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Matrikelnummer 0927619

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.-Prof. Dr. Dietmar Dietrich
Mitwirkung: Dipl.-Ing. Christian Brandstätter

Wien, 01.08.2014
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Abstract

The Artificial Recognition System (ARS) project is an ongoing attempt to create a bionic cog-
nitive model for autonomous intelligent agents. The ARS model adopts a holistic approach to
perception and high-level reasoning based on drives and emotions that is inspired by the psy-
choanalytical functional model of the human mind, pushing further the boundaries of the current
state of the art and opening new possibilities for solving many problems in the field of artificial
intelligence.

The purpose of this thesis is to provide a description of a symbolic landmark-based navigation
model that is based on the ARS cognitive model. Utilizing advanced cognitive capabilities pro-
vided by the underlying model allows for novel approaches to the problem of agent localization,
map construction, and route planning.

The thesis explores various qualitative symbolic approaches to agent localization in an effort to
identify the core principles behind this process, thus forming a basic localization capability that
can be augmented by additional capabilities as the research progresses. Furthermore, the concept
of a hierarchical cognitive map as a mean of spatial knowledge representation is considered, with
particular emphasis on the integration into the common knowledge representation of the ARS
model, with the aim to organically facilitate high-level spatial reasoning. Finally, the process of
route planning is considered based on the integrated cognitive map, exploring the possibilities
and advantages of route calculation and selection guided by the decision-making process.

The implementation of the navigation model has been evaluated in a simulated environment
using various scenarios and has demonstrated behavior consistent with the aims of the ARS
project. In addition, the results of the evaluation have provided a great amount of information
that paves the way for further research and development of the navigation model as a part of the
ARS model.
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Kurzfassung

Im Artifical Recognition System (ARS)-Projekt wird aktuell versucht ein bionisch-kognitives
Modell für intelligente autonome Agenten zu entwickeln. Das ARS-Modell nutzt einen ganzheit-
lichen Ansatz der Wahrnehmung und des logischen Denkens, welcher vom psychoanalytisch-
funktionalen Modell des menschlichen Verstands inspiriert ist und auf Trieben und Emotionen
basiert. Dies treibt den Stand der Wissenschaft voran und eröffnet neue Möglichkeiten, Probleme
auf dem Gebiet der künstlichen Intelligenz zu lösen.

Das Ziel dieser Arbeit ist es, eine Beschreibung des symbolischen Wegpunkt-basierten Navigati-
onsmodells zu erstellen, welches auf dem kognitiven ARS-Modell beruht. Unter Zuhilfenahme
der fortschrittlichen kognitiven Fähigkeiten, die das zugrunde liegende Modell bietet, können
neue Lösungen zu Problemen wie die Lokalisation, der Kartenerstellung und der Routenpla-
nung der Agenten entwickelt werden.

Diese Thesis untersucht verschiedene qualitativ-symbolische Ansätze der Agentenlokalisation,
um die Grundprinzipien dieses Prozesses zu bestimmen. Dadurch kann eine grundlegende Fä-
higkeit zur Lokalisation hergestellt werden, die durch zusätzliche Entwicklungen erweitert wer-
den kann. Zusätzlich wird das Konzept der hierarchischen kognitiven Karte auf ihre Tauglichkeit
als Darstellung einer räumlichen Wissensrepräsentation untersucht. Dabei wird ein besonde-
res Augenmerk auf die Integration in die Repräsentation des gemeinsamen Wissens des ARS-
Modells gelegt, um räumliche Schlussfolgerung auf hoher Ebene zu ermöglichen. Schließlich
wird der Prozess der Routenplanung mit Hilfe der integrierten kognitiven Karte analysiert. Da-
bei werden die Möglichkeiten und Vorteile der Routenberechnung und -auswahl unter Zuhilfe-
nahme des Entscheidungsfindungsprozesses untersucht.

Die Implementierung des Navigationsmodells wurde mit Hilfe einer Simulation unter der Nut-
zung verschiedener Szenarios evaluiert. Sie zeigte dabei ein Verhalten, das mit den Zielen des
ARS-Projekts übereinstimmt. Zusätzlich hat die Evaluierung eine Menge an Daten geliefert,
die die Forschung und Weiterentwicklung des Navigationsmodells als Teil des ARS-Modells
vorantreiben können.
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CHAPTER 1
Introduction

In a world dominated and shaped by humans, the ability of autonomous agents to traverse and
interact such an environment independently is steadily gaining priority. Moreover, since hu-
mans shape the environment to suit their needs, perception, mobility, and reasoning above all
else, it stands to reason to equip autonomous agents with similar abilities. This would in turn
facilitate incorporation of the said agents into the human world by allowing them to function
independently of the human input.

An autonomous agent is a system situated within and a part of an environment and acts on it,
over time, in pursuit of its agenda [FG97]. As autonomous intelligent agents steadily become
commonplace in today’s world, their capability of navigating their environment effectively and
without external input or help is becoming a very important feature of their design. There have
been many successful navigation models developed in the past that perform efficiently and ac-
curately within their respective areas of application, yet lately there has been almost no novelty
in approaching the problem; instead, most of the practical research seemed to be focused on
improving the already developed methods.

One of the shared features of these models is their level of isolation from the rest of the agent’s
reasoning system, and many are designed to perform without such system in the first place.
While all of them provide feedback to the agent in the form of the current location and the path
that needs to be taken, the interaction between the two parts rarely goes beyond that. Such
separation is not mandatory, however, if one takes a different approach to the general problem
of intelligent behavior.

Artificial general intelligence models aspire to emulate the functionality of the human mind
as closely as possible, in an attempt to harness the potential that domain-specific artificial in-
telligence model do not possess. These models, such as the Artificial Recognition System
(ARS) [DFZB09], are still lacking a functional navigation model that utilizes the benefits of
a holistic approach to reasoning.
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Their symbolic approach to modeling of human-like intelligence poses a great obstacle to suc-
cessful implementation of such capabilities. None of the contemporary navigation models have
been developed with symbolical representation of information and knowledge in mind. Thus, in
order to create a suitable solution for models such as the ARS one must take a different approach.

1.1 Problem statement

The aim of this thesis is to conceptualize and develop a navigation model for the ARS. This
model is to be responsible for determining the location of the agent in the environment and
navigating the said environment by comparing the sensory input with the internal representation
of the environment, assisted by the existing functionality of the ARS model. To achieve this goal
several features of such module have been postulated:

• functionality - localizing the agent within the environment with acceptable accuracy and
to calculate or retrieve the proper route to the current goal

• efficiency - performs within acceptable time and memory constraints

• integration - shares the same knowledge base, input, and is itself a vital part of the
decision-making process

• intuitivity - performs in a simple manner that is inspired by human behavior and therefore
easily understood by humans

• extensibility - designed to allow growth and improvement along with the rest of the system

Functionality and efficiency are self-explanatory features that are necessary for any usable model
in general. In particular, it is important to strike a proper balance between the two, so that the
resulting model is simple enough to allow efficient computation, yet powerful enough to perform
under set conditions in given environments. Simplicity of the model is also governed by the
intuitivity feature explained below.

Integration is the crucial feature that separates approach used in this model from approaches used
in other available models. By allowing deeper integration with ARS one can utilize its advanced
reasoning and decision making to develop novel approaches and methods that otherwise would
not be available or feasible.

Intuitivity serves as a guideline that leads closer to the human spatial reasoning by identifying
and favoring human-like behavior among the set of considered approaches in any part of the
model. This feature acts as a safeguard against overstepping the psychoanalytical limits imposed
by the ARS.

Extensibility is a crucial feature of the model due to the current state of the ARS implementa-
tion. The implementation is still largely a work in progress [BDM+13], with several features
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this model depends on either missing or only partially developed. In order to prevent major re-
designs and modifications of the model as the implementation of ARS progresses further, great
emphasis will be placed on identifying those features early on and designing the model around
them, providing proper abstractions and following the interfaces defined by the model of ARS.
Comments and recommendations regarding the implementation of these features based on the
result of the thesis will be provided in the future work section of the thesis (see section 6.6).

The model will be developed by firstly researching different state-of-the-art approaches and
identifying features conceptually compatible with the inner workings of the ARS; specifically,
its knowledge and information representation, and the decision making process.

Additionally, once the model is properly developed an implementation of the model will be made
as a proof of concept, in order to ensure the performance of the model within a simple test envi-
ronment. This should be implement to correspond as closely as possible to the interfaces defined
by the ARS model, in order to eliminate any problems that might arise due to incompatibility of
the models.

1.2 Methodology

In order to develop an applicable and scientifically satisfactory model, several rules meant to
help properly guide the research and development towards the desired goal have been defined:

Rule 1. The resulting model should attempt to model human spatial cognition as close as pos-
sible within the given parameters of the thesis and particular test scenarios.1 This means that
any existing method or process used to accomplish a certain task must be discarded if there is
no sufficient evidence these are available to a healthy human being without any external influ-
ence. Sufficient evidence is obtained from published and peer-reviewed research provided by
the experts in a given field. If no definitive research is found, processes should be designed to
adhere to the intuitivity feature of the model as described in the previous section, preferably by
emulating apparent human behavior.

Rule 2. Any feature deemed currently impossible to model or implement according to rule 1
will be modeled to serve as an intermediate solution until the situation allows for a better or a
more fitting solution to be developed.

Rule 3. The implementation is a proof of concept. Relating to the rule 1 above, the model will
disregard any optimization of processes it contains, even when those might come to be as a result
of human practice or expertize regarding the particular task. The implementation of the model
should at least be able to provide valid results, not necessary optimal ones.

Rule 4. The model presented in this thesis is designed specifically with ARS architecture in
mind. This means that any input and output must be compatible with architecture’s declared

1Parameters refer to the current state of the environment and the agent’s internal state, as well as any conditions
defined by a test scenario.
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interfaces and data types as stated in its model. Any deviations must be identified and properly
documented.

Rule 5. The scope of the thesis limits the complexity and details of the model. Any novel
approaches or possibilities discovered that fall outside of the scope of the thesis should be men-
tioned in order to provide a reference for future work. The actual parameters defining the scope
of the thesis are mentioned in chapter 4.

Rule 6. Tools that are used to develop the ARS implementation and the associated simulation
will be used in this thesis as well. This includes the choice of the programming language (Java)
and the choice of the simulation suite, Multi-Agent Simulator of Neighborhoods (or Networks)
(MASON). MASON simulation suite is further described in chapter 5.

1.3 Structure of the work

The structure of this thesis contains 6 chapters.

Chapter 1 gives an introduction into the problematics of navigation in autonomous intelligent
agents. It also provides the problem statement, and an overview of methodology used and prin-
ciples followed during research and development of the solution.

Chapter 2 presents an overview of general concepts relevant to the topic of navigation for au-
tonomous agents. It defines concepts such as localization, route planning, and mapping pro-
cesses, as well as describing their dynamics and interactions. This provides a theoretical foun-
dation needed for understanding the rest of the thesis matter.

Chapter 3 gives an overview of the current state of the art pertaining to the navigation in au-
tonomous agents, as well as deeper look into the ideas and concepts behind the ARS model,
which represents the infrastructure of the model developed in this thesis, in order to provide
justification for certain design choices made when creating the model.

Chapter 4 provides a more specific description of conceptual foundation of the developed model
and gives a detailed description of the model itself. Here the design choices are described in
detail and the proposed integration into the ARS model is provided.

Chapter 5 describes the proof-of-concept implementation of the developed model, along with
the tools, either already existing or developed, that were used in its realization.

Chapter 6 presents the results obtained through testing of various processes of the model per-
formed on its implementation, along with their interpretation. It also contains the conclusion
and the discussion of future work.
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CHAPTER 2
Concepts

The problem of navigation in autonomous agents is a broad one, with a large number of concepts
and definitions that aren’t easy to grasp, due to many different approaches one can take based on
other fields of science – neurology, cognitive science, psychology, to name a few – which have
different concepts and definitions of phenomena. This chapter will therefore provide a clear
explanation of principles, concepts, and definitions that are essential for general understanding
of the topic of navigation in autonomous agents, and understanding of the navigation model
described in chapter 4 in particular.

2.1 Navigation in autonomous agents

Navigation is a process that allows an autonomous mobile agent to move through and interact
with its environment it in a purposeful and intelligent way. This process necessitates that the
agent be capable of perceiving the environment and moving with sufficient degrees of freedom.
In the rest of the thesis the term autonomous agent will assume these capabilities unless explicitly
stated otherwise.

When observed as a black box, navigation takes as input agent’s perception and a goal, giving
as output a description of the action that needs to be executed to reach that goal. Internally,
navigation is a rather complex process that can be conceptually divided into three processes:
localization, mapping, and route planning. These processes are separated mostly theoretically
for the sake of clarity and are in most models integrated in one way or another.

The prevalent type of navigation model today, in theory and in practice, combines the local-
ization and mapping process into a single process which performs both functions concurrently.
This model is commonly referred to as the Simultaneous Localization and Mapping (SLAM),
and is further explained in the chapter 3. Nevertheless, these two processes will be described
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separately as the navigation model of the thesis distinguishes between for reasons that will be
described in chapter 4.

Some navigation models eschew the mapping process entirely, consisting only of localization
and navigation processes. This is possible, and in most cases preferable, when the agent pos-
sesses a priori knowledge of the environment provided before deployment. This is usually done
in cases of largely static environments where any changes in the map are very unlikely; this is
done in order to reduce complexity of development and operation. Some models posses lim-
ited mapping capability such as online map updates in rare cases of environmental change, but
since alterations of the map are done externally, they would not be categorized as true mapping
processes.

Figure 2.1: Navigation model as a part of an autonomous agent.

Figure 2.1 depicts the navigation model integrated into a mind of an autonomous agent. The
figure depicts the concept of intelligent navigation by showing interaction of processes within
the agent’s mind. The numbers represent concepts as follows: 1 – environmental features, 2 –
raw sensor data, 3 – perceptual input, 4 – relevant perceptual input, 5 – current location, 6 – new
location, 7 – map update, 8 – map data, 9 – destination, 10 – route, 11 – actuator instructions, 12
– action (motion). The rest of this chapter will describe processes involved, their functionality
and interaction, as well as the principles of representing and managing the spatial knowledge.
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2.2 Spatial knowledge representation

In order for any intelligent agent to be able to reason about the environment, it must have an in-
ternal representation of that environment. The concept of such spatial knowledge representation
comes from the field of cognitive sciences, first mentioned in 1948 in a paper by Tolman [Tol48],
where it was referred to as a cognitive map, and has since been the subject of extensive research.
Despite that, a general consensus regarding its definition hasn’t yet been reached. As this con-
cept has over time become an important part of many other fields of science, such as geography,
urban planning, and psychology. A paper by Kitchin [Kit94] identified four different viewpoints
that govern its interpretation with respect to human cognition:

• Cognitive map is a map - as hypothesized by O’Keefe and Nadel [ON78] based on their
experiments on rats, the region of brain called hippocampus is a three-dimensional, eu-
clidean model of the world with rigid geometrical properties.

• Cognitive map is analogous to a map - the cognitive map has map-like properties. While
there might not be a specific region of the brain the environment is mapped onto, there is
a correspondence between input-output behavior of the storage and retrieval functions of
the two representations.

• Cognitive map is a metaphor of a map - based on the belief humans act as if they had a map
in their minds. This interpretation provides no detail regarding the physical manifestation
of the map.

• Cognitive map is merely a hypothetical construct - the term map has no literal meaning,
and is used to represent a set of processes which are believed to exist and affect everyday
spatial behavior of humans. This supports the non-euclidean spatial products that occur in
cognitive maps such as intransitivity and asymmetry.

This disagreement about the definition caused by the lack of conclusive evidence is carried over
into the field of artificial intelligence, resulting in different approaches to the modeling of this
concept. The same paper touches upon these computational models, identifying two main types
of computational models models: cognitive models, and bionic (connectivist) models. Cogni-
tive models are centered around memory structures and information processing, whereas bionic
models are centered around behavior of neurons and neural networks. Both types of models at-
tempt to obtain outcomes that mimic human behavior. However, where cognitive models usually
adopt cognitive science approaches in an attempt to model perceived human mental processes,
bionic models search for direct links between the environment and the behavior instead, and
focus on emergent behavior [Kit94].

Spatial knowledge representation is the part of the agent’s knowledge base that contains the total
knowledge about the environment, regardless of its actual structure or the types of knowledge
representation. This means that it might consist of several unrelated data structures that are
distributed across the system, using different data types and having different interfaces. The
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definition of the spatial knowledge representation is stated in such way in order to guide the
process of design towards a fully integrated, common knowledge base, preferably integrated
into the general knowledge base in a meaningful and useful way.

There exist many terms today to refer to this concept, such as abstract map, cognitive configura-
tion, cognitive schema, environmental image, spatial representation, to name a few [Kit94]. The
term cognitive map will be used to refer to this concept throughout this thesis for the sake of
brevity, referring to the cognitive computational model of the spatial knowledge representation
in particular, unless stated otherwise.

2.2.1 Mapping

Mapping is a term that describes the various kinds of interaction with the cognitive map. A more
general definition of mapping describes it as “a process composed of series of psychological
transformations by which an individual acquires, stores, recalls, and decodes information about
the relative locations and attributes of the phenomena in their everyday spatial environment”
[DS74].

There are two main ways of interacting with the spatial knowledge representation, regardless of
the taken approach to modeling: knowledge retrieval and knowledge update. Both can occur
either through direct manipulation of the data structures comprising the knowledge represen-
tation, or through a knowledge management system that provides a functional interface to the
navigation process.

Knowledge retrieval describes a set of operations that facilitate the navigation process by provid-
ing necessary knowledge about the current state of the environment, as stored within the spatial
knowledge representation, to the underlying processes. This involves several operations:

• Retrieval of information about current location

• Retrieval of encodings of locations based on arbitrary criteria

• Retrieval of parts of the environment and its structure

• Retrieval of known routes

Knowledge update describes a set of operations that modify the current knowledge of the en-
vironment based on exploration of unknown parts of the environment, and perceived changes
in the known part of the environment. Additionally, should the spatial knowledge representa-
tion be subject to certain logical or structural constraints, knowledge update may also pertain to
changing the internal structure of the spatial knowledge representation in order to satisfy those
constraints. Within knowledge update two kinds of processes can be discerned.

First process is termed map learning. As the concept of “an unknown part of the environment”
can be defined as a part of the environment that has no representation within the cognitive map,
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an agent may assume it is located within an unknown part of the environment when it cannot
localize itself, that is, find a known location that matches the perceptual input, with sufficient
certainty. In other words, learning is never initiated as long as the agent stays within the known
part of the environment. Map learning process is dependent on the results of the localization
process, and this is the reason they are commonly integrated into a single process, as is the case
with the SLAM navigation models.

Second important process is map maintenance. This process focuses on the cognitive map,
ensuring the representations of parts of the environment are up-to-date and valid, as well as
maintaining the overall structure, if one exists.

Representations of parts of the environment consist of environmental features and their config-
uration, which describe that particular part. In real world environments these can often change:
features might change appearance, appear or disappear, and their configuration might change.
Such changes can be highly detrimental to proper execution of the localization process, and as
such must be handled properly.

It may occur that a certain location changes beyond recognition, where it would be completely
unrecognizable to the agent. As there would be no accurate localization result, map maintenance
could not be performed. In such cases, knowledge of the last known location(s) in conjunction
with the map structure could be used in an attempt to ascertain the actual current position of the
agent.

Changes in the environment can also affect the traversability of the environment, by blocking
or destroying previously known routes. These changes are also updated within the map when
necessary.

Some cognitive maps may have constraints placed on their structure in order to ensure algorithms
that are performed on it can function properly. Map maintenance verifies this whenever a change
occurs in order to maintain the proper structure of the map.

2.3 Localization

The term localization refers to an agent’s process of determining where it is located within
its environment [WFJL08]. The result of this process is referred to as the current position or
current location of the agent. In cases where the environment is represented by values within a
coordinate system, and where the agent’s rotation is important, the result is referred to as pose,
which is a joint term for the current position and rotation of the agent.

The crucial aspect of localization is the solving of the correspondence problem. The correspon-
dence problem pertains to finding out which part of the environment stored in the memory best
corresponds to the current sensory input. There are four factors that must be taken into account
when designing an effective localization solution:
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• Feature representation - Which features are made explicit in the map? (sensor reflection
points, extracted feature points, . . .)

• Representation of configurations - Which spatial relations are made explicit in the map?
(qualitative knowledge, metric data, . . .)

• Spatial reasoning / configuration matching - Which matching algorithm is used? (Iterative
Closest Point, shape matching, . . .)

• Temporal reasoning - How is history information handled? (stochastic estimators, con-
ceptual neighborhoods, . . .)

Feature representation governs the interpretation of the sensory input. It specifies which features
present in the environment are to be detected, extracted, and stored by the model. The choice
of features depends primarily on the type of sensors used and the algorithms used for their
extraction. Commonly selected features are landmarks, paths, and free space. Landmarks in
particular form the foundation of the model described in this thesis and are addressed in section
2.5 in greater detail.

Representation of configurations describes the types of configurations features. A configuration
describes spatial arrangements of perceived features in the environment. Configurations can be
separated into two main categories. Qualitative configurations employ a finite set of relations to
model spatial information in an abstract way. These relations usually describe the position of two
features relative to one another or to a third reference point, abstracting vector properties such
as distance or direction. Relations such as “north of”, “left of”, “behind”, “near” are examples
that belong to this category. Quantitative configurations employ no such abstractions apart from
reduction in resolution, using absolute and uniform scales to describe position of features. As
with qualitative representations, these can be expressed as relations between two features, such
as exact distance, or coordinates/vectors within a coordinate system.

Spatial reasoning, also termed matching, is a process that establishes correspondence of the
perceived features and their configurations with the features and configurations in the internal
representation. There are three main problems pertaining to this factor: obtaining a feasible
solution, handling uncertainty, and integrating spatio-temporal knowledge.

Feasibility pertains to the amount of data that needs to be processed, as well as the complexity of
the algorithms involved. The matching process is quite susceptible to the combinatorial explo-
sion [Vel08], where extreme amount of input data prevents processing within a reasonable time.
This complexity problem arises when observing objects in the environment that have minute per-
ceived differences that depend from the viewpoint or the particular instance of the object, which
would normally be encoded along with the rest of the object, thereby leading to an explosion
in numbers of encoded representations of objects within the knowledge base. To prevent this,
incoming data may be filtered to remove less-valuable data. Additionally, heuristic approaches
can also be used, such as removing the features that are expected to be invisible to the agent
based on its pose. The choice of these methods again depends on the overall model. Regardless
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of the approach, the model must be able to tolerate uncertainty caused by false negatives1 as
well. In short, one should attempt to obtain usable results whilst minimizing the computation
costs, and the selection of the features and the algorithm must reflect this principle.

Uncertainty is inherent in processing real-world data, which makes perfect correspondences
almost impossible to obtain. This means that any kind reasoning an agent might employ for
self-localization purpose must be able to tolerate uncertainty in some way. Many solutions em-
ploy various stochastic models of the environment to account for those uncertainties, employing
approaches such as Markov models and Monte Carlo localizations (see related work in chapter
3).

Spatio-temporal reasoning combines spatial with temporal and causal information to facilitate
more accurate self-localization. By taking into account consequences of agent’s movement
through space as well as stored information about previous traversals one can predict incom-
ing features as well as account for their absence at a certain point in time. Spatio-temporal
reasoning is often reinforced by stochastic models mentioned above. This type of reasoning is
particularly useful in self-localization models that are more dependent on the accurate estimates
of agent’s pose.

2.3.1 Current position

Current position represents the agent’s knowledge or belief about its relation to the environment
at a certain moment. It is the result of the self-localization process and is needed by the remaining
two processes, and, depending on the model, the self-localization process itself as a system
feedback. This makes it the most crucial result of the overall process.

Its actual representation in the model is not strictly defined, and depends on the nature of the
cognitive map. In case of a location-based model it is usually a memory pointer or an object
reference to the location object in the cognitive map that is currently considered current, or its
identified. In case of coordinate-based models it can be a set of coordinates or a whole pose
of the agent. Whether this piece of information is stored in the common storage or passed via
interfaces depends on whether it can be used elsewhere in the system that utilizes the model.

In case of a location-based model current position is instead referred to as current location,
differentiating it from the current position, which instead refers to the actual position in the
environment relative to some external coordinate system the agent itself is unaware of, such as
the coordinates within a simulated environment.

2.4 Route planning

Route planning is a process of calculating a route between two distinct locations in the environ-
ment. The various definitions of a route can be summarized into a static way from a starting

1False negatives in this case pertain to useful features being falsely recognized as less-important and thus filtered
out.
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position to a target place [WKBM+97]. In the context of autonomous agent, particularly the
one pertaining to this thesis, a route can be more broadly defined as a sequence of actions that
an agent needs to perform to reach given destination from its current location. This definition
considers the fact that any calculated route, regardless of its encoding, is ultimately translated
into a sequence of actions during the traversal. The definition is a proper generalization of com-
monly accepted definition of a route, as any trajectory derived from the encoding, such that can
be visualized with a line in a multidimensional space, also assumes movement along it in a cer-
tain direction. This definition is also supported by the way humans convey routes to each other,
most commonly by describing it with actions that one should perform to reach the intended
destination, instead of describing the route statically in the sense of the first definition.

It also facilitates a more complex description of connections between distinct locations in the
environment by allowing non-symmetric connections, that is, when a route from location B to
location A cannot be obtained by inverting the route from A to B. The necessity of such definition
becomes clear in section 4.5, where actions are defined with respect to the developed navigation
model.

All navigation models, regardless of the choice of the spatial representation, ultimately segment
the environment into parts that are functionally equivalent to locations as defined in this thesis.
Even if these parts are encoded as ends of known routes, they still represent unique places of
interest in the sense that is covered by the term location and can be subsumed under it. In case
of models such as Simultaneous Localization and Mapping (SLAM), described in section 3.1,
which generate a topographical spatial representation, various algorithms, such as algorithms
based on generalized Voronoi graphs [CN01] can be employed to obtain non-colliding trajecto-
ries in a multidimensional spatial representation which can be used for route computation.

Further expanding on this idea, one can assume that all spatial representations that are capable
of facilitating navigation can ultimately be abstracted into a structure equivalent to a graph, at
least when considering global navigation (section 4.1). This allows the route planning problem
to be considered in terms of graphs and graph-based algorithms, where well-established routing
algorithms exist, such as A∗ or other variations of Dijkstra’s algorithm, that can be applied in
solving the problem.

2.4.1 Route evaluation

Route planning as described above refers to finding any valid route, without any constraints or
scores placed on the result. If such constraints or scores do exist, they usually give an estimate
of the quality of a route, and it is therefore in one’s best interest to calculate the feasibly best
route available by factoring these into the route planning algorithms.

Historically most relevant and widespread of these factors is the length of a route, or the dis-
tance that needs to be traveled towards a destination. The well-known Dijkstra’s algorithm was
developed specifically to solve the shortest route problem. In real world scenarios of human
navigation, which rarely involves exact calculation, the problem much more complicated as the
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set of factors grows significantly. Factors such as safety, convenience, familiarity, as well as a
complex interaction of the internal state of the agent, and the currently perceived and recalled
state of the environment play a predominant role in route evaluation and selection. With ongoing
development of artificial general intelligence models such as ARS, these factors and their ben-
efits are becoming increasingly more important to include in any reasoning process, including
navigation.

2.4.2 Route encoding and retrieval

As it is the case with any other process whose results are often reused, routes that result from
the route planning process are commonly stored for later use, as the retrieval of stored results is
always preferable to repeating the process. Route encoding is the process of storing discovered
or learned routes into the agent’s spatial representation. It involves storing information about
the route in a manner so that it can be later sufficiently reconstructed and translated into se-
quences of movement actions. It can involve storing exact displacement and rotations, which is
used in models that rely on geometrically accurate spatial representations, or it can use environ-
mental features as anchoring points for movement actions, used in feature-oriented models with
topographical spatial representations.

Route retrieval deals with obtaining stored routes according to the agent’s current goal. The
most important factor that influences the retrieval process is the indexing of stored routes. Dur-
ing directed navigation, agent has knowledge of its current location, provided by the localiza-
tion process, and the destination location, provided by the decision-making process. These two
pieces of information are analogous to the beginning and the end of a route, either known or
unknown, making them the natural choice for indexing of encoded routes. This is the most com-
mon approach to indexing, allowing for computationally efficient retrieval of routes. More than
one route can be indexed in such manner, in which case a decision on which route is to be taken
must be made.

2.5 Landmarks

Section 2.3 mentioned environmental features as a critical factor in localization. Since this thesis
primarily deals with landmark-based navigation, landmarks as feature of the environment will
be discussed here in detail.

The concept of landmarks is a rather broad one, and can have quite different meanings depending
on the context. In order to provide a clear and concise definition pertaining to the navigation
problem, in which landmarks primarily have a role of a navigation tool, Sorrows et al. [SH99]
have provided the following definition:

A landmark may be any element in an environment that is external to the observer and that
serves to define the location of other objects or locations. A landmark may have particular
visual characteristics, a unique purpose or meaning, or be in a central or prominent location that
makes it effective as a landmark.
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The most crucial concept pertaining to landmarks is salience. Salience, also referred to as singu-
larity, is the state or quality of an object by which it stands out relative to its neighbors. Salience
is not necessarily solely a visual property of a landmark. The same article by Sorrows et al.
divides landmarks into three categories based on the type of the salience: [SH99, p. 45–46]

• visual landmarks, which are considered landmarks due to their visual characteristics, such
as singularity and prominence described above, and are considered most important type
of landmarks in physical environments

• cognitive landmarks, which stand out due to their meaning, usually of some personal
importance and therefore not universally perceived as landmarks

• structural landmarks, which are important due to their role or position in structural orga-
nization of the environment, such as intersections or town squares.

Figure 2.2: St. Stephen’s Cathedral is an example of a highly salient landmark. It stands out from its
surroundings by its size and noticeably different and rich gothic architecture [Bwa].

Landmarks can belong to more than one of the above mentioned categories. In reality no land-
mark or landmark category is universally salient, that is, there is no landmark that is salient in
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and of itself without its context. For example, a skyscraper such as the DC Tower One in Vienna
is an extremely salient landmark, as the number of skyscrapers in Vienna is very low, but if it
were located in an environment such as Manhattan, New York, where there is an abundance of
skyscrapers, its salience would be significantly lower. Same reasoning can be applied to a house
in a field versus a house in a city. Having sufficient ontological knowledge of the environment
and its features, as well as the ability of high-level reasoning at disposal, one can discern which
types of landmarks that are usually salient and use them for localization and location encoding
whenever possible.

2.5.1 Landmark recognition

Landmark recognition is usually a task delegated to the agent’s perception processes. Since
the navigation model directly depends on proper recognition of landmarks makes the navigation
usually tightly coupled with the perception. Landmark recognition primarily involves processing
visual sensory input and matching it to existing encoded patterns in the long-term memory The
processing itself involves image processing and pattern matching methods, in conjunction with
disambiguation facilitated through reasoning.

2.5.2 Filtering in dynamic environments

Real world environments, as opposed to environments created for domain-specific purposes, are
dynamic and constantly changing. In spite of great advances made in the field of localization
and mapping for autonomous agents, published solutions still have at most very limited ability
to cope with the complete range of changes that may occur in any real world environment.

If a solution uses a landmark recognition strategy based on salience, which is the most rational
and widely used option [WRN04, SH99], it may still recognize transient or changing objects
as such and incorporate them into the cognitive map. Objects such as vehicles, construction
sites, advertising boards, and trees are all examples of objects that may posses high salience
in their context, but are not eligible as landmarks due to some or all mentioned reasons. This
necessitates a filtering strategy that will recognize these objects as ineligible and prevent their
integration into the internal spatial representation. Such strategies should be based on pattern
matching, object categorization and some level of reasoning based upon them.

The ability to recognize, classify, and filter perceived objects and entities allows for simpler
implementation of localization and navigation routines, as the most complex issues regarding
them are assumed to be satisfactorily handled by other parts of the system.

2.5.3 Landmark specificity

Landmarks do not need to be perceived as globally unique; on the contrary, many landmarks may
share the same description across different scenes. Specificity of a landmark is not a constant
and can change as new information about it is provided, or the known information is lost.
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Based on the availability of the landmarks in the agent’s current surrounding an object will be
recognized as a landmark depending on its relative usefulness to other perceived landmarks.
Landmarks that posses insufficient salience, such as one of many similar looking houses, should
be ignored during localization. There exist an abstraction limit below which no object are ad-
missible as landmarks for navigation purposes. Such objects are still important in the obstacle
avoidance task, which is a part of the local navigation, which is functionally distinct from global
navigation and therefore not covered by this thesis.

A landmark can move forward on the specificity spectrum as soon as any information is ob-
tained that would give it more significance for the purpose of localization. A landmark loses it’s
value the more it approaches the lower extreme, as the number of objects in the environment
corresponding to it increases.

While the usefulness of less specifically recognized landmarks as localization tools might be
diminished, they are still very important navigation tools, as actions use landmarks as reference
points. Actions and their anchoring points are discussed in section 4.5.
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CHAPTER 3
Related work

The model developed during this thesis is inspired by previously developed ideas and solutions
in the field of self-localization and navigation for autonomous intelligent agents. This chapter
describes some of the most successful, as well as most relevant approaches in the field and thus
provide a broader picture of the current state of the art.

Additionally, the background of the Artificial Recognition System (ARS) project will be de-
scribed. An ongoing project in the field of the artificial general intelligence, ARS itself necessi-
tates an appropriate solution for self-localization and navigation functionality, which is the main
topic of this thesis.

3.1 Simultaneous localization and mapping

Simultaneous Localization and Mapping (SLAM) is by far the most prevalent approach to solv-
ing the problem of robotic navigation today. Originally developed by Hugh Durrant-Whyte and
John J. Leonard [LDW91] based on earlier work on stochastic map-based localization by Smith,
Self and Cheeseman [SSC87], SLAM is concerned with the problem of building a map of an
unknown environment by a mobile robot while simultaneously navigating the environment using
the same map. The models using this approach are supposed to be able to function without any
previous knowledge about the environment.

The SLAM approach consists of several routines or processes: landmark extraction, data associ-
ation, state prediction, state update and landmark update. Since there are no strict rules imposed
on their design or functionality, there are many ways to solve each of the processes, which has
resulted in a variety of different SLAM models which are either an improvement of an older
model, or tailored to a particular purpose or environment type. Landmarks are also not precisely
defined and can be any salient feature of the environment.
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System state update (output)

Figure 3.1: Diagram of SLAM subprocesses

3.1.1 Senors and odometry

In order to diminish the effect of accumulated errors over time SLAM models often rely on sev-
eral different types of sensors [MB13] to acquire data with statistically independent errors. This
is necessary in most cases, as this method is otherwise very susceptible to accumulated error.
Commonly used sensors are laser sensors, radars and sonars, but sometimes less commonly used
sensors such as temperature sensors are used as well.

Odometry data is used to provide an approximate pose of the agent. It is obtained by tracking
the motion of motility actuators. Unfortunately, it is also a source of errors, so it alone is not
sufficient to facilitate reliable localization. The odometry data and the sensor readings should be
obtained simultaneously whenever possible, in order to prevent inconsistencies resulting from
displacement that may occur in between.

3.1.2 Landmark extraction and association

Processing sensor input in SLAM involves recognizing and encoding the landmarks in the en-
vironment. Landmarks are expected to be easily detectable from any or most angles and above
all else static in nature. They are encoded by their position in the environment and stored in
an array. Because of this they cannot be qualitatively distinguished from one another, which
necessitates the whole array be updated along with the agent’s pose at every step. They are also
subject to uncertainty, as a slightly displacement of a landmark on revisit is always expected,
caused by errors in odometry, and should not be recognized as a new landmark. This uncertainty
is also tracked and updated continuously by the state update process.

Landmarks are first extracted from the sensor data. Landmark extraction largely depends on
what types of landmarks are extracted as well as on what kinds of sensors are used. For example,
spike landmark method is used for extraction of point landmarks, while the Random Sampling
Consensus (RANSAC). method is used to extract line landmarks.

Once all landmarks have been extracted, they need to be cross-referenced with the landmarks
stored in the map in order to determine if any of the currently extracted landmarks have been
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observed before, and if so, to associate them properly. One of the methods to do this is to
pair every extracted landmark with the stored landmark from the map nearest to it. Every pair
then undergoes verification by determining if the extracted landmark lies within the area of
uncertainty of the stored landmark, which is calculated by the state update process. If this is true,
the extracted landmark is associated with the stored landmark and designated as recognized. If
not, it is designated as a new landmark.

3.1.3 State prediction and update

The defining parts of the SLAM approach are state estimation and state update, which rely on the
probabilistic filtering methods. The system state is usually represented by an array that consists
of the current pose of the agent and the positions of all observed landmarks.

The goal of the state prediction is to calculate the expected system state based on the odometry
data and the previous state. This is done by applying the translation and rotation determined
from odometry on the system state. Since odometry data is always subject to uncertainty, the the
error estimate is also extracted, which plays an important role in the next step.

Once the predicted state has be calculated, state update is performed using a probabilistic filter
method. These methods calculate and store uncertainty data across subsequent executions of
SLAM, updating it continuously based on re-observation data. This data is applied to the system
state in order to create probabilistically best possible estimate of the new system state.

The are two types of methods for state estimation that are most commonly used in SLAM sys-
tems: methods based on Kalman filter, and particle filter methods. Both of these methods are an
example of sensor and data fusion, where the accuracy of sensor readings is improved using the
stored data about the environment.

Kalman filter is a statistical method used for estimating position of an object whose movement
can be modeled by a linear system. This method can be also applied for detection and tracking
of moving objects, especially for separation of moving objects from the static ones. In case of
movement modeled by non-linear systems, methods such as the Extended Kalman filter are used
instead, which models the movement by approximating it with a linear system [WB95].

Particle filter methods, such as the Rao-Blackwellized particle filter method [SGB05] or the
Monte Carlo localization method [TFBD01], employ a larger set of possible poses, called par-
ticles, that have probabilities assigned to them which signifies how likely that particular pose is
likely to be the correct one, called weights. In the beginning, particles are normally distributed
across the known space with equal weights. The weights are then adjusted for each particle
based on the match between sensor reading expected in the pose represented by that particle to
the actual sensor reading. Particles above a certain threshold are retained, and the others dis-
carded. Upon performed movement the particle set is repopulated based on the retained set by
applying the movement to them with the addition of random errors based on the expected error
distribution for such movement (see figure 3.2 for an example of population update without re-
moval of particles). This step is important as it allows the method to account for certain errors.
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Once the particle step has been repopulated, the process repeats itself.

The main deficiency of this method is that the number of particles can become very large as the
map grows. Another problem is the depletion of particles in otherwise viable areas, resulting in
the method getting stuck in local minima.

Figure 3.2: A visualization of the particle population in several discrete steps in a Monte Carlo particle
model with no state correction [Lu].

3.1.4 Landmark update

Once the system state has been updated, it remains to add the newly observed landmarks to the
system state. This is done by expanding the system state array with positions of new landmarks,
along with expansion of filter method matrices that perform state updates with new uncertainty
data. This step concludes the SLAM process, which is then restarted upon subsequent movement
of the agent.

3.1.5 Closing remarks

As already stated, SLAM approach has found many uses due to its versatility and adaptability
and continues to be a productive field of research, mostly focused on improving reliability versus
computational efficiency. Unfortunately, it’s analytical and probabilistic approach to localization
and mapping makes it incompatible with the ARS. This incompatibility is further exacerbated
by the fundamental difference in knowledge representation and handling.
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3.2 Semantic Spatial Hierarchy

The Spatial Semantic Hierarchy (Semantic Spatial Hierarchy (SSH)) is a comprehensive theoret-
ical model of knowledge of large-scale space developed by Benjamin Kuipers of the University
of Texas [Kui00]. Inspired by the properties of the human cognitive map, it models knowledge
of large-scale space through multiple interacting representations, which can be either qualitative
or quantitative in nature. It can thus serve both as a model of the human cognitive map, and as
a method used in robot navigation. The structure of the SSH permits handling of partial knowl-
edge, enabling it to deal robustly with uncertainty during spatial learning and problem-solving.

Figure 3.3: Diagram of distinct representations of SSH [Kui00].

Representations in the SSH, their dependencies and relationships are shown in a diagram in
figure 3.3, where the particular representations are represented as nodes. Representations are
classified as either qualitative and quantitative based on the type of knowledge they represent.
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Each representation has an ontology and a set of axioms and rules. The ontology specifies
the set of objects and relations that can be represented within a particular representation, while
axioms and rules determine what conclusions can be inferred and what actions taken based
on the represented knowledge. Representations are grouped into hierarchy levels based on the
ontology they employ. Each level further down depends on the knowledge of the previous levels.
The information obtained through sensors “trickles” down through the levels of the hierarchy.
On each level, different kind of knowledge is extracted and stored, forming a basis for knowledge
on the lower levels.

3.2.1 Sensor level

The sensory level is the interface to the agents sensory system. This level is primarily focused
on motion and exploration guided by continuous sensors, making it a traditional sensor-model
interface. An interesting feature of this part of the model is that it accommodates for structured
communication through maps or verbal commands. This would enable an agent employing the
SSH to obtain spatial information directly from graphical maps or verbal directions, translating
it into knowledge on appropriate levels of the hierarchy.

For example, graphical maps can be straightforwardly translated into knowledge to the metrical
level, where local metrical maps can align frames of reference with the graphical map, allowing
for more accurate reasoning on the metric level. Additionally, routes can be visually recognized
on the map and stored on the topological level. Spoken and written verbal route directions are
frequently sequences of imperatives and their results which naturally corresponds to knowledge
at the SSH causal level. These advanced features notably depend quite heavily on high-level
reasoning.

3.2.2 Control level

The control level describes the world in terms of continuous control laws that bind the agent
and its environment into a dynamical system throughout a qualitatively uniform segment of the
environment. On this level, the agent can be modeled and observed as a continuous dynamical
system with a feedback control loop.

Control level uses states as means of representing agent’s pose in the environment. A locally
distinctive state within a neighborhood is a uniquely encoded and recognizable state within the
representation that the agent can converge toward by following a control law. Two main control
laws are defined: trajectory-following control laws, which bring the agent from one distinctive
state to the neighborhood of the next state, and hill-climbing control laws, which bring the agent
to a locally distinctive state from any state within the local neighborhood. Each control law
has conditions for its appropriateness, and for its termination once it has been selected. Local
geometric maps can also be created at the control level, which further reinforce the already
available sensor input in order to further ensure proper execution of the control laws.
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3.2.3 Causal level

Sequence of control laws that reliably takes the agent from one distinctive state to another can be
abstracted on the causal level into an action, and the involved states into views. The association
between them is represented as a schema, which is a triple V,A, V ′ with the interpretation “Ac-
tion A takes agent from view V to view V ′”. View representations contain the sensory image and
its description along with the agents pose, while the action representation denotes a sequence of
applications of one or more control laws on the control level.

Such representation allows the continuous state space in which the agent is described as follow-
ing the trajectories of a dynamical system to be abstracted abstracted to a discrete state space
in which the agent is described as performing a sequence of discrete actions resulting in state
transitions. The reasoning on this level is formally performed by applying situation calculus on
views, actions, and schemata, resulting in more complex routines.

3.2.4 Topological level

Spatial knowledge on the topological level is represented by an analogue of a topological map.
The knowledge on this level is represented as a collection of places, paths and regions, connected
by topological relations such as connectivity and containment. This topological map is created
by abduction, positing the minimal set of places, paths, and regions required to explain the
knowledge extracted on the causal level in terms of views and actions.

Places are descriptions of the environment as points and may lie on one or more paths. Paths rep-
resent parts of the environment as a one-dimensional subspace an agent can move along, taking
the agent from one place to another. Regions represent sets of places and form a two-dimensional
subset of the environment. These representations of knowledge allow for the environment to be
viewed as a graph, which permits route planning using appropriate algorithms.

The ontology of the topological level allows for relations to be defined between them, such as
“at”, “along”, “left-of”, and so forth. New relations can be logically extracted from existing
relations or the knowledge on upper levels of the model. Additionally, hierarchy of regions
may be constructed which facilitates spatial reasoning using abstracted representations of the
environment.

3.2.5 Metrical level

The final level of the hierarchy represents a global geometric map of the environment. Knowl-
edge from the local 2D geometry representation is placed within a single frame of reference and
“patched together” using the knowledge about the topological structure of the environment. The
resulting map is incomplete, meaning that not every part of the environment must or is repre-
sented, but sufficiently consistent with respect to a single frame of reference to allow for simple
geometrical analysis to be performed upon it. This is the only level in the hierarchy that is not
necessary for navigation, but can be beneficial in some cases.
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3.2.6 Closing remarks

As mentioned in section 4.1, the concept of a cognitive map is highly ambiguous, as evident by a
multitude of different definitions provided. The approach behind the Spatial Semantic Hierarchy
holds this heterogeneity is a real feature of the phenomenon, and a source of the flexibility, power
and robustness of the cognitive map. This makes the SSH one of the most comprehensive models
of spatial knowledge available today.

Unlike the SLAM approach, the SSH handles uncertainty by decomposing it into components
that are handled effectively by the different representations. This shows that a probabilistic
representation of the environment is not mandatory for an effective navigation model and can be
replaced by high-level reasoning and the appropriate spatial representation.

The navigation model developed in this thesis was highly influenced by the SSH, which pro-
vided a great amount of insight into the problem of spatial knowledge representation, especially
regarding the abstraction of the environment and the ontologies and rules on the causal and
topological levels of the hierarchy.
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3.3 Artificial Recognition System

The ARS is an ongoing artificial general intelligence project of the Institute of Computer Tech-
nology (ICT) at the Vienna University of Technology.

Launched in year 2003, the ARS project features researchers from the fields of computer science
and psychology working together toward a goal of creating automation systems that would be
able to efficiently process large amounts of various sensor data and make decisions based upon
them in a human-like manner.

Figure 3.4: Agent architecture of the ARS

The ARS project consisted of two sub-projects: the ARS-PC (ARS Perception), which focused
on modeling processes that involve perception of both internal and external phenomena, and
ARS-PA (ARS Psychoanalysis), which focused on modeling the reasoning and decision making
processes. The results of these projects is the ARS model whose current state is described below.

3.3.1 Perception and symbolization

ARS attempts to model human-like perception system that can handle vast amounts of hetero-
geneous sensory input from a variety of internal and external sensors, processing, filtering, and
storing them in a reliable and efficient way that facilitates human-like reasoning and decision
making. The key process behind this task is neurosymbolization [VB08], which essentially
processes the raw input information and assembles it into more abstract pieces of information
termed symbols.

A symbol is a piece of information resulting from neurosymbolization that carries a certain
meaning and represents the basic unit of information that can be processed by the system. Neu-
rosymbolization occurs on several levels of symbolic abstraction, from less to more abstract:
feature symbols, sub-unimodal symbols, unimodal symbols and multimodal or representation
layer symbols, each resulting from processing and combining symbols from lower levels into
more complex symbols. Multimodal symbols represent the final form of the interpretation of the
input data [Gru07].
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Symbols have a different lifespan on each level – low-level symbols are constantly created and
destroyed as the sensory input changes, but the high-level symbols persist as long as the entities
represented by those symbols are perceived, but are constantly modified as the low-level symbols
they are associated with are created and destroyed.

Symbols are categorized and recognized following a memory-based approach, which entails
comparing the incoming symbol to symbols stored in agent’s memory. Identified symbols com-
prising the perceptual input allow the agent to recognize its situation and to retrieve scenarios
that allow decision making to take place. These high-level symbols therefore represent the input
to the decision making process.

3.3.2 Reasoning and decision making

The ARS features a model of decision-making and control capable of high-level reasoning based
on Sigmund Freud’s “Ego – Super-ego – Id” psychoanalytical personality model. It is intended
to handle the high-level symbolic information created by the perception process, retrieve and
evaluate scenarios and possible actions based on that input, and ultimately pass chosen actions
translated into commands to the actuators of the agent. As stated before, all information ulti-
mately comes from either the environment or internally from the agent itself.

Inspired by human decision making, the ARS models an internal state of the agent comprised
of drives, emotions and desires which have a strong influence on the action evaluation process.
These are termed internal stimuli and the main task of the decision-making process is to keep
them in balance.

This is best seen on an example of an autonomous agent that must eat to sustain itself. Starvation
is a condition represented by a great internal imbalance and as such will place great value on
actions by which the agent can obtain food. Similarly, perceived threats of a dangerous situation
increase the basic emotion of fear, which causes actions to be chosen which remove those threats
or the agent from them, preserving the well-being of the agent. In short: the bigger the internal
imbalance, the greater the priority of actions that counter it.

These internal stimuli are directly handled by the part of the model termed Id. It responds to
internal stimuli and suggests actions to fulfill these basic needs in order to restore the internal
balance. It is a purely reactive system that is activated when a physiological stimulus arises, and
does not consider the consequences any of the proposed actions might have. These actions are
then passed to the decision making process performed by the the part termed Ego. Ego receives
action proposals from Id and decides on the next course of action. Before executing any action
it will check the proposal with the third part of the model called Super-ego. Super-ego is the
part of the model that contains norms and prohibitions imposed on the agent. These are usually
externally defined and allow humans to give sets of behavioral rules that are important to the
agent’s purpose, but can be constructed by the agent itself through experience. The super-ego
overrides actions that would violate those rules, such as those that would result in harm of
humans or even other agent through pursuit of actions that satisfy an urgent need. The Ego
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therefore mediates between two other parts and is responsible with finding a course of action
that both Id and Super-ego allow. That action is then passed to movement control that executes
it.

Following a top-down approach to modeling, the ARS model was designed in several layers of
complexity. The first layer corresponds to the personality model as described above, and serves
as a basic outline of the complex underlying functionality of the ARS (see figure3.5). From this,
each part has been further decomposed into smaller functional parts in several layers, resulting in
the fourth layer of the functional model, shown in figure 3.6, in which basic functionalities of the
mind have been identified, described and separated into functional modules that communicate
with one using defined interfaces.

Figure 3.5: Diagram of the ARS functional model - first level

The model described in this thesis is a part of the decision-making strand of the ARS functional
model. As stated before, the ARS model is inspired by Freud’s psychoanalytical models of the
human mind and thus inherits many of its concepts. Those that are necessary for understanding
of the navigation model developed in this thesis are presented below.

3.3.3 Primary and secondary process

The cognitive process of the mind as modeled by the ARS is divided into two parts based on
how the information is represented and handled: the primary and the secondary process.

The so-called primary process processes information based solely on the internal drive demands
and is hence independent of the current context and the situation the agent is found in. Informa-
tion is also processed completely, regardless of possible conflicts and contradictions contained
within. The primary process is therefore said to follow the so-called “pleasure principle”, as it
driven by the aim to satisfy the basics needs of the agent no matter what. The primary process
manipulates things presentation and affects. Since there are no logical relations defined on these
data structures, no reasoning can take place within the primary process.

The secondary process is the part of the model that processes the information and assigns log-
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ical, local and temporal associations to its contents, as well as resolving the conflicts and con-
tradictions that are found within the information content during the processing. Additionally, it
takes into consideration the current situation and rules and is said to follow the so-called “reality
principle”. The secondary process manipulates distinct content types termed word presenta-
tions which, unlike the thing presentations, support above mentioned associations, thus allowing
high-level reasoning to be performed.

The decision-making strand of the cognition belongs to the secondary process, making it the
environment in which localization and navigation routines take place. The following section will
describe the above mentioned content types along with some additional content types in order to
lay a foundation needed to describe these routines within the context of the ARS architecture.

3.3.4 Information and knowledge representation

Psychoanalytical basis of the ARS model provides an abstract concept of memory structures,
which defines the information and knowledge representation used by the ARS.

The central concept of information representation in psychoanalysis is the memory trace. It is
defined within the ARS project as ”a psycho-physiological concept of representing memories in
the psyche’ ’ [DFZB09, p. 424]. Memory trace are patterns upon which all psychic data struc-
tures are based. Incoming perceptual information is matched against existing memory traces,
activating data structures of the best match. If no matches are found, new memory traces are
created and stored. Memory traces give rise to thing presentations, but are of no further impor-
tance the topic of the thesis, and are mentioned here for the sake of completion only.

A thing presentation (TP) is a symbolic representation of a piece of information about an object.
It is defined as “the psychic representation of an objects sensory characteristics in the form
of acoustic, visual, olfactory, haptic, and gustatory modalities” ’ [DFZB09, p. 426]. A thing
presentation, in its narrow definition, consist of the modality of the information, and its value, for
example: “Color: green”, “Shape: circle”, “Temperature: cold”. In this way it is comparable to
the concept of a program variable for primitive types, in that it has a type and a value associated
with it.

Thing presentations form the content of the primary process. Accordingly, thing presentations
can be connected to one another using associations that describe similarity and co-occurrence.
A set of interconnected thing presentations is termed thing presentation mesh (TPM).

Thing presentations associated to a certain mesh are called attributes. Every attribute association
has a weight associated to it representing the strength of that association, that is, the importance
of that particular attribute to the mesh. The model distinguishes between class attributes and
instance attributes. A class attribute is a TP that pertains to a whole class of objects and is
the same across all instances of that class, while a instance attribute pertains to a particular
instance, distinguishing it from the other objects. The distinction exists to limit the allowed
changes of predefined TPMs, preventing changes that would alter them in a way that would
make them incongruous with the reality, as the ARS model at the time can only perceive and
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understand predefined classes and is unable to create new classes itself. An instance attribute
can be converted into a class attribute if the association weights are strong across all instances
of an object class [Zei10].

Thing presentation meshes are divided into three categories depending on their source: envi-
ronmental sensations, bodily sensations, and homeostatic state. Thing presentation mesh has
no equivalent in the psychoanalytical theory; instead, it is a technical concept crucial for the
implementation of the model.

A word presentation (WP) is a representation of a concept as a set of symbols. Any information
represented by a thing presentation that needs to be processed in the secondary process must
be converted into a word presentation. Word presentations are used for representation of basic
psychic concepts or properties of a perceivable object. Word presentations are connected to one
another using a kind of association distinct from the kind used for connecting thing presentations.
These associations allow temporal and logical relations to be defined between word presentation;
this allows for construction of more complex symbolic structures.

A word presentation mesh (WPM) is a complex content type of the secondary process consisting
of one or more connected word presentations. Word presentation meshes are used to represent
complex concepts of entities and objects, but also of drive aims, feelings, goals, situations, acts,
and scenarios in the secondary process. Similar to thing presentation meshes, they are a technical
concept and have no equivalent in the psychoanalytical theory.

Every concept used by any part of the secondary process of the ARS must be represented by
word presentations and word presentation meshes. Such strict specification of the content repre-
sentation carries many benefits to the reasoning process, but also represents an additional chal-
lenge to the implementation of any functionality within the secondary process, as it also places
restrictions on all content used by process, particularly regarding the interfaces with the rest of
the model.
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CHAPTER 4
Model

This chapter will describe the model of the navigation module for the ARS designed in this
thesis. The model follows the cognitive approach to navigation (chapter 2). The reason for
this decision lies in the nature of the ARS, itself being a cognitive model of the human mind
in which the observable functionality of the mind is identified and replicated. This eliminates
the possibility of following a bionic connectivist approach outright, as it would preclude any
interoperability with the rest of the system on the symbolic level, thereby defeating its purpose.

4.1 Cognitive map

This approach distinguishes navigation between locations and navigation within a location. This
obviates splitting environment beyond necessity. When present at a certain location an agent
should be able to

• transition into another location

• perceive and reach its intended goal, if present at the current location.

In first case, navigation is considered to still be in progress, and the agent must be able to perceive
anchoring features in order to progress further. In the second case the agent has reached its
destination. The process of navigation ceases and the agent instead goes about accomplishing
its intended task. This can include further movement, such as approaching the goal itself or
avoiding dangers. This kind of behavior will be termed “local navigation”, as opposed to the
other kind navigation discussed in the rest of the thesis, termed “global navigation”.

In the context of planning and decision making, such behavior is distinct from global navigation
as it additionally relies on objects and entities within the environment that are abstracted in
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the latter, such as other mobile agents, movable and non-salient obstacles, and so on. Another
important distinction is that it dynamically produces routes that are not constant and very likely
to change in the future, and thus never committed to the memory. Such behavior will always
take precedence over the long-range navigation, as it ensures its proper and safe execution. For
example, while traversing a long range route obstacles are sure to be encountered. Whenever
this occurs the decision-making process suspends long-range navigation in favor of action that
will go around the obstacle which would usually prevent further movement, continuing it once
the obstacle has been cleared. This can happen many times over the course of a single route
traversal at any point in time and space, depending on the state of the environment.

The example above demonstrates how the ARS architecture allows these two types of naviga-
tion to be functionally largely independent from one another. Short range navigation has been
abstracted away in this thesis as it bears no impact on the model described in this thesis. This
allows for a simple model of the internal representation of the environment that needs not take
into account non-constant objects and features found in the environment, while still permitting
obstacle-avoiding behavior that is triggered when need arises.

4.1.1 Map properties and structure

The cognitive map is the basic data structure navigation algorithm works with. In order to ensure
its proper functioning some restrictions on the structure and behavior of the cognitive map must
be imposed.

When considering large-scale environments, which contain a large number of distinct places
over greater distances, and which are commonplace in everyday world, the complexity of travers-
ing such environments successfully without external assistance becomes apparent.

There exists sufficient evidence to suggest humans use abstractions called regions to efficiently
navigate environments with even very large amounts of distinct locations [SV06]. These abstrac-
tions enable simplified representation of parts of the environment which allows spatial reasoning
to be performed without risking information overload due to complexity of the problem.

As this navigation model is expected to be able to operate in environments of any size, imple-
menting spatial abstraction becomes a major factor in the design of the cognitive map and the
algorithms that work with it.

The most important concept related to spatial abstraction is the concept of a region. A region is
a unit of a cognitive map which can contain arbitrarily many other map units (locations or other
regions) based on various criteria. Regions and their contents form a structure called region
hierarchy, which is superimposed over a simple cognitive map, thus facilitating abstraction on a
symbolic level. Regions and locations together are referred to as map units in this thesis. There
exist models of cognitive maps which allow multiple independent hierarchies to be defined for
the same environment [FG02]. The model described in this thesis has been limited to a single
hierarchy for the sake of simplicity, but can be expanded to include multiple hierarchies in the
future, if necessary.
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D∞

Figure 4.1: Section of the hierarchical cognitive map.
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The so-called Universe region1 is the only mandatory region in the hierarchy. It is the top-level
region of the map, meaning it has no parent region and it contains all other map units in the map.
This property is crucial for the route planning algorithm, which depends upon the property that
any two locations in the map have a common super-region. The term “top-level region” may be
used interchangeably with the term “Universe”.

Hierarchy is divided into levels, starting from level 0, which must only contain the top-level
region. From this level on, the depth of a level a region belongs to is determined by the distance
of that region from the top-level region. This distance is termed depth of a region, and is equal to
the number of the containment relations between that region and the top-level region. All loca-
tions of the map belong to the bottommost level, which by definition has an infinite (∞) depth.
Having all locations placed within a single bottommost level is necessary as all connectedness
relations between regions on any level above are ultimately inferred from the connectedness of
locations in the bottommost level. This level represents the flattened version of the hierarchical
map. This allows the navigation algorithm to perform even in cases where no other regions are
defined.

Figure 4.1 depicts a part of the cognitive map that is contained by a region on level n. Regions
on the level are color-coded to better show the containment relation across multiple levels, as
the arrows depicting containment relation between the two bottommost layers are not all shown
in order to maintain visibility. Additionally, connectedness relations, which are properly repre-
sented with arcs akin to those in directed graphs, have been abstracted to simple lines for the
same reason.

Regions also have a restriction on their underlying structure. When observing the cognitive map
at a certain level, the agent’s location is abstracted into the containing region at that level. This
means the agent’s actual location within the region should not influence the connectivity on that
region’s level. In order to assure this property, all subunits must be connected to all exit subunits
of the region.

The importance of this property can be easily shown on an example. Figure 4.2 shows a incon-
sistent region Dn in which the exit map unit G is not reachable from map units A,C,D,E. The
agent’s current location is in A, and the navigation algorithm currently running on the level Dn

finds the best path, which happens to be passing through region Y . This is based on the fact that
G is connected to a map unit in region Y on level Dn+1, which implies that X is connected to
Y . Since the agent is in A, which is not connected to G within X , the algorithm will ultimately
fail to find a path on the level Dn+1.

This applies to the top-level region as well, which implies that the every location within the
environment must ultimately be accessible from any other location. This notion is a more general
case of the problem of finding strongly connected components of a simple directed graph, the

1The term “Universe region” was chosen in order to distinguish the top-level region in the internal representation
of the environment from the actual environment. The word is capitalized to further avoid ambiguity with any other
possible meaning of the term “universe”.
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difference being that only a subset of vertices, that is, the exit nodes of a component need be
reachable from all others, as opposed to all vertices being reachable from all others. This is a
non-issue if all connections are bi-directional, as is mostly the case in the real world.

Should the cognitive map break any of the rules at any point, it is considered to be inconsistent
and must be brought back to a consistent state using the map maintenance algorithm in order to
ensure the proper execution of the navigation algorithm. The algorithm in question is described
in section 4.2.2.

4.2 Mapping

Despite the lack of the learning capability of the ARS model, this section will cover the prin-
ciples of map learning pertaining to this model in particular, as well as describe certain map
update algorithms designed to maintain the proper structure of the map, which is vital to the
whole navigation process.

4.2.1 Map learning

As stated before, the main purpose of regions is the division of the environment into more
manageable units. This gives rise to the utility principle of region management: to construct and
modify regions in a way that provides the best possible hierarchical structure of the map.

In contrast, the set of factors that influences the formation of regions in human spatial behavior
is much larger and more diverse. Factors such as geographical or man-made features, cultural
and political divisions, and history are seldom considered in computational models do to the
complexity of their cognition and reasoning based on them. Constructs such as rooms, buildings,
streets, town squares, etc. provide an implicit separation of the environment which humans
readily and efficiently use in everyday situations. It would thus be beneficial to adapt the model
to these features to maximally utilize the state of the environment.

This adds another facet to the problem of mapping in models based on hierarchical representa-
tions of the environment: not only should the newly discovered locations be properly recognized
and encoded, but also properly integrated into the hierarchy in a useful and meaningful way.

An example of a situation where this balance comes into play: The agent is located in an urban
environment, in a town square. As it moves into a previously unvisited street, a new part of
the environment is recognized and encoded. The current state of its cognitive map favors the
integration of the new location into the smallest region he was in up to that moment, following
the utility principle. However, since it entered a street, which is semantically different from
a town square, the semantic principle states it would be preferable to create a new region that
is separate, but adjacent to the region that represents that town square. Following the utility
principle one would end up with a map that is more efficient, but semantically incoherent. On the
other hand, following the semantic principle will result in a region containing only one location,
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which is adding additional complexity without providing any utility. This conflict necessitates a
decision being made as to which principle to follow at which moment.

Finding a balance between the utility and semantic principles is non-trivial despite the existing
research into human behavior and further research toward finding a proper hierarchy integration
model is needed.

4.2.2 Map maintenance

Creating and maintaining the cognitive map is a complex learning task that involves processing
various types of inputs that may be available to the agent. The process of segmenting the envi-
ronment into regions falls outside the scope of the thesis. This is primarily due to the existence
of various non-spatial factors that govern the division of environment into regions, such as polit-
ical, cultural, even internal factors. Additional abilities of the agent that influence the structure
of the cognitive map are exploration of the unmapped part of the environment and detection
of changes in the mapped part of the environment, both of which are beyond the scope of this
thesis.

Assuming, however,i’ that the agent does posses such abilities, actions that change the cognitive
map must be executed in a way that maintains the valid structure of the cognitive map. One
change in connectedness in the bottommost level can trigger a wave of changes that can propa-
gate up to the top-level region. The changes that can occur are: addition and removal of either a
location, a region, or a connection between locations. In addition, joining and splitting regions
that are on the same depth level is also possible, should the need arise, but such changes are
expected to be based on qualitative reasoning about spatial relations.

Adding a location or a connection between existing locations to the map cannot break its con-
sistency and therefore entails no other structural change. On the other hand, removing a con-
nection can lead to inconsistency by breaking the connectedness rule. Removal of a connection
subsumes removal of a location, as it effectively means removing all connections of that location
to the rest of the map. They will therefore be discussed together.

Removal of a region does not imply the removal of the contained map units. Instead, removal of
a region is seen as restructuring of the map’s hierarchy. When removing a region on some level
Dn, then all of the contained regions will be shifted up by one level. The new connections can
then be calculated from the connections on the level Dn+1 and below.

Conversely, adding a region consists of selecting the region’s contents, then replacing them with
the new region. This action can also lead to inconsistencies, as the new created region has its
own, different exit subunits. Taking the example from figure (REF) again, grouping map units
A,C,D,E,G,H into a new region is permissible, but A,B,C,D,E, F isn’t, as that would
make F an exit unit of the region, which is not reachable from A,C,D,E within the new group.

This algorithm will not change the structure of the map if it is consistent. It can therefore be
used after every change of this type to verify consistency, as it can take a large amount of time
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Algorithm 4.1: Hierarchy repair algorithm
Input: deepest region affected by change Rcurrent

1 do
2 Let S be an empty region stack;
3 Push Rcurrent onto the stack;
4 while stack not empty do
5 Pop region R from the stack;
6 Find set of exit map units Sexit within R;
7 Let M be an array of map unit sets indexed by map unit sets;
8 foreach map unit U contained by R do
9 Determine map unit subset S′ of Sexit reachable from that unit;

10 Add map units in S′ to set in M indexed by Sexit;
11 end
12 foreach set Sunits in M do
13 Group Sunits into a new region Rnew;
14 push Rnew onto the stack;
15 end
16 end
17 if Rcurrent is the top-level region then
18 Exit;
19 else
20 Set Rcurrent := parent region of Rcurrent;
21 end
22 loop

for large maps, especially if applied to the whole map. However, if one assumes the cognitive
map was consistent prior to the change, running this algorithm on the affected portion of the map
will always bring it back to a consistent state. This in turn means that the algorithm need not be
run constantly, but only after changes. Additionally, a whole-map check should be performed at
start-up in order to ascertain the consistency of the initial cognitive map.

4.3 Localization

Localization process, as described in section 2.3, is essentially a matching algorithm that com-
pares a set of possible solutions from a set of all know solutions against an input pattern, out-
putting the best-matching solution as the end result.

Localization process of the navigation model features following steps:

• Input preprocessing - Perceptual input is filtered, extracting relevant environmental fea-
tures and their configurations. The filtered input data constitutes the matching pattern.
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Figure 4.2: Visualized example of one iteration of algorithm 4.1. Map units are represented by cricles,
regions by ellipses, connectedness by arrows.

• Candidate selection - The cognitive map is searched to obtain a limited set of potentially
matching location encodings, called scenes based on the received input.

• Matching - Scenes from the candidate set are matched one by one against the matching
pattern, thereby obtaining the similarity score. Finally, the location encoded by the scene
with the best matching score is returned as the result.

The rest of this section will describe the steps listed above in greater detail.
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4.3.1 Input pre-processing

As a part of the ARS model, the localization process receives the input from the primary process,
where it undergoes most of the necessary preprocessing (see section 3.3.3) which makes it ready
for use in the secondary process. This processed input is expected to preserve and represent
environmental features as symbols and their configuration as associations between them. In
addition, a symbolic representation of the agent should also be provided to allow representation
of configurations with respect to the agent.

This input data may also contain information preserved in the short-term memory in order to
maintain a consistent representation of the perceived environment across shorter time frames in
which localization takes place. The reasons for including short-term memory information are
further explained in section 5.3.3.

4.3.2 Candidate selection

The running time of the matching process, at least in this case, depends primarily on two factors:
the complexity of the patterns and the size of the solution set. The first factor remains relatively
constant over time, as the set of recognized environmental features and their configurations is
expected not to change as the agent gathers knowledge about the environment.2

On the other hand, as the agent explores and learns new parts of the environment, the cognitive
map, which takes the role of the solution set in this context, will logically grow as well. Cognitive
map are expected to become extremely large in case of real-world environments. Since the
matching needs to be performed for every admissible location encoding at least once, it follows
that the run time grows in a linear fashion as the size of the cognitive map increases.

By itself this would not present a significant problem, if the localization were seldom performed
during the normal operation of the agent. However, since this process is performed at every
execution step, long run times should be avoided at all costs. In order to achieve this two heuristic
methods were developed. These constitute the candidate selection process.

Adjacent location heuristic works by reducing the initial candidate set to the set containing
scenes of locations directly reachable from the current location, together with the scene of the
current location itself. This is based on the continuous movement assumption, which supposes
that the maximum possible distance traversed by the agent between two consecutive localizations
is smaller than the size of the smallest location. This assumption assures that at every distinct
moment in time the agent is either still in the last known current location or has moved into an
adjacent one, but never farther than that.

This is an optional part of the localization process, but has a big impact on the performance by
significantly limiting the size of the candidate set. Since there is currently no known way of
reducing the candidate set during the matching, this heuristic is the best way of improving the
performance without sacrificing the validity of the process.

2This statement refers to the types of environmental features and their configurations, not their instances.
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The heuristic described above is not applicable if the agent is not localized, which is always the
case when agent is first initialized, but can also happen when the localization fails due factors
such as various errors, loss of data, or an unexpected change in the environment. For these cases
another heuristic was developed, termed specific landmark heuristic.

Specific landmark heuristic assumes the associations between landmarks and scenes are traversable
in both directions, that is, that one or more scenes can be accessed from a landmark that defines
them and vice-versa. If this is the case, the most specific perceived landmark, which is most
likely to have a limited number of scenes associated with it, is used to define the candidate set.
The candidate set is then the set of scenes associated with it.

4.3.3 Matching

The development of the scene matching algorithm presents a particular challenge due to the
symbolic nature as well as the amount of the data provided by the perception field.

Algorithm 4.2: Localization matching algorithm
Input: perceptual information, last location, expected next step
Output: new current location

1 Get visible landmark set from the scene in the perception field;
2 if agent is localized then
3 Create a candidate set from the current location and adjacent locations;
4 Retain candidates that are associated with any of the visible landmarks;
5 else
6 Create a candidate set from locations in the environment that are associated with any

of the visible landmarks;
7 end
8 foreach candidate location in the candidate set do
9 Match the remembered scene of the candidate location to the perceived scene and

obtain the similarity score;
10 if the candidate location is the current location then
11 Apply the current location bonus to the score;
12 end
13 if the current candidate location has the best score then
14 Make the current candidate the best candidate;
15 end
16 end
17 return the best matching candidate location;

4.3.4 Similarity score

In order to be able to select the candidate scene that best matches the perceived scene, one
must establish a proper numerical measure with which similarity of scenes can be expressed and
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compared. This measure of similarity is termed similarity score, or simply score, which is a
real number within the range between zero and one inclusive, where zero represents complete
dissimilarity of two scenes, and one represents a perfect match. This allows the best match to be
decided by simple numerical comparison.

Similarity score is calculated using the similarity routine, which takes two scenes as arguments
and outputs the similarity score. The similarity routine is the heart of the matching algorithm,
and works by performing several comparison heuristics on the two scenes, weighting their results
and calculating the normalized aggregate score. For a matching algorithm using n different
heuristics, where Vi is the score of the i-th heuristic and xi is its weight, the normalized aggregate
score Vtotal is calculated using the following formula:

Vtotal =

∑n
i=1 Vixi∑n
i=1 xi

All variables in the formula can only contain values between zero and one. Heuristics are de-
signed to be mutually independent, and this formula allows them to be combined them as de-
sired, individually amplifying or reducing their weights in order to test their efficacy and the
and the overall effect on the localization process. Heuristics that were chosen for this model are
presented below.

4.3.5 Landmark set heuristic

Landmark set heuristic is a simple heuristic that compares the unordered set of landmarks within
of a scene with that of another scene, while ignoring all other available information. The heuris-
tic first removes all landmarks from the set of the perceived scene that are not present in the set
of the recalled scene. Then, the set difference between the recalled and the perceived scene sets
is calculated. Finally, the cardinality of the set difference is normalized onto the interval [0, 1]
by dividing it with the cardinality of the recalled scene set. The final formula for obtaining the
score is:

Vset =
|(Sperceived ∩ Srecalled)|

|Srecalled|

This formula assumes that the recalled scene cannot be empty, which is reasonable since such
scene would be devoid of information and therefore useless to the agent.

Considering two scenes depicted in figure 4.3, their similarity score according to the formula
above is:

Sperceived = {A,B,C,D,E}, Srecalled = {B,C,D, F}
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Vset =
|(Sperceived ∩ Srecalled)|

|Srecalled|
=

|({A,B,C,D,E} ∩ {B,C,D, F})|
|{B,C,D, F}|

=
|{B,C,D}|

|{B,C,D, F}|

=
3

4
= 0, 75
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C D

E

(a) Perceived scene

Agent

B

C

F

D

(b) Recalled scene

Figure 4.3: Two scenes to be compared. Landmarks are represented by circles with labels inside.

It must be noted that this comparison is not symmetric. Indeed, by swapping the perceived and
the recalled scene in the example above one would obtain a significantly different result of 0, 6.

The scene that is obtained from the perceptual input is different from scenes used to encode lo-
cations. It may contain significantly greater number of features and configurations than remem-
bered scenes. The reason for this asymmetry lies in the expectation that only a few landmarks,
those that are most salient, will be remembered and thus encoded in a scene of a particular lo-
cation. Since the resulting recalled scene is therefore necessarily smaller information-wise, is it
reasonable to use it as basis for normalization. For these reasons the perceived scene must be
treated differently by the localization algorithm, which is reflected in the design of this and other
heuristics.

4.3.6 Landmark order heuristic

Landmark order heuristic was inspired by the problem where two landmarks positioned next to
one another should allow an agent to determine which side they are being viewed from. This
is impossible to achieve using set or distance heuristics, as neither takes into account relations
between landmarks in a scene. Since solving such a problem was deemed important in the begin-
ning, a heuristic method was developed that would allow an agent to distinguish those cases. Ex-
isting landmark triangulation approaches [Bor09] gave some indication that such method might
be crucial for proper localization, at least for computer models.

This method works by comparing ordered lists of landmarks of two scenes. First, both ordered
lists are trimmed so that only those landmarks present in both lists remain. Afterward, a Kendall
tau difference [Ken38] is calculated, which is based on the number of swaps a bubble sort algo-
rithm would need to make in order to reorder one list in the same order as the other list.
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(a) Perceived scene (b) Recalled scene

Figure 4.4: Two scenes to be compared. Landmarks are represented by circles with labels inside.

Considering two scenes depicted in figure 4.4, their similarity score would be calculated as
follows: the two lists are in order as follows: A, D, B, C, E compared to A, B, C, D, E. Using
the bubble sort analogy, one would have to perform two swaps in the first list: B–D, followed by
C–D, in order to reach the same order as in the second list. The normalized similarity score is
then obtained by the formula:

Vorder = 1− nswaps

nlength(nlength−1)
2

which in this case yields 0,8.

4.3.7 Landmark distance heuristic

Landmark distance heuristic is based on the idea that the distance is intrinsically related to the
localization. This heuristic assumes qualitative distinction of absolute distances, or in other
words, that there is a certain distance beyond which all objects are perceived as “far” as opposed
to “near”, and that this distinction can be utilized in the scene recognition.

This heuristic works by categorizing the landmarks based on their absolute distance to the agent,
and then applying penalties to the score for each distant defining landmark of the scene. Invisible
defining landmarks are not penalized, as this is already done by the landmark set heuristic. If
Sall represents the set of all visible landmarks, Snear, Smid, Sfar the sets of near, mid-far, and
far landmarks, respectively, and Pmid and Pfar score penalties for mid-far and far landmarks,
respectively, the formula for calculating the score is:

Vdist =
|Snear|+ (1− Pmid)|Smid|+ (1− Pfar)|Sfar|

|Sall|
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In the example depicted in figure 4.5, landmark B is categorized as near, A and E as mid-far,
C as far, while D is not visible. Supposing the penalties are 0,15 for mid-far landmarks, and
0,30 for far landmarks, and the defining landmarks of a location are A, B, and C, the landmark
distance score for that location according to the formula above is

Vdist =
1 + (1− 0, 15) · 1 + (1− 0, 3) · 1

3
= 0, 85

The landmark distance heuristic was introduced it became clear that there exist many cases in
which other heuristics alone would give high scores to locations that were further away from
the agent’s current position, sometimes even getting higher score than the location that should
have been recognized as the current location due to their having the same score, forcing the
algorithm to choose the first one that came up as a candidate. By making distance a relevant
factor in localization significantly improved localization results, severely reducing the instances
of erroneous localization, and proving crucial to localization process.

Figure 4.5: Diagram of vision ranges. Landmarks are represented by circles with labels inside.

4.3.8 Current location heuristic

The initial testing of the navigation model showed that the agent was prone to erratic behavior
during transitions between two locations. The agent would often turn in an unexpected direction
and go off the expected route. The cause was first clearly demonstrated in localization test
results that showed highly irregular, that is, concave borders between regions which resulted in
agent incorrectly assuming it was in another location, thus selecting the action appropriate for
the following transition.

To remedy this a new heuristic was introduced, termed current location heuristic. This heuristic
works by increasing the score of the current location during the matching process by a certain
margin. Doing this was shown to effectively increase the area of the current location, covering
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the problematic border area. This allows the agent to cross the problematic location border by
forcing it to move further into the next location before the location change is perceived.

The change is applied by raising the base score of the current location to the power of (1 − x),
where x is a real number between zero and one, inclusive. This was designed in such way in
order to keep the augmented score within the normalization range. If x is set to zero, the score
is raised to the power of one, providing no bonus; if it is set to one, the score becomes equal to
one. This means that the bonus factor should not be set to 1 as it would break the localization
process by constantly localizing to the current location.

4.4 Route planning

The navigation model described here is designed around the hierarchical nature of the cognitive
map it uses. Route planning is the process that is most affected by the cognitive map, requiring
more complicated algorithms that can properly utilize such hierarchical structure. The algorithm
described in this section is based on the route planning algorithm described by Schmajuk and
Voicu [SV06], which is designed for a hierarchical cognitive map with fixed depth of two, with-
out a top-level region. Removing the depth restriction requires an additional algorithm, here
termed the deepest common region algorithm, which determines the starting point of the route
planning algorithm. Additionally, since the original route planning algorithm performs a single
descent only, it needs to modified to perform the hierarchy descent iteratively until the bottom-
most layer is reached, regardless of the depth of the cognitive map or the starting point. The
resulting algorithms are described in this section.

4.4.1 Deepest common region algorithm

Real world application of this navigation model are expected to have extremely large cognitive
maps created through continuous exploration. Deepest common region algorithm aims to reduce
the impact of the size of the map by limiting the problem to a smaller portion of the map. This
is done by utilizing the structure of the map in order to find the smallest region containing both
endpoints of the route.

This is done by first extracting the containment chain of both locations. A containment chain
of a given location is an ordered list of regions starting from the universe to the parent region
of that location, each region directly containing the following one in the list (see figure). The
deepest common region is then the region at the largest depth contained in both of those chains.
Due to properties of the hierarchical cognitive map, the deepest common region algorithm will
always produce a solution, as all map units are ultimately contained by the universe region.

Additionally, the containment chain of the current location can be retained for reuse during the
main navigation algorithm.
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Figure 4.6: Visual depiction of a part of the map hierarchy. Containment chains of locations x and y are
highlighted with blue and red color, respectively. The orientation of containment associations is always
downwards.

Figure 4.7: Comparison of containment chains of locations x and y. When these are represented as lists,
it becomes trivial to determine the deepest common super-region.
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Algorithm 4.3: Deepest common region algorithm
Input: current location Ls, current destination Ld

Output: deepest common region Rcommon

1 Create a region lists RLs and RLd for Ls and Ld respectively;
2 foreach Ls, Ld as Lx do
3 Set the parent region of Lx as the current region Rcurrent;
4 Add Rcurrent to the beginning of RLx;
5 while Rcurrent is not RUniverse do
6 Set the parent region of Rcurrent as new Rcurrent;
7 Add Rcurrent to the beginning of RLx;
8 end
9 end

10 Let i := 0;
11 while RLs[i] = RLd[i] do
12 Let Rcommon := RLs[i];
13 i++;
14 end
15 Return Rcommon;

4.4.2 Route-planning algorithm

After having found the deepest common region the main phase of the navigation algorithm can
begin. This algorithm recursively descends the map hierarchy while executing an arbitrary3

routing algorithm on each depth level. The crux of this algorithm is determining the source and
the destination nodes for the current depth level. This process will be explained in details along
with examples below.

Note that a “map unit”, represented by the symbol U means that a variable can represent both a
region and a location. This is important as both regions and locations can represent nodes for the
routing algorithm on their respective level. Locations are always and exclusively on the lowest
level of the hierarchy.

Additionally, calculating a path within a set of map units means considering those map units as
vertices and the explicit and implicit connection relations between them as edges of a simple
directed graph upon which a routing algorithm can be performed.

Step 6 of the algorithm checks whether the agent is about to transition into another region. This
will occur once the agent is located in any location directly connected to a location from the
region that lies next along the path to the destination. In this case running the routing algorithm
is meaningless; the algorithm instead returns one of the locations from the next region that the
current location is directly connected to.

3This may be any routing algorithm that finds a path to the destination, even one that finds a suboptimal solution.
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Algorithm 4.4: Route-planning algorithm
Input: current location Ls, current destination Ld, deepest common region Rcommon

Output: next step Lnext on the path from Ls to Ld

1 Let Rcurrent := Rcommon;
2 Let S′

d be a set containing the map unit in Slevel that contains Ld;
3 do
4 Let Slevel be the set of all children map units of Rcurrent;
5 Let U ′

s be the map unit in the Slevel that contains Ls;
6 if U ′

s is in S′
d then

7 Let Snext be the set of all map units contained by Unext that U ′
s is connected to;

8 Let Unext be any one of the map units in Snext;
9 Return Unext as Lnext;

10 else
11 Find a path P (s, d) between U ′

s and any of U ′
d within Slevel;

12 Let Unext be the next vertex along the path P ;
13 if Unext is a location then
14 Return Unext as Lnext;
15 else
16 Let Rcurrent := U ′

s;
17 Let S′

d be a set containing all map units in the Rcurrent that are connected to
any map unit in Unext;

18 end
19 end
20 loop

The result of this algorithm is a location directly connected to the agent’s current and represents
the next step along the path to the destination. Using the pair (current location, next step) the
decision unit can query the scenarios stored in the long-term memory to obtain the action that
performs the transition from one to the other. Once the action starts being performed the navi-
gation algorithm is suppressed until the localization routine returns a different current location,
upon which the navigation algorithm is needed to obtain the new action.

4.5 Actions

In any navigation model, all calculated routes must ultimately be translated into sequences of
actions whose execution facilitates traversal of the environment. In any navigation model ac-
tions describing transitions between locations must be based on environmental features that are
perceived by that model; furthermore, the agent need to be able to perceive relations between
itself and the features. Specifically, in a landmark-based model, such as the one being described
here, actions have to be defined with respect to landmarks.
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4.5.1 Landmark-based actions

In order to properly model landmark-based actions several assumptions regarding agent’s abili-
ties must be made:

• Agent is able to move in a straight line

• Agent is able to execute arbitrary turns

• Agent is able to focus any perceived landmark

• Agent is able to face area between any two visible landmarks

• Agent is able to avoid local obstacles

The first and the second assumptions are considered to be always satisfied, as rotation and trans-
lation are motions essential to traversal of two-dimensional environments, regardless of the ac-
tual method of executing these motions. These two assumptions allow two atomic actions, GO
FORWARD and TURN LEFT/RIGHT, to be executed. It should be noted that the latter action
has a certain delta value which is small, may or may not be fixed, and innately unknown to the
agent.

The third assumption is made about the perception of the agent and stipulates the agent can
detect when it’s facing a certain object and react upon it. This allows for complex action TURN
TOWARDS to be executed by defining the stopping condition of the TURN LEFT/RIGHT action.

The fourth assumption is important as is serves as a foundation for the replacement to the
concepts of turning by an exact amount of degrees. As shown in the paper by Waller et al.
[WLGB00], humans estimate most angles rather poorly, which makes encoding instructions us-
ing exact angles very unlikely. In addition, one cannot rely on any kind of fixed degree turns
as doing so would make proper execution of the turn depend on the initial angle of approach to
the point of turn, which cannot be guaranteed always to be the same, and consequently lead to
potentially breaking navigation errors. In real world it is impossible to define such turns with-
out a third reference point, the other two being the referred landmark and the agent itself. The
proposed solution is to face a virtual mid

This problem is somewhat mediated if paths are recognized as environmental features by the
model. The landmark-based model is compatible with path-based models, and this possibility is
further expanded upon in section 6.6.4.

This and the previous assumption imply that a navigation action can successfully be executed
only if the landmarks it is based on are visible. This is an interesting implication that places
further limitations on the types of environment this approach can work in. Such approach is
nonetheless consistent with human behavior.
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The final assumption allows the model to forgo obstacle avoidance and instead solely focus
on global navigation. Obstacle avoidance doesn’t require neither localization and navigation
and can therefore be implemented independently. Additionally, since the goal deliberation is
performed at every execution step, actions provided by the navigation routine can be suspended
in favor of those that describe obstacle avoidance. Once the obstacle has been overcome, the last
action can be resumed provided it still has the highest priority.

4.6 Model integration

Figure 4.8 shows the part of the decision-making strand of the current ARS model that contains
the navigation model. The processes of localization and route planning are implemented sepa-
rately: localization implemented as a module, and route planning as a subroutine. Localization
and route planning are usually coupled together for the reasons stated in chapter 2. Despite that
they can be implemented uncoupled and/or separated as long as they use the same cognitive map
and the output of the localization process is ultimately passed to route-planning process. The
separate approach has been taken, as the result of the localization process can be used by the
decision unit before the decision on whether to run navigation process or not is made, as it can
potentially influence the goal selection.

Figure 4.8: Section of the ARS functional model depicted in figure 3.6.

4.6.1 Representation of concepts

In order to successfully integrate the navigation model into the ARS model, an appropriate
representation of used concepts and data structures must be defined.

Map units, locations and regions, can be viewed as atomic that form the cognitive map using
connections between them. This makes the word presentation an appropriate representation of
these concepts in the system and, consequently, word presentation associations the appropriate
representation of relations between them.

Additionally, the model requires some means of representing the agent with respect to the en-
vironment, both locally, allowing expressing its relationship with environmental features in the
perceived scene; and globally, by placing itself in relation to the cognitive map. It is therefore
assumed here that there exists a way of representing the agent as a word presentation mesh
(WPM).
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Concept Represented by
Location

Word presentation mesh

Region
Landmark
Action (Act)
Route (Scenario)
Region contents
Containment chain
Scene
Connectedness relation

Association

Containment relation
Landmark-Scene relation
Scene-Location relation
Entity-Location relation
Agent-Location relation

Figure 4.9: Overview of representations of localization and navigation concepts in ARS

Relation Predicate Content types Interpretation
Connectedness IS_CONNECTED_TO Location,

Location
Location is connected to
Location

Containment CONTAINS Region,
Map unit

Region contains Map unit

Landmark-Scene IS_IN Landmark,
Scene

Landmark is in Scene

Scene-Location DESCRIBES Scene,
Location

Scene describes Location

Entity-Location
Agent-Location

IS_AT Entity/Agent,
Location

Entity/Agent is at Location

Figure 4.10: Overview of association predicates introduced into ARS

Following are tables that summarize the WPM content types and association predicated required
by the navigation model.

4.6.2 Localization module

Self-localization routine is contained within is own module F61 Localization. The module re-
ceives symbolized perceptual information as thing and word presentations from the primary
process via interface I6.13. In addition the module has direct access to the data storage con-
taining the cognitive map from which it obtains current location candidates. If successfully
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localized, the resulting current location represented by its word presentation is passed back into
the decision-making strand along with all other input information via interface I6.12.

Figure 4.11: Diagram and data flow of the F61 Localization module

4.6.3 Route planning subroutine

Decision unit module (F26) is the central component of the decision-making strand of the ARS
architecture. This module contains the algorithm that deliberates the current goal based on
perceived input, internal drives and emotions, passed from the primary process and subsequently
further processed by preceding modules of the secondary process. If this goal is out of reach,
that is, not at the current location, the module has to fist determine one or more locations the
goal is expected to be at, according to the knowledge at hand, and then retrieve routes to those
locations. As a result of that, route planning is integrated directly into the decision unit module
(F26) as a subroutine. Route planning is triggered every time a route to a distant goal is required.
The decision-making unit then runs the route planning subroutine to obtain stored scenarios
that result in agent reaching the set goal. Once the goal has been reached the route planning
subroutine is skipped and instead scenarios are chosen that are required to interact with the goal
in the intended manner.

4.6.4 Action representation

The cognitive map of the navigation model uses actions as connections between locations. At
the first sight this might suggest that the proper representation of an action in the ARS would be
an association, as they are analogously used to connect WPMs. This is not possible, however, as
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the definition and implementation of associations in the ARS does not allow for any additional
data or data structures to be attached to them beside the predicate and the weight.

One possible solution to this issue is to represent actions using a WPM and two associations,
which connect two WPMs representing locations to the WPM representing the action. This
emulates the structure of a single association whilst allowing for a data structure to be contained
within it. This approach does have some downsides, as it makes the structure more complex and
also harder to retrieve from the memory. To retrieve an action connecting two locations, one must
thus retrieve all word presentations directly associated with both location word presentations,
and then identify which one of the resulting word presentations represents the desired action.

The better alternative is to rely on existing WPM types to achieve the desired representation. The
ARS model provides acts and scenarios as means of representing remembered interaction with
the environment. As any other WPM, they can be associated with a location WPM. Since explicit
associations between locations and their scenes already exists in the model, it is reasonable to
assume the scenarios activated by the current perceptual image would correspond to the current
location. Scenarios consist of a sequence of actions, termed acts, which in turn can also be
associated with locations. Scenarios are thus able to span multiple locations, which makes them
equivalent to routes from a causal standpoint. This means that a scenario whose first act is
associated with the current location, and some following act to the location of the goal, can be
used to reach that goal by recreating that scenario in real world.
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CHAPTER 5
Implementation

The implementation of the navigation model described in the previous chapter will be described
here. The process of implementation was done in three steps. Firstly, a new simulation envi-
ronment was created to create platform in which the implementation can be developed, tested,
and debugged. Secondly, a proof-of-concept implementation was developed which was used
to validate the generalized versions of the algorithms used in by localization and path planning
processes using flexible open-source graph libraries. Thirdly, algorithms and data structures im-
plemented in the second step were modified in order to make them analogous to the data types
and interfaces of the ARS. It must be noted that the complete integration could not be achieved
due to the state of the ARS implementation at the time.

5.1 Simulation

In order to to test the validity of the navigation model, a proper environment must be provided
where various scenarios can be created, executed, and where the functioning of the model can
be observed and evaluated. To this end a simulated environment has been created with following
properties:

• the environment is a continuous two-dimensional space

• the environment is populated with environmental features - landmarks - represented by
static entities

• the agent employing the navigation model is represented by a mobile entity within that
space with sufficient degree of freedom of movement

• the agent has to be able to perceive environmental features and their configuration in
accordance with the principles of the ARS model
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• additionally, the environment contains obstacles - environmental features necessary for
more proper modeling of agent’s perception through vision occlusion

The tool chosen for implementation of such simulated environment is the Multi-Agent Simulator
of Neighborhoods (or Networks) (MASON) library [LBP+03]. It was chosen in part because of
the current implementation of the ARS was developed in the same library. By using the same
simulation library one can hopefully simplify the future integration into the ARS model. Addi-
tionally, MASON library has following features that were particularly suited for this purpose:

• sharp learning curve facilitated by in-depth documentation and a large number of exam-
ples

• a flexible and simple out-of-the-box solution for representing continuous two-dimensional
environments

• an array of customizable portrayal classes that allow separate rendering based on the type
of the displayable entity, allowing the visualization of the environment and the agent, and
other important information in a clear and intuitive manner

• a user interaction API that allows mouse interaction with the visual representation of the
simulated environment, necessary for moving the agent entity about without the need to
reset the simulation

• ability to inspect and modify the inner state of the agent via the simulator control panel
allowing for on-the-fly modification of simulation parameters

5.2 Environment

For proper testing of the navigation model a two-dimensional continuous representation of the
environment is required. MASON library provides Continuous2D object for this purpose,
which allows mapping of any object onto a two-dimensional plain. Additionally, it provides
an interface that allows various kinds of inspection and geometrical analysis of the state of the
environment, such as getting distance between objects or determining angles defined by three
entities.

Objects are placed into the environment using 0setObjectPositionmethod, which accepts
an object and its intended position, represented by a pair of real numbers. This method is mostly
used during the initialization process of the simulation, which is responsible for populating the
environment with entities according to the specifications given in the scenario file. It is also used
for updating the pose of the agent entity.
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5.2.1 Simulation entities

Abstraction of reduces the number of necessary entities in the simulation to the agent, landmarks,
and obstacles. Landmark and Agent objects are extensions of the Entity object, which contains a
unique identifier that allows for easier instantiation and retrieval, as well as a label, which is used
for visualization purposes only. Testing requires only one agent to be present in the simulation,
but the possibility of having more agents in one simulation is thus also possible. Obstacles were
implemented as a separate object class as they do not need to be distinguished, and therefore
need no unique identifier.

The agent entity represents the agent within the simulated environment. Apart from the identifier
and the label, this object additionally contains information about the current pose of the agent
with respect to the coordinate system of the environment. The agent entity is portrayed in the
visualization as a green dot, with three concentric rings representing segments of its field of view
and a straight line representing its orientation.

Landmarks are portrayed in the simulation visualization as grey dots with labels. Labels add
semantics to landmarks, which facilitates easier comprehension of the visualization of the sim-
ulation.

Despite not actually being a part of the simulated environment, locations are also present in
the visualization in order to give an overview of the locations encoded in the agent’s cognitive
map. These are portrayed by blue dots with labels. Their only purpose is to serve as map
reference to the user controlling the simulated agent, so that they would know which location
they want to move the agent toward. Their position in the environment is purely arbitrary and of
no consequence to the agent’s behavior. The position is defined in the scenario editor described
in section 5.4. Similar to landmarks, they can also have labels to help distinguish them from
one another and allow the user to select destinations by their label, instead of by their unique
identifier. As the locations are parts of the cognitive map, they don’t share the same parent class
as the entities.

5.3 Agent simulation

The implementation of the agent consists of two parts, the body and the mind. The body is the
abstraction of the actual embodiment of the agent and is responsible for communication between
agent’s mind and the simulated environment which is facilitated by the simulation interface.
Agent’s body can further be divided into sensors, which are responsible for receiving input from
the environment, and motility control, which control the pose of the agent entity within the
environment by translating the actions passed from the mind.

Sensors are responsible for retrieving raw data from the simulated environment via the simula-
tion interface, converting it into qualitative perceptual input and passing to the decision unit. The
raw information should not directly accessible by the agent’s intelligence as that would violate
the principles of the navigation model.
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Sensors perform what is an equivalent to the visual detection of landmarks by employing the
visibility and distance calculations. Visibility calculation is performed for each landmark inside
the vision range of the agent (see section 5.3.3 for more details), while distance estimation is
performed by comparing the relative distance of the landmark to distance of visibility ranges,
assigning the qualitative distance information accordingly.

Collision detection sensors are not modeled, as this capability is a part of the local navigation
process, which is here treated as distinct from the global navigation model.

The actuators are responsible for translating the actions provided by the decision unit into move-
ment. This is done by analyzing the action data and executing either translation or rotation of
the agent entity by modifying its position and orientation data through the simulation interface.
Translation is done in small increments in the direction the agent entity is oriented towards the
time. This increment is constant, as the velocity change is not a relevant factor when testing
the navigation model. This increment does put an implicit constraint on the environment itself,
forcing the size of all locations to be such that the agent cannot skip over any of locations in one
simulation step.

According to the definition of agent’s actions given in section 4.5, rotation is performed relative
to currently visible landmarks, by either facing a landmark directly, or facing an imaginary mid-
point on a line between two landmarks. This action is performed instantly, as gradual rotation
is only relevant in cases where an agent is capable of simultaneously performing translation and
rotation. Updates of the environment are performed through the interface provided by the Agen-
tEntity object, which updates the inner pose as well as the position in the simulated environment.

The ARS architecture was thus abstracted to include visual sensors, motility control and the
part of the decision unit that was appropriated for the localization and navigation functionality.
The decision-making process has been abstracted away in this simulator, delegating it entirely to
the user by providing a simple navigation control interface through which one can pass desired
destination directly to the navigation process.

Although this removes most of the defining features of the ARS model, such as most of the
decision making and the implementation of emotions, it still allows for and easier subsequent
integration into the model by making sure the functionality is properly decoupled from the model
through proper definition of intermodular interfaces.

Agent’s mind consists of the implementation of the navigation model. It is further split into
decision unit, which runs the algorithms of the model, and the cognitive map, which contains
the preset knowledge loaded from the scenario file.

5.3.1 Cognitive map implementation

The hierarchical cognitive map as described in this thesis can be satisfactorily modeled by a
simple directed graph. The simplest method of implementing a cognitive map is to use a readily
available solution for handling graphs in the language of choice. This solution must provide sim-
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ple and intuitive methods for efficiently retrieving parts of a graph and testing various properties
of its elements and relations between them. The chosen solution is the Java Universal Network/-
Graph Framework) (JUNG) library, which is “designed to support a variety of representations of
entities and their relations, such as directed and undirected graphs, multi-modal graphs, graphs
with parallel edges, and hypergraphs” [OFWB03].

A particularly useful feature of the library is the ability to use any kind of objects as both vertices
and edges of graphs, as well as allowing them to belong to multiple graphs simultaneously. The
structure of the graph is maintained by various graph classes, which provide interfaces for graph
modification and queries of vertices, edges, and various graph properties and substructures.

The ability to define multiple graphs on the same set of vertices allows for a very efficient
execution of the navigation algorithm. The cognitive map is observed as a hierarchy, that is, a
directed tree graph when algorithm traverses levels and as a different simple directed graph when
finding a path on a certain level. This is ensured by separating the edges representing different
kinds of associations into different graphs.

The decision to use this library for the implementation of the cognitive map was made in order
to simplify the implementation of the agent, as the cognitive map is the most complex data
structure of the model, so using a reliable library to perform graph queries was deemed the most
practical solution. Since the compatibility of this approach with the ARS data structures is not
immediately clear, additional conversion methods were designed in order to demonstrate this
compatibility (see section 5.3.2).

5.3.2 Memory retrieval

Even though it would be possible, and also significantly simpler, to implement a localization
and navigation routine as separate modules that use their own internal knowledge base, as op-
posed to using the shared long-term knowledge base of the ARS, this approach carries several
disadvantages. By separating the cognitive map from the rest of the knowledge base one loses
the benefits offered by data structures of the ARS. A unified knowledge base allows emotions
and drives to be associated with regions and locations, enabling a true emotion-based approach
to navigation that would avoid unpleasant parts of the environment based on the associations
formed in the memory. Moreover, associating a potential goal with its location in the cognitive
map makes determining the agent’s destination trivially simple, that is, as simple as following
an association.

Route planning algorithm requires complex data structures: region children graph and the hier-
archy chain. However, the only method of memory access currently available returns a single
WPM along with all of its internal and external associations. Retrieved associations are hereby
assumed to be both the associations that are starting from this WPM as well as those ending in
it. This section will explain how complex structures can be retrieved from the memory using the
above mentioned method only.

It should be noted that individual required WPMs can be retrieved from memory ad hoc during
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the execution of the route planning algorithm using the searchMesh method, if the imple-
mentation allows it. The proof-of-concept implementation of the navigation model, however,
utilizes graph libraries for realization of the cognitive map for efficiency and simplicity. The
simple algorithms listed below therefore serve as a proof of compatibility of with the ARS only
and are not designed as a substitute any efficient retrieval methods that may come in the future.

Region children graph consists of all children subunits of a certain region, which can be either
locations or other regions, along with all connectedness associations that exist between them.
The algorithm that can be used to obtain this structure is shown in listing 5.1. The last step of
this algorithm is optional and can be skipped if the implementation of the route finding algorithm
is capable of working with ARS data structures. The algorithm for obtaining the hierarchy chain
is shown in listing 5.2. This algorithm can also be used to determine if a subunit belongs to a
neighboring region, which is required in the path finding algorithm.

Algorithm 5.1: Children connectedness graph retrieval algorithm
Input: parent region WPM R
Output: directed graph G

1 Let S be an empty set of map units;
2 Search memory for complete WPM R′ using R as pattern;
3 foreach external association A of R′ do
4 if A is of type CONTAINS with R′ as source WPM then
5 Let U be the destination WPM of A;
6 Search memory for destination WPM U and add it to S;
7 end
8 end
9 Construct directed graph G WPMs in S to nodes and associations of type
CONNECTED_TO as arcs;

5.3.3 Simulation of visual perception

As the model is designed for navigation in two dimensions, the simulated environment is two-
dimensional, and so the vertical aspect of the field of view has been accordingly ignored. The
most important feature of the simulated vision is the 360 degrees field of view. This represents
the most apparent deviation of the simulated vision from human vision, which has a total field
of view of about 200 degrees [Hen93, p. 2].

The main factor is the ability of a human agent to track the position of several recently seen
objects that are no longer visible, even while moving [HBF+06]. By being aware of the existence
and the approximate location of recently seen features the agent can integrate them into the
overall perception, inferring their configuration with respect to visible features to a given extent,
making them effectively visible for purposes of localization.

Another helpful factor is the movement of the eyes in humans. When accounting for rotation
of the eyeballs around their vertical axis, the sum total human field of view becomes larger. If
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Algorithm 5.2: Hierarchy chain retrieval algorithm
Input: map unit WPM U
Output: region list L

1 Let L be a list of map units;
2 Search memory for complete WPM U ′ using U as a pattern;
3 do
4 Let A′ be null;
5 foreach external association A of U ′ do
6 if A is of type CONTAINS with U ′ as destination WPM then
7 Set A′ := A;
8 end
9 end

10 if A′ is not null then
11 Set U ′ := destination WPM of A′;
12 else
13 Exit loop;
14 end
15 loop

the head and the body rotation are considered as well, this field expands to cover a full circle,
or 360 degrees angle. These movements can be executed quite quickly, and in conjunction
with the feature tracking above, it can be assumed that the perceptual field can be refreshed in
time roughly corresponding to the length of a step in the simulation time, or, at worst, the time
between two executions of localization, effectively providing the agent with a 360 degrees field
of view for navigation purposes.

The field of view is divided into three ranges, separated by concentric rings centered in the agent
entity: near, medium and far. These ranges emulate the perception of distance by assigning
a qualitative distance value to any perceived landmark. The distance is measured using the
positions of two given entities within the simulations space.

5.3.4 Obstacles and vision occlusion

Occlusion is a common phenomenon in real world environments, where environmental features
are hidden by other environmental features. Since landmarks in this simulation are represented
by points, and therefore have cannot cause occlusion, linear obstacles are introduced into the
simulated environment as a simple way to simulate occlusion. They are defined by a pair of
landmarks, and can be either an occluding or non-occluding. Since non-occluding obstacles
do not obscure vision they are a purely cosmetic addition to enrich the visualization of the
environment.

This allows a landmark visibility check to be performed by determining whether the line segment
defined by the landmark and the agent intersects any of the line segments defined by occluding
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obstacles. This is done using implementation of the openly available Python algorithm translated
into Java [Boe]. The details of the algorithm are provided at the same source and will not be
mentioned here for the sake of brevity.

Figure 5.1: A run-time example of occlusion. Visible landmarks are highlighted red.

The visibility check is performed only on landmarks that are within the vision range of the
agent. Similarly, only those obstacles that are defined by at least one of the visible landmarks
are taken into account during the visibility check. Visible landmarks are highlighted in red in
the simulation visualization.

5.3.5 Simulator interface

This interface that facilitates simulation control for the user is the part of the simulator control
panel. It is created by allowing simulator inspectors to read or modify various public variables
provided by the agent class. The appearance of the control panel is shown in figure 5.2.

The panels consists of the simulation parameter control, the navigation control, and the simu-
lation control. Simulation parameter control features sliders that allow various parameters of
the agent’s mind and body to be modified on the fly. Available are: controls for heuristic score
weights, vision range controls, and the current and next location bonus heuristic weights.

Navigation control consists of a dropdown box containing a list of all locations and regions
stored within the agent’s cognitive map. Selecting a location or a region triggers the navigation
process using selected map unit as the current destination, which is abstracts the decision-making
process from the standpoint of navigation. Additionally, there is a display showing the agent’s
current location as determined by the localization process.
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Figure 5.2: MASON agent control panel showing agent parameter controls.

The control panel also provides the controls for starting, pausing, stopping, and resetting the
simulation run, which are available by default and present in every control panel.

5.4 Scenario editor

Testing self-localization and navigation necessitates testing scenarios. Creating scenarios in this
particular case involves positioning landmarks and obstacles in two-dimensional environment.
In addition, due to lack of learning ability agent needs a predefined cognitive map that matches
that environment. In order to avoid having to encode scenarios manually a scenario editor was
developed. This editor allows creation of arbitrarily large testing environments through a simple
graphical interface inspired by graphical processors, featuring a point-and-click mouse interface,
toolbars and edit dialogs, as well as a separate view for editing the hierarchical structure of
cognitive maps.

The editor supports addition, editing and removal of five types of objects: the agent, landmarks,
obstacles, locations, and actions. The default selection mode allows the user can click on any
object and edit its properties through an edit dialog that appears upon selection. Objects such as
the agent, landmarks, and locations can also be freely moved within the environment by dragging
them with the mouse.

Obstacles, locations, and actions are defined by landmarks, and their creation necessitates se-
lecting defining landmarks. Objects can be removed by selecting the removal action and then
clicking on an object in the editor. Any other objects that depend on the deleted object, such as
obstacles depending on a landmark, will be deleted along with the selected object.
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Figure 5.3: Main view of the scenario editor.

5.4.1 Region hierarchy editor

Region hierarchy editor is a separate view of the scenario editor used to define hierarchy of
the cognitive map associated with the scenario. It takes all locations and their interconnections
defined in the scenario editor and displays them as circles connected by lines. Regions are
represented as circles as well, but they are distinguished from locations by being able to contain
other region and locations. When editing the hierarchy for the first time there is only one region
defined, the “Universe” region, which contains all locations defined in the scenario editor.

Creation and removal of regions is facilitated through the mouse interface and activated by se-
lecting the appropriate action in the toolbar. Removing a region will place the contents of the
deleted region within its parent region. This behavior maintains the consistency of the hierarchy,
making it impossible to create an invalid cognitive map by removing regions. This also means
that the “Universe” region cannot be removed.
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Figure 5.4: Hierarchy view of the scenario editor.

Locations and regions can also be moved and arranged freely within the editor using mouse. The
graphic representation of regions will automatically resize to maintain the proper representation
of containment relations. This allows creation of clearer graphical representations of hierarchies,
but has no impact on the actual locations within the scenario editor. Positions of all elements
within this editor are saved in the file along with the rest of the data. As such, they are completely
optional and can be removed from the file without breaking the cognitive map.

5.4.2 Scenario files

Scenarios files store all data necessary for the simulation. Scenario files consists of two main
parts: environment description and the cognitive map description. Environment description
contains information about the dimensions of the environment, and the description of all entities
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within the environment: agent, landmarks, and obstacles. Cognitive map description consists
of location, region, and action descriptions. These are defined using landmarks defined in the
environment description. Entities, locations, regions, and actions all possess unique identifiers
that are set automatically by the editor and are invisible to user. They are also used for landmark
identification by the perception and the localization algorithms. Additionally, each location and
region description is supplemented by their position in the hierarchy editor view, which allows
preservation of the layout in that view.

Scenario files are read and written using a custom-made loader class, which is used both by
the editor and the simulator. XML format was chosen as it is easy to generate and parse using
standard Java libraries for XML. The downside to this approach is the large size of created files
caused by expressive syntax of the language. A listing of a scenario file schema is listed in
Appendix B.
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CHAPTER 6
Results and Discussion

Having described the implementation of the simulation in the previous chapter, a description and
discussion of test scenarios and results obtained will be provided in this chapter. Tests have been
performed separately for the localization and route planning processes and are provided here
separately. Finally, concepts and functionality that are necessary or beneficial to the navigation
model will be mentioned in the future work section, followed by the summary and the conclusion
of this thesis.

6.1 Test results generation

The implementation of the model and the simulation offered proper environment for testing,
but lacked means of representing results in an intuitive way, such that would be appropriate for
static post-run analysis and presentation. In order to solve this problem the implementation code
was augmented with two additional features for test result generation of localization and route
planning processes, respectively.

6.1.1 Localization result visualization

For purpose of generating test results for the localization process a separate visualization method
was developed that operates outside of the simulation run time, that is, uses the existing inner
simulator functionality statically. After the simulation environment has been initialized, the
method directly controls the position of the agent, moving it in a scanning fashion across the
two-dimensional space of the simulation in small increments. At each position the agent is
instructed to perform localization. The results are mapped to a fixed RGB color palette, assigning
a unique color to each recognized location. The same position is then marked by a rectangle of
the same color, with dimensions corresponding to the increment so that in the end the whole
simulation space is covered.
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(a) Scenario A

(b) Scenario B

Figure 6.1: Test scenarios visualized in MASON. Legend applies to both figures.68



Resulting images are essentially a mapping of internal environmental representation onto a two-
dimensional grid via the localization process, which allow post-hoc visual analysis of the per-
formance of the localization algorithms. By decreasing the displaced increment one achieves
greater resolution at the expense of the increased execution time, which also depends on the area
of the simulation space.

6.1.2 Route planning result visualization

The idea behind the visualization of calculated routes is to allow the agent to leave “footprints”,
or “breadcrumbs”, as it traverses the environment. To achieve this, a simple placeholder object
was added to the simulation. This object has a portrayal class attached to it which renders each
object as a purple dot. These objects are generated each time the agent moves, thus leaving a
visible trail behind it. The generation of the footprint is not triggered when the agent is moved
using mouse, so that the agent’s position may be reset freely without ruining the visualization.
Traversed paths are then documented by taking snapshot of the simulation visualization.

6.2 Test scenarios

During the development of the implementation several smaller test scenarios were developed for
testing, debugging, and calibration of the simulation environment. These will not be covered in
this section, as they are either too simple or not realistic enough to produce usable results.

The goal behind selection of test scenarios was to test the impact of different configuration of
landmarks in the environment on the overall accuracy and performance of the model. This was
made primarily with the intent to test and verify the localization process, as the route plan-
ning process was expected to work regardless of the layout, so long as the cognitive map was
constructed properly and the localization process completed successfully. The selection was ul-
timately narrowed down to two scenarios, which will be referred to in the rest of the chapter as
scenario A and scenario B.

Since the execution time of the visualization method for localization results mentioned above
grows quickly with the size of the environment, the dimensions of test scenarios were kept rela-
tively small, 1000x1000 pixels1, in order to allow for generation of larger sets. Additionally, the
increment was was set at 5 pixels, which allowed for creation of images of acceptable resolution
while keeping the rendering time under two minutes.

Scenario A depicted in figure 6.1 features simulates a small section of an urban-like environment
similar to an old city center, and is populated with evenly distributed landmarks with obstacles
placed in a manner that simulates streets. It should be noted that the density of landmarks in a
scenario is not a differentiating parameter in the true sense, as a scenario with sparser landmark
distribution can be achieved by simply reducing the vision range of the agent without modifying
the actual environment.

1The simulation was designed so that the one pixel of the visualization corresponds to one unit of length in the
simulation.
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Scenario B, also depicted in figure 6.1, was made specifically to test the effect of an uneven
distribution of landmarks across a single scenario on the localization process. It simulates a
more open-space environment akin to a village, with small streets and open areas like fields.
Scenario B features several areas where landmarks are significantly more spaced out than in the
other parts, which are significantly smaller and feature closely placed landmarks.

6.3 Localization results

Colored surfaces representing locations depend entirely on the remembered scene associated
with it. One of more important questions regarding localization is how accurately a location can
be represented using scenes, which are qualitative in nature. This can be evaluated by observing
how well the surfaces that are mapped to a location correspond to the expectations.

Test results made with scenario A show good performance of the localization process in envi-
ronments with evenly and closely distributed landmarks, where definition of locations is simpler
and less prone to errors. This implies that the navigation model in its current state could perform
well in urban environments, as long as the landmark detection and filtering performs according
to the assumptions.

Tests run on scenario B demonstrate some deficiencies of the approach to localization. The re-
sults show that the larger locations, which are thus encoded with spread out landmarks, tend to
be encroached upon by nearby locations that are encoded using more tightly grouped landmarks
in areas where they come in contact with one another, causing the jagged borders visible in the
visualizations. The cause of this behavior has been traced back to the design of the distance
heuristic method that penalizes distant defining landmarks. This further underlines the necessity
of improving current heuristics and reinforce them with additional heuristics in order to over-
come this phenomenon and allow locations of any realistic size to be recognized and encoded
properly.

6.3.1 Impact of parameters

Simulation parameters that were considered for testing were the score weights for the three avail-
able heuristics, and the near and far-mid vision range ratios. In addition, the effects of the current
location heuristic was observed separately by presetting a chosen location, then generating test
results to observe the differences in size of locations.

The results show that the variation of the heuristic score weights only had a significant effect on
the overall score when the scores were set to zero as opposed to one. This section will thus only
discuss results where one or more heuristics were turned off, that is, having its score weight set
to zero. This however does not necessarily mean that having continuous range of score weights
is useless, as the weight management could be automated and dynamically modified by the
navigation model itself. This possibility might be reserved for future work.

The test results showed noticeably worse performance when either the landmark set heuristic or
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the landmark distance heuristics were turned off, while turning off the landmark order heuristic
had a negligible effect on the localization; on the contrary, having landmark order heuristic
turned on produced noticeably worse results in case of scenario B, where one of the locations
has been encoded using a non-enclosing landmarks, that is, those that are not on the border of the
location. This produced a parallax effect in the perceived scene, causing reduction in landmark
order heuristic score due to the change in the perceived order. The resulting area of the location
was very irregular, encroached upon by neighboring locations in parts where the order did not
match the order specified by the scene of that location. This leads to the conclusion that the
landmark order heuristic is a poor choice of a localization heuristic and should be eliminated
from the future versions of the model.

This also implies that neither the landmark set heuristic not the landmark distance heuristics
produce good results when employed alone. In case of the landmark set heuristic the problem
arises from the inability to estimate the agent’s position based on perceiving landmarks alone,
as they are in this case all perceived to be equidistant from the agent. This means that many
candidate locations received perfect scores as long as all the defining landmarks were visible.
A significant reduction in localization accuracy was also shown when using landmark distance
heuristic only. The result images show extremely irregular and unintuitive location borders, but
the reason for this phenomenon is not yet clear, but it might have something to do with the
modeling of distance, as the serrated edges of locations correspond to distance range borders.
This suggests that the distance should be modeled differently, either by improving the distance
resolution or by modeling distance as a relative configuration.

6.3.2 Results in unmapped environment

The environments described by test scenarios is not entirely mapped out, which leaves parts
parts of the environment next to the edge of the simulated space not mapped to any location. In
the test result images provided in this chapter unmapped parts are blended out to allow for easier
viewing. As the visualization code does not recognize the bounds of the simulation as specified
by the user, it runs the localization algorithm outside these bounds as well, which creates some
interesting artifacts in the unmasked images which will be discussed here.

The color distribution outside the bounds shows how the algorithm will continue to assume
the last known location as it ventures into the unknown part of the environment, as shown in
figure 6.2. This is important for the future mapping algorithm, as it will allow it to connect
newly discovered and defined locations to the existing parts of the map. This should occur once
the similarity of the current scene to the scene of the last known location falls below certain
threshold, at which point a scene will be constructed and stored along with the new location.

Another part of test result images worth noting are the parts colored black. This represents parts
of the environment where the localization algorithm gave no valid result because no landmarks
are visible from there. This as evident by the shape of the nearest two location surfaces, which
have a circular border to the portion colored black, centered around the closest landmark. These
borders represent the farthest the agent can go into featureless space and still be able to recover
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Figure 6.2: Unmasked test result image of scenario B. Black areas are present in upper and lower right
corners of the image.

and return to the known environment. If the score of the last known location gets too low, and
no new locations are created and added, agent should stop moving in that direction and return.
The return maneuver could be something as simple as execution of a “go to landmark” action.

6.3.3 Final remarks

Overall the localization routine performed satisfactorily for the given set of test scenarios. How-
ever, the current set of implicit and explicit limitations under which it can do so shows its defi-
ciencies and points towards possible improvement, as stated above. This leads to the conclusion
that while the landmarks are essential to successful human self-localization and navigation, they
are by no means sufficient.

While there are no explicit rules governing the shape of these surfaces, there are some properties
that are more beneficial to the localization than the others and should be striven towards. Firstly,
the shapes should be continuous. This is fairly obvious, as a location is defined as an atomic
part of the environment, and thus theoretically cannot be fragmented any further. Secondly, the
shapes should be convex. Since navigation depends on the fact the agent must be able execute a
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transitional action from any point in the location, having locations of concave shapes would risk
the agent unexpectedly crossing into a location that is not along the path and thus disturbing the
navigation process.

Both test scenarios were inspired by human-influenced environment, with buildings, streets,
town squares, and so on. The implicit borders did not match the human-made ones to the degree
expected. This implies that humans may use some addition environment features to define limits
of such locations in the environment, such as changes of the surface type, various obstacles, and
generally using a more complex geometry relationships between them that were not covered by
this thesis. For example, understanding that a town square is generally a wide, flat surface in a
city surrounded by buildings, or that a forest is an area populated with trees would go great ways
to assist an agent in determining its exact location, instead of having to rely solely on landmarks
and its relative position to them.

The main problem when discussing localization based on locations such as they are defined in
this thesis is the question of borders between locations, that is, where one ends and another
begins, and what defines them. The images showing the localization results shown only col-
ors of highest-scoring location, regardless of the difference in score between the best and the
second-best location. In reality, such borders are hardly ever defined.

6.4 Route planning results

Route planning was tested on scenario A using the cognitive map tailored to that scenario. Ad-
ditional test scenarios were deemed unnecessary, as the goal of the testing was to demonstrate
the proper functionality of the algorithms involved. In order to ensure the test is complete, the
map was designed so that all the novel features of the algorithm can be tested somewhere within
the map, such as finding the common region, the hierarchy descent, and the region transition.
A visualization of the used map is shown in figure 6.3(a), as it is seen in the scenario editor.
Smallest circles represent locations, other larger circles represent regions, and lines represent
connectedness relation between locations, with directions abstracted away. Additionally, con-
tainment relation is visualized literally; that is, a region containing a location will be shown as a
circle containing another circle.
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(a) Cognitive map for scenario A. (b) Routes calculated in scenario A.

Figure 6.3: Route navigation test.

The test results conclusively show that navigation process performs correctly for the given sce-
nario and map. Also shown in figure 6.3(b) are several routes, represented by purple lines,
traversed by the agent whose calculation involved all of the steps mentioned above, specifically
routes from location 6 to locations 4, 8, and 26. Note that the scenario was tested exhaustively;
figure shows only some of the calculated routes for the sake of clarity. Results of performed
tests prove the validity of the algorithm for maps of arbitrary sizes by induction.

Testing the performance of the algorithm was performed. As the algorithm was intended to
function on very large cognitive maps, maps containing thousands of locations would need to
be created, along with matching hierarchies, in order to be able to compare it to other route
planning algorithms using maps that correspond to the intended purpose. In any event, the
bottom-up calculation of routes is not desirable in the first place due to its being non-bionic in
nature. Further details are provided in section 6.5.

6.4.1 Route planning failure

The process is known to fail only in situations when the cognitive map does not properly match
the environment described by the scenario. This can only occur in cases when one or more
locations are not convex, which may cause landmarks used for definition of the action selected
by the route planning process not to be visible at the critical moment. This might pose a problem
since the convex shape of locations cannot be guaranteed.

Fortunately, this situation can be avoided in several non-exclusive ways. When manually cre-
ating cognitive maps this can be achieved through location definition by ensuring visibility of
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action defining landmarks from all points within a location. Additionally, since actions that de-
fine transition between locations are allowed be complex in this model, it is entirely possible to
add a pre-transition action that brings the agent from any given point within that location into po-
sition where necessary defining landmarks are clearly visible. Lastly, locations that have a very
irregular shape should be abstracted into a region, and then split into preferably convex-shaped
locations.

6.5 Discussion on route planning

By observing the inner workings of the route planning algorithm it is clear that it makes the
whole the route planning process significantly less human-like, and therefore less bionic in na-
ture than the localization process. The reason for this lies in the creation of the cognitive map.

Currently, the only way to test the validity of the route planning algorithms is to equip the
agent with manually defined knowledge of a particular simulated environment. From navigation
standpoint one can distinguish three general setups of agent’s knowledge about the environment:

• no a priori spatial knowledge

• structual a priori spatial knowledge

• structural and routing a priori spatial knowledge

In the first approach one can consider the cognitive map to be empty, and is to be filled as the
agent explores the environment. During exploration new locations are discerned and encoded
along with the routes connecting them. This also allows for immediate storage of routes taken
during exploration and their association with newly encoded locations and regions.

The second approach provides knowledge about locations and regions in the environment and
their hierarchy to the agent. It also provides knowledge about connectedness of locations. This
information can be understood as a set of essentially atomic routes with minimum span, that is,
connecting two locations near each other. This knowledge is sufficient for the agent to employ
route planning algorithms successfully, but at a significant computation cost, as no complex
routes are known and need to be chained together whenever a destination has to be reached.
This means that the path calculation algorithm of the route planning process is employed most
extensively in this approach.

This leads to the conclusion that is far more beneficial to equip agents with knowledge of the
environment that has been assembled through exploration, rather than manual encoding by op-
erators, as it facilitates a human-like navigation behavior better than the current approach.

In reality, humans are born with no such knowledge, and instead gather their spatial knowledge
by traversing the environment. Such traversal is almost always directed when the actual position
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of the destination is unknown. Humans obtain knowledge about the destination by being led to
the destination, following verbal directions to the destination, or deriving directions and routes
from external representations of the environment such as maps, city plans, public transportation
diagrams, etc. New routes can also be discovered independently through exploration. If there
is no destination, newly visited locations are incorporated into the spatial knowledge along with
the routes taken to them. The article by Foo et al. [FWDT05] shows that this process is tied to
landmark cognition. This also implies two distant locations can be integrated into the cognitive
map without learning about the part of the environment between them, apart from the route itself.

This makes the second approach a “necessary evil”, employed to circumvent the deficiencies
of the current simulation methods, and should be phased out once agent’s learning capabilities
are sophisticated enough to correctly perform mapping processes starting with an empty map.
It is therefore justified to use an algorithm based on a priori knowledge as a sort of a “stepping
stone” towards more bionic implementations. As the learning capabilities of the ARS are further
developed, so will this algorithm be phased out in favor of more cognitive-based approaches such
as route learning, route integration, and route combination.

All of characteristics of human navigation mentioned place heavy emphasis on the learning ca-
pability of an intelligent agent. At the time of the writing the ARS implementation possessed no
such capability, which precluded further research into this topic. As such, it is therefore justified
to use an algorithm based on a priori knowledge of the environment to discover novel routes,
such as the one developed in this thesis. As the learning capabilities of the ARS are further de-
veloped, so will this algorithm be phased out in favor of more cognitive-based approaches such
as route learning, route integration, and route combination.

6.6 Future work

As the work on the model of self-localization and navigation progressed, several features lying
outside of the scope of the thesis were identified as being potentially beneficial to agent’s ability
to navigate the environment. These features will be described and discussed in this section.

6.6.1 Path length

The purpose of most route planning algorithms is to find the shortest path within a given graph.
The length of a route is a sum of weights of all edges within that route. These weights are
commonly interpreted as the length of the path between two vertices.

The navigation algorithm in this thesis does not take into account the length of routes. There
are several reasons that make inclusion of length or distance into the model impossible at the
moment:

• ARS does not collect odometry data and does not perceive the exact passage of time

• Locations do not have uniform size
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• Locations completely cover the known environment

If one assumes the locations are similar in size, one could use locations as units of distance,
thereby assessing the length of the route according to the number of “steps”, or transitions, it
took to reach the destination. This assumption was the reason a greedy route planning algorithm
was used for navigation.

Another possibility related to the route learning is the concept of length that might be associated
with a route. A good example is an agent that is given route information from a knowledge
source, along with some approximate of its length, such as “a couple of hundred meters” or
“about a kilometer”. This approximation can be stored and then retrieved during decision mak-
ing to obtain an estimate of a total length of a path being considered. Another, closely related
idea is to allow the agent to store comparisons of routes with same source and destination, which
can be either learned or deducted. This would allow the agent to choose the shorter path when
presented with multiple paths to a destination without any additional calculation.

6.6.2 Location, region, and route desirability

In everyday situations human decision on which path to take is based on many other factors than
just location connectivity and the length of the route. Desirability of a place is influenced by
factors such as accessibility, safety, emotional response, familiarity, and recent use. These and
possibly other factors, in conjunction with the internal state of the traveler, their feelings, desires
and urges, exert a significant influence on the decision which route to take toward the current
goal.

Locations are regions that trigger certain non-negligible emotional response from the agent are
assumed to be accessible by the decision unit. These can then be factored in in the navigation
procedure by placing weights on incoming edges of respective vertices in the graph. Imple-
menting such weights in the current navigation model is trivial, as it involves modifying data
structures to accommodate for an array of different types of responses to them by the agent. The
route planning algorithm then becomes a more general case of shortest-path algorithm.

The challenge lies with proper integration of this concept into the ARS model. Every place
and region stored in the memory is represented by a word presentation mesh. This allows for
associations to be extracted from the mesh for purposes of evaluating the desirability of a certain
place in the environment. The navigation module does not calculate these values on its own;
instead, the decision unit would have to retrieve those responses from the storage and aggregate
them into a single value that would be then used by the route planning algorithm. This would
necessitate adapting the route planing algorithm to return quality scores along with the calculated
routes, in order to allow the decision unit to select the most fitting route available.
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6.6.3 Spatial configurations of locations and regions

Semantic Spatial Hierarchy [Kui00] allows for spatial relations to be defined between locations
and regions on the topological level. These are particularly useful for the exploration process,
as it allows the agent to expand the spatial knowledge by traveling between locations using
previously unknown routes, guided by known of inferred relations between known parts or the
environment.

Another relevant use for such relations is the resolution of the problem of false negatives in
localization, also known as loop closing problem. If a known location isn’t recognized upon
revisit, due to unfavorable positioning or temporary occlusion during localization, it might be
encoded as a new separate location, introducing inconsistency into the map. If the agent has
knowledge about spatial relations, however, it could potentially deduce that it should be located
at or near a particular location, which would thus resolve the problem.

Adding this feature to the model requires research of the following problems: how to represent
the configurations with respect to the current model, how to adapt the ARS model to enable
reasoning upon these configurations, and finally, how to recognize and learn these configurations
from the environment.

6.6.4 Paths as environmental features

Paths as environmental features are quite commonly selected to facilitate self-localization and
navigation, as they are quite ubiquitous in real world environments and often created for the sole
purpose of aiding human navigation, especially in landmark-poor parts of the environment.

Unfortunately, ARS architecture currently does not posses the capability to recognize, encode
and utilize paths in any way. This was the main reason they were not included in the model
presented here. However, since the model was designed with extensibility in mind, a decision
influenced by the ARS still largely being a work in progress, it is imaginable paths could be
added to the model with next to no alteration.

Assuming interaction with paths would be realized as actions similar to actions presented in this
thesis, one would not need to change the navigation routine at all, as its only interaction with
actions is their retrieval.

Regarding scenes, one would have to introduce a concept of a feature, which would represent an
abstraction of both landmarks and paths, along with any other feature that might be utilized in
the future. Features would then replace landmarks as contents of the scenes. The set of relations
would have to be augmented to accommodate the new type of feature, such as “landmark A is
on path B”.
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6.6.5 Relative distance as a feature configuration

A paper by Waller et al. [WLGB00] is a source of information regarding feature configurations
that are easily recognized and extracted by humans. Amongst other things it states: “Our results
can be summarized fairly succinctly: in landmark-based place learning in these environments,
people tended to rely primarily on information about relative distances except when: 1.) it
created nonmetric distortions of target-to-landmark enclosure relationship, or 2.) angular infor-
mation was very salient during learning (e.g., containing all right angles) [WLGB00, p. 350].”

This further stresses the need to add relative distance to the set of configurations used in the
scene, and possibly thereby replace the absolute distance configuration entirely. The deficiencies
of the landmark distance heuristic were documented in this thesis, and this

6.6.6 Enclosure as a feature configuration

In the same paper by Waller et al. [WLGB00], one configuration of particular interest was the
enclosure configuration, defined in the paper as “the state of being surrounded or contained
within a number of landmarks”. This corresponds to the problem of determining whether a
point in plain lies within a simple polygon, which is defined using landmarks as polygon points
[Hai94].

Utilizing enclosure would greatly simplify definition of locations in landmark-rich environments
by allowing what seems to be natural tendency towards segmentation of environment into convex
polygons. This would in turn make navigation less error-prone and make the current location
heuristic less important, as it was implemented as a kind of ad hoc solution to the problem of
transition between locations.

Enclosure as a feature configuration was not included in this this model as there was no indica-
tion of how it would be handled by the perception model of the ARS. Therefore, further research
is recommended in order to determine how such a configuration could be recognized, stored, and
utilized within the ARS.

6.6.7 Composite Landmarks

In this model a landmark is abstracted to a point in the environment. As such, it has no di-
mensions. On the contrary, real world landmarks have dimensionality and this property is often
critical to proper localization and navigation.

For example, a landmark building can be observed from different standpoints. Assuming that
building is not entirely featureless, as a ball or a cylinder would be, different standpoints yield
different images of the same observed object.

These images can be abstracted into landmarks themselves, allowing, for example, the northern
face of a museum to viewed as a separate landmark from the western face of the same museum.
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Additionally, when the orientation is ultimately irrelevant, both of those faces can be subsumed
under one single landmark that represents the museum as a whole.

Adding this functionality would allow multiple distinct encodings of the same landmark, repre-
senting views from different standpoints, which would be semantically connected into a single
overarching landmark, termed composite landmark, thereby solving the problem of landmark
recognition with respect to different viewpoints.

6.6.8 Integration of localization into memory retrieval system

As the localization algorithm started to take its present shape, its similarity to the retrieval al-
gorithm of the information management system of the ARS became more and more apparent.
Both of the algorithms compare data structures against a set of candidates stored within a larger
data structure, returning the best possible match. However, in order for the localization routine to
gain access to the cognitive map the memory has to be queried, adding a significant performance
penalty. It is hypothesized that the localization functionality could be eventually integrated into
the memory retrieval algorithm.

Such integration would make the F61 localization module as it currently stands obsolete, thereby
further simplifying the ARS model, as well as accelerating the localization process by eliminat-
ing unnecessary memory access.

6.6.9 Fuzzy location borders

The images of localization test results show many instances of awkwardly-shaped borders be-
tween neighboring locations, such that are unlikely to be defined by humans. This is due to
several facts:

• algorithm only takes into account the best-matching location for any given point in the
environment, regardless of how close the scores of other locations were to the best one

• the model of agent’s vision field features strict borders between vision ranges, which
translates into abrupt changes in landmark distance heuristic method score

• heuristics generally deal with small sets of features, where significant changes in scores
are often caused by relatively small changes in the perception of the environment

Such clearly defined limits exist almost exclusively in graphical representation of the environ-
ment, and such borders seem to have no influence on human navigation. By making locations
fuzzy one would improve the problematic behavior during transitions between locations, which
was the reason behind the introduction of the current location heuristic. Further research into
fuzzy logic as a part of a psychoanalytically-inspired is required in order to show whether im-
plementing such a model is feasible.
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6.6.10 Ambiguous localization

One of the possible solutions to the problem of localization uncertainty, particularly when run-
ning the localization routine for the first time is to develop and track several possible current
locations simultaneously. This would include a variable number of candidate locations that
satisfy a certain similarity criterion with the perceived location. This would be initial set of hy-
pothesized current locations that would get smaller as more data is obtained during navigation,
until the set is eventually narrowed down to a single candidate location. The hypothesis set is
modified as the agent navigates the environment, which adds or eliminates possibilities based
on the connectedness of locations in the cognitive map. After each localization a new set of
candidate locations is obtained and compared to the last set. A location from the last set is either
retained, if it is found in the new set, replaced, if a directly connected locations is found, or
otherwise removed. This can sometimes lead to a temporary increase in number of hypotheses,
especially in the ambiguous parts of the environment around the location borders, but should
gradually get narrowed down to a single location. This functionality might allow the agent to
traverse mazes as well, which are by definition almost devoid of landmarks.

The biggest benefit to implementing such a functionality is the increased robustness of the pro-
cess; while it is unlikely for uncertainty to occur in landmark-rich environment where landmarks
are mostly distinct form one another, this property of the environment cannot be always guar-
anteed, even more so since the impact of yet to be implemented learning algorithms on the
localization process is currently unforeseeable.

6.7 Conclusion

Research of the topic of the navigation in autonomous agent provided a small but very valuable
insight into the possibilities available to models such as the ARS. Results of the tests show
confirm the validity of the approach described in this thesis, but more importantly help pave
the way towards a robust and reliable solution to the human-like navigation problem. The most
important conclusions reached can thus be summarized in several points:

• Feature-based navigation is demonstrated to be compatible with the ARS and its concepts,
even in the limited scope as shown in this thesis. It is also corroborated by significant
amount of research into human navigation behavior, which makes it a suitable approach
to the problem in this particular case. Further research into additional types of environ-
mental features and their configurations, their proper recognition, filtering, and encoding,
is expected to further improve the power of the navigation model, as well as to bring it
closer to exhibiting human-like behavior as seen in the real world. The ability of the
ARS to provide properly processed data is absolutely vital to the proper functioning of the
navigation model and thus represents the biggest challenge pertaining to any real-world
implementation of the model.

• As demonstrated by tests done in this thesis, and corroborated by published research,
distance as a feature configuration is critical to successful localization. Despite there
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existing methods such as feature triangulation methods that do not rely on distance as a
feature configuration, they use geometrical methods of localization that are too analytic
and exact to be viable option when striving toward a human-like model. It is recommended
that any further research into feature recognition should also encompass feature-agent
(absolute) and feature-feature (relative) distance recognition.

• Map building through learning and exploration is one of the most important factors in
facilitating human-like navigation. The cognitive map is the fundamental part of the the
agent’s ability to navigate and all behavior in this context is directly related to its structure
and contents. Manually created maps will not break the functionality, but will preclude
the emergence of true human-like behavior by providing an unrealistic, however accurate,
initial knowledge of the environment.

• The route planning algorithm serves as a valid basis for further development of this part
of the model. It was shown to work on both flat maps as well as on hierarchical maps of
various depths, and, due to its recursive nature, is expected work on maps of any depth
of the hierarchy. Its ability to function on manually constructed maps makes it a work-
ing temporary solution to the problem, until more natural maps described above become
possible. Further research in this aspect should be directed towards methods of analysis
and combination of known routes, which should be able to construct routes from currently
known paths in a simple and intuitive manner.

In conclusion, this thesis is just the first step into the area of research that has long been avoided
due to perceived intractability of symbolic high-level reasoning. While the test results demon-
strated deficiencies of the navigation model in its present state, they also showed how these
might be remedied in the future. As the ARS model continues to develop, more and more op-
portunities to improve the navigation model will present themselves, eventually resulting in a
bionically inspired navigation model supported by high-level reasoning that will be on par with
the current state of the art.
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APPENDIX A
Localization test results

All images shown here are masked to improve visibility of locations and the shape of the en-
vironment. Each test results has the parameters specified in the caption. Parameter key: S –
landmark set heuristic score weight, O – landmark order heuristic score weight, D – landmark
distance heuristic score weight, R – vision range, N – near distance range ratio, M – mid-far
distance range ratio. See section 6.3 for the interpretation of these results.
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(a) S:0,0 O:0,0 D:1,0 R:300 N:0,25 M:0,5 (b) S:0,0 O:1,0 D:0,0 R:300 N:0,25 M:0,5

(c) S:0,0 O:1,0 D:1,0 R:300 N:0,25 M:0,5 (d) S:1,0 O:0,0 D:1,0 R:300 N:0,25 M:0,75

(e) S:1,0 O:1,0 D:0,0 R:300 N:0,25 M:0,75 (f) S:1,0 O:0,0 D:0,0 R:300 N:0,25 M:0,5

Figure A.1: Scenario A, first set
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(a) S:1,0 1:0,0 D:1,0 R:300 N:0,25 M:0,5 (b) S:0.5 O:0.0 D:1.0 R:300 N:0.25 M:0.5

(c) S:0.25 O:0.0 D:1.0 R:300 N:0.25 M:0.5 (d) S:1.0 O:0.0 D:1.0 R:300 N:0.5 M:0.75

(e) S:1.0 O:0.0 D:1.0 R:300 N:0.25 M:0.75 (f) S:1.0 O:0.0 D:1.0 R:300 N:0.33 M:0.66

Figure A.2: Scenario A, second set
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(a) S:0,0 O:0,0 D:1,0 R:300 N:0,25 M:0,5 (b) S:0,0 O:1,0 D:0,0 R:300 N:0,25 M:0,5

(c) S:0,0 O:1,0 D:1,0 R:300 N:0,25 M:0,5 (d) S:0,5 O:0,0 D:1,0 R:300 N:0,25 M:0,75

(e) S:0,25 O:0,0 D:1,0 R:300 N:0,25 M:0,75 (f) S:0,0 O:1,0 D:0,0 R:300 N:0,25 M:0,5

Figure A.3: Scenario B, first set
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(a) S:1,0 O:0,0 D:1,0 R:300 N:0,5 M:0,75 (b) S:1,0 O:0,0 D:1,0 R:300 N:0,25 M:0,5

(c) S:1,0 O:0,0 D:1,0 R:300 N:0,25 M:0,75 (d) S:1,0 O:0,0 D:1,0 R:300 N:0,33 M0,66

(e) S:1,0 O:1,0 D:0,0 R:300 N:0,25 M:0,5 (f) S:1,0 O:1,0 D:1,0 R:300 N:0,25 M:0,5

Figure A.4: Scenario B, second set
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APPENDIX B
Listing of the XML Schema for

Scenario Files

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" attributeFormDefault="

unqualified" elementFormDefault="qualified">
<xs:element name="scenario" type="scenarioType"/>
<xs:complexType name="dimensionsType">
<xs:sequence>
<xs:element type="xs:short" name="width"/>
<xs:element type="xs:short" name="height"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="positionType">
<xs:sequence>
<xs:element type="xs:float" name="x"/>
<xs:element type="xs:float" name="y"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="landmarkType" mixed="true">
<xs:sequence>
<xs:element type="positionType" name="position" minOccurs="0"/>
<xs:element type="xs:string" name="label" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:byte" name="id" use="optional"/>
<xs:attribute type="xs:byte" name="ref" use="optional"/>

</xs:complexType>
<xs:complexType name="visionType">
<xs:sequence>
<xs:element type="xs:float" name="range"/>
<xs:element type="xs:float" name="angle"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="agentType">
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<xs:sequence>
<xs:element type="positionType" name="position"/>
<xs:element type="xs:string" name="label"/>
<xs:element type="xs:float" name="orientation"/>
<xs:element type="visionType" name="vision"/>

</xs:sequence>
<xs:attribute type="xs:byte" name="id"/>

</xs:complexType>
<xs:complexType name="entitiesType">
<xs:sequence>
<xs:element type="landmarkType" name="landmark" maxOccurs="unbounded"

minOccurs="0"/>
<xs:element type="agentType" name="agent"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="obstacleType">
<xs:sequence>
<xs:element type="landmarkType" name="landmark" maxOccurs="unbounded"

minOccurs="0"/>
</xs:sequence>
<xs:attribute type="xs:string" name="occluding" use="optional"/>

</xs:complexType>
<xs:complexType name="obstaclesType">
<xs:sequence>
<xs:element type="obstacleType" name="obstacle" maxOccurs="unbounded"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="environmentType">
<xs:sequence>
<xs:element type="dimensionsType" name="dimensions"/>
<xs:element type="entitiesType" name="entities"/>
<xs:element type="obstaclesType" name="obstacles"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="rpositionType">
<xs:sequence>
<xs:element type="xs:float" name="x"/>
<xs:element type="xs:float" name="y"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="locationType" mixed="true">
<xs:sequence>
<xs:element type="positionType" name="position" minOccurs="0"/>
<xs:element type="rpositionType" name="rposition" minOccurs="0"/>
<xs:element type="xs:string" name="label" minOccurs="0"/>
<xs:element type="landmarkType" name="landmark" maxOccurs="unbounded"

minOccurs="0"/>
</xs:sequence>
<xs:attribute type="xs:byte" name="id" use="optional"/>
<xs:attribute type="xs:byte" name="ref" use="optional"/>

</xs:complexType>
<xs:complexType name="locationsType">
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<xs:sequence>
<xs:element type="locationType" name="location" maxOccurs="unbounded"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="fromType">
<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:byte" name="ref" use="optional"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>
<xs:complexType name="toType">
<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:byte" name="ref" use="optional"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>
<xs:complexType name="actionType">
<xs:sequence>
<xs:element type="fromType" name="from"/>
<xs:element type="toType" name="to"/>
<xs:element type="xs:string" name="type"/>
<xs:element type="landmarkType" name="landmark" maxOccurs="unbounded"

minOccurs="0"/>
</xs:sequence>
<xs:attribute type="xs:short" name="id" use="optional"/>

</xs:complexType>
<xs:complexType name="actionsType">
<xs:sequence>
<xs:element type="actionType" name="action" maxOccurs="unbounded"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="regionType">
<xs:sequence>
<xs:element type="xs:string" name="label"/>
<xs:element type="locationType" name="location" maxOccurs="unbounded"

minOccurs="0"/>
<xs:element type="regionType" name="region" maxOccurs="unbounded"

minOccurs="0"/>
</xs:sequence>
<xs:attribute type="xs:byte" name="id" use="optional"/>

</xs:complexType>
<xs:complexType name="regionsType">
<xs:sequence>
<xs:element type="regionType" name="region"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="mapType">
<xs:sequence>
<xs:element type="locationsType" name="locations"/>
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<xs:element type="actionsType" name="actions"/>
<xs:element type="regionsType" name="regions"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="scenarioType">
<xs:sequence>
<xs:element type="environmentType" name="environment"/>
<xs:element type="mapType" name="map"/>

</xs:sequence>
<xs:attribute type="xs:float" name="version"/>

</xs:complexType>
</xs:schema>
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