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Kurzfassung

Zu Beginn des letzten Jahrhunderts veränderte sich mit dem Aufkommen der Theorie
der Quantenmechanik der Blick auf die Welt dramatisch. Gegenwärtig wird mit großem
Aufwand versucht die besonderen Eigenschaften quantenmechanischer Zustände auch
auf dem Gebiet der Informatik auszunutzen. Die Aufgabe besteht im Finden eines
passenden Kandidaten für ein kohärent kontrollierbares “Qubit”, das quantenmecha-
nische Analogon zum klassischen Bit. Die Schwierigkeit besteht vor allem aufgrund
der widersprüchlichen Anforderungen an ein solches Qubit. Auf der einen Seite wird
ein gut isoliertes System benötigt, um Information langfristig zu speichern, auf der
anderen Seite sollte ein Qubit natürlich auch leicht ansprechbar und manipulierbar
sein. Eine Möglichkeit diese Bedingungen zu erfüllen bilden die sogenannten hybriden
Quantensysteme, bei denen versucht wird unterschiedliche Quantensysteme geschickt
zu kombinieren.

Der Ansatz unserer Gruppe ist es einen Defekt im Diamant (das NV−Zentrum) mit
anderen Quantensystem (z. B. ein supraleitendes Qubit) durch supraleitende Mikro-
wellenresonatoren zu verbinden. Das NV−Zentrum würde hierbei als Langzeitspeicher
fungieren wohingegen das supraleitende Qubit die Rolle einer schnellen Prozessor-
einheit übernehmen würde. Da NV− Zentren optisch in den Grundzustand gepumpt
werden können, ist die Integration eines Lasers in den experimentellen Aufbau eine
erstrebenswerte Erweiterung. Der Diamant wird in unseren Experimenten direkt auf
dem supraleitenden Mikrowellenresonator platziert, daher ist es wesentlich den Einfluss
des Lichtes auf die Resonatoren zu untersuchen.

In der vorliegenden Arbeit wird die optische Anregung von Quasiteilchen und Zwei-
Niveau-System in supraleitenden Resonatoren erforscht. Die Eigenschaften der Mi-
krowellenresonatoren werden in Abhängigkeit von kontinuierlicher als auch gepuls-
ter Bestrahlung gemessen. Ausgewertet werden der Frequenz- und Phasenschub, die
Änderung der Güte und der Amplitude aufgrund des Lichteinflusses. Besonders hervor-
zuheben sind die Messungen des zeitabhängigen Verhaltens von Zwei-Niveau-Systemen
sowie des Anregungs- und Relaxationsprozesses von Quasiteilchen. Weiters wird auch
die Auswirkung kontinuierlicher Bestrahlung mit dem Einfluss von Temperaturände-
rungen und auch der Mikrowellen-Messleistung verglichen.

Der nächste Schritt wird die Durchführung der gleichen Art von Experimenten mit
einem Diamanten auf dem supraleitenden Mikrowellenresonator sein.
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Abstract

At the beginning of the last century the theory of quantum mechanics radically changed
the view of the physical world. Currently a lot of research is done trying to utilize the
special properties of quantum mechanics for computation. The task is to find a suitable
candidate for a coherently controllable “qubit”, the quantum mechanical analog to a
classical bit. One great difficulty lies in the diametrically opposed requirements for a
well isolated system, to retain the stored information, on the one hand and an easily
accessible system on the other hand. One possibility to reconcile those opposing needs
are so-called hybrid quantum systems where different quantum systems are combined
to fulfill both requirements at the same time.

In our group the goal is to connect a defect in diamond (the NV−center) with an-
other quantum system (e. g. a superconducting qubit) via superconducting microwave
resonators. The NV− center would serve as a long time quantum memory and the
superconducting qubit as a fast processing unit. Since NV−centers can be optically
polarized into the ground state the integration of laser light is a worthwhile addition
to our experimental setup. Given that the diamond sample is positioned directly on
top of the superconducting microwave resonator it is of importance to investigate the
impact of light onto the resonators.

In this master thesis we study the optical excitation of quasiparticles and two-level
fluctuators (TLFs) inside superconducting resonators. Therefore, we measure the
properties of superconducting resonators both under continuous and pulsed light irra-
diation. The findings are attained through measurements of the resonance frequency
and phase shift, the change in quality factor and amplitude due to light exposure.
The main results are the measurements of the time-dependent behavior of two-level
fluctuator and quasiparticle excitation and relaxation processes. Furthermore we com-
pare the influence of a continuous light flux with effects of a change in temperature or
microwave probing power.

The next step will be to conduct the same type of experiments with a diamond
sample mounted on the superconducting microwave resonator.
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1. Introduction

“I think I can safely say that nobody understands quantum mechanics.”
Richard Feynman

Unlike anything else, the theory of quantum mechanics challenged our perception of
the world. Before the advent of quantum theory many physicists believed the overall
framework of physics to be nearly completed. However, accumulating problems emerg-
ing from the classical theories, like e. g. the prediction of the ultraviolet catastrophe for
black body radiation, forced physicist to abandon the classical picture and forge new
ideas. The concepts of quantum mechanics, e. g. the wave-particle duality or the spin,
are often difficult to grasp and sometimes simply counterintuitive, leading to quotes
like the one mentioned above.

Today quantum mechanics plays an essential role in the understanding of the micro-
scopic world, but only recently it started gaining importance in the field of computation
and information processing. The research of the past decades has shown that the tech-
nical implementation of a “quantum” computer is challenging but the development of
quantum algorithms might be even harder [NC10]. So why should we even care about
quantum computation?

Not taking into account purely scientific reasons, quantum algorithms promise a
substantial speed-up for certain computational tasks, e. g. integer factorization [Sho94]
or searching an unstructured database [Gro96]. This increase of performance is all the
more important since classically operating devices are on the brink of reaching physical
dimensions where quantum effects come into play and further miniaturization is not
feasible [NC10].

In analogy to the classical bit, the basic unit of information in a “quantum” computer
is a quantum bit or in short “qubit”. This qubit has to fulfill specific criteria [DiV00]
in order to become a suitable candidate for quantum computation. The technical
challenge arises from the conflicting requirements of those criteria. We want to be able
to easily manipulate the qubit so that information can be written onto or read from
this qubit. Then again we also want a well isolated qubit capable of storing quantum
information for long times. This means as little interaction with the surrounding
environment as possible, which is a direct contradiction to the first requirement.

From the attempt to reconcile those demands the concept of hybrid quantum systems
has been developed. The basic idea is to use a combination of different quantum
systems, rather than trying to fulfill all requirements with a single system.

Our approach is to use nitrogen-vacancy (NV−) centers in diamond that we want to
connect via superconducting coplanar waveguide (CPW) resonators to another qubit
system, e. g. a superconducting qubit. The CPW resonators act as a bus system,
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transferring quantum information to and in between the different qubit systems. With
regard to the previous paragraph, the NV−center can be considered as the quantum
memory responsible for the storage of information while the superconducting qubit
would correspond to a fast quantum processor. What makes the NV−center so inter-
esting for quantum computation are the long coherence times even at room tempera-
ture and the ability to use the optical transitions to read out and polarize its spin state
[Nöb13; Ams12]. This optical read-out of NV−centers implies the introduction of laser
light into the system. An important precondition is of course the knowledge about
the consequences of the laser light on the other components of the hybrid quantum
system.

The aim of this master thesis is to study the effects of laser irradiation on CPW
resonators. To understand the response of CPW resonators to optical perturbations
we will first start with the fundamentals of transmission line theory in the subsequent
chapter before we then move on to microwave resonators in general and CPW res-
onators in particular in the third chapter. The next chapter treats the basic principles
of superconductors. Chapters five and six will be devoted to the two most important
mechanisms governing the resonator response, quasiparticle excitations and two-level
fluctuators (TLFs). With that, the theory section of this thesis will be concluded and
we turn to the description of the experimental setup in chapter seven. Subsequently,
in chapter eight, the measurement results are gathered and discussed. At last the final
chapter will provide a summary of the most significant results and offer a brief outlook
at current and future developments regarding the work of this thesis.
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2. Transmission line theory

When analyzing a circuit whose dimensions are small or of equal size compared to the
electrical wavelength it is possible to think of this circuit as a sequence of individual
components which are stacked together. The reason is that the phase difference of the
electromagnetic fields in the circuit can be neglected, so that voltages and currents
can be assigned to every point uniquely.1

However, if the circuit dimensions are on the order of the wavelength this picture
of interconnected components breaks down and a different approach has to be taken.
One possibility would be to solve Maxwell’s equations for the whole circuit. Often this
can be very time consuming as well as complicated and yields more information than
is needed for most practical applications.

Because of this it is easier to analyze high frequency circuits with the aid of trans-
mission line theory which can be seen either as an extension to circuit theory or a
specialization of Maxwell’s equation. The subsequent section will follow in a large
part the treatment of Pozar [Poz11].

2.1. The lumped-element circuit model for transmission lines

Although transmission lines don’t fulfill the aforementioned criterion to be much
smaller than the wavelength they can be seen as a connection of many infinitesi-
mal lumped elements of length ∆z. In this case the familiar concept of resistors,
conductances, capacitors and inductances as well as Kirchhoff’s circuit laws can be
reintroduced and applied. The lumped-element circuit model of a two-wire transmis-
sion line (see Fig. 2.1) consists of a series resistance Rl, a shunt conductance Gl, a
series inductance Ll and a shunt capacitance Cl (these circuit elements are measured
per unit length as indicated by the index l). Rl accounts for the losses due to finite
conductivity of the conductors, while Gl represents the losses because of the dielec-
tric in between the conductors. Ll describes the total self-inductance and C is the
capacitance that arises due to the proximity of the two conductors. If we apply Kirch-
hoff’s voltage and current law to the circuit and take the limit ∆z → 0 we receive the
telegrapher equations

∂v(z, t)

∂z
= −Rli(z, t)− Ll

∂i(z, t)

∂t
, (2.1)

∂i(z, t)

∂z
= −Glv(z, t)− Cl

∂v(z, t)

∂t
, (2.2)

1 A circuit with these properties can be described by Kirchhoff’s circuit laws, which can be derived
as the low-frequency limit of Maxwell’s equations.
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Rl∆z
Ll∆z

Gl∆z Cl∆zv(z, t) v(z + ∆z, t)

∆z

i(z, t) i(z + ∆z, t)

Figure 2.1.: Lumped-element equivalent circuit of a piece of transmission line with the
length ∆z. All circuit elements are measured per unit length. Rl describes
the resistance due to the finite conductivity of both conductors, the con-
ductance Gl represents dielectric losses, Ll is the total self-inductance of
the short piece of transmission line and Cl is the capacitance between the
two conductors. Applying Kirchhoff’s circuit laws yields equations for the
voltage v(z, t) and current i(z, t).

for the voltage v(z, t) and the current i(z, t). It is interesting to note that we could
have gotten exactly the same result but starting out with Maxwell’s equation instead
of the lumped-element circuit model. By introducing cosine-based phasors2 V (z) and
I(z) the telegrapher equations can be transformed into wave equations for voltage and
current

d2V (z)

dz2
− γ2V (z) = 0 , (2.3)

d2I(z)

dz2
− γ2I(z) = 0 . (2.4)

The complex propagation constant γ is given by

γ = α+ jβ =
√

(Rl + jωLl)(Gl + jωCl) , (2.5)

where the real part α is the attenuation constant and the imaginary part β is called
propagation constant or wave number. The propagation constant is dependent on the
frequency f of the wave via the angular frequency ω = 2πf . Solving Eq. (2.3) and
(2.4), then inserting the solution into the phasor form of Eq. (2.1) and (2.2) leads to

V (z) = V +
0 e−γz + V −0 eγz , (2.6)

I(z) =
γ

Rl + jωLl

(
V +

0 e−γz − V −0 eγz
)
, (2.7)

with a wave traveling in positive z-direction (∝ e−γz) and one in negative z-direction
(∝ eγz). From this equation we can also determine the wavelength λ = 2π

β and the
phase velocity vp = ω

β = λf of the line.

2 v(z, t) = Re[V (z)e jωt] and i(z, t) = Re[I(z)e jωt]
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2. Transmission line theory

ZLZ0

V (z), I(z)

VL

IL

z
l 0

Figure 2.2.: A transmission line with a characteristic impedance Z0 that is terminated
with an arbitrary impedance ZL. If ZL 6= Z0 a part of an incoming wave
V +

0 e−jγz will be reflected at z = −l = 0.

The ratio of voltage to current also allows us to define the characteristic impedance

Z0 =
Rl + jωLl

γ
=

√
Rl + jωLl
Gl + jωCl

. (2.8)

For small losses or in the high frequency regime Eq. (2.8) can be approximated by

Z0 ≈
√
Ll
Cl
. (2.9)

2.2. The terminated transmission line

If a transmission line with a characteristic impedance Z0 is terminated by a load
impedance ZL (see Fig. 2.2) an incoming wave V +

0 e−jγz will be reflected at z = −l =
0, unless ZL = Z0. This can easily be seen from the definition of the impedance

Z(z) = V (z)/I(z). At z = 0 the impedance has to be ZL = V (0)/I(0) =
V +

0 +V −
0

V +
0 −V −

0

Z0.

No reflections implies V −0 = 0 which then yields ZL = Z0.

For arbitrary load impedances ZL the input impedance at a distance l from the load
can be expressed as3

Z(l) =
ZL + Z0 tanh(γl)

Z0 + ZL tanh(γl)
Z0 . (2.10)

2.3. The scattering matrix

When dealing with microwave networks and transmission lines the direct measurement
of voltages and currents can prove very difficult because the magnitude and phase of
traveling or standing waves have to be obtained. Another complication arises from the

3 We get Eq. (2.10) by expressing the ratio V +
0 /V −

0 through the impedances ZL and Z0 and substi-
tuting z = −l.
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fact that unique voltages and currents can only be defined for transverse electromag-
netic (TEM) waves [Poz11]. Therefore, a more suitable picture is to consider incident
and reflected waves and measuring transmission and reflection coefficients. This is
what the scattering matrix S represents, it connects the reflected voltage amplitudes
with the incident ones.

Suppose we have a network with N ports4 then the incoming voltage amplitudes
V +
n of port n and the outbound amplitudes V −n would be connected via




V −1
V −2

...
V −N


 =




S11 S12 · · · S1N

S21 S22 · · · S2N
...

...
. . .

...
SN1 SN2 · · · SNN


 .




V +
1

V +
2
...
V +
N


 . (2.11)

From Eq. (2.11) we see that the elements of the S-matrix can be obtained by calculating

Sij =
V −i
V +
j

∣∣∣∣∣
V +
k =0 for k 6=j

. (2.12)

According to this definition the scattering matrix element for transmission from first
to the second port is given by S21.

4 A port means a two-terminal pair.
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3. Microwave resonators

Today microwave resonators are present in numerous devices like filters and oscillators.
In the research area superconducting microwave resonators have attracted a lot of
interest in recent years mainly because of their use as photon detectors for astronomy
[Day+03] and as a “quantum bus” to read out or transfer quantum information in the
field of circuit quantum electrodynamics [Wal+04; Maj+07].

Starting from a parallel resonant circuit the upcoming sections will explain the fun-
damentals of superconducting coplanar waveguide resonators, which are used in our
experiments. A good review of superconducting microresonators is given by Zmuidzi-
nas [Zmu12].

3.1. Parallel resonant circuit

As can be seen from Fig. 3.1 the parallel resonant circuit consists of a resistor R, an
inductor L and a capacitor C. The input impedance of this resonator is given by

Z(ω) =

(
1

R
+ j

(
ωC − 1

ωL

))−1

, (3.1)

and average power delivered to the circuit can be calculated via

Ploss(ω) =
1

2
Re [V I∗] =

1

2
Re

[
|V |2

(
1

R
+ j

(
1

ωL
− ωC

))]
=

1

2

|V |2
R

. (3.2)

The complex fraction that appears in Eq. (3.2) stems from the electric and magnetic
energy which is stored in the capacitor and the inductor [Poz11]:

We =
1

4
|V |2C , (3.3)

Wm =
1

4

|V |2
ω2L

. (3.4)

When the magnetic energy equals the electric energy, the circuit is on resonance and
energy will periodically oscillate between capacitor and inductor. With the condition
We = Wm we obtain the resonance frequency1

ω0 =
1√
LC

, (3.5)

1 Although strictly speaking f0 is the resonance frequency, since the difference is just a factor of
2π, we won’t really distinguish between a frequency f and the corresponding angular frequency
ω = 2πf .
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C L RV

I

Figure 3.1.: A parallel RLC resonant circuit.

where the power Ploss, which is dissipated at the resistor R, exhibits a maximum (see
Fig. 3.2). Another property to characterize resonators is the quality factor

Q = ω
Wstored

Ploss
, (3.6)

which is proportional to the ratio of the electric and magnetic energy stored in the
circuit to the energy loss per second. Due to its definition the quality factor describes
the number of oscillations between magnetic and electric field until the stored energy
drops to 1/e of its original value. At resonance, where Wstored = We + Wm = 2Wm,
Eq. (3.6) becomes

Qint =
R

ω0L
= ω0RC , (3.7)

and is called unloaded or internal quality factor of the resonant circuit. The inter-
nal quality factor contains many different loss channels of the resonator. The most
important ones are the dielectric loss due to damping of oscillating dipole moments,
radiative loss, quasiparticle excitation and two-level fluctuator loss. Since we are es-
pecially interested in the last two loss mechanisms they will be explained in detail in
Ch. 5 and 6. When the circuit is connected to some external circuitry the total quality
factor of the complete circuit will be lowered because of additional losses and can be
expressed as

1

Qtot
=

1

Qint
+

1

Qext
. (3.8)

From the internal and external quality factor we can define the coupling coefficient
g = Qint/Qext and distinguish three cases [Poz11]:

• g < 1: the resonator is undercoupled which means that internal losses dominate.

• g = 1: the resonator is critically coupled, at the resonance frequency the res-
onator’s impedance is matched to the external circuit and maximum power can
be transferred.

• g > 1: the resonator is overcoupled, meaning that the loss is primarily determined
by the coupling to the external circuitry.

The reason why we started the description of microwave resonators with a parallelRLC
lumped element resonator is that near the resonance frequency a transmission line

8



3. Microwave resonators

0 0.5 1 1.5 2

R√
2

R

BWfrac

ω
ω0

|Z(ω)|

Figure 3.2.: The plot shows the magnitude of the impedance Z(ω) of the parallel reso-
nant circuit from Fig. 3.1 near the resonance frequency ω0. The frequency
interval where Ploss = Pmax

2 is called the half-power fractional bandwidth
BWfrac (see Appendix B).

resonator can be represented by a parallel resonant circuit. At frequencies ω = ω0+∆ω,
where ∆ω is small, a Taylor expansion for the impedance (see Appendix B) from Eq.
(3.1) yields

Z ≈ R

1 + 2j∆ωRC
=

R

1 + 2jQint∆ω/ω0
, (3.9)

and as we will see in the subsequent section this is very similar to the expression
derived for transmission line resonators.

3.2. Half wave transmission line resonator

In Section 2.2 we have seen that impedance mismatches at the end of a transmission
line will cause reflections which lead to the formation of standing waves on the line. If
there are mismatches on both ends of the line, a transmission line resonator is formed.

For an open-circuited transmission line the load impedance ZL =∞ and Eq. (2.10)
simplifies to

Z(l) = Z0 coth ((α+ jβ) l) = Z0
1 + j tanβl tanhαl

tanhαl + j tanβl
, (3.10)

in the last step we have applied the addition theorem for coth to separate α and β.
If we consider a low-loss transmission line resonator of length l = λ/2, close to

resonance ω = ω0 +∆ω Eq. (3.10) can be expanded similar to Eq. (3.9), which results
in2

Z ≈ Z0

αl + jπ∆ω/ω0
. (3.11)

Comparing this expression with Eq. (3.9) illustrates why it is possible to model a
transmission line resonator with a parallel lumped element resonator. From this com-
parison we can also extract the relations between the lumped element parameters and

2 The assumptions to get this equation are small losses, so that tanhαl ≈ αl, and ω close to resonance,

so that tanβl = tanβλ/2 = tan
(
π + ∆ωπ

ω0

)
= tan ∆ωπ

ω0
≈ ∆ωπ

ω0
. Finally, taking only the first order

of the expansion eliminates the imaginary part of the numerator and we get Eq. (3.11).

9



Cc Cc

RL RLR C R∗
L R∗

L

C∗
c C∗

cCR
LnLn

(a) (b)

Figure 3.3.: (a) Parallel RLC circuit representation of a symmetrically coupled trans-
mission line resonator with coupling capacitance Cc (b) and the corre-
sponding Norton equivalent circuit.

the transmission line parameters3 [Göp+08; Ams12]

R =
Z0

αl
, C =

Cll

2
, Ln =

2Lll

n2π2
, Qint =

nπ

2αl
. (3.12)

The natural number n in the last two equations considers the fact that not only the
fundamental resonance frequency ω = ω0, but also higher harmonics ω = nω0 can be
excited on a half wave transmission line resonator. The coupling of the resonator to
a transmission line can be introduced via coupling capacitors Cc and load resistors
RL (see Fig. 3.3). The effects on the overall quality factor Qtot can best be described
after the transformation to the Norton equivalent circuit shown in Fig. 3.3(b), where

R∗L =
1+ω2

nC
2
cR

2
L

ω2
nC

2
cRL

and C∗c = Cc

1+ω2
nC

2
cR

2
L

. Since the total resistance is now given by

Rtot = (1/R+ 2/R∗L)−1 and the capacitance is Ctot = C + 2C∗c the resulting quality
factor is

Qtot = ω∗nRtotCtot = ω∗n
C + 2C∗c

1/R+ 2/R∗L
≈ ωn

C

1/R+ 2/R∗L
, (3.13)

with ω∗n = 1/
√
Ln (C + 2C∗c ). The approximation in Eq. (3.13) is valid if the coupling

capacitance is small in comparison with the capacitance of the resonator. From Eq.
(3.8) the external quality factor is then determined by Qext = ωnR

∗
LC/2.

3.3. Scattering parameter S21 of a transmission line resonator

Since we won’t measure impedances but scattering parameters in the experiment,
we will now derive an expression for S21. Circuit theory tells us that the scattering
parameter S21 of a two-port network (see Fig. 3.4) with a parallel impedance Z and
characteristic impedances Z0 is [Poz11]

S21 =
2Z

2Z + Z0
. (3.14)

3 See Appendix C.
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3. Microwave resonators

ZZ0 Z0Port 1 Port 2

Figure 3.4.: For a two-port network consisting of a parallel impedance Z connected to
two transmission lines with a characteristic impedance Z0 the scattering
parameter S21 can be written as S21 = 2Z

2Z+Z0
[Poz11].

With the results from the last section the impedance of the capacitively coupled res-
onator from Fig. 3.3 reads

Z =
Rtot

1 + 2jQtot∆ω∗/ω∗n
(3.15)

=
Rtot (1− 2jQtot∆ω

∗/ω∗n)

1 + 4Q2
tot(∆ω

∗/ω∗n)2
. (3.16)

Due to the small coupling capacitance Cc the Norton equivalent resistance R∗L will be
very large so that Rtot ≈ R, ω∗n ≈ ωn and

Z ≈ R (1− 2jQtot∆ω/ωn)

1 + 4Q2
tot(∆ω/ωn)2

. (3.17)

Near the resonance frequency the denominator will be close to one because ∆ω2

ω2
n
� 1,

Z ≈ R (1− 2jQtot∆ω/ωn) . (3.18)

With the condition that from the resonator the characteristic impedance of the line
looks like Z0 = R∗L and remembering the relations for the quality factors

Qint = ωnRC , (3.19)

Qext =
ωnR

∗
LC

2
, (3.20)

we can express Z0 as a ratio of internal and external quality factors

Z0 =
2Qext

ωnC
=

2Qext

Qint
R . (3.21)

Inserting Eq. (3.18) and (3.21) into Eq. (3.14) yields

S21 =
2R (1− 2jQtot∆ω/ωn)

2R (1− 2jQtot∆ω/ωn) + 2RQext/Qint
(3.22)

=
1− 2jQtot∆ω/ωn

1 +Qext/Qint − 2jQtot∆ω/ωn
(3.23)
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Figure 3.5.: A short piece of a coplanar waveguide (CPW) on a substrate (yellow)
with a dielectric constant εr and height h. The superconducting film has
a thickness t and a central conductor of width w which is separated from
the ground planes by the distance s.

On resonance, characterized by ∆ω = 0, the transmission and also the scattering
parameter exhibits a maximum giving the important result

S21(∆ω = 0) = Smax
21 =

Qint

Qint +Qext
. (3.24)

Substituting the fraction with Smax
21 in Eq. (3.23) eventually leads to

S21 =
1 + 2jQtot∆ω/ωn

1/Smax
21 + 2jQtot∆ω/ωn

. (3.25)

3.4. Coplanar waveguide resonator

In the previous sections the fundamental concepts of transmission line resonators have
been discussed but until now we have not considered a specific transmission line ge-
ometry. The actual design we use for our λ/2-resonator4 is a 12 × 4 mm coplanar
waveguide (CPW) structure5 depicted in Fig. 3.5 and 3.6. A niobium film6 of 200 nm
is deposited on a sapphire substrate, which has a dielectric constant εr = 10.4 and
a relative permeability µr = 1. The central conductor has a length l = 21.571 mm,
a width w = 10 µm and is separated from the ground planes by a gap s = 4.15 µm.
These specific values of w and s ensure a 50 Ω impedance.The coupling capacitors are
simple gap capacitors with a spacing of sc = 5 µm resulting in an input and output
capacitance of Cc = 0.45 fF. Due to the very small coupling capacitance the resonator
is undercoupled, so that the loss is primarily determined by the internal losses, which
we want to study. All these parameters lead to a designed resonance frequency at

4 Model number: R3-3-111-1
5 The coplanar waveguide design was first proposed by Wen in 1969 [Wen69].
6 The niobium layer will be in the superconducting state for all measurements, since we are always

below the critical temperature Tc = 9.2 K.
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3. Microwave resonators

(a) (b)

Figure 3.6.: (a) A rendering of the actual design of the resonator and (b) the magnifi-
cation of the coupling capacitance Cc. The color code has been chosen in
accordance with Fig. 3.5.

f0 = 2.87 GHz. More details concerning the fabrication process can by found in the
thesis of Koller [Kol12].

As indicated above the three dimensional geometry of coplanar waveguides will entail
deviations from “ideal” transmission lines (“ideal” in the sense that the components
have no physical dimension except for a length l). Due to their asymmetric composition
with respect to the superconducting layer7 a CPW will not support TEM modes
anymore. The dielectric will cause an electromagnetic field traveling in the direction
of the central conductor to exhibit longitudinal components. Luckily in the microwave
regime these components are small enough so that they can be neglected [Gao08].
In the lossless case this so-called quasi-TEM approximation enables us to express an
effective dielectric constant εeff , the phase velocity vp and the characteristic impedance
Z0 [CC97]

εeff =
Cl
C0
l

, vp =
c

εeff
and Z0 =

1

Clvp
, (3.26)

in terms of the capacitance per unit length Cl, capacitance per unit length without
any dielectric C0

l and the speed of light in vacuum c.

The capacitance can be calculated via conformal mapping techniques. The basic
idea is to map the geometry of our coplanar waveguide onto another geometry where
it is easier to solve the problem. For a CPW similar to Fig. 3.5 – but with two semi-
infinite ground planes, where the lower half space is filled with a dielectric εsub and
the upper with εtop and an infinitely thin superconducting layer – the capacitance and
inductance can be derived as [Sim04; Gao08]

Cl = ε0εeff
4K(k)

K(k′)
, (3.27)

Ll = µ0
K(k)

4K(k′)
, (3.28)

7 Above there is no dielectric, while below there is the sapphire substrate.
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where K is the complete elliptic integral of the first kind [AS64], k = w
w+2s , k

′ =√
1− k2, µ0 is the vacuum permeability and the effective dielectric constant is given

by εeff = (εsub + εtop) /2 ≈ (εsub + 1) /2 (in our case there is no upper dielectric).
The validity of these approximations for our designs has been confirmed in previous
experiments [Kol12].

For a more detailed treatment of coplanar waveguides on dielectrics with finite
thickness, finite ground planes, etc. we refer to Simons [Sim04].

Additionally to the geometry dependent changes we have to consider the effects of
niobium in the superconducting state. As it turns out the superconducting charge
carriers, the Cooper pairs, give rise to an extra term in the inductance, the so-called
kinetic inductance, which will be the topic of the next chapter.

14



4. Kinetic inductance of a superconductor

In the treatment up to now, we mostly worked with ideal or low-loss conductors
whereas the superconducting nature of the resonator material has been neglected.
However, some aspects of superconducting materials like the kinetic inductance can
play an important role in superconducting resonators.

Ideally, any electric or magnetic field should be expelled from the inside of the
superconductor. In practice, those fields will not immediately drop to zero at the
surface of a superconductor, but instead penetrate into the superconductor on a small
length scale. The aim of this chapter is to look at the consequences arising from those
non-vanishing fields inside the superconductor.

If electromagnetic fields didn’t penetrate into niobium film the total inductance Ltot
l

would be equal to the inductance Ll calculated in Eq. (3.28).1 However, as we have
just mentioned for every superconductor the fields extend into the medium with a
characteristic penetration depth λeff that depends e. g. on temperature, the frequency
of the fields and the geometry. The intruding field will exert a force on the charge
carriers, which accelerates them and thereby adds kinetic energy to the system.

It can be shown that the additional kinetic energy acts like an additional series
inductance [MT69; Ham11].2 Any variation in the Cooper pair density will therefore
also affect the inductance of a CPW resonator. The inductance can be split into
two parts, a fixed one that arises from the geometry dependent magnetic field of the
resonator and a variable one that stems from the kinetic energy of Cooper pairs near
the surface

Ltot
l = Lm

l + Lki
l . (4.1)

The field outside of the superconductor very closely resembles the field of a perfect
conductor (which has an infinitely small penetration depth) so that Lm

l ≈ Ll [Gao08],
with Ll from Eq. (3.28). For λ/2-resonators similar to ours Frunzio et al. [Fru+05]
have found ratios of Lki

l /L
m
l ≈ 4%.

Often it is common not to consider the kinetic inductance itself but the kinetic
inductance fraction

α =
Lki
l

Ltot
l

. (4.2)

Kinetic inductance also occurs in normal conducting materials, but due to the resis-
tance and therefore the small drift velocity of electrons it is usually negligible compared

1 Note that the conformal mapping techniques used to calculate Ll use the approximation of a perfect
conductor and therefore an infinitely small penetration depth.

2 See also Appendix E, where this behavior is illustrated by looking at the kinetic inductance of a
simple wire.
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to the magnetic inductance [Her96; MT69].3

To actually calculate the kinetic impedance Lki
l and the kinetic inductance fraction

α the subsequent sections will feature a short review of the theory of superconductivity
and introduce the surface impedance concept of superconductors.

4.1. Introduction to the theory of superconductivity

The response of a superconductor to external fields is governed by the relation between
the London penetration depth λ0

L at absolute zero, the Pippard coherence length for
pure superconductors ξ0 and the electron mean free path le. According to Tinkham
[Tin96] ξ0 represents the minimal size of a Cooper pair and is the analog to the mean
free path le for normal metals.

If ξ0 � λ0
L or le � λ0

L the field seen by a superconducting or normal charge carrier
is more or less constant over the length of a Cooper pair and we can expect a local
relationship between superconducting current density Js and the electric field E.4

With the assumption of the two-fluid model (see Appendix D), Js is given by the
famous London equations [LL35]

Js =
1

jωµ0λ2
L

E , (4.3)

∇× Js = − 1

λ2
L

H , (4.4)

where µ0 is the vacuum permeability, λL the London penetration depth and H the
magnetic field. The first equation describes the perfect conductor property of super-
conductors while the second equation illustrates the expulsion of the magnetic field
(the Meissner effect). The field decays exponentially from the surface into the super-
conductor on a length scale corresponding to the penetration depth λL, which for zero
Kelvin can be expressed as

λ0
L = λL (T = 0) =

√
m

µ0nsee2
, (4.5)

with the mass of the electron m and the density of superconducting electrons nse.
However experiments show that the penetration depth always seems to be larger than
λL.

Especially if ξ0 � λ0
L and le � λ0

L, which is the case for clean superconductors at
low temperatures, the local model breaks down and Eq. (4.3) and (4.4) have to be
replaced with a phenomenological non-local relation [Pip53]

Js(r) =
3

4πξ0λ2
L

∫

V

R (R ·A(r′)) e−R/ξ

R4
dV ′ , (4.6)

3 For a detailed explanation we refer to Appendix E.
4 In the literature there exist slightly different definitions for the local as well as the later following

non-local regime, we follow the one outlined in Gao’s thesis [Gao08].
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4. Kinetic inductance of a superconductor

z

y

x

λeff

Hy

Ex

Figure 4.1.: A superconductor with an incident electromagnetic wave. After a pene-
tration depth λeff the magnitude of Hy(z) drops by a factor of e compared
to Hy(0). The same holds for the electric field Ex(z) and would also be
valid for the field components of a wave traveling parallel to the surface
of the superconductor.

where R = r− r′, A is the vector potential5 and ξ is the coherence length for impure
superconductors. This coherence length ξ can be calculated from

1

ξ
=

1

ξ0
+

1

αple
, (4.7)

where αp is an empirical constant and ξ0 is the coherence length of the pure supercon-
ductor. It is interesting to note that this treatment and the results of the local and
non-local response of a superconductor are very similar to the classical normal and
anomalous skin effect [Pöp89].

In 1957 Bardeen, Cooper and Schrieffer [BCS57] published the first microscopic
theory of superconductivity and introduced the energy gap ∆(T ). Adding a frequency
dependency to the equations of the BCS theory finally led Mattis and Bardeen [MB58]
to a non-local relationship reading

Jtot(r) =
3

4π2v0~λ0
L

∫

V

R (R ·A(r′)) I(ω,R, T )e−R/le

R4
dV ′ , (4.8)

where I(ω,R, T ) is a function decaying on a length scale ξ0, which in combination
with the exponential factor e−R/le gives a total decay dominated by the smaller of ξ0

and le. The precise form of I(ω,R, T ) and solutions to Eq. (4.8) in certain limits can
be found by Pöpel [Pöp89] or Gao [Gao08].

5 In general the vector potential is defined via the equation B = ∇×A, but since Mattis and Bardeen
[MB58], Pippard [Pip53], Pöpel [Pöp89] and Gao [Gao08] use H = ∇×A we will also adopt this
convention for this thesis.
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4.2. Surface impedance

We will now establish the concept of surface impedance Zs. Suppose we have a configu-
ration like Fig. 4.1, with an incident electromagnetic wave, then the surface impedance
is defined as the ratio of the transverse field components

Zs =
Ex
Hy

∣∣∣∣
z=0

. (4.9)

Using the two Maxwell equations ∇ × E = −jωµ0H and ∇ ×H = J + ∂tD, where
we ignore the displacement current since its much smaller than J in metals, and
H = ∇×A we arrive at

Ex = −jωµ0Ax , Hy =
dAx
dz

, Jx =
d2Ax
dz2

, Zs = −jωµ0
Ax

dAx/dz

∣∣∣∣
z=0

. (4.10)

From the third equation we see that the current density Jx can be expressed in terms
of the vector potential Ax. Inserting into Eq. (4.8) leads to an integro-differential
equation for the vector potential, with which the equation for the surface impedance
can be solved under certain assumptions [Gao08].

In general the solution to this equation will be complex which allows us to write the
surface impedance as

Zs = Rs + jωLs = Rs + jωµoλeff , (4.11)

with the surface resistance Rs, the surface inductance Ls and the effective penetration
depth λeff . This effective penetration depth λeff describes the decay of the fields, which
can be seen if we assume that all fields (Hy, Ex, Ax and Jx) decay proportional to
e−z/λeff from the surface toward the inside of the superconductor. After we reinsert
the exponential behavior into Eq. (4.10) we get

Zs ≈ jωµoλeff , (4.12)

which justifies our initial assumption to replace Ls with µoλeff . A simple exponential
decay with e−z/λeff of all fields is only valid for temperatures T � Tc where Rs is
usually small enough compared to the imaginary part of the surface impedance so
that it can be neglected. But nevertheless it nicely shows the motivation behind the
substitution.

4.3. Complex conductivity

Often the surface impedance is evaluated as a function of the complex conductivity
σ(ω) = σ1(ω) − jσ2(ω), a concept introduced by Tinkham [Tin56] to describe the
transmission through superconducting films.
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4. Kinetic inductance of a superconductor

The derivation of the complex conductivity for the local limit is outlined in Appendix
D. For the general case Mattis and Bardeen [MB58] derived

σ1

σn
=

2

~ω

∫ ∞

∆

[f(E)− f(E + ~ω)](E2 + ∆2 + ~ωE)√
E2 − ∆2

√
(E + ~ω)2 − ∆2

dE

+
1

~ω

∫ −∆

∆−~ω

[1− 2f(E + ~ω)](E2 + ∆2 + ~ωE)√
E2 − ∆2

√
(E + ~ω)2 − ∆2

dE , (4.13)

σ2

σn
=

1

~ω

∫ ∆

max{∆−~ω,−∆}

[1− 2f(E + ~ω)](E2 + ∆2 + ~ωE)√
∆2 − E2

√
(E + ~ω)2 − ∆2

dE , (4.14)

where σn is the conductivity from normal conducting electrons, E is the particle en-
ergy, ∆(T ) is the temperature dependent gap parameter and f(E) is the Fermi-Dirac
distribution given by

f(E) =
1

1 + eE/kBT
, (4.15)

where kB is Boltzmann’s constant. Furthermore the second integral of Eq. (4.13) is
equal to zero if ~ω < 2∆. An analytical solution of Eq. (4.13) and (4.14) is only possible
for T = 0, as soon as T > 0 the integral has to be solved numerically. But under the
conditions6 that ~ω, kBT � 2∆ the Fermi-Dirac distribution can be approximated
by a Maxwell-Boltzmann distribution f(E) ≈ e−E/kBT and the expressions for the
complex conductivity simplify to [Bar09]

σ1

σn
≈ 4∆

~ω
e−∆/kBT sinh

(
~ω

2kBT

)
K0

(
~ω

2kBT

)
, (4.16)

σ2

σn
≈ π∆

~ω

[
1− 2e−∆/kBT e−~ω/2kBT I0

(
~ω

2kBT

)]
, (4.17)

where I0 and K0 are the modified Bessel functions of the first and second kind, re-
spectively [AS64].

4.4. Local response

Approximating Eq. (4.8) in the local limit, where ξ0 � λ0
L or le � λ0

L and expressing
the surface impedance Zs in terms of complex conductivity leads to [Gao08]

Zs = jµ0ω

(
ωle

vF

(
λ0

L

)2
σ2 + jσ1

σn

)− 1
2

, (4.18)

with the Fermi velocity vF, the electron mean free path le and the London penetration
depth λ0

L at absolute zero.

6 In our system we use microwave frequencies in the GHz range (~ω = hf ≈ 2 · 10−24 J, for f =
3 GHz) and we measure at temperatures of about 30 mK (kBT ≈ 4 · 10−25 J) so the conditions
are easily fulfilled for niobium, where Tc = 9.2 K and the energy gap from BCS-theory [BCS57]
2∆(T ) ≈ 2∆(0) ≈ 3.5kBTc ≈ 2.5 · 10−22 J.
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Ex

E⊥

H‖

Figure 4.2.: Due to the relative permittivity of the substrate the phase velocities of an
electromagnetic wave traveling in x-direction are different above and below
the superconducting film of a coplanar waveguide (CPW). The result is
a small component Ex on the surface layer of the superconductor causing
a flow of power into the superconductor which can be calculated with
the help of Poynting’s theorem. The necessary integration is carried out
along the red paths and will also yield the connection between surface and
kinetic inductance Lki

l = gLs.

The response of the surface impedance to a small change in complex conductivity can
be calculated with

δ lnZs = −1

2
δ lnσ , (4.19)

δZs
Zs

= −1

2

δσ

σ
. (4.20)

4.5. Non-local response, the extreme anomalous limit

In the extreme anomalous limit, characterized via ξ0 � λ0
L and le � λ0

L, we get
[Gao08]

Zs =
j
√

3µ0ω

2

(
3πω

4vF

(
λ0

L

)2
σ2 + jσ1

σn

)− 1
3

. (4.21)

Using the same little trick with the logarithm as in Eq. (4.19) we derive

δZs
Zs

= −1

3

δσ

σ
. (4.22)

4.6. From surface inductance to kinetic inductance

The surface impedance derived in the previous sections describes the electromagnetic
response of a superconducting sheet of some thickness t. But we want to ascertain
the response of a coplanar waveguide geometry. So how do we get from the surface
impedance Zs with the surface inductance Ls to the kinetic inductance Lki for a
coplanar waveguide (CPW) geometry?
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4. Kinetic inductance of a superconductor

The answer is Poynting’s theorem, a statement of energy conservation and power
balance. We have pointed out before that electromagnetic fields will penetrate a
superconductor on a characteristic length scale λeff . This penetration of the magnetic
field and the affected Cooper pairs in this region will contribute to the total inductance.
Furthermore, due to the asymmetry of the CPW structure (see Fig. 4.2) the waveguide
will not support true TEM waves. There will be a small contribution Ex to the electric
field in the direction of propagation which leads to a component of the Poynting vector
S = E ×H normal to the surface. Integrating it along the red path of Fig. 4.2 then
yields according to Poynting’s theorem7 the complex power delivered into the system

1

2

∫

C
E ×H∗ dl =

1

2

∫

C
Ex ·H∗‖ dl =

I2

2

(
Rl + jωLki

l

)
, (4.23)

and if we insert the definition of the surface impedance Zs = Ex/H‖ the relation with
the surface impedance reads

Rl = gRs , Lki
l = gLs with g =

∫
C H

2
‖ dl

I2
. (4.24)

The calculation of the geometric factor g (it has the unit of an inverse length) is not
straight forward, but in principle it is just a geometry factor only depending on the film
thickness t, the central conductor width w and the gap to the ground planes s.8 For
thick films conformal mapping techniques can be applied once again but for films where
t < λeff other ways have to be found. The reason why H‖ can no longer be derived
from conformal mapping lies in the fact that the assumption that the field outside of
a superconductor is very well approximated by the field of a perfect conductor breaks
down when the magnetic field penetrates the whole film.

7 We use the convention where the surface normal points into the superconductor.
8 Approximate formulas for the calculation of g can be found in the works of Collin [Col92] or Yoshida

[Yos+95]. Caution has to be taken with the formula of Yoshida, because g is defined differently
there. It has to be divided by the central conductor width w to convert to the g values of Collin.
For our configuration the values calculated using Collin’s formula (g ≈ 0.13 µm−1) differ by a factor
of 2.4 from Yoshida’s (g ≈ 0.31 µm−1).
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5. Cooper pair break-up and quasiparticle
recombination

The previous chapter indicated the dependency of the surface impedance on the effec-
tive penetration depth and the complex conductivity. Now those results will be linked
to the characteristics of the charge carriers and thereby to the microscopic picture of
a superconductor.

A simple description of metals is given by Sommerfeld’s theory [AM76] which de-
scribes the conduction electrons as a free gas. This is quite remarkable since the
Coulomb interaction of the negatively charged electrons usually can’t be neglected.
There is the repulsion between the electrons, which is screened to some extent by the
many surrounding electrons and there is also the attraction of the positively charged
atomic cores.

The reason why some metals can be treated with the free electron model, is that
actually it doesn’t describe electrons but quasiparticles. Those quasiparticles are a
many-body system more or less consisting of an electron and its screening cloud. But
despite the complicated nature of the quasiparticles, the Sommerfeld theory can be
adapted simply by substituting the electron mass with a new effective mass meff . The
powerful concept of quasiparticles can be applied in many cases (e. g. phonons) and
dates back to Landau, who introduced it in his theory of Fermi liquids [AM76].

A similar kind of quasiparticles also exist in superconductors, the so-called Bogoli-
ubov quasiparticles [Tin56]. When a Cooper pair is broken up due to the absorption
of a phonon, photon or any other kind of excitation two quasiparticles are formed.
After a characteristic time τqp the excited system will relax back into the equilibrium
state by recombination of two quasiparticles to a Cooper pair.

The dominant mechanism just below the critical temperature seems to be electron-
phonon relaxation [Bar+08], where two electrons recombine to a Cooper pair and a
phonon is emitted. For even smaller temperatures a saturation of the relaxation time
has been observed that can’t be explained in this picture. As of yet the responsible
processes are still unknown, although some attempts at explaining the data have been
made [Rei00].

As we will see the break-up of Cooper pairs and the resulting creation of quasiparti-
cles has a significant effect on the complex conductivity and therefore also on resonator
properties like the resonance frequency or the quality factor. In our experiment this de-
pendency is utilized to measure the impact of laser irradiation on microwave resonators
in order to investigate and understand quasiparticle creation and recombination pro-
cesses. In current experiments we have also started using the laser to polarize NV−

centers in a diamond which is placed directly on top of the resonator. For this kind of
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5. Cooper pair break-up and quasiparticle recombination

experiments it is obviously crucial to know and consider the effects of the laser light
not only on the diamond but also on the resonator. Another possible application of
this effect, that we have already mentioned, is the usage as microwave kinetic induc-
tance detectors (MKIDs) for astronomy. The primary advantage is the relatively easy
fabrication of large arrays of MKIDs [Day+03]. Because of this interesting prospect
many people are actively working on this field and to get a more in-depth analysis of
quasiparticle effects it is worth looking into the theses of Mazin [Maz04], Gao [Gao08],
Barends [Bar09], Noroozian [Nor12] and the review of Zmuidzinas [Zmu12].

5.1. The influence of quasiparticle density on the complex
conductivity

At finite temperatures every superconductor will contain thermally excited quasipar-
ticles and for ~ω, kBT � 2∆ their density can be approximated by [Bar09]

nqp ≈ 2N0

√
2kBT∆0 e−∆0/kBT , (5.1)

where N0 is the single spin density, kB is Boltzmann’s constant and ∆0 = ∆(T = 0) is
once again the energy gap of superconductors at absolute zero.

Looking back at the equations for the complex conductivity, Eq. (4.16) and (4.17), we
see that the exponential terms e−∆/kBT look very similar to the quasiparticle density.
The only difference is that the former still feature the temperature dependent gap
parameter ∆. In the lowest order the gap parameter can be written as [Gao+08a]

∆

∆0
= 1−

√
2kBT

∆0
e−∆0/kBT . (5.2)

Now that we have an expression for the gap parameter we can insert it into Eq. (4.16)
and (4.17). Replacing the according exponentials with the quasiparticle density from
Eq. (5.1) and only keeping the lowest order terms yields

σ1(nqp, T )

σn
=

2∆0

~ω
nqp

N0

√
2πkBT∆0

sinh

(
~ω

2kBT

)
K0

(
~ω

2kBT

)
, (5.3)

σ2(nqp, T )

σn
=

π∆0

~ω

[
1− nqp

2N0∆0

(
1 +

√
2∆0

πkBT
e−~ω/2kBT I0

(
~ω

2kBT

))]
, (5.4)

The important message of these equations is that both σ1 and σ2 depend linearly on
the quasiparticle density, which allows us to rewrite Eq. (4.20) and (4.22)

δZs
Zs

= γ
δσ

σ
= γκ δnqp , (5.5)

where we have introduced

κ =
σ1 + σ2

σ
, (5.6)

and

γ =

{
−1

2 thick superconductor, local limit

−1
3 thick superconductor, non-local limit

(5.7)
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5.2. Resonator response to quasiparticle fluctuations

In this section we will collect the results from the previous sections to derive the
response of the CPW resonator to quasiparticle density fluctuations and perturbations
in general.

First let us consider Eq. (5.5) again. In case of low temperatures and for good
conductors1 we can usually write Rs � ωLs as well as σ1 � σ2, which leads to

δZs
Zs
≈ δRs + jωδLs

jωLs
≈ γ δσ1 − jδσ2

−jσ2
, (5.8)

or

δRs
ωLs

= −γ δσ1

σ2
, (5.9)

δLs
Ls

= γ
δσ2

σ2
. (5.10)

For a half-wave transmission line resonator the resonance frequency is given by (see
Appendix C).

ω0 =
2π

2l
√
Ltot
l Cl

=
π

l
√

(Lm
l + Lki

l )Cl

(5.11)

A perturbation of the quasiparticle density changes the surface impedance and thereby
also the kinetic inductance. From Eq. (5.11) we calculate

δ lnω0 =− 1

2
δ lnLtot

l (5.12)

δω0

ω0
=− α

2

δLki
l

Lki
l

(5.13)

=− α

2

δLs
Ls

, (5.14)

where α is the kinetic inductance fraction from Eq. 4.2. The internal quality factor,
defined by Qint = ω0RC, can be written in terms of transmission line parameters as

Qint = ω0
Ltot
l

Rl
. (5.15)

This result can easily be obtained by using Eq. (C.3) and (C.4) of Appendix C and
putting all the losses into Rl, which allows us to discard Gl. Perturbations of the

1 Both conditions are fulfilled for our system, since we operate at 30 mK and use niobium in the
superconducting state.
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5. Cooper pair break-up and quasiparticle recombination

inverse quality factor can then be expressed as

δQ−1
int = δ

Rl
ω0Ltot

l

(5.16)

≈ δRl
ω0Ltot

l

(5.17)

= α
δRs
ω0Ls

, (5.18)

for Rs � ω0L
tot
l . So far we have connected the frequency shift and the quality fac-

tor perturbation to the complex conductivity σ. Furthermore Eq. (5.5) tells us that
both the frequency as well as the inverse quality factor shift depend linearly on the
quasiparticle density.

Equations (5.14) and (5.18) are fine for analyzing data from continuous perturba-
tions like a constant light flux, where we have time to sweep a whole frequency range
and record a spectrum. If we want to measure time dependent effects which are shorter
than the sweep time a different approach has to be taken. Instead of sweeping the
frequency, we keep the frequency fixed at the undisturbed resonance frequency and
measure the phase

tanφ =
ImS21

ReS21
, (5.19)

and the amplitude
A = |S21| =

√
Re(S21)2 + Im(S21)2 . (5.20)

Substituting S21 by Eq. (3.25) together with the assumption of only small phase
changes tanφ ≈ φ yields2

φ ≈ (1− Smax
21 )2Qtot

δω0

ω0
. (5.21)

The calculation for the amplitude at the resonance frequency, where we use Eq. (3.24),
results in

δA ≈ − Qext

(1 +Qext/Qint)2
δQ−1

int . (5.22)

We see that the phase and the amplitude should also be linearly proportional to fluctu-
ations of the quasiparticle density.3 Since we want to investigate the effects of photon
irradiation on microwave resonators the last missing piece is now the dependence of
the quasiparticle density nqp on the laser power Plp, which is given by [Maz04]

δnqp =
τqpη

V ∆
δPlp , (5.23)

where τqp is the quasiparticle lifetime, V the resonator volume, η is the photon to
quasiparticle conversion efficiency and ∆ is the energy gap. The conversion efficiency
is usually about η ≈ 0.6 [Gao08; Maz04].

2 This approximation for the phase φ and amplitude A is derived in Appendix G.
3 Combining Eq. (5.5), (5.23), (5.14), (5.10), (5.18) and (5.9) leads to φ ∝ δω0

ω0
∝ δnqp ∝ δPlp and

A ∝ δQ−1
int ∝ δnqp ∝ δPlp.
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6. Two level fluctuators

In order to perform measurements on our resonator we have to probe the microwave
system with a measurement power Pmw. We have argued before that additional en-
ergy introduced into the system can break up Cooper pairs thus reducing the total
conductivity which then should reduce the quality factor of the resonator.

But up to a certain power something curious happens. The quality factor increases
simultaneously with the microwave measurement power. This shouldn’t happen for a
superconducting niobium resonator but it is a well-known phenomenon in glasses and
amorphous materials in general. In those materials a similar unexpected behavior has
been measured for the low-temperature dependence of the heat capacity, the sound
velocity and other parameters [Esq98].

Unlike crystalline solids, amorphous materials don’t have any kind of long-range
order. A result of the disordered structure is that there exist metastable atomic states
and atoms can tunnel in between different positions (see Fig. 6.1). At low temperatures
these two-level fluctuators1 constitute the main loss mechanism.

To explain the measurement data a phenomenological two-level system model, as
can be seen in Fig. 6.2, was proposed by both Anderson [AHV72] and Phillips [Phi72]
at a similar time.

As for the question of where those two-level fluctuators (TLFs) are located in CPW
resonators, until now there is no definitive answer. For our resonators there exist
various possibilities. The TLFs could be located in the bulk volume of the dielectric
substrate or inside the niobium film. Aside from that it is known that amorphous
layers can be formed by niobium oxides NbxOy on the metal surface or some other
oxides at the substrate–air interfaces [Gra75; LS74; Sag+11]. Additionally amorphous
layers are also formed at the metal–substrate interfaces due to oxides and a mismatch
of the substrate and metal lattice. It seems fairly certain that the bulk volume can
be eliminated as TLF source, because Gao et al. [Gao+08b] as well as Wenner et
al. [Wen+11] found evidence for a surface effect. But it is not yet clear whether the
main source for two-level fluctuators are the metal–substrate, metal–air or substrate–
air interfaces.

The following short review of the main results for two-level systems (TLSs) will
mostly follow the treatment of the subject in Gao’s thesis [Gao08].

1 In recent literature the term two-level system (TLS) has been used to describe coherent systems,
whereas two-level fluctuator (TLF) has been coined to describe incoherent systems. In this thesis
TLS and TLF are used rather synonymously, but we always mean TLFs. Interestingly just a few
years ago (2010), Lisenfeld et al. [Lis+10] have shown that it is possible to couple a superconducting
qubit coherently to a single TLS.
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6. Two level fluctuators

(a) (b)

A

BC

Figure 6.1.: Reproduction of a figure by Hunklinger and Arnold [HA76] to visualize
the concept of two level fluctuators. (a) Shows the crystalline state of
SiO2 while (b) depicts the amorphous state of SiO2. The characters A, B
and C point out possible metastable states, which could be modeled with
a two level system (TLS). In case of superconducting coplanar waveguide
resonators the idea is that there may be an amorphous surface layer due
to oxidation which is responsible for TLS effects [Gao+08b].

6.1. Two-level system model

Figure 6.1 shows the double-well potential to model a TLS, which consists of two
superimposed harmonic-shaped potentials. The basis states of the two individual
parabolic-shaped potentials are denoted φ1 and φ2, respectively. The Hamiltonian of
the combined system can be written in terms of those basis states and reads

H0 =
1

2

(
−∆ ∆0

∆0 ∆

)
, (6.1)

where ∆ is the asymmetry energy and ∆0 is the so-called tunnel splitting, describing
the coupling of the states. Although ∆0 depends on the precise shape of the potential,
and therefore on the material, often it can be approximated with [Phi87]

∆0 = ~ω0e−λ , with λ =

√
2mV

~2
d , (6.2)

where V is the tunnel barrier height, d the separation of the potential minima and
~ω0 is approximately the mean value of the two ground state energies. Since we are
dealing with an amorphous solid there will be a certain distribution of values for ∆

and ∆0. Anderson [AHV72] and Phillips [Phi72] suggested

P (∆,∆0) d∆d∆0 =
P0

∆0
d∆d∆0 . (6.3)

A short summary of the reasoning behind this choice can be found here [Phi87].
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E0
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∆

V

d

Figure 6.2.: The double-well potential of a two level system (TLS), where ∆ is the
asymmetry energy, E0 the respective ground state energy, d the well sep-
aration and V is the barrier height.

Diagonalizing the Hamiltonian of Eq. (6.1), hence transforming to the energy eigen-
states, gives

H0 =
1

2
εσz (6.4)

with the energy splitting of the states ε and the Pauli matrix σz (see Appendix F).
To describe excitation and relaxation processes we need to couple the TLS system

to some external field or phonons. Mathematically this means adding an interaction
Hamiltonian to the Hamiltonian from Eq. (6.4). According to Phillips [Phi87] per-
turbations by electromagnetic or strain fields mainly change the asymmetry energy
∆ while leaving the tunnel splitting ∆0 more or less unaffected. So in the local basis
(φ1, φ2) the perturbation will be diagonal, but after transformation to the energy basis
states the interaction hamiltonian for electric excitations is

He
int =

[
∆

ε
σz +

∆0

ε
σx

]
d0 ·E , (6.5)

with the Pauli matrices σi, the electric dipole moment d0 and the electric field E. For
interactions with phonons the Hamiltonian reads

Ha
int =

[
∆

ε
σz +

∆0

ε
σx

]
γees , (6.6)

where γe is the elastic dipole moment and es is the strain field. A similar expression
can be found for the magnetic problem with the magnetic dipole moment µ and
the magnetic field B. In our experiments the two-level systems will couple to the
microwave field as well as to phonons that get excited by the heat, which is deposited
by the laser.

As the usage of Pauli matrices maybe already indicated, the Hamiltonian of the
complete system H = H0 + Hint bears a great resemblance to the Hamiltonian for
the dynamics of a spin 1/2 system in a magnetic field. A problem which has been
considered for a long time in the understanding of nuclear magnetic resonances (NMRs)
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6. Two level fluctuators

and whose answer can be found by solving the Bloch equations [Blo46]. This analogy
between the two systems allows us to translate the TLS system into a spin 1/2 system,
get the solution via the Bloch equations and then transforming it back.

After a lengthy derivation eventually the TLS contribution to the dielectric constant
due to electric perturbations is obtained as [Gao08]

εTLS = −2P0d
2
0

3

[
Ψ

(
1

2
− ~ω − jΓ

2jπkBT

)
− ln

εmax

2πkBT

]
, (6.7)

where P0 is from the density of states in Eq. (6.3), d0 the electric dipole moment, Ψ
the complex digamma function [AS64], Γ an average dephasing linewidth for the TLS
distribution and εmax is the maximum energy splitting of the TLSs.

6.2. Resonator response for two-level systems

The change of the dielectric constant described by Eq. (6.7) will influence the resonator
properties like the resonance frequency and the quality factor, since both the phase
velocity and the loss in the system depend on the dielectric constant. For small
perturbations the according frequency shift of a resonator can be derived as [Poz11]

δω0

ω0
' −

∫
V

(
∆ε′|E|2 + ∆µ′|H|2

)
dV∫

V (ε′|E|2 + µ′|H|2) dV
, (6.8)

where prime denotes the real part of ε = ε′− jε′′ and µ = µ′− jµ′′. As we will see below
the imaginary parts of the permittivity ε and the permeability µ describe the losses
and are therefore important for the quality factor shift. Due to the assumed small
perturbations the frequency will stay close to resonance and so We = Wm follows.
With this, ∆µ′ = 0 and ∆ε′ = ε′TLS we can rewrite Eq. (6.8) and get

δω0

ω0
= −

∫
Vh
ε′TLS|E|2 dV

2
∫
V ε
′|E|2 dV

, (6.9)

where Vh is the host volume of the two-level fluctuators, which considers the fact that
TLFs may not be distributed over the whole resonator volume V . The corresponding
shift of the quality factor Qtot can be calculated from Eq. (3.6) and with [Poz11]

Ploss =
ω

2

∫

V

(
ε′′|E|2 + µ′′|H|2

)
dV , (6.10)

which, for ∆µ′′ = 0 and ∆ε′′ = ε′′TLS, yields

δQ−1
tot = −

∫
Vh
ε′′TLS|E|2 dV∫
V ε
′|E|2 dV

. (6.11)
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Figure 6.3.: Temperature dependence of the frequency shift δf0 and the change of the
inverse quality factor δQ−1

tot predicted by the two-level system model.

Putting everything together finally results in [Gao08]

δω0

ω0
=
Fδ0

TLS

π

[
Re Ψ

(
1

2
− ~ω

2jπkBT

)
− ln

~ω
2πkBT

]
, (6.12)

δQ−1
tot = Fδ0

TLS tanh

(
~ω

2kBT

)
, (6.13)

with δ0
TLS = 3P0d

2
0/2εh and a filling factor

F = −
∫
Vh
εh|E|2 dV∫

V ε
′|E|2 dV

. (6.14)

30



7. Experimental setup

This chapter will give a description of the setup and measurement techniques used
in our experiments. Since we wanted to study the effects of quasiparticles and two
level fluctuators (TLFs) in superconducting microwave resonators there are a few
requirements we need to meet.

First of all our measurements need a cryogenic environment. This is provided by a
dilution refrigerator whose basic principle of operation will be explained in the first
section.

Then there has to be some way to excite the quasiparticles and the TLFs. This can
happen for instance with phonons through an increase of temperature or with photons
from a light source. In most of the discussed experiments photons from a green laser
will be the source of excitations. Therefore, we also need an optical setup which will
be the topic of the next section.

Finally we need to be able to measure these effects via probing the resonators in
the microwave domain which is done with a vector network analyzer (VNA) for con-
stant light flux and with a fast digitizer card for experiments with pulsed light. The
microwave setup will be treated in the last section.

7.1. Dilution refrigerator

The requirement of a cryogenic environment stems from the fact that we don’t want
any thermal photons in the resonator, because they would distort the measurement
results and excite the TLFs and quasiparticles we want to investigate. The thermal
photon occupation is given by the Bose-Einstein distribution

n̄(ω, T ) =
1

e
~ω
kBT − 1

, (7.1)

which should fulfill n̄ < 1 so that the resonator is in the ground state. To give an exam-
ple, for our microwave resonators with a resonance frequency of approximately 3 GHz
and a temperature of 50 mK a thermal occupation of n̄ ≈ 0.06 would be obtained.

To reach the necessary low temperatures we use a Triton dilution refrigerator from
Oxford Instruments. It is a cryogen-free system due to the usage of a pulse tube refrig-
erator for precooling instead of liquid Helium. This precooling unit allows achieving
temperatures of about 4 K, further cooling is done by exploiting the special properties
of 3He/4He mixtures.

Below a critical temperature the 3He/4He mixture separates into two distinct phases.
One with an abundance of 3He, the concentrated phase, and another one with an
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Figure 7.1.: The size of the light spot on the resonator is determined by the numerical
aperture (NA) of the fiber and the distance h from the fiber end to the
resonator. For our configuration, NA = 0.48 and h ≈ 3.3 mm, we get
dspot ≈ 3.6 mm.

abundance of 4He, the dilute phase. In a somewhat simplified view the concentrated
phase can be considered as liquid 3He while the 3He gas moving through the inert 4He
behaving similar to a gas. At the phase boundary the liquid 3He can absorb thermal
energy from the surroundings and evaporate from the concentrated into the dilute
phase, increasing its entropy and thereby lowering the temperature of the surrounding
environment. Since there is always a finite amount of 3He in the dilute phase –
even if the temperature decreased to absolute zero – cooling works for arbitrarily low
temperatures and is only limited by heat leaking into the system and heat exchanger
performance [Bal07].

With our dilution refrigerator (see Fig. 7.9) we are able to reach temperatures in the
range of 20 mK to 30 mK at the lowest temperature stage, while having a cooling power
of 400 µW at 110 mK. At the moment a fully automatic cool-down takes approximately
50 h, but this value strongly depends on the extent of additionally built-in microwave
wiring for the experiments.

The big advantage of dilution refrigerators is the possibility to construct the 3He/4He
dilution unit as a closed-loop system which easily allows a few weeks of continuous
operation without intervention and warm-up.

More information on the characteristics of our dilution refrigerator can be found in
the theses of Amsüss [Ams12] and Koller [Kol12].

7.2. Optical setup

As mentioned before we want to use light to study quasiparticle and two level fluctu-
ator phenomena of our resonator. Therefore, we have to find a way to get the light
from a laser into the cryogenic environment of the dilution refrigerator. Our setup
consists mainly of two parts, on the one hand there is the optics outside of the dilu-
tion refrigerator which is located on an optical table and on the other hand there are
the fibers which guide the light to the 20 mK stage of the dilution refrigerator.

A sketch of the complete experimental setup including the optical setup can be seen
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Figure 7.2.: Laser pulses are created by applying a TTL pulse to the AOM. In the
“off”-state all laser light is in the zeroth mode, which is blocked by a
aperture, but in the “on”-state some light is scattered into the first mode,
which can pass the aperture (see Fig. 7.9). This plot shows the rise and
fall time (width of the gray area) of such a laser pulse measured with a
photodiode. The times are determined by the 10 and 90 percent mark of
the step height. (a) The rise time is 23.5 ns and (b) the fall time is 250 ns.

in Fig. 7.9. The laser light is created with a green laser (532 nm) and is then guided
through a shutter to a lens in order to focus the light at the subsequent acousto-
optic modulator (AOM). In the AOM a piezo element creates a standing wave within
a crystal so that an incident electromagnetic wave is Bragg reflected into different
orders. The ratio that is reflected into higher orders is determined by the amplitude
of the standing wave. By positioning an aperture after the AOM, where only the first
order of reflection can pass, we can therefore adjust the transmitted power by varying
the standing wave amplitude. The great advantage of controlling the transmitted laser
power with an AOM and not with the laser source itself is the very fast time response
of the AOM (see Fig. 7.2), that we need for creating short laser pulses. After the
AOM and aperture follows another lens collimating the laser beam again. Right before
coupling into the multimode fiber (200 µm core diameter) with a fiber collimator there
is an optical attenuator, which is necessary for very small laser powers1. The fiber then
guides the light to the top of the dilution refrigerator where we couple via commercially
bought SMA couplers to the fiber on the inside of the cryostat. On the other end of
this fiber is a simple SMA connector that can be screwed on the lid of our resonator
sample box (see Fig. 7.6). The end of the SMA connector terminates in the plane
of the lid bottom. The spot size on the resonator can be calculated from the fibers
numerical aperture (NA)

NA = n0 sin θa , (7.2)

where n0 is the index of refraction outside the fiber (n0 = 1 since we operate in vacuum)
and θa is the acceptance angle. The acceptance angle is measured from the central

1 For the two-level fluctuator measurements we are in the range of 0 to 50 nW.
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Figure 7.3.: The upper plot depicts the light power transmitted through an optical
fiber during a full cool-down. The fiber goes from the top of the cryostat
(which is at room temperature) to the 20 mK stage and then back up again
to the top where the laser power has been measured with a power meter.
The lower plot shows the corresponding temperatures measured at three
different stages during the cool-down. We don’t see any dependency of
transmitted light power on temperature and the fluctuations, which are
about 6.5 % of the maximum power, are from the laser itself.
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Figure 7.4.: Measurement to determine the loss of laser power both from coupling into
the fiber and the optical vacuum feedthrough (commercially bought SMA
couplers from Optocon) on top of the dilution refrigerator. We measured
the laser power with a power meter once directly before coupling into the
fiber and once at the position of the resonator, see also Fig. 7.9. The
output power at the resonator grows linearly with the input power and
from the fit we see that about 88 percent of the incident light is lost.

axis of the fiber and determines the angle at which light can either be transmitted
into or emitted from the fiber, see Fig. 7.1. For a numerical aperture NA = 0.48 and
a distance of h ≈ 3.3 mm from the fiber to the resonator the spot size in our system is
given by dspot ≈ 3.6 mm.

Since we can’t measure the light power reaching the resonator while the dilution
refrigerator is cooled down, we have to calibrate with measurements when the setup
is warmed up and can be opened. Therefore, it is important to know if the cool-
down process has any influence on the light transmission. To test the temperature
dependence we built a second fiber that goes from the top of the dilution refrigerator
to the lowest temperature stage and the up again to the SMA couplers where the power
can be measured with a power meter. The results are shown in Fig. 7.3 and we conclude
that temperature effects can be neglected and the results from the measurements
during the warmed-up period can be applied.

The stability of the laser on the other hand could definitely be better, which is the
reason why there are considerations to build a PID2 controller for future measurements.

Another crucial point is the determination of very small laser powers. According
to the data sheet our power meter only allows measurements from 50 nW upward3,

2 PID is the acronym for proportional-integral-derivative.
3 In our measurements about 80 nW was the lowest possible value to be measured with the power

meter directly.
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Figure 7.5.: For most of the measurements we use one of the two attenuators Attweak

or Attstrong. The attenuation ratio of those two attenuators displays a
linear behavior over the full range of measured light powers. The result of
a linear fit gives an attenuation factor of about 260 for Attstrong compared
to Attweak.

but two-level fluctuator (TLF) effects take place below this limit4. So we have to
extrapolate from measurements with higher powers. Figure 7.4 depicts the ratio of
the laser power before coupling into the fiber and the laser power at the resonator.
The dependency exhibits a linear behavior although unfortunately at low laser powers
there seems to be a small deviation from the linear decline and the losses seem to be
a bit larger. Since the deviation is only small we will nevertheless assume a linear
dependency even for low laser powers. We also see that coupling into the fiber plus
coupling into the cryostat causes quite a lot of loss, in that only about 12 % of the
incident power get transmitted to the resonator.

To get to the low power regime in the experiment we switch the weak optical at-
tenuator Attweak (filters out half of the incident power) with the strongly attenuating
Attstrong. The attenuation ratio of those two attenuators is linear over the full range
of incident optical power, as can be seen from the measurement data in Fig. 7.5, and
from the fit we can extract a factor of about 260 to scale down the measurements for
higher powers to small powers.

7.3. Microwave setup

Similar to the optical setup the microwave setup can be divided into two parts. There
is the wiring leading to and from the resonator inside the dilution refrigerator and
then there is the microwave source and the microwave detection system outside (see

4 We know this from prior measurements on a resonator of a similar design done by Koller [Kol12].
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Fig. 7.9).

We’ll start with the microwave wiring in the dilution refrigerator. The microwave
signal is transmitted into the cryostat via a standard SMA vacuum feedthrough (de-
tails to the used components can be found in Table 7.1). Since keeping low base
temperatures is crucial, the microwave line connecting the room temperature stage
with the 20 mK stage consists of stainless steel cables which have a small heat con-
ductivity while still retaining sufficient electrical conductivity. At room temperature
the cable loss from the input port of the dilution refrigerator to the resonator is about
-9 dBm. Additionally there are three attenuators, with a total of −60 dB attenuation,
on the downward line in order to minimize the thermal noise5.

From Fig. 7.9 we also see, that within the same temperature stage copper cables
were used. In this case good heat conductivity is actually desired, because at the
lowest temperature stage the microwave line helps cooling the resonator to the base
temperature. Due to their much better electrical (as well as thermal) conductivity the
signal loss is equally lowered.6 Furthermore, the copper cables are easier to bend and
to solder, as well as more economical in costs.

The resonator itself is mounted in a gold-plated copper box (the “sarcophagus”),
as can be seen in Fig. 7.6. The sarcophagus fulfills several functions, it shields the
resonator from outside electrical fields as well as dirt in general and because of its
good thermal conductivity also acts as heat sink for the resonator. According to
simulations the resonance frequencies of cavity modes introduced by the sample box
are beyond 10 GHz and therefore shouldn’t influence measurements of the resonator
at approximately 3 GHz.

The output signal of the resonator is amplified once inside the dilution refrigerator
with a LNF amplifier from Low Noise Factory (G = 42 dB) and then again at the top
of the cryostat with an AFS amplifier from Miteq (G = 32 dB).

The microwave wiring outside of the dilution fridge depends on whether we want to
do spectroscopic measurements or measure time-dependent processes. For the former
we use vector network analyzer (VNA) whereas for the latter an homodyne detection
scheme is applied.

7.3.1. The vector network analyzer and spectroscopic measurements

For the experiments where the resonator is irradiated with a constant light flux and
the response is not time-dependent a vector network analyzer (VNA) is used. The
VNA functions simultaneously as signal generator and as microwave detection system.
It supplies coherent continuous wave signals and measures the S-parameters of the
scattering matrix from Eq. (2.12).

A spectroscopic measurement of the resonator without light irradiation can be seen
in Fig. 7.7. Usually we only consider the forward scattering parameter S21, which tells
us something about the transmission from port 1 to port 2. As we already know from

5 Details on the necessity of attenuation are covered in the thesis of Schuster [Sch07].
6 More information on the heat conductivity and attenuation of copper and stainless steel cables can

be found in the thesis of Fink [Fin10].
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(a) (b)

(c) (d)

Figure 7.6.: A rendering of the resonator and the gold-plated copper sample box. (a)
View of the resonator with an opened lid. At the top we see the optical
fiber and the SMA connector that is screwed onto the lid of the sample
box. The resonator is placed inside the gap of a printed circuit board
(PCB), which connects it via Mini SMP connectors to to microwave input
and output lines. (b) View from a different angle. (c) Close-up of the
resonator were we can see the aluminum bonds that anchor the chip to
the PCB and therefore also connect it to ground. (d) The fully assembled
sample box.
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Figure 7.7.: Spectroscopic measurement of the resonator with the vector network ana-
lyzer (VNA). The upper plot shows the magnitude |S21(t)|2 = (ReS21)2 +
(ImS21)2 and below is the phase φ = tan−1 ImS21

ReS21
, where we have shifted

the phase by a constant factor so that φ(f0) = 0. The resonance frequency
f0 = 2.882 447 GHz and quality factor Qtot = 137 851 are obtained by a
non-linear least squares fit with a skewed Lorentzian.

Eq. (3.9) and (3.11) the resonance of a half wave transmission line resonator can be
fitted with a Lorentzian function

|S21|2 =
|A|2

1 + 4Q2
tot(∆f/f0)2

, (7.3)

where the fit parameters are the amplitude A, the resonance frequency f0 and the
quality factor Qtot.

Unfortunately often some background signals (e. g. from nearby resonances) lead to
deviations from the ideal behavior and so-called Fano resonances occur. To extract the
resonance frequency f0 and quality factor Qtot more accurately from the transmission
data, we use a non-linear least squares fit with a skewed Lorentzian [Gao08; PA98]

|S21|2 = A1 +A2(f − f0) +
A3 +A4(f − f0)

1 + 4Q2
tot(∆f/f0)2

, (7.4)

where the fit parameters are now the various amplitudes Ai, the resonance frequency
f0 and the quality factor Qtot.

39



7.3.2. Homodyne detection of time-dependent processes

For very fast time-dependent processes where the VNA isn’t sufficient any more we
have implemented an homodyne detection scheme exploiting the properties of an
quadrature mixer7. Once again the basic setup is displayed in Fig. 7.9.

An quadrature mixer is a four port device that mixes the RF signal coming from the
dilution fridge with the signal of a local oscillator (LO). The output of the device is an
in-phase component (I(t)), proportional to the real part of the original RF signal, and
a quadrature component (Q(t)), proportional to the imaginary part of the original RF
signal. Using this we can calculate the amplitude and phase of the output signal

|S21(t)|2 = |I(t) + jQ(t)|2 , (7.5)

φ(t) = tan−1 Q(t)

I(t)
. (7.6)

The ingenious idea behind the mixing of signals is that very high frequencies can be
down-converted to lower frequencies, where detection is a lot easier. Mathematically
the underlying principle can easily be understood by multiplying two cosine functions

cos (ωRFt+ φ(t)) · cosωLOt =
1

2
[cos ((ωRF − ωLO) t+ φ(t))

+ cos ((ωRF + ωLO) t+ φ(t))] ,
(7.7)

where ωLO is the frequency at the LO input, ωRF is the frequency at the RF input
and φ is just some additional phase, which later on will be a phase-lag caused by
the resonator. By applying a low-pass filter to suppress the high frequency term we
immediately recognize the down-conversion. Homodyne detection is now defined by
the fact that the LO frequency equals the RF frequency. In the experimental setup
this is done by installing a splitter directly after the signal generator. The first line
runs through a digital attenuator, a fast microwave switch and the dilution refrigerator
afterward being connected to the RF input of the quadrature mixer. The second line
is directly connected to the LO input8.

After the quadrature mixer, the low-pass filters and preamplification the detection
and measurement of the down-converted signals is done with a digitizer card from
Acqiris. A typical measurement using this homodyne detection scheme is depicted in
Fig. 7.8.

7 Also called IQ mixer.
8 To prevent ground-loops we installed DC blocks right before the RF and LO inputs of the quadrature

mixer.
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Figure 7.8.: Time-dependent measurement (in the absence of light) at the resonance
frequency f0 of the resonator using the homodyne detection scheme, where
the color is coding the elapsed time. (a) Shows |S21(f = f0, t)|2 =
|Smax

21 (t)|2 and we clearly see the opening of the switch that is block-
ing the microwave source at t = 0 µs, then the reaching of an equilibrium
state and finally the closing of the switch at t = 600 µs. In (b) the phase

φ = tan−1 Q(t)
I(t) is depicted. (c) An alternative way to look at the trans-

mission data: Instead of plotting the amplitude and the phase, the data
is plotted in the complex plane (x(t), y(t)) = (ReS21(f0, t), ImS21(f0, t)).
Using the same color code we start at (0,0) (blue) and then, during the
transient phenomenon of the resonator, move toward the steady state of
the system at the black crossed-out circle (turquoise to green). After clos-
ing the switch the resonator relaxes back to the starting point at(0,0)
(red). In the complex plane the scattering parameter S21 traces out a
circle for a frequency range near the resonance frequency. This blue circle
represents the same information as a spectroscopic measurement, where
we usually plot |S21(f)|2 = (ReS21(f))2 + (ImS21(f))2 (see Fig. 7.7). A
point on the circle is given by (x, y) = (ReS21(f), ImS21(f)) and varying

the frequency from f0− frange

2 to f0 +
frange

2 yields the complete circle. The
resonance frequency f0 is indicated by the black crossed-out circle.
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Dilution fridge Measurement unit Optical table

RT

50K

4K

1K

100mK

20mK

Vacuum feedthrough

SMA male

SMA female

Attenuator

Amplifier: 1. LNF, 2. AFS,
3. SRS

Resonator

Vector network analyzer

Switch

Splitter

Digital Attenuator

Low pass filter

DC block

Pulser

IQ mixer

Signal generator

Digitizer card

Stainless steel cable

Copper cable

Mini Circuits cable

Wiring for spectroscopic
measurements

Wiring for time-dependent
measurements

Lens

Optical attenuator

Mirror

Aperture

Fiber Coupler

Shutter

Acousto-optic modulator

Laser (532 nm)

Optical fiber

Optical SMA connector

Optical vacuum feedthrough

AOM

dB

LO
RF

3 3

AOM

2

-30

1

-20

-10

Figure 7.9.: Experimental setup
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7. Experimental setup

Table 7.1.: Part specifications.

Part Model

Resonator R3-3-111-1, see Sec. 3.4

Amplifier 1 LNF-LNC1.8-2.8A, Low Noise Factory

Amplifier 2 AFS3-02000400-06-10P-4, Miteq

Amplifier 3 SR445A 350 MHz preamplifier,
Stanford Research Systems

Copper cable UT-085C, Micro-Coax

Stainless steel cable UT-085-SS-SS, Micro-Coax

Mini Circuits cable CBL-XXX-SMSM+, Mini Circuits

Splitter ZAPD-4+, Mini Circuits

Switch ZASWA-2-50DR+, Mini Circuits

Digital Attenuator ZX76-15R5-SP+, Mini Circuits

Low pass filter VLFX-300, Mini Circuits

Vacuum feedthrough SM4944, Fairview Microwave Inc.

Attenuators SA18H-XX, Fairview Microwave Inc.

DC block SD3258, Fairview Microwave Inc.

quadrature mixer IQ-0255, Marki microwave

Vector network analyzer E5071, Agilent

Signal generator E8257C PSG, Agilent

Digitizer card U1084A Acqiris card, Agilent

Acousto-optic modulator 3350-198, Crystal Technology

Optical fiber BFL48-200 (200 µm core), Thorlabs

Laser (532 nm) MXL-III-532, Changchun New Industries

Pulser FPGA based pulser card, home-built
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8. Results

In this chapter the results of our experiments will be collected and discussed. The
focus will be on the change of resonator properties due to light irradiation with a
green 532 nm laser. Nevertheless, at the beginning we will start by looking at the
influence of microwave probing power and dilution fridge temperature. Afterward
continuous light irradiation will be discussed and the final parts of this chapter will
be devoted to pulsed light measurements.

Before we get to the measurement results let’s briefly recapitulate what it is that we
want to measure. The most important properties to characterize a resonator are its res-
onance frequency f0, the quality factor Qtot and the amplitude on resonance |S21(f0)|.
A perturbation, e. g. light irradiation, will change those parameters according to Ch.
5 and 6. The microscopic reasons for this change are the excitation of two-level fluctu-
ators (TLFs) and quasiparticles. The former are most likely metastable atomic states
in amorphous layers or at the interface of the superconductor. The latter are created
by breaking apart Cooper pairs, the charge carriers of superconductivity.

To study those excitations we basically perform two different sorts of measure-
ments: Spectroscopic measurements with the vector network analyzer (VNA) and
time-dependent measurements with the digitizer card. Figure 8.1 depicts the differ-
ence between the spectroscopic measurements and the time-dependent measurements.
For the power and temperature dependent experiments as well as the experiments with
a continuous light flux, we have enough time to do a full spectroscopic measurement.
We can fit the resonances and directly extract the shifted resonance frequency f∗0 ,
quality factor Qtot and amplitude |S21(f∗0 )|. For the pulsed light measurements this is
not an option, since there is not enough time to scan a whole range of frequencies and
record a trace. Instead the frequency is set to the undisturbed resonance frequency f0

at which the amplitude |Smax
21 (f0, t)| and the phase φ(f0, t) is measured.1

8.1. Microwave probing power and temperature

Taking measurements on the resonator2 is by itself a perturbation of the system. To
measure means sending microwaves through the resonator. However, not the entire
microwave probing power Pmw entering the resonator is transmitted. Some part of
the inserted power will excite TLFs. To quantify the extent of excitations through
the microwave probing power we have measured the shift of the resonance frequency

1 Recording a full trace with the VNA is on the order of seconds, therefore faster processes have to
be measured applying a different technique, e. g. quadrature mixing. See also Sec. 7.3.

2 All measurements have been performed with the resonator R3-3-111-1, although similar results
have been obtained with different resonator models.
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Figure 8.1.: Light irradiation, temperature change or even a change in the microwave
probing power influences the quality factor Qtot as well as the resonance
frequency f0, thereby also changing the phase φ. For the measurements
with a continuous perturbation we perform a spectroscopic measurement
from which we extract the current resonant frequency f∗0 , the quality factor
Qtot and the amplitude at the current resonance frequency |S∗21|2. For the
time-dependent measurements we set the measurement frequency to the
resonance frequency of the undisturbed system (blue) and then measure
the amplitude and phase response to a light pulse of the perturbed system
(gray).

δf0, the change of Qtot and the amplitude at the shifted resonance frequency using
spectroscopic measurements (see Fig. 8.2). The resonance frequency itself should not
be dependent on the microwave probing power. Due to the frequency response of the
resonator microwaves are transmitted in a very narrow range around the resonance
frequency f0. Therefore only TLFs close to the resonance frequency should be excited,
which wouldn’t cause a shift of the resonance frequency. However, the measurement
data clearly depicts a downward shift, as can be seen from Fig. 8.2. There has to be a
secondary process exciting TLFs with resonance frequencies lower than the resonator’s
undisturbed resonance frequency f0. The cause for this excitation of TLFs is probably
a heating effect, where part of the inserted microwave power generates a small rise of
the resonator’s temperature. The created phonons then in turn excite TLFs with res-
onance frequencies below f0. The power dependency of the inverse quality factor Q−1

tot
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Table 8.1.: Two-level fluctuator fit functions with the fit parameters a, . . . , h.

1/Q δf0

T a tanh
(

~ω
2kBT

)
+ b c

[
Re Ψ

(
1
2 − ~ω

2jπkB(T−d)

)
− ln ~ω

2πkB(T−d)

]
+ e

1)Plp a tanh( c
Plp−d) + b e

[
Re Ψ

(
1
2 −

f
j(Plp−g)

)
− ln f

Plp−g

]
+ h

2)Plp a tanh( c
4
√
Plp−d

) + b e

[
Re Ψ

(
1
2 −

f

j 4
√
Plp−g

)
− ln f

4
√
Plp−g

]
+ h

Pmw a (1 + bPmw)c

at a fixed temperature is determined by a function proportional to [Phi87; Mac+10]

f(Pmw) =

(
1 +

Pmw

P 0
mw

)ϕ
, (8.1)

with P 0
mw being the probing power where effects on Q−1

tot become negligible. The two-
level system theory predicts a value of ϕth = −0.5 for the exponent [Phi87]. A fit to
the data results in ϕ = −0.15, which deviates from the theoretical value but agrees
with similar measurements carried out by Macha et al. [Mac+10] and Koller [Kol12].3

The increase of the quality factor can be interpreted in the following way. Given that
the temperature is small enough, most of the two-level fluctuators will be in the lower
energy state. When we are probing the resonator with microwaves, some part of the
inserted power will be lost due to the excitation of TLFs mentioned above. Increasing
the probing power causes more and more TLFs to be excited thereby removing the
source of the loss. If we only considered TLF effects the rise in the quality factor
would continue until all TLFs are in an incoherent 50:50 superposition, at which point
the quality factor saturates at its maximum value.4

Equally important as the impact of the microwave probing power is the knowledge
about the influence of the dilution refrigerator temperature on the CPW resonator
(also Fig. 8.2). Therefore we have measured the characteristics of the resonator in
the temperature range from 50 mK to 450 mK. The resonance frequency shift shows
a shape characteristic for the two-level fluctuator model. For small temperatures
only TLFs with resonance frequencies below the resonator frequency f0 get excited,
which causes a downward shift of the overall resonance frequency. With increasing
temperature also TLFs with frequencies above f0 will be excited, now causing a shift
in the opposite direction. From TLS theory the position of the minimum is determined
by 2kBT

~ω ≈ 0.9, see Fig. 6.3. Inserting ω ≈ 2.882 39 GHz and solving for the temperature
gives T ≈ 62 mK. For unknown reasons the measurement data shows a slightly higher
temperature for the minimum at about T ≈ 100 mK. Possible sources of error are the
position of the temperature sensors, which are not directly next to the resonator, and

3 See also Table 8.1 and 8.2.
4 We will see later on that at some point quasiparticle excitation effects take over and will cause a

decrease of the quality factor.
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8. Results

Table 8.2.: Two-level fluctuator fit parameters.

Parameters

T a = 6.3 · 10−6, b = 1.9 · 10−6, c = 3996, d = 4.3 · 10−2, e = −1197
1)Plp a = 4.0 · 10−5, b = 2.9 · 10−6, c = 0.172, d = 0.26,

e = −, f = −, g = −, h = −
2)Plp a = 2.2 · 10−5, b = 2.1 · 10−6, c = 0.114, d = −1.3,

e = 9626, f = 0.364, g = 0.3, h = 346

Pmw a = 8.6 · 10−6, b = 1.2 · 108, c = −0.15

the position of the heaters, which regulate the temperature of the dilution refrigerator.
Due to this fact the measured temperature might differ from the actual temperature
at the resonator. Fitting with Eq. (6.12) yields a qualitative agreement, but for low
temperatures the predicted resonance frequency shift is too small while it is too large
for temperatures above 350 mK. Furthermore we have to introduce a temperature
shift d = 43± 15 mK in the fit model (see Table 8.1 and 8.2). The quality factor Qtot

on the other hand is very well described with the TLF model given by Eq. (6.13).5

The prefactors a = Fδ0
TLS and c = f0Fδ

0
TLS/π of the fit models are in good agreement

with each other. Calculating the factor c by inserting a into the previous equation
results in ca = 5735 which is close to the fitted value of c = 3996. The amplitude
|S∗21|2 behaves very similar to the quality factor for both of the measurements, which is
not that surprising since Eq. (5.22) tells us that the amplitude only reacts to changes
in the quality factor for small perturbations.

The resonator response to different microwave probing powers and temperatures il-
lustrates, that it is necessary to measure at microwave probing powers ≤ −80 dBm and
the lowest possible temperature to observe the complete two-level fluctuator response.
Almost all of the following measurements have been carried out close to −80 dBm.6

The downside of smaller microwave probing powers is the inferior signal-to-noise ratio
(SNR).

8.2. Continuous light irradiation

Now we turn to the effects of light irradiation by a green laser (532 nm) on the res-
onator. We will distinguish between a low and a high laser power regime. For the low
laser power measurements the strong attenuator Attstrong is used, see Fig. 7.5 and 7.9.
This allows us to vary the optical power Plp in between a few nanowatt and 300 nW.
In the high laser power regime the weak attenuator Attweak is mounted on the optical

5 For all fits of the quality factor, we actually fitted 1/Qtot and then inverted the fit.
6 One exception are the time-dependent measurements in the high power regime in Sec. 8.3.1, where

we wanted to measure quasiparticle effects. Due to the better signal-to-noise ratio a microwave
probing power of about −70 dBm was chosen.
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Figure 8.2.: Dependency of the resonator properties on the microwave probing power
and the temperature, where we can clearly identify two-level fluctuator
(TLF) effects. (a) Since only microwaves in a narrow frequency range
around the resonance frequency f0 are transmitted through the resonator
no frequency shift would be expected. Nevertheless a shift to lower fre-
quencies can be observed which probably stems from a heating effect
caused by the microwaves. This causes an excitation of TLFs with a res-
onance frequency lower than the resonator, leading to a downward shift.
The power dependence of the quality factor is given by Eq. (8.1). As ex-
pected from Eq. (5.22) the maximum amplitude |S∗21|2 mostly follows the
quality factor. (b) The resonance frequency shift shows the same behavior
as predicted by Eq. (6.12) but the data exhibits a larger shift downward
in the beginning and a slower shift upward above 350 mK. Unlike the res-
onance frequency the quality factor Qtot agrees very well with Eq. (6.13).
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Figure 8.3.: Resonator properties under constant light irradiation. (a) The left column
shows the results from measurements with a very low laser power, where
two-level fluctuator (TLF) effects govern the resonator response. The red
fits correspond to the fit functions of 1)Plp while the green fits correspond
to the fit functions of 2)Plp in Table 8.1. A fit of the frequency shift
was not feasible with the 1)Plp fit model. The green fit agrees well with
the characteristic TLF dip but deviates for higher powers. This deviation
cannot be explained by quasiparticle excitation, which would only account
for a downward shift of 0.6 Hz per nW (b) For higher optical powers the
response is dominated by quasiparticle excitations. According to chapter
5, a linear frequency shift (slope k = 609 Hz/µW) is expected which is
true for powers above 100 µW. The quality factor should be inversely
proportional to the laser power. Adding a term of the form e(Plp + f)−1

to the inverse of the TLF fit function (see Table 8.1) produces a good fit
(red and green) of the quality factor over the full range of laser powers
Plp.
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table instead of the strong attenuator, yielding laser powers from a few microwatt to
170 µW.

For continuous light irradiation measurements the laser is set to a specific power7

and the resonator is probed with the vector network analyzer (VNA) after equilibrium
is attained. The results for continuous irradiation are depicted in Fig. 8.3. In the
low laser power regime once again the characteristic TLF shape of the frequency shift
δf0 is observed. The magnitude of the downward shift is about 2 kHz. We tried to
fit the data by replacing the temperature in Eq. (6.12) with a power dependency.
However, a simple substitution of the temperature with a factor proportional to the
laser power T → Plp didn’t yield usable results.8 There might be several reasons why
the measurement data can’t be reproduced with a fit. One problem could be that the
small laser powers have never really been measured, but have only been extrapolated
from the linear fit in Fig. 7.4. Deviations from the linear slope for small laser powers
can influence the shape of the resonance shift curve. It is also possible that photons
excite a different spectrum of TLFs than phonons and therefore the resonance shift
might not be of the same form as Eq. (6.12) suggests. A slightly different approach
is to substitute the temperature with a factor proportional to the fourth root of the
power T → 4

√
Plp. This ansatz is inspired by the Stefan-Boltzmann law for black-body

radiation. It states that the total power radiated from a black body is proportional to
the temperature to the power of four. For our resonators the situation is inversed. The
superconducting CPW resonators are irradiated with a laser power Plp which heats
the resonator and increases the temperature. The created phonons in turn excite
the TLFs creating the measured response. The first plot in Fig. 8.3 shows that the
dip in the frequency shift δf0 can be fitted after applying the new substitution. For
powers above 15 nW the measured behavior differs from the fit. This deviation can’t
be explained with quasiparticle excitations. From the linear fit in the high power
regime it can be determined that quasiparticle excitations cause a downward shift of
only 0.6 Hz per nW.9 The possible causes for this discrepancy are the same as for the
linear substitution and have already been mentioned above. The quality factor Qtot

agrees very well with the TLF model for both the linear and the non-linear substitution
of the temperature. Partly this comes from the fact that, contrary to the resonance
frequency shift, the shape of the quality factor shift is not as sensitive to measurement
errors and perturbations.

The high laser power regime is governed by the effects of quasiparticle excitations,
because most of the two-level fluctuators (TLFs) should already be saturated. Ac-
cording to Eq. (5.14), (5.10), (5.5) and (5.23) the frequency shift is proportional to
the variation of the laser power δf0 ∝ δPlp. The measurement data agrees with this
linear dependency for laser powers Plp above 100 µW. For small powers we also see
the upward shift from the TLFs. In total a resonance frequency shift of about 65 kHz

7 Actually it is not really the laser that is set to a specific power but rather the acousto-optic
modulator (AOM). The AOM controls the amount of power transmitted into the fiber and therefore
also onto the resonator.

8 All fit models for TLFs are summarized in Table 8.1.
9 See the first plot in the right column of Fig. 8.3.
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can be observed. Combining Eq. (5.18), (5.9) and (5.23) shows that the quality fac-
tor is inversely proportional to the quasiparticle density and therefore also inversely
proportional to the laser power Qtot ∝ δP−1

lp . As before for the resonance frequency
data, an increase of the quality factor caused by TLFs can be observed for small laser
powers. Due to this fact we fitted the quality factor with the inverse of the according
TLF fit function from Table 8.1 plus a term accounting for quasiparticle excitation
e(Plp + f)−1, with the additional fit parameters e and f . Figure 8.3(b) illustrates that
the behavior of the quality factor can accurately be described with this function over
the full range of laser powers.

8.3. Pulsed laser light

Up to this point we have only dealt with continuous perturbations, e. g. we exposed
the resonator to green laser light, waited till equilibrium was reached, then measured
the resonator response with the VNA. However, now we want to measure the effects
of short laser pulses where the sampling rate of the VNA doesn’t suffice anymore and
we have to use the digitizer card explained in Sec. 7.3.2.

The measurement process is as follows: The AOM10 is switched from the continuous
mode of operation to the pulsed mode. Applying a TTL11 pulse from the home-built
FPGA12 pulser card to the AOM is basically like switching the light on and off, but in
a very fast way13. Then we take a spectroscopic measurement to determine the reso-
nance frequency. This is necessary before every measurement because of two reasons.
Firstly there might be some long term resonance frequency drifts due to temperature
instabilities of the dilution refrigerator or some other perturbations, but secondly, and
by far more important, some light leaks through the AOM even in the “off” state. As
we have seen in the section above, even small light powers can have a considerable ef-
fect on the resonance frequency and the quality factor of a CPW resonator. Therefore
the resonance frequency has to be determined before every measurement and for every
new optical power the laser is set to. Subsequently the probing frequency is fixed to
the previously attained resonance frequency and the quadratures I(t) and Q(t) are
measured during the whole period of opening the microwave switch, reaching equi-
librium, applying the laser pulse, waiting until equilibrium is reached again and the
closing of the microwave switch. From the quadratures the time-dependent amplitude
|Smax

21 (t)|2 and phase φ(t) are calculated. Furthermore the data will also be plotted in
the complex plane offering a different perspective. One advantage of this view is given
by the fact that it is relatively easy to tell if we hit the resonance frequency of the
system or not. If we are on resonance the sections of the data corresponding to the
opening and closing of the microwave switch (red and blue) should be congruent with
each other and pass through the center of the circle, see Fig. 7.8 for more information.

10 The AOM is briefly explained in Sec. 7.2.
11 Transistor-transistor logic.
12 Field-programmable gate array.
13 See Fig. 7.2.
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Figure 8.4.: Time-dependent measurement of the amplitude and phase at the reso-
nance frequency f0 for a 1 µs laser pulse with a power of 170 µW. Due to
the “high” power we expect to be in the regime governed by quasiparticles
excitation, see Fig. 8.3. (a) Interestingly the behavior of the amplitude
is still dominated by TLF effects otherwise a decrease of the amplitude
should be observed. (b) From the exponential fit (red) of the phase a
quasiparticle lifetime of about 2 ms is calculated. (c) Plot of the data in
the complex plane. The two points marked with black crossed-out circles
are closest to the undisturbed resonance frequency f0. Further informa-
tion on the complex plot can be found in the caption of Fig. 7.8.

As in the case of continuous irradiation we will differentiate between a high (170 µW)
and a low (260 nW) laser power regime. The former serves to investigate quasiparticle
excitations while the latter explores time-dependent TLF effects.

8.3.1. High power regime

For the high power regime an optical power of Plp = 170 µW was chosen and we
investigated the impact of different pulse lengths from 0.5 µs to 8 µs. The optical power
of these measurements corresponds to the outmost right point in the continuous light
measurements of Fig. 8.3(b).

The plots of Fig. 8.4 depict the effects of a 1 µs laser pulse. The complex plot im-
mediately shows that we are slightly off-resonance.14 Since the amplitude is mostly
determined by the losses of the system we would expect a reduction of the amplitude

14 In this plot the frequency interval between adjacent points of the blue resonance circle is ∆f =
300 Hz. For comparison the bandwidth of the resonator is about BW ≈ 10 kHz.
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Figure 8.5.: Magnification of the plots from Fig. 8.4. The gray vertical line marks the
beginning (and also the end, because of the short pulse length) of the laser
pulse.

due to the breaking up of Cooper pairs. Contrary to the anticipated behavior for
quasiparticle excitation the amplitude increases. So the amplitude response caused by
two-level fluctuators outweighs the quasiparticle effects. The phase response on the
other hand is consistent with a shift of the resonance frequency to lower frequencies
because of quasiparticle excitation. An exponential fit of the phase yields a quasi-
particle lifetime of τqp = 2 ms. It is difficult to compare this value to theoretical
predictions, because at the moment the responsible relaxation processes remain to be
understood. Kaplan et al. [Kap+76] tried to explain the quasiparticle lifetimes with
the recombination of two quasiparticles and the emission of a phonon. This quasipar-
ticle recombination time τr is given by15

1

τr
=

1

τ0

√
π

(
2∆0

kBTc

)5/2√ T

Tc
e
− ∆0
kBT , (8.2)

where τ0 is a material dependent electron-phonon relaxation time, ∆0 is the energy
gap of the superconductor at the temperature T = 0, kB is Boltzmann’s constant and
Tc is the critical temperature of the superconductor.

To investigate if the behavior of our resonator agrees with the theory of recombi-
nation by electron-phonon interaction we also measured the quasiparticle relaxation

15 Note that τr is the relaxation time for a single quasiparticle, but since always two quasiparticles
recombine to a Cooper pair the experimentally measured time is 2τr.
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Figure 8.6.: Plot of the measured quasiparticle lifetime τqp for two different tempera-
tures T = 30 mK and T = 95 mK. For both measurements a relaxation
time of τqp ≈ 2 ms is obtained from an exponential fit. If the quasipar-
ticle relaxation depended solely on electron-phonon relaxation the points
should lie on the red curve for the recombination time τr [Kap+76]. This
saturation of quasiparticle lifetimes for temperatures below T/Tc ≈ 0.1
has also be seen for instance in experiments by Barends et al. [Bar+08],
but as of yet the reason for this behavior is not known.

time at a higher temperature of T = 95 mK. Figure 8.6 shows that the predicted
values are much too high for low temperatures.16 In recent experiments carried out by
Barends et al. [Bar+08] a similar response of the relaxation times has been observed.
They measured that for temperatures smaller than T/Tc . 0.1 the relaxation times
are temperature independent, near T/Tc ∼ 0.15 a small peak can be seen for some
samples and above T/Tc & 0.175 the quasiparticle relaxation times follow the predic-
tion of Eq. (8.2). For the low temperature saturation of quasiparticle relaxation times
a few models have been proposed, e. g. by Reizer [Rei00], but no definitive answer has
been provided yet.

The initial increase of the amplitude and phase response depends on the time con-
stant τres of the resonator. This is the time it takes the resonator to react to any
changes or perturbations of the system. The definition of the quality factor in Eq.
(3.7) can also be expressed as Qint = ω0τ̃res, where τ̃res is the time until the energy
stored in the resonator decays to 1/e of its initial value or it can just as well be the
time for the build-up. Consequently τres = τ̃res

2 is the characteristic time for the decay
(build-up) of the fields. For our resonator this time is calculated to be τres ≈ 33 µs
which agrees reasonably well with the values extracted from an exponential fit of the
measurement data for the phase τφres ≈ 56 µs and the amplitude τAres ≈ 33 µs.17

16 For the calculation of Eq. (8.2) the electron-phonon relaxation time of niobium τ0 = 0.15 ns and
the critical temperature of niobium Tc = 9.2 are used [Kap+76].

17 For the calculation of τres the values f0 = 2.882 39 GHz and Qint = 300000 have been used. The
higher quality factor compared to the one from Fig. 7.7 is caused by the light leaking through the
AOM.
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Figure 8.7.: To show the effects of different pulse lengths we have plotted the maximum
amplitude and phase shifts in Fig. 8.14 and 8.10. This plot illustrates how
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Figure 8.8.: A plot of the maximum amplitude and phase shift for different pulse
lengths (or in other words: total energy deposited) at a laser power of
170 µW. The amplitude is fitted with a function corresponding to the
TLF model of Eq. 6.13 and the phase is fitted by a linear function with a
slope of k = 0.054 s−1.
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Figure 8.9.: Magnification of a phase plot from laser pulse with 4 µs and a power of
170 µW. The gray area shows again the duration of the laser pulse. For
increasing pulse lengths a dip starts to emerge. The origin of this behavior
is not understood as of yet.

The results for five different pulse lengths are summarized in Fig. 8.8, where we plotted
the maximum shift of the amplitude and the phase for every pulse. With the maximum
shift we mean the distance from the equilibrium value to the maximum displacement
of the respective variable, see Fig. 8.7. If we neglect the changes in the prefactor of
Eq. (5.22) and assume they are small in the considered range of pulse lengths tpl the
maximum amplitude follows the change of δQ−1

int and can be described by the TLF
model a tanh c

tpl
+ b. The maximum phase shift shows a linear behavior in the pulse

length range from 0.5 µs to 8 µs.

We would also like to point out that for increasing pulse lengths (or laser powers)
we noticed the emergence of a dip in the phase shift directly after the start of the laser
pulse. This dip is depicted in Fig. 8.9 for a 4 µs laser pulse at a power of 170 µW. To
date we have not been able to explain and understand the occurrence of this shift. For
very high powers of Plp = 3.5 mW and a pulse length of 8 µs we even measured a phase
shift of this dip exceeding 2π, as can be seen in Fig. 8.10. However, the quasiparticle
relaxation time agrees with the previous measurements since an exponential fit yields
τqp ≈ 2.8 ms. For such high powers a large fraction of the two-level fluctuators is
saturated solely from the light leaking through the AOM. Hence a decrease of the
amplitude caused by the light pulse can finally be seen. The exact behavior of the
amplitude is difficult to describe since the frequency shift, which lowers the amplitude,
and the decrease of the quality factor, which lowers the amplitude near the resonance
frequency but increases it far off resonance, have to be considered.

8.3.2. Low power regime

In the low power regime we concentrate on measuring time-dependent two-level fluc-
tuator effects. The optical power is set to 260 nW which is just before the turning
point in Fig. 8.3(b) where quasiparticle effects start to take over.
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Figure 8.10.: Measurement for a 8 µs with a very high laser power of 3.5 mW. (a) The
excitation of quasiparticles causes a decrease of the amplitude, but we
also see shifts in the other direction possibly coming from TLF effects.
(b) The emerging dip we mentioned in the caption of Fig. 8.9 has become
a phase shift of 2π. As we have already noted before, the reason for this
phase rotation is not yet clear. A fit of the quasiparticle relaxation time
yields a similar value to the previous measurements with lower power
τqp ≈ 2.8 ms.
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Figure 8.11.: Time-dependent measurement of the amplitude and phase at the reso-
nance frequency f0 for a 32 µs laser pulse with a power of 260 nW. (a)
The amplitude shows an increase due to the excitation of two-level fluc-
tuators. The reason is that TLFs constitute the main loss mechanism
at low temperatures. (b) The phase shows a complex behavior that is
better visualized in Fig. 8.12 or also in (c). The fit (red) yields a lifetime
of about 15 ms.
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Figure 8.12.: Magnification of Fig. 8.11 which features the resonator response to a
32 µs laser pulse with 260 nW. The gray area shows again the duration
or the pulse.

A typical measurement in this regime can be seen in Fig. 8.11 and 8.12 Those plots
show the consequences of a 32 µs pulse. By now we are familiar with the increasing
amplitude due to TLF effects. The phase illustrates a more complex behavior caused
by the upward shift of the overall resonance frequency18 due to TLFs with a reso-
nance frequency greater than the resonator fTLF

0 > f0 and the downward shift of the
overall resonance frequency due to TLFs with a resonance frequency smaller than the
resonator fTLF

0 < f0. Figure 8.12 shows first a decreasing phase, then a small increase
followed by another decrease and then a final relaxation back to the equilibrium. An
exponential fit of this last part gives a two-level fluctuator lifetime of τTLF ≈ 15.4 ms.
A bit of caution may be advisable regarding this value since there are definitely many
different TLFs with different resonance frequencies and lifetimes in our sample. So this
lifetime should be considered more of an average value for the different distributions
of TLFs. For different pulse lengths from 8 µs to 64 µs average lifetimes in the range
of 10.6 ms to 25.5 ms have been extracted from exponential fits.

Interestingly, for pulse lengths above 64 µs the phase shift looks very similar to the
high power measurements with 170 µW. The calculated lifetimes of 1 ms to 3 ms agree
with the quasiparticle relaxation times. It seems that by irradiating long enough we are
able to excite a sufficient amount of quasiparticles so that they become the dictating

18 It is important to note that an upward shift of the resonance frequency causes a negative phase
shift, while a shift to lower resonance frequencies results in a positive phase shift.
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Figure 8.13.: A long pulse (256 µs) at low laser power (260 nW) can yield similar results
to a short pulse with high power. An exponential fit gives a lifetime of
about 2.8 ms which is almost the same result as for a fit of Fig. 8.4.
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Figure 8.14.: A plot of the maximum amplitude and phase shift for different pulse
lengths for a small laser power (260 nW). An explanation of the plot can
be found in the caption of Fig. 8.7.

60



8. Results

Table 8.3.: Energetically equivalent pulses.

max(φ) [rad] max
(
|Smax

21 |2
)

[a. u.]

Plp = 160 µW, tpl = 0.5 µs 0.1137 0.397
Plp = 80 µW, tpl = 1 µs 0.038 0.175

Plp = 160 µW, tpl = 1 µs 0.1418 0.489
Plp = 80 µW, tpl = 2 µs 0.0441 0.203

process once again.
The maximum amplitude shift and the maximum phase shift caused by different

pulse lengths are summed up in Fig. 8.14. Like before19 the amplitude response can
accurately be described with the TLF model. The maximum phase shift max(φ)
nicely shows shows the transition from the TLF governed regime to the regime where
quasiparticle excitations play the dominant role.

First the TLFs cause a negative phase shift and then when quasiparticle excita-
tion effects start to become more important a shift in the opposite direction can be
observed.

In light of these results we also wanted to test if maybe it isn’t so much the pulse
power but rather the total energy deposited that is important. Or in other words,
does a pulse A of length tApl = a and power PAlp = b have the same effect as a pulse B

twice as long tBpl = 2a but with only half the power PBlp = b/2?
The short answer to this is no, we find that a short pulse with a higher power has a

larger effect than an “equivalent” pulse with twice the pulse length but half the power.
The measurement results are summarized in Table 8.3.

19 See Fig. 8.8.
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9. Summary and Outlook

In the course of this thesis we have treated the fundamentals of superconducting copla-
nar waveguide (CPW) resonators, outlined the experimental setup and measurement
processes and finally discussed the measurement results in the last chapter. We will
now conclude with a short summary of the most important results and a brief glimpse
at current and future developments regarding the topics of this thesis.

The purpose of this work was to investigate the properties of superconducting CPW
resonators exposed to continuous and pulsed light irradiation. The resonator response
to perturbations is mostly determined by two-level fluctuators (TLFs) and quasipar-
ticle excitations. Roughly speaking, the former govern the behavior for small pertur-
bations while the latter dictate the response caused by strong perturbations.

For small laser powers (0 nW to 50 nW) and continuous irradiation the frequency
response shows the characteristic shape expected from TLF excitations. The same is
true for the quality factor which exhibits a significant increase due to the saturation
of TLFs, thereby removing the leading loss mechanism at low temperatures. A fit
to the formulas derived from the standard two-level system model, which have been
modified to be dependent on light power rather than on temperature, yields very good
agreement for the quality factor but is unsuccessful for the frequency shift.

Continuous irradiation with higher laser powers (∼0.2 µW to 170 µW) illustrates the
transition from a regime governed by TLFs to one determined by quasiparticle exci-
tations. Above 100 µW a linear decrease of the resonance frequency shift is observed,
due to the fact that the shift is proportional to the quasiparticle density which in turn
is directly proportional to the optical power. The response of the quality factor to
quasiparticle excitations on the other hand is indirectly proportional to quasiparticle
excitations and therefore also the laser power. The quality factor can be fitted with
a single function, composed of a part describing the TLF response and a second part
for quasiparticle excitations, over the full range of optical powers.

Concerning the perturbations of the resonance frequency we found that the max-
imum magnitude of the frequency shifts is on the order of a few kHz for two-level
fluctuator effects and about 65 kHz for quasiparticle excitations.

Furthermore the resonator response to different microwave probing powers and tem-
perature changes was measured and compared to the measurements with continuous
laser irradiation. The experimental results in the limited range of microwave probing
powers and temperatures considered by us is consistent with TLF effects.

Pulsed light measurements have been carried out for various optical powers and
pulse lengths. From these measurements a quasiparticle lifetime of τqp ≈ 2 ms and
an average TLF lifetime of τTLF ≈ 15 ms was extracted. To our knowledge the time-
dependent response of a CPW resonator to optically excited two-level fluctuators has
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9. Summary and Outlook

been measured for the first time. For low (260 nW) as well as high (170 µW) optical
powers the maximum shift of the amplitude at the equilibrium resonance frequency as
a function of the pulse length shows a behavior consistent with the TLF excitations.
In case of high powers the maximum phase shift follows a positive linear slope caused
by quasiparticle excitations, while for low powers first TLFs are responsible for a
negative phase shift which is then turned around by quasiparticle effects for pulse
lengths greater than 40 µs. The low power behavior shows that it is possible to control
the amount of quasiparticle excitations compared to TLF excitations via the pulse
duration.

Finally we were able to prove that two pulses with the same energy but different pulse
lengths (and therefore different powers) won’t cause the same resonator response. A
shorter pulse with higher power will be more effective than an energetically equivalent
longer pulse with lower power.

This last result brings us back into the present and to the current state of the ex-
periment. When we started the experiments, which are now collected in this master
thesis, the optical measurements and the NV− measurements were two separate ex-
periments. At the moment we have just begun to conduct the first measurements of
a resonator with a diamond on top where we try to polarize the NV−centers with the
laser, thus merging the two experiments into a single one.

Another interesting continuation of the work from this thesis, that hopefully will
be done some time in the near future, would be the exchange of the simple planar
terminated fiber with a lensed fiber. The big advantage would be the ability to locally
probe a small number of two-level fluctuators and investigate their characteristics and
spatial distribution.

The understanding of superconducting microwave resonators as well as their appli-
cations have seen substantial progress over the past years, many questions remain and
many new ones opened up. Personally, it will be very interesting to see the future
progress and the significance of superconducting microwave resonators, especially in
the field of quantum information processing, in the years to come.
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Appendix

A. Maxwell’s equations in matter

∇ ·D = ρ , (A.1)

∇×E = −∂B
∂t

, (A.2)

∇ ·B = 0 , (A.3)

∇×H = J +
∂D

∂t
, (A.4)

where ρ is the free charge density, J the free current density, D = εE and B = µH.

B. Impedance - parallel resonant circuit

Near the resonance frequency, where ω = ω0 + ∆ω and ω0 = 1/
√
LC the last term of

Eq. (3.1) can be expanded for small ∆ω

Z(ω) =

(
1

R
+ j(ω0 + ∆ω)C +

1

j(ω0 + ∆ω)L

)−1

(B.1)

=

(
1

R
+ j(ω0 + ∆ω)C +

1

jω0L

1

1 + ∆ω/ω0

)−1

(B.2)

≈
(

1

R
+ j(ω0 + ∆ω)C +

1

jω0L
(1− ∆ω/ω0 + . . . )

)−1

(B.3)

=

(
1

R
+ j(ω0 + ∆ω)C − jω0C + j∆ωC

)−1

(B.4)

=
R

1 + 2j∆ωRC
=

R

1 + 2jQint∆ω/ω0
(B.5)

Equation (B.5) also delivers us a link between the fractional bandwidth BWfrac and
the quality factor of the resonator. The fractional bandwidth is defined by the two
points in frequency ω1

ω0
and ω2

ω0
where the real power delivered to the circuit is divided

in half: BWfrac = ∆ωFWHM
ω0

, where ∆ωFWHM = 2∆ω = ω2 − ω1 is now the full width at
half maximum (see Fig. 3.2). According to Eq. (3.2) the dissipated power is given by

Ploss(ω) =
1

2

|V |2
R

=
1

2

|I|2|Z|2
R

, (B.6)
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so the half power points are occur at |Z|2 = R2/2. Combined with Eq. (B.5) we get

R2

2
=

∣∣∣∣
R

1 + jQint∆ωFWHM/ω0

∣∣∣∣
2

(B.7)

R2

2
=

R2

1 +Q2
int(∆ωFWHM/ω0)2

(B.8)

2 = 1 +Q2
int

(
∆ωFWHM

ω0

)2

(B.9)

Qint =
ω0

∆ωFWHM
=

1

BWfrac
(B.10)

C. Lumped element and transmission line parameters for a
half wave resonator

The comparison of Eq. (3.9) and Eq. (3.11) directly leads to

R =
Z0

αl
, C =

π

2ω0Z0
, (C.1)

and the inductance close to resonance can be found from Eq. (3.5)

L =
1

ω2
0C

. (C.2)

With the assumption of a low-loss transmission line the characteristic impedance is
given by Z0 ≈

√
Ll/Cl and by expanding Eq. (2.5) the propagation constant becomes

β ≈ ω
√
LlCl. So the phase velocity is vp = ω

β ≈ 1√
LlCl

and ω0 = 2πf = 2π
vp

λ =
2π

2l
√
LlCl

. Inserting these relations into Eq. (C.1) and (C.5) gives

R =
Z0

αl
, C =

Cll

2
, L =

2Lll

π2
. (C.3)

The Taylor expansion of Eq. (2.5) also relates α with Z0, Rl and Gl

α ' 1

2

(
Rl
Z0

+GlZ0

)
. (C.4)

For higher modes with frequencies ωn = nω0 one can introduce a mode-dependent
inductance Ln so that Eq. (C.5) reads

L =
1

ω2
nC

=
2Lll

n2π2
. (C.5)
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D. Complex conductivity in the Drude model

We start from the Drude model for metals which assumes a free electron gas

m
dv

dt
= eE − mv

τ
, (D.1)

where m is the mass of the electron, v the drift velocity, e the elementary charge, E
the electric field and τ a phenomenological relaxation time. By multiplying with the
charge density n and the electron charge e the drift velocity can be replaced by the
current density J = nev. With the conjecture of a periodic field E = E0e jωt and a
linear response J = J0e jωt Eq. (D.1) yields

J =
ne2τ

m

E

1 + jωτ
= σ(ω)E , (D.2)

where σ(ω) = σ1(ω) − jσ2(ω) is the complex conductivity. In the two-fluid model a
superconductor can be described as a superposition of a normal and a superconducting
fluid so that Jtot = Jn + Js and

σ1,i = σ0,i
1

1 + ω2τ2
i

, (D.3)

σ2,i = σ0,i
ωτi

1 + ω2τ2
i

, (D.4)

with σ0,i = nie
2τi
m and i = n, s. Superconducting electrons can be characterized via

τs → ∞ and for the normal conducting electrons we can usually assume ωτn � 1 at
microwave frequencies [AM76]. This lets us approximate the real and imaginary part
of the total complex conductivity with

σ1 =
πnse

2

2m
δ(ω) +

nne
2τn

m
, (D.5)

σ2 =
nse

2

mω
. (D.6)

The derivation of Eq. (D.5) and (D.6) can be found in Tinkham [Tin96].

E. Kinetic inductance of a wire

The energy stored by a normal conducting wire carrying a current I with a length
l and a cross-sectional area A consists of the energy stored inside the magnetic field
plus the kinetic energy of the electrons [MT69]

Etot = Em + Ekin =

∫

all space

µ

4
|H|2 dV +

∫

wire

1

2
nnmv

2 dV , (E.1)
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where µ is the permeability, H the magnetic field, nn the electron density, m the
electron mass and v is the drift velocity of the electrons. From circuit theory we know
that the first integral may be expressed as

Em =
1

2
LmI

2 , (E.2)

with the magnetic inductance Lm. Inserting I = nnevA, where e is the elementary
electric charge, and dV = dl dA into the second integral allows us to write the kinetic
energy in a similar form

Ekin =
1

2

m

nne2

l

A
I2 =

1

2
LkiI

2 . (E.3)

The same derivation can be done for a superconducting wire, but we just have to
replace the mass m with the mass of the superconducting charge carriers ms = 2m
and the charge e with 2e in Eq. (E.3) to get the correct result.

To see the influence of the kinetic inductance we will take a closer look at Eq. (D.2).
Dividing by σ, multiplying with the length l of the wire and integrating over the
cross-sectional area A of the wire yields

∫
(1 + jωτ)

ml

nne2τ
J dA =

∫
El dA , (E.4)

(1 + jωτ)
ml

nne2τ
I = ElA = V A , (E.5)

[
m

nne2τ

l

A
+ jω

m

nne2

l

A

]
I = V , (E.6)

(R+ jωLki)I = Z · I = V . (E.7)

In the last step we arrived at the complex generalization of Ohm’s law.

For normal metals the relaxation time τ at room temperature is on the order of
picoseconds so the resistive term dominates strongly unless we have very high fre-
quencies (> 10 THz). This is the reason why kinetic inductance usually doesn’t play
a significant role in normal metals. In other words, the resistance causes scattering
of the electrons, which in turn keeps the drift velocity v and thereby also the kinetic
inductance small.

Superconductors on the other hand can be described by τ→∞ in this simple picture.
By performing this limit we immediately see that kinetic inductance can become the
dominating part of the impedance.

It is important to note, that for a fixed superconducting current I the kinetic induc-
tance has its greatest value directly below the critical temperature Tc. This follows
from the fact that the velocity v enters quadratically into Eq. (E.1). Near the critical
temperature a small number of high velocity Cooper pairs has to sustain the fixed
supercurrent I, whereas at lower temperatures the Cooper pair density increases while
the the average velocity decreases.
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F. Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −j
j 0

)
and σz =

(
1 0
0 −1

)
(F.1)

G. Phase and amplitude perturbation

We begin by separating Eq. (3.25) into real and imaginary part while only considering
the first order

S21 =
1

(1/Smax
21 )2 + 4Q2

totδω0/ω0

[
1 + 2jQtot

δω0

ω0

] [
1

Smax
21

− 2jQtot
δω0

ω0

]
(G.1)

≈ (Smax
21 )2

[
1

Smax
21

+
1

Smax
21

2jQtot
δω0

ω0
− 2jQtot

δω0

ω0

]
(G.2)

≈ Smax
21 + Smax

21 (1− Smax
21 )2jQtot

δω0

ω0
. (G.3)

With this we can calculate small phase changes

tanφ ≈ φ = (1− Smax
21 )2Qtot

δω0

ω0
. (G.4)

For perturbations of the resonance we assume that close to resonance the real part of
S21 is much larger than the imaginary part so that

A =
√

Re(S21)2 + Im(S21)2 ≈ Re(S21) . (G.5)

On resonance Re(S21) = Smax
21 , as can be seen from Eq. (3.24). Calculating the am-

plitude change δA for small variations δQ−1
int from this directly gives the result of Eq.

(5.22).
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