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Abstract
Telemonitoring, as a medical practice, includes measurements of physiological parameters
and data transfer of remotely, usually home-located patients. Providing reliable home-
telemonitoring based decision support system for therapy of chronic heart failure patients
is important to ensure patients’ wellbeing, stable health status, enhanced self-care, med-
ical literacy, as well as care givers’ satisfaction, productivity and effectiveness in decision
making. Furthermore, home-telemonitoring can reduce health care costs and positively
affect the economy. Potentially important influences on patient health status include
weather conditions, and yet these influences are insufficiently investigated in the current
telemonitoring studies.

Currently used techniques to establish relationship between home-telemonitoring and
chronic heart failure patients’ health status cannot efficiently deal with real time health
condition changes of multiple simultaneously monitored physiological parameters, nor pro-
vide reliable predictions of possible adverse events. The current systems typically result
in large number of false alarms (up to 99.4%), causing care-givers’ dissatisfaction to the
extent of decreasing quality of medical care, for which reason alarm hazards have been
identified as the top health device hazards in recent years.

The research goal was development of a decision support methodology for therapy
optimization of heart failure patients based on retrospective home telemonitoring data and
expert knowledge. For this purpose, AIT - Austrian Institute of Technology, Department of
Safety and Security, Business Unit Information Management, provided 9128 retrospective
home telemonitoring records of 65 chronic heart failure patients in Austria - MOBITEL
(Mobile telemonitoring in heart failure patients) study.

The dissertation develops innovative patient home telemonitoring data analyses tools
(5-level alarm flags, reference state estimation, measurement colour coding, automated
alarm generation based on dynamic threshold adjustments) for enhanced interpretation
of patients’ physiological measurements. Thus, with the application of alarm flag levels,
the percentage of true alarms is increased from 8.5% (flag level 1) to 19.2% (flag level 5)
as compared to the average of 12.6% true alarms when such a procedure is not applied in
the reference MOBITEL study. Most of the alarms occur due to the exceeded systolic or
diastolic blood pressure thresholds.

The conducted statistical data analyses establish relationship between measurements
of physiological parameters and care givers’ therapy decisions. The results show increased
accuracy (0.788 vs. 0.782) and specificity (0.789 vs. 0.777), but decreased sensitivity
(0.770 vs. 0.942) of the developed automated alarm management system based on opti-
mal dynamically adjustable thresholds, in comparison to the original MOBITEL home-
telemonitoring records including manually adjusted alarm thresholds. The system is in-
tended to support the physicians in setting up patient specific alarm thresholds, subject
to individual health conditions (e.g. tolerate large number of false alarms preferring not
to miss many true alarms if the patient status could be critical; or maximally reduce the
number of false alarms even if some true alarms are omitted, if the patients are unlikely
to experience adverse events). Such support is achieved through a mathematical model
developed to predict the sensitivity (true alarm occurrence) for an arbitrary adjustment



of patient telemonitoring alarm generation thresholds. Another model is then used to
calculate specificity (true non-alarm occurrence). The physicians can choose particular
alarm threshold values and immediately see the expected impact of such a selection on
sensitivity and specificity of the decision support system. The models are obtained using
principle component and linear regression and validated (F-values: 315 and 1067 (> 100),
respectively) on 52 heart failure patients.

Furthermore, influences of severe weather conditions on heart failure patients’ physio-
logical parameters are predicted thanks to the discovered statistically significant (p < 0.05)
relations with cold and heat stress temperatures. Especially falling temperatures, cold
stress days, with mean temperature difference thresholds between 6.4◦C and 6.8◦C showed
statistically significant influences on rising blood pressures (95%CI: (-16, -1) and (-8, 0)
mmHg, for systolic and diastolic blood pressure differences, respectively). Although such
cases have one end of the 95% confidence intervals comparable to effects of certain blood
pressure medications (∼ 10 mmHg), the other end includes trivial values (close to zero)
causing the results to remain inconclusive.

The developed methodology and tools could be used in the future home telemonitor-
ing systems to optimize care-givers’ decision support management and mitigate possible
adverse events of chronic heart failure patients through timely distinction of relevant indi-
cations of worsening patient conditions. Applying the developed methodology the physi-
cians would have an enhanced possibility to effectively adjust their therapeutic assistance,
reducing health care costs and potentially avoiding ambulatory interventions or hospital-
izations.

Last but not least, the results encourage researchers to initiate applications of auto-
mated alarm management algorithms, as innovative data interpretation tools for home
telemonitoring systems.



Kurzfaßung
Telemonitoring, umfasst in der medizinischen Praxis das Messen physiologischer Param-
eter und die Übermittlung von Patientendaten von zu Hause aus. Die Bereitstellung
zuverlässlicher Telemonitoring-Systeme für die Therapie von Patienten mit chronischer
Herzinsuffizienz ist wichtig, um das Wohl der Patienten, den stabilen Gesundheitszustand,
die verbesserte Selbstversorgung, die medizinische Kompetenz, sowie die Zufriedenheit der
Betreuer und die Produktivität und Effektivität der Entscheidungsfindung zu gewährleis-
ten. Weiters kann Telemonitoring die Gesundheitskosten senken und sich positiv auf die
Wirtschaft auswirken. Wichtige eventuelle Einflüsse auf den Gesundheitszustand der Pa-
tienten beinhalten auch die Wetterlage, die bisher noch unzureichenend in den aktuellen
Telemonitoring-Studien erforscht wurde.

Die derzeit verwendeten Techniken zur Erfassung des Gesundheitszustands von Patien-
ten mit chronischer Herzinsuffizienz per Telemonitoring können weder in Echtzeit mit Zu-
standsänderungen von mehrfachen, simultan aufgezeichneten Parametern umgehen, noch
zuverlässige Vorhersagen über mögliche ungünstige Ereignisse sicherstellen. Typischer-
weise resultiert das bei aktuellen Systemen in einer Vielzahl von Fehlalarmen (bis zu
99,4%) und verursacht deshalb bei den Pflegekräften starke Frustration, die sich auch in
sinkender Qualität der ärztlichen Betreuung äußert. Gefahren bedingt durch Fehlalarme
haben sich deshalb in letzter Zeit zu den wichtigsten gesundheitlichen Gefahrenquellen
dieser Patientengruppen entwickelt.

Das Ziel der Forschung war es, eine Methodik zur Unterstützung von Entscheidun-
gen zur Optimierung der Therapie von Herzinsuffizienzpatienten zu entwickeln, die auf
der retrospektiven Analyse von Daten aus dem Heim-Telemonitoring und auf Experten-
wissen basiert. Für diesen Zweck hat das AIT (Austrian Institute of Technology, De-
partment Safety and Security, Geschäftsfeld Information Management) 9128 retrospektive
Heim-Telemonitoring-Aufzeichnungen von 65 Patienten mit chronischer Herzinsuffizienz
in Österreich bereitgestellt - MOBITEL (Mobile telemonitoring in heart failure patients)
Studie.

Die Dissertation entwickelt ein innovatives Datenanalysetool für Heim-Telemonitoring-
Patienten (5-Level Alarmfahnen, Referenzzustandsschätzung, Messfarbcodierung, au-
tomatisierte Alarmerstellung basierend auf dynamischen Grenzwertanpassungen) das eine
verbesserte Interpretation der physiologischen Messungen durch Patienten gewährleisten
soll. In der Folge ist mit dem Einsatz von Alarmfahnen der Prozentanteil von gültigen
Alarmen von 8,5% (Fahnenlevel 1) auf 19,2% (Fahnenlevel 5) gestiegen, verglichen mit
dem Mittel von 12,6% gültiger Alarme bei herkömnmlicher Auswertung der MOBITEL-
Studie. Die meisten Alarme entstehen durch die Überschreitungen der Grenzwerte von
systolischem und/oder diastolischem Druck.

Die durchgeführte statistischen Datenanalyse stellt die Verbindung zwischen den
Messungen physiologischer Parameter und den Therapieentscheidungen der ärztlichen
Betreuer her. Das Resultat zeigt im Vergleich zu den ursprünglichen MOBITEL
Telemonitoring-Aufzeichnungen (welche manuell angepasse Alarmgrenzwerte beinhalten)
erhöhte Genauigkeit (0,788 vs. 0,782) und Spezifität (0,789 vs. 0,777), aber eine reduzierte
Sensitivität (0,770 vs. 0,942) des entwickelten automatisierten Alarm-Management-



Systems basierend auf optimalen dynamisch angepassten Schwellwerten. Das System
beabsichtigt die Ärzte bei der Anpassung spezifischer Alarmgrenzwerte auf individuelle
Gesundheitszustände zu untertützen (z.B. die Vielzahl falscher Alarme zu tolerieren, um
möglichst keine echten Alarme mit kritischen Zuständen des Patienten zu verpassen; oder
die maximale Reduktion der falschen Alarme bei Patienten mit geringen Risiken, auch
wenn einige echte Alarme übersehen werden). Solche Unterstützung wird durch ein math-
ematisches Modell erreicht, das die Sensitivität (das Eintreten von echten Alarmen) aus
den eingestellten Grenzwerten abschätzt. Ein anderes Modell wird benützt, um die Spez-
ifität (das Eintreten von Fehlalarmen) zu berechnen. Die Ärzte können bestimmte Alar-
mgrenzwerte wählen und sehen sofort die erwarteten Auswirkungen auf die Sensitivität
und Spezifität des Systems. Die entsprechenden Modelle wurden durch den Einsatz von
Hauptkomponentenregression erstellt und validiert (F-Werte: 315 bzw. 1067 (> 100)) an
52 Patienten mit Herzinsuffizienz.

Weiters werden die Einflüsse extremer Wetterbedingungen auf die physiologischen
Parameter von Herzinsuffizienzpatienten aus Hitze- und Kältebelastungen vorhergesagt.
Besonders stark fallende Temperaturen (mittlere Temperaturdifferenzen zwischen 6.4 Grad
Celsius und 6.8 Grad Celsius) zeigten statistisch signifikante (p < 0.05) Einflüsse auf den
Blutdruck (95%CI: (-16, -1) und (-8, 0) mmHg, für systolische bzw. diastolische Blutdruck-
unterschiede). Obwohl das 95%-Konfidenzintervall dieses Effektes den von bestimmten
Blutdruckmedikamenten (∼ 10 mmHg) erreicht, umfasst es auch den Nullwert, wodurch
die Ergebnisse nicht schlüssig sind.

Die entwickelte Methodik und die Tools können in den zukünftigen Heim-
Telemonitoring-Systemen benützt werden, um das Management der Unterstützung der
ärztlichen Entscheidung zu optimieren und um die möglichen Nebenwirkungen von Pa-
tienten mit chronischer Herzinsuffizienz durch zeitgerechte Erkennung relevanter Anze-
ichen einer Verschlechterung des Patientenzustandes zu mildern. Durch die Anwendung
der entwickelten Methodik können die Ärzte die therapeutische Hilfe effektiver anpassen,
und damit die Gesundheitskosten durch die potenzielle Vermeidung ambulanter Eingriffe
oder Krankenhausaufenthalte reduzieren.

Nicht zuletzt sollten die Resultate Forscher ermutigen, automatisierte Alarm-
Management-Algorithmen als innovatives Dateninterpretationstool für Heim-
Telemonitoringsysteme einzusetzen.
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Chapter 1

Introduction

1.1 Motivation

According to the world health organization data approximately 35 million people world-
wide died due to chronic diseases in 2005, which presented 60% of the overall mortality
(WHO, 2005). Furthermore, while mortality from the other causes was projected to de-
crease, mortality of people affected by the chronic diseases was projected to increase by
17% by the year of 2015. Consequently, chronic disease share within the overall mortality
would rise from 60% to 64% within the 10 year long period. The impacts of chronic dis-
eases such as heart disease, stroke, cancer, chronic respiratory diseases and diabetes are
very significant and resolute efforts are required to alleviate adverse outcomes.

Economic impacts of chronic diseases are also very large. For example, cost estimates
for a 10 year long period between 2005 and 2015 amount to 558 billion dollars for China
(WHO, 2005), 80 billion dollars per year for Canada (Tran et al., 2008), while the US
annual costs only due to heart failure are estimated at 33.2 billion dollars (Finkelstein
et al., 2010).

Although both, developed and developing countries are affected, about 80% of chronic
disease mortality happens in low and middle income countries, which typically have un-
available, unaffordable and low quality health care. Main causes of chronic disease mor-
tality are increased blood pressure (20%), results of tobacco use (14%), raised cholesterol
levels (12%), and obesity or overweight (7%) due to unhealthy diet and physical inactivity
(WHO, 2005).

1.2 Chronic cardiovascular diseases

Particularly significant chronic diseases are cardiovascular, being the cause of approxi-
mately half of the overall chronic disease mortality in 2005 (WHO, 2005). The most
costly cardiovascular illness in the US is heart failure (HF), affecting over 5 million Amer-
icans (Finkelstein et al., 2010). In Europe, the number is even larger, estimated between
6.5 and 10 million people (Maric et al., 2009). Such numbers are projected to increase in
the future and chronic heart failure (CHF) may soon reach epidemic proportions (Tendera,
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1. Introduction

2005).
Common cardiovascular conditions include (WHF, 2013):

• Rheumatic heart disease – heart valve damage due to rheumatic fever, caused by
streptococcal bacterial infection.

• Valvular heart disease – a disease of the heart valves, e.g. narrowing (stenosis),
leakage (regurgitation or insufficiency), improper closure (prolapse). Occurs by birth,
or due to valve damages by infections, certain medications, radiation.

• Aneurysm – weakness of blood vessel walls. Can occur as a consequence of high
blood pressure or weak spots in blood vessels throughout the body.

• Atherosclerosis – thickness and stiffness of arteries due to fatty deposits (plaques).
Causes reduction of blood flow throughout the body: coronary (in the heart arteries),
peripheral (in the legs). Develops over a period of time, can lead to heart attack or
stroke.

• High blood pressure (hypertension) – excessive blood force on the blood vessels. Can
cause other cardiovascular diseases, e.g. stroke, heart failure.

• Peripheral arterial disease – manifests as pain in the legs while walking, and eases by
rest. Occurs as a consequence of atherosclerosis, shrinkage or blockage of the heart
blood supply vessels.

• Angina – chest pain resulting from reduced blood supply to the heart (ischemia).
Occurs as a consequence of atherosclerosis, shrinkage or blockage of the heart blood
supply vessels. Symptoms include shortness of breath and sweating, relate to physical
work and ease by rest.

• Coronary artery disease (ischemic heart disease) – one of the most common heart
diseases and the main cause of heart attacks and angina. Occurs as a consequence
of atherosclerosis, shrinkage or blockage of the heart blood supply vessels.

• Coronary heart disease – a disease of heart arteries. Can result in angina, heart
attack and heart failure.

• Heart attack (myocardial infraction) – blockage of blood flow to the heart, causing
heart muscle damage due to oxygen deprivation, or fatal outcome if blood flow is
not promptly reestablished. Symptoms include strong central chest pain, extreme
shortness of breath, sweating, faintness.

• Sudden death – a consequence of sudden loss of heart functions. Can occur due to
a heart attack or severe abnormality in the heart rhythm.

• Cerebral vascular disease – shrinkage or blockage of blood vessels leading to the brain,
caused by atherosclerosis. Can result in strokes and transient ischemic attacks.

2



1. Introduction

• Stroke – interruption of blood supply to the brain. Can result in permanent brain
damage due to oxygen deprivation, manifesting as weakness, paralysis, speech or
vision problems.

• Transient ischemic attacks – temporary blockage of blood flow resulting in loss of
blood in the brain. As a consequence, brain function suddenly changes which can
manifest as temporary weakness, numbness, blindness, double vision, confusion, loss
of balance, severe headache. Although the symptoms do not last long and permanent
damage is unlikely, these conditions can indicate increased risk of stroke.

• Cardiomyopathy – a disease of the heart muscle, e.g. enlargement (dilated cardiomy-
opathy), thickness (hypertrophic cardiomyopathy), muscle loss (ischemic cardiomy-
opathy). Occurs due to genetic predispositions, infections, or other causes.

• Pericardial disease – a condition affecting the sac in which the heart is located, called
pericardium. Can include inflammation (pericarditis), fluid accumulation (pericar-
dial effusion) and stiffness (constructive pericarditis).

• Congenital heart disease – a broad term used to describe structural abnormalities in
the heart, e.g. with valves, chambers etc. Occurs by birth due to genetic predispo-
sitions or exposure to adverse influences, e.g. medications, alcohol, etc.

• Heart failure – a chronic condition resulting in reduced effectiveness of heart opera-
tion and insufficient amounts of blood flow and oxygen levels. Occurs as a result of
heart damage which weakens the heart muscle, particularly affecting senior popula-
tion. Symptoms include shortness of breadth, reduced ability to exercise, swelling
of the ankles.

Depending upon severity of experienced symptoms, cardiac disease patients are com-
monly classified in accordance with the New York Heart Association (NYHA) Functional
Classification. Table 1.1 presents overview of patient functional capacities in different
NYHA classes (AHA, 2013a; NYHA, 1994).

NYHA
Patient’s reaction during physical activity

Class

I No limitation in ordinary physical activity despite of disease.

II
Comfortable at rest, but experience slight limitation in ordinary physical
activity, due to fatigue, palpitation, dyspnea or anginal pain.

III
Comfortable at rest, but experience limitation in even less than ordinary
physical activity, due to fatigue, palpitation, dyspnea or anginal pain.

IV
Disease symptoms may be present even at rest, with increasing intensity if
conducting any physical activity.

Table 1.1: New York Heart Association (NYHA) functional classification of patients with
cardiovascular diseases
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1. Introduction

Commonly used heart medication types including brand names, designated treatment
conditions and health effects are presented in Table 1.2.Types of heart medications (American Heart association) 
 

CARDIAC MEDICATIONS 
Medication type Reasons for medication intake Medication effects 

ANTICOAGULANTS: 
Dalteparin (Fragmin), 
Danaparoid (Orgaran), 
Enoxaparin (Lovenox), Heparin 
(various), Tinzaparin (Innohep), 
Warfarin (Coumadin) 

- Help in prevention of clotting 
in the blood vessels. 
- May prevent enlargment of 
the clots and development of 
more serious problems. 
- Prevent the first or recurrent 
strokes. 

 

Although called blood thin-
ners, they don't really thin 
the blood. Decrease the 
ability of clotting (coagu-
lating) the blood, but do 
not dissolve existing clots. 
Treat certain blood vessel, 
heart and lung conditions. 

ANTIPLATELET AGENTS: 
Aspirin, Ticlopidine, 
Clopidogrel (Plavix®), 
Dipyridamole 

- Help in prevention of clotting 
in patients who experienced: 
heart attack, unstable angina, 
ischemic strokes, TIA 
(transient ischemic attacks, or 
"little strokes") and other car-
diovascular diseases. 
-  Preventive medication when 
plaque build-up is obvious but 
not yet clogging the artery. 

Prevent blood platelets 
from sticking together and 
forming the blood clots. 

ANGIOTENSIN-
CONVERTING ENZYME 
(ACE) INHIBITORS: 
Benazepril (Lotensin), Captopril 
(Capoten), Enalapril (Vasotec), 
Fosinopril (Monopril), Lisino-
pril (Prinivil, Zestril), Moexipril 
(Univasc), Perindopril (Aceon), 
Quinapril (Accupril), Ramipril 
(Altace), Trandolapril (Mavik)  

- Treat cardiovascular 
conditions together with heart 
failure and high blood 
pressure. 

Decrease blood flow 
resistance by lowering 
levels of angiotensin II. 
Expand blood vessels 
enabling easier blood flow 
and heart work. 

ANGIOTENSIN II 
RECEPTOR BLOCKERS (OR 
INHIBITORS): 
Candesartan (Atacand), 
Eprosartan (Teveten), Irbesartan 
(Avapro), Losartan (Cozaar), 
Telmisartan (Micardis), 
Valsartan (Diovan)  

- Treat cardiovascular 
conditions together with heart 
failure and high blood 
pressure. 

Prevent angiotensin II from 
affecting the blood vessels 
and heart in order to pre-
vent blood pressure from 
rising. 

VASODILATORS: 
Isosorbide dinitrate (Isordil), 
Nesiritide (Natrecor), Hydra-
lazine (Apresoline), Nitrates, 
Minoxidil 

- Relieve chest pain (angina). Increase the blood and 
oxygen supply to the heart 
and ease the heart's work-
load by relaxing the blood 
vessels. 
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1. IntroductionTypes of heart medications (American Heart association) 
 

CARDIAC MEDICATIONS 
Medication type Reasons for medication intake Medication effects 

BETA BLOCKERS: 
Acebutolol (Sectral), Atenolol 
(Tenormin), Betaxolol (Kerlo-
ne), Bisoprolol/hydrochloro-
thiazide (Ziac), Bisoprolol (Ze-
beta), Carteolol (Cartrol), Meto-
prolol (Lopressor, Toprol XL), 
Nadolol (Corgard), Propranolol 
(Inderal), Sotalol (Betapace), 
Timolol (Blocadren)  

- Help in lowering blood pres-
sure. 
- Supplement therapy for car-
diac arrhythmias (abnormal 
heart rhythms) and treat chest 
pain (angina). 
- Prevent potential heart at-
tacks in patients who experi-
enced them before. 

Decrease the heart rate, 
lowering heart efforts, and 
resulting in lower blood 
pressure. 
  

CALCIUM CHANNEL 
BLOCKERS: 
Amlodipine (Norvasc, Lotrel), 
Bepridil (Vascor), Diltiazem 
(Cardizem, Tiazac), Felodipine 
(Plendil), Nifedipine (Adalat, 
Procardia), Nimodipine (Nimo-
top), Nisoldipine (Sular), Vera-
pamil (Calan, Isoptin, Verelan) 

- Treat high blood pressure and 
chest pain (angina) due to 
reduced blood supply to the 
heart muscle and some ar-
rhythmias (abnormal heart 
rhythms). 

Reduce the movement of 
calcium into the cells of the 
heart and blood vessels. 
Help to relax blood vessels 
and lower the heart efforts. 

DIURETICS: 
Amiloride (Midamor), Bumeta-
nide (Bumex), Chlorothiazide 
(Diuril), Chlorthalidone (Hygro-
ton), Furosemide (Lasix), Hydro 
-chlorothiazide (Esidrix, Hydro-
diuril), Indapamide (Lozol), 
Spironolactone (Aldactone) 

- Help lowering blood 
pressure. 
- Help reduce swelling 
(edema) developed from 
excess build-up of fluids in the 
body. 
 

Remove excess fluid and 
soduim from the body 
through urination. Ease the 
heart's workload. Decrease 
accumulation of fluids in 
the lungs, ankles, legs and 
other body parts. 

DIGITALIS PREPARATIONS: 
Lanoxin 

- Relieve heart failure 
symptoms, particularly when 
the patient does not respond to 
diuretics and ACE inhibitors.  
- Slow certain types of ire-
gular heartbeat (arrhythmias), 
mainly atrial fibrillation. 

Strengthen heart con-
tractions, benefiting in case 
of heart failure and irregu-
lar heart beats. 

STATINS: 
Statins, resins, nicotinic acid 
(niacin), gemfibrozil, clofibrate 

- Help lower low-density 
lipoprotein (LDL, or "bad" 
cholesterol), raise high-density 
lipoprotein (HDL, or "good" 
cholesterol) and lower 
triglyceride levels. 

Lower blood cholesterol le-
vels in various ways: affe-
cting the liver, other 
intestines and disrupting 
the development of choles-
terol. 

 

Table 1.2: Cardiovascular medication types, common names, treatment and effects
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1. Introduction

In addition to treating cardiovascular patients with medications, the following electri-
cal heart stimulation methods are applied in some cases: spinal cord stimulation (SCS),
transcutaneous electrical nerve stimulation (TENS), epidural spinal electrical stimulation
(ESES), implantable electrical nerve stimulation (IENS) – pacemaker, implantable car-
dioverter defibrillator (ICD), electromyostimulation (EMS).

Spinal cord stimulation (SCS) is a therapy applied to refractory angina pectoris (a
part of stable angina) patients in which the other treatments have not been successful.
The results of SCS reported in literature include significant reduction of ischemic burden,
duration and number (frequency) of ischemic episodes (De Jongste et al., 1994; Eriksson
et al., 1979).

Transcutaneous electrical nerve stimulation (TENS) has shown as a potentially ben-
eficial treatment of ischemic pain (Tallis et al., 1983) and angina (Mannheimer et al.,
1985).

Epidural spinal electrical stimulation (ESES) can improve peripheral blood circulation,
alleviating vascular disease of extremities which can cause ischemic pain, skin ulceration
or gangrene (Augustinsson et al., 1985). ESES shows promising results in the cases when
reconstructive surgery of severe limb ischemia fails or is not possible.

Implantable electrical nerve stimulator (IENS) – pacemaker – is a small battery-
powered device placed in patients’ chest and used to interrupt or prevent life threatening
arrhythmias by providing low-energy electrical pulses (Obel and Bourgeois, 1993). Dur-
ing the arrhythmias heart rate could be too fast (tachycardia), too slow (bradycardia) or
irregular, resulting in insufficient blood flow leading to fatigue, shortness of breadth, or
fainting.

Implantable cardioverter defibrillator (ICD) is used in prevention of sudden death and
cardiac arrest of patients with ventricular tachycardia or fibrillation (AHA, 2013b). This is
achieved by using high-energy electrical pulses/shocks which restore normal heart rhythm.
Newer ICD devices may also serve as pacemakers (NIH, 2013). In such a case, the device
would have a dual role of (1) stimulating heart beats if the heart rate is too slow, using
low-energy electrical pulses, and (2) treat life threatening arrhythmias, using high-energy
electrical stimulation.

Low-frequency electromyostimulation (EMS) is applied on skeletal muscles to ease
physical efforts in chronic heart failure patients (Casillas et al., 2008). As a result of EMS
therapy muscles’ oxidative capacity and physical performance is improved, similar to the
outcomes of physical training. EMS can be an alternative to physical training when such
activities would present risk for the patients heart condition. EMS does not have any
reported adverse side effects, but can not be applied if IENS or ICD are implanted. EMS
is a cheap procedure with beneficial results in rehabilitation of a growing number of CHF
patients.

Furthermore, health literacy could highly benefit the heart failure patients. Knowledge
of common heart failure diseases, different treatments, health diets, exercise recommenda-
tion and active monitoring are important factors of self-care and self-management.

Due to the high and rising prevalence of cardiovascular diseases, the current study
focuses on enabling technologies to address some of the present health care issues in pro-
viding effective and affordable treatment. Particularly, telemonitoring and tele-homecare
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1. Introduction

offer possibilities to increase the effectiveness of usual health services while at the same
time reducing the costs.

1.3 Dissertation overview

Evidence of telemonitoring benefits for the treatment of chronic diseases is presented within
the Literature review chapter, particularly focusing on heart failure patients. The chapter
also describes some of the current shortcomings and limitations of the existing studies
which are further addressed within the dissertation. Methodology for decision support
for heart failure patients therapy optimization is developed based on retrospective home
telemonitoring data and expert knowledge. The methodology contains definition of the
research hypotheses as well as the description of the procedures and tools used within the
dissertation. The subsequent chapter deals with Descriptive Statistics and Data Prepro-
cessing, describing the experimental research used to collect and clean the data for further
analyses. Alarm Management and Optimization results are presented next, introducing
new automated home telemonitoring alarm generation system. This chapter also includes
analyses of weather influences on heart failure patient health conditions. The final chap-
ters discuss the results and present conclusions, summary of scientific contributions and
outlook for the future work.
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Chapter 2

Literature Review

2.1 Telemedicine

Telemedicine is a practice of remotely monitoring health status of patients located at dif-
ferent locations from their health care providers. Typically the patients are located at
their homes and use mobile phone technology to transmit the monitoring data. Home
telecare medicine is one of the fastest growing areas of healthcare (Koch, 2006). Effec-
tiveness of telemedicine has been thoroughly investigated. As early as 2005, researchers
started exploring feasibility of telemedicine and possibilities to use telemonitoring for de-
cision support in order to identify economic and health benefits, satisfaction of patients
and care-givers with the telemonitoring systems. Following the feasibility studies, numer-
ous trials were conducted and increasing number of reviews appeared to summarize the
findings of conducted studies with respect to the benefits for the patients as well as the
society.

A review of 31 existing reviews showed telehealth to be feasible and as effective as
in-person care for patients with neurological symptoms, while reductions of hospital ad-
missions and mortality were reported for heart failure patients (Deshpande, 2008). Also
identified are improvements of communication with health care providers, quality of dis-
ease monitoring and patient quality of life. Another review of 80 published reviews on
telemedicine found that application of telemedical tools is mostly effective in cardiovas-
cular and other chronic diseases (Ekeland et al., 2010). Apart from the aforementioned
reviews identifying extensive use of telemonitoring for chronic illnesses, also documented
are successful applications in the long term psoriasis therapy (Hayn et al., 2009), chronic
obstructive pulmonary disease (Basilakis et al., 2010), monitoring asthma (Finkelstein and
Hripcsak, 2001), and assisting patients with type one diabetes mellitus (Kollmann et al.,
2007). In fact, telemonitoring of heart failure and diabetes was the most common topic
among the 98 home telecare studies each including 80 or more patients, published before
2006 (Barlow et al., 2007). However, a review found that application of telemedicine to
patients with cardiac diseases is more effective then in the cases of diabetes (Paré et al.,
2007).

Out of the cardiovascular diseases, heart failure is the most costly for the health care
system and affecting the major part of population (Finkelstein et al., 2010). Therefore,
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confirmation of telemedicine effectiveness in cases of heart failure patients is particularly
significant and documented by the systematic reviews pointing out decreased hospitaliza-
tion rates, reduced usage of health services and improved patient health outcomes (Barlow
et al., 2007; Maric et al., 2009). For example, a study found statistically significant finan-
cial and health related benefits of the home-based telemonitoring system resulting in 36%
reduction of readmission rates, 31% less episodes of hemodynamic instability, as well as
35% decrease in mean hospital costs (Giordano et al., 2009). Significantly reduced median
duration of hospital stay from 10 to 6.5 days (p = 0.04) was confirmed by the Mobile
Telemonitoring in Heart Failure Patients (MOBITEL) study of 65 patients, conducted in
Austria from 2003 to 2008 (Scherr et al., 2009). The study also reported median New
York Heart Association (NYHA) class improvement from III to II in the patient group
using the telemonitoring. Other reports comparing telemonitoring assisted care with usual
care emphasize statistically significant reduction in patient mortality (Cleland et al., 2005;
Ferrante et al., 2010).

The economic benefits of home telehealth systems have been confirmed in reviews of
studies published prior to 2008, with 91% of the identified publications reporting cost
effectiveness (Polisena et al., 2009; Rojas and Gagnon, 2008). However, the methodologies
used to calculate costs, as well as the reported economic impacts largely vary among the
published studies. The reported savings range between 1.6% and 68.3% (mean 35%, IQR
17.7-55.3%) (Seto, 2008). Additionally, a study pointed out that telemonitoring increased
nurses productivity by allowing them to take care of more patients in comparison to the
usual care (Weintraub et al., 2010).

Such effects together with the increased compliance of patients with the treatment pro-
grams also contribute to the care-givers satisfaction with telemonitoring (Domingo et al.,
2012). Apart from the care-givers, positive patient satisfaction is also typically reported in
the heart failure telemonitoring programs (Finkelstein et al., 2010), including compliance
with telemonitoring (Paré et al., 2007), and/or improvement in the patient quality of life
(Domingo et al., 2011; Maric et al., 2009). Typical patient responses indicated satisfaction
with the telemonitoring systems due to increased knowledge via automatically provided
life style recommendations as well as increased sense of security the patients experienced
while staying in contact with their health-care providers using the telemonitoring solu-
tions. Consequently, heart failure patients valued telemedicine and a study found that
more than half of the 126 enrolled participants were even willing to pay 20 dollars to have
the possibility of using telemedicine devices at home instead of traveling to the physicians
(Bradford et al., 2004).

The extent to which the patients appreciated telemedicine and technological advances
in this area enabled a new form of patient health-care: the self-care process, instigating
adherence to medications, proper diet, exercise, and regular monitoring of physiological
conditions (Bui and Fonarow, 2012). According to the American Heart Association, self-
care implies application of a decision-making process the patients use in order to maintain
physiological stability (Riegel et al., 2009). Similarly, patient self-management implies
self-adjustment of the medication therapy, requiring the patients to recognize a change
in their health condition (e.g. increasing fluid accumulation and swelling), assess their
symptoms, choose to take action, apply a treatment plan (e.g. taking an extra diuretic

9



2. Literature Review

dose), and evaluate the response to such therapy. As such, self-care and self-management
are primarily the responsibility of the patients, rather than the health-care professionals.

Numerous challenges were present in self-care applications. Although daily weight
measurements were found to be an important part of HF self-management (Chaudhry
et al., 2007), less than one-half of the patients recovering from CHF regularly monitored
their weight, even among those recently discharged from the hospital (Moser et al., 2005).
Furthermore, an increase in weight of 2 kg over one to 3 days prior to the measurement day
had a sensitivity of only 9% in detection of worsening HF symptoms (Lewin et al., 2005).
The patients might delay seeking medical care for HF symptoms or fail to mention newly
occurring symptoms during periodic examinations by their physicians (Evangelista et al.,
2000). Presence of additional diseases often exacerbated the challenges in self-care, limiting
the patients understanding of their treatment plans. Such additional disorders or diseases
could require extra medications and adjustments of the treatment plans already requiring
the heart failure patients to take 9-12 pills each day (Lien et al., 2002). Certain diseases
might have similar symptoms to heart failure, such as shortness of breath which also
occurs in chronic obstructive pulmonary disease, whereas the other diseases, e.g. diabetes,
might impair the occurrence of certain HF symptoms and/or make their interpretation
more difficult (Riegel et al., 2009). Additional obstacles that frequently prevent heart
failure patients from fully implementing self-management include poor health literacy,
social isolation or depression (Bui and Fonarow, 2012). Although self-management has
been strongly recommended, this approach has not been well investigated in randomized
clinical trials and there is insufficient evidence that heart failure patients benefit from
self-management (Bui and Fonarow, 2012). Nevertheless, possible benefits could emerge
from the combination of self-management and other interventions, such as telemonitoring.

Table 2.1 presents an overview of existing studies particularly focused on the appli-
cations of telemonitoring to chronic heart failure, but also on general telemedicine. The
studies mostly discuss economic and health benefits of telemonitoring, typically document-
ing the evidence of patient satisfaction and in lesser number care-givers satisfaction with
the telemonitoring systems. Decision support applications were topic of a lesser number
of studies. Decision support was provided through automated adjustment of patient med-
ication intake, as well as automated processing of telemonitoring data to indicate patient
alarm status to the health-care providers. Multivariate logistic regression model was used
to predict the need for medical intervention with an overall accuracy of 74% (Biddiss et al.,
2009). Apart from daily measurements of blood pressure, heart rate and weight, this study
considered self-rated health and wellbeing survey responses the patients provided twice a
week.

Most of the publications presented in Table 2.1 investigate feasibility and effectiveness
of telemonitoring solutions. Following the feasibility and effectiveness studies, focus on
methods, tools and technologies used for telemedicine was the topic of fewer research
publications. The published reviews focused on methodologies used to assess economic
and health benefits or tools used to achieve improved patient symptom management as a
decision support measure.

How does the telemonitoring achieve the aforementioned benefits? To answer such a
question several key elements of telemonitoring systems can be identified.
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Benefits System satisfaction Topic 
Economic Health Patient Care-giver 

Decision 
support 

Feasibility Koch et al. 
2005, Hayn et 
al. 2009, 
Finkelstein et 
al. 2010 

Kollmann et al. 
2007, 
Deshpande et 
al. 2008, Hayn 
et al. 2009, 
Finkelstein et 
al. 2010 

Dohr et al. 
2005, 
Kollmann 
et al. 2007, 
Finkelstein 
et al. 2010, 
Domingo et 
al. 2011 

Domingo et 
al. 2011 

Dohr et al. 
2005 

Effectiveness Giordano et al. 
2006, Pare et 
al. 2007,  
Seto 2007, 
Rojas & 
Gagnon 2008, 
Weintraub et 
al. 2009,  
Polisena et al. 
2009, Maric 
et al. 2009, 
Ekeland et al. 
2010 

Giordano et al. 
2006, Rojas & 
Gagnon 2008, 
Deshpande et 
al. 2008, 
Scherr et al. 
2009, Ferrante 
et al. 2009, 
Barlow et al. 
2007, Maric et 
al. 2009, 
Domingo et al. 
2010 

Cleland et 
al. 2005, 
Pare et al. 
2007, 
Deshpande 
et al. 2008, 
Rojas & 
Gagnon 
2008, Tran 
et al. 2008 
Maric et 
al. 2009, 
Barlow et 
al. 2007, 
Domingo et 
al. 2010   

Deshpande 
et al. 2008, 
Weintraub 
et al. 2009  

Rojas & 
Gagnon 
2008, 
Scherr et al. 
2009, 
Weintraub 
et al. 2009, 
Maric et 
al. 2009, 
Domingo et 
al. 2010, 
De Vries et 
al. 2011 

 
 
 
T 
 
E 
 
L 
 
E 
 
M 
 
E 
 
D 
 
I 
 
C 
 
I 
 
N 
 
E 
 Methods / 

tools / 
technologies 

Rojas & 
Gagnon 2008, 
Tran et al. 
2008 

Tran et al. 
2008, Basilakis 
et al. 2010 

Dohr et al. 
2005, 
Domingo et 
al. 2010, 
Finkelstein 
et al. 2010, 
Domingo et 
al. 2011 

Weintraub 
et al. 2009, 
Domingo et 
al. 2011 

Biddiss et 
al. 2009, 
Maric et 
al. 2009, 
Basilakis et 
al. 2010, 
Vukovic et 
al. 2012 

Table 2.1: Overview of existing studies focusing on application of telemedicine to heart
failure patients (plain text - research studies, bold - reviews)

1. Patient status management including telemonitoring data analyses provides notifica-
tion to care-givers about worsening patient conditions via alarm messages (Domingo
et al., 2011), as well as trend-threshold based classification of patients into risk groups
(Basilakis et al., 2010).

2. Utilization of heart failure telemonitoring data can reassess patients’ existing med-
ication therapy and provide medication adjustment suggestions to the physicians
(Basilakis et al., 2010; Vries et al., 2011).
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3. The most common utilization of telemonitoring in heart failure patients is to
provide life style recommendations to the patients through educational materi-
als/videos/messages (Basilakis et al., 2010; Domingo et al., 2011, 2012; Ferrante
et al., 2010; Finkelstein et al., 2010; Paré et al., 2007; Vries et al., 2011).

4. Enhanced patient self-care and self-management, as integrated part of telemonitor-
ing, may help in heart failure patients to maintain physiological stability (Riegel
et al., 2009).

5. Knowing weather conditions in conjunction with physiological telemonitoring data
can play a role in enhancing the patient care. (Vukovic et al., 2012b).

2.2 Limitations of patient health status monitoring

The existing studies also identified significant limitations to the application of telemonitor-
ing in heart failure patients. Thus, measurement signal quality was not often the research
topic, but could be included in the data processing algorithm through bio signal analyses
(Basilakis et al., 2010). Negative aspects of the telemonitoring systems were identified by
both, care-givers as well as patients. The critical limitation of the telemonitoring software
is generation of overwhelming number of alarms which the health care providers often
found to be very annoying (Domingo et al., 2012). A study reported that only 6.4% of
alarms generated by the telemonitoring system could be classified as key medical events
(Biddiss et al., 2009). In another study, patients reported dissatisfaction with the fre-
quent measurement related questionnaires, causing them to feel the presence of illness in
their home environment (Vries et al., 2011). The same study also pointed out occasional
reluctance of care-givers to use telemonitoring assisted health care systems, contributing
to the previous findings regarding adverse attitudes of health care practitioners towards
automated diagnostic systems (Ridderikhoff and van Herk, 1999).

In clinical practice, device alarms sometimes may actually foster the occurrence of
adverse events, rather than preventing them. This is the reason why Emergency Care
Research Institute (ECRI) ranked alarm hazards at the top of the list of health device
hazards for the years 2012, 2013 and 2014 (ECRI, 2011, 2012, 2013), a status confirmed
by the Association for Advancement of Medical Instruments (AAMI) listing the medical
device alarm hazard as No. 1 industry challenge of the year 2012 (Ferenc, 2012). The
alarm hazards also remained at the second highest position in the ECRI rankings for the
years of 2011 (ECRI, 2010) and 2010 (ECRI, 2009).

Problems with clinical alarms have existed since the advent of monitoring and therapy
device use in health care and were first reported in the 1974 issue of Health Devices (ECRI,
1974). Patient monitoring alarm shortcomings have been the topic of numerous studies
and analysis in the literature. Publications have shown the existence of limitations of
current alarm systems (ACCE, 2006). The most reported negative side-effect is the large
number of nuisance alarms. A paper on adverse events in low-risk patients with chest
pain in emergency department, reported that 99.4% of the alarms were false, not resulting
in a change of patient treatment management (Atzema et al., 2006). Another study on
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intensive care unit monitoring showed that over 90% of the alarms were false or clinically
insignificant (Imhoff and Kuhls, 2006). The annoying alarms result from the lack of the
systems reliability and accuracy and rarely from an adverse patient condition. Some of the
consequences of false or nuisance alarms include interference with patient care resulting
in reduced effectiveness of the nursing staff. The large number of false alarms demands
substantial caregivers time, patience, full attention, fast reactions and commitment which
are not always easy to achieve. All such limitations and poor decision support could lead
to dangerous undermining of the true alarms by the clinicians (Zhang, 2003).

Review of the existing studies revealed a differentiation between statistical and artificial
intelligence approaches to alarm management (Imhoff and Kuhls, 2006), as presented
in Table 2.2. The identified approaches were mostly used in intensive care monitoring
(30 studies), less in general monitoring time series (16 studies), whereas telemonitoring
alarms were investigated in only 5 studies primarily using statistical approaches of trend
detection and curve fitting. Usual alarm generation upon exceeding fixed measurement
thresholds results in numerous false alarms (Imhoff and Kuhls, 2006). No standard exists
for setting the default alarm thresholds for a particular monitored parameter (Vukovic
et al., 2010). Furthermore, there is no gold standard for alarm classification (Scherr et al.,
2009; Zhang, 2003). The existing statistical techniques are limited by interpretability of
the high-dimensional data (Chambrin, 2001), while the artificial intelligence approaches
lack predictability needed for regulatory approvals (Imhoff and Kuhls, 2006).

No studies were found to review which of the available technologies exist to provide
the highest degree of patient and care-givers satisfaction. Furthermore, the most reli-
able/suitable telemonitoring methods and tools to achieve adequate decision support still
remain unclear. Although recent publications focused on statistical methods used to pro-
vide health care decision support, they typically provided insufficient details to allow re-
peatability of the applied analyses. As additional work is needed in this area, the current
study tries to address some of the issues related to the identified shortcomings, particularly
with respect to the methods for reliable decision support and higher degree of care-givers
satisfaction.

Additionally, no study was found to combine the telemonitoring of patient physiolog-
ical parameters with monitoring of weather conditions. Therefore the current research
attempts to investigate relations between the telemonitored physiological parameters of
heart failure patients and weather conditions.
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   Intensive care 

monitoring 
General monitoring 

and time series 
Telemonitoring 

Improved signal 
extraction 

Charbonnier et al. 2004 Davies et al. 2003, 
Fried 2004 

  

Artifact Filters Makivitra et al. 1991     
Statistical Process 
Control 

Kennedy 1995, Hill and 
Endresen 1978 

    

Statistical Pattern 
Detection with 
Time-Series 
Analysis 

Imhoff et al. 1997, 1998     

Dynamic Linear 
Models and 
Kalman Filters 

Smith et al. 1983 Gordon and Smith 
1990, Daumer and 
Falk 1998 

  

Autoregressive 
(AR) models and 
self-adjusting 
thresholds 

Imhoff et al. 1997, 1998, 
2002 

    

Phase-space 
embedding 

Gather et al. 2000 Gather et al. 2002   

Trend detection 
and curve fitting 

Schoenberg et al. 1999, 
Koski et al. 1990, 
Haimowitz et al. 1995 

Fried and Imhoff 
2004, Brillinger 
1989 

Basilakis et al. 
2010, De Vries et 
al. 2011, Kollmann 
et al. 2007 

S
T

A
T

IS
T

IC
A

L
 A

P
P

R
O

A
C

H
E

S
 

Multivariate 
statistical methods 

  Dahlhaus 2000, 
Gather et al. 2000, 
2001 

Biddiss et al. 2009 

Knowledge Based 
Approaches 

Westenskow et al. 1992, 
Koski et al. 1994 

    

Knowledge 
Discovery Based 
and Machine 
Learning 

Imhoff et al. 1999, 
Morik et al. 2000, 
Miksch et al. 1996 

Morris 1999   

Neural Networks Farrell et al. 1992, 
Ulbricht et al. 1998, Orr 
and Westenskow 1994, 
Guru et al. 2007, Patil 
and Kumaraswamy 2009 

Tsien 2000   

Fuzzy Logic Bates and Young 2003, 
Lowe et al. 2001, Wolf 
et al. 1996, Zong et al. 
2004, Adlassnig et al. 
2008, Blacky et al. 2011 

Becker et al. 1997, 
Oberli et al. 1999, 
Tsipouras et al. 
2008 

  

A
R

T
IF

IC
IA

L
 I

N
T

E
L

IG
E

N
C

E
 A

P
P

R
O

A
C

H
E

S
 

Bayesian Networks 
 

  Laursen 1994   

Table 2.2: Alarm algorithms in patient health monitoring: intensive care monitoring,
general monitoring and time series, telemonitoring
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2.3 Weather influence on health

The studies explored the effects of climate on health since Hippocrates who wrote his
treatise On Airs, Waters and Places (430 B.C.) as part of the Hippocratic Corpus (Jones,
1923). According to the World Meteorological Organization awareness of associations
between human health and weather/climate conditions should be included within the
national public meteorological services (Kusch, 2004). The purpose is to enhance public
understanding of environmental influences and lessen possible adverse outcomes. The most
significant natural hazards are heat/cold waves – prolonged periods of extreme temperature
and humidity. As an example, due to the hottest summer in Europe for the past 500 years
an estimated 15,000 elderly people died only in France between August 4 and 18, 2003
(Poumadere et al., 2005). Apart from the elderly, susceptible to the thermal stress are
also people with extreme body mass and malnutrition - under- or over-weight, including
infants, those previously experiencing heat related illnesses, patients with heart disease,
high blood pressure or other chronic diseases, diabetes, lung, liver and kidney diseases,
socially isolated and poor (Keim et al., 2002; Poumadere et al., 2005). Particularly, many
cardiovascular diseases including chronic heart failure were associated with weather and
climate (Boulay et al., 1999). During the cold weather blood flow towards periphery of the
body would be reduced leading to increasing blood density and higher probability of blood
clots and thrombosis (Keatinge et al., 1984). On the other hand, the hot weather would
lead to increased body temperature, heart rate and sweating (Keim et al., 2002). Risk
of heat stress would increase with decreasing air velocity and increasing environmental
humidity and temperature. As the humidity approaches 100% the body would lose the
ability to reduce heat by sweating.

Statistically significant increases in hospitalizations and mortality were identified dur-
ing the cold winter months. Paradoxically, excess winter mortality is more pronounced in
countries with relatively mild winters (e.g. Southern European and island countries: Por-
tugal, Spain, Greece, Ireland, UK), than in those with more severe climate (e.g. Northern
European and Scandinavian countries: Finland, Sweden, Norway) (Healy, 2003). Such ef-
fects are related to the typical thermal properties of dwellings depending upon the housing
standards of particular countries. More pronounced impacts of outdoor weather variations
on health are noticed in the dwellings with poor thermal insulation, even when the outdoor
weather variations are relatively mild.

Mortality associated with environmental heat or cold can be directly caused by hyper-
or hypothermia or indirectly by the effects on respiratory and cardiovascular diseases as a
physiological result of the human body attempts to acclimatize to the environment (Kysely
et al., 2009; Näyhä, 2005). Heat acclimatization should be gradual, followed by moderate
physical activities, and happen over the prolonged time period of 8-10 days in adults and
10-14 days in children (Gaffin and Moran, 2001).

In the case of heart failure patients, existing studies considered both hot and cold
weather conditions, respectively related to high and low humidity. Consequences of de-
creasing temperature can include increased coronary risk, higher blood pressure, myocar-
dial infraction and respiratory infections leading to deterioration of health status (Stewart
et al., 2002) and higher mortality rate (Gonçalves et al., 2007). A study on relationships
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between weather and myocardial infraction, conducted in Italy 1998-2002, showed that
hot weather conditions increased the hospitalization rates particularly in young people,
whereas cold weather boosted the average rate of hospitalizations of the elderly (Morabito
et al., 2005).

While many studies explored the influence of environmental temperatures on cardio-
vascular diseases, influence of atmospheric pressure was less studied (Danet et al., 1999).
The researchers recommended using daily atmospheric pressure measurements rather than
monthly averages due to greater variability and influence on the patients.

The current study analyzes the influence of daily weather fluctuations on heart failure
patients physiological status.

2.4 Published results

The current work builds upon the publications listed in Table 2.3.

Reference Summary
(Vukovic et al., 2010) New 5-level alarm flag was proposed to supplement the

original algorithm towards more efficient and precise
telemonitoring.

(Vukovic et al., 2012a) Utilization of dynamic threshold adjustments around patients’
reference state, obtained using Kalman filtering, achieved
optimal balance between sensitivity and specificity of an
automated alarm generation.

(Vukovic et al., 2012b) Identification of weather influence on patient health status
was introduced as a new feature in home telemonitoring.

(Vukovic et al., 2012c) Automated alarm management approach was developed and
dynamic automatically adjusted alarm thresholds were
identified in comparison to the fixed manually adjusted
thresholds.

Table 2.3: Published papers including the dissertation results
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Chapter 3

Methodology

The analyses used the data collected in the MOBITEL study during the years 2003 through
2008. The dataset contained 9128 measurement records from 65 patients (in the control
group) (Scherr et al., 2009). The patients were required to measure their vital signs
and manually enter the measured data into the mobile phone devices used to transfer
the obtained information to the telemonitoring centre. The collected data were then
transferred to the physicians who were able to review the patients health status on their
monitors, manually set and adjust measurement thresholds for each individual patient,
and receive the alarms when measurements exceeded such preset thresholds. Four patient
health status parameters were telemonitored: systolic and diastolic blood pressure, heart
rate and weight.

The available data included measured patients physiological parameters, maximum
and minimum thresholds used to automatically alarm physicians when exceeded by the
measured parameters, as well as records of physician responses to such alarms. The
system allowed physicians to record five types of responses, coded as the following: (1)
No action, (2) Threshold adjustment, (3) Patient contact, (4) Medication adjustment, and
(5) Other actions. Out of such responses, No action and Threshold adjustment were not
related to therapeutic actions, i.e. they were considered to be caused by false alarms.
Additionally, false alarms included cases with an alarm occurrence and no responses from
physicians. On the other hand, “Patient contact”, “Medication adjustment” and “Other
actions” were assumed to be the result of true alarms. All alarm occurrences were classified
as positive events, while no alarm occurrences were classified as negative events. True
negative events meant that neither alarms nor physician responses occurred, while false
negative classification included cases when no alarms occurred but physicians recorded
responses.

3.1 Description of procedures

The collected measurement data records, alarms and the related physician responses to
alarm conditions were used in the present study to develop and test the automated alarm
management system for telemonitoring of chronic heart failure patients. The research
involved the following general steps (Vukovic et al., 2010, 2012a,b,c):
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• Preprocessing, data cleaning,

• Analysis of true positive, false positive, true negative, false negative alarms based
on documented physician actions; analysis of documented vs. calculated alarms,

• Analysis of exceeded thresholds (single and multiple) on alarm occurrence,

• New 5-level alarm risk indicator was proposed to supplement the original MOBITEL
alarm generation algorithm,

• Smoothing the data using various filters (moving average, Savitsky-Golay, Fast
Fourier Transformation (FFT), Kalman) to obtain patient reference state,

• Choosing the optimal data window (interval) size for measurement data smoothing
and threshold adjustment: fixed window size, variable window size,

• Replacing fixed thresholds with dynamic thresholds and choosing the optimal thresh-
old values based upon statistical parameters (standard deviation within the window
size, 99% CI, mean/median absolute and relative thresholds, ROC curve) to reduce
the number of false alarms,

• Graphical visualization tool was developed to indicate trends in the patients’ physi-
ological parameters,

• Testing and selection of the optimal procedure for the decision support,

• Analysis of weather influence on patient health status parameters.

Appendix A presents an overview of applied statistical methods and indices used in
the data analyses. Precondition for the analyses was data cleaning. The cleaning removed
the cases when patients recorded measurements isolated in time and implausible values
outside of reasonable measurement ranges. The remaining data included inconsistent
number of measurements per day, as patients mostly recorded measurements only once
but sometimes several times a day. In such cases new single measurement records were
created by averaging and replacing multiple daily measurements. The number of exceeded
thresholds was summed for each day, while only a single physician response was considered
with a priority given to those responses indicating medical attention. After the cleaning,
the number of measured records was reduced to 8114 from 54 patients. However, only 52
patients could be considered in the alarm management optimization due to the insufficient
and irregular measurement records of the 2 additionally removed patients.

The subsequent steps focused on providing basic data statistics, which indicated large
number of false alarms in the dataset. Therefore, further focus was on the statistical
data analysis methods to reduce the number of false alarms. Analyses included alterna-
tive procedures for setting up thresholds in comparison to the alarm generation based
upon manually adjustable fixed thresholds. Data filtering and smoothing was applied to
identify optimal indicator of patient reference states. Investigation of fixed and variable
threshold limits around the reference states followed, enhancing the decision support sys-
tem for patient therapy optimization. The automatically adjusted dynamic thresholds
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were introduced for each new measurement with respect to the estimated reference state
of patient conditions. Additionally, investigation of weather influences on the measure-
ment records was conducted to identify optimal patient health status predictors. Officially
recorded weather conditions over the telemonitoring time period, including environmen-
tal temperatures, humidity, and atmospheric pressure, were available from the Austrian
Central Institute for Meteorology and Geodynamics (ZAMG, 2012). Considering the ge-
ographic spread of patients throughout Austria, weather data for each patient were used
from one of the five meteorological stations closest to the patient location: Vienna, Graz,
Innsbruck, Klagenfurt and Linz.

A “reference state” of four telemonitored variables of chronic heart failure patients was
estimated for each measurement day: weight, heart rate, systolic and diastolic blood pres-
sure. The estimates were based on smoothing of the measured data within an appropriate
window size of consecutive measurement days preceding the current measurement day.
Smoothing of the data was done using statistical measures of location, i.e. mean value
(moving average), and Kalman filtering. Investigation of the possible dynamic threshold
bounds was based on the calculated means and medians of the existing MOBITEL fixed
thresholds. Various window sizes and threshold values (absolute and relative) were used
to test the performance of the algorithm.

Finally, the optimized dynamic threshold adjustment methodology (reference state ±
threshold bounds) was applied and tested on the existing data from the MOBITEL study.
The difference in occurrence of true and false alarms was observed when dynamically
adjusting the alarm thresholds. The automatically generated alarms were classified as
true or false based on the comparison to the available physician actions documented in the
MOBITEL study. The documented physician actions were used as a reference to estimate
sensitivity and specificity of the developed algorithm for automated alarm generation. The
results were obtained varying the upper and lower threshold bounds around the reference
state in combination with the fixed constant upper and lower threshold limits that will
always trigger alarm occurrence regardless of the reference state value. Based on the
calculated results, receiver operating characteristic (ROC) curves were used to select the
optimal combination of algorithmic upper and lower threshold values for the monitored
parameters.

Trend analysis of measurements and of reference state were conducted to develop a
tool for graphical visualisation. The tool was designed to indicate potentially critical mea-
surement points approaching the identified thresholds. Such indication included colouring
of the measurement background fields within the thresholds.

A comparison of the original manual threshold adjustment method used in the MOBI-
TEL study and the newly developed approach is presented in Figure 3.1.

3.2 Description of used tools

DataLab statistical package (Lohninger, 2013) and R programming language and environ-
ment for statistical computing (Cowpertwait and Metcalfe, 2009) were used to perform
statistical analyses and create graphics. Additionally, some preprocessing steps, and basic
statistics were obtained using Microsoft Excel.
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Figure 3.1: Manual (left) and dynamic threshold adjustment (right) procedures

DataLab showed as a user friendly software tool for data analyses and interpretation,
offering a variety of data editing and visualization capabilities, including mathematical
and statistical procedures. Particularly, DataLab built-in principle component regression
capabilities and variance inflation factor calculations were used in the conducted analyses.

The open source R environment, developed and maintained by the R foundation, pre-
sented an integrated environment for data analysis, calculation and graphical representa-
tion of results. R offered free packages of basic statistical functions as well as dedicated
packages focused on particular statistical applications. Apart from the general R func-
tionalities the following dedicated libraries were used:

• RSEIS: Seismic Time Series Analysis Tools (Lees, 2012) - library for general time-
series plotting, filtering, and interactive display; functions and algorithms for spec-
trum analysis, wavelet transforms, particle motion, hodograms. This library was
used to remove trend from the analysed data.

• GeneCycle: Identification of periodically expressed genes from time series data
(Ahdesmaki et al., 2012). The library provided functions used in conjunction with
Fourier transform and spectrum analyses to investigate possibilities for prediction of
patient reference state condition.

• sspir: State Space Models in R (Dethlefsen et al., 2009) provided built-in functions
for Kalman filtering and smoothing.

• CADStat: GUI to statistical methods for causal assessment (applied in JGR) (Yuan
et al., 2012) was used to calculate correlations.
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• polycor: Polychoric and Polyserial Correlations (Fox, 2012) library was used to cal-
culate correlations between numeric and ordinal variables.

• Hmisc (Harrell, 2012) library for data analyses and visualization was used to calculate
Pearson and Spearman correlations.

• gregmisc (Warnes, 2012) library of miscellaneous functions was used for plotting
results of statistical tests.

Furthermore libraries containing statistical functions integrated with user friendly
graphical interface were examined:

• R commander (Rcmdr library) (Fox, 2005) is a graphical interface consisting of vari-
ous built-in functions for statistical data analyses which can be activated graphically
but also through a text script command window. R commander has particularly de-
veloped capabilities for convenient visualization of typical statistical plots such as:
histogram, boxplot, QQ plot, scatterplot, bar graph, pie chart, etc. for which pur-
pose it was primarily used in the current study.

• JGR (read Jaguar) (Helbig et al., 2005) is another graphical interface whose name
is an abbreviation of Java Gui for R. Such package also has some built in statistical
functions, although not as many as R commander, and can be used for graphical
visualization of results.

In general, using any of the available graphical interfaces for R limited the user in
terms of availability of implemented functions and scope of provided options for such
functions. Thus, usage of R commander and JGR restricted the flexibility of the original
R environment, but provided friendlier graphical appearance. Various graphical interfaces
offered possibilities for convenient visualization of results. Such tools were very significant
as graphical visualization in R is otherwise cumbersome and requires substantial knowledge
of various plotting features in order to achieve good control over the graphical appearance.

Appendix B lists various built-in and developed R functions used in the described data
analyses.
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Chapter 4

Descriptive Statistics and Data
Preprocessing

The patients subjected to telemonitoring were spread throughout Austria, as illustrated
in Figure 4.1. Majority were located close to Graz, followed by Vienna, Linz, Klagenfurt
and Innsbruck.

Figure 4.1: Geographical spread of patients throughout Austria

Basic statistic on the raw and cleaned data are further presented together with the
description of procedures used for data preprocessing and cleaning.
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4. Descriptive Statistics and Data Preprocessing

4.1 Raw data

Analyses of the raw data was conducted to get an overview of the available patient mea-
surements and physician records.

Figure 4.2 shows the number of days patients conducted measurements (violet) during
their participation in the study (blue), as well as the total number of conducted measure-
ments (orange). If the patients conducted one measurement per day each day then all the
three bars, violet, blue and orange, would have the same values. However, if the patients
missed some days and did not conduct any measurements the blue bar would have higher
values then the violet bar. Finally, if the patients conducted multiple measurements per
day the orange bar will be higher than the violet bar. For the majority of patients the fig-
ure shows that the blue bar is the highest which means that almost every patient had days
without any measurements. Also, for the majority of patients orange bar is higher than
the violet bar which means that during certain days they had multiple measurements. In
extreme cases where the blue bar (the number of total days in the study) is substantially
higher than the violet bar, such patient would be removed from the current analysis due
to the lack of sufficient measurement information, i.e. large measurement gaps. To over-
come the issue with the multiple measurements per day, daily averages of the conducted
measurements were calculated. From the figure it can also be noticed that the majority
of patients participated in the study and conducted measurements approximately during
the period of six months or 180 days.
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Figure 4.2: Patient measurement statistics on raw data including the number of measure-
ments, measurement days and the number of days between the first and last measurement

23
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4.2 Data preprocessing

Initially, all data were cleaned by removing the outliers defined as follows:

1. diastolic blood pressure greater or equal to systolic, (36 events; 0,4% of measurement
records),

2. systolic blood pressure outside of range 50-300 mmHg, (254 events; 2,8%),

3. diastolic blood pressure outside of range 40-150 mmHg, (318 events; 3,5%),

4. heart rate outside of range 20-200 bpm, (264 events; 2,9%),

5. weight outside of range 30-500 kg, (216 events; 2,4%).

Additionally, patients with large measurement gaps and/or insufficient records were
removed from the analyses. After the cleaning, the number of patients considered in the
analyses was reduced from 65 to 54. To ease the data management patient identification
key was introduced between the original recorded Patient IDs and correspondingly assigned
Patient numbers, as presented in Table 4.1.

Patient No. 1 2 3 4 5 6 7 8 9
Patient ID 10,131 10,250 10,314 10,402 10,441 10,590 10,601 10,617 10,738

Patient No. 10 11 12 13 14 15 16 17 18
Patient ID 11,061 11,235 11,306 11,322 11,381 11,423 11,490 11,526 11,542

Patient No. 19 20 21 22 23 24 25 26 27
Patient ID 11,777 11,864 12,022 12,041 12,029 12,119 12,145 12,231 12,289

Patient No. 28 29 30 31 32 33 34 35 36
Patient ID 8,532 8,587 8,603 8,779 8,803 8,832 8,844 8,890 8,929

Patient No. 37 38 39 40 41 42 43 44 45
Patient ID 8,994 9,029 9,041 9,051 9,086 9,178 9,190 9,211 9,234

Patient No. 46 47 48 49 50 51 52 53 54
Patient ID 9,247 9,283 9,299 9,448 9,577 9,622 9,715 9,735 9,789

Table 4.1: Identification key between Patient numbers and corresponding Patient IDs

Figure 4.3 presents the distribution of mean blood pressures, heart rates and weights
of 54 patients, together with normal distribution curves. According to the Central Limit
Theorem, mean of the patient means approaches the mean of the heart failure patient
population. As the distribution of patient means resembles normal for all the presented
parameters, it can be assumed that the selected sample is representative of the population.

As an illustration of data available after the cleaning, Figure 4.4 presents the home
telemonitored vital signs of four selected patients over the course of the study. The figure
illustrates variability in patient conditions that can be found in the data set (Patient IDs),
e.g. relatively stable (8,832 and 8,587), changing (9,735) or initially changing and then
stabilized weight (10,601); measurement gap (9,735); typically high (8,832 and 8,587),
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Figure 4.3: Distribution of patient mean blood pressures, heart rates and weights together
with normal distribution curves

low (9,735), and stabilized to normal after initially variable (10,601) blood pressures;
fluctuations and occasional occurrence of extreme heart rates (all patients).

Figure 4.5 illustrates the occurrence of alarms and associated physician responses for
the four selected patients. In the figure, the line “Total alarms” gives a summary of
all the weight, heart rate and blood pressure alarms that have occurred. Although in
the majority of cases alarms corresponded to physician actions, certain alarms had no
associated physician responses (e.g. initial alarms for Patient ID 8,587, or last alarms for
Patient ID 9,735). Similarly, some physician responses were recorded even without the
indication of alarms (e.g. the last physician action – no action – for Patient ID 10,601).

Table 4.2 presents basic statistics of all the measurements after the cleaning. The table
includes minimum, first quartile, median, mean, third quartile and maximum values of the
variables of interest.

Analyses of the clean data revealed that 20% of measurement days indicated alarm con-
dition and coincided with physician responses, while no alarm and no responses occurred in
74% of cases, as presented in Figure 4.6. In 1% of the cases physicians recorded responses
during the days when no alarms were exhibited, while in 5% of the cases physicians had
no responses although the alarms were shown.

Analysis of physician actions to the alarm situations showed that in the majority
of cases, 1269 or 78% of all recorded responses to alarms, physicians took no action.
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Start: Min.: 70 41 29 45.5
1st Qu.: 1st Qu.: 105 66 63 73
Median: Median: 118 74 71 81.3
Mean: Mean: 119.8 73.7 72.1 82.4
3rd Qu.: 3rd Qu.: 131 82 80 92.5
End: Max.: 220 134 160 200.5

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

Min.: 80 120 35 80 40 60 45 54
1st Qu.: 90 140 55 90 50 90 65 78
Median: 100 150 60 95 50 100 75 83
Mean: 97.2 153.4 57.2 93.7 50.8 96.7 74.7 85.9
3rd Qu.: 100 160 60 100 50 100 84 96
Max.: 120 190 80 110 70 120 117 150

Heart 
rate 

[bpm]
Weight 

[kg]

February 23, 2006
February 19, 2009

Measurement date

weight threshold 
[kg]

heart rate threshold 
[bpm]

diastolic b.p. 
threshold [mmHg]

systolic b.p. 
threshold [mmHg]

Systolic 
b.p. 

[mmHg]

Diastolic 
b.p. 

[mmHg]
October 9, 2003

June 17, 2004
December 7, 2004

June 17, 2005

Table 4.2: Minimum, first quartile, median, mean, third quartile and maximum values of
the variables of interest (measurement date, systolic/diastolic blood pressure, weight and
corresponding minimum and maximum thresholds) in the clean dataset
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Figure 4.6: Number of alarms and physician actions in the telemonitoring data
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Additionally in 427 or 5% of the total measurements no information was recorded regarding
the physician actions although the alarms were indicated. If we assumed that physicians
simply ignored those alarms then the total number of no actions increased to 1696 or 82%
of all detected alarms. In the remaining 18% of detected alarm cases physicians mostly
contacted the patients (135 times), adjusted measurement thresholds causing the alarms
(108 times), adjusted medications (89 times) or did some other actions (36 times).

Out of the 79 cases when no alarms were indicated but physicians recorded their
responses in the database, 59 were “No actions”. Furthermore, 3 cases included threshold
adjustment, 6 times patients were contacted, 1 medication adjustment was made, and 10
times other actions were taken.

Looking into the number of exceeded multiple thresholds causing the occurrence of
alarms, on average 74% of the alarms were caused by exceeding a single threshold, as
presented with a red line in Figure 4.7. Multiple simultaneously exceeded thresholds
(double and 3 or more) had the highest impact on true alarms: up to 44% portion, as in
the case of “Patient contacts”, opposed to e.g. 23% of “Threshold adjustments” and “No
actions” representing false alarms.

Alarm_and_no_response

No_action
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Other_action

Medication_adjustment

Patient_contact

% in total number of alarms

0 20 40 60 80 100

Single threshold alarms
Double threshold alarms
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Average % of single threshold alarms

75% (319 alarms)

77% (971 actions)

77% (83 actions)

94% (34 actions)

61% (54 actions)

56% (76 actions)

Figure 4.7: Portion of alarms caused by exceeding a single, double and 3 or more thresholds
in the total number of alarms

Based on such statistics one can conclude that single exceeding of the thresholds has
the highest impact on the alarm occurrence. As the most occurring are false alarms, single
threshold exceeding has also the highest influence on the false alarms. Overview of the
causes for exceeding single thresholds and associated physician actions to such alarms are
presented in Figure 4.8. The figure shows percentages of physician actions in response
to the exceeded upper (red bar fields) and lower (yellow bar fields) thresholds. Thus,
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Figure 4.8: Portion of physician actions (Patient contact, Medication adjustment, Other
action, Threshold adjustment, No action) caused by exceeding a single threshold (upper
or lower)

exceeding systolic blood pressure thresholds causes over 40% of physician actions “Patient
contact”. Together with the exceeded diastolic thresholds (particularly upper), both sys-
tolic and diastolic blood pressures are responsible for nearly 70% of the patient contacts.
Physician action “Medication adjustment” mostly (in about 65% of the cases) occurred
when upper thresholds were exceeded in the case of all parameters: systolic and diastolic
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blood pressures, heart rate and weight. Exceeded systolic and diastolic blood pressure
thresholds together were responsible for over half of the medication adjustments, whereas
the single most influential cause of 35% of medication adjustments was exceeded weight
threshold (particularly upper). In the majority of cases (around 80%), physician action
“Other action” occurred due to exceeded lower thresholds. Exceeded lower systolic blood
pressure threshold was the most prevalent, causing over 45% of other actions, whereas
exceeded heart rate thresholds (both upper and lower) added almost 35% of other actions.
Physician action “Threshold adjustment” was mostly (45%) caused by exceeded weight
thresholds, whereas “No action” mostly occurred when systolic or diastolic blood pressure
thresholds were exceeded. Over 30% of no actions occurred due to each of the blood
pressures, including exceeded upper or lower thresholds together.

Records of each patient medication intake were also available in the telemonitoring
database. To analyze the influence of medications on the patient conditions, Figure 4.9
presents an overview of the number of different medications the patients were given over
the course of telemonitoring. The system allowed recording the names and dosage of up
to four medications at every given measurement record. In the case when patients took
less than four medications, medication names were repeated. As indicated in Figure 4.9,
majority of the patients (33 out of 54, or 61%) took four different medications over the
course of telemonitoring.
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Figure 4.9: Number of different medications patients took over the course of telemonitoring

A change in medication type or dosage between the consecutive measurement records
indicates a change in therapy. The number of different therapies for each patient is pre-
sented in Figure 4.10.

Despite of the large number of medications the patients took over the course of tele-
monitoring, as presented in Figure 4.9, change in patient therapies rarely occurred and
majority of the patients (34 out of 54, or 63%) had only one medication therapy, as
presented in Figure 4.10. Due to the large number of changing therapies and insufficient
number of measurements per therapy patient 28 was additionally removed from the dataset
and was not considered in further analyses. Also, patient 10 was removed having 2 changes
in therapies over a total of 13 monitoring days within a 15 day total monitoring period
during which the patient participated in the study.

Figure 4.11 presents the number of patients using a certain type of medications. The
most frequently used medications (with more than 50% of the patients) were Lasix and

30



4. Descriptive Statistics and Data Preprocessing

0
1

2
3

4
5

6
7

8
9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
Patient number

N
um

be
r 

of
 th

er
ap

ie
s

Figure 4.10: Number of different therapies per individual patients over the course of
telemonitoring
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Figure 4.11: Number of different patients taking particular medications over the course of
telemonitoring

Spironolacton. These medications are diuretics, used to treat excessive fluid accumulation
and swelling (edema) of the body caused by heart failure, cirrhosis, chronic kidney failure,
and nephrotic syndrome. As majority of the patients took four different medications
over the course of telemonitoring, the two most frequently used medications, Lasix and
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Spironolacton, were often prescribed in conjunction with other blood pressure drugs to
treat high blood pressure.

To visualize the frequency of prescribing particular medication pairs Table 4.3 shows
the number of different medication combinations in which each medication pair occurs. All
the possible pairs in which a particular medication is used can be reviewed following the
horizontal row next to a particular medication name till the diagonal and then continuing
along the upward column till the end of the table. A total of 77 medication combinations
were present over the course of telemonitoring. The highlighted diagonal in Table 4.3
presents the number of different medication combinations including each particular medi-
cation type. The table considers some of the medication names as different trade names of
the same medication type and sums up such occurrences as indicated by the star symbols
next to particular medication names.

Similarly to the most frequently used medications by individual patients, Lasix (also
traded as Furosemid and Lasix Retard) and Spironolacton (also traded as Aldactone,
Spirobene, Spirono Gen and Spirono Genericon), appear as the most commonly used
medications in different medication combinations. These medications are present in 54
(70%) and 51 (66%) medication combinations, respectively.

Table 4.4 presents an overview of indications for the most frequently prescribed medica-
tions in the study, including their active ingredients and classification type. The presented
information is available from the Austrian Agency for Health and Food Safety (AGES,
2013) and UK online prescription drug database (MIMS, 2013). The equality between cer-
tain medication names in the table is used to indicate usage of the same active substances
in those medications, although the dosage might be different.

As a guiding reference, classifications of hypertension stages is presented in Table 4.5.
The classification is based on systolic and diastolic blood pressure bounds and can be
applied to ages 18 and older (AHA, 2012; MayoClinic, 2011a,b). If at least one of the
blood pressures, systolic or diastolic, falls outside of the desirable category, the person is
considered to be outside of the desirable blood pressure range.

As each person’s individual life style, weight, possible other diseases etc. may influence
blood pressure, Table 4.5 should be only considered as a general guide in decision making.
For example, what may be low blood pressure for some people may be normal for others
(MayoClinic, 2011b). Apart from the blood pressure levels, sudden changes in blood
pressure (e.g. 20 mmHg or more) can also be dangerous.
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Urosin 1 1 1 1
Tritace 4 1 2 5 2 5

Thrombo ASS 1 1 1 1
Spirono 3 2 3 1 3
Sintrom 1 1 1 1
Seloken 3 5 5 1 1 6 1 1 9
Norvasc 2 1 1 3 1 1 3

Normoxin 0,2 mg 1 1 1
Nomexor 1 1 3 2 1 3

Loniten 1 2 2 1 2
Lasitace (5/40 mg) 1 2 1 1 2
Lasilacton****** 1 6 3 2 3 4 1 1 7 1 10

Lanitop 1 1 1
Inspra 1 1 2 1 2

Hypren plus 1 1 1 1
Hypren 2 1 1 1 1 1 4 5

Hydrochlorothiazid 1 1 1 1
Furospirobene 20/50 1 1 1

Furosemid***** 2 4 14 37 4 9 14 1 1 2 1 7 20 1 1 4 5 54
Fositens 5 1 1 2 3 6

Enalapril**** 4 3 1 1 1 2 7
Enac 1 1

Diovan 2 1 1 2
Dilatrend 1 8 21 2 4 1 3 1 1 1 1 29

Digimerck 2 4 2 1 1 8
Dancor 1 1

Cosaar plus 2 2
Cosaar 1 1

Co-Renitec 1 1
Concor-Cor 1 1 1
Concor plus 3 2 1 4

Concor 2 1 5 10 1 3 18
Carvedilol 3 4

Atacand*** 8 1 9
Aquaphoril 1 5 10

Aldactone** 1 4 10 51
Acemin* 3 21
Acecomb 7
Accupro 2

Acemin* = Acetan = Lisinopril
Aldactone** = Spirobene = Spirono Gen = Spirono Genericon = Spironolacton
Atacand*** = Blopress
Enalapril**** = Renitec
Furosemid***** = Lasix = Lasix Retard
Lasilacton****** = Spirono Comp forte

Table 4.3: Number of different medication combinations in which particular medication
pairs occur over the course of telemonitoring
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4. Descriptive Statistics and Data Preprocessing

Medication 
name (Active 
ingredients) 

Indications Medication 
type 

Edema due to heart disease (e.g. heart failure) 
Fluid retention (edema) due to chronic renal dysfunction 
(e.g. after burns) and due to certain liver diseases 
Arterial hypertension – mild to moderate severity 

Lasix = Lasix 
retard =  
Furosemid 
(Furosemide) 
 Supportive therapy of nephrotic syndrome 

Loop diuretic 

Primary hyperaldosteronism (Conn's syndrome) 
Liver cirrhosis with ascites and edema 
Water retention caused by heart failure 
Respiratory failure with chronic pulmonary heart disease 
Edema associated with chronic renal disease 

Spironolacton = 
Spirobene = Al-
dactone = Spi-
rono Genericon  
(Spironolacto-
ne) Hypertension 

Potassium-
sparing  
diuretic  
(water pill) 

Stable symptomatic chronic heart failure of any severity, 
ischemic or non-ischemic origin, in addition to conven-
tional basic therapy with diuretics and ACE inhibitors     
Long-term treatment of left ventricular dysfunction after 
acute myocardial infarction in combination with ACE 
inhibitors and other standard therapy 
Essential hypertension 

Dilatrend 
(Carvedilol) 
 

Chronic stable angina pectoris 

Beta-blocker 

Hypertension 
Congestive Heart failure (in patients who do not respond 
adequately to diuretics and digitalis) 
Short-term treatment (6 weeks) of hemodynamically stable 
patients within 24 hours of an acute myocardial infraction 
Renal complications of diabetes mellitus 

Acemin = 
Acetan = 
Lisinopril  
(Lisinopril) 
 
 

Renal disease in hypertensive patients with type 2 diabetes 
mellitus and incipient nephropathy 

Angiotensin 
Converting 
Enzyme 
(ACE) 
inhibitor 

Essential hypertonia  Concor  
(Bisoprolol 
hemifumarate) 

Coronary artery disease (angina pectoris) 
Beta 1 
blocking 
agent 

Arterial hypertension Aquaphoril  
(Xipamide) Cardiac and renal edema 

Sulfonamide 
diuretic agent 

Stable symptomatic heart failure with reduced left 
ventricular function, in combination with other therapies 
Hypertension in adults, Chronic stable angina pectoris  

Seloken 
(Metoprolol 
succinate) 
 Secondary prevention after myocardial infarction 

Beta-blocker 

Essential hypertension (all grades)  Fositens (Fosi-
nopril sodium) Heart failure 

ACE inhibitor 

Acecomb (Hy-
drochlorothia-
zide, Lisinopril) 

Essential hypertension when monotherapy with lisinopril 
or hydrochlorothiazide alone has shown insufficient 
treatment success 

Thiazide  
diuretic 
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4. Descriptive Statistics and Data Preprocessing

Medication 
name (Active 
ingredients) 

Indications Medication 
type 

Chronic heart failure (due to systolic dysfunction) Digimerck 
(Digitoxin) 
 

Tachycardia arrhythmias especially atrial fibrillation 
Heart glycosi-
des of red 
foxglove plant 
(Digitalis 
purpurea) 

Hypertension 
Symptomatic heart failure 

Renitec = 
Enalapril = 
(Enalapril 
maleate) 

Prevention of symptomatic heart failure in patients with 
asymptomatic left ventricular dysfunction 

ACE inhibitor 

Essential hypertension in adults Atacand =  
Blopress  
(Candesartan 
cilexetil) 

Adult patients with heart failure and impaired left 
ventricular systolic function (left ventricular ejection 
fraction ≤ 40%) in addition to treatment with ACE 
inhibitors or when ACE inhibitors are not tolerated 

Angiotensin II 
antagonist 

 
 
 
OEDEMA, also known as dropsy, is the medical term for fluid retention in the body. 
 
The build-up of fluid causes affected tissue to become swollen. The swelling can occur in one 
particular part of the body – for example, as the result of an injury – or it can be more general. 
 
This is usually the case with oedema that occurs as a result of certain health conditions, such 
as heart failure or kidney failure. www.nhs.uk 
Potassium-sparing diuretic (water pill) that prevents body from absorbing too much salt and 
keeps your potassium levels from getting too low 
Loop diuretic (water pill) that prevents body from absorbing too much salt, allowing the salt 
to instead be passed in your urine. 
Angiotensin Converting Enzyme (ACE) inhibitors  the body's production of reduced 
substances that can increase blood pressure, 
    Your blood vessels relax and further provides , 
    it easier for the heart to pump blood through the body. http://www.diagnosia.com 
 
Beta-blocker, affect the heart and circulation (blood flow through arteries and veins) 
Beta 1 blocking agent (type of adrenergic beta-antagonists) 
Sulfonamide diuretic agent 
Thiazide diuretic (prototypical member of this class) 

Table 4.4: The most frequently prescribed medications in the study: brands, active sub-
stances, indications and types

Category Systolic b.p. Diastolic b.p. Health advice
[mmHg] [mmHg]

Hypotension <90 <60 Follow a healthy lifestyle.
Desirable 90-119 60-79 Follow a healthy lifestyle.
Prehypertension 120-139 80-89 Follow a healthy lifestyle.
Stage 1 Hypertension 140-159 90-99 Follow a healthy lifestyle, if

desirable b.p. levels aren’t
reached within 6 months talk
to the doctor about taking
one or more medications.

Stage 2 Hypertension 160-179 100-109 Follow a healthy lifestyle. Talk
to the doctor about taking
more than one medication.

Hypertensive Crisis >180 >110 Emergency care needed.

Table 4.5: Classification of hypertension stages for ages 18 and older (based on (May-
oClinic, 2011a))
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Chapter 5

Alarm Management and
Optimization

The large number of false alarms was identified as one of the key factors limiting the
applicability of telemonitoring systems. Consequently, alternative alarm management and
decision support system optimization strategies were explored to effectively reduce the
number of false alarms. The following approaches were developed and applied:

• Multi-threshold alarm flags (described in Section 5.1),

• Patient reference state determination (data smoothing) (described in Section 5.2),

• Trend analyses and visualisation (described in Section 5.5),

• Dynamic threshold type selection (described in Section 5.3),

• Optimal threshold setup (described in Section 5.4), and

• Analysis of weather influence on alarm management (described in Section 5.6.

5.1 Multi-threshold alarm flags

The cleaned data were used to develop several multi-threshold alarm flags supplementing
single threshold exceeded alarms. Such flags were based upon counts of exceeded thresholds
during the consecutive measurement days. Specifically, 2 or more exceeded thresholds and
3 or more exceeded thresholds were considered during 2 and 3 consecutive days. At
the beginning of measurements, it was assumed that no alarms would occur during the
preceding days for which no measurement records existed. Considering the increasing sum
of true positive and true negative events the following alarm flags were introduced:

Alarm flag Level 1: 1 Day / > 1 exceeded thresholds,

Alarm flag Level 2: 3 Days / > 2 exceeded thresholds,

Alarm flag Level 3: 2 Days / > 2 exceeded thresholds,
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5. Alarm Management and Optimization

Alarm flag Level 4: 3 Days / > 3 exceeded thresholds,

Alarm flag Level 5: 2 Days / > 3 exceeded thresholds.

Such new 5-level alarm importance indicator/flag was proposed to supplement the original
MOBITEL algorithm towards more efficient and precise telemonitoring system.

Number of various physician actions was counted for each introduced alarm flag level
and presented in Table 5.1. These results illustrated the outcomes of replacing the original
alarms (flag level 1, 1 day / > 1 exceeded thresholds) with a different alarm generation
criteria (alarm flag levels 2 through 5). They showed between 28% and 78% reduction of
false positive (FP ) (false alarm) cases depending upon the alarm flag level (2 through 5,
as compared to the original alarm flag level 1). The calculated false alarms included cases
with exceeded alarm thresholds and no recorded physician response, as well as recorded re-
sponses: “No action” and “Threshold adjustment”. Apart from reducing the false alarms,
the increasing alarm flag levels also resulted in a reduction between 18% and 64% in the
true positive (TP ) (true alarm) cases, respectively. At the same time, the number of false
negative events increased from 17 (0.2%) to 183 (2.3%) of the total 8114 events, corre-
sponding to 0.3% and 2.4% of the total no alarm decisions, respectively. The false negative
events represented the sum of physician actions “Patient contact”, “Medication adjust-
ment” and “Other action”, occurring during the days with no exceeded alarm thresholds.

Physician responses 
/ Type of alarms / 
Statistics 

1 Day / ≥1 
exceeded 
threshold 

3 Days / ≥2 
exceeded 
thresholds 

2 Days / ≥2 
exceeded 
thresholds 

3 Days / ≥3 
exceeded 
thresholds 

2 Days / ≥3 
exceeded 
thresholds 

(1) No actions 1269 (77.5%) 874 (74.2%)   721 (73.2%)   523 (71.7%)    275 (69.3%) 
(2) Threshold 
adjustment 

108 (6.6%)     91 (7.7%)       79 (8.0%)       54 (7.4%)        28 (7.1%) 

(3) Patient contact 135 (8.2%)     107 (9.1%)     97 (9.8%)       79 (10.8%)      54 (13.6%) 
(4) Medication 
adjustment 

89 (5.4%)       78 (6.6%)       68 (6.9%)       60 (8.2%)        39 (9.8%) 

(5) Other actions 36 (2.2%)       28 (2.4%)       20 (2.0%)       13 (1.8%)        1 (0.3%) 
True positive TP 260 213 185                 152 94 
False positive FP 1804 1301               1111               820                 395
True negative TN 6033 6536 6726               7017               7442 
False negative FN 17 64   92   125 183 
Specificity 
TN/(TN+FP) 

0.770 0.834 0.858 0.895 0.950 

Sensitivity 
TP/(TP+FN) 

0.939 0.769 0.668 0.549 0.339 

Accuracy 0.776 0.832 0.852 0.884 0.929 
Alarm flag Level 1 Level 2 Level 3 Level 4 Level 5 

Table 5.1: Results of the alarm occurrence due to multiple exceeded thresholds over 2 and
3 consecutive days, including specificity, sensitivity, accuracy and alarm flag levels

The results presented in Table 5.1 show the greatest specificity and smallest sensi-
tivity obtained for an alarm indication based on three or more exceeded thresholds over
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5. Alarm Management and Optimization

two consecutive days. Nevertheless, accuracy of the overall alarm management algorithm
increases with the increasing alarm flag levels, indicating that the physicians should pay
more attention to the alarms marked with higher flag levels. Thus the alarm flags present
additional information to physicians related to the alarm importance. High level of alarm
flags would require immediate attention from the physicians.

Combining the criteria presented in Table 5.1 and assuming supremacy of higher alarm
flag levels, Figure 5.1 shows an algorithmic procedure for setting up the introduced alarm
flags. Applying the developed algorithm, distribution of flag levels in true, false and total
alarms is obtained and presented in Figure 5.2. The numbers indicated within each of the
alarm flag level bars represent counts of corresponding true, false and total alarm cases.

Figure 5.1: Procedure for setting up alarm flag levels for each patient
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False_alarms

True_alarms

% in each alarm category
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Alarm flag Level 1
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Figure 5.2: Portion of alarm flag levels 1 to 5 in true, false and total number of alarms
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5.2 Patient reference state determination (data

smoothing)

Apart from the enhanced interpretation of the existing alarms, via multi-threshold con-
siderations, additional efforts focused on the design of new automated patient alarm man-
agement procedures. Automated patient alarm management implies that a mathematical
decision model is used to improve accuracy of patient alarm generation. The first step in
such alarm management was to obtain an indication of the patient’s condition which is
free from measurement noise, potential seasonal influences and daily, hourly or any other
periodic cycles. Such condition will be further considered as patient’s reference state.
In order to obtain the indication of the patient reference state several procedures were
considered:

• Moving average,

• Savitzky-Golay filter,

• Fast Fourier Transformation (FFT), and

• Kalman filter.

Moving average was calculated using average daily measurements of telemonitored pa-
rameters over several days prior to the calculation day. The number of considered days
varied to find the optimal reference state indication. For example, Figure 5.3 shows the
original and smoothed reference state data for patent’s systolic blood pressure measure-
ments using 3, 5 and 14 point moving average, calculated according to Equation 5.1 (nL

= 2, 4, and 13, respectively).

gt =
0∑

n=−nL

cnft+n (5.1)

Here gt represents the reference state point, ft is the measurement point, whereas nL

denotes the number of points equidistant in time “to the left”, i.e. earlier, of the current
measurement point. Coefficients cn correspond to each of the considered measurement
points. In the case of moving average, all cn coefficients are constant and equal to 1/(nL +
1).

Changing the values of coefficients cn, the same Equation 5.1 can be applied to design
Savitzky-Golay filters. For example, 5 point Savitzky-Golay filter will have the following
coefficients (Press et al., 2007, p. 769): c−4 = 0.086, c−3 = −0.143, c−2 = −0.086, c−1 =
0.257, c0 = 0.886. For each measurement point, ft, Savitzky-Golay reference state estimate
given by the aforementioned coefficients is based on the quadratic function approximation
using the least squares fit over 5 data points within the moving window. Figure 5.4
shows the original and smoothed reference state data for patent’s systolic blood pressure
measurements using Savitzky-Golay and FFT filters.

Figures 5.5 and 5.6 show the distribution of systolic blood pressure residuals for a
selected patient in the cases of 14 day moving average and FFT filtering, respectively.
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Figure 5.3: Original and smoothed systolic blood pressure data with 3, 5 and 14 point
moving average (Patient ID = 8,587)
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Figure 5.4: Original and smoothed systolic blood pressure data with Savitzky-Golay and
FFT filters (Patient ID = 8,587)
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Figure 5.5: Histogram of systolic blood pressure residuals with normal distribution curve
(left) and residual plot (right) for 14 day moving average filtering (Patient ID = 8,587)Histogram with Normal Curve
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Figure 5.6: Histogram of systolic blood pressure residuals with normal distribution curve
(left) and residual plot (right) for FFT filtering (Patient ID = 8,587)
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The residuals were calculated as a difference between the average daily measurements and
filter estimates.

The fft algorithm implementation in R results in real and imaginary vectors of the
same length as the input vector. Thus, the second halves of those vectors are mirror images
of the first halves minus the first element. Figure 5.7 (left) illustrates such symmetry in
the case of real parts of the transformed data.
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Figure 5.7: Real parts of originally transformed (left) and filtered (right) systolic blood
pressure data using FFT (Patient ID = 8,587)

Figure 5.7 (right) presents noise filtering in the data by setting the high frequency
(above 12) components equal to zero. The reference state presented in Figure 5.4 is
obtained applying the inverse FFT to the filtered frequency domain data and can be
adjusted by changing the number of annulated points in the frequency domain. FFT
result presented in the figure initially considered application on the whole time interval of
measurements, rather than using smaller intervals. The idea was to evaluate the approach
on the longer intervals first, as a starting point for developing an algorithm using shorter
time spans, e.g. one week, which would be necessary for the real world applications in
patient alarm management. Developments of such advanced algorithms will be discussed
later in this Chapter.

To quantify effectiveness of the considered filters, variances were compared to the tele-
monitoring data as measures of uncertainty of the obtained results (for the presented
sample patient measurements var = 76.6 mmHg2). The reference state values obtained
with the 5 point Savitzky-Golay filter (varSG = 67.5 mmHg2) showed substantial variabil-
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5. Alarm Management and Optimization

ity, as did 3 point moving average (var3 = 43.6 mmHg2). The 5 point moving average
(var5 = 31.8 mmHg2) showed somewhat better results, while the most promising was the
application of FFT (varFFT = 29.2 mmHg2) and 14 point moving average (var14 = 15.8
mmHg2).

The FFT underlying assumption of periodicity is not observed in the recorded patient
measurements, as indicated by a sample autocorrelation plot of systolic blood pressures,
presented in Figure 5.8 for a selected patient. Similar absence of periodicity was observed
for all the other considered parameters and patients. Consequently, FFT equations could
not be used to effectively make predictions of the future patient reference state conditions,
but only to calculate the reference state based on the existing measurements. Figure 5.8
also shows non-randomness in the data, as statistically significant positive autocorrela-
tions were observed for several lags. The observed non-randomness of the data in the
autocorrelation plot justifies application of statistical models to make patient reference
state predictions.
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Figure 5.8: Autocorrelations of systolic blood pressure (Patient ID = 8,587) (values outside
of the dashed range are statistically significant)

The downside of 14 point moving average filtering was a relatively long moving window
size of 2 weeks in order to make valid predictions. If a patient would skip measurements
during some of the 14 days prior to the current measurement, the accuracy of the filter
would be adversely affected. Consequently, the aforementioned variance is based only on
the points having 14 consecutive day predecessors necessary for calculating the moving
average, as illustrated in Figure 5.3. Ideally, a desirable procedure would show similar
variability of the reference state estimation to the 14 day moving average, but using shorter
prior window size. As an alternative, removing the measurement gaps and treating the
measurement points around the gaps as consecutive, would provide at least some estimate
in the case of irregular data.

The final investigated procedure for obtaining patient reference state included Kalman
filtering. Kalman filter was calculated using a built in kfilter function of the sspir pack-
age in R, which calculates Kalman filters based on the state space formulation. In this
formulation several parameters are required in order to obtain valid results of Kalman fil-
ter transformation: initial condition or starting value, m0, allowed variance of the Kalman
filter results, c0, as well as two transformation matrices, Wmat and Vmat. Additional ma-
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5. Alarm Management and Optimization

trices, Fmat and Gmat, provide the capabilities to consider non-linear models and time
varying Kalman filter parameters, which are not used in the current approach. Conse-
quently, Fmat and Gmat were kept constant and equal to 1. To obtain optimal Kalman
filter transformation results, orders of magnitude for parameters Vmat and Wmat were
determined. The values of Vmat varied between 1 and 100 and Wmat between 0.001
and 1. Figures 5.9, 5.10, 5.11, and 5.12 illustrate the changes in Kalman filter results for
Patient ID 8,587 measurements of systolic blood pressure, due to varying m0, c0, Wmat
and Vmat parameters, respectively. The considered parameters were varied one at a time
while keeping all the rest of algorithmic inputs constant. The black line in all the Figures
5.9 through 5.12 shows initial case considering the following combination of parametric
values: m0 = 120, c0 = 10, Wmat = 0.1, and Vmat = 10.

Figures 5.9 and 5.10 show that parameters m0 and c0 only influence the beginning
phase of Kalman filtering application. After about a dozen measurements, all the filter
curves coincided with each other, regardless of the m0 and c0 parameter values. Also,
Figure 5.10 shows almost no difference between the curves in the cases when c0 was 10
and 100. Consequently, the value of c0 = 10 was selected as sufficient initial variance in
all the considered Kalman filtering applications.
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Figure 5.9: Influence of parameter m0 on Kalman filtering of systolic blood pressure
(Patient ID = 8,587)

Contrary to m0 and c0, Figures 5.11 and 5.12 show that parameters Wmat and Vmat,
mostly influence the later results of Kalman filtering, after the initial application phase.
Also, effects of decreasing Wmat seem to be comparable to the effects of increasing Vmat
leading to higher smoothness of the resulting curve, and vice versa.
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Figure 5.10: Influence of parameter c0 on Kalman filtering of systolic blood pressure
(Patient ID = 8,587)

0 50 100 150 200

10
0

11
0

12
0

13
0

14
0

15
0

Kalman filter Wmat influence ( Patient ID = 8,587 )

Study day

S
ys

to
lic

 b
lo

od
 p

re
ss

ur
e 

[m
m

H
g] original data

Kalman filter Wmat=0.001
Kalman filter Wmat=0.01
Kalman filter Wmat=0.1
Kalman filter Wmat=1

Figure 5.11: Influence of parameter Wmat on Kalman filtering of systolic blood pressure
(Patient ID = 8,587)
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Figure 5.12: Influence of parameter Vmat on Kalman filtering of systolic blood pressure
(Patient ID = 8,587)

Based on the analyses of all patient measurement records, Table 5.2 presents the most
suitable combination of values identified for obtaining adequate Kalman filtering of the
original measurements into the reference state. The initial mean values, m0, for the
systolic and diastolic blood pressure (in mmHg), heart rate (in bpm) and weight (in kg)
are assumed as typical for healthy individuals.

Parameter Systolic b.p. Diastolic b.p. Heart rate Weight
m0 120 80 70 75
c0 10 10 10 10

Vmat 100 100 100 1
Wmat 0.01 0.001 0.01 0.01

Table 5.2: Selection of Kalman filter parameters for patient reference state estimation

Using the identified parameters from Table 5.2, Figure 5.13 presents Kalman filtering
of systolic blood pressure measurements for a selected patient. With such selection, vari-
ability of the calculated patient reference state was the lowest of all the considered data
smoothing approaches (varK = 4.3 mmHg2).

Figure 5.14 shows the distribution of systolic blood pressure residuals for a selected
patient in the case of Kalman filtering. As in the applications of 14 day moving average
and FFT filters, presented in Figures 5.5 and 5.6, Kalman filtering residuals also appear
nearly normally distributed and symmetric around zero, independent of the study days
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Figure 5.13: Original and smoothed systolic blood pressure data with Kalman filter (Pa-
tient ID = 8,587)Histogram with Normal Curve
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Figure 5.14: Histogram of systolic blood pressure residuals with normal distribution curve
(left) and residual plot (right) for Kalman filtering (Patient ID = 8,587)
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and uncorrelated, as no patterns or clustering could be observed in Figure 5.14. As the
residual plot is relatively homogeneous around zero, homogeneity of residual variances and
its independence of the study day can be assumed. Similar behaviour was observed in the
case of all considered patients.

5.3 Dynamic alarm thresholds and monitoring win-

dow size

Evaluation of the identified methods for determination of patient reference state was per-
formed by comparison of the alarms generated using such reference state to the recorded
data. Various mathematical models were considered for the alarm generation specifying
thresholds around the patient reference state and calculating occurrence of alarms when
measurements exceeded the defined threshold values. As thresholds depended and fol-
lowed the patient reference state in time, they were considered dynamically adjusted. The
thresholds were obtained by increasing and decreasing the reference state values for a
certain fixed or variable adjustment. Application of fixed adjustments to the reference
state values to obtain upper and lower thresholds was tested versus the variable threshold
adjustments by examining the number of newly generated alarms matching the MOBI-
TEL records. In the case of fixed increases/decreases of the reference state to obtain the
thresholds, initially the same quantity was added/subtracted for each patient and for each
reference state of a certain measured variable. Various increases/decreases were tested
starting from the most commonly occurring values derived from the original monitoring
data. Table 5.3 represents mean and median ranges for differences between thresholds and
reference states obtained for all the monitoring records of all patients and all the measured
variables. As the recorded data did not contain information about the patient reference
state, the reference state was assumed to be in the center of the range between the lower
and upper considered thresholds during the measurements. The values in Table 5.3 were
obtained halving all the differences between the upper and lower thresholds recorded by
the physicians over the course of patient telemonitoring. Figure 5.15 illustrates the process
in the case of systolic blood pressure telemonitoring of a selected patient.

Measured variable
Absolute threshold range Relative threshold range

Mean Median Mean Median
Systolic b.p. [mmHg] ±28 ±28 ±22% ±23%
Diastolic b.p. [mmHg] ±19 ±20 ±25% ±25%

Heart rate [bpm] ±24 ±25 ±31% ±33%
Weight [kg] ±6 ±4 ±7% ±5%

Table 5.3: Mean and median absolute and relative threshold ranges around reference state
from the recorded data

Apart from the described fixed adjustments of the reference state to obtain the alarm
thresholds, variable adjustments depending upon the reference state value were also con-
sidered. One option for such adjustment was to increase or decrease the reference state
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Figure 5.15: Determination of absolute threshold ranges based on the systolic blood pres-
sure telemonitoring records of a selected patient (Patient ID = 12,119)

by a certain percentage of its current value and thus obtain the upper and lower alarm
thresholds. As in the case of absolute threshold ranges, considering the relative threshold
ranges in the recorded data speeded up the process of finding the most appropriate thresh-
olds. Table 5.3 also presents mean and median relative threshold ranges for a variety of
measured variables in the recoded data.

Figure 5.16 illustrates the fixed absolute and relative threshold bounds for systolic
blood pressure measurements of a selected patient. The reference state in Figure 5.16
was obtained applying 14-day moving average filtering, after removing the measurement
gaps and considering the adjacent measurements around the gaps as consecutive. Upon
calculation of the moving average, the gaps were restored as in the original measurements.

Table 5.3 was based on the recorded data including the actual thresholds physicians
considered during the telemonitoring. The thresholds were provided as physician inputs
to the telemonitoring system rather than calculated by a mathematical model. Another
alternative for the dynamic threshold adjustments was to use standard deviation of mea-
surements over the previous days as an indicator of upper and lower threshold bounds in
relation to the reference state. The background for consideration of standard deviations
is Chebyshev’s Theorem.

As an illustration, Figure 5.17 presents the upper and lower threshold bounds deter-
mined by increasing and decreasing the reference state for a certain number of measure-
ment standard deviations over 14-day moving window size. The ranges within 1, 2 and 3

49



5. Alarm Management and Optimization

0 50 100 150 200

10
0

11
0

12
0

13
0

14
0

15
0

Study day

S
ys

to
lic

 b
lo

od
 p

re
ss

ur
e 

[m
m

H
g]

original data
moving average ± 28 mmHg     
moving average ± 22%

moving average ± 23%
14 point moving average

Figure 5.16: Systolic blood pressure measurements and 14-day moving average reference
state with dynamic thresholds based on fixed absolute and relative bounds for a selected
patient (Patient ID = 8,587)

standard deviations around the reference state are presented.

When considering reference state estimation depending upon the monitoring data se-
lection window size (e.g. moving average), such window size should be additionally varied
together with the threshold bounds to yield optimal combination of parameters. Differ-
ent combinations of upper and lower threshold bounds around the reference state could
be used in conjunction with constant threshold limits that will always trigger the alarm
occurrence regardless of the reference state value.

In the case of Kalman filtering, which is independent of the data window size after
the filter set-up period (corresponding to a couple of initial measurements), only combi-
nation of threshold values influences algorithmic accuracy. Receiver operating character-
istic (ROC) curves presented in Figure 5.18 show results of varying different threshold
parameters around Kalman filtering based reference state estimation for systolic blood
pressure. The figure separates influences of lower and upper thresholds on sensitivity and
specificity. The presented baseline curves (in pink and dark blue) are obtained varying
threshold bounds between ±5 and ±30 mmHg with unit increments around the reference
state. The same ranges with additional introduction of constant threshold limits that
will always trigger alarm occurrence result in increased sensitivities with minor decrease
in specificities. The Figure compares influences of 160 mmHg and 170 mmHg constant
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Figure 5.17: Systolic blood pressure measurements and reference state with dynamic
thresholds based on 14-day standard deviation for a selected patient (Patient ID = 8,587)

-5 mmHg

-25 mmHg

-20 mmHg

-15 mmHg

-30 mmHg

-10 mmHg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1-Specificity

S
en

si
ti

vi
ty

Systolic b.p. min
Systolic b.p. min, limit 85 mmHg
Systolic b.p. min, limit 90 mmHg
Systolic b.p. min %, limit 90 mmHg

+5 mmHg

+25 mmHg

+10 mmHg

+15 mmHg

+20 mmHg

+30 mmHg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1-Specificity

S
en

si
ti

vi
ty

Systolic b.p. max
Systolic b.p. max, limit 160 mmHg
Systolic b.p. max %, limit 160 mmHg
Systolic b.p. max, limit 170 mmHg

Figure 5.18: ROC curves for varying upper (left) and lower systolic blood pressure thresh-
olds (right)
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upper threshold limits, as well as 85 mmHg and 90 mmHg constant lower threshold limits
over the considered threshold ranges around the reference state estimate.

ROC curves similar to those presented in Figure 5.18 for systolic blood pressure, can
be constructed for all the other monitored parameters: diastolic blood pressure, heart rate
and weight. The cumulative effects on alarm occurrence due to the selection of upper and
lower threshold bounds and limits for all of these parameters have a negative impact on
the overall specificity, with limited benefits towards the increase in sensitivity. Namely,
reducing the threshold range beyond a certain value for any of the considered parameters
will trigger so many false alarms to outweigh the potential benefits of including omitted
true alarm cases. Particularly, such effects can occur as the ROC curves resulting from
varying thresholds of individual parameters, such as those presented in Figure 5.18, do
not take into account potential true alarms that might have already been encompassed
by the specified thresholds of another parameter. For example, Figure 5.18 only presents
impacts of systolic blood pressure bounds and limits on sensitivity and specificity, but
when considering also diastolic blood pressure, heart rate and weight thresholds, the overall
sensitivity and specificity values will be very different. Consequently, careful consideration
of impacts on specificity and sensitivity is required when selecting the threshold bounds
and limits based on the presented ROC curves. Threshold bound and limit adjustment
should be made for the monitored parameter which yields the highest increase in sensitivity
with the smallest decrease in specificity. After each such adjustment, a new calculation
of the overall sensitivity and specificity values should be performed. Plotting the overall
results obtained in this way a ROC curve presented in Figure 5.19 can be constructed.
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Figure 5.19: ROC curve of the automated alarm generation algorithm in comparison to
the recorded MOBITEL data

The presented ROC curve results included variation of absolute and relative threshold
bounds and threshold limits around the Kalman filtering based reference state. Equation
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5.2 was found to approximate well (R2 = 0.98) the presented ROC curve, where the
regression coefficients are given in Table 5.4. Figure 5.19 also shows 95% confidence
interval around the estimated regression curve.

Coefficient Value Std. error t-Test α
k0 1.094 ±0.011 103 <0.0001
k1 0.212 ±0.006 33 <0.0001

Table 5.4: ROC curve regression coefficients

Regression calculations excluded the two outlier points (with minimum and maximum
sensitivities) in order to reach no statistical evidence of correlation in the residuals ac-
cording to the Durbin-Watson statistic of 1.67 (higher than the upper critical value of
1.47). At the same time Lilliefors test indicated no statistically significant deviation in the
frequency distribution of the residuals compared to normal distribution (p = 0.12 > 0.05),
while F-value of 1067 (p < 0.0001) was higher than 100 indicating that the model was
valid. Standard error presented in Table 5.4 was two orders of magnitude lower than the
calculated regression coefficients with the t-Test values significantly different from zero
(α < 0.0001), indicating significant contribution of parameters to the model.

Sensitivity = k1 · ln(1− Specificity) + k0 (5.2)

Integrating Equation 5.2, the area under the ROC curve was approximately calculated
to amount 0.85. The point on the curve closest to the targeted ideal value (0, 1) in the
left upper corner of the curve (specificity = 1, sensitivity = 1) is identified to correspond
to the combination of algorithmic threshold input parameters presented in Table 5.5.
Such combination of algorithmic inputs can be considered as optimal in terms of the
sensitivity/specificity tradeoff.

Measured variable
Threshold bounds Threshold limits
Upper Lower Upper Lower

Systolic b.p. [mmHg] +37 −29 160 90
Diastolic b.p. [mmHg] +13 −14 100 45

Heart rate [bpm] +16 −20 120 50
Weight [kg] +1.3 −1.3 135 45

Table 5.5: Optimal thresholds in the automated alarm generation algorithm

Figure 5.20 presents a sample comparison between the MOBITEL and automated
alarm generation results for a selected patient. In the presented case the automated
threshold adjustment utilizes fixed upper threshold limit for the systolic blood pressure
of 160 mmHg, lower threshold limit of 90 mmHg, and illustrates a transition from the
variable upper and lower threshold bounds following the reference state to the limiting
value when dynamic threshold adjustment around the reference state would exceed the
limits. Figure 5.20 also illustrates a large number of false alarms occurring in MOBITEL
telemonitoring and reductions with the introduction of dynamic alarms. Note that a
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Figure 5.20: Comparison between MOBITEL and automated alarm management applied
on systolic blood pressure data of a selected patient (Patient ID = 12,119)

MOBITEL alarm occurring on the 93rd monitoring day is not a mistake, although the
measurement appears to fall within the specified thresholds. Namely, this blood pressure
value is obtained as a result of an averaging of two measurements conducted during the
same day, one of which exceeded the specified MOBITEL thresholds. The averaging is
used to provide regular single daily monitoring records, as described in Section 3.1, while
the original alarm indications are maintained and used in further analyses.

Table 5.6 shows the performance comparison between the original MOBITEL and
automated threshold adjustment algorithm using the identified parameters presented in
Table 5.5.
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Physician responses / Type of MOBITEL Automated alarm
alarms / Statistics algorithm generation algorithm

Patient contact 133 107
TRUE Medication adjustment 89 70

ALARMS Other action 36 34
Total true alarms (TP ) 258 211

No action 1233 688
FALSE Threshold adjustment 108 56

ALARMS No recorded response 387 890
Total false alarms (FP ) 1728 1634

NO
False negative (FN) 16 63

ALARMS
True negative (TN) 6016 6110

Total no alarms (TN + FN) 6032 6173

Specificity = TN
TN+FP 0.777 0.789

Sensitivity = TP
TP+FN

0.942 0.770

Accuracy = TP+TN
TP+TN+FP+FN 0.782 0.788

Table 5.6: Comparison between the MOBITEL and automated alarm generation results

5.4 Algorithmic threshold selection model

In certain cases might be beneficial to specify such combination of algorithmic thresh-
olds to reach higher sensitivity at the expense of specificity and vice versa. To ease the
selection of suitable threshold bounds and evaluate the effect of a particular threshold
selection, statistical models were constructed between specificity and sensitivity as target
variables and all upper/lower threshold bounds as descriptors. During the variation of
threshold bounds, the threshold limits presented in Table 5.5 were kept constant as their
selection was considered optimal based on the ROC curves for individual physiological
measures, such as those presented in Figure 5.18. In order to select suitable statistical
model, variance inflation factors were calculated to detect possible multicollinearities be-
tween the different threshold bounds, as presented in Table 5.7. The calculated variance
inflation factors above 10 indicated high collinearity between the variables. Due to the
high collinearity direct application of multivariate linear regression model was not suit-
able. Principle component regression was used instead. In such approach multivariate
linear regression was applied after using principle component analysis to obtain reduced
variable domain space of mutually independent principle components.

Principle component regression was applied on both sensitivity and specificity as target
variables using the standardized dataset of the constructed ROC curve in Figure 5.19. In
both cases two principle components were selected (PC1 and PC2), having the eigenvalues
higher than 1. Such vectors explained 86% of the total variances, whereas F-values higher
than 100 (140 for specificity and 315 for sensitivity models) indicated that the models were
valid. However, the resulting coefficients of determination (quality of fit) were different
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Threshold bounds Variance inflation factor
i Vi V IFi

1 Systolic b.p. upper 7.013
2 Systolic b.p. lower 18.047
3 Diastolic b.p. upper 78.501
4 Diastolic b.p. lower 45.888
5 Heart rate upper 4.141
6 Heart rate lower 1.963
7 Weight upper 50.779
8 Weight lower 57.071

Table 5.7: Variance inflation factors of the considered threshold bounds

for specificity and sensitivity as target variables, amounting to 0.93 and 0.97, respectively.
Consequently, the sensitivity model was chosen to describe the relation with algorithmic
thresholds, given by Equations 5.3 and A.10.

PCj =
8∑

i=1

kij
Vi − µi

σi
, j ∈ {1, 2} (5.3)

Sensitivity = p0 + p1 · PC1 + p2 · PC2 (5.4)

Values of coefficients ki1 and ki2 from Equation 5.3 are presented in Table 5.8, together
with mean, µi, and standard deviation, σi, of algorithmic threshold inputs, Vi, used in
their standardization. Also presented in Table 5.8 are ranges of algorithmic thresholds
considered in the 24 member large data sets. Table 5.9 presents the principle component
regression coefficients used in Equation A.10, together with their standard errors, t-Test
values and levels of significance, α.

Threshold variable PC1, PC2 loadings Mean Std. deviation Range
i Vi ki1 ki2 µi σi [mini, maxi]
1 Systolic b.p. upper 0.3599 -0.3619 25.96 8.05 [7, 37]
2 Systolic b.p. lower -0.4018 0.1380 -25.17 6.89 [-29, -9]
3 Diastolic b.p. upper 0.4105 -0.1589 12.00 2.15 [5, 14]
4 Diastolic b.p. lower -0.4014 0.1647 -13.29 1.46 [-14, -9]
5 Heart rate upper 0.3494 0.1335 15.83 1.24 [11, 18]
6 Heart rate lower -0.3114 0.2286 -19.46 2.65 [-29, -13]
7 Weight upper 0.2846 0.6011 1.51 0.41 [0.7, 2.2]
8 Weight lower -0.2817 -0.6052 -1.57 0.53 [-2.4, -0.7]

Table 5.8: Loadings, means, standard deviations and range of algorithmic threshold vari-
ables for principle component transformation

For all the determined principle component regression coefficients standard errors were
at least one order of magnitude lower than the calculated regression coefficients, while the

56



5. Alarm Management and Optimization

t-Test values were significantly different from zero (α < 0.0001). Such evidence indicated
significant contribution of both principle components, PC1 and PC2, to the model.

Coefficient Value Std. error t-Test α
p0 0.770 ±0.003 290 <0.0001
p1 -0.028 ±0.001 -24 <0.0001
p2 -0.017 ±0.002 -8 <0.0001

Table 5.9: Principle component regression coefficients

Combining Equations 5.3 and A.10 the final relation between sensitivity and algorith-
mic thresholds could be established by Equation 5.5.

Sensitivity = r0 +
8∑

i=1

ri
Vi − µi

σi
(5.5)

Equation 5.5 used regression coefficients, ri, defined in Table 5.10.

Threshold variable Regression coefficient
i Vi ri
0 – 0.76992
1 Systolic b.p. upper -0.00397
2 Systolic b.p. lower 0.00890
3 Diastolic b.p. upper -0.00879
4 Diastolic b.p. lower 0.00844
5 Heart rate upper -0.01200
6 Heart rate lower 0.00486
7 Weight upper -0.01804
8 Weight lower 0.01803

Table 5.10: Regression coefficients for sensitivity calculations using algorithmic threshold
variables

5.5 Trend analyses and visualization

In the case of home telemonitoring of heart failure patients, trend of measurements or trend
of the calculated reference state could be potentially used to enable decisions regarding
possible patient interventions and facilitate predictions of future alarm situations. To in-
vestigate which of the trends provide better indication of the alarm occurrence tetrachoric
correlations were calculated between the binary variables indicating exceeded trend thresh-
olds and alarm occurrence. Such correlations were calculated separately for every patient
together with their statistical significance level. The highest correlation was determined
based upon the average of statistically significant patient correlations. Furthermore, only
the averages from 11 or more statistically significant patient correlations were considered.
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A number of cases was examined varying the window size for trend calculations between
2 and 14 days, with daily increments, and trend thresholds between 0.1 and 2.5, with 0.05
increments. Furthermore, trend of the trends was also studied.

The results typically showed the highest correlations using the reference state trend in
the calculations. Table 5.11 presents the combination of Kalman filtering based reference
state trend calculation parameters resulting in the highest obtained average correlations,
for each of the considered physiological measurements.

Physiological Correlation Number of Window Trend
parameter coefficient patients size [days] threshold

Systolic b.p. 0.72 11 2 0.55
Diastolic b.p. 0.79 11 2 0.75

Heart rate 0.79 11 2 0.15
Weight 0.89 26 2 0.15

Table 5.11: Parameters for obtaining the highest correlations between the exceeded
Kalman filtering trend of physiological measurements and alarm occurrence

As it could be observed, no perfect match existed between the exceeded trend thresh-
olds and occurrence of alarms. Furthermore, it was noticed that exceeding the trend
thresholds more often followed than preceded the alarm occurrence. Also, the window
size resulting in the maximum correlation between the exceeded trend thresholds and
alarm occurrence considered the minimum possible number of consecutive measurements,
including only 2 days.

Consequently, additional indicator of a possible alarm occurrence was considered to
always correspond to the alarms. In particular, using the determined threshold ranges
and reference state based on Kalman filtering, relative closeness of the measured values to
the threshold bounds could be considered as indication of the potential alarm occurrence.
Such indication was color coded for each measurement point and added to the background
of threshold range plots, as presented in Figure 5.21.

Color generation was obtained applying the R barplot function, which implemented
separate functions for red, green and blue color components, given by Equations 5.6, 5.7,
and 5.8, respectively.

fred =
1

π
· arctan(4 · fcolor + 2) + 0.5 (5.6)

fgreen = 2.5 · p(x = 2.125 · fcolor|x∼N(0, 1)) (5.7)

fblue =
1

π
· (−arctan(4 · fcolor − 2)) + 0.5 (5.8)

Here, the color function, fcolor, was obtained as a ratio between the difference in mea-
surement values, ft, and reference state values, gt, and the difference between threshold,
Vt,upper or Vt,lower, and reference state values, calculated by Equation 5.9.

fcolor =


ft−gt

Vt,upper−gt
, ft > gt

ft−gt
gt−Vt,lower

, ft < gt

(5.9)
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Figure 5.21: Color coded systolic, diastolic blood pressure, heart rate and weight mea-
surements with Kalman filtering based automated alarm indication for a selected patient
(Patient ID = 11,322)
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As the thresholds were asymmetric around the reference state, the color function algorithm
had to account for both upper and lower threshold bounds separately, taking into account
their relevance only when the measurements were above or below the reference state,
respectively.

The following code generated colors in the case of weight drawings:

barplot(

cex.axis=1.5, #size of the axis lables

(1-is.na(WEIGHT_NA))* #plot bars only when there are (weight)

#measurements, i.e. when no NA elements exist

#and is.na function value is 0

(pmin(ReWEIGHT+1.3,135)-pmax(ReWEIGHT-1.3,45)),

#bar sizes equal the difference between upper

#and lower thresholds

border=NA, #no borders around color bars

offset=pmax(ReWEIGHT-1.3,45), #offset color bar plotting from the

#lower threshold (defined as a point-

#wise maximum between the fixed 45 kg

#limit and 1.3 kg lower value than the

#reference state)

col=rgb( #define red, green and blue component values of color bars

1/pi*atan(4*drawWEIGHT+2)+0.5, #red function

2.5*dnorm(2.125*drawWEIGHT,mean=0,sd=1), #green function

1/pi*(-atan(4*drawWEIGHT-2))+0.5 #blue function

),

space=0, #include no spacing between the color bars,

#i.e. plot them adjacent to each other

add=T #add color bar plot to the existing figure

)

The following code implemented the color function (drawWEIGHT) for weight drawings:

drawWEIGHT<-(WEIGHT_NA-ReWEIGHT) #difference between (weight) measurements

#and reference state

/ #divided by

pmax( #point-wise maximum of

(WEIGHT_NA>=ReWEIGHT)* #when (weight) measurements are

#greater than or equal to the

#reference state then 1,

#otherwise 0 times

(pmin(ReWEIGHT+1.3,135)-ReWEIGHT),

#difference between upper threshold

#and reference state

(WEIGHT_NA<ReWEIGHT)* #when (weight) measurements are

#smaller than the reference state
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#then 1, otherwise 0 times

(ReWEIGHT-pmax(ReWEIGHT-1.3,45))

#difference between reference

#state and lower threshold

)

The maximum color intensities, red or blue, were obtained when the color function
exceeded 1 or -1, respectively. Such extreme colors meant that the measurements exceeded
the threshold bounds (red color for exceeding the upper threshold bound, blue color for
lower). When the color function value equaled 0, green function component was dominant.
Table 5.12 presents overview of the considered combinations of red, green and blue function
values for obtaining the desired color map.

Color bar
Function values

Color Red Green Blue

Red 1 0.947 0.104 0.148

Light green 0 0.852 0.997 0.852

Blue -1 0.148 0.104 0.947

Table 5.12: Combinations of function values for obtaining the desired background color
map in patient measurement plots

Note that the implemented functions for red, green and blue components were con-
tinuous, allowing also the color function to take values greater than 1 and lower than
-1. However, due to the selected combination of rgb function parameters in such cases
color change was negligible beyond the considered red and blue extremes, as illustrated
in Figure 5.22. Figure 5.22 presents separate variation of red, green and blue components
of the rgb function and the resulting colors in the case of hypothetical systolic blood
pressure measurements varying in such a way to obtain a range of color function (fcolor)
values between -1.2 and 1.2. For simplicity, the selected reference state and thresholds
were considered constant (specified as initial values and optimal threshold bounds in the
described Kalman filtering algorithm).
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5.6 Weather influence on alarm management

Patient telemonitoring data and associated weather conditions were analysed in two stages.
In the first stage, Spearman correlation coefficients were calculated between the average
daily patient physiological measurements and recorded weather conditions (temperature
T , relative humidity RH, atmospheric pressure).

Spearman correlation coefficient was also used to correlate physiological measurements
to effective temperature (Teffective) and thermal comfort, computed according to Equation
5.10 and Table 5.13 (Ono and Kawamura, 1991), respectively. Additionally, the anal-
yses included calculation of polyserial correlations between the weather conditions and
occurrence of patient alarms.

Teffective[
◦C] = T [◦C]− 0.4 ·

(
1− RH[%]

100

)
· (T [◦C]− 10) (5.10)

Thermal Thermal Effective
sensation comfort index temperature [◦C]
Very hot 4 34 < Teffective

Hot 3 31 < Teffective 6 34
Moderately hot 2 28 < Teffective 6 31

Warm 1 25 < Teffective 6 28
Comfortable 0 22 < Teffective 6 25
Slightly cool -1 19 < Teffective 6 22

Cool -2 16 < Teffective 6 19
Cold -3 13 < Teffective 6 16

Very cold -4 Teffective 6 13

Table 5.13: Relation between thermal sensations, thermal comfort indices and effective
temperatures (based on (Fanger, 1970))

Figure 5.23 presents recorded minimum, mean and maximum daily temperatures used
in the analyses together with telemonitored physiological parameters and alarms for a
selected patient. Also presented are linearly interpolated temperatures to correspond to
the exact time of the patient physiological measurement records based on local weather
station temperature recordings at 7:00, 14:00 and 19:00 hours on each measurement day.

Figure 5.24 presents calculated effective temperatures based on interpolated tempera-
ture values, related thermal comfort indices, relative humidity and atmospheric pressures,
for a selected patient location over the course of telemonitoring physiological parameters.

Based on the obtained correlation results, the second stage of the analyses applied tests
for determining statistically significant differences between:

1. the averaged daily physiological measurements in two consecutive days when: a) the
difference in mean temperatures between those days exceeded preset limits, rang-
ing between 3◦C and 8◦C; b) one of the two consecutive measurement days had a
difference between maximum and minimum temperature higher than preset limits,
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mospheric pressure for a selected patient location (Patient ID = 11,322; Graz)
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ranging between 7.2◦C and 21◦C; c) the difference between maximum and minimum
temperatures over the two consecutive measurement days exceeded preset limits,
ranging between 10.3◦C and 22.3◦C;

2. the averaged daily physiological measurements on the first and the third day in a
sequence, when the difference in mean daily temperatures between the first two days
exceeded preset limits, ranging between 3◦C and 8◦C;

3. the averaged daily physiological measurements on the days immediately preceding
and following a day when the difference between maximum and minimum daily
temperatures exceeded preset limits, ranging between 7.2◦C and 21◦C;

4. the average daily environmental temperatures on the days with and without true
alarm occurrences.

All temperature limits were varied at 0.1◦C increments, while the considered temperature
ranges were based upon the frequency of occurrence of such environmental conditions
limiting the extracted sample sizes to a minimum of 10 and maximum of 5,000.

Two-sided u-test and t-test for matched pairs in combination with Shapiro-Wilk nor-
mality test were employed to determine the significance of differences between the consid-
ered data sets. Apart from p-values the calculations also included 95% confidence intervals
(CI).

Correlations were calculated between the telemonitored physiological parameters and
weather conditions, effective temperature and comfort. As an illustration, Figure 5.25 sum-
marizes statistically significant correlations between diastolic blood pressure and weather
conditions including effective temperature. The highest number of patients in Figure 5.25
had statistically significant correlations with effective temperature ranging between -0.5
and -0.3 (10 patients). Within this correlation range 9 patients had statistically significant
diastolic blood pressure correlations with outdoor temperature. Similar influences were
observed on the other physiological parameters and alarms.

Following such findings, investigation focused on differences in patient physiological
parameters between the days with extreme temperature variation, heat or cold stress.
Thermal stress due to the rising temperatures, heat stress, had no statistically significant
influences on patient physiological measurements. Thermal stress due to the falling tem-
peratures, cold stress, was statistically significant for systolic and diastolic blood pressure
when the mean temperature difference thresholds were between 6.4◦C and 6.8◦C (p<0.05,
95%CI: (-16, -1) and (-8, 0) mmHg, for systolic and diastolic blood pressure differences,
respectively, sample sizes: 17 and 16), and additionally statistically significant only for
systolic blood pressure when the mean temperature difference thresholds were 6.1◦C and
6.2◦C (p<0.05, 95% CI: (-10, 0) mmHg, sample sizes: 29 and 28). The obtained nega-
tive CIs indicated rising blood pressures with the decreasing mean outdoor temperatures.
Figure 5.26 presents the obtained results for 6.8◦C mean temperature difference threshold.

Considering the day immediately following two consecutive days with large mean tem-
perature variations, statistically significant differences were identified for both, heat and
cold stress conditions. Falling temperatures, with the mean daily difference of 5.7◦C and
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Figure 5.25: Statistically significant correlations between diastolic blood pressure and
weather conditions for individual patients (values around zero were not statistically sig-
nificant)

5.8◦C, distinguished significantly different heart rates (p<0.04, 95% CI: (0, 4) bpm, sam-
ple sizes 68 and 64). The obtained positive CIs indicated falling heart rates following
the decrease in mean outdoor temperatures. Rising temperatures, with the mean daily
difference of 6.7◦C and 6.8◦C, distinguished significantly different diastolic blood pressures
(p<0.04, 95% CI: (-4, 0) mmHg, sample size: 15). The obtained negative CIs indicated
rising diastolic blood pressures following the increase in mean outdoor temperatures.
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Figure 5.26: Box plots, means and statistically significant differences with confidence
intervals for systolic and diastolic blood pressures over two consecutive days with mean
temperature difference higher than 6.8◦C
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Chapter 6

Discussion

The current study used data from MOBITEL telemonitoring database of heart failure
patients. Although median improvement from NYHA class III to II over the course of
telemonitoring was reported in the literature, there was no information about the type
and progress of cardiovascular diseases of each patient in the study. Furthermore, no
records about patients’ age or gender were available for the data analyses, although it was
known that the investigated sample consisted of elderly people. As such individual patient
information was not available, it was not possible to determine the effects and dependance
of age and gender on the considered physiological parameters.

MOBITEL was the first large scale telemonitoring study conducted by the research
team at the Department of Safety and Security, Austrian Institute of Technology. Conse-
quently, not all of the equipment and information transfer was reliable. The telemonitoring
database lacked some of the preprocessing capabilities that would ensure higher data qual-
ity. For example, indication of the measurement gaps or unrealistic measurement values
to the operators could result in timely reaction and mitigation of the possible human or
technical causes for insufficient quality of data collection. Eventually, substantial number
of patient records was removed from the analyses. Up to 17 out of 65 patients (26%)
originally participating in the study had to be removed in different phases of the analy-
ses, primarily due to insufficient data. The patients remaining in the study were those
submitting a majority of all the collected telemonitoring records (over 85%).

The following sections comment and describe particular issues and limitations related
to the previous dissertation chapters.

6.1 Data statistics

The observed measurement gaps illustrated in Figure 4.2 were removed, rather than con-
ducting any interpolation between the measurements to assume the values of missing
data. Such procedure was advised by a data mining expert involved in home telemonitor-
ing (Drobics, 2010). With such preprocessing, the measurements immediately preceding
and following the gaps were considered as adjacent. This assumption introduced an error,
which would increase with the size of the measurement gap. Such error might have ad-
verse impact on the validity of the algorithm. Consequently, patients with relatively large
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measurement gaps were eliminated from the database and excluded from the presented
analyses. In practical applications, it would be necessary to ensure regular telemonitoring
via patient follow-up contacts.

In the case of multiple daily measurements, the presented analyses used daily averages
to count with single records each day. Such simplification also introduced an error, as the
patient physiological parameters were changing during the day, e.g. weight would typically
increase after a meal, heart rate would increase after physical activity etc. However, the
introduced averaging was necessary as the considered statistical algorithms required reg-
ular measurement records. Ideally, in the future practical applications the patients would
be asked to make regular measurements each day, and will be automatically reminded
to do so, if they failed to submit the measurements within a certain time frame. The
patient reminder levels might also increase with the increasing gap in the measurement
records, e.g. initially, the patients could receive an sms, followed by a phone call with an
automated voice message, followed by a phone call from the physician, followed by a visit
of the medical and/or technical staff. Further improvements of the developed algorithms
might be possible to consider multiple regular daily measurements. Such improvements
would be particularly important for physiological parameters with larger daily variability
such as heart rate or blood pressure, and less important for the parameters with smaller
variability, such as weight.

Comparing the Figures 4.4 and 4.5, one can observe high influence of alarm thresholds
on the occurrence of alarms. For example, despite of relatively stable weight for Patient
IDs 8,832 and 8,587, weight alarms still occurred, whereas no alarms were recorded for the
Patient ID 10,601 despite of higher variability in weight measurements. Such situation is
the consequence of a wider alarm threshold range setup by the physicians in the case of
the latter patient as compared to the former. The alarms presented in Figure 4.5 were
those used in the considered analyses. Additionally, MOBITEL study also included weight
gradient alarms occurring when the patient weight was changed (increased or decreased)
by more than 2 kg over 2 consecutive days (Scherr et al., 2009). Such alarms were relatively
rare in the considered telemonitoring records (only 6 unique true alarms representing less
than 3% of the total true alarms and less than 0.3% of all the alarms). Consequently,
the current analyses did not separately consider such alarms neither did the developed
algorithms include the weight gradient rule for automated alarm generation. However,
the mentioned weight gradient of 2 kg in 2 days would likely lead to the weight alarm
generation according to the proposed Kalman filtering based algorithmic thresholds of
±1.3 kg presented in Table 5.5. Such occurrences were not additionally investigated.

Possible physician actions in the study included a category “Other action”. However,
the information which other actions the physicians undertook in such cases was not avail-
able in the database. Nevertheless, this type of physician actions was considered to be
related to true alarms, together with patient contacts and medication adjustments.

Statistics presented in Table 4.2 illustrated the frequency of collected measurements,
showing that more than half of all the telemonitoring records were collected within the
first 14 months of the study (Start: October 9, 2003; Median: December 7, 2004). The
remaining 4 years till the end of the study (February 19, 2009) resulted in less frequent
measurements. While many reasons could explain such situation, a possibility could be
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lower enthusiasm and motivation of the patients to regularly monitor their conditions after
a certain initial period. Such possibility should be confirmed and additionally investigated
together with the measures to stimulate continued patient interest in participation over
the long term telemonitoring.

Table 4.2 also showed that the data preprocessing criteria were properly set. The vast
majority of the individual patient thresholds fell within the defined ranges of physiological
parameters used in data cleaning. Thus the considered physician thresholds were realistic
in reference to the recorded measurements.

Figure 4.7 showed that exceeded multiple thresholds (double and 3 or more) had higher
influence on physician actions caused by true alarms, than on false alarm responses. Two
and more simultaneously exceeded thresholds caused around 40% of “Patient contacts”
and “Medication adjustments”, as opposed to less than 25% of “Threshold adjustments”,
“No actions”, and “Alarms with no responses”. Exceeded single thresholds caused the
majority of false alarms (over 75%). The only physician action in response to true alarm
occurrences that mostly resulted from exceeded single thresholds was “Other action”.
However, according to Figure 4.6, the portion of “Other actions” in the total number of
considered true alarm cases was relatively small (only 36 (14%) out of the total 135+89+
36 = 260 cases).

Out of the single threshold alarms, exceeded blood pressure thresholds (both systolic
and diastolic together) had the highest influence on resulting physician actions, as pre-
sented in Figure 4.8. In both, true (“Patient contact”, “Medication adjustment”, “Other
action”) and false positive alarm (“No action”) cases, over 50% of physician actions were
in response to exceeded systolic or diastolic blood pressure thresholds. The only physician
action mostly impacted by the physiological parameters other than blood pressure was
“Threshold adjustment”, mostly triggered by exceeded weight thresholds. Although not
presented in Figure 4.8, the analyses of “Alarm and no response” cases (Figure 4.7) caused
by exceeded single thresholds showed the highest influence of alarms due to exceeded upper
weight thresholds, responsible for around 60% of all these false alarm occurrences.

During the course of home telemonitoring the patients were given a range of differ-
ent medications. Heart failure treatment usually assumes that patients take more than
one medication, as was the case in 51 (94%) out of 54 patients presented in Figure 4.9.
Medication type intake and dosage was mostly kept constant throughout the study, as in-
dicated in Figure 4.10. However, this information may not be accurate in the cases when
patients were taking 5 or more different medications at the same time. The telemonitoring
software was designed to allow recording of a maximum of 4 different medication types by
the physicians, and no records about the possibly larger number of prescribed medications
were available. Also, no information was available about the way the physicians might
have selected the medications to record in the database in the cases of therapies including
more than 4 different medications.

The number of different medication combinations in which each of the prescribed med-
ication types in the study occurs is presented in the diagonal of Table 4.3. This number
does not necessarily represent the number of patients taking a particular medication, as
each patient might have taken more than one combination of medications in which a par-
ticular medication occurs. Also notice that Table 4.3 sums up combinations of certain
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medication brand names consisting of the same active ingredients, which are all listed
separately in Figure 4.11.

6.2 Multi-threshold alarms

The idea behind the alarm flags was to investigate the possibility of replacing the existing
alarms using different alarm generation criteria and/or sending additional information to
physicians as an indication how important the alarm might be. The results in the case of
replacing the existing alarms (flag level 1) using different alarm generation criteria (flag
levels 2 through 5) were presented in Table 5.1. The results showed higher accuracy of non-
alarm decisions with the increasing alarm flag level, which was reflected in the increasing
specificity. Simultaneously, accuracy of alarm decisions was reduced, as indicated by the
falling sensitivity. Thus, ever more true alarms remained undetected as the alarm flag
levels increased. The specificity was directly proportional to the sum of true positive and
true negative events and the alarm flag levels, but inversely proportional to sensitivity.
Still, the introduced alarm flags increased the overall accuracy of combined alarm and
non-alarm decisions. Consequently, high levels of alarm flags would require immediate
attention as it would be more likely that medication adjustment, patient contact or other
physician action was necessary.

The increase in alarm flag levels would imply increase in specificity, but also decrease
in sensitivity. Specificity vs. sensitivity cost benefit analysis could be based upon the
obtained difference and ratio between the reductions (∆) in false and true positive events.
The reductions ∆FP (∆TP ) for each alarm flag level 2 through 5 were calculated by
subtracting the number of FP (TP ) events from the number or corresponding alarms
with a flag level 1, presented in Table 5.1. Thus, ∆FP [%]−∆TP [%] reduction difference
varied between 10% and 14% and ∆FP/∆TP reduction ratio between 10.7 and 8.5. In
relative terms, ∆FP [%]/∆TP [%] percentage reduction ratio varied between 1.54% and
1.22%, respectively, for alarm flag levels 2 through 5 compared to the alarm flag level 1,
i.e. the original algorithm.

Such reduction difference (∆FP [%] − ∆TP [%]) could be understood as an absolute
percentage benefit reflected in the reduced number of FP events paid by the cost of
TP event reductions. The reduction ratio (∆FP/∆TP ) described a relative benefit in
the form of FP reductions paid by each TP reduction. The percentage reduction ratio
(∆FP [%]/∆TP [%]) expressed the relative percentage benefit in FP reductions for each
percent of TP reductions. The largest absolute benefit, i.e. the greatest difference of 14%
between the FP and TP event reduction percentages was achieved for the alarm flag level
5 based on three or more exceeded thresholds over two consecutive days. However, the
same maximum alarm flag level 5 corresponded to the smallest relative benefit, i.e. 1.22%
decrease in FP events was the minimum achieved for each percent decrease in TP events
(or 8.5 false alarms less for each true alarm reduction). The highest relative benefit was
in the case of 3 days with 2 or more exceeded thresholds (alarm flag level 2): 1.54% less
false alarms for each percent of true alarm reductions (or 10.7 FP events less for each TP
event decrease).

The fact that each reduction of false positive events followed the reduction of true
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positive events meant that reducing physician efforts of analyzing and responding to alarms
with flag levels 2 through 5 replacing the alarms with flag level 1, could lead to disregards
of some potentially significant patient alarm conditions. Although the introduced alarm
flag levels reduced the number of false alarms by up to 78% (from 1804 to 395) with the
increasing alarm flag levels from 1 to 5, the percentage of false alarms in the total number
of alarms (TP + FP ) changed only slightly: from 87% (1804 out of 260 + 1804 = 2064
alarm flags level 1) to 81% (395 out of 94 + 395 = 489 alarm flags level 5). Thus, only
every eighth alarm (13%) with a flag level 1 and every fifth alarm with a flag level 5 (19%)
would be true. Such outcome could still lead the physicians to develop distrust in the
overall alarm management system.

Consequently, rather than replacing all the generated flag level 1 alarms, they were
supplemented by the introduction of the described alarm flag levels 2 through 5. As such,
the original alarms (1 day / > 1 exceeded threshold, flag level 1) were maintained, keeping
the number of false negative decisions constant (17). Applying the algorithm presented
in Figure 5.1 the existing alarms were associated with one of the flag levels 1 though 5.
Thus, the distribution of alarm flag levels presented in Figure 5.2 was obtained. The
highest alarm flag level 5 was proportionally more present in the true alarms (94 out of
260 cases, or 36%) than in the false alarms (395 out of 1804 cases, or 22%). Consequently,
all the other, lower level alarm flags were proportionally more present in the false alarms.
Also, the percentage of true alarms increased from 8.5% (47 out of 550 alarm flag level 1
cases) to 19.2% (94 out of 489 alarm flag level 5 cases) as compared to the overall average
of 12.6% true alarms (260 out of 2064 total alarms) when such a procedure is not applied
in the reference MOBITEL study. According to the algorithm presented in Figure 5.1, the
sum of alarms with different flag levels in Figure 5.2 corresponded to the data presented
in Table 5.1, as follows:

• The sum of all alarms with all the flag levels in Figure 5.2 were equal to the records
for 1 Day / > 1 exceeded threshold in Table 5.1,

• The sum of alarms with flag levels 2 through 5 in Figure 5.2 were equal to the records
for 3 Days / > 2 exceeded thresholds in Table 5.1,

• The sum of alarms with flag levels 4 and 5 in Figure 5.2 were equal to the records
for 3 Days / > 3 exceeded thresholds in Table 5.1, and

• The data for alarm flag level 5 in Figure 5.2 and Table 5.1 were equivalent.

Such results in Table 5.1 originated from separate investigations of the alarm occurrence
for each of the alarm flag levels independently.

6.3 Data smoothing

Further investigation of the alternative procedures that could be used to replace the ex-
isting alarm generation algorithm based on manual threshold adjustments, focused on
automated specification of optimum alarm thresholds around a certain patient reference
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state. Such approaches required investigation of various methods to determine the ref-
erence state, as already conducted in the preliminary study. Variance of the calculated
reference state was compared to the variance of the original measurements as an indica-
tion of the influence individual measurements would have on the reference state stability.
Fourteen point moving average considering measurements prior to each reference state
estimate, FFT filter and Kalman filter were found as the most promising approaches to
calculate the reference state. The other investigated (shorter) moving averages and (5
point) Savitzky-Golay filter had much higher variances indicating larger influence of vari-
ations in the monitoring data on the reference state points. This was particularly the case
for Savitzky-Golay filter which exhibited higher variance than moving average approxi-
mation on the same number of measurement points. Thus, to achieve the Savitzky-Golay
variance levels comparable to e.g. 14-point moving average, much more than 14 measure-
ments would be required.

The selected reference state estimation models based on each of the three most promis-
ing approaches (14-point moving average, FFT and Kalman filters) were statistically ap-
propriate as the distributions of measurement residuals around the reference states were
almost normal and symmetric around zero, time independent, and did not exhibit any
patterns (uncorrelated), as indicated in Figures 5.5, 5.6 and 5.14. The drawback of the
14-point moving average was a need for relatively large number of monitoring points and
correspondingly delayed reaction of the reference state estimation to the monitoring trends.
The disadvantage of FFT filtering was assumption of periodicity, which was not observed
in the monitoring data.

Thus the procedure of choice for determining patients’ reference state was based on
Kalman filtering. The analyses were conducted separately for each of the considered
physiological measurements: systolic and diastolic blood pressure, heart rate and weight,
identifying the most suitable combination of parameters, presented in Table 5.2. These
parameters were considered fixed and constant for all the patients during the course of
telemonitoring. Fine tuning of the determined Kalman filter parameters could be addi-
tionally investigated in the future. The most significant parameters for Kalman filtering
were two oscillation parameters (Vmat, Wmat) impacting the variability of the reference
state estimation. Further enhancements of Kalman filtering would be possible assuming
dynamically changing values of these filter fluctuation parameters during the algorithm
runtime over the telemonitoring period. Such fine tuning or dynamic variation in Kalman
filter parameters might bring the reference state estimation to closer correspondence with
the variability in measurements. Performed setup of all the other Kalman filter parame-
ters only impacted the filter output values for the several initial inputs, whereas after the
initial stage the obtained reference state results did not depend on the initial Kalman filter
setup. The current approach used mean values typical for healthy individuals as initial as-
sessments for the monitored physiological variables and provided only order of magnitude
estimates for the other parameters. Personalized individual assessments could be used in
the future for the initial physiological parameter assessments (e.g. weight), subject to each
patient’s gender, age, height, body frame size etc. For example, it was observed that a
substantial number of false alarms occurred relatively early in telemonitoring. In MOBI-
TEL, this was possibly subject to corrective actions of the physicians which should have
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properly adjusted the alarm generation thresholds for individual patients. In the proposed
Kalman filtering based algorithm, the initial filter adjustments to the measurements were
governed by the considered filter parameters.

6.4 Dynamic thresholds and ROC curve

The proposed reference state estimation using Kalman filtering parameters showed good
performance reflected in the comparison of obtained alarms to the original MOBITEL
study. The results were obtained using the new alarm generation thresholds dependent
upon individual patient reference state provided by Kalman filtering of the measurements.

Using the determined reference state, various dynamic threshold adjustments were
investigated to provide increased accuracy of the patient telemonitoring alarm generation.
The investigated approaches included absolute and relative increases and decreases of
the patient reference state to form threshold bounds, as well as fixed upper and lower
thresholds. The most promising approach was identified as a combination of different
upper and lower threshold bounds around patients’ reference state and fixed upper and
lower threshold limits. While the upper and lower threshold bounds were formed by adding
or subtracting predetermined values to the patients’ reference state, the threshold limits
always triggered alarms when exceeded by the measurements, regardless of the patient
reference state. Finally, the alarms could be triggered by exceeding either the specified
threshold bounds or threshold limits, or both.

The combination of optimal threshold parameters was presented in Table 5.5. When
searching for the optimal combination, absolute and relative threshold adjustments were
investigated separately. Thus, Table 5.5 presented only absolute threshold adjustments
and associated threshold limits which provided the highest accuracy off all the other inves-
tigated approaches and proved better than the original MOBITEL algorithm, resulting in
higher accuracy presented in Table 5.6. However, potential benefits of combining absolute
and relative thresholds adjustments were not thoroughly investigated. The reason was
generally equal or worse performance identified using relative threshold bounds, although
in certain ranges of absolute adjustments, the corresponding relative thresholds showed
minor benefit. Such case was e.g. illustrated in Figure 5.18 (right) for lower systolic blood
pressure adjustments ranging between -7 and -15 with fixed limits of 90 mmHg, where
the dotted line representing performance in the case of relative percentage adjustments
was the closest to the ideal (0, 1) point of the graph. Thus, potential fine tuning of the
threshold bounds to include combination of relative (percentage) and absolute threshold
adjustments may bring additional accuracy benefits for certain combinations of threshold
adjustment parameters in comparison to the existing model. Such enhancements would
require the physicians to input either absolute or relative threshold bounds, depending
on the values of other inputted adjustments. Despite of the potential to improve the
sensitivity-specificity balance, operation of the threshold adjustment algorithm combining
absolute and relative threshold bounds might be less feasible and understandable for the
physicians in practice.

Apart from the effects of relative and absolute threshold bound adjustments, Figure
5.18 also illustrated the effects of changing threshold limits. In the right hand side graph of
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Figure 5.18 the lower systolic blood pressure threshold limit was changed from 85 mmHg,
having almost no impact on the baseline ROC curve, to 90 mmHg, bringing the ROC curve
closer to the ideal point (0, 1). However, in the case of the upper systolic blood pressure
ROC curve presented in the left graph of Figure 5.18, increasing the threshold limits from
160 mmHg to 170 mmHg had quite the opposite effect, distancing the ROC curve further
from the ideal point (0, 1). Similar behavior was observed in the case of all analysed
thresholds of patient physiological parameters. Thus, threshold limits had optimal values
presented in Table 5.5, resulting in the most favorable sensitivity-specificity combinations.

The presented ROC curve results in Figure 5.19 showed variety of sensitivities and
specificities that could be achieved changing the threshold parameters of the proposed au-
tomated alarm generation algorithm. The identified ROC curve Equation 5.2 parameters
given in Table 5.4 excluded the two outlier points with minimum and maximum sensitivi-
ties/specificities. This was done to ensure that the residuals showed no statistical evidence
of correlation and no statistically significant deviation from normal distribution. If the
two outliers would not be omitted the residuals would fail to meet the aforementioned
statistical prerequisites for regression. However, even without excluding the two outlier
points, the obtained ROC curve equation would still approximate well all the considered
points (R2 = 0.94) and would fall within the 95% confidence interval presented in Figure
5.19.

Ideally, the developed alarm generation algorithm should have high sensitivity and
specificity, approaching the point (0, 1) on the ROC curve. The point on the curve
closest to (0, 1) maximized the sum of specificity and sensitivity values. Such a point was
identified and its threshold parameters presented in Table 5.5, combining the adjustable
bounds around the patient reference state and fixed extreme upper and lower thresholds
as ultimate cut-off values.

Applying such identified optimal combination of thresholds, the results presented in
Table 5.6 were obtained. The results showed increased specificity and overall accuracy
with decreased sensitivity, compared to the original manually adjusted thresholds by the
physicians (MOBITEL algorithm). The number of alarms and corresponding physician
actions were different compared to the earlier analyses of alarm flag levels (Table 5.1 alarm
flag level 1) as two patients (Patient No. 10 and 28) were removed from the dataset in
the meantime. Figure 5.20 illustrated the application of both, automated and manual,
threshold adjustment algorithms on a selected patient. Correct identification of all true
alarms was followed by a noticeable reduction of false alarms in the case of automated
as compared to manually adjusted (MOBITEL) thresholds applied to the selected patient
telemonitoring.

Interestingly, the identified constant upper blood pressure threshold limits in combi-
nation with reference state dependent thresholds in Table 5.5 coincided with the Stage 2
Hypertension boundaries typical in medical practice, described in Table 4.5. At the same
time constant lower blood pressure threshold limits coincided with hypotension boundary
for systolic blood pressure (90 mmHg), but were somewhat lower (45 mmHg) than the
hypotension boundary in the case of diastolic blood pressure (60 mmHg).

Significance of the presented ROC curve could be viewed in the capabilities to select
the appropriate threshold cut-off values to match the algorithm performance to the ex-
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pected patient conditions at acceptable levels of accuracy. For example, in the case of
patients which the physicians might consider unlikely to experience adverse events, selec-
tion of thresholds associated with the ROC curve points towards the origin (0, 0) would
be appropriate, as otherwise almost all alarm situations would be false. On the contrary,
in cases when the physicians would consider patients’ status as critical, appropriate selec-
tion of thresholds would be associated to the points towards the upper right part of the
ROC curve (1, 1); otherwise a large number of cases with no alarm occurrence might be
false negative. The ROC curve and proposed automated alarm generation algorithm could
thus be viewed as a complementary tool which could help the physicians guiding them to
properly adjust the thresholds in the setup of telemonitoring systems.

Quality of the designed model could be estimated calculating the area under the ROC
curve (AUC), representing the ability to correctly classify cases with and without the
alarms. As a rule of thumb, areas above 0.8 would indicate good accuracy of diagnos-
tic models. As the calculated AUC was higher than 0.8, the presented approach well
discriminated between the possible stable and alarm patient conditions. However, the
calculated AUC should be considered as an estimate rather than an exact value as not all
the points were available on the ROC curve to cover the entire span necessary for exact
calculations. Including the ROC curve data points from all the possible combinations of
considered threshold values for all the monitored parameters would require prohibitively
long computational time. Such computations would include approximately 6.5 · 1012 pos-
sible combinations assuming unit increments in blood pressure and heart rate thresholds,
and 0.1 kg increments in weight thresholds. Rather, the fitted ROC curve was used to
provide estimate of the model quality.

Based on the used combinations of thresholds to produce the ROC curve, a model
to calculate sensitivity was developed applying principle component regression on the 8
threshold variables input domain space. The resulting model coefficients were presented in
Table 5.10, whereas the means and standard deviations needed for the standardization of
the input values were given in Table 5.8. Negative coefficients next to the upper threshold
variables and positive coefficients next to the lower thresholds indicated that increasing
values of the thresholds above the means (in absolute terms) would result in reduction of
the sensitivity below r0 = 0.770. And vice versa, reducing values of the thresholds below
the means (in absolute terms) would result in increase of the sensitivity above r0 = 0.770.
Table 5.8 also presented the ranges of input thresholds for which the model was valid.
Using these input threshold ranges, sensitivity range [0.276, 0.957] could be obtained. Ap-
plying Equation 5.2, this sensitivity range would translate into a specificity range [0.979,
0.476], respectively. One extreme case (1 − Specificity, Sensitivity) = (0.021, 0.276),
resulting from the widest threshold ranges, would be appropriate for the patients which
the physicians might consider unlikely to experience adverse events. The other extreme
case (1 − Specificity, Sensitivity) = (0.524, 0.957), resulting from the narrowest thresh-
old ranges, would be appropriate when the physicians would consider patients’ status as
critical.

As the analyses were entirely based on the recorded physician responses, uncertainty of
diagnoses remained a possible topic for further investigation. Namely, it was questionable
whether the classification of true and false alarms would remain the same if the physicians
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would have a chance to examine all the automatically generated alarms. Particularly, as
nearly half (890 of 1845) of all the alarms in the automated system were newly generated,
i.e. had no recorded response by the physicians. In the current analysis all such alarms
were classified as false and the overall results showed only minor reduction (94, i.e. 5%)
of the false alarms in the presented algorithm compared to the original MOBITEL study.
However, if the cases with no recorded physician responses would be excluded, the false
alarm reduction could reach nearly 45%. At the same time, compared to the MOBITEL
study, the presented results of automated alarm management included (47 alarms) 18%
less true alarms. Reclassification of the cases with no recorded physician responses might
increase the number of true alarms indicated by the developed algorithm, when tested
in pilot trials. Potential reclassification of such cases would have a profound impact on
the proposed algorithm as well as the MOBITEL study, affecting its false negative occur-
rences. To properly evaluate usefulness of the proposed algorithm as a potential method
of detecting adverse patient health status conditions pilot testing would be required.

6.5 Trend

Trend of the measurements was calculated as a slope of a linear model of measured data
over the fixed window size. The linear model was obtained minimizing the sum of squared
errors between the line representing the model and the measurements. Similarly, trend of
the reference state was obtained by considering the reference state values instead of the
measurements. Such trend depended upon the procedure used to calculate the reference
state. All the considered procedures described in Section 5.2 were investigated for calcu-
lation of the reference state trends. Finally, trend of the trend values was also calculated
constructing another linear model on the results of the existing trend calculations. Such
double derivation approach showed higher stability as compared to the first order trends.

The calculated trends varied between certain values. An event generated when trend
exceeded a preset threshold value was considered as an indicator of possible alarms. The
same situation was also applicable to the cases when the trend fell below a certain threshold
value. In the current trend analyses absolute upper and lower trend threshold values were
considered to be the same. Whether the trend exceeded the thresholds or not, depended
on the size of the thresholds but also on the trend itself. The trend value was impacted
by the window size used to sample the subset of measurements (reference state, or first
order trend values) for obtaining the slope of the linear model. Therefore, an examination
of various window sizes to calculate the trend thresholds was conducted to select the most
appropriate one. The most appropriate here meant that there was the largest correlation
between the occurrence of alarms and the events when trend exceeded the threshold values.

When considering alarms for calculation of the mentioned correlations, two possibilities
existed. First, the alarms could be based on measurements (MOBITEL), and second, the
alarms could be calculated by the selected automated alarm generation algorithm. The
investigations focused on correlations between the exceeded trend threshold values and
occurrence of MOBITEL measurement alarms.

Investigation of possibly different trend thresholds subject to the measurement values
was also conducted. For example: in patients with prevalently high blood pressures high
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trend thresholds might be more appropriate as compared to the patients with generally
low blood pressures, for which low trend threshold values could be considered. The inves-
tigation was conducted varying window sizes between 5 and 21 days with daily increments.
The high trend threshold values varied between 0.8 and 1.7 and the low trend thresholds
varied between 0.1 and the high trend threshold value, with 0.1 increments. The average
value of blood pressure measurements over the first measurement window size was used to
assign a patient to a group with low or high trend threshold values. Such average blood
pressure, serving as a decision border between the low and high trend thresholds, was also
varied between 130 and 160 mmHg in increments of 10 mmHg.

As a final result, no significant advantage was found to use any other described trend
calculations (measurement trend, trend of the trends, dual trend thresholds) as compared
to the Kalman filtering reference state trend single threshold value for all the patients.
On the contrary, single thresholds of the Kalman filtering reference state trends gave at
least equal or higher correlations than any of the other trends including the dual trend
thresholds, subject to patient classification based on the initial physiological conditions.

Consequently, the variation of window size and single Kalman filtering trend thresh-
old values was examined for all the recorded measurements: systolic and diastolic blood
pressures, heart rate and weight. Table 5.11 showed the best combinations of parame-
ters which resulted in the maximum correlations between the exceeded Kalman filtering
trend thresholds and the occurrence of alarms. The presented results were averages of at
least 11 patients with statistically significant correlations. This number of patients was
selected due to the rule of thumb that correlations above 0.8 would be required with 10
pairs of observations in order to be significant. Indeed, the calculated average correlation
coefficients for 11 patients were around 0.8 for all the physiological parameters, indicating
significant results.

As the identified maximum averages of statistically significant correlations included
window sizes of only two consecutive Kalman filtering reference state data points in the
cases of all physiological parameters, an alternative approach was used to indicate the
proximity of each measurement to the critical values causing the alarm occurrence. With
such an approach, background fields behind each measurement were colored based on the
relative distance between the measurements and the Kalman filtering reference state, with
respect to the distance between the alarm threshold values and the reference state. As
the measurements would approach a certain alarm generation threshold, the background
color bar would approach color extremes: red for upper, and blue for lower thresholds.
Color bars behind the measurements close to the reference state were chosen to be pale
green. Continuous smooth functions governed the color variation in order to speed up and
simplify the computational algorithm. The selected parameters of the color generation
functions ensured negligible color variation close to the color extremes, even in the cases
when measurements exceeded the alarm generation thresholds.

Such background colors effectively indicated the trend of the Kalman filtering refer-
ence state. Namely, if a new measurement would differ from the previous Kalman filter-
ing reference state value, the new Kalman filter result would follow the value of such a
measurement, as would the intensity of the background color bar. For example, a new
measurement higher than the previous Kalman filtering reference state would cause that
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much higher increase in the new Kalman filter reference state estimate, the higher was
the difference between the measurement and the previous reference state estimate. Such
difference would also mean that the new measurement would be closer to the upper alarm
generation threshold value causing the change of the background color towards the red
color extreme.

Therefore, when a certain (positive or negative) Kalman filtering trend (difference)
would be observed in each two consecutive reference state estimates, this would also trans-
late to an appropriate background color adjustment. Such color coding did not consider
particular reference state trend thresholds but rather the actual measurement proximity
to the potential patient specific alarm generation thresholds. As such, the color coding
would always adequately indicate alarm occurrence in the automated alarm management
algorithm. As previously discussed on the other hand, the automated alarm management
algorithm parameters (threshold bounds) could be adjusted to correspond to the partic-
ular patient conditions the physicians would expect. The supplemental background color
coding would provide visualization of the patient reference state trends and could poten-
tially indicate occurrence of alarms in the automated alarm management algorithm, as
additional information to the physicians.

6.6 Weather influences

Historic weather records were used from one of the weather stations in Vienna, Graz,
Innsbruck, Klagenfurt or Linz, closest to the patient locations. However, weather data
from the exact patients’ addresses were not available. Maximum distances between the
weather station and patient locations amounted up to 80 km. Although occurring in only
a few cases, such distances might have adversely affected reliability of weather assignments
to particular patient conditions, as local weather conditions might have been different than
those at such distant weather stations.

As majority of the patients participated in the study over the period of 6 months (180
days as illustrated in Figure 4.2), it was not possible to take into account the effect of
varying weather conditions on each individual patient during a calender year.

The identified statistically significant influences of thermal stress on patient physi-
ological conditions were identified using Spearman correlation coefficients, suitable for
determining nonlinear relationships. The considered thermal stress was based on mean
temperature differences. Such differences were calculated based on the mean daily temper-
atures available in the obtained meteorological data. Following the meteorological practice,
these values represented average between maximum and minimum recorded daily temper-
atures. As such, mean daily temperatures could be considered as proxies for temperature
variation. Consequently, the obtained statistically significant results could offer practical
opportunity to predict heart failure patient health conditions based on the meteorological
forecasts, typically including maximum and minimum daily temperatures.

Attempt to relate thermal comfort with patient physiological conditions using effective
outdoor temperature did not result in statistically significant correlations. However, such
approach did not take into account the actual exposure of patients to particular envi-
ronmental conditions, dependant also on patient clothing, wind exposure, solar radiation.
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Rather, the applied Equation 5.10 only took into account outdoor temperature and relative
humidity, as these were available in the weather data records. Numerous other equations
existed in the literature to quantify personal thermal comfort, but their application would
have required additional data. Such additional approaches could be investigated in the
future, providing a more comprehensive telemonitoring data collection. Apart from the
additional information about the outdoor weather conditions, records of patient exposure
time to such conditions, as well as indoor environmental parameters, might be used in
further investigations.

In addition to thermal comfort, the correlation analyses also used the available outdoor
weather monitoring records. Although statistically significant correlations were identified
for a number of individual patients, such correlation values were in absolute terms rarely
above 0.7, which was considered typically desirable in research related to human subjects
taking into account person-to-person variability. Similarly, statistically significant but
low correlation values were observed between the weather conditions and patient alarm
occurrence. In such analyses, linear interpolation was used to derive the weather condi-
tions for the exact time of the stored patient physiological measurements, as only three
weather monitoring records were available per each day: at 7:00, 14:00 and 19:00 hours.
Such interpolation sometimes resulted in unreasonable estimates, particularly in terms of
relative humidity exceeding 100%. All such conditions were replaced with the maximum
physically possible relative humidity conditions of 100%. Although more frequent weather
monitoring would have provided better insight into the outdoor conditions and alleviated
the need for interpolation of the weather data, the influence of weather conditions on the
patient physiological parameters would remain questionable. As the patients would be
located indoors at the time they submitted the telemonitoring records, they would not be
effectively exposed to the outdoor weather conditions.

Therefore, a more tangible approach was to use an overall indicator of particular
weather conditions during each telemonitoring day (e.g. mean, or difference between max-
imum and minimum outdoor temperatures) together with the averaged daily physiological
parameters. The environmental temperatures also had the highest observed correlations
with the physiological measurements. Therefore, the analysis included differences in pa-
tient physiological measurements across the days with pronounced temperature variation,
thermal stress. The considered variation in temperature differences for investigation of sig-
nificant differences in recorded patient physiological measurements were conditioned upon
R implementation of statistical testing functions. The investigated cases were designed
to take into account a possible delay in manifestation of weather condition influences
on the telemonitored patient physiological parameters. Examining 2 and 3 consecutive
telemonitoring days, delay of up to 1 day was investigated.

The identified statistically significant correlations between individual patient physio-
logical parameters and weather conditions, such as those for diastolic blood pressure pre-
sented in Figure 5.25, revealed high dependency on individual patient conditions and could
not be generalized. These results included both, rising and falling outdoor temperatures,
as well as relative humidity, atmospheric pressure and calculated effective temperatures.
However, statistically significant increase in both, systolic and diastolic blood pressures,
were identified in the case of cold stress: two consecutive days with declining mean tem-
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peratures. A one day delayed effect of cold stress was found on falling heart rates. Also,
heat stress had a one day delayed effect on rising diastolic blood pressures.

The detected statistically significant differences in patient physiological measurements
around the thermally stressful days were mostly found between the systolic and diastolic
blood pressures. All such cases had 95% confidence intervals ranging from trivial (close
to zero) to possibly important differences comparable to effects of certain blood pressure
medications (∼ 10 mmHg (Wu et al., 2005)). Since the confidence interval ranges included
values close to zero, no strong conclusion could be reached about the importance of the
observed statistically significant differences in physiological measurements. However, re-
peated thermal stress over several consecutive days would have multiplicative effect on the
patient conditions. The current study did not distinguish such cases but rather focused
on any days satisfying the predefined thermal stress criteria.

Although no statistically significant correlations were found between the occurrence of
alarms and weather conditions, indirect weather influence on alarm occurrence could be
inferred. Namely, statistically significant correlations between the outdoor mean tempera-
ture variation and blood pressures were detected, whereas blood pressure alarms were the
most prevalent of all the alarm occurrences. Furthermore, they accounted for 60% of all
true alarms.

6.7 Limitations

Unavailable patient gender and age records limited the possibility to investigate effects of
these parameters in the performed analyses. Furthermore, it could not be verified whether
the selection of patients in terms of gender and age distributions formed representative
sample of the actual population, although it was assumed that the conducted monitoring
study was properly designed in this respect.

Patient distribution map, presented in Figure 4.1, showed that the majority of sampled
patients were located in the vicinity of Graz. Such selection of patients failed to ensure
representative number of patients for each of the Austria’s climatic or geographic regions.

One measurement per day recorded by the majority of patients in the study might
not have been a representative measurement for each particular day. Sampling interval of
measurements would have to be short enough for the interpolated time series to provide a
close approximation to the original continuous signal being monitored, such as the phys-
iological patient conditions. Here, sequential measurements in time over a fixed interval
represent a sampling interval while the resulting data form a time series.

Limitation of the presented approach was related to the available alarm records.
Namely, the original data collection algorithm allowed physicians to manually adjust
threshold values during the course of the measurements. Consequently, the same values of
measured parameters might have caused an alarm before the threshold was adjusted while
indicating normal condition after such adjustment, and vice versa. Thus, in some cases
alarm generations might have been impacted by physician interaction with the monitoring
algorithm resulting in inconsistent occurrence of alarms among the patients. Such alarms
might not actually reflect any changes in the patient conditions, but rather result from
the tuning of the alarm generation algorithm.
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Another limiting factor was related to a certain number of physician responses which
might have been a consequence of alarm events occurring during the days of previous
measurements, rather than the day of the response records. This could be one of the
reasons Figure 4.6 showed that 1% of physician responses occurred during the day when
no alarms were recorded, while 5% of the total number of measurements indicated alarms
without accompanying physician actions. However, such records of a possibly delayed
physician actions existed in only a small number of events. Consequently, such cases were
considered only when calculating the number of false events for the original data.

Further limitation of the obtained results originated from the comparison to the MO-
BITEL study, rather than clinical trial tests.

Limitations of the current results were related to the poor documentation of the physi-
cian responses to the alarms since no information existed to distinguish physician actions
to specific monitoring parameters, irregular or missing measurements. Also, no informa-
tion was available about potential other contacts the physicians might have had with the
patients, not influenced by the telemonitoring system, e.g. periodic patient visits to refill
their supply of medications etc.

Although certain descriptive statistics was presented for the prescribed medications,
effects of medication intake were not considered in analyzing the patient physiological
measurements. Neither medical nor pharmacological experts were available during the
course of the current analyses, which may also present a potential limitation.

Finally, the available weather data records included only a limited number of days with
severe heat or cold stress conditions. Due to sometimes very small number of records with
certain severe mean daily temperature variations, statistically significant health influences
of more severe variations in daily weather conditions than presented in Section 5.6 might
have remained unproven. In fact, contrary to the expectations, ever more significant
findings did not occur with the increasing thermal stress, possibly due to the reduced sizes
of the tested data sets and rarer occurrences of such extreme environmental conditions.
This could also be one of the reasons that heat stress had no statistically significant
influences on patient physiological measurements. Additional explanation could be related
to patient avoidance of extreme outdoor temperature variations, during which they might
have rather stayed in more temperate indoor environments. Further verification of such
assumptions would be needed.

83



Chapter 7

Conclusions and Future Work

The current study analyzes occurrence of alarms in the existing home telemonitoring
records of heart failure patients after an episode of acute decompensation. The study offers
ways to improve the alarm generation towards increasing accuracy and reduction of false
positive alarms. For the analyses of therapeutic decisions and physiological measurements,
R statistical software is used.

New 5-level alarm flag is proposed to supplement the original algorithm towards more
efficient and precise home telemonitoring system. The presented approach describes auto-
mated alarm generation algorithm for telemonitoring of heart failure patient conditions.
The approach considers patient blood pressure, heart rate and weight conditions concur-
rently within the data analyses algorithm. The proposed algorithm is based on patient
reference state estimation using Kalman filtering of monitoring data and automated thresh-
old adjustment around the reference state. The results show that the automated threshold
adjustment method could complement the existing telemonitoring systems and help the
clinicians to identify potentially important changes in the patient health status.

Although further home telemonitoring trials and testing are suggested, the presented
method shows promising capabilities in estimating patient conditions and could make
valuable contribution to facilitate the chronic heart failure patient healthcare.

7.1 Scientific contributions

The most significant scientific contributions of the dissertation are the following:

• Introduced new 5-level home telemonitoring alarm risk indicator. The indicator
classifies the alarms based on the probability that such alarms would require medical
interventions.

• Introduced automated home telemonitoring alarm generation algorithm featuring dy-
namic threshold adjustments. The algorithm personalizes alarm generation thresh-
olds subject to patient conditions throughout the telemonitoring, reducing the need
for manual adjustments by the physicians.
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• Developed methodology for selecting algorithmic setup for automated home tele-
monitoring alarm generation such that the desired levels of sensitivity or specificity
could be achieved. The methodology includes mathematical relations for evaluating
impacts of particular combinations of alarm generation thresholds.

• Developed tool for graphical visualization of data series trends supplementing the
automated home telemonitoring alarm generation system. The provided color visu-
alisation corresponds to and follows the patient physiological conditions indicating
approach to potentially critical values causing alarm occurrence.

• Developed home telemonitoring based methodology for analyses of influence of
weather conditions (temperature, humidity and atmospheric pressure) on chronic
heart failure patients. Statistically significant correlations between variations in sys-
tolic blood pressure and cold stress days are identified.

7.2 Open research work

The current scientific contributions open possibilities for future work in home telemoni-
toring applications. Some of the open research possibilities are: risk parameter modeling,
subjective health perception analyses, enhancement of patient health literacy, self-care and
self-management, medication therapy modeling, model validation and testing, training for
effective usage of the home telemonitoring system, weather influence modeling, pilot and
demonstration activities.

In terms of risk parameter modeling, examination of possible risk factors could include
combination of two or more physiological parameters (e.g. gain in body weight followed
by systolic blood pressure decrease, systolic and diastolic blood pressure difference etc.).
Based on the examined risk factors new alarm indicators could be introduced.

As additional parameters to support the model in predicting patient health status, sub-
jective measures could be used in conjunction with the physiological ones (blood pressure,
heart rate and weight). Subjective descriptors can explain self-rated wellbeing factors,
e.g. self-rated mobility, health, anxiety/depression, the need for extra pillows at night,
overeating, swollen ankles, pain/discomfort. Such subjective descriptors could be used to
trigger alarms and could be meaningful in patient health monitoring, as additional medical
reports. In order to effectively include subjective measures in home telemonitoring based
decision support, further research should identify the most appropriate predictors.

Future work should further investigate possibilities for automated physicians’ decision
support including recommendations for medication therapy. Potential influence of certain
medication intake on patient physiological measurements should be also taken into consid-
eration. For research purpose, direct contacts and feedback from the physicians involved
in the telemonitoring should be considered. Furthermore, the physician contacts might
be useful to provide necessary clarifications of retrospective data records and additional
insight into particular decisions, which were not available in the current study.

The presented automated home telemonitoring algorithm should be validated in the
future pilot and demonstration studies. Extensive tests are to confirm impacts of the
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introduced enhancements on system acceptance and effectiveness, number of hospitaliza-
tions and health care costs including patient expenses. Such tests should especially target
the uncertainty of alarm classification between true and false, as one of the main goals in
present day telemedicine. Namely, the physicians should have a chance to examine and
verify all the automatically generated alarms. As a result, the system should be sufficiently
reliable excluding nuisance false alarms.

Prospective training of medical staff should enable effective usage of the home tele-
monitoring system to provide timely and appropriate alarm responses, as well as effective
therapy management. At the same time, training of the patients should ensure adequate
usage of equipment and regular monitoring. Patients should be provided tailored advices
about healthy lifestyle (e.g. nutrition, physical activity, stress management), motivational
messages, as well as key system performance indicators (e.g. cost effectiveness, clinical ben-
efits) to encourage their continuous participation in home telemonitoring and adherence
to the prescribed therapy. Thus, the system should ensure both patients’ and care-givers’
satisfaction.

Potentially, the biggest benefit of the home telemonitoring technology of chronic heart
failure patients can be expected in the countries with low healthcare expenditures (e.g.
Portugal, Ireland, Greece which dedicate less than 5% of their GDP on healthcare). As
such countries typically also have low hospital bed ratio and short average duration of hos-
pital stay (e.g. Ireland and Spain), the telemonitoring technology offers the possibility to
provide enhanced healthcare to more remote patients, reducing their hospitalization rates.
Thus, the future studies should consider applicability of the same home telemonitoring
system across a range of countries with different healthcare expenditures to demonstrate
the results under various social and economic conditions.

Integrating the information on forecasted weather conditions into the home telemon-
itoring system could additionally support the medical staff in timely decision making
concerning patient health status and alarm situations. Heat/cold stress forecasts could be
used to generate beneficial warnings to the patients and medical staff with the purpose
of prevention and minimization of potentially adverse events. For example, 12, 24 and 48
hours before a forecasted thermal stress period patients could be advised of precautionary
actions via their telemonitoring communication devices. The heat/cold stress prevention
plan should be developed for the physicians to apply different measures of coping with such
climate effects. Future work will focus on defining the levels of weather alerts, with respect
to the patient health status, such as: watch, warning, advisory. The identified correlations
between patient vital signs and weather conditions should be further investigated and con-
firmed in a prospective demonstration setting. In order to properly take into account and
analyze the variation of annual weather conditions on patient health parameters, each
individual patient telemonitoring should last for at least one calender year. Such results
could support the creation of short, medium and long term bio-meteorological prognosis
to consider the impact of local climatic conditions on chronic heart failure patients. Pre-
dicting influence of changing weather conditions on patients’ physiological status should
also take into account thermal efficiency of the patients’ dwellings, e.g. insulation and
window properties.
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Appendix A

Statistical methods

This section briefly describes statistical methods and indices used in data analyses to
achieve the investigation objectives.

Mean and Median are used measures of location (central tendency) to represent
the dataset. Mean is calculated as an average of all values in the dataset, whereas the
central value of the sorted sequence represents median. Mean and median are equal when
data follow normal distribution. As a rule of thumb, median should be used to represent
the data which is not normally distributed. As half of the data is smaller than median,
it is also called second quartile. Accordingly, the first and third quartiles are values in
the sorted sequence of which one and three quarters of the data are smaller, respectively.
Interquartile range (IQR) is the difference between the third and first quartiles, containing
half of the dataset. IQR together with standard deviation and variance represent measures
of data variation.

Sensitivity and specificity indices are often employed to express decision perfor-
mance of a statistical model in relative terms. Sensitivity represents a ratio between true
positive (TP) decisions and actually positive cases, whereas specificity is equal to the
ratio between true negative (TN) decisions and actually negative cases, as presented by
Equations A.1 and A.2.

Sensitivity =
Number of True Positive (TP ) decisions

TP + Number of False Negative (FN) cases
(A.1)

Specificity =
Number of True Negative (TN) decisions

TN + Number of False Positive (FP ) cases
(A.2)

As such, sensitivity and specificity range between 0 and 1 indicating the accuracies for
determining positive and negative cases, respectively.

Accuracy of the model is equal to the ratio between the correct decisions and total
number of cases, as calculated by Equation A.3. In an ideal case, with no false negative
(FN) and no false positive (FP) occurrences, sensitivity, specificity as well as the overall
accuracy are equal to 1.

Accuracy =
TP + TN

TP + TN + FP + FN
(A.3)
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Values of sensitivity and specificity may vary in a particular decision support algorithm
subject to the changing algorithmic parameters. In such cases it is often convenient to
represent dependency between the sensitivities and associated specificities via the Receiver
Operating Characteristic (ROC) curves.

ROC curves show the values of 1-Specificity on the abscissa and Sensitivity on the
ordinate axis. An ideal point (0, 1) ≡ (Specificity = 1, Sensitivity = 1) is located in the
upper left corner of a ROC curve.

Moving average as a smoothing technique for measured data replaces each mea-
surement, ft, with an average, gt, over a certain number of neighbouring points. The
neighbourhood can include points prior, after, or both, prior and after, each measure-
ment. Equation A.4 defines (2n+ 1)-point moving window size for averaging data around
each measurement point (including both points prior and after the measurement).

gt =
+n∑

i=−n

wift+i,where wi =
1

2n+ 1
(A.4)

Savitzky-Golay filter can be obtained using the same Equation A.4 and changing the
values of coefficients wi according to the higher order approximation (typically quadratic).
As opposed to moving average, which approximates the data using a constant (mean)
value within a specified moving window, the main advantage of Savitzky-Golay approach
is preservation of distribution features such as relative maxima, minima and width, which
are usually not invariant to the other filters, e.g. moving average.

FFT is an algorithm to calculate discrete Fourier transformation, converting equally
spaced function samples, ft, into the frequency domain according to Equation A.5. FFT
can be used as a smoothing technique to remove the noise from the recorded signals and
can be a good tool for identification of the most important frequencies in the data set.

Fk =
N−1∑
t=0

ft

(
cos

(
2πkt

N

)
− isin

(
2πkt

N

))
=

N−1∑
t=0

fte
−i 2πkt

N (A.5)

In Equation A.5, N is the number of measurement points and k takes the values between 0
and N/2 in steps of one (Smith, 1999). Result of the transformation is a vector of complex
numbers, F , consisting of real and imaginary parts. Real parts of the vector provide
amplitudes and frequencies in terms of cosine functions, whereas imaginary parts provide
the same information in terms of sine functions. The number of real and imaginary parts
is equal to half the number of original points plus 1.

In the frequency domain, the main components will have the highest amplitudes and
low frequencies, whereas the noise will have high frequencies and low amplitudes. Filtering
out the noise is performed by setting the high frequency components equal to zero. The
downside of FFT procedure is the assumption of periodicity. Namely, regardless of which
window size is employed for FFT calculations, the underlying equations assume that the
next data point after the considered window size will be equal to the first data point within
the considered window size.

Variance as measure of uncertainty can be used to quantify spread of data points
within a particular dataset. It is equal to the square of standard deviation, s, and can be
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calculated by Equation A.6.

var = s2 =

∑N
i=1(fi − f̄)2

N − 1
(A.6)

Here, N is the number of data points fi, having the mean of f̄ .
Autocorrelations can be calculated using Equation A.7.

rk =

∑min(N−k,N)
t=max(1,−k)(ft − f̄)(ft+k − f̄)∑N

t=1(ft − f̄)2
(A.7)

Here k is lag, ft are some ofN data points, and f̄ is the mean of all data points. Statistically
significant positive autocorrelations for one or more lags indicate non-randomness in the
data.

Kalman filter is an iterative algorithm widely used in engineering and natural sciences
to capture dynamics and calculate forecasts of time series data. At each measurement time
new Kalman filter forecast is obtained from the previous forecast and previous measure-
ment. Characteristic of Kalman filter is minimization of forecast variances (Harvey, 1990).
Kalman filter model in the state space formulation assuming linear combination of states
can be represented by Equation A.8

gt = θt + νt (A.8)

where gt represents reference state, θt is mean state and νt is oscillation parameter. At
every time instance t, θt can be estimated from the values at t − 1, θt−1, according to
Equation A.9, assuming that the model parameters are constant in time.

θt = θt−1 + wt (A.9)

Here, wt represents noise oscillation. Initially (at t = 0), the mean value θt is assumed to
be normally distributed N(m0, c0), where m0 is initial mean and c0 is initial variance of
the distribution. Also, the model assumes that the oscillation parameters νt and wt have
normal distributions N(0, ν) and N(0, w), respectively.

Chebyshev’s Theorem states that for an arbitrary distribution of N observations, at
least N · (1− 1/k2) observations will be within the range of k standard deviations around
the mean (where k > 1) (Lohninger, 2012).

Regression is a statistical process to find the relationship between independent (input,
descriptor, xi) and a dependent (target, response, y) variables. Linear regression assumes
linear relationship according to Equation A.10.

y = a0 +
k∑

i=1

aixi + ε (A.10)

Parameters a0, a1, ..., ak are regression coefficients, while ε is the error or the residual,
having the mean of zero. Regression coefficients are determined minimizing the sum of
squared errors. The analysis of variance (ANOVA) Table A.1 for multiple linear regression
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Source of Degrees of Sum of Mean of F-value
variation freedom squares squares

Regression k SSreg =
∑

(ŷi − ȳ)2 MSreg = SSreg/k
MSreg
MSres

Residual n− k − 1 SSres =
∑

(yi − ŷi)2 MSres = SSres/(n− k − 1)
Total n− 1 SStot =

∑
(yi − ȳ)2

Table A.1: Analysis of variance for multiple linear regression with k independent variables
and n observations (yi are observed responses having a mean ȳ, while ŷi are predicted
(model) responses)

(MLR) shows calculations with k independent variables and n observations. Here, yi are
observed responses having a mean ȳ, while ŷi are predicted (model) responses. Residual
sum of squares, SSres, can be used to estimate standard errors of regression coefficients.

F-value represents the result of testing the hypothesis that all regression coefficients
are equal to zero. The value follows F-distribution with k and n−k−1 degrees of freedom.
As a rule of thumb F-values above 100 indicate valid MLR models.

F-distribution is a continuous probability distribution characterized by two degrees
of freedom parameters, F (n1 − 1, n2 − 1). It results from calculating the ratio between
variances (s1 and s2) of two normal distribution samples with n1 and n2 observations,
according to Equation A.11.

F =
s21
s22

(A.11)

As F-values can be only positive, F-distribution is skewed to the right. Normal, t, and chi-
square distribution can be considered as special cases of F-distribution: F (1,∞), F (1, n2),
and F (n1,∞), respectively.

Coefficient of determination, Quality or Goodness of fit, r2, can be calculated
as a square of the Pearson’s correlation coefficient. In regression, goodness of fit can be
obtained from Equation A.12, using the calculated residual (SSres) and total (SStot) sum
of squares.

r2 = 1− SSres

SStot

(A.12)

Goodness of fit indicates portion of the total variance explained by the regression model.
Standard error of a sample size n can be calculated from the standard deviation, s,

according to Equation A.13.

SE =
s√
n

(A.13)

In the case of regression, standard error of regression coefficients ai, SEai , can be calculated
from Equation A.14.

SEai =
sy
sxi

√
1− r2

(1− r2xi)(n− k − 1)
(A.14)

Here, sy and sxi are standard deviations of y and xi, r
2 is goodness of fit when regressing

y onto X = {x1, x2, ..., xk}, while r2xi is goodness of fit when regressing xi onto X\xi. The
estimated standard error follows t-distribution with n− k − 1 degrees of freedom.
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Confidence intervals for each coefficient can be calculated according to Equation
A.15.

(1− α)%CI = (ai − t(α/2, n− k − 1) · SEai , ai + t(α/2, n− k − 1) · SEai) (A.15)

Here, t(α/2, n− k − 1) is the critical value for probability (level of significance) α/2 from
t-distribution with n− k − 1 degrees of freedom.

Student’s or t-distribution is formed by calculating the differences between the
sample and population means, x̄ and µ, according to Equation A.16.

t =
x̄− µ
s/
√
n

(A.16)

Here, s is the sample standard deviation and n is the sample size.
t-Distribution is lower and wider than normal distribution for a small sample (number

of degrees of freedom) and approaches standard normal distribution for a large sample
size. As a rule of thumb, large sample is considered to have more than 30 sampling points.

Normal distribution is one of the most important statistical distributions, often
occurring in nature. It is symmetric with respect to the mean, µ, and additionally char-
acterized by variance, σ, typically denoted as N(µ, σ). Probability density function of the
normal distribution is given by Equation A.17.

f(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

(A.17)

The term standard normal distribution is used for a normal distribution having a mean
of zero and standard deviation of 1.

Variance inflation factor (VIF) for each variable xi can be calculated from Equation
A.18.

V IFxi =
1

1− r2xi
(A.18)

VIF shows the influence of collinearity on variance of each variable. For example, VIF equal
to 7 would indicate 7 times larger variance than in the case when there is no correlation
between the variables. As a rule of thumb, VIF larger than 10 indicates strong collinearity
and such variables should not be considered as descriptors in regression. They could be
removed, aggregated or preprocessed by principle component regression.

Outliers could present a potential problem for regression. Outliers are extreme, nu-
merically distant values in the sample, that stand out from the rest of the data. As such,
they may have substantial influence on statistical analyses and should be removed from
the dataset.

Assumptions for linear regression are the following:

• Expected relationship between the dependent and independent variables is linear;

• Measurements are mutually independent, do not exhibit trends or correlation to
another variable;
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• For each independent variable, dependent variable values are normally distributed
and have the same variance.

Checking the data and the residuals should ensure that these assumptions are fulfilled.
Particularly, the residuals should:

• be normally distributed and symmetric around zero;

• be uncorrelated (Durbin-Watson test), not having any patterns;

• not exhibit dependence on the independent variable.

Durbin-Watson statistic is used to test correlation between the subsequent resid-
uals. The test is based upon the assumption that successive residuals εt and εt+1 are
correlated with a correlation coefficient ρ (| ρ |< 1) according to Equation A.19.

εt+1 = ρεt + ωt+1 (A.19)

Here, the parameter ω is normally distributed with a mean of zero and constant variance.
Durbin-Watson statistic, d, is calculated from Equation A.20, where n is the number of
observations (residuals, degrees of freedom).

d =

∑n−1
t=1 (εt+1 − εt)2∑n

t=1 ε
2
t

(A.20)

If the calculated value of the statistic d is less than the critical value, dL,n, the null
hypothesis that the residuals are not correlated (ρ = 0) is rejected.

Lilliefors test verifies that the tested dataset follows a predefined probability distri-
bution. It is a modification of the Kolmogorov-Smirnov test used for evaluating whether
a sample is part of the normal distribution. Lilliefors test is applicable when the param-
eters of the reference distribution are not exactly known. Typically tested is the null
hypothesis that the sample is part of a normal distribution. The hypothesis is rejected if
the calculated probability for obtaining the test statistic is lower than the critical level of
significance. The test statistic, D, is maximum absolute difference between the predefined
(hypothetical) and dataset cumulative distribution functions, specified by Equations A.21
through A.23.

D = max{D+, D−} (A.21)

D+ = maxi=1,...,n{i/n− p(i)}, D− = maxi=1,...,n{p(i) − (i− 1)/n} (A.22)

p(i) = Φ([x(i) − x]/s) (A.23)

Here Φ is the predefined (typically standard normal) cumulative distribution function, x
is the dataset mean, and s is the dataset standard deviation.

Principle component analysis (PCA) is a method for identifying orthogonal di-
rections (axes) along which there is maximum variability of data and then projecting
(transforming) the data into such defined multidimensional space. The identified direc-
tions (axes) are called principle components. As principle components are orthogonal to
each other, correlation between any two of them is equal to zero. Principle components are
eigenvectors calculated as a result of eigenanalysis of the square matrix Z=ATA, formed
out of the data matrix A in one of the following ways:
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• scatter matrix - directly using the data without any scaling,

• variance-covariance matrix - variable means are subtracted from the corresponding
data points,

• correlation matrix - each variable is standardized (mean subtracted and the difference
divided by standard deviation).

The data matrix, A, is formed in such a way that each column represents one of p different
variables (descriptors), whereas rows contain different observations or samples.

The identified eigenvectors E of the p by p square matrix Z satisfy Equation A.24.

ZE = Ediag(λ1, ..., λp) (A.24)

Scalars λ1, ..., λp are the eigenvalues. As eigenvectors, E, are orthogonal to each other
product ETE is the identity matrix, I.

Principle component regression (PCR) applies multivariate linear regression on
principle components. Usually only the first few principle components are sufficient for
the statistical model to explain the largest portion of the variance in the target dataset.
As such, the reduced dimensionality of the principle component domain has advantages
over the MLR:

• noise of the data remains in the residuals, as the eigenvectors with low eigenvalues
are excluded from regression analyses,

• regression preconditions are automatically satisfied as eigenvectors are orthogonal
and independent from each other.

Trend is a non-periodic systematic change in time series data. The simplest trend
representation is linear increase or decrease which could be derived from a linear regression
model over a certain window size. As forecasting usually relies on the assumption that
the current trends will continue, trend can be used to make reasonable approximations of
future events (Cowpertwait and Metcalfe, 2009).

Correlation analysis aims to determine relation between the variables. Measures of
correlation are correlation coefficients, taking the values between -1 and +1. Correlation
coefficient is a random variable which follows a distribution depending on the sample size
and actual correlation in the population. In the case of small samples probability is small
that the calculated correlation coefficient will represent the true correlation in the popu-
lation. For example, correlation of 3 sample pairs from the uncorrelated populations will
more likely approach extreme, +1 or -1, than any other values. Correlation of 4 sample
pairs from the uncorrelated populations is equally likely to take any value between -1 and
+1. As a rule of thumb, only correlation coefficients above 0.8 will present significant re-
sults in the case of 10 sample pairs, and above 0.5 in the case of 20 sample pairs (Lohninger,
2012). Furthermore, correlation above 0.7 is considered as typically desirable in research
related to human subjects taking into account person-to-person variability (Larose, 2006).
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Pearson’s correlation coefficient is measure of linear correlation between the two
variables (datasets), x and y, with the same number of observations, n. It can be calculated
from Equation A.25.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(A.25)

Apart from the linear relation between the variables, calculation of Pearson’s correlation
coefficient assumes continuous random variables, normally distributed and independent of
each other.

Spearman’s rank correlation can be applied in the case of non-linear relations
between the variables. In such cases, calculation of Pearson’s correlation coefficient would
provide wrong results. The difference in calculation of Spearman’s correlation coefficient
is usage of ranks rather than the variable values. Therefore, the same Equation A.25 can
be applied, but using variable ranks, rank(x) and rank(y), instead of the observed values,
x and y. Taking into account differences in ranks, ∆i, between the corresponding ranked
variables, Spearman correlation can be also calculated from Equation A.26.

ρ = 1− 6 ·
∑n

i=1 ∆2
i

n(n2 − 1)
(A.26)

A minimum of five observations is required (n > 4).
Tetrachoric correlations are calculated between the binary (dichotomous) variables.

The underlying assumption for the calculation is the normal distribution of the inferred
(hypothetical or hidden) variables forming the basis for dichotomy. For example, an alarm
indication (binary variable) may occur due to exceeded thresholds by normally distributed
measurements (inferred variable).

Binary (dichotomous) variable can only take one of the two possible values (states
or categories), e.g. 0 or 1, true or false, -1 or +1 etc. Such variables may occur “naturally”
(e.g. gender, pregnancy) or originate from another continuous quantitative variable, clas-
sified into two categories (e.g. critical pressure level, warning light for low fuel level in the
car).

Polychoric correlations are generalization of tetrachoric correlations in the case
when variables can take one of three or more possible values (states, categories). When
such categories are ordered we talk about ordinal, and otherwise about categorical vari-
ables.

Polyserial correlations are calculated between a quantitative and ordinal variable.
The underlying assumption for calculation is bivariate normal distribution of the quanti-
tative and inferred variables.

Central Limit Theorem states that the sum of independent variables with finite
variances will have normal distribution. The consequence of the theorem is one of the
most important rules in statistics (Lohninger, 2012). Distribution of means of sufficiently
large random samples from any population will approach normal distribution, with a
mean approaching the mean of the population and a standard deviation equal to the
ratio between the standard deviation of the population and a square root of the sample
size. Normal distribution is thus the foundation of many statistical methods. As a rule
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of thumb, a sample size larger than 30 will be normally distributed for most population
distributions. Means of smaller samples exhibit t-distribution with a number of degrees
of freedom equal to the sample size minus 1. Repeated measurements could result in
improved precision.

Statistical testing provides guidance to determine whether it is reasonable to assume
that a certain population parameter is equal, larger or smaller than a certain value. The
parameters can be population mean or variance. Similar to the court trial where a person
is considered innocent until proven guilty beyond the reasonable doubt, in statistical tests
we assume that a certain null hypothesis is considered true until proven otherwise with a
certain level of significance. Level of significance is the probability that the null hypothesis
may be wrongfully rejected. Statistical test is a five-step procedure:

1. Formulate null and alternative hypotheses,

2. Specify level of significance - typically 5%,

3. Calculate test statistic - a value upon which to base decisions,

4. Define rejection region - test statistic critical value for rejecting the null hypothesis,

5. Select appropriate hypothesis.

t-Test is used to determine whether a sample mean is significantly different (two-tailed
test), smaller or larger (one-tailed tests) than a certain value. In such cases we talk about
one-sample tests. The test can also be used to compare means of two different samples:
two-sample test. One-sample t-test statistic is calculated by Equation A.16, with n − 1
degrees of freedom, where µ is not the population mean, but rather the value to which
the sample mean is compared. When comparing two samples, x1 and x2, t-test statistic
is calculated by Equation A.27.

t =
x1 − x2√
s2p(

1
n1

+ 1
n2

)
(A.27)

Here, n1 and n2 are sample sizes, and s2p is pooled variance, which can be calculated
from sample variances, s1 and s2, according to Equation A.28.

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(A.28)

The number of degrees of freedom is equal to n1 + n2 − 2.
One sample t-test null hypothesis can be one of the following:

• Mean of the underlying population of the sample is greater or equal to a certain
value. This hypothesis is to be rejected if the calculated t statistic is smaller than
the negative critical value, at the tested level of significance.

• Mean of the underlying population of the sample is smaller or equal to a certain
value. This hypothesis is to be rejected if the calculated t statistic is greater than
the critical value, at the tested level of significance.
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• Mean of the underlying population of the sample is equal to a certain value. This
hypothesis is to be rejected if the absolute value of the calculated t statistic is greater
than the critical value, at one half of the tested level of significance.

Two sample t-Test null hypothesis can be one of the following:

• Mean of the underlying population of one sample is greater or equal to the mean
of the underlying population of the other sample. This hypothesis is to be rejected
if the calculated t statistic is smaller than the negative critical value, at the tested
level of significance.

• Mean of the underlying population of one sample is smaller or equal to the mean
of the underlying population of the other sample. This hypothesis is to be rejected
if the calculated t statistic is greater than the critical value, at the tested level of
significance.

• Means of the underlying populations of both samples are equal. This hypothesis is
to be rejected if the absolute value of the calculated t statistic is greater than the
critical value, at one half of the tested level of significance.

Before applying the t-test to compare the two samples, the following precondition steps
should be fulfilled:

1. The samples should be independent of each other: if both samples consider the same
population members apply t-test for matched pairs, otherwise proceed to step 2.

2. Both samples should follow normal distribution: check by applying Shapiro-Wilk
test; if fulfilled, proceed to step 3, otherwise apply two-sample U-test.

3. Both sample variances should be equal: check by applying Chi-Square test; if fulfilled
apply t-test, otherwise apply Welch test.

When trying to test the differences between two procedures, methods, treatments etc.
applied to the same population, two-sample t-test precondition of independent samples
will not be satisfied. In such cases, t-test for matched pairs should be applied, using the
pairwise calculated differences, di, as a variable that follows the t-distribution. The test
statistic can be calculated from Equation A.29, where d̄ and sd are respectively the mean
and standard deviation of the difference between the matched pairs, nd is the number
of matched pairs and d0 is the reference value to which the mean difference between the
matched samples is compared.

t =
d̄− d0
sd/
√
nd

(A.29)

The number of degrees of freedom is nd − 1.
Null hypothesis of the t-test for matched pairs can be one of the following:

• The mean difference between the two samples is greater or equal to a certain value.
This hypothesis is to be rejected if the calculated t statistic is smaller than the
negative critical value, at the tested level of significance.
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• The mean difference between the two samples is smaller or equal to a certain value.
This hypothesis is to be rejected if the calculated t statistic is greater than the critical
value, at the tested level of significance.

• The mean difference between the samples is equal to a certain value. This hypothesis
is to be rejected if the absolute value of the calculated t statistic is greater than the
critical value, at one half of the tested level of significance.

When the t-test precondition for sample normal distributions is not satisfied, two-
sample U-test should be applied instead of the t-test. U-test evaluates whether the
underlying populations of the two samples have the same distributions, leading to the
equality of their means. To calculate the U-test statistic both samples are arranged into
a single ranked series. Sum of such ranks within the first sample is denoted as R1, and
within the second sample as R2. Knowing the sample sizes, n1 and n2, U-statistic can be
calculated from Equations A.30 through A.32.

U1 = n1 · n2 +
n1(n1 + 1)

2
−R1 (A.30)

U2 = n1 · n2 +
n2(n2 + 1)

2
−R2 (A.31)

U = min{U1, U2} (A.32)

The tested null hypothesis is that the two sample distributions are the same. This
hypothesis is rejected if the calculated U statistic is smaller or equal to the critical value,
at the tested level of significance for the given n1 and n2 degrees of freedom.

Shapiro-Wilk test is used to evaluate the assumption that a sample belongs to a
normal distribution. The test produces good results even in the case of small sample sizes.
To calculate the test statistic, the sample should be ordered such that x1 < x2 < ... < xn.
The test statistic is calculated from Equation A.33, where the sample variance S2 is
calculated from Equation A.34, and b2 is the slope of the regression line of the QQ plot
calculated from Equation A.35.

W =
b2

S2
(A.33)

S2 =
n∑

i=1

(xi − x̄)2 (A.34)

b =
k∑

i=1

an−i+1(xn−i+1 − xi) (A.35)

Here, n is the sample size, while k = n/2 in the case of the even number of observations in
the sample, or k = (n−1)/2 otherwise. The coefficient a is determined from Shapiro-Wilk
tables depending upon the sample size.

The tested null hypothesis that the sample is part of a normal distribution is rejected
if the calculated W statistic is smaller than the critical value, at the tested level of signif-
icance.
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Chi-Square test is used to compare empirical to a known parametric distribution.
The test statistic, χ2, can be calculated from Equation A.36.

χ2 =
k∑

i=1

(Fi − Ei)
2

Ei

(A.36)

Here, Fi are empirical and Ei are parametric (theoretical) frequencies for k frequency
distribution bins.

The tested null hypothesis that the two distributions are equal is rejected if the calcu-
lated result is greater than the critical value, at the tested level of significance, with k− 3
degrees of freedom.

Chi-Square (χ2) distribution with n− 1 degrees of freedom is obtained by dividing
the variances of n-size random samples to the variance of a normally distributed pop-
ulation. The distribution mean is equal to the number of its degrees of freedom and
represents half of its variance. The sum of two variables following χ2 distribution also
follows χ2 distribution.

Welch test is a modification of t-test providing approximate solution in the case of
unequal variances, s1 and s2, between the two samples, x1 and x2. The modified t-test
statistic (t) and degrees of freedom (df) are calculated from Equations A.37 and A.38.

t =
x1 − x2√
s21
n1

+
s22
n2

(A.37)

df =

(
s21
n1

+
s22
n2

)2
(
s21
n1

)2

n1−1
+

(
s22
n2

)2

n2−1

(A.38)

The same null hypotheses and rejection criteria hold as in the case of t-testing.
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Appendix B

R functions

Table B.1 lists and describes the functions used from various R packages. Apart from
R functions, several frequently applied procedures were coded as internal functions:
residual.plot, polychor.test, and polyserial.test.

#: Function residual.plot displays histogram of input data together with a

#: normal distribution curve

residual.plot <- function(x) {

x <- x[!is.na(x)]

h <- hist(x, breaks=10, plot=F)

xfit <- seq(min(x), max(x), length=100)

yfit <- dnorm(xfit, mean=mean(x), sd=sd(x))

yfit <- yfit*diff(h$mids[1:2])*length(x)

h <- hist(x, breaks=10, col="grey", ylim=c(0, max(max(h$counts),

max(yfit))), xlab="Input variable [units]", main="Histogram with

Normal Distribution Curve")

lines(xfit, yfit, col="blue", lwd=2)

}

#: Functions polychor.test and polyserial.test ease the calculation of

#: p-values for polychoric and polyserial correlations

polychor.test <- function(x, y) {

p <- polychor(x, y)

if (is.na(p)|abs(p)>=.99){

p$statistic <- NA

p$p.value <- NA

p$rho <- p[[1]]

p$var <- NA

p$estimate <- NA}

else {
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p <- polychor(x, y, std.err = TRUE)

p$statistic <- p$rho / sqrt(c(p$var))

p$estimate <- p$rho

p$p.value = 2 * (1 - pnorm(abs(p$statistic)))

}

p

}

polyserial.test <- function(x, y) {

p <- polyserial(x, y)

if (is.na(p)|abs(p)>=.99){

p$statistic <- NA

p$p.value <- NA

p$rho <- p[[1]]

p$var <- NA

p$estimate <- NA}

else {

p <- polyserial(x, y, std.err = TRUE)

p$statistic <- p$rho / sqrt(c(p$var))

p$estimate <- p$rho

p$p.value = 2 * (1 - pnorm(abs(p$statistic)))

}

p

}
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R function R package Description 
abline  graphics Add one or more straight lines to a plot 
abs  base Calculate the absolute value 
acf stats Calculate and plot estimates of autocovariance and 

autocorrelation function 
arrows graphics Add arrows to a plot 
as.Date base Convert to date from characters 
as.integer base Create integer objects 
as.numeric base Create numeric objects, i.e. numbers 
as.POSIXlt base Create calendar date objects – date-time conversion 
axis graphics Add an axis to a plot 
barplot graphics Create a bar plot with vertical or horizontal bars 
boxplot graphics Create box plot of the data  
cbind base Combine objects by columns 
cor stats Calculate (Pearson’s, Spearman’s or Kendall’s) correlations 

between two vectors 
cor.test stats Test for (Pearson’s, Spearman’s or Kendall’s) correlation 

between paired samples 
data utils Load data sets 
data.frame base Create data frame 
detrend RSEIS Remove trend from time series vector 
dev.off  grDevices Control multiple graphics devices 
diff base Calculate differences between internal elements of an object at 

specified lags 
dimnames base Retrieve or set the data locations of an object 
dnorm stats Calculate normal distribution probability (density function) 
expression base Create expression objects 
fft stats Perform fast Fourier transformation of an array 
filter stats Linear filtering of time series 
function base Use to define functions 
hist graphics Compute and plot histogram of the data 
is.na base Indicate missing data in a vector using a logical variable  
kfilter  sspir Kalman filter for Gaussian state space model. Produce the 

conditional means and variances of the state vectors given the 
current time point 

layout graphics Specify arrangements of multiple diagrams within a plot 
legend graphics Add legend to a plot 
length base Get or set the length of an object (including lists) 
library base Load and list R packages 
lines  graphics Add connected line sections to a plot (A generic function taking 

coordinates given in various ways and joining the corresponding 
points with line segments) 

list base Build R list of generic vectors enclosing other objects 
lm stats Fit linear model to data 
matrix base Create a matrix from the given set of values 
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R function R package Description 
max base Return maxima of the input values 
min  base Return minima of the input values 
months  base Get a sequence of months out of date variables 
mtext  graphics Write text to plot margins 
par graphics Retrieve or set graphical parameters 
paste base Merge strings  
pdf  grDevices Produce PDF graphics 
periodogram GeneCycle Calculate power spectral density related to Fourier transform 
plot graphics Plot objects 
plotmeans gregmisc Plot group means and confidence intervals 
plot.new graphics Create a new plot frame 
pnorm stats Calculate cumulative normal distribution probability 
points graphics Add points to a plot 
polychor 
 

polycor Calculate polychoric correlation (and its standard error) between 
two ordinal variables 

polyserial polycor Calculate polyserial correlation (and its standard error) between 
a quantitative variable and an ordinal variables, based on the 
assumption that the joint distribution of the quantitative variable 
and a latent continuous variable underlying the ordinal variable 
is bivariate normal 

rbind base Combine objects by rows 
rcorr Hmisc Calculate a matrix of correlation (Pearson’s or Spearman’s) 

coefficients for all pairs of matrix columns 
read.delim utils Used to read in delimited text files, where data is organized in a 

data matrix with rows representing cases and columns 
representing variables  

read.table 
 

utils Read a file in table format and create a data frame from it, with 
cases corresponding to lines and variables to columns in the file 

rep  base Replicate elements of vectors and lists 
return base Return from a function call to the main code. Used in defining 

new functions 
rgb grDevices Create colors with given intensity of red, green and blue 

components 
savePlot grDevices Save the current plot to a file 
setwd base Set the working directory 
shapiro.test stats Perform the Shapiro-Wilk test for normality  
spectrum stats Spectral density estimation 
sqrt base Calculate the square root 
SS sspir Create a Gaussian state space model (for Kalman filtering) 
stack utils Stack together multiple vectors into a single vector 
stl stats Decompose time series into seasonal, trend and irregular 

components 
stripchart graphics Create dot or scatter plots of the data (alternative to box plot) 
sum base Return the sum of vector elements 
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R function R package Description 
tapply base  Apply a function over array elements, that is to each (non-

empty) group of values 
text graphics Add text to a plot 
title graphics Add labels to a plot (plot annotation) 
ts stats Create time-series object 
ts.plot stat Plot several time series on a general plot 
t.test stats Perform one and two sample Student’s t-tests on data vectors 
unique base Extract unique elements (without duplication) 
unlist  base Produce a vector of all the individual components in a variable 
windowsFont grDevices Translate device independent font into windows font description 
write.table utils Save data to a file 
 

Table B.1: List of used R functions and their packages
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Glossary

AAMI – Association for Advancement of Medical Instruments.

ACCE – American College of Clinical Engineering.

ACE – Angiontensin Converting Enzyme.

AGES – Agentur für Gesundheit und ErnährungsSicherheit – Austrian Agency for
Health and Food Safety.

AHA – American Heart Association.

ANOVA – ANalysis Of VAriance.

Atm. – Atmospheric.

AUC – Area Under the ROC Curve – used as a quality indicator of diagnostic models
– values above 0.8 indicate good accuracy.

b.p. – blood pressure.

CHF – Chronic Heart Failure.

CI – Confidence Interval.

ECRI – Emergency Care Research Institute.

EMBS – Engineering in Medicine and Biology Society.

EMS – Electromyostimulation.

ESES – Epidural Spinal Electrical Stimulation.
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FFT – Fast Fourier Transformation.

FN – False Negative events – cases with no alarms accompanied by one of the following
physician actions: patient contact, medication adjustment or other action (excluding
threshold adjustment).

FP – False Positive events – alarms accompanied by one of the following physician
actions: threshold adjustment or no action.

GDP – Gross Domestic Product.

GUI – Graphical User Interface.

HDL – High Density Lipoprotein – or ”bad” cholesterol.

HF – Heart Failure.

IARS – International Anesthesia Research Society.

ICD – Implantable Cardioverter Defibrillator.

ICT – Information and Communication Technology.

IENS – Implantable Electrical Nerve Stimulation – pacemaker.

IQR – Inter Quartile Range – difference between the values of 3rd and 1st quartiles.

Java – general purpose object oriented programming language.

JGR – Java GUI for R (read Jaguar).

LDL – Low Density Lipoprotein – or ”good” cholesterol.

MIE – Medical Informatics Europe – international conference.

MIMS – Monthly Index of Medical Specialities – free monthly information on prescrip-
tion medicines sent to registered general practitioners in the UK since 1959.

MLR – Multiple Linear Regression.

MOBITEL – MOBIle TELemonitoring in heart failure patients.

105



Glossary

NYHA – New York Heart Association – Defined heart failure classification scheme
ranging from Class I to Class IV, with respect to symptom severity (NYHA, 1994).

Origin – Defines the coordinate frame centre.

PCA – Principal Component Analysis.

QQ plot – Quantile-Quantile plot – graphical method for comparing probability
distributions.

R – programming language and environment for statistical data analyses.

ROC – Receiver Operating Characteristic – curve used to illustrate performance of
binary classifiers.

SCS – Spinal Cord Stimulation.

sms – short message service.

TIA – Transient Ischemic Attacks – or ”little strokes”.

TENS – Transcutaneous Electrical Nerve Stimulation.

TN – True Negative events – cases with no alarms accompanied by one of the following
physician actions: threshold adjustment or no action.

TP – True Positive events – alarms accompanied by one of the following physician
actions: patient contact, medication adjustment or other action (excluding threshold
adjustment).

VIF – Variance Inflation Factor.

WHF – World Heart Federation.

WHO – World Health Organization.

WMO – World Meteorological Organization.

ZAMG – ZentralAnstalt für Meteorologie und Geodynamik – Austrian Central Insti-
tute for Meteorology and Geodynamics.
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Pera, G., Verdú, J. M., and Bayes-Genis, A. (2012). Evaluation of a telemedicine
system for heart failure patients: feasibility, acceptance rate, satisfaction and changes
in patient behavior: results from the carme (catalan remote management evaluation)
study. European Journal of Cardiovascular Nursing, 11(4):410–418.

Drobics, M. (2010). Personal communication.

ECRI (1974). Hazard: Gaymar hypothermia machine. Health Devices, 3(9):229–230.

ECRI (2009). 2010 Top 10 technology hazards. Health Devices, 38(11):1–10.

ECRI (2010). Top 10 health technology hazards for 2011. Health Devices, 39:404–416.

ECRI (2011). Top 10 technology hazards for 2012. The risks that should be at the top of
your prevention list. Health Devices, 40(11):358–373.

ECRI (2012). Top 10 health technology hazards for 2013. Health Devices, 41(11):1–23.

ECRI (2013). Top 10 health technology hazards for 2014. Health Devices, 42(11):1–12.

Ekeland, A. G., Bowes, A., and Flottorp, S. (2010). Effectiveness of telemedicine: a
systematic review of reviews. International Journal of Medical Informatics, 79(11):736–
771.

Eriksson, M. B. E., Sjölund, B. H., and Nielzén, S. (1979). Long term results of peripheral
conditioning stimulation as an analgesic measure in chronic pain. Pain, 6(3):335–347.

Evangelista, L. S., Dracup, K., and Doering, L. V. (2000). Treatment-seeking delays in
heart failure patients. The Journal of heart and lung transplantation, 19(10):932–938.

Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engi-
neering. Copenhagen: Danish Technical Press.

Ferenc, J. (2012). Medical alarm hazards signal call for action. Health Facilities Manage-
ment, 25(4):4.

Ferrante, D., Varini, S., Macchia, A., Soifer, S., Badra, R., Nul, D., Grancelli, H., and
Doval, H. (2010). Long-term results after a telephone intervention in chronic heart
failure DIAL (randomized trial of phone intervention in chronic heart failure) follow-up.
Journal of the American College of Cardiology, 56(5):372–378.

Finkelstein, J. and Hripcsak, G. (2001). System and method for remotely monitoring
asthma severity. US Patent 6,283,923.

109



Bibliography

Finkelstein, J., Wood, J., Cha, E., Orlov, A., and Dennison, C. (2010). Feasibility of con-
gestive heart failure telemanagement using a Wii-based telecare platform. In Engineering
in Medicine and Biology Society (EMBS), 2010 Annual International Conference of the
IEEE, pages 2211–2214. IEEE.

Fox, J. (2005). Getting started with the R commander: A basic-statistics graphical user
interface to R. Journal of Statistical Software, 14(9):1–42.

Fox, J. (2012). Polychoric and polyserial correlations, polycor package. Version: 0.7-8
[2010-Mar-25].

Gaffin, S. L. and Moran, D. S. (2001). Heat-related illnesses. Wilderness medicine man-
agement of wilderness and environmental emergencies, pages 240–316.

Giordano, A., Scalvini, S., Zanelli, E., Corr, U., Ricci, V., Baiardi, P., and Glisenti, F.
(2009). Multicenter randomised trial on home-based telemanagement to prevent hospital
readmission of patients with chronic heart failure. International Journal of Cardiology,
131(2):192–199.
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