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Abstract

The Green-Kubo method for calculating viscosities at zero-shear rate of liquid alkanes by means
of molecular dynamics (MD) has been applied. Within this thesis, the common study of simu-
lating viscosities close to ambient pressure has been extended to pressures relevant for studies
of elastohydrodynamic lubrication (0.1 to 1000 MPa). Furthermore, attempts have been made
to elucidate the influence of the chemical structure on the high-pressure rheology of n-octane,
2,2,4-trimethylpentane, n-hexadecane and (6S)-2,2,4,4,6,8,8-heptamethylnonane.

The molecular dynamics simulations for this work were carried out using a modified version
of the all-atom optimized potentials for liquid simulations (OPLS-aa) force field, a particle-
particle particle-mesh (PPPM) long-range electrostatic solver, a reversible reference system
propagator algorithm (rRESPA) for time integration and a Nosé-Hoover chain thermostat.

The equilibration of investigated MD systems has been traced by using the Hellinger metric
for the time-dependent density distribution function for the one third of the sum of the off-
diagonal pressure tensor components.

In order to elucidate the influence of the chemical structure, rotational relaxation times were
calculated by autocorrelating normalized intramolecular positions and fitting them to an expo-
nentially decaying model. In addition, the partial contributions to the overall pressure tensor
used for calculating the viscosity were examined separately to provide further information about
the structural influence.

It was found that MD results obtained for normal alkanes are in good agreement with exper-
imental measurements, while viscosities of branched alkanes are systematically overestimated.
Furthermore, the pressure dependence of the calculated zero-shear viscosities is well described
by Roelands’ pressure viscosity relation. Analysis of different contributions to the pressure ten-
sor showed that in contrast to the normal alkanes, the pressure tensor contribution due to bonds
dominates over the angle contributions in branched alkanes. Finally, it was also found that when
the Green-Kubo method is applied to systems with long relaxation times, significant computa-
tional efforts are necessary to obtain statistically reliable results.
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CHAPTER 1
Introduction

The aim of this work is to use equilibrium molecular dynamics coupled with the Green-Kubo re-
lations for the simulation of the pressure dependence of viscosity at zero-shear rate for n-octane,
i-octane, n-hexadecane and i-hexadecane, respectively. This work should provide a basis for
future investigations regarding the influence of the specific chemical structure on high-pressure
rheological properties of liquids.

High-pressure rheology is of great interest for the correct description of dynamical processes
where fluids are exposed to high hydrostatic pressure (typically in excess of 100 MPa). An
example for an important technological field, where the pressure in fluids extends to the GPa
range, is the elastohydrodynamic lubrication. This field focuses on the description of lubricated,
highly loaded tribological contacts (lubricated surfaces, with a normal force applied, in a sliding
motion with respect to each other). The insights gained in this field can ultimately be utilized
to optimize friction in a broad range of devices including car transmissions, heavy industrial
machinery and so on. Benefits resulting from optimizations of tribological systems can reduce
energy consumption of machinery due to lower frictional losses as well as increased product
lifetime and reliability.

In order to accurately model and predict properties like the coefficient of friction in such sys-
tems, detailed knowledge about the rheology of fluids at extreme conditions encountered within
tribo-contacts is required [1]. However, the experimentally challenging nature of high-pressure
measurements make it difficult and expensive to obtain all the required properties of lubricants
under controlled laboratory conditions. In order to circumvent these difficulties and to be sub-
ject to fewer technical restriction in the accessible parameter space (chemistry of the lubricant,
pressure p, temperature T , shear rate γ̇ and others), computer simulations can be employed. For
instance, one important class of modern synthetic lubricants, namely polyalphaolefines, typi-
cally consists of mixtures of branched alkanes with an ambient pressure viscosity specifically
tailored to their application, see Ref. [2]. Since the number of possible isomers of branched
alkanes increases strongly with the chain length, e.g., alkanes containing only 16 carbon atoms
can be arranged in more than 10000 theoretically possible structures, it would be of great inter-
est to predict the high-pressure rheology simply on the basis of the molecular structure. If this
could be achieved, lubricant formulations could be optimized towards providing high-pressure
properties needed for a specific application.

This work provides a basis for investigations that focus on understanding the relationship
between the chemical nature of a molecule and its calculated high-pressure rheological proper-
ties such as its viscosity at zero-shear rate and at constant temperature or its bulk viscosity. The
employed method of equilibrium molecular dynamics coupled with the Green-Kubo formalism,

1



derived from the linear response theory, inherently allows for a precise numerical control of the
simulations for a large range of the relevant characteristic quantities, such as pressure, tempera-
ture and chemical structure. Furthermore, it offers the advantage of being able to study liquids
at an atomic level and hence has the potential to provide information about the role of every
single atom in a molecule when examining the (atomic and molecular) mechanisms leading to
the macroscopic viscosity, for example.
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CHAPTER 2
Basic Framework

2.1 Green-Kubo Formalism

The following, partially heuristic, derivation of the Green-Kubo relations is based on Refs. [3–5].
The Green-Kubo relations for transport coefficients (e.g., shear and bulk viscosity) are derived
from the linear response theory. This theory is founded on the assumption that the Hamiltonian
of the systemH′ can be written as

H′ = H(p,q)−A(p,q)X(t)︸ ︷︷ ︸
Hext(t)

, (2.1)

where Hext(t) is a time-dependent perturbation distorting the equilibrium of the system de-
scribed by H(p,q). This Hext(t) is assumed to be proportional to the quantity A(p,q), i.e.,
the displacement related to the force X(t) that induces a time dependent change δB(p,q, t)
of the physical quantity B(p,q). Knowing that the effect of the external perturbation on the
distribution function f(p,q, t) of the system is given by the Liouville equation,

∂f(p,q, t)

∂t
= (H, f(p,q, t)) + (Hext, f(p,q, t)) , (2.2)

where (a, b) denotes the Poisson bracket,

(a, b) =
∑
(p,q)

(
∂a

∂q

∂

∂p
− ∂a

∂p

∂

∂q

)
b . (2.3)

Eq. (2.2) yields the formal solution

f(t) = e(t−t0)(H, . )f(t0) +

∫ t

t0

dt′ e(t−t′)(H, . )(Hext(t′), f(t′)) , (2.4)

where for sake of simplicity, the variables (p,q) are omitted and the exponential function of the
Poisson bracket is expressed by means of the Taylor series expansion

eλ(H, . ) =

∞∑
n=0

λn

n!
(H, . )n . (2.5)

It can be shown, that Eq. (2.4) is a formal solution of Eq. (2.2) by differentiating both sides with
respect to time t. By substituting equation (2.4) into itself and taking the linear approximation
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as well as assuming a canonical ensemble, such that the system was in equilibrium at the infinite
past, f(t0 → −∞) = feq, one obtains,

f(t) = feq +

∫ t

−∞
dt′ e(t−t′)(H, . )(Hext(t′), feq) , (2.6)

with

feq = e−βH
[∫∫

dpdq e−βH
]−1

, β =
1

kBT
, (2.7)

where kB is Boltzmann’s constant and T the temperature. With the definition of the phase space
expectation value of a physical quantity a,

〈a〉 :=

∫∫
dpdq a(p,q) f(p,q) (2.8)

the time dependent fluctuations δB(t) of the quantity B are given by

δB(t) = 〈B(t)〉 − 〈B〉

=

∫∫
dpdq f(t)B −

∫∫
dpdq feq B .

(2.9)

Introducing Eq. (2.6) into Eq. (2.9) and using the definition of Hext from Eq (2.1) as well as
∆A = A− 〈A〉 and ∆B = B − 〈B〉, results

δB(t) =

∫∫
dpdq

∫ t

−∞
dt′ e(t−t′)(H, . )(Hext, feq) B

=

∫ t

−∞
dt′
∫∫

dpdq e(t−t′)(H, . )(feq, ∆A) ∆B X(t′) .

(2.10)

Based on the properties of the exponential function and feq, after partial integration, Eq. (2.10)
can be written as

δB(t) =

∫ t

−∞
dt′
∫∫

dpdq (feq, ∆A)e−(t−t′)(H, . )∆B X(t′)

=

∫ t

−∞
dt′
∫∫

dpdq feq(∆A,∆B(pt′ ,qt′))︸ ︷︷ ︸
ΦBA(t′)

X(t′) ,
(2.11)

according to Ref. [5] with

e−(t−t′)(H, . )∆B(p,q) = ∆B(pt′ ,qt′) . (2.12)

When assuming the forceX(t) = eiωt to be periodic in time, the response to such a periodic per-
turbation can also be considered to be periodic. One can thus introduce a frequency dependent,
complex admittance in the form of

χBA(ω) =

∫ ∞
0

ΦBA(t)eiωt dt . (2.13)

4



Here, the so-called response function ΦBA(t) is according to Eq. (2.11), given by

ΦBA(t) = 〈(∆A,∆B(t))〉 = β〈∆Ȧ;∆B(t)〉 , (2.14)

where 〈a; b〉 denotes the canonical correlation which in classical mechanics is simply the product
of two factors at a time lag τ and is independent of the time origin t, namely

〈a; b(τ)〉 =

∫∫
dpdq feq a(p,q, t) b(p,q, t+ τ)

=

∫∫
dpdq feq a(pt,qt) b(pt+τ ,qt+τ ) .

(2.15)

If now one considers B to correspond to the viscous stress σxy resulting from the strain γxy,

σxy = ηxy
dγxy
dt

, 〈σxy〉 = 0 , (2.16)

the zero-shear γ̇ = 0 viscosity η in the xy plane is immediately given by Eqs. (2.13) and (2.14)
as in Ref. [6]

ηxy = lim
ω→0

β

V

∫
dt eiωt

∫∫
dpdq feq σxy(0) σxy(t) . (2.17)

Furthermore, by applying the same formalism to the full stress tensor, the relation for bulk
viscosity ηB can be obtained,

ηB = lim
ω→0

β

V

∫
dt eiωt

1

9

∑
µ,ν

∫∫
dpdq feq σ

′
µµ(0) σ′νν(t) ,

σ′µµ(t) = σµµ(t)−
(
p+

∂p

∂E
(E − 〈E〉)

)
,

(2.18)

where the summation over µ and ν runs over the Cartesian coordinates x, y and z. Additionally,
using the ergodic hypothesis

〈a〉 = 〈a〉T := lim
T→∞

1

T

∫ T

0
a(t) dt , (2.19)

the integration over the phase space in Eqs. (2.17) and (2.18) can be replaced by a time inte-
gration. The trajectories calculated by molecular dynamics in the canonical ensemble can then
be directly used to calculate the transport coefficients [7]. Indeed, by applying Eq. (2.19) to
Eq. (2.17) or Eq. (2.18) expressions for the zero-shear and bulk viscosity are obtained which can
easily be discretized and hence approximated by using MD,

η = lim
τrun→∞

lim
τc→∞

β

V τrun

1

6

∑
µ6=ν

∫ τrun

0
dt

∫ τc

0
dt′ σµν(t) σµν(t+ t′) ,

ηB = lim
τrun→∞

lim
τc→∞

β

V τrun

1

9

∑
µ,ν

∫ τrun

0
dt

1

9

∫ τc

0
dt′ σ′µµ(t) σ′νν(t+ t′) ,

(2.20)

where τrun represents the total length of the simulated time and τc is the correlation time such
that τrun � τc.
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2.2 Molecular Dynamics (MD)

In classical Hamiltonian mechanics, the time evolution of a mechanical system, described by the
canonical coordinates (p,q), is given by the Hamilton equations of motion

dp

dt
= −∂H

∂q
,

dq

dt
= +

∂H
∂p

,

(2.21)

with

H(p,q) =

N∑
i=1

p2
i

2mi
+ V (q) , (2.22)

and

V (q) =
N∑
i=1

1

2

bond∑
j

Kbond
ij (qi − qj)2 +

1

3

angle∑
j

Kangle
j (φj − φ0,j)

2

+
1

8

dih∑
j

4∑
n=1

Kdih
j,n [1 + cos(nθj)] +

vdW∑
j

4εj

[(
σj

|qi − qj |

)12

−
(

σj
|qi − qj |

)6
]

+

coul∑
j

cicj
4πε0|qi − qj |

+ Elongi

+ Etail ,

(2.23)

where the summation over i runs over all N atoms in the system, the summations over j run
over all bond, angle, dihedral, van der Waals (vdW) and Coulomb (coul) interactions that atom
i is a part of. The summations over j is carried out in a way, that force cutoff distances and
molecular structure are taken into account. Elongi is the contribution of the long range solver for
the electrostatic interactions and Etail is a correction for the vdW cutoff. The constants Kbond

ij ,

Kangle
j , φ0,j , Kdih

j,n , εj , σj and the charges ci are parameters of the force field chosen.
Since the potential energy function V (q) is not explicitly time dependent, Eq. (2.22) de-

scribes a system where the total energy is conserved. If no atoms are lost or added and the vol-
ume of the system is kept constant during the simulation, the simulated ensemble corresponds
to the microcanonical (NVE) ensemble. Eq. (2.23) is a representation of the potential energy as
it is implemented in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS),
provided by Sandia National Laboratoriesa [8], for simulations with the Optimized Potential
for Liquids Simulations (OPLS) force field using harmonic bond and angle potentials (refer to
page 11 for details on force field).

However, if simulations at constant temperature are to be carried out, the sum of potential
and kinetic energy must be allowed to fluctuate. Nosé, Hoover and Martyna et al. [9, 10] came
up with a modified Hamilton function

H′(p,q,η,pη) =

N∑
i=1

p2
i

2mi
+ V (q) +

M∑
i=1

p2
ηi

2Qi
+NkTη1 +

M∑
i=2

kTηi , (2.24)

alammps.sandia.gov/index.html

6
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that reproduces the canonical (NVT) ensemble. In Eq. (2.24) the thermostat coordinates (η,pη)
of a total of M virtual thermostat “particles” with the formal masses of Qi are introduced. This
enables the simulated system to exchange energy with the coupled, fictious heat reservoir in
order to kept the average temperature in the target system constant. The equations of motion for
this thermostated system 

q̇i =
pi
mi

,

ṗi = −∂V (q)

∂qi
− pi

pη1
Q1

,

η̇i =
pηi
Qi

,

ṗη1 =

[
N∑
i=1

p2
i

mi
−NkT

]
− pη1

pη2
Q2

,

ṗηj =

[
p2
ηj−1

Qj−1
− kT

]
− pηj

pηj+1

Qj+1
,

ṗηM =

[
p2
ηM−1

QM−1
− kT

]
,

(2.25)

now including both, atomic (pi, qi), i = 1 . . . N and thermostat degrees of freedom (pηj , ηj),
j = 1 . . .M [10].

In order to time integrate the equations of motion, the reversible reference system propagator
algorithm (rRESPA), formulated by Tuckerman et al., was used for this work. Details about its
derivation as well as an example for its implementation can be can be found in Ref. [11].

Pressure tensor

The elements of the pressure tensor

σµν =
1

V

N∑
i=1

miviµviν︸ ︷︷ ︸
kin.

+ riµFiν︸ ︷︷ ︸
virial

 µ, ν = x, y, z , (2.26)

used within this work are computed as given by LAMMPS. In Eq. (2.26) V is the volume of the
MD system, the sum over i runs over all N atoms, mi is the mass of atom i, the indices µ and ν
run over the x, y and z components of the vectors in a right-handed Cartesian coordinate system
and vi, ri and Fi represent the velocity and position of atom i and force vector on this Atom.
The force vector Fi is a superposition of all forces acting on atom i, namely

Fi = f bondi + fanglei + fdihi + fvdWi + fCouli + fkspacei︸ ︷︷ ︸
f longi

, (2.27)

according to the selected force field where f bondi , fanglei , fdihi , fvdWi , fCouli and fkspacei are the
resulting forces from bond, angle, dihedral, pairwise van der Waals and Coulomb interactions as
well as the contributions resulting from the long range electrostatic solver operating in k-space.
For further reference, the contributions from fvdWi , fCouli and fkspacei will be summed to yield
f longi which will be referred to as the long range forces on atom i.
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2.3 MD Simulation of Zero-shear Viscosity

In general, the existing MD methods to determine the viscosity of fluids can be divided into two
main approaches,

• Equilibrium Molecular Dynamics (EMD) and

• Non-Equilibrium Molecular Dynamics (NEMD) simulations.

The EMD method implies that, in contrast to the NEMD method, no shear force is applied to
the system, hence the average shear rate of the liquid is zero. This needs to be kept in mind
when the results of MD simulations are compared amongst each other and to experimental val-
ues. The NEMD method however, allows for studying the shear rate dependency of the vis-
cosity (although at comparatively high shear rates, which only recently became accessible in
experiments, see Ref. [12]). Several publications exist that compare both methods to show that
the results from NEMD methods, extrapolated to zero-shear rate, correspond to the results ob-
tained by EMD e.g. Refs. [13–16]. The general consensus found in these publications is, that
both methods are similarly efficient to calculate the shear viscosity at zero-shear rate, while the
NEMD methods provide the advantage of obtaining additional information on the rheology of
liquids at high shear rates. The EMD approach, however, inherently does not rely on the need to
extrapolate the viscosity to zero-shear rate.

The comprehensive paper published by Jones and Mandadapu, see Ref. [17], provides impor-
tant details on the calculation of transport coefficients by the Green-Kubo method and includes
algorithms to estimate the errors involved in the viscosity calculation. Many of the algorithms
proposed in this paper were adopted for this thesis.

Only one publication was found that deals explicitly with the pressure dependence of viscos-
ity being calculated by MD. McCabe et al., see Ref. [18], simulated the rheological properties
of 9-octylheptadecane at pressures up to 1 GPa and shear rates in the range of 107 − 1011 s−1.
Their MD setup did not include explicit hydrogen atoms bonded to the carbon atoms of the
alkane but instead, a united-atom model was used which approximates CH3 and CH2 groups
with simple spheres. They found, that while the viscosity is underpredicted when compared to
the experimental values, the relative increase with pressure agrees well with the measurements.
Furthermore, they showed that as the shear rate increases beyond the inverse of the rotational
correlation time of the molecules, shear thinning is observed. In addition to their results, a com-
prehensive list of publications in the field of MD simulations of tribologically relevant liquids
is provided. These papers however, focus on the strain rate dependence of viscosity and use, in
contrast to this thesis, united-atom models for simulations.

Cui et al. [13] carried out EMD simulations of n-hexadecane and applied the Green-Kubo
formalism to calculate the zero-shear viscosity of the liquid. In addition to the simulation re-
sults of n-hexadecane, which is also simulated in this work, their publication provides valuable
information concerning the choice of the maximum significant correlation time.

Dysthe et al. [19] provide information on the influence of the selection of timestep size,
potential cutoff distance and holonomic constraints on the calculated viscosity. Furthermore,
they calculate several different relaxation times and conformational properties as well as propose
methods to estimate the error in the calculated viscosities.

2.4 Pressure Dependence of Viscosity

The investigations on the effect of static pressure on the shear viscosity of fluids date back for
more than a century. Among the first scientists carrying out viscosity measurements at pressures
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significantly greater than atmospheric was Barus in the 1890s [20]. His research concentrated
on the viscosity of “marine glue” in a pressure range of 0 to 200 MPa and temperatures from
8.5 to 30.5 °C. Based on his observations, he originally proposed a linear relationship between
pressure p and shear viscosity η(p, γ̇ → 0) = η0(p) where γ̇ denotes the shear rate.

η(p) = η(p0) [1 + α(p− p0)] , (2.28)

with p0 set to 1 atm and α being a fitting parameter. For simplicity, the subscript 0 in η0(p)
will be omitted since the shear rate dependency of viscosity is not part of this work. Thus,
unless otherwise noted, η(p) refers to the low shear rate limit η(p, γ̇ → 0) within this thesis.
Considering the increasing errors of his measurements at high pressures due to slip, he stated,
that an exponential pressure-viscosity relation (2.29),

ln η(p) = a′ + b′(p− p0) , (2.29)

with a′ and b′ representing fitting parameters, might be applicable. Nowadays, an equivalent
equation is used as a first approximation to the dependence of viscosity at zero-shear rate on
pressure:

η(p) = η(p0)eα(p−p0) , (2.30)

where α is commonly referred to as “pressure-viscosity coefficient”. It is easily seen, that
Eq. (2.28) is the linear part of the of a Taylor series expansion of Eq. (2.30). However, it is
important to note that the definition of α in equation (2.30) varies in literature. Bair et al. [21]
listed a few common definitions:

α(p) =
1

η

dη

dp
, (2.31)

α0 =

[
d ln(η)

dp

]
p=0

, (2.32)

αB(p) =
ln(η(p)/η(p = 0))

p
, (2.33)

α =

[∫ ∞
0

η(p = 0)dp

η(p)

]−1

. (2.34)

As the measurement techniques and the theoretical understanding of liquids advanced and
the accessible pressure range increased in the middle of the 20th century, it was shown that
the viscosity of liquids generally increases in a more complicated manner than suggested by
Eq. (2.30) proposed by Barus in 1893 [22, 23]. In 1966, Roelands provided a comprehensive
review of the field in his doctoral thesis [24]. In the following a brief summary of the empirical
pressure-viscosity relations referenced by Roelands is given, namely

ln
η(p)

η(p = 0)
=

K

p−1 + c
,

ln
η(p)

η(p = 0)
= K ′pc

′
,

ln
η(p)

ηp=0
= K ′′ log

(
1 +

p

c′′

)
,

(2.35)
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where K, K ′, K ′′, c, c′ and c′′ represent parameters that are characteristic for a given liquid.
He further states, that these equations are applicable within a pressure range of up to at least
300 to 500 MPa with one set of parameters. Additionally to the aforementioned relations, which
where already documented in literature before 1966, Roelands proposed an empirical pressure-
viscosity relation:

log10 [η(p)] + 1.200 = [log10 (ηp=0) + 1.200]
(

1 +
p

2.000

)z
, (2.36)

where η denotes the dynamic viscosity in cP at pressure p given in kgf/cm2. Roelands claimed
that this relation describes η(p) over a “very wide ranges of temperature and pressure” - with
only a single parameter z, the so called pressure-viscosity-index in addition to the viscosity of
the liquid at ambient pressure η(p = 0)). The parameter z was said to be characteristic for a
given liquid as well as independent of pressure and only weakly dependent on temperature. In
newer literature, Eq. (2.36) is given in a slightly different form [25]:

η(p) = η(p = 0) exp

{[
log10

(
η(p = 0)

)
+ 9.67

] [
−1 +

(
1 +

p

p0

)z]}
, (2.37)

which is equivalent to Eq. (2.36), except for the constant 9.67 and p0 = 1.96 × 108 Pa. The
choices of the constants in Eqs. (2.36) and (2.37) are purely empirical. Note that it was recently
shown, that Roelands ignored some experimental evidence within his thesis [26].

Nevertheless, Roelands provided a link between his empirical relation and statistical me-
chanics. By starting from the Cohen-Turnbull free-volume model [27] and assuming a Weibull
distribution of free volume in a liquid, he showed that

ln
η(p)

ηp=0
=

[
v∗f
vf

Γ

(
1 +

1

n

)]n
, (2.38)

where Γ() is the gamma function, v∗f denotes the “required free volume”, vf is the free volume
and n stands for the shape parameter of the Weibull distribution which assumed to be indepen-
dent of pressure and temperature. By considering that the ratio v∗f/vf changes with pressure in
the following way,

v∗f
vf

=

(
v∗f
vf

)∣∣∣∣
p0

(
1 +

p

p′0

)w
, (2.39)

where p′0 is a negative constant, if the gamma function is close to unity, follows a form similar
to Eq. (2.36),

ln
η(p)

ηp=0
=

(
ln
η0

ηe

)(
1 +

p

P0

)wn
, (2.40)

where the product ofw and n correspond to the pressure-viscosity-index z. The remaining draw-
back of this pressure-viscosity relation is, however, that it fails to describe the experimentally
well-established change of the curvature of η(p) at high pressures and low temperatures when
approaching the glass transition point. In order to address this problem, newer literature refers
to different approaches within free volume theory. Bair et al. (Ref. [21]) for instance reference
the Doolittle equation in Ref. [28] or in Ref. [29], the authors are applying an equation proposed
by Yasutomi et al. in Ref. [30].
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CHAPTER 3
Computational Details

Time integration of the equations of motion for the MD simulations given in Eq. (2.25) was per-
formed by the LAMMPS MD simulator. The version used, “01 FEB 2014”, was built including
only the “rigid” and the default packages. The calculations were carried out in parallel on an
“IBM System x iDataPlex dx360 M4” equipped with 44 nodes, each providing 64 GB of RAM
and two 8-core Intel “Sandy Bridge” CPUs. The final simulations of each of the 20 MD systems
considered in this work were run on 8 cores for a duration of approximately 1.5 months.

Additional programs used for post-processing the MD data e.g., for plotting the graphs pre-
sented her, were written in the Python programming language. Time critical code, such as that
used for auto- and cross-correlation, was implemented in Fortran 95 coupled with OpenMP for
multithreading capabilities.

The software written for this thesis covers the following topics:

• creation of LAMMPS-readable molecular structure files from “.mol2” files (this involves
correct finding and naming of all angles, dihedrals and improper interactions from the
given bond information);

• graphical assessment of the generated MD trajectories (variably smoothing and plotting
of output);

• various calculations with time series of inter- and intramolecular vectors, angles and other
parameters read from the very large output files e.g., for calculation of rotational correla-
tion times from arbitrary intramolecular vectors, assessment of the structural dynamics of
molecules;

• Green-Kubo-based viscosity calculations from the pressure tensor simulation output;

• various programs to plot and evaluate different types of datasets.

3.1 Selection of Molecules, State Points and System Size

The target simulated pressure range was chosen to be between 100 kPa and 1 GPa, hence span-
ning several orders of magnitude. The selection of substances and temperatures at which the MD
simulations are to be carried out, is not trivial since it needs to be assured, that the substances
stay in the liquid phase over the full pressure range. To find a suitable simulation temperature
for the substances of interest, a literature survey of the solid/liquid and liquid/gas equilibria
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was performed. By limiting the classes of chemically pure substances to alkanes, the following
substances and temperatures were chosen for this work:

• n-Octane at 348.15 K,

• 2,2,4-trimethlypentane (i-octane) at 348.15 K,

• n-hexadecane at 473.15 K and

• (6S)-2,2,4,4,6,8,8-heptamethylnonane (i-hexadecane) at 473.15 K.

The structural formulas of these molecules are given in Fig. 3.1.

(a) (b)

(c)

(d)

Figure 3.1: Structures of an (a) n-octane, (b) i-octane, (c) n-hexadecane and (d) i-hexadecane
molecule.

The choice of the temperature for the octane MD systems was well below the boiling points
of n- and i-octane at a pressure of 100 kPa, which are 399 K and 372 K respectively. The tem-
perature determining quantity in the high pressure region is the liquid to solid phase transition.
This transition was only assessed for the normal alkanes. Due to the lower molecular symmetry,
the i-alkanes are expected to have lower melting temperatures when compared to the respective
n-alkanes and hence should not limit the choice of the simulation temperature. Due to the lack
of solid/liquid phase equilibrium data at close to 1 GPa for both octane isomers, an estimation
was based on the phase equilibrium data for n-nonane available in Ref. [31] for pressures up
to 0.9 GPa. A linear extrapolation of the published nonane data suggests a potentially overesti-
mated melting point of 353 K at a pressure of 1 GPa. Since the octanes have a lower molecular
mass than nonane, the melting point is also expected to be lower at the given pressure and thus
the selection of 348.15 K seems justified.

The boiling points of n- and i-hexadecane at 100 kPa, 560 K and 513 K, are well above the
selected 473.15 K for the hexadecane MD systems. The solid/liquid phase transition temperature
for n-hexadecane at 1 GPa was extrapolated by using experimental data published in Ref. [32]
by means of fitting a power law to the dataset. This yielded an estimated melting point of 440 K
for n-hexadecane at 1 GPa and justifies the selection of 473.15 K for these MD systems.

To explore the pressure dependence of viscosity, pressures of 0.1, 250, 500, 750 and 1000 MPa
were selected in the range of 100 kPa to 1 GPa for each of these molecules.
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The selection of the system size, in this case the number of molecules in the MD simulations
is governed by two main considerations:

1. Available computational resources and desired trajectory length.

2. Reduction of finite size effects due to small system size.

Since the available computational resources are usually fixed by external factors, a trade off
between trajectory length and system size must be found. On one hand, Yeh et al. claim in
Ref. [33] that the calculation of shear viscosity exhibits only weak dependence on the size of
the simulated systems. However, they do not rule out effects due to long-time tails of the shear
stress autocorrelation functions. Levashov et al. in Ref. [34], on the other hand, point out that
thermally excited shear waves that contribute to viscosity show large spatial correlation and
display complex phenomena when periodic boundary conditions are applied.

Since the rigorous determination of the effects of differently sized systems on the viscosity
was beyond the scope of this thesis, the MD systems included 1024 molecules for the octane
systems and 512 molecules for the hexadecane systems. These values compare well to other
studies in this field, e.g. see Refs. [35–37].

3.2 Force Field, Long-range Corrections and Cutoff Distances

The selection of a force field that fits the purpose of this work is crucial for obtaining MD
results close to reality. One of the commonly used force field for simulating organic liquids and
especially alkanes is the “Optimized Potentials for Liquid Simulations” (OPLS) developed by
Jorgensen et al. [38, 39]. Several different sets of parameters for OPLS have been applied in
literature [19, 40, 41]: all atom models, united atom models as well as modified versions. Siu et
al. [41], refined the original OPLS all atom (OPLS-AA) parameters for simulations of alkanes
with more than 6 carbon atoms. They achieved a better agreement of the simulated viscosities,
densities and conformational properties with experimental values when compared to the original
OPLS-AA parameter set. For this work, a slightly modified implementation of the reassigned
OPLS-AA parameters (termed L-OPLS) was used and extended to iso-alkanes. The adoptions
made are:

• hydrogen bond lengths were not restrained to the equilibrium value (no SHAKE or LINCS
algorithm was used);

• the pairwise interaction and the charge for hydrogen atoms bound to tertiary carbon atoms
was chosen to be the same as for hydrogens bound to secondary carbon atoms and the
charge of the respective tertiary carbon atom was chosen to achieve neutrality.

The restraining of the hydrogen atoms was omitted in order to reduce the complexity of
the Hamilton function and to allow for possible changes in the equilibrium bond length at high
pressures and hence to get a possibly more accurate pressure dependence of density and viscos-
ity. However, leaving the hydrogen atoms to freely oscillate, increases the computational costs.
This is due to the H-bond stretching being the fastest dynamical process in the system, requiring
an integration timestep of only 0.5 fs to ensure the energy conservation. Another effect of not
restraining the hydrogen bond lengths is that the dihedral energy landscape of the carbon back-
bone in alkanes is slightly altered (see Fig. 3.2). In order to obtain the angle dependence of the
dihedral energy as calculated by ab-initio methods in Ref. [41], a refit of the dihedral potential
parameters with free hydrogen atoms would be necessary. Since the difference is small, the
original potential parameters with the given modifications were used.
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Figure 3.2: The energy of the C2 − C3 − C4 − C5 dihedral in n-hexane as a function of the
dihedral angle relative to the trans position for (non-) constrained hydrogen bond lengths.

The properties of iso-alkanes were not treated by Siu et al. and thus no parameters were
given for hydrogen atoms bound to tertiary carbon atoms. Therefore, the original OPLS-AA
non-bonded parameter for these hydrogen atoms was used.

In order to be able to work with periodic boundary conditions and to keep computational
costs at a minimum, cutoff distances for pairwise force calculations were defined. The cutoff
distances for van der Waals (vdW) as well as electrostatic interactions was chosen to be 13.0 Å.
At this distance the longest ranged vdW interaction energy (C-C) drops to a value 1.5 × 10−3

times the value at the energy minimum. Dysthe et al. in Ref. [19] claim, that the effects of the
choice of the cutoff distances on the calculated viscosity is small. However, since Dysthe et al.
conducted their tests only in gas phase simulations. In this thesis, the effects of the vdW cutoff
on the total energy and pressure were corrected by the equations

ELRC =
1

2

n∑
i=1

N ′i

n∑
j=1

4πρ′j

∫ ∞
rc

gij(r)Eij(r)r
2 dr ,

pLRC =
1

6

n∑
i=1

ρ′i

n∑
j=1

4πρ′j

∫ ∞
rc

gij(r)

[
r

dEij(r)

dr

]
r2 dr ,

(3.1)

provided by Sun in Ref. [42]. In Eqs. (3.1) the sums run over all n different atom types, N ′i
denotes the total number of atoms of type i, ρ′i is the number density of atom type i in the
MD system. gij denote the radial pair distribution functions (RDF) and Eij(r) is the distance
dependent interaction energy between atom type i and j.

To apply these equations, the RDF should be converged to unity at the force cutoff distance.
It was found, that g(r) is close to one at 13.0 Å for all systems near atmospheric pressure,
see figure Fig. 3.3. However, when the pressure for normal alkanes increases to 1 GPa, the
fluctuations in g(r) at close to 13.0 Å become larger when compared to lower pressures, see
Fig. 3.4, although its value is still close to unity.

Although the requirement of g(r) = 1 for distances larger than the cutoff is not strictly
fulfilled, especially for the MD systems at high pressure, the tail correction is applied in all the
MD simulations to provide comparability.
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Figure 3.3: All-atom radial distribution functions g(r) at equilibrium for n-octane (top left), i-
octane (top right), n-hexadecane (bottom left) and i-hexadecane (bottom right) and a pressure of
100 kPa. The dashed, horizontal line marks the unity.

Furthermore, to keep consistency with the simulations published by Siu et al. in Ref. [41],
electrostatic long range forces are included in the simulations. The “Particle-Particle Particle-
Mesh” (PPPM) solver described by Hockney et al. in Ref. [43] was used with a maximum
relative error in the force calculations of 10−5 to include Coulomb interactions also beyond the
cutoff distance.

3.3 Time Integration

The proper selection of the time integration algorithm is important for achieving a good com-
putational efficiency. The integrator used for all the MD simulations here was the “reversible
REference System Propagator Algorithm” (rRESPA) introduced by Tuckerman et al. [11]. Us-
ing this integration scheme, it is possible to optimize the calculations of the computationally
most expensive pairwise interactions. This is achieved by introducing multiple timesteps for the
computation of interactions over different length scales. For further details about this algorithm
the reader is referred to the description of the rRESPA v2 algorithm on page 16.

This integration scheme enables an outer timestep of 4 fs with good energy conservation,
recall Eq. (3.2). A comparison of the computational efficiency for various integration schemes
on 8 cores is given in Tab. 3.1. The computational efficiency was assessed by comparing the
time needed to calculate a trajectory with a total simulated duration of 100 ps for the 100 kPa
n-hexadecane MD system used for this work.
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g
(r
)

0 2 4 6 8 10 12

r [Å]
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Figure 3.4: All-atom radial distribution functions g(r) at equilibrium for n-octane (top left), i-
octane (top right), n-hexadecane (bottom left) and i-hexadecane (bottom right) and a pressure of
1 GPa. The dashed, horizontal line marks the unity.

Integrator rel. computational cost
Verlet 3.2

rRESPA v1 1.8
rRESPA v2 1.0

Table 3.1: A comparison of computational cost for different integration algorithms relative to
the rRESPA v2 algorithm.

The time integration algorithms tested were:

Verlet standard Verlet integrator with a timestep of 0.5 fs

rRESPA v1 a multi-timestep algorithm with 3 levels: level 1 is calculated with a timestep of
one fourth and level 2 at half of the outer, level 3, timestep of 2 fs such that at level 1
intramolecular forces are calculated, at level 2 van der Waals and Coulombic interactions
within the cutoff radius and at level 3 long range Coulombic interactions are updated.

rRESPA v2 is a multi-timestep algorithm with 4 levels. The levels are separated by a time
factor of 2 each, meaning that the inner level (level 1) is updated every 0.5 fs if the outer
timestep is 4 fs. All intramolecular forces were calculated at level 1, in level 2, 3 and 4
the pairwise interactions were split by additional cutoff distances. The LAMMPS imple-
mentation of this feature allows to specify 2 cutoff distances per level for the “inner” and
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“middle” distances. The “inner” interactions were calculated at the rRESPA level 2 and
include full pairwise interactions of up to r1 = 4.5 Å distance. From r1 to r2 = 6.0 Å,
the forces were linearly down-scaled to zero. The “middle” interactions were calculated
on level 3 and included forces up-scaled from zero at r1 to full strength at r2 as well as
the full forces of up to a distance of r3 = 8.0 Å. In the range form r3 to r4 = 10.0 Å the
forces were again down-scaled to zero in the “middle” region and up-scaled form zero to
full for the “outer” region which is calculated at rRESPA level 4. The pairwise interac-
tions between r4 and rc = 13.0 Å, the overall force cutoff, are taken into account by the
“outer” level, see Fig. 3.5 for a graphical illustration.
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Distancercr1 r2 r3 r4

Figure 3.5: An illustration of the distance stepped “rRESPA v2” algorithm. It depicts the force
scaling in the inner, middle and outer regions as a function of relative distance between two
atoms. The radii r1−4 represent parameters of the integrator, while rc is the overall force cutoff
radius.

Note that the rRESPA v2 time integration algorithm is used for all simulations published within
this work.

3.4 Thermostatting

The need for thermostatting the simulated molecules arises from the high sensitivity of the
Green-Kubo formalism to drifts in the total pressure, especially when calculating the bulk vis-
cosity. This drift can be caused by numerical errors made in the time integration algorithms in
conjunction with systematic errors like van der Waals force cutoff or the limited accuracy of
long range Coulombic interactions. These errors lead to a not perfectly conserved total energy
for the microcanonical (NVE) ensemble. This unphysical change in the total energy leads to
increasing temperature and thus to an increase in the pressure due to the constant simulation box
volume. Although in a practical situation, this drift can be kept low by reducing the simulation
timestep or employing a different time integration algorithm than rRESPA v2, nevertheless, a
balance between integration accuracy and total computational cost needs to be found. Within
this work, a timestep of 4 fs together with the above described rRESPA v2 algorithm ensured a
drift in the total energy E (kinetic plus potential energy) within all simulations of less than

∆E

E∆t
< 5×10−5 ns−1 . (3.2)

The energy drift was assessed by analyzing the change in total energy of the thermostats in the
equilibrated MD simulations. This change corresponds to the energy transferred to or from the
MD systems to keep them at a constant temperature. Since no energy is added or taken from
the MD simulations on purpose, this change likely results from errors in the time integration
scheme. Because the energy drift is not zero and the MD simulations are run over several
tenths of nanoseconds, the temperature needs to be kept constant by means of a thermostat.
Accordingly, the considered ensemble is changed to the canonical (NVT).
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The NVT ensemble can be achieved by employing a Nosé-Hoover chain thermostat [9, 10],
see chapter 2 for more details. The practical challenge, however, is to find an appropriate cou-
pling constant of the thermostat to the MD system. According to the work of by Basconi et
al. [44], on one hand, undercoupling the thermostat can result in distortions of the long-term
phenomena (longer than a nanosecond) and, on the other hand, overcoupling results in sig-
nificantly altered short term dynamics and differences in structural relaxations. In their work,
Basconi et al. showed that the effect of a properly coupled Nosé-Hoover chain thermostat on the
MD simulated viscosity of liquids is negligible.
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Figure 3.6: The effect of undercoupling a Nosé-Hoover thermostat to a n-hexadecane MD sys-
tem at roughly 1 GPa pressure and 473.15 K, when the coupling parameter is set to 20 ps.

The effect of undercoupling is demonstrated in Fig. 3.6. The variation in total energy intro-
duced by the thermostat leads to an oscillating temperature and ultimately influences the pressure
on a timescale which could be problematic when determining the viscosity by the Green-Kubo
formalism. This effect was found to be especially pronounced at high pressures and hence a MD
system at 1 GPa was used to provide the example given in Fig. 3.6. Overcoupling results in an
increase of rotational correlation times (RCT) with respect to an NVE ensemble. In Table 3.2
the results of testing the influence of the thermostat relaxation time (Tdamp in LAMMPS) on the
RCT at an atmospheric pressure for n-hexadecane at 473.15 K are given. Note that a lower value
of Tdamp corresponds to stronger coupling of the thermostat to the system.

Ensemble Tdamp [ps] RCT [ps] Deviation [%]
NVE - 35.6 0.0

NVT
1.00 35.6 0.0
0.10 35.8 0.6
0.01 38.5 8.1

Table 3.2: Effect of the thermostat relaxation time Tdamp on the rotational correlation time
(RCT) in case of n-hexadecane at 100 kPa and 473.15 K.

In order to ensure that overall translational dynamics are not influenced by the thermostat as
well as to be able to average over the effects of the thermostat in the pressure tensor with high
statistical significance, Tdamp was chosen to be 0.1 ps in all MD simulations.
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The chain length of the thermostat was chosen to be 4, Cancès et al. recommend a chain
length of ≥ 3 in Ref. [45], in order to improve ergodicity over a non-chained Nosé-Hoover
thermostat, see Ref. [10].
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CHAPTER 4
Results and Discussion

The output from the MD simulations comprises all 6 independent components of the full pres-
sure tensor, all 6 components of every intramolecular contribution to the total pressure tensor
(resulting from the kinetic contribution, bond, angle and dihedral forces) as well as the total
and potential energy. These (double precision) values are printed into a text file at every outer
timestep of 4 fs, see Appendix A. According to the Nyquist-Shannon sampling theorem, a sam-
pling rate of 250 samples/ps allows to correctly sample the highest frequency motion within the
system, i.e., the C-H bond stretching occurring a frequency of about 90 ps−1.

In addition to this detailed output, averaged quantities with lower precision are also written
to a file to monitor the MD simulations conveniently. Thus the following quantities are output
after averaging over 80 fs: pressure, temperature, kinetic energy, potential energy, total energy,
thermostat energy, van der Waals energy, Coulomb energy, long-range Coulomb energy, bond
energy, angle energy and dihedral energy. In order to be able to determine the dynamics of
structural properties of the molecules, the position of every atom during the MD simulation is
written to a dump-file every 250 timesteps (1 ps), see Appendix A.

4.1 Detection of Equilibrium

The purpose of equilibration is to provide a starting MD system where not only the velocities
of the involved atoms are drawn from the canonical distribution, but also the positions and
orientations of the molecules are compatible with the chosen ensemble. This is achieved by
initially creating a system of molecules (which is usually highly ordered and at zero absolute
temperature) and then applying a thermostat to heat the system up to the desired temperature. It
is assumed that given sufficient time the system will converge towards an equilibrium state that
corresponds to the canonical ensemble. The processes of system creation, equilibration and data
production was split into the following tasks:

1. creating atomic coordinates corresponding to the respective molecular structure by mini-
mizing the potential energy;

2. finding and parameterizing all involved bonds, angles and dihedrals as well as the non-
bonded properties of all atoms, according to a modified L-OPLS force field;

3. importing the structure and parameters to LAMMPS and replicating the molecules to a total
number of 1024 molecules for the octane isomers and 512 molecules for the hexadecane
isomers;
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4. adjusting the simulation box dimension to create a cubic box and heating each of the 4
systems to the desired temperature;

5. isotropically adjusting the simulation box dimensions of MD systems to come close to the
experimental densities of the liquids at atmospheric pressure;

6. replicating the four “seed” systems five times and adjust the pressure in each MD system
to the respective target pressure;

7. fine adjusting the volumes of MD systems;

8. data production.

Being able to concentrate and optimize one of these tasks at a given time this achieves a certain
modularity and helps to reduce difficulties associated with the handling of large data files. The
practical implementation of all points listed above can be summarized as follows.

1. The freeware Avogadroa was used for easy and intuitive creation of molecular structures
that can be energy-minimized by assuming various force fields , e.g., the “Universal Force
Field” (UFF). The structures can then be exported in the “.mol2” file format for further
usage.

2. A Python script was written to find all possible bond, angle, dihedral and improper in-
teractions from an imported molecular structure. The force field parameters can be then
easily added to the generated output file.

3. After importing the generated molecular structure, the corresponding LAMMPS “repli-
cate” command can be used to create the initial systems.

4. To increase the temperature to the target one, a Langevin thermostat was used. The total
number of simulation steps in this task was 20.000.

5. Using the isothermal-isobaric ensemble (NPT), the volume of the system was allowed to
change to achieve a pressure of approximately 100 kPa. The total number of simulation
steps in this task was 15.000.

6. From small test simulations the volume of the MD systems at the desired pressures can
be roughly estimated. The volume for the main MD simulations was based on this es-
timations and the MD simulations were continued for the NVT ensemble over 800.000
timesteps.

7. In order to bring the system pressures closer to the target pressures, a further, small, ad-
justment to the system volumes was applied and the NVT simulation was run for further
200.000 timesteps.

8. The systems prepared in this manner are then used for the production of data to which
the Green-Kubo method and others can be applied (after an additional check whether
equilibrium can be assumed).

aavogadro.cc
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Each of the total 20 MD systems was simulated for more than 4 ns before any MD data was
considered for the calculation of physical properties (including the check for equilibrium). In
Fig. 4.1 the initial phase of a n-hexadecane system equilibration process are depicted (the volume
of the simulation box was not yet adjusted to yield the density at atmospheric pressure).

In order to demonstrate the structure of a LAMMPS input script, an example of a data pro-
duction script is given in Appendix A.

Figure 4.1: Snapshots of the simulation box for n-hexadecane at various stages of the equili-
bration process. The snapshot at the top left shows the initial arrangement of molecules, the
second snapshot in the top right corner gives the box after adjusting its dimensions to a cube and
for a temperature slightly above absolute zero (10 K). The snapshots in the second row (from
left to right) were taken at 60 and 120 ps after the equilibration started and the temperature was
increased to 250 and 473.15 K, respectively.

In order to apply the Green-Kubo formula to determine the equilibrium shear and/or bulk
viscosity of an MD system, the simulated trajectories need to have reached a steady state. In
order to find out whether the simulations correspond to a steady state, Jones and Mandadapu [17]
suggested to use the Hellinger metric

||ρ(m)(ξ)− ρ(m−1)(ξ)||H =

[∫
Ω

(√
ρ(m)(ξ)−

√
ρ(m−1)(ξ)

)2

dξ

] 1
2

, (4.1)

to compare the probability density functions ρ(m)(ξ) of the quantity ξ(t), e.g., the time-dependent
pressure of the system or a single component of the pressure tensor. Here ρ(m)(ξ) is calculated
by using normalized histograms of the time series of ξ(t) divided into Nm blocks. Since Jones
and Mandadapu used a cumulative calculation of ρ(m)(ξ), this is calculated on the basis of all the
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samples of ξ(t) that were already used to calculate ρ(m−1)(ξ) plus the number of samples in one
additional block. In Eq. (4.1) Ω represents the union of the supports of ρ(m)(ξ) and ρ(m−1)(ξ).

In order to circumvent unnecessary loss of simulation data, the method described by Jones
and Mandadapu was modified by avoiding a cumulative calculation of the density functions and
introducing an estimate of the equilibrium density distribution function ρeq as follows,

||ρm(ξ)− ρeq||H =

[∫
Ω

(√
ρm(ξ)−√ρeq

)2
dξ

] 1
2

, (4.2)

where ρm(ξ) is calculated from a histogram of data contained only in block m. An estimate for
ρeq can be obtained from a histogram over a suitable region of the trajectory. Here and further
on, the beginning and end of this region will be denoted by teq and trun respectively, refer to
Fig. 4.2 for a graphical illustration. This method allows for direct comparison of them - series of
Hellinger distances without the need of separating the influence of statistics from the influence
of non-steady state contributions. It must be noted, however, that this m - series of Hellinger
distances for a given, finite trajectory does not converge to zero but rather to a finite value, see
Appendix B. Thus, when comparing this Hellinger distance for different MD systems, it must
be ensured that the number of ξ(t) samples in block m is the same.

t = 0 trun

m = 2

m = 3...Nm

teq

t

Figure 4.2: Illustration for the time-parameters teq: the time moment from which the MD system
can be considered as being in equilibrium, trun: the total simulated time and for the block index
m.

In Figs. B.1-B.5, the results of applying this method to the simulated systems after the equi-
libration is shown. The first trun = 30 ns of the trajectories were used and split into Nm = 60
blocks, each containing Nblock = 1.25 × 105 samples of the average over all off-diagonal ele-
ments of the pressure tensor

poff =
1

3

∑
µ<ν

σµν . (4.3)

The number of bins for the histograms was chosen to be 49 (the rounded off value of the cubic
root of the number of samples per block). Note the difference in the y-axis when comparing
figures for different pressures.

Another method of assessing the convergence of a MD system to its equilibrium is to check
the convergence of a variable of interest with respect to its equilibrium value,

|〈ξ〉m − 〈ξ〉eq| =
∣∣∣∣∣ 1

mstop −mstart

∫ mstop

mstart

ξ(t)dt− 1

trun − teq

∫ trun

teq

ξ(t)dt

∣∣∣∣∣ , (4.4)

where mstart and mstop represent the time of the first and last sample of ξ(t) in block m.
Figs. B.6-B.10 display the convergence of poff to its equilibrium value. 〈poff 〉m represents
the block average of block m and 〈p〉eq is an estimation for the equilibrium value calculated
by averaging over the last half of the 30 ns trajectory. Note the difference in the y-axis when
comparing different pressures.

A system is considered to be in equilibrium, as soon as the results of both methods proposed
above are independent of m.
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When the influence of the choice of teq on the result is examined, it is found to be small for
all systems (trun was fixed at 30 ns), and hence will not be treated in detail, an illustration is
given in Fig. 4.3.
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Figure 4.3: The influence of teq, see Fig. 4.2, on the Hellinger metric for the n-octane system at
1 GPa and 348.15 K.

The results of the equilibrium detection, as quantified in Eqs. (4.2) and (4.4) and provided
by Figs. B.1-B.10, are summarized in Tab. 4.2. For the parameters chosen refer to Tab. 4.1.

The parameters used to calculate the Hellinger metric and the block averages are given in
Tab. 4.1. It summarizes the maxima of the Hellinger metric HMmax as well as the maximum
deviation of the average of the off-diagonal pressure tensor elements from their estimated equi-
librium values ∆poffmax and 〈poff 〉eq. In this section, only the maxima of the different methods
are listed. Full graphs of the Hellinger metric or the block averages as a function of the block
index m can be found in Figs. B.1-B.10 in the appendix.

Nm = 60
trun = 30 ns
teq = 15 ns

Table 4.1: Parameters used for equilibrium detection.
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System 〈p〉eq [MPa] HMmax ×103 ∆poffmax [MPa]

n-octane

0.01 13.4 0.17

249.01 17.0 0.46

503.76 26.1 1.03

752.47 37.8 1.67

995.13 46.0 2.17

i-octane

0.57 14.8 0.33

248.62 16.1 0.51

502.80 29.7 1.26

751.83 45.9 2.15

995.56 75.8 3.62

n-hexadecane

0.29 14.0 0.25

249.64 17.8 0.67

503.70 22.2 0.97

751.88 32.9 1.73

994.24 27.2 1.51

i-hexadecane

0.04 13.0 0.32

249.29 25.6 1.23

502.15 44.3 2.45

748.24 92.2 5.48

987.35 135.2 8.31

Table 4.2: Maximum value of the Hellinger metric HMmax and that of the absolute deviations
∆poffmax of the average of the off-diagonal components of the pressure tensor poff , see Eq. (4.3),
from its equilibrium value for an estimated pressure 〈p〉eq and a temperature of 348.15 K for the
octane isomers and of 473.15 K for the hexadecane isomers, respectively.
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As can be observed from Tab. 4.2, the Hellinger metric as well as the deviation of the average
over the off-diagonal pressure tensor elements from its equilibrium value exhibit stronger fluc-
tuations and a higher absolute magnitude for the i-hexadecane MD systems at pressures greater
than 250 MPa when compared to all other MD systems investigated here. This suggests, that
the i-hexadecane systems at pressures greater than 250 MPa might not be in full equilibrium
and hence, results reported for these systems should not be considered as being reliable. When
including the results from the rotational correlation time evaluation, see Tab. 4.7, these findings
are additionally backed up since τ rot1 significantly exceeds the total equilibration time and in
case of 1 GPa even the total simulated time.

All other MD systems behave consistently and do not show significant drifts in the calculated
metrics. Hence, it is assumed that initial equilibration phase of approximately 4 ns is sufficient
to provide systems that are well converged to an equilibrium. Therfore the data from these 4 ns
is not included in any of the calculations performed or graphs plotted for this work.

4.2 Zero-shear and Bulk Viscosities

The calculation of viscosity-related quantities is performed in close agreement with post-pro-
cessing methods published by Jones and Mandadapu [17]. The discretized versions of Eqs. (2.20)
read

ξτ (Nc ∆t) ≈
Nc∑
j=0

λ

NrNτ

Nr∑
r=1

Nτ∑
i=1

ξr(i∆t) ξr((i+ j)∆t)∆t ωj λ =
V

kBT
, (4.5)

and can be applied directly to calculate viscosities ξτ (Nc ∆t) of the liquids from MD data. See
Tab. 4.3 for an explanation of the notation used. The exact nature of the result ξτ (Nc ∆t) de-
pends on the choice of ξr. Is ξr chosen to be one of the off-diagonal elements of the pressure
tensor, the result corresponds to the shear viscosity of the MD system. By using the diagonal
components of the stress tensor and applying the corrections given in Eq. (2.18), the bulk viscos-
ity can also be obtained. The sum over all replicas Nr of the system includes the total number
of simulations for the MD and additionally, some symmetry considerations. This means that
under the assumption that no anisotropic phase was formed, all three off-diagonal components
of the pressure tensor are independent of each other and hence can according to Ref. [17] be
considered different replicas of the same MD system.

∆t simulation time step
Na initial number of samples per block
Nb number of blocks
Nc number of samples used for correlation
Nr number of independent replicas of the system
Nτ total number of timesteps in the simulation
ωi quadrature weights
V volume of the system
kB Boltzmann constant
T temperature

Table 4.3: Computational parameters.

In order to estimate the errors in the calculated viscosities, Jones and Mandadapu applied
the method of the large-block limit for block averages. This method can be implemented by
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splitting the Nr simulation trajectories (consisting of Nτ samples) into blocks of length Na each
and then recursively increasing the block size by averaging over the blocks of smaller size. By
calculating the standard deviation of the resulting quantity as a function of block size and taking
the limit of infinite block size one can at least in principle estimate the error in the results due to
finite averaging. Jones and Mandadapu provided a method to estimate an upper boundary of the
variance in case of transport coefficients,

varξτ (τc) < 4ξ2 τc
τ

, (4.6)

when ξ is replaced by a sufficiently accurate estimate ξτ . A further input parameter that is
needed for calculating the correlation is the significant correlation time. Jones and Mandadapu
recommend to estimate this by a prior guess of the relevant transport coefficient (or obtaining
it form other sources). This method was found to be only of limited value for this work since
the viscosity depends exponentially on pressure which makes it hard to estimate. Thus, other
means of finding the upper limit for the correlation time were used. Cui et al. proposed to use
the rotational correlation time (τ rot) of molecules as a natural time scale for liquids [13,46]. By
using a small multiple (2 is used in this work) of τ rot which can easily be calculated from the
MD data as the significant correlation time τc, one circumvents the need for having good prior
estimates for the transport coefficients.

In addition, for calculating the viscosity of MD systems by autocorrelating the pressure ten-
sor elements as given by Eq. (2.26), the same formalism can be applied to “partial” formulations
of the pressure tensor which only include certain contributions to the total σµν . These con-
tributions can be restricted to include only specific terms like e.g., the kinetic term, or certain
components of forces Fi according to Eq. (2.27). The “partial” viscosities calculated in his way,
do not sum up to yield the total zero-shear viscosity as calculated by autocorrelation and inte-
gration of the full pressure tensor. This is a direct consequence of the inherent nonlinearity of
the autocorrelation and can be demonstrated on an example comparing the full pressure tensor
autocorrelation

Ctot(τ) = (K(t) + V(t))︸ ︷︷ ︸
σµν(t)

(K(t+ τ) + V(t+ τ))︸ ︷︷ ︸
σµν(t+τ)

= K(t)K(t+ τ) + V(t)V(t+ τ) +K(t)V(t+ τ) + V(t)K(t+ τ)

6= K(t)K(t+ τ) + V(t)V(t+ τ) = Ckin(τ) + Cvir(τ) ,

(4.7)

with the sum of the autocorrelations

Ckin(τ) = K(t)K(t+ τ) , (4.8)

and

Cvir(τ) = V(t)V(t+ τ) , (4.9)

obtained from the kinetic

Kµν(t) =
N∑
i=1

miviµ(t)viν (t) , (4.10)

and the virial

Vµν(t) =
N∑
i=1

riµ(t)Fiν (t) , (4.11)
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contributions separately. For the sake of readability the indices µ and ν were omitted in the
expressions for Ctot(τ), Ckin(τ), Cvir(τ) K(t) and V(t) in the Eqs. (4.7-4.9).

The results of the viscosity calculations by applying the Green-Kubo formula are given in
Tabs. 4.4 and 4.5 and are plotted in Fig. 4.4. The listed viscosities represent the maximum of
the time integral over the autocorrelation functions in the interval from τc = 0 to τc = 2τ rot

(τ rot was calculated from vector A - refer to section 4.3 and Tab. 4.7 for further details), see also
Appendix C. Due to excessively high τ rot in the i-hexadecane systems at 750 MPa and 1 GPa,
the upper autocorrelation and integration limit was fixed to 6 ns. The total amount of simulation
data available for analysis of each system τrun, is provided in Tabs. 4.4 and 4.5.

0 200 400 600 800 1000

p [MPa]

10−4

10−3

10−2

10−1

100

101

102

η
[P
a
.s
]

0 200 400 600 800 1000

p [MPa]

10−4

10−3

10−2

10−1

100

101

102

η
[P
a
.s
]

0 200 400 600 800 1000

p [MPa]

10−4

10−3

10−2

10−1

100

101

102

η
[P
a
.s
]

0 200 400 600 800 1000

p [MPa]

10−4

10−3

10−2

10−1

100
101
102
103

η
[P
a
.s
]

Figure 4.4: Pressure-dependent zero-shear and bulk viscosity for n-octane (top left), i-octane
(top right), n-hexadecane (bottom left) and i-hexadecane (bottom right). The dash-dotted (red)
lines represent the bulk, whereas and the dashed (black) lines the zero-shear viscosities. The
error-bars correspond to the standard deviation calculated by taking the square root of the vari-
ance given by Eq. (4.6).
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total zero-shear viscosity kinetic viscosity bond viscosity angle viscosity

〈p〉eq τrun ηtot × 103 σηtot × 103 τc ηkin × 106 σηkin × 106 τc ηbond × 102 σηbond × 102 τc ηangl × 102 σηangl × 102 τc

n-octane

0.01 60.5 0.289 0.011 23.7 17.215 0.596 18.1 0.246 0.011 30.0 0.613 0.027 30.0

249.01 52.8 1.744 0.154 102.6 21.611 1.939 106.2 1.539 0.157 138.0 4.364 0.446 138.0

503.76 46.8 6.579 1.201 389.8 26.697 4.717 365.4 3.773 0.689 390.2 11.943 2.180 390.2

752.47 45.2 13.450 2.532 400.6 42.213 12.357 968.7 9.929 2.930 984.2 36.492 10.767 984.2

995.13 44.3 55.437 24.681 2193.0 33.818 15.375 2287.0 24.181 11.064 2316.6 96.192 44.015 2316.6

i-octane

0.57 58.7 0.420 0.013 13.8 12.601 0.362 12.1 0.258 0.008 13.8 0.161 0.005 13.8

248.62 51.9 3.007 0.209 62.7 14.670 0.998 60.1 1.525 0.106 62.7 1.022 0.071 62.7

502.80 46.5 10.823 1.358 183.1 16.534 2.188 203.5 6.082 0.807 204.8 4.315 0.573 204.8

751.83 44.7 40.605 9.010 550.8 27.140 6.531 647.8 20.918 5.042 650.0 14.398 3.471 650.0

995.56 43.8 159.358 71.093 2178.0 50.200 22.274 2154.5 89.690 40.013 2178.0 74.147 33.079 2178.0

n-hexadecane

0.29 64.7 0.317 0.019 55.8 17.411 0.608 19.8 0.616 0.041 71.2 1.724 0.114 71.2

249.64 54.7 2.335 0.388 378.3 19.359 3.191 371.5 5.000 0.833 379.2 16.171 2.693 379.2

503.70 38.6 6.145 1.751 784.3 29.961 8.883 849.1 15.270 4.655 897.5 55.742 16.920 889.9

751.88 46.8 16.489 6.461 1794.9 40.653 17.093 2066.8 27.344 11.500 2068.0 110.962 45.602 1974.5

994.24 45.8 36.055 14.049 1738.7 38.184 22.165 3858.5 60.939 35.563 3900.0 277.649 162.030 3900.0

i-hexadecane

0.04 60.1 0.530 0.031 50.3 13.075 0.765 51.4 1.685 0.099 51.5 0.506 0.030 51.5

249.29 49.4 7.066 1.457 525.4 14.995 2.025 225.3 21.323 4.239 488.4 6.837 1.405 522.2

502.15 47.4 50.260 26.687 3344.0 35.644 18.882 3328.4 101.654 37.543 1617.8 33.472 12.538 1664.2

748.24 45.6 246.023 153.200 4416.7 46.585 33.313 5824.7 726.581 527.345 6000.0 209.817 152.283 6000.0

987.35 37.8 2023.334 1612.399 6000.0 47.778 37.980 5970.4 1711.770 1364.113 6000.0 538.479 429.115 6000.0

Table 4.4: Zero-shear viscosities as a function of pressure 〈p〉eq in MPa for all simulated molecular systems together with the square root of their variance
in Pa.s and the (significant) correlation time τc in ps. Additionally to the total zero-shear viscosity ηtot, the partial contributions ηkin, ηbond and ηangl as
well as the total simulated time τrun in ns are also given. The partial viscosities result from autocorrelating only the kinetic, bond, angular, dihedral and
long range force contributions of the total pressure tensor.
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total zero-shear viscosity dihedral viscosity long range viscosity bulk viscosity

〈p〉eq τrun ηtot × 103 σηtot × 103 τc ηdihed × 106 σηdihed × 106 τc ηlong × 102 σηlong × 102 τc ηbulk × 102 σηbulk × 102 τc

n-octane

0.01 60.5 0.289 0.011 23.7 7.834 0.349 30.0 1.389 0.062 30.0 0.423 0.018 27.8

249.01 52.8 1.744 0.154 102.6 29.654 2.902 126.4 9.384 0.960 138.0 3.039 0.311 138.0

503.76 46.8 6.579 1.201 389.8 60.821 11.103 390.2 24.166 4.412 390.2 21.565 2.742 189.3

752.47 45.2 13.450 2.532 400.6 103.261 18.670 369.6 73.152 21.584 984.2 202.850 59.425 970.2

995.13 44.3 55.437 24.681 2193.0 219.532 91.195 1909.3 173.647 79.456 2316.6 2300.632 431.886 389.9

i-octane

0.57 58.7 0.420 0.013 13.8 3.208 0.098 13.8 0.625 0.019 13.8 0.423 0.013 13.7

248.62 51.9 3.007 0.209 62.7 12.882 0.863 58.3 3.518 0.245 62.7 3.003 0.209 62.7

502.80 46.5 10.823 1.358 183.1 35.589 4.351 173.7 14.381 1.909 204.8 26.047 3.439 202.6

751.83 44.7 40.605 9.010 550.8 126.034 30.381 650.0 46.429 11.192 650.0 436.036 104.809 646.3

995.56 43.8 159.358 71.093 2178.0 336.503 145.148 2036.1 216.965 96.793 2178.0 6422.901 2832.296 2128.0

n-hexadecane

0.29 64.7 0.317 0.019 55.8 5.657 0.199 20.0 3.887 0.258 71.2 0.433 0.019 30.8

249.64 54.7 2.335 0.388 378.3 15.454 1.226 86.0 34.780 5.793 379.2 3.580 0.595 377.0

503.70 38.6 6.145 1.751 784.3 26.479 3.463 165.2 118.264 35.855 887.8 35.710 11.089 931.4

751.88 46.8 16.489 6.461 1794.9 73.637 21.887 1032.7 227.668 93.052 1952.9 232.190 88.932 1715.0

994.24 45.8 36.055 14.049 1738.7 87.916 23.642 828.1 544.837 317.956 3900.0 2509.633 1464.542 3899.8

i-hexadecane

0.04 60.1 0.530 0.031 50.3 11.260 0.659 51.5 3.472 0.203 51.5 0.867 0.051 51.5

249.29 49.4 7.066 1.457 525.4 68.130 11.685 363.5 44.510 8.867 490.3 8.536 1.743 515.5

502.15 47.4 50.260 26.687 3344.0 286.127 101.381 1489.1 209.542 76.810 1593.7 153.654 81.273 3318.5

748.24 45.6 246.023 153.200 4416.7 2178.903 1581.426 6000.0 1463.519 1062.208 6000.0 994.076 416.396 1998.5

987.35 37.8 2023.334 1612.399 6000.0 5991.433 4774.584 6000.0 2926.778 2332.355 6000.0 23108.684 16987.395 5105.6

Table 4.5: Continuation of Tab. 4.4 completed with the partial viscosities ηdihed and ηlong as well as the bulk viscosity ηbulk.
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An example of the result of the viscosity integrals (time integral of the average of the au-
tocorrelation functions of the off-diagonal elements of the pressure tensor) as a function of the
upper integration boundary τc is given in Fig. 4.6. The graphs of the integrals of all other sim-
ulated MD systems are provided in the Appendix C in Figs. C.1-C.19 for zero-shear viscosity
and Figs. C.20-C.24 for bulk viscosity.

0 500 1000 1500

τNa [ps]

6.8

7.0

7.2

7.4

7.6

7.8

σ
η
×

1
0
6
[P
a
.s
]

0 500 1000 1500

τNa [ps]

−1

0

1

2

3

∆
σ
η

∆
τ
N

a
[k
P
a
]

Figure 4.5: The standard deviation ση of the zero-shear viscosity (left) and the finite differences
∆ση/∆τNa (right) in case of n-octane at 100 kPa as a function of averaging block size τNa .

An example for the calculation of the large-block limit of the shear viscosity’s standard
deviation is given in Fig. 4.5. n-Octane at a pressure of 100 kPa was chosen for this example
since it was the closest of all systems to converge towards a constant value in the large block
limit.

A comparison of the simulated zero-shear viscosities with experimental data reported in
literature is given in Tab. 4.6 and visualized in Fig. 4.7. In Tab. 4.6, the reported parameters
for pressure-viscosity relations – the pressure-viscosity-index z, see Eq. (2.37) and the pressure-
viscosity-coefficient α recall Eq. (2.34) and (2.30) – were calculated by using viscosity data
within the entire range of available pressures. α0, see Eqs. (2.32) and (2.30), was calculated by
using the viscosity at 0.1 MPa as reference (p = 0) and the viscosity at 250 MPa as second data
point to estimate the derivative in the low pressure region as a ratio of finite differences.
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Figure 4.6: Contributions to zero-shear viscosity in case of i-octane at 100 kPa and 348.15 K.
The small insets show the first 0.6 ps in higher resolution (the units of the scales are the same as
in the large graphs). The error bars represent the standard deviation of the viscosities calculated
by the square root of Eq. (4.6). The dashed (red)lines correspond to the maximum value of the
viscosities.
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System 〈p〉eq η ση ηlit z zlit α0 αlit0 α αlit Ref.

[MPa] [mPa.s] [GPa-1] [GPa-1]

n-octane

0.01 0.011 0.289 0.304

0.291 0.248 7.21 6.44 5.46 6.98

[47]

249.01 1.744 0.154 1.555 [47]

503.76 6.579 1.201 4.27 [47]

752.47 13.450 2.532 − -

995.13 55.437 24.681 − -

i-octane

0.57 0.420 0.013 0.281

0.315 0.281 7.93 7.46 5.82 8.16

[48]

248.62 3.007 0.209 1.82a [48]

502.80 10.823 1.358 5.628 [48]

751.83 40.605 9.010 − -

995.56 159.358 71.093 − -

n-hexadecane

0.29 0.317 0.019 0.363b

0.280 - 8.00 - 5.63 -

[49–51]

249.64 2.335 0.388 − -

503.70 6.145 1.751 − -

751.88 16.489 6.461 − -

994.24 36.055 14.049 − -

i-hexadecane

0.04 0.530 0.031 0.357c

0.389 0.369 10.40 9.70 6.82 13.50

[52]

249.29 7.066 1.457 4.0d [52]

502.15 50.260 26.687 − -

748.24 246.023 153.200 − -

987.35 2023.334 1612.399 − -

Table 4.6: Comparison of the calculated zero-shear viscosities η with experimental data ηlit reported in literature. In addition, the square root of the
variance ση, the fitted pressure dependence to Roelands’ relation (pressure-viscosity-index z) and Barus’ relation (pressure-viscosity-coefficient α or α0)
are also given and compared.
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Figure 4.7: Comparison of calculated zero-shear viscosities with experimentally obtained data
for n-octane (top left), i-octane (top right) and i-hexadecane (bottom middle). Crosses corre-
spond to experimental data taken from Ref. [47] for n-octane and from Ref. [48] for i-octane,
pluses to temperature extrapolated values, whereas stars correspond to temperature and pressure
extrapolated values from Ref. [52] for i-hexadecane.

No high pressure viscosity data at a temperature of 473.15 K is available for the hexadecane
isomers in literature. However, for n-hexadecane measurement results at ambient pressure and
473.15 K as well as for i-hexadecane high pressure measurements in the range of 0.1 to 195 MPa
at 453.15 K are available in literature. In order to compare the measured data to the simulation
results, i-hexadecane the viscosities reported were extrapolated to the required temperature. This
was achieved by means of a nonlinear least-squares fit

η(T ) ' c1 (T − c2)c3 , (4.12)

with the parameters c1−3. In addition to these temperature extrapolation, a pressure extrapolation
to 250 MPa at 473.15 K was carried out by fitting the logarithm of the normalized viscosities to
a simple power law, namely

ln (η(p)) ' d1

[
ln

(
η(p)

η(p = 0.1MPa)

)]d2
, (4.13)

aObtained by linear interpolation of logarithmized viscosities.
bAverage of the values found in the given references.
cTemperature extrapolation applied according to Eq. (4.12).
dTemperature and pressure extrapolation according to Eqs. (4.12) and (4.13).
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by using the fitting parameters d1 and d2.
No experimental data regarding the bulk viscosity of the studied liquids at or near the state

points considered in this work was found.
In Fig. 4.8, the zero-shear viscosity is plotted in relation with three different pressure-

viscosity relations. In order to determine the pressure-viscosity-index z, used in Roelands’
relation, for each MD system the logarithm of Roelands’ relation recall Eq. (2.37) was fitted
to the logarithm of viscosities by means of a nonlinear least-squares fit. The pressure-viscosity-
coefficient α from Barus’ relation, was calculated in two different manners given in Eqs. (2.32)
and (2.34). The numerical integration in the last equation was carried out by using the trape-
zoidal rule for non-equidistant data sets.
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Figure 4.8: Calculated pressure-dependent zero-shear viscosities for n-octane (top left), i-octane
(top right), n-hexadecane (bottom left) and i-hexadecane (bottom right). The dashed (red) line
corresponds to Roelands’ relation in Eq. (2.37), the dash-dotted (blue) line to Barus’ relation in
Eq. (2.30) with α calculated according to Eq. (2.32) and the dotted (green) line corresponds to
Barus’ relation with α calculated according to Eq. (2.34), respectively.

Fig. 4.9 depicts the viscosities calculated from separate contributions to the overall pressure
tensor as provided by Eq. (2.27) and further discussed on page 28.

In general, the EMD simulations coupled with the Green-Kubo formula for calculating the
zero-shear viscosity, yielded results that compare well to the experimental data available from
literature, see Tab. 4.6 and Fig. 4.7. However, the simulation results point towards a systematical
error, e.g., a general overestimation of viscosities obtained for iso-alkanes both at ambient and
high pressure. A general statement about the calculated results for normal alkanes can not be
given, due to the lack of high pressure experimental data for n-hexadecane at the considered
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Figure 4.9: Calculated contributions to the pressure-dependent zero-shear viscosities ( ) for
n-octane (top left), i-octane (top right), n-hexadecane (bottom left) and i-hexadecane (bottom
right). Additionally, the partial contributions ηkin ( ), ηbond ( ), ηangl ( ), ηdihed ( ) and ηlong
( ) are also given for treating solely the kinetic, bond, angular, dihedral and long-range force
contributions. Error bars are omitted for a better visualization.

temperature. Nevertheless, it seems that the agreement between experimental and simulation
results is better for normal- than for iso-alkanes. This observed deviation between simulation
and experiment can be caused by a not fully optimized force field for iso-alkanes in combination
with its modifications applied in this work, refer to section 3.2 for further details. The force field
was fitted by Siu et al. in [41] to correctly describe the transport properties of n-alkanes and
alkenes, but was not explicitly designed for use with branched alkanes. Furthermore, the high
statistical uncertainty of the simulation results and the possibly significant integral cutoff error
(especially in the case of i-hexadecane) for high pressures yield further deviations. These high
standard deviations at high pressures have two main reasons:

1. nearly exponential increase of rotational correlation times with pressure and

2. reduced computational efficiency for MD systems with high density caused by application
of high pressure.

1. is backed up by the analysis of the rotational correlation times which strongly increase as
pressure increases, see Figs. 4.11 and 4.12. This directly translates to an increasing number of
MD timesteps τc required to calculate the viscosity according to the algorithm used for this work,
recall page 28. An increasing τc then leads to a higher variance of the viscosities obtained from
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the MD simulations with a fixed total simulated time τrun, see Eq. (4.6). The total simulated
time τrun necessary to achieve a certain relative precision in the calculated viscosity can be
estimated based on the rotational correlation time τ rot of the considered molecule and Eq. (4.6)
as follows

ση
η

= 2

√
2τ rot

τrun
(4.14)

The decrease in computational efficiency mentioned in 2. results from the increase in the
total number of pairwise force evaluations that need to be done every timestep due to the high
density, i.e., more atoms are present within the force cutoff distance at higher pressures. Since
all simulations were started and stopped at the same time, the only exceptions being the n-
hexadecane at 500 MPa and i-hexadecane at 1 GPa where the runs were aborted early due to run
errors, this can be seen directly in the decrease of τrun in Tab. 4.5 with increasing pressure.

The observation about the absolute viscosity values does not fully transfer to the values ob-
tained from the fits to the pressure-viscosity relations. All molecules, for which a comparison
with literature is possible, showed good agreement in the parameters z and α0, while α seems
to differ rather strongly from the values given in literature. In general, it was found that the
simulated pressure dependence of the shear viscosity follows Roelands’ pressure-viscosity rela-
tion, see Fig. 4.8. Using Barus’ relation with a constant pressure-viscosity coefficient can result
in significant differences at high pressures when using α0 as defined in Eq. (2.32), or a just
moderate description of the pressure dependency via α as defined by Eq. (2.34).

The calculation of the large-block limit of the standard deviation of the viscosity results, as
described in section 4.2, did not yield the desired results. Even in the best case of all simulated
MD systems, n-octane at 100 kPa, convergence of the standard deviation to a limiting value
could not be observed in Fig.4.5. The finite differences on the right plot in Fig. 4.5 should be
converging towards zero in a exponential or power law manner to be able to determine the large-
block limit of the standard deviation. This means that it is hardly possible for all considered MD
systems to estimate the large-block limit for two reasons. Firstly, the estimate of the standard
deviation itself is subject to statistical errors, at least at large block sizes. Secondly, an extrap-
olation of the standard deviations to their limiting values was found to be numerically unstable
due to the limited dataset available).

The the partial contributions to the pressure-dependent zero-shear viscosity visualized in
Fig. 4.9, show that long range interactions seem to be dominant in all simulated MD systems.
However, a noticeable difference in the relative bond and angular contributions between normal-
and iso-alkenes is found. While in the n-alkanes, the angular contribution significantly domi-
nates over the bond contribution, the opposite seems to be true for i-hexadecane. In the case of
the short chained i-octane, both contributions are almost identical in magnitude. The remaining
contributions, resulting from the kinetic and the dihedral term in the pressure tensor, are orders
of magnitude smaller than the others. All contributions except the kinetic term, show similar
dependence on pressure when compared to the total viscosity. The kinetic term seems to be
largely independent of pressure.

A comparison between the rotational correlation time and the zero-shear viscosity shows a
strong correlation between these quantities, see Fig. 4.13. This suggests a common mechanism
that influences both pressure dependencies namely of the rotational correlation time as well as
the shear viscosity of a liquid. If a direct physical connection and mathematical relation between
these two quantities could be formulated, the calculation of high pressure viscosities could be
replaced by evaluating the rotational correlation time only, which can be determined with much
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higher statistical significance and hence less computational effort than would be necessary to
calculate the zero-shear viscosity directly.

Bulk viscosity, a property of liquids where measurement results can be hardly found in the
available literature, was also computed. The obtained results show, that the bulk viscosity tends
to increase even faster than exponential with pressure, see Fig. 4.4. This strong increase and
the fact that the bulk viscosity is already at ambient pressure an order of magnitude higher than
the zero-shear viscosity, leads to a huge difference of around three orders of magnitude for n-
hexadecane at 1 GPa. This leads to the question of whether the common approximation that the
bulk viscosity of a fluid in a tribological contact can be neglected, is indeed applicable.

4.3 Rotational Correlation Time

The calculation of the rotational correlation times τ rot of molecules can be performed by auto-
correlating normalized intramolecular vectors that are chosen to represent a molecules orienta-
tion [19]. To the resulting autocorrelation function

Csim(t) ' A et/τ
rot
1 + (1−A) et/τ

rot
2 , (4.15)

a superposition of two exponential functions can then be fitted by means of nonlinear least
squares fitting. The fitting parameters A, τ rot1 and τ rot2 are so obtained. The intramolecular
vectors considered within this work are illustrated in Fig. 4.10. Vector A was chosen with the
intention to best coincide with the direction of the minimum moment of inertia of each molecule.
Vector B was chosen to be as orthogonal as possible to vector A.

A
B

(a)

A
B

(b)

A
B

(c)

AB

(d)

Figure 4.10: The intramolecular vectors used for calculating the rotational correlation times for
(a) n-octane, (b) i-octane, (c) n-hexadecane and (d) i- hexadecane. The long (red) vectors will
be referred to as “vector A”, the short (blue) vectors will be referred to as “vector B”.

The calculated rotational correlation times of the simulated alkanes are given in Tab. 4.7 as
well as in Figs. 4.11 and 4.12 for a better visualization.
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vector A vector B

System 〈p〉eq τ rot1 [ps] τ rot2 [ps] A τ rot1 [ps] τ rot2 [ps] A

n-octane

0.01 15.0 2.26 0.95 14.7 2.22 0.62

249.01 69.0 2.91 0.95 67.9 5.50 0.61

503.76 195.1 7.06 0.95 192.0 10.68 0.61

752.47 492.1 15.85 0.95 487.5 18.82 0.60

995.13 1158.4 37.46 0.94 1147.1 32.13 0.60

i-octane

0.57 6.9 1.88 0.85 6.4 1.88 0.75

248.62 31.4 4.27 0.81 28.9 5.09 0.68

502.80 102.5 12.07 0.77 94.1 13.63 0.61

751.83 325.1 32.46 0.74 307.3 36.15 0.56

995.56 1090.0 88.83 0.73 1021.4 91.39 0.53

n-hexadecane

0.29 35.6 3.91 0.95 34.3 2.63 0.49

249.64 189.6 6.97 0.95 185.1 5.08 0.48

503.70 469.0 10.42 0.96 458.6 9.17 0.48

751.88 1034.7 90.54 0.93 994.9 14.40 0.48

994.24 1950.7 74.48 0.95 1887.0 20.20 0.48

i-hexadecane

0.04 25.7 4.87 0.92 19.4 5.02 0.48

249.29 262.8 40.35 0.89 198.7 28.92 0.37

502.15 1672.9 154.25 0.91 1386.1 124.66 0.32

748.24 10365.8 658.12 0.93 9594.9 505.34 0.30

987.35 62112.3 4532.03 0.93 32540.5 1616.28 0.39

Table 4.7: Rotational correlation times, see Eq. (4.15), of all molecular systems for the in-
tramolecular vectors A and B introduced in Fig. 4.10.
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Figure 4.11: The pressure-dependent rotational relaxation time τ rot1 ( ) and τ rot2 ( ) calcu-
lated using vector A (as specified in Fig. 4.10) for n-octane (top left), i-octane (top right), n-
hexadecane (bottom left) and i-hexadecane (bottom right).

In Fig. 4.13, the pressure dependency of the rotational correlation time is compared to the
pressure dependency of the shear viscosity.

The chosen model for Csim(t), recall Eq. (4.15), takes the observed short term drop of
Csim(t) into account and hence fits well to the calculated correlation functions. The depen-
dence of the fitting results on the choice of the vector is low, as can be seen in Fig. 4.14. The
most significant difference in the results for the different vectors A and B is a different relative
contribution of the two exponential functions represented by the fitting parametersA and 1−A.
The absolute value of the short and fast relaxation times τ rot1 and τ rot2 depend only weakly on
the choice of vectors used for the computing of the rotational autocorrelation as can be observed
from the slopes of graphs in Fig. 4.14 or directly from Tab. 4.7.

In general, it is seen that the longest rotational correlation time (τ rot1 ) for the branched
molecules increases fairly exponential with the applied pressure. For the linear alkanes, a slower
than purely exponential increase is found. Among the possible explanations for these differences
could be the different overall shape of molecules, see the 3D structure of the branched alkanes
in see Fig. 4.15. Another reason of differences could be the differences in the flexibility of
molecules. It could be caused by the steric hindrance of the methyl substituents on the main C-
chain of the iso-alkanes. However, to find the exact mechanism, further simulations and analysis
of the data is necessary.
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Figure 4.12: The same as Fig. 4.11 for vector B.
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Figure 4.13: A comparison between the pressure-dependent zero-shear viscosities η ( ) and the
rotational correlation time τ rot1 ( ) for n-octane (top left), i-octane (top right), n-hexadecane
(bottom left) and i-hexadecane (bottom right).
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Figure 4.14: Rotational autocorrelation functions Csim(t) obtained using the normalized vector
A (red) and B (blue) for n-hexadecane at 100 kPa. The solid lines correspond to the calculated
autocorrelation function, while the dashed lines to the fitted one, see Eq. (4.15).
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Figure 4.15: 3D renderings of n-octane (top left), i-octane (top right), i-hexadecane (middle) and
n-hexadecane (bottom). The radii of the spheres correspond to the van der Waals radii of atoms.
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CHAPTER 5
Summary and Conclusion

The following molecular systems were simulated by means of equilibrium molecular dynamics
for this work:

• 1024 molecules of n-octane at 348.15 K,

• 1024 molecules of 2,2,4-trimethlypentane (i-octane) at 348.15 K,

• 512 molecules of n-hexadecane at 473.15 K and

• 512 molecules of (6S)-2,2,4,4,6,8,8-heptamethylnonane (i-hexadecane) at 473.15 K.

The temperatures were selected to ensure that, at least in accordance with the experiments,
the systems stay in the liquid phase at all the pressure chosen, namely 0.1, 250, 500, 750 and
1000 MPa.

The molecular dynamics (MD) simulations were set up using a modified version of the
OPLS-aa force field, periodic boundary conditions, a PPPM long-range electrostatic solver, a
rRESPA multiple timescale integrator and a Nosé-Hoover chain thermostat. An equilibration
period of 4 ns was taken before any molecular dynamics data was considered for further analysis.
A test for successful equilibration of all systems was performed and measured how close they are
to their equilibrium. This was done by calculating the Hellinger metric of the density distribution
functions of the off-diagonal pressure tensor elements relative to an “equilibrium” distribution
function obtained from the end of the MD trajectories. Furthermore, the convergence of block
averages to their expected equilibrium value was also studied. It was found that all systems
except i-hexadecane at 500, 750 and 1000 MPa were sufficiently close to equilibrium after 4 ns
equilibration time.

The structural data obtained from the production runs were used to calculate the rotational
relaxation times of molecules by fitting the normalized autocorrelation of intramolecular posi-
tions to an exponentially decaying model. These results were used to estimate the maximum
significant correlation time for the Green-Kubo viscosity formula by providing a characteristic
molecular timescale.

The Green-Kubo zero-shear and bulk viscosity calculations were carried out by computing
time integrals over block averages of correlation functions for various pressure tensor elements.
With these block averages, the uncertainty of the obtained viscosities can also be estimated
by extrapolation to the large-block limit. It was found, however, that this extrapolation is not
accurate enough given the limited size of the datasets obtained within this work. Therefore, an
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estimation of the variance in the viscosity results based on the assumption of a Gaussian process
as proposed in literature was used instead.

In order to provide insights into the “origin” of viscosity, partial contributions (kinetic, bond,
angle, dihedral and long range forces) to the overall pressure tensor were considered and for
these resulting viscosities were analyzed separately.

It was found that by applying the Green-Kubo viscosity formula to molecular systems at
various pressures provides valuable data for the investigation of the rheological properties of
alkanes. MD results obtained for linear alkanes are in good agreement with experimental mea-
surements, while the viscosities of the branched alkanes were systematically overestimated by
the force field applied in this work. Furthermore, for molecular systems with long rotational
correlation times, a high computational effort is necessary to provide accurate viscosity data.

For the systems investigated here it was shown that

• the pressure-viscosity relation formulated by Roelands describes the pressure-dependent
zero-shear viscosity better than the classical Barus relation;

• the pressure-dependent rotational correlation times correlate strongly with the calculated
viscosities;

• different partial contributions to the viscosity are dominant for normal and iso alkanes;

• the bulk viscosity increases even stronger with increasing pressure than the zero-shear
viscosity and it is also significantly greater in magnitude at ambient pressure.
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CHAPTER 6
Outlook

The molecular dynamics (MD) results generated in this thesis will be subject of a more in-depth
analysis of the relation between the chemical structure of molecules and their high-pressure
rheological properties. More information about structural and dynamical properties of the in-
vestigated fluids can be obtained by analyzing the generated MD data in more detail. Further
analysis could include, among others, the determination of characteristic trans-gauche transition
frequencies, characterizations of the dynamics of intramolecular angles, bond lengths and so
on. Additional attempts could be made to include and test the free-volume formulations of the
pressure-viscosity relations for their applicability.

Furthermore, the experience gained in the field of molecular dynamics simulations of alkanes
could be helpful for extending the simulations to non-equilibrium MD ones which can provide
the shear rate dependence of viscosity under high pressure.

This work could also serve as a benchmark to compare the computational efficiency of vis-
cosity determination by pure MD to hybrid methods such as a coupled Monte Carlo - MD
(MCMD) approach. MCMD simulations could have a potential advantage over classical MD
by offering a faster way of creating statistically independent systems.
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APPENDIX A
LAMMPS Script

In the following, an example script that was used for MD data production with the LAMMPS
program is given.

# Production run for 100kPa n-octane

# Control variables

variable T equal 348.15 # temperature
variable dt equal 0.004 # timestep

# General settings

units metal
atom_style full
boundary p p p

pair_style lj/cut/coul/long 13.0
bond_style harmonic
angle_style harmonic
dihedral_style opls
kspace_style pppm 1.0e-5

special_bonds lj/coul 0.0 0.0 0.5
pair_modify shift no mix geometric tail yes

neighbor 2.5 bin
neigh_modify delay 4

timestep ${dt}
run_style respa 4 2 2 2 inner 2 4.5 6.0 middle 3 8.0 10. &

outer 4

# Read equilibrated system data
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read_restart n-oct-100kPa.init

reset_timestep 0

# Compute the required contributions to the pressure tensor

compute pkin all pressure thermo_temp ke
compute pbnd all pressure thermo_temp bond
compute pangl all pressure thermo_temp angle
compute pdih all pressure thermo_temp dihedral

# Define the simulation output

thermo_style custom step pxx pyy pzz pxy pxz pyz &
etotal pe &
c_pkin[1] c_pkin[2] c_pkin[3] &
c_pkin[4] c_pkin[5] c_pkin[6] &
c_pbnd[1] c_pbnd[2] c_pbnd[3] &
c_pbnd[4] c_pbnd[5] c_pbnd[6] &
c_pangl[1] c_pangl[2] c_pangl[3] &
c_pangl[4] c_pangl[5] c_pangl[6] &
c_pdih[1] c_pdih[2] c_pdih[3] &
c_pdih[4] c_pdih[5] c_pdih[6]

thermo_modify line one format float %.15e
thermo 1

variable pres equal press
variable tem equal temp
variable kine equal ke
variable pote equal pe
variable e equal etotal
variable van equal evdwl
variable k equal elong
variable c equal ecoul
variable bnd equal ebond
variable angl equal eangle
variable dih equal edihed

variable tl equal cpuremain/(3600.*24.)
variable cp equal cpu
variable tsps equal spcpu

fix out1 all ave/time 1 20 20 v_pres v_tem v_kine &
v_pote v_e f_1 v_van v_c v_k v_bnd v_angl &
v_dih file PTEdata.out

fix out2 all ave/time 1 1 5000 v_cp v_tsps v_tl &
file CPUdata.out
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dump 1 all custom 250 dump.out id mol type xu yu zu

# Perform NVT time integration

fix 1 all nvt temp $T $T 0.1 tchain 4

restart 5000 a.res b.res

restart 250000 out-*.res

run 20000000

For an easy access, important simulation parameters such as the temperature and the timestep
are defined at the beginning of the script.

In the “General Settings” section, the overall simulation setup is defined, e.g., the LAMMPS-
internal unit system is defined and periodic boundary conditions are applied to all three dimen-
sions of the simulation box. Also, parameters for the force field are defined here via the manner
in which bond, angle, dihedral and long-range interactions are calculated. Furthermore, the
number of timesteps after which building neighbor lists are built as well as settings for the time
integration algorithm can be also entered here.

The “compute” statements in the script store the partial results for the pressure tensor in
variables which can then be written to a file with the “thermo_style” command.

At the end of the script, the first two “fix” commands are used for averaging certain quantities
and printing the results to ASCII-files for monitoring the progress of the simulations. The last
“fix” command specifies the parameters for the Nosé-Hoover chain thermostat, while the “run”
command is used to start the simulations for 20.000.000 timesteps.
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APPENDIX B
Hellinger Metric and Departure from

Equilibrium
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Figure B.1: Hellinger metric for poff , introduced in Eqs. (4.2) and (4.3), as a function of the
block index m for n-octane (top left), i-octane (top right), n-hexadecane (bottom left) and i-
hexadecane (bottom right) at a pressure of 100 kPa and a temperature of 348.15 K for the octane
isomers and 473.15 K for the hexadecane isomers. The horizontal (red) line represents the
maximum of the Hellinger metric for the given system.
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Figure B.2: As in Fig. B.1 for 250 MPa.
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Figure B.3: As in Fig. B.1 for 500 MPa.
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Figure B.4: As in Fig. B.1 for 750 MPa.

56



0 10 20 30 40 50 60

m

0

20

40

60

80

100

120

140

‖
ρ
m
(ξ
)
−
ρ
e
q
(ξ
)
‖ H

×
1
0
3

0 10 20 30 40 50 60

m

0

20

40

60

80

100

120

140

‖
ρ
m
(ξ
)
−
ρ
e
q
(ξ
)
‖ H

×
1
0
3

0 10 20 30 40 50 60

m

0

20

40

60

80

100

120

140

‖
ρ
m
(ξ
)
−
ρ
e
q
(ξ
)
‖ H

×
1
0
3

0 10 20 30 40 50 60

m

0

20

40

60

80

100

120

140

‖
ρ
m
(ξ
)
−
ρ
e
q
(ξ
)
‖ H

×
1
0
3

Figure B.5: As in Fig. B.1 for 1 GPa.
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Figure B.6: The absolute deviation of 〈poff 〉m from its equilibrium value 〈poff 〉eq as a func-
tion of the block index m according to Eq. (4.4) for n-octane (top left), i-octane (top right),
n-hexadecane (bottom left) and i-hexadecane (bottom right) at a pressure of 100 kPa and a tem-
perature of 348.15 K for the octane isomers and 473.15 K for the hexadecane isomers. The
horizontal (red) line represents the maximum of the deviation for the given system-pressure
combination.
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Figure B.7: As in Fig. B.6 for 250 MPa.
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Figure B.8: As in Fig. B.6 for 500 MPa.
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Figure B.9: As in Fig. B.6 for 750 MPa.
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Figure B.10: As in Fig. B.6 for 1 GPa.
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APPENDIX C
Convergence of Zero-shear and Bulk

Viscosities
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Figure C.1: Zero-shear viscosities in case of n-octane at 250 MPa and 348.15 K. The small
insets show the first 0.6 ps in higher resolution (the units of the scales are the same as in the
large graphs). The error bars represent the standard deviation of the viscosities as calculated by
Eq. (4.6). The (red) dashed lines correspond to the maximum value of the viscosity.
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Figure C.2: As Fig. C.1 for 500 MPa.
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Figure C.3: As Fig. C.1 for 750 MPa.
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Figure C.4: As Fig. C.1 for 1 GPa.
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Figure C.5: Zero-shear viscosities in case of i-octane at 100 kPa and 348.15 K. The small in-
sets show the first 0.6 ps in higher resolution (the units of the scales are the same as in the
large graphs). The error bars represent the standard deviation of the viscosities as calculated by
Eq. (4.6). The (red) dashed lines correspond to the maximum value of the viscosity.

68



0 10 20 30 40 50 60

τc [ps]

0

5

10

15

20

25

30

η t
o
t
×
1
0
4
[P
a
.s
]

0.0 0.2 0.4 0.6
0

5

0 10 20 30 40 50 60

τc [ps]

0

2

4

6

8

10

12

14

η k
in

×
1
0
6
[P
a
.s
]

0.0 0.2 0.4 0.6
0

5

10

0 10 20 30 40 50 60

τc [ps]

0

2

4

6

8

10

12

14

16

η b
o
n
d
×
1
0
3
[P
a
.s
]

0.0 0.2 0.4 0.6
0.0

0.5

0 10 20 30 40 50 60

τc [ps]

0

2

4

6

8

10

η a
n
g
l
×
1
0
3
[P
a
.s
]

0.0 0.2 0.4 0.6
0.0

0.2

0.4

0 10 20 30 40 50 60

τc [ps]

0

2

4

6

8

10

12

η d
ih

e
d
×
1
0
6
[P
a
.s
]

0.0 0.2 0.4 0.6
0

1

0 10 20 30 40 50 60

τc [ps]

0

5

10

15

20

25

30

35

η l
o
n
g
×
1
0
3
[P
a
.s
]

0.0 0.2 0.4 0.6
0

1

Figure C.6: As Fig. C.5 for 250 MPa.
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Figure C.7: As Fig. C.5 for 500 MPa.
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Figure C.8: As Fig. C.5 for 750 MPa.
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Figure C.9: As Fig. C.5 for 1 GPa.
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Figure C.10: Zero-shear viscosities in case of n-hexadecane at 100 kPa and 473.15 K. The small
insets show the first 0.6 ps in higher resolution (the units of the scales are the same as in the
large graphs). The error bars represent the standard deviation of the viscosities as calculated by
Eq. (4.6). The (red) dashed lines correspond to the maximum value of the viscosity.

73



0 50 100 150 200 250 300 350

τc [ps]

0

5

10

15

20

25

η t
o
t
×
1
0
4
[P
a
.s
]

0.0 0.2 0.4 0.6
0

2

4

0 50 100 150 200 250 300 350

τc [ps]

0

5

10

15

20

η k
in

×
1
0
6
[P
a
.s
]

0.0 0.2 0.4 0.6
0

10

0 50 100 150 200 250 300 350

τc [ps]

0

10

20

30

40

50

η b
o
n
d
×
1
0
3
[P
a
.s
]

0.0 0.2 0.4 0.6
0.0

0 50 100 150 200 250 300 350

τc [ps]

0

5

10

15

η a
n
g
l
×
1
0
2
[P
a
.s
]

0.0 0.2 0.4 0.6
0.00

0.05

0.10

0 50 100 150 200 250 300 350

τc [ps]

0

5

10

15

η d
ih

e
d
×
1
0
6
[P
a
.s
]

0.0 0.2 0.4 0.6
0

1

2

0 50 100 150 200 250 300 350

τc [ps]

0

5

10

15

20

25

30

35

40

η l
o
n
g
×
1
0
2
[P
a
.s
]

0.0 0.2 0.4 0.6
0.0

0.1

0.2

Figure C.11: As Fig. C.10 for 250 MPa.
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Figure C.12: As Fig. C.10 for 500 MPa.
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Figure C.13: As Fig. C.10 for 750 MPa.
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Figure C.14: As Fig. C.10 for 1 GPa.
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Figure C.15: Zero-shear viscosities in case of i-hexadecane at 100 kPa and 473.15 K. The small
insets show the first 0.6 ps in higher resolution (the units of the scales are the same as in the
large graphs). The error bars represent the standard deviation of the viscosities as calculated by
Eq. (4.6). The (red) dashed lines correspond to the maximum value of the viscosity.
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Figure C.16: As Fig. C.15 for 250 MPa.
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Figure C.17: As Fig. C.15 for 500 MPa.
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Figure C.18: As Fig. C.15 for 750 MPa.
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Figure C.19: As Fig. C.15 for 1 GPa.
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Figure C.20: Bulk viscosity in case of n-octane (top left), i-octane (top right), n-hexadecane
(bottom left) and i-hexadecane (bottom right) at a pressure of 100 kPa and a temperature of
348.15 K for the octane isomers and 473.15 for the hexadecane isomers. The small insets show
the first 0.6 ps in higher resolution (the units of the scales are the same as in the large graphs).
The error bars represent the standard deviation of the viscosities as calculated by Eq. (4.6). The
(red) dashed lines correspond to the maximum value of the viscosity.
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Figure C.21: As Fig. C.20 for 250 MPa.
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Figure C.22: As Fig. C.20 for 500 MPa.
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Figure C.23: As Fig. C.20 for 750 MPa.
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Figure C.24: As Fig. C.20 for 1 GPa.
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