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Kurzfassung

In dieser Arbeit werden optimale und robuste Regelkonzepte zur aktiven Dämpfung der
Biegeschwingungen eines beidseitig gelenkig gelagerten, dünnen Aluminiumbalkens mit recht-
eckigem Querschnitt entworfen, getestet und verglichen. Zu diesem Zweck wird ein „multi-
input multi-output“ (MIMO) Regelsystem mit vier in Längsrichtung wirkenden kollokierten
Piezo-Patch-Aktoren und Sensoren verwendet, welche eine Schubkraft einbringen bzw. die
Randfaserdehnung messen. Ein elektrodynamischer Rüttler wird zur Einbringung einer
Störkraft in Schwingungsrichtung verwendet. Nichtlineare Effekte, insbesondere die Hys-
terese der Piezo-Patch-Aktoren und Sensoren werden nicht näher berücksichtigt bzw. mo-
delliert, was für diesen speziellen Aufbau gerechtfertigt ist.

Da der biegeweiche Balken bereits bei niedrigen Frequenzen gering gedämpfte Schwing-
ungsmoden aufweist, kann er als eine typische Komponente einer Leichtbaukonstruktion
angesehen werden, bei denen aktive Regelkonzepte eine zunehmend wichtige Rolle spielen.

Der Schwerpunkt dieser Arbeit ist es, die Eignung modellbasierter Regler-Entwurfsme-
thoden (im Speziellen: LQG Regelung, mixed-sensitivity H∞ Regelung, H∞ loop-shaping
Regelung und D(G)K synthetisierte Regelung) in Hinblick auf die erzielbare Verbesserung
bei der Störgrößenunterdrückung am experimentellen Regelprüfstand zu untersuchen.

Die Modelle zur Reglerauslegung werden hierzu auf zwei grundlegend verschiedene Arten
erhalten.

Das erste Modell wird durch ein messdatenbasiertes Verfahren namens Systemidenti-
fikation erstellt, bei dem gemessene Eingangs- und dazugehörige Ausgangsdaten von Algo-
rithmen verwendet werden um mathematische (black-box) Modelle von dynamischen Syste-
men, unter Verwendung von statistischen Methoden, zu generieren. Speziell wird hierzu der
Unterraum-Algorithmus n4sid der MATLAB® System Identification ToolboxTM verwendet,
um stabile, lineare MIMO Zustandsraummodelle im diskreten Zeitbereich zu identifizieren.

Der zweite Ansatz besteht darin, ein (zeitkontinuierliches) Modell über die Methode der
Finiten Elemente (FEM) zu erhalten. „Hermite’sche Balkenelemente” (d.h. Euler-Bernoulli-
Balken mit Hermite’schen Ansatzfunktionen) werden verwendet, um den Biegebalken zu
diskretisieren. Die Aktoren werden mittels Moment-Eingängen modelliert. Kollokation von
Sensoren und Aktoren führt zu einer von der Nullmatrix verschiedenen Durchgangsmatrix.
Es wird gezeigt, dass der Einfluss eines montierten Rüttlers durch eine Rückkopplungsschleife
modelliert werden kann, welche von einem Beschleunigungs- und Verschiebungs-Ausgang
und einem Kraft-Eingang Gebrauch macht. Eine detaillierte Validierung der erhaltenen
Finite-Elemente (FE) Modelle (in Bezug auf ihre statische Lösung, Eigenfrequenzen und
Eigenvektoren) wird durchgeführt. Darüber hinaus zeigt der Vergleich der beiden Modelle
eine überraschend gute Übereinstimmung.

Basierend auf beiden Auslegungsmodellen werden umfangreiche Regler-Auslegungsstu-
dien durchgeführt und im Experiment validiert. Es stellt sich heraus, dass mit dem identi-
fizierten Modell als Auslegungsmodell für die genannten Reglerentwurfsverfahren ausgezeich-
nete Ergebnisse erzielt werden können. Darüber hinaus ist auch das auf analytischem Wege
erhaltene FE Modell zu einem gewissen Grad zur Reglerauslegung geeignet, was zu Be-
ginn dieser Arbeit fraglich war. Um jedoch zufriedenstellende Ergebnisse bei der Dämpfung
der Schwingungsmoden erzielen zu können, muss, wenn das FE Modell als Reglerentwurfs-
modell verwendet wird, ein erhöhter Aufwand bei der Modellierung von Unsicherheiten in
Kauf genommen werden.
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Abstract

In this work optimal and robust control design methods are utilized for active damping of
bending vibrations of a simply supported thin structural aluminium beam with rectangular
cross-section. For this purpose a multi-input multi-output (MIMO) control system setup
is used, comprising four collocated piezo patch actuators and sensors acting in longitudinal
direction. They introduce a shear force respectively measure the outer fiber strain. An
electrodynamic shaker is used to introduce a disturbance force in the direction of oscilla-
tion. Nonlinear effects, especially the hysteresis of the piezo patch actuators and sensors are
disregarded which is justified for this particular setup.

Because the flexible beam has low-damped oscillatory modes already at low frequencies,
it can be considered a typical component of a lightweight construction where active control
concepts play an increasingly important role.

The focus of this work is to study the suitability of model-based feedback control design
methods (specifically: LQG control, mixed-sensitivity H∞ control, H∞ loop-shaping control
and D(G)K-synthesized control) for improving disturbance rejection of the experimental
control system setup.

The design plants are obtained in two fundamentally different ways.
In the first modeling onset a measurement data-driven system identification is utilized,

where measured input and associated output data are utilized by algorithms to build mathe-
matical (black-box) models of dynamical systems applying statistical methods. In particular,
the subspace algorithm n4sid of the MATLAB® System Identification ToolboxTM is used to
identify a stable, linear time-invariant (LTI), MIMO state-space model in discrete-time.

The second approach is to obtain a (continuous-time) model via the finite element
method (FEM). “Hermitian beam elements” (i.e. Euler-Bernoulli beams with Hermitian
shape functions) are utilized to discretize the bending beam. The actuators are modelled
by moment inputs. Collocation of sensors and actuators leads to a non-zero feed-through
matrix. It is shown that the influence of a mounted shaker can be modelled by a feedback
loop utilizing acceleration and displacement outputs and a force input. Detailed validation
of the obtained finite element (FE) model (in terms of its static solution, eigenfrequencies,
and eigenvectors) is carried out. Furthermore, the comparison of both models reveals a
surprisingly good match.

Extensive controller design studies are carried out based on both models and validated on
the experiment. It turns out that the identified model as design plant for the mentioned de-
sign methods, excellent results can be achieved. Moreover, also the in an analytical manner
obtained FE model is suitable for controller design to some extent, which at the beginning
of this work was in question. However, in order to attain satisfying improvements in struc-
tural mode damping utilizing the FE model as design plant, increased effort in uncertainty
modeling is required.



Contents

1 Introduction 1
1.1 Overview and Motivation (for Active Damping of Flexible Structures) . . . . 1
1.2 Goal of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Structure of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Experimental Setup 4
2.1 Mechanical Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Software, Measuring Equipment and Signal Flow . . . . . . . . . . . . . . . . 6

3 Partial Differential Equation of Motion for Flexural Beam Vibrations 10

4 Identified Plant Model(s) 15
4.1 Identification Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Extracting the Modes of Interest . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Model of the Beam without Shaker . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Model of the Beam with Mounted Shaker . . . . . . . . . . . . . . . . . . . . 20

5 Finite Element Model 25
5.1 Hermitian Beam Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Shape functions ϕi and element displacement field w(ξ) . . . . . . . . 27
5.1.2 Element local stiffness matrix k(e) . . . . . . . . . . . . . . . . . . . . 28
5.1.3 Element global stiffness matrix K(e) . . . . . . . . . . . . . . . . . . 28
5.1.4 Global stiffness matrix K . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.5 Consistent mass matrix for an element in local coordinates m(e) . . . 30
5.1.6 Consistent mass matrix for an element in global coordinates M (e) . . 30
5.1.7 Global consistent mass matrix M . . . . . . . . . . . . . . . . . . . 30
5.1.8 Damping matrix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.9 Input matrix B and consistent node loads . . . . . . . . . . . . . . . 32
5.1.10 Output matrices for displacement (Cq) and velocity (Cv) . . . . . . . 35
5.1.11 Implementation of boundary conditions . . . . . . . . . . . . . . . . . 36

5.2 Second-Order Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.1 Nodal model in nodal coordinates . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Modal model in modal coordinates . . . . . . . . . . . . . . . . . . . 37
5.2.3 Frequency response matrix of a structure (in modal coordinates) and

its distinct modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 State-Space Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 Nodal model in nodal coordinates . . . . . . . . . . . . . . . . . . . . 40

v



CONTENTS vi

5.3.2 Modal model in modal coordinates . . . . . . . . . . . . . . . . . . . 40
5.3.2.1 First model . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2.2 Second model . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2.3 Third model . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.3 Modal form (Modal model with block-diagonal state matrix Amb) . . 41
5.3.3.1 Modal form 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.3.2 Modal form 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.3.3 Modal form 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.4 Introducing a non-zero state-space feed-through matrix D . . . . . . 43
5.4 Acceleration Output at the Shaker Position ẅs . . . . . . . . . . . . . . . . . 44
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Chapter 1

Introduction

1.1 Overview and Motivation (for Active Damping of

Flexible Structures)

In lightweight design, the consistent use of lightweight materials and lightweight structures
for the purpose of weight reduction and energy saving is encouraged. Optimizing a construc-
tion for low weight generally leads to structures with decreased overall stiffness and lower
natural frequencies of structure vibrations. Because of low damping, occurring vibrations
can show large amplitudes, which can pose a danger to structural stability or in the low fre-
quency range complicate other functions (e.g. passenger ride comfort in vehicles, autopilot
in an airplane, etc.).

For these reasons, so called “smart structures” are used more frequently. By utilizing
integrated actuators and sensors (often applied in a collocated manner) and the use of a
controller, the dynamic properties of the structure can be improved. Due to their low weight,
small dimensions, simple embeddability, efficiency, longevity, etc. piezo patch elements are
well suited as actuators and sensors for structural control applications, where novel so-called
macro fiber composites (MFC) exhibit almost hysteresis-free, linear behaviour.

The flexible beam investigated in this work has low-damped oscillatory modes already
at low frequencies, and thus can be considered as a typical component of such lightweight
construction.

1.2 Goal of this Thesis

The aim of this work is to study the suitability of state-of-the-art model-based feedback
control design methods (specifically: Linear Quadratic Gaussian (LQG) control, mixed-
sensitivity H∞ control, H∞ loop-shaping control and D(G)K synthesized control) for im-
proving disturbance rejection of the experimental control system setup of the flexible beam
depicted in Figure 2.1.

Furthermore it is investigated, if, for the case at hand, an analytical model obtained by a
simple one-dimensional finite-element model can be used as design plant for the considered
control design methods and succeed in the actual experimental setup.

1



1.3 Structure of this Work 2

1.3 Structure of this Work

In Chapter 2, the experimental setup is presented (mechanical components, physical dimen-
sions, measurement equipment, software tools, etc.). Individual components are discussed
in more detail. Furthermore, a system border of the experimental plant “beam” is defined.

In Chapter 3, the partial differential equation of motion for flexural vibrations of beams
is presented and utilizing a separation approach its continuous analytical solution (for free
vibration) is outlined.

In Chapter 4, the chosen identification procedure is described and the obtained models
of the beam with and without mounted shaker are presented.

In Chapter 5, it is shown how to derive a structural analytical model using the finite
element method (FEM). First the “Hermitian beam element” (i.e. an Euler-Bernoulli beam
with Hermitian shape functions) is presented and its shape functions are obtained. Then
it is demonstrated, both in theory and by means of examples, how to obtain the required
mass, damping, stiffness, and input matrices for the nodal equations of motion, as well as
the displacement output and the velocity output matrices for the nodal output equations.
Subsequently the obtained nodal model is transformed to modal coordinates. Furthermore,
appropriate state-space representations for structural models are considered. The (linear)
modeling of the actuators is described in detail and it is shown how an acceleration output
can be formulated. Then the FE model of the pure beam is validated by investigating its
eigenfrequencies and eigenvectors for different clamping conditions. The static solution for
different clamping and load conditions is validated and a convergence study is performed.
Following this, it is shown that the influence of a mounted shaker can be modelled by
feedback loops utilizing acceleration and displacement outputs and a force input. Again,
this is followed by a validation in terms of eigenvectors and static solutions of different
clamping conditions. Finally, unmodelled effects are discussed and further recommendations
for improvements are given.

In Chapter 6, missing gains are derived and an appropriate scaling of the obtained models
is performed. All final models are named and listed (Section 6.3). Finally, the identified
and analytical models of the beam with and without mounted shaker are compared in the
frequency domain.

In Chapter 7, the fundamentals of the LQG-control problem are provided. Furthermore,
the benefits of choosing a modal state weighting matrix are shown.

In Chapter 8, fundamentals of state-of-the-art optimal and robust control design meth-
ods are given. First the general control problem formulation for H∞ optimization and its
central preconditions are outlined. Then the standard solution for the H∞ (sub-)optimal
controller design problem is presented. Following this, considerations on the choice of
frequency-dependent weighting functions for H∞ optimization are discussed. Next, the
mixed-sensitivity H∞ optimal control problem for disturbance rejection is presented.

Then, after a short introduction, a detailed consideration of the concept of robust con-
trol is presented. For the case at hand appropriate concepts of uncertainty modelling are
discussed in detail. The general control configuration with uncertainty is presented, and
a powerful tool called “structured singular value” SSV (µ) is introduced and some funda-
mental definitions in robust control with respect to µ are given. Furthermore, a heuristic
approach to synthesize a µ-“optimal” controller, called DK-iteration (algorithm) is explained.
Subsequently, the investigated control design problem for DK iteration is presented.

Last but not least the fundamentals of the H∞ loop-shaping design procedure are given. It
is shown how the ideas of classical loop shaping can be applied to multivariable systems, and
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the two-stage design process (shaping of open-loop singular values, robustly stabilizing the
shaped plant with respect to the general class of coprime factor uncertainty) is explained.
Finally, an idea is presented how to choose reasonable weights for shaping the open-loop
plant.

In Chapter 9, on basis of both models (identified/FE model of the beam with mounted
shaker) extensive controller design studies (of all previously presented control design meth-
ods) are carried out and validated in the experiment. The individual subsections end with
a summary of the experiences and experimental results (Section 9.2.5 respectively Sec-
tion 9.3.6).

In Chapter 10, conclusions are made and a tabular overview (Table 10.1 on page 176)
of the achieved improvements and suitability (in the author’s opinion) of the investigated
controller design methods for structural mode damping is given.

Finally, additional supplementary material is included in Appendix A.

1.4 State of the Art

Fundamentals about system identification can be found in the textbooks of Isermann [1, 2]
(also available in English). An insight into the finite element method (FEM) for linear
problems are given in the textbooks of Rammerstorfer [3] and Merkel [4]. In [4] the focus
lies mainly on one-dimensional finite elements. The textbook of Gawronski [5] presents and
integrates the methods of structural dynamics, identification, and control into a common
framework. A well-known reference textbook treating robust and optimal control topics has
been written by Skogestad and Postlethwaite [6]. Chapter 7 and 8 are basically an extract
of [6] and the PhD thesis of Schirrer [7].



Chapter 2

Experimental Setup

Pictures of the actual experimental set-up are shown in Figure 2.1. Figure 2.3 on page 7
shows a schematic illustration of the experimental set-up. The main mechanical dimensions
of the beam are found in Table 2.1 and the components of the control system setup are
described in Table 2.2.

Figure 2.1: Experimental set-up

4
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2.1 Mechanical Components

The test object in this thesis is a hinged-hinged vertically mounted structural bending beam
shown schematically in Figure 2.3. The beam is about 2m long, 75mm wide and 3mm thick.
It is made of AlMg3. On each side of the beam, four macro fiber composites (MFC) piezo
patches are glued to the beam. The piezo patches at the front are used as actuators and the
piezo patches at the back are used as sensors. The piezo patch actuators and piezo patch
sensors are positioned opposite each other. In this manner applied actuators and sensors are
considered collocated. In this thesis the piezo patch actuators and sensors are consecutively
numbered top-down.

The actuators utilize the so called “d33” effect, which by applying a positive voltage
signal, forces them to elongate. The elongation and, consequently, the force introduced into
the elastic structure, do not only depend on the applied electrical potential, but also on the
stiffness of the structural component. Assuming linearity, the actuator characteristic curve
and a sketch clarifying this fact are shown in Figure 2.2. The corresponding equations are
(2.1) to (2.3).

ε =
S

lA
(2.1)

ε0 =
S0

lA
(2.2)

F = FB · (1− ε

ε0
) · U

Umax
(2.3)

lA: - active length of a piezo patch actuator
S0: - free displacement
ε0: - free strain
FB: - blocking force

U = 0V

piezo patch actuator

U = Umax

U = Umax

FB

S0

U = 0V

U = Umax

ks

ks

S

FB

working point
F

S S0

ks

fo
rc
e

displacement

lA

= ksSF

U
<
U
m
a
x

U
m
a
x

Figure 2.2: Characteristic curve of a piezo patch actuator (assuming linearity)
(adopted from [8])
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By elongating a piezo patch sensor (“d31” effect), a strain proportional (linearity assumed)
electrical charge is generated, resulting in an electric potential difference. It should be
pointed out again that the actuators and sensors exhibit hysteresis behavior, which will
not be regarded in this work. This is justified because the utilized MFCs show only weak
nonlinearities.

An electrodynamic shaker is used to introduce a disturbance force. The point of attach-
ment between beam and shaker can be shifted along the beam, but for all investigations was
fixed at a certain value. Design and manufacturing of this shaker coupling was part of this
work and is now briefly described.

The beam is pinched via screws between two small aluminium (mounting) prisms (84mm×
10mm× 5mm) (see Figure 2.3). The acceleration and force sensor is screwed to the prism
at the front of the beam. A nylon stinger connects the sensor with the shaker. The former
is screwed to a massive, vibration insensible platform whose principal part is an L-120 pro-
file steel. This platform can be shifted vertically along two rails welded at the framework
surrounding the beam. Screws can fix the platform at any position on the rails.

2.2 Software, Measuring Equipment and Signal Flow

In MATLAB® Simulink® a subsystem was created, in which the inputs and outputs of the
dSPACE 1104 ACE platform are linked with analog digital converter (ADC) and digital
analog converter (DAC) blocks from the Real-Time Interface (RTI) Simulink® library. This
subsystem, called “MIMO beam”1 (see Figure 2.4) was used in two superior Simulink®

interfaces - one for the identification task and another one for the controller validation(s) in
the hardware experiment(s), which both use the fixed-step solver ode3 (Bogacki-Shampine).

Each of the two superior Simulink® interfaces was compiled, creating an “.sdf” file,
which was linked to a new project in ControlDesk®. Subsequently, those variables defined
by the blocks in the Simulink® models appeared in ControlDesk® and could be linked via
drag & drop to buttons, graphs, and displays in a user-defined layout. The final project
was uploaded to the dSPACE platform where it was executed in real time. The virtual
instrument panel (“layout”) enabled supervision and manipulation of the running program.
Selected measurement signals2 were streamed continuously to a hard disk for subsequent
analysis.

The outputs of the dSPACE 1104 ACE platform are amplified by a power amplifier and a
high voltage amplifier to actuate the shaker and the four piezo patch actuators, respectively
(see, Figure 2.3) The piezo patch sensors transmit their measurement signal directly back to
the dSPACE 1104 ACE platform, while for the acceleration and force sensor at the shaker
position the signals are first fed to a signal conditioning box.

1The subsystem “MIMO beam” also handles signal offsets, protects against out of range signals via
saturation blocks and converts the dSPACE signals for acceleration and force to their mechanical signals.

2The output signals of the saturation blocks 1 to 5 (see Figure 2.4) were taken as inputs (logged excitation
signals ul

j for j = 1, . . . , 5) and the inputs to the output ports of the subsystem “MIMO beam” were taken

as outputs (logged measurement signals yli for i = 1, . . . , 6). The letter “ l” stands for logged. By this means
a system boundary was drawn around the experimental plant “beam”.
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l 1
l 2

l 3
l 4

l s

L

l A

dSPACE ACE 1104

b h

shaker

piezo actuator
amplifier
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MFC piezo
patch sensor

MFC piezo
patch actuator

shaker
platform
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conditioner

rail

beam

user communication
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Control
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Figure 2.3: Schematic illustration of the experimental set-up (framework surrounding
the beam is not drawn)

symbol value

L 1890mm
b 75mm
h 3mm
l1 75.5mm
l2 716.5mm
l3 1128.5mm
l4 1554.5mm
lA 85mm
ls 1378mm

Table 2.1: Mechanical dimensions of the experimental set-up



2.2 Software, Measuring Equipment and Signal Flow 8

In Table 2.2 a listing of the described components of the control system setup is given.

component description

electrodynamic shaker THE MODAL SHOP; Model 2007E
stroke length (max): ±12.7mm pk
acceleration (max): 2.4m/s2 pk
acceleration (max driven): 265m/s2 pk
force rating: 31N sine peak

shaker amplifier
(power amplifier)

Brüel & Kjaer; Power Amplifier Type 2712
apparent power: 180VA

shaker signal conditioner PCB PIEZOTRONICS; Model 482C15
4-channel, ICP system

acceleration and force
sensor

PCB PIEZOTRONICS; impedance head 288D01
sensitivity force (±10%): 22.4mV/N
sensitivity acceleration (±10%): 10.2mV/m/s2

measurement range force: ±222.4N pk
measurement range acceleration: ±490.5m/s2 pk

piezo patch actuators SMART MATERIAL; MFC-M-8557-P1 (d33 effect
actuators)
blocking force (FB): 923N
free strain (ε0): 1800 ppm
active length: 85mm
voltage operation range: −500V/+1500V

piezo actuator amplifier
(high voltage amplifier)

input voltage range: [−2.5V,+7.5V] (custom-built)
output voltage range: 0V + 200 V/V × input voltage
idle voltage slew rate: 50 V/µs

piezo patch sensors SMART MATERIAL; MFC-M-2814-P2 (d31 effect
sensors)
blocking force (FB): −85N
free strain (ε0): −700 ppm
voltage operation range: −60V/+360V

real-time development
system

dSPACE; Advanced Control Education Kit 1104 -
DS1104 PPC - CLP1104 Connector/LED Panel

Table 2.2: Components of the control system setup
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A DAC block converts its input signal range of ±1 to an analog output voltage of ±10V.
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output signal (range of ±1V).
Saturation blocks 1 to 4: [−0.25 ,+0.75 ]
Saturation block 5: [−0.5 ,+0.5 ]

Figure 2.4: Simulink® subsystem: “MIMO beam”



Chapter 3

Partial Differential Equation of Motion
for Flexural Beam Vibrations

In Figure 3.1 an infinitesimally small beam element of length dx is depicted. The external
force per unit length (or line load) q(x, t) acts transversely on the entire beam element.

q(x, t)

x dx

M + ∂M
∂x

dx+ . . .M
Q

Q+ ∂Q
∂x
dx+ . . .

S

x

z

y

Figure 3.1: Infinitesimally small beam element (adopted from [9])

The equation of motion (centre-of-mass theorem) in the transverse direction (z-direction)
for the infinitesimally small beam element is:

−Q + q(x, t)dx+Q +
∂Q

∂x
dx+ . . . = ρAdx

∂2w

∂t2
(3.1)

Dividing (3.1) by dx and taking the limit as dx tends to zero (dx → 0) yields:

∂Q

∂x
= ρA

∂2w

∂t2
− q(x, t) (3.2)

The moment of momentum about the y-axis through the center of gravity S is:

−M −Qdx+M +
∂M

∂x
dx+ . . . =

∂Dy

∂t
(3.3)

For the infinitesimally small beam element the angular momentum component Dy is given
by:

Dy = Iyωy = ρJydx · ωy + . . . (3.4)

10
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where the angular velocity ωy is given by

ωy = − ∂2w

∂x∂t
(3.5)

Inserting (3.4) into (3.3), dividing (3.3) by dx and taking the limit as dx tends to zero
(dx → 0) yields:

∂M

∂x
= Q− ρJy

∂3w

∂x∂t2
(3.6)

The second term on the right hand side of (3.6) is the rotational inertia of the infinitesimally
small beam element, which is usually small and thus is neglected in the following, yielding:

∂M

∂x
= Q (3.7)

In elementary beam theory (Bernoulli hypothesis, linear-elastic material) it is assumed
that the bending moment and the curvature of the beam axis are linearly linked via the
flexural rigidity: [10]

M(x) = −EJy(x)
∂2w

∂x2
(3.8)

Partially differentiating (3.8) twice with respect to x and using (3.7) yields:

∂Q

∂x
= − ∂2

∂x2

(
EJy(x)

∂2w

∂x2

)
(3.9)

Equating equations (3.2) and (3.9) yields the partial differential equation of motion for
flexural vibrations

∂2

∂x2

(
EJy

∂2w

∂x2

)
= q(x, t)− ρA

∂2w

∂t2
(3.10)

where both EJy and ρA may vary arbitrarily with x. For a uniform beam, (3.10) simplifies
to

EJy
∂4w

∂x4
= q(x, t)− ρA

∂2w

∂t2
(3.11)

and furthermore for the free vibration case, i.e. q(x, t) = 0, the equation of motion becomes

EJy
∂4w

∂x4
= −ρA

∂2w

∂t2
(3.12)

The equation of motion (3.12) can be solved by using a separation approach:

w(x, t) = φ(x) · T (t) (3.13)

Inserting (3.13) into (3.12) and rearranging (separation of variables) leads to

T̈ (t)

T (t)
= − EJy

ρA︸︷︷︸
c2

φIV(x)

φ(x)
= −ω2 (3.14)

The first term is only a function of t, while the second term is only a function of x. Therefore,
both terms can only be equal for all x and t, if they are equal to a constant −ω2. [9] Thus,
(3.14) can be rearranged as two ordinary differential equations, (3.15) and (3.19).

φIV(x)− λ4φ(x) = 0 (3.15)
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where

λ4 =
ω2

c2
=

ρA

EJy

ω2 (3.16)

The general solution of (3.15) is a mode shape and given by

φ(x) = A sinλx+B cos λx+ C sinhλx+D coshλx, (3.17)

where the constants A, B, C and D are to be determined so that the kinematic and dynamic
boundary conditions are always satisfied. The infinite number of natural frequencies ωi (for
i = 1, . . . ,∞) of the beam are obtained from (3.16) as:

ωi = λ2
i c = λ2

i

√
EJy

ρA
(3.18)

Equation (3.19) is the differential equation of an undamped decoupled system.

T̈i(t) + ω2
i Ti(t) = 0 i = 1, . . . ,∞ (3.19)

The general solution of (3.19) is given by

Ti(t) = Ri cosωit + Si sinωit, (3.20)

where the constants Ri and Si (for i = 1, . . . ,∞) must be determined under consideration
of the initial conditions (w(x, 0) and ∂w

∂t
(x, 0)).

Finally, the overall solution of (3.12) is given by:

w(x, t) =
∞∑

i=1

Ti(t)φi(x) (3.21)

Example 3.1: Eigenfunctions φi(x) of free bending vibrations of a beam simply
supported at both ends

ρ, A, Jy

L
x

z, w

Figure 3.2: Beam simply supported at both ends

For a beam of length L simply supported at both ends (Figure 3.2) the kinematic and dynamic
boundary conditions are given by (3.22) respectively (3.23):

w(0, t) = 0 → φ(0) = 0
w(L, t) = 0 → φ(L) = 0

(3.22)

M(0, t) = 0
(3.8)→ w′′(0, t) = 0 → φ′′(0) = 0

M(L, t) = 0
(3.8)→ w′′(L, t) = 0 → φ′′(L) = 0

(3.23)

By utilizing the boundary conditions (3.22)-(3.23) and the general solution approach (3.17)
a homogeneous linear system of equations for the computation of A, B, C and D follows to:
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φ(0) = B +D = 0
φ(L) = A sinλL+B cos λL+ C sinhλL+D coshλL = 0
φ′′(0) = λ2 (−B +D) = 0
φ′′(L) = λ2 (−A sinλL−B cos λL+ C sinhλL+D coshλL) = 0

(3.24)

From the first and third equation in (3.24) immediately follows:

B = D = 0 (3.25)

and further
A sinλL+ C sinhλL = 0
−A sinλL+ C sinhλL = 0

(3.26)

For a nontrivial solution of (3.26) the determinant of the coefficient matrix must vanish, i.e.:

2 sinλL sinhλL = 0 (3.27)

Equation (3.27) is called frequency equation. Since sinhλL vanishes only for λL = 0 and

L 6= 0 (L 6= 0 ⇒ λ = 0
(3.16)⇒ ω = 0

(3.20)⇒ T (t) = const., i.e. idle state), the solutions of the
frequency equation with λL 6= 0 are described by

sinλL = 0 (3.28)

and thus the eigenvalues λi (for i = 1, . . . ,∞) are obtained by

λi =
iπ

L
(3.29)

From (3.18) the corresponding natural frequencies ωi follow to

ωi = λ2
i c =

(
iπ

L

)2
√

EJy
ρA

(3.30)

Inserting the eigenvalues λi (λL 6= 0) in (3.26) yields C = 0.
Consequently, the eigenfunctions or eigenmodes φi(x) with corresponding natural frequencies

ωi (for i = 1, . . . ,∞) are described by:

φi(x) = Ai sin
iπx

L
for i = 1, 2, . . . (3.31)

The value of the constant Ai remains undetermined. For convenience, Ai = 1 is chosen here.
A possible solution for a frequency ωi is given by

wi(x, t) = sin
iπx

L
(Ri cosωit+ Si sinωit) (3.32)

where Ai is included in the constants Ri and Si. The overall vibration of the beam is a superpo-
sition of all modes i, i.e.

w(x, t) =

∞∑

i=1

sin
iπx

L
(Ri cosωit+ Si sinωit) ,

where the infinite number of constants Ri and Si (for i = 1, . . . ,∞) have to be determined
so that the initial conditions (w(x, 0) and ∂w

∂t (x, 0)) are satisfied. Further information on this
determination of the constants is found in [11].
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In Table 3.1 the frequency equations and their roots are given for important boundary
conditions. For values i ≥ 4 an asymptotic formula can be used to compute λiL. [9]

boundary conditions frequency equation i λiL

fixed-fixed
L

x

z

1− cosλiL coshλiL = 0

1 4.730
2 7.853
3 10.996
i (2i+ 1)π

2

hinged-hinged
L

x

z

sin λiL = 0

1 π
2 2π
3 3π
i iπ

fixed-free
L

x

z

1 + cosλiL coshλiL = 0

1 1.875
2 4.694
3 7.855
i (2i− 1)π

2

fixed-hinged
L

x

z

tanλiL = tanhλiL

1 3.927
2 7.069
3 10.210
i (4i+ 1)π

4

Table 3.1: Frequency equations and their roots for important boundary conditions. The

natural frequencies can be computed by ωi = λ2
i

√
EJy
ρA

. (adopted from [9])



Chapter 4

Identified Plant Model(s)

The test bed described in Chapter 2 (see Figure 2.3) has five inputs (four piezo patch actuator
signals and a shaker signal) and six outputs (four piezo patch sensors, an acceleration sensor
and a force sensor).

Because significant interaction between each input and each output is expected, a single-
input single-output (SISO)-based identification procedure is not suitable for this configu-
ration. A subsequent merging of SISO transfer functions would be possible in theory, but
because the eigenfrequencies obtained from different SISO models would not exactly match,
a mode matching process would be needed. SISO model merging faces several problems
(mode consistency, recovering coupling terms) and still would lead to a suboptimal MIMO
representation. [12] As a consequence, a MIMO identification procedure has to be used for
the problem at hand to include the physical couplings between inputs and outputs directly.

4.1 Identification Procedure

To concentrate the excitation on the modes below 50 Hz and to avoid ringing in the frequency
domain, discrete white noise signals (i.e. Gaussian random amplitudes at the chosen sampling
frequency of 5 · 103Hz) with a variance of 0.64 for the piezo actuators and a variance of 0.4
for the shaker are fed to five first-order low pass filters in series all with a cutoff frequency
of 100Hz. The outputs of the filters are fed to the Simulink® subsystem “MIMO beam”,
described in Section 2.2.

Data sets of about 2.2 · 107 samples have been recorded using a sampling time Ts =
2 · 10−4 s. The reason why a high sampling rate was used, although the task was to identify
the low-frequency characteristic of the beam only, is briefly discussed in the following.

The piezo patch actuators are very fast (very large mechanical bandwidth of several kHz)
and follow a new input signal immediately (sharp edge). When an input signal, such as a
ramp signal (see Figure 4.1) is sampled with a low sampling rate, the stroke on the system due
to a high step size between to consecutive input signal values is intense, leading to a strong
excitation of the beams high-frequency dynamics1. Low sampling rate, but strong excitation
of high-frequency dynamics causes severe problems with aliasing effects. Increasing the
sampling rate not only increases the frequency content of a time signal (Nyquist frequency
fs/2), but also reduces the height of a step between to consecutive input signal values. This
facilitates the subsequent identification task.

1A flexible structure has an infinite number of natural frequencies.

15
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t

u(t)

ramp

∆t1

fast sampling: Ts = ∆t1

slow sampling: Ts = ∆t2
small
step

large
step

∆t2

Figure 4.1: Schematic illustration of an input signal of an actuator; quasi-continuous-
time signal (stair-case signal)

To improve the resolution of the identification task in the lower frequency range and
to ease the identification procedure, the data was down-sampled to 100Hz. To avoid the
effect of aliasing a tenth-order anti-aliasing filter was applied before decimation. Because
the anti-aliasing filter causes an edge effect due to rectangular windowing, two percent of
the data set at the beginning and at the end of the measured signals were removed. Mean
values were subtracted and linear trends removed.

The preprocessed data was imported as a data object in the MATLAB® System Identi-
fication ToolboxTM, were it was split into about 75% identification data and 25% validation
data. The subspace algorithm n4sid of the MATLAB® System Identification ToolboxTM was
applied on the identification data to identify stable, linear state-space models in discrete-
time. On basis of a physical understanding of the test bed, stability of the system is a
requirement, while linearity of the system is a hypothesis (an assumption) and necessary for
the subsequent controller design.

A fundamental parameter for identifying state-space models is the system order. Models
of different system order were identified and compared. As major criteria to decide on a
model, the following properties/aspects were considered:

• autocorrelation functions for the residuals2 (prediction errors)

• cross correlation functions between inputs and residuals3

• plots visualizing the zeros and poles of a system

• percentage of the measured output that is explained by the simulated output for the
validation data (in a so-called cross-validation)

• comparison of the frequency response with a non-parametric (identified), spectral
model

2Ideally the autocorrelation function of the residuals is the autocorrelation function of a white noise signal
(n), which is E {n(k)n(k + τ)} = σ2

nδ(τ) where σ2
n is the variance of the white noise signal and

δ(τ) =

{
1 for τ = 0
0 for |τ | 6= 0

is the Kronecker delta function.
3Ideally the cross correlation functions between inputs and residuals indicate no correlation.
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In MATLAB® an identified linear discrete-time state-space model is represented by the
following discrete-time state (4.1) and output (4.2) equations.

x(k + 1) = Ax(k) +Bu(k) +Ke(k) (4.1)

y(k) = Cx(k) +Du(k) + e(k) (4.2)

A: (n× n) - state-space system matrix (state matrix)
B: (n× r) - input matrix
K: (n×m) - state disturbance matrix
C: (m× n) - output matrix
D: (m× r) - feed-through matrix
x: (n× 1) - state vector
y: (m× 1) - output vector
e: (m× 1) - model innovations (white, Gaussian noise vector)

The models were directly derived in a modal form via the corresponding option settings
of n4sid as of MATLAB® release 2012a.

4.2 Extracting the Modes of Interest

In order to speed up time-consuming model-based controller design methods applied in this
thesis (see Chapter 8), a model of low order was favored.

Poles of flexible structure dynamics are typically complex-conjugate and low-damped.
Each complex-conjugate pair represents a structural mode. The FE model (Chapter 5)
reveals that the test bed has five flexible modes with natural frequencies below 50Hz. With
this knowledge a straightforward modal reduction approach was carried out, called “modal
truncation”, where all modal dynamics connected to the “masked-out” modes (that is, in
the case at hand, the non-structural modes) are neglected. In this manner a tenth-order
state-space model in modal form was obtained for the beam with unmounted shaker setup
as well as for the beam with mounted shaker setup. The original, unreduced models were
used for simulation purposes.

A list of all input-output scaled final models, ready to be used for controller design and
simulation purposes, will be given in Section 6.3 (page 70).

In the following sections the derived model for the beam without shaker (Section 4.3)
and the model for the beam with mounted shaker (Section 4.4) are discussed, where Hc+r

be a model with c complex poles and r real-valued poles directly obtained by the identifi-
cation procedure, whereas H

r{cr+rr}
c+r be a reduced, tenth-order model obtained by a “modal

truncation” of the former model (e.g. H10+6
red.→ H

r{10+0}
10+6 ).

4.3 Model of the Beam without Shaker

In this subsection the identified model of the beam without shaker is presented. Not only the
shaker, but also the acceleration and force sensor and all other masses at that attachment
position are unmounted. Consequently the beam is only excited by the four piezo patch
actuators (inputs ul

1 to ul
4) and the only measurements are provided by the four piezo patch

sensors (outputs yl1 to yl4).
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In Table 4.1 the cross-validation results achieved by different models are listed. The
best model fit was obtained by model H10+6. It was found that identifying semi-proper
system with a non-zero feed-through matrix D significantly improved the results achieved
(see Table 4.1). In MATLAB® release 2012a the corresponding option setting of n4sid was
activated for each input separately. It turned out that n4sid identified the feed-through
matrix D as a diagonally dominant matrix. The reason for this diagonal dominance in D

can be physically explained by the collocation of actuator j with sensor j (for j = 1, . . . , 4),
as well as the very fast response of the piezo patch actuators (and piezo patch sensors)
compared to the sampling rate. The actual high-frequency dynamics between a collocated
actuator and sensor pairing are modelled as large diagonal entries in D.

model fit in %
model name yl1 yl2 yl3 yl4

H10+6 88.60 88.19 88.72 89.04

H
r{10+0}
10+6 62.71 78.05 75.57 72.63
H6+4 79.44 68.14 74.84 68.28

H10+6 with D = 0 9.85 20.87 21.73 11.88

Table 4.1: Cross-validation results for the models of the beam without shaker

For the identified parametric models and a non-parametric, spectral model (S) a Bode
magnitude plot of a collocated and a non-collocated actuator and sensor pairing is shown
in Figure 4.2a respectively 4.2b. As it is typical for a collocated actuator/sensor pairing
the Bode plot of Figure 4.2a reveals a dominant constant component whereas the structural
modes are only weakly pronounced. Conversely, the Bode plot of Figure 4.2b illustrates that
for a non-collocated actuator/sensor pairing the opposite is true. In this case the structural
modes are visible as well-pronounced peaks.

The parametric models both show good match (especially for the five structural modes)
with the non-parametric spectral model (S), confirming the high fit of the parametric models
achieved in cross-validation (see Table 4.1). Because of the “modal truncation” method, the
fit of the model Hr{10+0}

10+6 in the low-frequency range is worse, however, as static actuation is
not intended with the piezo patch actuators at hand, this model mismatch is not of major
concern.

A plot of the singular values from all inputs to all outputs is depicted in Figure 4.3. The
five structural modes can be well spotted as peaks.
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Figure 4.2: Bode magnitude plot for parametric and non-parametric (S) identified mod-
els of the beam with unmounted shaker
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Figure 4.3: Singular values plot for parametric and non-parametric (S) identified models
of the beam without shaker

For each mode the corresponding natural frequency fi (in Hz) and modal damping co-
efficient ζi (in %), for the beam without shaker model Hr{10+0}

10+6 is shown in Table 4.2. As
expected from an investigation of the singular values plot (Figure 4.3), the modes, particu-
larly the second and fourth modes, are only weakly damped.

mode i natural frequency fi (in Hz) modal damping coefficient ζi (in %)

1 2.1846 1.67
2 7.7104 0.51
3 17.1042 1.57
4 29.8556 0.93
5 46.8771 1.42

Table 4.2: Natural frequencies of the model Hr{10+0}
10+6 of the beam without shaker

4.4 Model of the Beam with Mounted Shaker

In this subsection the identified model of the beam with mounted shaker is presented. The
beam is excited by all four piezo patch actuators (inputs ul

1 to ul
4) and the shaker (input

ul
5). The measurements are provided by the four piezo patch sensors (outputs yl1 to yl4), an

acceleration sensor (output yl5), and a force sensor (output yl6).
In Table 4.3, the cross-validation results achieved by different models for the beam with

mounted shaker are listed. The best overall model fit was obtained by model H14+7. For
all outputs except for the acceleration output (yl5), model H14+7 has a better model fit than
model H10+8. However, because the overall, average improvement of the cross-validation
results is only small the increase in system order (from 18 to 21 states) is not justified.
Also due to the fact that the 14 complex poles of H14+7 render its “modal truncation” to a
tenth-order model more complicated, model H10+8 was used for the subsequent reduction
procedure. However, model H14+7 was intensively used for simulation purposes.
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Comparing the cross-validation results for model Hr{10+0}
10+8 and model H10+0 justifies, the

approach taken by identifying a system which achieved the best cross-validation results with
exactly ten complex poles and all remaining poles real (model: H10+8) in the first place,
and subsequently reducing it by applying “modal truncation” to obtain a model with only
five complex pole pairs (model: H

r{10+0}
10+8 ), instead of restricting the system order used for

identification to ten a priori (model: H10+0 ). Model H r{10+0}
10+8 does not fit well in terms of

accelerations (output yl5) as seen in Table 4.3. However, this is irrelevant for control design
which only considers yl1, . . . , y

l
4 as measurements.

For the same reason as already described in Section 4.3 a non-zero feed-through matrix
D significantly improves the quality of the identified model. Again, collocated actuator and
sensor pairings are reflected as dominant entries in D. Additional feedthrough terms appear
which essentially capture the instantaneous collocation feedthrough of the shaker force input
to the collocated acceleration and force measurements. The piezo patch actuators 1, 3 and
4 also contribute to dominant entries in D for the acceleration measurement.

model fit in %
model name yl1 yl2 yl3 yl4 yl5 yl6

H14+7 88.95 90.28 90.51 91.78 53.75 91.88
H10+8 88.74 89.79 85.99 91.50 55.87 91.50

H
r{10+0}
10+8 64.77 80.73 78.22 76.33 26.32 90.68

H10+0 57.79 67.69 73.76 70.85 53.55 73.91
H10+8 with D = 0 20.64 37.13 35.46 40.40 24.47 23.87

Table 4.3: Cross-validation results for the models of the beam with mounted shaker

For the identified parametric models and a non-parametric, spectral model (S), a typical
Bode magnitude plot of a collocated and a non-collocated actuator and sensor pairing is
shown in Figure 4.4a respectively 4.4b. Again, as expected from the lessons learned in
Section 4.3, the Bode magnitude plot of the collocated actuator and sensor pairing shows only
weakly developed dynamic peaks (structural modes), while for the non-collocated actuator
and sensor pairing the dynamic peaks are well-pronounced.

The Bode magnitude plot from the shaker input to a piezo patch sensor is shown in
Figure 4.4c and shows the structural modes clearly.
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Figure 4.4: Bode magnitude plot for parametric and non-parametric (S) identified mod-
els of the beam with mounted shaker
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For the parametric and a non-parametric (S) identified model of the beam with mounted
shaker, Figure 4.5a shows a singular values plot from all four piezo patch actuators (inputs
ul
1 to ul

4) to all four piezo patch sensors (outputs yl1 to yl4).
Comparing Figure 4.5a with the corresponding singular values plot of the beam with

unmounted shaker (Figure 4.3) reveals that the natural frequencies of the first two structural
modes have risen significantly and that the beam with mounted shaker, shows smallest
damping in the first and fourth structural modes, whereas the other modes have moderate
damping, see also Table 4.4. Two counteracting effects contribute two the shift of the natural
frequencies: The mounting prisms and the acceleration and force sensor introduce additional
mass to the beam which slows down the system, whereas a coupled shaker increases the
stiffness of the beam. The latter effect dominates in the lower modes, so their frequencies
increase.

In Figure 4.5b a singular value plot from the shaker (input ul
5) to all four piezo patch

sensors (outputs yl1 to yl4) is depicted.
The main control goal of this work will be to improve the damping of the low-damped

structural modes (especially of structural modes 1 and 4) so that the peaks in Figure 4.5b
are flattened, by applying different controller design methods (see Chapters 7 and 8). To do
this, the model Hr{10+0}

10+6 used for the subsequent model-based controller designs has to be
prepared properly. This will be the task of Chapter 6.

First, however, an analytic modelling onset based on the finite element method (FEM)
is outlined in (Chapter 5) as an alternative to the measurement data-based identification
approach of this chapter.
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Figure 4.5: Singular values plot for parametric and non-parametric (S) identified models
of the beam with mounted shaker

mode i natural frequency fi (in Hz) modal damping coefficient ζi (in %)

1 4.5332 2.12
2 12.8924 14.49
3 17.8445 8.93
4 29.9515 1.23
5 45.4605 4.37

Table 4.4: Natural frequencies of the model Hr{10+0}
10+8 of the beam with mounted shaker



Chapter 5

Finite Element Model

The subject of this chapter is to derive a structural model using the finite element method
(FEM). In order to do this, the bending beam (Figure 2.3) is discretized by “Hermitian beam
elements” (i.e. Euler-Bernoulli beams with Hermitian shape functions) (see [3]) introduced
in Section 5.1. The finite element (FE) model as a natural consequence results in a nodal
model in nodal coordinates represented by the second-order matrix differential equation (5.1)
in terms of the nodal displacement vector q. The task is to derive the required mass matrix
M , damping matrix D, stiffness matrix K and input matrix B, as well as the displacement
output matrix Cq and the velocity output matrix Cv for these two matrix equations.

Mq̈ +Dq̇ +Kq = Bu

y = Cqq +Cvq̇
(5.1)

Then, the required steps to obtain a modal state-space model with block-diagonal state
matrix Amb (5.2) from (5.1) are described.

ẋmb = Ambxmb +Bmbu

y = Cmbxmb +Dmbu
(5.2)

The resulting FE model is validated in terms of its eigenfrequencies, eigenvectors, and
the static solution for different clamping conditions against the analytic solution of a uniform
beam. Subsequently, utilizing feedback loops in combination with a force input at the shaker
position, a model of the beam with mounted shaker is obtained. Again, this model variant is
validated (eigenmodes, static solution) for different clamping conditions against the analytic
solution of the mounted configuration (where available). Finally, (static) gains are obtained
to collectively model the physical systems on the input side of the experimental plant “beam”
within the FE models.

25
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5.1 Hermitian Beam Element

One of the simplest structural elements in FEM is the Hermitian beam element. Under
the following conditions, bending around a considered principal axis of inertia, longitudinal
strain and torsion can be treated separately (decoupled): [3]

• linear elastic material, small deformations

• validity of Bernoulli’s hypothesis

• doubly symmetric cross-section being constant within an element (shear center and
centroid of an area coincide)

• Saint-Venant’s torsion theory, no warping fixity

• local coordinate axes transverse to the beam axis coincide with the principal axes of
inertia of the cross section

In Figure 5.1 a Hermitian beam element for bending around the y-axis is depicted. The
whole beam consists of several Hermitian beam elements. Each element (e) has four degrees
of freedom (DOF): two translational DOF (q(e)1 , q(e)3 ) and two rotatory DOF (q(e)2 , q(e)4 ). The
length of an element is l.

l

q
(e)

2
q
(e)

4

q
(e)

1
q
(e)

3

z, w

x, ξ

z, w

y

M

Q

xN

for q
(e)

i
> 0

Figure 5.1: Hermitian Beam Element for bending around the (local) y-axis (adopted
from [3])

The dimensionless length ξ is defined as:

ξ :=
x

l
(5.3)

The generalized node displacements of an element e are collected in the element node dis-
placement vector

q(e) =




q1
q2
q3
q4




(e)

=




w|ξ=0
dw
dx
|ξ=0

w|ξ=1
dw
dx
|ξ=1




(e)

. (5.4)
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5.1.1 Shape functions ϕi and element displacement field w(ξ)

Equations (3.2) and (3.6) give the relationship between the bending moment M , shear force
Q and line load q. Additionally, using (3.8) which is used in the elementary beam theory
(Bernoulli hypothesis, linear-elastic material) to specify the relationship between the bending
moment and the curvature of the beam axis, it follows for the static case:

− d2

dx2

(
EJy

d2w

dx2

)
=

d2M

dx2
=

dQ

dx
= −q (5.5)

Because EJy is constant within an element and only node loads act on the Hermitian
beam element (i.e. the external force per unit length q(x) = 0)1 it follows from (5.5) that:

d4w

dx4
= 0 (5.6)

The simplest solution approach which solves the differential equation (5.6) is:

w(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 (5.7)

The coefficients a0, a1, a2, a3 can be expressed by the components of the element node

displacement vector q(e) (q(e) =
[
q
(e)
1 q

(e)
2 q

(e)
3 q

(e)
4

]T
):

w(ξ = 0) = a0 = q
(e)
1

dw
dx
(ξ = 0) = 1

l
a1 = q

(e)
2

w(ξ = 1) = a0 + a1 + a2 + a3 = q
(e)
3

dw
dx
(ξ = 1) = 1

l
a1 +

1
l
2a2 +

1
l
3a3 = q

(e)
4

(5.8)

From equation (5.8) the displacement w in z-direction follows to:

w = (1− 3ξ2 +2ξ3) · q(e)1 +
(
ξ − 2ξ2 + ξ3

)
l · q(e)2 + (3ξ2 − 2ξ3) · q(e)3 +

(
−ξ2 + ξ3

)
l · q(e)4 (5.9)

Thus the shape functions (ϕi for i = 1...4) concerning the deflection in the x, z-plane are:

ϕ(x) =




ϕ1

ϕ2

ϕ3

ϕ4


 =




1− 3ξ2 + 2ξ3

(ξ − 2ξ2 + ξ3) l
3ξ2 − 2ξ3

(−ξ2 + ξ3) l



|ξ(x)=x

l

(5.10)

A short version for the displacement w in z-direction (5.9) is given by:

w =

4∑

i=1

ϕi · q(e)i = ϕTq(e) (5.11)

1Note that q(x) is not to be confused with the element node displacement vector q(e) or its components

q
(e)
i (for i = 1, . . . , 4).
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5.1.2 Element local stiffness matrix k(e)

The element local stiffness matrix (for bending around the y-axis) follows from an energy
analysis for bending deformation and is given in equation (5.12). More information on the
derivation of the element local stiffness matrix can be found in [3], [4].

kby(e) = k(e) =
EJy

l3
·




12 6l −12 6l
4l2 −6l 2l2

12 −6l
symm. 4l2


 (5.12)

5.1.3 Element global stiffness matrix K(e)

In the considered case the local coordinate system for an element is congruent (up to x-
translation) with the global coordinate system for the whole beam and therefore the element
local stiffness matrix k(e) is identical with the element stiffness matrix in the global coordinate
system K(e).

K(e) = k(e) (5.13)

5.1.4 Global stiffness matrix K

In the following the assembly of the global stiffness matrix K is explained by Example 5.1.

Example 5.1: Assembling the global stiffness matrix K for a test beam with
three elements

Figure 5.2 shows a beam with three Hermitian Beam elements for bending around the y-axis.
The numbers in round parentheses are the numbers of the individual elements ((1), (2), (3)).
The numbers in curly brackets are the local node numbers ({1(e)}, {2(e)}) of an element and the
numbers in square brackets are the global node numbers ([1], [2], [3], [4]). Capital L is the length
of the whole beam.

(1) (2)

L

(3)

[1] [2] [3] [4] {1(e)} {2(e)}
(e)

1, 2 3, 4

Figure 5.2: Example beam with three Hermitian Beam elements for bending around
the y-axis.

Table 5.1 is the corresponding coincidence table for this particular beam. The coincidence
table depicts the interrelationship between the element DOF and the global DOF for each element.

element number (e): (1) (2) (3)

local node number: {1(1)} {2(1)} {1(2)} {2(2)} {1(3)} {2(3)}
element DOF (i(e), j(e)): 1 2 3 4 1 2 3 4 1 2 3 4

global node number: [1] [2] [2] [3] [3] [4]
global DOF (a, b): 1 2 3 4 3 4 5 6 5 6 7 8

Table 5.1: Coincidence table for a beam with three elements.
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Figure 5.3 illustrates the assembling of the global stiffness matrix K via the utilization of the
element stiffness matrix in the global coordinate system K(e) (5.13) and the coincidence table
(Table 5.1) for the example beam.

Assembling steps:

1. Assigning each K
(e)
ij to each K̃

(e)
ab via the coincidence table (Table 5.1):

K
(e)
ij → K̃

(e)
ab (5.14)

2. Obtaining an entry Kab of K via summation of K
(e)
ab over the elements (e):

Kab =
∑

(e)

K̃
(e)
ab (5.15)

3. Assembling K from its entries Kab:

Kab =⇒ K (5.16)

e.g.: K34 = K̃
(1)
34 + K̃

(2)
34 = K

(1)
34 +K

(2)
12

K
(1)
11 K

(1)
12 K

(1)
13 K

(1)
14 0 0 0 0

K
(1)
21 K

(1)
22 K

(1)
23 K

(1)
24 0 0 0 0

K
(1)
31 K

(1)
32 K

(1)
33 +K

(2)
11 K

(1)
34 +K

(2)
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(2)
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41 K
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43 +K

(2)
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44 +K
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Figure 5.3: Assembling the global stiffness matrix K for a beam with three elements.
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5.1.5 Consistent mass matrix for an element in local coordinates
m(e)

The consistent mass matrix for an element in local coordinates (m(e)) is given in (5.18). It
is calculated by (5.17). [3, 4]

m(e) =

ˆ

V ol(e)
ρ · ϕ(e)ϕ(e)TdV ol =

ˆ 1

0

ρAl ·ϕ(e)ϕ(e)Tdξ (5.17)

m(e) =
ρAl

420
·




156 22l 54 −13l
4l2 13l −3l2

156 −22l
symm. 4l2


 (5.18)

5.1.6 Consistent mass matrix for an element in global coordinates

M (e)

As for the stiffness matrix, the consistent mass matrix for an element in local coordinates
m(e) is identical with the consistent mass matrix for an element in global coordinates M (e).

M (e) = m(e) (5.19)

5.1.7 Global consistent mass matrix M

The global consistent mass matrix M is assembled in the same manner as the global stiffness
matrix (K) (see Section 5.1.4, Figure 5.3).2

2The only difference is the usage of capital M
(e)
ij instead of capital K

(e)
ij in Example 5.1.
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5.1.8 Damping matrix D

The damping matrix is assumed as a Rayleigh Damping (see [3]), where the damping matrix
is a linear combination of the stiffness and mass matrices:

D = αM + βK (5.20)

The parameters α > 0 and β > 0 can be computed from (5.21) (see, [3]), where ζi is the
modal damping coefficient of the ith mode and ωi is the ith natural angular frequency. If
one knows ζi and ωi of at least two (or more, i.e. least squares fit) different modes, a system
of linear equations can be solved for α and β.

α + βω2
i = 2ωiζi (5.21)

In this thesis the information (ωi, ζi) to calculate α and β for the FE model without
shaker is taken from the identified model Hr{10+0}

10+6 of the beam without shaker. The values
for ζ1, ω1 (first mode) and ζ5, ω5 (fifth mode) are used to build a system of two linear
equations which is solved for α and β. In Figure 5.4,

ζ(ω) =
α

2ω
+

β

2
ω (5.22)

is visualized for the chosen values of α and β. Except for the third structural mode, this
choice results in a good agreement with the modal damping coefficients ζi of the identified
model Hr{10+0}

10+6 of the beam without shaker.3
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Figure 5.4: Modal damping coefficient ζ(ω) in case of Rayleigh Damping and modal
damping coefficients ζi (for i = 1, . . . , 5) of the identified model Hr{10+0}

10+6 of
the beam without shaker

Furthermore, the first five modal damping coefficients computed in this manner of the FE
model (of the beam without shaker) were replaced by the first five modal damping coefficients
ζi (for i = 1, . . . , 5) of the identified model (Hr{10+0}

10+8 ) (of the beam without shaker).

3Note that for Rayleigh Damping (see Figure 5.4) the mass proportional damping α
2ω has a particularly

intense effect on the modes with low natural frequency, whereas the stiffness proportional damping β
2ω has

a particularly intense effect on the modes with high natural frequency.
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5.1.9 Input matrix B and consistent node loads

In the context of the finite element method (FEM), external loads can only act at the element
nodes. If distributed loads or concentrated loads act between the nodal positions, they have
to be expressed as equivalent nodal loads. This is done by requiring that the resulting node
loads in compliance with the shape functions accomplish the same virtual work as the actual
(distributed) loads (see [3]).

In the case at hand the equivalent nodal loads for a Hermitian beam element can be
computed by

F (e) =




F1z

M1y

F2z

M2y




(e)

=

l
ˆ

0

ϕ(e)(x) · q(x) · dx (5.23)

where q(x) is the actual distributed (external) transverse force (or line load).
In Figure 5.5 the positive directions of the (generalized) element node loads are depicted.

l

M
(e)

1y
M

(e)

2y

F
(e)

1z
F

(e)

2z

z, w

x, ξ{1(e)} {2(e)}(e)

Figure 5.5: Generalized element node loads (positive direction) for a Hermitian beam
element

In the FE model the piezo patch actuators are approximated by two opposite single
moments, one at each end of a patch. Depending on the discretization of the beam (length of
a beam element l), a piezo patch is connected to one4 or more5 elements in the finite-element
model (Figure 5.7). Because the piezo patch actuators and sensors are always collocated
pairwise, special care in modeling is required (see Section 5.3.4 for more details).
In the FE model the shaker excitation force is modelled as a single transversal force.
The input vector (load vector) is

u =




M1

M2

M3

M4

F



. (5.24)

The consistent node loads for a single force and a single moment, respectively, are given in
Figure 5.6.

4only two nodes (i.e. four DOF) are influenced
5maximum number of influenced nodes is four (i.e. eight DOF)
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{1(e)} {2(e)}(e)

F

l

a b F (e) = ϕ(a) · F

F
(e)
1z = b2(3a+b)

l3
· F = κ1(a, b) · F

M
(e)
1y = b2a

l2
· F = κ2(a, b) · F

F
(e)
2z = a2(3b+a)

l3
· F = κ3(a, b) · F

M
(e)
2y = −a2b

l2
· F = κ4(a, b) · F

(a) Single force

{1(e)} {2(e)}(e)

l

a b

M

F (e) = dϕ(x)
dx

|x=a ·M

F
(e)
1z = −6ab

l3
·M = λ1(a, b) ·M

M
(e)
1y = b(b−2a)

l2
·M = λ2(a, b) ·M

F
(e)
2z = 6ab

l3
·M = λ3(a, b) ·M

M
(e)
2y = a(a−2b)

l2
·M = λ4(a, b) ·M

(b) Single moment

Figure 5.6: Consistent node loads for a Hermitian beam element

In the following, the construction of the input matrix B is explained by Example 5.2.
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Example 5.2: Input matrix B for an example beam with three elements

(1) (2) (3)

M1 M1

ae1

M2 M2

ae2

M3 M3

ae3

M4 M4

ae4

Fs

lll

as2as1 aF

as4as3

Figure 5.7: Three element beam with four piezo actuators and the shaker force as inputs.

bsi = l − asi; bei = l − aei for i = 1...4 (5.25)

bF = l − aF (5.26)

B =




−λ1(as1, bs1) + λ1(ae1, be1) 0 0 0 0
−λ2(as1, bs1) + λ2(ae1, be1) 0 0 0 0
−λ3(as1, bs1) + λ3(ae1, be1) −λ1(as2, bs2) + λ1(ae2, be2) −λ1(as3, bs3) 0 0
−λ4(as1, bs1) + λ4(ae1, be1) −λ2(as2, bs2) + λ2(ae2, be2) −λ2(as3, bs3) 0 0

0 −λ3(as2, bs2) + λ3(ae2, be2) −λ3(as3, bs3) + λ1(ae3, be3) −λ1(as4, bs4) + λ1(ae4, be4) κ1(aF, bF)
0 −λ4(as2, bs2) + λ4(ae2, be2) −λ4(as3, bs3) + λ2(ae3, be3) −λ2(as4, bs4) + λ2(ae4, be4) κ2(aF, bF)
0 0 λ3(ae3, be3) −λ3(as4, bs4) + λ3(ae4, be4) κ3(aF, bF)
0 0 λ4(ae3, be3) −λ4(as4, bs4) + λ4(ae4, be4) κ4(aF, bF)




(5.27)
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5.1.10 Output matrices for displacement (Cq) and velocity (Cv)

The four piezo sensors attached to the beam measure the outer fiber strain which is propor-
tional to the curvature of the beam. For this reason the second derivative of the displacement
w with respect to the length coordinate x is needed. Thereby, x is the local length within
an element. In equation (5.28) only the shape functions ϕi depend on x.

w(x) =

4∑

i=1

ϕi(x) · qi = ϕ1(x) · q1 + ϕ2(x) · q2 + ϕ3(x) · q3 + ϕ4(x) · q4 (5.28)

Inserting (5.3) into (5.10) and calculating the second derivative leads to:

d2ϕ1(x)
dx2 = 12

l3
· x− 6

l2
d2ϕ2(x)

dx2 = 6
l2
· x− 4

l
d2ϕ3(x)

dx2 = 6
l2
− 12

l3
· x

d2ϕ4(x)
dx2 = 6

l2
· x− 2

l

(5.29)

The curvature is calculated by (5.30):

d2w(x)

dx2
=

4∑

i=1

d2ϕi(x)

dx2
· qi =

4∑

i=1

ϕ′′
i (x) · qi (5.30)

In the Euler-Bernoulli beam theory the bending strain in the outer fiber εbending(x) is
computed by

εbending(x)
.
= −h

2
· d

2w(x)

dx2
, (5.31)

where h is the thickness of the beam.
An ideal sensor measures the strain in a single point. For this reason in the FE model

the curvature is calculated only by the four degrees of freedom from one particular element.
Depending on the global position of a sensor on the beam, the local length x within the
corresponding element (e) (Figure 5.8) is computed and used in Equations (5.29) and (5.30).
A row of the output matrix for displacement (Cq) contains for each of those four DOF (i.e.
for each of those four columns), belonging to that element (e) on which the strain sensor
is placed, the twice differentiated shape function (d

2ϕi(x)
dx2 for i = 1, . . . , 4) evaluated at the

local length x within this element (e), scaled by −h
2
. The rest of the entries in that row of

Cq are zeros. This is best illustrated by Example 5.3.

Example 5.3: Output matrix for displacement Cq for an example beam with
three elements

For the three element beam in Figure 5.8 the pattern of the output matrix for displacement (Cq)
is given in Equation (5.32).
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(1) (2) (3)

lll

L

x1 x2 x4

x3

Figure 5.8: Three element beam with four sensors. xi is the local sensor position
within an element.

Cq = −h

2




ϕ′′
1(x1) ϕ′′

2(x1) ϕ′′
3(x1) ϕ′′

4(x1) 0 0 0 0
0 0 ϕ′′

1(x2) ϕ′′
2(x2) ϕ′′

3(x2) ϕ′′
4(x2) 0 0

0 0 ϕ′′
1(x3) ϕ′′

2(x3) ϕ′′
3(x3) ϕ′′

4(x3) 0 0
0 0 0 0 ϕ′′

1(x4) ϕ′′
2(x4) ϕ′′

3(x4) ϕ′′
4(x4)


 (5.32)

Because modelled outputs are only displacements, the velocity output matrix Cv is zero.

5.1.11 Implementation of boundary conditions

Depending on the boundary conditions, zero, one, or two DOF of the first and/or the last
node of the beam are locked by simply deleting the row and column corresponding to the
individual DOF6 in the global stiffness, mass and damping matrices (K, M , D), the row
in the input matrix (B) and the column in the output matrices7 for displacement (Cq) and
velocity (Cv ). In MATLAB® this is done by just indexing the remaining columns and rows.

The following relationship in terms of the number of degrees of freedom of the beam nd

holds:

nd = (ne + 1) · dn − dl (5.33)

ne: - number of elements
dn: - number of DOF per node (dn = 2)
dl: - number of locked DOF (depending on the boundary conditions)

6translational or rotatory DOF
7as well as for the in Section 5.4.1 described acceleration output matrix Ca
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5.2 Second-Order Structural Model

The system representations of Section 5.2.1 and 5.2.2 are based on the textbook [5].

5.2.1 Nodal model in nodal coordinates

The finite-element model directly results in a nodal model in nodal coordinates represented
by the second-order matrix differential equation in terms of nodal displacements q:

Mq̈ +Dq̇ +Kq = Bu

y = Cqq +Cvq̇
(5.34)

M : (nd × nd) - mass matrix
D: (nd × nd) - damping matrix
K: (nd × nd) - stiffness matrix
B: (nd × r) - input matrix
Cq: (m× nd) - displacement output matrix
Cv: (m× nd) - velocity output matrix
q: (nd × 1) - nodal displacement vector
q̇: (nd × 1) - nodal velocity vector
q̈: (nd × 1) - nodal acceleration vector
u: (r × 1) - input vector
y: (m× 1) - output vector

nd: number of degrees of freedom of the beam
r: number of inputs (number of actors + shaker excitation force )
m: number of outputs (number of sensors on the beam)

5.2.2 Modal model in modal coordinates

The solution of the second-order matrix differential equation for a structure (in this case a
beam) without external excitation (u(t) = 0 for all t) and zero damping (D = 0),

Mq̈ +Kq = 0, (5.35)

is q = φie
jωit, which leads to a generalized eigenvalue/eigenvector problem

(
K − ω2

iM
)
φie

jωit = 0, (5.36)

for which a nontrivial solution exists if

det
(
K − ω2

iM
)
= 0 (5.37)

is true. In this case it is satisfied for a set of nd generalized eigenvalues ω2
i (i = 1, . . . , nd)

and ωi is called the ith natural angular frequency.
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The modal model in modal coordinates can be derived by a transformation of the nodal
model in nodal coordinates using the modal matrix

Φ =
[
φ1 φ2 . . . φi . . . φnm

]
=




φ11 φ12 . . . φ1i . . . φ1nm

φ21 φ22 . . . φ2i · · · φ2nm

...
...

. . .
...

...
... φji φjnm

...
...

. . . . . .
...

φnd1 φnd2 . . . φndi φndnm




, (5.38)

whose nm columns consist of the nm generalized eigenvectors (“mode shapes”) φi (i =
1, . . . , nm)8, as a transformation matrix.9

The modal matrix Φ diagonalizes the mass matrix (M) and the stiffness matrix (K)

Mm = Φ
TMΦ (5.39)

Km = Φ
TKΦ (5.40)

and, in the case of a Rayleigh damping matrix (see Section 5.1.8), also the damping matrix
(D).

Dm = Φ
TDΦ. (5.41)

Introducing the modal displacement vector

q = Φqm (5.42)

in (5.34) and left-multiplying the resulting equation by Φ
T leads to

Φ
TMΦq̈m +Φ

TDΦq̇m +Φ
TKΦqm = Φ

TBu

y = CqΦqm +CvΦq̇m

(5.43)

and subsequently:

Mmq̈m +Dmq̇m +Kmqm = Φ
TBu

y = Cmqqm +Cmvq̇m

(5.44)

q̈m +M−1
m Dmq̇m +M−1

m Kmqm = M−1
m Φ

TBu

y = Cmqqm +Cmvq̇m

(5.45)

q̈m +M−1
m Dmq̇m +M−1

m Kmqm = Bmu

y = Cmqqm +Cmvq̇m
(5.46)

where
Bm = M−1

m Φ
TB, (5.47)

Cmq = CqΦ and Cmv = CvΦ (5.48)

8Without mode reduction, the number of regarded natural modes nm is equal to the number of degrees
of freedom nd.

9In (5.38) φji is the jth generalized displacement of the ith mode.
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Mm: (nm × nm) - modal mass matrix
Dm: (nm × nm) - modal damping matrix
Km: (nm × nm) - modal stiffness matrix
Bm: (nm × r ) - modal input matrix
Cmq: (m× nm) - modal displacement output matrix
Cmv (m× nm) - modal velocity output matrix
qm: (nm × 1) - modal displacement vector
q̇m: (nm × 1) - modal velocity vector
u: (r × 1) - input vector
y: (m× 1) - output vector

q̈m + 2ZΩq̇m +Ω
2qm = Bmu

y = Cmqqm +Cmvq̇m
(5.49)

Ω: (nm × nm) - diagonal matrix of natural angular frequencies
Z: (nm × nm) - diagonal matrix of modal damping

Ω
2 = M−1

m Km (5.50)

Ω = diag{ωi} (5.51)

Z = 0.5 ·M− 1
2

m K
− 1

2
m Dm = diag{ζi} (5.52)

Note that a modal representation of a structure (5.49) is a set of uncoupled equations
(5.53)

q̈mi + 2ζiωiq̇mi + ω2
i qmi = bTmiu

yi = cmqiqmi + cmviq̇mi

y =
∑nm

i=1 yi

(5.53)

where the structural response y is the sum of modal responses yi. This leads to a number
of useful properties that simplify the analysis. [5]

5.2.3 Frequency response matrix of a structure (in modal coordi-

nates) and its distinct modes

From modal coordinates (5.49) the frequency response of a structure is derived by

G(jω) = (Cmq + jωCmv)
(
Ω

2 − ω2
I+ 2jωZΩ

)−1
Bm (5.54)

The frequency response of the ith mode is obtained from (5.53) as

Gmi(jω) =
(cmqi + jωcmvi) b

T
mi

ω2
i − ω2 + 2jζiωiω

(5.55)

The structural frequency response is a sum of modal frequency responses
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G(jω) =
nm∑

i=1

Gmi(jω) (5.56)

and the structural frequency response at the ith resonant frequency is approximately equal
to the ith modal frequency response at this frequency [5] if ζi is small (ζi ≪ 1)

G(jωi) ∼= Gmi(jωi) =
(−jcmqi + ωicmvi) b

T
mi

2ζiω
2
i

for i = 1, . . . , nm (5.57)

5.3 State-Space Structural Model

The state-space representations of Section 5.3.1 and 5.3.2 are based on the textbook [5].

5.3.1 Nodal model in nodal coordinates

The system (5.34) of nd coupled second-order linear ordinary differential equations (ODEs)
of order 2 can be rewritten into a system of 2nd first-order ODEs in state-space form by
defining the state-space vector xn as a combination of the (structural) nodal displacement
vector q and the (structural) nodal velocity vector q̇: [7]

xn =

[
xn1

xn2

]
=

[
q

q̇

]
(5.58)

Assuming that the mass matrix M is non-singular, this choice for xn leads to:

An =

[
0 I

−M−1K −M−1D

]
Bn =

[
0

M−1B

]
Cn =

[
Cq Cv

]
(5.59)

Thus, the common state-space form is obtained:

ẋn = Anxn +Bnu (5.60)

y = Cnxn +Du (5.61)

(where D = 0)

5.3.2 Modal model in modal coordinates

Also the system (5.49) of nm uncoupled second-order ODEs of order 2 can be rewritten into a
system of 2nm first-order ODEs in state-space form. The following three state-space models
in modal coordinates are derived from (5.49) by choosing three different state vectors xm.

One of the main reasons to use a modal instead of a nodal state-space representation is
that in case of high-order nodal models (as obtained via FE modeling), the order can easily
be reduced in the modal representation by truncating higher modes (“modal truncation”)
without significantly changing system behavior. [7]
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5.3.2.1 First model

xm =

[
xm1

xm2

]
=

[
Ωqm

q̇m

]
(5.62)

A =

[
0 Ω

−Ω −2ZΩ

]
B =

[
0

Bm

]
C =

[
CmqΩ

−1 Cmv

]
(5.63)

5.3.2.2 Second model

xm =

[
xm1

xm2

]
=

[
Ωqm

ZΩqm + q̇m

]
(5.64)

A =

[
−ZΩ Ω

−Ω+Z2
Ω −ZΩ

]
B =

[
0

Bm

]
C =

[
CmqΩ

−1 −CmvZ Cmv

]

(5.65)
For small Z (Z2 ∼= 0 ):

A
.
=

[
−ZΩ Ω

−Ω −ZΩ

]
B =

[
0

Bm

]
C =

[
CmqΩ

−1 −CmvZ Cmv

]
(5.66)

5.3.2.3 Third model

xm =

[
xm1

xm2

]
=

[
qm

q̇m

]
(5.67)

A =

[
0 I

−Ω
2 −2ZΩ

]
B =

[
0

Bm

]
C =

[
Cmq Cmv

]
(5.68)

5.3.3 Modal form (Modal model with block-diagonal state matrix
Amb)

The state vector xmb (5.71) of a modal state-space representation with block-diagonal state
matrix Amb

ẋmb = Ambxmb +Bmbu (5.69)

y = Cmbxmb +Dmbu (5.70)

consists of nm independent components xmi. Hereby, xmi represents the state vector of the
ith mode (modes are usually sorted by their natural frequency ωi) and consists of two states
xmi1 and xmi2.

xmb =




xm1

xm2
...

xmi
...

xmnm




xmi =

[
xmi1

xmi2

]
(5.71)
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Thus, the block-diagonal (2nm × 2nm) state matrix Amb consists of nm (2× 2) matrices
Ami and the number of states n = 2nm. The input matrix Bmb (2nm × r) is filled with nm

(2× r) matrices Bmi and the output matrix Cmb (m× 2nm) contains nm (m× 2) matrices
Cmi.

Amb = diag(Ami) Bmb =




Bm1

Bm2
...

Bmnm


 Cmb =

[
Cm1 Cm2 . . . Cmnm

]

(5.72)
The (m×r) feed-through matrix of a state-space system is invariant with respect to state

transformations, thus Dmb = D.10

In this work, a modal state-space representation with block-diagonal state matrix Amb

as given in (5.69)-(5.70) is referred to as modal form. The following three modal forms are
common in structural analysis:

5.3.3.1 Modal form 1

xmi =

[
ωiqmi

q̇mi

]
(5.73)

Ami =

[
0 ωi

−ωi −2ζiωi

]
Bmi =

[
0
T

bTmi

]
Cmi =

[
cmqi

1
ωi

cmvi

]
(5.74)

5.3.3.2 Modal form 2

xmi =

[
ωiqmi

ζiωiqmi + q̇mi

]
(5.75)

Ami =

[
−ζiωi ωi

−ωi −ζiωi

]
Bmi =

[
0
T

bTmi

]
Cmi =

[
cmqi

1
ωi

− cmviζi cmvi

]

(5.76)

5.3.3.3 Modal form 3

xmi =

[
qmi

q̇mi

]
(5.77)

Ami =

[
0 1

−ω2
i −2ζiωi

]
Bmi =

[
0
T

bTmi

]
Cmi =

[
cmqi cmvi

]
(5.78)

10So far D is a zero matrix, but in Section (5.3.4) this will change, due to the properties of this FE model
(no degrees of freedom in longitudinal direction and representation of a piezo actuator as two opposite single
moments) and the fact, that a strain sensor and piezo actuator are always located opposite to each other
pairwise on the beam.
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5.3.4 Introducing a non-zero state-space feed-through matrix D

For the purposes of this thesis it is not of interest to consider any displacements in the
beam’s longitudinal direction. The respective DOF are therefore neglected in the employed
Hermitian beam element formulation (see Figure 5.1 on page 26) which, in turn, reduces the
system order of the FE model.

In Figure 5.9 the simplified model concept for representing an input of a piezo patch
actuator in the analytical model is depicted.

h

complex shear force distribu-
tion in the adhesive layer

Reality:

modelled by state-space feed-
through matrix (assuming
instantaneous collocation
feedthrough )

Mpiezo(t) Mpiezo(t)

fzx(x, t)

Fpiezo(t) Fpiezo(t)

Simplified modelling concept:

simplification step

modelled by moment input of
FE model (utilizing Hermitian
beam elements)

actuator approximated by two
opposite single forces

piezo patch actuator

piezo patch sensor

system modelling

NEW:

hpiezo ≪ h

Fpiezo(t) Fpiezo(t)

beam (l × b× h)

xy

z

Figure 5.9: Simplified model concept piezo patch actuator (utilizing moment input of
FE model and state-space feed-through matrix D)

Note that each sensor measures the outer fiber strain which can be decomposed into the
strain εbending due to pure bending and the strain εtensile due to pure tension.11

While bending strain εbending is expressed via d2w
dx2 and, consequently, via the beam’s

deformation state, the dynamics in x-direction are neglected (considered instantaneous) and
thus εtensile can only be modelled by an appropriate feed-through term.

εsensor = εbending + εtensile (5.79)

εbending = −h

2
· d

2w

dx2
(5.80)

11The FE model described in Section (5.1) computes only εbending.
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εtensile =
Fpiezo

E · b · h (5.81)

Fpiezo =
2

h
·Mpiezo (5.82)

εsensor: - outer fiber strain measured by an applied piezo patch sensor
εbending: - bending strain computed by the FE model as in Section (5.1.10)
εtensile: - additional tensile strain caused by a piezo actuator
Mpiezo: - input to the state-space system (moment Mi)
Fpiezo: - force of a piezo patch actuator (normal force in a segment of the

beam where a piezo actuator is attached)
E: - Young’s modulus
b: - width of the beam
h: - thickness of the beam

Dε =
[
I[4×4] 0[4×1]

]
· 1

E · b · h · 2
h

(5.83)

Here the input vector u is defined as u =
[
M1 . . . M4 F

]T
.

5.4 Acceleration Output at the Shaker Position ẅs

5.4.1 Second-order nodal acceleration output matrix Ca

The output equation of the nodal second-order matrix differential equation in the case of an
acceleration measurement is:

y = Caq̈ (5.84)

Ca: (ma × nd) - nodal acceleration output matrix
q̈: (nd × 1) - nodal acceleration vector
y: (ma × 1) - acceleration output vector

nd: number of degrees of freedom of the beam
ma: number of acceleration outputs (number of acceleration sensors on the beam)

The second derivative with respect to time of equation (5.11) is:

ẅ(x) =
4∑

i=1

ϕi(x) · q̈i (5.85)

As one can see, the shape functions itself do not change (since they are no function of time).
Hence, a row of the second-order nodal acceleration output matrix Ca (ma×nd) contains in
each of those four columns belonging to the DOF (q(e)1 , q(e)2 , q(e)3 , q(e)4 ) of that element (e) on
which the acceleration sensor is placed, the shape function ϕi(x) (i = 1, . . . , 4) belonging to
the individual DOF (q(e)i ) evaluated at the local length x within this element (e). The rest
of the entries in that row of Ca are zero.
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Example 5.4: Nodal acceleration output matrix Ca for an example beam with
three elements

For the three element beam with one acceleration sensor in Figure 5.10 the pattern of the nodal
acceleration output matrix respectively vector (Ca) is given in Equation (5.86).

(1) (2) (3)

lll

L

xs

ẅ

Figure 5.10: Three element beam with one acceleration sensor at the shaker position.
xs is the local length to the acceleration sensor within the third element.

Ca =
[
0 0 0 0 ϕ1(xs) ϕ2(xs) ϕ3(xs) ϕ4(xs)

]
(5.86)

5.4.2 Second-order modal acceleration output matrix Cma

The second derivative with respect to time of (5.42) is q̈ = Φq̈m. Inserting into (5.84) yields:

y = CaΦq̈m = Cmaq̈m (5.87)

5.4.3 Provisional modal acceleration output matrix Ĉma

First model:

The first derivative with respect to time of the modal state vector xm follows from
equation (5.62) to:

ẋm =

[
ẋm1

ẋm2

]
=

[
Ωq̇m

q̈m

]
(5.88)

y = Cmaq̈m = Cma[ 0 I ]ẋm (5.89)

Ĉma =
[
0 Cma

]
(5.90)

Second model: The first derivative with respect to time of the modal state vector xm

follows from equation 5.64) to:

ẋm =

[
ẋm1

ẋm2

]
=

[
Ωq̇m

ZΩq̇m + q̈m

]
(5.91)
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y = Cmaq̈m = Cma[ −Z I ]ẋm (5.92)

Ĉma =
[
−CmaZ Cma

]
(5.93)

Third model: The first derivative with respect to time of the modal state vector xm

follows from equation (5.67) to:

ẋm =

[
ẋm1

ẋm2

]
=

[
q̇m

q̈m

]
(5.94)

y = Cmaq̈m = Cma[ 0 I ]ẋm (5.95)

Ĉma =
[
0 Cma

]
(5.96)

5.4.4 Provisional modal acceleration output matrix Ĉmba (corre-
sponding to the block-diagonal state matrix Amb)

The provisional modal acceleration output matrix Ĉmba corresponding to a modal model
with a block-diagonal state matrix Amb (modal form) is:

Ĉmba =
[
Ĉma1 Ĉma2 . . . Ĉmai . . . Ĉmanm

]

Modal form 1:
Ĉmai =

[
0 cmai

]
(5.97)

Modal form 2 :
Ĉmai =

[
−cmaiζi cmai

]
(5.98)

Modal form 3:
Ĉmai =

[
0 cmai

]
(5.99)

5.4.5 State-space modal acceleration output matrix Cmba and feed-

through matrix Dmba (corresponding to the block-diagonal
state matrix Amb)

Inserting (5.100) into (5.101) leads to (5.103).

ẋmb = Ambxmb +Bmbu (5.100)

y = Cmaq̈m = Ĉmaẋm = Ĉmbaẋmb (5.101)

y = Ĉmba(Ambxmb +Bmbu) (5.102)

= Cmbaxmb +Dmbau (5.103)
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Thus the state-space modal acceleration output matrix Cmba (in modal form) and feed-
through matrix Dmba are obtained by:

Cmba =ĈmbaAmb (5.104)

Dmba =ĈmbaBmb (5.105)

For reasons of simplification in the following sections the subscript (mb), which stands
for “corresponding to a modal model with a block-diagonal state matrix Amb” (i.e. modal
form) is neglected.

5.5 Validation of the FE Model of the Pure Beam

5.5.1 Natural frequencies (analytical and FE solution)

The natural frequencies of the FE model with unmounted shaker can be calculated directly
by solving a generalized eigenvalue/eigenvector problem for the stiffness matrix K and the
mass matrix M (see (5.36)). The first five analytical and FE natural frequencies fi (for
i = 1, . . . , 5) for different boundary conditions are listed in Table 5.3.12 The equations for
computing the analytical natural frequencies for different boundary conditions are given in
Table 3.1 on page 14 and the relevant physical parameters of the beam are listed in Table 5.2.
As expected, the absolute error between the FE and the analytical natural frequencies is
much smaller for the FE model with 200 elements as for the FE model with 5 elements.

bulk material AlMg3
free length L = 1890mm
beam width b = 75mm

beam thickness h = 3mm
density ρ = 2700 kg/m3

Young’s modulus E = 70GPa

Table 5.2: Required physical parameters of the beam for computing its natural frequen-
cies via analytical equations (see [9]).

12In this work a bearing on the left hand side always represents the upper bearing of the experimental
setup, whereas a bearing on the right hand side represents the lower bearing of the testbed.
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boundary mode natural natural absolute natural absolute
conditions frequency frequency error frequency error

(analytical) (FE) (FE)
(200 el.) (200 el.) (5 el.) (5 el.)

fA
i fFE200

i ∆fFE200
i fFE5

i ∆fFE5
i

(in Hz) (in Hz) (in 10−4Hz) (in Hz) (in Hz)

fixed-fixed 1 4.3956 4.3957 0.7603 4.3981 0.0025

L
x

z

2 12.1162 12.1168 6.3159 12.1652 0.0490
3 23.7555 23.7538 -16.9424 24.0825 0.3270
4 39.2662 39.2662 -0.0736 40.1230 0.8568
5 58.6569 58.6569 0.0272 67.3670 8.7100

hinged-hinged 1 1.9391 1.9391 0.0028 1.9393 0.0002

L
x

z

2 7.7563 7.7563 0.0011 7.7691 0.0129
3 17.4517 17.4517 0.0009 17.5902 0.1386
4 31.0252 31.0252 0.0037 31.7399 0.7147
5 48.4768 48.4768 0.0129 53.8053 5.3285

fixed-free 1 0.6907 0.6908 0.7444 0.6908 0.0001

L
x

z

2 4.3289 4.3291 1.6812 4.3313 0.0023
3 12.1223 12.1216 -7.4855 12.1651 0.0428
4 23.7536 23.7535 -1.4480 24.0320 0.2784
5 39.2662 39.2662 0.0877 39.8872 0.6210

fixed-hinged 1 3.0298 3.0292 -6.1306 3.0300 0.0002

L
x

z

2 9.8177 9.8166 -11.5885 9.8425 0.0248
3 20.4807 20.4815 7.0675 20.7008 0.2201
4 35.0245 35.0245 0.0051 35.9241 0.8996
5 53.4457 53.4457 0.0172 59.6274 6.1817

Table 5.3: Comparing analytical and FE solution for the natural frequencies of the pure
beam (beam with unmounted shaker) for different boundary conditions.

5.5.2 Eigenmodes of the (pure) beam

Figure 5.11 shows the first five eigenvectors of the translational (left) and rotatory (right)
degrees of freedom calculated by the FE model13 printed over the length of the whole beam
(L). The upper bearing is at x = 0m and the lower bearing is at x = 1.890m.

The eigenvectors were obtained from the generalized eigenvalue/eigenvector problem
(5.36). The rows belonging to the eigenvectors of the translational respectively rotatory
degrees of freedom are alternating in the modal matrix Φ (5.38).14

13200 elements
14Depending on the bounding conditions, exceptions of this alternating row order occur. (e.g.: If the lower

bearing is a hinged bearing the last two rows of Φ both belong to the eigenvectors of the rotatory degrees
of freedom.)
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Figure 5.11: Eigenvectors of the first 5 translational (left) / rotatory (right) degrees of
freedom (pure beam)
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5.5.3 Statical solution of the FE model (pure beam)

The statical model is always included in the dynamic model (5.106) by setting the derivatives
to zero. Setting ẋ = 0 in the state-space representation

ẋ = Ax+Bu

y = Cx+Du
(5.106)

leads to:
y∞ = (−CA−1B +D)u∞ (5.107)

Remark: The analytical solution was obtained by piecewise integrating the (static) dif-
ferential equation of the deflection curve (5.108) and considering the boundary/matching
conditions.

d2w(x)

dx2
= −My(x)

EJy
(5.108)

5.5.3.1 Additional output matrix for displacement, slope, and curvature (CmbBIG)

In order to be able to compute the static solution for the displacement w, the slope dw
dx

and the
curvature d2w

dx2 along the beam, an additional output matrix called CBIG was created. Because
in the actual experimental setup its corresponding sensors do not exist, they are referred to
as “virtual sensors”. The matrix CBIG (3mBIG×nd) computes the outputs of a large number
of “virtual sensors” (mBIG) to achieve a good resolution along the beam. In principle the
“virtual sensors” are uniformly distributed along the beam. Furthermore, “virtual sensors”
are placed at the positions of a “real” sensor and at the shaker attachment point. By using
the shape functions for the displacement w (see Section 5.1.1, Equation (5.10)) respectively
their first and second derivatives, the first mBIG rows contain the displacement w, the second
mBIG the slope dw

dx
and the third mBIG rows the curvature d2w

dx2 .
The output matrix CBIG is transformed analogous to the “normal” output matrix C (see

Sections 5.2 and 5.3). The result is a modal output matrix called CmbBIG, which corresponds
to the same state-space representation with block-diagonal state matrix Amb as Cmb. It is
used for an additional FE model (named “Big FE model”) with the state-space representation
of equation (5.109) to compute the static solution of the FE model along the beam.

ẋmb = Ambxmb +Bmbu

yBIG = CmbBIGxmb
(5.109)

5.5.3.2 Statical deformation by a single force

Figure 5.12 illustrates displacement w, slope w′ and curvature w′′ for different boundary
conditions, when a single force Fs = 10N acts on the pure beam at ls = 1.378m. In the
plots the number of “virtual sensors” is mBIG = 35. The number of elements is ne = 200 and
all possible modes are considered. The blue circles in the curvature plots show the value of
w′′ (calculated by the FE model) at the actual position of the “real” sensors, which because
of (5.31) is assumed proportional to the bending strain.
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Figure 5.12: Statical deformation of the pure beam, when a single force Fd = 10N is
applied at ls = 1.378m.
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5.5.3.3 Statical deformation by two opposite single moments

The plots (mBIG = 35, ne = 200) in Figure 5.13 show w, w′, and w′′ for different boundary
conditions, when two opposite single moments (same value: M = 10Nm) initiated by piezo
actuator number three act on the pure beam. The distance to the upper bearing (l3) and
the length of a piezo patch actuator (lA) as depicted in Figure 2.3 are given in Table 2.1 on
page 7.
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Figure 5.13: Statical deformation of the pure beam, when two opposite single moments
(same value: M = 10Nm) are applied via piezo actuator number three.
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5.5.3.4 Convergence study of the statical FE solution

Displacement oriented finite element method (FEM) discretize the field of displacement.
Because slope w′ and curvature w′′ (respectively bending strain εbending) are computed by
differentiating approximations of displacements w, they can be expected to be even less
precise than the displacements. In order to keep the error of the curvature approximations
acceptably low, the resolution of spatial discretization must be sufficiently high. [3]

In Figure 5.14 the convergence of the FE solution for different resolutions of spatial
discretization for a hinged-hinged beam is depicted. The spacing of the x-grid in all plots of
Figure 5.14 was set to the length of an element as used for the lowest depicted resolution of
spatial discretization (5 elements) to indicate the nodes of this particular FE model.

For the displacement w Figure 5.14a indicates that even with the lowest resolution of
spatial discretization the FE solution yields good results compared to the analytical solu-
tion. As expected, by increasing the resolution of spatial discretization the FE solution
converges to the analytical solution. At the highest chosen resolution of spatial discretiza-
tion in Figure 5.14a the deflection curves of the FE solution and the analytical solution are
indistinguishable.

For applied external moments, the resulting analytical solution for the slope w′ is not
continuously differentiable (Figure 5.14b): It has kinks at those positions where the moments
are initiated. The shape functions used by the FE model to compute the slope are the
differentiated shape functions originally designed for calculating the displacements and thus
are only quadratic instead of cubic. In order to achieve a good match for the FE solution at
the kinks of the analytical solution a low resolution of spatial discretization is inappropriate.
(see blue dots in Figure 5.14b).

Finally the shape functions used by the FE model to compute the curvature w′′ are
only polynomials of first order. In Figure 5.14c the convergence of the curvature w′′ is
illustrated. By taking a look at the curve of the FE model with the lowest resolution of
spatial discretization, it can easily be seen that between two nodes (visualized by the x-grid),
the FE solution approximates the curvature by straight lines. Although at the border of an
element the displacements w proceed continuously to the adjoining element, the curvatures
w′′ (and in the further the distortions) at the border of an element have discontinuities,
in particular leaps. Even with the highest depicted resolution of spatial discretization the
FE model is not capable to match the analytical solution well around the positions where
the moments are initiated (points of discontinuity), but in the middle of a piezo actuator
respectively sensor the FE model with the highest resolution of spatial discretization achieves
quite good results for w′′, which validates this resolution of spatial discretization.

In this work the beam was discretized by Hermitian beam elements all of the same length
l. In order to improve the FE model at those positions where the external loads are initiated,
by maintaining a reasonably small overall element number, the length of an element could
be reduced only in regions around these load initiation positions (h-refinement method, see
[3]). Moreover, utilizing a structural element as the Hermitian beam element for spatial
discretization the accuracy of the FE solution can be increased, when external loads are
applied only to nodes and not in between two nodes. [3]
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Figure 5.14: Convergence of the FE solution for different resolutions of the spatial dis-
cretization (hinged-hinged supported pure beam)
M1 = 80Nm, M2 = 50Nm, M3 = −100Nm, M4 = 20Nm, Fs = −90N
(Loads as depicted in Figure 5.7 on page 34)
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5.5.4 Statical solution for the outer fiber strain

For the outer fiber strain Figure 5.15 shows the difference between disregarding (εbending)
and considering (εoverall) the non-zero state-space feed-through matrix D, as derived in Sec-
tion 5.3.4.
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Figure 5.15: Comparison between εbending and εoverall (hinged-hinged supported pure
beam with 100 elements and 200 modes)
M1 = 80Nm, M2 = 50Nm, M3 = −100Nm, M4 = 20Nm, Fs = −90N
(Loads as depicted in Figure 5.7 on page 34)

It can be concluded that the consideration of tensile strain (and thus, the feed-through
term) is relevant.
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5.6 Beam with Mounted Shaker

In Figure 5.16 the model concept as used for the FE model for taking a mounted shaker into
account is depicted. The mass m1 (0.0242 kg) is the mass of both mounting prisms. For
simplification only one mounting prism is drawn in Figure 5.16. The mass m2 (0.0292 kg)
is the mass of the acceleration and force sensor (0.0192 kg) plus the half mass of the nylon
stinger (0.010 kg). The mass m3 (0.055 kg) is composed of the other half of the nylon stinger
plus the moving parts of the shaker (0.045 kg), denoted as armature mass in the data sheet.
The nylon stinger is modelled as a parallel combination of a spring (k1) and a velocity-
proportional damper (c1). Also, the suspension of the mass m3 inside the shaker is modelled
as a parallel combination of a spring (k2 = 2630 N/m, given in the data sheet of the shaker)
and a velocity-proportional damper with a (fully unknown, positive) damping coefficient
(c2).

k1 k2

c1 c2

m3m2m1

Beam

wsp, asp z, ż, z̈

Fd

Fm1
Fm1

Fest Fest

m2m1

F1 F1 Fd F2 F2

m3

wsp, asp z, ż, z̈

l s

Figure 5.16: Model concept used for the shaker mounting. (m1 is the mass of both
mounting prisms. For simplification only one prism is drawn.)

Applying the center-of-mass theorem on the masses m1, m2, and m3 yields Equations
(5.110) to (5.112).

m1asp = Fm1 (5.110)

m2asp = −Fest − F1 (5.111)

m3z̈ = F1 − F2 + Fd (5.112)

In Figure 5.16, Fd is the electrodynamic force acting on the moving parts of the shaker. The
dynamic force F1 of the nylon stinger is computed by Equation (5.113) and the dynamic
force F2 of the suspension inside the shaker on the shaker’s moving parts is computed by
Equation (5.114).

F1 = c1 · (ẇsp − ż) + k1 · (wsp − z) (5.113)
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F2 = c2 · ż + k2 · z (5.114)

Inserting (5.113) and (5.114) in (5.112) and performing a Laplace transformation of the later
with vanishing initial conditions (ż(0+) = z(0+) = 0, wsp(0+) = 0) yields:

z(s) =
c1
m3

· s+ k1
m3

s2 + 2ζω0 · s+ ω2
0︸ ︷︷ ︸

Gzwsp (s)

·wsp(s) +
1
m3

s2 + 2ζω0 · s+ ω2
0︸ ︷︷ ︸

GzFd
(s)

·Fd(s) (5.115)

2ζω0 =
c1 + c2
m3

(5.116)

ω2
0 =

k1 + k2
m3

(5.117)

Laplace transforming (5.113) with vanishing initial conditions and inserting (5.115) yields:

F1(s) = (c1 · s+ k1)(1−Gzwsp(s))︸ ︷︷ ︸
GF1wsp (s)

·wsp(s)− (c1 · s+ k1)Gzd(s)︸ ︷︷ ︸
GF1Fd

(s)

·Fd(s) (5.118)

A block diagram visualizing the shaker mounting is depicted in Figure 5.17, where the
block “FE Beam” is the system of the pure beam (as derived in Sections 5.1 to 5.4). To
perform the shaker mounting for the FE model the acceleration (asp) and displacement
(wsp) outputs (at the shaker position) and the force input (FB) (at the shaker position) are
used as inputs respectively outputs of feedback loops around system of the pure beam (block
“FE Beam”).

FE Beam

−1−GF1Fd
(s)

m1

−m2

−GF1wsp(s)

M(s)

Fd(s) +

−
F1 +

−
Fest +

−
FB

Fm1 asp

asp

wsp

ε(s)
asp(s)
wsp(s)
FB(s)

Fest(s)

Beam with mounted shaker (Laplace domain)

Figure 5.17: Shaker modeling via feedback loops around the FE model of the pure beam

Fest = −F1 −m2asp (5.119)

FB = Fest − Fm1 (5.120)
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The system order of the FE beam model with mounted shaker is larger by four than the
system order of the FE beam model without shaker.15

It turned out that the presumed high, but unknown stiffness of the nylon stinger (k1)
has a negligible influence on the system’s first eigenfrequencies. Therefore choosing k1 as
infinitely stiff is a reasonable choice, simplifying the following transfer functions:

lim
k1→∞

Gzwsp(s) = 1 (5.121)

lim
k1→∞

GzFd
(s) = 0 (5.122)

lim
k1→∞

GF1wsp(s) = m3 · s2 + c2 · s+ k2 (5.123)

lim
k1→∞

GF1Fd
(s) = 1 (5.124)

Of course, equations (5.121) to (5.124) exhibit that by letting k1 approach infinity, the
damping coefficient of the stinger (c1) has no influence on the system at all and that in
this case the disturbance force Fd directly acts on the beam (see (5.124)). This way, only
c2 remained as unknown parameter which had to be found by tuning. By comparing the
absolute difference of the first five natural frequencies of the identified model with mounted
shaker (Hr{10+0}

10+8 ) with those of the FE model with mounted shaker when varying c2 it turned
out that c2 = 15.8 N/m/s was a good choice.

Comparing the FE and the identified models will be the main subject of Chapter 6.

5.7 Validation of the FE Model of the Beam with Mounted

Shaker

5.7.1 Statical deformation by a single force

Figure 5.18 illustrates the displacement w, slope w′, and curvature w′′ for different boundary
conditions when a single force Fd = 10N (see Figure 5.16) is applied to the beam with
mounted shaker. Again, the analytical solution was obtained by solving the differential
equation of the deflection curve. In Table 5.4 the static solution(s) for Fest and wsp for this
load case are shown. The analytical and the FE solution match very well.

beam with mounted shaker
boundary conditions

analytical
solution

FE solution
(200 elements)

Fest Fest wsp

fixed-fixed 2.0573N 2.0573N 0.0030m
hinged-hinged 0.4867N 0.4867N 0.0036m

fixed-free 0.0512N 0.0512N 0.0038m
fixed-hinged 0.7903N 0.7903N 0.0035m

Table 5.4: Statical solution for Fest and wsp (see Figure 5.16) when a single force Fd =
10N is applied to the beam with mounted shaker

15When in Figure 5.17 GF1Fd
(s) is set to the static gain GF1Fd

(s) = 1, the disturbance force input Fd in
Figure 5.16 acts directly on the beam. In this case the system order of the FE beam model with mounted
shaker would be only two more than the system order of the FE beam model without shaker.
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(c) fixed-free beam with mounted shaker (200 elements, 400 modes)
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Figure 5.18: Statical deformation of the beam with mounted shaker, when a single force
Fd = 10N is applied at the shaker position ls = 1.378m. A cross is used to
mark the position of the shaker coupling point.
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5.7.2 Statical deformation by two opposite single moments

Figure 5.18 illustrates the displacement w, slope w′, and curvature w′′ for different boundary
conditions, when two opposite single moments (same value: M = 10Nm) are applied to
the beam with mounted shaker via piezo actuator number three. In Table 5.5 the static
solution(s) for Fest and wsp for this load case are shown. The analytical and the FE solution
match very well.

beam with mounted shaker
boundary conditions

analytical
solution

FE solution
(200 elements)

Fest Fest wsp

fixed-fixed 3.9890N 3.9890N −0.0015m
hinged-hinged 2.8158N 2.8158N −0.0011m

fixed-free −0.2419N −0.2419N 9.1977 · 10−5m
fixed-hinged 3.1428N 3.1428N −0.0012m

Table 5.5: Statical solution for Fest and wsp (see Figure 5.16) when two opposite single
moments (same value: M = 10Nm) are applied to the beam with mounted
shaker via piezo actuator number three.
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Figure 5.19: Statical deformation of the beam with mounted shaker, when two opposite
single moments (same value: M = 10Nm) are applied via piezo actuator
number three. A cross is used to mark the position of the shaker coupling
point.
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5.7.3 Eigenmodes

The eigenmodes (mode shapes) of the beam with mounted shaker were computed by utilizing
the eigenvectors of the state matrix of the beam with mounted shaker state-space model (see
Section 5.6).

Consider the homogeneous system (u = 0) with state-equation (5.125) and output-
equation (5.126).

ẋ = Ax (5.125)

y = Cx (5.126)

For a complex conjugate eigenvalue pair λi = µi ± jνi of the state matrix A the eigenval-
ue/eigenvector problem follows to

A (ui ± jvi) = (µi ± jνi) · (ui ± jvi) (5.127)

or (rearranged)

(A− (µi ± jνi) I) (ui ± jvi) = 0, (5.128)

where the vectors ui and vi span the mode’s oscillation plane.16 [13]
By choosing the projection on the real axis (ui) of the complex-valued eigenvector (ui ±

jvi) as state vector x in (5.126) the ith mode shape ymodei of the output vector y was
obtained by:

ymodei = Cui (5.129)

In order go get a good resolution along the beam the output matrix of “virtual sensors” (of
the beam with mounted shaker state-space model) was used in (5.129). For different clamping
conditions the first five displacement- (w), slope- (dw

dx
), and curvature- (d

2w
dx2 ) proportional

mode shapes of the FE beam with mounted shaker are depicted in Figure 5.20. The bending
strain (εbending) proportional mode shapes look like the curvature (d

2w
dx2 ) proportional mode

shapes because in linear elastic bending theory εbending ∝ d2w
dx2 (see (5.31)). In Figure 5.20,

circles mark the positions of the “real sensors” and a cross is used to mark the position of
the shaker coupling point.

16Once the state vector x(t) of the homogeneous system (5.125) lies within this plane it remains in it as it
spirally moves around the origin. For µi < 0 the trajectory approaches the origin asymptotically, for µi > 0
the trajectory moves away from the origin exponentially and for µi = 0 the trajectory stays at the same
orbit for all time. [13]
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mode shapes of the FE beam with mounted shaker
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5.8 Modeling a Piezo Patch Actuator as a Static Gain

and Regarding its Amplifiers

So far, the input of a piezo patch actuator is modelled as a moment input. Modeling a piezo
patch actuator as a static gain and including a simple amplifier model in the FE model will
be the purpose of this section.

An additional state-space system was created which computes the strain of the piezo
patch actuators (and not the sensors). This model(s) (FE model with/without mounted
shaker) was built by multiplying those rows of the output matrix C which correspond to the
strain computations of the sensors by the factor −(h+hp)/h and is called “FE model with εa
output” (hp = 0.3mm is the thickness of a piezo patch actuator). Let GεaM(s) be its MIMO
transfer function matrix with elements GεaMij(s). Its diagonal elements are GεaMii(s).

Figure 5.21 visualizes the characteristic equation of piezo patch actuator i (5.130) (see
also Section 2.1).

Fi(εai, Ui) = FB · (1− εai
ε0

) · Ui

Umax

(5.130)

Ui

Umax

1

ε0−
+

×

FB

h+hp

2

MiFi εai
FE model with

εa output

(channel ii)

Figure 5.21: Non-linear function of the force exerted by a piezo patch actuator to a
structure (due to an applied voltage input signal) of the own elongation

In order to simplify the computation, the static solution, the constant gain KεaMii (5.131)
was computed and used for the further computations. (A bar “¯” indicates a static solution.)

KεaMii = lim
s→0

GεaMii(s) (5.131)

ε̄ai = KεaMii ·
h + hp

2
· FB · (1− ε̄ai

ε0
) · Ui

Umax
(5.132)

ε̄ai(Ui) =
KεaMii · h+hp

2
· FB · Ui

Umax +KεaMii · h+hp

2
· FB · 1

ε0
· Ui

(5.133)

Equation (5.133) exhibits the nonlinear dependency of ε̄ai on the applied voltage input signal
Ui. By setting Ui = Umax a working point was chosen (indicated with a hat “ˆ”).

ˆ̄εai = ε̄ai(Ui = Umax) (5.134)

ˆ̄Fi = FB · (1−
ˆ̄εai
ε0

) (5.135)
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Ri =
ˆ̄Fi

FB

(5.136)

Mi =
h+ hp

2
· FB · Ri ·

1

Umax︸ ︷︷ ︸
KMUi

· Ui (5.137)

Mi = KMUi ·KhigV ·KdSPACE︸ ︷︷ ︸
KMui

· ui (5.138)

Ui: - voltage input piezo actuator i (for i = 1, . . . , 4)
ui: - equivalent input signal to a logged input signal ul

i (for
i = 1, . . . , 4) of the experimental setup (see Figure 2.4)

ˆ̄εai: - max. strain in piezo patch actuator i (computed by the statical
FE model)

ˆ̄Fi: - max. force applied by piezo patch actuator i (computed by the
statical FE model)

Ri: - ratio between max. applied force ˆ̄Fi and blocking force
KMUi: - gain from voltage input piezo actuator Ui to moment Mi (FE

input)
KhigV: - gain of the piezo actuator amplifier (high voltage amplifier)

KhigV = 200 V/V
KdSPACE: - gain of the DAC (see Figure 2.4) KdSPACE = 10V
KMui: - overall gain at the input side from ui to moment Mi (as static

gain computed)

In Table 5.6 the computed values for Ri are listed (hinged-hinged beam). For a hinged-
hinged beam with unmounted shaker the values of Ri have to be all the same, because the
curvature is zero along the beam (see Figure 5.13b) except in the regions of the piezo patch
actuators, where the curvature (and in the further the outer fiber strain) is of the same value,
when Mi = M (for i = 1, . . . , 4). For a hinged-hinged beam with mounted shaker the values
of Ri are different, because of the additional bearing introduced by the shaker spring k2 (see
Figure 5.16), the curvature (and in the further the outer fiber strain ) varies along the beam
(see Figure 5.19b on page 62).

FE model beam with unmounted
shaker

(hinged-hinged beam, 200 elements)

FE model beam with mounted shaker
(hinged-hinged beam, 200 elements)

R1: 0.8690 0.8703
R2: 0.8690 0.8814
R3: 0.8690 0.8887
R4: 0.8690 0.8847

Table 5.6: Computed ratio between max. applied force and blocking force for a hinged-
hinged beam
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5.9 Shaker Gain KFdd

The shaker gain KFdd = 1.2713 N/V · 10V was obtained by a separate identification utilizing
the measured force and acceleration signals of the impedance head, but this was not part of
this work.

5.10 Discussion of unmodelled effects/behaviour

The absence of degrees of freedom in the x-direction is regarded as entirely appropriate.
While it would be possible to model with additional degrees of freedom in the x-direction
the normal forces introduced by the actuators (in the respective sections of the beam) di-
rectly, this would increase the system order unnecessarily, since the influence on a collocated
sensor can be considered as instantaneous and thus in a state-space representation can be
easily regarded by a non-zero feed-through matrix. Furthermore, an increased effort in
modeling the shear stress in the adhesive layer is not considered appropriate, since the piezo
patch actuators (as well as the sensors) exhibit hysteresis behavior anyway and improvement
measures should focus on that area.

Moreover, it is assumed that bearing friction and additional stiffness, damping, and mass
introduced via measurement and control cabling should be taken into account rather, possibly
by using feedback loops utilizing slope/slope rate outputs and moment inputs respectively
acceleration outputs and force inputs.

Also the dynamics of physical system (e.g. amplifiers) on the plants input- respectively
output-side were not modelled. Assuming linearity, these neglected dynamics can be explic-
itly taken into account in a DK control design by utilizing an adequate multiplicative input
respectively output uncertainty description, see Section 8.6.2.2.



Chapter 6

Preparing and Comparing the Derived
Models

6.1 Physical Calibration of the Piezo Patch Sensors

In order to compare the two kinds of models (the FE model and the identified model), the
inputs and outputs of both types of models have to be expressed in the same physical units.
In Section 5.8 and 5.9 the inputs of the FE model(s) were adapted to match the physical
units of the identified model(s).

By using the conversion factors for the acceleration and force signals, documented in the
data sheet of the acceleration and force sensors, the Simulink® subsystem “MIMO beam”
(see Figure 2.4) directly yields these output signals in their mechanical units.

To obtain the outputs of the piezo patch sensors in their mechanical units (i.e. the outer
fiber strain), the static conversion factors Kεyli (for i = 1, . . . , 4) are obtained as follows.
Linearity is assumed.

The experimental beam is excited by applying a sine signal to the shaker (forced os-
cillation) of a frequency of fexcite = 5.5Hz. This frequency lies far away from the beam’s
(beam with unmounted shaker) natural frequencies (between its first and second natural
frequency), in a region where all four frequency responses from the shaker to the piezo patch
sensors are relatively flat and by this means insensible to a small frequency variation. This
choice of fexcite improves the accuracy of the following procedure:

After the beam’s transient behaviour has decayed, the harmonic system responses of the
four piezo patch sensors (with amplitudes ȳl1 to ȳl4) and the force sensor (with amplitude ȳl6)
are logged. The logged output signals yli(t) (indicated by the letter “ l”) are the input signals
to the output ports of the Simulink® subsystem “MIMO beam” (see Figure 2.4).

Let GFEb
di (s) be the transfer function from the force input to the strain output i (at the

position of piezo patch sensor i) of the FE model of the beam with unmounted shaker. Then,
the resulting amplitude (at steady state) of the strain signal (of sensor i), when a sinusoidal
force signal d(t) (6.1) of amplitude ȳl6 and frequency fexcite is applied to the FE model, is
obtained by using Equation (6.2).

d(t) = ȳl6 · sin(2πfexcitet) (6.1)

ȳFEbi = |GFEb
di (j2πfexcite)|ȳl6 (6.2)

68
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Finally, the conversion factor Kεyli for piezo patch sensor i is computed as the ratio
between the simulated output ȳFEbi of the FE model (beam with unmounted shaker) and the
measured outputs ȳli (for i = 1, . . . , 4).

Kεyli =
ȳFEbi

ȳli

For simplicity (and because the measurement lines of all piezo patch sensors are identical)
their mean value was used.

Kεyl =
1

4

4∑

i=1

Kεyli = 1.9321 · 10−5 (6.3)

6.2 Input/Output Scaling

Applying input/output-scaling to a MIMO transfer system by utilizing knowledge about
maximum signal amplitudes allows to compare the relative importance of different transfer
paths. Moreover, input/output-scaling is essential in order to apply the definitions of the
control goals in optimal and robust H∞ control (see Chapter 8). [6]

Let the unscaled (or originally scaled) MIMO system obtained in the previous sections
be

ŷ = Ĝû+ Ĝdd̂ ê = ŷ − r̂ (6.4)

where a hat (“̂”) is used to indicate signals in unscaled, physical units. The scaling is done
with the diagonal scaling matrices (Dd, Du, De) whose diagonal elements (ii) contain the
largest allowed (or expected) value (d̂imax, ûimax, êimax) of the associated signal magnitude
in the corresponding signal vector (d̂, û, ê).

The scaled variables are:

d = D−1
d d̂ u = D−1

u û y = D−1
e ŷ e = D−1

e ê r = D−1
e r̂ . (6.5)

This leads to the scaled transfer function matrices:

G = D−1
e ĜDu (6.6)

Gd = D−1
e ĜdDd (6.7)

The model in terms of scaled variables is:

y = Gu+Gdd e = y − r (6.8)

The following scaling matrices were used to scale the FE and identified models:

Dd = 0.3 Du = I[4×4] · 0.5 De =




Deε 0 0

0 Dea 0
0 0 DeF


 (6.9)

with
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Deε = Kεyl · 7.6 · I[4×4] Dea = 27.2m/s2 DeF = 6.5N (6.10)

All numerical values in (6.9) and (6.10) were chosen according to the largest measured
or applied absolute values occurred during the identification procedure.

6.3 Final Models

The input-output scaled final models for controller design and simulation are listed in Ta-
ble 6.1 (hinged-hinged beam with unmounted shaker) respectively Table 6.2 (hinged-hinged
beam with mounted shaker).

The notation “ID” is used to indicate a (discrete-time) model (Ts = 0.01 s) which origi-
nates from an identification procedure (see Chapter 4), whereas “FE” is used to indicate a
(continuous-time) model which originates from the finite element method (FEM) (see Chap-
ter 5). “b” is used to denote a model of the beam with unmounted shaker, while “bs” is used
to denote a model of the beam with mounted shaker. An additional “(ho)” is used to denote
a model of “high order”.

model
name

available models model
order

model origin (description)

IDb(ho) GIDb(ho) 16 identified system of the beam with
unmounted shaker H10+6 (see Section 4.3)

IDb GIDb 10 identified system of the beam with
unmounted shaker H

r{10+0}
10+6 (see

Section 4.3)

FEb(ho) GFEb(ho), GFEb(ho)
d 400 FEmodel of the beam with unmounted

shaker (100 elements, 200 modes)
FEb GFEb, GFEb

d 10 “modally truncated” (modes with natural
frequencies below 50Hz) “FEb(ho)-model”

Table 6.1: Model origin of input-output scaled final models of the hinged-hinged beam
with unmounted shaker

model
name

available models model
order

model origin (description)

IDbs(ho) GIDbs(ho), GIDbs(ho)
d 21 identified system of the beam with mounted

shaker H14+7 (see Section 4.4)
IDbs GIDbs, GIDbs

d 10 identified system of the beam with mounted
shaker H

r{10+0}
10+8 (see Section 4.4)

FEbs(ho) GFEbs(ho), GFEbs(ho)
d 400 FEmodel of the beam with mounted shaker

(100 elements, 200 modes)
FEbs GFEbs, GFEbs

d 10 “modally truncated” (modes with natural
frequencies below 50Hz) “FEbs(ho)-model”

Table 6.2: Model origin of input-output scaled final models of the hinged-hinged beam
with mounted shaker
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In Chapter 9 feedback controllers will be designed on the basis of the “IDbs-model” as
well as on the “FEbs-model”.

Remark: Because in Section 5.6 the stiffness of the nylon stinger k1 was chosen as infinite
(k1 → ∞) the FE model of the (hinged-hinged) beam with unmounted shaker (“FEb(ho)-
model”) and the FE model of the (hinged-hinged) beam with mounted shaker (“FEbs(ho)-
model”) have the same number of modes (100 elements ⇒ 200 modes).
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6.4 Comparing the Identified and FE Models for the Beam

without Shaker

Figure 6.1 compares the input-output scaled continuous-time FE and discrete-time (Ts =
0.01 s) ID (“high order”) models of the beam with unmounted shaker in a Bode magnitude
plot. The inputs u1 to u4 are associated with the piezo patch actuators and the outputs y1
to y4 are associated with the piezo patch sensors.

In the lower frequency range, the magnitude of the ID model is lower than the magnitude
of the FE model because the actual transfer function of a piezo patch sensor has globally
derivative behavior, which is not contained in the FE model. Nevertheless, the Bode mag-
nitude plot of the FE and ID models of the beam with unmounted shaker indicate a good
match in the depicted frequency range of interest, i.e. below 50Hz. Note that, compared
to the other modes, the first mode shows a higher relative mismatch, whereas, as evident in
Table 6.3, its absolute frequency deviation is of similar size.
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Figure 6.1: Comparing FE and ID (“high order”) models of the beam with unmounted
shaker in a Bode magnitude plot

The natural frequencies and modal damping coefficients of the two different kinds of
tenth-order models (“FEb-model”, “IDb-model”) are compared in Table 6.3. Because the FE
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model of the beam with unmounted shaker uses for its first five modal damping coefficients
ζFEbi (for i = 1, . . . , 5) the values ζ IDb

i of the identified beam with unmounted shaker model
(see Section 5.1.8), in Table 6.3 ∆ζbi = 0 (for i = 1, . . . , 5).

mode fFEb
i

(in Hz)
f IDb
i

(in Hz)
∆fb

i

= fFEb
i − f IDb

i

(in Hz)

ζFEbi

(in %)
ζ IDb
i

(in %)
∆ζbi

= ζFEbi − ζ IDb
i

(in %)

1 1.9391 2.1846 -0.2455 1.6749 1.6749 0
2 7.7563 7.7104 0.0459 0.5142 0.5142 0
3 17.4517 17.1042 0.3474 1.5735 1.5735 0
4 31.0252 29.8556 1.1696 0.9300 0.9300 0
5 48.4768 46.8771 1.5997 1.4229 1.4229 0

Table 6.3: Comparing natural frequencies and modal damping coefficients between FE
and identified models of the beam with unmounted shakers (“FEb-model”,
“IDb-model”)

6.5 Comparing the Identified and FE Models for the Beam

with Mounted Shaker

Figure 6.2 compares the input-output scaled continuous-time FE and discrete-time (Ts =
0.01 s) ID (“high order”) models of the beam with mounted shaker in a Bode magnitude plot.
As before, the inputs u1 to u4 are associated with the piezo patch actuators and the outputs
y1 to y4 are associated with the piezo patch sensors. The outputs y5 and y6 are associated
with the acceleration, and force, respectively (acceleration and force sensor at the shaker
position).

Again, as expected, the effect of the globally derivative behavior of the piezo patch sensors
is visible in the identified model.

An other difference between the Bode magnitude plot of the FE and ID models, especially
in the lower frequency range, is evident in the acceleration signal (output y5): The globally
derivative behavior (lim

s→0
asp(s) = 0) of all transfer-function matrix elements associated with

this output (y5) is not correctly modelled by the identified model. In general, because of
the relatively bad results achieved in the cross-validation (see Section 4.4, Table 4.3) the
acceleration output of the identified model should be treated with caution.

It should be pointed out that in order to obtain a good matching FE model of the beam
with mounted shaker as shown in Section 5.6 (see Figure 5.17), it was necessary to use high
resolution in spatial discretization (100 elements 200 modes) for the beam with unmounted
shaker in the first place. A reduction by “modal truncation” (should be and) was carried out
not until then (“FEbs-model”).
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Figure 6.2: Comparing FE and ID (“high order”) models of the beam with mounted
shaker in a Bode magnitude plot
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Figure 6.3 compares the input-output scaled continuous-time FE and discrete-time (Ts =
0.01 s) ID (“high order”) disturbance models of the beam with mounted shaker in a Bode
magnitude plot. The disturbance input d is associated with the excitation signal of the
shaker which introduces a force in direction of oscillation.

Note that the Bode magnitude plot associated with the force output (y6) show particularly
the low-frequency modes of the beam with mounted shaker.
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Figure 6.4 shows a good match for the phase plot of output y6, validating that in the FE
model the signs for the shaker mounting have been set correctly.
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Figure 6.4: Comparing FE and ID (“high order”) disturbance models of the beam with
mounted shaker in a phase plot for output y6 (associated with the force
sensor)

The natural frequencies and modal damping coefficients of the two different kinds of
tenth-order models (“FEbs-model”, “IDbs-model”) are compared in Table 6.4.

The fact that for the FE model with mounted shaker the natural frequency of the lowest-
damped, fourth mode (sharp peek) shows a large deviation ∆fbs

4 (when comparing it to the
identified model), leads to difficulties when designing controllers (based on the FE model)
to improve the damping of the fourth mode in the experiment, see Section 9.3.

mode fFEbs
i

(in Hz)
f IDbs
i

(in Hz)
∆fbs

i

= fFEbs
i − f IDbs

i

(in Hz)

ζFEbsi

(in %)
ζ IDbs
i

(in %)
∆ζbsi

= ζFEbsi − ζ IDbs
i

(in %)

1 4.4601 4.5332 -0.0731 2.1346 2.1192 0.0153
2 12.6525 12.8924 -0.2400 14.0135 14.4887 -0.4752
3 17.7772 17.8445 -0.0673 7.1113 8.9303 -1.8190
4 30.9467 29.9515 0.9952 1.2924 1.2332 0.0592
5 46.2427 45.4605 0.7822 3.8049 4.3655 -0.5606

Table 6.4: Comparing natural frequencies and modal damping coefficients between FE
and identified models of the beam with mounted shakers (“FEbs-model”,
“IDbs-model”)

Figure 6.5 compares the input-output scaled tenth-order models (GIDbs, GFEbs) in a
singular values plot.



6.5 Comparing the Identified and FE Models for the Beam with Mounted
Shaker 78

 

 

GFEbs

GIDbs

S
in

g
u
la

r
V
a
lu

es
(d

B
)

Frequency (Hz)
100 101

−50

−40

−30

−20

−10

0

10

20

Figure 6.5: Comparing FE and ID models of the beam with mounted shaker in a singular
values plot (inputs u1 to u4; outputs y1 to y4)



Chapter 7

Modally Weighted LQG Design

7.1 The LQG Problem

Linear Quadratic Gaussian (LQG) control assumes the plant dynamics linear and known
with stochastic noise excitation of known statistical properties

ẋ = Ax+Bu+w (7.1)

y = Cx+Du+ v (7.2)

where the process noise signal w and measurement noise signal v are usually assumed to
be uncorrelated1 zero-mean Gaussian stochastic processes (i.e. w and v are white noise
processes) with constant power spectral density matrices W and V respectively. [6, 7]

E
{
w(t)w(τ)T

}
= W δ(t− τ) (7.3)

E
{
v(t)v(τ)T

}
= V δ(t− τ) (7.4)

Given the noisy system in (7.1) - (7.2) the LQG control problem is to find the optimal
control u(t) which minimizes

J = E

{
lim
T→∞

1

T

ˆ T

0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt

}
, (7.5)

where Q and R are appropriately chosen constant real weighting matrices for the states x(t)
respectively the input u(t) such that Q = QT ≥ 0 (Q symmetric and positive semi-definite)
and R = RT > 0 (R symmetric and positive definite).

Because of the so-called separation theorem, the optimal solution of the LQG problem
(7.5) can be decomposed into finding the optimal constant state vector feedback gain KLQR

via the associated deterministic Linear Quadratic Regulator (LQR) problem and computing
a dynamic Kalman state estimator (observer) Kest(s), which has the same system order n as
the plant. [7] Instead of the usually non-(fully)-measurable state vector x, the estimated state
vector x̂ of the Kalman observer is fed to the state feedback controller KLQR (Figure 7.1).

1E
{
w(t)v(τ)T

}
= 0; E

{
v(t)w(τ)T

}
= 0

79
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G

Kest−KLQR

w
v

+

+ y

x̂

u

Figure 7.1: LQG architecture

7.2 The LQR Problem

The Linear Quadratic Regulator (LQR) problem is to find the optimal control u(t) which
minimizes the deterministic cost function (in x(t) and u(t))

JLQR =

ˆ ∞

0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt, (7.6)

where Q and R are appropriately chosen constant real weighting matrices for the states x(t)
respectively the input u(t) such that Q = QT ≥ 0 (Q symmetric and positive semi-definite)
and R = RT > 0 (R symmetric and positive definite).
The optimal solution for any initial state x0 = x(0) is

u(t) = −KLQRx(t) (7.7)

KLQR = R−1BTX (7.8)

where X = XT ≥ 0 is the unique symmetric and positive semi-definite solution of the
controller algebraic Riccati equation (CARE).

ATX +XA−XBR−1BTX +Q = 0 (7.9)

The closed-loop system with the state feedback controller KLQR is guaranteed to be
asymptotically stable if the matrix pair (A, B) is stabilizable and (A, Q) is detectable.

7.3 Kalman Filter

The Kalman filter (Figure 7.2) has the structure of a Luenberger state estimator (or observer)
with the dynamics

˙̂x = Ax̂+Bu+H(y −Cx̂−Du) (7.10)

The optimal filter gain H , which minimizes the steady-state error covariance (see [14])

Y = lim
t→∞

E
{
[x−x̂][x−x̂]T

}

is given by
H = Y CTV −1 (7.11)
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where the matrix Y = Y T ≥ 0 is computed as the unique symmetric and positive semi-
definite solution of the associated filter algebraic Riccati equation (FARE):

Y AT +AY − Y CTV −1CY +W = 0 (7.12)

The solutions to the CARE (7.9) and FARE (7.12), and thus the optimal gain matrices
KLQR respectively H exist, and the LQG-controlled system is internally stable, provided
the systems with state-space realizations (A, B, Q

1
2 ) and (A, W

1
2 , C) are stabilizable and

detectable. Thereby Q
1
2 (W

1
2 ) denotes the matrix square root of the positive semi-definite

matrix Q (W ).
The overall LQG controller (u(s) = KLQG(s)y(s)), which is of the same system order as

the plant is given by

KLQG(s)
ss
=

[
A−BKLQR −HC +HDKLQR H

−KLQR 0

]
(7.13)

Note that positive feedback is used to connect the controller KLQG(s) to the plant out-
put y.

´

(·)dt C
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D

B
+ +

+

˙̂x x̂ +

+

ŷ
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−

´

(·)dt C
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B
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ẋ x +

+

+
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u
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Kalman Filter
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Figure 7.2: LQG controller and noisy plant
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7.4 Modal Weighting Matrix Qm

Modal weighting is appropriate for cases in which certain undesirable eigenmodes of the
plant

G(s)
ss
=

[
A B

C D

]
(7.14)

shall be weighted. This is of special interest for active damping of flexible structures (such as
the beam investigated in this thesis), where each mode is excited almost independently and
the total structural response is the sum of modal responses (see, Equation 5.56 on page 40).
[5] For flexible structures it might be desirable to avoid critical resonances or because of some
performance criteria guarantee high damping within a certain frequency range of interest.
[13]

For each eigenvector sk of the state matrix A it is required that the auxiliary weighting
matrix Q̂ fulfills

Q̂sk = skmk for k = 1, . . . , n , (7.15)

where mk ≥ 0 is a scalar weighting factor and n is the number of states of the plant.
Collecting all scalar weighting factors mk in the diagonal matrix M and all eigenvectors sk
in the matrix S leads to:

Q̂S = SM , (7.16)

so the auxiliary matrix Q̂ reads
Q̂ = SMS−1. (7.17)

Finally, the symmetric state weighting matrix Qm for modal weighting is obtained as:

Qm = Q̂
T
Q̂

Equation (7.18) reveals that the kth eigenmode sk is weighted by the value of m2
k if Qm

is used as weighting Q in the deterministic cost function (7.6).

sTkQmsk = sTk Q̂
T
Q̂sk = mks

T
k skmk = m2

k with ‖sk‖2 = 1 (7.18)

Because of (7.18) it is ensured that the matrix pair (A, Qm) is detectable, if for all
eigenvalues of the state matrix A with ℜ{λk(A)} > 0 for the scalar weighting factor mk > 0
holds.



Chapter 8

Optimal & Robust H∞ Control Design
Methods

This chapter is mainly based on [6, 7].

8.1 General Control Problem Formulation for H∞ Opti-

mization

Many linear control problems1 can be formulated as shown in the block diagram in Figure 8.1.
[6] Then, the overall control objective is to find an internally stabilizing (see Definition 8.2
on page 99) controller K which based on the information in v, generates a control signal u
that counteracts the influence of w on z, thereby minimizing some system norm (here, the
H∞ norm) of the closed-loop transfer function from w to z. [6]

P

K

u v

w z

Figure 8.1: General control configuration (for controller synthesis)

The generalized plant P and controller K of Figure 8.1 are described by
[
z

v

]
=

[
P 11(s) P 12(s)
P 21(s) P 22(s)

]

︸ ︷︷ ︸
P (s)

[
w

u

]
(8.1)

u = K(s)v, (8.2)

where a state-space realization of P is given by

P (s)
ss
=




A B1 B2

C1 D11 D12

C2 D21 D22


 . (8.3)

1If control design with respect to model uncertainty is an issue, an additional perturbation block ∆ is
added to the block diagram. More on that in Section 8.6.3 (see Figure 8.9 on page 96)

83



8.2 Prerequisites for Standard H∞ Design 84

The signals are generally multivariate (i.e., vectors): u are the control variables, v are
the measured variables, w are the exogenous signals such as disturbances d and reference
commands r, and z are the exogenous outputs which are to be minimized. The latter
signal, z =

[
zT
1 zT

2 . . .
]T

, is usually a vector of frequency-weighted signals (e.g. z1(s) =
W 1(s)y(s) or z1(s) = W 1(s)e(s) and z2(s) = W 2(s)u(s)).

The closed-loop transfer function from w on z is obtained by a lower linear fractional
transformation (LFT)

z = Fl(P ,K)w (8.4)

where
Fl(P ,K) = P 11 + P 12K(I− P 22K)−1P 21. (8.5)

8.2 Prerequisites for Standard H∞ Design

The central prerequisites to apply the standard methods for H∞ (sub-)optimal control design
are outlined in the following (based on [7, 6]).

Definition 8.1: Assumptions for H2 and H∞ standard design problems [7]

The following set of assumptions is posed on the standard feedback design problem
statement for H2 and H∞ optimization, see [6]. Of these, A1-A4 are required and
A5-A8 can (partially) be relaxed (in exchange for more complex solutions which are
available in specialized literature but which are omitted here).

Assumption Comment
A1.: (A, B2, C2) is stabilizable

and detectable
required for the existence of a stabilizing K

A2.: D12 and D21 have full rank sufficient to ensure that K is proper (i.e.
realizable)

A3.:

[
A− jωI B2

C1 D12

]
has full

column rank for all ω

A.3 and A.4 ensure that K does not try to
cancel poles or zeros on the imaginary axis
which would result in closed-loop instability

A4.:

[
A− jωI B1

C2 D21

]
has full

row rank for all ω
A5.: D11 = 0 and D22 = 0 necessary for H2 case (strictly proper

plants), simplifying the solution in the H∞
case (if not fulfilled, an equivalent problem
in which A5 holds can be stated, see [6])

A6.: D12 =

[
0

I

]
and

D21 =
[
0 I

]
simplifies the solution, by scaling u and v

and by a unitary transformation of w and
z, this can always be obtained

A7.: DT
12C1 = 0 and

B1D
T
21 = 0

common for LQG control which can be cast
as H2 optimization problem (see [6])

A8.: (A, B1) is stabilizable and
(A, C1) is detectable

If A7 is true, A8 replaces A3 and A4.
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8.3 H∞ (Sub-)Optimal Control

In the following the standard solution for the H∞ suboptimal controller design problem
is presented. The solution includes the central controller and the parametrization of all
stabilizing suboptimal controllers (adopted from [7]).

Given a generalized plant P (s) as in (8.3) which satisfies the assumptions A1-A8 in
Definition 8.1, all stabilizing controllers K(s) that satisfy

‖Fl(P ,K)‖∞ < γ (8.6)

for a suboptimal bound γ > γmin are obtained as follows:

1. Let X∞ = XT
∞ ≥ 0 be a symmetric, positive semi-definite solution of the algebraic

Riccati equation (ARE)

ATX∞ +X∞A+CT
1C1 +X∞(γ−2B1B

T
1 −B2B

T
2 )X∞ = 0 (8.7)

such that ℜ
{
λi[A+ (γ−2B1B

T
1 −B2B

T
2 )X∞]

}
< 0 ∀i (called “stabilizing solution”

of (8.7));

2. let Y ∞ = Y T
∞ ≥ 0 be a symmetric, positive semi-definite solution of the ARE

AY ∞ + Y ∞AT +B1B
T
1 + Y ∞(γ−2CT

1C1 −CT
2C2)Y ∞ = 0 (8.8)

such that ℜ
{
λi[A+ Y ∞(γ−2CT

1C1 −CT
2C2)]

}
< 0 ∀i (called “stabilizing solution”

of (8.8)); and

3. let ρ(X∞Y ∞) < γ2 be fulfilled.

Then, all controllers K(s) are given by K = Fl(Kcent,Q) where the “central controller”
Kcent is of the same order as P and is given by

Kcent(s)
ss
=




A∞ −Z∞L∞ Z∞B2

F∞ 0 I

−C2 I 0


 (8.9)

A∞ = A+ γ−2B1B
T
1X∞ +B2F∞ +Z∞L∞C2 (8.10)

Z∞ = (I− γ−2Y ∞X∞)−1 (8.11)

L∞ = −Y ∞CT
2 (8.12)

F∞ = −BT
2X∞ (8.13)

and Q(s) is any stable proper transfer function such that ‖Q‖∞ < γ holds.

If the stated conditions on the Riccati equations listed above (items 1–3)
are not fulfilled, the tested value of γ is too small and hence infeasible. This
is utilized to formulate a bisection algorithm, called γ-iteration, to search for a
feasible value γ ≥ γmin close to the optimum to within a tolerance ε such that
γ−γmin < ε holds. The MATLAB® Robust Control Toolbox algorithm hinfsyn

implements this procedure (γ-iteration and the solution to the suboptimal H∞
design problem with relaxed conditions). Therein, several methods to compute
the solutions X∞, Y ∞ are implemented. Also, assumption A2 in Definition 8.1
may be violated and a realizable controller for slightly perturbed entries in D is
computed in this case.[7]
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8.4 Frequency-Dependent Weighting Functions for H∞
Control Design

This section is based on [7].
Given a scalar stable transfer function (weighting function) W (s) and a stable (MIMO)

transfer function matrix, for example the sensitivity function S(s), the following holds:

σ̄ (W (jω) · S(jω)) = σ̄ (W (jω)) · σ̄ (S(jω)) = |W (jω)| · σ̄ (S(jω)) ∀ω ∈ R (8.14)

Note that the first equality follows from the fact that the multiplicative matrix norm
inequality (A.29) is fulfilled with equality because the product is a scalar product.

Consider that as a result of an H∞ control design, the weighted sensitivity function WS

fulfills
‖WS‖∞ < 1 ⇔ |W (jω)| · σ̄ (S(jω)) < 1 ∀ω ∈ R. (8.15)

Then, this is equivalent to

σ̄ (S(jω)) <
1

|W (jω)| =
∣∣W−1(jω)

∣∣ ∀ω ∈ R, (8.16)

so, in this example the inverse weight magnitude |W−1(jω)| is a valid upper bound for the
maximum singular value of S(jω) at all frequencies.

A case where σ̄ (S(jω)) exceeds its upper bound |W−1(jω)|, resulting in ‖WS‖∞ > 1, is
depicted in Figure 8.2.
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(a) Sensitivity function S(s) and weighting function
W (s)
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Figure 8.2: Case where σ̄ (S(jω)) exceeds its upper bound |W−1(jω)|, resulting in
‖WS‖∞ > 1 (adopted from [6])

Equation (8.16) sketches the following weight selection procedure to construct weights
for (closed-loop) transfer functions X(s): [7]

1. Define a desired upper bound on σ̄ (X(jω)) ∀ω ∈ R.

2. Shape a suitable scalar, minimum-phase, stable, invertible, and bi-proper transfer func-
tion V (s) as an approximation from above to this upper bound.
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3. Obtain the design weighting function by inversion: W (s) = V −1(s).

4. Perform the corresponding H∞ controller design and try to achieve ‖WX‖∞ < 1 (i.e.
Nominal Performance (NP)). If successful, it is guaranteed that the desired upper
bound

σ̄ (X(jω)) <
1

|W (jω)| =
∣∣W−1(jω)

∣∣ ∀ω ∈ R

is fulfilled.

Note that these relations do not hold if the weighting function W (s) is a transfer function
matrix (MIMO), even if it is only chosen diagonally with different entries along the diagonal,
because then the multiplicative matrix norm property (8.17),

σ̄ (W (jω)X(jω)) ≤ σ̄ (W (jω)) · σ̄ (X(jω)) ∀ω ∈ R, (8.17)

is in general NOT fulfilled with equality. Thus, if ‖WX‖∞ < 1 is fulfilled (i.e. NP is
satisfied), 1/σ̄ (W (jω)) = σ

(
W−1(jω)

)
can in general not be interpreted as an upper bound

on σ̄ (X(jω)) if W (s) is a transfer function matrix (MIMO).

‖WX‖∞ < 1 ⇔ σ̄ (W (jω)X(jω)) < 1 ∀ω ∈ R ⇐ σ̄ (W (jω)) · σ̄ (X(jω)) < 1 ∀ω ∈ R

(8.18)
In order to fulfill the set of prerequisites or assumptions on the augmented plant P (see

Definition 8.1) used to formulate and solve standard H∞ design problems, the following
restrictions on weighting functions are usually made. [7, 6]

• strictly stable2

• proper3

• minimum-phase

The most common weighting function shapes are high- and low-pass functions given by

W (s) = K ·
(

s
ω1

+ 1
s
ω2

+ 1

)n

(8.19)

where, if ω1 < ω2 holds, W (s) is a high-pass filter, whereas for ω1 > ω2 it is a low-pass filter.
It is often beneficial to use simple bandpass and bandstop filters given by

W (s) = K ·
(
( s
ω1

+ 1)( s
ω4

+ 1)

( s
ω2

+ 1)( s
ω3

+ 1)

)n

(8.20)

instead. If in (8.20) ω1 < ω2 < ω3 < ω4 holds, W (s) is a bandpass filter, whereas for
ω2 < ω1 < ω4 < ω3 it is a bandstop filter.

To shape the damping of low-damped structural modes, it is convenient to use weighting
function shapes with sharp peaks at specific frequencies of interest. A single peak (see
Figure 8.3a) is created by

2Pure integrators have to be replaced by “quasi-integrators”: 1
s

repl.→ 1
s+ǫ

with ǫ > 0, ǫ small

3Replace terms which make W (s) non-proper as follows: (1 + τ1s)
repl.→ (1 + τ1s)/(1 + τ2s) with τ2 ≪ τ1
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Wpeak(s) =
ω2
1

ω2
2

· s
2 + 2ζ2ω2 · s+ ω2

2

s2 + 2ζ1ω1 · s+ ω2
1

(8.21)

where usually ω1 = ω2 = ωpeak is chosen, so that

lim
ω→0

Wpeak(jω) = 1 and lim
ω→∞

Wpeak(jω) = 1 (8.22)

Thus, when such a peak is combined (multiplied) with one of the aforementioned filters,
it affects the original shape only at a close region around ωpeak (see Figure 8.3b). If ζ1 < ζ2
holds, Wpeak(s) is an anti-notch filter, whereas for ζ1 > ζ2 it is a notch filter.
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(a) Anti-notch filter: W (s) = s2+0.1·s+1
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(b) Bandpass with additional sharp peak at ωpeak

Figure 8.3: Exemplary weighting function W (s) for damping of low-damped structural
modes

8.5 Mixed-Sensitivity H∞ Optimal Control

The name mixed-sensitivity H∞ control is given to transfer function shaping problems in
which (utilizing frequency-dependent weights) the sensitivity function S = (I + GK)−1 is
shaped along with one or more other closed-loop transfer functions by stacking them on top of
each other in an overall closed-loop performance transfer function matrix N and minimizing
its H∞ norm with respect to K. Thus the H∞ optimal controller for this stacked formulation
is obtained by solving the problem

min
K

‖N(K)‖∞ (8.23)

where K is an internally stabilizing controller. The design specifications are fulfilled (i.e.
Nominal Performance (NP) is achieved) if

‖N‖∞ = max
ω

σ̄ (N(jω)) < 1. (8.24)

In this work, the regulation (disturbance rejection) problem depicted in Figure 8.4 is
investigated4. In this case the exogenous input signal w entering the generalized plant P is

4Because in Figure 8.4 the disturbance transfer function matrix Gd is included in the generalized plant
P , the regulation problem is in a non-standard formulation. Other, typical mixed-sensitivity H∞ control
problems (in standard form) are found in [6].
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the disturbance d.5 In Figure 8.4 u are the control inputs and v are the measured outputs
fed back to the controller K.

G

−W 2

W 1

K

Gd

+

+

y −
+

r = 0

w = d z1

z2

vu

P

Figure 8.4: SGd/KSGd mixed-sensitivity optimization (regulation)

Utilizing a frequency-dependent performance weight W 1(s) and an input weight W 2(s),
the exogenous output signal z =

[
zT
1 zT

2

]T
, where z1 = W 1y and z2 = −W 2u is defined

and the generalized plant P is given by



z1

z2

v


 =




W 1Gd W 1G

0 −W 2

−Gd −G




︸ ︷︷ ︸
P

[
w

u

]
(8.25)

Closing the lower feedback loop with the controller K yields the closed-loop performance
transfer function matrix N :

[
z1

z2

]
=

[
W 1SGd

W 2KSGd

]

︸ ︷︷ ︸
N

w (8.26)

N can be either derived directly by an investigation of the block diagram of Figure 8.4
(without breaking the loop before and after K) or by solving the lower linear fractional
transformation (LFT)

N = Fl(P ,K) = P 11 + P 12K(I−P 22K)−1P 21, (8.27)

where P is partitioned to be compatible with K.
In equation (8.26) SGd is the transfer function between d and the output y, and −KSGd

is the transfer function between d and the control signals u.6 Because the disturbance
transfer function Gd is given, S and KS are the only adjustable transfer functions, which,
in order to meet the design specifications have to be shaped properly.

The disturbance d is typically a low-frequency signal, and hence it will be successfully
rejected if the maximum singular value of S is made small over the same low frequencies. [6]
This is obtained by selecting W 1 (typically chosen scalar or diagonal) as a low-pass filter.

5In this work the disturbance is actually a scalar signal d associated with the shaker force.
6Because only the magnitude of −KSGd matters here, the negative sign is neglected in the following.
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Weighting KS with a high-pass filter W 2, which penalizes large high-frequency magnitudes
in u, while allowing low-frequency control action, works as a mechanism for limiting the
control input magnitude and the bandwidth of the controller. Small σ̄ (K(jω)S(jω)) is also
important for robust stability with respect to additive uncertainty (see Section 8.6.2) at ω.
[7, 6]

Since the particularly applied piezo patch sensors have a lower frequency limit (i.e. stat-
ical measurement is not possible), W 1 and W 2 were actually chosen as a bandpass respec-
tively bandstop.

Because the largest singular value (for each frequency s = jω) of a stacked matrix

[
A

B

]

is bounded by

max {σ̄(A), σ̄(B)} ≤ σ̄

([
A

B

])
≤

√
2max {σ̄(A), σ̄(B)} (8.28)

the fulfillment of

σ̄

([
W 1SGd(jω)

W 2KSGd(jω)

])
< 1 ∀ω ∈ R ⇔

∥∥∥∥
W 1SGd

W 2KSGd

∥∥∥∥
∞

< 1 (8.29)

implies that
‖W 1SGd‖∞ < 1 and ‖W 2KSGd‖∞ < 1 (8.30)

both hold. Note that the converse implication, however, is not true, but from (8.28) it is
evident that the conservativeness is at most

√
2: [7]

‖W 1SGd‖∞ < 1 and ‖W 2KSGd‖∞ < 1 ⇒
∥∥∥∥

W 1SGd

W 2KSGd

∥∥∥∥
∞

<
√
2 (8.31)

8.6 Fundamentals of Robust Control

The principle of robust control is used for the problem, that the models for G and Gd in
equation (8.32) may be inaccurate or may change slowly with time.

y(s) = G(s)u(s) +Gd(s)d(s) (8.32)

In particular, inaccuracies in G can cause severe problems due to the fact that model
uncertainty combined with feedback may easily create instability. Note that G is part of the
feedback loop where the control signal u depends on the (controlled) output signal y.

To deal with such problems robust control makes use of the concept of model uncertainty.
Instead of a single model G the behavior of a set of possible perturbed plant models Gp is
investigated.7 In order to account for the actual model uncertainty well suitable uncertainty
modeling is of major importance in robust control. Typical uncertainty descriptions are
presented in Section 8.6.2 (uncertainty is explicitly modelled by the designer) and 8.8.2
(uncertainty is not explicitly modelled).

7The subscript “p” stands for “perturbed”.
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8.6.1 Control objectives in robust control

The concept of robust control distinguishes between the following control objectives: [6]

Nominal stability (NS): The closed-loop system is internally stable with no model un-
certainty.

Nominal performance (NP): The closed-loop system satisfies the performance specifica-
tions with no model uncertainty.

Robust stability (RS): The closed-loop system is stable for all perturbed plants about
the nominal model up to the worst-case model uncertainty.

Robust performance (RP): The closed-loop system satisfies the performance specifica-
tions for all perturbed plants about the nominal model up to the worst-case model
uncertainty.

8.6.2 Uncertainty modeling

In the following the two main classes of modeling uncertainty are described generally. Sub-
sequently the uncertainty models applied in this work are given in detail.

8.6.2.1 Parametric (real) uncertainty

When it comes to parametric (real) uncertainty, the structure of the model including the
system order is considered known. However, some of the system parameters are assumed to
be uncertain. [6]

By postulating that each uncertain parameter αp is bounded to within an interval αmin ≤
αp ≤ αmax, a parameter set

αp = ᾱ · (1 + wαδα) (8.33)

is defined. Here ᾱ =αmax+αmin

2
is the mean parameter value, wα = αmax−αmin

αmax+αmin
is the relative

uncertainty in the parameter, and δα is any real scalar satisfying −1 ≤ δα ≤ 1, but otherwise
unknown.

Parametric state-space uncertainties

In this section, which is based on [7, 12], a method is presented to model parametric uncer-
tainty in the state matrix A.

While multiplicative and additive uncertainties (see Section 8.6.2.2 on page 94) are de-
fined in the frequency domain and are complex-valued, the uncertainties in the parameters
of a dynamic system (natural angular frequencies, modal damping coefficients, etc.) are
real-valued uncertainties. [12]

The state matrix (block) A for a single structural mode i with natural angular frequency
ωi and modal damping coefficient ζi is depicted in (8.34) (i is the first and only mode in this
case, thus i = 1).8

A =

[
0 1

−ω2
i −2ζiωi

]
(8.34)

8The system is in the third modal state-space representation (modal model 3) with block-diagonal state
matrix A = diag{Ai} (see Section 5.3.3).
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Appropriate uncertainty descriptions, if the uncertain parameters are the natural angular
frequency ωi and the modal damping coefficient ζi are

ωip(δiω) = ωi(1 + wiωδiω) (8.35)

ζip(δiζ) = ζi(1 + wiζδiζ), (8.36)

where wiω is the relative magnitude of the (symmetric) uncertainty of ωi and wiζ is the relative
magnitude of the (symmetric) uncertainty of ζi. The real-valued uncertain parameters are
δiω and δiζ (δiω, δiζ ∈ R, |δiω| ≤ 1, |δiζ| ≤ 1).

Then, according to Morton’s method [15], the perturbed state matrix Ap(δiω, δiζ) (2×2)
of an uncertain structural mode i is given by

Ap =

[
0 1

−ω2
ip(δiω) −2ζip(δiζ)ωip(δiω)

]
(8.37)

where the polynomials ωip and ζip in δiω and δiζ can be realized by a LFT ([7]) of the system

H(s)
ss
=




A Bpar B

Cpar Dpar 0

C 0 D


 (8.38)

with inputs
[
u∆

T uT
]T

and outputs
[
y∆

T yT
]T

, where

[
A Bpar

Cpar Dpar

]
=




0 1 0 −ωiwiω 1 1
−ω2

i −2ζiωi −ω2
iwiω 2ζiω

2
iwiω −2ζiωi −2ζiωi

1 0 0 0 0 0
−2ζi − 1

ωi
0 0 0 0

−2ζiωiwiω 0 0 0 0 wiω

−2ζiωiwiζ 0 0 0 0 0




(8.39)

and with the diagonal real-valued uncertainty block

∆par =




δiω
δiω

δiω
δiζ


 . (8.40)

Because the parameter δiω, associated with the natural angular frequency ωi, occurs
three times in the A matrix, it is repeated three times in the ∆par-block. The parameter
δiζ , associated with the modal damping coefficient ζi, occurs only once as its influence on
A is only linear and only in a single matrix element. [7] This highlights the importance
of choosing a state-space representation where the uncertain parameters occur as seldomly
as possible. Consequently, representing the system in the second modal form (5.76) can be
thought of as a negative example, because ωi and ζi, occur four respectively two times in
the A matrix. Moreover, in order to account for the same extent of parametric uncertainty
for an (uncertain) structural mode, one would also have to perturb the output matrix C if
the system would be represented in the second (or first) modal form (see (5.76) and (5.74)).
Thus the third modal form might be a good choice.9

9The simplification algorithms implemented in MATLAB® achieve a better representation where the
parameter δiω occurs always only twice (and δiζ occurs once).
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By utilizing the system interconnection structure H(s) and the diagonal real-valued
uncertainty block ∆par the perturbed system Gp is computed by

Gp(s) = Fu(H(s),∆par) (8.41)

= H22 +H21∆par(I−H11∆par)
−1H12. (8.42)

where H(s) is partitioned to be compatible with ∆par (see Figure 8.5) and G(s) = H22(s)
is the nominal plant model.

[
H11(s) H12(s)
H21(s) H22(s)

]

∆par

u∆ y∆

u y

Gp

Figure 8.5: Uncertain plant, y = Gpu, represented by LFT (H-∆par-structure)

Example 8.1: Interconnection structure H(s) for parametric uncertainty in the
state matrix A for a system in modal from with three structural modes

For a state-space system in modal from with three structural modes the block-diagonal state
matrix A is given schematically by:

A =




A1 0 0

0 A2 0

0 0 A3


 (8.43)

In this example parametric uncertainty (of ω and ζ) shall be only considered in the Ai-blocks
(2× 2) corresponding to the first and third structural mode. In this case, the input, output, and
feed-through matrices Bpar, Cpar and Dpar for the interconnection with the uncertainty block
(diagonal matrix of real-valued uncertain parameters)

∆par =

[
∆par1 0

0 ∆par3

]
(8.44)

is

Bpar =




Bpar1 0

0 0

0 Bpar3


 Cpar =

[
Cpar1 0 0

0 0 Cpar3

]
Dpar =

[
Dpar1 0

0 Dpar3

]
.

(8.45)
The matrices Bpar, Cpar and Dpar are then used in the state-space representation of the system
interconnection structure H(s) as given in (8.38), together with the matrices (A, B, C, D) of
the modal state-space representation of G(s).

By using the Robust Control Toolbox of MATLAB® a perturbed state matrix Ap was
designed and used to replace the nominal state matrix A. More information about this kind
of uncertainty can be found in [12, 7].
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8.6.2.2 Dynamic (frequency-dependent) uncertainty (complex uncertainties)

Dynamic (frequency-dependent) uncertainty modeling is used to model uncertainty caused
by missing dynamics, usually at high frequencies, either through deliberate neglect (ne-
glected dynamics) or because of a lack of understanding of the physical process (unmodelled
dynamics). [6]

For example a class of models is defined by using an additive (subscript A) uncertainty
description Gp(s) = G(s) +EA(s), where G(s) is the nominal model and EA(s) is the un-
known but bounded (non-normalized) additive model “uncertainty” or “perturbation”. Usu-
ally a (non-normalized) perturbation E(s) (8.47) is modelled as an unknown but normalized,
stable perturbation ∆(s) (complex-valued LTI dynamics), where the H∞ norm of ∆ is

‖∆(s)‖∞ ≤ 1, (8.46)

pre- and post-multiplied by dynamic weights (stable and minimum-phase LTI systems)
W 1(s) and W 2(s) (design parameters representing the frequency-dependent uncertainty).

E(s) = W 2(s)∆(s)W 1(s) (8.47)

Additive uncertainty

In Figure 8.6 a system with additive uncertainty is shown. The corresponding transfer
function matrix of the uncertain system Gp is given by (8.48).

W 1A ∆A W 2A

G
+

+Gp

Figure 8.6: Additive uncertainty

Gp(s) = G(s) +W 2A(s)∆A(s)W 1A(s) ‖∆A(s)‖∞ ≤ 1 (8.48)

Usually ∆A(s) is considered as a full complex perturbation matrix, where any coupling
from its inputs to its outputs are possible, and phase relations are unknown. [7]

Commonly the dimensions of ∆A(s) are chosen to be compatible with those of the nominal
plant G(s) (m×r), resulting in square weights W 1A(s) (r×r) and W 2A(s) (m×m). Typically
it is sufficient to choose the weights diagonal, populated with simple transfer functions. [7]

Additive uncertainty is commonly used to model neglected or unknown system dynamics
in a simplified manner by increasing the magnitude of the uncertainty weight(s) in those
frequency regions where the nominal plant can not be trusted. [7]

Multiplicative uncertainty

In Figure 8.7a a system with multiplicative input uncertainty and in Figure 8.7b a system
with multiplicative output uncertainty is depicted. The uncertain plant Gp(s) is given by
(8.49) respectively (8.50).
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W 1I ∆I W 2I

G
+

+

Gp

(a) Multiplicative input uncertainty

G

W 1O ∆O W 2O

+

+

Gp

(b) Multiplicative output uncertainty

Figure 8.7: Multiplicative uncertainty

Gp(s) = G(s) (I+W 2I(s)∆I(s)W 1I(s)) ‖∆I(s)‖∞ ≤ 1 (8.49)

Gp(s) = (I+W 2O(s)∆O(s)W 1O(s))G(s) ‖∆O(s)‖∞ ≤ 1 (8.50)

Multiplicative input (respectively output) uncertainty is frequently used to model actua-
tor (respectively sensor) magnitude and phase uncertainty over frequency. In that case, the
perturbation ∆I(s) (r × r) (respectively ∆O(s) (m×m)) is a complex diagonal matrix

∆(s) = diag{∆i(s)}; |∆i(jω)| ≤ 1, ∀ω, ∀i (8.51)

This circumstance is clarified in the following by considering uncertainty in the individual
input channels i (for i = 1, . . . , r).

Associated with each input ui there is a separate physical system (amplifier, signal con-
verter, actuator, valve, etc.) which, based on the controller output signal ui, generates a
physical plant input mi. [6]

mi = hi(s)ui (8.52)

Usually the SISO system hi(s) is absorbed into the plant model G(s), but for representing
the uncertainty it is essential to note that hi(s) originates at the input. For SISO systems,
it is often beneficial to lump multiple sources of parametric real uncertainty into a single
complex perturbation, because in the Nyquist locus the true uncertainty region at a partic-
ular frequency ω (created by this multiple real perturbations) is often almost “disc-shaped”
and may be more efficiently represented by a single complex perturbation. [6] A simpler
uncertainty description for a SISO system hi(s) with a single complex perturbation could be
in a multiplicative form (8.53).

hpi(s) = hi(s) (1 + wIi(s)∆Ii(s)) |∆Ii(jω)| ≤ 1, ∀ω (8.53)

Of course, by choosing wIi(s) properly one can also consider neglected and/or unmodelled
dynamics in the uncertainty description of equation (8.53).

At frequencies where ∆Ii(jω) > 1 the uncertainty exceeds 100% and the Nyquist curve of
hpi(jω) may pass through the origin (see Figure 8.8), thus the phase is unknown, and zeros
can cross from the left half plane (LHP) to the right half plane (RHP). [6]
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Re

Im
hi(jω) (centre)

|wAi(jω)|

|wIi(jω)| =
|wAi(jω)|
|hi(jω)|

|hi(jω)|

ω

Figure 8.8: Exemplary Nyquist plot of hi(jω) and disc-shaped uncertainty region (at
a given frequency ω) generated by complex additive uncertainty hpi(s) =
hi(s) + wAi(s)∆Ai(s) with |∆Ai(jω)| ≤ 1 (SISO case!). The set of possible
plants hpi(s) includes the origin at frequencies ω where |wAi(jω)| ≥ |hi(jω)|,
or equivalently |wIi(jω)| ≥ 1 (adopted from [6])

After combining all input channels i (for i = 1, . . . , r), a complex diagonal input uncer-
tainty for the plant (8.54) is found [6]:

Gp(s) = G(I+W I∆I); ∆I(s) = diag{∆Ii(s)}, W I(s) = diag{wIi(s)} (8.54)

8.6.3 General control configuration with uncertainty (The P -K-∆-

structure)

Figure 8.9 shows the general control configuration (standard form of the robust control design
problem) with uncertainty (P -K-∆-structure), which, if model uncertainty is considered in
the design process is used for controller synthesis.

P

∆

K

u∆ y∆

u v

w z

Figure 8.9: General control configuration with uncertainty (for controller synthesis)

The normalized (‖∆‖∞ ≤ 1), stable, block-diagonal LTI perturbation matrix ∆ ∈ ∆B

(8.55), which is only known in terms of its qualitative structure10, is derived by “pulling
out” all the uncertain perturbations (Figure 8.10b) from the uncertain closed-loop transfer
function F (Figure 8.10a).

∆ ∈ ∆B ⇔ ‖∆‖∞ ≤ 1, ∆ LTI, structured, and stable (8.55)

10The linear time-invariant (LTI) system ∆(s) (see (8.56)) is a block-diagonal matrix (∆ ∈ ∆B), where
evaluating ∆i(s) at s = jω is either allowed to be a full complex matrix (∆i = ∆i(jω)) or only a complex
diagonal matrix (∆i = diag{∆j(jω)}), or it is only allowed to be a constant matrix ∆i of a diagonally
repeated real scalar (∆i = δi · I[ri×ri]). The cases where the ith perturbation ∆i is a complex scalar ∆i(jω)
respectively real scalar δi follow as a special case. The actual values of ∆ are unknown!
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∆ =




∆1 0 0 0

0
. . . 0 0

0 0 ∆i 0

0 0 0
. . .


 (8.56)

Each individual perturbation ∆i (8.56), which represents a specific source of uncertainty11,
is assumed to be stable and is normalized by:

σ̄(∆i(jω)) ≤ 1 ∀ω ∈ R (8.57)

In the case of a complex scalar perturbation the condition for the maximum singular value
σ̄ yields |∆i(jω)| ≤ 1 ∀ω and in the case of a real scalar perturbation −1 ≤ δi ≤ 1 holds. A
∆ which is allowed to be any (full) complex matrix is also called unstructured uncertainty
or full-block complex perturbation uncertainty.

An important fact is derived from the circumstance that the maximum singular value
of a block-diagonal matrix is equal to the largest maximum singular value of its individual
blocks (8.58).

σ̄

([
A 0

0 B

])
= max {σ̄(A), σ̄(B)} (8.58)

For the block-diagonal perturbation matrix ∆ follows from equation (8.58):

σ̄(∆i(jω)) ≤ 1 ∀ω ∈ R, ∀i ⇔ ‖∆‖∞ ≤ 1 (8.59)

The generalized plant P represents the interconnection between the nominal plant model
G (and eventually the disturbance model Gd, a matrix weight for performance W P, a matrix
weight for input usage W u) and several uncertainty matrix weights for the different kinds of
used uncertainty descriptions (see Section 8.6.2). The inputs to P are u∆ (output vector of
the normalized perturbation matrix ∆), w (exogenous input signals: commands r and/or
disturbances d ), and u (control signals). The outputs of P are y∆ (input vector of the
normalized perturbation matrix ∆), z (exogenous or performance outputs), and v (measured
outputs). The generalized plant P is partitioned accordingly to be compatible with the
controller K (8.60).




y∆

z

v


 =

[
P 11 P 12

P 21 P 22

]

︸ ︷︷ ︸
P




u∆

w

u


 (8.60)

The generalized controller K, which is used in a positive feedback loop with the gen-
eralized plant P , has the overall control objective to generate a control signal u, based on
the measured information in v, that counteracts the influence of w on z, hence minimizing
the H∞ norm of the uncertain closed-loop transfer function F (Figures 8.10a, 8.12) from
w to z, thereby ensuring internal stability (see, Definition 8.2 on page 99) of the nominal
closed-loop system N .

11For example ∆i represents a complex diagonal input uncertainty (∆i = ∆I(s) = diag{∆Ij(s)}), a full
complex additive uncertainty (∆i = ∆A(s)), a parametric uncertainty (∆i = δi · I, where δi is a real scalar),
etc..
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w z
∆1

∆2

∆3

F
(a) Uncertain closed-loop transfer function F from the

exogenous inputs w to exogenous outputs with
multiple perturbations (original system)

w z

N

∆2

∆1

∆3

u∆1

u∆2

u∆3

y∆1

y∆2

y∆3

∆

(b) Pulling out the perturbations

Figure 8.10: Rearranging an uncertain system into the N -∆-structure (adopted from [6])

8.6.4 The N -∆-structure (for robust performance analysis)

The nominal closed-loop system N (Figure 8.11) is derived by closing the lower feedback
loop between P and K (see Figure 8.9) by a lower linear fractional transformation (LFT):

N = Fl(P ,K) = P 11 + P 12K(I− P 22K)−1P 21 (8.61)

The N -∆-structure is used for robust performance analysis (see Definition 8.9) and N

is partitioned accordingly to be compatible with ∆:
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[
y∆

z

]
=

[
N 11 N 12

N 21 N 22

]

︸ ︷︷ ︸
N

[
u∆

w

]
(8.62)

N

∆

u∆ y∆

w z

Figure 8.11: N -∆-structure for robust performance analysis

8.6.5 The uncertain closed-loop transfer function matrix F

The uncertain closed-loop transfer function matrix F from w to z (Figure 8.12) is related
to N and ∆ by an upper linear fractional transformation (LFT):

F = Fu(N ,∆) = N 22 +N 21∆(I−N 11∆)−1N 12 (8.63)

F
w z

Figure 8.12: Uncertain closed-loop transfer function F

8.6.6 Definitions for the control objectives in robust control with

respect to the H∞ norm

As a major prerequisite for nominal performance (NP), robust stability (RS) and robust
performance (RP), nominal stability (NS) has to be satisfied. Only then, the H∞ system
norm is related to the maximum singular value.

Definition 8.2: Nominal Stability (NS)

A system N as given in Figure 8.11 is nominally stable (NS) if it is internally stable,
that is, if none of its components contain hidden unstable modes (see Definition 8.3)
and if the injection of bounded input signals at any place in the system result in
bounded output signals measured anywhere in the system. [7, 6]

Definition 8.3: Stabilizable, detectable and hidden unstable modes. [6]

A system is stabilizable if all unstable modes are state controllable. A system is
detectable if all unstable modes are state observable. A system with unstabilizable
or undetectable modes is said to contain hidden unstable modes.[6]
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In terms of the N -∆-structure in Figure 8.11, the requirements for stability and perfor-
mance can be summarized as follows:

NS :N is internally stable (8.64)

NP : ‖N 22‖∞ < 1; andNS (8.65)

RS :F = Fu(N ,∆) is stable ∀∆, ‖∆‖∞ ≤ 1; andNS (8.66)

RP : ‖F ‖∞ < 1, ∀∆, ‖∆‖∞ ≤ 1; andNS (8.67)

Note that the H∞ norm is used to define nominal performance12 (8.65) and robust perfor-
mance (8.67) and that for RP it is required, that ‖F (∆)‖∞ < 1 for all allowed perturbations
∆ with ‖∆‖∞ ≤ 1. The main problem with the definitions for RS and RP as defined in
(8.66) and (8.67) is that in order to test these conditions they have to be tested for an infinite
set of allowable (possible) perturbations ∆, which can not be done directly. To overcome
this problem the so-called structured singular value structured singular value (SSV) µ was
defined, addressing the worst case, see Section 8.6.8.

8.6.7 The M -∆-structure for robust stability analysis

When N in Figure 8.11 is nominally stable (8.64) and ∆ is also stable, then the only possible
source of instability in the upper LFT for the closed-loop system F in (8.63), is the feedback
term (I−N11∆)−1. Hence in this case, the stability of the system in Figure 8.11 is equivalent
to the stability of the M -∆-structure in Figure 8.13, with M = N 11.

M

∆

u∆ y∆

Figure 8.13: M -∆-structure for robust stability analysis

Definition 8.4: Small gain theorem [6]

Given a stable open-loop transfer function L(s), the closed-loop system is stable if

‖L(jω)‖ < 1 ∀ω ∈ R (8.68)

where ‖·‖ is any matrix norm (see Definition A.6).

Because the open-loop transfer function M∆(s) is considered stable, the closed-loop
system is stable (i.e. RS is fulfilled) if

σ̄ (M∆ (jω)) < 1 ∀ω ∈ R (8.69)

12N 22 = Fu(N ,∆ = 0), see (8.63)
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where the spectral norm was used (see Section A.6.1). Because a matrix norm such as the
spectral norm satisfies the multiplicative property

‖AB‖ ≤ ‖A‖ · ‖B‖ , (8.70)

respectively
σ̄ (M∆ (jω)) ≤ σ̄ (M (jω)) · σ̄ (∆ (jω)) ∀ω ∈ R (8.71)

at each frequency ω the following is true:

σ̄ (M (jω)) · σ̄ (∆ (jω)) < 1 ⇒ σ̄ (M∆ (jω)) < 1 ⇒ RS

Let ∆ be the set of all complex matrices of any structure (i.e. ∆(jω) can also be a full
complex matrix) such that

σ̄ (∆ (jω)) ≤ 1 ∀ω ∈ R (8.72)

Then the following holds:

max
∆(jω)

σ̄ (M∆ (jω)) = σ̄ (M (jω)) · max
∆(jω)

σ̄ (∆ (jω))

︸ ︷︷ ︸
=1

∀ω ∈ R (8.73)

By maximizing at each frequency ω both sides of the inequality (8.71) (multiplicative
property of a matrix norm)

max
∆(jω)

σ̄ (M∆ (jω)) ≤ σ̄ (M (jω)) · max
∆(jω)

σ̄ (∆ (jω)) ∀ω ∈ R (8.74)

with respect to a perturbation ∆(jω), which (at each frequency ω) is allowed to be a full
complex matrix, it turns out that for any M(jω) at each frequency ω the inequality (8.74)
is actually an equality.

In the following, this is proved for a square M (jω) by choosing an allowed ∆
′(jω) =

V UH (σ̄ (∆′(jω)) = 1 ∀ω), where U(jω) and V (jω) are (at each frequency ω) matrices
of the left and right singular vectors (singular value decomposition, see Definition A.4) of
M(jω) = UΣV H (V H = V −1 and UH = U−1):

σ̄ (M∆
′ (jω)) = σ̄

(
UΣV HV UH (jω)

)
= σ̄

(
UΣUH (jω)

)
= σ̄ (Σ (jω)) = σ̄ (M (jω))

(8.75)
By combining (8.69) and (8.73), the robust stability condition in case of a full complex

perturbation matrix ∆(s) is derived.

Definition 8.5: Robust stability (RS) theorem for full complex (unstruc-
tured) perturbations ∆ [6]

Assume that the nominal system M(s) is stable (N(s) is NS) and that the pertur-
bations ∆(s) are stable. Then the M -∆-structure in Figure 8.13 is stable for all
perturbations ∆ satisfying ‖∆‖∞ < 1 (i.e. RS is fulfilled) if and only if

σ̄ (M (jω)) < 1 ∀ω ∈ R, andNS ⇔ ‖M‖∞ < 1 andNS (8.76)
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Remark: Condition (8.76) for full complex (unstructured) perturbations ∆(s) (∆ LTI and
stable) may be rewritten as

σ̄ (M (jω)) · σ̄ (∆ (jω)) < 1 ∀ω ∈ R, ∀∆. (8.77)

In the case of a structured ∆ (block-diagonal perturbation matrix ∆ ∈ ∆B) the above
RS condition (8.76) is often conservative. This motivated the definition of the structured
singular value µ.

8.6.8 The structured singular value µ

The structured singular value µ is a concept which provides a generalization of the maximum
singular value σ̄, see [6].

Definition 8.6: Structured Singular Value µ [7, 6]

Consider a system interconnection as in Figure 8.13. The structured singular value
µ of the complex-valued matrix M(jω) (M(s) evaluated at s = jω) is the real non-
negative scalar function

µ∆ (M (jω)) =
1

min∆∈∆B
{km| det(I− kmM(jω)∆) = 0} , (8.78)

where
∆ ∈ ∆B ⇔ ‖∆‖∞ ≤ 1, ∆ LTI, structured, and stable (8.79)

is structured in a known block-diagonal real or complex form and at each frequency
ω satisfies the norm bound σ̄(∆(jω)) ≤ 1.
If no such structured ∆ ∈ ∆B exists then µ∆(M) = 0.

The structured singular value µ for complex perturbations is bounded by the spectral
radius ρ (see Definition A.8) and the maximum singular value σ̄: [6]

ρ(M) ≤ µ∆(M) ≤ σ̄(M) (8.80)

The first inequality is an equality if ∆ is a complex diagonal matrix with a repeated scalar
complex perturbation ∆(jω) (∆ = ∆(jω) · I). The second inequality is an equality if ∆ is a
full-block complex perturbation matrix.
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8.6.9 Control objectives in robust control with respect to µ

Definition 8.7: Nominal Performance (NP)

The N -∆ system in Figure 8.11 with ∆ = 0 is said to achieve nominal performance
(NP) if N is nominally stable (NS) and if and only if

σ̄ (N 22 (jω)) < 1 ∀ω ∈ R, andNS ⇔ ‖N 22‖∞ < 1 andNS (8.81)

holds. [7]
In terms of the structured singular valuea µ nominal performance is achieved if N is
nominally stable and if and only if

µ∆P
(N 22 (jω)) < 1, ∀ω ∈ R, andNS (8.82)

holds. Thereby µ∆P
is calculated with respect to a full complexb “artificial” pertur-

bation matrix for performance ∆P. (for ∆P see also Definition 8.9)

aIn practice the SSV is not used for NP analysis, because equation (8.81) is much easier to check
than (8.82).

bIn this case the second inequality in (8.80) is an equality (µ∆P (N 22 (jω)) = σ̄ (N22 (jω))).

Definition 8.8: Robust Stability (RS)

The stability of the N -∆-structure in Figure 8.11 is equivalent to the stability of
the M -∆-structure in Figure 8.13 with M = N 11 if N is NS and ∆ is stable (see
Section. 8.6.7). The uncertain closed-loop system F = Fu(N ,∆) from w to z is
stable (robustly stable) for all allowed stable perturbations ∆ ∈ ∆B with ‖∆‖∞ ≤ 1,
if and only if

F = Fu(N ,∆) is stable ∀∆ ∈ ∆B with ‖∆‖∞ ≤ 1, andNS (8.83)

⇔ µ∆ (M (jω)) < 1, ∀ω ∈ R, ∀∆ ∈ ∆B with ‖∆‖∞ ≤ 1, andNS (8.84)

Note that Nominal Stability, Internal Stability (NS) is a prerequisite and must be
verified separately because the frequency-wise evaluation of µ does not contain this
information. [7, 6]
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Definition 8.9: Robust Performance (RP)

For the uncertain closed-loop system F = Fu(N ,∆) robust performance (RP) is
achieved with respect to all allowed stable perturbations ∆ ∈ ∆B with ‖∆‖∞ ≤ 1,
if and only if

‖F ‖∞ = ‖Fu(N ,∆)‖∞ < 1, ∀∆ ∈ ∆B with ‖∆‖∞ ≤ 1, andNS (8.85)

⇔ µ∆̂ (N (jω)) < 1, ∀ω ∈ R, ∀∆̂ ∈ ∆̂B with
∥∥∥∆̂
∥∥∥
∞

≤ 1, andNS (8.86)

where

∆̂ =

[
∆ 0

0 ∆P

]
, (8.87)

and ∆P is a full complex “artificial” perturbation matrix for performancea, a stable
LTI system with its actual values unknown, compatible with the dimension of F

in Figure 8.12 and norm-bounded by ‖∆P‖∞ ≤ 1, whereas ∆ represents the “true”
uncertainty. [7, 6]

a
∆P is a full complex “artificial” perturbation matrix stemming from the H∞ norm performance

specification (this will be shown in Section 8.6.10). [6]

In terms of the N -∆-structure in Figure (8.11), the requirements for stability and per-
formance with respect to the structured singular value µ can be summarized as follows:

NS ⇔N (internally) stable (8.88)

NP ⇔ σ̄ (N 22 (jω)) = µ∆P
(N 22 (jω)) < 1, ∀ω ∈ R, andNS (8.89)

RS ⇔µ∆ (N 11 (jω)) < 1, ∀ω ∈ R, ∀∆ ∈ ∆B, andNS (8.90)

RP ⇔µ∆̂ (N (jω)) < 1, ∀ω ∈ R, ∀∆̂ =

[
∆ 0

0 ∆P

]
∈ ∆̂B, andNS (8.91)

Condition (8.92) implies that, provided NS is satisfied, RS and NP are automatically
satisfied if RP is satisfied. The reverse is not true.

µ∆̂(N)︸ ︷︷ ︸
RP

≥ max{µ∆(N 11)︸ ︷︷ ︸
RS

, µ∆P
(N 22)︸ ︷︷ ︸
NP

} (8.92)

8.6.10 Block diagram proof of the robust performance (RP) defini-
tion with respect to µ

The RP definition with respect to µ (Definition 8.9) is proved by the equivalence between
the various block diagrams in Figure 8.14, where STEP B is the the key step to this proof.
This section is based on [6].
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STEP A: Is the definition of RP.
STEP B: The stability of the M -∆-structure (i.e. RS) in Figure 8.13, when ∆ is a full

complex matrix is equivalent to ‖M‖∞ < 1 (see Definition 8.5). Thus the
RP condition ‖F ‖∞ < 1 is equivalent to RS of the F -∆P-structure, where
∆P is a full complex matrix.

STEP C: Introduce the N -∆-structure (F = Fu(N ,∆)) from Figure 8.11.

STEP D: Collect ∆ and ∆P into the block-diagonal matrix ∆̂ =

[
∆ 0

0 ∆P

]
. Thus

the original RP problem is equivalent to RS of the N -∆̂-structure, which
from Definition 8.8 is equivalent to µ∆̂ (N (jω)) < 1, ∀ω ∈ R, ∀∆̂ ∈ ∆̂B.
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N

∆ 0

0 ∆P
[
u∆

w

] [
y∆

z

]

m

N

∆

∆P

u∆ y∆

w z

m

F (∆)

∆P

w z

m

‖F (∆)‖∞ < 1, ∀∆ ∈ ∆B with ‖∆‖∞ ≤ 1, andNS

m

RP

m (see RS Definition 8.8)

µ∆̂(N) < 1, ∀ω ∈ R, ∀∆̂ ∈ ∆̂B with
∥∥∥∆̂
∥∥∥
∞

≤ 1, andNS

STEP D:

STEP C:

STEP B:

STEP A:

is RS, ∀∆̂ ∈ ∆̂B

is RS,

∀ ‖∆P‖∞ ≤ 1

∀∆ ∈ ∆B

is RS,

∀ ‖∆P‖∞ ≤ 1

∀∆ ∈ ∆B

Figure 8.14: RP as a special case of RS with a block-diagonal ∆̂ =

[
∆ 0

0 ∆P

]
. As

always NS has to be verified separately! (adopted from [6])

8.6.11 Worst-case gain and skewed-µ value

The RP µ-value, i.e. µ∆̂(N(jω)) (Definition 8.9) considers that both uncertainty blocks, ∆
and ∆P, are scaled by the common factor km = 1/µ

∆̂
(N(jω)). Thus, if the RP µ-value at a given

frequency is different from 1, then the interpretation is that at this frequency the design
can tolerate up to 1/µ

∆̂
(N(jω))-times the modelled uncertainty and satisfy the performance

objective with a margin of 1/µ
∆̂
(N(jω)). [6] Consequently µ∆̂(N(jω)) does not, as one might

expect, state the worst-case gain, i.e. max∆∈∆B
σ̄(F (∆(jω))), of the uncertain closed-loop

system F = Fu(N ,∆) (Figure 8.12) in the presence of the uncertainty ∆.
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To find the worst-case gain for a given uncertainty, the uncertainty ∆ has to be left
unscaled. This onset is denoted skewed-µ analysis.

Definition 8.10: Skewed-µ [6, 7]

The skewed-µ value of a complex transfer matrix N(jω) is defined as

µs
∆̂
(N (jω)) =

1

min
∆̂∈∆̂B

{km| det(I−KmN(jω)∆̂) = 0}
(8.93)

where ∆̂ =

[
∆ 0

0 ∆P

]
, Km =

[
I 0

0 kmI

]
is partitioned compatibly to ∆̂ , so that

only ∆P is scaled.
It turns out that µs is always farther from 1 than µ, i.e. µs ≥ µ for µ > 1, µs = µ for
µ = 1 and µs ≤ µ for µ < 1.
The value of µs can be interpreted as the worst-case gain, i.e.
max∆∈∆B

σ̄(Fu(N ,∆)(jω)) = µs
∆̂
(N(jω)).

8.6.12 DK-iteration

Currently there is no direct method to synthesize a µ-optimal controller, that minimizes a
given µ-condition for a general uncertainty structure.

Nevertheless, in most cases good results are attained by splitting the µ-synthesis problem
into the two subproblems µ-analysis and H∞ controller synthesis, which are solved in an al-
ternating, iterative fashion. [7] For problems with only complex perturbations an algorithm
named DK-iteration is available. Its extension, called DGK-iteration (also referred to as
mixed-µ-synthesis) addresses problems with mixed (i.e., real and complex) structured per-
turbations. [7] The basic structure of the DK-iteration algorithm is outlined in the following.

For complex perturbations, an upper bound on µ is given in terms of the scaled singular
value

µ∆̂ (N (jω)) ≤ min
D(jω)∈D

σ̄
(
D(jω)N(jω)D−1(jω)

)
, (8.94)

where (assuming ∆̂ square) D =
{
D : D∆̂ = ∆̂D

}
is the set of all matrices that commute

with the enlarged perturbation ∆̂ =

[
∆ 0

0 ∆P

]
. The structures of ∆̂ and D are “opposites”

(e.g ∆̂ = diag {∆1(full),∆2I,∆3,∆4,∆P} : D = diag {d1I,D2(full), d3, d4, dPI}). [6] For
non-square uncertainties ∆̂ the scaling matrices D−1

l (s) and Dr(s) (left and right of N , see

Figure 8.15) have to be used instead of D−1(s) and D(s) (i.e. D =
{
D : Dl∆̂ = ∆̂Dr

}
).

[12] For simplicity ∆̂ is assumed square in the following.
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ND−1
l Dr

∆̂Dl D−1
r

NEW N : DrND−1
l

SAME UNCERTAINTY

Figure 8.15: Use of block-diagonal scalings, ∆̂ = Dl∆̂D−1
r (adopted from [6])

The basic idea of DK-iteration is to find the controller K that minimizes the peak of
this upper bound on µ (8.94) over all frequencies by alternately optimizing over the set of
stabilizing H∞ sub-optimal controllers K(s) and over the set of (approximated dynamic)
scalings D(s), expressed as: [7]

min
K

min
D(s)∈D(s)

∥∥DND−1
∥∥
∞

The DK-iteration algorithm proceeds as follows [7, 6]:

1. Initialize scalings D(s), typically with the identity I (provided that the problem is
reasonably scaled)

2. K-step: Synthesize an internally stabilizing controller K(s) for the scaled plant, by
solving the H∞ (sub-)optimal controller design problem minK

∥∥DN(K)D−1
∥∥
∞ with

fixed D(s).

3. D-step: Find D̃(jω) that minimizes σ̄
(
D̃(jω)N(jω)D̃−1(jω)

)
at each frequency in a

predefined frequency gridding, where N = Fl(P ,K) is kept fixed. If µ-based termi-
nation criterion is fulfilled, stop.

4. Approximate the magnitude of each element in D̃(jω) by a stable and minimum-phase
transfer function to obtain the dynamic scaling transfer function matrix D(s) and go
to step 2.

One fundamental problem of DK iteration is that the combined optimization problem is
not guaranteed to be convex, although each of its minimization steps (K-step and D-step)
are convex. As a consequence, the iterations may not converge to a unique global optimum
but to one of potentially many local optima. Also convergence is not guaranteed, hence
an actual increase in the µ value from one iteration to the next can occur. [7, 6] Another
disadvantage is the possibly high system order of the resulting controller K. Since the H∞
controller is designed upon the dynamically scaled plant

P̆ (s) =

[
Dr(s) 0

0 I[m×m]

]

︸ ︷︷ ︸
D̆r(s)

P (s)

[
D−1

l (s) 0

0 I[r×r]

]

︸ ︷︷ ︸
D̆l(s)

(8.95)
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(where I[m×m] is associated with the inputs and I[r×r] is associated with the outputs of the
controller K), its order is nK = nP+nD̆r

+nD̆l
where nP is the order of the augmented plant

(that is, the order of the plant and the order of all dynamic weightings in the augmented plant
interconnection P ) and nD̆r

, nD̆l
are the dynamic orders of the scaling transfer function D̆r(s)

respectively D̆l(s). Therefore, a subsequent order reduction of the synthesized controller
might be necessary before implementation in a real time environment is feasible.

Nevertheless, DK-iteration is usually a well-performing algorithm if the problem is care-
fully formulated and well-scaled. [7]

8.7 DK-synthesized µ-“optimal” Controller Design

In Figure 8.16 a system with multiplicative input uncertainty, additive uncertainty, and
multiplicative output uncertainty is depicted, where G(s) (m × r) is the nominal plant
model. For this case, the set of possible perturbed plants Gp(s) (m× r) is defined by

Gp = (I+W 2O∆OW 1O)(G+W 2A∆AW 1A)(I+W 2I∆IW 1I) (8.96)

where ∆I(s) (r × r) and ∆O(s) (m × m) are considered as unknown but norm-bounded
(‖∆I‖∞ ≤ 1 and ‖∆O‖∞ ≤ 1) complex diagonal matrices, whereas ∆A(s) (m × r) is con-
templated as an unknown but norm-bounded (‖∆A‖∞ ≤ 1) full complex matrix.

∆I(s) = diag{∆I1(s), . . . ,∆Ij(s), . . . ,∆Ir(s)}, |∆Ij(jω)| ≤ 1 ∀ω, ∀j (8.97)

∆O(s) = diag{∆O1(s), . . . ,∆Oi(s), . . . ,∆Om(s)}, |∆Oi(jω)| ≤ 1 ∀ω, ∀i (8.98)

∆A(s) =




∆A11(s) ∆A12(s) . . . ∆A1r(s)
∆A21(s) ∆A22(s) . . . ∆A2r(s)

...
...

. . .
...

∆Am1(s) ∆Am2(s) . . . ∆Amr(s)


 (8.99)

In the case at hand, the overall, block-diagonal, norm-bounded perturbation matrix used
to represent the uncertainty in terms of the P -K-∆- and N -∆-structure is

∆ =




∆I 0 0

0 ∆A 0

0 0 ∆O


 , ‖∆‖∞ ≤ 1 (8.100)

Performance is measured in terms of the frequency-weighted error signal

z1(s) = W P(s) (y(s)− r(s)) . (8.101)

By choosing
z2(s) = W u(s)u(s) (8.102)

control energy is directly limited by the design. The exogenous inputs are the disturbance
w1 = d (in this work w1 = d is scalar), the reference commands w2 = r (in this work r = 0)
and the measurement noise w3 = n.
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K

W 1I ∆I W 2I W 1A ∆A W 2A

G

W 1O ∆O W 2O
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Gd
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−
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y∆O u∆O
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+
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+

+
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Gp

Figure 8.16: Augmented plant interconnection with with multiplicative input uncertainty, additive uncertainty, and multiplicative
output uncertainty




y∆I

y
∆A

y
∆O

z1

z2

v



=




0 0 0 0 0 0 W 1I

W 1AW 2I 0 0 0 0 0 W 1A

W 1OGW 2I W 1OW 2A 0 0 0 0 W 1OG

W PGW 2I W PW 2A W PW 2O W PGd −W P 0 W PG

0 0 0 0 0 0 W U

−GW 2I −W 2A −W 2O −Gd I −I −G




︸ ︷︷ ︸
P




u∆I

u∆A

u∆O

w1

w2

w3

u




(8.103)




y∆I

y∆A

y
∆O

z1

z2



=




−W 1IKSGW 2I −W 1IKSW 2A −W 1IKSW 2O −W 1IKSGd W 1IKS −W 1IKS

W 1ASIW 2I −W 1AKSW 2A −W 1AKSW 2O −W 1AKSGd W 1AKS −W 1AKS

W 1OSGW 2I W 1OSW 2A −W 1OTW 2O −W 1OTGd W 1OT −W 1OT

W PSGW 2I W PSW 2A W PSW 2O W PSGd −W PS −W PT

−W UKSGW 2I −W UKSW 2A −W UKSW 2O −W UKSGd W UKS −W UKS




︸ ︷︷ ︸
N




u∆I

u∆A

u∆O

w1

w2

w3




(8.104)
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The generalized plant P for this control configuration is given in equation (8.103). The
nominal closed loop system N is given in equation (8.104)

The uncertain closed-loop transfer function matrix F from w to z is

[
z1

z2

]
=

[
W PSpGd −W PSp −W PT p

−W UKSpGd W UKSp −W UKSp

]

︸ ︷︷ ︸
F




w1

w2

w3


 (8.105)

where
Sp = (I+GpK)−1 (8.106)

is the perturbed sensitivity function and

T p = I− Sp = GpKSp (8.107)

is the perturbed complementary sensitivity function.
Because the numerous cost functions included in F increase the complexity of achieving

robust performance (see Definition 8.9), in this work only w1 = d was considered as exogenous
input. The columns associated with w2 and w3 in P , N and F were removed.13 In
MATLAB® also the possibility to use extra measurements (e.g. acceleration and force
measurements), which are fed back to the (feedback) controller K, but are not considered
as outputs to be controlled, was implemented. However, this was not used.

13It should be pointed out that when it comes to the implementation in MATLAB® canceling of columns
associated with inputs (or rows associated with outputs) of a state-space model, does not effect the state
matrix A and thus leaves it (A) unnecessarily large, which slows down the algorithms used for controller
synthesis. The MATLAB® command sminreal, which eliminates the states of state-space models that do
not affect the input/output response, can solve this problem. In order to avoid this problem at the outset
and decrease interconnection complexity, the MATLAB® command sysic was found helpful.
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8.8 H∞ Loop-Shaping Design Considering Coprime Fac-

tor Uncertainty

The intention of H∞ loop-shaping is to apply the classical loop-shaping ideas of feedback
control for SISO plants - shaping the open-loop SISO transfer function L = GK to attain
the desired closed-loop characteristics - on MIMO plants. In principle H∞ loop-shaping is a
two-stage design process: [6]

• First, the open-loop plant G(s) is augmented by pre- and post-compensators W 1(s)
and W 2(s) to give a desired shape to the singular values of the so-called shaped plant
(or initial/desired loop-shape) Gs = W 2GW 1.

• Then this resulting shaped plant Gs is robustly stabilized (“robustified”) with respect
to the general class of normalized coprime factor uncertainty14 using H∞ optimization.

This section is based on the textbook [6], where further information can be found.

8.8.1 Applying the ideas of classical loop shaping to multivariable
systems

In classical loop shaping, it is the magnitude of the open-loop transfer function L = GK
which is shaped, whereas for multivariable systems the requirements are usually all postu-
lated in terms of closed-loop transfer functions, which to a certain degree can be obtained by
an investigation of (A.7) and (A.8). In the following it is shown how closed-loop equivalent
open-loop requirements can be obtained.

The underlying equations justifying this approach arise from the inequality

σ (L(jω))− 1 ≤ 1

σ̄ (S(jω))
≤ σ (L(jω)) + 1 (8.108)

for which if σ (L(jω)) ≫ 1 the following holds

σ̄ (S(jω)) ≈ 1

σ (L(jω))
if σ (L(jω)) ≫ 1 (8.109)

and from the fact that if σ̄ (L(jω)) ≪ 1, the maximum singular value of the complementary
sensitivity function

T = L(I− L)−1 (8.110)

(positive feedback control system) can be approximated by

σ̄ (T (jω)) ≈ σ̄ (L(jω)) if σ̄ (L(jω)) ≪ 1. (8.111)

Thus, utilizing (8.109) and (8.111), it is relatively easy to approximate closed-loop re-
quirements by open-loop objectives over a specified frequency range (Table 8.1):

14For SISO systems the classical gain and phase margins provide useful general robustness measures.
However, for multivariable systems, classical gain and phase margins are unreliable indicators of RS when
defined for each channel (or loop), taken one at a time, because simultaneous perturbations in more than
one loop are not catered for. [6] For MIMO systems, normalized coprime factor uncertainty (which allows
for zeros and poles to cross into the RHP) provides a useful general class of uncertainty. [6]
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control objective typical
frequency range

closed-loop requirement open-loop
requirement

disturbance rejection ω low
ω ≤ ωl ≤ ωB

σ̄ (S(jω)) small σ (L(jω)) large;
valid if

σ (L(jω)) ≫ 1
reference tracking ω low

ω ≤ ωl ≤ ωB

σ̄ (T (jω)) ≈ σ (T (jω)) ≈ 1 σ (L(jω)) large;
valid if

σ (L(jω)) ≫ 1
noise attenuation ω high

ωB ≤ ωh ≤ ω
σ̄ (T (jω)) small σ̄ (L(jω)) small;

valid if
σ̄ (L(jω)) ≪ 1

input usage (control
energy) reduction

ω high
ωB ≤ ωh ≤ ω

σ̄ (KS(jω)) small σ̄ (K(jω)) small;
valid if

σ̄ (L(jω)) ≪ 1
robust stability to an
additive perturbation

ω high
ωB ≤ ωh ≤ ω

σ̄ (KS(jω)) small σ̄ (K(jω)) small;
valid if

σ̄ (L(jω)) ≪ 1
robust stability to a
multiplicative output

perturbation

ω high
ωB ≤ ωh ≤ ω

σ̄ (T (jω)) small σ̄ (L(jω)) small;
valid if

σ̄ (L(jω)) ≪ 1

Table 8.1: Closed-loop equivalent open-loop requirements (in addition to the requirement
that K stabilizes G) [6], ωB is the bandwidth frequency (σ̄ (S(jωB)) =

1√
2
)

At a given frequency ω, the requirements in Table 8.1 cannot be all satisfied simultane-
ously. Feedback design is therefore a trade-off over frequency of conflicting objectives. [6]
In terms of the open-loop requirements of Table 8.1, this is summarized graphically in Fig-
ure 8.17.

performance

boundary

Robust stability,

noise attenuation,

control energy

reduction boundary
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B
)

logω

σ̄ ( )L

σ ( )L

ωl ωh

≈ ωB

Figure 8.17: Design trade-offs for the multivariable loop transfer function L = GK

(adopted from [6])
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8.8.2 Robust stabilization with respect to coprime factor uncer-
tainty

Figure 8.18 shows the perturbed (positive) feedback system in terms of so-called coprime
factor uncertainty, which shall be robustly stabilized. The coprime factor uncertainty de-
scription for the set of perturbed plants Gp is

Gp = (M l +∆M)
−1(N l +∆N),

∥∥[ ∆N ∆M

]∥∥
∞ < ǫ (8.112)

where G = M−1
l N l is the normalized left coprime factorization of the nominal plant G.

The stable unknown transfer functions ∆M and ∆N represent the uncertainty and ǫ > 0 is
the stability margin. This uncertainty description allows for zeros and poles to cross into
the RHP while being comprised of stable components M l(s), N l(s), ∆M(s) and ∆N(s) . [6]

M−1
lN l

K

∆N ∆M

+

+

+ −

φ

u y

Gp

Figure 8.18: H∞ robust stabilization problem for coprime factor uncertainty

Arranging the block diagram of Figure 8.18 into the M -∆-structure for robust stability
analysis (see Figure 8.13 on page 100), where in this case M is the transfer function matrix

from φ to

[
u

y

]
yields:

∆ =
[
∆N ∆M

]
and M =

[
K

I

]
(I−GK)−1M−1

l (8.113)

Note that because the output vectors of the uncertainty blocks ∆N and ∆M enter at the
same location in the block diagram, the perturbations can be stacked side by side forming
an overall full complex perturbation matrix ∆.

Consequently (see (8.77)) the perturbed (positive) feedback system of Figure 8.18 is
robustly stable (RS) for all stable perturbations ∆N and ∆M satisfying

∥∥[ ∆N ∆M

]∥∥
∞ < ǫ

if and only if the nominal feedback system is stable (NS) and

γK ,

∥∥∥∥
[
K

I

]
(I−GK)−1M−1

l

∥∥∥∥
∞︸ ︷︷ ︸

‖M‖∞

≤ 1

ǫ
= γ. (8.114)

As stated by Glover and McFarlane [16] the lowest achievable value of γK denoted as γmin

corresponding to the maximum stability margin ǫmax is given by equation (8.115), where
‖·‖H denotes the Hankel-norm and ρ is the spectral radius.

γmin =
1

ǫmax
=
{
1−

∥∥[ N l M l

]∥∥2
H

}− 1
2
= (1 + ρ(XZ))

1
2 (8.115)
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For a minimal state-space realization of G
ss
=

[
A B

C D

]
, Z > 0 (Z positive definite) is the

unique solution to the algebraic Riccati equation (8.116)

(A−BS−1DTC)Z +Z(A−BS−1DTC)T −ZCTR−1CZ +BS−1BT = 0 (8.116)

where

R = I+DDT (8.117)

S = I+DTD (8.118)

and X > 0 (X positive definite) is the unique solution to the algebraic Riccati equation
(8.119).

(A−BS−1DTC)TX +X(A−BS−1DTC)−XBS−1BTX +CTR−1C = 0 (8.119)

By solving the two Riccati equations (8.116) and (8.119) it is possible to calculate the exact
γmin directly from (8.115) and hence avoid the γ-iteration needed to solve the general H∞
problem. [6]
A controller which guarantees for a certain γ > γmin that

∥∥∥∥
[
K

I

]
(I−GK)−1M−1

l

∥∥∥∥
∞

≤ γ (8.120)

is given by the following state-space realization:

K
ss
=

[
AK BK

CK DK

]

=

[
A+BF + γ2(LT)−1ZCT(C +DF ) γ2(LT)−1ZCT

BTX −DT

]
(8.121)

F = −S−1(DTC +BTX) (8.122)

L = (1− γ2)I+XZ (8.123)

8.8.3 Regarding performance requirements in the design

To meet the performance specifications, McFarlane and Glover suggested to pre- and post-
multiply the plant G(s) by two weighting matrices (compensators) W 1(s) and W 2(s) (8.124)
to shape the open-loop singular values (Figure 8.19) prior to robust stabilization of the
“shaped” plant Gs(s). [6]

GW 1 W 2

Ks

Gs

Figure 8.19: The shaped plant and controller
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Then this shaped plant
Gs(s) = W 2(s)G(s)W 1(s) (8.124)

with state-space representation

Gs
ss
=

[
As Bs

Cs Ds

]
(8.125)

is robustly stabilized by the feedback controller Ks using equations (8.112) to (8.123), where
Gs = M−1

ls N ls is the normalized left coprime factorization of the shaped plant. The feedback
controller for the plant G is then K = W 1KsW 2. [6]

It is desirable to achieve γmin (γmin ≥ 1) as small as possible, where the usual requirement
is γmin < 4, corresponding to at least 25% allowed coprime uncertainty (ǫmax =

1
γmin

).
If γ is sufficiently small then the following holds: [16]

• At frequencies where σ (Gs) is sufficiently large, also (as desired) σ (L) will be large.

• At frequencies where σ̄ (Gs) is sufficiently small, also (as desired) σ̄ (L) will be small.

8.8.4 Deriving a reasonable weight (compensator) W 1(s) for shap-
ing the open-loop plant

When the control objective is disturbance rejection, in a closed-loop shaping approach (see
Section 8.5) the H∞ norm of SGd (usually weighted and combined in a stack together with
other closed loop functions) is bounded by

‖SGd‖∞ < 1 ⇔ σ̄ (SGd(jω)) < 1 ∀ω ∈ R . (8.126)

Now it is shown that at frequencies ω where σ (L(jω)) ≈ σ (Gs(jω)) and σ (L(jω)) ≫ 1
hold, the postulation († denotes the pseudo-inverse, see Section A.5)

σ̄
(
W

†
1(jω)

)
· σ̄
(
G†(jω)

)
· σ̄
(
W

†
2(jω)

)
· σ̄ (Gd(jω)) < 1 (8.127)

because of the multiplicative matrix norm property (see A.29) implies σ̄ (SGd(jω)) < 1:

1 > σ̄
(
W

†
1(jω)

)
· σ̄
(
G†(jω)

)
· σ̄
(
W

†
2(jω)

)
· σ̄ (Gd(jω)) ≥ σ̄

(
W

†
1G

†W †
2(jω)

)

︸ ︷︷ ︸
σ̄(G†

s (jω))

·σ̄ (Gd(jω))

(8.128)

1 > σ̄
(
G†

s(jω)
)
· σ̄ (Gd(jω)) =

1

σ (Gs(jω))
· σ̄ (Gd(jω)) (8.129)

Considering the loop transfer function L instead of the desired loop shape or shaped plant
Gs(s) = W 2(s)G(s)W 1(s) in (8.129) yields:15

1 >
1

σ (L(jω))
· σ̄ (Gd(jω))

(8.109)≈ σ̄ (S(jω)) · σ̄ (Gd(jω)) ≥ σ̄ (SGd(jω)) (8.130)

15If the achieved γ is small (i.e. γ < 4) the shape of the open-loop singular values will not have changed
significantly after robust stabilization [6], i.e., if γ is small (i.e. γ < 4) then σ (L(jω)) ≈ σ (Gs(jω)) if
σ (Gs(jω)) is sufficiently large.
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In the following (8.127) is utilized to derive a reasonable weight W 1(s) for the H∞
loop shaping problem at hand (disturbance rejection). Thus, an adequately shaped plant
Gs = GW 1 (W 2 = I) is obtained:

1 > σ̄
(
W

†
1(jω)

)
· σ̄
(
G†(jω)

)
· σ̄ (Gd(jω)) =

1

σ (W 1(jω))
· 1

σ (G(jω))
· σ̄ (Gd(jω)) (8.131)

σ (W 1(jω)) >
σ̄ (Gd(jω))

σ (G(jω))
= σ̄

(
G†(jω)

)
· σ̄ (Gd(jω)) ≥ σ̄

(
G†Gd(jω)

)
(8.132)

However, in order to minimize the input signals u and to avoid stability problems,
σ (W 1(jω)) should not be larger than necessary. Thus, a more conservative choice could
be

σ (W 1(jω)) ≈ σ̄
(
G†Gd(jω)

)
. (8.133)

As outlined in Figure 8.17 σ̄ (L(jω)) and thus σ̄ (Gs(jω)) should be small at those typically
high frequencies, where noise attenuation, input usage and/or robust stability (with respect
to additive and/or multiplicative output uncertainty) might be an issue. This has to be
regarded when to decide on the shape of W 1(s) in the high frequency range.

Another possibility to decide on a desired loop shape, or rather shaped plant Gs(s), and
thus a way to derive a reasonable weight(s) W 1(s) (and W 2(s)) for shaping the plant G

(in the case of disturbance rejection also applicable if the disturbance transfer function Gd

is unknown) is described in the following. The following suggestion was inspired by [6].

• Design an initial controller based on LQG16 (which may use modal weighting), and
validate its stability and performance (e.g. disturbance rejection performance) in an
experiment.

• If the outcome is satisfying, use its loop transfer function matrix LLQG as a provisionally
shaped plant G̃s(s) = W̃ 2(s)G(s)W̃ 1(s).

• For simplicity choose W̃ 2 = I. Thus, the preliminary weight W̃ 1(s) is computed by

W̃ 1(s) = G†LLQG. (8.134)

In general the weight W̃ 1(s) may not be minimum phase or even stable, and thus inappli-
cable. On one hand, an all-pass factorization in terms of RHP zeros as well as RHP poles of
W̃ 1(s), W̃ sm1(s) (stable and minimum phase) can be used. The mathematical background
on all-pass factorization can be found in [6]. Still, the weight W̃ sm1(s) might be inappropri-
ate because of its complexity and usually high system order so further simplification might
be needed.

On the other hand, one can simply investigate the singular values of W̃ 1(jω) in a plot.
This might give an idea of how to choose a simple diagonal weight W 1, for example by

reasonably approximating the shape of the maximum singular value σ̄
(
W̃ 1(jω)

)
over fre-

quency with a relatively simple, stable, and minimum phase SISO weight W1(s) and letting
W 1 = W1(s) · I (see Figures 9.13 and 9.30).

16Gd is not needed
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Instead of using the loop transfer function matrix of a LQG based design, one can try
to use L of a different, successfully validated controller design (method), for example the
loop shape LmixedS, obtained by the mixed-sensitivity H∞ regulation (disturbance rejection)
problem17 which was described in Section 8.5.

W̃ 1(s) = G†LmixedS (8.135)

17Gd is needed



Chapter 9

Simulation and Validation of Control
Performance

Improving disturbance rejection (the disturbance signal d is associated with the shaker force)
of the experimental plant “beam with mounted shaker” by applying the feedback control
design methods described in Chapters 7 and 8 will be shown in this chapter. Here the
measured outputs y are the strain signals of the four piezo patch sensors (i.e. the acceleration
and force measurements will be omitted in the following) and all four outputs are fed back
to the feedback controller K (i.e. u = Ky or u = −Ky). The four different feedback
controllers,

• modally weighted LQG (see Chapter 7, page 79),

• mixed-sensitivity H∞ optimal design (see Section 8.5, page 88),

• H∞ loop-shaping design (see Section 8.8, page 112) and

• D(G)K1 synthesized µ-“optimal” design (see Section 8.7, page 109)

will be designed on the basis of the “IDbs-model” as well as on the “FEbs-model”. The origin
of the input-output scaled final models, ready to be used for controller design and simulation
purposes was described in Table 6.2 on page 70.

9.1 Disturbance Signal(s) and Identification of Spectral

“Experimental Validation Models”

In order to be able to compare the experimental validated closed-loop (disturbance rejection)
performance achieved by a certain controller with the experimental open-loop (disturbance)
performance, and among one another (and with simulated closed-loop performance (i.e.
SGd)), over a wide frequency range, spectral, non-parametric models (from d to y) were
identified. These identified spectral models from validation at the experiment (actual hard-
ware experiment) are referred to as closed-loop experimental validation model(s) (SCL-EV)
respectively open-loop experimental validation model (SOL-EV). The identification procedure
carried out to obtain these spectral models is described in the following.

1In section 9.3.5 parametric real uncertainty (see Section 8.6.2.1 on page 91) in the natural angular
frequency ωi will be considered, thus DGK-iteration is used. For information about DGK-iteration see [7].

119
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To concentrate the excitation on the modes below 50 Hz and to avoid ringing in the
frequency domain, a discrete white noise signal (i.e. Gaussian random amplitude at the
chosen sampling frequency of 1000Hz) with a variance of 0.36 was fed to five first-order low
pass filters in series all with a cutoff frequency of 100Hz. This disturbance signal d(kTs) was
scaled by the disturbance scaling gain Dd (see Section 6.2) and fed to the shaker input of
the Simulink® subsystem “MIMO beam”.2

For each experimental validation of a controller and for the experimental open-loop case
data sets of about 1.2 · 106 samples were recorded using a sampling time Ts = 0.001 s. The
signals dl and yl were recorded (see Section 2.2, Figure 2.4).

It should be pointed out that the applied disturbance signal dl(kTs) was exactly the same
for all identifications with closed-loop (different controllers) and for the one (new) open-loop
identification and that in this chapter for each plot comparing a closed-loop experimental
validation model (SCL-EV) with an open-loop experimental validation model (SOL-EV) both
of these spectral models were identified with the same amount of data (i.e. the shorter signal
length of both was used).

Because the input signal is the generated disturbance signal dl, it is not an identification
in the closed loop, when the feedback loop is closed with the (feedback) controller K, but
only an identification with closed loop. Thus, it is simply an identification of a different
system. For the generated (disturbance) input signal dl the (identification) requirement that
it is uncorrelated with the measurement noise (of yl) is fulfilled.

For better comparability of (singular value and Bode) plots of simulated performance
(SGd) and plots of experimental validated closed-loop performance in terms of spectral
models (SCL-EV-model(s)), the logged signals dl and yl were input- respectively output-
scaled.3

The data was down-sampled to 100Hz to improve the resolution of the identification task
in the lower frequency range. Where a tenth-order anti-aliasing filter was applied before
decimation and two percent at the beginning and at the end of the signal were skipped.
Mean values were subtracted and linear trends removed.

Then the preprocessed data was used to identify a spectral model4 (non-parametric
model) from d to y by using the MATLAB® algorithm spafdr.

In addition to this excitation by a noise signal, each controller was validated by applying
five different sine signals (d(t) = 1/4 · sin(2πf IDbs

i t) for i = 1, . . . , 5) and five different pairs
of subtended step signals (same step size, but different sign) with temporal difference ∆ti =
1/(2·f IDbs

i ) (d(t) = σ(t) − σ(t − ∆ti) for i = 1, . . . , 5), where ∆t was rounded down to be an
integer multiple of the sampling time Ts (for f IDbs

i see Table 6.4 on page 77).

2For the controller validation the inputs and outputs of the Simulink® subsystem “MIMO beam” had to
be scaled as follows:

The inputs associated with the piezo patch actuators had to be scaled with Du (ul = Duu+ uoffset).
The input associated with the shaker had to be scaled with Dd (dl = Ddd+ doffset).
The outputs associated with the piezo patch sensors had to be scaled with KεylD−1

eε (y = KεylD−1
eε y

l).
3Thus, by applying a spectral analysis to this scaled input and output data, the non-parametric (spec-

tral) models (SOL-EV and SCL-EV) were directly obtained in input- and output-scaled form as outlined in
Section 6.2.

4The only structural assumption to be made for identifying a spectral model is the linearity of the
system. [17]
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9.2 Controller Designs Based on the Identified (ID) Model

In this section all discrete-time controller designs are based on the discrete-time (Ts = 0.01 s)
“IDbs-model” as design plant. For simplicity, the notation G instead of GIDbs and Gd instead
of GIDbs

d is used to denote the nominal plant respectively disturbance model in the following.

9.2.1 Mixed-sensitivity H∞ control

The scalar performance weight W1(s) was chosen as a bandpass with two additional peaks.
These two extra peaks were utilized to put strong weight on the low-damped first and fourth
modes. Thus, by design of W1(s), performance is not an issue at low and high frequencies,
where actuation is not desired with the applied piezo patch actuators, respectively were
the system is simply unknown. The scalar input weight W2(s) was selected as a bandstop,
thus input usage is highly penalized outside the frequency range of interest spanned by the
natural frequencies of the first five (structural) modes of the beam with mounted shaker.

As already mentioned, the size of KS (in N , see (9.5)) is also important for robust
stability with respect to additive plant uncertainty (see equation (8.48) on page 94), where
∆A is usually considered as a full complex perturbation matrix and thus the (frequency-wise)
requirement for robustly stability (see Definition 8.5 on page 101) is

‖M‖∞ < 1. (9.1)

where M = −W 1AKSW 2A. The negative sign in front of M is irrelevant in the following.
By considering W 1A(s) = W1A(s) · I and W 2A = I from (9.1) follows that, although

uncertainty is not explicitly modelled by this mixed-sensitivity H∞ design, it is robustly
stable for all perturbed plants Gp with

σ̄ (Gp(jω)−G(jω)) = σ̄ (W1A∆A(jω)) = |W1A(jω)|·σ̄ (∆A(jω))︸ ︷︷ ︸
≤1

≤ |W1A(jω)| ∀ω ∈ R (9.2)

where

|W1A(jω)| <
1

σ̄ (KS(jω))
= σ

(
(KS (jω))†

)
∀ω ∈ R (9.3)

if additionally to N (z = Nw, see Equation (8.26)), which by the (mixed-sensitivity) H∞
design is guaranteed to be stable, the transfer function matrices

M = −W 1AKSW 2A, Ñ 12 = −W 1AKSGd and Ñ 21 =

[
W 1SW 2A

W 2KSW 2A

]
(9.4)

are stable.5 Because W 1A and W 2A are assumed stable, and

N =

[
W 1SGd

W 2KSGd

]
(9.5)

5i.e. If Ñ =

[
M Ñ12

Ñ 21 N

]
is internally stable (NS) the mixed-sensitivity H∞ design at hand is robustly

stable (RS) for all perturbed plants Gp with: σ̄ (Gp(jω)−G(jω)) < 1
σ̄(KS(jω)) ∀ω ∈ R
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is stable also S, KS and KSGd are stable.6 Thus the mixed-sensitivity H∞ design at
hand fulfills the nominal stability (NS) condition with respect to additive plant uncertainty.
Because in this mixed-sensitivity H∞ design KS is shaped by W 2(s), the shape of W 2(s)
has direct influence on robust stability with respect to additive plant uncertainty.

A singular value plot of the discretized weights (zero-pole matching method; Ts = 0.01 s)
W1(z) and W2(z) is depicted in Figure 9.1.
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Figure 9.1: Singular values of performance weight W 1(z) = W1(z) · I and input weight
W 2(z) = W2(z) · I

By applying the MATLAB® algorithm hinfsyn on the generalized plant P (8.25), a
stabilizing, stable feedback controller K (with 42 states) was obtained. As desired, the
singular values of K (Figure 9.2) (especially the maximum singular value σ̄

(
K(ejωTs)

)
)

are high around the natural frequencies of the first and fourth (structural) modes, thus
considerable damping improvements of these particularly low damped modes are expected
when the loop is closed.
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Figure 9.2: Singular values of the feedback controller K

6In a case where K itself is unstable, S has RHP zeros (all-pass behavior) which cancel these RHP
poles (unstable poles) of K. When it comes to implementation of an itself unstable controller K, special
techniques have to be applied in order to guard against the case when the loop transfer function L is opened
and thus the control signal u would increase boundlessly. If Gd would be unstable, which is not the case
(flexible structure), its RHP poles would be also canceled by corresponding RHP zeros in S.
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In Figure 9.3 the maximum singular value of the closed-loop performance transfer function
matrix N (N = Fl(P ,K)) is shown. The nominal performance (NP) requirement

‖N‖∞ < 1 ⇔ σ̄
(
N(ejωTs)

)
< 1 ∀ω ∈ R

(i.e. the design) is most critical (‖N‖∞ = γ = 0.7018) around the natural frequency of
the first (structural) mode (f IDbs

1 = 4.5332Hz), but nevertheless is easily satisfied. Also the
other modes can be easily spotted in the maximum singular value plot of N , but are even
less problematic for the design. As expected, at low frequencies, where by the shape of the
performance weight W 1(z) the demand on the design is vanishing, the maximum singular
value of N drops down to an insignificantly low level.
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Figure 9.3: Singular values plot of the closed-loop performance transfer function (vector)
N (z = Nw, where w = d) and its individual stacked components

The singular value plot (Figure 9.4a) of the simulated (nominal) closed-loop behavior
(y = SGdd) looks promising when compared to the simulated (nominal) open-loop behavior
(y = Gdd). The first and the fourth modes are highly damped by the feedback controller K,
and also the damping of all other modes is improved significantly. By applying the controller
K on the “IDbs(ho)-model”, the feedback system is also stable and the improvement of mode
damping (Figure 9.4b) is quite similar.

However, because for the two models (“IDbs-model” and “IDbs(ho)-model”) the first peak
(corresponding to the first structural mode), which is rather sharp, appears at a slightly
different frequency (barely noticeably in Figures 4.5a and 4.5b on page 24), the controller K
“splits” the first peak of the “IDbs(ho)-model” in two. This effect is also seen in Figure 9.5,
which plots the singular values of the open-loop experimental validation model (SOL-EV)
and those of the closed-loop experimental validation model (SCL-EV). The slight shift of
the third and fourth modes to higher frequencies in the simulation can also be seen in
the experimental closed-loop validation (SCL-EV). The improvement in mode damping is
excellent in the experimental closed-loop validation. The first mode is reduced by 9.3 dB
and the fourth is reduced by more than 14 dB. Also the damping of the second, third and
fifth structural modes is improved (reductions of 1 dB, 1.6 dB and 1.4 dB, respectively). In
general the experimental validated closed-loop behavior (SCL-EV) is in good accordance to
the simulation on the “IDbs(ho)-model”.
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Figure 9.4: Singular values of simulated open-loop and closed-loop behavior (from d to y)
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of open-loop (SOL-EV) and closed-loop (SCL-EV) identified spectral models
(mixed-sensitivity H∞ optimal design based on the “IDbs-model”)

In Figure 9.6 Bode magnitude plots of the open-loop (SOL-EV) and closed-loop experi-
mental validation models (SCL-EV) are shown. For the fourth structural mode the magnitude
reduction is excellent for all outputs yi (i = 1, . . . , 4), whereas for the first structural mode
the reduction in magnitude of output y3 is negligible compared to the other outputs. The
magnitude of the open-loop experimental validation model (SOL-EV) is much lower around
the first structural mode (at about 4.53Hz) for y3, because (for a hinged-hinged beam with
mounted shaker) the third piezo patch sensor lies quite close to the node of oscillation of the
first bending strain mode shape. This is shown by the third blue circle (piezo patch sensor
number three) in the right picture of Figure 5.20b on page 64, which shows the first five mode
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shapes proportional to the curvature respectively bending strain (assuming εbending ∝ d2w
dx2 )

of the FE beam with mounted shaker.
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In terms of the scaled outputs y, Figure 9.7b depicts the actual open-loop and closed-loop
responses to a persistent sine signal (scaled disturbance signal d(t) = 1/4 · sin(2πf IDbs

1 t)) of
frequency f IDbs

1 = 4.53Hz (Figure 9.7a). At times t < 0 measurement noise and the effects of
unmeasured process noise (crosstalk/noise) on actuator lines are clearly (but indistinguish-
able) visible in Figure 9.7b. After a short period of transient behavior the system response
is more or less sinusoidal. For this (scaled) disturbance signal d, the ratio of the open-loop
and closed-loop amplitudes is about the same for all outputs, except for output y3, where
the open-loop and closed-loop amplitudes are inherently both significantly lower (spatial
proximity to the node of oscillation for bending strain). This behavior was also revealed by
the Bode magnitude plots of Figure 9.6.

As seen from Figure 9.7c damping of the first structural mode is mostly accomplished
by the second and fourth piezo patch actuators (u2 and u4), which collocated piezo patch
sensors (y2 and y4) measure the highest amplitudes (see Figure 9.7b and blue circles in the
right picture of Figure 5.20b on page 64). As expected, here the third piezo patch actuator
(u3) has only a minor part.
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(b) Open-loop and closed-loop output signal y(t)

 

 

u4(t)

u3(t)

u2(t)

u1(t)

Time in s

u
(t
)

Experimental control signal u(t) (scaled)

−1 0 1 2 3 4 5 6 7 8 9
−0.5

0

0.5

(c) Control signal u(t) (in the closed loop)

Figure 9.7: Measured open-loop and closed-loop output signal y(t) and control signal
u(t) (disturbance excitation d(t) = 1/4 · sin(2πf IDbs

1 t))

The case when a persistent sine signal (d(t) = 1/4 · sin(2πf IDbs
4 t)) of frequency f IDbs

4 =
29.95Hz is applied as disturbance d (Figure 9.8a) is depicted in Figure 9.8b. The ratio of
the open-loop and closed-loop amplitudes confirm the excellent damping improvement seen
in the Bode magnitude plots of Figure 9.6.

Figure 9.8c reveals that the amplitude of the control signal u4 is considerably larger than
all others, possibly due to the fact that the (collocated) piezo patch sensor number four is
closer to the shaker coupling point than the others.
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(b) Open-loop and closed-loop output signal y(t)
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Figure 9.8: Measured open-loop and closed-loop output signal y(t) and control signal
u(t) (disturbance excitation d(t) = 1/4 · sin(2πf IDbs

4 t))

The open-loop and closed-loop response to a rectangular pulse signal (d(t) = σ(t) −
σ(t −∆t1)) is presented in Figure 9.9b. The intention by choosing ∆t1 = 1/(2·f IDbs

1 ) (∆t1 =
0.11 s) was to cause a strong excitation of the first structural mode. After a short transient
behavior the open-loop and closed-loop responses decay with the natural frequency of the
first structural mode, whereas because the third piezo patch sensor lies in close vicinity to
the node of oscillation for bending strain the output y3 drops down immediately as soon as
the transient response is over. The other outputs show that the closed-loop response decays
faster.
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As expected for this desired strong excitation of the first structural mode, the H∞ con-
troller makes again (compare with Figure 9.7c) intense use of actuators two and four (u2

and u4), while the third actuator (u3) is used least of all.
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Figure 9.9: Measured open-loop and closed-loop output signal y(t) and control signal
u(t) (disturbance excitation d(t) = σ(t)− σ(t−∆t1))

Although uncertainty is not explicitly modelled by this mixed-sensitivity H∞ design, it
is robustly stable for all perturbed plants Gp with

σ̄
(
Gp(e

jωTs)−G(ejωTs)
)
≤
∣∣W1A(e

jωTs)
∣∣ ∀ω ∈ R (9.6)
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where the singular values of W 1A(e
jωTs) = W1A(e

jωTs) · I (σ̄(W 1A(e
jωTs)) = σ(W 1A(e

jωTs)))
are depicted in Figure 9.10. At low frequencies the high value of 1

σ̄(KS(ejωTs ))
allows for large

additive uncertainty. In terms of the structural modes additive uncertainty is allowed to be
largest around the first structural mode.
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jωTs) = W1A(e
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jωTs)
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σ̄(KS(ejωTs ))

with an infinitesimally small ǫ ∈ R+)

9.2.2 Modally weighted LQG design

Because the plant is (strictly) stable (i.e. |λi (A)| < 1 for i = 1, . . . , n), the closed loop
system with state feedback controller KLQR is guaranteed to be asymptotically stable.7 And
because A and AT have the same eigenvalues (i.e. for a strictly stable plant

∣∣λi

(
AT
)∣∣ < 1

for i = 1, . . . , n) it is guaranteed that the solution Y of the filter algebraic Riccati equation
( 7.12 on page 81), and thus the optimal filter gain matrix H exists.8 Thus for this (strictly)
stable (nominal) plant at hand the LQG-controlled system is guaranteed to be internally
stable independent of the chosen (but valid) LQG design parameters.

In MATLAB® the command eig was used to compute eigenvectors of the state matrix
A. Then according to the natural angular frequency ωi each eigenvector si was sorted in
ascending order of ωi yielding a matrix of eigenvectors S (see Example 9.1). Because A has
complex-conjugate eigenvalues (i.e. complex-conjugate eigenvectors) in the diagonal matrix
of weighting factors M (9.7) the weighting factors mi appear in pairs. Thus, the first two
diagonal elements of M are utilized for weighting the first structural mode, the next two
diagonal elements of M for weighting the second structural mode, and so on. A high value
mi means that the corresponding eigenmode si is weighted strongly in the state weighting
matrix Q (by m2

i ) and thus the improvement of damping of this eigenmode si is important.

M =




120 · I[2×2] 0 0 0 0

0 30 · I[2×2] 0 0 0

0 0 50 · I[2×2] 0 0

0 0 0 100 · I[2×2] 0

0 0 0 0 50 · I[2×2]




(9.7)

7This is, because independent of B and Q (A, B) is stabilizable and (A, Q) is detectable.
8This is, because independent of C and W (AT, CT) is stabilizable and (AT, W ) is detectable.
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Because Q has to be a real-valued matrix, in MATLAB® the following code was used:

Example 9.1: Deriving the state weighting matrix Q for modal weighting using
MATLAB®

1 % given:
2 % G ... plant (minimal state −space realization)
3 % M ... diagonal matrix of weighting factors (design param.; 1 . mode ...

first)
4

5 [ S,EW] = eig(G.A);
6 EW = diag(EW);
7 if G.Ts == 0 % continuous −t ime:
8 omega = abs(EW); % natural angular frequency
9 else % discrete −t ime:

10 omega = abs(log(EW))/G.Ts; % natural angular frequency
11 end
12 [ dummy,ind] = sort(omega, 'ascend' ); % 1. mode first
13 S = S(:,ind); % matrix of eigenvectors of A sorted by omega
14 Q_hat = S * M/S; % auxiliary matrix
15 Q = real(Q_hat' * Q_hat); % state weighting matrix for modal weighting

The input weighting matrix R is usually considered as a diagonal matrix, were a high
diagonal entry Rii penalizes input usage of the associated actuator i strongly. Because all
four piezo patch actuators are the same, the input weighting matrix R was chosen as a
matrix of diagonally repeated values.

R = 2000 · I[4×4] (9.8)

With the state feedback controller KLQR and preamplifier matrix Kr (only meaningful for
reference tracking) the (discrete-time) closed-loop state-equation (9.9) and output-equation
(9.10) for the state feedback control configuration (with control law u = Krr −KLQRx) is
given by:9

x(k + 1) = (A−BKLQR)x(k) +BKrr(k) +Bdd(k) (9.9)

y = (C −DKLQR)x(k) +DKrr(k) +Ddd(k) (9.10)

Next, a motivation is presented how to derive reasonable weights W and V for designing
a Kalman filter by utilizing information of the idss MATLAB® object (identified state-space
model represented by (9.11)-(9.12))

x(k + 1) = Ax(k) +Bu(k) +Ke(k) (9.11)

y(k) = Cx(k) +Du(k) + e(k) (9.12)

on the estimated process noise model

w̃(k) = Ke(k) (9.13)

9In MATLAB® the command dlqr can be used to compute a linear-quadratic state-feedback regulator
for a discrete-time state-space system.
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and measurement noise (in MATLAB® e(k) is called model innovations, see MATLAB®

documentation doc idss)

ṽ(k) = e(k) (9.14)

Ideally the model innovation ṽ(k) = e(k) is a signal vector of uncorrelated white, Gaus-
sian noise signals. It turned out that indeed its covariance matrix10

Ṽ = E{ṽ(k)ṽT(k)} (9.15)

is a diagonal dominant matrix.11

Ṽ =




13, 69 −1, 57 0, 46 2, 27
−1, 57 9, 56 −4, 03 −1, 04
0, 46 −4, 03 9, 88 −0, 45
2, 27 −1, 04 −0, 45 8, 44


 · 10−5 (9.16)

The covariance matrix W̃ of the estimated (white) process noise w̃(k) is computed by:

W̃ = E{w̃(k)w̃T(k)} = E{Ke(k)eT(k)KT} = KE{e(k)eT(k)}KT = KṼ KT (9.17)

Because in LQG the (white) process noise signal w and (white) measurement noise signal
v are usually assumed to be uncorrelated (i.e. E

{
w(t)v(t)T

}
= 0; E

{
v(t)w(t)T

}
= 0) the

diagonal values of Ṽ and W̃ were chosen.

V =




Ṽ11 0 0 0

0 Ṽ22 0 0

0 0 Ṽ33 0

0 0 0 Ṽ44


 W =




W̃11 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 W̃nn




(9.18)

In MATLAB® the command kalman was used to design a delayed Kalman state estimator
Kest(z).12 Then the command lqgreg was used to form the Linear Quadratic Gaussian
(LQG) regulator K(z), which is of the same system order as the plant (i.e. same system order

10Given a measurement matrix x(k) = [x1(k), . . . , xi(k), . . . , xn(k)]
T

its empirical covariance matrix

Ĉ (x) = Ĉ
T
(x) ≥ 0 (symmetric and positive semi-definite) is computed by:

Ĉ (x) = E{[x(k)− µ̂x] [x(k)− µ̂x]
T}, where µ̂x = [µ̂1, . . . , µ̂i, . . . , µ̂n]

T
and µ̂i is the empirical mean of

the scalar signal xi(k).
Because a white noise signal ni(k) is zero-mean, for a vector of white noise signals n(k) =

[n1(k), . . . , ni(k), . . . , nn(k)]
T

Ĉ (n) = E{n(k)nT(k)}.
11In MATLAB® the covariance matrix of the white, Gaussian noise component e(k) is obtained by:

idss_object.NoiseVariance

Attention! The “idss_object” has to be the same state-space system with matrices (A,B,C,D) as

G
SS
=

[
A B

C D

]
(same input-output scaling, same states).

12In MATLAB® the command kalman can be used to design a Kalman state estimator Kest (dynamic
system) for continuous- or discrete-time estimation problems, where in the later case a decision on the type
of Kalman estimator (“current” or “delayed” estimator) has to be made.
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as the Kalman estimator), by connecting the Kalman estimator Kest(z) and the optimal
state-feedback gain KLQR.13

As desired (by the chosen values of the modal weighting factors mi), the first and fourth
modes are highly damped in the singular value plot of the simulated (nominal) closed-loop
behavior (from d to y) (Figure 9.11a). By applying the tenth order controller K(z) on the
“IDbs(ho)-model”, the feedback system is also stable and the improvement of mode damping
(Figure 9.11b) is quite similar. However, because of some model mismatch between the nomi-
nal (“IDbs-model”) and the “IDbs(ho)-model” around the first structural mode, the controller
K(z) “splits” the first peak of the “IDbs(ho)-model” in two. This behavior of “splitting” the
first peak of the “IDbs(ho)-model” was already seen for the mixed-sensitivity H∞ design of
Section 9.2.1 (see Figure 9.4b). However, unlike in Section 9.2.1 here this behavior is not
seen in Figure 9.12 which plots the singular values of the open-loop experimental validation
model (SOL-EV) and those of the closed-loop experimental validation model (SCL-EV). For
the closed-loop experimental validation model (SCL-EV) the improvement of damping of the
first, third, fourth and fifth structural modes are about 9.15 dB, 0.65 dB, 5.66 dB and 0.9 dB,
while the second structural mode remains unchanged in damping. The improvement in per-
formance by the LQG controller is considered good, but especially for the fourth structural
mode considerably less convincing than the performance achieved by the mixed-sensitivity
H∞ design (see Figure 9.5 on page 124).

Again (as well as for the mixed-sensitivity H∞ design of Section 9.2.1) the experimen-
tal validated closed-loop behavior (SCL-EV) is in good accordance to the simulation on the
“IDbs(ho)-model” confirming the later as an accurate model, well suited for simulation pur-
poses.

Because unlike computational sophisticated (time-consuming) design methods used in
this work (especially D(G)K synthesized designs) where a plant of low order might signif-
icantly speed up the algorithms, for LQG a low plant order is not as crucial and the fact
that LQG controllers have the same (in the case at hand relatively low) order as the plant
might give rise to use the “IDbs(ho)-model” as a design plant. However, for reasons of better
comparability among the different design methods the “IDbs-model” was used.

13The MATLAB® command lqg, which handles both continuous- and discrete-time plants (in the discrete
case a “delayed” Kalman estimator is used) can be used to derive the LQG regulator K in one call (e.g.
K_LQG = lqg(G,blkdiag(Q,R),blkdiag(W,V));).
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Figure 9.11: Singular values of simulated open-loop and closed-loop behavior (from
d to y)
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Figure 9.12: Experimental validation results in terms of singular values (from d to y)
of open-loop (SOL-EV) and closed-loop (SCL-EV) identified spectral models
(modally weighted LQG design based on the “IDbs-model”)

9.2.3 H∞ loop-shaping design for coprime factor uncertainty

In section 8.8.4 on page 116 two fundamentally different suggestions (when disturbance
rejection is an issue) were made on how to derive a reasonable dynamic weighting matrix
(compensator) W 1 to shape the singular values of the open-loop plant G before robustly
stabilizing (“robustifying”) the shaped plant (initial loop shape) Gs = W 2GW 1 with respect
to coprime factor uncertainty. One recommendation (see (8.132)) is to choose a dynamic
weighting matrix W 1(z) with
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σ
(
W 1(e

jωTs)
)
≈ σ̄

(
G−1(ejωTs)

)
· σ̄
(
Gd(e

jωTs)
)

(9.19)

or (in some sense more conservative) with

σ
(
W 1(e

jωTs)
)
≈ σ̄

(
G−1Gd(e

jωTs)
)
. (9.20)

The other proposal (in the case of disturbance rejection also applicable if the disturbance
transfer function Gd is unknown) was to utilize the loop shape Lsuccess of an already suc-
cessfully validated controller design method, e.g by choosing a dynamic weighting matrix
W 1(z) = W1(z) · I with

∣∣W1(e
jωTs)

∣∣ ≈ σ̄
(
W̃ 1(e

jωTs)
)

(9.21)

where
W̃ 1(e

jωTs) = G−1Lsuccess(e
jωTs). (9.22)

For the problem at hand, these proposals (equations (9.19) to (9.22)) are visualized in
Figure 9.13, where for the loop shape Lsuccess in (9.22) the loop shape of the modally weighted
LQG design (Section 9.2.2) and that of the mixed-sensitivity H∞ design (Section 9.2.1) is
used, together with the chosen W 1(z) = W1(z) · I used for the H∞ loop-shaping design
presented in the following. Figure 9.13, shows the loop shapes discussed. The multiplicative
matrix norm inequality

σ̄
(
G−1(ejωTs)

)
· σ̄
(
Gd(e

jωTs)
)
≥ σ̄

(
G−1Gd(e

jωTs)
)

∀ω ∈ R (9.23)

holds. It is evident that σ̄
(
G−1LmixedS(e

jωTs)
)

has derivative behavior at low frequencies
due to the chosen input and performance weights W u respectively W P (used in the mixed-
sensitivity H∞ design). On the other hand, σ̄

(
G−1LLQG(e

jωTs)
)

has globally proportional
behavior.14

It should be mentioned that W1(z) was shaped with respect to (9.20) (conservative version
of the variant) which utilizes the disturbance model Gd. At the time at which W1(z) was
shaped LLQG and LmixedS were not yet available and the approach (9.21)-(9.22) was not yet
considered. However, it is evident from Figure 9.13 that these two different approaches can
lead to a similar choice of W 1(z).

By approximating those dynamics of σ̄
(
G−1Gd(e

jωTs)
)

considered important utilizing
a “peak” and rethinking the shape outside the frequency range of interest spanned by the
natural frequencies of the first five (structural) modes of the beam with mounted shaker (i.e.
using a bandpass), a scalar compensator weight W1(s) was obtained. Then the compensator
W1(z) (Figure 9.13) was obtained by discretizing W1(s) using the zero-pole matching method
(Ts = 0.01 s).

At that point it should be mentioned that the depicted W1(z) = k ·W (z) with dynamics
W (z) and static gain k is the one with the largest value of k for which the obtained H∞
(loop-shaping) controller achieved stability in the hardware experiment and that numerous
controllers were designed by varying k in small steps within a reasonable range. Also a
variety of different dynamic shapes W (z) with slightly differently shaped bandpass filters
and different peak(s) were tested.

The design presented in the following with W 1(z) as depicted in Figure 9.13 was consid-
ered best with respect to the physical experiment.

14Actually also σ̄
(
G−1LmixedS(e

jωTs)
)

has globally proportional behavior but levels off at a much lower
frequency with a value of about −38 dB.
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Figure 9.13: Maximum singular values of the weighting matrix (compensator)
W 1(e

jωTs) = W1(e
jωTs) · I and suggested guidelines

By using the MATLAB® command ncfsyn a stabilizing, optimal, positive feedback
controller K = W 1KsW 2 with 41 states (Gs(z) has 26 states, Ks(z) has 25 states, and
W 1(z) has 16 states) was obtained, which itself is stable in this case. In general, Ks has the
same number of poles (states) as Gs [6]. The observation that Ks(z) has less states than
Gs(z) directly after design has not been investigated further.

Remark: Except for special systems, ones with all-pass factors, there are no pole-zero
cancellations between the plant and controller. Pole-zero cancellations are common in some
other H∞ control problems, like the mixed-sensitivity problem with stacked S/T , and are a
problem when the plant has lightly damped modes.[6]

As desired, all singular values of K (Figure 9.14) are high around the natural frequency
of the first structural mode. Note that at low frequencies and in particular around the first
structural mode the singular values of K are close, whereas above the natural frequency of
the first structural mode this behavior is not observed. This may be connected to the similar
shape of the singular values of Gs (respectively G, see GIDbs in Figure 6.5), but seems to be
characteristic for this design method.15 For other controller design methods this behavior of
“tight” singular values of K at frequencies where the design requires high performance was
not seen (compare Figure 9.2 (mixed-sensitivity H∞ control), Figure 9.19 (DK synthesized
µ-“optimal” controller)).

15If a controller with γ (K) = σ̄ (K) /σ (K) close to 1 is utilized, then the sensitivity function is not
sensitive to (both diagonal and full-block) input uncertainty. [6] Thus, although input uncertainty is not
explicitly modelled for the problem at hand, the design can be expected to have good robustness properties
with respect to input uncertainty (at the natural frequency of the first structural mode).
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Figure 9.14: Singular values of the feedback controller K

The design achieves a considerably small γ = 1.4 (i.e. the usually postulated criterion of
γ < 4 is fulfilled) and thus allows for ǫ = 71.4% (ǫ = 1/γ) coprime factor uncertainty.

In Figure 9.15 the singular values of the desired loop shape (shaped plant) Gs and those
of the actual loop transfer function L are shown.

Because σ
(
L(ejωTs)

)
is not significantly larger than 1 (actually σ

(
L(ejωTs)

)
< 1) the

underlying approximation

σ̄
(
S(ejωTs)

)
≈ 1

σ (L(ejωTs))
(9.24)

(see (8.108) and (8.109)) which in the case of disturbance rejection is used to postulate
a closed-loop equivalent open-loop requirement, where for reasonable disturbance rejection
σ
(
L(ejωTs)

)
should have been large (see Table 8.1), is not valid at all.

It would have been desirable by the choice of W 1(z) (W 1(z) = k ·W (z) · I) to achieve
σ
(
Gs(e

jωTs)
)

sufficiently large at frequencies where disturbance rejection is an issue (i.e.
around the natural frequencies of the structural modes), but this (at least with a scalar
W1(z)) could not be accomplished although many different dynamics W (z) (e.g. using sharp
peaks) were tried in W 1(z). For large(r) values of k the design turned out to be unstable
in the experiment. Thus, despite the fact that γ is sufficiently small, the undesirably small
σ
(
Gs(e

jωTs)
)

(around the natural frequencies of the structural modes) leads to an undesirably
small σ

(
Ks(e

jωTs)
)
, which in the following deteriorates the loop shape L = GsKs in terms

of σ
(
L(ejωTs)

)
. Comparing σ

(
Gs(e

jωTs)
)

with σ
(
L(ejωTs)

)
in Figure 9.15 around the natural

frequencies of the first and fourth structural modes reveals that the degradation in the loop
shape caused by the H∞ controller Ks (in terms of σ

(
L(ejωTs)

)
) is considerably larger around

the natural frequency of the fourth structural mode.
Note that if the scaling matrix De in (6.6) and (6.7) is reduced by multiplying each êimax

in De by 1/c (c > 1), this leads, by applying equations (9.19) to (9.22) to the same suggestion
for W 1, while G and thus Gs will be lifted by c. Hence for input-, output-scaled plants which
minimum singular values lie already relatively far above the 0 dB line, the deterioration in
terms of σ

(
L(ejωTs)

)
will be less. However, the aspect of input-, output-scaling as outlined

in Section 6.2 should be used to compare the relative importance of different transfer paths
and not for controller tuning.

On the one hand, the set of perturbed plants described by coprime factor uncertainty,
which allows for zeros as well as poles to cross into the RHP [6] (i.e. in the discrete-time
case leave the unit circle) is unnecessarily large for the problem at hand (flexible structure),
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because a passive flexible structure is stable and thus has no unstable poles. Hence an
obtained positive feedback controller K might be too conservative, achieving only modest
performance. On the other hand, the fact that with a larger value of k in W 1(z) = k ·
W (z) · I the obtained positive feedback controller K was not capable to attain stability in
the experiment, despite the circumstance that the design achieved a sufficiently small γ (i.e.
large stability margin ǫ with respect to normalized coprime factor uncertainty), indicates
that although the set of perturbed plants for which the design was ensured to be robustly
stable was considerably large, the real uncertainty of the plant was not taken into account
by the design.

Consequently in the case of a flexible structure using an H∞ loop-shaping design (i.e.,
describing the set of perturbed plants utilizing normalized coprime factor uncertainty) might
not achieve satisfying results.

Experimental results are presented in the following.
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Figure 9.15: Singular values of desired loop shape or shaped plant Gs (Gs(z) =
G(z)W 1(z)) and actual loop transfer function L

The singular value plot (Figure 9.16a) of the simulated (nominal) closed-loop behavior
(y = SGdd) looks promising when comparing it to the simulated (nominal) open-loop
behavior (y = Gdd). The first and especially the fourth mode are highly damped by the
positive feedback controller K, while the damping of all other structural modes are not
significantly changed. By applying the controller K on the “IDbs(ho)-model”, the positive
feedback system is also stable and the improvement of mode damping (Figure 9.16b) is
similar.

Figure 9.17 plots the singular values of the open-loop experimental validation model
(SOL-EV) and those of the closed-loop experimental validation model (SCL-EV). Although
σ
(
L(ejωTs)

)
has its highest value around the natural frequency of the first structural mode

(see Figure 9.15), the improvement in mode damping of the first mode is comparatively
small (reduction of 5.1 dB). With some surprise the fourth mode is reduced by more than
8.6 dB, which is considered good. The minor improvement of damping of the second and
third structural modes are about 0.4 dB and 0.26 dB, while the fifth remains unchanged in
damping.
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SGd

Gd

S
in

g
u
la

r
V
a
lu

es
(d

B
)

Frequency (Hz)

simulation: controller K(z) applied on "IDbs(ho)-model"

100 101 102

−30

−20

−10

0

10

(b) simulation on the “IDbs(ho)-model”

Figure 9.16: Singular values of simulated open-loop and closed-loop behavior (from
d to y)
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Figure 9.17: Experimental validation results in terms of singular values (from d to y)
of open-loop (SOL-EV) and closed-loop (SCL-EV) identified spectral models
(H∞ loop-shaping design based on the “IDbs-model”)

9.2.4 DK synthesized µ-“optimal” controller

The DK synthesized µ-“optimal” design is similar to the mixed-sensitivity H∞ design of
section 9.2.1 except for the modelled uncertainty and the positive sign in front of W u (which
is irrelevant in the following). Thus the performance weight W P(z) and input weight W u(z)
were chosen in a similar fashion (Figure 9.18).

A scalar performance weight WP(s) was chosen as a bandpass with four additional peaks.
These four peaks were utilized to put strong weights on the low-damped first and fourth
modes as well as on the moderately damped third and fifth modes. Thus, by design of
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WP(s), performance is not an issue at low and high frequencies, where actuation is neither
required nor desired. Again, the scalar input weight Wu(s) was selected as a bandstop.
Thus input usage is highly penalized outside the frequency range of interest spanned by the
natural frequencies of the first five (structural) modes of the beam with mounted shaker.

The uncertainty weights W1I(s) and W1O(s) for complex diagonal multiplicative input
respectively output uncertainty were chosen as scalar bandstop filters, thus the uncertainty
is the same for all inputs/outputs. The attenuation in the stopband is about 26 dB, hence at
intermediate frequencies the design allows for 5% multiplicative (input respectively output)
uncertainty. At those low and high frequencies where the uncertainty weights W1I(s) and
W1O(s) exceed 0 dB and thus the design allows for more than 100% multiplicative (input
respectively output) uncertainty, the phase of each SISO transfer function representing a
physical system on the plant’s input side (e.g. high voltage amplifier, piezo patch actuator)
respectively output side (e.g. piezo patch sensor) is considered unknown (see (8.52) and
(8.53)).

For the additive uncertainty weight W1A(z) the following approach was taken.
A set of plants Π may be represented by additive uncertainty using

Gp = G+W1A∆A︸ ︷︷ ︸
EA

(9.25)

where ∆A is considered as a full complex norm-bounded perturbation (‖∆A‖∞ ≤ 1) and the
scalar weight W1A(z) is chosen such that at each frequency ω

∣∣W1A(e
jωTs)

∣∣ ≥ lA(ω) ∀ω ∈ R (9.26)

holds. At each frequency ω the smallest scalar lA(ω) is given by

lA(ω) = max
Gp∈Π

σ̄(Gp(e
jωTs)−G(ejωTs)︸ ︷︷ ︸
EA(ejωTs )

). (9.27)

In the following, GIDbs(ho)(z) was considered as one perturbed plant in (9.27), thus

lA(ω) = l
IDbs(ho)
A (ω) = σ̄


GIDbs(ho)(ejωTs)−GIDbs(ejωTs)︸ ︷︷ ︸

E
IDbs(ho)
A (ejωTs )


 . (9.28)

Then a simplified scalar rational weight W1A(z) was shaped so that at each frequency ω the
magnitude of W1A(e

jωTs) was larger than l
IDbs(ho)
A (ω). By this means, the chosen shape of

W1A(z) accounts for the neglected dynamics of GIDbs(ho)(z).
The singular values of the discretized16 performance (W P(z)), input (W u(z)) and un-

certainty weights (W 1I(z), W 1O(z), W 1A(z)) are depicted in Figure 9.18 together with
l
IDbs(ho)
A (ω) = σ̄(E

IDbs(ho)
A (ejωTs)). For simplicity, the weights W 2I, W 2O, and W 2A were

chosen as identity matrices and are not depicted.

16zero-pole matching method; Ts = 0.01 s
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Figure 9.18: Singular values of performance weight W P; input weight W u; W 1I, W 1O

for multiplicative input respectively output uncertainty, and W 1A for ad-
ditive uncertainty weighting

By utilizing the MATLAB® command sysic, the generalized plant P (z) (24×17) (9.29)
of Figure 8.16 on page 110 (where the scalar w1 = d was chosen as the only exogenous input)
was obtained with nP = 100 states.




y∆I

y∆A

y
∆O

z1

z2

v



=




0 0 0 0 W 1I

W 1AW 2I 0 0 0 W 1A

W 1OGW 2I W 1OW 2A 0 0 W 1OG

W PGW 2I W PW 2A W PW 2O W PGd W PG

0 0 0 0 W U

−GW 2I −W 2A −W 2O −Gd −G




︸ ︷︷ ︸
P




u∆I

u∆A

u∆O

w1

u




(9.29)

In MATLAB® the command ultidyn can be used to create an uncertain linear time-
invariant (LTI) object ∆i (see (8.56)) of specified input/output size which (if the prop-
erty ’Type’ is set to ’GainBounded’) only specified attribute is an upper bound (property
’Bound’) on its maximum singular value at all frequencies. To ensure that ‖∆i‖∞ ≤ 1 (see
(8.57)) the property ’Bound’ was set to 1.

By this means the complex diagonal ∆I-block (4× 4) and ∆O-block (4× 4) representing
the normalized perturbations for multiplicative input respectively output uncertainty were
each created by diagonally combining always four different SISO ∆i-blocks (1× 1) utilizing
the MATLAB® command blkdiag, wheres the full complex ∆A-block (4× 4) representing
the normalized perturbation for additive uncertainty was directly obtained by specifying the
size of an uncertain linear time-invariant object ∆i with (4× 4). Finally, the overall block-
diagonal perturbation matrix ∆ (8.100) was created by block-diagonally combining the ∆I-,
∆A- and ∆O-block.

Then the command lft(Delta,P) was used to obtain a perturbed generalized plant
P p = Fu(P ,∆) (12 × 5) which was required for the subsequent command dksyn, which
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performs an automated DK-iteration. A demonstrative, executable, simple MATLAB®

example performing DK-iteration is found in [6].
With dynamic scalings D̆r(z) (24 × 24) and D̆l(z) (17 × 17) (nD̆r

= nD̆l
= 66 states)

(see (8.95)) the automated DK-iteration synthesized a stable controller Ksyn(z) (4×4) with
nKsyn = 232 states17 (nKsyn = nP + nD̆r

+ nD̆l
). Because, in the case at hand, the generalized

plant P (z) is stable and because the dynamic scaling transfer function matrices Dr(z) and
Dl(z) (see Figure 8.15) are always chosen stable and minimum-phase, the dynamically scaled
plant P̆ (z) with (discrete-time) state-space realization

P̆ (z)
ss
=




A B1 B2

C1 D11 D12

C2 D21 D22


 (9.30)

is stable, i.e. for all eigenvalues of the state matrix A

|λi (A)| ≤ 1 for i = 1, . . . , nP̆ (9.31)

holds. Thus, independent of B2 and C2 assumption A.1 in Definition 8.1 is ensured, so
that in the K-step (of the DK-iteration algorithm) an internally stabilizing sub-optimal
H∞ controller Ksyn(z) is synthesized. In other words, in the case at hand, N syn(z) =
Fl(P (z),Ksyn(z)) (20× 13) is guaranteed to be nominally stable with Ksyn(z) because the
generalized plant P (z) is stable.

With the synthesized controller Ksyn(z) the design just achieved robust performance
(i.e. maxω µ∆̂(N

syn(ejωTs)) = 0.9719 < 1). Where the µ-curve for robust performance (RP)
with the synthesized µ-“optimal” controller Ksyn(z) (not shown, but similar to Figure 9.20
for the reduced controller K(z)) showed sharp peaks and its maximum value occurred at
ω = 29.164 rad/s (which is close to the natural angular frequency of the first structural mode).
Because the controller Ksyn(z) is not the true µ-optimal controller the peaks of the plant
and the weights can easily be spotted in the µ-curve for robust performance.

The true µ-optimal controller would have a flat µ-curve (as a function of
frequency), except at infinite frequency where µ generally has to approach a
fixed value independent of the controller (because L(j∞) = 0 for real systems).
However, with a finite-order controller we will generally not be able (and it may
not be desirable) to extend the flatness to infinite frequencies. [6]

With the chosen sampling time the execution on the real-time development system could
not be carried out for feedback controllers with more than 70 states. Thus, a subsequent
balanced system reduction (based on Hankel singular values) with a multiplicative error
method (which tends to produce a better fit for systems with low-damped poles or zeros
[14]) that minimizes the relative error between the original and the reduced system was
used to perform an order reduction of the synthesized controller Ksyn(z). The intention of
the reduction was merely to obtain a reduced controller K(z) which was executable on the
real-time development system.

The reduced controller K(z), which is also stable, has nK = 60 states and (despite the
considerably smaller system order) its singular values are barely distinguishable from those
of the synthesized controller Ksyn(z) (Figure 9.19).

17Ksyn(z) is of the same system order as the dynamically scaled generalized plant (see Section 8.6.12).
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Figure 9.19: Singular values of the feedback controllers Ksyn and the reduced controller
K

The nominal closed loop system N (z) = Fl(P (z),K(z)) (20×13) (MATLAB® command
N=lft(P,K)) with the reduced controller K(z) is internally stable. Hence, also the design
with K(z) achieves nominal stability (NS) (see Definition 8.2 on page 99).

Also the design with the reduced controller K(z) just achieves robust performance. Thus
the performance specification ‖F ‖∞ < 1 with F as in (9.32) (Sp = (I + GpK)−1 is the
perturbed sensitivity function) is satisfied for all possible perturbed plants Gp(z) described
by (8.96). [

z1

z2

]
=

[
W PSpGd

−W UKSpGd

]

︸ ︷︷ ︸
F

w1 (9.32)

For the final design (with the reduced controller K(z)) the results of a µ-analysis for
nominal performance (σ̄(N 22(e

jωTs)) = µ∆P
(N 22(e

jωTs))), robust stability (µ∆(N 11(e
jωTs)))

and robust performance (µ∆̂(N(ejωTs))) are depicted in Figure 9.20. In order to account for
sharp peaks of the µ-curves the frequency grid was tightened around the frequencies of these
peaks.

The objective of nominal performance (NP) is most critical at 45.64Hz, which is close
to the natural frequency of the fifth structural mode, with ||N22(e

j2πfTs)||∞ = 0.8711. For
the modelled uncertainty the objective of robust stability (RS) is most critical at 4.0421Hz
with maxf µ∆(N 11(e

j2πfTs)) = 0.6708, but nevertheless RS is easily satisfied. Especially in
the high frequency range µ∆(N 11(e

jωTs) is quite low. At any fixed frequency the design can
tolerate up to 1/µ∆(N11(ej2πfTs ) times the modelled uncertainty before RS is lost.

The design with the reduced controller K(z) is also most critical at 4.6416Hz (which is
close to the natural frequency of the first structural mode), where the µ-curve for robust
performance (RP) µ∆̂(N(ej2πfTs) reaches is maximum (i.e. maxf µ∆̂(N(ej2πfTs)) = 0.9717 <
1). High values of µ∆̂(N(ej2πfTs) also occur at the natural frequencies of the third, fifth, and
fourth structural modes indicating that with the modelled uncertainty robust performance is
just achieved at these frequencies. Nevertheless it is guaranteed that at a certain frequency
the design can tolerate up to 1/µ

∆̂
(N(ej2πfTs )-times the modelled uncertainty and satisfy the

performance objective with a margin of 1/µ
∆̂
(N (ej2πfTs ).

The fact that the design achieves RP, with uncertain closed-loop transfer function F as in
(9.32) ensures, because of (8.28), that for any allowed perturbation ∆ also ‖W PSpGd‖∞ < 1
and ‖W UKSpGd‖∞ < 1 holds.
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Figure 9.20: µ-analysis (upper bounds) of nominal performance (σ̄(N 22(e
j2πfTs)) =

µ∆P
(N 22(e

j2πfTs))), robust stability (µ∆(N 11(e
j2πfTs))) and robust perfor-

mance (µ∆̂(N(ej2πfTs)))

Because the design accounts for the neglected dynamics of GIDbs(ho)(z) through additive
uncertainty (see shape of W1A(z) in Figure 9.18), GIDbs(ho)(z) is included in the set of possibly
perturbed plants Gp(z) described by (8.96). Thus, the performance objective ‖F ‖∞ < 1
(F = Fu(N ,∆)) is (also) satisfied for this particular perturbed plant (Figure 9.21), where
||Fu(N ,∆IDbs(ho))||∞ = 0.8693 (which is even lower than ||N22(e

j2πfTs)||∞ = 0.8711) is
reached at 45.46Hz. Where, ∆IDbs(ho)(z) with ||∆IDbs(ho)||∞ = 0.9814 < 118 is the particular,
known perturbation, which, by utilizing it together with the chosen uncertainty weights
(Figure 9.18) in (8.96) results in GIDbs(ho)(z). Around the natural frequency of the first
structural mode the perturbation ∆

IDbs(ho)(z) deteriorates the performance objective the
most.

For the modelled uncertainty the worst-case performance at a given frequency, i.e. skewed-
µ (µs(N(ejωTs)) is also depicted in Figure 9.21. At 45.46Hz skewed-µ reaches its maximum
value of 0.9468. However, in relation to nominal performance (σ̄(N 22(e

j2πfTs)), the pertur-
bation ∆ can cause the worst deterioration in performance for the first structural mode. The
modelled uncertainty can cause severe performance deterioration at around 4.6Hz. Note,
that σ̄(W 1A(e

jωTs))) allows for large additive uncertainty at these frequencies.
Note that, because the design achieves RP (i.e. maxf µ∆̂(N(ej2πfTs)) < 1) at a given

frequency µs(N(ej2πfTs)) ≤ µ∆̂(N(ej2πfTs)) holds (see Figure 9.21). This is, because µs is
always further from 1 than µ (see Definition 8.10).

18The blocks in ∆
IDbs(ho)(z) associated with the multiplicative input and output uncertainties can be con-

sidered zero (i.e. ∆
IDbs(ho)
I = 0 and ∆

IDbs(ho)
O = 0). Consequently σ̄(∆IDbs(ho)(ejωTs)) = σ̄(∆

IDbs(ho)
A (ejωTs))

holds. Furthermore, the maximum of σ̄(∆
IDbs(ho)
A (ejωTs)) is reached at 50Hz where σ̄(E

IDbs(ho)
A (ejωTs)) is

closest to σ̄(W 1A(e
jωTs)). Note that E

IDbs(ho)
A = W 1A∆

IDbs(ho)
A with W 1A(z) = W1A(z) · I and thus

σ̄(∆
IDbs(ho)
A (ejωTs)) = σ̄(E

IDbs(ho)
A (ejωTs))/|W1A(ejωTs)|.
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Figure 9.21: Nominal performance (σ̄(N 22)), performance of the particular per-
turbed plant GIDbs(ho)(z) (σ̄(Fu(N ,∆IDbs(ho)))), worst-case performance
(µs(N(ejωTs)) - upper bound) and robust performance (µ∆̂(N) - upper
bound)

The simulated nominal open-loop (y = Gdd) and closed-loop behavior (y = SGdd) is
compared in Figure 9.22a. The improvements in structural mode damping are not as good
as for the (similar) mixed-sensitivity H∞ optimal design (see Figure 9.4a on page 124), but
nevertheless are considered satisfactory. For the modelled uncertainty the worst-case gain
of the closed-loop disturbance path (µs(SpGd(e

j2πfTs))) is also depicted in Figure 9.22a.
It reveals that (compared to the nominal closed-loop disturbance path, for the modelled
uncertainty) the worst possible deterioration in structural mode damping can occur for the
first structural mode. At 4.3234Hz the sensitivity of the worst-case closed-loop disturbance
path gain with respect to an individual perturbation block ∆i is by far largest for the full
complex additive perturbation block ∆A. If the additive uncertainty were enlarged by 1%,
the worst-case gain should increase by about 1.36% (output argument info.Sensitivity

of MATLAB® command wcgain).
As claimed by the shape of the additive uncertainty weight W 1A(z) and ensured by the

fact that the design achieves RS, applying the controller K(z) on the particular perturbed
plant GIDbs(ho)(z) results in a closed-loop stable system. Furthermore the fact, that the design
accounts for the neglected dynamics of GIDbs(ho)(z) through additive uncertainty ensures
that at a given frequency σ̄(SIDbs(ho)Gd(e

jωTs)) < µs(SpGd(e
jωTs)) holds, where SIDbs(ho) =

(I + GIDbs(ho)K)−1. This fact can be verified graphically in Figure 9.22a. Compared to
the singular values of the nominal closed-loop disturbance rejection performance (SGd),
the closed-loop disturbance rejection performance for the plant GIDbs(ho)(z) (SIDbs(ho)Gd) is
worst around the natural frequency of the first structural mode. Note that σ̄(EIDbs(ho)

A (ejωTs)
is large at these frequencies. For the fifth structural mode the disturbance rejection for the
plant GIDbs(ho)(z) is even slightly better.

In Figure 9.22b the improvement of mode attenuation is shown when the controller
K(z) is applied on the “IDbs(ho)-model”. The simulation not only uses GIDbs(ho)(z) (as in
Figure 9.22a) but also G

IDbs(ho)
d (z) to simulate the control behavior.
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(a) simulation on nominal model (“IDbs-model”),
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and performance with the plant GIDbs(ho)(z)
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(b) simulation on the “IDbs(ho)-model”

Figure 9.22: Singular values of simulated open-loop and closed-loop behavior (from
d to y)

Figure 9.23 plots the singular values of the open-loop experimental validation model
(SOL-EV) and those of the closed-loop experimental validation model (SCL-EV). In closed
loop the first mode peak is reduced by about 5.5 dB and the fourth is reduced by more
than 8.55 dB. Also the damping of the second, third, and fifth structural modes is improved
(reduction of 1 dB, 2.18 dB, and 0.5 dB respectively). In general the experimentally validated
closed-loop behavior (SCL-EV) is in good accordance to the simulation on the “IDbs(ho)-
model”.

In the following the symbol “×” is used to denote that a matrix product of complex-
valued matrices is computed separately for each frequency and that the resulting array of
complex-valued matrices over frequency yields a non-parametric model (MATLAB® class
frd respectively ufrd). For the modelled uncertainty the worst-case gain, i.e. skewed-µ of the
closed-loop disturbance path is also depicted in Figure 9.23, where instead of the parametric
disturbance model Gd(z), the spectral, non-parametric open-loop experimental validation
model SOL-EV(ejωTs) is utilized for the computation (µs(Sp(e

jωTs)× SOL-EV(ejωTs))). For the
following conclusion, linearity of the plant “Beam” is assumed. At frequencies where the
singular value of the closed-loop experimental validation model (SCL-EV) exceeds the value
of skewed-µ (i.e. σ̄(SCL-EV(ejωTs)) > µs(Sp(e

jωTs)×SOL-EV(ejωTs))) the modelled uncertainty
was chosen inadequately, whereas the opposite conclusion is not valid. Especially for the
fourth structural mode σ̄(SCL-EV(ejωTs)) exceeds its “optimistic” bound. Reconsidering the
modelled uncertainty for this mode might be appropriate in order to achieve better results.

For comparison purposes also the singular value plot of the nominal closed-loop distur-
bance path, where Gd(z) is replaced by SOL-EV(ejωTs) is depicted in Figure 9.23 (S×SOL-EV).



9.2 Controller Designs Based on the Identified (ID) Model 147

 

 

S × SOL-EV

µs(Sp × SOL-EV)

SCL-EV

SOL-EV

S
in

g
u
la

r
V
a
lu

es
(d

B
)

Frequency (Hz)

Experimental validation results in terms of singular values of identified spectral models (from d to y)
µ-"optimal" design (design plant: "IDbs-model")

100 101 102
−35

−30

−25

−20

−15

−10

−5

0

5

10

Figure 9.23: Experimental validation results in terms of singular values (from d to y)
of open-loop (SOL-EV) and closed-loop (SCL-EV) identified spectral models
(DK synthesized µ-”optimal” design based on the “IDbs-model”)

9.2.5 Summing-up experiences and experimental results for the

control designs based on the identified model

9.2.5.1 Mixed-sensitivity H∞ design

The mixed-sensitivity H∞ design proved to be well-suited for structural mode damping. A
combination of performance and input weight, W1(z) (W1(z) = k1 ·W̆1(z)) respectively W2(z)
(W2(z) = k2 · W̆2(z)) was found which yielded a controller K(z) that achieved good results
in the simulation on the “IDbs(ho)-model”. It is convenient to derive a variety of designs by
changing only the constant gain k2 of W2(z), validate their stability in the experiment, and
record a data set for that design with the smallest value of k2, which achieved stability in the
experiment. Also, a variety of different dynamic shapes W̆1(z) and W̆2(z) with differently
shaped bandpass/stoppass filters and different peak(s) were tested.

9.2.5.2 Modally weighted LQG design

The LQG design with modal state weighting matrix Q was well suitable. It allows simple
trading of the importance of mode damping among the structural modes by the diagonal
matrix of modal damping factors M . Because the diagonal weights W and V for designing
the Kalman filter were based on the covariance information of the idss MATLAB® object,
the input weight R was considered as (only) free design parameter. Because for the (strictly)
stable nominal plant at hand the LQG-controlled system was guaranteed to be internally
stable independent of the chosen LQG design parameters, the simulation on the “IDbs(ho)-
model” turned out to be a good indicator for stability as well as performance of a design
in the experiment. Thus it was relatively easy to find an adequate initial input weight R,
design a variety of controllers K(z) by changing R in small steps, validate their stability in
the experiment and record data sets for a couple of designs with small R, which achieved
stability in the experiment.
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9.2.5.3 H∞ loop-shaping design with coprime factor uncertainty

Not a single design fulfilled the requirement σ
(
L(ejωTs)

)
> 1 (at frequencies were per-

formance is/was an issue) which in case of disturbance rejection is used to postulate a
closed-loop equivalent open-loop requirement (see Table 8.1 on page 113). Also, the set of
perturbed plants described by coprime factor uncertainty, which allows for zeros as well as
poles to cross into the RHP [6] (i.e. in the discrete-time case leave the unit circle) is unneces-
sarily large for the problem at hand (flexible structure), because a flexible structure is stable
and thus has no unstable poles. Consequently, in the case of a flexible structure using an H∞
loop-shaping design (i.e describing the set of perturbed plants utilizing normalized coprime
factor uncertainty) might yield a conservative controller not capable of achieving satisfying
results. Although a sufficiently small γ was achieved, the fact that σ

(
Gs(e

jωTs)
)

was un-
desirably small lead to an undesirably small σ

(
Ks(e

jωTs)
)
, which decreased the loop shape

L = GsKs. Nevertheless the experimental results achieved by the H∞ loop-shaping design
were acceptable. It was further shown that to some extent the two different approaches to
obtain a reasonable dynamic weighting matrix lead to a similar W 1(z) (see Figure 9.13 on
page 136).

9.2.5.4 DK synthesized µ-“optimal” controller

It was difficult to find a compromise between five frequency-dependent weights. Once
decisions on adequate input, output, and additive uncertainty weights had been made
(where, by the chosen shape of W1A(z) the design accounted for the neglected dynamics
of GIDbs(ho)(z)) and a less limiting input weight had been specified, peaks in the perfor-
mance weight were utilized to increase performance requirements until the peak µ-value for
RP was close to 1. Increasing the maximum allowed state order of the fitting D-scalings
(property AutoScalingOrder of the options object obtained by dkitopt) proved to be help-
ful in order to achieve RP. However, this resulted in a large system order of the controller
Ksyn(z). In order to execute the controller on the real-time development system a subse-
quent balanced system reduction had to be applied on the controller Ksyn(z). Thereby, the
primary difficulty was to attain nominal stability (NS) with the reduced controller K(z).
The µ-curve for robust performance (RP) (and also maxω µ∆̂(N(ejωTs))) was not changed
significantly if K(z) had a sufficient number of states. At some frequencies the singular value
of the closed-loop experimental validation model (SCL-EV) exceeds the value of skewed-µ (i.e.
σ̄(SCL-EV(ejωTs)) > µs(Sp(e

jωTs)×SOL-EV(ejωTs))), so the modelled uncertainty does not rep-
resent the real plant uncertainty to the full extent. Furthermore, because, on the other
hand the mixed-sensitivity H∞ design achieved better results (for all except the third struc-
tural mode) in the experiment, the chosen uncertainty (and/or performance weight), was
partly chosen conservatively. Nevertheless the improvements in structural mode damping
are considered good.

9.3 Controller designs based on the FE model

In this section all continuous-time controller designs are based on the continuous-time “FEbs-
model” as design plant. Then the obtained continuous-time controller K(s) will be dis-
cretized using the zero-order hold method (Ts = 0.01 s). For simplicity, the notation G

instead of GFEbs and Gd instead of GFEbs
d is used to denote the nominal plant respectively

disturbance model in the following.
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9.3.1 Mixed-sensitivity H∞ control

Unlike the designs based on the identified model, here the best results were achieved by
choosing the performance weight W1(s) (scalar) as a simple bandpass without peaks. Because
in all designs based on the FE model the frequencies fFEbs

i (for i = 1, . . . , 5) were utilized
to create additional peaks in a weight W (s), the peaks turned out to be contra-productive
when it comes to a simulation on the “IDbs(ho)-model”. Model mismatch is clearly an issue
that has to be dealt with. Again, the input weight W2(s) (scalar) was selected as a bandstop
to penalize input usage outside the frequency range of interest. At low frequencies, the low
magnitude of W1(s) (respectively the high magnitude of W2(s)) match the fact that the
piezo patch sensors cannot measure static strains (globally derivative behavior). At high
frequencies the shape of W1(s) and W2(s) account for the fact that the “modally truncated”
FE model is imperfect and that the continuous-time controller K(s) will be discretized
(zero-order hold method; Ts = 0.01 s) in the end.
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Figure 9.24: Singular values of performance weight W 1(s) = W1(s) · I and input weight
W 2(s) = W2(s) · I

With the chosen weights the nominal performance condition (8.24) is easily satisfied
(γ = 0.2111), where the synthesized stable continuous-time controller K(s) has 26 states.

Although a simple bandpass without peaks was used (shape of W1(s)), the singular value
plot of the (nominal) continuous-time closed-loop transfer function SGd (Figure 9.25a),
exhibits significant damping of the lowest-damped first and fourth modes. Also the damping
of the third mode is improved, whereas the dampings of the second and fifth modes are barely
improved. This reveals a characteristic property of γ-iteration, where in each iteration step
the algorithm focuses on the peak value of the maximum singular value of N .

The discrete-time simulation (Figure 9.25b) with the discretized controller K(z) ob-
tained from K(s) by the zero-order hold method (Ts = 0.01 s) and the discrete-time model
(“IDbs(ho)-model”) shows an additional peak at a frequency of about 3.44Hz. To some
extent this (emerging) bump can also be spotted in Figure 9.26, where the singular values
of the open-loop (SOL-EV) and closed-loop experimental validation model (SCL-EV) (from
d to y) are depicted. As revealed by a comparison between the natural frequencies of the
“FEbs-model” and “IDbs-model” (see Table 6.4 on page 77) the FE model shows large de-
viation of the natural frequency of the fourth mode. In the closed-loop simulation with the
“IDbs(ho)-model” the fourth mode was already much less damped as predicted by the simu-
lation of the nominal closed-loop behavior. In the actual experiment (SCL-EV) this behavior



9.3 Controller designs based on the FE model 150

is even worse. The fourth mode is shifted to a slightly higher frequency (which might be
preferable), but damping is hardly changed.
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(a) continuous-time simulation with K(s) applied
on nominal model (“FEbs-model”)
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(b) discrete-time simulation with K(z) applied on
the “IDbs(ho)-model”

Figure 9.25: Singular values of simulated open-loop and closed-loop behavior (from
d to y)
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Figure 9.26: Experimental validation results in terms of singular values (from d to y)
of open-loop (SOL-EV) and closed-loop (SCL-EV) identified spectral models
(mixed-sensitivity H∞ optimal design based on the “FEbs-model”)

Although uncertainty is not explicitly modelled by this mixed-sensitivity H∞ design, it
is robustly stable for all perturbed plants Gp with

σ̄ (Gp(jω)−G(jω)) ≤ |W1A(jω)| ∀ω ∈ R (9.33)
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where the singular values of W 1A(jω) = W1A(jω) · I are depicted in Figure 9.27.
Due to the unstructured nature of additive uncertainty the robust stability property with

respect to additive plant uncertainty, which allows for any coupling from the inputs to the
outputs with phase relations unknown, may also have advantageous robustness characteris-
tics with respect to discretization errors of the controller K(z).
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Figure 9.27: Singular values of W 1A(jω) = W1A(jω) · I (|W1A(jω)| = (1−ǫ)
σ̄(KS(jω))

with an
infinitesimally small ǫ ∈ R

+)

9.3.2 Modally weighted LQG design

The nominal plant is strictly stable, so the LQG-controlled system is guaranteed to be
internally stable independent of the chosen LQG design parameters (see explanation in
Section 9.2.2). In this section the computational procedure in MATLAB® is skipped (for
information see Section 9.2.2).

The matrix M of weighting factors is given in (9.34). The fourth structural mode is
weighted strongest, followed by the third and second.

M =




47 · I[2×2] 0 0 0 0

0 143 · I[2×2] 0 0 0

0 0 281 · I[2×2] 0 0

0 0 0 1548 · I[2×2] 0

0 0 0 0 26 · I[2×2]




(9.34)

Again the input weighting matrix R was chosen as a matrix of diagonally repeated values.

R = 4 · 103 · I[4×4] (9.35)

With the state feedback controller KLQR and preamplifier matrix Kr (only meaningful
for reference tracking) the (continuous-time) closed-loop state-equation (9.36) and output-
equation (9.37) for the state feedback control configuration (with control law u = Krr −
KLQRx) is given by:

ẋ = (A−BKLQR)x+BKrr +Bdd (9.36)

y = (C −DKLQR)x+DKrr +Ddd (9.37)
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open-loop closed-loop (LQR)
pole fFEbs

i

(in Hz)
ζFEbsi

(in %)
f cl
i

(in Hz)
ζcli

(in %)
1,2 4.4601 2.1346 4.5624 21.2276
3,4 12.6525 14.0135 12.6790 15.3097
5,6 17.7772 7.1113 17.8555 11.7122
7,8 30.9467 1.2924 31.4193 17.4606
9,10 46.2427 3.8049 46.2428 3.8093

(a) open-loop plant and closed-loop system with state
feedback regulator

observer
pole f ob

i

(in Hz)
ζobi

(in %)
1,2 4.6745 28.4255
3,4 15.4753 55.5340
5,6 31.7087 80.2925
7 31.9920 100
8 45.7480 100
9 84.6833 100
10 288.3345 100

(b) Kalman observer

Table 9.1: Natural frequencies and damping parameters (poles)

The natural frequencies and damping parameters of the complex conjugate closed-loop
poles (of the LQR controlled system) are depicted in Table 9.1a together with those of the
(nominal) plant G. Especially the damping of the lowest-damped fourth and first structural
modes are improved.

Although in (9.34) the entries corresponding to the third and second structural mode
are rather large, the improvement of damping of these modes is relatively poor (in direct
comparison to the achieved damping of the first and fourth structural modes). Here, the
chosen, large values of the input weight R dominate the design.

In Figure 9.28a the singular values of the disturbance path (from d to y) of the closed-
loop system with (LQR) state feedback regulator (equations (9.36)-(9.37)) are depicted. As
expected by the closed-loop poles (Table 9.1a), the first and fourth structural modes are
highly damped.

For the design based on the “FEbs-model” as design plant choosing the entries of W and
V as diagonally repeated mean values of the diagonal matrices W and V as they were used
in Section 9.2.2 (i.e. W = 1.3 ·10−5 ·I and V = 10−4 ·I ⇒ ratio about factor ten) turned out
to be inappropriate. The singular values of the simulated nominal closed-loop disturbance
performance (SGd) were barely distinguishable from the open-loop ones (Gd).

In general, a high weighting of the state estimation error x̃ = x−x̂ by using large entries
in W results in a high bandwidth of the Kalman observer and, consequently, large amplifi-
cation of the measured output by the Luenberger gain matrix H . Conversely, increasing the
entries of V causes a reduced bandwidth of the Kalman observer with a Luenberger gain
matrix H with smaller values. This is favorable when the measurements y are noisy. [13]

Although the physical plant “beam” seems to be quite noisy in the given setup, a large W
was indispensable in order to achieve satisfying mode damping, at least in the simulation on
the nominal plant and in the discrete-time simulation with the “IDbs(ho)-model”. A physical
interpretation of such large W seems difficult.

W = 104 · I[10×10] V = I[4×4] (9.38)

Due to the large values of W the poles of the Kalman observer (Table 9.1b) are consid-
erably faster than those of the closed-loop system with state feedback regulator (LQR).

The singular value plot of the (nominal) continuous-time closed-loop transfer function
SGd (Figure 9.28a) exhibits that the disturbance rejection performance of the state feedback
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regulated plant (LQR) is not changed much by using the estimated state vector x̂ instead
of x as input to the optimal controller KLQR.

The singular value plot (Figure 9.28b) of the discrete-time simulation on the “IDbs(ho)-
model” (discretized controller K(z) obtained from K(s) by the zero-order hold method
(Ts = 0.01 s)) suggests high performance in particular for the fourth structural mode. There
the LQG controller achieves an even better result than the mixed-sensitivity H∞ design
(compare Figure 9.25b on page 150).

In contrast to the favorable simulation results, the LQG cannot achieve such performance
in the experimental validation. The fourth structural mode in the closed-loop experimen-
tal validation model (SCL-EV) (Figure 9.29) exhibits nearly no improvement in damping
(0.16 dB). As predicted correctly by the discrete-time simulation (Figure 9.28b), the fourth
structural mode is shifted to a higher frequency. The improvement of damping of the first,
second, and third structural modes by 4.85 dB, 0.75 dB and 1.3 dB is considered good.

Note that the slight bump in the discrete-time simulation at about 2.8Hz is also visible
in Figure 9.28b.
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(a) continuous-time simulation with K(s) applied
on nominal model (“FEbs-model”)
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(b) discrete-time simulation with K(z) applied on
the “IDbs(ho)-model”

Figure 9.28: Singular values of simulated open-loop and closed-loop behavior (from
d to y)
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Figure 9.29: Experimental validation results in terms of singular values (from d to y)
of open-loop (SOL-EV) and closed-loop (SCL-EV) identified spectral models
(modally weighted LQG design based on the “FEbs-model”)

9.3.3 H∞ loop-shaping design for coprime factor uncertainty

One suggestion (see Section 8.8.4 on page 116) when disturbance rejection is an issue for
deriving a reasonable dynamic weighting matrix (compensator) W 1(s) is to choose

σ (W 1(jω)) ≈ σ̄
(
G−1(jω)

)
· σ̄ (Gd(jω)) (9.39)

or (in some sense more conservative)

σ (W 1(jω)) ≈ σ̄
(
G−1Gd(jω)

)
. (9.40)

Another approach is to choose W 1(s) = W1(s) · I with

|W1(jω)| ≈ σ̄
(
W̃ 1(jω)

)
(9.41)

where
W̃ 1(jω) = G−1Lsuccess(jω) (9.42)

with Lsuccess being the loop shape of a successfully validated earlier controller design.
For the problem at hand, these proposals (equations (9.39) to (9.42)) are visualized in

Figure 9.30, where for the loop shape Lsuccess in (9.42) the loop shape of the modally weighted
LQG design (Section 9.3.2) and those of the mixed-sensitivity H∞ design (Section 9.3.1) is
used, together with the chosen W 1(s) = W1(s) · I used for the H∞ loop-shaping design
presented in the following.

Note that for a real- or complex-valued matrix A the following holds:

σ (A) =
1

σ̄
(
A†) , (9.43)

where A† is the pseudo-inverse of A (if A is square and non-singular, A† = A−1 holds).
Consequently, for all ω ∈ R σ̄

(
G−1(jω)

)
= 1/σ(G(jω)) holds, and thus in (9.39) the minimum
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singular values of G(jω) co-determine the suggested shape of σ (W 1(jω)). Hence, the fact
that the minimum singular values of GFEbs and GIDbs differ strongly (see Figure 6.5) leads to
quite different recommended σ (W 1(jω)) (respectively σ

(
W 1(e

jωTs)
)
) for the two individual

design plants (compare σ̄
(
G−1

)
· σ̄ (Gd) in Figure 9.30 and 9.13).

Note in Figure 9.30, that because of the chosen input and performance weights W u re-
spectively W P (used in the mixed-sensitivity H∞ design), σ̄

(
G−1LmixedS(jω)

)
has derivative

behavior, while σ̄
(
G−1LLQG(jω)

)
has (clearly) globally proportional behavior.19

For simplicity the weighting matrices W 1(s) = W1(s) · I (scalar) and W 2 = I were used
for shaping the singular values of the open-loop plant G, however, this might not be a good
choice because the plant G(s) and consequently Gs(s) = G(s)W1(s), are ill-conditioned
(i.e. Gs(s) has a large condition number γ (Gs) = σ̄ (Gs) /σ (Gs)) at frequencies were
performance improvements are required. Potentially the design can be optimized by choosing
the weightings W 1(s) and W 2(s) such that the scaled plant condition number γ (Gs) is
improved. If the condition number γ (G) of a plant G is small, then the multivariable effects
of uncertainty are not likely to be serious, but the reverse does not hold in general. [6]
Particularly for a plant with a small condition number, γ (G) ≈ 1, the system is insensitive
to (both diagonal and full-block) input uncertainty, irrespective of the controller. [6]
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Figure 9.30: Maximum singular values of the weighting matrix (compensator) W 1(jω) =
W1(jω) · I and suggested guidelines

By using the MATLAB® command ncfsyn a stabilizing, stable, optimal positive feed-
back controller K = W 1KsW 2 with 41 states (Gs(s) has 26 states, Ks(s) has 25 states,
and W 1(s) has 16 states) was obtained. The singular values of the discretized controller
K(z) obtained from K(s) by the zero-order hold method (Ts = 0.01 s) and those of the
continuous-time controller K(s) are depicted in Figure 9.31.

19Actually also σ̄
(
G−1LmixedS(e

jωTs)
)

has globally proportional behavior but levels off at a much lower
frequency with a value of about −37.5 dB.
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Figure 9.31: Singular values of the positive feedback controller K

The design achieves a reasonably small γ = 1.4161 (i.e. the usually postulated criterion
of γ < 4 is fulfilled) and thus allows for ǫ = 70.61% (ǫ = 1/γ) coprime factor uncertainty.
In Figure 9.32 the singular values of the desired loop shape (shaped plant) Gs and those of
the actual loop transfer function L are shown. For a detailed discussion see Section 9.2.3.
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Figure 9.32: Singular values of desired loop shape or shaped plant Gs (Gs(s) =
G(s)W 1(s)) and actual loop transfer function L

The singular value plot of the (nominal) continuous-time closed-loop transfer function
SGd (Figure 9.33a) exhibits that the damping of the first, the third, and especially of the
fourth structural modes are improved, while the other structural modes remain unchanged.
By applying the discrete-time controller K(z) on the “IDbs(ho)-model”, the positive feed-
back system is also stable and the simulation (Figure 9.33b) shows an additional peak at a
frequency of 3.08Hz. To some extent this peak can also be spotted in Figure 9.34, where
the singular values of the open-loop (SOL-EV) and closed-loop experimental validation model
(SCL-EV) (from d to y) are depicted. Also the shift of the fourth structural mode to a
higher frequency, which was seen in the discrete-time simulation on the “IDbs(ho)-model” is
confirmed by the closed-loop experimental validation model (SCL-EV). The improvement in
mode damping of the first, third, and fourth structural modes are 3.7 dB, 1.12 dB and 2 dB,
whereas the second and fifth structural modes remain unchanged in damping.
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For all designs based on the “FEbs-model” (apart from the DGK synthesized µ-“optimal”
controller, see Section 9.3.5) the H∞ loop-shaping design was the one which achieved the
best results when it comes to the difficult20 damping of the fourth structural mode. This is
somewhat surprising, because for a flexible structure, which is guaranteed to be stable, the
assumption of coprime factor uncertainty (which allows for zeros as well as poles to cross into
the RHP) creates an unnecessarily large set of possibly perturbed plants and thus the design
is expected to result in a conservative controller. However, note that all controllers based
on the “FEbs-model” had to be discretized in the end. Maybe the answer to the surprisingly
good performance of the H∞ loop-shaping design based on the “FEbs-model” lies within this
discretization step, where the otherwise excessively large set of plants described by coprime
factor uncertainty might be beneficial to cover the discretization error.
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(a) continuous-time simulation with K(s) applied
on nominal model (“FEbs-model”)
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(b) discrete-time simulation with K(z) applied on
the “IDbs(ho)-model”

Figure 9.33: Singular values of simulated open-loop and closed-loop behavior (from
d to y)

20This is attributed to the critical model mismatch at the fourth structural mode.
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Figure 9.34: Experimental validation results in terms of singular values (from d to y)
of open-loop (SOL-EV) and closed-loop (SCL-EV) identified spectral models
(H∞ loop-shaping design based on the “FEbs-model”)

9.3.4 DK synthesized µ-“optimal” controller

The performance weight WP(s) was chosen as a scalar bandpass with three additional peaks,
where these extra peaks were utilized to put strong weight on the first, second, and third
structural modes (Figure 9.35). Again, the scalar input weight Wu(s) was selected as a
bandstop. By this means input usage is highly penalized outside the frequency range of
interest spanned by the natural frequencies of the first five (structural) modes of the beam
with mounted shaker.

The uncertainty weights W1I(s) and W1O(s) for complex diagonal multiplicative input
respectively output uncertainty were chosen as scalar bandstop filters - uncertainty is consid-
ered equal for all inputs/outputs. In the stopband the attenuation is about 20 dB, hence at
intermediate frequencies the design allows for 10% multiplicative (input respectively output)
uncertainty.

In the following the “IDbs(ho)-model” (as well as the “IDbs-model”) stemming from an
identification with mounted shaker is considered unknown, i.e. σ̄(E

IDbs(ho)
A (jω)) is assumed

unavailable.21 The natural frequencies f IDbs
i (for i = 1, . . . , 5) are considered known. How-

ever, σ̄(EIDbs(ho)
A (jω) is depicted in Figure 9.35.22

Because the deviation ∆fbs
i = fFEbs

i −f IDbs
i in the natural frequency is large for the fourth

(i = 4) structural mode (see Table 6.4 on page 77), the scalar additive uncertainty weight
W1A(s), which has the shape of a bandstop, has an additional peak at the natural frequency
fFEbs
4 . At low frequencies the high values of |W1A(jω)| account for the fact, that because

of the “modal truncation” the static error of the “FEbs-model” is large. At high frequencies

21In order to obtain σ̄(E
IDbs(ho)
A (jω), the identified model GIDbs(ho)(z) has to be converted from discrete-

to continuous-time prior, where above 1/(2·Ts) = 50Hz statements are not permissible.
22Designs in which |W1A(jω)| was shaped just above σ̄(E

IDbs(ho)
A (jω) either did not fulfill NP (and con-

sequently RP) or (with reduced performance requirements) in the simulation on the nominal plant the
improvement of structural mode damping was infinitesimal.
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the shape of |W1A(jω)| accounts for the fact that the “modally truncated” FE model is also
imperfect and that the continuous-time controller K(s) will be discretized (zero-order hold
method; Ts = 0.01 s) in the end.

The singular values of the weights are depicted in Figure 9.35. For simplicity the weights
W 2I, W 2O, and W 2A were chosen as identity matrices and are not depicted.

The normalized perturbations for multiplicative input-respectively output-uncertainty
∆I (4 × 4) respectively ∆O (4× 4) are considered as complex diagonal blocks, whereas the
normalized perturbation ∆A (4× 4) representing the additive uncertainty is considered as a
full complex block.
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Figure 9.35: Singular values of performance weight W P; input weight W u; W 1I, W 1O

for multiplicative input respectively output uncertainty, and W 1A for ad-
ditive uncertainty weighting

The MATLAB® commands utilized to obtain the design are skipped in the following
because they were already described in Section 9.2.4.

The generalized plant P (s) (24× 17) (9.44) of Figure 8.16 on page 110 (where the scalar
w1 = d was chosen as the only exogenous input) was obtained with nP = 92 states.




y
∆I

y∆A

y
∆O

z1

z2

v



=




0 0 0 0 W 1I

W 1AW 2I 0 0 0 W 1A

W 1OGW 2I W 1OW 2A 0 0 W 1OG

W PGW 2I W PW 2A W PW 2O W PGd W PG

0 0 0 0 W U

−GW 2I −W 2A −W 2O −Gd −G




︸ ︷︷ ︸
P




u∆I

u∆A

u∆O

w1

u




(9.44)

With scalings D̆r = I (24 × 24) and D̆l = I (17 × 17) (see (8.95)) the automated DK-
iteration synthesized a stable controller Ksyn(s) (4× 4) with nKsyn = 92 states.23

23MATLAB® used the first attempt with initial scalings.
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Because the generalized plant P (s) is stable it is ensured, that independent of B2 and C2

assumption A.1 in Definition 8.1 is fulfilled, and thus a stabilizing sub-optimal H∞ controller
Ksyn(s) is synthesized in the K-step of the DK-iteration algorithm. In other words, because,
for the problem at hand P (s) is stable it is ensured that N syn(s) = Fl(P (s),Ksyn(s))
(20× 13) is nominally stable.

The design with the synthesized controller Ksyn(s) just not achieved robust perfor-
mance (i.e. maxω µ∆̂(N

syn(jω) = 1.038 > 1), but robust stability was well satisfied (i.e.
maxω µ∆(N

syn
11 (jω)) = 0.73 < 1).

By using a subsequent balanced system reduction (based on Hankel singular values) with
a multiplicative error method, a reduced controller K(s) was derived. The reduced controller
K(s), which is also stable, has nK = 50 states. Its singular values are slightly different
from those of the synthesized controller Ksyn(s) (Figure 9.36). The singular values of the
discretized controller K(z) obtained from K(s) by the zero-order hold method (Ts = 0.01 s)
are also depicted in Figure 9.36. Especially in the high frequency range the singular values
of K(jω) and K(ejωTs) differ strongly.
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Figure 9.36: Singular values of the feedback controller K

The nominal closed-loop system N(s) = Fl(P (s),K(s)) (20 × 13) with the reduced
controller K(s) is internally stable. Thus, also the design with K(s) achieves nominal
stability (NS) (see Definition 8.2 on page 99).

A µ-analysis for nominal performance (σ̄(N 22(jω)) = µ∆P
(N 22(jω))), robust stability

(µ∆(N 11(jω))), and robust performance (µ∆̂(N(jω))) is depicted in Figure 9.37. In order
to account for sharp peaks of the µ-curves the frequency grid was tightened around the
frequencies of these peaks.

The objective of nominal performance (NP) is most critical at 4.45Hz, which is close
to the natural frequency of the first structural mode, with ||N 22(jω)||∞ = 0.79. For the
modelled uncertainty the objective of robust stability (RS) is most critical at 0.0377Hz with
maxω µ∆(N 11(jω)) = 0.83. Fortunately the design with the reduced controller K(s) just
achieves robust performance. The µ-curve for robust performance (RP) µ∆̂(N(jω) reaches
its maximum, i.e. maxω µ∆̂(N(jω)) = 0.991 < 1 at 4.42Hz (which is again close to the
natural frequency of the first structural mode).

For the modelled uncertainty the worst-case performance at a given frequency, i.e. skewed-
µ (µs(N(jω)) is also depicted in Figure 9.37. At 4.4Hz, skewed-µ reaches its maximum value
of 0.987. Also in relation to nominal performance (σ̄(N 22(jω)), the perturbation ∆ can cause
the worst deterioration in performance for the first structural mode.
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Figure 9.37: µ-analysis (upper bounds) of nominal performance (σ̄(N 22(jω)) =
µ∆P

(N 22(jω))), robust stability (µ∆(N 11(jω))) and robust performance
(µ∆̂(N(jω))) and worst-case performance (µs(N(jω)) - upper bound)

The simulated nominal open-loop (y = Gdd) and closed-loop behavior (y = SGdd) is
compared in Figure 9.38a where the improvements in structural mode damping are moderate.
Note that the fifth structural mode is even slightly amplified. Considering an additional peak
for this mode in the performance weight might be adequate. As revealed by the µ-curve for
RP, which is quite low for the fourth and fifth structural modes, achieving RP might not
be hard for such modified design. For the modelled uncertainty the worst-case gain of the
closed-loop disturbance path (µs(SpGd(jω)) is also depicted in Figure 9.38a. At 4.36Hz, the
sensitivity of the worst-case closed-loop disturbance path gain with respect to an individual
perturbation block ∆i is largest for the full complex additive perturbation block ∆A. If the
additive uncertainty is enlarged by 1%, the worst-case gain increases by 0.14%.

When applying the discrete-time controller K(z) on the “IDbs(ho)-model”, the negative
feedback system is also stable and the simulation (Figure 9.38b) shows that the fifth and es-
pecially the second structural mode are amplified, while for the others damping is moderately
improved.

The singular values of the open-loop experimental validation model (SOL-EV) and those
of the closed-loop experimental validation model (SCL-EV) are depicted in Figure 9.39. The
improvements in structural mode damping are not satisfactory, with 1.78 dB, 0.56 dB, and
1.42 dB for the first, third, and fourth structural modes, whereas the second is amplified by
0.4 dB and the fifth remains unchanged.
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(a) continuous-time simulation with K(s) applied
on nominal model (“FEbs-model”) and worst-
case gain of the closed-loop disturbance path
(µs(SpGd(jω)))
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(b) discrete-time simulation with K(z) applied on
the “IDbs(ho)-model”

Figure 9.38: Singular values of simulated open-loop and closed-loop behavior (from
d to y)
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Figure 9.39: Experimental validation results in terms of singular values (from d to y)
of open-loop (SOL-EV) and closed-loop (SCL-EV) identified spectral models
(DK synthesized µ-“optimal” design based on the “FEbs-model”)

9.3.5 DGK synthesized µ-“optimal” controller (considering para-

metric uncertainty in ωi)

The following design shall be understood as an exemplary design for using parametric un-
certainty instead of additive uncertainty.

Additive uncertainty with a full complex uncertainty block ∆A (‖∆A‖∞ ≤ 1), allows
for any coupling from its inputs to its outputs with phase relations unknown. Parametric
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(real-valued) uncertainty in the state matrix A is utilized to describe complex relationships
between uncertain real-valued parameters and the resulting system dynamics. In the case
of the mechanical beam (without its physical systems on the input-side respectively output-
side) these parameters are e.g. mode frequencies or dampings. Also designs which utilized
both kinds of uncertainty descriptions (additive and parametric uncertainty) simultaneously
have been validated successfully in the experiment.

Figure 9.40 shows the singular values of the scalar frequency-dependent weights. The
performance weight WP(s) is shaped as bandpass with extra peaks at the natural frequencies
of the first and fourth structural modes. Again, the scalar input weight Wu(s) is formulated
as bandstop. The uncertainty weights W1I(s) and W1O(s) for complex diagonal multiplicative
input respectively output uncertainty were chosen as scalar bandstop filters. In the stopband
the attenuation is 26 dB, hence at these frequencies the design allows for 5% multiplicative
(input respectively output) uncertainty.
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Figure 9.40: Singular values of performance weight W P; input weight W u; W 1I, W 1O

for multiplicative input respectively output uncertainty weighting

Section 8.6.2.1 showed the onset to consider parametric (real-valued) uncertainty in the
state matrix A of a plant with a single structural mode with natural angular frequency
ωi and modal damping coefficient ζi. It is observed that the stability of a feedback con-
trolled design with a perturbed plant Gp for flexible structure control is less sensitive with
respect to a perturbation of a structural mode’s modal damping coefficient ζi (as long as it
is positive), than with respect to a perturbed natural angular frequency ωi. To optimally
exploit the problem structure and maximize performance, and because a mixed µ-problem
(DGK-iteration) produces high complexity, parametric uncertainty is only considered in the
natural angular frequency ωi and only within the state matrix A.

Remark: Because for the problem at hand, the nominal plant G was obtained by an
analytical model (FE model), it is in principle possible to consider uncertainty directly in the
diagonal elements ω

FEb(ho)
i respectively ζ

FEb(ho)
i of the matrices of natural angular frequency

Ω and modal damping Z (see Section 5.2.2). Depending on the state-space representation
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(see Section 5.3.2) this can affect all state-space matrices. By mounting a shaker as outlined
in Section 5.6, MATLAB® transformed the perturbed state-space system so that only the
state matrix A and output matrix C contained uncertain parameters and the uncertainty
of a mode of the beam without shaker (ωFEb(ho)

ip and/or ζ
FEb(ho)
ip ) spread its influence over

all other modes of the beam with mounted shaker. It was tested by a singular values plot
of the perturbed system of the beam with mounted shaker that a mode j 6= i becomes
only slightly perturbed in comparison to the mode i (tested for i = 1, . . . , 5). In the whole
uss object (uncertain state-space model) as well as in the perturbed state matrix Ap and
perturbed output matrix Cp each uncertain parameter ζ

FEb(ho)
ip occurred once and each

uncertain parameter ω
FEb(ho)
ip occurred three times. MATLAB® reduction commands like

modsep and modred are not applicable on uss objects. Thus it was not possible in the scope
of this work to perform a “modal truncation” of the uncertain model. For these reasons this
approach to include parametric uncertainty was discarded. Instead, the effects of uncertain
parameters ωi and/or ζi on the matrices (A, B, C, D) of a state-space representation are
considered directly by using a LFT (see [7, 12]).

In the following it is shown how to obtain a perturbed (block-diagonal) state matrix Ap

(as shown in (8.37) for a single structural mode i) starting from the state-space represen-
tation of a nominal continuous-time LTI system (with only structural modes) in the modal
from used by MATLAB® (command sys_M = canon(sys,’modal’)), where each structural
mode i (for i = 1, . . . , n/2) is represented in the block diagonal state matrix AM by the (2×2)
block

AMi =

[
−ζiωi ωi

√
1− ζ2i

−ωi

√
1− ζ2i −ζiωi

]
. (9.45)

The necessary steps to derive a perturbed state matrix Ap are the following:

• obtain (nominal) natural angular frequencies ωi and modal damping coefficients ζi (for
i = 1, . . . , n/2) (e.g. using MATLAB® command [Wn,Zeta] = damp(sys))

• perform a state transformation (see (A.12) - (A.13)) with the non-singular (block-
diagonal) transformation (n× n) matrix

T =




T 1 0 0 0 0

0
. . . 0 0 0

0 0 T i 0 0

0 0 0
. . . 0

0 0 0 0 T n
2



, where T i =




−ζi√
1−ζ2i

−
√

1−ζ2i
ωi−ωiζ2i

1 0


 (9.46)

to obtain the system in the third modal form where each structural mode i (for i =
1, . . . , n/2) is represented in the block diagonal state matrix A by the (2× 2) block

Ai =

[
0 1

−ω2
i −2ζiωi

]
. (9.47)

• choose for each uncertain structural mode i a relative magnitude of the real-valued
uncertainty weight wiω and/or wiζ

• in MATLAB®, create for each uncertain structural mode i an uncertain real parameter
δiω (−1 ≤ δiω ≤ 1) and/or δiζ (−1 ≤ δiζ ≤ 1) with nominal value zero utilizing
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ureal and use it accordingly to (8.35) respectively (8.36) to generate a perturbed
natural angular frequency ωip respectively perturbed modal damping coefficient ζip.
(e.g. Wn_i_p = Wn_i*(1+w_Wn_i*ureal(’delta_Wn_i’,0,’Range’,[-1,1]));)

• for each uncertain structural mode i utilize ωip and/or ζip instead of ωi respectively ζi
in (9.47) to create the perturbed block Api (umat object)

• obtain the perturbed (block-diagonal) state matrix Ap by block-diagonally rebuilding
the (block-diagonal) state matrix A, thereby use for each uncertain structural mode i
the perturbed block Api instead of Ai

• use Ap instead of A in the state-space representation (third modal form)

In the following all natural angular frequencies ωi (for i = 1, . . . , 5) where considered
uncertain. For each (uncertain) structural mode i the chosen relative magnitude of the real-
valued uncertainty weight wiω is listed in Table 9.2 together with its nominal natural angular
frequency ωi and resulting maximum absolute (symmetric) deviation ∆ωi (respectively ∆fi =
∆ωi/2π). Where wiω was chosen so that ∆ωi > 2π · |fFEbs

i − f IDbs
i | (for fFEbs

i − f IDbs
i see

Table 6.4 on page 77). Note that for the fifth and especially fourth structural modes, where
large deviations in the natural angular frequency are assumed the absolute magnitude of the
parametric uncertainty (|ωiwiωδiω| with −1 ≤ δiω ≤ 1) is allowed to be largest.

In the following the perturbed plant with parametric uncertainty only is called Gppar(s).

structural
mode
i

relative
magnitude of

the uncertainty
wiω

(in %)

nominal
natural angular

frequency
ωi

(in rad/s)

max. absolute
(symmetric)
deviation

∆ωi = ωiwiω

(in rad/s)

max. absolute
(symmetric)
deviation
∆fi =

∆ωi

2π

(in Hz)

1 6.55 28.02 1.84 0.293
2 7.58 79.49 6.03 0.960
3 1.51 111.69 1.69 0.269
4 12.86 194.44 25.01 3.981
5 6.76 290.55 19.66 3.129

Table 9.2: relative magnitude wiω of the (symmetric) uncertainty of the natural angular
frequency ωi (ωip = ωi(1 + wiωδiω) with −1 ≤ δiω ≤ 1)

In MATLAB®, instead of the state-space model (ss object) of G(s), the uncertain state-
space model (uss object) of Gppar(s) (with perturbed state matrix Ap (umat object)) was
passed to the command sysic, which was utilized as before to construct the generalized
plant as given in (9.44). This time, however, this was done without the interconnection
structure associated to the input, and output vector, u∆A

respectively y∆A
. The resulting

perturbed generalized plant with parametric uncertainty is called P ppar(s) in the following.
Example 9.2 shows for the case of a mixed µ-problem how a perturbed generalized plant

P p = Fu(P ,∆) necessary for DGK-iteration (command dksyn) is obtained in MATLAB®,
starting with a given P ppar(s).

Example 9.2: Obtaining a perturbed generalized plant P p = Fu(P ,∆) for DGK-
iteration (mixed µ-problem) in MATLAB®
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1 % given:
2 % P_ppar ... uncertain state −space model with parametric uncertainty
3 % Delta_I ... normalized complex diag. perturbation block fo r input unc.
4 % Delta_O ... normalized complex diag. perturbation block fo r output unc.
5

6 % obtaining generalized plant "P" and real valued perturbati on block for
7 % parametric uncertainty "Delta_par":
8 [ P,Delta_par] = lftdata(P_ppar);
9 % obtaining overall, block −diagonal perturbation "Delta":

10 Delta = blkdiag(Delta_par,Delta_I,Delta_O);
11 % obtaining perturbed generalized plant for DGK −i teration "P_p":
12 P_p = lft(Delta,P);

Utilizing the commands in Example 9.2 MATLAB® took care of the additional inter-
connection structure in P (s) necessary for the parametric state-space uncertainty.

In MATLAB® the implemented algorithms for handling parametric uncertainty obtained
the diagonal real-valued uncertainty block ∆pari, utilized to perturb the natural angular
frequency ωi in the (2× 2) block Ai (related with the structural mode i), as follows:

∆pari =

[
δiω 0
0 δiω

]
(9.48)

Note that in (9.48) the parameter δiω, associated with the natural angular frequency
ωi, occurs only two times instead of three times (as in (8.40)). In the case at hand, the
normalized (‖∆(jω)‖∞ ≤ 1), overall, block-diagonal perturbation ∆(s) (18 × 18) has the
following structure:

∆(s) =




∆par 0 0

0 ∆I(s) 0

0 0 ∆O(s)


 (9.49)

with

∆par =




∆par1 0 0

0
. . . 0

0 0 ∆par5


 , (9.50)

∆I(s) = diag{∆I1(s), . . . ,∆I4(s)}, and ∆O(s) = diag{∆O1(s), . . . ,∆O4(s)}. (9.51)

The generalized (30 × 23) plant P (s) was as outlined in Example 9.2) obtained with
nP = 68 states.

With identity scalings D̆r = I (30×30) and D̆l = I (23×23) (nD̆r
= nD̆l

= 0 states) (see
(8.95)) the automated DGK-iteration synthesized a stabilizing, stable controller Ksyn(s) (4×
4) with nKsyn = 68 states, which just achieved robust performance (i.e. maxω µ∆̂(N

syn(jω) =
0.9767 < 1).

Again, by using a subsequent balanced system reduction (based on Hankel singular val-
ues) with a multiplicative error method, a reduced controller K(s) was obtained. The
reduced controller K(s), which is also stable, has nK = 50 states. In Figure 9.41 the singu-
lar values of K(jω) are indistinguishable from those of the synthesized controller Ksyn(jω).
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Note that at a frequency of 30.9Hz (which is close to the natural frequency of the fourth
structural mode of G(s)) the singular values (and especially the maximum singular values)
of K(jω) have a sharp peak. The singular values of the discretized controller K(z) obtained
from K(s) by the zero-order hold method (Ts = 0.01 s) are also depicted in Figure 9.41.
Especially in the high frequency range the singular values of K(jω) and K(ejωTs) differ
strongly.
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Figure 9.41: Singular values of the feedback controller K

The nominal closed loop system N(s) = Fl(P (s),K(s)) (26 × 19) with the reduced
controller K(s) is internally stable. Consequently the design achieves nominal stability
(NS).

A µ-analysis for nominal performance (σ̄(N 22(jω)) = µ∆P
(N 22(jω))), robust stability

(µ∆(N 11(jω))), and robust performance (µ∆̂(N(jω))) is depicted in Figure 9.42. Again,
to account for sharp peaks of the µ-curves the frequency grid was tightened around the
frequencies of these peaks.

Close to the natural frequency of the first structural mode the objective of nominal
performance (NP) is most critical, with ||N 22(jω)||∞ = 0.6825. In the frequency range of
interest the objective of robust stability (RS) is easily satisfied for the modelled uncertainty
(RS is most critical at 5.35 ·10−3Hz with maxω µ∆(N 11(jω)) = 0.5934). Also the design with
the reduced controller K(s) just achieves robust performance, where the µ-curve for robust
performance (RP) µ∆̂(N(jω) reaches is maximum, i.e. maxω µ∆̂(N(jω)) = 0.9768 < 1 close
to the natural frequency of the first structural mode at 4.4601Hz.

For the modelled uncertainty the worst-case performance at a given frequency, i.e. skewed-
µ (µs(N(jω)) is also depicted in Figure 9.42. At 4.4602Hz skewed-µ reaches its maximum
value of 0.9631. However, in relation to nominal performance (σ̄(N 22(jω)), the perturbation
∆ can cause the worst deterioration in performance for the fourth structural mode. This
means that the modelled uncertainty causes severe performance deterioration at 30.85Hz.
Note that for the fourth structural mode (i = 4) |ωiwiωδiω| allows for a large maximum
absolute (symmetric) deviation (with −1 ≤ δiω ≤ 1).
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Figure 9.42: µ-analysis (upper bounds) of nominal performance (σ̄(N 22(jω)) =
µ∆P

(N 22(jω))), robust stability (µ∆(N 11(jω))) and robust performance
(µ∆̂(N(jω))) and worst-case performance (µs(N(jω)) - upper bound)

The simulation on the nominal plant (Figure 9.43a) reveals, that the fourth structural
mode is excellently damped by the continuous-time controller K(s), whereas the improve-
ments in damping for all other structural modes are only moderate. Despite the fact that
the modelled parametric uncertainty for the natural frequency f4 (in the perturbed state
matrix Ap) allows for a large maximum absolute symmetric deviation ∆f4 of nearly 4Hz,
even the worst-case gain of the closed-loop disturbance path (µs(SpGd(jω)) exhibits a mi-
nor improvement in damping for this mode (of 1.3 dB, Figure 9.43a). On the other hand,
although the maximum allowed absolute symmetric deviation ∆f1 ≈ 0.3Hz is more than
ten times smaller than ∆f4 (the relative magnitude w1ω of the allowed uncertainty is about
half of w4ω), the worst-case gain (as well as the nominal gain) of the closed-loop disturbance
path exhibits no significant improvement in damping for the first structural mode. This
indicates that small deviations in the natural frequency of the low damped first structural
mode may even easier provoke performance problems. Fortunately, however, the magnitude
of the deviation ∆fbs

i = fFEbs
i − f IDbs

i is small for the first structural mode (see Table 6.4
on page 77). This might be the reason that for control designs based on the FE model,
improving the damping of the first structural mode in the experiment was not as hard as
for the fourth structural mode. Consequently, if the first structural mode of the FE model
would have a large deviation it would be impossible to use the FE model as a design plant
if the task would be to improve the damping of the first structural mode.

By applying the discrete-time controller K(z) on the “IDbs(ho)-model”, the negative
feedback system is also stable. In Figure 9.43b the singular values of the discrete-time
simulation on the “IDbs(ho)-model” are depicted. In terms of the difficult damping of the
fourth structural mode this design with parametric uncertainty achieves much better results
in the discrete-time simulation than the design in Section 9.3.4 with additive uncertainty
(compare with Figure 9.38b). Also the damping of the fifth structural mode, for which the
magnitude of the deviation ∆fbs

i = fFEbs
i − f IDbs

i (see Table 6.4 on page 77) is also large,
is improved in the discrete-time simulation. Note that the discrete-time controller K(z)
“splits” the fourth peak into two and that the part which occurs at the higher frequency is
much higher.

Unfortunately, in the experiment (Figure 9.44) this behavior is even worse. The part
of the split peak which occurs at the higher frequency is so highly developed, that there
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are no improvements in damping at all for the fourth structural mode. The first and third
structural modes are only slightly better damped, and regrettably the fifth structural mode
is actually amplified. All in all, the design cannot convince in the experimental validation.
The good results in the discrete-time simulation for the fourth and fifth structural mode are
non-existent in the experiment.
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(a) continuous-time simulation with K(s) applied
on nominal model (“FEbs-model”) and worst-
case gain of the closed-loop disturbance path
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Figure 9.43: Singular values of simulated open-loop and closed-loop behavior (from
d to y)
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Figure 9.44: Experimental validation results in terms of singular values (from d to y)
of open-loop (SOL-EV) and closed-loop (SCL-EV) identified spectral models
(DGK synthesized µ-“optimal” design based on the “FEbs-model”)
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Possible reasons for the lack of improved damping in the fourth structural mode in the
experiment (assuming linearity of the experimental plant) are:

1. The maximum absolute (symmetric) deviation of the mode’s frequency of nearly 4Hz
may not be large enough.

2. The approach of considering parametric ωi uncertainty in the state matrix A only may
not be sufficient.

3. Since the singular values (and especially the maximum singular values) of the continuous-
time controller K(s) have a quite sharp peak at the natural frequency of the fourth
structural mode, the discretization errors of the discretized controller K(z) obtained
from K(s) by the zero-order hold method may deteriorate the robustness properties
of the design.

Remarks:

ad 1. Also designs with enlarged maximum absolute symmetric deviation were computed.
However, these designs either did not fulfill RP or the worst-case gain of the closed-
loop disturbance path (µs(SpGd(jω)) exceeded σ̄(Gd(jω)) at the natural frequency of
the fourth structural mode.

ad 2. Considering parametric ωi uncertainty in the state matrix A is straightforward because
in the third modal form the state matrix A explicitly contains the parameter ωi. The
input and output matrices, B respectively C, however, do not explicitly contain the
natural angular frequency ωi (see (5.78)). Note that the modal matrix Φ was obtained
by the generalized eigenvalue/eigenvector problem (see (5.36)) and thus does depend on
the natural angular frequencies ωi. It was used as transformation matrix (see (5.43)),
so B and C actually do depend on ωi. Finding an adequate parametric uncertainty
description for B and C would require further studies.

ad 3. Additionally considering additive uncertainty (especially for the fourth structural mode)
might help to “robustify” the design with respect to discretisation errors of the dis-
cretized controller K(z) obtained from K(s) by the zero-order hold method.

It is observed that the best experimental result with respect to improved damping of
the fourth structural mode was achieved with a design which included an additive and a
parametric (as well as a complex diagonal input respectively output) uncertainty model
(Figure 9.45). A reduction in mode peak magnitude of 2.53 dB was accomplished, which is
actually the best achieved result over all design methods applied on the FE model, but with
the disadvantage of amplifying the third structural mode peak by 1.18 dB (requiring further
tuning). However, this design has not led to performance guarantees on the whole set of
uncertain plants and has not been considered further.
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Figure 9.45: Experimental validation results in terms of singular values (from d to y) of
open-loop (SOL-EV) and closed-loop (SCL-EV) identified spectral models (al-
ternative DGK synthesized µ-“optimal” design based on the “FEbs-model”)

9.3.6 Summing-up experiences and experimental results for the

control designs based on the analytical model (FE model)

9.3.6.1 Mixed-sensitivity H∞ design

The mixed-sensitivity H∞ design is found well-suitable to address structural mode damping.
However, utilizing peaks in the frequency-dependent weights turned out to be counterpro-
ductive if model mismatch is significant. Again, it was relatively convenient by changing only
the constant gain k2 of W2(z) in small steps to derive a variety of designs, simulate their
performance on the “IDbs(ho)-model” (discrete-time simulation), validate their stability in
the experiment, and record a data set for that design with the smallest value of k2 which
achieved stability in the experiment. The robust stability property of the design with re-
spect to additive plant uncertainty seems beneficial to cope with discretization errors of the
discretized controller K(z) obtained from K(s) by the zero-order hold method. However,
for the fourth structural mode improvements were not convincing and for the fifth structural
mode no improvements were achieved.

9.3.6.2 Modally weighted LQG design

The LQG design with modal state weighting matrix Q worked only well for the first three
structural modes. The presumably large deviation in the natural frequencies of the fourth
and fifth structural mode made it impossible to attain damping improvements for these
modes. If the weighting of the fifth structural mode was enlarged, stability problems oc-
curred in the experiment. The ratio of the mean values of the diagonal matrices W and
V as used for the design based on the identified plant turned out to be inappropriate here.
The singular values of the simulated nominal closed-loop disturbance performance (SGd)
were barely distinguishable from the open-loop ones (Gd). Thus, W and V could not be
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considered as given and they had to be considered additional design parameters. Conse-
quently, for each chosen ratio of W = W · I and V = V · I a variety of controllers K(s)
was computed for a range of R values. The ratio of W and V was chosen so that in the
simulation on the nominal plant the LQR and LQG controller achieved similar performance
improvements (Kalman observer tuning). Simulating the behavior of the discrete-time con-
troller K(z) on the “IDbs(ho)-model” turned out to be helpful, especially to address stability
issues (performance predictions were only partially correct).

9.3.6.3 H∞ loop-shaping design with coprime factor uncertainty

The requirement σ (L(jω)) > 1 (at frequencies were performance is an issue) used to pos-
tulate a closed-loop equivalent open-loop requirement for disturbance rejection could not
be fulfilled. The plant G(s) is ill-conditioned (i.e. Gs(s) has a large condition number
γ (Gs) = σ̄ (Gs) /σ (Gs)) at frequencies were performance improvements are required, so
choosing the compensator weight W1(s) scalar was probably not a good choice. Although
a sufficiently small γ was achieved by the different designs, the loop shape was severely
deteriorated because σ (Gs(jω)) was undesirably small. Surprisingly, the damping improve-
ment for the fourth structural mode was significant. One answer to the surprisingly good
achievement of the H∞ loop-shaping design based on the “FEbs-model” could lie in the dis-
cretisation step of the controller where the otherwise excessively large set of plants described
by coprime factor uncertainty might have been beneficial to address the discretisation error.

9.3.6.4 DK synthesized µ-“optimal” controller

The primary difficulty/goal was to attain an improvement in damping for the fourth struc-
tural mode while avoiding an amplification of the third and fifth structural mode. Utilizing
peaks in the performance weight at the natural frequencies of the first and fourth structural
modes yielded a design which amplified the third structural mode strongly. Utilizing a peak
in the additive uncertainty weight to avoid an amplification of the third structural mode
did not work as expected. However utilizing a peak in the performance weight attained
an improvement in damping for that mode. In general the trade-off among the weights to
attain RP was quite difficult. The presumably large deviation in the natural frequency of
the fourth structural mode could not be taken into account by shaping |W1A(jω)| just above
σ̄(E

IDbs(ho)
A (jω), because then even in the simulation on the nominal plant an improvement

in structural mode damping was not possible. Thus, in the end, a smaller peak was used for
the additive uncertainty weight at fFEbs

4 . In general the achieved improvements in structural
mode damping did not justify the necessary design effort for this method.

9.3.6.5 DGK synthesized µ-“optimal” controller

The mixed µ-problems (DGK-iteration) became highly complex and time consuming, even
with only a few uncertain parameters involved. Sometimes numerical problems prevented a
successful design at all. Moreover, many designs could not be implemented on the hardware
because it was not possible to attain a reduced controller K(s) which achieved nominal
stability. Using parametric uncertainty instead of additive uncertainty did not work as well.
Although the design allowed for a maximum absolute symmetric deviation ∆f4 of nearly 4Hz
(in the state matrix) for the fourth structural mode (where ∆f4 > |fFEbs

4 − f IDbs
4 |) and the

fact that the worst-case gain of the closed-loop disturbance path (µs(SpGd(jω)) predicted
an improvement (at least a small one), it was not possible in the hardware experiment to
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attain an improvement in damping for that mode (with presumably large deviation in its
natural frequency). The singular values of the continuous-time controller K(s) have a sharp
peak at the natural frequency of the fourth structural mode. Hence, the deterioration of
the robustness properties of the design due to the conversion of the controller K(s) from
continuous- to discrete-time (discretisation error) is considered as the most likely reason
for the missing improvements in the hardware experiment. By considering an additional
additive uncertainty weight, which might have helped to “robustify” the design with respect to
discretisation errors of the discrete-time controller K(z), in terms of improving the damping
of the fourth structural mode, a better design was obtained.

In general, in order to retain the robustness properties of a design (especially with re-
spect to parametric uncertainty) it might be beneficial to convert the continuous-time design
plant to discrete-time a priori, consider an adequate uncertainty description and obtain the
controller Ksyn(z) directly in the discrete-time domain. However, considering parametric
uncertainty in the natural angular frequency ωi (and perhaps modal damping coefficient ζi)
for a discrete-time design plant would require further studies.



Chapter 10

Conclusions

In this work, optimal and robust control design methods were utilized for active vibration
damping of a simply supported thin structural beam. The design plants for these sophisti-
cated control design methods were obtained in two fundamentally different ways, by means
of a measurement data-driven approach, called system identification, respectively by an
analytical (theoretical) approach based on a finite-element (FE) model. Nonlinear effects,
especially the hysteresis of the piezo patch actuators and sensors were not regarded, which
is justified by the problem setup and the achieved results in structural mode damping.

10.1 Identified Plant Model

The identification procedure outlined in Chapter 4 utilized colored noise signals with a low
bandwidth at the input channels but also a high sampling rate of the measurement data
and proved to work well. All five structural modes below 50Hz as predicted by the FE
model could be identified from the down-sampled data and the parametric models showed
high consistency with the non-parametric models. Because of instantaneous collocation feed-
through terms, a non-zero feed-through matrix D significantly improved the quality of the
identified state-space models. Because the system response of the experimental plant “beam”
was mainly determined by its complex conjugate poles with low-damping (structural modes),
the common approach in active control of structures of extracting the modes of interest by
“modal truncation” is well suitable. In the frequency range of interest the frequency response
(especially of non-collocated actuator and sensor pairings) was hardly changed by this model
reduction (see Figures 4.2 and 4.4). Furthermore, also the truncated model achieved a high
fit in cross-validation and turned out to be well-suited as a design plant.

10.2 Controller Designs Based on the Identified Model

Mixed-sensitivity H∞ control stands out clearly because of its simplicity in design, implicit
robustness with respect to additive uncertainty and especially because of the excellent results
in structural mode damping achieved in the experiment. In general, no increased effort in
uncertainty modeling is necessary for the identified model. In DK-synthesized control it was
not trivial how to choose good uncertainty weights for maximum control performance.

A summary of the individual control designs based on the identified model, respectively
the lessons learned during the design, was given in Section 9.2.5.

174
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10.3 Analytical Model (FE Model)

Utilizing Hermitian beam elements for discretizing the beam is found to be a good choice,
because for the problem at hand the necessary simplifying assumptions (see Section 5.1) are
well fulfilled. Only the bending around a principal axis of inertia was examined. Nonlinear
effects, especially those of the actuators and sensors were not modelled.

Despite the neglect of various effects (see Section 5.10) respectively unknown parameters,
the analytical models (FE model) and the identified models matched very well in both cases,
pure beam as well as beam with mounted shaker which justifies the considered assumptions.
Because of the “shaker mounting” via feedback loops it was essential to use high resolution
in spatial discretization for the beam with unmounted shaker in the first place.

A common problem in dynamic FE modeling, the determination of the damping matrix,
was performed by assuming Rayleigh damping where the parameters α and β were computed
by utilizing knowledge about the identified model. Furthermore, by transforming the system
from nodal to modal coordinates replacing the fist five modal damping coefficients in the
diagonal matrix of modal damping by those of the identified model of the pure beam was
feasible.

Because of the high resolution in spatial discretization the system order of the obtained
state-space models was very large. However, due to the fact that the systems had well-
separated oscillatory eigenmodes with low damping, the order could be effectively reduced
in the modal representation (modal form) by truncating higher modes (“modal truncation”)
without significantly changing the system behavior in the frequency range of interest.

10.4 Controller Designs Based on the Analytical Model

(FE Model)

It has been shown that an FE model utilizing a simple one-dimensional finite element for
spatial discretization can actually be used as design plant, which at the beginning of this work
was in question. However, in order to achieve satisfactory results in structural mode damping
for a particular mode, an increased effort in modeling of uncertainty (DGK controller) has to
be accepted. Various approaches of uncertainty descriptions were investigated and specific
further recommendations were given.

A summary of the individual control designs based on the analytical model, respectively
the lessons learned during the design, was given in Section 9.3.6.

10.5 Tabular Overview of the Investigated Controller De-

sign Methods

In Table 10.1 an overview on the achieved improvements, conclusions, and suitability of
the investigated controller design methods for structural mode damping for this particular
problem setup is given.
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design plant control design method
robustness properties
(implicit/modelled)

overall
achieved im-
provements

special
improvements
for a particular
mode

general
suitability

effort in
designing

cost-
benefit
ratio

supposed special benefits
encountered
problems/disadvantages

identified
model
(discrete-
time design
plant)

Mixed-Sensitivity H∞
(Fig. 9.5 on page 124)

• implicit RS for
additive uncertainty
(in this case)

excellent
(10)

- high moderate excellent - -

Modally Weighted LQG
(Fig. 9.12 on page 134)

• non-existent (see [6])
good
(8)

- high low good - -

H∞ Loop-Shaping
(Fig. 9.17 on page 139)

• implicit RS for
coprime factor
uncertainty

moderate
(6)

- low moderate moderate
• γ (K) ≈ 1 ⇒ benefits with respect

to input uncertainty
• inappropriate uncertainty

description

DK Synthesized
(Fig. 9.23 on page 147)

• mult. input & output
uncertainty

• additive uncertainty

good
(8)

- high high moderate -

• unc. weight selection
• high system order
• NS with reduced K(z)

(occasionally)

analytical
model
(continuous-
time design
plant)

Mixed-Sensitivity H∞
(Fig. 9.26 on page 150)

• implicit RS for
additive uncertainty
(in this case)

moderate
(5)

- high moderate good
• additive unc. “robustifies” with

respect to discretisation errors

(K(s)
zoh→ K(z))

-

Modally Weighted LQG
(Fig. 9.29 on page 154)

• non-existent (see [6])
moderate
(4)

- moderate low good - -

H∞ Loop-Shaping
(Fig. 9.34 on page 158)

• implicit RS for
coprime factor
uncertainty

moderate
(5)

“difficult” 4th
structural
mode

high moderate good

• γ (K) ≈ 1 ⇒ benefits with respect
to input uncertainty

• coprime factor unc. “robustifies”
with respect to discretisation errors

(K(s)
zoh→ K(z))

• (inappropriate uncer-
tainty description)

DK Synthesized
(Fig. 9.39 on page 162)

• mult. input & output
uncertainty

• additive uncertainty

low
(3)

- low high moderate -

• unc. weight selection
• high system order
• NS with reduced K(s)

(occasionally)

DGK Synthesized
(without additive unc.)
(Fig. 9.44 on page 169)

• ωi in state matrix,
• mult. input & output

uncertainty

low
(1)

- low very high low -

• unc. weight selection
• high system order
• NS with reduced K(s)

(often)
• numerical problems

crashed algorithms

DGK Synthesized
(with additive unc.)
(Fig. 9.45 on page 171)

• ωi in state matrix,
• mult. input & output

uncertainty
• additive uncertainty

low
(3)

“difficult” 4th
structural
mode

high
extremely
high

low
• additive unc. “robustifies” with

respect to discretisation errors

(K(s)
zoh→ K(z))

• unc. weight selection
• high system order
• NS with reduced K(s)

(often)
• numerical problems

crashed algorithms

Table 10.1: Overview controller design methods (including the author’s opinion)



Appendix A

Selected Fundamentals

A.1 Transfer Functions for MIMO Systems

K G
r +

−
u +

+

ũ +

+

y

d1d2

Figure A.1: One degree-of-freedom negative feedback control systems

For the negative feedback system in Figure A.1, the loop transfer function L is defined as
the transfer function as seen when the loop is broken at the output of the plant G.

L = GK (A.1)

In the case of this negative feedback arrangement, the (output) sensitivity function S

(y = Sd1) and (output) complementary sensitivity function T (y = Tr) are defined as

S = (I+GK)−1 (A.2)

T = I− S = GKS (A.3)

The loop transfer function LI is defined as the transfer function as seen when the loop is
broken at the input to the plant G.

LI = KG (A.4)

In the case of this negative feedback arrangement, the input sensitivity function SI

(ũ = SId2) and input complementary sensitivity function T I (u = −T Id2) are defined
as

SI = (I+KG)−1 (A.5)

T I = I− SI = KGSI (A.6)

Remark: When positive feedback is used in Figure A.1, S = (I − GK)−1 and SI =
(I−KG)−1.
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In Figure A.2 a one degree-of-freedom negative feedback configuration is depicted. The
plant G and controller K interconnection is driven by output disturbances d, reference
commands r, and measurement noise n. Via the control signals u the outputs y shall be
controlled.

K G
r +

−
u +

+

y

n

+

+

d

Figure A.2: One degree-of-freedom (negative) feedback configuration

In terms of the sensitivity function S = (I+GK)−1 and the complementary sensitivity
function T = I− S = GKS, the following relations hold:

y(s) = T (s)r(s) + S(s)d(s)− T (s)n(s) (A.7)

u(s) = K(s)S(s) (r(s)− d(s)− n(s)) (A.8)

By an investigation of (A.7) and (A.8) the following conclusions in terms of closed-
loop requirements, in addition to the requirement that K stabilizes G can be made (see
Table A.1): [6]

control objective typical frequency range closed-loop requirement

disturbance rejection ω low σ̄ (S(jω)) small
reference tracking ω low σ̄ (T (jω)) ≈ σ (T (jω)) ≈ 1
noise attenuation ω high σ̄ (T (jω)) small

input usage (control
energy) reduction

ω high σ̄ (KS(jω)) small

Table A.1: Closed-loop requirements (in addition to the requirement that K stabilizes
G) (adopted from [6])

In case of a SISO system, a magnitude plot of a typical loop transfer function L, sensitivity
function S, and complementary sensitivity function T is shown in Figure A.3.
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Figure A.3: Magnitude plot of typical loop transfer function L, sensitivity function S
and complementary sensitivity function T (SISO case, L(s) = 1

s(s+1)
)

A.2 A Plant in State-Space and Transfer Function Rep-

resentation

A.2.1 State-space representation

In Figure A.4 the state-equation (A.9) and output equation (A.10) of an LTI system in
state-space representation are depicted graphically.

´

(·)dt C

A

D

B
u +

+ +

ẋ x +

+

y

Bd Dd

d

Figure A.4: State-Space Representation

ẋ = Ax+Bu+Bdd x(t = 0) = x0 (A.9)

y = Cx+Du+Ddd (A.10)
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A: (n× n) - state matrix x: (n× 1) - state vector
B: (n× r) - input matrix u: (r × 1) - input vector
Bd (n× q) - disturbance input matrix d: (q × 1) - disturbance vector
C: (m× n) - output matrix y: (m× 1) - output vector
D: (m× r) - feed-through matrix
Dd (m× q) - disturbance feed-through matrix

By applying a similarity transformation (where T is a non-singular (n×n) transformation
matrix)

x = Txnew, (A.11)

the state-space representation with state vector x can be transformed into a new represen-
tation with state vector xnew.

ẋnew = T−1AT︸ ︷︷ ︸
Anew

xnew + T −1B︸ ︷︷ ︸
Bnew

u+ T−1Bd︸ ︷︷ ︸
Bnew

d

d (A.12)

y = CT︸︷︷︸
Cnew

xnew +Du+Ddd (A.13)

Because the set of non-singular transformation matrices is an infinite set, one and the
same system can be posed in an infinite set of state-space representations.

A.2.2 Transfer function representation

Laplace transformation of the state-equation (A.9) with vanishing initial condition (x0 = 0)
and the output-equation (A.10) leads to (A.14) and (A.15):

sx(s) = Ax(s) +Bu(s) +Bdd(s) (A.14)

y(s) = Cx(s) +Du(s) +Ddd(s) (A.15)

Inserting x(s) = (sI−A)−1 (Bu(s) +Bdd(s)) into the Laplace-transformed output equa-
tion (A.15) yields equation (A.16).

y(s) =
[
C (sI−A)−1

B +D
]

︸ ︷︷ ︸
G(s)

u(s) +
[
C (sI−A)−1

Bd +Dd

]
︸ ︷︷ ︸

Gd(s)

d(s) (A.16)

Let a minimal state-space representation of G(s) respectively Gd(s) be given by

G(s)
ss
=

[
A B

C D

]
, Gd(s)

ss
=

[
A Bd

C Dd

]
. (A.17)

G

Gd

u(s)

d(s)

y(s)

+

+

Figure A.5: Transfer function representation
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A.3 Proper Systems

Definition A.1: Proper and bi-proper systems, SISO case [7]

• A system G(s) is strictly proper if G(jω) → 0 as ω → ∞. It can be represented
as state-space system and has no feed-through term (d = 0).

• A system G(s) is bi-proper or semi-proper if G(jω) → d, d ∈ R\{−∞, 0,∞}
as ω → ∞. It can be represented as state-space system with finite, nonzero
feed-through term d.

• A system G(s) which is strictly proper or bi-proper is proper.

• A system G(s) is improper if |G(jω)| → ∞ as ω → ∞. Improper systems
cannot be represented as state-space systems with state-space matrices (A, B,
C, D).a

aAn improper systems can be represented as descriptor state-space model, which have the fol-
lowing modified state equation: Eẋ = Ax+Bu.

Definition A.1 directly extends to multi-input multi-output (MIMO) systems. State space
systems are always proper. If D 6= 0, they are bi-proper, otherwise they are strictly proper.
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A.4 Singular Value Decomposition (SVD)

Definition A.2: Singular Value Decomposition (SVD) [7, 6]

Any real- or complex-valued (m× n) matrix A may be factorized using the SVD

A = UΣV H (A.18)

Σ =





[
Σ1

0

]
if m > n

Σ1 if m = n[
Σ1 0

]
if m < n

, Σ1 =




σ1 0 . . . 0

0 σ2
. . .

...
...

. . . . . . 0
0 . . . 0 σk


 , k = min(m,n)

(A.19)
Thereby, the (m × m) matrix U and the (n × n) matrix V are unitary matrices
(UH = U−1, V H = V −1), and the (m× n) matrix Σ contains a diagonal matrix Σ1

(k × k), whose real, non-negative, diagonal entries σ̄ ≡ σ1 ≥ σ2 ≥ . . . ≥ σk ≡ σ≥ 0
are called the singular values of A.
The singular values are computed as the positive square roots of the k = min(m,n)
largest eigenvalues of both AAH and AHA.

σi(A) =

√
λi(AAH) =

√
λi(A

HA) (A.20)

The not unique matrices U and V are matrices of eigenvectors of AAH respectively
AHA. The corresponding column vectors ui of U and row vectors vH

i of V H are
called (left respectively right) singular vectors.
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A.5 Pseudo-Inverse (Generalized Inverse)

This section is based on [6].

Definition A.3: Pseudo-Inverse [6]

Consider the set of linear equations

y = Ax (A.21)

with a given (m×1) vector y and a given (m×n) matrix A. A least squares solution
to (A.21) is a (n × 1) vector x such that ‖x‖2 =

√
x2
1 + x2

2 + . . .+ x2
n is minimized

among all vectors for which ‖y −Ax‖2 is minimized. The solution is given in terms
of the pseudo-inverse (Moore-Penrose generalized inverse) of A: [6]

x = A†y (A.22)

The pseudo-inverse may be obtained from an SVD of A = UΣV H (see Definition
A.2) by

A† = V rΣ
−1
r UH

r =
r∑

i=1

1

σi (A)
viu

H
i (A.23)

where r is the number of non-zero singular values of A (i.e. r = rank(A)). In
(A.23) the matrices U r (m× r) and V r (n× r) contain only the first r columns of U
respectively V as introduced in (A.18) and the (r × r) diagonal matrix Σr contains
only the first r (non-zero) singular values of A.
The following holds:

σ (A) =
1

σ̄
(
A†) (A.24)

Note that the (n×m) matrix A† exists for any matrix A, even for a singular square
matrix and a non-square matrix. The pseudo-inverse also satisfies

AA†A = A and A†AA† = A† (A.25)

Note the following cases (where r is the rank of A): [6]

1. r = m = n, i.e. A is non-singular. In this case A† = A−1 is the inverse of A.

2. r = n ≤ m, i.e. A has full column rank. This is the “conventional least squares
problem” where ‖y −Ax‖2 is to be minimized, and the solution is

A† =
(
AHA

)−1
AH (A.26)

In this case A†A = I, so A† is a left inverse of A.

3. r = m ≤ n, i.e. A has full row rank. In this case an infinite number of solutions to
(A.21) exist and it is sought for the one that minimizes ‖x‖2. This is

A† = AH
(
AAH

)−1
(A.27)



A.6 Norms 184

In this case AA† = I, so A† is a right inverse of A.

4. r < k = min(m,n) (general case). In this case both matrices AHA and AAH are rank
deficient. In the general case (A.23) has to be used to obtain the pseudo-inverse and
A has neither a left nor a right inverse.

A.6 Norms

This Section was adopted from [7]. The definitions make use of a vector space V and a field
F. A precise definition of V and F is found in [7]

Norms are utilized in order to measure the size of an algebraic object. These
objects can be scalars, vectors, matrices, signals in the time- or frequency do-
mains, or linear operators such as transfer functions.[7]

Definition A.4: Norm [7]

A norm of x (where x is an element of a vector space V over a field F) is a real
number, denoted ‖x‖, that satisfies the following properties:

N1.: ‖x‖ > 0 non-negativity
N2.: ‖x‖ = 0 ⇔ x = 0 positivity (For semi-norms, only

x = 0⇒‖x‖ = 0 is true.)
N3.: ‖α · x‖ = |α| · ‖x‖ for all scalars α ∈ F homogeneity
N4.: ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖ triangle inequality

A.6.1 Vector- and matrix norms

Definition A.5: Vector p-norm [7]

For a vector x = [x1, . . . , xm]
T ∈ Fm with m elements, the vector p-norm is defined

as:

‖x‖p =
(

m∑

i=1

|xi|p
) 1

p

, p ≥ 1. (A.28)

A shortlist of common vector norms is given in the following:[7]
Vector 1-norm (sum
norm):

p = 1 ‖x‖1 =
∑m

i=1 |xi|

Vector 2-norm
(Euclidean norm):

p = 2 ‖x‖2 =
√∑m

i=1 |xi|2 =
√
xHx

xH is the Hermitian transpose
(conjugate transpose) of x

Vector ∞-norm (max
norm):

p = ∞ ‖x‖∞ = maxmi=1 |xi|
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Definition A.6: Matrix norm [7]

A norm of a constant (m× n)-matrix A ∈ F
m×n is called a matrix norm if it fulfills

the four axioms N1–N4 in Definition A.4 and additionally the multiplicative property:

‖AB‖ ≤ ‖A‖ · ‖B‖ (A.29)

for all A, B for which the product AB exists (i.e., which are of compatible inner
dimensions).

If a norm on a matrix only satisfies the four axioms N1–N4 in Definition A.4, the norm
is called generalized matrix norm and has weaker properties.[7, 6]

A shortlist of common matrix norms is given in the following for a matrix A = [aij ] ∈
Cm×n:

Sum matrix norm: ‖A‖sum =
∑

i,j |aij |
Frobenius matrix norm
(Euclidean norm):

‖A‖F =
√∑

i,j |aij |
2 =

√
trace

(
AHA

)

AH is the Hermitian transpose (conjugate
transpose) of A

Induced norms of linear operators, particularly of matrices, are of special interest:

Definition A.7: Induced norm [7]

Given a constant matrix A and the linear mapping z = Aw for compatible vectors
z, w, the induced p-norm ‖·‖ip is defined as:

‖A‖ip = max
w 6=0

‖z‖p
‖w‖p

= max
w 6=0

‖Aw‖p
‖w‖p

(A.30)

The induced norm is a matrix norm and thus satisfies the multiplicative property
(A.29).

For the case p = 2 (induced 2-norm), the singular value norm or spectral norm is
obtained:

‖A‖i2 = σ̄ (A) =
√

ρ
(
AHA

)
=
√
ρ
(
AAH

)
(A.31)

where σ̄ (·) is the maximum singular value (see Definition A.2) and ρ (·) is the spectral
radius:

Definition A.8: Spectral radius [7]

The spectral radius ρ (A) of a matrix A is the maximum of the eigenvalue magnitudes:

ρ (A) = max
i

|λi (A)| (A.32)

The spectral radius is not a norm, but represents an important lower bound on any
matrix norm [6]:

ρ (A) ≤ ‖A‖ (A.33)
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A.6.2 Signal norms

Signal norms, also called temporal norms, are formulated for time-varying (or frequency-
varying) signals z(t).[7] This section was adopted from [7]. More information about signal
norms can be found there.

Definition A.9: Temporal p-norm, lp-norm [7]

Given a time-varying vector signal z(t) = [z1(t), . . . , zn(t)], its temporal p-norm or
lp-norm ‖z(t)‖p is defined by

‖z(t)‖p =
(
ˆ ∞

−∞

n∑

i=1

|zi (τ)|p dτ
) 1

p

(A.34)

A shortlist of common temporal norms of signals is given in the following:
1-norm in time (integral
absolute error, IAE):

p = 1 ‖z(t)‖1 =
´∞
−∞
∑n

i=1 |zi (τ)| dτ

2-norm in time
(quadratic norm, integral
square error, ISE, energy
of the signal):

p = 2 ‖z(t)‖2 =
√
´∞
−∞
∑n

i=1 |zi (τ)|
2 dτ

∞-norm in time (peak
value in time):

p = ∞ ‖z(t)‖∞ = maxτ (maxni=1 |zi (τ)|)

Note that the commonly used signal RMS (root mean square) norm, also called power
norm, is only a semi-norm (compare Definition A.4, N2 is not fulfilled – a nonzero signal
may very well have an RMS value of zero):[7]

‖z(t)‖pow = ‖z(t)‖RMS = lim
T→∞

√√√√ 1

2T

ˆ T

−T

n∑

i=1

|zi (τ)|2 dτ (A.35)
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A.6.3 System norms

This section was adopted from [7]. More information about system norms can be found
there.

The concept of system norms is distinct from that of temporal norms. Given
a linear dynamic system G, system norms are typically defined as the worst-case
temporal p-norm of the output signal of G which is excited by an input signal of
a specific class u ∈ U .[7]

A.6.3.1 H∞ system norm

Definition A.10: H∞ system norm [7]

Given a proper, stable linear system G(s) (z(s) = G(s)w(s)), its H∞ system norm
is defined as

‖G(s)‖∞ = max
w(t)6=0

‖z(t)‖2
‖w(t)‖2

= max
‖w(t)‖2=1

‖z(t)‖2 (A.36)

The H∞ system norm is an induced norm, and thus a matrix norm for which in
further consequence the multiplicative property (A.29) holds.
For a stable, proper G(s), another definition of ‖G‖∞ based on the singular values
of G(s) (see Section A.4) is:

‖G(s)‖∞ = sup
ω∈R

σ̄ (G(jω)) (A.37)

Thus the H∞ norm is the peak of the maximum singular value magnitude over all
frequencies.
For the numeric computation of the H∞ norm of a given system, an iterative bi-
section procedure is typically used to approximate the H∞ norm up to a demanded
precision. The following norm definition involves a Hamiltonian matrix H formed

from the system state-space matrices (G(s)
ss
=

[
A B

C D

]
). Assuming G(s) stable,

then

‖G(s)‖∞ = inf
γ>0

γ : H(γ) has no imaginary eigenvalues (A.38)

holds, where

H(γ) =

[
AH(γ) BR−1(γ)BT

−CT(I+DR−1(γ)DT)C −AT
H(γ)

]
(A.39)

with AH(γ) = A+BR−1(γ)DTC, and R(γ) = γ2
I−DTD.

If G is not stable, its H∞ norm is infinite.
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