
Interaction in Dense One-Handed
Handheld Augmented Reality

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medieninformatik

eingereicht von

Benjamin Venditti

Matrikelnummer 0927121

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: Priv.-Doz. Mag. Dr. Hannes Kaufmann

Mitwirkung: Dr. Annette Mossel

Wien, 01.11.2014

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Interaction in Dense One-Handed
Handheld Augmented Reality

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Media Informatics

by

Benjamin Venditti

Registration Number 0927121

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Priv.-Doz. Mag. Dr. Hannes Kaufmann

Assistance: Dr. Annette Mossel

Vienna, 01.11.2014

(Signature of Author) (Signature of Advisor)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Benjamin Venditti

Kohlgasse 38/21, 1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-

lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

Optional acknowledgements may be inserted here.

iii

Abstract

The rapid improvement of handheld hardware devices enable real-time rendering of a large num-

ber of 3D models in handheld augmented reality (AR) environments. Although there are already

many AR applications available for handheld devices, they often remain limited regarding their

degree of interactivity compared to desktop AR applications. Important interactions in AR envi-

ronments are the effortless creation of 3D models, precise selection and six-degree-of-freedom

(6DOF) manipulation of virtual objects. Due to the imprecise input of the touch interface, the

small screen size and complex touch gestures, all three interactions suffer in one-handed hand-

held AR setups of different limitations. In this thesis novel one-handed handheld interaction

techniques for modeling, selection and manipulation of virtual content are introduced. A simple

polygonal modeling technique is presented that uses real-time shape detection to collect hand-

drawn shapes that are used for Perspective Driven Modeling by extrusion or lathing in an AR

environment. The novel selection technique DrillSample, designed particularly for the precise

selection and disambiguation of virtual objects, is evaluated against state of the selection tech-

niques. DrillSample is inspired of taking a core sample, e.g. of earth sediments, and designed

with a focus on simple touch input and virtual context preservation. Two new and compet-

ing manipulation techniques, 3DTouch and HOMER-S, for the intuitive translation, rotation and

scaling of virtual objects are introduced. 3DTouch focuses on simple touch input and degree

of freedom separation, down to a single DOF, making the different DOF easily accessible from

different view perspectives. HOMER-S on the other hand provides integral manipulation up to

6DOF and avoids touch input completely by mapping the handheld’s device pose to the manip-

ulated object. Both techniques are evalulated in a thorough user study followed by a statistical

evaluation.

v

Kurzfassung

Die rasch fortschreitende Entwicklung mobiler Endgeräde erlaubt die Echtzeit Darstellung von

vielen 3D Modellen in mobilen Augmented Reality (AR) Anwendungen. Obwohl bereits viele

AR Anwendungen für mobile Endgeräte verfügbar sind, bleiben diese in Bezug auf dessen In-

teraktivität, verglichen mit Desktop AR Anwendungen, eingeschränkt. Wichtige Interaktionen

in AR Umgebungen sind die einfache Erstellung von 3D Modellen, präzise Selektion sowie die

Manipulation in 6 Freiheitsgraden (6DOF) von virtuellen Objekten. Aufgrund der ungenauen

Eingabe des Berührungsbildschrims, der geringen Bildschrimgröße und komplexer Berührungs-

gesten sind alle drei Interkationen, in einhändigen Anwendungen mobiler AR, Einschränkungen

unterworfen. In dieser Arbeit werden neue einhändige Interaktionstechniken (IT) zur Model-

lierung, Selektion und Manipulation von virtuellen Inhalten präsentiert. Eine IT zur einfachen

polygonalen Modellierung wird vorgestellt. Die Interaktionstechnik erlaubt die Echtzeit Former-

fassung von Hand gezeichneter Formen, um diese anschließend durch Perspective Driven Mo-

deling mittels Extrusion oder Drehung in einer AR Umgebung als Körper zu modellieren. Die

neue Selektionstechnik DrillSample, speziell entwickelt zur präzisen Auswahl und Unterschei-

dung von virtuellen Objekten, wird präsentiert und gegenüber modernen Selektionstechniken

bewertet. Beim Entwurf von DrillSample standen die Bedienung durch einfache Berührungs-

gesten sowie der Erhalt des virtuellen Kontextes einer Mehrfachselektion, zum Zweck der Ob-

jektunterscheidung, im Vordergrund. Zwei neue und konkurrierende Manipulationstechniken,

3DTouch und HOMER-S, zur intuitiven Translation, Rotation und Skalierung von virtuellen Ob-

jekten werden vorgestellt. Das Hauptaugenmerk bei der Entwicklung von 3DTouch liegt auf

der einfachen Bedienung mittels Berührungseingabe und der Reduktion der gleichzeitig ma-

nipulierbaren Freiheitsgrade. Je nach gewählter Betrachtungsperspektive zum manipulierenden

Objekt, sind unterschiedliche Freiheitsgrade zugänglich. HOMER-S ermöglicht hingegen die

gleichzeitige Manipulation von bis zu 6 Freiheitsgraden und vermeidet die Berührungseinga-

be gänzlich, indem die räumliche Position und die Orientierung des mobilen Endgerätes auf

das zu manipulierende Objekt abgebildet werden. Beide Techniken wurden in einer detaillierten

Benutzerstudie und anschließender statistischer Auswertung untersucht.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 1

1.3 Aim of the Work . 2

1.4 Individual Publications . 3

1.5 Outline . 3

2 Related Work 5

2.1 Augmented Reality . 5

2.1.1 Definition & Characteristics . 5

2.1.2 Augmented Reality Interaction . 6

2.1.3 Handheld Augmented Reality . 7

2.2 Polygonal Modeling . 8

2.2.1 Basic Modeling Operations . 9

2.2.2 Handheld Modeling Applications . 9

2.3 Selection . 12

2.3.1 Ray-casting . 12

2.3.2 Handheld Ray-casting adaptions . 12

2.3.3 SQUAD . 14

2.3.4 EXPAND . 15

2.4 Manipulation . 16

2.4.1 Virtual Hand . 16

2.4.2 Z-Technique . 18

2.4.3 Dual-Finger mobile 3D interaction techniques 19

2.5 Touch Gestures . 21

3 Methodology 23

3.1 Requirements . 23

3.2 General Guidelines . 24

3.3 Modeling . 24

3.3.1 Guidelines . 24

3.3.2 Prefab Based Modeling . 24

3.3.2.1 Capturing Shapes . 26

ix

3.3.2.2 Perspective Driven Modeling 26

3.4 Selection . 29

3.4.1 Guidelines . 29

3.4.2 State-of-the-Art Selection Techniques 29

3.4.2.1 Ray-casting . 30

3.4.2.2 Expand . 30

3.4.3 DrillSample Selection Technique . 31

3.4.3.1 Algorithm . 32

3.4.3.2 Important Aspects . 34

3.5 Manipulation . 37

3.5.1 Guidelines . 37

3.5.2 State-of-the-Art Selection Manipulation Techniques 37

3.5.3 3D Touch . 37

3.5.3.1 Degree of Freedom Limitation 38

3.5.3.2 Translation . 40

3.5.3.3 Rotation . 40

3.5.3.4 Scaling . 41

3.5.4 HOMER-S . 42

3.5.5 Mode Switches . 43

3.5.6 Important Aspects . 44

4 Implementation 45

4.1 System Design . 45

4.1.1 Hardware . 45

4.1.2 System Overview . 46

4.1.3 Applications . 46

4.1.4 Frameworks . 47

4.1.5 Tasks & Overview . 48

4.2 Modeling . 49

4.2.1 Shape Detection User Interface . 49

4.2.2 Image Processing . 50

4.2.3 Modeling User Interface . 53

4.3 Content Distribution . 53

4.3.1 Data Transmission Analysis . 54

4.3.2 Networking in Unity . 55

4.3.3 Distribution Procedure . 57

4.4 Inter Process Communication . 59

4.4.1 IPC Mechanisms . 59

4.4.2 IPC Architecture . 60

4.4.2.1 JSON Remote Method Invocation 61

4.4.2.2 Storage Service . 62

4.4.2.3 Storage Client . 63

4.5 Selection & Manipulation . 64

x

4.5.1 Composite Interaction . 65

4.5.2 Selection Interface . 66

4.5.3 Manipulation Interface . 67

4.6 UserStudy Application . 69

5 Evaluation & Discussion 73

5.1 Shape Detection . 73

5.1.1 Per Pixel Operations . 73

5.1.2 Per Point Operations . 74

5.1.3 Detection Robustness . 75

5.2 Modeling . 77

5.3 Experimental User Study . 79

5.3.1 Design & Procedure . 79

5.3.2 Subjects and Apparatus . 80

5.3.3 Statistical Foundation . 80

5.4 Selection . 82

5.4.1 Design & Objectives . 82

5.4.2 Test Scenarios . 83

5.4.3 Results . 84

5.4.3.1 Quantitative Evaluation . 85

5.4.3.2 Subjective Evaluation . 87

5.4.4 Qualitative Evaluation . 88

5.5 Manipulation . 89

5.5.1 Design & Objectives . 89

5.5.2 Test Scenarios . 89

5.5.3 Results . 92

5.5.3.1 Performative Evaluation . 93

5.5.3.2 Subjective Evaluation . 94

6 Conclusion & Outlook 97

6.1 Modeling . 97

6.2 Selection . 98

6.2.1 Outlook . 100

6.3 Manipulation . 100

6.3.1 Outlook . 102

7 Appendix 103

Bibliography 117

xi

CHAPTER 1
Introduction

1.1 Motivation

Augmented Reality (AR) is the real-time augmentation of a human sensory perception, such as

seeing and hearing, with simulated information generated by a computer. A key functionality

of AR is the registration of the real world within the virtual world so that virtual information

can be displayed locally and perspectively correct. AR has proven to be useful in a wide area

of applications like psychological treatment of phobias, medical education, edutainment as well

as game development. It offers intuitive ways of interaction in artificial 3D environments by

employing implicit human knowledge about 3D worlds and naturally trained skills. Due to ex-

pensive hardware and impractical gear involved, such as attached wires for the power supply,

only few or simple augmented reality applications have entered the mass market. However, re-

cently emerged handheld devices enable real-time rendering of a large number of 3D models in

handheld AR environments. Its further proliferation could mark a turning point and specially

applications in educational institutions could benefit from the high availability and the “attrac-

tiveness” of the new experience that AR provides.

As AR aims to supplement our perception of reality with virtual information, it has to pro-

vide ways to interact with virtual objects. Fundamental real-world interactions are the creation,

selection and manipulation of objects and are therefore fundamental interactions for virtual ob-

jects in AR environments as well. However, when using a handheld device only one hand can

be used for input and the available input space on the touchscreen is very limited. All three

interactions suffer in one-handed handheld AR environments of different limitations.

1.2 Problem Statement

Existing modeling applications for handhelds make excessive use of the touch interface and

provide either simple prefab-based (e.g cubes or spheres) modeling or desktop-like functionality.

Prefab-based modeling is fast and easy, but offers little flexibility for creating arbitrary shaped

1

objects. Desktop-like modeling applications offer powerful tools to create detailed models, but

require a considerable knowledge to be used properly. In both applications the handheld itself is

only used as a display with a touch interface, but instead it could be used as a tool for modeling

itself, once it is registered in an AR environment.

With increasing computational power, handheld AR environments will be modeled with in-

creasing detail to provide higher levels of realism. In such dense environments selection may

become infeasible for objects that are partly or completely occluded or highly similar to sur-

rounding virtual scene objects. A single touch on the device’s screen is likely to overlap multiple

objects in a dense environment. A state-of-the-art approach is to immedialy select the closest

object. However, immediate selection is cumbersome in dense environments, as occluded ob-

jects need to be moved to access hidden ones. Another approach presents all selected objects,

arranged on a grid or a list, and enables the user to refine it’s selection in a second step. However,

choosing one of many objects from a list leads to unintentional false selections, in case the ob-

jects are highly similar in visual appearance. Thus, refinement using a list or a grid presentation,

may have an even worse usability than immediate selection in dense environments.

Interaction techniques for manipulation in handheld AR often use the multi-touch capabil-

ities of the device’s touchscreen. To provide full 3D interaction by touch in an integral way,

existing approaches use complex multi-finger gestures. However, they are difficult or impos-

sible to use in handheld AR scenarios, as the input device is held by at least one of the user’s

hands. Thus, the number of fingers to interact with the screen is limited. Multi-finger gestures

may suffer in ease-of-use due to the small touch screen, as well as the usability of the application

in general, as a reasonable part of the screen is occluded by the user’s fingers during interactions.

Furthermore, gestures on a 2D input device either need to abstract interactions in 3D space or

simplify them by reducing the simultaneous accessible dimensions. Strong abstractions require

prior knowledge for their application whilst a simplification induces additional interaction steps

to complete the intended interaction. Both do not provide an intuitive way to interact with the

environment.

All interactions are intended to be used in a handheld AR environment in which it is nec-

cessary to hold the device with one hand and to operate the touchscreen with the other. Having

only one hand at disposal further impedes all interactions with the AR environment and limits

the complexity of input gestures that can be used for modeling, selection and manipulation of

virtual objects.

1.3 Aim of the Work

The purpose of this work is to investigate and to design interaction techniques for modeling,

selection and manipulation of virtual objects in handheld AR environments. The proposed tech-

niques aim at making use of the features offered by modern handheld devices. Furthermore, the

techniques aim to cope with the limitations a handheld device introduces to provide an improved

user experience and higher efficiency. This work will address the following research questions

that arise from the problems stated in the previous section.

2

• Which device gestures are suitable for intuitive modeling of captured 2D shapes for simple

polygonal modeling?

• How can the problems of 3D selection in dense handheld AR environments be solved with

the help of the handheld’s touch input.

• How can the orginal spatial arrangement of multiple selected objects be preserved to avoid

false selection?

• How can the handheld be used to perform intuitive 6DOF manipulations of selected con-

tent and which limitations does it face.

• How well are 6DOF manipulations, that intend to allow more intuitive interaction, under-

stood and accepted compared to traditional handheld touch gestures.

1.4 Individual Publications

Results of this work have been published previously by the author. The following peer reviewed

publications describe the preliminary outcome of the work:

• Annette Mossel, Benjamin Venditti, and Hannes Kaufmann. DrillSample: precise selec-

tion in dense handheld augmented reality environments. In Proceedings of the Virtual

Reality International Conference: Laval Virtual, pages 10–20. ACM, 2013.

• Annette Mossel, Benjamin Venditti, and Hannes Kaufmann. 3DTouch and HOMER-S:

intuitive manipulation techniques for one-handed handheld augmented reality. In Pro-

ceedings of the Virtual Reality International Conference: Laval Virtual, pages 12–22.

ACM, 2013.

1.5 Outline

This thesis is organized as follows. Chapter 2 lists and discusses relevant related work of inter-

action techniques for modeling, selection and manipulation of objects and their application in

one-handhed handheld augmented reality environments. In Chapter 3, the author’s methodology

to overcome the stated problems is described and the novel interaction techniques are presented

that were designed accordingly. Chapter 4 describes applications that were developed as part of

this thesis emphasizing important implementation details. Chapter 5 describes the design and

setup of a user study that was conducted to evaluate the proposed selection and manipulation

techniques and presents the results. Furthermore, quantitative and qualitative performance mea-

sures for the novel modeling interaction are presented. The thesis closes in Chapter 6 with a

summarisation of the author’s work and findings. Furthermore, shortcomings are addressed that

are subject of future work and research.

3

CHAPTER 2
Related Work

This chapter covers the related work relevant for this thesis. Applications and techniques for

polygonal modeling, especially focusing on current developments for handheld applications,

but also techniques for desktop use, are presented. Manipulation is followed by state-of-the-

art techniques for the three canonical manipulation tasks Selection, Positioning and Rotation

according to Bowman [4] as well as object shape manipulation by Scaling.

2.1 Augmented Reality

Before the related work for the specific interaction techniques is adressed, this section will pro-

vide an introduction to Handheld Augmented Reality on which this thesis is constituted.

2.1.1 Definition & Characteristics

In Augmented Reality (AR) users are able to see the real world superimposed with virtual objects

that behave as if they would actually reside in the real world. Azuma [1] defines the essential

components of Augmented Reality with the following three characteristics:

1. Combines real and virtual.

2. Interactive in real time.

3. Registered in 3D.

The characteristics help to delimit AR from Virtual Reality (VR) or other technologies that

look similar, such as 2D overlays. A video stream or a see-through display that is combined with

2D information, such as live temperature sensor readings, does not qualify as AR because the

2D information is not registered in 3D. In VR, a user is (visually) fully immersed in the Virtual

Environment (VE) and is unable to see the real environment. In VR the real and virtual are not

combined, while in AR a user is always able to perceive the real environment as well as the VE

[1].

5

Figure 2.1: Conceptual diagrams of an optical- (left) and a video- (right) see-through HMD [1].

The augmentation in AR systems is either accomplished as an optical- or a video-see through

setup. The conceptual difference is illustrated for a head mounted display (HMD). The key

components of an optical-see-through HMD, as depicted left in Figure 2.1, are:

1. a head-tracker (input device),

2. a scene generator

3. and a monitor coupled with an optical combiner (output device).

The head-tracker is used to register the user’s head-position and -orientation in 3D space.

The scene generator uses the 3D position and orientation from the head-tracker to generate

a photorealistic representation of the VE that is aligned with the real environment. Finally the

monitor and the opical combiner is used to present and combine the real environment with virtual

content. A video-see-through setup will use a video camera and a video compositor instead of

an optical combiner [1].

2.1.2 Augmented Reality Interaction

If no further hardware is employed in an AR setup other than depicted in Figure 2.1, users can

only interact with the VE by means of travel. Here, the tracking 3D pose of the head-tracker

is used to travel within the VE. Travel means that users are able to move and change their

orientation within the virtual environment. However, as the head-tracker (input device) and the

augmented display (output device) are both fixed to the HMD, they form a single entitiy. Thus,

only a single 6DOF pose is used for input and output at the same time.

To allow users to intuitively select and perform RST (Rotate-Scale-Translate [40]) manipu-

lations on objects in the VE, another input device, such as a 3D pointer, is used in AR for inter-

action [53]. Figure 2.2 shows a wireless pen developed by Kaufmann [22] that is tracked using

retro-reflective markers and an infrared-based optical tracking system. Using another tracked

input device that is controlled by the users hand, allows the design of intuitive interactions as a

second 6DOF pose is available.

6

Figure 2.2: A trackable wireless, one-button pen with retro-reflective markers [22].

2.1.3 Handheld Augmented Reality

Handheld (mobile) AR is similar to traditional AR with a video-see-through HMD. Wagner

[53] defines handheld AR according to Figure 2.3(b-d), whereat a user has to actively hold

the device in his hand. Nowadays, PDAs and mobile phones have merged into smartphones,

however Wagner’s classification still applies, as smarthpones are available in various sizes and

form factors. There are two major differences of a handhled AR setup to a traditional AR

setup. First, users have only one hand available to interact with the device. And second, as only

the handheld is registered with the real world, there is only a single 6DOF pose available for

interaction.

Figure 2.3: Form factors of Mobile Augmented Reality systems: (a) traditional “backpack”

computer & HMD, (b) Tablet PC, (c) PDA, (d) Mobile phone [53].

In handheld AR, tracking can be accomplished by using various technologies, such as optical

tracking, GPS, a compass, gyroscopes and accelerometers. Wagner concludes in [53] that using

smartphones for handheld AR is highly intuitive and furthermore presents in [54] techniques

for realtime natural feature tracking on mobile phones. Figure 2.4 shows a user interacting in

a handheld AR setup that uses natural feature tracking. The position (x,y,z) and orientation

(roll, pitch, yaw) (see Figure 2.5) of the handheld device is recognized in real-time and used to

overlay the video stream of the back-facing camera with a perspectively correct representation

of the virtual content, thus constituting the AR view.

7

Figure 2.4: Interacting with a handheld AR setup (left). The AR view as seen by the user (right).

Figure 2.5: 3D position and orientation of a tracked input device.

2.2 Polygonal Modeling

Modeling is the act of creating a 3D surface of an imaginary or a real object. Such surfaces

can be represented using a mesh that approximates the object’s surface by subdividing it into

triangles or quadrilaterals - the polygon mesh. There are various ways to create and manipulate

meshes. The capabilities and the concrete interaction for modeling operations depends mostly

on the employed modeling software. Therefore, this Section describes selected operations to

create meshes without referencing concrete implementations.

8

2.2.1 Basic Modeling Operations

The creation of meshes using polygonal modeling often starts by using a primitive, such as a

box, a sphere, a cylinder, a plane or a line. These primitives are then modified or combined with

different operations to create a more complex surface. The lines and shapes can be expressed

either as explict sets of points or as parametric curves, e.g. NURBS [41]. Popular ways to create

meshes are extrusion, sweeping and lathing [42].

Extrusion is a simple modeling operation available in all modeling software applications. It

builds cylindrical meshes by adding depth to a flat 2D surface. The extrusion can be described

easily by a displacement vector ~d ∈ R
3 that is added to each of the surface’s vertices and allows

the creation of oblique cylindrical meshes (see Figure 2.6a). More complex meshes can be

created by defining a path (a list of displacement vectors) along which the extrusion takes place.

The extrusion is applied for each point successively and creates a mesh consisting of cylindrical

sections [42].

Sweep is a modeling technique that is very similar to extrusion along a path. However, the

major difference is that extrusion creates segments with parallel cut surfaces whilst for sweeping,

the surfaces can be rotated so that smooth curves can be modeled. See Figure 2.6b and 2.6a for

illustration.

Lathe produces meshes that are radially symmetrical to a fixed axis. A lathed surface is de-

fined by a flat shape or curve, the axis around the surface is rotated and the rotation that is

applied. Figure 2.6c depicts a surface which is rotated around the pitch-axis by 180◦.

(a) Extrusion by adding depth

to a flat surface.

(b) Sweeping a surface along a

path.

(c) A surface lathed around the

y-axis by 180◦.

Figure 2.6: Extrusion, Sweep and Lathe.

2.2.2 Handheld Modeling Applications

The affore mentioned operations and manipulations are mostly used and designed for profes-

sional desktop modeling applications such as AutoCAD, Blender or SolidWorks. However, there

are applications available for handheld devices as well. A few modeling applications that are

currently available for handheld devices are Sketcher 3D Lite/Pro, Spacedraw and TrueSculpt

Virtual Sculpture. The applications use different approaches for modeling on handheld devices.

9

Unfortunately, no applications that employ augmented reality as a concept for modeling were

found.

Sketcher 3D Lite/Pro This application runs on Android devices and is rather a physics sand-

box than a modeling application. Nevertheless, Sketcher 3D [47] provides an interface that is

simple, intuitive and offers the basic functions to interact with virtual content such as:

• Create primitives (cube, sphere, tube, cone).

• Move objects by using simple touch gestures.

• Rotate and scale an object using the handheld’s accelerometer.

• Change an object’s color or lock it to disable unintentional editing.

• Create groups of objects and apply modifications to the all objects in the group.

• Duplicate already created and modified objects.

All functions regarding the manipulation of an object are accessible through a circular menu

(see Figure 2.7) upon selection. New objects are created by double-tapping on the empty space

in the scene which triggers a circular menu or for scaling uniformly as well.

Sketcher 3D only allows the creation of prefabs and cannot be regarded as a modeling appli-

cation due to the lack of actual modeling functionality. However, its interface is a good example

for handheld applications as it uses only simple touch input gestures to interact with the objects

and therefore inspires modeling applications in one-handed handheld AR.

Figure 2.7: Circular action menu in Sketcher 3D [47].

Spacedraw The description in Google Play[44] describes Spacedraw as a “full-featured 3d-

modeling software designed for tablets & smartphones“. It provides functionality that is avail-

able in professional modeling applications. It can create primitives (rectangle, circle, sphere,

cube, line splines), dbut also model more complex shapes, such as prisms, pyramids, discs,

cylinders, cones, tori, spheres or helices. Manipulations (e.g. extrude, delete, move) can be

10

applied per vertice or face seperately. Aside from modeling operations, it supports texturing by

applying solid colors or user-defined textures. The user interface is structured in a textual toolbar

(see Figure 2.8). The menu is placed in the upper left corner and holds six ribbons (submenus).

The first three ribbons let the user switch between model creation, model manipulation and

model texturistation, whilst the remaining three ribbons are used to access the system settings

display, view and file.

Figure 2.8: Textual command menu in Spacedraw [44].

The interactions used in Spacedraw to control the application are similar to the the toolbar

widget used in graphic user interfaces for desktop applications. Using a toolbar on handheld

devices is problematic. The screen space is limited and a permanently visible toolbar reduces it

even more. Additionally, a toolbar is not intuitive, as it requires the user to be familiar with its

terminology. Spacedraw’s toolbar is mostly textual but also contains a few icons and occupies

approximately 5◦% of the screen. The buttons in the toolbar are comparably small, which makes

it difficult to use. Furthermore, many actions are hard to understand, as it is not clear to which

objects (vertice, edge, face, object) they can be applied to, how they are applied or what effects

they have. It is possible to draw a freeform shape in 3D space that can be used in a second step

as primitive for modeling. Drawing primitives suffers greatly in precision on the small screen

due to the large area covered by a fingertip. As the shape is drawn in 3D space, it can be subject

to unintentional dislocations caused by the 2D/3D mapping of the projection on the screen.

TrueSculpt Virtual Sculpture Unlike the previous two aplications, TrueSculpt Virtual Sculp-

ture [7] is designed for modeling using digital sculpting. It is suited best for modeling organical

structures (see Figure 2.9) instead of geometrical surfaces. Digital sculpting intends to resemble

the process of scuplting materials, such as clay. Modeling an object is performed by manipu-

lating the surface of a predefined object (e.g. a sphere) with a given tool. Available tools are

inflate/deflate, grab, smooth, flatten, pinch and noise and are all adjustable by its radius of im-

pact and strength. The user interface is comparably simple as it only allows to switch between

tools and to change a tool’s parameters.

11

Figure 2.9: Bumps on a sphere created with TrueSculpt Virtual Sculpture [7].

2.3 Selection

The process of indicating and confirming a desired object is called selection. The indication

should be supplemented by visual, aural or haptic feedback, when choosing a certain object

from a set of others. One of the most natural ways to indicate an object in augmented reality

environments are techniques that use the pointing metaphor, such as Ray-casting.

2.3.1 Ray-casting

One of the earliest implementations of the Ray-casting selection technique can be found in [2].

Here, the user indicates an object to interact with by simply pointing at it. A line along the

user’s arm performing a pointing gesture is casted into the virtual environment and the closest

object intersecting this line is used for the desired interaction. In fully immersive environments,

the line can be defined either a) from the user’s head to a sensor attached to its hand or b) from

the user’s head into its gazing direction. While Ray-casting is a simple and powerful selection

technique for objects that have a large visual appearance on the image plane, it fails to work for

objects that are small in general or are far away and thus result in a small visual projection on the

image plane. This problem is mostly introduced by the high angular accuracy that is necessary

for selecting small objects. Even worse, a small angular change induced, e.g. by tracker or hand

jitter, causes a strong spatial disgression at far distance. Figure 2.10 shows the Ray-Casting

technique being used to point at a solitary sphere [4, 35].

2.3.2 Handheld Ray-casting adaptions

Telkenaroglu and Capin present in [51] a set of 3D interaction techniques for handheld devices

with a touchscreen. Their major design objectives were to overcome the problems of target

occlusion as well as the limited precision caused by the area a finger tip covers on the compa-

rably small device. Therefore, they proposed two techniques based on the popular Ray-casting

selection technique.

The Dual-Finger Midpoint Ray-Casting technique is operated with three fingers. From the

midpoint Cmid between two fingers (see Figure 2.11), at the touch points f1 and f2 ∈ R
2

on the touchscreen, a Ray-Cast is performed towards the virtual environment (as in Equation

12

Figure 2.10: Ray-casting selection technique [35].

2.1). During the selection, a cross-hair is displayed at Cmid to assist the selection. The first

intersecting object is then highlighted to indicate a possible selection. The selection is confirmed

with an arbitray third touch on the screen. Furthermore, to increase the precision for highly

occluded objects, the view can be zoomed in and out at the midpoint by moving one of the two

fingers away from the other or bringing them closer together respectively.

Cmid = (
f1.x+ f2.x

2
,
f1.y + f2.y

2
) (2.1)

Coff = (f1.x+ o.x, f1.y + o.y) (2.2)

The Dual-Finger Offset Ray-Casting technique is, unlike the previous one, operated with

only two fingers. By default this technique uses a predefined offset o ∈ R
2 to place the chrosshair

above the user’s finger (see Figure 2.12) at Coff as in Equation 2.2. One finger is used to move

the crosshair on the screen from which Ray-casting is performed. Whenever an object is hit

by the Ray-cast, it is highlighted immediately. The second finger is used to either zoom the

view, modify the offset o of the cross-hair or to confirm the selection. The three interactions are

triggered depending on the distance d between the two touch points f1 and f2 ∈ R
2 in relation

to a given distance threshold td. If an object is highlighted, a second finger touches the screen

and d < td, the highlighted object is selected. If only the second finger is moved on the screen

and d > td, the offset o is modified to match the midpoint between the two touchpoints. If both

fingers are moved and d > td, the view is zoomed to increase the precision.

Both techniques tackle and overcome the problems of partly occluded targets and reduced

precision that arise when using Ray-casting on handheld devices. However, these techniques

are deemed to be suboptimal for one-handed handheld AR scenarios for various reasons. Near

the screen’s corners and borders, the Dual-Finger Midpoint Ray-Casting fails to operate as the

13

Figure 2.11: Dual-Finger Midpoint Ray-Casting selection technique [51].

Figure 2.12: Dual-Finger Offset Ray-Casting selection technique [51].

fingers would need to be detected outside of the touchscreen. Generally, by using multiple

fingers, large portions of the touchscreen are occluded and important information of the targeted

object’s surrounding environment is not visible. The already limited interaction space on the

handheld’s touchscreen is further reduced, as up to three fingers have to fit on the screen. Finally,

the gestures are harder to apply due to their comparably high complexity.

2.3.3 SQUAD

The SQUAD selection technique was introduced by Kopper, Bacim and Bowman [23] as a rapid

and accurate 3D seletion method that employs progressive refinement. SQUAD is an acronym

for Sphere-casting refined by QUAD-menu. The main idea is to overcome the problem of se-

lecting small objects with Ray-casting by using a Sphere-cast [23] instead and multiple steps

for refinement. Thus, the selection process is split into two phases. In the first phase, Sphere-

casting is used to define the set of objects containing the object of interest. Sphere-casting uses

a Ray-cast to determine, as the closest intersecting object of the Ray-cast determines at which

position a sphere is casted. The size of the sphere is adjusted according to the distance of the

closest intersection. All objects intersecting the sphere are subject of the refinement in the sub-

sequent step. In the second phase, the image plane is divided into four equally sized areas, the

quad-menu, in which all objects of the Sphere-cast are evenly distributed neglecting their origi-

nal spatial position. Users can now progressively narrow down the available objects by choosing

14

a quadrant from the menu repeatedly. Each time a quadrant is selected, the objects placed in that

quadrant are rearranged evenly on all four quadrants. Therefore at least [log4(n)] selection steps

are neccessary to select an arbitrary object from n objects of the initial Sphere-cast in the first

phase. An illustation of the two steps is found in Figure 2.13.

By employing a volumetric cast, SQUAD overcomes the difficulty of precise selection of

small objects at the cost of multiple interaction steps. However, [23] states that SQUAD’s is

only more efficient than Ray-casting if the environment’s density is not too high and the size

of the objects is not too small. Additionaly, SQUAD removes the selected objects from their

original spatial context during refinement. Thus, false selections will occur if the desired object

is not visually distinguishable from its surrounding objects.

Figure 2.13: SQUAD selection technique: The left image shows the impact of the Sphere-cast in

the first phase. The right image shows the arrangement of the objects in the QUAD-menu [23].

2.3.4 EXPAND

Introduced by J. Cashion, C. Wingrave and J. LaViola in 2012 [10], the design of Expand was

driven by the problems that SQUAD induces when it removes the objects from their original

context during refinement. Their idea is to use a dynamically sized grid that fills the screen

instead of a fixed QUAD-menu. This allows for a spatial relocation of the selected object re-

sembling their original spatial arrangement and therefore providing more clues to identify the

desired object. Furthermore, the progressive refinement is omitted and an animation, to support

the understanding of the spatial context relocation, is introduced. The first phase of the selec-

tion process is similar to SQUAD but a Cone-cast [25] is used to define the selection volume

instead of a Sphere-cast. At the beginning of the second phase, all objects intersecting the cone

volume are cloned. In a transition animation, the clones are moved from its original position

to their designated position on the virtual grid filling the screen. The clones are arranged on

the grid to reflect the spatial context of its original counterparts. In the third phase, after the

transition has ended, the user can immediately select without any further refinement one of the

objects by pointing at them by employing a simple Ray-cast. Figure 2.14 shows EXPAND’s grid

15

alignment of multiple selected objecs as well as in the background the environment they were

selected from.

Figure 2.14: Expand selection technique: The orignal objects are seen in the background. The

foreground shows the rearranged clones on the virtual grid [10].

Expand could eleminate the, possibly cumbersome, progressive refinement by displaying

all selected objects at once on a dynamically sized grid. For a selection from a set of well

arranged and clearly visible objects, as seen in Figure 2.14, Expand is capable to work well.

Unfortunately, it is not further specified in [10] how the objects are mapped with f : R3 → R2

on the grid. It is uncertain if the mapping f resembles the orginal 3D arrangement close enough

to avoid false selections for objects with a similar or identical visual appearance, especially when

the objects are partially or fully occluded.

2.4 Manipulation

There are many manipulation techniques that have been developed for augmented reality appli-

cations ranging from exocentric metaphors like the World-in-miniature [48] technique to ego-

centric metaphors like virtual hand [4]. In exocentric techniques, a user interacts with the virtual

environment from outside whilst with egocentric techniques a user interacts with the VE as part

of it from a “first-person view”. A short overview of egocentric metaphors is given in Figure

2.15. As only few techniques are applicable in one-handed handheld AR setups, this thesis fo-

cuses on egocentric techniques and contains a detailed description of the virtual hand technique

and state-of-the-art techniques for handheld environments.

2.4.1 Virtual Hand

3D manipulation techniques that map the motion of the user’s hand to the motion of a virtual

hand, and thereby constitute a direct relationship between virtual-world and real-world coordi-

16

Egocentric VE

manipulation

techniques

Virtual hand

metaphors

Virtual pointing

metaphors

“Classical” virtual hand

Go-Go

Indirect Go-Go

Ray-casting

Aperture

Flashlight

Image plane

Figure 2.15: Manipulation techniques classified by metaphor according to Bowman [4].

nates, are summarised as virtual hand manipulation techniques. Often, virtual hand techniques

use a 3D pointer to visualise the position and orientation of the virtual hand in the VE (see Figure

2.16a) [4].

(a) Virtual Hand (b) Go-Go

Figure 2.16: Manipulation techniques using the virtual hand metaphor [36].

The simple virtual hand manipulation technique directly maps the user’s hand movement

and rotation to the virtual hand. The relationship between a state of the real hand Sr and the

virtual hand Sv are described as a transfer function in Equation 2.3. The position of the virtual

hand pv is directly derived from the user’s hand postion pr multiplied with factor α (first-order

transfer function). The rotation of the user’s hand Rr is directly applied to the virtual hand’s

rotation Rv (zero-order transfer function). The mapping with α may be neccessary to align the

working volume of the VE with the working volume of the real world and causes in Equation 2.3

the virtual hand to move faster than the user’s hand. Virtual hand manipulation techniques are

classified as isomorphic interaction techniques due to the linear mapping they use. This allows

for very intuitive manipulations with the virtual environment as the interaction of real world

objects is mimicked. However, the linear mapping has a severe drawback caused by the limited

17

length of the user’s arm whenever objects out of its reach need to be manipulated [4].

pv = αpr and Rv = Rr (2.3)

Figure 2.16b shows the virtual hand used in the Go-Go interaction technique [36]. Go-Go is

similar to simple virtual hand but improves it by extending the reach of the virtual arm with the

help of a non-linear mapping function.

The HOMER (Hand-centered Object Manipulation Extending Ray-casting) interaction tech-

nique by Bowman and Hodges [5] was developed to overcome the problems of virutal hand

techniques. The name already reveals that it uses Ray-casting for object selection and uses sim-

ple virtual hand for object manipulation. Therefore, it can be classified as a combined egocentric

selection & manipulation technique. Upon selection the virtual hand travels to the selected ob-

ject and is attached to it. Subsequently, the user performs manipulations and upon deselection,

the virtual hand travels back to the position where it was before the selection. With the help of

the selection by Ray-casting, the virtual working-volume no longer needs to be adjusted with a

fixed α, as it was done with the simple virtual hand. With HOMER, the factor α is defined when

an object is selected as the ratio of the real hand’s distance and the virtual object’s distance, thus

constituting a dynamic mapping during the manipulation. The function describing the virtual

object’s translation are given in Equations 2.4 and 2.5. The factor αh is calculated upon object

selection with Do as the distance of the virtual hand to the selected object in the virtual world

and Dh as the distance between the user and its hand. The transfer function to manipulate the

rotation remains the same as in Equation 2.3.

pv = αhpr (2.4)

αh =
Do

Dh

(2.5)

Generally, virtual hand techniqes enable intuitive 6DOF manipulation (translation and rota-

tion) and were in [5] found to be easy to use and natural due to the mapping of the real hand to

the virtual hand. With HOMER, users can easily reach even distant objects and translate them in

the virtual world. However, the virtual working volume depends on the relation in Equation 2.5

and might therefore be limited. To put an object very far away from its orignal position, multiple

manipulation attempts might be necessary.

2.4.2 Z-Technique

The Z-Technique is a 3D positioning technique for multi-touch displays proposed by Martinet

et al. [28]. This technique is designed to use seperate hands for the manipulation of objects.

The interaction is started with the user’s dominant hand pointing at an object visible on the

touchscreen. Hence, Z-Technique uses Ray-casting for selection. Upon selection, the same

finger is used to translate the object on a 2D-plane coplanar to the image plane positioned at

the the center of the selected object’s. The depth position of the object can be controlled with

a second finger touching the screen. Given the user’s position, a relative motion is calculated

18

from the movements of the second finger on the screen. Moving the finger away from the

user translates the object away from the user’s view and vice versa. Furthermore, a non-linear

mapping function is used to translate the object back and forth. For a strong finger displacement

of successive movements, a higher translational scaling factor is used and a smaller one for low

displacement, thus enabling the user to position an object precisely but also at a large scale.

The interaction ends as soon the first finger, which was used for selection, is released from the

surface. Figure 2.17 illustrates its use. The Z-Technique was evaluated by Telkenaroglu in [51]

for handheld devices and was found to be “easy to position objects on screen locations ...” and

“precisely to position objects ...”. However, it does not provide rotation of objects and requires

both hands for its operation, so that its application in one-handed handheld AR scenarios seems

limited.

Figure 2.17: „Illustration of the Z-Technique. The first finger (right hand in the example) is used

for direct positioning in the camera plane while the second finger (left hand) is used for depth

positioning in an indirect way. Backward-forward movements move the object farther or closer

to the user [28].“

2.4.3 Dual-Finger mobile 3D interaction techniques

Telkenaroglu and Capin introduced in [51] adaptions for selection by Ray-casting but also pre-

sented interaction techniques to manipulate virtual objects with two fingers. They present the

techniques Dual-Finger Midpoint Translation, Dual-Finger Rotation and Dual-Finger Scaling

that decouple the corresponding 3DOF manipulation into smaller subtasks. Figure 2.18 illus-

trates the user interface for moving and rotating an object. Translation is split up into two modes

of translation. First, along the y-axis and second, on the xz-plane of the world coordinate sys-

tem. If two fingers are adjoined, i.e. the distance d to each other is less than 100 pixels, and they

19

are moved up and down on the input screen, the selected object is translated on the y-axis. If

the two fingers are apart, i.e. d > 100 pixels, a cross-hair is displayed between the fingers and

the object can be translated on the xz-plane. The object’s new position P is calculated by the

intersection E on the xz-plane with a ray casted towards the cross-hair’s position on the screen,

with P = (E.x, P.y, E.z) retaining its original y-position. Rotations are performed with two

fingers and for each axis separately. Moving the fingers horizontally on the screen, rotates the

object around the pitch-axis and moving them vertically, rotates the object around the yaw-axis.

Moving the fingers in opposite directions (horizontal or vertical) results in a rotation around the

roll-axis. Likewise, an object is scaled on each axis separately. For scaling along the x-axis, a

horizontal pinch gesture is used and for scaling along the y-axis a vertical respectively. Scaling

along the z-axis is performed by moving two fingers, positioned next to each other, vertically on

the screen.

Figure 2.18: The userinterface while interacting with Dual-Finger Midpoint Translation and

Dual-Finger Rotation [51].

The Dual-Finger techniques allow for precise manipulation of translation, rotation and scal-

ing of objects by decoupling 3DOF tasks into 1-2DOF subtasks and assigning specific touch

gestures. However, the use of multi-touch gestures is flawed (limited display size, more difficult

to use) on handheld devices, as mentioned before in Section 2.3.2. Furthermore, the introduced

gestures for the 1-2DOF subtasks are assigned inconsistently. For instance, the gesture “move

two fingers, positioned next to each other, verticaly on the screen”, triggers a translation along

the y-axis but a scaling along the z-axis. That means that depending on the higher manipula-

tion task (translate, rotate, scale), the same gesture has an impact on different dimensions of the

object.

20

2.5 Touch Gestures

Gestures allow users to interact with applications by manipulating screen objects. The following

table shows the core gesture set that is supported in Android. The Figures 2.19-2.26 as well as

its description was taken from the Android developers guide [18].

Figure 2.19: Touch.

Triggers the default func-

tionality for a given item.

Action: Press, lift.

Figure 2.20: Double touch.

Scales up a standard amount

around the target with each

repeated gesture until reach-

ing maximum scale. For

nested views, scales up the

smallest targetable view, or

returns it to its original scale.

Also used as a secondary

gesture for text selection.

Action: Two touches in

quick succession.

Figure 2.21: Long press.

Enters data selection mode.

Allows you to select one or

more items in a view and act

upon the data using a contex-

tual action bar. Avoid using

long press for showing con-

textual menus.

Action: Press, wait, lift.

Figure 2.22: Pinch open.

Zooms into content.

Action: 2-finger press,

move outwards, lift.

Figure 2.23: Pinch close.

Zooms out of content.

Action: 2-finger press,

move inwards, lift.

Figure 2.24: Long press drag.

Rearranges data within a view, or

moves data into a container (e.g.

folders on Home Screen).

Action: Long press, move, lift.

21

Figure 2.25: Swipe or drag.

Scrolls overflowing content, or navigates be-

tween views in the same hierarchy. Swipes are

quick and affect the screen even after the finger

is picked up. Drags are slower and more precise,

and the screen stops responding when the finger

is picked up.

Action: Press, move, lift.

Figure 2.26: Double touch drag.

Scales content by pushing away or pulling

closer, centered around gesture.

Action: A single touch followed in quick suc-

cession by a drag up or down:

• Dragging up decreases content scale.

• Dragging down increases content scale.

• Reversing drag direction reverses scaling.

22

CHAPTER 3
Methodology

This chapter outlines the investigated concepts and developed algorithms for modeling, selection

and manipulation interactions in one-handed handheld AR scenarios to overcome the limitation

of state-of-the-art techniques. Requirements are derived to form guidlines that support the design

of appropriate interaction techniques. As results, the novel interaction techniques Prefab Based

Modeling for modeling, DrillSample for selection and 3DTouch and HOMER-S for manipulation

are introduced.

3.1 Requirements

One-handed handheld AR introduces certain requirements to the design of modeling, selection

and manipulation techinques. The careful consideration of requirements is important as they

influence the efficiency and the ease-of-use of the techniques. These requirements are listed as

follows.

1. Single I/O device: In handheld AR input and output device form a single entitiy, whereas

immersive VEs provide seperate devices to determine interactions (e.g. by tracking a

wand) and the user’s position and orientation (e.g. with a headtracker). That means, for

handheld AR is only single 6DOF pose available and it is used for input and output at the

same time.

2. Limited gesture complexity: When interacting with the handheld’s touchscreen, the user’s

finger and a part of its hand will occlude a portion of the screen and thus block information

on the screen. This flaw gains significance as the touchscreen is already of comparably

small size. Furthermore, only one hand can be used for touch interactions as the other is

required to sustain the user’s view onto the VE by holding the handheld device. Both facts

disallow the use of complex multi-finger and -hand gestures.

23

3.2 General Guidelines

From the requirements stated in the previous Section as well as from the motivation and prob-

lems stated in Chapter 1, two general guiding principles are derived. The principles are applica-

ble for modeling, selection and manipulation techniques.

1. Keep direct touch abilities: The direct touch behaviour of common touch-interfaces should

be maintained, i.e. interacting with an object or user interface control by touching its

2D representation on the touchscreen with the finger. Offset or midpoint interactions,

as described in Section 2.3.2 and 2.4.3, are considered to be unsufficient due to their

limitations but also because they break with already established behaviour.

2. Keep interaction simple: Interactions with the touchscreen should be as simple as possible.

Multi-finger interactions are generally neither intuitive metaphors nor necessarily well

known. Therefore, one-finger input should be applied where possible. If multi-touch

input is deemed beneficial, it should comply with already established gestures such as

stated in Section 2.5.

In the following three sections, specific principles are derived additional for each interaction

and the accordingly designed techniques are presented.

3.3 Modeling

3.3.1 Guidelines

For the design of the modeling techniques further guidelines apply:

1. Keep interaction simple: as stated in Section 3.2.

2. Keep drawing intuitive: Primitives, such as lines and shapes, are commonly used for

polygonal modeling and should be as easy as possible to create. Drawing in 3D space

using a handheld device is difficult due to the limited screen size and the 2D touch input

resulting in a 3D shape. Drawing primitives should therefore remain a 2D interaction and

if possible be applied with high precision, for instance by using a stylus.

3. Keep modeling expressive: Modeling interactions on handheld devices should be as sim-

ple to understand as possible. Choosing a modeling technique from a textual interface

that has a specific terminology is not intuitive. Instead the interface should express the

capabilities of a modeling technique implicitly.

3.3.2 Prefab Based Modeling

Generally, modeling starts with drawing a 2D primitive which is then manipulated in a second

step to create a 3D surface. Prefab Based Modeling maintains this process but aims at simpli-

fying it. The idea is to provide a simple tool that allows the effortless creation of primitives for

later 3D modeling. Instead of drawing primitives using the handheld itself, the primitives can

24

1a) Draw shapes with pen & paper.

1b) Capture shapes with handheld device.

2) Model 3D surface by extrusion.

Figure 3.1: DrillSample’s two-step selection process.

be drawn with pen and paper. The drawn 2D shapes are then captured with the camera of the

handheld and saved as prefabs for later use to model 3D shapes. The actual modeling takes place

in an AR environment and supports the idea of prefabrication as well. Here, users can choose

from a set of predefined modeling techniques and combine these with previously captured 2D

shapes. The illustrations in Figure 3.1 depict the different steps of the modeling process.

25

detection inactive

save indicated shape

detection active

switch to VR view

tap a shape

push detect

release detect

hold detect

press back

Figure 3.2: State diagram for the shape detection interface.

3.3.2.1 Capturing Shapes

In the first phase, shapes are drawn by hand on paper. Then the handheld is used to capture

them using the built-in camera and image processing algorithms. Capturing the shapes is similar

to recording a video with the handheld device. The user has to push and hold a button on the

touchscreen while pointing with the back-facing camera to the surface on which the shapes

were drawn. The video stream captured by the camera is displayed on the touchscreen without

delay and acts as an AR view. The detected shapes are visually augmented in the AR view

by visually emphasizing them to indicate their detection. Once the desired shape is detected,

the user releases the button to stop the capturing process. The AR view is paused, the last

video frame is displayed as a still image and is superimposed with the detected shapes. With a

single tap gesture the shapes can now be saved to be used for modeling in the following phase.

Drawing the shapes is intuitive by nature whilst capturing the shapes is designed to be as simple

as possible. The view-to-find interaction used for capturing the shapes is simple and intuitive as

users should be familiar with the interaction from recording a video. Additionally, the view-to-

find interaction is used to avoid the video feed from beeing blurry, caused by the impact of a

separate touch on the screen, when stopping the shape detection. Lifting resting finger, instead

of tapping on the screen, introduces no shock to the handheld. The state diagram in Figure 3.2

illustrates the user’s input and the resulting actions.

3.3.2.2 Perspective Driven Modeling

In the second phase, a user switches back to the AR environment to start modeling. Here a

shape is chosen and then modeled with either extrusion or lathe. Whenever the shape or the

modeling technique is changed, an exemplary modeled 3D surface is displayed in the AR view

that represents the current selection. The model helps to understand the modeling technique’s

capabilities by its appearance so that the controllable parameters can be derived. Modeling

is then performed by controlling the parameters of the modeling technique with simple touch

gestures. Each of the technique’s parameters can only be controlled separately and the exemplary

model is modified in real-time to provide a vivid feedback. Displaying an exemplary model in

the AR view supports the guideline to keep modeling expressive as users can inspect the resulting

26

No Input

One Finger Manipulate ~dv

Two Fingers

Add new ~dv

Remove ~dv

Select Next ~dv

Select Previous ~dv

Update Model

touch

touch

move x/y/z-axis

pinch open y-axis

pinch close y-axis

move up y-axis

move down y-axis

Figure 3.3: Interaction diagram for one-handed handheld modeling by extrusion.

model of a 2D surface they have drawn combined with a given modeling technique. Inspecting

a detailed 3D model is much more self-explanatory than a textual or iconic menu.

The 3D models that are created with extrusion or lathe can, unlike freeform surfaces, be

described with a few parameters. In common modeling techniques, the parameters of a model

are not accessible intuitively as a user has to specify which parameter to modify or which tool to

use to explictly manipulate the model. When adjusting a parameter, it is important that the mod-

ification can be observed well, so that the adjustment forms a controlled interacation. Therefore,

the parameters that are reasonable to adjust highly depends on the current perspective a model

is examined in. For adjusting, e.g. a cube’s height, it is preferred to choose a perspective that

shows it from its side rather than from a bird-eye perspective. To make the parameters accessi-

ble in an intuitive way they, are mapped to the dimension of the modeled surface that follows

the expansion. Accessible parameters are determined by considering the handheld’s position

and orientation by calculating the collinearity of the 2D input on the touch screen with the unit

vectors of the model’s coordinate system in world space. Section 3.5.3.1 describes the steps to

calculate the collinearity in detail. Perspective driven modeling only allows the manipulation of

one parameter at a time to simplify the interaction. It uses no abstract input like menus, buttons

or textual input to maximise the screen space for the AR view. All actions are controlled by one

or two finger touch gestures and are accessed by inspecting a pre-modeld surface. The mapping

of the 2D input on the touchscreen to the parameters of the modeling techniques extrusion and

lathe is described in the following paragraphs.

27

No Input

One Finger

Change a

Change as

Two Fingers

Change r

Change l

Update Model

touch

touch

move x- or y-axis

move z- or y-axis

pinch x- or y-axis

pinch z-axis

Figure 3.4: Interaction diagram for one-handed handheld modeling by lathing.

Extrusion is a basic modeling technique to create a 3D surface by adding depth to a flat

surface. This was shown in the example in Section 2.2, Figure 2.6a. An extrusion can be fully

described by a 2D shape and a set of displacement vectors that are used to build the connected

cylindrical sections. Therefore, basic interactions to build a surface using an extrusion are: a)

manipulate the coordinate of a given displacement vector ~dv ∈ R
3, b) select a specific ~dv and c)

add or remove a ~dv. All three actions can be mapped intuitively to simple input gestures. The

position of a selected displacement vector is controlled with a single finger by moving it along

one of the main axes. The x, y and z component’s of ~dv are therefore controlled separately. All

other actions are performed with two fingers. Moving two fingers into the same direction (scroll

gesture) along the y-axis selects the next/previous ~dv. A pinch open gesture (see Section 2.5)

along the y-axis adds a new displacement vector at the current position of the extrusion and a

pinch close (see Section 2.5) gesture removes the current ~dv respectively. Figure 3.3 shows the

application of the input gestures along the axes to control the extrusion’s parameters.

Lathe The second modeling technique is designed to create models by latheing. A lathe can

create axis-symetrical surfaces like tori. An example is given in Figure 2.6c. The lathe used

in this technique is described by a 2D shape, the distance r (radius) to the axis it is revolved

around, the amount of rotation α around the axis, the amount of the shape’s rotation β around

itself and a length d to strech the lath into a screw-like shape. All parameters can be mapped

using only one and two-finger gestures (see Figure 3.4). The two-finger pinch gesture is used

to control the radius r (x- or y-axis) and the length d (z-axis) of the lathe. The rotations a and

β are manipulated with one finger. However, they cannot be mapped to a fixed axis as they do

not cause the model to expand along a single direction. Instead, the parameters α and β are,

28

❄

✲

x

y

α

r

(a) front: x 7→ α and y 7→ β.

❄

✲

x

z
β

(b) top: x 7→ α and z 7→ β.

❄

✲

z

y

d

(c) side: y 7→ α and z 7→ β.

Figure 3.5: Perspective dependent mapping of one finger input for creating a lathe.

depending on the current perspective, mapped to differen axes, as shown in Figure 3.5. When

viewed from the front (x/y plane), touch input along the x-axis changes α and along y-axis β.

From above (x/z plane), input along the x-axis controls α again, but as the y-axis is no longer

accessible input along the z-axis controls β. Viewed from the side (x/y plane), α is mapped to the

y-axis and β to the z-axis. To distinguish the perspectives the dot product of the handheld’s look-

direction ~dH in the world space with each of the worlds unity vectors ei ∈ R
3, i = x, y, z can be

calculated. The dot product with the highest absolute value indicates the associated perspective.

The look-direction in turn is derived from the handheld’s tracking pose.

3.4 Selection

3.4.1 Guidelines

For the design and evaluation of the selection technique, the principles from Section 3.2 can be

extended to derive the following guidlines:

1. Keep direct touch abilities: as stated in Section 3.2.

2. Keep interaction simple: as stated in Section 3.2.

3. Enable disambiguation and unique selection: In dense virtual scenes, it is challenging to

select objects that are partly or fully occluded, if they have a similar visual appearance

(shape, color, texture). The selection technique should therefore display multiple selected

objects in a way that provides insight into their original spatial arrangement to assist object

disambiguation.

3.4.2 State-of-the-Art Selection Techniques

Though many 3D selection techniques are designed for AR scenarios, they can be adapted for

handheld AR application as well. However, adjustments have to be reviewed carefully as they

29

could alter the techniques original characteristics so that a clean evaluation with a state-of-the-

art (SOA) technique cannot be provided anymore. Due to the first requirement imposed from

a handheld AR scenario, popular selection techniques for immersive VE that follow the virtual

hand metaphor, as mentioned in Section 2.4.1, cannot be taken into account for the evaluation,

as they require separate tracking of the user’s input and output device (e.g. a headtracker).

Thus, a direct comparison is problematic or its adaption would flaw the evaluation, as mentioned

before. The dual-finger selection techniques, described in Section 2.3.2, are not considered to be

sufficient baseline techniques for the evaluation as they impose selection with multiple fingers

and face problems near the screen borders. Selection by progressive refinement with SQUAD,

as described in Section 2.3.3, fulfills the requirements of one-handed handheld AR but does not

provide spatial clues to disambiguate visually similar objects as does its successor Expand.

Therefore, Ray-casting and Expand were found to be most appropriate as baseline tech-

niques in the evaluation. Both fulfill the requirements from Section 3.1 and can easily be adapted

to handheld AR without altering their original characteristics.

3.4.2.1 Ray-casting

As Ray-casting is a selection technique with a single interaction step, it can easily be adapted

for one-handed handheld AR by utilizing a simple tap-gesture. The ray-cast is triggered by a

single tap on the screen denoted as pT = (x, y) ∈ R
2. The handheld’s virtual position PH ∈ R

3,

its orientation OH ∈ R
4 and the virtual camera’s field of view fov = (fovx, fovy) are known

parameters in the virtual environment. The ray-cast’s origin and direction ~v(PH , ~d) ∈ R
3 in the

virtual scene can be provided with back-projection as follows:

1. Calculate the virtual camera’s frustum’s dimension FD at an arbitrary depth z with FD =
(Fw, Fh) = (2z · tan(fovx2), 2z · tan(fovy2)), using the horizontal and vertical fov and the

trigonometric tangent function.

2. Given that the screen coordinate system has its origin in the upper left corner, the nor-

malised screen coordinates pTn can be derived from the touch point pT . Using the de-

vice’s screen’s size S = (sw, sh) the normalised touch point is calculated with pTn =
(xn, yn) = (x

sw
, y
sh
) − 0.5. Normalised screen coordinates are used to map the real 2D

touch point on the screen to a virtual point in 3D space.

3. The ray-cast is then defined with the vector ~v(PH , ~d) from the handheld’s origin PH into

the direction ~d = OH · (Fw · xn, Fh · yn, z).

The first object that is casted by the virtual ray is selected and presented to the user. Selection

by Ray-casting resembles therefore in a simple one-step interaction technique.

3.4.2.2 Expand

The two-step selection technique Expand can be adapted for one-handed handheld AR, too,

solely using simple tap gestures. The technique features three phases of which two are interac-

tive. The first phase is similar to Ray-casting. The selection is triggered with a single tap on the

30

device’s screen to indicate the direction of the Cone-cast [25]. All objects intersecting the cone

will be subject of the next phases to refine the selection. The second phase is a non-interactive

animation rendered from the virtual camera’s perspective upon selection. It illustrates the spa-

tial transition of the objects from their original location in the virtual scene to their designated

position on the grid. The AR scene is hidden upon completion of the animation. In the third

phase, the objects are aligned on a grid in front of a solid gray background, so each object can be

conveniently accessed. The refinement, and thereby the selection, ends with a second tap on the

screen that uses Ray-casting (as described in 3.4.2.1) to select the desired object from the grid.

As the original publication [10] did not provide detailed information how the objects are

aligned on the grid to reflect their original spatial arrangement, a detailed description of the

handheld adaption is given in the following.

1. For n objects that intersect the Cone-cast, a dynamically sized grid is created offering

m >= 4n cells to provide an adequate number of abstract positions to resemble their

original setting. Each cell is represented by its center ci ∈ N
2 on the screen.

2. For each of the n objects, the corresponding 2D screen position pi ∈ N
2 is calculated.

3. Finally, for each screen point pi, the closest cell-center ci is determined and the object is

placed at the cell’s center position.

Expand is designed to work for dense conditions when multiple objects may be subject of

a selection. It provides two-dimensional spatial context preservation and precise selection of

objects that are partly or completely occluded.

3.4.3 DrillSample Selection Technique

Derived from Ray-casting and Expand, the novel selection technique DrillSample is designed

in an iterative way according to the outlined guidelines and to meet the necessary requirements.

The selection process is organized in two steps and all touch interactions are performed with one

finger. The technique especially supports disambiguation and selection of objects that are partly

or fully occluded, even if they are of high visual similarity. The technique’s principle and name

were inspired from taking a drill (core) sample for geological measures.

The selection starts with a single tap on the screen which triggers Ray-casting. Instead

of immediately returning the first object that intersects the ray, all casted objects are collected

defining the set of objects that are subject of the following refinement. In the second phase, all

casted objects are cloned and displayed as if they where pulled out of the virtual scene, thus

constituting a drill sample. The drill sample is aligned coplanar to the screen’s image plane in

front of a solid gray background. The AR scene is not visible during refinement. On the very

left of the drill sample, a 3D model of a smartphone depicts the origin of the ray-cast and on the

very right, the most distant intersected object denotes its end (see Figure 3.6). The clones on

the drill sample maintain their original arrangement of the context, their local hit-point with the

ray-cast and the distance to each other, they were extracted from. Therefore, the DrillSample

selection extends Expand’s idea to the depth domain and thus assists in object disambiguation

31

Figure 3.6: DrillSample visualisation on a smartphone.

and selection. The drill sample visualisation allows for a more detailed inspection by using the

following interactions:

1. The handheld’s built-in IMU1 can be used to rotate the whole visualisation,df so that the

objects can be viewed from different perspectives.

2. With a horizontal one-finger swipe gesture, the objects can be browsed by traveling along

the ray, bringing different objects to the center of the screen.

3. With a vertical one-finger swipe gesture (or optionally an undirected two-finger pinch

gesture), the virtual camera can be zoomed in and out to provide either a more detailed

look or a better overview.

The second phase ends with the selection of the designated object by a simple tap gesture.

The user is informed about the selection of the object, the clones of the drill sample visualisation

are destroyed and the AR scene is again displayed. For situations in which the ray-cast intersects

only a single object, the drill sample visualisation is omitted and the object is selected immedi-

ately. The illustrations in Figure 3.7 depict the different interactions with the handheld device

throughout the different phases. The diagram in Figure 3.8 shows all states of the DrillSample

selection technique and the transitions inbetween according to the input of the user.

3.4.3.1 Algorithm

To formalise the illustrated selection process, the proposed DrillSample algorithm can be de-

noted as follows:

1An inertial measurement unit (IMU) is an electronic sensor used to measure the current rate and 3D direction

of acceleration as well as rotational changes along the pitch, roll and yaw axes.

32

1) One-Finger Target Indication 2) DrillSample Visualisation

Trigger Raycasting

Handheld

AR Scene

Visualisation of

Virtual Clones

D
ri

ll
S

am
p
le

2a) Zero-Finger Inspection (Rotate) 2b) One-Finger Inspection (Browse)

Use built-in IMU

to rotate DrillSample

Use horizontal Swipe gesture

to browse along DrillSample ray

2c) One-Finger Inspection (Zoom) 2d) One-Finger Target Selection

Use vertical Swipe gesture to change

distance between virtual camera and

DrillSample ray

Figure 3.7: DrillSample’s two-step selection process.

Step 1: Target indication & DrillSample construction

1. The user performs a touch on the device’s screen at pT ∈ R
2.

2. Perform Ray-casting, as described in Section 3.4.2.1, but return all casted objects.

3. Create clones for each object, storing its original orientation, visual appearance and hit-

point.

4. Optimise the length of the DrillSample (see Section 3.4.3.2).

5. Calculate a pivot point at the center of all hit-points.

6. Rotate the drill sample around the pivot point, so that a) the drill sample lies parallel to

the image plane’s horizontal axis and b) the object hit first is displayed on the left side of

the screen (see Figure 3.6).

33

7. Z-Positioning of the drill sample (see Section 3.4.3.2).

Step 2: Optional inspections during refinement step

1. Calculate touch points and direction of the vertical swipe gesture (or optional two-finger

pinch gesture) to change the distance between the virtual camera and the drill sample (see

Section 3.4.3.2).

2. Calculate touch points and direction of the horizontal swipe gestures to travel along the

drill sample if it spans multiple screens.

3. Rotate the drill sample by mapping the device’s gyroscopic sensor values to the pivot point

of step 1.5.

Step3: Final target selection

1. Select object by using single touch point’s coordinates and Ray-casting, as described in

Section 3.4.2.1.

2. Destroy clones and the drill sample visualisation and return to AR view.

3.4.3.2 Important Aspects

To provide a reasonably refined visualisation of the virtual clones, there are two important as-

pects:

1. The length of the drill sample ray needs to be optimised while preventing visual intersec-

tion of the clones and preserving their relative distances.

2. The optimal z-position of the drill sample to the virtual camera must be obtained.

Length of the drill sample Ray Since the relative distance of objects to each other is sufficient

to preserve the spatial context, the real length of the ray should be scaled for its visualisation

to provide an optimal overview. If the objects are far away from each other the ray might be

shortened. To reveal objects that are inside of another, e.g. a ball in a bucket, it might have to

be stretched. The optimal scaling amount of the ray depends on the shortest distance between

the convex hulls of the two neighbouring objects along the drill sample ray. For objects with

overlapping hulls, the distance is specified as a negative value, and positive otherwise. Assuming

n objects on the drill sample and the shortest distance between (n−1) neighbours is denoted by

di, the length of the ray is then modified by −di ·(n−1). The calculation of the precise distances

can be computational expensive, especially in dense environments with complex shapes. To

minimise the computational load, an approximation with linear complexity is used by treating

all objects as spheres (see Figure 3.9) with the maximum extent of the objects’ bounding box

used as its radius and the hit point as its center. For objects whose center point is not close to the

ray or have a complex concave shape, this may not be visually pleasing as it overestimates the

34

DrillSample Visualisation States

DrillSampleView

Travel DS

Zoom DS

Rotate DS

One FingerNo Finger

Select Highlighted Obj.

Highlighted Obj.

Indicate Target Obj.

generates

updates

destroys

IMU Mapping

touch

release

horizontal swipe

vertical swipe

ray intersection

updates

updates
updates

Figure 3.8: State diagram for the DrillSample selection technique.

real distance between neighbouring objects. More elaborate algorithms can be employed in the

future to enable an optimal adjustment of the length.

Z-Position of the DrillSample In the current algorithm an overview of all selected objects is

presented. This results in the following crucial aspects.

1. The more the distance between clones varies, the less the drill sample can be compressed.

To provide an overview of all clones on a single screen, the drill sample must be positioned

at greater distance to the virtual camera. This might result in small clones being barely

visible.

2. The more the size of the clones varies, the less likely there is a distance to the virtual

camera at which all clones are visible. Small objects may appear too small or large objects

might be clipped at the near image plane.

35

di

di+1

Figure 3.9: Sphere approximation of clones’ size to calculate the optimal ray length.

3. The more objects are selected, the less likely the overview provides a meaningful starting

point for refinement, as the clones in the overview appear too small as in critical aspect

(1).

Thus, the distance between the virtual camera and the drill sample depends on the size of the

clones and their relative distance to each other. To obtain an overview the distance Dov, between

the virtual camera and the drill sample, can be calculated as follows:

Dov(BDSS) =
exp

tan(fov · 0.5) +BDSS(z), where (3.1)

exp =

{

BDSS(y), if RB < Rfov

BDSS(x), otherwise
(3.2)

fov =

{

fov(y), if RB < Rfov

fov(x), otherwise
(3.3)

While BDSS ∈ R
3 is the DrillSample’s axis-aligned bounding box represented as an expan-

sion vector, Rfov is the aspect ratio of the virtual camera’s field of view, RB the aspect ratio of

the bounding box’s side facing the camera and fov is the field of view of the virtual camera.

Additionally, it has to be ensured that neither the near, nor the far clipping plane of the virtual

camera are violated. The interval, in which users may modify the distance of the camera to the

drill sample with a vertical swipe gesture (see illustration 2c in Figure 3.7), is then limited to

[Dov(BC), Dov(BDSS)] by the bounding box of the biggest clone BC on the drill sample and

by the bounding box of the drill sample BDSS itself. However, the optimal distance depends on

the specific application.

36

3.5 Manipulation

Once an object has been selected, independent of the selection technique involved, it can be

manipulated. This section discusses the design of a manipulation technique suitable for one-

haneded handheld AR.

3.5.1 Guidelines

The guidelines that are applied for designing the manipulation techniques are the same as stated

in Section 3.2.

1. Keep direct touch abilities.

2. Keep interaction simple.

3.5.2 State-of-the-Art Selection Manipulation Techniques

The manipulation techniques presented in Section 2.4 are not explicitly designed for one-handed

handheld AR use cases. Their usage is therefore discussed in the following.

Techniques using the virtual hand metaphor [4] like go-go [36] or HOMER [5] enable for

intuitive and effective 6DOF mainipulation (rotation and translation). However, they are defined

for (immersive) VEs and require separate tracking of the 6DOF pose of the input and output

device. This directly conflicts with the single I/O device requirement imposed by the handheld

setup and can not be used without further adaption. Touch-based interaction techniques like the

Z-Technique [28] or the Dual-Finger techniques [51] use DOF-separation to decompose 6DOF

manipulations (e.g. translation and rotation) into 3DOF tasks and these in turn into subtasks with

1DOF and 2DOF. The subtasks are then performed with specific multi-touch gestures. Telke-

naroglu [51] defines manipulation techniques for all three tasks, but uses inconsistent gestures

that might cause confusion as described in Section 2.4.3. The Z-Technique is only defined for

translation but not rotation and scaling. While Martinet [28] and Telkenaroglu [51] use DOF-

separation to handle 3D manipulation, Reisman [40] instead integrates 6DOF by employing

two-handed three-finger gestures to extend RST (Rotate-Scale-Translate) operations from 2D to

3D. However, the use of multi-hand input violates the requirement of limited gesture complexity.

Since the state-of-the-art manipulation techniques cannot be employed in one-handed hand-

held AR scenarios, two novel techniques are proposed. The technique 3D Touch focuses on

touch input and consistent DOF seperation whilst with HOMER-S, the emphasis is put on inte-

gral manipulation up to 6DOF avoiding touch input at all.

3.5.3 3D Touch

Recent work of Veit [52] suggests that the integration of DOF does not necessarily improve the

performance for orientation tasks. This complies with findings of Martinet [29] revealing that

DOF integration for rotation and translation reduces not only performance but also satisfaction.

Furthermore, they suggest that an interaction technique should rather follow the structure of the

37

input device than the structure of the specific task. This inevitably leads to DOF separation using

a 2D touch interface for 3D manipulation tasks.

According to Veit’s work, integral 3D transformations are separated into 3DOF entities to

rotate, scale and translate. To comply with the requirement of limited gesture complexity, each

entity is further split into 1-2DOF manipulation tasks by employing the current device pose of

the handheld that is povided through optical tracking. Inspired by [40], the 2D touch coordinate

in screen-space are transformed to 3D space to support the guideline in order to keep direct touch

abilities and to achieve non-uniform manipulations. The proposed manipulation technique 3D

Touch manages to rely solely on familiar one- (translate, rotate) or two-finger (scale) gestures.

3.5.3.1 Degree of Freedom Limitation

The key feature of 3D Touch is the seamless transition between the various 1-2DOF subtasks of

a 3DOF manipulation entity. This allows users to switch easily between the subtasks without

using an abstract mode switch (e.g. like a button) or by applying a distinct gesture for each

subtask. Changing the viewpoint and perspective is an elemental form of interaction in handheld

AR setups. Therefore, the pose of the handheld device and the resulting perspective of the

object to manipulate is used to identify which DOFs are currently accessible. Depending on

the manipulation task, but also on the user’s needs, a manipulation can be performed either

with respect to the world coordinate system or to the local coordinate system of the object to

manipulate. Therefore 3D touch allows users to switch between manipulation in local and global

space.

The simultaneous accessible 1-2DOF subtasks are determined by measuring the collinearity

of the unit vectors of the targeted (global or local) coordinate system with the look-direction
~dH in world space of the handheld device. ~dH can be derived from the handhelds orientation

OH ∈ R
4 by transforming the local look-direction to world space. If the targeted coordinate

system’s unit vectors ~ei ∈ R
3, i = {x, y, z} are not already in world space, they need to be

transformed to world space as well. Given that ~ei and ~dH are normalised, a measure ci ∈ [0, 1]
for each unit vector ~ei can be calculated with the dot product by ci = |~ei · ~dH |. The smaller ci
is, the better is the dimension accessible from the touch screen. A good empirical threshold to

disallow manipulation of a subtasks was found at ci > 0.72.

To support the user’s decisions while performing the manipulation, the ci-values can be

used to indicate which dimensions are accessible from the current perspective. However, which

dimensions are actually accessed is determined once one-finger input is used on the touch screen.

3D Touch features a strict 1DOF and a mixed 1-2DOF manipulation mode that are explained as

follows.

Strict One Degree Of Freedom Manipulation This mode allows manipulation of only 1DOF

at a time. To perform a manipulation in strict 1DOF mode, users would perform a one-finger drag

gesture (see Section 2.5) along one of the dimensions that are indicated to be accessible. The

dimension to alter and its extent is then identified by evaluating the drag gesture for collinearity

with the unit vectors of the targeted coordinate system as follows.

38

1. Obtain the 3D points Pt, Pt+1 ∈ R
2 in world space for two successive touch points

pt, pt+1 ∈ R
2 of the drag gesture on the touchscreen for the current t + 1 and the last

t frame. The 3D points are calculated using back-projection (see Section 3.4.2.1) at the

distance z = ‖PH − PO‖ of the handheld’s position PH and the position of the object to

manipulate PO.

2. Calculate a measure of collinearity ki ∈ [0, 1] for each accessible dimension using the

dimensions’ corresponding unit vector ~ei ∈ R
3, i = {x, y, z} with ki = ~ei · (Pt+1 −

Pt). Then, the highest absolute value |ki| determines the dimension ~ei along which the

manipulation is applied. Furthermore, the direction of the manipulation is defined with

the sign s = ki
|ki|

.

3. Calculate the extent a of the manipulation with a = ‖Pt+1 − Pt‖ as the absolute distance

between the two back-projected touch points. As the back-projection is calculated in

respect to the distance between the handheld and the manipulated object in step 1, the

extend a scales non-uniformly.

Manipulations for a single dimension are therefore expressed with the 3-tuple ML = (~ei, s, a).

Mixed 1-2 Degree Of Freedom Manipulation This mode allows simultaneous 2DOF ma-

nipulation at a time, but only if the image plane is almost coplanar with two dimensions of the

targeted coordinate system. Otherwise, it switches back to the strict 1DOF manipulation mode

as described previously. The mixed 1-2DOF manipulation mode operates as follows.

1. Check for near coplanarity of the handheld’s image plane with any to dimensions of the

targeted coordinate system with (ci > 0.9) ∧ (cj > 0.9) ∧ (i 6= j),with i, j ∈ {x, y, z}.

If this condition is satisfied operate in 2DOF mode and continue with step 2, otherwise

switch to strict 1DOF mode.

2. Obtain the 3D points Pt, Pt+1 ∈ R
2 of the touch input using back-projection (see step 1

of strict 1DOF mode).

3. Calculate measures of collinearity ki, kj of the touch input for the two accessible dimen-

sions ~ei and ~ej (see step 2 of strict 1DOF mode).

4. Calculate the manipulation’s extent with a = ‖Pt+1 − Pt‖ (step 3 of strict 1DOF mode).

5. Allocate the dimension specific extents ai, aj of the manipulation, so that the extent a is

distributed according to the level the dimensions’ colinearity with

ai = a · ki
|ki|+|kj |

and aj = a · kj
|ki|+|kj |

.

Manipulations on a plane are therefore expressed with the 4-tuple MP = (~ei, ~ej , ai, aj).

39

3.5.3.2 Translation

3D translations are performed using single touch input for the current and last frame pt, pt+1 ∈
R
2 that are combined with the current device pose, as described in Section 3.5.3.1. Depending

on the manipulation mode and the perspective, the manipulation is either defined with (~ei, s, a)
for 1DOF or (~ei, ~ej , ai, aj) for 2DOF manipulations. Given the objects position PO in virtual

space, the object’s manipulated position P ′
O can be calculated with:

P ′
O = PO+ (s · a · ~ei) or

P ′
O = PO+ (ai · ~ei + aj · ~ej)

Subsequently, the 3D position of the selected object is adjusted. In Figure 3.10, some ex-

amples of the resulting 3D translations using the proposed 3DTouch algorithm are illustrated.

Moving the finger right or left in Figure 3.10(a) causes a translation along the x-axis. Analo-

gously, moving the finger up and down in Figure 3.10(b), results in translations along the y-axis,

or z-axis, respectively (Figure 3.10(c)).

Projected Line

(a) Translate along x-axis

Projected Line

(b) Translate along y-axis

Projected Line

(c) Translate along z-axis

Figure 3.10: Examples of translations using 3DTouch.

3.5.3.3 Rotation

Similar to translations, 3D Rotations are performed using single touch and the device pose. The

algorithm is based on the proposed translation algorithm in Section 3.5.3.1. However, before

back projecting the two touch points, a line perpendicular to line(pt, pt+1) ∈ R
2 is calculated

and subsequently the two new points are back projected. The angle of rotation FR ∈ R
3 is then

calculated with:

FR = 360·s·a·~ei
U

or

FR =
(360·ai·~ei)+(360·aj ·~ej)

U
,

40

depending on the manipulation mode and the perspective the object is examined from. The

scalars a or ai, aj regulate the angle as a fraction of the circumference U of the bounding sphere

of the manipulated object. The factor FR is then applied to the current rotation in the object’s lo-

cal coordinate system. In Figure 3.11, examples of the resulting 3D rotations using the proposed

3D Touch algorithm are illustrated. Moving the finger right and left in Figure 3.11(a) causes

a rotation around the x-axis, or y-axis, respectively (Figure 3.11(b)). Analogously, moving the

finger back and forth in Figure 3.11(c) results in a rotation around the z-axis. While translation

and rotation in 3D are performed using single touch, 3D Touch scales objects using two-finger

touch input.

(a) Rotate around x-axis (b) Rotate around y-axis (c) Rotate around z-axis

Figure 3.11: Examples of rotations using 3DTouch.

3.5.3.4 Scaling

The proposed scaling algorithm supports non-uniform scaling along each axis. Therefore, a two

finger pinch-like gesture and an adapted version of the proposed algorithm from Section 3.5.3.1

are applied. Both of the two touch pairs pT1
, pT2

∈ R
2 of the current frame (t + 1) and the

previous t are back projected into 3D, resulting in two manipulations tuples ML for 1DOF or

MP for 2DOF manipulations. Scaling depends on whether a user moves both fingers together

or apart and on the magnitude of that movement. The scaling factor FS ∈ R
3 is then calculated

with:

FS = (at+1 − at) ~ei,t or

FS = (|ai,t+1| − |ai,t|)~ei,t + (|aj,t+1| − |aj,t|)~ej,t

For positive scaling, FS is bigger than 0, for negative, the value is smaller than 0. FS is then

added to the current scale in the object’s local coordinate system.

41

3.5.4 HOMER-S

3D Touch is straightforward and simple. However, the touch abstraction layer still exists and

manipulation is limited to the screen size of the handheld device. Therefore, the novel HOMER-

S technique is introduced, which integrates all 6DOF of a translation and rotation task by directly

mapping the handheld’s pose onto the object. Scaling is separated as a 3DOF task by reusing

the device’s position information. Thereby, real-world metaphors are imitated for translation,

rotation and scaling to eliminate touch input during manipulation and to extend the interaction

space to the user’s physical space.

Inspired by Henrysson [15] and using the immersive 3D manipulation technique HOMER

as a baseline technique, HOMER is adapted to use it on smartphones and tablets (therefore

HOMER-S). The original algorithm uses the 6DOF pose of the user’s torso and that of the

interaction device to manipulate an object. Since a handheld AR environment has different

characteristics than an immersive VE, HOMER is adapted, as illustrated in Figure 3.12.

Rotations of the selected object around arbitrary axes are independently controlled. An iso-

morphic mapping between the handheld’s orientation and the virtual hand is applied to rotate an

object around the hit point used as pivot point. Thereby, the physical movement and rotation of

the handheld device directly influences the transformation of the selected object. By performing

Ray-casting, the object is released and the virtual hand moves back to the handheld’s position.

The proposed HOMER-S algorithm is denoted as follows:

Selection Upon Selection

Move & Rotate

ReleaseUpon Release

Figure 3.12: 6DOF manipulation using HOMER-S.

1. While no object O with position Op and orientation Oo is selected, read the handheld’s

position hp and orientation ho and map it to virtual hand’s position, so that:

42

vhp = hp, vho = ho

2. Upon selection, store current handheld’s position vhsel = hp.

3. At each frame:

• Perform rotation, set Oo = ho

• Perform translation,

– Set vhcurr = hp

– Calculate distance d(vhcurr, vhsel)

– Normalise vector ~v(vhsel, vhcurr)

– Set vhp = vhsel + d · ~vnorm

To scale an object, the position information of the virtual hand is re-used. Therefore, at

each frame the difference between the 3D positions of the previous and the current frame is

calcuated. The delta information is subsequently mapped onto the selected object. Thus, moving

the virtual hand in positive direction of each axis will scale up; moving in negative will scale

down the object. Thereby, non-uniform scaling along all axes can be achieved. As described,

HOMER-S provides touchless manipulation integrating all 6DOF for simultaneous translation

and rotation as well as 3D scaling. Thereby, the touch abstraction layer that requires prior

knowledge is replaced with real-world metaphors. Additionally, the user’s interaction space is

no longer limited to physical screen size, but is expanded dramatically.

3.5.5 Mode Switches

As 3D Touch offers RST-transformations (Rotate-Scale-Transform) by decomposing each trans-

formation into a single 3DOF entity, mode switches are required. Compared to previous work

from Reisman [40], Telkenaroglu and Capin [51], an additional extra input modality is intro-

duced . However, as reported in literature by Martinet [29] and Veit [52], separating the DOF of

the task leads to better results, than trying to use the separated DOF of a multi-touch display in

an integral way, as demonstrated in [40].

For HOMER-S, no degree-of-freedom separation needs to be performed, since it provides

translation and rotation in an integral way. But if desired, translation and rotation can also

be separated into single transformation entities. HOMER-S takes advantage of re-using real

world metaphors to provide intuitive translation, rotation and scale. However, the metaphors

for translating and scaling are akin in movement and hence are hard to distinguish when only

using the device pose. Thus, conscious mode-switching between translate/rotate and scale is

used rather than introducing a new and hence probably unknown real-world metaphor to handle

scaling.

To summarise, 3D Touch provides the 3D transformations (1) translate, (2) rotate and (3)

scale. HOMER-S provides additionally the transformation (4) translate & rotate, which make

(1) and (2) optional. As illustrated in Figure 3.13, the mode switches are realised with a simple

button interface that appears upon selection.

43

Figure 3.13: GUI of 3D Touch’s manipulation types upon selection.

3.5.6 Important Aspects

The proposed manipulation techniques offer intuitive handling of 6DOF manipulation, but in-

troduce some important aspects as well. Since both methods are designed for handheld AR

environments, a valid device pose is required. Thus, loss of tracking results in malfunction of

object manipulation. Nevertheless, since there are several tracking methods for handheld devices

available, a complete loss of tracking can be eliminated by combining two or more tracking tech-

niques. Future implementations could overcome the loss of natural feature tracking by using the

built-in inertial unit for pose estimation for a short period of time. Freezing the AR view as in

[24] or [14] to stabilise the device pose during interactions with HOMER-S was neglected to

allow an uninterrupted immersion.

Regarding rotations with HOMER-S, a drawback is caused by the direct mapping of the

device orientation onto selected objects. Given the implicit binding of the input- and output

device in handheld AR, rotations around the pitch axis are limited. This is especially the case, if

only one marker for natural feature tracking is used, since the system can loose tracking quickly.

360◦ rotations around the yaw axis can be applied by real world movements of the user, while

rotations around the roll axis are straightforward and adapt the steering wheel metaphor. Further

research will be conducted to evaluate the usability of a non 1:1 mapping to compensate rotation

drawbacks of pitch and yaw rotations.

44

CHAPTER 4
Implementation

This chapter documents important implementational effort that incurred working on this thesis.

A description of high level tasks that need to be fulfilled are documented in detail in the following

sections.

4.1 System Design

The interaction techniques designed for modeling, selection and manipulation, described in

Chapter 3, as well as the tools to conduct the user study are implemented in different appli-

cations. This section provides an overview of the applications that were developed as part of this

thesis together with the involved hardware and software components.

4.1.1 Hardware

All applications created are targeted for handheld devices running an Android 4.x operating

system. The hardware used for testing and deployment is a Samsung Galaxy S II I9100. The

smartphone features a 4.3′′ WVGA capacitive multi-touchscreen, an Arm Cortex A9 Dual Core-

Processor @ 1.2GHz, 1GB of main memory and a 8 mega pixel camera. It weights 116g and has

the physical dimensions of 125.3 x 66.1 x 8.49 mm. For development, a standard laptop running

Microsoft Windows 7 Professional 64bit with 16GB main memory, a 3.2GHz Intel i3210M

dual-core processor and a NVidia GeForce GT620M graphics adapter came to use.

The image registration and tracking for the the augmented reality environment is realised

by using the Vuforia AR SDK v2.8.7 from Qualcomm [37]. The development kit uses methods

of natural feature tracking of predefined passive optical markers. For testing the marker was

printed on A4 whilst for the user study it was printed on A2 (see Figure 4.1).

45

Figure 4.1: The marker used for optical tracking.

4.1.2 System Overview

The prototype developed as part of this thesis consists of three applications with a graphical user

interface and one service running in the background (see Figure 4.2). The UserStudy App and

the Modeling App are built with the Unity Game Engine [50] and use the Vuforia [37] framework

to create an augmented reality experience. The Storage Service and the Shape Detection App are

built with the standard Android SDK v4.4.2 [17] and the OpenCV library [34].

Prototype Applications

UserStudy App Modeling App

Vuforia ARTiFICe LitJSON

Unity Game Engine

Storage Service
Shape De-

tection App

Jackson OpenCV

Android SDK

Figure 4.2: Prototype applications, 3rd party frameworks and development environment.

4.1.3 Applications

UserStudy Application The application’s purpose is to evaluate the novel selection technique

DrillSample as well as the manipulation techniques 3DTouch and HOMER-S in an experimental

user study in a handheld AR setup. The application guides a participant through the experiment

and collects data relevant to the study. A thorough description follows in Section 4.6.

46

Modeling Application Is the prototype of a handheld AR modeling application providing Pre-

fab Based Modeling (see Section 3.3.2) of hand-drawn shapes with extrusion or lathe modeling

techniques. Additionaly, it implements mechanisms to synchronise user generated models in

distrubuted, collaborative environments. This application is used in combination with the Shape

Detection Application and the Storage Service. Details for this app’s UI follow in Section 4.2.3.

Section 4.3 covers the distribution of user generated content.

Shape Detection Application This application is also a part of the modeling prototype but is

used by the Modeling Application to capture hand-drawn shapes with image processing algo-

rithms. It implements a simple UI to capture shapes using the view-to-find analogy presented

in Section 3.3.2.1 and a robust pipeline for shape detection with the OpenCV framework. To

forward the captured shapes to the Modeling Application, it uses the Storage Service. Details

about the user interface are described in Section 4.2.1 and the pipeline for shape detection is

presented in Section 4.2.2.

Storage Service Is the background service acting as a communication agent between the Mod-

eling Application and the Shape Detection Application. Its purpose is to enable inter-process

communication for applications written in different programming languages (C# and Java). Dur-

ing the development of the service, the JSONRMI framework was developed to realise cross

language IPC using networking. Details are given in Section 4.4.

4.1.4 Frameworks

This Section lists and describes all 3rd party frameworks that were used to create the different

applications of the prototype.

Unity A game engine and development environment for interactive 2D and 3D applications

[45]. It supports the programming languages C#, JavaScript and Boo. It is available for Mac OS

X and Microsoft Windows platforms for development but can build executables additionaly for

Linux, PlayStation 3, Xbox, Wii, IOS, Android and PlayStation Vita. Unity is available as a free

version with limited functionality or as a pro version with all features for the payment of license

fees [50].

ARTiFICe A mixed reality framework developed at the Vienna University of Technology by

the Interactive Media Systems Group. The framework builds around the Unity game engine

and has a focus on the rapid integration of 3D input hardware, the development of interaction

techniques and collaborative applications [31].

Vuforia AR SDK A software development kit developed by Qualcomm to build augmented

reality applications for handheld devices running iOS or Android. The SDK uses optical inside-

out tracking of a printed marker that is used for the registration of the virtual environment in

real-world space. Vuforia is shipped with an extension for Unity and can therefore easily be

used to create feature rich AR applications for handheld devices [37].

47

OpenCV A programming library providing advanced algorithms for computer vision and im-

age processing. The library is written in C and C++ and provides various additional language

bindings (e.g. Java, Python and Matlab). The library runs on Windows, OS X, Linux, iOS and

Android and is distributed under the BSD license [8, 34].

LitJSON A library to process data formatted in JavaScript Object Notation [46]. The library

is compatible with all .Net frameworks as well as Mono 2.0, so that it is fully compatible with

Unity and all target platforms. The library is released into the public domain [3].

Jackson A data parser for formats like JSON, XML or CSV for the programming language

Java. The library is dual licensed under Apache License (AL) 2.0 and LGPL 2.1.n [11].

4.1.5 Tasks & Overview

A prototype is developed based on the ARTiFICe framework and the Unity3D game engine to

investigate and to design interaction techniques for modeling, selection and manipulation of

virtual objects in one-handed handheld AR environments, as stated in Section 1.3. Addition-

ally, a user study needs to be designed and executed to evaluate the newly created interaction

techniques. The high level tasks part of this thesis are listed as follows.

• Pen & Paper Shape Detection: Develop a module that uses the handheld’s back facing

camera to detect shapes drawn on paper with the help of computer vision algorithms.

The Shape Detection Application allows to select and save captured shapes to be used for

polygonal modeling. As the computer vision algorithms will cause a high computational

load, they need to be executed in a seperate thread so that the user interface remains

responsive.

• Modeling Interactions: Implement interaction techniques to generate a 3D polygonal

mesh from the pre-captured 2D shapes using extrusion or lathe. Algorithms for polygon

triangulation and mesh generation need to be implemented. The modeling interactions

and the related algorithms are implemented in the Modeling Application.

• User Generated Content Distribution: The ARTiFICe framework can be used to build

distributed collaborative AR applications but lacks functionality to synchronise user gen-

erated 3D content, such as polygonal models created with the Modeling Application. To

enable state synchronisation for user generated content, ARTiFICe needs a module to dis-

tribute content amongst the participating users. The distribution layer should focus on

sending as little data as possible to minimise network traffic.

• Inter Process Communication: The Modeling Application uses the Shape Detection Ap-

plication to capture 2D shapes for the Prefab Based Modeling techniques (presented in

Section 3.3.2). Therefore, it is required to implement a way of inter-process communi-

cation (IPC), to transfer the captured shapes from the shape detection to the modeling

application. Furthermore, using a cross plattfrom IPC, will also improve the development

48

process as deployment and debugging can be cumbersome with Unity3D and the Vuforia

platform for handheld devices.

• Selection, Manipulation Interactions: The interaction techniques for selection (Drill-

Sample) and manipulation (3DTouch and HOMER-S) of virtual objects in handheld aug-

mented reality environments need to be designed and implemented. Along with state-of-

the-art approaches that are used as baseline techniques in a userstudy, the novel interac-

tion techniques will be integrated in the ARTiFICe framework. Existing interfaces of the

framework are to be extended or altered if required.

• UserStudy Application Design & Implementation: The user study will employ a prac-

tical test in which users are asked to solve certain tasks with the competing interaction

techniques. The test application will guide the users through the defined tasks, randomise

the test set and record relevant data for the study.

4.2 Modeling

The polygonal modeling interface, as suggested in Section 3.3, can be devided in two steps.

First, the detection of hand-drawn shapes with the help image processing, and second, the 3D

polygonal modeling of the previous detected 2D shapes in the AR environment. Both steps

require access to the handheld’s camera. Shape detection grabs frames from the video feed to

search for shapes in the image data, whilst the modeling interface requires the handheld’s device

pose in the AR environment provided by the optical tracking system. A concurrent execution

of shape detection and modeling is impractical as they have different use cases involving the

handheld’s camera. The implementation of the modeling interface is therefore implemented in

two applications.

The interface for the detection of hand-drawn shapes is designed to allow only little inter-

action in order to simplify its usage. The push-to-find analogy, as described in Section 3.3,

supports the approach. The major difficulty of the implementation concerns the development of

a performant and robust image processing pipeline to detect the hand-drawn shapes.

4.2.1 Shape Detection User Interface

The user interface features four buttons that are placed in the four corners of the handheld’s

screen so that they are easily accessible, but also block only little of the video feed displayed

in full screen. Figure 4.3 shows a screenshot of the UI when shapes have already been detected

and selected. Most important is the button B1 which triggers the image processing thread to

detect shapes with the push-to-find interaction. While B1 is pressed, shapes are detected and

the video feed is updated. The video feed a) is displayed in color while detecting shapes. Once

detection has stopped, the video feed is displayed in grayscale and paused. Detected shapes

are displayed in orange c) and turn light green b) when they are selected. Selected shapes can

either be saved by double tapping or by pressing B3. Pressing B2 saves the selected shapes as

well, but also switches immediatly back to AR mode for modeling. Button B4 is used to display

49

the applications preferences so that parameters of the image processing pipeline, like e.g. the

camera’s preview resolution, are adjustable.

B4 B3

B1B2

a)

b) c)

Figure 4.3: Shape detection user interace.

4.2.2 Image Processing

To maintain a responsive user experience, the pipeline runs on a seperate thread in the back-

ground and is only called in case a new frame needs to be processed for shape detection. In

return, frames that arrive for processing whilst a previous frame’s procession has not finished

yet, are discarded. The pipeline is implemented using the OpenCV [34] library and aims to

reduce data as early as possible to minimise the computation time of subsequent steps. The

detailed steps of the pipeline are displayed in Figure 4.4. Its states and critical parameters are

adressed in the following enumeration.

1. Preprocessing: It is recommended to request a video feed from the device that coincides

with the handheld’s display resolution. This ensures that a detailed preview is provided for

the user, but also avoids that unnecessary large frames are processed. Color information

is not processed explicitly, each camera frame is therefore converted to a greyscale image.

The conversion is done with OpenCV’s conversion function Imgproc.cvtColor(...).

In: Raw image (YUV) from the camera’s video feed

Out: Grayscale image

2. Downsampling: Depending on the device’s processor it might be necessary to further

reduce the amount of data to achieve a short execution time. It is prefered to request a

lower resolution feed from the camera directly, as this will not introduce an additional

50

Shape Detection Pipeline

1. Preprocessing

2. Downsampling

3. Noise Reduction

4. Threshold Estimation

5. Canny Edge Detection

6. Closing Operation

7. Find Contours

8. Filter Contours

9. Polygon Approximation

10. Filter Polygons

rgb camera frame

gray camera frame

gray camera frame

gray camera frame

gray camera frame, T1,T2

binary frame

binary frame

set of contours

set of contours

set of polygons

set of polygons

Figure 4.4: Image processing pipeline for robust shape detection.

computational load. However, using a low resolution for the video feed will look unap-

pealing for users, as the presented feed lacks of details and sharpness. The computational

load introduced by downsampling is, especially for higher resolutions, lower than for the

upcoming image processing tasks. Downsampling can therefore help to make a compro-

mise between computational load and an appealing presentation. Downsampling is done

by using a bilinear interpolation with the function Imgproc.resize(...).

In: Grayscale image

Out: Grayscale image

3. Noise Reduction: After the image has been downsampled, a 3 × 3 normalised box filter

[49] is applied to reduce noise with the function Imgproc.blur(...). Removing noise from

the image will reduce the number of false detections of the Canny edge detector [9] and

reduce the data beeing processed in the following steps.

In: Grayscale image

Out: Grayscale image

4. Threshold Estimation: To detect the edges of the hand-drawn shapes, the pipeline uses

the Canny [9] edge detection algorithm. The quality of its result is mainly driven by its

51

hysteresis thresholds T1 and T2. The two thresholds are therefore estimated for each frame

as follows:

a) Calculate a histogram with 32 bins.

b) Determine the interval in which values are assigned.

c) Find indices ib, iw of the strongest left- and righthanded bin from the center of the

interval.

d) Calculate intensity difference Id = 255(iw−ib+0.5)
32 .

e) Estimate T1 = 0.2Id and T2 = 0.8Id.

In words, the estimator searches for the strongest peak within dark and bright values. The

intensity difference is then directly used to calculate a high entry threshold T2 but a low

exit threshold T1. This helps to skip small low intensities beeing detected and avoids that

edges with intensity fluctuations beeing seperated.

In: Grayscale image

Out: Canny thresholds T1, T2

5. Canny Edge Detection: Using the denoised grayscale image and the estimated Canny

thresholds, Canny edge detection is performed using the function Imgproc.Canny(...).

In: Grayscale image, T1, T2

Out: Binary image

6. Closing Operation: To further reduce noise and data, a morphological closing operation

is applied to the binary image using a 3x3 pixel sized kernel. This will remove small

structures from the image data and causes structures that have small holes to merge [49].

In: Binary image

Out: Binary image

7. Find Contours: The function Imgproc.findContours(...) provided by OpenCV can be

used to detect contours within a binary image using a border following algorithm [43]. It

supports the retrieval of contours and their hierarchial alignment. The modeling use case

does not expect users to draw shapes with holes, so that it is not necessary to consider the

hierarchy. The function will therefore be called with the parameters RETR_EXTERNAL.

In: Binary image

Out: List of contours

8. Filter Contours: To reduce the computational load for the following steps of the process-

ing pipeline, the found contours are filtered by its area. All contours with an area smaller

than 0.2% of the original source image will be removed from the list of found contours.

In: List of contours

Out: List of contours

9. Polygon Approximation: The set of points that defines a contour’s outline can be greatly

reduced by using the parametric Ramer-Douglas-Peucker [39] algorithm for polygon ap-

proximation. The parameter ε, used in the RDP algorithm, defines a threshold used to de-

termine if points of the contour can be discared. The pipeline uses ε = 0.3% ∗ perim(c),

52

defining the parameter in relation to the contour’s perimeter, which was empirically found

to be a good tradeoff between reducing the number of points without loosing too much

details.

In: List of contours

Out: List of polygons

10. Filter Polygons: The final step of the processing pipeline removes all non-simple poly-

gons from the set. A polygon is simple if each vertice is used by exactly two line segments

and consists of a single series of connected line segments. Consequently, a polygon may

not have holes or have line segments that cross.

In: List of polygons

Out: List of polygons

4.2.3 Modeling User Interface

Once shapes have been captured with the shape capture application, they can be used for model-

ing by switching to AR modeling mode using the button B2, as seen in Figure 4.3. The modeling

mode shows immediately the result of the current modeling technique combined with the most

recent shape that was captured.

The modeling user interface (see Figure 4.5) is very similar to the interface for capturing

shapes. The model d) is displayed in the augmented environment on top of the visual marker

a) used for tracking. The axes c), and therefore the parameters that are easily accessible as

described in Section 3.3 are displayed at the models position. When a modeling technique’s

parameter is modified, the related axis is highlighted and the parameter’s description is displayed

e) on the lower border of the screen. Along the upper border of the device’s screen each captured

shape is represented by a gray rectangle on a dark bar. The shape currently being used for

modeling is highlighted in orange and can be changed by using the arrow buttons alongside the

bar. Important functions are accessed by buttons positioned in the screen’s corners to maximise

the space available for modeling input. The buttons are used to delete the current shape from the

set of captured shapes (B1), switch to capture mode to create a new shape (B2) and to iterate

through the available modeling techniques (B3). An instance of the model can be instantly

created by a single tap on the model.

4.3 Content Distribution

With the modeling functionality new content can be generated and it is desirable to distribute

the content in the collaborative workspace amongst its users over the network. So far, neither

ARTiFICe, nor Unity itself offer out of the box solutions to distribute arbitrary runtime generated

3D content over the network. However, Unity ships with functionality that can be used to achieve

content distribution.

53

B1 B2

B3

a)

b)

c)

d)

e)

Figure 4.5: Modeling user interace for handheld augmented reality.

4.3.1 Data Transmission Analysis

Non-animated 3D polygonal models basically consist of shape and appearance. The shape is

defined by its polygonal mesh. The appearance is influenced by its shape, color or texture and

also techniques like e.g. bump or normal mapping. The models that are meant to be distributed

are created in the collaborative environment, as described in Section 4.2, and consist only of

a mesh and a solid color. The data that needs to be synchronised for a generic 3D model is

therefore the mesh consisting of the vertice-, triangle and normal vectors and a color defined by

its red, green, blue and alpha (RGBA) components.

Mesh Data Any model’s shape can be fully described with the vertice-, triange and normal

vectors of its mesh. Mesh data is widely used in computer graphics applications. However, it

can grow large easily even for simple models. Assuming a full 360◦ ring thorus whose outer

circle is sampled every 10◦ and the inner circle every 20◦. The number of bytes that needs to

be transmitted for the mesh of the given thorus is broken down in Table 4.1. In total, the mesh

would comprise 38.880 bytes. The mesh’s size is driven by the two sampling parmeters for

the inner and outer cirlce as they control the granularity of the model and results in a quadratic

growth.

Geometric Data To minimise the data that needs to be shared for a model, one could send a

geometric build instruction rather than a fully generated 3D model. The ring thorus mentioned

before can be fully described with a few parameters. The build instruction would in this case

consist of six parameters: 1) Geometric-Schematic (i.e. 1:Full Ring Thorus), 2) Radius of Inner

Circle, 3) Radius of Outer Circle, 4) RGBA Color, 5) Sampling of Inner Circle and 6) Sampling

of Outer Circle. Assuming each parameter is encoded as a single float value, the whole model

54

Vertice Vector Triangle Vector Normal Vector

36 * intervals 36 intervals 36 intervals

18 vertices/interval 18 * 2 triangles/interval 18 * 2 normals/interval

12 byte/vertice 12 byte/triangle 12 byte/normal

648 vertices @ 7776 byte 1296 triangles @ 15.552 byte 1296 normals @ 15.552 byte

Table 4.1: Data for a sampled circular thorus mesh.

can be described with only 24 bytes. In this case, by using a geometric description, a reduction to

approximately 1
1500 th of the fully generated 3D model’s size can be achieved. The size also re-

mains constant, as a higher granularity does not introduce additional parameters. Knowledge of

the model’s geometry can therefore tremendiously reduce the data that needs to be synchronised

in the collaborative environment.

Modeled Data The modeling techniques described in Section 4.2 uses not only a geometric

schematic and some parameters, but also a hand-drawn 2D shape to construct the mesh for a

model by extrusion. Using a hand-drawn shape gives users more flexibility compared to using a

geometric shape. Moreover, the build instruction’s size increases, as each point of the 2D hand-

drawn shape needs to be saved explicitly. Staying with the circular thorus, the two parameters

for the inner circle would be replaced by a set of 18 points assuming the circle is sampled every

20◦. The model could then be described with the point set and four parameters: 1) Geometric-

Schematic, 2) Radius of Outer Circle, 3) RGBA Color and 4) Sampling of Outer Circle. This

sums up to 160 bytes and results in a reduction to approximately 1
240 th of the fully generated

3D mesh. The size of the model built instruction has linear growth.

Temporal Frequency The distribution of the models occurs in exactly two cases. The most

common case is that a new model is shared among already connected users. The model is then

sent once to each user. The second case arises, when a new client connects to the collabora-

tive environment. Then, all user generated models are shared with the client and can cause a

temporary strong peak in transmission.

Unity allows arbitrary state synchronisation amongst clients and the server in two ways. The

following section addresses the general differences between the two and how they can be used

to synchronise data of user generated 3D models.

4.3.2 Networking in Unity

For both approaches of networking in Unity, an instance of the type NetworkView is used to

set up the neccessary communication layer between client and server. The first approach uses

the paradigm of Remote Procedure Calls (RPC), whilst the other is called NetworkView Seri-

alisation. Besides Unity’s networking capabilities mentioned before, there exist more flexible

solutions for network communication. Unity Pro offers plain TCP or UDP 1 communication us-

1TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are both end-to-end transport proto-

cols according to the OSI layer. While TCP provides a reliable byte-stream channel and is designed to detect and

55

ing the .Net Framwork Mono that is shipped with Unity. Third party addons, like Photon Unity

Networking offer professional high level solutions. As Unity Pro is not available for free and the

free editions of 3rd party addons do not allow deployment to platforms like Android or iOS due

to Unity’s license agreements, 3rd party addons are therefore not discussed in the following.

Remote Procedure Calls are asynchronous calls to a shared instance of a NetworkView be-

tween entities (clients and server). RPC calls can be sent from and to any entity that share the

NetworkView. The key features and requirements of RPC’s are:

• Entities must share a NetworkView.

• All entities must have the RPC defined on the NetworkView.

• The RPC can be called from and to all entities.

• Runtime allows payload size of 4096 bytes for string.

• Runtime allows payload size of +10 mbyte for byte[].

• Userdefined datastructures cannot be sent without serialisation.

• RPC’s are asynchronous, thus cannot return data.

• RPC’s can be chained to return a result.

• RPC’s are triggered manually.

NetworkView Serialisation is a one-way communication between the participating entities.

The lifecycle of a NetworkView begins with its creation on a specific entitiy which in turn signals

the creation to the other entities as well. The entitiy that initially created the NetworkView is its

owner and can exclusively send data by using serialisation. All other entities can only receive

data. The key features and requirements of NetworkView Serialisation are:

• Entities must share a NetworkView.

• The payload that is sent is not limited to a specific size.

• Data can only be sent from the owning entity.

• Entities can be excluded to receive data.

• Data is sent in regular intervals (if changed), the default send-rate is 15Hz.

• The NetworkView decides when serialisation has to be performed and cannot be triggered

manually.

recover from losses, UDP does not handle transmission errors. TCP is regarded as a connection oriented and reliable

transmission channel, whilst UDP is connectionless and unreliable [27].

56

4.3.3 Distribution Procedure

Both concepts of state synchronisation (RPC, Serialisation) in Unity are one-way communica-

tion channels and both concepts could be used in the same way to distribute the model data.

However, RPC is in this case the preferable concept. RPC’s are asynchronous, can be called

easily in both directions and can be chained to return a call’s result. Serialisation instead can

not be controlled directly and should be used when the synchronised states frequently change.

Content distribution using Unity’s built-in RPC functionality is implemented in four steps. For

an illustration of the involved classes and an exemplary call sequence, see Figure 4.6 and 4.7,

respectively.

Involved Classes

• UGCUploader: There is exactly one instance running on each client and the server. The

instances are connected via a NetworkView and the UGCUploader is used to initiate dis-

tribution from the client to the server with the RPC call spawn(...).

• UGCHandler: Instances of this type are created by the server, in case an object containing

user generated content shall be created in the environment. The instances are connected

via a NetworkView. If a client instance has no model data attached, the RPC calls in-

quire(...) and push(...) are used to receive the model data from the server.

• UGCData: This abstract class is used to serialise and deserialise arbitrary user generated

content to the JSON data format.

• UGCPrimitive, UGCModel, UGCMesh: These are specific realisations of UGCData that

define a user generated model. Each realisation must be able to reconstruct a model of

its specific kind with the the build(...) procedure. UGCPrimitive is a simple geometric

descriptor (e.g. Sphere, Cube or Tetraeder), UGCMesh can hold arbitrary mesh data and

UGCModel is a build instruction that uses one of the modeling techniques from Section

4.2.

Procedure

1. Content Serialisation: The client, that wants to send a new model to the server, needs to

serialise the model data first. Therefore, it has to create an object of the type UGCData

that will contain all data neccessary to rebuild the model. UGCData and its realisations

are POCOs2. Thereby, serialisation and deserialisation can be automatically done using a

JSON parser and the C# programming language reflection and introspection capabilities.

2POCO (Plain old CLR Object) is an simple CLR (Common Language Runtime) object that solely depends on

the .Net programming framework. Analogously, the term POJO (Plain old Java Object) refers to simple objects used

in the Java Runtime Environments. Plain objects are mostly used to provide a simple way for data serialisation and

to pass data through application layers [33].

57

distribution module

1

UGCUploader

- nv: NetworkView

+ [RPC] spawn(data: string) : void

UGCHandler

- nv: NetworkView

+ model: UGCData;

+ [RPC] inquire(info: NetworkInfo) : void

+ [RPC] push(data : string): void

+ attach(model : UGCData): void

UGCData

+ deserialise(data: string): UGCData

+ serialise(data: UGCData): string

+ name(): string

+ build(g: GameObject): void

UGCPrimitive

+ primitive: UGCPrimitive.Type

+ color: int

UGCExtrusion

+ extrusion: UGCExtrusion.Type

+ baseShape: Polygon

+ params: double[]

+ color: int

UGCMesh

+ vertices: double[][]

+ normals: double[][]

+ triangles: int[]

+ color: int

Figure 4.6: Classes involved in the distribution of the user generated content.

2. Content Upload: All clients and the server are connected with a NetworkView via an

instance of UGCUploader. When a client creates a new object with a user generated

model in the collaborative environment, it will upload the serialised UGCData object to

the server and ask for its instantiation with the RPC spawn(...).

3. Network Instantiation: When the server receives a new upload from a client, it triggers

the instantiation of a UGCHandler object on itself P0 and all clients Pi. The object holds

a NetworkView and has two RPC’s registerd for client synchronisation. Additionally, the

server attaches the previously deserialised UGCData object to its local instance P0.

4. Client Synchronisation: When an object Pi is instantiated on a client, it will inquire the

serialised UGCData object with a RPC from the server-sided object P0 which has the

model data attached. The server-sided object P0, will then perform a chained RPC and

58

push the data to the client. The client is now synchronised and can build the model from

the received data. See Figure 4.7 for the synchronisation call sequence.

create(id)

attach(model)

create(id)

rpc:spawn(data)

rpc:push(data)

rpc:inquire(info)

Start()

U1:UGCUploader Pi:UGCHandler U0:UGCUploader P0:UGCHandler

Figure 4.7: Exemplary sequence for the distribution of user generated content. Client-sided

classes are colored in blue, server-sided in red. Explicit network communication is prefixed

with rpc.

4.4 Inter Process Communication

The modeling application and the shape detection application act as a prototype for the Pre-

fab Based Modeling technique as described in Section 3.3. As the shapes needs to be trans-

ferred from the shape detection to the modeling application, it is neccessary to use mechanisms

for inter-process communication (IPC). The modeling application is developed in C# using the

Unity game engine, whilst the shape detection application uses the OpenCV framework and is

written in Java. The targeted development platform for both application is the Android operat-

ing system and available IPC mechanisms are discussed according to the given situation in this

section.

4.4.1 IPC Mechanisms

This section describes the IPC mechanisms that are available on the Android platform.

59

Android Intents An intent is a simple data object that can be used in Android to contact one

application from another. Basically there are three cases in which intents should be used. The

most common use is to start another application in the foreground to perform a task and return a

result. The second use case is to start a service to perform an operation in the background, e.g.

a download, without interrupting the current application. The last case is to send a broadcast

message to inform a set of applications about specific events or a state, as e.g. that the system is

shutting down [19].

Android Services Android provides services (applications that run in the background) to en-

able communication between processes or activities. Services can be implemented in different

ways [20].

• Remote Service: A remote service is an application that runs in the background and pro-

vides RPCs that can be accessed by activities of other processes. A service has to define its

interface with the Android Interface Defintion Language (AIDL) to describe which RPCs

are available. Remote services allow intra- and inter-process communication.

• Bound Service: Bound services are basically remote services that do not have their inter-

face exposed using the AIDL. Without defining the service’s interface using the AIDL, the

service can only be used from activities of the same processes. Bound Services provide

only a very limited way of IPC, as it only allows intra-process communication.

• Messenger: A messenger allows, like remote services, true IPC but without using the

AIDL. The Messenger ships with a simple messaging interface instead of exposing an

interface that has to be defined by the developer explicitly.

Networking Apart from the IPC mechanisms specific for the Android platform various net-

work protocols like TCP or UDP can be used for IPC as well. Networking allows not only for

intra- and inter-process communication, but also for IPC between computers. Many high-level

programming languages like Java, C, C++, Objective-C or C# support networking using sockets

or a similar concept, thus networking additionally offers a high level of interoperability.

4.4.2 IPC Architecture

At a first glance, the mentioned Andriod IPC mechanisms do not seem to be applicable, as the

modeling and the shape detection application are written in different programming languages.

However, Unity provides interfaces [38] to use external Java libraries, thus each mechanism can

be used for IPC. On the other hand, the implementation would be bound to devices running

Android. Using networking instead would help to build a more platform independent solution.

Additionally, testing and debugging handheld applications written it Unity is tiresome as de-

ployment takes up to 90sec and more importantly as it does not support remote debugging of

target devices. To overcome this problem, Unity provides an application called Unity Remote

which is installed on the targeted handheld. An application to be tested is then executed on the

development computer but the graphical output is streamed to the handheld and the handheld’s

60

touch input is streamed back to the development computer. Using Unity Remote for testing,

the modeling application would no longer be executed on the handheld so that local IPC, and

therefore the mentioned Andriod IPC mechanisms, is not sufficient anymore. Using networking

could therefore simplify the development process of the modeling application by eleminating

the need to deploy the application to a handheld device for testing purposes. The application can

be tested right on the development computer with Unity Remote.

Therefore, the modeling prototoype uses networking as an IPC mechanism to provide a

higher level of abstraction and to simplify the development process. The two applications com-

municate through a communication agent as they are not executed concurrently. The communi-

cation agent provides an interface to store, delete and retrieve shapes that are used for modeling

and acts as a storage service. Communication is performed using a client/server setup and TCP

sockets. A special constraint of using existing frameworks imposes Unity, as it provides only

a limited Mono 2.0 subset that can be used for the development of Android platforms. To the

knowledge of the author, no compatible cross-language communication framework exists and

pure socket communcation is tiresome. Therefore, the JSON RMI framework was developed

and is presented in the following section.

4.4.2.1 JSON Remote Method Invocation

JSON RMI is a framework that enables communication between two processes via TCP. The

framework is desgined to cause minimal programming effort. A remote interface is defined as

easy as defining a class interface in C# or Java and does not need an additional interface defi-

nition language like AIDL (Android) or IDL (CORBA). For data transmission, the framework

uses, as its name already suggests, the JavaScript Object Notation (JSON). The core elements of

the framework are the two classes SimpleRMIService and SimpleRMIClient that handle the con-

nection establishment and termination over TCP, the message interpretation and the procedure

call delegation using the reflection capabilities. The framework is developed both in Java and

C#.

Class Overview

• SimpleRMIClient: Provides client functionality to use a RMI service.

• SimpleRMIService: Provides server functionality to create a RMI service.

• JSONRequest: A internal data structure for communication from client to server. The

structure encapsulates the name of the procedure, its input arguments and configuration

parameters of a RMI.

• JSONResponse: An internal datastructure for communication from server to client to

return the result of the preceding RMI. The structure encapsules the result of the call or in

case of an error an error message. A response is only returned if the call was configured

to be a synchronus call.

61

• JSONUtil: A utility class to handle the (de)serialisation of the exchanged data. The class

uses the LitJSON [3] library in C# and for Java the Jackson [11] Java JSON-processor.

• JSONExeption: This exception is raised if exceptions occur during transmission or (de)serialisation

of the exchanged data.

In the following sections, the implementation of the communication agent used for inter-

process communication between the Modeling App and the Shape Detection App is described.

4.4.2.2 Storage Service

Using the JSON RMI framework, a storage service is implemented. The functions and data

structures of the service are displayed in Listing 4.1 and 4.2. The service provides four func-

tions to store and access polygons. A polygon is here defined by a unique identifier, a set of

coordinates ∈ R
2 as well as the width and height of the source image in which it was detected.

1 package de.venditti.shaperecognizer.rpc.shared;

public interface IShapeStorage {

3 public void addPolygon(Polygon p);

public void deletePolygon(String guid);

5 public Polygon[] getPolygons();

public void clearPolygons();

7 }

Listing 4.1: Interface of the storage service.

1 package de.venditti.shaperecognizer.rpc.shared;

public class Polygon {

3 public String GUID = "";

public int srcWidth = 0;

5 public int srcHeight = 0;

public double[] x = {};

7 public double[] y = {};

}

Listing 4.2: The data structure used by the storage service.

To create a service that fulfills the interface of Listing 4.1 and is accessible over TCP on port

4321 only a few calls are required (see Listing 4.3). In the lines 12-17, a new SimpleRMIService

is created. It expects an arbitrary name, the interface to be published and an object implementing

the logic of the storage service. The actual implementation of the storage service is shown ex-

emplary in lines 5 and 14-29. The SimpleRMIService-object will create a server socket listening

on the specified port and delegate valid RMI’s to the storage service implementation by using

reflection.

import de.venditti.jsonrpc.SimpleRMIService;

2 import de.venditti.shaperecognizer.rpc.shared.IShapeStorage;

import de.venditti.shaperecognizer.rpc.shared.Polygon;

4

public class StorageService implements IShapeStorage {

6

62

static SimpleRMIService myService;

8

public static void main(String[] args) {

10

StorageService serivceLogic = new StorageService();

12 myService = new SimpleRMIService(

"Speicher Dienst", // a arbitrary name for this service

14 IShapeStorage.class, // interface to be published

4321, // listening port

16 serivceLogic // object implementing the interface

);

18

myService.start(); // start the service

20 while(myService.isRunning()) Thread.sleep(250);

}

22

// implementation of the storage service’s logic

24 @Override

public void addPolygon(Polygon p) {/*...*/}

26 @Override

public void deletePolygon(String guid){/*...*/}

28 @Override

public Polygon[] getPolygons() {/*...*/ return null;}

30 @Override

public void clearPolygons() {/*...*/}

32 }

Listing 4.3: A storage service with JSON RMI.

4.4.2.3 Storage Client

The implementation of a client that communicates with the storage serivce is similar to creating

the service. Implementations in C# and Java are given as follows. The storage client is created

by extending the SimpleRMIClient class that is used to establish the connection and to trigger the

remote method. The endpoint to communicate with the storage service is defined by providing

the port, IP address as well as the service interface of the storage service in the constructor of

the base class. The base class also provides makeRMI helper functions to form and send valid

RMI-requests to the service. A developer only has to pass the input parameters that are meant

to be transmitted and an integer specifying the timeout in milliseconds the client shall wait for

a response from the server (e.g. line 11 in Listing 4.4). Asynchronous calls can be placed by

using a timeout smaller or equal to 0. When called, the helper function inspects the method from

which it is called using reflection to place the corresponding RMI. The listings 4.4 and 4.5 show

the client implementations for the storage service in Java by using inheritance and in C# with

delegates.

import de.venditti.jsonrpc.SimpleRMIClient;

2 import de.venditti.shaperecognizer.rpc.shared.IShapeStorage;

import de.venditti.shaperecognizer.rpc.shared.Polygon;

4

63

public class ShapeStorageJSONClient extends SimpleRMIClient implements

IShapeStorage {

6 public ShapeStorageJSONClient() {

super(4321, "127.0.0.1", IShapeStorage.class);

8 Connect();

}

10 @Override public void addPolygon(Polygon p) {

makeRMI(1000, p);

12 }

@Override public void clearPolygons() {

14 makeRMI(1000);

}

16 @Override public Polygon[] getPolygons() {

return makeRMI(1000, Polygon[].class);

18 }

}

Listing 4.4: Storage client in Java using inheritance.

1 using System;

using de.venditti.shaperecognizer.rpc.shared;

3 using de.venditti.jsonrpc.general;

5 public class JsonShapeStorageClient : IShapeStorage{

SimpleRMIClient<IShapeStorage> myClient = new SimpleRMIClient<IShapeStorage

>(4321, "127.0.0.1");

7 public JsonShapeStorageClient(){

myClient.Connect();

9 }

public void addPolygon(Polygon p){

11 myClient.makeRMI(1000, p);

}

13 public Polygon[] getPolygons(){

return myClient.makeRMI<Polygon[]>(1000);

15 }

public void clearPolygons(){

17 myClient.makeRMI(1000);

}

19 }

Listing 4.5: Storage client in C# using delegation.

4.5 Selection & Manipulation

The selection and manipulation techniques that are part of the user study are integrated into the

Artifice framework. So far, Artifice did not differ between selection and manipulation from an

implementational point of view. Artifice provides a single base class handling logic common to

all interaction techniques and new techniques are created using inheritance. For the integration

of the three selection techniques (RayCast, Expand, DrillSample) and the two manipulation

techniques (MultiTouch3D, HomerS), the composite design pattern [13] seems more appropriate

since combinations of different selection and manipulation techniques are desirable.

64

4.5.1 Composite Interaction

Using the concept of composition, makes it not only easier to use and combine selection and

manipulation techniques once they are implemented, but also simplifies future implementations.

Composition enforces the seperation of responsibilities and therefore reduces the size of logical

code blocks, such as functions or classes, thus makes the source code easier to maintain.

To seperate the responsibilities of a selection and manipulation technique, it is important

to analyse the states each component passes and how they interact with each other. From the

perspective of a sole selection technique there are four states: 1) Nothing Selected, 2) Refining

3) Selected and 4) Deselected. For a manipulation there are just two states: 1) Choose Manip-

ulation and 2) Manipulating. The list of states proposed for the composite interaction and valid

transition within these states are depictured in Figure 4.8. The transitions in the state diagram

reflect the interplay between a selection and a manipulation technique and is the logic that is

implemented in the composite interaction. The states and the transitions are explained in the

following enumeration. The selection technique is responsible for all transitions that are drawn

with a conituous line, while the dashed transitions are under responsibility of the manipulation

technique.

q0start

q1 q2 q3

q4q5

State Description

q0 Nothing Selected

q1 Refining

q2 Selected

q3 Choose Manipulation

q4 Manipulating

q5 Deselected

Figure 4.8: Interaction State Diagram.

q0 Nothing selected: It is assumed that nothing is selected at the beginning. Once a

selection is triggered, there are three options. First, the state remains in q0 if the selection

was not successful. Second, if multiple objects were selected, it switches to q1 to perform

a refinement of the selection, or third, it switches to q2 if a single object was selected.

q1 Refining: In the refinement mode, a user may either cancel the selection process and

return back to q0, inspect the multiple selected objects and remain in q1, or select one of

the objects presented in the refinement and proceed to q2.

q2 Selected: Once an object is selected, a maniplation mode may be choosen by switching

to q3 or immediately start manipulation in state q4 with a predifined manipulation mode.

Alternatively, the selected object may be deselected as well and switch to q5.

65

q3 Choose Manipulation: The system may remain in state q3 until a manipulation mode

is choosen, at which it switches to state q4.

q4 Manipulating: During manipulation users may change the manipulation mode and

return back to q3, perform manipulations and stay in q4 or finish the manipulation by

deselecting the object and switch to state q5.

q5 Deselected: Once an object has been deselected, the system returns back to the initial

state q0, where nothing is selected.

To implement an interaction technique with exchangeable selection and manipulation capa-

bilities, a generic class CompositeInteraction is derived from Artifice’s InteractionBase. This

ensures compatibility with existing interfaces and design decisions. However, the CompositeIn-

teraction holds no logic regarding a specific selection or manipulation technique, but only logic

to redirect calls to its components (as seen in Figure 4.8), which in turn hold the specific imple-

mentation of a selection- and manipulation technique. To redirect the calls it is neccessary to

define interfaces between the component and the compositor. The two interfaces that are used

by the compositor are SelectionTechnique and ManipulationTechnique.

4.5.2 Selection Interface

A selection technique is defined with the interface SelectionTechnique and characterized by the

following three methods.

• public void ShowGUI(InteractionState s): This procedure is called from the compositor’s

graphical user interface update cycle. It should be used to display information and in-

teraction controls (windows, menus, buttons) on the 2D overlay of the AR view. The

procedure’s only argument is the current state of the composite interaction so that the

realising technique can adjust its GUI accordingly. It should be noted that this function

might be called multiple times per frame.

• public InteractionState UpdateSelect(InteractionState s): This function is called from the

compositor’s rendering update cycle exactly once per frame. It should be used to perform

the actual selection, refinement or deselection of the desired object. The function is passed

the current interaction’s state and in turn returns the future state according to its logic and

the user’s itneractions. If the given state is not handled or the technique is waiting for user

interaction to perform a state change, the function has to return the unchanged state.

• public GameObject SelectedObject(): Is used to retrieve the selected object upon a suc-

cessful selection. A selection technique must always hold the currently selected object or

null if nothing is selected.

The methods ShowGUI and UpdateSelect are called regularly from the Unity Game En-

gine’s update cycles regardless of the current state of the composite interaction. Therefore, both

methods must always evaluate the current state and act accordingly.

66

4.5.3 Manipulation Interface

Similar to selection techniques, the interface for manipulation techniques features functions that

are called from the compositor’s GUI and rendering update cycles.

• public void ShowGUI(InteractionState s, GameObject g): Is called in exactly the same

context as the function ShowGUI for selection techniques. The currently selected object is

passed as an additional parameter. This might be used to show specific information about

the selected object. Currently, it is used to display GUI controls, to choose a manipulation

type.

• public InteractionState UpdateManipulate(InteractionState s, GameObject g): This func-

tion is used to implement the specific manipulation based on the user’s interactions with

the device. It is not meant to directly modify the object, instead the manipulation should

be stored in a local variable for later retrieval.

• public Manipulation GetManipulation(): The mainpulation that shall be applied to the

object has to be returned by this function. A Manipulation is defined by a translation and

local scale vector as well as a rotation angle and axis. The values are understood to be

relative to the objects pose upon selection.

• public ManipulationType GetManipulationType(): This function returns the type of the

manipulation that is meant to be applied to the object. The following manipulation types

are defined: translate, rotate, translate & rotate, scale.

• public bool supports(ManipulationType t): Every ManipulationTechnique must return if it

supports the manipulation of the given type. This simplifies the development of a generic

user interface to choose the manipulation type.

• public void disable(ManipulationType t, bool b): In some scenarios it might not be desired

to allow all types of manipulation. This function is used to disable certain manipulations

at runtime to limit the number of available choices upon selection.

The methods disable, GetManipulation and GetManipulationType are independent to the

concrete realisations of a manipulation technique, thus they can be shared among all implemen-

tations. Therefore, a manipulation technique is not defined with an interface but as an abstract

class. Only the methods UpdateManipulate and supports are abstract and have to be imple-

mented by all realisations. Optionally, the ShowGUI procedure can be overriden to provide a

different user interface. An overview of the classes involved in the composite selection and

manipulation concept can be found in Figure 4.9.

67

composition

1
1

InteractionBase
Artifice base class

for all interactions.

Artifice base class

for all interactions.

CompositeInteraction

+ selector: SelectionTechnique

+ manipulator: ManipulationTechnique

+ CurrentState(): InteractionState

Manipulation

+ translate: Vector3

+ rotate: Quaternion

+ pivot: Vector3

+ scale: Vector3

«interface»

SelectionTechnique

+ ShowGUI(s:InteractionState):void

+ UpdateSelect(s:InteractionState): InteractionState

+ SelectedObject(): GameObject

ManipulationTechnique

+ GetManipulation(): Manipulation;

+ GetManipulationType(): ManipulationType;

+ disable(t:ManipulationType, b:bool): void

+ ShowGUI(s:InteractionState, t:GameObject): void

+ UpdateManipulate(s:InteractionState, t:GameObject): InteractionState

supports(t:ManipulationType): bool

«enum»

InteractionState

«enum»

ManipulationType

RaycastSelection

DrillSampleSelection

ExpandSelection

Touch3D

HOMERS

Figure 4.9: Class diagram for composite interaction techniques in Artifice.

6
8

4.6 UserStudy Application

To conduct the user study for the selection and manipulation techniques proposed in Sections

3.4 and 3.5, an application is implemented. The application’s purpose is to guide users through

the test scenarios defined in Section 5.4.2 and 5.5.2, to randomise the test sequences and to

record and save data for the quantitative evaluation. At the beginning of each scenario a simple

description of the upcoming task is displayed. The participants may inspect, without beeing able

to interact, the virtual environment in order to understand the task. Once they feel to understand

the task, they can proceed to start the actual test.

Workflow Once the test starts, the application generates a new test record and a random unique

identifier which is used to link the collected test data to the answers from the questionaires the

users are asked to complete. The entire questionnaire is attached in the Appendix under Figures

7.1-7.12. Interrupted test may also be resumed so that already completed scenarios do not have to

be repeated. The test is structured in as many sessions as there are interactions. The manipulation

test has two sessions with four tasks and the selection test has three sessions with three tasks.

The workflow is therefore designed to first, randomise the order of the different techniques and

secondly the tested scenarios. This allows users to consecutively complete all scenarios for a

given technique. The workflow of the application is illustrated in the flowchart in Figure 4.10.

Data Acquisition The application makes performance measurements and saves the collected

data for the statistical evaluation. For each successfully finished test scenario a record is saved

on the handheld device, as shown in Listing 4.6. The record contains administrative information,

such as the creation time (2), the user’s unique identifier (3), the name of the tested technique

(4) and the tested task (5). The performative measures that are collected are the duration upon

completion (6), the number of selections (8), which and for how long a manipulation (9ff) was

used. As users are able to pause the test, each measured duration is saved with and without the

corresponding correction, as e.g. in lines 10 and 11.

1 // filename: MAN_9R9HS6_HOMERS_ManipulationTask3.json

"time":"5/5/2014 12:04:54 PM",

3 "uid":"9R9HS6",

"technique":"HOMERS",

5 "test":"ManipulationScenario3",

"duration":26540,

7 "durationWithoutPause":26520,

"selections":1,

9 "interactions":[{

"duration":22400,

11 "durationWithoutPause":22370,

"type":"TRANSLATEROTATE"}]

Listing 4.6: Recorded test result for a single test scenario.

69

User Study Workflow

start test
unfinished

sesssion?

init

session

resume

session

randomly

choose

technique

randomly

choose

scenario

scenario

finished?

record data

save data

scenarios

left?

techniques

left?
test finished

no

yes

yes
no

yes

no

yes

no

Figure 4.10: General workflow of the application used in the User Study to collect the relevant

quantitative data and to guide the users through the study.

User Interface The application’s user interface is designed to guide the participants through

the test procedure and to inform them about the current state of the test. Using an automatic test

procedure helps to ensure equal test conditions for all participants, thus makes the test results

more reliable. The five distinctive screens that guide the participants are presented in Figures

4.11ff.

70

This is the first screen of the user study.

Users are informed about the general test

procedure that once confirmed, proceeds to

the first task.

Figure 4.11: Introductory screen of the user study.

Users may resume a previously interrupted

test. The application asks only once to

resume the unfinished session. If not re-

sumed, the incompleted test results are dis-

carded.

Figure 4.12: Resume an interrupted test.

Each upcoming task is introduced by a

short explanary text. The information

states which interaction is to be used and

details about its solution. The task starts

after a three second countdown upon con-

firmation.

Figure 4.13: Explanary text for a specific task.

While solving a task, users may pause the

test at any time to read the preleminary in-

formation of the current task. However, the

AR environment is hidden.

71

Figure 4.14: Pausing the test.

When all tasks have been completed, an

informational screen is displayed. The

unique identifier referencing the results of

this test is displayed and users are asked to

write the ID into their questionnaire.

Figure 4.15: End of the test.

72

CHAPTER 5
Evaluation & Discussion

This chapter presents quantitative and qualitative measures for the shape detection pipeline,

exemplary 3D models as well as the results of the thorough statistical evaluation of the user

study for the selection and manipulation techniques.

5.1 Shape Detection

The performance of the processing pipeline used to detect hand-drawn shapes is highly depen-

dent on the parameters of its processing steps and the lighting condition in which it is used. The

most important parameters are therefore quantitatively and qualitatively evaluated under differ-

ent conditions. The values used as fixed thresholds for the Canny edge detection in the following

evaluation are chosen empirically and were found to provide satisfying results. Furthermore, the

employed test pattern next to Table 5.1 is designed by the author to perform reproducible test

measures.

5.1.1 Per Pixel Operations

The operations 1) Preprocessing, 2) Subsampling, 3) Noise Reduction, 4) Threshold Estima-

tion, 5) Canny Edge Detection, 6) Closing Operation and 7) Find Contours are all per-pixel

operations. As such, their execution time depends only on the size of the image, except for 7)

which also depends on the content processed. Image subsampling has a significant impact to the

pipeline’s throughput but also affects the quality of the detected shapes. Therefore, the average

execution time per processing operation is measured with (tb) and without (ta) subsampling. Ta-

ble 5.1 shows the results of the measurements. The camera’s source image had 864x480 pixels

and the pipeline used fixed Canny thresholds with t1 = 10 and t2 = 50. All values are stated in

[ms/frame]. Nine black circles with a diameter of 1.2cm and a line width of 2pt were used as

a test pattern (see Table 5.1).

The image applied subsampling reduces the initial source image to a quater of its original

size. Consequentially, the execution time for the operations 1-6) drop roughly to a quater com-

73

Task ta tb
1) Preprocessing 3.6 3.6

2) Subsampling - 2.0

3) Noise Reduction 16.4 4.0

4) Canny Edge Detection 47.6 9.3

5) Closing Operation 33.3 8.1

7) Find Contours 7.8 3.4

8) Filter Contours 0.5 0.7

9) Polygon Approximation 0.7 0.9

10) Filter Polygons 2.5 3.0

Σ 113.0 34.9

Table 5.1: Average execution time [ms] per operation and frame with and without subsampling.

Figure 5.1: Result of Canny edge detection with having subsampling disabled (left) and enabled

(right). Quality loss caused by reducing the image size.

pared to the execution time ta without subsampling. Subsampling the image allows in this case

to perform the shape detection with responsive 29fps instead of 9fps and at the same time use

a high quality video feed for the AR interface. However, using a smaller image for the shape

detection causes the resulting shapes to have fewer details (see Figure 5.1).

5.1.2 Per Point Operations

The operations 7) Find Contours, 8) Filter Contours, 9) Approximate Polygons and 10) Filter

Polygons are operations that are executed on a set of (possibly) connected points. The average

execution time of these steps depend therefore on the content of the image and the shapes it

shows. Figure 5.2 depicts measurements for the execution time per frame of the per-point oper-

ations 7-10 depending on the number of shapes visible in the camera image. The shapes used in

the test pattern were again black circles with a diameter of 1.2cm and a line width of 2pt. The

pipeline was fed with frames at a resolution of 864x480 pixels and had fixed Canny thresholds

with t1 = 10 and t2 = 50 and subsampling enabled.

Each circle was detected with approximately 25 points. According to Figure 5.2, all opera-

tions, except for 7), seem to have linar growth with Find Contours at 0.26ms, Filter Contours at

0.05ms, Approximate Polygons at 0.05ms and Filter Polygons at 0.2ms per shape. The oper-

ation 7) that finds the contours, has linear to asymptotic growth, as it is not purely an operation

74

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

of Shapes

E
x
ec

u
ti

o
n

T
im

e
in

M
il

li
se

co
n
d
s

7) Find Contours

8) Filter Contours

9) Approx. Polygons

10) Filter Polygons

Σ

Figure 5.2: Executiont Time for Per Point Operations.

that is executed per point but also per pixel. The worst case execution time for operation 7) is

therefore defined by the image size it is executed on.

5.1.3 Detection Robustness

The core of the detection pipeline are operations 5) Canny Edge Detection and 7) Find Contours.

The OpenCV function Imgproc.findContours(...) is used to retrieve the actual contours from the

camera image in 7), using a border following algorithm of Suzuki [43]. However, its parameters

do not affect the robustness of the shape detection. Thus, the robustness of the shape detection is

driven by the quality of the result of the Canny edge detector in 5). Edge detection can be difficult

in low contrast scenarios in which a shape’s contours are hard to differ from the background. To

improve detection robustness the pipeline uses 3) Noise Reduction, 4) Threshold Estimation and

a 6) Closing Operation. The impact of each processing step is evaluated as follows.

To test the robustness of the pipeline, the detection rate is measured for different contrast

scenarios. Figure 5.3a shows the test pattern that is used to perform the test. The pattern holds a

4x4 grid of circles with 1.2cm in diameter. The circles’ brightness decreases from top to bottom

and the line width decreases from left to right.

Adaptive Hysteresis Thresholds A major difficulty of using the Canny edge detector is that

it is difficult to find thresholds that work well to extract connected structures from an unknown

image. The thresholds depend much on the image’s contrast, so that using constant thresholds

will most likely provide unsatisfactory results. The thresholds t1 = 10 and t2 = 50 were found

to be acceptable for conditions with natural daylight as well as light from a traditional 60W

75

2pt 1pt 1

2
pt 1

4
pt

0x00

0x80

0xC0

0xE0

(a) Contrast test pattern. (b) Fixed thresholds t1/t2 = 10/50. (c) Adaptive thresholding.

Figure 5.3: Detection performance for fixed and adaptive hysteresis thresholds.

filament lamp, given that the shapes were drawn on plain white paper using a black pen with a

1pt wide stroke. To improve the extraction of the Canny edge detector in adverse conditions,

the thresholds are estimated for each frame, as described in Section 4.2.2. Figures 5.3b and 5.3c

show the result of the detection performance using the stated fixed thresholds (left) and adaptive

thesholds (right). The thick black strokes are the result of the Canny edge detector and the blue

overlay indicates the detected shapes of operation 7). As can be seen, the fixed thresholds fail

to detect the circles with a low contrast and the estimated hysteresis thresholds outperform the

fixed thresholds with 16/16 versus 12/16 detected circles.

Noise Reduction and Closing Operation More important than the detection of shapes under

adverse conditions is to robustly detect and redetect shapes to provide a steady and robust expe-

rience for the user. Two consecutive frames delivered by the camera are never the same as they

are subject to changes introduced by varying light conditions and noise of the camera’s image

sensor. The effect of these irregularities cause the edge detector to falsely classify some of the

image pixels. To improve the robustness of the pipeline, the irregularities are reduced using a

normalising 3x3 box filter before edge detection and a morphological closing operation after the

edge detection. The influence of the irregularities as well as the means to reduce them are tested

with the low contrast pattern in Figure 5.3a.

False negative classifications cause structures to have holes and false positive causes struc-

tures to “bleed out” (see Figure 5.4a). The less the contrast of a shape is the more it sufferes from

the randomly occurring irregularities and causes the shape to be detected only sporadicly. Using

a normalising box filter helps to remove false positive detections and results in a much cleaner

edge detection (see Figure 5.4b). Furthermore, using a closing operation after the edge detection

helps to refill holes in the structures (see Figure 5.4c), yet the structures have deformations. By

applying both operations it is possible to limit the effect of false positives and false negatives to

provide a robust experience (compare Figures 5.4a and 5.4d with 9/16 versus 16/16 detected

circles).

Both operations help to increase the robustness of the shape detection, however, they also

cause the detected shapes to have softened corners, as depicted in Figures 5.5a and 5.5b. The left

image uses neither noise reduction, nor the morphological closing operation. Here, the shape of

the zigzag line is outlined sharper, compared to the right image were both operations are applied.

76

(a) Noise Red.: no, Closing: no (b) Noise Red.: yes, Closing: no

(c) Noise Red.: no, Closing: yes (d) Noise Red.: yes, Closing: yes

Figure 5.4: Results of Noise Reduction and Morphological Closing Operation.

(a) Noise Red.: no, Closing: no (b) Noise Red.: yes, Closing: yes

Figure 5.5: Drawback of Noise Reduction, Morphological Closing Operation.

5.2 Modeling

To outline the capabilities of the Prefab Based Modeling technique that are presented in Sections

4.2.3 and 3.3, a few example models are shown in Figures 5.6ff. All models are created in less

than a minute on a Samsung Galaxy S II I9100, as described in Section 4.1.1.

Shape: 33 points

Mesh: 1486 verts, 2970 tris

Figure 5.6: 360◦ Lathe, Vase.

77

Shape: 23+16 points

Mesh: 92+64 verts, 88+60 tris

Figure 5.7: Extrusion, Fork & Knive.

Shape: 189 points

Mesh: 765 verts, 752 tris

Figure 5.8: Extrusion, Dog.

Shape: 33 points

Mesh: 4555 verts, 8972 tris

Figure 5.9: 1080◦ Lathe, Spiral.

Shape: 10 points

Mesh: 381 verts, 716 tris

Figure 5.10: 270◦ Lathe, Stairs.

Shape: 62 points

Mesh: 248 verts, 244 tris

Figure 5.11: Extrusion, TU Logo.

78

5.3 Experimental User Study

The proposed selection technique DrillSample as well as the manipulation techniques 3DTouch

and HOMER-S are evaluated in two separate experimental user studies to investigate their per-

formance and user acceptance. The studies use a within-subjects factorial design at which the

independent variables are the interaction techniques and the different tasks. The dependent vari-

ables are number of interaction steps and task completion time. Additionally, user preferences

are measured regarding speed, accuracy and usability.

5.3.1 Design & Procedure

Both studies are structured in five phases (see Figure 5.12) and the participants needed approx-

imately 25 minutes for each study. In the first phase of the study, users are asked to read and

sign a standard consent prior to their participation followed by a pre-questionnaire (see Table

5.2) asking questions (see Figures 7.1, 7.2, 7.7 and 7.8) about age, gender and prior experience

with smartphones and handheld 3D gaming. In the second phase, the participants get a detailed

description of the practical part of the experiment regarding “Selection/Manipulation in Hand-

held AR” followed by a coached introduction how to use the device and the involved techniques.

The third phase consisted of a five minute practice to familiarise with the setup and then differ-

ent techniques. In the fourth phase, the practical part of the experiment takes place in which

participants are neither interrupted, nor given help for the time of the experiment. The practical

experiment raises quantitative data, such as completion time or the number of attempts it takes

the user to complete the specific challenge. The last phase uses a post-questionnaire (see Tables

5.5 and 5.8) to raise subjective information, like most desired technique and ratings of usefulnes

as these cannot be retrieved from performative measures.

Q1 What is your gender?

Q2 How old are you?

Q3 About how often do you play video games?

Q4 What percentage of your gaming is playing handheld 3D games?

Q5 Do you have a multi-touch Smartphone?

Q6 Do you have any flexibility or pain issues with your primary hand, fingers or arm?

Table 5.2: Selection and manipulaton technique pre-questionnaire

1) Consent & Pre-Questionnaire 2) Coached Introduction

3) 5min Practice

4) Practical Experiment5) Post-Questionnaire

Figure 5.12: User study procedure.

79

inexperienced experienced

a) Handheld 3D Gaming 12 16

b) Smartphone 7 21

Table 5.3: Users grouped by prior experience.

5.3.2 Subjects and Apparatus

28 people with different background experience and knowledge of smartphones or handheld

AR participated in the user study. The participants age ranged from from 23 to 38 years. The

distribution between the sexes was balanced with 12 female and 16 male participants. 21 users

report to be adept in using smarthones and 16 report to play handheld 3D games. Furthermore,

one person indicated in the pre-questionnaire to have occasionally severe pain issues in her/his

primary hand’s wrist. Nevertheless, all participants completed all 5 phases of both studies so

that all data could be used for analysis.

The practical experiment is carried out using a Samsung Galaxy S II, as stated in Section

4.1.1. To minimise the risk of users pressing unintentionally the home- or power-button of the

device, and therefore interrupting the experiment, the device was protected with a commercially

available hard cover.

5.3.3 Statistical Foundation

The data collected in the user study is systematically analysed in a statistical evaluation to verify

the hypothesis that were raised for the selection techniques in Section 5.4.1 and for the manip-

ulation techniques in Section 5.5.1. The results of the evaluation are presented in Section 5.4.3

and 5.5.3. The evaluation was carried out using repeated measures one way ANOVA to detect

significant differences in the results mean values.

ANOVA The analysis of variance (ANOVA) for repeated measures is a method to verify sig-

nificant differences of two or more mean values of a given variable measured repeatedly. In

this evaluation, the measured variables are the quantitative and qualitative data gathered for each

investigated interaction technique, e.g. the completion time of a given task for each selection

technique. To detect a significant difference, the F-test is used [21].

F-test The F-test is used to detect differences between the measurements of k related groups

at a given significance level α and tests the following hypothesis:

H0 =: µ1 = µ2 = µ3 = . . . = µk

HA =: at least two means are significantly different

and its results are expressed by the two values (Fm,n, p), with the degrees of freedom

m = k − 1 and n = #samples − 1. The F value, also called the F-ratio, expresses the

ratio of systematic variation to unsystematic variation of the compared groups. The p value

80

is a probability, calculated with the F cumulative distribution function, describing how likely

it is that a random sample, given the distribution of the observed variable, would have means

farther or equaly far apart as discovered for the tested sample. Generally, a high F value and

a small p value indicate that H0 can be rejected. However, to actually reject H0, the F-value

has to be greater than the F-value of the inverse F cumulative distribution function for the given

significance level α and the same degrees of freedom m,n.

As the F-test can only be used to find out that at least two means are significantly different in

a group of k means, it is neccessary (for k > 2) to perform pairwise comparisons of the different

groups, to find out which groups differ significantly, using t-tests. Furthermore, the F-test and

the t-test cannot be used for ordinal or ranked data, as e.g. from a Likert scale [26], at which

Friedman’s χ2 test and the Wilcoxon signed-rank test are used as a replacement [12, 21].

Paired t-test The paired t-test is used to reject the null hypothesis H0 that the difference of

the mean values d = µ1 − µ2 is zero with:

H0 =: d = µ1 − µ2 = 0

H1 =: d 6= 0
tn−1 =

x

s/
√
n

(5.1)

its result is expressed by the tupel (tn−1, p), again indicating a rejection of H0 if the value

tn−1 is high and p is low. The value tn−1 is calcualated with Equation 5.1 stated above as a

fraction of the arithmetic mean x and the standard deviation s for the combined variable di =
x1,i − x2,i for n paired samples. The null hypothesis can be rejected if the calculated t-value

exceedes the t-value of the inverse cumulative function for the chosen significance level α and

the same degrees of freedom n− 1 for the t-distribution [21].

Holm–Bonferroni Adjustment When employing paired tests to identify which two groups of

k means differ significantly, the probability of type I errors (a mistakenly rejected null hypoth-

esis) increases, as a family of hypothesis are verified in the same test. The Holm–Bonferroni

adjustment [16] adresses this problem and can be used to control the family wise error rate. The

algorithm for the Holm–Bonferroni adjustment works as follows. Instead of verifying each hy-

pothesis H1, ..., Hm against a chosen significance level (e.g. α = 0.05), the significance level is

adjusted for each hypothesis. First, all p-values are calculated using an appropriate test method,

in this work t-tests but Wilcoxon signed-rank tests for ordinal data, and order these ascendently.

Now the hypothesis are tested, in order of significance, against their adjusted significance level

αk computed according to Equation 5.2.

αk =
α

m+ 1− k
,with k ∈ {1, ...,m} (5.2)

As such the significance level is most conservative at α1 = α
m

for the hypothesis with the

highest significance and is sequentially lowered till αm = α for the hypothesis with the least

significant p-value. Once a hypothesis is rejected, all following hypothesis are rejected as well

[16].

81

5.4 Selection

The DrillSample selection technique is evaluated in a user study according to Section 5.3 against

the selection techniques Ray-casting and Expand, as outlined in Section 3.4.2. The three selec-

tion techniques are tested in three tasks that cover variations in object density and visibility.

5.4.1 Design & Objectives

The goal of the experiment is to evaluate the performance and ease-of-use of DrillSample com-

pared to competing techniques. The focus of this study is on selection of objects in closer range

in dense environments. A second objective is to examine the performance of the spatial context

preservation of the proposed algorithm in environments with objects of high visual similarity.

Table 5.5 holds the post-questionnare to raise qualitative information, the hypotheses for the

experiment are listed in Table 5.4.

H1 Ray-Casting will be best suited for non-occluded objects.

H2 Expand and DrillSample will perform considerably better than Ray-Casting in envi-

ronments with overlapping, partly occluded or invisible objects, which differentiate

significantly in appearance, in terms of speed and precision.

H3 Expand will suffer in environments with objects of high visual similarity. Likewise,

DrillSample will perform considerably better than Expand in terms of speed and preci-

sion.

Table 5.4: Selection Hypothesis’.

Q1 How adequate do you feel the time allotted for practice was?

Q2 How comfortable were you with using a smartphone for task completion?

Q3 How would you rate the RAYCAST selection technique in terms of usability? Speed?

Accuracy?

Q4 How would you rate the EXPAND selection technique in terms of usability? Speed?

Accuracy?

Q5 How would you rate the DRILLSAMPLE selection technique in terms of usability?

Speed? Accuracy?

Q6 Rank the three selection techniques in order of desired use (with 1 being the most

desired).

Q7 When determining how much you like using a selection technique, how important in

influence on your decision was usability? Speed? Accuracy?

Q8 Regarding the visualisation during the refinement process of the DRILLSAMPLE tech-

nique, how helpful and useful was the linear arrangement for spatial visualisation?

Table 5.5: Selection Technique Post-Questionnaire.

82

5.4.2 Test Scenarios

To cover different selection situations in dense 3D space, three different tasks are built. They

range from unique and un-occluded to non-distinguishable and fully occluded object selection

tasks. Thus, occlusion and visual similarity are used as variables for task design. As the under-

lying building block [32] for interaction design, the canonical task “selection” is applied, which

refers to the task of acquiring a particular object from the entire set of objects available.

All tasks are based on the same virtual working ground (black & white textured plane) that

was printed to paper at 56x40cm and acted as a marker for the Vuforia framework. The marker

was placed on a table that was positioned at the center of a room so that users had around 150cm

of obstacle free space to work within. All 28 users completed all three tasks in random order.

Task 1: Unique Object & No Occlusion The user was challenged to select a green cube in

the middle of the working ground which was cluttered with around 80 other cubes of the same

size but of different color (see Figure 5.13). The targeted object was easy to distinguish and not

occluded by any of the objects in the scene. As soon the user selected or confirmed the selection

of the green cube, the task finished automatically.

Figure 5.13: Task 1: “Select the green cube.”

Task 2 Unique Object & Strong Occlusion The user had to select a green brick in the lower

right corner of a wooden textured box (see Figure 5.14). The box contained four stacks of

different colored equally sized bricks. The targeted object was located on the very bottom of the

last stack and it was the only brick that was colored in green. Although it was easy to distinguish,

it was hardly visible due to the strong occlusion of the bricks stacked on top of it and the box’s

walls. Again, on selection of the targeted object, the task finished automatically.

Task 3: Non-Distinguishable & Strong Occlusion In this task, the user had to select a brick

from a wooden textured box again (see Figure 5.15). The box contained four stacks of equally

sized bricks. All bricks were colored in light blue except for the bricks of the second stack

83

Figure 5.14: Task 2: “Select the green cube.”

which had a magenta colored texture. The targeted object was located on the very bottom of the

magenta colored stack. It was only distinguishable by its position in the stack and was hardly

visible due to strong occlusions of the bricks stacked on top of it and the box’s walls. The

number of bricks on top of the targeted object varied randomly for each participant from four to

seven pieces.

Figure 5.15: Task 3: “Select the lowermost of the pink bricks.”

5.4.3 Results

Based on the experiment’s results, an evaluation of the quantitative data to examine performance

of the three techniques and a subjective evaluation regarding user’s preferences and feedback is

conducted.

The quantitative data gathered from the questionnaires and automatically collected data of

the test application were analysed with Friedman’s χ2 test and repeated measures single factor

84

ANOVA accordingly. When suitable, pairwise t-tests or Wilcoxon signed rank test with the

Holm’s sequential Bonferroni correction are applied. The focus lies on two different aspects

during data analysis. First, data of all participants regarding selection techniques is evaluated

and second, the analysis of the techniques’ performance depending on the specific tasks.

Evaluating the quantitative data, Task Completion Time and Number of Selection Steps were

applied as metrics. Task completion time represents the time it takes to successfully finish a

specific task from the time, the user started it. Number of selection steps comprises the amount

of necessary object selections to successfully finish a selection task. This measure indicates

precision of the applied technique.

5.4.3.1 Quantitative Evaluation

The evaluation of the completion time shown in Figure 5.16 indicates significant differences for

the three interaction techniques with (F2,54 = 6.74, p < 0.00243) for all tasks on average but

also with (F2,54 = 9.27, p < 0.00035), (F2,54 = 21.84, p < 1.1e−7) and (F2,54 = 4.91, p <
0.011) for the tasks one to three separately. The pairwise t-test shows that only DrillSample

is significantly faster than Ray-Casting with (t27 = 4.33, p < 0.00018) in the overall mean

completion time.

For task 1, the techniques Ray-Casting and DrillSample score significantly better than Ex-

pand with (t27 = −3.82, p < 0.0007) and (t27 = 2.65, p < 0.0134). Most likely because

Expand uses a cone-cast to select objects, which results more often in a refinement-step com-

pared to DrillSample that casts a ray. No significant difference was measured between Ray-

Casting and Drill-Sample. For task 2, the techniques with an additional refinement step prove

to be faster than Ray-Casting with Expand at (t27 = 7.8545, p < 1.9e−8) and DrillSample

at (t27 = 3.73, p < 0.0009), however, no significant difference between DrillSample and Ex-

pand could be found. Here, Ray-Casting forces the user to successively select and put objects

away until the desired object is easily accessible, which results in a very time-consuming prob-

lem. In task 3 it took users significantly less time to complete the task when using DrillSample,

compared to Ray-Casting (t27 = 3.24, p < 0.0031) or Expand (t27 = 2.6, p < 0.0148). Ray-

Casting fails as it did in task 2 because both problems force the user to move objects out of view

step by step. Expand scores much worse than in task 2 because the targeted object cannot be

distinguished from its spatial context and because Expand is only aligning the objects on a two

dimensional grid. Between Ray-Casting and Expand no significant difference could be found.

Significant differences can be seen in Figure 5.17 for the results of the number of selections

for task 2, 3 and on average, each with (F2,54 = 10.98, p < 0.0001). Task 1 shows no significant

differences at (F2,54 = 0.491, p < 0.615) and advises that all selection techniques perform well

in the simplest case.

The pairwise comparison for selection steps on average found the techniques Expand (t27 =
15.29, p < 8.04e−15) and DrillSample (t27 = 18.83, p < 4.7e−17) to be significantly better

than Ray-Casting, but no significance among another at (t27 = 1.31, p < 0.2).
Similar to the task completion time, the number of selection steps in task 2 were signifi-

cantly smaller for Expand at (t27 = 18.4512, p < 7.78e−17) as well as for DrillSample with

(t27 = 13.93, p < 7.55e−14) compared to Ray-Casting, but also Expand (t27 = −2.2, p <
0.036) appears to be slightly less error-prone than DrillSample. Expand benefits in this task

85

from the fact that the targeted object is easily distinguishable, but also from its coarse selection

volume where techniques casting a ray may have a hard time to hit an object that is only slightly

visible. In task 3, likewise for average completion time, DrillSample is found having less false

selections than Ray-Casting (t27 = 16.87, p < 7.29−16) and Expand (t27 = 2.61, p < 0.0146).
Additionally, Expand is significantly better than Ray-Casting at (t27 = 8.34, p < 6.01−9), too.

A possible cause for Expand scoring worst in terms of completion time, but not on number of

false selections could be that each refinement step costs extra time for the visualisation, but also

allows users to accidently choose the targeted object each time.

1 2 3 ø
0

20

40

60

Task

T
im

e
in

se
co

n
d
s

(9
5
%

ci
)

Ray-Cast Expand DrillSample

Figure 5.16: Mean completion time per task and on average.

1 2 3 ø
0

2

4

6

8

Task

S
el

ec
ti

o
n

st
ep

s

(9
5
%

ci
)

Ray-Cast Expand DrillSample

Figure 5.17: Mean Selection steps per task and on average.

easy fast accurate
0

2

4

6

8

7
-p

o
in

t
L

ik
er

t

(9
5
%

ci
)

Ray-Cast Expand DrillSample

Figure 5.18: Users’ average rating of Q3, Q4 and Q5.

86

1st 2nd 3rd
0

10

20

#
o
f

p
ar

ti
ci

p
an

ts

(9
5
%

ci
)

Ray-Cast Expand DrillSample

Figure 5.19: Users’ rating of Q6.

5.4.3.2 Subjective Evaluation

Besides the performance measures based on quantitative data, the user’s subjective evaluation

on speed and accuracy of each technique is examined as well. Furthermore, the abstract perfor-

mance value “ease-of-use” [6] to further evaluate the capabilities of the underlying technique is

included. When answering the questions Q1-Q5, Q7 and Q8, users were able to choose from a

7-point Likert scale [26]. While all questions feature the highest rating at seven, and the lowest

at one, Q1 states the best rating with four (appropriate).

The participants found the time allotted for practice appropriate with (µ = 3.93 and σ =
0.25 at α = 0.05). Using a smartphone to complete the different tasks was rated to be moderately

comfortable with (µ = 5.72 and σ = 0.98 at α = 0.05). As depicted in Figure 5.18, all

three techniques were rated at least above average but with significant differences regarding

speed (χ2
2 = 10.48, p < 0.0053), ease-of-use (χ2

2 = 9.53, p < 0.0085) and accuracy (χ2
2 =

15.27, p < 0.00048).

Speed Only DrillSample was found to be significantly faster than Expand in the pairwise com-

parison (W = −2.63, p = 0.0085). Due to the Bonferroni adjustment, Ray-Casting failed to be

significantly faster than Expand with (W = −2.088, p = 0.0368). Ray-Casting was not found

to be significantly different from DrillSample (W = −1.0558, p = 0.29108). Expand was

likely rated lower than the other techniques because it triggers refinement too often, while Drill-

Sample only asks for refinement if objects overlap. Using Ray-Casting, users are not interrupted

by a refinement step and might therefore consider it faster.

Ease of Use Users’ ratings on ease-of-use found DrillSample significantly better than Ray-

Casting and Expand at (W = −2.84, p < 0.0045) and (W = 2.91, p < 0.0036). Ray-Casting

was insignificantly different to Expand with (W = −0.89, p = 0.371) even without the Bon-

ferroni adjustment. Similarly, users found DrillSample significantly more accurate than Ray-

Casting (χ2
2−2.69, p < 0.007) and Expand (W = −3.17, p < 0.0015). Likewise, Ray-Casting

showed no significant difference to Expand at (W = −1.23, p = 0.218). Both Ray-Casting and

Expand are not accurate if objects are occluded or look very similar. Hence, both factors result

in a tedious, and when using Expand, even a confusing sequence of interactions to select the

desired object.

87

Order of Desired Use For question Q6, asking the participant to rank the selection tech-

niques in order of desired use, significant rankings for 1st (χ2
2 = 18.5, p < 9.6−5) 2nd (χ2

2 =
12.29, p < 0.0021) and 3rd (χ2

2 = 9.91, p < 0.007) could be found, as shown in Figure

5.19. Rank one was clearly given to DrillSample with (χ2
2 = −3.54, p < 0.00039) and

(χ2
2 = −3, p < 0.0027) significantly outranking Ray-Casting and Expand. Rank two was

given to Ray-Casting with (χ2
2 = −2.98, p < 0.0028) and (χ2

2 = −2.45, p < 0.014) signifi-

cantly outranking DrillSample and Expand. Rank three seems to be given to Expand, however,

it only significantly outranks DrillSample with (χ2
2 = −2.83, p < 0.0046) but not Ray- Casting

at (χ2
2 = −2.04, p = 0.041) due to the Bonferroni adjustment. All other pair-wise interaction

technique tests show no significant difference.

Users stated all aspects of Q7 evenly important with 6 (important) or higher when answering

Q6. Addressing in Q8, how helpful the spatial visualisation is, the participants found it useful to

very useful with (χ2
2 = 6.5 and σ = 0.1 at α = 0.05).

5.4.4 Qualitative Evaluation

Based on the 3D formalisation principles by by Bowman and Hodges [6], a number of factors

for the interaction task “3D selection” that influence performance in virtual environments were

outlined. Since all three evaluated selection techniques are suited or explicitly designed for

dense environments, “density” as a performance factor is not included. The specified factors

are:

1. Object Size: This object property is related to the geometric area, a 3D object covers

on the output device screen. A selection technique must be capable to select objects of

varying size.

2. Occlusion: In any mixed reality environment, but especially in a dense environment, ob-

jects can partially or fully occlude each other which may result in invisible objects. In

such environments, selection must be precise and provide some assisting visualisation to

identify occluded objects.

3. Visual Appearance: The visual appearance of virtual objects can be of high similarity.

Identifying the desired target object can result in problems in dense environments with

occluded objects. In such environments, selection must provide an assisting visualisation

to disambiguate the desired object.

Based on the results from quantitative as well as subjective evaluation, the findings with

respect to object size, occlusion and visual appearance are summarised in Table 5.6.

Previous work [4, 10] report that Ray-Casting performs badly for objects covering only a

small portion of the screen, while Expand performs well for the same case by casting a volume

instead of a single ray. Beyond that, the findings indicate that Ray-Casting is well-suited for

selecting non-occluded objects which can be also similar in appearance. However, if the desired

object is small and is located amongst similar looking objects, imprecise touch input can evoke

wrong selection. Compared to Ray-Casting, Expand is well suited to select visible or fully

occluded objects of varying size. But the grid representation during the refinement step does

88

not provide full spatial correspondence to the original position of the selected objects; hence,

precise selection of an object from a set of similar looking objects can be difficult and can result

in wrong selections. DrillSample also lacks accuracy when selecting small objects due to the

underlying use of Ray-Casting in combination with the imprecise single touch input. However,

since DrillSample selects all objects which are cast by the ray, overlapping or occluded objects

can be precisely selected due to DrillSample’s refinement step. Here, spatial context preservation

provides a full overview that allows object disambiguation, which is especially of interest when

selecting from a set of similar looking objects.

Object Size Occlusion Appearance

Ray-Casting −[10] [4] − ©
Expand +[10] + −
DrillSample − + +

Table 5.6: Summarisation of Results.

5.5 Manipulation

For a comprehensive evaluation of the proposed manipulation techniques, a summative evalua-

tion across four different tasks with varying manipulation tasks is conducted.

5.5.1 Design & Objectives

The main goal of the experiment is to evaluate the performance and usability of 3DTouch and

HOMER-S. Since 3DTouch matches the separated structure of the multi-touch input device and

HOMER-S adapts real-world metaphors and incorporates integral 6DOF manipulation, both

techniques apply for straightforward manipulation. Hence, a second objective is to compare both

techniques and to examine intuitive handling. Table 5.7 lists the hypothesis’ that are formulated

while designing the experiment and Table 5.8 holds the post-questionnare (see Figures 7.9ff) to

raise qualitative information for the manipulation techniques.

5.5.2 Test Scenarios

To cover different realistic manipulation situations in 3D space four different test tasks are built.

Bowman [4] considers the tasks selection, position and rotation as basic canonical tasks in

spatial rigid transformations. However, selection has already been covered in a separate test and

as scaling can be useful in different applications, the test will cover position, rotation and scaling

instead. Using these basic tasks as building blocks [32], four tasks of varying complexity to

allow for adequate simulation of manipulation in an AR application are designed. To manually

identify the desired object for subsequent manipulation, another canonical task “selection” is

used. Since the selection task is performed by all users in the same way and is equally designed

89

H1 3DTouch and HOMER-S are both designed to provide straightforward manipulation.

Thus, both techniques will perform similar in terms of speed and ease-of-use for 3DOF

manipulation tasks.

H2 Since HOMER-S offers integral 6DOF transformation, it will perform considerably

faster than 3DTouch in compound translation and rotation manipulation tasks.

H3 Humans are able to control their single fingers more precisely than moving an object,

which is attached to a device, freely in space. Thus, 3DTouch performs better for

manipulation tasks that require precise input.

H4 Regarding prior knowledge, users with experience using multi-touch devices will per-

form equally or better with 3DTouch than with HOMER-S. Likewise, the design of

HOMER-S enables better performance for users with no prior multi-touch knowledge.

Table 5.7: Manipulation Hypothesis’.

Q1 How adequate do you feel the time alloted for practice was?

Q2 How comfortable were you with using a smartphone for task completion?

Q3 How would you rate the 3DTouch manipulation technique in usability? Speed? Accu-

racy?

Q4 How would you rate the HOMER-S manipulation technique in usability? Speed? Ac-

curacy?

Q5 How would you rate intuitiveness of 3DTouch for 2D-translate, 3D-translate, rotate,

move & rotate, scale an object?

Q6 How would you rate intuitiveness of HOMER-S for 2D-translate, 3D-translate, rotate,

move & rotate, scale an object?

Q7 Which manipulation technique do you prefer to 2D-translate, 3D-translate, rotate, move

& rotate, scale an object?

Q8 Rank the two manipulation techniques in order of desired use (with 1 being the most

desired)?

Q9 When determining how much you like using a manipulation technique, how important

in influence on your decision was ease-of-use? Speed? Accuracy?

Table 5.8: Manipulaton technique post-questionnaire.

90

over all four tasks, the required time for selection does not influence the mean values of the

performance metrics. The test was conducted under the same circumstances as the selection

tests in Section 5.4.2.

Task 1: Positioning on a Plane The first task comprises the canonical task “positioning”. The

user was challenged to translate a pink cube in the lower left corner to the center of a green area

in the upper right corner (see Figure 5.20). The distance between the targeted object and its

destination was 35cm on the horizontal plane. It was sufficient to complete the task with the

cube partly overlapping the designated target.

Figure 5.20: Task 1: “Move the pink cube to the center of the green & blinking platform”.

Task 2: Positioning in 3D Space The second task extends the first task by requiring position-

ing in all three dimensions. The user was challenged to translate a pink cube in the lower left

corner on top of a small tower in the upper right corner (see Figure 5.21). The distance between

the targeted object and its destination was 35cm on the horizontal plane and 20cm vertically.

The destination area was again a square. If it was partly overlapped by the target object, the task

was completed.

Task 3: Positioning & Rotation For better simulation of manipulation requirements in AR

applications, an integral task design for the third task comprising a combination of “positioning”

and “rotation” is applied. The user is challenged to rotate a red barrel in the lower left corner by

45◦ around its vertical axis and translate it on top of an inclined plane (see Figure 5.22). From

there, the barrel was supposed to roll down the plane and over a square at its bottom. The test

was successfully completed if the barrel was let loose on the top of the inclined plane rolling

down its full length and at least partly hitting the center of the destination area.

Task 4: Scaling & Positioning A second integral task was designed for the fourth task. Here,

the user was first challenged to scale a blue cube by a fifth in length and a third in width of its

original size and then translate the cube into a glass positioned at the center of the scene (see

91

Figure 5.21: Task 2: “Move the pink cube on top of the green & blinking platform”.

Figure 5.22: Task 3: “Let the barrel roll down the inclined plane onto the green platform”.

Figure 5.23). The distance between the targeted object and its destination was 38 cm horizontally

and 10 cm vertically. The destination was the circular shaped bottom of the glass. Users needed

to let the cube fall into the glass from above and as soon as it hit the bottom, the task was

completed.

5.5.3 Results

Based on the experiment’s results, an evaluation of the quantitative data to examine performance

of the two techniques and a subjective evaluation regarding user’s preferences and feedback is

conducted.

The quantitative data gathered from the questionnaires and automatically collected data of

the test application were analysed with Friedman’s χ2 test and repeated measures single fac-

tor ANOVA accordingly. The focus lies on three different aspects during data analysis. First,

data of all participants regarding manipulation techniques is evaluated. Second, the techniques’

performance depending on tasks and third, the data of selected participants according to their

92

Figure 5.23: Task 4: “Resize and drop the blue cube into the glass”.

experience listed in Table 5.3 is analysed for each manipulation technique and task separately.

To evaluate the quantitative data, Task Completion Time and Number of Interaction Steps

were the main evaluation criteria. Task completion time represents the time it takes to success-

fully finish a specific task. Number of interaction steps comprises the amount of necessary mode

switches to successfully finish an (integral) manipulation task.

5.5.3.1 Performative Evaluation

Analysing the overall mean completion time, no significant difference was found between 3DTouch

and HOMER-S (F1,27 = 0.00299, p = 0.957), as illustrated in Figure 5.24. When inspecting the

mean completion time for each task separately, again no significant differences could be found

for both positioning tasks of task 1 and 2 at (F1,27 = 1.4, p = 0.2468) and (F1,27 = 0.814, p =
0.375) respectively. However, the positioning & rotation task was performed significantly faster

with HOMER-S (F1,27 = 7.379, p < 0.0114). In contrast to that, HOMER-S took significantly

more time to complete for the scaling & positioning task (F1,27 = 7.379, p < 0.0114) according

to Figure 5.25.

Analysing the task completion time, grouped by users’ knowledge according to Table 5.3,

revealed no further significant differences other than the overall ones illustrated in Figure 5.25.

No significant differences could be found for both positioning tasks when analysing the users’

experience. In the positioning & rotation task, the significantly better performance of HOMER-S

was never independent of the users’ experience. The inexperienced users of the handheld gamer

group (a) as well as of the smartphone group (b) performed significantly faster with HOMER-S

than with 3DTouch. The experienced users of both groups performed faster with HOMER-S as

well, but not significantly. Furthermore, only the experienced groups of a) and b) had significant

results for task 4, since they were significantly faster using 3DTouch. No significant difference

in performance between 3DTouch and HOMER-S could be found for the inexperienced users of

both groups in task 4.

The results of the evaluation for the overall mean number of interaction steps exposed that

3DTouch enabled users to perform manipulations in significantly less steps than HOMER-S

(F1,27 = 4.552, p < 0.0421), as illustrated in Figure 5.24. However, the evaluation per tasks

93

found only a significant difference in the Positioning in 3D Space task (F1,27 = 4.374, p <
0.046) and in the scaling & positioning task at (F1,27 = 12.81, p < 0.0013), both in favor of

3DTouch. Figure 5.26 indicates that there was no significant difference for the üositioning on a

plane or the positioning & rotation task with both (F1,27 = 0.685, p < 0.415).
The evaluation of mean number of interaction steps, grouped by users’ experience revealed,

with one exception for task 3, no deviant results than those illustrated in Figure 5.26. The sig-

nificantly better performance of 3DTouch in the positioning in 3D space task could only be

confirmed for the experienced users in a) and b). For the positioning & rotation task, the inexpe-

rienced group of a) achieved significantly better results with HOMER-S than with 3DTouch. For

all other groups no significance could be found for that task. For task 4, only the experienced

users of both groups had significantly better results with 3DTouch than with HOMER-S. No

significant difference could be found for the inexperienced users of both groups.

0

100

200

T
im

e
in

se
co

n
d
s

(9
5
%

ci
)

3DTouch HOMER-S

0

5

10

15

In
te

ra
ct

io
n

st
ep

s

(9
5
%

ci
)

Figure 5.24: Mean completion time and number of interactions.

1 2 3 4
0

50

100

150

Task

T
im

e
in

se
co

n
d
s

(9
5
%

ci
)

3DTouch HOMER-S

Figure 5.25: Mean completion time per task.

5.5.3.2 Subjective Evaluation

When answering the questions Q1-Q6 and Q9, users were able to choose from a 7-point Likert

scale. While all questions feature the highest rating at seven, and the lowest at one, Q1 states

the best rating with four (appropriate). The participants found the time allotted for practice

appropriate (µ = 4, s = 0.46, a = 0.05). Using a smartphone to complete the different tasks

was rated to be moderately comfortable (µ = 5.9, s = 1.14, a = 0.05).

94

1 2 3 4
0

2

4

6

Task

In
te

ra
ct

io
n

st
ep

s

(9
5
%

ci
)

3DTouch HOMER-S

Figure 5.26: Mean number of interactions per task.

Usability, Speed & Accuracy As illustrated in Figure 5.27, the questions Q3 and Q4 revealed

both to be average or good, but 3DTouch was rated significantly better for ease-of-use and ac-

curacy with (χ2[n : 28] = 6.55, p < 0.0105) and (χ2[n : 28] = 15.696, p < 0.0000744)
respectively. In terms of speed, no difference was confirmable. Analysing the subjective evalu-

ation of ease-of-use, speed and accuracy, grouped by the user’s experience, revealed significant

better ratings of 3DTouch in ease-of-use only of the experienced users of a) and b). 3DTouch’s

better rating for accuracy was independent of the users experience except for inexperienced users

in b) where no significant difference occurred.

easy fast accurate
0

2

4

6

8

7
-p

o
in

t
L

ik
er

t

(9
5
%

ci
)

3DTouch HOMER-S

Figure 5.27: Users’ average rating of Q3 & Q4.

Ranking & Preferences Users’ ranking of the two interaction techniques indicated no signif-

icant preference (Q8) (χ2[n : 28] = 0.57, p = 0.45). Inspecting their preferences for specific

transformations separately (Q7), a deeper insight could be gained. 2D- and 3D translation as

well as rotation alone were not found to be significantly different, as shown in Figure 5.28.

For the integral 6DOF manipulation of the positioning & rotation task, HOMER-S is signifi-

cantly preferred with (χ2[n : 28] = 10.67, p < 0.0011). For scaling, 3DTouch is significantly

preferred with (χ2[n : 28] = 12.57, p < 0.00039). This subjective evaluation reflects the

results of the quantitative evaluation in terms on completion time. No deviant results for 2D-

and 3D-translation as well as rotation alone were revealed, when analysing the ranking of each

manipulation, grouped by the users’ experience. Looking in detail at the users’ preference of

both groups for integral rotation and translation tasks, HOMER-S was significantly preferred by

95

the experienced users. Also the inexperienced users preferred HOMER-S, but not significantly.

3DTouch’s preference for scaling remains independent of user’s experience in both groups.

2D trans. 3D trans. rot. rot. & trans. scale
0

10

20

30
#

o
f

p
ar

ti
ci

p
an

ts

(9
5
%

ci
)

3DTouch HOMER-S

Figure 5.28: Users’ preferences given Q7.

Question Q9 inquiring the users’ influence on their decision for questions Q3 and Q4 yields

with (χ2[n : 28] = 3.89, p < 0.143) no significant difference for the three options ease-of-use,

speed and accuracy. Users stated all aspects of Q9 similarly important, ranging from µ = 5.5
(slightly important) to µ = 6.18 (important).

96

CHAPTER 6
Conclusion & Outlook

In this chapter, the realised applications, interactions and findings of this thesis are summarised.

Furthermore, it outlines open research topics that are worth to invenstigate in the future.

6.1 Modeling

As part of this thesis a modeling prototype for one-handed handheld augmented reality environ-

ments is developed. The prototype allows the effortless creation of geometric polygonal models

using the extrusion and lathe modeling techniques on shapes that are drawn by hand with pen

and paper. Models are instantly created and manipulable in real-time with simple one and two-

finger gestures. By mapping a technique’s parameters to the model’s coordinate sytem’s axes,

the prototype abolishes iconic or textual menus for interaction. The parameters become accessi-

ble from different perspectives and the visible space of the virtual environment through the small

screen of the handheld device is maximised.

The ARTiFICe framework is extended by a layer for the distribution of user generated content

amongst participants in a collaborative environment. The distribution layer uses Unity’s built-

in asynchronus RPC functions to efficiently distribute full model meshes, model generation

descriptions and model primitives.

As part of the modeling prototype, a simple, performant and robust application for the real-

time detection of hand-drawn non-complex polygons without holes is implemented. It intro-

duces the push-to-find interaction to simplify the capturing process and to motion blur, caused

by tapping the screen that would affect the detection negatively. Important factors, like poor

ambient illumination that influence the robustness and accuracy of the detection pipeline are

identified and optimised by noise reduction and adaptive thresholding.

To enable communication between the modeling application and the shape detection appli-

cation, a framework for Remote Method Invocation is developed that focuses on ease-of-use and

cross-platform interoperability. It enables effortless local and remote inter-process communica-

tion using TCP/IP for any application written in either JAVA or C#.

97

The perspective driven modeling approach has three drawbacks that should be addressed in

the future that would improve its performance and usability.

1. Currently, the polygons that are provided by the shape detection application are trian-

gulated using ear trimming [30]. This approach is simple but is likely to produce very

unbalanced triangulations with narrow angled triangles. A future implementation should

therefore use an algorithm for triangulation that produces optimal triangulations to im-

prove the quality of the generated meshes.

2. The meshes that are generated by the modeling application are fully re-created if a param-

eter of the used modeling technique is changed. As a result, currently the manipulation of

large models becomes infeasible in real-time. Thus, the routines that generate a model’s

mesh should reuse the result of previous generations.

3. The perspective driven modeling approach did not undergo an iterative design cycle, so

that matters regarding its intuitivity relies mostly on the author’s personal experience.

Therefore, the modeling application should be subject to an evaluation with users to iden-

tify usabilty problems.

The user interface and the image processing pipeline of the shape detection application suffer

of two known usabilty problems and a limitation in its application.

1. The application for shape detection is configured to detect the shapes as precise and fast as

possible. However, choosing the right image resolution that should be processed currently

relies on empirical data. To get a good user experience it is important to choose the right

image resolution for different reasons. It should be as high as possible to be able to capture

shapes with the highest possible accuracy. Furthermore, it must be small enough, so that

the pipeline is able to process it in real-time. And third, it should not be much lower

than the device’s screen resolution to provide an accurate and sharp AR view. A future

implementation should therefore be able to choose optimal settings given the handheld’s

hardware specifications.

2. The polygon approximation in step 9 of the processing pipeline approximates a shape’s

contour to retrieve a coarser outline. Depending on the shape’s characteristic (angled,

round), a different level of approximation may be desired. Currently it is tiresome to

change the approximation level as it has to be changed in the application’s settings dialog.

It would be much more convenient to interactively adjust the level once the shapes have

been detected.

3. So far only non-complex polygons without holes are accepted for further modeling. A

future implementation should allow the use of complex polygons.

6.2 Selection

A user study is designed to compare three different techniques in terms of speed, precision and

ease-of-use for performing 3D selection tasks with a multi-touch handheld device in a dense AR

98

scene. Many of the outcomes of the performance study are statistically significant and allowed

to draw multiple meaningful conclusions. In H1, Ray-Casting is proposed to be best suited

for selection of non-occluded objects. Results of completion time for task 1 support H1, since

Ray-Casting significantly outperforms Expand. H1 can further be strengthened by taking the

subjective evaluation into account where users considered Ray-Casting to be fast. DrillSample

also performed significantly better than Expand for task 1. This indicates the strength of tech-

niques casting a ray instead of casting a cone for visible object selection in close range, since

a ray selects fewer objects. Thereby, just a few objects need to be presented at DrillSample’s

refinement step, while Cone-Casting is always coarser. There, more objects are presented dur-

ing a refinement step, which takes more time for a user to get an overview before indicating the

desired object. Therefore H1 can be supported to be true in terms of speed. Regarding precision,

neither performance, nor subjective evaluation revealed statistical significance to back up H1.

Therefore, H1 does not hold in terms of precision.

Results for evaluating speed and precision when selecting almost fully occluded objects

clearly reveal Expand’s and DrillSample’s strengths. Both perform significantly faster and need

less selection steps than Ray-Casting, which supports H2. Since no significant difference in

completion time and interaction steps between Expand and DrillSample could be found, H2

can be backed up further. These results indicate that Expand and DrillSample are both equally

suited for selecting an occluded object, which highly differs in appearance from the surrounding

ones. Regarding precise selection of occluded objects with high visual similarity, DrillSample

significantly outperforms both baseline techniques in terms of completion time and number of

interaction steps. Based on these results, H3 can clearly be supported. It proves the advantage

of the proposed spatial context preservation compared to the grid representation that Expand

provides. The disadvantage of Expand’s detailed visualisation becomes even more apparent,

since no significant difference in completion time could be found between Expand and Ray-

Casting.

Regarding users’ preference, the subjective evaluation clearly reveals users’ being in favor

of DrillSample. It significantly outranked both baseline techniques when users are asked for

an overall ranking. This first rank can further be confirmed when looking at the details. Users

ranked DrillSample highest in terms of speed, precision and ease-of-use. It significantly out-

performed Expand in terms of speed, but not Ray-Casting. Since Ray-Casting does not provide

a refinement step, it tends to be considered fast and “direct”. The DrillSample’s capability to

precisely select the desired object over all three test scenario is ranked significantly best in terms

of precision. Finally, the users ranked DrillSample significantly best in ease-of-use.

Based on these results and findings, a set of preliminary guidelines regarding object selection

in closer range could be derived:

1. Ray-Casting remains a good alternative selection technique, as long as objects are fully

visible.

2. Expand remains a good alternative for visible or occluded objects of varying object size,

as long as they differ in visual appearance.

3. For visible or occluded objects, independent of their visual appearance, DrillSample is the

best general purpose method.

99

6.2.1 Outlook

As part of this work 3D selection techniques in handheld AR environments are explored by eval-

uating three techniques. The main motivation is precise selection of objects in dense one-handed

handheld AR. Therefore, it is intended to reduce multi-touch input due to implicit restrictions

having only one hand available for selection. DrillSample requires only single touches as input

and splits up the procedure into two steps. The spatial context is preserved if multiple objects

have been indicated as targets, to allow for disambiguation and precise selection of occluded

objects or objects with high similarity in visual appearance.

The performance study clearly revealed the strengths of the DrillSample technique com-

pared to related work in precise selection of objects in dense environments within close range.

Although DrillSample was tested in handheld AR, the technique applies for dense VEs as well.

As future work various object density and distance combinations will be explored. It is planned

to investigate using DrillSample with Cone-Casting to provide accurate selection of smaller

objects at a larger distance. Furthermore, performance and usability of DrillSample is to be ex-

amined when selecting objects of varying size. Therefore, a closer look is taken on competing

techniques like SQUAD [23], Expand [10] and Dual-Finger Selection Techniques [51] for latter

evaluation.

6.3 Manipulation

A user study is designed to compare two different techniques for performing 3D manipulation

tasks with a multi-touch handheld device. While 3DTouch separates the DOFs of the task to

improve performance as shown in previous work [29], HOMER-S controls 6DOF in an integral

way and takes advantage of simulating real-world metaphors.

Results show that for both techniques, no significant difference is found for overall mean

task completion time, completion time for the positioning tasks, overall user preference or user

preferences regarding the positioning tasks. These results support hypothesis H1 and confirm

the straightforward, intuitive design of both interaction techniques when performing canonical

tasks. Inspecting performance and user’s preference for compound canonical tasks, two findings

can be stated. First, for 6DOF manipulation tasks, as simulated in the positioning & rotation

scenario, HOMER-S performed significantly faster than 3DTouch. This quantitative evaluation

is supported by the user’s subjective feedback. HOMER-S is significantly preferred for transla-

tion and rotation tasks by users as expressed in Q7. These findings support H2 and indicate the

strength of the integral design of HOMER-S for compound canonical 6DOF tasks. This is also

reflected by users’ comments who described HOMER-S to be natural, of “more direct contact”

and fun. Thus, these real world metaphors tend to be very intuitive and straightforward. The

second finding when inspecting performance and user’s preference for composite manipulation

tasks reveals the strength of 3DTouch for scaling tasks. It took considerably less time to com-

plete the scaling & positioning task using 3DTouch than with HOMER-S. Furthermore, users

significantly preferred 3DTouch for scaling. Since no significant difference is found regarding

the positioning tasks in completion time or user preferences, positioning can be neglected when

evaluating scenario 4. This finding supports H3, since the scaling tasks required very fine ma-

100

nipulation in all three dimensions. H3 can further be backed up by the significant fewer number

of interaction steps 3DTouch needed in tasks 2 and 4 and the users’ rating in Q3 and Q4 attested

it a better accuracy.

Besides the assumption that humans are able to control their fingers more precisely, the un-

derlying metaphor can be another conceivable reason to further explain the underperformance

of HOMER-S in scaling tasks. In the real world, usually two hands are involved to expand or

shrink an object. Since HOMER-S only provides one virtual hand to simulate one real hand,

this metaphor could not be adapted in a direct way. Thereby, a direct mapping could not be pro-

vided that limits HOMER-S straightforward usage for scaling. However, the pinch-like gesture

to scale an object using 3DTouch is also not completely intuitive and straightforward. Since,

more than half of the test group classified themselves as experienced handheld 3D gamers, they

are familiar with using multi-touch for interaction; standard touch gestures such as the pinch-

out and -in are known and well trained. This is also backed up by the results including user

experience. There, 3DTouch results for scaling are only significantly better for users who are

experienced with smartphones or handheld 3D gaming. Studying further details regarding user

experience leads to H4. It is proposed that prior touch knowledge would result in equal or better

performance of 3DTouch compared to HOMER-S, while inexperienced users would perform

better with HOMER-S due to its integral 6DOF design and adaption of real-world metaphors.

For many results of the study, this is true. Regarding completion time, no significant differences

between 3DTouch and HOMER-S could be found for positioning when analysing experienced

users. For 3D positioning, experienced users needed significantly less interaction steps when us-

ing 3DTouch. For integral positioning and rotation, experienced users of both groups performed

faster with HOMER-S, but not significantly. Experienced users performed significantly faster for

scaling in terms of completion time and number of interaction steps when using 3DTouch. They

rated 3DTouch significantly better in terms of ease-of-use, but significantly preferred HOMER-

S for 6DOF transformation. Regarding inexperienced users, H4 can be further backed up by

the significant better performance in terms of completion time and number of interaction steps

for the positioning & rotation task using HOMER-S. Users’ comments reflect the quantitative

results. Most users, especially the inexperienced, reported to have quickly familiarised with

HOMER-S for any translations and rotations. However, exceptions when evaluating H4 could

be found, too. The quantitative results do not indicate a better performance of inexperienced

users using HOMER-S for positioning tasks. For scaling, HOMER-S did not result in better

performance of the inexperienced users. However, despite of the good results of 3DTouch for

scaling, inexperienced users did not significantly perform better using 3DTouch for scaling. The

underlying two- fingers pinch gesture requires prior knowledge and thus, is not as straightfor-

ward and direct than the one-finger inputs for translate and rotate. But users’ preference of

3DTouch’s for scaling is independent of the users’ experience. This is also reflected by users’

comments. Some users experienced HOMER-S as being “too direct”, since even small body

movements result in a manipulation. Most users complained about HOMER-S being unintuitive

to use for scaling. Based on these observations, a clear conclusion to support H4 cannot be

drawn. Further research needs to be performed for a detailed evaluation of this hypothesis.

Taking the results and findings into account, a set of preliminary guidelines is developed:

1. Both methods provide intuitive manipulation with similar performance when the canonical

101

manipulation tasks “positioning” and “rotations” are required.

2. HOMER-S outpaces 3DTouch in performance and ease-of-use to perform compound po-

sitioning and rotation tasks.

3. 3DTouch is the better choice, if scaling is involved in the manipulation task.

6.3.1 Outlook

As part of this work, a foundation for exploring 3D manipulation techniques in one-handed

handheld AR environments is provided by evaluating two manipulation techniques. The main

motivation is the development of intuitive manipulation techniques for 3D content in handheld

AR. Therefore, the design aimed at reducing or even eliminating (multi-) touch input to avoid

abstraction levels, which require prior knowledge. A novel multi-touch manipulation technique

3DTouch is introduced, which provides 6DOF transformations by separating degree-of-freedom

and combining one- and two-finger touch input with the device pose. Thereby, necessary touch

input could be reduced to a minimum. This improves usability for a one-handed handheld AR

environment by utilizing only simple finger gestures; single touches for translation and rotation

and two-finger input for scaling. Additionally, the manipulation technique HOMER-S is pre-

sented that completely decouples object transformation from limited handheld screen space. It

does not require any touch input, but uses only the device pose to provide full 6DOF transfor-

mations.

The evaluation study clearly reveals the strengths of both techniques depending on given

manipulation tasks. Based on the promising results of both techniques, the performance and

usability of a combination of 3DTouch and HOMER-S will be examined. The findings on fine

manipulation tasks motivate to further evaluate the capabilities of both techniques. Additionally,

it is planned to optimise the overall usability of the HOMER-S manipulation technique to further

exploit its potential. The focus will be to improve pose stability during manipulation and to

improve the gesture for scaling. To overcome stated rotation limitations using the HOMER-S

approach, a non-direct mapping between device pose and object’s rotation will be evaluated.

102

CHAPTER 7
Appendix

103

Figure 7.1: Selection technique questionnaire part 1/6.

104

Figure 7.2: Selection technique questionnaire part 2/6

105

Figure 7.3: Selection technique questionnaire part 3/6.

106

Figure 7.4: Selection technique questionnaire part 4/6.

107

Figure 7.5: Selection technique questionnaire part 5/6.

108

Figure 7.6: Selection technique questionnaire part 6/6.

109

Figure 7.7: Manipulation technique questionnaire part 1/6.

110

Figure 7.8: Manipulation technique questionnaire part 2/6.

111

Figure 7.9: Manipulation technique questionnaire part 3/6.

112

Figure 7.10: Manipulation technique questionnaire part 4/6.

113

Figure 7.11: Manipulation technique questionnaire part 5/6.

114

Figure 7.12: Manipulation technique questionnaire part 6/6.

115

Bibliography

[1] Ronald T Azuma et al. A survey of augmented reality. Presence, 6(4):355–385, 1997.

[2] Richard A. Bolt. “put-that-there”: Voice and gesture at the graphics interface. In Pro-

ceedings of the 7th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’80, pages 262–270, New York, NY, USA, 1980. ACM.

[3] Leonardo Boshell. LitJSON v0.9.0, JSON library for the .Net framework.

http://lbv.github.io/litjson. [accessed 15-March-2014].

[4] D. Bowman, E. Kruijff, J. LaViola Jr., and I. Poupyrev. 3D User Interfaces: Theory and

Practice. Addison-Wesley, 2005.

[5] Doug A Bowman and Larry F Hodges. An Evaluation of Techniques for Grabbing and

Manipulating Objects in Immersive Virtual Environments Arm-Extension Ray-Casting.

In Proceedings of the 1997 Symposium on Interactive 3D Graphics, pages 35–38. ACM,

1997.

[6] Doug a. Bowman and Larry F. Hodges. Formalizing the Design, Evaluation, and Appli-

cation of Interaction Techniques for Immersive Virtual Environments. Journal of Visual

Languages & Computing, 10(1):37–53, February 1999.

[7] Fabrice Boyer. TrueSculpt Virtual Sculpture. https://play.google.com/store/

apps/details?id=truesculpt.main. Google Play, [accessed 15-March-2014].

[8] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the OpenCV

library. "O’Reilly Media, Inc.", 2008.

[9] John Canny. A computational approach to edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8(6):679–698, 1986.

[10] Jeffrey Cashion, Chadwick Wingrave, and Joseph J LaViola. Dense and dynamic 3D se-

lection for game-based virtual environments. In IEEE Virtual Reality, volume 18, pages

634–42, April 2012.

[11] FasterXML and Codehaus. Jackson JSON Processor v2.1.5.

http://wiki.fasterxml.com/JacksonHome. [accessed 15-March-2014].

117

http://lbv.github.io/litjson
https://play.google.com/store/apps/details?id=truesculpt.main
https://play.google.com/store/apps/details?id=truesculpt.main
http://wiki.fasterxml.com/JacksonHome

[12] Andy Field, Jeremy Miles, and Zoë Field. Discovering Statistics Using R. SAGE Publica-

tions, 2012.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: ele-

ments of reusable object-oriented software. Pearson Education, 1994.

[14] Sinem Guven, Steven Feiner, and Ohan Oda. Mobile augmented reality interaction tech-

niques for authoring situated media on-site. In IEEE/ACM International Symposium on

Mixed and Augmented Reality (ISMAR), pages 235–236. IEEE, October 2006.

[15] Anders Henrysson, Mark Billinghurst, and Mark Ollila. Virtual object manipulation using

a mobile phone. In Proceedings of the 2005 international conference on Augmented tele-

existence (ICAT ’05), pages 164–171. ACM, 2005.

[16] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal

of statistics, pages 65–70, 1979.

[17] Google Inc. Android Software Development Kit v4.4.

http://developer.android.com/sdk. [accessed 15-March-2014].

[18] Google Inc. Gestures, Android Developer Guide. http://developer.android.

com/design/patterns/gestures.html. [accessed 19-October-2014].

[19] Google Inc. Intents and Intent Filters, Android Developer Guide. http://developer.

android.com/guide/components/intents-filters.html. [accessed 15-

March-2014].

[20] Google Inc. Services, Android Developer Guide. http://developer.android.

com/guide/components/services.html. [accessed 15-March-2014].

[21] Jürgen Janssen and Wilfried Laatz. Statistische datenanalyse mit spss. Eine anwendung-

sorientierte Einführung in das Basissystem und das Modul exakte Tests, 7, 2010.

[22] Hannes Kaufmann. Geometry Education with Augmented Reality. PhD thesis, Institut für

Softwartechnik und Interaktive Systeme, 2004.

[23] Regis Kopper, Felipe Bacim, and Doug a. Bowman. Rapid and accurate 3D selection by

progressive refinement. In 2011 IEEE Symposium on 3D User Interfaces (3DUI), pages

67–74. IEEE, March 2011.

[24] GA Lee, Ungyeon Yang, Y Kim, D Jo, and KH Kim. Freeze-Set-Go interaction method

for handheld mobile augmented reality environments. In Proceedings of the 16th ACM

Symposium on Virtual Reality Software and Technology (VRST), pages 143–146. ACM,

2009.

[25] Jiandong Liang and Mark Green. Jdcad: A highly interactive 3d modeling system. Com-

puters & Graphics, 18(4):499 – 506, 1994.

118

http://developer.android.com/sdk
http://developer.android.com/design/patterns/gestures.html
http://developer.android.com/design/patterns/gestures.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html

[26] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology, 1932.

[27] David Makofske, Michael J. Donahoo, and Kenneth L. Calvert. TCP/IP Sockets in C#:

Practical Guide for Programmers (The Practical Guides). Morgan Kaufmann, 2004.

[28] Anthony Martinet, Gery Casiez, and Laurent Grisoni. The design and evaluation of 3d

positioning techniques for multi-touch displays. In 3D User Interfaces (3DUI), 2010 IEEE

Symposium on, pages 115–118. IEEE, 2010.

[29] Anthony Martinet, Géry Casiez, and Laurent Grisoni. Integrality and separability of multi-

touch interaction techniques in 3D manipulation tasks. IEEE Transactions on Visualization

and Computer Graphics, 18(3):369–80, March 2012.

[30] G. H. Meisters. Polygons Have Ears. The American Mathematical Monthly, 82(6):648–

651, 1975.

[31] Annette Mossel, Christian Schönauer, Georg Gerstweiler, and Hannes Kaufmann.

ARTiFICe-Augmented Reality Framework for Distributed Collaboration. International

Journal of Virtual Reality, 11(3):1–7, 2012.

[32] M.E. Mündel. Motion and Time Study: Improving Productivity. Englewood Cliffs, New

Jersey: Prentice-Hall, Inc, 1978.

[33] Christian Nagel, Bill Evjen, Jay Glynn, Karli Watson, and Morgan Skinner. Professional

C# 2012 and. Net 4.5. John Wiley & Sons, 2012.

[34] OpenCV. Open Source Computer Vision Library v2.4.9. http://opencv.org. [ac-

cessed 15-March-2014].

[35] I. Poupyrev, T. Ichikawa, S. Weghorst, and M. Billinghurst. Egocentric object manipu-

lation in virtual environments: Empirical evaluation of interaction techniques. Computer

Graphics Forum, 17(3):41–52, 1998.

[36] Ivan Poupyrev and Mark Billinghurst. The go-go interaction technique: non-linear map-

ping for direct manipulation in VR. In Proceedings of the 9th annual ACM symposium on

User interface software and technology, pages 79–80. ACM, 1996.

[37] Qualcomm. Augmented Reality (Vuforia) v3.0. https://developer.

qualcomm.com/mobile-development/add-advanced-features/

augmented-reality-vuforia. [accessed 15-March-2014].

[38] Qualcomm. Extending Unity Android Activity. https://developer.vuforia.

com/resources/dev-guide/knowledge-base-articles. [accessed 15-

March-2014].

[39] Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Com-

puter Graphics and Image Processing, 1(3):244–256, 1972.

119

http://opencv.org
https://developer.qualcomm.com/mobile-development/add-advanced-features/augmented-reality-vuforia
https://developer.qualcomm.com/mobile-development/add-advanced-features/augmented-reality-vuforia
https://developer.qualcomm.com/mobile-development/add-advanced-features/augmented-reality-vuforia
https://developer.vuforia.com/resources/dev-guide/knowledge-base-articles
https://developer.vuforia.com/resources/dev-guide/knowledge-base-articles

[40] Jason L. Reisman, Philip L. Davidson, and Jefferson Y. Han. A screen-space formulation

for 2D and 3D direct manipulation. In Proceedings of the 22nd annual ACM symposium on

User interface software and technology (UIST ’09), pages 69–78, New York, New York,

USA, 2009. ACM.

[41] David F Rogers. An introduction to NURBS: with historical perspective. Morgan Kauf-

mann, 2001.

[42] Mario Russo. Polygonal Modeling: Basic and Advanced Techniques. Jones & Bartlett

Learning, 2006.

[43] und Keiichi Abe. Satoshi Suzuki. Topological structural analysis of digitized binary images

by border following. Computer Vision, Graphics, and Image Processing, 30(1):32–46,

1985.

[44] Scalisoft. Spacedraw. https://play.google.com/store/apps/details?

id=com.scalisoft.spacedraw. Google Play, [accessed 15-March-2014].

[45] Carsten Seifert. Spiele entwickeln mit Unity: 3D-Games mit Unity und C# für Desktop,

Web & Mobile. Carl Hanser Verlag GmbH Co KG, 2014.

[46] Sai Srinivas Sriparasa. JavaScript and JSON Essentials. Packt Publishing, 2013.

[47] William Steptoe. Sketcher 3D. https://play.google.com/store/apps/

details?id=com.Doktor3D.Sketcher3D. Google Play, [accessed 15-March-

2014].

[48] Richard Stoakley, Matthew J Conway, and Randy Pausch. Virtual reality on a wim: inter-

active worlds in miniature. In Proceedings of the SIGCHI conference on Human factors in

computing systems, pages 265–272. ACM Press/Addison-Wesley Publishing Co., 1995.

[49] Richard Szeliski. Computer vision: algorithms and applications. Springer, 2010.

[50] Unity Technologies. Unity Game Engine v4.5.

http://unity3d.com. [accessed 15-March-2014].

[51] Can Telkenaroglu and Tolga Capin. Dual-finger 3d interaction techniques for mobile de-

vices. Personal and ubiquitous computing, 17(7):1551–1572, 2013.

[52] Manuel Veit, Antonio Capobianco, and Dominique Bechmann. Influence of degrees of

freedom’s manipulation on performances during orientation tasks in virtual reality envi-

ronments. In Proceedings of the 16th ACM Symposium on Virtual Reality Software and

Technology, pages 51–58. ACM, 2009.

[53] Daniel Wagner. Handheld augmented reality. PhD thesis, Citeseer, 2007.

120

https://play.google.com/store/apps/details?id=com.scalisoft.spacedraw
https://play.google.com/store/apps/details?id=com.scalisoft.spacedraw
https://play.google.com/store/apps/details?id=com.Doktor3D.Sketcher3D
https://play.google.com/store/apps/details?id=com.Doktor3D.Sketcher3D
http://unity3d.com

[54] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom Drummond, and Dieter

Schmalstieg. Pose tracking from natural features on mobile phones. In Proceedings of the

7th IEEE/ACM International Symposium on Mixed and Augmented Reality, pages 125–

134. IEEE Computer Society, 2008.

121

	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Individual Publications
	Outline

	Related Work
	Augmented Reality
	Definition & Characteristics
	Augmented Reality Interaction
	Handheld Augmented Reality

	Polygonal Modeling
	Basic Modeling Operations
	Handheld Modeling Applications

	Selection
	Ray-casting
	Handheld Ray-casting adaptions
	SQUAD
	EXPAND

	Manipulation
	Virtual Hand
	Z-Technique
	Dual-Finger mobile 3D interaction techniques

	Touch Gestures

	Methodology
	Requirements
	General Guidelines
	Modeling
	Guidelines
	Prefab Based Modeling
	Capturing Shapes
	Perspective Driven Modeling

	Selection
	Guidelines
	State-of-the-Art Selection Techniques
	Ray-casting
	Expand

	DrillSample Selection Technique
	Algorithm
	Important Aspects

	Manipulation
	Guidelines
	State-of-the-Art Selection Manipulation Techniques
	3D Touch
	Degree of Freedom Limitation
	Translation
	Rotation
	Scaling

	HOMER-S
	Mode Switches
	Important Aspects

	Implementation
	System Design
	Hardware
	System Overview
	Applications
	Frameworks
	Tasks & Overview

	Modeling
	Shape Detection User Interface
	Image Processing
	Modeling User Interface

	Content Distribution
	Data Transmission Analysis
	Networking in Unity
	Distribution Procedure

	Inter Process Communication
	IPC Mechanisms
	IPC Architecture
	JSON Remote Method Invocation
	Storage Service
	Storage Client

	Selection & Manipulation
	Composite Interaction
	Selection Interface
	Manipulation Interface

	UserStudy Application

	Evaluation & Discussion
	Shape Detection
	Per Pixel Operations
	Per Point Operations
	Detection Robustness

	Modeling
	Experimental User Study
	Design & Procedure
	Subjects and Apparatus
	Statistical Foundation

	Selection
	Design & Objectives
	Test Scenarios
	Results
	Quantitative Evaluation
	Subjective Evaluation

	Qualitative Evaluation

	Manipulation
	Design & Objectives
	Test Scenarios
	Results
	Performative Evaluation
	Subjective Evaluation

	Conclusion & Outlook
	Modeling
	Selection
	Outlook

	Manipulation
	Outlook

	Appendix
	Bibliography

