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Abstract

In the last couple of years Cloud Computing has become an important topic in
industry and computer science. In particular, this applies to clouds following
Infrastructure-as-a-Service (IaaS) paradigm, due to their maturity and high flex-
ibility in terms of supported software stacks. Cloud Computing promises on-
demand provisioning of IT resources, making easy scaling of applications during
runtime possible and also relieves software developers of dealing with hardware, so
that they can focus entirely on their software engineering. But there are also some
downsides. To gain full advantage of Cloud Computing’s scaling abilities develop-
ers have to write distributed software, which is a complex and error prone task. To
minimize these hurdles Distributed Systems Group (DSG) developed jCloudScale,
a Java-based middleware using Aspect-oriented Programming (AOP) and Bytecode
manipulation to transparently deploy Java objects to common IaaS clouds.

This master’s thesis describes and presents an extension to jCloudScale, that en-
ables transparent migration of already deployed Java objects during runtime, while
preserving their state and function. The migration mechanism further supports
migration triggering using business rules and uses automated planning to choose
an optimal migration strategy. First this thesis details the state of the art in the
area of Cloud Computing, gives an overview of relevant related work and an in-
troduction to jCloudScale’s architecture. Afterwards the migration mechanism is
described and evaluated in detail. Finally a conclusion about the work done and
possible tasks for future development are given.
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Kurzfassung

In den letzten Jahren wurde Cloud Computing zu einem wichtigen Thema in Indus-
trie und Wissenschaft. Dies gilt im Speziellen für Clouds die dem Infrastructure-
as-a-Service (IaaS) Paradigma folgen, aufgrund ihrer Ausgereiftheit und hohen
Flexibilität in Bezug auf den unterstützten Softwarestack. Cloud Computing ver-
spricht die sofortige zur Verfügungstellung von IT-Ressourcen, wodurch einfaches
Skalieren von Applikationen während der Laufzeit möglich wird und außerdem
Softwareentwickler vom managen von Hardware befreit werden. Dadurch können
sich diese ganz der Softwareentwicklung widmen. Es gibt jedoch auch Nachteile.
Damit Entwickler alle Vorteile der Skalierungsfähigkeit von Cloud Computing nut-
zen können müssen sie so genannte “Verteilte Software” schreiben, was kompliziert
und fehleranfällig ist. Um diese Probleme zu minimieren hat die Distributed Sys-
tems Group (DSG) jCloudScale entwickelt, eine Java-basierte Middleware, welche
Aspect-oriented Programming (AOP) und Bytecodemanipulation nutzt, um Java-
Objekte transparent in IaaS Clouds zu verteilen.

Die vorliegende Diplomarbeit beschreibt und präsentiert eine Erweiterung von
jCloudScale, welche die transparente Migration von bereits verteilten Java-Objekt-
en zur Laufzeit ermöglicht und dabei deren Zustand und Funktion bewahrt. Die-
ser Migrationsmechanismus unterstützt weiters das Auslösen von Migrationen an-
hand von Geschäftsregeln und verwendet automatisiertes Planen, um eine optimale
Migrationsstrategie auszuwählen. Die vorliegende Arbeit beschreibt zunächst den
Stand der Technik im Bereich des Cloud Computings und gibt anschließend einen
Überblick über relevante vergleichbare Forschung und jCloudScales Architektur.
Danach werden der Migrationsmechanismus selbst und dessen Evaluierung im De-
tail beschrieben. Abschließend wird ein Fazit zur durchgeführten Arbeit gezogen
und mögliche zukünftige Entwicklungsaufgaben vorgestellt.
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CHAPTER 1
Introduction

Since 1969, when the first four nodes of the ARPANET were deployed, the Inter-
net and thus computer science as a whole have come a long way [64, 65]. In the
beginnings network computing was complicated and expensive. Therefore only
universities and governmental institutions participated, but this changed in the
early nineties. In 1989 Tim Berners-Lee, a scientist working at CERN, composed
a paper titled “Information Management: A Proposal” [13] describing a new ap-
proach on managing information using linked information systems and hypertext
documents, nowadays better known as World Wide Web (WWW). A year later
he developed the first What You See Is What You Get (WYSIWYG) web browser
with direct inline creation of links [101], making it possible to “surf” through hy-
pertext documents across multiple hosts. In the same year the first commercial
Internet service providers were founded, providing the general public the opportu-
nity to connect to and use the Internet. From this time on the number of Internet
hosts increased in logarithmic scale to an approximate total of 850 million hosts
by July 2011. This tremendous growth was not limited to the number of comput-
ers connected to the Internet, but also the number of people using the Internet
increased remarkable to an estimated total of about 2.1 billion users worldwide by
June 2011. The growth of both values is illustrated in Figure 1.1.

As the number of Internet hosts and users increased the economical importance
of the Internet increased as well. At first existing enterprises used the Internet
to stay in touch with their customers by providing new and convenient services
(e.g., electronic banking) to them. Later new business were started offering novel
services to the users for free, covering their expenses by displaying advertisements
to them. With the technology becoming more mature new business models evolved

1



Chapter 1. Introduction
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Figure 1.1: Internet host and user count history, data taken from [56] and [57]

as well and e-commerce became an important part of the newly emerged Internet
economy. As stated in [10] the estimated revenues of the U.S. Internet economy
in 1998 were about $300 billion with a total of 1.3 million attributed jobs. Due
to these numbers it was not that hard for companies like Google, Facebook or
Amazon, which were nearly unknown a decade ago, to collect enough venture
capital to build up numerous data centers across the globe, each one large enough
to house ten-thousands of servers [50, 53, 55]. The computational power these
servers provide is needed by the aforementioned companies to offer their services
fast and reliable to their millions of customers worldwide, regardless of time and
date.

After the dot-com bubble burst in 2001 venture capital givers became much more
conservative regarding the investments they made [95, 103]. An Internet start-up
needed to have a solid business model with the promise to become profitable as
fast as possible to convince investors. This resulted in the fact, that many start-
ups with completely new and unusual business models could not obtain enough
money to expand their computing infrastructure to met their customers demand or
even worse to start their business at all. At the same time established companies
with big data centers sought for possibilities to utilize their infrastructure more
efficiently, so they came up with the idea of renting unused computing resources
to other businesses. The term “Cloud Computing” [5,6,75] was born. With Cloud
Computing there is barely the need for a start-up to buy its own infrastructure,
which reduces the upfront costs to a minimum, making it possible to start new
businesses without big amounts of venture capital.

2



1.1 Motivation

Jinesh Varia from Amazon puts it like this: “[...] In the past, if you got famous and
your systems or your infrastructure did not scale you became a victim of your own
success. Conversely, if you invested heavily and did not get famous, you became
a victim of your failure. [...]” [96]. But the benefits of Cloud Computing are not
limited to start-ups, also well established companies can use it to operate their
services more cost-efficient, because IT costs can then be seen as expenses instead
of investments [6]. This is also valid for Cloud Computing providers themselves.
Many of them have provisioned their IT resources to sustain occasional spikes
in demand, but using only a few percent of their capacity at any one time. For
instance Amazon, the world’s largest online store, uses only 10% of its IT resources
on average, as stated in [1]. This whole situation made Cloud Computing an
important topic in nowadays IT industry and computer science research.

1.1 Motivation
There are three different types of Cloud Computing, Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) [45, 70],
which will be discussed in detail in Chapter 2. To date IaaS provides customers
the greatest flexibility in terms of the software stack they can use to implement
their service(s). IaaS achieves this great flexibility by providing only relatively low-
level services (Virtual Machines (VMs) and distributed storage in general) to the
developer, burying less to nothing of the complexity of the underlying distributed
system to her. Thus software developers have to deal on their own with all the
complex details of developing and running a distributed application inside an IaaS
cloud. They have to write software capable of running simultaneously on multiple
hosts, create a Virtual Disk Image (VDI), deploy it to the cloud and start as
much host instances necessary to suit their application’s needs. For (cost-)efficient
operation they will also have to implement a sophisticated scaling mechanism to
match the amount of provisioned IT resources with actual demand.

To mitigate these hurdles the Distributed Systems Group (DSG) at Vienna Univer-
sity of Technology has developed jCloudScale [69], a novel Java-based middleware
for Amazon Web Services (AWS)- and OpenStack-based [34,49] IaaS clouds. With
jCloudScale an application developer just has to specify scaling requirements and
policies of her application using code annotations. jCloudScale will then transpar-
ently deploy and scale the application to an IaaS cloud using Aspect-oriented Pro-
gramming (AOP) and Bytecode manipulation. An in-depth description of jCloud-
Scale will be given in Chapter 4.

Currently jCloudScale is in an early development state and thus has some func-
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1.2 Contribution

tional limitations. One of them concerns its inability of migrating an already
deployed Cloud Object (CO) to another Cloud Host (CH) during the CO’s life
cycle. This hinders jCloudScale from effectively using the computing resources
of an IaaS cloud it is deployed to. During runtime of an application deployed
through jCloudScale many COs are created and destroyed again. Therefore it is
most likely that their distribution among the CHs used will be very biased. So it
is possible that the system load of some CHs is be pretty low, while the load of
others is so high that these hosts reduce the overall performance of the distributed
application. It is also possible that all CHs are close to their idle state but have
COs deployed to them and thus cannot be shut down by jCloudScale. Hence more
cloud resources than necessary will be used, resulting in increased costs for the
cloud user.

A fully transparent migration mechanism for COs which monitors system states of
CHs and decides autonomous which CO to migration would resolve these problems.
Thus the goal of this thesis is to design and implement such an mechanism for
jCloudScale, making it an even more compelling tool for IaaS cloud application
development.

1.2 Contribution
Before examining the jCloudScale framework in detail this thesis will give a def-
inition and overview of Cloud Computing, its benefits and challenges. Also the
Message Queue (MQ) paradigm and AOP will be discussed, as booth techniques
are used by jCloudScale.

The main goal of this thesis is to address jCloudScale’s inability to migrate COs
from one CH to another after they have been created. Therefore in course of this
thesis an appropriate migration mechanism for COs will be developed and imple-
mented into jCloudScale. The migration mechanism must be fully transparent for
objects interacting with COs going to be migrated and thus must preserve a CO’s
state during its migration.

Besides the bare migration functionality jCloudScale will also be extended to sup-
port some kind of migration policies. A migration policy is used to determine
when to and where to migrate a CO. Such policies will have to consider several
key figures of the distributed application and the cloud infrastructure (both man-
aged by jCloudScale) to work efficiently. Hence reasonable key figures have to be
identified and an additional mechanism to measure these figures without seriously
lowering jCloudScale’s performance has to be developed.

4



1.3 Organization of this Thesis

To achieve the goals mentioned above various software components have to in-
terplay which each other. Because jCloudScale is a distributed software system
these components will be spread above multiple hosts. This makes the use of
distributed locking techniques a must, to avoid data corruption and ensure the
software’s stability. Good design of the migration process will be necessary to
keep the performance penalty on jCloudScale, caused by these locking modes, as
low as possible.

Finally the achieved work will be evaluated, using DSG’s OpenStack [34] cloud.
OpenStack is an IaaS cloud, fully compatible with AWS, which will make the eval-
uation results also applicable to AWS. The evaluation itself will be done to prove
faultless working of the implemented migration feature and compare jCloudScale’s
scaling-capabilities with and without migration enabled.

1.3 Organization of this Thesis
The structure of the remainder of this thesis will be outlined as follows:

• Chapter 2 will give an overview of Cloud Computing, by discussing its dif-
ferent types and deployment models used today. Also common benefits
and concerns of Cloud Computing will be addressed. Then Amazon Web
Services (AWS) will be described, as it is currently the dominating IaaS
cloud provider, making it very likely the cloud platform of choice when using
jCloudScale. After that an introduction to the MQ [73, 91] paradigm and
AOP will be given, because jCloudScale uses these technologies for commu-
nication and object invocation purposes.

• In Chapter 3 relevant related work will be presented and where applicable
compared with jCloudScale. This related work will include Enterprise Java
Beans (EJBs) [87], an industry-proven Java Enterprise Edition (Java EE)
technology, as well as more academic frameworks like Cafe [78] and Aneka
[98].

• The main goal of this thesis is to extend jCloudScale with a transparent
migration mechanism for COs, therefore Chapter 4 describes jCloudScale’s
design and features in detail.

• Chapter 5 will focus on the design and implementation details of the migra-
tion mechanism added to jCloudScale. Each step of the implementation work
will be shown and decisions made throughout this process will be discussed.

5



1.3 Organization of this Thesis

• In Chapter 6 the now extended jCloudScale middleware will be evaluated.
Therefore appropriate use cases will be introduced to test and document
jCloudScale’s ability to efficiently utilize the underlying cloud infrastructure,
both with migration mechanism enabled and disabled.

• Chapter 7 concludes this thesis by recapitulating the changes made to the
jCloudScale middleware and the results from Chapter 6. Some final remarks
and an overview of possible future work will be given too.

6



CHAPTER 2
State of the Art Review

The following chapter will give an comprehensive outline of state-the-art technolo-
gies used by jCloudScale and thus build the basis for the subject of this thesis.
At first the fundamentals of Cloud Computing, its benefits and challenges will be
covered. Then Amazon Web Services (AWS) will be discussed, as it will be the
most likely choice when choosing a cloud platform to run jCloudScale applications.
The end of this chapter will be devoted to the Message Queue (MQ) paradigm
and Aspect-oriented Programming (AOP).

2.1 Cloud Computing
In Chapter 1 it was mentioned, that jCloudScale is a middleware for building
transparently scaling applications for IaaS clouds, but a detailed explanation of
the term “cloud”, and therefore Cloud Computing, was missing. This issue will be
addressed now, by giving a definition of Cloud Computing, describing its taxonomy
and discussing its benefits and challenges for providers and users.

Once Larry Ellison, CEO and founder of Oracle, said about the IT industry:
“[...] The computer industry is the only industry that is more fashion-driven than
women’s fashion. [...]” [27], which is true to some extent. Technologies and their
accompanied terms appear all the time and only few of them remain for more
than a couple of years. This makes it hard for enterprises and customers to figure
out if and when they should move to a new technology or better stick with their
current infrastructure. Because of that advisory firm Gartner publishes its “Hype
Cycle” [28], starting in 1995, to assist CEOs and CIOs with their decision making.
Gartner’s hype cycle is a graphic representation of the maturity and adoption of

7



2.1 Cloud Computing

new technologies. It consists of five phases (“Technology Trigger”, “Peak of Inflated
Expectations”, “Trough of Disillusionment”, Slope of Enlightenment“, ”Plateau of
Productivity“) each technology must go through to become adopted sustainable by
the market. Cloud Computing appeared first in Gartner’s 2008 hype cycle, located
in the ”Technology Trigger“ phase. As seen in Figure 2.1 Cloud Computing is still
present in the 2013 hype cycle, now in phase 3 with an estimation of 2 to 5 years
till mainstream adoption.

Figure 2.1: Hype Cycle for Emerging Technologies 2013, from Gartner [41]

The progress of Cloud Computing on the hype cycle’s path during the last 5
years and the tangible estimation till mainstream adoption make it very likely
that Cloud Computing will be a sustainable and important technology for the
computer industry. This is also underpinned by data from IDC, saying that “[...]
worldwide revenue from public IT cloud services exceeded $16 billion in 2009 and
is forecast to reach $55 billion in 2014, representing a compound annual growth
rate of 27.4%. [...]” [21]. Beside economical predictions people also believe in the
success of Cloud Computing as revealed by a survey of the Pew Research Center’s
Internet & American Life Project and Elon University’s Imagining the Internet
Center, were about 71% of the survey’s participants agreed with the opinion, that
by 2020 most people will do their work in Internet-based applications instead of
applications running on a PC operating system and that most developers will

8



2.1 Cloud Computing

program for companies that provide cloud-based applications, because the most
innovative work will be done in that domain [3].

2.1.1 Definition of Cloud Computing

It is a necessary but also a hard task to give a definition of Cloud Computing. The
reason for this can be explained by a quote of Andy Isherwood:

A lot of people are jumping on the bandwagon of cloud, but I have
not heard two people say the same thing about it. There are multiple
definitions out there of ’the cloud’.

— Andy Isherwood, HP VP Software Services (EMEA) [8]

Nevertheless there recently has been a growing number of Cloud Computing-
related publications referring to ”The NIST Definition of Cloud Computing“ [75] to
accomplish this task. The National Institute of Standards and Technology (NIST)
is an US federal agency, responsible for developing standards and guidelines for
other federal agencies. Vivek Kundra, CIO of the US government, estimates in [66],
that combined spending of federal agencies on Cloud Computing could reach up
to $20 billion and thus let them become important customers for cloud providers.
Because of this it is likely that the aforementioned NIST paper will become a de-
facto standard when defining Cloud Computing and is therefore refereed in this
thesis too.

In NIST’s paper the Cloud Computing model is composed of five characteristics,
three service models and four deployment models. Because the author of this thesis
thinks, that service- and deployment models are not part of an essential definition
of Cloud Computing they are omitted here and discussed later on (see 2.1.3).
According to NIST the cloud model is defined by the following five characteristics:

• On-demand self-service: A cloud must give it’s customer the ability to pro-
vision computing capabilities as needed, without the need of approval or
interaction with one of the cloud provider’s employees.

• Broad network access: The cloud is reachable through the network, using
standard mechanisms, regardless of the access technology used by a user
(e.g., mobile devices, thin or thick client platforms).
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• Resource pooling: A cloud provider utilizes it’s computer resources in a way
that multiple customers can be served at the same time. These resources
are assigned and reassigned dynamically the meet each customer’s actual
demand. To achieve this cloud providers use computer virtualization tech-
nology (see Section 2.1.2) to separate computing resources from actual hard-
ware. Hence customers have in general no knowledge nor control over the
exact location of the resources provided to them.

• Rapid elasticity: The computing capabilities a cloud provides to it’s cus-
tomer must be elastically and rapidly scalable. Meaning that the customer’s
demand has to be fulfilled nearly immediately, regardless of requested quan-
tity and time of request. This can be done automatically or manually by the
customer herself. For the customer the resources available for provisioning
often appear to be unlimited.

• Measured service: Pay-per-use is an often used payment model in Cloud
Computing. Therefore a cloud provides appropriate monitoring services for
customers and providers to display each customer’s resource consumption.
There can be different levels of abstraction used by the monitoring services
to best fit each resource type (e.g., storage, processing, bandwidth, etc.).

Given these characteristics the distinction between Cloud Computing and Grid
Computing [29] is often not clear, but both paradigms provide quite a different
experience for the user. The aim of Cloud Computing is to deliver each user his/her
own operating environment, isolated from the environments of other users of the
cloud. On the contrary Grid Computing tries to present a uniform resource pool to
it’s users, so all users face the same operating environment. Figure 2.2 illustrates
both paradigms. A more in-depth comparison of Grid and Cloud Computing is
given in [4].

2.1.2 Virtualization for Cloud Computing

As listed in the previous section one characteristic of Cloud Computing is resource
pooling. Besides convenient on-demand provisioning provided to the users, effi-
cient resource utilization is also crucial for cloud platform providers for operating
their infrastructure profitable. To achieve this efficiency it is necessary to separate
computational resources from actual hardware resources, by creating Virtual Exe-
cution Environments (VEEs). VEEs are “[...] fully isolated runtime environments
that abstract away the physical characteristics of the resource and enable sharing
[...]”, as stated in [94]. To enable VEEs virtualization technologies are used.
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Computing/Data Center Computing/Data Center Computing/Data Center Computing/Data Center
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Figure 2.2: Comparison: Grid and Cloud Computing, taken from [4]

There are various computer resources that can be virtualized, like storage, net-
work, memory and hardware. Especially for IaaS-based clouds virtualization of
hardware, also called system virtualization [84], is most important. With system
virtualization it is possible to run multiple heterogeneous operating systems on the
same physical computer simultaneously [94]. The Operating Systems (OSes), and
thus the applications running on them, are isolated from each other, so they can
not interfere. A thin software layer, called Virtual Machine Monitor (VMM) or
hypervisor, performs this isolation by creating a virtual environment for each OS
running on the physical machine. The physical server is also called ”host“ and the
OSes, executed in their virtual environments, ”guests“ or Virtual Machines (VMs).
Because the virtual environment a VM is executed in is completely abstracted from
actual hardware it is possible to move VMs between physical hosts, even while
they are executed. This so called ”live migration“ [19] also helps cloud platform
providers to achieve efficient utilization of their infrastructure.

There are two types of VMMs in use. The first one is the so called ”hardware-
level VMM“ and has been around since the 1960s [86]. A hardware-level VMM
runs directly on top of the physical machine and maintains access of the Virtual
Machines to the actual hardware. A schematic illustration of such an VMM is
shown on the left side of Figure 2.3. The second VMM-type is the ”OS-level
VMM“. It was introduced in the late 1990s by VMWare and is installed on top of
an existing OS. The goal of an OS-level VMM is to extend the OS, it is installed
on, with VMM-capabilities, so that it can run VMs on its own [86]. The illustration
of an OS-level VMM is shown on the right side of Figure 2.3. Due to there different
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approaches both VMM types target different use cases. A hardware-level VMM
focuses on efficiency by minimizing the overhead it introduces, whereas an OS-level
VMM focuses on ease of use by mostly providing a convenient User Interface (UI)
to the user. Thus hardware-level VMMs are often used on server systems, while
OS-level VMMs are in general used in desktop computing. An example for the
former is XEN [7,104], which is also used by AWS to virtualize their hardware and
provide VEEs for their customers (see Section 2.2), and an example for the latter
is VirtualBox [81,102].
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Figure 2.3: Hardware-level VMM vs. OS-level VMM

Apart from the type of VMM used in system virtualization there is also another
distinction concerning the ”completeness“ of the virtualization achieved:

• Full Virtualization: Full Virtualization provides the highest degree of virtu-
alization that can be achieved. A guest OS cannot determine if it is running
on physical hardware or inside a virtual environment provided by a VMM.
Hence every OS can be executed without the need to modify it. [4]

• Para-Virtualization: In Para-Virtualization a guest OS is aware that it is not
running on actual hardware and thus has to be modified to be able to run
on the VMM. Communication between the guest OS and the VMM is done
through a special Application Programming Interface (API), called Virtual
Machine Interface (VMI). [7]

12



2.1 Cloud Computing

Both, Full and Para-Virtualization, have advantages and disadvantages over each
other. Full Virtualization prevails in flexibility, because it does not require mod-
ification of the guest OS kernel. This can especially be an issue when running
proprietary Operating Systems, where source code is not available publicly. Para-
Virtualization on the other hand prevails when comparing execution performance
of the guest OSes. Because guest OSes are aware of the VMM and thus communi-
cation is done through the VMI instead of binary code translation or binary code
rewriting performance of guest OSes are close to native execution [4]. Figure 2.4
shows the schematic differences between Full and Para-Virtualization.
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Figure 2.4: Para-Virtualization vs. Full Virtualization, redrawn from [4]

Until recently the nowadays so important x86 architecture did not support Full
Virtualization in hardware, hence all necessary functions had to be implemented
in software into the VMM. This changed in 2005, when Intel and AMD introduced
their virtualization technologies. Surprisingly hardware-supported Full Virtualiza-
tion was not significantly faster then software-only Full Virtualization, as revealed
in [2]. As the authors state this may change over time, when hardware support
for virtualization enhances and lead to another boost in virtualization and thus
Cloud Computing infrastructure technique.

2.1.3 Taxonomy of Cloud Computing

After previous section briefly digressed into virtualization core Cloud Computing
topics will be taken up again, by giving an overview of its taxonomy used to-
day. The previously cited ”NIST Definition on Cloud Computing“ [75] states that
a cloud model is composed of five essential characteristics, three service models
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and four deployment models. The characteristics were discussed in Section 2.1.1,
service and deployment models will be explained in the following.

A well-known quote by Butler Lampson is: “[...] All problems in computer science
can be solved by another level of indirection [...]” [82]. It describes the common
practice in computer science to use multiple layers of abstraction to hide a system’s
complexity from the user and providing a homogeneous environment to her. It is
obvious that abstraction layers are also used in Cloud Computing. A service model
categorizes a cloud offering by the number of abstraction layers it reveals to the
user, hence the user has to manage by herself when using the cloud. The three
service models, defined by NIST [75], are called Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS). IaaS provides the
lowest level of abstraction, and SaaS the highest level of abstraction to the user:

• Infrastructure-as-a-Service (IaaS): IaaS provisions basic computing resources,
like processing, storage, networking and others, to the customer. The cloud
provider manages basic infrastructure, like hardware and the virtualization
technique used, but starting at the operating system level (inside the VM)
everything can be controlled by the user. Compared to both other service
models, IaaS has the disadvantage to leave most part of the administrative
work to the user. On the other hand this is also an advantage, because the
user keeps full control over the software stack she wants to use.

The ”pay as you go“-model is considered to be the best pricing model for
IaaS-based clouds [72]. The customer is charged by the amount of resources
(e.g., processing, storage, bandwidth) she consumed during a certain time
span (e.g., month). Examples of known IaaS providers are Amazon (see
Section 2.2) or Rackspace [85].

• Platform-as-a-Service (PaaS): PaaS adds more abstraction layers to a cloud
and thus is easier to manage for a customer, compared to an IaaS cloud
installation. The cloud provider manages basic infrastructure, VMs and the
middleware installed on each VM. The middleware provides a common ex-
ecution environment to the customer, letting the cloud appear as one single
computer with nearly infinite performance. The user manages deployment
of applications to the cloud and settings for the application-hosting environ-
ment [75].

Yet PaaS clouds are not as mature as IaaS clouds, due to lack of standardized
cloud application development, but this may change in the future [72]. Two
examples for PaaS providers are Google App Engine [54] and Microsoft Azure
[23].
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• Software-as-a-Service (SaaS): SaaS provides the highest level of abstraction
for the customer. Everything up to the actual application is managed by the
cloud provider. The user can access the application through a web browser
or a program interface [75]. SaaS takes away near to all administrative work
for the user, but also provides the least flexibility to her.

Examples for SaaS are Microsoft Office 365 [76], Google Maps API [40], or
Salesforce’s online-CRM solution [88].

A visual comparison of the three service models is given in Figure 2.5. The stacked
rectangles represent layers of abstraction and their color indicates if they are man-
aged by the user or the cloud provider. In traditional IT all layers have to be
managed by the user herself, so even IaaS, which provides the lowest level of ab-
straction, takes some tedious work away from the user.

Traditional IT IaaS PaaS SaaS

managed by the user managed by the cloud provider
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Figure 2.5: Comparison of IaaS, PaaS, and SaaS; inspired by [44]

The last part a cloud model is composed of is the deployment model. A deployment
model categorizes a cloud offering by the kind of audience it is provisioned for.
The authors of NIST’s definition of Cloud Computing [75] define four types of
deployment models:

• Private cloud: A private cloud infrastructure is exclusively provisioned for
only one customer (organization or individual). Therefore the cloud may be
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owned and managed by the customer herself, but outsourcing to a third party
is also possible. Depending on who operates the cloud it may be located on
or off premises [75]. Private clouds are suitable for customers having special
requirements regarding security, privacy or legal regulations, which could not
be fulfilled by another deployment model [72].

• Public cloud: A public cloud infrastructure is the opposite of a private cloud.
It is provisioned for multiple customers, who share the cloud infrastructure
but operate their applications in separated virtual environments. The ser-
vices hosted in a public cloud can be accessed by the general public, unless
the customer configures to the contrary. The cloud is located on the premises
of the cloud provider [75]. Public clouds are best suited for non-business crit-
ical applications, individual users or small businesses [72].

• Community cloud: The community cloud deployment model is similar to
the public cloud model, but is only provisioned for the members of a specific
community instead for the general public. These members can be individuals
or organizations and share the same requirements regarding clouds (e.g.,
security or compliance considerations). The cloud infrastructure may be
owned by community members or a third party and can be located on or off
premises [75].

• Hybrid cloud: A hybrid cloud incorporates characteristics of at least two of
the three other deployment models. The parts of a hybrid cloud representing
other deployment models remain unique inside the hybrid cloud, but are
bound together, to enable data and application portability between them.
The technology used for bounding can be standardized or proprietary and a
hybrid cloud can be located on or off premises [75].

2.1.4 Opportunities and Advantages

There has been an important growth in Cloud Computing services during the
last couple of years and predictions claim that this growth will continue, even
accelerate, in the following years [38, 83]. Besides usual market hype this is also
caused by the many benefits Cloud Computing promises for organization’s IT.
The authors of [17] list 13 benefits of Cloud Computing and rank them by their
number of occurrence in literature. Some of these benefits have already been
briefly mentioned in this thesis. For better overview and understanding the most
important benefits will now be discussed in detail:

• Cost efficiency: Cost reduction is one of the most addressed benefits of Cloud
Computing [17]. Jinesh Varia writes in [96] that “[...] if you have to build
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a large-scale system it may cost a fortune to invest in real estate, hardware
(racks, machines, routers, backup power supplies), hardware management
(power management, cooling), and operations personnel. [...] Now, with
utility-style computing, there is no fixed cost or startup cost. [...]” Instead
of startup and fixed costs, there are only usage-based costs in pay-as-you-go
Cloud Computing [5]. Further these running costs are in general lower, than
Small- and medium-sized Enterprises (SMEs) or start-ups would have to
pay when running their own data centers. This is due to the fact, that large
data centers have better economies of scale (Supply-side savings, Demand-
side aggregation, Multi-tenancy efficiency) than smaller ones, resulting in a
significant lower Total Cost of Ownership (TCO) [44].

• Scalability/Flexibility: Another benefit of Cloud Computing is its elasticity.
Popular Internet services often face large variations in demand, which can
occur periodic (e.g., daytime or seasonal related) or arbitrary (e.g., mentioned
in news articles or social media). To handle such spikes in demand one has to
provision in advance for them, because changing the number of servers in a
data center can take weeks [5]. This makes it impossible to scale provisioned
computation resources flexible according to current demand. On the other
hand with Cloud Computing scaling normally takes place in minutes [96].
Due to its elasticity Cloud Computing has also the potential for shrinking
processing time. Now one can rent a huge number of machines to compute a
task in parallel and speed up processing, with nearly the same costs as when
renting only one machine for an accordingly longer time [44].

• Better business focus: Nowadays the use of IT is inevitable for a business,
meaning that even if IT is not the core business of a company a significant
amount of money has to be spent for it. As described in [44] 53% of a com-
pany’s IT budget is currently spent on infrastructure and 36% is spent for
maintaining existing applications. With Cloud Computing the spending in
both areas can be reduced, freeing up money for new application develop-
ment, giving the company an advantage in market competition. Furthermore
Cloud Computing can reduce Time-to-Market for new services, giving an en-
terprise an additional advantage over its competitors [43].

That the benefits of Cloud Computing can also be put into effect in real world
business is proven by numerous success stories. Some of these stories are enu-
merated in [45], another one is described in [96]. Two success stories not noted in
literature previously cited are ”Animoto’s Facebook scale-up“ [46,100] and ”Pulse’s
Kindle Fire scale-up“ [12].
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Animoto is an online video editing service, originated in 2006. It allows users to
easily create videos with their own photos and music by just uploading them to
the service. To run this service Animoto uses various services offered by AWS,
like Amazon Elastic Compute Cloud (EC2). EC2 is a service, providing resizable
compute capacity to customers (see Section 2.2). On average Animoto used 50 EC2
instances simultaneously to serve its 25,000 users, but in April 2008 they started
a Facebook app resulting in an enormous popularity growth of their service. In
within 3 days the number of users had grown by 10 times, to a total of 250,000.
To keep up with the demand Animoto had to increase the number of used EC2
instances to more then 3,500.

Pulse is a young Internet start-up, founded in 2010. It develops news reading
applications for mobile devices, like smartphones and tablet computers, which
aggregate and enrich news feeds to provide a better user experience than usual news
applications do. For pre-processing news feeds Pulse runs its backend software on
Google App Engine (GAE). When Amazon launched its Kindle Fire tablet in late
2011 they decided to preload Pulse on every device sold. Due to that Pulse could
nearly double its user-base, to about 10 millions, in a very short period of time.
The number of requests per second Pulse’s backend had to handle reached 10,000
at peak time. Because Pule’s backend software is deployed to a PaaS cloud it
scaled-up to met demand, without much intervention needed by Pule’s developers.

Both success stories show the benefits Cloud Computing can bring real world
business. Without the use of cloud services both companies would not have been
able to scale-up their services that much in such short periods of time, given their
personnel and financial limitations, resulting in a severe loss of reputation and new
users.

2.1.5 Concerns and Challenges

Whenever a new technology emerges its rise is also accompanied by numerous
concerns. This is especially true for technologies like Cloud Computing, which
are considered to have serious impact on a whole industry. Richard Stallman, a
Free Software activist and known for uncompromising statements, expressed his
concerns about Cloud Computing in an interview with The Guardian like this:

It’s stupidity. It’s worse than stupidity: it’s a marketing hype cam-
paign. Somebody is saying this is inevitable – and whenever you hear
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somebody saying that, it’s very likely to be a set of businesses cam-
paigning to make it true.

– Richard Stallman, GNU Founder [60]

Stallman wanted to address concerns about Cloud Computing regarding issues
like e.g., privacy, security, reliability, portability and sovereignty of cloud customer
data and software, which are indeed main concerns about Cloud Computing, as
stated in [17] and [44]. Besides Stallman’s rant there is lot of qualified literature
discussing these issues like [58,61,62] or more comprehensively [18].

The five previously mentioned main concerns about Cloud Computing will now be
discussed in detail:

1. Security: Data security is an important issue for enterprises, because for
most companies their data represent a big business value. As [62] states, in
Cloud Computing a user will typically not know the exact location of her data
stored, nor will she know the sources of data from other users collectively
stored with hers. If one of these other users conflicts with law, storage
hardware can be confiscated, which may result in data loss for other users
too [18]. Also clouds can become a tempting target for cybercrime, which can
increase security risks for their users further. As mentioned in [43] encrypting
data stored in the cloud does not solve security problems completely, because
when this data should be processed in the cloud it has to be decrypted
temporarily.

2. Privacy: With more personal data stored in the cloud privacy becomes an
important topic in Cloud Computing. In many countries data protection
laws are in effect, which may lead to civil or criminal sanctions for a company
failing to comply with. The authors of [18] consider this to be a high risk
for cloud consumers, because when they store data in the cloud they have to
rely on the cloud provider to comply with these laws. Storing data in foreign
countries or at cloud providers owned by US-based companies can also be a
risk due to foreign jurisdiction. For instance the US Patriot Act grants US
federal agencies access to data stored in data centers, even when they are
located outside the United States but owned by US-based companies. This
and further implications for Cloud Computing caused by the US Patriot Act
are treated by law firm SNR Denton in [35] and german computer magazine
”iX“ in [15].
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3. Availability: When an enterprise decides to shift toward the cloud by mov-
ing more and more of its IT infrastructure into the cloud availability and
reliability of a cloud provider becomes crucial for the enterprise’s business
success. Due to this fact cloud providers offer in general Service Level Agree-
ments (SLAs) to their customers. A SLA is a contract specifying various
parameters the cloud provider’s services have to fulfill, as described in detail
in [61]. When a cloud provider cannot met its SLAs cloud customers can ex-
pect compensation payments for their loses. The problem with most Cloud
Computing SLAs today is, that they are weak worded on purpose to protect
cloud providers instead of customers, as stated by the authors of [43].

4. Interoperability: Another concern about nowadays Cloud Computing is the
limited interoperability between the services of different cloud providers.
Currently standardized interfaces shared among cloud providers, like com-
mon APIs or file formats for VM images are missing. This issue affects
all three cloud types (IaaS, PaaS, SaaS), as described in [18]. This vendor
lock-in limits customers ability to switch their cloud provider and thus is an
disadvantage for them. On the other hand this is an advantage for cloud
providers, because now customers cannot leave that easily when increasing
prices or reducing reliability, as outlined in [5].

5. Control/Governance: Using a cloud provider’s infrastructure to offer services
to customers or employees implicates that a company gives up (some) control
about how to manage used IT infrastructure. In [18] this is called ”Loss of
Governance“ and assessed to be a high risk for cloud consumers. Examples
for this loss in governance are ”Reputation Fate Sharing“ [5] and unpre-
dictable service performance [45]. Reputation fate sharing means that nu-
merous customers’ reputation can be affected if only one cloud user behaves
bad, e.g., by sending spam mails, so that multiple Internet Protocol (IP)
addresses of the cloud become blacklisted by spam-prevention services. Un-
predictable service performance occurs when a cloud provider poorly handles
over-subscription of the physical computer hardware. In both cases end-users
will blame the affected cloud user, despite the fact that the cloud provider
or another cloud customer is responsible for the obstacles.

Some of the concerns treated above are not inevitable. According to the opinion
of the authors of [4], there is no technical reason why a cloud service cannot be as
secure as a self-hosted service. They also think that privacy concerns about Cloud
Computing arise from the fact, that users are not used to the Cloud Computing
paradigm yet. But when social habits change there might be no concerns about
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privacy any more. Reliability and availability concerns can be eliminated by di-
versification. The authors of [58] recommend the use of several non-related cloud
providers to achieve superior availability of one’s service(s). The vendor lock-in
problem may be mitigated in future, as there are many standardization activities
in progress. Examples for these activities are the Cloud Security Alliance (CSA)
or the Open Cloud Computing Interface Working Group (OCCI-WG), mentioned
in [4]. There are also efforts to create open-source cloud stacks, comprehensively
discussed in Chapter 6 of [11].

Concluding it can be said, that with Cloud Computing maturing the quality of
cloud offerings and the benefits they provide users will rise and outweigh user’s
concerns.

2.2 Amazon Web Services (AWS)
Amazon Web Services is a product and also a subsidiary of e-commerce company
Amazon. In 2006 AWS started to offer IT infrastructure services to the general
public in form of Web Services accessible over Hypertext Transfer Protocol (HTTP)
[31], using Representational State Transfer (REST) [30] and SOAP [42,90] proto-
cols [49]. Since then market adoption of AWS increased steady and by February
25th, 2009 about 490,000 developers had registered for AWS as mentioned by Jeff
Barr in an AWS blog post [9].

By running one of the world’s biggest e-commerce websites Amazon is compelled
to maintain big IT facilities around the world to bring its services fast and reliable
to its millions of customers. These services face seasonal peak periods in demand
especially during the weeks before Christmas or Thanksgiving. To not hinder
its own business during these periods of time Amazon has to provision its IT
resources to cope with these peaks. As a result a large part of these resources
remain unused for the rest of the year, causing costs but no revenues [11]. To
change this Amazon started AWS. Services provided through AWS are billed in a
pay-as-you-go manner with “[...] no up-front expenses or long-term commitments
(necessary), making AWS a cost-effective way to deliver applications. [...]” as
described by Amazon in [51].

Since its start in 2006 the number of services offered by AWS has increased con-
tinuously. Now AWS’s offerings are not limited to IaaS solutions any more, also
PaaS, SaaS and even Human-as-a-Service (HaaS) solutions are available. For in-
stance AWS Elastic Beanstalk, currently in beta stage, is a PaaS solution for Java
web applications. A developer just needs to package her application’s code into
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a Java Web Application Archive (WAR) file, upload it to Elastic Beanstalk and
everything else (deployment, scaling etc.) is managed by the service. Amazon
Relational Database Service (RDS) is an example for a SaaS solution offered by
AWS. With RDS a relational database can be managed and operated through a
Web Service. Scaling, backup etc. is done automatically by RDS. HaaS describes
a service requiring human interaction for operation. Amazon Mechanical Turk
enables companies to establish such services. A company has to submit a task
it needs to be done to the Mechanical Turk service, which then offers this task
to a human workforce. When the task is done AWS sends the result back to the
company requested the task. The human workforce is paid by AWS which bills
the requesting companies per task accomplished.

The remainder of this section will only discuss three core services of AWS: Amazon
Elastic Compute Cloud (EC2), Amazon Elastic Block Store (EBS), and Amazon
Simple Storage Service (S3). Similar services are also provided by OpenStack,
which will be used to evaluate jCloudScale’s migration mechanism, which design
and implementation is the goal of this thesis (see Chapter 6).

An overview of AWS’s services including also ones not covered in this section can
be found in [51] and [52].

2.2.1 Amazon Elastic Compute Cloud (EC2)

EC2 is the very core of Amazon Web Services. It is not just a service used by
AWS customers, but also by AWS itself to run other services like Amazon Elastic
MapReduce or Elastic Beanstalk on top of it. EC2 virtualizes the thousands of
physical servers hosted in Amazon’s data centers across the world and provides
them as general purpose Virtual Machines (VMs). As described in [52] Amazon
uses a highly customized version of Xen [104] as Virtual Machine Monitor (VMM)
to achieve virtualization in EC2. Further Unix guests are executed in Para Virtual-
ization mode while for other OSes Full Virtualization is used. Booth virtualization
techniques have already been discussed in Section 2.1.2 of this thesis. Because of
the VMM Virtual Machines are isolated from each other so that they cannot access
another VM’s data. This also applies to network traffic, even if a VM’s network
card is – intentionally or not – set to promiscuous mode. These measures and var-
ious security certificates attested to AWS guarantee confidentiality of customer’s
data in EC2, as noted in [52].

The Virtual Machines (VMs) provided by EC2 are available in different configu-
rations regarding computational resources they provide. These configurations are
called instance types and currently there are 13 different instance types available.
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An instance type is defined by the amount of storage, memory and computation
power it comes with. AWS further categorizes instance types in usage classes like
”high memory“ or ”high CPU“, which does not limit for what an instance type can
be used but is a recommendation for what usage the given instance type’s config-
uration fits best. The designation, API name, storage, memory, and computation
power of each EC2 instance type currently available is shown in Table 2.1.

Instance Type API Name Storage Memory Compute
Micro t1.micro — 613 MB 2 ECU
Small m1.small 160 GB 1.7 GB 1 ECU
Medium m1.medium 410 GB 3.75 GB 2 ECU
Large m1.large 850 GB 7.5 GB 4 ECU
Extra Large m1.xlarge 1,690 GB 15 GB 8 ECU
HiMem Extra Large m2.xlarge 420 GB 17.1 GB 6.5 ECU
HiMem 2x Extra Large m2.2xlarge 850 GB 34.2 GB 13 ECU
HiMem 4x Extra Large m2.4xlarge 1,690 GB 68.4 GB 26 ECU
HiCPU Medium c1.medium 350 GB 1.7 GB 5 ECU
HiCPU Extra Large c1.xlarge 1,690 GB 7 GB 20 ECU
Cluster 4x Extra Large cc1.4xlarge 1,690 GB 23 GB 33.5 ECU
Cluster 8x Extra Large cc2.8xlarge 3,370 GB 60.5 GB 88 ECU
Cluster GPU 4x ExLarge cg1.4xlarge 1,690 GB 22 GB 33.5 ECU

Table 2.1: Overview of Amazon EC2 instance types, data from [47]

Amazon measures computation power provided by an EC2 instance type in EC2
Compute Units (ECUs). An ECU is a standardized unit, defined by AWS to be
equivalent to the performance a 2007 AMD Opteron or Intel Xeon processor at
1.0 to 1.2 GHz clock speed delivers. This performance abstraction enables to keep
the compute power of an instance type constant despite the capabilities of actual
hardware it runs on.

An EC2 instance can be managed (created, restarted, etc.) programmatically
by using Web Services. It is also possible to control the geographic region an
EC2 instance is deployed to. Currently Amazon maintains data centers in five
different regions, including United States (Virginia, California), Europe (Ireland),
and Asia (Singapore, Tokyo) [52]. Stored data is not automatically replicated
between regions and thus allows customers to fulfill local-dependent privacy and
jurisdiction requirements by choosing the appropriate data center location for their
EC2 instances [52]. Regions are further separated in so called ”Availability Zones“.
Availability Zones are physically separated from each other, but located within the
same metropolitan area. Each Availability Zone has its own independent hardware
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facilities, so that it cannot suffer from failure of hardware in another Availability
Zone. Amazon encourages its customers to deploy their AWS applications to
multiple Availability Zones and across regions to achieve best service reliability
even when facing serious service interruptions due to natural disasters or system
failures [97]. The downside of deploying to different geographic regions is that data
traffic between EC2 instances running in different regions is charged separately by
AWS. Also appropriate encryption methods should be used when sending data
between regions, because AWS uses public Internet infrastructure for transmitting
data across regions [52].

Like other virtualization software EC2 uses Virtual Disk Images (VDIs) to create
virtual servers. In AWS these images are called Amazon Maschine Images (AMIs).
AWS provides various pre-built AMIs, created by Amazon itself or third-party
vendors so that users do not have to build their own ones. Provided AMIs differ
by the OS and software packages installed, hence each AMI is built for a certain
purpose like hosting Web applications, database servers, etc. One big difference
between ordinary VDIs and AMIs is that AMIs are read-only images. If an EC2
instance is terminated changes made to the AMI used are not saved persistently,
meaning that if the instance is started again all changes previously made are
lost [4]. Therefore multiple EC2 instances can be run in parallel sharing the same
AMI. To save data beyond the runtime of a VM other AWS services, like Amazon
Elastic Block Store and Amazon Simple Storage Service must be used.

2.2.2 Amazon Elastic Block Store (EBS)

The circumstance that AMIs are read-only and thus changes to the file system of an
EC2 instance remain temporary (i.e. till it is terminated) makes EC2 unsuitable for
various applications. For example installing a database server to an EC2 instance
would be pointless, because database changes would be lost when the instance
gets terminated. The same applies to log files, file uploads, etc. To overcome this
limitation AWS offers Amazon Elastic Block Store (EBS). EBS is a standalone
service but integrates seamless into EC2. It offers raw block devices with sizes from
1 GB to 1 TB, which can be attached to an EC2 instance. For the OS running
on the instance an EBS volume appears and behaves like an additional hard disk
drive, regardless of its real location in the cloud. Opposite to AMIs EBS volumes
store data durable when the EC2 instance is terminated and/or they are detached
from the instance. [4, 47]

When creating an EBS volume the user has to specify the Availability Zone the
volume should be stored in. AWS then transparently replicates the volume multiple
times inside this Availability Zone to prevent data loss due to failure of a single
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hardware component. EBS volumes are not replicated across Availability Zones
and thus EBS is not an as reliable storage service as S3. Therefore Amazon
recommends in its best practices guide for AWS [97] to regularly make point-in-
time snapshots of EBS volumes and store them to S3. A point-in-time snapshot is
an incremental backup of an EBS volume, meaning that only data blocks changed
since a previous snapshot made will be added to the snapshot. Another best
practice is to encrypt data stored on EBS volumes by using e.g., encrypted file
systems when building security sensitive applications [97].

EBS has also some limitations. Besides that EBS volumes are not replicated across
Availability Zones it is not possible to make point-in-time snapshots of a volume
if connected to a running EC2 instance [51]. Further it is not possible to attach
an EBS volume to multiple EC2 instances at the same time. On the contrary
connecting multiple volumes to an instance is possible. As described in [97] this
offers the possibility to increase EBS’s I/O performance by configuring the volumes
as Redundant Array of Independent Disks (RAID) device.

Amazon charges a customer’s EBS usage on a monthly basis by the amount of
storage space used and the number of I/O operations performed.

2.2.3 Amazon Simple Storage Service (S3)

Beyond EBS Amazon offers another storage solution in AWS called Amazon Simple
Storage Service (S3). S3 is designed as storage for the Internet. It can be accessed
through a REST- or SOAP-based Web Service interface and can store “[...] any
amount of data, at any time, from anywhere on the web. [...]” as claimed by [48].
In contrast to EBS, which provides a raw block device for storing data, S3 is more
structured. It defines buckets and objects. A bucket is a container which can store
an arbitrary number of objects. Objects are fundamental entities stored in S3.
An object consists of object data and metadata describing the object data. Usual
metadata is the object’s last modification date or its HTTP content type. [52]

S3 can handle objects with up to 5 TB in size and the number of objects a cus-
tomer can store is not limited. When creating a bucket a customer can choose the
region the bucket should be stored in. If objects are stored to a bucket AWS syn-
chronously replicates the data to multiple Availability Zones within the bucket’s
region. Therefore S3 can sustain concurrent loss of data in two data center fa-
cilities, which translates into 99.999999999% durability and 99.99% availability
over a given year [48]. There is an option in AWS called Reduced Redundancy
Store (RRS), allowing a customer to specify buckets which store data non-critical
for her. RRS then reduces the level of redundancy S3 uses to store this data,
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leading to a reduced durability of 99.99% and the ability to only sustain the loss of
data in a single data center facility. The benefit for the customer comes in reduced
storage costs for data stored with the RRS option enabled. [48]

Additionally to RRS there are other advanced storage features in S3 like data
versioning and Access Control Lists (ACLs). Data versioning allows to store mis-
cellaneous version of an object in S3. By default object requests will deliver the
most recent version of an object stored, but particular versions of an object can
be retrieved by specifying a version in the request [48]. ACLs allow to apply
fine grained access restrictions on S3 buckets and objects. By default only the
bucket and/or object creator has access to her buckets and objects, but this can
be changed to also permit access for other AWS customers or even anonymous
users. Access permissions can be configured on bucket and object level, but ACLs
of buckets are not inherited to the objects they contain. Furthermore an Amazon
S3 bucket can be configured to log access to it and the objects it contains. If this
so called access logging is enabled information about each access request will be
gathered, periodically aggregated into log files and finally delivered to a specified
S3 bucket [52].

The monthly price a customer has to pay for using S3 depends mainly on 3 usage
values: amount of data stored, number of requests made, and data transferred out
of S3. Costs can slightly change when using RRS or changing regions.

2.3 Message Queues (MQ)
Distributed software systems have an inherent need for communication, to ex-
change information and synchronize with each other. There are various techniques
available for communication in distributed systems, such as Remote Method In-
vocation (RMI), Remote Procedure Calls (RPCs) or Web Services, but these are
not sufficient when systems grow too large and/or become to complex. Therefore
another type of software services was created, named Message-oriented Middle-
ware (MOM). [73]

Message Queues (MQs) are a fundamental concept within MOM. The big differ-
ence between RMI/RPC on one hand and MQs on the other hand is that former
provides transient synchronous communication, while latter provides persistent
asynchronous communication [91]. Before discussing MQs any further it is suit-
able to define the previously used terms:

• Transient Communication: Transient communication requires that all appli-
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cations, taking part in a particular communication, are reachable and execut-
ing, otherwise all communication is lost. For instance, most transport-level
communication is transient. If a target host cannot be reached messages will
simply be discarded. [91]

• Persistent Communication: As its name suggests persistent communication
does not discard messages, when a target system cannot be reached. Hence it
is not required that sender and receiver applications are executed at the same
time. The Internet e-mail System is a prominent example for a persistent
communication system. [91]

• Synchronous Communication: When RPC is used to call a method on a
remote host the caller method is blocked till the remote host has completed
its computation. This behaviour is called synchronous communication. A
disadvantage of synchronous communication is, that systems do not have
processing control independence, as control is handed over to the called sys-
tem for the time being. An advantage is, that synchronous communication
guarantees the sequential order of messages. [73]

• Asynchronous Communication: Asynchronous communication negates the
properties of synchronous communication. The caller retains processing con-
trol, as it does not need to block and wait for the callee’s response, but se-
quential order of messages is not guaranteed any more. Further asynchronous
communication requires an intermediary between sender and receiver, so that
messages can be cached, if the receiver cannot be reached. [73]

As stated in the beginning of this section a MQ, or MOM in general, is capable
of handling communication in large and complex systems. This is due to the use
of persistent asynchronous communication and the system architecture it enables.
There are four main advantages a MQ brings to communication for big distributed
software systems: [73]

• Coupling: MQs provide asynchronous communication between sender and
receiver by acting as intermediary between them. Due to that a MQ can be
seen as independent layer between distributed software systems, that looses
their coupling with each other, resulting in a highly cohesive, decoupled
system deployment.

• Reliability: Besides asynchronism a MQ also provides persistency. This
means that it safely stores a message as long as it takes to deliver the mes-
sage to its recipient and get his acknowledgement in return. Because of this
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a MQ is able to guarantee a message’s delivery, which improves the commu-
nication’s reliability.

• Scalability: By decoupling the interaction of distributed software systems, as
acting as intermediary between them a MQ also decouples their performance
characteristics. This is because when using a MQ a sender does not know
anything about the message’s receiver and vice versa. Hence both systems
can be scaled independently with no disruption to one another or other
systems.

• Availability: The loose coupling of software systems, enabled by use of a MQ,
does not only increase the whole systems scalability, but also its availability.
Because communication between systems is persistent and asynchronous,
the failure of one subsystem does not necessarily result in failure of another
subsystem, as messages can still be handed of to the MQ, if the messages’
receiver is down.

MQs support different types of messaging models. The two most important ones
are the Point-to-Point and the Publish/Subscribe models, which are outlined in
Figure 2.6. As illustrated in the figure both models are based on the exchange
of messages through a channel. Typically the channel is called ”queue“ in the
Point-to-Point model and ”topic“ in the Publish/Subscribe model. In the following
enumeration both models will be discussed in detail:

• Point-to-Point Model: The Point-to-Point model can be seen as a logical 1-
to-1 connection, connecting one sender with one receiver through a queue. As
mentioned earlier sender and receiver do not know each other, they connect
to the queue, which is identified by an unique name, and hand over message
delivery to it. A MQ can host multiple queues, and thus communication
channels, simultaneously. Typically the order a queue sorts the messages
it receives can be configured. The most common configuration used is a
First-In-First-Out (FIFO) queue, where messages are sorted in the order
they where received. As shown in Figure 2.6 a queue is not strictly limited
to one sender and one receiver. Despite that the queues logical behaviour
stays the same, meaning that even if multiple receivers are connected to a
queue a message will only be forwarded to one of them. This can be used as
an easy way to introduce load balancing into a system. [73]

• Publish/Subscribe Model: The Publish/Subscribe model can be seen as a
logical 1-to-n association, connecting one sender (publisher) to multiple re-
ceivers (subscribers), through a so called topic. As in the Point-to-Point
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Figure 2.6: Messaging models compared, inspired by [73]

model sender and receiver do not know each other. They connect to a
topic and hand over message delivery to it. Like queues topics are identified
through an unique name and a MQ is also capable of hosting multiple topics
simultaneously. In contrast to queues topics replicate a received message as
often as necessary to provide each connected receiver with it. Therefore it
is possible that a sender can reach thousands of receivers by only sending a
single message. In practical application a topics 1-to-n association is not a
strict limitation. It is also possible that multiple senders are connected to
the same topic, so that they effectively share the same set of receivers. [73]

2.4 Aspect-oriented Programming (AOP)
AOP is a new programming paradigm which helps achieving better modularization
in software development. It does not replace other design methodologies, such
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as Object-oriented Programming (OOP), but enhances them to overcome their
shortcomings [67]. While much of the theoretical founding of AOP was done at
universities all over the world a research team at Xerox PARC coined the term
AOP in a paper in 1996 [63] and also created AspectJ [92, 93], one of the first
practical implementations of AOP [67]. In 2002 Xerox PARC handed the AspectJ
project over to the Eclipse Foundation, a non-profit open-source community, which
now actively develops AspectJ [79].

2.4.1 Definition of Aspect Orientation

AOP introduces a couple of new technical terms, like Aspects, Pointcuts and Code
Weaving. To understand the concepts of AOP the meaning of these terms has to
be known. An explanation is given in the following:

• Cross-Cutting Concerns: As mentioned before AOP helps to overcome short-
comings of current programming methodologies. For OOP this means han-
dling of a software’s cross-cutting concerns. Each application consists of
core concerns and system-wide concerns. In OOP concerns are mapped to
modules, so core concerns represent the software’s main modules whereas
system-wide concerns represent its supportive modules. Supportive modules
are in general utilized by main modules to cover common tasks. Such system-
wide concerns, which span multiple modules are called ”Cross-Cutting Con-
cerns“ [67]. The most common example of a Cross-Cutting Concern is that
of logging. Logging is a system-wide concern that in general affects every
other concern in a system [79].

• Aspects: An aspect is a Cross-Cutting Concern that is packed into a separate
module and called by the AOP runtime whenever necessary. This means that
with AOP cross-cutting concerns can be implemented as complete indepen-
dent modules without the need of fusing invocation code in the software’s
main modules [67]. As defined in [79] an aspect has to fulfill four require-
ments: it must be definable in a modular fashion, it must be dynamically
applicable, its application must accord to a set of rules, and it must provide
a mechanism and a context for specifying the code it will be executing.

• Join Points: Join points are points within an application which can trigger
the execution of an aspect. What points in an application can act as a
join point depends on the capabilities of the used programming language
and AOP tools. Common examples for join points are the invocation of a
constructor or the initialization of an object. [79]
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• Pointcuts: A pointcut actually decides if an aspect is executed when a join
point is reached. It encapsulates logic that is evaluated when the pointcut’s
corresponding join point is triggered and invokes the aspect if that logic
evaluates to true. [79]

• Code Weaving: Code weaving is the name of the process that ”weaves“ AOP
code (i.e., aspects) and ordinary program code (i.e., the software’s core mod-
ules) together. The actual weaving process is done by an AOP tool usually
called ”weaver“. A weaver can be implemented in various ways, which affects
how code is woven together. One way is source-to-source translation. Here
source code of core modules and aspects are preprocessed by the weaver and
woven source code is produced, which is than compiled by the language com-
piler to executables. Another approach used by AspectJ is to use a special
Java class loader, which loads the Bytecode of aspects and ordinary Java
classes, weaves them together and than hands the new Bytecode over to the
virtual machine. All approaches have in common that the original source
code is not modified by the weaver. [67]

To better understand how the use of AOP changes the logical execution order of
an application a comparison is sketched out in Figure 2.7. The sketch at the top of
the figure shows how a logging module, which is a Cross-Cutting Concern, is used
by core modules, such as accounting and persistence. The grey bars inside the
core modules indicate code that is used to invoke the logging module. The bottom
of the figure shows the same scene but now implemented using AOP. The core
modules now do not implement any code to invoke the logging module. Instead
the logging aspect is automatically invoked when the appropriate join points inside
the core modules are reached. The logging aspect then calls the logging module if
the pointcut’s decision logic evaluates to true.

2.4.2 Benefits of AOP

AOP is often criticized for being to difficult to understand and also to make it
harder to understand a program’s execution behaviour because of its join points
and pointcuts which become active just at runtime. But as stated in [67] these
acceptance issues are mostly base to the fact that AOP is a new programming
methodology which demands a new thinking about system design and implemen-
tation. Besides that the authors of [67] also state that the benefits of AOP far
outweigh the perceived costs and therefore its worth using AOP. Some of the
benefits claimed by AOP are listed in the following:
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Figure 2.7: Top: Logging w/o AOP / Bottom: Logging with AOP, see [67]

• Separation of Concerns: Because AOP improves handling of Cross-Cutting
Concerns it becomes much easier to design a software’s core modules ac-
cording to the Separation of Concerns principle. As an example see Figure
2.7. Both core modules do not need to implement logging code, when AOP
is used. This results in cleaner assignment of responsibilities and better
traceability. [67]

• Modularization: Besides better implementation of the Separation of Con-
cerns principles AOP also encourages higher modularization of software.
With AOP each concern can be addressed separately which leads to re-
duced coupling between objects and lesser duplicated code. Both results
make software maintenance easier. [67]

• Late binding of design decisions: A common dilemma for software architects
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is that of under- or overdesigning a software. Overdesigning occurs when
an architect designs a software so that it can easily be extended to support
functionalities which may be needed in the future. Underdesigning obviously
describes the opposite behaviour. The problem is that future requirements
of software are rarely foreseeable, so that such provisions are often result
in wasted effort. With AOP under- and overdesigning is not necessary any
more because due to the use of aspects new features can easily be added
without the need for system wide modifications. [67]

• Better code reuse: With AOP each aspect is implemented as a separate mod-
ule, leading to more loosely coupling between objects, which is the basis for a
higher degree of code reuse. One just has to change the weaving specification
instead of various core modules to change a system’s configuration. [67]

• Improved Time-to-Market: All aforementioned benefits result to a better
software development process. Improved Separation of Concerns allows bet-
ter assignment of a core module to the developer’s skills. Better modular-
ization make software maintenance easier. Late binding of design decisions
reduces the amount of wasted development effort and better code reuse allows
faster development. All of these lead to a significant reduction of time-to-
market. [67]
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CHAPTER 3
Related Work

This chapter will discuss selected technologies and frameworks which, like jCloud-
Scale, also enable the distribution of an application’s objects among several com-
puter nodes. Hence these technologies can be used for programming distributed
applications and therefore also cloud applications. After each technology’s descrip-
tion a comparison with jCloudScale will be given.

3.1 Enterprise Java Beans (EJBs)
In 1999 Sun Microsystems introduced the Java Enterprise Edition (Java EE),
which is an umbrella specification for building enterprise-class distributed appli-
cations using the Java programming language. Java EE applications are executed
in a special runtime environment – called application server – which consist of
several logical domains called containers. Each container has a specific role and
provides various services, like database access, transaction handling, security etc.,
to the components it supports. Enterprise Java Beans (EJBs) are components
handled by the EJB container of an application server and also build the core of
the Java EE specification. [39]

Components executed in different containers of an application server can interact
with each other using protocols like Remote Method Invocation (RMI) and Hy-
pertext Transfer Protocol (HTTP) (for SOAP and RESTful Web Services). This
also applies to components running inside application servers hosted on different
computers and connected through a network. EJBs are used for processing the
transactional business logic of an application and to map database tables which
persistently store an application’s business data. [39] There are different types of
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EJBs, each one fitting best for a particular use case. First EJBs can be categorized
in session beans, message-driven beans and entity beans. Session beans can be fur-
ther distinguished in stateful session beans, stateless session beans, and singleton
session beans. [87]

As already mentioned at the beginning of this section Java EE is a collection
of numerous specifications. This is a great benefit for the platform because it
led to various implementations of Java EE runtimes from different vendors. Any
Java EE enterprise application can be executed on any Java EE runtime if both
artifacts (i.e., the runtime and the application) correspond to these specifications
[87]. This compatibility guarantee and the component model architecture of EJBs
make them a perfect technology for writing cloud-based applications. Indeed lately
there have emerged numerous Platform-as-a-Service (PaaS) solutions leveraging
EJBs to execute and scale applications inside a Cloud Computing environment.
A description of some selected services of these cloud offerings is given in the
following:

• Amazon Elastic Beanstalk : Elastic Beanstalk is executed on top of Amazon
Elastic Compute Cloud (EC2), transforming the Infrastructure-as-a-Service
(IaaS) solution into an PaaS one. For Java developers it uses Apache’s
Tomcat server as execution environment, so that a developer only has to
upload her application as a Web Application Archive (WAR). Everything
else (deployment, scaling, etc.) is than automatically handled. Apache’s
Tomcat does not implement an EJB container, meaning that a developer
has to use third-party libraries if she wants to use EJBs. [49]

• Oracle Java Cloud Service: The Java PaaS solution from Oracle provides full
Java EE support by using Oracle WebLogic application server as execution
environment. Besides that the service also provides the Oracle database
cloud service and integrated identity management for enterprise customers.
It is possible to use the service in a public or private cloud configuration or
migrate one’s application completely to an on-premise cloud infrastructure.
[24]

• CloudBees : CloudBees is a PaaS solution providing support for separated
development and production environments. Developers can deploy their ap-
plication to a development environment, where they can build and test their
application using the Jenkins continuous integration server. Afterwards the
applications can seamlessly be moved to a production environment inside the
CloudBees cloud. CloudBees provides full Java EE support and can be used
with various IaaS providers. [20]
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• Jelastic: Jelastic is a PaaS solution that can be used with various IaaS cloud
provider located in different countries to meet an application’s performance
and/or legal requirements. A developer can configure the application’s ex-
ecution environment by choosing between different application servers and
database servers and by setting limits for horizontal and vertical scaling.
Jelastic features full support for a Java EE execution environment. [59]

3.1.1 Comparing EJBs with jCloudScale

EJBs and jCloudScale have very different approaches and also aim to achieve
different goals. EJBs are part of the Java EE specification, implement a component
model and are not meant to be executed standalone. They are executed inside an
EJB container, which also controls their life cycles and provides additional services
such as transactions and naming. The container decides when to create, destroy,
passivate or activate an EJB. Therefore debugging EJBs is hard and needs to be
supported by the container. EJBs were designed for executing business logic in
multi-layered, multi-user enterprise applications.

jCloudScale on the other hand is a lightweight middleware using Aspect-oriented
Programming (AOP) to deploy plain Java objects into an IaaS cloud. Applications
decide when to create and destroy Cloud Objects (COs). With AOP disabled an
application acts like an ordinary local Java application and thus can be as easily
debugged. jCloudScale works best for applications, which can split their workload
several independent packages, so that each one can be executed by a CO.

3.2 Uni4Cloud
Uni4Cloud [89] is developed at the Department of Applied Informatics at Univer-
sity of Fortaleza. Its goals are to provide automated deployment of applications
to IaaS clouds independent of used cloud provider and also to deploy applications
composed of multi-cloud components. To achieve this Uni4Cloud relies on open
Cloud Computing standards: Open Virtualization Format (OVF) and Open Cloud
Computing Interface (OCCI). OVF provides a vendor and platform neutral solu-
tion for specifying Virtual Machine Interface (VMI). OCCI provides a common
Application Programming Interface (API) specification for common IaaS cloud
services, such as storage and Virtual Machine (VM) management.

The Uni4Cloud approach is composed of three main services [89]:

• Service Modeler : The service modeler is a visual tool for building and con-

36



3.3 Mobile Cloud Middleware (MCM)

figuring OVF images. Developers have to provide pre-built templates for
VMs and define parameters for their deployment. The service modeler then
produces an OVF virtual appliance.

• Service Manager : The service manager takes OVF virtual appliances pro-
duces by the service modeler and actually deploys them to one or multiple
IaaS clouds. It does this by using a OCCI-compliant API provided by the
cloud adapter component.

• Cloud Adapter : The cloud adapter basically translates OCCI-complaint API
calls to specific API calls for the IaaS providers used. Therefore the cloud
adapter component provides a plugin interface. Wrappers, encapsulating an
IaaS cloud’s API, can be connected through this interface and used by the
cloud adapter.

3.2.1 Comparing Uni4Cloud with jCloudScale

Uni4Cloud and jCloudScale share the same goal: decoupling applications from
the underlying IaaS cloud infrastructure and thus eliminating vendor lock-in. But
the approaches to achieve this are quiet different for both projects. Currently
Uni4Cloud only focuses on application deployment. A developer has to pack her
application alongside with the whole execution stack needed in an OVF image and
configure the number of instances etc. Uni4Cloud will then deploy the application,
but will not provide any further services. For instance, as for now, Uni4cloud does
not support auto-scaling.

jCloudScale also uses VMIs to create cloud nodes, but a developer does not have
to provide them for each application, instead jCloudScale uses a generic image
for any kind of application. When deploying an application’s objects to cloud
nodes jCloudScale copies all necessary binaries and libraries of that application
automatically to the cloud nodes. jCloudScale also takes care of auto-scaling,
demanding developers to only specify a scaling policy for their application.

3.3 Mobile Cloud Middleware (MCM)
Mobile Cloud Middleware (MCM) [32] was developed at the Distributed System
Group of University of Tartu. As its name suggests its target is to be a middleware
for mobile devices, like smartphones, trying to connect to cloud services. Nowadays
the hardware of mobile devices is powerful enough to execute a variety of appli-
cations, ranging from simple calculators to more complex map applications and
even graphical sophisticated games. These applications often use cloud services to
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enrich their user experience or to outsource computational complex tasks, yet to
demanding for mobile hardware. Because nearly every cloud service comes with
its own proprietary API mobile apps can become extensive to develop when using
multiple services. MCM tries to overcome this problem by providing common API
for different cloud services.

MCM consists of three main components. When using MCM a mobile app connects
to MCM’s transportation handler component. The transportation handler than
forwards the request to the MCM manager, which decides which cloud service to
use and requests a matching servlet from the adapter servlet component. The
adapter servlet component looks up a servlet containing a set of functions for
consuming the selected cloud service and provides it to the MCM manager. Finally
the MCM manager creates a cloud service adapter, which it subsequently uses to
communicate with the selected cloud service. The result of each cloud transaction
is sent back to the mobile device in JavaScript Object Notation (JSON) format.

MCM is implemented in Java using servlet technology and therefore can be ex-
ecuted on any application server featuring a servlet container. Currently MCM
supports cloud services from Amazon, including EC2 and Amazon Simple Storage
Service (S3), Google, Eucalyptus and Software-as-a-Service (SaaS) offerings from
Facebook, Face.com, etc.

3.3.1 Comparing MCM with jCloudScale

jCloudScale and MCM are quite different. MCM is a unified gateway to various
cloud services, especially SaaS ones. It focuses on providing its services to mobile
platforms and therefore also implements the asynchronous notification mechanisms
for these platforms. MCM is not transparent in any way for applications using it
and does not provide any scaling mechanism but the capabilities of the application
server it is executed on.

jCloudScale can be used with any program written in Java, tries to be as trans-
parent for the developer as possible and provides an automated scaling mechanism
through scaling policies. In contrast to MCM jCloudScale is limited to IaaS clouds,
but can be used in a much wider application context.

3.4 Aneka
Aneka [98] is a framework for writing applications that execute and scale inside
an IaaS cloud infrastructure. It was originally developed at the Department of
Computer Science & Software Engineering at the University of Melbourne within
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their Gridbus project [16], but is now a commercial software at Manjrasoft. Aneka
is based on the .NET framework [22], but written with portability in mind and
therefore also compatible with the Mono framework [25]. This makes it possible to
execute Aneka on IaaS nodes running Windows- as well as Unix-based Operating
Systems (OSes). Further distributed applications developed with Aneka can be
written in any programming language supported by the .NET runtime.

Aneka is logically located between the physical and virtual resources of the cloud
infrastructure it runs on and the distributed applications developed with it. Aneka
provides four main services to an application developer. These services are exe-
cuted inside the Aneka container [98]:

• Fabric Services: These services provide hardware profiling and dynamic
resource provisioning. Profiling collects runtime information about nodes
Aneka runs on, while provisioning acquires and integrates new nodes dy-
namically. Both services are accessible through vendor independent APIs,
so that Aneka applications do not depend on proprietary APIs of the un-
derlying IaaS provider used. Aneka supports multiple IaaS provider, such as
EC2.

• Foundation Services: These are Aneka’s core services. They address four
issues: maintaining a list of all nodes inside an Aneka cloud, reserving nodes
exclusively for executing Aneka applications with special requirements, pro-
viding persistent storage management and data transfers for applications,
and keeping track of resources used by users so that they can be billed af-
terwards.

• Execution Services: Aneka supports multiple programming models. At de-
fault Aneka comes with support for the Task model, the Thread model, and
the MapReduce model but support for other models can easily be added.
For each supported programming model at least two services have to be
provided: the Scheduling Service and the Execution Service. The schedul-
ing service coordinates execution of applications and dispatches collection of
jobs generated by these applications to the compute nodes. The execution
service is in charge of retrieving all files required for execution, the actual
application execution itself, monitoring and collecting the results.

• Transversal Services: Persistence and security are services used by all other
services of the Aneka container. Persistence keeps track of information such
as the applications running in the Aneka cloud and their status, the status
of the storage, topology information of the cloud etc. All this is saved to
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persistence storage, so that restoring after a system crash or partial failure is
possible. The security layer consists of an authentication and authorization
service, which are used to identify users and check what they are allowed to
do in the Aneka cloud.

The biggest benefits of Aneka are that it acts as an abstraction layer for the under-
lying cloud infrastructure and that it simplifies scaling of distributed applications.
An application developed with Aneka can be executed and scaled on any Cloud
Computing infrastructure supported by Aneka without needing to modify it. Fu-
ture development of Aneka will focus on full support for elastic scaling of Aneka
clouds and support for additional third-party Cloud Computing providers. [98]

3.4.1 Comparing Aneka with jCloudScale

Aneka and jCloudScale are both middlewares for IaaS cloud offerings, trying to
decouple applications from the underlying cloud infrastructure. Aneka is written
using the .NET framework and thus only supports applications written in .NET-
compatible languages. The framework provides various services to applications,
like persistent storage management and security, making it more convenient for
developers writing distributed applications.

jCloudScale is written in Java, supporting only Java applications. Beside an API
for retrieving some statistical data about jCloudScale’s state and several annota-
tions jCloudScale provides no visible services to application developers. This is
because in contrast to Aneka jCloudScale tries to be as transparent for developers
as possible by not forcing them to use special APIs and thus programming for a
particular framework.

3.5 Composite Application Framework (CAFE)
The Composite Application Framework (CAFE) [77, 78] was developed by Ralph
Mietzner at the Institute of Architecture of Application Systems (IAAS) at the
University of Stuttgart during his phd work. A composite application describes a
software that is composed out of different components. These components are in
general Web application and/or Web Services. Thus the goals of CAFE are “[...] to
describe configurable composite service-oriented applications and to automatically
provision them across different providers. [...]” [78].

With the advent of Cloud Computing and the emerging of cloud service providers
different aspects of an application can be outsourced. As described in Chapter 2
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the SaaS model allows to outsource whole applications, while the PaaS and IaaS
models allow to outsource platform support respectively hardware infrastructure.
To take full advantage of these outsourcing possibilities a new software archi-
tectural style called Service-oriented Architecture (SOA) became popular. SOA
designed applications are assembled out of services which may run on the infras-
tructure of different cloud service providers [78]. As mentioned above CAFE now
tries to describe how these SOA applications are configured and provisioned. In a
typical CAFE scenario a user selects an application at any given CAFE applica-
tion provider, defines the desired Service Level Agreement (SLA) values for it and
customizes the application to her needs. CAFE then automatically deploys the
application across different providers, so that the user’s selections are met. [77]

To achieve this there are three main roles defined in the CAFE process: Application
Vendor, Application Provider, and Application Customer. [77]

1. Application Vendor: An application vendor’s task is to build CAFE applica-
tions. These applications can be composed out of existing services provided
by third-party providers, self-developed from scratch, or even a mixture of
both. To become a CAFE application all artifacts of an application together
with an application descriptor file have to be packed into a CAFE application
archive file.

2. Application Provider: An application provider hosts one or more CAFE
applications, so that third-parties can use them. It’s possible that the com-
ponents of a CAFE application are hosted at different application providers,
hence an application provider can also host only parts of a CAFE applica-
tion. The delivery model (IaaS, PaaS, SaaS) used by the application provider
does not matter to CAFE.

3. Application Customer: The third role in the CAFE process is called appli-
cation customer. An application customer wants to use one or more CAFE
applications and may not necessarily be an actual person. A customer may
be an enterprise and therefore consist of multiple users.

Some of CAFE’s main research issues are to separate application vendors and
providers, to allow “[...] customers to follow a best-of-breed strategy [...]” [77],
to enable consumer- and process-driven customization of applications, to define
an architecture and methodology of provisioning of applications across different
providers and to optimize the distribution of these applications across different
providers.
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3.5.1 Comparing CAFE with jCloudScale

CAFE and jCloudScale follow very different goals. CAFE tries to orchestrate dif-
ferent services hosted at different providers to achieve a unified experience for the
user. It does this by using provided meta-information for each service. CAFE
focuses on the end user and does not provide any abstraction for application de-
velopers.

jCloudScale in contrast focuses on the application developer. It tries to make de-
veloping distributed applications easier and decouple applications from underlying
IaaS cloud offerings.
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CHAPTER 4
Background

The jCloudScale middleware is the cornerstone of this thesis, which main goal is
to design and implement a migration mechanism for objects managed by jCloud-
Scale – so called Cloud Objects (COs). Therefore and as introduction for Chapter
5, where the design and implementation details of this migration process will be
described, jCloudScale’s architecture and basic concepts are presented in the fol-
lowing.

4.1 jCloudScale
jCloudScale [68,69] is a middleware which aim is to ease development of distributed
applications on top of Infrastructure-as-a-Service (IaaS) cloud offerings. It was de-
veloped by Distributed Systems Group (DSG) at Vienna University of Technology,
is entirely written in Java and therefore currently only supports Java-based client
applications. It’s code is licensed under Apache License 2.0 (Apache Software Li-
censes (ASLs) 2.0, [33]), a free software license, that allows use for any purpose,
to modify and redistribute again. jCloudScale is available through it’s project
website [68], alongside with some documentation on how to use it.

jCloudScale implements a declarative deployment model, which means that an
application developer only has to specify some scaling policies for her application
– using code annotations – to make use of the middleware. jCloudScale’s code
is than loaded automatically at application startup time, using Aspect-oriented
Programming (AOP) [63, 67] and Bytecode manipulation techniques. The main
advantage of this approach is that a client application does not have to be imple-
mented towards a particular execution environment, instead an application using
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jCloudScale can be executed as ordinary local Java application by just disabling
AOP code weaving. Common Platform-as-a-Service (PaaS) cloud offerings like
Google App Engine (GAE) [54] lack such flexibility and therefore impose tight
vendor lock-in on a developer’s application. On the other hand IaaS offerings
are as flexible as jCloudScale but demand more programming, deployment and
monitoring effort. Therefore in the larger taxonomy of Cloud Computing, jCloud-
Scale fills the space between PaaS and IaaS, as stated by its authors in [69].
Because jCloudScale acts as a middleware between an application and an IaaS
cloud provider’s infrastructure, only jCloudScale needs to be reconfigured when
changing IaaS providers.

Due to jCloudScale’s declarative deployment model a developer can decide (by
using code annotations) which ones of her application’s objects should be managed
by jCloudScale. Such objects are called Cloud Objects (COs) and executed on
Cloud Hosts (CHs) inside an IaaS cloud. Because COs are distributed among
different CHs jCloudScale is best used for computing-intense scientific applications,
where tasks can be divided and carried out simultaneously by multiple COs.

4.1.1 Architecture

It can be said, that jCloudScale has to handle two main tasks: hiding the dis-
tributed nature of COs from client applications and managing CHs and the COs
executed on them. Indeed jCloudScale’s architecture pictures this. The client
part of jCloudScale and the developer’s application are both executed on a local
machine, while jCloudScale’s server part runs on each CH created by jCloudScale.
For the server part jCloudScale uses a custom tailored Virtual Disk Image (VDI),
which consists of a trimmed down Linux Operating System (OS) and all bina-
ries necessary to execute jCloudScale’s server part. An architectural overview of
jCloudScale showing it’s client and server part and their main components is shown
in Figure 4.1.

The client part consists of five main components: CloudScaleClient, Cloud-
Manager, CloudScaleReferenceManager, Host- and Monitoring reposito-
ries. CloudScaleClient ensures that all components necessary for running
jCloudScale are set up and started before any jCloudScale functionality is actu-
ally used. This includes starting a Message Queue (MQ) service, that will han-
dle all communication between jCloudScale’s client and multiple server sides and
distributing a common jCloudScale configuration used by all components. The
CloudManager implements methods for managing CHs and COs. It creates and
destroys COs, uses a scaling policy to decide when to start and stop CHs and in-
vokes CO methods. The CloudScaleReferenceManager manages data han-
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Figure 4.1: Architectural Overview of jCloudScale, based on [69]

dling between ordinary Java objects and COs. When a client application invokes
a CO’s method with a complex type as parameter the parameter’s value is by
default not serialized and sent to the managing CH but replaced by a Cloud-
ScaleReference object. If the reference object is then invoked at the CH
the CloudScaleReferenceManager transparently resolves the reference and
invokes the original object at the client. This removes the need of making all com-
plex types of a client application serializable when interacting with COs. Host-
and Monitoring repositories are used to keep track of managed CHs respectively
of monitoring events created by these CH.

A server part consists of four major components: a jCloudScale remote server, App
execution environments, CO- and code repositories. The remote server component
listens for commands from the client’s CloudManager and executes them. App
execution environments are created for each CO executed on the CH so that they
cannot interfere with each other. The CO repository is used to store an index of
all COs hosted on the CH, so that they can easily be looked up and accessed when
requested. The code repository is used to store the COs’ class files and optionally
other binaries necessary to execute them.

A typical jCloudScale interaction consists of several steps. It is started when the
client application tries to invoke a method of a CO. First the invocation is inter-
cepted by an AOP aspect and redirected to the CloudManager component. The
CloudManager then looks up the CH that actually manages the CO. Afterwards
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the invocation command is forwarded to the remote server component of this CH
and the CO is looked up in the Cloud Host’s CO repository. At last the remote
server component invokes the requested method on the CO and sends the methods
return value – if any – back to the client application. This interaction is basically
an implementation of the Broker remoting pattern, as shown in [99].

4.1.2 Eventing in jCloudScale

jCloudScale provides the ability to monitor the state of CHs and COs through
an event-based system. Events are ordinary serializable Java objects carrying
payload regarding the event they represent. jCloudScale currently comes with
seven predefined event types and three event categories, ordered hierarchically as
shown in Figure 4.2.

RAMEventCPUEventObjectDestroyedEventObjectCreatedEvent

ExecutionFinishedEventExecutionStartedEventExecutionFailedEvent

ObjectEvent

StateEvent

HostEvent

PredefinedEvent

Event

Figure 4.2: Event class hierarchy in jCloudScale

Requiring events to inherit from abstract class Event ensures that all events
implement the Serializable interface and provide variables for holding their
unique identification value and timestamp of their creation. Further the deep
inheritance structure of events allows easy filtering by category in event receivers.

Events can be issued by all three main components of jCloudScale: CHs, COs
and the CloudScaleClient itself. After their creation events are distributed to
interested consumers using a message queue service and a dedicated topic specified
in jCloudScale’s MonitoringConfiguration. Events can be triggered in three
different ways:

• Periodically: Events are periodically triggered after a certain time interval
has passed. For instance, events of category StateEvent are created this
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way. The MonitoringConfiguration provides a time interval value
that should be used by all events triggered this way.

• On certain events: The usual way of triggering events. Since jCloudScale
supports AOP, aspects can be used to create event objects on occurrence of
certain events, such as deployment of a CO or invocation of a CO method.
All predefined events of category ObjectEvent are created this way.

• Manually: Events can also be triggered programmatically during the execu-
tion of a CO method. For this to be possible there needs to be an interface
to the MQ accessible from within COs. jCloudScale provides this interface
through dependency injection. When a CO is deployed jCloudScale injects
an appropriate object into the CO’s variables annotated with @EventSink,
which can be used by the CO for sending event messages.

The generic approach and overall architecture of jCloudScale’s eventing system
permits extension with new event types and categories easily. Therefore the un-
derlying concept of this system appears to be a good staring point for designing
a decision mechanism for migrating COs inside a jCloudScale cloud, which is vi-
tal for a capable migration system. The next chapter describes the design and
implementation of such a migration system for jCloudScale.
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CHAPTER 5
Design and Implementation

Chapter 1 has given an elaborate introduction to the motivation and desired contri-
bution of this thesis. Chapter 2 and Chapter 3 were used to discuss the foundations
of Cloud Computing and similar distributed technologies. In the previous chapter
an overview of jCloudScale’s architecture and eventing system was given to make
it more comprehensible how jCloudScale was extended to support the migration of
Cloud Objects (COs) between Cloud Hosts (CHs). Finally this chapter will discuss
at length all work done and design decisions made to achieve the goal of migrating
COs.

In the introduction of this thesis some desired key features of a migration mech-
anism for jCloudScale were stated. Then a list of contributions this thesis’ work
should make to jCloudScale was derived from these features. Extracting these
contributions declared in Chapter 1 results to the following list of properties the
migration mechanism should incorporate:

• migrations should be transparent for COs

• migrations must be transparent for objects interacting with COs

• a CO’s state must be preserved during migration

• migrations must not interfere with jCloudScale’s normal operation

• triggering of migrations should be policy-based and configurable by the user

• the decision which CO and CH taking part in a migration should be based
on provided metrics and configurable by the user
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This chapter is structured into three parts. First, Section 5.1 discusses the consid-
erations and design decisions made while implementing the previously enumerated
features into the migration mechanism. Afterwards Section 5.2 describes the mi-
gration of a CO in detail, using a simple fictional use case to aid the reader’s
understanding. Finally Section 5.3 ends this chapter by giving an architectural
overview of jCloudScale’s migration system.

5.1 Design considerations and decisions made
Some of the desired features of jCloudScale’s migration mechanism stated in the
introduction of this chapter are non-trivial and therefore must be discussed com-
prehensively. Therefore this section focuses on describing the considerations made
regarding these non-trivial features.

5.1.1 Code mobility in distributed systems

In object-oriented programming an object is characterized by three properties:
identity, state, and behaviour. Its identity distinguishes the object from other
objects, its state describes the values currently assigned to its member variables,
and its behaviour is defined by the methods the object implements. Migrating an
object from one execution environment to another one is also called Code Mobility.
As described in [74], or to more extent in [36], Code Mobility can be differentiated
in strong Code Mobility and weak Code Mobility. Both Code Mobility techniques
migrate an object’s code, i.e. its behaviour, to the new execution environment,
but only strong Code Mobility also migrates the object’s state. As enumerated
in the introduction of this chapter, there are two mandatory requirements for the
migration process. First, the state of a CO must be preserved during migration,
and, second, its migration must be transparent for other objects interacting with
it. To achieve this, the migration process must at least transfer two of an object’s
properties – its state and its behaviour – to the new Cloud Host. Hence only
strong Code Mobility is suitable for jCloudScale’s migration mechanism.

As further stated in [74], solutions implementing strong Code Mobility can be clas-
sified into five categories. These categories are derived from their implementation
level. The following list shows these categories in ascending order, starting with
the lowest-implementation level:

• Operating system level: Enables the migration of Operating System (OS) pro-
cesses between Computational Environments (CEs). This kind of mobility
requires support by the OS and is limited to process migrations between the
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same Operating Systems, which decreases this solution’s portability. Both
properties make this solution inapplicable for jCloudScale.

• Virtual machine level: Presupposes that the CE is executed inside a Virtual
Machine (VM). A migration will migrate the whole VM from one physical
host to another one. Works only if the source and destination physical host
have the same machine configuration. This solution is also inapplicable for
jCloudScale, as it does not allow to migrate a specific CO from one host to
another.

• Middleware/Engine level: Extends the employed middleware or engine to
achieve strong mobility. In jCloudScale’s case this means modifying the Java
VM executing jCloudScale. Consequently this would reduce jCloudScale’s
feature set on unmodified VMs and thus diminish its portability severely.
Therefore, this solution cannot be used either.

• Bytecode level: This solution is specific to programming languages compiled
to Bytecode instead of compiled to native machine code. Java is such a
language. It provides the ability to serialize objects and deserialize them
later again. This approach implies some limitations, but nonetheless seems
to be suitable for jCloudScale.

• Source code level: This solution provides programming libraries for enabling
Code Mobility. It requires the developer to instrument their code by adding
explicit calls to these libraries. Because of this, the source code level solu-
tion is not transparent for the developer’s code and thus is not suitable for
jCloudScale either.

Of these five solutions that can be used for implementing strong Code Mobility
the Bytecode level solution was chosen as most suitable for jCloudScale’s migra-
tion mechanism. This solution draws some limitations on the migration process
but they are outweighed by the fact that it does not require any modifications be
made to the Java VM or the underlying OS. Therefore, jCloudScale’s compati-
bility with standard Java runtimes and its portability across different OSes stays
intact. jCloudScale’s usage of this Code Mobility solution is described at length
in Section 5.2. Figure 5.1 shows an overview comparison of the execution models
of programs written in Java and programs written in programming languages that
compile directly to native machine code, like C++. As one can see instead of
compiling directly to executable machine code Java introduces an additional layer
of abstraction. This layer consists of Bytecode and the Java VM, which interprets
and executes the Bytecode. The introduction of additional abstraction layers does
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Figure 5.1: Java Execution Model vs. Native Execution Model

in general reduce computation performance, due to additional overhead, which is
also true for the Java execution model. To mitigate this disadvantage the Java
VM uses techniques, such as Just-in-Time (JIT)- and Ahead-of-Time (AOT)-
compilers. With JIT Bytecode is compiled into native machine code by the VM
during execution, while with AOT Bytecode is compiled before its execution. With
these techniques Java’s execution model is performance-wise nearly on par with
the native execution model [26,80].

5.1.2 Checkpointing and synchronization

Before a Cloud Object’s code and its state can be transferred from one CH to
another CH the object’s state and execution has to be frozen at some point. This
process is called Checkpointing. After the object was successfully migrated to its
new CH, execution will be resumed at the previously saved checkpoint. As for Code
Mobility, there are also different common approaches available for Checkpointing.
Some of these techniques, like Checkpointing at natural synchronization barriers,
coordinated Checkpointing, or uncoordinated Checkpointing with message logging,
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are briefly discussed in [74]. Each Checkpointing technique provides a different
trade off between the number of checkpoints per time interval made and the amount
of overhead they add to the application. Which approach to chose depends on the
application. Applications with low Mean Time Between Failure (MTBF) will be
best suited with uncoordinated Checkpointing with message logging which ensures
application progress despite the low MTBF due to the high amount of checkpoints
per time interval made and will therefore gladly accept the significant overhead of
this solution. Applications with high MTBF will better chose Checkpointing at
natural synchronization barriers, which doesn’t add much overhead.

All described Checkpointing techniques have a common limitation. They require
full control over the execution state of all objects interacting with an application
using these Checkpointing techniques. For instance if a failure occurs the whole
system has to be rolled back to a consistent state, i.e. a previously created check-
point. It would not be sufficient to only roll back the failed object and resume its
processing because that could let all other objects interacting with it in a differ-
ent state than they had when the checkpoint was created. This could result into
unwanted side effects and in unanticipated application behaviour.

In jCloudScale full execution control over applications using the jCloudScale mid-
dleware cannot be achieved without either modifying the used Java VM severely
to gain this control or by requiring applications to implement a sophisticated
rollback/Checkpointing Application Programming Interface (API). Both possibil-
ities are not desired, former would reduce jCloudScale’s portability because of its
dependency on a non-standard Java VM, and the latter would add a significant
amount of additional implementation work for developers of applications that want
to be fully compatible with jCloudScale. So jCloudScale’s migration mechanism
has to use a more basic Checkpointing technique, available for all Java VM im-
plementations and transparent for third-party applications. The lowest common
denominator for achieving this is by using the state between method invocations of
COs as checkpoints, which equals Checkpointing at natural synchronization bar-
riers. That is exactly what jCloudScale’s migration process does. The migration
of a CO is only started if there are no method invocations for this CO currently
performed. For that to work, and to prevent the migration mechanism to interfere
with jCloudScale’s normal operation, as requested in this chapter’s introduction,
an effective synchronization and serialization mechanism is required. A simple ap-
proach would be to lock a CO entirely as soon as a method invocation is initiated.
This would prevent parallel invocations of this CO and therefore guarantee each
invoker – migration process included – exclusive access to the CO. The downside
of this approach is, that it would also considerably harm jCloudScale’s execution
performance. Hence the migration mechanism must use a more fine grained locking
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technique, such as Two-phase locking (2PL), which is also used for concurrency
control in database systems [14]. The two types of locks provided by 2PL are
read-locks and write-locks. Each thread trying to invoke a CO must obtain such a
lock for this particular CO before allowed to proceed. Read-locks are shared-locks
and therefore are always available for requesting threads. Accordingly parallel
invocations are still possible when using read-locks and jCloudScale’s execution
performance isn’t significantly affected by them. Write-locks on the other hand
are exclusive locks, so there is only one for each CO available. When the migra-
tion process wants to migrate a CO it requests a write-lock for this CO. After all
locks currently in use for this CO have been returned to the 2PL mechanism the
write-lock is granted to the migration process, guaranteeing it exclusive access to
the CO till it returns the write-lock again.

5.1.3 Rule Engines and Complex Event Processing (CEP)

Another requested feature of the migration mechanism, noted in the introduction
and not discussed yet, is the policy-based triggering of migrations. Additionally
it should be possible, for the user, to declare and alter these policies, so that they
can be adapted to meet requirements set by the actual environment jCloudScale
is used in. For practical reasons it is also necessary that these policies can be
changed without the need to recompile jCloudScale. To satisfy these requirements
it is necessary to decouple evaluation of these policies from jCloudScale and its
migration mechanism. The separation of business rules from actual application
code is not uncommon, because business rules tend to change more quickly than
application code, and therefore would increase the application’s maintenance costs
accordingly, if not done so [71]. This separation can be achieved by using a rules
engine.

By default jCloudScale’s migration mechanism uses the Drools Rules Engine1 for
evaluating the rules, that specify when to trigger a CO migration. Due to the
migration mechanism’s architecture the rules engine used can be changed easily
by the user, as noted in 5.3. Because the rules engine is a separate process with its
own lifecycle it is also possible to change business rules without the need to restart
jCloudScale, which should benefit large jCloudScale installations, that cannot be
shut down easily.

A rules engine, as stated in the Drools Rules Engine’s documentation, is a program,
that delivers Knowledge Representation and Reasoning (KRR) functionality to the
user. KRR is a research field, that tries to find ways for representing knowledge

1http://www.jboss.org/drools/, accessed 2013-11-28
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Figure 5.2: Overview of Drools Rules Engine’s workflow (Source: Drools HP)

in a formal form, so that algorithms can utilize this knowledge to solve prob-
lems using deduction. This also explains why using rules to solve a problem is
that different from using a common imperative programming language like Java.
Rules are created by following a declarative approach, where one focuses on “what
should be done”, rather than on “how something is done”. At a high level, a rules
engine needs three things to work: Ontology, rules and data, where an Ontology
describes knowledge within a domain in a formal way. The rules engine’s task is to
match data and facts (from the Ontology) against rules to infer conclusions which
result into actions. This workflow is illustrated in Figure 5.2 A possible action
in jCloudScale’s migration system would be to trigger a migration, but that is
not mandatory. It is also possible that actions themselves change data stored by
the rules engine, resulting in other rules to be triggered. The triggering of rules
through actions created by other rules is called forward chaining and supported
by the Drools Rules Engine.

The actual Drools product used by the migration mechanism is called Drools
Fusion, which is a rules engine that is also capably of Complex Event Processing
(CEP). As noted in the Drools documentation there is not a broadly accepted
definition of CEP yet, but it can be said, that CEP focuses not on single events,
but on event streams and applies techniques such as pattern recognition and event
correlation on them to detect relationships between events. This enables rules to
issue actions not only on occurrence of single events but also on group of events
that, for instance, occur within a given time interval or are absent for a given
period of time.

54



5.1 Design considerations and decisions made

5.1.4 Choosing solutions with Automated Planning

Before an actual CO migration can be started two decisions must be made:

1. Which CO, out of all COs currently managed by jCloudScale, should be
chosen for migration?

2. Which CH, out of all CHs available, should be the migration’s destination
host?

These questions can be answered by enumerating all possible answers, rating them
by a predefined scheme and finally choosing highest rated answer. This proceeding
is also called Automated Planning an can be executed by so called planning engines.
jCloudScale’s migration mechanism uses a planning engine to answer the questions
stated above. By default jCloudScale uses the Drools OptaPlanner2 engine as
planing engine, which can be easily changed by the user, as described in Section
5.3.

As noted in OptaPlanner’s documentation Automated Planning tries to find effi-
cient solutions for all kinds of planning problems in an automated way. A planning
problem describes the need of allocating a limited set of constrained resources to
fulfil a task. A planning engine uses scores to rate possible planning solutions and
compare them with each other, and sophisticated heuristics to reduce the time
needed to find a good solution for a given planning problem. Solutions can be
categorized, into:

• Possible solutions: Any solution is a possible solution, whether or not it has
a high or low score. Many possible solutions are worthless. For instance,
choosing the CH, managing the CO to be migrated, also as destination host
is a possible solution, although it would be pointless to do so.

• Feasible solutions: Every feasible solution is also a possible solution. In
general the number of feasible solutions tends to be relative to that of possible
solutions. To be feasible a solution must not break a planning problem’s hard
constraints.

• Optimal solutions: An optimal solution is a solution with the best score
possible. Each planning problem has at least one optimal solution. It is not
required for an optimal solution to be feasible, hence it is possible that an
optimal solution breaks a planning problem’s hard constraints.

2http://www.optaplanner.org/, accessed 2013-11-28
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• Best solutions: A solution with the highest score, found by the planning
engine in a given amount of time. If the planning engine can search for
a solution for an infinite amount of time the best solution is an optimal
solution.

The score of a solution is calculated based on the number of constraints it breaks.
Constraints are defined by the planning problem to solve. In Drools OptaPlanner,
there are two kind of constraints:

• Hard constraints: Hard constraints are most important constraints. The
planning solution chosen to solve the particular planning problem must not
break any hard constraints, unless not possible otherwise.

• Soft constraints: Soft constraints are far less important than hard con-
straints. Hard constraints always outweigh soft constraints, meaning, that a
solution breaking fewer hard constraints than another solution is always con-
sidered “better”, despite the number of soft constraints broken by it. Usually
a planning problem defines more soft constraints than hard constraints.

jCloudScale’s migration mechanism uses Java classes for calculating a problem
solution’s score. It is up to the concrete implementation of these classes to decide
when a solution breaks a constraint and if this constraint is a hard or a soft one
and to rate the solution accordingly. Therefore it is imperative for the user to write
her own calculator classes, so that they are in line with the inherent constraints of
the executed jCloudScale application.

5.2 Migrating Cloud Objects in jCloudScale
After discussing the general concepts and technologies used by the migration mech-
anism in the previous section, in the following an actual CO migration will be
described in detail. A CO migration can be logically separated into three parts:
the triggering of the migration, finding an appropriate solution for the migration’s
planning problem, and eventually migrating the CO to its new CH. All parts,
except for the second one, are mandatory. The search for a migration solution
can be omitted, if the CO to migrate and its destination CH are already specified
when triggering the migration.

Figure 5.3 illustrates the workflow of a CO migration, using UML activity diagram
notation. Each logical part of the migration process is recognizable in the activity
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diagram, including the optionality of the second part. The first and second part of
the process are entirely executed on jCloudScale’s client-side, while the third part’s
execution is distributed between the client-side and the source and destination CHs
of the migration. Further details on each step of the migration process will be given
in the appropriate sections.

To provide a better illustration of the migration mechanism in general and its
logical parts in particular a small example application will be introduced. As the
focus of this section lies on jCloudScale’s migration mechanism and to keep code
listings brief non-essential code will be omitted from them. The example applica-
tion is called CloudWorker and consists of a single CO named identically. It is
shown in Listing 5.1. The CloudWorker CO connects to a server with IP address
10.0.1.2 on port 12345, when created and disconnects again, when destroyed. Its
single purpose is to process workload data, provided by the caller, when invoking
the processWorkload() method. This method does three things, first it sends
metadata about the workload to the server, the CloudWorker CO is connected
to, then it processes the workload, and finally injects an event, storing the methods
execution time, into jCloudScale’s event system. The RespondTimeEvent class
is a custom event and part of the CloudWorker application. It is a direct sub-
class of jCloudScale’s abstract Event class (see Figure 4.2) and therefore inherits
the id and timestamp variables, which are initialized by the event’s constructor.

5.2.1 Triggering a migration

As illustrated in Figure 5.3 and already mentioned earlier, the task of the migration
mechanism’s first logical part is to decide when to trigger CO migrations. It
accomplishes this by utilizing jCloudScale’s event system, described in 4.1.2, and
an external rules engine, described in 5.1.3. Whenever the triggering mechanism
receives an event object it forwards it to the rules engine, where it is used to
evaluate user-generated business rules. These rules can then be used to trigger a
CO migration, using a callback interface, provided by the migration mechanism.
The callback interface is shown in Listing 5.2. It offers five different methods
for invoking a CO migration, to give the user greater control over the migration’s
outcome. Each migration method accepts an optional MigrationReason object
as parameter, which will be stored together with some statistical data about the
migration, to enable traceability. This information is stored by jCloudScale and
can be evaluated by applications. The initTrigger method is meant for custom
implementations of the callback interface and is invoked by jCloudScale when
initializing the callback interface.

The CloudWorker example provides its own rules file, containing one trigger-
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Figure 5.3: Workflow of a migration on jCloudScale’s client side
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1 @CloudObject
2 public class CloudWorker extends Worker implements S e r i a l i z a b l e {
3
4 @MigrationTransient private Socket outbound ;
5 @EventSink private IEventSink eventQueue ;
6 @CloudObjectId private UUID coId ;
7
8 public CloudWorker ( ) throws Exception {
9 setupConnect ion ( ) ;

10 }
11
12 @PostMigration
13 private void setupConnect ion ( ) throws Exception {
14 this . outbound = SocketFactory . ge tDe fau l t ( )
15 . c r ea t eSocke t ( " 1 0 . 0 . 1 . 2 " , 12345) ;
16 }
17
18 @PreMigration
19 private void shutdownConnection ( ) throws Exception {
20 this . outbound . c l o s e ( ) ;
21 }
22
23 public void processWorkload (@ByValueParameter Workload workload )
24 throws JMSException {
25 long startTime = System . cur rentT imeMi l l i s ( ) ;
26
27 sendData ( outbound , workload . getMetadata ( ) ) ;
28 processData ( workload . getData ( ) ) ;
29
30 long respTime = startTime − System . cur r entT imeMi l l i s ( ) ;
31 eventQueue . t r i g g e r (new RespondTimeEvent ( respTime , coId ) ) ;
32 }
33
34 @DestructCloudObject
35 public void dest roy ( ) throws Exception {
36 shutdownConnection ( ) ;
37 }
38 }

Listing 5.1: The CloudWorker example

ing rule, which is shown in Listing 5.3. This rule enforces CloudWorker’s Ser-
vice Level Agreement (SLA), by evaluating the RespondTimeEvents, created by
each of its instances. The rule collects the five most recent events, received by each
instance, to calculate the average respond time of each instance’s processWork-
load() method. If the calculated respond time for an instance exceeds 15000ms
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1 public interface IMigrat i onTr igge r {
2
3 public UUID migrateFromHost (UUID sourceHostId ,
4 MigrationReason reason ) ;
5
6 public UUID migrateObject (UUID cloudObjectId ,
7 MigrationReason reason ) ;
8
9 public UUID migrateObjectToHost (UUID cloudObjectId ,

10 UUID dest inat ionHost Id ,
11 MigrationReason reason ) ;
12
13 public UUID migrateObjectToNewHost (UUID cloudObjectId ,
14 MigrationReason reason ) ;
15
16 public UUID migrateFromHostToNewHost (UUID sourceHostId ,
17 MigrationReason reason ) ;
18
19 public void i n i tT r i g g e r ( CloudSca leConf igurat ion con f i g ,
20 Migrat ionConf igurat ion mconfig ) ;
21 }

Listing 5.2: All migration methods supported by jCloudScale

a migration for this CloudWorker instance is triggered. The rule uses the call-
back’s migrateObject() method, to enforce the migration of the particular
CloudWorker CO that violated the SLA.

5.2.2 Finding an appropriate migration solution

After a migration has been triggered the migration mechanism’s second logical
part takes command. This part’s task is to gather all information necessary to
start an actual CO migration. A migration requires three pieces of information to
take place: the CO to migrate, the source CH the CO is currently managed by,
and the destination CH to which the CO should be migrated. This information
will further be referenced to as migration solution. Depending on the specific
migration method invoked by the triggering mechanism none, some, or all pieces
of the migration solution are already known. Hence this step of the migration
process is skipped, if the invoked migration method provided a complete migration
solution. If the provided migration solution is incomplete the migration mechanism
uses Automated Planning, as described in 5.1.4, to retrieve the missing pieces. The
migration method, invoked by the triggering mechanism, also defines the number
of possible migration solutions the planning engine can choose from, to retrieve
the migration’s optimal solution. For instance, the migrateObject() method,
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1 package c l oud s c a l e . migrat ion . r u l e s
2
3 import c l oud s c a l e . migrat ion . s t a t i s t i c . MigrationReason
4 import c l oud s c a l e . migrat ion . ob j e c t .∗
5
6 g l oba l c l oud s c a l e . migrat ion . IMigrat i onTr igge r c a l l b a ck
7
8 de c l a r e RespondTimeEvent
9 @role ( event )

10 @timestamp ( timestamp )
11 end
12
13 ru l e "CloudWorker SLA"
14 when
15 event : RespondTimeEvent ( $coId : ob j e c t Id )
16 Number( longValue > 15000 ) from accumulate (
17 RespondTimeEvent ( ob j e c t Id == $coId , $time : respondTime )
18 over window : l ength ( 5 ) , average ( $time ) )
19 then
20 MigrationReason reason =
21 new MigrationReason ( "SLA001" , "SLA v i o l a t i o n " , event ) ;
22 ca l l ba ck . migrateObject ( event . getObject Id ( ) , reason ) ;
23 end

Listing 5.3: Trigger rule for CloudWorker

invoked by CloudWorker’s triggering rule, provides the identity of the CO to
migrate, i.e. the number of possible migration solutions is limited to solutions
where this CO will be migrated to another CH.

To choose the optimal solution the planning engine has to calculate a score for each
solution, so that they can be rated and compared. The score calculation is based
on statistical data of the solutions’s CO and CHs. This data is provided through
the migration mechanism’s MigrationDataCollector class, which gathers
this information from events received through jCloudScale’s event system. These
events are generated by various event aspects, as shown in Figure 5.4. These event
aspects are part of jCloudScale and issue event objects either periodically or on
occurrence of specific events. For instance, state events, which contain information
about a CH’s utilization are issued periodically, while e.g. event objects about a
CO’s deployment and destruction are issued when these specific events happen.

The CloudWorker example provides its own score calculator class, shown in List-
ing 5.4. The planning engine first uses the calculator to initialize the score of each
solution and afterwards to calculate the solution’s final score. As shown in the
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Figure 5.4: jCloudScale’s eventing is used to generate planning data
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calculators listing each solution is initialized with a default score of (0, -1000),
if no score is set. If a score is already set, the solutions final score is calculated,
using the number of COs managed by the solution’s CH as hard constraint and the
number of times the solution’s CO was invoked as soft constraint. Therefore the
CloudWorkerScoreCalculator favours migration solutions which feature a
destination CH that manages as few COs as possible and a migration CO that was
invoked as quite often. Because the migration CO of all possible migration solu-
tions for the CloudWorker example is already set by the migrateObject()
method the optimal solution will be the one which features the destination CH
which manages the fewest amount of COs.

1 public class CloudWorkerScoreCalculator implements
2 SimpleScoreCalcu lator<Droo l sMigrat ionSo lut ion> {
3
4 @Override
5 public Score<HardAndSoftScore> ca l c u l a t e S c o r e (
6 Droo l sMigrat ionSo lut ion s o l u t i o n ) {
7 Droo l sMigrat ionPlanningEnt i ty en t i t y =
8 s o l u t i o n . getPlanningEnt i ty ( ) ;
9

10 i f ( s o l u t i o n . ge tScore ( ) == null )
11 return DefaultHardAndSoftScore . valueOf (0 , −1000);
12
13 int hardScore = 0 ;
14 i f ( en t i t y . getCloudHost ( ) != null ) {
15 PlanningCloudHost host = en t i t y . getCloudHost ( ) ;
16 hardScore −= host . getManagedCloudObjects ( ) ∗ 10 ;
17 }
18
19 int s o f t S c o r e = −1000;
20 i f ( en t i t y . getCloudObject ( ) != null ) {
21 PlanningCloudObject ob j e c t = en t i t y . getCloudObject ( ) ;
22 s o f t S c o r e += ob j e c t . getTimesInvocated ( ) ∗ 10 ;
23 }
24
25 return DefaultHardAndSoftScore . valueOf ( hardScore , s o f t S c o r e ) ;
26 }
27 }

Listing 5.4: Solution calculator for CloudWorker

5.2.3 Migrating a Cloud Object

After a migration was triggered and a valid migration solution was found the
actual migration of a CO can be executed. As described in 5.2 the execution
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of the third logical part of the migration mechanism is distributed across the
jCloudScale-Client and the migration’s source and destination CHs. It is the task
of the jCloudScale-Client to orchestrate the whole process, working as a middleman
between the source CH and the destination CH, to ensure successful migration of
the CO. The class that implements the jCloudScale-Client’s task during a CO
migration is called MigrationExecutor.

Before the CO can actually be migrated access to it must be restricted, so that
other threads are unable to interfere. This is done using 2PL technique, as de-
scribed in 5.1.2. While the executor has exclusive access to the CO, invocation
requests of other threads are not rejected but queued and resumed again after the
executor has returned its lock. Hence a CO’s migration is fully transparent for
other objects interacting with it. After that the MigrationExecutor instructs
the CO’s source host to serialize the CO and transmit the serialized data back to
the executor. The serialization of Java objects is not without hurdles. There are
several requirements3 an object must fulfil to be serializable:

• the object’s class or one of its superclasses must implement the Serializ-
able-Interface

• the first superclass in its hierarchy not implementing this interface must have
a no-argument constructor

• all member variables that can’t be serialized must be marked transient

• the values of static fields will not be serialized

It’s the developer’s responsibility to ensure that a CO satisfies these requirements,
so that it can be migrated. jCloudScale’s migration mechanism tries to help de-
velopers to do so by providing four custom Java annotations. These annotations,
when used inside a CO, are hints for the migration mechanism on how to serial-
ize and deserialize the object. After the executor has received the serialized CO
from the source CH the executor forwards it to the destination CH, where it is
deserialized and initialized. The whole workflow of serialization and deserializa-
tion, including the handling of the migration specific annotations is illustrated in
Figure 5.5.

Processing of the migration-specific annotations is done right before serialization
respectively after deserialization. When the migration mechanism searches for

3http://www.oracle.com/technetwork/articles/java/javaserial-1536170.html, accessed 2013-
11-27
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Figure 5.5: Workflow of a migration on a Cloud Host (CH)
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these annotations, it starts at the top of the CO’s class hierarchy, hence annotated
variables or methods in the CO’s super classes are handled first. The purpose of
the migration-specific annotations are:

• @MigrationTransient: Can be used to declare member variables of a CO as
not serializable. Before a migration takes place these variables will be set
to null value, to not hinder a CO’s serialization. The annotation accepts an
optional parameter, which will be used as initialization value for the variable,
when the CO is deserialized again.

• @PreMigrate/@PostMigrate: These annotations are used to mark methods
of a CO to be executed prior its serialization respectively after its deserial-
ization. This enables COs that use external resources to close them properly
before they are migrated, and reopen them again when the migration has
finished.

• @SerializationProvider: If the previously described annotations are not suf-
ficient to enable serialization and deserialization of a CO, this annotation
can be used. It enables developers to write their custom serialization and
deserialization mechanisms and specify which one of them should be used
for which types of COs.

Although the migration-specific annotations help developers to reduce the reasons
why a particular CO can not be serialized and, therefore, migrated there might
still be circumstances that forbid to migrate a CO. To address these occasions
the migration mechanism provides a @NoMigrate annotation. COs annotated
in this way will not be taken into consideration by the MigrationExecutor
when creating possible migration solutions. Hence, they will never be migrated
automatically by the migration mechanism.

After serialization of the CO on the source CH, and its deserialization on the
destination CH, there is one step left for the migration to be completed. For a
CO migration to be fully transparent for other objects interacting with the CO,
all references to the CO must be preserved, but redirected to its new managing
CH. Because jCloudScale uses AOP to intercept method invocations of COs to
redirect these invocations into the cloud, the MigrationExecutor can update
these references at a central point inside jCloudScale and release the write-lock it
holds for the migrated CO afterwards.

The CloudWorker CO in Listing 5.1 fulfils all serialization requirements listed
above. It implements the Serializable interface and uses migration-specific

66



5.3 Architectural overview of the migration mechanism

annotations to handle its non-serializable member variable named outbound.
Before the CO is serialized its @PreMigrate-annotated method shutdownCon-
nection() is executed and its outbound, eventQueue, and coId variables
are set to null. After that the CloudWorker CO can be serialized. When
deserialized at the destination CH the CO’s eventQueue and coId variables
are initialized and its @PostMigrate-annotated setupConnection() method is
executed, which creates a new Socket object and assigns it to the outbound
variable. The CloudWorker CO has been migrated successfully.

5.3 Architectural overview of the migration
mechanism

As stated in the introduction of this chapter, in this section a complete overview
of the migration mechanism’s architecture will be given. The UML class diagram
notation is used to picture this overview. For clarity, components not part of the
core process, like rules and planning engines, message queue and CHs, are omitted
from the diagram. The class diagram is shown in Figure 5.6.
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Figure 5.6: Overview of all classes involved in CO migration in jCloudScale

As shown in the class diagram, the MigrationExecutor is the central point of
the mechanism and orchestrates the migration once initiated by the rules engine.
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The executor uses two services, first the MigrationDataCollector to retrieve
planning data and second the DroolsPlannerSolver to determine the optimal
migration solution. Both services are accessed through interfaces to decouple the
executor from concrete implementations of these services. The same approach is
applied when the MigrationEventListener accesses the rules engine to hand
over received events. The use of interfaces was deliberately chosen to make it easy
for developers to use their own implementations of those services.

The wrapper pattern [37] is used to decouple a solution score calculator class,
that is used to rate a possible planning solution, from the planning engine’s static
configuration, to allow changing calculator classes during runtime. The Drools-
MigrationSolutionScoreCalculatorWrapper acts as a wrapper for the
specific calculator class that is configured in the MigrationConfiguration.
The migration mechanism comes with two score calculator classes: DroolsRan-
domScoreCalculator and DroolsSimpleScoreCalculator. Former gen-
erates a random score for each planning solution, while latter rates the planning
solutions highest, that features the CO most often invoked and the CH managing
the fewest COs.

The MigrationManager is a single interface to the migration subsystem. To
some degree it implements the facade pattern described by Gamma et al. in [37].
Its main purpose is to start and stop all parts of the migration system in correct
order and provide a common configuration to them. The common configuration
is called MigrationConfiguration and stores migration-specific parameters
like the location of rules files and message queue topics to use. An instance of
the MigrationStatistics class is also provided through the manager. It
stores information about the outcome of each migration executed alongside with
additional information about the participating CHs and CO.
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CHAPTER 6
Evaluation

The previous chapter described in detail the inner workings of jCloudScale’s newly
developed migration mechanism and how it can be used and configured by applica-
tion developers. In the following chapter focus will be on evaluating the migration
mechanism to examine its behaviour under different workloads and therefore its
impact on jCloudScale’s overall performance.

This chapter is structured into three sections. First the evaluation scenario, under
which all tests where conducted, will be described. Then a detailed analysis of
the migration mechanism’s components, regarding their performance and memory
consumption, will be made. Afterwards the chapter will be concluded by summa-
rizing and commenting the evaluation results from the analysis section.

6.1 Evaluation Scenario
As stated in Chapter 4, jCloudScale is a middleware for distributed applications
that run on top of Infrastructure-as-a-Service (IaaS) clouds. Although jCloudScale
supports a local-mode, where all of its parts are executed on one host, jCloudScale
is meant to be executed in a distributed environment. Therefore evaluation tests
are in general conducted using Distributed Systems Group (DSG)’s OpenStack
IaaS cloud for executing jCloudScale server instances and a dedicated Message
Queue (MQ) server, that handles communication between the server instances
and the jCloudScale client. The jCloudScale client is executed on a separated
host, outside the OpenStack cloud, connected to it through a Virtual Private
Network (VPN) connection.
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A detailed description of the execution environment is given below. An overview
of all available Virtual Machine (VM) flavors in DSG’s OpenStack cloud is given
in 6.1.1. The particular VM flavor used for a test will be given in the test’s
description. Unless otherwise stated all tests have been repeated 100 times and
averaged, to reduce unpredictable fluctuations. Measurement of time and memory
consumption during tests was done using Java’s standard Application Programming
Interface (API), including classes in package javax.management. During test
execution no other programs have been executed to prevent influence of the test
results.

Environment for jCloudScale-Client

The jCloudScale-Client part was executed on a 64-bit GNU/Linux distribution
using kernel version 3.12.6 and OpenJDK version 1.7.0_51. The test machine used
was an Intel Core i5-3320M CPU with 2.6 GHz, which supports parallel execution
of 2 processes or 4 threads, and 8096 MB RAM. The migration-enabled jCloudScale
version used was 0.3.1. Further the Drools Fusion and Planner distributions in
version 5.4.0 were used as rules respective planner engines.

Environment for Message Queue-Server

The dedicated MQ server was executed inside DSG’s OpenStack cloud, using a
VM of flavor m1.small. The VM was running Ubuntu 12.04.1 LTS 64-bit with
Oracle’s Java SE runtime version 1.7.0_17. Apache ActiveMQ version 5.5.0 was
used as MQ server. According to the system’s /proc/cpuinfo file the CPU
used was an Intel Core2 Duo T7700 with 2.4 GHz.

Environment for jCloudScale-Server

The jCloudScale-Server instances where also executed inside DSG’s OpenStack
cloud. Which OpenStack flavor was used for each host will be stated separately
in the description of each test. All server instances used Ubuntu 13.10 64-bit with
OpenJDK version 1.7.0_25 and migration-enabled jCloudScale version 0.3.1. As
for the MQ server, the CPU of each VM was also an Intel Core2 Duo T7700 with
2.4 GHz.

6.1.1 Flavors in DSG’s OpenStack cloud

OpenStack is an IaaS cloud platform that provides computing resources, through
VMs, on demand. To conduct this thesis’ evaluation DSG dedicated a quota of the
overall resources available in it’s OpenStack cloud. This quota covered the ability
to run a maximum of 10 VM instances in parallel. Further the quota provided a
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total amount of 51200 MB RAM and 20 virtual CPU cores that could be utilized.
When started, each VM instance claims a certain fraction of these resources for
itself. The exact configuration of resources claimed by a VM is called “flavor”.
There are 13 different flavors available in DSG’s OpenStack installation. They are
listed in table 6.1.

Flavor Name Virtual CPUs Memory (RAM) Disk size
m1.tiny 1 512 MB 0 GB
m1.micro 1 960 MB 40 GB
m1.small 1 1 920 MB 60 GB
m1.medium 2 3 750 MB 80 GB
m2.medium 3 5 760 MB 80 GB
m1.large 4 7 680 MB 120 GB
m1.xlarge 8 15 360 MB 200 GB
m1.2xlarge 16 30 720 MB 70 GB
w1.tiny 1 960 MB 25 GB
w1.small 2 1 920 MB 30 GB
w1.medium 8 3 750 MB 40 GB
w1.large 4 7 680 MB 30 GB
w1.xlarge 8 15 360 MB 60 GB

Table 6.1: Overview of available VM-flavors at DSG’s OpenStack cloud

6.2 Detailed Analysis
The following section will examine the performance and scalability of the migration
process’ discrete parts, meaning the MigrationExecutor, the Migration-
EventListener and the MigrationDataCollector. Further it is evaluated
if a jCloudScale-Server using Java Instrumentation has reduced execution perfor-
mance in comparison to a server not using instrumentation.

All evaluation tests where conducted using one of the two Cloud Objects, shown in
Listing 6.1, respectively Listing 6.2. The object COEvalSize, from Listing 6.1,
provides methods for creating specific amounts of random data, either as primitive
byte array or as linked list storing byte objects. By creating a specific payload size
one can control the Cloud Object (CO)’s memory footprint and serialized size, thus
this CO is used to evaluate the performance of jCloudScale’s server instances, in
terms of code execution and memory management. Further it is used to measure
the impact the size of a CO has on the time needed to migrate this object.
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1 @CloudObject
2 public class COEvalSize implements S e r i a l i z a b l e {
3
4 private byte [ ] p r imit ivePay load ;
5 private List<Byte> complexPayload ;
6
7 @CloudObjectId private UUID id ;
8
9 @ByValueParameter

10 public UUID get Id ( ) { return id ; }
11
12 public void c reatePr imi t ivePay load ( int s i z e ) {
13 this . complexPayload = null ;
14 this . p r imit ivePay load = new byte [ s i z e ] ;
15 new Random ( ) . nextBytes ( this . p r imit ivePay load ) ;
16 }
17
18 public void createComplexPayload ( int s i z e ) {
19 this . p r imit ivePay load = null ;
20 this . complexPayload = new LinkedList <>();
21 Random rng = new Random ( ) ;
22 for ( int i = 0 ; i < s i z e ; i++) {
23 byte [ ] b = new byte [ 1 ] ;
24 rng . nextBytes (b ) ;
25 this . complexPayload . add (b [ 0 ] ) ;
26 }
27 }
28
29 public long g e tS i z e ( ) {
30 i f ( pr imit ivePay load != null )
31 return CloudSca leServer Inst rumentat ion
32 . ge tObjec tS i z e ( pr imit ivePay load ) ;
33 else i f ( complexPayload != null )
34 return CloudSca leServer Inst rumentat ion
35 . ge tObjec tS i z e ( complexPayload ) ;
36 return 0 ;
37 }
38
39 @DestructCloudObject
40 public void dest roy ( ) {
41 this . p r imit ivePay load = null ;
42 this . complexPayload = null ;
43 }
44 }

Listing 6.1: Evaluation Cloud Object 1
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The second CO, shown in Listing 6.2, is named COEvalEventSender. It pro-
vides two methods for triggering the injection of jCloudScale event objects into
jCloudScale’s monitoring message topic. Consumers of this topic are the Mi-
grationEventListener and MigrationDataCollector. Therefore, this
CO is used to evaluate how these components scale to different message loads on
the monitoring topic. The sendEvent method injects a single custom migration
event object into the MQ, when called, which will be picked up and processed by
the MigrationEventListener. The sendPlEvents method is more com-
plicated. When called it repeatedly injects various event objects into the MQ. It
does this at a fixed rate and for a curtain amount of time and thus simulates an
event stream similar to that created by jCloudScale server instances during normal
execution of a jCloudScale application. These events are picked up and processed
to planning data by the MigrationDataCollector.

1 @CloudObject
2 public class COEvalEventSender implements S e r i a l i z a b l e {
3
4 @CloudObjectId private UUID id ;
5 @EventSink private IEventSink s ink ;
6 f ina l Queue<UUID> idPool = new ConcurrentLinkedQueue <>();
7
8 @ByValueParameter public UUID get Id ( ) { return id ; }
9

10 public void sendEvent (@ByValueParameter MyMigrationEvent event )
11 throws JMSException {
12 s ink . t r i g g e r ( event ) ;
13 }
14
15 public void sendPlEvents ( int eventsPerSecond , long duration ,
16 @ByValueParameter f ina l Event [ ] events )
17 throws InterruptedExcept ion , JMSException {
18 f ina l Random rng = new Random ( ) ;
19 int f a l l b a ck Idx = 0 ;
20 while ( ! ( events [ f a l l b a c k Idx ] instanceof ExecutionStartedEvent ) )
21 f a l l b a c k Idx++;
22 f ina l ExecutionStartedEvent evStar t =
23 ( ExecutionStartedEvent ) events [ f a l l b a c k Idx ] ;
24
25 Timer t imer = new Timer ( ) ;
26 t imer . scheduleAtFixedRate (new TimerTask ( ) {
27 public void run ( ) {
28 UUID reqId = null , eReqId = null ;
29 try {
30 Event e = events [ rng . next Int ( events . l ength ) ] ;
31 i f ( e instanceof ExecutionStartedEvent ) {
32 reqId = UUID. randomUUID ( ) ;
33 ( ( Execut ionStartedEvent ) e ) . se tRequest Id ( reqId ) ;
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34 } else i f ( e instanceof Execut ionFai ledEvent ) {
35 eReqId = idPool . p o l l ( ) ;
36 i f ( eReqId != null ) {
37 ( ( Execut ionFai ledEvent ) e ) . se tRequest Id ( eReqId ) ;
38 } else {
39 reqId = UUID. randomUUID ( ) ;
40 evStar t . se tRequest Id ( reqId ) ;
41 e = evStar t ;
42 }
43 } else i f ( e instanceof Execut ionFinishedEvent ) {
44 eReqId = idPool . p o l l ( ) ;
45 i f ( eReqId != null ) {
46 ( ( Execut ionFinishedEvent ) e ) . se tRequest Id ( eReqId ) ;
47 } else {
48 reqId = UUID. randomUUID ( ) ;
49 evStar t . se tRequest Id ( reqId ) ;
50 e = evStar t ;
51 }
52 }
53
54 s ink . t r i g g e r ( e ) ;
55 } catch ( JMSException ex ) {
56 ex . pr intStackTrace ( ) ;
57 } f ina l ly {
58 i f ( reqId != null ) idPool . add ( reqId ) ;
59 }
60 }
61 } , 1000 , 1000 / eventsPerSecond ) ;
62 TimeUnit .MILLISECONDS. s l e e p ( durat ion ) ;
63 t imer . cance l ( ) ;
64 }
65
66 @DestructCloudObject void dest roy ( ) { this . idPool . c l e a r ( ) ; }
67 }

Listing 6.2: Evaluation Cloud Object 2

The description of each evaluation test will state which evaluation CO was used,
when conducted. Further it will be described which parameters where used when
the CO’s methods where invoked.

6.2.1 Evaluating Java Instrumentation

As described in Section 5.1.4, jCloudScale’s migration mechanism has the ability
to calculate an optimal solution for a migration request, that does not specify
the actual CO to migrate or the migration’s destination host. The necessary
calculations are carried out by an automated planning engine that uses collected
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planning data of COs and Cloud Hosts (CHs). Besides other metrics, planning data
of COs includes the CO’s size, which is regularly retrieved from the jCloudScale
server instance managing the CO. For this to work the server instance has to
be started with Java Instrumentation enabled, by using a Java agent library. An
agent library is merely a wrapper for the Java Instrumentation object injected
into it by the Java VM at startup. This subsection will evaluate if the use of Java
Instrumentation degrades the execution performance a jCloudScale server instance.
All evaluation tests in this subsection where executed using DSG’s OpenStack
cloud. The VM flavor used for the jCloudScale server instance was m1.medium,
with a custom defined maximum Java memory heap size of 3300MB, to prevent
OutOfMemory exceptions. Tests where conducted using the COEvalSize CO
from Listing 6.1.

The left chart in Figure 6.1 shows an execution time comparison when filling a byte
array sized from 1MB to 1GB with random data. Execution times for both server
types are nearly identical, thus it does not appear as Java Instrumentation support
degrades a Java VM’s execution performance, when working with primitive type
data. This assumption can also be verified, when applying a Student’s t-test, as
shown in Appendix B.1. The right chart of Figure 6.1 shows execution times of
the CO’s getSize method, also with the byte array sized from 1MB to 1GB and
filled with random data. Because object size computation is only available if Java
Instrumentation is enabled the method always returns a hardcoded value of −1
when disabled. As before it appears that Java Instrumentation support does not
impact the server’s execution performance. Further it is shown that computation
of a CO’s size is done in constant time, regardless of the CO’s size.

The evaluation tests used for Figure 6.2 are similar to that used for Figure 6.1, but
use a linked list of random byte objects as payload, instead of a byte array filled
with primitive byte values. Because creating objects is in general much more time
consuming than creating primitive data the payload’s maximum size was limited to
128MB to reduce the tests overall execution time. The results shown in Figure 6.2
are similar to those from Figure 6.1, meaning that Java Instrumentation support
does not appear to impact a jCloudScale server instance’s performance. As before
this assumption can also be verified, when applying a Student’s t-test, as shown
in Appendix B.2.

Due to these tests results all further evaluation tests will be conducted with Java
Instrumentation enabled.
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Figure 6.1: jCloudScale server computing primitive byte array
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Figure 6.2: jCloudScale server computing linked list of byte objects
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6.2.2 Evaluating the MigrationExecutor

The MigrationExecutor fulfils two main tasks: migrating a CO from its source
host to its destination host and finding an optimal solution, if migration planning
is necessary. Both tasks will be evaluated separately.

Figure 6.3 shows how plain (i.e., migration without prior planning) CO migration
scales to the CO’s size. The data shown was retrieved using DSG’s OpenStack
cloud with two jCloudScale server instances of flavor m1.medium, again with a
custom defined maximum Java memory heap size of 3300MB, to prevent Out-
OfMemory exceptions. Both instances did not manage any other COs except the
one being migrated. The COEvalSize CO from Listing 6.1 was used as evaluation
CO.

The left chart of Figure 6.3 shows the duration of the migration, when a primitive
type byte array is used as payload, while the right chart shows the duration when
a linked list with byte objects is used. When discussing migration times one has
to keep in mind, that the MigrationExecutor is executed on the jCloudScale-
Client, which, in this evaluation setup, is not physically located inside DSG’s
network, but connected to it through a symmetric 10Mb/s VPN connection. This
matters because when the serialized CO is migrated from its source host to its des-
tination host it is piped through the MigrationExecutor. Nevertheless Figure
6.3 clearly shows that migrating a CO with references to a complex object tree
takes considerable more time than migrating an object with a primitive type data
structure. The evaluation showed further that migrating objects with a serialized
size greater than 100MB cannot be handled by the MQ server without transmission
errors.

Figure 6.4 shows how long it takes the planner to find a best migration solution
within a given number of possible solutions. The left chart in Figure 6.4 gives
a more detailed view of the results for up to 100000 possible solutions, as this
will cover the problem range of most real-world migration planning problems.
Both charts also show a speed comparison between Drools Planner’s “brute-force”
planning algorithm and its “first-fit” heuristic planning algorithm, with advantages
for the “brute-force” algorithm, when the number of possible solutions exceeds
10000.

When comparing execution times from Figures 6.3 and 6.4 it can be said, that the
time spend for finding a best migration solution does not add significant to the
overall time needed when migrating a CO.
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Figure 6.3: Migrating a CO without prior planning
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1 ru l e "MyMigrationEvent−$ruleNumber$"
2 when
3 event : MyMigrationEvent ( customField == $customField$ )
4 then
5 MigrationReason reason =
6 new MigrationReason ( $customField$ , null , event ) ;
7 migrat ion . migrateObject ( event . getCloudObjectId ( ) , reason ) ;
8 end

Listing 6.3: Template rule

6.2.3 Evaluating the MigrationEventListener

The MigrationEventListener is basically an adapter for the rules engine
to fit into jCloudScale’s migration mechanism. It ensures that the rules engine is
properly initialized, when the migration system starts, and forwards event objects,
received through jCloudScale’s monitoring topic, to it. Hence the overall perfor-
mance and resource consumption of the MigrationEventListener is vastly
determined by that of the rules engine. Therefore the following will evaluate how
the rules engine performs, when loaded with different amounts of rule sets.

The MigrationEventListener and its rules engine are executed on the jCloud-
Scale -Client and during the evaluation events where directly injected into the rules
engine, without involvement of the MQ server. So no jCloudScale server instances
where used in this evaluation. The rules engine was initialized with different
amounts of rules, ranging from 1 rule to 20000 rules and an event, triggering one
of the loaded rules, was injected afterwards. The rules files, containing the different
amounts of rules, used during this evaluation where created programmatically by
replicating the template rule shown in Listing 6.3. The template rule’s variables
$ruleNumber$ and $customField$ were replaced with unique values before
a rule was added to a rules file.

Figure 6.5 displays the results of MigrationEventListener’s evaluation. The
left chart shows the time needed by the rules engine to trigger a migration, by
calling one of the methods defined in the IMigrationTrigger interface, after
an event was injected. The three lines in the chart indicate which rule in the loaded
rules file was trigger (first, last or random). The right chart in Figure 6.5 shows
the heap- and non-heap-memory consumption of the JVM after the rules engine
was initialized with different amounts of rules. Both charts show that the rules
evaluation time respectively the JVM’s memory consumption rise almost linear
with the number of rules loaded.
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Figure 6.5: Trigger rules computation time and RAM usage

6.2.4 Evaluating the MigrationDataCollector

The last part of the migration mechanism to be evaluated is the Migration-
DataCollector. Its task is to receive and process all events transmitted through
jCloudScale’s monitoring topic and generate migration planning data from the ex-
tracted information. The following will evaluate how the collector scales to differ-
ent loads of monitoring events on the monitoring topic, to determine its impact
on the jCloudScale-Client’s performance and if its current architecture limits the
number of concurrently active CHs and COs. That is because the number of
monitoring events to process is directly related to the number of active CHs and
COs.

The evaluation was conducted using DSG’s OpenStack cloud with a jCloudScale-
Server instance of flavor m1.small. The COEvalEventSender CO from Listing
6.2 was deployed to that instance and its sendPlEvents method was used to
generate a steady stream of monitoring events. Before any performance indicators
were measured the stream of monitoring events was kept constant for 1 minute, to
allow the system to level off.

Figure 6.6 shows the results of the data collectors evaluation. The left chart shows
the jCloudScale-Client’s system load average during processing of different event
loads. The right chart shows the percentage of CPU time consumed by the whole
JVM process during processing of different event loads. It is important to note,
that the consumed CPU time, displayed in the right chart, reflects the utilization of
a single CPU core, but that the machine running the jCloudScale-Client provided
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Figure 6.6: Data collectors system load and process CPU time

four CPU cores. This means that the total amount of consumable CPU time on this
machine would be 400% and could be used by the MigrationDataCollector,
if necessary, due to its multi-threaded architecture.

With that in mind it can be said, that the MigrationDataCollector scales
sufficient to not harm jCloudScale’s ability to operate large amounts of CHs and
COs.

6.3 Evaluation summary
After evaluating the three distinguish parts of jCloudScale’s migration mechanism
the following can be said:

• Performance: The migration mechanism’s overall performance impact on
jCloudScale is not considerable. First, as shown in Section 6.2.1, the use
of Java Instrumentation has no effect on a JVM’s, and thus jCloudScale’s,
execution performance. Second, as shown in Section 6.2.2, finding an opti-
mal migration solution using automated planning is fast (i.e. less than 0.5
seconds), even when problem spaces are large (i.e. about 1 million possible
solutions). This is especially true when comparing time spent on automated
planning with time spent for actually migrating a CO from one host to an-
other. Third, as shown in Section 6.2.3, evaluating migration triggering rules
is also very fast (i.e. less than 10ms), especially when assuming the use of
a more realistic ruleset of less than 100 rules. Finally, as shown in Section
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6.2.4, the data collector scales reasonable well to high event loads, although
it bears the potential to overload the jCloudScale-Client.

• Memory consumption: As shown in Section 6.2.3 the migration mechanism’s
rules engine can occupy a significant amount of heap memory, when initial-
ized with extensive rulesets. This can be a problem on systems with limited
memory resources. However, when assuming that a realistic ruleset consists
of not more than 100 rules memory consumption should be negligible.

The migration mechanism’s evaluation showed also some potential problems. As
already mentioned the current architecture of the MigrationDataCollector
bears the potential to overload the jCloudScale-Client, especially if the client’s ma-
chine does not support parallel execution of multiple application threads. Further
the evaluation showed that when migrating COs with large memory footprints the
client can become a bottleneck, slowing down the whole migration process signifi-
cantly, if its network bandwidth to the MQ server is limited. Another source of a
potential problem could be the MQ itself. As mentioned in Section 6.2.2 produces
transmission errors, when trying to migrate COs larger than 100MB in serialized
size. It is open for investigation if this issue is a configuration problem or a general
limitation of the MQ software.
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CHAPTER 7
Conclusion and Future Work

The introduction of this thesis stated the goals a migration mechanism for jCloud-
Scale should achieve. Now it is time to conclude if these goals were met:

• The main goal of the migration mechanism was to be “[...] fully transparent
for objects interacting with Cloud Objects (COs) going to be migrated and
thus must preserve a COs state during its migration [...]”.

This goal was achieved. As described in Section 5.2 the migration mecha-
nism uses Two-phase locking (2PL) technique to prevent other objects from
accessing COs while they are migrated and references to them need to be up-
dated. Further the values of a CO’s member variables, and thus its internal
state, are preserved during a migration.

• Another goal requested that the migration mechanism should “[...] support
some kind of migration policies [...] to determine when to and where to
migrate a CO [...]”.

This goal was also achieved. Migration “policies” are separated into migra-
tion triggering rules, which are evaluated by the rules engine and used to
determine when to migrate a CO and into calculator classes for the planning
engine to determine which migration solution is the optimal solution.

• Last, it was also a goal of the migration mechanism “[...] to keep the perfor-
mance penalty on jCloudScale [...] as low as possible [...]”.

It can be said that this goal was also achieved, as shown and discussed in
Chapter 6.
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7.1 Future Work
During the migration mechanism’s evaluation some issues and limitations, that can
be addressed in future development, came to attention: When creating a new CO
jCloudScale uses so called “scaling policies” to decide whether to deploy the object
to an already existing Cloud Host (CH) or to better start a new one. Conceptually
this is a very similar problem to finding a migration solution, when migrating a
CO. Therefore it might be sensible to merge scaling policies and the finding of
migration solutions into one unified policy mechanism.

Another issue revealed in the evaluation was the Message Queue (MQ)’s inabil-
ity to transmit COs which serialized size exceeded 100MB. This limitation could
be resolved by compressing and splitting serialized COs into several pieces, each
one smaller than 100MB, before handing them over to the MQ for transmission.
The receiving CH would than need to put all pieces back together again before
deserializing the CO. Another possible solution would be to directly transmit se-
rialized COs between CHs. This would not only circumvent the MQ, but also the
jCloudScale client and might significantly speed up CO migrations, if the network
connection to the client is considerable slower than between CHs.

Finally improving the type of code mobility used by the migration mechanism
would be deservable. As described in Chapter 5 a CO must satisfy several require-
ments to be migratable. A type of code mobility that reduces these requirements
and thus makes CO migration even more transparent for application developers
would be a huge improvement. Unfortunately this kind of improvement is the
most difficult one to achieve.
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APPENDIX A
List of Abbreviations

2PL Two-phase locking

ACL Access Control List

ARPANET Advanced Research Projects Agency Network

AMI Amazon Maschine Image

AOP Aspect-oriented Programming

AOT Ahead-of-Time

API Application Programming Interface

ASL Apache Software License

AWS Amazon Web Services

CAFE Composite Application Framework

CE Computational Environment

CEO Chief Executive Officer

CEP Complex Event Processing

CERN Conseil Européen pour la Recherche Nucléaire

CH Cloud Host
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CIO Chief Information Officer

CO Cloud Object

CPU Central Processing Unit

CRM Customer Relationship Management

CSA Cloud Security Alliance

DSG Distributed Systems Group

EBS Amazon Elastic Block Store

EC2 Amazon Elastic Compute Cloud

ECU EC2 Compute Unit

EJB Enterprise Java Bean

FIFO First-In-First-Out

GAE Google App Engine

HaaS Human-as-a-Service

HTTP Hypertext Transfer Protocol

IaaS Infrastructure-as-a-Service

IP Internet Protocol

Java EE Java Enterprise Edition

JIT Just-in-Time

JSON JavaScript Object Notation

JVM Java Virtual Machine

KRR Knowledge Representation and Reasoning

MCM Mobile Cloud Middleware

MOM Message-oriented Middleware

MTBF Mean Time Between Failure

MQ Message Queue
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NIST National Institute of Standards and Technology

OCCI Open Cloud Computing Interface

OCCI-WG Open Cloud Computing Interface Working Group

OOP Object-oriented Programming

OS Operating System

OVF Open Virtualization Format

PaaS Platform-as-a-Service

RAID Redundant Array of Independent Disks

RDS Amazon Relational Database Service

REST Representational State Transfer

RMI Remote Method Invocation

RPC Remote Procedure Call

RRS Reduced Redundancy Store

S3 Amazon Simple Storage Service

SaaS Software-as-a-Service

SLA Service Level Agreement

SME Small- and medium-sized Enterprise

SOA Service-oriented Architecture

TCO Total Cost of Ownership

UI User Interface

UML Unified Modelling Language

VDI Virtual Disk Image

VEE Virtual Execution Environment

VM Virtual Machine

VMI Virtual Machine Interface
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VMM Virtual Machine Monitor

VPN Virtual Private Network

WAR Web Application Archive

WWW World Wide Web

WYSIWYG What You See Is What You Get
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APPENDIX B
Evaluation: Statistical Analysis

In Chapter 6 it was stated, that running jCloudScale’s-Server instances with Java
Instrumentation enabled does not influence their execution performance signifi-
cantly. In the following these claims will be verified using statistical hypothesis
tests.

B.1 Computing a primitive byte array
The left chart in Figure 6.1 shows a comparison of averaged execution times, when
filling a byte array, sized from 1MB to 1GB, with random data. To prove that
Java Instrumentation has no influence on a jCloudScale-Server instance’s execution
performance the averaged execution times are analysed for significant differences,
using a paired Student’s t-test.

The averaged execution time for the computation of each measured array size,
there differences and mean values are shown in Table B.1. The null hypothesis is
specified as µ0 = 0, meaning that it is assumed that Java Instrumentation does not
pose a significant performance impact. A confidence level of α = 0.1 was chosen
for the test.

Spec : H0 : µ0 = 0; α = 0.1; x̄ = −20303101 (B.1)

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 =

√√√√ 1

30− 1

30∑
i=1

(xi − x̄2) = 132172886 (B.2)
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B.1 Computing a primitive byte array

No. Array size with Instr. without Instr. Differences
# [byte] [ns] [ns] [ns]
1 0 45813442 40407367 5406075
2 1048576 62822942 32859173 29963769
3 2097152 27562011 37123665 -9561654
4 5242880 45943113 95275891 -49332778
5 10485760 174559127 97334800 77224327
6 15728640 191951369 259239627 -67288258
7 20971520 307741526 411927089 -104185563
8 26214400 274729331 353294342 -78565011
9 31457280 213201026 368005797 -154804771
10 36700160 284894164 447126903 -162232739
11 41943040 443480903 493765951 -50285048
12 47185920 429235423 421034746 8200677
13 52428800 528698355 448056737 80641618
14 62914560 608169041 514668620 93500421
15 73400320 789860659 881938503 -92077844
16 83886080 642773287 765649969 -122876682
17 94371840 725727585 926683646 -200956061
18 104857600 896169477 945777061 -49607584
19 134217728 1019963266 1062241873 -42278607
20 157286400 1183133977 1198702740 -15568763
21 201326592 1420277545 1452362984 -32085439
22 268435456 1782454634 1610295755 172158879
23 335544320 2058744829 1926888853 131855976
24 402653184 2573864077 2188323032 385541045
25 469762048 2666074812 2753999184 -87924372
26 536870912 2743401603 2595545671 147855932
27 671088640 2838408420 3103041228 -264632808
28 805306368 3507749839 3600584776 -92834937
29 939524096 4072294729 3955414072 116880657
30 1073741824 4482954500 4664178015 -181223515

Mean values 1234755167 1255058269 -20303101

Table B.1: Averaged execution times from left chart of Figure 6.1
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B.2 Computing a linked list of byte objects

Z =
(x̄− µ0)

(s/
√
n)

=
(−20303101)

(132172886/
√
30)

= −0.841357614375 (B.3)

|Z| > tn−1; 1−
α

2
(B.4)

0.841357614375 > 1.699 ⇒ µ0 holds. (B.5)

As shown in equation (B.5) the test statistic is below the threshold, hence the null
hypothesis holds. Java Instrumentation has no significant influence on jCloud-
Scale’s performance when working with primitive data types.

B.2 Computing a linked list of byte objects
The left chart in Figure 6.2 shows a comparison of averaged execution times, when
creating a linked list of random byte objects, sized from 1MB to 100MB. To prove
that Java Instrumentation has no influence on a jCloudScale-Server instance’s
execution performance the averaged execution times are analysed for significant
differences, using a paired Student’s t-test.

The averaged execution time for the computation of each measured size of the
linked list, there differences and mean values are shown in Table B.2. The null
hypothesis is specified as µ0 = 0, meaning that it is assumed that Java Instru-
mentation does not pose a significant performance impact. A confidence level of
α = 0.1 was chosen for the test.

Spec : H0 : µ0 = 0; α = 0, 1; x̄ = −494389203 (B.6)

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 =

√√√√ 1

17− 1

17∑
i=1

(xi − x̄2) = 1508107247 (B.7)

Z =
(x̄− µ0)

(s/
√
n)

=
(−494389203)

(1508107247/
√
17)

= 1, 35164054691 (B.8)

|Z| > tn−1; 1−
α

2
(B.9)

1, 35164054691 > 1, 746 ⇒ µ0 holds. (B.10)
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B.2 Computing a linked list of byte objects

No. List size with Instr. without Instr. Differences
# [byte] [ns] [ns] [ns]
1 0 23211714 67838487 -44626773
2 1048576 905899855 1046989437 -141089582
3 2097152 1639209517 2534414951 -895205434
4 5242880 2825027272 3921885073 -1096857801
5 10485760 5096090714 6993223575 -1897132861
6 15728640 7102077367 7552149123 -450071756
7 20971520 9070855360 7680057593 1390797767
8 26214400 11668608578 11033597973 635010605
9 31457280 11449631517 12648977515 -1199345998
10 36700160 13945216814 14887290025 -942073211
11 41943040 16454009659 16528285990 -74276331
12 47185920 18902270143 20154254018 -1251983875
13 52428800 23896935032 21612260370 2284674662
14 62914560 26364793844 27161549198 -796755354
15 73400320 34523035979 32689971027 1833064952
16 83886080 34462053073 36182858494 -1720805421
17 94371840 42276377015 46314317058 -4037940043

Mean values 15329723732 15824112935 -494389203

Table B.2: Averaged execution times from left chart of Figure 6.2

As shown in equation (B.10) the test statistic is below the threshold, hence the
null hypothesis holds. Java Instrumentation has no significant influence on jCloud-
Scale’s performance when working with object data.
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