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Introduction

The purpose of this master thesis is to develop a spectral theorem for definitizable linear
relations on Krein spaces, cf. Theorem 3.4.4. In 1981, Dr. Peter Jonas has already
considered the case of a self-adjoint and densely defined linear operator A : domA ≤
K → K, cf. [Jon].

In the first chapter, we give a brief introduction to Krein spaces and discuss the notion
of a linear relation, which is a generalization of linear operators.

In the second chapter, we show how r(T ) can be defined for a linear relation T on
a Krein space K and a rational function r whose poles lie in ρ(T ). This elementary
functional calculus can easily be obtained by using an extension of the Riesz-Dunford
functional calculus for linear relations. We also outline an elementary approach in Section
2.2.

At the beginning of the third chapter, we recall the spectral theorem for self-adjoint
operators on Hilbert spaces and show how it can be extended to self-adjoint linear
relations, cf. Theorem 3.1.3.

In Section 3.2, we show how linear relations can be moved from one space to another if
a linear mapping between theses spaces is on hand. The theory developed in this section
is the main tool in the proof of Theorem 3.4.4.

In the next section, we introduce and study the notion of a definitizable linear relation
A with definitizing polynomial p. Probably, there are definitizable linear relations which
do not have a real definitizing polynomial, cf. Remark 3.3.4. In the following, we
assumed to have a real definitizing polynomial. Furthermore, it seems that it is, in
general, not possible to divide out the non-real zeros of a definitizing polynomial which
do not belong to the spectrum of the operator, as done in [Jon]. This is the reason why
we only get σ(A) ⊆ R ∪ p−1({0}), whereas equality prevailed in the case of a densely
defined operator for a certain polynomial p. Hence, there occur non-real zeros in general,
which could belong to the spectrum.

In Section 3.4, we give the construction of our functional calculus EI , and formulate
the main-result Theorem 3.4.4. It states that for every definitizable linear relation on
a Krein space with real definitizing polynomial, there exists a ∗-homomorphism from
a certain space of function, namely FI , to the bounded operators on the Krein space,
B(K), which is an extension of the functional calculus for rational functions. The proof,
in a nutshell: We construct a Hilbert space and a linear mapping between the Krein
space and this Hilbert space, and then use the theory developed in Section 3.2 to move
our definitizable linear relation to a self-adjoint linear relation in the Hilbert space, where
we have a spectral theorem at hand.

In the last section, we show that this functional calculus E is continuous, at least on
a subspace FU with respect to a certain norm ‖.‖U , and we show that the support of E
coincides with the spectrum of A.
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1 Preliminaries

1.1 Krein Spaces

Definition 1.1.1. Let X be a linear space together with a map [., .] : X ×X → C, such
that for all x, y, z ∈ X and λ, µ ∈ C

[λx+ µy, z] = λ[x, z] + µ[y, z]

[x, y] = [y, x].

We call [., .] an inner product and (X , [., .]) an inner product space.
An element x ∈ X is called positive/negative/neutral if the real number [x, x] is pos-

itive/negative/zero. A linear subspace Y ≤ X is called positive (semi)definite if the
inequality [y, y] > (≥)0 holds for all elements 0 6= y ∈ Y. Accordingly, Y can be negative
(semi)definite or neutral. By saying that Y is (semi)definite, we mean that it is either
positive or negative (semi)definite. The inner product [., .] is called positive/negative
(semi)definite if the subspace X ≤ X has the corresponding property.

An element x ∈ X is called isotropic if [x, y] = 0 for all y ∈ X . By (X , [., .])◦, or shorter
X ◦, we denote the set of all isotropic elements, called the isotropic part of X . The inner
product is called degenerated if X ◦ 6= {0}, otherwise it is called nondegenerated.

Lemma 1.1.2. Let (X , [., .]) be a semidefinite inner product space. Then, the Schwarz
inequality holds,

|[x, y]|2 ≤ [x, x] · [y, y], for all x, y ∈ X .

Proof. We assume that X is positive semidefinite.
Take x, y ∈ X and let λ ∈ C, |λ| = 1 be such that λ[y, x] = |[y, x]| = |[x, y]|. We have

0 ≤ [x− ξλy, x− ξλy] = [x, x]− ξλ[y, x]− ξλ[x, y] + ξ2[y, y]

= [x, x]− 2ξ|[x, y]|+ ξ2[y, y] , for all ξ ∈ R.

If [y, y] = 0, this inequality applied to large ξ give |[x, y]| = 0. In the case [y, y] 6= 0, we

can choose ξ = |[x,y]|
[y,y] ∈ R. This reduces the above inequality to 0 ≤ [x, x] − |[x,y]|2

[y,y] , i.e.

|[x, y]|2 ≤ [x, x] · [y, y].
The case of a negative semidefinite inner product X can be handled by considering

(X ,−[., .]).

Clearly, the Schwarz inequality does not hold in general inner product spaces, since
the right-hand side of the inequality gets negative for a positive x and a negative y.

Corollary 1.1.3. Let (X , [., .]) be a semidefinite inner product space. Then, the set of
all neutral elements is a subspace and coincides with the isotropic part, i.e.

N := {x ∈ X : x is neutral } = X ◦.
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1 Preliminaries

Proof. An isotropic element is always neutral. The other inclusion follows directly from
the Schwarz inequality,

0 ≤ |[x, y]| ≤ [x, x] · [y, y] = 0.

Definition 1.1.4. Let (X , [., .]) be an inner product space.
If x, y ∈ X satisfy [x, y] = 0, we call them orthogonal, and write x[⊥]y. Two subsets

A,B ⊂ X are called orthogonal if [x, y] = 0 for all x ∈ A and y ∈ B, denoted by A[⊥]B.
For a subset Y ⊆ X we set Y [⊥] := {x ∈ X | [x, y] = 0 for all y ∈ Y }, and call Y [⊥] the
orthogonal companion of Y . If explicit notation of the inner product is not needed, we
will write x ⊥ y, A ⊥ B and Y ⊥.

Remark 1.1.5. Let (H, (., .) ) be a Hilbert space, and let M ≤ H be a closed linear
subspace. Recall that there always exists a unique orthogonal projection P : H → H
onto M , namely the one corresponding to the decomposition of H into the direct and
orthogonal sum H = M(

.
+)M⊥.

In inner product spaces X , the existence and uniqueness of orthogonal projections, i.e.
projections P with ranP ⊥ kerP , onto a given subspace M fail in general. We could
have M +M⊥ 6= X or M ∩M⊥ 6= {0}, or both.

However, if a direct and orthogonal decomposition X = M [
.

+]N with N ≤ X is
available, we can, without difficulty, consider the corresponding projection P : X → X
along N onto M , which is orthogonal.

Definition 1.1.6. Let (X , [., .]) be an inner product space.
A pair (X+,X−) consisting of a positive definite subspace X+ and a negative definite

subspace X− such that X can be expressed as the direct and orthogonal sum

X = X+ [
.

+]X ◦ [
.

+]X−,

is called fundamental decomposition of X . The space X is called decomposable, if there
exists a fundamental decomposition. The orthogonal projections P+ along X− [

.
+]X ◦

onto X+, and P− along X+ [
.

+]X ◦ onto X− are called fundamental projections. The linear
map J := P+−P− is called fundamental symmetry. Furthermore, we set (x, y)J := [Jx, y]
for x, y ∈ X , and ‖x‖J :=

√
(x, x)J for x ∈ X .

The next lemma states some elementary properties, which reveal the usefulness of a
fundamental decomposition.

Lemma 1.1.7. Let (X , [., .]) be a decomposable inner product space, with fundamental
symmetry J . Then the following assertions hold true.

(i) [Jx, y] = [x, Jy], (Jx, y)J = (x, Jy)J for all x, y ∈ X

(ii) (., .)J is a positive semidefinite inner product, with the property

‖x‖J = 0 ⇔ x ∈ (X , [., .])◦ = (X , (., .)J)◦.

Hence, ‖.‖J is a norm, or equivalently (., .)J is positive definite, if and only if the
space X is nondegenerated.
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1 Preliminaries

(iii) J |X+ = IX+, J |X− = − IX− and (J |X+

.
+X−)2 = IX+

.
+X−.

Especially, we have J2 = I if X is nondegenerated.

For all x, y ∈ X we have

(iv) [JJx, y] = [x, y], (JJx, y)J = (x, y)J

(v) (Jx, y)J = [x, y]

(vi) [Jx, Jy] = [x, y], (Jx, Jy)J = (x, y)J

Proof. Every x ∈ X can be written as x = P+x+P−x+x0 for a certain isotropic element
x0. Since isotropic elements can be omitted in the inner product, we have for all x, y ∈ X

[Jx, y] = [P+x− P−x, P+y + P−y] = [P+x, P+y]− [P−x, P−y] =

= [P+x+ P−x, P+y − P−y] = [x, Jy].

The same property holds true for (., .)J , due to

(Jx, y)J = [JJx, y] = [Jx, Jy] = (x, Jy)J . (1.1)

Since J is linear, we clearly have that (., .)J is linear in the first argument. In fact, (., .)J
is an inner product, due to

(x, y)J = [Jx, y] = [x, Jy] = [Jy, x] = (y, x)J ,

for all x, y ∈ X . The inner product (., .)J is positive semidefinite, since we have for all
x ∈ X

(x, x)J = [Jx, x] = [P+x− P−x, P+x+ P−x] = [P+x, P+x]︸ ︷︷ ︸
≥0

− [P−x, P−x]︸ ︷︷ ︸
≤0

≥ 0.

Furthermore, an element x is neutral with respect to (., .)J , i.e. (x, x)J = 0, if and
only if [P+x, P+x] = 0 and [P−x, P−x] = 0. This is the case, by definition of a definite
subspace, if and only if P+x = 0 = P−x, i.e. x ∈ (X , [., .])◦.

This proves that the neutral subspace with respect to (., .)J coincides with (X , [., .])◦.
By Corollary 1.1.3, this is further equal to (X , (., .)J)◦. The calculation

J2 = (P+ − P−)(P+ − P−) = P+P+ − P+P− − P−P+ + P−P− = P+ + P−,

shows (iii). This directly implies (iv), since isotropic elements can be omitted in both
inner products. Item (v) follows from equation (1.1) together with (iv). Finally, (vi)
follows from (iv) and (i)

[Jx, Jy] = [JJx, y] = [x, y]

(Jx, Jy)J = (JJx, y)J = (x, y)J .
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1 Preliminaries

In order to study continuous linear operators, we need to endow an inner product space
with a topology. A good topology on an inner product space fits not only to the vector
space but also to the inner product.

Definition 1.1.8. A triple (X , [., .], T ) consisting of an inner product space (X , [., .])
and a topology T on X is called a topological inner product space, if

(i) (X , T ) is a topological vector space, i.e. vector addition and scalar multiplication
are continuous.

(ii) the map [., .] : X × X → C is continuous with respect to the product topology on
X × X .

Remark 1.1.9. For a subset of an inner product space Y ⊆ X , the orthogonal companion
Y [⊥] can be written as

Y [⊥] = {x ∈ X | [x, y] = 0 for all y ∈ Y } =
⋂
y∈Y

ker(fy),

using the linear maps

fy :

{
X → C
x 7→ [x, y]

.

This shows that Y [⊥] is a linear subspace of X . Moreover, if we have a topology on
X , such that fy is continuous (for example, in a topological inner product space), we
conclude that Y [⊥] is closed.

Under which conditions does a topology on a given inner product space exists such that
(X , [., .], T ) is a topological inner product space and is it unique? We will not discuss
this question in general, since we are mainly interested in the special case of a Krein
space. We want to refer to [Bog, III, IV] for a general discussion of this topic.

One approach on decomposable inner product spaces X is to take the topology induced
by the semi-norm ‖x‖J :=

√
(x, x)J , cf. Definition 1.1.6. It can be shown that X becomes

a topological inner product space if endowed with that topology. But if one chooses a
different fundamental decomposition, one may get a different semi-norm, which may not
be equivalent to the previous one and could, therefore, induce a different topology. In
order to overcome these difficulties, we need more assumptions on the inner product
space.

Definition 1.1.10. An inner product space (K, [., .]) is called Krein space, if it is non-
degenerated and decomposable, such that the positive inner product space (K, (., .)J) is
complete for some fundamental symmetry J .

Remark 1.1.11. We know by Lemma 1.1.7 that (., .)J is positive for every fundamental
symmetry J if the space is nondegenerated. Thus, we have a family of pre-Hilbert
spaces (K, (., .)J̃) attached to a nondegenereated and decomposable inner product space

K where J̃ runs through all fundamental symmetries. The inner product space is a Krein
space, per definitionem, if one of these pre-Hilbert spaces is actually a Hilbert space.

In fact, the situation is as follows: Either none or all of those pre-Hilbert spaces are
complete. In the last case, all Banach space norms ‖.‖J̃ are equivalent, and therefore
induce the same topology on K.
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1 Preliminaries

Theorem 1.1.12. Let K be a Krein space, and let J denote the fundamental symmetry
from Definition 1.1.10. Let J ′ be an arbitrary fundamental symmetry. Then the norms
‖.‖J and ‖.‖J ′ are equivalent.

Consequently, also ‖.‖J ′ is complete and Definition 1.1.10 does not depend on the
specific fundamental decomposition.

Proof. At first, we want to show that both P ′+ and P ′− and, therefore, also J ′ = P ′+−P ′− :
K → K are continuous with respect to ‖.‖J . In fact, we will show that P ′+ as well as P ′−
have closed graphs. Then, the continuity follows directly from the closed graph theorem,
since ‖.‖J is complete.

So take a sequence of pairs (xn, P
′
+xn), such that xn → x and P ′+xn → y with respect

to ‖.‖J for n → ∞. We have to show P ′+x = y. Note that both ran(P ′+) = K′+ and

ker(P ′+) = K′− are closed with respect to ‖.‖J . This follows from K′+
[⊥] = K′− and

K′−
[⊥] = K′+, using Remark 1.1.9. We deduce y ∈ K′+. Moreover, xn−P ′+xn ∈ K′− for all

n ∈ N implies limn→∞ xn−P ′+xn = x− y ∈ K′−, i.e. P ′+x = P ′+y = y. We conclude that
P ′+ has a closed graph, and is, therefore, continuous with respect to ‖.‖J . An similar
argument shows that P ′− is continuous as well.

The continuity of J ′ and the property ‖Jx‖J = ‖x‖J , cf. Lemma 1.1.7 (vi), give

‖x‖2J ′ = [J ′x, x] = (JJ ′x, x)J ≤ ‖JJ ′x‖J‖x‖J = ‖J ′x‖J‖x‖J ≤ C‖x‖2J ,

which yields to the first inequality

‖x‖J ′ ≤ C ′‖x‖J . (1.2)

To achieve the other inequality, we consider the linear operator T := J ′J . Clearly, T
is continuous with respect to ‖.‖J , since we have just shown that J ′ is continuous and
J is even an isometry with respect to ‖.‖J . We claim that T is also continuous with
respect to ‖.‖J ′ . First, we note

(Tx, y)J ′ = (J ′Jx, y)J ′ = [Jx, y] = [x, Jy] = [x, J ′Ty] = [J ′x, Ty] = (x, Ty)J ′ .

From this, we derive for m ∈ N

‖T 2mx‖2J ′ = (T 2mx, T 2mx)J ′ = (T 2m+1
x, x)J ′ ≤ ‖T 2m+1

x‖J ′‖x‖J ′ . (1.3)

Now, we use induction to show

‖Tx‖2nJ ′ ≤ ‖T 2nx‖J ′‖x‖2
n−1
J ′ . (1.4)

In the base case n = 1, (1.4) follows directly from (1.3), setting m = 0. Assuming (1.4)
to be true for n, we get

‖Tx‖2n+1

J ′ =
(
‖Tx‖2nJ ′

)2 (1.4)

≤ ‖T 2nx‖2J ′‖x‖
2(2n−1)
J ′

(1.3)

≤

≤ ‖T 2n+1
x‖J ′‖x‖

2(2n−1)+1
J ′ = ‖T 2n+1

x‖J ′‖x‖2
n+1−1
J ′ .

Thus, (1.4) is true for all n ∈ N. We rewrite this identity in order to get the asserted
continuity of T :
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1 Preliminaries

‖Tx‖J ′ ≤ ‖T 2nx‖2−nJ ′ ‖x‖1−2−n

J ′

(1.2)

≤ C2−n‖T 2nx‖2−nJ ‖x‖1−2−n

J ′ ≤

≤ C2−n
(
‖T‖2n‖x‖

)2−n
J
‖x‖1−2−n

J ′ = C2−n‖T‖‖x‖2−nJ ‖x‖1−2−n

J ′
n→∞−→ ‖T‖‖x‖J ′

Using the continuity of T

‖x‖2J = [Jx, x] = [J ′Tx, x] = (Tx, x)J ′ ≤ ‖Tx‖J ′‖x‖J ′ ≤ ‖T‖‖x‖2J ′ ,

gives the desired inequality ‖x‖J ≤ D‖x‖J ′ , for some constant D > 0.

If not stated differently, we will always endow a Krein space K with the Krein space
topology induced by (., .)J , for some fundamental symmetry J .

Lemma 1.1.13. Let (K, [., .]) be a Krein space. Then, for all subsets M ⊆ K, we have
M⊥⊥ = M .

Proof. Let J be a fundamental symmetry. Due to [x, y] = (x, Jy)J = (Jx, y)J , we
have x ∈ M⊥ if and only if x ∈ (JM)(⊥), and if and only if Jx ∈ M (⊥). Here,
(⊥) denotes the orthogonal complement in the Hilbert space (K, (., .)J). The identity
M⊥ = (JM)(⊥) = JM (⊥) gives

M⊥⊥ =
(
JM (⊥)

)⊥
=
(
JJM (⊥)

)(⊥)
= M (⊥)(⊥) = M.

Example 1.1.14. We want to give an example of a Krein space.
Consider a Hilbert space (H, (., .)) and a self-adjoint bounded operator G ∈ B(H)

with 0 ∈ ρ(G). The map [x, y] := (Gx, y) defines an inner product on H, since G is
self-adjoint

[x, y] = (Gx, y) = (x,Gy) = (Gy, x) = [y, x].

We claim that (H, [., .]) is a Krein space.
For a x ∈ (H, [., .])◦ we have [x, y] = (Gx, y) = 0 for all y ∈ H, which implies Gx = 0.

Since G is injective, we get x = 0. Therefore, (H, [., .]) is nondegenerated.
In order to show that our space is in fact a Krein space, we are going to construct a

fundamental decomposition.
Due to the spectral theorem, there exists a spectral measure E on R, such that G =∫

σ(G) t dE(t). We define orthogonal projections via

P+ := E(R+) and P− := E(R−).

Clearly, we have P+P− = E(R+ ∩ R−) = E(∅) = 0 and P+ + P− = E(R+ ∪ R−) =
E(R \ {0}) = E(R) = I, as ranE({0}) = kerG = {0}. This decomposes H into the
direct and, with respect to (., .), orthogonal sum

H = ran(P+)
.

+ ran(P−).

9



1 Preliminaries

This decomposition is also orthogonal w.r.t [., .], since we have

[P+x, P−y] = (GP+x, P−y) = (P−GP+x, y) = 0,

due to

P−GP+ =

∫
1R−(t) dE(t)

∫
t dE(t)

∫
1R+(t) dE(t) =

∫
t · 1∅(t) dE(t) = 0.

Hence, we have found a fundamental decomposition with corresonding fundamental sym-
metry J = P+ − P−. It remains to show that the positive inner product

(x, y)J = [Jx, y] = (GJx, y)

is complete. This is true, since ‖.‖ and ‖.‖J are equivalent:

‖x‖2J = (x, x)J = (GJx, x) ≤ ‖G‖‖J‖‖x‖2 = C‖x‖2.

The other inequality follows from

‖x‖2 =(x, x) = [G−1x, x] = (JG−1x, x)J ≤ ‖JG−1x‖J‖x‖J =

=‖G−1x‖J‖x‖J ≤ C‖G−1x‖‖x‖J ≤ C‖G−1‖‖x‖‖x‖J = D‖x‖‖x‖J ,

after dividing by ‖x‖.
This is not only an example but rather a different approach to Krein spaces. It is

possible to start with a Hilbert space together with a so-called Gram operator G with
certain properties, and then define an inner product like above, rather than starting with
an inner product, like we did, and obtaining a Gram operator J and a Hilbert space in
the aftermath.

10



1 Preliminaries

1.2 Linear Relations

The main source for this section was [Kal2]. Without much effort, we generalized some
notions and results to Krein spaces. Other brief introductions to linear relations are
presented in [Sch] and [Neu].

Definition 1.2.1. Let X,Y be vector spaces. We call T a linear relation between X
and Y if T is a linear subspace of the Cartesian product X × Y , i.e. T ≤ X × Y .

Remark 1.2.2. Linear relations are a generalization of linear operators, simply by identi-
fying an operator T : X → Y with its graph. Clearly, not all linear relations are graphs
of operators. Just consider the linear relation X × Y or {0} × Y .

Definition 1.2.3. For a linear relation T ≤ X × Y , we define

domT := {x ∈ X : ∃y ∈ Y : (x; y) ∈ T}, the domain of T,

ranT := {y ∈ Y : ∃x ∈ Y : (x; y) ∈ T}, the range of T,

kerT := {x ∈ X : (x; 0) ∈ T}, the kernel of T,

mulT := {y ∈ Y : (0; y) ∈ T}, the multi-valued part of T.

Remark 1.2.4. All these sets are linear subsets of X or Y . If T is in fact a linear
operator, the above defined notions, excluding the multi-valued part, contain nothing
new and match to the usual ones.

Clearly, we have mulT = {0} if T is an operator. On the other hand, the next lemma
states that the condition mulT = {0} ensures that T can be interpreted to be the graph
of a linear operator.

Lemma 1.2.5. Let T ≤ X × Y be a linear relation. For each (x; y) ∈ T we have

{z ∈ Y : (x; z) ∈ T} = y + mulT.

Proof. For a z ∈ Y with (x; z) ∈ T we have (x; z) − (x; y) = (0; z − y) ∈ T . Therefore,
z − y ∈ mulT , i.e. z ∈ y + mulT .

On the other hand, take m ∈ mulT . The calculation (x; y) + (0;m) = (x; y +m) ∈ T
shows that y +m is contained in the left-hand side.

Definition 1.2.6. Let X,Y, Z be vector spaces, S, T ≤ X × Y , R ≤ Y × Z and α ∈ C.
Then we define

S + T := {(f ; g) ∈ X × Y : ∃g1, g2 ∈ Y : g = g1 + g2, (f ; g1) ∈ S, (f ; g2) ∈ T}
αT := {(f ;αg) ∈ X × Y : (f ; g) ∈ T}
T−1 := {(g; f) ∈ Y ×X : (f, g) ∈ T} and

RS := {(f ;h) ∈ X × Z : ∃g ∈ Y : (f ; g) ∈ S, (g;h) ∈ R}.

Remark 1.2.7. These notions are a direct generalization of the corresponding ones for
linear operators. One easily verifies that each of these lines defines a linear relation. As
usual, we are going to use the shortcut T + α for T + αI.

11
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Next, we want to present a way to transform linear relations, using 2-by-2 matrices.

Definition 1.2.8. For M :=
( α β
γ δ

)
∈ C2×2 we define

τM :

{
X ×X → X ×X

(f ; g) 7→ (δf + γg;βf + αg)
.

Lemma 1.2.9. We have the following properties for M,N ∈ C2×2.

(i) τM is a linear map.

(ii) τM ◦ τN = τMN

(iii) If detM 6= 0, we have (τM )−1 = τM−1.

(iv) If X is a topological vector space, τM is continuous.

Proof.

(i) This is obvious.

If one writes the elements of X ×X as vectors, i.e. (f ; g) =
(
f
g

)
, we can write τM

in block-operator form,

τM

(
f
g

)
=

(
δ IX γ IX
β IX α IX

)(
f
g

)
:=

(
δf γg
βf αg

)
.

(ii) Consider M :=
( α β
γ δ

)
and N :=

(
a b
c d

)
. With the notation from (i), we have

τN ◦ τM =

(
δ IX γ IX
β IX α IX

)(
d IX c IX
b IX a IX

)
=

=

(
(δd+ γb) IX (δc+ γa) IX
(βd+ αb) IX (βc+ αa) IX

)
= τNM .

(iii) This follows from (ii), due to

τM ◦ τM−1 = τMM−1 = τI = IX×X = τM−1 ◦ τM .

(iv) The continuity of τM is clear, since its components consist of scalar multiplications
and vector additions only.

Remark 1.2.10. For a linear relation T ≤ X ×X and a matrix M ∈ C2×2, we can look
at the subset τM (T ) ⊆ X × X. Since τM is a linear mapping, and since T is a linear
subset, we get that τM (T ) is also a linear subset of X ×X, i.e. a linear relation on X.
Directly from the definition of τM we see

dom τM (T ) = {δf + γg : (f ; g) ∈ T}, ran (τM (T )) = {βf + αg : (f ; g) ∈ T}.

12
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Remark 1.2.11. One can use the properties stated in Lemma 1.2.9 to perform elementary
calculations with linear relations. For example, we have

T−1 = τ( 0 1
1 0

)(T ),

λT = τ(λ 0
0 1

)(T ),

(T + µ) = τ( 1 µ
0 1

)(T ),

(t T + s) = τ( 1 s
0 1

)(
t 0
0 1

)(T ) = τ( t s
0 1

)(T ),

(T − µ)−1 = τ( 0 1
1 0

)(
1 −µ
0 1

)(T ) = τ( 0 1
1 −µ

)
I + µ(T − µ)−1 = τ(µ 1

0 1

)(
0 1
1 −µ

)(T ) = τ( 1 0
1 −µ

)
Later on, we are going to expand this idea of “moving” linear relations, using more

general linear mappings from X ×X to Y × Y , cf. Section 3.2.

Remark 1.2.12. We suppose that τM adapts its domain and codomain to its argument, in
the sense that we write τM (R) and τM (S) for linear relations on different vector spaces,
R ≤ X ×X and S ≤ Y × Y .

Furthermore, in the special case M =
(
α 0
0 δ

)
, we can interpret τM to have domain and

codomain X × Y . Then, τM (T ) ≤ X × Y is well-defined for a T ≤ X × Y .
Similarly, if M =

( 0 β
γ 0

)
and T ≤ X × Y , we get τM (T ) ≤ Y ×X.

Definition 1.2.13. Let X be a Banach space, and let T ≤ X ×X be a linear relation.
Then we call

ρ(T ) := {λ ∈ C ∪ {∞} : (T − λ)−1 ∈ B(X)} the resolvent set,
σ(T ) := (C ∪ {∞}) \ ρ(T ) the spectrum,
r(T ) := {λ ∈ C ∪ {∞} : (T − λ)−1 ∈ B(dom(T ))} the set of points

of regular type,

where we set (T −∞)−1 := T , dom(T −∞)−1 = domT .

Remark 1.2.14. Notice that (T − λ)−1 always exists as a linear relation. By definition,
we have λ ∈ ρ(T ) if and only if this linear relation is in fact an everywhere defined
bounded operator.

Furthermore, we want to remark that ∞ ∈ ρ(T ) if and only if T ∈ B(X). Although it
is not necessary to take also the point∞ into consideration when studying the spectrum,
this gives an harmonious overall picture.

For an invertible M =
( α β
γ δ

)
∈ C2×2, the mapping defined by

φM (z) :=
αz + β

γz + δ

is known as the Möbius transformation. By setting φM (∞) := α
γ , φM (− δ

γ ) :=∞, we get
a bijection from C ∪ {∞} to C ∪ {∞}. For another matrix N , one can easily verify the
well-known facts

φM ◦ φN = φMN and (φM )−1 = φM−1 .

13
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Comparing these identities with Lemma 1.2.9, one could suspect that the objects τM
and φM are related in some way. The proof of the next proposition can be found in
[Kal2] (Korollar 4.2.10.).

Proposition 1.2.15. Let T be a linear relation on X, and let M =
( α β
γ δ

)
∈ C2×2 be

invertible. Then we have

σ(τM (T )) = φM (σ(T ))

ρ(τM (T )) = φM (ρ(T ))

r(τM (T )) = φM (r(T ))

More relations between τM and φM will follow in Proposition 2.1.4 and Remark 2.1.7.

1.2.1 Linear Relations between Krein Spaces

Let (K1, [., .]1) and (K2, [., .]2) be two Krein spaces.

Definition 1.2.16. For a linear relation T ≤ K1 ×K2 we denote by

T ∗ := {(x; y) ∈ K2 ×K1 : [x, v]2 = [y, u]1 for all (u; v) ∈ T}

the adjoint relation of T . Where confusion may arise, we write T [∗] or T (∗) to indicate
with respect to which inner product we take the adjoint.

Remark 1.2.17. If both T and T ∗ happen to be operators, which exactly is the case for
operators T with dense domains, as we will learn in Lemma 1.2.18, we can write v = Tu
and y = T ∗x in Definition 1.2.16, and get the familiar-looking equation

[x, Tu]2 = [T ∗x, u]1,

which holds for all u ∈ domT , x ∈ domT ∗.

Lemma 1.2.18. Let T be a linear relation between two Krein spaces, T ≤ K1 ×K2.

(i) mulT ∗ = (domT )⊥, kerT ∗ = (ranT )⊥

(ii) (T−1)∗ = (T ∗)−1

Proof.

(i)
mulT ∗ = {y ∈ K1 : [0, v]2 = [y, u]1 for all (u; v) ∈ T} = (domT )⊥

kerT ∗ = {x ∈ K2 : [x, v]2 = [0, u]1 for all (u; v) ∈ T} = (ranT )⊥

(ii) We have (x; y) ∈ (T−1)∗ if and only if [x, u]1 = [y, v]2 for all (v;u) ∈ T−1, or
equivalent [x, u]1 = [y, v]2 for all (u; v) ∈ T . This is just the definition of (y;x) ∈
T ∗, or (x; y) ∈ (T ∗)−1.

14
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We examine the situation for bounded operators.

Proposition 1.2.19. Let (K, [., .]) be a Krein space and let T be a bounded operator
T ∈ B(K). Let J be a fundamental symmetry, and let T (∗) denote the adjoint of T in
the Hilbert space (K, (., .)J).

Then, we have T [∗] = JT (∗)J . In particular T [∗] is again a bounded operator on K.
Furthermore, we have ‖T [∗]‖ = ‖T‖, where ‖.‖ denotes the operator norm with respect
to ‖.‖J .

For S, T ∈ B(K) and λ, µ ∈ C we have

(λS + µT )[∗] = λ̄S[∗] + µ̄T [∗], (T [∗])[∗] = T, (ST )[∗] = T [∗]S[∗].

Proof. With Lemma 1.1.7, we have

[x, Tu] = (Jx, Tu)J = (T (∗)Jx, u)J = [JT (∗)Jx, u],

which gives T [∗] ⊇ JT (∗)J . Equality prevail due to mulT [∗] = (domT )⊥ = {0}. By
Lemma 1.1.7, J is an isometry with respect to ‖.‖J . This gives

‖T [∗]‖ = sup
x 6=0

‖T [∗]x‖J
‖x‖J

= sup
x6=0

‖JT (∗)Jx‖J
‖x‖J

= sup
x 6=0

‖T (∗)Jx‖J
‖Jx‖J

= ‖T (∗)‖.

The proposed calculation rules follow directly from the appropriate ones in the Hilbert
space.

Remark 1.2.20. For bounded linear operators T : K1 → K2 one can show, analo-
gously to Proposition 1.2.19, T [∗] = J1T

(∗)J2. Here, J1 and J2 denote the fundamental
symmetries of K1 and K2 respectively, and T (∗) denotes the Hilbert space adjoint of
T : (K1, (., .)J1)→ (K2, (., .)J2).

The next lemma will be needed later.

Lemma 1.2.21. For a bounded linear operator R : K1 → K2 between two Krein spaces
and a subset L ⊆ K2, we have

(R∗(L))⊥ = R−1
(
L⊥
)
.

Hereby, the symbol ⊥ on the left-hand side refers to K1, and on the right-hand side refers
to K2. With R−1(L⊥), we denote the inverse image of L⊥.

Proof. Clearly, we can write both sets as

(R∗(L))⊥ = {x ∈ K1 : [x,R∗l]1 = 0, for all l ∈ L}
R−1

(
L⊥
)

= {x ∈ K1 : [Rx, l]2 = 0, for all l ∈ L}.

Obviously, these sets coincide, due to [Rx, l]2 = [x,R∗l]1.

15



1 Preliminaries

We collect some more properties.

Lemma 1.2.22. Let T be a linear relation between two Krein spaces, T ≤ K1 ×K2.

(i) (RT )∗ ⊇ T ∗R∗ for all linear relations R ≤ K2 ×K3

(ii) (RT )∗ = T ∗R∗ for all bounded linear operators R : K2 → K3

(iii) (T +B)∗ = T ∗ +B∗ for all bounded operator B ∈ B(K1,K2)

(iv) T ∗ is closed.

(v) (T ∗)∗ = T

Proof.

(i) Take an arbitrary pair (x; z) ∈ T ∗R∗, i.e. (x; y) ∈ R∗ and (y; z) ∈ T ∗ for a certain
y ∈ K2. We want to show (x; z) ∈ (RT )∗. To this end, we need to verify

[x, e]3 = [z, c] for all pairs (c; e) ∈ RT.

For a fixed (c; e) ∈ RT we have (c; d) ∈ T and (d; e) ∈ R with a certain d ∈ K2.
Now, we have

[x, e]3 = [y, d]2 = [z, c]1.

The first equality sign holds due to (x; y) ∈ R∗ and (d; e) ∈ R, and the second
equality sign holds due to (y, z) ∈ T ∗ and (c; d) ∈ T .

(ii) Fix an arbitrary pair (x; z) ∈ (RT )∗, i.e.

[x, c]3 = [z, a]1 for all pairs (a; c) ∈ RT. (1.5)

We have to find an y ∈ K2, such that (x; y) ∈ R∗ and (y; z) ∈ T ∗, to conclude
(x; z) ∈ T ∗R∗. Since R∗ is an everywhere-defined operator, we have to take y :=
R∗x. In order to show (y; z) ∈ T ∗, we need to verify

[y, b]2 = [z, a]1 for all pairs (a; b) ∈ T.

Due to [x,Rb]3 = [R∗x, b]2 = [y, b]2, this follows from equation (1.5) applied to the
pair (a;Rb) ∈ RT .

(iii) We have (x; y) ∈ (T +B)∗, per definition, if [x, v]2 = [y, u]1 for all (u; v) ∈ B + T ,
or [x, v +Bu]2 = [y, u]1 for all (u; v) ∈ T . Due to

[x, v +Bu]2 = [y, u]1 ⇔ [x, v]2 = [y −B∗x, u]1,

this is equivalent to (x; y −B∗x) ∈ T ∗, and finally to (x, y) ∈ T ∗ +B∗.
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(iv) By definition, we have (x; y) ∈ T ∗ if and only if

[y, u]1 − [x, v]2 = [(x; y), (−v;u)]2,1 = 0, for all (u; v) ∈ T,

where [(a; b), (c; d)]2,1 := [a, c]2+[b, d]1 for a, c ∈ K2, b, d ∈ K1 denotes the sum inner
product on the product space K2×K1. Since we can write {(−v;u) : (u; v) ∈ T} as
the image of T under the linear operator τM : K1×K2 → K2×K1, (f ; g) 7→ (−g; f)
with M :=

(
0 −1
1 0

)
, we get

T ∗ = (τM (T ))⊥ ,

where ⊥ refers to the Krein space K2×K1. In particular, T ∗ is closed, cf. Remark
1.1.9.

(v) An easy calculation yields (τN )∗ = τN∗ for any matrix N =
( α β
γ δ

)
, where N∗ :=( α γ

β δ

)
.

We set again M :=
(

0 −1
1 0

)
. Elementary matrix calculus gives τM∗ = τM−1 and

(τM∗)
−1 = τM . Lemma 1.2.21 applied to R = τM∗ and L = T yields

T ∗ = (τM (T ))⊥ =
(
(τM∗)

∗(T )
)⊥

= (τM∗)
−1
(
T⊥
)

= τM
(
T⊥
)
. (1.6)

Since for M2 =
(−1 0

0 −1

)
we have τM2(R) = R for all linear relations R, we get

(T ∗)∗ = (τM (T ∗))⊥ =
(
τM
(
τM (T⊥)

))⊥
= T⊥⊥ = T .

The last identity follows from Lemma 1.1.13.

Lemma 1.2.23. For M =
( α β
γ δ

)
∈ C2×2, detM 6= 0 and a linear relation T ≤ K × K

we have
τM (T )∗ = τM (T ∗),

with M :=
( ᾱ β̄
γ̄ δ̄

)
. In particular, this gives(

(T − λ)−1
)∗

= (T ∗ − λ)−1 for all λ ∈ C, (1.7)

which yields σ(T ∗) = σ(T ).

Proof. The elements of τM (T ∗) can be written as (δ̄u + γ̄v; β̄u + ᾱv) with (u; v) ∈ T ∗.
The elements of τM (T ) can be written as (δx + γy;βx + αy) with (x; y) ∈ T . The
calculation

[δ̄u+ γ̄v , βx+ αy] = δ̄β̄[u, x] + γ̄β̄[v, x] + δ̄ᾱ[u, y] + γ̄ᾱ[v, y] =

= δ̄β̄[u, x] + γ̄β̄[u, y] + δ̄ᾱ[v, x] + γ̄ᾱ[v, y] = [β̄u+ ᾱv , δx+ γy],

shows that τM (T ∗) ⊆ τM (T )∗, for all matrices M and linear relations T .
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In order to show the other inclusion, we use, what we have just proven, with the
matrix M−1 and the linear relation τM (T ),

τ
M−1 (τM (T )∗) ⊆ τM−1(τM (T ))∗ = T ∗.

Applying τM on both sides, and using M−1 = M
−1

, reveals τM (T )∗ ⊆ τM (T ∗).
Equation (1.7) follows now by taking the matrix M :=

(
0 1
1 −λ

)
for all λ ∈ C, cf.

Remark 1.2.11.
Furthermore, we have λ ∈ ρ(T ) ∩ C if and only if (T − λ)−1 ∈ B(K). By Proposition

1.2.19, this is equivalent to
(
(T − λ)−1

)∗
being a bounded operator on K, i.e. λ ∈ ρ(T ∗).

At last, ∞ ∈ ρ(T ) means T ∈ B(K), which is equivalent to T ∗ ∈ B(K), i.e. ∞ ∈
ρ(T ∗).

Remark 1.2.24. We want to remark that equation (1.7) also directly follows from Lemma
1.2.18 and Lemma 1.2.22,(

(T − λ)−1
)∗

= ((T − λ)∗)−1 = (T ∗ − λ)−1.

Definition 1.2.25. We call a linear relation T ≤ K1 ×K2

·) isometric if T−1 ⊆ T ∗.

·) unitary if T−1 = T ∗.

In the case K1 = K2, we call T

·) symmetric if T ⊆ T ∗.

·) self-adjoint if T = T ∗.

By Lemma 1.2.23, we know that the spectrum of self-adjoint linear relations on Krein
spaces is symmetric with respect to the real line. In Hilbert spaces, self-adjointness gives
us even more.

Lemma 1.2.26. For a self-adjoint linear relation T ≤ H×H on a Hilbert space H, we
have σ(T ) ⊆ R ∪ {∞}.

Sketch of proof. We will not give a detailed proof, since this result is well-known. Still,
we want to give a sketch of this proof, because it is interesting to see why the proof fails
for Krein spaces.

The Cayley-transform is nothing but τM for the matrix M := 1√
2

(
1 −i
1 i

)
. More about

the notion of the Cayley-transform and a detailed version of this proof can be found in
[Kal2] (Korollar 4.3.16.).

The main idea is to look at the Cayley-transform of T , denoted by U . By the general
theory, the Cayley-transform maps self-adjoint linear relations to unitary linear relations,
i.e. U is unitary. One can show that all unitary linear relations on a Hilbert space are in
fact everywhere defined unitary linear operators. Being on a Hilbert space, the spectrum
of U is contained in the unit circle. One concludes the proof by calculating the spectrum
of the inverse-Cayley-transform of U , which is T , with the help of Proposition 1.2.15.
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Remark 1.2.27. The proof of Lemma 1.2.26 fails for Krein space, because there actually
are unitary linear relations U on Krein spaces whose spectrum is not contained in the
unit circle.

Example 1.2.28. Let B be a bounded operator on a Hilbert space H. We are going
to construct a Krein space K and a bounded self-adjoint operator A on K, such that
σ(A) = σ(B) ∪ σ(B).

This shows that the situation in Krein spaces really is more complex. Probably, one
can understand now better, why we need further assumptions about the linear relation
on a Krein space, besides being self-adjoint, in order to establish a spectral theorem.

As in Example 1.1.14, we start with a Hilbert space, namely the product space H×H
endowed with the sum scalar product (., .), and define a self-adjoint Gram-operator G
with 0 ∈ ρ(G) via G((x; y)) := (y;x). The operator G can be written in block-operator
form as

G =

(
0 IH

IH 0

)
.

As in Example 1.1.14, we get a Krein space (H × H, [., .]) by setting [., .] := (G., .).
Consider the operator A defined by A(x; y) := (Bx;B∗y), i.e.

A =

(
B 0
0 B∗

)
.

Easy manipulations on (A(x; y), (f ; g)) show that the H×H-Hilbert space adjoint of A
is given by

A(∗) =

(
B∗ 0
0 B

)
.

But with the Krein space inner product, one can verify [A(x; y), (f ; g)] = [(x; y), A(f ; g)],
i.e. A is self-adjoint in the Krein space K.

Due to the block-diagonal-form we have σ(A) = σ(B) ∪ σ(B∗) = σ(B) ∪ σ(B).
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2 The Functional Calculus for Rational
Functions

Consider a linear relation T on a Banach space X with non-empty resolvent set, and let
r be a rational function whose poles are in ρ(T ). The goal of this chapter is to define
the expression r(A) ∈ B(X), and show some properties, cf. Corollary 2.1.11.

Definition 2.0.1. Let r be a rational function, and let p, q ∈ C[z] be two relatively
prime polynomials such that r = p

q . We call λ ∈ C a pole of r, if q(λ) = 0. We define ∞
to be a pole of r if the condition deg p > deg q holds true.

Remark 2.0.2. Let r be a rational function, and denote by P ⊆ C ∪ {∞} the set of all
poles of r. Clearly, r is continuous on C \ P , in fact even holomorphic.

We remark that r can be continuously extended on (C∪{∞})\P , by setting r(∞) :=
lim|z|→∞ r(z) if ∞ /∈ P . Technically, C∪ {∞} is the one-point, or Alexandroff compact-
ification of C. The limit exists due to deg p ≤ deg q, and the continuity of r at ∞ is
clear by definition of r(∞). In the sequel, we will interpret r as a continuous function
on (C ∪ {∞}) \ P .

We present two approaches.

First, one can use an extension of the classical Riesz-Dunford functional calculus to
linear relations with non-empty resolvent sets. We will give a brief introduction to the
classical case and show how it can be extended to linear relations. This might feel a bit
unsatisfying, since we are going to use this powerful tool with rational functions only.
But if one is already familiar with this subject, it is a fast way to obtain the desired
functional calculus with all needed properties.

Secondly, we give an elementary approach using the partial fraction decomposition.

2.1 The Riesz-Dunford Functional Calculus

2.1.1 Classical Version

Definition 2.1.1. Let A be a unital Banach algebra, and fix a ∈ A. If f : G → C is
holomorphic on an open set G ⊇ σ(a), and Γ is a finite set of paths, such that

n(Γ, z) =

{
0, z ∈ C\G
1, z ∈ σ(a)

,

we define

f(a) :=
1

2πi

∫
Γ
f(ζ)(ζe− a)−1dζ ∈ A.
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The mapping f 7→ f(a) is called Riesz-Dunford functional calculus. Formally, the domain
of this calculus is defined as(

.⋃
σ(a)⊆G
G open

H(G)

)/
∼

=: H(σ(a)),

where H(G), for an open set G ⊆ C, denotes the set of all holomorphic functions f :
G→ C, and where ∼ is the equivalence relation

f ∼ g :⇐⇒ ∃O ⊆ C open : σ(a) ⊆ O ⊆ Gf ∩Gg and f |O = g|O,

whereby Gf and Gg denote the domains of f and g respectively.

Lemma 2.1.2. The Riesz-Dunford calculus is well-defined and has the following prop-
erties.

(i) (λf + µg)(a) = λf(a) + µg(a) for f, g ∈ H(σ(a)) and λ, µ ∈ C

(ii) (f · g)(a) = f(a)g(a) for f, g ∈ H(σ(a))

(iii) f(a)−1 = f−1(a) for f ∈ H(σ(a)) such that f(z) 6= 0 for all z ∈ σ(a)

(iv) σ(f(a)) = f(σ(a)) for f ∈ H(σ(a))

(v) (f ◦ g)(a) = f(g(a)) for g ∈ H(σ(a)), f ∈ H(σ(g(a)))

(vi) f(a) = ak if f(z) = zk, k ∈ N

(vii) If A is a Banach-*-algebra, then

f(a)∗ = f#(a∗),

with f#(z) := f(z).

Proof. These are classical results. We refer to [Rud, 240 ff.].
Properties (i) and (ii) are stated in [Rud, Theorem 10.27], for (iii) and (iv) see [Rud,

Theorem 10.28], for (v) see [Rud, Theorem 10.29] and (vi) is located in [Rud, Theorem
10.25]. We are going to give an explicit proof for the last statement (vii).

Recall that the line integral is defined as the limit of Riemann sums with respect to
tagged partitions such that the mesh converges to zero. Let a = ξ0 < . . . < ξn(R) = b be
a partition of the interval with tags αi ∈ [ξi, ξi+1]. We have

f(a)∗ =

(
1

2πi

∑
γ∈Γ

∫
γ
f(ζ)(ζe− a)−1dζ

)∗
=

=− 1

2πi

(∑
γ∈Γ

lim
|R|→0

n(R)∑
j=1

f(γ(αj))(γ(αj)e− a)−1(γ(ξj)− γ(ξj−1))

)∗
=
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=− 1

2πi

∑
γ∈Γ

lim
|R|→0

n(R)∑
j=1

f(γ(αj))(γ(αj)e− a∗)−1(γ(ξj)− γ(ξj−1)) =

=− 1

2πi

∑
γ∈Γ

lim
|R|→0

n(R)∑
j=1

f#(γ(αj))(γ(αj)e− a∗)−1(γ(ξj)− γ(ξj−1)) =

=− 1

2πi

∑
γ∈Γ

∫
γ
f#(ζ) (ζe− a∗)−1 dζ =

=
1

2πi

∫
−Γ
f#(ζ) (ζe− a∗)−1 dζ = f#(a∗),

with −Γ := {−γ | γ ∈ Γ}. In order to justify the last equality, we have to show that −Γ
is a suitable set of paths for a∗ ∈ A. This follows from σ(a∗) = σ(a) ⊆ G together with
n(−γ, z) = n(γ, z) for all z ∈ C\γ([a, b]), since we have

n(−γ, z) = − 1

2πi

∫ b

a

γ′(t)

γ(t)− z
dt =

1

2πi

∫ b

a

γ′(t)

γ(t)− z
dt = n(γ, z) = n(γ, z).

Remark 2.1.3. Most commonly, Definition 2.1.1 is applied to the Banach algebra B(X)
of bounded operators on a Banach space X.

In order to get a Banach-*-algebra and enrich the theory, cf. Lemma 2.1.2 (vii),
consider B(H) for a Hilbert space H, which constitutes in fact a C∗-algebra.

Finally, one can look at the set B(K) for a Krein space K. One possibility is to think
of K as a Hilbert space (K, (., .)J) and take the Banach-*-algebra B(K) as stated above.
Alternatively, by replacing the Hilbert-space adjoint T (∗) with the Krein-space adjoint
T [∗], one gets a different involution T 7→ T [∗], which also turns B(K) into a Banach-*-
algebra, since we have ‖T [∗]‖ = ‖T‖, cf. Proposition 1.2.19. Due to Lemma 2.1.2 (vii),
we have f(A)(∗) = f#(A(∗)) and f(A)[∗] = f#(A[∗]).

For a bounded operator B ∈ B(X) and a regular matrix M ∈ C2×2, we have on the
one hand the operator τM (B), cf. Definition 1.2.8, and on the other hand the bounded
operator φM (B), using the Riesz-Dunford calculus with the Möbius transformation φM
which fulfills φM ∈ H(σ(B)) if φM−1(∞) ∈ ρ(B). The same assumption gives ∞ ∈
φM (ρ(B)) = ρ(τM (B)), cf. Lemma 1.2.15, which means that also τM (B) is a bounded
operator. In fact, these operators coincide:

Proposition 2.1.4. For a bounded operator B ∈ B(X) and a regular matrix M ∈ C2×2,
such that φM−1(∞) ∈ ρ(B), holds

φM (B) = τM (B).

Proof. It is a classical result, see e.g. [Con, III Proposition 3.6], that every Möbius
transformation can be written as a composition of translations z 7→ z + µ, dilations
z 7→ λz, and the inversion z 7→ 1

z . These mappings correlate to the matrices
(

1 µ
0 1

)
,(

λ 0
0 1

)
and

(
0 1
1 0

)
.
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Therefore, we can write the matrix M as a product M = LIR, where L,R ∈ C2×2

are decompositions of dilations and translations and where I denotes the inversion,
I :=

(
0 1
1 0

)
.

At first, we point out that for N :=
(

1 µ
0 1

)
we have φN (T ) = τN (T ) for all bounded

operators T and all µ ∈ C. Due to Remark 1.2.11, we have τM (T ) = T +µ, and Lemma
2.1.2 applied to φM (z) = z + µ gives exactly the same. For matrices N corresponding
to a dilation, we can show φN (T ) = τN (T ) analogously.

Recall that we have both τA ◦ τB = τAB and φA ◦ φB = φAB for all A,B ∈ C2×2. We
start by deducing φR(B) = τR(B).

For the inversion I, one has to be a bit more carefully. Since z 7→ 1
z is not holomorphic

at z = 0, we have to make sure that 0 /∈ σ(φR(B)) = φR(σ(B)). Assume 0 ∈ φR(σ(B)),
i.e. φR−1(0) ∈ σ(B). Due to φI−1(∞) = 0, this would give φR−1(φI−1(∞)) ∈ σ(B).
Since∞ is a fixpoint of every dilation and translation, we have∞ = φL−1(∞) and arrive
at the contradiction φR−1(φI−1(φL−1(∞))) = φM−1(∞) ∈ σ(B).

Therefore, the expression φI(φR(B)) is well-defined and coincides with (φR(B))−1 due
to Lemma 2.1.2 (iii). This is further equal to τI(φR(B)) = τI(τR(B)) due to Remark
1.2.11.

Since L is only a composition of dilations and translations, we conclude

φM (B) = φL(φI(φR(B))) = φL(τI(τR(B))) = τL(τI(τR(B))) = τM (B).

2.1.2 An Extension to Linear Relations

There is a way to define the Riesz-Dunford calculus for linear relations T ≤ X ×X with
non-empty resolvent set, although they do not form a Banach algebra anymore.

Definition 2.1.5. Let T ≤ X × X be a linear relation with non-empty resolvent set,
and let f : G → C be a holomorphic function with σ(T ) ⊆ G ⊆ C ∪ {∞}, f ∈ H(G).
For an invertible M ∈ C2×2, such that φM−1(∞) ∈ ρ(T ), we define

f(T ) := (f ◦ φM−1) (τM (T )) ∈ B(X).

Remark 2.1.6. If G contains the point ∞, which is part of the assumption in the above
definition if T is not a bounded operator on X, we mean by “f is holomorphic on G,
f ∈ H(G)” that f is holomorphic on the open set G∩C and that z 7→ f(1

z ) is holomorphic
at z = 0.

We have to verify that f(T ) in Definition 2.1.5 is well-defined :

Since φM−1(∞) ∈ ρ(T ), we have ∞ ∈ φM (ρ(T )) = ρ(τM (T )), cf. Lemma 1.2.15.
This means that τM (T ) is a bounded operator on X. Now, we can apply the functional
calculus from above since

f ◦ φM−1 : φM (G)\{∞} → C

is holomorphic on the open set φM (G)\{∞}, which contains σ(τM (T )):

G ⊇ σ(T ) ⇒ φM (G) ⊇ φM (σ(T )) = σ(τM (T )).
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Note that ∞ /∈ σ(τM (T )). Thus, f(T ) is a well-defined element of B(X), for fixed M .
We have to show that the definition is independent of M . Take N,M ∈ C2×2 with

φN−1(∞), φM−1(∞) ∈ ρ(T ). Due to Proposition 2.1.4, we have

τN (T ) = τNM−1 (τM (T )) = φNM−1 (τM (T )) .

This gives

(f ◦ φN−1) (τN (T )) = (f ◦ φN−1) (φNM−1 (τM (T ))) =

= (f ◦ φN−1 ◦ φNM−1) (τM (T )) = (f ◦ φM−1) (τM (T )) .

Hence, the definition of f(T ) is independent of M .

Remark 2.1.7. The equality from Proposition 2.1.4 also holds true in this generalized
setting. In fact, for φM−1(∞) ∈ ρ(T ) we have

φM (T ) = (φM ◦ φM−1)(τM (T )) = (idC)(τM (T )) = τM (T ).

Most properties, stated in Lemma 2.1.2, also hold true for linear relations.

Lemma 2.1.8. Let T ≤ X ×X be a linear relation on X with non-empty resolvent set.
Then, the following properties hold true.

(i) (λf + µg)(T ) = λf(T ) + µg(T ) for λ, µ ∈ C and f, g ∈ H(σ(T ))

(ii) (f · g)(T ) = f(T )g(T ) for f, g ∈ H(σ(T ))

(iii) σ(f(T )) = f(σ(T )) for f ∈ H(σ(T ))

(iv) (f ◦ g)(T ) = f(g(T )) for g ∈ H(σ(T )), f ∈ H(σ(g(T )))

(v) If X is a Krein space and f ∈ H(σ(T )), we have f(T )∗ = f#(T ∗)

Proof. Most properties follow more or less directly using the corresponding property
from Lemma 2.1.2.

(i)
(λf + µg)(T ) = ((λf + µg) ◦ φM−1) (τM (T )) =

= (λ(f ◦ φM−1) + µ(g ◦ φM−1))(τM (T )) =

= λ(f ◦ φM−1)(τM (T )) + µ(g ◦ φM−1)(τM (T )) =

= λf(T ) + µg(T )

(ii) Analogous to (i).

(iii)
σ(f(T )) = σ

(
(f ◦ φM−1)(τM (T ))

)
= (f ◦ φM−1)(σ(τM (T ))) =

= (f ◦ φM−1)(φM (σ(T ))) = f(σ(T ))

(iv)
(f ◦ g)(T ) = (f ◦ g ◦ φM−1)(τM (T )) = f

(
(g ◦ φM−1)(τM (T ))

)
= f(g(T ))
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2 The Functional Calculus for Rational Functions

(v) f(T )∗ =
(
(f ◦ φM−1)(τM (T ))

)∗
= (f ◦ φM−1)#(τM (T )∗)

Lemma 1.2.23 states τM (T )∗ = τM (T ∗). Furthermore, the following easy property

(g ◦ h)#(z) = g(h(z)) = g#(h(z)) = g# ◦ h#(z),

together with φ#
N = φN , and M−1 = M

−1
gives

f(T )∗ = (f# ◦ φ
M
−1)(τM (T ∗)) = f#(T ∗).

The last equality uses the fact, that f# is holomorphic on σ(T ∗) = σ(T ) and that
the matrix M is suitable for the operator T ∗, in the sense that φ

M
−1(∞) ∈ ρ(T ∗),

which follows directly from φM−1(∞) ∈ ρ(T ).

Remark 2.1.9. The property from Lemma 2.1.2, concerning the function f(z) = zk with
k ∈ N, can obviously not be transformed, since f(z) is not holomorphic at ∞, and
therefore f(T ) cannot be defined if ∞ ∈ σ(T ).

Before we formulate the desired functional calculus, we give an almost trivial remark.

Remark 2.1.10. Let r be a rational function and let K ⊆ C ∪ {∞} be a closed and,
therefore, compact subset. We claim that r is bounded on K, denoted by r ∈ B(K), if
and only if all poles of r are contained in (C ∪ {∞}) \K.

Assume r ∈ B(K). Obviously, K does not contain any poles of r, since r is not even
defined at poles.

On other hand, assume P ⊆ (C ∪ {∞}) \K, or equivalent K ⊆ (C ∪ {∞}) \ P , where
P denotes the set of all poles of r. Recall that r : (C ∪ {∞}) \ P → C is continuous, cf.
Remark 2.0.2. Clearly, also the restriction r : K → C is continuous. As an image of a
compact set under a continuous map, r(K) is a compact subset of C, i.e. r is bounded
on K.

Corollary 2.1.11. Let T ≤ X × X be a linear relation on a Banach space X, with
nonempty resolvent set. Then, we have a functional calculus for rational functions,

Φrat :

{
C(z) ∩B(σ(T )) → B(X)

r 7→ r(T ) .

For all r1, r2 ∈ C(z) ∩B(σ(T )) and λ, µ ∈ C, we have

(i) (λr1 + µr2)(T ) = λr1(T ) + µr2(T ).

(ii) (r1r2)(T ) = r1(T )r2(T ).

(iii) σ(r(T )) = r(σ(T )).

(iv) r(T )∗ = r#(T ∗) if X is a Krein space.

In fact, (i) and (ii) state that Φrat constitutes an algebra homomorphism.
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Proof. Take r ∈ C(z) ∩ B(σ(T )). In order to apply the extended version of the Riesz-
Dunford calculus, we have to show that there exists a open subset G of σ(T ) such that
r is holomorphic on G.

For G we naturally take (C ∪ {∞}) \ P , where P denotes the set of all poles of r.
Clearly, p is holomorphic on C ∩G. In the case ∞ ∈ G, i.e. ∞ is no pole of r, it is left
to show that z 7→ r(1

z ) is holomorphic at z = 0. Setting m := deg q ≥ deg p, we have

z 7→ r
(

1
z

)
=
p
(

1
z

)
q
(

1
z

) =
p
(

1
z

)
zm

q
(

1
z

)
zm

.

Note that p̃(z) := p
(

1
z

)
zm and q̃(z) := q

(
1
z

)
zm are again polynomials. Furthermore,

the leading coefficient of q becomes the constant term of q̃, i.e. q̃(0) 6= 0. Due to the
continuity of q̃ there is actually an open neighborhood of zero, such that q̃ is not zero
on that neighborhood. Since p̃ is just a polynomial, this gives that r is holomorphic at
z = 0.

This proves C(z) ∩B(σ(T )) ⊆ H(σ(T )). Also, C(z) ∩B(σ(T )) is a linear subspace of
the Banach-algebra B(σ(T )), endowed with the supremum norm. But note that this is
not a closed subset. Also, B(σ(T )) is in general not a Banach-*-algebra with r 7→ r#,
since r# ∈ B(σ(T )).

Still, Φrat(r) = r(T ) ∈ B(K) is well-defined, and all stated properties follow directly
form Lemma 2.1.8.

Remark 2.1.12. For linear relations with empty resolvent set, we have that C(z)∩B(C∪
{∞}) consists only of constant functions. In this trivial case, Corollary 2.1.11 is still
true if we manually set (z 7→ λ)(T ) := λ I.
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2.2 An Elementary Approach

Let T ≤ K ×K be a linear relation on a Krein space K, and let r ∈ C(z) ∩ B(σ(T )) be
a rational function. We assume ∞ ∈ σ(T ). Denote by αi for i = 1, . . . , n the poles of r
with multiplicity γi. A partial fraction decomposition of r gives

r(z) = c+
n∑
i=1

γi∑
j=1

cij
(z − αi)j

, (2.1)

for some constants c, cij ∈ C. Since we have αi ∈ ρ(T ) for all i = 1, . . . , n, we can define
r(T ) via

r(T ) := c I +

n∑
i=1

γi∑
j=1

cij(T − αi)−j .

Clearly, r(T ) is a bounded operator, and this definition coincides with the one from
above. We have to check all properties, stated in Corollary 2.1.11, by hand.

Obviously, we have λr(T ) = (λr)(T ) for all λ ∈ C. To show the linearity, take
r1, r2 ∈ C(z) ∩ B(σ(T ). Consider the partial fraction decomposition of both rational
functions,

r1(z) = c+
n∑
i=1

γi∑
j=1

cij
(z − αi)j

,

r2(z) = d+
m∑
i=1

ηi∑
j=1

dij
(z − βi)j

.

Of course, we could have αi = βj for some i and j. If we add up these two equation,
and sum up those fractions which have the same denominator, we get just the partial
fraction decomposition of the sum r1 + r2. Trivially, rearrangement of that form can be
done without difficulty, since we have for αi = βj =: µ

cil(T − µ)−l + djl(T − µ)−l = (cil + djl)(T − µ)−l.

Therefore, we have r1(T ) + r2(T ) = (r1 + r2)(T ). Also, this calculus is compatible with
taking adjoints, since we have

r(T )∗ =

(
c I +

n∑
i=1

γi∑
j=1

cij(T − αi)−j
)∗

=

= c̄ I +

n∑
i=1

γi∑
j=1

c̄ij(T
∗ − ᾱi)−j = r#(T ∗).

The last equality sign follows directly from line (2.1) by complex conjugation. Finally,
we show the multiplicity of the calculus. Again, let r1 be

r1(z) = c+
n∑
i=1

γi∑
j=1

cij
(z − αi)j

,
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As a first step, we show (
r1 ·

1

z − α

)
(T ) = r1(T )(T − α)−1, (2.2)

for α ∈ ρ(T ). By linearity, we have(
r1(z) · 1

z − α

)
(T ) =

((
c+

n∑
i=1

γi∑
j=1

cij
(z − αi)j

)
· 1

z − α

)
(T ) =

=

(
c

1

z − α
+

n∑
i=1

γi∑
j=1

cij
(z − αi)j(z − α)

)
(T ) =

= c(T − α)−1 +
n∑
i=1

γi∑
j=1

(
cij

(z − αi)j(z − α)

)
(T ).

Therefore, in order to prove (2.2), it is sufficient to show(
(z − αi)−j(z − α)−1

)
(T ) = (T − αi)−j(T − α)−1. (2.3)

Though this seems to be trivial, it requires a proof. Recall that the left-hand side is
defined via the partial fraction decomposition of (z − αi)−j(z − α)−1. We are not going
to give a detailed proof of (2.3). One can compute the partial fraction decomposition
of the left-hand side of (2.3). If you use j-times the resolvent identity on the right-hand
side of (2.3), you end up with exactly the same expression.

By induction, we also have(
r1(z) · 1

(z − α)j

)
(T ) = r1(T )(T − α)−j . (2.4)

Now consider

r2(z) = d+
m∑
i=1

ηi∑
j=1

dij
(z − βi)j

.

Since we already know that the calculus is linear, we get, by equation (2.4),

(r1 · r2)(T ) =

(
r1(z) ·

(
d+

m∑
i=1

ηi∑
j=1

dij
(z − βi)j

))
(T ) =

=

(
d · r1(z) +

m∑
i=1

ηi∑
j=1

r1(z)
dij

(z − βi)j

)
(T ) =

= dr1(T ) +

m∑
i=1

ηi∑
j=1

(
r1(z)

dij
(z − βi)j

)
(T ) =

= dr1(T ) +

m∑
i=1

ηi∑
j=1

dijr1(T )(T − βi)−j =

= r1(T )

(
d I +

m∑
i=1

ηi∑
j=1

dij(T − βi)−j
)

= r1(T )r2(T ).
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3 Spectral Theorem for Definitizable Linear
Relations on Krein Spaces

We are going to make some final preparations and then approach the construction of the
spectral theorem in Krein spaces.

3.1 Spectral Theorem for Self-Adjoint Linear Relations on
Hilbert Spaces

We want to recall the well-known spectral theorem for unbounded self-adjoint operators
A : domA ⊆ H → H on a Hilbert space H.

A proof can be found, for example, in [Rud, Theorem 13.30 on page 348], in [Wer,
Theorem VII.3.2 on page 357], or in [Kal2, Satz 4.6.1 on page 96].

Theorem 3.1.1. Let H be a Hilbert space, and let A : domA ⊆ H → H be a self-adjoint
linear operator. Then, there exists a spectral measure E for 〈σ(A)∩R,B(σ(A)∩R),H〉,
such that

A =

∫
R
t dE(t). (3.1)

Especially, for µ ∈ ρ(A)\{∞}, we have

(A− µ)−1 =

∫
σ(A)∩R

1

t− µ
dE(t). (3.2)

Remark 3.1.2. Notice that the integrand on the right-hand side of (3.1) is not bounded.
In the classical case for bounded operators on a Hilbert space, we did only declare how
to integrate bounded and measurable functions with respect to a spectral measure. We
want to point out that it is not trivial to expand this functional calculus to unbounded
measurable functions.

Since we will not integrate unbounded measurable functions in the sequel, we are not
going to introduce this notion here. Again, we want to refer to [Rud], [Wer] or [Kal2].
In fact, we are only going to use (3.2).

Theorem 3.1.3. Let H be a Hilbert space, and let B be a self-adjoint linear relation
on H, with ∞ ∈ σ(B). Then, there exists a spectral measure E for 〈σ(B),B(σ(B)),H〉
such that

(B − µ)−1 =

∫
σ(B)

1

t− µ
dE(t)

holds for all µ ∈ ρ(B). Moreover, we have

r(B) =

∫
σ(B)

r(t) dE(t),

for all rational functions r which are bounded on σ(B), r ∈ C(z) ∩B(σ(B)).
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Proof. The idea of this proof, in a nutshell, is to look at the part of B which is actually
a self-adjoint linear operator (later called C) by dropping the multi-valued part. The
spectral measure for C, which exists by Theorem 3.1.1, can then be extended by taking
the multi-valued part into account, in order to obtain a spectral measure for B.

By Lemma 1.2.18, we have mulB = mulB∗ = (domB)⊥. We can write the Hilbert
space H as the direct and orthogonal sum H = domB(

.
+) mulB. For (x; y) ∈ B, Lemma

1.2.5 gives
{z : (x; z) ∈ B} = y + mulB = yd + mulB,

if one decomposes y in y = yd + ym with yd ∈ domB and ym ∈ mulB.
This motivates to look at the linear relation C := B ∩

(
domB × domB

)
. In fact, C

is a linear operator, since (0, y) ∈ C gives y ∈ mulB ∩ domB = {0}, i.e. mulC = {0}.
Furthermore, we have

B = C
.
� ({0} ×mulB) , (3.3)

where � denotes the sum of linear subspaces. (We cannot use the symbol +, because it
already stands for the sum of two linear relations, cf. Definition 1.2.6.) The right-hand
side of (3.3) is trivially contained in the left-hand side. To see the other inclusion, take
(x; y) ∈ B and mind the decomposition of y in y = yd+ym with yd ∈ domB, ym ∈ mulB,
which gives (x; y) = (x; yd) + (0; ym).

Additionally we get from C ⊆ domB×domB and {0}×mulB ⊆ mulB×mulB that
the sum in (3.3) is a direct sum. The linear mapping τM , cf. Definition 1.2.8, applied
to equation (3.3) gives

τM (B) = τM (C)
.
� τM ({0} ×mulB) , (3.4)

for all M ∈ C2×2.

We want to apply Theorem 3.1.1 to the linear operator C. But C is not necessarily
self-adjoint anymore, if you interpret C as a linear relation on H. In general, C is only
symmetric on H, since we have C ( B = B∗ ⊆ C∗. But we can interpret C as a linear
relation on the Hilbert subspace domB with the associated adjoint,

C∗,d = {(u; v) ∈ domB × domB
∣∣ (u, y) = (v, x) for all (x; y) ∈ C}. (3.5)

Obviously, we have C∗,d = C∗ ∩ domB × domB, which implies C ⊆ C∗,d.
Moreover, (3.4) applied to M :=

(
1 µ
0 1

)
gives

(B + µ) = (C + µ)
.
� ({0} ×mulB) . (3.6)

Since B is self-adjoint, we know that both defect indices of B are zero, i.e. dim ran(B−
i)⊥ = 0 and dim ran(B + i)⊥ = 0. Equation (3.6) gives

ran(B + µ) = ran(C + µ) + mulB,

for all µ ∈ C. Hence, ran(B + µ) being dense in H is equivalent to ran(C + µ) being
dense in domB. We conclude that the symmetric and closed operator C has also defect
indices (0, 0), and is, therefore, self-adjoint on the Hilbert space domB.
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In order to locate the spectrum of C, we make use of (3.4) one more time, with M :=(
0 1
1 −µ

)
, and get

(B − µ)−1 = (C − µ)−1
.
� (mulB × {0}) . (3.7)

Note that mulB × {0}, interpreted as a linear operator, is nothing but the zero-
operator on mulB and is trivially continuous. Therefore, the linear relation (C−µ)−1 ≤
domB × domB is a bounded operator on domB if and only if the linear relation (B −
µ)−1 ≤ H ×H is a bounded operator on H, i.e. σ(C) ∪ {∞} = σ(B). Clearly, we have
σ(C) ∩ R = σ(B) ∩ R and ρ(C) \ {∞} = ρ(B).

Due to the spectral theorem for unbounded self-adjoint operators on Hilbert spaces,
Theorem 3.1.1, applied to C, there exists a unique spectral measure Ẽ for 〈σ(B) ∩
R,B(σ(B) ∩ R), domB〉, such that

(C − µ)−1 =

∫
σ(B)∩R

1

t− µ
dẼ(t) (3.8)

holds for all µ ∈ ρ(B).
We extend Ẽ to a spectral measure E for 〈σ(B),B(σ(B)),H〉. To do so, denote by P

the orthogonal projection P : H → mulB onto mulB along domB and set E({∞}) := P .
More precisely, we define

E :


B(σ(B)) → B(H)

∆ 7→
{
Ẽ(∆)(I − P ) if ∞ /∈ ∆

Ẽ(∆ ∩ R)(I − P ) + P if ∞ ∈ ∆ .

It is elementary to check that E is indeed a spectral measure.
Finally, we are going to prove

r(B) =

∫
σ(B)

r(t) dE(t), (3.9)

for all rational functions whose poles are in ρ(B), i.e. r ∈ C(z)∩B(σ(B)). Considering a
partial fraction decomposition of r, and having in mind that both the left- and right-hand
side of (3.9) are linear and multiplicative in r, we see that it is enough to prove

(B − µ)−1 =

∫
σ(B)

1

t− µ
dE(t), and I =

∫
σ(B)

1 dE(t),

for all µ ∈ ρ(B). The second relation is clear due to∫
σ(B)

1 dE(t) = E(σ(B)) = Ẽ(σ(B) ∩ R)(I − P ) + P = IdomB(I − P ) + P = I.

Now fix a µ ∈ ρ(B) and write (3.7) as (B − µ)−1 = (C − µ)−1(I − P ). This gives

(B − µ)−1 =

∫
σ(B)∩R

1

t− µ
dẼ(t) (I − P ).

For the complex measures associated with the spectral measures, the relation

Ex,y(∆) = (E(∆)x, y) = (Ẽ(∆)(I − P )x, y) = Ẽ(I−P )x,y(∆)
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holds true, for x, y ∈ H and measurable ∆ ⊆ σ(B) ∩ R. Therefore, for a bounded
measurable function φ ∈ B(σ(B)) with φ(∞) = 0, we have(∫

φdE x, y

)
=

∫
φdEx,y =

∫
φdẼ(I−P )x,y =

(∫
φdẼ (I − P )x, y

)
,

for all x, y ∈ H, which implies
∫
φdE =

∫
φdẼ (I − P ). We conclude

(B − µ)−1 =

∫
σ(B)∩R

1

t− µ
dẼ(t) (I − P ) =

=

∫
σ(B)∩R

1

t− µ
dE(t) =

∫
σ(B)

1

t− µ
dE(t).
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3.2 Moving Linear Relations

Let V and K be two Krein spaces, and let T : V → K be a bounded linear operator. We
can consider T × T : V × V → K × K, (x; y) 7→ (Tx;Ty). Clearly, also T × T is linear
and bounded. Since both the inverse image and the image of a linear subspace under a
linear mapping are again linear subspaces, the map T × T can be used to ”move” linear
subspaces, i.e. linear relations.

A linear relation A on K can be transformed to a linear relation (T × T )−1(A) on V.
Analogously, a linear relation B on V can be moved to a linear relation (T × T )(B) on
K.

The study of this process yields useful tools, that we are going to use later in the
construction of the functional calculus. The whole section originates from [Kal1].

Lemma 3.2.1. Let T : V → K be a continuous linear mapping between two Krein spaces,
and let A and B be linear relations on K and B respectively.

(i) (T × T )(B) coincides with the composition of linear relations TBT−1.

(ii) (T × T )−1(A) coincides with the composition of linear relations T−1AT .

(iii) For all M ∈ C2×2 we have (T × T ) ◦ τM = τM ◦ (T × T ).

(iv) For invertible M ∈ C2×2 we have (T × T )−1
(
τM (A)

)
= τM

(
(T × T )−1(A)

)
.

(v) (T × T )−1(A) is closed if A is closed.

Proof.

(i) By the definition of compositions of relations, we have

(T × T )(B) = {(Tx;Ty) : (x; y) ∈ B}
= {(u; v) ∈ K2 | ∃x, y ∈ K : (u;x) ∈ T−1, (x; y) ∈ B, (y; v) ∈ T}
= TBT−1.

(ii) Similarly, we have

(T × T )−1(A) = {(x; y) ∈ V × V : (Tx;Ty) ∈ A}
= {(x; y) ∈ V2 | ∃u, v ∈ K : (x;u) ∈ T, (u; v) ∈ A, (v; y) ∈ T−1}
= T−1AT.

(iii) For M =
( α β
γ δ

)
we have

(T × T ) ◦ τM = (T × T ) ◦
(
δIV γIV
βIV αIV

)
=

(
δT γT
βT αT

)
=

=

(
δIK γIK
βIK αIK

)
◦ (T × T ) = τM ◦ (T × T ).
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(iv) Due to τ−1
M = τM−1 , we have

(T × T )−1 (τM−1(A)) = (T × T )−1
(
τ−1
M (A)

)
=
(
τM ◦ (T × T )

)−1
(A) =

=
(
(T × T ) ◦ τM

)−1
(A) = τ−1

M

(
(T × T )−1(A)

)
= τM−1

(
(T × T )−1(A)

)
.

Substitute M for M−1.

(v) As a inverse image of a closed subset under a continuous function (T ×T )−1(A) is
closed.

Corollary 3.2.2. For a linear relation A on K we have

ker
(
(T × T )−1(A)− λ

)
= T−1 ker (A− λ) ,

for all λ ∈ C ∪ {∞}. In particular, for λ =∞, i.e. mul(T × T )−1(A) = T−1(mulA).
Furthermore, we have σp

(
(T × T )−1(A)

)
⊆ σp(A) if T is injective.

Proof. For λ =∞, the claim follows from

x ∈ mul(T × T )−1(A) ⇔ (0, Tx) ∈ A ⇔ x ∈ T−1(mulA),

minding the convention (R − ∞)−1 := R. In order to treat the case λ ∈ C, we set
M :=

(
0 1
1 −λ

)
such that τM (R) = (R− λ)−1 for all linear relation R, cf. Remark 1.2.11.

Lemma 3.2.1 gives

ker
(
(T × T )−1(A)− λ

)
= mul τM

(
(T × T )−1(A)

)
=

mul(T × T )−1 (τM (A)) = T−1 (mul τM (A)) = T−1 ker(A− λ).

The last statement holds, since T−1 ker(A − λ) 6= {0} implies ker(A − λ) 6= {0}, for
injective T .

Lemma 3.2.3. Let T : V → K be a bounded linear operator between two Krein space V
and K, and let A and B be linear relations on K, µ ∈ C \ {0}. Then we have

(T × T )−1(µA) = µ(T × T )−1(A),

(T × T )−1(A+B) ⊇ (T × T )−1(A) + (T × T )−1(B),

(T × T )−1(AB) ⊇ (T × T )−1(A)(T × T )−1(B).

Proof. The first identity follows from Lemma 3.2.1, by considering τM for M :=
(

1 0
0 µ

)
.

To verify the second one, take an element (x; y) ∈ (T × T )−1(A) + (T × T )−1(B).
We have (Tx;Tu) ∈ A and (Tx;Tv) ∈ B for some u, v ∈ V with u + v = y. Since
Tu+ Tv = Ty, we get (Tx;Ty) ∈ A+B, i.e. (x; y) ∈ (T × T )−1(A+B).

The last claim follows from Lemma 3.2.1 and TT−1 ⊆ I:

(T × T )−1(A)(T × T )−1(B) = (T−1AT )(T−1BT ) ⊆ T−1ABT = (T × T )−1(AB)
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Remark 3.2.4. Let S : C → D be a linear operator between two vector spaces C and D,
and let A ≤ C × C and B ≤ D ×D be two linear relations.

The condition (S × S)(A) ⊆ B, which will arise in the sequel, clearly is equivalent to
A ⊆ (S × S)−1B = S−1BS. Applying S from the left yields SA ⊆ SS−1BS ⊆ BS, due
to SS−1 ⊆ I, for operators S.

On the other hand, SA ⊆ BS gives S−1SA ⊆ S−1BS = (S × S)−1(B), which yields
A ⊆ (S × S)−1(B), since I ⊆ S−1S if domS = C.

We have seen that (S × S)(A) ⊆ B is equivalent to the intertwining condition SA ⊆
BS. If A and B are everywhere defined operators, this condition is further equivalent
to SA = BS.

Remark 3.2.5. With the notation from Remark 3.2.4, let M ∈ C2×2 be any regular
matrix. We have

(S × S)(A) ⊆ B ⇔ (S × S)(τM (A)) ⊆ τM (B).

This equivalence holds true due to the fact that τM , from Definition 1.2.8, is bijective
with τM

−1 = τM−1 , and due to Lemma 3.2.1.
Together with Remark 3.2.4 we have shown SA ⊆ BS if and only if SτM (A) ⊆

τM (B)S, for all regular matrix M ∈ C2×2.

We already know that the spectrum of self-adjoint linear relations on Krein spaces -
in contrast to the situation in Hilbert spaces - is not contained in the real line. In fact,
this is not even true for bounded self-adjoint operators on Krein spaces, cf. Example
1.2.28.

Recall that for a positive operator A on a Hilbert space, we have σ(A) ⊆ [0,∞). The
next result states what is known about the spectrum of positive operators on Krein
spaces.

Theorem 3.2.6. Let (K, [., .]) be a Krein space, and let A : K → K be a bounded and
self-adjoint linear operator, such that [Ax, x] ≥ 0 for all x ∈ K, i.e. A is positive . Then
σ(A) ⊆ R.

Proof. We define by 〈x, y〉 := [Ax, y] a positive semidefinite inner product on K. In order
to get a pre-Hilbert space, we have to factor out the N := {x ∈ K | 〈x, x〉 = 0}, which
is a closed subspace since it coincides with the isotropic part, cf. Corollary 1.1.3.

Hence, the inner product, again denoted by 〈., .〉, is well-defined on the factor space
K/N by

〈x+N , y +N〉 := 〈x, y〉 for x, y ∈ K,
and is positive definite. The pre-Hilbert space (K/N , 〈., .〉) has a Hilbert space comple-
tion, denoted by (V, 〈., .〉).

Now, consider the canonical embedding ι : (K, [., .]) → (V, 〈., .〉) which denotes the
composition of the canonical surjection x 7→ x+N and the canonical embedding K/N →
V coming along with the completion. The linear operator ι is bounded and has dense
range.

Thus, T := ι∗ : (V, 〈., .〉) → (K, [., .]) is an injective operator due to kerT = ker ι∗ =
(ran ι)⊥ = {0}, cf. Lemma 1.2.18. Furthermore, for x, y in K we have

[TT ∗x, y] = 〈T ∗x, T ∗y〉 = 〈ιx, ιy〉 = 〈x, y〉 = [Ax, y],
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which gives TT ∗ = A. From

(T × T )−1(A) = T−1AT = T−1TT ∗T = T ∗T,

we learn that (T × T )−1(A) is a bounded and self-adjoint operator on V. Being on a
Hilbert space, we have σ((T × T )−1(A)) ⊆ R, cf. Lemma 1.2.26. For that reason, we
can set M :=

(
1 0
1 −λ

)
, for arbitrary λ ∈ C\R, and get a bounded operator on V via

τM
(
(T × T )−1(A)

)
= (T × T )−1 (τM (A)) =: B,

cf. Remark 1.2.11. Clearly, B can be written as B = I+λ(T ∗T−λ)−1 = T ∗T (T ∗T−λ)−1.
Until now, we constructed a Hilbert space V, moved A to V, and applied τM to get

B. Now, we move B back to the Krein-space using T ∗ : K → V. In fact, we set
C := (T ∗ × T ∗)−1(B).

The idea is, basically, to calculate domC in two different ways. By definition of C
and by Lemma 3.2.1, we get

C = (T ∗)−1BT ∗ = (T ∗)−1T ∗T (T ∗T − λ)−1T ∗ ⊇ T (T ∗T − λ)−1T ∗.

Note that the right-hand side is a bounded operator on V for all λ ∈ C \R. This gives
domC = K, since the domain of a superset can only get larger.

Easy manipulations give

C = (T ∗ × T ∗)−1τM
(
(T × T )−1(A)

)
= τM

(
(T ∗ × T ∗)−1(T × T )−1(A)

)
=

= τM
(
(TT ∗ × TT ∗)−1(A)

)
= τM

(
(A×A)−1(A)

)
= τM

(
A−1AA

)
=

= τM
((
I � ({0} × kerA)

)
A
)

= τM
(
A� ({0} × kerA)

)
Now, we can use Remark 1.2.10 to compute the domain of C, and get

domC = dom τM
(
A� ({0} × kerA)

)
=

= {−λf + g : (f ; g) ∈ A� ({0} × kerA)} = ran(A− λ) + kerA

We have shown ran(A − λ) + kerA = K for all λ ∈ C \ R. Note that we have
kerA ⊆ ran(A − λ) for all λ 6= 0. For x ∈ kerA simply set y := − 1

λx and note
(A− λ)y = x, i.e. kerA ⊆ ran(A− λ). We deduce ran(A− λ) = K for all λ ∈ C \ R.

Since A is self-adjoint, Lemma 1.2.18 gives ker(A − λ) = ran(A − λ)[⊥] = {0} for all
λ ∈ C\R. By the closed graph theorem, we get (A−λ)−1 ∈ B(K), i.e. C\R ⊆ ρ(A).

Lemma 3.2.7. Let T : V → K be a bounded linear operator between two Krein spaces
V and K. For a linear relation A ≤ K ×K, we have

((T ∗ × T ∗)(A))∗ = (T × T )−1(A∗).

In particular,
(
(T × T )−1(A∗)

)∗
is the closure of (T ∗ × T ∗)(A).
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Proof. For the proof, we need the following two facts.
First, we apply Lemma 1.2.21 to R = T × T : V × V → K × K, whereby V × V and
K×K are endowed with the respective sum inner product, and to L = A ⊆ K×K. This
gives (

(T ∗ × T ∗)(A)
)⊥

= (T × T )−1(A⊥).

Secondly, setting M :=
(

0 −1
1 0

)
, we have S∗ = τM (S⊥) = τM (S)⊥, for any linear

relation S, cf. (1.6). This gives

((T ∗ × T ∗)(A))∗ = τM

((
(T ∗ × T ∗)(A)

)⊥)
= τM

(
(T × T )−1(A⊥)

)
=

= (T × T )−1
(
τM (A⊥)

)
= (T × T )−1(A∗).

Proposition 3.2.8. Let T : V → K be a bounded linear operator between two Krein
spaces V and K, and let A ≤ K ×K be a closed linear relation on K satisfying

(TT ∗ × TT ∗)(A∗) ⊆ A.

Then the linear relation (T × T )−1(A)∗ is symmetric and coincides with the closure of
(T ∗ × T ∗)(A∗).

If V is in fact a Hilbert space, T is injective, and if C\σp(A) contains points from
both C+ and C−, the relation (T × T )−1(A) is self-adjoint.

Proof. (TT ∗ × TT ∗)(A∗) = (T × T )(T ∗ × T ∗)(A∗) ⊆ A implies (T ∗ × T ∗)(A∗) ⊆ (T ×
T )−1(A). Since the right-hand side is closed, we obtain from Lemma 3.2.7, using A∗∗ =
A = A, (

(T × T )−1(A)
)∗

= (T ∗ × T ∗)(A∗) ⊆ (T × T )−1(A).

Now let V be a Hilbert space, and assume that (T × T )−1(A)∗ is not self-adjoint, or
equivalently, not both defect numbers are zero. We know that for an arbitrary linear
relation R, we have ran(R − λ)⊥ = ker(R∗ − λ) for λ ∈ C. For a symmetric linear
relation R and non-real λ, the dimension of these subspaces of V only depends on the
half-plane which contains λ. Thus, a defect number of (T × T )−1(A)∗ being unequal to
zero, results in ker((T × T )−1(A) − λ) not being the nullspace for all λ in a half-plane,
i.e. σp((T × T )−1(A)) contains a half-plane. Since T is injective, Corollary 3.2.2 gives
σp((T × T )−1(A)) ⊆ σp(A), which contradicts the assumption concerning C\σp(A).

Remark 3.2.9. We are going to to recall some well-known facts, which will be needed in
the proof of the next lemma.

Let P ∈ B(H) be a positive operator on a Hilbert space H, i.e. (Px, x) ≥ 0 for all
x ∈ H. We write P1 ≤ P2 if P2 − P1 is positive, i.e. ((P2 − P1)x, x) ≥ 0 or equivalently
(P1x, x) ≤ (P2x, x) for all x ∈ H. Every positive Operator has a unique square root,
which can be declared via √

P :=

∫ √
t dE(t),

37



3 Spectral Theorem for Definitizable Linear Relations on Krein Spaces

where E denotes the spectral measure of P . Loewner’s Theorem states that P1 ≤ P2

implies
√
P1 ≤

√
P2 for all positive operators P1, P2. A proof of this theorem can be

found here [Mur, Theorem 2.2.6].
We want to remark that the square of a self-adjoint operator is always positive. Its

square root is denoted by |A|,

√
A2 =

√∫
t2 dE(t) =

∫
|t| dE(t) =: |A|.

Hereby, for all self-adjoint operators A and all x ∈ H the following inequality holds true,

|(Ax, x)| =
∣∣∣∣∫ t dEx,x(t)

∣∣∣∣ ≤ ∫ |t| dEx,x(t) = (|A|x, x).

Lemma 3.2.10. Let T : V → K be a bounded and injective linear operator between a
Hilbert space (V, [., .]V ) and a Krein space (K, [., .]K ) and assume A : K → K to be a
bounded linear operator, with (TT ∗ × TT ∗)(A∗) ⊆ A.

Then (T × T )−1(A) is a bounded and self-adjoint linear operator on V with

‖(T × T )−1(A)‖ ≤ ‖A‖.

Here, ‖.‖ on the left-hand side refers to the operator norm in V, and ‖.‖ on the right-
hand side refers to the operator norm in (K, ‖.‖J) for any fundamental symmetry J on
K.

Proof. Since σp(A) ⊆ σ(A) ⊆ K‖A‖(0), we have C\σp(A) ⊇ C\K‖A‖(0). Therefore,
C\σp(A) contains points from both C+ and C−. By Proposition 3.2.8, the linear relation
(T ×T )−1(A) is self-adjoint and is the closure of (T ∗×T ∗)(A∗). Due to Corollary 3.2.2,
we have mul(T × T )−1(A) = T−1(mulA) = kerT = {0}. Hence, (T × T )−1(A) is an
operator.

Take an arbitrary pair (x; y) ∈ (T ∗×T ∗)(A∗). Since we have x ∈ dom(T ∗×T ∗)(A∗) =
domT ∗A∗(T ∗)−1 ⊆ dom (T ∗)−1 = ranT ∗, we can write x = T ∗u for some u ∈ K. Due
to (T ∗ × T ∗)(A∗) ⊆ (T × T )−1(A), we get (Tx;Ty) = (TT ∗u;Ty) ∈ A, and hence

[y, x]V = [y, T ∗u]V = [Ty, u]K = [ATT ∗u, u]K.

Due to Remark 3.2.4, the assumption (TT ∗×TT ∗)(A∗) ⊆ A is equivalent to TT ∗A =
ATT ∗, i.e. B := ATT ∗ ∈ B(K) is self-adjoint.

Take any fundamental symmetry J on K. We have B(∗) = JB∗J , cf. Proposition
1.2.19, which gives (BJ)(∗) = JB(∗) = JJB∗J = B∗J = BJ , i.e. BJ ∈ B(K) is self-
adjoint with respect to (., .)J . Moreover, by definition of B and by Remark 1.2.20, we
have BJ = ATT ∗J = ATT (∗).

[ATT ∗u, u]K = [Bu, u]K = (Bu, Ju)J = (BJJu, Ju)J = (ATT (∗)Ju, Ju)J

Consider

(ATT (∗))2 = ATT (∗)ATT (∗) = ATT (∗)JJATT (∗) = ATT ∗JATT (∗) =
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= TT ∗A∗JATT (∗) = TT ∗JJA∗JATT (∗) = TT (∗)A(∗)ATT (∗). (3.10)

As a square of a self-adjoint operator, the operator in (3.10) is positive. The calculation

(TT (∗)A(∗)ATT (∗)x, x)J = (ATT (∗)x,ATT (∗)x)J = ‖ATT (∗)x‖2J ≤
≤ ‖A‖2‖TT (∗)x‖2J = ‖A‖2(TT (∗)x, TT (∗)x)J = ‖A‖2(TT (∗)TT (∗)x, x)J ,

shows that we have (ATT (∗))2 ≤ ‖A‖2TT (∗)TT (∗), where ‖A‖ is the operator norm of
A with respect to ‖.‖J . By Loewner’s Theorem, cf. Remark 3.2.9, we get |ATT (∗)| ≤
‖A‖TT (∗). Hence, for all (x; y) ∈ (T ∗ × T ∗)(A∗) we have

|[y, x]V | = |(ATT (∗)Ju, Ju)J | ≤ (|ATT (∗)|Ju, Ju)J ≤ ‖A‖(TT (∗)Ju, Ju)J =

= ‖A‖(TT ∗u, Ju)J = ‖A‖[TT ∗u, u]K = ‖A‖[T ∗u, T ∗u]V = ‖A‖[x, x]V .

Since (T ∗ × T ∗)(A∗) is dense in (T × T )−1(A), the inequality

|[y, x]V | ≤ ‖A‖ [x, x]V (3.11)

even holds true for all (x; y) ∈ (T × T )−1(A).

The spectral theorem for unbounded self-adjoint operators in Hilbert spaces, Theorem
3.1.1 applied to (T × T )−1(A) gives a spectral measure E for 〈R,B(R),V〉. In the
following, we need the well-known result that an element g ∈ V is in the domain of∫
φdE if and only if

∫
|φ|2 dEg,g <∞, see [Kal2, Lemma 4.5.4.] or [Rud, Lemma 13.23].

For any natural number n > ‖A‖ + 1, consider the interval ∆n := [‖A‖ + 1
n , n ] ⊆ R.

For x ∈ ranE(∆n), we have∫
|t|2 dEx,x(t) =

∫
∆n

|t|2 dEx,x(t) <∞,

which gives x ∈ dom(T × T )−1(A). Inequality (3.11) yields

‖A‖[x, x]V ≥ |[(T × T )−1(A)x, x]V | =
∫

∆n

t dEx,x(t) ≥

≥ (‖A‖+
1

n
)[E(∆n)x, x]V = (‖A‖+

1

n
)[x, x]V .

We conclude x = 0, i.e. ranE(∆n) = 0 and, therefore, E(∆n) = 0 for all n > ‖A‖. Since
E is σ-additive we also get E(

⋃
n>‖A‖∆n) = E((‖A‖,∞)) = 0.

In the same matter, we can show E((−∞,−‖A‖)) = 0. So E and, therefore, all
complex measures Ex,y are concentrated on the interval [−‖A‖, ‖A‖]. Also, for all mea-
surable functions φ the operators

∫
φdE depend only on the values of φ on [−‖A‖, ‖A‖].

Due to ∫
R
|t|2 dEx,x(t) =

∫
[−‖A‖,‖A‖]

|t|2 dEx,x(t) <∞,

we have dom(T × T )−1(A) = V. Since integrating bounded measurable functions with
respect to a spectral measure always gives bounded everywhere-defined operators, we
deduce (T × T )−1(A) ∈ B(V) from

(T × T )−1(A) =

∫
R
t dE(t) =

∫
t · 1[−‖A‖,‖A‖](t) dE(t)
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The numerical radius of (T × T )−1(A), i.e. the supremum of the absolute values of
the numbers in the numerical range, coincides with the operator norm ‖(T × T )−1(A)‖,
because (T × T )−1(A) is self-adjoint. Inequality 3.11 gives

‖(T × T )−1(A)‖ = sup
{
|[y, x]V | : (x; y) ∈ (T × T )−1(A), ‖x‖V = 1

}
≤ ‖A‖.

Theorem 3.2.11. Let T : V → K be a bounded and injective linear operator between a
Hilbert space (V, (., .)V) and a Krein space (K, [., .]K). Then

Θ :

{
(TT ∗)′ ⊆ B(K) → (T ∗T )′ ⊆ B(V)

C 7→ (T × T )−1(C)

constitutes a ∗-algebra homomorphism from the C*-algebra (TT ∗)′ ⊆ B(K) of all bounded
linear operators on K that commute with TT ∗, into (T ∗T )′ ⊆ B(V) with ‖Θ‖ ≤ 1.
Furthermore, we have Θ(I) = I, Θ(TT ∗) = T ∗T and

ker Θ = {C ∈ (TT ∗)′ : ranC ⊆ kerT ∗ = kerTT ∗}.

Additionally, (T ∗ × T ∗)(C) is densely contained in Θ(C) for all C ∈ (TT ∗)′, and we
have

T ∗C = Θ(C)T ∗. (3.12)

Proof. By Lemma 3.2.1, we have Θ(I) = (T × T )−1(I) = T−1T = I and Θ(TT ∗) =
T−1TT ∗T = T ∗T . It is also elementary to check, that for A,B ∈ (TT ∗)′ and µ ∈ C we
have µA,A+B,AB,A∗ ∈ (TT ∗)′. Likewise, also (T ∗T )′ is a C*-subalgebra of B(V).

We start by taking a self-adjoint A = A∗ ∈ (TT ∗)′ ⊆ B(K). In order to apply Lemma
3.2.10, we need to verify (TT ∗ × TT ∗)(A∗) ⊆ A. According to Remark 3.2.4 this is
equivalent to TT ∗A∗ = ATT ∗, which holds true for a self-adjoint operator A ∈ (TT ∗)′.
Hence, Lemma 3.2.10 gives that (T × T )−1(A) is a bounded and self-adjoint linear
operator on V. Also, (T ∗ × T ∗)(A) is densely contained in it. This yields

(T ∗T × T ∗T )(T × T )−1(A) ⊆ (T ∗ × T ∗)(A) ⊆ (T × T )−1(A),

which is, again due to Remark 3.2.4, equivalent to (T × T )−1(A) ∈ (T ∗T )′.
A general C ∈ (TT ∗)′ can be written as C = ReC + i ImC, with

ReC =
C + C∗

2
, ImC =

C − C∗

2i
.

Since ReC and ImC are self-adjoint operators in (TT ∗)′, we deduce that (T×T )−1(ReC)
and (T × T )−1(ImC) are self-adjoint operators in (T ∗T )′. Furthermore, Lemma 3.2.3
gives

(T × T )−1(C) = (T × T )−1(ReC + i ImC) ⊇
(T × T )−1(ReC) + i(T × T )−1(ImC), (3.13)
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where the right-hand side is an everywhere defined operator, and the left-hand side is
an operator, due to mul(T × T )−1(C) = T−1(mulC), cf. Corollary 3.2.2. Thus, we
obtain equality in (3.13). This yields Θ(C) ∈ (T ∗T )′. Repeating the argument with
C∗ = ReC − i ImC unveils

(T × T )−1(C∗) = (T × T )−1(ReC − i ImC) ⊇
(T × T )−1(ReC)− i(T × T )−1(ImC) = (T × T )−1(C)∗.

Once more, we obtain equality and conclude Θ(C)∗ = Θ(C∗).
The linearity follows in the same manner. For a µ ∈ C\{0} and an A ∈ (TT ∗)′ Lemma

3.2.3 gives Θ(µC) = µΘ(C). For µ = 0, Θ(0) = 0 is checked by hand. Furthermore,
for A,B ∈ (TT ∗)′ we have Θ(A + B) ⊇ Θ(A) + Θ(B) and Θ(AB) ⊇ Θ(A)Θ(B). As
before, we have everywhere defined operators on both sides, and, therefore, get equalities.
Hence, Θ is well-defined, linear, multiplicative and compatible with taking adjoints.

In order to find an estimate for the operator norm of Θ(C), we can reduce the situation
to self-adjoint C and use Lemma 3.2.10:

‖Θ(C)x‖2V =
(
Θ(C)x,Θ(C)x

)
V =

(
Θ(C∗C)x, x

)
V ≤ ‖Θ(C∗C)x‖V‖x‖V ≤

≤ ‖Θ(C∗C)‖‖x‖2V ≤ ‖C∗C‖‖x‖2V ≤ ‖C‖2‖x‖2V .

This yields ‖Θ‖ ≤ 1.
Lemma 3.2.7 states

((T ∗ × T ∗)(C))∗ = (T × T )−1(C∗) = Θ(C∗) = Θ(C)∗.

Taking adjoints gives (T ∗ × T ∗)(C) = Θ(C). In particular, Θ(C) = 0 is equivalent to
ran((T ∗ × T ∗)(C)) = {0}, i.e. T ∗y = 0 for all y ∈ ran(C), or equivalently ran(C) ⊆
kerT ∗ = kerTT ∗.

For all C ∈ (TT ∗)′ we have (T ∗×T ∗)(C) ⊆ Θ(C). By Remark 3.2.4, this is equivalent
to T ∗C = Θ(C)T ∗.

Corollary 3.2.12. In the setting of the last theorem, we have σ(Θ(C)) ⊆ σ(C), or
equivalently ρ(Θ(C)) ⊇ ρ(C), for all C ∈ (TT ∗)′.

Proof. We take a λ ∈ ρ(C), so (C −λIK)−1 ∈ B(K). Further, this operator also belongs
to (TT ∗)′: Since C, IK ∈ (TT ∗)′, we have that also (C − λIK) is an element of the
C*-algebra (TT ∗)′, i.e.

TT ∗(C − λIK) = (C − λIK)TT ∗.

We multiply this equation by (C − λIK)−1 from the left and from the right-hand side,
and obtain (C − λIK)−1 ∈ (TT ∗)′.

Now consider Θ
(
(C − λIK)−1

)
. The calculation,

Θ
(
(C − λIK)−1

)
Θ
(
(C − λIK)

)
= Θ

(
(C − λIK)−1(C − λIK)

)
= Θ(IK) = IV ,

reveals that Θ
(
(C − λIK)−1

)
=
(
Θ(C − λIK)

)−1
=
(
Θ(C) − λIV

)−1
hold, i.e. λ ∈

ρ(Θ(C)).
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The next theorem is a version of Theorem 3.2.11 for linear relations.

Theorem 3.2.13. Let T : V → K be a continuous and injective mapping between a
Hilbert space (V, (., .)V) and a Krein space (K, [., .]K). Define the sets

(TT ∗)′rel := {C ≤ K ×K | ρ(C) 6= ∅, TT ∗C ⊆ CTT ∗} and

(T ∗T )′rel := {D ≤ V × V | ρ(D) 6= ∅, T ∗TD ⊆ DT ∗T} .

These sets are closed under taking adjoints, and

Θrel :

{
(TT ∗)′rel → (T ∗T )′rel

C 7→ (T × T )−1(C)

fulfills Θ(C)∗rel = Θrel(C
∗), and σ(Θrel(C)) ⊆ σ(C).

Furthermore, for all C ∈ (TT ∗)′rel and all regular M ∈ C2×2 such that τM (C) is a
bounded operator on K, we have

T ∗τM (C) = τM (Θrel(C))T ∗.

For all rational function h whose poles are in ρ(C), i.e. h ∈ C(z) ∩B(σ(C)), we have

T ∗h(C) = h(Θrel(C))T ∗.

Proof. Note that the sets (TT ∗)′rel and (T ∗T )′rel, are not linear any more, since ρ(C1C2)
and ρ(C1 + C2) could be empty for C1, C2 ∈ (TT ∗)′rel. But still, we have C∗ ∈ (TT ∗)′rel

for C ∈ (TT ∗)′rel. The resolvent set is not empty due to ρ(C∗) = ρ(C), cf. Lemma
1.2.23. Taking adjoints yields

C∗TT ∗ = (TT ∗C)∗ ⊇ (CTT ∗)∗ ⊇ TT ∗C∗,

cf. Lemma 1.2.22. Analogous, (T ∗T )′rel is closed under taking adjoints.
For all C ∈ (TT ∗)′rel and all regular M ∈ C2×2, we have

Θrel(C) = τM−1 (Θrel (τM (C))) ,

due to Lemma 3.2.1. This identity is especially useful if you choose M such that τM (C)
is a bounded operator on K. This can always be achieved by taking M :=

(
0 1
1 −µ

)
for

µ ∈ ρ(C) ∩ C. Note that the case ρ(C) = {∞} cannot occur, since the resolvent set is
always an open subset of C ∪ {∞}.

We claim that τM (C) ∈ (TT ∗)′, whenever τM (C) is a bounded operator on K. Note
that C ∈ (TT ∗)′rel gives TT ∗C ⊆ CTT ∗, which is, by Remark 3.2.5, equivalent to
TT ∗τM (C) ⊆ τM (C)TT ∗. Under the assumption τM (C) ∈ B(K), we have everywhere-
defined operators on both sides and, therefore, equality holds, i.e. τM (C) ∈ (TT ∗)′. In
this case, we can write

Θrel(C) = τM−1 (Θ (τM (C))) . (3.14)

Making use of Theorem 3.2.11, we get that Θ (τM (C)) = τM (Θrel(C)) is an element
of (T ∗T )′, i.e. T ∗T τM (Θrel(C)) = τM (Θrel(C))T ∗T . Again, Remark 3.2.5 applied
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to τM−1 gives T ∗T Θrel(C) ⊆ Θrel(C)T ∗T , i.e. Θrel(C) ∈ (T ∗T )′rel. This shows that
Θrel : (TT ∗)′rel → (T ∗T )′rel is well-defined.

In order to show that Θrel is compatible with taking adjoints, fix C ∈ (TT ∗)′rel and
choose M according to C, such that τM (C) ∈ (TT ∗)′. Equation (3.14), Lemma 1.2.23
and Theorem 3.2.11 give

Θrel(C)∗ =
(
τM−1 ◦Θ ◦ τM (C)

)∗
= τ

M
−1

(
Θ(τM (C))

)∗
=

= τ
M
−1

(
Θ (τM (C)∗)

)
= τ

M
−1

(
Θ
(
τM (C∗)

))
= Θrel(C

∗).

In the same fashion, we get

σ(Θrel(C)) = σ
(
τM−1 ◦Θ ◦ τM (C)

)
= φM−1

(
σ
(
Θ(τM (C))

))
⊆

⊆ φM−1

(
σ (τM (C))

)
= φM−1 (φM (σ(C))) = σ(C),

cf. Proposition 1.2.15.
For the next statement, consider again C ∈ (TT ∗)′rel and M ∈ C2×2 such that τM (C) ∈
B(K). Recall that we actually have τM (C) ∈ (TT ∗)′. Using equation (3.14) and the
appropriate result from Theorem 3.2.11 gives

T ∗τM (C) = Θ(τM (C))T ∗ = τM
(
Θrel(C)

)
T ∗. (3.15)

Finally, let h be a rational function whose poles are in ρ(C) ⊆ ρ(Θrel(C)). Both h(C)
and h(Θrel(C)) are bounded operators.

In the case∞ ∈ σ(C), a partial fraction decomposition of h reveals that it is sufficient
to prove

T ∗(C − µ)−1 = (Θrel(C)− µ)−1T ∗, (3.16)

for all µ ∈ ρ(C). For the constant term, which may appear in the partial fraction
decomposition, we trivially have T ∗I = IT ∗. Equation (3.16) follows directly from
(3.15), setting M :=

(
0 1
1 −µ

)
In the case ∞ ∈ ρ(C), i.e. C ∈ B(K), the situation is different, because h could have

a pole at ∞. However, in this case equality holds in TT ∗C ⊆ CTT ∗, i.e. C ∈ (TT ∗)′.
The assertion follows now directly from Theorem 3.2.11.
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3.3 Definitizable Linear Relations

Remark 3.3.1. For a linear relation A and a polynomial p ∈ C[z], we can define a linear
relation p(A) by using the definition of the sum and the composition of linear relations,
as well as the multiplication by scalars, cf. Definition 1.2.6.

In fact, for p(z) =
∑n

i=0 biz
i with bn 6= 0, we define the p(A) :=

∑n
i=0 biA

i. Clearly,
we have dom p(A) =

⋂n
i=0 domAi = domAn.

Be warned that e.g. p(A) + q(A) 6= (p+ q)(A) if deg(p+ q) < max{deg p,deg q}.

Definition 3.3.2. A self-adjoint linear relation A ≤ K×K on a Krein space K is called
definitizable if there exists a polynomial p(z) ∈ C [z] of degree n, such that

[y, x] ≥ 0 (3.17)

holds for all pairs (x; y) ∈ p(A). In this case, p is called a definitizing polynomial of A.

The next lemma is a generalization of [Jon, Lemma 1].

Lemma 3.3.3. Let p ∈ C[z] be a polynomial with deg p = n, and let A ≤ K × K be
a self-adjoint linear relation on a Krein space K with non-empty resolvent set. For an
arbitrary µ ∈ ρ(A), consider the rational function

r(z) :=
p(z)

(z − µ)n(z − µ)n

and the corresponding bounded operator r(A).
Then we state that r(A) is positive, i.e. [r(A)x, x] ≥ 0 for all x ∈ K, if and only if A

is definitizable, with definitizing polynomial p.
In this case, and under the additional assumption p ∈ R[z], we have σ(A) ⊆ R ∪

p−1({0}). In particular, σ(A)\R consists of only finitely many points lying symmetrically
with respect to the real axis.

Proof. For x ∈ K we have
(
(A − µ)−k−1x; (A − µ)−kx + µ(A − µ)−k−1x

)
∈ A, and in

turn (
(A− µ)−kx;

k∑
j=0

(
k

j

)
µj(A− µ)−jx

)
∈ Ak .

Writing p(z) = b0 + · · ·+ bnz
n with bn 6= 0, this gives

(
(A− µ)−nx;

n∑
k=0

bk

k∑
j=0

(
k

j

)
µj(A− µ)−j−n+kx

)
∈ p(A) . (3.18)

To improve the readability, we denote the pair in (3.18) as ((A − µ)−nx; Ψ(A)x), with
the bounded linear operator Ψ(A) :=

∑n
k=0 bk

∑k
j=0

(
k
j

)
µj(A− µ)−j−n+k.

In fact, Ψ(z) for a complex variable z, is nothing but the partial fraction decomposition

of the rational function z 7→ p(z)
(z−µ)n , and Ψ(A) is the corresponding bounded operator,

cf. Corollary 2.1.11. What we have done so far, basically, was utilizing the fact p(A)(A−
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µ)−n ⊇ Ψ(A), which follows from (A−µ)(A−µ)−1 ⊇ I. Because the functional calculus
for rational functions is multiplicative, cf. Corollary 2.1.11, we have

[Ψ(A)x, (A− µ)−nx] = [(A− µ̄)−nΨ(A)x, x] = [r(A)x, x] for all x ∈ K. (3.19)

Now suppose that p is a definitizing polynomial of A. For all x ∈ K, we have
[r(A)x, x] ≥ 0 due to (3.19) and by definition of a definitizing polynomial applied to
the pairs in (3.18).

Before we prove the other implication, fix z ∈ σ(A) \ R and assume p(z) 6= 0 for a
real definitizing polynomial p. As we have just seen, r(A) is positive for all µ ∈ ρ(A).
In order to point out the dependence of µ, we are going to write rµ := r. Due to

rµ(A)∗ = r#
µ (A∗) = rµ(A), cf. Corollary 2.1.11, rµ(A) is also self-adjoint. Theorem 3.2.6

gives σ(rµ(A)) ⊆ R. Due to σ(rµ(A)) = rµ(σ(A)), cf. again Corollary 2.1.11, we deduce
rµ(z) ∈ R for all µ ∈ ρ(A).

Express rµ as

rµ(z) =
p(z)(z̄ − µ)n(z̄ − µ̄)n

|z − µ|2n|z − µ̄|2n
. (3.20)

The mapping ρ(A) \ {R, z, z̄} 3 µ 7→ (z̄ − µ)(z̄ − µ̄), as a mapping from an open subset
of R2 into R2, is a local diffeomorphism, due to the inverse function theorem. Hence, it
is open, as well as ρ(A) \ {R, z, z̄} 3 µ 7→ p(z)(z̄ − µ)n(z̄ − µ̄)n. Since the denominator
is real, this contradicts rµ(z) ∈ R for all µ ∈ ρ(A). We conclude σ(A)\R ⊆ p−1({0}).

Now, for the proof of the other implication, assume that r(A) is positive. We have
to show that [v, u] ≥ 0 for all (u; v) ∈ p(A). For pairs of the form (3.18), this is
immediately clear due to (3.19). We conclude the proof by showing that indeed all pairs
of (u; v) ∈ p(A) can be written as (3.18) for suitable x ∈ K:

Fix (u; v) ∈ p(A), and set Ψ := Ψ(A). Since u ∈ dom p(A) = domAn = dom(A−µ)n =
ran(A− µ)−n, we can find a x′ ∈ K such that u = (A− µ)−nx′. So far, we have

((A− µ)−nx′; Ψx′)− (u; v) = (0;w) ∈ p(A),

for w := Ψx′ − v ∈ mul p(A) = ker(A − µ)−n. We want to achieve w = 0 by choosing
x′ ∈ K more carefully. Define l := min{i ∈ N : (A − µ)−iw = 0} , l ≤ n, and let L be
the linear span of the set of vectors

L := span{w, (A− µ)−1w, (A− µ)−2w, . . . , (A− µ)−l+1w}.

Clearly, we have L ≤ mul p(A). Note that these vectors are linearly independent: If we
have

l−1∑
i=0

λi(A− µ)−iw = 0, λi ∈ C, (3.21)

we can apply the linear operator (A−µ)−l+1 on both sides and get λ0(A−µ)−l+1w = 0,
which implies λ0 = 0, due to the definition of l. Similarly, the operator (A − µ)−l+2

applied to equation (3.21) gives λ1 = 0, and induction shows the asserted linear inde-
pendence.
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Since Ψ is just a linear combination of the operators (A − µ)−i, i = 0, . . . n, we have
Ψ(L) ≤ L. Furthermore, it is clear that Ψ commutes with the operator (A−µ)−1. Now
we claim Ψ|L : L → L to be bijective. Consider an arbitrary element of the kernel of
Ψ|L.

0 = Ψ
( l−1∑
i=0

λi(A− µ)−iw
)

=
l−1∑
i=0

λiΨ
(
(A− µ)−iw

)
=

l−1∑
i=0

λi(A− µ)−iΨw

This is similar to (3.21). In fact, we can repeat the same argumentation once we know
l = min{i ∈ N : (A − µ)−iΨw = 0}. This is true, since we have (A − µ)−lΨw =
Ψ(A− µ)−lw = Ψ0 = 0 and (A− µ)−l+1Ψw = Ψ(A− µ)−l+1w = bn(A− µ)−l+1w 6= 0.

Hence, Ψ|L is bijective. So, we find an m ∈ L ≤ mul p(A), such that Ψm = w. Now
x := x′ −m ∈ K has the desired property,

((A− µ)−nx; Ψx)− (u; v) = ((A− µ)−nx′ − u; Ψx′ − w − v) = (0; 0).

This completes the proof, since all pairs (u; v) ∈ p(A) can now be written as (3.18)
and the positivity of r(A) gives [v, u] ≥ 0, due to (3.19).

Remark 3.3.4. In the following, we need the property σ(A) ⊆ R ∪ p−1({0}), i.e. we
would like to have a real definitizing polynomial. Given a definitizable linear relation
A ≤ K×K with a definitizing polynomial p ∈ C(z) - is it possible to pass over to a real
definitizing polynomial?

With the notation from Lemma 3.3.3, let r denote the rational function corresponding
to p. Due to

0 ≤ [r(A)x, x] = [x, r#(A)x] = [r#(A)x, x],

we see that r#(A) is also positive. Since r# is the rational function corresponding to
p#, Lemma 3.3.3 states that p# is also definitizing for A.

We are tempted to proclaim that a real definitizing polynomial was found with p+p#.
Obviously it is real, but it is not clear whether it is still definitizing for A or not.

In the special case deg(p+ p#) = max{deg p, deg p#}, i.e. the leading coefficient of p
is not an element of iR, we can actually show that p+ p# is again definitizing for A.

In fact, let p and q be two arbitrary definitizing polynomials for A, and assume deg(p+
q) = max{deg p,deg q} =: n. We claim that p + q is definitizing for A. Without loss of
generality assume deg q =: m ≤ n = deg p. Consider

r(z) :=
p(z) + q(z)

(z − µ)n(z − µ̄)n
=

p(z)

(z − µ)n(z − µ̄)n
+

p(z)

(z − µ)n(z − µ̄)n
.

By Lemma 3.3.3, it is sufficient to show that r(A) is positive. Let rp and rq denote the
rational functions corresponding to p and q, i.e.

rp(z) :=
p(z)

(z − µ)n(z − µ̄)n
, rq(z) :=

q(z)

(z − µ)m(z − µ̄)m
.

Obviously, we have r(z) = rp(z) + rq(z)(z − µ)−(n−m)(z − µ̄)−(n−m). Due to

[r(A)x, x] = [rp(A)x, x] + [rq(A)(A− µ)−(n−m)(A− µ̄)−(n−m)x, x] =
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= [rp(A)x, x] + [rq(A)(A− µ)−(n−m)x, (A− µ)−(n−m)x] ≥ 0,

p+ q is definitizable for A.
This proof fails if the leading coefficients cancel out. There may be definitizable linear

relations which only have definitizing polynomials with leading coefficient in iR.

Remark 3.3.5. In order to overcome the difficulties discussed in Remark 3.3.4, one could
try to change the definition of a definitizable linear relation. In fact, we could define
a self-adjoint linear relation A ≤ K × K to be a definitizable if there exists a rational
function r ∈ C(z) ∩ B(σ(A)) such that r(A) is positive. The rational function r could
be called definitizing rational function of A.

In this setting, r# is also a definitizing rational function of A, since r#(A) is again
positive. We can consider the sum r + r#, which is definitizing for A as well, due to
the linearity of the functional calculus for rational functions. Hence, without loss of
generality, we can assume to r = r#.

It should also be possible to establish a spectral theorem for definitizable linear rela-
tions with this generalized notion.
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3.4 The Functional Calculus

Let A be a definitizable linear relation on K with a real definitizing polynomial p of
degree n. By Lemma 3.3.3 we know σ(A) ⊆ R ∪ p−1({0}).
We fix the following notation for the rest of the chapter:

Denote by N(p) := {α1, . . . , αM} the set of all distinct zeros of p which belong to
σ(A), and let γi be the multiplicity of the zero αi, i = 1, . . . ,M . The zeros of p which
belong to ρ(A) will only play a minor part. We denote them by β1, . . . , βm and write ηi
for the multiplicity of the zero βi. We also set q(z) :=

∏m
i=1(z − βi)ηi . Then

p(z) =

m∏
i=1

(z − βi)ηi
M∏
i=1

(z − αi)γi = q(z)

M∏
i=1

(z − αi)γi .

Fix a non-real point λ0 ∈ ρ(A)\N(p) and consider, as in Lemma 3.3.3,

r(z) :=
p(z)

(z − λ0)n(z − λ0)n
∈ C(z).

We want to treat ∞ as a zero of r. Thus, we set αM+1 := ∞, γM+1 := n and N(r) =
N(p) ∪ {∞}.

Definition 3.4.1. For a Borel set L ⊆ C ∪ {∞}, we denote by B(L) the space of all
bounded and measurable functions g : L→ C.

We define the space of functions for which we will develop our functional calculus,

FI := C(z) ∩B(σ(A) ∪ I) + r ·B(σ(A) ∪ I)c.

Hereby, let I be a subset of ρ(A), which is symmetric with respect to the real line, such
that all points in N(r) are accumulation points of σ(A) ∪ I. We define B(σ(A) ∪ I)c to
be the set of all bounded and measurable functions on σ(A)∪ I which are continuous at
all points of N(r). See Figure 3.1 and Figure 3.2 for a schematic illustration.

Remark 3.4.2. The aim of this remark is to give an idea why we introduced the set I.
The representation of a function f ∈ FI as f = h + rg with h ∈ C(z) ∩ B(σ(A) ∪ I)

and g ∈ B(σ(A) ∪ I)c is not unique, since we have

h+ rg = (h+ rk) + r(g − k),

for all k ∈ C(z)∩B(σ(A)∪ I). Thus, given a f ∈ FI , we cannot expect to find a unique
g. But, up to a rational function, the function g is uniquely determined,

h1 + rg1 = h2 + rg2 ⇒ g1 − g2 ∈ C(z) ∩B(σ(A) ∪ I). (3.22)

This implication, which will later on guarantee that our functional calculus is well-
defined, does not hold true if one does not introduce the set I. The main reason for
the need of the set I is that the continuity of g at isolated points of σ(A), in particular
non-real points of σ(A), is a trivial condition.

We also want to point out that the continuity of g at the points N(r) is necessary,
because we divide by r in the proof of the implication in line (3.22), which, by the way,
is contained in the proof of Theorem 3.4.4, cf. (3.27).
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Figure 3.1: σ(A)

Figure 3.2: σ(A) ∪ I

Remark 3.4.3. The space FI is a vector space. Once endowed with the pointwise mul-
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tiplication of functions and the mapping FI → FI , f 7→ f#, it actually becomes a
*-algebra:

We check that FI is closed under multiplication by taking f1 = h1+rg1, f2 = h2+rg2 ∈
FI and calculating

f1f2 = h1h2 + r (g1h2 + g2h1 + rg1g2) .

Clearly, h1h2 is in C(z) ∩ B(σ(A) ∪ I). Since g1h2 + g2h1 + rg1g2 is bounded and
measurable on σ(A)∪ I and is continuous at every point of N(r), we conclude f1f2 ∈ F .

It is easy to check that f 7→ f# is a conjugate-linear involution. In order to show that
FI is closed under this mapping, consider

(h+ rg)# = h# + r#g# = h# + rg#.

Note that we have r = r#, since both enumerator and denominator are real polynomials.
Clearly, h# has no poles in σ(A) ∪ I = σ(A) ∪ I, and also g# is still bounded and
measurable.

Now, we will give the algebraic construction of the functional calculus.

Theorem 3.4.4. Let A be a definitizable linear relation on a Krein space K. Then,
there exists a *-homomorphism EI : FI → B(K), which is an extension of Φrat, i.e.
EI(h) = h(A) for all h ∈ C(z) ∩B(σ(A) ∪ I).

Moreover, we have σ(Θrel(A)) ⊆ suppEI ⊆ σ(A). Hereby, Θrel was defined in Lemma
3.2.13 and the support of EI is defined as the smallest closed subset C ⊆ σ(A) ∪ I with
the property

f ∈ FI, supp f ∩ C = ∅ ⇒ EI(f) = 0. (3.23)

Remark 3.4.5. Note that there exists the smallest closed set C with that property, namely
the intersection of all closed C that fulfill (3.23). The fact that this intersection actually
has property (3.23) is not trivial, but can be shown using a smooth partition of unity.

Proof. (of Theorem 3.4.4)
We define for x, y ∈ K,

〈x, y〉 := [r(A)x, y].

The inner product 〈., .〉 is positive semidefinite due to Lemma 3.3.3. We construct a
Hilbert space by factoring out the neutral subspace N := {x ∈ K | 〈x, x〉 = 0}, which
is a closed linear subspace since it coincides with the isotropic part, cf. Corollary 1.1.3.
Hence, the inner product, again denoted by 〈., .〉, is well-defined on the factor space K/N
by

〈x+N , y +N〉 := 〈x, y〉 for x, y ∈ K,

and is positive definite. The pre-Hilbert space (K/N , 〈., .〉) has a Hilbert space comple-
tion, denoted by (V, 〈., .〉).

Now consider the canonical embedding ι : (K, [., .]) → (V, 〈., .〉) which denotes the
composition of the canonical surjection x 7→ x+N and the canonical embedding K/N →
V coming along with the completion. The linear operator ι is bounded and has dense
range.
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Thus, T := ι∗ : (V, 〈., .〉) → (K, [., .]) is an injective operator kerT = ker ι∗ =
(ran ι)⊥ = {0}, cf. Lemma 1.2.18. Furthermore, for x, y in K we have

[TT ∗x, y] = 〈T ∗x, T ∗y〉 = 〈ιx, ιy〉 = 〈x, y〉 = [r(A)x, y],

which gives TT ∗ = r(A).

In Theorem 3.2.13, we have studied a way of moving linear relations on a Krein space to
linear relations on a Hilbert space, with the help of a linear and injective map between
these spaces. We apply Theorem 3.2.13 to the map T : V → K which we have just
constructed and obtain the mapping Θrel : (TT ∗)′rel → (T ∗T )′rel.

We have to verify that A is in the domain of this mapping. The condition ρ(A) 6= ∅ is
obviously true. It is left to show TT ∗A ⊆ ATT ∗, i.e. r(A)A ⊆ Ar(A). Due to Remark
3.2.5 applied to M :=

(
0 1
1 −µ

)
for µ ∈ ρ(A), this is equivalent to

r(A)(A− µ)−1 = r(A)τM (A) ⊆ τM (A)r(A) = (A− µ)−1r(A).

This holds true, since the functional calculus for rational functions is multiplicative,
cf. Corollary 2.1.11.

We set B := Θrel(A). By Theorem 3.2.13, we have B∗ = Θrel(A)∗ = Θrel(A
∗) = B,

i.e. B is self-adjoint in the Hilbert space V. Furthermore, we have σ(B) ⊆ σ(A).

By the spectral theorem for self-adjoint linear relations on Hilbert spaces, Theorem
3.1.3, applied to B, we get a spectral measure F for 〈σ(B),B(σ(B)),V〉, such that

r(B) =

∫
σ(B)

r(t) dF (t) (3.24)

holds for all rational functions r ∈ C(z) ∩ B(σ(B)). Recall that B(σ(B)) denotes the
set of all bounded and measurable functions g : σ(B)→ C. Now consider

G :

{
B(σ(B)) → B(K)

g 7→ T
∫
σ(B) g(t) dF (t)T ∗ .

(3.25)

Clearly, G is a well-defined linear operator, which is even bounded with norm less
or equal to ‖T‖2. Moreover, G is compatible with taking the complex conjugate of a
function, with taking adjoints respectively, meaning

G(g) = T

∫
σ(Θ(A))

g(t) dF (t)T ∗ = T

(∫
σ(Θ(A))

g(t) dF (t)

)∗
T ∗ = G(g)∗.

Furthermore, take a rational function h ∈ C(z)∩B(σ(A)) and look at G(h). Equation
(3.24) and the last statement from Theorem 3.2.13 reveal

G(h) = Th(B)T ∗ = TT ∗h(A) = r(A)h(A), (3.26)

for all h ∈ C(z) ∩B(σ(A)).

Finally, we are able to define our functional calculus. We write f ∈ FI as f = h+ rg,
with h ∈ C(z) ∩B(σ(A) ∪ I) and g ∈ B(σ(A) ∪ I)c, and define

EI(f) := h(A) +G(g|σ(B)).
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We have to show that E is well-defined. For f = h1 + rg1 = h2 + rg2, we need to
verify h1(A) + G(g1) = h2(A) + G(g2). Since both the rational functional calculus and
G are linear, it is sufficient to show h(A) +G(g|σ(B)) = 0, whenever h+ rg = 0.

So let us assume h+ rg = 0. The equality

g(z) = −h(z)

r(z)
(3.27)

clearly holds for all z, with r(z) 6= 0, i.e. z ∈ (σ(A) ∪ I)\N(r).
We want to show that the rational function −h

r does not have any poles in σ(A) ∪ I.
All potential poles which belong to σ(A) ∪ I have to originate from zeros of r. Assume
that α ∈ N(r) is a pole of −h

r . Since α is a accumulation point of σ(A)∪ I, we can find
a sequence zn ∈ σ(A) ∪ I with zn → α for n→∞. We get

|g(zn)| =
∣∣∣∣h(zn)

r(zn)

∣∣∣∣ n→∞−→ ∞,
which contradicts the boundedness of g.

The right-hand side of (3.27) is a rational function, whose poles are not in σ(A) ∪ I,
and is therefore continuous on σ(A) ∪ I. By definition, the left-hand side of (3.27)
is continuous at all points of N(r). Thus, the identity (3.27) holds actually for all
z ∈ σ(A) ∪ I.

Since g turns out to be equal to a rational function, in particular on σ(B) ⊆ σ(A)∪ I,
we can use (3.26) to get

h(A) +G(g|σ(B)) = h(A)−G
(
h
r

∣∣
σ(B)

)
= h(A)− r(A)

(
h
r

)
(A) = 0. (3.28)

Thus EI : FI → B(K) is a well-defined linear operator, which obviously is an extension
of Φrat.

Next we prove that EI is a *-algebra homomorphism. It is compatible with taking
the complex conjugate of a function, with taking adjoints respectively, since for h+rg =
f ∈ FI we have

E(f#) = E(h# + rg#) = h#(A) +G(g|σ(B)) = h(A)∗ +G(g|σ(B))
∗ = E(f)∗.

In particular, EI(f) is self-adjoint for every real-valued f ∈ FI .
In order to show that EI is multiplicative, take two functions f1 = h1 + rg1 and

f2 = h2 + rg2, with f1, f2 ∈ FI . The decomposition of the product f1f2 into

f1f2 = h1h2 + r (g1h2 + g2h1 + rg1g2)

gives

E(f1f2) = (h1h2)(A) +G(g1h2|σ(B) + g2h1|σ(B) + rg1g2|σ(B)) =

= h1(A)h2(A) +G(g1h2|σ(B)) +G(g2h1|σ(B)) +G(rg1g2|σ(B)). (3.29)

On the other side, we have

E(f1)E(f2) =
[
h1(A) +G(g1|σ(B))

] [
h2(A) +G(g2|σ(B))

]
=
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= h1(A)h2(A) +G(g1|σ(B))h2(A)+ (3.30)

+ h1(A)G(g2|σ(B)) +G(g1|σ(B))G(g2|σ(B)). (3.31)

In order to see that the lines (3.29) and (3.31) actually coincide, we need two more
properties.

First, we argue that G(gh|σ(B)) = G(g|σ(B))h(A) = h(A)G(g|σ(B)) for all g ∈ B(σ(A))
and h ∈ C(z) ∩B(σ(A)). Using h(B)T ∗ = T ∗h(A), cf. Theorem 3.2.13, we obtain

G(gh|σ(B)) = T

∫
σ(B)

g(t) dF (t)

∫
σ(B)

h(t) dF (t)T ∗ =

= T

∫
σ(B)

g(t) dF (t)h(B)T ∗ = T

∫
σ(B)

g(t) dF (t)T ∗ h(A) =

= G(g|σ(B))h(A). (3.32)

In order to show also G(gh|σ(B)) = h(A)G(g|σ(B)), we take adjoints in h(B)T ∗ = T ∗h(A)
and get

Th#(B) = h#(A)T, (3.33)

for all h ∈ C(z) ∩ B(σ(A)). Now we can more or less repeat (3.32), but pull out h(A)
on the left-hand side,

G(gh|σ(B)) = T

∫
σ(B)

h(t) dF (t)

∫
σ(B)

g(t) dF (t)T ∗ =

= Th(B)

∫
σ(B)

g(t) dF (t)T ∗ = h(A)T

∫
σ(B)

g(t) dF (t)T ∗ =

= h(A)G(g|σ(B)). (3.34)

Secondly, we claim G(rg1g2|σ(B)) = G(g1|σ(B))G(g2|σ(B)) for all g1, g2 ∈ B(σ(A)). We

apply (3.33) to h# = r and get

Tr(B) = r(A)T = TT ∗T.

Since T is injective, this gives r(B) = T ∗T . The claim follows from

G(rg1g2|σ(B)) = T

∫
σ(B)

g1(t)r(t)g2(t) dF (t)T ∗ =

= T

∫
σ(B)

g1(t) dF (t) r(B)

∫
σ(B)

g2(t) dF (t)T ∗ =

= T

∫
σ(B)

g1(t) dF (t)T ∗T

∫
σ(B)

g2(t) dF (t)T ∗ =

= G(g1|σ(B))G(g2|σ(B)). (3.35)

Finally, (3.32), (3.34) and (3.35) imply that (3.29) and (3.31) coincide, i.e. E is multi-
plicative.

Lastly, we want to show σ(Θrel(A)) ⊆ suppE ⊆ σ(A).
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To this end, take a function f ∈ FI with supp f ∩σ(A) = ∅. Since C∪{∞} is normal,
we can find an open superset U ⊇ σ(A) such that even supp f ∩U = ∅, i.e. f(z) = 0 for
all z ∈ U . Now, the set I ′ := I ∩ U has again the property that all points of N(r) are
accumulation points of σ(A) ∪ I ′. Hence, we can consider EI

′
: FI′ → B(K). Note that

the function f |σ(A)∪I′ ∈ FI
′

is zero on σ(A) ∪ I ′. Hence, we are exactly in the situation

of (3.27). Just as in (3.28), we deduce EI
′
(f |σ(A)∪I′) = 0, and also get EI(f) = 0, cf.

Remark 3.4.6.

Now, we take an arbitrary closed C ⊆ σ(A) ∪ I, such that property (3.23) holds.
Fix a λ ∈ (σ(A) ∪ I) which is not in the closed set C, and choose an open set

∆ ⊆ σ(A)∪I, open in the subspace topology of σ(A)∪I, with λ ∈ ∆ and ∆∩C = ∅. Since
N(r) contains only finitely many points, we can also find such a ∆ with ∂∆∩N(r) = ∅.
The function z 7→ 1∆(z) is obviously bounded and measurable, and due to ∂∆∩N(r) = ∅
also continuous at all points in N(r). This gives that f := r1∆ ∈ FI for all possible sets
I, with supp(f) ∩ C = ∆ ∩ C = ∅. So

0 = E(f) = G(1∆) = TF (∆ ∩ σ(Θrel(A)))T ∗.

Since T is injective, we have 0 = F (∆ ∩ σ(Θrel(A)))T ∗. Recalling that T ∗ = ι has dense
range implies F (∆ ∩ σ(Θrel(A))) = 0. We conclude ∆ ∩ σ(Θrel(A)) = ∅, or equivalently
∆ ⊆ ρ(Θrel(A)), since the spectral measure of a non-empty set, which is open in the
subspace topology of σ(Θrel(A)), always gives an operator unequal to the null operator,
which can be seen by Urysohn’s Lemma. In particular, we have λ ∈ ρ(Θrel(A)), which
implies C ⊇ σ(Θrel(A)).

Remark 3.4.6. Does the functional calculus EI : FI → B(K) depend on the set I?
Obviously, at least the domain, FI , depends on I.

We recall that for h + rg = f ∈ FI we defined EI(f) = h(A) + G(g|σ(B)). The
expression h(A) is well-defined for all h ∈ C(z)∩B(σ(A)) and independent of the choice
of I. The term G(g|σ(B)) does obviously depend on the values of g on σ(B) only. So
G(g) is also independent of the choice of I.

Note that it is not possible, at least not for general sets I, to pass over to equivalence
classes of functions by defining f ∼ g if f coincides with g on σ(A)∪ (If ∩ Ig), since the
intersection of If and Ig may be empty.

Still, for I1 ⊆ I2 and f ∈ FI2 , we have f |σ(A)∪I1 ∈ FI1 and

EI1(f |σ(A)∪I1) = EI2(f).
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3.5 The Continuity of the Functional Calculus

We are going to prove that our functional calculus is continuous, at least on a subclass
FU,ε with respect to a certain norm ‖.‖U,ε.

We want to recall some notation. Still, A ≤ K × K denotes a definitizable linear
relation on a Krein space K with a real definitizing polynomial p with degree n. We
split the set of all zeros of p into those zeros which belong to σ(A), denoted by αi for
i = 1, . . .M with multiplicity γi, and the remaining zeros of A, which belong to ρ(A),
denoted by βi for i = 1, . . . ,m with multiplicity ηi. We set N(p) := {α1, . . . , αM}, and

we defined the function q(z) :=
∏m
i=1(z−βi)ηi and r(z) := p(z)

(z−λ0)n(z−λ̄0)n
, for λ0 ∈ ρ(A).

In the sequel, we will need the functions f ∈ B(σ(A)) to be not only continuous, but
even differentiable, at all points of N(r). In order to achieve that the continuity is a non-
trivial condition, we introduced a set I, such that all points of N(r) are accumulation
points of σ(A) ∪ I.

Now, the set I even needs to contain some form of neighborhoods of these points, in
order to be able to talk about differentiability. We could ask for open neighborhoods in
C and take holomorphic functions, but we only need a weaker notion of differentiability.

Figure 3.3: σ(A)

Definition 3.5.1. Set Iαi := {αi + t : t ∈ R, |t| < ε}, for i = 1, . . . ,M , ε > 0.
Additionally, set I∞ := R \ [−1

ε ,
1
ε ]. We assume that ε > 0 is small enough such that

the sets Iαi do not overlap and such that 1
ε > maxi=1,...,M |αi| + 1. By I(ε) we denote

the union I(ε) :=
⋃M+1
i=1 Iαi . We further assume that I(ε) does not contain any zeros
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Figure 3.4: σ(A) ∪ I(ε)

of p which belong to ρ(A), which is the case for sufficiently small ε. See Figure 3.3 and
Figure 3.4 for a schematic illustration.

Define the charts φi : (−ε, ε) → C ∪ {∞}, t 7→ αi + t for i = 1, . . . ,M as well as
φM+1 : (−ε, ε)→ C ∪ {∞}, t 7→ 1

t . Note ranφi = Iαi .
We define FU,ε as the set of all functions f ∈ B (σ(A) ∪ I(ε))c, such that f is differen-

tiable at all points in N(r), in the following sense:

FU,ε :=

{
f ∈ B (σ(A) ∪ I(ε))c

∣∣∣ f ◦ φi ∈ Cγi(−ε, ε) for i = 1, . . . ,M + 1

}
.

We declare a norm on the linear space FU,ε, by setting for f ∈ FU,ε

‖f‖U,ε := max
({
‖f‖∞

}
∪
{∥∥∥(f ◦ φi)(l)

∥∥∥
∞

: i = 1, . . . ,M + 1; l = 1, . . . , γi

})
.

Here we mean by ‖.‖∞ on the left-hand side the supremum norm on σ(A)∪ I(ε) and on
the right-hand side the supremum norm on the interval (−ε, ε).

Finally, we set

E :=

{
q(z)a(z)

(z − λ0)n(z − λ0)n

∣∣∣ a(z) ∈ C[z], deg a < n− deg q

}
.

+{
r(z)b(z)

∣∣∣ b(z) ∈ C[z], deg b ≤ n, b(0) = 0
}
.
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Remark 3.5.2. We want to show that the sum, in the definition of E , is actually a direct
sum. Suppose

q(z)a(z)

(z − λ0)n(z − λ0)n
= r(z)b(z),

or equivalently q(z)a(z) = p(z)b(z). Note that the left-hand side is a polynomial of degree
at most n− 1. This means that b has to be the zero-polynomial, because otherwise the
right-hand side would be a polynomial of degree at least n, which implies that a and,
therefore, b are zero.

Remark 3.5.3. We do not want to introduce the general notion of a differentiable man-
ifold. However, there is no way around this topic, since the domain of the functions
f ∈ FI(ε) is a subset of the manifold C ∪ {∞}. The subspace FU,ε consists, basically, of
those functions in FI(ε) which are γi-times continuously differentiable in a neighborhood
of αi for i = 1, . . . ,M + 1. A satisfying answer to the question of how to differentiate f
at ∞, is given by the theory of differentiable manifolds.

Of course, it is possible to choose a compatible atlas and adopt the definition of FU,ε
and ‖.‖U,ε accordingly.

Definition 3.5.4. We define an equivalence relation on
⋃
ε>0FI(ε) via

f ∼ g :⇐⇒ f(z) = g(z) for all z ∈ σ(A) ∪ (I(εf ) ∩ I(εg)) .

An equivalence class is also called germ of a function. We denote the set of all germs by

F :=

(⋃
ε>0

FI(ε)
)/

∼ .

Now, we can define E : F → B(K) by setting E([f ]∼) := EI(ε)(f), where f denotes any
representative of the equivalence class [f ]∼. Note that E is well-defined due to Remark
3.4.6.

Remark 3.5.5. All rational functions in E have at most one pole, namely λ0. An impor-
tant property of the set E is that it is a finite dimensional subspace of C(z)∪B(σ(A)∪
I(ε)). Thus all norms are equivalent on E and every linear operator on E is continuous.

We are going to replace the space FI(ε) = C(z)∩B(σ(A)∪ I(ε)) + r ·B(σ(A)∪ I(ε))c
by E + r ·B(σ(A) ∪ I(ε))c, which helps to obtain continuity. Proposition 3.5.6 tells us,
among other things, that this replacement does not make the space of functions smaller.

Proposition 3.5.6. The following holds true.

(i) FU,ε ⊆ E + r ·B(σ(A) ∪ I(ε))c

(ii) FI(ε) = E
.

+ r ·B(σ(A) ∪ I(ε))c

(iii) Let λ denote the bijection λ : FI(ε) → E ×B(σ(A)∪ I(ε))c, which maps f = h+ rg
to λ(f) = (h, g). Then, the restriction λ|FU,ε is continuous.

The space FU,ε is equipped with the norm ‖.‖U,ε, cf. Definition 3.5.1. The product
space E×B(σ(A)∪I(ε))c is endowed with the sum norm, where both E and B(σ(A)∪
I(ε))c carry the supremum norm on σ(A) ∪ I(ε).
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(iv) For a Borel set ∆ ⊆ C ∪ {∞}, we have 1∆ ∈ F if and only if

∂ε (∆ ∩ (σ(A) ∪ I(ε))) = ∅

for some ε > 0. The symbol ∂ε refers to the topological boundary in the topological
subspace σ(A) ∪ I(ε) of C ∪ {∞}.

For the proof, we need the following Lemma.

Lemma 3.5.7. Let I ⊆ R be an interval, α ∈ I and γ ∈ N. Every bounded f :
dom(f) → C, such that I ⊆ dom(f) ⊆ C ∪ {∞}, 0 < δ := infz∈dom(f)\I |α − z| and
f ∈ Cγ(I), can be written as

f(z) = h(z) + (z − α)γg(z), z ∈ dom(f) \ {∞},

with the (γ − 1)-th Taylor polynomial h of f at the point α, i.e.

h(z) :=

γ−1∑
l=0

f (l)(α)
l! (z − α)l,

and a bounded function g : dom(f) → C, which is continuous on I with ‖g|I‖∞ ≤
2
γ!‖f |

(γ)
I ‖∞.

Proof. First consider a real-valued function f . We have to show that g(z) := f(z)−h(z)
(z−α)γ ,

z ∈ dom(f)\{α} can be extended to dom(f), such that g|I is continuous. Notice, that if
∞ ∈ dom(f), the above definition conveys g(∞) := 0, since f is bounded and deg h < γ.

Taylor’s Theorem, in fact the Lagrange form of the remainder, states that for every
t ∈ I there exists a ξ ∈ I between t and α, such that g(t) = 1

γ!f
(γ)(ξ). From limt→α g(t) =

1
γ!f

(γ)(α), we conclude that g can be continuously extended to I.

The estimation ‖g|I‖∞ ≤ 1
γ!‖f |

(γ)
I ‖∞ is also a consequence of the Lagrange form of

the remainder. The boundedness of g on dom(f)\I follows from

‖g|dom(f)\I‖∞ = sup
z∈dom(f)\I

∣∣∣∣ f(z)

(z − α)γ
− h(z)

(z − α)γ

∣∣∣∣
≤ ‖f‖∞

δγ
+ sup
z∈dom(f)\I

∣∣∣∣ h(z)

(z − α)γ

∣∣∣∣
≤ ‖f‖∞

δγ
+

γ−1∑
k=0

1

k!

|f (k)(α)|
δγ−k

. (3.36)

In the general case of a complex-valued f , we apply the first part of this proof to Re f
and Im f and get Re f(z) = h1(z) + (z − α)γg1(z) and Im f(z) = h2(z) + (z − α)γg2(z)
respectively. Taking the sum of the first and i-times the second equation, gives the
desired decomposition h := h1 + ih2, g := g1 + ig2. Note that f (l) = Re f (l) + i Im f (l).
One can easily give a bound of g on I

‖g|I‖∞ = ‖g1|I + ig2|I‖∞ ≤
2

γ!
‖f (γ)‖∞.

To verify that g is bounded on dom(f)\I, use the boundedness of g1 and g2, or simply
repeat the calculation done in (3.36).
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Proof. (of Proposition 3.5.6) Take an arbitrary f ∈ FU,ε. We are going to construct a
decomposition f = h+ rg with h ∈ E and g ∈ B(σ(A) ∪ I(ε))c.

We are going to use the functions ϕi : C∪{∞} → C∪{∞}, z 7→ αi+z for i = 1, . . . ,M
as well as ϕM+1 : C ∪ {∞} → C ∪ {∞}, z 7→ 1

z .

We apply Lemma 3.5.7 to the function f̃ := f◦ϕi with dom(f̃) := ϕ−1
i (σ(A)∪I(ε)), 0 ∈

(−ε, ε) ⊆ dom(f̃). As required, we have f̃ ∈ Cγ(−ε, ε) for i = 1, . . .M and γ = 1, . . . , γi.
Moreover, due to our assumption on Iαi , the condition 0 < δ := d (αi, (σ(A) ∪ I(ε)) \ Iαi)
is satisfied and also holds true when everything is translated by αi.

Lemma 3.5.7 gives a polynomial h̃i,γ of degree at most γ − 1 and a bounded function
g̃i,γ : dom(f̃)→ C, which is continuous on (−ε, ε), such that

f̃(w) = h̃i,γ(w) + wγ g̃i,γ(w), w ∈ dom(f̃)\{∞},

or, after the substitution w = ϕ−1
i (z) = z − αi,

f(z) = h̃i,γ(z − αi) + (z − αi)γ g̃i,γ(z − αi), z ∈ (σ(A) ∪ I(ε))\{∞},

holds. Setting hi,γ(z) := h̃i,γ(z − αi) and gi,γ(z) := g̃i,γ(z − αi) gives

f(z) = hi,γ(z) + (z − αi)γgi,γ(z), z ∈ (σ(A) ∪ I(ε)) \{∞}, (3.37)

with deg hi,γ < γ and a bounded function gi,γ : σ(A)∪ I(ε)→ C, which is continuous on
ϕi((−ε, ε)) = Iαi .

To show that gi,γ is also continuous at the points αj for j ∈ {1, . . . ,M}, j 6= i, simply
rearrange (3.37) to

gi,γ(z) =
f(z)− hi,γ(z)

(z − αi)γ
, z ∈ σ(A) ∪ I(ε). (3.38)

By definition of FU , f is continuous on Iαj . The denominator is not zero on Iαj , and
hi,γ is just a polynomial. So gi,γ is continuous at αj , and equation (3.38) also reveals
that gi,γ is measurable.

In order to get gi,γ ∈ B(σ(A) ∪ I(ε))c, we have to show the continuity of gi,γ at ∞.
Take a sequence (zn)n∈N ⊂ R with |zn| → ∞. The right-hand side of (3.38) converges
to zero, since f is bounded and the degree of hi,γ is strictly smaller than γ. Notice
that (zn)n≥M ⊂ σ(A) ∪ I(ε) if M is large enough. Together with gi,γ(∞) = 0, cf. the
beginning of the proof of Lemma 3.5.7, we get the continuity of gi,γ at ∞, and conclude
gi,γ ∈ B(σ(A) ∪ I(ε))c.

We treat the point αM+1 = ∞ analogously. Again, we make use of Lemma 3.5.7
applied to the function f̃(z) := f ◦ ϕM+1(z) = f(1

z ) with dom(f̃) := ϕM+1(σ(A) ∪
I(ε)) ⊇ I−1

∞ = (−ε, ε) 3 0. We have f̃ ∈ Cγ(−ε, ε) for γ = 1, . . . , n. The condition
0 < δ := d

(
0, (σ(A) ∪ I(ε))−1\(−ε, ε)

)
is fulfilled too, because |z| > 1

ε for z ∈ σ(A)∪I(ε)
implies z ∈ R\[−1

ε ,
1
ε ] = I∞.

Lemma 3.5.7 gives a polynomial hM+1,γ of degree at most γ−1 and a bounded function
g̃M+1,γ : dom(f̃)→ C, which is continuous on (−ε, ε), such that

f̃(w) = hM+1,γ(w) + wγ g̃M+1,γ(w), w ∈ dom(f̃)\{∞},
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or, after the substitution z := ϕM+1(w) = 1
w ,

f(z) = hM+1,γ

(1

z

)
+ z−γ g̃M+1,γ

(1

z

)
, z ∈ (σ(A) ∪ I(ε)) \{0},

holds. Setting gM+1,γ(z) := g̃M+1,γ(1
z ), with dom(gM+1,γ) := σ(A) ∪ I(ε), gives

f(z) = hM+1,γ

(1

z

)
+ z−γgM+1,γ(z), z ∈ (σ(A) ∪ I(ε)) \{0}. (3.39)

Clearly, gM+1,γ is bounded on σ(A) ∪ I(ε), and continuous on ϕM+1((−ε, ε)) = I∞.
Rearranging (3.39) gives

zγf(z) = zγhM+1,γ

(1

z

)
+ gM+1,γ(z), z ∈ (σ(A) ∪ I(ε)) , (3.40)

and

gM+1,γ(z) = f(z)zγ − hM+1,γ

(1

z

)
zγ , z ∈ (σ(A) ∪ I(ε)) . (3.41)

Notice, that hM+1,γ

(
1
z

)
zγ is indeed a polynomial of degree at most γ, lacking a constant

term, i.e. z = 0 is a root. Equation (3.41) directly reveals that gM+1,γ is measurable,
and continuous at the points αi for i = 1, . . . ,M . We note gM+1,γ ∈ B(σ(A))c.

A partial fraction decomposition of 1
r(t) yields

1

r(z)
=

M∑
i=1

γi∑
γ=1

ciγ
(z − αi)γ

+
m∑
i=1

ηi∑
γ=1

diγ
(z − βi)γ

+ a(z), (3.42)

with constants cjγ , djγ ∈ C and a polynomial a of degree at most n. We split the partial
fraction decomposition into two parts. The first one is related to the zeros of p which
belong to σ(A), i.e. N(p). The second part is related to the remaining zeros, denoted
by βi with corresponding multiplicity ηi, i = 1, . . . ,m. We write a(z) =

∑n
γ=0 aγz

γ .

Bringing together (3.37), (3.40) and (3.42) gives

f(z) = r(z)
f(z)

r(z)
=

= r(z)

(
M∑
i=1

γi∑
γ=1

ciγhi,γ(z)

(z − αi)γ
+

n∑
γ=1

aγz
γhM+1,γ(1

z )︸ ︷︷ ︸
=:hf (z)

+ (3.43)

+

M∑
i=1

γi∑
γ=1

ciγgi,γ(z) +

m∑
i=1

ηi∑
γ=1

diγ
(z − βi)γ

f(z) + a0f(z) +

n∑
γ=1

aγgM+1,γ(z)︸ ︷︷ ︸
=:gf (z)

)
, (3.44)

for all z ∈ (σ(A) ∪ I(ε)) \ {∞}. For these z we have, by definition,

f(z) = hf (z) + r(z)gf (z). (3.45)
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As a linear combination of elements of B(σ(A) ∪ I(ε))c we have gf ∈ B(σ(A) ∪ I(ε))c.
Since both sides of (3.45) are continuous at ∞, we see that this equation actually holds
true for all z ∈ σ(A) ∪ I(ε).

We have to show that hf ∈ E . We observe that hf is a linear combination of the
rational functions

r(z)
hi,γ(z)

(z − αi)γ
=
q(z)hi,γ(z)(z − αi)γi−γ

∏M
i 6=j=1 (z − αj)γj

(z − λ0)n(z − λ0)n
, (3.46)

for i = 1, . . . ,M and γ = 1, . . . , γi, as well as

r(z)zγhM+1,γ(1
z ), for γ = 1, . . . , n. (3.47)

The numerators in all fractions of (3.46) are polynomials of degree at most n − 1,
and always contain the factor q(z). Also the rational functions in (3.47) are in E .
Recall that z 7→ zγhM+1,γ(1

z ) is actually a polynomial of degree at most γ, which has
a zero at z = 0. Since E is linear, we conclude hf ∈ E , which completes the proof of
FU,ε ⊆ E + r ·B(σ(A) ∪ I(ε))c.

The inclusion E + r · B(σ(A) ∪ I(ε))c ⊆ FI(ε) is trivial. In order to prove the other
inclusion, it is sufficient to show C(z) ∩ B(σ(A) ∪ I(ε)) ⊆ E + r · B(σ(A) ∪ I(ε))c. This
follows from the first step, since we have C(z) ∩B(σ(A) ∪ I(ε)) ⊆ FU,ε.

Now take an s ∈ E ∩ r ·B(σ(A) ∪ I(ε))c. For all z ∈ σ(A) ∪ I(ε) we have

s(z) =
q(z)a(z)

(z − λ0)n(z − λ0)n
+ r(z)b(z) = r(z)g(z),

for polynomials a and b, with deg a < n− deg q and deg b ≤ n, b(0) = 0, and a function
g ∈ B(σ(A) ∪ I(ε))c. Dividing by r(z) gives

q(z)a(z)

p(z)
+ b(z) = g(z) for all z ∈ (σ(A) ∪ I(ε)) \N(r). (3.48)

Take a sequence (zn)n∈N with zn ∈ R, |zn| ≥ 1
ε and |zn| → ∞ for n → ∞. Since

(zn)n∈N ⊂ (σ(A) ∪ I(ε)) \N(r), we can look at equation (3.48) for zn. Since g is bounded,

we have |g(zn)| ≤ C for all n ∈ N, for a constant C > 0. The term q(zn)a(zn)
p(zn) converges

to zero, since deg q+ deg a < n = deg p. We get to know that |b(zn)| is also bounded for
all n ∈ N. This can only be the case if deg b = 0. Due to b(0) = 0, we have b ≡ 0. The
continuity of g at ∞ gives 0 = g(∞).

The boundedness of the rational function q(z)a(z)
p(z) on Iαi \ {αi} for i = 1, . . .M , which

follows from (3.48), implies that αi is not a pole of q(z)a(z)
p(z) . This means that both sides

of the equation (3.48) are continuous at αi, and hence (3.48) even holds true for all
z ∈ σ(A) ∪ I(ε).

Furthermore, the fact that q(z)a(z)
p(z) has no pole at αi implies that αi is a zero of the

polynomial a with multiplicity at least γi for i = 1, . . .M . We learn that the polynomial
q(z)a(z) has the same zeros as p(z), with the same or even higher multiplicities. In view
of deg q + deg a < n = deg p this means a ≡ 0, and thus s ≡ 0.
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Now consider the linear bijection λ : FI(ε) → E × B(σ(A) ∪ I(ε))c which corresponds
to the direct sum FI(ε) = E

.
+ r ·B(σ(A)∪ I(ε))c. We claim that there exists a constant

C > 0 such that ‖λ(f)‖ ≤ C‖f‖U,ε holds for all f ∈ FU,ε, i.e. λ|FU,ε is continuous.
Since we endow E ×B(σ(A) ∪ I(ε))c with the sum norm, where E , B(σ(A) ∪ I(ε))c ≤

B(σ(A) ∪ I(ε)) are equipped with the supremum norm on σ(A) ∪ I(ε), we have

‖λ(f)‖ = ‖(h; g)‖ = ‖h‖∞ + ‖g‖∞ = sup
z∈σ(A)∪I(ε)

|h(z)|+ sup
z∈σ(A)∪I(ε)

|g(z)|.

Take an arbitrary f ∈ FU,ε, and consider the decomposition of f in f = hf + rgf ,
which we constructed at the beginning of this proof. Clearly, we have (hf ; gf ) = λ(f).
We are going to show ‖hf‖∞ ≤ C‖f‖U,ε and ‖gf‖∞ ≤ C‖f‖U,ε separately.

First, consider the bounded and measurable function gf , defined in (3.44). We see that
gf is a linear combination of the functions gi,γ for i ∈ {1, . . . ,M+1} and γ ∈ {1, . . . , γi},
as well as (z−βi)−γf(z) for i = {1, . . . ,m} and γ ∈ {1, . . . , ηi}. Note that the coefficients
of this linear combination, namely ciγ , diγ and aγ , originate from the partial fraction
decomposition of 1

r , cf. (3.42), and are, therefore, independent of f .
For the term (z − βi)−γf(z), we have the estimate |(z − βi)−γf(z)| ≤ δ−γ‖f‖∞ ≤

δ−γ‖f‖U,ε for all z ∈ σ(A)∪I(ε), where δ > 0 denotes the distance from βi to σ(A)∪I(ε).
Recall that the numbers βi denote the zeros of p which belong to ρ(A). The distance δ
does not depend on f but only on ε.

Fix an i ∈ {1, . . .M} and γ ∈ {1, . . . , γi} and consider gi,γ , declared in (3.37). On the
set Iαi , an estimation is on hand coming from Lemma 3.5.7,∥∥gi,γ∣∣Iαi∥∥∞ ≤ 2

γ!

∥∥∥f ∣∣(γ)

Iαi

∥∥∥
∞
≤ C‖f‖U,ε.

In fact, we have seen in the proof of Lemma 3.5.7, cf. equation (3.36), that gi,γ is even
bounded on σ(A) ∪ I(ε),

∥∥gi,γ∣∣(σ(A)∪I(ε))\Iαi

∥∥
∞ ≤

‖f‖∞
δγ

+

γ−1∑
k=0

|f (k)(αi)|
k! δγ−k

≤ C‖f‖U,ε.

The case i = M + 1 and γ ∈ {1, . . . , n} follows in a similar matter. With the notation
introduced in the paragraph above (3.39), Lemma 3.5.7 gives∥∥gM+1,γ

∣∣
I∞

∥∥
∞ =

∥∥g̃M+1,γ

∣∣
I−1
∞

∥∥
∞ ≤

2

γ!

∥∥∥f̃ ∣∣(γ)

I−1
∞

∥∥∥
∞
≤ C‖f‖U,ε.

The estimate from (3.36) gives∥∥gM+1,γ

∣∣
(σ(A)∪I(ε))\I∞

∥∥
∞ =

∥∥g̃M+1,γ

∣∣
(σ(A)∪I(ε))−1\I−1

∞

∥∥
∞ ≤

≤ ‖f̃‖∞
δγ

+

γ−1∑
k=0

|f̃ (k)(0)|
k! δγ−k

≤ C‖f‖U,ε

All in all, we have shown ‖gf‖∞ ≤ C‖f‖U,ε.
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Now, we consider the rational function hf , defined in (3.43). We can use the equality
f(z) = hf (z) + r(z)gf (z), cf. (3.45), to get

‖hf‖∞ ≤ ‖f‖∞ + ‖r‖∞‖gf‖∞ ≤ ‖f‖U,ε + ‖r‖∞C‖f‖U,ε ≤ C ′‖f‖U,ε.

This completes the proof of the continuity of λ|FU,ε .
Let ∆ ⊆ C∪ {∞} be a Borel set, and assume 1∆ ∈ F , i.e. 1∆ ∈ FI(ε) for some ε > 0.

Hence, we can write 1∆ = h+rg for a h ∈ C(z)∩B(σ(A)∪I(ε)) and g ∈ B(σ(A)∪I(ε))c.
Then, we have

g(z) =


1−h(z)
r(z) , for z ∈ ∆ ∩ (σ(A) ∪ I(ε)), z /∈ N(r)

−h(z)
r(z) , for z ∈ ∆c ∩ (σ(A) ∪ I(ε)), z /∈ N(r) .

Now suppose that there exists an αi ∈ N(r) which is an accumulation point of both
∆ ∩ (σ(A) ∪ I(ε)) and ∆c ∩ (σ(A) ∪ I(ε)), i.e. N(r) ∩ ∂ε (∆ ∩ (σ(A) ∪ I(ε))) 6= ∅. The
symbol ∂ε refers to the subspace topology on σ(A) ∪ I(ε).

The boundedness of g on Iαi and the continuity at αi would imply that both 1−h(z)
r(z)

and −h(z)
r(z) are bounded near αi. The denominator of these fractions is zero at z = αi,

which implies h(αi) = 1 and h(αi) = 0. This contradiction proves that we cannot find
such an αi ∈ N(r) , i.e. ∂ε∆ ∩N(r) = ∅.

On the other hand, ∂ε((∆ ∩ (σ(A) ∪ I(ε))) = ∅ for some ε > 0 means that we have
either αi ∈ ∆

c
or αi ∈ ∆◦ for all i = 1, . . . ,M . Here, the closure and the interior refer

to the subspace topology on σ(A) ∪ I(ε). We can make ε > 0 sufficiently small, such
that we have even Iαi ⊆ ∆

c
or Iαi ⊆ ∆◦ respectively. Obviously, this gives 1∆ ∈ FU,ε ⊆

FI(ε) ⊆ F , since 1∆ is now constant on every set Iαi .

Definition 3.5.8. With the equivalence relation ∼ from Definition 3.5.4, we set

FU :=

(⋃
ε>0

FU,ε

)/
∼ .

Since FU,ε is a linear subspace of FI(ε), FU is a linear subspace of F .
Hereby, we equip the disjoint union

⋃
ε>0FU,ε with the final topology of all canonical

injections ιε : FU,ε →
⋃
ε>0FU,ε, and equip FU with the final topology of the canonical

projection π :
⋃
ε>0FU,ε → FU .

Corollary 3.5.9. Let A be a definitizable linear relation on a Krein space K with a real
definitizing polynomial.

The restriction of the functional calculus E : F → B(K), constructed in Theorem 3.4.4
and Definition 3.5.4, to the subspace FU is continuous with respect to the topology on
FU described in Definition 3.5.8, and the operator norm on B(K).

Proof. Proposition 3.5.6 states that the map λ : FU,ε → E × B(σ(A) ∪ I(ε))c, with
λ(f) = (h, g) for f = h + rg, is continuous. Hereby, FU,ε is equipped with ‖.‖U,ε, and
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E × B(σ(A) ∪ I(ε)c is endowed with the product topology of the supremum norm on
σ(A) ∪ I(ε).

We can write EI(ε)|FU,ε as

EI(ε)|FU,ε(f) = Φrat(λ1(f)) +G(λ2(f)), for f ∈ FU,ε.

Clearly, Φrat : E → B(K) is continuous, since E is finite dimensional. The continuity of
G was already remarked in the proof of Theorem 3.4.4, cf. (3.25). Therefore, EI(ε)|FU,ε is
continuous for all ε > 0 since it can be written as a composition of continuous operators.

By a well-known property for the final topology, the continuity of E|FU : FU → B(K)
is equivalent to the continuity of all functions E|FU ◦ π ◦ ιε = EI(ε)|FU,ε .

Using the continuity of our functional calculus, we can now precisely determine the
support of E.

Corollary 3.5.10. We have suppE = σ(A).
Here, we define the support of E as the smallest closed subset C ⊆ C ∪ {∞} with the

property

f ∈
⋃
ε>0

FI(ε), supp f ∩ C = ∅ ⇒ E([f ]∼) = 0. (3.49)

Proof. First, we claim suppE ⊆ σ(A), i.e. C = σ(A) fulfills (3.49). Take f ∈ FI(ε) for
some ε > 0 and assume supp f ∩ σ(A) = ∅. By Theorem 3.4.4 applied to I = I(ε), this
gives 0 = EI(ε)(f) = E([f ]∼).

In order to show the other inclusion, take λ /∈ suppE and assume λ ∈ σ(A). Since
the support of E is closed, there is an s > 0 such that the ball with radius s and center
λ, denoted by Us(λ), is still disjoint from suppE.

In the case λ ∈ N(r), take an ε > 0 sufficiently small such that Iλ ⊆ U s
2
(λ). If

λ /∈ N(r), we may assume I(ε) ∩ U s
2
(λ) = ∅ for sufficiently small s > 0 and sufficiently

small ε > 0.
Let ψ : C ∪ {∞} → [0, 1] be a bump function, i.e. a smooth function such that

ψ(U s
2
(λ)) = {0} and ψ((C ∪ {∞})\Us(λ)) = {1}. Take a sequence λn ∈ ρ(A) \ I(ε)

which converges to λ, such that (λn)n∈N ⊂ U s
2
(λ). Consider the sequence of functions

fn(z) := ψ(z) 1
z−λn . Since the functions fn are smooth everywhere, we have fn ∈ FU,ε.

The pointwise limit of fn clearly is f(z) := ψ(z) 1
z−λ ∈ FU,ε. Note that the bump function

ψ is necessary, since z 7→ 1
z−λ /∈ FU,ε.

One can elementarily verify that fn converges not only pointwise to f , but even with
respect to ‖.‖U,ε. This gives

E([f ]∼) = E( lim
n→∞

[fn]∼) = lim
n→∞

E([fn]∼) = lim
n→∞

E

([
z 7→ ψ(z)

1

z − λn

]
∼

)
=

= lim
n→∞

E

([
z 7→ 1

z − λn

]
∼

)
= lim

n→∞
EI(ε)

(
z 7→ 1

z − λn

)
= lim

n→∞
(A− λn)−1.

Hereby, we used the fact that 1
z−λn and ψ(z) 1

z−λn only distinguish themselves on Us(λ) ⊆
(suppE)c. We realize that (A − λn)−1 converges to the bounded operator E([f ]∼) in
the operator norm and arrive at the contradiction
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3 Spectral Theorem for Definitizable Linear Relations on Krein Spaces

1

dist(λn, σ(A))
− ‖E([f ]∼)‖ ≤

∥∥(A− λn)−1
∥∥− ‖E([f ]∼)‖ ≤

≤
∥∥(A− λn)−1 − E([f ]∼)

∥∥ n→∞−→ 0,

since (dist(λn, σ(A)))−1 →∞ for n→∞.

Therefore, we have λ ∈ ρ(A), and in turn suppE = σ(A).
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