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Abstract

In macroeconomic growth models technology is often exogenous or endogenously described
with simple dynamics. The diploma thesis analyses the dynamics, but also the direction
and the bias of technical change. The basic framework introduced by Acemoglu (2002) is
a two-sector model. Each sector uses different technologies. If the economy is switching
from the technology in one sector to the other, we face directed technical change. The
reasons and the policies to direct technical change are discussed for the basic model of
Acemoglu (2002). Further extensions that also include the dynamics of environment and
population are introduced afterwards. The main focus is the quality of environment. What
happens, if one sector needs natural resources to produce its goods? Which policies can be
set to attract researchers to invest in sustainable technologies? The paper of Acemoglu,
Aghion, Burstyn and Hemous (2012) describes scenarios with renewable and exhoustible
natural ressources. This paper also introduces different aspects of technical change and
environment: Is economic growth still possible, if the production of the consumption
good always affects the environment negatively, even if there exists a second production
sector that decreases pollution of the first sector and increases the regeneration rate of
the environment?
A more complex model of directed technical change is based on the work of Schaefer
(2012). Additional to the factor environment it includes population dynamics and works
with two different types of households - skilled and unskilled. As a result, the educational
choice of parents for their offspring plays a crucial role to direct technical change.
The diploma thesis describes and compares these four different models of directed technical
change.
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1 Introduction

There are no great limits to growth because there are no limits of human intelligence,

imagination, and wonder.

Ronald Reagan (1980)

Economies can be growing. Economic models build a framework to analyse and under-
stand the driving forces of economic growth. In neoclassical growth models an increase
in output depends on capital accumulation, population growth and external technologi-
cal progress. The basic Solow growth model in Solow (1956) for example introduced an
exogenous technological change to explain the long term growth of the economy.

The growth rate has to be endogenous and not exogenously given in order to understand
the process of economic growth. Investments of firms and households in research and
development cause endogenous technical change and therefore economic growth.
We differentiate two types of technical change: product and process innovation. If a new
product is invented, e.g. a new smart phone, consumers are willing to pay more for this
new product. Whereas process innovation leads to higher production efficiency. Either
the production costs decrease, or more units of the final good can be produced within the
same time or the quality of the final good increases. In this thesis the focus will be on
process innovations.
Furthermore, we can distinguish between micro and macro innovations. Micro innovations
improve the quality of one product like e.g. better lenses for a special digital camera.
More radical innovations for a whole industry are macro innovations. The invention of
the internet or the web 2.0 changed the whole production and consumption behaviour.
In the thesis the focus is given to macro innovations.

To model technological change, a production function for technology is introduced in the
literature. Intuitively, the inputs in the production function are the number of scientists
who do research for a specific time, the existing knowledge and investments in terms of
the final good. Then a new technology is developed with a certain probability, because
we can not guarantee that research is always successful. With those production func-
tions, also called technology possibilities frontier, the choices of firms and households for
investments in research and developement (R&D), research spendings, labour supply and
subsidies can be derived.
Moreover, existing knowledge plays a crucial role. There are two approaches. First, it is
harder to invent new innovations if the technology level is already high. So we face a nega-
tive state dependence. Second, more common are knowledge spillovers. Researchers stand
"on the shoulders of giants" and are more successful using better existing technology.

Who owns the right to use new technologies? Older models assumed new innovations as
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1 Introduction

public good. However, it makes sense to introduce a patent policy. Successful researchers
receive patent rights for their new innovation. After inventing the new technology, the
products they produce are better than the others. So the new technology replaces the old
technologies and the researcher becomes a technology monopolist. The profit maximisa-
tion of the monopolist influences the speed of new innovations since investments in R&D
are more valuable.

So far, we have only discussed technological change as one single type of technical change.
This neutral technical change improves the whole technology level, but is not always
appropriate. Furthermorde, we have to analyse the direction and the bias of the technical
change. According to Acemoglu, (2002), in the period after the second world war people’s
education enhanced and with better working skills the wage increased as well. There
was a simple correlation between the skills of the worker and their wage, so the technical
change was skill-biased. In the 1970s and 1980s the correlation stopped. Every cohort
still got better education, but the wage premium even decreased. Labour supply increased
since more graduates entered the labour market. As a consequence, the technology level
increased as well. This was driven by a labour-biased technical change. Obviously, in the
early 1970s the driving forces for a directed technical change changed.

Source: Acemoglu, (2002)

The thesis describes the model of directed technical change by Acemoglu, (2002) and
specific extensions of the model. One extension is to describe, how technical change
takes place if one sector is environmental-friendly. The framework is based on Acemoglu,
Aghion, Burstyn and Hemous (2012).
Production in the majority of cases affects the environment. Either the firms use natural
resources as input for the final good or production processes produce pollution therby
harming the environment.

As described in Xepapadeas, (2005) different economic growth models include environ-
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1 Introduction

ment. In the simple AK-model with the production function y = Ak the long term
economic growth rate is equal to the growth rate of consumption, capital and output, if
pollution is not considered. To introduce pollution, we assume pollution accumulation if
production takes place and pollution as part of the utility function of the social planner.
As soon as pollution is taken into account, it is impossible to obtain a positive growth
rate in the long term.
To enable a positive long term growth rate, we introduce abatement. Capital can either be
productive capital for output production or abatement capital for pollution abatement.
For some parameter specifications unlimited growth without pollution accumulation is
possible.
In addition to the two types of capital it is possible to also invest in both types. So we
simply talk about two sectors. Each sector has its own labour supply, its own production
technology and the sectors produce different goods.
If a social planner maximises the aggregate utility function including consumption and
pollution, permanent growth is not optimal. To get rid of externalities the social planner
has to introduce policy designs: subsidies for investment in the abatement-sector, subsi-
dies to help firms in abatement and emission taxes for producing pollution. These policies
help to increase economic growth in the long term.

Another approach is to split the production into two sectors, where one sector -the green

sector - is producing in a less polluting way and is using renewable ressources more
efficiently than the second sector, the dirty sector. Instead of abatement both sectors
produce (parts of) the final good. These two sectors enable directed technical change,
which is analysed in detail in this thesis. We analyse the long run market equilibrium
and the social optimum to find out, when long term growth and sustainable production
is possible.

As mentioned in the beginning, economic growth can also be explained with population
growth. In the thesis we follow the extension of the two sector model with environment
based on Schaefer, (2012) to analyse the interaction with population and educational
choices in an overlapping generations model.

To give an overview, the diploma thesis first explains the basic two sector model following
the framework of Acemoglu (2002). Then we add environment to our model and denote
the sectors as green and dirty sectors, refering to Acemoglu, Aghion, Burstyn and Hemous
(2012). We pursue a modification of this model to analyse abatement instead of a green
production sector, based on an extension in Acemoglu, Aghion, Burstyn and Hemous
(2012). In addition to the environmental aspect, Schaefer, (2012) introduces population
growth in the two sector model. Therefore an overlapping generations model helps to
model educational choices of parents and old-age provisions. In this very complex model
long run growth depends on the fertility rate and environmental issues.
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2 Basic Model

In this chapter we present an overview of the basic model of directed technical change,
introduced by Acemoglu (2002).

2.1 Background

The basic model of directed technical change is an endogenous growth model. The model
is aimed for not only analysing a simple change in technology to explain why and how
much the economy is growing, but also to study the direction and the bias of technical
change.

Therefore we assume an economy with two different production factors. These factors
can be e.g. skilled and unskilled labour. There are also two different types of technologies
complementing these factors.
You can think of high skilled workers, who need office buildings, good communication
tools and a high knowledge support to provide their goods and services, whereas factories
with low skilled workers use different machines, e.g. assembly lines, to provide their
products.

This leads us to a two sector model shown in Fig.2.1. We denote the variables in the low
skilled sector with index L and in the high skilled sector with index H. In the low skilled
sector, scientists SL do research to improve the production technology. This impacts the
the machines, firms use in the low skilled sector. Furthermore, low skilled workers L

work on these machines to produce the intermediate good YL. The high skilled sector is
based on a similar procedure. Scientists SH and high skilled labour H are working in the
H-sector to produce the intermediate good YH .
Basically, both sectors produce intermediate goods, which can be combined to a final
good. The output of the economy is measured in terms of the final good. Households
consume the final goods and provide labour supply (workers, scientists) for each of the
sectors. Workers choose the sector in which they are producing the intermediate goods, so
they become either L or H. Scientists can decide whether they want to do their research
the L- or the H-sector. This decision depends on the relative profitability they expect
in both sectors. Since firms are profit maximising, they focus on the more profitable
technology.
A detailled graph is found in the appendix Fig.E.1.

The decision where scientists offer their labour is a key determinant that explains the
direction and the bias of the technical change. So we analyse the relative profitability of
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2 Basic Model

. . . . . .

Basic model

.

.H-sector

.households .final good

.L-sector

.YL .intermediate goods

.YH .intermediate goods

.Y .

.scientists SL .labour L

.scientists SH .labour H

4 / 9Figure 2.1: Basic structure of the model

the different types of technology. We will see, that a price effect and a market size effect
are the driving forces of the direction of the technical change.

2.2 Definitions

To simplify notification I will not write the time argument t to every variable.
We assume a closed economy with consumers, firms and scientists. The production takes
place in two sectors which are denotet by L and H. In each sector scientists LS and HS

invent technologies NL and NH , respectively, which are sold by the technology monopolists
to the firms to produce intermediate goods YL or YH . The final good Y consists of both
intermediate goods and is used for consumption C, Investment I and R&D expenditure
D. This leads to the following ressource constraint

C + I +D ≤ Y. (2.1)

The representative consumer has constant relative risk aversion (CRRA) preferences
� ∞

0

C(t)1−θ − 1

1− θ
e
−ρt

dt. (2.2)

The relativ risk aversion θ (the intertemporal elasticity of substitution equals 1
θ
) does not

change over time. ρ is the rate of time preference.

The final good Y is produced from the intermediate goods YL and YH . YL is the labour
intensive good and it is produced by low (or un-)skilled workers L, whereas YH uses high-
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2 Basic Model

skilled workers H (can be also interpreted as capital or land).

Y =
�
γY

�−1
�

L
+ (1− γ)Y

�−1
�

H

� �

�−1 (2.3)

The production technology is CES (constant elasticity of substition) implying that the
intermediate goods do not influence each other. � ∈ (0,∞) is the elasticity of substitution
between YL and YH . If � > 1, the goods are gross substitutes, so the final good can use
YH instead of YL. On the other hand, if � < 0, the goods are gross complements. If
there is less YL available, less Y can be produced. γ ∈ (0, 1) shows the importance of
YL compared to YH . Note that there is no direct impact of technology in the production
function of the final good.

The firms are producing the intermediate goods with the following constant returns to
scale (CRS) production functions.

YL =
1

1− β

��
NL

0

xL(j)
1−β

dj

�
L
β (2.4)

YH =
1

1− β

��
NH

0

xH(j)
1−β

dj

�
H

β (2.5)

The factor L and H is complemented by machines xL and xH , which are available in
a range of NL and NH , respectively. For the first analysis NL and NH are exogenous.
β ∈ (0, 1) weights the importance of labour supply compared to machines.

Substituting the production functions of the intermediate goods YL (2.4) and YH (2.5)
in the production function of the final good Y (2.3) leads to the following aggregate
production function.

Y =

�
γ
� 1

1− β

� � NL

0

xL(j)
1−β

dj
�
L
β
� �−1

� + (1− γ)
� 1

1− β

� � NH

0

xH(j)
1−β

dj
�
H

β
� �−1

�

� �

�−1

(2.6)

Next, two ways of technical change are introduced. For an easier explanation I consider
the general aggregate production function F (A,L,H) with a positive dependency of the
technology index A: ∂F

∂A
> 0. First, we define technical change as L-augmenting or L-

complementary, if we can write the production function as F (AL,H). Analogous for
H. Second, we look at the concept of factor-biased technological change. If the relative
marginal product (relative price) ∂F/∂L

∂F/∂H
is increasing in A, the technological change is

L-biased. In other words, the relative demand curve for a factor is shifting outwards.
It is easy to see, if the technological change is factor-augmenting, it depends on the
elasticity of substitution � whether it is L-biased or H-biased. When the intermediate
goods are substitutes, H-augmenting technical change is also H-biased. In contrast, when
the goods are complements, H-complementary technical change is L-biased.
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2 Basic Model

2.3 Analysis

To find an equilibrium, we have to set the wages wH and wL for the workers H and L,
respectively, and the prices pH and pL for the intermediate goods YH and YL to clear
the markets. Furthermore, the producers of the intermediate goods are maximising their
profits ΠH and ΠL choosing xH and H, respectively xL and L. And the technology
monopolists maximise their profits πH and πL with respect to the prices χH and χL of
the machines, respectively.

Firms are selling the intermediate goods in competitive markets. Profit maximisation
implies that marginal revenues are equal to marginal costs.
Technically, we differentiate the production function (2.3) of the final good with respect
to YH or YL to obtain the the prices pH and pL for each good. A detailled derivation is
found in the appendix (A.1). We define the relative price p of YH and YL.

p ≡ pH

pL
=

1− γ

γ

�YH

YL

�− 1
� (2.7)

Intuitively, the relative price p ≡ pH

pL
is increasing for a greater supply of YL and for a

smaller supply of YH .

The price of the final good is given by the prices pL and pH for the intermediate goods.
Analogous to the production function of the final good (2.3) its price is
�
γp

�−1
�

L
+(1−γ)p

�−1
�

H

� �

�−1 . Using the price of the final good as a numeraire, we can write

[γ�
p
1−�

L
+ (1− γ)�p1−�

H
]

1
1−� = 1. (2.8)

Next, we consider the profits ΠL and ΠH of the producers for YL and YH , respectively.
They can sell their products for the price pL and pH on the markets, but have to pay
their workers L and H wages wL and wH , respectively. Furthermore, they buy NL or
NH different machines xL(j) or xH(j) from the technology monopolists for a price χL(j)
or χH(j). Since the intermediate goods are sold in competitive markets and NL and NH

is given, the firms can only choose how many machines xL(i) or xH(j) and how many
workers L or H they use to maximise their profit.

max
L,{xL(j)}

ΠL = max
L,{xL(j)}

pLYL − wLL−
�

NL

0

χL(j)xL(j)dj (2.9)

max
H,{xH(j)}

ΠH = max
H,{xH(j)}

pHYH − wHH −
�

NH

0

χH(j)xH(j)dj (2.10)

We substitute the expressions YL (2.4) and YH (2.5) into (2.9) and (2.10). The first order
conditions (FOC) with respect to xL and xH give the number of machines for every type
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2 Basic Model

j. The detailled derivations can be found in the appendix (A.2).

xL(j) =
� pL

χL(j)

� 1
βL (2.11)

xH(j) =
� pH

χH(j)

� 1
βH (2.12)

The demand for machines increases if there are more workers who can use them or if the
price of the intermediate good is increasing, so it is worth to invest more in the factors
to earn more from a higher production output. It is also intuitive, that the demand for
machines is decreasing, if the price of the machines is increasing.

Calculating the FOC with respect to L and H gives the equilibrium wages wL and wH .
Again, detailled calculations are found in the appendix (A.2).

wL =
β

1− β
pL

��
NL

0

xL(j)
1−β

dj

�
L
β−1 (2.13)

wH =
β

1− β
pH

��
NH

0

xH(j)
1−β

dj

�
H

β−1 (2.14)

The last equations to obtain the equilibrium are the profits πL and πH of the technology
monopolists. They produce machines xL(j) or xH(j) and sell them for a price χL(j) or
χH(j), respectively, to the producers of the intermediate goods. Producing a machine
costs ψ in terms of the final good. Since they are monopolists they can set the prices
χL(j) and χH(j) for every type of machine and maximise πL =

�
NL

j=0 πL(j) in the L-sector
and πH =

�
NH

j=0 πH(j) in the H-sector. Since the profits are additive separable, we will
focus on the profit of one machine type only and therefore maximise each component
πL(j) or πH(j) separately.

max
χL

πL(j) = max
χL

(χL(j)− ψ)xL(j) (2.15)

max
χH

πH(j) = max
χH

(χH(j)− ψ)xH(j) (2.16)

Substituting the demand of machines xL (2.11) and xH (2.12) and deriving the FOC (see
appendix (A.3)) gives

χL(j) = χH(j) =
ψ

1− β
. (2.17)

To simplify the further calculations we set ψ = 1−β and therefore get χL(j) = χH(j) = 1.
So we can write the equilibrium profits as

πL(j) = βxL(j) = βp

1
β

L
L (2.18)

πH(j) = βxH(j) = βp

1
β

H
H (2.19)

The profit is obviously proportional to the number of machines, and after substituting xL

(2.11) and xH (2.12) even independent of the machine type.
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2 Basic Model

Technology monopolists do not only focus on their current profits, but want to maximise
their profits over a longer period. We even assume they value their profits over infinite
time horizon. Therefore the net present discounted values VL and VH of the profits for
the technology monopolists are more important than the profits πL(j) and πH(j) of one
period. The values of all profits expected in the future VL or VH depend on the interest
rate r, which can vary with time. Intuitively, the net discounted values VL and VH are
the current profits πL and πH plus the changes in time, discounted by the interest rate.

rVL − V̇L = πL (2.20)
rVH − V̇H = πH (2.21)

Using (2.18) and (2.19) we can rewrite the equation as

VL =
βp

1/β
L

L+ V̇L

r
(2.22)

VH =
βp

1/β
H

H + ˙VH

r
. (2.23)

For further analysis we assume that there is no change in the profits over time (V̇L = 0
and V̇H = 0).

2.3.1 Technical change

To analyse the direction of the technical change we need to have a closer look at the
relative net present discounted values derived above, where we assumed V̇L = 0 and
V̇H = 0.

VH

VL

= p
1
β

����
price effect

× H

L����
market size effect

. (2.24)

Basically, there are two effects: the price effect and the market size effect. If the price pL or
pH for an intermediate good YL or YH , respectively, is increasing, the net profit value VL or
VH for the technology monopolists is increasing as well. So they are interested in supplying
more machines xL or xH for the producers of the intermediate good. This leads to more
production of these intermediate goods. That is the so called price effect. On the other
hand, if there are more workers (or more general: machine complementary production
factors) in one sector, the net profit value VL or VH is increasing and again the technology
monopolists want to sell more machines for this sector and the relative production in this
sector is increasing. To sum up, a larger market leads to more innovation.

To make a more detailled analysis, we substitute the demand curve for machines facing
the technological monopolists xL (2.11) and xH (2.12) into the production functions YL

10



2 Basic Model

(2.4) and YH (2.5). We use the so gained expressions in the price function p = pH

pL
(2.7).

p =
pH

pL
=

�
1− γ

γ

�� 1
1−β

� �
NH

0 (pH
1
βH)1−β

dj
�
H

β

1
1−β

� �
NL

0 (pL
1
βL)1−βdj

�
Lβ

�− 1
�

Using the derived elasiticity of substitution (see appendix (A.4)) between the production
factors H and L σ ≡ � − (� − 1)(1 − β) (so σ > 1 only if � > 1) we can calculate the
relative price p (see appendix (A.5))

p =

�
1− γ

γ

�β�

σ

�
NH

NL

�−β

σ

�
H

L

�−β

σ

(2.25)

and we substitute it in (2.24) to rewrite the relative profitability of creating new H-
complementary machines.

VH

VL

=

�
1− γ

γ

� �

σ

�
NH

NL

�− 1
σ

�
H

L

�σ−1
σ

(2.26)

Using equation (2.26) we can analyse the directed technological change in more detail.
Since the distribution parameter γ ∈ (0, 1), the term

�
1−γ

γ

� �

σ is always a positive constant
influencing just the power, but not the direction of the technological change. Since NL

and NH are given in this analysis,
�
NH

NL

�− 1
σ is positive constant as well. In the next chapter

we vary the ratio of NL and NH as well.
To explain the technological change we have to focus on the relative factor supply H

L
. If the

factors are gross substitutes (σ > 1), and therefore also the intermediate goods (� > 1),
the exponent is positive. In other words, if the relative supply of high-skilled workers is
increasing, the relative discounted value of profits for monopolists VH

VL

is increasing as well
and the H-sector is growing. This is the market size effect we analysed in (2.24).
In contrast, if the factors are gross complements (σ < 1) the influence of the relative
factor supply is inverse. So only the price effect can help increasing VH

VL

.

Similarly we look at the relative factor rewards. Again substituting xL (2.11) and xH

(2.12) in the expressions for wL (2.13) and wH (2.14), respectively, and using p (2.25)
from above gives

ωH

ωL

= p
1
β

NH

NL

=

�
1− γ

γ

� �

σ

�
NH

NL

�σ−1
σ

�
H

L

�− 1
σ

. (2.27)

It does not matter whether the factors are substitutes or not, the relative wages are in-
direct proportional to the relative factor supply. If there are for example more skilled
workers H, each earns less.
We note that the relative innovation technology NH

NL

has the same exponent as the relative
factor supply in (2.26). So the influence depends on the relationship of the two factors:
Are they substitutes or complements?
In the next chapter we introduce the supply of innovations, so NL and NH are endoge-
nous.

11



2 Basic Model

2.4 Supply of innovations - Innovation Possibilites
Frontier

Since we are restricted to the budget constraint, we have to decide how much we spend on
innovation in each sector to determine NL and NH , which are endogenous in the following
section. All the combinations are given in the so called innovation possibilities frontier.

2.4.1 Lab equipment model

The investment in the R&D sector D can be splitted into the spending DL on the sector
with the low-skilled workers (labour intensive) and the spending DH for the R&D in the
H-sector. The technology in each sector is given by the machine varieties NL and NH .
The innovation possibilities frontier is given by the production functions for new machine
types.

ṄL = ηLDL (2.28)
ṄH = ηHDH (2.29)

ηL and ηH denote how many new machine types can be invented for costs of DL and DH

in units of the final good, respectively. This can be different in each sector.
After creating new machine varieties, the technology monopolists get a unique patent for
each type of invented machine and they are its sole supplier.

The technology monopolists can invent the same amount of new machine types whether
there are already many different machine types in this sector or not. Equations (2.28)
and (2.29) show that NL and NH do not influence the innovation possibilities frontier ṄL

and ṄH . In other words: There is no state dependence. We define the relative technology
efficiency η

∂ṄH

∂DH

∂ṄL

∂DL

=
ηH

ηL
=: η, (2.30)

which is always constant.

Balanced growth path - BGP

In the steady state equilibrium there are no changes in the variables over time. So we
have constant prices and NH and NL grow at the same rate. Furthermore, the profits
of the technology monopolists do not change over time, so V̇L in (2.22) and V̇H in (2.23)
are 0. Since the growth rates are the same, also VH

VL

= ηL

ηH
is constant and equal to make

sure, technology monopolists are innovating in both sectors. Substituting πL (2.20) and
πH (2.21) leads to the following condition to clear the technology markets. The detailled

12
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derivation is found in appendix (A.6).

ηLπL = ηHπH (2.31)

Using πL and πH in terms of the price pL (2.18) and pH (2.19), respectively, inserting the
relative price p (2.25) and setting η ≡ ηH

ηL
the technology market clearing condition leads

to

NH

NL

= η
σ

�
1− γ

γ

���
H

L

�σ−1

(2.32)

Whether an increase of the relative factor supply H

L
enlarges the relative amount of ma-

chine varieties NH

NL

depends on σ. If the factors are gross substitutes (σ > 1) there is a
positive relationship, otherwise (σ < 1) a bigger amount of workers in one sector leads to
relatively less types of machines in the same sector.
Again, besides the factor supply, the elasticity of substitution is important for the direc-
tion of the technical change.

Substituting the relative bias of technology NH

NL

into the relative factor prices (2.27) of the
previous section gives

ωH

ωL

= η
σ−1

�
1− γ

γ

���
H

L

�σ−2

. (2.33)

When we compare the case with NL, NH exogenous (2.27) and NL, NH endogenous
(2.33) we see that changes in relative factor supply cause always a stronger reaction in
the relative factor rewards in the second case, because the relative factor supply in (2.33)
is more elastic: σ − 2 > −1/σ.

We define factor shares as the combination of the value of a factor times the quantity of
this factor. Then we can easily express the relative factor shares with the equation (2.33)
above.

HS

LS

≡ ωHH

ωLL
= η

σ−1

�
1− γ

γ

���
H

L

�σ−1

(2.34)

We see the same behaviour as in (2.32). If the two factors are gross substitutes (σ > 1)
we have more of a share of a factor when this factor abounds.

I want to outline two effects we can observe in the equations above. First, the "weak
induced-bias hypothesis" shows that for σ < 1 in (2.32) a lower relative factor supply
leads to a higher value of marginal product. As we have seen in analysing equation
(2.26), σ > 1 leads to an endogenously biased technology. The same effect appears for
σ < 1, even if we face a negative relationship between the relative factor supply and the
endogenous technology. Second, the "strong induced-bias hypothesis" concerns equation
(2.33). We are used to a negative relationship between the relative factor supply and
the relative factor rewards for every value of sigma. If we set σ > 2 with endogenous
technology, a higher relative factor supply leads to a higher relativ factor reward. The
more abundant factor increases the technology (2.32), and this again augments the relative
factor shares (2.27) as we saw in the previous chapter.
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Long-run growth rate

In the steady state we can also derive the long-run growth of output g. (see Appendix
A.7)

g = θ
−1(β[(1− γ)�(ηHH)σ−1 + γ

�(ηLL)
σ−1]

1
σ−1 − ρ) (2.35)

More factor supply leads to a higher growth rate. This does not depend on the sector or
whether the factors are complements or substitutes.

Outside the BGP

We analysed the behaviour in the BGP, now we want to test the stability of the steady
state. Considering the relative amount of machine types NH

NL

higher than its BGP-level
in (2.32). It is shown in (Acemoglu and Zilibotti, 2001) that outside the BGP only one
type of innovation takes place. In our case R&D only invents new machine types in the
L-sector. Since there is an inverse relation between VH

VL

and NH

NL

(2.26), NL will increase
till both terms reach the BGP. In case NH

NL

is lower than its BGP-level, H-augmenting
technical change takes place until steady state. To sum up, the transitional dynamics of
the system are stable and will always return to the equations derived for the balanced
growth path.

2.4.2 Knowledge-based R&D

In the lab equipment model we had a very simple innovation possibilities frontier. In the
following model not only the investment gives the new innovation, but it is also important
how much research is already done in each sector. To implement this state dependency,
the amount of existing machine types in each sector influences the number of additional
inventions. δ ≤ 1 gives the degree of state dependence. For a general level of technology
N a constant supply of scientists S ∝ Ṅ

N
does research in both sectors. The scientists can

choose the sector they are working in: S = HS + LS. Alltogether this brings us to the
following innovation possibilities frontier.

ṄL = ηLN

1+δ

2
L

N

1−δ

2
H

LS (2.36)

ṄH = ηHN

1−δ

2
L

N

1+δ

2
H

HS (2.37)

For δ = 0 the levels of NL and NH create equal spillovers in both sectors and we face no
state dependence like in the lab equipment model

∂ṄH

∂HS

∂ṄL

∂LS

=
ηH

ηL
= η, (2.38)
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whereas for δ = 1 the number fo new innvoations depends on the current level of technol-
ogy.

∂ṄH

∂HS

∂ṄL

∂LS

= η
NH

NL

(2.39)

Investing in the H-sector also either gains more future-innovations ceteris paribus or needs
less scientists and makes research cheaper for the same amount of future-innovations.

Balanced growth path

Analogous to the previous section we can derive the technology market clearing condition.
Only the growth rates differ and so we get VH

VL

= η
N

δ

H

N
δ

L

. Again substituting πL and πH

gives the condition for the knowledge-based R&D model.

ηLN
δ

L
πL = ηHN

δ

H
πH (2.40)

Analogous to the previous chapter we substitute πL, πH and the relative price p to get
the equilibrium skill bias.

NH

NL

= η
σ

1−δσ

�
1− γ

γ

� �

1−δσ

�
H

L

� σ−1
1−δσ

(2.41)

The relative technology depends on δ. A positive change in the relative factor supply can
increase NH

NL

if 1 < σ <
1
δ

or 1
δ
< σ < 1.

Using the equation above we can rewrite (2.27) to get the relative factor prices.

wH

wL

= η
σ−1
1−δσ

�
1− γ

γ

� (1−δ)�
1−δσ

�
H

L

�σ−2+δ

1−δσ

(2.42)

The relative factor supply in (2.42) is more elastic (σ−2+δ

1−δσ
> − 1

σ
) than with exogenous NL

and NH (2.27) if δ > 0 and 0 < σ <
1
δ

and even more elastic (σ−2+δ

1−δσ
> σ − 2) than in the

lab equipment model (2.33) for a positive δ and σ <
1
δ
.

And we can write the relative factor shares as

HS

LS

≡ wHH

wLL
= η

σ−1

�
1− γ

γ

� (1−δ)�
1−δσ

�
H

L

�σ−1+δ−δσ

1−δσ

. (2.43)

This is a more general version than in the previous section, where δ = 0. It is again
exactly the same behaviour as in (2.41).
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Growth rate

For the balanced growth path the number of scientists is important. The derivation is
given in appendix A.8.

g =
ηLηHS

ηH

�
NH

NL

� 1−δ

2 + ηL

�
NL

NH

� 3(1−δ)
2

(2.44)

The degree of state dependence δ weights the relative levels of the technology in both
sectors. Intuitively, as more scientists can do research more efficiently, the growth rate is
increasing.

Outside the BGP

We also want to briefly look at the system outside the balanced growth path. Whereas
in the lab equipment model we faced VH

VL

= ηL

ηH
, in the knowledge-based R&D model the

relative net present discounted value is VH

VL

=
N

δ

L
ηL

N
δ

H
ηH

. As a result of the state dependence,
we have to take NL and NH into account and analyse

∂(N δ

H
VH/N

δ

L
VL)

∂(NH/NL)
(2.45)

instead of ∂(VH/VL)
∂(NH/NL)

. For σ <
1
δ

the term (2.45) is negative, so the system will always end
up in the BGP and the system is stable. On the other hand, if σ >

1
δ

the transitional
dynamics of the system will not take us to the BGP and there will be only one sector
inventing new technologies. The system is unstable.
We already know, that with no state dependence (δ = 0) the system is always stable. If
there is an extreme state dependence (δ = 1) the system is only stable if the factors are
gross complements (σ < 1).
The big difference to the previous model is that a change in NH

NL

not only affects VH

VL

in
the same period, but also the future profits and costs of R&D. Of course, more state
dependence (higher δ) affects the future profits and expenses even more.
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3 Environment and Directed
Technical Change

3.1 Adding Environment

In the previous chapter we got to know the basic model of directed technical change.
Now we want to extend the model and add the factor environment to the preferences of
the consumers and to the production function of one sector. I will follow the modelling
of Acemoglu, Aghion, Bursztyn and Hemous (2012). Whereas we had a sector with low
(or un-)skilled workers L and a sector with high-skilled workers H - which could be also
interpreted as capital or land - , we now interpret them as a sector with dirty inputs and
a sector with clean inputs, respectively. Since we have the quality of the environment in
the utility function of the consumers, this is also a driving factor for the directed technical
change. Consumers are happier, if they live in a well-preserved environment. We want
directed technical change towards the clean sector to happen, otherwise there can be an
environmental desaster.

3.2 Basic Model and Definitions

The model is outlined in the appendix Fig.E.2.
Again, to simplify notation I will only write the time argument t to the variables if I want
to stress time dependence.

In this model the consumers do not have well defined CRRA preferences in continuous
time, but an aggregate utility function in discrete time. As in the basic model, ρ is the
time preference rate and C is the consumption of the unique final good Y . A new aspect
of the model is that we consider the quality of environment E in the utility function. In
the worst case we have an environmental desaster with E = 0. E can not grow beyond
the saturation limit Ē, which we assume as its intial value E0, i.e. Ē = E0.

U =
∞�

t=0

1

(1 + ρ)t
u(C(t), E(t)) (3.1)

The aggregate utility function sums up the instantaneaous utility function u(C,E). It
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3 Environment and Directed Technical Change

positively depends on C and E and fulfills the following Inada-type conditions.

∂u

∂C
≥ 0,

∂
2
u

∂C2
≤ 0, lim

C→0

∂u

∂C
= ∞ (3.2)

∂u

∂E
≥ 0,

∂
2
u

∂E2
≤ 0, lim

E→0

∂u

∂E
= ∞, lim

E→0
u = −∞,

∂u(C, Ē)

∂E
= 0 (3.3)

Intuitively, if consumers can get more final goods or live in a better environment, the
utility u(C,E) is increasing. If they already have a lot of either C or E, one unit more
of this good is not that important any more. On the other hand, if they have only little
of one factor, one unit more can already make them feeling much better. The last two
conditions are special. As closer we come to an environmental desaster, the worse u(C,E)
becomes independent of C and households will do everything to avoid a desaster. In other
words, if environmental problems occur badly, the population will not survive any longer.
E.g. suffering from bad air quality, having a huge ozon hole, facing flooded islands as
consequence of global warming and having toxin in food can be an issue.
Moreover, since there is an upper limit for E, the utility function cannot increase in E if
the environment is already at its highest level Ē.

The production function of the final good is the same as in the basic model, but with
γ = 0.5. So the dirty input YL is as important as the clean input YH and we can simply
write

Y =
�
Y

�−1
�

L
+ Y

�−1
�

H

� �

�−1 . (3.4)

What is new in this model compared to the basic model, is that the production of the dirty
intermediate good needs resources R that are important for the quality of environment.
So there is a trade off between a higher production and therefor more consumption and
higher quality of the environment.
The production functions of the intermediate goods YL and YH are slightly different to
the production functions in the previous chapter, but basically follow the same intuition.
Instead of using the number of different machine types as incentive for innovation, the
technology levels NL(j) and NH(j) represents the level of R&D for every machine type j

in each sector L and H.

YL = R
β2

�� 1

0

NL(j)
β1xL(j)

1−β1dj

�
L
β (3.5)

YH =

�� 1

0

NH(j)
β
xH(j)

1−β
dj

�
H

β (3.6)

The technology level is the complementary factor for the number of machines: firms can
produce more if they either have a broader variety of machines NH(j) or more machines
xH(j) for each type. In the L-sector firms also use natural ressources R complementary
to NL(j) and xL(j). We want the sum of the exponents of R, xL(j) and L to be 1, as
we have in the H-sector. So the production elasticity for each production factor satisfy
β = β1 − β2 with β, β1, β2 ∈ (0, 1). In further analysis we will also look at β2 = 0 to have
the same production function of intermediate goods in each sector.

18



3 Environment and Directed Technical Change

In this model we interpret the machine -complementary factors, L and H, only as labour
supply and assume the total number of available workers is constant over time. For
simplicity we set the total number equal 1.

L+H ≤ 1 (3.7)

The resources R we use in (3.5) are part of a resource stock Q. The resources evolve
according to the state equation

Q(t+ 1) = Q(t)−R(t). (3.8)

The resource can be sold within two different market types: Either it is available for
everyone and the firms only have to pay the resource extraction costs c(Q) or there are
property rights for the resource and firms have to pay the price P calculated with the
Hotelling rule. An explanation of the Hotelling rule can be found in the appendix (B.1).

In the basic model we first had the technology levels NL and NH given and then already
added simple innovation possibilities frontiers for an endogenous level of technology. In
the current model we have a more complex way to improve the machine-complementary
production factor.
Scientists choose one sector and become either LS or HS. Analogous to the workers the
total amount of available scientists is normalised to 1.

LS +HS ≤ 1 (3.9)

Every scientist does research at most at one machine. His research is successful with
probability ηL, ηH ∈ (0, 1) and can change the machine technology from NL(j) to (1 +
ν)NL(j) or from NH(j) to (1 + ν)NH(j) with a positive sector- and time-independent ν.
If he invented a new machine technology, he gets the patent for the coming period and
uses it to produce machines. So the scientist becomes an entrepreneur for one period.
Otherwise, the monopoly rights on the latest technology for this machine type is given to
a random entrepreneur to produce this machine in the next period.
We can aggregate the technology levels for each machine to get a technology index for the
whole sector.

NL =

� 1

0

NL(j)dj (3.10)

NH =

� 1

0

NH(j)dj (3.11)

The aggregate technology level in the next period t+1 is given by the level of the previous
period plus the change for one machine type multiplied with the number of new inventions,
depending on the successrate and the number of scientists doing research in this period.
This leads to the following production possibilities frontier for each sector.

NL(t+ 1) = (1 + νηLLS)NL(t) (3.12)
NH(t+ 1) = (1 + νηHHS)NH(t) (3.13)
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3 Environment and Directed Technical Change

Basically, directed technical change takes place, if the relative possibility for successful
R&D is high and if lots of scientists are working in this sector relativ to the other sector.

The budget constraint in this model is more detailled than in the basic model. We can
use the output Y either for consumption C or for the production of intermediate goods.
To produce intermediate goods we need machines xL(j) or xH(j) for the costs of ψ and
resources R for the costs of c(Q).
All prices and costs are given in units of the final good.

C + ψ

�� 1

0

xL(j)dj +

� 1

0

xH(j)dj

�
+ c(Q)R ≤ Y (3.14)

The state equation of the quality of environment E is given by E from the previous period,
which regenerates with rate ζ, and is reduced by the environmental pollution caused from
the production in the L-sector. The rate ξ measures the part of YL causing e.g. air
pollution or waste water.

E(t+ 1) = −ξYL(t) + (1 + ζ)E(t) (3.15)

We know E is bounded by (0, Ē). So the precise formula is actually
E(t+ 1) = max{0;min�Ē;−ξYL(t) + (1 + ζ)E(t)�}.
Note, that we face an environmental desaster if E(t) = 0 for already some t.

Since YL influences E, but the quality of environment does not have any impact on
the production, we are confronted with externalities. In some later analysis we try to
internalise them with taxes as production costs.

3.3 Analysis

The model of the economy is the same as in the basic model. The final good Y consists of
two intermediate goods YL and YH , which are produced by firms in a competitive market.
These firms buy machines xL or xH from technology monopolists, who have been scientists
in the R&D. A big difference to the basic model is that producers of YL use resources R

and therefore impair the quality of the environment. Moreover, we have a profit function
in the R&D sector.

To find an equilibrium, we have to set the wages wL and wH for the workers H and L,
respectively and the prices pL and pH for the intermediate goods to clear the markets.
Furthermore, the producers of the intermediate goods are maximising their profits ΠL or
ΠH choosing xL or xH and H or L, respectively, the technology monopolists maximise
their profits πL(j) and πH(j) with respect to the prices χL(j) and χH(j), respectively, of
the machines and the scientists can calculate their expected profits πL and πH .

There are four different set ups of the model characterised by the type of resource and by
the type of equilibrium. On one hand we distinguish between renewable resources (in the
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model there is an infinity stock of ressources) and nonrenewable (exhaustible) resources,
on the other hand we can calculate a laissez-faire equilibrium or use a social planner
to obtain a centralised equilibrium. We will analyse all four combinations of the model
variant in the next sections. An overview is drawn in the following table.

without exhaustible resources with exhaustible resources
decentralised
equilibrium 3.3.1 3.3.3
centralised
equilibrium 3.3.2 3.3.4

3.3.1 The laissez-faire equilibrium without exhaustible resources

In the first case we assume the resource R is unlimited. We can find examples for this also
in real life. Resources like wood in forests can grow again after using them. Moreover,
technologies can be improved so that less resources are needed and we can use them much
longer (or even unlimited).

Setting β2 = 0 (and therefore β1 = β) yields the following production function for the
dirty L-sector, which is analogous to the YH-production function.

YL =

�� 1

0

NL(j)
β
xL(j)

1−β
dj

�
L
β (3.16)

Since the production functions of the intermediate goods are symmetric, we can see the
effects of the directed technical change easier in our analysis.
As we have seen in the first model, state dependence influences the results. So we suppose
NL > NH for the first period t = 0, because this is what we observe in our economies.
Renewable and environmentally sound technologies are not as improved as production
with environmental load.

The market establishes the decentralised equilibrium with maximum profits and market
clearing for the labour- and goods-market.

We apply the assumption of perfect competition. To clear the two markets for the in-
termediate goods YL and YH , firms maximise their profit. Their marginal revenue has to
equal their marginal costs. To obtain the prices pL and pH for each good we differentiate
the production function of the final good with respect to YL and YH . Similar to the basic
model we define the relative price p of YH and YL.

p ≡ pH

pL
=

�YH

YL

�− 1
� (3.17)

Intuitively the relative price p ≡ pH

pL
is increasing for a greater supply of YL and for a

smaller supply of YH . The relative price is more elastic if the goods are better substi-
tutes.
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The price of Y is a combination of the prices of the two intermediate goods without
additional profits. Using the price of the final good as a numeraire, we can write

[p1−�

L
+ p

1−�

H
]

1
1−� = 1. (3.18)

Again, the price of the final good is less dependent on the prices of the intermediate goods
YL or YH and therefore more stable if the goods are good substitutes.

Next, we look at the profits ΠL and ΠH of the firms producing YL and YH , respectively.
They can sell their products for the price pL or pH , respectively, on the markets, but have
to pay the wages wL or wH for their workers H or L and buy machines xL(j) or xH(j)
from the technology monopolists for prices χL(j) or χH(j), respectively. The firms can
only choose how many machines xL(i) or xH(j) and how many workers H or L they use
to maximise their profit. In contrast to the basic model, the technology level does not
directly influence the profit of the firms.

max
L,{xL(j)}

ΠL = max
L,{xL(j)}

pLYL − wLL−
� 1

0

χL(j)xL(j)dj (3.19)

max
H,{xH(j)}

ΠH = max
H,{xH(j)}

pHYH − wHH −
� 1

0

χH(j)xH(j)dj (3.20)

We substitute YL and YH into (3.19) and (3.20). The first order conditions (FOC) with
respect to xL and xH give the demand of machines for every type j.

xL(j) =
�(1− β)pL

χL(j)

� 1
βLNL(j) (3.21)

xH(j) =
�(1− β)pH

χH(j)

� 1
βHNH(j) (3.22)

The demand for machines increases if there are more workers who can use them and if the
price of the intermediate good is higher than the price for the machine. What is new in this
model, the technology levels NL(j) and NH(j) influence the demand of machines xL(j) or
xH(j) in the same sector. If this sector is already better developed, more machines can
be sold.

The FOCs with respect to L and H give the wages wL and wH with xL and xH from
equations (3.21) and (3.22), respectively, above.

wL = βpL

�� 1

0

NL(j)
β
xL(j)

1−β
dj

�
L
β−1 (3.23)

wH = βpH

�� 1

0

NH(j)
β
xH(j)

1−β
dj

�
H

β−1 (3.24)

The technology monopolists sell machines xL(j) or xH(j) to the firms requesting xL(j) or
xH(j) derived in equations (3.21) and (3.22) to make profits πL(j) or πH(j), respectively.
Each machine is worth χL(j) or χH(j) and costs ψ (time- and machine-independent) to
be produced. Since they are monopolists they can set the prices χL(j) or χH(j) for every
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type of machine and maximise πL =
� 1

j=0 πL(j)dj or πH =
� 1

j=0 πH(j)dj. Instead of writing
the sum it is enough to maximise πL(j) or πH(j), respectively.

max
χL

πL(j) = max
χL

(χL(j)− ψ)xL(j) (3.25)

max
χH

πH(j) = max
χH

(χH(j)− ψ)xH(j) (3.26)

Substituting xL from equation (3.21) and xH from equation (3.22) and differentiating
according to χL(j) and χH(j), respecetively, gives

χL(j) = χH(j) =
ψ

1− β
. (3.27)

To simplify the further calculations we set ψ = (1−β)2 and therefore get χL(j) = χH(j) =
1− β. So we can write the equilibrium demand as

xL(j) = p

1
β

L
LNL(j) (3.28)

xH(j) = p

1
β

H
HNH(j), (3.29)

the equilibrium output as

YL =

�� 1

0 NL(j)βxL(j)1−β
dj

�
L
β = p

1−β

β

L
LNL (3.30)

YH =

�� 1

0 NH(j)βxH(j)1−β
dj

�
H

β = p

1−β

β

H
HNH , (3.31)

the equilibrium wages as

wL = βpL

�� 1

0

NL(j)
β
xL(j)

1−β
dj

�
L
β−1 = βp

1
β

L
NL (3.32)

wH = βpH

�� 1

0

NH(j)
β
xH(j)

1−β
dj

�
H

β−1 = βp

1
β

H
NH (3.33)

and the equilibrium profits of the technology monopolists as

πL(j) = β(1− β)xL(j) = β(1− β)p
1
β

L
LNL(j) (3.34)

πH(j) = β(1− β)xH(j) = β(1− β)p
1
β

H
HNH(j) (3.35)

The profit is obviously proportional to the number of machines, and, after substituting xL

(3.28) or xH (3.29), the profit positively depends on the technology level of the machine
they are selling.

We know, that the technology monopolists have been successful scientists in the previous
period. Before they start their research they can calculate their expected profits πL or πH ,
knowing that their research improves the technology from the previous period N

t−1
L

(j) to
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(1 + ν)N t−1
L

(j) with probability ηL. Analogous for the H-sector.

πL = ηL β(1− β)p
1
β

L
L(1 + ν)N t−1

L
(3.36)

πH = ηH β(1− β)p
1
β

H
H(1 + ν)N t−1

H
(3.37)

Directed Technical Change

Whereas the basic model used the net present discounted value of the profit, in this model
we analyse the directed technical change calculating the relative expected profits for both
sectors. Researchers decide to work in the sector where they can expect a higher profit.

πH

πL

=
ηH

ηL
×

�
pH

pL

� 1
β

� �� �
price effect

× H

L����
market size effect

× N
t−1
H

N
t−1
L� �� �

direct productivity effect

(3.38)

Besides the probability of success and the effects we already discussed in the previous
chapter, (price and market size effect) we can determine the direct productivity effect. If
a lot of research took place in the past, scientists can ”stand on the shoulders of giants".
It is easier for them to do successfull research if they can on the one hand refer to a lot
of knowledge and on the other hand work together with experienced scientists.

We can rewrite the equation substituting equilibrium results from above. The detailled
derivation is given in the Appendix B.2.

πH

πL

=
ηH

ηL

�
1 + νηHHS

1 + νηLLS

�β(�−1)−1�
N

t−1
H

N
t−1
L

�β(�−1)

(3.39)

We could theoretically have three different equilibrium points for innovation. First, scien-
tists are in the clean sector only (HS = 1) and ηH

ηL
(1 + νηH)β(�−1)−1(

N
t−1
H

N
t−1
L

)β(�−1)
> 1. Sec-

ond, research is only in the L-sector (LS = 1) and ηH

ηL
(1 + νηLLS)−β(�−1)−1(

N
t−1
H

N
t−1
L

)β(�−1)
< 1.

Third, it is also possible that we find equilibrium HS and LS to satisfy
ηH

ηL
(1+νηHHS

1+νηLLS

)β(�−1)−1(
N

t−1
H

N
t−1
L

)β(�−1) = 1.

In case the intermediate goods are substitutes (� > 1) there is a positive relationship
between the technology level and the expected profits. Scientists decide to work in the
sector, which is already more developed. Since we assumed the L-sector to be more
developed in the beginning there is only one equilibrium: Innovation will only take place
in the dirty sector. So NH remains constant and NL grows with rate νηL.

To sum up, a laissez-faire equilibrium without an exhaustible resource will lead under
the assumptions (NL > NH in the beginning, intermediate goods are substitutes) to an
environmental desaster. In other words, E becomes 0 in the long run, because produc-
tion would only take place in the L-sector and therefore the negative production effects
dominates the regeneration of the environment (see equation (3.15)).
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3.3.2 The socially optimal allocation without exhaustible
resources

In this case we still assume unlimited resources and therefore a production function for the
L-sector like (3.16). We observed in the previous chapter, that a decentralised equilibrium
leads to an environmental desaster. So we introduce a social planner who internalises the
externalities. The social planner can give two different incentives to handle that.

The producers of the intermediate good YL damage the environment, so we want them to
have the quality of environment in their profit-function, too. This is possible with taxes
τ for the dirty input (e.g. carbon taxes). Analogous to the price function (3.18) we can
write the relation of the new prices p̂L and p̂H .

[p̂1−�

L
+ ((1 + τ)p̂H)

1−�]
1

1−� = 1. (3.40)

Another problem in the previous section is that research starts in the dirty sector and
remains there. To avoid that, R&D in the clean sector gets subsidies q. It is not enough
to sustain technical change in the long run if more firms are producing in the clean sector.
Firms in the dirty sector need incentives to reduce the production of the dirty goods,
too. Therefore the subsidies also help firms in the dirty sector to reduce the number of
producing machines and sell less dirty goods.
So equation (3.39) is adjusted to

πH

πL

= (1 + q)
ηH

ηL

�
1 + νηHHS

1 + νηLLS

�β(�−1)−1

(1 + τ)�
�
N

t−1
H

N
t−1
L

�β(�−1)

. (3.41)

The social planner can implement two policies:

First best policy

In the first best policy taxes and subsidies help to increase the quality of the environment.
If the intermediate goods are good substitutes (� > 1) and the time preference rate ρ is
sufficiently small (the future is important for the market players) the first best policy
leads to a growth rate νηH ≥ 0 in the clean H-sector. The subsidies are only needed till
πH

πL

> 1. As soon as there is a higher technology level in the clean sector, scientists decide
to research in this higher developed sector and the economy builds an equilibrium, even
without subsidies.
Directed technical change towards the clean sector happens immediately for � > 1

β
. So the

production of YL dies and the whole research and production takes place in the H-sector.
Furthermore, the environment reaches its best condition Ē in finite time. The optimal
tax τ is also temporary.
With the first best policy we can definitely avoid an environmental desaster.
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Second best policy

It is often hard to invent and monitor subsidies. You cannot clearly draw a line between
the clean and the dirty sector. Additional, it is almost impossible to screen the firms to
check whether they invest the subsidies in research for the H-sector or not. Since these
problems occur and it would cost a lot of money to avoid them, policymakers forswear
subsidies and only implement taxes. This is the so called second best policy.
As a consequence, taxes have to be higher than in the first best policy to compensate the
missing subsidies. This leads to higher production costs and the output of the economy
is less. So the consumption decreases and the utility is reduced.
According to its name, the second best policy can prevent the economy from an environ-
mental desaster, but the economic growth is lower compared to the first best policy.

3.3.3 The laissez-faire equilibrium with exhaustible resources

We have analysed the equilibria with unlimited resources. Since it is even more likely that
resources like e.g. crude oil or several minerals are exhaustible, we set β2 > 0 in equation
(3.5) and obtain the following production function for the dirty sector.

YL = R
β2

�� 1

0

NL(j)
β1xL(j)

1−β1dj

�
L
β (3.42)

No property rights for resources

We assume no property rights for exhaustible resources. So everyone can access them
and just has to pay the resource extraction costs c(Q). In this section we calculate the
laissez-faire equilibrium analogous to section 3.1. Since we do not have changes in the
clean H-sector, we illuminate only the dirty L-sector.
The profit maximisation of the technology monopolists maxχL

πL(j) = maxχL
(χL(j) −

ψ)xL(j) (3.25) in the L-sector leads to the equilibrium price

χL(j) =
ψ

1− β1
. (3.43)

The profit ΠL for the firms in the dirty sector includes the resource R, too.

max
L,{xL(j)},R

ΠL = max
L,{xL(j)},R

pLYL − wLL− c(Q)R−
� 1

0

χL(j)xL(j)dj (3.44)

Substituting the price (3.43) into the FOC with respect to xL gives the equilibrium-
demand for machines.

xL(j) =
�(1− β1)2pLRβ2L

β

ψ

� 1
β1NL(j) (3.45)
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The equilibrium wages wL in the L-sector are

wL = βpLR
β2

�� 1

0

NL(j)
β1xL(j)

1−β1dj

�
L
β−1 (3.46)

= β(1− β1)
2
1−β1
β1 p

1
β1
L
R

β2
β1ψ

β1−1
β1 L

β−β1
β1 NL. (3.47)

Since the resources are also part of the firms profit maximisation, we get a third FOC
with respect to R. The equilibrium resource extraction costs can be written as

c(Q) = β2pLR
β2−1

�� 1

0

NL(j)
β1xL(j)

1−β1dj

�
L
β
. (3.48)

Intuitively the costs are positively related to all factors describing the size of the market
like the number of workers in the L-sector, the number of machines, their technology level
and the price of YL. Only to the amount of resources the relation is negativ. If more
resources are used, the extraction is cheaper. But this only works for one period. In the
long term using more resources means Q decreases and therefore c(Q) increases.

Substituting the equilibrium number of machines (3.45) into (3.48) gives

R =

�
(1− β1)2

ψ

� 1−β1
β

�
β2NL

c(Q)

�β1
β

p

1
β

L
L. (3.49)

If the market is bigger (pL, L and NL) more goods are produced and therefore more
resources are needed. On the other hand, if the costs for the production (machine costs
ψ and resource extraction costs c(Q)) are higher, less resources are processed.

Plugging (3.45) and (3.49) into the production function gives the equilibrium output.

YL =

�
(1− β1)2

ψ

� 1−β1
β

�
β2

c(Q)

�β2
β

N

β1
β

L
p

1−β

β

L
L (3.50)

The interpretion for the output level is similar to the resource. Obviously, price, technol-
ogy level and labour supply push the output, whereas the costs diminish it.

The equlibrium profits of the technology monopolists (3.25) and (3.26) can be expressed
using equilibrium number of machines xL(j) (3.45) and xH(j) (3.22).

πH(j) = (χH(j)− ψ)xH(j) = (
ψ

1− β
− ψ)

�(1− β)2pH
ψ

� 1
βHNH(j) (3.51)

πL(j) = (χL(j)− ψ)xL(j) = (
ψ

1− β1
− ψ)

�(1− β1)2pLRβ2L
β

ψ

� 1
β1NL(j) (3.52)

So the expected profits of scientists πL and πH can be written as

πH = ηH
ψβ

1− β

�(1− β)2pH
ψ

� 1
βH(1 + ν)N t−1

H
(3.53)

πL = ηL
ψβ1

1− β1

�(1− β1)2pLRβ2L
β

ψ

� 1
β1 (1 + ν)N t−1

L
(3.54)
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Directed technical change

The relative expected profit for scientists is now given by

πH

πL

= κ
ηH

ηL
× 1

Rβ2����
resource effect

× p

1
β

H

p

1
β1
L����

price effect

× H

L
β

β1����
market size effect

× N
t−1
H

N
t−1
L� �� �

direct productivity effect

(3.55)

with κ := β(1−β)
2−β

β

β1(1−β1)
2−β1
β1

ψ
1
β1

− 1
β .

Similar to the first case without exhaustible resources we obtain the price effect, the market
size effect and the direct productivity effect, whereas different exponents occur for the first
two effects. These exponents only change the speed of the directed technical change with
respect to the price and market size, but not the direction. What is new, scientists prefer
to work in the clean H-sector if more resources are needed for the production of the dirty
intermediate good. This phenomenon is called resource effect.

As shown in Appendix B.3 we can rewrite the equation.

πH

πL

= κ̄
ηH

ηL
c(Q)β2(�−1) (1 + νηHHS)β(�−1)−1

(1 + νηLLS)β1(�−1)−1

(N t−1
H

)β(�−1)

(N t−1
L

)β1(�−1)
(3.56)

with κ̄ := β(1−β)

β1(1−β1)
β1+β2

β1

�
(1−β)2(1−β)

ψβ2 (1−β1)2(1−β1)β
β2
2

��−1

.

When we consider the directed technical change in terms of the technology level and the
number of scientists, we see that in the long term the research will take place in the clean
sector only if � > 1 . The growth rate of the economy is νηH . If the quality of the
environment is high enough in the beginning, we can avoid using all the resources until
the technical change appears and, therefore, prevent the economy from an environmental
desaster.

Nevertheless, the laissez-faire equilibrium cannot avoid environmental externalities and
externalities in the R&D like in section 3.1 without exhaustible resources. Moreover,
c(Q) only displays the costs for extraction and does not include the loss of quality of the
environment when Q is increasing.

Property rights for resources

In the previous section every firm could get as many resources for the price c(Q) as it
wanted for its production. Now we want to analyse the laissez-faire equilibrium with
exhaustible resources, when firms (price takers) need property rights to extract resources.
To simplify, extraction costs c(Q) = c are constant. The price of the resource P is
changing over time. The marginal utility of the profit in the current period has to equal
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the marginal utility of the discounted profit in the next period.

∂u(C(t), E(t))

∂C
(P (t)− c) =

1

1 + ρ

∂u(C(t+ 1), E(t+ 1))

∂C
(P (t+ 1)− c) (3.57)

We assume the coefficient of the risk aversion θ constant and introduce a specific utility
function. The preferences concerning the consumption and the quality of environment are
separable, whereas the environmental quality is given by a function µ(E) with the typical
behaviour of an utility function: µ

�
> 0 and µ

��
< 0.

u(C,E) =
(C)1−θ

1− θ
+ µ(E) (3.58)

Using the Hotelling rule, we know that the price of the resource P is asymptotically
growing at the interest rate r given by the Euler equation

r = (1 + ρ)(1 + gc)
θ − 1. (3.59)

We recall, ρ is the rate of time preference and gc is the growth rate of consumption.

Similar to the previous chapter we can derive the relative expected profit for scientists,
where the costs c(Q) are now replaced by the resource price P .

πH

πL

= κ̄
ηH

ηL
P

β2(�−1) (1 + νηHHS)β(�−1)−1

(1 + νηLLS)β1(�−1)−1

(N t−1
H

)β(�−1)

(N t−1
L

)β1(�−1)
(3.60)

with κ̄ like in equation (3.56). The price of the resource only causes a technical change
towards the H-sector, if the intermediate goods are good substitutes (� > 1).
The result does not only depend on �, but also on ρ. So we analyse two different cases:

ln(1 + ρ) >
β1

β2
ln(1 + νηd) (3.61)

and

ln(1 + ρ) <
β1

β2
ln(1 + νηd) (3.62)

In the first case ρ and � are both sufficiently high (3.61). In the long term research takes
place only in the clean H-sector, given that the initial quality of environment is sufficiently
high.
Intuitively, if people are concerned about the future and can use alternative technologies,
they are interested in innovation in the clean sector. So they can avoid an environmental
desaster.

In the second case (3.62) requires ρ and � to be small. Research remains in the L-sector
and it is not possible to avoid an environmental desaster.
In other words, if people are only interested in current profits and do not care about future
generations, they are not going to invest in sustainable innovations. Thus, the quality of
environment decreases more and more.
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Let us consider a third case study. We assume research in the H-sector only and the
growth rate in this sector is gH = νηH . Analougous we find the growth rate gL for YL in
the dirty sector.

ln(1 + gL) = (1− �β) ln(1 + νηH)− �β2(ln(1 + ρ) + θ ln(1 + νηH)) (3.63)

If the dirty sector is still growing (gL > 0) an environmental desaster occurs. In contrast,
if the production of YL decreases (gL < 0) and the initial quality of the environment Ē is
high enough, we can avoid an environmental desaster.

To sum up, directed technical change occurs depending on the increase of the price of the
resource P . If P is high or increases rapidly, firms prefer to produce in the clean sector
to gain higher profits. So expensive exhaustible resources help to enable innovations in
the clean sector and therefore avoid an environmental desaster. This is happening even
faster, if the intermediate goods are better substitutes and if the decision maker focus
more on the future.

3.3.4 The socially optimal allocation with exhaustible resources

Analogous to section 3.3.2 we introduce policies to diminish externalities. Like in section
3.3.3 we need exhaustible resources R for the production in the dirty sector (3.42).

We introduce taxes τ for the dirty input YL like e.g. carbon-taxes, subsidies q for research
in the clean sector to compensate the little initial knowledge in the clean sector and
subsidies for the firms which have not used all their machines to their capacity.
Additional to these policies a resource tax is implemented. It prices the difference between
the resource extraction costs and the social value of the resource.

Without property rights

Similar to the previous section, we first look at the case without property rights. So every
producer of the dirty intermediate good can extract as many resources as he wants to.
The profit of the producers of the dirty intermediate good also includes the resource
tax τR. The resource dynamics are Q(t + 1) = Q(t) − R(t). We denote the Langrange
multiplier for the resource dynamics with �. We can also write the resource dynamics for
all periods, where ι is the extraction time in the past given in years.

∞�

ι=0

R(ι) ≤ Q(0) (3.64)

The Langrange multiplier for equation (3.64) is denoted by the nonnegative variable ι.
Firms have to take the resource dynamics into account, since they use resources to produce
the intermediate good YL. Their profit is the difference between their earnings and their
costs. They sell their good YL for the price pL and have to pay wages wL for the workers
L, the costs of the resources c(Q) in terms of the shadow value of the final good λ for the
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resources R and the machine costs
� 1

0 χL(j)xL(j)dj for all machine types j. We can write
the firms profit maximisation problem as follows.

max
L,{xL(j)},R

ΠL = max
L,{xL(j)},R

pLYL − wLL− λc(Q)R−
� 1

0

χL(j)xL(j)dj (3.65)

subject to

Q(t+ 1) = Q(t)−R(t) (3.66)
∞�

ι=0

R(ι) ≤ Q(0) (3.67)

So we have to maximise the following function.

max
L,{xL(j)},R(t)

�
pL(t)YL(t)− wL(t)L(t)− λc(Q)R(t)−

� 1

0

χL(j)(t)xL(j)(t)dj

−�
�
Q(t+ 1)− (Q(t)−R(t))

�
− ι

� ∞�

ι=0

R(ι)−Q(0)
��

(3.68)

The FOC with respect to L and xL(j) are the same as for (3.44) in the previous section
3.3.3. If we maximise (3.68) with respect to the resource R(t) we obtain the following
demand curve for R.

β2pLR
β2−1

�� 1

0

NL(j)
β1xL(j)

1−β1dj

�
L
β = λc(Q) + �+ ι (3.69)

In the previous section the shadow value for one final good λ is used for the derivation of
the price in the steady state p̂L = pL

λ
and p̂H = pH

λ
. So we can rewrite (3.69).

β2p̂LR
β2−1

�� 1

0

NL(j)
β1xL(j)

1−β1dj

�
L
β = c(Q) +

�+ ι

λ
(3.70)

The term �+ι

λ
gives the amount of resource needed for the production of YL in terms of

the final good.

The FOC of (3.68) with respect to Q gives the law of motion for the shadow price � of
the resource.

�(t) = �(t− 1) + λ(t)c�(Q(t))R(t) (3.71)

The shadowprice depends on the price in the previous period and increases with higher
marginal extraction costs and an increasing demand of resources.

The costs of extraction are taxed to equal the price of the resource used for the production
of YL.

c(Q)τR =
�+ ι

λ
(3.72)

We see that the rate of the resource tax τR = �+ι

λc(Q) is always positive. So the tax has
to be charged forever to remain in the steady state and avoid an environmental desaster.
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With both taxes and the subsidy the allocation is a social optimum.

Property rights for resources

With the policies discussed in 3.3.4 we can avoid an environmental desaster for the case
with property rights for resources, too. If the intermediate goods are good substitutes,
it is even enough to just give temporary subsidies for the clean sector to preserve good
environmental quality and trigger a directed technical change towards the clean sector.

The price of the resource P is asymptotically growing at the interest rate r.

r = (1 + ρ)(1 + νηc)
θ − 1 (3.73)
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4 Extension - Alternative technology

In the previous models we analysed two different sectors. Adding environment was leading
us to a sector with green production and a sector where production negatively influences
the quality of our environment. We now switch to a new framework with an alternative
technology based on the additional work of Acemoglo, Aghion, Bursztyn, Hemous (2012)
in section II.E and the online appendix II.
Production takes place in one sector, but we still differentiate between two different types
of innovations. They can either enhance productivity or reduce pollution. The first type is
used in many growth models to express successful research, which increases the production
of the final goods. Pollution-reducing innovations can be e.g. the development of new
machines using less energy or natural ressources, or the invention of new flue gas filter.
Green technologies can also directly influence the environment like planting trees.

In the model with environment from Acemoglo, Aghion, Bursztyn, Hemous (2012) the
sector with green technologies could increase output and decrease the use of natural
ressources at the same time. In reality we are more often confronted with two different
types of technologies: One kind of innovations augments the quality or quantity of the
final good,. The alternative type of innovations, so called green innovations, does not
affect the final good itself, but the environment. It reduces pollution (ξYL(t)) as part
of the production process or increases the regeneration rate of the environment (ζE(t)).
Including the impact of technology in the dynamics of the environmental quality yields a
new dynamic equation for the environment.

E(t+ 1) = −ξ

� 1

0

e(j)βx(j)1−β
dj + (1 + ζ)E(t) (4.1)

replaces E(t+ 1) = −ξYL(t)+(1+ ζ)E(t) in the previous section. Instead of the negative
influence of the intermediate good YL of the L-sector we introduce a term of the produced
pollution ξ

� 1

0 e(j)βx(j)1−β
dj. Analogous to the previous model ξ measures the influence

of the production process of the good on the environment. The exogenous time dependent
e(j) describes the amount of pollution a machine of type i produces.

Since the production takes place in one sector only, the production of the final good is
given by

Y =

� 1

0

N(j)βx(j)1−β
dj. (4.2)

Analogous to the other models, the amount of machines of machine type j is x(j). They
are using the technology N(j) (instead of NL(j) and NH(j)).
Innovations can either decrease e(j) or increase N(j). To make sure that both changes
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4 Extension - Alternative technology

have a similar impact, the same exponent β is used in both functions (4.1) and (4.2).

Here, the labour supply equals 1. So we can interprete the production function as the
production functions in the previous models with labour as a complimentary production
factor to the machines.

As in the other models, the machines x(j) are produced monopolistically for marginal
costs ψ = (1− β)2 in terms of the final good. The profit maximisation of the technology
monopolists maxχ π(j) = maxχ(χ(j)− ψ)x(j) leads to the equilibrium price

χ(j) =
ψ

1− β
= 1− β. (4.3)

We will not analyse all four types of the model (see table 3.3) as we did in the previous
chapter, but we assume a taxrate τ ≥ 0 for produced pollution and an optimal subsidy
q. Firms receive the price p for one final good and have to pay costs of χ(j) for the
machines. The optimal subsidy has to enable both types of research (N(j) and e(j)).
An increase in N(j) yields an increase in productivity and therefore an increase in the
profit. In contrast, a change in e(j) only affects the environment and profits remain with
their old value. Profit maximisation is the driving factor for technical change, so we need
subsidies for the use of machines with better technology e(j). These subsidies have to
equal p−χ(j). Since we use the price p for the final good as nummeraire and χ(j) = 1−β

the optimal subsidy is 1− (1− β) = β.

The profit Π for the firms is the revenue minus the costs for machines and the taxes for
dirty machines.

max
{x(j)}

Π = max
{x(j)}

pY −
� 1

0

χ(j)(1− β)x(j)dj −
� 1

0

τe(j)βx(j)1−β
dj (4.4)

= max
{x(j)}

� 1

0

N(j)βx(j)1−β
dj −

� 1

0

ψ

1− β
(1− β)x(j)dj −

� 1

0

τe(j)βx(j)1−β
dj. (4.5)

Substituting the marginal costs ψ = (1 − β)2 into the FOC with respect to x gives the
equilibrium-demand for machines.

x(j) = (1− β)−
1
β (N(j)β − τe(j)β)

1
β (4.6)

For a higher technology level and less taxes for pollution more machines are requested.

Since χ(j) = ψ

1−β
and ψ = (1− β)2, the equilibrium profit of the technology monopolists

is

π(j) = (χ(j)− ψ)x(j) = (
ψ

1− β
− ψ)x(j) (4.7)

= (1− β)(β)(1− β)−
1
β (N(j)β − τe(j)β)

1
β (4.8)

= β(1− β)−
1−β

β (N(j)β − τe(j)β)
1
β (4.9)

More innovations lead to a higher profit whereas more pollution or higher taxes decrease
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4 Extension - Alternative technology

the profit of the technology monopolists.
R&D affects both terms: A fraction s of all scientists does research in the productivity-
enhancing sector to increase N(j). For successful research the technology level rises with
the factor (1+ν(1− s)) with ν > 1. All the other (1− s) scientists develop innovations to
decrease e(j). A new innovation reduces the pollution of a machine by a factor (1 − ςs)
with ς < 1.
The allocation of scientists to their research field is random. Also the type of machines
they are working on is random.

We still have to identify, when a new technology is invented. Therefore we consider two
different cases. First, we assume monopolists have patents for their machine type j. This
patent expires with a probability ιb after b periods. As long as the monopolist has the
patent, he can increase its technology N(j). Of course, if the patent lasts only for one
period (b = 1) he can not invent new technologies and ιb = 0. After the expiry date other
monopolists can invent new innovations for this type.
In the second case we allow knowledge spillovers to develop technologies standing on the

shoulders of giants. Monopolists can increase the technology of a machine type j every
period and sell these machines. To make sure that the monopolist who has the patent
for type j (and therefore sold this machine type in the previous period) still gains profits,
the monopolist selling machine type j in the current period has to pay the missed profit
to the owner of the patent. That is the profit the monopolist would have made selling
machines with the old technology.
If the patent expired before, the monopolist with the best technology for machine type j

becomes the new patent owner.
Since all of the technology monopolists can do reasearch at the same time, but only one
receives the patent to sell the machines, creative destruction is possible.

4.1 Equilibrium

We analyse a symmetric equilibrium, so all technologies are time dependent, but equal in
each period:

N(j) ≡ N (4.10)
e(j) ≡ e (4.11)

Even though we assume input taxes and subsidies for research on e(j), we calculate two
different cases. A decentralised equilibrium and a centralised equilibrium. In the first
case, the monopolists and all consumers are maximising their profits, in the second case
a social planner maximises the aggregate utility function.

4.1.1 Decentralised equilibrium

Technology monopolists are maximising their profits. As mentioned above, innovation is
possible with or without knowledge spillovers. We have to consider both cases to write
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4 Extension - Alternative technology

the profits of the monopolists.

Patents ensure the single right for new innovations

Only the monopolist with the patent for a machine type is allowed to increase its tech-
nology. So only the patent holder receives the subsidy q for research on e. Researchers
decide whether they develop N or e. The present and future allocations given by the
fraction {s(t+k)}∞

k=0 have to maximise the expected profits of the monopolists. To make
a profit, they still need to have the patent. So we introduce the term (1 − ιb), which is
the probability of having the patent and zero after loosing the ownership of the patent.
Furthermore we have to consider the interest rate r(t + k) to calculate the net present
discounted value. Since technologies are symmetric, also the profits are equal in every pe-
riod (π(j) ≡ π). Additional to the profits patent owners who develop N receive subsidies
q.

max
{s(t+k)}∞

k=0

∞�

k=0

k�

b=0

� 1− ιb

1 + r(t+ b)

��
π(t+ k) + q(t+ k)s(t+ k)

�
= (4.12)

max
{s(t+k)}∞

k=0

∞�

k=0

k�

b=0

� 1− ιb

1 + r(t+ b)

��
β(1− β)−

1−β

β (N(t+ k)β − τ(t+ k)e(t+ k)β)
1
β

+q(t+ k)s(t+ k)
�

(4.13)

The technologies in each period depend on the previous technology for k periods in which
they own the patent multiplied with the probabilty of invention of new innovations. Since
(1− s(t+ k)) scientists are doing research for increasing N and s(t+ k) scientists try to
decrease e we face the two dynamic equations.

N(t+ k) =
�
1 + ν(1− s(t+ k))

�
N(t+ k − 1) (4.14)

e(t+ k) =
�
1− ςs(t+ k)

�
N(t+ k − 1) (4.15)

Creative destruction

In the second case knowledge spillovers are possible. So monopolists do not know whether
they will be able to sell their machines in the coming periods or if others invent a better
technology for the same machine type. But in case they have the patent, they gain the
same amount of profit as long as they own the patent. Therefore the maximisation of
the profits is done for only one period t. As a consequence, the profit and the subsidies
are also only relevant for the current period. After this period the patent owner stops
research and only gains rents from the innovation till the patent expires. Technically, the
maximisation is done for only one decision variable s(t). Furthermore, we only need to
discount the profits as long as the monopolist owns the patent (b = 0, ..., k) and obtain
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the subsidies only in the current period (q(t)s(t)).

max
s(t)

∞�

k=0

k�

b=0

� 1− ιb

1 + r(t+ b)

�
π(t) + q(t)s(t) = (4.16)

max
s(t)

∞�

k=0

k�

b=0

� 1− ιb

1 + r(t+ b)

�
β(1− β)−

1−β

β (N(t)β − τ(t)e(t)β)
1
β + q(t)s(t) (4.17)

For both specification consumers maximise utility with respect to the consumption. The
marginal utility times the interest rate has to equal the marginal utility in terms of the
consumption and the environment of the previous period considering the discount rate
ρ > 0.

(1 + r(t))
∂u

∂C
(C(t), E(t)) = (1 + ρ)

∂u

∂C
(C(t− 1), E(t− 1)) (4.18)

The utility function u is the same as in equation (3.1).

4.1.2 Centralised equilibrium

The profit maximsation of the technology monopolists is the same as for the decentralised
equilibrium.
To calculate the social optimum, a social planner maximes the discounted utility functions
over all periods with respect to the allocation of scientists, the consumption, the environ-
ment, the output of the economy, the technology level and the full amount of machines
X(t).

max
{s(t),C(t),E(t),Y (t),N(t),X(t)}

∞�

k=0

1

(1 + ρ)t
u(C(t), E(t)) (4.19)

The social planner maximises under the following constraints.
The output can be used either for consumption or for buying new machines with price
(1− β)2.

Y (t) = C(t) + (1− β)2X(t) (4.20)

The output is given analogous to the aggregate production functions of the intermediate
goods in the previous chapter.

Y (t) = N(t)βX(1−β) (4.21)

The dynamic equation of the environment is simplified. The current quality of environ-
ment is the regenerated environmental quality of the former period (regeneration rate ζ)
minus the pollution gained by the amount of used machines in the production process.

E(t+ 1) = (1 + ζ)E(t)− e(t)βX(t)(1−β) (4.22)
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For the maximisation problem of the social planner the technology level depends on the
level of only one previous period.

N(t+ 1) =
�
1 + ν(1− s(t+ 1))

�
N(t) (4.23)

e(t+ 1) =
�
1− ςs(t+ 1)

�
e(t) (4.24)

And the fraction of scientists working for N(t) instead of e(t) has to fulfill s(t) ∈ [0, 1].

To solve the maximisation problem we form the Langrangian Λ with the Langrangian
multipliers λn.

Λ =
∞�

k=0

1

(1 + ρ)t
u(C(t), E(t)) (4.25)

+λ1(t)(Y (t)− C(t)− (1− β)2X(t))

+λ2(t)(Y (t)−N(t)βX(1−β))

+λ3(t+ 1)(E(t+ 1)− (1 + ζ)E(t) + e(t)βX(t)(1−β))

+λ4(t+ 1)(N(t+ 1)−
�
1 + ν(1− s(t+ 1))

�
N(t))

+λ5(t+ 1)(e(t+ 1)−
�
1− ςs(t+ 1)

�
e(t))

+λ6(t)(s(t))

+λ7(t)(s(t)− 1)

The first order condition with respect to the consumption C(t) is

∂Λ

∂C(t)
=

1

(1 + ρ)t
∂u(C(t), E(t))

∂C(t)
− λ1(t) = 0, (4.26)

the FOC with respect to Y (t) is

∂Λ

∂Y (t)
= λ1(t) + λ2(t) = 0 (4.27)

and the FOC with respect to X(t) is

∂Λ

∂X(t)
= −(1− β)2λ1(t) + (1− β)N(t)βX(t)−β

λ2(t) (4.28)

+e(t)β(1− β)X(t)−β
λ3(t+ 1) = 0.

To find the optimal allocation of research, we look at the FOC with respect to the level
of technology N(t)

∂Λ

∂N(t)
= −λ2(t)βN(t)(β−1)

X
(1−β) + λ4(t+ 1)− λ4(t)(1 + ν(1− s(t+ 1))) = 0 (4.29)

and e(t).

∂Λ

∂e(t)
= λ3(t+ 1)βe(t)(β−1)

X(t)(1−β) + λ5(t+ 1)− λ5(t)(1− ςs(t+ 1)) = 0 (4.30)
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To sum up, we find the following relations. A more detailled calculation is found in
appendix (C.1).

λ1(t) = −λ2(t) =
1

(1 + ρ)t
∂u(C(t), E(t))

∂C(t)
(4.31)

(1− β)−
1
β

�
N(t)β − λ3(t+ 1)

λ1(t)
e(t)β

� 1
β = X(t) (4.32)

λ2(t)β(1− β)−
1−β

β N(t)(β−1)

�
N(t)β − λ3(t+ 1)

λ1(t)
e(t)β

� 1−β

β

(4.33)

+λ4(t)(1 + ν(1− s(t+ 1))) = λ4(t+ 1)

−λ3(t+ 1)β(1− β)−
1−β

β e(t)(β−1)

�
N(t)β − λ3(t+ 1)

λ1(t)
e(t)β

� 1−β

β

(4.34)

+λ5(t)(1− ςs(t+ 1)) = λ5(t+ 1)

As mentioned at the beginning of this chapter, we assume a taxrate τ and an optimal
subsidy β. Using (4.32) we can even specify the taxrate.

τ(t) =
λ3(t+ 1)

λ1(t)
(4.35)

We are only interested in the allocation of s(t). Instead of building the FOC with respect
to s(t), we reformulate the maximisation problem. The optimal allocation of the scientists
s(t) ∈ [0, 1] generates the highest value of the technology. So we can maximise the
technology levels times their shadow prices to obtain a one-dimensional maximisation
problem.

max
s(t)

λ4(t)N(t) + λ5(t)e(t) (4.36)

= max
s(t)

λ4(t)
�
1 + ν(1− s(t+ 1))

�
N(t− 1) + λ5(t)

�
1− ςs(t+ 1)

�
e(t− 1) (4.37)

Substituting for λ4(t) (4.34) and λ5(t) (4.35) obtains

max
s(t)

λ2(t)β(1− β)−
1−β

β N(t)β
�
N(t)β − λ3(t+ 1)

λ1(t)
e(t)β

� 1−β

β

(4.38)

+λ4(t+ 1)
�
1 + ν(1− s(t+ 1))

�
N(t) + λ5(t+ 1)

�
1− ςs(t+ 1)

�
e(t)

Using the expression for λ2(t) (4.31), the interest rate in the decentralised equilibrium
(4.18) and τ = λ3

λ1
helps writing the maximisation problem in the same way as for the

laissez-faire equilibrium.

max
s(t)

λ2(t)
∞�

k=0

k�

b=0

1

(1 + r(t+ b))
β(1− β)−

1−β

β

�
N(t+ k)β − τ(t+ k)e(t+ k)β

� 1
β

(4.39)
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Now we can compare the decentralised equilibrium without knowledge spillovers (4.13),
with creative destruction (4.17 ) and the social optimum(4.39). To give an overview the
three equations are listed again:

max
{s(t+k)}∞

k=0

∞�

k=0

k�

b=0

� 1− ιb

1 + r(t+ b)

��
β(1− β)−

1−β

β

�
N(t+ k)β − τ(t+ k)e(t+ k)β

� 1
β (4.40)

+q(t+ k)s(t+ k)

�

max
s(t)

∞�

k=0

k�

b=0

� 1− ιb

1 + r(t+ b)

�
β(1− β)−

1−β

β

�
N(t)β − τ(t)e(t)β

� 1
β + q(t)s(t) (4.41)

λ2 max
s(t)

∞�

k=0

k�

b=0

1

(1 + r(t+ b))
β(1− β)−

1−β

β

�
N(t+ k)β − τ(t+ k)e(t+ k)β

� 1
β (4.42)

We analyse two different specifications. First, ιb = 0 in every period. In words, patents
do not expire. If a monopolist bought a right, he can not loose it. In this case the three
equations only differ in terms of the subsidies q. If we assume no subsidies (q = 0), we
clearly see that the tax τ is sufficient to consider e(j) for the allocation of s(t). Under
this circumstances the result is the same for the decentralised equilibrium as for the social
planner. Intuitively, a tax can regulate the laissez-faire markets, so that economic growth
and a good quality of the environment is possible.
Second, ιb is strictly positive for some periods t. So the patent expires after some time
and knowledge spillovers as well as creative destruction is possible. To analyse that, we
compare the equations (4.41) and (4.42): Without a social planner scientists will prefer to
work for N(t) instead of developing pollution-reducing activities, because working for N(j)
increases their profits. Therefore we would need research subsidies q to force scientists to
do research for e(t).
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4.2 Comparison to basic model

The results are similar to the model in the previous chapter. In the laissez-faire equilib-
rium scientists are only interested in doing research on the technology N which improves
the quality and the quantity of the good and therefore increases the value of the good.
This leads to higher profits if they do successful research. In contrast, there are no in-
centives to do research on environmental friendly technologies e, because that would not
increase the firms profit and this are the only driving forces for the allocation s of the
scientists. Since technological progress only affects N we have unlimited economic growth,
but also destruction of the environment. This leads to an environmental desaster. We
need perpetual subsidies for research in the green technologies to avoid a desaster. This
can be done in a decentralised equilibrium.
Since research in green technologies complements research in the production technologies,
scientists can either support the environment or increase the economic output. Hence,
the economic growth is less than in the previous model, where improvement of green
technologies could also increase the economic output.
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5 Population Dynamics,
Environment and Directed
Technical Change

5.1 Adding Population Dynamics

In the previous models we analysed directed technical change between two production
sectors with respect to natural resources or differences in education.
Schaefer was the first who combined the analysis of environment and population within a
two sector model. According to the paper "Technological Change, Population Dynamics,
and Natural Resource Depletion" written by Schaefer, (2012), we change some assump-
tions of the previous chapters, but mainly stick to the two production sectors including
environment. The main alteration is a new framework concerning the population dynam-
ics.
So we can explore the interaction of skill-biased technical change, fertility decline and
natural resource use.

Parents can choose if they want to have high or low education for their children and
therefore the sector their children work in. Furthermore we take population growth into
account. Population growth or decline in each sector influences the economic growth and
even the depletion rate of the natural resources. We also identify the impact of the wages
on the demand for non-renewable resources.

5.2 Model

A graphical representation of the model is found in appendix Fig.E.3.
Most of the variables are time dependent. I will only write the discrete time variable
t ∈ (0,∞) to the variables if necessary.
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5.2.1 Households and their Optimisation

In the previous models, scientists and workers could decide whether they want to work in
the L- or in the H-sector. Now we assume two different types of households: households
with unskilled workers, who work in the L-sector, and households with skilled workers for
the H-sector.
In our OLG-model, each cohort lives for three periods: childhood, adulthood and old age.
In the first period, agents can face three different starting points. First, children can be
born in an unskilled household and obtain basic education. So they are going to spend
all three periods in the L-sector and we denote their number as nLL. Second, unskilled
parents can pay for a better education for their children to enable them to spend their
adulthood and old age in H-households. This type of children is called nLH . Third,
children nHH are born in skilled households and therefore automatically obtain a better
education and spend their whole life within the H-sector. To sum up, it is only possible
to move from the L- to the H-sector. So we either face this mobility or no mobility at all.
This concept is different to the models we had in chapter (2) and (3), where households
supplied two types of labour: scientists and workers for the firms. Agents from each type
of labour could decide in which sector they want to work in. In the model of Schaefer the
type of household agents are born in is relevant for the sector they work in.

All economically relevant decisions are made as an adult: Additionally to paying the
education for their children and saving money for their retirement, adults constitute the
labour supply for the firms (L and H) and for the technology monopolists (LT and HT )
for both sectors L and H, respectively. Note, that in this model there are no scientists LS

and HS for R&D. Furthermore, adults from the H-households can also work as teacher
HE to educate the offspring.
So we have the total amount of LΣ or HΣ adults for each type of household.

LT + L = LΣ (5.1)
HT +H +HE = HΣ (5.2)

Old agents can only consume the savings from their adult-period, depending on the sector
they worked in.

Since all decisions of the households are made by adults, the utility function represents
the preferences of adults only. The utility functions uLL, uLH and uHH in period t reflect
the preferences of the cohorts born in t − 1, depending on the type of household and
offspring.

uLL(t) = lnCL(t)+ a ln(wL(t+ 1)nLL) +ρ lnCL(t+ 1) (5.3)
uLH(t) = lnCL(t)+ a ln(wH(t+ 1)nLH) +ρ lnCL(t+ 1) (5.4)
uHH(t) = lnCH(t)+ a ln(wH(t+ 1)nHH) +ρ lnCH(t+ 1) (5.5)

The utility function depends on the current consumption CL(t) and CH(t) and on the
discounted future consumption (CL(t+ 1))ρ and (CH(t+ 1))ρ when being old. Moreover,
parents take the total potential income of their children into account with an altruism
factor a, given by the expected wages wL(t+1) or wH(t+1) of their offspring times their
number of children n...
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The labour supply of both types of household is given by

LΣ(t+ 1) = (1− h(t))nLL(t)LΣ(t) (5.6)
HΣ(t+ 1) = h(t)nLH(t)LΣ(t) + nHH(t)HΣ, (5.7)

where h ∈ [0, 1] is the fraction of unskilled households investing in a better education
for their offspring nLH . Intuitively, the offspring of unskilled households with only basic
education is the labour supply of the unskilled households in the next period. In contrast,
all children with a better education get a job in the H-sector in the coming period.

We assume the schooling system to be privately funded. In other words, parents have
to pay schooling fees. Since teachers HE are part of the skilled households, they get the
wage wH . Using φ = HE

HΣ(t+1) as the time independent exogenously fixed teacher-student
ratio we can write

wHφHΣ(t+ 1) = wHφ(nLHhLΣ + nHHHΣ) = wHHE. (5.8)

Tuition fees (left hand side of the equation) have to cover the wage sum of teachers (right
hand side). wHφ are the education costs per child.

In addition to the education costs, parents in both household types have to pay rearing
costs for their children, since raising children needs time and special consumption goods,
which we can measure in forgone wage earnings. We denote z as the fraction of wage
income spent on rearing one child.

Alltogether, raising one child with basic education costs zwL and raising one child with a
better education costs zwL+wHφ if the parents are unskilled or zwH +wHφ if the parents
are skilled.

Beside paying for the offspring adults have to build up savings for their old age consump-
tion CL(t+1) and CH(t+1). There are two ways to do so: On one hand, they can invest
in the capital market. Investing IL or IH in terms of the final good gives revenues of
(1+r(t+1))IL(t) or (1+r(t+1))IH(t) in the following period. On the other hand, adults
can buy property rights for natural resources and sell them, when they retire. Buying a
number qL or qH of resources for a competitive price of P (t) ensures that they can sell
the same number for a competitive price P (t + 1) either to the next adult generation or
to both production sectors to produce consumption goods.
Similar to the model in the previous chapter, we have a resource stock Q(t). Again, the
resource dynamics are

Q(t) = Q(t− 1)−R(t), (5.9)

whereas R(t) are the extracted resources for the production. Alternatively, we can write
the dynamic equation in terms of the depletion rate τ .

R(t) = τQ(t− 1) (5.10)

The initial resource stock Q(0) is positive. The competitive price P is given by the
Hotelling rule (see appendix (B.1)). So we know that the marginal return on the capital
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market (1 + r(t + 1)) equals the marginal return on the resource market P (t+1)
P (t) . Trans-

forming this equality gives

P (t+ 1) = (1 + r(t+ 1))P (t). (5.11)

In summary, old age consumption is

CL(t+ 1) = (1 + r(t+ 1))IL(t) + P (t+ 1)qL(t) (5.12)
CH(t+ 1) = (1 + r(t+ 1))IH(t) + P (t+ 1)qH(t). (5.13)

Using (5.11) we can rewrite the equation as

CL(t+ 1)

1 + r(t+ 1)
= IL(t) + P (t)qL(t) (5.14)

CH(t+ 1)

1 + r(t+ 1)
= IH(t) + P (t)qH(t). (5.15)

Households maximise their utility function subject to their budget constraints. Analogous
to the preferences of the households, we focus on the budget constraints for adults, because
they are the only decision makers in the households. Basically, the wage income has to
cover the costs for raising children (rearing and education), the consumption in the current
period and the present value of the consumption in the future period, given by (5.14) and
(5.15).
Since we have three different types of agents, we face three different budget constraints:

wL ≥ (zwL) nLL + CL + (IL + PqL) (5.16)
wL ≥ (zwL + wHφ) nLH + CL + (IL + PqL) (5.17)
wH ≥ (zwH + wHφ) nHH + CH + (IH + PqH) (5.18)

Unskilled households raising unskilled offspring are facing the budget constraint (5.16),
whereas the unskilled households who enable a better education for their children are
confronted with (5.17). Skilled households are restricted to (5.18).

Overall we have to solve three optimisation problems in each period.

First, unskilled households raising unskilled children.

max
CL,nLL,CL(t+1),IL,qL

uLL (5.19)

subject to (5.16).

Following the calculations in appendix (D.1.1) we obtain the optimal consumption, the
optimal number of children per household and the optimal amount of savings for old
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age.

CL =
1

1 + a+ ρ
wL (5.20)

nLL =
a

(1 + a+ ρ)z
(5.21)

IL =
ρ

1 + a+ ρ
wL − PqL (5.22)

The consumption is positively related to their wage. The number of children per household
increases with a higher altruism factor and decreases with the fraction of the wage, they
have to spend on rearing costs. Intuitively, if consumption goods for the offspring are
expensive, households can not effort many children. The investment in the man-made
capital is of course positively influenced by the discount factor of future consumption ρ

and also increases with the income. In contrast, buying more property rights for ressources
for a higher price has a negative impact on the investment. Agents buy either property
rights or invest in the capital market to provide for their old age period.

Second, unskilled households raising skilled offspring.

max
CL,nLH ,CL(t+1),IL,qL

uLH (5.23)

subject to (5.17). Calculations given in appendix (D.1.2) lead to the following optimal
variables.

CL =
1

1 + a+ ρ
wL (5.24)

nLH =
a

1 + a+ ρ

wL

wLz + wHφ
=

a

1 + a+ ρ

1

z + wφ
(5.25)

IL =
ρ

1 + a+ ρ
wL − PqL (5.26)

Consumption and investment is analogous to unskilled households raising unskilled off-
spring. But in contrast to the previous case, the number of children per household nLH

depends on the relative wage w = wH

wL

and the student teacher ratio φ. If the income gap
between skilled and unskilled workers is big, unskilled households can not effort to raise
many well educated children (an increase in w leads to a decrease in nLH). It is also easier
for them to offer an education to their children, if φ is smaller. In other words, if they
have bigger classes at school and therefor less teachers they have to pay. Of course, the
rearing costs z depress the number of children per household.

Third, skilled households raising skilled offspring face the following optimisation prob-
lem.

max
CH ,nHH ,CH(t+1),IH ,qH

uHH (5.27)
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subject to (5.18). Again, we can derive the optimal variables (see appendix (D.1.3)).

CH =
1

1 + a+ ρ
wH (5.28)

nHH =
a

1 + a+ ρ

1

z + φ
(5.29)

IH =
ρ

1 + a+ ρ
wH − PqH (5.30)

Except the fact, that we use only variables regarding the H-sector, there is no big dif-
ference to the previous cases. It is intuitively clear that under the assumption wH > wL

high-skilled households can consume and invest more than unskilled households.
However, the number of children per household is influenced by the teacher-student ratio
as well as the wage-fraction for rearing costs, but independent of the wage itself. We
can see that the number of unskilled children nLL (5.21) is larger than the amount of
high-skilled children (5.29). Since education is costly, high-skilled households raise less
children than low-skilled household.

We know that the labour intensity for the L- and the H-sector depends on the amount of
low-skilled and high-skilled workers. This is given by the number of households and the
number of children. The only possible change in these numbers is if low-skilled households
educate their children. This happens, if their utility function uLH is greater or equal than
every possible uLL. Given the optimal choice of variables

uLL(t) = uLH(t) (5.31)
lnCL(t) + a ln(wL(t+ 1)nLL) + ρ lnCL(t+ 1) = (5.32)
lnCL(t) + a ln(wH(t+ 1)nLH) + ρ lnCL(t+ 1)

yields

wH(t+ 1)

wL(t+ 1)
=

nLL(t)

nLH(t)
=

a

1 + a+ ρ

1

z

1 + a+ ρ

a

z + w(t)φ

1
(5.33)

wH(t+ 1)

wL(t+ 1)
= w(t+ 1) =

z + w(t)φ

z
(5.34)

If (5.34) holds, unskilled parents are indifferent about raising low-skilled children or in-
vesting in a high education for their children. The expected wage of the children after
education in relation to the future wage of unskilled workers has to compensate the extra
schooling costs for the parents now.
The percentage of unskilled households raising high-skilled offspring depends on (5.34).
Intuitively, if future wages of high-skilled workers are higher than wages of labour supply
in the L-sector (wH(t+1)

wL(t+1) > 1), we know z + w(t)φ > z and face the following relation of
the number of children per household, given by (5.21), (5.25) and (5.29).

nLL > nLH > nHH (5.35)

Households with low education can effort to raise most children, since their rearing costs
are lower and they do not have to pay schooling fees. Both other types of agents have to
pay schooling fees, whereas it is cheaper for unskilled households to simply rear children
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(zwL < zwH), so they raise more children than high-skilled households.

5.2.2 Production and Analysis

On the production side we have two sectors. The basic scheme is the same as in the
previous models: In both sectors R&D improves technology which can be used by tech-
nology monopolists, who are producing machines. These machines are needed by firms
to produce intermediate goods. Combining both intermediate goods creates a final good.
This is sold to the households. Moreover, investments of the households and resources are
needed for the production process.
A big difference to the previous models is the labour supply. Whereas in the previous
models both scientists and workers could choose the sector they want to work in, in this
model agents are already directed to the sector according to their education. Moreover,
instead of differentiating between scientists doing research in the R&D and labour supply
for firms, we have workers who can work both in firms and for the technology monopolists,
but only in the sector according to their education.
Instead of analysing the directed technical change with the expected profits of the scien-
tists, we now have to use other instruments to measure directed technical change.

Like in the basic model, we use an constant elasticity of substitution (CES)-production
function (2.3).

Y =
�
γY

�−1
�

L
+ (1− γ)Y

�−1
�

H

� �

�−1 (5.36)

Again, the final good is taken as a numeraire and its price equals 1. We keep in mind,
that the price is given by the prices of the intermediate goods (3.18).

[γ�
p
1−�

L
+ (1− γ)�p1−�

H
]

1
1−� = 1 (5.37)

The relative price after market clearing is also the same as in the basic model (2.7).

p ≡ pH

pL
=

1− γ

γ

�YH

YL

�− 1
� (5.38)

The CRS production function of the intermediate goods (3.5) and (3.6) can be taken from
chapter (2)

YL =
1

1− β

��
NL

0

xL(j)
1−β

dj

�
L
β (5.39)

YH =
1

1− β

��
NH

0

xH(j)
1−β

dj

�
H

β (5.40)
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as well as the equilibrium demand of machines (2.11) and (2.12).

xL(j) =
� pL

χL(j)

� 1
βL

xH(j) =
� pH

χH(j)

� 1
βH

Since we have a symmetric equilibrium, we face equal prices and quantities for every type
j within the sectors. So we simplify xL(j) = xL, xH(j) = xH and χL(j) = χL, χH(j) = χH

to write

xL =
� pL
χL

� 1
βL (5.41)

xH =
� pH
χH

� 1
βH. (5.42)

We can substitute the equilibrium demand of machines into the production function of
intermediate goods to obtain the equilibrium levels of YL and YH .

YL =
1

1− β
NLp

1−β

β

L
χ

β−1
β

L
L (5.43)

YH =
1

1− β
NHp

1−β

β

H
χ

β−1
β

H
H (5.44)

Note, that for the production of intermediate goods we do not need any resources.

For more detailled analysis we calculate the relative price p in equilibrium. Derivation
given in appendix (D.2) leads to

p =
�1− γ

γ

� �β

σ

�NH

NL

�−β

σ

�χH

χL

� 1−β

σ

�H
L

�−β

σ . (5.45)

Next, we have a closer look at the labour market. Since both labour markets are compet-
itive, the wages are given by the FOC of the firms profits using YL (5.43) and YH (5.44)
with respect to L and H, respectively. Details are found in appendix (D.3). The skilled
wage premium w = wH

WL

in the equilibrium is

w =
�1− γ

γ

� �

σ

�NH

NL

�σ−1
σ

�χH

χL

� 1−β

β

1−σ

σ

�H
L

�− 1
σ . (5.46)

Basically, less labour supply in one sector leads to higher wages in this sector. So agents
are tempt to either support their children with higher education or not. A more detailled
analysis of the wage premium needs some background of the machine producing sector.
Therefore equation (5.58) will give further details.

After dicussing the behaviour of the firms we analyse the technology monopolists: In the
Schaefer-model we introduce a production function for machines. To produce machines
of type j technology monopolists need technology NL or NH and low-skilled labour LT

or workers with a high education HT . We differentiate between these workers in the
production of machines and the workers L and H for the production of intermediate
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goods as we had before. Results will show that both types of workers get the same wages
wL in the L-sector and wH in the H-sector, independent of their workplace (firms for
intermediate goods or machine producers). The most important factor in the production
function is the resource RL(j) or RH(j). In the model of Acemoglu, we found the resource
only in the L-sector for the production of intermediate goods. Here, natural resources are
used in both sectors, the difference is only the amount of the resource needed for each
sector. We even differentiate the amount of resources used for every type of machine j.
Resources and labour supply are complementary factors for the production of machines.
α gives the importance of resources compared to labour. Moreover, ML and MH are
positive constants.

xL(j) = MLNL(LT (j))
1−α(RL(j))

α (5.47)
xH(j) = MHNH(HT (j))

1−α(RH(j))
α (5.48)

Analogous to the previous models, the profit of the technology monopolists facing the
demand of machines (5.41) or (5.42) is given by

max
χL

πL = max
χL

(χL − ψL)xL (5.49)

max
χH

πH = max
χH

(χH − ψH)xH . (5.50)

As monopolists are restricted to the production function, we do not have simple production
costs ψ as in the previous models. Here, the production costs ψL and ψH depend on the
expenses for all production factors in (5.47) and (5.48). The detailled derivation of the
cost function is found in appendix (D.4).

ψL(wL, P ) =
w

1−α

L
P

α

MLNL(1− α)1−ααα
(5.51)

ψH(wH , P ) =
w

1−α

H
P

α

MHNH(1− α)1−ααα
(5.52)

Analogous to the calculations in appendix (A.3) we get the price of the machines.

χL =
ψL

1− β
(5.53)

χH =
ψH

1− β
(5.54)

Note, that this price depends on the prices of the production factors of machines. There-
fore the profit of the technology monopolists is a more complex function than in the
previous models. A detailled derivation is found in appendix (D.5).

πL = β(1− β)
1−β

β p

1
β

L
Lψ

β−1
β

L
(5.55)

πH = β(1− β)
1−β

β p

1
β

H
Hψ

β−1
β

H
(5.56)

We see, that the profits now depend negatively on the costs of producing one machine
(β−1

β
< 0). Since the machine costs ψ are positively correlated to the wages and the

resource price, an increase in at least one of those factors yields an increase in the machine

50



5 Population Dynamics, Environment and Directed Technical Change

costs and therefore a decrease in the profits.

Using (5.53) and (5.54) we can rewrite the relative price as given in (5.45) in the following
way:

p =
�1− γ

γ

� �β

σ

�NH

NL

�−β

σ

�ψH

ψL

� 1−β

σ

�H
L

�−β

σ . (5.57)

In appendix (D.6) we derive the skilled wage premium, including the optimisation and
equilibrium calculations of the technology monopolists above.

w =
wH

wL

=
�1− γ

γ

� �β

σξ

�NH

NL

�σ−1
σξ

�ML

MH

� (1−β)(σ−1)
σξ

�H
L

�− β

σξ (5.58)

for ξ = β + (1− α)(1− β) ∈ (0, 1).
We distinguish between two cases, depending on σ. First, the intermediate goods are
gross substitutes (σ > 1). Then the relative technology level has a positive influence
on the wages. Successful research in one sector leads to higher wages in the same sector.
Second, if the intermediates are gross compliments, better technology forces smaller wages.
Intuitively, labour supply is worth less because machines work more efficiently.
However, in both cases labour has diminishing marginal returns. As described above, if
more workers enter the labour market, firms are paying less for everyone. So it can not
happen, that all parents try to educate their children. This scenario would lead to small
wages in the H-sector and high wages in the L-sector.

Technical Change

Additional to the paper of Schaefer we analyse the technical change. In the basic model
we derived the relative net present discounted value VH

VL

to analyse the direction of the
technical change. We apply the same procedure for this model. Using (2.20) and (2.21)
with V̇L = 0 and V̇H = 0 gives

VL =
πL

r
=

β(1− β)
1−β

β p

1
β

L
Lψ

β−1
β

L

r
(5.59)

VH =
πH

r
=

β(1− β)
1−β

β p

1
β

H
Hψ

β−1
β

H

r
(5.60)

For the analysis of the direction of the technical change we look at the relative net present
discounted values.

VH

VL

= p
1
β

H

L

�ψL

ψH

� 1−β

β (5.61)

Whereas we only had a price effect and a market size effect in the basic model, the relativ
marginal costs of machine production influences the directed technical change as well. The
sector with lower costs in machine production will grow relative to the other sector.
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For a more detailled analysis, we substitute the relative price (5.57) into the relative net
present discounted values.

VH

VL

=
�1− γ

γ

� �

σ

�NH

NL

�− 1
σ

�ψH

ψL

� 1−β

β

1−σ

σ

�H
L

�σ−1
σ (5.62)

The first term is always a positive constant. If the weight of the intermediate good in the
high-skilled sector is greater, the power of the technical change is stronger. The technology
levels are exogenously given, so the second term is also a positiv constant. The exponent
of the relative costs of the machines depends on σ. If the intermediate goods are gross
substitutes (σ > 1) the exponent is negativ, if they are complimentary goods σ < 1 there
is a positive relation. In other words: lower marginal costs for machine production in the
H-sector leads to a directed technical change towards the H-sector only if the intermediate
goods are substitutes. Intuitively, cheaper production enables technology monopolists to
produce relatively more in this sector. Otherwise lower costs in machine production even
force the L-sector to produce relatively more. Furthermore, in (5.62) the exponent of
the relative labour supply is positiv, if the intermediate goods are substitutes. Directed
technical change will go in the direction of the sector with more labour supply (market
size effect).

5.2.3 Research and Development

In each sector R&D develops blueprints NL or NH , but in this model they can be rather in-
terpreted as a new technology level, since we do not differentiate between different machine
types. This is more similar to the basic model in chapter (2) than the environment-model
in chapter (3).

As described in the basic model, we use the lab-equipment approach. Blueprints are
depreciated entirely after one period. Since each technology can be used for only one
period, machine producers have to buy new blueprints for the next generation.
To invent a new technology we do not need scientists, as we have in the previous models.
Instead, agents can invest in R&D. Their savings D are split in DL and DH for each sector.
To simplify calculations we assume without loss of generality a linear relation between
the investments and the output. Furthermore, the new technology level depends on the
old level and productivity parameters ηL and ηH to differentiate between the sectors.

NL(t+ 1) = ηLDL(t)(NL(t))
δ (5.63)

NH(t+ 1) = ηHDH(t)(NH(t))
δ (5.64)

δ helps to describe the influence of past technology on the current technology. For a
positive δ we face positive knowledge spillovers between generations. If the teachers
already know a lot they can teach more and the next generation does succesful research. In
case δ is negative, we assume a limited possibility to develope new technologies, therefore
it is harder to create new innovations if the technology level is already high.

52



5 Population Dynamics, Environment and Directed Technical Change

5.2.4 Employment structure in equilibrium

We face competitive labour markets and firms and technology monopolists are maximising
their profits. Therefore we have equal wages for all workers in the same sector, so we only
need to differentiate between wL and wH .

To clear the markets, the prices for the intermediate goods pL or pH times the marginal
labour costs ∂YL

∂L
or ∂YH

∂H
for the firms producing these intermediate goods have to equal

the prices of machines χL or χH multiplied with the marginal labour costs ∂XL

∂LT

or ∂XH

∂HT

for the technology monopolists, respectively.

pL
∂YL

∂L
= χL

∂XL

∂LT

(5.65)

pH
∂YH

∂H
= χH

∂XH

∂HT

(5.66)

As we see in appendix (D.7) the labour supply for the technology monopolists can be
expressed in terms of the labour supply for the firms.

LT =
(1− α)(1− β)

β
L (5.67)

HT =
(1− α)(1− β)

β
H (5.68)

Together with full employment (5.1) and (5.2) we receive the following employment struc-
ture for ξ = β + (1− α)(1− β) ∈ (0, 1) and ξ̃ = (1− α)(1− β) ∈ (0, 1).

L =
β

ξ
LΣ (5.69)

H =
β

ξ
(HΣ −HE) (5.70)

LT =
ξ̃

ξ
LΣ (5.71)

HT =
ξ̃

ξ
(HΣ −HE) (5.72)

The amount of workers L and H depends on β, the exponent of labour in the production
function of the intermediate goods. If labour is more important than machines for firms,
they obviously demand more workers. For workers in the machine production we have an
invers relation to β.
When we compare both sectors, the proportion of workers at firms or technology monop-
olists is the same. We only keep in mind, that a number of teachers is used, independent
of the demand in the firms. This is shown in equation (5.74)
We can calculate the demand for teachers, since we know the number of children sent to
higher education and the student-teacher ratio φ.

HE = φ(nHHHΣ + hnLHLΣ) (5.73)
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If we substitute the demand of teachers into the employment structure, we can write the
employment ratios (see appendix (D.8)).

H

L
=

HT

LT

= (1− φnHH)
HΣ

LΣ
+ φhnLH (5.74)

To sum up, the relative labour supply in the H-sector increases if more families decide to
raise their children with high education and if their are a lot of those families, obviously.
If their are more worker in the high-skilled sector already, the ratio is increasing.

5.2.5 Natural resources in equilibrium

We also analyse the resource stock in equilibrium. We know, resources are used for
machine production in the low-skilled sector (5.47) as well as in the high skilled sector
(5.48). Additional to the resource dynamics given in (5.9) we split the resources into
resources for the H-sector and resources for the L-sector. This is given in the following
equation.

RL +RH = R (5.75)

As shown in appendix (D.9) the resource allocation in each period can be written as

RL =
1

1 +
�
1−γ

γ

� �

σ

�
NH

NL

�σ−1
σ

�
ψH

ψL

� (1−β)(1−σ)
βσ

�
H

L

�σ−1
σ

R (5.76)

RH =

�
1−γ

γ

� �

σ

�
NH

NL

�σ−1
σ

�
ψH

ψL

� (1−β)(1−σ)
βσ

�
H

L

�σ−1
σ

1 +
�
1−γ

γ

� �

σ

�
NH

NL

�σ−1
σ

�
ψH

ψL

� (1−β)(1−σ)
βσ

�
H

L

�σ−1
σ

R. (5.77)

Once again, we analyse two cases: In the first case (σ < 1) the shares of extracted natural
resources decreases with the technology level in its sector, as well as with labour supply in
its sector. Higher machine costs reduce the extraction of resources. Intuitively, if all the
other production factors are available in at a sufficiently high level, machine producers
need less natural resources to create the same output.
In the second case intermediates are gross substitutes (σ > 1). The relation between the
resources and the other production factors is positiv. Technology monopolists extract
more natural resources if more people are working in the firms, since the firms demand
machines.
We keep in mind, that the shares of extracted resources depends on γ, the technology
level, the labour supply and the relative wage, since the relative costs are

ψL

ψH

=
MH

ML

NH

NL

w
α−1 =

MH

ML

NH

NL

�1− γ

γ

� �β

σξ

�NH

NL

�σ−1
σξ

�MH

ML

� (1−β)(σ−1)
σξ

�H
L

�− β

σξ (5.78)

ψL

ψH

=
�1− γ

γ

� �β(α−1)
σξ

�NH

NL

� 1−α(1−βσ)
σξ

�MH

ML

� (1−β)(1−α)+βσ

σξ

�H
L

�−β(α−1)
σξ . (5.79)
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Using (5.79) we can rewrite (5.76) and (5.77).

RL =
1

1 +
�
1−γ

γ

� �(σ+ξ̃

σ2ξ
�
NH

NL

� (σ−1)(βσ+ξ)

βσ2ξ
�
H

L

� (σ−1)ξ̃

σ2ξ
�
MH

ML

� (1−β)(σ−1)(βσ+ξ̃)

βσ2ξ

R (5.80)

RH =

�
1−γ

γ

� �(σ+ξ̃

σ2ξ
�
NH

NL

� (σ−1)(βσ+ξ)

βσ2ξ
�
H

L

� (σ−1)ξ̃

σ2ξ
�
MH

ML

� (1−β)(σ−1)(βσ+ξ̃)

βσ2ξ

1 +
�
1−γ

γ

� �(σ+ξ̃

σ2ξ
�
NH

NL

� (σ−1)(βσ+ξ)

βσ2ξ
�
H

L

� (σ−1)ξ̃

σ2ξ
�
MH

ML

� (1−β)(σ−1)(βσ+ξ̃)

βσ2ξ

R (5.81)

The exponents of the relative technology level NH

NL

and the relative labour supply H

L
is

again positive for σ > 1 and negative for σ < 1, so the results from above hold.

In conclusion, depending on the factors mentioned above, either the shares of resources
in the L-sector are increasing and the shares of resources in the H-sector are decreasing,
or the other way around. We did not have these effects in the previous models, since we
did not differentiate between RL and RH in the model with environment in chapter (3).
To compare the models, RH has to equal 0 and therefore RL = R.

After analysing the allocation of the resources, we next consider the R&D-sector, to
investigate how the depletion rate of the natural resources can be influenced.

A better technology leads to a greater production of machines. Therefore we write the
profit of the R&D in terms of the expected profit of the machine producers. The dis-
counted profits of the technology monopolists πL

1+r
and πH

1+r
gives the price of one blueprint.

The price of the final output (= 1) is the profit of the blueprints times the marginal pro-
ductivity ∂NL(t+1)

∂DL

and ∂NH(t+1)
∂DH

taken from the R&D functions (5.63) and (5.64).

1 =
πL(t+ 1)

1 + r(t+ 1)
ηL(NL(t))

δ (5.82)

1 =
πH(t+ 1)

1 + r(t+ 1)
ηH(NH(t))

δ (5.83)

When we combine (5.82) and (5.83) we make sure, neither technology monopolists in
the L-sector nor in H-sector make profits out of different market prices. This gives the
non-arbitrage condition.

πH(t+ 1)

πL(t+ 1)
=

ηL

ηH

�
NL(t)

NH(t)

�δ

(5.84)

Derivation given in (D.10) leads to the relative level of technology.

NH(t+ 1)

NL(t+ 1)
= (5.85)

�
ηL

ηH

�NH(t)

NL(t)

�δ
� β+(σ−1)ξ

β−α(1−β)(σ−1)

(5.86)
��1− γ

γ

��β�MH

ML

�(σ−1)(1−β)�H(t+ 1)

L(t+ 1)

�(σ−1)ξ
� 1

β−α(1−β)(σ−1)

(5.87)
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We assume σ > 1. MH

ML

has a positive influence on the relative technology level of the
coming period. Intuitively, more efficient research in one sector leads to a higher amount
of blueprints in the same sector. More labour supply for firms and therefore also for ma-
chine production (see (5.74)) increases the technology level in its sector either. Research
will always be biased towards the sector with relatively more labour supply and a more
successful research.
Furthermore, we differentiate between δ > 0 (positive knowledge spillovers) and δ < 0
(limited possibility to create new technologies). So δ gives the speed of new innovations.

The number of new blueprints (as discussed in (5.63) and (5.64)) also depends on the
investments D. Since we model a closed economy, the investments equal the savings
without the value of the property rights for resources. The aggregate savings are the net
savings of both types of households L and H.

D = (IL − PqL)L+ (IH − PqH)H (5.88)

Using equilibrium expressions for the variables, we can write the aggregate savings as

D = pLYL

�
ρ

1 + a+ ρ
β(1 + w

H

L
)− α(1− β)

φL

1− τ

τ

�

� �� �
D̄

. (5.89)

For details see appendix (D.11). Aggregate savings depend on two factors. First, the
output of the L-sector as part of the whole output of the economy, since Y =

�
γY

�−1
�

L
+

(1 − γ)Y
�−1
�

H

� �

�−1 . Second, a function D̄. We require both factors positive to get a non-
trivial solution, therefore D has to be positive as well. For a positive D̄ ρ

1+a+ρ
β(1+w

H

L
) >

α(1−β)
φL

1−τ

τ
is necessary. So the share for investments for old-age period ρ

1+a+ρ
has to be

sufficiently high for both sectors (5.22) and (D.26). If the relative wage or the relative
labour supply increase towards the H-sector, the aggregate savings rise as well. Also the
depletion rate of the natural resources plays a role.

All the investments of the agents are spent on R&D, which become the value of successful
research. Market clearing in R&D makes sure, that all the future aggregate profits of the
technology monopolists equal the revenues of the aggregate savings of the households.

NL(t+ 1)πL(t+ 1) = (1 + r(t+ 1))DL(t) (5.90)
NH(t+ 1)πH(t+ 1) = (1 + r(t+ 1))DH(t) (5.91)

We can substitute the results from the machine producers (5.82) and (5.83).

NL(t+ 1)

ηL(NL(t))δ
= DL(t) (5.92)

NH(t+ 1)

ηH(NH(t))δ
= DH(t) (5.93)

We put both sectors together and obtain

NH(t+ 1)

NL(t+ 1)
=

ηH

ηL

�NH(t)

NL(t)

�δDH(t)

DL(t)
. (5.94)

56



5 Population Dynamics, Environment and Directed Technical Change

Since the aggregate savings have to equal the Investments in R&D for both sectors (D =
DL+DH) we can write the investments for each sector in terms of the aggregate savings.

DL =
1

1 + DH

DL

D (5.95)

DL =
1

1 + NH(t+1)
NL(t+1)

ηL

ηH

�
NH(t)
NL(t)

�δD (5.96)

DH = D −DL =
�
1− 1

1 + DH

DL

�
D (5.97)

DH =

NH(t+1)
NL(t+1)

ηL

ηH

�
NH(t)
NL(t)

�δ

1 + NH(t+1)
NL(t+1)

ηL

ηH

�
NH(t)
NL(t)

�δD (5.98)

NH(t+1)
NL(t+1) is given by equation (5.85). The share of investments in each sector is obviously
positively related to the expected technology level in its sector. More investments in one
sector lead to a better output in terms of blueprints in the same sector. On the other
hand, less efficiency in the research function even requires more investments. If the recent
level of technology has a positive or a negative influence depends on δ.

Since in equilibrium aggregate output and aggregate demand for machines are equal in
each sector, we can finally calculate the depletion rate of the natural resources. For details
see appendix (D.12).

τ(t+ 1) =
τ(t)

1− τ(t)

�
D̄

β(1− β)(1 + NH(t+1)
NL(t+1)

ηL

ηH

�
NH(t)
NL(t)

�δ
)

� 1
1−β

(gφL)−1 (5.99)

with D̄ = ρ

1+a+ρ
β(1 + w

H

L
)− α(1−β)

φL

1−τ

τ
.

The depletion rate in the next period depends on the depletion rate in the current period.
If the depletion rate is already high, the depletion rate in the coming period is high as
well. It is inversly related to the growth rate of φL, the share of resources spent in the
L-sector. Since D̄ is positively correlated to the depletion rate, but also to the aggregate
savings (D.119), the depletion rate increases when D increases. The term including the
recent and the future technology level in (5.96) influences not only the share of savings
for the L-sector DL, but also the depletion rate.

5.3 Long run equilibrium

Finally, to analyse the dynamic model, we focus on the four dynamic equations explaining
the laws of motion for the population ratio derived from (5.6) and (5.7),

HΣ(t+ 1)

LΣ(t+ 1)
=

h(t)nLH(t) + nHH(t)
HΣ(t)
LΣ(t)

(1− h(t))nLL(t)
(5.100)
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the fraction of unskilled households raising skilled offspring, determined by the relative
wage (5.34),

wH(t+ 1)

wL(t+ 1)
= w(t+ 1) =

z + w(t)φ

z
(5.101)

the relative technology level (5.85),

NH(t+ 1)

NL(t+ 1)
= (5.102)

�
ηL

ηH

�NH(t)

NL(t)

�δ
� β+(σ−1)ξ

β−α(1−β)(σ−1)

(5.103)
��1− γ

γ

��β�MH

ML

�(σ−1)(1−β)�H(t+ 1)

L(t+ 1)

�(σ−1)ξ
� 1

β−α(1−β)(σ−1)

(5.104)

and the depletion rate (5.99).

τ(t+ 1) =
τ(t)

1− τ(t)

�
D̄

β(1− β)(1 + NH(t+1)
NL(t+1)

ηL

ηH

�
NH(t)
NL(t)

�δ
)

� 1
1−β

(gφL)−1 (5.105)

The balanced growth path is calculated in appendix D.13. We obtain the following long
run equilibrium ratios for constant HΣ

LΣ
,
NH

NL

, h, τ, w, pL, pH . The long run equilibrium is
unique.

The relation of skilled and unskilled labour (5.100) in the long run equilibrium is given
by

HΣ

LΣ
=

hnLH

(1− h)nLL − nHH

. (5.106)

Obviously, the most important factor is the fraction h of unskilled households raising
skilled offspring and their total number nLH in equilibrium. h is implicitely given by
(5.101)

w =
z

z − φ
. (5.107)

The difference between the fraction of wage income for raising children and the teacher
student ratio decreases the relative wage. More teacher educating children leads to rela-
tively higher wages for the H-sector.

The technology level in the long run is

NH

NL

=

�
ηH

ηL

β+(σ−1)ξ�1− γ

γ

��β�MH

ML

�(σ−1)(1−β)�H
L

�(σ−1)ξ
� 1

β−α(1−β)(σ−1)−δ(β+(σ−1)ξ)

(5.108)
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with a positive exponent. Better efficiency in R&D increases the technology level, as well
as higher coefficients for the production function of machines (in case of intermediate
goods as substitutes). Also more labour supply in the H- or L-sector lead to a better
technology level in the H- or L-sector, respectively.

Based on (5.99) the equilibrium depletion rate is determined by

τ = 1−
�

D̄

β(1− β)(1 + ηL

ηH

�
NH

NL

�δ+1
)

� 1
1−β

. (5.109)

Note, that the depletion rate does not depend on the producing sectors, but only on
their technology. Only if we assume that higher education leads to a production with
less resources and investments are done in this sector, we can decrease the extraction of
natural resources.

New innovations are expressed with the growth rate of the technology level, which is the
same for both sectors and we denote it therefor with g

N . A detailled derivation of the
growthrate is found in Schaefer, (2012), p.44f, appendix B.9.

g
N =

�
n
ξ(1− τ)α(1−β)

�− 1
δ (5.110)

In the steady state n is the average number of children per household. n can be expressed
in terms of all three types of households: n = (1− h)nLL = h

LΣ
HΣ

nLH + nSS.
We see that n plays an important role for the growth rate of the technology. We analyse
two cases. For a negative δ population growth increases the technology level. In case the
population size is constant in the steady state, the output of the economy is decreasing
since its long run growth rate is (g-1). Skill-biased technological change would even make
it worse, because the fertility rate in the H-sector is declining. Since τ ∈ [0, 1] the
maximimum output can only be 0 with n = 1 and δ < 0 in (5.110) and τ = 0. For
a positive depletion rate in combination with a constant population we cannot avoid a
shrinking output of the economy, as long as there is a negative feedback effect between
the level of technology and R&D.
If research is "standing on shoulders of giants" (δ > 0) we even need constant or decreasing
population to gain economic growth. Skill-biased technological change would help to
compensate the missing population growth and still enables an economic growth rate
g − 1 > 0.

59



6 Conclusion

The thesis describes macroeconomic endogenous growth models, where production takes
place within two sectors. A first idea of such a two-sector model is explained in the first
chapter, based on Acemoglu (2002). We analyse the biased directed technical change
within both sectors. Basically, the sectors represent different technologies. In the first
model, we can interpret the specifications of the sectors in different ways. E.g. one
sector has higher skilled labour supply or one sector has to use natural resources for the
production of its good. To focus on one interpretation we assumed one technology uses
low skilled workers and the other sector requests high skilled workers. So we see the effects
of skill-biased technological change. Moreover, we also find appropriate assumptions to
analyse capital- or labour-augmenting directed technical change.

Profit incentives can direct the technical change. Two different kind of changes are pos-
sible: The price effect and the market size effect: If the price of the goods in one sector
is increasing, more researchers will work on better technologies in this sector due to their
higher expected profits. The market size effect is caused by a high amount of labour
supply in one sector. This increases the expected earnings for scientists in this sector.
So more research is done and the technology level rises in this sector. As a consequence,
changes in the research itself can direct technical change. If new innovations are positively
correlated to the old technology level, skill biased technological change is more plausible.
If we assume no state dependence for the dynamics of the technology level, we see the
effects of capital-biased change more clearly.

We next introduced the paper of Acemoglu, Aghion, Bursztyn and Hemous (2012), where
the factor environment is added to the model of Acemoglu (2002). One sector needs
natural resources for its production. The amount of existing resources is an important part
of the quality of environment. The environmental quality influences the utility function
of the consumers. Again, profit incentives direct technical change. In addition to the
price and the market size effect a direct productivity effect occurs. The productivity of
the past periods influences the current production. The output of one sector can increase
more, if this sector is already more developed, e.g. more experienced workers share their
knowledge and technologies of the previous periods can be used for new innovations.
We calculate four different model specifications to see how to avoid an environmental
desaster:

1. A laissez-faire equilibrium with renewable resources
2. A centralised equilibrium with renewable resources
3. A laissez-faire quilibrium with exhaustible resources
4. A centralised equilibrium with exhaustible resources
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In the first case without any regulations and renewable resources, it is impossible to avoid
a desaster under realistic parameter values. Scientists will always decide to do research
in the more developed sector, since they can expect higher profits there. The sector using
natural resources is better developed in the beginning. Under this assumption production
will always use natural resources.
The social planner in the second scenario enables a more optimistic result. In case agents
have a low time preference rate and two policies (taxes and subsidies for production
without natural resources) are introduced, directed technical change towards the green
sector occurs and a desaster can be avoided.
The third scenario promises a higher environmental quality than the first scenario. If
the price for the exhaustible resources is high enough, scientists start doing research in
the green sector to avoid the use of resources in the production process. This leads to
a directed technical change towards the green sector. If it does not take too long to
change to technologies without exhaustible resources the environment can regenerate. So
an environmental desaster can be avoided. Obviously, it is easier to switch from the
production of one good to the other, if the goods are good substitutes.
The most optimistic result is given in scenario 4. If resources can not be renewed, the
price of the resources is increasing like in the third scenario. Moreover, the introduction
of the two policies (taxes and subsidies) can successfully avoid an environmental desaster,
because the policies ensure that the technical change towards the green sector is happening
fast enough. Production in the green sector (without using any resources) is much cheaper
for the firms, since they receive subsidies, whereas firms in the other sector even have to
pay taxes for the resources. Therefore research in this sector is more profitable. As a
consequence, scientists can expect higher profits in the green sector and will do their
research in this sector.

Because the assumption that dirty and green technologies both can cause economic growth
is not always true, we improve the structure of the two sectors. Following the framework of
Acemoglu, Aghion, Bursztyn and Hemous (2012), we model two different kind of technolo-
gies in an alternative way. Instead of two sectors producing intermediate goods (which are
used for the final good), only one technology is producing (final) goods. This technology
uses resources and causes pollution. The second technology is an environmental friendly
technology. It can not increase the output of the economy, but enhances the quality of
the environment.
Analysing this model, we see that taxes are sufficient to ensure a good quality of envi-
ronment in the long term. Depending on the sustainability of research, subsidies towards
the environmental friendly technology can be necessary to ensure a long lasting good
environment.

Last, but not least, we improved the two sector model once more following Schaefer
(2012). In addition to the environment we also include population dynamics in the eco-
nomic growth model for directed technical change. An overlapping generations model
helps modelling the population growth and the decision of households, whether they want
to enable good education for their offspring. The results of the more complicated model
are similar to the results of the previous models.
However, the direction of the technical change is not only given by the price and the
market size effect, but also by the educational choice of the parents. If they can afford a
higher education for their children, labour supply in the high-skilled sector increases and
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technological change goes towards this sector.
Natural resources are used in both sectors. Therefore economic growth is always nega-
tively correlated to the quality of environment. In contrast to the previous models, there
is no chance to enable economic growth without avoiding a significant decrease of envi-
ronmental quality. Nevertheless, we can identify the relation between population growth
and the depletion rate of natural resources. It would be interesting in further research to
connect education and the use of natural resources.
The choice for higher education leads to a decline in the fertility rate, since the rearing
costs per child increase. As an indirect consequence of the fertility decline, the quality of
the environment improves.
Independent of the population growth, long run economic growth is only possible if re-
search is built on the shoulders of giants. So that knowledge spillovers are possible. If
this is not the case, the decreasing population even leads to a decline in output of the
economy.

To sum up, all models describe directed technical change under different assumptions. Re-
garding the balanced growth path, firms maximise their profits and households maximise
their utility function. Since the environment is not (a significant) part of the decisions of
the individuals, a social planner has to introduce policies to reach goals concerning envi-
ronment or population growth. So economic growth is possible in a stable equilibrium.
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A Appendix

A.1 Price of intermediate goods

To calculate the price for the intermediate goods YH and YL we differentiate the production
function (2.3)

Y =
�
γY

�−1
�

L
+ (1− γ)Y

�−1
�

H

� �

�−1 (A.1)

of the final good with respect to YH or YL to obtain the prices pH and pL for each good.
This are the prices that clear of the competitive market.

pL =
∂Y

∂YL

=
�

�− 1

�
γY

�−1
�

L
+ (1− γ)Y

�−1
�

H

� �

�−1−1
(γ)

�− 1

�
Y

�−1
�

−1
L

(A.2)

=
�
γY

�−1
�

L
+ (1− γ)Y

�−1
�

H

� 1
�−1 (γ)Y

−1
�

L
(A.3)

pH =
∂Y

∂YH

=
�

�− 1

�
γY

�−1
�

L
+ (1− γ)Y

�−1
�

H

� �

�−1−1
(1− γ)

�− 1

�
Y

�−1
�

−1
H

(A.4)

=
�
γY

�−1
�

L
+ (1− γ)Y

�−1
�

H

� 1
�−1 (1− γ)Y

−1
�

H
(A.5)

So the relative price can be written as

p ≡ pH

pL
=

1− γ

γ

�YH

YL

�− 1
� . (A.6)

A.2 First Order Conditions for the firms profit

Since we face symmetric profit funcitons, we present the calculations only for the L-
sector.

We want to maximise the profit of the firms, given by

max
L,{xL(j)}

ΠL = max
L,{xL(j)}

pLYL − wLL−
�

NL

0

χL(j)xL(j)dj (A.7)

with YL = 1
1−β

��
NL

0 xL(j)1−β
dj

�
L
β
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FOC with respect to the number of machines

Differentiation with respect to xL leads to

∂ΠL

∂xL

= pL
1− β

1− β
xL(j)

−β
L
β − χL(j) = 0. (A.8)

which yields

xL(j) =
� pL

χL(j)

� 1
βL (A.9)

Analogous we can derive xH .

FOC with respect to labour

Differentiation with respect to L gives

∂ΠL

∂L
= pL

β

1− β

��
NL

0

xL(j)
1−β

dj

�
L
β−1 − wL = 0 (A.10)

which yield

wL =
β

1− β
pL

��
NL

0

xL(j)
1−β

dj

�
L
β−1

. (A.11)

Analogous we find wH .

A.3 First Order Conditions for the
technology monopolists profit

Again, we only focus on the L-sector, knowing that the calculation for the H-sector is
analogous.
We want to maximise the profit of the technology monopolists

max
χL

πL(j) = max
χL

(χL(j)− ψ)xL(j) (A.12)

facing the demand of machines xL =
�

pL

χL(j)

� 1
βL (2.11). Differentiation with respect to the

price of machines they sell gives

∂πL(j)

∂χL(j)
=

�
pL

χL(j)

� 1
β

L+ (χL(j)− ψ)
−1

β
pL

1
βχL(j)

− 1
β
−1
L = 0. (A.13)
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We can rewrite the last equation as

χL(j)
−1
β = (χL(j)− ψ)

1

β
χL(j)

−1−β

β

1 =
1

β
− ψ

1

β
χL(j)

−1

and finally obtain

χL(j) =
ψ

1− β
. (A.14)

A.4 Elasticity of substitution

We want to derive the elasticity of substitution between the factors L and H in the
production function Y (2.6) given by

Y =

�
γ
� 1
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� � NL

0
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dj
�
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.

Since the elasticity of substitution is defined as

σ =
d ln( L

H
)

d ln( YL

YH

)
(A.15)

we first derive the marginal productivities ∂Y

∂L
and ∂Y

∂H
.
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So we can write the marginal rate of substitution

MRS = −
∂Y
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Substituting the relative price p (2.7) gives the following relation.
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�

� 1−β

β

�−1
�

−
∂Y

∂L

∂Y

∂H

= − γ

1− γ

1− 1−β

β

�−1
�
� L
H

�−1
�

� �
NL

0

�
1

χL(j)

� 1−β

β dj
� �−1

�

� �
NH

0

�
1

χH(j)

� 1−β

β dj
� �−1

�

� � �
NL

0 xL(j)1−β
dj
�
L
β

� �
NH

0 xH(j)1−βdj
�
Hβ

�− 1
�

1−β

β

�−1
�

−
∂Y

∂L

∂Y

∂H

= − γ

1− γ

1− 1−β

β

�−1
�
� L
H

�−1
�
− 1−β

�

�−1
�

� �
NL

0

�
1

χL(j)

� 1−β

β dj
� �−1

�

� �
NH

0

�
1

χH(j)

� 1−β

β dj
� �−1

�

� � �
NL

0 xL(j)1−β
dj
�

� �
NH

0 xH(j)1−βdj
�
�− 1

�

1−β

β

�−1
�

We rewrite that as

ln
� L
H

�
= �− (�− 1)(1− β)

�
ln

�
∂Y

∂L

∂Y

∂H

�
− ζ ln

�
γ

1− γ

�
− ln

�
A

��

with ζ and A appropriate constants for a simplified notation and finally derive the elas-
ticity of substitution

σ =
d ln( L

H
)

d ln(
∂Y

∂L

∂Y

∂H

)
= 1 + β�− β = �− (�− 1)(1− β). (A.17)

A.5 Price function in 2.3.1

We derive the price function for the relative price of the intermediate goods.

p =
pH

pL
=

�
1− γ

γ

�� 1
1−β

� �
NH

0 (pH
1
βH)1−β

dj
�
H

β

1
1−β

� �
NL

0 (pL
1
βL)1−βdj

�
Lβ

�− 1
�

=

�
1− γ

γ

�� 1
1−β

�
NHpH

1−β

β H
1−β

�
H

β

1
1−β

�
NLpL

1−β

β L1−β
�
Lβ

�− 1
�

=

�
1− γ

γ

��
p

1−β

β

NHH

NLL

�− 1
�
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p
1+ 1−β

β� =

�
1− γ

γ

��
NHH

NLL

�− 1
�

p =

�
1− γ

γ

� β�

1+β�−β

�
NHH

NLL

� −β

1+β�−β

Using the derived elasiticity of substitution (see appendix (A.4)) between the production
factors H and L σ ≡ �− (�− 1)(1− β) = 1+ β�− β (so σ > 1 only if � > 1) we can write
the relative price p as

p =

�
1− γ

γ

�β�

σ

�
NH

NL

�−β

σ

�
H

L

�−β

σ

. (A.18)

A.6 Technology market clearing

As described we face

VH

VL

=
ηL

ηH
(A.19)

Since V̇L in (2.20) and V̇H in (2.21) are 0, substituting πL (2.20) and πH (2.21) leads to
the following.

πH

r

πL

r

=
ηL

ηH

We can rewrite that and get the following market clearing condition.

ηLπL = ηHπH (A.20)

A.7 Growthrate of the lab-equipment-model

To derive the long-run growth rate for the lab equipment model we maximise the CRRA
preferences of the representative consumer (2.2) to get the Euler-equation. The money
that is not spent on consumption is invested in R&D with an interest rate r.

gc = θ
−1(r − ρ). (A.21)

We know the growth rate of the consumption gc is also equal to growth rate of output
g.

g = gc = θ
−1(r − ρ) (A.22)

The technology monopolists can enter the market for new machine types in the L-Sector.
The free-entry condition ηLVL = 1 (in terms of the final good) can be rewritten using the
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equation for VL (2.22) in the steady state, where V̇L = 0.

ηL
βp

1/β
L

L

r
= 1 (A.23)

Inserting r from (A.23) in (A.22) gives

g = θ
−1(βηLp

1/β
L

L− ρ) (A.24)

Using the relative price p = pH

pL
we can write the price equation (3.18) as

γ
�
p
1−�

L
+ (1− γ)�p1−�

p
1−�

L
= 1. (A.25)

Dividing by p
1−�

L
and substituting p (2.25) and NH

NL

(2.32) leads to

γ
� + (1− γ)�ησ

�H
L

�−β(1−�)
= p

�−1
L

. (A.26)

Using σ − 1 = β(� − 1) we can put (A.24) and (A.26) together and get the growth rate
for the output.

g = θ
−1(β[(1− γ)�(ηHH)σ−1 + γ

�(ηLL)
σ−1]

1
σ−1 − ρ) (A.27)

A.8 Growthrate of the knowledge-based R&D model

We want to have constant and equal growth rates in BGP ṄL

NL

= ṄH

NH

. Substituting (2.36)
and (2.37) gives

ηLN
δ−1
L

SL = ηHN
δ−1
H

SH (A.28)

So we can express SH = ηL

ηH

�
NL

NH

�δ−1
SL and insert in the total number of scientists S =

SL + SH .

S =

�
1 +

ηL

ηH

�NL

NH

�δ−1
�
SL =

�
ηH

ηH
+

ηL

ηH

�NH

NL

�1−δ

�
SL (A.29)

SL =
ηHS

ηH + ηL

�
NH

NL

�1−δ
=

ηH

�
NH

NL

�δ−1
S

ηH

�
NH

NL

�δ−1
+ ηL

(A.30)

Since the growth rates of the technologies are equal to the growth rate of the output we
get

g =
ṄH

NH

=
ṄL

NL

= ηL

�NH

NL

� δ−1
2 SL (A.31)
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Substituting SL gives the growth rate of the output.

g =
ηLηHS

ηH

�
NH

NL

� 1−δ

2 + ηL

�
NH

NL

� 3(1−δ)
2

(A.32)
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B.1 The Hotelling Rule - an excursus

In case we face property rights for resources firms have to pay a price P for non-renewable
resources. This price is calculated by the well known Hotelling rule:

In a competitive market firms face a maximisation problem maxq
�∞
0 e

−rt
p(t)q(t)dt, and

they can sell q(t) of the resource for a price p(t). The ressource stock Q(t) is shrinking
if they extract resources to sell them: Q̇(t) = −q(t). In the beginning there is a resource
stock Q(0) = q0 > 0. Q(t) has to be non-negative all the time. Each period the firms can
extract q(t) ≤ q̄ due to limited machines and workers to extract resources, and of course
can not add resources if they have taken them already q(t) ≥ 0.

To solve this problem, we formulate the Hamiltonian H and its first order conditions.

H = p(t)q(t) + λ(−q(t)) (B.1)
∂H

∂q
= p(t)− λ = 0 (B.2)

λ̇ = rλ (B.3)

Obviously λ = p(t) and therefore ṗ(t)
p(t) = r. The Hotelling rule describes the most socially

and economically profitable extraction path of a non-renewable resource. The growth rate
of the price p(t) should be the interest rate firms face on the capital market to maximise
the value of the resource stock.

The implementation of the Hotelling rule is found in chapter (3.3.3) and (3.3.4).

B.2 Relative expected profit for scientists in section
3.3.1

We can rewrite the equation

πH

πL

=
ηH

ηL
×

�
pH

pL

� 1
β

� �� �
price effect

× H

L����
market size effect

× N
t−1
H

N
t−1
L� �� �

direct productivity effect

(B.4)
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substituting equilibrium results.
To simplify we assume wL = wH and get from (3.32) and (3.33)

wH

wL

=
βp

1
β

H
NH

βp

1
β

L
NL

=

�
pH

pL

� 1
β NH

NL

= 1 (B.5)

which is equivalent to

pH

pL
=

�
NH

NL

�−β

. (B.6)

Substituting YL from (3.30) and YH from (3.31) into the relative price p (3.17) gives

p
−� =

�
pH

pL

�−�

=
YH

YL

=
p

1−β

β

H
HNH

p

1−β

β

L
LNL

. (B.7)

Combining (B.7) and (B.6) leads to

H

L
=

�
pH

pL

�−�− 1−β

β

�
NH

NL

�−1

=

�
NH

NL

�(−β)(−�− 1−β

β
)�

NH

NL

�−1

=

�
NH

NL

�β(�−1)

. (B.8)

Now we can substitute (3.12), (3.13), (B.6) and (B.8) into (B.4) to analyse the directed
technical change in the equilibrium.

πH

πL

=
ηH

ηL

�
1 + νηHSH

1 + νηLSL

�β(�−1)−1�
N

t−1
H

N
t−1
L

�β(�−1)

(B.9)

B.3 Relative expected profit for scientists in section
3.3.3

Analogous to section 3.1 we can write

πH

πL

= κ
ηH

ηL
× 1

Rβ2����
resource effect

× p

1
β

H

p

1
β1
L����

price effect

× H

L
β

β1����
market size effect

× N
t−1
H

N
t−1
L� �� �

direct productivity effect

(B.10)
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with κ := β(1−β)
2−β

β

β1(1−β1)
2−β1
β1

ψ
1
β1

− 1
β in terms of the number of scientists and the technology level.

Therefore we need the equal equilibrium wages (3.47) and (3.33).

wH

wL

=
β(1− β)2

1−β

β p

1
β

H
ψ

β−1
β NH

β(1− β1)
2
1−β1
β1 p

1
β1
L
R

β2
β1ψ

β1−1
β1 L

β−β1
β1 NL

(B.11)

=
(1− β)2

1−β

β

(1− β1)
2
1−β1
β1

ψ

β−β1
ββ1 R

−β2
β1L

β1−β

β1
p

1
β

H

p

1
β1
L

NH

NL

= 1 (B.12)

For substituting the price effect we transform the equation.

p

1
β

H

p

1
β1
L

=
(1− β)2

1−β

β

(1− β1)
2
1−β1
β1

ψ

β1−β

ββ1 R

β2
β1L

β−β1
β1

�
NH

NL

�−1

(B.13)

The marginal products of labour have to be equal across sectors to clear the labour market.
So we use YL (3.50) and YH (3.31) to calculate ∂YL

∂L
= ∂YH

∂H
.

1 =
∂YH

∂H

∂YL

∂L

=
β(1− β)2

1−β

β ψ
β−1
β p

1−β

β

H
NH

� (1−β1)2

ψ

� 1−β1
β

�
β2

c(Q)

�β2
β p

1−β

β

L
N

β1
β

L

(B.14)

We can rewrite (B.14) to get the price ratio.

pH

pL
=

ψ
β2(1− β1)2((1−β1)β

β2
2 N

−β

H

c(Q)β2(1− β)2(1−β)N
−β1
L

(B.15)

The relative price brings YL (3.50) and YH (3.31) together.

p
−� =

�
pH

pL

�−�

=
YH

YL

=
β(1− β)2

1−β

β ψ
β−1
β p

1−β

β

H
HNH

� (1−β1)2

ψ

� 1−β1
β

�
β2

c(Q)

�β2
β p

1−β

β

L
LN

β1
β

L

(B.16)

So we can express the relative labour supply.

H

L
=

β

β2
β

2 (1− β1)
2
1−β1

β

β(1− β)2
1−β

β

ψ
β1−β

β c(Q)−
β2
β

�
pH

pL

�β−1
β

−��
NH

N

β1
β

L

�−1

(B.17)

Substituting (B.15) into (B.17) and plotting (3.49), (B.17) and (B.13) into (B.10) finally
gives

πH

πL

= κ̄
ηH

ηL
c(Q)β2(�−1) (1 + νηHSH)β(�−1)−1

(1 + νηLSL)β1(�−1)−1

(N t−1
H

)β(�−1)

(N t−1
L

)β1(�−1)
(B.18)

with κ̄ := β(1−β)

β1(1−β1)
β1+β2

β1

�
(1−β)2(1−β)

ψβ2 (1−β1)2(1−β1)β
β2
2

��−1

.
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C.1 FOC of the Lagrangian

The FOC with respect to X(t) is

∂Λ

∂X(t)
= −(1− β)2λ1(t) + (1− β)N(t)βX(t)−β

λ2(t) + e(t)β(1− β)X(t)−β
λ3(t+ 1) = 0.(C.1)

We can rewrite that.

(1− β)2λ1(t) =
�
(1− β)N(t)βλ2(t) + e(t)β(1− β)λ3(t+ 1)

�
X(t)−β (C.2)

(1− β)2λ1(t)

(1− β)N(t)βλ2(t) + e(t)β(1− β)λ3(t+ 1)
= X(t)−β (C.3)

�
(1− β)λ1(t)

N(t)βλ2(t) + e(t)βλ3(t+ 1)

�− 1
β

= X(t) (C.4)
�
N(t)βλ2(t) + e(t)βλ3(t+ 1)

(1− β)λ1(t)

� 1
β

= X(t) (C.5)

(1− β)−
1
β

�
N(t)β − e(t)βλ3(t+ 1)

λ1(t)

� 1
β = X(t) (C.6)

(1− β)−
1
β

�
N(t)β − λ3(t+ 1)

λ1(t)
e(t)β

� 1
β = X(t) (C.7)

We substitute X(t) (C.7) into the FOC of the technology.

− λ2(t)βN(t)(β−1)
X

(1−β) + λ4(t+ 1)− λ4(t)(1 + ν(1− s(t+ 1))) = 0 (C.8)

−λ2(t)βN(t)(β−1)

�
(1− β)−

1
β

�
N(t)β − λ3(t+ 1)

λ1(t)
e(t)β

� 1
β

�(1−β)

(C.9)

+λ4(t+ 1)− λ4(t)(1 + ν(1− s(t+ 1))) = 0

λ2(t)β(1− β)−
1−β

β N(t)(β−1)

�
N(t)β − λ3(t+ 1)

λ1(t)
e(t)β

� 1−β

β

(C.10)

+λ4(t)(1 + ν(1− s(t+ 1))) = λ4(t+ 1)
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Analogous for the second technology FOC.

λ3(t+ 1)βe(t)(β−1)
X(t)(1−β) + λ5(t+ 1)− λ5(t)(1− ςs(t+ 1)) = 0 (C.11)

λ3(t+ 1)βe(t)(β−1)

�
(1− β)−

1
β

�
N(t)β − λ3(t+ 1)

λ1(t)
e(t)β

� 1
β

�(1−β)

(C.12)

+λ5(t+ 1)− λ5(t)(1− ςs(t+ 1)) = 0

−λ3(t+ 1)β(1− β)−
1−β

β e(t)(β−1)

�
N(t)β − λ3(t+ 1)

λ1(t)
e(t)β

� 1−β

β

(C.13)

+λ5(t)(1− ςs(t+ 1)) = λ5(t+ 1)
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D.1 Optimisation of the households

D.1.1 Unskilled households raising unskilled offspring

We want to solve the following optimisation problem.

max
CL(t),nLL(t),CL(t+1),IL(t),qL(t)

lnCL(t) + a ln(wL(t+ 1)nLL) + ρ lnCL(t+ 1) (D.1)

The budget constraint can be written in the following equivalent ways.

wL(t) ≥ (zwL(t))nLL(t) + CL(t) + (IL(t) + P (t)qL(t)) (D.2)
wL(t+ 1) ≥ (zwL(t+ 1))nLL(t+ 1) + CL(t+ 1) + (IL(t+ 1) + P (t+ 1)qL(t+ 1)) (D.3)

wL(t) ≥ (zwL(t))nLL(t) + CL(t) +
CL(t+ 1)

1 + r(t+ 1)
(D.4)

(1 + r(t+ 1))wL(t)− (zwL(t))nLL(t)− CL(t) ≥ CL(t+ 1) (D.5)
wL(t)− (zwL(t))nLL(t)− (IL(t) + P (t)qL(t)) ≥ CL(t) (D.6)

Using (D.5) and (D.6) we rewrite the optimisation problem.

max
CL,nLL,CL(t+1),IL,qL

ln
�
wL(t)− (zwL(t))nLL(t)− (IL(t) + P (t)qL(t))

�

+a ln
�
wL(t+ 1)nLL

�
+ ρ ln

�
(1 + r(t+ 1))wL(t)− (zwL(t))nLL(t)− CL(t)

�

Note, that wL is a function of CL. The first order conditions are

1

CL

− (1 + a+ ρ)
1

wL

= 0 (D.7)

α
1

nLL

1

z
− (1 + a+ ρ) = 0 (D.8)

ρ
1

(1 + r(t+ 1))(IL + PqL)
− 1 = 0 (D.9)
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Simple transformations give

CL =
1

1 + a+ ρ
wL (D.10)

nLL =
a

(1 + a+ ρ)z
(D.11)

IL =
ρ

1 + a+ ρ
wL − PqL (D.12)

D.1.2 Unskilled households raising skilled offspring

max
CL,nLH ,CL(t+1),IL,qL

uLH = (D.13)

max
CL,nLH ,CL(t+1),IL,qL

lnCL(t) + a ln(wH(t+ 1)nLH) + ρ lnCL(t+ 1) (D.14)

subject to (5.17):

wL ≥ (zwL + wHφ)nLH + CL + (IL + PqL) (D.15)

Again, rewriting the budget constraint

wL(t) ≥ (zwL(t) + wH(t)φ)nLH(t) + CL(t)

+(IL(t) + P (t)qL(t)) (D.16)
wL(t+ 1) ≥ (zwL(t+ 1) + wH(t+ 1)φ)nLH(t+ 1)

+CL(t+ 1) + (IL(t+ 1) + P (t+ 1)qL(t+ 1)) (D.17)
wL(t) ≥ (zwL(t) + wH(t)φ)nLH(t)

+CL(t) +
CL(t+ 1)

1 + r(t+ 1)
(D.18)

and substituting into the maximisation problem yields

CL =
1

1 + a+ ρ
wL (D.19)

nLH =
a

1 + a+ ρ

wL

wLz + wHφ
=

a

1 + a+ ρ

1

z + wφ
(D.20)

IL =
ρ

1 + a+ ρ
wL − PqL (D.21)

D.1.3 Skilled households raising skilled offspring

max
CH ,nHH ,CH(t+1),IH ,qH

uHH = max
CH ,nHH ,CH(t+1),IH ,qH

lnCH(t)+a ln(wH(t+1)nHH)+ρ lnCH(t+1)

(D.22)
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subject to (5.18):

wH ≥ (zwH + wHφ) nHH + CH + (IH + PqH) (D.23)

Analogous to the previous sections we obtain

CH =
1

1 + a+ ρ
wH (D.24)

nHH =
a

1 + a+ ρ

1

z + φ
(D.25)

IH =
ρ

1 + a+ ρ
wH − PqH (D.26)

D.2 Relative equilibrium price

We substitute (5.43) and (5.44) into (5.38).

p ≡ pH

pL
=

1− γ

γ

�NH

NL

�− 1
�

�
p

1−β

β

�− 1
�

�χH

χL

�− 1
�

β−1
β

�H
L

�− 1
�

Using σ = �− (�− 1)(1− β) = �β + 1− β we can rewrite that to

p
σ

�β =
1− γ

γ

�NH

NL

�− 1
�

�χH

χL

� 1−β

�β

�H
L

�− 1
�

which gives

p =
�1− γ

γ

� �β

σ

�NH

NL

�−β

σ

�χH

χL

� 1−β

σ

�H
L

�−β

σ . (D.27)

D.3 Profits and wages of the firms

We look at the profits of the firms like in the basic model.

max
L,{xL(j)}

ΠL = max
L,{xL(j)}

pLYL − wLL−
�

NL

0

χL(j)xL(j)dj (D.28)

max
H,{xH(j)}

ΠH = max
H,{xH(j)}

pHYH − wHH −
�

NH

0

χH(j)xH(j)dj (D.29)

Following the calculations in appendix (A.2) gives the wages.

wL =
β

1− β
pL

��
NL

0

xL(j)
1−β

dj

�
L
β−1 (D.30)

wH =
β

1− β
pH

��
NH

0

xH(j)
1−β

dj

�
H

β−1 (D.31)

79



D Appendix

We substitute the equilibrium demand of machines xL (5.41) and xH (5.41).

wL =
β

1− β
pLNL

� pL
χL

� 1−β

β (D.32)

wH =
β

1− β
pHNH

� pH
χH

� 1−β

β (D.33)

The skilled wage premium w = wH

WL

is then

w = p
1
β

NL

NH

�χL

χH

�β−1
β . (D.34)

Finally, substituting the relative price of the intermediate goods p (5.45) leads to the
skilled wage premium in equilibrium.

w =
�1− γ

γ

� �

σ

�NH

NL

�− 1+σ

σ

�χH

χL

� 1−β

β

1−σ

σ

�H
L

�− 1
σ . (D.35)

D.4 Costs of machine production

Technology monopolists are facing a production function, so they optimise their profit
like competitive firms. The profit is the difference between the volume of sales (price of
machines times machine supply) and the costs of the production factors labour (wage
times labour supply) and resource (price of the resource multiplied with the number of
resources used for production). They have to maximise with respect to labour supply
and resources they want to use for the production, before they can choose the price of
the machines to sell them in a monopolistic way. For the production itself they face the
following profit function on an aggregate level.

max
LT ,RL

πL = max
LT ,RL

ψLXL − wLLT − PRL (D.36)

max
HT ,RH

πH = max
HT ,RH

ψHXH − wHHT − PRH (D.37)

Whereas the aggregate output of their production is given by

XL = MLNL(LT )
1−α(RL)

α (D.38)
XH = MHNH(HT )

1−α(RH)
α
. (D.39)

Substituting (D.38) into (D.36) and (D.39) into (D.37) gives

max
LT ,RL

πL = max
LT ,RL

ψLMLNL(LT )
1−α(RL)

α − wLLT − PRL (D.40)

max
HT ,RH

πH = max
HT ,RH

ψHMHNH(HT )
1−α(RH)

α − wHHT − PRH . (D.41)
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The first order condition from (D.40) and (D.41) with respect to the labour supply is
written as follows.

∂πL

∂LT

= ψLMLNL(1− α)(LT )
−α(RL)

α − wL = 0 (D.42)

∂πH

∂HT

= ψHMHNH(1− α)(HT )
−α(RH)

α − wH = 0 (D.43)

Next, the FOC with respect to the resource is given by

∂πL

∂RL

= ψLMLNL(LT )
1−α

α(RL)
α−1 − P = 0 (D.44)

∂πH

∂RH

= ψHMHNH(HT )
1−α

α(RH)
α−1 − P = 0. (D.45)

We can bring the optimal resources and optimal labour supply in relation, if we simply
divide both FOCs: (D.42)/(D.44) and (D.43)/(D.45).

ψLMLNL(1− α)(LT )−α(RL)α

ψLMLNL(LT )1−αα(RL)α−1
=

wL

P
(D.46)

ψHMHNH(1− α)(HT )−α(RH)α

ψHMHNH(HT )1−αα(RH)α−1
=

wH

P
(D.47)

We rewrite the equations.

RL =
α

1− α
LT

wL

P
(D.48)

RH =
α

1− α
HT

wH

P
(D.49)

Since we are interested in the cost function, have a closer look at the aggregate costs ΨL

and ΨH .

ΨL = wLLT + PRL (D.50)
ΨH = wHHT + PRH (D.51)

We can now solve a system of two linear equations to express the optimal use of resources
and labour in terms of the costs. (D.48) and (D.50) leads us to LT = (1−α)ΨL

wL

and
RL = αΨL

P
. (D.49) and (D.51) gives HT = (1−α)ΨH

wH

and RH = αΨH

P
.

Substituting these expressions in (D.38) and (D.39) helps us expressing the aggregate
costs in a different way.

XL = MLNL

�(1− α)ΨL

wL

�1−α�αΨL

P

�α (D.52)

XH = MHNH

�(1− α)ΨH

wH

�1−α�αΨH

P

�α (D.53)
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ΨL = XL

w
1−α

L
P

α

MLNL(1− α)1−ααα
(D.54)

ΨH = XH

w
1−α

H
P

α

MHNH(1− α)1−ααα
(D.55)

The marginal costs technology monopolists face are finally given by

ψL(wL, P ) =
w

1−α

L
P

α

MLNL(1− α)1−ααα
(D.56)

ψL(wH , P ) =
w

1−α

H
P

α

MHNH(1− α)1−ααα
. (D.57)

D.5 Profits of technology monopolists

The profit of the technology monopolists facing the demand of machines (5.41) or (5.42)

xL =
� pL
χL

� 1
βL (D.58)

xH =
� pH
χH

� 1
βH. (D.59)

is given by

πL = (χL − ψL)xL (D.60)
πH = (χH − ψH)xH . (D.61)

We substitute the price of the machines

χL =
ψL

1− β
(D.62)

χH =
ψH

1− β
(D.63)

together with the equilibrium demand of machines and get

πL = (
ψL

1− β
− ψL)

� pL

ψL

1−β

� 1
βL (D.64)

πH = (
ψH

1− β
− ψH)

� pH
ψH

1−β

� 1
βH. (D.65)

Simple transformations give the optimal equilibrium profits of technology monopolists.

πL = β(1− β)
1−β

β p

1
β

L
Lψ

β−1
β

L
(D.66)

πH = β(1− β)
1−β

β p

1
β

H
Hψ

β−1
β

H
(D.67)
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D.6 Skilled wage premium

We already know the skilled wage premium.

w =
�1− γ

γ

� �

σ

�NH

NL

�σ−1
σ

�χH

χL

� 1−β

β

1−σ

σ

�H
L

�− 1
σ . (D.68)

Substituting (5.53) and (5.54)

χL =
ψL

1− β
(D.69)

χH =
ψH

1− β
(D.70)

expresses the wage premium in terms of the costs instead of the price of the machines.

w =
�1− γ

γ

� �

σ

�NH

NL

�σ−1
σ

�ψH

ψL

� 1−β

β

1−σ

σ

�H
L

�− 1
σ (D.71)

With the cost function for machine producers (5.51) and (5.52)

ψL(wL, P ) =
w

1−α

L
P

α

MLNL(1− α)1−ααα
(D.72)

ψH(wH , P ) =
w

1−α

H
P

α

MHNH(1− α)1−ααα
(D.73)

we can rewrite the skilled wage premium (D.71).

w =
�1− γ

γ

� �

σ

�NH

NL

�σ−1
σ

��wH

wL

�1−α ML

MH

NL

NH

� 1−β

β

1−σ

σ �H
L

�− 1
σ (D.74)

w =
�1− γ

γ

� �

σ

�NH

NL

�σ−1
βσ w

(1−α) 1−β

β

1−σ

σ

�ML

MH

� 1−β

β

1−σ

σ

�H
L

�− 1
σ (D.75)

w
βσ−(1−α)(1−β)(1−σ)

βσ =
�1− γ

γ

� �

σ

�NH

NL

�σ−1
βσ

�ML

MH

� 1−β

β

1−σ

σ

�H
L

�− 1
σ (D.76)

w =
�1− γ

γ

� �β

σξ

�NH

NL

�σ−1
σξ

�ML

MH

� (1−β)(σ−1)
σξ

�H
L

�− β

σξ (D.77)

for ξ = β + (1− α)(1− β) ∈ (0, 1).
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D.7 Labour market

To express the structure of the labour market, we derive the following equations (5.65)
and (5.66).

pL
∂YL

∂L
= χL

∂XL

∂LT

pH
∂YH

∂H
= χH

∂XH

∂HT

We insert the production functions for firms YL (5.39) and YH (5.40) and for technology
monopolists XL (D.38) and XH (D.39).

pL
1

1− β

��
NL

0

xL(j)
1−β

dj

�
βL

β−1 = χLMLNL(1− α)(LT )
1−α−1(RL)

α

pH
1

1− β

��
NH

0

xH(j)
1−β

dj

�
βH

β−1 = χHMHNH(1− α)(HT )
1−α−1(RH)

α

Using the production functions for firms YL (5.39) and YH (5.40) and for technology
monopolists XL (D.38) and XH (D.39) again, this can be written as

pLβ
YL

L
= χL(1− α)

XL

LT

(D.78)

pHβ
YH

H
= χH(1− α)

XH

HT

. (D.79)

Transforming gives

pL

χL

=
(1− α)

β

XL

LT

YL

L

(D.80)

pH

χH

=
(1− α)

β

XH

HT

YH

H

. (D.81)

The aggregate production of the machines can be expressed as the technology level mul-
tiplied with each production function xL or xH .

XL = NLxL (D.82)
XH = NHxH (D.83)

With the equilibrium demand of machines xL (5.41) and xH (5.42) we receive

XL = NL

� pL
χL

� 1
βL (D.84)

XH = NH

� pH
χH

� 1
βH. (D.85)
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Using the levels of YL and YH given in (5.43) and (5.44), respectively, we rewrite (D.80)
and (D.80) to

pL

χL

=
(1− α)

β

NL

�
pL

χL

� 1
β
L

LT

1
1−β

NLp

1−β

β

L
χ

β−1
β

L
L

L

pH

χH

=
(1− α)

β

NH

�
pH

χH

� 1
β
H

HT

1
1−β

NHp

1−β

β

H
χ

β−1
β

H
H

H

.

Simplifying the equations gives

1 =
(1− α)

β

L

LT

1
1−β

(D.86)

1 =
(1− α)

β

H

HT

1
1−β

(D.87)

and further transformations lead to

LT =
(1− α)(1− β)

β
L (D.88)

HT =
(1− α)(1− β)

β
H. (D.89)

D.8 Employment ratios in equilibrium

We want to express the employment ratios. Using the employment structure (5.69) -
(5.72) both ratios give the same:

H

L
=

HT

LT

=
HΣ −HE

LΣ
(D.90)

We substitute the expression for HE (5.73)

H

L
=

HT

LT

=
HΣ − φ(nHHHΣ + hnLHLΣ)

LΣ
(D.91)

and simple tranformations lead to

H

L
=

HT

LT

= (1− φnHH)
HΣ

LΣ
+ φhnLH . (D.92)
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D.9 Resource allocation in equilibrium

As seen in (D.4) we can use the FOC (D.44) and (D.45) of the profit of technology
monopolists to express the equilibrium price of the resource P .

P = ψLMLNL(LT )
1−α

α(RL)
α−1 = ψLα

XL

RL

(D.93)

P = ψHMHNH(HT )
1−α

α(RH)
α−1 = ψHα

XH

RH

(D.94)

We can simply write

P = ψLα
XL

RL

= ψHα
XH

RH

. (D.95)

Using the aggregate output functions in terms of the technology level (D.82) and (D.83)
and the equilibrium demand of machines (5.41) and (5.42) gives

RH

RL

ψH

ψL

=
XH

XL

=
NHxH

NLxL

=
NH

NL

�
pH

χH

� 1
βH

�
pL

χL

� 1
βL

=
NH

NL

p
1
β

H

L
. (D.96)

After substituting the relative price in equilibrium (5.57 ) the resource ratio is

RH

RL

=
ψL

ψH

NH

NL

H

L

��1− γ

γ

� �β

σ

�NH

NL

�−β

σ

�ψH

ψL

� 1−β

σ

�H
L

�−β

σ

� 1
β

(D.97)

RH

RL

=
�1− γ

γ

� �

σ

�NH

NL

�σ−1
σ

�ψH

ψL

� (1−β)(1−σ)
βσ

�H
L

�−σ−1
σ . (D.98)

We can rewrite (5.75).
RH

RL

+ 1 =
R

RL

(D.99)

So we finally receive

RL =
R

RH

RL

+ 1
=

1

1 +
�
1−γ

γ

� �

σ

�
NH

NL

�σ−1
σ

�
ψH

ψL

� (1−β)(1−σ)
βσ

�
H

L

�σ−1
σ

R (D.100)

for the L-sector, and

RH = R− R

RH

RL

+ 1
=

RH

RL

RH

RL

+ 1
R =

�
1−γ

γ

� �

σ

�
NH

NL

�σ−1
σ

�
ψH

ψL

� (1−β)(1−σ)
βσ

�
H

L

�σ−1
σ

1 +
�
1−γ

γ

� �

σ

�
NH

NL

�σ−1
σ

�
ψH

ψL

� (1−β)(1−σ)
βσ

�
H

L

�σ−1
σ

R (D.101)

for the H-sector.
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D.10 The relative level of technology

Start of our derivation is the technology market clearing.

πH(t+ 1)

πL(t+ 1)
=

ηL

ηH

�
NL(t)

NH(t)

�δ

(D.102)

We can substitute the equilibrium profits (5.55) and (5.56) of the technology monopo-
lists

(p(t+ 1))
1
β

H(t+ 1)

L(t+ 1)

�
ψH(t+ 1)

ψL(t+ 1)

�β−1
β

=
ηL

ηH

�
NL(t)

NH(t)

�δ

,

as well as the equilibrium price (5.57)

��1− γ

γ

� �β

σ

�NH(t+ 1)

NL(t+ 1)

�−β

σ

�ψH(t+ 1)

ψL(t+ 1)

� 1−β

σ

�H(t+ 1)

L(t+ 1)

�−β

σ

� 1
β H(t+ 1)

L(t+ 1)

�
ψH(t+ 1)

ψL(t+ 1)

�β−1
β

=
ηL

ηH

�
NL(t)

NH(t)

�δ

,

and transform that to get the blueprint-ratio of the coming period.

NH(t+ 1)

NL(t+ 1)
=

� ηL
ηH

�σ�1− γ

γ

���ψH(t+ 1)

ψL(t+ 1)

� (1−β)(1−σ)
β

�H(t+ 1)

L(t+ 1)

�σ−1�NH(t)

NL(t)

�δσ (D.103)

The relative costs (5.79) change the expression to

NH(t+ 1)

NL(t+ 1)
=

� ηL
ηH

�σ�1− γ

γ

��

��1− γ

γ

� �β(α−1)
σξ

�NH(t+ 1)

NL(t+ 1)

� 1−α(1−βσ)
σξ

�MH

ML

� (1−β)(1−α)+βσ

σξ

�H(t+ 1)

L(t+ 1)

�−β(α−1)
σξ

� (1−β)(1−σ)
β

�H(t+ 1)

L(t+ 1)

�σ−1�NH(t)

NL(t)

�δσ
.

Basic transformations finally lead to

NH(t+ 1)

NL(t+ 1)
= (D.104)

�
ηL

ηH

�NH(t)

NL(t)

�δ
� β+(σ−1)ξ

β−α(1−β)(σ−1)

(D.105)
��1− γ

γ

��β�MH

ML

�(σ−1)(1−β)�H(t+ 1)

L(t+ 1)

�(σ−1)ξ
� 1

β−α(1−β)(σ−1)

(D.106)
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D.11 Aggregate Savings

First, aggregate savings are given by

D = (IL)L+ (IH)H. (D.107)

We substitute the optimal savings for each type of household IL (5.22)=(D.21) and IH

(D.26).

D = (
ρ

1 + a+ ρ
wL − PqL)L+ (

ρ

1 + a+ ρ
wH − PqH)H (D.108)

D =
ρ

1 + a+ ρ
(wLL+ wHH)− P (qLL+ qHH) (D.109)

Both households have property rights for the resources. There are no resources left without
any owner. So we can sum up all the property rights as the whole available resource stock
Q.

D =
ρ

1 + a+ ρ
(wLL+ wHH)− PQ (D.110)

Since the skilled wage premium is given by w = wH

wL

we can rewrite the equation in relative
terms.

D =
ρ

1 + a+ ρ
wLL(1 + w

H

L
)− PQ (D.111)

In different sections we already stated the following (equilibrium) variables in equations
(D.32), (D.93), (5.69), (5.10) and (5.76), respectively.

wL =
β

1− β
pLNL

� pL
χL

� 1−β

β = βpL
YL

L
(D.112)

P = pLα(1− β)
YL

RL

(D.113)

L =
β

ξ
LΣ (D.114)

R(t) = τQ(t− 1) and Q(t) = Q(t− 1)−R(t) ⇔ Q(t)

Q(t− 1)
= 1− τ (D.115)

RL =
1

1 +
�
1−γ

γ

� �

σ

�
NH

NL

�σ−1
σ

�
ψH

ψL

� (1−β)(1−σ)
βσ

�
H

L

�σ−1
σ

R =: φLR (D.116)
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Substituting into the aggregate savings (D.111) gives the following relation.

D =
ρ

1 + a+ ρ
βpL

YL

L
L(1 + w

H

L
)− pLα(1− β)

YL

φLR
Q(t) (D.117)

D =
ρ

1 + a+ ρ
βpLYL(1 + w

H

L
)− pLα(1− β)

YL

φLτQ(t− 1)
Q(t) (D.118)

D = pLYL

�
ρ

1 + a+ ρ
β(1 + w

H

L
)− α(1− β)

φL

1− τ

τ

�
(D.119)

D.12 Depletion rate of natural resources

We analyse the technology monopolists from an aggregate point of view. Output has to
equal demand.

NLxL = NL

� pL
ψL

� 1
betaL = MLNLL

1−α

T
(φLR)α (D.120)

xL =
� pL
ψL

� 1
betaL = MLL

1−α

T
(φLR)α (D.121)

We can rewrite the equation in terms of growth rates, whereas gx denotes the growth rate
for the variable x at point (t+1) and we know, that the growth rates of the labour supply
are equal gL = g

LT = g
LΣ .

g
xL =

� gpL
gψL

� 1
beta g

L =
�
g
L
�1−α�

g
φLg

R
�α (D.122)

Since

� gpL
gψL

� 1−β

β =
D̄

β(1− β)(1 + NH(t+1)
NL(t+1)

ηL

ηH

�
NH(t)
NL(t)

�δ
)

�
g
L
�ξ−1�

g
φLg

R
�α(1−β)−1 (D.123)

we can substitute g
pL

g
ψL

into (D.122) and obtain

�
D̄

β(1− β)(1 + NH(t+1)
NL(t+1)

ηL

ηH

�
NH(t)
NL(t)

�δ
)

� 1
1−β �

g
L
� ξ−1+α(1−β)

1−β

�
g
φLg

R
�α(1−β)−1−α(1−β)

1−β = 1(D.124)

where, the second exponent ξ−1+α(1−β)
1−β

= 0 and the exponent of the growth rate of φL

and the resources α(1−β)−1−α(1−β)
1−β

= 1. This simplifies the equation to

�
D̄

β(1− β)(1 + NH(t+1)
NL(t+1)

ηL

ηH

�
NH(t)
NL(t)

�δ
)

� 1
1−β

(gφL)−1 = g
R (D.125)
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We know that we can write the growth rate of the natural resources in terms of the
depletion rate.

g
R = (1− τ(t))

τ(t+ 1)

τ(t)
=

�
D̄

β(1− β)(1 + NH(t+1)
NL(t+1)

ηL

ηH

�
NH(t)
NL(t)

�δ
)

� 1
1−β

(gφL)−1 (D.126)

We finally derive the depletion rate.

τ(t+ 1) =
τ(t)

1− τ(t)

�
D̄

β(1− β)(1 + NH(t+1)
NL(t+1)

ηL

ηH

�
NH(t)
NL(t)

�δ
)

� 1
1−β

(gφL)−1 (D.127)

with D̄ =
�

ρ

1+a+ρ
β(1 + w

H

L
)− α(1−β)

φL

1−τ

τ

�
.

D.13 Steady State

In the steady state all variables remain constant over time.

First, we analyse the relative labour supply (5.100). HΣ(t + 1) = HΣ(t) = HΣ and
LΣ(t+ 1) = LΣ(t) = LΣ gives

HΣ

LΣ
=

hnLH + nHH

HΣ
LΣ

(1− h)nLL

(D.128)

Simple transformations yield

HΣ

LΣ
=

hnLH

(1− h)nLL − nHH

. (D.129)

Second, the relative wage (5.101) w(t+ 1) = w(t) = w becomes

w =
z + wφ

z
. (D.130)

Again, simplifying obtains

w =
z

z − φ
. (D.131)

Next, with NH(t+1)
NL(t+1) = NH(t)

NL(t)
= NH

NL

and the results for the labour supply and the relative
wage the steady state technology level is

NH

NL

=

�
ηL

ηH

�NH

NL

�δ
� β+(σ−1)ξ

β−α(1−β)(σ−1)
��1− γ

γ

��β�MH

ML

�(σ−1)(1−β)�H
L

�(σ−1)ξ
� 1

β−α(1−β)(σ−1)

(D.132)
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and so we can write

NH

NL

=

�
ηH

ηL

β+(σ−1)ξ�1− γ

γ

��β�MH

ML

�(σ−1)(1−β)�H
L

�(σ−1)ξ
� 1

β−α(1−β)(σ−1)−δ(β+(σ−1)ξ)

(D.133)

Last, the equilibrium steady state depletion rate (τ(t+ 1) = τ(t) = τ and g
φL = 1)

τ =
τ

1− τ

�
D̄

β(1− β)(1 + NH

NL

ηL

ηH

�
NH

NL

�δ
)

� 1
1−β

(D.134)

is determined by

τ = 1−
�

D̄

β(1− β)(1 + ηL

ηH

�
NH

NL

�δ+1
)

� 1
1−β

. (D.135)
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E Diagrams

E.1 Basic Model

Figure E.1: Basic Model

Like in every economy, households and firms meet on a market. Households consume the
good Y produced by the firms and provide labour for the production process. In this two
sector model production takes place within two different sectors.
Households offer labour to the market. Scientists S decide whether they want to do
research in the R&D-field of the H-sector or the L-sector and become either HS or LS,
respectively. The labour supply L from the households is separeted in low-skilled workers
L and high-skilled workers H, who work for a wage wL or wH on the machines xL or
xH in the firms producing intermediate goods YL or YH . The firms sell their goods for a
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price pL or pH . They maximise their profit ΠL and ΠH considering the revenue gained
by selling the intermediate goods and the costs for the workers and the machines. The
price χL or χH of the machines is set by the technology monopolists, who produce the
machines. They are basically successful researchers, who invented the technology NL(j)
or NH(j) for the machine type j in the previous period and therefore have the single right
to sell those type of machines. When researchers decide which sector they want to work
in, they do not know whether they are successful or not. So they can only calculate an
expected profit πL and πH to base their decision.
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E.2 Environment and Directed Technical Change

Figure E.2: Directed Technical Change and Environment

The model in chapter 3 is based on the previous model shown in Fig.E.1. We add a
resource stock Q. This can be e.g. minerals, water, wood or oil. Firms in the dirty L-
sector need those resources to produce the intermediate good YL. So the production of YL

has an indirect impact on the quality of the environment E. Moreover, the production of
YL also generates pollution (e.g. air pollution, water pollution), which negatively affects
the environmental quality. Firms are still only interested in maximising their profit ΠL,
whereas the households take the quality of environment into account. The utility function
of the individuals, and therefore also the aggregate utility function, depends on the quality
of the environment and the consumption.

This structure is completely different for the model in the following chapter 4. We keep
only the L-sector, which is responsible for the production of the final good Y . Instead of
the H-sector we have firms which positively influence the environmental quality, but do
not produce (parts of) the final good.
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E.3 Population Dynamics, Environment and
Directed Technical Change

Figure E.3: Schaefer-Model

In the Schaefer-model two types of households consume the final good and provide labour
supply. The offspring in the unskilled households can be educated to switch to the skilled
households. Both types of households basically have the same interactions with the other
market participants, but the intensity can be different. The index H denotes variables
concerning the skilled (high-skilled) households and variables with index L are connected
with the unskilled (low-skilled) households. The different households build the basis for
the two different sectors. Labour from high-skilled households is used for research and
working in the firms in the H-sector, while unskilled workers service the L-sector.
The labour markets for both sectors are separated. Agents can not choose the labour
market and therefore the sector they want to work in, but are sent directly from the
households depending on their education.

The "provision for old age" plays a crucial role in this model. Agents can invest in R&D
or buy patents for natural resources. The revenues of the investments are used for future
consumption. Patent rights for resources are sold to the technology monopolists, who
use knowledge from R&D and specialised labour HT and LT to produce machines for the
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firms.
Firms provide the intermediate goods, which are combined to a final good. This final
good is consumed by both types of households.
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