the state exchange process, is expected to be reset again as soon as the clock generator
is disabled (ClkEn-). In our implementation this behaviour is simply ensured by connecting the
ClkEn signal to the active-low asynchronous clear input of the flip-flop that drives the Transmit
signal. At this point we also want to stress that the Transmit signal should be registered in or-
der to filter potential glitches during state transitions. 2) The sequence of events for the receiver
handshake is a bit more intricate than can be seen in the STG since the received state information
needs to be loaded into the shift registers before the clock can be re-enabled. Depending on the
implementation of these shift registers, a parallel load can either be performed synchronously
or asynchronously. In our implementation we chose the former approach and generate an extra
clock pulse just for loading the shift registers. This clock pulse can be directly derived from the
ReceiveAck signal. As can be seen in the STG, this signal produces a positive pulse as part of the

3This STG and consequently the synthesised circuit are different from what we published in [64]. In the pub-
lished paper we only considered transient faults, whereas for this thesis we also investigated long fault durations, i.e.,
permanent defects (see next subsection). For these defects, the controller implementation had to be revised as the
original STG included some timing assumptions that are violated when certain signals are permanently stuck.

60

4-phase handshake cycle at the right point in time, i.e., after the state words have been received
by the input ports and before the clock is re-activated. When data is transferred like this from
asynchronous circuit parts into a synchronous module, clearly some timing constraints have to
be satisfied.

4.3.2 Timing Constraints

• Shift registers – parallel load: As explained above, data from other replicas are loaded
synchronously into the shift registers during state exchange. Since the corresponding
clock edge is derived from the ReceiveAck signal, it is necessary to delay the rising edge of
this signal until the received data are stable at the inputs of the shift registers. Furthermore,
it needs to be ensured that the shift registers have changed from shift mode to parallel load.

A more subtle timing constraint is caused by the two clock sources of the shift registers: i)
the clock generator, and ii) the ReceiveAck signal. Both sources are combined by an OR-
gate to produce a single clock signal for the shift registers. Consequently, it is necessary
to ensure that the rising transition of the ReceiveAck signal occurs at least one nominal
clock period after the last regular rising clock edge of the clock generator.

• Shift registers – shift operation: When the recovery process changes back to scan opera-
tion after the state exchange, the clock generator must not be re-enabled too fast. The first
clock edge should occur with a minimum delay of one clock period after the last rising
clock edge, which was generated by the ReceiveAck signal. Furthermore, it needs to be
ensured that the shift registers have changed back from parallel load to shift mode.

• Clock to clock enable: When the recovery state machine changes from scan state to ex-
change state, the state exchange controller needs to disable the clock generator before
another clock edge can be issued. As explained for the parallel recovery approach, this is
a critical timing path, since it involves the clock tree, which can have a significant latency
for more complex GALS modules. A solution to bypass this issue might be to decouple
the disabling of the clock generator and the enabling of the transmission process. Then
the recovery state machine could activate the control signal for disabling the clock gener-
ator a certain number of clock cycles early before the end of the scan phase and thereby
compensate for the latency of the clock tree. The transmission process, on the other hand,
is only started after the last bit of state information has been retrieved from the scan chain.

4.3.3 Robustness of the Recovery Controller

The recovery controllers of such a replicated system obviously are very critical components, as
a transient fault in one of these controllers cannot only cause the recovery of a local component
to fail but might also drive the system into an inconsistent state or a deadlock. Assume, e.g., that
a message sent over a recovery link is lost due to a soft-error. This clearly leads to a deadlock
since the receiver waits for the message to arrive and the sender waits for the acknowledgement
of the receiver. Another scenario, leading to an inconsistency or a deadlock, is the corruption of
the recovery state machine’s state vector, either during computation or recovery phase.

61

In many known approaches with active redundancy and roll-forward recovery (see [27,123]),
the recovery controller therefore is required to be fault-tolerant itself. In case of our approach
the control logic, which can be found in the recovery state machine, the transmit controller and
the I/O ports, needs to be protected against faults. This could be done with classical replication-
based fault tolerance mechanisms at gate or circuit level. Since the control logic of our recovery
controller is quite small (see Section 4.3.6), the costs of replicating these circuits might still
be acceptable. We, however, want to present a different approach. Instead of preventing faults
at hardware level, we devised a mechanism that guarantees correct behaviour on system level,
despite of local faults in a single recovery controller. The basic concept is to design the recovery
controllers such that a faulty controller can be re-integrated by the other two correct controllers
when the next recovery action is performed. The recovery thus serves not only for restoration of
the state of a faulty module, but also for readjustment of the respective recovery controller.

The key observation for the design of such a mechanism is that an inconsistent, faulty con-
troller will freeze the recovery process, either because it does not change to recovery mode
when the other correct controllers do, or because it fails to send all required messages during
recovery. Recall that the clock generator is disabled when communication is performed over the
asynchronous recovery links. Thus, either the module copy with the faulty controller, the two
correct and consistent copies, or all three copies will be stalled. To resolve this situation we have
extended our recovery controller implementation with two watchdog timers – a fast and a slow
one. The precise meaning of fast and slow will be discussed later. Right now, just assume that
the slow watchdog has a significantly longer timeout than the fast one. Basically both timers
check for inactivity during the recovery process and their timeout signals are connected to the
recovery state machine, which has been extended to deal with situations when the recovery fails.

The slow watchdog counter is activated when the local module copy decides to broadcast
state information, i.e., during the transmit phase of the recovery process, when the local clock
generator is disabled by the state exchange controller. Now let us assume that the handshake-
based communication with the other module copies cannot be finished before the timeout ex-
pires. Then the slow watchdog asserts its timeout signal and the following “emergency proto-
col” is executed: 1) The local clock generator is re-enabled, overriding the decision of the state
exchange controller to stop the clock. 2) The recovery state machine awakes and aborts the re-
covery process as a reaction to the raised watchdog timeout. The data that has been read out of
the module’s scan chain is shifted back, without any voting and any further attempts to exchange
state information with the other two replicas.

To explain why a second watchdog timer is needed let us explore what could happen, if
the recovery controller was only equipped with the slow watchdog mechanism. Assume we
are dealing with a TMR system, where a recovery is periodically executed with p clock cycles
of computation time between two successive recovery processes. For a reasonably fast dead-
lock resolution the watchdog has to be configured to a timeout t that is much smaller than this
computation time, i.e., t � p. Thus, let us assume that t < p/2. Figure 4.13 shows a prob-
lematic execution, where a fault resets the state of the recovery controller of replica R1, exactly
p/2 clock cycles after a recovery has been successfully performed. The recovery state machine
therefore returns to the old state it had right after the end of the last recovery (E(CP1)). From
there on it lags half the number of compute cycles behind the non-faulty controllers of R2 and

62

R3, which therefore reach the next checkpoint CP2 much earlier. Since t < p/2, R2 and R3

run into the timeout and abort the recovery before R1 is able to catch up. The same situation is
repeated for every future checkpoint, hence the system cannot recover from the fault.

R1

S(C
P 2

)

A(C
P 2

)

S(C
P 1

)

p p/2d p t

E(C
P 1

)

R2

S(C
P 1

)

p d p

E(C
P 1

)

R3

S(C
P 1

)

p d p

E(C
P 1

)

p

E(C
P 2

)

a

S(C
P 3

)

A(C
P 3

)

t

E(C
P 3

)

a

S(C
P 2

)

A(C
P 2

)

t p

E(C
P 2

)

a

S(C
P 3

)

A(C
P 3

)

t

E(C
P 3

)

a

S(C
P 2

)

A(C
P 2

)

t p

E(C
P 2

)

a

S(C
P 3

)

A(C
P 3

)

t

E(C
P 3

)

a

CPi ... checkpoint i, S(CPi) ... start recovery, A(CPi) ... abort recovery, E(CPi) ... end recovery

p ... computation time, d ... fault−free recovery duration, t ... watchdog timeout, a ... abort time after timeout

Figure 4.13: Recovery failure with single watchdog.

To resolve this issue, a second shorter timeout is needed that is activated when a module is in
computation mode and there are active requests on a majority of recovery links. This condition
can be easily evaluated by monitoring the outgoing and incoming recovery link signals. In case
of TMR, if there are active requests on both incoming links and the outgoing link is idle, the fast
watchdog counter should be activated. For sake of simplicity we used two separate watchdog
modules in our implementation – one preset to a long, the other one to a short timeout. However,
since the two counters never operate at the same time, resource sharing is possible and only
one watchdog module, dynamically set to the appropriate timeout value, would be sufficient.
Another important implementation detail we like to share is that the circuit for enabling the
slow watchdog module should be purely combinational and must not depend on any (possibly
corrupted) memory element of the local recovery controller. Otherwise a faulty internal state
might tamper with the correct detection of the recovery link state and thereby prevent proper
activation of the watchdog. Figure 4.14 shows a simplified version of the extended recovery state
machine, which includes an additional state for finishing the scan in case an abort is necessary.

Following this mechanism it can be guaranteed that, 1) correct modules remain correct and
consistent, if the recovery fails and has to be aborted, and 2) a faulty component is re-integrated
when the next recovery action is executed. An essential requirement for the design of the watch-
dog module, however, is that the timeout values are carefully chosen. Therefore we need to
define some upper and lower bounds for the slow and the fast timeout values. Assume we have
a modular redundant system with n copies of a specific GALS module. Let si be the duration
of the slow timeout, for module copy i, i = 1, . . . , n, and fi be the value for the fast watchdog.
Due to considerable variations in modern technologies we need to investigate and constrain the
timing in different PVT corners. Variables with superscript bc therefore denote a timing value in
the best-case corner, whereas superscriptwc identifies worst-case values. Now let us assume that

63

Figure 4.14: Extended recovery state machine.

the module copies after the execution of a recovery process are almost perfectly synchronized,
i.e., the copies, when switching from recovery mode to computation mode, initially perform
all operations almost simultaneously, with negligible time difference. Over time this tight syn-
chrony will be lost due to PVT variations, which affect the clock generator or the timing of
the asynchronous circuits when I/O operations are performed with other modules of the overall
GALS system. Thus, the time when the module copies reach the next recovery checkpoint will
not be exactly the same, and consequently these differences need to be considered in the timing
constraints of the watchdog modules. Now let pi denote the time that will pass for module copy
i between the end of the last and the start of the next recovery process, and let pwci and pbci be
worst-case and best-case values, respectively. Then the following three timing relationships for
the slow and fast watchdog timeouts can be determined:

sbci > max
j 6=i

(pwcj)− pbci (4.1)

fwci < min
j 6=k 6=i,j 6=i

(pbck + sbck − pwcj) (4.2)

f bci > pwci −max
j 6=i

(pbcj) (4.3)

These constraints need to be satisfied by the watchdogs of every module copy i. Equation 4.1
defines a lower bound for the slow timeout. This bound ensures that the timeout is long enough
so that the slowest module copy can finish its regular computations and is able to join the recov-
ery process before the faster copies abort the recovery. The second constraint is an upper bound
on the fast watchdog timeout that makes sure that a faulty copy joins the recovery process fast
enough, i.e., before the slow timeout of first non-faulty module copy runs out. This situation is
illustrated in Figure 4.15a, where the non-faulty components R1 and R2 are stalled when they
start the recovery because R3 does not participate (as its recovery controller was affected by a
fault). According to the procedure described above the fast watchdog is activated inR3, when an
incoming recovery request is pending from both R1 and R2 (first dashed line). Now the watch-
dog needs to force the faulty module R3 into recovery mode, before the slow watchdog of R1

64

causes an abort (second dashed line). Finally, Equation 4.3 describes a lower bound for the fast
timeout, which is needed to guarantee that the slowest but non-faulty module copy can finish its
computations before joining the recovery process. Figure 4.15b shows that the fast watchdog of
R3 is activated when R1 and R2 start the recovery (first dashed line). Consequently, f3 needs
the be long enough so that R3 can finish its current computation round of length p3 (second
dashed line). Note that Equation 4.3 is only valid for TMR systems. The fast timeout counter
is activated when a majority of module copies have started the recovery process. In TMR this
is equal to the situation where the penultimate copy enters recovery mode (as depicted in Fig-
ure 4.15b). In general modular redundant systems with n > 3, the majority can be reached
before the penultimate component. To fix Equation 4.3 it is therefore advisable to replace the
max with a min function. Even though the resulting bound is not tight, as it assumes that the fast
watchdog starts counting with the first module that enters recovery mode, it is still a valid bound
and a reasonable approximation. Similarly, the Equation 4.2 is an overly conservative upper
bound in the case of general modular redundancy. The bound is computed as if the penultimate
module copy that enters the recovery activates the fast watchdog counter (note that the term on
the right hand-side is minimised when pwcj is maximised). Nevertheless, the bound is valid even
in the general case with more than 3 copies.

R1

S
(C

P 1
)

p1 s1

R2

S
(C

P 1
)

p2 s2

R3

S
(C

P 1
)

f3

(a) Upper bound.

R1

S
(C

P 1
)

p1 s1

R2

S
(C

P 1
)

p2 s2

R3

S
(C

P 1
)

p3

f3

(b) Lower bound.

Figure 4.15: Fast timeout constraints.

An implementation of the watchdog counter is shown in Figure 4.16. Since the counter
needs to be operational when the local clock generator is turned off, it is equipped with an own
ring oscillator. When the enable signal is activated, the oscillator generates clock ticks for a
counter unit, which can be efficiently built with a linear feedback shift register (LFSR) [5]. A
comparator unit evaluates the counter outputs, and raises the timeout signal, when the maximum
value of the count sequence is reached.

4.3.4 A Short Note on Long Faults (Permanent Defects)

So far we have only discussed how transient faults and soft-errors can be mitigated in a repli-
cated GALS module (core logic and recovery controller). In this section we also want to show
that this mechanism, with some small modifications, is able to provide protection against per-

65

LFSR

= MAX_COUNT

Delay

E
n
a
b
le

Clear

timeout

Figure 4.16: Watchdog module.

manent defects. Clearly, modular redundant systems can mask permanent defects in a minority
of components, as long the other replicas remain functional and produce correct outputs. It is,
however, important that the replicated circuits are truly independent and that a defect in one
copy cannot affect the other healthy copies. In case of our replication mechanism and recovery
scheme for GALS modules, we therefore we need to look into two cases, depending on where a
defect occurs: 1) Defects in core logic of the module (combinational or sequential parts). In this
case the state of the affected module copy might be corrupted beyond recovery, or might be com-
promised again immediately after a performed recovery. Consequently, all outputs produced in
the presence of this defect might be erroneous. Nevertheless, assuming that the remaining mod-
ule copies are not affected by faults, correct system outputs could be produced by subjecting the
outputs of all replicated modules to a majority vote4. 2) A defect can occur in the asynchronous
wrapper, either in the clock generator or in the recovery controller. In both cases this might
prevent a module copy from participating correctly in the recovery process, which leads to a
deadlock that stops the entire system. This situation is similar to what we have discussed for
soft-errors in the previous section. Hence, the watchdog timers and the abort mechanism again
can be used to ensure that a broken replica cannot stall the entire modular redundant system. The
only difference, however, is that a permanent defect, unlike soft-errors, cannot be recovered.

Assume, e.g., a permanent defect in the output port of one recovery controller in a TMR
system, which hinders the affected module copy to successfully broadcast its state information
to the other replicas. Consequently, the recovery process will be aborted every time it is started.
In this situation the recovery therefore becomes useless and only reduces system throughput. It
is therefore advisable to cancel all future checkpoints until the defective module copy has been
replaced by maintenance. Figure 4.17 shows an adapted recovery state machine to deal with
such permanent failure scenarios. The basic concept is to change to a degraded configuration, if
a permanent defect has been detected. For this detection the state machine counts the number of
successive recovery processes that have failed. If this count surpasses a certain value, the state
machine will not return to the standard compute state but but to a degraded compute state. The
clock generator is re-activated and the module then continues with its ordinary computations
without being interrupted for recovery checkpoints anymore. This system state prolongs until
the defective unit is replaced by maintenance. Upon some external trigger, indicating that repair
has been carried out, the state machines in all module copies make a transition back to the

4Note that an output of a defective module might also get lost, if the asynchronous output handshake is not
initiated. We will deal with voting in this situation in Section 4.4.3.

66

Figure 4.17: Recovery state machine dealing with defects.

ordinary compute state. Thereby recovery checkpoints can be executed again, and the state
of newly replaced component will be synchronized with the current state of the other correct
replicas. Thus our recovery mechanism does not only help to mitigate soft-errors but also allows
re-integration of hot-swapped units after permanent defects. This feature is of utmost importance
for systems with high availability requirements. Consider, e.g., control circuits of a power plant
that need to remain operational even during maintenance procedures.

Note that the condition of the state machine for entering the degraded state only covers
defects in the recovery controllers. Obviously, a mechanism to detect permanent faults in the rest
of the replicated GALS modules is necessary as well. A simple approach would be to monitor
the values produced at output ports. If outputs of one copy repeatedly deviate from the correct
results of the other replicas, the system should also change into the degraded computation state.

Another detail we should mention about the presented extension of the recovery state ma-
chine is that the degraded state needs to be implemented very carefully. As we have explained,
no recovery processes are performed in this state and the only way to end it is an externally
triggered input by maintenance staff. Clearly, one does not want that the state machine gets
stuck in this state as a result of a single transient fault. This problem can be avoided by three
counter-measures: 1) Choosing a state encoding where the state vector of the degraded state has
a Hamming distance greater than or equal to 2 with respect to all other state vectors. This pre-
vents that a single upset in the state register itself steers the state machine into the degraded state.
2) Make sure that the next-state logic cannot produce the vector of the degraded state in case of
an SET. 3) Protect state registers that are evaluated by the next-state logic to transition into the
degraded state. In the state machine presented in Figure 4.17 the abort counter, if changed to the
threshold value by an upset, would lead to a transition into the degraded state. For our prototype
we have therefore chosen to encode the counter value in a unary code, also known as thermome-
ter code, where the number of bits set to one represents the value. This way a single upset in the
counter register becomes uncritical.

4.3.5 Verification

For functional verification of our approach we have built a simple prototype system consisting
of two GALS modules, M1 and M2, both triplicated and extended with the recovery controller

67

presented above. In order to test the recovery mechanism, the functionality of the modules can
be kept very simple. Both modules therefore only implement a 9-bit wide counter, which is
incremented every clock cycle until a predetermined final value is reached. At a certain point in
the count sequence, the counter values are exchanged among the modules to be able to test and
verify inter-module data transfers over asynchronous channels.

Regarding the recovery process, we have integrated the counter registers into a scan chain,
which consists of 32 scan flip-flops in total. The recovery controllers of both modules are con-
figured to trigger a recovery action every 64 cycles. Note that is a very short recovery interval,
which we have deliberately selected for the purpose of functional verification and with the aim
to keep simulation times as small as possible. For the recovery links we have chosen a bus width
of 8 bit. Consequently, it takes 4 transmission rounds to exchange all the contents of the scan
chains among the module copies during the recovery process.

We have synthesised this GALS system with a standard cell library for a 90 nm process.
Based on the results of a (pre-layout) static timing analysis, we adjusted the clock generators of
M1 andM2 to a frequency of 1 GHz and 782 MHz, respectively. The motivation for using differ-
ent clock periods was to examine communication across two independent timing regions. Based
on the synthesised netlist and (pre-layout) timing annotations, we then simulated numerous test
scenarios to check that the complete design works as intended.

Furthermore, we also wanted to systematically test the resilience of all parts of the design
against transient and permanent faults, and therefore exhaustive fault injection (FI) experiments
have been conducted. The experimental framework builds on a simulation-based fault injection
approach [127], where faults can be injected on nets and cells of the simulated netlist with the
help of simulator commands. The target of our fault injections was one copy of module M1,
which included the entire core logic, the I/O ports, all components of the recovery controller and
even the clock generator. The resulting target set consisted of 950 nets, 192 flip-flops and latches,
and 27 C-elements. The transient faults we injected had a length of 1 ns, uniformly distributed in
steps of 0.5 ns over one full computation round, i.e., 64 clock cycles, and the following recovery
action. Both positive and negative pulses were injected. At the end of the simulation the state
of M1 and M2, including all copies, was compared with the expected values of a fault-free
simulation. The exact same set of experiments was then performed with permanent defects, the
only difference being that the fault effect was not revoked after one 1 ns but the signal value
remained stuck at a constant value until the end of the simulation. Furthermore in the evaluation
of the simulation runs we excluded the defective module copy and only checked that the state
was consistent and correct for the other replicas.

In total we executed approx. 1.9 million FI campaigns (one half for transient, the other half
for permanent faults, one fault per simulation run). Due to this massive number of simulations
we distributed the workload on nine workstations (equipped with quad-core Intel R© XeonTM pro-
cessors clocked at 3 GHz, 8 GB memory), each of them running two simulations in parallel. With
this configuration we were able to carry out all simulations in 16 hours and 20 minutes.

These experiments gave us important feedback on the resilience of the tested circuits and
the first runs actually uncovered several issues we had not thought of during the design and the
implementation of the recovery mechanism. Most things were minor implementation bugs or
problems with the proper state encoding of the recovery FSM. One particular set of injected

68

(permanent) faults, however, revealed a critical issue with the communication over recovery
links. It turned out that a component with Byzantine fault behaviour is able to bring down the
recovery mechanism. Recall that a Byzantine fault in one component is observed differently by
the other components of the system. In other words non-faulty units have an inconsistent view
upon the faulty component [55]. In a modular redundant system this can ultimately drive the
non-faulty components into an inconsistent state, a potentially leading to system failure since
now a majority of replicas is inconsistent or faulty.

Figure 4.18 shows exactly such a Byzantine fault scenario. The waveform displays data and
acknowledge signals of the recovery links, as well as state vectors and timeout signals from the
recovery controllers. As can be seen, the system is in recovery mode and state information,
retrieved from the modules’ scan chains, is exchanged. Now assume that R3 is faulty and pro-
duces a Byzantine output behaviour: On the last communication cycle, which is performed for
the current recovery action, the replica R3 properly executes the full handshake protocol with
R2, but fails to reset the acknowledge signal for R1 (because of some error in the circuitry of
R3, see flash sign and red line in Figure 4.18). From the viewpoint of R2 all communication
activities have been successfully completed. Thus, it ends the recovery process and changes
back to computation mode. For R3 we assume the same behaviour. Only R1, which still waits
for a falling transition of the acknowledge signal from R3, is left behind in recovery mode. Af-
ter some time the watchdog mechanism wakes up R1 and it finally carries on in computation
mode. At this point in time we have the faulty component R3 in the system, whose state might
be completely corrupted, and two correct replicas, R1 and R2, which perform the correct com-
putations. However, due to the incurred timeout ofR1, the correct replicas have been set apart in
time. The next recovery process will thus be started by R2 and R3 and due to the short timeout
mechanism, the computation of R1 is interrupted, as it seems to be the outlier of the system.
Thus, a correct component is prematurely forced into the recovery process, which transforms
the temporal inconsistency of the two correct replicas into an inconsistency in the value domain.
In this situation the attempt to perform recovery with majority voting is likely to fail.

Data NullNull

Data NullNull

Data NullNull

Compute ModeRecover Mode

Compute ModeRecover Mode

Compute ModeRecover Mode

Data R1 to R[2,3]

Data R2 to R[1,3]

Data R3 to R[1,2]

Ack R1 to R[2,3]

Ack R2 to R[1,3]

Ack R3 to R2

Ack R3 to R1

State R1

State R2

State R3

Slow Timeout R1

Compute Mode Recover Mode

Compute Mode Recover Mode

Compute Mode Recover Mode

DataNull

DataNull

DataNull

Fast Timeout R1

Figure 4.18: Byzantine error on recovery link.

69

Therefore a solution where non-faulty units can find consensus despite of this malicious
behaviour would be required. This problem was first formalised as the Byzantine Generals
Problem [58], where a group of generals of the Byzantine army need to agree on a common plan
of action, communicating only over messengers. However, there are a certain number of traitors
(faulty units), which try to confuse the loyal generals (non-faulty units) by sending inconsistent
messages. In this situation the authors of [58] show that the loyal generals are only guaranteed
to come to a common agreement, if more than two-thirds of the generals are loyal. In other
words, if there are f traitors, the total number of generals has to be at least 3f + 1. This leads
to considerably more expensive system architectures compared with typical modular redundant
systems, where a simple majority is sufficient to mask faulty computations by voting.

Instead of increasing redundancy tremendously to be able to perform consensus in the rare
event of Byzantine faults, we therefore propose a more practical fault avoidance strategy to
minimise the risk that a malicious fault can occur. This strategy can be implemented with some
minor changes to the architecture of our recovery links. Figure 4.19 shows the result of this
redesign. The essential modification, as can be seen, is that each replica now has only two output
signals for the recovery links: the data signal driven by the output port, and a single acknowledge
signal for the input ports. Note that a Muller C-element has been added to combine individual
ack outputs of the input ports into a single acknowledge signal. Due to this single output strategy
for the communication signals any fault in a replicated unit will be observed by all other units in
the same way.

Input Port1

Input Port2

C
Ack

Data

Data

Output Port

C

Data

Ack

Ack

Input Port1

Input Port2

C
Ack

Data

Data

Output Port

C

Data

Ack

Ack

In
...

In
...

C

O
u
t...

C

D
a
ta

D
a
ta

D
a
ta

A
c
k

A
c
k

A
c
k

Replica1

Replica2

R
e

p
lic

a
3

Figure 4.19: Redesign of Recovery Links to reduce risk of Byzantine faults.

70

In case of permanent faults, however, Byzantine behaviour might still occur. One scenario
is a driver defect that results in an intermediate voltage level on the output signals and is then
perceived differently by the other replicas. Another critical point are wire forks in the inter-
connect network, which are now required due to our modification. Consider, e.g., the data and
acknowledge signals of Replica1 (thick, blue wires). As can be seen in Figure 4.19, these sig-
nals need to fork into two branches for connecting the other two replicas (this is once again
a simple TMR scenario). Clearly, these forks must not exhibit a Byzantine behaviour. Even
though such a behaviour in a simple wire fork seems extremely unlikely, considering that a fork
is just a passive metal connection, it is not completely impossible. Consider, e.g., a two-sided
crack within the fork as illustrated in Figure 4.20. Due to, say temperature changes, the cracks
open an close over time so that there is either a connection with the outgoing branch A or with
branch B. Such a defective fork might be able to first fool the communication with the unit on
one branch, while the handshake protocol can be successfully completed for the second branch.
Then the fork changes its behaviour, and the defective branches are swapped. This could lead to
a situation where the recovery controllers of all replicated components are forced into different
states, and any further attempt to perform recovery results in undefined and therefore potentially
harmful behaviour.

Branch A Branch B

Figure 4.20: Malicious fork.

As said before, such an intricate faulty behaviour is very unlikely to occur. More realistic
are faults that affect one specific branch of the fork (e.g., a permanent defect due to an open
circuit, or an SET in a buffer caused by radiation). However, one can consider the branches
after the wire forks to be part of the recipient module. With this abstraction, a fault in one
of the branches is no different from an internal fault in the associated module, i.e., it is the
faulty component itself that observes a faulty input. Note that this situation is different from the
Byzantine behaviour described above, where the faulty units sends faulty messages to the healthy
components. In contrast, a defect or transient in a single branch cannot lead to a catastrophic
inconsistency among the fault-free module copies.

4.3.6 Area & Performance

The presented approach is very area efficient in comparison to a conventional TMR design.
Replicated modules can remain unchanged since no internal voters are required and scan chains
can be re-used. Furthermore, the presented design of the recovery controller is very lightweight
with a total cell area of 3945.08 µm2 (an equivalent of 1257 two-input drive-strength-one NAND
gates), as can be seen in Table 4.3. Note that the area numbers are taken from the prototype im-

71

plementation used for the fault injection experiments. The largest components are the recovery
state machine and the I/O ports for the recovery links, which contain encoder, decoder and com-
pletion detection units for the delay-insensitive 3-of-6 code. Consequently, a key parameter
influencing the area complexity of the recovery controller is the bus width of the recovery links.

Table 4.3: Area evaluation – Recovery controller (area units in µm2).

Component name Comb. area Seq. area Total area Gate equivalent
Recovery state machine 573.10 373.97 947.07 301.62
Shift registers / voter 48.61 413.95 462.56 147.31
Transmit controller 31.36 21.95 53.31 16.98
Input Port I 450.02 192.86 642.88 204.74
Input Port II 450.02 192.86 642.88 204.74
Output Port 322.22 174.83 497.06 158.30
Watchdog Timer Fast 109.76 62.72 172.48 54.93
Watchdog Timer Slow 307.33 62.72 370.05 117.85
Misc. circuits 141.12 15.68 156.80 49.94
Total 2433.53 1511.54 3945.08 1256.39

Regarding performance, replicated modules can be operated with the same maximum fre-
quencies like in a non-TMR system. There is, however, a performance overhead imposed for the
overall system since the computation phases are interrupted for executing the recovery process.
Clearly, the size of this overhead depends on the frequency and the duration of the recovery
process. The approx. recovery duration can be computed by adding the length of required scan
cycles with the overall communication latency of the recovery links:

drecovery ≈ Tclk · Lsc + Llink ·Nblocks, (4.4)

where Tclk is the clock period, Lsc is the length of the scan chain, Llink is the full communication
latency of one transmission over the recovery links, and Nblocks is the number of transmitted
blocks, i.e., Lsc divided by the bus width of the recovery links. Assuming, e.g., a module where
2000 registers have to be recovered with a clock period of 1 ns, and 8-bit wide recovery links
with a latency of 5 ns, the duration of the recovery process would be 3.25µs.

Like for the parallel modular redundancy approach we have also applied our scan chain-
based state restoration scheme to a real-life circuit design, namely the SCARTS processor. De-
tailed area and performance results for this showcase design, as well as a comparison between
different TMR architectures will be presented in Section 4.6.2.

4.4 System Architecture

So far we have only discussed the replication and recovery mechanism of individual GALS mod-
ules, without considering the architecture of an entire GALS system, which typically contains
several modules. Figure 4.21 shows a mock-up model that illustrates several key system-level
design issues. The figure shows three different chip designs: 1) DA, the big yellow box on the

72

M21

M23

M51

M53

M61

M63

M12 M22

V
o

te
r

M13

V
o

te
r

V
o

te
r

M11

M52 M62In2

Out11

Out12

Out13

M4In4 M3

DA
DB

DB

DB

M71

M72

M73

Out2

V
o

te
r

DC

In1

In3

Figure 4.21: Illustrative example of system architecture.

left-hand side, 2) three instances of DB (violet boxes on the right), and DC , the blue box in the
bottom-right corner. Hence, the system consists of a total of five chips. Input and output pads are
depicted as little grey boxes, which sit on the dashed outlines. Within each chip GALS modules
can be seen, named either Mi or Mij . Single index names represent non-replicated modules,
double-indexed names belong to replicated modules, where index i denotes the module number
and index j the number of the associated copy. In case of the replicated modules, both recovery
approaches, parallel and serial, can be seen. The modules M1j , j = 1, . . . , 3, e.g., are an exam-
ple of the latter. The replicated modules are drawn as separate boxes connected over dedicated
recovery links (vertical links with unfilled triangular arrows at their ends). In case of the parallel
replication strategy the module copies are depicted as single box, as can be seen for the modules
M7j in the design DC . This reflects the strong interdependence of the module copies due to the
interconnect networks required for all registers where voting is performed.

4.4.1 Selective Hardening of GALS Modules

Figure 4.21 illustrates that replicated and non-replicated modules, such as M1j and M4, can
naturally co-exist in a GALS system. This is a relevant feature since not all parts of a chip

73

design necessarily have to be critical for reliable system operation. Consider, e.g., a module
that produces output images for a screen. Brief transient faults that change a pixel for a fraction
of a second might have a negligible effect on the quality of the output for a human viewer.
On the other hand even single-bit upsets in many control circuits, e.g., in a processor have the
potential to cause severe malfunctions. With rising integration capabilities we are more likely to
see complex SoCs that include components of mixed criticality. In general, such systems might
greatly benefit from the GALS design paradigm due to its inherent modularity, which simplifies
separation of critical and non-critical components.

4.4.2 Replica Partitioning

Another design decision is the partitioning of replicated components on different dies. This is
a viable option, if the serial recovery approach is used since the interconnect signals needed for
recovery only include the dedicated recovery links. Complexity is therefore low enough to route
recovery signals off-die or off-chip, as can be seen for the modules M5j and M6j in Figure 4.21.
Hence, a modular redundant system can be formed out of identical dies. Depending on the
desired spatial separation between each of the dies, a system designer has the choice to put these
dies into the same chip package, into different packages on the same board, or even on different
boards. Using an asynchronous delay-insensitive handshake protocol for the recovery links, any
of these scenarios is automatically supported and the designer does not need to worry about
signal delays on on-chip or off-chip wires.

The partitioning of replicated modules on separate dies, however, has substantial conse-
quences for the ability to perform voting on module outputs. From a reliability point of view,
the best solution is to place voters between output and input ports of two communicating mod-
ules, as illustrated in Figure 4.21 for modules M1j and M2j . This prevents that errors in one
module can propagate to another module, e.g., by a data transfer from M11 to M21. If errors
can propagate over inter-module I/O channels, these modules can no longer be assumed to fail
independently, a fact that clearly has to be considered in the reliability analysis of the entire
system. Furthermore this situation also influences the design and scheduling of the modules’ re-
covery processes. To purge errors in all potentially “infected” modules, the recovery processes
are required to be coordinated, as we will show in Section 4.5.4.

However, sanitising I/O data with voting comes at a cost, both in performance and area
complexity. Especially the latter might be prohibitively large when module replicas are located
on separate dies since the number of pads is usually too limited to route a bigger number of
inter-module signals to other dies/chips. In Figure 4.21 we have therefore deliberately avoided
voters between the modules M5j and M6j . The only off-chip signals are recovery links and
regular primary input and output signals.

4.4.3 Voting on Output Data

Designing the voter unit for modular redundant inter-module GALS communication channels,
as they can be seen in Figure 4.21, itself is already a notable task since it also involves voting on
asynchronous control signals, like request and acknowledge. In fact, Figure 4.21 oversimplifies
matters a little bit since two sets of voters are needed, one for the forward and one for the

74

Voter
(Reverse)

avs arv[1..3]
3

Voter
(Forward)

rsv[1..3] rvr

dsv[1..3] dvrn3n

3

(a) Voter interfaces.

M21

M23

M12 M22

V
o
te

r
(F

o
rw

a
rd

)

M13

V
o
te

r
(F

o
rw

a
rd

)

M11

V
o

te
r

(F
o

rw
a

rd
)

(b) Request & data nets.

M21

M23

M12 M22

V
o
te

r
(R

e
v
e

rs
e

)

M13

V
o
te

r
(R

e
v
e

rs
e

)

M11

V
o

te
r

(R
e

v
e

rs
e

)

(c) Acknowledge nets.

Figure 4.22: Voting on inter-module I/O links.

reverse paths of the handshake signals. The former are part of the receiving modules and vote
on incoming request and data signals, the latter are associated with sender modules and process
the returning acknowledge signals. Let us assume we have to design a voter for a TMR system,
which handles three unidirectional bundled data links that transfer data between two sets of
module copies. Thus, the modules’ I/O channels can be broken down into the following signals:

• Sender modules to voter (forward path): request signals rsv[i], data vectors dsv[i],

• Voter to receiver module (forward path): request signal rvr, data vector dvr,

• Receiver modules to voter (reverse path): acknowledge signal arv[i],

• Voter to sender module (reverse path): acknowledge signal avs,

where i ∈ {1, 2, 3} in case of a TMR system. Figure 4.22a shows a schematic representation
of the voters’ ports, and Figures 4.22b and 4.22c illustrate the insertion of the voter components
into the forward and reverse paths of the inter-module links.

Let us investigate the design of the forward path voter first (the reverse path then follows
easily): Faults on the data signals dsv[i] can simply be masked with conventional level-based
majority voters (LB voters). Majority voting on the request signals, however, can not be done
just by inspecting the signal levels and forwarding the majority level. Doing this could break the
handshake protocol for a slow non-faulty sender, which simply performs its request transition
at a later point in time. For describing the desired voter behaviour for request signals let us
consider the following two cases: 1) All request signals are fault-free, and 2) one request signal
diverts from the correct behaviour. We assume that this diversion is caused by a fault in the
sender driving the affected request signal. In the fault-free request scenario the behaviour and
structure of the forward voter are straightforward, as can be seen in Figure 4.23a. The incoming
handshake channels are joined to a single output request rvr, which is generated by a 3-input
Muller C-element. This ensures that a request transition is only propagated when all of the

75

rsv[2] rvr

rsv[1]

rsv[3]
C

n LB
Voter

dsv[1]

dsv[2]

dsv[3]

dvrn

n

n

Delay

(a) Initial implementation.

rsv[2]
rvr

rsv[1]

rsv[3]

C

n LB
Voter

dsv[1]

dsv[2]

dsv[3]

dvrn

n

n

Delay

fen Watchdog

timeoutLB
Voter

(b) Extension with watchdog mechanism.

Figure 4.23: Forward voter implementation.

incoming requests rsv[i] have made a transition. Also note that transitions on the output request
rvr should be delayed to match the propagation delays introduced by majority voting on the data
vectors (bundled data approach, see delay element in Figure 4.23a).

With regard to Case 2, when one sender module is faulty, the essential responsibility of
the voter is to ensure the successful execution of the data transfer between the other two fault-
free senders and the (fault-free) receiver module. In other words, it must be guaranteed that
handshakes started by the fault-free senders will eventually complete. The only acceptable in-
terference of a faulty sender is to delay the communication until the fault has faded or has been
detected by the voter. Two types of faulty behaviour of the request signals can be distinguished:
1) Early transitions. In this case the faulty sender f issues a request transition without provid-
ing stable and correct data over the respective dsv[f]. However, such an early transition only
becomes effective, if the other two senders have already issued their (correct) request signals.
Since the data vectors dsv[i], i 6= f in this case can be assumed to be correct and stable, they will
win the majority voting and consequently the data output dvr will be correct. 2) (Infinitely) late
transitions. This could, e.g., be the result of an erroneous state that hinders a sender to initiate
an intended output handshake. In the voter design described above the wait-for-all semantics of
the C-element clearly prevents the propagation of the rightful request transitions of the fault-free
senders to the receiver. To resolve this situation a watchdog mechanism can be employed.

Figure 4.23b shows the necessary extensions to the voter implementation. A watchdog mod-
ule, like we introduced for the recovery controllers in Section 4.3.3, controls a set of multiplexers
that have been inserted after the incoming request signals rsv[i]. The second input of these mul-
tiplexers is connected to a level-based voter, which determines the majority value of the request
inputs. Thus, the C-element is pushed to make a state change, as soon as the timeout output
of the watchdog is asserted. Note that if all of the request signals make correct transitions, the

76

watchdog will never run into a timeout and the voter behaves exactly like the initial implemen-
tation in Figure 4.23a. The watchdog timer only needs to be enabled when two out of the three
incoming request signals have made a transition and the C-element has not yet changed its state.
This condition is evaluated by an enable function fen by examination of the request inputs and
the C-element output. The truth table of this function block is shown in Table 4.4.

Table 4.4: Watchdog enable.

rsv[1] rsv[2] rsv[3] rvr fen

0 0 0 0 0
0 0 0 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

It is essential that the timeout duration is chosen carefully for correct operation of this mecha-
nism. Obviously this late transition detection must not trigger too early, otherwise the handshake
routine of a fully functional sender module might be broken. Consequently, it is mandatory that
the maximum execution time skew of the fastest and the slowest sender module is known. Let us
assume that the sender modules, directly after the completion of a data transfer with the receiver
modules, are almost perfectly synchronised, i.e., have a negligible skew. Let pi denote the time
it takes for sender i until the next output request transition is issued. Then the lower bound for
the timeout value t of the forward voter can be defined as:

t > max(pwci)−min(pbcj), i 6= j (4.5)

Since an increase of the communication latency only occurs in the (rare) case of an erroneous
sender, the timeout value can be conservatively chosen with a big safety margin. This will not
degrade overall system performance. It is, however, quite probable that an erroneous sender
module, which fails to deliver output data on time once, will also fail to participate in subsequent
data transfers. This would then result into a systematic performance degradation – until the
inconsistent state of the erroneous sender is recovered. It is therefore advisable to trigger a
recovery of the involved modules if a voter runs into a timeout several times in a row. We will
discuss an appropriate recovery strategy in the next section.

As mentioned before, the design of the reverse voter for acknowledgement signals directly
follows from the forward voter. Obviously a receiver module can be erroneous as well and
consequently might fail to properly participate in the asynchronous handshake during a data

77

CD

CD

CD

dsv[1]

dsv[2]

dsv[3]

dvr

R
e
g
is

te
r

d

ctrl

C

fen Watchdog

timeoutLB
Voter

(a) Full voter with watchdog mechanism.

ctrl

dvr.t[0]
LB

Voter C
dsv.t[0][1]

dsv.t[0][2]

dsv.t[0][3]

LB
Voter C

dsv.f[0][1]

dsv.f[0][2]

dsv.f[0][3]

LB
Voter C

dsv.t[n−1][1]

dsv.t[n−1][2]

dsv.t[n−1][3]

LB
Voter C

dsv.f[n−1][1]

dsv.f[n−1][2]

dsv.f[n−1][3]

dvr.f[0]

dvr.t[n−1]

dvr.f[n−1]

(b) Delay-insensitive voter register.

Figure 4.24: Delay-insensitive (dual-rail) voter implementation.

transfer. Again an intended transition of a broken receiver’s acknowledge signal might occur
(infinitely) late, thus hindering the successful completion of the handshake of the non-faulty
sender with the other two non-faulty receivers. Hence, the same mechanism we have developed
for the forward voter can be reused. The only difference is that the level-based data voters can
be omitted, if there is no data channel bundled with the acknowledge signal.

Finally, we want to discuss a voter implementation for delay-insensitive data channels. The
basic structure is quite similar to the bundled data version presented above. The main difference
in case of the DI protocol is that request and data signals are combined into a single signal
dsv[i], ∀i ∈ {1, 2, 3}. As can be seen in Figure 4.24a, these data signals are processed by a
register and completion detection (CD) units, one unit per redundant data channel. When all
channels become complete (timeout signal deasserted), a C-element, which is connected to the
CD units, changes its value and triggers the register’s control port to capture the new data word
(or the spacer codeword in case of a 4-phase protocol). In case of a faulty input transition, the
timeout mechanism works exactly like in the bundled data voter. The fen block observes the
outputs of the completion detection units and enables the watchdog, if a majority of CD outputs
disagree with the value stored by C-element. If the watchdog then runs into a timeout, it raises
its output signal, which again controls multiplexers for the C-element inputs. The multiplexers
switch from the regular CD outputs to a voted version of these signals and thereby triggers an
output change of the C-element, which in consequence enables the input register.

Figure 4.24b shows an input register for a 4-phase dual-rail code. For every rail of the
resulting data vector dvr the register stores the current value in a C-element. The top inputs of
these C-elements are connected to the register’s control input, and the second input is driven by a
level-based voter, which evaluates the respective data rails from the modular redundant senders.
This voter masks a faulty rail and ensures that the correct value is written into the register.

78

4.5 Recovery Strategy

For implementing the recovery process in a reliable and efficient manner it has to be decided
when and how often a recovery should be initiated and what needs to be recovered. The strategies
discussed in this section apply to both recovery approaches, parallel as well as serial.

4.5.1 Recovery Period

The time interval between scheduled recovery actions is dependent on the soft error rates that
have to be expected in the environment during circuit operation and the specific circuit’s reli-
ability requirements. The basic assumption for any recovery/voting mechanism in a modular
redundant system is that only a minority of replicated components are erroneous. Thus, when
the state of replicated components is compromised, recovery actions need to be frequent enough
to ensure with a sufficiently high probability that errors are repaired before a majority of mod-
ule copies can become faulty. Consequently, a higher soft error rate clearly demands for faster
recoveries. In order to find a viable recovery frequency for a given error rate a probabilistic
analysis has to be performed. To this end we will present Markov chain models in Section 4.6.3.

Picking the right recovery frequency obviously poses a trade-off between system reliability
and system performance. In case of the parallel recovery approach this trade-off is rather uncrit-
ical since the recovery can be performed in a single clock cycle. Therefore, a recovery can be
scheduled very frequently to achieve ultra-high reliability without sacrificing performance. In
case of the serial approach, where recovery might take hundreds or thousands of clock cycles,
depending on the scan chain length, choosing a too high recovery frequency might prohibitively
degrade the system performance. More sophisticated recovery strategies than a simple periodic
recovery process might therefore be needed.

One way to maintain high reliability but keep the number of recovery actions and hence the
performance loss low is to employ a twofold strategy: 1) An event-triggered recovery process
could be implemented that is started immediately when an error is detected, e.g., by voter com-
ponents at the primary outputs of the GALS system or on inter-module links. Since most of the
state corruptions in a sequential circuit can be expected to have an effect on the outputs, the mean
time a replicated component is erroneous can significantly be reduced. Some errors, however,
can be latent and might be propagated at a later point in time, possibly causing an unrecoverable
failure. Thus, the implementation of a 2) time-triggered recovery process is advisable, which
is periodically started, without a previously detected error. Since latent errors are rare and are
most likely to be overwritten or detected within short time, the frequency of the time-triggered
recovery process can be low and will therefore not compromise the system performance.

4.5.2 Minimising the Recovery State

Aside of the frequency of the recovery processes, the specific points in time when a recovery is
conducted have to be carefully selected. Some instants might be more advantageous for execut-
ing a recovery than others since the chosen time has a significant impact on what needs to be
recovered. In general, the recovery process needs to include state-holding elements of a circuit,
i.e., the register cells in a typical synchronous GALS module. However, it does not necessarily

79

need to be the case that all registers of the circuits have to be recovered. In [123] three classes of
registers are distinguished: I) registers that contain output data, II) internal registers that will be
overwritten after the checkpoint, and III) internal registers that contain data that will be further
processed after the checkpoint. Clearly type III registers have to be included in the recovery and
type II registers can be ignored as the stored value will no longer be used. Regarding output
registers, the decision depends on whether out-going data values are subjected to voting (see
system-level architecture considerations in Section 4.4). If this is the case, a faulty value will be
masked by the voter and will vanish on its own when the next output value is written. In con-
trast, if an output register drives a communication link between two modules and no voting is
performed, the corrupted data value is not masked and could still proliferate after the checkpoint.
In this case output registers have to be included in the recovery process.

Let Srec be the set of registers that need to be part of the recovery process, i.e., type I
and type III registers. For maximum efficiency of the recovery process it is beneficial to insert
checkpoints when the size of this set is minimal. This is typically the case when one computation
has ended and the next one is yet to start. At this point in time there might be just a few internal
registers that contain information needed for the next computational task, and maybe no output
registers at all that need to be recovered since all outgoing data values have been transmitted.
In [55] a state when no active task is executed is called ground state. Obviously, such a state
does not necessarily exist in every circuit.

Minimising the circuit state that has to be recovered is both beneficial for the parallel and
the serial recovery approach. In the former case fewer registers involved in the recovery means
better area efficiency, i.e., fewer voters, multiplexers and interconnect signals. For the serial ap-
proach minimising Srec directly reduces the execution time of the recovery process and thereby
improves the system performance. Obviously, scan chains have to be organised appropriately to
leverage this benefit, e.g., by gathering all registers to be recovered in a separate scan chain5.

4.5.3 Replica Determinism

When active replication with a voting mechanism is used to build fault-tolerant systems, fault-
free components need to behave replica deterministic, i.e., they are required to produce “identi-
cal outputs in an identical order within a specified time interval” [86]. Otherwise voting cannot
be safely performed. For our recovery approaches replica determinism is required for register
set Srec, i.e., all registers r ∈ Srec in all (non-faulty) module copies need to have identical values
when a checkpoint is scheduled.

For replicated GALS modules with identical module copies (with respect to their gate-level
structure) we therefore propose a design style that enforces consistent values of all registers
after every clock cycle6. This strict form of replica determinism can be established if three

5Note that the area overhead of separate scan chains is negligible since it does not increase the number of scan
flip-flops but just adds an additional set of scan chain ports (se, si, so).

6This design style is actually more strict than necessary for successful recovery actions. As explained above
consistency is only required for registers r ∈ Srec and only when a checkpoint is scheduled. Somewhen in the
middle of two successive checkpoints the sequence of register values does not need to be identical for different
module copies. In this thesis we only consider replicated components with the same structure, but it might also be
viable to use very different implementations for the “replicas” of a modular redundant GALS module. As long as the

80

conditions are met: 1) all modules perform internal state changes in local synchrony and only use
deterministic circuits for computation of the next state, 2) all copies receive the same inputs at
the same local clock cycle, and 3) execute the same number of clock cycles between checkpoints.

The first condition is usually satisfied for common synchronous GALS modules, and the
third condition can be controlled by the design of the recovery controller, e.g., like we did with
cycle counter, which had a fixed period. The second prerequisite, however, is more intricate.
At first sight it seems to be in conflict with the GALS design style, where modules are only
locally synchronized and communication is done over asynchronous channels. Fortunately, the
desired behaviour can be achieved when a model of communication is used, where the (internally
deterministic) modules themselves get to decide when an I/O operation is performed: A sending
module, which performs a deterministic sequence of computation steps, will produce an output
request after a specific, self-determined number of cycles. Similarly, a receiver module runs
its computations and once it requires new inputs it will actively request the start of an input
operation. The local computations of both the sender and the receiver are stopped until the
end of an I/O operation. Recall that in GALS-systems with stoppable clocks generators such
I/O ports are known as demand-type ports (we also use the term blocking I/O, cf. Section 3.2).
The key property of this communication scheme is that both input and output operations are
actively initiated. Obviously, this enforces that I/O activities have to be matched. For every
input operation, initiated by a receiving module, there needs to be an output operation by the
respective sending module, and vice verse. This model of communication was used, e.g., in [49],
where a GALS-based FPGA architecture is introduced.

Figure 4.25 shows the design of I/O ports and a clock generator, similar to those presented
in [49]. For both output and input ports an activate signal can be seen, which a GALS module
can set to one for initiating an I/O operation. As a consequence, the clock enable signal of the
respective port goes low, which then stops the clock generator. Note that the clock generator
does not include mutual exclusion elements to perform arbitration of the next clock transition
and asynchronous input signals. In this port design they are not needed as the clock is always
stopped synchronously by the local module7.

Of course, a real-life GALS system will typically be connected to external inputs as well,
which are not part of a handshake protocol or a well-defined sequence of I/O operations. If
such inputs are directly sampled by replicated modules, even if this is deterministically done at
the same local clock cycle, they will capture the input value at slightly different points in time
due to the non-synchronized nature of the system. Therefore, it cannot be guaranteed that they
will read a consistent value. Note that input consistency is a general problem for any replicated
system [85] and the same problem also exists for replicated circuits with a single clock domain.
Simply consider three flip-flops in a TMR system linked to separate input pads, which then
connect to the same external signal. Due to clock skew and different input delays, it is not
possible to sample the input signal three times at the exact same point in time. Furthermore,
asynchronous signals have to be synchronized to avoid metastability. This is a non-deterministic

relevant internal state at the selected checkpoints is identical, this does not contradict with the recovery mechanisms
we propose. Design diversity might actually be a powerful means to increase the robustness of GALS system.

7In fact, mutex elements would be highly undesirable in a replica-deterministic design since the arbitration
process obviously is a source of non-determinism.

81

Data

Data

En

D

Q

En

D

Q

n

n

Activate Req

Ack

Qn

ClkEn

(a) Output port.

C

Req

Data

ClkEn

Data

Activate

Ack

D

En

Q

En

D

Q

n

n

(b) Input port.

C

Delay

Clk

ClkEn1 ClkEnn

AND

(c) Stoppable clock generator.

Figure 4.25: I/O ports and clock generator for replica deterministic GALS modules.

process, which can lead to inconsistent results.
One solution to guarantee deterministic behaviour for the GALS system is to use a non-

replicated input component, which can be requested by the replicated modules over demand-
type ports. The component then samples input signal once and returns this value to the waiting
modules. Since this component would be a single point of failure a careful reliability assessment
is required or the application of non-replication-based fault-tolerance mechanisms.

Alternatively, input components could be replicated as well. However, in this case the com-
ponents need to implement a fault-tolerant consensus protocol [84] to agree on the same value,
which can then be forwarded to the replicated GALS modules.

4.5.4 System-Level Considerations

Until now we have just discussed the recovery process for single replicated modules. Since a
complete GALS system can contain multiple (replicated and non-replicated) modules, an im-
portant question is whether a checkpoint can be chosen individually for every replicated module
or if a coordinated recovery is necessary.

Note that a replicated module in a GALS system can be stopped at any given time to per-
form a recovery without interfering with the regular operation of other system’s modules. These
would only be stopped, if they needed to perform an I/O operation with the recovering module.
Stopping and starting local modules while other parts of the circuit remain completely opera-
tional is a very powerful feature. GALS circuits naturally support this concept by providing the
stoppable clocks and elastic interfaces between modules based on asynchronous handshakes.

Intuitively one might therefore think that recovery actions could also be executed completely
independent for different modules. However, care has to be taken with the timing of recovery
processes in case of communicating modules. An effective recovery process needs to ensure that
a single fault occurring in one module copy and the subsequent corruptions can only proliferate
until the module reaches its next checkpoint. This requirement always holds, if the module does
not communicate with other modules. However, if there are I/O operations among modules

82

between two successive recovery actions and no voting is performed on incoming data word, the
checkpoints cannot be scheduled arbitrarily.

To reason about this situation we need to consider the lifetime of an erroneous state within
a module. Figure 4.26 shows a problematic trace with two communicating module copies, M1

and M2. Each module performs two recovery operations, the respective checkpoints are named
CPij . These checkpoints divide the execution of the system into three computation rounds,
where round i is terminated when all modules have reached the checkpoint at the end of their
i-th computation cycle and have executed the recovery action. In the first round module M1

is corrupted by a fault. Since M1 sends no messages after the corruption, the faulty state is
contained in M1. The corrupted state is then recovered at checkpoint CP11. The second com-
putation round thus starts with a consistent and fault-free system state – until a second transient
fault again causes a corruption of M1. This time a message, m3, is sent to module M2. Assum-
ing the message is erroneous due to the second transient fault, the state of M2 is impaired as
well (recall that M2 does not perform voting on incoming messages). After some clock cycles
M1 runs into checkpoint CP12 and recovers its state with the help of its correct module copies.
Unfortunately M2, still corrupted because of m3, sends back a faulty message, m5, before it
reaches its upcoming checkpoint CP22. Thus, the error that has already been recovered by M1

is reintroduced. To prevent such a scenario, messages must not be exchanged across different
computation rounds. In the above example message m5 is sent in round II and received in round
III. If both checkpoints, CP12 and CP22, had been scheduled either before or after the transmis-
sion and reception of m5, the errors in both modules would have been properly recovered.

Compute I Compute II Compute III
M2

M1

CP21 CP22

CP11 CP12

m1

m2

m3

m4

m5

m6

Figure 4.26: Problematic scheduling of checkpoints.

4.6 System Evaluation

In this section we will evaluate area, performance and reliability of the proposed TMR ap-
proaches are compare them with a conventional TMR architecture. Since specific results can
only be stated for a specific circuit, we have implemented a representative real-life showcase
design, which has a reasonable size to get a good understanding of the effects of the applied
fault tolerance methods. The baseline design is a synchronous embedded 32-bit processor with
a RISC architecture. The processor is named SCARTS8 [65] and was developed in our research
group, the Embedded Computing Systems group of the Vienna University of Technology.

8Formerly also known as Spear2.

83

4.6.1 Design Automation

Since a full processor is much too complex to build a TMR system manually, we have devel-
oped a tool for automating the design process. The tool performs a gate-level transformation of
a given non-redundant circuit and is capable of generating a triplicated netlist for conventional
TMR designs with voters directly inserted into the data path, as well as netlists for our parallel
GALS TMR configuration, where feedback paths with voters and multiplexers need to be intro-
duced for the recovery mechanism. For building designs following our serial TMR approach we
do not need a customised tool, since scan insertion obviously can be done with conventional syn-
thesis programs and triplication is effortlessly achieved by manually instantiating the top-level
component of the synthesised netlist three times.

The first step of the devised design flow is a conventional synthesis of the non-redundant
circuit’s RTL specification, using a technology-independent target library. Then our tool parses
the generated netlist and performs at series of transformation steps to produce a new netlist with
the required triplicated circuit structures. The changes applied to the netlist are:

• Adaption of the interface of the module and its subcomponents: Triplication of all input
and output ports, including data ports as well as the clock port. Introduction of the three
additional recover input ports at every level of hierarchy (in case of the parallel approach).

• Triplication of all gates and signal nets within the module and its subcomponents, both
combinational and sequential. Flip-flop cells are replaced with specialised TMR flip-flop
components, which simply contain three flip-flops and the voting and recovery circuits, as
required by the chosen TMR architecture. The TMR flip-flop components have triplicated
input and output signals (reset, clk, d, q) and can therefore be easily integrated into the
triplicated netlist. In case of the proposed parallel TMR structure, the components also
provide three input ports for connecting the recover signals.

Since no changes to the basic circuit structure have to be performed, the algorithm remains
fairly simple and runs with linear time complexity, in terms of module ports and internal gate
count. Currently only VHDL netlists are supported. However, the transformation could be easily
extended to process Verilog netlists as well.

The triplicated netlist generated by our tool can finally be mapped to standard cells of the
desired target technology, using a conventional synthesis tool again. The remaining design tasks
until sign-off then follow the same steps as performed in an ordinary ASIC design flow.

4.6.2 Area & Performance

For our evaluations we have implemented and synthesised four designs of the SCARTS proces-
sor with a standard cells library for a UMC90 process: 1) the unchanged non-redundant pro-
cessor version (referred to as simplex baseline), 2) a version following the conventional TMR
architecture, and finally our two GALS-based solutions with a 3) parallel and 4) serial state
restoration scheme. The simplex design contains 1288 flip-flops and for sake of simplicity we
assumed that all of them are critical and have to be triplicated and included in the recovery mech-
anism. Since design for test structures are necessary for any real-life circuit nowadays, a single

84

scan chain was inserted in all four processor versions. In case of the serial TMR approach, this
scan chain was then reused for state restoration.

Figure 4.27 shows the area comparison of the resulting circuits normalised to the area of
the simplex baseline. The figure illustrates the individual contributions of the SCARTS proces-
sor and recovery controllers to the total area, whereby combinational and sequential parts are
listed separately. In case voters or multiplexers have been added, the combinational part of the
SCARTS processor is further subdivided to show their contributions.

As can be seen, the sequential area of our TMR designs is more or less three times the
respective area of the baseline processor. This is not surprising since all we did was to triplicate
the flip-flops. However, the combinational areas in case of the conventional TMR design and
our parallel recovery approach have notably increased. This clearly shows the non-negligible
effect of inserting (triplicated) voters and multiplexers into the processor design. In total the
conventional TMR version is approx. 3.7 as big as the baseline, whereas the area in case of the
parallel approach is quadrupled, due the additional multiplexers. The processor area of the serial
TMR approach, on the other hand, is exactly three times the simplex processor, since it was
simply triplicated at top level without any internal changes.

With respect to the recovery controllers, it we can observed that in both GALS TMR designs
they only have a minor contribution to the overall area. In case of the parallel approach it is less
than 1%, for the serial approach it amounts to approx. 5% of the system’s area. Area-wise this
makes the serial recovery mechanism the clear winner of all TMR solutions, since its area totals
just slightly above three times the non-redundant processor implementation. A detailed break
down of the area results for all four designs can be found in Table 4.5.

Figure 4.27: Area comparison.

9Combinational area excluding voters and multiplexers used for recovery.

85

Table 4.5: Detailed area results (units in µm2).

Simplex Conventional Parallel Serial
Baseline TMR GALS TMR GALS TMR

SCARTS

combinational9 51936.86 177982.90 173320.45 155810.59
voters/multiplexers 0 31461.14 62432.272 0

sequential 24932.77 74834.37 74679.92 74798.30
total 76869.63 284278.40 310432.64 230608.90

Recovery
Controller

combinational 0.00 0.00 237.55 7300.60
sequential 0.00 0.00 446.88 4534.63

total 0.00 0.00 684.43 11835.23

Entire
design

combinational 51936.86 209444.03 235990.27 163111.19
sequential 24932.77 74834.37 75126.80 79332.94

total 76869.63 284278.40 311117.07 242444.12

An important aspect for the evaluation of the system performance is the degradation of the
maximum operating frequency due to voters or multiplexers, which are added to the original
circuits in order to implement the state restoration mechanism. We have therefore performed
a static timing analysis on the three synthesised TMR designs and compared their maximum
clock frequencies with the simplex baseline processor. The results of this analysis are shown in
Table 4.610. While the serial TMR design obviously does not suffer from a reduced operating
frequency, in case of the other two TMR systems a small but noticeable performance drop needs
to be accepted. This drop is a bit more pronounced for the conventional TMR architecture since
the voters are in the critical path. In case of the parallel approach voters are not in the critical
path, however, multiplexers have been added, which also account for a reduction of the clock
frequency. Note that the voters nevertheless have a minor impact on the circuit timing during
normal operation since they introduce additional load to the flip-flop outputs.

Table 4.6: Performance comparison.

Simplex Conventional Parallel Serial
Baseline TMR GALS TMR GALS TMR

Min. clock period (ns) 2.24 2.59 2.50 2.24
Max. clock frequency (MHz) 446.43 386.85 400.80 446.43
Performance degradation (%) N/A 13.35 10.22 0

For the parallel and serial TMR approaches an additional performance degradation is caused
by the service interruption due to the execution of recovery processes. As discussed in Sec-
tion 4.5, the amount of this degradation depends on the frequency and the duration of these
recovery processes. The duration in case of the parallel approach is simply one clock cycle, for
the serial approach it depends on the frequency of the clock to shift data out of and back into the
scan chain, the length of the scan chain, the bus width of the recovery links and their commu-

10Please note that all figures presented here are based on a pre-layout timing analysis.

86

nication latency. In our SCARTS showcase design, the clock period is 2.24ns, the number of
flip-flops is 1288 and the recovery links have a bus width of 8. Based on a timing simulation we
have determined the communication latency for one full handshake cycle on the recovery links
to be 2.43ns. Please note that in our simulation model all three replicas are assumed to be on
the same die. If data and acknowledge signals between the recovery controllers need to cross
chip-boundaries, a longer communication latency has to be expected. In total, our simulation
shows that a full recovery process of the SCARTS processor takes 3.28µs, i.e., approx. 1463
clock cycles. For the serial TMR approach the key to achieve a reasonable overall performance
therefore is to find the minimum recovery frequency, which is required to achieve the desired
MTTF. To this end a reliability analysis of the given circuit needs to be performed.

4.6.3 Reliability

The overall reliability of a modular redundant GALS module clearly depends on the failure rates
that have to be expected for the module’s circuit parts, the chosen replication and recovery strate-
gies including the designated restoration rates and durations. In order to evaluate the reliability
of the fault tolerance approaches presented in this thesis, we have developed mathematical mod-
els based on Markov chains. The basic input parameters, which will be common to all models
in this section, are the overall soft error rate of the original non-redundant GALS module λm,
and the individual SER contributions of the combinational/sequential logic and the clock tree:

ρcomb =
λcomb
λm

, ρseq =
λseq
λm

, ρclk =
λclk
λm

(4.6)

Let us first investigate the reliability of conventional TMR circuits, where both combina-
tional and sequential parts are triplicated and a voter is inserted after every flip-flop. Erroneous
states are therefore restored every clock cycle (cf. Section 3.3.1). As we have seen in the pre-
vious subsection, the introduced voters increase the area of the combinational circuit parts and
therefore contribute to the failure rate of the module copies in the TMR system. Let avoters
denote the increase in combinational area in one copy due to the new voters. We can then define
the failure rate λr of a replicated module, which accounts for soft errors in combinational and
sequential circuits parts:

λr = λseq + λcomb(1 + avoters) = λm · ρseq + λm · ρcomb(1 + avoters) (4.7)

A critical (and often overlooked) parameter for the reliability analysis of a conventional
TMR circuit is the failure rate of the clock tree. Let us assume that the clock tree is not replicated
and therefore a single transient pulse could affect multiple circuit copies at once, corrupting the
system state beyond recovery. This fact needs to be reflected in our reliability model. Assuming
that the clock tree area grows linearly with the number of endpoints, the TMR system’s clock
tree would be three times as large as the corresponding tree of the non-redundant circuit, and
hence have a threefold increased failure rate. We denote this failure rate with λc = 3 · ρclk · λm.

As a final step, before we can build the desired Markov chain, we need to make sure that the
failure rates defined above are specified in a useful unit for our model. Since state restoration

87

is performed at every clock cycle, we will be using discrete-time Markov chains, with time
units in clock cycles. Component failure rates, on the other hand, are typically specified in
failures/hour. We therefore need to divide λr and λc by a scaling factor s = 60 · 60/pclk,
where pclk denotes the clock period of the system in seconds. Let λrs and λcs be the failures
rates scaled to failures/clock cycle. Based on these parameters we can now devise a very simple
Markov chain, which models the failure behaviour of a conventional TMR circuit.

As can be seen in Figure 4.28, this Markov chain consists of two states: In State 1 the system
delivers a correct service, whereas State 2 represents the occurrence of a system failure. State
transitions are performed in discrete time steps with every clock cycle, based on the transition
probabilities specified on the arcs. The system goes into the failed state, if one of the following
events occurs during a clock period: i) Two out of three copies become faulty. In terms of λrs the
probability of this event can be expressed as

(
3
2

)
λ2
rs(1− λrs). ii) All three copies get corrupted

due to three independent soft errors with probability λ3
rs. iii) A single transient fault in the clock

tree overthrows the state in all copies. The probability of this event equals λcs.

1 2
(32)λ rs

2 (1−λ rs)+λ rs
3 +λcs

11−((32)…)

Figure 4.28: Markov chain of conventional TMR circuit.

On the other hand, if no error occurs during a clock cycle or just a single copy becomes
faulty, the system stays in State 1. The probability of this event can be expressed as 1 minus the
probability of making a transition to State 2. Note that State 2 is never left again. The probability
to stay in this state consequently is 1. Such a state is called absorbing, and a Markov chain that
has at least one absorbing state therefore is called absorbing Markov chain [38]. All other states,
which are not absorbing, are called transient. The transition matrix associated with the Markov
chain shown in Figure 4.28 is

T =

(
1−

((
3
2

)
λ2
rs(1− λrs) + λ3

rs + λcs
) (

3
2

)
λ2
rs(1− λrs) + λ3

rs + λcs
0 1

)
(4.8)

If the states are ordered so that transient states have the lowest numbers, as it is the case for
our simple Markov chain, the transition matrix has the following canonical form:

T =

(
Q R

0 E

)
(4.9)

Assuming there are t transient states and r absorbing states, Q is a t × t matrix, which
describes the probabilities to move from one transient state to another. R is a t×r matrix, which
contains the probabilities to make a transition from a transient to an absorbing state. The zero
submatrix at the bottom left of T represents the zero probability to leave an absorbing state,
whereas the identity matrix E denotes the probability of 1 to stay in an absorbing state.

88

If the transition matrix is given in canonical form, the so-called fundamental matrixN can be
easily calculated. An element nij of N equals the expected number of visits to a state j before
an absorbing state is entered (absorption), given that the initial state was i. The fundamental
matrix is defined as follows [38]:

N =
∞∑
k=0

Qk = (Et −Q)−1 (4.10)

Based on the fundamental matrix, a vector t can be computed, whose i-th entry equals the
expected number of state transitions made before absorption, given that the initial state was i:

t = Ne, (4.11)

where e is a column vector with all entries set to 1. For our reliability evaluation, where
absorbing states represent failed states, this is a very convenient methodology to compute the
MTTF of the described TMR system. Applying the above equations to the transition matrix of
our Markov chain, an evaluation of the t-vector’s first entry yields the following system MTTF11:

MTTF =
1

−2λ3
rs + 3λ2

rs + λcs
≈ 1

3λ2
rs + λcs

(4.12)

To illustrate the effectiveness of the conventional TMR approach we have applied the above
MTTF formula to the SCARTS processor system. Based on the performance and area results
presented in the previous subsection, we assume a value of 2.59ns for the clock period pclk
and the combinational area overhead due to the inserted voters can be set to avoters = 0.14.
Figure 4.29 plots the results of our reliability evaluation. As can be seen, the plot profiles the
redundant system’s MTTF as a function of different MTTF values for the corresponding simplex
system. Obviously, the soft error rates of a circuit depend on the specific technology used and
the environment the chip operates in. To show the impact of different failure rates, we have
assumed a simplex MTTF ranging from 100 to 1000 hours, i.e., λm = {1/100, . . . , 1/1000}.

Furthermore, we need an assignment of the parameters ρcomb, ρseq and ρclk to determine the
contributions of combinational, sequential and clock tree subcircuits to the total soft error rate.
In [73] it has been reported that in typical designs, such as microprocessors or network proces-
sors, 11% for the soft errors can be attributed to static combinational logic, whereas sequential
elements and unprotected SRAM have a share of 49% and 40%, respectively. Since we did not
consider circuits with SRAM cells for our TMR approaches, we will disregard their share and
assume that failures in combinational and sequential elements as well as the clock tree add up
to 100% of the total failures. Regarding the susceptibility of the clock tree we want to refer to
the analyses performed in [17, 18], which strongly suggest that its contribution should not be
neglected. In [97] it is even estimated that the clock SER of a flip-flop based design accounts
for up to 9% of the total soft error rate. To comprehend the impact of transient faults in the
clock network, we have therefore computed and plotted the MTTF of the TMR system for dif-
ferent values of ρclk, ranging from 1% to 10−6% of the total soft error rate. As can be seen

11Note that this result gives the MTTF in units of clock cycles. To get more meaningful numbers a conversion to
failures/hours can by done by dividing with the scaling factor s.

89

in Figure 4.29 this parameter has a dramatic effect on the resulting system reliability, spanning
multiple orders of magnitude from the best-case to the worst-case scenario. This result illustrates
the importance of using separate clock trees for replicated circuit parts.

0 100 200 300 400 500 600 700 800 900 1000
10

2

10
4

10
6

10
8

10
10

10
12

Simplex MTTF (h)

T
M

R
 s

y
s
te

m
 M

T
T

F
 (

h
)

Conventional TMR System

rho_clk = 1%

rho_clk = 0.01%

rho_clk = 0.0001%

rho_clk = 1e−06%

Figure 4.29: Plot of MTTF for a conventional TMR system.

The Markov chain for the parallel and serial TMR approaches is a bit more comlex than the
model presented above since we need to incorporate the recovery mechanism, which interrupts
the regular computation at specific points in time. For sake of simplicity we will assume a
periodic schedule for recovery processes. In this case, let us denote the durations of computation
and recovery phases with the parameters dcomp and drec, respectively (in units of clock cycles).
Furthermore we need to model the effect of the area overheads caused by circuit elements related
to the recovery mechanism, i.e., voters, multiplexers, recovery controllers, on the failure rate of
the replicated modules. Let λm be again the failure rate of the non-redudant circuit design. The
failure rate of a replicated module, including all extensions, can then be written as:

λr = λm · (ρseq · (1 + arecSeq) + ρcomb · (1 + arecComb) + ρclk · (1 + arecClk)), (4.13)

where arecSeq, arecComb and arecClk denote the area overheads of all recovery-related com-
binational, sequential and clock tree circuits with respect to the non-redundant implementation.
Dividing λr by s again gives us the failure rate per clock cycle λrs. To get the failure rate of the
computation and recovery phases we can now simply multiply λrs with their respective duration:

λcomp = λrs · dcomp (4.14)

λrec = λrs · drec (4.15)

90

Based on these two parameters we have then devised the Markov chain shown in Figure 4.30.
Note that this model can be used for both our parallel and serial TMR approach, since they
follow the same fundamental concept and only differ in the specific assignment of the parameters
defined above (e.g., drec = 1 for the parallel approach, and drec > 1 in case of the serial
approach). As can be seen in Figure 4.30, the Markov chain consists of five states. States 1
and 2 represent system states during regular computation phases, whereas States 3 and 4 model
an active recovery process. State 5 is the only absorbing state, which is assumed in case of
a system failure. Initially the model starts in State 1, where all replicated modules operate in
fault-free condition. After a computation phase the model makes a transition to State 3, 4, or 5,
depending on the number of failed replicated modules. A failure of two or more modules results
in a system failure and State 5 will be entered. State 3 respresents the execution of a recovery
process following a computation phase, which suffered from one failing replica. In this state any
further module failure again leads to a system failure and therefore to a transition to State 5. If
the recovery is successful, on the other hand, the model returns back to State 1.

The transition from State 1 to State 4 is taken, if no soft error occured during the a computa-
tion phase. In this case the failure of a single module can still be tolerated during the subsequent
recovery process. If such a failure occurs, State 2 is entered after the recovery process. This
state denotes that the next computation phase is executed with one module being corrupted right
from the start of the phase. This is a critical configuration since another soft error in one of the
two remaining modules immediately causes a system failure, which is modeled by the transition
from State 2 to State 5. However, if the system is able to survive this critical phase, State 3 is
entered when the next recovery process is started, which might then lead back to an error-free
configuration in State 1. Using the transition matrix of this Markov chain we can again derive
an MTTF formula, which applies for the parallel and the serial TMR approach:

MTTFsteps =
2

λ2
rs(dcomp + drec)(3 · dcomp + 9 · drec)

(4.16)

Note that the above formula expresses the system MTTF in terms of the step counts until
absorption. Due our modeling approach of this Markov chain, a step is not a single clock cycle,
but covers either a full computation phase or a recovery phase. This step count, however, can be
easily transformed into clock cycles. Since computation and recovery phases alternate, we can
infer that two successive steps have a duration of dcomp + drec. Consequently, the final MTTF
formula in units of failures per hour can be expressed as follows:

MTTF =
MTTFsteps

2 · s
(dcomp + drec) =

1

s · λ2
rs(3 · dcomp + 9 · drec)

(4.17)

We can now perform a reliability evaluation of the parallel and serial TMR versions of the
SCARTS processor design. For the parameters ρcomb and ρseq we assume the same base values
as above, for the contribution of the clock tree to the total soft error rate we set ρclk to a fixed
value of 1%. The MTTF of the simplex implementation λm ranges again from 100 to 1000 hours.
Based on the area results of Section 4.6.2, we can determine area overheads associated with the
recovery circuits. In case of the parallel approach we need to account for additional voter and
multiplexer area. The recovery controller increases both combinational and sequential circuit

91

Figure 4.30: Markov chain of TMR approaches with periodically executed recovery processes.

area. For sake of simplicity we include the full recovery controller into the computed overhead,
even though the parts of the asynchronous control cicuits have been designed to tolerate single
event transients. In any case, the area contribution of the recovery controller is much too small to
have a significant effect on the reliability results. The clock tree is increased by a few endpoints
due to the counter implemented in the recovery controller. Assuming an 8-bit counter, the area
overhead in comparison to the SCARTS clock tree with 1288 endpoints is close to zero.

In case of the serial TMR approach, the processor module itself remains unchanged and we
only have to account for overheads caused by the recovery controller. The specific overhead
values for both TMR approaches are listed in Table 4.7.

Table 4.7: Area overheads.

arecComb arecSeq arecClk

Parallel approach 0.515 0.004 0.006
Serial approach 0.047 0.061 0.039

With respect to performance we use the clock periods, which were determined for the paral-
lel and serial TMR solutions in the previous subsection. Furthermore, the recovery duration drec
is set to 1 in case of the parallel approach and to 1463 clock cycles for the serial recovery solu-
tion. As we discussed before, the frequency of the recovery processes has a crucial influence on
the resulting system performance as well as the reliability. In order to analyse this relationship
we evaluate the resulting system reliability for different performance overheads of 0.1%, 1%,

92

0 100 200 300 400 500 600 700 800 900 1000

10
6

10
8

10
10

10
12

10
14

10
16

Non−redundant module MTTF (h)

T
M

R
 s

y
s
te

m
 M

T
T

F
 (

h
)

Parallel and Serial TMR Approaches

perf_oh = 11.72%

perf_oh = 12.72%

perf_oh = 17.19%

perf_oh = 22.77%

perf_oh = 0.10%

perf_oh = 1.00%

perf_oh = 5.00%

perf_oh = 10.00%

Figure 4.31: MTTF of TMR systems using periodic recovery for different performance over-
heads (parallel approach in red, serial approach in blue).

5% and 10%. The length of the computation phase dcomp is assigned accordingly. Note that
these are recovery-related overheads, which are on top of the possible performance degradation
due to the increased clock period (with respect to the simplex implementation). Figure 4.31
shows the resulting MTTF for the parallel and the serial approach. In the former case, the over-
all performance overhead is always greater than approx. 11%, which is due to the reduced clock
frequency. On the other hand, for the serial approach, which does not suffer from a degrada-
tion of the clock frequency, the performance overhead can be made arbitrarily small, simply by
reducing the recovery frequency. Performance can therefore be traded with reliability. Never-
theless, our results show that the SCARTS system with serial recovery can deliver ultra-high
reliability even for very small performance overheads. As can be seen, with a degradation of
0.1% the TMR system stills provides an MTTF of more than 109 hours, given that the simplex
module MTTF is greater than 100 hours. Obviously, the parallel approach can provide an even
higher reliablity, due to the single clock cycle recovery latency. Nevertheless, when looking
at all results with respect to area, performance and reliability we can conclude that the serial
approach certainly provides the most efficient solution, which outperforms both conventional
TMR systems and the parallel recovery scheme we have presented.

4.7 Related Work

To the best of our knowledge we are the first to explore the application of modular redundancy
in GALS systems. In general, fault-tolerant computing in GALS has not been covered in the
scientific community. The only exception we know of are Yu, Shi and Zeng [124], who describe
a fault-tolerant system of GALS multiprocessors. However, there exist some works on similar

93

fault tolerance techniques and concepts not related to GALS, which we have referenced in the
relevant sections of this Chapter. We want to introduce them here in greater detail and highlight
similarities and differences to our work.

Yu, Shi & Zeng

In [124] a GALS-based computing architecture is introduced, consisting of a 2-D array of pro-
cessors as locally synchronous modules. The system is targeted at stream DSP applications,
which can be broken down into parallel tasks and then distributed among the available proces-
sors. Data exchange between the processors is performed over dual-clock FIFOs, which serve
as data buffers and provide reliable communication across clock domains, in case the processors
are operated with different clock frequencies. The used programming model for stream DSP
applications is quite simple. Data processing is executed periodically by reading data from the
input FIFOs and then running the appointed task, which might be interleaved by writing results
to the outputs. Once the task is finished the next chunk of data can be read from the input FIFOs.

Resilience against transient faults is achieved with a duplication and comparison approach
and checkpointing with rollback recovery. Tasks are executed on two neighbouring processors,
which exchange all computed results and compare them before they are passed to the next pro-
cessor. A checkpoint is taken whenever new input data is read from a FIFO. The saved status
information basically includes the local processor’s program counter and the current read ad-
dress of the FIFO. In case an error is detected in the results, the involved two processors can
easily perform a rollback by resetting the FIFO read address and the program counter to the last
checkpoint and then re-execute the program from there on with the same inputs, still available
in the FIFO buffers. Fault-free outputs, which have already been generated in the first run, are
suppressed during the re-execution. This is simply done with a counter, which keeps track of
successfully produced outputs during an execution cycle. A graphical illustration of this recov-
ery approach can be seen in Figure 4.32.

1

2 3 2 3

4

(a) Fault-free execution.

5

6

7 8

(b) Re-execution due to error occurrence.

7

8

1

2

3

4

5

Fetch data from FIFO,
save initial FIFO read address

Execute task

Output results

Next compute cycle

Error

6 Restart with current cycle

Fetch data from FIFO in case
of re−execution

Re−execute task with
increased frequency

(c) Symbol descriptions.

Figure 4.32: Fault tolerance scheme for stream DSP applications (cf. [124]).

94

Obviously re-execution results in a performance penalty. Yu et al. therefore propose to use
voltage and frequency scaling to boost the performance of the recovery process. This can be
most efficiently done in a GALS system, where processors are independently clocked. In such
a system only the processors that actually perform a recovery are temporarily operated with a
higher frequency. This approach is much more energy-efficient compared to increasing the clock
frequency in a globally synchronous system, where the full system would run at higher speed.

Since this approach only requires duplication of processing resources, it is clearly more area
and power efficient than a TMR system, and still achieves comparable performance. Due to
frequency scaling during re-executions and the fast checkpointing process, traditional perfor-
mance penalties of rollback recovery strategies can be compensated. This efficiency, however,
can only be achieved due to restriction to a simple model of computation for data-driven DSP
applications. A weak point in the proposed architecture, mentioned in [124], are the local clock
generators of the GALS system. Unlike in our own work, clock generators are not replicated,
i.e., the clock for redundant processors, running the same task, is supplied from a single source.
A transient fault in the shared clock generator can therefore still cause a system failure.

Yu & McCluskey

The roll-forward recovery scheme we used for protecting modular redundant GALS modules
against transient faults was greatly influenced by a similar approach introduced by Yu & Mc-
Cluskey [123]. A basic block diagram of their TMR system can be seen in Figure 4.33a. Like in
our solution, they propose to trigger the state restoration process at pre-scheduled checkpoints.
These checkpoints can be introduced into the execution as dedicated states in circuit’s state ma-
chine, or using a cycle counter with a predefined period. Consequently, the checkpoint recovery
logic is connected to the registers of the module in order to evaluate the current state. In contrast
to our approach, the recovery logic only starts state restoration, if an output error is reported by
an error detector. Clearly, latent errors in one of the modules will not be recovered with this
strategy. The implementation of the error detector is shown in Figure 4.33b. It compares the
outputs of module copies against the voted output value to identify a faulty copy.

Registers

Comb.
Logic

Voters

Error detector

Checkpoint &
Recovery Logic

State Restoration
Logic

Outputs

Input
Buffer

Inputs

(a) Concept block diagram.

Voter
Voted
Output

Out1

Out2

Out3

/=

/=

/=

Error1

Error2

Error3

Error detector

(b) Voter with error detector.

Figure 4.33: Roll-forward recovery scheme for TMR systems (cf. [123]).

95

For the state restoration block two implementation schemes are proposed. The first one,
which we also used in our parallel recovery approach, employs a voter and a feedback signal to
restore erroneous values in registers (see Figure 4.34a). The second scheme, named direct-load
scheme avoids voters and directly restores the state of a faulty module from another copy, which
is known to be correct. This can be done because the error detector is able to identify a faulty
module and thereby controls the multiplexers at the input side of the circuit’s flip-flops (see
Figure 4.34b). If a module is diagnosed to be fault-free, the local flip-flop values are maintained
using feedback signals, otherwise the multiplexers switch to the state signals of another (fault-
free) module copy. Clearly, this restoration process only works, if errors are confined to a single
module copy. The voting scheme, on the other hand, is capable to recover multiple errors in more
than one module copy as long as different flip-flops are affected. Nevertheless, Yu & McCluskey
argue that the direct-load scheme is a bit more area efficient, due to the saved voters.

Q

D

Q

D

Q

D

Voter
Rec

Rec

Rec

Original
input

Original
input

Original
input

(a) Restoration with voters.

QD

QD

QD

Rec

Rec

Rec

Original
input

Original
input

Original
input

Error1

Error2

Error3

(b) Direct-load scheme.

Figure 4.34: Two state restoration schemes (cf. [123]).

Even though the basic recovery concept is quite similar to the approaches we have pre-
sented in this chapter, the key element of our work is to employ these restoration schemes in
a GALS-based circuit architecture. Temporal independence, achieved by asynchronous design
techniques, allows redundant module copies to run even with non-related clock signals, whereas
conventional voting or direct-load restoration schemes strictly depend on tight global synchro-
nization. Another important asset of our concept is the systematic avoidance of single points
of failures. In contrast, for Yu & McCluskey’s approach critical resources like voters, the error
detector, as well as checkpoint and restoration logic are not replicated. In [123] they point out
that faults in these shared circuit parts cannot be tolerated, unless they are protected using other
fault tolerance mechanisms.

Ebrahimi et al.

Another recovery technique for TMR systems, called ScTMR, is presented in [27]. It is very
similar to the method by Yu & McCluskey since state restoration is again performed with the

96

direct-load scheme, and a voter/error detector is used to mask faulty module outputs and iden-
tify the faulty module. The new idea of ScTMR is to employ scan chains to copy the state of
fault-free modules to the faulty one. Figure 4.35a shows a block diagram of the TMR system,
consisting of three module copies, the voter/error detector and a recovery logic block, named
ScTMR controller. A close-up of the ScTMR controller can be seen in Figure 4.35b. It shows
a particular situation during recovery operation, where the middle module M2 is faulty, while
the top and bottom modules M1 and M2 are fault-free. As can be seen, the multiplexers in the
ScTMR controller, controlled by the output signals of the error detector, are configured so that
the scan chain inputs of the two fault-free modules are directly driven by the respective mod-
ule’s scan chain output. Only the scan chain input of the faulty module M2 is fed with data from
another module, namely M3. A counter, which is preset to the length of the scan chains at the
beginning of the recovery operation, is decremented with every clock cycle and thereby controls
the duration of the recovery mode.

Voted
Outputs

Module

SO

SI

SE

Outputs

Inputs

Module

SO

SI

SE

Outputs

Inputs

Module

SO

SI

SE

Outputs

Inputs Inputs

Voted
Outputs

ScTMR
Controller

Error Signals

3

V
o
te

r
/

E
rr

o
r

d
e
te

c
to

r

(a) Architecture.

SO

SI

SE

SO

SI

SE

SO

SI

SECounter

/=

S
e
le

c
to

r

Unrecoverable
latent error

Recover
Enable

M1

(fault−free)

M2

(faulty)

M3

(fault−free)/=0

Error signals
3

(b) Recovery Controller12.

Figure 4.35: ScTMR recovery technique.

Since state restoration is only performed when a faulty module output is detected, latent er-
rors might survive unnoticed for extended periods of time. A second error in a different module,
which triggers a recovery operation at a later point in time, can then lead to the propagation of
the latent error to another module, and ultimately to a system failure. As discussed in the above
section about Yu & McCluskey’s approach, the direct-load scheme is not capable of correcting
errors in multiple modules, even if they occur in different flip-flops. Ebrahimi et al. therefore
included some logic in the ScTMR controller to detect latent errors. A selector component for-
wards the scan chain output of the two modules that are believed to be fault-free to a comparator
(see Figure 4.35b). If the comparator finds a disagreement of the scan chain data during the
recovery operation, a latent error has been detected and a global error signal is raised.

In our serial recovery approach we also employed a restoration scheme based on scan chains.
Due to the limitations of the direct-load scheme, however, we have decided to apply a majority
vote on every data bit, which is read from scan chains. Thus, multiple errors in different module
copies can be resolved in our approach, as long as different flip-flops are affected. Like in Yu

12Connections of error signals, which control selector and multiplexer components, are omitted in the figure.

97

& McCluskey’s technique, an ScTMR system is limited to synchronized module copies, which
are operated in the same clock domain. Furthermore, common system parts, like the ScTMR
controller, are not replicated and therefore remain a single point of failure.

In a recently published journal paper [28], Ebrahimi et al. present an extension, called
SMERTMR, which addresses the issue of latent errors and the accumulation of multiple errors in
different module copies until the next recovery is started. To fight latent errors they introduced
checkpoints to start a recovery operation in addition to the event-triggered method when errors
are detected at the modules’ outputs. At the beginning of the recovery a new comparison step
is proposed, which reads out state information from all scan chains, and compares data from
different module copies bit by bit. For every pair of two module copies a counter is imple-
mented, which is increased when a mismatch is found between the two corresponding modules.
By analysing the counter values after the comparison step, faulty and fault-free module copies
can be identified. In case of multiple faulty copies, however, it has to be assumed that different
flip-flops are affected. Otherwise the identification algorithm cannot reliably distinguish be-
tween faulty and non-faulty modules. During the comparison step multiplexers for scan chain
signals (cf. Figure 4.35b) are configured such that a scan chain input of a module is directly
connected to the SO signal of the same copy. After faulty/non-faulty copies have been identified
state restoration is performed, and the multiplexer connections are rearranged to connect the
scan chain inputs of all copies to the scan chain output of one fault-free module copy.

Since SMERTMR and our serial recovery approach have quite similar error correction ca-
pabilities, we need to make a detailed comparison for different error scenarios. Case 1: If
errors are confined to a single module copy, both techniques are able to perform a successful
recovery. Case 2: If errors occur in multiple copies, we need to distinguish three sub cases,
depending on the exact location of errors. Assume a TMR system were the state of two replicas
Mi and Mj is compromised. Let EFFi and EFFj be the sets of erroneous flip-flops of Mi

and Mj , respectively. Case 2.1: EFFi ∩ EFFj = ∅. Both techniques are able to perform a
successful recovery. In case of SMERTMR Mi and Mj are identified as faulty copies, and the
state is restored from the remaining fault-free replica. Voting in our approach is also success-
ful, since for every state bit there are at least two flip-flips with the correct value. Case 2.2:
EFFi ∩ EFFj 6= ∅ ∧ EFFi 6= EFFj . SMERTMR detects an unrecoverable condition as
it cannot unambiguously identify the faulty module copies. The recovery operation is there-
fore aborted. In case of our approach, voting will lead to wrong results for commonly erro-
neous flip-flips in EFFi ∩ EFFj . This can potentially result in a system failure. Case 2.3:
EFFi∩EFFj 6= ∅∧EFFi = EFFj . In case of SMERTMR copiesMi andMj are incorrectly
identified to be the fault-free replicas. For our approach this case is not different from Case 2.2.
Hence, both solutions incorrectly perform state restoration, potentially causing a system failure.

While latent errors are certainly an important issue to address, we believe it is a more sensible
strategy to avoid the occurrence of multiple errors between successive recovery operations. To
reduce the probability of such a scenario to a negligible level, the checkpoint frequency needs
to be adjusted appropriately. Even though SMERTMR is an interesting technique, we prefer our
solution since it is simpler and faster (scan chains only need to be read once). Again, SMERTMR
can only be applied to module copies synchronized to the same clock. This limitation, which we
were able to overcome in our GALS-based designs, is briefly addressed by Ebrahimi et al. [28].

98

Wakerly

In Section 3.3.1 we already introduced Wakely’s concepts on restorable sequential machines
for modular redundant systems. In [118] he discussed two other interesting state restoration
schemes. A high-level recovery approach is discussed on the example of a register and arith-
metic logic unit (RALU), as can be seen in Figure 4.36a. This RALU can perform arithmetic
and logical operations on its inputs and internal registers. Clearly, if such a module was to be
replicated, upsets in the internal registers need to be recovered. A simple way to do this is to
use the load instructions provided by such an RALU to overwrite erroneous values stored in the
registers. Assume, e.g., an RALU is used in a processor, which runs some kind of operating
system. The operating system could be written such that frequently executed routines include
sequences that periodically load all registers with some predefined value.

ALU

Reg1

Reg2

Regn

Outputs
Data Inputs

Control

(a) Register ALU.

Reset
Logic

V

Reset
Logic

Reset
Logic

V

V

Module

Module

Module Voter

Voter

Voter

(b) State recovery with reset logic.

Figure 4.36: Examples for restorable sequential machines.

Furthermore, Wakerly presents a circuit-level technique based on reset inputs, usually only
used for initialisation purposes, to return a circuit to back to a well-defined correct state. Assume
that a certain stateQr is visited on a regular basis during the runtime of a sequential circuit. Then
a combinational function can be designed, which identifies the predecessors of this state, and
enables a reset signal, once the circuit is supposed to enter Qr. If majority voting is performed
on these reset signals, as can be seen in Figure 4.36b, correct units of the modular redundant
system will force a faulty member into a reset, thereby scrubbing a potentially erroneous state.

99

CHAPTER 5
Robust Asynchronous Inter-Module

Communication Channels

After presenting techniques for building fault-tolerant GALS modules in the last chapter, we will
now focus on reliability issues of asynchronous data channels for inter-module communication
in a GALS system. Since communication channels and computational blocks have a fundamen-
tally different structure and function, the selected mechanisms for protection against faults are
usually different as well. For communication interfaces probably the most popular choice is the
use of information redundancy. More or less sophisticated error detecting and correcting codes
can achieve a much better efficiency compared to mere hardware redundancy. Consider, e.g.,
the TMR mechanisms we implemented in the last chapter. If this technique is applied to a k-bit
wide communication bus, the total number of wires required is 3k, i.e., an increase by 2k wires.
This solution is able to detect two faulty bits and correct/mask one faulty bit. The same error
detection and correction capability can also be achieved with a Hamming code, where redundant
check bits scale logarithmically with data bits, i.e., an increase by only log2(k) wires.

In this chapter we will therefore investigate the strengths of error detecting (ED) codes to
secure GALS communication. The interesting research question we pursued in this context is
how these codes can be efficiently combined with delay-insensitive codes. Delay insensitivity
can be a very desirable property for global inter-module communication links, especially when
considering modern ultra-deep submicron process technologies, which suffer from significant
timing uncertainties due to process variability. For GALS modules that are linked over long
global interconnect routes signal delays can vary significantly. Usually such interconnects are
not simply a metal wire but include vias to cross between different layers for routability, and
frequently buffers or pipeline stages [110] are added to decrease wire delays and/or increase the
throughput of the interconnect link. Even more complex interconnects can be found in reconfig-
urable architectures like FPGAs, where connections are routed over switch boxes. These switch
boxes can be configured by the programmer in order to connect different circuit parts as required
by the implemented circuit design. While buffers, pipeline stages and switch boxes help to in-
crease performance and flexibility, they also make interconnects susceptible to radiation-induced

101

faults and contribute to delay variations. Using delay-insensitive communication mechanisms,
global timing constraints between GALS modules can be completely avoided.

While we considered permanent defects in the last chapter to some extent, our work on
communication channels solely applies for transient faults. Consequently, all proposed fault
tolerance mechanisms rely on the fact that faults vanish after a certain amount of time and that
delay-insensitive interfaces are elastic, i.e., an incoming data transmission can be deferred un-
til the fault has been resolved. In Section 5.1 we will first formally analyse delay-insensitive
codes and determine how they can be efficiently reinforced with ED codes to make transmission
faults detectable. Based on these fundamental findings we will then present two hardware im-
plementations of sender and receiver components for fault-tolerant delay-insensitive channels.
The first approach is a specific solution that works for 4-phase dual-rail codes, whereas in Sec-
tion 5.3 a generic mechanism is presented that is suited for both 4-phase and 2-phase protocols
and matching combinations of DI and ED codes. Both link architectures have been published in
conference papers, the first in [62] and the second in [63].

5.1 Delay-Insensitive Fault-Tolerant Codes

5.1.1 Problem Description: Transmission Faults

Since delay-insensitive communication mechanisms entail the freedom of timing assumptions
for signal delays, transitions on individual wires of a bus signal, transmitting a multi-bit data
word, may appear at any time in any order at the receiver. As discussed in Section 3.1.4, special
codes have to be used to support delay-insensitivity. These codes allow completion detection,
i.e., enable the receiver to tell when the last wire has made a transition. The property that a
single transition, if considered as the last transition, completes the data transfer is what makes
delay-insensitive codes prone to faults. Consider the scenario where a fault changes the signal
value of a wrong wire so that a complete yet erroneous input word is presented to the receiver.

Figure 5.1a shows the basic model of the communication links we consider in this section.
As can be seen from the STGs depicted within the sender and receiver components, we restrict
our discussions to 4-phase asynchronous protocols. Even though some of the techniques we
present later on in this section could be extended to 2-phase protocols, the omission of a reset
phase still adds significant complexity and therefore 2-phase protocols are out of scope for this
work. The interconnect signals comprise data wires driven by the sender and an acknowledge
signal, which is controlled by the receiver. On all the wires we have inserted buffer cells as an
example for interconnect components that are susceptible to external faults. Note that throughout
the whole chapter we only consider faults that occur in one of these interconnect components.
The sender and receiver components are assumed to operate error-free, in particular it is assumed
that they execute the designated interface protocols flawlessly. This restriction allows us to focus
our work purely on communication faults and the codes as well as the encoder and decoder
components that are required for their mitigation.

To reason about transmission faults we need to consider the location and the time of their
occurrence. The location can either be on any of the data signals or the acknowledge signal.
For the remainder of this chapter we will focus on data signals since this involves interesting

102

Sender

Data+

Ack+

Data−

Ack−

Receiver

Data+

Ack+

Data−

Ack−

Data[0]

Data[1]

Data[n−1]

Ack

(a) Unreliable DI link. (b) Faulty completion of data transmission.

Figure 5.1: Transmission faults on a delay-insensitive communication link.

research problems regarding DI and ED codes. Faulty transitions on the acknowledge wire
obviously can break the handshake protocol by prematurely causing the sender component to
advance its protocol state machine. However, mitigation of faults on a single control signal that
is routed over unreliable interconnect resources is a rather trivial problem. Without resorting
to any timing assumptions a simple solution is to duplicate the acknowledge signal and let the
sender wait for proper transitions on both of the acknowledge wires, e.g., using a C-element.
With this approach a transient fault in one of the duplicated acknowledge signals can be masked.

Whether a fault on the data signals will be masked or can actually cause an error at the re-
ceiver, depends on the specific timing of the fault. Figure 5.1b illustrates a problematic fault
occurence. The waveform shows the transmission of the codeword 111000 of a 3-of-6 code.
The transitions on rails d0 and d1 are correct, however, before the final correct transition on rail
d2 arrives, a faults strikes on rail d5. At this point a valid 3-of-6 codeword is formed: 110001.
Obviously, this is not what the sender wants to transmit, but without redundant information the
receiver cannot be aware of this. The receiver’s completion detection circuits will be triggered
and an erroneous input word will be processed. In the waveform in Figure 5.1b we have high-
lighted four interesting sections: Section 1 shows the beginning of the data phase, where the
transmitted codeword is still incomplete. In Section 2 the faulty transition completes the code-
word. This is then followed by Section 3, where the missing correct transition appears and the
faulty signal state of rail d5 is still in place1. At this point in time the receiver can actually tell
that something went wrong since an input pattern with four active rails is clearly a non-codeword
in a 3-of-6 code. Finally the fault vanishes in Section 4 and the correct codeword appears. In
conclusion we can see that Section 2 is critical and we need to add some degree of redundancy
that allows the receiver to discard this intermediate codeword.

1Note that a short fault might also vanish before the final correct transition is received. In this case the receiver
would observe an incomplete codeword again, like in Section 1.

103

5.1.2 Formal Prerequisites

Since transitions on data wires can occur in any order at the receiver, a DI code must guarantee
that no intermediate bit pattern can be mistaken for a valid codeword. As said above, only
when the last bit changes, i.e., the last transition occurs, the received bit pattern forms a valid
codeword. This is the case, if no codeword covers another valid codeword.

Definition 1. Covering codewords: A codeword x = (xn−1, xn−2, . . . , x0) covers another
codeword y = (yn−1, yn−2, . . . , y0) iff for all i, yi = 1 implies xi = 1. This covering rela-
tion is denoted as y ≤ x.

Codes, which are built of codewords that do not cover any other codeword, are called un-
ordered [12, 115]. All codes used for delay-insensitive data transmission, e.g., m-of-n codes,
Berger and Sperner codes, are unordered. Formally, unordered codes are defined as follows:

Definition 2. Unordered codewords/codes: Two codewords x and y are called unordered, iff
x 6≤ y and y 6≤ x. Two sets of codewords X and Y are called unordered, iff for each x ∈ X and
y ∈ Y : x 6≤ y and y 6≤ x.

To be able to reason about the resilience of delay-insensitive codes against faulty transitions
we propose a generalisation of the concept of covering codewords:

Definition 3. Overlapping codewords: A codeword x = (xn−1, xn−2, . . . , x0) overlaps with
another codeword y = (yn−1, yn−2, . . . , y0) iff there exists a bit position i, where yi = 1
implies xi = 1. This relation is reflexive, symmetric but not necessarily transitive. We denote the
number of overlapping bit positions i, i.e., where yi = 1 and xi = 1, as c(x, y). The number of
bit positions of x that do not overlap with y can then be calculated by subtracting c(x, y) from
the Hamming weight of x. We write: u(x, y) = weight(x)− c(x, y).

Based on this definition, we now can analyse the minimum number of faults that are required
for the receiver to confuse two codewords during a data transmission. Let x, y be two codewords
of an unordered code C, and let us assume that y is transmitted to the receiver. Following
Definition 3, u(x, y) faults are sufficient to turn an intermediate transmission pattern of y into
x. Recall the example of the 3-of-6 code from the previous section. Let x be the codeword
110001 and y be 111000. The number of bit positions of x that do not overlap with y is one,
i.e., u(x, y) = 1. As we have seen in the previous section, a single fault is sufficient to turn the
intermediate pattern 110000 of codeword y into codeword x.

5.1.3 Building Subcodes

In order to avoid the possibility of confusing codewords in the presence of faults, one solution
is to make sure that u(x, y) > f and u(y, x) > f for each x, y ∈ C. If this property holds,
then an incomplete codeword will always be invalid even in case of f faults. Starting with an
arbitrary delay-insensitive code, it is possible to construct a fault-tolerant subcode by removing
codeword pairs that violate the above condition. Note that a subcode of a DI code is again
a DI code [115]. Consider, e.g., the non-overlapping bits of codeword pairs of a 2-of-4 code

104

(Table 5.1). If we assume f = 1, i.e., single-bit faults, only pairs of codewords with u(x, y) > 1
and u(y, x) > 1 can be chosen. A maximally-sized set of codewords satisfying this requirement
is, e.g., {0011, 1100}. Thus, the number of codewords is reduced from six to two, if single-bit
faults have to be tolerated.

Table 5.1: Count of non-overlapping bits of a 2-of-4 code.

u(x, y) 0011 0110 1100 0101 1010 1001

0011 0 1 2 1 1 1
0110 1 0 1 1 1 2
1100 2 1 0 1 1 1
0101 1 1 1 0 2 1
1010 1 1 1 2 0 1
1001 1 2 1 1 1 0

00011 00101

01001

10001

00110

0101010010

01100

10100

11000

Figure 5.2: Safe overlap graph.

In order to get the highest possible coding efficiency, the aim is to find subcodes with maxi-
mum size, i.e., codes that consist of a maximally-sized set of codewords that can not be confused
in the presence of faults. This can be done by modelling the overlap relationships between the
codewords of the DI code in an undirected graph, which we call the safe overlap graph. The
vertices of this graph represent the codewords, and edges are added between every pair of code-
words that cannot be confused even in case of f faults. Figure 5.2 shows the graph for a 2-of-5
code and for f = 1. The safe overlap graph G = (V,E) is formally defined as follows:

V := C;E = {(x, y)|x, y ∈ C, u(x, y) > f, u(y, x) > f}

A subcode of maximum size can now be derived by searching the largest subgraph S of G
that is fully connected, i.e., where there is an edge between every pair of nodes. Fully connected
subgraphs are called cliques and the problem of finding a maximum clique is well-known in
graph theory. Since S is fully connected, there is no pair of codewords in S where the number
of non-overlapping bits is too small to tolerate f faults. The delay-insensitive subcode Csub =
V (S) therefore is able to mitigate up to f faults, which occur during the transmission.

Tables 5.2 and 5.3 show fault-tolerant subcodes we have derived for m-of-n codes and Berger
codes, two well-known types of DI codes. For each code we have generated two safe overlap
graphs: one for single faults (f = 1) and one for double faults (f = 2). For finding maximum
cliques in these graphs we used the tool Cliquer from the University of Helsinki [81]. Note
that the maximum clique problem is NP-hard and finding exact solutions can take a significant
amount of time in case of large graphs. As can be seen in Tables 5.2 and 5.3, for some subcodes
the maximum clique only contains one codeword. Obviously these subcodes cannot be used
to transmit data. An analysis of the resulting subcodes is presented in Tables 5.5a and 5.5b.
Comparing the numbers in the second column (original code size) with those in the fifth column
(subcode size), it can be seen that the number of codewords is drastically reduced when single
faults or even double faults should be tolerable. The reduction of codewords obviously results in
a smaller number of data bits that can be encoded. The last column of the tables shows the infor-
mation rate for each subcode, which is defined as the ratio k/n, where k = blog2(subcode size)c

105

is the number of encoded data bits and n is the bit length of the codewords. As can be seen, the
reduction of codewords unfortunately leads to very poor information rates.

Table 5.2: Fault-tolerant subcodes of m-of-n codes.
Code Faults Codewords

1-of-2
1 10
2 10

1-of-4
1 1000
2 1000

2-of-4
1 1001, 0110
2 1100

2-of-5
1 10010, 01100
2 11000

3-of-6
1 001101, 110001, 010110, 101010
2 110001, 001110

2-of-7
1 0001001, 1000100, 0110000
2 1100000

Table 5.3: Fault-tolerant subcodes of Berger codes.

n Faults Codewords

2
1 1100
2 1100

3
1 01101, 10010
2 11100

4
1 1000011, 1111000
2 1111000

5
1 00011011, 01110010, 10100011, 11001010
2 01110010, 10001011

6
1

000111011, 011001011, 011110010, 101011010,
101100011, 110010011, 110101010

2 101110010, 110001011

7
1

0001111011, 0010010101, 0011001100, 0100001101,
0101010100, 0110111010, 0111100011, 1000011100,
1001000101, 1010101011, 1011110010, 1100110011,
1101101010, 1110000100

2 1101110010, 1110001011

8
1

001010100101, 001101110011, 001111000100, 010011110011,
010100110100, 010110000101, 011000010101, 011001100100,
100001010101, 100011100100, 100110110011, 101000110100,
101100000101, 110000100101, 110010010100, 111011000011,
111101010010, 111110100010

2 010000110101, 011110000100, 100101100100, 101011010011

5.1.4 Combining DI and ED Codes

Another option is to accept that certain codewords of a delay-insensitive code can be confused
due to faults and to try to detect these confusions rather than preventing them by reducing the

106

Table 5.4: Evaluation of fault-tolerant subcodes.
C

od
e

O
ri

gi
na

lc
od

e
si

ze

#W
ir

es
/c

od
ew

or
d

#F
au

lts

Su
bc

od
e

si
ze

#D
at

ab
its

/c
od

ew
or

d

In
fo

rm
at

io
n

ra
te

1-of-2 2 2
1 1 0 0
2 1 0 0

1-of-4 4 4
1 1 0 0
2 1 0 0

2-of-4 6 4
1 2 1 0.25
2 1 0 0

2-of-5 10 5
1 2 1 0.2
2 1 0 0

3-of-6 20 6
1 4 2 0.333
2 2 1 0.167

2-of-7 21 7
1 3 1 0.143
2 1 0 0

(a) Subcodes of m-of-n codes.

O
ri

gi
na

ld
at

a
fie

ld
si

ze

O
ri

gi
na

lc
od

e
si

ze

#W
ir

es
/c

od
ew

or
d

#F
au

lts

Su
bc

od
e

si
ze

#D
at

ab
its

/c
od

ew
or

d

In
fo

rm
at

io
n

ra
te

2 4 4
1 1 0 0
2 1 0 0

3 8 5
1 2 1 0.2
2 1 0 0

4 16 7
1 2 1 0.143
2 1 0 0

5 32 8
1 4 2 0.25
2 2 1 0.125

6 64 9
1 7 2 0.222
2 2 1 0.111

7 128 10
1 14 3 0.3
2 2 1 0.1

8 256 12
1 18 4 0.333
2 4 2 0.167

(b) Subcodes of Berger codes.

code set. To be able to perform this detection, redundant information needs to be added to
the transmitted data. Therefore, we propose that the sender encodes a data word in two steps:
First an error detecting code is applied, which adds the required redundancy. The result of this
encoding step is called ED codeword in this section. Then, in a second step, the ED codeword
is encoded with a delay-insensitive code to guarantee for correct transmission even in case of
varying signal delays. We will use the term DI codeword to refer to the output of this step.

The receiver then works as follows: In a fault-free transmission the receiver will eventually
observe a complete DI codeword, which can be decoded. After checking the absence of errors
in the retrieved ED codeword and decoding the correct data word, its reception can be acknowl-
edged to the sender. On the other hand, if faults occur during the transmission, the behaviour of
the receiver becomes more complex. Note that from now on we will call faults that change bits
in DI codewords transmission faults. Two cases can be distinguished:

1. Transmission faults can transform the incoming DI codeword into a non-codeword (with
respect to the used DI code). Obviously, such faults will prevent completion detection and
stall the receiver. However, if faults are assumed to be transient, a complete and correct
DI codeword will eventually be observed and the receiver can then continue its operation
like in a fault-free transmission.

2. As we have discussed above, faults can also transform an incomplete intermediate DI
codeword x into a complete DI codeword y, y 6= x. In this case the completion detection

107

will indicate the availability of a new DI codeword, which will then be decoded. Due to
the transmission fault(s), however, the received ED codeword will be different from the
original one generated by the sender: One or more bits will be erroneous. We will call
these bit-flips decode errors. If the number of these errors is smaller than or equal to the
detection capabilities of the used ED code, the receiver can tell that a transmission fault
has occurred and can wait for the transient fault to disappear. Eventually the correct DI
codeword will be perceived and the transmission can then be completed.

Hence, the receiver performs both completion detection and error detection before a new
data word is processed and acknowledged. This is the key element of the proposed approach.
The principal question, which now remains to be answered, is how much redundancy needs to be
included in the ED codeword in order to be able to detect all possible decode errors. Assuming a
certain maximum number of transmission faults f we obviously want to minimise the required
overheads and efficiently use the available redundancy of both the delay-insensitive code and
the error detecting code. We have therefore systematically analysed m-of-n and Berger codes
again to find out what minimum capabilities an error detecting code needs to provide to tolerate
a certain number of transmission faults.

m-of-n Codes

Figure 5.3 shows the encoding steps for m-of-n codes. First the error detecting code is applied
to the original data word. Subsequently the resulting codeword is partitioned into equally-sized
blocks, which then are translated into codewords of the used m-of-n code. The block length k
depends on the number of bits that can be encoded by this m-of-n code.

Data

Encode with ED code

Checkbits

Partition into blocks

b0 b1 b2 b3 b4 b5 b6

di(b0) di(b1) di(b3) di(b4) di(b5) di(b6)

Encode blocks with m−of−n code

Data

di(b2)

0 7k−1

0 7n−1

k 2k 3k 4k 5k 6k

6n5n4n3n2nn

Figure 5.3: Encoding steps for m-of-n code.

An encode function is required to define how data blocks are transformed into m-of-n code-
words (cf. function di in Figure 5.3). In general, m-of-n codes are not systematic, i.e., the input
bit vector is not embedded as a part of the codeword. Thus, with respect to data transmission,
every function that assigns bit vectors to codewords is a suitable encode function. With respect
to fault tolerance, however, the choice of this function is crucial for the required redundancy
of the error detecting code and therefore for the efficiency of the overall data encoding. This

108

can be easily illustrated with the following example: Consider again the codewords 111000 and
110001 of a 3-of-6 DI code. As discussed above, a single fault can lead to the confusion of these
two codewords. Now let us assume that 111000 encodes the bit vector 0000 and 110001 is the
DI encoding of 1111. In this case a single transmission fault in the DI codeword can lead to a
quadruple error in the ED codeword. Therefore, the used error detecting code would need to be
able to detect four erroneous bits. If we want to minimise the overhead imposed by the error
detecting code, we need to find an optimal mapping, where the maximum possible number of
decode errors is minimal. More specifically, for all DI codewords that can be confused in case
of a certain number of transmission faults, the Hamming distance of the encoded bit vectors
should be minimal. For DI codewords that can not be confused in the given fault hypothesis, the
mapping is uncritical and will not affect the choice of the error detecting code.

The problem of finding an optimal mapping for a specific m-of-n code and a specific number
of transmission faults, can again be described as a problem in graph theory. First, we characterise
the DI code under investigation with its safe overlap graph. Furthermore, we need to model the
properties of a candidate ED code as graph (we call this the ED graph). This is done by building
a graph whose vertices represent all bit vectors from the set {0, 1}k, i.e., the set of words that
can be encoded in a single block by the given DI code. Edges then are drawn between those
words where the candidate ED code would not be able to identify an error, if the two bit patterns
were exchanged in a block of the ED codeword. Having built these two graphs, we now can
try to find a subgraph in the safe overlap graph that is isomorphic to the ED graph. In graph
theory this is called the subgraph isomorphism problem [112]. If such a subgraph exists, then
a mapping from ED blocks to DI codewords can be derived, where all possible decode errors
are detectable. Recall that in the safe overlap graph there is an edge between DI codewords that
cannot be confused by transmission faults. Finding an isomorphic subgraph means that we can
assign all problematic pairs of bit patterns to DI codewords that will not be confused anyway.

Figure 5.4 illustrates our approach on the example of a 2-of-5 code for single transmission
faults (f = 1). The left-most figure shows the safe overlap graph. Figure 5.4b models prob-
lematic bit vectors in case a code with single error-detecting capabilities is used, i.e., word pairs
with a Hamming distance greater than or equal to 2. Figure 5.4b shows the same graph for an
ED code that can detect double errors, but can not detect triple errors. Thus, word pairs with
a Hamming distance of 3 are connected with an edge. You can now easily see that it is not
possible to find a subgraph in the the safe overlap graph that is isomorphic to the ED graph in
Figure 5.4b. Thus, a single-error detecting code is not sufficient to secure the delay-insensitive
data transfer with a 2-of-5 code against single transmission faults. For a double-error detecting
code, on the other hand, the desired isomorphic subgraph can be found (see Figure 5.4d). The
respective mapping of bit vectors to DI codewords can then be derived by simply assigning the
labels of the ED graph in Figure 5.4c to the labels of the found subgraph.

We repeated this evaluation for different m-of-n codes, as can be seen in Table 5.5. After
generating the safe overlap graphs for f = 1 and f = 2 as well as all ED graphs, we used the
tool LAD [101] to find the desired isomorphic subgraphs. Note that for double faults two cases
need to be considered: 1) Both faults occur in the same DI codeword. 2) The faults occur in
different codewords. The strength of the used ED code must then be adjusted to the maximum
number of decode errors that can occur in these two cases. Table 5.5 lists the most efficient

109

00011 00101

01001

10001

00110

0101010010

01100

10100

11000

(a) Safe overlap graph (f = 1).

000

100

011

110101

010

001

111

(b) Single-error detection capability.

000

100

011

110101

010

001

111

(c) Double-error detection capability.

00011

000 00101

01001

100

10001

00110

011

01010

110

10010

101

01100

010

10100

001

11000

111

(d) Possible solution.

Figure 5.4: Finding the optimal error-detecting code in order to secure a 2-of-5 code.

Table 5.5: Finding optimal error-detecting codes for m-of-n codes.

f = 1 f = 2
General Odd error count AUED General Odd error count AUED

1-of-2 1-bit ED X X 2-bit ED X X
1-of-4 2-bit ED - - 4-bit ED - -
2-of-4 1-bit ED X X 2-bit ED - -
2-of-5 2-bit ED - - 4-bit ED - -
3-of-6 2-bit ED - - 4-bit ED - -
2-of-7 3-bit ED - - 6-bit ED - -

classes of ED codes we have proven to be strong enough for the mitigation of single and double
transmission faults. We have grouped ED codes into three classes: 1) Codes that can detect
a certain number of bit errors (single bit errors, double bit errors, etc.). The column named
“General” lists the minimum number of bit errors that a code needs to be able to detect, if the
most optimal DI encode function is used. 2) The second class of ED codes we tested contains
codes that can detect odd numbers of bit errors. 3) Furthermore we have analysed codes capable
of detecting unidirectional errors (AUED codes). For the latter two classes a check mark in
Table 5.5 indicates that a code suitable to be paired with the respective DI code.

Based on our results on the required error detection capabilities, we analysed the efficiency

110

of the combination of these DI codes with specific ED codes for different data word sizes. We
investigated the use of single parity bits, which is the most efficient protection against single
errors, as well as Hamming codes and extended Hamming codes for providing double and triple
error detection capabilities, respectively. Table 5.6 shows the results of our analysis for single
transmission faults (f = 1). In the last three columns the total number of wires that are required
for transmitting the data word, the resulting information rate and the required signal transitions
per bit can be seen. While the number of wires and the information rate are important indicators
for the area complexity of the analysed codes, the number of signal transitions provides valuable
insights on their power efficiency. It can be seen that 2-of-5 and 3-of-6 have the best scores
regarding area, while 1-of-4 and 2-of-7 would be the best choices for highly energy-efficient
data transmissions. It can also be seen that all numbers improve for all codes with rising word
sizes. This can be easily explained with the overheads of the used ED codes, which are either
constant (single parity) or scale logarithmically (Hamming codes) with the word size.

Berger Codes

In case of Berger codes the mapping of bit vectors to DI codewords is defined by the construction
of the code itself. Recall that Berger codes simply extend the input word with a synchronization
field, which represents the number of zeros contained in this word. Let us consider a Berger
code Ck with a data field length of k. To find the most efficient error detecting code that can
be combined with Ck for mitigating a certain number of transmission faults f , the maximum
number of decode errors t needs to be computed. This can simply be done by iterating over
all DI codewords that can be confused in the presence of faults and by finding the maximum
Hamming distance of the encoded bit vectors. Let x, y ∈ {0, 1}k be two bit vectors of length k
and xs, ys ∈ C denote the respective DI codewords. Formally, t can be defined as follows:

t = max{d(x, y) | x 6= y, u(xs, ys) ≤ f ∨ u(ys, xs) ≤ f} (5.1)

We have analysed Berger codes with a data field, whose length ranges from 2 to 8 bits.
Table 5.7 shows the results for single and double transmission faults. As can be seen, even for
small data word lengths, a high number of decode errors can occur, which is in some cases even
equal to the number of data bits.

Theorem 2. The number of decode errors t in Berger codes is monotonically increasing with
the data word size n.

Proof. From Table 5.7 we can infer that the theorem holds for small word sizes. Assume that
the transmission of codewords of a Berger code Ck for k-bit data words can result in a maximum
of t decode errors in case of f transmission faults. Let x and y be two codewords of Ck whose
data fields have a Hamming distance of t and which can be confused due to transmission faults,
i.e., u(x, y) ≤ f ∨u(y, x) ≤ f . We can then investigate a Berger code with a word size of k+1.
This code includes the codewords x′ = 1x, y′ = 1y, whose data fields still have a Hamming
distance of t. Since u(x′, y′) = u(x, y) and u(y′, x′) = u(y, x), x′ and y′ can again be confused
in the presence of f transmission faults, which then leads to a t-bit decode error.

111

Table 5.6: Analysis of m-of-n codes extended with suitable ED codes (f = 1).
D

at
a

w
or

d
si

ze

C
od

e

#W
ir

es
/c

od
ew

or
d

#D
at

ab
its

/c
od

ew
or

d

#T
ra

ns
iti

on
s/

co
de

w
or

d

R
eq

ui
re

d
de

te
ct

io
n

ca
pa

bi
lit

ie
s

E
D

co
de

#C
he

ck
bi

ts

B
lo

ck
co

un
t

To
ta

l
nu

m
be

r
of

w
ir

es

In
fo

rm
at

io
n

ra
te

#W
ir

e
tr

an
si

tio
ns

/b
it

2

1-of-2 2 1 2 1-bit Single Parity 1 3 6 0.333 3
1-of-4 4 2 2 2-bit Hamming 3 3 12 0.167 3
2-of-4 4 2 4 1-bit Single Parity 1 2 8 0.250 4
2-of-5 5 3 4 2-bit Hamming 3 2 10 0.200 4
3-of-6 6 4 6 2-bit Hamming 3 2 12 0.167 6
2-of-7 7 4 4 3-bit Extended Hamming 4 2 14 0.143 4

4

1-of-2 2 1 2 1-bit Single Parity 1 5 10 0.400 2.5
1-of-4 4 2 2 2-bit Hamming 3 4 16 0.250 2
2-of-4 4 2 4 1-bit Single Parity 1 3 12 0.333 3
2-of-5 5 3 4 2-bit Hamming 3 3 15 0.267 3
3-of-6 6 4 6 2-bit Hamming 3 2 12 0.333 3
2-of-7 7 4 4 3-bit Extended Hamming 4 2 14 0.286 2

8

1-of-2 2 1 2 1-bit Single Parity 1 9 18 0.444 2.25
1-of-4 4 2 2 2-bit Hamming 4 6 24 0.333 1.5
2-of-4 4 2 4 1-bit Single Parity 1 5 20 0.400 2.5
2-of-5 5 3 4 2-bit Hamming 4 4 20 0.400 2
3-of-6 6 4 6 2-bit Hamming 4 3 18 0.444 2.25
2-of-7 7 4 4 3-bit Extended Hamming 5 4 28 0.286 2

16

1-of-2 2 1 2 1-bit Single Parity 1 17 34 0.471 2.125
1-of-4 4 2 2 2-bit Hamming 5 11 44 0.364 1.375
2-of-4 4 2 4 1-bit Single Parity 1 9 36 0.444 2.25
2-of-5 5 3 4 2-bit Hamming 5 7 35 0.457 1.75
3-of-6 6 4 6 2-bit Hamming 5 6 36 0.444 2.25
2-of-7 7 4 4 3-bit Extended Hamming 6 6 42 0.381 1.5

32

1-of-2 2 1 2 1-bit Single Parity 1 33 66 0.485 2.0625
1-of-4 4 2 2 2-bit Hamming 6 19 76 0.421 1.1875
2-of-4 4 2 4 1-bit Single Parity 1 17 68 0.471 2.125
2-of-5 5 3 4 2-bit Hamming 6 13 65 0.492 1.625
3-of-6 6 4 6 2-bit Hamming 6 10 60 0.533 1.875
2-of-7 7 4 4 3-bit Extended Hamming 7 10 70 0.457 1.25

64

1-of-2 2 1 2 1-bit Single Parity 1 65 130 0.492 2.03125
1-of-4 4 2 2 2-bit Hamming 7 36 144 0.444 1.125
2-of-4 4 2 4 1-bit Single Parity 1 33 132 0.485 2.0625
2-of-5 5 3 4 2-bit Hamming 7 24 120 0.533 1.5
3-of-6 6 4 6 2-bit Hamming 7 18 108 0.593 1.6875
2-of-7 7 4 4 3-bit Extended Hamming 8 18 126 0.508 1.125

112

Table 5.7: Finding optimal error-detecting codes for Berger codes.

Data word size f = 1 f = 2

2 2-bit ED 2-bit ED
3 2-bit ED 3-bit ED
4 4-bit ED 4-bit ED
5 4-bit ED 5-bit ED
6 4-bit ED 6-bit ED
7 4-bit ED 6-bit ED
8 8-bit ED 8-bit ED

Table 5.8: 3-bit Berger codewords combined with Hamming codes (f = 1).

Data word size Parity bits
Number of 3-bit Total number

Information rate
Berger codewords2 of wires

4 3 3 15 0.267
8 4 4 20 0.4

16 5 7 35 0.457
32 6 13 65 0.492
64 7 24 120 0.534

As can be seen in Table 5.7, only for data word sizes of two and three, the required detection
capabilities are below four, which means that Hamming codes can be used. Data words with
four or more bits already require stronger ED codes, which have much more complex encoder
and decoder circuits. Assume we use 3-bit Berger codes and apply a Hamming code to detect
decode errors. Following the encoding scheme presented above for m-of-n codes, data words
of arbitrary length have first to be extended by parity bits from the Hamming code and are then
cut into 3-bit chunks to be encoded with the selected Berger code. Table 5.8 shows the required
interconnect wires and the resulting information rate of this encoding scheme for different word
sizes, assuming a targeted tolerance against single faults (f = 1). Compared to our results for
m-of-n codes, it can be seen that this particular Berger/Hamming code combination can offer
similar information rates as 2-of-5 or 3-of-6 codes. Encoding and decoding of the systematic
Berger code, however, might be a bit more efficient.

5.2 Approach I: Robust 4-phase Dual-rail Channels

In this section we will present the implementation of a robust asynchronous link, which is
specifically targeted at and optimised for the use of a 4-phase dual-rail code to achieve delay-
insensitivity. As good portion of this section is devoted to the description of input and output
port components that are ready to be used in asynchronous communication wrappers of GALS
modules. Figure 5.5 shows the general structure of the proposed robust asynchronous commu-
nication interface. The sender consists of a sender module and an associated output port. The

2For a 3-bit data field two synchronization bits are needed. The codewords therefore have a total length of five.

113

receiver is partitioned into a receiver module and an input port. Input and output ports are as-
sumed to be connected over a global interconnect for on-chip as well as off-chip communication,
which is susceptible to transient faults and where signal delays are affected by PVT variations.

As described in the previous section, the output port encodes data in two steps to achieve
both fault tolerance and delay-insensitivity: First, the data word is extended by parity bits or
some kind of checksum, and then all data bits as wells as the additional parity/checksum bits are
encoded with the DI code. Based on this encoding, the input port of the receiver can perform
completion detection and error detection. An on-going data transmission is only acknowledged,
if the received data word is complete and correct, or if a detected error can be corrected by the
error correction unit. This is the key principle of the presented link implementation.

Sender
Module

Data

DI
Encoder

Parity /
Checksum
Generator

Output Port

Error
Correction

Completion
Detection

+
Error

Detection

Ack

Receiver
Module

Input Port

Data

Req

Ack

Data

Req

Ack

Unreliable
Interconnect

Figure 5.5: Overview of fault-tolerant link.

Since we target GALS approaches where pausible clock generators are employed, input and
output ports need to operate without a working clock signal and hence have to be implemented
asynchronously. The local interface between a GALS module and the associated input and
output ports consequently is handshake-based, as can be seen in Figure 5.5. Since the data
exchanged over this interface is in the form of single-rail data words, a bundled data protocol is
used and the ports are consequently implemented as matched delay circuits. Note that a 4-phase
protocol is assumed for the circuits discussed here.

5.2.1 Fault Model

All assertions about fault tolerance made for the presented approach rely on the following as-
sumptions about faults occurring in the system:

1. All faults are of transient nature. Consequently, two types of erroneous signal pulses can
be distinguished: 1) 0 → 1 → 0 and 2) 1 → 0 → 1. A key factor, when designing
a fault-tolerant communication link, is the structure of the transmission channel, i.e., the
interconnect network. A major concern is the question whether the interconnect contains
storage elements, e.g., in case it is pipelined. In [62], we therefore introduced the follow-
ing classification of interconnect links:

I) Interconnects without state-holding elements

II) Interconnects with state-holding elements

For interconnect type I, it is possible to assume that the receiver will eventually perceive
a complete and correct data word at its input. This assumption clearly does not hold

114

for the second type of interconnects. If there is an upset in some storage element of
a pipelined interconnect and no error correction is performed by the pipeline stage, the
receiver will never obtain a correct data word. To make matters worse, the receiver cannot
even assume that eventually a complete data word will arrive, thus leading to a deadlock
of the handshake protocol. As demonstrated in [16] and [61] solutions that are able to
cope with such a scenario lead to rather expensive and complex implementations, if delay
insensitivity is supposed to be preserved. Therefore we assume type I interconnects for
the two link architectures presented in this and the following section.

2. Faults only occur in the interconnect. As we explained above, this assumption is used for
simplifying the presentation of this approach. In a fully fault-tolerant system, the sender
and receiver components would of course be protected by some kind of fault tolerance
mechanism, such as triple modular redundancy.

3. No more than one fault occurs during one communication cycle (single fault assumption).

5.2.2 Proposed Implementation

As stated above, we have decided to use a 4-phase dual-rail code for this specific link archi-
tecture, partly because of its simplicity and its wide-spread use in the asynchronous circuits
community. From our analysis of m-of-n codes in Section 5.1, we know that such a dual-rail
code can be protected with an ED code that has single-bit error detection capabilities, assuming
single transmission faults (cf. Table 5.5). Single-bit error detection can easily be achieved with
an inexpensive parity bit that is added to the transmitted data word.

Figure 5.6 shows the basic structure of the output port. First the parity bit is generated for
the input data word, which is provided by the sender module. Then the DI encoder transforms
the parity-extended data word into a delay-insensitive dual-rail codeword, which is finally stored
in an output register. A simple Muller C-element performs the local handshake with the sender
module, processes the acknowledge signal from the remote receiver and triggers the output reg-
ister when the next data word or the next spacer word has to be issued. Since the communication
between the sender module and the output port is performed with a bundled data transfer, a delay
element has to be included on the local request signal. This delay is matched to the aggregated
delays of the parity generator and the DI encoder.

The corresponding input port at the receiver side is depicted in Figure 5.7. The general
concept is very simple: The receiver waits for a complete and fault-free data word, captures it
in its input register and then returns an acknowledgement to the sender. Consequently, the input
register is transparent at the beginning of the communication cycle. The incoming data word
propagates through the input register and is continuously evaluated by the completion detector
and the error detection circuitry. If completion detection and error detection indicate that the data
word is complete and correct, the handshake controller freezes the input register. Subsequently,
the local request signal is raised, indicating the availability of new data to the receiver module.
The acknowledgement, generated for the sender, then completes the activities of the input port.

In most cases the input register now stores a complete and correct data word, which can be
consumed by the receiver module. However, there is a small chance that a fault occurs exactly

115

DI
Encoder

Parity Bit
Generator

Data

Req

Ack

Output
Register

CDelay

Data

Ack

n

1

2n+2 2n+2

Output Port InterconnectSender

Figure 5.6: Output port.

Completion
Detection

Data

Ack

Input
Register

Data

Ack

Req

Enable

Delay

DI
Decoder

Controller

Delay

Error
Detection/
Correction

E
rr

o
r

n+1

2n+2

1

n

2n+2

ReceiverInterconnect Input Port

Figure 5.7: Output port.

during the short time interval between the detection of a correct data word and the freezing of
the input register. Then the register still might have latched a data word with a single bit-flip.
Typically, the available parity bit would not be sufficient to perform forward error correction at
the receiver. Our solution, however, uses the combined information redundancy of the delay-
insensitive code and the parity bit. In order to show that this composition is sufficient for not
just detecting but also correcting single-bit errors, we need to determine the Hamming distance
of the resulting codewords:

Theorem 3. Let C be a code with a minimum Hamming distance of d. If the bits of the code-
words of C are encoded with a 1-of-2 code, the new code C ′ has a hamming distance of 2d.

Proof. Let x′ and y′ be two codewords of C ′, x′ 6= y′ and x, y ∈ C. Since C is a code with a
minimum Hamming distance of d, at least d bits have to be changed to transform x into y. x′

and y′ are derived from x and y by encoding each bit of x and y with two bits, using a 1-of-2
code, which has a Hamming distance of 2. Therefore 2 bits need to be changed in x′ in order to
change a single bit in x. Consequently, at least 2d bits have to be changed to transform x′ into
y′, i.e., the minimum hamming distance of C ′ is 2d.

116

Based on Theorem 3, the Hamming distance of the transmitted data words can be easily
calculated: Data words, which are protected by a single parity bit, have a Hamming distance of
d = 2. Encoding the parity-extended data words with a 1-of-2 code results in a total Hamming
distance of 2d = 4. Recall that for correcting f = 1 erroneous bits the minimum Hamming
distance between two codewords is required to be 2f + 1 = 3. Thus, the composition of a parity
bit and a 1-of-2 code is sufficient for single-bit error correction.

The implementation of the correction mechanism is very simple: In case a late faulty signal
transition slipped into the input register, a previously correct dual-rail pair will either be changed
to 00 or 11. Both values are invalid 1-of-2 codewords and the faulty dual-rail pair can be easily
detected. The correction can then be performed as follows: The DI decoder delivers the decoded
data word including the received parity bit to the error detection circuit. Then the parity bit is
recomputed and compared to the received parity bit. If they are not equal, the decoded data word
contains an error. In this case, the error correction unit analyses the dual-rail pairs stored in the
input register in order to find the invalid pair. For this purpose, the error correction unit has a
separate input, which is directly connected to the input register (cf. Figure 5.7). The data bit that
corresponds to the invalid dual-rail pair then is simply inverted to produce a correct data word.

The receiver module, of course, must not process the new data word before the correction
process has been completed. Therefore, a delay element is included in the local request signal.
The length of this delay needs to be matched to the combined delay of the DI decoder and
the error detection/correction circuit. Another delay element is required at the output of the
completion detector. Note that the error detector continuously checks the incoming data word
and thus might identify an incomplete data word to be correct. Therefore, it is necessary to make
sure that the error detector can finish its computations before the handshake controller reacts on
the completion and error detection signals. The delay element at the output of the completion
detection thus compensates the delay difference between error and completion detection circuits.

5.2.3 Metastability-Tolerant Implementation

Unfortunately, the design of the input port presented above is prone to metastability. When the
input register changes from transparent to hold, an erroneous input pulse can cause a setup/hold-
time violation and the register might become metastable. Of course, the metastability will re-
solve eventually and even if the resolved value is incorrect, this can be compensated by the error
correction. However, at this point in time the local request signal for the receiver module might
already have been issued. As the metastability resolution time is unconstrained, it cannot be
guaranteed that the data signals remain stable when the receiver module processes the incoming
request. Even though it seems quite improbable that metastability caused by a fault results in a
transmission error, we want to present a metastability-tolerant receiver implementation. Maybe
it can prove useful for highly critical systems or extremely harsh operating conditions.

Recall that metastability can never be prevented, if there are bi-stable storage elements in
a circuit. Nevertheless, it is possible to change the implementation such that the local request
is only issued after a metastable upset has resolved and the persistency of the data word can be
guaranteed (assuming that no faults occur in the input port itself, according to our fault model).
This requires an alternative realisation of the input register, which must only produce stable and
monotonic output transitions. This property is crucial for making the decision when the local

117

request signal can be safely issued. Instead of a latch-based implementation, a 4-phase dual-rail
register can also be built from Muller C-elements (cf. [102]). As you can see in Figure 5.8, one
input of the C-elements is connected to the data signals of the interconnect link, whereas the
second input is connected to the local acknowledge signal of the receiver module. Depending on
the value of the acknowledge signal, the C-element register either accepts the next data word or
the next spacer codeword. In case the acknowledge signal is 1, the C-elements are transparent for
the 0 → 1 transitions of an incoming data word. Once a 1 has been latched into the C-element,
it is preserved as long as the acknowledge signal does not change, even in case of a possible
1 → 0 fault on the data input. Hence, the switching behaviour of the C-elements is monotonic.
Of course, a faulty 0 → 1 transition can now penetrate the input register at any time and will
immediately be captured. But this drawback is acceptable as we can deal with single-bit errors
by means of error correction.

Ack

MUTEX

C

C

C−gate[n−1].t

Mutex[n−1].t

C−gate[n−1].f

Mutex[n−1].f

Data[n−1].t

Data[n−1].f

MUTEX

C

C

C−gate[0].t

Mutex[0].t

C−gate[0].f

Mutex[0].f

Data[0].t

Data[0].f

Figure 5.8: Monotonic input register.

However, a C-element is a bi-stable element and can also be affected by metastability. Upon
a 0→ 1 input transition the internal storage loop has to change from one stable state to the other,
from storing a 0 to storing a 1. This, of course, imposes a hold-time requirement for the data
input. A short faulty 0 → 1 → 0 pulse might violate the hold-time and the C-element ends up
in a metastable state. In this situation an ordinary C-element might produce a pulse at its output,
which contradicts the demanded monotonic behaviour. However, it has been shown in [88] that
a C-element can be built such that an output transition is only produced after the metastable state
has resolved. To this end, the presented C-element implements its output stage with a Schmitt-
Trigger. The key observation is that the internal nodes of the element are at an intermediate
voltage level, as long as metastability has not been resolved. By selecting appropriate threshold
values (one above and one below the metastability voltage), the Schmitt-Trigger ensures that the
output of the gate only changes once the voltages of the internal nodes have settled to a proper
digital value and thus metastability has been resolved.

Using the proposed C-element input register, completion detection can be safely performed:

118

A complete data word will remain complete even in case of late errors and therefore the output of
the completion detector is monotonic. The same, however, is not true for the correctness of the
stored data word: A late erroneous 0→ 1 transition can still change a correct 01 or 10 dual-rail
pair into an invalid 11 pair. Furthermore, an incorrect 01 or 10 dual-rail pair, caused by an early
faulty 0→ 1 transition, can be changed into an invalid 11 pair when the correct input transition
arrives. In these cases, the output of an error detection circuit, directly evaluating the data word
stored in the C-element register, would not be monotonic. This problem can be solved by using
mutex components for arbitration between rising transitions on the true and false rails of every
dual-rail pair. The first rising transition on any of the two mutex inputs will be forwarded to the
associated grant output. If a later transition occurs on the second input, it will be blocked. In case
of simultaneous transitions on both inputs, the mutex component will arbitrarily issue a grant
for exactly one of them. This makes transitions on the true and false rails mutually exclusive.

Once a dual-rail data word, provided by the grant outputs of the mutexes, is complete, the
mutex outputs will not change anymore for the whole data phase of the communication cycle.
Error detection can therefore be safely performed: When the data word is correct, it will remain
correct. When the data word is incorrect, it will remain incorrect. In the first case, the local
request signal can be issued immediately. In the latter case, error correction still needs to be
performed. As can be seen in Figure 5.9, the dual-rail data word provided by the mutex outputs
is decoded and forwarded to the error detection/correction circuit. If an error is detected, the
outputs of the C-elements are evaluated in order to locate the invalid dual-rail pair. As mentioned
above, an incorrect 01 or 10 dual-rail pair, stored in the C-element register, will eventually turn
into an invalid 11 pair. Then the faulty data bit can be inverted and the correct data word is
recovered. After a successful data correction, the error signal is disabled and the local request
is raised by the C-element in the top-right corner of Figure 5.9. A detailed presentation of the
error detection/correction circuit will be given in the next section. Note that the error signal
is only evaluated for rising transitions of the request signal (data phase). For the reset phase
of the handshake, is it sufficient to wait until the completion detection goes low, when the all-
zero empty codeword has been received. Then the local request signal is reset to zero, which
completes the handshake cycle.

Completion
Detection

Data

Ack

Data

Ack

Error
Detection/
Correction

Req

DI
Decoder

Delay

C

+

MUTEX
Outputs

C−element
Outputs

Input
Register

E
rr

o
r

2n+2

2n+2

n+1

1

n
2n+2

Interconnect Input Port Receiver

Figure 5.9: Metastability-tolerant input port.

119

5.2.4 Implementation Details

Input/Output Registers

In case of the standard implementation (no metastability-tolerance) the input register can simply
be built with D latches, which are controlled by an enable signal (cf. Figure 5.7). The input regis-
ter for the metastability-tolerant version of the receiver uses C-elements and mutex components,
as we have already explained in Section 5.2.3.

The output register of the sender can also be built with C-elements. One input is connected to
the control signal, the other to a true-rail or false-rail provided by the DI encoder (cf. Figure 5.6).
When the control input is 1, the C-elements capture the rising transitions of the next data word.
In order to implement the return-to-zero part of the handshake cycle, where the output register
needs to generate the spacer codeword, we have in fact used asymmetric C-elements with a reset
function that only depends on the control input. Thus, a falling transition on the control input
immediately resets the C-elements, irrespective of the data input value.

Error Detection/Correction

The error detection/correction unit of the input port of the metastability-tolerant solution is de-
picted in Figure 5.10. It consists of two error detectors and one error corrector. The decoded data
word is analysed by the first error detector. If it is correct, the internal error signal is disabled and
the data word passes the correction unit without modification. Consequently, the second error
detector will not detect a fault and the error output remains low, which triggers the local request
signal. In case the first detector identifies a fault (internal error signal set high), correction needs
to be performed. As we explained in Section 5.2.3, this is done by looking at the dual-rail pairs
stored in the C-elements of the input register. Once the correct rail has arrived, this value will be
11. As can be seen in Figure 5.10, an AND-gate detects this situation and enables the correction
of the corrupted data bit. Afterwards the second error detector will set the error output to 0,
which in turn triggers the local request signal.

E
rro

r

Decoded Data

Data[i].t
Data[i].f

Data[i]

n+1

1

n+1

Error Detection I

Error Correction

Error Detection II

Error

Data

(n+1) x

Figure 5.10: Error detection/correction unit.

120

Sender module

Channel signals

0 1 2

0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0

C-element outputs

0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0 1 1 0 1 0 0

0 0 0 1 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0

Mutex outputs

0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0

0 1 0 4 6 2 2 0

Request

Ack

Data 0 1 2

Parity Bit 0 0 1 0 0 0 1 0 0 0

Data(2) 0 0 0 1 0 0 1 0 0 0 0 1 0 0

Data(1) 0 0 0 1 0 0 1 0 0 0

Data(0) 0 0 1 0 0 0 0 1 0 0

Ack

C-element outputs

Parity Bit 0 0 1 0 0 0 1 0 0 0

Data(2) 0 0 0 1 0 0 1 0 1 1 0 1 0 0

Data(1) 0 0 0 1 0 0 1 0 0 0

Data(0) 0 0 1 0 0 0 0 1 0 0

Mutex outputs

Parity Bit 0 0 1 0 0 0 1 0 0 0

Data(2) 0 0 0 1 0 0 1 0 0 1 0 0

Data(1) 0 0 0 1 0 0 1 0 0 0

Data(0) 0 0 1 0 0 0 0 1 0 0

Complete

Error

Request

Ack

Received Data 0 1 0 4 6 2 2 0

Input Port

Receiver module

Control signalsControl signals

Marker 1a

Marker3a

Marker 2a

Marker 4a

Marker 5a

Marker 1b

Marker 2b

Marker 3b

Marker 4b

Marker 5b

Figure 5.11: Simulation results: Correct transmission on the left, faulty transmission (and error
correction) on the right side.

5.2.5 Evaluation

Functional Verification

To be able to perform simulation experiments and analyse the behaviour of the interface compo-
nents, we have implemented a gate-level model of the described input and output ports. Analog
effects, like metastable upsets, can obviously not be investigated directly with a gate-level simu-
lation. Fortunately, the used metastability-tolerant C-elements only produce digital output tran-
sitions [88]. Metastable upsets can therefore nicely be covered with delayed output transitions.

Figure 5.11 shows a waveform from a simulation of two data transmissions. The first trans-
mission depicts a fault-free execution. The sender module delivers a new data word to the output
port and issues a request to initiate the data transmission (Figure 5.11, Marker 1a). After a short
delay the dual-rail encoded data word appears on the communication channel. The data word
propagates over the interconnect signals and is captured by the C-elements of the input register
at the receiver side. In the middle rows of the waveform the state transitions of the C-elements
and the connected mutexes can be seen. We have deliberately added random delays for all in-
terconnect signals to show how completion detection works. In this specific test case, Data(2)
is the last dual-rail pair that arrives at the receiver (Marker 2a). Subsequently the completion
detector fires and asserts its output signal (Marker 3a). Note that the error signal has produced a
glitch during the time when the data word was incomplete. Apparently, the parity check failed
for some intermediate bit pattern of the incoming data word. This glitch, however, is discarded

121

as the error signal is only processed when the data word is complete and the output of the error
detection circuit has settled. As can be seen in the waveform, the error signal delivers a stable 0,
when the complete signal makes the rising transition (Marker 3a).

After the completeness and correctness of the incoming data word have been verified, the
local request signal is raised to notify the receiver module about the availability of new data
(Marker 4a). Concurrently, the acknowledge signal of the interconnect link makes a transition
(Marker 5a), which notifies the sender about the reception of the data word. The sender then
responds with the empty codeword to initiate the return-to-zero part of the handshake cycle.

In the second transmission we have injected an erroneous pulse on theData(2) interconnect
signal (Marker 1b). In this specific test case the error occurs some time before the actual trans-
mission of the data word is started. This nicely allows for an illustration of the error correction
capabilities of our solution. As can be seen in Figure 5.11, the error is latched by the corre-
sponding C-element of the receiver and consequently the connected mutex component changes
its outputs (Marker 2b). At this point in time, this seems to be the valid start of the next data
transmission. The receiver again waits for all other dual-rail pairs to become complete and then
checks the result of the error detection. Now the error signal is set, when the completion signal
makes the rising transition (Marker 3b). Thus, the data word provided by the outputs of the
mutexes contains an error, which needs to be corrected. As can be seen in the waveform, the
original data word issued by the sender has a value of 2, whereas the received data word (bottom
line of the waveform) is 6. Until correction has been performed, the local request signal therefore
remains low. Recall that Data(2) is transmitted on the slowest interconnect wires. Therefore,
the last input transition, which arrives, is the correct transition on the false rail of Data(2). This
is captured by the corresponding C-element (Marker 4b). Now the error correction, which anal-
yses the C-element outputs, can identify and invert the erroneous data bit. The correct value of 2
appears at the data output and the receiver is notified with the local request signal (Marker 5b).

Area Analysis

The area overheads in terms of interconnect resources are very moderate. Only two additional
wires are needed to transmit the extra dual-rail encoded parity bit. Clearly, this overhead is
constant with respect to the bit width of the transmitted data word. The overall efficiency, how-
ever, is less optimal because of the duplication of wires due to the dual-rail code. In Section 5.1
we have seen that with other DI codes, e.g., with a 3-of-6 code, better information rates and
therefore a more frugal use of interconnect resources can be achieved.

Nevertheless, 4-phase dual-rail codes can offer extremely low overheads for encoding and
decoding, which reduces the complexity of the input and output ports. For encoding n data bits
and one parity bit only n + 1 inverters are needed. Decoding needs no gates at all. In general,
the input and output port implementations are very light-weight and scalable. As can be seen in
Tables 5.10a and 5.10b, the gate count of all components is either constant or increases linearly
with the numbers of inputs n. Based on the transistor counts for the specified gates, the final row
of the tables gives a formula to compute the total number of transistors for the output and inputs
ports, respectively. Note that we did not list the number of gates for building the required delay
elements, since this depends on the timing of a specific implementation. It is, however, safe to
say that delay lines will only contribute a small fraction to the overall area consumption.

122

Table 5.9: Area Requirements.

Block Gate Transistors/gate Gate count
Parity Generation XOR2 12 n− 1

Dual-rail Encoder INV 2 n+ 1

Output Register Asymm. CGATE2 10 2(n+ 1)

Handshake Control
CGATE2 12 1
INV 2 1

Total transistors: 34n+ 24

(a) Output Port.

Block Gate
Transistors Gate count

per gate Standard port MS-tolerant port

Input Register
D-Latch 18 2(n+ 1) N/A
CGATE23 18 N/A 2(n+ 1)
MUTEX 12 N/A n+ 1

Completion Detector
OR2 6 (n+ 1) + n (n+ 1) + n
AND2 6 n n
CGATE2 12 1 1

Error Detection I XOR2 12 n n

Error Detection II XOR2 12 N/A n

Error Correction
AND3 8 n+ 1 n+ 1
XOR2 12 n+ 1 n+ 1

Handshake Control
CGATE2 12 1 1
INV 2 1 1

Total transistors: 86n+ 88 110n+ 100

(b) Input Port – Standard vs. metastability-tolerant implementation.

In case of the input port, Table 5.10b also compares the standard and the metastability-
tolerant port versions. Note the different input register implementations and the additional error
detection circuit needed in case of the metastability-tolerant version. In terms of transistor count,
the area overhead of metastability-tolerant receiver is defined by aov(n) = 110n+100

86n+88 − 1. The
lower bound of this overhead can be obtained for n = 1 and has a value of aov(1) = 20.7%,
whereas the upper bound, as n approaches infinity, equals limn→∞aov(n) = 27.9%.

Even in comparison with a single-rail synchronous circuit implementation the overheads are
reasonable. Consider, e.g., the input and output registers. At first sight these seem to grow sig-
nificantly as twice the number of storage elements is required. Looking at the transistor count
per data bit, however, changes this impression. An asymmetric Muller C-element can be built of
10 transistors (based on Sutherland’s C-element implementation). This makes 20 transistors per
bit for the output register. In comparison, an edge-triggered master-slave D flip-flop requires ap-

3C-element with Schmitt-Trigger as presented in [88].

123

prox. 30 transistors, depending on the specific implementation. Even for the input register of the
metastability-tolerant version, which requires an additional mutex component per bit, the area
overhead with respect to a regular flip-flop is acceptable: The metastability-tolerant C-element
including a Schmitt-trigger needs 18 transistors [88], and the mutex component, consisting of
2 NAND gates and two inverters, needs 12 transistors. Thus, 2 · 18 + 12 = 48 transistors are
required for the input register per bit.

Of course, the proposed input port needs a completion detector and a second error detection
circuit, which are not required for a synchronous design. This price, however, seems acceptable
considering the gains provided by delay-insensitivity and tolerance against metastability. Note
that the gate counts given for the completion detection, the parity generation and the error de-
tection assume implementations with balanced trees of 2-input gates. In case of n inputs these
trees can be built of n− 1 gates.

5.3 Approach II: A Generic Sender/Receiver Implementation

In the previous section we have presented a link implementation specifically targeted at 4-phase
dual-rail circuits. In this section we want to propose an architecture that is completely generic
with respect to the type of handshake protocol (2-phase/4-phase) and the used delay-insensitive
and error detecting codes. We will discuss a general framework for implementing asynchronous
input and output ports where arbitrary encoder, decoder and completion detection units can be
instantiated, depending on the specific choice of the codes that shall be used. To be able to keep
this link architecture generic the implementation of the input and output ports had to be adapted.
Especially the input port has been subjected to a bigger redesign, as we will show below.

The assumptions made in the fault model of the previous approach are still in place, with
the following exceptions: 1) the new approach is not restricted to single transmission faults.
Depending on the strength of the selected error detecting code a specific implementation can be
derived that is also capable of mitigating multiple transient faults. 2) Due to the different mode
of operation the input port can no longer systematically deal with metastable upsets of the input
register caused by transient faults during the setup/hold window.

5.3.1 Output Port

The structure of the output port is similar to the port implementation of the previous approach (cf.
Figure 5.6). Again an ED encoder unit first augments a new data word arriving from the sender
with the required redundancy to enable error detection. Subsequently, the produced data word
is encoded with a DI code, resulting in a codeword ready to be transmitted. The control logic
and the output register have changed a little bit to support both 2-phase and 4-phase protocols.
The control logic now produces a clock pulse to trigger a flip-flop based output register, when
newly encoded data is ready to be transferred to the receiver across the interconnect signals. Two
conditions need to be satisfied before such a clock pulse is produced: a) New data needs to be
ready as indicated by the request signal from the sender module, b) the last transmitted codeword
needs to be acknowledged by the input port of the receiver. Since we are again using a bundled
data implementation, a delay element is inserted on the request signal and needs to be matched

124

to the maximal propagation time of the data path, i.e., the ED and DI encoders. This ensures
that a new codeword safely stabilises at the register input before the clock pulse is generated.
Figure 5.12 shows the schematic of this output port.

DI
Encoder

ED
Encoder

Data

Req

Ack

Output
Register

Delay

Data

Ack

n

Control

Sender InterconnectOutput Port

ntk

phase

Figure 5.12: Output Port.

5.3.2 Input Port

As said above, the generic input port works a bit differently than the port we presented for the
previous approach. Rather than using an input register that is transparent all the time until an
incoming transition is complete and correct, we use a flip-flop based input register that samples
data once the arriving DI codeword is complete. Error detection is then performed in a second
step. If the sampled data word is error-free, it can be propagated to the receiver module, other-
wise the incoming data word is sampled again and once more checked for errors. This process
is repeated until all transient faults have vanished and a correct data word is stored in the input
register. Clearly, this will eventually happen since we only assume transient faults in our fault
model. Note that in this approach only error detection is performed, error correction capabilities
of the used codes are not required. Therefore, the number of redundant bits can be reduced,
which optimises the use of interconnect resources. Furthermore, this approach streamlines the
size of the input port and positively affects the performance of fault-free transmissions.

As can be seen in Figure 5.13, the completion detector (CD) directly connects to the incom-
ing interconnect wires. In case of a 2-phase protocol every complete data word that arrives will
toggle the output of the CD unit between one and zero. In a 4-phase protocol the output of the
completion detector also changes between one and zero, but only rising transitions indicate the
availability of new data. Once a new data word is available, the control unit, connected to the
output of the completion detector, will issue a clock pulse, which latches the data word into the
input register. Note that the DI decoder is placed before the register. This allows for concurrent
operation with the completion detection and also reduces the size of the input register. After the
new data word has been stored, error detection can be performed. The control unit waits until
error detection is finished and then checks the error output of the ED decoder (see Figure 5.13).
If this signal is zero, a request transition is produced for the receiver and an acknowledge is re-
turned back to the sender’s output port. Otherwise, the control unit simply issues another clock
pulse and the data word is sampled again and the process repeats.

125

ktn

ReceiverInterconnect Input Port

DI
Decoder

CD

DataData

Error
Detection /
Decoding

Req

Data

Ack

error

t

ControlAck

clk
complete

Figure 5.13: Input Port.

5.3.3 Control Circuits

The control circuits we have implemented for the proposed link architecture are completely
independent from the employed delay-insensitive and error detecting codes. The controller for
the output port is depicted in Figure 5.14a. It can be used both for 4-phase and 2-phase protocols.
A C-gate simply waits for a new request from the sender module and an acknowledge from the
receiver. If both signals are equal, new data can be transmitted. The output of the C-gate then
makes a transition, either falling or rising – depending on the protocol phase. This transition
forks into two wire branches that are connected to the same 2-input XOR-gate. As one branch
is delayed, the inputs of the XOR-gate will be unequal for a short time and a 0 → 1 → 0 pulse
is produced at the output of the XOR-gate. This pulse clocks the data register of the output port
and a new data word/spacer word is issued. Concurrently the output transition of the C-gate is
returned to the sender as acknowledge signal.

The input port controllers are a little more intricate. This time, different circuits are needed
for 2-phase and 4-phase protocols. Let us first consider the 2-phase version (Figure 5.14b).
The left-hand side of the circuit is the same as the output port controller: A C-gate waits for
a transition on the signal from the completion detector and forwards it, if the receiver is ready
(see ack signal connected to the lower C-gate input). Due to XOR-gate X1 an up/down pulse is
produced, which is then propagated to the clock output. As explained in the previous section,
this clock pulse triggers the sampling of the input data, and thereby initiates error detection. If no
error was found, the transition of the completion detection needs to be forwarded to the request
output to notify the receiver. Furthermore, the acknowledge signal needs to be toggled to inform
the sender about the successful data reception. This task is performed by a flip-flop on the right-
hand side of the circuit. Note that this flip-flop is clocked by a delayed version of the initially
generated clock pulse (see delay D2 in Figure 5.14b). Since the flip-flop must only be enabled
when the error signal is zero, the rising clock transition needs to be delayed long enough so that
the error detection has completed and the error/enable signal is stable. Thus, delay element D2
needs to be matched to the data path of the input port (i.e., clock-to-output delay of the input
register plus propagation time of the error detector plus setup-time of the flip-flop).

In case a fault was detected (error = 1), the flip-flop will not change the request/acknowl-
edge signals. Instead the delayed clock pulse is re-used to issue another clock tick for sampling

126

C

Clk

D
e

la
y

Req

Ack

Ack

(a) Output Port

O1

C
X1

Delay

Delay

A1

Req

Ack

CD ErrorClk

En

D

Q

Qb Ack

phase

D1

D2

(b) Input Port (2-phase)

O1

C

Delay

Delay

A2

Req

Ack

CD ErrorClk

En

Clear

Q

Qb Ack

phase

A1

D1

D1

D2

(c) Input Port (4-phase)

Figure 5.14: Control Circuits.

the input data once again. Since the error signal is high, a feedback loop is established by AND-
gate A1. The clock pulse can propagate on the feedback signal and then re-appears on the clock
output. Clock pulses will be generated this way until the transient fault disappears. In theory
this could go on for an infinite number of cycles. In practice, however, the oscillation will even-
tually decay due to pulse broadening or shortening. Nevertheless, if the period of the oscillation
is chosen long enough (controlled by delay D2) and the pulse width is approximately half this
period, i.e., D1 = D2/2, the transient error will vanish long before the oscillation stops.

The 4-phase controller, which can be seen in Figure 5.14c, looks very similar. However,
there are some small modifications. In a 4-phase protocol a clock pulse only needs to be gener-
ated for the data phase. Since the communication with the receiver module is performed over a
bundled data interface, the spacer codeword does not need to be propagated. Therefore, a clock
pulse is only generated for rising output transitions of the C-gate. As before, the output of the
C-gate forks into two branches, but this time it is connected to an AND-gate (A1) instead of an
XOR-gate. Note that the delayed branch is inverted. It can be easily seen that rising transitions
will produce a pulse on the AND-gate output, whereas falling transitions will be masked.

However, a falling transition at the C-gate’s output during the reset phase has another effect.
As can be seen in Figure 5.14c, the output of the C-gate is connected to the active-low clear
input of the flip-flop, which controls the request/acknowledge signals. Thus, the flip-flop will
be immediately reset to zero, which completes the current handshake cycle. Since there is no
need to sample input data or perform error detection, the reset phase of the communication
cycle is significantly shorter than the data phase. This obviously increases the throughput of the
presented link implementation.

127

5.3.4 Evaluation

For evaluation of the link architecture presented above, we have implemented input and output
ports that again use dual-rail codes for delay-insensitive communication across the interconnect.
In case of a 4-phase protocol a 1-of-2 code is used once more, for the 2-phase protocol we
implemented the LEDR encoding scheme.

Regarding the ED codes, the ports either use a single parity bit or alternatively Hamming
codes for fault tolerance. From Section 5.1 we know that these two codes provide protection
against single and double transmission faults in 1-of-2 encoded data transmissions. Even though
we did not analyse 2-phase DI codes, we can easily derive that the same level of protection can
also be achieved with a 2-phase LEDR encoding. Note that LEDR is a dual-rail code, where
every dual-rail pair encodes exactly one data bit. In other words, the value of any LEDR rail
only relates to a single bit in the encoded data. Consequently, f faults in a LEDR-encoded
data word can cause at most f decode errors. The error detection capabilities of the used ED
code therefore directly determine the number of transmission faults that can be mitigated. Pair-
ing the selected DI and ED codes yields the following four combinations, for which we have
implemented respective input and output port components:

• 2-phase dual-rail (LEDR encoding) with single parity bit

• 2-phase dual-rail (LEDR encoding) with Hamming code

• 4-phase dual-rail (1-of-2 code) with single parity bit

• 4-phase dual-rail (1-of-2 code) with Hamming code

After modelling all four link versions in VHDL, we performed logic synthesis and mapped
the circuits to a 90 nm standard cell library. A timing simulation of the synthesised netlist for 2-
phase ports with Hamming code protection can be seen in Figure 5.15. The simulation waveform
shows two transmissions. In the first one no faults interfere during the communication. A single
clock pulse is generated and the incoming data word is forwarded to the receiver. Note that
the short pulse on the error signal is just a glitch that occurs while the error detection circuit
performs its computations. During the second transmission we have injected a double fault on
the interconnect signal (two transitions in the red circle marked with the flash symbol). As can
be seen, the error signal is raised after the input data are latched for the first time. Thus, instead
of a request for the sender, a second clock pulse is generated. Since the faults have vanished at
this point in time, the error signal is reset to zero and the transmission can be completed.

Table 5.10 shows area and performance characteristics. As can be seen, we have bench-
marked different data widths for the first two port designs. Regarding the area complexity the
table nicely shows that the circuits scale linearly with increasing number of data bits. The coding
efficiency, i.e., the ratio of transmitted data bits to required interconnect wires, is shown in the
last column. Since we are using dual-rail codes, the efficiency can of course never be above 0.5.

The performance results are derived from simulations, where we assumed ideal conditions to
attain the maximum throughput and minimum latencies. Thus, we did not introduce additional
delays on the interconnect signals and used simulation models for ideal sender and receiver com-
ponents that produce and consume handshake requests in zero time. Latency values denote the

128

SenderInterface

0000 002A 002B

Channel

0000000000... 101010101010101010101... 1... ...1111000000... ... 0000000000...

InputPort

ReceiverInterface

0000 002A C02B 002B

Request

Data 0000 002A 002B

Interconnect 0000000000... 101010101010101010101... 1... ...1111000000... ... 0000000000...

Clk

Error

Request

Data 0000 002A C02B 002B

Figure 5.15: Simulation of two transmissions, the first without and the second with a fault.

Table 5.10: Performance & Area Evaluation.

Protocol/ED Code Data Width Throughput Latency (ns) Area Coding
(bit) (MHz) no fault fault (µm2) Efficiency

2-phase/Single Parity
16 855 1.27 1.78 1767 0.47
32 789 1.43 2.02 3278 0.48
64 723 1.57 2.23 6523 0.49

4-phase/Single Parity
16 559 1.37 1.92 1642 0.47
32 524 1.50 2.11 3132 0.48
64 467 1.73 2.41 6206 0.49

2-phase/Hamming 16 766 1.42 2.08 2340 0.38
4-phase/Hamming 16 513 1.54 2.21 2262 0.38

time it takes for a request transition of the sender to propagate across the I/O ports to the receiver.
We have measured latencies both for fault-free and faulty transmissions. In the latter case we
only injected faults that vanish before the second sample is taken by the receiver. As can be seen
in Table 5.10, the 2-phase links significantly outperform their 4-phase counterparts regarding
throughput and latency. This is possible because of the non-existing reset phase. Hence, 2-phase
protocols clearly are the better choice for asynchronous communication channels.

5.4 Related Work

In contrast to fault tolerance in GALS modules, which has so far not been addressed by other
researchers, there is a good body of existing methods for robust or fault-tolerant asynchronous
data transmissions. In this section we want to give a brief presentation of these techniques, with
focus on fault tolerance in delay-insensitive communication schemes.

Cheng & Ho

The first paper that addressed transient and permanent faults in 4-phase DI codes has been pre-
sented by Cheng and Ho [16]. During the data transmission phase, an error correction mech-

129

anism is proposed to retrieve the originally sent codeword from a faulty or incomplete input
word. In the reset phase a bounded delay approach is assumed since permanent faults might
hinder interconnect wires to be reset to zero. If the reset phase does not complete after a certain
delay, the receiver still resets the acknowledge signal to finish the handshake cycle. Due to the
required delay assumption the authors speak of semi-delay-insensitive data communication.

Cheng and Ho distinguish three fault models, depending on what type of transmission faults
can occur: In two models only asymmetric (unidirectional) faults are assumed, either 1→ 0, or
0→ 1 faults, whereas the third model describes the general case, where faulty signal transitions
can have any polarity. Based on these fault models, the authors then discuss the necessary error
correction capabilities for t transmission faults during the data phase. If, e.g., only 1 → 0
faults are assumed, t ones might be missing from the data word (and will never appear in case
of permanent faults). Cheng and Ho therefore propose a receiver whose completion detector
prematurely triggers when n− t ones are received, and then employs a t-error correcting code to
identify the missing bit positions. In the second fault model, which restricts the channel to 0→ 1
faults, t spurious rising transitions could replace t correct transitions, leading to the sampling of
a codeword with a maximum of 2t erroneous bits. Consequently, the use of a 2t-error correction
code is required. Finally, when arbitrary transmissions faults are allowed, up to 3t bits can be
erroneous in a codeword. On one hand, the premature processing after the reception of n − t
ones, due to possible 1 → 0 faults, contributes to t erroneous bits. On the other hand, it is
possible that of these n − t ones, t ones are actually the result of 0 → 1 transmission faults.
As argued above, this could lead to additional 2t two erroneous bit positions in the sampled
incomplete codeword. Therefore, a 3t-error correction code is mandatory in the general case.

The significant overhead of this solution motivated us to constrain our own research to the
mitigation of transient faults. This greatly simplifies the problem since the receiver then can wait
until all faults have vanished before the new input data is processed. Consequently, only error
detection capabilities are needed instead of the more costly support for error correction.

Ogg, Al-Hashimi & Yakovlev

In [82] a delay-insensitive link for NoC systems is proposed, which is targeted to be resilient
against transient faults. The approach transmits a series of data symbols, one symbol per bit,
together with a reference symbol. Since both the reference symbol and the data symbols are
transmitted over two rails, 2(n + 1) interconnect wires are needed to transmit n bits. The
encoding of these symbols is illustrated in Figure 5.16a. The reference symbol changes its
value in a circle with a predefined sequence of 00 → 01 → 11 → 10 and then starts over
with the first value. The data symbols can follow the steps of the reference symbol or make
a step in the opposite direction. If a data symbol assumes the same value as the reference, it
is said to be in-phase and thereby encodes a zero bit. If it assumes a value opposite to the
reference symbol’s position on the circle, the data symbol is 180◦ out of phase. This encodes a
bit value of one. Note that for every move in the coding circle only one rail has to changed. This
scheme therefore forms a 2-phase delay-insensitive code, like LEDR, and the receiver can easily
perform completion detection by waiting on a single signal transition for every data symbol and
the reference symbol. Figure 5.16a shows five fault-free data transmissions. The transmitted
bit value of the data symbol is shown at the bottom row. In the final transmission the reference

130

symbol switches first, whereas the value change of the data symbol is delayed. During this time
the receiver sees a 90◦ out of phase relationship between the data and reference.

00

11

01 10

00

11

01 10

00 01 11 10

00 01 00 01

0 0 1 1

0° 0° 180° 180°

Ref. Symbol

Data Symbol

90°

X

00

00

0°

0

(a) Fault-free transmission (cf. [82]).

00 01

00 10

0 0

0° 90° 0° 0°

Ref. Symbol

Data Symbol 0100

X 0

00

X

90°

(b) Potential decode error.

Figure 5.16: DI data transmission with reference symbol for completion detection.

The fact that such 90◦ phase relationship can also occur when a single fault affects one rail
is the foundation for the scheme’s resilience against transients. This can be seen in the left grey
area in Figure 5.16b, where a faulty one appears on the first rail of the data symbol. In this case
the receiver notices the 90◦ phase relationship, and waits for the transient fault to vanish. This
scheme, however, is not bulletproof. Although Ogg, Al-Hashimi & Yakovlev analyse that the
receiver is prone to metastability when a faulty signal transition affects the setup/hold window
of the input flip-flops, they do not discuss possible scenarios, where a fault can cause a symbol
to have a proper 0◦ or 180◦ phase relationship, but still encodes an incorrect value. This case
is illustrated in the second grey area in Figure 5.16b. The reference symbol changes to the new
value 01 and before the correct rail of the data symbol makes a transition a fault affects the other
rail. This leads to a correct phase relationship of 0◦, however, a wrong value is decoded.

Agyekum & Nowick

In [3, 4] Zero-Sum codes are introduced, which can be used both as delay-insensitive and error-
correcting codes. To achieve delay-insensitivity Zero-Sum codes are employed in 4-phase hand-
shakes and work in a similar fashion like Berger codes, where check bits encode the number of
zeros of the data word. Zero-Sum codes are systematic and codewords therefore consist of a
data and a check field. The special trait of a Zero-Sum code is the use of indices, assigned for
every bit position, both in the data and in the check field. This can be seen in Table 5.11, which
shows the code for 3-bit wide data words. The check bit indices are assigned powers of two in
increasing order, starting with one for the right-most check bit. Likewise data bit indices are
given increasing values, which are not powers of two, starting from three for the right-most data
bit. The value of the check field in a codeword then is set to the sum of index values, where bits
of the data field are zero. Consider, e.g., the data word 010 in Table 5.11, which has two zeros
at bit positions with the index 3 and 6. Consequently the check field value equals the binary
representation of the number 3 + 6 = 9.

131

Table 5.11: 3-bit Zero-Sum code.

Data field Check field
Indices 6 5 3 8 4 2 1

Codewords

0 0 0 1 1 1 0
0 0 1 1 0 1 1
0 1 0 1 0 0 1
1 0 0 1 0 0 0
0 1 1 0 1 1 0
1 0 1 0 1 0 1
1 1 0 0 0 1 1
1 1 1 0 0 0 0

In [3] Agyekum & Nowick prove that Zero-Sum codes are unordered and can therefore
be used for delay-insensitive communication. Furthermore, they show that the code is able to
correct single-bit errors and can detect all double-bit errors. Error correction is based on the
computation of a syndrome, like in Hamming codes. This syndrome simply is the absolute dif-
ference of the check field C ′, recomputed by the receiver, and the check field C, which was
appended by the sender: S = |C ′ − C|. In case of a fault-free transmission the syndrome obvi-
ously is zero. If a single-bit flip occurred, the syndrome value equals the index of the erroneous
bit position, due to the construction of the code. This allows for simple error correction.

However, we did a careful analysis of the error correction mechanism in the context of delay-
insensitive data transmission and uncovered that a single fault still can trick the receiver into
decoding erroneous codewords. Like in our example for m-of-n codes in Section 5.1.1, a single
faulty signal transition can turn an intermediate transmission pattern into a complete codeword,
which is different from the sender’s codeword. Let us consider the codewords a = 001 1011
and b = 010 1001 of the 3-bit Zero-Sum presented in Table 5.11. Suppose the interconnect
wires have been reset with the spacer codeword, and the sender wants to transmit a. Since no
assumptions about the wire delays are made in a DI scheme, rising transitions may appear in any
order. Table 5.12 shows a sequence, where a fault on bit d1 turns the incomplete codeword a into
the complete codeword b. If this state persists long enough, the receiver’s completion detector
will fire and codeword b will be processed and acknowledged instead of a.

Table 5.12: Transmission fault on bit d1.

Transmission Data field Check field
Description

Pattern d2 d1 d0 c3 c2 c1 c0

1 0 0 0 0 0 0 0 Spacer codeword
2 0 0 0 1 0 0 1 Correct signal transitions on fast wires
3 0 1∗ 0 1 0 0 1 Faulty signal transition on d1

4 0 1 1 1 0 1 1 Correct signal transitions on slow wires

In Section 5.1.3 we stipulated that the number of non-overlapping bit positions between any
two codewords of a fault-tolerant DI code C needs to be greater than the number of faults f ,

132

which should be mitigated: u(x, y) > f and u(y, x) > f, ∀x, y ∈ C. In case of the codewords
a and b, it can be seen that u(b, a) = 1, and therefore a single fault is already critical.

In [4] Agyekum & Nowick extend their previous work and present new codes called Zero-
Sum+ and Zero-Sum∗, which have improved error correction/detection capabilities. Neverthe-
less, these codes still suffer from the same deficiency as presented above, and cannot guarantee
error-free DI communication in the presence of single transmission faults.

Zhang et al.

An interesting solution to build QDI interconnects that are resilient against transient faults was
proposed in [126]. The presented scheme is called Delay-insensitive Redundant Check code
(DIRC) and can be applied to 1-of-n codes. In contrast to our approach the sender does not
add check bits to the single-rail data word, but computes a checksum over a group of delay-
insensitive codewords, before they are transmitted over an unreliable interconnect. Such a group
consists of two or more 1-of-n codewords, x0, x1, . . . , xCN−1, CN ≥ 2, and the check word c
is provided by an additional 1-of-n codeword, which simply is the sum of all codewords xi in
the group:

c =
CN−1∑
i=0

xi. (5.2)

To compute this checksum Zhang et al. define some basic arithmetic rules for 1-of-n code-
words. Formally, a codeword is denoted as Dn(i), where n equals the codeword length, and the
parameter i, 0 ≤ i < n, identifies which bit is set to one (i = 0 denotes the right-most bit in
the codeword, and i = n − 1 the left-most bit). In a 1-of-4 code the codeword 0010, e.g., is
represented by D4(1). Based on this notation the arithmetical rules are formulated as follows:

Dn(a) = Dn(a mod n) (5.3)

−Dn(a) = Dn(−a) = Dn(−a mod n) = Dn(n− a) (5.4)

Dn(a) +Dn(b) = Dn((a+ b) mod n) (5.5)

Example 5.1. Assume a group consists of the two codewordsD4(1) = 0010 andD4(3) = 1000
(CN = 2). Then the check word equals D4(1) +D4(3) = D4(0) = 0001.

Faults can turn a correct 1-of-n codeword into an erroneous m-of-n word, with m > 1. To
perform error correction at the receiver it is therefore necessary to define the above arithmetic
rules also for the general case where multiple bits are one in a codeword. The index vector
Am = (a0, a1, . . . am−1) is used to identify the bits that are set to one, and an m-of-n codeword
can consequently be represented as Dn(Am) = Dn(a0, a1, . . . am−1). m-of-n codewords can
also be understood as the union of 1-of-n codewords:

133

Dn(Am) = Dn(a0, a1, . . . am−1) =

m−1⋃
i=0

Dn(ai) (5.6)

The basic arithmetic rules for 1-of-n codewords can therefore be extended as follows:

−Dn(Am) = −
m−1⋃
i=0

Dn(ai) =
m−1⋃
i=0

[−Dn(ai)] =
m−1⋃
i=0

Dn(−ai) (5.7)

Dn(Am) +Dn(Bm′
) =

m−1⋃
i=0

Dn(ai) +
m′−1⋃
j=0

Dn(bj) =
m−1⋃
i=0

m′−1⋃
j=0

Dn(ai + bj) (5.8)

For the error correction process, the receiver can recompute the value of all transmitted
codewords xi from the other codewords of the group, xj , 0 ≤ j < CN, j 6= i, and received
check word c. These recovered versions of the codewords are denoted x′i:

x′i = c−
CN−1∑
j=0,j 6=i

xj (5.9)

If there was no fault, the received codeword xi and the recomputed x′i will be identical. On
the other hand, if a fault is located in xi, only x′i will provide the correct value of the codeword.
In case a fault occurred in some other codeword or in the check word, clearly the recomputed x′i
will be erroneous, but then in turn the received xi will be correct. In other words, a fault either
affects xi or x′i, but never both. Therefore, error-free codewords x′′i can be easily generated at
the receiver by applying a bitwise C-element operation on xi and x′i. This allows correct signal
transitions to propagate, whereas faults will be filtered. A DIRC code is able to mitigate all
single transient faults and all kinds of multiple transients, as long as they are confined to a single
codeword xi or only occur in the check word.

Example 5.2. Consider the two codewords x0 = 0010 = D4(1) and x1 = 1000 = D4(3).
Hence, the check word c equals D4(1) + D4(3) = D4(0). Due to a transient fault, x0 is
transformed into 1010 = D4(3, 1). Based on this input the receiver computes x′0 and x′1:

x′0 = c− x1 = D4(0)−D4(3) = D4(1) = 0010

x′1 = c− x0 = D4(0)−D4(3, 1) = D4(3, 1) = 1010

Finally the correct codewords can be recovered (“�” is a bitwise C-element operation):

x′′0 = x0 � x′0 = 1010� 0010 = 0010

x′′1 = x1 � x′1 = 1000� 1010 = 1000

134

While the concept of DIRC codes is very elegant since error correction is directly performed
on delay-insensitive codewords, the overall coding efficiency is rather low. In the paper Zhang et
al. present and analyse circuit implementations using 1-of-2 and 1-of-4 codes and group size CN
of 2. For this specific scenario the coding efficiency is 0.33, i.e., for transmitting 4 bits of data
there are 12 wires required. Coding efficiency can be improved with larger codeword groups,
i.e., when CN > 2. This, however, increases the complexity of encoder and decoder circuits
due to the higher number of adders required for computing sums of 1-of-n codewords.

Pontes, Calazans & Vivet

Another interesting approach, presented in [89] by Pontes, Calazans & Vivet, uses temporal
redundancy to mitigate single event effects in delay-insensitive links. Hence, the authors speak
of a Temporally Redundant Delay Insensitive Code (TRDIC). The technique adapts 1-of-n codes,
which have little resilience as a single transient fault is enough to generate a complete codeword,
by transforming them into 2-of-(n+1) codes. The sender, which would originally send 1-of-n
codewords, combines the current 1-of-n codeword and the one previously sent into a 2-of-(n+1)
codeword, which is then transmitted to the receiver. This can simply be done with a bitwise OR-
operation between the current and the previous codeword. The extra bit to produce a codeword
of length n+ 1 is used to indicate if the current and previously sent codeword are identical.

Example 5.3. Let us consider a 1-of-4 code. Assume that the current and the previously sent
codeword are di = 0100 and di−1 = 0001, respectively. The output of the TRDIC encoder then
is 0 & (0100 ∨ 0001) = 00101, where “&” denotes concatenation of two bit strings. In case
di = di−1 = 0100, the resulting 2-of-5 codeword is 1 & 0100 = 10100.

With this encoding scheme, in fact, two 1-of-n codewords are transferred per transmission,
and every codeword is transferred twice in successive transmissions. This way the receiver can
buffer a codeword upon the first transmission and compare it with the replay version in the
subsequent transmission. Figure 5.17 shows TRDIC encoder and decoder circuits.

Join

Reg Reg Reg

Fork

TRDIC
Encoder

data[n]

d
a

ta
[n

−
1

]

data[n−1]

data[n]

encoded[n]

(a) Encoder.

Join

Reg Reg Reg

TRDIC
Decoder

data[n]

e
x
p
e
c
te

d
[n

]

decoded[n]

expected[n+1]

(b) Decoder.

Figure 5.17: Encoder and decoder circuits for TRDIC links.

In the failure model assumed by Pontes et al. the receiver only needs to decode codewords,
where all correct ones are available and faults only lead to additional erroneous ones. Conse-

135

quently, decode errors can easily be filtered with a bitwise double checking approach between
consecutive versions of the same codeword using C-elements. When faults only lead to code-
words with superfluous ones, this is a much more benign scenario compared to the general case
considered in our work, where the receiver also has to deal with incorrect input data, encoded
by correct m-of-n codewords. In [89] these two situations are named Invalid Corrupted Data
(ICD) and Valid Corrupted Data (VCD) errors, respectively.

To enforce that only ICD errors can occur a timing assumption is necessary, which limits
the maximum skew between the slowest and the fastest rail of the 2-of-(n+1) codewords. If this
skew is smaller than the processing time of the incoming codeword, then it can be guaranteed
that all valid input transitions have been sampled. A detailed analysis how faults impact data
transmissions with m-of-n codes and a reliability evaluation of the proposed TRDIC scheme
can be found in [89]. Even though the number of decode errors is reduced significantly, the
authors point out that the used double checking is not capable to mitigate ICD errors in all cases.
Resilience could, however, be further improved by a more elaborate three stage decoding.

Another approach by Pontes, Calazans & Vivet, published in [90], employs information
redundancy instead of temporal redundancy. The presented solution is targeted for fault-tolerant
DI communication in asynchronous Networks on Chip (NoCs), where data is transmitted in
packets built from a certain number of flits. The data transferred in each flit is encoded with
a series of m-of-n codewords, which are then organised in a flit matrix, each row being one
codeword. To introduce redundancy parity check bits are then computed, one bit for each column
of the flit matrix. The values of the check bits are simply assigned the modulo-2 sum of all bits
of the respective column, like in a regular parity code. Finally the check bits are encoded with
m-of-n codewords and transmitted over the NoC links together with the regular data words.

At the receiver the incoming codewords are again arranged in matrix form. An ICD error
can then be easily identified as a row in the matrix that contains more than m ones, i.e., a row
with invalid m-of-n codeword. The receiver then recomputes the parity bits for each column and
compares them with the transmitted parity information. A mismatch between recomputed and
transmitted parity bit clearly indicates an erroneous one in the respective column. Combining
the information of column and row errors, the erroneous bit in the flit matrix can be located and
corrected. In contrast for VCD errors the matrix does not contain rows with invalid codewords.
However, if ones appear in wrong positions and are missing in others, multiple columns will have
parity mismatches. Since bit errors in such a scenario can only be detected but not corrected, it
is proposed that the receiver requests a retransmission to resolve the situation.

Shi et al.

The SpinNNaker system is a massively parallel computation platform, where processor nodes
use delay-insensitive codes for on-chip and off-chip communication. In [99] methods for fault-
tolerant inter-chip communication are proposed. In contrast to all approaches we have discussed
above, the goal is not to protect the integrity of the transmitted data but the integrity of the com-
munication protocol. The purpose of all fault tolerance extensions introduced in the sender and
receiver components is to avoid deadlocks, which would crash a communication link. Detecting
and correcting errors in the transferred data stream needs to be performed by other mechanisms.

136

CHAPTER 6
Summary & Conclusion

In this thesis we proposed and evaluated fault tolerance techniques in the context of GALS
circuits. Our main target was to improve resilience against soft errors, which are currently the
main contributor to failures of integrated circuits.

In the first part of the thesis we explored the use of modular redundancy to provide reliable
computation in locally synchronous modules, the core building blocks in a GALS system. These
modules are characterised by a great degree of independence and can be considered as separate
design units, both with respect to timing as well as physical implementation. The principal aim
of the fault tolerance techniques we introduced in this thesis was to preserve this independence
as much as possible. Therefore, we proposed two modular redundant circuit architectures where
critical modules are replicated as independent, self-sufficient GALS modules. Consequently,
module copies in this architecture have their own stoppable clock generator and clock distri-
bution network, which has far-reaching implications for the implementation of voting and state
restoration mechanisms. Since the replicated circuits do not share a single clock domain, voters
can no longer be part of the regular data path. In our first attempt to design a suitable recovery
circuitry voters are therefore shifted to separate feedback paths, which are only activated for cer-
tain checkpoints to overwrite possibly erroneous values in flip-flops. During these checkpoints
asynchronous recovery controllers, which can turn on and off the clock generators, are used to
synchronize module copies. This mechanism allows state restoration to be safely performed for
otherwise independently clocked GALS-modules. Since all flip-flops are recovered in parallel
during a single clock cycle, we used the name parallel approach throughout the thesis.

Even though this solution has several benefits like a single-cycle recovery latency, light-
weight recovery controllers, no single points of failures, etc., the parallel voting scheme requires
many interconnect wires that run between replicated circuit parts. This imposes a tight coupling
of the modules and the physical implementation, i.e., place & route has to be performed like
for a single circuit block. To reach our ultimate goal of real physical independence for module
replicas, we consequently looked into an alternative approach to conduct state restoration.

The second solution presented in this thesis uses a serial recovery process, which is based
on scan chains to gain read/write access to the internal module registers. Although this scheme

137

results in significantly longer recovery latencies, the technique offers some compelling benefits
in comparison to the previous method and conventional modular redundant circuits. In partic-
ular, we want to highlight the non-intrusiveness of this approach, which allows for simple and
seamless reuse of existing non-redundant circuit implementations. Recall that no internal voters
or other recovery-related components need to be added to the original circuit. The only pre-
requisite is the availability of an adequate scan chain or multiple scan chains, which include all
relevant internal flip-flops. The circuit can then be replicated at module level without a single
modification, either based on the RTL code, a synthesised netlist or even a fully-placed macro
cell. The only required extension are separate recovery controllers, which need to be connected
to the scan chain signals and can then take full responsibility for the execution of the recovery
process. State exchange during recovery is performed over asynchronous links, like it is the case
for the regular data ports of the module. With this architecture replicated modules can finally be
viewed like ordinary GALS modules, which are locally clocked and communicate with all other
modules, including the functionally equivalent replicas, over dedicated asynchronous channels.
Replicated circuits can therefore be placed with great flexibility, e.g., in different parts of the die,
supplied by independent power and ground rails, on different chips or in extreme cases even on
different boards. This kind of flexibility can usually only be provided, if hardware redundancy
is introduced at system level, where recovery schemes to deal with failed components rely on
specialised protocols like TTP (time-triggered protocol, [55]). In contrast, our solution provides
hardware fault tolerance at gate level and is therefore completely transparent to the designer at
register transfer level and above.

In the second part of the thesis we addressed fault-tolerant communication across asyn-
chronous delay-insensitive channels. Mitigation of faults in this scenario can be quite tricky and
many existing solutions fail to provide full resilience even for single faults (while maintaining
full delay-insensitivity). To approach this problem we first pursued a thorough theoretical anal-
ysis of the susceptibility of delay-insensitive codes to transmission faults. The main premise of
this analysis was to find the number of decode errors that could occur for a certain number of
faults. Based on these results we then proposed to associate delay-insensitive codes with classi-
cal error detecting codes, which provide the required redundancy to identify decode errors. The
use of delay-insensitive and error detecting codes often introduces high overheads for commu-
nication links and combining them can be prohibitively expensive for real circuit applications.
Consequently, it was essential to find delay-insensitive codes that can already offer a good re-
silience against faults so additional overheads can be kept at a minimum. It was very interesting
to see that this is the case for various m-of-n codes, whereas Berger codes have very little re-
silience. For encoding four data bits, e.g., either a 3-of-6 code or a Berger code with a 4-bit data
field could be used. While a single transmission fault in case of a 3-of-6 code can only cause
two decode errors in the worst case, the use of a Berger code can result in three or even four
decode errors. A 3-of-6 code can therefore be combined with a regular Hamming code, which
results in a reasonable information rate (especially for higher bit widths).

Based on this theoretical analysis, we have developed encoder and decoder components,
which can be used as I/O ports in GALS-based circuit architectures. The components are specif-
ically designed for the mitigation of transient faults, and therefore rely on the knowledge that
a detected fault will vanish after a short time. The reception of new input data is blocked until

138

both completeness and correctness have been established. Consequently, the end-to-end com-
munication latency can vary in the presence of transient faults. This, however, is not an issue for
a system with delay-insensitive channels, which do not impose any timing constraints.

Like in the first part of the thesis, we have again presented two different solutions, one that is
specifically targeted for 4-phase dual-rail codes, and a generic link architecture. While the out-
put port implementations of both approaches are almost identical, the receiver-side components
follow a slightly different methodology. In the first solution input words are only sampled once
and potential decode errors need to be corrected with the help of the combined redundancy of the
used 1-of-2 code and the parity-protection of the transmitted data word. Since a single transmis-
sion fault in case of a dual-rail code can only lead to a single-bit decode error, the combination
of dual-rail and parity code provides enough redundancy to restore the correct data word. In case
of more complex DI codes, however, we have shown that two or more decode errors can occur
even for single transmission faults. Since correction of multiple errors requires much stronger
and more expensive codes, we followed an alternative strategy for the second link architecture.
Here error correcting is achieved by re-sampling the input word until the transient fault has van-
ished on the communication channel. Therefore, the used codes only need to provide enough
redundancy to detect all possible decode errors instead of having the capability to correct them.
This results in better information rates and more efficient I/O port implementations.

139

CHAPTER 7
Future Work

As it is the case for many research projects, at the end there are often interesting questions
remaining, which could not be fully addressed in the given time. The same thing can be said
about this PhD thesis as we have gained many new insights and ideas from the results gathered
and lessons learnt during the engagement with the topic. In this section we therefore want to give
some pointers about possible future research directions, which might be worthwhile to explore.

7.1 Mesochronous Modular Redundant Systems

Stoppable clock generators provide an elegant solution to data synchronization problems. How-
ever, the design of robust ring oscillators with low jitter also constitutes a major challenge for
practical circuit implementations [109]. Therefore, it might be interesting to apply the repli-
cation and recovery strategies, as presented in this thesis, to other types of GALS systems,
which do not rely on on-chip stoppable clock generators. Consider when clock frequencies of
GALS modules are not chosen arbitrarily but are related in some way. We already mentioned
mesochronous systems in Section 3.2.2, where separate components are clocked with the ex-
act same frequency and only the phase offset is unknown. Another example are ratiochronous
systems with rationally related clocks, or plesiochronous systems, where clock frequencies are
nearly the same, except for a small mismatch, leading to a slightly varying, non-constant phase
relationship. In these cases other synchronization mechanisms can be employed instead of stop-
pable clocks, as pointed out in [109].

Nevertheless, stopping the clock to freeze the system state during an ongoing recovery pro-
cess is a vital requirement for our fault tolerance approach. We therefore propose the use of clock
gating to attain the same capability. Figure 7.1 shows a slightly modified solution of our TMR-
based GALS architecture. As can be seen, all three replicas are clocked by independent external
oscillators, which have the same frequency. Assuming that the phase of the clock signals is
unknown, the three replicated units form a mesochronous system. Communication between the
recovery controllers during a recovery therefore needs to be synchronized. Fortunately, this can

141

be efficiently done with self-timed FIFOs that compensate for the phase offsets and then com-
munication is possible at full speed every clock cycle (see [37, 109]). Clock gating is simply
performed with an AND-gate, which is disabled and enabled by the recovery controller. This
can be safely done since the recovery controller is part of the same local clock domain and is
therefore able to operate the clock gate synchronously with the clock signal.

Recovery Controller

SE

Module1

Copy I

SOSI

in

out

in

Recovery Controller

SE

Module1

Copy II

SOSI

in

out

in

Synchronizer

Synchronizer

Recovery Controller

SE

Module1

Copy III

SOSI

in

out

in

fclk

Synchronizer

Synchronizer

Synchronizer

Synchronizer

fclkfclk

Figure 7.1: Mesochronous replicated GALS modules.

This solution does not sacrifice any of the benefits of the approach presented in this thesis,
e.g., minimal physical dependencies between replicated components, and the implementation of
the recovery controllers as well as all the general considerations for the recovery process remain
the same. With a standard clock gating mechanism instead of on-chip ring oscillators, however,
this system architecture might be more readily adopted in industrial projects.

7.2 Reconfigurable GALS Architectures

Permanent defects have only been briefly addressed in this thesis. For long-term missions where
maintenance is not possible or very expensive, techniques to deal with defects are mandatory.
Research in reconfigurable GALS architectures might be a promising follow up project to this
thesis to incorporate resilience against permanent faults. Existing FPGA architectures based
on GALS, presented in [48, 49, 95], could be a good starting point for this undertaking. These
FPGAs are built from a regular array of locally synchronous islands, which are reconfigurable
like in conventional FPGAs, and a globally asynchronous interconnect architecture. We propose
to extend such an FPGA architecture with built-in self test and dynamic reconfiguration mech-
anisms to allow for online reorganisation of islands in case of permanent defects. If a defective
island is detected, its configuration can be transferred to a spare island and input and output
signals need to be rerouted. We believe this rerouting is significantly simplified in an asyn-
chronous interconnect architecture, where the proper circuit function does not depend of strict
timing constraints like in conventional synchronous FPGAs. The crucial question that needs to
be investigated is the size of reconfigurable modules and the granularity of reconfiguration in
case of permanent defects. To avoid high reconfiguration overheads, it might be necessary to

142

try local intra-module reorganisations to bypass the fault, before an entire module is relocated.
Various approaches to perform, e.g., column- or tile-based reconfiguration have been presented
in [1, 7, 43, 57]. Only when local countermeasures fail, spare modules are activated. Another
effective recovery mechanism could be configuration swapping between two GALS modules
with subsequent reconfiguration of the associated interconnect resources. If the defective logic
block is used in a different way or not used at all by the swapped configuration, a permanent
fault would become dormant and thus would not affect the circuit’s functionality.

7.3 Recovery of Memory Cells

In this thesis we have presented two approaches to recover the state of a GALS module stored in
registers. However, such modules can also contain memory blocks, e.g., SRAMs, which retain
state information. Usually ECC memories are used to protect stored data words from single- or
double-bit errors. This is a very powerful solution, but it can, of course, only mitigate corruptions
that occur during data retention. If data words are already incorrect when they are written to the
memory, encoding with an error correcting code is not effective.

To address this issue we propose to distinguish between replicated and non-replicated mem-
ory architectures, as can be seen in Figure 7.2. In the latter case, which might be employed
for bigger memories, where replication might be too costly, there is only one common ECC-
protected memory unit. Voting then needs to be performed for every write access to mask erro-
neous data words, in case a replicated module was corrupted by a soft error. If ECC-protection
is applied before voting, ECC encoders and the voter do not even constitute a single point of
failure: A transient fault in one of the ECC encoders will be masked by the voter, and a fault in
the voter unit can be recovered due to the redundancy introduced by the error correcting code1.

ECC
Encoder

Module1

Copy I

ECC
Encoder

ECC
Encoder

Module1

Copy II

Module1

Copy III

Voter

Memory

(a) Non-replicated, with ECC and voting.

Module1

Copy I

Memory

Module1

Copy II

Memory

Module1

Copy III

Memory

(b) Replicated, with recovery links.

Figure 7.2: Memory architectures for replicated GALS modules.

However, voting on output data requires synchronization between replicated modules (see
Section 4.4.3), and therefore introduces a performance penalty. For smaller local memory

1Obviously, we assume that at most one of the system components is faulty per write operation.

143

blocks, like fast caches, this penalty might not be acceptable. Thus, a replicated memory ar-
chitecture could be preferable, where memory blocks are fully replicated as part of the GALS
module and read/write operations are only performed locally (see Figure 7.2b). Without voting,
however, erroneous computation results can be written into these memories. The recovery pro-
cess, which is applied to restore erroneous values in registers, therefore needs to be extended to
include data words stored in memory blocks. The essential question that remains to be answered
is how such a recovery can be performed efficiently. A simple idea to reduce data transfers dur-
ing recovery is to only include data words that have actually been written since the last recovery.
This information can be maintained with dirty bits, like they are used in caches.

7.4 Robust 2-phase Delay-Insensitive Codes

In this thesis we have mainly investigated fault-tolerant data transmissions with 4-phase delay-
insensitive codes. For communication links, however, 2-phase protocols are often used because
of their superior throughput and power-efficiency. It would therefore be interesting to extend our
results and methodologies for DI NRZ codes, like those presented in [14, 70].

7.5 Comprehensive Evaluation of Robust DI Channels

In Section 5.1 we have analysed the resilience of various m-of-n codes and Berger codes against
faults and determined required error detection capabilities to mitigate decode errors. The link
implementations, introduced in Sections 5.2 and 5.3, however, only focused on dual-rail codes.
While these codes offer a decent coding efficiency and moderate complexity for encoder, de-
coder and completion detection circuits, other DI codes like 3-of-6, 2-of-7 or Berger codes can
still provide better solutions in terms of coding or power efficiency. Therefore, it would be
worthwhile to perform a comprehensive study of link implementations using the full variety of
analysed codes. Evaluation criteria should be information rates, circuit area of input and output
ports, data throughput and also power efficiency, which was not addressed at all in this thesis.

In the analysis of m-of-n codes performed in this thesis we have tried to find encoding
functions that would minimise the required redundancy of a complementary ED code to perform
error detection. The choice of this encoding function, however, also influences the complexity
of encoder, decoder and completion detection circuits. In [9], e.g., Bainbridge et al. discuss how
to find suitable data-to-DI code mappings to reduce hardware overheads. Based on these results
further research work could be done to find encoding functions that are efficient both in terms of
code redundancy and in terms of the required hardware resources for DI circuit components.

144

APPENDIX A
Additional Resources

A.1 Scripts for Fault-Injection Experiments

For our fault injection runs we used the ModelSim R© HDL simulator and the force command for
manipulating signal values. Listings A.1 and A.2 show the Tcl scripts that inject faults in specific
nets or flip-flop/latches. While the procedure is quite generic for nets, in case of injecting upsets
in flip-flops and latches the code needs to be customised to the specific elements available in the
targeted technology library and their simulation models. Note that simulation models of flip-
flops/latches in standard cell libraries typically are abstract models, written in VHDL or Verilog.
Their purpose is to model the input/output behaviour (function and timing) of the respective
cells. They do not contain an accurate representation of the internal cell structure and therefore
it is not possible to directly manipulate the stored value in a way that corresponds to the real
physical process when an upset occurs (i.e., by forcing the nets of the storage loop to a certain
value). Instead we had to fiddle with inputs of the cell models so that the stored value would
be changed. For flip-flop and latches this can simply be done in two steps: 1) Tie the cell’s
data input to the value one wants to inject and 2) force a superfluous pulse on the cell’s clock or
enable inputs so this value would be latched (cf. Listing A.2).

Listing A.1: Inject transient pulse on net.
1 proc upset_net {net_path transient_length upset_value} {
2 set val $upset_value
3
4 # Force net to specified value for certain amount of time
5 force -freeze $net_path $val 0 -cancel $transient_length
6 }

Listing A.2: ModelSim/Tcl Code to upset flip-flops and latches.
1 proc upset_ff_latch {instance_path setup_time upset_length upset_value} {
2 set val $upset_value
3
4 # force data input signal to upset value

145

5 force -freeze "$instance_path/d" $val 0 -cancel $upset_length
6
7 # disable synchronous/asynchronous control signals
8 if {[find signals "$instance_path/rb"] != ""} {
9 force -freeze "$instance_path/rb" 1 0 -cancel $upset_length

10 }
11 if {[find signals "$instance_path/sb"] != ""} {
12 force -freeze "$instance_path/sb" 1 0 -cancel $upset_length
13 }
14 if {[find signals "$instance_path/ld"] != ""} {
15 force -freeze "$instance_path/ld" 1 0 -cancel $upset_length
16 }
17 ...
18
19 # activate clock signal for flip-flops
20 if {[find signals "$instance_path/ck"] != ""} {
21 force -freeze "$instance_path/ck" 1 $setup_time -cancel $upset_length
22 }
23 if {[find signals "$instance_path/ckb"] != ""} {
24 force -freeze "$instance_path/ckb" 0 $setup_time -cancel $upset_length
25 }
26
27 # activate enable signal in case of latches
28 if {[find signals "$instance_path/g"] != ""} {
29 force -freeze "$instance_path/g" 1 $setup_time -cancel $upset_length
30 }
31 if {[find signals "$instance_path/gb"] != ""} {
32 force -freeze "$instance_path/gb" 0 $setup_time -cancel $upset_length
33 }
34 }

A.2 Reliability Evaluations

Listings A.3 and A.4 show the Matlab scripts we used for our reliability evaluations presented
in Section 4.6.3. Note that all constant area and performance values used in the scripts are
motivated from the modular redundant SCARTS processor designs we have developed.

Listing A.3: Compute and plot MTTF of conventional TMR systems.
1 % sweep component MTTF = 10h to 1000h
2 compMTTF = 10:20:1000;
3 lambda_m = 1./compMTTF;
4
5 % set clock period in s
6 clk = 2.59*10^-9;
7
8 % contribution values to total SER
9 rho_clk = [0.01, 0.0001, 0.000001, 0.00000001];

10 rho_comb(1:4) = 11/(11+49);
11 rho_seq = 1 - (rho_clk + rho_comb);
12
13 % area overhead

146

14 a_voters = 0.14;
15
16 % scaling factor to convert hours to clock periods
17 s = 60*60/clk;
18
19 % compute system MTTF
20 mttf = zeros(length(lambda_m), length(rho_clk));
21 for i = 1:length(lambda_m)
22 for j = 1:length(rho_clk)
23 lambda_r = lambda_m(i)*rho_seq(j) +
24 lambda_m(i)*rho_comb(j)*(1+a_voters);
25 lambda_rs = lambda_r/s;
26 lambda_c = 3*lambda_m(i)*rho_clk(j);
27 lambda_cs = lambda_c/s;
28 mttf(i,j) = 1/(3*lambda_rs^2 + lambda_cs);
29 end
30 end
31
32 % convert results to hours
33 mttf = mttf./s;
34
35 % generate plot
36 linespec = {’-r*’,’-bo’,’-ms’,’-gv’, ’-cx’};
37 legendStrings = cell(length(rho_clk), 1);
38 for i = 1:length(rho_clk)
39 legendStrings{i} = sprintf(’rho_clk = %g%%’, rho_clk(i)*100);
40 semilogy(compMTTF, mttfApprox(:,i), linespec{i});
41 hold on
42 end
43 hold off
44 grid on
45 set(gca, ’YMinorGrid’, ’off’)
46
47 legend(legendStrings, ’Location’, ’NorthEast’);
48 title(’\fontsize{14}Conventional TMR System’);
49 xlabel(’Simplex MTTF (h)’);
50 ylabel(’TMR system MTTF (h)’);

Listing A.4: Compute and plot MTTF of TMR systems with periodic recovery.
1 % sweep component MTTF = 10h to 1000h
2 compMTTF = 10:20:1000;
3 lambda_m = 1./compMTTF;
4
5 % contribution values to total SER
6 rho_clk = 0.01;
7 rho_comb = 11/(11+49);
8 rho_seq = 1 - (rho_clk + rho_comb);
9

10 % set clock period in s
11 clk_par = 2.5*10^-9;
12 clk_ser = 2.24*10^-9;
13
14 % area overheads

147

15 a_recComb_par = 0.515;
16 a_recSeq_par = 0.004;
17 a_recClk_par = 0.006;
18 a_recComb_ser = 0.047;
19 a_recSeq_ser = 0.061;
20 a_recClk_ser = 0.039;
21
22 % recovery latency
23 d_rec_par = 1;
24 d_rec_ser = 1463;
25
26 % scaling factor to convert hours to clock periods
27 s_par = 60*60/clk_par;
28 s_ser = 60*60/clk_ser;
29
30 % sweep different values for recovery-related performance overhead
31 rec_overhead = [0.001, 0.01, 0.05, 0.1];
32 d_comp_par = d_rec_par./rec_overhead;
33 d_comp_ser = d_rec_ser./rec_overhead;
34
35 % compute system MTTF
36 mttf_par = zeros(length(lambda_m), length(rec_overhead));
37 mttf_ser = zeros(length(lambda_m), length(rec_overhead));
38 for i = 1:length(lambda_m)
39 for j = 1:length(rec_overhead)
40 lambda_r_par = lambda_m(i)*(rho_seq*(1+a_recSeq_par) +
41 rho_comb*(1+a_recComb_par) + rho_clk*(1+a_recClk_par));
42 lambda_rs_par = lambda_r_par/s_par;
43 lambda_r_ser = lambda_m(i)*(rho_seq*(1+a_recSeq_ser) +
44 rho_comb*(1+a_recComb_ser) + rho_clk*(1+a_recClk_ser));
45 lambda_rs_ser = lambda_r_ser/s_ser;
46
47 mttf_par(i,j) =
48 1/(s_par * lambda_rs_par^2 * (3*d_comp_par(j) + 9*d_rec_par));
49 mttf_ser(i,j) =
50 1/(s_ser * lambda_rs_ser^2 * (3*d_comp_ser(j) + 9*d_rec_ser));
51 end
52 end
53
54 % generate plot
55 linespec_par = {’-r*’,’-ro’,’-rs’,’-rv’,’-r+’};
56 linespec_ser = {’-b*’,’-bo’,’-bs’,’-bv’, ’-b+’};
57 legendStrings = cell(2*length(rec_overhead), 1);
58 clk_overhead = clk_par/clk_ser - 1;
59 for i = 1:length(rec_overhead)
60 legendStrings{i} = sprintf(’perf_oh = %.2f%%’,
61 ((1+clk_overhead)*(1+rec_overhead(i)) - 1) * 100);
62 semilogy(compMTTF, mttf_par(:,i), linespec_par{i});
63 hold on
64 end
65 for i = 1:length(rec_overhead)
66 legendStrings{i+length(rec_overhead)} = sprintf(’perf_oh = %.2f%%’,
67 (rec_overhead(i)) * 100);

148

68 semilogy(compMTTF, mttf_ser(:,i), linespec_ser{i});
69 end
70 hold off
71 grid on
72 set(gca, ’YMinorGrid’, ’off’)
73
74
75 legend(legendStrings, ’Location’, ’SouthEast’);
76 title(’\fontsize{14}Parallel and Serial TMR Approaches’);
77 xlabel(’Non-redundant module MTTF (h)’);
78 ylabel(’TMR system MTTF (h)’);

149

Bibliography

[1] M. Abramovici, C.E. Stroud, and J.M. Emmert. Online bist and bist-based diagnosis of
fpga logic blocks. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
12(12):1284–1294, 2004.

[2] A. Agarwal and J. Lang. Foundations of Analog and Digital Electronic Circuits. The
Morgan Kaufmann Series in Computer Architecture and Design. Elsevier Science, 2005.

[3] M.Y. Agyekum and S.M. Nowick. An error-correcting unordered code and hardware
support for robust asynchronous global communication. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2010, pages 765 –770, march 2010.

[4] M.Y. Agyekum and S.M. Nowick. Error-correcting unordered codes and hardware sup-
port for robust asynchronous global communication. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 31(1):75 –88, jan. 2012.

[5] A. Ajane, P.M. Furth, E.E. Johnson, and R.L. Subramanyam. Comparison of binary and
lfsr counters and efficient lfsr decoding algorithm. In Circuits and Systems (MWSCAS),
2011 IEEE 54th International Midwest Symposium on, pages 1 –4, aug. 2011.

[6] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In Logic
in Computer Science, 1990. LICS ’90, Proceedings., Fifth Annual IEEE Symposium on,
pages 414 –425, jun 1990.

[7] A. Antola, V. Piuri, and M. Sami. On-line diagnosis and reconfiguration of fpga sys-
tems. In Electronic Design, Test and Applications, 2002. Proceedings. The First IEEE
International Workshop on, pages 291–296, 2002.

[8] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. Dependable and Secure Computing, IEEE Trans-
actions on, 1(1):11–33, 2004.

[9] W.J. Bainbridge, W. B. Toms, D.A. Edwards, and S.B. Furber. Delay-insensitive, point-
to-point interconnect using m-of-n codes. In Asynchronous Circuits and Systems, 2003.
Proceedings. Ninth International Symposium on, pages 132–140, May 2003.

[10] R. C. Baumann. Radiation-induced soft errors in advanced semiconductor technologies.
Device and Materials Reliability, IEEE Transactions on, 5(3):305–316, 2005.

151

[11] E. Beigne, F. Clermidy, S. Miermont, and P. Vivet. Dynamic voltage and frequency
scaling architecture for units integration within a gals noc. In Networks-on-Chip, 2008.
NoCS 2008. Second ACM/IEEE International Symposium on, pages 129–138, April 2008.

[12] M. Blaum and J. Bruck. Unordered error-correcting codes and their applications. In
Fault-Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-Second Interna-
tional Symposium on, pages 486 –493, jul 1992.

[13] B.H. Calhoun, Yu Cao, Xin Li, Ken Mai, L.T. Pileggi, R.A. Rutenbar, and Kenneth L.
Shepard. Digital circuit design challenges and opportunities in the era of nanoscale cmos.
Proceedings of the IEEE, 96(2):343–365, 2008.

[14] M. Cannizzaro and L. Lavagno. Pid (partial inversion data): An m-of-n level-encoded
transition signaling protocol for asynchronous global communication. In Asynchronous
Circuits and Systems (ASYNC), 2012 18th IEEE International Symposium on, pages 134–
141, 2012.

[15] Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis,
Stanford University, October 1984.

[16] Fu-Chiung Cheng and Shuen-Long Ho. Efficient systematic error-correcting codes for
semi-delay-insensitive data transmission. In Computer Design, 2001. ICCD 2001. Pro-
ceedings. 2001 International Conference on, pages 24 –29, 2001.

[17] R. Chipana, F.L. Kastensmidt, Jorge Tonfat, R. Reis, and M. Guthaus. Set susceptibility
analysis in buffered tree clock distribution networks. In Radiation and Its Effects on
Components and Systems (RADECS), 2011 12th European Conference on, pages 256–
261, Sept 2011.

[18] Raul Chipana, E. Chielle, F.L. Kastensmidt, J. Tonfat, and R. Reis. Soft-error probability
due to set in clock tree networks. In VLSI (ISVLSI), 2012 IEEE Computer Society Annual
Symposium on, pages 338–343, Aug 2012.

[19] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, Alex
Yakovlev, and Ne Ru England. Petrify: a tool for manipulating concurrent specifica-
tions and synthesis of asynchronous controllers. IEICE Transactions on Information and
Systems, 80:315–325, 1997.

[20] I. David, R. Ginosar, and Michael Yoeli. An efficient implementation of boolean functions
as self-timed circuits. Computers, IEEE Transactions on, 41(1):2–11, 1992.

[21] Al Davis and Steven M. Nowick. An introduction to asynchronous circuit design. Techni-
cal report, THE ENCYCLOPEDIA OF COMPUTER SCIENCE AND TECHNOLOGY,
1997.

152

[22] Mark E. Dean, Ted E. Williams, and David L. Dill. Efficient self-timing with level-
encoded 2-phase dual-rail (ledr). In Proceedings of the 1991 University of Californi-
a/Santa Cruz Conference on Advanced Research in VLSI, pages 55–70, Cambridge, MA,
USA, 1991. MIT Press.

[23] R. Dobkin, R. Ginosar, and C.P. Sotiriou. Data synchronization issues in gals socs. In
Asynchronous Circuits and Systems, 2004. Proceedings. 10th International Symposium
on, pages 170–179, April 2004.

[24] M. Donno, A. Ivaldi, L. Benini, and E. Macii. Clock-tree power optimization based on
rtl clock-gating. In Design Automation Conference, 2003. Proceedings, pages 622–627,
2003.

[25] Elena Dubrova. Fault-tolerant design. Springer, 2013.

[26] M. Ebrahimi, S. G. Miremadi, H. Asadi, and M. Fazeli. Low-cost scan-chain-based tech-
nique to recover multiple errors in tmr systems. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, PP(99):1, 2012.

[27] M. Ebrahimi, S.G. Miremadi, and H. Asadi. Sctmr: A scan chain-based error recovery
technique for tmr systems in safety-critical applications. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2011, pages 1 –4, march 2011.

[28] M. Ebrahimi, S.G. Miremadi, H. Asadi, and M. Fazeli. Low-cost scan-chain-based tech-
nique to recover multiple errors in tmr systems. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 21(8):1454–1468, 2013.

[29] Xin Fan, M. Krstić, and E. Grass. Analysis and optimization of pausible clocking based
gals design. In Computer Design, 2009. ICCD 2009. IEEE International Conference on,
pages 358–365, 2009.

[30] Xin Fan, M. Krstić, E. Grass, B. Sanders, and C. Heer. Exploring pausible clocking
based gals design for 40-nm system integration. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2012, pages 1118–1121, 2012.

[31] Xin Fan, M. Krstić, C. Wolf, and E. Grass. A gals fft processor with clock modulation
for low-emi applications. In Application-specific Systems Architectures and Processors
(ASAP), 2010 21st IEEE International Conference on, pages 273–278, 2010.

[32] Xin Fan, O. Schrape, M. Marinkovic, P. Dahnert, M. Krstić, and E. Grass. Gals design
for spectral peak attenuation of switching current. In Asynchronous Circuits and Systems
(ASYNC), 2013 IEEE 19th International Symposium on, pages 83–90, 2013.

[33] Jianxin Fang, S. Gupta, S.V. Kumar, S.K. Marella, V. Mishra, Pingqiang Zhou, and S.S.
Sapatnekar. Circuit reliability: From physics to architectures: Embedded tutorial paper. In
Computer-Aided Design (ICCAD), 2012 IEEE/ACM International Conference on, pages
243–246, Nov 2012.

153

[34] K.M. Fant and S.A. Brandt. NULL Convention LogicTM: a complete and consistent logic
for asynchronous digital circuit synthesis. pages 261 –273, August 1996.

[35] S.B. Furber, J.D. Garside, P. Riocreux, S. Temple, P. Day, Jianwei Liu, and N.C. Paver.
Amulet2e: an asynchronous embedded controller. Proceedings of the IEEE, 87(2):243–
256, Feb 1999.

[36] Rudy Garcia. Rethink fault models for submicron-ic test. Test & Measurement World,
21(12):35, 2001.

[37] M.R. Greenstreet. Implementing a stari chip. In Computer Design: VLSI in Computers
and Processors, 1995. ICCD ’95. Proceedings., 1995 IEEE International Conference on,
pages 38–43, 1995.

[38] C.M. Grinstead and J.L. Snell. Introduction to Probability. 2nd ed. American Mathemat-
ical Society, 1997.

[39] C.S. Guenzer, E.A. Wolicki, and R.G. Allas. Single event upset of dynamic rams by
neutrons and protons. Nuclear Science, IEEE Transactions on, 26(6):5048–5052, 1979.

[40] S. Hauck. Asynchronous design methodologies: an overview. Proceedings of the IEEE,
83(1):69–93, 1995.

[41] M.W. Heath, W.P. Burleson, and I.G. Harris. Synchro-tokens: a deterministic gals
methodology for chip-level debug and test. Computers, IEEE Transactions on,
54(12):1532–1546, 2005.

[42] C. Huang. Robust Computing with Nano-scale Devices: Progresses and Challenges.
Lecture notes in electrical engineering. Springer, 2010.

[43] Wei-Je Huang and E.J. McCluskey. Column-based precompiled configuration techniques
for fpga. In Field-Programmable Custom Computing Machines, 2001. FCCM ’01. The
9th Annual IEEE Symposium on, pages 137–146, 2001.

[44] ITRS. International technology roadmap for semiconductors, 2005.

[45] ITRS. International technology roadmap for semiconductors, 2011.

[46] Wonjin Jang and A.J. Martin. Seu-tolerant qdi circuits [quasi delay-insensitive asyn-
chronous circuits]. In Asynchronous Circuits and Systems, 2005. ASYNC 2005. Proceed-
ings. 11th IEEE International Symposium on, pages 156 – 165, march 2005.

[47] JEDEC Standard JESD89A. Measurement and Reporting of Alpha Particle and Terres-
trial Cosmic Ray-Induced Soft Errors in Semiconductor Devices, October 2006.

[48] Xin Jia and R. Vemuri. The gapla: a globally asynchronous locally synchronous fpga
architecture. In Field-Programmable Custom Computing Machines, 2005. FCCM 2005.
13th Annual IEEE Symposium on, pages 291–292, 2005.

154

[49] Xin Jia and R. Vemuri. A novel asynchronous fpga architecture design and its perfor-
mance evaluation. In Field Programmable Logic and Applications, 2005. International
Conference on, pages 287 – 292, aug. 2005.

[50] T. Karnik, P. Hazucha, and J. Patel. Characterization of soft errors caused by single event
upsets in cmos processes. Dependable and Secure Computing, IEEE Transactions on,
1(2):128–143, April 2004.

[51] Fernanda Lima Kastensmidt, Luigi Carro, and Ricardo Reis. Fault-Tolerance Techniques
for SRAM-Based FPGAs (Frontiers in Electronic Testing). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[52] David J. Kinniment. Synchronization and Arbitration in Digital Systems. Wiley Publish-
ing, 2008.

[53] D.G. Kleinbaum and M. Klein. Survival Analysis: A Self-Learning Text. Statistics for
Biology and Health Series. Springer Science+Business Media, Inc., 2005.

[54] A. Kondratyev and K. Lwin. Design of asynchronous circuits using synchronous cad
tools. Design Test of Computers, IEEE, 19(4):107–117, 2002.

[55] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. Springer New York Dordrecht Heidelberg London, 2st edition, 2011.

[56] Israel Koren and C. Mani Krishna. Fault-Tolerant Systems. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2007.

[57] J. Lach, W.H. Mangione-Smith, and M. Potkonjak. Enhanced fpga reliability through
efficient run-time fault reconfiguration. Reliability, IEEE Transactions on, 49(3):296–
304, 2000.

[58] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[59] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Int. Journal on
Software Tools for Technology Transfer, 1:134–152, 1997.

[60] J. Lechner. Designing robust gals circuits with triple modular redundancy. In Dependable
Computing Conference (EDCC), 2012 Ninth European, pages 227–236, 2012.

[61] J. Lechner and M. Lampacher. Protecting pipelined asynchronous communication chan-
nels against single event upsets. In Computer Design (ICCD), 2012 IEEE 30th Interna-
tional Conference on, pages 480–481, 2012.

[62] J. Lechner, M. Lampacher, and T. Polzer. A robust asynchronous interfacing scheme with
four-phase dual-rail coding. In Application of Concurrency to System Design (ACSD),
2012 12th International Conference on, pages 122–131, 2012.

155

[63] Jakob Lechner and Robert Najvirt. A generic architecture for robust asynchronous com-
munication links. In JoséL. Ayala, Delong Shang, and Alex Yakovlev, editors, Integrated
Circuit and System Design. Power and Timing Modeling, Optimization and Simulation,
volume 7606 of Lecture Notes in Computer Science, pages 121–130. Springer Berlin Hei-
delberg, 2013.

[64] Jakob Lechner and Varadan Savulimedu Veeravalli. Modular redundancy in a gals system
using asynchronous recovery links. In Asynchronous Circuits and Systems (ASYNC), 2013
IEEE 19th International Symposium on, pages 23–30, 2013.

[65] Walter M. The SCARTS Hardware/Software Interface. 2nd ed. OSADL Academic Works,
2011.

[66] A. J. Martin. Formal development programs and proofs. chapter Formal Program Trans-
formations for VLSI Circuit Synthesis, pages 59–80. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1990.

[67] A.J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, U. Cummings,
and Tak Kwan Lee. The design of an asynchronous mips r3000 microprocessor. In
Advanced Research in VLSI, 1997. Proceedings., Seventeenth Conference on, pages 164–
181, 1997.

[68] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In Pro-
ceedings of the Sixth MIT Conference on Advanced Research in VLSI, AUSCRYPT ’90,
pages 263–278, Cambridge, MA, USA, 1990. MIT Press.

[69] Timothy C. May and Murray H. Woods. A new physical mechanism for soft errors in
dynamic memories. In Reliability Physics Symposium, 1978. 16th Annual, pages 33–40,
1978.

[70] P.B. McGee, M.Y. Agyekum, M.A. Mohamed, and S.M. Nowick. A level-encoded tran-
sition signaling protocol for high-throughput asynchronous global communication. In
Asynchronous Circuits and Systems, 2008. ASYNC ’08. 14th IEEE International Sympo-
sium on, pages 116–127, 2008.

[71] J. Mekie, S. Chakraborty, and D.K. Sharma. Evaluation of pausible clocking for inter-
facing high speed ip cores in gals framework. In VLSI Design, 2004. Proceedings. 17th
International Conference on, pages 559–564, 2004.

[72] D.G. Messerschmitt. Synchronization in digital system design. Selected Areas in Com-
munications, IEEE Journal on, 8(8):1404–1419, 1990.

[73] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and Kee Sup Kim. Robust system design with
built-in soft-error resilience. Computer, 38(2):43–52, 2005.

[74] G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics,
38(8):114–117, April 1965.

156

[75] S. Moore, G. Taylor, R. Mullins, and P. Robinson. Point to point gals interconnect. In
Asynchronous Circuits and Systems, 2002. Proceedings. Eighth International Symposium
on, pages 69–75, 2002.

[76] J. Muttersbach, T. Villiger, and Wolfgang Fichtner. Practical design of globally-
asynchronous locally-synchronous systems. In Advanced Research in Asynchronous Cir-
cuits and Systems, 2000. (ASYNC 2000) Proceedings. Sixth International Symposium on,
pages 52–59, 2000.

[77] Jens Muttersbach. Globally-Asynchronous Locally-Synchronous Architectures for VLSI
Systems. PhD thesis, ETH, Zürich, 2001.

[78] V.P. Nelson. Fault-tolerant computing: fundamental concepts. Computer, 23(7):19–25,
1990.

[79] M. Nicolaidis. Time redundancy based soft-error tolerance to rescue nanometer technolo-
gies. In VLSI Test Symposium, 1999. Proceedings. 17th IEEE, pages 86–94, 1999.

[80] M. Nicolaidis, editor. Soft Errors in Modern Electronic Systems. Frontiers in Electronic
Testing. Springer Science+Business Media, LLC, 2011.

[81] Sampo Niskanen and Patric R.J. Östergård. Cliquer user’s guide. Research Report T48,
Helsinki University of Technology, 2003.

[82] Simon Ogg, Bashir Al-Hashimi, and Alex Yakovlev. Asynchronous transient resilient
links for noc. In Proceedings of the 6th IEEE/ACM/IFIP international conference on
Hardware/Software codesign and system synthesis, CODES+ISSS ’08, pages 209–214,
New York, NY, USA, 2008. ACM.

[83] N.C. Paver, P. Day, C. Farnsworth, D. L. Jackson, W. A. Lien, and J. Liu. A low-power,
low noise, configurable self-timed dsp. In Advanced Research in Asynchronous Circuits
and Systems, 1998. Proceedings. 1998 Fourth International Symposium on, pages 32–42,
Mar 1998.

[84] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J.
ACM, 27(2):228–234, April 1980.

[85] Stefan Poledna. Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism.
Kluwer Academic Publishers, Norwell, MA, USA, 1996.

[86] Stefan Poledna, Alan Burns, Andy Wellings, and Peter Barrett. Replica determinism
and flexible scheduling in hard real-time dependable systems. IEEE Transactions on
Computers, 49:100–111, 2000.

[87] Alain Poli and Llorenç Huguet. Error Correcting Codes: Theory and Applications.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

157

[88] Thomas Polzer, Andreas Steininger, and Jakob Lechner. Muller c-element metastability
containment. In JoséL. Ayala, Delong Shang, and Alex Yakovlev, editors, Integrated
Circuit and System Design. Power and Timing Modeling, Optimization and Simulation,
volume 7606 of Lecture Notes in Computer Science, pages 103–112. Springer Berlin
Heidelberg, 2013.

[89] J. Pontes, N. Calazans, and P. Vivet. Adding temporal redundancy to delay insensitive
codes to mitigate single event effects. In Asynchronous Circuits and Systems (ASYNC),
2012 18th IEEE International Symposium on, pages 142–149, 2012.

[90] J. Pontes, N. Calazans, and P. Vivet. Parity check for m-of-n delay insensitive codes.
In On-Line Testing Symposium (IOLTS), 2013 IEEE 19th International, pages 157–162,
2013.

[91] L.L. Pullum. Software Fault Tolerance Techniques and Implementation. Artech House
computing library. Artech House, 2001.

[92] Marvin Rausand and Arnljot Høyland. System Reliability Theory: Models, Statistical
Methods, and Applications, Second Edition. Wiley-Interscience, 2 edition, Dec 2004.

[93] M. Riordan and Lillian Hoddeson. Crystal fire: the invention, development and impact of
the transistor. Solid-State Circuits Society Newsletter, IEEE, 12(2):24–29, 2007.

[94] J.A. Rivers, M.S. Gupta, J. Shin, P.N. Kudva, and P. Bose. Error tolerance in server class
processors. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, 30(7):945–959, 2011.

[95] Andrew Royal and Peter Y.K. Cheung. Globally asynchronous locally synchronous
fpga architectures. In Peter Cheung and GeorgeA. Constantinides, editors, Field Pro-
grammable Logic and Application, volume 2778 of Lecture Notes in Computer Science,
pages 355–364. Springer Berlin Heidelberg, 2003.

[96] L.F.G. Sarmenta, G.A. Pratt, and S.A. Ward. Rational clocking [digital systems design].
In Computer Design: VLSI in Computers and Processors, 1995. ICCD ’95. Proceedings.,
1995 IEEE International Conference on, pages 271–278, 1995.

[97] N. Seifert, P. Shipley, M.D. Pant, V. Ambrose, and B. Gill. Radiation-induced clock jitter
and race. In Reliability Physics Symposium, 2005. Proceedings. 43rd Annual. 2005 IEEE
International, pages 215–222, April 2005.

[98] Charles L. Seitz. System timing. In Carver A. Mead and Lynn A. Conway, editors,
Introduction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[99] Yebin Shi, S.B. Furber, J. Garside, and L.A. Plana. Fault tolerant delay insensitive inter-
chip communication. In Asynchronous Circuits and Systems, 2009. ASYNC ’09. 15th
IEEE Symposium on, pages 77 –84, may 2009.

158

[100] A. Smirnov, A. Taubin, Ming Su, and M. Karpovsky. An automated fine-grain pipelin-
ing using domino style asynchronous library. In Application of Concurrency to System
Design, 2005. ACSD 2005. Fifth International Conference on, pages 68–76, 2005.

[101] Christine Solnon. Alldifferent-based filtering for subgraph isomorphism. Artif. Intell.,
174(12-13):850–864, August 2010.

[102] Jens Sparsø and Steve Furber, editors. Principles of Asynchronous Circuit Design: A
Systems Perspective. Kluwer Academic Publishers, 2001.

[103] Jens Sparsø and Jørgen Staunstrup. Delay-insensitive multi-ring structures. Integration,
the VLSI journal, 15(3):313–340, 1993.

[104] M. Stanisavljevic, A. Schmid, and Y. Leblebici. Reliability of Nanoscale Circuits and
Systems: Methodologies and Circuit Architectures. Springer, 2011.

[105] I. E. Sutherland. Micropipelines. Commun. ACM, 32(6):720–738, June 1989.

[106] P. Sweeney. Error control coding: an introduction. Prentice Hall, 1991.

[107] N.R. Tague. The Quality Toolbox. Asq Press, 2005.

[108] Alexander Taubin, Jordi Cortadella, Luciano Lavagno, Alex Kondratyev, and Ad Peeters.
Design automation of real-life asynchronous devices and systems. Found. Trends Elec-
tron. Des. Autom., 2(1):1–133, January 2007.

[109] P. Teehan, M. Greenstreet, and G. Lemieux. A survey and taxonomy of gals design styles.
Design Test of Computers, IEEE, 24(5):418–428, 2007.

[110] J. Teifel and R. Manohar. An asynchronous dataflow fpga architecture. Computers, IEEE
Transactions on, 53(11):1376 –1392, nov. 2004.

[111] C. Temple. Avoiding the babbling-idiot failure in a time-triggered communication sys-
tem. In Fault-Tolerant Computing, 1998. Digest of Papers. Twenty-Eighth Annual Inter-
national Symposium on, pages 218–227, 1998.

[112] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, January
1976.

[113] Kees van Berkel. Beware the isochronic fork. Integr. VLSI J., 13:103–128, June 1992.

[114] V.S. Veeravalli, T. Polzer, A. Steininger, and U. Schmid. Architecture and design analysis
of a digital single-event transient/upset measurement chip. In Digital System Design
(DSD), 2012 15th Euromicro Conference on, pages 8–17, 2012.

[115] Tom Verhoeff. Delay-insensitive codes - an overview. Distributed Computing, 3(1):1–8,
1988.

159

[116] A.K. Verma, S. Ajit, and D.R. Karanki. Reliability and Safety Engineering. Springer
series in reliability engineering. Springer London, 2010.

[117] John von Neumann. Probabilistic logics and the synthesis of reliable organisms from
unreliable components. Automata Studies, pages 43–98, 1956.

[118] J.F. Wakerly. Transient failures in triple modular redundancy systems with sequential
modules. IEEE Transactions on Computers, 24(5):570–573, 1975.

[119] Fan Wang and V.D. Agrawal. Single event upset: An embedded tutorial. In VLSI Design,
2008. VLSID 2008. 21st International Conference on, pages 429–434, Jan 2008.

[120] Ted E. Williams. Self-Timed Rings and their Application to Division. PhD thesis, Stanford
University, June 1991.

[121] Martin Wirnshofer. Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits.
Springer Publishing Company, Incorporated, 2013.

[122] M.K. Yadav, M.R. Casu, and M. Zamboni. Dvfs based on voltage dithering and clock
scheduling for gals systems. In Asynchronous Circuits and Systems (ASYNC), 2012 18th
IEEE International Symposium on, pages 118–125, May 2012.

[123] Shu-Yi Yu and E.J. McCluskey. On-line testing and recovery in tmr systems for real-
time applications. In Test Conference, 2001. Proceedings. International, pages 240 –249,
2001.

[124] Zhiyi Yu, Zewen Shi, and Xiaoyang Zeng. Fault tolerant computing for stream dsp ap-
plications using gals multi-core processors. In Circuits and Systems (ISCAS), 2011 IEEE
International Symposium on, pages 2305–2308, 2011.

[125] K.Y. Yun and R.P. Donohue. Pausible clocking: a first step toward heterogeneous systems.
In Computer Design: VLSI in Computers and Processors, 1996. ICCD ’96. Proceedings.,
1996 IEEE International Conference on, pages 118 –123, oct 1996.

[126] Guangda Zhang, Wei Song, J.D. Garside, J. Navaridas, and Zhiying Wang. Transient fault
tolerant qdi interconnects using redundant check code. In Digital System Design (DSD),
2013 Euromicro Conference on, pages 3–10, 2013.

[127] Haissam Ziade, Rafic A. Ayoubi, and Raoul Velazco. A survey on fault injection tech-
niques. Int. Arab J. Inf. Technol., 1(2):171–186, 2004.

[128] L. Łukasiak and A. Jakubowski. History of semiconductors. Journal of Telecommunica-
tions and Information Technology, nr 1:3–9, 2010.

160

Curriculum Vitae
Jakob Lechner

Personal Details

Date of birth: June 8th, 1984
Citizenship: Austria

Education
Vienna University of Technology Vienna, Austria
Computer Engineering, PhD Mar. 2009 – June 2014

Vienna University of Technology Vienna, Austria
Computer Engineering, MSc Mar. 2006 – Dec. 2008

Vienna University of Technology Vienna, Austria
Software & Information Engineering, BSc Oct. 2005 – Apr. 2007

Vienna University of Technology Vienna, Austria
Computer Engineering, BSc Oct. 2002 – Feb. 2006

BG/BRG Oberschützen Oberschützen, Austria
Secondary school (Gymnasium/AHS) Sept. 1994 – June 2002

Experience

RUAG Space GmbH Vienna, Austria
FPGA/ASIC Design Engineer Jan. 2014 to date

Newcastle University Newcastle upon Tyne, United Kingdom
Visiting Research Associate Mar. 2013 – Sept. 2013

Vienna University of Technology Vienna, Austria
Research Assistant Feb. 2009 – Feb. 2013

appl.strudl Software GmbH (Fabasoft Group) Vienna, Austria
Linux Software Engineer Mar. 2008 – Jan. 2009

161

Fabalabs Software GmbH (Fabasoft Group) Vienna/Linz, Austria
Linux Software Engineer Aug. 2006 – Feb. 2008

Vienna University of Technology Vienna, Austria
Tutor 2004 – 2006

Computersysteme Signale GmbH Pinkafeld, Austria
Windows Software Engineer July 2001 – May 2005

Grants & Fellowships

Marietta Blau-Stipendium: OeAD – GmbH, funded by the Austrian Federal Ministry of Science
and Research (BMWF), Vienna, 2013

162

Own Publications

[1] Marcus Jeitler and Jakob Lechner. Comparing the robustness of synchronous and asyn-
chronous circuits by fault injection. 5th Doctorial Workshop on Mathematical and Engi-
neering Methods in Computer Science (MEMICS’09), Nov. 2009.

[2] Marcus Jeitler and Jakob Lechner. Speeding up fault injection for asynchronous logic by
fpga-based emulation. International Conference on Reconfigurable Computing and FPGAs
(RECONFIG’09), pages 65–70, 2009.

[3] Marcus Jeitler and Jakob Lechner. Towards comparing the robustness of synchronous and
asynchronous circuits by fault injection. In Annual Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science (MEMICS’09), volume 13 of OpenAc-
cess Series in Informatics (OASIcs), Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[4] Marcus Jeitler, Jakob Lechner, and Andreas Steininger. Enhancing pipelined processor
architectures with fast autonomous recovery of transient faults. In Design and Diagnostics
of Electronic Circuits and Systems (DDECS), 2010 IEEE 13th International Symposium
on, pages 233–236, April 2010.

[5] Marcus Jeitler and Jakob Lechner. Low latency recovery from transient faults for pipelined
processor architectures. In Digital System Design: Architectures, Methods and Tools
(DSD), 2010 13th Euromicro Conference on, pages 219–225, Sept. 2010.

[6] Jakob Lechner. Designing robust gals circuits with triple modular redundancy. In De-
pendable Computing Conference (EDCC), 2012 Ninth European, pages 227 –236, may
2012.

[7] Jakob Lechner, Martin Lampacher, and Thomas Polzer. A robust asynchronous interfacing
scheme with four-phase dual-rail coding. In Application of Concurrency to System Design
(ACSD), 2012 12th International Conference on, pages 122 –131, june 2012.

[8] Jakob Lechner and Martin Lampacher. Protecting pipelined asynchronous communica-
tion channels against single event upsets. In Computer Design (ICCD), 2012 IEEE 30th
International Conference on, pages 480–481, Oct. 2012.

163

[9] Jakob Lechner and Robert Najvirt. A generic architecture for robust asynchronous com-
munication links. In José L. Ayala, Delong Shang, and Alex Yakovlev, editors, Integrated
Circuit and System Design. Power and Timing Modeling, Optimization and Simulation,
volume 7606 of Lecture Notes in Computer Science, pages 121–130. Springer Berlin Hei-
delberg, 2013.

[10] Jakob Lechner and Varadan Savulimedu Veeravalli. Modular redundancy in a gals system
using asynchronous recovery links. In Asynchronous Circuits and Systems (ASYNC), 2013
19th IEEE International Symposium on, 2013.

[11] Syed Rameez Naqvi, Andreas Steininger, and Jakob Lechner. An set tolerant tree arbiter
cell. In Asynchronous Circuits and Systems (ASYNC), 2013 19th IEEE International Sym-
posium on, 2013.

[12] Syed Rameez Naqvi, Jakob Lechner, and Andreas Steininger. Protection of muller-
pipelines from transient faults. In Quality Electronic Design (ISQED), 2014 15th Inter-
national Symposium on, pages 123–131, March 2014.

164

	Introduction
	Circuit Timing
	Dependable Circuits
	Scope and Methodology
	Structure of the Thesis

	Dependable Computer Systems
	Taxonomy of Dependable Systems
	Threats of Dependability
	Attributes of Dependability
	Means to Attain Dependability

	Faults in Integrated Circuits
	Transient Faults
	Permanent Faults

	Circuits Background
	Asynchronous Circuit Design
	Delay Models and Classification of Asynchronous Circuits
	Asynchronous Handshake Protocols
	Control Elements
	Datapath Implementation

	Globally Asynchronous Locally Synchronous Circuits
	Synchronization in Digital Systems
	Brute-Force Synchronization
	Pausible Clocking

	Fault Tolerance in Integrated Circuits
	Hardware Redundancy
	Temporal Redundancy
	Information Redundancy

	Fault-tolerant Computation in Synchronous Modules
	Modular Redundancy in GALS
	Approach I: Parallel Recovery
	Recovery Controller
	Timing Constraints
	Robustness of the Recovery Circuitry
	Formal Verification of the Recovery Controller
	Area & Performance
	Proof of Concept

	Approach II: Serial Recovery
	Recovery Controller
	Timing Constraints
	Robustness of the Recovery Controller
	A Short Note on Long Faults (Permanent Defects)
	Verification
	Area & Performance

	System Architecture
	Selective Hardening of GALS Modules
	Replica Partitioning
	Voting on Output Data

	Recovery Strategy
	Recovery Period
	Minimising the Recovery State
	Replica Determinism
	System-Level Considerations

	System Evaluation
	Design Automation
	Area & Performance
	Reliability

	Related Work

	Robust Asynchronous Inter-Module Communication Channels
	Delay-Insensitive Fault-Tolerant Codes
	Problem Description: Transmission Faults
	Formal Prerequisites
	Building Subcodes
	Combining DI and ED Codes

	Approach I: Robust 4-phase Dual-rail Channels
	Fault Model
	Proposed Implementation
	Metastability-Tolerant Implementation
	Implementation Details
	Evaluation

	Approach II: A Generic Sender/Receiver Implementation
	Output Port
	Input Port
	Control Circuits
	Evaluation

	Related Work

	Summary & Conclusion
	Future Work
	Mesochronous Modular Redundant Systems
	Reconfigurable GALS Architectures
	Recovery of Memory Cells
	Robust 2-phase Delay-Insensitive Codes
	Comprehensive Evaluation of Robust DI Channels

	Additional Resources
	Scripts for Fault-Injection Experiments
	Reliability Evaluations

	Bibliography

