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Abstract

This diploma thesis evaluates the performance of restoration algorithms for

the recovery of impulsively distorted samples and gaps in digital audio signals.

The focus specifically lies on the comparison of methods from the recently very

active field of compressive sampling with a classical technique from the 80s that

is based on autoregressive modeling. Both approaches rely on the generation

of a signal model from the reliable data to estimate the values of the defective

samples. The latter are treated as missing and their locations are assumed to

be known a priori. No additional information has to be incorporated. The

corresponding theoretical basics of digital signal processing are outlined and

some detailed insight into the specific algorithmic steps is given. For autore-

gressive modeling, we apply fast methods for the adaptive estimation of the

model parameters and subsequent calculation of the unknown samples that

utilize the Levinson-Durbin recursion and Cholesky decomposition. The com-

pressive sampling methods are backed by the assumption that audio signals

can be represented by a sparse vector in conjunction with a proper dictionary

of basis functions. For this purpose, we employ a redundant discrete cosine

transform dictionary. The examined reconstruction algorithms comprise of Or-

thogonal Matching Pursuit, Least Angle Regression and Iterative Soft Thresh-

olding. In a series of extensive numerical experiments, the signal-to-noise-ratio

of the resulting approximations is computed and compared, considering vari-

ous kinds of error scenarios for multiple sets of speech and music signals. The

developed software package for MATLAB is appended to allow for convenient

reproducibility.

Keywords — Digital audio restoration, inpainting, autoregressive modeling,

compressive sampling, sparse approximation.
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Kurzfassung

Diese Diplomarbeit evaluiert die Leistungsfähigkeit von Algorithmen zu Re-

konstruktion von impulsartig gestörten Samples und Aussetzern in digitalen

Audiosignalen. Das Hauptaugenmerk liegt dabei auf dem Vergleich von Me-

thoden aus dem relativ neuen Gebiet des Compressive Sampling mit einer klas-

sischen Technik aus den 80ern, die auf autoregressiver Modellierung beruht.

Bei beiden Ansätzen wird mittels der Informationen, die in den ungestörten

Daten enthalten sind, ein Signalmodell generiert, welches anschließend für

die Schätzung der unbekannten Samplewerte benutzt wird. Letztere werden

als fehlend und ihre Positionen als von vornherein bekannt angenommen. Es

müssen dabei keine weiteren Kenntnisse miteinbezogen werden. Die nötigen

Grundlagen aus der Theorie der digitalen Signalverarbeitung werden umrissen

und ein detaillierter Einblick in die speziellen algorithmischen Abläufe gegeben.

Für die autoregressive Modellierung setzen wir schnelle Methoden zur adapti-

ven Schätzung der Modellparameter und der darauffolgenden Berechnung der

unbekannten Samples ein, die die Levinson-Durbin-Rekursion und Cholesky-

Zerlegung verwenden. Die Methoden des Compressive Sampling stützen sich

auf die Annahme, dass Audiosignale in einer passenden Domäne durch einen

schwachbesetzten Vektor repräsentiert werden können. Wir verwenden dazu

ein redundantes Discrete Cosine Transform Dictionary. Die betrachteten Al-

gorithmen beinhalten Orthogonal Matching Pursuit, Least Angle Regression

und Iterative Soft Thresholding. In einer Reihe von umfangreichen computer-

basierten Experimenten wird der Signal-Rausch-Abstand der resultierenden

Näherungswerte berechnet und verglichen, wobei verschiedenartige Fehlersze-

narien mit mehreren Sets von Sprach- und Musiksignalen getestet werden. Das

zu diesem Zweck entwickelte Softwarepaket für MATLAB ist beigelegt, um eine

einfache Reproduzierbarkeit zu ermöglichen.

Schlüsselwörter — Digitale Rekonstruktion von Audiosignalen, Inpainting, Au-

toregressive Modellierung, Compressive Sampling, Sparse Approximation.
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1. Introduction

1 Introduction

When a digital audio signal is transmitted or stored, chances are it will be

disturbed in some way at some point. Besides the inevitable additive noise,

the most common types of errors are impulsive distortions and gaps, both of

which can lead to audible artifacts during playback. Although most commu-

nications and storage systems are equipped with error correction mechanisms

such as channel codes [1], there can still occur errors that exceed their capa-

bilities, so the values of the defective samples have to be accurately estimated

afterwards. Hence, the challenge is to find replacements such that no more

artifacts can be perceived or, in other words, to make the reconstructed sig-

nal virtually indistinguishable from the original. Such a procedure is called

sample restoration [2] or audio inpainting [3]. The term inpainting originates

from the field of image processing [4], where a typical task is the removal of an

unwanted foreground object from an occluded image (see Fig. 1.1). Regarding

audio signals, we typically have to deal with two kinds of error patterns. The

disturbed samples can appear in a randomly scattered pattern, as shown in

Fig. 1.2, whereas Fig. 1.3 illustrates the important special case of a burst.

The main focus of this thesis lies on the testing and comparison of two state-

of-the-art time-domain restoration methods. One is based on autoregressive

modeling (AR) as proposed by Janssen et al. in 1986 [5], while the other

utilizes the rather recently established compressive sampling (CS) framework

and is based on a publication by Adler et al. in 2012 [6]. Both approaches

utilize the information contained in the reliable data to build a signal model

and subsequently try to estimate the erroneous parts employing that model.
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1. Introduction

Since there is no additional information about the defective samples, they are

treated as missing and their locations are assumed to be known a priori.

The thesis is organized as follows. In Chapter 2 we give an overview of some

classical interpolation methods and comment on why the AR technique was

picked as a representative. Basic definitions of the AR model and the derivation

of the restoration algorithm are given in Chapter 3. The CS audio inpainting

framework with three selected sparse approximation algorithms is introduced

in Chapter 4. We present our experimental results in Chapter 5 and draw

conclusions in Chapter 6. Details about the testing software can be found in

Appendix A.
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1. Introduction

Figure 1.1: Image inpainting: an unwanted foreground object has to be removed
from an occluded image [7]

k

sk
? ? ? ?

Figure 1.2: Randomly scattered pattern of unknown samples

k
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? ? ? ? ?

Figure 1.3: Burst of unknown samples
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1. Introduction

Nomenclature

a, b, c, . . . Scalars

a,b, c, . . . Random variables

â, b̂, ĉ, . . . Estimates of variables

a, b, c, . . . Column vectors with scalar elements

a,b, c, . . . Column vectors with random variable elements

A,B,C, . . . Matrices with scalar elements

a(k) Entity of vector a at iteration k

0 Zero vector of appropriate size

ek Unit vector with all elements zero, except ek = 1

IN N ×N identity matrix

〈a, b〉 Inner product of vectors a and b

|I| Number of elements in the set I

Specific symbols

sk Segment of available data

s Vector of available data segment

N Length of available data segment

RN N ×N autocorrelation matrix

p AR model order

a Vector of AR parameters

m Number of unknown samples

t(i) Time instants of unknown samples, i = 1, . . . ,m

x Vector of unknown samples

y Vector of reliable samples

u Sparse representation vector

K Sparsity level

KD Dictionary size

ε Approximation error threshold

4



2. Overview of classical interpolation methods

2 Overview of classical

interpolation methods

A variety of methods is available for the estimation of unknown sample values

in discrete-time signals, but not all of them are suited for audio data containing

predominantly harmonic components. Simple first-order linear interpolation

is working only for bursts up to 5 samples without producing audible artifacts.

Curve fitting methods utilizing Lagrange polynomials also give poor results if

the number of unknown samples exceeds the number of samples in the peri-

ods of the harmonic components [2]. An approach where the lost parts of a

transmitted audio signal are substituted by correctly received ones from the

surroundings is pursued in [8,9], but for this method to work properly, a basic

periodicity of the signal has to be assumed, which does not hold in general.

Better results can be obtained by employing a statistical signal model for the

data generation process. In [10], the assumed model is the band-limitedness

of the signal. The restoration procedure, in theory, comes down to the mini-

mization of the energy outside a prescribed baseband. Unfortunately, it is nu-

merically unstable and oversensitive to out-of-band components and thus also

only practicable for comparatively short intervals in addition to a well-defined

baseband. Moreover, various concepts focussing on packet loss concealment

(e.g. in VoIP systems) should be mentioned [11,12].
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3. Autoregressive modeling

3 Autoregressive modeling

A signal model widely considered very suitable for audio applications is the

autoregressive (AR) model. It is known to give expedient results for real-life

signals such as music and speech [13–17].

3.1 Definitions

The AR model is a special case of the more general autoregressive moving-

average (ARMA) model for time series [18]. In the latter, the observed data

are described by the linear difference equation

sk =

p∑
l=1

alsk−l +

q∑
m=0

bmek−m. (3.1)

Looking at the transfer function

H(z) =
B(z)

A(z)
=

∑q
m=0 bmz

−m∑p
l=1 alz

−l , (3.2)

it can be seen to consist of applying an IIR filter to the excitation sequence

ek, which is independent, identically distributed noise [19]. Several reasons

why it is usually not the model of choice as a basis for sample restoration are

discussed in [2].

For the AR case, B(z) = 1, which corresponds to an all-pole filter with the

difference equation

6



3. Autoregressive modeling

sk = ek −
p∑
l=1

alsk−l, (3.3)

ek =

p∑
l=0

alsk−l, (a0 = 1), (3.4)

where sk, k ∈ {−∞, . . . ,∞}, is an autoregressive process, p is the model order,

al, l = 1, . . . , p are called AR parameters or prediction coefficients (a0 = 1, al =

0 for l < 0 and l > p) and ek is white noise with mean µe = 0 and variance σe
2.

No further assumptions have to be made about the statistical properties of the

noise process. Equation (3.3) can be regarded as a prediction of sk based on

p preceding values with a prediction error ek. Theoretically, any signal sk can

be modeled as an AR process, as long as it is invertible. To ensure wide-sense

stationarity, all poles of H(z) must lie within the unit circle [20]. The power

spectral density is given by

S(Θ) =
σe

2∑p
l=−p bl e

−jΘl , (3.5)

with

bl =

p∑
k=0

akak+l. (3.6)

In general, for a finite segment of data sk, k ∈ {0, . . . , N}, where a single

unknown sample is estimated by

ŝk =
N∑
l=0
l 6=k

βk(l)sl, (3.7)

β
k

=
RN

−1ek
(RN

−1)kk
, (3.8)

β
k

= [βk(0), . . . , βk(N)]T , (3.9)

the interpolation error power

7



3. Autoregressive modeling

Jk =
1

(RN
−1)kk

(3.10)

is minimal at the midpoint of the segment if the signal is modeled as an AR

process [14]. This suggests that the erroneous samples should be located ap-

proximately in the middle of the contemplated signal segment for more general

error scenarios.

3.2 Sample restoration

A feasible method for the interpolation of bursts and general error patterns

has been proposed by Janssen et al. [5]. It consists of estimating the AR

parameters and the calculation of the unknown samples such that the restored

signal pervades the model assumptions as well as possible. This is achieved by

minimizing the cost function

Q(a, x) =
N−1∑
k=p

∣∣∣∣∣
p∑
l=0

alsk−l

∣∣∣∣∣
2

, (3.11)

where N is the length of the available data segment, a = [a1, . . . , ap]
T is the

vector of AR parameters and x =
[
st(1), . . . , st(m)

]T
contains the unknown

samples at time instants t(i), i = 1, . . . ,m. Since this function involves fourth-

order terms, it would be a non-trivial task to find its minimum in one step.

Instead, under the limitation that the number of unknown samples m has to be

considerably smaller than N , it can be split into two quadratic problems, which

are outlined below for the important special case of a stationary Gaussian AR

process.

3.2.1 Parameter estimation

The cost function can be written as

Q(a, x) = aTC(x)a+ 2aT c(x) + c00(x), (3.12)

with

C(x) = [cij(x)] , i, j = 0, . . . , p, (3.13)

8



3. Autoregressive modeling

c(x) = [c01(x), . . . , c0p(x)]T , (3.14)

cij(x) =
N−1∑
k=p

sk−isk−j, i, j = 0, . . . , p. (3.15)

Because C(x) is symmetric, the minimization

∂

∂a
Q(a, x) = 2C(x)a+ 2c(x) = 0 (3.16)

leads to

C(x̂)â = −c(x̂). (3.17)

This is known in literature as the autocovariance method, reasoned by the fact

that C(x) holds the properties of a covariance matrix [21]. The number of

operations required to solve (3.17) is on the order of O(Np) and can become

computationally quite intense for longer signal segments and/or high model

orders. A possible enhancement can be achieved by replacing the entries of

C(x) and c(x) with estimates of the respective autocorrelation lags, leading to

the autocorrelation method. The resulting system of equations is then solvable

with only O(p2) operations using the Levinson-Durbin recursion [22].

3.2.2 Calculation of the unknown samples

It can be shown that (3.12) can likewise be expressed as

Q(a, x) = xTB(a)x+ 2xT z(a) + d(a), (3.18)

where

B(a) =
[
bt(i)−t(j)(a)

]
, i, j = 1, . . . ,m, (3.19)

z(a) = [z1(a), . . . , zm(a)]T , (3.20)

9



3. Autoregressive modeling

zi(a) =

p∑
k=−p

bkst(i)−k, i = 1, . . . ,m, (3.21)

with bk defined in (3.6) and d(a) depending only on a and the known samples

sk, k /∈ {t(1), . . . , t(m)}. It is easily seen that B(a) is also symmetric so, in

analogy to (3.16), the minimization leads to

B(â)x̂ = −z(â). (3.22)

Since B(a) is positive definite, an efficient implementation can be achieved by

subjecting it to a Cholesky decomposition, facilitating (3.22) to be solved in

O(m3) operations [23]. One might also consider the generalized Levinson algo-

rithm for this purpose, but a major drawback would be its strong dependence

on the error pattern.

3.2.3 Adaptive interpolation

The presented steps can be implemented in an adaptive way by applying at

each iteration the current estimates of the unknown samples x̂(k) for the esti-

mation of the parameters â(k), which are then used for the calculation of the

unknown samples x̂(k+1) in the subsequent step, and so forth. According to

the convention that the erroneous samples are treated as missing, the initial

estimate x̂(0) is set to 0. As mentioned above, the only necessary assumption

is that m� N , which should be satisfied for most practical applications.

10



4. Compressive sampling

4 Compressive sampling

Over the past decade, significant advances have been made in the field of

compressive sampling (a.k.a. compressed sensing) and sparse representation

theory [24–26]. It has been demonstrated that techniques from this area can

be employed to faithfully model audio signals [27–29].

4.1 Sparse approximation of audio signals

A segment of a signal s ∈ RN can be well approximated by a sparse linear

combination

s ≈ Du, (4.1)

if the atoms (matrix columns) of the dictionary D ∈ RN×KD , N 6 KD, rep-

resent a domain in which the signal can be considered sparse, i.e. the sparse

representation vector u ∈ RKD has only K non-zero entries, K � N , satisfying

‖s−Du‖2
2 6 ε. (4.2)

This means that the linear combination belongs to an ε-ball surrounding the

signal s, that is a region of RN whose Euclidean distance from the signal is

smaller than the approximation error threshold ε. The dictionary (see Sec-

tion 4.3) is usually overcomplete and has full rank, implying that its columns

11



4. Compressive sampling

span the whole RN , which leads to an underdetermined linear system of equa-

tions with infinitely many solutions. In order to attain a well-defined solution,

a sparsity-promoting regularization of the form

min
u
‖u‖0 s.t. ‖s−Du‖2

2 6 ε (4.3)

can be introduced, using the l0 pseudo-norm ‖·‖0 that counts the number of

non-zero elements in u as a sparsity measure. Unfortunately, the extraction

of the sparsest representation vector for this non-convex optimization prob-

lem is NP-hard and can’t be solved directly in reasonable time. As a matter

of fact, it would cost at least O(2KD) flops [30], where KD > 103 for typi-

cal applications! Hence, extensive research has been made in developing and

adapting algorithms that are able to find near-optimal solutions. We outline

three of them, that are expected to achieve satisfactory results for audio signal

recovery, in Section 4.5.

4.2 Measurement Matrix

We apply the measurement matrix M r ∈ {0, 1}|I
r|×N to separate the reliable

samples from the erroneous ones via the transformation

y = M rs. (4.4)

It is derived from the identity matrix IN by selecting only the |Ir| rows cor-

responding to the unimpaired samples. Thus, the sparse approximation (4.1)

can be expressed as

y ≈M rDu. (4.5)

Similarly, we use Mm ∈ {0, 1}|I
m|×N to denote the support of the missing

samples.

12



4. Compressive sampling
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Figure 4.1: DCT atoms j ∈ {0, . . . , 4} with N = 512

4.3 Dictionary

We choose the discrete cosine transform (DCT) dictionary, which is widely

used for sparse modeling of audio signals [28,29]. The atoms of Dc are defined

as

dcj,k
def
= wdk cos

(
π

KD

(
j +

1

2

)(
k +

1

2

))
, (4.6)

where j ∈ {0, . . . , KD − 1} represents the frequency, k ∈ {0, . . . , N − 1} is the

time index and wdk is a weighting window. For KD = N , the matrix Dc is

orthogonal, but one usually chooses KD > N to increase the probability of a

sparser solution. Fig. 4.1 illustrates the first 5 atoms of the DCT dictionary

with N = 512 and a rectangular weighting window.

For the examined reconstruction algorithms, it is requisite to normalize the

atoms to unit norm by multiplying D with the diagonal matrix W ∈ RKD×KD ,

W = [wij] =

{
1

‖Mrdj‖2
; i = j

0 ; i 6= j,
(4.7)

and selecting only the rows corresponding to the reliable samples

D̃ = M rDW. (4.8)

13



4. Compressive sampling

4.4 Inpainting problem

The challenge is now to recover the missing samples x by estimating the sparse

representation vector u, such that

x̂ = MmDû, (4.9)

given only the values and the positions of the reliable samples y and the dic-

tionary D, as proposed by Adler et al. [6]. By using the relations (4.5) and

(4.8), the optimization problem stated in (4.3) is therefore written as

min
u
‖u‖0 s.t.

∥∥∥y − D̃u∥∥∥2

2
6 ε. (4.10)

4.5 Reconstruction algorithms

As discussed in Section 4.1, finding the true sparsest representation in (4.10)

is not feasible in practice. Thus, we employ suitable reconstruction algorithms

to approximate the solution as well as possible.

4.5.1 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is one of the earliest algorithms for sparse

approximation [31,32]. It is an extension of the widely-used Matching Pursuit

(MP) by Mallat and Zhang [33] and belongs to the family of greedy algorithms.

“A greedy strategy abandons exhaustive search in favor of a series of locally

optimal single-term updates. Starting from u(0) = 0 it iteratively constructs

a k-term approximant u(k) by maintaining a set of active columns – initially

empty – and, at each stage, expanding that set by one additional column.

The column chosen at each stage maximally reduces the residual l2-error in

approximating s from the currently active columns. After constructing an

approximant including the new column, the residual l2-error is evaluated; if it

now falls below a specified threshold ε, the algorithm terminates” [26].

As detailed in Table 4.1, OMP identifies at every step the atom that is most

strongly correlated with the current residual and then removes the projection

of the residual onto the set of all previously selected atoms in order to get the

14



4. Compressive sampling

next residual. For this purpose, the LS problem (4.13) is solved by computing

the Moore-Penrose pseudoinverse of the sub-dictionary D̃Ωk
,

D̃†Ωk
= (D̃T

Ωk
D̃Ωk

)
−1
D̃T

Ωk
. (4.11)

This has to be done once per iteration and accounts for a large part of the

computation time, which is on the order of O(KDKmax |Ir|). This is more

than for MP, but OMP converges in fewer iterations and leads to a smaller

approximation error for a given number of atoms. Further advantages are its

ease of implementation and the guarantee never to select the same atom twice,

since the residual remains orthogonal to the active set at every iteration.

4.5.2 Least Angle Regression

It is possible to replace the l0 pseudo-norm in (4.10) with the l1 norm to obtain

a convex optimization problem

min
u
‖u‖1 s.t.

∥∥∥y − D̃u∥∥∥2

2
6 ε (4.14)

that can be tackled in polynomial time [34]. This substitution is referred to

as convex relaxation, with theoretical results closely related to those of OMP

[30,35,36]. It is reasonable due to the fact that the l1 norm is the convex

function closest to l0, since the lp norm is non-convex for p < 1. Nevertheless,

general-purpose LP solvers still require O(KD
3) flops to solve the full system

(4.14).

We therefore utilze Least Angle Regression (LARS) [37] to approximately solve

the Lagrangian equivalent of (4.14),

min
u

1

2

∥∥∥y − D̃u∥∥∥2

2
+ λ‖u‖1, (4.15)

the so-called LASSO problem [38,39]. The parameter λ regulates the balance

between the approximation error and the sparsity of the representation vector.

The set {ûλ : λ ∈ [0,∞)} represents a solution path that converges to the solu-

tion of (4.14) as λ→ 0. It has been observed in [40] that this path is polygonal,

piecewise linear and that its discretely numbered vertices correspond to solu-

tion subset models, which are vectors with non-zero elements only on a subset
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4. Compressive sampling

of the potential candidate coefficients. This subset, the active set Ω, is aug-

mented by one element at each step. To do this, LARS first determines the

atom most correlated with the current residual and takes the largest step pos-

sible towards the direction of this atom until some other atom exhibits the

same amount of correlation, corresponding to a vertex on the solution path.

It then proceeds in a direction equiangular between the two atoms, the “least

angle direction”, until a third atom reaches as much residual correlation as the

first two, and so forth. The detailed progression is presented in Table 4.2.

LARS and OMP share a similar structure, the only difference being that the

LS problem that has to be solved at each iteration is l1-penalized for LARS.

Hence, LARS can be categorized “less greedy” than OMP. Its computational

complexity is O(N3).

4.5.3 Iterative Soft Thresholding

Iterative Soft Thresholding (IST) represents a different approach to surmount

the optimization problem (4.14) when the solution is sufficiently sparse [41–43].

Starting from an initial solution û(0) = 0, one iteratevely applies the rule

û(k+1) = ηtk(û(k) + κ(D̃T r(k))), r(k) = y − D̃u(k), (4.18)

where the nonlinear soft thresholding operator

ηt(x) = sgn(x)(|x| − t)+ (4.19)

is applied elementwise at each iteration k. It discards all elements smaller than

the threshold value t and pulls the residual ones towards zero by the magnitude

of t (see Fig. 4.2). The relaxation parameter κ ∈ {0, . . . , 1} is chosen as 0.6

according to the recommendation in [43]. At every step, the threshold value

is calculated by leveraging the concept of interference heuristic known from

statistical signal processing [44,45]. The marginal histogram of D̃T r is assumed

to be Gaussian for the estimation of the common standard deviation σ̂. The

threshold value is then set as a fixed multiple of σ̂,

t = ξσ̂, ξ = Φ−1(0.9975− 0.185τ − 0.055τ 2), (4.20)

where τ = N/KD and Φ−1 is the inverse of the standard normal distribution
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Figure 4.2: Soft thresholding operator for t = 4

function. The sequence of iterates û(k) approximately follows the LARS path

at threshold tk [46]. The complete algorithm is detailed in Table 4.3.

IST is easy to implement as it only requires two matrix-vector multiplications

and some vector additions per iteration. The computational cost is on the

order of O(N2).
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4. Compressive sampling

Input

◦ Reliable samples: y ∈ R|Ir|

◦ Measurement matrix: M r ∈ {0, 1}|I
r|×N

◦ Dictionary: D =
[
dj
]
∈ RN×KD

◦ Approximation error threshold: ε

◦ Maximum sparsity level: Kmax

Initialization

◦ Normalized dictionary: D̃ =
[
d̃j

]
= M rDW

◦ Residual: r(0) = y

◦ Active set: Ω0 = ∅
◦ Iteration counter: k = 0

Loop

◦ Increment iteration counter: k = k + 1

◦ Identify most strongly correlated atom:

j = arg max
j

∣∣∣〈r(k−1), d̃j

〉∣∣∣ (4.12)

◦ Augment active set: Ωk = Ωk−1 ∪ j
◦ Compute current estimate by solving the LS problem:

u(k) = arg min
u

∥∥∥y − D̃Ωk
u
∥∥∥2

2
(4.13)

◦ Update residual: r(k) = y − D̃Ωk
u(k)

◦ Stopping criteria: k > Kmax or
∥∥r(k)

∥∥2

2
6 ε

Output

◦ Estimated SR vector: û = Wu(k)

Table 4.1: OMP algorithm [6]
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4. Compressive sampling

Input

◦ Reliable samples: y ∈ R|Ir|

◦ Measurement matrix: M r ∈ {0, 1}|I
r|×N

◦ Dictionary: D =
[
dj
]
∈ RN×KD

◦ Approximation error threshold: ε

◦ Maximum sparsity level: Kmax

Initialization

◦ Normalized dictionary: D̃ =
[
d̃j

]
= M rDW

◦ Residual: r(0) = y

◦ Residual correlations: c(0) =
〈
r(0), d̃j

〉
◦ Active set: Ω0 = arg maxj

∣∣∣c(0)
j

∣∣∣
◦ Initial solution: û(0) = 0

◦ Iteration counter: k = 0

Loop

◦ Calculate update direction:

δ = (D̃T
Ωk
D̃Ωk

)
−1

sgn(cΩk
) (4.16)

◦ Update parameter: λ =
∥∥c(k)

∥∥
∞

◦ Calculate step size:a

γ = min+

j∈Ωc
k

(
λ− c(k)

j

1− d̃j
T
v
,
λ+ c

(k)
j

1 + d̃j
T
v

)
, v = D̃Ωk

δ (4.17)

◦ Increment iteration counter: k = k + 1

◦ Augment active set by minimizing index of (4.17): Ωk = Ωk−1 ∪ j
◦ Compute current estimate: û(k) = û(k−1) + γδ

◦ Update residual: r(k) = r(k−1) − γv
◦ Update residual correlations: c(k) = c(k−1) − γD̃T

Ωk
v

◦ Stopping criteria: k > Kmax or
∥∥r(k)

∥∥2

2
6 ε

Output

◦ Estimated SR vector: û = Wu(k)

Table 4.2: LARS algorithm [36]

a The minimum is taken only over positive arguments.
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4. Compressive sampling

Input

◦ Reliable samples: y ∈ R|Ir|

◦ Measurement matrix: M r ∈ {0, 1}|I
r|×N

◦ Dictionary: D =
[
dj
]
∈ RN×KD

◦ Approximation error threshold: ε

◦ Maximum sparsity level: Kmax

Initialization

◦ Normalized dictionary: D̃ =
[
d̃j

]
= M rDW

◦ Initial solution: û(0) = 0

◦ Relaxation parameter: κ = 0.6

◦ Threshold control parameter: ξ = Φ−1(0.9975− 0.185τ − 0.055τ 2)

◦ Iteration counter: k = 0

Loop

◦ Update residual:
r(k) = y − D̃u(k) (4.21)

◦ Estimate standard deviation:

σ̂ =
κ

0.6745
median

(∣∣∣D̃T r(k)
∣∣∣) (4.22)

◦ Update threshold value: t = ξσ̂

◦ Compute current estimate by applying the thresholding operator:

û(k+1) = ηtk(û(k) + κ(D̃T r(k))) (4.23)

◦ Increment iteration counter: k = k + 1

◦ Stopping criteria: k > Kmax or
∥∥r(k)

∥∥2

2
6 ε

Output

◦ Estimated SR vector: û = Wu(k)

Table 4.3: IST algorithm [43]
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5. Numerical experiments

5 Numerical experiments

The experimental tests are carried out with MATLAB. The source code and

the test file are included on the enclosed DVD to allow for convenient repro-

ducibility (see Appendix A for detailed information).

5.1 Test signals

All test signals are single-channel 16 bit WAV files with a length of 5 s, which

seems to be a reasonable trade-off between an acceptable computation time

and still providing enough duration for perceptually-based evaluation. They

also get normalized to -1 dBFS. The files are sectioned into the following sets.

◦ Speech@8kHz - Excerpts of Harvard sentences in American English by male

and female speakers1

◦ Speech@16kHz - ITU-T test signals for telecommunication systems in Amer-

ican English, German and Japanese by male and female speakers2

◦ Music@16kHz - Various material3

1 http://www.voiptroubleshooter.com/open speech/
2 http://www.itu.int/net/itu-t/sigdb/
3 see appendant text files on the DVD
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5. Numerical experiments

Parameter Value

Frame duration 64 ms

Frame overlap 50%

Analysis window wak rectangular

Synthesis window wsk sine

Table 5.1: Parameter settings for frame-based processing

Parameter Value

AR parameter estimation Autocorrelation method

AR model order p min(3m+2,50)

Number of iterations 10

Table 5.2: AR parameter settings

5.2 Frame-based processing

A common frame-based method for local processing of the audio signal is

employed for the experiments in Section 5.5.2. The full signal is segmented

into overlapping frames of length N , weighted by an analysis window wak.

After inpainting each frame independently, the signal is reconstructed using the

overlap-add (OLA) method with a synthesis window wsk [47]. The parameters

are set according to Table 5.1.

5.3 Performance measure

The quality of the results is mathematically judged by means of the signal-to-

noise ratio (SNR), defined by

SNR(s, ŝ)
def
= 10log10

‖s‖2
2

‖s− ŝ‖2
2

. (5.1)

5.4 Parameter settings

The parameter settings for the inpainting algorithms are listed in Table 5.2

and Table 5.3.
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5. Numerical experiments

Parameter Value

Dictionary size KD 2N

Dictionary weighting window wdk rectangular

Approximation error threshold ε 10−6 · |Ir|
Maximum sparsity level Kmax N/4

Table 5.3: CS parameter settings

5.5 Experimental results

5.5.1 Randomly drawn frames

The overall performance of the examined inpainting methods is first evaluated

on randomly drawn collections of 100 frames per set of test signals, respectively,

to facilitate the computation of representative average SNR values shown in

Figures 5.1 to 5.3.4 Each frame is constrained to have a minimum mean

energy of -6 dB with respect to the frame with maximum mean energy to avoid

silences. The artificially introduced errors are located at random positions.

5.5.1.1 Short bursts

The case of short bursts spanning m ∈ {1, . . . , 10} samples is tested first, with

the results pictured in Fig. 5.1. The AR approach yields the best performance

for speech and is also only slightly subdued by IST for music. Overall, OMP

performs worst and exhibits also the slowest computation speed, with AR

being the fastest method. The average SNR improvement reaches from more

than 20 dB for a single sample error to about 12 dB for a burst length of 10

samples.

5.5.1.2 Long bursts

To simulate packet loss scenarios in communication systems, we introduce

longer bursts in the range of tb ∈ {1, . . . , 10} ms. The outcomes are shown

in Fig. 5.2. AR outperforms the CS methods for 8 kHz speech and is on a

par with LARS and IST for the 16 kHz sets. OMP is again behind by 3-8 dB

for shorter intervals and disappoints especially for the longest ones, compared

4 Additionally, the figures contain the average SNR values of the crude signal as a reference.
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Figure 5.1: Average SNR for short bursts
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5. Numerical experiments

to the other three algorithms, where it leads to no significant improvement

anymore.

5.5.1.3 Scattered single errors

Impulsive distortions are mimicked by introducing a multitude of randomly

scattered single errors. Fig. 5.3 illustrate the results, which are comparable

with those of the short bursts. All methods perform better in this case than

for long bursts with a equal amount of missing samples. For example, the

differences for 8 kHz speech with m = 80, corresponding to tb = 10 ms, are on

the order of 10 dB. Similar empirical results have been found in [6]. Regarding

the CS methods, one reason therefore is the fact that a higher randomness of

the measurement matrix generally produces smaller errors in sparse approxi-

mations [24]. AR nonetheless outperforms CS by 1-4 dB, whereas the LARS

algorithm seems to be the least suitable choice for recovering impulsively dis-

torted signals, falling behind the others by about 1-3 dB for music and even

worse with speech.

5.5.2 Specific signals

We now apply the inpainting algorithms framewise on 6 selected files from the

16 kHz sets, as described in Section 5.2. Table 5.4 lists the resulting values of

SNR improvement for the case of periodically repeated bursts of tb = 5 ms.

The repetition time is 50 ms, yielding a total error ratio of 10%. The same

signals are tested with randomly scattered single errors, which likewise account

for 10% of the whole segment, with the results depicted in Table 5.5.

As alluded by the outcomes of the experiments in Section 5.5.1, all methods

work best on signals composed predominantly of few harmonic components.

Vivid examples are the female singing voice and the acoustic bass, both of

which are largely made up of long sustained tones that are preceded by only

short transients (e.g. in Fig. 5.4). Sudden transients are more often than not

slightly under-approximated, particularly by IST. On the other hand, the per-

formance on percussive sounds with plenty of transient components, plosives

in speech and more complex signals, such as complete song fragments, tends

to suffer from over-smooth approximations, especially with AR. The CS meth-

ods don’t seem to prefer smooth solution that much, but in many cases they

produce even worse mismatches, all with similar characteristics (see Fig. 5.5).
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Figure 5.2: Average SNR for long bursts
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Figure 5.3: Average SNR for m randomly scattered single errors
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AR OMP LARS IST

Female speech 8.36 dB 3.49 dB 1.97 dB 5.93 dB

Male speech 4.16 dB 3.07 dB 5.56 dB 5.14 dB

Female singing 15.98 dB 7.93 dB 7.66 dB 8.84 dB

Drums 6.21 dB 3.45 dB 5.15 dB 5.45 dB

Acoustic bass 7.49 dB 5.14 dB 7.94 dB 3.64 dB

Pop song 2.71 dB 2.15 dB 4.37 dB 4.24 dB

Table 5.4: SNR improvement for 16 kHz signals with periodic 5 ms bursts and a
total error ratio of 10%

AR OMP LARS IST

Female speech 13.99 dB 13.57 dB 13.07 dB 13.58 dB

Male speech 21.03 dB 15.94 dB 15.00 dB 16.41 dB

Female singing 21.68 dB 20.23 dB 19.87 dB 20.47 dB

Drums 19.42 dB 16.42 dB 18.42 dB 18.61 dB

Acoustic bass 23.81 dB 23.75 dB 23.73 dB 23.78 dB

Pop song 17.86 dB 16.30 dB 16.18 dB 16.87 dB

Table 5.5: SNR improvement for 16 kHz signals with 10% scattered single errors

5.5.2.1 Interpolation noise

It is furthermore revealing to take a closer look at the behavior of the interpo-

lation noise sk − ŝk. We therefore investigate the scenario of the acoustic bass

signal distorted by randomly scattered single errors, as pictured in Fig. 5.6.

Although each method yields about the same amount of SNR improvement

(23.73 - 23.81 dB), the interpolation noise of the reconstructed signal for the

case of CS approximation (most notably LARS) exhibits a larger quantity of

peaks. This is quite obvious when we look at the waveform as well as clearly

audible during perceptually-based evaluation. AR produces a more steady

sizzling noise that is barely audible in any of the reconstructed test signals.

5.5.2.2 Short-time stationarity

The short-time stationarity of the observed signal is oftentimes indicated to

be a crucial factor affecting the performance of the inpainting algorithms on

longer bursts [5,6]. To evaluate the influence, we handpick 10 non-stationary

frames from each set of test signals and introduce single bursts of tb = 10 ms
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ŝ
k

 

 

Original

AR

(a) AR

2.22 2.24 2.26 2.28 2.3 2.32 2.34 2.36 2.38 2.4 2.42

x 10
4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

k [samples]

s
k
,
ŝ
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Figure 5.4: Extract of unimpaired and reconstructed 16 kHz acoustic bass signal
with 5 ms (80 samples) bursts
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Figure 5.5: Extract of unimpaired and reconstructed 16 kHz pop song fragment with
5 ms (80 samples) bursts
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Figure 5.6: Interpolation noise of 16 kHz acoustic bass signal with 10% scattered
single errors
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AR OMP LARS IST

Speech@8kHz 6.61 dB 1.38 dB 3.91 dB 4.36 dB

Speech@16kHz 6.63 dB 2.04 dB 4.59 dB 4.21 dB

Music@16kHz 3.60 dB 1.02 dB 4.14 dB 3.69 dB

Table 5.6: Average SNR improvement for selected non-stationary fragments with
10 ms bursts

at transition instants (e.g. in Fig. 5.7). The results are listed in Table 5.6.

AR performs best for speech nonetheless and only up to 1 dB worse than

LARS and IST for music. Regarding the overall improvements, there can only

be identified a considerable setback (2-3 dB) for the case of 8 kHz speech,

compared to those of the tests with randomly drawn frames (Fig. 5.2).
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Figure 5.7: Example of non-stationary frame with 10 ms gap

5.5.3 Computational aspects

As we already noted, AR is by far the most efficient technique in terms of pro-

cessing time due to the employment of the Levinson-Durbin recursion during

the parameter estimation stage and the Cholesky decomposition for the cal-

culation of the unknown samples. The CS methods – in their basics forms, as

we apply them – all have to execute one or more time-consuming matrix oper-

ations at every iteration. In addition to that, AR gets by with 10 steps, while

the CS methods require up to N/4 iterations to achieve comparable SNR im-

provements. Table 5.7 shows the average processing times normalized to those
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OMP LARS IST

Bursts 294 135 122

Scattered errors 237 106 94

Table 5.7: Average processing times normalized to those of AR

of the AR method for the experiments in Section 5.5.2.5 Regarding stability,

AR has the disadvantage of being sensitive to gaps embedded in a neighbor-

hood of low-amplitude samples. In this case, the matrix B(â) in (3.22) can

become almost singular, which leads to inaccurate results.

5 All tests have been performed on an Intel Core 2 Duo processor clocked at 2.26 GHz.
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6 Conclusion and outlook

In this diploma thesis, we evaluated the performance of two types of state-

of-the-art time-domain restoration algorithms for the recovery of impulsively

distorted samples and gaps in digital audio signals. After an overview of the

broad spectrum of existing approaches, we specifically discussed techniques

based on autoregressive modeling and compressive sampling as a basis for

a thorough comparison during a series of extensive numerical experiments.

Similarly to related inpainting problems in image processing, the examined

audio inpainting methods rely on the generation of a signal model from the

reliable data to estimate the values of the defective samples, implying that the

positions of the errors are known a priori.

In contrast to the autoregressive model, compressive sampling requires the al-

location of a proper dictionary to be able to represent audio signals in a sparse

domain. For this purpose, we chose a fixed redundant discrete cosine trans-

form dictionary, backed by suggestions in previous related works. From the

substantial selection of available sparse approximation algorithms, we consid-

ered the greedy Orthogonal Matching Pursuit (OMP) as well as Least Angle

Regression (LARS) and Iterative Soft Thresholding (IST), which both belong

to the family of l1-minimization techniques.

The alluded error types have been mimicked by the insertion of missing sam-

ples of different lengths and distributions and can be categorized into ran-

domly scattered errors and bursts. We assembled several sets of test signals,

containing speech and music fragments, that have been used throughout the

experiments.
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6. Conclusion and outlook

Somewhat surprisingly, we found that the classical autoregressive modeling

approach outperforms the rather recently established compressive sampling

methods for almost every contemplated scenario in terms of the SNR as well as

the required computation time. It provides a particular advantage for speech,

although more transient-heavy and complex signals, such as music, can be

recovered more accurately with LARS and IST in some cases. In consideration

of the fact that the latter are computationally significantly more intensive, the

slight gain in SNR might not be worth the longer processing time in many

practical applications. On average, the OMP algorithm has been found to

perform worst for most cases, in addition to being the computationally most

intensive one. The already known fact that the audio inpainting problem is

easier to deal with for randomly scattered errors than for burst has been vividly

reassured.

Thus in conclusion, we have clearly demonstrated that the examined inpainting

methods from the field of compressive sampling are not able to compete with

the classical autoregressive modeling approach if they are implemented with-

out any further algorithmic enhancements. Based on our findings, a number

of future directions may be explored. First of all, even though it is conve-

nient and simple to employ a fixed dictionary, a promising trend is the topic

of dictionary learning, which has received a lot of attention over the last years

[48–51]. In particular, the K-SVD algorithm has been shown to yield auspi-

cious results for this purpose [52]. There is also, obviously, a lot of room for

improvement regarding computational efficiency, which might be reduced by

using fast transforms for critical matrix multiplications and dictionary han-

dling. This will become particularly important if one attempts to apply com-

pressive sampling methods to data at higher sampling rates, e.g. CD-quality

audio.
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Appendix A

MATLAB software

The software developed for the experimental tests in Chapter 5 is based on

the freely available1 Audio Inpainting Toolbox [6]. To be able to use it, just

copy the main folder AudioInpainting to your local hard drive and add it to

the MATLAB search path, including all subfolders.

We have included 3 ready-to-run experiments, which can be executed without

the need of specifying any parameters. However, it is possible to customize

all parameters, as explained in the following sections. The test data listed in

Section 5.1 is part of the package as well.

A.1 Burst experiment

[MeanSNR,MeanTime] = BurstExperiment(expParam)

The function BurstExperiment can be applied to reproduce the tests from

Sections 5.5.1.1 and 5.5.1.2. A list of random frames is drawn from one set

of test signals, each of which gets impurified with bursts of ascending length.

After inpainting the defective frames with the examined methods, the average

1 http://small-project.eu/software-data/
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Parameter Function Default value

SoundDir Test data set Speech@8kHz

NFrames Number of random frames 5

tFrames Frame duration [ms] 64

MaxDiffE2m Max. frame-energy difference [dB] 6

BurstSizes Range of burst durations [ms] {1, . . . , 5}
NBursts Number of bursts per frame 1

ARIterations Fixed number of iterations for AR 10

ErrThreshold Approximation error threshold factor 10−6

MaxSparsity Max. sparsity level as a multiple of N 0.25

Dictionary Dictionary function DCT

DictWind Dictionary weighting window rectangular

DictRedundancy Dictionary redundancy KD/N 2

ShowPlot Plot SNR figure true

Table A.1: Parameters and default values of BurstExperiment

SNR values are computed and can be plotted. The return values include the

SNR as well as the average processing times of the different algorithms. The

parameters and their default values are listed in Table A.1.

A.2 Scattered experiment

[MeanSNR,MeanTime] = ScatteredExperiment(expParam)

The function ScatteredExperiment can be applied to reproduce the tests from

Section 5.5.1.3. A list of random frames is drawn from one set of test signals,

each of which gets impurified with an ascending number of randomly scattered

single errors. After inpainting the defective frames with the examined meth-

ods, the average SNR values are computed and can be plotted. The return

values include the SNR as well as the average processing times of the different

algorithms. The parameters and their default values are listed in Table A.2.

A.3 Frame-based experiment

[AudioData,IMiss,SNRImp,CompTime] = ...

FrameBasedExperiment(expParam)

37



A. MATLAB software

Parameter Function Default value

SoundDir Test data set Speech@8kHz

NFrames Number of random frames 5

tFrames Frame duration [ms] 64

MaxDiffE2m Max. frame-energy difference [dB] 6

ErrorSize Size of errors [samples] 1

NErrors Range of error numbers 1

ARIterations Fixed number of iterations for AR 10

ErrThreshold Approximation error threshold factor {1, . . . , 10}
MaxSparsity Max. sparsity level as a multiple of N 0.25

Dictionary Dictionary function DCT

DictWind Dictionary weighting window rectangular

DictRedundancy Dictionary redundancy KD/N 2

ShowPlot Plot SNR figure true

Table A.2: Parameters and default values of ScatteredExperiment

The function FrameBasedExperiment can be applied to reproduce the main

experiment from Section 5.5.2. The positions of the errors can be specified by

a logical vector, which is set to the case of randomly scattered single errors by

default. The return values include the SNR, computation times, error position

vector and a structure containing the normalized audio data (see Table A.4).

The parameters and their default values are listed in Table A.3.
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Parameter Function Default value

SoundFile Test file Speech@8kHz

tFrames Frame duration [ms] 64

IMiss Error position vector 10% scattered

ARIterations Fixed number of iterations for AR 10

ErrThreshold Approximation error threshold factor {1, . . . , 10}
MaxSparsity Maximum sparsity as a multiple of N 0.25

Dictionary Dictionary function DCT Dictionary

DictWin Dictionary weighting window rectangular

DictRedundancy Dictionary redundancy KD/N 2

AnalysisWin Analysis window function rectangular

SynthesisWin Synthesis window function sine

FrameOverlap Overlap factor for OLA 2

Table A.3: Parameters and default values of FrameBasedExperiment

Field Function

xClean Original signal

xDist Defective signal

xEst Estimated signals in columns

fs Sample rate

Table A.4: Returned audio data structure of FrameBasedExperiment
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Acronyms

AR Autoregressive

ARMA Autoregressive moving-average

CS Compressive sampling

DCT Discrete cosine transform

IIR Infinite impulse response

IST Iterative Soft Thresholding

LARS Least Angle Regression

LASSO Least absolute shrinkage and selection operator

LP Linear programming

LS Least squares

MP Matching Pursuit

OLA Overlap-add

OMP Orthogonal Matching Pursuit

SNR Signal-to-noise ratio

SR Sparse representation
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